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Preface 

The present compendium reviews modern state-of-the-art computer simulat- 
ion methodologies commonly used to model relevant defect properties of tech- 
nologically important complex oxides on an atomistic level. It provides a 
broad discussion of most of the results obtained so far. 

This book will be invaluable for all readers interested in acquiring a de- 
tailed but quick overview of this research field. The text is written on a level 
such that researchers, lecturers and graduate students may benefit from the 
discussions presented. 

Ultimately this book has become possible thanks to many important col- 
laborations and helpful discussions with experts in this field. In particular I 
am indebted to Prof. O. F. Schirmer, Prof. C. R. A. Catlow, Prof. R. H. Bar- 
tram and Prof. E. A. Kotomin. 

Osnabrfick, October 1998 HansjSrg Donnerberg 
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1. Introduct ion  

In many instances, insulating oxide materials behave semi-ionically, with 
bonding properties ranging between ordinary ionic systems (such as alkali 
halides) and semiconducting crystals, which are affected by significant cova- 
lency contributions. Structural and physico-chemical modifications give rise 
to a broad class of solid materials with many interesting prospects for tech- 
nological applications. This book is devoted to reviewing recent atomistic 
simulations of insulating complex electro- and magnetooptic oxides. The pos- 
sible prospects of these materials include the development of optical device 
elements allowing fast and efficient transport and processing of information. 
Photorefractive crystals form an important subset of electrooptic materials; 
they facilitate the transformation of an incident light pattern (containing in- 
formation) into a volume refractive index pattern and, thus, represent useful 
holographic storage media. Magnetooptic materials such as suitable garnets 
permit the development of non-reciprocal waveguide components. Further de- 
tails of the technological prospects are given in [1, 2] and [3, 4, 5] for electro- 
and magnetooptic materials, respectively. 

The fundamental bonding properties of insulating oxides rely to a con- 
siderable extent on the electron affinity of oxygen. The accommodation of 
two excess electrons - leading to 0 2- anions - allows the formation of a sta- 
ble noble gas configuration, being isoelectronic to neon. However, the dou- 
bly negatively charged oxygen anions are unstable as free ions, and, thus, 
their stabilization requires a crystalline Madelung potential and, possibly, 
additional covalency contributions. There exist, besides perfectly ionic oxides 
(like MgO), a variety of insulating oxides which possess open crystal struc- 
tures and are affected by appreciable covalency contributions. Their crystal 
structure often deviates from that of simple cubic systems. The growing sig- 
nificance of the electronic structure (due to covalency effects) in these oxides 
can lead to pronounced dielectric material properties. Most of the oxides dis- 
cussed here are, indeed, ferroelectric. They are non-centrosymmetric and have 
pronounced electrooptic material constants. Important magnetic properties, 
on the other hand, arise due to cooperative effects involving paramagnetic 
transition metal cations. Technologically important material properties are 
influenced or even made possible by incorporated defects. Most striking is the 
example of photorefractive oxides. The operation of photorefractive effects is 
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accomplished through deep impurity levels in the band gap of the materi- 
als. Typically, the band gap in semi-ionic oxides ranges between 3 and 4 eV, 
enabling processing technologies in the visible regime. A prerequisite for the 
possible controlled design of the desired material properties is an understand- 
ing of their microscopic origin. This requires detailed knowledge of perfect 
lattice properties and, importantly, the various relevant features of lattice im- 
perfections. Therefore it appears to be mandatory to investigate the possible 
chemical origin of defects and their structural and electronic properties. Po- 
tential simulations and electronic structure calculations provide helpful the- 
oretical tools that provide the knowledge of the relevant material properties 
on a microscopic level. The compilation of corresponding results represents 
the major goal of the present contribution. 

A few more introductory remarks are useful in order to sketch the broad 
variation of properties of insulating oxides. Oxides enable large variations of 
possible cation charge states. The ionically bonded magnesium oxide pos- 
sesses a cubic close-packed NaCl structure. The cations are octahedrally co- 
ordinated, and this is frequently observed in other oxides, too. Large vari- 
ations, on the other hand, occur for anion coordination. The corresponding 
coordination numbers range between CN=6 in MgO and CN=2 in the less 
ionic tungsten trioxide WO3. Because CN--6 in MgO the charge state of the 
octahedrally coordinated magnesium is +2. A reduction of the anionic co- 
ordination number leads, first, to an opening of the crystal structure, and, 
second, to the occurrence of higher cation charge states. Whereas the formal 
cation charge state is +2 in the densely packed MgO it increases to +6 in 
WO3. The basic WO6 octahedra are corner sharing, thus leaving much space 
for interstitial sites. At the same time the stabilizing effect of the Madelung 
potential can decrease in favour of stabilization due to covalent charge trans- 
fer between anions and cations. Covalency contributions also allow a partial 
reduction of the large formal charge states. But significantly, in many situ- 
ations structural characterizations based on ion size considerations remain 
reliable. Intermediate cation charge states between +2 and +6 can be easily 
achieved either by modifying the oxygen coordination number or by incorpo- 
ration of additional cations at interstitial sites. Crystal structures can be built 
up involving corner-, edge- or face-sharing metal oxygen octahedra. Corre- 
sponding oxides are B205 (+5), BO2 (+4) and B203 (+3). Alternatively, the 
open structure of the idealized cubic BO3 oxides allows the accommodation of 
variable amounts of additional cations A. This leads to the occurrence of solid 
solutions A~BO3 (x _< 1). These bronze-type systems can show pronounced 
n-type semiconducting properties. In this fashion one may understand the for- 
mation of insulating oxide perovskites ABO3 (x = 1) and also of strontium 
barium niobate SBN (Chap. 6) and related materials [6]. These crystals repre- 
sent important electrooptic oxides. In perovskites the introduction of divalent 
A cations reduces the charge state of B cations to +4, but the corner sharing 
of oxygen octahedra is retained at the same time. An important example is 
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given by barium titanate BaTiO3 (Chap. 3). Monovalent A cations relate to 
pentavalent B cations. Potassium niobate and tantalate (KNbO3 and KTaO3, 
Chap. 4) belong to this category, as does lithium niobate LiNbO3 (Chap. 5). 
However, the small size of the lithium cations leads to a distorted perovskite 
structure analogous to corundum. Finally, the high-To oxides should also be 
mentioned in this context, since their crystal structure closely resembles the 
perovskite structure. 

Appropriate cations allowing of many different formal charge states are 
provided by transition-metal atoms. Due to their natural abundance these 
are often found as cation partners in higher-valent oxides. In electrooptic ma- 
terials (like BaTiO3, KNbO3, KTaO3, LiNbO3 and SBN) the B cations are 
characterized by d~ electronic configurations. Partially filled d-subshells, 
on the other hand, lead to the occurrence of magnetic moments giving rise to 
cooperative magnetic effects such as ferro-, antiferro- or ferrimaguetism. Of 
particular technological interest are magnetic garnets, of which the ferrimag- 
netic yttrium iron garnet (YIG, Chap. 7) represents an important member. 
The garnet structure is built up of corner-sharing FeO6 octahedra and ad- 
ditional FeO4 tetrahedra. The iron cations occur as trivalent paramagnetic 
species with S = 5/2. The structure is stabilized upon the incorporation of 
diamagnetic trivalent yttrium cations which fill up the interstitial cation sites 
present in this open crystal structure. 

The various modifications of possible crystal structures and cation charge 
states in semi-ionic oxides open the way for a range of materials with different 
material properties. Optimistically one may think of the possibility of molec- 
ular engineering which aims at the optimization of material properties. The 
discussion presented above suggests that a tailoring of macroscopic material 
properties seems to be possible upon admixing different cation species. This 
behaviour can also be expected even for small impurity concentrations. No- 
tably, by analogy with the variety of possible cation charge states in perfectly 
grown oxides, the materials also allow the solution of many impurity cations 
within a range of stable charge states. Their stabilization is accomplished to 
some extent by suitable hybridizations between cations and oxygen anions. 
Originally, this scenario was suggested by Haldane and Anderson [7] to be op- 
erative in semiconductors. Additional contributions are due to defect-induced 
lattice relaxations which typically occur in ionic materials. 

Central aspects of theoretical defect studies include the formulation of 
favourable defect formation reactions (e.g. solution modes of impurities spec- 
ifying their lattice sites and possible charge-compensating defects) and cal- 
culating the electronic properties (e.g. ground and excited defect levels) of 
dominant defect structures. Obviously, both aspects are highly dependent 
on each other. As has been discussed, the specified oxides are intermediate 
between ionic and covalent materials. Consequently, the charge compensa- 
tion of impurities is not restricted to electrons and holes (as is mostly the 
case in ordinary semiconductors), but involves a rich variety of structural 
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defects which are already known for proper ionic crystals. Similarly, defect- 
induced lattice relaxations should be taken into account when studying the 
formation and properties of defects. Whereas potential simulations are suc- 
cessful in elucidating the defect chemistry of materials, the local electronic 
defect properties can best be investigated on the basis of embedded cluster 
calculations. 

Impurity defects are able to modify the electrical, optical and, evidently, 
magnetic properties of the respective oxides. The charge state and site of 
incorporation of impurities determine their donor/acceptor behaviour. In 
electrooptic materials the optical properties are particularly modified by 
impurity-related charge transfer transitions leading to broad absorption and 
emission bands. Intra-ionic crystal field transitions, which leave the impurity 
charge state unchanged, are of less importance in this respect, but they be- 
come relevant in the development of efficient solid state lasers, for instance. 
The properties of free charge carriers determine the electrical conductivity 
of oxides. These carriers may be electrons or holes depending on the actual 
position of the Fermi level. Due to pronounced electron-lattice coupling the 
formation of small polarons may represent the most favourable free carrier 
states in semi-ionic materials. This is particularly true for d-type conduc- 
tion band electrons owing to the comparatively small band dispersion. Free 
charge carriers are also important in photorefractive materials, where they 
appear upon illumination due to charge transfer transitions. In perovskite 
oxides one frequently observes that holes define the dominant charge car- 
riers. During their transport holes are trapped at suitable acceptor defects 
which effectively aid their localization. Trapped holes are known to influence 
the photorefractive material properties. Chapter 3 includes reports of some 
recent simulations of trapped hole centres in BaTiO3. In some cases one even 
expects the formation of small hole bipolarons (Chap. 3). The stabilization 
of these peroxy type species is due to covalency and defect-induced lattice 
relaxations. Possibly such bipolarons could also account for high-Tc super- 
conductivity, following the suggestions of Alexandrov and Mott [8]. Electronic 
counterparts become important if the Fermi level is sufficiently high. Corre- 
sponding species have been established to exist in Ti407, for example, and 
also in lithium niobate. In these cases the electrons are located at neighbour- 
ing cation sites. Analogous to hole bipolarons, the stabilization of electron 
bipolarons invokes covalency effects and lattice relaxation. Electron bipo- 
larons may also exist in other oxides such as perovskites (see Chap. 3). A 
review of the evidence for electron bipolarons has been given by Schlenker 
[9]. 

Finally, impurity defects may act as polarizing lattice perturbations en- 
hancing the potential electrooptic applications of the materials. This is par- 
ticularly true for KTaO3, which remains cubic and therefore non-polar down 
to low temperatures unless there are effective polarizing defects. A charac- 
terization of such defects is given in Chap. 4. 
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Besides impurity cations there may also be a strong influence due to in- 
trinsic defect structures. In ionically bonded oxides the formation of isolated 
intrinsic defects is rather unlikely unless they appear as charge compensators 
of impurities. In comparison with alkali halides, one must expect larger lattice 
energies and intrinsic defect formation energies due to the higher ion charge 
states in oxides. For example, the formation of a Schottky pair requires 2.2 eV 
in KC1 but 7.5 eV in MgO [10]. This trend can be observed in many complex 
oxide crystals, too. However, purely intrinsic defect formations may become 
important upon massive aggregation of defects leading to extended defect 
clusters. In this fashion the observed non-stoichiometry in many transition 
metal monoxides can be understood (e.g. see [11, 12]). For example, the appre- 
ciable cation non-stoichiometry observed in 3d-transition-metal monoxides, 
MI-~O, has been attributed to complex defect aggregations. Further exam- 
ples refer to shear planes which may form in higher-valent oxides (e.g. TiO2) 
upon reduction. Pronounced oxygen deficiency can by accommodated by in- 
creasing the number of shared oxygen anions between neighbouring metal 
oxygen octahedra, thereby reducing the metal charge states close to the in- 
terface (see also above). There are also indications of extended defect clusters 
accommodating the Li20 non-stoichiometry in LiNbO3 (Chap. 5). In LiNbO3 
the intrinsic defect structure strongly influences impurity solution modes and 
modifies material properties. 

The following chapters compile the results of atomistic simulations of 
electro- and magnetooptic oxides. The materials considered include the fer- 
roelectrics BaTiO3, KNbO3, KTaO3, LiNbO3 and SBN as well as the ferri- 
magnetic YIG. For these oxides extensive work has been reported so far. Par- 
ticular attention will be paid to the fundamental investigation of favourable 
defect structures in these oxides. It is noted that in ferroelectric perovskite 
materials all structural deviations from cubic symmetry are small. Therefore, 
defect simulations can be based with sufficient accuracy on the ideal cubic 
structure of these oxides, because defect-induced perturbations are likely to 
be predominant. 

Before discussing the details of the respective material properties, Chap.2 
reviews the most important features of the different existing simulation 
methodologies. The many modelling studies that I have performed during 
recent years employ potential simulations and embedded cluster calculations. 
These techniques are particularly useful in investigations of perfect and defec- 
tive semi-ionic materials because they take defect-induced lattice relaxations 
fully into account. Publications which have strongly influenced the content 
of this habilitation thesis are listed at the end of the book. 



2. The  Scope of Theoret ical  M e t h o d s  

In what follows, the emphasis is on theoretical approaches towards modelling 
of perfect and defective electro- and magnetooptic oxide materials. Princi- 
pally the invoked methodologies employ ab initio calculations concentrating 
on the electronic structure of the materials and potential simulations referring 
to the subsystem of the nuclei. 

Basically the Helmholtz free energy F of the whole crystal, 

F = - k T .  ln{Tr (exp( -U/kT) ) } ,  (2.1) 

completely describes the equilibrium states of crystals at a given tempera- 
ture T. Its calculation involves a minimization procedure with respect to all 
nuclear and electronic degrees of freedom. H is the total Hamiltonian of the 
system: 

H = Tn + Vnn + He (2.2) 

He -- Te + V~ + Vne. (2.3) 

Strictly, the evaluation of (2.1) requires us to calculate the trace with re- 
spect to complete bases of the nuclear and electronic subspaces. However, 
this is an unfeasible task in practice. Instead, particularly for non-metallic 
systems, only one electronic state (e.g. the ground state) is effectively taken 
into account. This corresponds to employing the Born-Oppenheimer approx- 
imation, which allows separate consideration of the electronic and nuclear 
subsystems. One first solves the electronic problem, i.e. formally 

e o (n )  = m~n<He)~. (2.4) 

T~ denotes the total nuclear configuration of the crystal and @ the many- 
electron wavefunction. This variational problem of a many-body electronic 
system is usually solved by standard Hartree-Fock (HF) methods or by ap- 
plying density functional theory (DFT). Only for small systems of molecular 
dimensions may HF treatments be extended by configuration interaction (CI) 
expansions to account for electronic correlations. In Sect. 2.1 we will briefly 
describe the state-of-the-art techniques used to model the electronic proper- 
ties of perfect and defective crystals. 

Having found a suitable solution for the electronic subsystem, the next 
step considers the subsystem of nuclei: 
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H .  = Tn + Vn. + E 0 ( n )  =: T.  + Vet (n)  �9 (2.5) 

In principle, the investigation of this Hamiltonian allows us to obtain infor- 
mation on 

�9 equilibrium geometries, 
�9 perfect lattice properties (e.g. phonons, elastic constants and bulk moduli), 
�9 instabilities with respect to ferroelectric phase transitions (FE-PT) and 
�9 ionic aspects of defect formation (formation enthalpies, agglomeration of 

defects, defect-induced lattice relaxation etc.). 

In most cases Hn is treated classically, which approximately replaces the 
quantum mechanical treatment in principle. In Sect. 2.2 we will briefly con- 
sider approaches to obtain and use effective potentials Veff in perfect and 
defective lattice simulations. It is noted in this context, that the approach of 
Car and Parrinello [13] unifies the above treatments of both subsystems in 
the framework of molecular dynamics (MD). The method is also based on the 
validity of the Born-Oppenheimer approximation. One introduces supercells 
satisfying periodic boundary conditions and performs a dynamical simula- 
tion with respect to the nuclear coordinates of ions or atoms in a supercell 
(physically true dynamics) and to the electronic variational parameters (e.g. 
one-electron orbitals r and possible external constraints ai defining a ficti- 
tious dynamics. Formally, the relevant Lagrangian can be written as 

s  T{r + T{a,} + E I .2 -~MiR ~ - E[{Ri}, {r {ai)] �9 (2.6) 
J 

T{r and T{~} denote the kinetic energies related to the fictitious dynamics 
and El.] is the total energy of the investigated system corresponding to the 
Hartree-Fock approximation (which may be extended to configuration inter- 
action schemes) or to density functional theory. Approaching equilibrium, 
the equations of motion for the electronic variational parameters reduce to 
the effective one-electron Hartree-Fock or Kohn-Sham equations (see Sect. 
2.1). The numerical efforts of MD simulations increase significantly with the 
degrees of freedom of the investigated system (electronic structure, number 
of ions in a supercell). This explains the almost exclusive use of the approach 
in combination with pseudopotentials and density functional theory [13, 14]. 
The Car-Parrinello method can be employed in two entirely different ways, 
i.e. to perform energy minimizations on the basis of simulated annealing or 
to do genuine molecular-dynamics simulations. 

Though the Car-Parrinello method will be used increasingly with growing 
computer capacity, it is at present ineffective even for simulations of FE-PT 
in oxide perovskites ABO3 using the smallest possible supercell (i.e. primitive 
unit cells containing five atoms). Therefore, in practice potential simulation 
methods are employed (Sect. 2.2). Problems involving defects are significantly 
more demanding, as this would require the use of very large supercells in order 
to avoid artificial defect-defect interactions. This may inhibit full-electron 
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MD simulations of many defective complex materials. Recent applications 
of the Car-Parrinello method have addressed the calculation of the vacancy 
formation energy in aluminium [15]. 

Fortunately, in most situations of practical interest the quasi-static ap- 
proach used in (2.4)-(2.5) has been found to characterize the electronic defect 
structure reliably as well as the atomistic aspects of defect formations. 

2 .1  E l e c t r o n i c  S t r u c t u r e  C a l c u l a t i o n s  

The variational condition (2.4) can be investigated by employing the Hartree- 
Fock approximation or using density functional theoretical methods. The HF 
approach corresponds to considering the electrons of the system as essen- 
tially being independent of each other. The many-electron wavefunction in 
(2.4) is taken as a product of one-electron spin orbitals which is further an- 
tisymmetrized with respect to particle permutations (Slater determinants). 
The variational procedure yields the well-known SchrSdinger-type HF one- 
electron equations, 

( 1 + /  Q(r') d3r , 

I. k 
-- / Ox(---~r'r]r t = ~-[ )d3r t)  ~bk(r ) -~ gk~)k(r) , (2.7) 

or in abbreviated notation 

( - 1 A  -k- VHp,k(r ) )~k(r )=~kCk(r  ) . (2.8) 

The total electron density is given by 

occupied 

Ir (2.9) 
n 

The effective one-electron Hamiltonian in (2.7) is called the Fock operator. 
By expanding the one-electron orbitals with suitable basis functions the 

set of integro-differential Hartree-Fock equations is transformed into a (non- 
linear) matrix equation for the expansion coefficients. In periodic systems 
(perfect crystals, see also Sect. 2.1.1) these basis functions may be either 
(possibly augmented) plane waves or localized functions (atomic orbitals, 
Slater- or Gaussian-type orbitals [16, 17]). Localized basis functions are also 
appropriate for molecules or extended non-periodic systems. 

According to (2.7) each electron moves in the field of the nuclei and in the 
averaged effective field of all the other electrons (mean field approach); the 
total effective one-electron potential denoted by )2HF,k in (2.8) depends also 
on the orbital Ck, which is to be determined. The use of Slater determinants 
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results in the (non-local) exchange potential energy term given by the iv)k- 
dependent) exchange density p~ (r, r '; k). This exchange density (Fermi hole) 
describes the density reduction around a specified electron located at r and 
is caused by all electrons having the same spin alignment. The normalization 
of the exchange density, 

/ Q~(r, r'; k)d3r ' (2.10) 1, 

and the correct asymptotic behaviour of the exchange potential, i.e. 

ox(r, rl; 1 
rl)d3r ' -~ ir ~ (Irl -* oc), (2.11) k 

guarantee the exact cancelation of the artificial self-interaction which is 
present in the Hartree term. The use of an averaged exchange potential which 
is then experienced by all electrons refers to the Hartree-Fock-Slater approx- 
imation [18]. 

It is an advantage of the Hartree-Fock approximation that it allows us to 
calculate both the ground and excited electronic states. This is true because 
the HF one-particle equations are derived from the stationary state condi- 
tion bE = 0 without assuming any ground state conditions. The evaluation 
of energy separations between two different states should be performed on 
the basis of two independent SCF calculations (ASCF method). The use of 
one-particle energies Ok, on the other hand, is of limited value, since orbital re- 
laxations resulting from the electronic redistributions are totally neglected in 
this way. In particular, localized orbitals with atomic or molecular extensions 
are affected by such relaxation effects (see also Sect. 2.1.2). The disadvan- 
tages of Hartree-Fock procedures are, first, the pronounced consumption of 
computer resources related to the huge number of two-electron integrals de- 
scribing interelectronic Coulomb and exchange effects (for example, if the HF 
equations are expanded with L basis functions the number of two-electron 
matrix elements increases as L4). Second, HF theory totally neglects electron 
correlations; the correlation energy is defined as the total energy difference 
between the exact non-relativistic energy and the HF energy. 

There are several possibilities to reduce the required computer resources 
of full HF calculations (see references [16, 19] for details): 

�9 Use of ZDO (zero differential overlap)-type procedures by means of which 
all or part of the two-electron exchange integrals are set equal to zero. A 
general feature of all these schemes is that the number of non-vanishing 
two-electron matrix elements is proportional to L 2. However, with this 
traditional approach important interelectronic interactions can be lost. 

�9 Formulation of the electronic problem in a tight binding representation 
using semi-empirical interatomic/interionic matrix elements. For details 
the reader is referred to W. A. Harrison's account of solid state matrix 
elements [20]. In many applications, semi-empirical parametrizations of 
matrix elements are combined with ZDO-type calculations. Though such 
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schemes are in the spirit of self-consistent field HF calculations, they may 
include correlation contributions due to the fitting of matrix elements either 
to empirical expressions or to elaborate ab initio calculations. However, this 
inclusion of correlation is hardly under control. 

�9 Use of pseudopotentials to represent the chemically inert core electrons of 
an atom. The true valence orbitals may be replaced by nodeless pseudoor- 
bitals varying smoothly in the core region which can effectively reduce the 
necessary number of basis functions. Both types of orbital agree in the va- 
lence region. The pseudopotentials are constructed by requiring that the 
orbital energies of pseudo- and true valence orbitals are identical. The prac- 
tical application of pseudopotentials depends on their transferability from 
a single atom to an atom being part of a molecule or solid. Essentially the 
transferability corresponds to the frozen core approximation. In particular 
the ab initio angular-dependent atomic pseudopotentials (or effective core 
potentials, ECP) of Hay and Wadt [21] and Stevens, Basch and Krauss 
[22] have been proved to be useful in molecular ab initio calculations. They 
can also be used in embedded cluster calculations, which are designed to 
simulate local electronic defect properties (see Sect. 2.1.2). 

�9 Use of Slater's Xa-technique [18] by means of which the non-local exchange 
operator is approximated by the local substitute 

Vx~(r) = -6a  ( 3 0 ( r ) )  . (2.12) 

From a modern point of view this is a local density approximation to 
the exact HF exchange operator. In particular the orbital dependence in 
(2.7) has been averaged such that each electron experiences this exchange 
potential. 

Four approaches are possible in order to perform rigorous calculations includ- 
ing electron correlations [17, 16, 23, 24, 25]. With either method only a part 
of the total correlation effects can be included in practice: 

�9 In the configuration interaction (CI) description the total N-electron wave- 
function is expanded with a suitable number of Slater determinants. The 
method is based on the observation that the set of possible N-electron 
Slater determinants generated from an orthonormal one-electron basis set 
forms an orthonormal basis of the antisymmetric N-electron Hilbert space. 
In practice the Hartree-Fock orbitals are conveniently chosen as such a one- 
electron basis. The Slater determinants occurring in the expansion of the 
exact N-electron wavefunction may be arranged according to the num- 
ber of excited electrons with respect to the chosen Hartree-Fock reference 
state function. Calculations restricted to include single and double elec- 
tron excitations are referred to as SDCI, for instance. Multi-reference CI 
calculations employ more than one reference state. In practice, all CI ex- 
pansions must be truncated after a comparatively short number of terms, 
leading to the well-known size consistency problems of CI calculations (see 
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[17], for example). There are prescriptions to achieve approximate or ex- 
act size consistency [17], e.g. use of the Davidson correction formula and 
of (coupled) pair theories, respectively. Finally, the multiconfiguration self- 
consistent field (MCSCF) method and the generalized valence bond (GVB) 
descriptions are also closely related to the CI approach. 

�9 Application of Rayleigh SchrSdinger perturbation theory to a many-body 
iN-electron) Hamiltonian. The method is often referred to as Moller- 
Plesset perturbation theory iMP). In this approach the Hartree-Fock 
Hamiltonian consisting of the sum of the one-electron Fock operators is 
chosen as the zeroth-order Hamiltonian. Using a diagrammatic representa- 
tion of the perturbation expressions J. Goldstone proved the linked cluster 
theorem. The theorem states that the perturbation expansion of the total 
energy can be represented solely by the linked diagrams. Since these dia- 
grams are proportional to the number of electrons in the system, the MP 
perturbation theory is size-consistent in any order. 

The required computing resources allow us to apply the above two approaches 
only to small systems of molecular dimensions. 

�9 The analysis of the one-particle many-body Green's function allows the 
determination of the ground state energy of N-electron sytems and of el- 
ementary excitation energies. Quasi-particle concepts are related to this 
Green's function approach. The major difficulties of this technique refer to 
the determination of the self-energy operator •. In Hedin's GW approxi- 
mation [26], which includes the screened Coulomb interaction W between 
two electrons to first order, the self-energy is treated as a functional of the 
one-electron Green's function G, ~U = ~U[G]. 

* Application of density functional theory (DFT), a sketch of which is given 
below. DFT is by construction a theory of the electronic ground state 
of a system. In principle, DFT is exact, but simplifying assumptions are 
inevitable in all practical calculations. Besides the inclusion of electron 
correlation the most powerful advantage of DFT is the significant reduction 
of necessary computer power. This is related to the formulation of the 
problem in terms of the electron density. There is no general prescription 
for the application of DFT to excited states. Jones and Gunnarsson [24] 
have given an extensive review of recent successful applications of DFT to 
molecular and solid state systems. 

DFT [27] is based on a variational approach using the electron density 
~(r) (instead of wavefunctions) as the fundamental variable: 

E[Q] = f ~(r)V~xt(r)d3r + F[Q]. (2.13) 

F[Q] is a universal functional (i.e. independent of the external field V~xt of 
the nuclei) representing all kinetic energy and electron-electron interaction 
effects. Following Levy [28] it is defined by the expression: 
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F[O] = min(C'{0}lT + Ve~N'{0}) �9 (2.14) 

The domain of F is given by the N-representable densities [28], i.e. densities 
0 which can be generated from N-electron wavefunctions ~ by integration. In 
(2.14) wavefunctions leading to 0 are denoted by O{0}. Minimization of E[0] 
with respect to the (N-representable) electron density 0 yields the ground 
state energy [24, 28]: 

Eg = rain E[O] = E[og]. (2.15) 
o 

Introducing a fictitious model system of non-interacting electrons allows us 
to formulate the DFT variational problem in terms of effective one-particle 
equations (Kohn-Sham (KS) equations) analogous to Hartree--Fock theory 
[29, 30]. The universal functional Fie] may be rewritten as: 

l f f e(r)o(r') dar d3 r, F[O] = T,[O] + -~ - ~ : - ~ l  + Exc[0l �9 (2.16) 

Ts[0] denotes the kinetic energy functional for a system of non-interacting 
electrons and the defined energy functional Exc[e] is called the exchange 
correlation functional. Variation of the total energy yields the required Kohn-  
Sham equations: 

( 1 S O(~ d3/ 'Exc[--O]'~r 
- n -  + I-' - . I  + / 

( - i n +  VKs[0](.))Ck(.) = (2.18) 

occupied  

o(r)= ICn(r)l 2. (2.19) 
n 

The remarks on basis functions which have been quoted in the context of 
HF theory also apply to the KS equations. Notably, the number of required 
two-electron matrix elements reduces to L 3 in comparison to HF theory. 

Q(r) as evaluated on the basis of (2.19) minimizes the energy functional ac- 
cording to (2.15) 1. Differently from HF, the one-electron energies and orbitals 
do not have any physical significance, since they are part of a mathemati- 
cal construction. In the exact DFT only the energy of the highest occupied 
orbital attains a physical interpretation corresponding to the negative (mini- 
mal) ionization energy [30]. The Kohn-Sham reformulation of the problem is 
exact: all interactions between the electrons of the real system are hidden in 

1 This zero-temperature scheme can be successfully applied to most of the non- 
metallic systems. In principle, however, the generalization to finite temperatures 
could be achieved by weighting the one-electron densities in (2.19) according 
to a Fermi distribution function and extending the sum to include also virtual 
one-electron orbitals [30]. In practice, the sum should remain finite. 
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the unknown exchange correlation potential 5Exc [a]/Sa(r). In practice the KS 
equations can be solved if the local density approximation (LDA, or LSDA 
in the cases where spin polarization is considered) is employed to model the 
exchange correlation functional: 

LDA f A(Q(r))d3 r (2.20) E~r [~]= Q(r)e LD 

In this approximation the exchange correlation energy density exc (and also 
the exchange correlation potential) depends locally on the charge density ~. 
Slater's Xa potential (see (2.12)) fits into this scheme; approaches including 
correlation effects were suggested by Hedin and Lundqvist [31], von Barth and 
Hedin [32] and Ceperly and Alder [33], for instance. The exchange correlation 
energy density can in principle be written in terms of an exchange correlation 
charge density: 

1 f ~xc(r,r')d3r , (2.21) 
= I t -  r ' l  

Though Qx~ is normalized within the LD type approximations (compare with 
1 Instead it (2.10)), it does not obey the required asymptotic behaviour or ~. 

falls off exponentially, reflecting the asymptotic behaviour of the one-electron 
orbitals [30] leading to spurious self-interaction contributions. 

There are several approaches to improve on the LD type approximations 
(see [16, 30], for instance). Only one of these procedures is quoted in this 
context: Becke [34] proposed an exchange functional which incorporates the 
correct asymptotic behaviour of the exchange density. Using one adjustable 
parameter the exchange functional has been fitted to reproduce the exchange 
energies of six noble gas atoms. Lee, Yang and Parr [35] turned the Colle- 
Salvetti correlation energy formula [36] for the two-electron helium atom into 
an explicit functional of Q. The combined "BLYP" exchange correlation func- 
tional has been found very useful in atomic or molecular DFT calculations. 
This functional, which corresponds to the generalized gradient approxima- 
tion (GGA) level of accuracy (see e.g. [37]), can also be employed within 
embedded cluster calculations. 

Density functional theory is by construction a theory of electronic ground 
states. In spite of this feature the exact ground state density Qg also includes 
information on all excited states. The qualitative argument is as follows: the 
cusps of Qg determine the nuclear positions; IVQgl taken at these positions 
should give the nuclear charges. Thus, in the absence of applied external fields, 
the total Hamiltonian is known and the diagonalization of which yields the 
excited states. Consequently, the excited states and their energies may be 

considered as functionals of Qg- However, there are no straightforward and 
easy-to-handle procedures to turn this information into operational prescrip- 
tions. For a detailed discussion of related questions see [30, 38]. Note that 
even the ground state energy functional may carry some information on ex- 
cited states: according to Perdew and Levy [39], every extremum density of 
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the ground state energy functional yields the exact energy of a stationary 
state. Whereas the absolute minimum corresponds to the ground state, the 
other extrema represent a subset of the excited states. Exact densities which 
do not extremize the ground state functional, however, provide lower bounds 
to the corresponding excited state energies, i.e. E[Qi] < Ei, where i refers to 
any such excited state. Further, the set of extremum densities of the ground 
state functional generally forms a subset of all stationary densities which 
may be obtained by applying the usual Kohn-Sham approach. However, if 
the Kohn-Sham densities provide reasonable approximations to exact densi- 
ties one may use the above-stated inequality to estimate the requested energy 
separations. 

A very recent elaboration of ordinary density functional theory refers to 
the density polarization functional theory (DPFT) [40]. It applies to the cal- 
culation of ground state properties of a periodic insulating solid which is 
exposed to a perturbationally small and homogeneous electric field. It turns 
out, that the perturbing potential is not a unique functional of the (periodic) 
density change, but also of the change of the macroscopic polarization. The 
proof of this important result is based on the Hylleraas minimum principle 
[41], which is related to second-order perturbation theory. It is emphasized 
that the original Hohenberg-Kohn theorem [27] is not applicable in this situ- 
ation due to the impossibility of a ground state in the presence of an electric 
field, which renders invalid the original proof of DFT: a translation of the 
crystal against the field by multiples of the lattice constant always lowers 
the energy. It was shown that the application of perturbation theory and the 
choice of a sinusoidal electrostatic potential 

V(r) -- lim E .  r sin(q " r) (2.22) 
q-.0 q �9 r 

can bypass this problem. 
As a consequence of these results the exchange correlation functional de- 

pends on the density and on the polarization. This leads to an 0 ( 1 / q 2 )  - 

dependence of the exchange correlation kernel for q --* 0 [42], which is not 
observed in all known LDA- and GGA-type XC functionals. This divergence, 
however, is needed for correct computations of dielectric material constants. 
It may be approximated by applying LDA combined with a constant energy 
gap correction (scissor correction) [43]. 

The remaining subsections consider the application of electronic structure 
calculations to perfect and defective crystals. 

2.1.1 Perfect Crystals 

Perfect crystals exhibit full translational symmetry. The major interest is in 
the electronic ground state properties of these systems. 

The present state-of-the-art corresponds to self-consistent DFT-LDA cal- 
culations, which are more convenient than HF-based investigations (see 
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above), k-space methods are used to find accurate one-particle Bloch or- 
bitals which are solutions of the appropriate Kohn-Sham equations. Com- 
monly, the Muffin Tin approximation (MT) is used to describe the crystal 
potential: within a sphere surrounding each nucleus the potential is taken 
spherically symmetrical and constant in the remaining interstitial region, i.e. 
outside the atomic spheres. Obvious shortcomings are related to the neglected 
non-spherical contributions at the boundary of each MT atomic sphere and 
to non-constancy in the interstitial region. For densely packed materials the 
accuracy of the MT approximation is remarkable; it is exemplified by the re- 
production of experimental Fermi surfaces to within 0.01 Ry in suitable cases 
[44]. The introduction of basis functions leads to a matrix equation which is 
non-linear in the one-electron energies ci: 

Z ( Hkl ( r ) - r Skl ( r ) )Cu = 0. (2.23) 
l 

The non-linearity arises since the partial wave solutions (for arbitrary 6- 
values) within each MT sphere a, 

~a,lm(r - Ra; e) = Ra,lm(Ir - R,~I; e)Ylm(J2), (2.24) 

are used to form Bloch-type basis functions with the MT parts matching 
at least continuously onto the respective interstitial functions. Many state- 
of-the-art perfect crystal electronic structure calculations employ one of the 
following methods: 

�9 Linearized augmented plane wave method (LAPW). This method aug- 
ments plane waves in the interstitial region with the partial wave solutions 
of the MT spheres. The basis set indices are given by reciprocal lattice 
vectors G. 

�9 Linearized Muffin Tin orbital method (LMTO) which is related to the 
earlier KKR Green's function procedure. The interstitial parts of the 
basis functions correspond to zero kinetic energy (~ --* 0 instead of 

= V/r  Y ~  ) and are thus derived from the Laplace equation. The 
Im quantum numbers of the MT sphere solutions provide the basis set 
indices. LMTO strongly resembles LCAO-type procedures. 

In both methods the use of energy-independent basis functions allows us to 
formulate a linear matrix eigenvalue equation (for details see [44]). The orig- 
inal energy-dependent radial basis functions ~(r r) of APW and KKR, re- 
spectively, are replaced by linear combinations of ~(E~, r) and 0~(r  r)]e=c~ 
for appropriately specified and fixed energy parameters Cv- Further, LMTO 
is often combined with the atomic sphere approximation (ASA) by means of 
which the interstitial region is totally neglected through the use of overlap- 
ping MT-type atomic spheres. Because of the simplifications related to the 
interstitial region, LMTO calculations are even more restricted to densely 
packed materials than LAPW-based investigations. In order to accurately 
model the ferroelectricity of ABO3 perovskites, full-potential methods, such 
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as FLAPW (e.g. [45]) or FLMTO [46], must be employed. Full-potential cal- 
culations invoke the exact crystal potential replacing the MT potential; in 
particular, full potentials are space-filling and anisotropic. Investigations on 
KNbO3 and KTaO3 [47] have shown that the ASA approximation is not suffi- 
ciently accurate to model the small energy differences related to ferroelectric 
distortions. However, calculated LMTO-ASA and FLMTO band structures 
seem to be in acceptable qualitative agreement [47, 48]. 

Another description of the electronic structure is provided by the pseu- 
dopotential approach. By construction, a pseudopotential is the sum of the 
effective one-electron potential as appearing in the KS equations and of a 
term representing the orthogonality between core and valence states. The 
pseudopotential gives rise to smooth valence pseudoorbitals. A pure plane 
wave basis may conveniently be used to expand the valence pseudoorbitals. 
By generalizing the norm-conservation conditions for pseudoorbitals one ar- 
rives at the ultra-soft pseudopotential schemes (see [49], for example), which 
allow us to use a particularly small number of plane waves. Regarding the 
modelling of FE-PT, pseudopotential-based calculations turned out to be of 
comparable quality to FLAPW investigations [49]. 

Finally, one can perform LCAO-type (linear combination of atomic or- 
bitals) or LCGTO-type (linear combination of Gaussian-type orbitals) band 
structure calculations. Since these calculations do not involve any restricting 
assumptions concerning the effective one-electron potential, they belong to 
full-potential treatments. 

In spite of lacking a rigorous justification, the Kohn-Sham eigenvalues 
s(k) obtained from band structure calculations are interpreted as the proper 
crystalline energy bands. The extent to which this interpretation is reasonable 
must be inferred from more sophisticated many-particle theories [16, 24]. 
At least the Fermi energy is exact in DFT, since it can be written as the 
difference of ground state energies. The band gap can be calculated exactly 
within DFT, if it is defined in terms of the exact ground state energy Eo(N)  
of an N-electron system: 

Eg = E o ( g  + 1) + E o ( N  - 1) - 2E0(N). (2.25) 

However, in all practical investigations the band gap is determined as the 
Kohn-Sham orbital energy difference of the lowest unoccupied and the high- 
est occupied one-electron levels. Due to the discontinuity of the exchange 
correlation potential this method can lead to substantial underestimations 
of band gap energies (up to 50%). This principal deficiency has been further 
demonstrated on the basis of a discrete lattice DFT employing a Hubbard- 
type Hamiltonian [50]. The deviations between the Kohn-Sham band gap 
and the exact gap increase abruptly with increasing Hubbard-U parameter, 
measuring the electron correlations. For further aspects of the gap problem, 
see the review article of Jones and Gunnarsson [24]. Very recently, the band 
gap and optical transitions related to MgO were successfully simulated by 
application of the G W  approximation [51]. 
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Band structure calculations can be used to determine linear (e.g. [52]) and, 
in principle, also non-linear optical material coefficients [53]. Since these prop- 
erties are mainly based on electronic excitations, it is important to correct the 
LDA eigenenergies of excited one-electron states. This can be accomplished 
either by simply shifting excited energy states (scissor operator technique) 
or by applying more sophisticated corrections due to advanced quasi-particle 
concepts (e.g. the GWformalism [16]). The investigations of Ching et al. [52] 
suggest that a rigid energy shift can be too crude: in LiNbO3 the changes in 
single-electron states are both energy- and k-dependent. 

