

Cross-Platform Game
Development

Alan Thorn

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

Thorn, Alan

Cross-platform game development / by Alan Thorn.

p. cm.

Includes index.

ISBN 10: 1-59822-056-X

ISBN 13: 978-1-59822-056-8 (pbk.)

1. Computer games--Programming. 2. Cross-platform software development.

I. Title.

QA76.76.C672T4957 2008

794.8'1526--dc22

2008012132

© 2008, Wordware Publishing, Inc.

All Rights Reserved

1100 Summit Avenue, Suite 102
Plano, Texas 75074

No part of this book may be reproduced in any form or by
any means without permission in writing from

Wordware Publishing, Inc.

Printed in the United States of America

ISBN 10: 1-59822-056-X
ISBN 13: 978-1-59822-056-8
10 9 8 7 6 5 4 3 2 1
0805

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries. Ubuntu is a
registered trademark of Canonical, Ltd. Mac is a trademark of Apple Inc., registered in the U.S. and
other countries. Windows is a registered trademark of Microsoft Corporation in the United States and
other countries.

Other brand names and product names mentioned in this book are trademarks or service marks of
their respective companies. Any omission or misuse (of any kind) of service marks or trademarks
should not be regarded as intent to infringe on the property of others. The publisher recognizes and
respects all marks used by companies, manufacturers, and developers as a means to distinguish their
products.

This book is sold as is, without warranty of any kind, either express or implied, respecting the
contents of this book and any disks or programs that may accompany it, including but not limited to
implied warranties for the book’s quality, performance, merchantability, or fitness for any particular
purpose. Neither Wordware Publishing, Inc. nor its dealers or distributors shall be liable to the
purchaser or any other person or entity with respect to any liability, loss, or damage caused or alleged
to have been caused directly or indirectly by this book.

All inquiries for volume purchases of this book should be addressed to Wordware
Publishing, Inc., at the above address. Telephone inquiries may be made by calling:

(972) 423-0090

Contents at a Glance

Chapter 1 Cross-Platform Games 1

Chapter 2 Linux Ubuntu and Linux Gaming 49

Chapter 3 Cross-Platform Development Tools 81

Chapter 4 Game Programming Basics 115

Chapter 5 SDL Graphics. 137

Chapter 6 Game Audio . 173

Chapter 7 Game Mechanics. 201

Chapter 8 Novashell and 2D Games 225

Chapter 9 Director and Web Games 265

Chapter 10 3D Games with OGRE 3D 299

Chapter 11 Other Cross-Platform SDKs and Tools. 335

Appendix A GNU Lesser General Public License. 363

Appendix B BSD License . 369

Appendix C Creative Commons License 371

Appendix D zlib/libpng License. 379

Appendix E The MIT License Template 381

Appendix F STL Public Member Methods Reference 383

Appendix G SDL Key Codes . 389

Appendix H Novashell Functions 395

Appendix I Director Events . 407

Appendix J OGRE OIS Key Codes 409

iii

This book is dedicated to Alfie Stokes,

Emma Gibson, and Lauren Stitt.

iv

Contents

Acknowledgments . xiii
Introduction . xv

Chapter 1 Cross-Platform Games 1

1.1 Platforms . 3
1.1.1 Microsoft Windows . 3
1.1.2 Mac OS X . 4
1.1.3 Linux. 5

1.1.3.1 Ubuntu . 7
1.1.3.2 SLAX. 9
1.1.3.3 Freespire . 10

1.2 Cross-Platform Games . 11
1.2.1 The Battle for Wesnoth 11
1.2.2 OpenArena . 12
1.2.3 UFO: Alien Invasion. 13
1.2.4 Shockwave and Flash Games 14

1.3 Preparing to Go Cross-Platform 15
1.3.1 Multiple Booting. 17
1.3.2 Step 1 — Preparing to Multiple Boot 19
1.3.3 Step 2 — Installing Windows XP. 20
1.3.4 Step 3 — Installing Windows Vista 27
1.3.5 Step 4 — Installing Linux Ubuntu 33
1.3.6 Step 5 — Summary of Multiple Boot 40

1.4 Virtualization — Simulating Operating Systems 40
1.4.1 Using VMWare . 42
1.4.2 Creating a Virtual Machine for Linux Ubuntu 43

1.5 Conclusion . 48

Chapter 2 Linux Ubuntu and Linux Gaming 49

2.1 Ubuntu Installation and Troubleshooting 50
2.2 Getting to Know Ubuntu . 52

2.2.1 Ubuntu Login . 53
2.2.2 Ubuntu Desktop . 54
2.2.3 System Monitor . 55
2.2.4 Update Manager . 55
2.2.5 Screen and Graphics Preferences and Restricted

Drivers Manager . 56

v

2.2.6 Add/Remove Applications. 57
2.2.7 Synaptic Package Manager 58
2.2.8 Ubuntu Terminal/Console/Shell 59
2.2.9 Places | Computer . 60
2.2.10 Firefox Web Browser 60
2.2.11 OpenOffice.org . 61
2.2.12 Photo Editing . 62
2.2.13 Installing and Playing a Game on Ubuntu 63

2.3 Linux and “Transgaming” Technologies 65
2.3.1 Cedega . 66
2.3.2 CrossOver . 67
2.3.3 Wine . 68

2.3.3.1 Installing Wine on Linux Ubuntu 68
2.4 Automating Ubuntu with Automatix 70

2.4.1 Installing and Using Automatix for Linux Ubuntu . . . 71
2.5 The Linux Shell . 73

2.5.1 Common Shell Commands 74
2.5.2 Creating and Compiling a C Program Using the

Ubuntu Terminal and BASH Shell Commands 79
2.6 Conclusion . 80

Chapter 3 Cross-Platform Development Tools 81

3.1 Code::Blocks. 84
3.2 Downloading and Installing Code::Blocks in Ubuntu 86
3.3 Downloading and Installing Code::Blocks in Windows 90
3.4 Getting Started with Code::Blocks. 95

3.4.1 Code::Blocks Projects. 96
3.5 Cross-Platform “Hello World” Application 98
3.6 Graphics and GIMP . 101

3.6.1 Installing GIMP on Windows or Mac 102
3.6.2 Using GIMP . 103

3.6.2.1 Creating Tileable Textures Using GIMP 103
3.6.2.2 Editing Image Transparency Using GIMP 106

3.7 Blender 3D . 109
3.7.1 Installing Blender 3D on Linux Ubuntu 109
3.7.2 Installing Blender 3D on Windows/Mac 111

3.8 Conclusion . 113

Chapter 4 Game Programming Basics 115

4.1 Game Programming — Getting Started 116
4.1.1 Genre and Objective 117
4.1.2 Time Frame and Budget 117
4.1.3 Game Ideas . 118

4.2 Preparing to Make Games 122

Contents

vi

4.3 Using the STL: Strings and Lists 125
4.3.1 std::string. 125

4.3.1.1 Configuring Projects to Use STL and
std::string with Code::Blocks 126

4.3.1.2 Declaring, Creating, and Assigning Strings
with std::string. 126

4.3.1.3 Looping through Characters of a String with
std::string . 127

4.3.1.4 Searching for Characters in a Specified
Instance of std::string 128

4.3.1.5 Extracting and Inserting Substrings from and
to a Specified Instance of std::string 129

4.3.1.6 Converting Instances of std::string to
Standard char* Pointers 129

4.3.2 std::vector . 130
4.3.2.1 Creating a List with std::vector 131
4.3.2.2 Declaring Instances of std::vector 132
4.3.2.3 Adding Items to a List Using std::vector 132
4.3.2.4 Cycling through Items in a List Using

std::vector . 132
4.3.2.5 Removing Items from a List Using std::vector . . 133

4.4 The Game Loop . 134
4.5 Conclusion . 136

Chapter 5 SDL Graphics. 137

5.1 SDL Breakdown . 138
5.2 Downloading and Configuring SDL 140

5.2.1 SDL on Ubuntu. 140
5.2.1.1 Downloading and Installing SDL on Ubuntu

Using Synaptic Package Manager 140
5.2.1.2 Downloading SDL Documentation from

the Web . 142
5.2.1.3 Creating an SDL Project Using Code::Blocks

in Linux Ubuntu 143
5.2.2 SDL on Windows . 146

5.2.2.1 Downloading and Installing SDL on Windows . . 146
5.2.2.2 Creating an SDL Project Using Code::Blocks

in Windows . 148
5.3 Getting Started with SDL 152

5.3.1 Initializing and Closing SDL. 153
5.3.2 Creating a Window and Game Loop 154
5.3.3 SDL Surfaces . 159

5.3.3.1 Blitting Surfaces 160
5.3.3.2 Optimizing SDL Surfaces 161

Contents

vii

5.3.4 Additional File Formats (JPEG, PNG, TGA,
and Others) . 162

5.3.4.1 Downloading and Configuring SDL Image
Development Libraries for Code::Blocks on
Ubuntu . 163

5.3.4.2 Downloading and Configuring SDL Image
Development Libraries for Code::Blocks on
Windows . 165

5.3.4.3 SDL: Further Image Formats 166
5.4 Color Keying with Surfaces 167
5.5 Conclusion . 169

Chapter 6 Game Audio . 173

6.1 Recording and Editing Game SFX 175
6.2 SFX Software. 176

6.2.1 Downloading and Installing Audacity on
Linux Ubuntu. 178

6.2.2 Downloading and Installing Audacity on
Windows or Mac . 180

6.3 Recording/Creating and Editing Music 182
6.4 Music Creation Software 183

6.4.1 Downloading and Installing Schism Tracker
on Linux Ubuntu . 183

6.4.2 Downloading and Installing Schism Tracker
on Windows and Mac 185

6.5 Programming Audio with SDL_mixer 186
6.5.1 Installing and Configuring SDL_mixer on

Linux Ubuntu. 187
6.5.2 Installing and Configuring SDL_mixer on

Windows . 189
6.5.3 Initializing the SDL_mixer Library 190

6.6 Sounds and Music with SDL_mixer 192
6.6.1 Loading Music . 193
6.6.2 Playing Music . 194
6.6.3 Controlling Music . 195
6.6.4 Playing Samples through Channels in SDL_mixer . . 197
6.6.5 Loading Sounds into SDL_mixer as Samples 198
6.6.6 Handling Channels with SDL_mixer 198

6.7 Conclusion . 200

Chapter 7 Game Mechanics. 201

7.1 Getting Started with Game Worlds 202
7.2 Creating Derivative Objects. 204
7.3 Maintaining Game Objects 205

Contents

viii

7.4 Tile-based Levels . 207
7.5 Animations and States . 211
7.6 Movement . 212

7.6.1 Movement with Vectors 213
7.7 Hierarchical Transformations 218
7.8 Z-Order and Depth Sorting 221
7.9 Conclusion . 223

Chapter 8 Novashell and 2D Games 225

8.1 Novashell Overview . 226
8.2 Downloading Novashell (Windows, Linux, and Mac) 228
8.3 Exploring Novashell Games 230
8.4 Getting to Know Novashell 233

8.4.1 The Game Selection Menu 233
8.4.2 The Editor and Player Modes 234
8.4.3 Getting Started – Loading, Playing, and Editing

a Game . 235
8.5 Novashell Editor . 236

8.5.1 Tile Resources . 237
8.5.2 Entity Resources . 238

8.6 Novashell Tools . 239
8.7 Editing Novashell Levels 241

8.7.1 Selecting, Copying, Pasting, Moving, and Filling
Tiles. 241

8.7.2 Exploring Maps and Editing Tiles 242
8.8 Creating New Games and Maps. 243
8.9 Importing Art into Novashell 245

8.9.1 Importing Files . 246
8.9.2 Setting a Player Entity 247
8.9.3 Creating Smaller Tiles from Larger Tiles 247
8.9.4 Setting Collision Information 248

8.10 Novashell System Palette 249
8.10.1 Audio Tiles . 250
8.10.2 Color Tiles . 251
8.10.3 Invisible Wall Tiles 251
8.10.4 Warp, Waypoint, and Path Nodes 252
8.10.5 Script Tiles . 252

8.11 Novashell Scripting . 252
8.11.1 Novashell Console 253
8.11.2 Attaching a Script to an Entity 254
8.11.3 Visual Profiles. 256
8.11.4 Moving a Character Using the Keyboard 258
8.11.5 Clever Navigation with Pathfinding 261

8.12 Conclusion . 264

Contents

ix

Chapter 9 Director and Web Games 265

9.1 Director . 268
9.2 Director Games . 269
9.3 Director and Shockwave Compatibility 271
9.4 Getting Started with Director 272

9.4.1 Downloading and Installing Director 272
9.4.2 Creating an Animated “Hello World” Application

in Director . 274
9.5 Director in More Detail . 280

9.5.1 Cast Members . 281
9.5.2 The Stage . 282
9.5.3 The Score Window’s Timeline 284

9.6 Director Scripting with JavaScript 285
9.6.1 Frame Scripts . 286
9.6.2 Global Event Scripts 287
9.6.3 Local Event Scripts 288

9.7 Practical Scripting . 289
9.7.1 Programming: Shapes, Lines, and Primitives 290
9.7.2 Printing a List of All Sprites On-stage 291
9.7.3 Animating Sprites Using Cast Members 292
9.7.4 Querying Mouse Events. 294

9.8 Using the Projector for Web-based and Stand-alone
Games . 295
9.8.1 Building Web Games. 296
9.8.2 Building Stand-Alone Games (EXE for Windows,

OSX for Mac) . 297
9.9 Conclusion . 297

Chapter 10 3D Games with OGRE 3D 299

10.1 OGRE 3D . 302
10.2 OGRE 3D Games . 304

10.2.1 Ankh . 304
10.2.2 Other Games . 305

10.3 Installing OGRE 3D . 306
10.3.1 Downloading and Installing OGRE 3D on Ubuntu . . 307
10.3.2 Downloading and Installing OGRE 3D on Windows . 312

10.4 Getting Started with OGRE 3D 315
10.5 Receiving Frame Events 318
10.6 Adding Objects to a Scene 321
10.7 Adding Lights and Particle Systems. 325
10.8 Reading User Input with OGRE and OIS 328
10.9 Conclusion . 333

Contents

x

Chapter 11 Other Cross-Platform SDKs and Tools. 335

11.1 Graphics SDKs . 338
11.1.1 OpenGL . 338
11.1.2 PTK . 338
11.1.3 ClanLib . 339

11.1.3.1 Installing ClanLib 339
11.2 Audio SDKs . 342

11.2.1 FMOD . 342
11.2.2 BASS . 342
11.2.3 irrKlang . 343
11.2.4 Audiere . 343
11.2.5 OpenAL . 343

11.3 Physics SDKs . 344
11.3.1 ODE . 344
11.3.2 Newton Game Dynamics 344
11.3.3 True Axis Physics 344
11.3.4 OPAL . 345
11.3.5 Bullet . 345
11.3.6 PhysX . 345

11.4 Network SDKs . 346
11.4.1 RakNet . 346
11.4.2 HawkNL . 346
11.4.3 SDL_net . 347

11.5 Artificial Intelligence SDKs 347
11.5.1 Boost Graph Library 347
11.5.2 OpenSteer . 347
11.5.3 FANN . 348
11.5.4 Garfixia AI Repository 348

11.6 Input SDKs . 348
11.6.1 LibGII . 348
11.6.2 OpenInput . 349

11.7 Scripting SDKs . 349
11.7.1 Lua . 349
11.7.2 Python . 349
11.7.3 Ruby . 350
11.7.4 Squirrel . 350
11.7.5 AngelCode. 350
11.7.6 GameMonkey . 351

11.8 Game Engines . 351
11.8.1 Torque . 351
11.8.2 Irrlicht . 351
11.8.3 Game Editor . 352

11.9 GUI SDKs . 352
11.9.1 OpenGUI . 352

Contents

xi

11.10 Web SDKs . 352
11.10.1 YaBB . 352

11.10.1.1 Downloading, Installing, and Creating an
Online Forum 353

11.11 Distribution SDKs. 358
11.11.1 NSIS . 358
11.11.2 Inno Setup . 359

11.11.2.1 Downloading, Installing, and Creating an
Installer in Inno Setup. 359

11.12 Conclusion . 361

Appendix A GNU Lesser General Public License. 363

Appendix B BSD License . 369

Appendix C Creative Commons License 371

Appendix D zlib/libpng License. 379

Appendix E The MIT License Template 381

Appendix F STL Public Member Methods Reference 383

Appendix G SDL Key Codes . 389

Appendix H Novashell Functions 395

Appendix I Director Events . 407

Appendix J OGRE OIS Key Codes 409

Index . 415

Contents

xii

Acknowledgments

This is my fourth book with Wordware and each book has been a plea-

sure to write. I would like to take this opportunity to thank those

people who have helped this book to completion and who have ensured

the quality of its contents. My thanks go to:

� Tim McEvoy and Beth Kohler of Wordware Publishing for being

both professional and pleasant people to work with.

� Marlies Maalderink for creating the great and colorful cover for

this book. Those interested in other work by Marlies can visit her

web site at http://marlies.m3is.nl.

� My family and friends for their support, encouragement, and

understanding.

� And finally, I would like to thank the reader for taking the time to

read and study this book. I hope it proves useful.

Alan Thorn (http://www.alanthorn.net)

xiii

This page intentionally left blank.

Introduction

Browsing the web one cold evening while writing this book led me to a

technical web site featuring the following quote, attributed to Herbert

Mayer:

“No programming language is perfect. There is not even a single

best language; there are only languages well suited or perhaps

poorly suited for particular purposes.”

This kind of contextual philosophy — that everything is defined by

context, that languages are not in themselves either good or bad, or

one thing or another — need not apply only to programming lan-

guages. Indeed, it may equally apply to many other facets of

computing, from graphic design application to whether one selects an

open-source web browser. But perhaps this philosophy applies most of

all to the computing concept of “platforms,” meaning operating sys-

tems such as Windows, Mac, and Linux. Perhaps platforms too are

defined by context and not by themselves.

In the current computing climate, one divided by the controversies

of open-source software versus proprietary software, patenting, DRM,

and copy-protection scandals, it’s easy to take up positions and argu-

ments for one or the other — believing it to be wholly wrong or wholly

right — and then lose sight of the context. But if platforms really are

defined by context, by how people use them, the kinds of things one

can do on the platform, the kinds of circumstances in which the plat-

form has developed; then to lose sight of context is to lose sight

altogether.

It’s quite a simple thing to stand around at a game convention and

claim that PCs have become outdated for gaming, giving way to con-

soles like the Wii, Xbox, or PlayStation; but the reality of course

appears not nearly as clear-cut as this. Such simplistic positions ignore

the thriving casual game market as found at Reflexive Arcade or Big

Fish Games; they ignore the indie-game (or shareware) “resurgence”

at sites like GameTunnel, featuring games such as Teenage

xv

Lawnmower, Samorost, Darwina, Jets‘n’Guns, or Gish; and they fur-

ther ignore the increasing “cross-platform” nature of games that run

on multiple platforms including Windows, Mac, Linux, and the

consoles.

Likewise, with an increasingly popular Mac, the changing face of

Windows, and the growing community of Linux users worldwide with

releases like Ubuntu and PCLinuxOS, the whole PC platform scene

has also become the site of conflict and division among many game

developers and gamers, with sweeping claims on all sides. Which plat-

form is best? Which is the fastest? The most secure? The easiest? The

most customizable? Again, it’s quite simple to play the numbers game,

mocking one or the other platform by claiming “This platform statisti-

cally has a user base of X number of people compared to only Y

number for this other platform.” Notice that this is a statement about

the platform itself, and not the context. For again, the reality is far less

clear-cut than the numbers suggest, if only because not everybody

uses one OS; some use many operating systems, on different

machines, or dual-booting on the same machine, for different purposes

in the same household or in the same office and at different times.

In short, this book attempts to sidestep questions such as “Which

is the best?”, “Which platform should I choose?”, and “Isn’t this out of

date?” Instead, the book accepts that different people use different

platforms, and each platform has advantages and disadvantages, many

of them determined by context. The cross-platform game developer,

then, is not merely someone who scouts around looking for the “best”

or most fashionable platform at any given time and simply settles

there to make a game for this platform alone; instead, the aim should

be to make a game that runs on all platforms. However, the title of this

book is Cross-Platform Game Development, and this means “cross-plat-

form” in a double sense.

Here, “cross-platform game development” means to develop

cross-platform games using cross-platform tools, most of which are

also free of charge. Thus, this book examines not just how to make

cross-platform games, but how to make cross-platform games using

programming editors, graphics suites, and 3D software that are them-

selves cross-platform.

Introduction

xvi

Who should read this book?

Books are written with a target audience in mind, and here are some

typical readers for whom this book is intended:

� Joe studies computers at school, but programs in C++ in his

spare time at home and is hoping to make computer games. He’s

familiar with Windows but no other operating system, and knows

his iPod from his MySpace profile, and can distinguish YouTube

from Bluetooth, though he doesn’t necessarily use them all.

� Anita is a web designer looking to change to a career as an inde-

pendent game developer selling her games as online downloads

from her web site. She’s spent almost two years programming in

JavaScript and PHP, and can also use Flash. She often uses a Mac

and is familiar with Windows, but knows nothing of Linux.

� Kurt is already a professional game developer working for an

established software house in a prestigious area of town, but they

only make games for consoles. He’s thinking of leaving to start a

game development business of his own, working from home mak-

ing cross-platform games. He is familiar with Windows and the

consoles, and knows C++, Java, JavaScript, and Lua.

Who should not read this book?

There are some to whom this book may not be suited, though I have

no wish to deter anyone who is determined and willing to read along

and see what happens. These classic character profiles are guidelines

only.

� Alexis is a game enthusiast. She loves playing games on her PC

and consoles, though she has never before tried her hand at pro-

gramming and she really hates math.

� Douglas thinks computer games are okay but perhaps a little

nerdy. He did some programming at school and knows the basics

but doesn’t really enjoy it. He sees game development as an easy

route to get rich quick.

Introduction

xvii

What’s on the companion files?

The companion files can be downloaded from www.wordware.com/

files/gamedev056X. The files include:

� Code samples and projects from the chapters

� Extra game algorithms and routines

� Small game projects

Which game development technologies are considered
in detail throughout this book?
� Windows

� Mac

� Linux

� Code::Blocks

� GIMP

� Blender 3D

� STL

� SDL

� SDL_mixer

� Lua

� Adobe Director

� Novashell

� OGRE 3D

� YaBB (briefly)

� Inno Setup (briefly)

� ClanLib (Linux setup and installation)

Introduction

xviii

Chapter 1

Cross-Platform Games

Lewis Carroll’s Humpty Dumpty of Through the Looking Glass once

said to Alice: “When I use a word, it means just what I choose it to

mean, neither more nor less.” For poor Alice, or anyone who invests

hope in having a conversation where the listener can be entirely cer-

tain of what the speaker means, Humpty’s response must have been

somewhat disheartening. In a world where words mean anything the

speaker chooses, anything goes. The word “modern” is one such

example. One can speak about modern history, beginning around the

sixteenth century; modern art and modern furniture, around the turn of

the twentieth century; modern languages to mean French, German,

and English; and modern day to mean the present moment. Since the

advent of computers, it can be said with certainty that there are more

words floating about than there were before, and the meanings of

words change from context to context.

Computers are themselves modern inventions, and have engen-

dered a whole new set of terms and languages such as C++ and Leet,

which is the Internet language that includes terms like LOL and

ROFL. There are also new terms, from bits and bytes to RAM and

ROM. Even more recently, the language of computing is colored by

underlying themes of friendliness and togetherness. Software is

“interactive” and “accessible,” hardware is “compliant” and “compati-

ble,” and the relationship between users and computers is

“responsive” and “productive.”

“Cross-platform” is one of the most common and fashionable com-

puting terms among software developers, though it is by no means a

new term. There are cross-platform games, office applications, 3D

rendering software, and thousands of other products stacked as high as

the eye can see on store shelves, or ready to download online at the

touch of a button. And yet — despite its prevalence throughout

1

computing generally — the term cross-platform suffers the fate of

Humpty Dumpty’s words in that it is ambiguous, meaning different

things to different developers and different consumers, and at different

times. For those spending their hard-earned cash on the latest soft-

ware to call itself cross-platform, consumers could be forgiven for

assuming they can know what to expect.

Cross-platform, then, is a term that requires one to read between

the lines to get to the bottom of its meaning. The most basic definition

of cross-platform software is: software that can run on multiple plat-

forms. The word “platform” is itself another term usually

interchangeable with “operating system”; so examples of a platform

include Windows, Mac, Linux, and others. Thus, cross-platform soft-

ware seems to be software that runs on Windows, Mac, Linux, and

others. But this is not always the case. Some software is more or less

cross-platform than others; some support up to ten different operating

systems and others only two, and the operating systems that are sup-

ported by a specific product often reflect a political choice on behalf of

the developers. Some older products have claimed to be cross-plat-

form while supporting only Windows 98 and Windows 2000 (claiming

each to be a separate platform); and more recently cross-platform has

come to be thought of as software that runs on both Mac and Windows.

It should, however, be pointed out that cross-platform doesn’t usually

mean the same application (the same executable) runs on each plat-

form. Rather, the same application (source code) is compiled to

different executables (called distributions), one executable for each

platform. Furthermore, developers tend to sell each distribution sepa-

rately, meaning their product must be purchased twice if the user

wants both a Windows and a Linux version. So in summary, cross-

platform software as commonly recognized today, and cross-platform

games specifically, are distinguished as follows:

� Games that run on at least two different species of operating sys-

tem. That might be Windows and Mac; Mac and Linux; or Win-

dows, Linux, and Mac. But different versions of the same species

are not considered multiple platforms, such as: Windows 98, Win-

dows Me, Windows XP, and Windows Vista. These are together

one platform. Of course, most cross-platform software is compliant

with only selected versions from a species of operating system.

2 Chapter 1 / Cross-Platform Games

� Games that are compiled into different distributions (one execut-

able per platform) that are often sold separately. This, however, is

not a requirement of cross-platform software so much as the

“norm” and the inevitable by-product of the differences between

platforms. There are, as we shall see, exceptions to this rule, and

these exceptions are becoming more common.

1.1 Platforms

Cross-platform games are those that run on at least two (ideally more)

different species of platform: Windows, Mac, and Linux. Let’s consider

each more closely.

� NOTE. There are, of course, other platforms besides Windows,
Mac, and Linux, but this book focuses on only these three.

1.1.1 Microsoft Windows

Windows needs no introduction and needs no justification of its impor-

tance to commercial gaming. It is singularly the most famous and

Chapter 1 / Cross-Platform Games 3

Ch
a

p
te

r
1

Figure 1-1: The
Windows Vista desktop

prevalent among the three platforms considered in this book, and as a

species is composed of a long line of versions together estimated in

2004 to have been used by around 90% of the client market worldwide,

and in 2007 by 92.86%. Though these statistics can be deceptive and

likely overestimate the dominance of Windows (as we shall see), it is

nevertheless the single most dominant of all the platforms available to

the masses of consumers today. The first version of Windows (Win-

dows 1) arrived in 1985, and its descendants can be traced through

Windows 95, 98, Me, XP (still the most widely used version at the

time of writing), and the more recent (and controversial) Windows

Vista. It perhaps goes without saying that since Windows is the most

widely used platform by a considerable margin, most computer games

that are developed ensure as a priority that Windows is among their

supported platforms.

� NOTE. This book assumes the reader has a familiarity with
Microsoft Windows. And accordingly, the basics of how to install
and use Windows are not discussed in this book.

1.1.2 Mac OS X

The term Mac now refers to a range of computers such as MacBooks

and iMacs, and many of them feature the Mac OS X (pronounced Mac

OS 10) operating system. Each version of Mac OS X is named after a

4 Chapter 1 / Cross-Platform Games

Figure 1-2: The Mac
OS X desktop

big cat, including Jaguar, Panther, Tiger, and now Leopard (released in

2008). The Mac OS generally comes preinstalled with Mac computers,

and its growing popularity makes Mac an important platform for

games. Later chapters of this book consider Mac games in more detail.

1.1.3 Linux
Linux has in recent years grown and attracted intense interest from a

diverse population of users and developers at an almost unprecedented

pace, with an estimated user base of over 25 million. Linux is a

Unix-inspired operating system that is open-source and free of price,

and is thus considered to be free software. However, “Linux” is now

an umbrella term used to refer to a whole range of different operating

systems that are adaptations based on the Linux source code, and

these adaptations are individually called Linux distributions (or

distros). First, however, some terms need to clarified, and these are

considered in the following sidebar.

Linux is a foundational operating system that is open-source and

free software, and is used as the starting point for many other deriva-

tive (distros) operating systems that are also often open-source and

free software. This means many Linux-based distros are complete

operating systems that are free of price to download and feature media

player facilities, Internet browsing software, office suite applications,

and more. So Linux is an exciting platform for developers and users

since most distros are community run, free, and continually changing,

and furthermore, most Linux distros can be installed alongside

Microsoft Windows. Installing and configuring multiple operating sys-

tems is considered in more detail later in this chapter.

Next, let’s discuss a few of the Linux distributions, particularly

those that have attracted a growing community of game players and

developers.

Chapter 1 / Cross-Platform Games 5

Ch
a

p
te

r
1

Open-Source and Free Software
Linux — along with a selection of other software — is said to be

open-source, which refers to the openness of software design, or the

ability for developers and users alike to access the source code of

their software, learn from it, and change it. Thus, open-source soft-

ware refers to software that makes public its source code, laying

bare its inner workings like an open book, and is open to scrutiny

and investigation.

Linux is also said to be free software, which is different from

software that is free of price. Software that is free of price is free

insofar as it costs nothing (in terms of money) to use. Examples of

software that is free of price (but which isn’t “free software”)

include: Internet Explorer, avast! Anti-Virus Home Edition, and the

Opera web browser. Free software, on the other hand, is often free

of price but is more than this. According to the Free Software Foun-

dation (http://www.fsf.org), for software to be free software it must

offer users the following four “freedoms”:

1. Freedom to run the software for any purpose. That is, users are

free to choose how they use their software.

2. Freedom to study and adapt the software to suit the user’s needs.

This effectively means the software must be open-source.

3. Freedom to redistribute copies of the software to other users,

either with or without charge.

4. Freedom to “improve” the program and release changes back

into the community for others to use. This condition relies on all

three prior conditions.

Examples of free software are GIMP (photo editing program),

Firefox web browser, and Blender 3D. Other free software is listed

at http://directory.fsf.org/, which is maintained by the Free Software

Foundation and the United Nations Education, Scientific and

Cultural Organization (UNESCO).

6 Chapter 1 / Cross-Platform Games

1.1.3.1 Ubuntu

Ubuntu, generally recognized as the fastest growing desktop-oriented

distribution of Linux, takes its name from the sub-Saharan humanist

ideology that promotes openness, equality, and relationships between

people. Owned by Canonical Ltd. and developed by a community, the

Ubuntu distribution is open-source and free software, and features a

media player, web browser, office suite, photo editing software, e-mail-

ing facilities, and a comprehensive database of other free software to

download. In 2007 Linux DistroWatch (http://www.distrowatch.com)

ranked Ubuntu as the most “searched for” Linux distribution online,

and its popularity among users reflects the effort Ubuntu developers

make to ensure Ubuntu is simple to use and compatible with a wide

selection of hardware. The web site for Ubuntu is http://www.

ubuntu.com, where a CD installer can be downloaded for free.

Ubuntu is perhaps unique among other distros for attracting a sig-

nificant proportion of game players; for this reason the Ubuntu

community has seen an exciting and relatively steep increase in the

number of games available compared to other Linux distributions.

Later sections of this chapter consider some popular cross-platform

games currently available. Overall, Ubuntu in the past few years has

proven itself a popular distribution and an important contender as a

Linux gaming platform. Consequently, it will be discussed in further

detail in later sections and chapters of this book.

Chapter 1 / Cross-Platform Games 7

Ch
a

p
te

r
1

Figure 1-3: The
Ubantu desktop

Downloading and Burning an Ubuntu ISO File

Linux Ubuntu — like many applications — can be downloaded as an

ISO (optical disc image file) CD/DVD, which is an archive file con-

taining within itself the entire contents of a disc, similar to the way

in which a ZIP file contains other files. The contents of the ISO can

be burned directly to a disc using most CD burning software, such

as the InfraRecorder application that is specifically for burning ISOs.

InfraRecorder can be downloaded free of charge from http://infra-

recorder.sourceforge.net/.

To burn an Ubuntu ISO:

1. Download the Ubuntu ISO image from the official Ubuntu home

page.

2. Download and install InfraRecorder from

http://infrarecorder.sourceforge.net/.

3. Insert a blank CD/DVD and select Actions | Burn Image from

the InfraRecorder’s main menu. Then select the Ubuntu image

file.

4. Select a slow CD writing speed

(to reduce risk of erroneous

burning) and click OK.

8 Chapter 1 / Cross-Platform Games

Figure 1-4

Figure 1-5

1.1.3.2 SLAX

An OS in miniature, SLAX is important and distinguished from other

Linux-based distributions, as well as other operating systems, because

it markets itself as a portable, pocket-sized operating system powerful

enough to be a desktop environment but small enough to fit onto a

USB stick. It is a slick operating system users can carry with them

that can be plugged in, booted up, and used on any computer wherever

they go without the need for permanent installation, and lasting only

as long as the USB remains in the port. Though SLAX is not as preva-

lent as distros like Ubuntu or Freespire, nor has it been the focus for

an exodus of gamers, it is nonetheless a distro of growing popularity

not least because of its quirkiness and simplicity. For this reason SLAX

has the interesting potential to be a platform for “gamers on the go” —

those who carry their games with them and wish to resume playing

whenever the opportunity arises, regardless of the computer that is

available. There are several SLAX versions that can be downloaded for

free at http://www.slax.org/.

Chapter 1 / Cross-Platform Games 9

Ch
a

p
te

r
1

Figure 1-6: SLAX

1.1.3.3 Freespire

Based on Ubuntu, Freespire is open-source and composed from free

software, though it also offers users (controversially) a selection of

non-free software. Freespire is thought by some to be the most

“Windows-like” of the Linux distros, and is hailed as being a first step

into Linux for those migrating from a Windows platform. But Freespire

is a complete and exciting distro offering wireless Internet, office

suites, web browsers, and media playing, and boasts a growing com-

munity of gamers and game developers. It shall not be considered

further in this book, but readers would be well advised to investigate

this distro further. It can be downloaded from http://www.freespire.org.

10 Chapter 1 / Cross-Platform Games

Figure 1-7: Freespire

1.2 Cross-Platform Games

Cross-platform games may potentially run on Windows, Linux, and

Mac. This section explores some cross-platform games that are full

versions, open-source, and free to download and play.

1.2.1 The Battle for Wesnoth

Supporting Windows, Linux, and Mac, The Battle for Wesnoth is a

cross-platform and free software turn-based strategy game set on a

hex-grid. Multiple players, or a single player and computer AI, take

turns in tactically deploying mythical creatures and units across

Chapter 1 / Cross-Platform Games 11

Ch
a

p
te

r
1

Figure 1-8: The Battle for
Wesnoth

Figure 1-9 Figure 1-10

fantasy environments such as forests and deserts, combatting each

other to complete campaigns. The game is developed in C++ and

uses a series of cross-platform game development kits (including SDL,

explained later) to ensure compatibility with multiple operating sys-

tems. Beyond supporting Windows, Linux, and Mac, it also claims to

support other operating systems, including AmigaOS 4, BeOS,

FreeBSD, NetBSD, OpenBSD, Solaris, RISC OS, and GP2X. The

Battle for Wesnoth can be downloaded from http://www.wesnoth.org/.

1.2.2 OpenArena

Quake Arena and Unreal Tournament fans might be delighted to know

there is a free, open-source, and cross-platform FPS tournament game

called OpenArena. Based on the Quake III engine, OpenArena features

12 Chapter 1 / Cross-Platform Games

Figure 1-11: OpenArena

Figure 1-12 Figure 1-13

big guns and big environments, inside which one or more players and

AI opponents battle it out to be the last man or woman standing.

OpenArena supports a selection of different platforms including

Windows, Linux, and Mac, and can be downloaded from

http://www.openarena.ws/?about.

1.2.3 UFO: Alien Invasion

Inspired by the old series of X-COM strategy games, and later games

such as UFO: Aftermath, the free, open-source game UFO: Alien

Invasion is about protecting the Earth from aliens. In command of a

paramilitary rescue force intended to save the planet, the player must

construct a headquarters, deploy a team of agents to intercept UFOs,

and help a team of scientists reverse-engineer captured alien

Chapter 1 / Cross-Platform Games 13

Ch
a

p
te

r
1

Figure 1-14: UFO: Alien Invasion

Figure 1-15 Figure 1-16

technology. UFO: Alien Invasion is a vast and complex turn-based

strategy game supporting Windows, Linux, and Mac OS X. It is devel-

oped primarily with OpenGL, an SDK (software development kit) for

creating fast-paced, cutting-edge 3D games. OpenGL is explained later

in this book. UFO: Alien Invasion can be downloaded from

http://ufoai.ninex.info/.

1.2.4 Shockwave and Flash Games
The web is awash with Shockwave and Flash, two cross-platform tech-

nologies developed by Adobe for embedding multimedia content —

from graphics to sound — in web pages and also for distributing as

stand-alone executables. Shockwave and Flash offer developers a set

of easy-to-use tools for producing animated and interactive content, and

for this reason have been popular choices for the creation of games by

an exciting new generation of online game developers. Diner Dash,

Home Run Rally, The 13th Doll, and Samorost are but a few among

thousands of online games developed using Shockwave or Flash, and a

further selection of such games can be found at http://www.shock-

wave.com. This book will later focus on Shockwave, and will explain

how Shockwave games are distinct from games developed using other

technologies, and how this distinction brings advantages and limita-

tions to both game developers and players. More information

regarding Flash and Shockwave can be found at the Adobe site at

http://www.adobe.com.

14 Chapter 1 / Cross-Platform Games

1.3 Preparing to Go Cross-Platform

To summarize, the operating system for which a game is designed is

called the target platform; games that are “cross-platform” are those

that can execute on two or more different species of target platforms

(such as Windows, Linux, or Mac OS X). Examples of cross-platform

games include The Battle for Wesnoth, Diner Dash, and OpenArena,

among thousands of others. For developers looking to develop

cross-platform games, it therefore follows that each developer must

have the facilities (hardware and software) to test their game for bugs

on each target platform before releasing it to users of that platform as

a final product. In other words, if a developer creates a cross-platform

game for Windows and Linux (Ubuntu), then the developer must also

have the facilities to test the game on those platforms. Cross-platform

game development — the ability to develop and run a single game on

multiple platforms — can occur in primarily one of three arrange-

ments, depending on the budget and preferences of the developer.

We’ll take a quick look at each, then consider them in further detail.

� Multiple computers — Perhaps the most obvious but most

expensive setup is to purchase several computers, one for each

platform, and install the respective operating systems on each

machine. This is generally regarded as a “keep things simple”

approach, which provides a no-nonsense 1-to-1 correspondence

between operating system and hardware (one machine, one OS)

where each OS has complete control of a single machine. Testing a

game in this setup means to install, compile, and run the game on

each machine.

Chapter 1 / Cross-Platform Games 15

Ch
a

p
te

r
1

Figure 1-17: Multiple machine
diagram

� Multiple booting — Widely considered the cheapest but most

complicated method is to create a series of hard disk partitions on

a single machine and install each operating system on a different

partition, selecting from a menu which OS to boot from at system

power-on. In short, the computer is switched on, and the user

chooses which operating system to use for this session. This

means the machine must be restarted each time a change of oper-

ating system is required.

� Virtualization — The online encyclopedia Wikipedia defines

“virtualization” as the “abstraction of computer resources” and as

“a technique for hiding the physical characteristics of computing

resources.” For the purpose of cross-platform games, however,

virtualization can be thought of us as a form of software that allows

other machines and platforms to be simulated (or emulated) on a

single machine and inside a single operating system. Thus,

virtualization is arguably the simplest and most convenient cross-

platform solution because multiple machines and operating sys-

tems can be run and emulated (including several platforms run-

ning simultaneously in different windows) at the click of a button

on a single machine without a need to restart between changes of

operating system.

16 Chapter 1 / Cross-Platform Games

Figure 1-18: Multiple boot
diagram

1.3.1 Multiple Booting
In a multiple booting setup, two or more operating systems coexist on

the same machine. More accurately, each operating system is installed

on a different hard disk partition on the same machine, and only one

operating system is selected by the user at power-on to use for a sin-

gle session. This book focuses on dual-booting a machine with

Windows and Linux installed; that is, Windows XP or Windows Vista,

and Linux (Ubuntu). This step-by-step guide further assumes that the

computer to configure for multiple booting begins with a clean hard

drive (i.e., no operating system is installed), and that the user has a

bootable CD/DVD or bootable USB version of both Windows (XP or

Vista) and Ubuntu. For instructions on how to clear a computer (how

to format a hard disk), please consult the following sidebar.

Chapter 1 / Cross-Platform Games 17

Ch
a

p
te

r
1

Figure 1-19: Virtualization
diagram

Formatting Hard Disks

Starting with a blank machine — an empty hard disk — means

clearing out existing data, and this occurs through formatting.

Before formatting, however, readers are advised that all data exist-

ing on the hard disk before formatting may be irretrievably lost. For

this reason, it is highly recommended that all data is archived and

backed up to a safe storage device. For example, data can be burned

to a CD/DVD or copied to a USB stick.

The format process removes all data from a hard disk, leaving it

blank and fresh to receive new operating systems and information.

To perform the format process, the freely available and bootable

Darik’s Boot and Nuke application can be used. Small enough to fit

on an old 1.44 MB floppy disk, Darik’s Boot and Nuke is one among

many applications designed especially for formatting disks, and can

be downloaded from http://dban.sourceforge.net/ as either an EXE

file or an ISO image burnable straight to CD/DVD. (See Section

1.1.3.1 for more details on burning an ISO file.)

Boot the computer with this CD/DVD (in other words, start the

computer with this CD inserted into the drive) and follow the

on-screen instructions. At the command prompt of Boot and Nuke,

users can enter the autonuke command to format all writeable disks

attached to the computer.

18 Chapter 1 / Cross-Platform Games

Figure 1-20: Boot and
Nuke

1.3.2 Step 1 — Preparing to Multiple Boot
Given a computer with a formatted hard disk, one that is clean of all

information, the following steps illustrate the process of installing mul-

tiple operating systems to different partitions on the hard disk. Here

we’ll discuss a dual-boot configuration featuring either Windows XP

and Ubuntu, or Windows Vista and Ubuntu. Users installing Windows

XP should proceed to Step 2, and users installing Vista can skip to

Step 3. Step 4 considers the installation of Linux Ubuntu, and Step 5

considers the final details of the dual-boot configuration.

Chapter 1 / Cross-Platform Games 19

Ch
a

p
te

r
1

Figure 1-21: Installation diagram

1.3.3 Step 2 — Installing Windows XP
The following steps illustrate the installation process for Windows XP.

1. Insert the Windows XP CD/DVD into the CD drive and reboot the

computer.

2. Depending on a computer’s configuration, the boot loader may

automatically boot from the Windows XP CD, or it may require

prompting. If the latter, boot from the CD and the Windows XP

installer will start automatically.

3. Press F8 to accept the EULA (end-user license agreement).

20 Chapter 1 / Cross-Platform Games

Figure 1-22: Windows XP
Installation Setup screen

Figure 1-23: Windows XP
Licensing Agreement
screen

4. The Windows XP Partition screen will appear, allowing the user to

divide the hard disk into partitions; that is, to divide the disk space

into separate drives. The formatted hard disk will appear to the

installer as one contiguous sequence of unpartitioned bytes. Press

the C key to create a partition.

5. Enter the size in megabytes (MB) of the partition to be created by

the installer. Remember, one operating system is allocated to each

partition. The recommended size of this Windows XP partition,

therefore, is half the total size available since another partition

must later be created for hosting Linux Ubuntu. Press Enter to

complete.

6. Select the partition, and the installer prepares to format it in one of

two file systems: FAT or NTFS. Select FAT (not NTFS), and the

standard format (not quick). FAT is selected because Ubuntu has

Chapter 1 / Cross-Platform Games 21

Ch
a

p
te

r
1

Figure 1-24: Windows XP
Partition screen

Figure 1-25: Windows XP
Partition confirmation
screen

the ability to read from and write to files on FAT partitions,

whereas Linux support for NTFS file systems is more limited.

7. When the installer confirms your selection, press Enter.

8. The installation begins, and the process is measured on the

progress bar.

22 Chapter 1 / Cross-Platform Games

Figure 1-26

Figure 1-27

Figure 1-28

9. During and after this process, the computer may restart on one or

more occasions, but eventually the GUI installer will appear.

10. The localization dialog appears, prompting the user to select a

local language. This choice affects the keyboard layout, among

other linguistic stylizations for Windows XP. Click the Customize

button to change the system language. The default language is

English (US).

Chapter 1 / Cross-Platform Games 23

Ch
a

p
te

r
1

Figure 1-29

Figure 1-30

11. Enter your name and organization as applicable.

12. Enter the Windows XP product key.

24 Chapter 1 / Cross-Platform Games

Figure 1-31

Figure 1-32

13. Select the date and time.

14. Select the Typical settings option for the network settings unless

the computer has specific requirements.

Chapter 1 / Cross-Platform Games 25

Ch
a

p
te

r
1

Figure 1-33

Figure 1-34

15. The computer might restart, and then the configuration wizard

appears. Click Next.

16. Windows XP installation is complete. Go to Step 4.

26 Chapter 1 / Cross-Platform Games

Figure 1-35

Figure 1-36

1.3.4 Step 3 — Installing Windows Vista
The following stages illustrate the installation process for Windows

Vista.

1. Insert the Windows Vista DVD into the DVD drive and reboot the

computer.

2. Depending on the computer’s boot loader and configuration, the

Windows Vista installer may begin automatically, or it may require

prompting. If the latter, boot from the DVD and the installation

begins.

Chapter 1 / Cross-Platform Games 27

Ch
a

p
te

r
1

Figure 1-37

3. Set the language settings (default: English (US)), and click Next.

4. Click Install now.

28 Chapter 1 / Cross-Platform Games

Figure 1-38

Figure 1-39

5. Enter the product key and click Next.

6. Click the check box to accept the EULA (end-user license agree-

ment) and click Next.

7. The Windows Vista partition screen will appear, allowing the user

to divide the hard disk into partitions; that is, to divide the disk

space into separate drives. The formatted hard disk will appear to

the installer as one contiguous sequence of unpartitioned bytes.

Click the New button to create a new partition, and enter the size

in megabytes (MB) of the partition to be created by the installer.

Remember, one operating system is allocated to each partition.

The recommended size of this Windows Vista partition, therefore,

is half the total size available since another partition must later be

created for hosting Linux Ubuntu. Click OK. The installer will for-

mat the partition if required.

Chapter 1 / Cross-Platform Games 29

Ch
a

p
te

r
1

Figure 1-40

8. Click Next once you’ve verified the install settings.

30 Chapter 1 / Cross-Platform Games

Figure 1-41

Figure 1-42

9. The installation progress window appears, outlining the installa-

tion procedure.

10. Once completed, the computer might restart on one or more occa-

sions, and finally the user details dialog appears. Enter a user

name and password, and select a profile image. Click Next.

Chapter 1 / Cross-Platform Games 31

Ch
a

p
te

r
1

Figure 1-43

Figure 1-44

11. Enter a computer name and click Next.

12. Select the Use recommended settings option for the Internet

and protection configurations.

32 Chapter 1 / Cross-Platform Games

Figure 1-45

Figure 1-46

13. Enter the time and date details and click Next.

14. Click Start, and installation is complete. Go to Step 4.

1.3.5 Step 4 — Installing Linux Ubuntu
The following steps illustrate the installation process for Linux

Ubuntu.

� NOTE. The downloaded Ubuntu ISO is typically burned and
installed from a CD/DVD; however, Ubuntu may also be installed
directly from the ISO file using WUBI, a Windows-based ISO installer
designed specifically for Ubuntu. WUBI can be downloaded for free
at http://wubi-installer.org/.

1. Insert the Ubuntu CD (created in Section 1.1.3.1) in the CD-ROM

drive and reboot the computer.

2. Select the Start or install Ubuntu option from the menu, and

Ubuntu will start in Live mode.

Chapter 1 / Cross-Platform Games 33

Ch
a

p
te

r
1

Figure 1-47

3. Ubuntu Live mode is designed to be a “test drive,” or a “no obliga-

tion, try before you install” mode, allowing users to inspect,

preview, and use the features of Ubuntu without any obligation to

install. Since Live mode installs nothing to the computer, users can

safely reboot without any configuration changes having occurred.

To permanently install Ubuntu, double-click the Install icon on

the desktop and select a language. Then click Forward.

34 Chapter 1 / Cross-Platform Games

Figure 1-48

Figure 1-49

4. Select a location from the drop-down list or by clicking on the

world map, and then click Forward.

5. Set the localization for this operating system, which includes fea-

tures such as keyboard layout and other linguistic stylizations, and

then click Forward.

Chapter 1 / Cross-Platform Games 35

Ch
a

p
te

r
1

Figure 1-50

Figure 1-51

6. Select Manual for the partition setting. Click Forward.

7. The partition manager allows users to create, delete, and edit par-

titions. Click New partition to create a new partition onto which

Ubuntu will be installed.

8. Specify the size in megabytes and the format of the file system for

the partition to create, and associate the partition to a “mount

point” (analogous to a drive in Windows). Click OK. The primary

36 Chapter 1 / Cross-Platform Games

Figure 1-52

Figure 1-53

mount point in Linux Ubuntu is “/”. The Ubuntu operating system

is discussed in further detail in the next chapter.

9. The Ubuntu partition manager can also be used to create addi-

tional partitions such as a Swap partition from any available space

to improve the performance of Ubuntu. Add extra partitions if

required, and then click Forward.

Chapter 1 / Cross-Platform Games 37

Ch
a

p
te

r
1

Figure 1-54

Figure 1-55

10. The migration wizard can be used to import e-mail, messages,

address books, and other information and settings from a Windows

system. Using the check boxes, select whatever information (if

any) needs to be imported, and click Forward.

11. Enter your user name and password. Click Forward.

38 Chapter 1 / Cross-Platform Games

Figure 1-56

Figure 1-57

12. Confirm the installation details and click Install.

13. Ubuntu will install and restart when completed. Go to Step 5.

Chapter 1 / Cross-Platform Games 39

Ch
a

p
te

r
1

Figure 1-58

Figure 1-59

1.3.6 Step 5 — Summary of Multiple Boot

Multiple boot systems are those with two or more operating systems

installed on different partitions, and the example in this chapter dem-

onstrated how to configure a dual-boot machine featuring either

Windows XP and Ubuntu, or Windows Vista and Ubuntu. Restart the

computer to test the configuration, and at boot-up the GRUB boot

loader menu appears, offering a choice of operating system — Win-

dows or Linux — to boot to. The dual-boot configuration is now

completed.

1.4 Virtualization — Simulating
Operating Systems

The famous matryoshka dolls (or Russian nesting dolls) contain

smaller copies of themselves inside one another, and those smaller

dolls inside contain still more smaller copies inside themselves, and so

on in a sequence of progressively smaller dolls. In short, what the

Russians did for dolls, virtualization does for operating systems. By

abstracting a computer’s hardware, virtualization software makes it

possible for a host operating system to “contain” one or more other

client operating systems within itself, simulating each guest OS as

40 Chapter 1 / Cross-Platform Games

Figure 1-60

though it were installed and executing on a different computer. Among

the diverse range of virtualization software available, two of the most

well known are Microsoft Virtual PC and VMWare Workstation.

� NOTE. Host refers to the primary operating system running on the
user’s machine. Guests refer to the simulated operating systems run-
ning within the host using virtualization software.

� Virtual PC 2007 — Virtual PC is a Microsoft-developed

virtualization product freely available for select versions of Win-

dows, and is designed to simulate other operating systems, pri-

marily other versions of Microsoft Windows, although other

operating systems such as DOS and OS/2 are also supported. Vir-

tual PC 2007 can be run on the following host operating systems:

Windows Vista Business, Windows Vista Enterprise, Windows

Vista Ultimate, Windows Server 2003 Standard Edition, Windows

Server 2003 Standard x64 Edition, Windows XP Professional, and

Windows XP Tablet PC Edition.

� VMWare Workstation 6 — VMWare Workstation is a

virtualization product that lacks the Microsoft-centricity of Virtual

PC, and consequently it supports a greater variety of both host and

guest operating systems, including Windows and Linux. Unlike

Virtual PC, however, VMWare is a commercial product that can be

purchased under a variety of different arrangements. An evalua-

tion version of VMWare, and more information about VMWare

generally, can be found at the VMWare web site at

http://www.vmware.com/. This book focuses on virtualization

using VMWare.

Chapter 1 / Cross-Platform Games 41

Ch
a

p
te

r
1

1.4.1 Using VMWare

The VMWare desktop is the starting point of virtualization. It is the

control center from which “virtual machines” are created to contain

guest operating systems. To simulate an OS, VMWare requires users

to create a virtual machine (an emulated computer), and there gener-

ally must be as many virtual machines as there are guest operating

systems — one virtual machine per guest OS. The following section

illustrates how to emulate Linux Ubuntu (guest OS) using VMWare

running on the host OS Windows Vista, although these steps could

equally apply to Windows XP as the host.

42 Chapter 1 / Cross-Platform Games

Figure 1-61

1.4.2 Creating a Virtual Machine for Linux
Ubuntu

1. Start VMWare Workstation.

2. Select File | New | Virtual Machine.

3. The Virtual Machine Wizard appears. Click Next.

4. Select Typical and click Next.

Chapter 1 / Cross-Platform Games 43

Ch
a

p
te

r
1

Figure 1-62

Figure 1-63

5. Select the guest OS to be run on this virtual machine — Linux for

this example — and select Ubuntu from the drop-down list. Click

Next.

6. Enter a name for the virtual machine, and select a folder on the

host hard disk where both the virtual machine and guest OS will

be “housed.” This will be “virtualized” as the hard disk (or virtual

disk) for the guest OS. Click Next.

44 Chapter 1 / Cross-Platform Games

Figure 1-64

Figure 1-65

7. Select the desired networking option; here we’ve chosen Use net-

work address translation (NAT), which allows the guest OS to

connect to the Internet through the host connection. Click Next.

8. Specify the total amount of space in megabytes to be deducted

from the host hard disk and used as the total capacity for the vir-

tual disk of this virtual machine. For a virtual machine running

Ubuntu, this capacity must be more than 2 GB (2,000 MB). Click

Finish.

Chapter 1 / Cross-Platform Games 45

Ch
a

p
te

r
1

Figure 1-66

Figure 1-67

9. The virtual machine is created successfully and has a clean, for-

matted hard disk of a total capacity as specified in the previous

step, and is now ready to install the guest OS, Ubuntu. Click

Close.

10. Download a Linux Ubuntu ISO from the Ubuntu web site

(http://www.ubuntu.com/), and then return to the VMWare

desktop.

11. The VMWare desktop lists the newly created virtual machine, and

the Devices panel lists the virtual machine’s hardware (which can

be customized). Double-click the CD-ROM device.

12. The CD-ROM device for the guest

OS is currently mapped by default to

the CD-ROM of the host OS, mean-

ing each OS will share the CD-ROM.

This CD-ROM can also be assigned

to ISO images. To install Ubuntu to

this virtual machine, choose Use

ISO image and use the Browse but-

ton to select the downloaded Ubuntu

ISO. Click OK.

46 Chapter 1 / Cross-Platform Games

Figure 1-68

Figure 1-69

13. Select the Ubuntu virtual machine from the Sidebar and either

click the Play button, or right-click the mouse on the Ubuntu icon

and then click Power-On to start the virtual machine, automati-

cally booting from the Ubuntu ISO.

14. Install Ubuntu using the instructions from Section 1.3.5.

15. The guest OS is now installed on the virtual machine. Shut down

the guest OS as usual to power-off the virtual machine, and restore

the CD-ROM mapping settings from the Ubuntu ISO to the local

machine’s hardware, as discussed in step 12. The virtual machine

can now be powered on to boot Ubuntu as a guest OS.

Chapter 1 / Cross-Platform Games 47

Ch
a

p
te

r
1

Figure 1-70

Figure 1-71

1.5 Conclusion

This chapter defined cross-platform games as games that run on two

or more different platforms (or species of operating systems). Exam-

ples of cross-platform games include Diner Dash, The Battle for

Wesnoth, OpenArena, and thousands of others. Some of the potential

operating systems games can run on include Windows, Mac OS X, and

Linux; Linux Ubuntu especially has attracted a growing population of

game players and developers compared to other Linux distributions.

To develop cross-platform games, developers must compile and test

their games on each target platform before release as a final product.

Thus, cross-platform development requires a cross-platform environ-

ment, and developers must have the facilities to run multiple platforms

by maintaining one machine per platform, by multiple booting, or by

using virtualization software like VMWare to simulate guest operating

systems inside a host OS. This book assumes the reader has a Win-

dows or Mac OS X background, and for this reason, Linux Ubuntu, and

using Linux generally, is considered in more detail in the next chapter.

48 Chapter 1 / Cross-Platform Games

Chapter 2

Linux Ubuntu and Linux
Gaming

In the previous chapter we discussed the various OS platforms com-

monly used for games, as well as the theories behind cross-platform

games and their programming. We also discussed various machine

configurations required in order to program and test these games,

including multiple boot systems and OS virtualization.

