WORDWARE GAME DEVELOPER'S LIBRARY

(ROSS-PLATFORM
GAME DEVELOPMENT

Cross-Platform Game
Development

Alan Thorn

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

Thorn, Alan
Cross-platform game development / by Alan Thorn.
p. cm.
Includes index.
ISBN 10: 1-59822-056-X
ISBN 13: 978-1-59822-056-8 (pbk.)
1. Computer games--Programming. 2. Cross-platform software development.
I. Title.
QA76.76.C672T4957 2008
794.8'1526--dc22
2008012132

© 2008, Wordware Publishing, Inc.
All Rights Reserved

1100 Summit Avenue, Suite 102
Plano, Texas 75074

No part of this book may be reproduced in any form or by
any means without permission in writing from
Wordware Publishing, Inc.

Printed in the United States of America

ISBN 10: 1-59822-056-X
ISBN 13: 978-1-59822-056-8
10987654321
0805

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries. Ubuntu is a
registered trademark of Canonical, Ltd. Mac is a trademark of Apple Inc., registered in the U.S. and
other countries. Windows is a registered trademark of Microsoft Corporation in the United States and
other countries.

Other brand names and product names mentioned in this book are trademarks or service marks of
their respective companies. Any omission or misuse (of any kind) of service marks or trademarks
should not be regarded as intent to infringe on the property of others. The publisher recognizes and
respects all marks used by companies, manufacturers, and developers as a means to distinguish their
products.

This book is sold as is, without warranty of any kind, either express or implied, respecting the
contents of this book and any disks or programs that may accompany it, including but not limited to
implied warranties for the book’s quality, performance, merchantability, or fitness for any particular
purpose. Neither Wordware Publishing, Inc. nor its dealers or distributors shall be liable to the
purchaser or any other person or entity with respect to any liability, loss, or damage caused or alleged
to have been caused directly or indirectly by this book.

All inquiries for volume purchases of this hook should be addressed to Wordware
Publishing, Inc., at the above address. Telephone inquiries may be made by calling:

(972) 423-0090

Contents at a Glance

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix |
Appendix J

Cross-PlatfformGames 1
Linux Ubuntu and LinuxGaming 49
Cross-Platform DevelopmentTools. 81
Game Programming Basics 115
SDLGraphics. ¢ v i v i i it e e e e 137
Game A Audioo e e e e 173
Game Mechanics.0 000 201
Novashelland2DGames 225
Directorand WebGames 265
3D GameswithOGRE3D 299
Other Cross-Platform SDKsand Tools. 335
GNU Lesser General Public License. 363
BSDLicense ¢ ¢ i v vt v vt it 369
Creative Commons License 371
zlib/libpng License. 00000 379
The MIT License Template 381
STL Public Member Methods Reference. 383
SDLKeyCodes. « vt v v v v v o v o o o o oo 389
Novashell Functions 395
DirectorEvents. 0. 407
OGREOISKeyCodes ¢ ¢ v v vt v euoeos 409

This book is dedicated to Alfie Stokes,
Emma Gibson, and Lauren Stitt.

Contents

Chapter 1

Chapter 2

Acknowledgmentso Xiii
Introduction XV
Cross-Platfform Games v v v v o oo 1
1.1 Platforms e 3
1.1.1 Microsoft Windows 3
112MacOSX . . . oo e 4
TI3LINUR. « o v e e e e e e e e e e e e 5
1131 Ubuntu. o oo 7
TL32SLAX. . o e 9
1.1.33Freespire. v v v v i i e 10
1.2 Cross-Platform Games 11
1.2.1 The Battle for Wesnoth 11
1.220penArena. oo e e 12
1.2.3 UFO: Alien Invasion. 13
1.2.4 Shockwave and Flash Games. 14
1.3 Preparing to Go Cross-Platform 15
1.3.1 Multiple Booting. 17
1.3.2 Step 1 — Preparing to Multiple Boot 19
1.3.3 Step 2 — Installing Windows XP. 20
1.3.4 Step 3 — Installing Windows Vista 27
1.3.5 Step 4 — Installing Linux Ubuntu 33
1.3.6 Step 5 — Summary of Multiple Boot 40
1.4 Virtualization — Simulating Operating Systems 40
141 UsingVMWare 42
1.4.2 Creating a Virtual Machine for Linux Ubuntu. 43
15Conclusion. . . . oLl e e 48
Linux Ubuntu and Linux Gaming 49
2.1 Ubuntu Installation and Troubleshooting 50
2.2 Gettingto Know Ubuntu 52
221 Ubuntulogin 53
2.2.2UbuntuDesktop. 54
2.23SystemMonitor Lo 55
2.2.4Update Manager. 55
2.2.5 Screen and Graphics Preferences and Restricted
Drivers Manager 56

Contents

Chapter 3

Chapter 4

Vi

2.2.6 Add/Remove Applications. 57
2.2.7 Synaptic Package Manager 58
2.2.8 Ubuntu Terminal/Console/Shell 59
2.2.9 Places | Computer 60
2.2.10 Firefox Web Browser 60
2.2.11 OpenOfficeorg. 61
2.212PhotoEditing. 62
2.2.13 Installing and Playing a Game on Ubuntu 63
2.3 Linux and “Transgaming” Technologies 65
231Cedega. e 66
2.32CrossOvero e 67
233WINE . . oo i e e e e 68
2.3.3.1 Installing Wine on Linux Ubuntu 68
2.4 Automating Ubuntu with Automatix 70
2.4.1 Installing and Using Automatix for Linux Ubuntu . .. 71
25TheLinux Shell, 73
2.5.1 Common Shell Commands 74
2.5.2 Creating and Compiling a C Program Using the
Ubuntu Terminal and BASH Shell Commands 79
26ConClusion. e 80
Cross-Platform DevelopmentTools. 81
3.1CodexBlocks. 84
3.2 Downloading and Installing Code::Blocks in Ubuntu 86
3.3 Downloading and Installing Code::Blocks in Windows 90
3.4 Getting Started with Code::Blocks. 95
3.4.1 Code::Blocks Projects. 96
3.5 Cross-Platform “Hello World” Application 98
3.6 Graphicsand GIMP 101
3.6.1 Installing GIMP on Windowsor Mac. 102
362U0singGIMP 103
3.6.2.1 Creating Tileable Textures Using GIMP 103
3.6.2.2 Editing Image Transparency Using GIMP 106
37Blender3D 109
3.7.1 Installing Blender 3D on Linux Ubuntu 109
3.7.2 Installing Blender 3D on Windows/Mac 111
3.8Conclusion 113
Game Programming Basics 115
4.1 Game Programming — Getting Started 116
4.1.1 Genre and Objective 117
4.1.2 Time Frame and Budget. 117
413 Gameldeas. 118
4.2 Preparing to Make Games. 122

Chapter 5

Confents

4.3 Using the STL: Stringsand Lists.
431 stdustring. v v v e e e e e e e e e e e e

4.3.1.1 Configuring Projects to Use STL and

std::string with Code::Blocks.
4.3.1.2 Declaring, Creating, and Assigning Strings

withstdustring.
4.3.1.3 Looping through Characters of a String with

stdistring oo
4.3.1.4 Searching for Characters in a Specified

Instance of stdu:string
4.3.1.5 Extracting and Inserting Substrings from and

to a Specified Instance of std::string
4.3.1.6 Converting Instances of std::string to

Standard char* Pointers.

4.3.2stdavector ... L e e e e

4.3.2.1 Creating a List with std::vector
4.3.2.2 Declaring Instances of std::vector.
4.3.2.3 Adding Items to a List Using std::vector
4.3.2.4 Cycling through Items in a List Using
stdzvectoro
4.3.2.5 Removing Items from a List Using std::vector . .

44TheGameLoop v v i i i ittt
45ConclusSion v i e e e e e e e e

SDL

Graphics. it et e e e e e e e e e

51SDL Breakdown
5.2 Downloading and Configuring SDL

5

5

21SDLonUbuntu.o ...
5.2.1.1 Downloading and Installing SDL on Ubuntu
Using Synaptic Package Manager
5.2.1.2 Downloading SDL Documentation from
theWeb.
5.2.1.3 Creating an SDL Project Using Code::Blocks
inLinux Ubuntu
2.2SDLonWindows.
5.2.2.1 Downloading and Installing SDL on Windows . .
5.2.2.2 Creating an SDL Project Using Code::Blocks
mWindows

5.3 Getting Started with SDL

o1 O1 O1

.3.1 Initializing and Closing SDL.
.3.2 Creating a Window and Game Loop
3.3SDLSurfaces. o o oo
5.3.3.1 Blitting Surfaces
5.3.3.2 Optimizing SDL Surfaces

vii

Contents

Chapter 6

Chapter 7

viii

5.3.4 Additional File Formats (JPEG, PNG, TGA,
and Others). e
5.3.4.1 Downloading and Configuring SDL Image
Development Libraries for Code::Blocks on
Ubuntu
5.3.4.2 Downloading and Configuring SDL Image
Development Libraries for Code::Blocks on
Windows
5.3.4.3 SDL: Further Image Formats
5.4 Color Keying with Surfaces
55Conclusion L e

Game A Audio e e e
6.1 Recording and Editing Game SFX
6.2SFX Software. L o e
6.2.1 Downloading and Installing Audacity on
Linux Ubuntu.o oL
6.2.2 Downloading and Installing Audacity on
WindowsorMac
6.3 Recording/Creating and Editing Music.
6.4 Music Creation Software
6.4.1 Downloading and Installing Schism Tracker
onLinux Ubuntu.
6.4.2 Downloading and Installing Schism Tracker
onWindowsandMac
6.5 Programming Audio with SDL mixer
6.5.1 Installing and Configuring SDL_mixer on
Linux Ubuntu.o oL
6.5.2 Installing and Configuring SDL_mixer on
Windows oo
6.5.3 Initializing the SDL_mixer Library.
6.6 Sounds and Music with SDL mixer
6.6.1 LoadingMusic
6.6.2PlayingMusic e
6.6.3 ControllingMusic
6.6.4 Playing Samples through Channels in SDL_mixer . .
6.6.5 Loading Sounds into SDL_mixer as Samples
6.6.6 Handling Channels with SDL mixer
6.7Conclusion L e

Game Mechanics. 0 0oL
7.1 Getting Started with Game Worlds
7.2 Creating Derivative Objects.
7.3 Maintaining Game Objects

Chapter 8

7.4 Tile-based Levels
7.5 Animations and States.
7.6Movement e e

7.6.1 Movement with Vectors.
7.7 Hierarchical Transformations
7.8 Z-Order and Depth Sorting
79ConClusion e e e e

Novashelland2DGames
8.1 Novashell Overview
8.2 Downloading Novashell (Windows, Linux, and Mac)
8.3 Exploring Novashell Games.
8.4 Getting to Know Novashell
8.4.1 The Game SelectionMenu
8.4.2 The Editor and Player Modes.

8.4.3 Getting Started — Loading, Playing, and Editing

aGame e

8.5 Novashell Editor
8.5.1TileResources
8.5.2 Entity Resources.
8.6 Novashell Tools

8.7.2 Exploring Maps and Editing Tiles
8.8 Creating New Games and Maps.
8.9 Importing Art into Novashell

8.9.1 Importing Files.

8.9.2 Setting a Player Entity

8.9.3 Creating Smaller Tiles from Larger Tiles

8.9.4 Setting Collision Information
8.10 Novashell System Palette

8.10.1 AudioTiles

8.102ColorTiles

8.10.3 Invisible Wall Tiles

8.10.4 Warp, Waypoint, and Path Nodes

8.105S8criptTiles . . . v v v v s
8.11 Novashell Scripting.

8.11.1 Novashell Console

8.11.2 Attaching a Script to an Entity.

8.11.3 Visual Profiles.

8.11.4 Moving a Character Using the Keyboard

8.11.5 Clever Navigation with Pathfinding
8.12Conclusion e

Confents

Contents

Chapter 9

Chapter 10

DirectorandWeb Games 265
9. 1DIrector. . . v v v i e e e e e e 268
9.2 Director Games e e 269
9.3 Director and Shockwave Compatibility. 271
9.4 Getting Started with Director. 272
9.4.1 Downloading and Installing Director 272
9.4.2 Creating an Animated “Hello World” Application
imDirector L . 274
9.5 Director in More Detail 280
951 CastMembers e 281
95.2TheStage. i i 282
9.5.3 The Score Window’s Timeline 284
9.6 Director Scripting with JavaScript 285
9.6.1 Frame Scripts o o e 286
9.6.2 Global Event Scripts. 287
9.6.3 Local Event Scripts 288
9.7 Practical Scripting 289
9.7.1 Programming: Shapes, Lines, and Primitives 290
9.7.2 Printing a List of All Sprites On-stage 291
9.7.3 Animating Sprites Using Cast Members 292
9.7.4 Querying Mouse Events. 294
9.8 Using the Projector for Web-based and Stand-alone
Games e e 295
9.8.1 Building Web Games. 296
9.8.2 Building Stand-Alone Games (EXE for Windows,
OSXforMac). v i it e 297
99Conclusion e e 297
3BDGameswithOGRE3D 299
101OGRE3Do e 302
1020GRE3D Games. 304
1021 Ankh. 304
10.2.20therGames, 305
10.3 Installing OGRE 3D 306

10.3.1 Downloading and Installing OGRE 3D on Ubuntu . . 307
10.3.2 Downloading and Installing OGRE 3D on Windows . 312

10.4 Getting Started with OGRE3D 315
10.5 Receiving Frame Events. 318
10.6 Adding ObjectstoaScene 321
10.7 Adding Lights and Particle Systems. 325
10.8 Reading User Input with OGREand OIS 328
109 Conclusion Lo e 333

Chapter 11

Confents

Other Cross-Platform SDKsand Tools. 335
11.1 Graphics SDKs 338
11.1.10penGL oo o 338
ILI2PTK . o e 338
11.13ClanLib oo 339
11.1.3.1 Installing ClanLib 339
11.2AudioSDKs 342
1121FMOD. . ..o e 342
11.22BASS . . . o e 342
11231rrKlang o 0 o oo 343
1124 Audiere o oo e 343
11.250penAL o e 343
11.3Physics SDKs. 344
11310DE. e 344
11.3.2 Newton Game Dynamics. 344
11.3.3True Axis Physics 344
11340PAL o e 345
1135Bullet oo o 345
11.36PhysX . . . oo e 345
11.4NetworkSDKs o o 346
1141 RakNet i e 346
1142HawkNL.o 0 o 346
1143SDL net. . .« .o i i 347
11.5 Artificial Intelligence SDKs 347
11.5.1 Boost Graph Library 347
11.5.20penSteer. e 347
1153FANN . . .o e 348
11.5.4 Garfixia Al Repository 348
116Input SDKs 348
1161 LbGII . . o oo 348
11.6.20penlnput. 349
11.7Seripting SDKs 349
B 5 - 349
11.72Python. e 349
11.73Ruby. . . . o o 350
11.748quirrel e 350
11.75AngelCode. e 350
11.7.6 GameMonkey 351
11.8 Game Engines 351
1181 Torque. . . v v v v e e e e e e e e e e e 351
11.821Irrlicht. . . o o o oo oo 351
11.83Game Editor 352
ITOGUISDKS. . . . v ot e e e e e e 352
11.910penGUI o 352

Xi

Contents

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix |

Appendix J

Xii

11.J0Web SDKS . . . o v o o e e e e 352
11.101YaBB . . . o o e 352
11.10.1.1 Downloading, Installing, and Creating an

Online Forum 353

11.11 Distribution SDKs. 358
T1I1INSIS © .o e 358
11.112InnoSetup v v v v i e 359

11.11.2.1 Downloading, Installing, and Creating an

Installer in Inno Setup. 359
11.12ConcluSIion . .« « v v v v e e e e e e e e e e 361
GNU Lesser General Public License. 363
BSDLicense ¢ ¢ ¢ v v o ¢t ¢t o o o o o o o o o o 369
Creative Commons License 371
zlib/libpng License. 0000 379
The MIT License Template 381
STL Public Member Methods Reference. 383
SDLKeyCodes.« vt v v v vt v o v o o o o oo 389
Novashell Functions 395
DirectorEvents. ¢ ¢ i i i ittt e e e e 407
OGREOISKeyCodes v v v v vt v v oo 409
Index i i i i i e e e e e e e e e e e e e e e 415

Acknowledgments

This is my fourth book with Wordware and each book has been a plea-
sure to write. I would like to take this opportunity to thank those
people who have helped this book to completion and who have ensured
the quality of its contents. My thanks go to:

B Tim McEvoy and Beth Kohler of Wordware Publishing for being
both professional and pleasant people to work with.

B Marlies Maalderink for creating the great and colorful cover for
this book. Those interested in other work by Marlies can visit her
web site at http://marlies.m3is.nl.

B My family and friends for their support, encouragement, and
understanding.

B And finally, I would like to thank the reader for taking the time to
read and study this book. I hope it proves useful.

Alan Thorn (http://www.alanthorn.net)

Xiii

This page intentionally left blank.

Introduction

Browsing the web one cold evening while writing this book led me to a
technical web site featuring the following quote, attributed to Herbert
Mayer:

“No programming language is perfect. There is not even a single
best language; there are only languages well suited or perhaps
poorly suited for particular purposes.”

This kind of contextual philosophy — that everything is defined by
context, that languages are not in themselves either good or bad, or
one thing or another — need not apply only to programming lan-
guages. Indeed, it may equally apply to many other facets of
computing, from graphic design application to whether one selects an
open-source web browser. But perhaps this philosophy applies most of
all to the computing concept of “platforms,” meaning operating sys-
tems such as Windows, Mac, and Linux. Perhaps platforms too are
defined by context and not by themselves.

In the current computing climate, one divided by the controversies
of open-source software versus proprietary software, patenting, DRM,
and copy-protection scandals, it’s easy to take up positions and argu-
ments for one or the other — believing it to be wholly wrong or wholly
right — and then lose sight of the context. But if platforms really are
defined by context, by how people use them, the kinds of things one
can do on the platform, the kinds of circumstances in which the plat-
form has developed; then to lose sight of context is to lose sight
altogether.

It’s quite a simple thing to stand around at a game convention and
claim that PCs have become outdated for gaming, giving way to con-
soles like the Wii, Xbox, or PlayStation; but the reality of course
appears not nearly as clear-cut as this. Such simplistic positions ignore
the thriving casual game market as found at Reflexive Arcade or Big
Fish Games; they ignore the indie-game (or shareware) “resurgence”
at sites like GameTunnel, featuring games such as Teenage

Xv

Introduction

XVi

Lawnmower, Samorost, Darwina, Jets'n’Guns, or Gish; and they fur-
ther ignore the increasing “cross-platform” nature of games that run
on multiple platforms including Windows, Mac, Linux, and the
consoles.

Likewise, with an increasingly popular Mac, the changing face of
Windows, and the growing community of Linux users worldwide with
releases like Ubuntu and PCLinuxOS, the whole PC platform scene
has also become the site of conflict and division among many game
developers and gamers, with sweeping claims on all sides. Which plat-
form is best? Which is the fastest? The most secure? The easiest? The
most customizable? Again, it’s quite simple to play the numbers game,
mocking one or the other platform by claiming “This platform statisti-
cally has a user base of X number of people compared to only Y
number for this other platform.” Notice that this is a statement about
the platform itself, and not the context. For again, the reality is far less
clear-cut than the numbers suggest, if only because not everybody
uses one OS; some use many operating systems, on different
machines, or dual-booting on the same machine, for different purposes
in the same household or in the same office and at different times.

In short, this book attempts to sidestep questions such as “Which
is the best?”, “Which platform should I choose?”, and “Isn’t this out of
date?” Instead, the book accepts that different people use different
platforms, and each platform has advantages and disadvantages, many
of them determined by context. The cross-platform game developer,
then, is not merely someone who scouts around looking for the “best”
or most fashionable platform at any given time and simply settles
there to make a game for this platform alone; instead, the aim should
be to make a game that runs on all platforms. However, the title of this
book is Cross-Platform Game Development, and this means “cross-plat-
form” in a double sense.

Here, “cross-platform game development” means to develop
cross-platform games using cross-platform tools, most of which are
also free of charge. Thus, this book examines not just how to make
cross-platform games, but how to make cross-platform games using
programming editors, graphics suites, and 3D software that are them-
selves cross-platform.

Introduction

Who should read this hook?

Books are written with a target audience in mind, and here are some
typical readers for whom this book is intended:

Joe studies computers at school, but programs in C+ + in his
spare time at home and is hoping to make computer games. He’s
familiar with Windows but no other operating system, and knows
his iPod from his MySpace profile, and can distinguish YouTube
from Bluetooth, though he doesn’t necessarily use them all.

Anita is a web designer looking to change to a career as an inde-
pendent game developer selling her games as online downloads
from her web site. She’s spent almost two years programming in
JavaScript and PHP, and can also use Flash. She often uses a Mac
and is familiar with Windows, but knows nothing of Linux.

Kurt is already a professional game developer working for an
established software house in a prestigious area of town, but they
only make games for consoles. He’s thinking of leaving to start a
game development business of his own, working from home mak-
ing cross-platform games. He is familiar with Windows and the
consoles, and knows C+ +, Java, JavaScript, and Lua.

Who should not read this book?

There are some to whom this book may not be suited, though I have
no wish to deter anyone who is determined and willing to read along
and see what happens. These classic character profiles are guidelines
only.

Alexis is a game enthusiast. She loves playing games on her PC
and consoles, though she has never before tried her hand at pro-
gramming and she really hates math.

Douglas thinks computer games are okay but perhaps a little
nerdy. He did some programming at school and knows the basics
but doesn’t really enjoy it. He sees game development as an easy
route to get rich quick.

XVii

Introduction

Xviii

What's on the companion files?

The companion files can be downloaded from www.wordware.com/

files/gamedev(056X. The files include:

Which game development technologies are considered

Code samples and projects from the chapters

Extra game algorithms and routines

Small game projects

in detail throughout this book?

Windows

Mac

Linux
Code::Blocks
GIMP

Blender 3D
STL

SDL
SDL_mixer
Lua

Adobe Director
Novashell
OGRE 3D
YaBB (briefly)
Inno Setup (briefly)

ClanLib (Linux setup and installation)

Cross-Platform Games

Lewis Carroll’s Humpty Dumpty of Through the Looking Glass once
said to Alice: “When I use a word, it means just what I choose it to
mean, neither more nor less.” For poor Alice, or anyone who invests
hope in having a conversation where the listener can be entirely cer-
tain of what the speaker means, Humpty’s response must have been
somewhat disheartening. In a world where words mean anything the
speaker chooses, anything goes. The word “modern” is one such
example. One can speak about modern history, beginning around the
sixteenth century; modern art and modern furniture, around the turn of
the twentieth century; modern languages to mean French, German,
and English; and modern day to mean the present moment. Since the
advent of computers, it can be said with certainty that there are more
words floating about than there were before, and the meanings of
words change from context to context.

Computers are themselves modern inventions, and have engen-
dered a whole new set of terms and languages such as C++ and Leet,
which is the Internet language that includes terms like LOL and
ROFL. There are also new terms, from bits and bytes to RAM and
ROM. Even more recently, the language of computing is colored by
underlying themes of friendliness and togetherness. Software is
“interactive” and “accessible,” hardware is “compliant” and “compati-
ble,” and the relationship between users and computers is
“responsive” and “productive.”

“Cross-platform” is one of the most common and fashionable com-
puting terms among software developers, though it is by no means a
new term. There are cross-platform games, office applications, 3D
rendering software, and thousands of other products stacked as high as
the eye can see on store shelves, or ready to download online at the
touch of a button. And yet — despite its prevalence throughout

Chapter 1 / Cross-Platform Games

computing generally — the term cross-platform suffers the fate of
Humpty Dumpty’s words in that it is ambiguous, meaning different
things to different developers and different consumers, and at different
times. For those spending their hard-earned cash on the latest soft-
ware to call itself cross-platform, consumers could be forgiven for
assuming they can know what to expect.

Cross-platform, then, is a term that requires one to read between
the lines to get to the bottom of its meaning. The most basic definition
of cross-platform software is: software that can run on multiple plat-
forms. The word “platform” is itself another term usually
interchangeable with “operating system”; so examples of a platform
include Windows, Mac, Linux, and others. Thus, cross-platform soft-
ware seems to be software that runs on Windows, Mac, Linux, and
others. But this is not always the case. Some software is more or less
cross-platform than others; some support up to ten different operating
systems and others only two, and the operating systems that are sup-
ported by a specific product often reflect a political choice on behalf of
the developers. Some older products have claimed to be cross-plat-
form while supporting only Windows 98 and Windows 2000 (claiming
each to be a separate platform); and more recently cross-platform has
come to be thought of as software that runs on both Mac and Windows.
It should, however, be pointed out that cross-platform doesn’t usually
mean the same application (the same executable) runs on each plat-
form. Rather, the same application (source code) is compiled to
different executables (called distributions), one executable for each
platform. Furthermore, developers tend to sell each distribution sepa-
rately, meaning their product must be purchased twice if the user
wants both a Windows and a Linux version. So in summary, cross-
platform software as commonly recognized today, and cross-platform
games specifically, are distinguished as follows:

B Games that run on at least two different species of operating sys-
tem. That might be Windows and Mac; Mac and Linux; or Win-
dows, Linux, and Mac. But different versions of the same species
are not considered multiple platforms, such as: Windows 98, Win-
dows Me, Windows XP, and Windows Vista. These are together
one platform. Of course, most cross-platform software is compliant
with only selected versions from a species of operating system.

Chapter 1 / Cross-Platform Games 3

B Games that are compiled into different distributions (one execut-
able per platform) that are often sold separately. This, however, is
not a requirement of cross-platform software so much as the
“norm” and the inevitable by-product of the differences between
platforms. There are, as we shall see, exceptions to this rule, and
these exceptions are becoming more common.

1.1 Platforms

Cross-platform games are those that run on at least two (ideally more)
different species of platform: Windows, Mac, and Linux. Let’s consider
each more closely.

ES NOTE. There are, of course, other platforms besides Windows,
Mac, and Linux, but this book focuses on only these three.

1.1.1 Microsoft Windows

Figure 1-1: The
Windows Vista desktop

Windows needs no introduction and needs no justification of its impor-
tance to commercial gaming. It is singularly the most famous and

Chapter 1 / Cross-Platform Games

prevalent among the three platforms considered in this book, and as a
species is composed of a long line of versions together estimated in
2004 to have been used by around 90% of the client market worldwide,
and in 2007 by 92.86%. Though these statistics can be deceptive and
likely overestimate the dominance of Windows (as we shall see), it is
nevertheless the single most dominant of all the platforms available to
the masses of consumers today. The first version of Windows (Win-
dows 1) arrived in 1985, and its descendants can be traced through
Windows 95, 98, Me, XP (still the most widely used version at the
time of writing), and the more recent (and controversial) Windows
Vista. It perhaps goes without saying that since Windows is the most
widely used platform by a considerable margin, most computer games
that are developed ensure as a priority that Windows is among their
supported platforms.

&\ NOTE. This book assumes the reader has a familiarity with
Microsoft Windows. And accordingly, the basics of how to install
and use Windows are not discussed in this book.

1.1.2 Mac OS X

" @ Finder File Edit View Go Window Help 4] Wed £:10 PM

Figure 1-2: The Mac
05 X desktop

The term Mac now refers to a range of computers such as MacBooks
and iMacs, and many of them feature the Mac OS X (pronounced Mac
OS 10) operating system. Each version of Mac OS X is named after a

Chapter 1 / Cross-Platform Games 5

big cat, including Jaguar, Panther, Tiger, and now Leopard (released in
2008). The Mac OS generally comes preinstalled with Mac computers,
and its growing popularity makes Mac an important platform for
games. Later chapters of this book consider Mac games in more detail.

1.1.3 Linux

Linux has in recent years grown and attracted intense interest from a
diverse population of users and developers at an almost unprecedented
pace, with an estimated user base of over 25 million. Linux is a
Unix-inspired operating system that is open-source and free of price,
and 1is thus considered to be free software. However, “Linux” is now
an umbrella term used to refer to a whole range of different operating
systems that are adaptations based on the Linux source code, and
these adaptations are individually called Linux distributions (or
distros). First, however, some terms need to clarified, and these are
considered in the following sidebar.

Linux is a foundational operating system that is open-source and
free software, and is used as the starting point for many other deriva-
tive (distros) operating systems that are also often open-source and
free software. This means many Linux-based distros are complete
operating systems that are free of price to download and feature media
player facilities, Internet browsing software, office suite applications,
and more. So Linux is an exciting platform for developers and users
since most distros are community run, free, and continually changing,
and furthermore, most Linux distros can be installed alongside
Microsoft Windows. Installing and configuring multiple operating sys-
tems is considered in more detail later in this chapter.

Next, let’s discuss a few of the Linux distributions, particularly
those that have attracted a growing community of game players and
developers.

Chapter 1 / Cross-Platform Games

Open-Source and Free Software

Linux — along with a selection of other software — is said to be
open-source, which refers to the openness of software design, or the
ability for developers and users alike to access the source code of
their software, learn from it, and change it. Thus, open-source soft-
ware refers to software that makes public its source code, laying
bare its inner workings like an open hook, and is open to scrutiny
and investigation.

Linux is also said to be free software, which is different from
software that is free of price. Software that is free of price is free
insofar as it costs nothing (in terms of money) to use. Examples of
software that is free of price (but which isn’t “free software”)
include: Internet Explorer, avast! Anti-Virus Home Edition, and the
Opera web browser. Free software, on the other hand, is often free
of price but is more than this. According to the Free Software Foun-
dation (http://www.fsf.org), for software to be free software it must
offer users the following four “freedoms”:

1. Freedom to run the software for any purpose. That is, users are
free to choose how they use their software.

2. Freedom to study and adapt the software to suit the user’s needs.
This effectively means the software must be open-source.

3. Freedom to redistribute copies of the software to other users,
either with or without charge.

4. Freedom to “improve” the program and release changes back
into the community for others to use. This condition relies on all
three prior conditions.

Examples of free software are GIMP (photo editing program),
Firefox web browser, and Blender 3D. Other free software is listed
at http://directory.fsf.org/, which is maintained by the Free Software
Foundation and the United Nations Education, Scientific and
Cultural Organization (UNESCO).

Chapter 1 / Cross-Platform Games 7

1.1.3.1 Ubuntu

3 Apphications Places System @1 @ & o Thu Apr 26, 10:36 oM [8

Figure 1-3: The
Ubantu desktop

s L [E]
Ubuntu, generally recognized as the fastest growing desktop-oriented
distribution of Linux, takes its name from the sub-Saharan humanist
ideology that promotes openness, equality, and relationships between
people. Owned by Canonical Ltd. and developed by a community, the
Ubuntu distribution is open-source and free software, and features a
media player, web browser, office suite, photo editing software, e-mail-
ing facilities, and a comprehensive database of other free software to
download. In 2007 Linux DistroWatch (http://www.distrowatch.com)
ranked Ubuntu as the most “searched for” Linux distribution online,
and its popularity among users reflects the effort Ubuntu developers
make to ensure Ubuntu is simple to use and compatible with a wide
selection of hardware. The web site for Ubuntu is http://www.
ubuntu.com, where a CD installer can be downloaded for free.

Ubuntu is perhaps unique among other distros for attracting a sig-
nificant proportion of game players; for this reason the Ubuntu
community has seen an exciting and relatively steep increase in the
number of games available compared to other Linux distributions.
Later sections of this chapter consider some popular cross-platform
games currently available. Overall, Ubuntu in the past few years has
proven itself a popular distribution and an important contender as a
Linux gaming platform. Consequently, it will be discussed in further
detail in later sections and chapters of this book.

Chapter 1 / Cross-Platform Games

Downloading and Burning an Ubuntu ISO File

Linux Ubuntu — like many applications — can be downloaded as an
ISO (optical disc image file) CD/DVD, which is an archive file con-
taining within itself the entire contents of a disc, similar to the way
in which a ZIP file contains other files. The contents of the ISO can
be burned directly to a disc using most CD burning software, such
as the InfraRecorder application that is specifically for burning [SOs.
InfraRecorder can be downloaded free of charge from http://infra-
recorder.sourceforge.net/.

To burn an Ubuntu ISO:

1. Download the Ubuntu ISO image from the official Ubuntu home
page.
2. Download and install InfraRecorder from

http://infrarecorder.sourceforge.net/.

3. Insert a blank CD/DVD and select Actions | Burn Image from
the InfraRecorder’s main menu. Then select the Ubuntu image
file.

D InfraRecorder

o ek [EEEEN von opouns hob Figure 1-4
E®| 4
ner Viey
@ pesit Siee Type
= ;_g y P My Documenks Syrstem Folder
M G e Remmitable .. 4 Hy Compaer System Fokder
* _‘l"" R ity hstwork PFlaces Siystem Folder
#/ R L Fuste Do 2l locyde b System Foider
[IR A Ta— » [Internex Explorer System Folder
mport Sessin. |t 7. D4 -deshliop-i386. 150 TI4,E46 K8 150 Fie
Epexct Disc "
Burn ubuntu-7.04 desktop 1386.is0 Fﬂﬁ]
90 Generdl | advanced
4. Select a slow CD writing speed “"} “
(to reduce risk of erroneous < |UENmeREie -
burning) and click OK.
‘Wrike spead: | 4x (CD) v
Wirite mathod: v
[F]Ejact the disc aftar writing
] Sermdation
[] Buifer underrun protection
[l Pad data trachs
[#] Ficate the dee after writing
Lo J[concel J[ren |

figure 1-5

Chapter 1 / Cross-Platform Games 9

1.1.3.2 SLAX

Figure 1-6: SLAX

...............

FETELY - e o

An OS in miniature, SLAX is important and distinguished from other
Linux-based distributions, as well as other operating systems, because
it markets itself as a portable, pocket-sized operating system powerful
enough to be a desktop environment but small enough to fit onto a
USB stick. It is a slick operating system users can carry with them
that can be plugged in, booted up, and used on any computer wherever
they go without the need for permanent installation, and lasting only
as long as the USB remains in the port. Though SLAX is not as preva-
lent as distros like Ubuntu or Freespire, nor has it been the focus for
an exodus of gamers, it is nonetheless a distro of growing popularity
not least because of its quirkiness and simplicity. For this reason SLAX
has the interesting potential to be a platform for “gamers on the go” —
those who carry their games with them and wish to resume playing
whenever the opportunity arises, regardless of the computer that is
available. There are several SLAX versions that can be downloaded for
free at http://www.slax.org/.

10

Chapter 1 / Cross-Platform Games

1.1.3.3 Freespire

Figure 1-7: Freespire

Based on Ubuntu, Freespire is open-source and composed from free
software, though it also offers users (controversially) a selection of
non-free software. Freespire is thought by some to be the most
“Windows-like” of the Linux distros, and is hailed as being a first step
into Linux for those migrating from a Windows platform. But Freespire
is a complete and exciting distro offering wireless Internet, office
suites, web browsers, and media playing, and boasts a growing com-
munity of gamers and game developers. It shall not be considered
further in this book, but readers would be well advised to investigate
this distro further. It can be downloaded from http://www.freespire.org.

Chapter 1 / Cross-Platform Games 11

1.2 Cross-Platform Games

Cross-platform games may potentially run on Windows, Linux, and
Mac. This section explores some cross-platform games that are full
versions, open-source, and free to download and play.

1.2.1 The Battle for Wesnoth

Figure 1-8: The Battle for
Wesnoth

Figure 1-9 Figure 1-10

Supporting Windows, Linux, and Mac, The Battle for Wesnoth is a
cross-platform and free software turn-based strategy game set on a
hex-grid. Multiple players, or a single player and computer Al, take
turns in tactically deploying mythical creatures and units across

12 Chapter 1 / Cross-Platform Games

fantasy environments such as forests and deserts, combatting each
other to complete campaigns. The game is developed in C+ + and
uses a series of cross-platform game development kits (including SDL,
explained later) to ensure compatibility with multiple operating sys-
tems. Beyond supporting Windows, Linux, and Mac, it also claims to
support other operating systems, including AmigaOS 4, BeOS,
FreeBSD, NetBSD, OpenBSD, Solaris, RISC OS, and GP2X. The
Battle for Wesnoth can be downloaded from http://www.wesnoth.org/.

1.2.2 OpenArena

Figure 1-11: OpenArena

Figure 1-12 Figure 1-13

Quake Arena and Unreal Tournament fans might be delighted to know
there is a free, open-source, and cross-platform FPS tournament game
called OpenArena. Based on the Quake III engine, OpenArena features

Chapter 1 / Cross-Platform Games 13

big guns and big environments, inside which one or more players and
Al opponents battle it out to be the last man or woman standing.
OpenArena supports a selection of different platforms including
Windows, Linux, and Mac, and can be downloaded from
http://www.openarena.ws/?about.

1.2.3 UFO: Alien Invasion

S Figure 1-14: UFO: Alien Invasion

Figure 1-15 Figure 1-16

Inspired by the old series of X-COM strategy games, and later games
such as UFO: Aftermath, the free, open-source game UFO: Alien
Invasion is about protecting the Earth from aliens. In command of a
paramilitary rescue force intended to save the planet, the player must
construct a headquarters, deploy a team of agents to intercept UFOs,
and help a team of scientists reverse-engineer captured alien

14

Chapter 1 / Cross-Platform Games

technology. UFO: Alien Invasion is a vast and complex turn-based
strategy game supporting Windows, Linux, and Mac OS X. It is devel-
oped primarily with OpenGL, an SDK (software development Kkit) for
creating fast-paced, cutting-edge 3D games. OpenGL is explained later
in this book. UFO: Alien Invasion can be downloaded from
http://ufoai.ninex.info/.

1.2.4 Shockwave and Flash Games

The web is awash with Shockwave and Flash, two cross-platform tech-
nologies developed by Adobe for embedding multimedia content —
from graphics to sound — in web pages and also for distributing as
stand-alone executables. Shockwave and Flash offer developers a set
of easy-to-use tools for producing animated and interactive content, and
for this reason have been popular choices for the creation of games by
an exciting new generation of online game developers. Diner Dash,
Home Run Rally, The 13th Doll, and Samorost are but a few among
thousands of online games developed using Shockwave or Flash, and a
further selection of such games can be found at http://www.shock-
wave.com. This book will later focus on Shockwave, and will explain
how Shockwave games are distinct from games developed using other
technologies, and how this distinction brings advantages and limita-
tions to both game developers and players. More information
regarding Flash and Shockwave can be found at the Adobe site at
http://www.adobe.com.

Chapter 1 / Cross-Platform Games 15

1.3 Preparing to Go Cross-Platform

To summarize, the operating system for which a game is designed is
called the target platform; games that are “cross-platform” are those
that can execute on two or more different species of target platforms
(such as Windows, Linux, or Mac OS X). Examples of cross-platform
games include The Battle for Wesnoth, Diner Dash, and OpenArena,
among thousands of others. For developers looking to develop
cross-platform games, it therefore follows that each developer must
have the facilities (hardware and software) to test their game for bugs
on each target platform before releasing it to users of that platform as
a final product. In other words, if a developer creates a cross-platform
game for Windows and Linux (Ubuntu), then the developer must also
have the facilities to test the game on those platforms. Cross-platform
game development — the ability to develop and run a single game on
multiple platforms — can occur in primarily one of three arrange-
ments, depending on the budget and preferences of the developer.
We’ll take a quick look at each, then consider them in further detail.

B Multiple computers — Perhaps the most obvious but most
expensive setup is to purchase several computers, one for each
platform, and install the respective operating systems on each
machine. This is generally regarded as a “keep things simple”
approach, which provides a no-nonsense 1-to-1 correspondence
between operating system and hardware (one machine, one OS)
where each OS has complete control of a single machine. Testing a
game in this setup means to install, compile, and run the game on
each machine.

Machine 1 Machine 2 Machine 3 | Figure 1-17: Multiple machine
diagram

4 ¥ Y

Windows Mac OS X Linux

Y 4 14

Software ‘ Software ‘ Software

16

Chapter 1 / Cross-Platform Games

Multiple booting — Widely considered the cheapest but most
complicated method is to create a series of hard disk partitions on
a single machine and install each operating system on a different
partition, selecting from a menu which OS to boot from at system
power-on. In short, the computer is switched on, and the user
chooses which operating system to use for this session. This
means the machine must be restarted each time a change of oper-
ating system is required.

Machine Figure 1-18: Multiple boot
diagram

: ' :

Windows Mac OS X Linux

Y
Software Software Software

Virtualization — The online encyclopedia Wikipedia defines
“virtualization” as the “abstraction of computer resources” and as
“a technique for hiding the physical characteristics of computing
resources.” For the purpose of cross-platform games, however,
virtualization can be thought of us as a form of software that allows
other machines and platforms to be simulated (or emulated) on a
single machine and inside a single operating system. Thus,
virtualization is arguably the simplest and most convenient cross-
platform solution because multiple machines and operating sys-
tems can be run and emulated (including several platforms run-
ning simultaneously in different windows) at the click of a button
on a single machine without a need to restart between changes of
operating system.

Chapter 1 / Cross-Platform Games 17

Machine Figure 1-19: Virtualization

diagram
b

Windows Vista
Software

Y !

Linux Ubuntu Windows XP
Software Software

1.3.1 Multiple Booting

In a multiple booting setup, two or more operating systems coexist on
the same machine. More accurately, each operating system is installed
on a different hard disk partition on the same machine, and only one
operating system is selected by the user at power-on to use for a sin-
gle session. This book focuses on dual-booting a machine with
Windows and Linux installed; that is, Windows XP or Windows Vista,
and Linux (Ubuntu). This step-by-step guide further assumes that the
computer to configure for multiple booting begins with a clean hard
drive (i.e., no operating system is installed), and that the user has a
bootable CD/DVD or bootable USB version of both Windows (XP or
Vista) and Ubuntu. For instructions on how to clear a computer (how
to format a hard disk), please consult the following sidebar.

18

Chapter 1 / Cross-Platform Games

Formatting Hard Disks

Darik’s Boot and Huke beta.28038528088
Runt ime : Figure "20.‘ BDO’ and
hroughput ths Nuke

tual IDE Hard Drive
g2 1 of 71 [uriting] [5973 KBs=]

Starting with a blank machine — an empty hard disk — means
clearing out existing data, and this occurs through formatting.
Before formatting, however, readers are advised that all data exist-
ing on the hard disk before formatting may be irretrievably lost. For
this reason, it is highly recommended that all data is archived and
backed up to a safe storage device. For example, data can be burned
to a CD/DVD or copied to a USB stick.

The format process removes all data from a hard disk, leaving it
blank and fresh to receive new operating systems and information.
To perform the format process, the freely available and bootable
Darik’s Boot and Nuke application can be used. Small enough to fit
on an old 1.44 MB floppy disk, Darik’s Boot and Nuke is one among
many applications designed especially for formatting disks, and can
be downloaded from http://dban.sourceforge.net/ as either an EXE
file or an ISO image burnable straight to CD/DVD. (See Section
1.1.3.1 for more details on burning an ISO file.)

Boot the computer with this CD/DVD (in other words, start the
computer with this CD inserted into the drive) and follow the
on-screen instructions. At the command prompt of Boot and Nuke,
users can enter the autonuke command to format all writeable disks
attached to the computer.

Chapter 1 / Cross-Platform Games 19

1.3.2 Step 1 — Preparing to Multiple Boot

Given a computer with a formatted hard disk, one that is clean of all
information, the following steps illustrate the process of installing mul-
tiple operating systems to different partitions on the hard disk. Here
we’ll discuss a dual-hoot configuration featuring either Windows XP
and Ubuntu, or Windows Vista and Ubuntu. Users installing Windows
XP should proceed to Step 2, and users installing Vista can skip to
Step 3. Step 4 considers the installation of Linux Ubuntu, and Step 5
considers the final details of the dual-boot configuration.

+ Format Hard Disk | Figure 1-21: Installation diagram

¥

2. Create Partitions

k.

3. Install Windows
(XP or Vista)

¥

4. Install Ubuntu

20 Chapter 1 / Cross-Platform Games

1.3.3 Step 2 — Installing Windows XP

The following steps illustrate the installation process for Windows XP.

1. Insert the Windows XP CD/DVD into the CD drive and reboot the
computer.

2. Depending on a computer’s configuration, the boot loader may
automatically boot from the Windows XP CD, or it may require
prompting. If the latter, boot from the CD and the Windows XP
installer will start automatically.

Figure 1-22: Windows XP
Installation Setup screen

Figure 1-23: Windows XP
Licensing Agreement
screen

Chapter 1 / Cross-Platform Games 21

4. The Windows XP Partition screen will appear, allowing the user to
divide the hard disk into partitions; that is, to divide the disk space
into separate drives. The formatted hard disk will appear to the
installer as one contiguous sequence of unpartitioned bytes. Press
the C key to create a partition.

Figure 1-24: Windows XP
Partition screen

AA72 HB Disk A at Id

Unpartitioned

5. Enter the size in megabytes (MB) of the partition to be created by
the installer. Remember, one operating system is allocated to each
partition. The recommended size of this Windows XP partition,
therefore, is half the total size available since another partition
must later be created for hosting Linux Ubuntu. Press Enter to
complete.

Figure 1-25: Windows XP
Partition confirmation
screen

6. Select the partition, and the installer prepares to format it in one of
two file systems: FAT or NTFS. Select FAT (not NTFS), and the
standard format (not quick). FAT is selected because Ubuntu has

22 Chapter 1 / Cross-Platform Games

the ability to read from and write to files on FAT partitions,
whereas Linux support for NTFS file systems is more limited.

KF Home Edition

Figure 1-26

figure 1-27

8. The installation begins, and the process is measured on the
progress bar.

figure 1-28

Chapter 1 / Cross-Platform Games 23

9. During and after this process, the computer may restart on one or
more occasions, but eventually the GUI installer will appear.

‘d Windows™> Figure 1-29

O Collecting A exciting new look

information

Dynamis
Update

Presparing
installation

Selup will Lomphete in
approximately:
9 minukcs

10. The localization dialog appears, prompting the user to select a
local language. This choice affects the keyboard layout, among
other linguistic stylizations for Windows XP. Click the Customize
button to change the system language. The default language is
English (US).

£5 Windows Figure 1-30
=

Neginnal and | angunge Nptions
Wi vz cxloneizn W howes XP fon lfeend wegions and Lingusges:

Teganal and Language Upbanz alow wou bo changs the vay numbers. dates.
cunencies and the time are displaved. ‘Yo can ko add support for additional
Thee Starudaks arul fommets sellog is sl o Frglsh (i) Slatess) and the
locahon i get o Uriled States.

To charge e selings, vick Custonize, Tusshomize: |

Mty Ly s e ou o ke bl Loy ekemed oty '
a wariely of input methods and devices.

‘fiour defaul teat input language and method is: UG keyboard layout

Tos views or change pour cunent configuration . click Daksils Detais... |

24 Chapter 1 / Cross-Platform Games

11. Enter your name and organization as applicable.

45 Wiindows Figure 1-31

Parzonalize rouwr Software
Setup ucss the information wou provide about youreell 1o perzonalize pour Windows

Eﬁg Tuype pour full name and the name of pour company or crganization.

[r
4

12. Enter the Windows XP product key.

*% Windows Figure 1-32

Wirnlows %P Honeee Fulilion Selugs

Your Product ey
‘our Praduct Key uniguely dentifies your copy of Windows 1.

ix]

Chapter 1 / Cross-Platform Games 25

13. Select the date and time.

24 Windows Figure 1-33

Date and Time Settings
Set the conect dabe and bme bor vour Windows compuber.

Diate & Time
E2] [Monder . Avaust 1320 ¥ LAEBEM
L)

Tine Tane:

0 IlUM[-I.IlU.IJ Pactic [me [U%5 & Lanadal: Tauana
a1

7 Audomnaticaly alsst couk o aplight savieg changes

14. Select the Typical settings option for the network settings unless
the computer has specific requirements.

*» Windows Figure 1-34
Winnlows %P Honm

Hetworking Sctlings
Inataling nebecrk software alows vou bo connect to olher compulers. networks.
and the Irteined.

=B, Chooss whether t use typical or custom sclings:
L4
& Typical sellings
Craatas netwark connections Heing the Clent for Microzoft Metworks, File
uidF\iRShui\gthmmmuktﬂospmsm,wh
TCRYIP banspart protacol with sutomatic addressing.

" Lustom settings

26 Chapter 1 / Cross-Platform Games

15. The computer might restart, and then the configuration wizard
appears. Click Next.

#J Windows Figure 1-35

Welcome to Microsoft Windows

Th

16. Windows XP installation is complete. Go to Step 4.

. Figure 1-36

Chapter 1 / Cross-Platform Games 27

Step 3 — Installing Windows Vista

The following stages illustrate the installation process for Windows
Vista.

1. Insert the Windows Vista DVD into the DVD drive and reboot the
computer.

2. Depending on the computer’s boot loader and configuration, the
Windows Vista installer may begin automatically, or it may require
prompting. If the latter, boot from the DVD and the installation
begins.

l" Windows Vista FigUl’ e l-37

walt a moment while windows prepares to start for the first time....

28 Chapter 1 / Cross-Platform Games

3. Set the language settings (default: English (US)), and click Next.

figure 1-38

Jagt_..__;ﬂl

4. Click Install now.

figure 1-39

T_ Install now 3

*

Chapter 1 / Cross-Platform Games 29

5. Enter the product key and click Next.

figure 1-40

& £ st Wedom

Ty youm prohact by for activamon

+
1 vy el he bk f it s ierstm, o) b Vs b veipamnd
P . -

I~ [y s Wdows sk sried

6. Click the check box to accept the EULA (end-user license agree-
ment) and click Next.

7. The Windows Vista partition screen will appear, allowing the user
to divide the hard disk into partitions; that is, to divide the disk
space into separate drives. The formatted hard disk will appear to
the installer as one contiguous sequence of unpartitioned bytes.
Click the New button to create a new partition, and enter the size
in megabytes (MB) of the partition to be created by the installer.
Remember, one operating system is allocated to each partition.
The recommended size of this Windows Vista partition, therefore,
1s half the total size available since another partition must later be
created for hosting Linux Ubuntu. Click OK. The installer will for-
mat the partition if required.

30

Chapter 1 / Cross-Platform Games

figure 1-41

Where do you want to install Windows?
EETTpyr——"
Pactition J () #4539 MB (4210 M8 frea)

[Poraicon 3 (0:) 12637 18 (26572 M8 fres)

Figure 1-42

@ B2 Instell Windowes

‘Where do you want to install Windows?

| Hame
g Dk Unaliocsled Space

4y Befresh

&4 Load Driver

Chapter 1 / Cross-Platform Games 31

9. The installation progress window appears, outlining the installa-
tion procedure.

figure 1-43

B2 Instell Windowes

Installing Windows...

That's all the infeemation we
inctallstion.

need right mow, Veur computer will restart seversl times dursng

10. Once completed, the computer might restart on one or more occa-
sions, and finally the user details dialog appears. Enter a user
name and password, and select a profile image. Click Next.

Figure 1-44

(o) B9 5 Up Windows
Choose a user name and picture

Your user name and picture represent your yser 3ccournt. The account you creste here isa
COFpUbE Bl FFaGT aodcaint, (Ve cin el mai Aciounts |aer in Contiel Pand.)

Type a user name (for examgie, Jokn):

i
Type a password (recommen ded):

Resype your passward:
Typea passwced bint (optionalk

Choose a picture for your wser sccount fyou <an make changes kater in Control Panel):
L ~ 5 s
RBEFE :0\ i 4

=

32 Chapter 1 / Cross-Platform Games

11. Enter a computer name and click Next.

figure 1-45

@ BT SeaUp Windows

Type a computer name and choose a desktop background

\ Type » computer name ifor eample, Office-PC):

Choese a desktop background (yeu can make changes later in Cantrel Panel):

- H = -

e

12. Select the Use recommended settings option for the Internet
and protection configurations.

figure 1-46
@ BT SeaUp Windows
Help protect Windows automatically

Use recommended settings
Iestall imgiertant and recemmended updates, help make Intemet brewsng siler, and
check onfime for solutions to problems B

Install important updates only
by ingtall securty upsates and cther impontant updtes for Windows.

Ask me later
Uil you deide, your computer might b+ vulnrable te security theeats.

Lean mere about each option
Viben yeu use settings or ingtall updates enly. o is sent to

Mhicretoft. The indcemation mt ot uted to identiy you or contact you. Bead cur pivscy staterent

Chapter 1 / Cross-Platform Games 33

13. Enter the time and date details and click Next.

figure 1-47

@ B SetUp Windows

Review your time and date settings

[{GMT-05:00] Eastern T (US & Canada)

7] dusteenatseally adgust elock fes Dapheght Savimg Tiene

Cate
4 Hovember, 2006 b I

Su M ™R S i ;
® 3 13 3 4]

3 4 %9 101 | \ F
113 14 15 16 17 16 L P .
BHA2BNDBD \\ d
XN BN 12 - =

14. Click Start, and installation is complete. Go to Step 4.

1.3.5 Step 4 — Installing Linux Ubuntu

The following steps illustrate the installation process for Linux
Ubuntu.

DN NOTE. The downloaded Ubuntu ISO s typically burned and
installed from a CD/DVD; however, Ubuntu may also be installed
directly from the I1SO file using WUBI, a Windows-based SO installer
designed specifically for Ubuntu. WUBI can be downloaded for free
at http://wubi-installer.org/.

1.

Insert the Ubuntu CD (created in Section 1.1.3.1) in the CD-ROM
drive and reboot the computer.

Select the Start or install Ubuntu option from the menu, and
Ubuntu will start in Live mode.

34

Chapter 1 / Cross-Platform Games

Figure 1-48

3. Ubuntu Live mode is designed to be a “test drive,” or a “no obliga-
tion, try before you install” mode, allowing users to inspect,
preview, and use the features of Ubuntu without any obligation to
install. Since Live mode installs nothing to the computer, users can
safely reboot without any configuration changes having occurred.
To permanently install Ubuntu, double-click the Install icon on
the desktop and select a language. Then click Forward.

Figure 1-49

Chapter 1 / Cross-Platform Games 35

4. Select a location from the drop-down list or by clicking on the
world map, and then click Forward.

) Appleations Plasces Syaten @ 21@ B Mo g 13, 1010 o [8]

figure 1-50

Selucted city: | New vork % | Selected region: United States

Tina zone: ECT (GMT-4:00) Current brme: 09:19:24 AM

=

5. Set the localization for this operating system, which includes fea-
tures such as keyhoard layout and other linguistic stylizations, and
then click Forward.

o sppheations Places System @@ & sl on ai 13, 220 m B

figure 1-51

= |Uneed Bngdom

United Kingdem - Everak

united Kingdam - intematicnal (wth dead byl
united Kingdam - Macirtosh

[Bcancel | [gupack

36

Chapter 1 / Cross-Platform Games

6. Select Manual for the partition setting. Click Forward.

<3 Appheations Places system @@ W on Aug 13, 121 e (5]

Figure 1-52

Prepare disk space
Hiw do you waek 15 partiticn the dak?
@ Cusdad - uve antine dak
@ SCSI100,0.0) (sdal - 4.3 GB Vidware, Viware Virtual S
O Manual

[[t [[

7. The partition manager allows users to create, delete, and edit par-
titions. Click New partition to create a new partition onto which
Ubuntu will be installed.

3 rpphcationn Places sy @09 & e g 10, 3280]

Figure 1-53

(e]

2 ' o 1y
Imount porrt) with & renemum size of 2 GB. and &
swap partition of at least 256 MB. You may also set up
other patitions # you wish.

Sepdel?

BT — (=T

8. Specify the size in megabytes and the format of the file system for
the partition to create, and associate the partition to a “mount
point” (analogous to a drive in Windows). Click OK. The primary

Chapter 1 / Cross-Platform Games 37

mount point in Linux Ubuntu is “/”. The Ubuntu operating system
is discussed in further detail in the next chapter.

<3 rpebcaticrs Places symem @@

B e g 1, 227em [§]

figure 1-54

Y Install
Prepara partitions

[Dwvice Tpe Mourt pont Fomnat? Size | Uned

Create a new partition
Typee for the new partition:

Location for the rew pantion:

M partition | | Unda changes to partiions

{mount poin *) wth & mineum sizw of 2 68, and &
i pantition of 8t badt 256 M. vou may slio st up
other partitions # you wish.

Step 4o 7

9. The Ubuntu partition manager can also be used to create addi-
tional partitions such as a Swap partition from any available space
to improve the performance of Ubuntu. Add extra partitions if
required, and then click Forward.

o Appbeacicns Places Sysem 0@ e g 1, 5 em [§]

figure 1-55

Unad

Edt partiion | [Dalete partition | [Undo changes to pantions |

‘ou need to speciy a partison for the root file system
{meunt peint) with & minimum uze of 2 8. and
wwap partiton of ot least 256 ME. ou may shc et up
ether parttans f you wsh.

Step dof 7

38

Chapter 1 / Cross-Platform Games

10. The migration wizard can be used to import e-mail, messages,
address books, and other information and settings from a Windows
system. Using the check boxes, select whatever information (if
any) needs to be imported, and click Forward.

£ (=21 L1
Migrate Documents and Settings Figure ,-56

Select any accounts you would ke to import and fil in the form below for each one. The
decumants and settings for these accounts will ko available after the install complates,

1 you do nat wish ta impert any accounts, select nathing and ga to the next page.

[—————")
& Mozila Firefox
o Intemat Explarer
o wallpaper
[User Bicturs
¥ My Documents
L1 My Music
L1 My Pictures
L_ruslank Buncase.

Create & user bo import the selected sccownt mba:

-
B —
A T
-
Step s of 7 [Beancer | [qumack | [apeomwand |

11. Enter your user name and password. Click Forward.

o sppheations Places System @@ B st on 2 13, 12300 [

Figure 1-57

Who are you?
Whit i your nama?
[tan

‘What nama do you want to usa ta log inT
[sn I-]

Chosse & passward to kawp your account sabe.

Enter the tusce,

what i the nama of this eamgutert

|#lan-desktop

Thea ruarne wall be used f you make the computer visble B cthers on a network.

(3] [atat 1 [E 5

Chapter 1 / Cross-Platform Games 39

12. Confirm the installation details and click Install.

o rechcatiors Flaces Syem @ & sdron g 13 13 B

figure 1-58

The parttcn Lables of the folowng devces are charged:
SC511(0,0.0} (sda}

e Qoirg K
partition #1 of SC5I1(0.0.0) (sdal as w3
parttion #5 of SCSI1(0.0.0) (sdal as swap

13. Ubuntu will install and restart when completed. Go to Step 5.

o rechcatiors Flaces Syem @ & sdron g 13 337 B

figure 1-59

40

Chapter 1 / Cross-Platform Games

Step 5 — Summary of Multiple Boot

Figure 1-60

The highlighted entry will be booted automatically in 4

Multiple boot systems are those with two or more operating systems
installed on different partitions, and the example in this chapter dem-
onstrated how to configure a dual-boot machine featuring either
Windows XP and Ubuntu, or Windows Vista and Ubuntu. Restart the
computer to test the configuration, and at boot-up the GRUB boot
loader menu appears, offering a choice of operating system — Win-
dows or Linux — to boot to. The dual-boot configuration is now
completed.

Virtualization — Simulating

Operating Systems

The famous matryoshka dolls (or Russian nesting dolls) contain
smaller copies of themselves inside one another, and those smaller
dolls inside contain still more smaller copies inside themselves, and so
on in a sequence of progressively smaller dolls. In short, what the
Russians did for dolls, virtualization does for operating systems. By
abstracting a computer’s hardware, virtualization software makes it
possible for a host operating system to “contain” one or more other
client operating systems within itself, simulating each guest OS as

Chapter 1 / Cross-Platform Games 41

though it were installed and executing on a different computer. Among
the diverse range of virtualization software available, two of the most
well known are Microsoft Virtual PC and VMWare Workstation.

NOTE. Host refers to the primary operating system running on the
user’s machine. Guests refer to the simulated operating systems run-
ning within the host using virtualization software.

B Virtual PC 2007 — Virtual PC is a Microsoft-developed
virtualization product freely available for select versions of Win-
dows, and is designed to simulate other operating systems, pri-
marily other versions of Microsoft Windows, although other
operating systems such as DOS and OS/2 are also supported. Vir-
tual PC 2007 can be run on the following host operating systems:
Windows Vista Business, Windows Vista Enterprise, Windows
Vista Ultimate, Windows Server 2003 Standard Edition, Windows
Server 2003 Standard x64 Edition, Windows XP Professional, and
Windows XP Tablet PC Edition.

B VMWare Workstation 6 — VMWare Workstation is a
virtualization product that lacks the Microsoft-centricity of Virtual
PC, and consequently it supports a greater variety of both host and
guest operating systems, including Windows and Linux. Unlike
Virtual PC, however, VMWare is a commercial product that can be
purchased under a variety of different arrangements. An evalua-
tion version of VMWare, and more information about VMWare
generally, can be found at the VMWare web site at
http://www.vmware.com/. This book focuses on virtualization
using VMWare.

42 Chapter 1 / Cross-Platform Games

1.4.1 Using VMWare

0 e Worksnon -9 o ’ o . — Figure 1'6,

Pl B8 View VM Tesm Wt Help
mwpe T

The VMWare desktop is the starting point of virtualization. It is the
control center from which “virtual machines” are created to contain
guest operating systems. To simulate an OS, VMWare requires users
to create a virtual machine (an emulated computer), and there gener-
ally must be as many virtual machines as there are guest operating
systems — one virtual machine per guest OS. The following section
illustrates how to emulate Linux Ubuntu (guest OS) using VMWare
running on the host OS Windows Vista, although these steps could
equally apply to Windows XP as the host.

Chapter 1 / Cross-Platform Games

1.4.2 Creating a Virtual Machine for Linux

Ubuntu

1. Start VMWare Workstation.
2. Select File | New | Virtual Machine.
3. The Virtual Machine Wizard appears. Click Next.

Mew Virtual Machine Wizard

=

VMware
Workstation 6

— e

=S Figure 1-62

Welcome o the New
Virtual Machine Wizard

Thie wizard will guide you through the etepe of
creating a new vinual machine.

4. Select Typical and click Next.

Mew Virtual Machine Wizard

-

-

@) Typical

opbons.

Select the Appropriate Configuration
How would you prefer to configure your new winual machine ?

Virtual machine configuration
Create a new vitual machine with the most commeon devices and configuration

This Workslation 6.x vitual machine will il be compalible with ESX Server
3x_Server 1x, ACF 1x, Workstation 5x or older versions

Choose this option f you need to create a virtual machine with additional
devices or specilic configuralion options, or if you need Lo aeale a viltual
machine with specific handware compatibiity requirements.

Figure 1-63

<Back | Nea> | [Cancel

43

44 Chapter 1 / Cross-Platform Games

5. Select the guest OS to be run on this virtual machine — Linux for

this example — and select Ubuntu from the drop-down list. Click
Next.

MNew Virtual Machine Wizard . &

= Figure 1-64
Select a Guest Operating System
Wrech operating system will be installed on this vitual machine 7

Gueet oparating eyetem
~) Microsoft Windows
@ Linux

*) Novel NetWare

- Sun Solaris

~) Other

Version

Libuntu -

<Back [Nea> | [Cancel

6. Enter a name for the virtual machine, and select a folder on the
host hard disk where both the virtual machine and guest OS will
be “housed.” This will be “virtualized” as the hard disk (or virtual
disk) for the guest OS. Click Next.

MNew Virtual Machine Wizard - &

Figure 1-65
Name the Virtual Machine
WWhat name would you like to use for this vinual machine ?

Virtual machine name
Ubuntu|

Location

C:\Users\Alan\Documents\Virtual Machines\Ubuntu

<Back [Nea> | [Cancel

Chapter 1 / Cross-Platform Games 45

7. Select the desired networking option; here we’ve chosen Use net-
work address translation (NAT), which allows the guest OS to
connect to the Internet through the host connection. Click Next.

Mew Virtual Machine Wizard - . -9 &

Figure 1-66

Network Type
WWhat type of network do you want to add?

Network connection

() Use bridged networking
Give the guest operating system direct access to an extemal Cthemet network.
The quest must have ts own IF address on the extemal network..

@) Use network address transliation (NAT)
Give the guest operating aystem acceas to the host computer's dial up or
extemal Ethemet network connection using the host's IP address.

() Usses host-only networking
Connect the gueet operating eystem to a private vitual network on the hoet
compuler.

() Do not use a network connection

<Back | Nea> | [Cancel

8. Specify the total amount of space in megabytes to be deducted
from the host hard disk and used as the total capacity for the vir-
tual disk of this virtual machine. For a virtual machine running
Ubuntu, this capacity must be more than 2 GB (2,000 MB). Click
Finish.

Mew Virtual Machine Wizard . . & Figure 1-67

Specify Disk Capacity
How large do you want thes disk to be?

Diek capacity

This virtual disk can never be larger than the maxdmum capacity that you set here.
Disk; size (GB). 442

[Aiocate all disk space now.
Byulo\.dlg the _[L.I capacly of the virlual disk, you enhance pedumance of

your vitual machine. However. the disk wil take longer to create and there must
be enough apace on the hoat's phyaical disk.

Il you do not allocate disk space now, your vitual disk liles will starl small, then
hecnme lamer as you add applications. files. and data to your vishual machine

[] Spit chsk o 2 GE files.

46 Chapter 1 / Cross-Platform Games

9. The virtual machine is created successfully and has a clean, for-
matted hard disk of a total capacity as specified in the previous
step, and is now ready to install the guest OS, Ubuntu. Click
Close.

10. Download a Linux Ubuntu ISO from the Ubuntu web site
(http://www.ubuntu.com/), and then return to the VMWare
desktop.

11. The VMWare desktop lists the newly created virtual machine, and
the Devices panel lists the virtual machine’s hardware (which can
be customized). Double-click the CD-ROM device.

B Ut - Vhhwars Work =

| Fie Edt View VM Tesm Windows Help [-
Feuee cop OaDE Flgure ’ 68

et x s Utarite

O' Favontes Ubuntu
B Ubunt Sate: Co—
Gunet 05 re-
Corfhguration B C\Lisen' A Dimerts Wit Machwres' st bt v
Verwon Wokalater: §2 sl machre

Commands Oevicen

W oy szm
D W Diske (SCSI040) A0 GR

L AL

Ty oy 33 arter rotes o i sl machrs

12. The CD-ROM device for the guest AT e
OS is currently mapped by default to ||| =™
the CD-ROM of the host OS, mean-
ing each OS will share the CD-ROM. ||
This CD-ROM can also be assigned
to ISO images. To install Ubuntu to
this virtual machine, choose Use
ISO image and use the Browse but-
ton to select the downloaded Ubuntu ||
ISO. Click OK.