2.1.2 Defective Crystals 

We restrict our considerations to point defects. Particular interest is devoted 
to the electronic aspects of the formation of such defects and to possible 
energy levels in the band gap. Defects destroy the translational symmetry 
of perfect crystals, k-space methods are therefore inappropriate in order to 
treat isolated point defects. They are applicable only in those cases where a 
periodic array of defects has been imposed, thereby reinstalling translational 
symmetry. 

Basically, three different theoretical approaches to defects can be distin- 
guished: the supercell method, Green's function techniques and embedded 
cluster calculations. The latter two methods are closely connected to each 
other. This will be seen subsequently. 

Embedded cluster calculations allow the study of the local electronic de- 
fect structure of charged point defects, taking lattice relaxations fully into 
account. This can be accomplished by representing the embedding lattice on 
the basis of a pair potential shell model description. Defect-induced lattice 
distortions are particularly important in ionic or semi-ionic materials, such 
as the oxides discussed in this book. Green's function approaches and su- 
perceU calculations, on the other hand, are much more restricted to neutral 
defects and are less well suited to including defect-induced lattice pertur- 
bations. Their success is particularly related to a description of defects in 
semiconductors. 

All methods have their own relative merits. It is thus recommended to 
consider all approaches to aim at a complete picture of the electronic prop- 
erties of defects. 
Supercell Method .  This approach extends the perfect crystal calculations 
to defective systems. Supercells containing several unit cells of the investi- 
gated material and a specified defect are periodically arranged to form a 
supercrystal (Fig. 2.1). 

As in perfect crystals, k-space techniques based on HF or DFT effective 
one-particle descriptions are applicable. Because of the periodic boundary 
conditions there are no artificial surface effects in this approach. However, 
large supercells are necessary in order to avoid direct and indirect defect- 
defect interactions. The latter are mediated by the crystal lattice (e.g. lattice 
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deformation fields). In practice, lattice relaxations can only be approximately 
taken into account, e.g. by including nearest neighbour relaxations. However, 
the lattice deformation fields are frequently of a longer range. 

Crystal stability requires the use of neutral supercells. As a consequence, 
the defect considered must be neutral or one must introduce appropriate local 
charge-compensating defects. For example, one could study the local complex 
Fe 3+ - Vo in KNbO3, but not isolated Fe 3+. The definition of neutralizing 
homogeneous background charges would remedy this disadvantage; however, 
in many situations such an artificial compensator is not very satisfactory. 

The required neutrality condition is not sufficient to obtain reliable re- 
sults. The success of any supercell calculation depends to a considerable ex- 
tent on the convergence properties of the infinite electrostatic sums which 
are determined by the lowest order non-vanishing multipole moments per 
cell. Corresponding questions have been recently investigated by Makov and 
Payne [54]. In the present context it suffices to remark on calculations in- 
volving supercells with non-vanishing dipole moments. The above-mentioned 
defect calculations belong in this category, as do the numerous simulations of 
ferroelectric phases of oxide perovskites (see Sect. 3.1). Since only the second 
derivative of the electrostatic potential converges absolutely, these calcula- 
tions are affected by the indeterminacy of an unknown constant electric field. 
Its magnitude depends on the definition of the supercell. Useful results can 
be obtained only if the zero .field approximation [54] is applied, for which the 
physical justification may be given by the assumption of surface-adsorbed 
impurities equilibrating the crystalline electrostatic potential. 

Supercell calculations are particularly useful to study the effects of high 
defect concentrations. However, the periodicity of defects seems to be artificial 
when compared with realistic situations with random defect distributions. 
KLT and KTN have recently been investigated using a supercell approach 
and DFT-LDA [47, 55]. 

Green's  Funct ion  Descript ion.  In principle all approaches based on 
Green's functions are exact, since they provide the correct coupling between 
the defect and the bulk crystal. The methods allow the study of bound defect 
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states as well as resonances. Bound states are characterized by energy levels 
within the gap, whereas resonances occur within the allowed energy bands. 

By definition a Green's function corresponds to the resolvent operator 
of a one-electron Hamiltonian. Two different principal descriptions can be 
employed, i.e. the perturbed crystal and the perturbed cluster treatments (see 
[56] for a detailed review). 

1. Perturbed crystal approach: The perturbed crystal approach considers the 
defect-induced potential as a perturbation of the host crystal. One starts 
with the one-electron Hamiltonian of the defective system 

H = Ho + U, (2.26) 

where H0 is the perfeet crystal Hamiltonian and U the perturbing potential 
due to a single point defect: 

U = V(r, ~(r)) - V(r, ~0(r)) �9 (2.27) 

~) denotes the effective potential appearing in the one-electron HF- or KS 
equations. The relevant Green's functions correspond to the resolvent op- 
erators of the perfect and defective one-electron Hamiltonians: 

Go(e) = lim (e + i t / -  Ho) -1 (2.28) 
r/---*0+ 

G(e) = lim (e + i~ / -  H) -1 (2.29) 
r/--*0 + 

The perfect lattice Green's function Go and its defective counterpart are 
related by the Dyson equation which is central to the perturbed crystal 
approach: 

G(r = Go(e) + Go(e)UG(e) = (1 - ao(e)U)-lao(e) . (2.30) 

According to (2.30) G(e) becomes singular for all non-perturbed bulk states 
and for defect-induced states. Defect levels are obtained by analyzing the 
condition 

D(E) = det(1 - Go(e)U) = 0. (2.31) 

Important information concerning defect levels is provided by the density 
of states (DOS) N(r 

N(e) = - 1Tr( im G(r (2.32) 
7r 

Energy integration, 

q = e f _ ~  N(e)de, (2.33) 

yields the total eleetron eharge, so the charge density operator is therefore 
given by 



2.1 Electronic Structure Calculations 21 

occ 

Q = e ~  ]r162 = _ e / ~  Im G(e)d~. (2.34) 

The charge density matrix follows as: 
o c c  8(x,y) fF = = Im V(x, y; ~)dE. (2.35) 

i 71" J - o c  

In order to calculate D(c) the operators Go and U must be expanded 
within a suitable system of basis functions. The Green's function method 
is extremely useful in all cases where the perturbing potential U may be 
assumed to be well localized, leading to manageable matrix equations of 
sufficiently small dimensions. Due to effective screening effects the local- 
ization condition is fulfilled in metals and semiconductors. The situation 
is different in (semi-)ionic systems where defect-induced potentials with 
significant Coulomb contributions are of long-range nature. Moreover, the 
inclusion of lattice relaxation terms should lead to more extended defect- 
induced potentials. Lattice relaxation may be important for the stability 
of certain charge states of defects, since it shifts the defect energy levels 
with respect to the Fermi level of the crystal. 

In principle, (2.27) should be used to self-consistently determine the ab 
initio perturbing potential U from the charge density 8 of the defective lat- 
tice; 80 denotes the corresponding and known density of the perfect crystal. 
To my knowledge there are no ab initio investigations on defects in complex 
oxide materials based on Green's functions. Instead, most approaches like 
the studies of Selme et al. [57, 58, 59] as well as Fisenko and Prosandeyev 
[60, 61, 62] in ABO3 perovskites employ short-range ad hoc defect poten- 
tials which are independent of 8. In both cases the set of basis functions 
was chosen to be of LCAO-type (tight binding model) with matrix elements 
taken from the earlier work of Mattheiss [63]. Further approximations con- 
cern the restriction to first-neighbour interactions and to the inclusion of 
only oxygen 2p- and B-cationic d-states. Local lattice relaxations may be 
taken into account within these tight binding approaches on the basis of 
distance variations of interatomic solid state matrix elements, as proposed 
by Harrison [20]. Extended lattice relaxation effects can only be accounted 
for on the basis of simplified screening arguments. 

2. Perturbed cluster approach: In this description the crystal is divided into 
a cluster and the embedding environment. The influence of the embedding 
crystal regions on the electronic structure of the cluster is at the heart of 
this method. The perturbed cluster approach represents the natural link 
between embedded cluster calculations (Sect. 2.1.2) and Green's function 
treatments. 

The perturbed cluster considerations due to LSwdin [64] start with a set 
of localized basis functions. In the following the indices c and e refer to the 
cluster and environment, respectively. After introducing the abbreviating 
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notation Q = e l  - H (with I being the identity matrix) the one-electron 
SchrSdinger type equation of the total crystal reads as: 

0 

Inserting the expression for Ce resulting from the second-row equation of 
(2.36) into the first-row equation yields a SchrSdinger-type equation for 
the cluster-projected wavefunction r162 

(Qcc - Qr162 = O. (2.37) 

This perturbed cluster equation is exact and may be applied to all types of 
solids. It determines the cluster-projected part of the one-electron eigen- 
states corresponding to the exact eigenenergies ~. The cluster-projected 
Hamiltonian Qcc does not describe an isolated cluster, but rather a cluster 
embedded within the surrounding crystal region. Corresponding aspects 
will be further discussed in Sect. 2.1.2. In addition the second term in 
(2.37) represents an effective, energy-dependent potential which models an 
electron transfer between the cluster and the environment: 

Vctc = Qce(Qee)-lQer (2.38) 

Q~c and Qce define the hopping matrix elements for an electron leaving and 
re-entering the cluster, respectively; (Qee) -1 is the propagator modelling 
the electron motion through the embedding region. Vctc reduces to a cluster 
surface operator if the hopping matrix elements are of short range relative 
to the cluster dimensions. Due to the electron mobility Vtr is indispensable 
in metals. However, in insulating materials including oxides this operator 
may safely be neglected (Sect. 2.1.2). 

For applications of this perturbed cluster method simplifying approxi- 
mations need to be introduced in order to treat Vctc . Most importantly one 
considers V t to be unaffected by the presence of a defect, i.e. Vtc =Vctc ~ 
This relation immediately leads to the Baraff-Schliiter formula [65]: 

Vtr Q 0 _  0 - 1  
: (Gcc) . (2.39) 

According to (2.39) only perfect crystal quantities enter the calculation 
of Vtc; in particular the cluster-projected perfect lattice Green's function 
can be taken from band structure calculations. Inserting (2.39) into (2.37) 
recovers the perturbed crystal relation: 

r = Gcr162 ~ o  0 _ Qr162162 = Gr162162162 , 0  (2.40) 

where Ur is the defect-induced potential (see (2.27)), if the cluster exten- 
sion corresponds to the range of U. 

A completely different type of perturbed cluster calculations is defined 
by the corrective operator methods. These descriptions cannot be linked to 
the perturbed crystal approach, which refers to scattering theory. Multi- 
plicative and additive corrective operator treatments axe known [56]. These 
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methods are based on relations between the cluster-projected Green's func- 
tion Gcc and the finite-cluster quantity (Qcc) -1 which are established by 
the respective corrective operators. A brief discussion is now given for the 
additive case, which forms the basis of the perturbed cluster approach of 
Pisani et al. [66, 67]. For a recent application of this method to carbon 
impurities in silicon, see [68]. 

One starts from the equation Q G  = I ,  which yields: 

+ QceGec =Ir162 (2.41) 

+ QceGee - 0. (2.42) 

QCC~CC 

Inserting 

Gec = -G~eQer -1 , (2.43) 

which follows from (2.42) upon using Gee -- (Gee) T, into (2.41) gives: 

Gcc = (Qcc) -1 + (Qcc)-lQceGeeQec(Qcc) -1 

= (Qcc) -1 -t- AGcc. (2.44) 

Equations (2.32) and (2.35) may be applied to calculate the density of 
states and the electron charge density, respectively. The corresponding ad- 
ditive corrections involving AGcc describe the effects induced by electron 
transfer effects. 

AGcc in (2.44) contains the propagator Gee which is related to the embed- 
ding medium. In order to obtain applicable prescriptions one must impose 
the approximation Gee -- Ge ~ [67, 56]. Besides neglecting defect-induced 
perturbations of the embedding crystal this approach is affected by a fur- 
ther more significant disadvantage: approximations to AGcc are not able 
to subtract the poles of the finite-cluster Green's function (Qcc) -1 and to 
add the exact poles of the total defective crystal [56]. It is noted in this 
context that the energy eigenvalues of a finite cluster can deviate substan- 
tially from their proper crystalline counterparts (see also Sect. 2.1.2). This 
is particularly true if the finite clusters contain transition metal impurities. 

E m b e d d e d  Clus te r  Calculat ions.  By definition, embedded cluster calcu- 
lations omit the inclusion of the electron transfer potential given in (2.38). 
Certainly, this potential plays a vital role in metallic systems, but it is as- 
sumed to be negligible in insulating materials, which also include oxides. 

Therefore embedded cluster calculations are based on a real-space de- 
scription of a small crystalline fragment; commonly outer crystal spheres 
embedding the cluster are treated more approximately. Quantum chemical 
approaches are applied to simulate the defect and a properly chosen number 
of neighbouring ligand ions forming the cluster. Ab initio MO calculations 
employ Hartree-Fock theory (which may be extended to include electron 
correlations), but density functional descriptions are also possible. 
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Embedded cluster treatments may formally be justified on the basis of 
localized one-electron Wannier-type orbitals replacing the canonical delocal- 
ized Bloch eigenstates of the crystal. For non-defective insulating crystals 
there exist unitary transformations between the occupied Bloch orbitals and 
a corresponding set of localized orbitals [69]. In this case the total electron 
density Q(r) can be written as 

lo(r) = ~--~ ,r = ~ , w n ( r -  Rj),  2 . (2.45) 
n,k n, j  

Cn.k(r) denotes Bloch orbitals and wn(r -R j )  localized Wannier orbitals, 
n is the band index and R j  is a direct lattice vector. Instead of the Rj- 
centred Wannier orbitals one can also introduce an orthonormal basis set 
consisting of localized Wannier orbitals centred at the nuclear positions r~, 
see also the footnote 2. Such orbitals are conveniently introduced using the 
site symmetry concept (see, for example, [70]). The site symmetry group Gr~ 
of a particular Wyckoff position r~ in the considered crystal consists of all 
operations O E Go (with Go being the space group) satisfying Or~ = r~. ~ 
belongs to one of the known 32 point symmetry groups. In perfect crystals 
the atoms are located at Wyckoff positions. Atom-centred orbitals may be 
constructed as basis functions transforming as partners of the irreducible 
representations of the site symmetry group G~.. Then (2.45) reads as: 

OCC OEC 

1O(r ) ---- E Ir = ~ ] ~ , ( r -  r~)l 2 . (2.46) 
n,k l,t~ 

a labels the atomic sites and l the basis functions of all irreducible represen- 
tations of G~ corresponding to occupied levels. 

The use of localized orbitals appeals strongly to chemical intuition about 
the formation of interatomic bonds. Equation (2.46) allows calculation of the 
crystalline charge density within the restricted area of a cluster. This repre- 
sentation is exact for crystal-adapted localized orbitals. It is obvious that  the 
localized cluster orbitals are not independent of the crystalline environment. 

Conceptually the incorporation of isolated point defects into the cluster 
does not cause any problems, because the atom-centred spin-orbitals which 
belong to a point defect replacing a specified crystal atom (or ion) can be 
chosen orthogonalized with respect to the remaining perfect crystal orbitals. 
Subsequently, therefore, the clusters may be assumed to be perfect or even 
defective. 

For metals, analogous statements to (2.45) and (2.46) do not hold true, 
which reflects the importance of the electron transfer potential in these ma- 

2 Here we restrict our considerations to ionic or semi-ionic crystals. In covalent 
materials, on the other hand, the properly chosen centres of localized orbitals 
may correspond to sites between pairs of atoms resembling the formation of 
electronic pair bonds. However, this modification does not change the principal 
group-theoretical concept. 
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terials discussed in the previous subsection. Therefore embedded cluster cal- 
culations axe not applicable to metallic systems. 

Considering insulating solids, (2.46) forms the basis to divide the total 
crystal into the cluster and the embedding environment, with the electron 
charge density matrix of the crystal given by: 

~(~, y) = ~c(~, y) + ~o(~, y)~(~, y) 
OCC OCC 

= ~ re , , ( )~r  + * (2.47) 
i j 

Application of the unitary mapping, which was introduced above and which 
transforms the occupied Bloch orbitals to localized atomic-centred orbitals, 
to the canonical one-electron SchrSdinger-type HF or KS equations, i.e. 

H[Q]Cn,k = en,kCn,~, (2.48) 

leads to the following set of cluster-related one-electron equations [71, 72]: 

g[dvo, ,  = g[ec + ee]Vc,, = (H ~ + VM + VSR)Vc,~ 

= ~ e,j~c,j �9 (2.49) 
J 

The similarly obtainable equations for the environment-related orbitals are 
not important for present purposes. In (2.49), H ~ denotes the one-electron 
Ha.miltonian of the isolated cluster, VM the long-range Madelung potential 
due to environmental point charges and Vsa the remaining short-range poten- 
tial of the embedding medium. Vsa comprises higher electrostatic multipole 
fields as well as repulsive short-range contributions (e.g. ion size effects) act- 
ing upon the cluster. The unitary transformation leaves H[Q] invariant, since 
the one-electron Hamiltonian is an operator-vaiued functional of the density 
matrix. However, the transformed one-electron equations are no longer diag- 
onal, because the localized orbitals do not represent crystalline eigenstates. 
For non-defective insulators (2.49) is exact. Though no electron transfer po- 
tential enters this equation, there is no contradiction of (2.37), because we 
are now dealing with truly localized orbitals rather than with the cluster- 
projected part of the exact crystaiine one-electron eigenstates as in (2.37). 
In (2.37) V t is necessary in order to account for the proper connection of r 
and Ce. 

Following the localization theory of Adams, Gilbert and Kunz (see [71] 
and references cited therein) (2.49) can be reformulated as 

( g  ~ + VM -~ VSR)~c,i ----- 7ri~c,i -~- ~cW~c~c,i , (2.50) 
occ where 5r = ~ j  I~r (~r denotes the cluster-related density operator and 

W an arbitrary hermitian one-electron operator describing the freedom of 
choosing the unitary transformation within the set of the occupied cluster 
orbitals {~c,i}. The parameters ui may be interpreted as the one-electron 
orbital energies of the embedded cluster: 
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( H  ~ + = �9 ( 2 . 5 1 )  

The embedding potential is given by the non-local, configuration- (or energy-) 
dependent operator: 

Yembed ---- VM + VSR -- ~ r  �9 (2.52) 

The particular choice W = VsR [71] leads to vanishing matrix elements of 
Vsa - ~cVsR~c calculated for the occupied cluster orbitals: 

(~or - ~cVSR~ckOc5 ) = 0, (2.53) 

with i , j  referring to occupied orbitals. Approximating (2.53) as operator 
identity leads to a minimal embedding, i.e. 

(H ~ + VM)~Oe,, = 7ri~or (2.54) 

This set of equations corresponds to embedding the cluster within a point- 
charge array. In the case of covalent materials VM is zero and (2.54) reduces 
to in vacuo cluster calculations. 

In the presence of a defect the charge density of the embedding surround- 
ing will deviate from its perfect lattice counterpart. Also, the nuclear positions 
can be affected by defect-induced changes. Corresponding effects lead to po- 
larizations of the embedding crystal. Due to charged defects, polarizations 
are particularly important in ionic or semi-ionic materials. Such polarization 
effects, which give rise to an additional embedding potential term z~Uembe d 
can be conveniently described by employing a shell model-type pair potential 
representation of the outer crystal regions. Details of this approach are given 
below. 

As an alternative to the embedded cluster treatment presented above, 
one may employ the theory of electronic separability in order to discuss the 
embedding of clusters. The most essential idea within this approach, which 
derives from the group function description of McWeeny [23] and Huzinaga et 
al. [73], involves separating the total crystal into weakly interacting electron 
groups, i.e. into the defect cluster and the embedding groups representing 
ions, atoms or even saturated bonds. To each such group belongs an anti- 
symmetrized wavefunction which may include correlation contributions. It is 
obvious that this formulation of embedded clusters starts from localized or- 
bitals, too. The total wavefunction is given by the antisymmetrized product 
of the building unit wavefunctions: 

e c r y s t  = �9 ( 2 . 5 6 )  

Ne,e are appropriate normalization factors and .,4 denotes the antisym- 
metrizer. In this formulation the assumption of weak interactions completely 
disregards electronic correlations between different groups and also electron 
transfer effects [23]. The second basic idea of the group function approach 
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involves the strong orthogonality condition, i.e. different group functions are 
assumed to be orthogonal to each other. This condition follows immediately 
from (2.55) and (2.56) assuming orthogonalized localized one-electron or- 
bitals. The group function description of crystals results in explicit prescrip- 
tions for constructing the embedding potential of a quantum cluster [74, 75]. 
Kantorovich [74] further derived formulas for the polarization-induced contri- 
bution Z~Yembe d. He proved that corresponding contributions of distant crys- 
tal regions comply with classical dielectric continuum theory (Mott-Littleton 
approach [76]). This result is important, since rigorous applications of the the- 
ory to determine AVerabed are cumbersome. Again, useful approximations to 
the embedding medium can be introduced by shell model-type representa- 
tions of the outer crystal regions. 

Within both of the discussed embedded cluster formulations the total 
energy of a crystal can be written as: 

Ecryst -- Edus + Eclus-env + Eenv. (2.57) 

This equation follows either from the group function approach employing the 
strong orthogonality condition [23, 73] or from the localizing potential treat- 
ment of Kunz and Klein [71] assuming orthogonalized one-electron atomic- 
centred orbitals. 

Practical investigations can be classified according to their level of sophis- 
tication applied to the cluster embedding: 

�9 i n  v a c u o  clusters, 
�9 implementation of Watson spheres, 
�9 embedding by point charge arrays, 
�9 embedding by point charge arrays with additional pseudopotentials on 

boundary ions between the cluster and the environment, 
�9 application of the theory of electronic separability [74, 75]. 

Generally, i n  v a c u o  clusters must be very large to reflect any bulk proper- 
ties. Boundary conditions are introduced to reduce artificial surface effects. 
In covalent materials it is common practice to attach hydrogen atoms to the 
cluster surface in order to saturate broken bonds. H atoms are used to sep- 
arate the surface states from the relevant electronic cluster states. In more 
ionic crystals, in which we are mainly interested, it is important to include 
the effects of a Madelung potential. This can be done approximately by im- 
plementation of Watson spheres. In many cases only one charged Watson 
sphere surrounding the whole cluster is used. The many defect studies of 
Michel-Calendini et al. (e.g. [77]) follow this approach. The introduction of 
an embedding Watson sphere stabilizes all cluster electrons, but is unable 
to model Madelung potential differences related to different sites [71]. One 
should also note that the boundary conditions applied to the tails of the 
wavefunctions beyond the Watson sphere radius are physically not very sat- 
isfactory. This may become particularly crucial for excited states, which are 
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characterized by significant spatial extensions. As a consequence, energy split- 
tings between different states are to a considerable extent dependent on the 
specific choice of the Watson sphere (see [78] for further discussions). In or- 
der to correctly model the Madelung potential, extended point charge arrays 
embedding the quantum cluster can be employed (other methods such as the 
Ewald technique are also applicable). This procedure seems to be sufficiently 
accurate in highly ionic materials with strongly localized electrons, but even 
in these cases it is advisable to model ion-size effects of the ions located in 
the immediate neighbourhood of the cluster. This can be accomplished on 
the basis of suitable pseudopotential methods. The explicit construction of 
localizing potentials suggested by Kunz and Klein [71, 72] is based on (2.53). 
However, the use of tabulated effective core potentials (e.g. see [21]) defined 
on boundary atoms is computationally less costly and facilitates results of 
remarkable accuracy (see Sect. 3.3.1). For recent applications of the theory 
of electronic separability to transition metal impurities in alkali halides and 
alkaline earth fluorides see [79]. Up to now this technique has not been em- 
ployed to investigate point defects in complex oxides. 

For detailed discussions of the embedding problem the reader is referred 
to [74, 75, 80]. 

Embedded cluster-type calculations are extremely well suited to investi- 
gating the local electronic structure of point defects in ionic or semi-ionic 
crystals. There is no restriction to neutral defects and it is straightforward 
to include defect-induced lattice relaxations. This is particularly true if one 
simulates the cluster environment on the basis of a shell model pair potential 
representation (see also Sect. 2.2). The computational basis of this approach 
is given by (2.57), which, for present purposes, may be reformulated as fol- 
lows: 

Ecl '• Re) (2.58) E(k~, Re, Re) = E~ Mcrys(Rc,Re) + E~M(k~, Rc, Re) - -  SM(ltc, 

The total energy of the composite system is minimized with respect to the 
cluster (nuclear) coordinates Rc and to the core and shell coordinates Re of 
the outer crystal ions in order to calculate defect energies. In addition, a min- 
imization is needed with regard to the electronic wavefunction k~ describing 

/~crys ( the local electronic structure within the cluster region 3. ~SM ~-~c, Re) is the 
shell model energy of the total crystal and E~M(~P, Re, Re) is the quantum 
mechanical defect cluster energy including the total Coulomb interaction be- 
tween cluster species (electrons and nuclei) and the outer crystal ions which 
are treated within the shell model. To avoid double-counting effects in (2.58) 
the shell model-type cluster energy cl EsM(Rc , Re) must be subtracted; similar 
to its quantum mechanical counterpart E ~ ( R e ,  Re) includes all Coulomb 
interactions with the outer crystal ions. Thus, (2.58) mimics the substitution 
for a defective shell model cluster of its quantum mechanically treated coun- 
terpart. Moreover, pairwise short-range potentials are kept to modelling the 

3 The wavefunction must be replaced by the electron density if DFT is employed 
instead of wavefunction-based methodologies. 
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corresponding interactions between the cluster and the embedding crystal 
region. 

Figure 2.2 schematically visualizes corresponding computational cycles in 
order to minimize the energy of the defective crystal. It is common practice 
to optimize the cluster and embedding lattice configurations on the basis of 
variable metric methodologies [81]. 

t 
Rc, R e fix 

Variation of 

, ? 
�9 . R  c fix 
Variation of R e 

t if convergence for 

upper cycle 

R e fix 

Variation of R c , '!' 

Fig. 2.2. Computational cycles of embedded cluster calculation including lattice 
relaxation. Rr and Re denote the cluster and embedding lattice configurations, re- 
spectively, k~ is the electronic state function of the quantum cluster. The embedding 
lattice is modelled on the basis of a potential representation. Whereas the upper 
cycle denotes the lattice equilibration step, the lowest box represents the cluster 
geometLy optimization cycle 

The complete minimization procedure consists of two cycles: the first cyc|e 
performs the geometry optimization of the embedded cluster with all outer 
ions remaining fixed at their actual positions. For each particular cluster 
geometry the wavefunction (or electron density) must be updated appropri- 
ately. Most of the available ab initio molecular codes can be used for this task. 
However, the programs must be modified as to include the required short- 
range cluster-lattice interactions. The second cycle in Fig. 2.2 is devoted 
to the equilibration of the embedding shell model lattice. For corresponding 
computational details the reeler is referred to Sect. 2.2. 

Generally the lattice configuration/~ bears a pronounced relation to the 
cluster wavefunction $. This dependence requires us to employ during the 
optimization of the lattice configuration Re the accurate electrostatic poten- 
tial produced by the quantum cluster. This task may be accomplished by 



30 2. The Scope of Theoretical Methods 

applying a multipole expansion to the electrostatic cluster potential. The re- 
quired multipoles are derived from the total cluster charge density, which is 
the output of the appropriate ab initio MO calculations. In most situations 
the embedding lattice relaxation step is based on a shell model description 
employing point charges to represent the crystal ions (Sect. 2.2). Therefore 
one naturally introduces point charge simulators [82] of which the positions 
and charges are adjusted to reproduce the exact cluster multipoles up to a 
required order. This procedure guarantees the accurate account of the elec- 
trostatic cluster potential. More approximate schemes choose the cluster ion 
charges according to a Mulliken population analysis (MPA, e.g. [17]) or even 
as formal (integral) charges. The latter two approaches are particularly use- 
ful if bare effective core pseudopotentials are used to represent the ions at 
the cluster boundary. This experience is due to the observations that the 
pseudopotential ions spatially separate the embedding lattice ions from the 
explicit cluster charge density and that higher multipole contributions fall off 
rapidly with increasing distance from the cluster density. A further advan- 
tage of using bare effective core potentials at the cluster boundary refers to 
the fast convergence properties of the total equilibration cycle encompassing 
both the lattice and the cluster subcycle. In most practical situations it suf- 
fices to perform two or three such loops. If not stated otherwise all practical 
embedded cluster studies reported in the subsequent chapters refer to this 
minimization procedure. 

A slightly different approach to embedded cluster calculations explicitly 
employs the exact potential energy surface (PES) of the cluster in order to 
perform cluster and lattice geometry optimization. This method establishes 
a natural link to general potential simulations described in Sect. 2.2. The 
technique has been invented for defects with high point symmetry. For details 
of this method the reader is referred to Sect. 3.3.1, where it has been applied 
to investigate tetravalent manganese in cubic BaTiO3. 

So far, embedded cluster simulations including lattice relaxations have 
been reported for a number of different defect species in ionic materials, 
including impurity cations, anion vacancies and hole type defects in alkali 
halides, elpasolites and in basic binary oxides such as MgO (for example, 
see [72, 83, 84, 85, 86]). Chapters 3 and 4 present sophisticated embedded 
cluster calculations for complex perovskite-structured oxides, in which special 
attention is paid to the effects of electron correlations. 

In order to complete the discussion of embedded cluster calculations some 
remarks on the value of one-electron orbital energies are useful. Orbital energy 
differences can be highly misleading when calculating energetic separations 
between ground and excited electronic states, because these energies need not 
be related to true crystalline one-electron energies. This point is illustrated 
by tetravalent manganese doped into BaTiOa on Ti sites, of which further 
computational details are given in Sect. 3.3.1. 
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Inspecting the orbital energies of an (MnO6) -s cluster shows that the 
singly occupied d(t2g) levels of the manganese fail below the doubly occupied 
oxygen 2p levels corresponding to an energy separation of ~10 eV between the 
d orbitais and the top of the valence band states. At first glance this situation 
seems to reflect a highly excited electronic state and one might guess that 
tetravaient manganese is extremely unstable against charge transfer. How- 
ever, two important facts should be borne in mind. First, the the eigenvalues 
of (small) clusters are not simply related to crystalline eigenvaiues a, which 
is plain from the discussion leading to (2.51). Thus the cluster eigenvaiues 
do not provide information on the position of defect levels within the band 
gap. The second remark concerns the physical significance of orbital energies 
of small quantum systems such as atoms or molecular clusters. Within HF 
theory it is Koopmans' theorem which identifies the orbital energies with 
negative ionization energies. Orbital energy differences are then approximate 
excitation energies. However, there is a precondition for this theorem to work 
in practice, i.e. excitation-induced orbital relaxation effects must be negli- 
gibly small. Whereas this condition is fulfilled for delocalized eigenstates of 
large systems like crystals, it is not guaranteed for small clusters of atoms. 
As an example we consider the present (MnO6) -8 cluster. First, the 4A2g 
electronic state of this cluster has been calculated self-consistently. Then, 
without allowing any further orbital relaxations, the total energies of the two 
ionized states with one electron removed from either the top of the oxygen 2p 
levels or from the d(t2g) manganese orbitais have been determined. The total 
energy differences with respect to the aA2g state provide the corresponding 
ionization energies. On the basis of this procedure the precondition of Koop- 
roans' theorem has been forced to be operative. The difference between the 
ionization energies obtained in this way (,-~10 eV) equals the difference of or- 
bital energies quoted above. Next, the calculation of the ionization energies 
was repeated, but taking into account all orbital relaxations. As a result of 
orbital relaxations (which mainly affect the ionization from the localized d 
orbitais, corresponding to an energy gain of ~7.1 eV) the difference in the 
ionization energies for the two processes reduces to about 3.9 eV. Thus, the 
ASCF method shifts the d(t2g) related states of manganese much closer to 
the oxygen 2p states. Related discussions of the breakdown of Koopmans' 
theorem in transition metal complexes are reported in [87, 88, 89]. 

It is emphasized that ASCF energies may be considered as simplified cases 
of total crystal energy differences calculated on the basis of (2.57), if the indi- 
vidual total energies differ only with respect to the cluster state function ~. 

4 By extending the cluster size to infinity one would certainly observe that the clus- 
ter orbitals (and energies) converge to their bulk limits. This relation provides 
information on how fast the cluster orbitals approach the delocalized crystalline 
eigenstates. Typically one must consider large clusters in order to obtain the 
properties of delocalized bulk orbitals. This observation, however, does not in- 
validate (small) embedded cluster calculations, because their justification derives 
from the use of localized crystalline orbitals based on (2.45). 
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In this fashion, differences between SCF energies are the physically relevant 
quantities which are consistent with the embedded cluster approach, not or- 
bital energy differences. The situation differs slightly in the case of embedded 
cluster calculations based on the Xc~ exchange approximation [18] or, more 
generally, on the density functional theory (DFT). Again, a priori, the clus- 
ter orbital energies are not related to crystalline one-electron energies. But 
different to HF, there is from the beginning no formal basis for Koopmans' 
theorem relating the one-electron energies to (unrelaxed) ionization energies. 
Instead, the theorem of Slater [18] (generalized for DFT by Janak [90]) holds: 

OE[8] (2.59) 
g i  - -  0~,7,i 

For large electron numbers this theorem provides a relation between orbital 
energies ei and corresponding occupation numbers ni according to the Fermi- 
Dirac statistics. It is, thus, plain that the different meanings of HF and X~ 
one-electron energies may result in a substantially different level ordering. As 
an example we compare the HF orbital energies of (MnO6) -s with the cor- 
responding ones obtained from earlier X(~ cluster calculations [91]. Whereas 
within HF the d(t2g) manganese orbital energies are well separated from the 
oxygen 2p levels, the same d orbital energies are close to the top of the oxygen 
2p states in the case of the Xc~ cluster calculations. Following Slater [18], the 
differences between the orbital energies can be traced back to the differences 
in the respective exchange potentials: 

exa _ e~F = Vx~(r) - VXHF,i(r) �9 (2.60) 

The inspection of Slater-Condon exchange parameters of transition metal 
atoms suggests that in partieular the 3p-3d exchange interaction is respon- 
sible for the expected differences in the exchange potentials. 

Both the HF and the X(~ one-electron energies are qualitatively related 
to an ionization, i.e. the first ones on the basis of Koopmans' theorem and 
the latter ones as a consequence of the Fermi-Dirac statistics (the highest 
occupied orbitals should most easily be ionizable). It may be assumed that 
the Xc~ and HF orbital energies represent lower and upper bounds on the 
true ionization energy based on ASCF, which, however, can be substantially 
different from the orbital energies, if the difference on the left-hand side of 
(2.60) is large. Then we have to expect considerable orbital relaxation effects. 
Only in situations of deloealized orbitals can we expect that the difference 
between the X(~ and HF exchange potentials will be sufficiently small. The 
corresponding agreement of orbital energies then leads to a physical interpre- 
tation of the one-electron energies, since both Koopmans' theorem and the 
Fermi-Dirac condition are approximately fulfilled. This situation corresponds 
to erystalline one-electron eigenstates close to the Fermi energy and agrees 
with the general pereeptions of DFT. 
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2 .2  P o t e n t i a l  S i m u l a t i o n s  

2.2.1 Potential  Forms and Applications 

Generally, potential simulations of crystals are based on the validity of (2.5). 
In this section various functional forms of crystal potentials and some of their 
applications are reviewed. The derivation of crystal potentials is considered 
in Sect. 2.2.2. Major emphasis will be placed on pair potential descriptions, 
since these have proved to simulate reliably the formation of defects in many 
oxide systems of technological interest. The subsequent chapters are mainly 
devoted to corresponding questions. More general potential forms are useful 
only if one needs to model accurately the minute structure and energy changes 
due to FE-PT in perovskite oxides. 

The effective crystal potential Ve~ may be obtained by evaluating Vnn(~i) 
+ Eo(T~i) for a set of lattice configurations {T~i}~= 1. Potential energies are 
then fitted with a general model potential expression defined with respect to 
the nuclear coordinates or to appropriately chosen symmetry-adapted coor- 
dinates. In many situations symmetry-related restrictions are necessary in 
order to reduce the number of independent variables to a manageable level. 
Avoiding any approximating assumptions with respect to the potential form, 
the potential energy surface (PES) of the whole crystal can only be scanned 
at specified high-symmetry points within the first Brillouin zone by employ- 
ing suitable phonon-adapted ion displacements. Such an approach, based on 
model potentials derived from perfect crystal ab initio calculations, is of- 
ten employed to investigate general phonon-related structural transitions, of 
which ferroelectric instabilities in perovskite oxides (see also Sect. 3.1) pro- 
vide examples. Within the applied ab initio level model potentials provide an 
accurate image of the Born-Oppenheimer PES of the ground state. 

A brief illustration of these ideas can be given by sketching the construc- 
tion of an effective lattice Hamiltonian in terms of (localized) lattice-type 
Wannier displacements. In this group theoretical approach [92] the site sym- 
metry concept is employed (see Sect. 2.1). One proceeds by decomposing the 
3natN-dimensional "ionic-displacement" space (with nat ions contained in 
each of the N unit cells) into a direct sum of invariant subspaces (so-called 
"band subspaces"). These band subspaces are spanned by one or more entire 
branches of normal modes and are closed under the action of the space group 
Go, belonging to a high-symmetry crystal structure to which the particular 
structural transition refers. This decomposition corresponds to the band pic- 
ture of the perfect crystal electronic structure. For each band subspace the 
constructed set of localized Wannier displacement basis vectors (the lattice 
analogue of the electronic Wannier orbitals, Sect. 2.1) transform as part- 
ners of a particular irreducible representation of the site symmetry group 
corresponding to one specified Wyckoff position index. The complete lattice 
Hamiltonian is written in terms of the Wannier displacements (i.e. the coor- 
dinates with respect to the localized Wannier basis vectors) by performing 
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a Taylor expansion with respect to the reference structure. The coefficients 
of this expansion may be obtained from ab initio calculations. At quadratic 
order there are no cross terms between the band subspace A0 in which the ef- 
fective symmetry-adapted Hamiltonian being sought acts and all other band 
subspaces A ~ Ao. One finds: 

y ryst + (2.61) 
A ~ A o  

The ~ A ~  denote the Wannier displacements. The labels refer to the respec- 
tive band subspace A, the normal modes contained in A and the appropriate 
Wyckoff positions in the lattice. The effective Hamiltonian may be employed 
in statistical mechanical analyses. Based on the decoupling of band subspaces, 
the relevant partition function depends only on the set (~AoIR~ }- Obviously 
the described procedure reduces the number of variables to a manageable 
amount. 