This chapter moves a step forward in the world of cross-platform

game development and puts behind us the technicalities of machine

setup, multiple booting, and virtualization by considering further the

nature of the Linux distro Ubuntu, and specifically the relationship

between Linux and contemporary games. In short, this chapter is pri-

marily a quick-start guide to Ubuntu and Ubuntu gaming, aimed largely

at those users with only a Windows or Mac background who would like

to learn more about Linux and Linux games.

49

2.1 Ubuntu Installation and
Troubleshooting

In the previous chapter we discussed Linux Ubuntu, a Linux distribu-

tion, detailing what it is, how to download it, and how it can be installed

to the system using the Ubuntu Live CD, freely available from Canoni-

cal, Ltd. (http://www.ubuntu.com). Ubuntu, like the increasingly

popular PCLinuxOS, is a desktop Linux distribution intended for gen-

eral home and multimedia use, such as browsing the net, watching

movies, listening to music, and playing games. With periodical soft-

ware updates and patches, biannual new releases, integration with

Windows partitions and networks, multimedia codecs, a growing

online community, increasing support for various hardware and driv-

ers, and compatibility with many common Windows file formats (from

Microsoft Office to Adobe Photoshop), Ubuntu looks to become one of

the prominent Linux gaming platforms.

The previous chapter explained the details of a standard Ubuntu

installation. Whether or not this install is for single OS machines, mul-

tiple boot machines, or virtualization configurations, the installation is

the same for each. This section considers in more detail some of the

problems encountered by users during an Ubuntu install, and provides

some potential solutions and advice in a typical Q&A (questions and

answers) format.

Q. I insert the Ubuntu CD/DVD and then restart the computer

with the CD/DVD in the drive, but at system boot-up nothing hap-

pens. The system either boots into the OS installed on the

machine already (Windows XP, Vista, etc.), or the machine does

nothing but show a prompt or a blank screen, possibly because no

OS is installed at all. It acts no differently from when it has an

empty CD/DVD drive.

A. This problem occurs most likely because the system’s BIOS

(basic input/output system) is not configured to boot from the

CD/DVD at system startup, or because the system has more than

one connected CD/DVD drive and it is one of the other drives (not

this one) from which it is configured to boot. If the latter, then this

50 Chapter 2 / Linux Ubuntu and Linux Gaming

issue is usually resolved by simply inserting the Ubuntu CD/DVD

into a different drive and then rebooting the system; if, however,

the former is the case (or if the “changing drives” solution doesn’t

work), then the BIOS should probably be reconfigured to boot first

from the CD/DVD and then subsequently from other bootable sys-

tem devices, such as the hard disk, USB sticks, etc. The menus

and options differ from one BIOS to another, and readers are

advised to consult their BIOS manual or their computer supplier

or hardware manufacturer before editing BIOS settings.

Q. I have already installed Windows Vista, and I have yet to install

Ubuntu for a dual-boot arrangement. However, Windows Vista is

installed to the primary partition on the system and there is only

one partition, or there exist only NTFS formatted partitions. Is

there any way I can install Ubuntu to the system without having to

format the entire hard disk, including Vista, and start again? I

would like to keep my existing Windows installation and simply

“add” a new partition onto which I can install Ubuntu.

A. Yes, Windows Vista ships with a Disk Management Utility

(accessible from My Computer | Manage | Disk Management),

and this is designed to “shrink” (or cut off) parts of an existing or

preformatted drive into a separate partition on-the-fly. Simply

select a drive from which space may be deducted to feed the new

partition, then click Shrink.

Q. During the Ubuntu installation, the Partition Wizard shows me

a list of all disks and partitions to which Ubuntu may be installed;

however, a selection of one or more small-sized disks appear, per-

haps 256 MB in size, or maybe 512 MB, etc., and these devices are

often given system-like names like /dev/sdb1 or /dev/sda3. What

are these?

A. These devices are probably USB memory sticks, TV tuner USB

devices, or photographic cards; if this the case, then each of them

can safely be ignored.

Q. During the Ubuntu installation, the Partition Wizard doesn’t

display any available hard disks or partitions onto which Ubuntu

can be installed.

Chapter 2 / Linux Ubuntu and Linux Gaming 51

Ch
a

p
te

r
2

A. This issue may be related to software RAID devices; this is

perhaps solvable by using the Ubuntu Alternate Installation CD,

downloadable from the Ubuntu web site. This CD does not include

a Live version of Ubuntu, but instead features a text interface

installer with a number of extra utilities designed to make installa-

tion simpler on “problematic” machines.

Q. After installing Ubuntu, I can no longer boot into Windows

Vista, perhaps because Vista is no longer a selectable option from

the boot menu at system startup.

A. Insert the Windows Vista DVD into the drive and reboot the

computer. Booting from the DVD, enter the Vista Setup and select

the Repair installation. Highlight the Vista partition and run the

command prompt. Then enter the following command to run the

Microsoft Chkdsk application and repair errors:

chkdsk c: /R

2.2 Getting to Know Ubuntu

Ubuntu is a completely free of charge, open-source Linux-based oper-

ating system (distro) for desktop computing (home use). Thus, it

comes with bundled software for playing movies, listening to music,

browsing the Internet, editing photos, performing office tasks like

word processing, and of course, playing games. This section offers a

broad overview of many applications preinstalled with Ubuntu, but can-

not hope to offer a complete and comprehensive guide to Ubuntu. This

chapter should be considered more as a “getting started” kit.

52 Chapter 2 / Linux Ubuntu and Linux Gaming

2.2.1 Ubuntu Login

Ubuntu — like some Windows and Mac systems — begins at the login

screen where users may type their user names and passwords to enter

their respective “areas” on the system. This is designed to authenti-

cate user access to the computer, and to spatially divide the user-

created documents on a per-user basis for personal photos, e-mail,

documents, etc.

Chapter 2 / Linux Ubuntu and Linux Gaming 53

Ch
a

p
te

r
2

Figure 2-1: Ubuntu
login screen

2.2.2 Ubuntu Desktop

Once a user logs into Ubuntu from the login screen, the OS then boots

to the “desktop” (like the Windows or Mac desktop). From here users

launch applications to browse the web, check e-mail, create docu-

ments, play games, and more. By default in Ubuntu, the main menu

(the place from where applications are launched) appears as a gray bar

aligned horizontally across the top of the screen, and it features three

menu items: Applications, Places, and System. Applications is a menu

of installed and executable applications, Places is a menu of shortcuts

to common system locations such as the desktop, documents, and sys-

tem devices, and System is a menu of control panel-like applications

and other system management utilities.

54 Chapter 2 / Linux Ubuntu and Linux Gaming

Figure 2-2: The Ubuntu
desktop

2.2.3 System Monitor

System Monitor, which is similar to the Windows Task Manager, is a

utility application designed to display a list of all the currently running

system processes (from applications to libraries and other invisible

routines). It can be launched from the System menu by choosing

System | System Monitor.

2.2.4 Update Manager

Chapter 2 / Linux Ubuntu and Linux Gaming 55

Ch
a

p
te

r
2

Figure 2-3: Ubuntu
System Monitor

Figure 2-4: Ubuntu
Update Manager

Both Windows and Mac have their own intrinsic automated patching or

update services designed to update the installed applications and to

repair known software bugs, from trivialities to security updates (e.g.,

Windows Update). Ubuntu also features an automated, online patching

service that first scans the local computer for all installed applications

and then notifies the users whenever appropriate updates or fixes are

available for download. Update Manager is accessed by double-clicking

the icon in the top right-hand corner of the screen.

2.2.5 Screen and Graphics Preferences and
Restricted Drivers Manager

The Screen and Graphics Preferences utility allows you to change the

system resolution and the monitor type and to install device drivers

for graphics cards. This utility can be accessed from the Ubuntu menu

bar by selecting System | Administration Screens and Graphics. The

Restricted Drivers Manager is also available from the System |

Administration menu, and is designed to auto-detect graphics hard-

ware (such as Nvidia and ATI hardware-accelerated cards) and install

the appropriate drivers for them.

56 Chapter 2 / Linux Ubuntu and Linux Gaming

Figure 2-5: Ubuntu
Screen and Graphics
Preferences

2.2.6 Add/Remove Applications

In Windows, the Add/Remove control panel utility is used primarily to

remove (or uninstall) software from the system, and only secondarily

to install software since most software ships with its own installers,

typically install wizards. Not so in Ubuntu, however. In Ubuntu, the

Add/Remove utility (accessible from the menu bar by selecting Appli-

cations | Add/Remove) is a comprehensive and actively maintained

database of applications available to install free of charge. Installed

applications may also be removed from the system using this utility.

Chapter 2 / Linux Ubuntu and Linux Gaming 57

Ch
a

p
te

r
2

Figure 2-6: Ubuntu
Add/Remove
Applications

2.2.7 Synaptic Package Manager

Like an advanced Add/Remove utility, the Synaptic Package Manager

can do everything Add/Remove can do, and more. Accessible by

selecting System | Administration | Synaptic Package Manager, the

Synaptic Package Manager is a comprehensive database of both appli-

cations and non-executable software like libraries and software

development kits (SDKs). This utility will be important for the Ubuntu

game developer, as we shall see.

58 Chapter 2 / Linux Ubuntu and Linux Gaming

Figure 2-7:
Downloading a file with
Synaptic Package
Manager

2.2.8 Ubuntu Terminal/Console/Shell

Ubuntu is said to be a Linux distribution, and like all distros, Ubuntu is

based on the Linux kernel, which is the heart and soul of the operating

system and contains the core foundational rudiments that actually

make things work. This is a level at which there is no GUI; at this

level the OS communicates in terms of Linux commands, a sight usu-

ally hidden from a user’s eyes. However, the Ubuntu Terminal/

Console/Shell is a portal through which the user may directly type

commands and may control the OS through a keyboard-based shell lan-

guage known as BASH (Born Again Shell). This chapter will look at

some basic shell commands, and though the shell is an integral part of

Linux, this book will not consider the shell in depth. In cases where

the shell is required in this book, a step-by-step guide is used to high-

light the exact commands to type into the terminal. Those looking to

master Linux are advised to familiarize themselves with the Linux

Terminal.

Chapter 2 / Linux Ubuntu and Linux Gaming 59

Ch
a

p
te

r
2

Figure 2-8: Ubuntu
Terminal

2.2.9 Places | Computer

The Ubuntu equivalent of My Computer can be accessed from the

main menu by selecting Places | Computer. From here, a user can

browse all connected devices, internal and peripheral, from hard disks

and CD/DVD drives to USB sticks and digital cameras.

2.2.10 Firefox Web Browser

60 Chapter 2 / Linux Ubuntu and Linux Gaming

Figure 2-9

Figure 2-10: Firefox

Ubuntu ships by default with the open-source, cross-platform, and

freely available web browser Mozilla Firefox. Like Internet Explorer,

this application is used for browsing the web, checking e-mail, and also

for browsing FTP servers. Firefox can be launched both from the

shortcut icon and from the menu system itself via Applications |

Internet | Firefox.

2.2.11 OpenOffice.org

Ubuntu ships with the free, open-source, and cross-platform office

suite OpenOffice.org, which is designed as a Microsoft Office alterna-

tive for creating documents, spreadsheets, animated presentations,

and vector-based graphics. OpenOffice.org also features a celebrated

degree of Microsoft Office compatibility, which means many docu-

ments and files can be migrated easily from Microsoft Office to

OpenOffice.org.

Chapter 2 / Linux Ubuntu and Linux Gaming 61

Ch
a

p
te

r
2

Figure 2-11:
OpenOffice.org

2.2.12 Photo Editing

A renowned open-source equivalent of Adobe Photoshop, GIMP is also

shipped with Ubuntu and offers to developers a wide variety of tools

for editing photos including brushes, stamps, crops, cuts, fills, and fil-

ters. GIMP is considered further as a cross-platform game

development tool in the next chapter.

62 Chapter 2 / Linux Ubuntu and Linux Gaming

Figure 2-12: GIMP

2.2.13 Installing and Playing a Game on Ubuntu

Ubuntu is a promising gaming platform with a large selection of games

available via the Add/Remove application database. This section pro-

vides a step-by-step guide to installing an open-source game called

Frozen Bubble to the system via the Ubuntu Terminal console, demon-

strating some shell commands and system tools along the way.

� NOTE. Frozen Bubble is available as a web-based Java game (at
http://glenn.sanson.free.fr/v2/?select=fb:play), but this tutorial
focuses on the downloadable platform-specific binary distribution.

1. Beginning from the Ubuntu desktop, launch the Software Sources

utility application by selecting System | Administration | Soft-

ware Sources. This application expands the software database to

include additional software sources.

Chapter 2 / Linux Ubuntu and Linux Gaming 63

Ch
a

p
te

r
2

Figure 2-13: Frozen
Bubble

2. Check all software sources and then click Close.

3. From the Ubuntu main menu, open a terminal by selecting Appli-

cations | Accessories | Terminal.

4. Enter the following commands to install Frozen Bubble to the local

machine, pressing the Return key after each line:

sudo apt-get update

sudo apt-get install frozen-bubble

64 Chapter 2 / Linux Ubuntu and Linux Gaming

Figure 2-14

Figure 2-15

5. When the download is complete, close the terminal. Frozen Bub-

ble is now ready to play via the Ubuntu main menu by selecting

Applications | Games | Frozen Bubble.

2.3 Linux and “Transgaming”
Technologies

One of the most common complaints leveled against Linux as a gaming

platform is, “My whole gaming library is Windows based, and since

most of my Windows games are not cross-platform, Linux can’t play

my games.” Several years ago this argument was perhaps incontest-

able for the majority of Linux game enthusiasts. The point was that

Linux couldn’t play Windows games, which was important for both

gamers and developers. Important for gamers because gamers wanting

to migrate to Linux would do so only so long as there was a way to

continue playing their older Windows games, or to play recent games

not available on Linux natively. Important for Linux game developers

because without Windows gaming support on Linux, it would prove

harder to attract a sizeable gaming population to the Linux platform.

Transgaming applications (like Cedega and Wine), then, are seen by

many as an attempt to resolve the platform boundaries facing gamers

Chapter 2 / Linux Ubuntu and Linux Gaming 65

Ch
a

p
te

r
2

Figure 2-16

on Linux; they are applications that allow Windows games to run on

other platforms, including Linux. However, transgaming applications

are not about cross-platform games. Why? Because cross-platform

games are those that run natively on two or more different species of

operating system, whereas transgaming technologies are a cross-plat-

form compatibility layer supporting platform-specific games, allowing

those games to run through the compatibility layer on other operating

systems (hence the distinction in terms). Though this book is primar-

ily about cross-platform games, this section examines a selection of

compatibility layers (applications) that support transgaming on Linux.

These applications allow Windows games to run on Linux, and

specifically on Ubuntu.

2.3.1 Cedega
Cedega is a commercial cross-platform transgaming application, avail-

able for both Linux and Mac, that is designed for gamers to play

Windows games on those other platforms. Some of the games sup-

ported by Cedega include Half-Life 2, Resident Evil 4, Need for Speed

ProStreet, and Elder Scrolls IV: Oblivion. More details regarding

Cedega can be found at the official Cedega web site at

http://www.transgaming.com/.

� NOTE. For a list of Cedega-compliant games, please visit the Cedega
online game database at http://games.cedega.com/gamesdb/.

66 Chapter 2 / Linux Ubuntu and Linux Gaming

2.3.2 CrossOver

CrossOver is a commercial compatibility layer aimed less at support-

ing specifically Windows games on Linux than at supporting Windows

applications generally on Linux and Mac (applications such as

Microsoft Office, Photoshop, Director, etc.). However, CrossOver offi-

cially supports Shockwave Director for playing Shockwave-based web

and stand-alone games. Other applications and games supported on

Linux by CrossOver include Microsoft Office 2003, Photoshop 7.0,

EVE Online, and others. For more details regarding CrossOver, please

visit their web site at http://www.codeweavers.com/products/.

� NOTE. For a list of CrossOver-compliant applications and games,
please visit the Crossover online games and applications database
at http://www.codeweavers.com/compatibility/browse/name/.

Chapter 2 / Linux Ubuntu and Linux Gaming 67

Ch
a

p
te

r
2

Figure 2-17: CrossOver

2.3.3 Wine

Freely available, open-source, and cross-platform, Wine is a popular

compatibility layer to run selected Microsoft Windows applications and

games seamlessly on other platforms, such as Mac and Linux (running

Windows applications as though they were native). Some of the Win-

dows applications and games supported by the Wine application

include Half-Life 2, .NET Framework 2.0, and World of Warcraft.

More information can be found at the Wine web site at

http://www.winehq.org/.

� NOTE. For a list of Wine-compliant applications and games, please
visit the Wine online games and applications database at
http://appdb.winehq.org/.

2.3.3.1 Installing Wine on Linux Ubuntu

1. Beginning from the Ubuntu desktop, launch the Synaptic Package

Manager from the Ubuntu main menu by selecting System |

Administration | Synaptic Package Manager.

68 Chapter 2 / Linux Ubuntu and Linux Gaming

Figure 2-18: Wine

2. Click the Search button and search for wine.

3. Click on the wine option that appears in the list to mark this soft-

ware for installation, and then click Apply to install Wine. An

Internet connection is required.

Chapter 2 / Linux Ubuntu and Linux Gaming 69

Ch
a

p
te

r
2

Figure 2-19

Figure 2-20

4. After the Wine application is installed, it is available from the

Ubuntu main menu by selecting Applications | Wine.

2.4 Automating Ubuntu with Automatix

Ubuntu — like many Linux distributions — is free software (free of

charge) but also free in terms of the FSF (Free Software Foundation)

definition of free; as such it does not ship with certain media codecs

and applications, specifically those that do not meet the FSF criteria

for being “free.” Consequently, Ubuntu cannot natively play some spe-

cific media codecs that might be used in games such as WMA or MP3.

There is, however, an Ubuntu application that may be downloaded for

free and used to install a whole variety of popular media codecs and

applications. The legal status of downloading specific codecs using

Automatix may vary from region to region across the United States

and across the world. Readers are therefore advised to check the

Automatix documentation regarding its status in particular regions.

� NOTE. The reader has sole responsibility for his or her downloads.

70 Chapter 2 / Linux Ubuntu and Linux Gaming

Figure 2-21

2.4.1 Installing and Using Automatix for Linux
Ubuntu

1. Beginning from the Ubuntu desktop, navigate the Firefox web

browser to the Automatix web site at http://www.getauto-

matix.com.

2. At the Automatix home page, click the Installation link to display

the installation page, and download the .deb installation package

for your version of Ubuntu.

Chapter 2 / Linux Ubuntu and Linux Gaming 71

Ch
a

p
te

r
2Figure 2-22

Figure 2-23

3. Once downloaded, double-click the .deb Automatix installation

package to install Automatix to your local machine.

4. Launch Automatix from the Ubuntu main menu by selecting

Applications | System Tools | Automatix.

72 Chapter 2 / Linux Ubuntu and Linux Gaming

Figure 2-24

Figure 2-25

5. Once Automatix is started, its menus can be used to select differ-

ent products to install to the system. To begin the installation of

checked items, click the Start button.

2.5 The Linux Shell

Ubuntu as a Linux distribution is based on the Linux kernel, which

contains the OS components such as the foundational libraries and

low-level hardware programming common to all Linux distributions.

The kernel is not in itself a stand-alone OS insofar as users do not

download and use the Linux kernel directly as an OS like they do a

distro; instead, users download and use Linux-based distros (such as

Ubuntu), themselves high-level layers that work “under the hood”

with the kernel. The Linux kernel and the OS generally operate

through a series of sending and receiving commands beneath the GUI.

Users can send commands to the OS via the Ubuntu Terminal. This

section considers further the Ubuntu Terminal and a selection of

common BASH shell commands.

� NOTE. At this point, open an Ubuntu Terminal from the main menu
by selecting Applications | Accessories | Terminal.

Chapter 2 / Linux Ubuntu and Linux Gaming 73

Ch
a

p
te

r
2

Figure 2-26

2.5.1 Common Shell Commands
� The ls (list) command is perhaps the most common of all Linux

BASH shell commands. Once entered into the Terminal window at

the command prompt, ls returns in columns and rows an alphabeti-

cal list of the files in the current directory, as shown in the follow-

ing figure.

� The clear (clear screen) command clears (erases) all contents from

the Terminal window.

74 Chapter 2 / Linux Ubuntu and Linux Gaming

Figure 2-27

Figure 2-28

� Users may also add parameters to Linux commands. For example,

“--help” displays on-screen help that details a command, its usage,

and all possible parameters. Notice that parameters are passed to

commands with a preceding hyphen (-) or double hyphen (--). The

--help parameter applies to most Linux commands.

� The cp (copy) command copies one or more specified files or fold-

ers to the specified destination folder. The command accepts two

string arguments; the first specifies the path or file name of the

source file or folder to copy, and the second specifies the destina-

tion to receive the copied file or folder.

Chapter 2 / Linux Ubuntu and Linux Gaming 75

Ch
a

p
te

r
2

Figure 2-29

Figure 2-30

� NOTE. To run commands as an Admin (superuser), the term “sudo”
is prefixed to general system commands like cp.

� The cd (change directory) command is used to change the current

directory to a specified subdirectory, and the command rm

(remove direction) is used to remove (delete) specified file(s) from

the current directory.

� NOTE. File names featuring the space character, such as hello
world.bmp, should be enclosed in quotation marks in the command
line (“hello world.bmp”).

� The mkdir (make directory) command is used to create in the cur-

rent directory a new directory of the specified name.

76 Chapter 2 / Linux Ubuntu and Linux Gaming

Figure 2-31

The following table lists a series of common Linux BASH shell com-

mands, summarizing the role of each command and relating them to

their DOS equivalent (for those readers familiar with DOS commands).

DOS Command Linux BASH
Command

Description

ASSIGN ln Create shortcut link to file or directory

CD cd Change directory

CHDISK du -s Check disk usage with summarize
parameter

CLS clear Clear the screen

COMP diff or cmp List differences between the content of
any two files

COPY cp Copy file or directory

DATE date Display system date

DEL rm Remove (delete) file

DIR ls List directory contents

DIR *.* /o-d ls -tr List directory contents by reverse time of
modification/creation

Chapter 2 / Linux Ubuntu and Linux Gaming 77

Ch
a

p
te

r
2

Figure 2-32

DOS Command Linux BASH
Command

Description

DIR *.* /v /os ls -ls List files and size

ECHO echo Print variable to terminal window

EXIT exit Exit from terminal

HOSTNAME hostname Print to terminal window the host name
of the computer

MD mkdir Make directory

MORE more Output contents of file to terminal page
by page to fit the display

MOVE mv Move file

MSD lsdev Display system information

PING ping Check network connection

PRINT lpr Print text file

RD rmdir Remove directory

REBOOT shutdown -r now Shut down and reboot the machine
immediately

SCANDISK fsck Check and repair the file system

SORT sort Sort data alphabetically or numerically

TIME time Display system time

TREE ls -r List files in reverse order

TYPE cat Output contents of file to terminal

WIN startx Start X server

XCOPY cp -R Copy directory and all files and subdi-
rectories recursively

� TIP. Comprehensive guides and tutorials to the Linux shell are freely
available online and can be found at the following web sites:

� http://www.usd.edu/~sweidner/lsst/

� http://www.linuxcommand.org/learning_the_shell.php

� http://www.gnu.org/software/bash/manual/bashref.html

78 Chapter 2 / Linux Ubuntu and Linux Gaming

2.5.2 Creating and Compiling a C Program
Using the Ubuntu Terminal and BASH Shell
Commands

Computer games are often made in languages such as C and C++,

regardless of whether the game runs on Linux, Windows, or Mac. In

Ubuntu, and Linux more generally, C programs can be created and

compiled entirely via the shell. However, most game developers nowa-

days use an IDE (integrated development environment) instead of the

terminal. Some IDEs are slick-looking editors complete with compiler,

debugger, code editor, and a series of other features to make program-

ming simpler. A cross-platform code editor, Code::Blocks, is

considered in the next chapter. The following steps illustrate how to

create, compile, and run a program via the Ubuntu Terminal using only

the keyboard and the BASH shell commands.

1. Beginning from the Ubuntu desktop, launch a Terminal window

from the Ubuntu main menu by selecting Applications | Acces-

sories | Terminal.

2. Enter the desktop folder by typing the following command into the

Terminal window:

cd desktop

3. From the desktop folder, use the BASH shell commands to create

a source file called test.c (a text file to contain the C source code

for a simple C program), as follows:

sudo gedit test.c

4. A text editor application begins. Enter into the text editor the fol-

lowing simple C program that will print “hello world” into the

Terminal window whenever it is executed from the terminal:

#include <stdio.h>

int main()

{

int i;

for (i = 0; i < 10; i++);

printf("hello world\n");

Chapter 2 / Linux Ubuntu and Linux Gaming 79

Ch
a

p
te

r
2

return 0;

}

5. Once this is entered into the editor, select File | Save to save the

file locally. Then exit the gedit program and return to the terminal.

6. At the prompt, enter the following to “dump” to the terminal the

contents of the C file, and ensure the contents are correct.

cat test.c

7. Compile the C file using the following Terminal command:

gcc -ggdb test.c -o test

8. Once compiled successfully, run the newly compiled program

using the following Terminal command:

./test

2.6 Conclusion

This chapter has highlighted both the intricacies of Ubuntu as an oper-

ating system, and how Ubuntu — being lightweight, free, and versatile

— is likely to become an important Linux distribution for gamers and

game developers.

The next step is to examine a selection of cross-platform game

development tools such as a C++ programming IDE and a couple of

graphics suites. Specifically, the next chapter examines Code::Blocks,

GIMP, Blender 3D, and Audacity, which can be considered cross-plat-

form tools insofar as each of them run on Windows, Mac, and Linux

and each of them can be used to create games for all three of those

platforms.

80 Chapter 2 / Linux Ubuntu and Linux Gaming

Chapter 3

Cross-Platform
Development Tools

The first chapter of this book considered the definition of “cross-plat-

form” and examined a variety of contemporary operating systems from

Windows to Linux. The second chapter offered a beginner’s overview

of Linux Ubuntu, focusing specifically on Ubuntu gaming and game

development. This chapter is guided by the ethos that “a workman is

only as good as his tools,” and so it takes the first step along the

twisted road of game development by selecting (and installing) all the

necessary cross-platform tools and software for making cross-platform

games. Hundreds of open-source applications are available to develop-

ers for the purpose of making cross-platform games, downloadable and

free of charge to anyone with an Internet connection. We’ll discuss

four of these applications in this chapter: Code::Blocks, GIMP, Blender

3D, and Audacity.

� Code::Blocks — First released in 2004, Code::Blocks is an

open-source and free software IDE (integrated development envi-

ronment) for C++, supporting a selection of platforms including

Windows, Linux, FreeBSD, and Mac OS X. Sporting a host of fea-

tures including project management, syntax highlighting, and code

completion, Code::Blocks allows programmers to compile C++

applications on all of its supported platforms. This chapter exam-

ines how to download, install, and use Code::Blocks on Windows

and Linux, although it assumes the reader is already familiar with

C++ as a language.

81

� GIMP — An alternative to Adobe Photoshop, GIMP is an

open-source and free software photo editing suite with a list of fea-

tures almost as long as its developmental history. GIMP offers to

its users a varied selection of tools ranging from brushes to high-

lighters designed specifically for retouching, scanning, and editing

photos and textures.

82 Chapter 3 / Cross-Platform Development Tools

Figure 3-1:
Code::Blocks

Figure 3-2: GIMP

� Blender 3D — Blender 3D as an application was born in 1998,

and has since 2002 developed under the guidance of Ton

Roosendaal to become the world’s most downloaded 3D animation

program, with the online encyclopedia Wikipedia estimating

Blender’s user base at over 800,000 worldwide. Blender 3D fea-

tures a competitive toolset for making 3D animations, models, and

other special effects for both movies and games. Unlike its propri-

etary competitors such as 3ds Max, Maya, and SoftImage, Blender

3D is free and open-source, and has further gained fame from its

association with movies such as Spider-Man 2, the short film Ele-

phants Dream, and the Argentine CG movie Plumíferos. Blender

3D supports the Windows, Mac OS X, Linux, SGI, Irix 6.5, and Sun

Solaris 2.8 platforms.

� Audacity — The digital audio editor Audacity is designed for

recording, editing, and exporting audio ranging from less than a

second in length to full soundtracks. Audacity was awarded the

2007 Community Choice Award for Best Project for Multimedia by

SourceForge.net, and in August 2007 Audacity was ranked by

SourceForge.net as its 11th most popular app, having been down-

loaded 24 million times. Furthermore, like the other software fea-

tured in this chapter, Audacity is open-source, free, and

cross-platform, and supports Mac OS X, Microsoft Windows, and

Linux. Audacity is discussed in more detail in Chapter 6.

Chapter 3 / Cross-Platform Development Tools 83

Ch
a

p
te

r
3Figure 3-3: A

render from
Blender 3D

3.1 Code::Blocks

Games are only one form of software as are word processors, spread-

sheets, databases, and Internet browsers like Internet Explorer or

Firefox. Regardless of the kind of software, however, all software

comes to exist only after having first been developed by programmers

using a programming language such as C++. When developing their

software, most programmers make use of other kinds of software to

make their professional lives easier. Code::Blocks is one such package.

Known as an IDE (integrated development environment),

Code::Blocks is used by C++ programmers to manage and collate

source files into organized projects, and to edit and compile source

code into a final executable form that users can run stand-alone as an

application. There are a variety of alternative development environ-

ments including Microsoft Visual Studio .NET and Dev C++;

however, Code::Blocks is the focus of this chapter and is assumed to

be the development environment used by the reader when considering

all subsequent C++ code samples featured in this book. This is for the

following reasons:

84 Chapter 3 / Cross-Platform Development Tools

Figure 3-4:
Audacity

� Code::Blocks features a clean, approachable, and platform-

independent interface that maps across-platforms, and so is

equally usable on every supported platform.

� Code::Blocks features a comprehensive set of application wizards

and project templates that can be used for every newly created

project. These templates are specifically targeted toward game

programmers beginning new projects in Code::Blocks, meaning

cross-platform games may have their source code and foundations

generated, configured, ready to execute, and ready to tweak within

a few mouse clicks.

� Code::Blocks is open-source, free of charge, and freely download-

able for every user on any supported platform with access to the

Internet.

� Being cross-platform means Code::Blocks is available for multiple

platforms. Each build of Code::Blocks for a specific platform is

known as a distribution, or distro, with one distribution for Win-

dows, one for Linux, etc. Thus, projects created and compiled with

one distribution of Code::Blocks may usually be migrated to and

compiled by any other distribution (cross-compilation).

� Code::Blocks is a community-driven open-source project and, like

so many open-source projects, has a thriving and supportive online

community. Code::Blocks is regularly updated and widely docu-

mented, and the online forums offer a social environment for

Code::Blocks enthusiasts from every platform.

Chapter 3 / Cross-Platform Development Tools 85

Ch
a

p
te

r
3

3.2 Downloading and Installing
Code::Blocks in Ubuntu

Code::Blocks is a free C++ IDE available to download for Linux

Ubuntu from the official Code::Blocks web site or via the Ubuntu Ter-

minal, but not from the Synaptic Package Manager like many other

Ubuntu applications. The following steps detail the Code::Blocks

installation process for Ubuntu.

� TIP. Open-source applications are often considered by developers
as works in progress, and Code::Blocks is no different. Developers
often change them by adding new features and repairing existing
bugs, and sometimes make their applications available in new ways.
The following installation instructions for Code::Blocks on Ubuntu
are known to be current at the time of writing, but readers may first
prefer to check the online documentation at the Code::Blocks wiki
(http://wiki.codeblocks.org/).

1. Beginning from the Ubuntu desktop on a machine with access to

the Internet, open the Ubuntu Terminal by selecting Applications

| Accessories | Terminal.

2. Type the following, pressing Return after each line:

sudo apt-get install build-essential

sudo apt-get install gdb

sudo apt-get install libwxgtk2.6-0

sudo apt-get install libwxgtk2.6-dev wx2.6-headers wx-common

sudo apt-get install wx2.6-doc

3. Back up the package sources file using the following command and

then press Return:

sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak

4. Edit the sources file as follows:

gksudo gedit /etc/apt/sources.list

Add the following line as appropriate for the particular Ubuntu

distro, then save the document and return to the terminal:

(edgy main)

86 Chapter 3 / Cross-Platform Development Tools

deb http://apt.tt-solutions.com/ubuntu/

or

(feisty main)

deb http://apt.tt-solutions.com/ubuntu/

5. Type the following, pressing Return after each line:

wget http://www.tt-solutions.com/vz/key.asc

sudo apt-key add key.asc

sudo apt-get update

sudo apt-get dist-upgrade

sudo apt-get install libwxgtk2.8-0 libwxgtk2.8-dev wx2.8-headers

wx-common

sudo update-alternatives --config wx-config

6. Exit the terminal and navigate from Ubuntu’s web browser to the

Code::Blocks web site at http://www.codeblocks.org/.

7. Click Download to navigate to the Code::Blocks download page,

and from there select the latest Nightly Build option. Code::Blocks

as an application may be downloaded from its official web site as

one of two versions: a standard frozen release dating from 2005 (at

the time of writing) or an experimental nightly “build,” typically

released within the past 24 hours. The term “build” in this context

refers to a complete and newly compiled version of Code::Blocks

featuring any amendments and bug fixes coded by the

Chapter 3 / Cross-Platform Development Tools 87

Ch
a

p
te

r
3

Figure 3-5:
Code::Blocks home
page

development team within the past 24 hours. For this reason, users

are encouraged to download the latest nightly build of

Code::Blocks rather than the frozen release since it boasts a

greater variety of features and bug fixes. Choosing a nightly build

from the web site sends users to the Nightly Build forum, a place

where daily threads are arranged in date order with more recent

dates toward the top, with each thread offering a link to the

Code::Blocks build for the day the thread was posted.

8. Select the latest nightly build thread available from the forum, and

download the appropriate Ubuntu .deb package file to the Ubuntu

desktop.

88 Chapter 3 / Cross-Platform Development Tools

Figure 3-6:
Code::Blocks
download page

Figure 3-7

9. Open the downloaded Code::Blocks archive set and extract all

archives to the desktop, then proceed to install each archive to the

system. Code::Blocks is now installed and is available from the

Ubuntu Applications menu.

10. From the Ubuntu main menu, choose Applications | Program-

ming | Code::Blocks to launch Code::Blocks.

Chapter 3 / Cross-Platform Development Tools 89

Ch
a

p
te

r
3

Figure 3-8

Figure 3-9

3.3 Downloading and Installing
Code::Blocks in Windows

The following step-by-step instructions illustrate the Code::Blocks

download and installation procedure for Windows.

� TIP. Open-source applications are often considered by developers
as works in progress, and Code::Blocks is no different. Developers
often change them by adding new features and repairing existing
bugs, and sometimes make their applications available in new ways.
The following installation instructions for Code::Blocks on Windows
are known to be current at the time of writing, but readers may first
prefer to check the online documentation at the Code::Blocks wiki
(http://wiki.codeblocks.org/).

1. Starting from the Windows desktop, launch a web browser and

navigate to the 7-Zip Free Archiver home page at http://www.7-

zip.org/. Choose a download and click the appropriate link. 7-Zip is

a free, open-source file archiving application (like WinZip) for pack-

ing and extracting compressed archives in the following formats:

7Z, ZIP, GZIP, BZIP2, and TAR. This application is required

because Code::Blocks is packaged and distributed to users in a

series of 7Z archives.

90 Chapter 3 / Cross-Platform Development Tools

Figure 3-10:
7-Zip home page

2. Once 7-Zip is downloaded from the web successfully, execute its

automated installer to install 7-Zip to the local computer.

3. Launch a web browser and navigate to the MinGW C++ Compiler

web site at http://www.mingw.org/. Code::Blocks is compliant with

a wide selection of popular C++ compilers but as an application it

ships stand-alone, without a compiler, and therefore an independ-

ent compiler should be downloaded separately. MinGW is among

several Code::Blocks-compatible packages, and features a suite of

freely available, open-source C++ compilers and other tools for

building C++ applications from standard C++ source and header

files. To download the MinGW package from its official web site,

select Download | Installing MinGW, and then select the auto-

mated installer.

Chapter 3 / Cross-Platform Development Tools 91

Ch
a

p
te

r
3Figure 3-11:

MinGW home
page

4. Run the downloaded MinGW Automated Installer, and click Next

to begin.

5. Select Download and install and click Next to begin the online

MinGW installation process, installing MinGW from the web to the

local computer.

6. Once MinGW is installed to the local computer, launch a web

browser and navigate to the Code::Blocks web site at

http://www.codeblocks.org.

92 Chapter 3 / Cross-Platform Development Tools

Figure 3-12:
MinGW download
dialog

Figure 3-13

7. Click Download to navigate to the Code::Blocks download page,

and from there select the latest Nightly Build option. For more

information on Nightly Builds generally, see step 7 of Section 3.2,

“Downloading and Installing Code::Blocks in Ubuntu.”

8. For each Code::Blocks nightly build a total of three files (each in

7-Zip format) should be downloaded to the local computer, as

follows:

� wxmsw28u_gcc_cb_wx284.7z — 7-Zip archive featuring

the Code::Blocks DLL dependency, wxWidgets interface

library.

� mingwm10.7z — 7-Zip archive featuring another DLL

Code::Blocks dependency for working with MinGW compilers.

� CB_rev2_win32.7z file — 7-Zip archive featuring the

Code::Blocks C++ IDE, documentation, application, and

other associated files.

Chapter 3 / Cross-Platform Development Tools 93

Ch
a

p
te

r
3

Figure 3-14

9. Using 7-Zip (as downloaded in step 1), extract all the contents of

each 7-Zip archive into the same folder on the local computer (e.g.,

C:\CodeBlocks).

10. Code::Blocks is now installed and ready to run, and can be exe-

cuted from the Code::Blocks folder whereupon the MinGW

compiler should be detected by Code::Blocks successfully. For

simplicity, users could further add a shortcut to the Code::Blocks

executable in the Windows Start menu.

94 Chapter 3 / Cross-Platform Development Tools

Figure 3-15:
Download the
Code::Blocks nightly
build files.

Figure 3-16: Extract
the archive files.

3.4 Getting Started with Code::Blocks

In summary, Code::Blocks is an open-source, cross-platform, and free

C++ IDE for developing C++ programs. It features an editor for

creating and changing C++ source files, and also for managing source

files into projects; a debugger for detecting and repairing both compile-

time and run-time errors in applications created with Code::Blocks;

and a compiler (MinGW) for building C++ source code into execut-

able form for any target platform supported by Code::Blocks.

Furthermore, the cross-platform wxWidgets library used by

Code::Blocks to generate its GUI means all Code::Blocks menus, but-

tons, dialogs, and features map (correspond) across all supported

platforms, making the use of Code::Blocks a generally identical experi-

ence for every developer from platform to platform (at least in theory).

Let’s now look at how developers generate new C++ projects using

the Code::Blocks Wizard.

Chapter 3 / Cross-Platform Development Tools 95

Ch
a

p
te

r
3

Figure 3-17:
Code::Blocks
installed in
Windows

3.4.1 Code::Blocks Projects

Like a Visual Studio .NET project, a Code::Blocks project broadly

refers to an organized collection of C++ source and header files and a

series of compiler settings (such as which compiler to use), which

together can compile into an executable application for any supported

Code::Blocks platform. In short, one Code::Blocks project equals one

application, though other configurations are also possible. Using

Code::Blocks, projects may be created empty from scratch, where

developers add source files and manually define compiler settings

according to their requirements, or projects may be created as speci-

fied types from a series of premade templates using the Code::Blocks

wizard. Here, each template automatically generates projects complete

with the appropriate compiler settings and skeleton source code nec-

essary for starting whatever kind of project the template is designed to

build (such as a computer game project). Both blank and template-

based projects are created using the Project Wizard, accessible from

the Code::Blocks menu via File | New | Project. A selection of avail-

able project templates are listed below, especially those of relevance to

game developers.

96 Chapter 3 / Cross-Platform Development Tools

Figure 3-18:
Code::Blocks Wizard
options

� Empty project — Typically used to create C++ projects for

which there is no available Code::Blocks template, this wizard cre-

ates a blank, named project with no initial source or header files

that adopts the default compiler settings.

� SDL project — SDL is an acronym for Simple DirectMedia Layer

and is a free, open-source software development kit (or library)

used for creating cross-platform games. The Code::Blocks SDL

application wizard generates and configures Code::Blocks projects

for use with SDL (assuming the SDL library is installed to the

local machine already). Chapter 5 examines game creation with

SDL in Code::Blocks.

� OGRE project — OGRE (Object-oriented Graphics Rendering

Engine) is a free, open-source, and high-powered 3D software

development kit designed primarily, though not exclusively, for

making real-time 3D games complete with shaders and similar

effects. Like the SDL wizard, the Code::Blocks OGRE wizard gen-

erates C++ projects configured and ready to run using the OGRE

library, but assumes OGRE as a library (its source files, etc.) is

installed to the local computer already. Chapter 10 examines game

creation with OGRE in Code::Blocks.

� OpenGL project — First developed by Silicon Graphics, Inc. in

1992, OpenGL (Open Graphics Library) is one of the industry

standard, cross-language, and cross-platform graphics rendering

architectures for developing applications with real-time 3D

graphics, including games, virtual reality software, and simula-

tions. Code::Blocks offers an OpenGL project wizard for creating

OpenGL games, though neither the OpenGL project wizard nor

OpenGL is considered in more detail in this book.

Chapter 3 / Cross-Platform Development Tools 97

Ch
a

p
te

r
3

3.5 Cross-Platform “Hello World”
Application

The famous “Hello World” application that does nothing more than

print to the screen what its title implies is customarily the first pro-

gram a fledgling programmer creates. So following this tradition for no

reason in particular, we’ll create a cross-platform “Hello World” appli-

cation for Ubuntu and Windows using Code::Blocks. The more

rebellious readers may prefer to break tradition and print something

different! The Hello World project may be created and compiled ini-

tially in either the Windows or Ubuntu distribution of Code::Blocks,

and then later migrated and compiled in the other, thereby creating

two binary distributions of Hello World from the same source code,

one for each platform. This book begins the Hello World project with

Code::Blocks in Windows and subsequently migrates to Ubuntu, as

illustrated in the following steps.

1. Beginning from the Windows desktop, start Code::Blocks and

create a new Console project from the Application Wizard. Then

choose the Create a new project link.

98 Chapter 3 / Cross-Platform Development Tools

Figure 3-19:
Choose

2. Enter project details, including the project name and a valid local

path in which to save the associated source files. Click Next.

3. Accept the default compiler settings by clicking Next.

A Hello World project complete with source code is now gener-

ated, as follows:

#include <iostream>

using namespace std;

Chapter 3 / Cross-Platform Development Tools 99

Ch
a

p
te

r
3

Figure 3-20

Figure 3-21

int main()

{

cout << "Hello world!" << endl;

return 0;

}

4. Select Build | Run from the Code::Blocks main menu, or click

the Build icon from the Code::Blocks toolbar, to compile and exe-

cute the Hello World project.

100 Chapter 3 / Cross-Platform Development Tools

Figure 3-22: The Hello
World! Project in
Windows

Figure 3-23: The Hello
World! Project in
Ubuntu

3.6 Graphics and GIMP

First created by Spencer Kimball and Peter Mattis in 1995 and then

made available on UNIX/Linux-based systems, GIMP (GNU Image

Manipulation Program) is often considered a free, cross-platform, and

open-source equivalent to the popular Adobe Photoshop, an application

for editing, retouching, and reworking photographs or 2D images

(bitmaps, .pngs, .jpegs, etc.). GIMP is cross-platform insofar as it sup-

ports Windows, Linux, Mac, FreeBSD, and Solaris. GIMP is also fast

becoming one of the most popular and widely used image editing tools,

becoming the standard (default) image editor for a variety of Linux dis-

tributions including Ubuntu, Mandriva, SUSE, and Fedora. GIMP is

useful for cross-platform game development because developers can

use it to perform at least the following tasks:

� Retouch textures and other in-game images using the GIMP

brushes, inks, stamps, and other editing tools. It can be used on

photos as well as 2D renders from 3D software like Blender 3D

(discussed in detail in Section 3.7).

� In collaboration with 3D rendering software or real-time 3D

games, GIMP is often used by developers to create “seamless”

tileable textures that can be texture mapped onto 3D objects. A

texture that is seamless is one whose opposite edges (left and

right, and top and bottom) are identical to the other so that the

texture may be repeated (or tiled, or juxtaposed) across a 3D sur-

face (like a cube face or a wall) without lines or breakages appear-

ing where the edges meet between any two tiles or any two

repetitions. A stochastic texture is one whose pixels are a random

combination of brightness, contrast, and color.

Chapter 3 / Cross-Platform Development Tools 101

Ch
a

p
te

r
3

Figure 3-24: A
selection of
tileable textures

� Define image alpha channels and transparency. Images that feature

transparent or semi-transparent regions often use alpha channels.

An alpha channel is a separate canvas (or image) hidden and

embedded inside an image that is equal in pixel width and height

to the visible, standard layer of the image. The alpha channel’s pix-

els may only be grayscale, ranging from black to white or any

shade between. The pixels of the alpha channel map 1:1 to the pix-

els in the main image, and the color of each pixel determines the

transparency of the corresponding pixel in the main image with

black = transparent, white = opaque, gray = 50% transparent,

etc.

3.6.1 Installing GIMP on Windows or Mac
GIMP is preinstalled with Ubuntu and is available from the main menu

via Applications | Accessories | Graphics | GIMP. This section

explains how to install GIMP on the Windows or Mac platform.

1. Beginning from the desktop, navigate a web browser to the GIMP

home page.

� For Windows: http://www.gimp.org/

� For Mac: http://wilber-loves-apple.org/

102 Chapter 3 / Cross-Platform Development Tools

Figure 3-25: An
image with an
alpha channel

2. From the home page, download the GIMP package to the local

computer.

3. Once downloaded, run the GIMP installer.

3.6.2 Using GIMP
This section offers an overview of GIMP and demonstrates how to

perform some common tasks encountered in game development. More

detailed tutorials and guides on GIMP can be found at the following

web addresses:

� http://docs.gimp.org/

� http://wiki.gimp.org/gimp/

� http://www.gimp.org/tutorials/

� http://www.gimp-tutorials.com/

3.6.2.1 Creating Tileable Textures Using GIMP

Tileable textures are those images that may be repeated seamlessly,

like bathroom or kitchen tiles, arranged one beside another in columns

and rows across a plane surface. For any tile to repeat “seamlessly”

(without a visible edge where any two tiles meet side by side), the

pixels on the edges of a tile must be identical or “connectable” to the

pixels on its opposite edge (left and right, top and bottom). The follow-

ing step-by-step procedure explains in detail how to create a seamless

image using GIMP.

1. Start the GIMP application and create a new, blank image 300

pixels in width and 300 pixels in height.

Chapter 3 / Cross-Platform Development Tools 103

Ch
a

p
te

r
3

2. Fill the image with random pixels, using the brush, fill, or pen

tools. The sample image in Figure 3-27 is used for demonstration

purposes only; most developers will work with meaningful images

loaded from files on disk.

104 Chapter 3 / Cross-Platform Development Tools

Figure 3-26: Create a
new image.

Figure 3-27: Fill the
image with random
pixels.

3. Make the image seamless by choosing Filters | Map | Make

Seamless from the main menu.

4. Test the seamless tile by creating a new image that is several

times the width and height of the original, and then copying and

pasting the smaller original three times into the larger, arranging

the tiles in a grid to see the seamless tile effect.

Chapter 3 / Cross-Platform Development Tools 105

Ch
a

p
te

r
3

Figure 3-28: Choose
Filters | Map | Make
Seamless.

Figure 3-29: Copy the
original image several
times and arrange the
copies side by side in a
grid.

3.6.2.2 Editing Image Transparency Using GIMP

This section highlights how to use GIMP’s image alpha channels (or

layer masks) to make regions of a GIMP image transparent or

semi-transparent.

1. Start GIMP and create a new image 600 pixels in width and 600

pixels in height by selecting File | New from the main menu.

2. Import an image or draw a design or pattern with regions that will

later become transparent (such as is seen in Figure 3-31).

106 Chapter 3 / Cross-Platform Development Tools

Figure 3-30: Create a
new image that is
600 x 600 pixels.

Figure 3-31

3. To add an alpha channel to the current image, select Layer |

Mask | Add Layer Mask from the main menu.

4. From the Add Layer Mask dialog, choose White (full opacity) to

make the image layer fully opaque.

Chapter 3 / Cross-Platform Development Tools 107

Ch
a

p
te

r
3

Figure 3-32: Choose
Add Layer Mask.

Figure 3-33: Choose
White (full opacity).

5. Select the new layer mask by clicking the white thumbnail in the

Layers palette.

6. Afterward, use the standard GIMP paint tools to paint the trans-

parency data into the image. Remember that the black pixels will

be transparent, the white pixels will be opaque, and 50% gray pix-

els will be 50% transparent.

7. Finally, save the image in an image format that supports transpar-

ency, such as .bmp, .tga or .png.

108 Chapter 3 / Cross-Platform Development Tools

Figure 3-34: Select the
white layer mask.

Figure 3-35: Start
painting areas that you
want transparent.

3.7 Blender 3D

Like GIMP, Blender 3D is free, cross-platform, and open-source.

Blender 3D is often compared favorably to commercial 3D rendering

and animation software such as Autodesk’s 3ds Max, LightWave, and

Maya, each of which are popular choices among game developers. Sup-

porting a host of different platforms, including Windows, Mac, Linux,

FreeBSD, Solaris, and IRIX, Blender 3D is a comprehensive 3D ren-

dering suite designed for creating prerendered 3D stills and

animations. The following sections show how to install Blender for

both Windows/Mac and Linux Ubuntu. The intricacies of using Blender

3D are beyond the scope of this book, which focuses mainly on pro-

gramming rather than graphics, but more information regarding

Blender 3D can be found at the following web sites:

� Blender 3D e-book: http://en.wikibooks.org/wiki/Blender_

3D:_Noob_to_Pro

� Blender tutorials: http://www.blender.org/education-help/tutorials/

� Blender video tutorials: http://www.blender.org/education-help/

video-tutorials/

� Blender 3D manual: http://wiki.blender.org/index.php/Manual

3.7.1 Installing Blender 3D on Linux Ubuntu
1. Beginning from the Ubuntu desktop, launch the Synaptic Package

Manager from the Ubuntu main menu by selecting System |

Administration | Synaptic Package Manager.

2. Search for “Blender” and mark the Blender items listed in the

Ubuntu application repository. Then click Apply to install Blender

3D to the system.

Chapter 3 / Cross-Platform Development Tools 109

Ch
a

p
te

r
3

3. Once installed, Blender can be launched from the Ubuntu main

menu by selecting Applications | Graphics | Blender 3D.

110 Chapter 3 / Cross-Platform Development Tools

Figure 3-36

Figure 3-37

Blender 3D is now installed and ready to use.

3.7.2 Installing Blender 3D on Windows/Mac
1. Beginning from the desktop, navigate a web browser to the

Blender home page at http://www.blender.org/.

Chapter 3 / Cross-Platform Development Tools 111

Ch
a

p
te

r
3

Figure 3-38

Figure 3-39

2. At the Blender site, click the Download button from the top menu

bar.

3. Once at the download page, choose the appropriate Blender distri-

bution for your operating system, and download the package from

the web to the local machine.

4. Once downloaded, run the installer to install Blender to the

system.

112 Chapter 3 / Cross-Platform Development Tools

Figure 3-40

Figure 3-41

Blender 3D is now installed and ready to run.

3.8 Conclusion

In summary, this chapter has detailed how to use three free,

open-source, and cross-platform game development tools: the

Code::Blocks C++ IDE, the GIMP image editor, and Blender 3D.

GIMP and Blender 3D are products important for game graphics, but

the main focus of this book is game development in terms of program-

ming, and as such these two graphics applications are not considered

in further detail in this book. Code::Blocks, however, is considered fur-

ther in later chapters.

In the following chapter we’ll discuss the basics of cross-platform

game development.

Chapter 3 / Cross-Platform Development Tools 113

Ch
a

p
te

r
3

Figure 3-42

This page intentionally left blank.

Chapter 4

Game Programming
Basics

By now readers will probably have configured a cross-platform devel-

opment software and hardware setup for making and debugging their

cross-platform games. Chapter 1 illustrated at least three methods for

configuring a cross-platform setup: running several machines, each

with a different OS on a different machine; running multiple OSs on a

single machine through dual-booting; and running multiple guest OSs

on a single host OS through virtualization. In addition to this cross-

platform infrastructure (whichever is chosen), the open-source and

freely available C++ IDE, Code::Blocks, was selected as the primary

development suite for compiling cross-platform games. Having then

selected this IDE, and so thereby having selected C++ as the primary

development language, this chapter considers the next steps. Specifi-

cally, this chapter considers in detail the following key developmental

issues:

� The basics of game programming and how to get started at making

a game. We need to know where to begin, features that are com-

mon to all games on all platforms, common game algorithms, and

data structures that are useful for games.

� Selecting suitable game libraries. Beyond C++ as a language

itself, developers make use of third-party game libraries that “plug

into” the language and make their programming lives easier.

These libraries are collections of classes and functions made by

other programmers for use by programmers, and they are

designed to meet specific developmental needs. Accordingly, game

developers make use of graphics libraries for rendering pixels and

115

images to the window, sound libraries for playing sound and music

to the speakers, physics libraries to simulate physical reactions,

and others. This chapter considers a selection of different libraries

available to developers and determines each library’s suitability

for developing cross-platform games, based primarily on the

features they offer and the platforms they support.

4.1 Game Programming — Getting
Started

Before a developer actually sits down to code a game based on his lat-

est fantastic idea, he will have previously brainstormed a “design” on

paper in the form of a game design document, which at the very least

helps to organize thoughts. The question is how detailed should this

document be. It is possible (indeed, often happens) to overplan and to

spend so much time at the drawing board plotting and planning for all

minutiae and every eventuality that it becomes both easy and danger-

ous to lose oneself in a mountain of plans, a mountain from which it

becomes costly to escape in terms of both time and money. But this of

course can be no less dangerous to a project than underplanning; the

solution is therefore a case of getting the balance right between things

that are planned and things that are allowed to happen unplanned, with

each being as important as the other since games rarely go 100%

according to plan. Of course, developers will not be making the game

up spontaneously as they code, like a person writing a letter, but will

instead aim to follow a carefully planned road map, setting out in

advance a directed and concise strategy defining, among other details,

the objective of the game, the enemies, the maps, the characters, the

time frame, the budget, and even the platforms to be supported by the

final product. Let’s consider these details further.

116 Chapter 4 / Game Programming Basics

4.1.1 Genre and Objective
Each game is said to belong to at least one genre insofar as the content

of any game may be described as being puzzle, action, adventure,

sport, first-person shooter, etc. Similarly, the objective of a game refers

to its purpose, the ultimate aim to which a gamer is playing to meet,

such as “in every level a gamer must collect a piece of an ancient arti-

fact such that by the final level all the pieces may together be

reassembled.” To frame the context for development then, the game

design document (GDD) should state clearly the genre (the market

niche) of the game as well as the objective (purpose) of the game from

the perspective of the gamer.

4.1.2 Time Frame and Budget
In terms of commercial game development, the expression “time is

money” highlights the intimate relationship between time (the time-

line of development) on the one hand, and the cost (cost of time and

resources) on the other. Specifically, work like game development

requires “resources” such as software and human effort as well as

“time” such as time-to-completion; so work then represents an invest-

ment of money. Thus, game design documents should first and

foremost specify a budget — that is, the maximum sum of money allo-

cated to the development of a single game. Based on this budget, the

cost of time and resources can be figured into a complete timeline or

workflow diagram that charts the development of a game. To give

some typical (and only approximate!) examples: It is not unusual for a

team of 30 people working five-day weeks to require 18 months to

develop a full, big-budget AAA game from start to finish. With a

smaller budget and an independent team of two to seven people work-

ing part-time, it requires 18 to 24 months to make a medium-sized

puzzle adventure (e.g., Teenage Lawnmower, Dr. Lunatic Supreme

with Cheese, Zombie Smashers, etc.).

Chapter 4 / Game Programming Basics 117

Ch
a

p
te

r
4

4.1.3 Game Ideas
Developers looking for ideas and inspiration concerning the genre to

which their planned game should follow might like to consider some of

the following most common game genres:

� RPG (Role-Playing Game) — Daimonin, Oblivion, Final Fantasy,

and Might & Magic are just some among a broad field of games

known as RPGs, or sometimes referred to as CRPGs (computer

RPGs). In these games, gamers create and control a character or

party of characters who live and act within an immersing and fic-

tional world, typically featuring wizards, goblins, dragons, and

other fantasy creatures. The abilities and success of each charac-

ter in the world is determined largely by its qualities and skills —

such as Strength, Intelligence, and Health — and these qualities

are presented to the player statistically as factors on a character

sheet. Throughout the game, a character’s success in meeting the

challenges of the game world (completing quests, etc.) is typically

rewarded by receiving points. Subsequently, the player may care-

fully distribute (spend) the points across a character’s skill set,

weighting each skill so as to improve the character as whole. As a

result, RPGs are driven more by character development through

the accumulation of points than by any directed, linear progression

from a beginning to an end; and consequently, many RPGs are said

to be “open-ended” insofar as they cannot be “completed.”