Figure 1-69

Chapter 1 / Cross-Platform Games 47

13. Select the Ubuntu virtual machine from the Sidebar and either
click the Play button, or right-click the mouse on the Ubuntu icon
and then click Power-On to start the virtual machine, automati-
cally booting from the Ubuntu ISO.

o

B Uty - Vidware Werkitation

P Ed Vi VM4 Team Figure 1-70

'm n@e | &

Sidebar

I Powered On

1, Ve do not huve Vdware Tooks imtalled F=L L

14. Install Ubuntu using the instructions from Section 1.3.5.

15. The guest OS is now installed on the virtual machine. Shut down
the guest OS as usual to power-off the virtual machine, and restore
the CD-ROM mapping settings from the Ubuntu ISO to the local
machine’s hardware, as discussed in step 12. The virtual machine
can now be powered on to boot Ubuntu as a guest OS.

Figure 1-71

48

Chapter 1 / Cross-Platform Games

1.5 Conclusion

This chapter defined cross-platform games as games that run on two
or more different platforms (or species of operating systems). Exam-
ples of cross-platform games include Diner Dash, The Battle for
Wesnoth, OpenArena, and thousands of others. Some of the potential
operating systems games can run on include Windows, Mac OS X, and
Linux; Linux Ubuntu especially has attracted a growing population of
game players and developers compared to other Linux distributions.
To develop cross-platform games, developers must compile and test
their games on each target platform before release as a final product.
Thus, cross-platform development requires a cross-platform environ-
ment, and developers must have the facilities to run multiple platforms
by maintaining one machine per platform, by multiple booting, or by
using virtualization software like VMWare to simulate guest operating
systems inside a host OS. This book assumes the reader has a Win-
dows or Mac OS X background, and for this reason, Linux Ubuntu, and
using Linux generally, is considered in more detail in the next chapter.

Linux Ubuntu and Linux
Gaming

In the previous chapter we discussed the various OS platforms com-
monly used for games, as well as the theories behind cross-platform
games and their programming. We also discussed various machine
configurations required in order to program and test these games,
including multiple boot systems and OS virtualization.

This chapter moves a step forward in the world of cross-platform
game development and puts behind us the technicalities of machine
setup, multiple booting, and virtualization by considering further the
nature of the Linux distro Ubuntu, and specifically the relationship
between Linux and contemporary games. In short, this chapter is pri-
marily a quick-start guide to Ubuntu and Ubuntu gaming, aimed largely
at those users with only a Windows or Mac background who would like
to learn more about Linux and Linux games.

49

50

Chapter 2 / Linux Ubuntu and Linux Gaming

7.1 Ubuntu Installation and
Troubleshooting

In the previous chapter we discussed Linux Ubuntu, a Linux distribu-
tion, detailing what it is, how to download it, and how it can be installed
to the system using the Ubuntu Live CD, freely available from Canoni-
cal, Ltd. (http://www.ubuntu.com). Ubuntu, like the increasingly
popular PCLinuxOS, is a desktop Linux distribution intended for gen-
eral home and multimedia use, such as browsing the net, watching
movies, listening to music, and playing games. With periodical soft-
ware updates and patches, biannual new releases, integration with
Windows partitions and networks, multimedia codecs, a growing
online community, increasing support for various hardware and driv-
ers, and compatibility with many common Windows file formats (from
Microsoft Office to Adobe Photoshop), Ubuntu looks to become one of
the prominent Linux gaming platforms.

The previous chapter explained the details of a standard Ubuntu
installation. Whether or not this install is for single OS machines, mul-
tiple boot machines, or virtualization configurations, the installation is
the same for each. This section considers in more detail some of the
problems encountered by users during an Ubuntu install, and provides
some potential solutions and advice in a typical Q&A (questions and
answers) format.

Q. Iinsert the Ubuntu CD/DVD and then restart the computer
with the CD/DVD in the drive, but at system boot-up nothing hap-
pens. The system either boots into the OS installed on the
machine already (Windows XP, Vista, etc.), or the machine does
nothing but show a prompt or a blank screen, possibly because no
OS is installed at all. It acts no differently from when it has an
empty CD/DVD drive.

A. This problem occurs most likely because the system’s BIOS
(basic input/output system) is not configured to boot from the
CD/DVD at system startup, or because the system has more than
one connected CD/DVD drive and it is one of the other drives (not
this one) from which it is configured to boot. If the latter, then this

Chapter 2 / Linux Ubuntu and Linux Gaming 51

issue is usually resolved by simply inserting the Ubuntu CD/DVD
into a different drive and then rebooting the system; if, however,
the former is the case (or if the “changing drives” solution doesn’t
work), then the BIOS should probably be reconfigured to boot first
from the CD/DVD and then subsequently from other bootable sys-
tem devices, such as the hard disk, USB sticks, etc. The menus
and options differ from one BIOS to another, and readers are
advised to consult their BIOS manual or their computer supplier
or hardware manufacturer before editing BIOS settings.

Q. I have already installed Windows Vista, and I have yet to install
Ubuntu for a dual-boot arrangement. However, Windows Vista is
installed to the primary partition on the system and there is only
one partition, or there exist only NTFS formatted partitions. Is
there any way I can install Ubuntu to the system without having to
format the entire hard disk, including Vista, and start again? I
would like to keep my existing Windows installation and simply
“add” a new partition onto which I can install Ubuntu.

A. Yes, Windows Vista ships with a Disk Management Utility
(accessible from My Computer | Manage | Disk Management),
and this is designed to “shrink” (or cut off) parts of an existing or
preformatted drive into a separate partition on-the-fly. Simply
select a drive from which space may be deducted to feed the new
partition, then click Shrink.

Q. During the Ubuntu installation, the Partition Wizard shows me
a list of all disks and partitions to which Ubuntu may be installed;
however, a selection of one or more small-sized disks appear, per-
haps 256 MB in size, or maybe 512 MB, etc., and these devices are
often given system-like names like /dev/sdbl or /dev/sda3. What
are these?

A. These devices are probably USB memory sticks, TV tuner USB
devices, or photographic cards; if this the case, then each of them
can safely be ignored.

Q. During the Ubuntu installation, the Partition Wizard doesn’t
display any available hard disks or partitions onto which Ubuntu
can be installed.

52 Chapter 2 / Linux Ubuntu and Linux Gaming

A. This issue may be related to software RAID devices; this is
perhaps solvable by using the Ubuntu Alternate Installation CD,
downloadable from the Ubuntu web site. This CD does not include
a Live version of Ubuntu, but instead features a text interface
installer with a number of extra utilities designed to make installa-
tion simpler on “problematic” machines.

Q. After installing Ubuntu, I can no longer boot into Windows
Vista, perhaps because Vista is no longer a selectable option from
the boot menu at system startup.

A. Insert the Windows Vista DVD into the drive and reboot the
computer. Booting from the DVD, enter the Vista Setup and select
the Repair installation. Highlight the Vista partition and run the
command prompt. Then enter the following command to run the
Microsoft Chkdsk application and repair errors:

chkdsk c: /R

7.7 Getting to Know Ubuntu

Ubuntu is a completely free of charge, open-source Linux-based oper-
ating system (distro) for desktop computing (home use). Thus, it
comes with bundled software for playing movies, listening to music,
browsing the Internet, editing photos, performing office tasks like
word processing, and of course, playing games. This section offers a
broad overview of many applications preinstalled with Ubuntu, but can-
not hope to offer a complete and comprehensive guide to Ubuntu. This
chapter should be considered more as a “getting started” Kkit.

Chapter 2 / Linux Ubuntu and Linux Gaming 53

2.2.1 Ubuntu Login

Figure 2-1: Ubuntu
login screen

Ubuntu — like some Windows and Mac systems — begins at the login
screen where users may type their user names and passwords to enter
their respective “areas” on the system. This is designed to authenti-
cate user access to the computer, and to spatially divide the user-
created documents on a per-user basis for personal photos, e-mail,
documents, etc.

54 Chapter 2 / Linux Ubuntu and Linux Gaming

7.2.7 Ubuntu Desktop

o Apphcaticns sren @@ alan

. 08 «@

Figure 2-2: The Ubuntu
desktop

Once a user logs into Ubuntu from the login screen, the OS then boots
to the “desktop” (like the Windows or Mac desktop). From here users
launch applications to browse the web, check e-mail, create docu-
ments, play games, and more. By default in Ubuntu, the main menu
(the place from where applications are launched) appears as a gray bar
aligned horizontally across the top of the screen, and it features three
menu items: Applications, Places, and System. Applications is a menu
of installed and executable applications, Places is a menu of shortcuts
to common system locations such as the desktop, documents, and sys-
tem devices, and System is a menu of control panel-like applications
and other system management utilities.

Chapter 2 / Linux Ubuntu and Linux Gaming 55

7.2.3 System Monitor

-9 o cp [& (8]

Figure 2-3: Ubuntu
System Monitor

744.0 kB
X340 KB
143 M0
16MB
28M0
S geonfi-2 o 5 23M8
&4 gnoma-keyring-dasman Slesseng
2 gnoma-panal Sleegang
£ gnome-powsr-manager

) |8 System Morster ENG

System Monitor, which is similar to the Windows Task Manager, is a
utility application designed to display a list of all the currently running
system processes (from applications to libraries and other invisible
routines). It can be launched from the System menu by choosing
System | System Monitor.

2.2.4 Update Manager

£ Appheations Places System @@ san o [@ (8]

Figure 2-4: Ubuntu
e o] Update Manager

‘ﬁ You can Install 147 updates
¥ Software updates comect an rate
sacurity vainerabltins and provise new features

compls
¥ OpencL mnsem and cempasting manager
Fram versien 1:0.6 6426071008 Subuntul bs 1.0 6 Bega2oaT1on

, Cupsys-bsd

Download size: 216.2 M
Do kiad st £18.2 V40 o Install Updutes

3 [update Manager [IR

56

Chapter 2 / Linux Ubuntu and Linux Gaming

Both Windows and Mac have their own intrinsic automated patching or
update services designed to update the installed applications and to
repair known software bugs, from trivialities to security updates (e.g.,
Windows Update). Ubuntu also features an automated, online patching
service that first scans the local computer for all installed applications
and then notifies the users whenever appropriate updates or fixes are
available for download. Update Manager is accessed by double-clicking
the icon in the top right-hand corner of the screen.

2.2.5 Screen and Graphics Preferences and
Restricted Drivers Manager

< Apphcatins Places System alan 0 & 5

Figure 2-5: Ubuntu
Screen and Graphics
Preferences

The Screen and Graphics Preferences utility allows you to change the
system resolution and the monitor type and to install device drivers
for graphics cards. This utility can be accessed from the Ubuntu menu
bar by selecting System | Administration Screens and Graphics. The
Restricted Drivers Manager is also available from the System |
Administration menu, and is designed to auto-detect graphics hard-
ware (such as Nvidia and ATT hardware-accelerated cards) and install
the appropriate drivers for them.

Chapter 2 / Linux Ubuntu and Linux Gaming 57

7.2.6 Add/Remove Applications

£J Appleatins places Sptem @)@ san o [&
Figure 2-6: Ubuntu

Add/Remove

Applications

Quick Intreduction

In Windows, the Add/Remove control panel utility is used primarily to
remove (or uninstall) software from the system, and only secondarily
to install software since most software ships with its own installers,
typically install wizards. Not so in Ubuntu, however. In Ubuntu, the
Add/Remove utility (accessible from the menu bar by selecting Appli-
cations | Add/Remove) is a comprehensive and actively maintained
database of applications available to install free of charge. Installed
applications may also be removed from the system using this utility.

58

Chapter 2 / Linux Ubuntu and Linux Gaming

2.2.7 Synaptic Package Manager

.

fnces Syt @@ s o [0 @ W48

figure 2-7:
Downloading a file with
Synaptic Package
Manager

Al [syraptic Package Ma. [=1 |5

Like an advanced Add/Remove utility, the Synaptic Package Manager
can do everything Add/Remove can do, and more. Accessible by
selecting System | Administration | Synaptic Package Manager, the
Synaptic Package Manager is a comprehensive database of both appli-
cations and non-executable software like libraries and software
development kits (SDKs). This utility will be important for the Ubuntu
game developer, as we shall see.

Chapter 2 / Linux Ubuntu and Linux Gaming 59

7.2.8 Ubuntu Terminal/Console/Shell

rowse s s el sppheatiors [. - 0 & «@

Figure 2-8: Ubuntu
Terminal

Ubuntu 1s said to be a Linux distribution, and like all distros, Ubuntu is
based on the Linux kernel, which is the heart and soul of the operating
system and contains the core foundational rudiments that actually
make things work. This is a level at which there is no GUI; at this
level the OS communicates in terms of Linux commands, a sight usu-
ally hidden from a user’s eyes. However, the Ubuntu Terminal/
Console/Shell is a portal through which the user may directly type
commands and may control the OS through a keyboard-based shell lan-
guage known as BASH (Born Again Shell). This chapter will look at
some basic shell commands, and though the shell is an integral part of
Linux, this book will not consider the shell in depth. In cases where
the shell is required in this book, a step-by-step guide is used to high-
light the exact commands to type into the terminal. Those looking to
master Linux are advised to familiarize themselves with the Linux
Terminal.

60 Chapter 2 / Linux Ubuntu and Linux Gaming

2.2.9 Places | Computer

s v el spphcatoea LB s C5 O 8 (T

figure 2-9

= &
Home Computer Search

Q 100% O |veewaskees &

DA =RY
[

A [Computer - e Brow... = &

The Ubuntu equivalent of My Computer can be accessed from the
main menu by selecting Places | Computer. From here, a user can
browse all connected devices, internal and peripheral, from hard disks
and CD/DVD drives to USB sticks and digital cameras.

2.2.10 Firefox Web Browser

[Aeplcations_Places Sitem @@ aen e [@ @

B e Figure 2-10: Firefox

=k Gamaes

A4 Graghics

) temat

§ ofice

Getting Help with Ubuntu

B[@ welcome to Ubunty .

Chapter 2 / Linux Ubuntu and Linux Gaming 61

Ubuntu ships by default with the open-source, cross-platform, and
freely available web browser Mozilla Firefox. Like Internet Explorer,
this application is used for browsing the web, checking e-mail, and also
for browsing FTP servers. Firefox can be launched both from the
shortcut icon and from the menu system itself via Applications |
Internet | Firefox.

2.2.11 OpenOffice.org

Q Appheations Places syten @21 @ aan o [@ (@

e : S Figure 2-11:
= 1 - OpenOffice.org

2 [& A A o] [br] By - S - §

2
[
e
|
-
s
i

Fagel/1 Defat 105% |IMSAT | STD

Ubuntu ships with the free, open-source, and cross-platform office
suite OpenOffice.org, which is designed as a Microsoft Office alterna-
tive for creating documents, spreadsheets, animated presentations,
and vector-based graphics. OpenOffice.org also features a celebrated
degree of Microsoft Office compatibility, which means many docu-
ments and files can be migrated easily from Microsoft Office to
OpenOffice.org.

62

Chapter 2 / Linux Ubuntu and Linux Gaming

2.2.17 Photo Editing

e
Grorse and s potated epcuors | O s co O 8 @
R w figure 2-12: GIMP
Gl Xtra Help [le Edt Select Yaw jmage Layer Colours ook [Dialogues Flters
2 L T ST AL T z
Bee Y% 8
SR A | Layers
AR ERA °‘: Mode: | Overlay
HALNE L9 Fpaehe= e
v B Lok @l
o 4 & = |4 3 u\-qm.qq
@ = !] F-.......
i ,._T E E;n..nu. lezenge log
LB i
Pantbrush il 7 = vbuntu brown backgrownd -
wode: | Normal : =
4 o 1 3 I3 EIL]]
PRCRy. m— 0 [+ 1 3 -
2 = ¥ ¢
sk [@ [cee | |64 i LIDm) 4]
- - =13 — - FGBG Colur i
Scule: w0 [1.00 k| :
5|l (8] d =z [®[=F
b Pressure sertany 1
2 H
] Fade out 84
o 5
1 Apply jriee 1
) incremental 3 £
] Use colour from gradsent r: B
o g
w 100% __ M
I
] L 000000
& | e &l Laywrs, Chanruly. Pa.][5

A renowned open-source equivalent of Adobe Photoshop, GIMP is also
shipped with Ubuntu and offers to developers a wide variety of tools
for editing photos including brushes, stamps, crops, cuts, fills, and fil-
ters. GIMP is considered further as a cross-platform game
development tool in the next chapter.

Chapter 2 / Linux Ubuntu and Linux Gaming 63

2.2.13 Installing and Playing a Game on Ubuntu

< Appbcations Places Sytem @ san o [8 (@]
o DD« & oIl Frore » e = 2

figure 2-13: frozen

e Edt www bagtery Boskmarks Bl Help
e - A [@ rop itwwirozen bubble ey = b iG] frazen bubbie . Bubble

A 14 5 QAT e ¥ e sevvers mere bostiog 4 ruseing games. wih & 1otal of 18 plavers wsome satin rerm, T com

i -home c=news odownloads = artwork =music =making of =iroubleshooting = fag) |

ﬂuffir_ial home of Frozen Bubble

&) Frozen fubible vi. 1.0

apguenlroran bbbl s
) [@ frozen Bubble - tha o... 7] 5

Ubuntu is a promising gaming platform with a large selection of games
available via the Add/Remove application database. This section pro-
vides a step-by-step guide to installing an open-source game called
Frozen Bubble to the system via the Ubuntu Terminal console, demon-
strating some shell commands and system tools along the way.

DN NOTE. Frozen Bubble is available as a web-based Java game (at
http://glenn.sanson.free.fr/v2/2select=fb:play), but this tutorial
focuses on the downloadable platform-specific binary distribution.

1. Beginning from the Ubuntu desktop, launch the Software Sources
utility application by selecting System | Administration | Soft-
ware Sources. This application expands the software database to
include additional software sources.

64 Chapter 2 / Linux Ubuntu and Linux Gaming

< Apphcations Places System @@ sian cp [@ 8]

figure 2-14

Utnrtu Software | Third Party Softwars | Updates | Authentication | statistics

Downlsadable from the itermet
il Cansrical supported Open Source softmars (msin)
B Comimuniy masntaned Open Source sohware unwerse)
il Propeistary devars for devices [restricted)
B Schware reatiicted by copyright or legal itues (multiveriel
B Source code

Dewnisad from: | Server for Unied Kingdom

Imstallable from CO-ROMDVD
Cdrom with Ubuntu 7,10 * Gutsy Gibbon
officially supported
Pastricted copyrght

Feterners b Libitss T 102 Fla s Ellblns

A [5 sohware Sources A

2. Check all software sources and then click Close.

3. From the Ubuntu main menu, open a terminal by selecting Appli-
cations | Accessories | Terminal.

4. Enter the following commands to install Frozen Bubble to the local
machine, pressing the Return key after each line:

sudo apt-get update
sudo apt-get install frozen-bubble

4 appleations Places System 10 sian o [@ 3]

Figure 2-15

® infermation, .. Done
The following extra packsges will be fnstalled:
fb-music-high frozen-bubble-data Libsdl-console libsdl-gfxl
I:\nﬂ xer],? Libsdl-netl.? libsdl-pas gcl Libsal-pert

Sapegh
The folloving MEM packapes will be tnstalled
fo-music-high frozen-bubble frozen-bubble-data libsdl-ceasole
1ibsal-gfxl, 2-4 Libsdl- imagel, Absdl-mixer].? 1ibsdl-met].2 Libsdl-pangal
Libsdl-perl Libsdl-t112.0-0 libsspesd
2 led, 8 to resove and 147 not wpgraded.

disk space will be used,
fégh.archive com gutsy/main Libsdl-inagel.2 1.2.5-3 [29.4
b.archive. .com gutsy/universe Libsdl- consale 1.3-4 [94. e-s
1. archive. .com gutsy/universe ibsdl.gfal.2-4 2.6.13.3 [43.
1/4gh.archive, ubsstu, con gutsy/sain Libsapegd 9.4, S+cva2eannnze-2 [10

+4/gh.archive, .com gutsy/main Libsdl-mixerd,2 1.2.6-3 [136k8]
MLLR: //gh.archive . com gutsy/universe 1ibsdl-netl,2 1,2.5-7 (10,248

+//gb.archive ubsntu. com gutsy/universe libsdl-pangol .1.2-1 [s6338]
B://gb. archive. ubeaty, con gutsy/main Libsdl-ttf2.0-0 2.0.9-1 [15.5k8]
#igh.arehive .com gutsy/universe Libsdl-perl 1.20.3d15g-2 [897

gb.archive. sbentu.com gutsy/universe fb-music-high 8.1.2 [1663%
gb.archive om gutsy/universe fropen-bubble-dhta 2,1.0 : 10, 8]
35% (11 frozen-bubble-dats 3832786/19. 348 20%] 21z8ys 1s8sf

A | sangelansbunty; - = &

Chapter 2 / Linux Ubuntu and Linux Gaming 65

5. When the download is complete, close the terminal. Frozen Bub-
ble is now ready to play via the Ubuntu main menu by selecting
Applications | Games | Frozen Bubble.

{3 Appheations Places Systen @@ v O & (&

Figure 2-16

& ([rozen-aubtie 2 ENG

2.3 Linux and “Transgaming”
Technologies

One of the most common complaints leveled against Linux as a gaming
platform is, “My whole gaming library is Windows based, and since
most of my Windows games are not cross-platform, Linux can’t play
my games.” Several years ago this argument was perhaps incontest-
able for the majority of Linux game enthusiasts. The point was that
Linux couldn’t play Windows games, which was important for both
gamers and developers. Important for gamers because gamers wanting
to migrate to Linux would do so only so long as there was a way to
continue playing their older Windows games, or to play recent games
not available on Linux natively. Important for Linux game developers
because without Windows gaming support on Linux, it would prove
harder to attract a sizeable gaming population to the Linux platform.
Transgaming applications (like Cedega and Wine), then, are seen by
many as an attempt to resolve the platform boundaries facing gamers

66

Chapter 2 / Linux Ubuntu and Linux Gaming

on Linux; they are applications that allow Windows games to run on
other platforms, including Linux. However, transgaming applications
are not about cross-platform games. Why? Because cross-platform
games are those that run natively on two or more different species of
operating system, whereas transgaming technologies are a cross-plat-
form compatibility layer supporting platform-specific games, allowing
those games to run through the compatibility layer on other operating
systems (hence the distinction in terms). Though this book is primar-
ily about cross-platform games, this section examines a selection of
compatibility layers (applications) that support transgaming on Linux.
These applications allow Windows games to run on Linux, and
specifically on Ubuntu.

2.3.1 Cedega

Cedega is a commercial cross-platform transgaming application, avail-
able for both Linux and Mac, that is designed for gamers to play
Windows games on those other platforms. Some of the games sup-
ported by Cedega include Half-Life 2, Resident Evil 4, Need for Speed
ProStreet, and Elder Scrolls IV: Oblivion. More details regarding
Cedega can be found at the official Cedega web site at
http://www.transgaming.com/.

NOTE. For a list of Cedega-compliant games, please visit the Cedega
online game database at hitp://games.cedega.com/gamesdb/.

Chapter 2 / Linux Ubuntu and Linux Gaming 67

2.3.2 CrossOver

x i 3 .
[£ Edt yiow feort Frmn Tools Tabko ievkow tios x figure 2-17: CrossOver
DR & ?

¥ou can alss use URLs .
Clicking on them will launch Netscape, Moxilla, Galeon, Konquerar, or any other Linux
browser youtell it to. The choice is yours

- il roers - Heed1ha (Bulld 19 SO0RA04S
. Eile Edit View Search Go Bookmaks Tasks Help Dsbug QA

" Q @OO @ [httpdiwww codewsavers comhomed <] [, Search | Qi‘ga m

. 4 Home 6

Need Windows Software 20020027 - CrossOver Pugin 1.1.0 Neleased

on Linux? Gooviserars has snnowced the réeace of Cromcver

D geuss wivase

leam g about Crasdvar
e O

upgrage iy 110

buy ngs %7 only $24.9%

IB01,12.18 = Prasviors § of CodeWeavers Wine

CoxdeWeirvers b releasd il preview 5 of il acclained

CrossOver is a commercial compatibility layer aimed less at support-
ing specifically Windows games on Linux than at supporting Windows
applications generally on Linux and Mac (applications such as
Microsoft Office, Photoshop, Director, etc.). However, CrossOver offi-
cially supports Shockwave Director for playing Shockwave-based web
and stand-alone games. Other applications and games supported on
Linux by CrossOver include Microsoft Office 2003, Photoshop 7.0,
EVE Online, and others. For more details regarding CrossOver, please
visit their web site at http://www.codeweavers.com/products/.

DN NOTE. For a list of CrossOver-compliant applications and games,
please visit the Crossover online games and applications database
at http://www.codeweavers.com/compatibility/browse/name/.

68 Chapter 2 / Linux Ubuntu and Linux Gaming

2.3.3 Wine

== Wine desktop

=[]
« . fdoba Photoshop MEIF F"gure 2_ ’8: Wine

Freely available, open-source, and cross-platform, Wine is a popular
compatibility layer to run selected Microsoft Windows applications and
games seamlessly on other platforms, such as Mac and Linux (running
Windows applications as though they were native). Some of the Win-
dows applications and games supported by the Wine application
include Half-Life 2, .NET Framework 2.0, and World of Warcraft.

More information can be found at the Wine web site at
http://www.winehq.org/.

N NOTE. For a list of Wine-compliant applications and games, please
visit the Wine online games and applications database at
http://appdb.winehq.org/.

2.3.3.1 Installing Wine on Linux Ubuntu

1. Beginning from the Ubuntu desktop, launch the Synaptic Package
Manager from the Ubuntu main menu by selecting System |
Administration | Synaptic Package Manager.

Chapter 2 / Linux Ubuntu and Linux Gaming 69

2. Click the Search button and search for wine.

sian o5 0 8 (S

Q) tppheptions_blaces Swutem MOID
2

Bl [de Packsge Setings Hel

Symaptic Package Manager

== figure 2-19

iy
Search

[
;
i

an

Amatour Radhs lurwet
Dass Sysmem |
Base Systam (rastrct
Base Systam urwers
Comenuncatien

i

wataled Version | Latest Verson
Bveard 0.5 Jubuntud
XMo-common 334p833
3dchens. 1
4dgts

Descrption

A latle parl sergt 1o comvent an addressback to VC
Comeneen s for M 3270 eenulaters and prIT
30 chess for X11

A quessthe-number game. aka Buls and Cows
Packet Capture and interception for Swichad Hets
TEP prasy for nan-ve appkcations

Seach: [wre =

Camenursation (muk srunnel

Loskin: | Gascription and rame 3 |

(Qewes) [Eusewr]

rapha chead |
i p

Hoooooools=

Cross Platform

Cremy Plaeform (et
Crous Platform luntet
Devalepmant
Devalspment Imuiine
e

s package is selctad.

ommme

Sgarch Pasuls

{23132 packages kated. 1117 nstalled. 0 broken. 0 to nstaliupgrade. 0 to remove

[-1 [}

3. Click on the wine option that appears in the list to mark this soft-
ware for installation, and then click Apply to install Wine. An
Internet connection is required.

Q Mephcations Places_system @)@ alan G

= Figure 2-20

Ede [de Packsge Settings Hel

[] D S
Peload Mark Al Upgrades. Properties Search
A 5 Package rataled Vesion | Latest Verson | Description Ei
e |0 idscaler 40,11 Wideo denterlacer phigins from the DScaler projes
O petview 805 hew PowerPoint slkde shows
0O teleco 1.2.13:-0uburtul colecton manager for bocks. wdeos, muse
O releo-dats 1.2.13-0uburtul ealeetion manager far baeks, videes, o [dits
B wes 09a0-0ubuntul 0.9.46-Ouburkul Microscht inary
B wreder 0.5.46-0ubuntul 0.9.86-0ubutul Microsot Windows Compatibity Layer [Developms
O weefish 1.3.3-0dllubuntul La%ex Edeor based on Bluefish o
. -0
Micrasoft Windows Compatiblity Layer (Binary Emulator and Library)
whie wine is unaslly thought of s & Microsolt Windows smulator, the Wine
developers would prefer that users thought of wine as a Windows compatibiity
layer for Linuix. Wine dees not require MS Windsws. but R £4m Lse Rathe System
o o in place of 84 swn f thay aew avadable.
Thes package nchudes 3 program loader. which alows unmodéed Windows.
IS e | enaries te run undar comp: This package alsa inchdes th
Sectiers ibeary that implarneses the Wies prajects Row varsien of the Winddwd AL,
4 windows,
[T
[angn || Homepage:hitp pmenminaha.orgt
[cmompen |
Sgarch Pasuls
B packages ksted. 1117 nstaled. 0 broken. 0 1o mstaljupgrade. 0 to remove.
[=l

70 Chapter 2 / Linux Ubuntu and Linux Gaming

4. After the Wine application is installed, it is available from the
Ubuntu main menu by selecting Applications | Wine.

s 5 [1 & 3]

figure 2-21

2.4 Automating Ubuntu with Automatix

Ubuntu — like many Linux distributions — is free software (free of
charge) but also free in terms of the FSF (Free Software Foundation)
definition of free; as such it does not ship with certain media codecs
and applications, specifically those that do not meet the FSF criteria
for being “free.” Consequently, Ubuntu cannot natively play some spe-
cific media codecs that might be used in games such as WMA or MP3.
There is, however, an Ubuntu application that may be downloaded for
free and used to install a whole variety of popular media codecs and
applications. The legal status of downloading specific codecs using
Automatix may vary from region to region across the United States
and across the world. Readers are therefore advised to check the
Automatix documentation regarding its status in particular regions.

DN NOTE. The reader has sole responsibility for his or her downloads.

Chapter 2 / Linux Ubuntu and Linux Gaming 71

2.4.1 Installing and Using Automatix for Linux
Ubuntu

1. Beginning from the Ubuntu desktop, navigate the Firefox web
browser to the Automatix web site at http:/www.getauto-
matix.com.

) npplcations Blaces System 2@ alan oy [@ (5]

S figure 2-22

2. At the Automatix home page, click the Installation link to display
the installation page, and download the .deb installation package
for your version of Ubuntu.

ain o [8 @]

S figure 2-23

th gdebi or KDE's package instaler
e will autoenatically add the Automates reposiony for al future updates.

KDE users may have troubde with the direct installation. Please use the manual installation instrisctions instead.
Ao sen the Advissries page before installing Autemati.

Ubuntu 7.10 (Gutsy AMDE4)

Ubuntu 7.10 (Gutsy i385}

fbinary 381 atic2_2.0.5:7.10quksy_i206.deb

Ubuntu 7.04 (Feisty i386)
Ubuntu 7.04 (Feisty AMDE4)

Debian 4.0 {Etch i386)
thetore intalling Automatic, make sure that the non-free and contrits directosies in your primary debian
repository In jetc/aptisources.list are snabled. Automatha depends on ane or more packages from these

directories. Yous primary debian repository should look like something as follows:

Mitp:/rHp.us, debisn srasdebins ench sain nan-free contrib

it e ot st orriatin oimyapt gLy B b ary IR RS matind_20 5.7 100.00y_i308. dab

) (@ mazalation - Automa... G

72 Chapter 2 / Linux Ubuntu and Linux Gaming

3. Once downloaded, double-click the .deb Automatix installation
package to install Automatix to your local machine.

o Apphcations Places Sysem @29 ain o [8 @]

figure 2-24

Package: sutomate?
Status: Requews the installatien of 2 packges | Detads

Descrgtien | Detads | inchuded Fies

Automatix is a graphical Interface for autemating the installation of
the most commanty requested applicatisns in Debian based lins

) [Packnge nstaler - s =]

4. Launch Automatix from the Ubuntu main menu by selecting
Applications | System Tools | Automatix.

3 rpphcaticns places synem @@ ain o [8 @]

figure 2-25

Chapter 2 / Linux Ubuntu and Linux Gaming 73

5. Once Automatix is started, its menus can be used to select differ-
ent products to install to the system. To begin the installation of
checked items, click the Start button.

w i) alan o =[] @ (@]

figure 2-26

& Senqbird
M Manager

Programming Tosls

Songbird

Somgbind is o desktop web player. 3 dgtal ket and Wab browser mash-up, ke Winamp. it supperts estensions

| [Automating (=

2.5 The Linux Shell

Ubuntu as a Linux distribution is based on the Linux kernel, which
contains the OS components such as the foundational libraries and
low-level hardware programming common to all Linux distributions.
The kernel is not in itself a stand-alone OS insofar as users do not
download and use the Linux kernel directly as an OS like they do a
distro; instead, users download and use Linux-based distros (such as
Ubuntu), themselves high-level layers that work “under the hood”
with the kernel. The Linux kernel and the OS generally operate
through a series of sending and receiving commands beneath the GUL
Users can send commands to the OS via the Ubuntu Terminal. This
section considers further the Ubuntu Terminal and a selection of
common BASH shell commands.

N\ NOTE. At this point, open an Ubuntu Terminal from the main menu
by selecting Applications | Accessories | Terminal.

74 Chapter 2 / Linux Ubuntu and Linux Gaming

2.5.1 Common Shell Commands

B The Is (list) command is perhaps the most common of all Linux
BASH shell commands. Once entered into the Terminal window at
the command prompt, Is returns in columns and rows an alphabeti-
cal list of the files in the current directory, as shown in the follow-
ing figure.

) Apphcatiors Places System abn o [@ e8]
T e

figure 2-27

B The clear (clear screen) command clears (erases) all contents from
the Terminal window.

A —
Erowse and run instaled apphoations |

9 ain o [8 @]

figure 2-28

Termnal Tags Eelp

Chapter 2 / Linux Ubuntu and Linux Gaming 75

B Users may also add parameters to Linux commands. For example,
“--help” displays on-screen help that details a command, its usage,
and all possible parameters. Notice that parameters are passed to
commands with a preceding hyphen (-) or double hyphen (--). The
--help parameter applies to most Linux commands.

an oy [0 @ @]

figure 2-29

10 12:38
109 16:54
-81-08 14100

1-88 13:39

o0 1400

1-88 14:08

188 14:08

91-08 14:00

1-10 12:39

118 12:38 test.c
110 12:37 test,c
1-10 1218 test.cpp
81-08 16:08

A @ sangalan-ubunty: -

B The cp (copy) command copies one or more specified files or fold-
ers to the specified destination folder. The command accepts two
string arguments; the first specifies the path or file name of the
source file or folder to copy, and the second specifies the destina-
tion to receive the copied file or folder.

) npplcations Blaces System 2@ s oy [8 w(E]

Figure 2-30
fle Ede yiew Jerminel Tabe pelp
alangalan - ub

76 Chapter 2 / Linux Ubuntu and Linux Gaming

N NOTE. To run commands as an Admin (superuser), the term “sudo”
is prefixed to general system commands like cp.

B The cd (change directory) command is used to change the current
directory to a specified subdirectory, and the command rm
(remove direction) is used to remove (delete) specified file(s) from
the current directory.

Qreg————————Moa, s oy [@ i8]

[Erowse and run nstaled apphcations|

(e WA
Ble Edt yew Jemunal Tags Help
1 Deskiops ra test.c

Figure 2-31

alana Desktops cd myfolder
allan@alan- ubuntu:-/Desktop/myfolders

E 15

N NOTE. File names featuring the space character, such as hello
world.bmp, should be enclosed in quotation marks in the command
line (“hello world.bmp”).

B The mkdir (make directory) command is used to create in the cur-
rent directory a new directory of the specified name.

Chapter 2 / Linux Ubuntu and Linux Gaming

77

) npplcations Blaces System 2@

s c [@ (@)

Bl Edt Vaw Jemnal Tebs Help
alangalan- ubunty:~/Desktop/ey olders skdir testfolderd
alangalan- ubuntu:~/Desktop/myfolders

figure 2-32

ytolder - File Growser

ew Go Gookmarks Help

L3
up Ralond

e alanTk onryilder

l-
o

The following table lists a series of common Linux BASH shell com-
mands, summarizing the role of each command and relating them to
their DOS equivalent (for those readers familiar with DOS commands).

DOS Command Linux BASH Description
Command

ASSIGN In Create shortcut link to file or directory

CD cd Change directory

CHDISK du -s Check disk usage with summarize
parameter

CLS clear Clear the screen

COMP diff or cmp List differences between the content of
any two files

COPY cp Copy file or directory

DATE date Display system date

DEL rm Remove (delete) file

DIR Is List directory contents

DIR *.* /o-d Is -tr List directory contents by reverse time of

modification/creation

78 Chapter 2 / Linux Ubuntu and Linux Gaming

DOS Command Linux BASH Description
Command

DIR *.* /v /os Is -Is List files and size

ECHO echo Print variable to terminal window

EXIT exit Exit from terminal

HOSTNAME hostname Print to terminal window the host name
of the computer

MD mkdir Make directory

MORE more Output contents of file to terminal page
by page to fit the display

MOVE mv Move file

MSD Isdev Display system information

PING ping Check network connection

PRINT lpr Print text file

RD rmdir Remove directory

REBOOT shutdown -r now | Shut down and reboot the machine
immediately

SCANDISK fsck Check and repair the file system

SORT sort Sort data alphabetically or numerically

TIME time Display system time

TREE Is -r List files in reverse order

TYPE cat Output contents of file to terminal

WIN startx Start X server

XCOPY cp -R Copy directory and all files and subdi-
rectories recursively

TIP. Comprehensive guides and tutorials to the Linux shell are freely
available online and can be found at the following web sites:

B hitp://www.usd.edu/~sweidner/Isst/
B http://www.linuxcommand.org/learning_the_shell.php

B hitp://www.gnu.org/software/bash/manual/bashref.html

Chapter 2 / Linux Ubuntu and Linux Gaming 79

2.5.2 Creating and Compiling a C Program
Using the Ubuntu Terminal and BASH Shell
Commands

Computer games are often made in languages such as C and C+ +,
regardless of whether the game runs on Linux, Windows, or Mac. In
Ubuntu, and Linux more generally, C programs can be created and
compiled entirely via the shell. However, most game developers nowa-
days use an IDE (integrated development environment) instead of the
terminal. Some IDEs are slick-looking editors complete with compiler,
debugger, code editor, and a series of other features to make program-
ming simpler. A cross-platform code editor, Code::Blocks, is
considered in the next chapter. The following steps illustrate how to
create, compile, and run a program via the Ubuntu Terminal using only
the keyboard and the BASH shell commands.

1. Beginning from the Ubuntu desktop, launch a Terminal window
from the Ubuntu main menu by selecting Applications | Acces-
sories | Terminal.

2. Enter the desktop folder by typing the following command into the
Terminal window:

cd desktop

3. From the desktop folder, use the BASH shell commands to create
a source file called test.c (a text file to contain the C source code
for a simple C program), as follows:

sudo gedit test.c

4. A text editor application begins. Enter into the text editor the fol-
lowing simple C program that will print “hello world” into the
Terminal window whenever it is executed from the terminal:

#include <stdio.h>

int main()

{
int i;
for (i = 0; i < 10; i++);
printf("hello world\n");

80

Chapter 2 / Linux Ubuntu and Linux Gaming

return 0;

}

5. Once this is entered into the editor, select File | Save to save the
file locally. Then exit the gedit program and return to the terminal.

6. At the prompt, enter the following to “dump” to the terminal the
contents of the C file, and ensure the contents are correct.

cat test.c
7. Compile the C file using the following Terminal command:
gcc -ggdb test.c -o test

8. Once compiled successfully, run the newly compiled program
using the following Terminal command:

./test

7.6 Conclusion

This chapter has highlighted both the intricacies of Ubuntu as an oper-
ating system, and how Ubuntu — being lightweight, free, and versatile
— is likely to become an important Linux distribution for gamers and
game developers.

The next step is to examine a selection of cross-platform game
development tools such as a C++ programming IDE and a couple of
graphics suites. Specifically, the next chapter examines Code::Blocks,
GIMP, Blender 3D, and Audacity, which can be considered cross-plat-
form tools insofar as each of them run on Windows, Mac, and Linux
and each of them can be used to create games for all three of those
platforms.

Cross-Platform
Development Tools

The first chapter of this book considered the definition of “cross-plat-
form” and examined a variety of contemporary operating systems from
Windows to Linux. The second chapter offered a beginner’s overview
of Linux Ubuntu, focusing specifically on Ubuntu gaming and game
development. This chapter is guided by the ethos that “a workman is
only as good as his tools,” and so it takes the first step along the
twisted road of game development by selecting (and installing) all the
necessary cross-platform tools and software for making cross-platform
games. Hundreds of open-source applications are available to develop-
ers for the purpose of making cross-platform games, downloadable and
free of charge to anyone with an Internet connection. We'll discuss
four of these applications in this chapter: Code::Blocks, GIMP, Blender
3D, and Audacity.

B Code::Blocks — First released in 2004, Code::Blocks is an
open-source and free software IDE (integrated development envi-
ronment) for C+ +, supporting a selection of platforms including
Windows, Linux, FreeBSD, and Mac OS X. Sporting a host of fea-
tures including project management, syntax highlighting, and code
completion, Code::Blocks allows programmers to compile C+ +
applications on all of its supported platforms. This chapter exam-
ines how to download, install, and use Code::Blocks on Windows
and Linux, although it assumes the reader is already familiar with
C+ + as a language.

81

82 Chapter 3 / Cross-Platform Development Tools

" main.cpp [TestZ] - Code: Blacks swm build i
Fie [Vew Seach Proiect Buld Debug socmih Took Plugne Seftngs CewrCase et H .
figure 3-1:

mga £ i ., B,

3 Code::Blocks

QP QT et et -
Lk ™M@ |0
Pt e -
Pratects | Syt v T =
10 werbspace H
. B Tenz 1 weing mawepcn
=8 swon o —
e .
. ————
H
i
o oa et *®
e
< H
Hetsaget ®
) Codettacks | 1) Code Mok Dot | Sewchrenits | | Oewcoss |) Wbty Bibd massages |) Dvtuger i
erpuretn Rt sl o regutered urde s Bettres) £ At sered N -
CDouments and Settrgs iy Conmants| s yaan 6 WRDOWS-IZE_ Lew 30, Gakan § Vot Faacrirts

B GIMP — An alternative to Adobe Photoshop, GIMP is an
open-source and free software photo editing suite with a list of fea-
tures almost as long as its developmental history. GIMP offers to
its users a varied selection of tools ranging from brushes to high-
lighters designed specifically for retouching, scanning, and editing
photos and textures.

) Apphcatiors Places System 2@ an cp [@ 8]
& cme SNCIE i % ayors, Channels, B _ 0l x| [: .
fle oo Help Ble Ede Select Yew prage Layer folours Jools Dislogues FlRep lunteled-s 2 | Mo F’gure 32‘ GIMP
§ LR o ol N g8 ard 4 =
= L E -
SR A brs
Eelray. & - W I [
AfED 7 241 ety 100.0
@ <4 i 4 - :,
N 2 e | (e, fackaround
| i
= o
Buckat Al .
Mode: | hormal [=D
T F 3
Opacity: s (1000 |1 | £ ¢ =]

2 |fosckground (7.29 Moy

Finding Simdar Colours
0 Pl sransparant areas
| Sample merged

| [e 4 Layers. Channals, Pa.. || . Sutitled-5.0 (AGS. L ENG

Chapter 3 / Cross-Platform Development Tools 83

B Blender 3D — Blender 3D as an application was born in 1998,
and has since 2002 developed under the guidance of Ton
Roosendaal to become the world’s most downloaded 3D animation
program, with the online encyclopedia Wikipedia estimating
Blender’s user base at over 800,000 worldwide. Blender 3D fea-
tures a competitive toolset for making 3D animations, models, and
other special effects for both movies and games. Unlike its propri-
etary competitors such as 3ds Max, Maya, and Softimage, Blender
3D is free and open-source, and has further gained fame from its
association with movies such as Spider-Man 2, the short film Ele-
phants Dream, and the Argentine CG movie Plumiferos. Blender
3D supports the Windows, Mac OS X, Linux, SGI, Irix 6.5, and Sun
Solaris 2.8 platforms.

figure 3-3: A
render from
Blender 3D

B Audacity — The digital audio editor Audacity is designed for
recording, editing, and exporting audio ranging from less than a
second in length to full soundtracks. Audacity was awarded the
2007 Community Choice Award for Best Project for Multimedia by
SourceForge.net, and in August 2007 Audacity was ranked by
SourceForge.net as its 11th most popular app, having been down-
loaded 24 million times. Furthermore, like the other software fea-
tured in this chapter, Audacity is open-source, free, and
cross-platform, and supports Mac OS X, Microsoft Windows, and
Linux. Audacity is discussed in more detail in Chapter 6.

84

Chapter 3 / Cross-Platform Development Tools

O sppkcationn Places Sytem (2@ e e @]
B Edt yiew Facks Genarate Sfen Anshze Hep z’g'ljfe 3-4:
ghep.. EFES #]IT LT U 0(”
w2 L) v .J’! IP - k| R« - nq)v [} Y

— & [m[m[me] o~ »82le][r e

Ty mwe e

Project Rate (Hzk Selection Start: @End O Llength Audo Postion:

42100 [= OOROOMOLsy QONGEmIdar OOMOOmMOOWY
Actual Fate 24100
=] [ulurty Sax] I 5]

3.1 Code::Blocks

Games are only one form of software as are word processors, spread-
sheets, databases, and Internet browsers like Internet Explorer or
Firefox. Regardless of the kind of software, however, all software
comes to exist only after having first been developed by programmers
using a programming language such as C++. When developing their
software, most programmers make use of other kinds of software to
make their professional lives easier. Code::Blocks is one such package.
Known as an IDE (integrated development environment),
Code::Blocks is used by C+ + programmers to manage and collate
source files into organized projects, and to edit and compile source
code into a final executable form that users can run stand-alone as an
application. There are a variety of alternative development environ-
ments including Microsoft Visual Studio .NET and Dev C+ +;
however, Code::Blocks is the focus of this chapter and is assumed to
be the development environment used by the reader when considering
all subsequent C+ + code samples featured in this book. This is for the
following reasons:

Chapter 3 / Cross-Platform Development Tools 85

Code::Blocks features a clean, approachable, and platform-
independent interface that maps across-platforms, and so is
equally usable on every supported platform.

Code::Blocks features a comprehensive set of application wizards
and project templates that can be used for every newly created
project. These templates are specifically targeted toward game
programmers beginning new projects in Code::Blocks, meaning
cross-platform games may have their source code and foundations
generated, configured, ready to execute, and ready to tweak within
a few mouse clicks.

Code::Blocks is open-source, free of charge, and freely download-
able for every user on any supported platform with access to the
Internet.

Being cross-platform means Code::Blocks is available for multiple
platforms. Each build of Code::Blocks for a specific platform is
known as a distribution, or distro, with one distribution for Win-
dows, one for Linux, etc. Thus, projects created and compiled with
one distribution of Code::Blocks may usually be migrated to and
compiled by any other distribution (cross-compilation).

Code::Blocks is a community-driven open-source project and, like
SO many open-source projects, has a thriving and supportive online
community. Code::Blocks is regularly updated and widely docu-
mented, and the online forums offer a social environment for
Code::Blocks enthusiasts from every platform.

86 Chapter 3 / Cross-Platform Development Tools

3.2 Downloading and Installing
Code::Blocks in Ubuntu

Code::Blocks is a free C+ + IDE available to download for Linux
Ubuntu from the official Code::Blocks web site or via the Ubuntu Ter-
minal, but not from the Synaptic Package Manager like many other
Ubuntu applications. The following steps detail the Code::Blocks
installation process for Ubuntu.

d TIP. Open-source applications are often considered by developers
as works in progress, and Code::Blocks is no different. Developers
often change them by adding new features and repairing existing
bugs, and sometimes make their applications available in new ways.
The following installation instructions for Code::Blocks on Ubuntu
are known to be current at the time of writing, but readers may first
prefer to check the online documentation at the Code::Blocks wiki

(http://wiki.codeblocks.org/).

1. Beginning from the Ubuntu desktop on a machine with access to
the Internet, open the Ubuntu Terminal by selecting Applications
| Accessories | Terminal.

2. Type the following, pressing Return after each line:

sudo apt-get install build-essential

sudo apt-get install gdb

sudo apt-get install Tibwxgtk2.6-0

sudo apt-get install Tibwxgtk2.6-dev wx2.6-headers wx-common
sudo apt-get install wx2.6-doc

3. Back up the package sources file using the following command and
then press Return:

sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak
4. Edit the sources file as follows:

gksudo gedit /etc/apt/sources.list

Add the following line as appropriate for the particular Ubuntu
distro, then save the document and return to the terminal:

(edgy main)

Chapter3 / Cross-Platform Development Tools 87

deb http://apt.tt-solutions.com/ubuntu/
or
(feisty main)

deb http://apt.tt-solutions.com/ubuntu/

Type the following, pressing Return after each line:

wget http://www.tt-solutions.com/vz/key.asc

sudo apt-key add key.asc

sudo apt-get update

sudo apt-get dist-upgrade

sudo apt-get install Tibwxgtk2.8-0 Tibwxgtk2.8-dev wx2.8-headers
wX-common

sudo update-alternatives --config wx-config

Exit the terminal and navigate from Ubuntu’s web browser to the
Code::Blocks web site at http://www.codeblocks.org/.

i TTPP E 108 = AR T I]
Ele Edt Vew Higtory Bookmarks Tools Help FigU’e 3_5:

@E-n - [rizpwew conetiocks orgl =[] Gl [coow-piccs
7 Code::Blocks home
The Open Source, Cross-platform, e
ﬂ Code::Blocks Free C/C++ IDE ;__;.’_'I page

Home Screenshots Download News Wiki Forum

Navigation Code::Blocks

Home The open source, cross platform Free C++
Featies IDE.

Testimanials

Screenshats Code:Blocks Is a free C++ IDE bullt to meet the mast
Donations demanding needs of its users. It is designed to be very
What's extensible and fully configurable.

new

smpravements Il extended with plugins. It even includes a phgin wizard -
newnbugs W o you con create your own plugins! (Frae SOK

Built around a plugin framework, Code:-Blocks can be

Resources %2 tzoom i
FaQ [rvseper——]
Forims
Wikl
Manial

Finally, an IDE with all the fgatures you need, having a consistent look, feel and operation across
platforms.

ABout vt We hope you enjoy using Code::Blocks!
License

Development

The Code::Blocks Team.

ot Download Code::Blocks now! &
Renodt buos
Done
& [@ Code:Blocks DE - Opan Source, Cross-platform Fres C++ I0E - Mozda Frefor G

Bofdme

Click Download to navigate to the Code::Blocks download page,
and from there select the latest Nightly Build option. Code::Blocks
as an application may be downloaded from its official web site as
one of two versions: a standard frozen release dating from 2005 (at
the time of writing) or an experimental nightly “build,” typically
released within the past 24 hours. The term “build” in this context
refers to a complete and newly compiled version of Code::Blocks
featuring any amendments and bug fixes coded by the

88

Chapter 3 / Cross-Platform Development Tools

development team within the past 24 hours. For this reason, users
are encouraged to download the latest nightly build of
Code::Blocks rather than the frozen release since it boasts a
greater variety of features and bug fixes. Choosing a nightly build
from the web site sends users to the Nightly Build forum, a place
where daily threads are arranged in date order with more recent
dates toward the top, with each thread offering a link to the
Code::Blocks build for the day the thread was posted.

G rppications Places_Sptem @@ “oe
Eve ESt View Higtory Bookmarcs Tools Help F’gure 3'6
@€ O @ e csncmoymmina sy oT5) oo - Code::Blocks
Knawn bugs - ° e
Downloads Sne January the 2nd of 2006, we started publishing what we call “wightly buids". These are doWnIOﬂd page
R [binary) its current form, updated each day
eEources {wall, actually each night), These binary mapsnnts allow people to watch Code::Blocks evalve
AT without them having to build it from source. This was a huge help to us, because we got almost N
Fonmna immediate feedback about bugs that crept in, usability issues, anything. And so Code-:Blocks
e ! evalved in ways we had not imagined...
prorol Note though, that the fact that nightly bulids are “development” snapshots, doesnt make them
L“M: immediately unusable. As a matter of fact, any recent snapshot s much more stable than our last
“stable” release (so called 1.0rc2). In terms of features any snapshot is leaps ahead 1.0re2.
Praject We are currently nearing what's called a “feature freeze”. It's that point in the development cycle, [T
Page where we stop adding new features and instead focus on fixing any remaining bugs. After this
Repart bugs period is over, we are heading for a new release (finally!).
Submit patch
Fir Requests Having read the above paragraphs, you are now free to decide what version to download:
Nightly
busibels # A recent development snapshot which can be found here (recommended).
Source code + Or the old stable release which you can find below.
Help
Wanted Latest stable release: 1.0-AC2 (see what's new)
Links | Oider versions can be gownloaded at Sourceforge.
Donate Nightly builds (bleeding-edge) can be found here. <-- RECOMMENDED

| code::Blocks

Here you will ind the recessary setup fies 03 instal Code-BIacks in your computer

thare's no nesd MIRGW Bundia ater yo Instaties 1 for the
st time. I1'S #AGUR with dewaloading the nermal version] | Ol
itparmw conebsocks.orgnightiy

3] (@ Dowrlosss - Moz Frelo] L1 [5]

Select the latest nightly build thread available from the forum, and
download the appropriate Ubuntu .deb package file to the Ubuntu
desktop.

3 Appheations Places System -1 “oe[E
] BeBOS Download « The Open Source Mediater - Morilla Firelox -8 x F"gure 3_7

Q[
Home Ilbwl Partnars | Contact <-OT0831_revadll_Ubuntuh.10+7.08_wal.B.4.tar.02

E@@[F[Iﬂ@S

freen: hisp:ownioad berios. de

WhAY sPeule Firetax B with IR TIle?

3 Qpen with | Archive Manages (defat)
@ Save o Dige

] Do this atomaticatty for ke Iike this fom rew ce.

L2 8 tar g

Keancn | | gllox

derwmicidd Bavlan g | Berin, Germarry | Deoweic

Copyright ©2000-2007 FOKUS

Done
(3| | The 32 sugust 2007 buld [4418) is cut, - Monlla Frefos | @ Barkecs Downlad - The Open Sowts Medator - Mool Frefox | Il I &

Chapter 3 / Cross-Platform Development Tools 89

9. Open the downloaded Code::Blocks archive set and extract all
archives to the desktop, then proceed to install each archive to the
system. Code::Blocks is now installed and is available from the
Ubuntu Applications menu.

“ 0 E

figure 3-8

CH_20070831_reva-418_Ubuntul
Grehive Bk ew e {-
b B. = -]
W o oamc | adithe ad [ERE |
T —
.m - Sare
B codablocki-contrib_1Lownadle.. 1.1MB
= codeblocks-dev_LOnnddlE . 330.3KB
= codeblocks_1 Dwnad1e (36 deb 3.9 MB Lo Actions
= Wbcodeblockst_b.0wnesls 8. 17 ME L i Fe-crats folders
= Mrwomithlbo-dev_1 0wnd418,., 380 K8 o Overgrte axiiting ey
= Meamithibo_ 1 Onedd LI 00, T103m (s]: 0 | Do ot estract elder flus

) Ben destination fokder akter extraction

(56 (@ hw 51 g 2007 ot 44181 .. | (0 20076831 rvia1s, veunivs.1047... | B B

10. From the Ubuntu main menu, choose Applications | Program-
ming | Code::Blocks to launch Code::Blocks.

“ o @

Figure 3-9

| Contrib pluging for Code::locks IOF
Tha package extends Code:-flocks hunctonalty & great deal with the included
plugns, These are:

= Code prefiter (based on geesf]

* Cade statistics (SL0Cs etc)

* DragScroll (enhances mouse oparatons|
* Satting of amarcnment vanabies

* Ssurce exparter to EORMTMUODTITE
el

* ayboard shortouts canhguration

= 050 AT b das fmeu St

@ [The 31 august 2007 buld [4418) s ou...

90 Chapter 3 / Cross-Platform Development Tools

3.3 Downloading and Installing
Code::Blocks in Windows

The following step-by-step instructions illustrate the Code::Blocks
download and installation procedure for Windows.

d TIP. Open-source applications are often considered by developers
as works in progress, and Code::Blocks is no different. Developers
often change them by adding new features and repairing existing
bugs, and sometimes make their applications available in new ways.
The following installation instructions for Code::Blocks on Windows
are known to be current at the time of writing, but readers may first
prefer to check the online documentation at the Code::Blocks wiki

(http://wiki.codeblocks.org/).

1.

Starting from the Windows desktop, launch a web browser and
navigate to the 7-Zip Free Archiver home page at http:/www.7-
zip.org/. Choose a download and click the appropriate link. 7-Zip is
a free, open-source file archiving application (like WinZip) for pack-
ing and extracting compressed archives in the following formats:
7Z, ZIP, GZIP, BZIP2, and TAR. This application is required
because Code::Blocks is packaged and distributed to users in a
series of 7Z archives.

{7 1.ip - Wisdows Ietarnet Explares

- ey] er— Figure 3-10:
S 7-Zip home page

4 start ~en

Chapter3 / Cross-Platform Development Tools 91

Once 7-Zip is downloaded from the web successfully, execute its
automated installer to install 7-Zip to the local computer.

Launch a web browser and navigate to the MinGW C++ Compiler
web site at http://www.mingw.org/. Code::Blocks is compliant with
a wide selection of popular C++ compilers but as an application it
ships stand-alone, without a compiler, and therefore an independ-
ent compiler should be downloaded separately. MinGW is among
several Code::Blocks-compatible packages, and features a suite of
freely available, open-source C++ compilers and other tools for
building C+ + applications from standard C++ source and header
files. To download the MinGW package from its official web site,
select Download | Installing MinGW, and then select the auto-
mated installer.

OO - [Drmmmrey] bl Figure 3-11:
- 0 MinGW home
~ page

Chapter 3 / Cross-Platform Development Tools

4. Run the downloaded MinGW Automated Installer, and click Next

. Figure 3-12:
1 MinGW download
dialog

5. Select Download and install and click Next to begin the online
MinGW installation process, installing MinGW from the web to the
local computer.

6. Once MinGW is installed to the local computer, launch a web
browser and navigate to the Code::Blocks web site at
http://www.codeblocks.org.

-c o 0 " ree C++ IDE - Windows Inlesns or Sl
OO - Mimwirmmssimeay e = Figure 3-13
U S Coteocks K€ - Opan Source, Crose istor Fres... B~ E - (e Gk ™
The Open Source, Cross-platform, e et
Codexlocks Free C/C++ IDE PRI
Home Screenihots Downlcad News Wikl Forum
R Code::Blocks
Home The open source, cross platform Free C++ IDE.
Featury
Testmonis Code Blocks is a free Co+ IDE bt 1o meet the most
Sereerahots demanding needs of its users It is designed to be very exterrsibie
Donations: and fully configurabie
What's new Buil around a plugin ramewark, Code: Blocks can be extended
EnpRoueIEDE: with pluging i even incuces a PRGN WIZard S0 YOU Can create
Fnown buge your awn pluging! (Free SOK dowmioaded separately)
Downlosds
Resouroes e i
g Ligtly bud (zocm i)
Forums mon scrvanshots)
e
. Finall. an IO with all e {eatures you need, having a consistent look, feel and operation across platforms.
License We hope you enyoy using Code: Blocks!
Development The Code Blocks Team
Project Page
m:::n Download Code::Blocks now! §
s Requests -
<

B et g =

Chapter3 / Cross-Platform Development Tools 93

Click Download to navigate to the Code::Blocks download page,
and from there select the latest Nightly Build option. For more
information on Nightly Builds generally, see step 7 of Section 3.2,
“Downloading and Installing Code::Blocks in Ubuntu.”

[~ Downisath - Cade-:Aiocka - Windows intesnet Explarer

= o *. Figure 3-14

WS O Dok - Code: Slocks - @ P = ek

unusable As a mafter of fact, any recent snapshot IS much more stable than ow last “stable” release (so called L
1.0c2). In terms of features any snapshot is leaps ahead 1 Onc2

a Teature freeze”. I's that point in the development cycle, where we stop
focis on fiang any remaining bugs. After this pericd is over, we are heading for

the above paragraphs. you ane now free 1o decide what wirsian 1o dawnkoad

e e cent development snapshol which can be found here (recommended)
Help Wanted « Or the oid stabie resease which you can find below

Links
b Latest stable release: 1.0.RC2 (see whal's new)

cherd A Soug

_ Oider varsons can be don

Highety buikds (bleeding-edge) can be foundfERD <~ RECOMMENDED

Code::Blocks

flepeetant: Unbess stased, U
Eicnugh with dewnloading the i

16 dermmlond e MinGAW bundie aher you have inaBied it for the first tima, ITs
| vorsien)

Code::Blocks IDE (Linux binarles and source RPM's)

Linu binasers for e Code: Bocks I0€

| Brswrse lioux packages | -

For each Code::Blocks nightly build a total of three files (each in
7-Zip format) should be downloaded to the local computer, as
follows:

B wxmsw28u_gcc_cb_wx284.7z — 7-Zip archive featuring
the Code::Blocks DLL dependency, wxWidgets interface
library.

B mingwml0.7z — 7-Zip archive featuring another DLL
Code::Blocks dependency for working with MinGW compilers.

B CB_rev2 win32.7z file — 7-Zip archive featuring the
Code::Blocks C+ + IDE, documentation, application, and
other associated files.

9% Chapter 3 / Cross-Platform Development Tools

10.

ih“sﬁmr 2007 il (4472) s oul. - Windews Inieimet Lxplerer -
co-u s o “ Figure 3-15:
G The 18 September 20 bakd (M2} oun. f = [= i = [Pee v T - D I d h

L “Hﬂd - The Open Saurce Madistar - Windows laternet [xplarer -Blx| & L] own oa t e

p T i R —— | Code:Blocks nightly
e ——— : ~ build files.

Using 7-Zip (as downloaded in step 1), extract all the contents of

each 7-Zip archive into the same folder on the local computer (e.g.,
C:\CodeBlocks).

figure 3-16: Extract
the archive files.

T

Code::Blocks is now installed and ready to run, and can be exe-
cuted from the Code::Blocks folder whereupon the MinGW
compiler should be detected by Code::Blocks successfully. For
simplicity, users could further add a shortcut to the Code::Blocks
executable in the Windows Start menu.

Chapter3 / Cross-Platform Development Tools 95

figure 3-17:
o Code::Blocks
b e) e installed in
) cssnina g Windows

3.4 Getting Started with Code::Blocks

In summary, Code::Blocks is an open-source, cross-platform, and free
C+ + IDE for developing C+ + programs. It features an editor for
creating and changing C+ + source files, and also for managing source
files into projects; a debugger for detecting and repairing both compile-
time and run-time errors in applications created with Code::Blocks;
and a compiler (MinGW) for building C+ + source code into execut-
able form for any target platform supported by Code::Blocks.
Furthermore, the cross-platform wxWidgets library used by
Code::Blocks to generate its GUI means all Code::Blocks menus, but-
tons, dialogs, and features map (correspond) across all supported
platforms, making the use of Code::Blocks a generally identical experi-
ence for every developer from platform to platform (at least in theory).
Let’s now look at how developers generate new C+ + projects using
the Code::Blocks Wizard.

96 Chapter 3 / Cross-Platform Development Tools

3.4.1 Codes:Blocks Projects

New lrom lt:rrluln.h: @- Figure 3_ ’8'
Projects | Category: [<Al categon b : Code::Blocks Wizard
Buikd largets I 3 = 1 - J t. -
Files = Cano options
Custorn Coderlods c::% o ;:3@ D&tfk’ ’
o b applical ircc
User templates pries acchication project

Dynamic Link Empty project FLTK project GLFW project
Library

& ® @ 8

GLUT progect GIK4 project Lrrichtpeoject Kernal Mode
Driver

e @ = Q View a5
e @) Large icons
Lightfeather Ogre project OpenGl T4 project List
| project propect 2

TIP: Try right-cicking an item

| 1. Select a wizard type first on the lett |
2. Sclect a spedfic wizard from the main window (filter by categorics if needed)
3. Press Go

Like a Visual Studio .NET project, a Code::Blocks project broadly
refers to an organized collection of C+ + source and header files and a
series of compiler settings (such as which compiler to use), which
together can compile into an executable application for any supported
Code::Blocks platform. In short, one Code::Blocks project equals one
application, though other configurations are also possible. Using
Code::Blocks, projects may be created empty from scratch, where
developers add source files and manually define compiler settings
according to their requirements, or projects may be created as speci-
fied types from a series of premade templates using the Code::Blocks
wizard. Here, each template automatically generates projects complete
with the appropriate compiler settings and skeleton source code nec-
essary for starting whatever kind of project the template is designed to
build (such as a computer game project). Both blank and template-
based projects are created using the Project Wizard, accessible from
the Code::Blocks menu via File | New | Project. A selection of avail-
able project templates are listed below, especially those of relevance to
game developers.

Chapter3 / Cross-Platform Development Tools 97

B Empty project — Typically used to create C+ + projects for
which there is no available Code::Blocks template, this wizard cre-
ates a blank, named project with no initial source or header files
that adopts the default compiler settings.

B SDL project — SDL is an acronym for Simple DirectMedia Layer
and is a free, open-source software development kit (or library)
used for creating cross-platform games. The Code::Blocks SDL
application wizard generates and configures Code::Blocks projects
for use with SDL (assuming the SDL library is installed to the
local machine already). Chapter 5 examines game creation with
SDL in Code::Blocks.

B OGRE project — OGRE (Object-oriented Graphics Rendering
Engine) is a free, open-source, and high-powered 3D software
development kit designed primarily, though not exclusively, for
making real-time 3D games complete with shaders and similar
effects. Like the SDL wizard, the Code::Blocks OGRE wizard gen-
erates C++ projects configured and ready to run using the OGRE
library, but assumes OGRE as a library (its source files, etc.) is
installed to the local computer already. Chapter 10 examines game
creation with OGRE in Code::Blocks.

B OpenGL project — First developed by Silicon Graphics, Inc. in
1992, OpenGL (Open Graphics Library) is one of the industry
standard, cross-language, and cross-platform graphics rendering
architectures for developing applications with real-time 3D
graphics, including games, virtual reality software, and simula-
tions. Code::Blocks offers an OpenGL project wizard for creating
OpenGL games, though neither the OpenGL project wizard nor
OpenGL is considered in more detail in this book.