In an alternative approach the effective crystal potential is expanded in 
terms of multi-body interactions employing the coordinates of the crystalline 
nuclei: 

] I 
1 1 V~ ~ , ( ~ )  = go + ~. ~-~Y,j(P~,nj) + ~. ~ ~jk(P~,nj,nk) + ...,(2.62) 
�9 i , j  " i , j , k  

where primes denote the exclusion of equal indices in the summations. The 
configuration-independent term V0 (sum of atomic or ionic self-energies) is 
often neglected. In order to characterize the global PES of a solid the higher 
multi-body terms must be considered, too. Termination of the expansion in 
(2.62) principally restricts the applicability of the potential to parts of the 
crystalline configuration space. However, in many situations the second and 
third summands provide the dominating contributions. The second term in 
(2.62) describes pair potentials and the third three-body contributions. In 
the valence force model (see [93]) of covalent solids these two summands are 
used to simulate the stretching and bending of covalent bonds close to their 
ideal structure. The model may be applied to calculations of perfect-lattice 
and defect problems. Scheffier et al. [94] applied an ab initio derived valence 
force potential to investigate the formation of the Ga vacancy in GaAs. 

Another important simplification of (2.62) consists of employing the pair 
potential central field approximation (PP-CFA): 

PP-CFA = "~- E (2.63) (7r v0 v, (IP  - R I). 
i < j  

Potentials of this type are useful in simulations of van der Waals bonded 
crystals, ionic systems and even of simple metallic crystals, where the nearly 
free electron model works accurately [95]. 

Potential descriptions going beyond the pair and three-body potential 
approaches refer to pair and cluster functionals [96]. Such generalized po- 
tentials efficiently add environment dependent terms to the pair and cluster 
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potentials, thereby extending the covered part of the configuration space. 
Corresponding functionals are necessary to account for transition metals. In 
semiconductors these contributions improve on simulating broken bonds. A 
pair functional, for example, reads as: 

1 ~ - ' ~ V i 3 ( / ~ , R j ) + ~ U  9(P,4, R3)  �9 (2.64) v F(n) = 

Whereas the first term in (2.64) denotes a pair potential, the second sum- 
mand defines a functional assigning a real number to the environmental pair 
function g. The function U is generally non-linear; otherwise (2.64) fits into 
the pair potential scheme. The formal justification of pair functionals can be 
based on a tight binding model analysis or on an embedded-atom approach. 
Whereas in the first case g refers to the local band width (i.e. the second 
moment of the site-projected density of states) and U obeys a square root 
dependence, g relates to the environment electron density of an atom and U 
is a numerical function in the latter case. Pair functionals have been applied 
to investigations of intrinsic defect formations including broken bonds and 
energy differences between competitive crystal structures. 

Many potential simulation studies of insulating solids employ the PP- 
CFA extended by appropriate electronic polarization contributions. The shell 
model represents the most successful scheme in this respect. Originally shell 
model-based simulations were invented to investigate highly ionic materials 
(e.g. alkali halides). Later, calculations of this type turned out to be extremely 
successful also for many complex oxides - even in systems with pronounced 
covalency, such as silicates. The shell model approach also provided detailed 
information on the defect chemistry of electro- and magnetooptic oxides (for 
a review see the subsequent chapters) as well as of high-Tc copper-based 
superconductors (La2CuO4 [97, 98, 99], YBa2Cu307-~ [100, 101, 102, 103, 
104] and HgBa2Ca2CuaOs+~ [105]). Because of this success it is useful to 
summarize briefly the fundamentals of the shell model and its applications. 

The effective potential is given in the pair potential central field approx- 
imation (PP-CFA). Higher-order corrections (i.e. three-body bond-bending 
terms) may be added where they appear to be necessary. Electronic polar- 
izations of the crystal ions are described on the basis of (an)isotropic spring 
constants in harmonic or even anharmonic approximation. The spring con- 
stant couples a shell to each ionic core, which reads in the isotropic cases 
as: 

1 
Vcore-shell(rcore, rshell) = ~k l rco re  -- rshellt 2- (2.65) 

The electronic polarizability arising from this core-shell interaction is given 
by the expression: 

(qsheU) 2 
o~- ~ , (2.66) 
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where qshell denotes the shell charge of the respective ion. Total ionic charges 
q = qcore + qshell may be chosen as formal integral charges corresponding to 
an ideal ionic crystal model or as partial charges. The actual V~ depend 
on this choice. It is noted that the transferability properties of short-range 
potentials goes wrong for partial charge models. Phonon calculations often 
invoke partial charges in order to obtain a better representation of dispersion 
curves. Lattice energies, on the other hand, are more satisfactorily calculated 
with formal charges. This is also true for defect formation energies, which 
are differences between perfect and defective lattice energies. Moreover, it 
is straightforward to formulate defect chemical reactions using formal ion 
charges, but not so with partial charges. 

Considering (semi-)ionic systems, the sum of pair potentials in (2.63) is 
split into the long-range (LR) Coulomb part and short-range (SR) potentials 
describing electronic repulsion and covalency effects. If one is mainly inter- 
ested in modelling non-interacting phonons, it suffices to apply the harmonic 
approximation to (2.63). However, in all cases in which large ion displace- 
ments are to be expected (e.g. around defects with pronounced charge or 
size misfit) the harmonic approximation may lead to inaccuracies. Then it is 
preferable to employ the explicit PP-CFA interionic potentials: 

ij qiqj 
V~R (rij  ) -- (2.67) 

rij 

qi and qj are core or shell charges of different ions and rij  is the interionic sep- 
aration. Short-range pair potentials are conveniently chosen as Buckingham 
potentials, i.e. 

V~R(rij) = Aij " e x p . .  6 �9 (2.68) 
\ Oij / rij 

Other choices (e.g. Morse potentials) may be used as well. The first term 
appearing on the right-hand side of (2.68) represents repulsive interactions 
arising from the impenetrability of closed electron shells; the second (attrac- 
tive) term models the van der Waals interactions but also covalency. Arising 
from electron-electron interactions, V~  should be defined as acting between 
ion shells. This modifies the in-crystal polarizabilities of ions and effectively 
makes them dependent on the host - an important effect, particularly for the 
diffuse oxygen anions. Effectively, the corresponding changes can be intro- 
duced as 

( q s h e l l ) 2  (2.69) 
O~in--crys ta l  - -  k -t- k s R  ' 

where ksR results from the short-range interactions between neighbouring 
ions. Figure 2.3 schematically displays the various types of interaction within 
a shell model description. The shell model is superior to unpolarizable (or 
rigid) ion models, because it may correctly account for the high-frequency di- 
electric properties of crystals. It also improves on polarizable point ion (PPI) 
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Fig. 2.3. Pair potential interactions within a shell model description of crystals 

models due to the coupling of ion polarizations and short-range interactions. 
Within shell model simulations polarization catastrophes can be successfully 
suppressed. For further details the reader is referred to [106]. More elaborate 
versions of the simple shell model discussed so far consider the deformation 
of shells (breathing shell model). Such models are able to account for ob- 
served Cauchy violations; defect energies, on the other hand, do not change 
significantly upon these improvements [107, 108]. The general problems with 
elaborate shell models refer to a rapid rise in the number of potential param- 
eters to be determined. 

Having developed a suitable parametrization of shell model-based poten- 
tials (see Sect. 2.2.2), the lattice structure and phonons of perfect crystals 
may be investigated. It is also possible to calculate all macroscopic crystal 
properties which are in the realm of suitable potential models. Corresponding 
properties include the elastic and dielectric constants, for instance. Green's 
function methods, supercell simulations or Mott-Littleton-type calculations 
can be used to study the structural and energetical properties of defects. 
The Mott-Littleton approach considers isolated point defects or small ag- 
gregates and employs a two-region strategy to obtain the required internal 
defect formation energies Uv (see Fig. 2.4). Outer crystal regions are treated 
as a polarizable continuum. 

The basic ideas of Mott-Littleton formulations may be summarized as 
follows (for details see [106]). The internal defect formation energies can be 
written as: 

Uv = m i n { E ( ~ , x , y ) }  
k~,x,y 

-- min{Ei(~P,z) + E i - i i ( ~ , x , y )  + EII(y)} �9 (2.70) 
~,x~y 

The defect energy consists of contributions due to region I and II and the 
interaction term Ex-ii (see also Fig. 2.4 for additional information); x and y 
denote the totality of region I and II ion displacements, respectively. The min- 
imization with respect to x and y includes defect-induced lattice relaxations. 
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Fig. 2.4. The two-region strategy. The (embedding) crystal lattice is divided into 
the regions I, IIa and IIb. The inner region I which immediately neighbours the 
respective defect (simulated by the central defect cluster in this figure) usually 
contains between 100 and 300 ions. Region I is explicitly equilibrated according 
to the underlying pair potentials. The outer region II (consisting of parts a and 
b), on the other hand, is treated as a polarizable continuum using the harmonic 
approximation for the region II self-energy. Whereas the interactions between the 
cluster and region I, on the one hand, and region IIa, on the other hand, are included 
explicitly, all region IIb species feel only the effective defect charge of the central 
defect cluster. Arrows denote the relevant interactions between the various regions 

The defect energies in (2.70) are internal energies at constant volume, because 
in practice any elastic deformations of the embedding region II are neglected. 
Thus the volume of the crystal remains unchanged upon defect formation. 
The defect wavefunction ~P has been introduced to account for embedded 
cluster calculations; for corresponding details the reader is referred to Sect. 
2.1.2. In the present context we restrict our discussion to considering the 
classical degrees of freedom x and y. The remaining minimization in (2.70) 
becomes reduced to a finite problem by employing the constrained search 
condition, 

uv -- minx E(x, yo(x)) :-- min(m~n E(x, y)) , (2.71) 

and the harmonic approximation applied to region II: 

EII(y) = l yT  Ay. (2.72) 

Effectively, (2.71) assumes region II to be adiabatically equilibrated for each 
arbitrarily fixed region I configuration. The Mott -Li t t le ton approach employs 
dielectric continuum theory in order to approximate the unknown functional 
dependence yo(x). For example, considering an isotropic ionic crystal with 
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two unpolarizable ions (charge 5:q) per unit cell (volume Vuc), the defect- 
induced relaxations of distant region II ions are given by: 

Yo,+q = -YO,-q ~ ~ 1 - Q - ~ .  

e denotes the dielectric constant of the material and Q the effective defect 
charge. Because of the factor (1 - ~), the precise value of the dielectric con- 
stant is of little importance once it becomes large. Also, the effect of dielectric 
anisotropy will be negligible in such cases. Equations (2.71-2.73) can be used 
to calculate the asymptotic contributions to EI-II +EII :  

EI_n + EH ~ - I  Q ~ qjY~. rj . (2.74) 
jEI I  J 

The infinite summations of Coulomb contributions in (2.74) may be carried 
through exactly using the Ewald technique. Finally, the required minimiza- 
tion procedure reduces to the finite problem: 

OE(z, y) ~_~ 
Ox = (EI(x) § EI-n(x,  Yo)} = O. (2.75) 

Y~--Yo 

This explicit minimization of the embedded region I can be conveniently 
performed by employing the variable metric technique [81]. 

The formal minimization scheme extended to complex and anisotropic 
crystals has been implemented in a number of computer codes, e.g. HADES 
[106], CASCADE [109] and GULP [110]. 

Though it is possible to calculate the entropy contributions of isolated 
defects (i.e. vibrational contributions) to the free energy of defect formation 
fv = uv - Tsv [10], it turns out that in many instances the entropy term 
( -Tsv)  is sufficiently small compared with the internal formation energy 
uv. Corresponding results found in ionic crystals [10] are certainly useful 
in oxides, too. Significant entropy terms may enter the calculations only, 
if gas-phase states are involved. Nevertheless, for predictions related to the 
defect chemistry of materials it will often suffice to calculate internal defect- 
formation energies uv and to combine them according to appropriate defect 
reactions. 

For a general discussion of well-known simulation techniques, see the ex- 
tensive review by Catlow and Mackrodt [106] and the recent review by Hard- 
ing [10]. These references also provide detailed information on surface simu- 
lations, molecular dynamical (MD) and Monte Carlo statistical calculations. 
It is finally emphasized that particularly MD-simulations become feasible 
within a pair potential approach. Calculations of this type have been per- 
formed to investigate the dynamics of FE-PT in perovskite oxides (see Sect. 
3.1). In particular, for atomistic simulations of structure, energetics and im- 
purity segregation at oxide surfaces the reader is referred to [111]. Note that 
these investigations also invoke Mott-Littleton type methods. 
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2.2.2 Derivation of  Effective Crystal Potentials 

In practice the generation of crystal potentials employs suitable fitting pro- 
cedures. The first (theoretical) approach is based on fitting the calculated 
potential energy surface (PES) of either the total crystal or an appropriately 
chosen embedded molecular fragment. In the second (empirical) method the 
chosen parameters of the potential are adjusted to reproduce the observed 
crystal structure and macroscopic properties (e.g. elastic and dielectric con- 
stants or vibrational properties). The following discussion is restricted to con- 
sidering the derivation of shell model pair potential parameters, but similar 
procedures can be developed as well for more general potentials. 

Least-square fitting procedures invoke the minimization of a chosen cost 
function which in theoretical approaches reads as: 

s t  = w,  lEPE (n,) - V ( n , ;  (2.76) 
i 

with (see also Sect. 2.1) 

E p E S ( 7 ~ , i )  ~- Vnn(T~i) q- Eo(7~i). (2.77) 

In (2.76) the sum runs over the specified ion configurations 7~i of the con- 
sidered system, w~ denotes weight factors possibly defined, V is the required 
potential and {~} is the respective set of potential parameters which in the 
framework of the shell model includes A, Q, C for each (Buckingham) pair 
potential and Y, k for each shell model ion. In highly ionic materials (the 
alkali halides or magnesium oxide, for example) the quantum clusters can 
be assumed to consist of pairs of ions of which the short-range interaction is 
required. In order to determine EpEs of such dimers one can employ either ab 
initio cluster calculations [112, 113, 114] or the electron gas procedure accord- 
ing to Gordon and Kim [115], of which the latter approach is based on the 
LDA ground state energy functional of closed-shell atoms. Generalizations to 
open-shell atoms may be inferred from [116]. 

In the electron gas method the short-range potential between ions A and 
B is derived by investigating 

EpEs(AB) = E[QA + QB] -- E[~A] -- E[QB] (2.78) 

as a function of the interionic separation between A and B. The assumed 
rigid superposition of ionic densities leads to the neglect of any covalency 
effects. The method is particularly useful in describing highly ionic crystals. 
In simulation studies of semi-ionic materials, electron gas derived potentials 
are likely to overestimate the repulsive interaction contributions. It is an 
advantage of the electron gas method that it does not mix up the short- 
range interionic potentials and the electronic polarizations of the ions. Any 
shell parameters required must be inferred from additional empirical fitting 
to dielectric properties of the considered material [117]. 

Ab initio cluster calculations, on the other hand, are applicable to all 
types of material in order to derive interatomic (interionic) potentials. The 
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investigated clusters may consist of ion pairs where this appears to be appro- 
priate, but choosing larger clusters should be preferred in most situations. 
The necessity for extended clusters relates to complex covalency effects (see 
the derivation of an ab initio niobium-oxygen potential in KNbO3, below). 
Another sophisticated approach towards the derivation of ab initio pair po- 
tentials has been suggested recently by Recio et al. [118]. In this atom-in- 
crystal method, based on the group function description of McWeeny and 
Huzinaga (Sect. 2.1.2) the lattice energy of the crystal is written as a sum 
of atomic (ionic) self-energies and atomic (ionic) interaction contributions in 
the crystal. The method, which is applicable if the relevant group functions 
can be chosen as atomic(ionic)-in-crystal wavefunctions, has been tested for 
different alkali halides but not for complex oxides. 

The particular derivation of impurity-related potentials has been recently 
addressed by Pandey et al. [119]. The corresponding approach employs an em- 
bedded cluster description including defect-induced relaxations of the outer 
lattice spheres (see Sect. 2.1.2). In particular, for charged defects lattice re- 
laxations are able to suppress unwanted charge oscillation effects. 

Ab initio cluster calculations require an appropriate embedding of the 
chosen quantum cluster to mimic the crystalline environment (Sect. 2.1.2). 
Most importantly, the Madelung potential must be included. The more diffuse 
the crystalline anions are, the more important becomes the inclusion of the 
Madelung potential [113, 117, 120]. This is particularly obvious for oxides, 
because O 2- anions are unstable as isolated species. The stabilizing influ- 
ence of the lattice potential is indispensable in this case. Recent computer 
modelling of the crystalline boric oxide B203 [121] has indicated significant 
failures of potentials derived from in vacuo quantum cluster calculations. It 
turned out to be insufficient to add the Madelung potential afterwards. 

By construction, ab initio cluster calculations mix interionic potentials 
with polarization contributions of the ionic charge densities. The resulting 
potentials may not be used in shell model simulations, as this would intro- 
duce artificial double-counting effects otherwise. For pairs of ions, Harding 
and Harker [113] suggested a procedure based on a quadrupole analysis to 
separate the potential and polarization contributions. In the case of com- 
plex clusters one may conveniently employ hydrostatic pressure simulations 
in order to derive polarization-free ab initio pair potentials (see the deriva- 
tion of an ab initio niobium-oxygen potential in KNbO3, below). Additional 
information on polarizations can be obtained empirically by fitting to dielec- 
tric properties or by further cluster calculations involving symmetry-breaking 
distortions. 

Finally, it is possible to fit the calculated PES of the perfect crystal ("in- 
finitely large cluster") with model potentials. This approach has been recently 
applied to B203 [121]. The linear programming methodology employed (see 
also [81]) has been designed to fit the PES of the system with the additional 
constraint of requiring the reproduction of observed crystal structures. Both 
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the crystal energy to be optimized and the structural constraints have been 
taken linearized with respect to the adjustable potential parameters. Because 
no care was taken to distinguish between the interionic potential and ionic 
polarization contributions, the resulting set of pair potentials delivers a rigid 
ion model. As in the case of cluster calculations, hydrostatic pressure simu- 
lations supplied with additional empirical or theoretical investigations would 
remedy this restriction. 

Empirical derivations of potentials are based on fitting procedures to the 
observed crystal structure and macroscopic properties. Considering oxides, 
this easy-to-handle methodology is the most frequently used strategy to de- 
velop suitable crystal potentials, although theoretical techniques are concep- 
tually more desirable. Basically the empirical cost function can be written 
as:  

2 + ~ w3,l(Pcalc(1) - P e x p ( / ) )  2 �9 (2 .79)  

i 3,k l 

The lattice and basis strains, ei and ejk, usually refer to the observed crystal 
structure. The entities Pcalc/exp(1) denote calculated and measured macro- 
scopic crystal properties, respectively. These depend on the matrix of second 
derivatives of the lattice energy and, thus, provide some information on the 
effect of changing interionic separations. Empirical potentials are by construc- 
tion strictly valid only close to the observed lattice spacings. Consequently, 
these potentials may fail to work in situations with significantly deviating 
interionic separations (e.g. "extreme" interstitial defect problems). For com- 
plex materials it may happen that the number of fit parameters exceeds the 
number of known experimental data. In this situation it is often helpful to 
fit related binary systems and transfer the corresponding potentials to sim- 
ulations of the more complex crystals. Quite generally, testing the transfer 
of potentials may help to control the physical interpretability of derived po- 
tential sets. Fhrther, it is common practice to employ the transfer method 
in order to simulate impurities. Detailed information on empirical potentials 
for oxides can be inferred from [12, 122]. 

There are several strategies to improve empirical potential derivations. 
First, (2.79) can be easily generalized to perform a simultaneous fit of multi- 
ple crystal structures and their properties (e.g. different structural modifica- 
tions of one crystal) [110]. Second, one can employ relaxed fitting procedures 
[110] in which the calculated lattice and basis strains as well as macroscopic 
properties are taken with respect to the particular crystal structure being 
fully equilibrated according to the actual potential parameters. The relaxed 
fitting technique is especially useful for materials that are close to structural 
instability. Oxide perovskites, which are at least incipient ferroelectrics, rep- 
resent important examples. The advantage of relaxed fitting routines derives 
from the observation that minute changes of ion positions, which occur when 
residual bulk and basis strains are released after conventional fitting, may re- 
sult in pronounced changes of material properties like the dielectric constants. 
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The method has been recently applied to simulations of the incipient ferro- 
electric KWaO3 (see Chap. 4). Further, using the relaxed fitting approach, 
progress has been made towards stabilizing the ferroelectric tetragonal phase 
of PbTiO3 over the cubic phase which is usually generated within isotropic 
shell model simulations [123]. Third, the inclusion of oxygen core shell po- 
larization vectors as adjustable parameters in the fitting procedure may help 
to stabilize required ferroelectric phases. This method has been successfully 
applied to model the ferroelectric R3c phase of LiNbO3 [124]. 

NbS+.. .  0 2 -  Sho r t -Range  Pa i r  Po ten t ia l s  Der ived  f rom E m b e d d e d  
Clus te r  Calculations in KNbO3.  This subsection is devoted to delineat- 
ing further aspects of ab initio derivations of pair potentials. In particular, we 
consider the derivation of ab initio Nb5+... 0 2- short-range pair potentials 
which are obtained from ab initio SCF-LCAO-MO embedded cluster calcula- 
tions. The underlying crystal structure refers to cubic KNbO3. Two types of 
cluster are considered in order to derive the short-range niobium-oxygen in- 
teraction, i.e. a simple Nb5+O 2- pair and a more complex (NbOa) 7- cluster. 
Both fragments are embedded in an appropriate set of point charges. Figure 
2.5 shows the (NbO6) 7- cluster with its nearest potassium and niobium point 
charge neighbours. 

/ 
K poinl charge 

Nb point charge 

Fig. 2.5. (NbO6) T- quantum cluster with its nearest potassium and niobium 
(point charge) neighbours. Spheres do not correspond to known ion radii 

The basis functions are chosen to be the split valence SV-21 set of Huz- 
inaga [I25] for Nb and the set of Dunning and Hay [126] for the oxygen 
ions. The oxygen basis set is modified by completely breaking down the p- 
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contractions and by augmenting with diffuse p- and polarizing d-type func- 
tions. As a consequence of this improved basis set quality we can expect that  
possible basis set superposition errors [127] are substantially smaller than the 
corresponding errors estimated for oxygen ions in MgO using a TZV basis 
set (1.5eV [128]). 

It is one of our aims to compare the ab initio potentials with a given 
empirical Nb5+... 02 -  potential. As the latter has been fixed to be a pure 
Born-Mayer exponential function [12], it is reasonable to employ the Hartree- 
Fock approximation without configuration interaction (CI) in all subsequent 
cluster calculations and to fit the results with a Born-Mayer potential as 
well. 

Short-range potential energies may be calculated for various cluster ge- 
ometries according to the following formula: 

NbS+ 0 2- 1 [ VSR . . . .  LEHF--  ~ HF - -  - -  E ~ l ~  - -  E~b 
nNbO 

02- 02- Epol] �9 - - .  - (2.80) 

nNbO denotes the number of Nb-O bonds in the cluster, E HF the quantum me- 
chanical cluster energy, HF ~-':Eself the sum of ionic self-energies, Ecb the rigid ion 
Coulomb contribution according to the formal charge model, ~ V ~ ~ 
the occurring oxygen-oxygen short-range interactions and Epol, finally, an 
ionic polarization term. Ionic self-energies HF E~elf are extracted by treating one 
ion at a time quantum mechanically and the other ions as point charges con- 
sistent with the respective cluster geometry. In order to be consistent with the 

. . ~ - -  2 - -  , 

empirical KNbO3 potential model, ~ Vs~ "'" o m (2.80) has been retained 
from that  model. It is noted that  Catlow et al. [129] derived this anionic 
interaction as well from ab initio calculations. Since then it has been success- 
fully applied in many simulation studies of oxides. Thus there is no apparent 
need to replace this potential. To avoid double-counting effects when using 
ab initio short-range potentials in shell model simulations, polarization terms 
must either be subtracted from these potentials, as was done in (2.80), or a 
procedure should be devised where electronic polarization of ions does not 
occur. Epo] in (2.80) consists of three different parts, all of which result from 
core-shell polarizations, i.e. they arise from transforming from a rigid ion to 
a shell model description: 

Epol---- Epbol q- EHo~ rm -[- EpS~. (2.81) 

Epbol denotes  corrections to Ecb defined above, ESo~ rm the harmonic polariza- 
tion energy and EpS~ all corrections to short-range interactions. This last term 
results from the differences between core and shell positions; it is recalled that  
short-range potentials were defined to act between the ionic shells. 

In case of the single Nb5+O 2- pair we consider only oxygen ion displace- 
ments along the [100] cubic crystal direction parallel to the molecular pair. 
In Fig. 2.6 the corresponding short-range Nb5+... 02 -  potentials are shown 
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Fig. 2.6. Ab initio potential derived from a simple pair of ions. (a) Ab initio po- 
tential (.) from a Nb5+O2-quantum pair without polarization correction. (b) 
Ab initio potential (o) from a NbS+O2-quantum pair including polarization cor- 
rection. (c) Empirical Nb 5+... 0 2- short-range potential 

with and without polarization correction. The polarization correction has 
been estimated by considering the additional influence of polarizing oxygen 
basis functions. Importantly, these functions do not improve the oxygen self- 
energy. It is further noted that the expected polarization contributions are 
mainly due to the highly diffuse oxygen anion; the niobium cation, on the 
other hand, may be considered as being rigid to first order. 

Whereas simple pair cluster models account sufficiently for purely ionic 
crystals (e.g. [106, 112]), they provide completely unsatisfactory crystal de- 
scriptions for more covalent materials like KNbO3. This result is independent 
of the inclusion of the polarization term. Figure 2.6 clearly demonstrates the 
pronounced differences between the present ab initio potential dependence 
and the corresponding empirical potential, which may be taken as a measure 
of quality due to its successful simulation of the Nb...O interaction in KNbO3. 

In the case of the (NbO6) 7- quantum cluster we consider two different 
sets of calculations. The first set relates to breathing mode distortions of 
the octahedral cluster within an otherwise fixed point-ion lattice. Except for 
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the perfect lattice spacing we are faced with the problem of electronic po- 
larization of the oxygen ions. Principally this problem can be understood on 
the basis of symmetry arguments 5. However, there is no practical prescrip- 
tion to obtain appropriate quantitative information on polarizations from an 
analysis of the charge density. Since all cluster multipole moments vanish 
up to hexadecapole moments, the method proposed by Harding and Harker 
[113] is not useful in this case. Instead, we devise in the second approach a 
hydrostatic-pressure simulation, which means that the total crystal is shrunk 
or expanded corresponding to a change of the cubic lattice constant. Thus, at 
each Nb-O separation the system maintains perfect cubic lattice symmetry. 
As a result there are essentially no electronic polarization effects and, thus, 
the short-range potential obtained in this way is not contaminated by polar- 
izations. The hydrostatic pressure approach has physical significance, since it 
tests by construction the pressure dependence of the NbO6 crystal fragment. 
It is general and may be applied to all ab initio schemes in order to derive 
crystal potentials. The previous method, based on the exclusion of polarizing 
functions, though also effective, seems to be rather artificial, because the po- 
larization terms have been estimated by purely mathematical manipulations. 
The procedure of applying hydrostatic pressure is similar to the so-called 
potential-induced breathing method (PIB) [130]. In contrast with PIB, how- 
ever, we employ SCF-MO calculations in which covalency effects are taken 
into account. 

Results concerning the octa.hedral (NbO6) 7- cluster are shown in Fig. 2.7. 
The satisfactory agreement between the empirical and the ab initio hydro- 
static pressure potentials at relevant ion separations around 2 A is remark- 
able. This result indicates that potential parameters derived by empirical 
fitting can have some physical relevance, thus giving support to shell model 
simulations based on careful empirical para.metrizations. Both Nb5+... 0 2- 
potentials provide useful descriptions of KNbO3 crystals (see Chap. 4). The 
deviations of the short-range potential which were derived from breathing 
mode cluster distortions are caused by the electronic polarization term Epol 
discussed earlier. In the following we do not consider the latter potential. It 
can, however, be used in rigid ion potential models. 

The differences between the NbO pair and the NbO6 cluster results can 
mainly be traced back to complex covalency effects, which are largely sup- 
pressed in the present pair model. The ionic charges obtained by a Mulliken 
population analysis (see [17]) remain close to the pure ionic values in the 

5 It is noted that even at perfect lattice spacings there exists a certain asymmetry 
resulting from embedding the quantum cluster only within a field of point charges 
representing the outer crystal. However, cluster calculations with and without 
polarizing d-basis functions confirm that at perfect lattice spacings there is only 
a small polarization-induced contribution to the short-range interaction energy 
(< 0.1 eV) which may safely be neglected to first order. This becomes consider- 
ably different the more the niobium~xygen separation deviates from the perfect 
lattice spacing. 
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Nb-O Separation (A) 

Fig. 2.7. Ab initio potential derived from an embedded NbO6 quantum cluster. (a) 
Empirical Nb 5+... 02-  potential for comparison. (b) Ab initio hydrostatic-pressure 
Nb5+... 02-  potential derived from a NbO~ cluster. (c) Ab initio potential (o) de- 
rived from breathing-mode distortions of NbO6 within a fixed lattice 

case of the pair model (Nb 5+ : q _ +4.751e I, 0 2- : q -~ - 1 . 7 5 H ) ,  but  
show significant deviations (particularly for the Nb ion) in the cluster model 
(Nb 5+ : q ~_ +2.84H,  0 2- : q _~ - 1 . 6 4 H ) .  In contrast with highly ionic 
systems, the various short-range interionic potentials in semi-ionic materials 
are not independent of each other. In KNbO3 this concerns the Nb5+... 0 2- 
and the 0 2-... 0 2- interactions; by means of the NbO6 cluster a consistent 
treatment of these potentials seems to be guaranteed. Pair cluster models, on 
the other hand, must obviously involve sophisticated embedding potentials 
(Sect. 2.1.2) to provide useful results. Because embedding potentials intro- 
duce additional short-range interactions with neighbouring crystal ions, the 
correspondingly improved pair cluster descriptions effectively go beyond the 
proper pair model. In contrast, the K+... 0 2- interaction is far more ionic 
in nature. Besides the 0 2-... O 2- interaction we retain this potential from 
earlier simulation studies [131]. Table 2.1 summarizes all the short-range po- 
tentials which are used to model KNbO3 (Chap. 4). Figure 2.8 shows a graph- 
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ical display of these short-range potentials. The relative importance of the 
Nb5+... 0 2- short-range interaction is clearly seen. 

Table  2.1. Short-range potential parameters for KNbO3. 

Interaction type A (eV) ~ (/~) C (eV/k 6) 

oZ-. . .  0 2- 22746.30 0.14900 27.88 

NbS+... 0 2- (ab initio) 1333.44 0.36404 - -  

NbS+... 0 2- (empirical) 1796.30 0.34598 - -  

K+... O z-  1000.30 0.36198 - -  
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Fig.  2.8. Short-range potentials for KNbO3. Arrows denote equilibrium ion-ion 
separations. (a) Empirical Nb5+... 0 2- potential. (b) Ab initio NbS+... 0 2- hy- 
drostatic potential from the NbO6 cluster. (c) Empirical K+... O 2- short-range 
potential. (d) Empirical O 2-... 0 2- short-range potential 



3. Bar ium T i t a n a t e  

BaTiO3 belongs to the family of perovskite-structured oxides. At room 
temperature it is stable in its ferroelectric tetragonal phase. The non- 
centrosymmetry of this phase forms a precondition for various photorefractive 
applications of BaTiO3; similar remarks apply to other perovskite oxides, 
too. Section 3.1 reviews the most recent theoretical investigations towards 
an understanding of ferroelectricity. Figure 3.1 shows the unit cell for cubic 
BaTiO3. This structural pattern is characteristic of all perovskite materials. 

Fig. 3.1. The unit cell of cubic BaTiO3 

The performance of photorefractive materials is made possible by suit- 
able point defects. Corresponding lattice imperfections are always generated 
during crystal growth. In particular, transition metal impurities (e.g. iron) 
play a leading role in this respect. The basic physics underlying the photore- 
fractive effect may be summarized briefly as follows: as a result of interfering 
light beams striking a photorefractive oxide specimen, the crystal sample 
is exposed to light and dark regions. Defects in the light region, possess- 
ing electronic states in the band gap, are subject to light-induced charge 
transfer processes creating mobile charge carriers. Due to the Fermi level in 
as-grown BaTiO3 these charge carriers are predominantly holes. Via diffu- 
sion, bulk photovoltaic effects and/or drift in pyroelectrical fields [132], the 
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holes are transported into the dark regions where they are finally trapped 
in deep acceptor defect levels. However, before reaching their ultimate traps 
the holes can be intermediately bound in shallow energy levels which may be 
thermally ionized at room temperature. For example, alkali cations induce 
corresponding shallow band gap levels. Also, transition metal cations, being 
stable in three charge states, may induce shallow gap levels besides deep ones. 
Rhodium has been identified as falling into this category. Its stable charge 
states (i.e. +3, +4 and +5) introduce a corresponding two-level system [133]. 
It is noted that the interplay of deep and shallow defect levels leads to the 
observed sublinearity of the photoconductivity as a function of the light in- 
tensity (see [133] and references therein), i.e. O'ph o( I a with a < 1. Finally, 
the space charge field generated in this way is transposed into a corresponding 
refractive index pattern by means of the electrooptic effect. 

The major questions to be addressed in the present context concern the 
defect chemistry of BaTiO3 and the electronic structure of relevant defects. 
The dominant defect structures in BaTiOa are extrinsic defects, of which 
transition metal cations and alkali cations provide important examples. Ex- 
trinsic defects may act as donor- or acceptor-type defects depending on their 
charge state and site of incorporation. Charge-compensating defects show 
a complementary donor/acceptor behaviour. Donors and acceptors are un- 
derstood as electron and hole trapping defects, respectively. The actual im- 
portance of these defects depends on the particular position of the Fermi 
level. The defect chemical behaviour of BaTiO3 is reviewed in Sect. 3.2. The 
corresponding investigations are based on shell model simulations. 

Section 3.3 is devoted to electronic structure calculations in BaTiO3. Con- 
sidering defects, the transition metal cations (e.g. iron) are of particular in- 
terest. These impurity defects are able to generate deep levels in the band 
gap of BaTiO3. In Sect. 3.3.1 we consider recent embedded cluster calcula- 
tions on transition metal impurities in BaTiO3, which have the advantage of 
including defect-induced lattice relaxations and electron correlations. 

In Sect. 3.3.2 we discuss recent simulations of trapped holes. One may 
classify the possible trapping centres into acceptor defects either at Ti sites 
(e.g. transition metal impurities) or at Ba sites (as alkali cations). Partic- 
ular attention will be paid to the localization properties of trapped holes. 
In Sect. 3.3.2 we also consider the formation of trapped hole bipolarons in 
BaTiO3, which becomes possible if the actual trapping centre is able to bind 
at least two holes. Due to their diamagnetic ground state these bipolarons 
are invisible in traditional ESR experiments, but recent Photo-ESR inves- 
tigations emphasize their role in light-induced charge transfer processes. It 
is interesting to note that hole bipolarons axe also discussed in the context 
of oxide-based high-temperature superconductivity [8]. Moreover, hole bipo- 
larons formed at the surface of La203 catalysts are believed to be responsible 
for methane activation [134]. 



3.1 Ferroelectricity of ABO3 Perovskites 51 

Conduction band charge carrier transport becomes important upon shift- 
ing the Fermi level to higher energies. In this case the deep and shallow 
donor-type levels will strongly influence the material properties. Correspond- 
ing donor defects introducing shallow levels close to the conduction band are 
oxygen vacancies, which are predominantly formed as charge compensators 
of alkali cations. Their number reduces upon expelling the alkali ions from 
the lattice. In this case one can observe ESR signals due to isolated Ti 3+ 
small polarons [133]. By analogy with holes one could also speculate on the 
formation of electron bipolarons. Preliminary calculations on these hypothet- 
ical bipolarons are reported in Sect. 3.3.3. It is noted that electron bipolarons 
have been established to exist in LiNbO3 (see Chap. 5). Finally, in Sect. 3.3.4 
I shall review the recent investigations on oxygen vacancies in BaTiO3. It is 
emphasized that most of these latter results may safely be extrapolated to 
the other oxide perovskites. 

3 .1  F e r r o e l e c t r i c i t y  o f  A B O a  P e r o v s k i t e s  

In this section a brief survey is given of recent theoretical efforts towards an 
understanding of ferroelectricity in perovskite-type ABO3 oxides. The ques- 
tions of major interest concern the ferroelectric driving forces, the dynamics 
of FE-PT (displacive versus order-disorder transitions) and the calculation of 
macroscopic polarizations. All subsequently mentioned investigations refer to 
potential simulations and ab initio descriptions of infinitely extended perfect 
crystals. For a discussion of finite size effects I refer to [135]. 

Accurate theories should account for the observed differences between the 
various perovskites. BaTiO3 and KNbO3 show the same sequence of FE-PT: 
cubic ) tetragonal, tetragonal , orthorhombic and orthorhombic 
rhombohedral.  Though being closely related to KNbO3, KTaO3 remains 
cubic for all temperatures. PbTiO3 has only one FE-PT, i.e. cubic 
tetragonal. Unlike BaTiO3, the related SrTiO3 does not become ferroelectric. 

Since Cochran's theory it has been commonly understood that ferroelec- 
tricity is closely related to a delicate balance between long-range Coulomb 
and short-range forces, of which the former favour ferroelectric displace- 
ments of ions whereas the short-range forces stabilize the cubic structure. 
The electronic structure of these materials plays an important role in this 
force balance. Shell model-based simulations, for example, emphasize the 
effect of oxygen polarizability. Corresponding calculations have been suc- 
cessfully employed to simulate phonon dispersion curves and the observed 
softening of TO phonons at the F-point [136, 137, 138, 139]. The effect of 
large anionic polarizabilities appears to be reasonable owing to the instability 
of the oxygen anions; the oxygen polarizability helps to make the effective 
interionic short-range potentials less repulsive. Potential-induced breathing 
(PIB) calculations for KNbO3, taking additional non-spherical polarizations 
of oxygen anions into account, supported such an ionic interpretation [140]. 
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However, the calculations emphasized a pronounced order-disorder charac- 
ter of the phase transitions. Generally, PIB model calculations [130] imply 
the superposition of in-crystal ionic charge densities to obtain the total elec- 
tronic charge-density. Such investigations are thus in the spirit of an ionically 
bonded crystal. 

On the other hand, the recent full-potential ab initio investigations sug- 
gest that the pronounced hybridization between B-cationic nd and oxygen 
2p states is responsible for the occurrence of ferroelectricity (e.g. [141, 142]). 
For BaTiO3 a comparison of a spherical ion PIB charge density with a full- 
potential LAPW (FLAPW) density has shown that the dominant density 
changes are localized close to the B cation sites [141] but not to the oxygen 
sites. Obviously electronic polarizability of ions as well as covalency effects can 
be responsible for ferroelectric distortions, but only the PIB model when ex- 
tended to include ionic polarizations can unambiguously relate FE-PT to such 
polarizations. The situation is different when employing the shell model, be- 
cause most shell model simulations are based on empirical parametrizations. 
The model parameters are highly dependent on each other; it is therefore 
not possible to unambiguously separate ionic polarizations from short-range 
interionic potentials (and thus from covalency). It cannot be excluded that 
large empirical polarizations are the consequence of pronounced hybridiza- 
tions. A comparison of two different but closely related materials helps to 
clarify the interrelations. A recent shell model-based investigation of KNbO3 
and KTaO3 [143] indicates that the B-O covalency, being modestly stronger 
in KNbO3, reduces the effective anionic polarizability and increases that of 
the cation. The increased Nb polarizability destabilizes cubic KNbO3 and, 
further, allows Nb dopants in KTaO3 to move off-centre (see also Sect. 4.2.1). 