118 Chapter 4 / Game Programming Basics

Figure 4-1: Screenshot
from Daimonin, a free,
cross-platform, and
open-source RPG,
available at
http://www.daimonin.net/

� FPS (First-Person Shooter) — Doom, Quake, Unreal Tourna-

ment, Half-Life, and Halo are but a few of the most popular FPS

games, and games from this genre are some of the best selling in

the industry. The online encyclopedia Wikipedia perhaps defines

an FPS best as “a video game that renders the game world from

the visual perspective of the player character and tests the

player’s skill in aiming guns or other projectile weapons [at enemy

targets].” In short, most FPS games center around shooting peo-

ple or monsters. It is due to their characteristic violence that many

have stirred up controversy, arousing the criticism of both anti-

game lobbyists and psychologists.

� Platformers — The term “platformer” (or platform game)

describes an action-packed genre, so called because most platform

games feature a player-controlled character that must navigate

carefully through a hostile environment from the beginning to an

end point without coming to harm. This often involves running and

jumping from location to location while combatting enemies, avoid-

ing traps, and collecting power-ups. According to standard video

game practice (and particularly so in platformers where the player

is at risk of pitfalls and dangers), the player is often equipped with

three or more “lives,” with each life representing one opportunity

at successfully completing a level without failing (that is, without

Chapter 4 / Game Programming Basics 119

Ch
a

p
te

r
4

Figure 4-2: Screenshot
from OpenArena, a
free, cross-platform,
and open-source
first-person shooter,
available at
http://www.open-
arena.ws/

dying). A death, then, corresponds to the loss of one life, and the

loss of all lives through successive failures results in “game over.”

In recent years, however, most developers have all but discarded

the traditional “three lives” structure for their games in favor of an

“infinite attempts” model, hoping to make them more accessible to

a wider variety of gamers. Some of the old-school platformers

include Super Mario Bros., Sonic the Hedgehog, Zool, Fire and Ice,

Earthworm Jim, and Jazz Jackrabbit. Newer platformers include

Psychonauts, Supercow, and Crash Bandicoot.

� RTS (Real-Time Strategy) and TBS (Turn-Based Strategy)

— Military logistics and strategic planning are at the heart of the

strategy genre. RTS games include the likes of Command & Con-

quer, StarCraft II, and Darwinia, while TBS games include a list of

titles such as Heroes of Might and Magic, The Battle for Wesnoth,

and UFO: Alien Invasion. Both the real-time and turn-based vari-

ants of the strategy genre commonly put the player in military

command of a faction (or army) pitted against other AI factions in a

game world where each faction strives for complete domination

over a common territory and common resources. In the turn-based

variant of the strategy game, the battle between factions takes

place across a staggered series of turns, where the commander of

each faction (player or AI) delivers orders to their units and

responds to enemy actions only during their allocated turn cycle.

120 Chapter 4 / Game Programming Basics

Figure 4-3: Screenshot from
SuperTux, a free software
platform game, available at
http://supertux.lethargik.org/

This results in cool and calculated game play; that is, before begin-

ning every new turn the player must first wait for each other fac-

tion to complete their corresponding turn, and the enemy factions

in turn wait for the player and others to complete theirs. In the

real-time variant, by contrast, each faction plans and acts simulta-

neously in action-packed real time, requiring both quick reflexes

and quick thinking.

� Casual Games — Statistically, casual games represent a growing

market in which both independent developers and lower-budget

teams (largely from Europe, Latin America, and Japan) have flour-

ished since the spread of broadband and faster domestic Internet

access. The title “casual game” is an umbrella term referring to a

broad variety of games. These range from games like Tetris to

Diner Dash, many of which are sold and distributed by download to

gamers via online gaming portals such as Reflexive Arcade and Big

Fish Games. Though any single casual game may have almost no

feature in common with any other casual game on the market,

most are united insofar as they are designed to be “lightweight,”

designed for mass appeal, and intended to be original. A game is

generally said to be lightweight if it is quick for gamers to down-

load from the web (small in MB size) and if it requires few system

resources to execute successfully on the gamer’s computer. A

game has mass appeal when it comes with an attractive price tag

Chapter 4 / Game Programming Basics 121

Ch
a

p
te

r
4

Figure 4-4: Screenshot
from Glest, a free and
cross-platform RTS
game, available at
http://www.glest.org/

and markets itself demographically to the largest gamer population

(men, women, young, old), instead of to a niche market like first-

person shooters.

4.2 Preparing to Make Games

Before firing up Code::Blocks to code a game according to the design

document, any developer who first sits back to carefully consider the

basics, or fundamental building blocks, of any games that spring to

mind will likely notice a number of common features between them.

Some of these features are worth considering further, even though

their existence and implementation may appear trivial or obvious at

first sight.

� First, every game in any genre (from FPSs to RPGs) must work

with data; that is, strings, integers, floats, etc. For example, a

game may display text at an X,Y coordinate on the screen, calcu-

late differences between player scores, read player input from the

keyboard, read both numerical and textual data from saved game

files in order to restore sessions saved by the gamer on previous

occasions, and handle many other situations. In common with most

software, therefore, a game is at its most basic level a data-han-

dling machine. It accepts incoming data, processes it, and outputs

122 Chapter 4 / Game Programming Basics

Figure 4-5: Screenshot
from the casual game
Pingus, inspired by
Lemmings; free and
cross-platform, and
available at
http://pingus.seul.org/

a result. Consequently, developers often find it useful to standard-

ize the data types used throughout their source code for any given

game. For example, they may use only one data type for all strings,

such as the cross-platform STL class std::string, instead of using a

variety of string data types for different string variables like char,

CString, std::string, etc. Class std::string and the STL more gen-

erally are considered in more detail in Section 4.3.

� Second, since all games collect and process data at run time,

whether from files on disk, user input, or the result of additional

calculations (as described in the previous chapter), it is important

for developers to show foresight when making their games by

designing algorithms to structure and process data optimally in

memory. For example, in a typical RTS game like StarCraft or

Command & Conquer, each faction (including the gamer’s) must

eliminate all rival factions for domination of a given territory. In

developing their army, each faction begins by first harvesting

nearby resources (such as wood, ore, and gold) in order to fuel the

construction of buildings and technology, and from these to ulti-

mately recruit more units, and to recruit and deploy more crea-

tures and fighters, who are subsequently dispatched across the

map to eliminate enemy targets. Here, then, each faction in the

course of its in-game development collects at least three kinds of

items: resources, buildings, and units. A developer is then faced

with the problem of how best to code (create) three separate lists

in memory, each designed to keep track of a faction’s resources,

buildings, and units at run time. A developer may initially choose,

for example, to create a fixed-size array for each faction to hold a

collection of pointers to its units, where each element in the array

is a pointer to a single military unit (a wizard, a goblin, a tank,

etc.). However, a problem arises for the developer when he con-

siders that as new units are created by the gamer at run time,

those units must be added into the last vacant elements of the

units array, and as units are destroyed by, say, enemy fire, they

should then be removed from the array without affecting any other

active elements. In short, the developer requires an array class

that may dynamically grow or shrink in memory as items are

added and removed, meaning that the array is always sized exactly

to hold no more or less than the number of items in memory at

Chapter 4 / Game Programming Basics 123

Ch
a

p
te

r
4

any one time. This kind of list arrangement can be achieved using

the STL class std::vector, which is discussed in a later section of

this chapter.

� Next, most games are driven by a “message pump” (or life line)

that is qualitatively different from the event-driven programming

used in other non-game software, and consequently it has earned

the name “game loop.” Almost all non-game software (such as

word processors, database applications, or graphics editors) work

by listening for and responding to user input (such as keypresses

and mouse movements) as they occur at run time when they are

sent to the application window through standard Win API mes-

sages. For example, a word processor only prints a document

when the user clicks the Print button, and it only inserts charac-

ters into the active document when the user presses keys on the

keyboard; if the user does nothing, then the program does nothing

except wait for input from the user. Games, however, work differ-

ently, which can be illustrated by an example. In a typical first-

person shooter game such as Quake, Doom, or Unreal, the player

is armed with a weapon and thrown into an arena with other com-

petitors who each must deploy their aiming skills and stealthy tac-

tics against one another to become the last man standing. Here,

like non-gaming software, the player character shoots when the

user presses the Fire button, and jumps when the user presses the

Jump button. But, unlike event-driven software, the enemy com-

batants and other game events are occurring simultaneously with

all other events such that, if the player stood still and the user did

nothing, the game wouldn’t stop and the opponents wouldn’t

freeze waiting for the user to press a key. Instead, the game con-

tinues as normal, and the NPCs (non-player characters) continue

to participate as though they were “real” humans, whether the

player is participating or not (unless the user presses a Pause but-

ton). For this reason, games are usually driven by a “message

loop” mechanism rather than by an event-driven framework since

game action occurs in real time and in no way depends on the

user’s input to continue working. The game loop is considered in

more detail in a later section of this chapter.

124 Chapter 4 / Game Programming Basics

4.3 Using the STL: Strings and Lists

To summarize the preceding section on game development basics:

Game development for a programmer begins from a library, or a com-

mon framework of data structures, algorithms, and functions. And for

cross-platform C++ games specifically, the STL (Standard Template

Library) offers just such a comprehensive set of tools, particularly in

the form of classes such as std::string (for strings) and std::vector (for

lists of objects and lists of pointers to objects). The importance of

these two classes for game development is now considered more

closely.

4.3.1 std::string
A string is a linear array of characters arranged sequentially in mem-

ory; for example, the word “hello” is a string of characters, where each

character is a letter in the word. Typically, C++ strings are declared

literally as an array of chars (e.g., char mystring[50]), but the STL

string class makes this process simpler. The following step-by-step

tutorial for using class std::string shows how to work with C++

strings in a new way and is designed to be both a gentle introduction to

programming with Code::Blocks and C++, and a user-friendly guide

to make working with strings easy. We’ll be creating strings, copying

strings, manipulating strings, and more.

� NOTE. An exercise in processing strings and characters of strings
(like the samples that follow) may prove helpful for any developer
who may later choose to use XML for storing data on disk, external
to the game. XML files are essentially organized text files, and so
XML strings — like those used for XML properties and tags in the file
— may require processing like any other string. This means
std::string as a class will likely be important for things such as pro-
cessing saved game files and data files.

Chapter 4 / Game Programming Basics 125

Ch
a

p
te

r
4

4.3.1.1 Configuring Projects to Use STL and std::string
with Code::Blocks

1. Beginning from the desktop, start the Code::Blocks IDE and use

the New Project Wizard to create a new console (shell/command

line) project ready to compile. See Chapter 3 for more details on

using Code::Blocks if needed.

2. Open the main project source file (.cpp) and add the string header

shown in bold to the end of the existing preprocessor directives.

This directive includes the STL std::string class header so

std::string may be used throughout the project.

#include <iostream>

#include <string>

using namespace std;

int main()

{

cout << "Hello world!" << endl;

return 0;

}

3. Save the Code::Blocks project by choosing File | Save; then com-

pile the active project by clicking the gear icon on the toolbar or by

choosing Build | Compile.

The project is now configured to use class std::string.

4.3.1.2 Declaring, Creating, and Assigning Strings with
std::string

Instances of std::string can be created as follows:

//Empty

std::string MyString1;

//Set to hello

std::string MyString2 = "hello";

//Set to hello

std::string MyString3 = MyString2;

126 Chapter 4 / Game Programming Basics

Any two or more instances of std::string may be concatenated (com-

bined) together to form a single larger string using the standard

addition (+) operator:

std::string MyString1 = "hello ";

std::string MyString2 = "world";

//MyString3 = "hello world"

std::string MyString3 = MyString1 + MyString2;

The value (contents) of any instance of std::string may be queried or

determined by using the C++ equality operator (==) :

std::string MyString1 = "hello world";

if(MyString1=="hello world")

{

//Do something here

}

4.3.1.3 Looping through Characters of a String with
std::string

Each character (letter) in a single instance of std::string can be read

individually using the standard array subscript operator ([]) along with

an array index specifying the character offset into the string, counting

from left to right from the first character at (0) as follows:

std::string MyString1 = "hello world";

cout<<MyString1[3];

The length method of std::string returns the length of the string (i.e.,

the total number of characters from which the string is composed).

This method, in combination with access to individual characters in the

string using the array subscript operator, means any std::string can be

iterated through character by character.

std::string MyString1 = "hello world";

for(int i = 0; i < mystring1.length(); i++)

{

cout<<mystring1[i] << “\n”;

}

Chapter 4 / Game Programming Basics 127

Ch
a

p
te

r
4

Each character in a string may also be iterated through by using STL

iterators rather than array indexes, where the begin method returns a

pointer to the first character, and the end method returns a pointer to

the last character, as follows:

std::string MyString1 = "hello world";

string::iterator my_iter;

for(my_iter = MyString1.begin(); my_iter != MyString1.end();

my_iter++)

{

cout<<*my_iter;

}

4.3.1.4 Searching for Characters in a Specified Instance
of std::string

For situations in which the content of a string is unknown, or where a

string’s structure and format must be analyzed closely, the std::string

class offers the find method to search through a given string for a spec-

ified character or sequence of characters, returning a pointer to the

first character in the string where a match is found. This method may

be called as follows:

/*Counts all occurrences of the world hello in a specified

instance of std::string*/

string input;

int word_count = 0;

cout<<"Please enter a string now:>";

getline(cin, input, '\n');

for(int i = input.find("hello", 0); i != string::npos; i =

input.find("hello", i))

{

word_count++;

i++;

}

cout<<word_count;

128 Chapter 4 / Game Programming Basics

4.3.1.5 Extracting and Inserting Substrings from and to
a Specified Instance of std::string

A string is an array of characters, and a substring is a smaller subset of

characters from that array; “ello”, “lo”, and “o” are all substrings of

“hello”. To extract a substring (dest) from a specified larger string

(source), the std::string class offers the substr method. This method

returns a new string that is the requested substring, and it also accepts

two integer arguments: one specifying the offset into the source string

marking the first character of the substring (dest) and the other speci-

fying the length of the substring in characters as measured from left to

right from the offset. An example follows:

std::string MyString1 = "hello world";

//string is "o wo"

std::string substr = MyString1.substr(3, 7);

In addition to substring extraction using the substr method, a string of

any length can also be inserted into any instance of std::string using

the insert method. Similarly, strings can be removed from any instance

of std::string using the erase method. The following code sample illus-

trates both insert and erase at work:

std::string MyString1 = "hello world";

//Now is "helthis is a substringlo world"

MyString1.insert(3, "this is a substring");

//Now is "hhis is a substringlo world"

MyString1.erase(1, 3);

4.3.1.6 Converting Instances of std::string to Standard
char* Pointers

Despite the variety of benefits afforded by std::string, from features

like substring extraction to character insertion, there will undoubtedly

be moments when a developer encounters a function from a

third-party library (such as a Win API call) that requires a string argu-

ment of type char*, and not of type std::string. Thus, so that instances

of std::string may be type compatible with functions requiring argu-

ments of type char*, the c_str method is offered to convert strings

from type std::string to type char*. An example follows:

Chapter 4 / Game Programming Basics 129

Ch
a

p
te

r
4

std::string MyString1 = "hello world";

const char* MyString2 = MyString1.c_str();

4.3.2 std::vector
Most computer games keep track of lists of items. For example, RTS

games (where factions fight one another for domination of a map)

maintain at least three lists “under the hood” for each faction that par-

ticipates in battle: one list for a faction’s resources (wood, ore, gold,

etc.), one for its buildings (refinery, barracks, etc.), and one for its

units (wizard, fighter, goblin, etc.). Similarly, in an adventure game like

Monkey Island, Grim Fandango, or Syberia, gamers control a character

that solves a mystery by collecting and using objects found around the

game world. The objects collected by the player are added to their

inventory (pockets) where they remain until they can be used or dis-

posed of to further their progress in the game; and here, again, the

inventory reveals itself to be a list of collected items in the same way a

string is a list of collected characters.

The primary characteristics of a list are: Items can be added to or

removed from the list at run time; and the list changes size in memory

as items are added or removed in order to accommodate exactly the

number of items it currently holds, no more or less (it is said to be

dynamic). As it meets this criteria, the STL std::vector class offers

game developers a template class for maintaining a dynamic list of

items (of any data type) in memory. In short, std::vector is a class for

holding a list in memory to which items can be added or removed at

run time. Let’s examine how this class is used.

130 Chapter 4 / Game Programming Basics

4.3.2.1 Creating a List with std::vector

1. Beginning from the desktop, start the Code::Blocks IDE and use

the New Project Wizard to create a new console (shell/command

line) project ready to compile. (See Chapter 3 for more details on

using Code::Blocks.)

2. Open the main project source file (.cpp) and add the vector header

shown in bold below to the end of the existing preprocessor direc-

tives. This directive includes the STL std::vector class header so

std::vector may be used throughout the project wherever lists are

required.

#include <iostream>

#include <vector>

using namespace std;

int main()

{

cout << "Hello world!" << endl;

return 0;

}

Chapter 4 / Game Programming Basics 131

Ch
a

p
te

r
4

Figure 4-6

4.3.2.2 Declaring Instances of std::vector

The STL class std::vector is a template class, and each instance repre-

sents a unique list of objects (of any one data type) in memory. What

that means is any single instance of std::vector is a list of objects of the

same type: a list of integers, a list of strings, a list of pointers, etc.

std::vector is said to be a template class because each instance (each

list) must be declared as belonging to a specific data type at the time of

declaration. Consider the following code:

//List of integers

std::vector<int> ListOfIntegers;

//List of strings

std::vector<std::string> ListOfStrings;

//List of pointers

std::vector<CMyClass*> ListOfPointers;

4.3.2.3 Adding Items to a List Using std::vector

std::vector maintains a list of items, and items are added to the list at

run time using the push_back method. This method accepts as an

argument the template object to be added to the list declared as being

of a matching type. The following code illustrates the adding process:

//List of strings

std::vector<std::string> ListOfStrings;

//Add strings to vector list

ListOfStrings.push_back("hello");

ListOfStrings.push_back("alan");

ListOfStrings.push_back("list");

4.3.2.4 Cycling through Items in a List Using std::vector

As with elements in an array or characters in an instance of std::string,

or any other data structure where elements are arranged sequentially

in memory, the items in an instance of std::list can be accessed individ-

ually by using the subscript ([]) operator (e.g., MyList[5]), or by using

the standard STL iterators, as follows:

132 Chapter 4 / Game Programming Basics

//List of strings

std::vector<std::string> ListOfStrings;

//Add strings to vector list

ListOfStrings.push_back("hello");

ListOfStrings.push_back("alan");

ListOfStrings.push_back("list");

for(int i=0; i< ListOfStrings.size(); i++)

cout<<ListOfStrings[i]<<"\n";

Or:

//List of strings

std::vector<std::string> ListOfStrings;

std::vector<std::string>::iterator myStringVectorIterator;

//Add strings to vector list

ListOfStrings.push_back("hello");

ListOfStrings.push_back("alan");

ListOfStrings.push_back("list");

for(myStringVectorIterator = ListOfStrings.begin();

myStringVectorIterator != ListOfStrings.end();

myStringVectorIterator++)

{

cout<<(*myStringVectorIterator)<<"\n";

}

4.3.2.5 Removing Items from a List Using std::vector

The std::vector class supports both the addition of new items to the

list and the removal of existing items from the list. An item (or a range

of items) can be removed from the list using the erase method of

std::vector, a method that accepts two STL iterator arguments specify-

ing the start and end range of items to be deleted. The first argument

is an iterator marking the first item in a range to be removed, and the

second argument is an iterator marking the final item in a range of

items to be removed. The following code illustrates the typical usage

of the erase method of std::vector for removing items from a list.

//List of strings

std::vector<std::string> ListOfStrings;

Chapter 4 / Game Programming Basics 133

Ch
a

p
te

r
4

//[...] add stuff to the list here

//Remove items 3-5

ListOfStrings.erase(ListOfStrings.begin()+3,

ListOfStrings.begin()+5);

4.4 The Game Loop

Programmatically, the dividing factor separating games from non-game

software is the presence of a game loop; game software is driven by a

game loop while non-game software is instead event driven. The game

loop is the heartbeat (or the message pump) unique to games. As dis-

cussed earlier, non-game software such as word processors are event

driven. That is, the application waits for input from the user before

performing an action. For example, the user clicks the Print button and

a document prints. Games differ from this event-driven arrangement,

however. Certainly, games do respond to events. For example, in a

side-scrolling platformer where the gamer must guide a character

safely through a level by running and jumping across risk-laden plat-

forms, the gamer may press the Jump button and in response the

character jumps or may press the Fire button and consequently the

character attacks nearby enemies. But more than this, games also

work when the user does nothing; the enemies continue moving and

134 Chapter 4 / Game Programming Basics

Figure 4-7

the game world still ticks over even when the player offers no input. In

other words, the game does not freeze when user input stops. The

game continues working whether or not the user is taking part; and it

is this “self-directed” behavior the game loop is designed to offer. The

following code is a sample C++ source file featuring a game loop set

up and ready for a developer to make a game.

MSG mssg;

// prime the message structure

PeekMessage(&mssg, NULL, 0, 0, PM_NOREMOVE);

// run until completed

while (mssg.message!=WM_QUIT) {

// is there a message to process?

if (PeekMessage(&mssg, NULL, 0, 0, PM_REMOVE)) {

// dispatch the message

TranslateMessage(&mssg);

DispatchMessage(&mssg);

} else {

//FRAME BEGINS HERE

ReadInput();

UpdatePhysics();

UpdateSound();

DrawFrame();

}

}

As mentioned, the game loop is the heartbeat (or the message pump)

unique to games; the loop begins after the game is executed, and exit-

ing from the loop signals a game’s termination. In short, the game loop

is a C++ while loop where each iteration (cycle) of the loop corre-

sponds to a single frame; that is, a snapshot moment in the timeline of

a game. On each iteration of the loop (on each frame) a game should:

1. Read user input from the keyboard and mouse to determine

whether the user has moved the game character, clicked a menu

item, performed any other action, or requested to exit the game

(whereupon the loop should be terminated).

Chapter 4 / Game Programming Basics 135

Ch
a

p
te

r
4

2. Update game physics based on user input and position of other

game objects in the world. This may include applying gravity to

objects in the air, moving the player character across the screen in

the direction corresponding to an arrow keypress, etc.

3. Update sound to play appropriate sounds for that moment of the

game, such as walking noises corresponding to player movement.

4. Draw the frame according to the position and perspective of the

game camera in the game world. This is the final phase of the

frame, the moment when all game graphics are refreshed and

drawn anew to the window. We’ll consider the drawing of game

graphics to the application window using a third-party game devel-

opment library called the SDL in the next chapter.

� NOTE. The game loop is also considered in more detail in the next
chapter.

4.5 Conclusion

In summary, this chapter has considered the basics of game program-

ming in terms of three key developmental issues:

� Standardization of data types so that each game made by the same

developer handles data (integers, floats, and especially strings)

similarly across varied platforms

� Common framework of classes and functions to provide a

cross-platform foundation upon which games can be built

� The game loop to keep a game application “alive and running,” and

to configure games with a frame-based configuration rather than

the event-based configuration of most non-game applications so

that games may continue to operate even when no input is

received or processed from the user.

The next chapter considers cross-platform game graphics program-

ming using the SDL.

136 Chapter 4 / Game Programming Basics

Chapter 5

SDL Graphics

This chapter focuses on developing cross-platform games that feature

2D graphics using a free, open-source software development kit (SDK)

called Simple DirectMedia Layer (SDL). A software development kit is

a package containing an abundance of ready-made tools, libraries,

source code, and other utilities a programmer needs for making soft-

ware, and the SDL is one such package designed specifically for

creating cross-platform games. SDL was created in 1998 primarily by

Sam Lantinga while working for California-based software firm Loki

Software, which closed in 2002. Lantinga now works for game devel-

oper Blizzard Software, maker of the RPG World of Warcraft. Having

been used in the creation of games such as Quake 4, Neverwinter

Nights, and The Battle for Wesnoth, the SDL is arguably the SDK of

choice alongside ClanLib for creating 2D games on multiple platforms.

SDL was developed using the C language but also works natively

with C++ and a host of other languages including Ada, C#, Eiffel,

Erlang, Euphoria, Guile, Haskell, Java, Lisp, Lua, ML, Objective C,

Pascal, Perl, PHP, Pike, Pliant, Python, Ruby, and Smalltalk. Further-

more, as of 2007, the SDL development kit claims officially to support

the following platforms (that is, SDL games can be compiled to run on

the following operating systems): Linux, Windows, Windows CE,

BeOS, Mac OS, Mac OS X, FreeBSD, NetBSD, OpenBSD, BSD/OS,

Solaris, IRIX, and QNX; and it is also said to unofficially compile on the

following platforms: AmigaOS, Dreamcast, Atari, AIX, OSF/Tru64,

RISC OS, SymbianOS, and OS/2. The SDL is now considered in more

detail.

137

5.1 SDL Breakdown

Free software and open-source, SDL is a C-based cross-platform game

development kit supporting a variety of target platforms ranging from

Windows to Linux. Though most developers use the SDL only in its

capacity for programming game graphics, it is a multi-functional library

composed of a total of eight subsystems that together go beyond game

graphics, with each subsystem offering tools for developing a specific

facet of a game. The eight subsystems of SDL do not need to be down-

loaded separately, but are all included together as one package, and are

as follows:

� Audio — Subsystem to play sound and music in WAV format; sup-

ports both 8-bit and 16-bit, signed and unsigned samples. SDL

audio support is considered later in this book. The alternative

open-source and free software SDK OpenAL (Open Audio Library)

is also a popular choice.

� CD-ROM — Subsystem to manage CD-ROM/DVD drives con-

nected to the target PC. It includes functions to count the number

of attached CD-ROMS, play CD audio tracks, and open and close

the CD tray.

� Event Handling — Subsystem to handle and respond to common

game events as they occur at run time. This includes window

events (closing, minimizing), input events (mouse down,

keypress), and others.

138 Chapter 5 / SDL Graphics

Figure 5-1

� File I/O — Subsystem to read from and write to files on persis-

tent storage, including hard disks and USB memory sticks. Can be

used to save and load game states and settings.

� Joystick Handling — Subsystem to read input from gaming input

devices other than a keyboard and mouse, such as joysticks, game

pads, and other similar devices, though force feedback is not sup-

ported currently. This subsystem can count the available joysticks

attached to the system, read axis and button data, and read relative

trackball motion.

� Threading — Subsystem to execute individual game processes —

such as AI, player input, and audio — simultaneously using

threads. This subsystem is not detailed further in this book.

� Timers — Subsystem to set periodical function calls and time

delays, which after expiration triggers an event; in other words, a

subsystem to run functions either periodically in timed intervals

or only once after a specified time has elapsed. One among thou-

sands of potential uses could be a time-delay bomb in a game that

explodes after 60 seconds, and on every second until that time

(every interval) a visible seconds counter decreases, counting

down from 60 to 0.

� Video — Subsystem to draw 2D graphics such as BMPs and other

animations to the display. Video does not refer specifically to

motion pictures or movies such as MPEG or DVD, but more

broadly to any visual image that can be presented to the screen via

the system’s graphics adapter. This subsystem includes functions

to load images from files on disk to system memory, and to draw

(blit) images from system memory to the screen. The video sub-

system of SDL is the primary, but by no means exclusive, focus of

this chapter.

Chapter 5 / SDL Graphics 139

Ch
a

p
te

r
5

5.2 Downloading and Configuring SDL

SDL is open-source and free software distributed under the GNU

LGPL version 2 license, free for both commercial and non-commercial

purposes, and is furthermore compliant with the Code::Blocks C++

IDE environment, as explained in an earlier chapter. This section

explains how SDL can be downloaded and configured for both Win-

dows and Linux Ubuntu.

5.2.1 SDL on Ubuntu
SDL can be downloaded and installed on Ubuntu, ready to use, in one

process from the Software Repository using the Synaptic Package

Manager. The following instructions illustrate the installation process

step by step.

5.2.1.1 Downloading and Installing SDL on Ubuntu Using
Synaptic Package Manager

1. Beginning from the Ubuntu desktop, select System | Adminis-

tration | Synaptic Package Manager.

140 Chapter 5 / SDL Graphics

Figure 5-2

2. Click Search, enter SDL to search for all available SDL-related

packages, and click Search.

3. Mark at least the libsdl-dev package for installation and click

Apply. Once SDL is installed it can also be updated automatically

as updates become available.

Chapter 5 / SDL Graphics 141

Ch
a

p
te

r
5

Figure 5-3

Figure 5-4

5.2.1.2 Downloading SDL Documentation from the Web

1. Go to the SDL web site at http://www.libsdl.org/.

2. Under the heading Documentation, click Downloadable. Select

the HTML SDL documentation and click OK. This package con-

tains the SDL reference material that SDL programmers may

need.

142 Chapter 5 / SDL Graphics

Figure 5-5

Figure 5-6

5.2.1.3 Creating an SDL Project Using Code::Blocks in
Linux Ubuntu

1. Start Code::Blocks, and click the Create New Project option

from the startup screen. A wizard appears.

2. Select the SDL project icon from the categories list view and

click Go.

3. Click Next if the welcome screen appears.

Chapter 5 / SDL Graphics 143

Ch
a

p
te

r
5

Figure 5-7

Figure 5-8

4. Enter the project details and specify the SDL project name and the

fully qualified path where the source files are to be created. Click

Next.

5. Select the GNU GCC Compiler from the drop-down list and click

Next. The project is now created, with source files at the destina-

tion specified, and the project configured to use the selected

compiler and linker settings.

144 Chapter 5 / SDL Graphics

Figure 5-9

Figure 5-10

6. The Code::Blocks IDE presents the source files. Click the Com-

pile and Run icon to execute the project.

The compiled project now runs in an SDL window on Linux Ubuntu.

Chapter 5 / SDL Graphics 145

Ch
a

p
te

r
5

Figure 5-11

Figure 5-12

5.2.2 SDL on Windows
SDL can be downloaded and configured to compile with Code::Blocks

on almost all versions of Windows available. The following instructions

illustrate the installation process step by step.

� TIP. Before downloading and installing SDL, users should have a
means to extract TAR and 7Z compressed archives, such as by using
the WinRAR or 7-Zip applications that were discussed in Chapter 3.

5.2.2.1 Downloading and Installing SDL on Windows

1. Go to the SDL web site at http://www.libsdl.org/.

2. Under the heading Download, click the latest SDL version (SDL

1.2 at the time of writing). Download the Windows SDL runtime

library SDL-1.2.12-win32.zip. This archive contains the important

runtime SDL.dll file, which should be extracted to the folder from

which the compiled EXE will be run. This DLL file is an SDL

dependency, and since it is a “runtime” library, it is required by an

SDL EXE at run time in order to execute successfully. This file

must furthermore be present on all end-user machines. In other

words, this file is unique among SDL files since it should be dis-

tributed to users alongside the SDL-powered game itself.

146 Chapter 5 / SDL Graphics

Figure 5-13

3. In addition to the SDL.dll runtime library, SDL developers also

require the SDL development libraries in order to compile SDL

applications. Click the SDL-devel-1.2.12-mingw32.tar.gz

(Mingw32) library. This archive contains the headers, source files,

and libraries required for development, and these files are compli-

ant with Code::Blocks and the GCC compiler. This archive can be

extracted to any local folder on the development system.

Chapter 5 / SDL Graphics 147

Ch
a

p
te

r
5

Figure 5-14

Figure 5-15

� NOTE. Alternative development libraries can be downloaded for
other IDEs, such as Visual Studio .NET. However, this book does not
explore this IDE.

4. Scroll down the list to the SDL Documentation Project section and

click the SDLRef.chm link to download the Windows SDL Pro-

grammer’s Reference, listing all the classes, functions, and

structures of SDL.

5.2.2.2 Creating an SDL Project Using Code::Blocks in
Windows

1. Start Code::Blocks and click Create New Project from the

startup screen. A wizard appears.

2. Select the SDL project template from the project categories list

box. Click Go.

148 Chapter 5 / SDL Graphics

Figure 5-16

3. Click Next when the SDL project wizard welcome screen appears.

(This welcome screen can be disabled by choosing the Skip this

page next time check box.)

Chapter 5 / SDL Graphics 149

Ch
a

p
te

r
5

Figure 5-17

Figure 5-18

4. Assign the SDL project a name and specify a fully qualified path

where the Code::Blocks project and source files will be generated.

Click Next.

5. Specify the fully qualified path (root folder) where the SDL devel-

opment files were extracted. Click Next.

150 Chapter 5 / SDL Graphics

Figure 5-19

Figure 5-20

6. Select the GNU GCC Compiler from the drop-down list and click

Finish to accept the default compiler settings.

7. Code::Blocks generates an SDL project and corresponding source

files at the path specified in step 4, and configures the compiler

according to the settings in step 6. Click Compile and Run to test

the SDL project.

Chapter 5 / SDL Graphics 151

Ch
a

p
te

r
5

Figure 5-21

Figure 5-22

The SDL project compiles and executes in a newly created SDL

window.

� TIP. Remember, if an SDL project compiles but fails to run because
of a missing SDL.dll, ensure the runtime library SDL.dll is located in
the same folder in which the executable is run. Alternatively, it can be
located in the Windows System32 folder.

5.3 Getting Started with SDL

SDL projects generated using the Code::Blocks application wizard are

complete with code and comments, and are preconfigured to compile

and run immediately. SDL applications compiled from this template

feature a window inside which a bitmap is drawn on each frame during

the game loop, and so the template SDL project demonstrates clearly

the basic structure and most common function calls of the graphics

subsystem for any SDL application. This section explores the code

contained in the template project by examining the essential SDL func-

tion calls to create and sustain a window, and then explaining how

images are both loaded from files to memory and drawn from memory

to the window.

152 Chapter 5 / SDL Graphics

Figure 5-23

5.3.1 Initializing and Closing SDL
Initializing SDL is the one-time process (once per application) of pre-

paring one or more of the SDL subsystems (audio, video, input, etc.)

for use, and this process occurs through a single function call —

SDL_Init. For this reason, initialization is the first and essential step of

any SDL application and must precede all other SDL function calls.

The process of initialization is partnered with an uninitialization or

closing call to SDL — SDL_Quit — which occurs typically, though not

always, at the end of an SDL application, and is the last and essential

function call confirming that SDL is no longer to be used in this

instance. Thus, for each call to SDL_Init there must be a correspond-

ing call to SDL_Quit, one call marking the beginning and the other the

ending of an SDL application, and all other SDL calls must occur

between these two if they are to be successful.

SDL_Init is the function used to initialize one or more of the SDL

subsystems, and takes the following form:

int SDL_Init(Uint32 flags);

� Uint32 flags — Unsigned 32-bit integer flag, encoding the combi-

nation of SDL subsystems to initialize. This flag should specify at

least one subsystem, or can contain any combination of any of the

following seven SDL subsystems (please see Section 5.1 for a

more detailed description of the SDL subsystems):

SDL_INIT_TIMER

SDL_INIT_AUDIO

SDL_INIT_VIDEO

SDL_INIT_CDROM

SDL_INIT_JOYSTICK

SDL_INIT_EVENTTHREAD

SDL_INIT_EVERYTHING

� NOTE. SDL Header Files and Libraries. SDL projects gener-
ated from the Code::Blocks SDL template via the application wizard
are configured to run automatically, but manually created SDL pro-
jects should include the SDL header files, as follows:

#include <SDL.h>

//Or #include "MyPath/SDL.h"

Projects should also include the SDLMain library file.

Chapter 5 / SDL Graphics 153

Ch
a

p
te

r
5

Example SDL Application to Initialize and Uninitialize

//Initialize all SDL subsystems

if(SDL_Init(SDL_INIT_EVERYTHING) == -1)

{

return 1; //Error occurred;

}

else

{

//Success

SDL_Quit();

}

5.3.2 Creating a Window and Game Loop
SDL games execute inside a window, the SDL window, and survive no

longer than the window itself, which survives until the end of the

application. Game loops, as described in Chapter 4, sustain the life of

an application through repetition, looping to postpone the end of an

application until the user terminates the loop by finally choosing to

exit. Each iteration of the loop corresponds to a unique frame, one

among a long sequence of frames occurring at intervals of milliseconds

throughout game execution, and on each frame a programmer typically

updates the game’s data (player position, reading input, etc.) and also

redraws the scene’s graphics inside the SDL window, overwriting the

pixels drawn there during the previous frame. Please consult Chapter

4 for more information on game loops and their relation to the lifetime

of games specifically.

Windows are the canvas and bordered region onto which SDL

games paint their graphics on each frame. More than this, however,

windows are the focus for receiving input from the user and for receiv-

ing messages from the operating system generally. The SDL library

offers to developers the SetVideoMode function to create SDL win-

dows of a specified size, and the window lifetime is sustained by the

game loop. If SetVideoMode is successful, the function returns a

pointer to an instance of SDL_Surface, which is a class encapsulating

an active window that has properties and methods to set the window’s

title and size, among other features. SetVideoMode is detailed below.

154 Chapter 5 / SDL Graphics

SDL_Surface *SDL_SetVideoMode(int width, int height, int bpp,

Uint32 flags);

� int width, int height — Integer parameters to specify the width

and height in pixels of the window to be created.

� int bpp — Specifies the bits per pixel of the window to be created;

usually 16.

� Uint32 flags — Unsigned 32-bit integer flag specifying additional

properties of the window to be created. This flag may be a combi-

nation of one or more of the following values:

� SDL_SWSURFACE — The SDL window and its contents are

allocated to system memory, not to the memory of video hard-

ware. Greater system compatibility, worse performance

generally.

� SDL_HWSURFACE — The SDL window and its contents

are allocated to hardware video memory, not to system mem-

ory. Less system compatibility, better performance generally.

� SDL_FULLSCREEN — This flag creates a full-screen SDL

window.

� NOTE. The code listed in bold refers to particularly important or
key functions.

Example SDL Application

In this sample code we create a window and sustain its lifetime

using a game loop.

// create a new window

SDL_Surface* screen = SDL_SetVideoMode(640, 480, 16,
SDL_HWSURFACE|SDL_DOUBLEBUF);

if (!screen)

{

printf("Unable to set 640x480 video: %s\n", SDL_GetError());

return 1;

}

bool done = false;

while (!done)

{

Chapter 5 / SDL Graphics 155

Ch
a

p
te

r
5

// message processing loop

SDL_Event event;

while (SDL_PollEvent(&event))
{

// check for messages

switch (event.type)

{

// exit if the window is closed

case SDL_QUIT:

done = true;

break;

// check for keypresses

case SDL_KEYDOWN:

{

// exit if ESCAPE is pressed

if (event.key.keysym.sym == SDLK_ESCAPE)

done = true;

break;

}

} // end switch

} // end of message processing

// DRAWING STARTS HERE

// clear screen

SDL_FillRect(NULL, 0, SDL_MapRGB(screen->format, 0, 0, 0));

// GAME UPDATE AND DRAWING OCCURS HERE

//Do stuff

// DRAWING ENDS HERE

// Update the screen

SDL_Flip(screen);

} // end main loop

The SDL code sample featured above is a classic example of an SDL

application insofar as it creates and maintains a 640 x 480 window

using a game loop, a loop that also reads and processes user input to

determine when the Esc key on the keyboard is pressed to signal the

end of the loop. In short, the above code sample illustrates at least

156 Chapter 5 / SDL Graphics

three crucial components and subsystems at work in SDL: surfaces,

event polling, and page flipping.

� Surfaces — The SDL video subsystem may potentially contain

many surfaces in memory at run time, at least one of which is

returned from the SetVideoMode function and represents the pixel

contents of the SDL window. An SDL surface represents a read-

able and writeable canvas of pixels in memory; that is, a rectangu-

lar region of bytes that may be loaded with image data from files

on disk or from other surfaces by copying and pasting. A single

instance of SDL_Surface corresponds to a single surface in mem-

ory, offering methods and properties for accessing and editing the

pixels on the surface. Surface handling is considered in more detail

shortly.

� Event polling — The SDL event subsystem handles all system

events. The term “event” refers to the run-time notification sent

to an application as an important situation occurs, such as a

keypress, mouse movement, or system error. So, the SDL event

subsystem handles all events automatically as they occur by post-

ing (or adding) them onto an event queue (or event stack). The

events in the event queue accumulate unprocessed one atop the

other until the SDL application requests, or polls for, the events

using the SDL_PollEvent function, responding to each event

appropriately. On each frame, or iteration of the game loop, an

application polls for all pending events using the SDL_PollEvent

function. This function removes and returns only the topmost

event on the stack, and so must be called as many times as there

are pending events in order to empty the queue on each frame.

Returned events are encoded in an SDL_Event structure, as

follows:

typedef union{

Uint8 type;

SDL_ActiveEvent active;

SDL_KeyboardEvent key;

SDL_MouseMotionEvent motion;

SDL_MouseButtonEvent button;

SDL_JoyAxisEvent jaxis;

SDL_JoyBallEvent jball;

SDL_JoyHatEvent jhat;

SDL_JoyButtonEvent jbutton;

Chapter 5 / SDL Graphics 157

Ch
a

p
te

r
5

SDL_ResizeEvent resize;

SDL_ExposeEvent expose;

SDL_QuitEvent quit;

SDL_UserEvent user;

SDL_SywWMEvent syswm;

} SDL_Event;

� TIP. The SDL_PollEvent returns 0 if the event queue is empty; in
other words, when there are no pending events to handle.

Example SDL Event Loop

while (SDL_PollEvent(&event))

{

// check for messages

switch (event.type)

{

// exit if the window is closed

case SDL_QUIT:

done = true;

break;

}

}

� NOTE. Appendix G at the end of this book features a table listing
all of the SDL key code constants.

� Page flipping — SDL applications typically refresh, or repaint,

the graphical contents of their window on each frame, and since a

frame corresponds to an iteration of the game loop, an application

must repaint the window on each iteration. SDL repaints the main

window instantaneously whenever a call to SDL_Flip is made, and

repainting occurs during this function via a process called page flip-

ping. To repaint in this instance means to update the pixel data

inside the main window, revealing the contents of whatever has

been drawn there since the previous call to SDL_Flip.

158 Chapter 5 / SDL Graphics

Page Flipping

The term page flipping, also known as double buffering, refers to a

flip book style technique for drawing computer graphics to the

display quickly and efficiently. Software that uses page flipping

will traditionally maintain at least two canvases (or surfaces;

regions for drawing pixel data in memory), one surface being

read-only and visible (on-screen) and the other being read/write

and hidden (off-screen). That is, the on-screen surface is a final

composition, and the off-screen surface is a work in progress free

to be edited and painted to. Page flipping occurs at the end of each

frame, when painting to the off-screen surface is completed. It is a

process of flipping, or exchanging the on-screen and off-screen

surfaces, such that the off-screen work in progress now becomes

the on-screen and read-only surface, and the previously on-screen

surface now becomes an off-screen work in progress. Thus, the

surfaces are switched, and the off-screen surface becomes visible,

and so the process goes on for each frame. In this way, games des-

ignate a surface for working and a surface for presenting the

latest contents drawn on each frame.

5.3.3 SDL Surfaces
As stated earlier, the SDL video subsystem is responsible chiefly for

the graphics of an SDL application and may potentially contain many

surfaces at run time, at least one of which is returned from the

SetVideoMode function and represents the pixel contents (the canvas)

of the SDL window. However, programmers may create other surfaces

manually in addition to the SDL window by using a variety of SDL

functions, such as the SDL_LoadBMP function. To clarify, an SDL sur-

face refers to a readable and writeable canvas of pixels in memory. The

SDL function SDL_LoadBMP creates an SDL surface in memory

loaded with pixel data from a valid bitmap file on disk. SDL_LoadBMP

takes the following form:

SDL_Surface *SDL_LoadBMP(const char *file);

Chapter 5 / SDL Graphics 159

Ch
a

p
te

r
5

� const char *file — Fully qualified path of the file whose pixel data

will be loaded onto the newly created surface returned by the

SDL_LoadBMP function.

� NOTE. SDL_LoadBMP creates a new SDL surface in system or hard-
ware memory that is loaded with pixel data from a bitmap file. So
each call to SDL_LoadBMP should be later followed by a matching
call to SDL_FreeSurface (when a surface is no longer required by an
application), deleting the created surface from memory.

Example SDL Surface Loaded from a File

SDL_Surface* loadedImage = NULL;

loadedImage = SDL_LoadBMP(filename.c_str());

5.3.3.1 Blitting Surfaces

The process of copying pixels from one surface to another is called

blitting, and the SDL video subsystem offers the SDL_BlitSurface

function to blit pixels between surfaces loaded in memory, just as pix-

els can be copied and pasted between surfaces in a photo editing

package like Photoshop. In short, blitting means a rectangle of pixels is

copied from a source surface and pasted onto a destination. Note that

the main window surface created by SetVideoMode is unique among

SDL surfaces since it singularly represents the off-screen buffer in a

page flipping chain. That is, the pixel contents of the window surface

become visible when the SDL_Flip function is called at the end of each

frame. Thus, SDL applications can present off-screen surfaces loaded

from files to the display by blitting them to the main window surface

on each iteration of the game loop. In other words, surfaces are made

visible when blitted to the window surface. The SDL_BlitSurface func-

tion used to blit one surface to another takes the following form:

int SDL_BlitSurface(SDL_Surface *src, SDL_Rect *srcrect,

SDL_Surface *dst, SDL_Rect *dstrect);

� SDL_Surface *src — Pointer to a valid instance of SDL_Surface

that is the source of the blit operation.

� SDL_Rect *srcrect — Pointer to a valid SDL_Rect structure

specifying the rectangular subset of pixels to be copied from the

source surface, specified by src. NULL selects the entire surface.

160 Chapter 5 / SDL Graphics

� SDL_Surface *dst — Pointer to a valid instance of SDL_Surface

that is the destination of the blit operation.

� SDL_Rect *dstrect — Pointer to a valid SDL_Rect structure

specifying the rectangular subset of pixels into which the source

pixels from the source surface should be pasted.

Example SDL Surface Blitted to a Window

//Blits a bitmap surface onto the main window canvas

SDL_BlitSurface(source, NULL, screen, NULL);

5.3.3.2 Optimizing SDL Surfaces

Surfaces are said to be optimized when their pixel format (bits per

pixel) matches the pixel format of their application’s main window, also

known as the “main surface” or the “frame buffer.” SDL surfaces cre-

ated by the video subsystem from bitmap files on disk are usually

created with a pixel format matching the format of the file from which

they were loaded, such as 16-bit surfaces from 16-bit files. However

the format of a surface, since it may come from one among potentially

many image files, may not match that of the frame buffer onto which

most surfaces are ultimately copied (blitted) on each frame for display.

(Pixels from one surface can be copied and pasted onto another using

the SDL_BlitSurface function, explained in the previous section.) This

means that for each time a surface is copied to a destination whose

pixel format differs, SDL must perform a conversion of the source pix-

els into the format of the destination. This conversion inevitably incurs

a performance penalty for an application on every occasion where it

must occur. To solve this issue, the SDL video subsystem therefore

provides the SDL_DisplayFormat function, which accepts as an argu-

ment a pointer to any standard surface loaded from a file on disk and

returns in memory a pixel-by-pixel duplicate surface whose pixel for-

mat matches the frame buffer. The SDL_DisplayFormat function is

designed to be called only once for each non-frame buffer surface cre-

ated. The prototype for SDL_DisplayFormat is featured below:

SDL_Surface *SDL_DisplayFormat(SDL_Surface *surface);

� SDL_Surface *surface — Specifies a valid instance of class

SDL_Surface, whose duplicate with an amended pixel format

matching the frame buffer is returned by SDL_DisplayFormat.

Chapter 5 / SDL Graphics 161

Ch
a

p
te

r
5

Example SDL Surface Loaded from a File and Optimized

//Load the image

SDL_Surface* loadedImage = NULL;

SDL_Surface* optimizedImage = NULL;

loadedImage = SDL_LoadBMP(filename.c_str());

if(loadedImage != NULL)

{

//Create optimized image

optimizedImage = SDL_DisplayFormat(loadedImage);

//Free old image

SDL_FreeSurface(loadedImage);

loadedImage = NULL;

}

� NOTE. Optimizing an SDL surface creates a duplicate surface
whose pixel format matches the frame buffer. Thus, the original
unoptimized surface can safely be deleted from memory using the
SDL_FreeSurface function, as demonstrated in the code example
above.

5.3.4 Additional File Formats (JPEG, PNG, TGA,
and Others)

The by now familiar SDL_LoadBMP function of the SDL video subsys-

tem allows programmers to create surfaces in memory with pixels

loaded from bitmap files (.bmp) only. This function, and the SDL more

generally, does not by default support surfaces loaded from image files

other than bitmap, such as from JPEG, PNG, or TGA files. The ability

to create surfaces from such alternative formats is supported only by

an additional package of development libraries available from the SDL

web site or the Ubuntu Repositories. These libraries are freely avail-

able and under the umbrella of the SDL development kit, and therefore

are subject to the same GNU licensing terms. This section explores

the step-by-step process for downloading the SDL Image Develop-

ment Libraries, and further examines how to configure them for use in

SDL projects created by Code::Blocks on both Windows and Linux

Ubuntu.

162 Chapter 5 / SDL Graphics

5.3.4.1 Downloading and Configuring SDL Image
Development Libraries for Code::Blocks on Ubuntu

1. Beginning from the Ubuntu desktop, select System | Adminis-

tration | Synaptic Package Manager from the main menu.

2. Click Search and type SDL to filter the packages for a list of

SDL-related development files. Mark the libsdl-image-dev files for

installation and click Apply.

3. Once the SDL Image Development Libraries are installed, start

Code::Blocks.

4. Load an existing SDL project, or create a new SDL project using

the steps in Section 5.2.1.3.

Chapter 5 / SDL Graphics 163

Ch
a

p
te

r
5

Figure 5-24

5. From the Code::Blocks Editor’s main menu, select Project |

Build options.

6. Click the Linker settings tab and type SDL_image in the Link

libraries list box. Click OK.

7. Include the #include <SDL_image.h> preprocessor directive in

addition to existing directives in all SDL projects to use the SDL

image development functions. The project is now configured.

164 Chapter 5 / SDL Graphics

Figure 5-25

Figure 5-26

The next section details the Windows installation for the SDL Image

Development Libraries, and a later section explains how to load SDL

surfaces from images in formats other than BMP.

5.3.4.2 Downloading and Configuring SDL Image
Development Libraries for Code::Blocks on Windows

1. Beginning from the Windows desktop, navigate a web browser to

the SDL development libraries web site at http://www.libsdl.org/

projects/SDL_image/.

� NOTE. Or alternatively, go to the SDL home page at
http://www.libsdl.org/. Under the Download heading on the left,
click Libraries, then enter the search keyword Image in the edit box.
Scan the results for the SDL Image Library.

2. Download the SDL Image Development package

SDL_image-devel.

3. Once downloaded, extract the header, source, library, and DLL

files of the zip package to the current SDL folder on the local

machine. Then start Code::Blocks.

4. Open an existing SDL project or create a new SDL project from

the Code::Blocks SDL template wizard, as described in Section

5.2.2.2.

Chapter 5 / SDL Graphics 165

Ch
a

p
te

r
5

Figure 5-27

5. From the Code::Blocks Editor’s main menu, select Project |

Build options.

6. Click the Linker settings tab and add the SDL Image Develop-

ment Library (SDL_Image) to the Link libraries list box. Click

OK.

7. Include the #include <SDL_image.h> preprocessor directive in

addition to existing directives in all SDL projects to use SDL

image development functions. The project is now configured.

5.3.4.3 SDL: Further Image Formats

Now let’s look at how to load SDL surfaces from images in formats

other than BMP. The following code loads a PNG file.

� NOTE. The code sample is similar to the sample featured earlier in
this chapter where a surface was loaded from a bitmap file using
SDL_LoadBMP, except the function IMG_Load has replaced a call to
SDL_LoadBMP. Like SDL_LoadBMP, the function IMG_Load creates a
standard SDL_Surface in memory, but it can load surface pixels from
any valid image file on disk in any of the following formats in addi-
tion to BMP: GIF, JPEG, LBM, PCX, PNG, PNM, TGA, TIFF, XCF, XPM,
and XV.

166 Chapter 5 / SDL Graphics

Figure 5-28

Example SDL Surface Loaded from a PNG File and Optimized

//Load the image

SDL_Surface* loadedImage = NULL;

SDL_Surface* optimizedImage = NULL;

loadedImage = IMG_Load("myfile.png");

if(loadedImage != NULL)

{

//Create optimized image

optimizedImage = SDL_DisplayFormat(loadedImage);

//Free old image

SDL_FreeSurface(loadedImage);

loadedImage = NULL;

}

5.4 Color Keying with Surfaces

It has been demonstrated throughout the previous sections of this

chapter how the SDL video subsystem features at least two functions,

SDL_LoadBMP and IMG_Load, for creating a rectangular canvas of

bytes in memory called a surface; and these functions further allow the

surface to be loaded instantly with pixels from an image file on disk in

a variety of formats, from BMP to TGA. Furthermore, specified rect-

angles of pixels may be copied and pasted (blitted) to and from

surfaces in memory using the SDL_BlitSurface function, and pixels

that are copied to the main window (main surface, or frame buffer) are

drawn to the game window display and thereby become visible to the

gamer for every frame they are blitted there.

Until now the SDL_BlitSurface function has been used to copy pix-

els between a source and a destination surface in memory, and a

programmer does this by specifying a finite-sized rectangle of pixels

on the source surface to copy onto a specified location on the destina-

tion surface. This means all pixels inside the specified source

rectangle are indiscriminately blitted to the destination rectangle,

regardless of their contents. There are often situations, however, when

SDL applications must blit only certain pixels, such as those of a

Chapter 5 / SDL Graphics 167

Ch
a

p
te

r
5

specific color, rather than all pixels inside the rectangle. Consider the

example of the two images loaded onto SDL surfaces featured in Fig-

ure 5-29 — the cityscape background and the happy face.

The first surface may be blitted entirely to the frame buffer where it

will be presented to the display as a background for the scene, but the

second surface (the happy face) features superfluous pixels on the out-

side of the face that should be removed when it is blitted to the

background. Thus, the superfluous pixels around the face must be

ignored when the surface is blitted to the destination, and so the SDL

video subsystem must distinguish between these pixels on the basis of

that which each of those pixels share, namely their color. The process

of filtering, or ignoring, specified pixels from the source surface on the

basis of color as it is blitted to a destination surface is known as color

keying. The SDL video subsystem offers the SDL_SetColorKey func-

tion to set the color key specifically for any valid surface in memory.

Only one color key may be applied to a surface at any one time, and for

color keying to work successfully, the SDL_SetColorKey function

should also be called before any blit operations involve the surface on

which the color key is to be applied. The SDL_SetColorKey function

takes the following form:

int SDL_SetColorKey(SDL_Surface *surface, Uint32 flag, Uint32

key);

� SDL_Surface *surface — Pointer to a valid instance of

SDL_Surface in memory, representing the surface for which the

color key is to be applied.

� Uint32 flag — Specify SDL_SRCCOLORKEY.

� Uint32 key — Unsigned 32-bit integer specifying the color itself

to be used as the color key for the surface represented by the

argument surface. This color value can be generated using the

168 Chapter 5 / SDL Graphics

Figure 5-29

RGB (Red, Green, Blue) color composition macro, SDL_MapRGB,

as demonstrated in the following code sample.