98

Chapter 3 / Cross-Platform Development Tools

3.5 Cross-Platform “Hello World”
Application

The famous “Hello World” application that does nothing more than
print to the screen what its title implies is customarily the first pro-
gram a fledgling programmer creates. So following this tradition for no
reason in particular, we'll create a cross-platform “Hello World” appli-
cation for Ubuntu and Windows using Code::Blocks. The more
rebellious readers may prefer to break tradition and print something
different! The Hello World project may be created and compiled ini-
tially in either the Windows or Ubuntu distribution of Code::Blocks,
and then later migrated and compiled in the other, thereby creating
two binary distributions of Hello World from the same source code,
one for each platform. This book begins the Hello World project with
Code::Blocks in Windows and subsequently migrates to Ubuntu, as
illustrated in the following steps.

1. Beginning from the Windows desktop, start Code::Blocks and
create a new Console project from the Application Wizard. Then
choose the Create a new project link.

e . 0z Figure 3-19:
: Choose
F Sl

o408

|) e Dy B et | € B |) o

Chapter3 / Cross-Platform Development Tools 99

2. Enter project details, including the project name and a valid local
path in which to save the associated source files. Click Next.

i

Console application

& console

Please select the folder where you want the new project
to be created as wel as its tite.

Project tile:
MyFiretProject

Folder to create projectin:
C:\Usere\Wan\Documents\C 4+ Projects’, |3

Projert filename:
MyTirstProject.chp

Resulting filename:
CilUsers\Alan\DocumentsiC ++ Projects WMyFrstProject

<Back Next> | [cancel

Figure 3-20

3. Accept the default compiler settings by clicking Next.

Console application

[N

& console

Please select the compiler to use and which configurations
you want enabled in your project.

Compiler:
| GHUGEE Compiier s

¥|Create "Debug” configuration: Debug
“Tehug” options
Output dir.: bin\Debug)
Obyjecbs oulput di . objiDebugl

| Create Relrase” mnfiguration: Release
“Releace” opbons
Qulput dir.; biniRelease

Objects output dr.: ohj\Relerase),

<Back Mext> | | Cancel

Figure 3-21

A Hello World project complete with source code is now gener-

ated, as follows:

#include <iostream>

using namespace std;

100

Chapter 3 / Cross-Platform Development Tools

int main()

{

cout << "Hello world!" << endl;
return 0;

}

4. Select Build | Run from the Code::Blocks main menu, or click
the Build icon from the Code::Blocks toolbar, to compile and exe-
cute the Hello World project.

- = [o [

sad " Figure 3-22: The Hello

World! Project in
Windows

« 8¢

T T T T e T : “* Figure 3-23: The Hello
4 " : World! Project in

e = Ubunty

using namespace std;

int mair

Chapter3 / Cross-Platform Development Tools 101

3.6 Graphics and GIMP

First created by Spencer Kimball and Peter Mattis in 1995 and then
made available on UNIX/Linux-based systems, GIMP (GNU Image
Manipulation Program) is often considered a free, cross-platform, and
open-source equivalent to the popular Adobe Photoshop, an application
for editing, retouching, and reworking photographs or 2D images
(bitmaps, .pngs, .jpegs, etc.). GIMP is cross-platform insofar as it sup-
ports Windows, Linux, Mac, FreeBSD, and Solaris. GIMP is also fast
becoming one of the most popular and widely used image editing tools,
becoming the standard (default) image editor for a variety of Linux dis-
tributions including Ubuntu, Mandriva, SUSE, and Fedora. GIMP is
useful for cross-platform game development because developers can
use it to perform at least the following tasks:

B Retouch textures and other in-game images using the GIMP
brushes, inks, stamps, and other editing tools. It can be used on
photos as well as 2D renders from 3D software like Blender 3D
(discussed in detail in Section 3.7).

B In collaboration with 3D rendering software or real-time 3D
games, GIMP is often used by developers to create “seamless”
tileable textures that can be texture mapped onto 3D objects. A
texture that is seamless is one whose opposite edges (left and
right, and top and bottom) are identical to the other so that the
texture may be repeated (or tiled, or juxtaposed) across a 3D sur-
face (like a cube face or a wall) without lines or breakages appear-
ing where the edges meet between any two tiles or any two
repetitions. A sfochastic texture is one whose pixels are a random
combination of brightness, contrast, and color.

o Figure 3-24: A
selection of
. tileable textures

near-stochastic | stochastic

102 Chapter 3 / Cross-Platform Development Tools

B Define image alpha channels and transparency. Images that feature
transparent or semi-transparent regions often use alpha channels.
An alpha channel is a separate canvas (or image) hidden and
embedded inside an image that is equal in pixel width and height
to the visible, standard layer of the image. The alpha channel’s pix-
els may only be grayscale, ranging from black to white or any
shade between. The pixels of the alpha channel map 1:1 to the pix-
els in the main image, and the color of each pixel determines the
transparency of the corresponding pixel in the main image with
black = transparent, white = opaque, gray = 50% transparent,

etc.
. Figure 3-25: An
image with an
alpha channel

E
Image Alpha
Background \ /

Background + Image + Alpha

3.6.1 Installing GIMP on Windows or Mac

GIMP is preinstalled with Ubuntu and is available from the main menu
via Applications | Accessories | Graphics | GIMP. This section
explains how to install GIMP on the Windows or Mac platform.

1. Beginning from the desktop, navigate a web browser to the GIMP
home page.
B For Windows: http://www.gimp.org/

B For Mac: http://wilber-loves-apple.org/

Chapter3 / Cross-Platform Development Tools 103

2. From the home page, download the GIMP package to the local
computer.

3. Once downloaded, run the GIMP installer.

3.6.2 Using GIMP

This section offers an overview of GIMP and demonstrates how to
perform some common tasks encountered in game development. More
detailed tutorials and guides on GIMP can be found at the following
web addresses:

B http://docs.gimp.org/

B http:/wiki.gimp.org/gimp/

B http://www.gimp.org/tutorials/
B http://www.gimp-tutorials.com/

3.6.2.1 Creating Tileable Textures Using GIMP

Tileable textures are those images that may be repeated seamlessly,
like bathroom or kitchen tiles, arranged one beside another in columns
and rows across a plane surface. For any tile to repeat “seamlessly”
(without a visible edge where any two tiles meet side by side), the
pixels on the edges of a tile must be identical or “connectable” to the
pixels on its opposite edge (left and right, top and bottom). The follow-
ing step-by-step procedure explains in detail how to create a seamless
image using GIMP.

1. Start the GIMP application and create a new, blank image 300
pixels in width and 300 pixels in height.

104

Chapter 3 / Cross-Platform Development Tools

o Apphcations Places Sysem @29

s oo (18 (@

[T =jojx & Layers, Channeds, P| - (0| x H .
ol “ .= Figure 3-26: Create a

? X = new image.
LR A+ Layers 5
oy - W
EASE /(7
o 2 a a

o TJemplate:

- .
Painthrash ol wak: [a0d
Mode: | Moemal [Haighti | 300

-
de". =) .

2. Fill the image with random pixels, using the brush, fill, or pen
tools. The sample image in Figure 3-27 is used for demonstration

purposes only; most developers will work with meaningful images
loaded from files on disk.

|Browse and nun installed appbcation @ alan g L «E_
e I S et figure 3-27: Fill the
= ——— Fle Edt Select Yew jmage Layer Coburs Tooks Dakgets Fiters L Jureeled1 * [[putnf .
I I Y [e v L. Foee - e 7 image with random
s % S8 pixels.
i NTERA Mode: | Hormal
EAANE S Cracey 1000
3 i kO
o £ a4 é a g . e —
]
A (B . &
pe 2| 100w 2 |[Background (1.84 uB) LRl 1

suntiled-1.0 (ARG, 1

Chapter3 / Cross-Platform Development Tools 105

3. Make the image seamless by choosing Filters | Map | Make
Seamless from the main menu.

) applcations Blaces System 2@ an cp [@ 8]

PR | S e st = < figure 3-28: Choose
g Bl Edt Sekect Wew mage Layer Colurs Tools Diakepues Fiters S |- .
. e LR : ot o Filters | Map | Make

S, 11 o B B 1| o rapem
L H Lo b Lol o F

Seamless.

suntiled-1.0 (ARG, 1

4. Test the seamless tile by creating a new image that is several
times the width and height of the original, and then copying and
pasting the smaller original three times into the larger, arranging
the tiles in a grid to see the seamless tile effect.

e e mataed spplcasions) e oy 0 8 @
W e =REXX “untitled-1.0 (RGH, 1 layer) 300300 =)@ 4 Lavers. Channeds. P[=)0 Jx 17 -/Y:
SapTegr Bl Ede Select Ve -m:ue I-.m:'v;: Bk Daligues Ftegs [l Jurisied3 + | pana Flg.ure 329 copy the
) [T v W (=T original image several
bl : § e - times and arrange the
reryy] | 5 : o woo . copies side by side in a
@xasna . grid.
o o
- 3 | Edt Se — [rr———
4 i : [l oL v - s iit
Ractangle Select & : { :]
Mode | Il I (5 ;
-_I: jﬁr
Founded comars

Expand from certre

Fixed: | Aspact ratie £ 7]

6 - -3

—— ¥

x "

v o g

T Me
reange f

=) [o 1RGB. 1 surtitled-3.0 [RGB, 1 4[5

G

106

3] [e 4 Layers. Charnaly. Pa || 5 *Untitled-5.0 [RGB, 3

Chapter 3 / Cross-Platform Development Tools

3.6.2.2 Editing Image Transparency Using GIMP

This section highlights how to use GIMP’s image alpha channels (or
layer masks) to make regions of a GIMP image transparent or
semi-transparent.

1. Start GIMP and create a new image 600 pixels in width and 600
pixels in height by selecting File | New from the main menu.

I_O Appheations Blaces Sysem 2@ s oo (18 (@
; @it = = Figyre 3-30: (reate a
= new image that is
el : £ * 600 x 600 pixels.
Hagight: 600
LROIN| 4

FG/BG Celour
A s e

2. Import an image or draw a design or pattern with regions that will
later become transparent (such as is seen in Figure 3-31).

Apphrations Blaces System alan g sile]
@ O & «E
[@ ome [_jod T BE3)svers. Channsis, B[0] x 3
PRk i3 aee yracms Lacy e ..~ Figure 3-31
P [N bilis =
-
Je: HNormal
ey 100.0 5|
=

A mackground

Chapter3 / Cross-Platform Development Tools 107

3. To add an alpha channel to the current image, select Layer |
Mask | Add Layer Mask from the main menu.

) applcations Blaces System 2@ an cp [@ 8]
O o L +vors. Ehannets, ¥ [a x| i .32:
alpiet i I e o .= Figure 3-32: Choose
~ = S o B B biww Layer X .
S mdy e oo [IS Add Layer Mask.
SR AT Tl = =
- S anA ¢ le: | Homal
Al E 72 A7 oty smmmm—) (1000 [2]
o La i LIk Add Layer Mask... —
@ & o !
Buckat Al 443 X :n.re ta jmage Size
E ., Scale Layer,
Mode: | Moemal L i D
opacity: s 1000 || £ i Autocrep Layar . L
Fype fil] ;
¥G colour 6 3 i 3
G cokur 6 4
Putteen E | s ®|8
i) 4 ™
0d Aean (55 i s
Al n Ak sk that sllcws non-destructive sdéng of tra ¥
u . -
] S e ge = a
B = _ l
) | e 4 Layers, Charnaly, Pa_ || &, *Untitled-5.0 (AGB, 3 I_I Ja}

4. From the Add Layer Mask dialog, choose White (full opacity) to
make the image layer fully opaque.

G repleatiors_Places_Sytem 2@) ancy O qq
@ ow [_joliB *UntRled 5.0 (RGH, | lnyer) 6008600 — 1.0)% |Jayers, Channels, B[| 0 * - .
B g pe Be E6t Select yow Fuge Lew Cokurs Rk Gisogoms e Pirsitled s < |[aato Flgure 3-33 (hoose
= it ' White (full opacity).
L
* ;. o - 00.0
- o e Lover]
4 & of 7 Initialive Layer Mask to; e
|
T
Bucket Fll]] ‘
Mode: | Mormal ; . D
Opacity: s (1000 |3 r ¢ - L]
e p—— ! [E]D[I
i ryert sk |
] .
i3 @uen | | Qoancel | | oadd

W 3 |[Background (708 MBT

P 3 T T [ackgreand [

Findhng Simdar Colau
0 Pl sransparant areas
| Sample merged

& Layers. Channals. Pa_ || 5 *Untitled-5.0 (RG6. 3 |[4d Add Layer Mask i) 5]

108 Chapter 3 / Cross-Platform Development Tools

5. Select the new layer mask by clicking the white thumbnail in the

3 Wackground

Layers palette.

I_O Apphcations Places_Sysem @)@ aan cp [@ (@]
e e RSESSS, Fiyure 334: Sl he
——- = e a4 i R =jUree = = .

5o e . A g = s B white layer mask.
LR A & Layers -

iEBAR A Mode: | Hormal

EASE 2[4Y Opacey 1000 |2

@ x a =

EL

6. Afterward, use the standard GIMP paint tools to paint the trans-
parency data into the image. Remember that the black pixels will
be transparent, the white pixels will be opaque, and 50% gray pix-
els will be 50% transparent.

.—O Apphcatiors_places_system @(°1@) s oo (18 (@
R R e Figure 3-33: Stort
- R St e Ear painting areas that you
[want fransparent.

4 Layers. Channali. Pa_ || & *Untitled-5.0 (RGB. 3

7. Finally, save the image in an image format that supports transpar-
ency, such as .bmp, .tga or .png.

Chapter3 / Cross-Platform Development Tools 109

3.7 Blender 3D

Like GIMP, Blender 3D is free, cross-platform, and open-source.
Blender 3D is often compared favorably to commercial 3D rendering
and animation software such as Autodesk’s 3ds Max, LightWave, and
Maya, each of which are popular choices among game developers. Sup-
porting a host of different platforms, including Windows, Mac, Linux,
FreeBSD, Solaris, and IRIX, Blender 3D is a comprehensive 3D ren-
dering suite designed for creating prerendered 3D stills and
animations. The following sections show how to install Blender for
both Windows/Mac and Linux Ubuntu. The intricacies of using Blender
3D are beyond the scope of this book, which focuses mainly on pro-
gramming rather than graphics, but more information regarding
Blender 3D can be found at the following web sites:

B Blender 3D e-book: http://en.wikibooks.org/wiki/Blender
3D: Noob to Pro
B Blender tutorials: http://www.blender.org/education-help/tutorials/
B Blender video tutorials: http:/www.blender.org/education-help/
video-tutorials/
B Blender 3D manual: http://wiki.blender.org/index.php/Manual

3.7.1 Installing Blender 3D on Linux Ubuntu

1. Beginning from the Ubuntu desktop, launch the Synaptic Package
Manager from the Ubuntu main menu by selecting System |
Administration | Synaptic Package Manager.

2. Search for “Blender” and mark the Blender items listed in the
Ubuntu application repository. Then click Apply to install Blender
3D to the system.

110 Chapter 3 / Cross-Platform Development Tools

£ Apphcatiors Places Sysem @2@ aan cp [@ (@]
Be B Bwkage Sengs i Figure 3-36
e & “
Reload Mark AlUpgrades Apply Propertes Search
A S Package ataled Viesion Latest Verssn | Daserigtion
ander] Bende 2482uburtud Very fast and versatie 30 madelenrendere
B Hende-ogreenl 4.3 thudd) Dlandar Exporter for Ogre
O creaste-resources 0.13-2 shared resources for une by crestae sppkcationn
O daueve 0.60.0-1buld1 datributed render qusus manager
O Mepanalz-bin 2.8.4.0buld1 panarama tools utikties
O reppu 0.1.3 A netwerk rander program for blandar
O spe OB 3abrepack-] Stanis Bythen Ddtor ol

Very fast and versatile 3D modellerfrenderer

Blendar s an rtegrated 1d vate for modellng, armatn, rendenng.

. animations. modsls

I+] |for games or cther thrd pa conent in the fom of

Sections & standalors biray andror & wb phign are roducts of Blander e,
St Homepage: hitpiklender cryl
angn
Custom Fiers
Sawch Resks

@ packages hsted. 1121 nszaled. 0 broken. 8 to ivstalfupgrade. 0to remove: 32.5 MB wil be used

A [B synagtx Package Ma... =[5

3. Once installed, Blender can be launched from the Ubuntu main
menu by selecting Applications | Graphics | Blender 3D.

3 rpphcaticns places synem @@

s Accassones

s cp [@ (@)

Figure 3-37

a} Games

A% Graghics » JfE Blander 30 medaber thllicreent
i) veemat +| il Blander 30 mesdaber (nndswed)
W office +| @ F.Spot Photo Manager

B Seund Gvideo | 4l G4 image Bdktar

& System Tesls v gl gTrenb imige Viewsr

¥ wine +| % Openoiice srg Drawing

[5 Adamarncve

Chapter3 / Cross-Platform Development Tools 111

Blender 3D is now installed and ready to use.

£ Apphcations Places System 2@ aan cp [@ (@]

figure 3-38

348 Vel | Fal|O63-1] L0 |

g e S ot € e [0 318 1 O]
H v e @] []
e

3.7.2 Installing Blender 3D on Windows/Mac

1. Beginning from the desktop, navigate a web browser to the
Blender home page at http://www.blender.org/.

Feeboa

B eckmats oot top — s Figure 3-39

112 Chapter 3 / Cross-Platform Development Tools

2. At the Blender site, click the Download button from the top menu
bar.

figure 3-40

Linux x86-32

iz dmri o berade o e, onedie L Hinmds 2 85 sorvboon amt

3. Once at the download page, choose the appropriate Blender distri-
bution for your operating system, and download the package from
the web to the local machine.

4. Once downloaded, run the installer to install Blender to the
system.

'L Figure 3-41

Weilcome to the Blender 2.45 Setup
Wizard

blender

This wizard will guide you through the installation ot Blender_

It ig recommended that you dnse all nther appheanons
before starting Setwp.

Nole lo WinZk/XP users: You may require adminisl alos
privileges to install Dlender successfuly,

[mewt> | | canca

Chapter3 / Cross-Platform Development Tools 113

Blender 3D is now installed and ready to run.

fm]
LE 1= spaco Hanow sergss v g [[shz-woon (%) [=[5Ciseme | EONNRERY v+ | Fat | 0o [-'igure 3-42

3.8 Conclusion

In summary, this chapter has detailed how to use three free,
open-source, and cross-platform game development tools: the
Code::Blocks C++ IDE, the GIMP image editor, and Blender 3D.
GIMP and Blender 3D are products important for game graphics, but
the main focus of this book is game development in terms of program-
ming, and as such these two graphics applications are not considered
in further detail in this book. Code::Blocks, however, is considered fur-
ther in later chapters.

In the following chapter we'll discuss the basics of cross-platform
game development.

This page intentionally left blank.

Chapter 4

Game Programming
Basics

By now readers will probably have configured a cross-platform devel-
opment software and hardware setup for making and debugging their
cross-platform games. Chapter 1 illustrated at least three methods for
configuring a cross-platform setup: running several machines, each
with a different OS on a different machine; running multiple OSs on a
single machine through dual-booting; and running multiple guest OSs
on a single host OS through virtualization. In addition to this cross-
platform infrastructure (whichever is chosen), the open-source and
freely available C+ + IDE, Code::Blocks, was selected as the primary
development suite for compiling cross-platform games. Having then
selected this IDE, and so thereby having selected C+ + as the primary
development language, this chapter considers the next steps. Specifi-
cally, this chapter considers in detail the following key developmental
issues:

B The basics of game programming and how to get started at making
a game. We need to know where to begin, features that are com-
mon to all games on all platforms, common game algorithms, and
data structures that are useful for games.

B Selecting suitable game libraries. Beyond C+ + as a language
itself, developers make use of third-party game libraries that “plug
into” the language and make their programming lives easier.
These libraries are collections of classes and functions made by
other programmers for use by programmers, and they are
designed to meet specific developmental needs. Accordingly, game
developers make use of graphics libraries for rendering pixels and

115

116 Chapter 4 / Game Programming Basics

images to the window, sound libraries for playing sound and music
to the speakers, physics libraries to simulate physical reactions,
and others. This chapter considers a selection of different libraries
available to developers and determines each library’s suitability
for developing cross-platform games, based primarily on the
features they offer and the platforms they support.

4] Game Programming — Getting
Started

Before a developer actually sits down to code a game based on his lat-
est fantastic idea, he will have previously brainstormed a “design” on
paper in the form of a game design document, which at the very least
helps to organize thoughts. The question is how detailed should this
document be. It is possible (indeed, often happens) to overplan and to
spend so much time at the drawing board plotting and planning for all
minutiae and every eventuality that it becomes both easy and danger-
ous to lose oneself in a mountain of plans, a mountain from which it
becomes costly to escape in terms of both time and money. But this of
course can be no less dangerous to a project than underplanning; the
solution is therefore a case of getting the bhalance right between things
that are planned and things that are allowed to happen unplanned, with
each being as important as the other since games rarely go 100%
according to plan. Of course, developers will not be making the game
up spontaneously as they code, like a person writing a letter, but will
instead aim to follow a carefully planned road map, setting out in
advance a directed and concise strategy defining, among other details,
the objective of the game, the enemies, the maps, the characters, the
time frame, the budget, and even the platforms to be supported by the
final product. Let’s consider these details further.

Chapter4 / Game Programming Basics 117

4.1.1 Genre and Objective

Each game is said to belong to at least one genre insofar as the content
of any game may be described as being puzzle, action, adventure,
sport, first-person shooter, etc. Similarly, the objective of a game refers
to its purpose, the ultimate aim to which a gamer is playing to meet,
such as “in every level a gamer must collect a piece of an ancient arti-
fact such that by the final level all the pieces may together be
reassembled.” To frame the context for development then, the game
design document (GDD) should state clearly the genre (the market
niche) of the game as well as the objective (purpose) of the game from
the perspective of the gamer.

4.1.7 Time Frame and Budget

In terms of commercial game development, the expression “time is
money” highlights the intimate relationship between time (the time-
line of development) on the one hand, and the cost (cost of time and
resources) on the other. Specifically, work like game development
requires “resources” such as software and human effort as well as
“time” such as time-to-completion; so work then represents an invest-
ment of money. Thus, game design documents should first and
foremost specify a budget — that is, the maximum sum of money allo-
cated to the development of a single game. Based on this budget, the
cost of time and resources can be figured into a complete timeline or
workflow diagram that charts the development of a game. To give
some typical (and only approximate!) examples: It is not unusual for a
team of 30 people working five-day weeks to require 18 months to
develop a full, big-budget AAA game from start to finish. With a
smaller budget and an independent team of two to seven people work-
ing part-time, it requires 18 to 24 months to make a medium-sized
puzzle adventure (e.g., Teenage Lawnmower, Dr. Lunatic Supreme
with Cheese, Zombie Smashers, etc.).

118

Chapter 4 / Game Programming Basics

4.1.3 Game Ideas

Developers looking for ideas and inspiration concerning the genre to
which their planned game should follow might like to consider some of
the following most common game genres:

B RPG (Role-Playing Game) — Daimonin, Oblivion, Final Fantasy,
and Might & Magic are just some among a broad field of games
known as RPGs, or sometimes referred to as CRPGs (computer
RPGs). In these games, gamers create and control a character or
party of characters who live and act within an immersing and fic-
tional world, typically featuring wizards, goblins, dragons, and
other fantasy creatures. The abilities and success of each charac-
ter in the world is determined largely by its qualities and skills —
such as Strength, Intelligence, and Health — and these qualities
are presented to the player statistically as factors on a character
sheet. Throughout the game, a character’s success in meeting the
challenges of the game world (completing quests, etc.) is typically
rewarded by receiving points. Subsequently, the player may care-
fully distribute (spend) the points across a character’s skill set,
weighting each skill so as to improve the character as whole. As a
result, RPGs are driven more by character development through
the accumulation of points than by any directed, linear progression
from a beginning to an end; and consequently, many RPGs are said
to be “open-ended” insofar as they cannot be “completed.”

Figure 4-1: Screenshot
from Daimonin, a free,
cross-platform, and
open-source RPG,

available at
http://www.daimonin.net/

Chapter4 / Game Programming Basics 119

B FPS (First-Person Shooter) — Doom, Quake, Unreal Tourna-
ment, Half-Life, and Halo are but a few of the most popular FPS
games, and games from this genre are some of the best selling in
the industry. The online encyclopedia Wikipedia perhaps defines
an FPS best as “a video game that renders the game world from
the visual perspective of the player character and tests the
player’s skill in aiming guns or other projectile weapons [at enemy
targets].” In short, most FPS games center around shooting peo-
ple or monsters. It is due to their characteristic violence that many
have stirred up controversy, arousing the criticism of both anti-
game lobbyists and psychologists.

Figure 4-2: Screenshot
from OpenArena, a
free, cross-platform,
and open-source
first-person shooter,
available at
http://www.open-
arena.ws/

B Platformers — The term “platformer” (or platform game)
describes an action-packed genre, so called because most platform
games feature a player-controlled character that must navigate
carefully through a hostile environment from the beginning to an
end point without coming to harm. This often involves running and
jumping from location to location while combatting enemies, avoid-
ing traps, and collecting power-ups. According to standard video
game practice (and particularly so in platformers where the player
1s at risk of pitfalls and dangers), the player is often equipped with
three or more “lives,” with each life representing one opportunity
at successfully completing a level without failing (that is, without

120

Chapter 4 / Game Programming Basics

dying). A death, then, corresponds to the loss of one life, and the
loss of all lives through successive failures results in “game over.”
In recent years, however, most developers have all but discarded
the traditional “three lives” structure for their games in favor of an
“Infinite attempts” model, hoping to make them more accessible to
a wider variety of gamers. Some of the old-school platformers
include Super Mario Bros., Sonic the Hedgehog, Zool, Fire and Ice,
Earthworm Jim, and Jazz Jackrabbit. Newer platformers include
Psychonauts, Supercow, and Crash Bandicoot.

Figure 4-3: Screenshot from
SuperTux, a free software
platform game, available at
http://supertux.lethargik.org/

RTS (Real-Time Strategy) and TBS (Turn-Based Strategy)
— Military logistics and strategic planning are at the heart of the
strategy genre. RTS games include the likes of Command & Con-
quer, StarCraft I, and Darwinia, while TBS games include a list of
titles such as Heroes of Might and Magic, The Battle for Wesnoth,
and UFO: Alien Invasion. Both the real-time and turn-based vari-
ants of the strategy genre commonly put the player in military
command of a faction (or army) pitted against other Al factions in a
game world where each faction strives for complete domination
over a common territory and common resources. In the turn-based
variant of the strategy game, the battle between factions takes
place across a staggered series of turns, where the commander of
each faction (player or Al) delivers orders to their units and
responds to enemy actions only during their allocated turn cycle.

Chapter4 / Game Programming Basics 121

This results in cool and calculated game play; that is, before begin-
ning every new turn the player must first wait for each other fac-
tion to complete their corresponding turn, and the enemy factions
in turn wait for the player and others to complete theirs. In the
real-time variant, by contrast, each faction plans and acts simulta-
neously in action-packed real time, requiring both quick reflexes
and quick thinking.

Figure 4-4: Screenshot
A from Glest, a free and
cross-platform RTS
game, available af
http://www.glest.org/

B Casual Games — Statistically, casual games represent a growing
market in which both independent developers and lower-budget
teams (largely from Europe, Latin America, and Japan) have flour-
ished since the spread of broadband and faster domestic Internet
access. The title “casual game” is an umbrella term referring to a
broad variety of games. These range from games like Tetris to
Diner Dash, many of which are sold and distributed by download to
gamers via online gaming portals such as Reflexive Arcade and Big
Fish Games. Though any single casual game may have almost no
feature in common with any other casual game on the market,
most are united insofar as they are designed to be “lightweight,”
designed for mass appeal, and intended to be original. A game is
generally said to be lightweight if it is quick for gamers to down-
load from the web (small in MB size) and if it requires few system
resources to execute successfully on the gamer’s computer. A
game has mass appeal when it comes with an attractive price tag

122 Chapter 4 / Game Programming Basics

and markets itself demographically to the largest gamer population
(men, women, young, old), instead of to a niche market like first-
person shooters.

Figure 4-5: Screenshot
from the casual game
Pingus, inspired by
Lemmings; free and
cross-platform, and
available at
http://pingus.seul.org/

4.7 Preparing to Make Games

Before firing up Code::Blocks to code a game according to the design
document, any developer who first sits back to carefully consider the
basics, or fundamental building blocks, of any games that spring to
mind will likely notice a number of common features between them.
Some of these features are worth considering further, even though
their existence and implementation may appear trivial or obvious at
first sight.

B First, every game in any genre (from FPSs to RPGs) must work
with data; that is, strings, integers, floats, etc. For example, a
game may display text at an X,Y coordinate on the screen, calcu-
late differences between player scores, read player input from the
keyboard, read both numerical and textual data from saved game
files in order to restore sessions saved by the gamer on previous
occasions, and handle many other situations. In common with most
software, therefore, a game is at its most basic level a data-han-
dling machine. It accepts incoming data, processes it, and outputs

Chapter4 / Game Programming Basics 123

a result. Consequently, developers often find it useful to standard-
ize the data types used throughout their source code for any given
game. For example, they may use only one data type for all strings,
such as the cross-platform STL class std::string, instead of using a
variety of string data types for different string variables like char,
CString, std::string, etc. Class std::string and the STL more gen-
erally are considered in more detail in Section 4.3.

Second, since all games collect and process data at run time,
whether from files on disk, user input, or the result of additional
calculations (as described in the previous chapter), it is important
for developers to show foresight when making their games by
designing algorithms to structure and process data optimally in
memory. For example, in a typical RTS game like StarCraft or
Command & Conquer, each faction (including the gamer’s) must
eliminate all rival factions for domination of a given territory. In
developing their army, each faction begins by first harvesting
nearby resources (such as wood, ore, and gold) in order to fuel the
construction of buildings and technology, and from these to ulti-
mately recruit more units, and to recruit and deploy more crea-
tures and fighters, who are subsequently dispatched across the
map to eliminate enemy targets. Here, then, each faction in the
course of its in-game development collects at least three kinds of
items: resources, buildings, and units. A developer is then faced
with the problem of how best to code (create) three separate lists
in memory, each designed to keep track of a faction’s resources,
buildings, and units at run time. A developer may initially choose,
for example, to create a fixed-size array for each faction to hold a
collection of pointers to its units, where each element in the array
1s a pointer to a single military unit (a wizard, a goblin, a tank,
etc.). However, a problem arises for the developer when he con-
siders that as new units are created by the gamer at run time,
those units must be added into the last vacant elements of the
units array, and as units are destroyed by, say, enemy fire, they
should then be removed from the array without affecting any other
active elements. In short, the developer requires an array class
that may dynamically grow or shrink in memory as items are
added and removed, meaning that the array is always sized exactly
to hold no more or less than the number of items in memory at

124

Chapter 4 / Game Programming Basics

any one time. This kind of list arrangement can be achieved using
the STL class std::vector, which is discussed in a later section of
this chapter.

Next, most games are driven by a “message pump” (or life line)
that is qualitatively different from the event-driven programming
used in other non-game software, and consequently it has earned
the name “game loop.” Almost all non-game software (such as
word processors, database applications, or graphics editors) work
by listening for and responding to user input (such as keypresses
and mouse movements) as they occur at run time when they are
sent to the application window through standard Win API mes-
sages. For example, a word processor only prints a document
when the user clicks the Print button, and it only inserts charac-
ters into the active document when the user presses keys on the
keyboard; if the user does nothing, then the program does nothing
except wait for input from the user. Games, however, work differ-
ently, which can be illustrated by an example. In a typical first-
person shooter game such as Quake, Doom, or Unreal, the player
is armed with a weapon and thrown into an arena with other com-
petitors who each must deploy their aiming skills and stealthy tac-
tics against one another to become the last man standing. Here,
like non-gaming software, the player character shoots when the
user presses the Fire button, and jumps when the user presses the
Jump button. But, unlike event-driven software, the enemy com-
batants and other game events are occurring simultaneously with
all other events such that, if the player stood still and the user did
nothing, the game wouldn’t stop and the opponents wouldn’t
freeze waiting for the user to press a key. Instead, the game con-
tinues as normal, and the NPCs (non-player characters) continue
to participate as though they were “real” humans, whether the
player is participating or not (unless the user presses a Pause but-
ton). For this reason, games are usually driven by a “message
loop” mechanism rather than by an event-driven framework since
game action occurs in real time and in no way depends on the
user’s input to continue working. The game loop is considered in
more detail in a later section of this chapter.

Chapter4 / Game Programming Basics 125

4.3 Using the STL: Strings and Lists

To summarize the preceding section on game development basics:
Game development for a programmer begins from a library, or a com-
mon framework of data structures, algorithms, and functions. And for
cross-platform C+ + games specifically, the STL (Standard Template
Library) offers just such a comprehensive set of tools, particularly in
the form of classes such as std::string (for strings) and std::vector (for
lists of objects and lists of pointers to objects). The importance of
these two classes for game development is now considered more
closely.

4.3.] stds:string

A string is a linear array of characters arranged sequentially in mem-
ory; for example, the word “hello” is a string of characters, where each
character is a letter in the word. Typically, C+ + strings are declared
literally as an array of chars (e.g., char mystring[50]), but the STL
string class makes this process simpler. The following step-by-step
tutorial for using class std::string shows how to work with C++
strings in a new way and is designed to be both a gentle introduction to
programming with Code::Blocks and C++, and a user-friendly guide
to make working with strings easy. We'll be creating strings, copying
strings, manipulating strings, and more.

DN NOTE. An exercise in processing strings and characters of strings
(like the samples that follow) may prove helpful for any developer
who may later choose to use XML for storing data on disk, external
to the game. XML files are essentially organized text files, and so
XML strings — like those used for XML properties and tags in the file
— may require processing like any other string. This means
std::string as a class will likely be important for things such as pro-
cessing saved game files and data files.

126

Chapter 4 / Game Programming Basics

4.3.1.1 Configuring Projects to Use STL and std::string
with Code::Blocks

1.

Beginning from the desktop, start the Code::Blocks IDE and use
the New Project Wizard to create a new console (shell/command
line) project ready to compile. See Chapter 3 for more details on
using Code::Blocks if needed.

Open the main project source file (.cpp) and add the string header
shown in bold to the end of the existing preprocessor directives.
This directive includes the STL std::string class header so
std::string may be used throughout the project.

#include <iostream>
#include <string>

using namespace std;

int main()

{
cout << "Hello world!" << endl;
return 0;

}

Save the Code::Blocks project by choosing File | Save; then com-
pile the active project by clicking the gear icon on the toolbar or by
choosing Build | Compile.

The project is now configured to use class std::string.

4.3.1.2 Declaring, Creating, and Assigning Strings with
std::string

Instances of std::string can be created as follows:

//Empty
std::string MyStringl;

//Set to hello

std::string MyString2 = "hello";
//Set to hello
std::string MyString3 = MyString2;

Chapter4 / Game Programming Basics 127

Any two or more instances of std::string may be concatenated (com-
bined) together to form a single larger string using the standard
addition (+) operator:

std::string MyStringl = "hello ";
std::string MyString2 = "world";

//MyString3 = "hello world"
std::string MyString3 = MyStringl + MyString2;

The value (contents) of any instance of std::string may be queried or
determined by using the C+ + equality operator (==) :

std::string MyStringl = "hello world";

if(MyStringl=="hello world")
{
//Do something here

}

4.3.1.3 Looping through Characters of a String with
std::string

Each character (letter) in a single instance of std::string can be read
individually using the standard array subscript operator ([]) along with
an array index specifying the character offset into the string, counting
from left to right from the first character at (0) as follows:

std::string MyStringl = "hello world";

cout<<MyStringl[3];

The length method of std::string returns the length of the string (i.e.,
the total number of characters from which the string is composed).
This method, in combination with access to individual characters in the
string using the array subscript operator, means any std::string can be
iterated through character by character.

std::string MyStringl = "hello world";

for(int i = 0; 1 < mystringl.length(); i++)
{
cout<<mystringl[i] << "\n";

}

128

Chapter 4 / Game Programming Basics

Each character in a string may also be iterated through by using STL

iterators rather than array indexes, where the begin method returns a
pointer to the first character, and the end method returns a pointer to

the last character, as follows:

std::string MyStringl = "hello world";
string::iterator my_iter;
for(my_iter = MyStringl.begin(); my_iter != MyStringl.end();
my_iter++)
{
cout<<*my_iter;

}

4.3.1.4 Searching for Characters in a Specified Instance
of std::string

For situations in which the content of a string is unknown, or where a
string’s structure and format must be analyzed closely, the std::string
class offers the find method to search through a given string for a spec-
ified character or sequence of characters, returning a pointer to the
first character in the string where a match is found. This method may
be called as follows:

/*Counts all occurrences of the world hello in a specified
instance of std::string*/

string input;
int word_count = 0;

cout<<"Please enter a string now:>";
getline(cin, input, '\n');

for(int i = input.find("hello", 0); i != string::npos; i =
input.find("hello", i))
{
word count++;
1++;_
1

cout<<word_count;

Chapter4 / Game Programming Basics 129

4.3.1.5 Extracting and Inserting Substrings from and to
a Specified Instance of std::string

A string is an array of characters, and a substring is a smaller subset of
characters from that array; “ello”, “lo”, and “o0” are all substrings of
“hello”. To extract a substring (dest) from a specified larger string
(source), the std::string class offers the substr method. This method
returns a new string that is the requested substring, and it also accepts
two integer arguments: one specifying the offset into the source string
marking the first character of the substring (dest) and the other speci-
fying the length of the substring in characters as measured from left to
right from the offset. An example follows:

std::string MyStringl = "hello world";
//string is "o wo"
std::string substr = MyStringl.substr(3, 7);

In addition to substring extraction using the substr method, a string of
any length can also be inserted into any instance of std::string using
the insert method. Similarly, strings can be removed from any instance
of std::string using the erase method. The following code sample illus-
trates both insert and erase at work:

std::string MyStringl = "hello world";
//Now is "helthis is a substringlo world"
MyStringl.insert(3, "this is a substring");
//Now is "hhis is a substringlo world"
MyStringl.erase(1, 3);

4.3.1.6 Converting Instances of std::string to Standard
char* Pointers

Despite the variety of benefits afforded by std::string, from features
like substring extraction to character insertion, there will undoubtedly
be moments when a developer encounters a function from a
third-party library (such as a Win API call) that requires a string argu-
ment of type char®, and not of type std::string. Thus, so that instances
of std::string may be type compatible with functions requiring argu-
ments of type char®, the ¢_str method is offered to convert strings
from type std::string to type char®. An example follows:

130

Chapter 4 / Game Programming Basics

std::string MyStringl = "hello world";
const char* MyString2 = MyStringl.c_str();

4.3.7 stds:vector

Most computer games keep track of lists of items. For example, RTS
games (Where factions fight one another for domination of a map)
maintain at least three lists “under the hood” for each faction that par-
ticipates in battle: one list for a faction’s resources (wood, ore, gold,
etc.), one for its buildings (refinery, barracks, etc.), and one for its
units (wizard, fighter, goblin, etc.). Similarly, in an adventure game like
Monkey Island, Grim Fandango, or Syberia, gamers control a character
that solves a mystery by collecting and using objects found around the
game world. The objects collected by the player are added to their
inventory (pockets) where they remain until they can be used or dis-
posed of to further their progress in the game; and here, again, the
inventory reveals itself to be a list of collected items in the same way a
string is a list of collected characters.

The primary characteristics of a list are: Items can be added to or
removed from the list at run time; and the list changes size in memory
as items are added or removed in order to accommodate exactly the
number of items it currently holds, no more or less (it is said to be
dynamic). As it meets this criteria, the STL std::vector class offers
game developers a template class for maintaining a dynamic list of
items (of any data type) in memory. In short, std::vector is a class for
holding a list in memory to which items can be added or removed at
run time. Let’s examine how this class is used.

Chapter4 / Game Programming Basics 131

STL std:vector List

Figure 4-6

STD:VECTOR

— ITEM 1

ITEM 2

ITEM 3

43.2.1 Creating a List with std::vector

1.

Beginning from the desktop, start the Code::Blocks IDE and use
the New Project Wizard to create a new console (shell/command
line) project ready to compile. (See Chapter 3 for more details on
using Code::Blocks.)

Open the main project source file (.cpp) and add the vector header
shown in bold below to the end of the existing preprocessor direc-
tives. This directive includes the STL std::vector class header so
std::vector may be used throughout the project wherever lists are
required.

#include <iostream>
#include <vector>

using namespace std;

int main()

{
cout << "Hello world!" << endl;
return 0;

}

132

Chapter 4 / Game Programming Basics

4.3.2.7 Declaring Instances of std::vector

The STL class std::vector is a template class, and each instance repre-
sents a unique list of objects (of any one data type) in memory. What
that means is any single instance of std::vector is a list of objects of the
same type: a list of integers, a list of strings, a list of pointers, etc.
std::vector is said to be a template class because each instance (each
list) must be declared as belonging to a specific data type at the time of
declaration. Consider the following code:

//List of integers
std::vector<int> ListOfIntegers;

//List of strings
std::vector<std::string> ListOfStrings;

//List of pointers
std::vector<CMyClass*> ListOfPointers;

4.3.2.3 Adding ltems to a List Using std::vector

std::vector maintains a list of items, and items are added to the list at
run time using the push_back method. This method accepts as an

argument the template object to be added to the list declared as being
of a matching type. The following code illustrates the adding process:

//List of strings
std::vector<std::string> ListOfStrings;

//Add strings to vector list

List0fStrings.push_back("hello");
List0fStrings.push_back("alan");
List0fStrings.push_back("1ist");

4.3.2.4 Cycling through Items in a List Using std::vector

As with elements in an array or characters in an instance of std::string,
or any other data structure where elements are arranged sequentially
in memory, the items in an instance of std::list can be accessed individ-
ually by using the subscript ([]) operator (e.g., MyList[5]), or by using
the standard STL iterators, as follows:

Chapter4 / Game Programming Basics 133

Or:

//List of strings
std::vector<std::string> ListOfStrings;

//Add strings to vector list

List0fStrings.push_back("hello");
List0fStrings.push_back("alan");
List0fStrings.push back("Tist");

for(int i=0; i< ListOfStrings.size(); i++)
cout<<ListOfStrings[i]<<"\n";

//List of strings
std::vector<std::string> ListOfStrings;
std::vector<std::string>::iterator myStringVectorIterator;

//Add strings to vector Tist

List0fStrings.push_back("hello");
List0fStrings.push_back("alan");
ListOfStrings.push_back("Tist");

for(myStringVectorIterator = ListOfStrings.begin();
myStringVectorIterator != ListOfStrings.end();
myStringVectorIterator++)

{
cout<<(*myStringVectorIterator)<<"\n";

}

4.3.2.5 Removing ltems from a List Using std::vector

The std::vector class supports both the addition of new items to the
list and the removal of existing items from the list. An item (or a range
of items) can be removed from the list using the erase method of
std::vector, a method that accepts two STL iterator arguments specify-
ing the start and end range of items to be deleted. The first argument
is an iterator marking the first item in a range to be removed, and the
second argument is an iterator marking the final item in a range of
items to be removed. The following code illustrates the typical usage
of the erase method of std::vector for removing items from a list.

//List of strings
std::vector<std::string> ListOfStrings;

134

Chapter 4 / Game Programming Basics

//[...]1 add stuff to the list here

//Remove items 3-5
ListOfStrings.erase(List0fStrings.begin()+3,
ListOfStrings.begin()+5);

4.4 The Game Loop

Figure 4-7

GAME LOOP -y

EE—— UPDATE INPUT

= UPDATE PHYSICS

—— = UPDATE SOUND

IF NO...

e DRAW FRAME

— = CHECK FOR EXIT?
| I

Programmatically, the dividing factor separating games from non-game
software is the presence of a game loop; game software is driven by a
game loop while non-game software is instead event driven. The game
loop is the heartbeat (or the message pump) unique to games. As dis-
cussed earlier, non-game software such as word processors are event
driven. That is, the application waits for input from the user before
performing an action. For example, the user clicks the Print button and
a document prints. Games differ from this event-driven arrangement,
however. Certainly, games do respond to events. For example, in a
side-scrolling platformer where the gamer must guide a character
safely through a level by running and jumping across risk-laden plat-
forms, the gamer may press the Jump button and in response the
character jumps or may press the Fire button and consequently the
character attacks nearby enemies. But more than this, games also
work when the user does nothing; the enemies continue moving and

Chapter4 / Game Programming Basics 135

the game world still ticks over even when the player offers no input. In
other words, the game does not freeze when user input stops. The
game continues working whether or not the user is taking part; and it
1s this “self-directed” behavior the game loop is designed to offer. The
following code is a sample C+ + source file featuring a game loop set
up and ready for a developer to make a game.

MSG mssg;

// prime the message structure
PeekMessage (&mssg, NULL, 0, O, PM_NOREMOVE);

// run until completed
while (mssg.message!=WM QUIT) {

// is there a message to process?
if (PeekMessage(&mssg, NULL, 0, O, PM _REMOVE)) {

// dispatch the message
TranslateMessage (&mssg) ;
DispatchMessage (&mssg) ;

} else {

//FRAME BEGINS HERE
ReadInput();
UpdatePhysics();
UpdateSound() ;
DrawFrame();

}

As mentioned, the game loop is the heartbeat (or the message pump)
unique to games; the loop begins after the game is executed, and exit-
ing from the loop signals a game’s termination. In short, the game loop
1s a C++ while loop where each iteration (cycle) of the loop corre-
sponds to a single frame; that is, a snapshot moment in the timeline of
a game. On each iteration of the loop (on each frame) a game should:

1. Read user input from the keyboard and mouse to determine
whether the user has moved the game character, clicked a menu
item, performed any other action, or requested to exit the game
(whereupon the loop should be terminated).

136 Chapter 4 / Game Programming Basics

2.

Update game physics based on user input and position of other
game objects in the world. This may include applying gravity to
objects in the air, moving the player character across the screen in
the direction corresponding to an arrow keypress, etc.

Update sound to play appropriate sounds for that moment of the
game, such as walking noises corresponding to player movement.

Draw the frame according to the position and perspective of the
game camera in the game world. This is the final phase of the
frame, the moment when all game graphics are refreshed and
drawn anew to the window. We’ll consider the drawing of game
graphics to the application window using a third-party game devel-
opment library called the SDL in the next chapter.

N NOTE. The game loop is also considered in more detail in the next
chapter.

4.5 Conclusion

In summary, this chapter has considered the basics of game program-
ming in terms of three key developmental issues:

Standardization of data types so that each game made by the same
developer handles data (integers, floats, and especially strings)
similarly across varied platforms

Common framework of classes and functions to provide a
cross-platform foundation upon which games can be built

The game loop to keep a game application “alive and running,” and
to configure games with a frame-based configuration rather than
the event-based configuration of most non-game applications so
that games may continue to operate even when no input is
received or processed from the user.

The next chapter considers cross-platform game graphics program-
ming using the SDL.

SDL Graphics

This chapter focuses on developing cross-platform games that feature
2D graphics using a free, open-source software development kit (SDK)
called Simple DirectMedia Layer (SDL). A software development kit is
a package containing an abundance of ready-made tools, libraries,
source code, and other utilities a programmer needs for making soft-
ware, and the SDL is one such package designed specifically for
creating cross-platform games. SDL was created in 1998 primarily by
Sam Lantinga while working for California-based software firm Loki
Software, which closed in 2002. Lantinga now works for game devel-
oper Blizzard Software, maker of the RPG World of Warcraft. Having
been used in the creation of games such as Quake 4, Neverwinter
Nights, and The Battle for Wesnoth, the SDL is arguably the SDK of
choice alongside ClanLib for creating 2D games on multiple platforms.

SDL was developed using the C language but also works natively
with C++ and a host of other languages including Ada, C#, Eiffel,
Erlang, Euphoria, Guile, Haskell, Java, Lisp, Lua, ML, Objective C,
Pascal, Perl, PHP, Pike, Pliant, Python, Ruby, and Smalltalk. Further-
more, as of 2007, the SDL development kit claims officially to support
the following platforms (that is, SDL games can be compiled to run on
the following operating systems): Linux, Windows, Windows CE,
BeOS, Mac OS, Mac OS X, FreeBSD, NetBSD, OpenBSD, BSD/OS,
Solaris, IRIX, and QNX; and it is also said to unofficially compile on the
following platforms: AmigaOS, Dreamcast, Atari, AIX, OSF/Tru64,
RISC OS, SymbianOS, and OS/2. The SDL is now considered in more
detail.

137

138 Chapter 5 / SDL Graphics

5.1 SDL Breakdown

Application (Multimedia) Figure 51
1
SDL Library
I I | |
DirectX framebuffer Xlib etc.
| 1 | |
Windows Linux etc.

Free software and open-source, SDL is a C-based cross-platform game
development kit supporting a variety of target platforms ranging from
Windows to Linux. Though most developers use the SDL only in its
capacity for programming game graphics, it is a multi-functional library
composed of a total of eight subsystems that together go beyond game
graphics, with each subsystem offering tools for developing a specific
facet of a game. The eight subsystems of SDL do not need to be down-
loaded separately, but are all included together as one package, and are
as follows:

B Audio — Subsystem to play sound and music in WAV format; sup-
ports both 8-bit and 16-bit, signed and unsigned samples. SDL
audio support is considered later in this book. The alternative
open-source and free software SDK OpenAL (Open Audio Library)
1s also a popular choice.

B CD-ROM — Subsystem to manage CD-ROM/DVD drives con-
nected to the target PC. It includes functions to count the number
of attached CD-ROMS, play CD audio tracks, and open and close
the CD tray.

B Event Handling — Subsystem to handle and respond to common
game events as they occur at run time. This includes window
events (closing, minimizing), input events (mouse down,
keypress), and others.

Chapter 5 / SDL Graphics 139

File I/O — Subsystem to read from and write to files on persis-
tent storage, including hard disks and USB memory sticks. Can be
used to save and load game states and settings.

Joystick Handling — Subsystem to read input from gaming input
devices other than a keyhoard and mouse, such as joysticks, game
pads, and other similar devices, though force feedback is not sup-
ported currently. This subsystem can count the available joysticks
attached to the system, read axis and button data, and read relative
trackball motion.

Threading — Subsystem to execute individual game processes —
such as Al, player input, and audio — simultaneously using
threads. This subsystem is not detailed further in this book.

Timers — Subsystem to set periodical function calls and time
delays, which after expiration triggers an event; in other words, a
subsystem to run functions either periodically in timed intervals
or only once after a specified time has elapsed. One among thou-
sands of potential uses could be a time-delay bomb in a game that
explodes after 60 seconds, and on every second until that time
(every interval) a visible seconds counter decreases, counting
down from 60 to 0.

Video — Subsystem to draw 2D graphics such as BMPs and other
animations to the display. Video does not refer specifically to
motion pictures or movies such as MPEG or DVD, but more
broadly to any visual image that can be presented to the screen via
the system’s graphics adapter. This subsystem includes functions
to load images from files on disk to system memory, and to draw
(blit) images from system memory to the screen. The video sub-
system of SDL is the primary, but by no means exclusive, focus of
this chapter.

140 Chapter 5 / SDL Graphics

5.2 Downloading and Configuring SDL

SDL is open-source and free software distributed under the GNU
LGPL version 2 license, free for both commercial and non-commercial
purposes, and is furthermore compliant with the Code::Blocks C+ +
IDE environment, as explained in an earlier chapter. This section
explains how SDL can be downloaded and configured for both Win-
dows and Linux Ubuntu.

5.2.1 SDL on Ubuntu

SDL can be downloaded and installed on Ubuntu, ready to use, in one
process from the Software Repository using the Synaptic Package
Manager. The following instructions illustrate the installation process
step by step.

5.2.1.1 Downloading and Installing SDL on Ubuntu Using
Synaptic Package Manager

1. Beginning from the Ubuntu desktop, select System | Adminis-
tration | Synaptic Package Manager.

£ Appbcatiors Places System 2@

“ FE

figure 5-2

Chapter 5 / SDL Graphics 141

2. Click Search, enter SDL to search for all available SDL-related
packages, and click Search.

G Aepbeacicns Places Symem @0 @ “ §
E) Synaptic Package Manager [BSETE] i _
[& &

Reload Maric All Upgrades Search
Al |5 Peckage irntalled Verson Latest Versien Dwicription
Amateur Rado (unvers| (D) 2vewrd O5-lubuntul A ltle parl seript to convert an sarsssboska |
Base Systeen Hio Cormenan Bes for 1M 3270 smudators and pr|
Bane Systen (restrictec || () 30 chass for 11
Base System luniversel| | |T] 3ddesktop Search: “Thres dmansiona® desktcs Twacher
Communication [swnnel < TEP prawy for rans appheations

o Lookin: | Descrption and Name 3 - - foe ol grahic ch

Communication lunven [] sbane Plan § userian J
Cross Platierm 0 smenu [l’:m-l||£,5--m| wl Crest the shal
Crons Fatiorm (muksve| | [E] pwe T the ——
Cross Platform furwversd [] a2mp3 ©01-Subuntul program 1o optimise your music for your med-
Developmant 0O azes 1:4.13b.afsg.1:1 GNU adps - ‘Anmythng to PostScript” comerter £
Developmant (mukhers| | 7 n_ 0}
Dwsicpmant trestricted | (1o Cackace i sslected.
Corvplopmant (unmeriel| |

—
e
[
[gusteen Atars

Saarch Rasults
21407 packages bsted. 1140 natabed. 0 broken, O to mstaliupgrade. to remeve
3] [symwpes: Packagu manwger | |-]

3. Mark at least the libsdl-dev package for installation and click
Apply. Once SDL is installed it can also be updated automatically
as updates become available.

3 repbcations Hlaces Sptem @0 @ w &[]

figure 5-4

e [package Settigy belp

[& D &
Raload Mark All Upgrades Propart; Search

Al S Packsge intalled Verssn Latest Versien Dwscription o

sou <3 sl 2debisn 1211-Tubertul 1211Tuburul Simple DiectMacia Layer
33 Moad) 2dabisn-all 1311-Tubuntul Simple Directibecia Lier (with ol svadsble op |
B <3 Woadll 2dabisn-siss 1230-Tubentul 12.41-Tubuntul Simple CirectMecia Layer fwith Xi1 and ALSA [T
O osdll 2debian-arts 1211 7ubuntul Simple DirectMedia Layer fwith X11 and #fts o
01 <3 Mbsdi1 2dabian-esd 12.117ubuntul Simple DwectMedia Layer fwith x11 and esoun [}
O badi) 2debisn-nas 1211 Tubuntul Simple DirectMacha Layer (aith X11 and NAS o
O <3 Madi] 2debisn-oun 1.2.01-Tubuntul Simple DirectMadia Luyer (nith X111 and 055 o
-3 Mol z-dee 1210 7ube 1 b :
[badlcenscl 134 cenacia that can be sdded 1o any SDL appheat
O Mosdh-console-dev 134 developrment Has for ibadiconssle
O Mosdlerang 0I6.06264 Erlang bindings to the Simple Direct Media LS

—

Simple DirectMedia Layer development files
SOL s @ bbrary alows programs ! level ta avdeo
T frambfar. audio sutpan, mouse. and keybossd.

[Sections
E This package contains the Hes nesded to compie and knk programa which
ata use SOL.
[
| Gustern Rhars
Sqarch Rasuits

141 packages bsted. 1140 ratabed. 0 broken. 0 to mataljupgrade. 0 to remove

3] [2 symuptc Package anager | =2NG

142 Chapter 5 / SDL Graphics

5.2.1.2 Downloading SDL Documentation from the Web
1. Go to the SDL web site at http://www.libsdl.org/.

£ Appbcations Places System @0 @ “w & @

S Figure 5-5

Eve fom Yww Hagtory Rockmars Jools Help
@-p - 1 |5 nurpwew ssan ong =[] K- lso0

ple DiractMadia Layer is a cross-platform multimedia library designed to
MHGWImmmm keyboard, mouse, joystick, B'Dmmnm
OpenGL, and 20 video framebuffer. It is used by MPEG playback softwal

emulators, and mwwhrm including the award ml.huxnnﬂ
of “Civilization: Call To

SOL supports Linux, Windows, Windows CE, BeDS, MacOS, Mac 05 X, FreeBSD,
Mmmmimlﬂ&amﬂﬂl The code contains support
for Amiga0s, . RISC 05, and
sz, mm-muoﬂkhwmnom

B [T —

| [@ Semple Denctitadis Layar - Monls frafox] L1

2. Under the heading Documentation, click Downloadable. Select
the HTML SDL documentation and click OK. This package con-
tains the SDL reference material that SDL programmers may

need.
£ Appbcations Places System @0 @ w 8@
Sieple OirectModia Layes - Mozilla Fiefox “leix [a

Pl e e o R T e -~ Figure 5-6
- - D napurwew st onocs pre =[] =500 .

S i

SDL-1.0-k

SDL

SDL

SDL

SDL

SDL

SDL

SDL Documentation Project: which is & tar aechive
froem: hetp e, s o0y
T Wihat should Firefax oo with this fila?
sdldoc-htmlzip

) Qpen with | Archive Mansger (defauit)
UNIX "man” pages: @ Sarve to Dige
sdldoc-mani.tar.ge

0] Do this rstomnaticaly for RS ke Ehis from row on
‘Windows Help format: (thanks
SDLEsf.chm

Printablo Postscript: Kcance | [gllox |

[AT —————r——
F| [@ Semple Deactitedia Luyer - Mozila Frafox] ENG

Chapter 5 / SDL Graphics

5.2.1.3 Creating an SDL Project Using Code::Blocks in
Linux Ubuntu

1. Start Code::Blocks, and click the Create New Project option
from the startup screen. A wizard appears.

2. Select the SDL project icon from the categories list view and
click Go.

3 rpehcaticrs Places symem @@ “ B @
u Start hots - Code:Blocks s build =)ajx Figure 57

Bl Edt yiew Seach Promet Dudd Oebug weSeth Jook Plugne Seltings bek

N i A
s tagt
Gpam b nt category: [= - :
) o X Sancel

Tk project Lightfeather project

Buld targats = a ‘5.

LW project Ogre projest Static bbrary

Fies
. =
OpenGL project wewidgets project
tom
rhcht project QT4 propect ® Large icom
Projects| Resources| 4| User templates ” o
" T ry right-chcking an tem -

1. Salect o wizard type first on the it | L]

2. Salect & spacihic mazard from the man sindow (Hter by catagonies # readed) o | © Debugger

3.Prass Go = 2o
‘welcomne to Code-Blocks!
30| [" Staet hare - Code:Blocks s buld ElG

3. Click Next if the welcome screen appears.

3 rpehcaticrs Places symem @@ “ [
- S1ai here - Code:Blacks svn build =Jlajx . _
Bl Edt yiew Seach Promet fuld Debug wxSmith Jook Plugne Settings Hels Flgure 5 8
N i A
e

Welcoma t the reew SDL proect wizard!

Opan e ot ®
This wizaed wil gade you T craste & naw project
using the SOL graphics bbrary
I Whans you e ready to procesd. pleate chek st

Managemest Ll 1/5hop this page next time
Projects Resources| ! *

Q

[imis) (Romsa) [l © Dot

‘welcorma to Code-Blocks!
| | B Start hare - Code::Blocks pn buld Bl

143

144

] (¥l Start here - Code:Slacks svn buid

Chapter 5 / SDL Graphics

4. Enter the project details and specify the SDL project name and the
fully qualified path where the source files are to be created. Click
Next.

) Appheations Places System (@ “e@
o Stast heve - Code:Blocks swm build —Jax . .
B Edt Mew Seacch Project Buld Qebug weSmith Joch Plagini Settinge belp F’gure 59
LN) LA
id

Please salect the falder where you want the new propect

R — y 1o be craated as wel us 23 btke
Preject tile:
[Mpmso]
I Folder to create project in:

Preject blerame:

b
] N v
l Myfranson cbp

n Resulting flename:
m tramne/alan/Sess /My Frst SOLMyFratSDLcbp
1

Prajects | Resources | ! *

[w]

Walcome to Code: Blecks!
] [s2art here - Code:dlecks s buid) ENs

5. Select the GNU GCC Compiler from the drop-down list and click
Next. The project is now created, with source files at the destina-
tion specified, and the project configured to use the selected
compiler and linker settings.

o3 Apphestions places Systen @2@ “ &

‘ Start heve - CodeiBlocks swn bulld -0 ® i _

D Eikt viow Seach e B Db it T Pagins Setiogs sl Figure 5-10
[CEN-) Y

Blease valect the compier to ute and which conbgurations

R y youwart ansblad i your project
Compder .
I} G4 GEC Compder -

8 Croste Dabug corbguration: [Gabug |

} ! “Debug® optices
I Gutpa d. briDebuy
l Objects ouput d. | sbyDebug/

§ Creats ‘Pulease’ configuration: |Releare ”
L

— “Ralesa® aptons
Projects | Pescurces Outpast brvRelease
Q Chjwcts output e | obyPeleare VeCeatlgeate

saqes |) Debugger
= fuck i rush 3 cancel | L

walcormae to Code: flockat

=
1]
o

Chapter 5 / SDL Graphics 145

6. The Code::Blocks IDE presents the source files. Click the Com-
pile and Run icon to execute the project.

O - @ “ 2@)
O - S Figure 5-11

4 IR ™ 1

®
int nt a h.
ifr SOL_Indt({ SOL_INIT_VIC
etorn
IF.‘
S Build =]

The compiled project now runs in an SDL window on Linux Ubuntu.

3 spphestiors Blaces Systam 2@ «“ 2@

— * Figure 5-12

™

146

Chapter 5 / SDL Graphics

5.2.7 SDL on Windows

SDL can be downloaded and configured to compile with Code::Blocks
on almost all versions of Windows available. The following instructions
illustrate the installation process step by step.

TIP. Before downloading and installing SDL, users should have a
means to extract TAR and 7Z compressed archives, such as by using
the WinRAR or 7-Zip applications that were discussed in Chapter 3.

5.2.2.1 Downloading and Installing SDL on Windows
1. Go to the SDL web site at http://www.libsdl.org/.

Figure 5-13

SDL

Simple Directmedia Layer
%m Slrrvle DirectMedia Layer is & aoss-platform rmit imedia |ibrary designed to
vide low level access to audio, keyboard, mouse, joystick, 3D hardware
Dos'v&l and 20 video framebuffer. It is used by MPEG playback
Newsoroup soﬁwye emulators, and many popular games, including the award winning
Lireax port of "Civi ilization: Call To Power."
= Download SO supports Linue, Windows, Windows CE, BeOS, MacOS, Mac 05 X,
FreaBsD, NetBSD, OpenBsD, BSD.’OG ‘solarls TRIX, and QHX. The code
% contains support Tor Am AmigaOs, Dreamcast, Atari, ALX, OSF/Tru64, RISC OS,

Games SymbianOs, and O5/2, but these are not officially supported.

2. Under the heading Download, click the latest SDL version (SDL
1.2 at the time of writing). Download the Windows SDL runtime
library SDL-1.2.12-win32.zip. This archive contains the important
runtime SDL.dII file, which should be extracted to the folder from
which the compiled EXE will be run. This DLL file is an SDL
dependency, and since it is a “runtime” library, it is required by an
SDL EXE at run time in order to execute successfully. This file
must furthermore be present on all end-user machines. In other
words, this file is unique among SDL files since it should be dis-
tributed to users alongside the SDL-powered game itself.

Chapter 5 / SDL Graphics

SF Figure 5-14

lar 08 (Classic):

Mac 08 X:

Wil

SDldevel-1 2 12-V06 g (Viesal C++ 6.0)

SDL-drvel-1 2 12-VICE g (Vissl C4-+ 2005 Service Pack 1)
R Acam

3. In addition to the SDL.dIl runtime library, SDL developers also
require the SDL development libraries in order to compile SDL

applications. Click the SDL-devel-1.2.12-mingw32.tar.gz

147

(Mingw32) library. This archive contains the headers, source files,
and libraries required for development, and these files are compli-
ant with Code::Blocks and the GCC compiler. This archive can be

extracted to any local folder on the development system.

s figure 5-15

“Be e

BMacOF {Classic:
FDL=1.2 12-FFC peabin

Mac OS5 X:

148

Chapter 5 / SDL Graphics

NOTE. Alternative development libraries can be downloaded for
other IDEs, such as Visual Studio .NET. However, this book does not
explore this IDE.

4. Scroll down the list to the SDL Documentation Project section and
click the SDLRef.chm link to download the Windows SDL Pro-
grammer’s Reference, listing all the classes, functions, and
structures of SDL.

D Skmple Disectidedia Layer - Micresolt Intesset Explares cEE

“ Figure 5-16

u Site Actions
[Login

= Other
- SDL Finand

D Vot

5.2.2.2 Creating an SDL Project Using Code::Blocks in
Windows

1. Start Code::Blocks and click Create New Project from the
startup screen. A wizard appears.

2. Select the SDL project template from the project categories list
box. Click Go.

Chapter 5 / SDL Graphics 149

-_Starl hese - Cede::Blocks ywn build

. [

T Try right-chcing an hes
1. Sokt o mitird o frst o the et

3 Press e

figure 5-17

[15 Code: Bocks

3. Click Next when the SDL project wizard welcome screen appears.
(This welcome screen can be disabled by choosing the Skip this

page next time check box.)

- Staat b - Codec:Biecha svm bl - |®
ME@ Y LR R FIgUfe5"8
B :
® 18
Prajects Sywbols i a
Q Werbpace [———
K s iz ol e ot e e Erciect
g the STL g aphicy Brary.
Wty s v realy L e, please chek et
Ii st tha page rmst e
G Pl bt ® m
=
T
b
frescon &
P = e %
A “r
o £ o Mok

150

Chapter 5 / SDL Graphics

4. Assign the SDL project a name and specify a fully qualified path
where the Code::Blocks project and source files will be generated.

Click Next.

=_Start hars - Coda;;Blacks v build

SDL

Pl o o |k e iy o P 4T
1ok crmated an ech B3 .

P i
Frsonl

Foktn 1 ovate et o -
ok Sttty Docmertil [
Pt

FemL s

Ersitre Horme:
i 1Doumarks e Settr Py Dot AT RE

Figure 5-19

*®

ek 1 Core B!

5. Specify the fully qualified path (root folder) where the SDL devel-
opment files were extracted. Click Next.

o les b

T

SDL

[cmen]

Figure 5-20

fmtisc oo
a

e |

[15 Code: Bocks

Chapter 5 / SDL Graphics 151

6. Select the GNU GCC Compiler from the drop-down list and click
Finish to accept the default compiler settings.

- Stat hare - Code: Blecks svn build - [X

Y IR TY ST Figure 5-21

Cpen Tlea et ®

ricome to Coce acha!