The accuracy of all present ab initio investigations is limited by errors 
due to LDA, leading, for example, to a systematic underestimation of lattice 
constants by some hundredths of an/~ngstrom. This appears to be crucial, 
because ferroelectricity is highly dependent on the volume. Further effects 
seem to be related to the specific band structure method being used. For 
example, FLAPW calculations [144] predict KNbO3 to be cubic at aLDA; 
pseudopotential [145] and FLMTO [48] investigations, on the other hand, 
yield ferroelectric distortions. Almost all calculations find the correct ferro- 
electric behaviour at the observed lattice spacings, which is then frequently 
taken for further investigations of the zone-centre potential surface. KTaO3 
represents an exception: FLMTO calculations [48] confirm this perovskite to 
be cubic at aLDA but slightly ferroelectric at the observed lattice constant. 
These results suggest that KTaO3 is close to an instability. Supposing that 
this instability is not due to computational inaccuracies, it could be possible 
that quantum fluctuations leading to some randomness which is not modelled 
so far would inhibit the calculated instability. This would support the idea 
of an incipient ferroelectric. 
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Usually the potential surface is analyzed with respect to phonon-related 
ion displacements (frozen phonon approach) and to strain variables. Dynam- 
ical properties related to the FE-PT can be studied by fitting the potential 
surface with suitable model potentials (e.g. [145, 146, 147]). Phonon frequen- 
cies can be calculated in this way, but it is also possible to use model Hamil- 
tonians within a renormalization group theoretical approach to investigate 
the dynamical properties of ferroelectrics. This has been successfully done 
for the simple ferroelectric GeTe [148, 149] but not yet in the case of the 
more complex oxide perovskites. MD simulations have been done so far only 
within a pair potential approach. The corresponding potentials have been 
obtained from PIB calculations which were augmented by accurate FLAPW 
corrections [135]. 

Basic investigations of the potential surface show the existence of multi- 
ple well structures in the low-temperature phases, which is consistent with an 
order-disorder interpretation of FE-PT. The general interpretation emerging 
from the calculations essentially coincides with the eight-site model for B 
cations, which is assisted by the softening of TO phonons (e.g. [142]). How- 
ever, it must be emphasized that all considerations are restricted to the centre 
of the first Brillouin zone, corresponding to a highly ordered structure. There 
is thus no account of the genuinely existing thermally stimulated randomness 
which may substantially affect the potential surface. Future studies must in- 
vestigate these influences. Ab initio calculations further show the pronounced 
dependence of the potential surface (and thus of FE-PT) on volume and shear 
strains [142, 147, 145]. For example, a tetragonal strain c /a  ~ 1.06 stabilizes 
the ordered tetragonal phase of PbTiOa over the rhombohedral phase, which 
is usually found as the ground state. This result explains the existence of only 
one FE-PT (cubic ~ te tragonal)  in this material. This FE-PT might be 
displacive in nature. In contrast to lead titanate, PbZrO3 shows an antiferro- 
electric ground state. Recent LDA investigations [150] proved this structure 
to be slightly more favourable than a rhombohedral ferroelectric structure. 
The differences with respect to PbTiOa might be related to deviating hy- 
bridizations: whereas the Pb-O hybridization is weaker than in PbTiO3, the 
Zr-O covalency is stronger than the Ti-O hybridization. 

Pressure and strain effects may result from external influences but can 
also be of internal (chemical) origin. In the case of PbTiO3 the lone pair 6s 
electrons of Pb 2+ are largely responsible for the tetragonal strain. It seems 
that besides the degree of B-O hybridization the effect of lattice strains 
determines the observed differences between different oxides. A correspond- 
ing database may be found in [145]. Further, the proceedings of the second 
Williamsburg workshop on first-principles calculations for ferroelectrics pro- 
vide a rich source on theoretical developments in this field (Ferroelectrics, 
vol. 136). 

Finally, in agreement with experimental findings, recent FLMTO super- 
cell calculations suggest the formation of chains of uniformly and along (cu- 
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bic) [100]-axes displaced Nb ions in orthorhombic KNbO3 [151]. These chains 
are perpendicularly orientated to the macroscopic polarization vector. Inter- 
actions between the chains favour the zero value of the average [100] Nb 
displacement. 

The calculation of macroscopic polarizations and of dielectric material 
properties in polar materials could be based on density polarization func- 
tional theory (DPFT) (see Sect. 2.1). But, to my knowledge, this has not yet 
been attempted. Recently, a modern quantum theory of polarization has been 
developed by King-Smith, Vanderbilt, Resta et al. ([152, 153]). It is based on 
the observation that only polarization differences A p  between differently 
polarized states of one crystal are measurable bulk quantities. Theoretically, 
A p  is expressed as the integrated current flowing through the crystal upon 
polarization reversal. The electronic part of A P  has been identified as a 
Berry phase [154], i.e. as a gauge-invariant phase feature of the valence Bloch 
orbitals accompanying adiabatic changes round a circuit in parameter space. 
Resta et al. [155] and Zhong et al. [156] used this formulation to provide 
a first-principles approach to the spontaneous polarization of ferroelectric 
materials. Recently, Bernaxdini et al. [157] presented a polarization-based 
calculation of dielectric constants of polar crystals. 

3.2 Defect  Chemical  Propert ies  of  Bar ium Ti tanate  

Based on the empirical shell model potential parameter set derived by Lewis 
and Catlow [158] one may give the following overview of defect chemistry in 
BaTiO3. 

Intrinsic defects (of major importance are oxygen vacancies, but possibly 
also cation vacancies) are essentially formed only as charge-compensating 
partners of impurity cations. Purely intrinsic defect reactions, on the other 
hand, are not favourable. For example, the Frenkel defect formation energies 
range between 4.5 and 7.5 eV (per defect), and Schottky-like defects require 
2.3-3 eV per created defect. 

Vacancies may act as electron or hole traps. In qualitative agreement with 
empirical Green's function calculations of Fisenko et al. (see Sect. 3.3) shell 
model simulations suggest that oxygen and barium vacancies are compara- 
tively shallow electron and hole trapping defects, respectively. Corresponding 
trapping energies have been estimated to be of the order of 0.1 eV. It is noted 
that within the shell model framework singly charged oxygen vacancies must 
be simulated as V~) ~ - Ti~ri defect complexes. However, this simple picture 
becomes significantly more complex within sophisticated embedded cluster 
calculations. In particular these investigations indicate the existence of cer- 
tain deep gap levels which are absent in the shell model and in the Green's 
function simulations mentioned above. A detailed discussion of these recently 
performed investigations on oxygen vacancies is given in Sect. 3.3.4. Titanium 
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vacancies, if they exist, define deep hole levels with trapping energies in the 
eV range. 

Impurity cations dominate the defect chemical scenario in BaTiO3. We 
first consider the incorporation of impurity cations with charge states ranging 
between +1 and +4. Generally, the precise incorporation energies (or chem- 
ical solution energies) largely depend on ion-size effects. As expected, the 
impurity size also determines the actual incorporation site. Impurity cations 
with charge states between +2 and +4 behave as donor defects when substi- 
tuting for barium and as acceptor defects replacing titanium. 

Favourable intrinsic charge-compensating defects are oxygen vacancies in 
the case of acceptor-type impurities and electrons for donor-type defects. The 
formation of compensating cation vacancies seems to be unfavourable. 

Monovalent cations substitute for Ba cations with compensating oxygen 
vacancies. Small divalent impurity ions (e.g. Mg 2+ and Ni 2+) replace Ti 
cations. Also these acceptor defects prefer the formation of oxygen vacan- 
cies. All remaining divalent impurities are incorporated at Ba sites without 
needing further charge compensation. The same is true for tetravalent cations, 
which substitute for titanium. 

Of particular interest are trivalent impurities. Large cations can replace 
Ba cations, behaving then as donors. In this case electronic compensation is 
by about 6 eV more favourable than an alternative Ba vacancy compensa- 
tion. Small trivalent cations like aluminium and most of the transition metal 
ions incorporate at Ti sites, which is again accompanied by formation of 
compensating oxygen vacancies. Besides these solution mechanisms, i.e. 

1 0 M203 + '  BaTiO3' , 2 M ~  -t- 2e I + 2BaO + ~ 2(g) (3.1) 

M203 +t BaTiO3' > 2M~ri + V~)" + 2TIO2, (3.2) 

self-compensation should be taken into account as a favourable solution mode: 

M203 +l �9 t . BaT103 , MIwi + MB, + BaTiO3. (3.3) 

Thus, trivalent cations can define donor- and acceptor-type defects at the 
same time. In BaTiO3 self-compensation is principally restricted to trivalent 
cations 1. Whether (3.1) may become preferred over self-compensation de- 
pends considerably on the electron formation energy in (3.1). By employing 
free-ion ionization potentials (3.1) may happen to be more favourable than 
(3.3) by no more than a few tenths eV. We shall return to this topic at the 
end of this section. 

Extrinsic acceptor defects axe able to bind oxygen vacancies. The precise 
binding energy depends on the impurity's charge and size misfit. In the case 

1 It has been argued [133] that self-compensation could impede the efficiency of 
photorefractive effects. However, this seems not to pose any problems in BaTiO3 
for two reasons: first, self-compensation is restricted to trivalent cations, and, 
second, almost all relevant transition metals avoid self-compensation in BaTiO3. 
This situation will be different in Al+Bs+O3 oxides (see Chaps. 4 and 5). 
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of trivalent cations the binding energies typically range between 0.3 and 0.5 
eV. They are only moderately smaller (i.e. 0.2 eV) for alkali impurities at 
Ba sites. It is interesting to note that  the association of more than just one 
acceptor cation is likely: the binding energy of the second acceptor is almost 
precisely as large as the binding energy of the first acceptor cation. This 
outcome indicates that  effective screening mechanisms of excessive charges 
in BaTiO3 exist. In summary, shell model simulations suggest a pronounced 
association of (one or two) acceptor cations with the existing oxygen vacancies 
in BaTiO3. Similar results may be expected for different oxide perovskites. 
This result seems to agree with the ESR-based observation that  in almost 
all cases only tilted (i.e. non-axial) V~) ~ - Tilwi complexes exist in reduced 
crystals containing alkali impurities [133]. The non-axiality of these centres 
refers to the associated acceptor cations at Ba-sites. 

Finally, we remark on the incorporation of pentavalent cations (e.g. 
Nb5+). The most favourable reactions involving cation vacancies or electrons 
read as: 

M205 -I -I BaTiO3' 

M205 -t j BaTiO3' 

) 2M~i + V~a + BaTiO3 + TiO2 

1 0  2 M ~ i + 2 e  1 + 2 T i O 2 + ~  2(g)- 

(3.4) 

(3.5) 

Upon using the fourth free-ion ionization energy for t i tanium the reduction 
solution mode (3.5) is by 2 eV more favourable than the competitive Ba 
vacancy mechanisms (3.4). But again we are faced with the problem that  the 
accuracy with which electronic terms can be included significantly determines 
the precise energies of redox reactions. 

At this stage, therefore, a brief digression is devoted to the calculation 
of crystalline electron affinities, which enter the estimation of reduction type 
energies within shell model simulations. Usually these affinities, which repre- 
sent the formation energies of conduction band electrons e I , employ free-ion 
ionization potentials corresponding to a perfect ionic crystal model. Thus, 
any covalent charge transfer contributions and crystal field effects are ne- 
glected in this way. Embedded cluster calculations may be used to estimate 
changes of ionization potentials upon going from free ions to crystal ions. For 
example, Hartree-Fock embedded cluster 2 calculations on TiO6 clusters em- 
ploying the perfect lattice geometry of BaTiO3 yield a reduction of the fourth 
ionization potential of t i tanium corresponding to 1.4 eV. The analogous ap- 
proach, when applied to embedded NbO6 clusters, yields a reduction of 1.7 
eV with respect to the fifth ionization potential of niobium. Electronic corre- 
lations which particularly increase the covalent charge transfer provide even 

2 The ECP parametrization of Hay and Wadt [21] has been used to simulate the 
central transition metal cation. The set of basis functions has been modified 
by completely breaking down the d-contractions. The oxygen ligand anions have 
been modelled by employing the split valence basis set of Dunning and Hay [126], 
which was further augmented with polarizing d-functions. 
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larger reductions. MP2 calculations (see Sect. 2.1) increase the Nb-related 
reduction to 3.0 eV, thus giving 47.55 eV for the in-crystal "fifth" ionization 
potential of niobium. In an analogous fashion 40.15 eV is obtained for the 
in-crystal "fourth" ionization potential for titanium 

In particular, charge transfer directed from anions onto cations tends to 
destabilize electrons located at cation sites, whereas electrons at anions be- 
come stabilized. For titanium and niobium the resulting total level shifts are 
comparatively modest, because there is a partial cancellation of covalency- 
induced charge transfer contributions and the particular crystal field splitting 
terms for the cationic d(t2g) levels. Similar effects are operative in the case of 
anions. Figure 3.2 vizualizes the corresponding energy shifts of levels. In most 

gap 

" - - = •  B-cation d-states 

gap 

Oxygen 2p-~ates 

Ionic 
+ CT + CF Model 

Fig. 3.2. Sketch of changes of B cation d(t2g)-levels and the upper O 2p-levels 
in ABO3 perovskites due to covalent charge transfer (CT) and crystal field (CF) 
effects 

simulation studies of ABO3 oxides the band gap energies which were consis- 
tently calculated using free-ion ionization potentials and free-anion affinities 
provide satisfactory estimates of the observed band gaps of the particular 
materials (e.g., see [124, 158] and Chap. 4). This result might be mainly due 
to an almost parallel shift of cationic and anionic energy levels. However, in 
situations where either electron- or hole-formation energies enter the calcu- 
lations (as in redox reactions) one may encounter significant deviations from 
the perfect ionic model. 

In the case of BaTiO3 there are a few defect chemical consequences when 
using the refined electron affinities: first, whereas smaller trivalent cations 
(e.g. A13+, Cr 3+, Mn 3+ and Fe 3+) remain incorporated at titanium sites 
with compensating oxygen vacancies, self-compensation becomes the most 
favourable solution mode for all larger trivalent cations, thus leaving elec- 
tronic compensation to be unfavourable unless there are electronic band gap 
levels (e.g. due to co-doping) effectively increasing the crystalline electron 
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affinity. The possible exhaustion of co-doping induced gap levels would in- 
dicate the increasing importance of self-compensation with rising concentra- 
tions of trivalent rare earth cations. This behaviour seems to comply with 
observed dependences of resistivity on the donor content (see [158] and ref- 
erences therein). On may speculate that in all oxides co-doping effects attain 
general importance for low dopant concentrations. It is recalled, for example, 
that the defect chemistry in YIG is probably affected by co-doping phenom- 
ena (Sect. 7.5). 

Second, in the case of pentavalent cations the electronic compensation 
reaction (3.5) remains only 0.2 eV more favourable than (3.4). However, it 
becomes slightly further stabilized by introduction of oxygen entropy con- 
tributions. Ba vacancies, on the other hand, could be formed only if high 
external oxygen pressures are applied. 

3 .3  E l e c t r o n i c  S t r u c t u r e  C a l c u l a t i o n s  

Band structure calculations for perovskite-structured oxides have been per- 
formed extensively by Mattheiss using the augmented plane wave (APW) 
technique [63]. The calculations were based on an ad hoc crystal potential 
derived from Hartree-Fock-Slater atomic charge densities and on Slater's X~ 
method. The crystal potential was written as a Muffin Tin (MT) potential 
plus non-MT correction. The results suggest that the non-MT corrections 
are important to predict precise band structures. In SrTiO3, being closely 
related to BaTiO3, these corrections range from -1.1 to 0.3 Ry. The calcu- 
lated band gap for SrTiO3 is direct, but the author admits that this could 
easily be changed upon inclusion of self-consistency and by improving the 
exchange correlation terms. The calculated absolute gap value is about twice 
as large as the observed band gaps; this result originates from the omitted 
self-consistency and from the neglect of electronic correlations. 

Recent state-of-the-art DFT-based band structure calculations (see e.g. 
[145]) are in qualitative agreement with the earlier band structures found by 
Mattheiss. However, these investigations also indicate an indirect band gap 
for these materials which is due to a valence band maximum at the X-point. 

Michel-Calendini et al. [77] employed BO6 cluster calculations based on 
the Xc~ and MT potential approximation in order to investigate the local 
electronic structure of ABO3 perovskites (for limitations of the model see 
Sects. 2.1 and 5.1). Slater's transition state method has been used to calculate 
electronic excitation energies between the O 2p (VB) and B nd (CB) states 
determining the frequency-dependent electronic dielectric constant e(w) in 
BaTiO3. 

In a series of papers Michel-Calendini et al. (e.g. [159, 160, 161, 162]) 
reported their results of (spin-polarized) X~ cluster calculations for a num- 
ber of transition metal impurities replacing Ti ions in BaTiO3 or SrTiO3. 
The investigations addressed the position of defect-related energy levels in 
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the band gap, optical transitions and ESR parameters. The implementation 
of neutralizing Watson spheres implies complete screening of defect charges 
outside the MO6 (or MO5) clusters. On the other hand, all defect-induced 
lattice relaxations have been omitted from consideration. Depending on the 
size and charge misfits of impurities there would be substantial relaxations, 
particularly of the ligand anions, leading to pronounced shifts of the energy 
levels. 

Selme and Pecheur [57, 58, 59] employed a Green's function description 
which was based on Mattheiss' tight binding parametrization of solid state 
matrix elements [63] in order to study defect levels in SrTiO3 originating from 
oxygen vacancies and transition metal impurities (see also the paragraph on 
Green's functions in Sect. 2.1.2). The orbital description was restricted to 
include oxygen 2p and titanium 3d functions. Further, the defect-induced 
potential appearing in the Dyson equation (2.30) was assumed to be short- 
range, corresponding to complete screening beyond the first neighbours of 
the respective defect. As in the case of the Xa cluster calculations mentioned 
above, the effect of electronic screening is certainly overestimated in this 
way, whereas lattice relaxations have been essentially neglected. Although 
there might be a partial compensation of corresponding effects, the screening 
mechanism is probably too strong. In the case of transition metal impurities, 
spin-polarization of d-electrons has been introduced on the basis of the sim- 
plified expression --~(ndT --ndI), where the ndT,l are the numbers of spin-up 
and spin-down electrons and the Stoner constant ~ ~ 1 eV. 

Fisenko and Prosandeyev et al. (e.g. [60, 61, 62]) performed further defect 
investigations in ABO3 perovskites which were based on Green's functions. 
The treatment of the electronic structure of the undisturbed crystal is anal- 
ogous to that of Selme and Pecheur. To model the spatial range of defect 
potentials the authors introduced an electronic screening sphere with com- 
plete screening outside this sphere. Defect levels related to oxygen and cation 
vacancies have been considered as a function of the vacancy charge state and 
the radius of the screening sphere. The vacancy defect potential has been 
defined to be infinitely strong; thus there is no allowance for any electron 
density transfer onto the vacant lattice site in this model (note that a sim- 
ilar approximation has been assumed in the investigations of Selme et al.). 
Donor levels were found for the oxgen vacancy and acceptor levels in the 
case of the cation vacancies. In particular, the B cation vacancies have been 
identified to define deep defect levels; oxygen vacancies, on the other hand, 
provide shallow electron levels close to CB. However, the results are certainly 
strongly dependent on the properties of the vacancy defect potential and on 
the screening sphere radius r0. For r0=a (lattice constant) the bound energy 
level of a singly charged Vo in SrTiO3 corresponds to ECB -- ~ =0.04 eV. 
(In spite of employing complete screening beyond nearest neighbours, Selme 
and Pecheur find the larger value of ,-~0.42 eV. The reason for this deviating 
result might be due to differences in the details of the perturbing vacancy 
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potential.) In the limit of r0 ~ co, Fisenko et al. estimate 0.39 eV. These 
results emphasize the strong need for ab initio defect calculations (see Sect. 
3.3.4) to avoid any effects of ad hoc assumptions. 

The calculations of Fisenko et al. suggest that  the bound levels of oxygen 
vacancies are predominantly localized on the two nearest Ti neighbours. Fur- 
ther investigations of Prosandeyev [61] employing an unrestricted Hart ree-  
Fock description within a Green's function approach indicated a symmetry 
breaking of one-electron orbitals related to oxygen vacancies, i.e. electron lo- 
calization can take place at exactly one Ti neighbour. For example, a singly 
charged oxygen vacancy should be interpreted as a V o - T i  3+ complex 3. Lat- 
tice relaxation may enhance this electron localization. Corresponding evi- 
dence derives from recent Green's function investigations of Prosandeyev et 
al. [62], taking simplified account of relaxation contributions. Thus, unlike 
proper ionic crystals, electrons at F centres in ABO3 perovskites are at tracted 
towards the nearest B cations, which is accomplished by covalency effects 
and stabilized by lattice relaxations. This interplay of covalency and lattice 
distortions seems to be typical for semi-ionic materials like the perovskite- 
structured oxides. All calculations convincingly prove that  the B (or M) 
cation on which the electron resides moves away from the oxygen vacancy 
(see also Chap. 4). 

I should emphasize at this stage that  the symmetry-breaking or localiza- 
tion properties of the electron trapped at an oxygen vacancy depend sensi- 
tively on the detailed nature of the models discussed so far. For example, 
the neglect of excited Ti 4s and 4p orbitals as well as the implementation of 
the perturbing defect potential in the above Green's function studies should 
be viewed critically. This will be seen from a discussion of embedded cluster 
calculations on oxygen vacancies presented in Sect. 3.3.4. 

The investigations of Michel-Calendini and Selme and Pecheur con- 
cerning the electronic defect properties of transition metal impurities in 
BaTiO3/SrTiO3 suggest tha t  multiple charge states of a specified impurity 
species can easily be accommodated in perovskite oxides. However, the pre- 
cise level positions depend to a considerable extent on the invoked complete 
screening assumptions. The predictions of defect level positions are therefore 
of a more qualitative value. In comparison to the X~ cluster calculations, the 
results of Selme and Pecheur generally underestimate spin polarization effects 
in favour of low-spin ground states. This depends on the simplified Stoner 
model involved. The X(~ calculations are probably more reliable in this re- 
spect. In some cases the Xc~ investigations predict different ground states for 
SrTiO3 and BaTiO3. Because of the larger lattice parameter in BaTiO3, high- 
spin states are preferred in this material. The calculations, however, neglect 
all defect-induced lattice relaxations which could modify the results. 

3 Inclusion of electron correlation would restore the full symmetry of the defect 
centre by appropriate superposition of the two equivalent symmetry-broken so- 
lutions. However, the time an electron spends near one of the Ti ions may be 
large on an experimental time-scale. 
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Ab initio embedded cluster calculations including defect-induced lattice 
relaxations (see Sect. 2.1.2) do not encompass artificial screening effects. They 
guarantee a self-consistent description of the perturbing defect potential and 
take lattice as well as electronic screening terms reasonably well into account. 
Details of corresponding calculations for transition metal impurities and hole- 
type defects will be discussed in the following subsections. 

Recently, Cherry et al. [163] reported shell model and embedded cluster 
calculations (HF and MP2) on protons dissolved into oxide perovskites. In 
the embedded cluster studies only a subset of the cluster ions was allowed to 
relax from perfect lattice positions. Investigations for SrTiO3 confirm that 
the OH- dipoles formed are orientated along the edges of the oxygen oc- 
tahedra, but orientations along (100) directions seem to be preferred in the 
A3+B3+O 3 systems studied. In particular, the MP2 calculations result in a 
very low energy barrier to proton transfer between neighbouring oxygen an- 
ions, indicating tunnelling processes in these oxides. However, the intermedi- 
ate state preceding proton migration requires equivalent lattice environments 
for the neighbouring oxygens, and, according to shell model calculations, es- 
tablishing this precondition needs some tenths eV. 

The first ab initio calculations of BaTiO3 surfaces have recently been 
reported by Padilla and Vanderbilt [164]. These authors considered BaO- and 
TiO2-terminated (001) surfaces and investigated surface-induced relaxations 
and defect states, surface relaxation energies and the influence of the surface 
upon ferroelectricity: there are no deep gap surface levels, and the authors 
found only a small enhancement of ferroelectricity near the surface. 

3.3.1 Embedded  Cluster Calculations for Transition Metal  Ions 
in BaTiO3 

As has been remarked in the introduction to this chapter, transition metal 
impurities sensitize the photorefractive effect in perovskite-structured oxides 
like BaTiO3. The technological importance of these impurities is emphasized 
further upon noting that the development of tunable solid state lasers is 
based on transition metal cations doped into suitable host systems [165], e.g. 
A1203:Cr 3+. 

In this subsection we mainly concentrate on discussing calculations for 
Mn 4+ impurities solved into cubic BaTiO3 at Ti sites. The reason for choos- 
ing Mn 4+ as a test case is based on the observation that this impurity species 
represents a neutral defect when substituting for Tia+. ~r ther ,  Mn a+ is iso- 
electronic to the important Cr 3§ Unfortunately, there is no experimental 
information for Mn a+ in cubic BaTiO3. It has been argued [166, 167] that 
the pronounced dynamical order-disorder effects leading to ferroelectricity 
affect the Mn a+ and are responsible for the absence of data. In order to com- 
pensate for this deficiency the calculations are compared with observations 
of the isoelectronic SrTiO3:Mn 4+ instead. Both perovskite oxides are struc- 
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turally very similar; however, unlike the barium compound, SrTiO3 remains 
paraelectric at all temperatures. 

The subsequent discussion is devoted to optical crystal field transitions 
(CF), defect-induced latice relaxations, Jahn-Teller distortions related to the 
excited 4T2g state and charge transfer transitions (CT). CT transitions are 
the dominant electronic excitations with respect to photorefractive effects. 

Me thod .  Since the present investigations aim at the accurate characteriza- 
tion of ground- and excited states, we shall mainly employ the Hartree-Fock 
approximation (if not explicitly stated we use the restricted open-shell HF 
formulation) augmented by suitable correlation treatments. Auxiliary DFT 
calculations, on the other hand, will be confined to investigations of charge 
transfer transitions. We recall that, due to employing ground state functional 
Kohn-Sham theory, the calculated energy separations between ground and 
excited states provide in most cases lower bounds to the exact energy differ- 
ences (see Sect. 2.1). However, the quality of such lower bounds must in any 
instance be judged on the basis of different exact calculations. 

The general procedure includes ab initio LCAO-MO calculations for a 
central MO6BasTi6 defect cluster, which simulates the crystal lattice imme- 
diately neighbouring an Mwi transition metal impurity cation in BaTiO3. 
The perfect crystal structure has been assumed according to the cubic high- 
temperature phase. The resulting 21 atom defect cluster MO6BasTi6 is vi- 
sualized in Fig. 3.3. The size of the chosen quantum cluster appears to be 
sufficient for discussing the local electronic defect properties of interest. Em- 
ploying larger clusters, on the other hand, might not be reasonable due to 
the increasing computational costs. 

TI 

O 
Ba Ba 

Ba ~ V 
Ba Ba 11 

O 
Fig. 3.3. The quantum mechanical defect cluster. The immediate environment of 
the central MnO6 complex consists of eight barium and six titanium cations, which 
are represented by bare effective core potentials 
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To model the electronic structure of the cluster, effective core potentials 
(ECP) are employed in conjunction with double-zeta quality basis functions 
for the valence orbitals on manganese [21] and Dunning's contractions of 
Huzinaga's basis set for the oxygen ions [126]. The oxygen basis set is further 
augmented with diffuse p- and polarizing d- functions. The outer Ba and Ti 
ions are represented by bare effective core potentials which simulate ion-size 
effects of these cations. The ab initio ECP parametrization has been taken 
from Hay and Wadt [21]. 

Besides HF theory we shall mainly consider configuration interaction (CI) 
expansions to represent important electronic correlation contributions. These 
calculations are restricted to the inclusion of single and double electronic 
excitations (SDCI) with reference to the respective HF states. On the basis 
of perturbation theory the 15,000 energetically most important configurations 
will be chosen for a further diagonalization of the CI Hamiltonian matrix (the 
perturbation energy contribution of these kept states is denoted by PEK and 
the contribution of all neglected states by PEN). This procedure follows the 
earlier approach of Rawlings and Davidson [168]. Size consistency can be 
approximated using the formula of Davidson and Silver [169] 

E o.(SDCI + Q) = + 1 1 - 

• (Ecorr(SDCI) - EHF), (3.6) 

where CHF is the expansion coefficient of the Hartree-Fock wavefunction and 
Er the uncorrected SDCI energy. The stability of these SDCI(+Q) 
results is tested by calculating the natural orbitals, which by construction 
diagonalize the (SDCI) first-order reduced density matrix, and iterating 
the configuration interaction with these orbitals (NO-SDCI(+Q) procedure 
[]70]). It is recalled that natural orbitals provide the most rapidly conver- 
gent CI expansion. In this sense the NO-SDCI(+Q) results are superior to 
SDCI(+Q) employing HF orbitals. Table 3.1 compiles energy separations 
between electronic crystal field states of Mn 4+ which have been calculated 
employing these various CI approaches. In all cases SDCI+Q is superior to 

Table 3.1. Calculated crystal field splittings employing the various types of CI as 
introduced in the text. The cluster geometry corresponds to cubic perfect lattice 
spacings 

Type of CI AcF = E(4W2g) - E(4A2z)/eV 

SDCI 1.15 

SDCI+Q 2.48 

NO-SDCI 2.11 

NO-SDCI+Q 2.23 
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the uncorrected SDCI. The best results correspond to the NO-SDCI+Q level. 
As these calculations involve unreasonably large computer capacities, we may 
employ the following compromise: SDCI+Q will be used to determine the re- 
quired total energy surfaces of the cluster, which are needed to perform the 
embedded cluster relaxation step (see below). Finally, energy separations are 
recalculated at the relaxed equilibrium configurations on the basis of NO- 
SDCI+Q. Therefore, if not explicitly specified all subsequently reported CI 
energy differences correspond to the NO-SDCI+Q level. The cluster ab ini- 
tio calculations use the quantum-chemical program packages MELDF [171], 
HONDO 7.0 [172] and CADPAC [173], of which the latter code is employed 
to perform additional charge transfer calculations based on Moller-Plesset 
perturbation theory and DFT. 

The embedding lattice is simulated by means of an interionic effective pair 
potential model, i.e. the shell model (see Sect. 2.2 for details). Ion charges 
are chosen correponding to a formal ionic model. 

The short-range potential parameters appropriate for BaTiO3 and for 
impurity-oxygen interactions are taken from the extensive work of Lewis 
and Catlow [158]. These pair potentials also specify the interactions of the 
cluster ions with the embedding shell model ions. 

The total energy of the crystal is minimized with respect to the cluster 
(nuclear) coordinates Rc and to core and shell coordinates Re of the em- 
bedding crystal ions. The additionally required minimization with respect to 
the cluster wavefunction ~P describing the local electronic structure within 
the cluster region is performed by means of the ab initio HF(+CI)-SCF-MO 
calculations which were introduced above. The energy difference of the to- 
tal energy of the quantum defect cluster dus EQM (k~, Rc) corresponding to the 
electronic states k~ of interest (aA2g and 4T2g for Mn a+) and its classical 
pair-potential counterpart ~.clus/r~ ~ "-'SM ~'~r was calculated on a 5 x 5 • 5 mesh 
of alg-symmetrical breathing-mode displacements 5 of O 2-, Ba 2+ and Ti a+ 
ions surrounding the central impurity cation. These energy values, fitted to 
a fourth-order polynomial 

P~ (50, (~Ba, (~Wi) clus EClUS/R = E ~ ( ~ ,  R e )  - SM ~ cj  

= Z An,np~ 5~na 5~i (3.7) 
n+m+p<_4 

in the three types of displacements, are used to update the total pair potential 
crystal energy and gradients as to include the embedding shell model as well 
as the quantum cluster contributions. The total energy of the crystal is given 
by (see Sect. 2.1.2, (2.57)): 

E(k~, Re, Re) r = ESM (Rc, Re) + P~(5o, 5Ba, (~Ti) , (3.8) 

with 

Re(i) = R~ 4- 5i (i = O, Ba, Ti). (3.9) 
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crys R ~ denotes the unrelaxed positions of cluster ions; ESM (Rc, Re) is the shell 
model energy of the total crystal. The total crystal energy obtained by (3.8) 
comprises the substitution of a pair potential defect cluster by its quantum 
mechanical counterpart. The short-range cluster-lattice interaction is mod- 
elled on the basis of the known pair potentials. 

The final crystal relaxation is performed using a modified version of the 
shell model program CASCADE [174, 175]. Modifications of CASCADE are 
indispensable, because the quantum cluster energy models an exact image of 
the ab initio breathing mode potential energy surface and, thus, goes beyond 
the pair potential approximation as used in CASCADE. It is sufficient to up- 
date only the energy and gradients appropriately, since CASCADE employs 
the variable metric technique [81] to minimize the crystal energy. Thus, the 
inverse Hessian is iteratively approximated using the updated coordinates 
and gradients and, finally, converges to its exact form. 

Based on the cubic symmetry employed in the present problem, the quan- 
tum mechanical cluster configuration can be determined from in vacuo cluster 
calculations. This is true, since the first non-vanishing terms of the electro- 
static crystal potential are of fourth order and, further, the cluster multipole 
moments vanish up to the hexadecapole moment. Generalizations to systems 
exhibiting lower than cubic symmetry would in principle be straightforward; 
however, the computational costs increase rapidly with the additional de- 
grees of freedom. Moreover, the total quantum energy of the cluster may no 
longer be determined independently of the embedding lattice configuration. 
For related details the reader is referred to Sect. 2.1.2. 

Lat t ice  Relaxat ions .  Table 3.2 displays the calculated breathing mode dis- 
placements of the three shells of ions which neighbour the central Mn impu- 
rity. 

The manganese impurity is assumed in its electronic quartet states 4A2g 
and 4T2g. Different degrees of approximations are employed to account for the 
local electronic structure of the defect cluster, i.e. descriptions based on the 
shell model, on the Hartree-Fock approximation and on configuration inter- 
action. This order denotes the increasing flexibility of the modelled electronic 
structure. Pure shell model simulations are not able to reflect any changes 
which are related to the electronic state of the Mn ion (the corresponding 
columns in Table 3.2 are thus replicas of each other). 

Inspecting Table 3.2, we observe that all results are in remarkable qual- 
itative agreement: the pronounced inward relaxation of the Ba 2+ ions, the 
outward relaxation of the Ti a+ ions and, finally, the inward relaxation of 
the oxygen ligands. The ligand relaxation is in agreement with ion size argu- 
ments, because R(Mn 4+) < R(Ti a+) (see [176]). Its calculated size, however, 
depends on the degree of approximation applied to represent the electronic 
structure of the MnO6 cluster. The more accurately it is described the less 
are the calculated ligand relaxations. Within the shell model the deficien- 
cies of representing defect-induced electron redistributions are compensated 
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Table 3.2. Total ion relaxations within the first three neighbour shells of Mn~ + 
(4A2g and 4T2g state). ECC denotes embedded cluster calculations. - :  inward re- 
laxation and +: outward relaxation 

4A2g-related ion relaxation //~. 

Ion type ECC(CI) ECC(HF) Shell model 

02-  -0.035 -0.046 -0.240 

Ba a+ -0.347 -0.385 -0.190 

Ti 4+ +0.113 +0.100 +0.01 

4T2g-related ion relaxation / /~  

Ion type ECC(CI) ECC(HF) Shell model 

O 2- -0.021 -0.037 -0.240 

Ba 2+ -0.348 -0.370 -0.190 

Ti 4+ +0.119 +0.106 +0.01 

by exaggerated displacements of the oxygen ions. In comparison the oxy- 
gen displacements derived from embedded cluster calculations are smaller by 
an order of magnitude. Table 3.2 further shows that ,  in particular, the oxy- 
gen relaxations are more pronounced with the manganese cation being in its 
4A2g ground state. Obviously, the excitation of the Mn 4+ into the electronic 
4T2g state slightly increases the manganese radius, since the excited state is 
more diffuse than the ground state. A similar argument may be applied to 
CI, which admixes extended excited states into the HF ground state, thus 
allowing for Coulomb correlations. 

In order to distinguish between contributions due to a cluster-lattice mis- 
match and proper defect-induced relaxations we also consider the ion dis- 
placements for a perfect cluster containing Ti 4+ instead of Mn 4+ as the cen- 
tral cation. These calculations (Table 3.3) are performed within the Hart ree-  
Fock approximation. CI is again expected to further reduce the oxygen ligand 
displacements. Two stages of a modelling are compared in Table 3.3. The first 
refers to a representation of the central Ti cation using a bare effective core 
potential (model a in Table 3.3). This description is fully symmetric with 
respect to the outer Ti cations at the cluster boundary. There are no cova- 
lency effects between cations and anions. In the second situation (model b) 
the electronic structure of the central Ti is t reated equivalently to the Mn 
impurity; thus, only the ls-2p core electrons are simulated by effective core 
potentials, whereas the outer electronic structure is given explicitly. In this 
case the symmetry between the central and the outer Ti cations is broken, 
since covalency and charge transfer can take place between the oxygen anions 
and the central cation. Obviously, these effects most importantly affect the 
radial relaxation of the Ba cations. Allowing charge transfer onto the cen- 
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Table 3.3. Total ion relaxations (/~) within the first three neighbour shells of 
a central Ti 4+ cation, a: bare ECP for the central Ti, b: orbital representation 
analogous to Mn. -:  inward relaxation and +: outward relaxation 

Ion type a b 

0 2- +0.073 -0.030 

Ba 2+ +0.022 -0.130 

Ti a+ -0.029 +0.021 

tral Ti cation results in a pronounced inward displacement of the Ba ions. 
However, the overall compatibility between both cluster descriptions and the 
shell model representation of the outer lattice is remarkable, since even the 
Ba displacements in model b correspond to only 3.25% of the lattice constant. 

Finally, the differences between the manganese and the titanium cluster 
(model b) may be interpreted as purely impurity induced: 60 = -0.016/~, 
6Ba = --0.255 /~ and (~Ti : +0.079 /~. These additional relaxations refer to 
the 4A2g ground state of Mn a+. For the aT2g state we obtain 60 = -0.007/~, 
6Ba = --0.240 /~ and 5Ti  ---- + 0 . 0 8 5  J~. The calculated defect-induced ligand 
relaxations (referring to aA2g) are in satisfactory agreement with reported 
effective ion size differences (0.065 /~) [176]. Generally, the defect-induced 
relaxations will increase with increasing charge and size misfit of the impurity 
cation. Indeed, preliminary HF simulations for Cr 3+ employing a smaller 
3 • 3 x 3 mesh of alg-type displacements yield the following defect-induced 
relaxations: 6o = +0.068/k, 6Ba = --0.27/~ and 5Ti ---- +0.12 ]~ for t h e  4A2g 
state and 6o -- +0.072/~, 6Ba = --0.22 /~ and (~Ti = +0.11 /~ for the 4T2g. 
In particular, the outward displacements of the oxygen ions are larger by 
an order of magnitude than the reported radii differences between Ti 4+ and 
Cr 3+ [176]. This result suggests the dominating effects due to charge misfit 
and confirms earlier shell model-based simulations of Sangster [177]. 

In the following subsections we prefer to use the total embedded cluster 
relaxations (see Table 3.2)-over the purely defect-induced displacement con- 
tributions, because only the first represent fully equilibrated lattice structures. 