Example SDL Surface Loaded from a PNG File, Optimized, and
a Color Key Applied

//Load the image

SDL_Surface* loadedImage = NULL;

SDL_Surface* optimizedImage = NULL;

loadedImage = IMG_Load("myfile.png");

if(loadedImage != NULL)

{

//Create optimized image

optimizedImage = SDL_DisplayFormat(loadedImage);

//Free old image

SDL_FreeSurface(loadedImage);

loadedImage = NULL;

Uint32 colorkey = SDL_MapRGB(optimizedImage->format, 0,

0xFF, 0xFF);

SDL_SetColorKey(optimizedImage, SDL_SRCCOLORKEY, colorkey);

}

5.5 Conclusion

To summarize, the SDL (Simple DirectMedia Layer) was established

in 1998 and is perhaps the foremost SDK among the open-source,

cross-platform, and free software used primarily by programmers for

creating video games, and more commonly for handling video game

graphics. The SDL is a single library made up of eight conceptual sub-

systems: audio, CD-ROM, event handling, file I/O, joystick handling,

threading, timers, and video. This chapter focused narrowly on some

of the fundamental details of the SDL video subsystem, an umbrella

term encompassing a plethora of topics, such as page flipping, sur-

faces, blitting, and color keying. To conclude, the following sample

SDL source code is provided, forming a complete SDL program made

Chapter 5 / SDL Graphics 169

Ch
a

p
te

r
5

with Code::Blocks, and highlighting the topics featured in this chapter

— from configuring an SDL application to blitting between surfaces

using color keying. The next chapter will examine in greater detail

much of the SDL subject matter explained here in order to apply SDL

in practical game-making techniques. (The following code is also pro-

vided in the book’s companion files available at

www.wordware.com/files/gamedev056X)

Example SDL Application

#ifdef __cplusplus

#include <cstdlib>

#else

#include <stdlib.h>

#endif

#ifdef __APPLE__

#include <SDL/SDL.h>

#else

#include <SDL.h>

#include <SDL_image.h>

#endif

int main (int argc, char** argv)

{

// initialize SDL video

if (SDL_Init(SDL_INIT_VIDEO) < 0)

{

printf("Unable to init SDL: %s\n", SDL_GetError());

return 1;

}

// make sure SDL cleans up before exit

atexit(SDL_Quit);

// create a new window

SDL_Surface* screen = SDL_SetVideoMode(800, 600, 16,

SDL_HWSURFACE|SDL_DOUBLEBUF);

if (!screen)

{

printf("Unable to set 640x480 video: %s\n",

SDL_GetError());

return 1;

}

170 Chapter 5 / SDL Graphics

// load an image

SDL_Surface* bmp = IMG_Load("/home/alan/Desktop/Test.bmp");

SDL_Surface* optimizedImage = NULL;

if (!bmp)

{

printf("Unable to load bitmap: %s\n", SDL_GetError());

return 1;

}

else

{

optimizedImage = SDL_DisplayFormat(bmp);

SDL_FreeSurface(bmp);

bmp = NULL;

Uint32 colorkey = SDL_MapRGB(optimizedImage->format, 0,

0xFF, 0xFF);

SDL_SetColorKey(optimizedImage, SDL_SRCCOLORKEY, colorkey);

}

// center the bitmap on screen

SDL_Rect dstrect;

dstrect.x = (screen->w – optimizedImage->w) / 2;

dstrect.y = (screen->h – optimizedImage->h) / 2;

// program main loop

bool done = false;

while (!done)

{

// message processing loop

SDL_Event event;

while (SDL_PollEvent(&event))

{

// check for messages

switch (event.type)

{

// exit if the window is closed

case SDL_QUIT:

done = true;

break;

Chapter 5 / SDL Graphics 171

Ch
a

p
te

r
5

// check for keypresses

case SDL_KEYDOWN:

{

// exit if ESCAPE is pressed

if (event.key.keysym.sym == SDLK_ESCAPE)

done = true;

break;

}

} // end switch

} // end of message processing

// DRAWING STARTS HERE

// clear screen

SDL_FillRect(screen, 0, SDL_MapRGB(screen->format, 0, 0, 0));

// draw bitmap

SDL_BlitSurface(optimizedImage, 0, screen, &dstrect);

// DRAWING ENDS HERE

// finally, update the screen :)

SDL_Flip(screen);

} // end main loop

// free loaded bitmap

SDL_FreeSurface(optimizedImage);

// all is well ;)

printf("Exited cleanly\n");

return 0;

}

172 Chapter 5 / SDL Graphics

Chapter 6

Game Audio

The adage “sound can make or break a game” has no doubt been

around for as long as there have been games with sound, and it con-

tains in one succinct message a double-edged meaning. First, it hints

at the general importance of sound for a gaming experience, but sec-

ondly, and more ominously, it also suggests that “no sound” can be

better than “bad” sound since bad sound can break a game. For a game

developer, then, creating sound for a game is mainly a balancing act

between silence and sound; when and when not to play audio in a

game. This is largely the subject matter for this chapter, which focuses

on programming audio using the SDL library for cross-platform games.

In the game development world, the notion of sound (or more gen-

erally, audio) is conceptually divided into two subcategories: sound and

music. The distinction is drawn between the two kinds of audio based

upon its purpose in a given video game. Audio categorized as sound (or

SFX) includes the sounds played as events happen in the game world

such as footstep sounds played when a game character is walking, gun-

shot and glass breaking sounds played during a gun battle between two

opponents, speech played during a conversation, and game menu

sounds played for events like button presses and the appearance of

confirmation dialogs such as “Do you want to exit?” Audio categorized

as background music (BGM) or incidental music is generally longer in

duration than a sound; a sound may last for less than 30 seconds

whereas music may play for longer than two minutes.

A sound is often played by a game repeatedly and consciously on

every occasion a specified event occurs (gun shot, punch sound,

scream) to reinforce the effect that “something” has happened, as

opposed to nothing has happened; to represent action without visuals.

By contrast, music is played subliminally and continuously for long

periods of time to convey an atmosphere; a feeling or a mood.

173

Background music usually refers to an unobtrusive musical score

that begins in the same way it ends so it can be looped seamlessly in

the background to convey a smooth, subliminal mood for as long as the

player remains in the current scene of the game. A single track of

background music is said to be unobtrusive when it isn’t loud,

fast-paced, or packed with vocals and other attention-grabbing features

that divert a player’s attention away from the game and toward the

music alone.

Single-track background music is designed to be subliminal and is

typically assigned to play repeatedly and continuously across one game

scene (one building, one room, one level, etc.) regardless of the events

that take place there.

In contrast, incidental music refers to a process of changeable

music; music that doesn’t remain constant but changes to reflect the

events occurring in the “here and now” of the current game scene. For

example, in a random death-match level of an FPS game, the player

may have become injured by his opponent’s attack during a skirmish,

and fled into the darkness of emptier parts of the level in search of

cover, health, power-ups, or better weapons, or to engage in guerilla

warfare. The player’s retreat from battle pays off since his character

finds a safe haven in which to recover from any injuries; here the

music is tranquil, a short, looping background track of the “chill-out”

kind, and perhaps now and then a “sighing” or “breathless” SFX

played to represent the player’s recovery. Then suddenly, BANG!, the

enemy encroaches into the player’s enclave with guns blazing and at

once the player is again hoisted into the throes of battle; here the

music changes, bursting into an intense beat that began with the

enemy’s surprise attack. This is a classic example of incidental music

at work. Thus, incidental music describes a dynamic process whereby

a game elects to play the background music most appropriate for the

events unfolding in the current game scene.

174 Chapter 6 / Game Audio

6.1 Recording and Editing Game SFX

Those who create and edit sound effects for video games may seem

peculiar and possibly disturbed people to those not familiar with the

intricacies of game development. Sound effect creators can often be

found in lonely corners of rooms hunched over microphones making

the strangest of noises with the most unexpected of objects; recording

gnarls, snorts, the office air conditioning unit, the flush of the toilet

system, the sound of burping through a flexible hose, and the creaks in

the floorboards to name but a few of the sounds in their audible won-

derland. For them it appears nothing is off-limits and every sound

exists only to be recorded. This, then, is the philosophy of sound effect

creation, and it is by recording sounds using a microphone that most

game developers collect their sounds for use in their games, arranging

them into a database called a “sound bank.” However, recording

sounds manually is not the only method a developer employs for

obtaining sound effects; developers may also purchase compilation

CDs and DVDs featuring sound banks containing hundreds or

thousands of sounds for use in their games.

Free Sound

Recently, the free software and open-source movement has also

spawned a wide variety of patent-free codecs (such as Ogg Vorbis)

and “creative commons” media. The FreeSound project

(http://freesound.iua.upf.edu/), for example, is an online sound bank

featuring sounds licensed under the Creative Commons Sampling

Plus License, meaning any user can download the sound effects

listed there and use them in their products. The Creative Commons

License grants the following (as listed at http://creativecom-

mons.org/licenses/sampling+/1.0/).

“You are free:

1. To sample, mash-up, or otherwise creatively transform this

work for commercial or non-commercial purposes.

Chapter 6 / Game Audio 175

Ch
a

p
te

r
6

2. To perform, display, and distribute copies of this whole work for

non-commercial purposes (e.g., file-sharing or non-commercial

webcasting).

Under the following conditions:

� You must attribute the work in the manner specified by the

author or licensor (but not in any way that suggests that they

endorse you or your use of the work).

� You may not use this work to advertise for or promote anything

but the work you create from it.

� For any reuse or distribution, you must make clear to others the

license terms of this work. The best way to do this is with a link

to this web page.

Note: For reference, the full text of the Creative Commons License

can be found in Appendix C at the end of this book.

6.2 SFX Software

176 Chapter 6 / Game Audio

Figure 6-1: Audacity

Sound effects are short duration (usually less than a minute) sounds

played by a game to signify action; that is, played when events occur in

the game world (such as footsteps played when a character walks, or a

door slam sound played when a door is closed, etc.). Sound effects are

typically small files that are recorded to disk from microphones or

downloaded from sound banks on DVD or online, and they are also typ-

ically encoded in WAV (wave) format and loaded entirely in memory by

the video games that play them (unlike music, which is streamed

rather than loaded; this is explained later). Developers record and edit

sound effects for their games using sound effects software. Cross-

platform game developers specifically prefer cross-platform sound

effects editors so the SFX created on one platform (say Windows) can

be opened and edited by using the same editor on another platform

(say Linux). It is perhaps not least because of the needs of cross-plat-

form game developers that the cross-platform sound effects editor

Audacity has gained recent popularity. Freely available and supporting

Windows, Linux, and Mac, Audacity is claimed to be the 11th “most

popular” download from SourceForge.net with over 24 million down-

loads, and was also the winner of the SourceForge.net Community

Choice Award for Best Project for Multimedia. Audacity can record

audio from microphones, edit audio files, and encode audio into a num-

ber of popular file formats (such as WAV, OGG, and MP3). Specifically,

Audacity boasts the following features:

� Record from microphone, line input, or other sources; 16-bit,

24-bit, and 32-bit (floating-point) samples

� Record up to 16 channels at once (requires multi-channel

hardware)

� Edit sounds using cut, copy, paste, and delete

� Import and export WAV, AIFF, AU, and Ogg Vorbis files

Chapter 6 / Game Audio 177

Ch
a

p
te

r
6

6.2.1 Downloading and Installing Audacity on
Linux Ubuntu

1. Beginning from the Ubuntu desktop, select System | Adminis-

tration | Synaptic Package Manager.

2. Search the application repository for Audacity and mark this appli-

cation using the check box in the application list view where

Audacity appears as an option for installation. Click the Apply but-

ton to install it to the system.

178 Chapter 6 / Game Audio

Figure 6-2

Figure 6-3

3. Once Audacity is installed to the system, it can be launched from

the Ubuntu main menu via Applications | Sound & Video |

Audacity Sound Editor.

Audacity is now ready to use.

Chapter 6 / Game Audio 179

Ch
a

p
te

r
6

Figure 6-4

Figure 6-5

6.2.2 Downloading and Installing Audacity on
Windows or Mac

1. Beginning from the desktop, navigate a web browser to the Audac-

ity web site at http://audacity.sourceforge.net/.

2. Click Download Audacity from the web page to proceed to the

downloads area.

3. Download the appropriate installer for your OS; the Windows

installer for Windows, Mac OS X for Mac, etc. This download page

also hosts Audacity for Linux distributions other than Ubuntu.

180 Chapter 6 / Game Audio

Figure 6-6

4. Follow the downloaded installation wizard to install Audacity to the

system.

� TIP. This chapter focuses primarily on programming sound for
games, and as such does not examine Audacity in depth as an
application in terms of recording, editing, and exporting sounds.
More information on Audacity (including tutorials for getting started)
can be found on the Audacity Wiki documentation web site at
http//www.audacityteam.org/wiki/.

Chapter 6 / Game Audio 181

Ch
a

p
te

r
6

Figure 6-7

Figure 6-8

6.3 Recording/Creating and Editing
Music

Unlike sound effects, which have a short duration and are designed to

represent action without visuals, game music is usually longer in dura-

tion (more than 60 seconds) and is typically designed to be unobtru-

sive and also “loopable” (that is, sounds the same at the beginning and

end of the piece) so that a single track may be played seamlessly in the

background for as long as the player remains in the current scene

(level, map, room) of the game. Game developers typically acquire

music for their games via at least one of the following means:

� Purchased music — This includes sound effect compilation CDs

or DVDs; music can also be purchased from “music bank” CDs,

such as those available from Royalty Free Music at

http://www.royaltyfreemusic.com/.

� Homemade music — Some game developers with musical tal-

ents produce their own music in-house, using either commercially

available (and often not cross-platform) music creation software

like eJay, Fruity Loops, or Cubase, or by recording their live ses-

sions and then later editing the recorded tracks using sound effect

editing software. This chapter will examine a cross-platform and

freely available music creation package called Schism Tracker

(http://sovietrussia.org/wiki/Schism_Tracker).

� Contracted music — Many (perhaps most) developers (espe-

cially independent developers) seek out a band or musician to

whom they can outsource their music development. Many bands

and their music (most available under the Creative Commons

License) can be found at the free music site Jamendo at

http://www.jamendo.com/.

182 Chapter 6 / Game Audio

6.4 Music Creation Software

Developers aiming to create their own music for their games may, in

the present computing climate of patented codecs and other digital

rights management (DRM) “enabled” media, may find it difficult to

come across a completely free and cross-platform music creation solu-

tion. There are a number of commercial options, from Cubase to Fruity

Loops, each designed with a polished GUI intended to make the pro-

cess of electronic music creation simpler for the developer. However,

in the world of free and cross-platform software (Windows, Linux, and

Mac) there is Schism Tracker for making music.

6.4.1 Downloading and Installing Schism
Tracker on Linux Ubuntu

1. Beginning from the Ubuntu desktop, start the Synaptic Package

Manager from the main menu by choosing System | Administra-

tion | Synaptic Package Manager.

Chapter 6 / Game Audio 183

Ch
a

p
te

r
6

Figure 6-9

2. In Synaptic Package Manager, search the Ubuntu application

repositories for Schism Tracker, and then mark it for installation by

checking the check box in the resulting application list. Click

Apply and Schism Tracker will be installed.

3. Launch Schism Tracker from the Ubuntu Terminal by clicking

Applications | Terminal from the Ubuntu main menu, and at the

terminal enter:

schism tracker

184 Chapter 6 / Game Audio

Figure 6-10

Figure 6-11

6.4.2 Downloading and Installing Schism
Tracker on Windows and Mac

1. Beginning from the desktop, navigate a web browser to the

Schism Tracker web site at http://sovietrussia.org/wiki/

Schism_Tracker.

2. Download the appropriate package for your operating system;

there is also a package available for Linux distributions other than

Ubuntu.

3. Extract the compressed zip archive (for Windows) or run the DMG

archive for Mac to install Schism Tracker to the system.

Chapter 6 / Game Audio 185

Ch
a

p
te

r
6

Figure 6-12

Figure 6-13

6.5 Programming Audio with
SDL_mixer

At its simplest, audio programming for games is about playing sound

(footsteps, raindrops) and music (background and incidental) at appro-

priate moments during game execution. Music is played to set a

scene’s mood, while sounds are played in response to user actions in

the game world, like opening doors or smashing windows. In this sec-

tion we’ll look at a cross-platform API SDL that is free for both

commercial and non-commercial usage.

The SDL (Simple DirectMedia Layer) was considered in the previ-

ous chapter primarily as a cross-platform graphics API, an API

designed to load images from files on disk to surfaces in memory, and

then to present the surface pixels frame by frame to the game window

at run time. By default, SDL can load pixels only from images in the

standard Windows BMP (bitmap) format, unless a plug-in module such

as SDL Image is downloaded and installed. This plug-in offers to

developers the Image_Load function, which extends SDL’s range of

accepted image file formats to PNG, TGA, JPEG, and several others.

In keeping with this notion of modular plug-ins, where additional

libraries are downloaded from the Internet to extend SDL’s default

functionality, the SDL can also play and mix audio files (such as MP3s

and OGGs) by way of a downloadable plug-in library called SDL_mixer.

This plug-in offers to developers a set of functions and data types for

playing audio in SDL applications. SDL_mixer loads sounds from files

on disk to buffers or streams in memory, and from these it can play and

mix as many sounds simultaneously as the system’s sound hardware

supports. SDL_mixer supports sounds in the following file formats:

� WAVE/RIFF (.wav)

� AIFF (.aiff)

� VOC (.voc)

� MOD (.mod, .xm, .s3m, .669, .it, .med, and more)

� MIDI (.mid; using timidity or native midi hardware)

� Ogg Vorbis (.ogg)

� MP3 (.mp3)

186 Chapter 6 / Game Audio

The following step-by-step processes illustrate how SDL_mixer can be

downloaded, installed, and configured “ready for use” with the

Code::Blocks IDE on the Linux (Ubuntu) and Windows platforms.

� TIP. The process of installing both Code::Blocks and SDL was
explained in earlier chapters of this book.

6.5.1 Installing and Configuring SDL_mixer on
Linux Ubuntu

1. Beginning from the Ubuntu desktop, start the Synaptic Package

Manager from the Ubuntu main menu by selecting System |

Administration | Synaptic Package Manager.

2. Search for SDL Mixer and click the OK button to return in the list

view a list of matching applications available to install from the

Ubuntu Repositories. Select both the SDL Mixer and the SDL

Mixer development files, then click the Apply button to install

them to the system.

Chapter 6 / Game Audio 187

Ch
a

p
te

r
6

Figure 6-14

3. Close the Synaptic Package Manager and start Code::Blocks from

the Ubuntu main menu by selecting Applications | Program-

ming | Code::Blocks IDE.

4. Start a new SDL Code::Blocks project or open an existing project.

To configure SDL Code::Blocks projects for use with the

SDL_mixer libraries, select Project | Build Options to view the

active project’s compilation settings. Click the Linker settings

tab and add SDL Mixer to the list of libraries linked to by the pro-

ject’s compiler. Also add the following preprocessor directive to

the main source file to include the SDL_mixer header file and its

types into the project:

#include <SDL_Mixer.h>

188 Chapter 6 / Game Audio

Figure 6-15

6.5.2 Installing and Configuring SDL_mixer on
Windows

1. Beginning from the Windows desktop, navigate a web browser to

the SDL_mixer web site at http://www.libsdl.org/projects/SDL_

mixer/ or visit the SDL home page at http://www.libsdl.org/, and

browse the searchable database of SDL add-ons for the

SDL_mixer add-on.

2. At the SDL_mixer web site, download both the Win32 binaries and

the Win32 development libraries to the desktop, and from there

extract the contents of the downloaded ZIP archives into the exist-

ing SDL development folder on the hard disk (the folder containing

the SDL header files and lib files).

Chapter 6 / Game Audio 189

Ch
a

p
te

r
6

Figure 6-16

Figure 6-17

3. Start Code::Blocks and either create a new SDL project using the

Code::Blocks SDL Wizard or load a previously saved project. Then

select Project | Build Options from the Code::Blocks main

menu to view the active project’s compilation settings. Click the

Linker settings tab and add SDL_mixer to the list of libraries

linked to by the project’s compiler. Also add the following prepro-

cessor directive to the main source file to include the SDL_mixer

header file and its types into the project:

#include <SDL_Mixer.h>

� NOTE. The SDL_mixer packages (binaries and development librar-
ies) downloaded from the SDL_mixer web site together include an
aggregation of run-time DLLs, specifically SDL_Mixer.dll, smpeg.dll,
libogg-0.dll, libvorbis-0.dll, and libvorbisfile-3.dll. All of these DLLs
must be distributed to end users alongside the compiled SDL_mixer
application if the application is to run successfully; that is, every DLL
should be included in the same folder from which the compiled exe-
cutable is run on the end user’s system.

6.5.3 Initializing the SDL_mixer Library
The SDL_mixer library is an add-on for SDL (though it can be used

independently of the SDL itself) and it offers to game developers a set

of functions for playing and mixing both music and sound effects in

their games. Programmatically, the first step in initializing the

SDL_mixer library should be a function call to Mix_OpenAudio, and

190 Chapter 6 / Game Audio

Figure 6-18

this function should be called before any other in the SDL_mixer

library. The Mix_OpenAudio function takes the following form:

int Mix_OpenAudio(int frequency, Uint16 format, int channels,

int chunksize)

� int frequency — Output sampling frequency measured in Hz of

sounds played via the speakers. For many games this value will be

22050 (MIX_DEFAULT_FREQUENCY).

� Uint16 format — Specifies the format of the audio to be pro-

cessed by the hardware (in terms of bits per sample). This value

will typically be MIX_DEFAULT_FORMAT, which equates to

AUDIO_S16SYS. The possible values for this argument are as

follows:

� AUDIO_U8 — Unsigned 8-bit samples

� AUDIO_S8 — Signed 8-bit samples

� AUDIO_U16LSB — Unsigned 16-bit samples, in little-endian

byte order

� AUDIO_S16LSB — Signed 16-bit samples, in little-endian

byte order

� AUDIO_U16MSB — Unsigned 16-bit samples, in big-endian

byte order

� AUDIO_S16MSB — Signed 16-bit samples, in big-endian

byte order

� AUDIO_U16 — same as AUDIO_U16LSB (for backward

compatability)

� AUDIO_S16 — same as AUDIO_S16LSB (for backward

compatability)

� AUDIO_U16SYS — Unsigned 16-bit samples, in system byte

order

� AUDIO_S16SYS — Signed 16-bit samples, in system byte

order

� int channels — The number of channels that may be used by the

API for playing sounds; refers typically to the number of speakers

for which a game’s audio is designed: 1 for mono, 2 for stereo, etc.

� int chunksize — Bytes per output sample. This could be 4096.

Chapter 6 / Game Audio 191

Ch
a

p
te

r
6

Sample code:

if(Mix_OpenAudio(22050, MIX_DEFAULT_FORMAT, 2, 4096) == –1)

{

return 1;

}

6.6 Sounds and Music with SDL_mixer

The SDL_mixer add-on divides audio into two types: samples or music

(sound or music). The term “sample” refers to a sound of short dura-

tion (less than a minute in length) and includes effects such as

footsteps, gunshots, screams, and potentially millions of others that

may occur in a game. By contrast, “music” refers to a longer, instru-

mental soundtrack designed to play subliminally or incidentally (in the

background), setting the mood at any one time for any given scene in

the game. Thus, audio can be loaded from files on disk and into

SDL_mixer as either a sample or as music, reflecting how a developer

intends the audio to be played in the game.

192 Chapter 6 / Game Audio

Figure 6-19

Audio loaded into SDL_mixer as a sample (and not as music) is

loaded in its entirety from its file, byte by byte, into a buffer in mem-

ory where it can later be played on demand. It can even be played

simultaneously with other samples also playing via the sound hard-

ware’s audio channels. In other words, SDL_mixer can play one or

more samples simultaneously. On the other hand, SDL_mixer may

play only one song (music) at any one time. Furthermore, since music

is typically longer in duration than a sample and thereby consumes

more memory on disk, SDL_mixer does not load a song entirely into

memory like it does a sample; rather, a song is said to be streamed

from a file and into memory byte by byte during playback. Thus, for

SDL_mixer, music playback is the process of intelligently loading from

a file only those segments of a song currently relevant to immediate

playback while simultaneously discarding from memory all of those

previously loaded segments that have since become irrelevant for

playback. In this way, chunks of the song are loaded and unloaded on-

the-fly as the song is being played, such that a song is never entirely

present in memory but never wholly out of memory. Both the sample

and music data types of SDL_mixer are now considered in further

detail.

6.6.1 Loading Music
Programmatically, music is first loaded from a file on disk (such as

MP3 or OGG) and into a memory buffer (not in its entirety) by the

Mix_LoadMUS function in preparation for playback later. This function

accepts as an argument a valid file name to a music file on disk, and it

returns a Mix_Music handle; that is, it returns a pointer to a memory

buffer containing the music partially loaded from the file. The

Mix_LoadMUS function takes the following form:

Mix_Music *Mix_LoadMUS(const char *file)

Sample code:

music = Mix_LoadMUS("Music.ogg");

� NOTE. Valid file formats are WAV, MOD, MIDI, OGG, and MP3.

Chapter 6 / Game Audio 193

Ch
a

p
te

r
6

6.6.2 Playing Music
Using SDL_mixer, music is loaded from a file on disk and into a

Mix_Music memory buffer by the Mix_LoadMUS function in prepara-

tion for playback later. SDL_mixer offers to developers at least three

different functions from which to choose to begin playback of a mem-

ory buffer, each function beginning playback of a song in a different

way:

� Mix_PlayMusic — This function begins playback of a song at full

volume from the beginning of the song.

� Mix_FadeInMusic — This function likewise begins playback of a

song from the beginning, but the song begins mute and its volume

gradually increases to full volume over a specified fade-in time

measured in milliseconds.

� Mix_FadeInMusicPos — This function begins playback of a song

from a point other than at the beginning (from a specified time off-

set as measured in milliseconds from the beginning of the song)

and playback also begins at mute volume, graduating to full volume

over a specified fade-in time. Consider the following code.

� NOTE. Remember, there are 1000 milliseconds in 1 second. So
2000ms = 2s; and 7500ms = 7.5 seconds.

Standard Play Music Function

// Mix_Music *music;

// Already loaded

//Prototype is: int Mix_PlayMusic(Mix_Music *music, int loops)

//Loop = Number of times to repeat sound playback; where –1 is

infinite

if(Mix_PlayMusic(music, –1)==–1)

{

//Error occurred here

}

194 Chapter 6 / Game Audio

Play Music Using the SDL_mixer FadeIn Function

// Mix_Music *music;

// Already loaded

//Prototype is: int Mix_FadeInMusic(Mix_Music *music, int loops,

int ms)

//Loop = Number of times to repeat sound playback; where –1 is

infinite

//ms = milliseconds during which music fades in from mute to full

volume

if(Mix_FadeInMusic(music, –1, 2000)==–1)

{

//Error occurred here

}

Play Music from a Specified Time Offset Using the FadeIn
Function

// Mix_Music *music;

// Already loaded

//Prototype is:

//int Mix_FadeInMusicPos(Mix_Music *music, int loops, int ms,

double position)

//Loop = Number of times to repeat sound playback; where –1 is

infinite

//ms = milliseconds during which music fades in from mute to full

volume

//position = Offset in milliseconds from the beginning of the

//song where playback is to begin

if(Mix_FadeInMusicPos(music, –1, 2000)==–1)

{

//Error occurred here

}

6.6.3 Controlling Music
In addition to streaming music using the three playback functions,

SDL_mixer also offers to developers functions for controlling or stop-

ping music playback in the same way a media player or stereo system

offers buttons to start, stop, rewind, pause, and forward the contents of

a media stream. These media control functions include the following:

Chapter 6 / Game Audio 195

Ch
a

p
te

r
6

� int Mix_VolumeMusic(int volume) — Sets the volume of the

music currently being played by SDL_mixer according to the inte-

ger argument (Volume). This argument can be any integer from 0

(mute) to 128 (full volume).

Example:

//Sets the volume

Mix_VolumeMusic(128);

� void Mix_PauseMusic() and void Mix_ResumeMusic() —

Pauses and resumes playback of music, respectively.

Example:

//Pause

Mix_PauseMusic();

//Resume

Mix_ResumeMusic();

� int Mix_SetMusicPosition(double position) — Seeks to a speci-

fied playback position in the music currently being played by

SDL_mixer, specified by the argument (position) as an offset in

milliseconds from the beginning of the song.

Example:

//Plays from specific point

Mix_SetMusicPosition(50);

� int Mix_HaltMusic() — Stops playback of the song currently

being played by SDL_mixer.

Example:

//Stops music playback

Mix_HaltMusic();

� int Mix_FadeOutMusic(int ms) — First fades out and then halts

the music currently being played by SDL_mixer.

Example:

//Stops music playback

Mix_FadeOutMusic(5000);

196 Chapter 6 / Game Audio

� void Mix_FreeMusic(Mix_Music *music) — Deletes a song held

in memory. This function should be called after a song is no longer

needed for further playback using SDL_mixer.

Example:

//Frees memory buffer

Mix_FreeMusic(Music);

6.6.4 Playing Samples through Channels in
SDL_mixer

In SDL_mixer, a “sample” refers to a sound that is typically less than a

minute in duration. The sample is loaded from a file on disk (.wav, .ogg,

etc.) and into a memory buffer in the system memory where it waits in

situ to be played on demand for as many times as required. The sam-

ple held in system memory may, for example, be the sound of footsteps

intended to be played while an NPC walks around the game world or

perhaps the sound of a gunshot that is to occur whenever a weapon is

fired. In every case, however, a sample is held in memory by

SDL_mixer, and it must be sent through at least one of the available

audio channels on the sound hardware if it is to be heard by the player

through the system’s speakers. Each sample travels along its channel

at the same speed as any other sample on any other track, and each

audio channel accommodates only one sample at any one time, mean-

ing that different samples must travel along different channels if they

are to be heard simultaneously on the speakers by the player. Thus,

the total number of samples that may play simultaneously on the

speakers corresponds to the total number of audio channels supported

by the system’s sound hardware.

The following sections describe how to program with samples and

channels using SDL_mixer, including how to load sounds from files on

disk and into memory buffers as samples; how to assign a sample to an

audio channel for playback; how to control playback of individual sam-

ples playing in a channel through positioning, rewinding, and pausing;

and how to delete samples from memory when further playback of a

sample is no longer required.

Chapter 6 / Game Audio 197

Ch
a

p
te

r
6

6.6.5 Loading Sounds into SDL_mixer as
Samples

Sounds are first loaded from files on disk (.wav, .ogg, etc.) into

SDL_mixer as samples in memory using the Mix_LoadWAV function,

and are then ready for later playback via audio channels. This function

accepts as a string argument a valid file name of a sound file on disk to

load as a sample. Mix_LoadWAV takes the following form:

Mix_Chunk *Mix_LoadWAV(char *file)

Example code:

// load sample.wav in to sample

Mix_Chunk *sample;

sample=Mix_LoadWAV("sample.wav");

if(!sample)

{

//Error

}

� NOTE. Every sample loaded into SDL_mixer using Mix_LoadWAV
must later be destroyed (freed from memory) with a call to the
Mix_FreeChunk function. This function must be called once per
loaded sample after it is no longer required for further playback in
the game.

6.6.6 Handling Channels with SDL_mixer
Programmatically, sounds are loaded from files into SDL_mixer as

samples, and samples are played through audio channels; only one

sound may play in any audio channel at any one time. Thus, the total

number of samples that may play simultaneously using SDL_mixer is

necessarily limited to the number of audio channels supported by the

sound hardware on the player’s system; 16 channels support up to 16

simultaneous sounds, 8 channels = 8 sounds, etc. Developers can

manually set the total number of audio channels to be used by

SDL_mixer for any given game using the Mix_AllocateChannels func-

tion. This function takes the following form and may be called

198 Chapter 6 / Game Audio

anywhere in an SDL_mixer application (even when sound is currently

playing through audio channels):

int Mix_AllocateChannels(int numchans)

Example code:

// allocate 16 mixing channels

Mix_AllocateChannels(16);

SDL_mixer offers a variety of functions from which to choose for play-

ing samples in channels, and like their counterpart music playing

functions, each function differs in the way the samples are played. The

following sample playing functions are available:

� Mix_PlayChannel — This function plays a specified sample (for

example, a punch sound or a gunshot) in a specified channel imme-

diately at full volume and from the beginning of the sample (from

time 0).

int Mix_PlayChannel(int channel, Mix_Chunk *chunk, int loops)

Example code:

// channel = play sample on first free unreserved channel (–1)

// loops = play it once only

// Mix_Chunk *sample; //previously loaded

if(Mix_PlayChannel(–1, sample, 0)==–1)

{

//Error occurred here

}

� Mix_PlayChannelTimed — This function plays a specified sam-

ple in a specified channel immediately at full volume and from the

beginning of the sample, playing for a specified period of time after

which playback stops.

int Mix_PlayChannelTimed(int channel, Mix_Chunk *chunk, int

loops, int ticks)

Chapter 6 / Game Audio 199

Ch
a

p
te

r
6

Example code:

// play sample on first free unreserved channel

// play it for half a second

// Mix_Chunk *sample; //previously loaded

if(Mix_PlayChannelTimed(–1, sample, –1 , 500)==–1)

{

//Error occurred here

}

� NOTE. Other channel playing functions include:

� void Mix_Pause(int channel)

� void Mix_Resume(int channel)

� int Mix_HaltChannel(int channel)

� int Mix_FadeOutChannel(int channel, int ms)

6.7 Conclusion

This chapter considered the fundamentals of the SDL_mixer library, an

add-on for the SDL API that is designed for playing game audio in the

form of samples (sounds) and music (background or incidental). Both

sounds and samples are loaded one by one from files on disk (such as

.mp3s) and into memory buffers managed by the SDL_mixer library.

Samples are loaded from disk in their entirety and are played to the

speakers through audio channels, one sample per channel; as many

samples may play simultaneously as there are available channels. In

contrast to samples, music, which is more memory intensive, is

streamed from a file (loaded and unloaded on-the-fly, region by region)

according to the region or part of the song being played at any one

time. This region is played to the speakers through one audio channel

only, thus only one song may play at a time. Playback of a new song

will stop and replace the playback of any prior song currently being

played. In Chapter 11, other audio APIs (namely FMOD and BASS)

will be considered briefly for those who wish to use cross-platform

alternatives to SDL_mixer.

200 Chapter 6 / Game Audio

Chapter 7

Game Mechanics

This book so far has explained how to configure a cross-platform envi-

ronment on a single machine through dual-booting, across a selection

of machines each running a different OS, or running subordinate guest

OSs on a single host through virtualization. We’ve also described a

cross-platform C++ IDE called Code::Blocks, which can be used to

create and compile C++ cross-platform games. In addition, we’ve

covered programming with two freely available, open-source and

cross-platform gaming libraries: SDL (Simple DirectMedia Layer) and

SDL_mixer. SDL is a library designed to draw fast-paced graphics and

animations to the display in real time, and SDL_mixer is a library for

streaming and playing audio from files such as WAV and OGG.

However, this is not all there is to computer games. Games are to

some extent holistic creations insofar as they are greater than the sum

of their parts, something above and beyond the IDE and gaming librar-

ies (like SDL) from which they are made. Games cannot merely be

reduced to essential core components alone, such as graphics, sound,

input, etc.; they are an imaginative synthesis of core components

working in unison that bring together the graphics, sound, physics,

artificial intelligence, story, and genre into a coherent totality. Overall,

the specific ingredients for a game (the libraries, IDEs, etc.) may in no

way differ from those used for any other game, but it is the particular

configuration (the quirky recipe) of those ingredients into a whole that

makes each game unique, at least in theory. This chapter is about reci-

pes; it is about making things work together, and this makes the

difference between a game and a senseless collection of graphics and

sound.

201

� NOTE. Given the broad scope of subjects included here, this chap-
ter is arranged in a Q&A format to make it simpler to skim so
readers can jump to specific topics of interest.

7.1 Getting Started with Game Worlds

Q. I want to make a game. I have learned how to program with C++

using Code::Blocks. I know how to draw images to the window with

SDL, and I know how to play sound with OpenAL. Let’s say I now

want to make a 2D RPG game with a top-down view (the camera is

looking downward, directly at the player and the rest of the game

world). How do I start developing this game?

A. The first stage could be to create a game world, or a map. The map

is a single graph-like coordinate space in which all game objects —

from the player to NPCs and walls and chairs, etc. — exist as physical

bodies, each with a specified X and Y position in the map measured

from the origin, and each with a specified width and height. This

means each game object has a measurable, definable position in the

map, and each object can be measured either from the origin of the

coordinate space or relative to any other object. This then introduces

the notion of a game object as a base class; that is, as a set of properties

that all objects in the game — whether a player or NPC, moveable or

not — share, and it is from this base class that all game objects are

derived since all objects in the map will have a position and a size.

Objects will also have a unique identifier, a name or number to single

them out from other objects by human readable tags. The following

code is a sample base class; the code is followed by a figure that

illustrates the geometry.

#include <iostream>

using namespace std;

//Vector class for storing (X,Y) position

class cVector

{

private:

protected:

202 Chapter 7 / Game Mechanics

public:

long x;

long y;

};

//Base game object

class CGameObject

{

private:

protected:

public:

cVector m_Position;
long m_Width;
long m_Height;
std::string m_Name;

bool m_Visible;

CGameObject(std::string Name)

{

m_Name = Name;

m_Position.x = m_Position.y = m_Width = m_Height = 0;

m_Visible = true;

}

};

Chapter 7 / Game Mechanics 203

Ch
a

p
te

r
7

Figure 7-1: The game
world map and object
positions

7.2 Creating Derivative Objects

Q. Okay; I have created a base object as above, with position, width,

height, and name properties. But that in itself is quite basic and hardly

useful; it only represents a position and a size. How can I add a player

character to the level, for example? Or more generally, how can I add

obstacles and other objects to the map that are beyond what the base

class offers?

A. The base class is only the foundation class, or the starting point

from which all other classes — each of them a game object — will

begin. It is not a class intended to be instantiated itself, but represents

only the minimum set of properties and methods intrinsic to all game

objects; that is, the properties that all objects will inherit. So while

every type of game object may differ widely from the others in their

implementation (some objects are walls, some are floors, some are

NPCs, etc.), the base class contains some properties common to all

objects such that, were those properties removed from those objects,

they would no longer be game objects. In short, then, every type of

game object in a single map is implemented as a class, but one that is

first and foremost derived from class “game object.” The following

code is a sample derived class, and this is followed by a diagrammed

model of derived game objects.

class cPlayer : public CGameObject

{

private:

protected:

public:

long m_Health;

cVector m_FacingDirection;

long m_Speed;

cPlayer(std::string Name) : CGameObject(Name)

{

Speed = 0;

Health=100;

}

};

204 Chapter 7 / Game Mechanics

7.3 Maintaining Game Objects

Q. I see; so a level may contain potentially hundreds of game objects,

from walls and floors to power-ups, tables, chairs, enemies, the player,

and too many others to list. This could grow rather unwieldy and diffi-

cult to manage, with all these objects and pointers to objects laying

around in memory here and there. How do I maintain all of them?

A. Perhaps the simplest solution here would be to maintain a linked

list (a std::vector) of game object pointers in memory. The std:vector

class is part of the STL (Standard Template Library) and ships with

Code::Blocks. STL offers a selection of classes for handling memory

and pointers, and std::vector is specifically designed for managing lists

of pointers, like a dynamic array that can grow and shrink in size

exactly to accommodate the right number of pointers. The following

sample code illustrates how to keep a list of game objects and includes

methods for adding items, deleting items, and clearing all items from

the list.

#include <vector>

std::vector<CGameObject*> m_GameObjects;

void AddObjectToList(CGameObject *Obj)

Chapter 7 / Game Mechanics 205

Ch
a

p
te

r
7

Figure 7-2: Derived
game object hierarchy

{

if(Obj)

{

m_GameObjects.push_back(Obj);

}

}

void ClearList()

{

for(unsigned int i=0; i < m_GameObjects.size(); i++)

{

if(m_GameObjects[i])

delete m_GameObjects[i];

}

m_GameObjects.clear();

}

void DelItem(std::string Name)

{

for(unsigned int i=0; i < m_GameObjects.size(); i++)

{

if(!m_GameObjects[i])

continue;

if(m_GameObjects[i]->m_Name==Name)

{

delete m_GameObjects[i];

m_GameObjects.erase(m_GameObjects.begin()+i);

return;

}

}

}

206 Chapter 7 / Game Mechanics

7.4 Tile-based Levels

Q. Okay; so every object in a game map is derived as a SuperClass

from base class CGameObject. This means each object in a map —

such as the player, enemies, walls, and doors — have at least an X,Y

position, a name, and a size. A map, then, is merely a structural

arrangement (a collection) of game objects; a place where game

objects together form walls, houses, towns, worlds, and other struc-

tures in which game characters live and act. So now the question

arises: I want to start creating my top-down RPG game. What software

should I use to actually build a map to define the X,Y location of every

object in the map and position the doors and walls and windows and

power-ups? Most games seem to have level editors where developers

visually design a level layout, but I have no such editor available. Does

this mean I have to hard-code the map? I hope not. Having to hard-

code a map line by line in C++ using the Code::Blocks editor would

not only be tedious and time-consuming since every object must be

declared (at least every object’s width, height, position, and name), but

it would also mean that I’d have to recompile the Code::Blocks project

every time I made a change to a map. This is just not acceptable.

A. You are correct; many developers use level editors to build maps for

their games. Although there is no level editor available for your new

game unless you have made one already, the map does not have to be

Chapter 7 / Game Mechanics 207

Ch
a

p
te

r
7

Figure 7-3: A linked list
of game object pointers

hard-coded. For top-down games like the original Zelda, Dink

Smallwood, or Dr. Lunatic Supreme with Cheese, a map can be thought

of as a collection of game objects, or more accurately a collection of

tiles, which are small, repeatable images (like a patch of grass, a pat-

tern of bricks, or a tree). So a map then may be conceptualized more

specifically as a cross-section or grid (or two-dimensional array) of

equally sized tiles; each tile ordered side by side in columns and rows

to form a complete map. At its most fundamental level, this grid-like

map arrangement is typically implemented in games by developers as

follows:

1. Before creating a map for any tile-based game, an artist will first

create a tile set, or a palette of tiles. This is a single image file

(PNG, BMP, etc.) that features a copy of every unique tile in a sin-

gle map, together arranged in columns and rows, one tile beside

the next. Its purpose is to group together all related tiles into a

single bitmap (palette) rather than to keep each tile in a different

file.

2. Programmatically, a tile set image is an index file of tiles. Since all

tiles in the file are the same width and height in pixels, and since

the tiles are arranged side by side in columns and rows, each tile

may then be identified individually by its index in the grid. That is,

a tile is numbered by its sequential position in the file, as read

from left to right, line by line and tile by tile.

3. It follows, then, that a map (being a collection of tiles forming a

level) has a relationship to the palette or tile set. First, any single

map is composed only from tiles featured in a palette, and not from

objects loaded from elsewhere. Second, a map is similar to the pal-

ette insofar as it is a grid of tiles, but the map may feature any

number of tiles, and any number of copies of tiles, all in various

configurations to create a meaningful map. For example, wall tiles

are combined to make walls, and these are juxtaposed with door

and window tiles to form houses, etc.). In short, then, the map is

not a palette to contain the pixels of the tiles themselves because

it may duplicate many tiles (housing tiles is reserved for the pal-

ette since it features only one copy of each tile). Instead, the map

is merely a matrix of numbers in memory, an array of references

into the palette that defines only the arrangement (or position)

208 Chapter 7 / Game Mechanics

each copy of a tile from the palette should take in the map. In this

sense, the map is a finite state machine (a snapshot of a moment)

because the numeric value of each element in the map array speci-

fies which tile is occupying that space at any one time. This means

that maps need not be hard-coded. Why? Because they are a grid

of numbers, and so they could just as easily be loaded from a text

file or an XML file, and they could also be output to such files from

a custom-made map editor, and even copied to the clipboard in

numerical form.

The following example loads a sample tile set from an image file, then

arranges the tiles in a map, and finally draws the map to the display

using the SDL graphics library.

void createLevels()

{

//Load SDL tiles

g_LevelTiles = SDL_LoadBMP("Tiles.bmp");

//Level 1

//Example of hard-coded level, but most would be defined in a

//text file

cLevel* Level1 = new cLevel();

Chapter 7 / Game Mechanics 209

Ch
a

p
te

r
7

Figure 7-4: A tile-based
map

Level1->m_LevelNumber = 0;

Level1->m_Level[0][2] = OBJECT_WALL; //1

Level1->m_Level[0][3] = OBJECT_WALL; //1

Level1->m_Level[0][4] = OBJECT_WALL; //1

Level1->m_Level[1][2] = OBJECT_DOOR; //0

Level1->m_Level[1][4] = OBJECT_WINDOW; //3

Level1->m_Level[2][2] = OBJECT_FENCE; //4

Level1->m_Level[2][4] = OBJECT_GRASS; //2

Level1->m_Level[2][5] = OBJECT_GRASS; //2

Level1->m_Level[2][6] = OBJECT_GRASS; //2

Level1->m_Level[2][7] = OBJECT_CAR; //5

//More stuff defined[...]

AddToLevelList(Level1);

}

//---

//Update level; argument is SDL back buffer; draws map to the

//display

void update(SDL_Surface *Screen)

{

if((g_LevelTiles)

{

for(int indx1 = 0; indx1 < 20; indx1++)

for(int indx2 = 0; indx2 < 20; indx2++)

{

//Get current tile

GAME_TYPE_OBJECT Index = m_Level1[indx1][indx2];

SDL_Rect SourceRct;

SourceRct.x = Index * m_TileSize; SourceRct.w =

m_TileSize;

SourceRct.y= 0; SourceRct.h = m_TileSize;

SDL_Rect DestRct;

DestRct.x = indx2 * m_TileSize; DestRct.w = m_TileSize;

DestRct.y = indx1 * m_TileSize; DestRct.h = m_TileSize;

210 Chapter 7 / Game Mechanics

SDL_BlitSurface(g_LevelTiles, &SourceRct, Screen,

&DestRct);

//Draw player object

Player->update(Screen);

}

}

}

7.5 Animations and States

Q. So granted, tile-based levels seem an acceptable solution for

designing complex maps because each tile can be arranged in a grid-

like system of numbers where each cell in the grid references an

index/offset in the tile set palette. But there is a further problem.

Some tiles in a map — such as the player tile, or an enemy, or a door

or window tile — may animate or change state. For example, a door

tile can be in one of two different states: open or closed. Or the player

tile may potentially enter more states (though only one state at any

one time) like a “running” state, or an “attacking” state, or an “idle”

state, and in each state the appearance of the player tile will change

accordingly. In other words, some tiles do not remain static, but can

change through a form of state-based animation. What is the best

solution for this?

A. The tile-based map system — a grid of indices referencing tiles in a

palette — is itself already half of the solution to the problem of anima-

tion. Extending this framework such that every palette includes every

frame (tile) of animation (e.g., a tile for the player in each state of walk-

ing, running, and jumping), then the concept of animating tiles simply

means animating (changing) indices in the map grid to refer to differ-

ent tiles (frames) from the palette at run time.

Chapter 7 / Game Mechanics 211

Ch
a

p
te

r
7

7.6 Movement

Q. I get the idea; tiles in a map change their appearance based upon

their palette index in the map grid. This is because the index of each

map cell refers to a unique tile in the palette. I even realize this index-

ing concept could be extended to create moveable tiles (tiles that can

wander around a map, from cell to cell) such as the player tile. For

example, let’s say the player tile index is 5, and the standard empty

grass tile is 4; so a given map will have only one cell set to 5 (since

there is only one player character in the map) but many cells can be 4

since the player may be standing in wide-open space, like a field. Now

let’s suppose the gamer presses the right arrow key and moves the

player tile one cell to the right. This has the effect of shifting the num-

ber 5 from the current cell to the neighboring cell to the right, leaving

behind the old cell now set to 4 (grass) instead of 5 (player). This is all

well and good, but moving from cell to cell in this way hardly appears

smooth on-screen. To anybody watching, the player’s stilted move-

ment as he jumps across the width of one space to the edge of another

will make the grid arrangement obvious. In addition, as it stands, the

player can only move left, right, up, or down since the grid is formed of

equally sized square tiles arranged in columns and rows; so the player

cannot move diagonally or at any other angle. In short, I want a

smooth-moving, free-roaming player, one that isn’t “locked” into the

grid.

A. Despite the brilliance and simplicity of a tile-based grid arrange-

ment where maps become nothing more than a grid of numbers, there

are undoubtedly limitations concerning tiles that move for the reasons

you mentioned, like with the player character. To solve this problem a

distinction must then be made that divides tiles into two kinds: static

and moveable. Static tiles are walls, floors, and windows. Moveable

tiles are the player, NPCs, and cars. Static tiles are locked into the

grid, while moveable tiles may be released from the grid and may exist

in an unconstrained space, not restricted by a cell’s width or height.

However, this freedom brings about some consequences worth consid-

ering. Firstly, free movement means that it is possible for moveable

tiles to exist inside more than one cell in the grid at any one time. This

is because, as a tile moves smoothly across a border joining one cell to

212 Chapter 7 / Game Mechanics

another, the tile (as it passes) will be partially in the cell that it enters

and partially in the other that it is leaving. Secondly, free movement

involves using vectors to perform transformations to move the tile from

the source point to the destination point. Let’s then take a quick look

at vectors. More detailed information about vectors and their rele-

vance to game programming can be found in my previous book,

Introduction to Game Programming with C++.

7.6.1 Movement with Vectors
A sample class for a vector might look like this:

class CVector

{

private:

protected:

public:

long x;

long y;

};

As you can see, a vector is a mathematical

construct representing direction. Vector

classes are like coordinate and point classes,

which feature X and Y ordinate pairs; how-

ever, vectors differ from coordinates since

they express a direction, and not a location.

Coordinates are used to answer the question

“Where?” Vectors are used to answer the

question “Which way?” Coordinates specify

an absolute position measured from the ori-

gin; conversely, a vector may expresses a

direction relative to any point, not just the

origin. The vector (1,1) would specify a direc-

tion up and to the right at an angle of 45

degrees; and its opposite direction would be

(–1,–1).

The vector (8,8) represents the same direction as (1,1), and the

same direction as (2,2), but each vector expresses more than simply a

direction; it also expresses a distance over which to travel, called a

Chapter 7 / Game Mechanics 213

Ch
a

p
te

r
7

Figure 7-5: A vector’s magnitude

vector’s magnitude. The magnitude is the distance along the diagonal,

which is also the length of the hypotenuse.

Vectors can be multiplied by both positive and negative numbers

to scale their magnitude and to sometimes change their direction. For

example, (2,2) * 2 results in a vector of different magnitude but of the

same direction (4,4). However, (2,2) * –3 results in a vector of different

magnitude and of different direction (–6,–6).

Sometimes it is useful for a vector to have a magnitude greater

than 1, but often developers will want to express only direction; and

this can be expressed by a special vector whose magnitude is 1 called a

normalized vector, or a unit vector. Multiplying a unit vector by any

number is like any number multiplied by 1; the result of this multipli-

cation is a vector whose magnitude is the same as the multiplicand.

Thus, a vector of any given magnitude (e.g., 5,5) can be stripped of its

magnitude and reduced to expressing only its direction by becoming a

unit vector through being normalized. A vector is normalized by divid-

ing each of its ordinates by its magnitude, as in (x/mag)(y/mag).

In addition, a vector’s direction can be rotated around its origin by a

specified angle in degrees. That is, a vector can be rotated around an

arc, around the circumference of an invisible circle, by a specified

angle. The following code features a complete vector class for the pur-

poses of this chapter.

214 Chapter 7 / Game Mechanics

Figure 7-6: Vector
scaling

#ifndef VECTOR_H_INCLUDED

#define VECTOR_H_INCLUDED

#include <math.h>

class CVector

{

private:

protected:

public:

float x;

float y;

CVector()

{

x = y = 0.0f;

}

CVector(float px, float py)

{

x = px;

y = py;

}

//Returns vector magnitude

float length()

{

return sqrt((x * x) + (y * y));

}

void normalize()

{

float veclength = length();

x=x/veclength;

y=y/veclength;

}

void scale(float scalar)

{

x=x*scalar;

Chapter 7 / Game Mechanics 215

Ch
a

p
te

r
7

y=y*scalar;

}

void rotate(float angle)

{

float veclength = length();

float tmpx = cos(angle);

float tmpy = sin(angle);

x = tmpx * veclength;

y = tmpy * veclength;

}

};

#endif // VECTOR_H_INCLUDED

Using vectors, the following strategy can be followed for creating free

moving tiles suitable for the player, NPCs, and others. These tiles may

move freely and independently of the map grid, perhaps crossing the

border between any two cells, and then stopping there as its area par-

tially intersects one file and partially intersects another. Let’s assume

a free-roaming player character in a top-down RPG is to be made.

Pressing the up arrow walks the character forward in the direction he

is currently facing, pressing the down arrow walks the character back-

ward away from the direction he is facing, and the left arrow and right

arrow rotate the character counterclockwise or clockwise, respec-

tively, to face a new direction.

Movement for the player (walking forward and backward) is pri-

marily based around its LookAt vector; that is, a player’s movement is

determined largely by the direction in which the player is looking.

Hence, moving the player forward or backward means moving the

player positively or negatively toward or away from the direction it’s

facing; while turning left or right refers to the changing, or rotation, of

the direction vector itself as the player revolves to face new directions.

Thus, the player tile (or any free moving tile) as a derived class of

CGameObject should maintain a normalized direction vector as a prop-

erty of the class, a vector mathematically expressing the direction in

which the player tile is currently facing.

216 Chapter 7 / Game Mechanics

Next, pressing the up arrow or down arrow moves the player for-

ward or backward, respectively, in the direction it’s facing. During

movement, the player moves from the current position to a destination

along the direction it’s facing at a speed measured in distance per sec-

ond (such as 5 pixels per second), meaning any one player may cover

the same distance in the same direction during any given interval.

This calculation is currently ignoring any environmental weightings of

the player’s route that may directly or indirectly affect the speed of

travel such as terrain type (rocky, snow, slippery, etc.). It is currently

assumed that all terrain affects a player’s speed equally. Overall, a

player tile class (if it is to move freely about a map) must in addition to

maintaining a LookAt vector also keep track of an X,Y position on the

map and a speed (distance to travel per second). Given these proper-

ties, and assuming the player is pressing the up arrow, a tile may

calculate the distance and the direction in which it is to move (this pro-

cess would be the reverse for the down arrow).

On each frame of the game loop, determine if the up arrow on the key-

board is pressed. If true, the player should move forward at a specified

speed, from the current position to a new position, in the direction it’s

facing. The direction in which the player is facing is represented by the

LookAt vector, and the distance (length of diagonal) over which it

should move during any interval of time is determined by the player’s

speed per second since distance = speed * time. In other words, the

player’s normalized LookAt vector (the direction to move) should be

scaled (multiplied) by the distance to travel, and the resultant vector is

Chapter 7 / Game Mechanics 217

Ch
a

p
te

r
7

Figure 7-7

the destination to which the player should move, measured as an offset

from the player’s current position. The code to achieve this follows:

//Called once per frame to redraw tile to display

void update()

{

//m_Speed = 5 pixels per second

//m_TimeInt = milliseconds elapsed since last frame

//m_DirVec = direction vector

float scalar = (m_TimeInt/1000) * m_Speed;

CVector TmpVec = m_DirVec;

TmpVec.scale(scalar);

m_Position+=TmpVec;

}

7.7 Hierarchical Transformations

Q. Right; so the player (or other moveable tiles) can now move about

the map, free from the rigidity of the map grid by using vectors to

express directions and offsets, movements collectively termed trans-

formations. I press the left arrow or right arrow and the player

revolves to face new directions; I press the up arrow or down arrow

and the player moves forward or backward, tracing along its invisible

diagonal expressed by the LookAt vector, or direction vector. But there

is a new problem: namely, collective movement, or dependent transfor-

mation. The tiles considered hitherto by this chapter have been single,

self-contained units on the map such as the player, an NPC, or a car,

each with an independent position and able to move about the map

independently of one another. So long as this independence remains

the case, transformation will work for each tile with no problems. But

consider this example: There is a single map that contains three enti-

ties (tiles), each of them independent from one another insofar as each

tile has its own position, LookAt vector, and speed in the map. There is

a car tile, and seated inside the car is the player tile and an NPC tile.

Now since each of the tiles — car and passengers — are positionally

independent of one another, it means that as the car moves none of the

passengers will follow since each tile has its own position. The car

218 Chapter 7 / Game Mechanics

simply will drive forward, leaving its passengers behind, literally. How

can I solve this?

A. Until now each tile on the map has been conceptualized as an auton-

omous entity whose position, direction, and movement is largely

independent of any other tile; this means that as one tile moves,

another will not invariably follow because no relationship between the

tiles is assumed to exist. However, the demands of most game maps

are not so trivial as to allow relationships between tiles to be ignored.

A relationship between any two tiles on a map is said to exist when the

position (or orientation) of one tile depends upon (is affected by) the

position of another tile, though this relationship need not be reciprocal.

For example, the position of a tile X may reflect the changes in posi-

tion of a tile Y, but tile Y may not be dependent on tile X. Thus, in any

game map populated by many tiles there will be found a whole network

(or hierarchy) of relationships between tiles such that no tile is com-

pletely independent of another. For example, all tiles standing on the

ground are dependent on the ground; if the ground moves, so do the

tiles standing on it, though the ground does not move with the tiles

that walk upon it. In the same way, a car transports its passengers but

the passengers do not transport the car; both the car and the passen-

gers are dependent on the ground, however, since it is the ground

upon which the car drives, and the car (on the ground) inside which the

passengers are seated. This relationship can be expressed diagram-

matically using the following hierarchy, a structure of relationship that

can be found in all maps.

Chapter 7 / Game Mechanics 219

Ch
a

p
te

r
7

Figure 7-8: Relationship
hierarchy

Hierarchical relationships refer to relationships of dependency, and as

such the two popular terms “parent” and “child” are used to designate

the influential partner and the dependent partner, respectively. The

node whose position is affected by another is the child node, and the

independent partner who affects the position of all its children is the

parent node. In terms of the car analogy: The car is the parent of all its

passengers (who are its children), but the car in turn is a child of the

ground upon which it drives.

Support for hierarchical relationships can be implemented into the

map tiles by amending CGameObject (the base class from which all

tiles are derived) to include a <vector> list of child node pointers,

listing all of its child nodes. This way, if every node is part (a leaf) of an

overall hierarchical tree of parent-child relationships, all of whom trace

their ultimate ancestor to a root parent at the origin of the map, then

each node can define its X,Y position as an offset relative to its par-

ent’s position rather than as an absolute offset from the origin of the

map. The result is that as any node’s position in the map changes, it

inevitably affects all its children and any generation of children beneath

it in the tree throughout the hierarchy additively. The following code

demonstrates this hierarchical additive transformation.