7. Code::Blocks generates an SDL project and corresponding source
files at the path specified in step 4, and configures the compiler
according to the settings in step 6. Click Compile and Run to test
the SDL project.

figure 5-22

i Coteocks | |} Coteiocksutug | | Sewchowsits | ©) Bubdloy | Bukdmeisagns |) Debarger

WRDOWTAISE e 1), Cokmn 3 Fromt Enactente

152

Chapter 5 / SDL Graphics

The SDL project compiles and executes in a newly created SDL
window.

[

- [& x|
Figure 5-23

TIP. Remember, if an SDL project compiles but fails to run because
of a missing SDL.dII, ensure the runtime library SDL.dIl is located in
the same folder in which the executable is run. Alternatively, it can be
located in the Windows System32 folder.

5.3 Getting Started with SDL

SDL projects generated using the Code::Blocks application wizard are
complete with code and comments, and are preconfigured to compile
and run immediately. SDL applications compiled from this template
feature a window inside which a bitmap is drawn on each frame during
the game loop, and so the template SDL project demonstrates clearly
the basic structure and most common function calls of the graphics
subsystem for any SDL application. This section explores the code
contained in the template project by examining the essential SDL func-
tion calls to create and sustain a window, and then explaining how
images are both loaded from files to memory and drawn from memory
to the window.

Chapter 5 / SDL Graphics 153

5.3.1 Initializing and Closing SDL

Initializing SDL is the one-time process (once per application) of pre-
paring one or more of the SDL subsystems (audio, video, input, etc.)
for use, and this process occurs through a single function call —
SDL _Init. For this reason, initialization is the first and essential step of
any SDL application and must precede all other SDL function calls.
The process of initialization is partnered with an uninitialization or
closing call to SDL — SDL_Quit — which occurs typically, though not
always, at the end of an SDL application, and is the last and essential
function call confirming that SDL is no longer to be used in this
instance. Thus, for each call to SDL_Init there must be a correspond-
ing call to SDL_Quit, one call marking the beginning and the other the
ending of an SDL application, and all other SDL calls must occur
between these two if they are to be successful.

SDL _Init is the function used to initialize one or more of the SDL
subsystems, and takes the following form:

int SDL Init(Uint32 flags);

B Uint32 flags — Unsigned 32-bit integer flag, encoding the combi-
nation of SDL subsystems to initialize. This flag should specify at
least one subsystem, or can contain any combination of any of the
following seven SDL subsystems (please see Section 5.1 for a
more detailed description of the SDL subsystems):

SDL_INIT TIMER
SDL_INIT AUDIO
SDL_INIT VIDEO
SDL_INIT CDROM
SDL_INIT JOYSTICK
SDL_INIT EVENTTHREAD
SDL_INIT EVERYTHING

X\ NOTE. SDL Header Files and Libraries. SDL projects gener-
ated from the Code::Blocks SDL template via the application wizard
are configured to run automatically, but manually created SDL pro-
jects should include the SDL header files, as follows:

#include <SDL.h>

//0r #include "MyPath/SDL.h"

Projects should also include the SDLMain library file.

154

Chapter 5 / SDL Graphics

Example SDL Application to Initialize and Uninitialize

//Initialize all SDL subsystems
if(SDL_Im't(SDL_INIT EVERYTHING == -1)
{

return 1; //Error occurred;

}
else
{
//Success
SDL_Quit();
}

5.3.7 Creating a Window and Game Loop

SDL games execute inside a window, the SDL window, and survive no
longer than the window itself, which survives until the end of the
application. Game loops, as described in Chapter 4, sustain the life of
an application through repetition, looping to postpone the end of an
application until the user terminates the loop by finally choosing to
exit. Each iteration of the loop corresponds to a unique frame, one
among a long sequence of frames occurring at intervals of milliseconds
throughout game execution, and on each frame a programmer typically
updates the game’s data (player position, reading input, etc.) and also
redraws the scene’s graphics inside the SDL window, overwriting the
pixels drawn there during the previous frame. Please consult Chapter
4 for more information on game loops and their relation to the lifetime
of games specifically.

Windows are the canvas and bordered region onto which SDL
games paint their graphics on each frame. More than this, however,
windows are the focus for receiving input from the user and for receiv-
ing messages from the operating system generally. The SDL library
offers to developers the SetVideoMode function to create SDL win-
dows of a specified size, and the window lifetime is sustained by the
game loop. If SetVideoMode is successful, the function returns a
pointer to an instance of SDL_Surface, which is a class encapsulating
an active window that has properties and methods to set the window’s
title and size, among other features. SetVideoMode is detailed below.

Chapter 5 / SDL Graphics 155

SDL_Surface *SDL_SetVideoMode(int width, int height, int bpp,
Uint32 flags);

B int width, int height — Integer parameters to specify the width
and height in pixels of the window to be created.

B int bpp — Specifies the bits per pixel of the window to be created;
usually 16.

B Uint32 flags — Unsigned 32-bit integer flag specifying additional
properties of the window to be created. This flag may be a combi-
nation of one or more of the following values:

B SDL _SWSURFACE — The SDL window and its contents are
allocated to system memory, not to the memory of video hard-
ware. Greater system compatibility, worse performance
generally.

m SDL_HWSURFACE — The SDL window and its contents
are allocated to hardware video memory, not to system mem-
ory. Less system compatibility, better performance generally.

B SDL _FULLSCREEN — This flag creates a full-screen SDL
window.

N NOTE. The code listed in bold refers to particularly important or
key functions.

Example SDL Application

In this sample code we create a window and sustain its lifetime
using a game loop.

// create a new window
SDL_Surface* screen = SDL_SetVideoMode (640, 480, 16,
SDL_HWSURFACE|SDL_DOUBLEBUF);
if (!screen)
{
printf("Unable to set 640x480 video: %s\n", SDL GetError());
return 1;

}

bool done = false;
while (!done)

{

156

Chapter 5 / SDL Graphics

// message processing loop
SDL Event event;
while (SDL_PollEvent(&event))
{
// check for messages
switch (event.type)
{
// exit if the window is closed
case SDL QUIT:
done = true;
break;

// check for keypresses
case SDL_KEYDOWN:
{
// exit if ESCAPE is pressed
if (event.key.keysym.sym == SDLK ESCAPE)
done = true;
break;
}
} // end switch
} // end of message processing

// DRAWING STARTS HERE

// clear screen
SDL_FilTRect(NULL, 0, SDL _MapRGB(screen->format, 0, 0, 0));

// GAME UPDATE AND DRAWING OCCURS HERE
//Do stuff
// DRAWING ENDS HERE

// Update the screen
SDL_Flip(screen);

} // end main Toop

The SDL code sample featured above is a classic example of an SDL
application insofar as it creates and maintains a 640 x 480 window
using a game loop, a loop that also reads and processes user input to
determine when the Esc key on the keyhoard is pressed to signal the
end of the loop. In short, the above code sample illustrates at least

Chapter 5 / SDL Graphics 157

three crucial components and subsystems at work in SDL: surfaces,

event polling, and page flipping.

B Surfaces — The SDL video subsystem may potentially contain
many surfaces in memory at run time, at least one of which is
returned from the SetVideoMode function and represents the pixel
contents of the SDL window. An SDL surface represents a read-
able and writeable canvas of pixels in memory; that is, a rectangu-
lar region of bytes that may be loaded with image data from files
on disk or from other surfaces by copying and pasting. A single
instance of SDL_Surface corresponds to a single surface in mem-
ory, offering methods and properties for accessing and editing the
pixels on the surface. Surface handling is considered in more detail
shortly.

B Event polling — The SDL event subsystem handles all system
events. The term “event” refers to the run-time notification sent
to an application as an important situation occurs, such as a
keypress, mouse movement, or system error. So, the SDL event
subsystem handles all events automatically as they occur by post-
ing (or adding) them onto an event queue (or event stack). The
events in the event queue accumulate unprocessed one atop the
other until the SDL application requests, or polls for, the events
using the SDL_PollEvent function, responding to each event
appropriately. On each frame, or iteration of the game loop, an
application polls for all pending events using the SDL._PollEvent
function. This function removes and returns only the topmost
event on the stack, and so must be called as many times as there
are pending events in order to empty the queue on each frame.
Returned events are encoded in an SDL_Event structure, as
follows:

typedef union{

Uint8 type;

SDL_ActiveEvent active;
SDL_KeyboardEvent key;
SDL_MouseMotionEvent motion;
SDL_MouseButtonEvent button;
SDL_JoyAxisEvent jaxis;
SDL_JoyBallEvent jball;
SDL_JoyHatEvent jhat;
SDL_JoyButtonEvent jbutton;

158 Chapter 5 / SDL Graphics

SDL_ResizeEvent resize;
SDL_ExposeEvent expose;
SDL QuitEvent quit;
SDL_UserEvent user;
SDL_SywWMEvent syswm;

} SDL_Event;

TIP. The SDL PollEvent returns O if the event queue is empty; in
other words, when there are no pending events to handle.

Example SDL Event Loop

while (SDL PollEvent (&event))
{
// check for messages
switch (event.type)
{
// exit if the window is closed
case SDL QUIT:
done = true;
break;

}

N NOTE. Appendix G at the end of this book features a table listing
all of the SDL key code constants.

B Page flipping — SDL applications typically refresh, or repaint,
the graphical contents of their window on each frame, and since a
frame corresponds to an iteration of the game loop, an application
must repaint the window on each iteration. SDL repaints the main
window instantaneously whenever a call to SDL_Flip is made, and
repainting occurs during this function via a process called page flip-
ping. To repaint in this instance means to update the pixel data
inside the main window, revealing the contents of whatever has
been drawn there since the previous call to SDL_Flip.

Chapter 5 / SDL Graphics 159

The term page flipping, also known as double buffering, refers to a
flip book style technique for drawing computer graphics to the
display quickly and efficiently. Software that uses page flipping
will traditionally maintain at least two canvases (or surfaces;
regions for drawing pixel data in memory), one surface being
read-only and visible (on-screen) and the other being read/write
and hidden (off-screen). That is, the on-screen surface is a final
composition, and the off-screen surface is a work in progress free
to be edited and painted to. Page flipping occurs at the end of each
frame, when painting to the off-screen surface is completed. It is a
process of flipping, or exchanging the on-screen and off-screen
surfaces, such that the off-screen work in progress now becomes
the on-screen and read-only surface, and the previously on-screen
surface now becomes an off-screen work in progress. Thus, the
surfaces are switched, and the off-screen surface becomes visible,
and so the process goes on for each frame. In this way, games des-
ignate a surface for working and a surface for presenting the
latest contents drawn on each frame.

5.3.3 SDL Surfaces

As stated earlier, the SDL video subsystem is responsible chiefly for
the graphics of an SDL application and may potentially contain many
surfaces at run time, at least one of which is returned from the
SetVideoMode function and represents the pixel contents (the canvas)
of the SDL window. However, programmers may create other surfaces
manually in addition to the SDL window by using a variety of SDL
functions, such as the SDL._LoadBMP function. To clarify, an SDL sur-
face refers to a readable and writeable canvas of pixels in memory. The
SDL function SDL_LoadBMP creates an SDL surface in memory
loaded with pixel data from a valid bitmap file on disk. SDL_LoadBMP
takes the following form:

SDL_Surface *SDL_LoadBMP(const char *file);

160

Chapter 5 / SDL Graphics

B const char *file — Fully qualified path of the file whose pixel data
will be loaded onto the newly created surface returned by the
SDL LoadBMP function.

NOTE. SDL_LoadBMP creates a new SDL surface in system or hard-
ware memory that is loaded with pixel data from a bitmap file. So
each call to SDL_LoadBMP should be later followed by a matching
call to SDL_FreeSurface (when a surface is no longer required by an
application), deleting the created surface from memory.

Example SDL Surface Loaded from a File

SDL_Surface* loadedImage = NULL;

ToadedImage = SDL_LoadBMP(filename.c_str());

5.3.3.1 Blitting Surfaces

The process of copying pixels from one surface to another is called
blitting, and the SDL video subsystem offers the SDL_BlitSurface
function to blit pixels between surfaces loaded in memory, just as pix-
els can be copied and pasted between surfaces in a photo editing
package like Photoshop. In short, blitting means a rectangle of pixels is
copied from a source surface and pasted onto a destination. Note that
the main window surface created by SetVideoMode is unique among
SDL surfaces since it singularly represents the off-screen buffer in a
page flipping chain. That is, the pixel contents of the window surface
become visible when the SDL_Flip function is called at the end of each
frame. Thus, SDL applications can present off-screen surfaces loaded
from files to the display by blitting them to the main window surface
on each iteration of the game loop. In other words, surfaces are made
visible when blitted to the window surface. The SDL_BlitSurface func-
tion used to blit one surface to another takes the following form:

int SDL BlitSurface(SDL_Surface *src, SDL Rect *srcrect,
SDL_Surface *dst, SDL_Rect *dstrect);

B SDL _Surface *src — Pointer to a valid instance of SDL_Surface
that is the source of the blit operation.

B SDL _Rect *srcrect — Pointer to a valid SDL_Rect structure
specifying the rectangular subset of pixels to be copied from the
source surface, specified by src. NULL selects the entire surface.

Chapter 5 / SDL Graphics 161

B SDL Surface *dst — Pointer to a valid instance of SDL_Surface
that is the destination of the blit operation.

B SDL Rect *dstrect — Pointer to a valid SDL_Rect structure
specifying the rectangular subset of pixels into which the source
pixels from the source surface should be pasted.

Example SDL Surface Blitted 1o a Window

//Blits a bitmap surface onto the main window canvas
SDL_BlitSurface(source, NULL, screen, NULL);

5.3.3.2 Optimizing SDL Surfaces

Surfaces are said to be optimized when their pixel format (bits per
pixel) matches the pixel format of their application’s main window, also
known as the “main surface” or the “frame buffer.” SDL surfaces cre-
ated by the video subsystem from bitmap files on disk are usually
created with a pixel format matching the format of the file from which
they were loaded, such as 16-bit surfaces from 16-bit files. However
the format of a surface, since it may come from one among potentially
many image files, may not match that of the frame buffer onto which
most surfaces are ultimately copied (blitted) on each frame for display.
(Pixels from one surface can be copied and pasted onto another using
the SDL_BlitSurface function, explained in the previous section.) This
means that for each time a surface is copied to a destination whose
pixel format differs, SDL must perform a conversion of the source pix-
els into the format of the destination. This conversion inevitably incurs
a performance penalty for an application on every occasion where it
must occur. To solve this issue, the SDL video subsystem therefore
provides the SDL_DisplayFormat function, which accepts as an argu-
ment a pointer to any standard surface loaded from a file on disk and
returns in memory a pixel-by-pixel duplicate surface whose pixel for-
mat matches the frame buffer. The SDL_DisplayFormat function is
designed to be called only once for each non-frame buffer surface cre-
ated. The prototype for SDL_DisplayFormat is featured below:

SDL_Surface *SDL DisplayFormat(SDL_Surface *surface);
B SDL Surface *surface — Specifies a valid instance of class

SDL_Surface, whose duplicate with an amended pixel format
matching the frame buffer is returned by SDL_DisplayFormat.

162 Chapter 5 / SDL Graphics

Example SDL Surface Loaded from a File and Optimized

//Load the image

SDL Surface* loadedImage = NULL;

SDL Surface* optimizedImage = NULL;
ToadedImage = SDL LoadBMP(filename.c_str());

if(ToadedImage !'= NULL)
{

//Create optimized image
optimizedImage = SDL DisplayFormat(ToadedImage);

//Free old image
SDL_FreeSurface(loadedImage) ;

loadedImage = NULL;
}

N NOTE. Optimizing an SDL surface creates a duplicate surface
whose pixel format matches the frame buffer. Thus, the original
unoptimized surface can safely be deleted from memory using the
SDL_FreeSurface function, as demonstrated in the code example
above.

5.3.4 Additional File Formats (JPEG, PNG, TGA,
and Others)

The by now familiar SDL._LoadBMP function of the SDL video subsys-
tem allows programmers to create surfaces in memory with pixels
loaded from bitmap files (.bmp) only. This function, and the SDL more
generally, does not by default support surfaces loaded from image files
other than bitmap, such as from JPEG, PNG, or TGA files. The ability
to create surfaces from such alternative formats is supported only by
an additional package of development libraries available from the SDL
web site or the Ubuntu Repositories. These libraries are freely avail-
able and under the umbrella of the SDL development kit, and therefore
are subject to the same GNU licensing terms. This section explores
the step-by-step process for downloading the SDL Image Develop-
ment Libraries, and further examines how to configure them for use in
SDL projects created by Code::Blocks on both Windows and Linux
Ubuntu.

Chapter 5 / SDL Graphics 163

5.3.4.1 Downloading and Configuring SDL Image
Development Libraries for Code::Blocks on Ubuntu

1. Beginning from the Ubuntu desktop, select System | Adminis-
tration | Synaptic Package Manager from the main menu.

2. Click Search and type SDL to filter the packages for a list of
SDL-related development files. Mark the libsdl-image-deyv files for
installation and click Apply.

3 Apphcations Places System 1@ “ &[]

e T — S Figure 5-24

Sgarch Resuts
141 packages bsted. 1140 rstalied, 0 broken. S to mstaliupgrade. 0 to remove: 1507 kB wil be used

A [2 symucts Package Manager = |-

3. Once the SDL Image Development Libraries are installed, start
Code::Blocks.

4. Load an existing SDL project, or create a new SDL project using
the steps in Section 5.2.1.3.

164 Chapter 5 / SDL Graphics

5. From the Code::Blocks Editor’s main menu, select Project |
Build options.

< Appheations Places System @20

. Ll G Rl s e e
Be ESt Wew Sescch Project Buld Qebug weSmah Jook Plagni Settings belp

"R Add filas.
Add flas recursively.. - -
o | mainiint arge. chares argi : int
SRR FTum 3|
Praject tree b
R (T st programs aegumants..
Opan filen bnt Hotes. .
Proparties...
4
5
]
7
]
9
1]
11
12
Manaqement L] 13 int main ([int arge, char** argv)
Projects | Resources * ¥ _:; {
= Q 16 Af [SOL _Tmire SOL_INIT MIOED 1 U
= B MyFirstsoL | D
b B seurees e v
BB Others B Code:milocks | \) Codeiocks Debug | 4, Search maults| © Duild log | # Bl massages | § Debugger
Set the project's buld aptions. UTF-8 Line 53. Coharn 38 naert Readiwrte
|| [main.cpp [MyfrnzsoL) - Code:dilocks sve buld] 1 [5]

6. Click the Linker settings tab and type SDL_image in the Link
libraries list box. Click OK.

£} Applcations Places Symem @0 @ “oE@E

- main.cpp [MyFirt SO0 - CodesBlacks swn build e FI' ure 526
Bl [dt yww Seach Promet Budd Debug weSmith Jook Plugne Settings Hel g
[EN-) o e
Selacted compder 3
epo= Dabug G GEC Compiler z]
Palgase
wmOR g - i
ce o 4_ Comper sattiogn | Linker sattings mdnﬂm_' =
! Pobcy: +
Link bbraries: Cther bnker options: Error()); |:
SDL_image sdl-canhy -l
URFACE | SOL_DOUBLEBUF
Managerrast -
Projects Resour] dd] B8 [Golnta] Clver]
r 7 SOL_GetError(});
- Q) Copy alte.. - G
L J L——
= B My FirstsE S —
P B Sources|
b othens | Mcancel | sgrs | © Cabugger
TTITTTRIFITITEL /b Db MLt SEL (dn
Fome./31 an/Text (WyFLESTEOL S |
[Pracess terainated vith s1atus 0 (0 sisutes. 3 secends)
homafalan/TestMyFrstSOLIMman. cpp UTF-8 Line 30. Column 56 Insert Faadriite
i 1 wobuld | ElG

7. Include the #include <SDL_image.h> preprocessor directive in
addition to existing directives in all SDL projects to use the SDL
image development functions. The project is now configured.

Chapter 5 / SDL Graphics 165

The next section details the Windows installation for the SDL Image
Development Libraries, and a later section explains how to load SDL
surfaces from images in formats other than BMP.

5.3.4.2 Downloading and Configuring SDL Image
Development Libraries for Code::Blocks on Windows

1. Beginning from the Windows desktop, navigate a web browser to
the SDL development libraries web site at http:/www.libsdl.org/
projects/SDL_image/.

NOTE. Or alternatively, go to the SDL home page at
http://www.libsdl.org/. Under the Download heading on the left,
click Libraries, then enter the search keyword Image in the edit box.
Scan the results for the SDL Image Library.

2. Download the SDL Image Development package
SDL_image-devel.

T -
o 82 p- C “ Figure 5-27
Qe - frrtes et 3

&l endt “ B .
Binary:
Lanmux
SDL_umage-1.2 6-11386 rpm
SDL B6.1pm
Mac!
SDL_image-devel-1.2 6-PPC sea bin
Requires:
The latest stable release of SDL 1.2
Runs on:

All platforms supported by SDL

Description:
SDL_m

e file loading hbrary
and supports the followmg formate: BMP, GIF, JPEG, LEM, PCX,

3. Once downloaded, extract the header, source, library, and DLL
files of the zip package to the current SDL folder on the local
machine. Then start Code::Blocks.

4. Open an existing SDL project or create a new SDL project from
the Code::Blocks SDL template wizard, as described in Section
5.2.2.2.

166

Chapter 5 / SDL Graphics

5. From the Code::Blocks Editor’s main menu, select Project |
Build options.

6. Click the Linker settings tab and add the SDL Image Develop-
ment Library (SDL_Image) to the Link libraries list box. Click
OK.

- =]
figure 5-28

7. Include the #include <SDL_image.h> preprocessor directive in
addition to existing directives in all SDL projects to use SDL
image development functions. The project is now configured.

5.3.4.3 SDL: Further Image Formats

Now let’s look at how to load SDL surfaces from images in formats
other than BMP. The following code loads a PNG file.

NOTE. The code sample is similar to the sample featured earlier in
this chapter where a surface was loaded from a bitmap file using
SDL_LoadBMP, except the function IMG_Load has replaced a call to
SDL_LoadBMP Like SDL_LoadBMP, the function IMG_Load creates a
standard SDL_Surface in memory, but it can load surface pixels from
any valid image file on disk in any of the following formats in addi-
tion to BMP: GIF, JPEG, LBM, PCX, PNG, PNM, TGA, TIFF, XCF, XPM,
and XV.

Chapter 5 / SDL Graphics 167

Example SDL Surface Loaded from a PNG File and Optimized

//Load the image

SDL Surface* loadedImage = NULL;

SDL Surface* optimizedImage = NULL;
ToadedImage = IMG_Load("myfile.png");

if(ToadedImage !'= NULL)
{
//Create optimized image
optimizedImage = SDL DisplayFormat(ToadedImage);
//Free old image
SDL_FreeSurface(ToadedImage) ;

loadedImage = NULL;

5.4 Color Keying with Surfaces

It has been demonstrated throughout the previous sections of this
chapter how the SDL video subsystem features at least two functions,
SDL LoadBMP and IMG_Load, for creating a rectangular canvas of
bytes in memory called a surface; and these functions further allow the
surface to be loaded instantly with pixels from an image file on disk in
a variety of formats, from BMP to TGA. Furthermore, specified rect-
angles of pixels may be copied and pasted (blitted) to and from
surfaces in memory using the SDL_BlitSurface function, and pixels
that are copied to the main window (main surface, or frame buffer) are
drawn to the game window display and thereby become visible to the
gamer for every frame they are blitted there.

Until now the SDL_BlitSurface function has been used to copy pix-
els between a source and a destination surface in memory, and a
programmer does this by specifying a finite-sized rectangle of pixels
on the source surface to copy onto a specified location on the destina-
tion surface. This means all pixels inside the specified source
rectangle are indiscriminately blitted to the destination rectangle,
regardless of their contents. There are often situations, however, when
SDL applications must blit only certain pixels, such as those of a

168

Chapter 5 / SDL Graphics

specific color, rather than all pixels inside the rectangle. Consider the
example of the two images loaded onto SDL surfaces featured in Fig-

m W,

ure 5-29 — the cityscape background and the happy face.

Figure 5-29

The first surface may be blitted entirely to the frame buffer where it
will be presented to the display as a background for the scene, but the
second surface (the happy face) features superfluous pixels on the out-
side of the face that should be removed when it is blitted to the
background. Thus, the superfluous pixels around the face must be
ignored when the surface is blitted to the destination, and so the SDL
video subsystem must distinguish between these pixels on the basis of
that which each of those pixels share, namely their color. The process
of filtering, or ignoring, specified pixels from the source surface on the
basis of color as it is blitted to a destination surface is known as color
keying. The SDL video subsystem offers the SDL_SetColorKey func-
tion to set the color key specifically for any valid surface in memory.
Only one color key may be applied to a surface at any one time, and for
color keying to work successfully, the SDL_SetColorKey function
should also be called before any blit operations involve the surface on
which the color key is to be applied. The SDL_SetColorKey function
takes the following form:

int SDL SetColorKey(SDL Surface *surface, Uint32 flag, Uint32
key) s

B SDL _Surface *surface — Pointer to a valid instance of
SDL_Surface in memory, representing the surface for which the
color key is to be applied.

B Uint32 flag — Specify SDL_ SRCCOLORKEY.
B Uint32 key — Unsigned 32-bit integer specifying the color itself

to be used as the color key for the surface represented by the
argument surface. This color value can be generated using the

Chapter 5 / SDL Graphics 169

RGB (Red, Green, Blue) color composition macro, SDL._MapRGB,
as demonstrated in the following code sample.

Example SDL Surface Loaded from a PNG File, Optimized, and
a Color Key Applied

//Load the image

SDL Surface* loadedImage = NULL;

SDL Surface* optimizedImage = NULL;
ToadedImage = IMG Load("myfile.png");

if(loadedImage !'= NULL)
{

//Create optimized image
optimizedImage = SDL DisplayFormat(ToadedImage);

//Free old image
SDL_FreeSurface(loadedImage) ;
loadedImage = NULL;

Uint32 colorkey = SDL_MapRGB(optimizedImage->format, 0,
OxFF, OxFF);

SDL_SetColorKey (optimizedImage, SDL SRCCOLORKEY, colorkey);

5.5 Conclusion

To summarize, the SDL (Simple DirectMedia Layer) was established
in 1998 and is perhaps the foremost SDK among the open-source,
cross-platform, and free software used primarily by programmers for
creating video games, and more commonly for handling video game
graphics. The SDL is a single library made up of eight conceptual sub-
systems: audio, CD-ROM, event handling, file I/O, joystick handling,
threading, timers, and video. This chapter focused narrowly on some
of the fundamental details of the SDL video subsystem, an umbrella
term encompassing a plethora of topics, such as page flipping, sur-
faces, blitting, and color keying. To conclude, the following sample
SDL source code is provided, forming a complete SDL program made

170 Chapter 5 / SDL Graphics

with Code::Blocks, and highlighting the topics featured in this chapter
— from configuring an SDL application to blitting between surfaces
using color keying. The next chapter will examine in greater detail
much of the SDL subject matter explained here in order to apply SDL
in practical game-making techniques. (The following code is also pro-
vided in the book’s companion files available at
www.wordware.com/files/gamedev056X)

Example SDL Application

#ifdef _ cplusplus
#include <cstdlib>
#else
#include <stdlib.h>
#endif
#ifdef APPLE
#include <SDL/SDL.h>
#else
#include <SDL.h>
#include <SDL_ image.h>
#endif

int main (int argc, char** argv)
{
// initialize SDL video
if (SDL_Init(SDL_INIT_VIDEO) < 0)
{
printf("Unable to init SDL: %s\n", SDL GetError());
return 1;

}

// make sure SDL cleans up before exit
atexit(SDL Quit);

// create a new window
SDL_Surface* screen = SDL_SetVideoMode (800, 600, 16,
SDL_HWSURFACE|SDL_DOUBLEBUF);
if (!screen)
{
printf("Unable to set 640x480 video: %s\n",
SDL_GetError());
return 1;

Chapter 5 / SDL Graphics 17

// load an image
SDL_Surface* bmp = IMG_Load("/home/alan/Desktop/Test.bmp");
SDL_Surface* optimizedImage = NULL;
if (!'bmp)
{
printf("Unable to load bitmap: %s\n", SDL GetError());
return 1;

1

else

{
optimizedImage = SDL DisplayFormat (bmp);
SDL_FreeSurface(bmp);

bmp = NULL;

Uint32 colorkey = SDL_MapRGB(optimizedImage->format, 0,
0xFF, OXFF);

SDL_SetColorKey(optimizedImage, SDL_SRCCOLORKEY, colorkey);
1

// center the bitmap on screen

SDL_Rect dstrect;

dstrect.x = (screen->w — optimizedImage->w) / 2;
dstrect.y = (screen->h — optimizedImage->h) / 2;

// program main loop
bool done = false;
while (!done)
{
// message processing Toop
SDL_Event event;
while (SDL PollEvent(&event))
{
// check for messages
switch (event.type)
{
// exit if the window is closed
case SDL _QUIT:
done = true;
break;

172

Chapter 5 / SDL Graphics

// check for keypresses
case SDL_KEYDOWN:
{
// exit if ESCAPE is pressed
if (event.key.keysym.sym == SDLK ESCAPE)
done = true;
break;

}
} // end switch
} // end of message processing

// DRAWING STARTS HERE

// clear screen
SDL_FilTRect(screen, 0, SDL MapRGB(screen->format, 0, 0, 0));

// draw bitmap
SDL_BlitSurface(optimizedImage, 0, screen, &dstrect);

// DRAWING ENDS HERE

// finally, update the screen :)
SDL_Flip(screen);
} // end main Toop

// free loaded bitmap
SDL_FreeSurface(optimizedImage);

// all is well ;)
printf("Exited cleanly\n");
return 0;

Chapter 6
Game Audio

The adage “sound can make or break a game” has no doubt been
around for as long as there have been games with sound, and it con-
tains in one succinct message a double-edged meaning. First, it hints
at the general importance of sound for a gaming experience, but sec-
ondly, and more ominously, it also suggests that “no sound” can be
better than “bad” sound since bad sound can break a game. For a game
developer, then, creating sound for a game is mainly a balancing act
between silence and sound; when and when not to play audio in a
game. This is largely the subject matter for this chapter, which focuses
on programming audio using the SDL library for cross-platform games.

In the game development world, the notion of sound (or more gen-
erally, audio) is conceptually divided into two subcategories: sound and
music. The distinction is drawn between the two kinds of audio based
upon its purpose in a given video game. Audio categorized as sound (or
SFX) includes the sounds played as events happen in the game world
such as footstep sounds played when a game character is walking, gun-
shot and glass breaking sounds played during a gun battle between two
opponents, speech played during a conversation, and game menu
sounds played for events like button presses and the appearance of
confirmation dialogs such as “Do you want to exit?” Audio categorized
as background music (BGM) or incidental music is generally longer in
duration than a sound; a sound may last for less than 30 seconds
whereas music may play for longer than two minutes.

A sound is often played by a game repeatedly and consciously on
every occasion a specified event occurs (gun shot, punch sound,
scream) to reinforce the effect that “something” has happened, as
opposed to nothing has happened; to represent action without visuals.
By contrast, music is played subliminally and continuously for long
periods of time to convey an atmosphere; a feeling or a mood.

173

174

Chapter 6 / Game Audio

Background music usually refers to an unobtrusive musical score
that begins in the same way it ends so it can be looped seamlessly in
the background to convey a smooth, subliminal mood for as long as the
player remains in the current scene of the game. A single track of
background music is said to be unobtrusive when it isn’t loud,
fast-paced, or packed with vocals and other attention-grabbing features
that divert a player’s attention away from the game and toward the
music alone.

Single-track background music is designed to be subliminal and is
typically assigned to play repeatedly and continuously across one game
scene (one building, one room, one level, etc.) regardless of the events
that take place there.

In contrast, incidental music refers to a process of changeable
music; music that doesn’t remain constant but changes to reflect the
events occurring in the “here and now” of the current game scene. For
example, in a random death-match level of an FPS game, the player
may have become injured by his opponent’s attack during a skirmish,
and fled into the darkness of emptier parts of the level in search of
cover, health, power-ups, or better weapons, or to engage in guerilla
warfare. The player’s retreat from battle pays off since his character
finds a safe haven in which to recover from any injuries; here the
music is tranquil, a short, looping background track of the “chill-out”
kind, and perhaps now and then a “sighing” or “breathless” SFX
played to represent the player’s recovery. Then suddenly, BANG!, the
enemy encroaches into the player’s enclave with guns blazing and at
once the player is again hoisted into the throes of battle; here the
music changes, bursting into an intense beat that began with the
enemy’s surprise attack. This is a classic example of incidental music
at work. Thus, incidental music describes a dynamic process whereby
a game elects to play the background music most appropriate for the
events unfolding in the current game scene.

Chapter 6 / Game Audio 175

6.1 Recording and Editing Game SFX

Those who create and edit sound effects for video games may seem
peculiar and possibly disturbed people to those not familiar with the
intricacies of game development. Sound effect creators can often be
found in lonely corners of rooms hunched over microphones making
the strangest of noises with the most unexpected of objects; recording
gnarls, snorts, the office air conditioning unit, the flush of the toilet
system, the sound of burping through a flexible hose, and the creaks in
the floorboards to name hut a few of the sounds in their audible won-
derland. For them it appears nothing is off-limits and every sound
exists only to be recorded. This, then, is the philosophy of sound effect
creation, and it is by recording sounds using a microphone that most
game developers collect their sounds for use in their games, arranging
them into a database called a “sound bank.” However, recording
sounds manually is not the only method a developer employs for
obtaining sound effects; developers may also purchase compilation
CDs and DVDs featuring sound banks containing hundreds or
thousands of sounds for use in their games.

Free Sound

Recently, the free software and open-source movement has also
spawned a wide variety of patent-free codecs (such as Ogg Vorbis)
and “creative commons” media. The FreeSound project
(http://freesound.iua.upf.edu/), for example, is an online sound bank
featuring sounds licensed under the Creative Commons Sampling
Plus License, meaning any user can download the sound effects
listed there and use them in their products. The Creative Commons
License grants the following (as listed at http://creativecom-
mons.org/licenses/sampling+/1.0/).

“You are free:

1. To sample, mash-up, or otherwise creatively transform this
work for commercial or non-commercial purposes.

176 Chapter 6 / Game Audio

2. To perform, display, and distribute copies of this whole work for
non-commercial purposes (e.g., file-sharing or non-commercial
webcasting).

Under the following conditions:

B You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they
endorse you or your use of the work).

B You may not use this work to advertise for or promote anything
but the work you create from it.

B For any reuse or distribution, you must make clear to others the
license terms of this work. The best way to do this is with a link
to this web page.

Note: For reference, the full text of the Creative Commons License
can be found in Appendix C at the end of this book.

6.2 SFX Software

l Figure 6-1: Audacity

M=

T L n | | B
ol > ®

9 g 5 P o (e
A Wk o || B BLD

e L

4

Progctrate: 44100 Selection: 0:01 950007 - 001 06207 {000 020000 min:sec) [Snap-To Off]

Chapter 6 / Game Audio 177

Sound effects are short duration (usually less than a minute) sounds
played by a game to signify action; that is, played when events occur in
the game world (such as footsteps played when a character walks, or a
door slam sound played when a door is closed, etc.). Sound effects are
typically small files that are recorded to disk from microphones or
downloaded from sound banks on DVD or online, and they are also typ-
ically encoded in WAV (wave) format and loaded entirely in memory by
the video games that play them (unlike music, which is streamed
rather than loaded; this is explained later). Developers record and edit
sound effects for their games using sound effects software. Cross-
platform game developers specifically prefer cross-platform sound
effects editors so the SFX created on one platform (say Windows) can
be opened and edited by using the same editor on another platform
(say Linux). It is perhaps not least because of the needs of cross-plat-
form game developers that the cross-platform sound effects editor
Audacity has gained recent popularity. Freely available and supporting
Windows, Linux, and Mac, Audacity is claimed to be the 11th “most
popular” download from SourceForge.net with over 24 million down-
loads, and was also the winner of the SourceForge.net Community
Choice Award for Best Project for Multimedia. Audacity can record
audio from microphones, edit audio files, and encode audio into a num-
ber of popular file formats (such as WAV, OGG, and MP3). Specifically,
Audacity boasts the following features:

B Record from microphone, line input, or other sources; 16-bit,
24-bit, and 32-bit (floating-point) samples

B Record up to 16 channels at once (requires multi-channel
hardware)

B Edit sounds using cut, copy, paste, and delete
B Import and export WAV, AIFE AU, and Ogg Vorbis files

178 Chapter 6 / Game Audio

6.2.1 Downloading and Installing Audacity on
Linux Ubuntu
1. Beginning from the Ubuntu desktop, select System | Adminis-
tration | Synaptic Package Manager.

. & wE

o Apphcations Blaces System @29

S profurances

Figure 6-2

2. Search the application repository for Audacity and mark this appli-
cation using the check box in the application list view where
Audacity appears as an option for installation. Click the Apply but-
ton to install it to the system.

< Appheations Blaces

spten @20 san Cp @ W

Ble Edt Package Settings Help

&) “
Malsad Mack Allpgrades Apply Prepartien .
AN 5 Package installed Version | Latest Version
audacity £ sudacky 133 1busddi
O creste-rescurces 132

A tast, cross-platiorm audio editor
Audacity i 8 m

foemats imcude DgQ Verbes, MP3, Wk, AIFF. and AL

Sections
Far mane inborrmution, ves hizpwudacity sourcaforge.nat
Status
onign
Custom Flters
Sgarch Rasuts

2 packages bated. 1053 nstalled. 0 broken. 7 to imstalupgrade. © to remeve: 18.5 MB wal be used
| | B synaptic Packege Ms.

<@
S Figure 6-3

Descrption
A fant. cross-platform sudo edter
shared resaurces for use by creative applcations

o

Chapter 6 / Game Audio 179

3. Once Audacity is installed to the system, it can be launched from
the Ubuntu main menu via Applications | Sound & Video |
Audacity Sound Editor.

£ Applcationn Places Syiem @210 an o @ 8]
uk(l‘(ﬂll(l

N Gamas

Figure 6-4

A1 Graphics
& reomat
W otce

W send s vides »

[[5) Adamemave

T Sound puicer CO Extractor
% Sound Recorder

Audacity is now ready to use.

43 Appkcaticnn Flaces Sytem 1@ Aan o @]
He Gt v Jacka Genarts, et tpuben ik Figure 6-5
ITHe[—T
"" // _1’ I ./ S ek @ - o)v o
[- 1 - =
@ g | Shence * [)L (B) 5 | Ae2Llr g

Jone...

Project Rate (Hzk Selection Star: @ End Length Audo Posiion:
44100:- QOhO0OmOL sw LLLLLE BT QOO0 mO0 v
Actual Rate 42100
A [wbertu Sax] = 5

180 Chapter 6 / Game Audio

6.2.2 Downloading and Installing Audacity on
Windows or Mac

1. Beginning from the desktop, navigate a web browser to the Audac-
ity web site at http://audacity.sourceforge.net/.

2. Click Download Audacity from the web page to proceed to the
downloads area.

Figure 6-6

® menste O WiksForumTesm ste © Wee

(" MudaciStorecon)

]"‘-"' [aeout] [Downioaa | [veip] [Comactin] [Gatimotma]

The Free, Cross-Platform Sound Editor

Aaxiacity s ee, Ogen SouTe sofware o FECOng and eding sounds. § i avakable for
Mac 03 . Merosot Windows, GMLInu, and ofher cperating systems. Leam more atout
Saxacity. Ao check our Y] and Forum for mone nformaion

Tt Lot rebease of Aucacky & 1.3.4 (Deta) Because & & 3 work i progress and doss ot
e Come wih ompiets documentation o ansiations nlo Knegn languages. £is
Pecommended for more advanced uers. See Nt Faatuns in 1.3 % more informanon about
LERETT

For aif users. Audacy 1 2.6 a stable release. compiete and Ruly documentid. You can
v both Audacty 126 and 1.3.3 nstaked smutaneousty.

Download Audacity 126

1o Mros0R Windces

Download Audacity 1.3.4 (Beta)
for Microsofl Windows

Gat Notified of New Versions.
Emad aoavess. Add | | Foamave.

November 13, 2007; Audacity 1.3.4 Released
The Audacty Team i presed D Sanounce ihe resase of Audacey 134 (heta) which INclxdes several new lestunes and user
Dere

3. Download the appropriate installer for your OS; the Windows
installer for Windows, Mac OS X for Mac, etc. This download page
also hosts Audacity for Linux distributions other than Ubuntu.

Chapter 6 / Game Audio 181

cf

-+ [e][=

[
oo Cooe
Rebbass tees

Beta 104
Haw Framevs 13
JIESERY

‘heedary pee) Doy
Audachy

|

B Aoty Do) - Moy

B i Yew Mg Beokma

m;\u

|] [38t] [|

o - - W
Google =3l |
[iau“, ® it © WisForumToam site © wes I
o
[AudacityStore.com]
o | [T [Comaiin] [Gatmwomes] - —
Download
Select your operating system 1o downinad the atest version of the roe Awdac ity Sound 3o
Stable: 1.28 Beta: 1.3.4
For al users For advanced users
M Windows 3 Windows
B MacosX B Macosx U
A g Linuounix O Linuwunix

You £an aS0 pUEhase & copy of Audacty on €O

o wiih 10 compie Auacly yOUrSeN, Goenicad e STt Coge

‘Wous may moddy, destrbute. and sed Aadacly under the. L

i mekccome Sonaons ¥ suppO Audacily devepment

4. Follow the downloaded installation wizard to install Audacity to the
system.

5o S =5

Figure 6-8
Welcome to the Audacity Sctup
Wizard

Thia will inatall Audacity 1.2.6 on your computer.

Lis recommended thal you cese all olher applications before
continuing

Ulick Mext to continue, or Cancel to codt Sctup.

o) (o)

TIP. This chapter focuses primarily on programming sound for
games, and as such does not examine Audacity in depth as an
application in terms of recording, editing, and exporting sounds.
More information on Audacity (including tutorials for getting started)
can be found on the Audacity Wiki documentation web site at
http//www.audacityteam.org/wiki/.

182 Chapter 6 / Game Audio

6.3 Recording/Creating and Editing
Music

Unlike sound effects, which have a short duration and are designed to
represent action without visuals, game music is usually longer in dura-
tion (more than 60 seconds) and is typically designed to be unobtru-
sive and also “loopable” (that is, sounds the same at the beginning and
end of the piece) so that a single track may be played seamlessly in the
background for as long as the player remains in the current scene
(level, map, room) of the game. Game developers typically acquire
music for their games via at least one of the following means:

B Purchased music — This includes sound effect compilation CDs
or DVDs; music can also be purchased from “music bank” CDs,
such as those available from Royalty Free Music at
http://www.royaltyfreemusic.com/.

B Homemade music — Some game developers with musical tal-
ents produce their own music in-house, using either commercially
available (and often not cross-platform) music creation software
like e]Jay, Fruity Loops, or Cubase, or by recording their live ses-
sions and then later editing the recorded tracks using sound effect
editing software. This chapter will examine a cross-platform and
freely available music creation package called Schism Tracker
(http://sovietrussia.org/wiki/Schism_Tracker).

B Contracted music — Many (perhaps most) developers (espe-
cially independent developers) seek out a band or musician to
whom they can outsource their music development. Many bands
and their music (most available under the Creative Commons
License) can be found at the free music site Jamendo at
http://www.jamendo.com/.

Chapter 6 / Game Audio 183

6.4 Music Creation Software

Developers aiming to create their own music for their games may, in
the present computing climate of patented codecs and other digital
rights management (DRM) “enabled” media, may find it difficult to
come across a completely free and cross-platform music creation solu-
tion. There are a number of commercial options, from Cubase to Fruity
Loops, each designed with a polished GUI intended to make the pro-
cess of electronic music creation simpler for the developer. However,
in the world of free and cross-platform software (Windows, Linux, and
Mac) there is Schism Tracker for making music.

6.4.1 Downloading and Installing Schism
Tracker on Linux Ubuntu

1. Beginning from the Ubuntu desktop, start the Synaptic Package
Manager from the main menu by choosing System | Administra-
tion | Synaptic Package Manager.

o Appheations Places

@ & (8

4 Figure 6-9

184

Chapter 6 / Game Audio

2. In Synaptic Package Manager, search the Ubuntu application
repositories for Schism Tracker, and then mark it for installation by
checking the check box in the resulting application list. Click
Apply and Schism Tracker will be installed.

o) Apphcations Blaces Sysem @29 & i8] Adan
i gt bt ity olusia gt leahicay F 6_,0
Bl [dt Packsge Seltings el ’gUre
& 5] “
Reload Mark AlUpgrades Apply Propertes Search
an S Package = rataled Version Latest v Descrigi
schuarn tracker B sehism 1:0.50¢1-1 clone mmng at) (3

ImpulseTracker clane alming at providing the same look&feel

#. sudo samples of mmtrumants

Status
arign
Custom Fiters
Sawch Resks

1 packages kst

1106 matabed. 0 broksn. 110 mstaliupgrads. 0 to remove: 750 k8 wil be used
A [B synapts Package Ma...

3. Launch Schism Tracker from the Ubuntu Terminal by clicking
Applications | Terminal from the Ubuntu main menu, and at the
terminal enter:
schism tracker

<3 Apphcatiors places Sysem @@ & =5

ﬂ Figure 6-11

ngalan- desktop

T e N - L pe—

Lasd Madule (D

Chapter 6 / Game Audio 185

6.4.2 Downloading and Installing Schism
Tracker on Windows and Mac

1. Beginning from the desktop, navigate a web browser to the
Schism Tracker web site at http://sovietrussia.org/wiki/
Schism_Tracker.

2. Download the appropriate package for your operating system;
there is also a package available for Linux distributions other than
Ubuntu.

i

Requiremants

3. Extract the compressed zip archive (for Windows) or run the DMG
archive for Mac to install Schism Tracker to the system.

e
$shisn Trasker CVF bails en $897-10-8 Wil FIgUfe 6-13

P
m'@ M [TSH 4 g— nm s ston —

186 Chapter 6 / Game Audio

6.5 Programming Audio with
SDL_mixer

At its simplest, audio programming for games is about playing sound
(footsteps, raindrops) and music (background and incidental) at appro-
priate moments during game execution. Music is played to set a
scene’s mood, while sounds are played in response to user actions in
the game world, like opening doors or smashing windows. In this sec-
tion we’ll look at a cross-platform API SDL that is free for both
commercial and non-commercial usage.

The SDL (Simple DirectMedia Layer) was considered in the previ-
ous chapter primarily as a cross-platform graphics API, an API
designed to load images from files on disk to surfaces in memory, and
then to present the surface pixels frame by frame to the game window
at run time. By default, SDL can load pixels only from images in the
standard Windows BMP (bitmap) format, unless a plug-in module such
as SDL Image is downloaded and installed. This plug-in offers to
developers the Image Load function, which extends SDLs range of
accepted image file formats to PNG, TGA, JPEG, and several others.
In keeping with this notion of modular plug-ins, where additional
libraries are downloaded from the Internet to extend SDLs default
functionality, the SDL can also play and mix audio files (such as MP3s
and OGGs) by way of a downloadable plug-in library called SDL_mixer.
This plug-in offers to developers a set of functions and data types for
playing audio in SDL applications. SDL_mixer loads sounds from files
on disk to buffers or streams in memory, and from these it can play and
mix as many sounds simultaneously as the system’s sound hardware
supports. SDL_mixer supports sounds in the following file formats:

WAVE/RIFF (.wav)

AIFF (.aiff)

VOC (.voc)

MOD (.mod, .xm, .s3m, .669, .it, .med, and more)
MIDI (.mid; using timidity or native midi hardware)
Ogg Vorbhis (.ogg)

MP3 (.mp3)

Chapter 6 / Game Audio 187

The following step-by-step processes illustrate how SDL_mixer can be
downloaded, installed, and configured “ready for use” with the
Code::Blocks IDE on the Linux (Ubuntu) and Windows platforms.

TIP. The process of installing both Code::Blocks and SDL was
explained in earlier chapters of this book.

6.5.1 Installing and Configuring SDL_mixer on
Linux Ubuntu

1. Beginning from the Ubuntu desktop, start the Synaptic Package
Manager from the Ubuntu main menu by selecting System |
Administration | Synaptic Package Manager.

{3 Apphcations Places & w3 Man

system @@
o relerances v

{2 Adrminstrat

o
€

Figure 6-14

2. Search for SDL Mixer and click the OK button to return in the list
view a list of matching applications available to install from the
Ubuntu Repositories. Select both the SDL Mixer and the SDL
Mixer development files, then click the Apply button to install
them to the system.

188

Chapter 6 / Game Audio

3 rppieaticen Places Syvem @20 c @ wld Alan
2 Synaptic Package Manager =T FigUre 6"5

Bl Edt Package Settings el =

[5] & S s, Apply the following changes?
b Ugrades Apply Propetws | Saacch L7 »

sugh the lnt
hnd

Sgarch Pesults
| packages kuted, 1107 nazaled, © Ergkan. 20 10 Fitaljupgrade, 0 10 remove: 40.0 M wil be uied
| | P synapts Packige Ma... 5] -1

3. Close the Synaptic Package Manager and start Code::Blocks from
the Ubuntu main menu by selecting Applications | Program-
ming | Code::Blocks IDE.

4. Start anew SDL Code::Blocks project or open an existing project.
To configure SDL Code::Blocks projects for use with the
SDL_mixer libraries, select Project | Build Options to view the
active project’s compilation settings. Click the Linker settings
tab and add SDL Mixer to the list of libraries linked to by the pro-
ject’s compiler. Also add the following preprocessor directive to
the main source file to include the SDL_mixer header file and its
types into the project:

#include <SDL_Mixer.h>

Chapter 6 / Game Audio 189

P

o os

i
Figure 6-16

ramG

6.5.2 Installing and Configuring SDL_mixer on
Windows

1.

Beginning from the Windows desktop, navigate a web browser to
the SDL_mixer web site at http://www.libsdl.org/projects/SDL
mixer/ or visit the SDL home page at http://www.libsdl.org/, and
browse the searchable database of SDL add-ons for the
SDL_mixer add-on.

At the SDL_mixer web site, download both the Win32 binaries and
the Win32 development libraries to the desktop, and from there
extract the contents of the downloaded ZIP archives into the exist-
ing SDL development folder on the hard disk (the folder containing
the SDL header files and lib files).

) 8) oot | Figure 6-17

SDL_mixer 1.2 | l-

190 Chapter 6 / Game Audio

3. Start Code::Blocks and either create a new SDL project using the
Code::Blocks SDL Wizard or load a previously saved project. Then
select Project | Build Options from the Code::Blocks main
menu to view the active project’s compilation settings. Click the
Linker settings tab and add SDL_mixer to the list of libraries
linked to by the project’s compiler. Also add the following prepro-
cessor directive to the main source file to include the SDL_mixer
header file and its types into the project:

#include <SDL Mixer.h>

e - S
Figure 6-18

N NOTE. The SDL_mixer packages (binaries and development librar-
ies) downloaded from the SDL_mixer web site together include an
aggregation of run-time DLLs, specifically SDL_Mixer.dll, smpeg.dll,
libogg-0.dll, libvorbis-0.dll, and libvorbisfile-3.dll. All of these DLLs
must be distributed to end users alongside the compiled SDL_mixer
application if the application is to run successfully; that is, every DLL
should be included in the same folder from which the compiled exe-
cutable is run on the end user’s system.

6.5.3 Initializing the SDL_mixer Library

The SDL_mixer library is an add-on for SDL (though it can be used
independently of the SDL itself) and it offers to game developers a set
of functions for playing and mixing both music and sound effects in
their games. Programmatically, the first step in initializing the
SDL_mixer library should be a function call to Mix_OpenAudio, and

Chapter 6 / Game Audio 191

this function should be called before any other in the SDL_mixer
library. The Mix_OpenAudio function takes the following form:

int Mix_OpenAudio(int frequency, Uintl6 format, int channels,
int chunksize)

int frequency — Output sampling frequency measured in Hz of
sounds played via the speakers. For many games this value will be
22050 (MIX DEFAULT FREQUENCY).

Uint16 format — Specifies the format of the audio to be pro-
cessed by the hardware (in terms of bits per sample). This value
will typically be MIX DEFAULT FORMAT, which equates to
AUDIO_S16SYS. The possible values for this argument are as
follows:

B AUDIO_US8 — Unsigned 8-bit samples

B AUDIO_S8 — Signed 8-bit samples

B AUDIO_U16LSB — Unsigned 16-bit samples, in little-endian
byte order

B AUDIO_S16LSB — Signed 16-bit samples, in little-endian
byte order

B AUDIO_U16MSB — Unsigned 16-bit samples, in big-endian
byte order

B AUDIO_S16MSB — Signed 16-bit samples, in big-endian
byte order

B AUDIO_U16 — same as AUDIO_U16LSB (for backward
compatability)

B AUDIO_S16 — same as AUDIO_S16LSB (for backward
compatability)

B AUDIO_U16SYS — Unsigned 16-bit samples, in system byte
order

B AUDIO_S16SYS — Signed 16-bit samples, in system byte
order

int channels — The number of channels that may be used by the
API for playing sounds; refers typically to the number of speakers
for which a game’s audio is designed: 1 for mono, 2 for stereo, etc.

int chunksize — Bytes per output sample. This could be 4096.

192

Chapter 6 / Game Audio

Sample code:

if(Mix_OpenAudio (22050, MIX DEFAULT FORMAT, 2, 4096) == -1)
{

return 1;

}

6.6 Sounds and Music with SDL_mixer

| Audio Files on Disk (MP3, OGG, WAV) Figure 6-19
; 1 | .
A 4 ; Y ¥
Music Sample 1 Sample 2
(Background) (Slap) (Footsteps)
A 4 Y
Audio Audio
Music Channel Channel Channel
1 2
i
—_—
Speakers

The SDL_mixer add-on divides audio into two types: samples or music
(sound or music). The term “sample” refers to a sound of short dura-
tion (less than a minute in length) and includes effects such as
footsteps, gunshots, screams, and potentially millions of others that
may occur in a game. By contrast, “music” refers to a longer, instru-
mental soundtrack designed to play subliminally or incidentally (in the
background), setting the mood at any one time for any given scene in
the game. Thus, audio can be loaded from files on disk and into
SDL_mixer as either a sample or as music, reflecting how a developer
intends the audio to be played in the game.

Chapter 6 / Game Audio 193

Audio loaded into SDL_mixer as a sample (and not as music) is
loaded in its entirety from its file, byte by byte, into a buffer in mem-
ory where it can later be played on demand. It can even be played
simultaneously with other samples also playing via the sound hard-
ware’s audio channels. In other words, SDL_mixer can play one or
more samples simultaneously. On the other hand, SDL_mixer may
play only one song (music) at any one time. Furthermore, since music
is typically longer in duration than a sample and thereby consumes
more memory on disk, SDL_mixer does not load a song entirely into
memory like it does a sample; rather, a song is said to be streamed
from a file and into memory byte by byte during playback. Thus, for
SDL_mixer, music playback is the process of intelligently loading from
a file only those segments of a song currently relevant to immediate
playback while simultaneously discarding from memory all of those
previously loaded segments that have since become irrelevant for
playback. In this way, chunks of the song are loaded and unloaded on-
the-fly as the song is being played, such that a song is never entirely
present in memory but never wholly out of memory. Both the sample
and music data types of SDL_mixer are now considered in further
detail.

6.6.1 Louding Music

Programmatically, music is first loaded from a file on disk (such as
MP3 or OGG) and into a memory buffer (not in its entirety) by the
Mix_LoadMUS function in preparation for playback later. This function
accepts as an argument a valid file name to a music file on disk, and it
returns a Mix_Music handle; that is, it returns a pointer to a memory
buffer containing the music partially loaded from the file. The
Mix_LoadMUS function takes the following form:

Mix Music *Mix_LoadMUS(const char *file)

Sample code:

music = Mix_LoadMUS("Music.ogg");

SN NOTE. Valid file formats are WAV, MOD, MIDI, OGG, and MP3.

194

Chapter 6 / Game Audio

6.6.2 Playing Music

Using SDL_mixer, music is loaded from a file on disk and into a
Mix_Music memory buffer by the Mix_LoadMUS function in prepara-
tion for playback later. SDL_mixer offers to developers at least three
different functions from which to choose to begin playback of a mem-
ory buffer, each function beginning playback of a song in a different
way:

Mix_PlayMusic — This function begins playback of a song at full
volume from the beginning of the song.

Mix_FadeInMusic — This function likewise begins playback of a
song from the beginning, but the song begins mute and its volume
gradually increases to full volume over a specified fade-in time
measured in milliseconds.

Mix_FadeInMusicPos — This function begins playback of a song
from a point other than at the beginning (from a specified time off-
set as measured in milliseconds from the beginning of the song)
and playback also begins at mute volume, graduating to full volume
over a specified fade-in time. Consider the following code.

NOTE. Remember, there are 1000 milliseconds in 1 second. So

2000ms = 2s; and 7500ms = 7.5 seconds.

Standard Play Music Function

// Mix Music *music;
// Already loaded

//Prototype is: int Mix PlayMusic(Mix Music *music, int Toops)
//Loop = Number of times to repeat sound playback; where -1 is
infinite
if(Mix_PlayMusic(music, —1)==-1)
{

//Error occurred here

}

Chapter 6 / Game Audio 195

Play Music Using the SDL_mixer Fadeln Function

// Mix_Music *music;
// Already loaded

//Prototype is: int Mix_FadeInMusic(Mix _Music *music, int Toops,
int ms)
//Loop = Number of times to repeat sound playback; where -1 is
infinite
//ms = milliseconds during which music fades in from mute to full
volume
if(Mix_FadeInMusic(music, -1, 2000)==-1)
{

//Error occurred here

}

Play Music from a Specified Time Offset Using the Fadeln
Function

// Mix_Music *music;
// Already loaded

//Prototype is:
//int Mix_FadeInMusicPos(Mix _Music *music, int loops, int ms,
double position)
//Loop = Number of times to repeat sound playback; where -1 is
infinite
//ms = milliseconds during which music fades in from mute to full
voTlume
//position = Offset in milliseconds from the beginning of the
//song where playback is to begin
if(Mix_FadeInMusicPos(music, -1, 2000)==-1)
{

//Error occurred here

}

6.6.3 Controlling Music

In addition to streaming music using the three playback functions,
SDL_mixer also offers to developers functions for controlling or stop-
ping music playback in the same way a media player or stereo system
offers buttons to start, stop, rewind, pause, and forward the contents of
a media stream. These media control functions include the following:

196

Chapter 6 / Game Audio

int Mix_VolumeMusic(int volume) — Sets the volume of the
music currently being played by SDL_mixer according to the inte-
ger argument (Volume). This argument can be any integer from 0
(mute) to 128 (full volume).

Example:

//Sets the volume
Mix_VolumeMusic(128);

void Mix_PauseMusic() and void Mix_ResumeMusic() —
Pauses and resumes playback of music, respectively.

Example:

//Pause
Mix_PauseMusic();

//Resume
Mix_ResumeMusic();

int Mix_SetMusicPosition(double position) — Seeks to a speci-
fied playback position in the music currently being played by
SDL_mixer, specified by the argument (position) as an offset in
milliseconds from the beginning of the song.

Example:

//Plays from specific point
Mix_SetMusicPosition(50);

int Mix_HaltMusic() — Stops playback of the song currently
being played by SDL_mixer.
Example:

//Stops music playback
Mix_HaltMusic();

int Mix_FadeOutMusic(int ms) — First fades out and then halts
the music currently being played by SDL_mixer.

Example:

//Stops music playback
Mix_FadeOutMusic(5000);

Chapter 6 / Game Audio 197

B void Mix_FreeMusic(Mix_Music *music) — Deletes a song held
in memory. This function should be called after a song is no longer
needed for further playback using SDL_mixer.

Example:

//Frees memory buffer
Mix_FreeMusic(Music);

6.6.4 Playing Sumples through Channels in
SDL_mixer

In SDL_mixer, a “sample” refers to a sound that is typically less than a
minute in duration. The sample is loaded from a file on disk (.wav, .ogg,
etc.) and into a memory buffer in the system memory where it waits in
situ to be played on demand for as many times as required. The sam-
ple held in system memory may, for example, be the sound of footsteps
intended to be played while an NPC walks around the game world or
perhaps the sound of a gunshot that is to occur whenever a weapon is
fired. In every case, however, a sample is held in memory by
SDL_mixer, and it must be sent through at least one of the available
audio channels on the sound hardware if it is to be heard by the player
through the system’s speakers. Each sample travels along its channel
at the same speed as any other sample on any other track, and each
audio channel accommodates only one sample at any one time, mean-
ing that different samples must travel along different channels if they
are to be heard simultaneously on the speakers by the player. Thus,
the total number of samples that may play simultaneously on the
speakers corresponds to the total number of audio channels supported
by the system’s sound hardware.

The following sections describe how to program with samples and
channels using SDL_mixer, including how to load sounds from files on
disk and into memory buffers as samples; how to assign a sample to an
audio channel for playback; how to control playback of individual sam-
ples playing in a channel through positioning, rewinding, and pausing;
and how to delete samples from memory when further playback of a
sample is no longer required.

198 Chapter 6 / Game Audio

6.6.5 Loading Sounds into SDL_mixer as
Samples

Sounds are first loaded from files on disk (.wav, .ogg, etc.) into
SDL_mixer as samples in memory using the Mix_LoadWAV function,
and are then ready for later playback via audio channels. This function
accepts as a string argument a valid file name of a sound file on disk to
load as a sample. Mix_LoadWAV takes the following form:

Mix_Chunk *Mix_LoadWAV(char *file)

Example code:

// load sample.wav in to sample

Mix_Chunk *sample;
sample=Mix_LoadWAV("sample.wav");
if(!'sample)
{

//Error

}

N NoOTE. Every sample loaded into SDL_mixer using Mix_Load WAV
must later be destroyed (freed from memory) with a call to the
Mix_FreeChunk function. This function must be called once per
loaded sample after it is no longer required for further playback in
the game.

6.6.6 Handling Channels with SDL_mixer

Programmatically, sounds are loaded from files into SDL_mixer as
samples, and samples are played through audio channels; only one
sound may play in any audio channel at any one time. Thus, the total
number of samples that may play simultaneously using SDL_mixer is
necessarily limited to the number of audio channels supported by the
sound hardware on the player’s system; 16 channels support up to 16
simultaneous sounds, 8 channels = 8 sounds, etc. Developers can
manually set the total number of audio channels to be used by
SDL_mixer for any given game using the Mix_AllocateChannels func-
tion. This function takes the following form and may be called

Chapter 6 / Game Audio 199

anywhere in an SDL_mixer application (even when sound is currently
playing through audio channels):

int Mix_AllocateChannels(int numchans)

Example code:

// allocate 16 mixing channels
Mix_AllocateChannels(16);

SDL_mixer offers a variety of functions from which to choose for play-
ing samples in channels, and like their counterpart music playing
functions, each function differs in the way the samples are played. The
following sample playing functions are available:

B Mix_ PlayChannel — This function plays a specified sample (for
example, a punch sound or a gunshot) in a specified channel imme-
diately at full volume and from the beginning of the sample (from
time 0).

int Mix_PlayChannel(int channel, Mix_Chunk *chunk, int Toops)

Example code:

// channel = play sample on first free unreserved channel (-1)
// Toops = play it once only

// Mix_Chunk *sample; //previously Toaded
if(Mix_PlayChannel (-1, sample, 0)==-1)

{

//Error occurred here
}

B Mix PlayChannelTimed — This function plays a specified sam-
ple in a specified channel immediately at full volume and from the
beginning of the sample, playing for a specified period of time after
which playback stops.

int Mix_P]ayChanne]Timed(int channel, Mix_Chunk *chunk, int
Toops, int ticks)

200 Chapter 6 / Game Audio

Example code:

// play sample on first free unreserved channel
// play it for half a second

// Mix_Chunk *sample; //previously Toaded
if(Mix_PlayChannelTimed(-1, sample, -1 , 500)==-1)
{

//Error occurred here

}

%\ NOTE. Other channel playing functions include:
B void Mix_Pause(int channel)

void Mix_Resume(int channel)

int Mix_HaltChannel(int channel)

int Mix_FadeOutChannel(int channel, int ms)

5.7 Conclusion

This chapter considered the fundamentals of the SDL_mixer library, an
add-on for the SDL API that is designed for playing game audio in the
form of samples (sounds) and music (background or incidental). Both
sounds and samples are loaded one by one from files on disk (such as
.mp3s) and into memory buffers managed by the SDL_mixer library.
Samples are loaded from disk in their entirety and are played to the
speakers through audio channels, one sample per channel; as many
samples may play simultaneously as there are available channels. In
contrast to samples, music, which is more memory intensive, is
streamed from a file (loaded and unloaded on-the-fly, region by region)
according to the region or part of the song being played at any one
time. This region is played to the speakers through one audio channel
only, thus only one song may play at a time. Playback of a new song
will stop and replace the playback of any prior song currently being
played. In Chapter 11, other audio APIs (namely FMOD and BASS)
will be considered briefly for those who wish to use cross-platform
alternatives to SDL_mixer.

Game Mechanics

This book so far has explained how to configure a cross-platform envi-
ronment on a single machine through dual-booting, across a selection
of machines each running a different OS, or running subordinate guest
OSs on a single host through virtualization. We’ve also described a
cross-platform C+ + IDE called Code::Blocks, which can be used to
create and compile C+ + cross-platform games. In addition, we've
covered programming with two freely available, open-source and
cross-platform gaming libraries: SDL (Simple DirectMedia Layer) and
SDL_mixer. SDL is a library designed to draw fast-paced graphics and
animations to the display in real time, and SDL_mixer is a library for
streaming and playing audio from files such as WAV and OGG.

However, this is not all there is to computer games. Games are to
some extent holistic creations insofar as they are greater than the sum
of their parts, something above and beyond the IDE and gaming librar-
ies (like SDL) from which they are made. Games cannot merely be
reduced to essential core components alone, such as graphics, sound,
input, etc.; they are an imaginative synthesis of core components
working in unison that bring together the graphics, sound, physics,
artificial intelligence, story, and genre into a coherent totality. Overall,
the specific ingredients for a game (the libraries, IDEs, etc.) may in no
way differ from those used for any other game, but it is the particular
configuration (the quirky recipe) of those ingredients into a whole that
makes each game unique, at least in theory. This chapter is about reci-
pes; it is about making things work together, and this makes the
difference between a game and a senseless collection of graphics and
sound.