Optical  Absorp t ion  and  Emission be tween Crys ta l  Field States.  Ta- 
ble 3.4 displays the calculated energy separations between the excited 4T2g 
and 2Eg states and the electronic ground state 4A2g. These calculations em- 
ploy the ASCF method which takes all important orbital relaxation effects 
into account (see also the paragraph on stability contained in this subsec- 
tion and Sect. 2.1.2). Three different lattice geometries are considered, i.e. 
observed perfect lattice spacings and alg-relaxed lattices corresponding to 
the 4A2g and 4T2g electronic states of Mn 4+ (see the paragraph on lattice 
relaxations in this subsection, Table 3.2). The different lattice geometries ob- 
tained from HF and CI are also taken into account. However, at this stage 
we neglect further JT distortions, which axe to be expected for the orbitally 
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Table 3.4. Energy separation between crystal field states, o A: optical absorption 
and o E: optical emission 

Electronic 

state 

HF energy separation (eV) from 4A2g 
for different lattice geometries 

undistorted 4A2g relaxed 4T2g relaxed 

2Eg 1.87 1.84 1.84 

4T2g 2.31 2.56 (o A) 2.53 (o E) 

Electronic 

state 

CI energy separation (eV) from 4A2g 

for different lattice geometries 

undistorted 4A2g relaxed 4T2g relaxed 

2Eg 1.65 1.65 - 

4T2g 2.23 2.40 (o A) 2.37 (o E) 

degenerated excited states. The transition energies calculated with respect to 
the 4A2g and 4T2g equilibrated lattices correspond to optical absorption and 
emission, respectively. HF derived excited state energy separations from the 
ground state are 0.1-0.2 eV greater than the corresponding CI energy differ- 
ences. Besides a direct energetic effect, which may be inferred by comparing 
HF and CI energy differenes calculated in the s a m e  lattice structure (for ex- 
ample, compare the perfect lattice results in Table 3.4), there is an indirect 
effect which is based on the differences in the relaxation patterns produced by 
HF and CI (see the paragraph on lattice relaxations, Table 3.2). In the case 
of CI the smaller inward displacements of the oxygen ions lead to a reduction 
of the crystal field splitting E(4T~g)-E(4A2g). For example, taking the two 
4A2g equilibrated geometries of Table 3.2 we obtain a reduction of 0.06 eV. 
Generally, the effect turns out to be _<0.1 eV. 

The calculated Stokes shift, i.e. the difference between absorption and 
emission energies, is small and equals 0.03 eV within HF and CI theory. The 
same order of magnitude has been found for Cr 3+ doped into MgO [178]. Be- 
cause there axe no experimental data for Mn 4+ in cubic BaTiO3, we compare 
the calculations with measurements on SrTiO3:Mn4+: E(2Eg)-E(4A2g)---1.71 
eV and E(4T2g)-E(4A2g)=2.14-2.23 eV (absorption) [179, 180, 181]. Based 
on the smaller lattice constant in this material there will be essentially no 
ligand relaxation around Mn 4+ in SrTiO3; thus the experimental energies for 
SrTiO3:Mn 4+ may safely be compared with calculated energies in BaTiO3 
which employ relaxed lattices. Whereas the 2Eg-related separation is insensi- 
tive to lattice relaxations, there is a pronounced effect for E(aT2g)-E(aA2g). 
The calculated absorption energies (CI) are by ~0.2 eV greater than the 
reported experimental data. The relaxation contributions due to a cluster- 
lattice mismatch (see the paragraph on lattice relaxations in this subsection) 
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could be mainly responsible for this deviation. In spite of this feature the 
agreement between calculated and experimental energy separations is very 
encouraging. However, the present discussion also suggests the importance 
of including electron correlations in order to predict accurate crystal field 
splittings. 

The orbital degeneracy of the excited 4T2g state leads, under the action 
of appropriate electron-phonon couplings, to the occurrence of symmetry- 
reducing Jahn-Teller distortions. These JT distortions are approximately 
treated by minimizing the total energy with respect to the symmetry-adapted 
displacements of the oxygen ligands with the remaining ions fixed in their 
alg-relaxed positions corresponding to the 4T2g state. Figure 3.4 displays the 
symmetry adapted normal modes of an octahedron. 

al I 

~Slg 

-z"o--.- 

t2g 

2 ~eg 

-6eg 

eg 

Fig. 3.4. Symmetry-adapted alg, eg and t2g distortions of an MO6 octahedron 

The eg-4W2g and t2g-4T2g electron-phonon interactions are JT active. 
The present HF and CI calculations do not show any significant t2g-4W2g 
instability; therefore in what follows we may concentrate on the eg mode 
coupling. Ja.hn-Teller energies and frequencies are obtained by fitting the 
corresponding potential energy curves (PEC) with polynomials defined up to 
sixth order in the JT-mode displacements. Whereas in the case of HF-PEC 
we obtain good quality fits (corresponding to mean deviations <0.01 eV) even 
in the harmonic approximation (i.e. employing parabolas), it is necessary to 
consider sixth order terms for CI-PEC in order to maintain the quality of 
our fits. This result suggests that correlation effects increase the anharmonic 
potential terms. Table 3.5 compiles calculations of eg mode couplings. All 
results are based on the best fits employing sixth-order polynomials. The 
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frequencies are obtained from Taylor expansions to second order around the 
respective curve minima. Inspection of Table 3.5 shows that  the introduc- 
tion of correlation lowers E J T  and increases the vibration frequencies. An 
analogous influence on frequencies can also be observed in the case of the 
breathing mode alg-4A2g electron-phonon couplings (HF: 830 cm -1 and CI: 
980 cm-1).  Table 3.6 displays calculated ion charges obtained from a Mul-  
liken population analysis (MPA) for the excited aT2g state. These results 
are based on HF and NO-SDCI charge densities which have been calculated 
employing the axg-relaxed 4T2g(CI) lattice. The occupied Mn 4+ eg orbital 
corresponds to dx2_u2. 

Table 3.5. Coupling of local eg modes to 4A2garld 4T2g. We note that 
5(O+~)=26%and (f(Oxy)=-6% 

HF CI 
4A2g 4T2g 4A2g 4T2g 

5eg / a.u. - -0.029 - -0.017 

EjT / em -1 - --290 - --138 

WJT / c m  -1 +650 +652 +768 +710 

Table 3.6. Ion charges calculated from an MPA based on the excited Mn 4+ 4T2g 
state. Further details are given in the text 

Ion Charge (HF) Charge (NO-SDCI) 

Mn +2.37 +2.23 

O (xy-plane) -1.75 -1.72 

0 (-I-z) --1.68 -1.67 

We emphasize the relative merit of MPA charges, according to which only 
the differences between the HF and CI analyses are physically significant but  
not the calculated ion charges (e.g. see [17] for details). It can be seen that  CI 
increases the charge transfer onto the central manganese cation, which results 
in an enhanced bonding stiffness and, thus, leads to the prediction of higher 
JT  frequencies; at the same time correlation reduces the the charge differences 
between the xy-planar oxygen ions and the ones along •  which is in line 
with a reduction of the J T  distortion 5eg. Figure 3.5 shows the calculated 

4T2g total HF and CI energies as a function of an eg-JT distortion. Figure 
3.6 displays a configuration diagram related to the eg mode. 
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Finally, the present simulations of JT distortions suggest a pronounced 
dynamical behaviour, since the JT energies are small in comparison with the 
frequencies. 

Stabi l i ty  and  Charge  Transfer  Transit ions.  In this subsection we com- 
ment on the relative stability of Mn~ + defect centres in BaTiO3. 

As has been demonstrated in Sect. 2.1.2, there are two main reasons why 
physical interpretations of embedded cluster calculations should not be based 
on cluster orbital energies. First, cluster eigenvalues correspond to localized 
crystal orbitals and are thus not directly related to the crystalline eigenstates 
which provide information on defect levels in the band gap. Second, orbital 
relaxation effects generally prevent a useful interpretation of cluster eigen- 
values as ionization energies. It is recalled from Sect. 2.1.2 that Mn~: + would 
be unstable if we trusted the the misleading orbital-related information. 

In order to establish the relative stability of the Mn~: + centres it is nec- 
essary to investigate charge transfer transitions (CT) involving an electron 
transfer from the oxygen ligands onto the manganese cation. The present 
CT ASCF calculations are performed employing perfect lattice spacings as 
well as relaxed lattice structures. For the latter type of calculation we adopt a 
further approximative relaxation procedure in order to account for symmetry- 
reducing lattice distortions accompanying the CT states. This method goes 
beyond the treatment of JT distortions as outlined in the discussion of optical 
absortions and emissions between crystal field states (this subsection), since 
it allows the symmetry-reducing lattice displacements to occur for all cluster 
ions and not only for the ligand anions. Such a generalization seems to be 
necessary, because the modifications of the oxygen electron structure due to 
CT are obviously more pronounced than in the case of the 4T2g CF state. 
The outer crystal lattice represented by 736 point ions with integral charges 
has been held fixed, corresponding to the relaxed crystal structure, which is 
in equilibrium with the Mn 4+ 4A2g HF ground state. The cluster relaxation 
is performed using the geometry optimization facilities of the HONDO 7.0 ab 
initio code. For this task the program has been modified in order to include 
short-range Buckingham potentials between cluster ions and embedding point 
charges. Table 3.7 lists the corresponding total energy differences (see (3.8)) 
between the CT states and the Mn 4+ 4A2g state. The CT states invoke the 
formation of Mn 3+ for which we assumed two possible configurations, i.e. the 
high-spin configuration (t2g)3eg (5Eg) and the low-spin configuration (t2g) 4 
(3Wig). The columns a and b in Table 3.7 refer to these situations, respec- 
tively. The difference between these energies measures the energy separation 
between the two Mn 3+ crystal field states. 

The Mn 3+ high-spin configuration is by 1.8-1.9 eV more favourable than 
the low-spin configuration. In the case of the high-spin configuration of Mn 3+ 
the hole created localizes on the two oxygen anions along • because the 
occupied Mn 3+ eg orbital corresponds to 3z 2 - r 2. In this case the electronic 
structure of the acceptor type cation (Mn 3+) determines the localization 



3.3 Electronic Structure Calculations 73 

Table 3.7. Energy separation (eV) between CT states and the Mn 4+ ground state 
4A2g, AE = E(CT)-E(4A2~). Columns a and b refer to the high-spin configuration 
(t~)3% and to the low-spin configuration (t2~) 4 of Mn 3+, respectively. The energies 
axe obtained from UHF calculations, whereas the numbers in brackets refer to 
ROHF. In the case of relaxed lattices each electronic state is calculated within its 
own equilibrium lattice geometry 

Lattice a b 

perfect 1.40 (1.13) 3.21 

relaxed 0.77 (0.5) 2.66 

properties of the associated hole. More generally, it would be important  to 
investigate the hole localization as a function of size, charge state and elec- 
tronic structure of the trapping acceptor defect. For example, in suitable 
cases the trapping of two holes may be more favourable than the association 
of only one hole, which can inititate the formation of hole bipolarons (see 
Sect. 3.3.2). 

Table 3.7 shows that  Mn 4+ is stable against CT, since the 4A2g ground 
state of Mn 4+ represents the most favourable electronic state irrespective of 
the inclusion of lattice relaxation. However, lattice relaxations lead to a reduc- 
tion of the relevant energy separations. This is reasonable, because Mn a+ is 
almost identical to the substituted Ti4+; the CT state, on the other hand, de- 
fines a comparatively larger perturbation of the local crystal structure which 
needs stronger lattice relaxations for its compensation or screening. The addi- 
tional influence of electronic correlations may be investigated on the basis of 
Mr perturbation theory to second order (MP2) and DFT.  Quali- 
tatively, the effect of correlations may be understood on the basis of increased 
covalency between the oxygen anions and the manganese cation. In compar- 
ison to HF, electrons on the anions become more stabilized but  destabilized 
on the cation. As a consequence the CT states are shifted to higher energies. 
Preliminary MP2 calculations, which employ the previous basis set (see the 
paragraph on methods contained in this subsection) as well as perfect lat- 
tice spacings, indicate a corresponding energy shift of about  0.6 eV (see also 
below), 

Finally, we consider the energy separations between the Mn 4+ 4A2g state 
and the lowest CT state involving for both states consistently either the 
4A2g relaxed lattice or the CT relaxed lattice. In the first situation the energy 
separation corresponds to optical absorption and in the second case to optical 
emission (see Fig. 3.7). 

Within the UHF approximation 1.1 eV is obtained as the onset value for 
the CT optical absorption and 0.4 eV correspondingly for the CT optical 
emission. First, we observe that  CT transitions are characterized by large 
Stokes shifts. As expected, this is different from the crystal field transitions 
discussed above. Second, however, the calculated onset energy of the CT op- 
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Fig. 3.7. Schematic visualization of optical absorption and emission. The vertical 
arrows denote electronic CT transitions which, according to the Franck-Condon 
principle, take place at fixed ion core positions. The displacement of the excited 
state potential energy surface (PES) against its ground state counterpart measures 
the Franck-Condon shift. Assuming equal PESs the Franck-Condon shift may also 
be characterized by the energy difference E1 (Ro) - El(R1) 

tical absorption is somewhat smaller than the reported experimental energies 
(> 3.2 eV) referring to SrTiO3:Mn~ + [179]. In particular, the CT absorption 
energy is significantly smaller than the aT2g-aA2g transition energy, which 
contradicts the experiments. Because the predicted energy corresponds to 
the HF approximation, it can be suggested that the inclusion of electron 
correlations is necessary and sufficient to calculate accurate CT transition 
energies. 

MP2 calculations based on the previous basis set (see the paragraph on 
methods in this subsection) and employing the aA2g equilibrated crystal lat- 
tice yield 2.0 eV for the CT optical absorption. This value represents a lower 
bound to the true CT energy, because in contrast with the crystal field split- 
ting energies the CT transition energies are found to be highly dependent 
on the quality of the used basis set. The reason for this different behaviour 
is based on the pronounced charge redistributions accompanying CT. The 
accurate simulation of CT, therefore, needs a very flexible basis set. For ex- 
ample, using a full-orbital split valence basis set for the manganese cation, 
retaining the previous description of the oxygen anions (see the paragraph on 
methods in this subsection) and, finally, augmenting this basis set by addi- 
tional oxygen and manganese d-type functions increases the UHF and MP2 
CT absorption energies to 1.7 eV and 3.3 eV, respectively. It is noticed that 
even with this sophisticated basis set the UHF CT absorption energy is signif- 
icantly smaller than the 4T2g-aA2g CF transition energy, which contradicts 
to all relevant experiences. But note that in this case MP2 predicts a reason- 
able CT absorption energy, which is significantly greater than the aT2g-aA2g 
CF splitting and which agrees satisfactorily with reported experimental data 
for SrTiO3:Mn 4+ [179]. 



3.3 Electronic Structure Calculations 75 

Further simulations can be performed on the basis of density functional 
theory (DFT). Following the investigations of Perdew and Levy [39] (see also 
Sect. 2.1) the 4A2g , 4T2g and CT electronic state energies are calculated 
employing the 4A2g-state equilibrated lattice geometry, which was derived 
earlier within HF theory. The present calculations, based on the Kohn-Sham 
procedure implemented in the CADPAC code [173], employ the same so- 
phisticated basis set as the MP2 calculations discussed above. The exchange 
correlation functional is approximated by the advanced "BLYP" functional 
(Sect. 2.1). 

The results of the present DFT simulations are encouraging: whereas the 
4T2g is 2.1 eV above the 4A2g ground state, the CT absorption energy be- 
comes 3.4 eV. These energy separations, which are expected to give lower 
bounds to the true excited state separations from the ground state, are in 
good agreement with the corresponding values obtained from the SDCI+Q 
and MP2 calculations discussed above. Most importantly we notice that the 
CT absorption energy is at least 1.2 eV greater than the respective CF tran- 
sition energy. Experimentally, for SrTiO3:Mn 4+ a corresponding energy sep- 
aration of ~-1 eV has been observed [179]. 

Results of similar quality are obtained, when studying optical absorption 
4+ 4+ 3+ CT transitions in the case of FeTi, i.e. FeTi + hu ) FeTi + Ode 1. Ode 1 de- 

notes a delocalized hole state (see Sect. 3.3.2). DFT calculations yield an 
absorption energy of 2.3 eV, which is only slightly less than the reported 
experimental value (_< 2.8 eV [133]). In this context I add a remark on 
rhodium-related CT transitions. It has been proposed [133] that the CT pro- 
cess RhaT + + hv , Rh~ + + O- shows a significantly smaller Franck-Condon 
shift compared with Fe. A simplified explanation for this behaviour may be 
given by reference to Fig. 3.7. E l ( R 0 )  - EI(R~) is assumed to measure the 
Franck-Condon shift. Whereas iron represents an intermediate crystal field 
defect preferring a high-spin configuration, rhodium belongs, due to its 4d- 
electrons, in the strong-field case, and favours low-spin configurations. As a 
consequence, the excited CT electron will occupy an eg orbital in the case 
of iron, but a t2g state referring to rhodium. The electron-lattice coupling is 
stronger for eg orbitals, since these point directly to the octahedrally coor- 
dinated oxygen ligands (see Fig. 3.8). Indeed, embedded cluster calculations 
indicate that the the CT-induced ligand relaxations are twice as large for iron 
as for rhodium. Therefore the iron-related energy difference E1 (Ro) -E1  (R1) 
is also larger. Preliminary investigations (MP2) yield 1.4 eV for iron, but only 
0.4 eV in the case of rhodium. 

The remarkable quality of the present DFT results may at least partly be 
traced back to significant electron density differences between the requested 
states. However, it is recalled in this context that there are also situations 
where DFT fails to give reliable excited state estimates. Most prominent is 
the inability of the usual DFT calculations to reproduce the atomic multiplet 
structure [39]. 
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Fig. 3.8. Visualization of eg(3d~_~) (left figure) and t2g(3d~) (right figure) 
orbitals centred on a transition metal cation. Oxygen ligands are simulated by 
shaded spheres 

In conclusion we observe that electron correlation contributions are nec- 
essary and sufficient in order to reliably simulate CT transitions related to 
transition metal impurities in BaTiO3. The suggested embedded cluster ap- 
proach gives useful CT transition energies provided that the employed set of 
basis functions is sufficiently flexible. In this context we also briefly comment 
on the occurrence of symmetry-broken CT states within HF theory, which 
simulate a complete hole localization at exactly one of the oxygen ligand an- 
ions. These localized CT states, though representing the most favourable HF 
states, do not indicate the instability of particular impurity charge states in 
BaTiO3, but refer to a general instability due to HF theory which is a man- 
ifestation of the so-called symmetry dilemma [182, 183]. On the other hand, 
the symmetrized CT states discussed so far reflect the stability properties 
of impurity cations in BaTiO3 at least qualitatively. In fact, after inclusion 
of sufficient electron correlations the symmetrized CT solutions represent 
the most favourable CT states for all investigated transition metal cations. 
Based on this observation we have discarded the localized CT states from the 
present considerations in order to avoid these additional HF specific prob- 
lems. In Sect. 3.3.2 we shall return to this topic. 

Moretti et al. [91] reported a calculated CT transition energy of ~2.8 eV. 
These cluster calculations were based on the Xa exchange approximation 
and on perfect lattice spacings. Further, these investigations neglected any 
correlation contributions. The reason, that this value is about 1 eV greater 
than the most accurate UHF-based CT energy threshold derived from the 
present embedded cluster calculations, is not completely clear. However, it 
could be possible that the local Xa exchange potential underestimates the 
gain in exchange energy between t2g- and eg-type electrons which occurs upon 
forming the Mn 3+. Moreover, certain shortcomings could also be due to the 
employed Muffin Tin potential approximation. 
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3.3 .2  S i m u l a t i o n  o f  T r a p p e d  H o l e s  

Light-induced charge transfer reactions can be investigated on a microscopic 
level by means of photo-electron spin resonance techniques (Photo-ESR), 
i.e. by detection of ESR changes as a function of the irradiated wavelength. 
Corresponding Photo-ESR experiments [184] furnished evidence that  t rapped 
holes are significantly involved in light-induced charge transfer processes in 
BaTiO3. These hole centres are either para- or diamagnetic. There are deep 
and shallow band gap levels of t rapped holes. In most cases, the deep levels 
belong to transition metal impurities. Due to their ESR characteristics the 
paramagnetic holes referring to shallow levels may be identified with Oo- type  
centres t rapped at suitable acceptor imperfections. The diamagnetic species, 
on the other hand, are only indirectly accessible to Photo-ESR experiments, 
see Fig. 3.9 (reproduced from [184]). The figure displays a correlation between 
the observed ESR intensities of paramagnetic defects and the wavelength A of 
the illuminating light. Holes created in the valence band by photo-ionization 
of Fe a+ are t rapped in ESR-silent defect centres, called X in Fig. 3.9, and 
thus remain invisible in the wavelength range 650 nm < A < 850 nm. Only 
for even smaller wavelengths is the formation of single-hole centres observed. 
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Fig. 3.9. Typical Photo-ESR spectrum obtained from an as-grown BaTiO3 speci- 
men. Changes in the ESR intensity IESa are shown as a function of the wavelength of 
the illuminating light. The inset sketches the underlying dominating charge transfer 
process. Diamagnetic centres X are speculated to correspond to diamagnetic hole 
bipolarons. The processes do not involve divalent iron, because in as-grown crystals 
the Fermi level is close to the valence band 
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A reasonable explanation for the ESR-invisible hole centres has been given 
by Possenriede et al. [184], which is based on hole bipolarons corresponding 
to molecular 0 2- aggregates. Similarly to isoelectronic F2 molecules, such 
oxygen complexes should possess a diamagnetic ground state, thus being in- 
sensitive to ESR. Nearby acceptor defects can be expected to aid the required 
hole localization. The onset wavelength of single-hole formation in Fig. 3.9 
may be interpreted as the light-induced dissociation of bipolarons. 

The present subsection is devoted to simulations of trapped hole defects 
(see also [185, 186, 187]). Shell model and embedded cluster calculations are 
used to aim at their characterization. In the main, one may think of "on- 
acceptor" and "off-acceptor" hole trapping. Whereas in the first case the 
trapped hole localizes at the acceptor site (thereby increasing the acceptor 
charge state by one positive unit, i.e. M+n§ ~ , M+(n+l)), the hole remains 
at the oxygen ligands in the second case. Further, the off-acceptor case allows 
us to distinguish hole states according to their degree of delocalization, i.e. 
complete localization at exactly one ligand anion, intermediate localization 
at two oxygen ions (formation of Vk centres), and delocalization over more 
than two oxygen ligands. Vk defects, which are already known from studying 
alkali halides [188], can be interpreted as negatively ionized hole bipolarons 
in the present context. 

Which type of localization is favoured depends not only on the ionicity of 
the host system, but also on the incorporation site and electronic structure of 
the acceptor point defect. For example, at Ba sites the formation of localized 
off-acceptor holes can be expected to be more favourable than that of delo- 
calized species due to the pronounced oxygen-oxygen separations. Further, 
if two holes are bound simultaneously to one acceptor defect the formation 
of bipolarons will depend on the inter-oxygen binding properties. 

Shell-model-based investigations show that single holes are most favourably 
trapped at Ti site acceptor impurity cations. We first consider the off-acceptor 
case. It is emphasized that the shell model is accessible only to completely 
localized holes. Binding energies referring to Ti site acceptors typically range 
between 0.5 and 1 eV. The binding at Ba site acceptor defects is one order of 
magnitude less favourable. This prediction agrees with experimental binding 
energies observed for A+a-Oo complexes (with A being an alkali cation). 
Monitoring (via ESR) the temperature dependence of the hole emission rate 
to the valence band yielded energies _< 0.1 eV. Similar predictions hold true 
for trapping of (pre-existing) bipolarons; see Table 3.8. 

Tables 3.8 and 3.9 compile the calculated results of single-hole trapping 
and bipolaron formation at Ti site and Ba site acceptor defects. Single-hole 
binding energies equal the (negative) second hole-ionization energies reported 
in Table 3.9. In addition to the shell model parametrization appropriate for 
BaTiO3 [158] an O-... O- pair potential is employed to account for the 
attractive covalent interaction between two neighbouring O- hole species 
assumed to form a hole bipolaron. Corresponding covalency contributions 
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Table  3.8. Trapping of hole bipolarons at Ti site and Ba site acceptor defects in 
BaTiOa. Negative binding energies indicate a favourable trapping of bipolaxons 

Acceptor defect Bipolaronic Binding energy (eV) of bipolaxons 

bond length / A to acceptor type defects 

A13+ +1.24 -1.88 

Cr~ + +1.23 -0.61 

Mg~ + +1.24 -1.80 

Fe 2+ +1.22 -0.87 

VTi +1.19 -1.63 

Li+~ +1.21 -0.42 

Na+a + 1.23 +0.03 

K+~ +2.70 +0.80 

VB~ +2.57 +0.94 

Table 3.9. Hole ionization energies of trapped hole bipolarons 

Acceptor-type defect first hole ionization second hole ionization 

energy (eV) energy (eV) 

Ti~ + (isolated bipolaron) 1.25 0 

AI 3+ 2.27 0.85 

Cr3i + 1.29 0.57 

Mg~ + 2.19 0.82 

Ser 170 0.42 

Li+~ 1.59 0.08 

Na+, 1.16 0.06 

K+~ - 0.12 

V ~  - 0.05 

are absent in the intrinsic 02- . . .  0 2- short-range potential. The O- . . .  O -  
potential has been generated by simulations of self-trapped holes in corun- 
dum based on the INDO approximation [189]. The simulations suggest that  
t rapped stable bipolarons may be interpreted as tightly bound molecules with 
fixed bond length around 1.2/~. This calculated bond length is in satisfac- 
tory agreement with the bond length ~1.4/~ of isoelectronic free F2 molecules 
[190]. 

Considering t rapped hole type bipolarons, three different binding energies 
can be distinguished: the first describes the binding of bipolarons to acceptor- 
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type defects (corresponding values are compiled in Table 3.8), whereas the 
second and third measure the affinity of the first and the second hole, respec- 
tively, to an acceptor. A complete characterization of the latter two binding 
energies is given by following ionization reactions: 

first hole ionization: A - 2001 ~ A - 001 + 001 (3.10) 

second hole ionization: A - 001 ~ A + 001 . (3.11) 

In these equations A denotes an arbitrary acceptor defect, either on a Ba 
site or on a Ti site, A - 001 represents an acceptor-hole complex and A - 
2001, evidently, a hole bipolaron trapped at A. Due to covalency between 
the O- ions the first hole ionization energy is in all cases greater than the 
second hole ionization energy. Therefore, hole-type bipolarons are examples 
for negative-U defect centres. Table 3.9 summarizes the corresponding hole 
ionization energies for a number of acceptor defects. It is, finally, emphasized 
that the stabilization of bipolarons is possible not only due to the additional 
covalent O-... O- interaction, but also because lattice relaxtion aids their 
formation. This can be shown by simulating two neighbouring O- holes and 
omitting any additional covalent interaction. The holes are bound to each 
other, corresponding to an energy gain of 0.2 eV and to a bond length of 2.69 
A, which is slightly less than the perfect lattice separation of 2.80/~. 

In principle, shell model simulations may also be used to decide between 
the formation of (localized) off-acceptor and on-acceptor hole states. This 
is possible upon combining defect formation energies with the appropriate 
electron affinities of oxygen and the actual cationic ionization potentials. 
On-acceptor holes are certainly favourable, if the acceptor cation possesses 
filled electron levels above the valence band edge. Rough estimates are ob- 
tained with free-ion ionization potentials. Whereas in the case of monovalent 
alkali cations (Ba sites), divalent magnesium and trivalent aluminium (both 
at Ti sites) the formation of off-acceptor holes is significantly preferred, on- 
acceptor holes probably occur at many divalent transition metal cations like 
Fe 2+ and Mn 2+ which are incorporated at Ti sites. The latter predictions are 
even further stabilized upon inclusion of crystal field splitting energies. How- 
ever, the results remain particularly uncertain for higher-valent transition 

3 +  - metal impurities. For example, the calculations predict FeTi--O O to be more 
4 +  favourable than FeTi , corresponding to an energy gain of 4 eV. Referring to 

the discussion in Sect. 3.2 this result may be easily reversed due to covalent 
charge transfer and crystal field effects which, acting constructively in this 
situation, could shift the eg levels of iron above the valence band states. It 
is noted, in addition, that there are no experimental indications in favour of 
the dipolar iron-hole complexes. 

Despite the numerical uncertainties, the shell model-based considerations 
suggest that increasing the ionicity of the defect complex probably favours 
the formation of off-acceptor holes. 
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~ r t h e r  insight into questions referring to trapped holes is gained by em- 
bedded cluster calculations. Corresponding investigations are indispensable 
in order to aim at unambiguous results regarding the precise localization 
properties of single trapped holes and the formation of possible (diamag- 
netic) hole bipolarons. Subsequently, particular attention will also be paid 
to the hole-localization properties at higher-valent transition metal acceptor 
cations. 

In all subsequently discussed embedded cluster studies the central quan- 
tum defect cluster is chosen analogously to the simulations of manganese 
reported in the preceding subsection (see Fig. 3.3). Thus, we confine our 
considerations to Ti site acceptor defects. The MO ansatz for the central 
acceptor-oxygen complex MO6 employs Gaussian-type basis functions with 
split valence (SV) quality for the acceptor impurity (Mg 2+, A13+, Cr 3+, Fe 3+ 
and Rh 3+) and its oxygen ligands; the basis set is further augmented by po- 
larizing d-functions. Bare effective core potentials are used to model ion-size 
effects of the outer Ba and Ti cations. 

The calculations employ HF theory, and electron correlation is included 
on the basis of SDCI(+Q), MP2 and density functional theory. In DFT cal- 
culations two choices are used in order to approximate the unknown exact 
exchange correlation functional, i.e. the local spin density ansatz of Vosko, 
Wilk and Nusair [191] (VWN-LSDA) and the advanced "BLYP" functional 
(see Sect. 2.1), which improves on L(S)DA. 

In order to perform cluster geometry optimizations which are consistent 
with the embedding crystal lattice (represented by a point charge field) an 
additional program has been written which updates the total cluster energies 
and gradients, as calculated by any quantum chemical program such as CAD- 
PAC [173], by adding appropriate short-range pair potential contributions 
due to the required interactions between cluster ions and embedding lattice 
ions. With these updates the program carries through the cluster geometry 
optimization using a variable metric (quasi-Newton) minimization algorithm. 
Relaxations of the embedding shell model lattice are determined using the 
CASCADE computer program [109]. Details of the complete procedure have 
been outlined in Sect. 2.1.2. 

During the lattice equilibration step (Sect. 2.1.2) the ion charges referring 
to the MO6 acceptor-oxygen complex are chosen according to the intended 
hole localization, e.g. completely localized off-acceptor holes are given as 001, 
bipolarons, correspondingly, as a pair of localized off-acceptor holes, and the 
Vk centre as a pair of 001/2 species. All remaining ions which are not af- 
fected by holes retain their formal integral charges. This simplifying choice of 
point charge representations can be justified by Mulliken population analyses 
(MPA). Table 3.10, for example, presents the MPA ionic charges obtained for 
the equilibrated bipolaron singlet state (HF theory). Moreover, the dipole 
and quadrupole moments of the cluster calculated on the basis of formal 
ionic point charges are in reasonable agreement with the respective moments 
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Table 3.10. MPA-derived ion charges referring to the equilibrium bipolaron singlet 
2-- HF state. Op~an e denotes the oxygen ligands within the plane of the hole bipolaron 

O--O- and 2- Operp ' correspondingly denotes the oxygen ions along the axis perpen- 
dicular to the bipolaron plane 

Ion Ionic MPA charge 

M g  2+ + 1 . 4 6  

2 -  Oplan e -1.88 
2-- Operp. -1.89 

0 -  -0.95 

of the quantum cluster. Whereas the dipole moments of the point charge 
cluster deviate by about 2% from their quantum analogues, the quadrupole 
moments are reproduced in the point charge approximation with differences 
being slightly less than 6%. Therefore the electrostatic potential generated 
by the cluster charge density will be sufficiently reproduced when employing 
the point charge substitute. 

First, we discuss embedded cluster calculations for trapped single holes. 
Hole states corresponding to different localization properties are considered. 
For all investigated Ti site acceptors HF theory predicts localized off-acceptor 
holes to be highly preferred. This result complies with predictions derived 
from the shell model simulations discussed above. Table 3.11 compiles the 
HF and MP2 calculations for trivalent transition metal cations. The forma- 
tion of localized (i.e. symmetry-broken) off-acceptor holes in r-type oxygen 
2p-orbitals is preferred. It is noted that the symmetry breaking is stabilized 
by defect-induced lattice distortions. Therefore these solutions emerging from 
the so-called HF symmetry dilemma [182, 183] may attain physical signifi- 
cance. For holes occupying r-type oxygen orbitals the spin coupling to the 
iron cation is negligible, a-type holes, on the other hand, are about 1 eV less 
favourable. Figure 3.10 visualizes both localized off-acceptor hole states. 

In the case of a-type localized holes we infer from Table 3.11 a small spin- 
coupling interaction (0.1 eV) favouring antiparallel spin alignment between 
iron and O-.  The ordering is explained upon observing that for 2S + 1 = 7 
the bonding a-orbitals tend to increase the local spin density at the iron site 
which, however, is unfavourable due to the Pauli principle (note that iron has 
a half-filled 3d-subshell corresponding to high spin). 

Delocalized off-acceptor holes as well as tetravalent iron are highly un- 
favourable within HF theory. The delocalization properties of both these 
states are very similar, and thus energetic differences turn out to be negli- 
gible. Analogous results are obtained for different transition metal cations 

3 +  -- like Cr 3+ and Rh3+; in particular, the symmetry-broken solutions CrTi-O O 
and Rh~+-Oo are preferred over the actual on-acceptor states. Moreover, 
delocalized off-acceptor hole states are unfavourable. 
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0 

Fig.  3.10. Visualization of localized off-acceptor 7r- and a-holes close to an Fe~ + 
impurity. The symmetry-broken states are stabilized by lattice relaxations 
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Table  3.11. Total HF and MP2 embedded cluster energies for different hole states 
including lattice relaxations. Energies are renormalized to localized off-acceptor 
states. Oo(~r,a): localized off-acceptor hole in oxygen 2p It- or a-type orbitals. 
(O(xy))-:  off-acceptor hole deloealized over the four oxygen ligands in the xy -  
plane. 2S + 1 denotes the total spin multiplicity of the cluster. Note that Fe 3+ and 
Cr 3+ favour high spin (2SFe + 1 = 6, 2Scr + 1 = 4), and Rh 4+ prefers low spin 
(2SRh + 1 = 2) 

Defect 2 •+1  AEUtH~ (eV) AEMP2 (eV) 

F 4 i  + - O 5 ( - )  7 +o.o +o.o 

F e ~  - O5('~) S + 0 . 0  - 

Fe~ + - Oo(a  ) 7 +1.1 - 

Fe~ + - Oo(a  ) 5 +1.0 - 

Fe~ + - (O(xy))- 7 +2.4 +0.5 

Fe~ + 5 +2.4 +0.1 

P ~ +  - O o ( ~ )  2 + 0 . 0  + 0 . 0  

Rh~ + - (O(xy))- 2 +2.7 +0.1 

m 4 ~  2 +0.4 - 2 . 4  

Cry, + - 0 o ( - )  5 +0.0 +0.0 

Cr~ + 2 +1.15 -2.6 

In comparison to HF theory the inclusion of electron correlation increases 
the covalent charge transfer which is directed from the oxygen ligands onto 
the central metal  cation. As a result the ligand anions become less negatively 
charged, whereas the positive cation charge is reduced at the same time. 
Thus, electron correlations stabilize the (remaining) electrons at anions, but 
destabilize those located at the acceptor cation. There axe two important  
consequences of the additional correlation-induced charge transfer: first, the 
hole localization at the acceptor cation becomes enhanced, and, second, off- 
acceptor holes increasingly delocalize, because ionization of exactly one ligand 
anion becomes unfavourable due to the correlation-induced enhancement of 
the oxygen electron affinity. In summary,  HF theory models BaTiO3 as too 
ionic, and this artificially favours the formation of symmetry-broken local- 
ized off-acceptor hole states in all cases studied so far. This defect becomes 
removed upon inclusion of electron correlations. Possible situations where 
HF theory could provide reliable predictions might refer to divalent t ran- 
sition metal  acceptors at  Ti sites. Here, one may expect tha t  on-acceptor 
holes are most favourable. Divalent copper impurities are of particular inter- 
est: preliminary embedded cluster calculations [187] confirm the formation of 
on-acceptor holes in this case. Obviously, the situation differs from high-Tr 
oxides, where doped holes are predicted to enter the oxygen sites. Major dif- 
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ferences could emerge from the fact that divalent copper introduces a doubly 
negatively charged acceptor defect in BaTiO3, but not in the copper-based 
superconducting oxides, where it behaves neutrally. 

MP2 calculations (see Table 3.11) confirm that the inclusion of electron 
correlation tends to favour the formation of on-acceptor hole states. Further, 
considering off-acceptor holes, correlation mostly affects the delocalized hole 
states, but affects localized states to a much lesser extent. These results, re- 
ferring to off-acceptor holes, demonstrate the pronounced interplay between 
orbital relaxations and electron correlation, i.e. the localized hole states with 
significant HF orbital relaxations receive less correlation energy gain than 
delocalized hole states. Whereas Fe 4+ remains 0.1 eV less favourable than 
Fe 3+ - O- ,  Rh a+ and Cr 4+ become clearly preferred over the particular 
M - O-  centres by 2.4 eV and 2.6 eV, respectively. Finally, employing DFT- 
BLYP proves even Fe 4+ to represent the most favourable hole-trapping state. 
Moreover, for all simulated transition metal acceptors delocalized hole states 
represent the most favourable off-acceptor holes at this correlated level at 
least. However, the energy separations between localized and delocalized off- 
acceptor holes remain within some tenths eV. For iron this result indicates 
that the localized off-acceptor hole would be slightly more favourable than its 
delocalized counterpart if the ionicity of Fe 3+ could be increased. In practice, 
this condition might be satisfied for suitable platinum cations which possess 
a partially filled 5d-subshell. Due to the expected lanthanide contraction the 
platinum impurities could behave ionically, leading to observable localized 
off-acceptor holes, if these are sufficiently stable or metastable against the 
formation of on-acceptor holes. Indeed, based on ESR such a localized off- 
acceptor hole defect bound to a Pt-impurity has been proposed to exist [192]. 
The corresponding information was obtained by analyzing the hyperfine in- 
teractions of the ESR-active hole state. The platinum cations, on the other 
hand, are ESR silent. The charge state of platinum could not be assessed ex- 
perimentally, but Pt  4+ having a completely filled 5d(t2g) subshell represents 
a possible candidate. 

In summary, it is essentially electron correlation and not lattice relax- 
ation that stabilizes the high-valent charge states of various transition metal 
cations in BaTiO3. This mechanism resembles the impurity stabilization in 
semiconducting materials corresponding to the model of Haldane and An- 
derson [7]. On the other hand, in highly ionic materials we should expect 
the stabilization of impurity charge states mainly due to lattice relaxations 
[193]. The present discussion confirms that BaTiO3 represents a semi-ionic 
material. 

Up to this stage we have discussed the formation properties of trapped 
holes near to transition metal cations. Covalency leads to favouring the on- 
acceptor hole states. But there is also a number of acceptor type impurity 
cations behaving ionically. Examples are the monovalent alkali cations, diva- 
lent magnesium and trivalent aluminium. Obviously, on-acceptor hole states 
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will be unfavourable. Since covalent charge transfer occurs to a much lesser 
extent, one might expect the formation of localized off-acceptor holes to be 
favourable. The subsequent calculations, compiled in Table 3.12, exemplify 
the situation for A13i + acceptor cations. ESR investigations have shown that  
the formation of Vk hole centres is favourable in this case [194], but note that  
there are no corresponding indications for other acceptor cations. 