//Base game object

class CGameObject

{

private:

protected:

public:

CVector m_Position;

long m_Width;

long m_Height;

std::string m_Name;

bool m_Visible;

std::vector<CGameObject*> m_ChildObjects;

CGameObject* m_Parent;

CGameObject(std::string Name)

{

m_Name = Name;

m_Position.x = m_Position.y = m_Width = m_Height = 0;

m_Visible = true;

220 Chapter 7 / Game Mechanics

m_Parent = NULL;

}

virtual ~CGameObject()

{

m_ChildObjects.clear();

}

//[...] other functions here

//Adds a child object to this tile

void AddChild(CGameObject* Child)

{

m_ChildObjects.push_back(Child);

}

void update()

{

for(unsigned int i=0; i<m_ChildObjects.size(); i++)

{

//Recursively update through hierarchy

m_ChildObjects[i]->update();

}

}

};

7.8 Z-Order and Depth Sorting

Q. The hierarchical tile arrangement easily solves almost all tile-rela-

tionship problems I can think of. Tiles can be children, parents,

children of children, and so on throughout a whole hierarchy of tiles in

a map. But still I have another awkward question for you, not related to

the relationship between tiles as they are ordered positionally in the

map, but related to the ordering of tiles as they appear on-screen, in

the window. Specifically, the game window is the portal through which

a gamer sees the contents of the game on every frame, in the same

way a movie buff sees a movie from the perspective of the camera as

projected onto the screen. This means that in any given map, some

game tiles will inevitably be closer to the camera than other tiles, a

Chapter 7 / Game Mechanics 221

Ch
a

p
te

r
7

distinction between foreground and background. Consequently, tiles

nearer the camera appear larger than more distant tiles, and nearer

tiles also obscure any tiles directly behind them; for example, trees

may partially obscure the sun setting behind them, or a player charac-

ter may obscure those NPCs standing behind him. Let’s call this

problem “depth sorting.” How can this best be handled?

A. This problem highlights the distinction between the position of tiles

as they are generally arranged in the map in terms of X,Y position, and

the order in which tiles are drawn to the screen. Indeed, the name

itself, depth sorting, describes a process, and the name offers a clue to

its solution. Depth refers to the depth order that any tile in a map

occupies in relation to all other tiles and to the camera (e.g., this tree

stands in front of this hill and behind the player). Sorting refers to the

process of arranging or ordering tiles according to their nearness to

the camera. In short, the depth sorting problem can be solved using

the painter’s algorithm, which works by first assigning to each tile in

the map an integer (called its z-order) that reflects a tile’s nearness to

the camera. Tiles with lower z-orders are nearer to the camera than

tiles with higher z-orders, which are farther away. Then on each frame,

the algorithm proceeds to draw (render to the window) each tile

according to its z-order, from highest to lowest. So distant tiles are

drawn first, then closer tiles next, and so on, with tiles nearest to the

camera being drawn last (on top of more distant tiles). Any tile, there-

fore, can be brought to the front of other tiles by lowering its z-order,

or sent to the back of others (behind them) by raising its z-order.

222 Chapter 7 / Game Mechanics

Figure 7-9: The painter’s algorithm

The following code sorts and renders each tile according to its z-order:

void update()

{

//Bubble sort order

//Add property int m_ZOrder to CGameObject for index

SortByZOrder(m_ChildObjects);

for(unsigned int i=0; i<m_ChildObjects.size(); i++)

{

//Recursively update through hierarchy

m_ChildObjects[i]->update();

}

}

7.9 Conclusion

This chapter considered some of the most fundamental game mechan-

ics that apply not only to almost all games across all platforms from

Linux to Windows, but generally across both 2D and 3D games. Other

game algorithms such as pathfinding, binary space partitioning, and

octrees start from the premise that the game world is already repre-

sented as a Euclidean space where objects (tiles) are interconnected

by spatial relationships to one another, and that each tile has a speci-

fied z-order that reflects whether it is nearer to or farther from the

camera than other tiles. These algorithms may raise another, perhaps

more reasonable question: In this technological age of instant commu-

nication, easy-to-use operating systems, and DIY/homebrew software,

surely somebody, somewhere, has designed an easy-to-use game mak-

ing package to create cross-platform games. Is there a package that

doesn’t require developers to reinvent the wheel by coding from

scratch new pathfinding systems, depth-sorting algorithms, and other

similar processes? Surely, the world of open-source software has a

simple, easy-to-use, and powerful solution for making cross-platform

games that “just work” without a lot of hassle. This topic is the focus

of the next chapter.

Chapter 7 / Game Mechanics 223

Ch
a

p
te

r
7

This page intentionally left blank.

Chapter 8

Novashell and 2D
Games

Games classified as 2D (two-dimensional) were written off by many

gamers and critics as “dead and buried” the moment 3D games were

born, but given the thriving 2D scene in contemporary gaming, those

predictions join a long list of other industry predictions that thankfully

failed to materialize. 2D games are alive and well, and testament to

their health are famous titles from all gaming eras, such as Super

Mario Brothers, Sonic the Hedgehog, Tetris, Dr. Lunatic Supreme with

Cheese, Steam Brigade, and thousands more. Games classified as 2D

are those where the action occurs in two dimensions only; that is, the

gamer cannot move objects or cameras through a 3D gaming world to

view objects from other perspectives. Thus, gaming perspectives are

typically fixed in 2D games, and this makes them especially ideal for

game genres such as platformers, puzzle games, side-scrolling

beat-em-ups and adventures, and top-down blast-em-ups.

This chapter focuses on the development of cross-platform 2D

games (Window, Linux, and Mac) using a free, open-source, and easy-

to-use game development system called Novashell, which was created

by independent game developer Seth Robinson. In a nutshell:

Novashell is a click-and-drag style game development application for

making cross-platform 2D games. The Novashell web site

(www.rtsoft.com/novashell) describes the system as “a high-level 2D

game maker that tries to handle all the hard work behind the scenes,

allowing you to whip up sweet games using pathfinding, dialog,

persistant dynamically sized maps with construction/deconstruction,

save anywhere, and especially features that adventure and RPG type

games would use.”

225

8.1 Novashell Overview

Freely available and based on the gaming API ClanLib, Novashell is an

entirely integrated, self-contained, and GUI-based game development

environment for creating cross-platform 2D games. Unlike most gam-

ing software kits that depend on C++ IDEs such as Code::Blocks,

Novashell instead works independently, and is all a user needs to start

making professional standard games that run seamlessly across Win-

dows, Linux, and Mac. Specifically, Novashell offers game developers

the following key benefits:

� Cut and Paste GUI — Primarily mouse-driven, Novashell works

much like an open-ended and extensible map editor, allowing

developers to import art, animations, music, sound, scripted data,

etc., and, by copying and pasting, assemble their data into coherent

levels as a complete working game.

� Open-Source and Free to Create and Distribute Games —

Novashell as an application is freely available and is open-source,

meaning it can be edited and extended to suit a developer’s needs.

Furthermore, developers are free to distribute their Novashell-

made games as both freely available or commercial products.

� Scriptable — Novashell allows developers to program and control

their games through its integrated scripting system using an

industry standard scripting language, Lua 5.1. Lua is a general-

purpose, lightweight, C++-like scripting language used to edit

and program games without recompilation. First created in 1993

by Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and

Waldemar Celes from the Pontifical University of Rio de Janeiro in

Brazil, Lua has been used in many commercial games including

World of Warcraft, Grim Fandango, Supreme Commander, and Far

Cry.

226 Chapter 8 / Novashell and 2D Games

� Online Documentation and Community Support — Though

Novashell is a relatively new GDK (game development kit), first

released in early 2007, it already has gained a sizeable online

forum community of game makers, and also features comprehen-

sive online documentation featuring references for scripting

(classes, functions, and objects) and also “quick-start” guides for

getting up and running with Novashell.

� NOTE. The following is a brief list of some of the additional fea-
tures of Novashell:

� Multi-platform support for Windows, Mac OS X, and Linux

� Open-source under a zlib/libpng license

� Hierarchical goal-based AI system

� A* (A-star)-based pathfinding for navigating an unlimited number

of connected maps, warps, and doors

� Free-form pixel-accurate sprite patch editing as well as emulated

conventional tile editing

� Map dimensions can flexibly change during play, and new areas

can be added anywhere at any time

� Robust automatic save/load allows a fully persistent world

� Built-in world editor with unlimited brush sizes, multiple undo,

and cut and paste of any size

� Parallax scrolling

� Powerful particle system

� Real-time “smart shadow”

� Able to create stand-alone games

Chapter 8 / Novashell and 2D Games 227

Ch
a

p
te

r
8

8.2 Downloading Novashell (Windows,
Linux, and Mac)

In summary, Novashell is a free, open-source, and experimental tool

allowing developers to create cross-platform 2D games easily via a

WYSIWYG interface. Both the Novashell source code and the

Novashell binary executables for Windows, Linux (Ubuntu), and Mac

are freely available from the official Novashell web site at

http://www.rtsoft.com/novashell/. The procedure for downloading and

installing Novashell, which is the same for all supported platforms, is

described step by step as follows.

� NOTE. Like many open-source projects, and especially those in
their infancy, the Novashell web site defines Novashell as “not fea-
ture complete,” or as an experimental application. It is to be
considered as an open-source work in progress continuously being
refined and enhanced as time goes by.

1. Beginning from the (Windows, Mac, or Ubuntu) desktop, open a

web browser and navigate to the following address:

http://www.rtsoft.com/novashell/.

228 Chapter 8 / Novashell and 2D Games

Figure 8-1

2. Click the download link appropriate for the host operating system

and save the archive to any directory on the local computer. For

Windows only, users should run the packaged Novashell installer

to install Novashell to the system.

The downloaded and extracted package (or the installed files on Win-

dows) contains the following important files and folders:

� Game.exe — The main Novashell executable; features the inte-

grated game editor for designing and creating games, and also dou-

bles as the interpreter (or virtual machine) for playing Novashell

games.

Chapter 8 / Novashell and 2D Games 229

Ch
a

p
te

r
8

Figure 8-2

Figure 8-3

� History.txt — Records the developmental progress of Novashell

from its first release until the current downloaded release, detail-

ing bug fixes for earlier editions and newly added features present

only in the current release.

� Base directory — Features all global data (graphics, sound,

scripts) used by Novashell for its editor and for all Novashell-

developed games. Data featured in the base directory applies glob-

ally to all games, and not specifically to any one game.

� Worlds Directory — Game-specific world data (graphics, sound,

scripts) for a single Novashell game. Each game houses its

game-specific data within any appropriate nested subdirectories of

the Worlds Directory; more on this later.

8.3 Exploring Novashell Games

Novashell ships with a handful of semi-completed sample games to

play, each intended to demonstrate the variety of Novashell features

and the diversity of 2D genres that it supports — from 2D side-scroll-

ing games to top-down RPGs and space-invader-style shooters. These

games include Tree World, Beer Invaders, Dink RPG, and Tanks, and

are considered briefly below.

� Tree World

230 Chapter 8 / Novashell and 2D Games

Figure 8-4: Tree World

One of the highlighted sample games is a side-scrolling platformer

called Tree World, which demonstrates the simplicity of parallax

scrolling by using Novashell and also shows off its particle sys-

tems and collision-based physics. Much of the scripting for this

game can be found in a Lua text file located in the Worlds

subfolder of the Novashell root directory in a Lua script called

ent_player.lua. The objective of the game Tree World is to explore

the levels, fight or avoid enemies, and collect as many coins as

possible.

� Beer Invaders

Based on the famous arcade classic Space Invaders, the Novashell

derivative, Beer Invaders, substitutes beer cans for spaceships.

Each beer-can-enemy appears at the top of the screen and can in

turn fire smaller beer cans downward as bullets. The objective is

to slide a pistol firearm horizontally along the bottom of the screen

and shoot all approaching enemy cans without getting shot by the

bullets. This tricky game primarily demonstrates collision detec-

tion between bullet and target, but also demonstrates music,

sound, sprite animation, and goal-based levels.

Chapter 8 / Novashell and 2D Games 231

Ch
a

p
te

r
8

Figure 8-5: Beer
Invaders

� Dink RPG

The sample Dink-style RPG (role-playing game) that is based on

the Dink Smallwood game by Seth Robinson demonstrates clearly

in one contained sample — perhaps more so than any of the other

included sample games — the wide subset of features Novashell

offers to a developer for creating 2D games. This RPG allows

characters to warp in and out of different maps across the game

world, to converse and reply intelligently to each other, and to

engage in combat with enemies scattered about the world.

� Tanks

Tanks is a small but important sample game in which the player

controls a military tank. The player may shoot or push nearby

232 Chapter 8 / Novashell and 2D Games

Figure 8-6: Dink

Figure 8-7: Tanks

objects, which in turn react and move according to the scripted

physics.

8.4 Getting to Know Novashell

Novashell is designed both to create 2D games and to play (or exe-

cute) the 2D games it creates, in the same way a Java virtual machine

runs Java applications or in the same way the Flash Player plays Flash

presentations. Consequently, Novashell is not entirely unlike Flash,

but whereas Flash considers the player and the editor to be separate

entities, Novashell condenses them into an integrated player and edi-

tor. Thus, Novashell stands apart first and foremost as an application

that is both a game player (or executor) and a game editor — a game

player in that Novashell games can be opened and played by the

Novashell application and a game editor since loaded games can be

paused and edited. However, compiled stand-alone games (games that

run independently of the editor, primarily so that players cannot cheat

easily) is one feature among many of the planned features along the

Novashell developmental road map still to be implemented. Novashell

as both a player and an editor is now examined more closely, beginning

from the startup screen that appears immediately after running

Novashell (on any platform).

8.4.1 The Game Selection Menu
Novashell begins at the Game Selection menu, a screen from which

both gamers and developers choose from among the available

Novashell games installed locally to play and/or edit. By default this

menu features at least the sample games listed in the previous section,

and gamers may double-click any game from the list in order to play or

edit them. (Pressing the Esc key at any time exits the game currently

being played and returns to this menu.) Broadly, each game listed on

the Game Selection menu corresponds to an individual config file

located in the Worlds subdirectory of the root Novashell installation

directory. Each file there lists the details of a specific Novashell game,

Chapter 8 / Novashell and 2D Games 233

Ch
a

p
te

r
8

such as game name, valid directory paths to graphics, sounds, scripts,

etc. We’ll discuss these files in a later section.

� NOTE. Ctrl+Alt+Enter switches Novashell between full-screen and
windowed mode.

8.4.2 The Editor and Player Modes
Novashell may work in one of two modes at any one time: editor or

player mode. These two modes appeal to developers and gamers,

respectively. Pressing the F1 key toggles between the modes.

Novashell in editor mode offers the required tools and facilities to

change and edit existing games while those games are paused; devel-

opers can even scrap games wholesale, rebuilding them again from

scratch. Novashell in player mode hides its editing facilities, resumes a

game that is paused, and allows both gamers and developers to play

and/or debug their Novashell games in real time just as though the

game were compiled to run stand-alone.

� NOTE. Novashell can be switched between player and editor mode
at any time by pressing F1.

234 Chapter 8 / Novashell and 2D Games

Figure 8-8

8.4.3 Getting Started – Loading, Playing, and
Editing a Game

Novashell offers facilities to load, play, and edit games, and this section

examines how to load and play a game. The Novashell world editor is

discussed in the following section.

1. Start Novashell and double-click the game Dink Style Test from

the Game Selection menu.

2. The game menu then offers three options: New, Continue, and

Edit. Click New. These options apply across all the default

Novashell games and are important, as considered below.

� New — This option begins play of the selected game from the

beginning, as defined by the developers. Pressing F1 to start

the editor during any games run from the New option allows

developers to make changes only to the currently running

instance of the game (changes which are forgotten upon exit-

ing the game), as opposed to permanent changes made glob-

ally to all future instances of the game played from New (for

this, select Edit instead).

� Continue — This option resumes play of the selected game

from the point where any previous play had ended.

Chapter 8 / Novashell and 2D Games 235

Ch
a

p
te

r
8

Figure 8-9

� Edit — The Edit option opens the game for editing globally.

That is, any changes applied to a game in Edit mode will apply

permanently, and not temporarily, to all future instances of the

game. Editing in this mode is like editing an original photo-

graph instead of a copy, or editing the template of a letter

instead of the letter itself.

3. Having clicked New to play the game, press F1 to pause the game

and to display the Novashell game editor, which is described in the

next section.

8.5 Novashell Editor

The Novashell editor offers an abundant set of tools (palettes, layering,

collision detection, scripting, copy and paste) for making practically

any conceivable changes to Novashell games. These tools range from

graphic import facilities to map designing facilities such as tile editing.

The raw materials external to the game itself and from which game

data is based such as image files, sound files, and script files are collec-

tively termed resources. It is from the synthesis of those resources, the

bringing them together into a coherent totality, that games are made

(Novashell games included). Conceptually, resources are imported into

236 Chapter 8 / Novashell and 2D Games

Figure 8-10

Novashell games as either a tile or an entity, depending on the purpose

they are to serve for the game.

8.5.1 Tile Resources
The graphical term “texture” refers to any graphical resource (any

image, from PNG to BMP, including transparency information). Tex-

tures are typically loaded from a file and into Novashell as tiles (the

simplest graphical entity featured in a Novashell game). Tiles are tex-

tures and are usually designed to be small and lightweight since they

are likely to be copied and pasted many times in various combinations

and arrangements to build a single Novashell level (for trees, floor

tiles, walls, doors, windows, etc.). Often, tiles are not imported sepa-

rately into Novashell from individual textures (with one file per tile).

Instead, developers import a single, larger texture onto which all tiles

for a single level have been collectively arranged in rows and columns

(called a texture tile set), and these tiles are then cut out from the tile

set subsequently as separate tiles using the Novashell editor. Tiles

have the distinct advantage over entities in being simple to use, versa-

tile, and “lightweight” (meaning they are computationally efficient

with low memory costs). Specifically, tiles boast the following features:

� Flipping and Alpha — Each tile in Novashell may have alpha

transparency; that is, some pixels of the tile can be fully transpar-

ent, semi-transparent, or wholly opaque. A tile’s transparency data

is defined by its texture information (for those file formats that

support transparency). Each tile may also be flipped by the

Novashell editor; that is, a tile’s pixel data can be reflected (mir-

rored) about its central x or y axis, reversing the image symmetri-

cally. This is a useful technique for giving some variability to tiles

that are frequently repeated throughout a single level, such as

floor tiles.

� Multiple Instances, Global Types — Any single tile may be

copied from the original and pasted in a Novashell level any num-

ber of times, each new copy itself becoming an individual tile. For

example, an initial tree tile may be duplicated many times across a

level, creating a level with many trees, and each pasted tree then

becomes a separate tile belonging to the type “tree.” Specific

changes to the tile’s type (changes in collision detection, changes

Chapter 8 / Novashell and 2D Games 237

Ch
a

p
te

r
8

in graphical appearance, etc.) apply globally across all tiles in a

level.

8.5.2 Entity Resources
Entities are extended, or advanced, tiles. In a nutshell, entities exhibit

all the characteristics of tiles, but boast additional features and are typ-

ically used for more complex level objects, such as moveable game

characters and NPCs (non-player characters), interactive game scen-

ery such as moveable platforms, or collectable power-ups. The basic

Novashell rule of thumb may be: “If it’s a moveable or interactive

object, then it’s an entity; if it doesn’t move and isn’t interactive, then

it’s not an entity; and if it’s not an entity, then it’s a tile.” In Novashell,

like in most games, most things are tiles and not entities. In addition to

the properties of tiles, entities also boast the following features:

� Scriptable — Any entity may have a Lua script attached to con-

trol its behavior and receive event notifications, which are function

calls a Lua script receives whenever important events occur to an

entity, such as when an entity collides with another entity or tile in

a level, or when the player presses a button on the keyboard.

� Unique — Unlike tiles where any single tile type (such as a

“tree”) shares its collision data between all tile instances of that

type in a level, entities of the same type may each have unique

collision data.

� Visual Profiles — Entities may be assigned a whole series of dif-

ferent frame-based animations for particular “states.” For exam-

ple, entities like player characters and NPCs may require a specific

animation when in a walking state and another animation when in a

fighting state. Novashell offers externally written XML files

(examined later) called visual profiles that can be assigned to enti-

ties, and each profile details the frame-based animation to be

played during different entity states.

238 Chapter 8 / Novashell and 2D Games

8.6 Novashell Tools

Novashell levels are a collection of tiles and entities, and the Novashell

editor is where developers create that collection in which tiles and

entities (player, walls, doors, floors, etc.) are arranged to form a game

world. At this point, readers should have started a new Dink Style Test

game from the Novashell Game Selection menu, and then pressed F1

to pause the game and switch to the Novashell game editor mode.

Let’s take a look at the editor’s tools and windows.

� TIP. To get the most from this chapter, it is recommended that read-
ers follow along page by page while also using Novashell.

� Main Menu — The Novashell main menu provides access to

many of the core features, from exiting Novashell to pausing/

unpausing games, and also for saving the edits made to each game.

These menus also provide options to show and hide hidden game

data, such as collision and pathfinding information.

� Map Switcher — Every Novashell game contains a collection of

maps, and each map is in turn a collection of tiles arranged to

make a level. The Map Switcher window lists every map currently

in the active game.

� Tile Editor — The Tile Edit window allows

developers to perform a variety of functions.

From this window, you can import game art as

tiles and entities; edit individual tiles and enti-

ties, such as collision information and script

Chapter 8 / Novashell and 2D Games 239

Ch
a

p
te

r
8

Figure 8-11: The main menu

Figure 8-12: The Map
Switcher window

Figure 8-13: The Tile Edit
Floating Palette window

data; and edit Novashell maps, changing their grid layout and other

options.

� Layer Editor — The layers in Novashell work similarly to those

in photo editing applications like Photoshop and GIMP. Like the

clear plastic layers stacked atop one another and used by anima-

tors to make cartoons, the purpose of layers is to define the order

in which tiles and entities in a level are drawn to the window in

order to create a sense of depth. The process of arranging the

depth order of tiles is known as z-ordering, where each tile or

entity in a level must be assigned to only one layer, and each layer

determines the order in which tiles are drawn to the window. Tiles

assigned to the foreground layer (the topmost layer) will be drawn

after tiles assigned to the background layer. Thus, foreground tiles

appear in front of background tiles, and background tiles are

obscured by tiles in front of them that occupy the same X,Y screen

space. The three exceptions to this rule are the entity layer and

the two hidden layers. The entity layer is used for housing entities

rather than tiles because entities, unlike tiles, can move and

change their position dynamically (such as NPCs), so their z-order

in relation to one another can change at any time. Consequently,

the entity layer is designed to be “smart,” and it automatically cal-

culates which entities are in front of or behind others based on

their X,Y positions and draws them in the appropriate order on

every frame. The hidden layers are designed for housing non-visi-

ble level data, such as music and other resources.

240 Chapter 8 / Novashell and 2D Games

Figure 8-14: The Layer
Control window

8.7 Editing Novashell Levels

This section explores some common features of the Novashell editor

for creating and editing game maps.

8.7.1 Selecting, Copying, Pasting, Moving, and
Filling Tiles

Editing maps in Novashell is GUI-based, and so levels are created by

copying and pasting tiles and entities by using the standard Ctrl+C

(copy) and Ctrl+V (paste) keyboard combinations, or by selecting any

tile or series of tiles and right-clicking the mouse to display a

contextual menu offering copy and paste options. Some other options

are described below.

� Copy and Paste — Selecting a tile, pressing Ctrl+C to copy the

tile to the clipboard, and then pressing Ctrl+V to paste new tiles

causes the new tile to appear at the X,Y location of the mouse cur-

sor. Tiles and entities may also be copied and pasted between maps.

� Flood Fill — To fill a region with a specific tile, first copy a tile to

the clipboard, then press and hold the Shift key while using the

mouse to draw a selection box over a region of the map. Press F to

Flood Fill the selected region with as many new instances of the

copied tile as the region may hold.

� Cut, Undo, and Deselect — Ctrl+X cuts rather than copies

tiles, Ctrl+D deselects all (selects nothing) in the map, and the

standard Ctrl+Z (undo) combination reverses the last edit (if any)

made to the map.

� Scaling — The left and right bracket keys ([and]) scale the

selected tile(s). [decreases the scale for as long as the key is

pressed, making the selected tiles smaller, and] increases the

scale, making them larger.

Chapter 8 / Novashell and 2D Games 241

Ch
a

p
te

r
8

� Select All of Kind, Additive Select, Subtractive Select —

Selecting a tile and pressing Ctrl+R selects all other tiles of the

same kind in the current map, that is, all other tiles copied and

pasted from the same original. Press and hold Ctrl while selecting

to add further tiles to an existing selection, and press and hold Alt

to deselect tiles in an existing selection.

8.7.2 Exploring Maps and Editing Tiles
This section explores both how levels are navigated using the Layer

Editor window, and the basics of the Tile Properties window.

� Level Navigation — Pressing Ctrl+(0-9) takes you to the first 10

maps; you can also use the standard map selection window to

switch between maps. The + and – keys (or the mouse wheel)

zoom in and out of levels so you can examine them up close or

from a distance. Space+(click and drag) scrolls across the level.

� Tile Properties — Open the Tile Properties window by

right-clicking a tile and choosing Properties from the context

menu. The Tile Properties window displays a series of editable,

common properties for the currently selected tile in the map.

242 Chapter 8 / Novashell and 2D Games

Figure 8-15: The Tile
Properties window

The Tile Properties window displays most of the editable properties

for the currently selected tile or entity in a Novashell map. The check

boxes for Flip X and Flip Y mirror (or reflect) any tile or entity about

its axis of symmetry. The Cast Shadow check box causes Novashell to

calculate and generate the shadow shape that the selected tile casts on

the surrounding map, based on its collision and pixel data. You can also

assign the selected tile to a specified layer to control its z-order. Click

the Convert to entity button to convert the selected tile into an entity

(non-reversible). The LUA Script field allows you to attach a valid LUA

script defining the entity’s behavior.

8.8 Creating New Games and Maps

A Novashell game is a collection of levels, or perhaps more correctly, a

collection of maps. All prior sections in this chapter considered only

how to edit existing games and existing maps using the Novashell edi-

tor. In the following steps, we’ll explore the process of creating a new

Novashell game from scratch starting from an empty project.

1. Beginning from the desktop, open the local folder where Novashell

was extracted or installed. This folder features the Worlds

subfolder, which contains additional subfolders that each corre-

spond to a unique Novashell game and contain the game resources

(the graphics, sound, data, script files, etc.) specific to that game.

The Worlds folder also contains .novashell config files for each

individual game. Each .novashell config file details in a simple

line-by-line text format the core properties of a unique Novashell

game, such as game name, author name, resolution, etc.

2. Newly created Novashell games are usually created from the

empty skeleton project template called RT_EmptySkeleton,

located in the Novashell Worlds folder. Its.novashell file is

RT_EmptySkeleton.novashell. To create a new project, make a

duplicate of this folder and this file and rename each of them to

reflect the name of your new game.

Chapter 8 / Novashell and 2D Games 243

Ch
a

p
te

r
8

3. Open the newly created .novashell config file using a standard text

editor application and edit each field in the file as appropriate for

the new game. Enter a name for the game title, the desired resolu-

tion, etc., as illustrated in the following sample .novashell file:

//this file contains important data about the world that the

//engine checks before it loads anything

//world will fail if the engine is older than this. Newer

//versions will attempt to emulate this version

engine_version_requested|0.22

world_version|0.1

world_name|My Test Game

world_description|This is my first game

world_author|Me

world_website|www.alanthorn.net

desired_resolution|1024|768|32

//must be 200X200 jpg

world_thumbnail|

//if this is a mod of a mod(s), add its dependencies here (dir

//name|version required) (base is assumed, don’t need to add

//that)

//add_world_requirement|SomeModA|0.0

//add_world_requirement|SomeModB|0.0

4. Having duplicated both the RT_EmptySkeleton project folder and

its corresponding .novashell config file, and having tweaked them

in preparation to become a new Novashell game, start the

Novashell editor. The newly created game appears on the Game

Selection menu. Select the game and switch to Edit mode to play

and edit the master files.

244 Chapter 8 / Novashell and 2D Games

� NOTE. After being selected from the Game Selection menu, a
Novashell game begins by searching every one of its maps for an
entity named “player,” which is an entity to be controlled by the
gamer and where the game camera first focuses as the game
begins. The player entity represents the topological point at which a
game begins. Games created from the Novashell skeleton project do
not, however, feature a player entity by default since not all games
require a player entity. In this case, an error message may appear at
startup to notify the developer that no entity named “player” exists in
any map for this game. This error can be ignored by clicking OK,
and a player entity can be added at some later stage, as demon-
strated shortly.

The game is now ready to edit.

The following sections of this chapter explain how to import art,

select a player entity, implement Lua scripting, add collision detection,

and create some basic AI (artificial intelligence).

8.9 Importing Art into Novashell

Newly created Novashell games based on the skeleton project begin

their life as a completely empty shell — every map is without graphics

and without sound. This section explores how the Novashell editor is

used for importing graphical tile sets from files on disk and into

Novashell as either tiles or entities.

� NOTE. Before starting the game, all required image files should be
copied into the current game’s folder, which is a subfolder of the
Novashell Worlds folder.

Chapter 8 / Novashell and 2D Games 245

Ch
a

p
te

r
8

8.9.1 Importing Files

Importing image files into Novashell means streaming all pixel data

from the files and loading them in Novashell into a memory buffer.

This process is achieved using the Tile Edit window as follows:

1. Click the Grid Snap check box in the Tile Edit window, and set

the grid size to between 40 x 40 and 100 x 100. Grid snap locks tile

movement to predefined grid spacings in the map, and is a useful

tool for level editing.

2. From the main menu, choose Utilities | Import Image(s).

3. The Import Image window appears, displaying a list of valid

graphic files available for importing. Click to select a file from the

list, and its pixels are transferred from disk and onto the Novashell

copy buffer, ready for pasting into the current map as one self-con-

tained tile.

4. Press Ctrl+V to paste the copied pixels onto the map as a tile.

Repeat steps 1-3 for each image to be pasted.

246 Chapter 8 / Novashell and 2D Games

Figure 8-16: Importing
image files

8.9.2 Setting a Player Entity

Entities are sophisticated tiles. For games where the gamer controls a

character, it is standard practice in Novashell to create a player entity,

the tile representing the gamer-controlled character. To create an

entity using the Novashell editor, right-click a tile to display the con-

text menu for the selected tile, and click the Properties option to show

the Tile Properties window. Click the Convert to entity button to con-

vert the tile to an entity. To make this entity the player entity, enter

Player for the entity name.

8.9.3 Creating Smaller Tiles from Larger Tiles
Each graphic resource is imported from a file on disk and into

Novashell first as a complete, self-contained tile (not entity) using the

Tile Edit window. This is true even if the file is arranged in rows or

columns as a tile set and is intended to represent a palette of separate

tiles, such as a file containing 40 x 40 pixel rectangles for floor tiles,

wall tiles, NPC tiles, etc. For tiles of this kind, the Novashell editor

features a series of cutting tools to visually “cut,” or subdivide, a

larger complete tile into a set of constituent, smaller tiles independent

of the larger tile. The following steps explain the Novashell tile-cutting

process more completely.

Chapter 8 / Novashell and 2D Games 247

Ch
a

p
te

r
8

Figure 8-17: Creating a
player entity

1. Beginning in the Novashell editor with a single and complete

imported tile, hold down the Ctrl key and drag a selection over the

rectangle to “cut” from inside the larger tile.

2. Before releasing the mouse button, press Ctrl+C to copy the

selected rectangle of pixels to the copy buffer.

3. The selected pixels copied to the buffer can now be pasted as inde-

pendent tiles using the standard paste shortcut, Ctrl+V.

8.9.4 Setting Collision Information

Traditionally, computer games are designed to simulate real-world

environments insofar as game characters cannot walk through walls or

effortlessly pass through obstacles and enemies without sustaining

damage. Thus, any two game objects (solid bodies) whose boundaries

intersect one another at any one time are said to collide, meaning they

contact one another. The process of determining when collisions

between objects occur in a game is called collision detection. Novashell

detects collisions automatically, and it is the role of the developer only

to indicate the borders of tiles so Novashell may determine when the

border of one tile intersects the border of another. The following steps

illustrate how to create a collision border for any selected tile in the

Novashell editor.

248 Chapter 8 / Novashell and 2D Games

Figure 8-18: Setting
collision detection

1. Beginning from the Novashell game editor, select a tile or entity

for attaching collision information.

2. From the Novashell main menu, select File | Modify Selected |

Edit Collision Data. The Collision Edit Palette appears.

3. From the Collision Edit Palette, choose Add Verts.

4. Draw a shape (collision boundary) around the tile by clicking the

mouse to add new vertices.

5. Click Save Changes in the Collision Edit Palette when com-

pleted. Repeat these steps to set the collision information for each

tile, as required.

� NOTE. To receive run-time notifications from Novashell whenever
collisions between tiles occur in the map, scripts should be added to
each entity involved in collisions. Scripts are examined in more detail
later in this chapter.

8.10 Novashell System Palette

Novashell levels created in this chapter thus far have featured visible

tiles only; that is, tiles that actually appear in the game window. In

Chapter 8 / Novashell and 2D Games 249

Ch
a

p
te

r
8

Figure 8-19: The
System Palette

addition to importing visible tiles and creating entities from those tiles,

like the player entity, Novashell levels may also feature special invisi-

ble tiles, designed for specifying and controlling level-specific behav-

ior. These tiles belong on the hidden layer where they exist spatially

alongside all other tiles in the level, both visible and invisible. Such

special tiles may specify, for example, which music is to be played

while the player moves inside the tile’s boundary, or they may initiate

a Lua script that is to be run at specified times or when a player enters

a room or crosses the threshold of a doorway. The Novashell editor

features a special palette of such tiles listed together in the System

Palette, where developers may go to copy its available tiles and paste

them on their standard maps just like regular tiles, editing the proper-

ties of each tile instance as suitable. The System Palette features

many special tiles, including audio, color, invisible wall, warp,

waypoint, path, and script.

8.10.1 Audio Tiles

The Novashell System Palette features five audio tile types available

to copy and paste on the hidden layer of any standard Novashell map.

The audio tiles play (or stop playing) a specified sound or song when-

ever the player character enters the radius of its circular area; that is,

whenever the X,Y position of the gamer in a level is nearer to the

250 Chapter 8 / Novashell and 2D Games

Figure 8-20: Placing an
audio tile

circle’s center than the extent of its radius. Audio tiles remain dormant

in a level until a player enters their circular region. The Ambience

Loop (crossfade) tiles merge or blend any previously playing song into

a specified song. The Music (instant) tiles immediately cut the play of

any prior songs and begin playing a specified song. The Music (fade

out) tiles reduce the volume of any current playing song down to

silence.

� NOTE. Like regular tiles, audio tiles can be scaled to smaller and
larger sizes using the [and] keys.

To create a music tile, set its radius, and play a song, perform the fol-

lowing steps:

1. Beginning from the Novashell System Palette, select an Ambience

Loop (crossfade) audio tile and copy it to the clipboard.

2. Paste the audio tile into any of the game’s maps, then open the

Tile Properties window from the right-click context menu.

3. Double-click the Name field in the Custom data attached to the

object list, and the Edit Data Dialog window appears. Enter a valid

path to an audio file in the Value field. Acceptable formats include

MP3, OGG, WAV, ASF, S3M, and others. Click OK when completed.

4. To change the audio tile’s radius, select the tile and use either the

[key or the] key to shrink or enlarge the tile as appropriate.

8.10.2 Color Tiles
Color tiles are the only tile available from the System Palette that also

show in the game map rather than remaining hidden like audio or AI

tiles. Color tiles appear on the game map as a bold, programmer-

defined color, and are useful for creating a quick and dirty mock-up in

the absence of game-ready artwork.

8.10.3 Invisible Wall Tiles
As the name suggests, Invisible Wall tiles are used first and foremost

as blocks or obstacles to prevent gamers moving past them. They can

also be used to simulate invisible barriers and force fields.

Chapter 8 / Novashell and 2D Games 251

Ch
a

p
te

r
8

8.10.4 Warp, Waypoint, and Path Nodes
Warp, Waypoint, and Path nodes together constitute Novashell’s

“pathfinding” framework — the system of invisible map markings and

connected graph nodes allowing NPCs and other “intelligent” charac-

ters to find their way around maps, plan routes, and avoid obstacles. A

Warp file marks the X,Y position of an entrance or exit point on a

Novashell map so that a Warp on a different map can allow game char-

acters to move between those maps, leaving via the exit point on one

map and arriving to the specified map at the entrance point. Waypoint

and Path nodes work together insofar as they help NPCs move sensi-

bly from X to Y in any map, avoiding obstacles and other problems.

Path and Waypoint nodes are invisible X,Y markers placed by develop-

ers throughout a level to build a connected network. Using this

network of connected points, NPCs calculate and plan routes when

required to travel any distance on a map.

8.10.5 Script Tiles
Novashell works with Lua scripts. Any Novashell map may feature

scripts attached either to entities in a map or to system palette tiles.

The next section considers scripting more closely.

8.11 Novashell Scripting

Though Novashell features no integrated text editor, it is primarily a

script-driven engine, and all Novashell games are coded using Lua

scripts. Lua is a lightweight and extensible scripting language whose

syntax bears some resemblance to C++; this makes it easy to pick up

and start using Lua to create Novashell games. Scripts are distin-

guished from compiled languages like C++ in which source code is

first written and then compiled into executable form. Scripted lan-

guages are instead an interpreted language whose source code (script)

is loaded from text files and then compiled, or executed, by Novashell

on a line-by-line basis at run time. This difference in approach between

compiled and scripted languages means scripts can be opened in a

252 Chapter 8 / Novashell and 2D Games

standard text editor and amended to make changes in the game with-

out a need to recompile. Scripts in Novashell games are attached to

entities. These entities can be standard entities like the player or

NPCs as well as System Palette entities on the hidden layer of a map.

Scripts can also be executed interactively from the Novashell Console,

which we’ll discuss next.

8.11.1 Novashell Console
As featured in Quake 3 and Unreal, the Novashell Console is an inter-

active panel where system messages are shown and where Lua

scripted commands can be executed at run time. From here, scripts

can output debug messages, print error notifications, and return confir-

mations, and developers can run commands, programmatically edit the

game, and execute specified scripted functions. Press the single quote

(’) key to toggle the Console on and off. Following are some simple

tasks that can be accomplished using the Console.

� To select an entity on the map by name using the Console, type

the following and then press Enter (this example uses the

GetEntityByName function):

GetEntityByName("Player");

� Each entity with a script attached can be thought of as an object-

oriented class. These entities feature a set of scripted methods

and properties such as the Run() and Walk() methods and Health

and Speed properties. To list the script data including its attached

properties and methods for a selected entity, enter the following

into the Novashell Console and then press Enter:

this:DumpScriptInfo();

� To run any of the scripted functions listed by the DumpScriptInfo

command for any selected entity, type the command in the follow-

ing form and press Enter:

this:RunFunction("FunctionName");

Where RunFunction is the specified method of the selected entity, and

FunctionName is the name of the method to run.

Chapter 8 / Novashell and 2D Games 253

Ch
a

p
te

r
8

8.11.2 Attaching a Script to an Entity
The Novashell Console is interactive insofar as it allows developers to

initiate functions manually from the command line, and allows the initi-

ated functions to print their debug messages back to the window in

response. In addition to the command line, script files can be attached

to specific entities to handle entity events and behaviors. Entity

events include mouse clicks, keypresses, collision events,

OnMapBegin, and OnMapEnd. Generally, scripts are written to handle

and control an entity’s response to these events, where one event typ-

ically corresponds to one method in the Lua script file (an event

handler), and this handler is initiated at run time on each occasion the

corresponding event occurs to that entity. The following example dem-

onstrates the step-by-step process for creating a new Lua script file

and then assigning that file to an entity named “Player.”

1. Beginning from the desktop, create a new text file using a standard

text editor or a Lua editor such as LuaEdit

(http://luaedit.luaforge.net/).

2. Enter the following basic script, handling the three simplest

events for any entity. These event handler functions are described

after these steps.

RunScript("system/player_utils.lua");

function OnInit() //run as game is executed and entity created

this:GetBrainManager():Add("StandardBase","");

this:SetIsCreature(true);

end

function OnPostInit() //run once entity appears on map

LogMsg("The entity name is " .. this:GetName());

end

function OnKill() //run as entity is removed from memory

RemoveActivePlayerIfNeeded(this);

end

254 Chapter 8 / Novashell and 2D Games

3. Save the Lua file with a unique name (e.g., “newplayer.lua”) in the

Worlds subfolder appropriate for the game.

4. Load up Novashell and edit the game. Add a player entity to the

map and right-click on the entity to display its context menu. Click

Properties to open the Tile Properties window, and enter into the

Lua Script edit box the fully qualified path to the newly created

Lua script file. The script assignment is now completed.

This sample Lua code features three of the most fundamental event

handlers a Novashell script can contain for an entity: OnInit,

OnPostInit, and OnKill. The OnInit handler is executed once per game

at the moment the entity is created in memory. OnPostInit occurs after

OnInit; it is executed on every occasion the entity is placed on the

map. OnKill is run once per game and occurs whenever the player is

scheduled to be deleted from memory; this is typically as the game is

terminated by the player. These three functions are now considered

more closely.

function OnInit() //run as game is executed and entity created

this:GetBrainManager():Add("StandardBase","");

this:SetIsCreature(true);

end

� GetBrainManager — A standard Novashell function that should

be called once in a script file for every intelligent entity on a map.

An intelligent entity is one that can move in terms of its X,Y loca-

tion on a map. This function allows an entity to exhibit basic intel-

ligence, configuring the entity to react to collisions realistically

and to find its way through a map across a series of plotted path

nodes whenever it is instructed to do so.

� SetIsCreature — This function flags the entity as a moveable,

intelligent entity in a Novashell map; the pathfinding system will

not figure this entity as a static obstacle for other entities when

performing its pathfinding calculations.

function OnPostInit() //run once entity appears on map

LogMsg("The entity name is " .. this:GetName());

end

Chapter 8 / Novashell and 2D Games 255

Ch
a

p
te

r
8

� LogMsg — This function prints a specified debug string to the

Console window.

function OnKill() //run as entity is removed from memory

RemoveActivePlayerIfNeeded(this);

end

� RemoveActivePlayerIfNeeded — This function flags to

Novashell that the specified entity may be safely deleted from

memory since it is no longer required for the game.

8.11.3 Visual Profiles
Any single entity on the map, such as the player entity, may be in one

among many different states (such as walking, running, jumping) at

any one time. The player entity may, for example, be in a standing-still

state or in a walking or running state, depending on which keys the

player presses. Consequently, the visual appearance of an entity will

probably change depending on its state, requiring a different graphic

or animation to represent the entity in each state. Novashell uses its

Visual Profiles feature to solve this problem. A visual profile in

Novashell is an XML file assigned to an entity that lists each entity

state by name (“walk,” “run,” “jump,” etc.), and associates a visual

style (an appearance) to each state. Once the developer has associated

a complete XML profile to an entity and listed every state that entity

may assume, he then programs (in Lua) the entity’s currently active

state at run time from among the list of states available in the profile.

This is a bit like a dial or switch on a washing machine for choosing

which mode to work in. An example visual profile is featured below.

<resources>

<profile name="main_character">

<anim state="idle_left" spritename="idle_left" mirrorx="no" />

<anim state="idle_right" spritename="idle_left"

mirrorx="yes" />

<anim state="walk_right" spritename="walk_right"

mirrorx="yes" />

<anim state="walk_up" spritename="idle_down" mirrorx="no" />

</profile>

<sprite name="idle_left">

<image fileseq="idle/idle_left_.png" leading_zeroes="3" />

256 Chapter 8 / Novashell and 2D Games

<translation origin="center" />

<animation pingpong="no" loop="yes" speed="150" />

</sprite>

<sprite name="idle_right">

<image fileseq="idle/idle_right_.png" leading_zeroes="3" />

<translation origin="center" />

<animation pingpong="no" loop="yes" speed="150" />

</sprite>

<sprite name="walk_right">

<image fileseq="idle/walk_right_.png" leading_zeroes="3" />

<translation origin="center" />

<animation pingpong="no" loop="yes" speed="150" />

</sprite>

<sprite name="walk_up">

<image fileseq="idle/walk_up_.png" leading_zeroes="3" />

<translation origin="center" />

<animation pingpong="no" loop="yes" speed="150" />

</sprite>

</resources>

The above visual profile is for a sample player character and defines

four different states, though typically such a file would define many

others. These states are: idle_left, idle_right, walk_right, and walk_up.

The first two states are “idle” states in which the player is standing

still. The two walk states are for walking right and for walking up (for a

game with a top-down view). Let’s take a closer look at the profile

states and sprite entities of the visual profile XML file.

<anim state="idle_left" spritename="idle_left" mirrorx="no" />

� Anim state nodes define a single entity state. Each anim states

features a name tag to specify the name of the state; a sprite name

that corresponds to a sprite node specified further down in the

XML file, which is a reference to the image resource to use for the

entity when in this state; and a mirror tag, which can be either

“yes” or “no” and determines whether the associated visual style

(as specified by sprite name) will be flipped or reversed. This last

property is useful for directional states such as walk_left and

walk_right, where the same image can be flipped to face the appro-

priate direction for each state.

Chapter 8 / Novashell and 2D Games 257

Ch
a

p
te

r
8

<sprite name="walk_up">

<image fileseq="idle/walk_up_.png" leading_zeroes="3" />

<translation origin="center" />

<animation pingpong="no" loop="yes" speed="150" />

</sprite>

� Sprite XML nodes define a single visual style, whether an image

or animation, independently of any state node, and so a single

sprite node may be referenced by more than one state. A sprite

node has a name (e.g., “walk_up”), and this name should corre-

spond to the spritename node of any state that references this

sprite. The image fileseq tag defines the template form, or struc-

ture, of a sequence of image file names that together constitute a

complete animation for this visual style. For example, <image

fileseq="walk/walk_up_.png" leading_zeroes="3" /> specifies a

sequence of files in the form walk_up_000.png, walk_up_001.png,

walk_up_002.png, and so on, for however many files by this name

are found in the subfolder of the Worlds folder. The translation ori-

gin determines the origin from which transformations (such as

moving the image) are measured; this example specifies the cen-

ter of the image as the origin. Finally, the animation pingpong node

specifies the speed at which the animation is to play (milliseconds

per frame), and loop defines whether the animation should loop

after a single cycle of frames has completed. If loop is set to true,

then the pingpong tag determines the nature of the loop; “no”

means the animation plays again from the beginning, and “yes”

means the animation is played (or pingponged) forward, then

backward, then forward again, and so on.

8.11.4 Moving a Character Using the Keyboard
A map entity such as the player or an NPC has a visual profile

attached, and this profile handles the entity’s appearance as it enters

different states (walking, jump, running, etc.). In addition to a change

in appearance, entities like the player character should be controllable;

that is, users should be able to move them to different positions

around the map using the keyboard or mouse. Following is a Lua script

that responds to keyboard input (such as an up arrow keypress) and

moves the player to a new X,Y position appropriately.

258 Chapter 8 / Novashell and 2D Games

RunScript("system/player_utils.lua");

//---

function OnInit()

this:GetBrainManager():Add("StandardBase","");

this:SetIsCreature(true);

end

//---

function OnPostInit()

this:SetTurnSpeed(6);

//Create an event link between keypresses and functions in

//script.

//On each keypress for directional arrows, corresponding function

//is called

GetInputManager:AddBinding("left,always", "OnLeft",
this:GetID());

GetInputManager:AddBinding("right,always", "OnRight",
this:GetID());

GetInputManager:AddBinding("up,always", "OnUp", this:GetID());
GetInputManager:AddBinding("down,always", "OnDown",

this:GetID());

ResetKeys(); //Reset keys back to orginal states

this:SetRunUpdateEveryFrame(true);

end

//---

function OnKill()

RemoveActivePlayerIfNeeded(this);

end

//---

function Update(step)

//Make camera follow the player entity as it moves around

//the map

Chapter 8 / Novashell and 2D Games 259

Ch
a

p
te

r
8

AssignPlayerToCameraIfNeeded(this);

local facing = ConvertKeysToFacing(m_bLeft, m_bRight, m_bUp,

m_bDown);

//Determine where the entity is facing and set state from the

//visual profile

if (facing != C_FACING_NONE) then

this:SetFacingTarget(facing);

this:GetBrainManager():SetStateByName("Walk");
else

this:GetBrainManager():SetStateByName("Idle");
end

end

//---

function ResetKeys()

m_bLeft = false;

m_bRight = false;

m_bUp = false;

m_bDown = false;

end

//---

function OnLeft(bKeyDown)

m_bLeft = bKeyDown;

return true; //continue to process key callbacks for this

//keystroke

end

//---

function OnRight(bKeyDown)

m_bRight = bKeyDown;

return true;

end

//---

function OnUp(bKeyDown)

m_bUp = bKeyDown;

return true;

260 Chapter 8 / Novashell and 2D Games

end

//---

function OnDown(bKeyDown)

m_bDown = bKeyDown;

return true;

end

//---

The above script features a series of event handlers — OnUp,

OnDown, etc. — called each time the corresponding key is pressed by

the player, and each handler sets a Boolean variable to true or false

depending on whether the key is pressed or released. The update

function is run on each frame (iteration) of the game loop, and the val-

ue of each Boolean (each indicating which key is pressed), in

combination with character speed, determines the distance and the

direction along which the player entity travels.

8.11.5 Clever Navigation with Pathfinding

Chapter 8 / Novashell and 2D Games 261

Ch
a

p
te

r
8

Figure 8-21:
Pathfinding nodes

The artificial intelligence term “pathfinding” refers to a computer’s

ability to find, or calculate, a valid route from point X to point Y across

a given graph of connected nodes. More practically, good pathfinding

ensures NPCs such as enemies or other creatures intelligently find

their way from X to Y across a game map without getting lost or stuck,

or without bumping into obstacles or walking through solid objects.

Novashell features an integrated pathfinding system that automatically

performs all the required calculations necessary for NPCs to find valid

routes between any two points around the map, from the point at

which an NPC begins traveling through to its destination. The

Novashell developer needs only to plot the points (or nodes) onto the

map, forming a graph network across which pathfinding calculations

are performed. In short, developers use the Novashell editor to plot

nodes economically around the map (invisible to the player) such that

each node is connected by a line to at least one other node in the net-

work, and such that at least one node is directly reachable by an NPC

regardless of where in the level he is standing. Directly reachable

means there is no obstacle (like a table, wall, chair, etc.) breaking the

invisible line between the NPC and the node. In Novashell, pathfinding

networks are created by copying the node tile from the System Palette

and pasting new instances in various locations on the level. Each

newly plotted node will connect to others on the map automatically,

provided a direct line of sight between the new node and the existing

nodes is available. The following step-by-step process creates a path

node network using the Novashell editor.

1. Beginning from the Novashell map editor, select the System

Palette.

2. Select the Path Finding Node tile and copy it to the clipboard.

3. Select a different game map, and from the main menu select Dis-

play | Show Path Finding Data to display any existing path

nodes and their connections.

4. Paste the path nodes around the map in a style similar to those in

Figure 8-21.

In addition to pathfinding nodes, the System Palette also offers

waypoints; waypoints are to path nodes what entities are to tiles. A

waypoint is an advanced path node that can be connected to the node

262 Chapter 8 / Novashell and 2D Games

network, but additionally each waypoint can be named uniquely in

order to distinguish one waypoint from other waypoints and from

among the mass of other nameless path nodes. Naming waypoints is

useful for identifying a specific waypoint so that Lua scripts can, if

required, instruct specific entities to travel to specific waypoints on a

map, rather than to travel to an anonymous X,Y position. This is dem-

onstrated in the following script.

RunScript("system/player_utils.lua");

//---

function OnInit()

this:GetBrainManager():Add("StandardBase","");

this:SetIsCreature(true);

end

//---

function OnPostInit()

//Add a random waypoint by name to the queue of places to which

//the entity should travel

AddPaths();

end

//---

function OnKill() //run when removed

RemoveActivePlayerIfNeeded(this);

end

//---

function AddPaths()

//Build waypoint name string and append a random number

local pointName = "Waypoint" .. random(1, 4);

//Add instruction to queue for this entity; travel to specified

//position

this:GetGoalManager():AddApproach(GetEntityByName(pointName):
GetID(), C_DISTANCE_CLOSE);

Chapter 8 / Novashell and 2D Games 263

Ch
a

p
te

r
8

//Add instruction to end of queue (after travel) to repeat

//travel process

this:GetGoalManager():AddRunScriptString("AddPaths()");

end

//---

8.12 Conclusion

In this chapter we examined Novashell, a free, open-source 2D game

maker made by Seth Robinson for developing cross-platform games on

Windows, Linux, and Mac. Like many GDKs (game development kits),

Novashell is a work in progress that is continually changing. For this

reason, Novashell is likely to expand and absorb a growing collection of

features and quirky innovations for making games, courtesy of a fledg-

ling community of developers and gamers. Appendix H at the end of

this book features a complete list of the Novashell functions available

for scripting with Novashell tiles and entities.

264 Chapter 8 / Novashell and 2D Games

Chapter 9

Director and Web
Games

This book thus far has considered the development of primarily two

styles of cross-platform games. One type includes games written and

cross-compiled in Code::Blocks C++ to run natively on each target

platform (Linux, Mac, Windows, etc.). These games are usually cre-

ated in conjunction with an open-source game SDK such as SDL

(Simple DirectMedia Layer), which is designed specifically for drawing

graphics to the game window and for playing sounds and music to the

speakers to add atmosphere and realism. Games made in this style

include The Battle for Wesnoth, Dirk Dashing, and Open Arena. The

other type includes games created in a GUI game editor (such as

Novashell), where developers build a game world by designing maps

and referencing externally sourced Lua scripts, after which both the

design and scripts are compiled to run as a completed game running

atop a cross-platform engine. We refer to these styles of cross-plat-

form games as “native-compiled” and “engine-based.”

This chapter considers a third type of cross-platform game espe-

cially popular on Windows and Mac known as the “web game” (or

virtual machine-based game). A thriving industry and played by

gamers across the world, web games are so called because they typi-

cally run through a web browser and are embedded inside a web page,

available to most (but not all) gamers with Internet access. Some of

the more well-known web games include Diner Dash, Home Run,

Samorost, and Bejeweled. Often, web games are the kind people play

casually to fill a rainy afternoon at home, or the kind parents show to

their kids to keep them quiet for an hour or two, or the kind people

265

play at work to occupy themselves during a vacuous moment or to

help clear their minds.

More technically, though, unlike engine-based games (such as

those made with Novashell), web games are said to run in a web page

through a virtual machine (VM). That is, developers typically create

their web games by first using a GUI editor (or content creator) specif-

ically designed for creating web games in place of an IDE like

Code::Blocks. These editors usually offer tailored scripting facilities,

level designing tools, sound playback features, and more. Once game

development is finished and the completed game is ready to play, the

whole project can be exported from the GUI editor to a platform-inde-

pendent image file (object file). The game file then can be loaded into a

virtual machine, in which the file is interpreted and played on-the-fly

for the target platform, whether it is run stand-alone by an independ-

ent VM or in a web page by a browser-embedded VM.

Thus, the cross-platform compatibility of any given web game

depends not so much on the specificity of the game image file created

by the developers as it does on the availability of cross-platform VMs

capable of playing the games. Put simply, the game image file is plat-

form independent insofar as it may be interpreted and run on any

platform for which there is a compliant virtual machine. Hence, the

platforms supported by any web game depends entirely on the plat-

forms supported by the VM; a VM for Windows means the web games

play on Windows, a VM for Mac means the web games play on Mac,

and so on. Overall, then, the process of running a web game (whether

stand-alone or in a browser) occurs between two distinct entities: the

game image itself as created by the game developers, and the virtual

machine (the player of the game image, the infrastructure upon which

it executes). In short, the relationship between game and VM parallels

the relationship between software and hardware and between MP3

files and the MP3 player upon which the files play.

266 Chapter 9 / Director and Web Games

Mirroring this distinction between VM and game, there is a dis-

tinction between the VM software itself and the IDE available to

create the web game; one makes the game and the other plays it. In

the contemporary world of web game development there are two dom-

inant VMs and two complementary game editors for developing web

games that run in each VM, respectively (all now made by Adobe Soft-

ware). These VM and editor pairs are as follows:

� Flash and Flash Player — Flash, originally released as a vector

graphics solution by Macromedia Software in 1996, is now owned

by Adobe. Flash is the name of both the GUI editor for making

web games and the VM (Flash Player) that runs in a web browser

and plays the games as web-embedded applications. Flash is often

recognized by web developers as being a simple-to-use “light-

weight” solution for creating compact animated multimedia con-

tent ranging from web games to content-rich web sites. The Flash

editor is widely used by web developers, and the Flash Player sup-

ports many platforms (from Windows to Linux and Mac).

� Director and Shockwave — Director is a commercial (not free

or open-source) “content creator” for making web games and

other multimedia presentations that run both in a web browser

(through a Shockwave browser plug-in) and stand-alone (where

the Shockwave VM and the game are together compiled into a sin-

gle executable). In short, Shockwave games can run in a web page

or as stand-alone executables. The rest of this chapter covers

Director in the context of creating cross-platform games.

Chapter 9 / Director and Web Games 267

Ch
a

p
te

r
9

9.1 Director

To summarize, Adobe Director (formerly known as Macromedia Direc-

tor) is a GUI-based “content creator” and a complement to Adobe

Flash for making cross-platform multimedia products (though Flash is

not required to run Director or the Shockwave virtual machine). Direc-

tor as an IDE likens a multimedia application to a play in a theatre or to

a movie in which the developer takes the role of the director, or the

orchestrator. Director is so called because it is based largely on a

movie metaphor: one in which the developer (the director) is the man-

ager responsible for synthesizing the ingredients of the production

(the actors, the props, the special effects crew) into a coherent whole,

a harmony whereby the completed product (the game, or the movie)

becomes greater than the sum of its parts on account of their synthe-

sis. So overall, Director is a complete suite of tools integrated into one

application designed specifically for making multimedia productions

featuring frame-based animation, vector graphics editing, media import

(from files such as .mp3, .mov, .avi, .mpg, and .bmp), and also scripting

and event-based programming using either the widely known language

JavaScript or the Director-specific proprietary language Lingo. The lat-

est version of Director (at the time of writing) is Director MX 2004.