201

202 Chapter 7 / Game Mechanics

N NOTE. Given the broad scope of subjects included here, this chap-
ter is arranged in a Q&A format to make it simpler to skim so
readers can jump to specific topics of interest.

/.1 Getting Started with Game Worlds

Q. I want to make a game. I have learned how to program with C+ +
using Code::Blocks. I know how to draw images to the window with
SDL, and I know how to play sound with OpenAL. Let’s say I now
want to make a 2D RPG game with a top-down view (the camera is
looking downward, directly at the player and the rest of the game
world). How do I start developing this game?

A. The first stage could be to create a game world, or a map. The map
is a single graph-like coordinate space in which all game objects —
from the player to NPCs and walls and chairs, etc. — exist as physical
bodies, each with a specified X and Y position in the map measured
from the origin, and each with a specified width and height. This
means each game object has a measurable, definable position in the
map, and each object can be measured either from the origin of the
coordinate space or relative to any other object. This then introduces
the notion of a game object as a base class; that is, as a set of properties
that all objects in the game — whether a player or NPC, moveable or
not — share, and it is from this base class that all game objects are
derived since all objects in the map will have a position and a size.
Objects will also have a unique identifier, a name or number to single
them out from other objects by human readable tags. The following
code is a sample base class; the code is followed by a figure that
illustrates the geometry.

#include <iostream>
using namespace std;

//Vector class for storing (X,Y) position
class cVector
{

private:

protected:

Chapter 7 / Game Mechanics

public:

long x;
Tong y;
}s

//Base game object
class CGameObject
{
private:
protected:
public:
cVector m_Position;
Tong m Width;
Tong m_Height;
std::string m_Name;
bool m Visible;

CGameObject(std::string Name)

m_Name = Name;

m_Position.x = m_Position.y = m Width

m Visible = true;

Coordinate Space

15
14
13
12—
1

o Game Object 2
] (X.¥)= {7.7)
Wigth=3
8 Height=3
5 —
4 Game Object 1
X.¥)=(1.2)
3 — Width=3
Height=3

0 1 T 1 T 1 T 1
o 1 2 3 4 5 6 7T 8 85 10 1 12 13 14 15

X

= m Height = 0;

Figure 7-1: The game
world map and object
positions

203

204 Chapter 7 / Game Mechanics

/.7 Creating Derivative Objects

Q. Okay; I have created a base object as above, with position, width,
height, and name properties. But that in itself is quite basic and hardly
useful; it only represents a position and a size. How can I add a player
character to the level, for example? Or more generally, how can I add
obstacles and other objects to the map that are beyond what the base
class offers?

A. The base class is only the foundation class, or the starting point
from which all other classes — each of them a game object — will
begin. It is not a class intended to be instantiated itself, but represents
only the minimum set of properties and methods intrinsic to all game
objects; that is, the properties that all objects will inherit. So while
every type of game object may differ widely from the others in their
implementation (some objects are walls, some are floors, some are
NPCs, etc.), the base class contains some properties common to all
objects such that, were those properties removed from those objects,
they would no longer be game objects. In short, then, every type of
game object in a single map is implemented as a class, but one that is
first and foremost derived from class “game object.” The following
code is a sample derived class, and this is followed by a diagrammed
model of derived game objects.

class cPlayer : public CGameObject
{

private:

protected:

pubTic:

Tong m_Health;
cVector m_FacingDirection;
Tong m_Speed;

cPlayer(std::string Name) : CGameObject (Name)
{

Speed = 0;

Health=100;

Chapter 7 / Game Mechanics 205

Figure 7-2: Derived

BASE OBJECT ! |
game object hierarchy

WIZARD WALL ‘ PLAYER ‘

ARCHMAGE

SLIDING WALL ALARM WALL

/.3 Maintaining Game Objects

Q. I see; so a level may contain potentially hundreds of game objects,
from walls and floors to power-ups, tables, chairs, enemies, the player,
and too many others to list. This could grow rather unwieldy and diffi-
cult to manage, with all these objects and pointers to objects laying
around in memory here and there. How do I maintain all of them?

A. Perhaps the simplest solution here would be to maintain a linked
list (a std::vector) of game object pointers in memory. The std:vector
class is part of the STL (Standard Template Library) and ships with
Code::Blocks. STL offers a selection of classes for handling memory
and pointers, and std::vector is specifically designed for managing lists
of pointers, like a dynamic array that can grow and shrink in size
exactly to accommodate the right number of pointers. The following
sample code illustrates how to keep a list of game objects and includes
methods for adding items, deleting items, and clearing all items from
the list.

#include <vector>
std::vector<CGameObject*> m_GameObjects;

void AddObjectTolList(CGameObject *O0bj)

206 Chapter 7 / Game Mechanics

{
if(0bj)
{
m_GameObjects.push back(0bj);
}
}
void ClearList()
{
for(unsigned int i=0; i < m GameObjects.size(); i++)
{
if(m_GameObjects[i])
delete m_GameObjects[i];
}
m_GameObjects.clear();
}

void Delltem(std::string Name)
{
for(unsigned int i=0; i < m GameObjects.size(); i++)
{
if(!m_GameObjects[i])
continue;

if(m_GameObjects[i]->m_Name==Name)

{
delete m_GameObjects[i];
m_GameObjects.erase(m_GameObjects.begin()+i);
return;

Chapter 7 / Game Mechanics 207

Figure 7-3: A linked list

STD:VECTOR . .
of game object pointers

GAME OBJECT 1

1GAME OBJECT 2

1 GAME OBJECT 3

/4 Tile-based Levels

Q. Okay; so every object in a game map is derived as a SuperClass
from base class CGameObject. This means each object in a map —
such as the player, enemies, walls, and doors — have at least an X,Y
position, a name, and a size. A map, then, is merely a structural
arrangement (a collection) of game objects; a place where game
objects together form walls, houses, towns, worlds, and other struc-
tures in which game characters live and act. So now the question
arises: I want to start creating my top-down RPG game. What software
should I use to actually build a map to define the X,Y location of every
object in the map and position the doors and walls and windows and
power-ups? Most games seem to have level editors where developers
visually design a level layout, but I have no such editor available. Does
this mean I have to hard-code the map? I hope not. Having to hard-
code a map line by line in C+ + using the Code::Blocks editor would
not only be tedious and time-consuming since every object must be
declared (at least every object’s width, height, position, and name), but
it would also mean that I'd have to recompile the Code::Blocks project
every time I made a change to a map. This is just not acceptable.

A. You are correct; many developers use level editors to build maps for
their games. Although there is no level editor available for your new
game unless you have made one already, the map does ot have to be

208

Chapter 7 / Game Mechanics

hard-coded. For top-down games like the original Zelda, Dink
Smallwood, or Dr. Lunatic Supreme with Cheese, a map can be thought
of as a collection of game objects, or more accurately a collection of
tiles, which are small, repeatable images (like a patch of grass, a pat-
tern of bricks, or a tree). So a map then may be conceptualized more
specifically as a cross-section or grid (or two-dimensional array) of
equally sized tiles; each tile ordered side by side in columns and rows
to form a complete map. At its most fundamental level, this grid-like
map arrangement is typically implemented in games by developers as
follows:

1. Before creating a map for any tile-based game, an artist will first
create a tile set, or a palette of tiles. This is a single image file
(PNG, BMP , etc.) that features a copy of every unique tile in a sin-
gle map, together arranged in columns and rows, one tile beside
the next. Its purpose is to group together all related tiles into a
single bitmap (palette) rather than to keep each tile in a different
file.

2. Programmatically, a tile set image is an index file of tiles. Since all
tiles in the file are the same width and height in pixels, and since
the tiles are arranged side by side in columns and rows, each tile
may then be identified individually by its index in the grid. That is,
a tile is numbered by its sequential position in the file, as read
from left to right, line by line and tile by tile.

3. It follows, then, that a map (being a collection of tiles forming a
level) has a relationship to the palette or tile set. First, any single
map is composed only from tiles featured in a palette, and not from
objects loaded from elsewhere. Second, a map is similar to the pal-
ette insofar as it is a grid of tiles, but the map may feature any
number of tiles, and any number of copies of tiles, all in various
configurations to create a meaningful map. For example, wall tiles
are combined to make walls, and these are juxtaposed with door
and window tiles to form houses, etc.). In short, then, the map is
not a palette to contain the pixels of the tiles themselves because
it may duplicate many tiles (housing tiles is reserved for the pal-
ette since it features only one copy of each tile). Instead, the map
is merely a matrix of numbers in memory, an array of references
into the palette that defines only the arrangement (or position)

Chapter 7 / Game Mechanics 209

each copy of a tile from the palette should take in the map. In this
sense, the map is a finite state machine (a snapshot of a moment)
because the numeric value of each element in the map array speci-
fies which tile is occupying that space at any one time. This means
that maps need not be hard-coded. Why? Because they are a grid
of numbers, and so they could just as easily be loaded from a text
file or an XML file, and they could also be output to such files from
a custom-made map editor, and even copied to the clipboard in
numerical form.

Figure 7-4: A tile-based
map

1,1,0,00

0,0,0,0,0
0,0,2.0.0 =
0,0,0,0,0
0,0,0,1,1

=
0

The following example loads a sample tile set from an image file, then
arranges the tiles in a map, and finally draws the map to the display
using the SDL graphics library.

void createlLevels()

{
//Load SDL tiles
g LevelTiles = SDL LoadBMP("Tiles.bmp");

//Level 1
//Example of hard-coded level, but most would be defined in a

//text file

cLevel* Levell = new clLevel();

210 Chapter 7 / Game Mechanics

Levell->m_LevelNumber = 0;

Levell->m_Level[0][2] = OBJECT WALL; //1
Levell->m_Level[0][3] = OBJECT WALL; //1
Levell->m_Level[0][4] = OBJECT WALL; //1
Levell->m Level[1][2] = OBJECT DOOR; //0
Levell->m Level[1][4] = OBJECT WINDOW; //3
Levell->m_Level[2][2] = OBJECT FENCE; //4
Levell->m_Level[2][4] = OBJECT GRASS; //2
Levell->m_Level[2][5] = OBJECT GRASS; //2
Levell->m_Level[2][6] = OBJECT GRASS; //2
Levell->m_Level[2][7] = OBJECT CAR; //5

//More stuff defined[...]

AddToLevellList(Levell);

//Update level; argument is SDL back buffer; draws map to the
//display
void update(SDL Surface *Screen)
{
if((g_LevelTiles)
{
for(int indxl = 0; indxl < 20; indx1++)
for(int indx2 = 0; indx2 < 20; indx2++)
{
//Get current tile
GAME_TYPE OBJECT Index = m_Levell[indx1][indx2];

SDL_Rect SourceRct;

SourceRct.x = Index * m TileSize; SourceRct.w =
m_TileSize;

SourceRct.y= 0; SourceRct.h = m TileSize;

SDL_Rect DestRct;
DestRct.x = indx2 * m _TileSize; DestRct.w = m TileSize;
DestRct.y = indx1 * m _TileSize; DestRct.h = m TileSize;

Chapter 7 / Game Mechanics

SDL_BlitSurface(g LevelTiles, &SourceRct, Screen,
&DestRct);

//Draw player object

Player->update(Screen);

/.5 Animations and States

Q. So granted, tile-based levels seem an acceptable solution for

AN

designing complex maps because each tile can be arranged in a grid-

like system of numbers where each cell in the grid references an
index/offset in the tile set palette. But there is a further problem.

Some tiles in a map — such as the player tile, or an enemy, or a door

or window tile — may animate or change state. For example, a door

tile can be in one of two different states: open or closed. Or the player

tile may potentially enter more states (though only one state at any

one time) like a “running” state, or an “attacking” state, or an “idle”

state, and in each state the appearance of the player tile will change
accordingly. In other words, some tiles do not remain static, but can
change through a form of state-based animation. What is the best

solution for this?

A. The tile-based map system — a grid of indices referencing tiles in a
palette — is itself already half of the solution to the problem of anima-
tion. Extending this framework such that every palette includes every
frame (tile) of animation (e.g., a tile for the player in each state of walk-
ing, running, and jumping), then the concept of animating tiles simply
means animating (changing) indices in the map grid to refer to differ-

ent tiles (frames) from the palette at run time.

212

Chapter 7 / Game Mechanics

/.6 Movement

Q. I get the idea; tiles in a map change their appearance based upon
their palette index in the map grid. This is because the index of each
map cell refers to a unique tile in the palette. I even realize this index-
ing concept could be extended to create moveable tiles (tiles that can
wander around a map, from cell to cell) such as the player tile. For
example, let’s say the player tile index is 5, and the standard empty
grass tile is 4; so a given map will have only one cell set to 5 (since
there is only one player character in the map) but many cells can be 4
since the player may be standing in wide-open space, like a field. Now
let’s suppose the gamer presses the right arrow key and moves the
player tile one cell to the right. This has the effect of shifting the num-
ber 5 from the current cell to the neighboring cell to the right, leaving
behind the old cell now set to 4 (grass) instead of 5 (player). This is all
well and good, but moving from cell to cell in this way hardly appears
smooth on-screen. To anybody watching, the player’s stilted move-
ment as he jumps across the width of one space to the edge of another
will make the grid arrangement obvious. In addition, as it stands, the
player can only move left, right, up, or down since the grid is formed of
equally sized square tiles arranged in columns and rows; so the player
cannot move diagonally or at any other angle. In short, I want a
smooth-moving, free-roaming player, one that isn’t “locked” into the
grid.

A. Despite the brilliance and simplicity of a tile-based grid arrange-
ment where maps become nothing more than a grid of numbers, there
are undoubtedly limitations concerning tiles that move for the reasons
you mentioned, like with the player character. To solve this problem a
distinction must then be made that divides tiles into two kinds: static
and moveable. Static tiles are walls, floors, and windows. Moveable
tiles are the player, NPCs, and cars. Static tiles are locked into the
grid, while moveable tiles may be released from the grid and may exist
in an unconstrained space, not restricted by a cell’s width or height.
However, this freedom brings about some consequences worth consid-
ering. Firstly, free movement means that it is possible for moveable
tiles to exist inside more than one cell in the grid at any one time. This
is because, as a tile moves smoothly across a border joining one cell to

Chapter 7 / Game Mechanics 213

another, the tile (as it passes) will be partially in the cell that it enters
and partially in the other that it is leaving. Secondly, free movement
involves using vectors to perform transformations to move the tile from
the source point to the destination point. Let’s then take a quick look
at vectors. More detailed information about vectors and their rele-
vance to game programming can be found in my previous book,
Introduction to Game Programming with C+ +.

/.6.1 Movement with Vectors

A sample class for a vector might look like this:

class CVector
{
private:
protected:
pubTic:
long x;
lTong y;
1

As you can see, a vector is a mathematical
construct representing direction. Vector

classes are like coordinate and point classes, Magnitude
which feature X and Y ordinate pairs; how-
ever, vectors differ from coordinates since H o

they express a direction, and not a location.
Coordinates are used to answer the question
“Where?” Vectors are used to answer the v A
question “Which way?” Coordinates specify
an absolute position measured from the ori-
gin; conversely, a vector may expresses a
direction relative to any point, not just the
origin. The vector (1,1) would specify a direc-
tion up and to the right at an angle of 45
degrees; and its opposite direction would be
(-1,-1).

The vector (8,8) represents the same direction as (1,1), and the
same direction as (2,2), but each vector expresses more than simply a
direction; it also expresses a distance over which to travel, called a

r
H=Y A+ O

Figure 7-5: A vector’s magnitude

214

Chapter 7 / Game Mechanics

vector’s magnitude. The magnitude is the distance along the diagonal,
which is also the length of the hypotenuse.

Vectors can be multiplied by both positive and negative numbers
to scale their magnitude and to sometimes change their direction. For
example, (2,2) * 2 results in a vector of different magnitude but of the
same direction (4,4). However, (2,2) * -3 results in a vector of different
magnitude and of different direction (-6,-6).

Sometimes it is useful for a vector to have a magnitude greater
than 1, but often developers will want to express only direction; and
this can be expressed by a special vector whose magnitude is 1 called a
normalized vector, or a unit vector. Multiplying a unit vector by any
number is like any number multiplied by 1; the result of this multipli-
cation is a vector whose magnitude is the same as the multiplicand.
Thus, a vector of any given magnitude (e.g., 5,5) can be stripped of its
magnitude and reduced to expressing only its direction by becoming a
unit vector through being normalized. A vector is normalized by divid-
ing each of its ordinates by its magnitude, as in (x/mag)(y/mag).

Figure 7-6: Vector
scaling

v1
V2=v1"05

V2=v1*-05

In addition, a vector’s direction can be rotated around its origin by a
specified angle in degrees. That is, a vector can be rotated around an
arc, around the circumference of an invisible circle, by a specified
angle. The following code features a complete vector class for the pur-
poses of this chapter.

Chapter 7 / Game Mechanics

#ifndef VECTOR H_INCLUDED
#define VECTOR H_INCLUDED

#include <math.h>

class CVector

{

private:
protected:
public:

float x;
float y;

CVector()
{

x =y =0.0f;
}

CVector(float px, float py)
{

X = pX;
Y = pYys
}

//Returns vector magnitude
float Tength()
{
return sqrt((x * x) + (y *y));
}

void normalize()

{
float veclength = length();

x=x/veclength;
y=y/veclength;
}

void scale(float scalar)

{

x=x*scalar;

215

216

Chapter 7 / Game Mechanics

y=y*scalar;

}

void rotate(float angle)

{
float veclength = length();

float tmpx = cos(angle);
float tmpy = sin(angle);

x = tmpx * veclength;
tmpy * veclength;

#endif // VECTOR H_INCLUDED

Using vectors, the following strategy can be followed for creating free
moving tiles suitable for the player, NPCs, and others. These tiles may
move freely and independently of the map grid, perhaps crossing the
border between any two cells, and then stopping there as its area par-
tially intersects one file and partially intersects another. Let’s assume
a free-roaming player character in a top-down RPG is to be made.
Pressing the up arrow walks the character forward in the direction he
is currently facing, pressing the down arrow walks the character back-
ward away from the direction he is facing, and the left arrow and right
arrow rotate the character counterclockwise or clockwise, respec-
tively, to face a new direction.

Movement for the player (walking forward and backward) is pri-
marily based around its LookAt vector; that is, a player’s movement is
determined largely by the direction in which the player is looking.
Hence, moving the player forward or backward means moving the
player positively or negatively toward or away from the direction it’s
facing; while turning left or right refers to the changing, or rotation, of
the direction vector itself as the player revolves to face new directions.
Thus, the player tile (or any free moving tile) as a derived class of
CGameObject should maintain a normalized direction vector as a prop-
erty of the class, a vector mathematically expressing the direction in
which the player tile is currently facing.

Chapter 7 / Game Mechanics 217

Next, pressing the up arrow or down arrow moves the player for-
ward or backward, respectively, in the direction it’s facing. During
movement, the player moves from the current position to a destination
along the direction it’s facing at a speed measured in distance per sec-
ond (such as 5 pixels per second), meaning any one player may cover
the same distance in the same direction during any given interval.
This calculation is currently ignoring any environmental weightings of
the player’s route that may directly or indirectly affect the speed of
travel such as terrain type (rocky, snow, slippery, etc.). It is currently
assumed that all terrain affects a player’s speed equally. Overall, a
player tile class (if it is to move freely about a map) must in addition to
maintaining a LookAt vector also keep track of an X,Y position on the
map and a speed (distance to travel per second). Given these proper-
ties, and assuming the player is pressing the up arrow, a tile may
calculate the distance and the direction in which it is to move (this pro-
cess would be the reverse for the down arrow).

Look At Vector .
Figure 7-7

y s
— pe
e
-
pa
F.

/ Position (5.5)
[e |
\ /

-

SN
YV

A 4

On each frame of the game loop, determine if the up arrow on the key-
board is pressed. If true, the player should move forward at a specified
speed, from the current position to a new position, in the direction it’s
facing. The direction in which the player is facing is represented by the
LookAt vector, and the distance (length of diagonal) over which it
should move during any interval of time is determined by the player’s
speed per second since distance = speed * time. In other words, the
player’s normalized LookAt vector (the direction to move) should be
scaled (multiplied) by the distance to travel, and the resultant vector is

218

Chapter 7 / Game Mechanics

the destination to which the player should move, measured as an offset
from the player’s current position. The code to achieve this follows:

//Called once per frame to redraw tile to display
void update()
{
//m Speed = 5 pixels per second
//m TimeInt = milliseconds elapsed since last frame
//m DirVec = direction vector

float scalar = (m_TimeInt/1000) * m_Speed;
CVector TmpVec = m DirVec;
TmpVec.scale(scalar);

m_Position+=TmpVec;

/.7 Hierarchical Transformations

Q. Right; so the player (or other moveable tiles) can now move about
the map, free from the rigidity of the map grid by using vectors to
express directions and offsets, movements collectively termed trans-
formations. | press the left arrow or right arrow and the player
revolves to face new directions; I press the up arrow or down arrow
and the player moves forward or backward, tracing along its invisible
diagonal expressed by the LookAt vector, or direction vector. But there
1S a new problem: namely, collective movement, or dependent transfor-
mation. The tiles considered hitherto by this chapter have been single,
self-contained units on the map such as the player, an NPC, or a car,
each with an independent position and able to move about the map
independently of one another. So long as this independence remains
the case, transformation will work for each tile with no problems. But
consider this example: There is a single map that contains three enti-
ties (tiles), each of them independent from one another insofar as each
tile has its own position, LookAt vector, and speed in the map. There is
a car tile, and seated inside the car is the player tile and an NPC tile.
Now since each of the tiles — car and passengers — are positionally
independent of one another, it means that as the car moves none of the
passengers will follow since each tile has its own position. The car

Chapter 7 / Game Mechanics 219

simply will drive forward, leaving its passengers behind, literally. How
can I solve this?

A. Until now each tile on the map has been conceptualized as an auton-
omous entity whose position, direction, and movement is largely
independent of any other tile; this means that as one tile moves,
another will not invariably follow because no relationship between the
tiles is assumed to exist. However, the demands of most game maps
are not so trivial as to allow relationships between tiles to be ignored.
A relationship between any two tiles on a map is said to exist when the
position (or orientation) of one tile depends upon (s affected by) the
position of another tile, though this relationship need not be reciprocal.
For example, the position of a tile X may reflect the changes in posi-
tion of a tile Y, but tile Y may not be dependent on tile X. Thus, in any
game map populated by many tiles there will be found a whole network
(or hierarchy) of relationships between tiles such that no tile is com-
pletely independent of another. For example, all tiles standing on the
ground are dependent on the ground; if the ground moves, so do the
tiles standing on it, though the ground does not move with the tiles
that walk upon it. In the same way, a car transports its passengers but
the passengers do not transport the car; both the car and the passen-
gers are dependent on the ground, however, since it is the ground
upon which the car drives, and the car (on the ground) inside which the
passengers are seated. This relationship can be expressed diagram-
matically using the following hierarchy, a structure of relationship that
can be found in all maps.

ROOT NODE Figure 7-8: Relationship
hierarchy

PLATFORM 1 PLATFORM 2

CAR

PASSENGER 1 ‘ PASSENGER 2

220

Chapter 7 / Game Mechanics

Hierarchical relationships refer to relationships of dependency, and as
such the two popular terms “parent” and “child” are used to designate
the influential partner and the dependent partner, respectively. The
node whose position is affected by another is the child node, and the
independent partner who affects the position of all its children is the
parent node. In terms of the car analogy: The car is the parent of all its
passengers (who are its children), but the car in turn is a child of the
ground upon which it drives.

Support for hierarchical relationships can be implemented into the
map tiles by amending CGameObject (the base class from which all
tiles are derived) to include a <vector> list of child node pointers,
listing all of its child nodes. This way, if every node is part (a leaf) of an
overall hierarchical tree of parent-child relationships, all of whom trace
their ultimate ancestor to a root parent at the origin of the map, then
each node can define its X,Y position as an offset relative to its par-
ent’s position rather than as an absolute offset from the origin of the
map. The result is that as any node’s position in the map changes, it
inevitably affects all its children and any generation of children beneath
it in the tree throughout the hierarchy additively. The following code
demonstrates this hierarchical additive transformation.

//Base game object
class CGameObject
{
private:
protected:
public:
CVector m_Position;
Tong m_Width;
Tong m_Height;
std::string m_Name;
bool m Visible;
std::vector<CGameObject*> m _ChildObjects;
CGameObject* m_Parent;

CGameObject (std::string Name)

{
m_Name = Name;
m_Position.x = m_Position.y = m Width = m Height = 0;
m_Visible = true;

Chapter 7 / Game Mechanics 221

m_Parent = NULL;
1

virtual ~CGameObject ()

{
m ChildObjects.clear();

}
//[...] other functions here

//Adds a child object to this tile
void AddChild(CGameObject* Child)

{
m ChildObjects.push back(Child);

}

void update()
{
for(unsigned int i=0; i<m ChildObjects.size(); i++)
{
//Recursively update through hierarchy

m ChildObjects[i]->update();
}

/.6 Z-Order and Depth Sorting

Q. The hierarchical tile arrangement easily solves almost all tile-rela-
tionship problems I can think of. Tiles can be children, parents,
children of children, and so on throughout a whole hierarchy of tiles in
a map. But still I have another awkward question for you, not related to
the relationship between tiles as they are ordered positionally in the
map, but related to the ordering of tiles as they appear on-screen, in
the window. Specifically, the game window is the portal through which
a gamer sees the contents of the game on every frame, in the same
way a movie buff sees a movie from the perspective of the camera as
projected onto the screen. This means that in any given map, some
game tiles will inevitably be closer to the camera than other tiles, a

272

Chapter 7 / Game Mechanics

distinction between foreground and background. Consequently, tiles
nearer the camera appear larger than more distant tiles, and nearer
tiles also obscure any tiles directly behind them; for example, trees
may partially obscure the sun setting behind them, or a player charac-
ter may obscure those NPCs standing behind him. Let’s call this
problem “depth sorting.” How can this best be handled?

A. This problem highlights the distinction between the position of tiles
as they are generally arranged in the map in terms of X,Y position, and
the order in which tiles are drawn to the screen. Indeed, the name
itself, depth sorting, describes a process, and the name offers a clue to
its solution. Depth refers to the depth order that any tile in a map
occupies in relation to all other tiles and to the camera (e.g., this tree
stands i front of this hill and behind the player). Sorting refers to the
process of arranging or ordering tiles according to their nearness to
the camera. In short, the depth sorting problem can be solved using
the painter’s algorithm, which works by first assigning to each tile in
the map an integer (called its z-order) that reflects a tile’s nearness to
the camera. Tiles with lower z-orders are nearer to the camera than
tiles with higher z-orders, which are farther away. Then on each frame,
the algorithm proceeds to draw (render to the window) each tile
according to its z-order, from highest to lowest. So distant tiles are
drawn first, then closer tiles next, and so on, with tiles nearest to the
camera being drawn last (on top of more distant tiles). Any tile, there-
fore, can be brought to the front of other tiles by lowering its z-order,
or sent to the back of others (behind them) by raising its z-order.

PN x

Figure 7-9: The painter’s algorithm

Chapter 7 / Game Mechanics 223

The following code sorts and renders each tile according to its z-order:

void update()

{
//Bubble sort order
//Add property int m_ZOrder to CGameObject for index
SortByZOrder(m ChildObjects);

for(unsigned int i=0; i<m_ChildObjects.size(); i++)
{
//Recursively update through hierarchy

m ChildObjects[i]->update();
1

/.9 Conclusion

This chapter considered some of the most fundamental game mechan-
ics that apply not only to almost all games across all platforms from
Linux to Windows, but generally across both 2D and 3D games. Other
game algorithms such as pathfinding, binary space partitioning, and
octrees start from the premise that the game world is already repre-
sented as a Euclidean space where objects (tiles) are interconnected
by spatial relationships to one another, and that each tile has a speci-
fied z-order that reflects whether it is nearer to or farther from the
camera than other tiles. These algorithms may raise another, perhaps
more reasonable question: In this technological age of instant commu-
nication, easy-to-use operating systems, and DIY/homebrew software,
surely somebody, somewhere, has designed an easy-to-use game mak-
ing package to create cross-platform games. Is there a package that
doesn’t require developers to reinvent the wheel by coding from
scratch new pathfinding systems, depth-sorting algorithms, and other
similar processes? Surely, the world of open-source software has a
simple, easy-to-use, and powerful solution for making cross-platform
games that “just work” without a lot of hassle. This topic is the focus
of the next chapter.

This page intentionally left blank.

Chapter 8

Novashell and 2D
Games

Games classified as 2D (two-dimensional) were written off by many
gamers and critics as “dead and buried” the moment 3D games were
born, but given the thriving 2D scene in contemporary gaming, those
predictions join a long list of other industry predictions that thankfully
failed to materialize. 2D games are alive and well, and testament to
their health are famous titles from all gaming eras, such as Super
Mario Brothers, Sonic the Hedgehog, Tetris, Dr. Lunatic Supreme with
Cheese, Steam Brigade, and thousands more. Games classified as 2D
are those where the action occurs in two dimensions only; that is, the
gamer cannot move objects or cameras through a 3D gaming world to
view objects from other perspectives. Thus, gaming perspectives are
typically fixed in 2D games, and this makes them especially ideal for
game genres such as platformers, puzzle games, side-scrolling
beat-em-ups and adventures, and top-down blast-em-ups.

This chapter focuses on the development of cross-platform 2D
games (Window, Linux, and Mac) using a free, open-source, and easy-
to-use game development system called Novashell, which was created
by independent game developer Seth Robinson. In a nutshell:
Novashell is a click-and-drag style game development application for
making cross-platform 2D games. The Novashell web site
(www.rtsoft.com/novashell) describes the system as “a high-level 2D
game maker that tries to handle all the hard work behind the scenes,
allowing you to whip up sweet games using pathfinding, dialog,
persistant dynamically sized maps with construction/deconstruction,
save anywhere, and especially features that adventure and RPG type
games would use.”

225

226 Chapter 8 / Novashell and 2D Games

8.1 Novashell Overview

Freely available and based on the gaming API ClanLib, Novashell is an
entirely integrated, self-contained, and GUI-based game development
environment for creating cross-platform 2D games. Unlike most gam-
ing software Kkits that depend on C+ + IDEs such as Code::Blocks,
Novashell instead works independently, and is all a user needs to start
making professional standard games that run seamlessly across Win-
dows, Linux, and Mac. Specifically, Novashell offers game developers
the following key benefits:

B Cut and Paste GUI — Primarily mouse-driven, Novashell works
much like an open-ended and extensible map editor, allowing
developers to import art, animations, music, sound, scripted data,
etc., and, by copying and pasting, assemble their data into coherent
levels as a complete working game.

B Open-Source and Free to Create and Distribute Games —
Novashell as an application is freely available and is open-source,
meaning it can be edited and extended to suit a developer’s needs.
Furthermore, developers are free to distribute their Novashell-
made games as both freely available or commercial products.

B Scriptable — Novashell allows developers to program and control
their games through its integrated scripting system using an
industry standard scripting language, Lua 5.1. Lua is a general-
purpose, lightweight, C+ +-like scripting language used to edit
and program games without recompilation. First created in 1993
by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and
Waldemar Celes from the Pontifical University of Rio de Janeiro in
Brazil, Lua has been used in many commercial games including
World of Warcraft, Grim Fandango, Supreme Commander, and Far
Cry.

Chapter 8 / Novashell and 2D Games 227

B Online Documentation and Community Support — Though
Novashell is a relatively new GDK (game development kit), first
released in early 2007, it already has gained a sizeable online
forum community of game makers, and also features comprehen-
sive online documentation featuring references for scripting
(classes, functions, and objects) and also “quick-start” guides for
getting up and running with Novashell.

N NOTE. The following is a brief list of some of the additional fea-
tures of Novashell:

B Multi-platform support for Windows, Mac OS X, and Linux

B Open-source under a zlib/libpng license

B Hierarchical goal-based Al system

B A* (A-star)-based pathfinding for navigating an unlimited number
of connected maps, warps, and doors

B Free-form pixel-accurate sprite patch editing as well as emulated

conventional tile editing

B Map dimensions can flexibly change during play, and new areas
can be added anywhere at any time

B Robust automatic save/load allows a fully persistent world

Built-in world editor with unlimited brush sizes, multiple undo,
and cut and paste of any size

Parallax scrolling
Powerful particle system

Real-time “smart shadow”

Able to create stand-alone games

228 Chapter 8 / Novashell and 2D Games

8.2 Downloading Novashell (Windows,
Linux, and Mac)

In summary, Novashell is a free, open-source, and experimental tool
allowing developers to create cross-platform 2D games easily via a
WYSIWYG interface. Both the Novashell source code and the
Novashell binary executables for Windows, Linux (Ubuntu), and Mac
are freely available from the official Novashell web site at
http://www.rtsoft.com/novashell/. The procedure for downloading and
installing Novashell, which is the same for all supported platforms, is
described step by step as follows.

N NOTE. Like many open-source projects, and especially those in
their infancy, the Novashell web site defines Novashell as “not fea-
ture complete,” or as an experimental application. It is to be
considered as an open-source work in progress continuously being
refined and enhanced as time goes by.

1. Beginning from the (Windows, Mac, or Ubuntu) desktop, open a
web browser and navigate to the following address:
http://www.rtsoft.com/novashell/.

. Figure 8-1

Chapter 8 / Novashell and 2D Games 229

2. Click the download link appropriate for the host operating system
and save the archive to any directory on the local computer. For
Windows only, users should run the packaged Novashell installer
to install Novashell to the system.

FN shell Game Crealion Sysler =R Figure 8-2

NOVA :r;gaﬁplll (‘:amle“(}maﬁnn System
. pha Inslaller
SHELL

This wizard will quide you through the installation of
Novashell Game Creation System. (0,23 Aluha rdeased on
If18/2007)

Click Mext to continue,

3 Figure 8-3

The downloaded and extracted package (or the installed files on Win-

dows) contains the following important files and folders:

B Game.exe — The main Novashell executable; features the inte-
grated game editor for designing and creating games, and also dou-
bles as the interpreter (or virtual machine) for playing Novashell
games.

230

Chapter 8 / Novashell and 2D Games

B History.txt — Records the developmental progress of Novashell

from its first release until the current downloaded release, detail-
ing bug fixes for earlier editions and newly added features present
only in the current release.

Base directory — Features all global data (graphics, sound,
scripts) used by Novashell for its editor and for all Novashell-
developed games. Data featured in the base directory applies glob-
ally to all games, and not specifically to any one game.

Worlds Directory — Game-specific world data (graphics, sound,
scripts) for a single Novashell game. Each game houses its
game-specific data within any appropriate nested subdirectories of
the Worlds Directory; more on this later.

8.3 Exploring Novashell Games

Novashell ships with a handful of semi-completed sample games to
play, each intended to demonstrate the variety of Novashell features
and the diversity of 2D genres that it supports — from 2D side-scroll-
ing games to top-down RPGs and space-invader-style shooters. These
games include Tree World, Beer Invaders, Dink RPG, and Tanks, and
are considered briefly below.

B Tree World

Figure 8-4: Tree World

Chapter 8 / Novashell and 2D Games 231

One of the highlighted sample games is a side-scrolling platformer
called Tree World, which demonstrates the simplicity of parallax
scrolling by using Novashell and also shows off its particle sys-
tems and collision-based physics. Much of the scripting for this
game can be found in a Lua text file located in the Worlds
subfolder of the Novashell root directory in a Lua script called

ent player.lua. The objective of the game Tree World is to explore
the levels, fight or avoid enemies, and collect as many coins as
possible.

Beer Invaders
0D W:IF,ST SHOOBINGIGATERY, Figure 8-5: Beer

A AN a A Invades

GAME OVER

Based on the famous arcade classic Space Invaders, the Novashell
derivative, Beer Invaders, substitutes beer cans for spaceships.
Each beer-can-enemy appears at the top of the screen and can in
turn fire smaller beer cans downward as bullets. The objective is
to slide a pistol firearm horizontally along the bottom of the screen
and shoot all approaching enemy cans without getting shot by the
bullets. This tricky game primarily demonstrates collision detec-
tion between bullet and target, but also demonstrates music,
sound, sprite animation, and goal-based levels.

232 Chapter 8 / Novashell and 2D Games

B Dink RPG

Figure 8-6: Dink

The sample Dink-style RPG (role-playing game) that is based on
the Dink Smallwood game by Seth Robinson demonstrates clearly
in one contained sample — perhaps more so than any of the other
included sample games — the wide subset of features Novashell
offers to a developer for creating 2D games. This RPG allows
characters to warp in and out of different maps across the game
world, to converse and reply intelligently to each other, and to
engage in combat with enemies scattered about the world.

B Tanks

'\ Figure 8-7: Tanks

Tanks is a small but important sample game in which the player
controls a military tank. The player may shoot or push nearby

Chapter 8 / Novashell and 2D Games 233

objects, which in turn react and move according to the scripted
physics.

8.4 Getting to Know Novashell

Novashell is designed both to create 2D games and to play (or exe-
cute) the 2D games it creates, in the same way a Java virtual machine
runs Java applications or in the same way the Flash Player plays Flash
presentations. Consequently, Novashell is not entirely unlike Flash,
but whereas Flash considers the player and the editor to be separate
entities, Novashell condenses them into an integrated player and edi-
tor. Thus, Novashell stands apart first and foremost as an application
that is both a game player (or executor) and a game editor — a game
player in that Novashell games can be opened and played by the
Novashell application and a game editor since loaded games can be
paused and edited. However, compiled stand-alone games (games that
run independently of the editor, primarily so that players cannot cheat
easily) is one feature among many of the planned features along the
Novashell developmental road map still to be implemented. Novashell
as both a player and an editor is now examined more closely, beginning
from the startup screen that appears immediately after running
Novashell (on any platform).

8.4.1 The Game Selection Menu

Novashell begins at the Game Selection menu, a screen from which
both gamers and developers choose from among the available
Novashell games installed locally to play and/or edit. By default this
menu features at least the sample games listed in the previous section,
and gamers may double-click any game from the list in order to play or
edit them. (Pressing the Esc key at any time exits the game currently
being played and returns to this menu.) Broadly, each game listed on
the Game Selection menu corresponds to an individual config file
located in the Worlds subdirectory of the root Novashell installation
directory. Each file there lists the details of a specific Novashell game,

234 Chapter 8 / Novashell and 2D Games

such as game name, valid directory paths to graphics, sounds, scripts,
etc. We'll discuss these files in a later section.

Mowazhel (e Creation System (.27 - : - o P)

Figure 8-8

NOVASHELL l

GAME CREATION SYSTEM WiLED B —_—

SN NOTE. Cirl+Alt+Enter switches Novashell between full-screen and
windowed mode.

8.4.7 The Editor and Player Modes

Novashell may work in one of two modes at any one time: editor or
player mode. These two modes appeal to developers and gamers,
respectively. Pressing the F1 key toggles between the modes.
Novashell in editor mode offers the required tools and facilities to
change and edit existing games while those games are paused; devel-
opers can even scrap games wholesale, rebuilding them again from
scratch. Novashell in player mode hides its editing facilities, resumes a
game that is paused, and allows both gamers and developers to play
and/or debug their Novashell games in real time just as though the
game were compiled to run stand-alone.

DN NOTE. Novashell can be switched between player and editor mode
at any time by pressing F1.

Chapter 8 / Novashell and 2D Games 235

8.4.3 Getting Started — Loading, Playing, and
Editing a Game

Novashell offers facilities to load, play, and edit games, and this section
examines how to load and play a game. The Novashell world editor is
discussed in the following section.

1. Start Novashell and double-click the game Dink Style Test from
the Game Selection menu.

2. The game menu then offers three options: New, Continue, and
Edit. Click New. These options apply across all the default
Novashell games and are important, as considered below.

Example - Dink Style Tzt

NOVASHELL Figure 8-9

GAME CREATION SYSTEM

Dink Test

A test using unmodified bmpe from that super cool game "Dink Smallwood”

I R ———
Gnoan Helbmern Todumeleghoe

B New — This option begins play of the selected game from the
beginning, as defined by the developers. Pressing F1 to start
the editor during any games run from the New option allows
developers to make changes only to the currently running
instance of the game (changes which are forgotten upon exit-
ing the game), as opposed to permanent changes made glob-
ally to all future instances of the game played from New (for
this, select Edit instead).

B Continue — This option resumes play of the selected game
from the point where any previous play had ended.

236 Chapter 8 / Novashell and 2D Games

B Edit — The Edit option opens the game for editing globally.
That is, any changes applied to a game in Edit mode will apply
permanently, and not temporarily, to all future instances of the
game. Editing in this mode is like editing an original photo-
graph instead of a copy, or editing the template of a letter
instead of the letter itself.

3. Having clicked New to play the game, press F1 to pause the game
and to display the Novashell game editor, which is described in the
next section.

8.5 Novashell Editor

The Novashell editor offers an abundant set of tools (palettes, layering,
collision detection, scripting, copy and paste) for making practically

* Figure 8-10

any conceivable changes to Novashell games. These tools range from
graphic import facilities to map designing facilities such as tile editing.
The raw materials external to the game itself and from which game
data is based such as image files, sound files, and script files are collec-
tively termed resources. It is from the synthesis of those resources, the
bringing them together into a coherent totality, that games are made
(Novashell games included). Conceptually, resources are imported into

Chapter 8 / Novashell and 2D Games 237

Novashell games as either a tile or an entity, depending on the purpose
they are to serve for the game.

8.5.1 Tile Resources

The graphical term “texture” refers to any graphical resource (any
image, from PNG to BMP, including transparency information). Tex-
tures are typically loaded from a file and into Novashell as tiles (the
simplest graphical entity featured in a Novashell game). Tiles are tex-
tures and are usually designed to be small and lightweight since they
are likely to be copied and pasted many times in various combinations
and arrangements to build a single Novashell level (for trees, floor
tiles, walls, doors, windows, etc.). Often, tiles are not imported sepa-
rately into Novashell from individual textures (with one file per tile).
Instead, developers import a single, larger texture onto which all tiles
for a single level have been collectively arranged in rows and columns
(called a texture tile set), and these tiles are then cut out from the tile
set subsequently as separate tiles using the Novashell editor. Tiles
have the distinct advantage over entities in being simple to use, versa-
tile, and “lightweight” (meaning they are computationally efficient
with low memory costs). Specifically, tiles boast the following features:

B Flipping and Alpha — Each tile in Novashell may have alpha
transparency; that is, some pixels of the tile can be fully transpar-
ent, semi-transparent, or wholly opaque. A tile’s transparency data
is defined by its texture information (for those file formats that
support transparency). Each tile may also be flipped by the
Novashell editor; that is, a tile’s pixel data can be reflected (mir-
rored) about its central x or y axis, reversing the image symmetri-
cally. This is a useful technique for giving some variability to tiles
that are frequently repeated throughout a single level, such as
floor tiles.

B Multiple Instances, Global Types — Any single tile may be
copied from the original and pasted in a Novashell level any num-
ber of times, each new copy itself becoming an individual tile. For
example, an initial tree tile may be duplicated many times across a
level, creating a level with many trees, and each pasted tree then
becomes a separate tile belonging to the type “tree.” Specific
changes to the tile’s type (changes in collision detection, changes

238

Chapter 8 / Novashell and 2D Games

in graphical appearance, etc.) apply globally across all tiles in a
level.

8.5.27 Entity Resources

Entities are extended, or advanced, tiles. In a nutshell, entities exhibit
all the characteristics of tiles, but boast additional features and are typ-
ically used for more complex level objects, such as moveable game
characters and NPCs (non-player characters), interactive game scen-
ery such as moveable platforms, or collectable power-ups. The basic
Novashell rule of thumb may be: “If it’s a moveable or interactive
object, then it’s an entity; if it doesn’t move and isn’t interactive, then
it’s not an entity; and if it’s not an entity, then it’s a tile.” In Novashell,
like in most games, most things are tiles and not entities. In addition to
the properties of tiles, entities also boast the following features:

B Scriptable — Any entity may have a Lua script attached to con-
trol its behavior and receive event notifications, which are function
calls a Lua script receives whenever important events occur to an
entity, such as when an entity collides with another entity or tile in
a level, or when the player presses a button on the keyboard.

B Unique — Unlike tiles where any single tile type (such as a
“tree”) shares its collision data between all tile instances of that
type in a level, entities of the same type may each have unique
collision data.

B Visual Profiles — Entities may be assigned a whole series of dif-
ferent frame-based animations for particular “states.” For exam-
ple, entities like player characters and NPCs may require a specific
animation when in a walking state and another animation when in a
fighting state. Novashell offers externally written XML files
(examined later) called visual profiles that can be assigned to enti-
ties, and each profile details the frame-based animation to be
played during different entity states.

Chapter 8 / Novashell and 2D Games 239

8.6 Novashell Tools

Novashell levels are a collection of tiles and entities, and the Novashell
editor is where developers create that collection in which tiles and
entities (player, walls, doors, floors, etc.) are arranged to form a game
world. At this point, readers should have started a new Dink Style Test
game from the Novashell Game Selection menu, and then pressed F1
to pause the game and switch to the Novashell game editor mode.
Let’s take a look at the editor’s tools and windows.

TIP. To get the most from this chapter, it is recommended that read-
ers follow along page by page while also using Novashell.

B Main Menu — The Novashell main menu provides access to
many of the core features, from exiting Novashell to pausing/
unpausing games, and also for saving the edits made to each game.
These menus also provide options to show and hide hidden game
data, such as collision and pathfinding information.

[Editing rnap data in profie Playver. £
Fila Mode Option: Utiitie: Dieplay Tool Window Garre
Tie Edit Made - Lse the mouss whaal or 41- 10 200en infout. Drag the rriddie mouss button or Space+Laft mouss button 16 pan. Drag or chick with the laft rouse button 16 rske 4 selsction

Hold Shift Alt. or Ctrl while clicking to addremave/toggle froen selection. Use amow keys to nudge selection one pixel. (think photoshop controls)

Figure 8-11: The main menu

Map Switcher — Every Novashell game contains a collection of
maps, and each map is in turn a collection of tiles arranged to
make a level. The Map Switcher window lists every map currently
in the active game.

Map Switcher (Ctr+1-9) [x]

maps/Dink Paletiel Figure 8-12: The Map
e’ Switcher window
maps/daini

mapsiSystermn Haletiel

. . X . . | The Edit Floating Palette x
Tile Editor — The Tile Edit window allows [[Edit Utits Moty Bolocted
developers to perform a variety of functions. SiGoop A0 _Jilos

nse Poge 20 3560 Y 120

From this window, you can import game art as

tiles and entities; edit individual tiles and enti-

ties, such as collision information and script Figure 8-13: The Tile Edit
Floating Palette window

240

Chapter 8 / Novashell and 2D Games

data; and edit Novashell maps, changing their grid layout and other
options.

Layer Editor — The layers in Novashell work similarly to those
in photo editing applications like Photoshop and GIMP. Like the
clear plastic layers stacked atop one another and used by anima-
tors to make cartoons, the purpose of layers is to define the order
in which tiles and entities in a level are drawn to the window in
order to create a sense of depth. The process of arranging the
depth order of tiles is known as z-ordering, where each tile or
entity in a level must be assigned to only one layer, and each layer
determines the order in which tiles are drawn to the window. Tiles
assigned to the foreground layer (the topmost layer) will be drawn
after tiles assigned to the background layer. Thus, foreground tiles
appear in front of background tiles, and background tiles are
obscured by tiles in front of them that occupy the same X,Y screen
space. The three exceptions to this rule are the entity layer and
the two hidden layers. The entity layer is used for housing entities
rather than tiles because entities, unlike tiles, can move and
change their position dynamically (such as NPCs), so their z-order
in relation to one another can change at any time. Consequently,
the entity layer is designed to be “smart,” and it automatically cal-
culates which entities are in front of or behind others based on
their X,Y positions and draws them in the appropriate order on
every frame. The hidden layers are designed for housing non-visi-
ble level data, such as music and other resources.

Layer Control (Dbl chck to edit) x* .

Display Active For Edit Flgure 8-14: The layer
Background 1 Biackground 1 (onfrol Wln[law
Biackground 2 Background 2
Background 3 Background 3
ET ET
Dretail 1 Dretail 1
Detail 2 Detail 2
Entity Entity
Crverlay 1 Crverlay 1
Crverlay 2 Crverlay 2
Hidden Data Hidden Data
Hidden Data 2 Hidden Data 2

Highlight Add Layver All [Hone

Chapter 8 / Novashell and 2D Games 241

8.7 Editing Novashell Levels

This section explores some common features of the Novashell editor
for creating and editing game maps.

8.7.1 Selecting, Copying, Pasting, Moving, and
Filling Tiles

Editing maps in Novashell is GUI-based, and so levels are created by
copying and pasting tiles and entities by using the standard Ctrl+C
(copy) and Ctrl+V (paste) keyboard combinations, or by selecting any
tile or series of tiles and right-clicking the mouse to display a
contextual menu offering copy and paste options. Some other options
are described below.

B Copy and Paste — Selecting a tile, pressing Ctrl+C to copy the
tile to the clipboard, and then pressing Ctrl+V to paste new tiles
causes the new tile to appear at the X,Y location of the mouse cur-
sor. Tiles and entities may also be copied and pasted befween maps.

B Flood Fill — To fill a region with a specific tile, first copy a tile to
the clipboard, then press and hold the Shift key while using the
mouse to draw a selection box over a region of the map. Press F to
Flood Fill the selected region with as many new instances of the
copied tile as the region may hold.

B Cut, Undo, and Deselect — Ctrl+X cuts rather than copies
tiles, Ctrl+D deselects all (selects nothing) in the map, and the
standard Ctrl+Z (undo) combination reverses the last edit (if any)
made to the map.

B Scaling — The left and right bracket keys ([and]) scale the
selected tile(s). [decreases the scale for as long as the key is
pressed, making the selected tiles smaller, and] increases the
scale, making them larger.

242

Chapter 8 / Novashell and 2D Games

B Select All of Kind, Additive Select, Subtractive Select —
Selecting a tile and pressing Ctrl+R selects all other tiles of the
same kind in the current map, that is, all other tiles copied and
pasted from the same original. Press and hold Ctrl while selecting
to add further tiles to an existing selection, and press and hold Alt
to deselect tiles in an existing selection.

8.7.2 Exploring Maps and Editing Tiles

This section explores both how levels are navigated using the Layer
Editor window, and the basics of the Tile Properties window.

B Level Navigation — Pressing Ctrl+(0-9) takes you to the first 10
maps; you can also use the standard map selection window to
switch between maps. The + and — keys (or the mouse wheel)
zoom in and out of levels so you can examine them up close or
from a distance. Space+(click and drag) scrolls across the level.

B Tile Properties — Open the Tile Properties window by
right-clicking a tile and choosing Properties from the context
menu. The Tile Properties window displays a series of editable,
common properties for the currently selected tile in the map.

TiefEntity Propertes (1 s=b i)
: Figure 8-15: The Tile
.| Flip X If not blank. entity iz locatable by name: . .
= S — 2 Propemes window
[|Flip Y Marne: Conwert to entity
| Cast Shadow [Sort Shadow | | Path Mode
LU Serint: [Dink Palette/Duckiduckluz [File.. [Edit

Custom data attached to the object:

Add Remove Sclected

Changing layer affects all selected

Elackground [|| Base Color: (255 255 255 255

Biack, d —
B:E‘!\S:’Eand _ || Brale X7 1000000 1000000

Pain

Detail 1

Cietail 2

Entity

Ohverlay 1
Orverlay 2
Hidden Uata
Hidden Nata |
Gl

Cancel Ok

Chapter 8 / Novashell and 2D Games 243

The Tile Properties window displays most of the editable properties
for the currently selected tile or entity in a Novashell map. The check
boxes for Flip X and Flip Y mirror (or reflect) any tile or entity about
its axis of symmetry. The Cast Shadow check box causes Novashell to
calculate and generate the shadow shape that the selected tile casts on
the surrounding map, based on its collision and pixel data. You can also
assign the selected tile to a specified layer to control its z-order. Click
the Convert to entity button to convert the selected tile into an entity
(non-reversible). The LUA Script field allows you to attach a valid LUA
script defining the entity’s behavior.

8.6 Creating New Games and Maps

A Novashell game is a collection of levels, or perhaps more correctly, a
collection of maps. All prior sections in this chapter considered only
how to edit existing games and existing maps using the Novashell edi-
tor. In the following steps, we’ll explore the process of creating a new
Novashell game from scratch starting from an empty project.

1. Beginning from the desktop, open the local folder where Novashell
was extracted or installed. This folder features the Worlds
subfolder, which contains additional subfolders that each corre-
spond to a unique Novashell game and contain the game resources
(the graphics, sound, data, script files, etc.) specific to that game.
The Worlds folder also contains .novashell config files for each
individual game. Each .novashell config file details in a simple
line-by-line text format the core properties of a unique Novashell
game, such as game name, author name, resolution, etc.

2. Newly created Novashell games are usually created from the
empty skeleton project template called RT EmptySkeleton,
located in the Novashell Worlds folder. Its.novashell file is
RT EmptySkeleton.novashell. To create a new project, make a
duplicate of this folder and this file and rename each of them to
reflect the name of your new game.

244

Chapter 8 / Novashell and 2D Games

3. Open the newly created .novashell config file using a standard text

editor application and edit each field in the file as appropriate for
the new game. Enter a name for the game title, the desired resolu-
tion, etc., as illustrated in the following sample .novashell file:

//this file contains important data about the world that the
//engine checks before it loads anything

//world will fail if the engine is older than this. Newer
//versions will attempt to emulate this version

engine version_requested|0.22

world_version|0.1

world_name|My Test Game

world description|This is my first game

world author|Me

world_website|www.alanthorn.net

desired resolution|1024|768|32

//must be 200X200 jpg
world_thumbnail|

//if this is a mod of a mod(s), add its dependencies here (dir
//name|version required) (base is assumed, don't need to add

//that)
//add_world requirement |SomeModA|0.0
//add_world requirement |SomeModB|0.0

Having duplicated both the RT EmptySkeleton project folder and
its corresponding .novashell config file, and having tweaked them
in preparation to become a new Novashell game, start the
Novashell editor. The newly created game appears on the Game
Selection menu. Select the game and switch to Edit mode to play
and edit the master files.

Chapter 8 / Novashell and 2D Games 245

N\ NOTE. After being selected from the Game Selection menu, a
Novashell game begins by searching every one of its maps for an
entity named “player,” which is an entity to be controlled by the
gamer and where the game camera first focuses as the game
begins. The player entity represents the topological point at which a
game begins. Games created from the Novashell skeleton project do
not, however, feature a player entity by default since not all games
require a player entity. In this case, an error message may appear at
startup to notify the developer that no entity named “player” exists in
any map for this game. This error can be ignored by clicking OK,
and a player entity can be added at some later stage, as demon-
strated shortly.

The game is now ready to edit.

The following sections of this chapter explain how to import art,
select a player entity, implement Lua scripting, add collision detection,
and create some basic Al (artificial intelligence).

8.9 Importing Art into Novashell

Newly created Novashell games bhased on the skeleton project begin
their life as a completely empty shell — every map is without graphics
and without sound. This section explores how the Novashell editor is
used for importing graphical tile sets from files on disk and into
Novashell as either tiles or entities.

D NOTE. Before starting the game, all required image files should be
copied into the current game’s folder, which is a subfolder of the
Novashell Worlds folder.

246 Chapter 8 / Novashell and 2D Games

8.9.1 Importing Files

Exampl - Top View B Syl Tet P
*\ Figure 8-16: Importing
e el image files

Importing image files into Novashell means streaming all pixel data
from the files and loading them in Novashell into a memory buffer.
This process is achieved using the Tile Edit window as follows:

1. Click the Grid Snap check box in the Tile Edit window, and set
the grid size to between 40 x 40 and 100 x 100. Grid snap locks tile
movement to predefined grid spacings in the map, and is a useful
tool for level editing.

2. From the main menu, choose Utilities | Import Image(s).

3. The Import Image window appears, displaying a list of valid
graphic files available for importing. Click to select a file from the
list, and its pixels are transferred from disk and onto the Novashell
copy buffer, ready for pasting into the current map as one self-con-
tained tile.

4. Press Ctrl+V to paste the copied pixels onto the map as a tile.
Repeat steps 1-3 for each image to be pasted.

Chapter 8 / Novashell and 2D Games 247

8.9.2 Setting a Player Entity

Example - Dink Styte Fast
Ebr v s oy gl Vi

e e o Figure 8-17: Creating a
i £ Mk - Uon the b 43 gmom ot astion or Sacent, T T T e T S player enmy

8

ek S 1) i e 1 reeiron e e bt U v bt e sk st i el [Tk phtinbes o]
Tiho [Vg ko - "

Entities are sophisticated tiles. For games where the gamer controls a
character, it is standard practice in Novashell to create a player entity,
the tile representing the gamer-controlled character. To create an
entity using the Novashell editor, right-click a tile to display the con-
text menu for the selected tile, and click the Properties option to show
the Tile Properties window. Click the Convert to entity button to con-
vert the tile to an entity. To make this entity the player entity, enter
Player for the entity name.

8.9.3 Creating Smaller Tiles from Larger Tiles

Each graphic resource is imported from a file on disk and into
Novashell first as a complete, self-contained tile (not entity) using the
Tile Edit window. This is true even if the file is arranged in rows or
columns as a tile set and is intended to represent a palette of separate
tiles, such as a file containing 40 x 40 pixel rectangles for floor tiles,
wall tiles, NPC tiles, etc. For tiles of this kind, the Novashell editor
features a series of cutting tools to visually “cut,” or subdivide, a
larger complete tile into a set of constituent, smaller tiles independent
of the larger tile. The following steps explain the Novashell tile-cutting
process more completely.

248

Chapter 8 / Novashell and 2D Games

1. Beginning in the Novashell editor with a single and complete
imported tile, hold down the Ctrl key and drag a selection over the
rectangle to “cut” from inside the larger tile.

2. Before releasing the mouse button, press Ctrl+C to copy the
selected rectangle of pixels to the copy buffer.

3. The selected pixels copied to the buffer can now be pasted as inde-
pendent tiles using the standard paste shortcut, Ctrl+V.

8.9.4 Setting Collision Information

Example - Dink Styte Fast

. s
)t i 1t Pl = Figu’e 8-18: Se"ing

Fia Mode Opora Uniter Displee Toed Wiedrws Ol

mmmmm - e e b 10 z00m invout Button or Space-ts Dnng o chok with the o ke 4 seiecton . CO”iSiOﬂ de’etﬁon

e b 1 S reeiren g e bt e v e 12 rush v o el [k b

Colr Ei P
Verti (Cieh and dhag vert 6 rrven. g DELETE swhie o)
T

Traditionally, computer games are designed to simulate real-world
environments insofar as game characters cannot walk through walls or
effortlessly pass through obstacles and enemies without sustaining
damage. Thus, any two game objects (solid bodies) whose boundaries
intersect one another at any one time are said to collide, meaning they
contact one another. The process of determining when collisions
between objects occur in a game is called collision detection. Novashell
detects collisions automatically, and it is the role of the developer only
to indicate the borders of tiles so Novashell may determine when the
border of one tile intersects the border of another. The following steps
illustrate how to create a collision border for any selected tile in the
Novashell editor.

Chapter 8 / Novashell and 2D Games 249

1. Beginning from the Novashell game editor, select a tile or entity
for attaching collision information.

2. From the Novashell main menu, select File | Modify Selected |
Edit Collision Data. The Collision Edit Palette appears.

3. From the Collision Edit Palette, choose Add Verts.

4. Draw a shape (collision boundary) around the tile by clicking the
mouse to add new vertices.

5. Click Save Changes in the Collision Edit Palette when com-
pleted. Repeat these steps to set the collision information for each
tile, as required.

DN NOTE. To receive run-time nofifications from Novashell whenever
collisions between tiles occur in the map, scripts should be added to
each entity involved in collisions. Scripts are examined in more detail
later in this chapter.

8.10 Novashell System Palette

Figure 8-19: The
GeneralStutt Auidio Stuft Misc Stuff System Palette

Ganaral/purpose MUZIE A AniEon you can use
11 blacl lor. (crossiade) .- lor whatover

WayEEint
E NG OGRS

GG p
{lade out)
(notimplamentad)

©3007, Robinson Technologies

Novashell levels created in this chapter thus far have featured visible
tiles only; that is, tiles that actually appear in the game window. In

250

Chapter 8 / Novashell and 2D Games

addition to importing visible tiles and creating entities from those tiles,
like the player entity, Novashell levels may also feature special invisi-
ble tiles, designed for specifying and controlling level-specific behav-
ior. These tiles belong on the hidden layer where they exist spatially
alongside all other tiles in the level, both visible and invisible. Such
special tiles may specify, for example, which music is to be played
while the player moves inside the tile’s boundary, or they may initiate
a Lua script that is to be run at specified times or when a player enters
a room or crosses the threshold of a doorway. The Novashell editor
features a special palette of such tiles listed together in the System
Palette, where developers may go to copy its available tiles and paste
them on their standard maps just like regular tiles, editing the proper-
ties of each tile instance as suitable. The System Palette features
many special tiles, including audio, color, invisible wall, warp,
waypoint, path, and script.

8.10.1 Audio Tiles

: = Figure 8-20: Placing an
| audio file

The Novashell System Palette features five audio tile types available

to copy and paste on the hidden layer of any standard Novashell map.
The audio tiles play (or stop playing) a specified sound or song when-
ever the player character enters the radius of its circular area; that is,
whenever the X,Y position of the gamer in a level is nearer to the

Chapter 8 / Novashell and 2D Games 251

circle’s center than the extent of its radius. Audio tiles remain dormant
in a level until a player enters their circular region. The Ambience
Loop (crossfade) tiles merge or blend any previously playing song into
a specified song. The Music (instant) tiles immediately cut the play of
any prior songs and begin playing a specified song. The Music (fade
out) tiles reduce the volume of any current playing song down to
silence.

SN NOTE. Like regular tiles, audio tiles can be scaled to smaller and
larger sizes using the [and] keys.

To create a music tile, set its radius, and play a song, perform the fol-
lowing steps:

1. Beginning from the Novashell System Palette, select an Ambience
Loop (crossfade) audio tile and copy it to the clipboard.

2. Paste the audio tile into any of the game’s maps, then open the
Tile Properties window from the right-click context menu.

3. Double-click the Name field in the Custom data attached to the
object list, and the Edit Data Dialog window appears. Enter a valid
path to an audio file in the Value field. Acceptable formats include
MP3, OGG, WAV, ASE S3M, and others. Click OK when completed.

4. 'To change the audio tile’s radius, select the tile and use either the
[key or the] key to shrink or enlarge the tile as appropriate.

8.10.2 Color Tiles

Color tiles are the only tile available from the System Palette that also
show in the game map rather than remaining hidden like audio or Al
tiles. Color tiles appear on the game map as a bold, programmer-
defined color, and are useful for creating a quick and dirty mock-up in
the absence of game-ready artwork.

8.10.3 Invisible Wall Tiles

As the name suggests, Invisible Wall tiles are used first and foremost
as blocks or obstacles to prevent gamers moving past them. They can
also be used to simulate invisible barriers and force fields.

252

Chapter 8 / Novashell and 2D Games

8.10.4 Warp, Waypoint, and Path Nodes

Warp, Waypoint, and Path nodes together constitute Novashell’s
“pathfinding” framework — the system of invisible map markings and
connected graph nodes allowing NPCs and other “intelligent” charac-
ters to find their way around maps, plan routes, and avoid obstacles. A
Warp file marks the X,Y position of an entrance or exit point on a
Novashell map so that a Warp on a different map can allow game char-
acters to move between those maps, leaving via the exit point on one
map and arriving to the specified map at the entrance point. Waypoint
and Path nodes work together insofar as they help NPCs move sensi-
bly from X to Y in any map, avoiding obstacles and other problems.
Path and Waypoint nodes are invisible X,Y markers placed by develop-
ers throughout a level to build a connected network. Using this
network of connected points, NPCs calculate and plan routes when
required to travel any distance on a map.

8.10.5 Seript Tiles

8.11

Novashell works with Lua scripts. Any Novashell map may feature
scripts attached either to entities in a map or to system palette tiles.
The next section considers scripting more closely.

Novashell Scripting

Though Novashell features no integrated text editor, it is primarily a
script-driven engine, and all Novashell games are coded using Lua
scripts. Lua is a lightweight and extensible scripting language whose
syntax bears some resemblance to C+ +; this makes it easy to pick up
and start using Lua to create Novashell games. Scripts are distin-
guished from compiled languages like C+ + in which source code is
first written and then compiled into executable form. Scripted lan-
guages are instead an interpreted language whose source code (script)
1s loaded from text files and then compiled, or executed, by Novashell
on a line-by-line basis at run time. This difference in approach between
compiled and scripted languages means scripts can be opened in a

Chapter 8 / Novashell and 2D Games 253

standard text editor and amended to make changes in the game with-
out a need to recompile. Scripts in Novashell games are attached to
entities. These entities can be standard entities like the player or
NPCs as well as System Palette entities on the hidden layer of a map.
Scripts can also be executed interactively from the Novashell Console,
which we'll discuss next.

8.11.1 Novashell Console

As featured in Quake 3 and Unreal, the Novashell Console is an inter-
active panel where system messages are shown and where Lua
scripted commands can be executed at run time. From here, scripts
can output debug messages, print error notifications, and return confir-
mations, and developers can run commands, programmatically edit the
game, and execute specified scripted functions. Press the single quote
() key to toggle the Console on and off. Following are some simple
tasks that can be accomplished using the Console.

B To select an entity on the map by name using the Console, type
the following and then press Enter (this example uses the
GetEntityByName function):

GetEntityByName("Player");

B Each entity with a script attached can be thought of as an object-
oriented class. These entities feature a set of scripted methods
and properties such as the Run() and Walk() methods and Health
and Speed properties. To list the script data including its attached
properties and methods for a selected entity, enter the following
into the Novashell Console and then press Enter:

this:DumpScriptInfo();

B To run any of the scripted functions listed by the DumpScriptInfo
command for any selected entity, type the command in the follow-
ing form and press Enter:

this:RunFunction("FunctionName");

Where RunFunction is the specified method of the selected entity, and
FunctionName is the name of the method to run.