3 +  Table 3.12. Hole formations at AITi. All total embedded cluster energies are 
renormalized with respect to the localized off-acceptor 7r-type hole state, which 
represents the HF ground state. Within DFT-BLYP this state can only be stabi- 
lized when using the relaxed HF cluster configuration. DFT energies refer to this 
intermediate state (denoted by an asterisk). However, the localized hole is found 
to be unstable upon further geometry optimization, during which it changes into a 
delocalized hole state 

Defect AEUtHF (eV) AEM~(eV) AEDFT-BLYP (eV) 

Al$~ + - O o ( - )  + 0 . 0  + 0 . 0  +0 .0"  

A13+ - (de loc . (~r) ) -  + 2 . 5  + 0 . 4  - 0 . 8  

A13+ - ( d e l o c . ( a ) ) -  + 3 . 7  + 1 . 9  - 

AI~  + - (Vk(lr))  + 1 . 0  + 0 . 0  - -0 .4  

A13i + -- (Vk(O' ) )  + 2 . 8  + 1 . 6  -- 

Within HF theory the ground state is given by the localized off-acceptor 7r- 
type hole state. The Vk 7r-type hole distribution (Fig. 3.11) is less favourable 
by 1 eV. 

Figure 3.12 displays the calculated hole spin densities for both Vk modi- 
fications. 

The introduction of electron correlation again increases the delocalization 
of holes. The correlated calculations reported in Table 3.12 confirm that  all 
hole states are rather similar in energy. Most favourable are the delocalized 
state and the formation of Vk centres, but unfortunately there is no clear 
indication in favour of the latter hole states. The calculated results suggest 
the existence of a delicate balance between the local electronic structure 
and defect-induced lattice distortions: increasing the acceptor ionicity would 
result in the formation of completely localized off-acceptor holes, whereas 
a reduced ionicity leads to delocalization of hole states. In an intermediate 
small "window" the formation of Vk centres should be most favourable. The 
ESR data  confirm that  aluminium acceptors fall into this window, but  the 
present embedded cluster model also proves to be close to this intermediate 
situation. Further influences affecting the possible formation of Vk centres 
seem to be related to the local electronic structure of the acceptor cation. For 
example, the present embedded cluster calculations give no hints about the 
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? 

Fig. 3.11. Visualization of lr- and a-type Vk hole centres trapped by an A13+ 
acceptor cation. The interatomic separation between the oxygen partners forming 
the Vk defect is 2.3 /~ and 2.6 A for hole localization in ~r- and a-type oxygen 
orbitals, respectively. In comparison the perfect-lattice separation between neigh- 
bouring oxygen ions is 2.8/~ 
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3+ Fig. 3.12. Hole spin density plot of 7r- and a-type Vk centres trapped at A1Ti. 

The occupation of oxygen 2p orbitals can be clearly seen. The acceptor is located 
at (x,y) -- (0,0) in the upper picture (r-type), and at (-0.5,-0.5)  in the lower 
picture (a-type). All xy-coordinates in the figures are given in atomic units. The 
interatomic separations between the oxygen partners forming the Vk defect are 2.3 

and 2.6/~ for localization in the 7r- and a-type oxygen orbitals, respectively. The 
perfect lattice separation is 2.8/~ 

formation of Vk defects for transit ion metal  acceptors which are characterized 
by incompletely filled 3d-subshells. 

Returning to aluminium, the a - type  modification of the Vk centres is 
by 1.6-1.8 eV less favourable than  the r - t y p e  Vk defect. Moreover, all ion 
displacements are smaller in the a - type  situation. This result receives par- 
ticular importance remembering tha t  Vk hole centres may be interpreted as 
negatively ionized hole bipolarons. Therefore we may expect the same relax- 
ation behaviour considering u- type and a - type  hole bipolarons. Due to the 
reduced lattice relaxations, the latter species would be more appropriate  to 
coherent motions. It  is noticed tha t  holes created upon doping within the C u -  
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O planes of high-To superconducting oxides are assumed to populate a-type 
oxygen orbitals [195, 196]. Therefore we should expect the same behaviour 
for bipolarons - if they exist in these materials, a-type bipolarons might 
be speculated to facilitate the observed high-temperature superconductivity, 
thereby supporting the scenario proposed by Alexandrov and Mott [8]. 

It is instructive to compare the present embedded cluster calculations 
with earlier investigations of single holes trapped at Li+-acceptor cations in 
MgO [197, 198] and NiO [199]. All of these calculations have been based on 
HF theory, and thus predict symmetry-broken localized off-acceptor holes to 
be most favourable. However, in reference [198] the effect of electron corr,. 
lations has been tested on the basis of preliminary SDCI. It was found that 
correlation reduces the hole diffusion energy barrier from 1.05 eV (HF) to 
0.23 eV. Therefore the picture emerging from these investigations seems to 
comply with the correlation-induced delocalization of hole states found in the 
present embedded cluster calculations. The possible formation of hole-type 
Vk centres has been investigated in corundum [200]. Also, these simulations 
were confined to the HF level of approximation. Based on the present ex- 
perience these calculations would benefit from additional simulations at the 
correlated level. 

We now turn to simulations of trapped hole bipolarons in BaTiO3. As has 
been stated already, these defect species are closely related to the Vk hole 
centres. Divalent magnesium substituting for titanium is chosen as the actual 
acceptor cation. Correspondingly, the magnesium-bipolaron complex defines 
a neutral lattice perturbation. Two geometrical hole-acceptor configurations 
will be considered: the bipolaron with two holes on neighbouring oxygen ions 
trapped at the magnesium impurity and a linear complex O- - Mg 2+ - O-.  
The presence of two holes introduces a natural driving force towards com- 
plete localization, of which the linear complex corresponds to minimizing the 
inter-hole Coulomb repulsion. The bipolaron results from lattice relaxation 
and covalent bonding interactions. Both hole complexes are studied under 
different conditions: 

�9 Hartree-Fock (HF) treatment of the quantum defect cluster employing a 
rigid crystal lattice with ions held fixed on their perfect lattice positions. 
Only the actual O- partners are allowed to relax. 

�9 HF description of the cluster including complete lattice relaxation. 
�9 SDCI+Q and MP2 investigations of the central defect cluster using the 

equilibrium lattice of the previous step. The computing costs impede ge- 
ometry optimization in practice. Further geometry optimizations are per- 
formed only at the DFT level (LSDA and BLYP). 

Figure 3.13 displays the perfect lattice results. First, we observe that the 
triplet bipolaron state is energetically more favourable than the singlet state. 
The reason for this behaviour may be traced back to electronic interactions 
between the O- ions and crystal ions in the immediate neighbourhood. In 
particular, the triplet bipolaron takes advantage of this interaction because of 
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its antisymmetrical molecular charge distribution. Increasing the bipolaron 
bond length destabilizes the bipolaron due to increasing delocalization of 
the holes over all oxygen ligands. This effect is more pronounced for the 
triplet state. Thus, at this level, the hole bipolaxon can be considered as an 
embedded molecular dimer only close to its singlet equilibrium separation. 
The energetically most favourable configuration, however, corresponds to the 
linear complex with localization of the holes at two adjacent oxygen anions. 
This result should be expected from our previous discussion of single holes, as 
HF simulations place a disadvantage on the formation of delocalized states. 
For the purpose of comparison, results referring to the linear complex are 
included in Fig. 3.13. The linear configuration is ~1 eV more favourable 
than the triplet bipolaron state. It is finally noted that  there is no significant 
energy spacing between the singlet and triplet states of the linear complex 
because of negligible spin coupling in this case. 
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Fig. 3.13. Energy dependence of the bipolaron singlet ((>) and triplet (o) state as 
a function of the O - - O -  bond length employing a perfect (thus unrelaxed) crystal 
lattice and the HF approximation. The additional boxes (D) correspond to the 
triplet state of the linear defect complex, into which the HF calculations converged 
in these cases, although they started with converged (triplet) bipolaron orbitals 
corresponding to a previous bipolaron configuration 

Figure 3.14 displays the HF energy dependences of the singlet and triplet 
bipolaron states, including the effects of lattice relaxation, for which the gen- 
eral pat tern is similar to that  shown in Fig. 3.11 for the Vk centre. However, 
due to the stronger bonding effects, the O -  displacements are considerably 
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more pronounced. It is noted that  bonding is accomplished by r- type oxygen 
2p orbitals. A computationally effective but simplified procedure based on 
pair potential derived cluster relaxations has been employed to generate Fig. 
3.14. But most importantly, this figure reflects the relevant extremum fea- 
tures of exact HF-based geometry optimizations: the equilibrium bipolaron 
bond length is found to be 1.44 A, which is also in good agreement with the 
shell model simulations discussed above. ~ r t h e r ,  at its equilibrium separa- 
tion the diamagnetic singlet state represents the most favourable bipolaron 
state. Increasing the bond length still drops the triplet state below the sing]et 
state, but in contrast with the perfect lattice situation the equilibrium singlet 
state remains more favourable by 1.71 eV than the  minimum triplet state. 
The triplet state assumes its equilibrium separation at 1.96/~. 
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Fig. 3.14. Energy dependence of the bipolaron singlet (O) and triplet (*) state 
as a function of the O - - O -  bond length employing a relaxed crystal lattice and 
the HF approximation. Though lattice relaxation has been treated approximately, 
the figure reproduces the important features of exact geometry optimizations (see 
text) 

However, within HF the linear configuration is more favourable by ~1.9 
eV than the competitve hole bipolaron. Thus, the simulated bipolaron rep- 
resents only a metastable defect complex at this quantum mechanical level. 
Despite the established disfavour of hole bipolarons, as found within HF, we 
can infer a general trend of defect-induced crystal distortions towards stabi- 
lization of singlet-state bipolarons. This may readily be seen by comparing 
different stages of a relaxation: within a perfect lattice the energy difference 
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between the bipolaron (with the bipolaron-forming oxygen ions at neighbour- 
ing perfect lattice positions) and the linear complex is ~6  eV. This is reduced 
to about 3.5 eV upon relaxing the O -  ions with all other cluster and em- 
bedding lattice ions remaining fixed at their perfect lattice positions. Finally, 
the inclusion of complete lattice relaxation yields 1.9 eV. The stabilizing ef- 
fect of lattice relaxations relates to a localization of the holes: as has been 
stated above, the bipolaron hole states become increasingly delocalized upon 
separating the corresponding oxygen partners within an otherwise perfectly 
structured crystal. On the other hand, Mulliken population analyses show 
that  the hole states remain significantly more localized at each O -  O -  sep- 
aration if complete relaxation of the embedding lattice is taken into account. 
The hole bipolaron receives more similarity to an embedded dimer. Conse- 
quently, defect-induced crystal relaxations also tend to favour the spin-singlet 
state of bipolarons over the spin-triplet state. 

All HF-based simulations consistently show that  hole-type bipolarons are 
unstable (or metastable) within HF theory. However, this particular result 
should not surprise, because HF is known to underestimate the molecular 
bonding properties. It is instructive to compare the present bipolaron simu- 
lations with calculations on related isolated dimers, i.e. for the isoelectronic 
F2 and 0 2- molecules. The predicted instability of isolated F2 within HF 
theory (see also [201], for example) parallels the findings for bipolarons. The 
HF binding energy of the fluorine molecule is +1.48 eV. HF potential energy 
curves (PEC) for F2 and (isolated) 0 2- are shown in Figs. 3.15 and 3.16, 
respectively. 

Due to the unscreened Coulomb repulsion between the oxygen ions the en- 
ergy decreases with increasing bond length. It is recalled in this context that  it 
may become dangerous to imply restrictions due to the molecular symmetry 
in the determination of one-electron orbitals, which are used to construct the 
all-electron HF wavefunction. Such symmetry-conserving calculations may 
well provide the wrong dissociation states, which is a manifestation of the 
so-called symmetry dilemma of HF theory [182, 183]. Corresponding effects 
are exemplified by the "D"-marked curve in Fig. 3.16. Artificially, this curve 
yields a binding energy of -2 .9  eV for 0 2-. Moreover, there is no Coulomb 
repulsion between the two O -  anions using this symmetry-restricted solu- 
tion. The non-restricted "O" curve in Fig. 3.16 yields the correct dissociation 
behaviour; as expected this spin-singlet state agrees with the spin-triplet 
state (-4-) at large separations. The HF-based dissociation energies of vari- 
ous molecular oxygen anions quoted in reference [202] are related to corre- 
sponding symmetry-restricted calculations involving the wrong dissociation 
state, which is built up by symmetry-restricted delocalized one-electron or- 
bitals. For example, the dissociation energy of 0 2 is not 10.6 eV, based 
on restricted HF, but 1.0 eV, as derived from the symmetry-broken one- 
determinant solution to the ground state. Similarly, the symmetry-restricted 
HF calculations for F2 simulate a dissociation energy of +8.9 eV instead 
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F ig .  3.16. Potential  energy curves for isolated 0 2- molecular anions. Symmetry- 
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determinant  wavefunction ([]), and singlet s tate curves including correlations: MRS- 
DCI (x)  and MRSDCI+Q (A) 
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of the correct -1.48 eV. As a matter of fact, the exact molecular wave- 
functions must possess the symmetry of the considered molecule. Therefore, 
wavefunction-based ab initio descriptions should provide schemes in order to 
obtain symmetrized wavefunctions. In the present situation this could be ac- 
complished by the proper superposition of symmetry-broken one-determinant 
wavefunctions. This method goes beyond HF theory and represents a sim- 
ple example of the non-orthogonal configuration interaction approach [203]. 
However, within HF theory the symmetry-broken solutions are sufficient to 
obtain reliable estimates of molecular potential energy curves. 

The similarity of F2 and embedded 02- molecules suggests that the re- 
laxed lattice effectively screens the O- charges. Anticipating this similarity 
between F2 and embedded 02-,  it appears not very surprising that HF the- 
ory is unable to predict a stable bipolaron state. It is therefore mandatory to 
include electron correlations. 

We first consider the isolated molecular species. PECs for isolated F2 and 
O2- , which were obtained from multi-reference configuration interaction cal- 
culations employing single and double electronic excitations (MRSDCI+Q), 
are also displayed in Figs. 3.15 and 3.16. The "+Q" denotes corrections to 
the "bare" MRSDCI results in order to guarantee size consistency. This is 
achieved on the basis of the Davidson formula (see Sect. 3.3.1). Whereas for 
F2 the '+Q' correction is of minor importance, it becomes necessary in the 
calculations for 0 2- . Generally, the neglect of size consistency corrections 
leads to an underestimation of correlations at larger separations and, corre- 
spondingly, to an overestimation of binding energies (compare the "x" and 
the "/X" curves in Fig. 3.16, for instance). 

In the case of the fluorine molecule the calculated bond length corresponds 
to 1.45 A and the binding energy is -1.4 eV (the corresponding experimental 
values are 1.41 /~ and -1.7 eV). In comparison, density functional theory 
(DFT) produces the following numbers: 

* VWN-LSDA: rB=l.39/~, EB=--3.4 eV; 
�9 BLYP: rB=l.43 /~, EB=--2.2 eV. 

These results show that LSDA in particular overestimates molecular binding 
energies. The results are significantly improved by applying the GGA-type 
BLYP exchange correlation functional. 

For isolated peroxy anions the CI calculations predict a local minimum 
corresponding to a metastable state close to 1.5/~. At larger oxygen-oxygen 
separations the Coulomb repulsion overcomes the bonding effects. The MRS- 
DCI+Q curve is parallel to the correct HF curve in this regime. 

It is now instructive to discuss the corresponding results for the embed- 
ded 0 2- peroxy molecules. The binding energy of hole bipolarons can be 
estimated by the energy difference A := E(BP) - E(O-  - Mg - O-),  since, 
based on shell model results, the linear O- - M g - O -  complex is only slightly 
bound in BaTiO3. The qualitative trends which have already been found for 
the isolated molecular species remain true in the case of the bipolarons: 
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�9 SDCI+Q and MP2: A = -0.41 eV; 
�9 VWN-LSDA: rB=l.48 A, A = -2.1 eV; 
�9 BLYP: rB-~l.55 A, A = --1.13 eV. 

With the exception of the SDCI+Q (which are confined to single-reference 
calculations in the case of the MgO6 complex) and MP2 simulations, which 
axe based on the relaxed HF cluster geometry, all DFT calculations em- 
ploy their consistently relaxed crystal lattices. The above results provide a 
similar ordering of the correlation treatments, as was found for the isolated 
molecules. The quantum chemical descriptions of correlations (SDCI+Q and 
MP2) approach the exact binding energy from below, whereas BLYP and, 
particularly, LSDA are expected to overestimate the bonding correlations. 
The correct binding energy is supposed to be closer to BLYP than to MP2, 
because MP2 as well as the SDCI+Q results may well underestimate elec- 
tron correlations within the MgO6 complex. Both MP2 and SDCI+Q predict 
a correlation energy gain of about 2 eV in favour of hole-type bipolaxons. 

In conclusion, the present investigations demonstrate that defect-induced 
crystal relaxation and electronic correlations are necessary to stabilize trapped 
hole bipolaxons in BaTiO3. Crystal relaxations increase the localization of 
bipolaxonic hole states and lead to a spin-singlet ground state. The relax- 
ations of the host lattice enable the idea of an embedded 022- molecule with 
electronic properties similar to the isolated F2 dimer. In particular, HF theory 
predicts both species to be unstable. In both cases the ultimately found sta- 
bility is determined by the electronic correlation contributions to molecular 
bonding. 

Although we have only discussed the formation of trapped hole bipolarons 
in BaTiO3, one may speculate that paired hole species are of general impor- 
tance in any oxide material. Possible differences will probably refer to the 
occupation of 7r- or a-type oxygen 2p orbitals. In passing we remark again 
that the energy separation between singlet and triplet bipolaxons depends 
on the induced lattice relaxations. Whereas in perfect lattices the triplet 
state becomes preferred, the singlet state is most favourable upon inclusion 
of complete lattice distortions. In this latter situation the "spin gap" is found 
to be 1.50 eV using MP2 (1.71 eV within HF) for ~r-type bipolaxons. In 
their bipolaron-based theory of high-temperature superconductivity, Mott 
and Alexandrov suggested a spin gap of a few tens meV [8]. Such a small 
value might indicate that lattice relaxations would be present in high-Tc ox- 
ides, but to lesser extent than in BaTiO3; this observation is important if 
coherent motion of bipolarons is to be required. Future work should be de- 
voted to the question of whether a-type bipolarons (compare the discussion 
of Vk centres) fit in with this qualitative expectation and with the proposed 
spin gap. 

Analogously, one may expect that electron-type bipolaxons are of compa- 
rable significance if conduction band states become populated. For example, 
electron bipolarons have been found to exist in LiNbO3 (see Chap. 5). The 
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following subsection is devoted to preliminary embedded cluster calculations 
on electron bipolarons in BaTiO3. 

3.3.3 Simulation of Electron-Type Bipolarons 

The existence of electron bipolarons in BaTi03 has been proposed upon 
observing that  the paramagnetic susceptibility (due to Ti3i + small polarons) 
of reduced BaTiO3 is smaller by one or two orders of magnitude than expected 
[204]. Consequently, a significant proportion of small polarons is t rapped to 
form diamagnetic defect centres, of which bipolarons would constitute one 
natural choice. 

In this subsection we shall briefly discuss the results of some preliminary 
embedded cluster calculations, which aim to explore the possibility of such 
defects in (reduced) BaTiO3. The investigated cluster is visualized in Fig. 
3.17. It corresponds to modelling a bipolaron which is orientated along the 
[110] direction. 

q 
Oxygen 

[OLO] 

Titanium 

[lOOl 

Fig. 3.17. Visualization of the quantum cluster which is employed to simulate 
electron bipolarons. Black and grey shaded circles denote Ti cations and oxygen 
anions. These ions are treated quantum mechanically. The "X" represent point 
charge Ti cations, and a point charge representation is also used to model the 
embedding crystal lattice. Arrows denote the direction of titanium dispacements 
upon bipolaron formation 

The employed Gaussian-type basis set is chosen to include 4s and 4p or- 
bitals for t i tanium [125]. Moreover, the split valence basis set of oxygen [126] 
is augmented by additional polarizing d-functions. Cluster-lattice interac- 
tions are mediated by the known pair potentials for BaTiO3. The quantum 
mechanical level of these embedded cluster calculations corresponds to DFT- 
BLYP using the CADPAC code [173]. 

In order to check the compatibility between the cluster and its embed- 
ding lattice, a geometry optimization is performed for a defect-free cluster 
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without any polaron-forming electrons occupying titanium 3d-states. The re- 
sulting ion displacements due to cluster-lattice mismatch are less than 0.05/~. 
Having established the usefulness of this preliminary cluster representation, 
a bipolaron is studied upon adding two additional electrons which localize at 
the two quantum mechanically simulated Ti cations. Assuming a spin-singlet 
state, both Ti cations approach each other by almost 0.3 A (compare the 
arrows in Fig. 3.17), thus yielding a bond length of 2.2/~. Additional simula- 
tions probe the bonding contribution of the 4s- and 4p-type titanium orbitals. 
Calculations in which only the titanium cations are allowed to relax with all 
other crystal ions held fixed at their perfect lattice positions, indicate that 
the bonding between the two Ti-polarons is facilitated by significant admix- 
tures of these states to the occupied 3dxu orbitals 4 leading to a hydrogen-like 
bonding: after subtracting the 4s and 4p orbitals the separation between both 
titanium cations increases by about 0.2/~, and, with respect to the perfect- 
lattice configuration, the binding energy is lower by ~ 2 eV than prior to 
subtraction. 

The relative stability of the [ll0]-orientated electron bipolarons can be 
established by comparing the bipolaron state with two isolated small po- 
larons which are formed upon dissociation. Corresponding embedded cluster 
calculations employing the simplified cluster representation shown in Fig. 
3.17 indicate bipolaron stabilization energies of the order of 0.1 eV. There- 
fore gap levels referring to stable electron bipolarons are located close to the 
conduction-band states. Again, bipolarons turn out to be unstable within HF 
theory. 

There are no indications in favour of [100J-orientated electron bipolarons. 
Obviously, the oxygen anion separating the two Ti 3+ cations impedes the 
formation of these species. Thus, one could speculate about the formation of 
[100J-orientated electron bipolarons in the case of existing oxygen vacancies 
(see Sect. 3.3.4). 

Although the preliminary investigations sketched above provide signifi- 
cant hints towards electron bipolaron formation, it will be necessary to re- 
examine the calculations at an improved level, i.e. by including the complete 
oxygen ligand coordination octahedra of both Ti cations. 

3.3.4 Embedded  Cluster Calculations of  Oxygen Vacancies 
in BaTiO3 

The major source of oxygen vacancies (F ++ centres or V~) ~ in KrSger-Vink no- 
tation [205]) in oxide perovskites refers to charge compensations of acceptor- 
type impurity cations, which are always dissolved into these materials during 

a Isolated conduction-band electrons are likely to become localized at Ti cations 
to form small polarons. This is due to lattice relaxation effects and to possible 
Anderson localization upon disorder. Their electronic ground state is 3d~u. Jahn- 
Teller distortion provides further stabilization. 
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crystal growth, with significant concentrations of the order of some hundreds 
ppm (see also Sect. 3.2). Thus, the same order of magnitude should be ex- 
pected for F centres. Intrinsic defect reactions, on the other hand, are of only 
minor importance in this respect. Another effective source of oxygen vacan- 
cies relates to annealing treatments in reducing atmospheres. Here each cre- 
ated oxygen vacancy serves as a charge compensator of two electrons released 
to available electronic crystal states, i.e. to conduction band or donor-type 
defect states. 

There are several reasons to investigate the properties of oxygen vacancies 
in oxide perovskites: oxygen vacancies represent donor-type defects which, in 
principle, are able to bind two electrons simultaneously. The trapping of one 
electron defines singly charged F centres (F+), whereas two trapped electrons 
refer to neutral oxygen vacancies (F~ Due to the estimated concentrations 
of such defects one should expect significant influences on the observed n-type 
conductivity and on the optical absorption properties of the materials. This 
is of particular interest towards a complete characterization of photorefrac- 
tive material properties. In the present context it is important to study the 
favourable electronic states of electrons trapped at oxygen vacancies and to 
calculate the geometrical pattern of the resulting defect complexes. 

Before discussing embedded cluster calculations, I review some of the 
recent experimental and theoretical investigations on oxygen vacancies. 

The n-type conductivity of BaTiO3 can be explained if oxygen vacancies 
are assumed to be completely ionized at elevated temperatures T > 600 ~ 
This result indicates the existence of shallow gap levels related to oxygen va- 
cancies. However, up to this day there is no proven structural model of these 
centres. Previous shell model simulations [158, 206, 207] suggested electronic 
ionization energies of about 0.1 eV. This agrees with recent experimental 
ionization energies (i.e. 0.2-0.3 eV [208]) which were derived from conduc- 
tivity measurements. The shell model estimate rests on the representation 
of F + centres as symmetry-broken Ti3+-V~ ~ defect complexes with the elec- 
tron being localized at exactly one of the two Ti cations next to the va- 
cancy; the electronic ionization energy has been obtained by combining shell 
model defect energies with free-ion ionization potentials. Additional support 
in favour of this structural model seems to derive from empirical Green's 
function investigations [57, 60, 62, 209], which were briefly reviewed in the 
introduction of this section 3.3. However, it is emphasized again that these 
latter results may be considerably modified upon changing the (empirical) 
model parametrizations. Moreover, these calculations do not include Ti 4s 
and 4p orbitals. Indeed, earlier discrete variational (DV) X~ cluster calcu- 
lations [210] emphasized the importance of such additional orbitals accom- 
plishing pronounced hybridizations between Ti eg(3d3~2_r2)5 and excited 4s 
and 4p orbitals. Another substantial point refers to the inclusion of vacancy- 
centred basis functions, which allow the transfer of electron density onto the 

5 The z-axis corresponds to the main axis of the defect complex. 
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vacant oxygen site. This obvious degree of freedom has been neglected com- 
pletely in the earlier Green's function simulations, but has been accounted 
for in the present embedded cluster calculations. The implications of these 
extensions, leading to substantial modifications of the structural model of 
oxygen vacancies, will be discussed below. 

Very recently Scharfschwerdt et al. [211] published the details of careful 
electron spin resonance investigations on paramagnetic defect centres ob- 
servable in reduced BaTiO3. The authors suggest interpretations in terms 
of F + centres assumed to consist of symmetry-broken Ti3+-V~) ~ defect com- 
plexes, as discussed above. Anticipating this interpretation, the investigations 
demonstrate the existence of two classes of F + centres, i.e. axial Ti 3+ V~) ~ 
complexes orientated along (001 / directions and non-axial centres, of which 
the g-tensor is moderately tilted against (001/. For group-theoretical reasons 
the electronic ground state could be identified in both cases as Ti t2g(3dxy) 
which is orientated perpendicularly to [001]. In the case of non-axial centres 
the observed tilting has been ascribed to perturbing alkali acceptor cations 
incorporated at nearby Ba sites. Interestingly, only non-axial centres are ob- 
served if the BaTiO3 samples are alkali-contaminated. This indicates the 
importance of acceptor associations. The axial centres have been assigned to 
isolated oxygen vacancies. 

The present embedded cluster calculations are used to provide indepen- 
dent arguments concerning the microscopic structure of oxygen vacancies. 
The calculations are based on the extended 34 atom cluster Ti2010Ba12Ti10 
(Fig. 3.18) which correctly models the local mirror symmetry of the consid- 
ered oxygen vacancy. The embedding lattice is simulated using a shell model 
representation. Fhrther details of this methodology are delineated in Sect. 
2.1.2. All simulations are based on the cubic phase of BaTiO3. This simplifi- 
cation may be justified due to the observation that all possible ferroelectric 
distortions of the material are small compared with the usual defect-induced 
lattice relaxations. 

The quantum mechanical description of the central defect cluster em- 
ploys Gaussian-type basis functions with split valence quality for all titanium 
cations and oxygen anions inside the cluster; the oxygen basis set is aug- 
mented by polarizing d and diffuse p functions. Further, three s and three p- 
type basis functions with exponents 0.05, 0.1 and 1.0 have been implemented 
at the vacant oxygen site. Finally, bare effective core potentials (ECP) [21] 
are used to model the localizing ion-size effects of all Ba and Ti cations at 
the cluster boundary. 

The ab initio level of the present calculations covers Hartree~Fock (HF) 
theory including MP2 corrections and density functional theory (DFT), the 
latter of which use the GGA-type "BLYP" exchange correlation functional. 

As a starting model we consider the structure of isolated singly charged 
oxygen vacancies F +. It is natural to assume that this model should display 
all the main features known experimentally. Figure 3.19 displays electron 
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Fig. 3.18. Visualization of the extended Ti2010Ba12Ti10 cluster. The oxygen 
vacancy is located at the centre of this cluster; all further ion positions in this 
picture correspond to the undistorted cubic lattice structure of BaTiO3 

density plots of a single electron t rapped in Ti eg or in t2g states 6, alterna- 
tively. To avoid t2g-nodes, density contributions are sampled above the yz-  

plane containing the central T i - V o - T i  complex. MP2 and D F T  calculations 
consistently show that  the eg state is by about  1 eV more favourable than 
the shallow-gap t~g stateT; even within the first-order HF approximation the 
corresponding energy separation is 0.5 eV. Thus, seemingly different from ex- 
perience, the calculations suggest a deep gap ground state level. Figure 3.19 
indicates the occurrence of symmet ry  breaking only in the case of the t2g 
state, whereas the eg state refers to a highly symmetrical  solution with the 
electron equally delocalized over the vacancy and both of its next Ti neigh- 
bouts. Regarding the localized t2g state, it is observed that  lattice relaxation 
stabilizes the breaking of symmetry.  The  calculations atso show that  the en- 
ergetic preference of eg relates to hybridizations with excited Ti 4s and 4p 
orbitals and is further supported by the implementat ion of vacancy-centred 
orbitals. Only if we artificially omit  these important  degrees of freedom do we 
obtain a t2g-type ground state  - as in the empirical Green's  function calcu- 
lations. Note tha t  the % state situation resembles proper F + centres, as are 
known to exist in ionic atkali halides. In these cc~tres electrons are localized 
in s-type orbitals centred at the vacant anion site. In BaTiO3 we observe a 

6 The notation is adapted to the titanium site symmetry. 
7 The ionization energy of this state amounts to a few tenths of an eV. It does 

not couple significantly with the environment, and the oxygen vacancy remains 
a perturbation. 
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Fig. 3.19. Visualization of the density of an electron trapped at an oxygen vacancy 
(upper picture: localization in an eg state; lower picture: localization in a t2g state). 
The results are obtained from ASCF calculations using DFT-BLYP 

significant mixing between s-type vacancy orbitals and the neighbouring Ti 
eg(3d3z2_r2) states, which refers to the semi-ionic nature of this material. 

The stability of the present embedded cluster results, which are in good 
agreement with the earlier DV-X~ cluster calculations of Tsukada et al. [210], 
is impressive; in fact, they are independent of the inclusion of lattice relax- 
ations. Moreover, this important  result is not an artificial effect due to cutting 
off the electronic structure beyond the cluster surface within the embed- 
ded cluster representation, but  it bears physical reality! Indeed, independent 
FLMTO supercell calculations of F centres provide additional strong sup- 
port  [212]. Corresponding results suggest an energy separation of the order 
of almost 1 eV in favour of eg. Thus, from a theoretical point of view, we 
may conclude that  properties of singly charged isolated oxygen vacancies are 
completely different from what is known experimentally. They cannot explain 
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the main features of corresponding ESR centres observed in reduced BaTiO3. 
It is finally recalled, that  electrons t rapped in eg-type orbitals would lead to 
significantly different ESR signals compared with the t2g situation s. 

It is also of certain interest to consider the geometrical relaxation pat tern 
of F + centres. Generally, embedded cluster calculations show that  nearby 
oxygen anions become at t racted towards the oxygen vacancy, whereas cations 
are repelled. In particular, neighbouring Ti 3+ cations are repelled by about 
0.21/~, if tacitly assumed in t2g states. However, this displacement vanishes 
almost to zero if these cations are taken in their eg-type ground states. 

We are now in a position to speculate on model modifications towards 
consistent interpretations of the experimental data. What  is the reason for 
the absence of ESR signals from isolated %-type F + centres in BaTiO3? 

As a first guess we could assume that  all possibly existing isolated oxy- 
gen vacancies are used to form diamagnetic F ~ centres by trapping a sec- 
ond electron. This situation would correspond to a [100J-orientated electron 
bipolaron. The two spin-paired electrons would localize in eg-type molecular 
orbitals. Though being ESR silent, this hypothetical bipolaron should con- 
tr ibute specific observable optical absorption bands, which, however, have 
not been reported so far. Moreover, we should expect the formation of para- 
magnetic %-type F + centres upon modest heating of the crystal samples. 
Further, from theoretical simulations there are no unambiguous indications 
in favour of these centres. Probably these centres would dissociate sponta- 
neously according to 

F ~ + F ++ , 2 F  + . (3.12) 

In this sense, F ~ centres are expected to be of positive U type, with U being of 
the order of a few tenths of an eV. In summary, a bipolaron-based explanation 
seems to be unlikely. 

Next, we discard the existence of isolated oxygen vacancies in favour of 
acceptor-associated defect centres. Suitable acceptors not only reduce the 
symmetry to non-axiality, but  could also suppress the formation of deep gap 
eg-type levels, leaving only the shallow gap t2g states. In this context, ac- 
ceptor cations are no longer considered as weak perturbations, but should 
strongly determine the electronic properties of oxygen vacancies. We recall 
that  previous shell model simulations (see Sect. 3.2) predict the association 
of acceptor impurities at oxygen vacancies to be highly favourable. Even two 
acceptors may be bound simultaneously with equal affinity. A complete satu- 
ration of oxygen vacancies with acceptor cations has also been postulated in 
fluorite-structured MO2 oxides [158, 213]. For a majority of trivalent cations 
this would imply the association of two acceptor impurities simultaneously. 
Further indications towards acceptor association derive from ESR investiga- 
tions in BaWiO3 (see [211]). 

s For example, due to vanishing coupling matrix elements we should expect for 
the Zeeman coupling g-value gll -~ g~ (for z II B), i.e. the free-electron g-value. 
But this is decisively different from the observed value. 
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Embedded cluster calculations suggest that Ba and Ti site acceptor 
cations associated one at a time are not effective in suppressing eg levels. 
This is due to acceptor-induced lattice relaxations, which effectively screen 
the misfit charge of the associated impurities: before lattice equilibration due 
to the additional acceptor, the negative acceptor charge of di- and trivalent 
Ti site acceptors suffices to suppress the eg state being lowest. This result, 
however, is completely reversed in favour of the eg state if acceptor-induced 
lattice equilibration is allowed to take place. Also, it is just this screening of 
an acceptor misfit charge that causes the binding of a second acceptor to be 
as favourable as binding of the first acceptor. This can be inferred from previ- 
ous shell model simulations described in Sect. 3.2. Finally, Ba site acceptors 
are completely unable to suppress eg e v e n  before lattice relaxation. Thus, 
as a final model, we may conclude that only the simultaneous association of 
two Ti site acceptors is able to inhibit the formation of deep level eg states. 
In this hypothetical situation conduction band electrons can localize only at 
second-neighbour Ti cations; the acceptor-vacancy complex remains a weak 
perturbation with respect to the cubic site symmetry of the second-neighbour 
Ti cation, and we thus expect a shallow gap t2g ground state in agreement 
with presently available experimental information. A crucial experiment of 
this suggestive scenario consists of ESR measurements on extremely pure 
(i.e. acceptor-free) reduced BaTiO3 crystals. Only then should we expect 
ESR signals of F + centres with electrons trapped in eg orbitals. Additional 
conductivity measurements would complete the proof. 
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These two oxides belong to the AI+BS+Og - family of perovskite-structured 
Crystals. Whereas KNbO3 shows the same sequence of FE-PT as BaTiO3 (see 
Sect. 3.1), KWaO3 remains cubic down to lowest temperatures. Its dielectric 
susceptibility, however, rises to about 4500 at 4K [214], suggesting that this 
oxide is close to a ferroelectric instability. 

Recent band structure calculations [48, 215, 216] confirm the generally 
anticipated interpretation that the valence band (VB) has a mainly oxy- 
gen 2p character, whereas the conduction band (CB) essentially consists 
of Nb 4d (Ta 5d) orbitals. The Nb(Ta)-O hybridization leads to signifi- 
cant d contributions in the lower VB region. The calculations further show 
that both oxides possess an indirect band gap (VB-M versus CB-F)  cor- 
responding to EvB(M) - EVB(F) ~ 0.7 eV. Although underestimated by 
40-50%, the LDA gap values for both perovskites yield the correct ordering, 
i.e. Eg(KTaO3) > Eg(KNbO3). This difference can be qualitatively under- 
stood on the basis of the fifth free-ion ionization potentials of niobium (~ 50 
eV) and tantalum (.."~ 48 eV). It may be argued that KTaO3 reacts slightly 
more ionically than KNbO3. Shell model and quantum cluster calculations 
support this interpretation (see Sect. 4.1), but also the observed saturation 
of the bonding peak in the KTaO3-VB-DOS upon lattice distortions [48] can 
be interpreted due to stronger ionicity. In KNbO3, on the other hand, the 
bonding peak increases upon ferroelectric lattice distortions. The covalency 
differences between KNbO3 and KTaO3 seem to be responsible for the dif- 
ferent ferroelectric behaviour of both materials (see also Sect. 4.1). 

KTaO3 and KNbO3 can be mixed resulting in the formation of the im- 
portant electrooptic material KTN (KTal-xNbxO3, 0 < x < 1). Below the 
critical concentration xc < 0.008 KTN remains cubic, but becomes polar 
(possibly ferroelectric) above this value. Unambiguously ferroelectricity has 
been established to occur for x > 0.05 (see [217] for a review). The electroop- 
tic material properties of KTN may be tailored by adjusting x. As for other 
electrooptic oxides the photorefractive properties depend on the presence of 
suitable defect centres. Upon their natural abundance iron cations represent 
the dominating impurity defects in this respect. Section 4.1 summarizes the 
shell model simulations of both perovskites, the defect chemistry is reviewed 
in Sect. 4.1.2. The charge carrier transport taking place in the course of pho- 



106 4. Potassium Niobate and Potassium Tantalate 

torefractive processes in KNbO3 is maintained by holes (VB) and electrons 
(CB), but the sensitivity of the material becomes enhanced upon electro- 
chemical reduction making electrons the dominant carriers [218]. 

The introduction of Nbw + defects in KTaO3 leading to the formation of 
KTN represents an important example of a polarizing defect. Further defects 
of this type are given by Li + and Na~ (see [219, 220] for a review of the 
field). The off-centre displacement of these impurity cations is responsible 
for their dipole character. In KTaO3 polar phases appear upon doping with 
corresponding impurities [221]. Also (permanent) dipole defect centres like 
Mn+-v~) ~ (M being any transition metal cation, i.e. either extrinsic or intrin- 
sic) and M~: + - O ]  1 may be considered as polarizing defects. The corresponding 
defect centres related to Fe 3+ show characteristic axial ESR spectra which 
may be analyzed geometrically using the superposition model of Newman 
and Urban (see Sect. 4.2). However, unambiguous results are only obtained if 
data from atomistic simulations are available. Corresponding investigations 
are discussed in Sect. 4.2.2. The Fe~: + - O~ 1 has been recently observed by 
ODMR (optically detected magnetic resonance) techniques [222]. The defect 
centre can be aligned using linearly polarized laser light. 

Recent second harmonic generation (SHG) studies on KTaO3 [223] pro- 
vided evidence for approximately 10 is cm -3 dipole centres, for which the con- 
centration rises upon reduction and decreases by oxidizing processes. There- 
fore the dipole centres might be identified with defect complexes containing 
oxygen vacancies. 

Section 4.2 is devoted to a general discussion of polarizing defects. 

4 . 1  S h e l l  M o d e l  S i m u l a t i o n s  in  K N b O a  a n d  K T a O a  

In this section we consider shell model simulations of perfect and defective 
KNbO3 and KTaO3. The potential parameters for both oxides have been 
mostly derived empirically. In addition, particular emphasis will be paid to 
the ab initio hydrostatic Nb5+... 0 2- short-range potential which has been 
discussed in Sect. 2.2.2. 