Although this is a commercial product, a free trial (30-day) version is

268 Chapter 9 / Director and Web Games

Figure 9-1

available and can be downloaded directly from Adobe’s web site at

http://www.adobe.com/.

9.2 Director Games

Adobe Director has had a long and varied history from its early begin-

ning as Videoworks, through various name changes and upgrades to its

present incarnation. Because of its long history, many developers have

specifically chosen Director to create their games, and their Director

games have in turn become successful. Thus, after a cursory glance of

the games available on the contemporary market, it is not hard to find

games created with Adobe Director. Some examples of available (or

coming soon) Director games are featured below:

� Barrow Hill — Released by Shadow Tor Studios in 2006, Barrow

Hill is a Director-made first-person adventure game (shaped in the

classic style similar to Zork, Myst, or Shivers). Barrow Hill has a

spooky-horror theme in which the player finds himself embroiled

in a ghostly mystery after becoming stranded at an abandoned gas

station in the English town of Barrow Hill after his vehicle inexpli-

cably breaks down on the road nearby. More information about

Barrow Hill can be found at the Shadow Tor web site at

http://www.shadowtorstudios.co.uk/.

Chapter 9 / Director and Web Games 269

Ch
a

p
te

r
9

Figure 9-2: Barrow
Hill: Curse of the
Ancient Circle, Shadow
Tor Studios, 2006

� Diner Dash — Diner Dash was originally released in 2004 as a

Director-made web game by New York developer Gamelab, and it

has since become one of the most popular and therefore most

famous casual games, now having spawned a number of sequels

and having been ported both to the mobile phone and console plat-

forms. In Diner Dash, the game occurs inside a restaurant where

the gamer must take the role of a waitress, Flo. Here, in a frenzied

rush, she must serve the impatient diners who come to the restau-

rant for a meal and to socialize. In each level, Flo must seat the

increasingly demanding customers at their tables, take their

orders, deliver to them both their meals and their bills, and then

clean up their messy tables in order to seat the next wave of

demanding customers, and the mouse-clicking mania goes on.

Diner Dash can be played online for free in a browser at PlayFirst,

located at http://www.playfirst.com/game/dinerdash (requires the

free Shockwave VM).

� NOTE. The Shockwave plug-in for most popular web browsers can
be downloaded from http://www.adobe.com.

� The 13th Doll — The 13th Doll is the unofficial sequel to the 7th

Guest and the 11th Hour puzzle games released in the mid-1990s

by Trilobyte. More accurately, it is a Director-made prequel to 11th

Hour and a sequel to 7th Guest, made by a small independent team

of volunteers under the collective banner of Attic Door Produc-

tions. In this puzzle game, the gamer may play either a doctor or

his patient, whose lives cross as they enter a strange and aban-

doned mansion once owned by a sinister toymaker named Henry

Stauf. Here, the player must move from room to room, finding

clues and solving an intricate network of brainteasers to unlock

the secrets of Stauf’s mansion. The 13th Doll is currently in pro-

duction and is planned for a cross-platform release (Windows,

Linux, and Mac). More information can be found at the 13th Doll

web site http://www.t7g3.com/.

270 Chapter 9 / Director and Web Games

9.3 Director and Shockwave
Compatibility

Many of the developmental software and tools examined in previous

chapters of this book (Code::Blocks, GIMP, Blender, Audacity, etc.)

were cross-platform in the sense that each application supported Win-

dows, Mac, and Linux; this meant that developers could develop

games on any or all of those platforms as well as cross-compile their

games to run on each of them, supporting all users on each platform

natively. However, both Director (the game editor) and Shockwave

(the virtual machine that runs Director-made games) sport a cross-

platform “compatibility” that is based primarily on profitability and is

therefore more limited and less encompassing than the cross-platform

compatibility of the other development software hitherto considered.

Specifically, both Director and Shockwave support only Windows and

Mac natively; neither officially supports Linux as a platform. Thus,

since Shockwave does not support Linux and since a web game (like a

Shockwave game) may run only on those platforms for which there is a

compatible VM available, it seems to follow that Shockwave games

cannot run on Linux, only on Windows or on Mac. Officially, this is the

case for now; however, alternative strategies are available for running

Shockwave games successfully on Linux. In Chapter 2 we examined

Linux Ubuntu in the context of running Windows applications through

emulators such as Wine and CrossOver, and through transgaming tech-

nologies like Cedega. Simply by having these installed on Linux, most

Shockwave games should execute successfully, but thorough and

Chapter 9 / Director and Web Games 271

Ch
a

p
te

r
9

Figure 9-3: The 13th

Doll

regular cross-platform testing during game development is suggested

to ensure issues (such as incompatible media formats like .mov, or cer-

tain function calls) do not arise that “break” compatibility with the

transgaming emulators on Linux.

9.4 Getting Started with Director

Adobe Director is a commercial content creator driven by a movie-

making metaphor that places the game developer in the position of a

director. In this capacity developers use its features to create both

stand-alone and web-based cross-platform games that run through the

Shockwave virtual machine (supporting Windows and Mac, and Linux

through transgaming emulation). This movie metaphor has come to

shape the style of the features developers work with in Director. The

following steps offer a simple “getting started” guide to installing and

then creating a simple application with Director. Subsequent sections

of this chapter examine Director and its features in more detail.

� NOTE. These steps apply to Director MX 2004 for Windows.

9.4.1 Downloading and Installing Director
1. Beginning from the desktop, navigate a web browser to the Adobe

web site from which to download Director at http://

www.adobe.com (or go directly to http://www.adobe.com/products/

director/). From there, search the product listings for Director, and

click Download Free Trial. Save a copy of the installer from the

web site to a location on your local machine.

272 Chapter 9 / Director and Web Games

2. Run the installer and follow the Installation Wizard to install Direc-

tor to the local computer. Once completed, run Director from the

Windows Start menu.

Chapter 9 / Director and Web Games 273

Ch
a

p
te

r
9

Figure 9-4: Director
download site

Figure 9-5: Installing
Director

� NOTE. Windows Vista users may need to run Director in Adminis-
trator mode.

9.4.2 Creating an Animated “Hello World”
Application in Director

1. Director begins at the Project Wizard (or Welcome) menu, from

where developers create new projects or open previously saved

projects. Click Director File under the Create New heading to

begin a new, blank Director project.

274 Chapter 9 / Director and Web Games

Figure 9-6:
Configuring Director to
run on Vista

Figure 9-7:
Beginning a new
Director project

2. A blank new project is presented in the editor. This includes the

Stage window, which corresponds to the game window (the output

display shown to the gamer when the game is run); the Score win-

dow, graphically illustrating the game timeline that ticks over in

frames per second beginning from frame 0 and moving onward

incrementally, frame by frame, the moment the game is run; and

the Property Inspector panel (often found docked on the right-

hand side of the editor) that displays the properties (such as X Pos,

Height, Visible) for the currently selected object.

Click the Movie tab on the Property Inspector panel and adjust

the size of the Stage window (the rendered output) to 640 x 480

resolution. This changes the size of the game window.

3. The project is now ready to accept imported image data (such as

BMP or JPEG files) to display to the screen in the output window.

This image will then be animated to move across the Stage from

the left side to the right side over the course of 30 frames. Image,

movie, and sound files are collectively termed “resources” when

located on disk, and resources are loaded from files on disk and

into Director as “cast members.” Cast members are not added

directly to the Stage, but must later be added manually.

Chapter 9 / Director and Web Games 275

Ch
a

p
te

r
9

Figure 9-8: The
Property Inspector
panel

To import a preprepared image file from disk and into Director as a

cast member, activate the Time-Line window (or the Cast window)

and right-click in the empty list view. When the context menu

appears, click Import to display the Import Files dialog, from

which you can select files.

4. From the Import Files dialog, select a local image file on the hard

disk to import into Director as a cast member using the list view of

files and folders. Once selected, activate the Media drop-down list

at the bottom of the dialog, and select Link to External File

instead of Standard Import. Standard Import instructs Director to

create a duplicate file of the selected file in memory, and this is the

file Director continues to reference in place of the file on disk.

Link to External File means Director references the file on the

disk directly. The latter option means that any changes that occur

to the image on disk (perhaps a developer wishes to change the

image entirely but keep the same file name) are also reflected in

the image drawn on the Stage by Director at run time. Click

Import to continue.

276 Chapter 9 / Director and Web Games

Figure 9-9: Importing
image data

5. The Image Options dialog appears. Remove the check mark from

the Trim White Space check box and click OK to continue. The

image will be imported as a cast member for this project, and is

ready to add to the Stage. The Trim White Space option deletes

any white pixels in an imported image and replaces them with

transparency.

6. The image is now added to the Cast window as a cast member of

the project. Cast members do not themselves appear directly on

the Stage after being imported into a Director project. Rather,

being a cast member means Director keeps a reference to the

imported image as a potential resource for use later; either the

image is referenced externally on disk (via Link to External File)

or the image is loaded entirely into Director (via Standard Import).

Once loaded into Director as a cast member, it can be dragged onto

the Stage where it will appear as a sprite (an on-stage instance of

that cast member), and here it will be drawn to the game window,

Chapter 9 / Director and Web Games 277

Ch
a

p
te

r
9

Figure 9-10: The
Import Files dialog

Figure 9-11: The
Image Options
dialog

visible to gamers. Any single cast member may be dragged to the

Stage many times, each time creating a new on-stage sprite based

on the same cast member in memory, in the same way a single

C++ class may be instantiated many times as different objects.

Thus, many sprites may be based on the same cast member, and

thereby the same resource in memory (that is, copying and pasting

a sprite does not duplicate in memory the resource itself upon

which it is based). For example, many on-stage tree sprites each

based on the same tree cast member may be copied and pasted

around the Stage to create a dense and verdant forest of tree

sprites, all without duplicating their associated cast member in

memory.

7. Once the cast member is dragged onto the Stage as a sprite, the

sprite on the Stage and the Score window can together be used to

animate the sprite to, for example, move it from one corner of the

Stage to the diagonally opposite corner over the course of 30

frames. To do this, first activate the Score window and drag the

timeline slider across the header of the timeline to frame 30; this

sets the current frame to edit, namely frame 30. Afterward, acti-

vate the Stage window and click to select the sprite on-stage. In

the center of the selected sprite appears a small red marker, and

this can be dragged to the destination point at the corner of the

278 Chapter 9 / Director and Web Games

Figure 9-12:
Dragging the cast
member onto the
Stage

Stage where the sprite is to reach by frame 30. This then marks

the path (or vector) along which the sprite is to travel, from its

start point (where the sprite is situated currently) along an invisi-

ble line across the Stage to a destination point marked by the red

marker.

8. The Director movie is almost ready to play insofar as a sprite on-

stage will now slide gently across the Stage from a source to a

destination point within 30 frames. However, once the 30 frames

expire, the movie will end and the presentation will stop. To con-

figure the movie to run continuously until the player presses Stop,

scripting is required. Double-click the blank cell above the 30-

frame header in the Score window to open the Scripting window,

where the developer can edit the script for the current frame.

Select the scripting language JavaScript from the drop-down menu,

and then enter the code shown below into the code editor. This

code instructs the Director movie to shift playback to the first

frame of the movie whenever the timeline reaches the end of

frame 30.

function exitFrame(me)

{

_movie.go(0);

}

Chapter 9 / Director and Web Games 279

Ch
a

p
te

r
9

Figure 9-13:
Setting the travel
path

9. The “Hello World” Director movie is now completed. Click the

Play button on the toolbar to begin movie playback.

9.5 Director in More Detail

280 Chapter 9 / Director and Web Games

Figure 9-14:
Adding JavaScript
code to control
playback

Figure 9-15:
Director workflow

In summary, Adobe Director is a commercial content creator whose

features are designed specifically for developers making cross-plat-

form games and other interactive presentations, from animated menus

to real-time 3D games. As an IDE (integrated development environ-

ment), Director conceptualizes game development as being akin to a

movie production and offers to developers several core components.

Let’s look at the components in detail.

9.5.1 Cast Members

Games are said to be greater than the sum of their constituent parts in

the same way a movie is more than just the sum of its cast members.

Games are more than just a soulless list of graphics, sounds, and

music. Rather, the game emerges as a feature-filled totality from the

particularity of its recipe, from the unique blend and configuration of

its resources or cast members. Thus, in the context of games made in

Director, a cast member refers to a resource (an image, a sound, a

movie, a text file, or any other externally loaded file brought into the

game), and the game as a whole is then assembled step by step by

piecing together the cast members into an original formation on the

Stage. Thus, the Director Cast window is a data bank of resources; a

collection of files imported into Director as cast members.

Chapter 9 / Director and Web Games 281

Ch
a

p
te

r
9

Figure 9-16: The
Cast window
containing cast
members

More accurately, some cast members may be imported and some

are instead linked. Imported cast members are loaded into Director as

static, byte-for-byte copies in memory, and they persist unchanged

regardless of what changes may occur subsequently to the contents of

the file from which they were loaded. The imported cast members are

independent of the resource files. For example, a bitmap of a bright

yellow happy face may be imported into Director as an image cast

member. As such, Director makes a copy of the imported file and it is

this copy that Director continues to reference, not the original file.

Hence, the imported clone remains unchanged even when the original

file is deleted or changed. Linked cast members, by contrast, are

linked to the external files from which they are loaded into Director;

thus, changes in the file are reflected in the cast member.

Cast members have a variety of properties that can be changed

using the Property Inspector panel. Two of these properties include:

� Name — The name is a programmer-defined string to be used for

the cast member. This property is optional but useful for scripting,

as we shall see later.

� Number — Each cast member in any single Director project is

assigned a number automatically, and every number must be

unique to a single cast member. This property can, however, be

changed manually, usually for scripting purposes.

9.5.2 The Stage
The Stage corresponds to the game window; that is, the final viewing

area for the gamer. To continue the movie analogy, to be on-stage is to

be visible and to be “off-stage” is to be unseen, to be in the wings.

Overall then, the Stage is a place for actors or members of the cast;

thus, the Cast window and the Stage window are intimately related, in

the same way a catalogue is related to the objects that are catalogued.

Cast members are dragged from the Cast window and into the Stage

window where they appear on-stage as sprites, ready to perform. The

relationship between a cast member and a sprite can be either one-to-

one or one-to-many, where a single cast member may be dragged to

the Stage once or many times to create one or many sprites. Each

sprite is based on the same cast member, just like a single C++ class

declaration may give birth to many instances of that type, or a single

282 Chapter 9 / Director and Web Games

word-processor letter template may give rise to many letters based on

that single template. Here, on the Stage, sprites are positionally

arranged by the developer by clicking and dragging them from the

Cast window and into the Stage or the Time-Line window. Most pro-

gramming in Director will occur in relation to sprites, such as defining

where and how sprites move on-stage, determining when sprites col-

lide with each other (collision detection), determining how sprites are

z-ordered (arranged to the display), and so on.

The Stage has many properties that can be edited using the Object

Inspector panel. These include the following:

� Stage Size — The width and height of the Stage specified in pix-

els; changing these properties adjusts the screen resolution (or

window size) at which the game is run.

� Title — A programmer-defined string specifying the title of the

game window to be used while the game is running.

� Color — The 32-bit color value specifying the color to be used for

the Stage background; set by default to black.

Chapter 9 / Director and Web Games 283

Ch
a

p
te

r
9

Figure 9-17: A file
displayed on the
Stage

9.5.3 The Score Window’s Timeline

The Time-Line window displays a chronological map of the entire

Director project, documenting the comings and goings of sprites

on-stage across the duration of the presentation. It details the points

when sprites enter the Stage, the moment sprites leave, and the loca-

tions and transformations of sprites in any one frame. At the moment

playback begins by pressing the Play button from the toolbar, a time

slider runs horizontally across the header-axis of the map, ticking over

the linear progress of the presentation as it unfolds frame by frame

from beginning to end, left to right, just like the progress slider of a

media player. During movie playback the time slider moves horizon-

tally (from left to right) across the frames of the Score window,

stepping across each sprite in its associated channel. These channels

are arranged row by row, with one channel corresponding to one row.

A Director presentation consists of potentially many channels, and

each channel serves an important purpose for the presentation. First,

sprites find their way onto the Stage by occupying a channel. Each

sprite must occupy a channel if it is to exist on the Stage, and each

channel may accommodate only one sprite in any one frame. A channel

may be empty if there are more channels than sprites. This means

there may be as many sprites on-stage at any one time as there are

channels available. Second, channels by default represent the z-order

284 Chapter 9 / Director and Web Games

Figure 9-18: The
timeline is shown in
the Score window.

of sprites; that is, the order in which sprites are drawn to the Stage.

Specifically, sprites in channels are drawn to the Stage in order of the

channels; that is, downward according to the vertical arrangement of

channels in the timeline, from top to bottom, row by row, channel by

channel. This means sprites in high-order channels are drawn atop

those in lower-order channels. Thus, channel 0 is the background, and

the highest channel represents the sprite closest to the camera (or

audience).

� TIP. Take a look at the Time-Line window and the presentation of
channels by dragging a cast member to the Stage as a sprite, and
then examine the sprite’s channel occupancy in the timeline. Chan-
nels that are occupied by sprites are shaded with a colored block
instead of appearing blank, and the length of the block can be
resized to determine the lifespan of the sprite on-stage. That is, the
sprite remains on-stage only so long as the length of its correspond-
ing block (located in one of the timeline channels) remains beneath

the time slider, which moves linearly across the header of the chart
as the presentation is played back frame by frame. Blocks can be
resized and dragged throughout the timeline.

9.6 Director Scripting with JavaScript

Director offers to developers a comprehensive scripting system inte-

grated into the editor in order to customize and control games

programmatically. Through scripting, developers can program almost

every aspect of a presentation — from the run-time positioning and

transformation of sprites on-stage to the ordering of channels and play-

ing of sounds and music. Director as an IDE offers two different

scripting languages for creating scripts: the Director-specific language

Lingo, and the more widely known JavaScript. In this chapter, though,

we concentrate on scripting with only JavaScript. Why JavaScript and

not Lingo? Partly because JavaScript as a language is general-purpose

and widely used by developers both inside and outside Adobe Director,

and partly because JavaScript is supplemented by mammoth documen-

tation and tutorials both online and in books, all available at the touch

of a button.

Chapter 9 / Director and Web Games 285

Ch
a

p
te

r
9

In Director there are primarily three types of scripts, each distin-

guished by the way in which they are invoked; that is, the agent or

event that causes the script to run. The three types are frame scripts,

global event scripts, and local event scripts; these are now considered

more closely.

9.6.1 Frame Scripts
Frame scripts are specifically timed scripts. They occur on a specified

occasion in the movie during playback or after a specified delay as

measured in frames. Frame scripts are created via the Time-Line win-

dow by clicking on any of the vacant cells above the time slider header

region to open a scripting widow. Developers enter script into the edi-

tor that is to execute on the selected frame. In short, frame scripts are

attached to specified frames in the presentation, and the script exe-

cutes whenever the time slider enters that frame during playback. An

example was the “frame loop” script created for the sample “Hello

World” application in Section 9.4.2. Here, this script executed when-

ever the slider reached frame 30, and it sent the slider back to frame 0

where it again repeated the presentation from the beginning.

To create frame-based scripts:

286 Chapter 9 / Director and Web Games

Figure 9-19: A
global event script

1. Activate the Time-Line window in the Director editor to view the

movie chronological map, a view charting the progress of the

movie from beginning to end, left to right.

2. Locate the time slider in the horizontal margin at the top of the

timeline, and double-click inside an empty cell above the time

slider.

3. The frame script for this frame is now ready to code in JavaScript

using the script editor.

9.6.2 Global Event Scripts
Global event scripts are specifically named JavaScript functions that

Director searches for and runs (if present) whenever associated global

events occur during movie playback. Put simply, global events are

scripts run whenever an important event occurs during playback. For

example, Director searches all scripted functions for one named

startMovie as soon as movie playback begins; if found, the function is

run. Likewise, Director searches for a function named stepFrame to

execute once every frame, as each frame passes during playback. (In

some senses, the stepFrame global event is analogous to the Update

function featured in the game loop used earlier in this book for SDL

applications.)

To create global event scripts:

1. Open the Script window by clicking the Script Window button on

the Director toolbar. Create a new script file by clicking the +

button.

2. Create a specifically named function as a handler for a global

event. These functions must have appropriate names. The global

event handlers are listed in Appendix I, “Director Events,” and

can also be found in the official Director documentation. Here is an

example function:

function startMovie()

{

//Insert code here

}

Chapter 9 / Director and Web Games 287

Ch
a

p
te

r
9

3. Assign the script global scope so Director can locate the event

handler in memory. To do this, activate the Property Inspector

panel and under the Script tab, select Movie from the type

drop-down box to assign the script a movie scope; that is, global

scope.

9.6.3 Local Event Scripts
Local event scripts are micro-level (sprite-level) scripts attached to

specific sprites on-stage in order to handle incoming events for that

sprite. They handle mouse click events, keypress events, mouse enter

events, and all kinds of other events that may occur to on-stage sprites

during movie playback.

To create local event scripts:

1. In the Director editor, select an on-stage sprite for which to create

a scripted event handler.

2. Right-click the sprite to display a context menu, and select Script

from the menu to display the script editor window.

3. Create a script for an appropriate event handler. Sprite events are

listed in Appendix I, “Director Events.” Here is an example

handler:

function mouseDown()

{

//Insert code here

}

288 Chapter 9 / Director and Web Games

9.7 Practical Scripting

Scripting in Director with JavaScript offers developers the ability to

customize at run time most elements of a Director movie, from the

orientation of a sprite on-stage to the background color of the Stage

itself. Animations, then, are created by interpolating these properties

over time, frame by frame, throughout a single movie. Generally,

scripting in Director takes an object-oriented approach. Director offers

a number of important classes (core objects) for dealing with elements

in a movie, from sprites and movie playback to channels and cast mem-

bers. Some of the common Director classes encountered by a

developer while scripting are:

� Movie — The Movie class is the topmost controller of a movie in

a hierarchy of classes with different status. This class exposes

methods and properties for dynamically adding and deleting

frames to and from a movie, respectively; looping from one frame

back to another; and refreshing the contents of the Stage manually

(though this usually occurs automatically).

� Player — The relationship between the Director movie and the

Player class parallels that between a song playing in a media

player and the media player’s controls (forward, rewind, pause,

etc.). In short, the Player class allows developers to control movie

playback at run time.

� Sprite — A sprite is an instance of a cast member on-stage, and

every Director movie contains in script an instance of class Sprite

for every sprite on Stage. It is through this class that any individ-

ual sprite may be controlled. Using the Sprite class, developers

can set the position, size, and orientation of sprites; change sprite

channels; and hide and unhide sprites.

� Channel — A channel refers to the track or slots in the Time-Line

window, and the purpose of a channel is to accommodate one

sprite on-stage at any one time. Channels can be accessed and

controlled programmatically through the Channel class and, like

sprites, there is one instance of a Channel class in memory for

every channel in the Director movie, regardless of whether or not

the channel is vacant.

Chapter 9 / Director and Web Games 289

Ch
a

p
te

r
9

� Member — The Member class refers to a cast member (that is, a

resource imported from a file on disk), and there is one instance of

Member for every cast member present in the movie.

Let’s look at some practical scripting tasks commonly faced by Direc-

tor programmers. Many of the samples will make use of the

aforementioned “core classes” considered here.

9.7.1 Programming: Shapes, Lines, and
Primitives

In addition to the premade art, music, and sound imported from

resource files on disk and then into Director as cast members, Direc-

tor scripting further allows developers to draw pixels to the Stage

programmatically in the form of dots, lines, and shapes. Consider the

following JavaScript code. This code assumes a bitmap has already

been imported into Director as a cast member called “test,” and fur-

ther that a sprite instance based on this member has been created

on-stage. The sample code then draws to the on-stage sprite a line

starting from one X,Y corner of the sprite and moving diagonally

toward the other.

function startMovie()

{

//Create array variable holding information about primitive

//to draw

var c = propList(symbol("shapeType"), symbol("line"),

symbol("lineSize"), 3, symbol("color"), color(100, 0, 0));

//Draw

member("test").image.draw(0, 0, 300, 200, c);

}

This code is featured in the startMovie global event handler, called

automatically by Director as movie playback begins.

The variable var c is declared as a Director-specific data type

called a property list (PropList), which is an array of properties

arranged sequentially in memory. A property list type is similar to the

std::vector class of the STL. In this case, the property list var c is a

290 Chapter 9 / Director and Web Games

collection of elements describing the geometric properties of a primi-

tive to draw.

The draw method is a member of the Bitmap class, and this in turn

is a member property of the Member class (an instance of Cast Mem-

ber). The draw method draws pixels to a device context, and the

method takes the following form:

draw(x1, y1, x2, y2, colorObjOrParamList);

9.7.2 Printing a List of All Sprites On-stage
Resources are imported into Director as cast members, and cast mem-

bers are dragged onto the Stage as sprites where they occupy available

channels. For sprites to be on-stage they must occupy a channel, and

only one sprite may occupy a channel at any one time; this means the

number of sprites that may appear together on-stage at any one time is

limited to the number of available channels in the Director project (this

limit is by default 65). Thus, a Director project may be conceptualized

as a collection of arrays since it contains a list of cast members

imported from files, a list of channels for on-stage sprites to occupy,

and a Stage, which may be considered as a meeting place of sprites.

Director holds all of these elements (sprites, members, and channels)

in three globally available lists, one list for each type. Consider the fol-

lowing code that cycles through all the sprites on-stage, and prints the

name of each sprite in a pop-up message box.

function mouseUp(me)

{

var TotalChannels = 65;

for (var i=1; i <TotalChannels; i++)

{

if(sprite(i).Name!= "")

_player.alert(sprite(i).Name);

}

}

Chapter 9 / Director and Web Games 291

Ch
a

p
te

r
9

The global function sprite returns a pointer to the specified sprite, as

selected by the argument index.

The alert function is a method of the Player class, and it presents

to the screen a message box featuring the specified string.

� NOTE. Sprites can also be selected by name rather than by
number:

//Example to make invisible a sprite selected by name

var tmpSprite = sprite("name");

tmpSprite.visible=false;

9.7.3 Animating Sprites Using Cast Members
Each sprite on-stage occupies a channel and each is an instance of a

cast member. In this respect the relationship between cast member

and sprite is in the order of one-to-many; that is, any one cast member

may be dragged onto the Stage one or many times to create one or

many sprites. Each of those sprites is based on the same cast member

in memory, and therefore each sprite appears identical to any others

created from the same member. The sprites themselves may have

different positions, sizes, orientations, and transparency values from

others on-stage since geometric properties are in no way encoded into

cast members, but the underlying appearance of each sprite (the pixel

data itself) will reflect the appearance of the cast member as imported

or referenced from a resource file on disk. This means that as a cast

member changes (either pixel data or file reference altogether), so will

all its dependent sprites on-stage, each changing to reflect the status

of the cast member since it was from this cast member that each sprite

was created.

The dependency, then, between cast member and sprite offers a

solution for creating animated sprites on-stage. Not animated in terms

of transformation, where a sprite changes position from one place

on-stage to another. Nor in terms of orientation or rotation, where the

geometric position of the sprite is changed. This can be achieved

already through the width, height, and locX and locY properties of the

Sprite class. But rather in terms of the sprite pixel data itself, in terms

of frame-based animation, such as a man walking, an NPC punching, or

an explosion sequence. Specifically, any sprite can be animated during

292 Chapter 9 / Director and Web Games

movie playback by changing the file reference of its underlying cast

member on a frame-by-frame basis so the sprite on-stage comes to

reflect the different member changes as each frame passes.

An example would be a side-scrolling platform shooter that fea-

tures an NPC animation in which an NPC fires a weapon. The

animation consists of ten frames, each of them illustrating the motion

of the NPC as he draws the gun from its holster and finally to the point

where he fires the gun, and from its barrel emerges a muzzle flash.

Here, frame 1 would initially be imported into Director as a link (not

standard import), and then the cast member is dragged to the Stage

where it appears at frame 1. Then on each frame, the file reference of

the cast member is incrementally set to the next frame so the sprite

on-stage appears to cycle through the frames and thus draws the

weapon and fires the gun. Consider the following code:

//Movie begin event

function startMovie()

{

//Create a new global array to hold a list of file names

//for each frame of animation

_global.g_fileNameArray = new Array();

_global.g_CurrentFrame = 0;

//Add file names

_global.g_fileNameArray[0] = "frame1.bmp";

_global.g_fileNameArray[1] = "frame2.bmp";

_global.g_fileNameArray[2] = "frame3.bmp";

/...

}

//Called each frame

function stepFrame()

{

_global.g_CurrentFrame = _global.g_CurrentFrame + 1;

member("mytestmember").filename="@"+_global.g_fileNameArray[

_global.g_CurrentFrame];

}

Chapter 9 / Director and Web Games 293

Ch
a

p
te

r
9

9.7.4 Querying Mouse Events
The standard OnMouseDown, OnMouseUp, OnMouseEnter, and

OnMouseLeave events are sprite-based event handlers used to detect

and respond to the movements of the mouse cursor over specific

sprites on-stage at run time. However, developers may also wish to

query the movements of the cursor for purposes more broad than this,

such as to detect whether the cursor is hovering over a region of the

Stage or a collection of sprites, or to track the movements of the cur-

sor independently of sprites and wherever on the Stage it travels,

frame by frame. To do this, Director offers a global instance of the

Mouse class. Consider the following code:

//Determine if mouse intersects sprite("test")

if(_mouse.mouseLoc.inside(sprite("test").rect)==true)

{

//_mouse.mouseLoc.locH; XPOS

//_mouse.mouseLoc.locV; YPOS

//Do stuff here

return;

}

294 Chapter 9 / Director and Web Games

9.8 Using the Projector for Web-based
and Stand-alone Games

Adobe Director is primarily a GUI IDE with scripting facilities

attached, and these together constitute the tools available to make web

games and stand-alone games for both Windows and Mac. Until now,

Director games were tested and run by pressing the Play button on

the editor toolbar; press this to begin movie playback. Here develop-

ers could preview their movies/games on the Stage within the editor

window. However, developers are likely to require that their com-

pleted games run independently of the Director editor — either in a

web page as a Shockwave presentation or in an executable where the

Shockwave player and the game image are compiled into one package.

The following sections explain how to build both web games and

stand-alone executables using Director.

Chapter 9 / Director and Web Games 295

Ch
a

p
te

r
9

Figure 9-20

9.8.1 Building Web Games
1. From the Director main menu, select File | Publish Settings.

2. Deselect all check boxes, then check the Shockwave File (DCR)

check box and click OK.

3. Click the Shockwave tab and adjust the JPEG image quality to 80

using the slider control.

4. Click OK.

5. From the Director main menu, select File | Publish.

Once published, the project is compiled to a web game saved as a

Shockwave object embedded in an HTML web page. These files are

saved locally inside the project directory.

296 Chapter 9 / Director and Web Games

Figure 9-21

9.8.2 Building Stand-Alone Games (EXE for
Windows, OSX for Mac)

1. From the Director main menu, select File | Publish Settings.

2. Deselect all the check boxes, then check the Windows Projector

check box to compile for Windows, or the Mac Projector check

box to compile for Mac.

3. Click OK.

4. From the Director main menu, select File | Publish.

Once published, the project is now compiled to a stand-alone game in

the form of an executable file. This is saved locally inside the project

directory.

9.9 Conclusion

In summary, Adobe Director is a commercial content creator for pro-

ducing cross-platform (Windows and Mac) games officially, and

unofficially for Linux through an emulator such as Wine. This chapter

brings to a close the examination of 2D cross-platform games, and here

this book changes direction by inspecting the world of cross-platform

3D game development using the open-source and freely available

OGRE 3D API. It is this subject that is now considered.

Chapter 9 / Director and Web Games 297

Ch
a

p
te

r
9

This page intentionally left blank.

Chapter 10

3D Games with OGRE 3D

To summarize the book thus far: Chapter 1 considered the beginnings

of cross-platform game development by highlighting the meaning of

the term “cross-platform,” and by also examining how to run multiple

platforms (Linux, Mac, and Windows) through multiple booting and

virtualization. Chapter 2 examined the Linux platform generally in

terms of the basics as well as some of its available features such as

command line execution and the GCC compiler. Chapter 3 then consid-

ered the variety of developmental tools available for developing

cross-platform games, namely the C++ IDE Code::Blocks, the photo

editing suite GIMP, and the 3D rendering software Blender 3D. From

here, this book considered mainly 2D games as created by the SDL

(Simple DirectMedia Layer), the Novashell game editor (a cross-plat-

form game engine), and Adobe Director, designed especially for

developing web-based games played by the Shockwave virtual

machine. This chapter changes focus from making 2D games to mak-

ing 3D games by considering the freely available and cross-platform

OGRE 3D API, compatible with the Code::Blocks C++ IDE.

Any game designated as “3D” typically falls into one of two further

sub-categories, the more common real-time 3D or the less common

prerendered 3D.

� Real-time 3D — In real-time 3D games, events can occur simul-

taneously (such as gun fights, explosions, and tactical ops); that is,

events occur in “real time.” Games such as Doom, Unreal, Quake,

Gears of War, and Carnival (on Wii), are considered to be real-time.

In real-time 3D, gamers can move smoothly through the game

world, rotating their perspective on demand to view game objects

(walls, doors, enemies, etc.) from the front, back, underside, and

potentially from as many different angles as any 3D space can

physically allow. In this world of 3D, game objects are typically

299

composed of polygons. Books, doors, people, and more are all

assemblages of hundreds, perhaps thousands, of small triangles

angled and connected in specific ways. To enhance its realism,

each object is then textured, which means its 3D surface is

wrapped or wallpapered with 2D images. The 2D images can be

bricks on a brick wall, wood grain projected onto the 3D surface of

a wooden cabinet model, and so on.

300 Chapter 10 / 3D Games with OGRE 3D

Figure 10-1: Free,
cross-platform 3D flight
simulator FlightGear,
available at http://
www.flightgear.org/

Figure 10-2: Free,
cross-platform,
and open-source 3D
shooter Nexuiz, available
at http://alientrap.org/
nexuiz/

� Prerendered 3D — Games like Myst, The 7th Guest, Shivers,

Mortimer Beckett, and Post Mortem are among those designated

by game critics as prerendered 3D. They are prerendered insofar

as objects in the game world are first modeled and rendered in 3D

by artists using software such as 3ds Max or Blender 3D, and from

there are imported into the game as either inflexible still images

or preconfigured movies, instead of being imported as polygonal

models viewable from all angles in “real time.” For example, the

first-person game The 7th Guest finds the player wandering around

the rooms of an old mansion solving brain-teasing puzzles room by

room (chess puzzles, word games, etc.). Here, the player clicks

the Forward button to walk forward, and a predetermined “walk

forward” animation is played until the character reaches its desti-

nation, whereupon the player again may resume control and navi-

gate to other places. Prerendered 3D is not considered further in

this chapter. Instead, OGRE 3D is used here to create real-time

3D games.

Chapter 10 / 3D Games with OGRE 3D 301

Ch
a

p
te

r
10

Figure 10-3: The Battle
for Wesnoth prerendered
3D game is free, open-
source, and cross-
platform; available at
http://www.wesnoth.org/

10.1 OGRE 3D

� NOTE. This chapter can only be considered a gentle introduction to
developing cross-platform 3D games using OGRE 3D, rather than a
complete guide. This chapter covers many diverse and interesting
facets of 3D games, and as such the material is condensed into
lighter reading in the form of a question and answer format.

Q. So exactly what is OGRE 3D, and why would I want to use it?

A. Cross-platform, open-source, and freely available, OGRE 3D is an

acronym for Object-oriented Graphics Rendering Engine, an API for

drawing hardware-accelerated 3D graphics to the game window in real

time (on-the-fly). In other words, OGRE 3D can make real-time 3D

games. In the words of the OGRE 3D web site:

“OGRE (Object-Oriented Graphics Rendering Engine) is a

scene-oriented, flexible 3D engine written in C++ designed to

make it easier and more intuitive for developers to produce appli-

cations utilising hardware-accelerated 3D graphics. The class

library abstracts all the details of using the underlying system

libraries like Direct3D and OpenGL and provides an interface

based on world objects and other intuitive classes.”

302 Chapter 10 / 3D Games with OGRE 3D

Figure 10-4: Screenshot
from the prerendered game
Lincity, which is free and
cross-platform; available at
http://lincity.sourceforge.net/

(Quoted from the OGRE 3D web site at http://www.ogre3d.org/

index.php?option=com_content&task=view&id=19&

Itemid=79.)

� NOTE. The term “hardware acceleration” refers to the process by
which software (such as games) is accelerated by dedicated hard-
ware. For example, graphics cards like those made by ATI or NVidia
are hardware dedicated to the task at hand.

� NOTE. At the time of writing, OGRE 3D is distributed to developers
as a dynamically linked library under the GNV LGPL (Lesser General
Public License), the details of which are featured in Appendix A at
the back of this book. More details can also be found at
http://www.ogre3d.org/.

There are many reasons why the OGRE 3D API may be appealing to a

game developer; some of these include:

� Free, open-source, and cross-platform — OGRE 3D is compat-

ible with the Code::Blocks C++ IDE and GCC compiler for mak-

ing 3D games, and therefore OGRE-powered games may be

cross-compiled to run natively on the Linux, Mac, and Windows

platforms. Furthermore, OGRE 3D is both free to download and

free of charge for both commercial and non-commercial usage, as

defined by the OGRE 3D open-source license available at the web

address above.

� Comprehensive documentation and thriving community —

OGRE 3D as an API is complemented by a comprehensive help

file distributed together with sample applications in a complete

downloadable SDK package. The OGRE web site contains compre-

hensive online documentation, including a community-edited wiki

database. There is also a diverse and thriving online community of

developers who participate in both technical and social discussion

on the OGRE forums.

� Feature-rich SDK — The OGRE API boasts a complete struc-

ture of features specifically designed for developing real-time 3D

games. These features include the following, some of which are

considered later in this chapter:

� Object-oriented scene hierarchy for programmatically creating

and managing objects in real-time 3D scenes.

Chapter 10 / 3D Games with OGRE 3D 303

Ch
a

p
te

r
10

� Ready-to-use skeletal animation system for animating 3D

models via a network of connected bones through a single

bone hierarchy. (For example, to animate the arms of an NPC

enemy bot, you rotate the shoulder joint and all dependent

bones (forearm, etc.) are transformed relatively.

� Post-production special effects such as ribbon trails, particle

systems, bloom, motion blur, and more via the Compositor.

10.2 OGRE 3D Games

Q. Okay. I now understand more accurately the nature of OGRE —

what it is and at least some reasons as to why it might be chosen by

developers for creating cross-platform 3D games. But are there any

working OGRE examples, any OGRE-powered games currently avail-

able to buy or to download?

A. Yes. There are many OGRE-powered games available; some free,

some commercial. Some of these OGRE-powered games are featured

below.

10.2.1 Ankh

304 Chapter 10 / 3D Games with OGRE 3D

Figure 10-5: Screenshot
from Ankh by Deck13
Interactive

Originally developed by Deck13 Interactive in 2005, Ankh is a cross-

platform 3D adventure game similar in style to the classic LucasArt’s

Monkey Island series, and Ankh itself has now spawned a sequel —

Ankh: The Heart of Osiris. Both games were developed using OGRE

3D. In Ankh, the gamer controls Assril, the son of an ancient Egyptian

architect living in Cairo, who is embroiled in an enigmatic quest to lift

the curse placed upon him by a mummy whose sleep he once dis-

turbed while playing inside the Great Pyramid at Giza. More details

regarding Ankh can be found at http://www.ankh-game.com/.

10.2.2 Other Games
OGRE has powered a great variety of games, including Jetracer and

Billiards Complete, shown in the following images.

Chapter 10 / 3D Games with OGRE 3D 305

Ch
a

p
te

r
10

Figure 10-6:
Screenshot from
OGRE-powered game
Jetracer, by
Winnerone

10.3 Installing OGRE 3D

Q. Fine; so OGRE is an acronym for Object-oriented Graphics Render-

ing Engine, and in summary it is a cross-platform and open-source

SDK used primarily by game developers for making cross-platform,

real-time 3D games. It sports a range of features from hierarchical

scene management and particle systems to skeletal animation and

image compositing. In addition, OGRE as an SDK has already been

deployed by many developers to power a range of cross-platform 3D

games, including Ankh and Jetracer. Having read about the basics of

OGRE, then, from where can OGRE be downloaded and how is it

installed to the system so it is ready to use in Code::Blocks for creat-

ing and compiling OGRE applications?

A. The download and installation process for OGRE differs between

the Windows and Linux platforms. The OGRE installation procedures

for these two operating systems are now considered below in more

detail.

� NOTE. An Internet connection is required to install OGRE and its
related libraries and dependencies.

306 Chapter 10 / 3D Games with OGRE 3D

Figure 10-7: Screenshot
from Billiards Complete

10.3.1 Downloading and Installing OGRE 3D on
Ubuntu

1. Beginning from the Ubuntu desktop, launch the Synaptic Package

Manager from the Ubuntu start menu by selecting System |

Administration | Synaptic Package Manager.

2. From the Synaptic Package Manager, search for and install the fol-

lowing packages:

Chapter 10 / 3D Games with OGRE 3D 307

Ch
a

p
te

r
10

Figure 10-8:
Installing OGRE 3D

alien libxaw-header

autoconf libxaw7-dev

automake1.9 ibfreetype6

automake1.6 libfreetype6-dev

build-essential libpcre3

libcppunit-1.12-0 libpcre3-dev

libcppunit-dev libzzip-dev

libmng-dev libxrandr-dev

libsdl1.2-dev libxxf86vm-dev

libtool freeglut3-dev

� TIP. More installation details can be found in the OGRE 3D wiki
and the OGRE online community at http://www.ogre3d.org.

3. After installing to the system each of the libraries listed in step 2,

close the Synaptic Package Manager. Then from the Ubuntu desk-

top, navigate a web browser to download the OIS source code

(Object-Oriented Input System) from http://sourceforge.net/

projects/wgois. This library is used by OGRE for reading user

input from peripheral devices, such as the mouse, keyboard, etc.

4. Navigate a web browser to the FreeImage home page, and from

there download the source distribution of their cross-platform

image library, a lightweight library of functions for opening and

managing common image file types, from JPEG and BMP to PNG

and TGA. The source code for the FreeImage library can be found

at http://freeimage.sourceforge.net/.

308 Chapter 10 / 3D Games with OGRE 3D

Figure 10-9:
Downloading the
OIS source code

5. Navigate a web browser to http://www.cegui.org.uk/wiki/

index.php/CEGUI_Downloads_0.5.0, and from there download the

latest source distribution of Crazy Eddie’s GUI, a cross-platform

library used by OGRE to offer developers GUI facilities for their

games.

6. Navigate a web browser to http://developer.nvidia.com/object/

cg_toolkit.html, and from there download the latest CG pixel and

vertex shader toolkit for cross-platform 3D games.

Chapter 10 / 3D Games with OGRE 3D 309

Ch
a

p
te

r
10

Figure 10-10:
Downloading the
FreeImage open-
source library

Figure 10-11:
Downloading Crazy
Eddie’s GUI system

7. Then enter the following commands in the Ubuntu Terminal,

pressing Enter after each line:

sudo alien Cg-1.5.i386.rpm

sudo dpkg -i cg_1.5.0-15_i386.deb

8. Navigate a web browser to the official OGRE 3D site at

http://www.ogre3d.org, and from there download the latest OGRE

source distribution for Linux.

9. Build the OIS, FreeImage, and Crazy Eddie’s GUI packages down-

loaded in steps 3, 4, and 5 by extracting each package to a local

directory, and from each directory run the following commands in a

terminal window, pressing Enter after each line:

./bootstrap

./configure

./make

./install

10. Extract the contents of the OGRE 3D source archive (as down-

loaded from the OGRE 3D web site) to a local directory, and from

there run the following command in an Ubuntu Terminal to com-

pile and install the OGRE libraries to the system, ready for use in

Code::Blocks:

aclocal ./bootstrap ./configure make sudo make checkinstall

310 Chapter 10 / 3D Games with OGRE 3D

Figure 10-12:
Downloading the
latest NVidia toolkit

11. Once OGRE 3D is installed to the system, launch the

Code::Blocks C++ IDE from the Ubuntu main menu by selecting

Application | Programming | Code::Blocks.

12. From the Code::Blocks Welcome display, begin a new project by

selecting File | New | Project from the Code::Blocks main

menu. Select an OGRE project. Click Next and follow the wizard.

13. A new OGRE Code::Blocks project is ready to compile and run.

� NOTE. Some users may need to amend as appropriate the default
library and header search paths used by the compiler when compil-
ing and building new OGRE Code::Blocks projects. These settings
are accessed from the Project Options menu, available by selecting
Project | Build Options from the Code::Blocks main menu.

Chapter 10 / 3D Games with OGRE 3D 311

Ch
a

p
te

r
10

Figure 10-13:
Beginning a new
OGRE project from
the wizard

10.3.2 Downloading and Installing OGRE 3D on
Windows

1. Beginning from the Windows desktop, navigate a web browser to

the official OGRE 3D web page at http://www.ogre3d.org.

2. Click the Download button in the left margin of the page, choose

Download a prebuilt SDK, then select the prebuilt binary SDK

distribution MinGW Code::Blocks to download a copy of the

OGRE SDK as a self-installer (EXE) from the web page to the

local computer.

312 Chapter 10 / 3D Games with OGRE 3D

Figure 10-14

3. Once completed, navigate a web browser to the Microsoft DirectX

SDK home page at http://www.microsoft.com/directx/ and down-

load the latest DirectX 9 SDK distribution (if it is not installed

already). Once downloaded, run the DirectX SDK installer.

4. Run the OGRE 3D SDK Installer downloaded in step 2 of this sec-

tion, and then follow the installation wizard to install OGRE 3D to

the chosen directory on the local computer. When installation is

complete, restart the computer.

Chapter 10 / 3D Games with OGRE 3D 313

Ch
a

p
te

r
10

Figure 10-15:
Downloading the
MinGW prebuilt SDK

Figure 10-16:
Installing OGRE

5. After restarting the computer, launch Code::Blocks (Nightly Build)

from the Windows Start menu and open and compile the OGRE

sample projects. Select File | Open and navigate to the OGRE

3D SDK folder, then open the Samples subfolder. Here, open the

Samples Code::Blocks workspace, and use the Code::Blocks Build

button from the toolbar to compile each sample project in the

newly loaded sample workspace. These projects in both Debug

and Release form are built and compiled ready-to-run in separate

subfolders of the OGRE 3D SDK folder.

6. To create a new OGRE project, start Code::Blocks and select File

| New | Project from the main menu of the Code::Blocks screen.

When the New Project dialog appears, select OGRE Project from

the project template list view. Click OK and then follow the wiz-

ard, after which a new OGRE project is ready to compile and run.

314 Chapter 10 / 3D Games with OGRE 3D

Figure 10-17:
Compiling each
sample project

10.4 Getting Started with OGRE 3D

Q. The OGRE SDK is now installed to the system, configured in

Code::Blocks, and ready to compile to make OGRE applications. The

Code::Blocks OGRE application wizard creates new OGRE projects,

featuring all the necessary source code already generated in the

source files, ready to build and run; this is the fundamental structure

from which OGRE applications may be built. What more can you tell

me about this OGRE framework? What does this generated code do?

How exactly do OGRE applications work structurally?

A. Consider the following OGRE source code, the simplest OGRE

application. The source code features annotations and highlights,

which are discussed following the code.

//Links to libs: ogre_d, ogre, ois, ois_d

#if OGRE_PLATFORM == OGRE_PLATFORM_WIN32

#define WIN32_LEAN_AND_MEAN

#include "windows.h"

#endif

Chapter 10 / 3D Games with OGRE 3D 315

Ch
a

p
te

r
10

Figure 10-18:
Creating a new
OGRE project

#include "ExampleApplication.h"

#ifdef __cplusplus

extern "C" {

#endif

//---

//Main application singleton object created at app startup

class MyFirstOGREApplication : public ExampleApplication

{

public:

MyFirstOGREApplication() {}

protected:

//Just override the mandatory create scene method

//OnAppStart event

//Do initialization here

void createScene(void)
{

//{...}
}

void createFrameListener(void)

{

//Create an event listener object

//That is, an object to receive an event on each frame

//{...}

}

};

//---

#if OGRE_PLATFORM == OGRE_PLATFORM_WIN32

INT WINAPI WinMain(HINSTANCE hInst, HINSTANCE, LPSTR strCmdLine,

INT)

#else

int main(int argc, char **argv)

#endif

{

// Create application object

MyFirstOGREApplication app;

316 Chapter 10 / 3D Games with OGRE 3D

try {

app.go(); //Start OGRE application

} catch(Exception& e) {

#if OGRE_PLATFORM == OGRE_PLATFORM_WIN32

MessageBox(NULL, e.getFullDescription().c_str(), "An

exception has occurred!", MB_OK | MB_ICONERROR |

MB_TASKMODAL);

#else

std::cerr << "An exception has occurred: " <<

e.getFullDescription();

#endif

}

return 0;

}

#ifdef __cplusplus

}

#endif

As usual, application execution begins in the main (or WinMain) func-

tion, and here an instance of MyFirstOGREApplication is created, a

user-defined OGRE class derived from class ExampleApplication. Rep-

resenting the “game loop,” the “message pump,” or the lifetime of an

OGRE application from beginning to end, the MyFirstOGREAppli-

cation class is instantiated in the main function. After instantiation, the

method call app.go() initiates the game loop to step through each

frame, and this method only returns as the application ends, termi-

nated either by the user or by an error.

The user-defined createScene method of MyFirstOGREApplica-

tion is where game objects (scenes, enemies, classes, and files) are

loaded, initialized, and configured, ready for use later in the game. This

method is called automatically before the first game frame occurs,

called by other methods working behind the scenes inherited from the

base class ExampleApplication.

Chapter 10 / 3D Games with OGRE 3D 317

Ch
a

p
te

r
10

10.5 Receiving Frame Events

Q. The class MyFirstOGREApplication is therefore an application

controller. Created at application startup, its go method signals the

beginning of the self-sustaining game loop, and the return of this

method marks the end of the loop whereupon the application may

clean up and exit. The MyFirstOGREApplication class is self-sustain-

ing and self-contained insofar as the game loop keeps itself alive

“behind the scenes” (via methods defined in the ancestor class). The

class calls its own methods (many defined in derived classes) at key

events during the game loop, such as at scene startup and at applica-

tion end. If the class is self-sustaining, then, how does it notify

developers about frame events; for example, how can developers

receive notifications on each frame to run typical game loop code such

as reading user input, updating collision detection, or moving objects

around a level?

A. Developers are notified about frame events via FrameListener

classes; that is, classes derived from FrameListener, whose methods

(such as frameStarted and frameEnded) are overridden and redefined

in descendant classes, each of them called polymorphically once per

frame. Consider the following code, amended from the previous sam-

ple to include a FrameListener:

318 Chapter 10 / 3D Games with OGRE 3D

Figure 10-19: The
OGRE setup screen
is shown as an
application begins

#if OGRE_PLATFORM == OGRE_PLATFORM_WIN32

#define WIN32_LEAN_AND_MEAN

#include "windows.h"

#endif

#include "ExampleApplication.h"

#ifdef __cplusplus

extern "C" {

#endif

//---

//OGRE frame listener class, called once per frame
class MyFirstListener : public ExampleFrameListener
{
protected:
public:

MyFirstListener(RenderWindow* win, Camera* cam, const
std::string &debugText)

: ExampleFrameListener(win, cam)
{

mDebugText = debugText;
}

//Called once per frame
bool frameStarted(const FrameEvent& evt)
{

if(ExampleFrameListener::frameStarted(evt) == false)
return false;

//Do stuff here {...}

//Return 'false' to exit application, and 'true' to keep
//alive game loop

return true;
}

};

//---

//Main application singleton object created at app startup

Chapter 10 / 3D Games with OGRE 3D 319

Ch
a

p
te

r
10

class MyFirstOGREApplication : public ExampleApplication

{

public:

std::string mDebugText;

MyFirstOGREApplication() {}

protected:

//Just override the mandatory create scene method

//OnAppStart event

//Do initialization here

void createScene(void)

{

//{...}

}

void createFrameListener(void)

{

//Create an event listener object

//That is, an object to receive an event on each frame

mFrameListener= new MyFirstListener(mWindow, mCamera,
mDebugText);

//Add to list of listeners, each called once per frame

//Can add more listeners if required

//Though one listener is often more than enough

mRoot->addFrameListener(mFrameListener);
}

};

//---

#if OGRE_PLATFORM == OGRE_PLATFORM_WIN32

INT WINAPI WinMain(HINSTANCE hInst, HINSTANCE, LPSTR strCmdLine,

INT)

#else

int main(int argc, char **argv)

#endif

{

// Create application object

MyFirstOGREApplication app;

320 Chapter 10 / 3D Games with OGRE 3D

try {

app.go(); //Start OGRE Application

} catch(Exception& e) {

#if OGRE_PLATFORM == OGRE_PLATFORM_WIN32

MessageBox(NULL, e.getFullDescription().c_str(), "An

exception has occurred!", MB_OK | MB_ICONERROR |

MB_TASKMODAL);

#else

std::cerr << "An exception has occurred: " <<

e.getFullDescription();

#endif

}

return 0;

}

#ifdef __cplusplus

}

#endif

10.6 Adding Objects to a Scene

Q. Okay. So I create a new OGRE application using the Code::Blocks

OGRE Wizard, and then I add an event listener class to receive an

Chapter 10 / 3D Games with OGRE 3D 321

Ch
a

p
te

r
10

Figure 10-20: OGRE
scene featuring one
mesh

event notification for each frame of the game loop at run time, frame

by frame, until the user exits the application by pressing the Esc key

on the keyboard. However, the newly created application features an

empty scene; there are no objects, no lights, no materials, no anima-

tion — only blackness. How do I add objects to the game world (like a

door, window, car, or NPC), and how do I assemble these to form a

level in the game world?

A. In OGRE and 3D programming more generally, a 3D object (wall,

door, NPC, etc.) is generically referred to as a “mesh,” and so an

OGRE scene (or level, or world) is technically a geometric collection

of meshes. It is a single Cartesian space containing an array of meshes

similar to a 2D level that contains a collection of game objects

arranged one in front of the other on a set of z-ordered layers. Chapter

7, “Game Mechanics,” further highlighted how objects in a scene are

hierarchically connected to one another in terms of geometric proper-

ties. Each child object is affected by the position, orientation, and scale

of its parent object in the game world. Move the parent object, and the

child moves correspondingly, relative to its parent. Thus, a scene in

OGRE refers to a Cartesian space containing a hierarchy of geometri-

cally related meshes; in this space, each mesh is related to another in a

parent-child-sibling relationship. In OGRE terminology: A scene is

structurally a hierarchy of nodes (a spatial anchor, or the 3D equivalent

of a 2D layer), where one or many meshes may be attached to a single

node. All the meshes attached to a given node depend on the node for

their position, rotation, and orientation. That is, the mesh is positioned

relative to the node, and the position of the node affects the position of

any attached meshes. The structural relationship between different

meshes attached to different nodes reflects the relationship between

the nodes themselves. Consider the following code taken from the

CreateScene method of the OGRE application object. Here, the code

creates a scene where a mesh is loaded from a file on disk, attached to

a node in the scene, and then positioned in 3D space relative to the

node at the origin (the root node).

322 Chapter 10 / 3D Games with OGRE 3D

//[...] Other code here

class MyFirstOGREApplication : public ExampleApplication

{

public:

std::string mDebugText;

MyFirstOGREApplication() {}

protected:

//Just override the mandatory create scene method

//OnAppStart event

//Do initialization here

void createScene(void)

{

mSceneMgr->setShadowTechnique(SHADOWTYPE_TEXTURE_

MODULATIVE);

mSceneMgr->setShadowTextureSize(512);

mSceneMgr->setShadowColour(ColourValue(0.6, 0.6, 0.6));

// Set ambient light

mSceneMgr->setAmbientLight(ColourValue(0.5, 0.5, 0.5));

Chapter 10 / 3D Games with OGRE 3D 323

Ch
a

p
te

r
10

Figure 10-21: Node
hierarchy

Entity *ent = mSceneMgr->createEntity("head",
"ogrehead.mesh");

// Add entity to the root scene node
mSceneMgr->getRootSceneNode()->createChildSceneNode()->

attachObject(ent);
}

void createFrameListener(void)

{

//Create an event listener object

//That is, an object to receive an event on each frame

mFrameListener= new MyFirstListener(mWindow, mCamera,

mDebugText);

//Add to list of listeners, each called once per frame

//Can add more listeners if required

//Though one listener is often more than enough

mRoot->addFrameListener(mFrameListener);

}

};

//[...] Other code here

Inherited from ExampleApplication, mSceneMgr is an OGRE member

accessible in the class MyFirstOGREApplication. mSceneMgr is the

primary means of accessing and editing objects in an OGRE 3D scene,

from creating scene nodes to positioning objects in 3D space.