254

Chapter 8 / Novashell and 2D Games

8.11.2 Attaching a Script to an Entity

The Novashell Console is interactive insofar as it allows developers to
initiate functions manually from the command line, and allows the initi-
ated functions to print their debug messages back to the window in
response. In addition to the command line, script files can be attached
to specific entities to handle entity events and behaviors. Entity
events include mouse clicks, keypresses, collision events,
OnMapBegin, and OnMapEnd. Generally, scripts are written to handle
and control an entity’s response to these events, where one event typ-
ically corresponds to one method in the Lua script file (an event
handler), and this handler is initiated at run time on each occasion the
corresponding event occurs to that entity. The following example dem-
onstrates the step-by-step process for creating a new Lua script file
and then assigning that file to an entity named “Player.”

1. Beginning from the desktop, create a new text file using a standard
text editor or a Lua editor such as LuaEdit
(http://luaedit.luaforge.net/).

2. Enter the following basic script, handling the three simplest
events for any entity. These event handler functions are described
after these steps.

RunScript("system/player_utils.lua");

function OnInit() //run as game is executed and entity created
this:GetBrainManager():Add("StandardBase","");
this:SetIsCreature(true);

end

function OnPostInit() //run once entity appears on map
LogMsg("The entity name is " .. this:GetName());
end

function OnKil1() //run as entity is removed from memory
RemoveActivePlayerIfNeeded(this);
end

Chapter 8 / Novashell and 2D Games 255

3. Save the Lua file with a unique name (e.g., “newplayer.lua”) in the
Worlds subfolder appropriate for the game.

4. Load up Novashell and edit the game. Add a player entity to the
map and right-click on the entity to display its context menu. Click
Properties to open the Tile Properties window, and enter into the
Lua Script edit box the fully qualified path to the newly created
Lua script file. The script assignment is now completed.

This sample Lua code features three of the most fundamental event
handlers a Novashell script can contain for an entity: Onlnit,
OnPostlnit, and OnKill. The Onlnit handler is executed once per game
at the moment the entity is created in memory. OnPostInit occurs after
Onlnit; it is executed on every occasion the entity is placed on the
map. OnKill is run once per game and occurs whenever the player is
scheduled to be deleted from memory; this is typically as the game is
terminated by the player. These three functions are now considered
more closely.

function OnInit() //run as game is executed and entity created
this:GetBrainManager() :Add("StandardBase","");
this:SetIsCreature(true);

end

B GetBrainManager — A standard Novashell function that should
be called once in a script file for every intelligent entity on a map.
An intelligent entity is one that can move in terms of its X,Y loca-
tion on a map. This function allows an entity to exhibit basic intel-
ligence, configuring the entity to react to collisions realistically
and to find its way through a map across a series of plotted path
nodes whenever it is instructed to do so.

B SetlsCreature — This function flags the entity as a moveable,
intelligent entity in a Novashell map; the pathfinding system will
not figure this entity as a static obstacle for other entities when
performing its pathfinding calculations.

function OnPostInit() //run once entity appears on map
LogMsg("The entity name is " .. this:GetName());
end

256

Chapter 8 / Novashell and 2D Games

B LogMsg — This function prints a specified debug string to the
Console window.

function OnKill1() //run as entity is removed from memory
RemoveActivePlayerIfNeeded(this);
end
B RemoveActivePlayerIfNeeded — This function flags to
Novashell that the specified entity may be safely deleted from
memory since it is no longer required for the game.

8.11.3 Visual Profiles

Any single entity on the map, such as the player entity, may be in one
among many different states (such as walking, running, jumping) at
any one time. The player entity may, for example, be in a standing-still
state or in a walking or running state, depending on which keys the
player presses. Consequently, the visual appearance of an entity will
probably change depending on its state, requiring a different graphic
or animation to represent the entity in each state. Novashell uses its
Visual Profiles feature to solve this problem. A visual profile in
Novashell is an XML file assigned to an entity that lists each entity
state by name (“walk,” “run,” “jump,” etc.), and associates a visual
style (an appearance) to each state. Once the developer has associated
a complete XML profile to an entity and listed every state that entity
may assume, he then programs (in Lua) the entity’s currently active
state at run time from among the list of states available in the profile.
This is a bit like a dial or switch on a washing machine for choosing
which mode to work in. An example visual profile is featured below.

<resources>
<profile name="main_character">
<anim state="idle_left" spritename="idle left" mirrorx="no" />
<anim state="idle _right" spritename="idle left"
mirrorx="yes" />
<anim state="walk right" spritename="walk right"
mirrorx="yes" />
<anim state="walk up" spritename="idle down" mirrorx="no" />
</profile>
<sprite name="idle left">
<image fileseq="idle/idle_left .png" leading zeroes="3" />

Chapter 8 / Novashell and 2D Games 257

<translation origin="center" />
<animation pingpong="no" loop="yes" speed="150" />
</sprite>
<sprite name="idle right">
<image fileseq="idle/idle right .png" leading zeroes="3" />
<translation origin="center" />
<animation pingpong="no" Tloop="yes" speed="150" />
</sprite>
<sprite name="walk right">
<image fileseq="idle/walk right .png" leading zeroes="3" />
<translation origin="center" />
<animation pingpong="no" Tloop="yes" speed="150" />
</sprite>
<sprite name="walk up">
<image fileseq="idle/walk up_.png" Teading zeroes="3" />
<translation origin="center" />
<animation pingpong="no" Toop="yes" speed="150" />
</sprite>
</resources>

The above visual profile is for a sample player character and defines
four different states, though typically such a file would define many
others. These states are: idle_left, idle_right, walk_right, and walk _up.
The first two states are “idle” states in which the player is standing
still. The two walk states are for walking right and for walking up (for a
game with a top-down view). Let’s take a closer look at the profile
states and sprite entities of the visual profile XML file.

<anim state="idle_left" spritename="idle_left" mirrorx="no" />

B Anim state nodes define a single entity state. Each anim states
features a name tag to specify the name of the state; a sprite name
that corresponds to a sprite node specified further down in the
XML file, which is a reference to the image resource to use for the
entity when in this state; and a mirror tag, which can be either
“yes” or “no” and determines whether the associated visual style
(as specified by sprite name) will be flipped or reversed. This last
property is useful for directional states such as walk_left and
walk_right, where the same image can be flipped to face the appro-
priate direction for each state.

258

Chapter 8 / Novashell and 2D Games

<sprite name="walk up">

<image fileseq="idle/walk up_.png" Teading zeroes="3" />

<translation origin="center" />

<animation pingpong="no" loop="yes" speed="150" />
</sprite>

B Sprite XML nodes define a single visual style, whether an image

or animation, independently of any state node, and so a single
sprite node may be referenced by more than one state. A sprite
node has a name (e.g., “walk_up”), and this name should corre-
spond to the spritename node of any state that references this
sprite. The image fileseq tag defines the template form, or struc-
ture, of a sequence of image file names that together constitute a
complete animation for this visual style. For example, <image
fileseq="walk/walk_up_.png" leading zeroes="3" /> specifies a
sequence of files in the form walk_up 000.png, walk up 001.png,
walk_up_002.png, and so on, for however many files by this name
are found in the subfolder of the Worlds folder. The translation ori-
gin determines the origin from which transformations (such as
moving the image) are measured; this example specifies the cen-
ter of the image as the origin. Finally, the animation pingpong node
specifies the speed at which the animation is to play (milliseconds
per frame), and loop defines whether the animation should loop
after a single cycle of frames has completed. If loop is set to true,
then the pingpong tag determines the nature of the loop; “no”
means the animation plays again from the beginning, and “yes”
means the animation is played (or pingponged) forward, then
backward, then forward again, and so on.

8.11.4 Moving a Character Using the Keybhoard

A map entity such as the player or an NPC has a visual profile
attached, and this profile handles the entity’s appearance as it enters
different states (walking, jump, running, etc.). In addition to a change
in appearance, entities like the player character should be controllable;
that is, users should be able to move them to different positions
around the map using the keyboard or mouse. Following is a Lua script
that responds to keyboard input (such as an up arrow keypress) and
moves the player to a new X,Y position appropriately.

Chapter 8 / Novashell and 2D Games 259

RunScript("system/player utils.lua");

function OnInit()
this:GetBrainManager() :Add("StandardBase","");
this:SetIsCreature(true);

end

function OnPostInit()
this:SetTurnSpeed(6);

//Create an event link between keypresses and functions in

//script.

//0n each keypress for directional arrows, corresponding function

//is called

GetInputManager:AddBinding("1eft,always", "OnLeft",
this:GetID());

GetInputManager:AddBinding("right,always", "OnRight",
this:GetID());

GetInputManager:AddBinding("up,always", "OnUp", this:GetID());

GetInputManager:AddBinding("down,always", "OnDown",
this:GetID());

ResetKeys(); //Reset keys back to orginal states
this:SetRunUpdateEveryFrame(true);
end

function OnKil1()
RemoveActivePlayerIfNeeded(this);
end

function Update(step)

//Make camera follow the player entity as it moves around
//the map

260 Chapter 8 / Novashell and 2D Games

AssignPlayerToCameralfNeeded(this);
Tocal facing = ConvertKeysToFacing(m bLeft, m bRight, m bUp,
m_bDown) ;

//Determine where the entity is facing and set state from the
//visual profile
if (facing != C_FACING NONE) then
this:SetFacingTarget(facing);
this:GetBrainManager () :SetStateByName ("Walk") ;
else
this:GetBrainManager() :SetStateByName("Idle");
end
end

function ResetKeys()

m bLeft = false;

m_bRight = false;

m_bUp = false;

m_bDown = false;
end

function OnLeft(bKeyDown)
m_bLeft = bKeyDown;
return true; //continue to process key callbacks for this
//keystroke
end

function OnRight(bKeyDown)
m_bRight = bKeyDown;
return true;
end

function OnUp(bKeyDown)
m_bUp = bKeyDown;
return true;

Chapter 8 / Novashell and 2D Games 261

end

function OnDown (bKeyDown)
m_bDown = bKeyDown;
return true;
end

The above script features a series of event handlers — OnUp,
OnDown, etc. — called each time the corresponding key is pressed by
the player, and each handler sets a Boolean variable to true or false
depending on whether the key is pressed or released. The update
function is run on each frame (iteration) of the game loop, and the val-
ue of each Boolean (each indicating which key is pressed), in
combination with character speed, determines the distance and the
direction along which the player entity travels.

8.11.5 Clever Navigation with Pathfinding

Exarmpie - Dink Sty Pest - =)
T R SR e AT = Figure 8-21:

R R T T R e S S = | Pathfinding nodes

262

Chapter 8 / Novashell and 2D Games

The artificial intelligence term “pathfinding” refers to a computer’s
ability to find, or calculate, a valid route from point X to point Y across
a given graph of connected nodes. More practically, good pathfinding
ensures NPCs such as enemies or other creatures intelligently find
their way from X to Y across a game map without getting lost or stuck,
or without bumping into obstacles or walking through solid objects.
Novashell features an integrated pathfinding system that automatically
performs all the required calculations necessary for NPCs to find valid
routes between any two points around the map, from the point at
which an NPC begins traveling through to its destination. The
Novashell developer needs only to plot the points (or nodes) onto the
map, forming a graph network across which pathfinding calculations
are performed. In short, developers use the Novashell editor to plot
nodes economically around the map (invisible to the player) such that
each node is connected by a line to at least one other node in the net-
work, and such that at least one node is directly reachable by an NPC
regardless of where in the level he is standing. Directly reachable
means there is no obstacle (like a table, wall, chair, etc.) breaking the
invisible line between the NPC and the node. In Novashell, pathfinding
networks are created by copying the node tile from the System Palette
and pasting new instances in various locations on the level. Each
newly plotted node will connect to others on the map automatically,
provided a direct line of sight between the new node and the existing
nodes is available. The following step-by-step process creates a path
node network using the Novashell editor.

1. Beginning from the Novashell map editor, select the System
Palette.

2. Select the Path Finding Node tile and copy it to the clipboard.

3. Select a different game map, and from the main menu select Dis-
play | Show Path Finding Data to display any existing path
nodes and their connections.

4. Paste the path nodes around the map in a style similar to those in
Figure 8-21.

In addition to pathfinding nodes, the System Palette also offers
waypoints; waypoints are to path nodes what entities are to tiles. A
waypoint is an advanced path node that can be connected to the node

Chapter 8 / Novashell and 2D Games 263

network, but additionally each waypoint can be named uniquely in
order to distinguish one waypoint from other waypoints and from
among the mass of other nameless path nodes. Naming waypoints is
useful for identifying a specific waypoint so that Lua scripts can, if
required, instruct specific entities to travel to specific waypoints on a
map, rather than to travel to an anonymous X,Y position. This is dem-
onstrated in the following script.

RunScript("system/player utils.lua");

function OnInit()
this:GetBrainManager() :Add("StandardBase","");
this:SetIsCreature(true);

end

function OnPostInit()
//Add a random waypoint by name to the queue of places to which
//the entity should travel
AddPaths();
end

function OnKi11() //run when removed
RemoveActivePlayerIfNeeded(this);
end

function AddPaths()

//Build waypoint name string and append a random number
local pointName = "Waypoint" .. random(1l, 4);

//Add instruction to queue for this entity; travel to specified

//position

this:GetGoalManager () :AddApproach (GetEntityByName (pointName) :
GetID(), C_DISTANCE CLOSE);

264 Chapter 8 / Novashell and 2D Games

//Add instruction to end of queue (after travel) to repeat
//travel process
this:GetGoalManager () :AddRunScriptString("AddPaths()");

end

8.12 Conclusion

In this chapter we examined Novashell, a free, open-source 2D game
maker made by Seth Robinson for developing cross-platform games on
Windows, Linux, and Mac. Like many GDKs (game development Kkits),
Novashell is a work in progress that is continually changing. For this
reason, Novashell is likely to expand and ahsorb a growing collection of
features and quirky innovations for making games, courtesy of a fledg-
ling community of developers and gamers. Appendix H at the end of
this book features a complete list of the Novashell functions available
for scripting with Novashell tiles and entities.

Chapter 9

Director and Web
Games

This book thus far has considered the development of primarily two
styles of cross-platform games. One type includes games written and
cross-compiled in Code::Blocks C+ + to run natively on each target
platform (Linux, Mac, Windows, etc.). These games are usually cre-
ated in conjunction with an open-source game SDK such as SDL
(Simple DirectMedia Layer), which is designed specifically for drawing
graphics to the game window and for playing sounds and music to the
speakers to add atmosphere and realism. Games made in this style
include The Battle for Wesnoth, Dirk Dashing, and Open Arena. The
other type includes games created in a GUI game editor (such as
Novashell), where developers build a game world by designing maps
and referencing externally sourced Lua scripts, after which both the
design and scripts are compiled to run as a completed game running
atop a cross-platform engine. We refer to these styles of cross-plat-
form games as “native-compiled” and “engine-based.”

This chapter considers a third type of cross-platform game espe-
cially popular on Windows and Mac known as the “web game” (or
virtual machine-based game). A thriving industry and played by
gamers across the world, web games are so called because they typi-
cally run through a web browser and are embedded inside a web page,
available to most (but not all) gamers with Internet access. Some of
the more well-known web games include Diner Dash, Home Run,
Samorost, and Bejeweled. Often, web games are the kind people play
casually to fill a rainy afternoon at home, or the kind parents show to
their kids to keep them quiet for an hour or two, or the kind people

265

266

Chapter 9 / Director and Web Games

play at work to occupy themselves during a vacuous moment or to
help clear their minds.

More technically, though, unlike engine-based games (such as
those made with Novashell), web games are said to run in a web page
through a virtual machine (VM). That is, developers typically create
their web games by first using a GUI editor (or content creator) specif-
ically designed for creating web games in place of an IDE like
Code::Blocks. These editors usually offer tailored scripting facilities,
level designing tools, sound playback features, and more. Once game
development is finished and the completed game is ready to play, the
whole project can be exported from the GUI editor to a platform-inde-
pendent image file (object file). The game file then can be loaded into a
virtual machine, in which the file is interpreted and played on-the-fly
for the target platform, whether it is run stand-alone by an independ-
ent VM or in a web page by a browser-embedded VM.

Thus, the cross-platform compatibility of any given web game
depends not so much on the specificity of the game image file created
by the developers as it does on the availability of cross-platform VMs
capable of playing the games. Put simply, the game image file is plat-
form independent insofar as it may be interpreted and run on any
platform for which there is a compliant virtual machine. Hence, the
platforms supported by any web game depends entirely on the plat-
forms supported by the VM; a VM for Windows means the web games
play on Windows, a VM for Mac means the web games play on Mac,
and so on. Overall, then, the process of running a web game (whether
stand-alone or in a browser) occurs between two distinct entities: the
game image itself as created by the game developers, and the virtual
machine (the player of the game image, the infrastructure upon which
it executes). In short, the relationship between game and VM parallels
the relationship between software and hardware and between MP3
files and the MP3 player upon which the files play.

Chapter 9 / Director and Web Games 267

Mirroring this distinction between VM and game, there is a dis-
tinction between the VM software itself and the IDE available to
create the web game; one makes the game and the other plays it. In
the contemporary world of web game development there are two dom-
inant VMs and two complementary game editors for developing web
games that run in each VM, respectively (all now made by Adobe Soft-
ware). These VM and editor pairs are as follows:

B Flash and Flash Player — Flash, originally released as a vector
graphics solution by Macromedia Software in 1996, is now owned
by Adobe. Flash is the name of both the GUI editor for making
web games and the VM (Flash Player) that runs in a web browser
and plays the games as web-embedded applications. Flash is often
recognized by web developers as being a simple-to-use “light-
weight” solution for creating compact animated multimedia con-
tent ranging from web games to content-rich web sites. The Flash
editor is widely used by web developers, and the Flash Player sup-
ports many platforms (from Windows to Linux and Mac).

B Director and Shockwave — Director is a commercial (not free
or open-source) “content creator” for making web games and
other multimedia presentations that run both in a web browser
(through a Shockwave browser plug-in) and stand-alone (where
the Shockwave VM and the game are together compiled into a sin-
gle executable). In short, Shockwave games can run in a web page
or as stand-alone executables. The rest of this chapter covers
Director in the context of creating cross-platform games.

268

Chapter 9 / Director and Web Games

9.1 Director

Ble e few et Modhy il Don Bedos bop

e T T T Figure 9-1

s

L
i

® Do Bt gt
» Diion Tow g

BoO~N%dPRO

EeB /2>%000

TS

To summarize, Adobe Director (formerly known as Macromedia Direc-
tor) is a GUI-based “content creator” and a complement to Adobe
Flash for making cross-platform multimedia products (though Flash is
not required to run Director or the Shockwave virtual machine). Direc-
tor as an IDE likens a multimedia application to a play in a theatre or to
a movie in which the developer takes the role of the director, or the
orchestrator. Director is so called because it is based largely on a
movie metaphor: one in which the developer (the director) is the man-
ager responsible for synthesizing the ingredients of the production
(the actors, the props, the special effects crew) into a coherent whole,
a harmony whereby the completed product (the game, or the movie)
becomes greater than the sum of its parts on account of their synthe-
sis. So overall, Director is a complete suite of tools integrated into one
application designed specifically for making multimedia productions
featuring frame-based animation, vector graphics editing, media import
(from files such as .mp3, .mov, .avi, .mpg, and .bmp), and also scripting
and event-based programming using either the widely known language
JavaScript or the Director-specific proprietary language Lingo. The lat-
est version of Director (at the time of writing) is Director MX 2004.
Although this is a commercial product, a free trial (30-day) version is

Chapter 9 / Director and Web Games 269

available and can be downloaded directly from Adobe’s web site at
http://www.adobe.com/.

9.7 Director Games

Adobe Director has had a long and varied history from its early begin-
ning as Videoworks, through various name changes and upgrades to its
present incarnation. Because of its long history, many developers have
specifically chosen Director to create their games, and their Director
games have in turn become successful. Thus, after a cursory glance of
the games available on the contemporary market, it is not hard to find
games created with Adobe Director. Some examples of available (or
coming soon) Director games are featured below:

B Barrow Hill — Released by Shadow Tor Studios in 2006, Barrow
Hill is a Director-made first-person adventure game (shaped in the
classic style similar to Zork, Myst, or Shivers). Barrow Hill has a
spooky-horror theme in which the player finds himself embroiled
in a ghostly mystery after becoming stranded at an abandoned gas
station in the English town of Barrow Hill after his vehicle inexpli-
cably breaks down on the road nearby. More information about
Barrow Hill can be found at the Shadow Tor web site at
http://www.shadowtorstudios.co.uk/.

Figure 9-2: Barrow
Hill: Curse of the
Ancient Circle, Shadow
Tor Studios, 2006

270

Chapter 9 / Director and Web Games

B Diner Dash — Diner Dash was originally released in 2004 as a

Director-made web game by New York developer Gamelab, and it
has since become one of the most popular and therefore most
famous casual games, now having spawned a number of sequels
and having been ported both to the mobile phone and console plat-
forms. In Diner Dash, the game occurs inside a restaurant where
the gamer must take the role of a waitress, Flo. Here, in a frenzied
rush, she must serve the impatient diners who come to the restau-
rant for a meal and to socialize. In each level, Flo must seat the
increasingly demanding customers at their tables, take their
orders, deliver to them both their meals and their bills, and then
clean up their messy tables in order to seat the next wave of
demanding customers, and the mouse-clicking mania goes on.
Diner Dash can be played online for free in a browser at PlayFirst,
located at http://www.playfirst.com/game/dinerdash (requires the
free Shockwave VM).

DN NOTE. The Shockwave plug-in for most popular web browsers can

be downloaded from http://www.adobe.com.

B The 13th Doll — The 13t Doll is the unofficial sequel to the 7th

Guest and the 11t Hour puzzle games released in the mid-1990s
by Trilobyte. More accurately, it is a Director-made prequel to 11th
Hour and a sequel to 7th Guest, made by a small independent team
of volunteers under the collective banner of Attic Door Produc-
tions. In this puzzle game, the gamer may play either a doctor or
his patient, whose lives cross as they enter a strange and aban-
doned mansion once owned by a sinister toymaker named Henry
Stauf. Here, the player must move from room to room, finding
clues and solving an intricate network of brainteasers to unlock
the secrets of Stauf’s mansion. The 13th Doll is currently in pro-
duction and is planned for a cross-platform release (Windows,
Linux, and Mac). More information can be found at the 13th Doll
web site http://www.t7g3.com/.

Chapter 9 / Director and Web Games 271

Figure 9-3: The 13"
Doll

9.3 Director and Shockwave
Compatibility

Many of the developmental software and tools examined in previous
chapters of this book (Code::Blocks, GIMP, Blender, Audacity, etc.)
were cross-platform in the sense that each application supported Win-
dows, Mac, and Linux; this meant that developers could develop
games on any or all of those platforms as well as cross-compile their
games to run on each of them, supporting all users on each platform
natively. However, both Director (the game editor) and Shockwave
(the virtual machine that runs Director-made games) sport a cross-
platform “compatibility” that is based primarily on profitability and is
therefore more limited and less encompassing than the cross-platform
compatibility of the other development software hitherto considered.
Specifically, both Director and Shockwave support only Windows and
Mac natively; neither officially supports Linux as a platform. Thus,
since Shockwave does not support Linux and since a web game (like a
Shockwave game) may run only on those platforms for which there is a
compatible VM available, it seems to follow that Shockwave games
cannot run on Linux, only on Windows or on Mac. Officially, this is the
case for now; however, alternative strategies are available for running
Shockwave games successfully on Linux. In Chapter 2 we examined
Linux Ubuntu in the context of running Windows applications through
emulators such as Wine and CrossOver, and through transgaming tech-
nologies like Cedega. Simply by having these installed on Linux, most
Shockwave games should execute successfully, but thorough and

272

Chapter 9 / Director and Web Games

regular cross-platform testing during game development is suggested
to ensure issues (such as incompatible media formats like .mov, or cer-
tain function calls) do not arise that “break” compatibility with the
transgaming emulators on Linux.

9.4 Getting Started with Director

Adobe Director is a commercial content creator driven by a movie-
making metaphor that places the game developer in the position of a
director. In this capacity developers use its features to create both
stand-alone and web-based cross-platform games that run through the
Shockwave virtual machine (supporting Windows and Mac, and Linux
through transgaming emulation). This movie metaphor has come to
shape the style of the features developers work with in Director. The
following steps offer a simple “getting started” guide to installing and
then creating a simple application with Director. Subsequent sections
of this chapter examine Director and its features in more detail.

N NOTE. These steps apply to Director MX 2004 for Windows.

9.4.1 Downloading and Installing Director

1. Beginning from the desktop, navigate a web browser to the Adobe
web site from which to download Director at http://
www.adobe.com (or go directly to http://www.adobe.com/products/
director/). From there, search the product listings for Director, and
click Download Free Trial. Save a copy of the installer from the
web site to a location on your local machine.

Chapter 9 / Director and Web Games 273

[i ™

Muimadia Autharng Took

N >
[Gt o bopory Poskmas Joo tie

_ Figure 9-4: Director

| 3 (6 (3 (@) ¥ o

download site

Toursccowst | TR | Contact | waned Sustes [Changel
Home Solwioss Producls Support Commusies Company Downkoads

Macromedia Director MX 2004

Develop powerful games and
high-performance multimedia
applications for the Internet, CDs, DVDs
and kiosks

b

RICTOR WX 7004

Buy o upgrade Direcor MX 2004 now s
Fres 30-day rial
Cocer by phone: 1.800.885. 0774

Macromeda Director M 2004 is the proven authoring tosd for creating powsrul games.
simulations and mullimedia appcations . Director combinas brosd support for media Lyped,
wate of uan, it magped graphics. trus 30 tendering. high-parkcrmance, snd n isfnitely
extiornsbie Sreslepment wvenmert 1 debee games, nch conteot and appston for e
intwmat. dwskiog, COs and DVDs.

ely on Chracter b quic ideas fom
usinsy Director's intutive design and object-ornted devsiopmant smvmement Direclor's
powerul features incude twe scripting languages. cross-platiorm publishing and Flash

nlegration

i Understanding e Powes of Direciar

Gt a towr ofme features

3 Wt m Beecr k20047
ll vene

= Duy onlng
i Gabes BOO-SES-0TT4
(F Downioadtres tral
T Gatsuppont

DRICTOR M oA

AT A GLANCE

SYSTOM ROUSTAMNTS
as

XTRA EXTENDONE
SROCTNAVE FLAYER HOUSE
PURCHALE COTIONS

& Duy o ugsarace

£ Call 1800833 8687

DEECTON W ACTION

Showcase
Combining Flash wih Dirscier
Using JavaSerigt Syitan
Dt Rr Shocowae 10
Shocewaes Payee Slalibcy

2. Run the installer and follow the Installation Wizard to install Direc-
tor to the local computer. Once completed, run Director from the

Windows Start menu.

Figure 9-5: Installing
Director

[Wi srongly recommende thal you e ol Wirsdows progians
bedoee iunning thiz Setup Program.

lar i 7 Click Cancel to quit Setup and chose ary programs you have.
nunring. Click Neod to continue with the Setup peogram.
MACTOMoS This program is ighit lawy and
DIRECTOR sl Ve

Unauthized rapeoduchion of dishibuion of this program, o any
porhorn of i, may tesuik i severs col snd comnal penalbes, and
vllba ko th ok pisasible urides I,

Coc

Chapter 9 / Director and Web Games

trator mode.

[l Macromedia Director MX 2004 Properties

[General [Shonout | Compaiibaty | Secuy [Detals

¥ with andit
an earber verson of Windows. sslect the compatibdity mode that
matches that sadier version

Compatbdty mode
171 Run this program in compatibity moda for:

Windows XP (Sarvice Pack 2

[T Run in 256 colors

171 Run in 640x 480 screen resolution

[Disabie visusal themes

[7] Disable deskion composlion

1] Dusable dieplay ecaing on high DP| settings
Prrviege Level

[¥] Run this program as an admenistrator

") Shaw aettings for all users

o) st

Figure 9-6:
Configuring Director fo
run on Vista

N\ NOTE. Windows Vista users may need to run Director in Adminis-

9.4.2 Creating an Animated “Hello World”
Application in Director

1. Director begins at the Project Wizard (or Welcome) menu, from
where developers create new projects or open previously saved
projects. Click Director File under the Create New heading to
begin a new, blank Director project.

[Fie Bdn iew Do Modty Convol Fom Wedow Help
@@ d HE

L]

Macromedia Director MX 2004

6ot the mest sut of Dinector

=] T, sos nd ks, spsca s and
LS mre ondable a2 macromeda. com.

Mmer JHIAOMW ~SSA® Swe

Figure 9-7:
Beginning a new
Director project

Chapter 9 / Director and Web Games 275

2. A blank new project is presented in the editor. This includes the
Stage window, which corresponds to the game window (the output
display shown to the gamer when the game is run); the Score win-
dow, graphically illustrating the game timeline that ticks over in
frames per second beginning from frame 0 and moving onward
incrementally, frame by frame, the moment the game is run; and
the Property Inspector panel (often found docked on the right-
hand side of the editor) that displays the properties (such as X Pos,
Height, Visible) for the currently selected object.

Figure 9-8: The
Property Inspector
| panel

Click the Movie tab on the Property Inspector panel and adjust
the size of the Stage window (the rendered output) to 640 x 480
resolution. This changes the size of the game window.

3. The project is now ready to accept imported image data (such as
BMP or JPEG files) to display to the screen in the output window.
This image will then be animated to move across the Stage from
the left side to the right side over the course of 30 frames. Image,
movie, and sound files are collectively termed “resources” when
located on disk, and resources are loaded from files on disk and
into Director as “cast members.” Cast members are not added
directly to the Stage, but must later be added manually.

276

Chapter 9 / Director and Web Games

o X 6B T2 e [IDTOW S SAG B Figure 9-9: Importing
- image data
- "o
o s R R S L © i)
e |
: e
: e
RN =
* ContAntesnal L @ -
BE e |8 s} I LT Sey —
e oLl -
Lo
P rer——r—
Lo |

To import a preprepared image file from disk and into Director as a
cast member, activate the Time-Line window (or the Cast window)
and right-click in the empty list view. When the context menu
appears, click Import to display the Import Files dialog, from
which you can select files.

From the Import Files dialog, select a local image file on the hard
disk to import into Director as a cast member using the list view of
files and folders. Once selected, activate the Media drop-down list
at the bottom of the dialog, and select Link to External File
instead of Standard Import. Standard Import instructs Director to
create a duplicate file of the selected file in memory, and this is the
file Director continues to reference in place of the file on disk.
Link to External File means Director references the file on the
disk directly. The latter option means that any changes that occur
to the image on disk (perhaps a developer wishes to change the
image entirely but keep the same file name) are also reflected in
the image drawn on the Stage by Director at run time. Click
Import to continue.

Chapter 9 / Director and Web Games 277

a Import Files into “Internal” -

(=x=)
Figure 9-10: The
Import Files dialog

Look in: Chapter 8 -0 %P E
Name Date taken Tags Size
— I?irectol_\'\"cb.bmp

Mg | hellownld brmp
wopw | Ditmap Image

Flepame helloword bmp import
Files of type: | All Filee = Cancsl
| add || aAdda Remave Interret...
Melist |]
(Maveup |
| Mova Down. |
Heip
Media: Link to Extemnal File v

The Image Options dialog appears. Remove the check mark from
the Trim White Space check box and click OK to continue. The
image will be imported as a cast member for this project, and is
ready to add to the Stage. The Trim White Space option deletes
any white pixels in an imported image and replaces them with
transparency.

Image Options for C:\Users\Alan\Docu..apter B\helloworld

()
Figure 9-11: The

Lok Dontc P2 [naoe D% L %1 Image Options
e Tt)| g
Palette: @) Imoort alog

Bemap to

Same Salbings for Remaining Images Help

The image is now added to the Cast window as a cast member of
the project. Cast members do not themselves appear directly on
the Stage after being imported into a Director project. Rather,
being a cast member means Director keeps a reference to the
imported image as a potential resource for use later; either the
image is referenced externally on disk (via Link to External File)
or the image is loaded entirely into Director (via Standard Import).
Once loaded into Director as a cast member, it can be dragged onto
the Stage where it will appear as a sprite (an on-stage instance of
that cast member), and here it will be drawn to the game window,

278 Chapter9 / Director and Web Games

visible to gamers. Any single cast member may be dragged to the
Stage many times, each time creating a new on-stage sprite based
on the same cast member in memory, in the same way a single
C+ + class may be instantiated many times as different objects.
Thus, many sprites may be based on the same cast member, and
thereby the same resource in memory (that is, copying and pasting
a sprite does not duplicate in memory the resource itself upon
which it is based). For example, many on-stage tree sprites each
based on the same tree cast member may be copied and pasted
around the Stage to create a dense and verdant forest of tree
sprites, all without duplicating their associated cast member in

memory.
ey ==
T Figure 9-12:
- o= | Dragging the cast
e ~“" member onto the
= “% Stage

o [——

» Do Tt iapaios
——

7. Once the cast member is dragged onto the Stage as a sprite, the
sprite on the Stage and the Score window can together be used to
animate the sprite to, for example, move it from one corner of the
Stage to the diagonally opposite corner over the course of 30
frames. To do this, first activate the Score window and drag the
timeline slider across the header of the timeline to frame 30; this
sets the current frame to edit, namely frame 30. Afterward, acti-
vate the Stage window and click to select the sprite on-stage. In
the center of the selected sprite appears a small red marker, and
this can be dragged to the destination point at the corner of the

Chapter 9 / Director and Web Games 279

Stage where the sprite is to reach by frame 30. This then marks
the path (or vector) along which the sprite is to travel, from its
start point (where the sprite is situated currently) along an invisi-
ble line across the Stage to a destination point marked by the red
marker.

880/ ULE 360 B e JRROW S SAD B Figure 9-13:
Setting the travel
" path

8. The Director movie is almost ready to play insofar as a sprite on-
stage will now slide gently across the Stage from a source to a
destination point within 30 frames. However, once the 30 frames
expire, the movie will end and the presentation will stop. To con-
figure the movie to run continuously until the player presses Stop,
scripting is required. Double-click the blank cell above the 30-
frame header in the Score window to open the Scripting window,
where the developer can edit the script for the current frame.
Select the scripting language JavaScript from the drop-down menu,
and then enter the code shown below into the code editor. This
code instructs the Director movie to shift playback to the first
frame of the movie whenever the timeline reaches the end of
frame 30.

function exitFrame(me)

{
_movie.go(0);

}

280 Chapter9 / Director and Web Games

G Doonons bt 200 T
:;- :-?v; -:-n»::-w v":_;#;e-. b-: e FIgUI'G 9-14:
- o Adding JavaScript
o S v code fo control
A7 T T —— o
A B playback
20] e bpr
_.0
=E
_B_l - ——
L JaTT LERER (28 § ERE © e
[===
-vm% - |

9. The “Hello World” Director movie is now completed. Click the
Play button on the toolbar to begin movie playback.

9.5 Director in More Detail

Figure 9-15:
1. Import files into Director as Cast Members Director workflow

2. Drag Cast Members to Stage as sprites

3. Arrange sprite lifeline in Score window

4. Add scene and event scripting to control behavior

Chapter 9 / Director and Web Games 281

In summary, Adobe Director is a commercial content creator whose
features are designed specifically for developers making cross-plat-
form games and other interactive presentations, from animated menus
to real-time 3D games. As an IDE (integrated development environ-
ment), Director conceptualizes game development as being akin to a
movie production and offers to developers several core components.
Let’s look at the components in detail.

9.5.1 Cast Members

Figure 9-16: The

T e B : Cast window
_. 00D D =) penies
LA AL LI I I I I)= =

A [e b |

Lz r Il HEEEE A =
| [T I T T T T T 1] =
L, [T 11 T 1T T 11 l
L] |_ TIT T T T T1]

[] ,'[[T T T T T T 1]
[, [T T T T T T T TT]

L, T T T T T T 117
[1 ,'l [T 1 1] |
[, T I T T T T 1T 11]

Games are said to be greater than the sum of their constituent parts in
the same way a movie is more than just the sum of its cast members.
Games are more than just a soulless list of graphics, sounds, and
music. Rather, the game emerges as a feature-filled totality from the
particularity of its recipe, from the unique blend and configuration of
its resources or cast members. Thus, in the context of games made in
Director, a cast member refers to a resource (an image, a sound, a
movie, a text file, or any other externally loaded file brought into the
game), and the game as a whole is then assembled step by step by
piecing together the cast members into an original formation on the
Stage. Thus, the Director Cast window is a data bank of resources; a
collection of files imported into Director as cast members.

282

Chapter 9 / Director and Web Games

More accurately, some cast members may be imported and some
are instead linked. Imported cast members are loaded into Director as
static, byte-for-byte copies in memory, and they persist unchanged
regardless of what changes may occur subsequently to the contents of
the file from which they were loaded. The imported cast members are
independent of the resource files. For example, a bitmap of a bright
yellow happy face may be imported into Director as an image cast
member. As such, Director makes a copy of the imported file and it is
this copy that Director continues to reference, not the original file.
Hence, the imported clone remains unchanged even when the original
file is deleted or changed. Linked cast members, by contrast, are
linked to the external files from which they are loaded into Director;
thus, changes in the file are reflected in the cast member.

Cast members have a variety of properties that can be changed
using the Property Inspector panel. Two of these properties include:

B Name — The name is a programmer-defined string to be used for
the cast member. This property is optional but useful for scripting,
as we shall see later.

B Number — Each cast member in any single Director project is
assigned a number automatically, and every number must be
unique to a single cast member. This property can, however, be
changed manually, usually for scripting purposes.

9.5.7 The Stage

The Stage corresponds to the game window; that is, the final viewing
area for the gamer. To continue the movie analogy, to be on-stage is to
be visible and to be “off-stage” is to be unseen, to be in the wings.
Overall then, the Stage is a place for actors or members of the cast;
thus, the Cast window and the Stage window are intimately related, in
the same way a catalogue is related to the objects that are catalogued.
Cast members are dragged from the Cast window and into the Stage
window where they appear on-stage as sprites, ready to perform. The
relationship between a cast member and a sprite can be either one-to-
one or one-to-many, where a single cast member may be dragged to
the Stage once or many times to create one or many sprites. Each
sprite is based on the same cast member, just like a single C+ + class
declaration may give birth to many instances of that type, or a single

Chapter 9 / Director and Web Games 283

e e e e i amew s Avleve Figure 9-17: A fle
ol B Sl displayed on the
H = ° Stage

Heem>D -}

gEooD

¥ Code Babarvion bavpocter .

B Do Tt bt

word-processor letter template may give rise to many letters based on
that single template. Here, on the Stage, sprites are positionally
arranged by the developer by clicking and dragging them from the
Cast window and into the Stage or the Time-Line window. Most pro-
gramming in Director will occur in relation to sprites, such as defining
where and how sprites move on-stage, determining when sprites col-
lide with each other (collision detection), determining how sprites are
z-ordered (arranged to the display), and so on.

The Stage has many properties that can be edited using the Object
Inspector panel. These include the following:

B Stage Size — The width and height of the Stage specified in pix-
els; changing these properties adjusts the screen resolution (or
window size) at which the game is run.

B Title — A programmer-defined string specifying the title of the
game window to be used while the game is running.

B Color — The 32-bit color value specifying the color to be used for
the Stage background; set by default to black.

284 Chapter9 / Director and Web Games

9.5.3 The Score Window’s Timeline

[0 %0 - Dl w3000 ——

AT E S R TP Figure 9-18: The
vy | ST timeline is shown in

ol : Fee the Score window.

The Time-Line window displays a chronological map of the entire
Director project, documenting the comings and goings of sprites
on-stage across the duration of the presentation. It details the points
when sprites enter the Stage, the moment sprites leave, and the loca-
tions and transformations of sprites in any one frame. At the moment
playback begins by pressing the Play button from the toolbar, a time
slider runs horizontally across the header-axis of the map, ticking over
the linear progress of the presentation as it unfolds frame by frame
from beginning to end, left to right, just like the progress slider of a
media player. During movie playback the time slider moves horizon-
tally (from left to right) across the frames of the Score window,
stepping across each sprite in its associated channel. These channels
are arranged row by row, with one channel corresponding to one row.
A Director presentation consists of potentially many channels, and
each channel serves an important purpose for the presentation. First,
sprites find their way onto the Stage by occupying a channel. Each
sprite must occupy a channel if it is to exist on the Stage, and each
channel may accommodate only one sprite in any one frame. A channel
may be empty if there are more channels than sprites. This means
there may be as many sprites on-stage at any one time as there are
channels available. Second, channels by default represent the z-order

Chapter 9 / Director and Web Games 285

of sprites; that is, the order in which sprites are drawn to the Stage.
Specifically, sprites in channels are drawn to the Stage in order of the
channels; that is, downward according to the vertical arrangement of
channels in the timeline, from top to bottom, row by row, channel by
channel. This means sprites in high-order channels are drawn atop
those in lower-order channels. Thus, channel 0 is the background, and
the highest channel represents the sprite closest to the camera (or
audience).

d TIP. Take a look at the Time-Line window and the presentation of
channels by dragging a cast member to the Stage as a sprite, and
then examine the sprite’s channel occupancy in the timeline. Chan-
nels that are occupied by sprites are shaded with a colored block
instead of appearing blank, and the length of the block can be
resized to determine the lifespan of the sprite on-stage. That is, the
sprite remains on-stage only so long as the length of its correspond-
ing block (located in one of the timeline channels) remains beneath
the time slider, which moves linearly across the header of the chart
as the presentation is played back frame by frame. Blocks can be
resized and dragged throughout the timeline.

9.6 Director Scripting with JavaScript

Director offers to developers a comprehensive scripting system inte-
grated into the editor in order to customize and control games
programmatically. Through scripting, developers can program almost
every aspect of a presentation — from the run-time positioning and
transformation of sprites on-stage to the ordering of channels and play-
ing of sounds and music. Director as an IDE offers two different
scripting languages for creating scripts: the Director-specific language
Lingo, and the more widely known JavaScript. In this chapter, though,
we concentrate on scripting with only JavaScript. Why JavaScript and
not Lingo? Partly because JavaScript as a language is general-purpose
and widely used by developers both inside and outside Adobe Director,
and partly because JavaScript is supplemented by mammoth documen-
tation and tutorials both online and in books, all available at the touch
of a button.

286 Chapter9 / Director and Web Games

[0 0. - Bhowcrcs e 204 =
[s e e e o Seu T Ae e Figure 9-19: A
LH T =

S| global event script

* 8L 4 En2 O

In Director there are primarily three types of scripts, each distin-
guished by the way in which they are invoked; that is, the agent or
event that causes the script to run. The three types are frame scripts,
global event scripts, and local event scripts; these are now considered
more closely.

9.6.1 Frame Scripts

Frame scripts are specifically timed scripts. They occur on a specified
occasion in the movie during playback or after a specified delay as
measured in frames. Frame scripts are created via the Time-Line win-
dow by clicking on any of the vacant cells above the time slider header
region to open a scripting widow. Developers enter script into the edi-
tor that is to execute on the selected frame. In short, frame scripts are
attached to specified frames in the presentation, and the script exe-
cutes whenever the time slider enters that frame during playback. An
example was the “frame loop” script created for the sample “Hello
World” application in Section 9.4.2. Here, this script executed when-
ever the slider reached frame 30, and it sent the slider back to frame 0
where it again repeated the presentation from the beginning.

To create frame-based scripts:

Chapter 9 / Director and Web Games 287

1. Activate the Time-Line window in the Director editor to view the
movie chronological map, a view charting the progress of the
movie from beginning to end, left to right.

2. Locate the time slider in the horizontal margin at the top of the
timeline, and double-click inside an empty cell above the time
slider.

3. The frame script for this frame is now ready to code in JavaScript
using the script editor.

9.6.7 Global Event Scripts

Global event scripts are specifically named JavaScript functions that
Director searches for and runs (if present) whenever associated global
events occur during movie playback. Put simply, global events are
scripts run whenever an important event occurs during playback. For
example, Director searches all scripted functions for one named
startMovie as soon as movie playback begins; if found, the function is
run. Likewise, Director searches for a function named stepFrame to
execute once every frame, as each frame passes during playback. (In
some senses, the stepFrame global event is analogous to the Update
function featured in the game loop used earlier in this book for SDL
applications.)

To create global event scripts:

1. Open the Script window by clicking the Script Window button on
the Director toolbar. Create a new script file by clicking the +
button.

2. Create a specifically named function as a handler for a global
event. These functions must have appropriate names. The global
event handlers are listed in Appendix I, “Director Events,” and
can also be found in the official Director documentation. Here is an
example function:

function startMovie()

{

//Insert code here

}

288 Chapter9 / Director and Web Games

3. Assign the script global scope so Director can locate the event
handler in memory. To do this, activate the Property Inspector
panel and under the Script tab, select Movie from the type
drop-down box to assign the script a movie scope; that is, global
scope.

9.6.3 Local Event Scripts

Local event scripts are micro-level (sprite-level) scripts attached to
specific sprites on-stage in order to handle incoming events for that
sprite. They handle mouse click events, keypress events, mouse enter
events, and all kinds of other events that may occur to on-stage sprites
during movie playback.

To create local event scripts:

1. Inthe Director editor, select an on-stage sprite for which to create
a scripted event handler.

2. Right-click the sprite to display a context menu, and select Script
from the menu to display the script editor window.

3. Create a script for an appropriate event handler. Sprite events are
listed in Appendix I, “Director Events.” Here is an example
handler:

function mouseDown ()

{

//Insert code here

}

Chapter 9 / Director and Web Games 289

9.7 Practical Scripting

Scripting in Director with JavaScript offers developers the ability to
customize at run time most elements of a Director movie, from the
orientation of a sprite on-stage to the background color of the Stage
itself. Animations, then, are created by interpolating these properties
over time, frame by frame, throughout a single movie. Generally,
scripting in Director takes an object-oriented approach. Director offers
a number of important classes (core objects) for dealing with elements
in a movie, from sprites and movie playback to channels and cast mem-
bers. Some of the common Director classes encountered by a
developer while scripting are:

B Movie — The Movie class is the topmost controller of a movie in
a hierarchy of classes with different status. This class exposes
methods and properties for dynamically adding and deleting
frames to and from a movie, respectively; looping from one frame
back to another; and refreshing the contents of the Stage manually
(though this usually occurs automatically).

B Player — The relationship between the Director movie and the
Player class parallels that between a song playing in a media
player and the media player’s controls (forward, rewind, pause,
etc.). In short, the Player class allows developers to control movie
playback at run time.

B Sprite — A sprite is an instance of a cast member on-stage, and
every Director movie contains in script an instance of class Sprite
for every sprite on Stage. It is through this class that any individ-
ual sprite may be controlled. Using the Sprite class, developers
can set the position, size, and orientation of sprites; change sprite
channels; and hide and unhide sprites.

B Channel — A channel refers to the track or slots in the Time-Line
window, and the purpose of a channel is to accommodate one
sprite on-stage at any one time. Channels can be accessed and
controlled programmatically through the Channel class and, like
sprites, there is one instance of a Channel class in memory for
every channel in the Director movie, regardless of whether or not
the channel is vacant.

290

Chapter 9 / Director and Web Games

B Member — The Member class refers to a cast member (that is, a
resource imported from a file on disk), and there is one instance of
Member for every cast member present in the movie.

Let’s look at some practical scripting tasks commonly faced by Direc-
tor programmers. Many of the samples will make use of the
aforementioned “core classes” considered here.

9.7.1 Programming: Shapes, Lines, and
Primitives

In addition to the premade art, music, and sound imported from
resource files on disk and then into Director as cast members, Direc-
tor scripting further allows developers to draw pixels to the Stage
programmatically in the form of dots, lines, and shapes. Consider the
following JavaScript code. This code assumes a bitmap has already
been imported into Director as a cast member called “test,” and fur-
ther that a sprite instance based on this member has been created
on-stage. The sample code then draws to the on-stage sprite a line
starting from one X,Y corner of the sprite and moving diagonally
toward the other.

function startMovie()

{

//Create array variable holding information about primitive
//to draw

var ¢ = propList(symbol("shapeType"), symbol("line"),
symbol("1ineSize"), 3, symbol("color"), color(100, 0, 0));

//Draw
member ("test").image.draw(0, 0, 300, 200, c);
1

This code is featured in the startMovie global event handler, called
automatically by Director as movie playback begins.

The variable var c is declared as a Director-specific data type
called a property list (PropList), which is an array of properties
arranged sequentially in memory. A property list type is similar to the
std::vector class of the STL. In this case, the property list var c is a

Chapter 9 / Director and Web Games 291

collection of elements describing the geometric properties of a primi-
tive to draw.

The draw method is a member of the Bitmap class, and this in turn
is a member property of the Member class (an instance of Cast Mem-
ber). The draw method draws pixels to a device context, and the
method takes the following form:

draw(x1, yl, x2, y2, colorObjOrParamList);

9.7.2 Printing a List of All Sprites On-stage

Resources are imported into Director as cast members, and cast mem-
bers are dragged onto the Stage as sprites where they occupy available
channels. For sprites to be on-stage they must occupy a channel, and
only one sprite may occupy a channel at any one time; this means the
number of sprites that may appear together on-stage at any one time is
limited to the number of available channels in the Director project (this
limit is by default 65). Thus, a Director project may be conceptualized
as a collection of arrays since it contains a list of cast members
imported from files, a list of channels for on-stage sprites to occupy,
and a Stage, which may be considered as a meeting place of sprites.
Director holds all of these elements (sprites, members, and channels)
in three globally available lists, one list for each type. Consider the fol-
lowing code that cycles through all the sprites on-stage, and prints the
name of each sprite in a pop-up message box.

function mouseUp (me)
{
var TotalChannels = 65;
for (var i=1; i <TotalChannels; i++)
{
if(sprite(i).Name!l= "")
_player.alert(sprite(i).Name);

}

292

Chapter 9 / Director and Web Games

The global function sprite returns a pointer to the specified sprite, as
selected by the argument index.

The alert function is a method of the Player class, and it presents
to the screen a message box featuring the specified string.

NOTE. Sprites can also be selected by name rather than by
number:

//Example to make invisible a sprite selected by name
var tmpSprite = sprite("name");
tmpSprite.visible=false;

9.7.3 Animating Sprites Using Cast Members

Each sprite on-stage occupies a channel and each is an instance of a
cast member. In this respect the relationship between cast member
and sprite is in the order of one-to-many; that is, any one cast member
may be dragged onto the Stage one or many times to create one or
many sprites. Each of those sprites is based on the same cast member
in memory, and therefore each sprite appears identical to any others
created from the same member. The sprites themselves may have
different positions, sizes, orientations, and transparency values from
others on-stage since geometric properties are in no way encoded into
cast members, but the underlying appearance of each sprite (the pixel
data itself) will reflect the appearance of the cast member as imported
or referenced from a resource file on disk. This means that as a cast
member changes (either pixel data or file reference altogether), so will
all its dependent sprites on-stage, each changing to reflect the status
of the cast member since it was from this cast member that each sprite
was created.

The dependency, then, between cast member and sprite offers a
solution for creating animated sprites on-stage. Not animated in terms
of transformation, where a sprite changes position from one place
on-stage to another. Nor in terms of orientation or rotation, where the
geometric position of the sprite is changed. This can be achieved
already through the width, height, and locX and locY properties of the
Sprite class. But rather in terms of the sprite pixel data itself, in terms
of frame-based animation, such as a man walking, an NPC punching, or
an explosion sequence. Specifically, any sprite can be animated during

Chapter 9 / Director and Web Games 293

movie playback by changing the file reference of its underlying cast
member on a frame-by-frame basis so the sprite on-stage comes to
reflect the different member changes as each frame passes.

An example would be a side-scrolling platform shooter that fea-
tures an NPC animation in which an NPC fires a weapon. The
animation consists of ten frames, each of them illustrating the motion
of the NPC as he draws the gun from its holster and finally to the point
where he fires the gun, and from its barrel emerges a muzzle flash.
Here, frame 1 would initially be imported into Director as a link (not
standard import), and then the cast member is dragged to the Stage
where it appears at frame 1. Then on each frame, the file reference of
the cast member is incrementally set to the next frame so the sprite
on-stage appears to cycle through the frames and thus draws the
weapon and fires the gun. Consider the following code:

//Movie begin event

function startMovie()

{
//Create a new global array to hold a list of file names
//for each frame of animation
_global.g fileNameArray = new Array();
_global.g_CurrentFrame = 0;

//Add file names

_global.g fileNameArray[0]
_global.g fileNameArray[1]
_global.g fileNameArray[2]

/...

"framel.bmp";
"frame2.bmp";
"frame3.bmp";

}

//Called each frame
function stepFrame()

{

_global.g_CurrentFrame = _global.g CurrentFrame + 1;

member ("mytestmember").filename="@"+ global.g fileNameArray|
_global.g_CurrentFrame] ;

294 Chapter9 / Director and Web Games

9.7.4 Querying Mouse Events

The standard OnMouseDown, OnMouseUp, OnMouseEnter, and
OnMouseLeave events are sprite-based event handlers used to detect
and respond to the movements of the mouse cursor over specific
sprites on-stage at run time. However, developers may also wish to
query the movements of the cursor for purposes more broad than this,
such as to detect whether the cursor is hovering over a region of the
Stage or a collection of sprites, or to track the movements of the cur-
sor independently of sprites and wherever on the Stage it travels,
frame by frame. To do this, Director offers a global instance of the
Mouse class. Consider the following code:

//Determine if mouse intersects sprite("test")
if(_mouse.mouseLoc.inside(sprite("test").rect)==true)
{

//_mouse.mouselLoc.TocH; XPOS

//_mouse.mouselLoc.TocV; YPOS

//Do stuff here

return;

Chapter 9 / Director and Web Games 295

9.8 Using the Projector for Webh-bhased
and Stand-alone Games

Pubdlish Settings & s & (SN .
— vl Figure 9-20
Publah: | Ok
| ‘windows Projector
[RIL e = Publsh
Macintosh Projector Larcel

™

Macitosh Classic Projector
[FOL clasoc

Shockwave Fie (DCR)
|ROLder

HTML

| ROLhim

Irnuage File
|ROLica

Combirn when teplacing publchad Hiss
Prompd for kocstion whan publithing
Aukomalicall: save movie when publishing
o] Preview after publishing
Savehs Dedauk

Detaus

Help

Adobe Director is primarily a GUI IDE with scripting facilities
attached, and these together constitute the tools available to make web
games and stand-alone games for both Windows and Mac. Until now,
Director games were tested and run by pressing the Play button on
the editor toolbar; press this to begin movie playback. Here develop-
ers could preview their movies/games on the Stage within the editor
window. However, developers are likely to require that their com-
pleted games run independently of the Director editor — either in a
web page as a Shockwave presentation or in an executable where the
Shockwave player and the game image are compiled into one package.
The following sections explain how to build both web games and
stand-alone executables using Director.

296 Chapter9 / Director and Web Games

9.8.1 Building Web Games

1. From the Director main menu, select File | Publish Settings.

2. Deselect all check boxes, then check the Shockwave File (DCR)
check box and click OK.

3. Click the Shockwave tab and adjust the JPEG image quality to 80
using the slider control.

Pubdish Setting: 5 8 =0 ® (S
| [s Figure 9-21
Verion: | Shockwave Plaper 10 v Ok
Inagee Crmgaessinn | Publish
Standad —
o JPEG
—_——w
0 100
Audio Compiession:

o | Compression Enabled
[64 =] vBusssecond

] Cornvent Steven bo Mo

Inchade Cast Member Comments
| o marvie scaling
Enabled conted mermu ey
+| Trarepoet Control

| Viodume Contol p
| Savedhs Delauk

Detaus

Help

4. Click OK.
5. From the Director main menu, select File | Publish.

Once published, the project is compiled to a web game saved as a
Shockwave object embedded in an HTML web page. These files are
saved locally inside the project directory.

Chapter 9 / Director and Web Games 297

9.8.2 Building Stund-Alone Games (EXE for
Windows, 0SX for Mac)

1. From the Director main menu, select File | Publish Settings.

2. Deselect all the check boxes, then check the Windows Projector
check box to compile for Windows, or the Mac Projector check
box to compile for Mac.

3. Click OK.
4. From the Director main menu, select File | Publish.

Once published, the project is now compiled to a stand-alone game in
the form of an executable file. This is saved locally inside the project
directory.

9.9 Conclusion

In summary, Adobe Director is a commercial content creator for pro-
ducing cross-platform (Windows and Mac) games officially, and
unofficially for Linux through an emulator such as Wine. This chapter
brings to a close the examination of 2D cross-platform games, and here
this book changes direction by inspecting the world of cross-platform
3D game development using the open-source and freely available
OGRE 3D API. It is this subject that is now considered.

This page intentionally left blank.

Chapter 10

3D Games with OGRE 3D

To summarize the book thus far: Chapter 1 considered the beginnings
of cross-platform game development by highlighting the meaning of
the term “cross-platform,” and by also examining how to run multiple
platforms (Linux, Mac, and Windows) through multiple booting and
virtualization. Chapter 2 examined the Linux platform generally in
terms of the basics as well as some of its available features such as
command line execution and the GCC compiler. Chapter 3 then consid-
ered the variety of developmental tools available for developing
cross-platform games, namely the C++ IDE Code::Blocks, the photo
editing suite GIMP, and the 3D rendering software Blender 3D. From
here, this book considered mainly 2D games as created by the SDL
(Simple DirectMedia Layer), the Novashell game editor (a cross-plat-
form game engine), and Adobe Director, designed especially for
developing web-based games played by the Shockwave virtual
machine. This chapter changes focus from making 2D games to mak-
ing 3D games by considering the freely available and cross-platform
OGRE 3D API, compatible with the Code::Blocks C+ + IDE.

Any game designated as “3D” typically falls into one of two further
sub-categories, the more common real-time 3D or the less common
prerendered 3D.

B Real-time 3D — In real-time 3D games, events can occur simul-
taneously (such as gun fights, explosions, and tactical ops); that is,
events occur in “real time.” Games such as Doom, Unreal, Quake,
Gears of War, and Carnival (on Wii), are considered to be real-time.
In real-time 3D, gamers can move smoothly through the game
world, rotating their perspective on demand to view game objects
(walls, doors, enemies, etc.) from the front, back, underside, and
potentially from as many different angles as any 3D space can
physically allow. In this world of 3D, game objects are typically

299

300

Chapter 10 / 3D Games with OGRE 3D

composed of polygons. Books, doors, people, and more are all
assemblages of hundreds, perhaps thousands, of small triangles
angled and connected in specific ways. To enhance its realism,
each object is then fextured, which means its 3D surface is
wrapped or wallpapered with 2D images. The 2D images can be
bricks on a brick wall, wood grain projected onto the 3D surface of
a wooden cabinet model, and so on.

Figure 10-1: Free,
cross-platform 3D flight
simulator FlightGear,
available at http://
www.flightgear.org/

Figure 10-2: Free,
cross-platform,

and open-source 3D
shooter Nexuiz, available
at http://alientrap.org/
nexviz/

Chapter 10 / 3D Games with OGRE 3D 301

B Prerendered 3D — Games like Myst, The 7th Guest, Shivers,
Mortimer Beckett, and Post Mortem are among those designated
by game critics as prerendered 3D. They are prerendered insofar
as objects in the game world are first modeled and rendered in 3D
by artists using software such as 3ds Max or Blender 3D, and from
there are imported into the game as either inflexible still images
or preconfigured movies, instead of being imported as polygonal
models viewable from all angles in “real time.” For example, the
first-person game The 7th Guest finds the player wandering around
the rooms of an old mansion solving brain-teasing puzzles room by
room (chess puzzles, word games, etc.). Here, the player clicks
the Forward button to walk forward, and a predetermined “walk
forward” animation is played until the character reaches its desti-
nation, whereupon the player again may resume control and navi-
gate to other places. Prerendered 3D is not considered further in
this chapter. Instead, OGRE 3D is used here to create real-time
3D games.

Figure 10-3: The Battle
=l for Wesnoth prerendered
3D game is free, open-

§ source, and cross-
platform; available at
http://www.wesnoth.org/

302

10.1

Chapter 10 / 3D Games with OGRE 3D

N

; >, e Figure 10-4: Screenshot

_{r. TRl : Lincity Help "3 from the prerendered game
‘ Choose s topk by cicking onone ot e ||| Lincity, which is free and

blue words below. Blue words generally (fOSS'pIﬂ'form,' avai/ab/e at

indicate a link to anoter document.
o8 hitp.//lincity.sourceforge.net/

&)
F

L

» Keyboard commands
= List of all buildable entries
* Help on the minimap
- + Help on information tabs
While playing the game, you can get
context sensitive help with most things
using the help button.

JEEGCS0C

OGRE 3D

NOTE. This chapter can only be considered a gentle introduction to
developing cross-platform 3D games using OGRE 3D, rather than a
complete guide. This chapter covers many diverse and interesting
facets of 3D games, and as such the material is condensed into
lighter reading in the form of a question and answer format.

Q. So exactly what is OGRE 3D, and why would I want to use it?

A. Cross-platform, open-source, and freely available, OGRE 3D is an
acronym for Object-oriented Graphics Rendering Engine, an API for
drawing hardware-accelerated 3D graphics to the game window in real
time (on-the-fly). In other words, OGRE 3D can make real-time 3D
games. In the words of the OGRE 3D web site:

“OGRE (Object-Oriented Graphics Rendering Engine) is a
scene-oriented, flexible 3D engine written in C+ + designed to
make it easier and more intuitive for developers to produce appli-
cations utilising hardware-accelerated 3D graphics. The class
library abstracts all the details of using the underlying system
libraries like Direct3D and OpenGL and provides an interface
based on world objects and other intuitive classes.”

Chapter 10 / 3D Games with OGRE 3D 303

(Quoted from the OGRE 3D web site at http://www.ogre3d.org/
index.php?option=com_content&task=view&id=19&
Itemid=79.)

DN NOTE. The term “hardware acceleration” refers to the process by
which software (such as games) is accelerated by dedicated hard-
ware. For example, graphics cards like those made by ATl or NVidia
are hardware dedicated to the task at hand.

N\ NOTE. At the time of writing, OGRE 3D is distributed to developers
as a dynamically linked library under the GNV LGPL (Lesser General
Public License), the details of which are featured in Appendix A at
the back of this book. More details can also be found at
http://www.ogre3d.org/.

There are many reasons why the OGRE 3D API may be appealing to a
game developer; some of these include:

B Free, open-source, and cross-platform — OGRE 3D is compat-
ible with the Code::Blocks C++ IDE and GCC compiler for mak-
ing 3D games, and therefore OGRE-powered games may be
cross-compiled to run natively on the Linux, Mac, and Windows
platforms. Furthermore, OGRE 3D is both free to download and
free of charge for hoth commercial and non-commercial usage, as
defined by the OGRE 3D open-source license available at the web
address above.

B Comprehensive documentation and thriving community —
OGRE 3D as an API is complemented by a comprehensive help
file distributed together with sample applications in a complete
downloadable SDK package. The OGRE web site contains compre-
hensive online documentation, including a community-edited wiki
database. There is also a diverse and thriving online community of
developers who participate in both technical and social discussion
on the OGRE forums.

B Feature-rich SDK — The OGRE API boasts a complete struc-
ture of features specifically designed for developing real-time 3D
games. These features include the following, some of which are
considered later in this chapter:

B Object-oriented scene hierarchy for programmatically creating
and managing objects in real-time 3D scenes.

304 Chapter 10 / 3D Games with OGRE 3D

B Ready-to-use skeletal animation system for animating 3D
models via a network of connected bones through a single
bone hierarchy. (For example, to animate the arms of an NPC
enemy bot, you rotate the shoulder joint and all dependent
bones (forearm, etc.) are transformed relatively.

B Post-production special effects such as ribbon trails, particle
systems, bloom, motion blur, and more via the Compositor.

10.2 OGRE 3D Games

Q. Okay. I now understand more accurately the nature of OGRE —
what it is and at least some reasons as to why it might be chosen by
developers for creating cross-platform 3D games. But are there any
working OGRE examples, any OGRE-powered games currently avail-
able to buy or to download?

A. Yes. There are many OGRE-powered games available; some free,
some commercial. Some of these OGRE-powered games are featured
below.

10.2.1 Ankh

Figure 10-5: Screenshot
from Ankh by Deck13
Interactive

Chapter 10 / 3D Games with OGRE 3D 305

Originally developed by Deck13 Interactive in 2005, Ankh is a cross-
platform 3D adventure game similar in style to the classic LucasArt’s
Monkey Island series, and Ankh itself has now spawned a sequel —
Ankh: The Heart of Osiris. Both games were developed using OGRE
3D. In Ankh, the gamer controls Assril, the son of an ancient Egyptian
architect living in Cairo, who is embroiled in an enigmatic quest to lift
the curse placed upon him by a mummy whose sleep he once dis-
turbed while playing inside the Great Pyramid at Giza. More details
regarding Ankh can be found at http://www.ankh-game.com/.

10.2.2 Other Games

OGRE has powered a great variety of games, including Jetracer and
Billiards Complete, shown in the following images.

Figure 10-6:

B Screenshot from

W' OGRE-powered game
Jetracer, by
Winnerone

LS Bl M e

lmpact Baﬂ“

306

Chapter 10 / 3D Games with OGRE 3D

Figure 10-7: Screenshot
from Billiards Complete

10.3 Installing OGRE 3D

Q. Fine; so OGRE is an acronym for Object-oriented Graphics Render-
ing Engine, and in summary it is a cross-platform and open-source
SDK used primarily by game developers for making cross-platform,
real-time 3D games. It sports a range of features from hierarchical
scene management and particle systems to skeletal animation and
image compositing. In addition, OGRE as an SDK has already been
deployed by many developers to power a range of cross-platform 3D
games, including Ankh and Jetracer. Having read about the basics of
OGRE, then, from where can OGRE be downloaded and how is it
installed to the system so it is ready to use in Code::Blocks for creat-
ing and compiling OGRE applications?

A. The download and installation process for OGRE differs between
the Windows and Linux platforms. The OGRE installation procedures
for these two operating systems are now considered below in more
detail.

NOTE. An Internet connection is required to install OGRE and its
related libraries and dependencies.

Chapter 10 / 3D Games with OGRE 3D 307

10.3.1 Downloading and Installing OGRE 3D on

Ubuntu

1. Beginning from the Ubuntu desktop, launch the Synaptic Package
Manager from the Ubuntu start menu by selecting System |
Administration | Synaptic Package Manager.