4.1.1 Shell Model  Parameters  and Perfect  Lattice Simulations 

KTaOa.  The shell model parameters used in this study (A, ~ and C for each 
anion-cation pair and Y, k for each ion) are determined by empirical fitting 
procedures. Only the oxygen-oxygen short-range interaction parameters A 
and ~ are taken from earlier Hartree-Fock cluster calculations [224]. It is 
recalled that in the empirical approach the unknown parameters are treated 
as variables and are adjusted to achieve best agreement between calculated 
perfect crystal properties and the corresponding experimental data (see Sect. 
2.2 for details). 
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For KTaO3 a relaxed fitting procedure is employed, which involves the 
calculation of properties to be carried out for a relaxed lattice (see Sect. 2.2.2). 
This proves necessary for KTaO3, since minute changes of ion positions, which 
occur when residual strains on the structure are released after a conventional 
"unrelaxed" fitting, result in large changes of dielectric constants. 

Structural properties as well as elastic and dielectric constants of KTaO3 are 
used in the fitting procedure to obtain the potential parameters compiled in 
Table 4.1. 

Table 4.1. 

Interactions 

Empirically derived shell model potential parameters for KTaO3 

Short-range potential parameters 

A/eV ~/h C/eVA 6 

02-... 0 2- 22764.3 0 . 1 4 9  27.627 

eraS+... 0 2- 1315.572 0.36905 0.0 

K+... 02- 523.156 0.34356 0.0 

Ion Shell parameters 
Y/e k/eVl~ -2 

02- -2.75823 30.211 

Ta 5+ -4.596 5916.770 

K + _ 

In Table 4.2 experimental properties are compared with the respective 
calculated ones. 
KNbO3.  The empirical shell model potential parameters used to model 
KNbO3 are transferred from simulation studies of KNb3Os. The parame- 
ter set has been obtained by fitting only to structural data available for this 
oxide [12]. As for KTaO3 the inter-oxygen short-range potential is retained 
from earlier HF calculations [224]. 

Both the empirical as well as the ab initio Nb5+... 0 2- short-range poten- 
tial generate, when used in conjunction with the remaining empirical model 
parameters, the cubic phase of KNbO3, but, at present, there is no satis- 
factory account of ferroelectric distortions. With the ab initio potential the 
cubic lattice constant of KNbO3 is overestimated by only 0.47% (but 1.67% 
employing the empirical potential). The accurate description of ferroelectric 
phases would demand to go beyond the pair potential and dipole polarizable 
ion approximation. This task requires further that ab initio potentials should 
be derived from supercell calculations in order to catch some of the coop- 
erative phenomena governing ferroelectricity. Application of the hydrostatic 
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Table 4.2. Comparison of calculated and observed properties of KTaO3: Cu~-- 
elastic constants, eo-- static and eoo= high-frequency dielectric constant, Elat= 
lattice energy. All properties except for El~t have been included in the fitting pro- 
cedure 

Property Theoretical Experimental 

611 (101~ -2) 39.88 39.36 a 

C12 (101~ -2) 10.57 

C44 (101~ -2) 10.90 10.71 a 

e0 244.08 243.00 b 

c~ 4.426 4.592 c 

El~t (eV) -174.73 -180.98 d 

~H. H. Barrett. Phys. Lett., 26A:217, 1968 
bs. H. Wemple. Phys. Rev., 137:1575, 1965 
r Fujii and T. Sakudo. J. Phys. Soc. Japan, 41:889, 1976 
dFrom Born-Haber cycle 

potential generation method (see Sect. 2.2.2) in combination with additional 
symmetry-breaking (i.e. ferroelectric) lattice distortions could result in rea- 
sonable interionic potential and ionic shell parameters (see also Sect. 2.2). In 
the present context the main interest is devoted to the calculation of defect 
formation energies. Therefore it is sufficient to employ the actual potential 
parameters generating the cubic crystal phase, because energetic differences 
between the various crystallographic phases are very small compared with 
commonly obtained defect energies. Table 4.3 compiles the shell model pa- 
rameter sets which are used in the subsequent simulations. A reasoning for 
the employed (empirical) shell parameters in conjunction with the ab initio 
Nb 5+... 0 2- short-range potential will be given below. 

Table 4.4 compares some macroscopic crystal properties of KNbO3 calcu- 
lated using the ab initio and empirical Nb5+... 0 2- potentials. Note that  at 
this stage we do not include any shell parameters for Nb 5+ and O 2- ions in 
combination with the ab initio interaction. It is recalled that  the hydrostatic 
procedure does not allow us to derive these parameters (below, however, we 
shall discuss ad hoc introduced ion polarizabilities and their influence on cal- 
culated crystal properties). 

By inspection of Table 4.4 it is observed that  both potential sets provide 
a satisfactory description of the structural and elastic properties of cubic 
KNbO3. In fact, these entities are determined by interionic potentials and 
not by shell parameters. The observed deviations between calculated and ex- 
perimental elastic properties are a consequence of the simplifying restrictions 
imposed a priori upon the potential model, e.g. pair potentials in central 
field approximation and dipole polarizable ions. Corresponding deviations 
even occur in the cubic and ionically bonded MgO. In this case many-body 
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T a b l e  4.3. Short-range potential  and shell parameters  as used in subsequent 
shell model simulations. Because of their pronounced ionicity, potassium ions are 
modelled as rigid ions throughout the work. In the case of the ab initio Nb...O 
potential  a range of different niobium spring constants are used in order to model 
different static dielectric constants (see text)  

Short-range potential  parameters  

Interaction type A (eV) Q (A) C (eVA ~ 

02- . . .  0 2 -  22746.30 0.14900 27.88 

NbS+... 0 2- (ab initio) 1333.44 0.36404 - -  

(empirical) 1796.30 0.34598 - -  

K+... 0 2 -  1000.30 0.36198 - -  

Shell parameters  

Ion r(lel) k (eVA -2) 

Nb 5+ (ab initio) -4.496 2100 - 2500 

Nb 5+ (empirical) -4.496 1358.58 

O u- -2.811 103.07 

K+ __ __ 

T a b l e  4.4. Calculated and experimental  macroscopic crystal properties of KNbO3. 
In the case of the ab initio Nb...O potential  a rigid ion potential  model is used at 
this stage. Except for the dielectric behaviour, however, all other properties turn 
out to be insensitive to the implementation of ionic polarizabilities 

Proper ty  Calculated Observed" b 

ab initio Empirical 

C l l  (1010 Nm -2) 39.788 43.349 25.5 

C12 (10 l~ Nm -2) 14.178 13.114 8.0 

C44 (101~ Nm -2) 14.178 13.114 9.0 

~0 4.884 23.789 - -  

Eoo 1.000 1.806 - -  

Lattice constant (/k) 4.026 4.073 4.007 

a A. C. Nunes, J. D. Axe, and G. Shirane. FerroeIectrics, 2:291, 1971 
bE. Wiesendauger. Ferroelectrics, 6:263, 1974 
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corrections turned out to be sufficient in order to correct for the deficien- 
cies immanent in ordinary shell model simulations (see [106], for example). 
It is finally emphasized that  the potential models for KNbO3 (different from 
KTaO3) do not involve any fitting to macroscopic material properties. 

In contrast to the structural and elastic properties the dielectric behaviour 
is very sensitive to the choice of shell parameters, as is shown in Table 4.5. In 
particular, the static dielectric constant assumes each arbitrary positive value 
(above the rigid ion value) by changing the shell parameters appropriately. 
Figure 4.1 displays the static dielectric constant as a function of the niobium 
harmonic spring constant. 

A similar plot may be generated if the oxygen harmonic spring constant is 
varied instead. However, it seems instructive that  appropriately changing the 
polarizability of niobium ions, which are significantly less polarizable than 
oxygen ions (O~O/O~Nb ,~, 9 according to the present shell parameters), leads 
to a behaviour which resembles a ferroelectric instability of the modelled 
KNbO3. Indeed, upon using kNb = 1900 eV/~ -2 (which is clearly below the 
singularity in Fig. 4.1) the cubic structure becomes unstable (due to negative 
dielectric constants). Perfect lattice relaxations suggest that  a rhombohe- 
drally distorted structure is by 0.03 eV per formula unit more favourable 
in this situation. Most importantly, the rhombohedral structure reveals a 
[111] niobium off-centre displacement of about 0.19 A, but unfortunately the 
distortion of the oxygen octahedron does not comply satisfactorily with ob- 
servation. 

Table 4.5. Calculated dielectric behaviour of KNbO3 as a function of ionic polar- 
izabilities using the ab initio hydrostatic Nb...O potential 

Variation of kNb (eVA -2) 
(ko = 103 eVA -2) 60 z~ 

7.703 1.680 

2500.0 31.323 1.775 

2200.0 100.510 1.790 

2120.0 431.690 1.795 

2100.0 3937.908 1.796 

Variation of ko (eVA -2) 
(kNb = 2500 eV~ -2) 

90.0 71.649 1.775 

85.0 179.332 1.910 

83.0 517.565 2.005 

82.0 > 10000 2.021 
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In order to derive a physically reasonable shell parameter set one may 
suggest the following empirically based model. First, we essentially retain the 
empirical oxygen shell parameters (i.e. Yo=-2.811 H, ko=103.07 eV/~ -2) 
from the successful simulation studies of the related material KNb3Os [12]. 
Second, potassium ions are simulated as being unpolarizable because of their 
pronounced ionic nature. Third, with respect to Nb 5+ we only consider vari- 
ations of the harmonic spring constant kib while keeping the shell charge 
equal to the empirical value (i.e. YNb=--4.496 lel). This procedure, although 
oversimplified, is sufficient to investigate the effects of ionic polarizabilities. 
Moreover, we choose kib close to its instability value. 

The qualitative justification of our model concerning ionic polarizabili- 
ties is as follows: since we know that KNbO3 is unstable against ferroelectric 
phase transitions, we choose both oxygen- and niobium-related shell parame- 
ters (i.e. core-shell spring constants) to be close to their respective instability 
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Fig. 4.1. The static dielectric constant as a function of the niobium core-shell 
harmonic spring constant. The simulations employ the ab initio Nb...O short-range 
potential 
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region (see Table 4.5, Fig. 4.1). The importance of ionic polarizabilities with 
respect to a ferroelectric behaviour has already been stressed by Bilz et al. 
[138]. However, in contrast to the present model these authors ascribe the 
dominant contributions to the oxygen polarizability. Support in favour of 
this interpretation seems to be given by shell model simulations, since, in 
particular, the TO phonon softening may be reproduced in this way. On the 
other hand, ab initio electronic structure calculations based on the LAPW 
method [225, 226] strongly suggest that covalency in terms of hybridizations 
between O 2p and Nb 4d orbitals is even more important than the oxygen 
polarizability (see also Sect. 3.1). As a consequence, in ABO3 perovskites 
the most pronounced changes of the electron density upon ferroelectric dis- 
tortions are located at the B cations and not at the oxygen sites. In shell 
model simulations this behaviour can be most closely mimicked by varying 
the polarizability of the B cations. 

A comparison of different but closely related materials (KNbO3 and 
KTaO3 in the present context) can provide additional support in favour of 
the present polarizability scenario. Whereas KNbOa undergoes ferroelectric 
phase transitions, these are inhibited in KTaO3. Since the most obvious dif- 
ference between both crystals, which have the same lattice structure with 
almost equal interionic separations, is provided by the different B cations, 
the differences in ferroelectric behaviour should be related to these cations. 
Indeed, by comparing the shell model parameter sets of KNbO3 and KTaO3 
it is observed that, first, the Ta...O short-range interaction is slightly more 
repulsive than both the ab initio and the empirical Nb...O potentials and 
that, second, Nb ions are more polarizable than Ta ions, but oxygen anions 
are less polarizable in KNbO3 than in KTaO3. We find OLo/O~Ta ~, 70 upon in- 
serting the appropriate shell parameters; thus, this ratio is significantly larger 
than in KNbO3. These differences, which are probably not due to the ambi- 
gnities of shell model simulations, may be explained by assuming a stronger 
ionicity of the tantalum-oxygen bonds in comparison to the niobium-oxygen 
counterparts. Also, the free-ion ionization potentials of niobium (50 eV) and 
tantalum (48 eV) suggest this expected behaviour, of which the origin might 
be traced back to the lanthanide contraction of tantalum. A reduced cova- 
lent charge transfer in KTaO3 crystals would cause the oxygen ions to remain 
more polarizable than in KNbOa, whereas Nb ions, in turn, should be more 
polarizable than Ta ions. Covalent charge transfer from oxygen onto the octa- 
hedrally coordinated metal ion stabilizes the oxygen ions, which become less 
negative, and destabilizes the metal ion because of its increased electronic 
charge. 

The covalency-related interpretation of shell model ionic polarizabilities 
is supported by ab initio cluster calculations employing cubic BO6K s+B65+ 
(B--Ta or Nb) clusters with the interionic separations chosen along the ob- 
served lattice constants (4.007/~ for KNbO3 and 3.9885/~ for KTaO3). The 
outer cations are modelled by bare effective core potentials [21]. Gaussian- 
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type basis functions are used for the B cations [21] and for the oxygen anions 
[126]. The oxygen basis set is further augmented by polarizing d- and dif- 
fuse p-type functions. Table 4.6 compiles the results of Mulliken population 
analyses. The Aq charge differences defined in Table 4.6 indicate the direc- 
tion of charge transfer differences. It is emphasized that ion charges derived 
from Mulliken population analyses should be taken qualitatively and not 
quantitatively. Possible ambiguities refer to the applied charge distribution 
methodology but also to the particularly employed basis functions [17]. How- 
ever, all performed test calculations confirm the stability of the established 
ionicity differences. Moreover, additional simulations show that differences 
due to the deviating lattice constants may safely be neglected. The stronger 
ionicity of the Ta...O bond compared to Nb...O has also been stressed by 
Thomann [227]. It is further noted that the Nb polarizability ultimately al- 
lows these ions to move off the octahedral cubic lattice site in cubic KTaO3 
(Sect. 4.2.1). 

Table 4.6. Mulliken population analyses for the niobium and tantalum clusters 
specified in the text. qB and qo denote the obtained Mulliken charges of B cations 
and oxygen anions, respectively. Aq = qs(o)(Nb cluster) - qB(O)(Ta cluster) 

UHF DFT-BLYP 

B = T a  B----Nb Aq B = T a  B--Nb Aq 

qs +2.800 +2.710 --0.090 qB +1.998 +1.882 --0.116 

qo --1.638 --1.623 +0.015 qo --1.499 --1.480 +0.019 

Final support in favour of the present Nb parametrization is given by sim- 
ulations of the complex LiNbO3 (see also Chap. 5) when using the ab initio 
Nb...O short-range potential combined with appropriate niobium shell pa- 
rameters close to the instability region in Fig. 4.1. All remaining shell model 
parameters are retained from the earlier empirical model reported in [124]. 
Table 4.7 compiles calculated and observed properties of LiNbO3. Differently 
from cubic KNbO3, all material properties depend on the choice of potential 
and shell parameters. Table 4.7 suggests a very satisfactory agreement be- 
tween calculated and observed properties. The only exception refers to C44 
of which the slightly negatively calculated value indicates a structural insta- 
bility. This defect should be removed before the complete parametrization 
can be used in defect simulations 1. But the most important point I want 
to address in the present context refers to the observation that the niobium- 

1 In principle the necessary adjustment seems to be possible following the obser- 
vation that this particular elastic constant depends sensitively on the shell and 
potential parameters. However, due to the expected small changes of calculated 
defect energies, such investigations will be of secondary importance. Therefore, 
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Table 4.7". Calculated and experimental crystal properties of LiNbO3 using the 
ab initio Nb...O short-range potential and kNb ---- 2600 /~eV -2  within the earlier 
empirical model 

Property Calculated Observed ~ 

Cll (101~ Nm -2) 23.2 20.3 

C12 (101~ Nm -2) 11.8 5.3 

C13 (10 I~ Nm -2) 6.6 7.5 

C14 (101~ Nm -2) 3.9 0.9 

Ca3 (10 l~ Nm -2) 19.0 24.5 

C44 (10 l~ Nm -2) -0.87 6.0 
C6~ (10 I~ Nm -2) 5.7 7.5 

e0,11 72.6 84.1 

g0,33 28.0 28.1 

Lattice constant c (/~) 13.928 13.863 

R. S. Weiss and T. K. Gaylord. Appl. Phys., A37:191, 1985 

related shell parameters, which have been discussed above, allow the accurate 
reproduction of the observed static dielectric properties. On the other hand, 
this task becomes completely impossible by varying instead the oxygen shell 
parameters, and keeping the niobium cations more rigidly at the same time. 
These additional simulations of perfect LiNbO3 emphasize the particular role 
of B cations, too. 

4.1.2 Defect Chemistry of KTaOs and KNbO3 

Intr insic  defects.  Table 4.8 summarizes defect formation energies for the 
most important intrinsic defects in KNbO3 using the ab initio Nb5+... 0 2- 
potential for various choices of shell parameters. For comparison defect ener- 
gies calculated on the basis of the empirical model are listed, too. We observe 
from Table 4.8 that corresponding defect energies vary by an amount be- 
tween 5% and 20% as a function of ionic polarizabilities (note that e0 ranges 
between 8 and 4000 upon using the different shell parameters). As expected, 
defect energies decrease with increasing ionic polarizability. Moreover, the 
application of the ab initio NbS+... 0 2- potential leads to smaller defect en- 
ergies when compared to the empirical model. Most importantly, the defect 
chemical properties of KNbO3, however, remain qualitatively unaltered upon 
these changes. Table 4.9 compiles the relevant defect formation energies con- 
cerning Frenkel and Schottky disorder, electron- and hole-like polarons and, 
finally, the electronic band gap. 

all results reported in Chap. 5 are derived from the earlier empirical shell model 
parameter set [124]. 
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Table 4.8. Formation energies (eV) of important intrinsic defects in KNbO3. The 
last column displays results based on the empirical Nb...O potential parameters, t: 
thermal relaxation; o: optical relaxation. In the latter type of relaxation only the 
shells are allowed to be displaced. All spring constants are given in eV/~ -2 

Ab initio Nb...O Empi~ 

Defect ko=103 .1  kNb = 2500.0 ical 

kNb kO 

2100.0 2300.0 2500.0 OO 90.0 83.0 

V~b 119.6 121.9 123.6 133.3 121.4 120.0 134.8 

V~)* 19.7 19.8 20.0 20.8 19.8 19.6 21.0 

V1K 4.0 4.0 4.1 4.3 4.0 4.0 4.1 

Nb~r -109.7 -109.3 -109.0 -106.9 -109.5 -109.8 -109.4 

Nbl s~ -102.4 -101.3 -100.5 -94.2 -101.6 -102.3 -94.9 

K~ 3.9 4.0 4.0 4.4 4.0 3.9 5.9 

O~ l -7.3 -7.0 -68  -5.5 -7.2 -7.6 -5.9 

Nb~b (t) 44.7 44.8 44.9 45.4 44.8 44.7 45.9 

Nb~b (o) 48.4 48.5 48.5 48.6 48.2 87.0 48.7 

O~ (t) 17.4 17.5 17.5 17.9 17.5 17.4 18.1 

O~) (o) 23.2 23.2 23.2 23.3 23.1 23.0 23.2 

In the case of Frenkel- and Schottky-type disorder we note that  all reac- 
tion energies decrease in line with single defect energies if the ab initio poten- 
tial is used with increasing ion polarizabilities. In particular, Nb 5+ Frenkel 
disorder as well as Nb205- and KNbOa-related Schottky-type defects take 
advantage of these changes. In spite of this, all defects remain energetically 
unfavourable to be created with higher concentrations in KNbO3 crystals. It 
is remarked that  the same qualitative conclusions may be drawn for KTaO3 
(for corresponding details see [228]). Obviously, all ABO3 perovskites seem 
to behave similarly in that  the major  source for intrinsic defects refers to the 
incorporation of impurities (see Sect. 4.1.2 and Chap. 3). 

Any shell model t reatment  of excessive electron or hole species implies a 
small-polaron model. The stability criterion favouring small polarons against 
large polarons or band-like species is given by 

Zl 
IAEBI > ~ ,  (4.1) 

where AEB is the small-polaron binding energy listed in Table 4.9 and A the 
appropriate band width. The small-polaron binding energy is defined as the 
difference between the optical and thermal polaron defect energies, where 
"optical" implies tha t  only ionic shells are allowed to relax and "thermal" 
implies a full relaxation of cores and shells. The  right-hand side of (4.1) rep- 
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Table  4.9. Calculated intrinsic defect chemical properties in KNbO3. All spring 
constants are given in eVA -2 

Ab initio Nb...O Empirical Nb...O 

Defect ko ---- 103.1 kNb ---- 2500.0 ko ---- 103 

type kNb ko kNb 

2100.0 2300.0 2500.0 C~ 90.0 83.0 1358.58 

Frenkel disorder, energy per defect (eV) 

K + 3.9 4.0 4.0 4.3 4.0 4.0 5.0 

Nb 5+ 8.6 10.3 11.5 19.6 10.0 8.9 19.9 

0 2 -  6.2 6.4 6.6 7.7 6.3 6.0 7.6 

S c h o t t k y - t y p e  disorder ,  energy per defect (eV) 

K20 1.8 1.8 1.9 2.4 1.8 1.7 2.3 

Nb205 2.1 2.9 3.4 6.8 2.7 2.2 7.4 

KNbO3 1.8 2.4 2.8 5.3 2.2 1.9 5.7 

Electron and hole polarons, AEB ---- E o p t i c a l  - Eth . . . .  1 (eV) 

Sb~ + 3.7 3.6 3.6 3.2 3.4 3.3 2.8 

O 1- 5.7 5.7 5.7 5.5 5.6 5.5 5.1 

Elect ronic  gap, charge transfer energy 02 -  ---* Nb 5+ (eV) 

2.9 3.0 3.1 3.9 2.9 2.8 4.7 

resents the gain in delocalization energy in a band model which is competit ive 
with small-polaron formation. In the case of electrons (Nb~ +) the conduction 
band width is ACB=3 eV [229] and in the case of holes ( 0  1-)  the width of 
the valence band AvB =5 eV [229]. From this one can predict the formation of 
small electron and hole polarons to be favoured over band-like species for all 
potential  models. Analogous results hold true for KTaO3 [228]. I t  should be 
emphasized, however, tha t  shell model simulations probably underest imate 
electronic contributions, leading to an overestimation of lattice relaxations at 
the same time. Therefore these calculations are naturally in favour of small 
polaron species. Deficiencies with respect to electronic terms might in partic- 
ular affect the oxygen-related valence band contributions. Thus, one cannot 
fully exclude the stability of large hole-type polarons. On the other hand, 
the predicted existence of small electron polarons seems to be reliable, since 
the ESR spectra of Ta 4+ and Nb a+ may be observed upon electrochemical 
reduction of the respective oxides. Moreover, the calculated hopping acti- 
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vation energy of small electron polarons in KTaO3 (0.57 eV [228]) compares 
favourably with reported experimental data (0.37 eV [230] and 0.73 eV [231]). 

Finally, Table 4.9 shows the calculated electron transfer energies from 
oxygen onto niobium. Since the oxygen 2p states define the valence band and 
niobium 4d states the conduction band, we may interpret the charge transfer 
energy to give the electronic band gap. The gap energies become very close 
to the experimentally reported value (3.1 eV [232]) upon using the ab in i t i o  

potential in combination with niobium polarizabilities in the specified region 
above the expected "phase transition" (see Fig. 4.1). 

Impur i t ies .  The discussion in the preceding subsection suggests that the 
majority of intrinsic defects is generated during the incorporation of impurity 
cations. 

The subsequent description gives a brief review of the extrinsic defect 
chemistry of KTaO3 and KNbO3, for details the reader is referred to the 
references [207, 228]. The following reactions represent favourable solution 
modes for divalent cations in KTaO3: 

1 M* 1 i/f31 1 V,'* 1KTaO3 (4.2) MO +' KTaO3' ' -2 K "1- -2J'~'JTa "4- -~ 0 -4- 

3 M* 1 ~/r3~ 1 K ~ KTaO3 (4.3) MO +' KTaO3' -----, -~ K -]'- "~'t"~tTa -}- "~ 20 + 

1 
MO +' KTaO3' ----* M k + 1K4t2 Ta + 1V3" + ~KTaOz (4.4) 

The favoured solution reactions are given by the first two equations repre- 
senting (partial) self-compensation modes. Self-compensation-type reactions 
represent the most favourable solution modes for all impurity cations M =+ 
having charge states +2 < n < +4. It is recalled that in BaTiO3, in contrast, 
self-compensation is mostly restricted to trivalent cations. 

Large cations (e.g. Ba 2+, Sr 2+, Ca 2+) prefer reaction (4.3), leading to 
a relative diminution of unfavourable Ta site defects. In all cases studied 
so far the third solution mode is less favourable, but the energy difference 
between (4.2) and (4.3) may become very small. Whereas trivalent cations 
prefer complete self-compensation, i.e. 

M203 +t KTaO3' , M k" + M~a + KTaO3, (4.5) 

partial self-compensation involving the formation of potassium vacancies be- 
comes equally favourable to complete self-compensation in the case of tetrava- 
lent impurity cations: 

MO2 +' KTaO3' 

MO2 +' KTaOJ 

2 l 1 ] 2 T , 1M3~ + ~M~a + 5VK + 5K aO3 (4.6) 

3 l 1KTaO 3 1 ) 1M3" + ~M~a + + ~Ta205 �9 (4.7) 

The defect chemical scenario is very similar in KNbO3; however, there are 
additional competitive solution modes predicting impurity cations to com- 
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pletely occupy K sites. This is accomplished by electronic charge compensa- 
tion, which reads for divalent cations: 

1 1 
MO +' KNbO3' ) M~ + e I + ~K20 + ~O2(g), (4.8) 

xTr.4+ nolaron where e 1 denotes a small l,UNb- ~. . However, referring to the discussion 
in Sect. 3.2, it is recalled that the use of free-ion ionization potentials generally 
overestimates the importance of electronic small-polaron compensations. In 
KTaO3, on the other hand, this small-polaron compensation is unfavourable 
even due to the fifth free-ion ionization potential of tantalum. But at least 
in KNbO3 one may expect that the existence of defect-induced gap levels 
could enhance the importance of electronic compensation mechanisms (see 
also Sect. 3.2). 

In summary, the simulations of KNbO3 and KTaO3 indicate that most 
impurity cations would enter both cation sites, but in KNbO3 the substi- 
tution of K ions could become predominant due to (defect-aided) electronic 
compensation. Recent channelling experiments are in support of this expec- 
tation [233]. In comparison to BaTiO3, self-compensation of impurity cations 
is much more pronounced in the Al+B5+O3 perovskites. For these materials 
it has been argued that the observed space charge limiting effects reducing 
the photorefractive efficiency could be related to impurity self-compensations 
[133]. 

We conclude our considerations by investigating the defect -chemical ori- 
3+ gin of the dipole defect centres Fe 3+ - O i  and FeTa/N b --V~*, which were men- 

tioned in the introduction to this chapter. Whereas the latter defect complex 
may be readily explained due to existing oxygen vacancies (resulting from im- 
purity solutions or electrochemical reduction), the questions now arise how 
the Fe3K + -- Oi centre can be created or whether Oi can be present in the 
crystal, because in general Oi ions are found to be energetically unfavourable 
in oxide perovskites. 

Oxygen Frenkel defect pairs are not likely to be present, since their for- 
mation energy is 3.4 eV per defect. The reaction 

Fe203 + '  KTaO~ ,2Fe 3+ + 202- -4- K20 (4.9) 

requires 16.10 eV more than the self-compensation reaction (4.5) and is there- 
fore energetically unfeasible. Even when taking the binding energy of the 
complex 

Fe3g + + 02-  , Fe 3+ - 02-  (4.10) 

of -3.53 eV into account the energy of (4.9) remains too high. 
As a solution to the problem one can suggest the following reaction, where 

self-compensation is accepted as the main incorporation mechanism for Fe 3+ 

Fe 3+ + Fe 3+ , Fe 3+ - Oi 2- + Fe 3+ - V•. (4.11) 

The energy for (4.11) is +1.35 eV per oxygen defect complex. This "induced 
oxygen Frenkel defect"-type reaction reduces the energy to create oxygen 
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interstitials by more than 2 eV compared with the simple oxygen Frenkel 
reaction. The energy is sufficiently low for appreciable concentrations of these 
species to be generated at high temperatures at which the crystals are grown. 
The trapped interstitials and vacancies will be immobile at low temperatures, 
hence their recombination is prevented. 

Equation (4.11) also explains the simultaneous appearance of the centres 
Fe 3+ - 02 -  and Fe~: + - V~) ~ By combining defect formation energies from 
shell model calculations with the relevant ionization potentials it is found 
that the energy of the following charge transfer reaction (4.12) is +0.58 eV: 

Fe 3+ - 0 2 -  * Fe 2+ - O i  1- . (4.12) 

This suggests that the defect centre Fe 3+ - 02 -  is stable with respect to the 
indicated charge redistribution. However, the small value of the energy for 
(4.12) indicates that pronounced covalency should be present at this defect 
centre. In addition the present shell model simulations indicate that there is 
no appreciable energy barrier upon 90 ~ reorientation of the defect complex. 
This result complies with the observed optical alignment of these axial iron 
centres [222]. The analogous centre in KNbO3 is unstable (-0.90 eV for 
(4.12)) in agreement with its absence in ESR measurements in KNbO3. 

It is important to note that the above results are valid for non-reduced 
KTaO3 crystals. Usual growth conditions, however, imply some degree of 
reduction of the material: 

1 (4.13) 'KTaO3' , V~* + 2e I + 502 .  

The energy for (4.13) is 6.7 eV. Oxygen vacancies may be trapped, possi- 
bly at the Fe 3+ centres, thereby providing another source for the observed 
Fe 3+ - V~) ~ centres. The electrons are trapped at low-lying electronic states 
in the gap, e.g. of Fe 3+ centres. This reduces Fe 3+ to Fe 2+. If no precautions 
are made to trap the electrons at other lower defect states, the Fe 3+ cen- 
tre becomes invisible in the ESR experiment. Experimentally the addition of 
Wi 4+ ions [234] leads to observable Fe 3+ and Fe 3+ - O F- centres. The present 
shell model calculations show that Ti 4+ is incorporated into KTaO3 by the 
self-compensation-type reactions (4.6-4.7). The existing Ti 4+ defects provide 
electronic states, which may be energetically more attractive for electrons 
than the Fe 3+ states. 

4 . 2  P o l a r i z i n g  D e f e c t  C e n t r e s  

In this section we shall discuss the different types of existing polarizing de- 
fects. Regarding KTaO3 in particular, these defects can facilitate the use of 
this material in electrooptic applications. A first characterization of these 
defects may be given as follows: 
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�9 Off-centre defects (Sect. 4.2.1). In most instances these defects refer to 
extrinsic cations substituting for potassium. It is emphasized that self- 
compensation-type solution modes provide a rich source of correspond- 
ing defects. The off-centre displacements of cations induce the creation of 
dipole moments. 

�9 Formation of permanent dipoles due to defect aggregation (Sect. 4.2.2). The 
possible defect chemical origin of corresponding centres has been addressed 
in the preceding section. 

Both types of defects show cooperative ordering features at sufficiently high 
doping levels (see [235, 236], for example). Some of these defect centres are 
related to trivalent iron impurities representing examples of paramagnetic 
S-state ions. The interpretation of electron spin resonance (ESR) data (i.e. 
zero-field-splitting parameters of the electronic ground state) of paramagnetic 
S-state ions in terms of the so-called superposition model (SPM) [237, 238] 
proves to be useful in order to understand the local geometrical crystal struc- 
ture surrounding S-state cations like Fe 3+. On the basis of this model Siegel 
and Mfiller [239] could unambiguously show that isolated Fe 3+ cations remain 
centred within their octahedral ligand coordination sphere. Thus, iron does 
not participate in the cooperative displacement of B cations against the oxy- 
gen sublattice, which to a considerable extent characterizes the ferroelectric 
crystal structure of ABO3 perovskites. This result agrees with the observation 
that the Curie temperature decreases with increasing iron content [240, 241], 
if isolated Fe 3+ ions represent the dominant iron-related defect species. 

However, considering ligand coordination spheres, which differ from the 
simple octahedral cage, model-immanent ambiguities (see below) imply that 
SPM analyses have more qualitative predictive power rather than quantita- 
tive. But in this situation the combination of SPM analyses and additional 
shell model and/or embedded cluster calculations provides a powerful tool 
in order to single out all physically reasonable solutions. In particular, the 
considered defect-induced ion displacements may be chosen to comply with 
physically reasonable atomistic simulations. Correspondingly, combined in- 
vestigations yield reliable characterizations of the geometrical microstruc- 
ture of the Fea+-Vo and "~ 3+ ~2-  l~e K - u  I defect complexes (see Sect. 4.2.2). It 
is emphasized that these defect centres have been subject to considerable 
misinterpretations prior to these refined investigations. 

To prepare a common basis of understanding let us briefly summarize the 
fundamental ideas underlying the SPM. As was stated, the SPM principally 
allows us to give a geometrical interpretation of zero-field-splitting (ZFS) 
parameters occuring in the ESR spin Hamiltonian of S-state ions. Corre- 
sponding ions possess half-filled electronic subshells (e.g. Fe 3+, Mn 2+ (3d 5) 
or Gd 3+ (4f7)) with maximal spin alignment. Covalency effects are supposed 
to provide the most important contributions to these ZFS parameters. Thus 
the SPM is restricted to scan the geometrical configuration with respect to 
the nearest ligand shell. A simple geometrical interpretation becomes possible 
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upon the observation that  all cation-ligand terms superpose linearly to suf- 
ficient approximation (see [238, 242] for explanations); e.g. for the axial ZFS 
parameter b ~ ( : D )  belonging to the spin Hamiltonian term ~ (3S 2 - S2): 

bO = 1 -~ ~ b2(ri)(3cos2(gi) - 1). (4.14) 
i 

The sum runs over the nearest ligand shell and the polar coordinates refer 
to the main ESR axes with the S state ion at the origin. The radial function 
b2(r) in (4.14) contains the impurity-specific information. Up to now there 
are no precise theoretical derivations of such radial functions, the main diffi- 
culty of which is related to the almost infinite number of contributions with 
comparable magnitude but with different sign [238]. It has been recognized 
that  the radial function could be approximated using a Lennard-Jones-type 
function which collects all terms with equal sign in one power-law expression 
[238, 243]: 

b2(r) = A + B . (4.15) 

Empirically these dependences are found to possess a minimum rather than a 
maximum. For 3d transition metal S-state cations a theoretical justification 
may be attempted by LCAO-based approaches to the ground state zero- 
field-splitting ESR parameter b ~ [242, 244]. These investigations indicate in- 
creasing b2(r)-values with increasing covalency, which is also expected upon 
reducing the relevant ion separations. Extensive work on Fe3+-related b2 (r)- 
parameters has been done by K. A. Miiller and coworkers (e.g. [243, 245]). 
Upon uniaxial stress experiments performed on MgO:Fe 3+ and SrTiO3:Fe 3+ 
the authors suggested the following parameters for (4.15): A -- -0.68 cm -1, 
B : 0.27 cm -1, M = 10, N = 13 and /to = 2.101 /~. Ro corresponds to 
the perfect lattice spacing in MgO. However, the solutions are not unique, 
because the only constraint can refer to definiteness close to Ro (Fig. 4.2). 
Even the simplified monotonic inverse power expression, 

b2(r) = b2(Ro) , (4.16) 

approximates the more accurate Lennard-Jones-type function for r-values 
close to the perfect lattice spacing/to with b2(Ro)=-0.41 cm -1 and t2--8. 
So far, almost all SPM investigations have been based on monotonic inverse 
power laws. But it should be noticed that  such functions are likely to be 
unphysical for small ion separations. In addition, all b2(r) functions may be 
subject to charge- and size-misfit effects and to coordination dependences 
which are able to modify the radial function parameters (see [246] and refer- 
ences cited therein). 

Despite the scatter of possible radial functions one can draw useful qual- 
itative conclusions from SPM analyses combined with appropriate atom- 
istic simulations, if general Lennard-Jones-type radial functions are included 
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Fig. 4.2. Different b2(r) functions. A, C, D: Lennard-Jones functions; B: inverse- 
power law. The different functions are chosen to agree close to the reference sepa- 
ration Ro. Curves A and B refer to the parameter sets specified in the text 

rather  than only inverse power laws. In this fashion artificial solutions can be 
avoided. 

4.2.1 Dipo le  Format ion  D u e  to  Off-Centre Disp lacements  
of  Defects  

Shell model and embedded cluster calculations can be used to s tudy the ten- 
dency for isolated extrinsic cations to move off-centre, i.e. to show a significant 
displacement with respect to the perfect lattice site. The present discussion 
covers possible dependences upon the site of substitution and the impurity's 
size and charge state. 

In the case of Ta site incorporation there are no off-centre displacements 
except for Si 4+ and probably Nb 5+. These results can be understood in terms 
of ion-size and defect-charge effects. It is obvious that  a large cation is strongly 
repelled by its oxygen ligands, which tend to keep the impurity cation in 
the centre of the oxygen cage. This argument also applies for defect charges 
lower than that  of the substituted tantalum. However, ion-size effects seem 
to be of major importance as exemplified by Si a+ which shows an off-centre 
displacement of 0.87/~ corresponding to an energy gain of 2.95 eV. On the 
basis of this pronounced displacement the silicon ion is able effectively to 
reduce its coordination sphere from octahedral towards tetrahedral, which 
is the normal coordination of this cation. Most of the other cations seem to 
be well accommodated within an octahedral coordination sphere. In spite of 
the observed off-centre displacement this is also true for Nb 5+, because the 
absolute displacement is less than about 0.1/~ (see Sect. 4.2.1). 
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The observation tha t  a pronounced off-centre displacement can be inter- 
preted in terms of a tendency of cations to effectively change their coordina- 
tion spheres immediately leads one to expect significant off-centre displace- 
ments in the case of K site incorporation. It  is recalled from Sect. 4.1.2 tha t  
most cations can enter the potassium site by means of self-compensation-type 
solution modes. All cations investigated so far (apart  from Rb + and Cs +) are 
significantly smaller than  the substi tuted potassium, a factor which favours 
reduction in the coordination number. This effect is amplified by the rela- 
tive defect charges, since all higher valent cations a t t rac t  the oxygen ligands. 
The gain in Coulomb energy increases with increasing off-centre displace- 
ment.  Table 4.10 proves tha t  this expectation is correct. The largest effects 
are observed for silicon followed by aluminium. 

Table  4.10. Off-centre displacement of extrinsic cations substituting for potassium 
in KTaO3. The direction of the displacement corresponds to <100>. The energy 
gain is measured with respect to the on-centre position 

Ion Displacement (/~) Energy gain (eV) 

Li + a 0.64 0.04 

Mg2+ b 0.63 0.24 

Fe2+ b 0.44 0.05 

A13+ b 1.15 2.62 

A13+ c 1.10 1.72 

Sc3+ b 0.44 0.08 

Ti3+ b 0.68 0.56 

V3+ b 0.63 0.45 

Cr3+ b 0.85 1.09 

Mn3+ b 0.85 0.87 

Fe3+ b 0.87 0.86 

Si4+ b 1.48 9.18 

Mn4+ b 0.36 0.53 

Ti 4+ c 0.37 0.69 

a Li+... 0 2- short-range potential from [247] 
b Empirical potential parameters [158, 248] 
c Electron gas potential parameters [248] 

Of particular interest is the behaviour of trivalent iron substi tuting for 
potassium. Table 4.10 yields an off-centre displacement corresponding to 0.87 
/~. From electron spin resonance two Fe3+-spectra are known which can be 
related to the K site [234], i.e. one cubic and another strongly axial spec- 
t rum. The problem to be solved now is to explain the cubic ESR spectrum 
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on the basis of an isolated off-centre Fe 3+ cation. The superposition model 
may be employed to find "cubic solutions", which are compatible with an 
off-centre iron defect. In this context the te rm "cubic solutions" means that  
the axial parameter  b ~ is close to zero. Such solutions can result from suitable 
combinations of 0 2- and Fe a+ displacements. The results, which employ the 
Lennard-Jones- type  radial function "A" in Fig. 4.2, are displayed in Fig. 4.3. 
These show tha t  even pronounced off-centre displacements need not result in 
a large b ~ parameter  due to cancellation of terms within the SPM. Analogous 
results are obtained with different radial function parametrizations.  This is 
due to the observations tha t  for all reasonable ion displacements in Fig. 4.3 
the iron-oxygen separations are greater than  2/~ and tha t  the various radial 
functions are similar in this regime. Thus, it may be tha t  the "low coordi- 
nation" minimum is responsible for the "cubic" spectrum, but  further work 
will be needed to confirm this model. In particular it must  be shown tha t  the 
fourth-order axial ESR parameter  b ~ which has not been considered so far, 
vanishes as well within a range of suitable ion relaxations. 