� NOTE. Meshes are loaded from files on disk and into OGRE as
entities. As the mesh is loaded, OGRE searches its media paths for
the specified file. The media paths for a given OGRE application are
listed in the resources.cfg file, located in the same directory as the
application executable.

324 Chapter 10 / 3D Games with OGRE 3D

� TIP. Creating OGRE Meshes in Blender 3D 3D meshes are
typically modeled in 3D rendering software (such as 3ds Max, Maya,
or Blender 3D) and then exported from the modeling application to
a file on disk. OGRE accepts meshes in the file format (.mesh).
Although most applications cannot export to this format natively,
there are many plug-ins available to extend the feature set of existing
modeling software to export meshes to the OGRE format, including
an OGRE plug-in for exporting Blender meshes.

The available OGRE exporters can be found at the OGRE wiki at
http://www.ogre3d.org/wiki/index.php/OGRE_Exporters.

10.7 Adding Lights and Particle
Systems

Q. Yes, I can now add meshes to an OGRE scene using nodes and

entity hierarchies, but scenes often contain more than simply meshes.

Scenes also feature lighting, shadows, particle systems (rain, snow,

fog), and many other effects. How can I also add these to a scene?

A. Both lights and particle systems are added to scenes via scene

nodes, in the same way meshes are attached to scene nodes. This is

because meshes, lights, particle systems, and all other scene objects

are derived from the same base class. Consider the following code to

add both a particle system and lights to an OGRE scene:

//Main application singleton object created at app startup

class MyFirstOGREApplication : public ExampleApplication

{

public:

std::string mDebugText;

MyFirstOGREApplication() {}

protected:

//Just override the mandatory create scene method

//OnAppStart event

//Do initialization here

Chapter 10 / 3D Games with OGRE 3D 325

Ch
a

p
te

r
10

void createScene(void)

{

ColourValue mMinLightColour(0.5, 0.1, 0.0);
ColourValue mMaxLightColour(1.0, 0.6, 0.0);

mSceneMgr->setShadowTechnique(SHADOWTYPE_TEXTURE_

MODULATIVE);

mSceneMgr->setShadowTextureSize(512);

mSceneMgr->setShadowColour(ColourValue(0.6, 0.6, 0.6));

// Set ambient light

mSceneMgr->setAmbientLight(ColourValue(0.5, 0.5, 0.5));

Entity *ent = mSceneMgr->createEntity("head",

"ogrehead.mesh");

// Add entity to the root scene node

mSceneMgr->getRootSceneNode()->createChildSceneNode()->

attachObject(ent);

mSceneMgr->getRootSceneNode()->createChildSceneNode()->
attachObject(

mSceneMgr->createParticleSystem("Fireworks",
"Examples/Fireworks"));

Light* mLight = mSceneMgr->createLight("Light2");
mLight->setDiffuseColour(mMinLightColour);
mLight->setSpecularColour(1, 1, 1);
mLight->setAttenuation(8000,1,0.0005,0);

// Create light node
SceneNode *mLightNode = mSceneMgr->getRootSceneNode()->

createChildSceneNode("MovingLightNode");
mLightNode->attachObject(mLight);

}

void createFrameListener(void)

{

//Create an event listener object

//That is, an object to receive an event on each frame

mFrameListener= new MyFirstListener(mWindow, mCamera,

mDebugText);

326 Chapter 10 / 3D Games with OGRE 3D

//Add to list of listeners, each called once per frame

//Can add more listeners if required

//Though one listener is often more than enough

mRoot->addFrameListener(mFrameListener);

}

};

� NOTE. Particle systems (such as Examples/Fireworks, as featured in
the code sample above) are defined in OGRE scripts, and these can
be found in the OGRE Samples/Scripts subdirectory. Here is a sam-
ple particle system script:

// Exudes greeny particles that float upwards

Examples/GreenyNimbus

{

material Examples/FlarePointSprite

point_rendering true

// point rendering means size is controlled by material

// provide fallback sizes for hardware that doesn’t support

// point sprite

particle_width 30

particle_height 30

cull_each false

cull_each false

quota 10000

billboard_type point

// Area emitter

emitter Box

{

angle 30

emission_rate 30

time_to_live 5

direction 0 1 0

velocity 0

colour_range_start 1 1 0

colour_range_end 0.3 1 0.3

width 60

height 60

depth 60

}

// Make them float upwards

affector LinearForce

Chapter 10 / 3D Games with OGRE 3D 327

Ch
a

p
te

r
10

{

force_vector 0 100 0

force_application add

}

// Fader

affector ColourFader

{

red -0.25

green -0.25

blue -0.25

}

}

10.8 Reading User Input with OGRE and
OIS

Q. I have so far seen how to load objects like meshes from files on disk

and into an OGRE scene as entities, how to position those objects rela-

tive to scene nodes, and also how to create lighting and particle

systems for special effects like rain, snow, and volumetric fog. But

none of this is much good for making computer games generally

unless I can piece together instructions from the user by reading their

input from peripheral devices (like a keyboard or mouse). So, how can

I determine which key is pressed on the keyboard; for example,

whether or not the user is holding the down arrow or up arrow? Or

how can I determine the X,Y coordinate of the mouse cursor

on-screen?

A. To read user input (both keyboard and mouse) through OGRE, the

OGRE application class should be derived from multiple classes (not

just ExampleApplication) to support a new set of inherited methods

(event handlers) that are called whenever input events occur. The fol-

lowing code features a full sample OGRE application, and it both

summarizes the code covered throughout this chapter and highlights

in detail how OGRE handles user input.

� NOTE. OGRE input key codes can be found in Appendix J.

328 Chapter 10 / 3D Games with OGRE 3D

#if OGRE_PLATFORM == OGRE_PLATFORM_WIN32

#define WIN32_LEAN_AND_MEAN

#include "windows.h"

#endif

#include "ExampleApplication.h"

#ifdef __cplusplus

extern "C" {

#endif

//---

//OGRE frame listener class, called once per frame

class MyFirstListener : public ExampleFrameListener, public
OIS::KeyListener, public OIS::MouseListener

{

protected:

public:

//---//

MyFirstListener(RenderWindow* win, Camera* cam, const

std::string &debugText)

: ExampleFrameListener(win, cam)

{

mDebugText = debugText;

mMouse->setEventCallback(this);
mKeyboard->setEventCallback(this);

}

//---//

//Called once per frame

bool frameStarted(const FrameEvent& evt)

{

if(ExampleFrameListener::frameStarted(evt) == false)

return false;

//Exits application when down arrow key is pressed

Chapter 10 / 3D Games with OGRE 3D 329

Ch
a

p
te

r
10

if(mKeyboard->isKeyDown(OIS::KC_DOWN))

return false;

//Do stuff here {...}

//Return “false” to exit application, and “true” to keep

// alive game loop

return true;

}

bool mouseMoved(const OIS::MouseEvent &arg)
{

return true;

}

//---//

bool mousePressed(const OIS::MouseEvent &arg, OIS::
MouseButtonID id)

{

return true;

}

//---//

bool mouseReleased(const OIS::MouseEvent &arg, OIS::
MouseButtonID id)

{

//If left button pressed

//0 = left

//1 = right

//2 = middle

if(id == 0)
{

//Do stuff here

}

//If mouse X pos has not moved

if(arg.state.X.rel==0)
{

//Do stuff here

}

330 Chapter 10 / 3D Games with OGRE 3D

return true;

}

//---//

bool keyPressed(const OIS::KeyEvent &arg)
{

//If Escape key pressed

if(arg.key == OIS::KC_ESCAPE)
{

//Do stuff here

}

return true;

}

//---//

bool keyReleased(const OIS::KeyEvent &arg)
{

return true;

}

};

//---

//Main application singleton object created at app startup

class MyFirstOGREApplication : public ExampleApplication

{

public:

std::string mDebugText;

//---//

MyFirstOGREApplication() {}

protected:

//Just override the mandatory create scene method

//OnAppStart event

//Do initialization here

//---//

Chapter 10 / 3D Games with OGRE 3D 331

Ch
a

p
te

r
10

void createScene(void)

{

//{...}

}

//---//

void createFrameListener(void)

{

//Create an event listener object

//That is, an object to receive an event on each frame

mFrameListener= new MyFirstListener(mWindow, mCamera,

mDebugText);

//Add to list of listeners, each called once per frame

//Can add more listeners if required

//Though one listener is often more than enough

mRoot->addFrameListener(mFrameListener);

}

};

//---

#if OGRE_PLATFORM == OGRE_PLATFORM_WIN32

INT WINAPI WinMain(HINSTANCE hInst, HINSTANCE, LPSTR

strCmdLine, INT)

#else

int main(int argc, char **argv)

#endif

{

// Create application object

MyFirstOGREApplication app;

try {

app.go(); //Start OGRE Application

} catch(Exception& e) {

#if OGRE_PLATFORM == OGRE_PLATFORM_WIN32

MessageBox(NULL, e.getFullDescription().c_str(), "An

exception has occurred!", MB_OK | MB_ICONERROR |

MB_TASKMODAL);

332 Chapter 10 / 3D Games with OGRE 3D

#else

std::cerr << "An exception has occurred: " <<

e.getFullDescription();

#endif

}

return 0;

}

#ifdef __cplusplus

}

#endif

10.9 Conclusion

OGRE (Object-oriented Graphics Rendering Engine) is perhaps one of

the single largest and most comprehensive open-source 3D SDKs

available. As such, this chapter can be considered little more than an

OGRE introduction; there is far more to OGRE than what is included

here. Consequently, perhaps the best strategy is to now sort through

the OGRE sample applications shipped with the OGRE SDK, examin-

ing each application and its code and scripts and making changes to

observe their effects. The ever-growing OGRE wiki is also a compre-

hensive source of OGRE information, written by OGRE users for

OGRE users.

Chapter 10 / 3D Games with OGRE 3D 333

Ch
a

p
te

r
10

This page intentionally left blank.

Chapter 11

Other Cross-Platform
SDKs and Tools

From C++ games compiled in Code::Blocks to Shockwave games cre-

ated in Adobe Director, and from 2D games via SDL and Novashell to

3D games via OGRE, this book has generally considered three primary

kinds of cross-platform games. First, we considered those cross-plat-

form games that are first coded by developers in C++ through the

Code::Blocks IDE, and then later cross-compiled to run natively on

each target platform, whether it be Linux, Mac, or Windows. Second,

we considered engine-based cross-platform games where a cross-

platform GUI editor (like Novashell) is used to create a platform-

independent game image (featuring the levels, NPCs, and scripting);

overall a game image finally interpreted and executed by a natively

compiled cross-platform engine so the game runs “as good as”

natively. And similar to the second kind, the third kind includes the

VM image partnership of games (like Shockwave games) typically

compiled into a game image through a GUI editor (like Director) and

then run through a virtual machine to run as a web game in a browser

or as a stand-alone executable. This final chapter of the book now con-

siders briefly a whole series of alternative cross-platform SDKs and

tools available for game development, each of them worthy of further

consideration by developers who have specific developmental require-

ments or who wish to use SDKs other than those featured earlier in

this book. Specifically, we look at a series of SDKs that may be catego-

rized as one of the following kinds:

� Graphics SDK — Graphics SDKs like SDL (Simple DirectMedia

Layer) and OGRE (Object-oriented Graphics Rendering Engine)

are largely concerned with presenting real-time graphics to the

335

game window, whether 2D or 3D graphics. As this book has hope-

fully shown, such APIs offer tools and classes designed specifically

for loading images from files on disk and into system (or other

hardware) memory as resources, ready for display or animation in

the game window.

� Audio SDK — Audio SDKs (such as SDL_mixer, FMOD, and

BASS) are libraries featuring classes and tools used by developers

to play audio (music and sound effects) via the audio hardware to

the speakers.

� Physics SDK — GUI editors such as Novashell and Adobe Direc-

tor offer to game developers a whole subset of game editing and

level designing features to create comprehensive game worlds in

which exist buildings, NPCs, and all kinds of other objects and

phenomena, many of which can be found in the “real” world. The

purpose of a physics SDK is to offer to developers a mathematical

framework of functions and classes designed to simulate “real life”

physics so game objects and game worlds may behave like those in

the real world. It does all the computational hard work for you

automatically.

� Network SDK — Games described as multiplayer (such as

Unreal Tournament, Quake, and World of Warcraft) are those that

bring together into a single online social space thousands of

gamers from many disparate regions around the globe, each of

them meeting up with others to play their games both competi-

tively (e.g., death-match) or cooperatively (e.g., team death-

match). Network SDKs include some of the libraries and tools that

make it possible for game developers to create games that talk to

one another across the Internet. These games establish mutual

socket connections, and through these transmit data to and from

each other to synchronize multiplayer facilities.

� Artificial Intelligence SDK — Artificial intelligence (AI) refers

to the processes (the set of functions and algorithms) that make

computers think for themselves, or appear to think for them-

selves. Through AI, computers can play chess, control NPCs, navi-

gate NPCs intelligently through levels by avoiding obstacles and

traveling the shortest route between any two points in a map, and

engage players in combat in real-time and turn-based strategy

336 Chapter 11 / Other Cross-Platform SDKs and Tools

games. A cross-platform AI SDK, then, offers to developers the

thinking, calculating, and cognitive apparatus (functions, classes,

and toolsets) to implement AI into their cross-platform games in

order to make their games think, reason, and respond.

� Input SDK — Cross-platform input SDKs (like OIS used by

OGRE) boast a set of platform-independent functions and classes

that allow developers to read user input from input peripherals

such as keyboards, mice, and joysticks.

� Scripting SDK — Game engines like Novashell, graphics engines

like OGRE, and Shockwave games made in Director make use of

scripting facilities; that is, developers use a scripting language

such as Lua, Python, or JavaScript to code and edit a game’s

behavior without needing to recompile the entire source code from

scratch. Thus, scripting SDKs offer the bridging tools (the func-

tions and classes) to bridge the technical gap between the binary

executable and a script in a file.

� Game Engine — Game engines like Novashell (an interpreter of

platform-independent game images) are typically designed as a

“one-stop” complete game development solution. That is, game

engines typically market themselves as being a synthesis of librar-

ies, a “feature complete” totality insofar as they offer graphics ren-

dering, audio playback, physics and AI, scripting facilities for

customization, file input/output, level editors, and sometimes a

network multiplayer feature set.

� GUI SDK — The term GUI (graphics user interface) refers to the

widgets, gadgets, and gizmos (like buttons, list views, edit boxes,

and other interface components) found on game screens. A GUI

SDK, then, offers a set of easy-to-use tools and classes for creating

in-game GUIs for cross-platform games.

� Web SDK — Web SDK is a broad term used to designate a whole

range of SDKs that promote gaming online. This chapter will con-

sider YABB, an online forum kit game developers can use to cre-

ate an online community for their gamers, where they can hang

out, socialize with other like-minded and not-so-like minded

gamers, discuss hints and tips for specific sections of games, fight

and argue, report game bugs and potential issues, and finally offer

praise or words of encouragement to the developers.

Chapter 11 / Other Cross-Platform SDKs and Tools 337

Ch
a

p
te

r
11

� Distribution SDK — Generally, contemporary game developers

distribute their games to users either as a published CD/DVD sold

commercially or as a self-published online download (either

directly from the developer’s web site or through an online gaming

portal like Reflexive Arcade or Big Fish Games). But whether the

game comes in a boxed CD/DVD or as an online download, the

game typically installs itself to the user’s computer via an auto-

mated installer. This chapter examines some means of creating

game installers using a distribution SDK.

11.1 Graphics SDKs

11.1.1 OpenGL
OpenGL (Open Graphics Library) is a cross-language, cross-platform

SDK for fast-paced (hardware-accelerated) 2D and 3D computer

graphics. The library has over 250 different function calls to draw com-

plex three-dimensional objects and scenes, ranging from simple

primitives to complex animated geometry. OpenGL was developed by

Silicon Graphics, Inc. (SGI) in 1992 and is widely used in CAD, virtual

reality, scientific visualization, information visualization, and flight sim-

ulation, as well as in video games.

Platforms supported: Windows, Linux, and Mac

Web site: http://www.opengl.org/

License: Free for commercial and non-commercial use.

11.1.2 PTK
The PTK web site describes PTK as “a multi-platform 2D game

engine with 3D capabilities built around OpenGL or Direct 3D acceler-

ated hardware, however, it is also possible to create 3D multi-platform

games with OpenGL [...] PTK can be used by a wide variety of users:

from the most experienced programmers to the newbie aspiring game

programmers.”

Platforms supported: Mac and Windows

338 Chapter 11 / Other Cross-Platform SDKs and Tools

Web site: http://www.phelios.com/ptk/

License: Free only for non-commercial use; more license details avail-

able at their web site.

11.1.3 ClanLib
Freely available, high-level, and cross-platform, ClanLib is an

OpenGL-powered open-source SDK for creating cross-platform 2D

games using the C++ language. ClanLib boasts a variety of features,

some of which include XML/DOM support, 2D collision detection,

network library, sound mixer supporting WAV, tracker formats

(mod/s3m/xm/…) and ogg-vorbis, and high-level 2D graphics API sup-

porting OpenGL and SDL as render targets.

Platforms supported: Windows, Mac, and Linux

Web site: http://www.clanlib.org/

License: BSD-style; free for commercial and non-commercial use. See

web site for more information.

11.1.3.1 Installing ClanLib

It has on occasion been said that ClanLib is a troublesome SDK to

install and configure in terms of downloading the SDK from the web,

unpacking the downloaded SDK package, and getting set up in order to

code and successfully compile ClanLib applications in a C++ IDE like

Code::Blocks, and is especially troublesome on Linux. The following

step-by-step installation guide details how to install and compile

ClanLib applications on Linux Ubuntu.

1. Beginning from the Ubuntu desktop, open a Terminal window by

choosing Applications | Accessories | Terminal.

2. Download the required ClanLib libraries by entering the following

terminal commands:

sudo apt-get install zlib1g-dev libjpeg62-dev libpng12-dev

libmikmod2-dev libogg-dev libvorbis-dev libxxf86vm-dev

Chapter 11 / Other Cross-Platform SDKs and Tools 339

Ch
a

p
te

r
11

3. Close the Terminal window and navigate a web browser to the

ClanLib web site at http://www.clanlib.org/. Here, download to

the local computer the ClanLib source code package for Linux,

ClanLib-0.8.0.tgz. Unpack the contents of this package to a direc-

tory on the local machine.

4. In this local directory, open a Terminal window and run the follow-

ing commands by pressing the Enter key after typing each line:

tar xvzf ClanLib-0.8.0.tgz

cd ClanLib-0.8.0

./configure

make

sudo make install

5. Open with administrator privileges (write permission) the local

system file /etc/ld.so.conf, and add to the end of this file the

following line, then choose File | Save.

include /usr/local/lib/

6. Return to the Terminal and enter the following commands,

pressing Enter after each line:

sudo ldconfig

export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig

7. ClanLib is now installed to the local machine, ready to work with

Code::Blocks in compiling and running newly created ClanLib

applications. Start Code::Blocks and create a blank new project.

Into the main source file paste the following ClanLib code:

#include <ClanLib/gl.h>

#include <ClanLib/core.h>

#include <ClanLib/application.h>

#include <ClanLib/display.h>

class MyApp : public CL_ClanApplication

{

public:

virtual int main(int argc, char **argv)

{

// Create a console window for text output if not available

// Use printf or cout to display some text in your program

CL_ConsoleWindow console("Console");

340 Chapter 11 / Other Cross-Platform SDKs and Tools

console.redirect_stdio();

try

{

// Initialize ClanLib base components

CL_SetupCore setup_core;

// Initialize the ClanLib display component

CL_SetupDisplay setup_display;

// Initialize the ClanLib GL component

CL_SetupGL setup_gl;

// Create a display window

CL_DisplayWindow window("ClanLib application", 640, 480);

// Run until someone presses Escape

while (!CL_Keyboard::get_keycode(CL_KEY_ESCAPE))

{

// Clear the display in a dark blue shade

// The four arguments are red, green, blue and alpha

// (defaults to 255)

// All color shades in ClanLib are measured in the

// range 0-255

CL_Display::clear(CL_Color(0, 0, 50));

// Flip the display (using a double buffer),

// showing on the screen what we have drawn

// since last call to flip()

CL_Display::flip();

// This call updates input and performs other

//"housekeeping"

// Call this each frame

// Also, gives the CPU a rest for 10 milliseconds

// to catch up

CL_System::keep_alive(10);

}

}

// Catch any errors from ClanLib

catch (CL_Error err)

{

// Display the error message

Chapter 11 / Other Cross-Platform SDKs and Tools 341

Ch
a

p
te

r
11

std::cout << err.message.c_str() << std::endl;

}

// Display console close message and wait for a key

console.display_close_message();

return 0;

}

} app;

8. Compile and run the ClanLib code.

11.2 Audio SDKs

11.2.1 FMOD
FMOD is a cross-platform commercial audio library made by Firelight

Technologies that plays audio files in the following formats: AIFF, ASF,

ASX, DLS, FLAC, FSB, IT, M3U, MID, MOD, MP2, MP3, OGG, PLS,

RAW, S3M, VAG, WAV, WAX, WMA, XM, and XMA.

Platforms supported: Windows, Mac, Linux, Nintendo GameCube, Wii,

Solaris, Xbox, Xbox 360, PlayStation 2, PlayStation Portable, and

PlayStation 3

Web site: http://www.fmod.org/

License: Free only for non-commercial use; more license details avail-

able at their web site.

11.2.2 BASS
BASS is a commercial cross-platform audio SDK by Un4seen Develop-

ments supporting audio files in the following file formats: WAV, AIFF,

MP3, MP2, MP1, OGG, XM, IT, S3M, MOD, MTM, and UMX.

Platforms supported: Windows and Mac

Web site: http://www.un4seen.com/

License: Free only for non-commercial use; more license details avail-

able at their web site.

342 Chapter 11 / Other Cross-Platform SDKs and Tools

11.2.3 irrKlang
irrKlang is a commercial cross-platform audio SDK by Ambiera sup-

porting audio files in the following file formats: WAV, MP3, OGG, XM,

IT, S3D, and MOD.

Platforms supported: Windows, Linux, and Mac

Web site: http://ambiera.com/irrklang/

License: Free only for non-commercial use; more license details avail-

able at their web site.

11.2.4 Audiere
A free, open-source, and cross-platform audio SDK, Audiere supports

audio files in the following file formats: WAV, AIFF, MP3, MP2, MP1,

OGG, XM, IT, S3M, MOD, MTM, and UMX.

Platforms supported: Windows, Mac, and Linux

Web site: http://audiere.sourceforge.net/

License: LGPL; free for commercial and non-commercial use.

11.2.5 OpenAL
OpenAL is a generally free, open-source, and cross-platform audio

SDK.

Platforms supported: Windows, Mac, Linux, BSD, Solaris, IRIX, Xbox,

and Xbox 360

Web site: http://www.openal.org/

License: LGPL; free for commercial and non-commercial use.

Chapter 11 / Other Cross-Platform SDKs and Tools 343

Ch
a

p
te

r
11

11.3 Physics SDKs

11.3.1 ODE
ODE (Open Dynamics Engine) is a free, open-source, and cross-plat-

form physics SDK for simulating both rigid body physics and collision

detection. It has powered many games, including BloodRayne 2, Call of

Juarez, and S.T.A.L.K.E.R.

Platforms supported: Linux, Windows, and Mac

Web site: http://www.ode.org/

License: BSD-style; free for commercial and non-commercial use.

11.3.2 Newton Game Dynamics
Newton Game Dynamics is a cross-platform physics SDK, and, accord-

ing to the web site, is “an integrated solution for real-time simulation

of physics environments. The API provides scene management, colli-

sion detection, [and] dynamic behavior and yet it is small, fast, stable,

and easy to use.”

Platforms supported: Windows, Mac, and Linux

Web site: http://www.newtondynamics.com/

License: Free with restrictions. See web site for further details.

11.3.3 True Axis Physics
True Axis is a cross-platform physics SDK featuring collision detec-

tion, scene management, joints and rigid body dynamics, and contact

force computation.

Platforms supported: Windows and Linux

Web site: http://www.trueaxis.com/

License: Free only for non-commercial use; more license details avail-

able at their web site.

344 Chapter 11 / Other Cross-Platform SDKs and Tools

11.3.4 OPAL
OPAL (Open Physics Abstraction Layer) is a free, open-source, and

cross-platform physics SDK featuring linear and angular motion damp-

ing, collision detection, sensors, joints, and more.

Platforms supported: Windows, Mac, and Linux

Web site: http://opal.sourceforge.net/

License: LGPL; free for commercial and non-commercial use.

11.3.5 Bullet
Bullet is a free, open-source, and cross-platform physics SDK featur-

ing linear and angular motion damping, collision detection, sensors,

joints, and more.

Platforms supported: Mac, Windows, Linux, and PlayStation 3

Web site: http://www.continuousphysics.com/Bullet/

License: ZLib; free for commercial and non-commercial use.

11.3.6 PhysX
PhysX is a commercial, cross-platform physics SDK used by many

games including Unreal.

Platforms supported: Mac, Windows, Linux, and consoles

Web site: http://www.ageia.com/

License: Free only for non-commercial use; more license details avail-

able at their web site.

Chapter 11 / Other Cross-Platform SDKs and Tools 345

Ch
a

p
te

r
11

11.4 Network SDKs

11.4.1 RakNet
According to the RakNet web site, “RakNet is a networking API that is

a wrapper for reliable UDP and higher level functionality on Windows,

Linux, and Unix. It allows any application to communicate with other

applications on the same computer, over a LAN, or over the Internet.

Although it could be used for any networked application, it was devel-

oped specifically for rapid development of online games and the

addition of multiplayer to single-player games.”

Platforms supported: Windows and Linux

Web site: http://freshmeat.net/projects/raknet

License: Free with restrictions; more license details available at their

web site.

11.4.2 HawkNL
HawkNL is a free, cross-platform, open-source, “game-oriented” net-

work API designed largely as a wrapper over Berkeley/Unix Sockets

and Winsock. HawkNL also provides other features including support

for many groups of sockets, socket statistics, high-accuracy timer, CRC

functions, macros to read and write data to packets with endian con-

version, and support for multiple network transports.

Platforms supported: Windows, Linux, Mac, IRIX, AIX, BSD, and

Solaris

Web site: http://www.hawksoft.com/hawknl/

License: LGPL; free for commercial and non-commercial use.

346 Chapter 11 / Other Cross-Platform SDKs and Tools

11.4.3 SDL_net
SDL_net is a free, open-source, cross-platform SDL networking exten-

sion library for the SDL library.

Platforms supported: Linux, Windows, BeOS, Mac OS, Mac OS X,

FreeBSD, NetBSD, OpenBSD, BSD/OS, Solaris, IRIX, and QNX

Web site: http://www.libsdl.org/projects/SDL_net/

License: LGPL; free for commercial and non-commercial use.

11.5 Artificial Intelligence SDKs

11.5.1 Boost Graph Library
Boost is a series of open-source, cross-platform, and peer reviewed

C++ libraries, including the graph library used by many for

pathfinding and other AI game development purposes.

Platforms supported: Windows, Linux, Mac, and consoles

Web site: http://boost.org/libs/graph/doc/table_of_contents.html

License: Free; more license details available at their web site.

11.5.2 OpenSteer
According to the web site, “OpenSteer is a C++ library to help con-

struct steering behaviors for autonomous characters in games and

animation. In addition to the library, OpenSteer provides an OpenGL-

based application called OpenSteerDemo, which displays predefined

demonstrations of steering behaviors. The user can quickly prototype,

visualize, annotate, and debug new steering behaviors by writing a

plug-in for OpenSteerDemo.”

Platforms supported: Linux, Windows, BeOS, Mac OS, Mac OS X,

FreeBSD, NetBSD, OpenBSD, BSD/OS, Solaris, IRIX, and QNX

Web site: http://opensteer.sourceforge.net/

License: MIT; free for commercial and non-commercial use.

Chapter 11 / Other Cross-Platform SDKs and Tools 347

Ch
a

p
te

r
11

11.5.3 FANN
FANN (Fast Artificial Neural Network) is an open-source, cross-plat-

form AI library that “implements multilayer artificial neural networks

in C with support for both fully connected and sparsely connected

networks.”

Platforms supported: Windows, Mac, and Linux

Web site: http://leenissen.dk/fann/

License: LGPL; free for commercial and non-commercial use.

11.5.4 Garfixia AI Repository
This is a free, cross-platform, and open-source collection of common

AI functions, classes, and algorithms.

Platforms supported: Linux, Windows, BeOS, Mac OS, Mac OS X,

FreeBSD, NetBSD, OpenBSD, BSD/OS, Solaris, IRIX, and QNX

Web site: http://www.dossier-andreas.net/ai/index.html

License: Free only for non-commercial use; more license details avail-

able at their web site.

11.6 Input SDKs

11.6.1 LibGII
A free, cross-platform, and open-source input management library,

LibGll features functions and classes to read user input from periph-

eral input devices, including mouse, keyboard, joysticks, and others.

Platforms supported: Linux, Windows, Mac OS, Mac OS X, FreeBSD,

and OpenBSD

Web site: http://www.ggi-project.org/packages/libgii.html

License: MIT; free for commercial and non-commercial use.

348 Chapter 11 / Other Cross-Platform SDKs and Tools

11.6.2 OpenInput
OpenInput, according to the web site, “is a free, open-source, cross-

platform, and portable input handling library written in C. The library

can take input from several devices like mice, joysticks, and key-

boards, and presents it to the user using a simple, platform-

independent, and easy-to-use API.”

Platforms supported: Windows and Linux

Web site: http://home.gna.org/openinput/

License: LGPL; free for commercial and non-commercial use.

11.7 Scripting SDKs

11.7.1 Lua
Created in 1993 by Roberto Ierusalimschy, Lua (pronounced Loo-ah) is

a free, cross-platform, and open-source imperative procedural scripting

language used by many games including World of Warcraft, SimCity 4,

Crysis, and Supreme Commander. It is also used by Novashell as well

as other game engines and game editors.

Platforms supported: Windows, Linux, Mac, BREW, Symbian, and

PocketPC

Web site: http://www.lua.org/

License: MIT; free for commercial and non-commercial use.

11.7.2 Python
According to the Python web site, “Python is a dynamic, object-

oriented programming language that can be used for many kinds of

software development. It offers strong support for integration with

other languages and tools, comes with extensive standard libraries,

and can be learned in a few days. Many Python programmers report

substantial productivity gains and feel the language encourages the

development of higher quality, more maintainable code.”

Chapter 11 / Other Cross-Platform SDKs and Tools 349

Ch
a

p
te

r
11

Platforms supported: Windows, Mac, Linux, Amiga, Palm handhelds,

and Nokia mobile phones

Web site: http://www.python.org/

License: Free for commercial and non-commercial use.

11.7.3 Ruby
Ruby is a free, open-source, cross-platform, object-oriented scripting

language.

Platforms supported: Windows, Linux, and Mac

Web site: http://www.ruby-lang.org/

License: Free for commercial and non-commercial use.

11.7.4 Squirrel
Squirrel is a free, open-source, cross-platform, object-oriented script-

ing language, some of whose features include dynamic typing,

exception handling, classes and inheritance, tail recursion, and auto-

matic memory management.

Platforms supported: Windows, Mac, and Linux

Web site: http://squirrel-lang.org/

License: Free for commercial and non-commercial use.

11.7.5 AngelCode
AngelCode is a free, open-source, cross-platform, object-oriented

scripting language.

Platforms supported: Windows, Linux, Mac OS X, XBox, XBox 360,

PlayStation 2, PlayStation Portable, PlayStation 3, Dreamcast,

Nintendo DS, and Windows mobile

Web site: http://www.angelcode.com/angelscript/

License: Free for commercial and non-commercial use.

350 Chapter 11 / Other Cross-Platform SDKs and Tools

11.7.6 GameMonkey
GameMonkey, according to the web site, “is an embedded scripting

language that is intended for use in game and tool applications.

GameMonkey is, however, suitable for use in any project requiring

simple scripting support. GameMonkey borrows concepts from Lua

(www.lua.org), but uses syntax similar to C, making it more accessible

to game programmers. GameMonkey also natively supports

multithreading and the concept of states.”

Platforms supported: Windows, Mac, and Linux

Web site: http://www.somedude.net/gamemonkey/

License: MIT license; free for commercial and non-commercial use.

11.8 Game Engines

11.8.1 Torque
Torque is a commercial game engine, complete with level editor,

sound, input, graphics renderer, and more.

Platforms supported: Windows, Mac, and Linux

Web site: http://www.garagegames.com/

License: Commercial

11.8.2 Irrlicht
Irrlicht Engine is a free, open-source, real-time 3D engine written in

C++. Cross-platform (using D3D, OpenGL, and its own software ren-

derer), Irrlicht has a huge active community where you can find

enhancements such as terrain renderers, portal renderers, exporters,

world layers, tutorials, editors, and language bindings for Java, Perl,

Ruby, Basic, Python, Lua, and so on.

Platforms supported: Windows, Mac, and Linux

Web site: http://irrlicht.sourceforge.net/

License: Zlib; free for commercial and non-commercial use.

Chapter 11 / Other Cross-Platform SDKs and Tools 351

Ch
a

p
te

r
11

11.8.3 Game Editor
Game Editor is aimed at those new to game programming. Using

Game Editor, developers can build 2D games for the PC and mobile

phone platforms.

Platforms supported: Windows, Mac, and Linux

Web site: http://game-editor.com/

License: Commercial

11.9 GUI SDKs

11.9.1 OpenGUI
OpenGUI is an open-source, cross-platform, and freely available C++

GUI framework for games and other cross-platform applications.

Platforms supported: Windows, Mac, and Linux

Web site: http://opengui.rightbracket.com/index.php

License: BSD; free for commercial and non-commercial use.

11.10 Web SDKs

11.10.1 YaBB
YaBB is a free, open-source forum software package also offering a

real-time chat and support system for your web site visitors. Using

YaBB, game developers can build a technical support and social com-

munity for their gamers.

Platforms supported: Windows, Mac, and Linux

Web site: http://www.yabbforum.com/

License: Free for commercial and non-commercial use.

352 Chapter 11 / Other Cross-Platform SDKs and Tools

11.10.1.1 Downloading, Installing, and Creating an
Online Forum

The following step-by-step guide illustrates how to download, install,

and create an online forum, which can be used to build gaming commu-

nities. Forums provide a place where gamers can log on and speak to

other gamers, report bugs, provide help, and communicate with

developers.

1. Beginning from the desktop (Win, Mac, or Linux), navigate a web

browser to the YaBB home page at http://www.yabbforum.com/.

2. At the YaBB home page, click the Downloads menu item to dis-

play the downloads page. From there, select one of the two YaBB

packages listed: YaBB_2.2.zip or YaBB_2.2.tar.gz. Download the

archive from the web to the local machine, and then extract the

archive to a local directory.

3. Then download the free, cross-platform, and open-source FTP cli-

ent FileZilla by navigating a web browser to the FileZilla home

page at http://filezilla-project.org/.

4. At the FileZilla web site, download and install the FileZilla FTP cli-

ent application from the web site to the local computer.

5. Return to the directory containing the contents of the extracted

YaBB package. This directory includes the following files and

directories:

� cgi-bin — This directory contains the core script files for the

forum. This eventually will be uploaded to the web server.

� public_html — This directory features HTML pages. These

are the default pages for the forum. They do not need to be

edited, but it is possible to do so if you wish to change the look

of your forum.

� Quick-Guide — The help documentation.

Chapter 11 / Other Cross-Platform SDKs and Tools 353

Ch
a

p
te

r
11

6. Using the FileZilla FTP software, log onto the web host using the

FTP server (e.g., ftp.mywebsite.com). Provide a user name and

password as appropriate. Please remember that YaBB can only be

used on web hosts that support Perl scripts. Most commercial

hosts do, but many free hosts do not.

7. On the web space, find a directory called cgi-bin. If it does not

exist, then a directory with this name should be created. From the

local computer, copy all the contents of cgi-bin (inside the direc-

tory where YaBB was extracted) to the cgi-bin directory on the

web host.

8. Outside of the cgi-bin directory on the web host, a new folder

should be created, usually in public_html. This folder should

reside among the rest of the standard HTML pages and files for

the web site. Ideally, this should be called “yabbfiles,” but the

name can be anything desired. From the local computer, copy the

yabbfiles directory (inside public_html where YaBB was

extracted). This should be copied to the web host inside the newly

created yabbfiles directory.

9. Once the required files have been copied to the web host, the

access privileges for these files and directories must be changed.

These settings affect whether the files can be written to and read

from.

At this point, all the forum files are uploaded to the server. Each

file on the server has a series of permissions for reading and writ-

ing, and also for whether the file can be accessed at all. YaBB

requires the forum files to be changed to specific settings in order

to work. Each setting, such as read or write, has an integer cost,

and the total cost for any file reflects the range of settings that

apply to the file. This is sometimes called chmod. The quickest

method for setting permissions is to use FileZilla FTP, which

allows you to select the file, enter a specific integer, and then click

Apply.

a. Right-click one or more files and/or directories in the browser.

b. Click File Attributes.

354 Chapter 11 / Other Cross-Platform SDKs and Tools

c. This displays a menu where a value can be entered. This value

reflects the combination of access privileges to be applied to

the file(s).

The following table lists the YaBB files and directories to be

changed and their corresponding privilege values.

CGI-BIN files:

chmod 755: cgi-bin/yabb2

chmod 755: cgi-bin/yabb2/AdminIndex.pl

chmod 755: cgi-bin/yabb2/FixFile.pl

chmod 666: cgi-bin/yabb2/Paths.pl

chmod 755: cgi-bin/yabb2/Setup.pl

chmod 755: cgi-bin/yabb2/YaBB.pl

chmod 777: cgi-bin/yabb2/Admin

chmod 666: cgi-bin/yabb2/Admin/* (all files)

chmod 777: cgi-bin/yabb2/Boards

chmod 666: cgi-bin/yabb2/Boards/* (all files)

chmod 777: cgi-bin/yabb2/Convert

chmod 777: cgi-bin/yabb2/Convert/Boards

chmod 777: cgi-bin/yabb2/Convert/Members

chmod 777: cgi-bin/yabb2/Convert/Messages

chmod 777: cgi-bin/yabb2/Convert/Variables

chmod 777: cgi-bin/yabb2/Help/English/Admin

chmod 777: cgi-bin/yabb2/Help/English/Admin/* (all files)

chmod 777: cgi-bin/yabb2/Help/English/Gmod

chmod 777: cgi-bin/yabb2/Help/English/Gmod/* (all files)

chmod 777: cgi-bin/yabb2/Help/English/Moderator

chmod 777: cgi-bin/yabb2/Help/English/Moderator/* (all files)

chmod 777: cgi-bin/yabb2/Help/English/User

chmod 777: cgi-bin/yabb2/Help/English/User/* (all files)

chmod 777: cgi-bin/yabb2/Languages/English

chmod 666: cgi-bin/yabb2/Languages/English/agreement.txt

chmod 666: cgi-bin/yabb2/Languages/English/censor.txt

chmod 777: cgi-bin/yabb2/Languages/English/* (all files)

chmod 777: cgi-bin/yabb2/Members

chmod 666: cgi-bin/yabb2/Members/* (all files)

chmod 777: cgi-bin/yabb2/Messages

Chapter 11 / Other Cross-Platform SDKs and Tools 355

Ch
a

p
te

r
11

chmod 666: cgi-bin/yabb2/Messages/* (all files)

chmod 777: cgi-bin/yabb2/Modules/Digest

chmod 777: cgi-bin/yabb2/Modules/Digest/HMAC_MD5.pm

chmod 777: cgi-bin/yabb2/Modules/Digest/MD5.pm

chmod 777: cgi-bin/yabb2/Modules/Time

chmod 777: cgi-bin/yabb2/Modules/Time/HiRes.pm

chmod 777: cgi-bin/yabb2/Modules/Upload

chmod 777: cgi-bin/yabb2/Modules/Upload/CGI.pm

chmod 777: cgi-bin/yabb2/Modules/Upload/CGI

chmod 777: cgi-bin/yabb2/Modules/Upload/CGI/Util.pm

chmod 766: cgi-bin/yabb2/Sources

chmod 755: cgi-bin/yabb2/Sources/* (all files)

chmod 766: cgi-bin/yabb2/Templates

chmod 766: cgi-bin/yabb2/Templates/default

chmod 666: cgi-bin/yabb2/Templates/default/* (all files)

chmod 766: cgi-bin/yabb2/Variables

chmod 666: cgi-bin/yabb2/Variables/* (all files)

chmod 777: public_html/yabbfiles

chmod 666: public_html/yabbfiles/*.js

chmod 777: public_html/yabbfiles/Attachments

chmod 777: public_html/yabbfiles/avatars

chmod 666: public_html/yabbfiles/avatars/* (all files)

chmod 777: public_html/yabbfiles/Buttons

chmod 666: public_html/yabbfiles/Buttons/English/* (all files)

chmod 777: public_html/yabbfiles/ModImages

chmod 777: public_html/yabbfiles/Smilies

chmod 666: public_html/yabbfiles/Smilies/* (all files)

chmod 777: public_html/yabbfiles/Templates/Admin

chmod 666: public_html/yabbfiles/Templates/Admin/default/* (all

files)

chmod 666: public_html/yabbfiles/Templates/Admin/default.css

chmod 777: public_html/yabbfiles/Templates/Forum

chmod 666: public_html/yabbfiles/Templates/Forum/default/* (all

files)

chmod 666: public_html/yabbfiles/Templates/Forum/default.css

356 Chapter 11 / Other Cross-Platform SDKs and Tools

10. Uploading files and setting file permissions can be a long and

tedious process. Once completed, however, the forum is almost

ready to try. You can access the forum by navigating a web browser

to setup.pl in the cgi-bin. It will be something like

http://www.example.com/cgi-bin/yabb2/setup.pl.

This page provides options to configure and accept forum settings.

In this section, it’s important to do the following:

a. Enter a user name and password if asked. You begin as the

administrator user. Your default user name will be admin, and

the password will be admin. These settings should be changed

as soon as possible.

b. The paths screen displays where the YaBB HTML and data

files are to be located. Default settings will be entered already,

and often these are correct. In specific cases, these may need

to be changed.

Chapter 11 / Other Cross-Platform SDKs and Tools 357

Ch
a

p
te

r
11

Figure 11-1

c. Next, the localization screen allows administrators to set the

time zone for the forum. The forum is now ready to use.

11.11 Distribution SDKs

11.11.1 NSIS
NSIS (Nullsoft Scriptable Install System) is an open-source library

designed to create Windows installation packages for developers aim-

ing to distribute their games to that audience.

Platforms supported: Windows

Web site: http://nsis.sourceforge.net/

License: Free for commercial and non-commercial use; see web site for

more details.

358 Chapter 11 / Other Cross-Platform SDKs and Tools

Figure 11-2

11.11.2 Inno Setup
First created in 1997, Inno Setup is a freely available library to create

Windows installation packages.

Platforms supported: Windows

Web site: http://www.jrsoftware.org/isinfo.php

License: Free for commercial and non-commercial use; see web site for

more details.

11.11.2.1 Downloading, Installing, and Creating an
Installer in Inno Setup

Inno Setup is a freely available library used by many game developers

for creating an installation package (wizard) that installs their game to

the local machine. It transfers the game files from a compressed

archive on a CD or downloaded package to the local machine in a form

that can execute successfully. The following step-by-step guide high-

lights how to download, install, and use Inno Setup to create installers

for your own games.

1. Beginning from the Windows desktop, navigate a web browser to

the Inno Setup home page at http://www.jrsoftware.org/isinfo.php.

2. At the Inno Setup home page, click either the Downloads link at

the left of the page or the Download Inno Setup link on the page

to display the Downloads page. There, download from the web to

the local machine both the latest Inno Setup release and the Inno

Setup Quick Start pack, and install each package to the local

computer.

3. From the Windows Start menu, launch the newly installed Inno

Setup IS Tool (Script Editor to create installation packages). Then

from the IS Tool main menu, select File | New to create a new

installation project (a project soon to be compiled into a completed

installer, ready to run).

Chapter 11 / Other Cross-Platform SDKs and Tools 359

Ch
a

p
te

r
11

4. Enter the following script into the editor pane:

[Setup]

; This is a comment. The setup section describes the basic

properties

; of the installer; such as program title, version number,

default

; installation (destination) directory

AppName=My Program

AppVerName=My Program version 1.4

DefaultDirName={pf}\My Program

DefaultGroupName=My Program

OutputDir=C:\Ouput

[Files]

; Here list all files to be compiled into installation package;

files to be

; installed to the system by the installer at run-time

Source: c:\mystestpic.jpg; DestDir: {app}

360 Chapter 11 / Other Cross-Platform SDKs and Tools

Figure 11-3

5. Then from the Inno Setup main menu, choose Project | Compile

Project to generate a self-executing installation package. The

installer is now compiled and ready to run.

11.12 Conclusion

This chapter presented in summary a variety of SDKs (from ClanLib

and ODE to NSIS and YaBB), many of them free and open-source, and

each of them available to game developers looking to create cross-plat-

form games.

Chapter 11 / Other Cross-Platform SDKs and Tools 361

Ch
a

p
te

r
11

Figure 11-4

This page intentionally left blank.

Appendix A

GNU Lesser General
Public License

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this

license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorpo-

rates the terms and conditions of version 3 of the GNU General Public

License, supplemented by the additional permissions listed below.

0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser

General Public License, and the “GNU GPL” refers to version 3 of the

GNU General Public License.

“The Library” refers to a covered work governed by this License,

other than an Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface pro-

vided by the Library, but which is not otherwise based on the Library.

Defining a subclass of a class defined by the Library is deemed a mode

of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking

an Application with the Library. The particular version of the Library

with which the Combined Work was made is also called the “Linked

Version.”

The “Minimal Corresponding Source” for a Combined Work

means the Corresponding Source for the Combined Work, excluding

363

any source code for portions of the Combined Work that, considered in

isolation, are based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work

means the object code and/or source code for the Application, includ-

ing any data and utility programs needed for reproducing the

Combined Work from the Application, but excluding the System

Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License

without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility

refers to a function or data to be supplied by an Application that uses

the facility (other than as an argument passed when the facility is

invoked), then you may convey a copy of the modified version:

a) under this License, provided that you make a good faith effort to

ensure that, in the event an Application does not supply the func-

tion or data, the facility still operates, and performs whatever part

of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of

this License applicable to that copy.

3. Object Code Incorporating Material from Library
Header Files.

The object code form of an Application may incorporate material from

a header file that is part of the Library. You may convey such object

code under terms of your choice, provided that, if the incorporated

material is not limited to numerical parameters, data structure layouts

and accessors, or small macros, inline functions and templates (ten or

fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the

Library is used in it and that the Library and its use are covered by

this License.

364 Appendix A / GNU Lesser General Public License

b) Accompany the object code with a copy of the GNU GPL and this

license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that,

taken together, effectively do not restrict modification of the portions

of the Library contained in the Combined Work and reverse engineer-

ing for debugging such modifications, if you also do each of the

following:

a) Give prominent notice with each copy of the Combined Work that

the Library is used in it and that the Library and its use are cov-

ered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and

this license document.

c) For a Combined Work that displays copyright notices during exe-

cution, include the copyright notice for the Library among these

notices, as well as a reference directing the user to the copies of

the GNU GPL and this license document.

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of

this License, and the Corresponding Application Code in a

form suitable for, and under terms that permit, the user to

recombine or relink the Application with a modified version of

the Linked Version to produce a modified Combined Work, in

the manner specified by section 6 of the GNU GPL for convey-

ing Corresponding Source.

1) Use a suitable shared library mechanism for linking with the

Library. A suitable mechanism is one that (a) uses at run time

a copy of the Library already present on the user’s computer

system, and (b) will operate properly with a modified version

of the Library that is interface-compatible with the Linked

Version.

e) Provide Installation Information, but only if you would otherwise

be required to provide such information under section 6 of the

GNU GPL, and only to the extent that such information is

Appendix A / GNU Lesser General Public License 365

A
p

p
en

d
ix

necessary to install and execute a modified version of the Com-

bined Work produced by recombining or relinking the Application

with a modified version of the Linked Version. (If you use option

4d0, the Installation Information must accompany the Minimal

Corresponding Source and Corresponding Application Code. If you

use option 4d1, you must provide the Installation Information in

the manner specified by section 6 of the GNU GPL for conveying

Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library

side by side in a single library together with other library facilities that

are not Applications and are not covered by this License, and convey

such a combined library under terms of your choice, if you do both of

the following:

a) Accompany the combined library with a copy of the same work

based on the Library, uncombined with any other library facilities,

conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it is a

work based on the Library, and explaining where to find the

accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public
License.

The Free Software Foundation may publish revised and/or new ver-

sions of the GNU Lesser General Public License from time to time.

Such new versions will be similar in spirit to the present version, but

may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the

Library as you received it specifies that a certain numbered version of

the GNU Lesser General Public License “or any later version” applies

to it, you have the option of following the terms and conditions either

of that published version or of any later version published by the Free

Software Foundation. If the Library as you received it does not specify

a version number of the GNU Lesser General Public License, you may

choose any version of the GNU Lesser General Public License ever

published by the Free Software Foundation.

366 Appendix A / GNU Lesser General Public License

If the Library as you received it specifies that a proxy can decide

whether future versions of the GNU Lesser General Public License

shall apply, that proxy’s public statement of acceptance of any version

is permanent authorization for you to choose that version for the

Library.

Appendix A / GNU Lesser General Public License 367

A
p

p
en

d
ix

This page intentionally left blank.

Appendix B

BSD License

Copyright (c) <year>, <copyright holder>

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met: Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer. Redistribu-

tions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution. Neither the

name of the <organization> nor the names of its contributors may be

used to endorse or promote products derived from this software

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY <copyright holder> “AS IS”

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL <copyright

holder> BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

369

This page intentionally left blank.

Appendix C

Creative Commons
License

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND

DOES NOT PROVIDE LEGAL SERVICES. DISTRIBUTION OF

THIS LICENSE DOES NOT CREATE AN ATTORNEY-CLIENT

RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS

INFORMATION ON AN “AS-IS" BASIS. CREATIVE COMMONS

MAKES NO WARRANTIES REGARDING THE INFORMATION

PROVIDED, AND DISCLAIMS LIABILITY FOR DAMAGES

RESULTING FROM ITS USE.

License
THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE

TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE

(“CCPL” OR “LICENSE”). THE WORK IS PROTECTED BY

COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF

THE WORK OTHER THAN AS AUTHORIZED UNDER THIS

LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED

HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE

TERMS OF THIS LICENSE. THE LICENSOR GRANTS YOU THE

RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR

ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

371

1. Definitions

1. “Collective Work” means a work, such as a periodical issue,

anthology or encyclopedia, in which the Work in its entirety in

unmodified form, along with a number of other contributions, con-

stituting separate and independent works in themselves, are

assembled into a collective whole. A work that constitutes a Col-

lective Work will not be considered a Derivative Work (as defined

below) for the purposes of this License.

2. “Derivative Work” means a work based upon the Work or upon the

Work and other pre-existing works, such as a translation, musical

arrangement, dramatization, fictionalization, motion picture ver-

sion, sound recording, art reproduction, abridgment, condensation,

or any other form in which the Work may be recast, transformed,

or adapted, except that a work that constitutes a Collective Work

will not be considered a Derivative Work for the purpose of this

License.

3. “Licensor” means the individual or entity that offers the Work

under the terms of this License.

4. “Original Author” means the individual or entity who created the

Work.

5. “Work” means the copyrightable work of authorship offered under

the terms of this License.

6. “You” means an individual or entity exercising rights under this

License who has not previously violated the terms of this License

with respect to the Work, or who has received express permission

from the Licensor to exercise rights under this License despite a

previous violation.

2. Fair Use Rights

Nothing in this license is intended to reduce, limit, or restrict any

rights arising from fair use, first sale or other limitations on the exclu-

sive rights of the copyright owner under copyright law or other

applicable laws.

372 Appendix C / Creative Commons License

3. License Grant & Restrictions

Subject to the terms and conditions of this License, Licensor hereby

grants You a worldwide, royalty-free, non-exclusive, perpetual (for the

duration of the applicable copyright) license to exercise the rights in

the Work as stated below on the conditions as stated below:

1. Re-creativity permitted. You may create and reproduce Derivative

Works, provided that:

a. The Derivative Work(s) constitute a good-faith partial or

recombined usage employing “sampling,” “collage,”

“mash-up,” or other comparable artistic technique, whether

now known or hereafter devised, that is highly transformative

of the original, as appropriate to the medium, genre, and mar-

ket niche; and

b. Your Derivative Work(s) must only make a partial use of the

original Work, or if You choose to use the original Work as a

whole, You must either use the Work as an insubstantial por-

tion of Your Derivative Work(s) or transform it into something

substantially different from the original Work. In the case of a

musical Work and/or audio recording, the mere synchroniza-

tion (“synching") of the Work with a moving image shall not be

considered a transformation of the Work into something sub-

stantially different.

2. You may distribute copies or phonorecords of, display publicly, per-

form publicly, and perform publicly by means of a digital audio

transmission, any Derivative Work(s) authorized under this

License.

3. Prohibition on advertising. All advertising and promotional uses

are excluded from the above rights, except for advertisement and

promotion of the Derivative Work(s) that You are creating from the

Work and Yourself as the author thereof.

4. Noncommercial sharing of verbatim copies permitted.

a. You may reproduce the Work, incorporate the Work into one or

more Collective Works, and reproduce the Work as incorpo-

rated in the Collective Works. You may distribute copies or

Appendix C / Creative Commons License 373

A
p

p
en

d
ix

phonorecords of, display publicly, perform publicly, and per-

form publicly by means of a digital audio transmission the

Work including or incorporated in Collective Works.

b. You may not exercise any of the rights granted to You in the

paragraph immediately above in any manner that is primarily

intended for or directed toward commercial advantage or pri-

vate monetary compensation. The exchange of the Work for

other copyrighted works by means of digital file-sharing or

otherwise shall not be considered to be intended for or

directed toward commercial advantage or private monetary

compensation, provided there is no payment of any monetary

compensation in connection with the exchange of copyrighted

works.

5. Attribution and Notice.

a. If You distribute, publicly display, publicly perform, or publicly

digitally perform the Work or any Derivative Works or Collec-

tive Works, You must keep intact all copyright notices for the

Work and give the Original Author credit reasonable to the

medium or means You are utilizing by conveying the name (or

pseudonym if applicable) of the Original Author if supplied; the

title of the Work if supplied; to the extent reasonably practica-

ble, provide the Uniform Resource Identifier, if any, that

Licensor specifies to be associated with the Work or a Deriva-

tive Work, unless such Uniform Resource Identifier does not

refer to the copyright notice or licensing information for the

Work; and in the case of a Derivative Work, provide a credit

identifying the use of the Work in the Derivative Work (e.g.,

“Remix of the Work by Original Author,” or “Inclusion of a

portion of the Work by Original Author in collage”). Such

credit may be implemented in any reasonable manner; pro-

vided, however, that in the case of a Derivative Work or

Collective Work, at a minimum such credit will appear where

any other comparable authorship credit appears and in a man-

ner at least as prominent as such other comparable authorship

credit.

374 Appendix C / Creative Commons License

b. You may distribute, publicly display, publicly perform or pub-

licly digitally perform the Work only under the terms of this

License, and You must include a copy of, or the Uniform

Resource Identifier for, this License with every copy or

phonorecord of the Work or Derivative Work You distribute,

publicly display, publicly perform, or publicly digitally perform.

You may not offer or impose any terms on the Work that alter

or restrict the terms of this License or the recipients’ exercise

of the rights granted hereunder. You may not sublicense the

Work. You must keep intact all notices that refer to this

License and to the disclaimer of warranties. You may not dis-

tribute, publicly display, publicly perform, or publicly digitally

perform the Work with any technological measures that con-

trol access of use of the Work in a manner inconsistent with

the terms of this License. The above applies to the Work as

incorporated in a Collective Work, but this does not require

the Collective Work apart from the Work itself to be made sub-

ject to the terms of this License. Upon notice from any

Licensor You must, to the extent practicable, remove from the

Derivative Work or Collective Work any reference to such

Licensor or the Original Author, as requested.

The above rights may be exercised in all media and formats whether

now known or hereafter devised. The above rights include the right to

make such modifications as are technically necessary to exercise the

rights in other media and formats. All rights not expressly granted by

Licensor are hereby reserved.

4. Disclaimer

UNLESS SPECIFIED OTHERWISE BY THE PARTIES IN A

SEPARATE WRITING, LICENSOR OFFERS THE WORK AS-IS

AND MAKES NO REPRESENTATIONS OR WARRANTIES,

EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION,

WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A

PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE

ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR

THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT

DISCOVERABLE.

Appendix C / Creative Commons License 375

A
p

p
en

d
ix

5. Limitation on Liability

IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY

LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL,

CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES

ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,

EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY

OF SUCH DAMAGES.

6. Termination

1. This License and the rights granted hereunder will terminate

automatically upon any breach by You of the terms of this License.

Individuals or entities who have received Derivative Works or Col-

lective Works from You under this License, however, will not have

their licenses terminated provided such individuals or entities

remain in full compliance with those licenses. Sections 1, 2, 4, 5, 6,

and 7 will survive any termination of this License.