- ne«E

A Figure 10-8:
Installing OGRE 3D

2. From the Synaptic Package Manager, search for and install the fol-

lowing packages:

alien

autoconf
automakel.9
automakel.6
build-essential
libcppunit-1.12-0
libcppunit-dev
libmng-dev
libsdl1.2-dev
libtool

libxaw-header
libxaw7-dev
ibfreetype6
libfreetype6-dev
libpcre3
libpcre3-dev
libzzip-dev
libxrandr-dev
libxxf86vm-dev
freeglut3-dev

308 Chapter 10 / 3D Games with OGRE 3D

d TIP. More installation details can be found in the OGRE 3D wiki
and the OGRE online community at http://www.ogre3d.org.

3. After installing to the system each of the libraries listed in step 2,
close the Synaptic Package Manager. Then from the Ubuntu desk-
top, navigate a web browser to download the OIS source code
(Object-Oriented Input System) from http://sourceforge.net/
projects/wgois. This library is used by OGRE for reading user
input from peripheral devices, such as the mouse, keyboard, etc.

S — o Figure 10-9:
SOURCEFORGE.NET . | s | DOWnIOﬂdiﬂg ’he
T S — 0IS source code

p—
| [
=
Enter the new world of business tachnalogy Q
P ——

...... - [C CETTT N T T T

(O Lt

9

G

4. Navigate a web browser to the FreeImage home page, and from
there download the source distribution of their cross-platform
image library, a lightweight library of functions for opening and
managing common image file types, from JPEG and BMP to PNG
and TGA. The source code for the FreeImage library can be found
at http:/freeimage.sourceforge.net/.

Chapter 10 / 3D Games with OGRE 3D 309

e - @0 LTI TE]
FigUfe l 0_ I 0:
' Downloading the
Freelmage open-
source library

) [e o 1 _[]

5. Navigate a web browser to http:/www.cegui.org.uk/wiki/
index.php/CEGUI_Downloads_0.5.0, and from there download the
latest source distribution of Crazy Eddie’s GUI, a cross-platform
library used by OGRE to offer developers GUI facilities for their

games.
-

T T ~ Figure 10-11:
g : - Downloading (razy
L1)] Memtee — Eddie’s GUI system
e ——== —

6. Navigate a web browser to http://developer.nvidia.com/object/
cg_toolkit.html, and from there download the latest CG pixel and
vertex shader toolkit for cross-platform 3D games.

310 Chapter 10 / 3D Games with OGRE 3D

P - onsg

— Figure 10-12:

] - Downloading the
latest NVidia toolkit

CALL FOR

ENTRIES

7. Then enter the following commands in the Ubuntu Terminal,
pressing Enter after each line:

sudo alien Cg-1.5.1386.rpm
sudo dpkg -i cg _1.5.0-15_i386.deb

8. Navigate a web browser to the official OGRE 3D site at
http://www.ogre3d.org, and from there download the latest OGRE
source distribution for Linux.

9. Build the OIS, Freelmage, and Crazy Eddie’s GUI packages down-
loaded in steps 3, 4, and 5 by extracting each package to a local
directory, and from each directory run the following commands in a
terminal window, pressing Enter after each line:

./bootstrap
./configure
. /make
./install

10. Extract the contents of the OGRE 3D source archive (as down-
loaded from the OGRE 3D web site) to a local directory, and from
there run the following command in an Ubuntu Terminal to com-
pile and install the OGRE libraries to the system, ready for use in
Code::Blocks:

aclocal ./bootstrap ./configure make sudo make checkinstall

Chapter 10 / 3D Games with OGRE 3D 311

11. Once OGRE 3D is installed to the system, launch the
Code::Blocks C++ IDE from the Ubuntu main menu by selecting
Application | Programming | Code::Blocks.

12. From the Code::Blocks Welcome display, begin a new project by
selecting File | New | Project from the Code::Blocks main
menu. Select an OGRE project. Click Next and follow the wizard.

e @9 -1 K]

: Beginning a new
" OGRE project from
I Code::Blocks the wizard

.

13. A new OGRE Code::Blocks project is ready to compile and run.

N NOTE. Some users may need to amend as appropriate the default
library and header search paths used by the compiler when compil-
ing and building new OGRE Code::Blocks projects. These settings
are accessed from the Project Options menu, available by selecting
Project | Build Options from the Code::Blocks main menu.

312 Chapter 10 / 3D Games with OGRE 3D

10.3.2 Downloading and Installing OGRE 3D on
Windows

1. Beginning from the Windows desktop, navigate a web browser to
the official OGRE 3D web page at http://www.ogre3d.org.

*J OGRE 30 : Open source graphics engine - Home - Morllla Firefox

th Gk fow Moy tonats Lok i - Figure 10-14
@-p-a b @ ressimmn sopens. gt =] b] [IC]= ogre 0 G

OGRE 1.4.6 [Eihort] Released !

oo | Just sneaking in bafare the and of the yade, here's the latest maintenance

= release for tha v1.4 stable branch {aka ‘Eihart’) . As usual, we have a
number of bugfixes which we recommend you update to ebtain = the full lisy

of changes is in the full detal of this post. Please also be aware that we've

updated the dependencies packages for Windows and OS5 X 50 you will also need to obtain those if you use
the source relesse.

Grab your copy aver at the dowr page new!

Update 30 Dec: There was a problem with tha OS5 ¥ distribution which has been rectified, the dependencies

and 0K have bren smended, I CAD Safrware

Accelerale your
Last Updutad { Senday, 30 Decambes 2007) Dasin Validation
Free e-kil, while
paprs, wbeasts
Loyt

s Season's Greetings from OGRE

m Well, tha lattar part of tha year has just Aown pact, and onea again we're staring the festiva A &
= H PR S T T St St i Eina "

2. Click the Download button in the left margin of the page, choose
Download a prebuilt SDK, then select the prebuilt binary SDK
distribution MinGW Code::Blocks to download a copy of the
OGRE SDK as a self-installer (EXE) from the web page to the
local computer.

Chapter 10 / 3D Games with OGRE 3D

313

3 OGRI 30 : Opon source praphics engine - SDKs - Mazilla Firofox
B Ede Yew Hgtory [oomads Dok Heb
i 8 e

«-5-&

Home About Download Gallery Docs License

Main Menu
Heme
About
Downlosd
SDKs.
Source Releases

Damos
Gallery
Documentation
Licenis.
Community
Support
Merchandise
Danations

Davalapars
Legin

3 oepindes. 3

Community Support

SDKs

Here you can download prebult SDKs for a range of . These are complotely zon
development kits so you can start using OGRE very quickly. Please make sure you download the correct SDK
for your platform & compiler since SDKS are not transferrable between them

Once you have downloaded, if you are new to using OGRE you can find information in the wia about
. and a t .

Current Stable

Name Date Size Notes
28
Dacember azMp
2007
2% 37.5Mb Plaase nate - you must have installed V52008 Service

Decesnbar Pack 1. You may alio be interested n the
2007

a0 30MB Plaase nats - to kaep tha size down only relaase-moda
December i¥6 binaries are included, please use the source release
2007 if you want full debug and universal binaries,

W o fous st U the MINGW G T ool
27March 42Mb Locking for new maintamers! For people who wish to use
2007 OGRE from Mot languages

Figure 10-15:
_ Downloading the
MinGW prebuilt SDK

ull C++ front end
and analyzer
SOMate Mmass
changs or
translation
SeE———

Full

30 Glasses
Sinning 30
Experience the
mast reabstic PC

garng gragh s
ver, gusranteed

imasing
| oward Winning
Software, Easy To
Usie Rual-tine &
| Aflordable -
GPU-Based

il
Fratatypin,
Simuate

Rk Workd
Poremance

Profolypeg w

= u N e

3. Once completed, navigate a web browser to the Microsoft DirectX

SDK home page at http://www.microsoft.com/directx/ and down-
load the latest DirectX 9 SDK distribution (if it is not installed

already). Once downloaded, run the DirectX

SDK installer.

Run the OGRE 3D SDK Installer downloaded in step 2 of this sec-

tion, and then follow the installation wizard to install OGRE 3D to
the chosen directory on the local computer. When installation is

complete, restart the computer.

Welcome to the OGRI SDK 145
for C::B + MingW Selup Wizard

Thie wizard will guide you through the inctallation ot OGRE
50K 1.4.5 for Ci:D +MingW.

Tt I recnmmended that you cnse 3l ather applications
before starting Setup. 1his vall make it possible to update
relevant eyetem fillee without having to rebaat your
computer,

Click Next tn continoe.

Mext >

Cancel |

‘ {1 OGRE SDK M“’m e o™ Figure 10-16:

Installing OGRE

314 Chapter 10 / 3D Games with OGRE 3D

5. After restarting the computer, launch Code::Blocks (Nightly Build)
from the Windows Start menu and open and compile the OGRE
sample projects. Select File | Open and navigate to the OGRE
3D SDK folder, then open the Samples subfolder. Here, open the
Samples Code::Blocks workspace, and use the Code::Blocks Build
button from the toolbar to compile each sample project in the
newly loaded sample workspace. These projects in both Debug
and Release form are built and compiled ready-to-run in separate
subfolders of the OGRE 3D SDK folder.

=" srciBozter.cpp [Demo_BeziorPatch] - Codo:-Mlocks svn build

Fla D8t Vew Sewch Promt D1 Osbup wcth fosk Pupns Settngt Heb — Figure 10-17:
aEd B AR 0PSTO skl AJRETLBEOD " i

3 Compiling each

sl tezercon = <+ sample project

®

Logs & others. x
f| CodeBlodks | |, Searchressts |) Buiidlog | 4 Buld mesrages |) Debugger

delit Lirs 28, Cokarns 41 e Rasdiwren el

6. To create a new OGRE project, start Code::Blocks and select File
| New | Project from the main menu of the Code::Blocks screen.
When the New Project dialog appears, select OGRE Project from
the project template list view. Click OK and then follow the wiz-
ard, after which a new OGRE project is ready to compile and run.

Chapter 10 / 3D Games with OGRE 3D 315

Figure 10-18:
o (reating a new
= OGRE project

Fokder bn ereste project in: §
A ocurments anel Settiguhadonibty Document st

Profest, enarms:

Fesulting Flename:
<drrviald pathr

Bk [t s x

L ban o L i

10.4 Getting Started with OGRE 3D

Q. The OGRE SDK is now installed to the system, configured in
Code::Blocks, and ready to compile to make OGRE applications. The
Code::Blocks OGRE application wizard creates new OGRE projects,
featuring all the necessary source code already generated in the
source files, ready to build and run; this is the fundamental structure
from which OGRE applications may be built. What more can you tell
me about this OGRE framework? What does this generated code do?
How exactly do OGRE applications work structurally?

A. Consider the following OGRE source code, the simplest OGRE
application. The source code features annotations and highlights,
which are discussed following the code.

//Links to Tibs: ogre d, ogre, ois, ois_d
#if OGRE_PLATFORM == OGRE_PLATFORM_WIN32
#define WIN32_LEAN_AND_MEAN

#include "windows.h"

#endif

316 Chapter 10 / 3D Games with OGRE 3D

#include "ExampleApplication.h"

#ifdef _ cplusplus
extern "C" {
#endif

//Main application singleton object created at app startup
class MyFirstOGREApplication : public ExampleApplication
{
public:
MyFirstOGREApplication() {}

protected:

//Just override the mandatory create scene method
//OnAppStart event
//Do initialization here
void createScene(void)
{
(oo ol
}

void createFramelListener(void)
{
//Create an event Tlistener object
//That is, an object to receive an event on each frame

/.

#if OGRE_PLATFORM == OGRE_PLATFORM_WIN32
INT WINAPI WinMain(HINSTANCE hInst, HINSTANCE, LPSTR strCmdLine,
INT)
#else
int main(int argc, char **argv)
#endif
{
// Create application object
MyFirstOGREAppTication app;

Chapter 10 / 3D Games with OGRE 3D 317

try {
app.go(); //Start OGRE application
} catch(Exception& e) {
#if OGRE_PLATFORM == OGRE_PLATFORM_WIN32
MessageBox(NULL, e.getFullDescription().c_str(), "An
exception has occurred!", MB OK | MB_ICONERROR |
MB_TASKMODAL) ;
#else
std::cerr << "An exception has occurred: " <<
e.getFullDescription();
#endif
1

return 0;

}

#ifdef _ cplusplus

}
#endif

As usual, application execution begins in the main (or WinMain) func-
tion, and here an instance of MyFirstOGREApplication is created, a
user-defined OGRE class derived from class ExampleApplication. Rep-
resenting the “game loop,” the “message pump,” or the lifetime of an
OGRE application from beginning to end, the MyFirstOGREAppli-
cation class is instantiated in the main function. After instantiation, the
method call app.go() initiates the game loop to step through each
frame, and this method only returns as the application ends, termi-
nated either by the user or by an error.

The user-defined createScene method of MyFirstOGREApplica-
tion is where game objects (scenes, enemies, classes, and files) are
loaded, initialized, and configured, ready for use later in the game. This
method is called automatically before the first game frame occurs,
called by other methods working behind the scenes inherited from the
base class ExampleApplication.

318 Chapter 10 / 3D Games with OGRE 3D

10.5 Receiving Frame Events

Figure 10-19: The
OGRE setup screen
is shown as an
application begins
Frendering Subayatem: [DpantiL Rersenms Submyviem |

Herdems Syshem Opbons

Lol Deplh 32

Dizplay Frequancy: N/A

F545: 0

Ful Scsnen: Ho
| ETT Prrdrared bod

Wayne: Ha
Video Made: B00 x 600
RTT Prefesied Mods [FB0 =

[o Cancal

Q. The class MyFirstOGREApplication is therefore an application
controller. Created at application startup, its go method signals the
beginning of the self-sustaining game loop, and the return of this
method marks the end of the loop whereupon the application may
clean up and exit. The MyFirstOGREApplication class is self-sustain-
ing and self-contained insofar as the game loop keeps itself alive
“behind the scenes” (via methods defined in the ancestor class). The
class calls its own methods (many defined in derived classes) at key
events during the game loop, such as at scene startup and at applica-
tion end. If the class is self-sustaining, then, how does it notify
developers about frame events; for example, how can developers
receive notifications on each frame to run typical game loop code such
as reading user input, updating collision detection, or moving objects
around a level?

A. Developers are notified about frame events via FrameListener
classes; that is, classes derived from FrameListener, whose methods
(such as frameStarted and frameEnded) are overridden and redefined
in descendant classes, each of them called polymorphically once per
frame. Consider the following code, amended from the previous sam-
ple to include a FrameListener:

Chapter 10 / 3D Games with OGRE 3D

#if OGRE_PLATFORM == OGRE_PLATFORM_WIN32
#define WIN32_LEAN AND MEAN

#include "windows.h"

#endif

#include "ExampleApplication.h"

#ifdef _ cplusplus
extern "C" {
#endif

//0GRE frame listener class, called once per frame
class MyFirstListener : public ExampleFramelistener
{
protected:
public:
MyFirstListener(RenderWindow* win, Camera* cam, const
std::string &debugText)
: ExampleFrameListener(win, cam)
{
mDebugText = debugText;
}

//Called once per frame
bool frameStarted(const FrameEvent& evt)

{

if(ExampleFrameListener::frameStarted(evt) == false)
return false;

//Do stuff here {...}

//Return 'false' to exit application, and 'true' to keep

//alive game loop

return true;

//Main application singleton object created at app startup

319

320 Chapter 10 / 3D Games with OGRE 3D

class MyFirstOGREApplication : public ExampleApplication
{
public:

std::string mDebugText;

MyFirstOGREApplication() {}
protected:

//Just override the mandatory create scene method
//OnAppStart event
//Do initialization here
void createScene(void)
{
/1)
}

void createFramelListener(void)
{
//Create an event Tlistener object
//That is, an object to receive an event on each frame

mFrameListener= new MyFirstListener(mWindow, mCamera,
mDebugText) ;

//Add to list of listeners, each called once per frame
//Can add more listeners if required

//Though one listener is often more than enough
mRoot->addFrameListener (mFrameListener);

#if OGRE_PLATFORM == OGRE_PLATFORM_WIN32
INT WINAPI WinMain(HINSTANCE hInst, HINSTANCE, LPSTR strCmdLine,
INT)
#else
int main(int argc, char **argv)
#endif
{
// Create application object
MyFirstOGREAppTication app;

Chapter 10 / 3D Games with OGRE 3D 321

try {
app.go(); //Start OGRE Application
} catch(Exception& e) {
#if OGRE_PLATFORM == OGRE_PLATFORM_WIN32
MessageBox(NULL, e.getFullDescription().c_str(), "An
exception has occurred!", MB OK | MB_ICONERROR |
MB_TASKMODAL) ;
#else
std::cerr << "An exception has occurred: " <<
e.getFullDescription();
#endif
1

return 0;

}

#ifdef _ cplusplus
}
#endif

10.6 Adding Objects to a Scene

- it et oo - ==

Figure 10-20: OGRE
scene featuring one
mesh

Q. OKkay. So I create a new OGRE application using the Code::Blocks
OGRE Wizard, and then I add an event listener class to receive an

322

Chapter 10 / 3D Games with OGRE 3D

event notification for each frame of the game loop at run time, frame
by frame, until the user exits the application by pressing the Esc key
on the keyboard. However, the newly created application features an
empty scene; there are no objects, no lights, no materials, no anima-
tion — only blackness. How do I add objects to the game world (like a
door, window, car, or NPC), and how do I assemble these to form a
level in the game world?

A. In OGRE and 3D programming more generally, a 3D object (wall,
door, NPC, etc.) is generically referred to as a “mesh,” and so an
OGRE scene (or level, or world) is technically a geometric collection
of meshes. It is a single Cartesian space containing an array of meshes
similar to a 2D level that contains a collection of game objects
arranged one in front of the other on a set of z-ordered layers. Chapter
7, “Game Mechanics,” further highlighted how objects in a scene are
hierarchically connected to one another in terms of geometric proper-
ties. Each child object is affected by the position, orientation, and scale
of its parent object in the game world. Move the parent object, and the
child moves correspondingly, relative to its parent. Thus, a scene in
OGRE refers to a Cartesian space containing a hierarchy of geometri-
cally related meshes; in this space, each mesh is related to another in a
parent-child-sibling relationship. In OGRE terminology: A scene is
structurally a hierarchy of nodes (a spatial anchor, or the 3D equivalent
of a 2D layer), where one or many meshes may be attached to a single
node. All the meshes attached to a given node depend on the node for
their position, rotation, and orientation. That is, the mesh is positioned
relative to the node, and the position of the node affects the position of
any attached meshes. The structural relationship between different
meshes attached to different nodes reflects the relationship between
the nodes themselves. Consider the following code taken from the
CreateScene method of the OGRE application object. Here, the code
creates a scene where a mesh is loaded from a file on disk, attached to
a node in the scene, and then positioned in 3D space relative to the
node at the origin (the roof node).

Chapter 10 / 3D Games with OGRE 3D 323

Figure 10-21: Node

Node 01

hierarchy
Node 02 Node 03 1
—
Mesh 01 Mesh 02 Mesh 03
’ Node 04 ‘
. 1

Meshm‘ Mesh 05

//[...] Other code here

class MyFirstOGREApplication : public ExampleApplication
{
public:

std::string mDebugText;

MyFirstOGREApplication() {}
protected:

//Jdust override the mandatory create scene method
//0nAppStart event
//Do initialization here
void createScene(void)
{
mSceneMgr->setShadowTechnique (SHADOWTYPE_TEXTURE
MODULATIVE) ;
mSceneMgr->setShadowTextureSize(512);
mSceneMgr->setShadowColour(ColourValue(0.6, 0.6, 0.6));

// Set ambient light
mSceneMgr->setAmbientLight(ColourValue(0.5, 0.5, 0.5));

324

Chapter 10 / 3D Games with OGRE 3D

Entity *ent = mSceneMgr->createEntity("head",
"ogrehead.mesh") ;

// Add entity to the root scene node
mSceneMgr->getRootSceneNode () ->createChildSceneNode() ->
attachObject(ent);
1

void createFramelListener(void)

{
//Create an event listener object
//That is, an object to receive an event on each frame

mFrameListener= new MyFirstListener(mWindow, mCamera,
mDebugText) ;

//Add to list of listeners, each called once per frame
//Can add more listeners if required
//Though one listener is often more than enough
mRoot->addFramelListener(mFrameListener);
}
bs

//[...]1 Other code here

Inherited from ExampleApplication, mSceneMgr is an OGRE member
accessible in the class MyFirstOGREApplication. mSceneMgr is the
primary means of accessing and editing objects in an OGRE 3D scene,
from creating scene nodes to positioning objects in 3D space.

NOTE. Meshes are loaded from files on disk and into OGRE as
entities. As the mesh is loaded, OGRE searches its media paths for
the specified file. The media paths for a given OGRE application are
listed in the resources.cfg file, located in the same directory as the
application executable.

Chapter 10 / 3D Games with OGRE 3D 325

TIP. Creating OGRE Meshes in Blender 3D 3D meshes are
typically modeled in 3D rendering software (such as 3ds Max, Maya,
or Blender 3D) and then exported from the modeling application to
a file on disk. OGRE accepts meshes in the file format (.mesh).
Although most applications cannot export to this format natively,
there are many plug-ins available to extend the feature set of existing
modeling software to export meshes to the OGRE format, including
an OGRE plug-in for exporting Blender meshes.

The available OGRE exporters can be found at the OGRE wiki at
http://www.ogre3d.org/wiki/index.php/OGRE_Exporters.

10.7 Adding Lights and Particle
Systems

Q. Yes, I can now add meshes to an OGRE scene using nodes and
entity hierarchies, but scenes often contain more than simply meshes.
Scenes also feature lighting, shadows, particle systems (rain, snow,
fog), and many other effects. How can I also add these to a scene?

A. Both lights and particle systems are added to scenes via scene
nodes, in the same way meshes are attached to scene nodes. This is
because meshes, lights, particle systems, and all other scene objects
are derived from the same base class. Consider the following code to
add both a particle system and lights to an OGRE scene:

//Main application singleton object created at app startup

class MyFirstOGREApplication : public ExampleApplication

{
pubTic:
std::string mDebugText;

MyFirstOGREApplication() {}
protected:
//Jdust override the mandatory create scene method

//0nAppStart event
//Do initialization here

326 Chapter 10 / 3D Games with OGRE 3D

void createScene(void)

{
ColourValue mMinLightColour(0.5, 0.1, 0.0);
ColourValue mMaxLightColour(1.0, 0.6, 0.0);

mSceneMgr->setShadowTechnique (SHADOWTYPE _TEXTURE
MODULATIVE) ;

mSceneMgr->setShadowTextureSize(512);

mSceneMgr->setShadowColour(ColourValue(0.6, 0.6, 0.6));

// Set ambient light
mSceneMgr->setAmbientLight(ColourValue(0.5, 0.5, 0.5));

Entity *ent = mSceneMgr->createEntity("head",
"ogrehead.mesh");

// Add entity to the root scene node
mSceneMgr->getRootSceneNode () ->createChildSceneNode()->
attachObject(ent);

mSceneMgr->getRootSceneNode () ->createChildSceneNode () ->
attachObject (

mSceneMgr->createParticleSystem("Fireworks",
"Examples/Fireworks"));

Light* mLight = mSceneMgr->createLight("Light2");
mLight->setDiffuseColour(mMinLightColour);
mLight->setSpecularColour(1, 1, 1);
mLight->setAttenuation(8000,1,0.0005,0);

// Create light node

SceneNode *mLightNode = mSceneMgr->getRootSceneNode ()->
createChildSceneNode ("MovingLightNode") ;

mLightNode->attachObject (mLight) ;

}

void createFramelListener(void)

{
//Create an event Tlistener object
//That is, an object to receive an event on each frame

mFrameListener= new MyFirstListener(mWindow, mCamera,
mDebugText) ;

Chapter 10 / 3D Games with OGRE 3D 327

//Add to 1ist of listeners, each called once per frame
//Can add more listeners if required
//Though one listener is often more than enough
mRoot->addFramelListener(mFrameListener);
}
}s

DN NOTE. Particle systems (such as Examples/Fireworks, as featured in
the code sample above) are defined in OGRE scripts, and these can
be found in the OGRE Samples/Scripts subdirectory. Here is a sam-
ple particle system script:

// Exudes greeny particles that float upwards
Examples/GreenyNimbus
{
material Examples/FlarePointSprite
point_rendering true
// point rendering means size is controlled by material
// provide fallback sizes for hardware that doesn't support
// point sprite
particle_width 30
particle_height 30

cull_each false
cull_each false
quota 10000

billboard type point

// Area emitter
emitter Box

{

angle 30
emission_rate 30
time_to_live 5
direction 010
velocity 0
colour_range start 110
colour_range_end 0.310.3
width 60

height 60

depth 60

// Make them float upwards
affector LinearForce

328 Chapter 10 / 3D Games with OGRE 3D

force vector 0100 0
force application add

}

// Fader
affector ColourFader

{

red -0.25
green -0.25
blue -0.25

10.8 Reading User Input with OGRE and
(]

Q. I have so far seen how to load objects like meshes from files on disk
and into an OGRE scene as entities, how to position those objects rela-
tive to scene nodes, and also how to create lighting and particle
systems for special effects like rain, snow, and volumetric fog. But
none of this is much good for making computer games generally
unless I can piece together instructions from the user by reading their
input from peripheral devices (like a keyboard or mouse). So, how can
I determine which key is pressed on the keyboard; for example,
whether or not the user is holding the down arrow or up arrow? Or
how can I determine the X,Y coordinate of the mouse cursor
on-screen?

A. To read user input (both keyboard and mouse) through OGRE, the
OGRE application class should be derived from multiple classes (not
just ExampleApplication) to support a new set of inherited methods
(event handlers) that are called whenever input events occur. The fol-
lowing code features a full sample OGRE application, and it both
summarizes the code covered throughout this chapter and highlights
in detail how OGRE handles user input.

N NOTE. OGRE input key codes can be found in Appendix J.

Chapter 10 / 3D Games with OGRE 3D 329

#if OGRE_PLATFORM == OGRE_PLATFORM_WIN32
#define WIN32_LEAN AND MEAN

#include "windows.h"

#endif

#include "ExampleApplication.h"

#ifdef _ cplusplus
extern "C" {
#endif

//O0GRE frame listener class, called once per frame

class MyFirstListener : public ExampleFramelListener, public
0IS::KeyListener, public 0IS::MouseListener

{

protected:

public:

MyFirstListener(RenderWindow* win, Camera* cam, const
std::string &debugText)
: ExampleFrameListener(win, cam)

{
mDebugText = debugText;

mMouse->setEventCallback(this);
mKeyboard->setEventCallback(this);

//Called once per frame
bool frameStarted(const FrameEvent& evt)

{

if(ExampleFrameListener::frameStarted(evt) == false)
return false;

//Exits application when down arrow key is pressed

330 Chapter 10 / 3D Games with OGRE 3D

}

if (mKeyboard->isKeyDown (0IS::KC DOWN))
return false;

//Do stuff here {...}

//Return "false" to exit application, and "true" to keep
// alive game Toop

return true;

bool mouseMoved(const 0IS::MouseEvent &arg)

{

return true;

}

--- /!
bool mousePressed(const 0IS::MouseEvent &arg, O0IS::

MouseButtonID id)
{
return true;
}
--- //

bool mouseReleased(const 0IS::MouseEvent &arg, OIS::

{

MouseButtonID id)

//1f left button pressed

//0 = left
//1 = right
//2 = middle
if(id == 0)

{
//Do stuff here

}

//1f mouse X pos has not moved
if(arg.state.X.rel==0)
{
//Do stuff here
}

Chapter 10 / 3D Games with OGRE 3D 331

return true;

1
J /= //
bool keyPressed(const 0IS::KeyEvent &arg)
{
//1f Escape key pressed
if(arg.key == 0IS::KC ESCAPE)
{
//Do stuff here
1
return true;
1
/= //
bool keyReleased(const 0IS::KeyEvent &arg)
{
return true;
1
}s
/=

//Main application singleton object created at app startup

class MyFirstOGREApplication : public ExampleApplication

{
public:
std::string mDebugText;

MyFirstOGREApplication() {}
protected:
//Just override the mandatory create scene method

//OnAppStart event
//Do initialization here

332 Chapter 10 / 3D Games with OGRE 3D

void createScene(void)
{

/)
}

void createFramelListener(void)
{
//Create an event Tlistener object
//That is, an object to receive an event on each frame

mFrameListener= new MyFirstListener(mWindow, mCamera,
mDebugText) ;

//Add to list of listeners, each called once per frame
//Can add more listeners if required

//Though one listener is often more than enough
mRoot->addFramelListener(mFrameListener);

#if OGRE_PLATFORM == OGRE_PLATFORM_WIN32
INT WINAPI WinMain(HINSTANCE hInst, HINSTANCE, LPSTR
strCmdLine, INT)

#else
int main(int argc, char **argv)

#endif

{
// Create application object
MyFirstOGREAppTication app;

try {
app.go(); //Start OGRE Application
} catch(Exception& e) {
#if OGRE_PLATFORM == OGRE_PLATFORM_WIN32
MessageBox(NULL, e.getFullDescription().c_str(), "An
exception has occurred!", MB OK | MB_ICONERROR |
MB_TASKMODAL) ;

Chapter 10 / 3D Games with OGRE 3D 333

#else
std::cerr << "An exception has occurred: " <<
e.getFullDescription();
#endif

}

return 0;

}

#ifdef _ cplusplus

}
#endif

10.9 Conclusion

OGRE (Object-oriented Graphics Rendering Engine) is perhaps one of
the single largest and most comprehensive open-source 3D SDKs
available. As such, this chapter can be considered little more than an
OGRE introduction; there is far more to OGRE than what is included
here. Consequently, perhaps the best strategy is to now sort through
the OGRE sample applications shipped with the OGRE SDK, examin-
ing each application and its code and scripts and making changes to
observe their effects. The ever-growing OGRE wiki is also a compre-
hensive source of OGRE information, written by OGRE users for
OGRE users.

This page intentionally left blank.

Other Cross-Platform
SDKs and Tools

From C++ games compiled in Code::Blocks to Shockwave games cre-
ated in Adobe Director, and from 2D games via SDL and Novashell to
3D games via OGRE, this book has generally considered three primary
kinds of cross-platform games. First, we considered those cross-plat-
form games that are first coded by developers in C+ + through the
Code::Blocks IDE, and then later cross-compiled to run natively on
each target platform, whether it be Linux, Mac, or Windows. Second,
we considered engine-based cross-platform games where a cross-
platform GUI editor (like Novashell) is used to create a platform-
independent game image (featuring the levels, NPCs, and scripting);
overall a game image finally interpreted and executed by a natively
compiled cross-platform engine so the game runs “as good as”
natively. And similar to the second kind, the third kind includes the
VM image partnership of games (like Shockwave games) typically
compiled into a game image through a GUI editor (like Director) and
then run through a virtual machine to run as a web game in a browser
or as a stand-alone executable. This final chapter of the book now con-
siders briefly a whole series of alternative cross-platform SDKs and
tools available for game development, each of them worthy of further
consideration by developers who have specific developmental require-
ments or who wish to use SDKs other than those featured earlier in
this book. Specifically, we look at a series of SDKs that may be catego-
rized as one of the following kinds:

B Graphics SDK — Graphics SDKs like SDL (Simple DirectMedia
Layer) and OGRE (Object-oriented Graphics Rendering Engine)
are largely concerned with presenting real-time graphics to the

335

336 Chapter 11 / Other Cross-Platform SDKs and Tools

game window, whether 2D or 3D graphics. As this book has hope-
fully shown, such APIs offer tools and classes designed specifically
for loading images from files on disk and into system (or other
hardware) memory as resources, ready for display or animation in
the game window.

B Audio SDK — Audio SDKs (such as SDL_mixer, FMOD, and
BASS) are libraries featuring classes and tools used by developers
to play audio (music and sound effects) via the audio hardware to
the speakers.

B Physics SDK — GUI editors such as Novashell and Adobe Direc-
tor offer to game developers a whole subset of game editing and
level designing features to create comprehensive game worlds in
which exist buildings, NPCs, and all kinds of other objects and
phenomena, many of which can be found in the “real” world. The
purpose of a physics SDK is to offer to developers a mathematical
framework of functions and classes designed to simulate “real life”
physics so game objects and game worlds may behave like those in
the real world. It does all the computational hard work for you
automatically.

B Network SDK — Games described as multiplayer (such as
Unreal Tournament, Quake, and World of Warcraft) are those that
bring together into a single online social space thousands of
gamers from many disparate regions around the globe, each of
them meeting up with others to play their games both competi-
tively (e.g., death-match) or cooperatively (e.g., team death-
match). Network SDKs include some of the libraries and tools that
make it possible for game developers to create games that talk to
one another across the Internet. These games establish mutual
socket connections, and through these transmit data to and from
each other to synchronize multiplayer facilities.

B Artificial Intelligence SDK — Artificial intelligence (Al) refers
to the processes (the set of functions and algorithms) that make
computers think for themselves, or appear to think for them-
selves. Through Al, computers can play chess, control NPCs, navi-
gate NPCs intelligently through levels by avoiding obstacles and
traveling the shortest route between any two points in a map, and
engage players in combat in real-time and turn-bhased strategy

Chapter 11 / Other Cross-Platform SDKs and Tools 337

games. A cross-platform Al SDK, then, offers to developers the
thinking, calculating, and cognitive apparatus (functions, classes,
and toolsets) to implement Al into their cross-platform games in
order to make their games think, reason, and respond.

Input SDK — Cross-platform input SDKs (like OIS used by
OGRE) boast a set of platform-independent functions and classes
that allow developers to read user input from input peripherals
such as keyboards, mice, and joysticks.

Scripting SDK — Game engines like Novashell, graphics engines
like OGRE, and Shockwave games made in Director make use of
scripting facilities; that is, developers use a scripting language
such as Lua, Python, or JavaScript to code and edit a game’s
behavior without needing to recompile the entire source code from
scratch. Thus, scripting SDKs offer the bridging tools (the func-
tions and classes) to bridge the technical gap between the binary
executable and a script in a file.

Game Engine — Game engines like Novashell (an interpreter of
platform-independent game images) are typically designed as a
“one-stop” complete game development solution. That is, game
engines typically market themselves as being a synthesis of librar-
ies, a “feature complete” totality insofar as they offer graphics ren-
dering, audio playback, physics and Al, scripting facilities for
customization, file input/output, level editors, and sometimes a
network multiplayer feature set.

GUI SDK — The term GUI (graphics user interface) refers to the
widgets, gadgets, and gizmos (like buttons, list views, edit boxes,
and other interface components) found on game screens. A GUI
SDK, then, offers a set of easy-to-use tools and classes for creating
in-game GUIs for cross-platform games.

Web SDK — Web SDK is a broad term used to designate a whole
range of SDKs that promote gaming online. This chapter will con-
sider YABB, an online forum kit game developers can use to cre-
ate an online community for their gamers, where they can hang
out, socialize with other like-minded and not-so-like minded
gamers, discuss hints and tips for specific sections of games, fight
and argue, report game bugs and potential issues, and finally offer
praise or words of encouragement to the developers.

338 Chapter 11 / Other Cross-Platform SDKs and Tools

B Distribution SDK — Generally, contemporary game developers
distribute their games to users either as a published CD/DVD sold
commercially or as a self-published online download (either
directly from the developer’s web site or through an online gaming
portal like Reflexive Arcade or Big Fish Games). But whether the
game comes in a boxed CD/DVD or as an online download, the
game typically installs itself to the user’s computer via an auto-
mated installer. This chapter examines some means of creating
game installers using a distribution SDK.

11.1 Graphics SDKs

11.1.1 OpenGL

OpenGL (Open Graphics Library) is a cross-language, cross-platform
SDK for fast-paced (hardware-accelerated) 2D and 3D computer
graphics. The library has over 250 different function calls to draw com-
plex three-dimensional objects and scenes, ranging from simple
primitives to complex animated geometry. OpenGL was developed by
Silicon Graphics, Inc. (SGI) in 1992 and is widely used in CAD, virtual
reality, scientific visualization, information visualization, and flight sim-
ulation, as well as in video games.

Platforms supported: Windows, Linux, and Mac
Web site: http://www.opengl.org/

License: Free for commercial and non-commercial use.

11.1.2 PTK

The PTK web site describes PTK as “a multi-platform 2D game
engine with 3D capabilities built around OpenGL or Direct 3D acceler-
ated hardware, however, it is also possible to create 3D multi-platform
games with OpenGL [...] PTK can be used by a wide variety of users:
from the most experienced programmers to the newbie aspiring game
programmers.”

Platforms supported: Mac and Windows

Chapter 11 / Other Cross-Platform SDKs and Tools 339

Web site: http://www.phelios.com/ptk/

License: Free only for non-commercial use; more license details avail-
able at their web site.

11.1.3 ClanLib

Freely available, high-level, and cross-platform, ClanLib is an
OpenGL-powered open-source SDK for creating cross-platform 2D
games using the C+ + language. ClanLib boasts a variety of features,
some of which include XML/DOM support, 2D collision detection,
network library, sound mixer supporting WAV, tracker formats
(mod/s3m/xmy/...) and ogg-vorbis, and high-level 2D graphics API sup-
porting OpenGL and SDL as render targets.

Platforms supported: Windows, Mac, and Linux
Web site: http://www.clanlib.org/

License: BSD-style; free for commercial and non-commercial use. See
web site for more information.

11.1.3.1 Installing ClanLib

It has on occasion been said that ClanLib is a troublesome SDK to
install and configure in terms of downloading the SDK from the web,
unpacking the downloaded SDK package, and getting set up in order to
code and successfully compile ClanLib applications in a C++ IDE like
Code::Blocks, and is especially troublesome on Linux. The following
step-by-step installation guide details how to install and compile
ClanLib applications on Linux Ubuntu.

1. Beginning from the Ubuntu desktop, open a Terminal window by
choosing Applications | Accessories | Terminal.

2. Download the required ClanLib libraries by entering the following
terminal commands:

sudo apt-get install zliblg-dev Tibjpeg62-dev Tibpngl2-dev
1ibmikmod2-dev 1ibogg-dev libvorbis-dev 1ibxxf86vm-dev

340

Chapter 11/ Other Cross-Platform SDKs and Tools

3. Close the Terminal window and navigate a web browser to the
ClanLib web site at http://www.clanlib.org/. Here, download to
the local computer the ClanLib source code package for Linux,
ClanLib-0.8.0.tgz. Unpack the contents of this package to a direc-
tory on the local machine.

4. In this local directory, open a Terminal window and run the follow-
ing commands by pressing the Enter key after typing each line:

tar xvzf ClanLib-0.8.0.tgz
cd ClanLib-0.8.0
./configure

make

sudo make install

5. Open with administrator privileges (write permission) the local
system file /etc/ld.so.conf, and add to the end of this file the
following line, then choose File | Save.

include /usr/local/1ib/

6. Return to the Terminal and enter the following commands,
pressing Enter after each line:

sudo Tdconfig
export PKG_CONFIG_PATH=/usr/local/1ib/pkgconfig

7. ClanLib is now installed to the local machine, ready to work with
Code::Blocks in compiling and running newly created ClanLib
applications. Start Code::Blocks and create a blank new project.
Into the main source file paste the following ClanLib code:

#include <ClanLib/g1.h>

#include <ClanLib/core.h>
#include <ClanLib/application.h>
#include <ClanLib/display.h>

class MyApp : public CL_ClanApplication
{
public:
virtual int main(int argc, char **argv)
{
// Create a console window for text output if not available
// Use printf or cout to display some text in your program
CL_ConsoleWindow console("Console");

Chapter 11 / Other Cross-Platform SDKs and Tools 341

console.redirect stdio();

try

{
// Initialize ClanLib base components
CL_SetupCore setup core;

// Initialize the ClanLib display component
CL SetupDisplay setup display;

// Initialize the ClanLib GL component
CL SetupGL setup gl;

// Create a display window
CL DisplayWindow window("ClanLib application", 640, 480);

// Run until someone presses Escape

while (!CL Keyboard::get keycode(CL KEY ESCAPE))

{
// Clear the display in a dark blue shade
// The four arguments are red, green, blue and alpha
// (defaults to 255)
// A11 color shades in ClanLib are measured in the
// range 0-255
CL Display::clear(CL_Color(0, 0, 50));

// Flip the display (using a double buffer),
// showing on the screen what we have drawn
// since last call to flip()

CL Display::flip();

// This call updates input and performs other
//"housekeeping"
// Call this each frame
// Also, gives the CPU a rest for 10 milliseconds
// to catch up
CL_System::keep alive(10);
}
}

// Catch any errors from ClanLib
catch (CL_Error err)

{

// Display the error message

342

Chapter 11/ Other Cross-Platform SDKs and Tools

std::cout << err.message.c_str() << std::endl;

}

// Display console close message and wait for a key
console.display_close message();

return 0;

}
} app;

8. Compile and run the ClanLib code.

11.2 Audio SDKs

11.2.1 FMOD

FMOD is a cross-platform commercial audio library made by Firelight
Technologies that plays audio files in the following formats: AIFE, ASE
ASX, DLS, FLAC, FSB, I'T, M3U, MID, MOD, MP2, MP3, OGG, PLS,
RAW, S3M, VAG, WAV, WAX, WMA, XM, and XMA.

Platforms supported: Windows, Mac, Linux, Nintendo GameCube, Wii,
Solaris, Xbox, Xbox 360, PlayStation 2, PlayStation Portable, and
PlayStation 3

Web site: http://www.fmod.org/

License: Free only for non-commercial use; more license details avail-
able at their web site.

11.2.2 BASS

BASS is a commercial cross-platform audio SDK by Un4seen Develop-
ments supporting audio files in the following file formats: WAV, AIFE
MP3, MP2, MP1, OGG, XM, IT, S3M, MOD, MTM, and UMX.
Platforms supported: Windows and Mac

Web site: http://www.undseen.com/

License: Free only for non-commercial use; more license details avail-
able at their web site.

Chapter 11 / Other Cross-Platform SDKs and Tools 343

11.2.3 irrKlang

irrKlang is a commercial cross-platform audio SDK by Ambiera sup-
porting audio files in the following file formats: WAV, MP3, OGG, XM,
IT, S3D, and MOD.

Platforms supported: Windows, Linux, and Mac

Web site: http://ambiera.com/irrklang/

License: Free only for non-commercial use; more license details avail-
able at their web site.

11.2.4 Audiere

A free, open-source, and cross-platform audio SDK, Audiere supports
audio files in the following file formats: WAV, AIFE MP3, MP2, MP1,
OGG, XM, IT, S3M, MOD, MTM, and UMX.

Platforms supported: Windows, Mac, and Linux

Web site: http://audiere.sourceforge.net/

License: LGPL,; free for commercial and non-commercial use.

11.2.5 OpenAlL

OpenAL is a generally free, open-source, and cross-platform audio
SDK.

Platforms supported: Windows, Mac, Linux, BSD, Solaris, IRIX, Xbox,
and Xhox 360

Web site: http://www.openal.org/

License: LGPL; free for commercial and non-commercial use.

344 Chapter 11 / Other Cross-Platform SDKs and Tools

11.3 Physics SDKs

11.3.1 ODE

ODE (Open Dynamics Engine) is a free, open-source, and cross-plat-
form physics SDK for simulating both rigid body physics and collision
detection. It has powered many games, including BloodRayne 2, Call of
Juarez, and S.TA.L.K.E.R.

Platforms supported: Linux, Windows, and Mac

Web site: http://www.ode.org/

License: BSD-style; free for commercial and non-commercial use.

11.3.72 Newton Game Dynamics

Newton Game Dynamics is a cross-platform physics SDK, and, accord-
ing to the web site, is “an integrated solution for real-time simulation
of physics environments. The API provides scene management, colli-
sion detection, [and] dynamic behavior and yet it is small, fast, stable,
and easy to use.”

Platforms supported: Windows, Mac, and Linux

Web site: http://www.newtondynamics.com/

License: Free with restrictions. See web site for further details.

11.3.3 True Axis Physics

True Axis is a cross-platform physics SDK featuring collision detec-
tion, scene management, joints and rigid body dynamics, and contact
force computation.

Platforms supported: Windows and Linux

Web site: http://www.trueaxis.com/

License: Free only for non-commercial use; more license details avail-
able at their web site.

Chapter 11 / Other Cross-Platform SDKs and Tools 345

11.3.4 OPAL

OPAL (Open Physics Abstraction Layer) is a free, open-source, and
cross-platform physics SDK featuring linear and angular motion damp-
ing, collision detection, sensors, joints, and more.

Platforms supported: Windows, Mac, and Linux

Web site: http://opal.sourceforge.net/

License: LGPL; free for commercial and non-commercial use.

11.3.5 Bullet

Bullet is a free, open-source, and cross-platform physics SDK featur-
ing linear and angular motion damping, collision detection, sensors,
joints, and more.

Platforms supported: Mac, Windows, Linux, and PlayStation 3

Web site: http://www.continuousphysics.com/Bullet/

License: ZLib; free for commercial and non-commercial use.

11.3.6 PhysX

PhysX is a commercial, cross-platform physics SDK used by many
games including Unreal.

Platforms supported: Mac, Windows, Linux, and consoles

Web site: http://www.ageia.com/

License: Free only for non-commercial use; more license details avail-
able at their web site.

346 Chapter 11 / Other Cross-Platform SDKs and Tools

11.4 Network SDKs

11.4.1 RakNet

According to the RakNet web site, “RakNet is a networking API that is
a wrapper for reliable UDP and higher level functionality on Windows,
Linux, and Unix. It allows any application to communicate with other
applications on the same computer, over a LAN, or over the Internet.
Although it could be used for any networked application, it was devel-
oped specifically for rapid development of online games and the
addition of multiplayer to single-player games.”

Platforms supported: Windows and Linux

Web site: http://freshmeat.net/projects/raknet

License: Free with restrictions; more license details available at their
web site.

11.4.2 HawkNL

HawkNL is a free, cross-platform, open-source, “game-oriented” net-
work API designed largely as a wrapper over Berkeley/Unix Sockets
and Winsock. HawkNL also provides other features including support
for many groups of sockets, socket statistics, high-accuracy timer, CRC
functions, macros to read and write data to packets with endian con-
version, and support for multiple network transports.

Platforms supported: Windows, Linux, Mac, IRIX, AIX, BSD, and
Solaris
Web site: http://www.hawksoft.com/hawknl/

License: LGPL; free for commercial and non-commercial use.

Chapter 11 / Other Cross-Platform SDKs and Tools 347

11.4.3 SDL_net

SDL net is a free, open-source, cross-platform SDL networking exten-
sion library for the SDL library.

Platforms supported: Linux, Windows, BeOS, Mac OS, Mac OS X,
FreeBSD, NetBSD, OpenBSD, BSD/OS, Solaris, IRIX, and QNX
Web site: http://www.libsdl.org/projects/SDL_net/

License: LGPL; free for commercial and non-commercial use.

11.5 Artificial Intelligence SDKs

11.5.1 Boost Graph Library

Boost is a series of open-source, cross-platform, and peer reviewed
C+ + libraries, including the graph library used by many for
pathfinding and other Al game development purposes.

Platforms supported: Windows, Linux, Mac, and consoles

Web site: http://boost.org/libs/graph/doc/table_of contents.html
License: Free; more license details available at their web site.

11.5.2 OpenSteer

According to the web site, “OpenSteer is a C+ + library to help con-
struct steering behaviors for autonomous characters in games and
animation. In addition to the library, OpenSteer provides an OpenGL-
based application called OpenSteerDemo, which displays predefined
demonstrations of steering behaviors. The user can quickly prototype,
visualize, annotate, and debug new steering behaviors by writing a
plug-in for OpenSteerDemo.”

Platforms supported: Linux, Windows, BeOS, Mac OS, Mac OS X,
FreeBSD, NetBSD, OpenBSD, BSD/OS, Solaris, IRIX, and QNX
Web site: http://opensteer.sourceforge.net/

License: MIT; free for commercial and non-commercial use.

348 Chapter 11 / Other Cross-Platform SDKs and Tools

11.5.3 FANN

FANN (Fast Artificial Neural Network) is an open-source, cross-plat-
form Al library that “implements multilayer artificial neural networks
in C with support for both fully connected and sparsely connected
networks.”

Platforms supported: Windows, Mac, and Linux

Web site: http://leenissen.dk/fann/

License: LGPL; free for commercial and non-commercial use.

11.5.4 Garfixia Al Repository

This is a free, cross-platform, and open-source collection of common
Al functions, classes, and algorithms.

Platforms supported: Linux, Windows, BeOS, Mac OS, Mac OS X,
FreeBSD, NetBSD, OpenBSD, BSD/OS, Solaris, IRIX, and QNX
Web site: http://www.dossier-andreas.net/ai/index.html

License: Free only for non-commercial use; more license details avail-
able at their web site.

1.6 Input SDKs

11.6.1 LibGll

A free, cross-platform, and open-source input management library,
LibGll features functions and classes to read user input from periph-
eral input devices, including mouse, keyboard, joysticks, and others.

Platforms supported: Linux, Windows, Mac OS, Mac OS X, FreeBSD,
and OpenBSD

Web site: http://www.ggi-project.org/packages/libgii.html

License: MIT; free for commercial and non-commercial use.

Chapter 11 / Other Cross-Platform SDKs and Tools 349

11.6.2 Openinput

Openlnput, according to the web site, “is a free, open-source, cross-
platform, and portable input handling library written in C. The library
can take input from several devices like mice, joysticks, and key-
boards, and presents it to the user using a simple, platform-
independent, and easy-to-use APL.”

Platforms supported: Windows and Linux

Web site: http://home.gna.org/openinput/
License: LGPL,; free for commercial and non-commercial use.

11.7 Seripting SDKs

11.7.] Lua

Created in 1993 by Roberto Ierusalimschy, Lua (pronounced Loo-ah) is
a free, cross-platform, and open-source imperative procedural scripting
language used by many games including World of Warcraft, SimCity 4,
Crysis, and Supreme Commander. It is also used by Novashell as well
as other game engines and game editors.

Platforms supported: Windows, Linux, Mac, BREW, Symbian, and
PocketPC

Web site: http://www.lua.org/
License: MIT; free for commercial and non-commercial use.

11.7.2 Python

According to the Python web site, “Python is a dynamic, object-
oriented programming language that can be used for many kinds of
software development. It offers strong support for integration with
other languages and tools, comes with extensive standard libraries,
and can be learned in a few days. Many Python programmers report
substantial productivity gains and feel the language encourages the
development of higher quality, more maintainable code.”

350

Chapter 11/ Other Cross-Platform SDKs and Tools

Platforms supported: Windows, Mac, Linux, Amiga, Palm handhelds,
and Nokia mobile phones

Web site: http://www.python.org/

License: Free for commercial and non-commercial use.

11.7.3 Ruby

Ruby is a free, open-source, cross-platform, object-oriented scripting
language.

Platforms supported: Windows, Linux, and Mac

Web site: http://www.ruby-lang.org/

License: Free for commercial and non-commercial use.

11.7.4 Squirrel

Squirrel is a free, open-source, cross-platform, object-oriented script-
ing language, some of whose features include dynamic typing,
exception handling, classes and inheritance, tail recursion, and auto-
matic memory management.

Platforms supported: Windows, Mac, and Linux

Web site: http://squirrel-lang.org/

License: Free for commercial and non-commercial use.

11.7.5 AngelCode

AngelCode is a free, open-source, cross-platform, object-oriented
scripting language.

Platforms supported: Windows, Linux, Mac OS X, XBox, XBox 360,
PlayStation 2, PlayStation Portable, PlayStation 3, Dreamcast,
Nintendo DS, and Windows mobile

Web site: http://www.angelcode.com/angelscript/

License: Free for commercial and non-commercial use.

Chapter 11 / Other Cross-Platform SDKs and Tools 351

11.7.6 GameMonkey

GameMonkey, according to the web site, “is an embedded scripting
language that is intended for use in game and tool applications.
GameMonkey is, however, suitable for use in any project requiring
simple scripting support. GameMonkey borrows concepts from Lua
(www.lua.org), but uses syntax similar to C, making it more accessible
to game programmers. GameMonkey also natively supports
multithreading and the concept of states.”

Platforms supported: Windows, Mac, and Linux

Web site: http://www.somedude.net/gamemonkey/

License: MIT license; free for commercial and non-commercial use.

11.5 Gume Engines

11.8.1 Torque

Torque is a commercial game engine, complete with level editor,
sound, input, graphics renderer, and more.

Platforms supported: Windows, Mac, and Linux

Web site: http://www.garagegames.com/

License: Commercial

11.8.2 Irrlicht

Irrlicht Engine is a free, open-source, real-time 3D engine written in
C+ +. Cross-platform (using D3D, OpenGL, and its own software ren-
derer), Irrlicht has a huge active community where you can find
enhancements such as terrain renderers, portal renderers, exporters,
world layers, tutorials, editors, and language bindings for Java, Perl,
Ruby, Basic, Python, Lua, and so on.

Platforms supported: Windows, Mac, and Linux
Web site: http://irrlicht.sourceforge.net/

License: Zlib; free for commercial and non-commercial use.

352 Chapter 11 / Other Cross-Platform SDKs and Tools

11.8.3 Game Editor

Game Editor is aimed at those new to game programming. Using
Game Editor, developers can build 2D games for the PC and mobile

phone platforms.
Platforms supported: Windows, Mac, and Linux
Web site: http://game-editor.com/

License: Commercial

11.9 GUI SDKs

11.9.1 OpenGUI

OpenGUI is an open-source, cross-platform, and freely available C+ +
GUI framework for games and other cross-platform applications.
Platforms supported: Windows, Mac, and Linux

Web site: http://opengui.rightbracket.com/index.php

License: BSD; free for commercial and non-commercial use.

11.10 Web SDKs

11.10.1 YaBB

YaBB is a free, open-source forum software package also offering a
real-time chat and support system for your web site visitors. Using
YaBB, game developers can build a technical support and social com-
munity for their gamers.

Platforms supported: Windows, Mac, and Linux

Web site: http://www.yabbforum.com/

License: Free for commercial and non-commercial use.

Chapter 11 / Other Cross-Platform SDKs and Tools 353

11.10.1.1 Downloading, Installing, and Creating an
Online Forum

The following step-by-step guide illustrates how to download, install,
and create an online forum, which can be used to build gaming commu-
nities. Forums provide a place where gamers can log on and speak to
other gamers, report bugs, provide help, and communicate with
developers.

1.

Beginning from the desktop (Win, Mac, or Linux), navigate a web
browser to the YaBB home page at http://www.yabbforum.com/.

At the YaBB home page, click the Downloads menu item to dis-
play the downloads page. From there, select one of the two YaBB
packages listed: YaBB_2.2.zip or YaBB_2.2.tar.gz. Download the
archive from the web to the local machine, and then extract the
archive to a local directory.

Then download the free, cross-platform, and open-source FTP cli-
ent FileZilla by navigating a web browser to the FileZilla home
page at http://filezilla-project.org/.

At the FileZilla web site, download and install the FileZilla FTP cli-
ent application from the web site to the local computer.

Return to the directory containing the contents of the extracted
YaBB package. This directory includes the following files and
directories:

B cgi-bin — This directory contains the core script files for the
forum. This eventually will be uploaded to the web server.

B public_html — This directory features HTML pages. These
are the default pages for the forum. They do not need to be
edited, but it is possible to do so if you wish to change the look
of your forum.

B Quick-Guide — The help documentation.

354 Chapter 11 / Other Cross-Platform SDKs and Tools

6. Using the FileZilla FTP software, log onto the web host using the
FTP server (e.g., ftp.mywebsite.com). Provide a user name and
password as appropriate. Please remember that YaBB can only be
used on web hosts that support Perl scripts. Most commercial
hosts do, but many free hosts do not.

7. On the web space, find a directory called cgi-bin. If it does not
exist, then a directory with this name should be created. From the
local computer, copy all the contents of cgi-bin (inside the direc-
tory where YaBB was extracted) to the cgi-bin directory on the
web host.

8. Outside of the cgi-bin directory on the web host, a new folder
should be created, usually in public_html. This folder should
reside among the rest of the standard HTML pages and files for
the web site. Ideally, this should be called “yabbfiles,” but the
name can be anything desired. From the local computer, copy the
yabbfiles directory (inside public_html where YaBB was
extracted). This should be copied to the web host inside the newly
created yabbfiles directory.

9. Once the required files have been copied to the web host, the
access privileges for these files and directories must be changed.
These settings affect whether the files can be written to and read
from.

At this point, all the forum files are uploaded to the server. Each
file on the server has a series of permissions for reading and writ-
ing, and also for whether the file can be accessed at all. YaBB
requires the forum files to be changed to specific settings in order
to work. Each setting, such as read or write, has an integer cost,
and the total cost for any file reflects the range of settings that
apply to the file. This is sometimes called chmod. The quickest
method for setting permissions is to use FileZilla FTP, which
allows you to select the file, enter a specific integer, and then click

Apply.
a. Right-click one or more files and/or directories in the browser.
b. Click File Attributes.

Chapter 11 / Other Cross-Platform SDKs and Tools

3%

c. This displays a menu where a value can be entered. This value
reflects the combination of access privileges to be applied to
the file(s).

The following table lists the YaBB files and directories to be
changed and their corresponding privilege values.

CGI-BIN files:

chmod 755:
chmod 755:
chmod 755:
chmod 666:
chmod 755:
chmod 755:
chmod 777:
chmod 666:
chmod 777:
chmod 666:
chmod 777:
chmod 777:
chmod 777:
chmod 777:
chmod 777:
chmod 777:
chmod 777:
chmod 777:
chmod 777:
chmod 777:
chmod 777:
chmod 777:
chmod 777:
chmod 777:
chmod 666:
chmod 666:
chmod 777:
chmod 777:
chmod 666:
chmod 777:

cgi-bin/yabb2

cgi-bin/yabb2/AdminIndex.pl
cgi-bin/yabb2/FixFile.pl
cgi-bin/yabbh2/Paths.pl

cgi-bin/yabh2/Setup.pl

cgi-bin/yabb2/YaBB.pl

cgi-bin/yabh2/Admin

cgi-bin/yabbh2/Admin/* (all files)
cgi-bin/yabb2/Boards

cgi-bin/yabbh2/Boards/* (all files)
cgi-bin/yabb2/Convert
cgi-bin/yabb2/Convert/Boards
cgi-bin/yabb2/Convert/Members
cgi-bin/yabbh2/Convert/Messages
cgi-bin/yabb2/Convert/Variables
cgi-bin/yabh2/Help/English/Admin
cgi-bin/yabb2/Help/English/Admin/* (all files)
cgi-bin/yabb2/Help/English/Gmod
cgi-bin/yabh2/Help/English/Gmod/* (all files)
cgi-bin/yabb2/Help/English/Moderator
cgi-bin/yabb2/Help/English/Moderator/* (all files)
cgi-bin/yabh2/Help/English/User
cgi-bin/yabh2/Help/English/User/* (all files)
cgi-bin/yabb2/Languages/English
cgi-bin/yabb2/Languages/English/agreement.txt
cgi-bin/yabbh2/Languages/English/censor.txt
cgi-bin/yabb2/Languages/English/* (all files)
cgi-bin/yabb2/Members
cgi-bin/yabb2/Members/* (all files)
cgi-bin/yabb2/Messages

356 Chapter 11 / Other Cross-Platform SDKs and Tools

chmod 666:
chmod 777:
chmod 777:
chmod 777:
chmod 777:
chmod 777:
chmod 777:
chmod 777:
chmod 777:
chmod 777:
chmod 766:
chmod 755:
chmod 766:
chmod 766:
chmod 666:
chmod 766:
chmod 666:
chmod 777:
chmod 666:
chmod 777:
chmod 777:
chmod 666:
chmod 777:
chmod 666:
chmod 777:
chmod 777:
chmod 666:
chmod 777:
chmod 666:

chmod 666:
chmod 777:
chmod 666:

chmod 666:

cgi-bin/yabb2/Messages/* (all files)
cgi-bin/yabb2/Modules/Digest
cgi-bin/yabb2/Modules/Digest/HMAC MD5.pm
cgi-bin/yabb2/Modules/Digest/MD5.pm
cgi-bin/yabb2/Modules/Time
cgi-bin/yabb2/Modules/Time/HiRes.pm
cgi-bin/yabb2/Modules/Upload
cgi-bin/yabb2/Modules/Upload/CGIL.pm
cgi-bin/yabb2/Modules/Upload/CGI
cgi-bin/yabb2/Modules/Upload/CGI/Util.pm
cgi-bin/yabb2/Sources

cgi-bin/yabb2/Sources/* (all files)
cgi-bin/yabb2/Templates
cgi-bin/yabb2/Templates/default
cgi-bin/yabb2/Templates/default/* (all files)
cgi-bin/yabh2/Variables

cgi-bin/yabb2/Variables/* (all files)
public_html/yabbfiles

public_html/yabbfiles/*.js
public_html/yabbfiles/Attachments
public_html/yabbfiles/avatars
public_html/yabbfiles/avatars/* (all files)
public_html/yabbfiles/Buttons
public_html/yabbfiles/Buttons/English/* (all files)
public_html/yabbfiles/ModImages
public_html/yabbfiles/Smilies
public_html/yabbfiles/Smilies/* (all files)
public_html/yabbfiles/Templates/Admin
public_html/yabbfiles/Templates/Admin/default/* (all
files)
public_html/yabbfiles/Templates/Admin/default.css
public_html/yabbfiles/Templates/Forum
public_html/yabbfiles/Templates/Forum/default/* (all
files)
public_html/yabbfiles/Templates/Forum/default.css

Chapter 11 / Other Cross-Platform SDKs and Tools 357

10. Uploading files and setting file permissions can be a long and
tedious process. Once completed, however, the forum is almost
ready to try. You can access the forum by navigating a web browser
to setup.pl in the cgi-bin. It will be something like
http://www.example.com/cgi-bin/yabb2/setup.pl.

OE
@aBB
———

Admin/Centerg
e

et

b Sete & Maintenance Settings
Pat, Satirgn.
vt ol Cirriots

o8 News

A More Smdee
L
el mor Ag eenart
ol Moxsor e Acteh
Seeurty Canter

Referer Socurity

Rt b yous Boren | Riturn bo Aduin Center | Varw el Fibes | Visit Yalmforum.c: o

nd Somings

£ $AHINGE, B8 Ay My render vour TS Sysfunctisnal. Ao hate

Wi arw currently Lpgrading our forum agan, Please chd bac
shortlyl

erve it Meert Hews Fader Tawt €
. Member Ceeupe s Fack "

2000000
v

Show Recent Posts on Board Index?
Show Board Descriptions in the Message [ndex?

Show Modiication Date on Modified Posts?
Show Lger Pics in Message Vew?

1 Love Ya8& 21

© Forum Stasstice Enabie Bullatin Board Code?

Figure 11-1

This page provides options to configure and accept forum settings.
In this section, it’s important to do the following:

a. Enter a user name and password if asked. You begin as the
administrator user. Your default user name will be admin, and
the password will be admin. These settings should be changed
as soon as possible.

b. The paths screen displays where the YaBB HTML and data
files are to be located. Default settings will be entered already,
and often these are correct. In specific cases, these may need
to be changed.

358 Chapter 11 / Other Cross-Platform SDKs and Tools

c. Next, the localization screen allows administrators to set the
time zone for the forum. The forum is now ready to use.

Huy, Yalith Administrator, you have 0 messages.
= Feh 7%, 2007, 11:06am
i YaB J Forum,Software oews: Sagrp for free on our forum and beneit from naw festures!
7aBb, 4 pE S
= &

Last post

-]

Figure 11-2

11.11 Distribution SDKs

11.11.1 NSIS

NSIS (Nullsoft Scriptable Install System) is an open-source library
designed to create Windows installation packages for developers aim-
ing to distribute their games to that audience.

Platforms supported: Windows
Web site: http://nsis.sourceforge.net/

License: Free for commercial and non-commercial use; see web site for
more details.

Chapter 11 / Other Cross-Platform SDKs and Tools 359

11.11.2 Inno Setup

First created in 1997, Inno Setup is a freely available library to create
Windows installation packages.

Platforms supported: Windows
Web site: http://www.jrsoftware.org/isinfo.php

License: Free for commercial and non-commercial use; see web site for
more details.

11.11.2.1 Downloading, Installing, and Creating an
Installer in Inno Setup

Inno Setup is a freely available library used by many game developers
for creating an installation package (wizard) that installs their game to
the local machine. It transfers the game files from a compressed
archive on a CD or downloaded package to the local machine in a form
that can execute successfully. The following step-by-step guide high-
lights how to download, install, and use Inno Setup to create installers
for your own games.

1. Beginning from the Windows desktop, navigate a web browser to
the Inno Setup home page at http:/www.jrsoftware.org/isinfo.php.

2. At the Inno Setup home page, click either the Downloads link at
the left of the page or the Download Inno Setup link on the page
to display the Downloads page. There, download from the web to
the local machine both the latest Inno Setup release and the Inno
Setup Quick Start pack, and install each package to the local
computer.

3. From the Windows Start menu, launch the newly installed Inno
Setup IS Tool (Script Editor to create installation packages). Then
from the IS Tool main menu, select File | New to create a new
installation project (a project soon to be compiled into a completed
installer, ready to run).

Chapter 11/ Other Cross-Platform SDKs and Tools

4. Enter the following script into the editor pane:

[Setup]

5 This is a comment. The setup section describes the basic
properties

; of the installer; such as program title, version number,
default

; installation (destination) directory

AppName=My Program

AppVerName=My Program version 1.4

DefaultDirName={pf}\My Program

DefaultGroupName=My Program

OutputDir=C:\Ouput

[Files]

; Here Tist all files to be compiled into installation package;
files to be

; installed to the system by the installer at run-time

Source: c:\mystestpic.jpg; DestDir: {app}

Untitled - ISToal

i Eile fdit Yiew Project Help
IJPH X OD|IE X0 Q| Moption: « [setions v | # F e | 0
Secticrss X Fes
(3 Sections Mame DestDir Flags

(A Senpt

() Files and Dies

) lcons

=1

& Regiatry

&) Inazall Delete

7 Instal Run

B Unimstall Delete

7 Urinstall Bun

B Messages

W Cuttioen Mettages

a0 Types

@ Components

B Tasks

4 Code

& Languiges
L3 BTeal Sectiens

T Pee Compilation Steps

] Perst Complatan Sep

() Dewnlesd

Press Fl for help

Figure 11-3

Chapter 11 / Other Cross-Platform SDKs and Tools 361

5. Then from the Inno Setup main menu, choose Project | Compile
Project to generate a self-executing installation package. The
installer is now compiled and ready to run.

5 s 10 oo I =

Welcome to the My Program
Sctup Wizard

Thhias will inatall My Program version 1.4 on your computer.