2. Subject to the above terms and conditions, the license granted

here is perpetual (for the duration of the applicable copyright in

the Work). Notwithstanding the above, Licensor reserves the right

to release the Work under different license terms or to stop dis-

tributing the Work at any time; provided, however that any such

election will not serve to withdraw this License (or any other

license that has been granted under the terms of this License), and

this License will continue in full force and effect unless terminated

as stated above.

7. Miscellaneous

1. Each time You distribute or publicly digitally perform the Work or

a Collective Work, the Licensor offers to the recipient a license to

the Work on the same terms and conditions as the license granted

to You under this License.

2. Each time You distribute or publicly digitally perform a Derivative

Work, Licensor offers to the recipient a license to the original

Work on the same terms and conditions as the license granted to

You under this License.

376 Appendix C / Creative Commons License

3. If any provision of this License is invalid or unenforceable under

applicable law, it shall not affect the validity or enforceability of the

remainder of the terms of this License, and without further action

by the parties to this agreement, such provision shall be reformed

to the minimum extent necessary to make such provision valid and

enforceable.

4. No term or provision of this License shall be deemed waived and

no breach consented to unless such waiver or consent shall be in

writing and signed by the party to be charged with such waiver or

consent.

5. This License constitutes the entire agreement between the par-

ties with respect to the Work licensed here. There are no

understandings, agreements, or representations with respect to

the Work, and with respect to the subject matter hereof, not speci-

fied above. Licensor shall not be bound by any additional

provisions that may appear in any communication from You. This

License may not be modified without the mutual written agree-

ment of the Licensor and You.

Appendix C / Creative Commons License 377

A
p

p
en

d
ix

This page intentionally left blank.

Appendix D

zlib/libpng License

Copyright (c) <year> <copyright holders>

This software is provided “as-is,” without any express or implied war-

ranty. In no event will the authors be held liable for any damages

arising from the use of this software.

Permission is granted to anyone to use this software for any pur-

pose, including commercial applications, and to alter it and redistribute

it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must

not claim that you wrote the original software. If you use this soft-

ware in a product, an acknowledgment in the product

documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must

not be misrepresented as being the original software.

3. This notice may not be removed or altered from any source

distribution.

379

This page intentionally left blank.

Appendix E

The MIT License
Template

Copyright (c) <year> <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a

copy of this software and associated documentation files (the “Soft-

ware”), to deal in the Software without restriction, including without

limitation the rights to use, copy, modify, merge, publish, distribute,

sublicense, and/or sell copies of the Software, and to permit persons to

whom the Software is furnished to do so, subject to the following

conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS,” WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING

BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE

AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN

ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR

THE USE OR OTHER DEALINGS IN THE SOFTWARE.

381

This page intentionally left blank.

Appendix F

STL Public Member
Methods Reference

STD::STRING
const_iterator begin () const

iterator begin ()

const _CharT * c_str () const

size_type capacity () const

void clear ()

int compare (size_type __pos, size_type __n1, const _CharT *__s,

size_type __n2) const

int compare (size_type __pos, size_type __n1, const _CharT *__s)

const

int compare (const _CharT *__s) const

int compare (size_type __pos1, size_type __n1, const basic_string

&__str, size_type __pos2, size_type __n2) const

int compare (size_type __pos, size_type __n, const basic_string

&__str) const

int compare (const basic_string &__str) const

size_type copy (_CharT *__s, size_type __n, size_type __pos=0)

const

const _CharT * data () const

bool empty () const

const_iterator end () const

383

iterator end ()

iterator erase (iterator __first, iterator __last)

iterator erase (iterator __position)

basic_string & erase (size_type __pos=0, size_type __n=npos)

size_type find (_CharT __c, size_type __pos=0) const

size_type find (const _CharT *__s, size_type __pos=0) const

size_type find (const basic_string &__str, size_type __pos=0) const

size_type find (const _CharT *__s, size_type __pos, size_type __n)

const

size_type find_first_not_of (_CharT __c, size_type __pos=0) const

size_type find_first_not_of (const _CharT *__s, size_type __pos=0)

const

size_type find_first_not_of (const _CharT *__s, size_type __pos,

size_type __n) const

size_type find_first_not_of (const basic_string &__str, size_type

__pos=0) const

size_type find_first_of (_CharT __c, size_type __pos=0) const

size_type find_first_of (const _CharT *__s, size_type __pos=0) const

size_type find_first_of (const _CharT *__s, size_type __pos, size_type

__n) const

size_type find_first_of (const basic_string &__str, size_type __pos=0)

const

size_type find_last_not_of (_CharT __c, size_type __pos=npos) const

size_type find_last_not_of (const _CharT *__s, size_type

__pos=npos) const

size_type find_last_not_of (const _CharT *__s, size_type __pos,

size_type __n) const

size_type find_last_not_of (const basic_string &__str, size_type

__pos=npos) const

size_type find_last_of (_CharT __c, size_type __pos=npos) const

size_type find_last_of (const _CharT *__s, size_type __pos=npos)

const

384 Appendix F / STL Public Member Methods Reference

size_type find_last_of (const _CharT *__s, size_type __pos, size_type

__n) const

size_type find_last_of (const basic_string &__str, size_type

__pos=npos) const

allocator_type get_allocator () const

iterator insert (iterator __p, _CharT __c)

basic_string & insert (size_type __pos, size_type __n, _CharT __c)

basic_string & insert (size_type __pos, const _CharT *__s)

basic_string & insert (size_type __pos, const _CharT *__s, size_type

__n)

basic_string & insert (size_type __pos1, const basic_string &__str,

size_type __pos2, size_type __n)

basic_string & insert (size_type __pos1, const basic_string &__str)

template<class _InputIterator> void insert (iterator __p,

_InputIterator __beg, _InputIterator __end)

void insert (iterator __p, size_type __n, _CharT __c)

size_type length () const

size_type max_size () const

basic_string & operator+= (_CharT __c)

basic_string & operator+= (const _CharT *__s)

basic_string & operator+= (const basic_string &__str)

basic_string & operator= (_CharT __c)

basic_string & operator= (const _CharT *__s)

basic_string & operator= (const basic_string &__str)

reference operator[] (size_type __pos)

const_reference operator[] (size_type __pos) const

void push_back (_CharT __c)

const_reverse_iterator rbegin () const

reverse_iterator rbegin ()

const_reverse_iterator rend () const

reverse_iterator rend ()

Appendix F / STL Public Member Methods Reference 385

A
p

p
en

d
ix

basic_string & replace (iterator __i1, iterator __i2, const_iterator

__k1, const_iterator __k2)

basic_string & replace (iterator __i1, iterator __i2, iterator __k1,

iterator __k2)

basic_string & replace (iterator __i1, iterator __i2, const _CharT

*__k1, const _CharT *__k2)

basic_string & replace (iterator __i1, iterator __i2, _CharT *__k1,

_CharT *__k2)

template<class _InputIterator> basic_string & replace (iterator __i1,

iterator __i2, _InputIterator __k1, _InputIterator __k2)

basic_string & replace (iterator __i1, iterator __i2, size_type __n,

_CharT __c)

basic_string & replace (iterator __i1, iterator __i2, const _CharT *__s)

basic_string & replace (iterator __i1, iterator __i2, const _CharT *__s,

size_type __n)

basic_string & replace (iterator __i1, iterator __i2, const basic_string

&__str)

basic_string & replace (size_type __pos, size_type __n1, size_type

__n2, _CharT __c)

basic_string & replace (size_type __pos, size_type __n1, const _CharT

*__s)

basic_string & replace (size_type __pos, size_type __n1, const _CharT

*__s, size_type __n2)

basic_string & replace (size_type __pos1, size_type __n1, const

basic_string &__str, size_type __pos2, size_type __n2)

basic_string & replace (size_type __pos, size_type __n, const

basic_string &__str)

void reserve (size_type __res_arg=0)

void resize (size_type __n)

void resize (size_type __n, _CharT __c)

size_type rfind (_CharT __c, size_type __pos=npos) const

size_type rfind (const _CharT *__s, size_type __pos=npos) const

386 Appendix F / STL Public Member Methods Reference

size_type rfind (const _CharT *__s, size_type __pos, size_type __n)

const

size_type rfind (const basic_string &__str, size_type __pos=npos)

const

size_type size () const

basic_string substr (size_type __pos=0, size_type __n=npos) const

void swap (basic_string &__s)

STD::VECTOR
void assign (size_type __n, const value_type &__val)

const_reference at (size_type __n) const

reference at (size_type __n)

const_reference back () const

reference back ()

const_iterator begin () const

iterator begin ()

size_type capacity () const

void clear ()

const_pointer data () const

pointer data ()

bool empty () const

const_iterator end () const

iterator end ()

iterator erase (iterator __first, iterator __last)

iterator erase (iterator __position)

const_reference front () const

reference front ()

template<typename _InputIterator> void insert (iterator __position,

_InputIterator __first, _InputIterator __last)

void insert (iterator __position, size_type __n, const value_type &__x)

iterator insert (iterator __position, const value_type &__x)

size_type max_size () const

Appendix F / STL Public Member Methods Reference 387

A
p

p
en

d
ix

vector & operator= (const vector &__x)

const_reference operator[] (size_type __n) const

reference operator[] (size_type __n)

void pop_back ()

void push_back (const value_type &__x)

const_reverse_iterator rbegin () const

reverse_iterator rbegin ()

const_reverse_iterator rend () const

reverse_iterator rend ()

void reserve (size_type __n)

void resize (size_type __new_size, value_type __x=value_type())

size_type size () const

void swap (vector &__x)

template<typename _InputIterator> vector (_InputIterator __first,

_InputIterator __last, const allocator_type &__a=allocator_type())

vector (const vector &__x)

vector (size_type __n, const value_type &__value=value_type(),

const allocator_type &__a=allocator_type())

vector (const allocator_type &__a)

vector ()

~vector ()

388 Appendix F / STL Public Member Methods Reference

Appendix G

SDL Key Codes

SDL Key ASCII Value Common Name

SDLK_BACKSPACE \b backspace

SDLK_TAB \t tab

SDLK_CLEAR clear

SDLK_RETURN \r return

SDLK_PAUSE pause

SDLK_ESCAPE ^[escape

SDLK_SPACE space

SDLK_EXCLAIM ! exclamation mark

SDLK_QUOTEDBL " double quote

SDLK_HASH # hash

SDLK_DOLLAR $ dollar

SDLK_AMPERSAND & ampersand

SDLK_QUOTE ' quote

SDLK_LEFTPAREN (left parenthesis

SDLK_RIGHTPAREN) right parenthesis

SDLK_ASTERISK * asterisk

SDLK_PLUS + plus sign

SDLK_COMMA , comma

SDLK_MINUS – minus sign

SDLK_PERIOD . period

SDLK_SLASH / forward slash

SDLK_0 0 0

SDLK_1 1 1

SDLK_2 2 2

389

SDL Key ASCII Value Common Name

SDLK_3 3 3

SDLK_4 4 4

SDLK_5 5 5

SDLK_6 6 6

SDLK_7 7 7

SDLK_8 8 8

SDLK_9 9 9

SDLK_COLON : colon

SDLK_SEMICOLON ; semicolon

SDLK_LESS < less-than sign

SDLK_EQUALS = equals sign

SDLK_GREATER > greater-than sign

SDLK_QUESTION ? question mark

SDLK_AT @ at

SDLK_LEFTBRACKET [left bracket

SDLK_BACKSLASH \ backslash

SDLK_RIGHTBRACKET] right bracket

SDLK_CARET ^ caret

SDLK_UNDERSCORE _ underscore

SDLK_BACKQUOTE ` grave

SDLK_a a a

SDLK_b b b

SDLK_c c c

SDLK_d d d

SDLK_e e e

SDLK_f f f

SDLK_g g g

SDLK_h h h

SDLK_i i i

SDLK_j j j

SDLK_k k k

SDLK_l l l

390 Appendix G / SDL Key Codes

SDL Key ASCII Value Common Name

SDLK_m m m

SDLK_n n n

SDLK_o o o

SDLK_p p p

SDLK_q q q

SDLK_r r r

SDLK_s s s

SDLK_t t t

SDLK_u u u

SDLK_v v v

SDLK_w w w

SDLK_x x x

SDLK_y y y

SDLK_z z z

SDLK_DELETE ^? delete

SDLK_KP0 keypad 0

SDLK_KP1 keypad 1

SDLK_KP2 keypad 2

SDLK_KP3 keypad 3

SDLK_KP4 keypad 4

SDLK_KP5 keypad 5

SDLK_KP6 keypad 6

SDLK_KP7 keypad 7

SDLK_KP8 keypad 8

SDLK_KP9 keypad 9

SDLK_KP_PERIOD . keypad period

SDLK_KP_DIVIDE / keypad divide

SDLK_KP_MULTIPLY * keypad multiply

SDLK_KP_MINUS – keypad minus

SDLK_KP_PLUS + keypad plus

SDLK_KP_ENTER \r keypad enter

SDLK_KP_EQUALS = keypad equals

Appendix G / SDL Key Codes 391

A
p

p
en

d
ix

SDL Key ASCII Value Common Name

SDLK_UP up arrow

SDLK_DOWN down arrow

SDLK_RIGHT right arrow

SDLK_LEFT left arrow

SDLK_INSERT insert

SDLK_HOME home

SDLK_END end

SDLK_PAGEUP page up

SDLK_PAGEDOWN page down

SDLK_F1 F1

SDLK_F2 F2

SDLK_F3 F3

SDLK_F4 F4

SDLK_F5 F5

SDLK_F6 F6

SDLK_F7 F7

SDLK_F8 F8

SDLK_F9 F9

SDLK_F10 F10

SDLK_F11 F11

SDLK_F12 F12

SDLK_F13 F13

SDLK_F14 F14

SDLK_F15 F15

SDLK_NUMLOCK numlock

SDLK_CAPSLOCK capslock

SDLK_SCROLLOCK scrolllock

SDLK_RSHIFT right shift

SDLK_LSHIFT left shift

SDLK_RCTRL right ctrl

SDLK_LCTRL left ctrl

SDLK_RALT right alt

392 Appendix G / SDL Key Codes

SDL Key ASCII Value Common Name

SDLK_LALT left alt

SDLK_RMETA right meta

SDLK_LMETA left meta

SDLK_LSUPER left windows key

SDLK_RSUPER right windows key

SDLK_MODE mode shift

SDLK_HELP help

SDLK_PRINT print screen

SDLK_SYSREQ SysRq

SDLK_BREAK break

SDLK_MENU menu

SDLK_POWER power

SDLK_EURO euro

Appendix G / SDL Key Codes 393

A
p

p
en

d
ix

This page intentionally left blank.

Appendix H

Novashell Functions

A

Add

BrainManager

LayerList

TextManager

WatchManager

AddApproach, GoalManager

AddApproachAndSay, GoalManager

AddBinding, InputManager

AddCustom, TextManager

AddCustomScreen, TextManager

AddDelay, GoalManager

AddForce, Entity

AddForceAndTorque, Entity

AddForceAndTorqueConstant, Entity

AddForceConstant, Entity

AddImageToMapCache, Entity

Addition Operator

Rect

Rectf

Vector2

AddMaterial, MaterialManager

AddModPath, GameLogic

AddMoveToMapAndPosition, GoalManager

AddMoveToPosition, GoalManager

AddNewGoal, GoalManager

AddParticle, EffectBase

AddRunScriptString, GoalManager

395

AddSay, GoalManager

AddSayByID, GoalManager

AskBrainByName, BrainManager

Assignment Operator, Vector2

B

BuildLocalNavGraph, Map

C

CalculateUnion

Rect

Rectf

CanWalkBetween, Entity

CanWalkTo, Entity

Clear, DataManager

ClearModPaths, GameLogic

Clone, Entity

Color, Color

Color(r,g,b,a), Color

ColorToString

CreateEffectExplosion, EffectManager

CreateEntity

GlobalEntity

CreateEntitySpecial

CreateParticle, EffectManager

Cross, Vector2

D

Data

Entity

GameLogic

Delete, DataManager

Division Operator, Vector2

Dot, Vector2

DumpScriptInfo, Entity

E

Equality Operator, Vector2

Exists

GlobalDataManager

396 Appendix H / Novashell Functions

F

FacingToVector

FunctionExists

GlobalEntity

G

Get

DataManager

LayerList

GetAcceleration, Entity

GetActiveMap, MapManager

GetActiveStateName, BrainManager

GetActiveZoneByMaterialType, Entity

GetAllLayers, LayerManager

GetAlpha, Color

GetAnimFrame, Entity

GetAnimPause, Entity

GetAsEntity, Tile

GetAttach, Entity

GetAttachOffset, Entity

GetAutoSave, Map

GetBaseColor

Entity

Tile

GetBlendMode, Entity

GetBlue, Color

GetBrainManager, Entity

GetCameraSettings, Camera

GetCollisionByRay, Map

GetCollisionLayers, LayerManager

GetCollisionRect, Entity

GetCollisionScale, Entity

GetCount

LayerList

TileList

GetCursorVisible, App

GetDistanceFromEntityByID, Entity

GetDistanceFromPosition, Entity

Appendix H / Novashell Functions 397

A
p

p
en

d
ix

GetEnableRotationPhysics, Entity

GetEngineVersion, App

GetEngineVersionAsString, App

GetEntityByID

GetEntityByName

GetEntityByWorldPos

GetEntityIDByName

GetEntityTrackingByID, Camera

GetFacing, Entity

GetFacingTarget, Entity

GetFromString, TagManager

GetGameTick, App

GetGoalCount, GoalManager

GetGoalCountByName, GoalManager

GetGoalManager, Entity

GetGravityOverride, Entity

GetGreen, Color

GetHeight

Rect

Rectf

GetID

Entity

Tag

GetImageByID, Entity

GetImageClipRect, Entity

GetIsCreature, Entity

GetLayerID

Entity

Tile

GetLayerIDByName, LayerManager

GetLayerManager, Map

GetLinearVelocity, Entity

GetListenCollision, Entity

GetListenCollisionStatic, Entity

GetLockedScale, Entity

GetMap, Entity

GetMapName, Tag

398 Appendix H / Novashell Functions

GetMass, Entity

GetMaterial, MaterialManager

GetMousePos, InputManager

GetName

Entity

Map

GetNearbyZoneByMaterialType, Entity

GetNext, TileList

GetNum, DataManager

GetNumWithDefault, DataManager

GetOnGround, Entity

GetOnGroundAccurate, Entity

GetParticleByName, EffectManager

GetPersistent

Entity

Map

GetPlatform, App

GetPos

Camera

Entity

Tag

Tile

GetPosCentered, Camera

GetPosFromName, TagManager

GetRed, Color

GetRotation, Entity

GetRunUpdateEveryFrame, Entity

GetScale

Camera

Entity

GetSimulationSpeedMod, App

GetSizeX, Entity

GetSizeY, Entity

GetSpecial, Material

GetSpecialEntityByName

GetText, Entity

GetTextBounds, Entity

Appendix H / Novashell Functions 399

A
p

p
en

d
ix

GetTextColor, Entity

GetTextScale, Entity

GetTick, App

GetTilesByRect, Map

GetTurnSpeed, Entity

GetType

Material

Tile

GetUserProfileName, GameLogic

GetVectorFacing, Entity

GetVectorFacingTarget, Entity

GetVectorToEntity, Entity

GetVectorToEntityID, Entity

GetVectorToPosition, Entity

GetVisibleLayers, LayerManager

GetWatchCount, WatchManager

GetWidth

Rect

Rectf

GetWithDefault, DataManager

GetWorldCollisionRect, Entity

H

HasLineOfSightToPosition, Entity

I

Inequality Operator, Vector2

InitCollisionDataBySize, Entity

InitGameGUI, GameLogic

InNearbyZoneByMaterialType, Entity

InstantUpdate, Camera

InState, BrainManager

InZoneByMaterialType, Entity

IsCloseToEntity, Entity

IsCloseToEntityByID, Entity

IsFacingTarget, Entity

IsGoalActiveByName, GoalManager

IsOnSameMapAsEntityByID, Entity

400 Appendix H / Novashell Functions

IsOverlapped

Rect

Rectf

IsPlaced, Entity

IsPlaying, SoundManager

IsShuttingDown, GameLogic

IsValidPosition, Entity

K

Kill, SoundManager

L

LastStateWas, BrainManager

Length, Vector2

Lerp

LoadCollisionInfo, Entity

LoadMapByName, MapManager

LogError

LogMsg

M

ModNum, DataManager

Multiply Operator, Vector2

MuteAll, SoundManager

N

Normalize, Vector2

P

ParmExists, App

PlaceHolder, SpecialEntity

Play, SoundManager

PlayLooping, SoundManager

PlaySound, Entity

PlaySoundPositioned, Entity

Q

Quit, GameLogic

R

Rect, Rect

Rect(left,top,right,bottom), Rect

Rect(Rect), Rect

Appendix H / Novashell Functions 401

A
p

p
en

d
ix

Rectf, Rectf

Rectf(left,top,right,bottom), Rectf

Rectf(Rectf), Rectf

RectToString

RegisterAsWarp, TagManager

Remove

BrainManager

WatchManager

RemoveAllSubgoals, GoalManager

RemoveBinding, InputManager

RemoveBindingByEntity, InputManager

Reset, Camera

ResetNext, TileList

ResetUserProfile, GameLogic

RunFunction, Entity

RunFunctionIfExists, Entity

RunScript

S

Schedule

ScheduleSystem

ScreenToWorld

SendToBrainBase, BrainManager

SendToBrainByName, BrainManager

Set

Color

DataManager

Set1DAcceleration, MotionController

SetAcceleration, Entity

SetActiveMapByName, MapManager

SetAdditionalVector, EffectBase

SetAlpha, Color

SetAnimByName, Entity

SetAnimFrame, Entity

SetAnimPause, Entity

SetAttach, Entity

SetAttachOffset, Entity

SetAutoSave, Map

402 Appendix H / Novashell Functions

SetBaseColor

Entity

Tile

SetBlendMode, Entity

SetBlue, Color

SetCameraSettings, Camera

SetCollisionMode, Entity

SetCollisionScale, Entity

SetColor, Particle

SetCursorVisible, App

SetDampening, Entity

SetDefaultTalkColor, Entity

SetDeleteFlag, Entity

SetDensity, Entity

SetDesiredSpeed, Entity

SetEnableRotationPhysics, Entity

SetEntityTrackingByID, Camera

SetFacing, Entity

SetFacingTarget, Entity

SetGravityOverride, Entity

SetGreen, Color

SetHasPathNode, Entity

SetIfNull, DataManager

SetImage, Entity

SetImageByID, Entity

SetIsCreature, Entity

SetLayerID

Entity

Tile

SetLayerIDByName, Entity

SetListenCollision, Entity

SetListenCollisionStatic, Entity

SetLockedScale, Entity

SetMass, Entity

SetMaxMovementSpeed, Entity

SetMousePos, InputManager

SetMoveLerp, Camera

Appendix H / Novashell Functions 403

A
p

p
en

d
ix

SetName, Entity

SetNavNodeType, Entity

SetNum, DataManager

SetNumIfNull, DataManager

SetOffset, EffectBase

SetOnGround, Entity

SetPan, SoundManager

SetPaused, SoundManager

SetPersistent

Entity

Map

SetPos

Camera

Entity

Tile

SetPosAndMap, Entity

SetPosAndMapByTagName, Entity

SetPosCentered, Camera

SetPosCenteredTarget, Camera

SetPosTarget, Camera

SetPriority, SoundManager

SetRed, Color

SetRestartEngineFlag, GameLogic

SetRotation, Entity

SetRunUpdateEveryFrame, Entity

SetScale

Camera

Entity

SetScaleLerp, Camera

SetScaleTarget, Camera

SetScreenSize, App

SetSimulationSpeedMod, App

SetSpecial, Material

SetSpeedDistortion, EffectExplosion

SetSpeedFactor, SoundManager

SetSpriteByVisualStateAndFacing, Entity

SetStateByName, BrainManager

404 Appendix H / Novashell Functions

SetText, Entity

SetTextAlignment, Entity

SetTextColor, Entity

SetTextRect, Entity

SetTextScale, Entity

SetTrigger, Entity

SetTurnSpeed, Entity

SetType, Material

SetUserProfileName, GameLogic

SetVectorFacing, Entity

SetVectorFacingTarget, Entity

SetVisibilityNotifications, Entity

SetVisualProfile, Entity

SetVolume, SoundManager

SetWindowTitle, App

ShowMessage

Stop, Entity

StopX, Entity

StopY, Entity

StringToColor

StringToRect

StringToVector

Subtraction Operator

Rect

Rectf

Vector2

T

ToggleEditMode, GameLogic

U

UnloadMapByName, MapManager

UserProfileActive, GameLogic

UserProfileExists, GameLogic

V

VariableExists

Global

Entity

Vector2, Vector2

Appendix H / Novashell Functions 405

A
p

p
en

d
ix

Vector2(Vector2), Vector2

Vector2(x,y), Vector2

VectorToFacing

VectorToString

W

WorldToScreen

406 Appendix H / Novashell Functions

Appendix I

Director Events

on activateApplication

on activateWindow

on beginSprite

on closeWindow

on cuePassed

on deactivateApplication

on deactivateWindow

on DVDeventNotification

on endSprite

on enterFrame

on EvalScript

on exitFrame

on getBehaviorDescription

on getBehaviorTooltip

on getPropertyDescriptionList

on hyperlinkClicked

on idle

on isOKToAttach

on keyDown

on keyUp

on mouseDown

on mouseEnter

on mouseLeave

407

on mouseUp

on mouseUpOutside

on mouseWithin

on moveWindow

on openWindow

on prepareFrame

on prepareMovie

on resizeWindow

on rightMouseDown

on rightMouseUp

on runPropertyDialog

on savedLocal

on sendXML

on startMovie

on stepFrame

on stopMovie

on streamStatus

on timeOut

on zoomWindow

trayIconMouseDoubleClick

trayIconMouseDown

trayIconRightMouseDown

408 Appendix I / Director Events

Appendix J

OGRE OIS Key Codes

KC_UNASSIGNED = 0x00

KC_ESCAPE = 0x01

KC_1 = 0x02

KC_2 = 0x03

KC_3 = 0x04

KC_4 = 0x05

KC_5 = 0x06

KC_6 = 0x07

KC_7 = 0x08

KC_8 = 0x09

KC_9 = 0x0A

KC_0 = 0x0B

KC_MINUS = 0x0C // - on main keyboard

KC_EQUALS = 0x0D

KC_BACK = 0x0E // backspace

KC_TAB = 0x0F

KC_Q = 0x10

KC_W = 0x11

KC_E = 0x12

KC_R = 0x13

KC_T = 0x14

KC_Y = 0x15

KC_U = 0x16

409

KC_I = 0x17

KC_O = 0x18

KC_P = 0x19

KC_LBRACKET = 0x1A

KC_RBRACKET = 0x1B

KC_RETURN = 0x1C // Enter on main keyboard

KC_LCONTROL = 0x1D

KC_A = 0x1E

KC_S = 0x1F

KC_D = 0x20

KC_F = 0x21

KC_G = 0x22

KC_H = 0x23

KC_J = 0x24

KC_K = 0x25

KC_L = 0x26

KC_SEMICOLON = 0x27

KC_APOSTROPHE = 0x28

KC_GRAVE = 0x29 // accent

KC_LSHIFT = 0x2A

KC_BACKSLASH = 0x2B

KC_Z = 0x2C

KC_X = 0x2D

KC_C = 0x2E

KC_V = 0x2F

KC_B = 0x30

KC_N = 0x31

KC_M = 0x32

KC_COMMA = 0x33

KC_PERIOD = 0x34 // . on main keyboard

KC_SLASH = 0x35 // / on main keyboard

410 Appendix J / OGRE OIS Key Codes

KC_RSHIFT = 0x36

KC_MULTIPLY = 0x37 // * on numeric keypad

KC_LMENU = 0x38 // left Alt

KC_SPACE = 0x39

KC_CAPITAL = 0x3A

KC_F1 = 0x3B

KC_F2 = 0x3C

KC_F3 = 0x3D

KC_F4 = 0x3E

KC_F5 = 0x3F

KC_F6 = 0x40

KC_F7 = 0x41

KC_F8 = 0x42

KC_F9 = 0x43

KC_F10 = 0x44

KC_NUMLOCK = 0x45

KC_SCROLL = 0x46 // Scroll Lock

KC_NUMPAD7 = 0x47

KC_NUMPAD8 = 0x48

KC_NUMPAD9 = 0x49

KC_SUBTRACT = 0x4A // - on numeric keypad

KC_NUMPAD4 = 0x4B

KC_NUMPAD5 = 0x4C

KC_NUMPAD6 = 0x4D

KC_ADD = 0x4E // + on numeric keypad

KC_NUMPAD1 = 0x4F

KC_NUMPAD2 = 0x50

KC_NUMPAD3 = 0x51

KC_NUMPAD0 = 0x52

KC_DECIMAL = 0x53 // . on numeric keypad

Appendix J / OGRE OIS Key Codes 411

A
p

p
en

d
ix

KC_OEM_102 = 0x56 // < > | on UK/Germany

// keyboards

KC_F11 = 0x57

KC_F12 = 0x58

KC_F13 = 0x64 // (NEC PC98)

KC_F14 = 0x65 // (NEC PC98)

KC_F15 = 0x66 // (NEC PC98)

KC_KANA = 0x70 // (Japanese keyboard)

KC_ABNT_C1 = 0x73 // / ? on Portugese (Brazilian)

// keyboards

KC_CONVERT = 0x79 // (Japanese keyboard)

KC_NOCONVERT = 0x7B // (Japanese keyboard)

KC_YEN = 0x7D // (Japanese keyboard)

KC_ABNT_C2 = 0x7E // Numpad . on Portugese

// (Brazilian) keyboards

KC_NUMPADEQUALS = 0x8D // = on numeric keypad

// (NEC PC98)

KC_PREVTRACK = 0x90

KC_AT = 0x91 // (NEC PC98)

KC_COLON = 0x92 // (NEC PC98)

KC_UNDERLINE = 0x93 // (NEC PC98)

KC_KANJI = 0x94 // (Japanese keyboard)

KC_STOP = 0x95 // (NEC PC98)

KC_AX = 0x96 // (Japan AX)

KC_UNLABELED = 0x97 // (J3100)

KC_NEXTTRACK = 0x99 // Next Track

KC_NUMPADENTER = 0x9C // Enter on numeric keypad

KC_RCONTROL = 0x9D

KC_MUTE = 0xA0 // Mute

KC_CALCULATOR = 0xA1 // Calculator

KC_PLAYPAUSE = 0xA2 // Play/Pause

412 Appendix J / OGRE OIS Key Codes

KC_MEDIASTOP = 0xA4 // Media Stop

KC_VOLUMEDOWN = 0xAE // Volume -

KC_VOLUMEUP = 0xB0 // Volume +

KC_WEBHOME = 0xB2 // Web home

KC_NUMPADCOMMA = 0xB3 // on numeric keypad

// (NEC PC98)

KC_DIVIDE = 0xB5 // / on numeric keypad

KC_SYSRQ = 0xB7

KC_RMENU = 0xB8 // right Alt

KC_PAUSE = 0xC5 // Pause

KC_HOME = 0xC7 // Home on arrow keypad

KC_UP = 0xC8 // UpArrow on arrow keypad

KC_PGUP = 0xC9 // PgUp on arrow keypad

KC_LEFT = 0xCB // LeftArrow on arrow keypad

KC_RIGHT = 0xCD // RightArrow on arrow

// keypad

KC_END = 0xCF // End on arrow keypad

KC_DOWN = 0xD0 // DownArrow on arrow

// keypad

KC_PGDOWN = 0xD1 // PgDn on arrow keypad

KC_INSERT = 0xD2 // Insert on arrow keypad

KC_DELETE = 0xD3 // Delete on arrow keypad

KC_LWIN = 0xDB // Left Windows key

KC_RWIN = 0xDC // Right Windows key

KC_APPS = 0xDD // AppMenu key

KC_POWER = 0xDE // System Power

KC_SLEEP = 0xDF // System Sleep

KC_WAKE = 0xE3 // System Wake

KC_WEBSEARCH = 0xE5 // Web Search

KC_WEBFAVORITES = 0xE6 // Web Favorites

KC_WEBREFRESH = 0xE7 // Web Refresh

Appendix J / OGRE OIS Key Codes 413

A
p

p
en

d
ix

KC_WEBSTOP = 0xE8 // Web Stop

KC_WEBFORWARD = 0xE9 // Web Forward

KC_WEBBACK = 0xEA // Web Back

KC_MYCOMPUTER = 0xEB // My Computer

KC_MAIL = 0xEC // Mail

KC_MEDIASELECT = 0xED // Media Select

414 Appendix J / OGRE OIS Key Codes

Index

2D games, 225
3D games, 225, 299-302

A
alpha channel, 102
alpha transparency, 237
AngelCode, 350
arrays, 123-124
artificial intelligence SDKs, 336-337,

347-348
Audacity, 83-84, 176-177

downloading and installing on Mac,
180-181

downloading and installing on Ubuntu,
178-179

downloading and installing on Win-
dows, 180-181

Audiere, 343
audio, 173

programming with SDL_mixer, 186-187
SDKs, 336, 342-343
tiles, 250-251

Automatix, 70
installing and using on Ubuntu, 71-73

B
background music, 173-174
base class, 202
BASH shell commands, 74-78

creating and compiling C program with,
79-80

BASS, 342
Blender 3D, 83, 109

creating mesh in, 325
installing on Mac, 111-113
installing on Ubuntu, 109-111
installing on Windows, 111-113

blitting, 160

Boost, 347
BSD License, 369
budget, 117
Bullet, 345

C
cast members, 281-282

animating sprites using, 292-293
casual games, 121-122
Cedega, 66
channels, 289

handling, 198-200
char*, converting strings to, 129-130
character, moving using keyboard input,

258-261
ClanLib, 339

installing, 339-342
classes, scripting, 289-290
Code::Blocks, 81-82, 84-85

configuring project to use STL with,
126

downloading and configuring SDL
Image Development Libraries in,
163-167

downloading and installing in
Ubuntu, 86-89

downloading and installing in
Windows, 90-95

Hello World application, 98-100
using, 95-97
using to create SDL project in

Ubuntu, 143-145
using to create SDL project in

Windows, 148-152
collision detection, 248
color keying, 168
color tiles, 251

415

coordinates, 213
Creative Commons License, 371-377
CrossOver, 67
cross-platform, 1-2

game development, 15-17
games, 2-3, 11-14
SDKs, 335-338
software, 2
tools, 81-84

D
data types, 122-123
depth sorting, 222
Director, 267, 268, 295

building stand-alone game in, 297
building web game in, 296
cast members, 281-282
classes for scripting, 289-290
components of, 281-285
cross-compatibility of, 271-272
downloading and installing, 272-274
events, 407-408
games, 269-271
Hello World application, 274-280
scripting with JavaScript, 285-288
Stage, 282-283
Time-Line window, 284-285

distribution SDKs, 338, 358-361
distributions, 2
double buffering, 159

E
entity, 237

attaching script to, 254-256
intelligent, 255
layer, 240
resources, 238

event, 157
polling, 157-158

F
FANN, 348
Firefox, 60-61
first-person shooter, see FPS
Flash, 267
Flash Player, 267

FMOD, 342
FPS, 119
frame events, receiving, 318-321
frame scripts, 286-287
FreeSound projects, 175-176
Freespire, 10

G
Game Editor, 352
game engines, 337, 351-352
game loop, 124, 134-136, 154
game object,

creating, 202-203
creating derived, 204
maintaining, 205-206

game programming, 116
game world, 202
GameMonkey, 351
games, 201

2D, 225
3D, 225, 299-302
components of, 117
considerations when creating, 122-124
creating with Novashell, 243-245
cross-platform, 2-3, 11-14
installing and playing on Ubuntu, 63-65
OGRE 3D, 304-306

Garfixia AI Repository, 348
genres, 117, 118-122
GIMP, 62, 82, 101-102

installing, 102-103
using to create tileable textures,

103-105
using to edit image transparency,

106-108
global event scripts, 287-288
GNU Lesser General Public License,

363-367
graphics SDKs, 335-336, 338-342
guest, 41
GUI SDKs, 337, 352

H
hard disks, formatting, 18
hardware acceleration, 303

416 Index

HawkNL, 346
Hello World application,

in Code::Blocks, 98-100
in Director, 274-280

hidden layers, 240
hierarchy, relationship, 219-220
host, 41

I
identifier, 202
image files, importing into Novashell, 246
image transparency, editing with GIMP,

106-108
incidental music, 173-174
Inno Setup, 359

creating installer with, 359-361
input SDKs, 337, 348-349
installer, creating with Inno Setup,

359-361
Invisible Wall tiles, 251
irrKlang, 343
Irrlicht, 351
ISO, burning Ubuntu, 8

J
JavaScript, using with Director, 285-288

K
key codes,

OGRE OIS, 409-414
SDL, 389-393

keyboard input, using to move character,
258-261

L
levels, editing with Novashell, 241-243
LibGll, 348
licenses,

BSD License, 369
Creative Commons License, 371-377
GNU Lesser General Public License,

363-367
MIT License template, 381
zlib/libpng License, 379

lights, adding, 325-328

Linux, 5-6
distributions, 7-10
downloading Novashell for, 228-230
shell, 73
Ubuntu, see Ubuntu

list, 124
creating, 131
printing, 291-292
working with, 132-134

local event scripts, 288
LookAt vector, 216-217
Lua, 349

M
Mac,

downloading and installing Audacity on,
180-181

downloading and installing Schism
Tracker on, 185

downloading Novashell for, 228-230
installing Blender 3D on, 111-113
installing GIMP on, 102-103

Mac OS X, 4-5
magnitude, 214
maps, 202, 207-208

implementing, 208-209
editing with Novashell, 241-243

mesh, 322
creating in Blender 3D, 325

message pump, 124
Microsoft Windows, see Windows
Microsoft Windows Vista, see Windows

Vista
Microsoft Windows XP, see Windows XP
MIT License template, 381
mouse events, querying, 294
multiple booting setup, 16, 17, 19-40
multiple machine setup, 15
music, 173-174, 192

controlling playback of, 195-197
loading, 193
playing, 194-195
software, 183
sources of, 182

Index 417

N
network SDKs, 336, 346-347
Newton Game Dynamics, 344
node, 322
Novashell, 225-227

creating path node network with,
262-264

creating player entity with, 247
detecting collisions with, 248-249
downloading, 228-230
functions, 395-406
games, 230-233
importing image files into, 246
modes, 234
scripting in, 252-253
System Palette, 249-250
tile types, 249-250
using, 233-236
using to create game, 243-245

Novashell Console, 253
Novashell editor, 236-237

tools, 239-240
using, 241-243

NSIS, 358

O
objective, 117
objects, adding to scene, 321-324
ODE, 97, 344
OGRE 3D, 302-304

downloading and installing on Ubuntu,
307-311

downloading and installing on Win-
dows, 312-315

games, 304-306
installing, 306
reading user input with, 328-333
sample application, 315-317

OGRE OIS key codes, 409-414
online forum, creating, 353-358
OPAL, 345
OpenAL, 343
OpenGL, 97, 338
OpenGUI, 352
OpenInput, 349

OpenOffice.org, 61
OpenSteer, 347

P
page flipping, 158-159
painter’s algorithm, 222
particle systems, adding, 325-328
path node network, creating using

Novashell, 262-264
Path nodes, 252
pathfinding, 252, 262
physics SDKs, 336, 344-345
PhysX, 345
pixels, drawing, 290-291
platformer, 119-120
platforms, 2

Linux, 5-6
Mac OS X, 4-5
Microsoft Windows, 3-4

player entity, creating with Novashell, 247
PNG file, loading SDL surface from,

166-167, 169
prerendered 3D games, 301-302
PTK, 338-339
Python, 349-350

R
RakNet, 346
real-time 3D games, 299-301
real-time strategy, see RTS
relationship hierarchy, 219-220

supporting, 220-221
resources, 237
role-playing game, see RPG
root node, 322
RPG, 118
RTS, 120-121
Ruby, 350

S
samples, 192

loading, 198
playing, 197-198

scene, 322
adding objects to, 321-324

418 Index

Schism Tracker,
downloading and installing on Mac, 185
downloading and installing on Ubuntu,

183-184
downloading and installing on Win-

dows, 185
Script tiles, 252
scripting,

classes for, 289-290
in Novashell, 252-253
SDKs, 337, 349-351

scripts,
attaching to entity, 254-256
types of, 286-288

SDKs,
artificial intelligence, 336-337, 347-348
audio, 336, 342-343
cross-platform, 335-338
distribution, 338, 358-361
graphics, 335-336, 338-342
GUI, 337, 352
input, 337, 348-349
network, 336, 346-347
physics, 336, 344-345
scripting, 337, 349-351
web, 337, 352-358

SDL, 97, 137
downloading and installing on Ubuntu,

140-141
downloading and installing on Win-

dows, 146-148
downloading documentation for, 142
example application, 169-172
initializing, 153
key codes, 389-393
subsystems, 138-139
uninitializing, 153

SDL Image Development Libraries,
downloading and configuring on

Ubuntu, 163-165
downloading and configuring on Win-

dows, 165-167
SDL project,

creating in Ubuntu using Code::Blocks,
143-145

creating in Windows using
Code::Blocks, 148-152

SDL_mixer,
handling audio with, 192-200
initializing, 190-192
installing and configuring on Ubuntu,

187-189
installing and configuring on Windows,

189-190
programming audio with, 186-187

SDL_net, 347
Shockwave, 14, 267

cross-compatibility of, 271-272
Simple DirectMedia Layer, see SDL
SLAX, 9
software,

cross-platform, 2
free, 6
music, 183
open-source, 6
sound effects, 176-177

sound, 173
loading as samples, 198

sound effects, 175, 177
software, 176-177

sprites, 289
animating, 292-293
printing list of, 291-292

Squirrel, 350
Stage, 282-283
stand-alone games, building in Director,

297
Standard Template Library, see STL
std::string, 125

public member methods, 383-387
working with, 126-130

std::vector, 130-131
public member methods, 387-388
working with, 131-134

STL, 125
configuring projects to use, 126
public member methods, 383-388

strings, 125
working with, 126-130

Index 419

surfaces, 157, 159-160
blitting, 160-161
color keying, 168-169
loading, 166-167
loading from PNG file, 166-167, 169
optimizing, 161-162

T
TBS, 120-121
texture tile set, 237
textures, 237

creating tileable with GIMP, 103-105
seamless, 101
stochastic, 101
tileable, 103

tile resources, 237-238
tile set, 208

loading, 209-211
tiles, 208, 237

animating, 211
moveable, 212
static, 212
subdividing, 247-248
using vector to move, 215-218

Time-Line window, 284-285
tools, cross-platform, 81-84
Torque, 351
transformations, 218
transgaming, 65-66
True Axis, 344
turn-based strategy, see TBS

U
Ubuntu, 7

Add/Remove Applications panel, 57
automating, 70
components, 52-62
creating SDL project using

Code::Blocks in, 143-145
creating virtual machine for, 43-47
desktop, 54
downloading and burning as ISO, 8
downloading and configuring SDL

Image Development Libraries on,
163-165

downloading and installing Audacity on,
178-179

downloading and installing
Code::Blocks on, 86-89

downloading and installing OGRE 3D
on, 307-311

downloading and installing Schism
Tracker on, 183-184

downloading and installing SDL on,
140-141

downloading SDL documentation for,
142

installing, 33-39
installing and configuring SDL_mixer

on, 187-189
installing and playing a game on, 63-65
installing and using Automatix on,

71-73
installing Blender 3D on, 109-111
installing Wine on, 68-70
Restricted Drivers Manager, 56
Synaptic Package Manager, 58
System Monitor, 55
troubleshooting, 50-52
Update Manager, 55-56
using VBWare Workstation with, 43-47

Ubuntu Terminal, 59
creating and compiling C program with,

79-80
unit vector, 214
user input, reading with OGRE, 328-333

V
vector, 213

normalized, 214
unit, 214
using to move tiles, 215-218

virtual machine, 266
creating for Ubuntu, 43-47
software, 267

Virtual PC, 41
virtualization, 16-17, 40-41
Vista, see Windows Vista
visual profile, 256-258

420 Index

VMWare Workstation, 41-42
using with Ubuntu, 43-47

W
Warp nodes, 252
waypoint, 262-263
Waypoint nodes, 252
web games, 265-266

building in Director, 296
web SDKs, 337, 352-358
windows, 154

creating, 155-156
Windows, 3-4

creating SDL project using
Code::Blocks in, 148-152

downloading and configuring SDL
Image Development Libraries on,
165-167

downloading and installing Audacity on,
180-181

downloading and installing
Code::Blocks in, 90-95

downloading and installing Director on,
272-274

downloading and installing OGRE 3D
on, 312-315

downloading and installing Schism
Tracker on, 185

downloading and installing SDL on,
146-148

downloading Novashell for, 228-230
installing and configuring SDL_mixer

on, 189-190
installing Blender 3D on, 111-113
installing GIMP on, 102-13

Windows Vista,
installing, 27-33
troubleshooting in Ubuntu, 51-52

Windows XP, installing, 20-26
Wine, 68

installing on Ubuntu, 68-70

X
XML entity profile, 256-258

Y
YaBB, 352

creating online forum with, 353-358

Z
zlib/libpng License, 379
z-order, 222-223
z-ordering, 240

Index 421

	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	Chapter 1 Cross-Platform Games
	1.1 Platforms
	1.1.1 Microsoft Windows
	1.1.2 Mac OS X
	1.1.3 Linux
	1.1.3.1 Ubuntu
	1.1.3.2 SLAX
	1.1.3.3 Freespire

	1.2 Cross-Platform Games
	1.2.1 The Battle for Wesnoth
	1.2.2 OpenArena
	1.2.3 UFO: Alien Invasion
	1.2.4 Shockwave and Flash Games

	1.3 Preparing to Go Cross-Platform
	1.3.1 Multiple Booting
	1.3.2 Step 1 — Preparing to Multiple Boot
	1.3.3 Step 2 — Installing Windows XP
	1.3.4 Step 3 — Installing Windows Vista
	1.3.5 Step 4 — Installing Linux Ubuntu
	1.3.6 Step 5 — Summary of Multiple Boot

	1.4 Virtualization — Simulating Operating Systems
	1.4.1 Using VMWare
	1.4.2 Creating a Virtual Machine for Linux Ubuntu

	1.5 Conclusion

	Chapter 2 Linux Ubuntu and Linux Gaming
	2.1 Ubuntu Installation and Troubleshooting
	2.2 Getting to Know Ubuntu
	2.2.1 Ubuntu Login
	2.2.2 Ubuntu Desktop
	2.2.3 System Monitor
	2.2.4 Update Manager
	2.2.5 Screen and Graphics Preferences and Restricted Drivers Manager
	2.2.6 Add/Remove Applications
	2.2.7 Synaptic Package Manager
	2.2.8 Ubuntu Terminal/Console/Shell
	2.2.9 Places | Computer
	2.2.10 Firefox Web Browser
	2.2.11 OpenOffice.org
	2.2.12 Photo Editing
	2.2.13 Installing and Playing a Game on Ubuntu

	2.3 Linux and “Transgaming” Technologies
	2.3.1 Cedega
	2.3.2 CrossOver
	2.3.3 Wine
	2.3.3.1 Installing Wine on Linux Ubuntu

	2.4 Automating Ubuntu with Automatix
	2.4.1 Installing and Using Automatix for Linux Ubuntu

	2.5 The Linux Shell
	2.5.1 Common Shell Commands
	2.5.2 Creating and Compiling a C Program Using the Ubuntu Terminal and BASH Shell Commands

	2.6 Conclusion

	Chapter 3 Cross-Platform Development Tools
	3.1 Code::Blocks
	3.2 Downloading and Installing Code::Blocks in Ubuntu
	3.3 Downloading and Installing Code::Blocks in Windows
	3.4 Getting Started with Code::Blocks
	3.4.1 Code::Blocks Projects

	3.5 Cross-Platform “Hello World”

Application
	3.6 Graphics and GIMP
	3.6.1 Installing GIMP on Windows or Mac
	3.6.2 Using GIMP
	3.6.2.1 Creating Tileable Textures Using GIMP
	3.6.2.2 Editing Image Transparency Using GIMP

	3.7 Blender 3D
	3.7.1 Installing Blender 3D on Linux Ubuntu
	3.7.2 Installing Blender 3D on Windows/Mac

	3.8 Conclusion

	Chapter 4 Game Programming Basics
	4.1 Game Programming — Getting

Started
	4.1.1 Genre and Objective
	4.1.2 Time Frame and Budget
	4.1.3 Game Ideas

	4.2 Preparing to Make Games
	4.3 Using the STL: Strings and Lists
	4.3.1 std::string
	4.3.1.1 Configuring Projects to Use STL and std::string with Code::Blocks
	4.3.1.2 Declaring, Creating, and Assigning Strings with std::string
	4.3.1.3 Looping through Characters of a String with std::string
	4.3.1.4 Searching for Characters in a Specified Instance of std::string
	4.3.1.5 Extracting and Inserting Substrings from and to a Specified Instance of std::string
	4.3.1.6 Converting Instances of std::string to Standard char* Pointers

	4.3.2 std::vector
	4.3.2.1 Creating a List with std::vector
	4.3.2.2 Declaring Instances of std::vector
	4.3.2.3 Adding Items to a List Using std::vector
	4.3.2.4 Cycling through Items in a List Using std::vector
	4.3.2.5 Removing Items from a List Using std::vector

	4.4 The Game Loop
	4.5 Conclusion

	Chapter 5 SDL Graphics
	5.1 SDL Breakdown
	5.2 Downloading and Configuring SDL
	5.2.1 SDL on Ubuntu
	5.2.1.1 Downloading and Installing SDL on Ubuntu Using Synaptic Package Manager
	5.2.1.2 Downloading SDL Documentation from the Web
	5.2.1.3 Creating an SDL Project Using Code::Blocks in Linux Ubuntu

	5.2.2 SDL on Windows
	5.2.2.1 Downloading and Installing SDL on Windows
	5.2.2.2 Creating an SDL Project Using Code::Blocks in Windows

	5.3 Getting Started with SDL
	5.3.1 Initializing and Closing SDL
	5.3.2 Creating a Window and Game Loop
	5.3.3 SDL Surfaces
	5.3.3.1 Blitting Surfaces
	5.3.3.2 Optimizing SDL Surfaces

	5.3.4 Additional File Formats (JPEG, PNG, TGA, and Others)
	5.3.4.1 Downloading and Configuring SDL Image Development Libraries for Code::Blocks on Ubuntu
	5.3.4.2 Downloading and Configuring SDL Image Development Libraries for Code::Blocks on Windows
	5.3.4.3 SDL: Further Image Formats

	5.4 Color Keying with Surfaces
	5.5 Conclusion

	Chapter 6 Game Audio
	6.1 Recording and Editing Game SFX
	6.2 SFX Software
	6.2.1 Downloading and Installing Audacity on Linux Ubuntu
	6.2.2 Downloading and Installing Audacity on Windows or Mac

	6.3 Recording/Creating and Editing Music
	6.4 Music Creation Software
	6.4.1 Downloading and Installing Schism Tracker on Linux Ubuntu
	6.4.2 Downloading and Installing Schism Tracker on Windows and Mac

	6.5 Programming Audio with SDL_mixer
	6.5.1 Installing and Configuring SDL_mixer on

Linux Ubuntu
	6.5.2 Installing and Configuring SDL_mixer on

Windows
	6.5.3 Initializing the SDL_mixer Library

	6.6 Sounds and Music with SDL_mixer
	6.6.1 Loading Music
	6.6.2 Playing Music
	6.6.3 Controlling Music
	6.6.4 Playing Samples through Channels in SDL_mixer
	6.6.5 Loading Sounds into SDL_mixer as

Samples
	6.6.6 Handling Channels with SDL_mixer

	6.7 Conclusion

	Chapter 7 Game Mechanics
	7.1 Getting Started with Game Worlds
	7.2 Creating Derivative Objects
	7.3 Maintaining Game Objects
	7.4 Tile-based Levels
	7.5 Animations and States
	7.6 Movement
	7.6.1 Movement with Vectors

	7.7 Hierarchical Transformations
	7.8 Z-Order and Depth Sorting
	7.9 Conclusion

	Chapter 8 Novashell and 2D Games
	8.1 Novashell Overview
	8.2 Downloading Novashell (Windows, Linux, and Mac)
	8.3 Exploring Novashell Games
	8.4 Getting to Know Novashell
	8.4.1 The Game Selection Menu
	8.4.2 The Editor and Player Modes
	8.4.3 Getting Started – Loading, Playing, and Editing a Game

	8.5 Novashell Editor
	8.5.1 Tile Resources
	8.5.2 Entity Resources

	8.6 Novashell Tools
	8.7 Editing Novashell Levels
	8.7.1 Selecting, Copying, Pasting, Moving, and Filling Tiles
	8.7.2 Exploring Maps and Editing Tiles

	8.8 Creating New Games and Maps
	8.9 Importing Art into Novashell
	8.9.1 Importing Files
	8.9.2 Setting a Player Entity
	8.9.3 Creating Smaller Tiles from Larger Tiles
	8.9.4 Setting Collision Information

	8.10 Novashell System Palette
	8.10.1 Audio Tiles
	8.10.2 Color Tiles
	8.10.3 Invisible Wall Tiles
	8.10.4 Warp, Waypoint, and Path Nodes
	8.10.5 Script Tiles

	8.11 Novashell Scripting
	8.11.1 Novashell Console
	8.11.2 Attaching a Script to an Entity
	8.11.3 Visual Profiles
	8.11.4 Moving a Character Using the Keyboard
	8.11.5 Clever Navigation with Pathfinding

	8.12 Conclusion

	Chapter 9 Director and Web Games
	9.1 Director
	9.2 Director Games
	9.3 Director and Shockwave Compatibility
	9.4 Getting Started with Director
	9.4.1 Downloading and Installing Director
	9.4.2 Creating an Animated “Hello World” Application in Director

	9.5 Director in More Detail
	9.5.1 Cast Members
	9.5.2 The Stage
	9.5.3 The Score Window’s Timeline

	9.6 Director Scripting with JavaScript
	9.6.1 Frame Scripts
	9.6.2 Global Event Scripts
	9.6.3 Local Event Scripts

	9.7 Practical Scripting
	9.7.1 Programming: Shapes, Lines, and

Primitives
	9.7.2 Printing a List of All Sprites On-stage
	9.7.3 Animating Sprites Using Cast Members
	9.7.4 Querying Mouse Events

	9.8 Using the Projector for Web-based and Stand-alone Games
	9.8.1 Building Web Games
	9.8.2 Building Stand-Alone Games (EXE for Windows, OSX for Mac)

	9.9 Conclusion

	Chapter 10 3D Games with OGRE 3D
	10.1 OGRE 3D
	10.2 OGRE 3D Games
	10.2.1 Ankh
	10.2.2 Other Games

	10.3 Installing OGRE 3D
	10.3.1 Downloading and Installing OGRE 3D on Ubuntu
	10.3.2 Downloading and Installing OGRE 3D on Windows

	10.4 Getting Started with OGRE 3D
	10.5 Receiving Frame Events
	10.6 Adding Objects to a Scene
	10.7 Adding Lights and Particle

Systems
	10.8 Reading User Input with OGRE and OIS
	10.9 Conclusion

	Chapter 11 Other Cross-Platform SDKs and Tools
	11.1 Graphics SDKs
	11.1.1 OpenGL
	11.1.2 PTK
	11.1.3 ClanLib
	11.1.3.1 Installing ClanLib

	11.2 Audio SDKs
	11.2.1 FMOD
	11.2.2 BASS
	11.2.3 irrKlang
	11.2.4 Audiere
	11.2.5 OpenAL

	11.3 Physics SDKs
	11.3.1 ODE
	11.3.2 Newton Game Dynamics
	11.3.3 True Axis Physics
	11.3.4 OPAL
	11.3.5 Bullet
	11.3.6 PhysX

	11.4 Network SDKs
	11.4.1 RakNet
	11.4.2 HawkNL
	11.4.3 SDL_net

	11.5 Artificial Intelligence SDKs
	11.5.1 Boost Graph Library
	11.5.2 OpenSteer
	11.5.3 FANN
	11.5.4 Garfixia AI Repository

	11.6 Input SDKs
	11.6.1 LibGII
	11.6.2 OpenInput

	11.7 Scripting SDKs
	11.7.1 Lua
	11.7.2 Python
	11.7.3 Ruby
	11.7.4 Squirrel
	11.7.5 AngelCode
	11.7.6 GameMonkey

	11.8 Game Engines
	11.8.1 Torque
	11.8.2 Irrlicht
	11.8.3 Game Editor

	11.9 GUI SDKs
	11.9.1 OpenGUI

	11.10 Web SDKs
	11.10.1 YaBB
	11.10.1.1 Downloading, Installing, and Creating an Online Forum

	11.11 Distribution SDKs
	11.11.1 NSIS
	11.11.2 Inno Setup
	11.11.2.1 Downloading, Installing, and Creating an

Installer in Inno Setup

	11.12 Conclusion

	Appendix A GNU Lesser General Public License
	Appendix B BSD License
	Appendix C Creative Commons License
	Appendix D zlib/libpng License
	Appendix E The MIT License Template
	Appendix F STL Public Member Methods Reference
	Appendix G SDL Key Codes
	Appendix H Novashell Functions
	Appendix I Director Events
	Appendix J OGRE OIS Key Codes
	Index