I is recommended thal you dose all olher applications beloe
continuing

Ulick Mex to continue, or Cancel to codt Sctup.

MNexd > Cancel

Figure 11-4

11.12 Conclusion

This chapter presented in summary a variety of SDKs (from ClanLib
and ODE to NSIS and YaBB), many of them free and open-source, and
each of them available to game developers looking to create cross-plat-
form games.

This page intentionally left blank.

Appendix A

GNU Lesser General
Public License

Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorpo-
rates the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.

0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser
General Public License, and the “GNU GPL’ refers to version 3 of the
GNU General Public License.

“The Library” refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface pro-
vided by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking
an Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the “Linked
Version.”

The “Minimal Corresponding Source” for a Combined Work
means the Corresponding Source for the Combined Work, excluding

363

364

Appendix A / GNU Lesser General Public License

any source code for portions of the Combined Work that, considered in
1solation, are based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work
means the object code and/or source code for the Application, includ-
ing any data and utility programs needed for reproducing the
Combined Work from the Application, but excluding the System
Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility
refers to a function or data to be supplied by an Application that uses
the facility (other than as an argument passed when the facility is
invoked), then you may convey a copy of the modified version:

a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the func-
tion or data, the facility still operates, and performs whatever part
of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.

3. Object Code Incorporating Material from Library
Header Files.

The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure layouts
and accessors, or small macros, inline functions and templates (ten or
fewer lines in length), you do hoth of the following:

a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are covered by
this License.

Appendix A / GNU Lesser General Public License 365

b)

Accompany the object code with a copy of the GNU GPL and this
license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the portions
of the Library contained in the Combined Work and reverse engineer-
ing for debugging such modifications, if you also do each of the
following:

a)

b)

C)

d)

e)

Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are cov-
ered by this License.

Accompany the Combined Work with a copy of the GNU GPL and
this license document.

For a Combined Work that displays copyright notices during exe-
cution, include the copyright notice for the Library among these

notices, as well as a reference directing the user to the copies of
the GNU GPL and this license document.

Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of
this License, and the Corresponding Application Code in a
form suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in
the manner specified by section 6 of the GNU GPL for convey-
ing Corresponding Source.

1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user’s computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.

Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is

366 Appendix A / GNU Lesser General Public License

necessary to install and execute a modified version of the Com-
bined Work produced by recombining or relinking the Application
with a modified version of the Linked Version. (If you use option
4d0, the Installation Information must accompany the Minimal
Corresponding Source and Corresponding Application Code. If you
use option 4d1, you must provide the Installation Information in
the manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library
side by side in a single library together with other library facilities that
are not Applications and are not covered by this License, and convey
such a combined library under terms of your choice, if you do both of
the following:

a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it is a
work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public
License.

The Free Software Foundation may publish revised and/or new ver-
sions of the GNU Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version of
the GNU Lesser General Public License “or any later version” applies
to it, you have the option of following the terms and conditions either
of that published version or of any later version published by the Free
Software Foundation. If the Library as you received it does not specify
a version number of the GNU Lesser General Public License, you may
choose any version of the GNU Lesser General Public License ever
published by the Free Software Foundation.

Appendix A / GNU Lesser General Public License 367

If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License
shall apply, that proxy’s public statement of acceptance of any version

1s permanent authorization for you to choose that version for the
Library.

This page intentionally left blank.

Appendix B
BSD License

Copyright (¢c) <year>, <copyright holder>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met: Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer. Redistribu-
tions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution. Neither the
name of the <organization> nor the names of its contributors may be
used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY <copyright holder> “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL <copyright
holder> BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

369

This page intentionally left blank.

Appendix C

Creative Commons
License

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND
DOES NOT PROVIDE LEGAL SERVICES. DISTRIBUTION OF
THIS LICENSE DOES NOT CREATE AN ATTORNEY-CLIENT
RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN “AS-IS" BASIS. CREATIVE COMMONS
MAKES NO WARRANTIES REGARDING THE INFORMATION
PROVIDED, AND DISCLAIMS LIABILITY FOR DAMAGES
RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE
TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE
(“CCPL" OR “LICENSE”). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF
THE WORK OTHER THAN AS AUTHORIZED UNDER THIS
LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED
HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE
TERMS OF THIS LICENSE. THE LICENSOR GRANTS YOU THE
RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR
ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

N

372

Appendix C / Creative Commons License

1. Definitions

1.

“Collective Work” means a work, such as a periodical issue,
anthology or encyclopedia, in which the Work in its entirety in
unmodified form, along with a number of other contributions, con-
stituting separate and independent works in themselves, are
assembled into a collective whole. A work that constitutes a Col-
lective Work will not be considered a Derivative Work (as defined
below) for the purposes of this License.

“Derivative Work” means a work based upon the Work or upon the
Work and other pre-existing works, such as a translation, musical
arrangement, dramatization, fictionalization, motion picture ver-
sion, sound recording, art reproduction, abridgment, condensation,
or any other form in which the Work may be recast, transformed,
or adapted, except that a work that constitutes a Collective Work
will not be considered a Derivative Work for the purpose of this
License.

“Licensor” means the individual or entity that offers the Work
under the terms of this License.

“Original Author” means the individual or entity who created the
Work.

“Work” means the copyrightable work of authorship offered under
the terms of this License.

“You” means an individual or entity exercising rights under this
License who has not previously violated the terms of this License
with respect to the Work, or who has received express permission
from the Licensor to exercise rights under this License despite a
previous violation.

2. Fair Use Rights

Nothing in this license is intended to reduce, limit, or restrict any
rights arising from fair use, first sale or other limitations on the exclu-
sive rights of the copyright owner under copyright law or other
applicable laws.

Appendix C / Creative Commons License 373

3. License Grant & Restrictions

Subject to the terms and conditions of this License, Licensor hereby
grants You a worldwide, royalty-free, non-exclusive, perpetual (for the
duration of the applicable copyright) license to exercise the rights in
the Work as stated below on the conditions as stated below:

1. Re-creativity permitted. You may create and reproduce Derivative
Works, provided that:

a. The Derivative Work(s) constitute a good-faith partial or
recombined usage employing “sampling,” “collage,”
“mash-up,” or other comparable artistic technique, whether
now known or hereafter devised, that is highly transformative
of the original, as appropriate to the medium, genre, and mar-
ket niche; and

b. Your Derivative Work(s) must only make a partial use of the
original Work, or if You choose to use the original Work as a
whole, You must either use the Work as an insubstantial por-
tion of Your Derivative Work(s) or transform it into something
substantially different from the original Work. In the case of a
musical Work and/or audio recording, the mere synchroniza-
tion (“synching") of the Work with a moving image shall not be
considered a transformation of the Work into something sub-
stantially different.

2. You may distribute copies or phonorecords of, display publicly, per-
form publicly, and perform publicly by means of a digital audio
transmission, any Derivative Work(s) authorized under this
License.

3. Prohibition on advertising. All advertising and promotional uses
are excluded from the above rights, except for advertisement and
promotion of the Derivative Work(s) that You are creating from the
Work and Yourself as the author thereof.

4. Noncommercial sharing of verbatim copies permitted.

a. You may reproduce the Work, incorporate the Work into one or
more Collective Works, and reproduce the Work as incorpo-
rated in the Collective Works. You may distribute copies or

374

Appendix C / Creative Commons License

phonorecords of, display publicly, perform publicly, and per-
form publicly by means of a digital audio transmission the
Work including or incorporated in Collective Works.

You may not exercise any of the rights granted to You in the
paragraph immediately above in any manner that is primarily
intended for or directed toward commercial advantage or pri-
vate monetary compensation. The exchange of the Work for
other copyrighted works by means of digital file-sharing or
otherwise shall not be considered to be intended for or
directed toward commercial advantage or private monetary
compensation, provided there is no payment of any monetary
compensation in connection with the exchange of copyrighted
works.

5. Attribution and Notice.

d.

If You distribute, publicly display, publicly perform, or publicly
digitally perform the Work or any Derivative Works or Collec-
tive Works, You must keep intact all copyright notices for the
Work and give the Original Author credit reasonable to the
medium or means You are utilizing by conveying the name (or
pseudonym if applicable) of the Original Author if supplied; the
title of the Work if supplied; to the extent reasonably practica-
ble, provide the Uniform Resource Identifier, if any, that
Licensor specifies to be associated with the Work or a Deriva-
tive Work, unless such Uniform Resource Identifier does not
refer to the copyright notice or licensing information for the
Work; and in the case of a Derivative Work, provide a credit
identifying the use of the Work in the Derivative Work (e.g.,
“Remix of the Work by Original Author,” or “Inclusion of a
portion of the Work by Original Author in collage”). Such
credit may be implemented in any reasonable manner; pro-
vided, however, that in the case of a Derivative Work or
Collective Work, at a minimum such credit will appear where
any other comparable authorship credit appears and in a man-
ner at least as prominent as such other comparable authorship
credit.

Appendix C / Creative Commons License 375

b. You may distribute, publicly display, publicly perform or pub-
licly digitally perform the Work only under the terms of this
License, and You must include a copy of, or the Uniform
Resource Identifier for, this License with every copy or
phonorecord of the Work or Derivative Work You distribute,
publicly display, publicly perform, or publicly digitally perform.
You may not offer or impose any terms on the Work that alter
or restrict the terms of this License or the recipients’ exercise
of the rights granted hereunder. You may not sublicense the
Work. You must keep intact all notices that refer to this
License and to the disclaimer of warranties. You may not dis-
tribute, publicly display, publicly perform, or publicly digitally
perform the Work with any technological measures that con-
trol access of use of the Work in a manner inconsistent with
the terms of this License. The above applies to the Work as
incorporated in a Collective Work, but this does not require
the Collective Work apart from the Work itself to be made sub-
ject to the terms of this License. Upon notice from any
Licensor You must, to the extent practicable, remove from the
Derivative Work or Collective Work any reference to such
Licensor or the Original Author, as requested.

The above rights may be exercised in all media and formats whether
now known or hereafter devised. The above rights include the right to
make such modifications as are technically necessary to exercise the
rights in other media and formats. All rights not expressly granted by
Licensor are hereby reserved.

4, Disclaimer

UNLESS SPECIFIED OTHERWISE BY THE PARTIES IN A
SEPARATE WRITING, LICENSOR OFFERS THE WORK AS-IS
AND MAKES NO REPRESENTATIONS OR WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A
PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE
ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR
THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
DISCOVERABLE.

376 Appendix C / Creative Commons License

5. Limitation on Liability

IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL,
CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

6. Termination

1. This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Derivative Works or Col-
lective Works from You under this License, however, will not have
their licenses terminated provided such individuals or entities
remain in full compliance with those licenses. Sections 1, 2, 4, 5, 6,
and 7 will survive any termination of this License.

2. Subject to the above terms and conditions, the license granted
here is perpetual (for the duration of the applicable copyright in
the Work). Notwithstanding the above, Licensor reserves the right
to release the Work under different license terms or to stop dis-
tributing the Work at any time; provided, however that any such
election will not serve to withdraw this License (or any other
license that has been granted under the terms of this License), and
this License will continue in full force and effect unless terminated
as stated above.

7. Miscellaneous

1. Each time You distribute or publicly digitally perform the Work or
a Collective Work, the Licensor offers to the recipient a license to
the Work on the same terms and conditions as the license granted
to You under this License.

2. Each time You distribute or publicly digitally perform a Derivative
Work, Licensor offers to the recipient a license to the original
Work on the same terms and conditions as the license granted to
You under this License.

Appendix C / Creative Commons License 377

If any provision of this License is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of the
remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed
to the minimum extent necessary to make such provision valid and
enforceable.

No term or provision of this License shall be deemed waived and
no breach consented to unless such waiver or consent shall be in
writing and signed by the party to be charged with such waiver or
consent.

This License constitutes the entire agreement between the par-
ties with respect to the Work licensed here. There are no
understandings, agreements, or representations with respect to
the Work, and with respect to the subject matter hereof, not speci-
fied above. Licensor shall not be bound by any additional
provisions that may appear in any communication from You. This
License may not be modified without the mutual written agree-
ment of the Licensor and You.

This page intentionally left blank.

Appendix D
zlib/libpng License

Copyright (c) <year> <copyright holders>

This software is provided “as-is,” without any express or implied war-
ranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any pur-
pose, including commercial applications, and to alter it and redistribute
it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this soft-
ware in a product, an acknowledgment in the product
documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must
not be misrepresented as being the original software.

3. This notice may not be removed or altered from any source
distribution.

379

This page intentionally left blank.

Appendix E

The MIT License
Template

Copyright (c) <year> <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the “Soft-
ware”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS,” WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

381

This page intentionally left blank.

Appendix F

STL Public Member
Methods Reference

STD::STRING

const_iterator begin () const
iterator begin ()

const CharT * ¢_str () const
size_type capacity () const
void clear ()

int compare (size_type pos, size type nl, const CharT * s,
size_type _ n2) const

int compare (size_type _ pos, size type nl, const CharT * s)
const

int compare (const CharT * _s) const

int compare (size_type _posl, size_type _ nl, const basic_string
& str, size_type pos2, size_type _ n2) const

int compare (size_type _ pos, size_type _n, const basic_string
& str) const

int compare (const basic_string & _str) const

size_type copy (_CharT * s, size_type n, size type pos=0)
const

const CharT * data () const
bool empty () const

const_iterator end () const

383

384

Appendix F / STL Public Member Methods Reference

iterator end ()

iterator erase (iterator __first, iterator _ last)

iterator erase (iterator __ position)

basic_string & erase (size_type pos=0, size_type n=npos)
size_type find (_CharT _ c, size_type _ pos=0) const

size_type find (const _CharT * s, size_type pos=0) const
size_type find (const basic_string & _str, size _type pos=0) const

size_type find (const CharT * s, size_type pos, size type n)
const

size_type find first not of (CharT c, size type pos=0) const

size_type find first not of (const CharT * s, size type pos=0)
const

size_type find first not of (const CharT * s, size type pos,
size_type n) const

size_type find first not_of (const basic_string & _str, size_type
__pos=0) const

size_type find_first of (_ CharT _ ¢, size_type _pos=0) const
size_type find first of (const CharT * s, size type pos=0) const

size_type find first of (const CharT * s, size type pos, size_type
__n) const

size_type find first of (const basic string & str, size_type pos=0)
const

size_type find last not of (CharT _ ¢, size type pos=npos) const

size_type find last not of (const CharT * s, size type
__pos=npos) const

size_type find last not of (const CharT * s, size type pos,
size_type _n) const

size_type find last not of (const basic_string & _str, size_type
___pos=npos) const

size_type find last of (CharT _ c, size type pos=npos) const

size_type find last of (const CharT * s, size type _ pos=npos)
const

Appendix F / STL Public Member Methods Reference 385

size type find last of (const CharT * s, size type pos, size type
__n) const

size_type find last of (const basic_string & _str, size_type
___pos=npos) const

allocator type get_allocator () const

iterator insert (iterator _p, CharT _¢)

basic_string & insert (size_type _ pos, size type n, CharT c)
basic_string & insert (size_type _ pos, const CharT *)

basic_string & insert (size_type _pos, const CharT * s, size type
_n

basic_string & insert (size_type _ posl, const basic_string & _str,
size_type _ posZ, size type n)

basic_string & insert (size_type _ posl, const basic_string & _str)

template<class _Inputlterator> void insert (iterator _ p,
_Inputlterator beg, Inputlterator end)

void insert (iterator _ p, size type n, CharT ¢)
size_type length () const

size_type max_size () const

basic_string & operator+= (_CharT _ c¢)
basic_string & operator+= (const _CharT * _s)
basic_string & operator+= (const basic_string & _str)
basic_string & operator= (_CharT _ ¢)

basic_string & operator= (const CharT * _s)
basic_string & operator= (const basic_string & _str)
reference operator[] (size_type _ pos)
const_reference operator[] (size_type _ pos) const
void push_bhack (_CharT _ ¢)

const_reverse_iterator rbegin () const
reverse_iterator rbegin ()

const_reverse_iterator rend () const

reverse_iterator rend ()

386

Appendix F / STL Public Member Methods Reference

basic_string & replace (iterator _il, iterator _ i2, const_iterator
__ k1, const_iterator _ k2)

basic_string & replace (iterator __il, iterator __i2, iterator _ k1,
iterator _ k2)

basic_string & replace (iterator __il, iterator __i2, const _CharT
* k1, const CharT * k2)

basic_string & replace (iterator _il, iterator _i2, CharT * k1,
_CharT *__k2)

template<class _Inputlterator> basic_string & replace (iterator _ il,
iterator _i2, Inputlterator k1, Inputlterator k2)

basic_string & replace (iterator _ il, iterator _ i2, size type n,
_CharT ¢

basic_string & replace (iterator _ il, iterator _ i2, const CharT * s)

basic_string & replace (iterator _ il, iterator _ i2, const _CharT *_s,
size type n)

basic_string & replace (iterator _ il, iterator _ i2, const basic_string
& str)

basic_string & replace (size type pos, size _type nl, size type

_n2, CharT _o¢)
basic_string & replace (size_type _ pos, size _type nl, const CharT
*_S)

basic_string & replace (size_type _ pos, size_type nl, const CharT
* g, size type n2)

basic_string & replace (size_type posl, size type nl, const
basic_string & _str, size_type _ pos2, size_type n2)

basic_string & replace (size_type _ pos, size_type _n, const
basic_string & _str)

void reserve (size_type _res arg=0)

void resize (size_type _n)

void resize (size_type n, CharT _¢)

size_type rfind (_CharT _ c, size _type _pos=npos) const

size_type rfind (const CharT * s, size_type pos=npos) const

Appendix F / STL Public Member Methods Reference 387

size_type rfind (const CharT * s, size type pos, size type n)
const

size_type rfind (const basic_string & _str, size_type pos=npos)
const

size_type size () const
basic_string substr (size_type pos=0, size_type n=npos) const

void swap (basic_string & s)

STD::VECTOR

void assign (size_type _n, const value type & val)
const_reference at (size_type _ n) const
reference at (size_type n)

const_reference back () const

reference back ()

const_iterator begin () const

iterator begin ()

size_type capacity () const

void clear ()

const_pointer data () const

pointer data ()

bool empty () const

const_iterator end () const

iterator end ()

iterator erase (iterator _ first, iterator _ last)
iterator erase (iterator _ position)
const_reference front () const

reference front ()

template<typename Inputlterator> void insert (iterator __ position,
_Inputlterator _ first, Inputlterator last)

void insert (iterator __ position, size_type _ n, const value type & x)
iterator insert (iterator _ position, const value type & x)

size_type max_size () const

388

Appendix F / STL Public Member Methods Reference

vector & operator= (const vector & _x)
const_reference operator[] (size_type _ n) const
reference operator[] (size_type _n)

void pop_back ()

void push_back (const value _type & x)
const_reverse_iterator rbegin () const

reverse _iterator rbegin ()
const_reverse_iterator rend () const
reverse_iterator rend ()

void reserve (size_type _n)

void resize (size_type new_size, value type x=value type())
size_type size () const

void swap (vector & X)

template<typename Inputlterator> vector (_Inputlterator _first,
_Inputlterator _ last, const allocator type & a=allocator_type())

vector (const vector & x)

vector (size_type _ n, const value_type & value=value_type(),
const allocator_type & a=allocator_type())

vector (const allocator type & a)
vector ()

~vector ()

Appendix G

SDL Key Codes

SDL Key ASCII Value Common Name
SDLK_BACKSPACE \b backspace
SDLK_TAB \t tab
SDLK_CLEAR clear

SDLK _RETURN \r return
SDLK_PAUSE pause
SDLK_ESCAPE ~ escape
SDLK_SPACE space
SDLK_EXCLAIM ! exclamation mark
SDLK_ QUOTEDBL ! double quote
SDLK_HASH # hash
SDLK_DOLLAR $ dollar
SDLK_AMPERSAND & ampersand
SDLK_QUOTE ' quote
SDLK_LEFTPAREN (left parenthesis
SDLK_RIGHTPAREN) right parenthesis
SDLK_ASTERISK * asterisk
SDLK_PLUS + plus sign
SDLK_COMMA , comma
SDLK_MINUS - minus sign
SDLK_PERIOD period
SDLK_SLASH / forward slash
SDLK 0 0 0

SDLK 1 1

SDLK 2 2 2

389

390 Appendix G / SDL Key Codes

SDL Key ASCII Value Common Name
SDLK 3 3 3

SDLK_4 4 4

SDLK_5 5 5

SDLK_6 6 6

SDLK 7 7 7

SDLK 8 8 8

SDLK_9 9 9
SDLK_COLON colon
SDLK_SEMICOLON ; semicolon
SDLK _LESS < less-than sign
SDLK_EQUALS = equals sign
SDLK_GREATER > greater-than sign
SDLK_QUESTION [4 question mark
SDLK_AT @ at
SDLK_LEFTBRACKET [left bracket
SDLK BACKSLASH \ backslash
SDLK _RIGHTBRACKET] right bracket
SDLK_CARET ~ caret
SDLK_UNDERSCORE _ underscore
SDLK_BACKQUOTE grave

SDLK _a a a

SDLK_b b b

SDLK ¢ c c

SDLK_d d d

SDLK e e e

SDLK f f

SDLK g g g

SDLK_h h h

SDLK i i i

SDLK_j i i

SDLK k k k

SDLK |

Appendix G / SDL Key Codes

39

SDL Key ASCIl Value Common Name
SDLK_m m m

SDLK _n n n

SDLK o o o

SDLK p p p

SDLK ¢ q q

SDLK_r r r

SDLK s s s

SDLK_t t t

SDLK u u u

SDLK v v v

SDLK w w w

SDLK x X X

SDLK y y y

SDLK z z z
SDLK_DELETE ~? delete
SDLK_KPO keypad 0
SDLK_KP1 keypad 1
SDLK_KP2 keypad 2
SDLK_KP3 keypad 3
SDLK_KP4 keypad 4
SDLK_KP5 keypad 5
SDLK_KPé keypad 6
SDLK_KP7 keypad 7
SDLK_KP8 keypad 8
SDLK_KP9 keypad 9
SDLK_KP_PERIOD keypad period
SDLK_KP_DIVIDE / keypad divide
SDLK_KP_MULTIPLY * keypad multiply
SDLK_KP_MINUS - keypad minus
SDLK_KP_PLUS + keypad plus
SDLK_KP_ENTER \r keypad enter

SDLK_KP_EQUALS

keypad equals

392 Appendix G / SDL Key Codes

SDL Key ASCII Value Common Name
SDLK_UP up arrow
SDLK_DOWN down arrow
SDLK_RIGHT right arrow
SDLK_LEFT left arrow
SDLK_INSERT insert
SDLK_HOME home
SDLK_END end
SDLK_PAGEUP page up
SDLK_PAGEDOWN page down
SDLK_F1 F1
SDLK_F2 F2
SDLK_F3 F3
SDLK_F4 F4
SDLK_F5 F5
SDLK_F6 Fé
SDLK_F7 F7
SDLK_F8 F8
SDLK_F9 F9
SDLK_F10 F10
SDLK_F11 F11

SDLK _F12 F12
SDLK_F13 F13
SDLK_F14 F14
SDLK_F15 F15

SDLK_ NUMLOCK numlock
SDLK_CAPSLOCK capslock
SDLK_SCROLLOCK scrolllock
SDLK_RSHIFT right shift
SDLK_LSHIFT left shift
SDLK _RCTRL right ctrl
SDLK_LCTRL left ctrl
SDLK_RALT right alt

Appendix G / SDL Key Codes

393

SDL Key ASCIl Value Common Name
SDLK_LALT left alt
SDLK_RMETA right meta
SDLK_LMETA left meta

SDLK_LSUPER
SDLK_RSUPER
SDLK_MODE
SDLK_HELP
SDLK_PRINT
SDLK_SYSREQ
SDLK_BREAK
SDLK_MENU
SDLK_POWER
SDLK_EURO

left windows key
right windows key
mode shift

help

print screen
SysRq

break

menu

power

euro

This page intentionally left blank.

Appendix H
Novashell Functions

Add

BrainManager

LayerList

TextManager

WatchManager
AddApproach, GoalManager
AddApproachAndSay, GoalManager
AddBinding, InputManager
AddCustom, TextManager
AddCustomScreen, TextManager
AddDelay, GoalManager
AddForce, Entity
AddForceAndTorque, Entity
AddForceAndTorqueConstant, Entity
AddForceConstant, Entity
AddImageToMapCache, Entity
Addition Operator

Rect

Rectf

Vector2
AddMaterial, MaterialManager
AddModPath, GameLogic
AddMoveToMapAndPosition, GoalManager
AddMoveToPosition, GoalManager
AddNewGoal, GoalManager
AddParticle, EffectBase
AddRunScriptString, GoalManager

395

396 Appendix H / Novashell Functions

AddSay, GoalManager
AddSayByID, GoalManager
AskBrainByName, BrainManager
Assignment Operator, Vector2

BuildLocalNavGraph, Map

CalculateUnion

Rect

Rectf
CanWalkBetween, Entity
CanWalkTo, Entity
Clear, DataManager
ClearModPaths, GameLogic
Clone, Entity
Color, Color
Color(r,g,h,a), Color
ColorToString
CreateEffectExplosion, EffectManager
CreateEntity

GlobalEntity
CreateEntitySpecial
CreateParticle, EffectManager
Cross, Vector2

Data

Entity

GamelLogic
Delete, DataManager
Division Operator, Vector2
Dot, Vector2
DumpScriptInfo, Entity

Equality Operator, Vector2
Exists
GlobalDataManager

AppendixH / Novashell Functions

FacingToVector
FunctionExists
GlobalEntity

Get

DataManager

LayerList
GetAcceleration, Entity
GetActiveMap, MapManager
GetActiveStateName, BrainManager
GetActiveZoneByMaterial Type, Entity
GetAllLayers, LayerManager
GetAlpha, Color
GetAnimFrame, Entity
GetAnimPause, Entity
GetAsEntity, Tile
GetAttach, Entity
GetAttachOffset, Entity
GetAutoSave, Map
GetBaseColor

Entity

Tile
GetBlendMode, Entity
GetBlue, Color
GetBrainManager, Entity
GetCameraSettings, Camera
GetCollisionByRay, Map
GetCollisionLayers, LayerManager
GetCollisionRect, Entity
GetCollisionScale, Entity
GetCount

LayerList

TileList
GetCursorVisible, App
GetDistanceFromEntityByID, Entity
GetDistanceFromPosition, Entity

397

398 Appendix H / Novashell Functions

GetEnableRotationPhysics, Entity
GetEngineVersion, App
GetEngineVersionAsString, App
GetEntityBylD
GetEntityByName
GetEntityByWorldPos
GetEntityIDByName
GetEntityTrackingByID, Camera
GetFacing, Entity
GetFacingTarget, Entity
GetFromString, TagManager
GetGameTick, App
GetGoalCount, GoalManager
GetGoalCountByName, GoalManager
GetGoalManager, Entity
GetGravityOverride, Entity
GetGreen, Color
GetHeight

Rect

Rectf
GetID

Entity

Tag
GetlmageByID, Entity
GetIlmageClipRect, Entity
GetlsCreature, Entity
GetLayerID

Entity

Tile
GetLayerIDByName, LayerManager
GetLayerManager, Map
GetLinearVelocity, Entity
GetListenCollision, Entity
GetListenCollisionStatic, Entity
GetLockedScale, Entity
GetMap, Entity
GetMapName, Tag

AppendixH / Novashell Functions

GetMass, Entity
GetMaterial, MaterialManager
GetMousePos, InputManager
GetName

Entity

Map
GetNearbyZoneByMaterial Type, Entity
GetNext, TileList
GetNum, DataManager
GetNumWithDefault, DataManager
GetOnGround, Entity
GetOnGroundAccurate, Entity
GetParticleByName, EffectManager
GetPersistent

Entity

Map
GetPlatform, App
GetPos

Camera

Entity

Tag

Tile
GetPosCentered, Camera
GetPosFromName, TagManager
GetRed, Color
GetRotation, Entity
GetRunUpdateEveryFrame, Entity
GetScale

Camera

Entity
GetSimulationSpeedMod, App
GetSizeX, Entity
GetSizeY, Entity
GetSpecial, Material
GetSpecialEntityByName
GetText, Entity
GetTextBounds, Entity

399

400 AppendixH / Novashell Functions

GetTextColor, Entity
GetTextScale, Entity
GetTick, App
GetTilesByRect, Map
GetTurnSpeed, Entity
GetType

Material

Tile
GetUserProfileName, GameLogic
GetVectorFacing, Entity
GetVectorFacingTarget, Entity
GetVectorToEntity, Entity
GetVectorToEntitylD, Entity
GetVectorToPosition, Entity
GetVisibleLayers, LayerManager
GetWatchCount, WatchManager
GetWidth

Rect

Rectf
GetWithDefault, DataManager
GetWorldCollisionRect, Entity

HasLineOfSightToPosition, Entity

Inequality Operator, Vector2
InitCollisionDataBySize, Entity
InitGameGUI, GameLogic
InNearbyZoneByMaterial Type, Entity
InstantUpdate, Camera

InState, BrainManager
InZoneByMaterial Type, Entity
IsCloseToEntity, Entity
IsCloseToEntityBylID, Entity
IsFacingTarget, Entity
IsGoalActiveByName, GoalManager
IsOnSameMapAsEntityByID, Entity

AppendixH / Novashell Functions

IsOverlapped

Rect

Rectf
IsPlaced, Entity
IsPlaying, SoundManager
IsShuttingDown, GameLogic
IsValidPosition, Entity

Kill, SoundManager

LastStateWas, BrainManager
Length, Vector2

Lerp

LoadCollisionInfo, Entity
LoadMapByName, MapManager
LogError

LogMsg

ModNum, DataManager
Multiply Operator, Vector2
MuteAll, SoundManager

Normalize, Vector2

ParmExists, App
PlaceHolder, SpecialEntity
Play, SoundManager
PlayLooping, SoundManager
PlaySound, Entity
PlaySoundPositioned, Entity

Quit, GameLogic

Rect, Rect
Rect(left,top,right,bottom), Rect
Rect(Rect), Rect

401

402 AppendixH / Novashell Functions

Rectf, Rectf
Rectf(left,top,right,bottom), Rectf
Rectf(Rectf), Rectf
RectToString
RegisterAsWarp, TagManager
Remove
BrainManager
WatchManager
RemoveAllSubgoals, GoalManager
RemoveBinding, InputManager
RemoveBindingByEntity, InputManager
Reset, Camera
ResetNext, TileList
ResetUserProfile, GameLogic
RunFunction, Entity
RunFunctionIfExists, Entity
RunScript

Schedule
ScheduleSystem
ScreenToWorld
SendToBrainBase, BrainManager
SendToBrainByName, BrainManager
Set

Color

DataManager
Setl1DAcceleration, MotionController
SetAcceleration, Entity
SetActiveMapByName, MapManager
SetAdditionalVector, EffectBase
SetAlpha, Color
SetAnimByName, Entity
SetAnimFrame, Entity
SetAnimPause, Entity
SetAttach, Entity
SetAttachOffset, Entity
SetAutoSave, Map

AppendixH / Novashell Functions

SetBaseColor

Entity

Tile
SetBlendMode, Entity
SetBlue, Color
SetCameraSettings, Camera
SetCollisionMode, Entity
SetCollisionScale, Entity
SetColor, Particle
SetCursorVisible, App
SetDampening, Entity
SetDefaultTalkColor, Entity
SetDeleteFlag, Entity
SetDensity, Entity
SetDesiredSpeed, Entity
SetEnableRotationPhysics, Entity
SetEntityTrackingByID, Camera
SetFacing, Entity
SetFacingTarget, Entity
SetGravityOverride, Entity
SetGreen, Color
SetHasPathNode, Entity
SetlfNull, DataManager
Setlmage, Entity
SetlmageByID, Entity
SetlsCreature, Entity
SetLayerID

Entity

Tile
SetLayerIDByName, Entity
SetListenCollision, Entity
SetListenCollisionStatic, Entity
SetLockedScale, Entity
SetMass, Entity
SetMaxMovementSpeed, Entity
SetMousePos, InputManager
SetMoveLerp, Camera

403

404 AppendixH / Novashell Functions

SetName, Entity
SetNavNodeType, Entity
SetNum, DataManager
SetNumlfNull, DataManager
SetOffset, EffectBase
SetOnGround, Entity
SetPan, SoundManager
SetPaused, SoundManager
SetPersistent

Entity

Map
SetPos

Camera

Entity

Tile
SetPosAndMap, Entity
SetPosAndMapByTagName, Entity
SetPosCentered, Camera
SetPosCenteredTarget, Camera
SetPosTarget, Camera
SetPriority, SoundManager
SetRed, Color
SetRestartEngineFlag, GameLogic
SetRotation, Entity
SetRunUpdateEveryFrame, Entity
SetScale

Camera

Entity
SetScaleLerp, Camera
SetScaleTarget, Camera
SetScreenSize, App
SetSimulationSpeedMod, App
SetSpecial, Material
SetSpeedDistortion, EffectExplosion
SetSpeedFactor, SoundManager
SetSpriteByVisualStateAndFacing, Entity
SetStateByName, BrainManager

AppendixH / Novashell Functions

SetText, Entity
SetTextAlignment, Entity
SetTextColor, Entity
SetTextRect, Entity
SetTextScale, Entity
SetTrigger, Entity
SetTurnSpeed, Entity
SetType, Material
SetUserProfileName, GameLogic
SetVectorFacing, Entity
SetVectorFacingTarget, Entity
SetVisibilityNotifications, Entity
SetVisualProfile, Entity
SetVolume, SoundManager
SetWindowTitle, App
ShowMessage
Stop, Entity
StopX, Entity
StopY, Entity
StringToColor
StringToRect
StringToVector
Subtraction Operator

Rect

Rectf

Vector2

ToggleEditMode, GamelLogic

UnloadMapByName, MapManager
UserProfileActive, GameLogic
UserProfileExists, GameLogic

VariableExists
Global
Entity

Vector2, Vector2

405

406 AppendixH / Novashell Functions

Vector2(Vector2), Vector2
Vector2(x,y), Vector2
VectorToFacing
VectorToString

WorldToScreen

Appendix |

Director Events

on activateApplication

on activateWindow

on beginSprite

on closeWindow

on cuePassed

on deactivateApplication
on deactivateWindow

on DVDeventNotification
on endSprite

on enterFrame

on EvalScript

on exitFrame

on getBehaviorDescription
on getBehaviorTooltip
on getPropertyDescriptionList
on hyperlinkClicked

on idle

on isOKToAttach

on keyDown

on keyUp

on mouseDown

on mouseEnter

on mouseLeave

407

408 Appendix | / Director Events

on mouseUp

on mouseUpOutside
on mouseWithin

on moveWindow

on openWindow

on prepareFrame

on prepareMovie

on resizeWindow

on rightMouseDown
on rightMouseUp

on runPropertyDialog
on savedLocal

on sendXML

on startMovie

on stepFrame

on stopMovie

on streamStatus

on timeOut

on zoomWindow
traylconMouseDoubleClick
traylconMouseDown

traylconRightMouseDown

Appendix J
OGRE OIS Key Codes

KC_UNASSIGNED = 0x00
KC_ESCAPE = 0x01
KC 1 = 0x02
KC 2 = 0x03
KC 3 = 0x04
KC 4 = 0x05
KC 5 = 0x06
KC 6 = 0x07
KC 7 = 0x08
KC 8 = 0x09
KC 9 = 0x0A
KC 0 = 0x0B
KC_MINUS = 0x0C // - on main keyboard
KC_EQUALS = 0x0D
KC BACK = 0x0E // backspace
KC TAB = 0xOF
KC_Q = 0x10
KC_W = 0x11
KC E = 0x12
KC R = 0x13
KC T = 0x14
KCY = 0x15
KC_U = 0x16

409

410 Appendix J / OGRE OIS Key Codes

KC 1 = 0x17

KC_O = 0x18

KC P = 0x19
KC_LBRACKET = 0x1A
KC_RBRACKET = 0x1B

KC_RETURN = 0x1C // Enter on main keyboard
KC_LCONTROL = 0x1D

KC_ A = O0x1E

KC S = Ox1F

KC_D = 0x20

KC F = 0x21

KC G = 0x22

KC_H = 0x23

KC_J = 0x24

KC K = 0x25

KC L = 0x26
KC_SEMICOLON = 0x27
KC_APOSTROPHE = 0x28

KC_GRAVE = 0x29 // accent
KC_LSHIFT = 0x2A
KC_BACKSLASH = 0x2B

KC Z = 0x2C

KC X = 0x2D

KC C = 0x2E

KC_V = 0x2F

KC_B = 0x30

KC N = 0x31

KC_M = 0x32

KC_COMMA = 0x33

KC_PERIOD = 0x34 // . on main keyboard

KC_SLASH = 0x35 /// on main keyboard

AppendixJ / OGRE OIS Key Codes

KC_RSHIFT
KC_MULTIPLY
KC_LMENU
KC_SPACE
KC_CAPITAL
KC_F1

KC_F2

KC_F3

KC_F4

KC_F5

KC_F6

KC_F7

KC_F8

KC_F9

KC_F10
KC_NUMLOCK
KC_SCROLL
KC_NUMPAD?
KC_NUMPADS
KC_NUMPADY
KC_SUBTRACT
KC_NUMPAD4
KC_NUMPAD5
KC_NUMPAD6
KC_ADD
KC_NUMPAD1
KC_NUMPAD2
KC_NUMPAD3
KC_NUMPADO
KC_DECIMAL

= 0x36
= 0x37
= 0x38
= 0x39
= 0x3A
= 0x3B
= 0x3C
= 0x3D
= 0x3E
= 0x3F
= 0x40
= 0x41
= 0x42
= 0x43
= Ox44
= 0x45
= 0x46
= 0x47
= 0x48
= 0x49
= Ox4A
= 0x4B
= 0x4C
= 0x4D
= Ox4E
= Ox4F
= 0x50
= 0x51
= (0x52
= 0x53

// * on numeric keypad
// left Alt

// Scroll Lock

// - on numeric keypad

// + on numeric keypad

// . on numeric keypad

41

412

AppendixJ / OGRE OIS Key Codes

KC_OEM_102 — 0x56
KC_F11 = 0x57
KC_F12 — 0x58
KC_F13 = 0x64
KC_F14 = 0x65
KC_F15 = 0x66
KC_KANA = 0x70
KC_ABNT C1 = 0x73
KC_CONVERT = 0x79
KC_NOCONVERT = 0x7B
KC_YEN — 0x7D
KC_ABNT C2 = 0x7E

KC_NUMPADEQUALS = 0x8D

KC_PREVTRACK = 0x90
KC_AT — 0x91
KC_COLON = 0x92
KC_UNDERLINE = 0x93
KC_KANJI = 0x94
KC_STOP = 0x95
KC_AX — 0x96
KC_UNLABELED = 0x97
KC NEXTTRACK = 0x99

KC NUMPADENTER = 0x9C

KC_RCONTROL = 0x9D
KC_MUTE = 0xA0
KC_CALCULATOR = 0xAl
KC_PLAYPAUSE — 0xA2

// < > | on UK/Germany
// keyboards

// NEC PC98)
// NEC PC98)
// NEC PC98)
// (Japanese keyboard)

/// ? on Portugese (Brazilian)
// keyboards

// (Japanese keyboard)
// (Japanese keyboard)
// (Japanese keyboard)

// Numpad . on Portugese
// (Brazilian) keyboards

// = on numeric keypad
// NEC PC98)

// (NEC PC98)

// NEC PC98)

// NEC PC98)

// (Japanese keyboard)
// (NEC PC98)

// (Japan AX)

// (J3100)

// Next Track

// Enter on numeric keypad

// Mute
// Calculator
// Play/Pause

AppendixJ / OGRE OIS Key Codes 413

KC_MEDIASTOP = 0xA4
KC_VOLUMEDOWN = 0xAE
KC _VOLUMEUP = 0xB0
KC_WEBHOME = 0xB2

KC NUMPADCOMMA = 0xB3

KC_DIVIDE = 0xB5
KC_SYSRQ — 0xB7
KC_RMENU — 0xB8
KC_PAUSE — 0xC5
KC_HOME — 0xC7
KC_UP = 0xC8
KC_PGUP = 0xC9
KC_LEFT = 0xCB
KC_RIGHT = 0xCD
KC_END = 0xCF
KC_DOWN = 0xDO
KC_PGDOWN = 0xD1
KC_INSERT = 0xD2
KC DELETE — 0xD3
KC_LWIN = 0xDB
KC_RWIN = 0xDC
KC_APPS = 0xDD
KC_POWER = 0xDE
KC_SLEEP = 0xDF
KC_WAKE — 0xE3
KC_WEBSEARCH = OxE5

KC_WEBFAVORITES = 0xE6
KC WEBREFRESH = 0xE7

// Media Stop
// Volume -

// Volume +
// Web home

// on numeric keypad
// NEC PC98)

// / on numeric keypad

// right Alt

// Pause

// Home on arrow keypad

// UpArrow on arrow keypad
// PgUp on arrow keypad

// LeftArrow on arrow keypad

// RightArrow on arrow
// keypad

// End on arrow keypad
// DownArrow on arrow
// keypad

// PgDn on arrow keypad
// Insert on arrow keypad
// Delete on arrow keypad
// Left Windows key

// Right Windows key

// AppMenu key

// System Power

// System Sleep

// System Wake

// Web Search

// Web Favorites

// Web Refresh

414

AppendixJ / OGRE OIS Key Codes

KC_WEBSTOP = 0xE8
KC_WEBFORWARD = 0xE9
KC_WEBBACK — 0xEA
KC_MYCOMPUTER = 0xEB
KC_MAIL = 0xEC

KC MEDIASELECT = 0xED

// Web Stop

// Web Forward

// Web Back

// My Computer
// Mail

// Media Select

Index

2D games, 225
3D games, 225, 299-302

A
alpha channel, 102
alpha transparency, 237
AngelCode, 350
arrays, 123-124
artificial intelligence SDKs, 336-337,
347-348
Audacity, 83-84, 176-177
downloading and installing on Mac,
180-181
downloading and installing on Ubuntu,
178-179
downloading and installing on Win-
dows, 180-181
Audiere, 343
audio, 173
programming with SDL_mixer, 186-187
SDKs, 336, 342-343
tiles, 250-251
Automatix, 70
installing and using on Ubuntu, 71-73

B

background music, 173-174

base class, 202

BASH shell commands, 74-78
creating and compiling C program with,

79-80

BASS, 342

Blender 3D, 83, 109
creating mesh in, 325
installing on Mac, 111-113
installing on Ubuntu, 109-111
installing on Windows, 111-113

blitting, 160

Boost, 347

BSD License, 369
budget, 117
Bullet, 345

C
cast members, 281-282
animating sprites using, 292-293
casual games, 121-122
Cedega, 66
channels, 289
handling, 198-200
char*, converting strings to, 129-130
character, moving using keyboard input,
258-261
ClanLib, 339
installing, 339-342
classes, scripting, 289-290
Code::Blocks, 81-82, 84-85
configuring project to use STL with,
126
downloading and configuring SDL
Image Development Libraries in,
163-167
downloading and installing in
Ubuntu, 86-89
downloading and installing in
Windows, 90-95
Hello World application, 98-100
using, 95-97
using to create SDL project in
Ubuntu, 143-145
using to create SDL project in
Windows, 148-152
collision detection, 248
color keying, 168
color tiles, 251

415

416 Index

coordinates, 213
Creative Commons License, 371-377
CrossOver, 67
cross-platform, 1-2
game development, 15-17
games, 2-3, 11-14
SDKs, 335-338
software, 2
tools, 81-84

D
data types, 122-123
depth sorting, 222
Director, 267, 268, 295
building stand-alone game in, 297
building web game in, 296
cast members, 281-282
classes for scripting, 289-290
components of, 281-285
cross-compatibility of, 271-272
downloading and installing, 272-274
events, 407-408
games, 269-271
Hello World application, 274-280
scripting with JavaScript, 285-288
Stage, 282-283
Time-Line window, 284-285
distribution SDKs, 338, 358-361
distributions, 2
double buffering, 159

E
entity, 237
attaching script to, 254-256
intelligent, 255
layer, 240
resources, 238
event, 157
polling, 157-158

F

FANN, 348

Firefox, 60-61

first-person shooter, see FPS
Flash, 267

Flash Player, 267

FMOD, 342

FPS, 119

frame events, receiving, 318-321
frame scripts, 286-287
FreeSound projects, 175-176
Freespire, 10

G

Game Editor, 352

game engines, 337, 351-352

game loop, 124, 134-136, 154

game object,
creating, 202-203
creating derived, 204
maintaining, 205-206

game programming, 116

game world, 202

GameMonkey, 351

games, 201
2D, 225
3D, 225, 299-302
components of, 117
considerations when creating, 122-124
creating with Novashell, 243-245
cross-platform, 2-3, 11-14
installing and playing on Ubuntu, 63-65
OGRE 3D, 304-306

Garfixia Al Repository, 348

genres, 117, 118-122

GIMP, 62, 82, 101-102
installing, 102-103
using to create tileable textures,

103-105
using to edit image transparency,
106-108

global event scripts, 287-288

GNU Lesser General Public License,
363-367

graphics SDKs, 335-336, 338-342

guest, 41

GUI SDKs, 337, 352

H
hard disks, formatting, 18
hardware acceleration, 303

Index

HawkNL, 346
Hello World application,
in Code::Blocks, 98-100
in Director, 274-280
hidden layers, 240
hierarchy, relationship, 219-220
host, 41

I

identifier, 202

image files, importing into Novashell, 246

image transparency, editing with GIMP,
106-108

incidental music, 173-174

Inno Setup, 359
creating installer with, 359-361

input SDKs, 337, 348-349

installer, creating with Inno Setup,
359-361

Invisible Wall tiles, 251

irrKlang, 343

Irrlicht, 351

ISO, burning Ubuntu, 8

J
JavaScript, using with Director, 285-288

K

key codes,
OGRE OIS, 409-414
SDL, 389-393

keyboard input, using to move character,
258-261

L
levels, editing with Novashell, 241-243
LibGll, 348
licenses,
BSD License, 369
Creative Commons License, 371-377
GNU Lesser General Public License,
363-367
MIT License template, 381
zlib/libpng License, 379
lights, adding, 325-328

Linux, 5-6

distributions, 7-10

downloading Novashell for, 228-230

shell, 73

Ubuntu, see Ubuntu
list, 124

creating, 131

printing, 291-292

working with, 132-134
local event scripts, 288
LookAt vector, 216-217
Lua, 349

M
Mac,
downloading and installing Audacity on,
180-181
downloading and installing Schism
Tracker on, 185
downloading Novashell for, 228-230
installing Blender 3D on, 111-113
installing GIMP on, 102-103
Mac OS X, 4-5
magnitude, 214
maps, 202, 207-208
implementing, 208-209
editing with Novashell, 241-243
mesh, 322
creating in Blender 3D, 325
message pump, 124
Microsoft Windows, see Windows
Microsoft Windows Vista, see Windows
Vista
Microsoft Windows XP, see Windows XP
MIT License template, 381
mouse events, querying, 294
multiple booting setup, 16, 17, 19-40
multiple machine setup, 15
music, 173-174, 192
controlling playback of, 195-197
loading, 193
playing, 194-195
software, 183
sources of, 182

417

418 Index

N
network SDKs, 336, 346-347
Newton Game Dynamics, 344
node, 322
Novashell, 225-227
creating path node network with,
262-264
creating player entity with, 247
detecting collisions with, 248-249
downloading, 228-230
functions, 395-406
games, 230-233
importing image files into, 246
modes, 234
scripting in, 252-253
System Palette, 249-250
tile types, 249-250
using, 233-236
using to create game, 243-245
Novashell Console, 253
Novashell editor, 236-237
tools, 239-240
using, 241-243
NSIS, 358

(0)
objective, 117
objects, adding to scene, 321-324
ODE, 97, 344
OGRE 3D, 302-304
downloading and installing on Ubuntu,
307-311
downloading and installing on Win-
dows, 312-315
games, 304-306
installing, 306
reading user input with, 328-333
sample application, 315-317
OGRE OIS key codes, 409-414
online forum, creating, 353-358
OPAL, 345
OpenAL, 343
OpenGL, 97, 338
OpenGUI, 352
Openlnput, 349

OpenOffice.org, 61
OpenSteer, 347

P
page flipping, 158-159
painter’s algorithm, 222
particle systems, adding, 325-328
path node network, creating using
Novashell, 262-264
Path nodes, 252
pathfinding, 252, 262
physics SDKs, 336, 344-345
PhysX, 345
pixels, drawing, 290-291
platformer, 119-120
platforms, 2
Linux, 5-6
Mac OS X, 4-5
Microsoft Windows, 3-4
player entity, creating with Novashell, 247
PNG file, loading SDL surface from,
166-167, 169
prerendered 3D games, 301-302
PTK, 338-339
Python, 349-350

R

RakNet, 346

real-time 3D games, 299-301

real-time strategy, see RTS

relationship hierarchy, 219-220
supporting, 220-221

resources, 237

role-playing game, see RPG

root node, 322

RPG, 118

RTS, 120-121

Ruby, 350

S
samples, 192
loading, 198
playing, 197-198
scene, 322
adding objects to, 321-324

419

Index

Schism Tracker,
downloading and installing on Mac, 185
downloading and installing on Ubuntu,
183-184
downloading and installing on Win-
dows, 185
Script tiles, 252
scripting,
classes for, 289-290
in Novashell, 252-253
SDKSs, 337, 349-351
scripts,
attaching to entity, 254-256
types of, 286-288
SDKs,
artificial intelligence, 336-337, 347-348
audio, 336, 342-343
cross-platform, 335-338
distribution, 338, 358-361
graphics, 335-336, 338-342
GUI, 337, 352
input, 337, 348-349
network, 336, 346-347
physics, 336, 344-345
scripting, 337, 349-351
web, 337, 352-358
SDL, 97, 137
downloading and installing on Ubuntu,
140-141
downloading and installing on Win-
dows, 146-148
downloading documentation for, 142
example application, 169-172
initializing, 153
key codes, 389-393
subsystems, 138-139
uninitializing, 153
SDL Image Development Libraries,
downloading and configuring on
Ubuntu, 163-165
downloading and configuring on Win-
dows, 165-167
SDL project,
creating in Ubuntu using Code::Blocks,
143-145

creating in Windows using
Code::Blocks, 148-152
SDL_mixer,
handling audio with, 192-200
initializing, 190-192
installing and configuring on Ubuntu,
187-189
installing and configuring on Windows,
189-190
programming audio with, 186-187
SDL net, 347
Shockwave, 14, 267
cross-compatibility of, 271-272
Simple DirectMedia Layer, see SDL
SLAX, 9
software,
cross-platform, 2
free, 6
music, 183
open-source, 6
sound effects, 176-177
sound, 173
loading as samples, 198
sound effects, 175, 177
software, 176-177
sprites, 289
animating, 292-293
printing list of, 291-292
Squirrel, 350
Stage, 282-283
stand-alone games, building in Director,
297
Standard Template Library, see STL
std::string, 125
public member methods, 383-387
working with, 126-130
std::vector, 130-131
public member methods, 387-388
working with, 131-134
STL, 125
configuring projects to use, 126
public member methods, 383-388
strings, 125
working with, 126-130

420 Index

surfaces, 157, 159-160
blitting, 160-161
color keying, 168-169
loading, 166-167
loading from PNG file, 166-167, 169
optimizing, 161-162

T
TBS, 120-121
texture tile set, 237
textures, 237
creating tileable with GIMP, 103-105
seamless, 101
stochastic, 101
tileable, 103
tile resources, 237-238
tile set, 208
loading, 209-211
tiles, 208, 237
animating, 211
moveable, 212
static, 212
subdividing, 247-248
using vector to move, 215-218
Time-Line window, 284-285
tools, cross-platform, 81-84
Torque, 351
transformations, 218
transgaming, 65-66
True Axis, 344
turn-based strategy, see TBS

U
Ubuntu, 7
Add/Remove Applications panel, 57
automating, 70
components, 52-62
creating SDL project using
Code::Blocks in, 143-145
creating virtual machine for, 43-47
desktop, 54
downloading and burning as ISO, 8
downloading and configuring SDL
Image Development Libraries on,
163-165

downloading and installing Audacity on,
178-179
downloading and installing
Code::Blocks on, 86-89
downloading and installing OGRE 3D
on, 307-311
downloading and installing Schism
Tracker on, 183-184
downloading and installing SDL on,
140-141
downloading SDL documentation for,
142
installing, 33-39
installing and configuring SDL._mixer
on, 187-189
installing and playing a game on, 63-65
installing and using Automatix on,
71-73
installing Blender 3D on, 109-111
installing Wine on, 68-70
Restricted Drivers Manager, 56
Synaptic Package Manager, 58
System Monitor, 55
troubleshooting, 50-52
Update Manager, 55-56
using VBWare Workstation with, 43-47
Ubuntu Terminal, 59
creating and compiling C program with,
79-80
unit vector, 214
user input, reading with OGRE, 328-333

Vv
vector, 213
normalized, 214
unit, 214
using to move tiles, 215-218
virtual machine, 266
creating for Ubuntu, 43-47
software, 267
Virtual PC, 41
virtualization, 16-17, 40-41
Vista, see Windows Vista
visual profile, 256-258

4

Index

VMWare Workstation, 41-42
using with Ubuntu, 43-47

W
Warp nodes, 252
waypoint, 262-263
Waypoint nodes, 252
web games, 265-266
building in Director, 296
web SDKs, 337, 352-358
windows, 154
creating, 155-156
Windows, 3-4
creating SDL project using
Code::Blocks in, 148-152
downloading and configuring SDL
Image Development Libraries on,
165-167
downloading and installing Audacity on,
180-181
downloading and installing
Code::Blocks in, 90-95
downloading and installing Director on,
272-274
downloading and installing OGRE 3D
on, 312-315

downloading and installing Schism
Tracker on, 185
downloading and installing SDL on,
146-148
downloading Novashell for, 228-230
installing and configuring SDL_mixer
on, 189-190
installing Blender 3D on, 111-113
installing GIMP on, 102-13
Windows Vista,
installing, 27-33
troubleshooting in Ubuntu, 51-52
Windows XP, installing, 20-26
Wine, 68
installing on Ubuntu, 68-70

X
XML entity profile, 256-258

Y
YaBB, 352
creating online forum with, 353-358

Z

zlib/libpng License, 379
z-order, 222-223
z-ordering, 240

	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	Chapter 1 Cross-Platform Games
	1.1 Platforms
	1.1.1 Microsoft Windows
	1.1.2 Mac OS X
	1.1.3 Linux
	1.1.3.1 Ubuntu
	1.1.3.2 SLAX
	1.1.3.3 Freespire

	1.2 Cross-Platform Games
	1.2.1 The Battle for Wesnoth
	1.2.2 OpenArena
	1.2.3 UFO: Alien Invasion
	1.2.4 Shockwave and Flash Games

	1.3 Preparing to Go Cross-Platform
	1.3.1 Multiple Booting
	1.3.2 Step 1 — Preparing to Multiple Boot
	1.3.3 Step 2 — Installing Windows XP
	1.3.4 Step 3 — Installing Windows Vista
	1.3.5 Step 4 — Installing Linux Ubuntu
	1.3.6 Step 5 — Summary of Multiple Boot

	1.4 Virtualization — Simulating Operating Systems
	1.4.1 Using VMWare
	1.4.2 Creating a Virtual Machine for Linux Ubuntu

	1.5 Conclusion

	Chapter 2 Linux Ubuntu and Linux Gaming
	2.1 Ubuntu Installation and Troubleshooting
	2.2 Getting to Know Ubuntu
	2.2.1 Ubuntu Login
	2.2.2 Ubuntu Desktop
	2.2.3 System Monitor
	2.2.4 Update Manager
	2.2.5 Screen and Graphics Preferences and Restricted Drivers Manager
	2.2.6 Add/Remove Applications
	2.2.7 Synaptic Package Manager
	2.2.8 Ubuntu Terminal/Console/Shell
	2.2.9 Places | Computer
	2.2.10 Firefox Web Browser
	2.2.11 OpenOffice.org
	2.2.12 Photo Editing
	2.2.13 Installing and Playing a Game on Ubuntu

	2.3 Linux and “Transgaming” Technologies
	2.3.1 Cedega
	2.3.2 CrossOver
	2.3.3 Wine
	2.3.3.1 Installing Wine on Linux Ubuntu

	2.4 Automating Ubuntu with Automatix
	2.4.1 Installing and Using Automatix for Linux Ubuntu

	2.5 The Linux Shell
	2.5.1 Common Shell Commands
	2.5.2 Creating and Compiling a C Program Using the Ubuntu Terminal and BASH Shell Commands

	2.6 Conclusion

	Chapter 3 Cross-Platform Development Tools
	3.1 Code::Blocks
	3.2 Downloading and Installing Code::Blocks in Ubuntu
	3.3 Downloading and Installing Code::Blocks in Windows
	3.4 Getting Started with Code::Blocks
	3.4.1 Code::Blocks Projects

	3.5 Cross-Platform “Hello World”

Application
	3.6 Graphics and GIMP
	3.6.1 Installing GIMP on Windows or Mac
	3.6.2 Using GIMP
	3.6.2.1 Creating Tileable Textures Using GIMP
	3.6.2.2 Editing Image Transparency Using GIMP

	3.7 Blender 3D
	3.7.1 Installing Blender 3D on Linux Ubuntu
	3.7.2 Installing Blender 3D on Windows/Mac

	3.8 Conclusion

	Chapter 4 Game Programming Basics
	4.1 Game Programming — Getting

Started
	4.1.1 Genre and Objective
	4.1.2 Time Frame and Budget
	4.1.3 Game Ideas

	4.2 Preparing to Make Games
	4.3 Using the STL: Strings and Lists
	4.3.1 std::string
	4.3.1.1 Configuring Projects to Use STL and std::string with Code::Blocks
	4.3.1.2 Declaring, Creating, and Assigning Strings with std::string
	4.3.1.3 Looping through Characters of a String with std::string
	4.3.1.4 Searching for Characters in a Specified Instance of std::string
	4.3.1.5 Extracting and Inserting Substrings from and to a Specified Instance of std::string
	4.3.1.6 Converting Instances of std::string to Standard char* Pointers

	4.3.2 std::vector
	4.3.2.1 Creating a List with std::vector
	4.3.2.2 Declaring Instances of std::vector
	4.3.2.3 Adding Items to a List Using std::vector
	4.3.2.4 Cycling through Items in a List Using std::vector
	4.3.2.5 Removing Items from a List Using std::vector

	4.4 The Game Loop
	4.5 Conclusion

	Chapter 5 SDL Graphics
	5.1 SDL Breakdown
	5.2 Downloading and Configuring SDL
	5.2.1 SDL on Ubuntu
	5.2.1.1 Downloading and Installing SDL on Ubuntu Using Synaptic Package Manager
	5.2.1.2 Downloading SDL Documentation from the Web
	5.2.1.3 Creating an SDL Project Using Code::Blocks in Linux Ubuntu

	5.2.2 SDL on Windows
	5.2.2.1 Downloading and Installing SDL on Windows
	5.2.2.2 Creating an SDL Project Using Code::Blocks in Windows

	5.3 Getting Started with SDL
	5.3.1 Initializing and Closing SDL
	5.3.2 Creating a Window and Game Loop
	5.3.3 SDL Surfaces
	5.3.3.1 Blitting Surfaces
	5.3.3.2 Optimizing SDL Surfaces

	5.3.4 Additional File Formats (JPEG, PNG, TGA, and Others)
	5.3.4.1 Downloading and Configuring SDL Image Development Libraries for Code::Blocks on Ubuntu
	5.3.4.2 Downloading and Configuring SDL Image Development Libraries for Code::Blocks on Windows
	5.3.4.3 SDL: Further Image Formats

	5.4 Color Keying with Surfaces
	5.5 Conclusion

	Chapter 6 Game Audio
	6.1 Recording and Editing Game SFX
	6.2 SFX Software
	6.2.1 Downloading and Installing Audacity on Linux Ubuntu
	6.2.2 Downloading and Installing Audacity on Windows or Mac

	6.3 Recording/Creating and Editing Music
	6.4 Music Creation Software
	6.4.1 Downloading and Installing Schism Tracker on Linux Ubuntu
	6.4.2 Downloading and Installing Schism Tracker on Windows and Mac

	6.5 Programming Audio with SDL_mixer
	6.5.1 Installing and Configuring SDL_mixer on

Linux Ubuntu
	6.5.2 Installing and Configuring SDL_mixer on

Windows
	6.5.3 Initializing the SDL_mixer Library

	6.6 Sounds and Music with SDL_mixer
	6.6.1 Loading Music
	6.6.2 Playing Music
	6.6.3 Controlling Music
	6.6.4 Playing Samples through Channels in SDL_mixer
	6.6.5 Loading Sounds into SDL_mixer as

Samples
	6.6.6 Handling Channels with SDL_mixer

	6.7 Conclusion

	Chapter 7 Game Mechanics
	7.1 Getting Started with Game Worlds
	7.2 Creating Derivative Objects
	7.3 Maintaining Game Objects
	7.4 Tile-based Levels
	7.5 Animations and States
	7.6 Movement
	7.6.1 Movement with Vectors

	7.7 Hierarchical Transformations
	7.8 Z-Order and Depth Sorting
	7.9 Conclusion

	Chapter 8 Novashell and 2D Games
	8.1 Novashell Overview
	8.2 Downloading Novashell (Windows, Linux, and Mac)
	8.3 Exploring Novashell Games
	8.4 Getting to Know Novashell
	8.4.1 The Game Selection Menu
	8.4.2 The Editor and Player Modes
	8.4.3 Getting Started – Loading, Playing, and Editing a Game

	8.5 Novashell Editor
	8.5.1 Tile Resources
	8.5.2 Entity Resources

	8.6 Novashell Tools
	8.7 Editing Novashell Levels
	8.7.1 Selecting, Copying, Pasting, Moving, and Filling Tiles
	8.7.2 Exploring Maps and Editing Tiles

	8.8 Creating New Games and Maps
	8.9 Importing Art into Novashell
	8.9.1 Importing Files
	8.9.2 Setting a Player Entity
	8.9.3 Creating Smaller Tiles from Larger Tiles
	8.9.4 Setting Collision Information

	8.10 Novashell System Palette
	8.10.1 Audio Tiles
	8.10.2 Color Tiles
	8.10.3 Invisible Wall Tiles
	8.10.4 Warp, Waypoint, and Path Nodes
	8.10.5 Script Tiles

	8.11 Novashell Scripting
	8.11.1 Novashell Console
	8.11.2 Attaching a Script to an Entity
	8.11.3 Visual Profiles
	8.11.4 Moving a Character Using the Keyboard
	8.11.5 Clever Navigation with Pathfinding

	8.12 Conclusion

	Chapter 9 Director and Web Games
	9.1 Director
	9.2 Director Games
	9.3 Director and Shockwave Compatibility
	9.4 Getting Started with Director
	9.4.1 Downloading and Installing Director
	9.4.2 Creating an Animated “Hello World” Application in Director

	9.5 Director in More Detail
	9.5.1 Cast Members
	9.5.2 The Stage
	9.5.3 The Score Window’s Timeline

	9.6 Director Scripting with JavaScript
	9.6.1 Frame Scripts
	9.6.2 Global Event Scripts
	9.6.3 Local Event Scripts

	9.7 Practical Scripting
	9.7.1 Programming: Shapes, Lines, and

Primitives
	9.7.2 Printing a List of All Sprites On-stage
	9.7.3 Animating Sprites Using Cast Members
	9.7.4 Querying Mouse Events

	9.8 Using the Projector for Web-based and Stand-alone Games
	9.8.1 Building Web Games
	9.8.2 Building Stand-Alone Games (EXE for Windows, OSX for Mac)

	9.9 Conclusion

	Chapter 10 3D Games with OGRE 3D
	10.1 OGRE 3D
	10.2 OGRE 3D Games
	10.2.1 Ankh
	10.2.2 Other Games

	10.3 Installing OGRE 3D
	10.3.1 Downloading and Installing OGRE 3D on Ubuntu
	10.3.2 Downloading and Installing OGRE 3D on Windows

	10.4 Getting Started with OGRE 3D
	10.5 Receiving Frame Events
	10.6 Adding Objects to a Scene
	10.7 Adding Lights and Particle

Systems
	10.8 Reading User Input with OGRE and OIS
	10.9 Conclusion

	Chapter 11 Other Cross-Platform SDKs and Tools
	11.1 Graphics SDKs
	11.1.1 OpenGL
	11.1.2 PTK
	11.1.3 ClanLib
	11.1.3.1 Installing ClanLib

	11.2 Audio SDKs
	11.2.1 FMOD
	11.2.2 BASS
	11.2.3 irrKlang
	11.2.4 Audiere
	11.2.5 OpenAL

	11.3 Physics SDKs
	11.3.1 ODE
	11.3.2 Newton Game Dynamics
	11.3.3 True Axis Physics
	11.3.4 OPAL
	11.3.5 Bullet
	11.3.6 PhysX

	11.4 Network SDKs
	11.4.1 RakNet
	11.4.2 HawkNL
	11.4.3 SDL_net

	11.5 Artificial Intelligence SDKs
	11.5.1 Boost Graph Library
	11.5.2 OpenSteer
	11.5.3 FANN
	11.5.4 Garfixia AI Repository

	11.6 Input SDKs
	11.6.1 LibGII
	11.6.2 OpenInput

	11.7 Scripting SDKs
	11.7.1 Lua
	11.7.2 Python
	11.7.3 Ruby
	11.7.4 Squirrel
	11.7.5 AngelCode
	11.7.6 GameMonkey

	11.8 Game Engines
	11.8.1 Torque
	11.8.2 Irrlicht
	11.8.3 Game Editor

	11.9 GUI SDKs
	11.9.1 OpenGUI

	11.10 Web SDKs
	11.10.1 YaBB
	11.10.1.1 Downloading, Installing, and Creating an Online Forum

	11.11 Distribution SDKs
	11.11.1 NSIS
	11.11.2 Inno Setup
	11.11.2.1 Downloading, Installing, and Creating an

Installer in Inno Setup

	11.12 Conclusion

	Appendix A GNU Lesser General Public License
	Appendix B BSD License
	Appendix C Creative Commons License
	Appendix D zlib/libpng License
	Appendix E The MIT License Template
	Appendix F STL Public Member Methods Reference
	Appendix G SDL Key Codes
	Appendix H Novashell Functions
	Appendix I Director Events
	Appendix J OGRE OIS Key Codes
	Index