I t  is finally noted that  the observed axial ESR spectrum corresponding 
to b ~ ~ 4.5 cm -1 cannot be assigned to the present off-centre iron defect. It  
has been argued [246] that ,  first, the necessary off-centre displacement should 
have been even larger than  0.87/~, and, second and more importantly,  one 
would have to expect unphysically large ligand relaxations (of the order of 
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Fig. 4.3. ESR parameter b ~ relevant for Fe 3+ obtained from a superposition model 
analysis, b ~ values (cm -1) close to zero are displayed as functions of the iron off- 
centre and oxygen ligand displacement 
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1 A). Such relaxations are not compatible with basic ion-size arguments and 
are not supported by shell model simulations. As is discussed in Sect. 4.2.2 it 
remains most reasonable to assign the axial ESR spectrum to the Fe 3+ - O F- 
defect complex. 

N b ~  Off-Centre  Defects in KTaOa.  In this subsection we consider pos- 
sible off-centre displacements of Nb 5+ ions which are incorporated in KTaO3 
at Ta sites. EXAFS measurements [249] performed on KTal_xNbxO3 with 
x = 0.09 suggested a niobium off-centre displacement of ~0.15 /~. Chan- 
nelling experiments in KTN (x = 0.03) [250] could not detect any off-centre 
displacements within a reported accuracy of 0.1 /~. It is therefore tempting 
to provide predictions on the basis of atomistic simulations. 

Recent theoretical investigations of NbTa employed FLMTO-LDA super- 
cell calculations [55]. These calculations have been performed at theoretical 
equilibrium structures which slightly underestimate the observed lattice spac- 
ings. In the case of KTN (KTal_xNbxO3) the preferred [111] off-centre dis- 
placement of Nb has been found to be closely related to the TO phonon mode 
softening. However, the predicted critical niobium concentration x ~ 0.22 
which leads to appreciable off-centre displacements referring to FE-PT is 
much too large compared with the experimental values of x ~ 0.01 - 0.05. 

Shell model-based simulations, on the other hand, employing uncon- 
strained lattice polarizations suggest that even isolated niobium impurities 
would be unstable with respect to off-centre displacements. The simulations 
are based on the shell model parametrizations discussed in Sect. 4.1. Figure 
4.4 shows the Nb incorporation energy (renormalized to the on-centre posi- 
tion) as a function of an off-centre displacement along a [111] cubic crystal 
direction. 

By inspection of the rigid-ion curves we infer that the ab initio Nb...O 
potential is sui generis better suited to model ionic off-centre displacements 
than the empirical interaction. However, both rigid ion calculations produce 
no appreciable off-centre displacements. Only if the complete shell model 
parametrization is employed the simulations indicate measurable niobium 
displacements, which is accomplished essentially by the niobium polarizabil- 
ity; oxygen polarizabilities, on the other hand, turn out to be ineffective in 
this respect. These results are valid using both Nb...O short-range poten- 
tials. The off-centre displacement of Nb ions is most pronounced in the case 
of the ab initio interaction. Using kib=2500 eV/~ -2 one finds [111] and [110] 
off-centre displacements of about 0.08/~, corresponding to an energy gain of 
0.017 eV. However, it seems beyond the framework of ordinary shell model 
simulations to establish a clear distinction in favour of the observed [111] dis- 
placements. The calculated off-centre displacement becomes further increased 
(_~ 0.15/~) upon inserting kNb=2100 eVA -2. Though this value will overes- 
timate the off-centre behaviour of isolated Nb cations, it could receive some 
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Fig. 4.4. Off-centre displacement (along a [111] cubic crystal direction) of one 
Nb s+ impurity incorporated in KTaO3 on Ta site. All energies are renormalized 
with respect to the on-centre incorporation energy. (a) Empirical NbS+... 02-  po- 
tential with kNb----oo. (b) Ab initio hydrostatic Nb 5+... 0 2- potential with kNb----or 
(c) Empirical NbS+... 02-  potential with kNb--=1358.58 eV/A 2. (d) Ab initio hydro- 
static Nb 5+... 02 -  potential with kNb-~2500.0 eV//~ 2 

relevance at higher doping levels 2. In any case it clearly demonstrates the ef- 
fectiveness of the niobium polarizability. Importantly, the present simulations 
also confirm that  there are no off-centre displacements in the case of tanta- 
lum when using the shell model parametrization for KTaOs given in Sect. 
4.1. All results may be easily interpreted due to important  covalency effects. 
As has been argued in Sect. 4.1, covalency is expected to be stronger in the 
case of niobium ions than in that  of tantalum ions, which may be expressed 
effectively by an enhanced niobium polarizability. It should be stressed that  
both the electronic polarizability of Nb ions as well as lattice relaxations are 
necessary for possible off-centre displacements to occur. Indeed, all model 

2 The idea of concentration-dependent spring constants is not unfamiliar; it has 
also been employed in earlier lattice-dynamical investigations on KTN [25l]. 
However in that case the oxygen polarizability was varied upon changing the Nb 
content. 
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calculations in which exactly one of these features is taken into account fail 
to give a non-vanishing off-centre displacement. Further, it is not sufficient 
to include only the relaxations of neighbouring ions. Shell model simulations 
and preliminary embedded cluster DFT-BLYP calculations employing a re- 
laxed NbO6KsNb~ cluster embedded in a perfectly structured lattice clearly 
favour the on-centre configuration. This result indicates that important elas- 
tic effects (lattice-deformation fields) facilitate the niobium displacement at 
low concentrations. Embedded cluster calculations are in progress in order to 
address these questions in further detail. However, one should note that the 
present calculation of possible off-centre displacements ignores any effects due 
to thermally induced vibrations and zero-point motions. Including such influ- 
ences could reduce the actual niobium off-centre displacement. In conclusion, 
it seems reasonable that the combination of extended lattice deformations 
induced by the niobium off-centre defect and coupling to the soft TO phonon 
explains the smallness of the observed critical niobium concentrations in solid 
solutions KTN. 

Strong support in favour of the present calculations is given by very recent 
inelastic neutron scattering data [252] in dilute KTN crystals (x ~ 0.01). The 
parabolic dispersion behaviour of the soft TO phonon measured for small 
wave vectors q along a cubic crystal axis, i.e. 

~ ( q ) 2  ~--- w02(1 + r2q2)  , (4.17) 

indicates a very pronounced increase of the correlation length rc upon reduc- 
ing the temperature. This behaviour is absent in pure KTaO3. At T ~ 10K 
rc becomes five times as large as in pure KTaO3 corresponding to about 
80 •. The data have been interpreted due to existing polar clusters around 
the niobium impurities in cubic KTaO3. rc measures the size of these polar 
clusters. The results agree with the assumption of off-centre niobium defects 
inducing extended lattice deformations. Note that the experiment cannot be 
explained on the basis of traditional shell model simulations, which employ a 
variation of the oxygen polarizability and the virtual crystal approximation 
to account for the niobium solution (see also [251]). 

Li~ Off-Centre  Defec ts  in KTaOa.  Doping of KTaO3 with monovalent 
Li cations also causes the formation of polar phases. The critical concentra- 
tion xc in KLT (Kl-xLixTaO3) has been reported to be 0.01 (e.g. [217]), thus 
being similar to KTN discussed in the preceding subsection. The compara- 
ble effectivity of Li doping refers to the pronounced off-centre displacement 
(along (100) directions) in this case (see below). On the other hand, the al- 
ternative incorporation of sodium, which only shows a very small off-centre 
displacement of 0.04/~ [217], leads to a significantly increased critical con- 
centration of xc = 0.13. 

Shell model simulations [206, 253] and LDA supercell investigations 
[47, 55] consistently predict Li off-centre displacements along [100] ranging 
from 0.61-0.64/~ in [47, 55, 206] to 1.44/~ in [253]. Shell model approaches 
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may suffer from significant dependences upon Li impurity potential parame- 
ters. For example, slightly inconsistent partial charge models for KTaO3 and 
LiKSO4 (from which the short-range Li...O defect potential has been taken) 
used in [253] lead to a pronounced overestimation of the off-centre displace- 
ment (see [206] for details). LDA results, on the other hand, are influenced 
by supercell sizes and by the neglect of lattice relaxations. Embedded cluster 
simulations are in progress to clarify the situation. 

We now consider some details obtained from shell model simulations on 
isolated Li + defects. The necessary Li...O short-range impurity-oxygen inter- 
action and Li shell parameters are taken from shell model investigations on 
Li20 [247]. These parameters were fitted to adjust structural as well as lat- 
tice dynamical data and have been successfully used in ion transport studies 
[254]. This impurity parametrization is also assumed to reliably model the 
off-centre behaviour of lithium cations incorporated in KTaO3. 

Figure 4.5 confirms that the off-centre displacement occurs along the 
<100> direction. This is in agreement with results from nuclear magnetic 
resonance (NMR) experiments, according to which the lithium ion is shifted 
a distance ranging from 0.86 /~ [255] to 1.1 =t= 0.1 .h. [220] along the (100) 
direction. The calculated Li + off-centre displacement of 0.64/~ is less than 
these values, but it should be considered that in the evaluation of the experi- 
ment assumptions concerning the environment of the defect are implicit. The 
isotope 7Li with a nuclear spin of 3 posesses a quadrupole moment which 
couples to the electric field gradients. Therefore an NMR measurement of 
the level splitting provides information on the local electric field gradients 
acting on the ion observed. On the basis of certain assumptions, e.g. formal 
ion charges and the perfect lattice positions of ions, the off-centre position 
of the Li + ion can be inferred from the splitting. Borsa et al. [255] report 
an NMR frequency for the 7Li off-centre ion of 70=t=2 kHz, from which they 
deduced their value for the off-centre shift of 0.86 A. By calculating the elec- 
tric field gradient Vz~ employing the present relaxed environment, which is 
chosen to include all displaced ions within a radius of 3.3 lattice units of the 
Li off-centre defect, the NMR frequency may be obtained using the formula: 

uQ = [(1 - "70o)eQV~zl. (4.18) 

The quadrupole moment of 7Li is given by Q -- 0.042 10 -24 cm 2 and (1 - 
3'0o) -- 0.74 determines the asymptotic Sternheimer shielding factor [256]. 
The experimental nuclear magnetic resonance frequency corresponds to an 
Li position of 0.78/~. If the calculation is performed for the unrelaxed lattice 
one obtains a position of 1.1 A corresponding to 70 kHz. Thus, relaxation 
effectively results in a reduction of the calculated Li + off-centre displacement. 
Conversely, for the present equilibrium position of ca. 0.64/~ a frequency of 
25 kHz is calculated. The strong variation of frequency shows the sensitivity 
of the NMR frequency on the Li off-centre position, which is in agreement 
with calculations of van der Klink et al. [256]. 
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Fig. 4.5. Defect energy versus off-centre displacement for Li + in KTaO3 in differ- 
ent directions. The dashed part of the line corresponds to calculations which would 
not converge - possibly due to the vicinity of the lithium ion to oxygen ions in 
this direction. The curve shown is an extrapolation of a polynomial fit to the con- 
verged part of the curve. All energies are renormalized with respect to the on-centre 
position 

Figure 4.5 also shows that  ~r/2 jumps crossing the (110) direction are the 
most likely way of reorientating the defect. The energy for the r / 2  reorien- 
tation is ca. 0.015 eV (120 cm-1),  as can be seen by taking the difference of 
the energy gain on relaxing in the (100) and the (110) direction. Though this 
value is also found from SHG (second harmonic generation) measurements 
on 0.8% Li-doped KTaO3 crystals [257], it still remains open of whether the 
experimental value corresponds to the simple hopping process discussed in 
the present shell model simulations. Indeed, it has recently been argued that  
the observed activation energy might be related to resonance tunnelling via 
localized excited vibrational states, which become suppressed with increasing 
Li concentrations [258]. Anticipating the validity of this resonant tunelling 
interpretation would mean that  the present shell model simulations slightly 
underestimate the hopping barrier. However, in any case the shell model pre- 
diction seems to indicate the correct order of magnitude, i.e. some tens meV. 

In Fig. 4.6 the energy surface of the Li + off-centre defect is shown versus 
the displacement in the (100) plane. Clearly the central on-centre energy 
maximum and the four off-centre minima along the (100) directions in the 
plane can be seen, as well as the (110) saddlepoint directions. 

The local defect geometry qualitatively resembles the picture shown in 
Stachiotti et al. [253]. The displacements indicated there, though, are consid- 
erably larger than the ones calculated in this work. The discrepancy might 
be due to the harmonic approximation applied in [253]. The general pat tern 
is such that  anions are at t racted towards and cations are repelled from the 
positive (Li +) end of the defect dipole. The opposite movements are seen 
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Fig. 4.6. Defect energy versus off-centre displacement for Li + in KTaO3 over the 
(100) plane. Four off-centre minima along (100) and saddlepoint directions along 
(110) are shown as well as the central on-centre maximum 

at the negative (VK) end of the dipole. I t  is noted, in addition, tha t  Li + 
off-centre defects represent effective hole t raps in KTaO3. The present shell 
model simulations indicate a hole ( 0 0 )  binding energy of 0.3 eV, of which 
0.13 eV is due to the ion-size misfit of lithium and 0.17 eV is due to the 
off-centre displacement. 

The off-centre behaviour of the lithium ion can be considered under var- 
ious conditions, i.e. 

�9 without allowing for lattice relaxation, 
�9 allowing for lattice relaxation, but  t reat ing the the KTaO3 host crystal 

within the rigid ion framework, 
�9 treat ing Li + as an unpolarizable (rigid) ion within a shell model host. 

If  lattice relaxation is not admit ted  (neither cores nor shells relax) no lithium 
off-centre displacement occurs. Therefore lattice relaxation seems to be indis- 
pensable for any off-centre displacement. But importantly,  there is no mea- 
surable off-centre displacement if the host is t reated within the rigid ion 
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model, even if lattice relaxations are included. Moreover, if only the lithium 
ion is unpolarizable, off-centre displacements are still present, but they are 
far smaller in extent and energy gain. These simulations indicate that the 
electronic structure plays an important role in facilitating the occurrence of 
lithium off-centre displacments. This conclusion is also supported by pre- 
liminary embedded cluster calculations. Figure 4.7 displays the calculated 
off-centre behaviour using embedded cluster DFT-BLYP calculations (see 
also Sect. 2.1) with CADPAC [173]. In these preliminary investigations all 
ions except the Li cation are held fixed at their perfect lattice positions. Split 
valence Gaussian-type orbitals are employed for lithium and its 12 oxygen 
ligands and bare effective core potentials to represent the next-nearest cation 
neighbours. In addition, polarizing d-functions are added to the oxygen ba- 
sis set. It is emphasized that the observed off-centre displacement does not 
occur if the Hartrcc Fock approximation is employed. This result supports 
the importance of electronic structure effects, which are also evident from 
the shell model calculations discussed above. But similarly to the HF simula- 
tions, the shell model is unable to produce any Li off-centre displacements if 
only the shells of ions are allowed to relax (so-called "optical" simulations). 
In comparison with shell model simulations the preliminary embedded clus- 
ter calculations slightly underestimate the Li off-centre displacement. This 
discrepancy can probably be remedied upon further improving the basis set 
quaJity. Very recent FLMTO supercell simulations yield Li off-centre displace- 
ments of 0.64 A [259] which are in good agreement with previous shell model 
simulations of Exner et al. [206]. The preliminary inclusion of lattice relax- 
ations in the FLMTO set of simulations suggests a delicate dependence of the 
off-centre energy gain upon relaxations, whereas the off-centre displacement 
seems to remain unaffected. 

Investigations of Li-Li interactions [207, 260] indicated that antiferroelec- 
tric longitudinal dipole ordering is most favourable at short Li-Li separations 
which emphasizes the importance of elastic interactions mediated by the host 
lattice. Electrostatically one would expect a ferroelectric alignment of the Li 
off-centre dipoles due to a classical dipole-dipole interaction. Upon increas- 
ing the Li-Li separation a ferroelectric transverse dipole ordering becomes 
preferred. Stachiotti and Migoni [260] investigated dependences upon the Li 
concentration employing their earlier shell model parametrization [253]. Al- 
though the Li...O short-range potential used can be criticized (see above), 
the investigations seem to provide useful trends concerning the interaction 
of different Li cations. Effects depending on the distance, the bond direction 
and on the dipole orientation have been studied on the basis of the effective 
Hamiltonian 

1 
H = - 2  ~ V "  .le,Y,e,~ (4.19) 

i , j  # ,e  

which is confined to include two-body interactions. Sites are denoted by i 
and j,  whereas greek indices characterize the six dipole orientations; n~ is 
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Fig. 4.7. The defect energy derived from perfect lattice embedded cluster calcu- 
lations is shown as a function of the Li off-centre displacement along [100]. The 
calculations employ density functional theory using the GGA-type BLYP exchange 
correlation functional. The energies are renormalized with respect to the on-centre 
position 

a random occupation variable. The calculations suggest a tendency towards 
dipole ordering at high concentrations. However, as long as two-body inter- 
actions are assumed to be dominant, frustration effects remain large even at 
high concentrations (see also [219] for related information). 

In this context, we also note recent preliminary semi-empirical INDO su- 
percell simulations of KTaO3:Li [261], which were used to probe the Li-Li 
interaction in this material. The simulations of isolated Li off-centre defects 
support the formation of a lattice polarization cloud, which enhances the 
effective dipole moment of the off-centre defect. Calculations of interacting 
Li cations indicate that  the Li-Li interaction strength decreases significantly 
faster with increasing Li-Li distance than predicted by the earlier shell model 
simulations of Stachiotti et al. [260]. Since all simulations of interacting Li 
cations neglect lattice polarization contributions (i.e. only electronic polar- 
izations are accounted for by means of INDO), the interaction pat tern fits 
the classical dipole-dipole interaction. However, the inclusion of lattice po- 
larizations probably modifies the interaction behaviour. 

4.2.2 Dipole Centres Due  to Defect Aggregation 

Defect Complexes Involving Oxygen Vacancies. This subsection is de- 
voted to the structure of defect complexes involving oxygen vacancies t rapped 
at acceptor impurity ions on the Ta or Nb sites of KTa03 and KNbO3, respec- 
tively. However, the calculated results are of general significance and may be 
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safely extended to other defect complexes of this type. It is noticed in this con- 
text that M~ + - Vo dipoles are frequently observed in all ABO3 perovskites. 
Their formation may be explained by aggregations between impurity cations 
and oxygen vacancies which are created as intrinsic charge compensators or 
are due to some reducing crystal growth conditions. Alternatively, one may 
discuss the impurity-assisted Frenkel defect formation (see Sect. 4.1.2). 

Prominent examples of these defect complexes are Fe3+-Vo and Mn 2+ - 
Vo. Both paramagnetic defect centres are characterized by an axial ESR 
parameter b ~ around 1 cm -1. This value may be explained through the cation 
displacement relative to the oxygen vacancy. Earlier investigations employing 
the superposition model suggested that the metal cation moves towards the 
vacancy [239, 262] (which would significantly reduce its dipole character). At 
the end of this subsection we shall discuss a refined SPM analysis which, in 
agreement with shell model and embedded cluster calculations, favours the 
opposite iron displacement. This result emphasizes the particular role of such 
complexes as effective polarizing lattice perturbations. 

Shell model-based results for KTaO3 are shown in Table 4.11. All num- 
bers in this table are obtained using empirical impurity-oxygen potential 
parameters [158, 248]. 

It becomes clear that almost all cations move away from the oxygen va- 
cancy. The only exceptions to this general rule are provided by the very large 
monovalent cations Na + and Rb +. In these latter two cases the electrostatic 
attraction between the cation and its fivefold ligand sphere is not sufficiently 
large to overcompensate for the corresponding short-range repulsion between 
these ions. From Table 4.11 it emerges as a general trend that the binding 
energy increases with decreasing charge of the cation. 

Next we consider in some more detail the Fe - Vo complex and in par- 
ticular the axial displacement of the iron cation as a function of its fo~raal 
charge state. The short-range Fe...O interaction is fixed and taken as the 
empirical Fe3+... 0 2- potential derived by Lewis and Catlow [158]. This 
procedure, of course, ignores variation of the short-range potential with the 
charge of the cation, but these effects are unlikely to have a large effect on 
the present results. The calculations demonstrate the pronounced tendency 
for the iron cation to be displaced away from the oxygen vacancy. Figure 4.8 
shows the calculated displacements of the Fe n+ cation along the axial di- 
rection in KTaO3 and KNbO3. It is clear that the iron cation moves in the 
opposite direction of the oxygen vacancy for charge states between +1 and 
+5. Only with unusual charge states outside this range does the iron cation 
tend to move towards the vacancy, especially in KTaO3; such charge states 
will of course not be observed in any real system. However, results for these 
hypothetical states do give us insight into the factors controlling the direction 
of the displacements. 

For low charge states the electrostatic attraction between the iron cation 
and the remaining fivefold oxygen polyhedron is small. Therefore, in order 
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Table  4.11. Binding of oxygen vacancies Vo to extrinsic metal cations M on 
tantalum site in KTaOa. The displacement in the table refers to the axial relaxation 
of the metal ion. Negative energies correspond to a bonding situation between both 
defects; positive relaxations denote a displacement of the cations away from the 
vacancy 

Ion Binding Displace- Ion Binding Displace- 

energy (eV) merit (A) Energy (eV) ment (A) 

M M w a  - -  Vo M Mwa -- VO 

Li + -1.19 0.25 Mn 3+ -0.53 0.34 

Na + -1.36 -0.05 Fe 3+ -0.57 0.35 

Rb + -2.83 -0.93 y 3 +  -0.16 0.22 

Mg 2+ -0.75 0.31 La 3+ -0.32 0.15 

Fe 2+ -0.72 0.29 Nd 3+ -0.23 0.18 

Mn 2+ -0.72 0.26 Eu a+ -0.19 0.20 

Ca 2+ -0.77 0.16 Gd 3+ -0.18 0.20 

Sr 2+ -1.04 0.08 Ho 3+ -0.16 0.22 

Al 3+ -0.84 0.37 Yb 3+ -0.17 0.24 

Sc 3+ -0.29 0.30 Lu a+ -0.17 0.24 

Ti 3+ -0.35 0.31 Si 4+ 0.72 0.38 

V 3+ -0.31 0.30 Mn 4+ -0.04 0.29 

Cr  3+ -0.48 0.33 Zr 4+ 0.42 0.24 

to reduce the short-range repulsion the iron cation is displaced towards the 
vacant oxygen site. Essentially, this is a space-filling effect and also applies 
to Na + and Rb + discussed above. The small iron charge in this case allows 
the "occupation" of an anionic lattice site. The situation changes drastically 
for higher charge states. On the other hand, for extremely large charge states 
the electrostatic at t ract ion is so pronounced tha t  the whole ligand sphere 
is considerably contracted, which results in the observed iron displacement 
towards the vacancy. 

Subsequently, we consider further details in the case of trivalent iron. 
Shell model and embedded cluster calculations exemplify the situation for 
Fe 3+ - V o  dipole centres in KNbO3. Figure 4.9 visualizes the defect-induced 
ion relaxations. The  pat tern  is obtained from shell model simulations, but 
note tha t  embedded cluster calculations (see below) yield almost identical 
results. In particular, the separation between iron and the axial oxygen ligand 
opposite the vacant oxygen site becomes effectively reduced from 2 /~  in the 
perfect lattice to 1.82/~ upon relaxations. One should define an effective off- 
centre displacement 5 ~  which relates the iron displacement along the defect 
z-axis to the z-displacement of the four planar oxygen anions, i.e. 
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Fig .  4.8. Relaxation of an Fe cation relative to an associated oxygen vacancy as a 
function of the Fe charge s tate  and with the short-range cat ion-oxygen interaction 
being fixed to the empirical Fe3+... 0 2- potential.  The results refer to KTaO3 and 
KNbO3 as host crystals. The dashed line denotes the position of the octahedral  
oxygen plane containing four equatorial  ligand anions; this plane is perpendicularly 
oriented to the main Fe3+-Vo axis. Positive relaxations denote a displacement of 
the iron cation away from the vacancy 

-Z 

F ig .  4.9. Fe3+-Vo defect complex in KNbO3 with its nearest oxygen, niobium 
and potassium neighbours. The relaxed positions have been calculated on the basis 
of a shell model simulation. Arrows denote the directions of ionic displacements 
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5~e ff : 5z(Fe) - 5z(Ox~). (4.20) 

This renormalization is reasonable due to the possibly pronounced oxygen re- 
laxations (see Fig. 4.9) In this context we should remember that SPM-based 
analyses can only yield the relative displacements between the iron and its 
relaxed oxygen ligands due to a locally confined scan of the environment 
geometry. Thus one should compare these relative SPM and shell model dis- 
placements representing the relevant entities. Shell model calculations yield 
5~e ~ ~ -0.4 ~ with negative values indicating a displacement away from the 
vacant oxygen site. This value is obtained with both Nb...O potential options. 

The general lattice relaxation pattern emerging from these simulations 
may be interpreted following basic screening arguments: electronic as well as 
lattice relaxations tend to screen the two charged ends of the dipole defect 
complex considered. To put it simply, the vacancy attracts anions and repells 
cations; the Fe 3+, on the other hand, repells anions (compared with the 
substituted Nb 5+) but tries to retain a pure anionic coordination sphere. 
In view of these relaxations it is again obvious that the iron cation avoids 
occupying the vacant anionic lattice site, as this would considerably increase 
the local excessive defect charge resulting in costly elastic energy terms in 
order to screen the resulting defect charge. 

Sophisticated simulations may be performed using the embedded cluster 
technique. The quantum defect cluster actually chosen corresponds to the ion 
configuration shown in Fig. 4.9. It consists of a (FeOs) 7- fragment and of 
eight potassium and six niobium ions at the cluster boundary. MO descrip- 
tions are employed for the ions belonging to the FeO5 complex with Gaussian 
basis functions for iron [125] and for the oxygen ions [126] corresponding to 
split valence (SV) quality. In addition, the oxygen basis set is augmented 
with polarizing d-functions. Moreover, s- and p-type functions (with expo- 
nents 0.01, 0.1 and 1.0 for both types) are implemented at the vacant oxygen 
site. Finally, the cations at the cluster boundary are represented by effective 
core pseudopotentials [21]. The ab initio cluster calculations are performed 
at the UHF and DFT levels using the quantum chemical programs HONDO 
[172] and CADPAC [173]. The exact exchange correlation functional is ap- 
proximated with the GGA-type BLYP functional (see Sect. 2.1). 

The embedding lattice is modelled using the shell model parametrization 
referring to the ab initio Nb...O short-range potential (see Sect. 4.1). As was 
discussed in [263], the defect-induced ion relaxations do not depend sensi- 
tively on the particular choice of kNb, but kNb = 2500 eV/~ -2 is certainly a 
good choice. Pair potentials are also employed to simulate the cluster-lattice 
short-range interactions. The implementation of geometry optimizations fol- 
lows the general procedure discussed in Sect. 2.1.2. Formal charges are used 
in the point charge cluster representation (see Sect. 2.1.2), leading to an ap- 
proximate dipole consistency. Due to the exact cluster relaxation the present 
calculations improve on earlier results reported in [263], but the deviations 
remain small. 
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In a first set of calculations the relaxation of the Fe 3+ cation is investigated 
assuming an otherwise unrelaxed (i.e. perfect) lattice (Fig. 4.10). As was 
discussed above the crystal tends to screen the excessive defect charges of 
the iron ion and of the oxygen vacancy. 
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Fig. 4.10. Embedded cluster simulation of Fe3+-Vo within an otherwise perfect 
and unrelaxed lattice. Only the iron cation is allowed to be displaced 

Within a perfect lattice, in which only the iron cation is allowed to be 
displaced, there are two choices of defect screening: the displacement of the 
iron ion along - z  and an electron transfer onto the oxygen vacancy. I t  is 
noted tha t  the lat ter  screening mechanism cannot be accounted for in shell 
model simulations. Displacing the iron towards the centre of the remaining 
fivefold oxygen polyhedron effectively optimizes the anionic environment of 
this cation in comparison with the opposite relaxation towards the vacancy. 
Figure 4.10 confirms that  a shift of the iron ion towards the associated va- 
cancy is energetically highly unfavourable. Indeed, this would considerably 
increase the excessive positive defect charge at the vacant oxygen site. Most 
favourable is the iron displacement ~[~e ff ~ -0 .3 /~ ,  which is in good agreement 
with the shell model calculations. 
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The alternative screening mechanism involves an electron transfer from 
the oxygen ligands of iron onto the vacancy while maintaining the iron 6S 
state (a change of the high-spin configuration of Fe 3+ turns out to be highly 
unfavourable). By inspection of Fig. 4.10 we observe that  the electron transfer 
is considerably less favourable than an alternative displacement of the iron 
along - z .  The energy dependence of the charge transfer state has a minimium 
for iron displacements ~[~ ~ +0.15 tit indicating that  in this situation the 
fivefold oxygen coordination sphere becomes less attractive for iron. 

The  reason that  electron transfer represents an energetically costly screen- 
ing mechanism is the high position of the vacancy-related electron states in 
comparison to the Fe 3+ impurity states, Lattice relaxations, which are consid- 
ered next, further destabilize electrons localized in genuine vacancy orbitals. 

Table 4.12 compiles the calculated ion relaxations within the FeO5 frag- 
ment of the total quantum cluster. By inspection one finds 5~ ff (UHF) -- -0 .35  
.~ and (f~eff(DFT - BLYP) = -0 .29 /~ .  Both values agree favourably with the 
perfect lattice calculations but  also with results from shell model simulations. 

Mulliken population analyses (MPA) confirm that  lattice relaxations 
destabilize the electronic charge density at the vacant oxygen site. For ex- 
ample, on employing a perfect lattice geometry and ~F~----0 the negative elec- 
tronic charge of the oxygen vacancy corresponds to - 0 . 4  let within UHF. If 
we include completely relaxed ion positions the electronic vacancy charge is 
reduced to about  -0 .05  H- Similar results are obtained with DFT,  but  the 
major effects are due to an increase of covalent charge transfer within the 
FeO5 fragment. 

Table 4.12. Calculated ion relaxations in the FeO5 complex. Oxy denotes one 
representative of the four planar oxygen anions and O~ the axial ligand ion. The 
displayed coordinates refer to cubic crystal axes 

Ton ~/A ~lh ~IA 
UHF 

Fe 0.0 0,0 -0.23 

O~y 1.96 0.0 +0.12 

Oz 0.0 0.0 -2.05 

DFT-BLYP 

Fe 0.0 0.0 -0.18 

Ox~ 1.98 0.0 +0.11 

Oz 0.0 0.0 -2.03 
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Analogously, lattice relaxation also causes a pronounced energy shift of 
the charge transfer state with respect to the 6S ground state: According to 
previous calculations [263] the charge transfer state is shifted 3 eV above the 
ground state at ( f ~  0.0 .~. Approximately this situation is accomplished 
through a parallel displacement of iron and the planar oxygen ions by 0.3-0.4 
/~ towards the vacancy 3. The corresponding perfect lattice energy difference 
at (f~.e ~ = 0 is about 0.8 eV (see Fig. 4.10). 

In summary, shell model as well as embedded cluster calculations unam- 
biguously prove that  Fe 3+ cations substituting for niobium in KNbO3 do not 
move towards an associated oxygen vacancy. The calculations also indicate 
that  this result can be generalized to all defect complexes of this type. In 
passing we quote additional results on Ti 3+ - Vo (i.e. the F + centre, see also 
Sect. 3.3.4) and Mn~ + - Vo in BaTiO3. The corresponding effective cation 
displacements are -0 .36  .h. for t i tanium 4 upon complete lattice relaxation 
and - 0 . 2 5 / ~  for managnese, assuming an otherwise unrelaxed lattice. Con- 
sequently, earlier SPM interpretations must be modified in order to achieve 
consistency with these independent atomistic calculations. 

Thus we now consider a refined SPM analysis. Although formulated for 
the special situation in KNbO3, it is indeed general enough to be applied to 
all S state impurities which are associated with oxygen vacancies in ABO3 
perovskites. From (4.14) one obtains the following expression describing the 
axial ESR parameter b ~ of Fe 3+ - Vo as a function of the effective iron 
displacement measured with respect to the oxygen ligands: 

b2(~Fe ) "~- 252 a 2 '~ ~VFe ] ~/a2 

eft +g2(a + ~F~). 

+ ] 

(4.21) 

5 ~  denotes the effective off-centre displacement of the iron cation defined in 
(4.20) and "a" the perfect iron-oxygen separation. The ligand configuration 
corresponds to the perfect lattice positions in cubic KNbO3. This assumption 
does not substantially restrict the results, but  simplifies the analysis. The first 
term on the right-hand side in (4.21) represents the contribution of the four 
planar oxygen ligands, whereas the last term stems from the axial oxygen 
ion. The first term dominates for large positive off-centre displacements (i.e. 
towards the vacant site); the second one, in turn, dominates for increasingly 
negative displacements. 

The present SPM analysis includes an inverse power law and a Lennard-  
Jones-type radial function, i.e. 

3 The energy separation certainly becomes larger for (f~.~ < 0; however, the charge 
transfer state could not be stabilized in such cases. 

a This value (-0.36 h = -0.21 h (Ti) - 0.15 /~ (O~y)) refers to titanium tac- 
itly assumed in a t2g state. However, the corresponding effective displacement 
becomes -0.14 A if titanium is taken in its delocalized eg-type ground state. 
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and 

b2(r) -- A + S , 

respectively. 
Due to charge misfit effects (note that Fe 3+ substitutes for Nb 5+) b2(Ro) 

becomes more negative by 22% of its original value, i.e. the actual constant 
is set equal to -0 .5  cm -1. These changes are in line with investigations 
of Miiller and Berlinger [243] which were based on earlier shell model-type 
calculations of Sangster [177]. The Lennard-Jones-type radial function (with 
A=0.8 cm -1, B=0.3  cm -1, N = l l  and M=16)  is chosen to fit with the inverse 
power function at 2/~, but  shows significant deviations at smaller iron-ligand 
separations. Figure 4.11 compares the two actual b2(r) dependences. 

Figure 4.12 displays the resulting b ~ parameters as a function of the ef- 
fective iron displacement. Whereas the inverse power law fits with the exper- 
imental value only for 6~e ff .~ +0.25/~,  the Lennard-Jones-type dependence 
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Fig. 4.11. Comparison of the inverse power function with a Lennard-Jones-type 
dependence 
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allows for a second match with experiment at 5~ff ~ -0 .25  /~. Only this 
second solution referring to the Lennard-Jones- type  function is qualitatively 
consistent with shell model and embedded cluster calculations. 

Fe  a+ -- O~ l C o m p l e x e s  in K T a O a .  ESR experiments have shown tha t  the 
Fe 3+ ion can reside on both cation sites in KTaO3. In addition to cubic-type 
spectra [234], which are assigned to the dopant  ion substi tuting for both  
cations with remote charge compensation, axial-type spectra are observed. 
These usually are ascribed to Fe 3+ - V o  and Fe 3+ - O i ,  Vo being an oxygen 
vacancy and Oi an oxygen ion on the nearest interstitial site to the Fe 3+ [264]. 
The subsequent analysis, combining shell model and superposition model 
investigations, strongly supports  this interpretation of the K site axial centre. 
Very recent experiments [222] on these centres based on optically detected 
magentic resonance techniques agree with this assignment too. 

The ground state  axial zero-field-splitting parameter  b ~ is measured as 
1.33 cm -1 for the Ta site axial centre and 4.46 cm -1 for the K site axial 

b~ (cm -1) 1.4 ' /  ' ' 
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Fig. 4.12. The axial b ~ ESR parameter is shown as a function of the iron off- 
centre displacement 5~.  The two curves refer to the commonly employed inverse 
power law and to a Lennard-Jones-type dependence. It is seen that only a Lennaxd- 
Jones-type function provides a reproduction of the experimentally observed b ~ ~ 1.1 
cm-lconsistent with an iron displacement away from the oxygen vacancy 
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centre [264]. The Ta site axial b ~ parameter is in line with former results for 
Fe 3+ - Vo in other perovskite crystals [245]. 

Zhou Yi-Yang [265] has claimed that a superposition model analysis can 
explain the large b ~ parameter in the case of Fe 3+ without invoking OI associ- 
ated with the iron. Instead, he assumed a pronounced off-centre displacement 
of the Fe 3+ ion combined with a considerable inward relaxation of the oxygen 
ligands of about 0.3 ~. Importantly, nearby interstitial oxygen has been dis- 
carded from further discussion because of its presumed negative contribution 
to the b ~ value due to the inverse power law. 

In a later comment [266] it was stated that an oxygen interstitial in the 
vicinity of the Fe 3+ defect is compatible with the large b ~ parameter if the 
oxygen ligands relax slightly further in the direction of the z-axis in order 
to outweigh the presumed negative contribution of the oxygen interstitial. 
However, the assumption of such large inward oxygen relaxations (> 0.3/~) 
is physically not very plausible on ion-size arguments and should therefore 
be ruled out from explanations of the large b ~ parameter. After a careful 
re-examination of the propositions made by Zhou Yi-Yang we shall return to 
the idea of a nearby oxygen interstitial ion. The Fe 3+ - Oi defect complex 
can readily explain the large value of b ~ which was measured for the K site 
substitution of Fe 3+. 

Besides defect chemical considerations (Sect. 4.1.2), shell model calcula- 
tions also allow us to obtain geometrical information about the local envi- 
ronment of a defect. From Sect. 4.2.1 it is recalled that the isolated Fe 3+, 
although introducing an off-centre defect, probably behaves as a cubic ESR 
centre, which is due to the vanishing of b ~ for different iron off-centre dis- 
placements and reasonable oxygen relaxations. Referring to Fig. 4.13 this is 
basically due to the cancellation of the SPM contributions of the upper and 
central oxygen planes. 

For the Fe 3+ - OI 2- defect complex the calculations show that the oxygen 
interstitial moves 0.23/~ away from Fe 3+, which in turn moves 0.40/~ towards 
the oxygen interstitial, thus leading to a reduction of the Fe~ + - O F- distance 
by about 0.2 A. The relaxed separation of the two defects is 1.83/~. Referring 
to the assignment of the planes as shown in Fig. 4.13, the oxygen ligands in 
the lower plane (close to OI) relax outwards, whereas ligands in the upper 
plane (close to the Fe 3+) move ~ 0.33 A in the direction of Fe 3+, resulting in 
an Fe 3+ - 0 2- ligand separation of 2.1 A. The distance between neighbouring 
oxygen ions in the upper plane becomes 2.54/~. Ligand ions in the central 
plane do not move significantly. In all cases discussed the magnitude of the 
oxygen relaxation is compatible with generally accepted values for ionic radii. 

A list of coordinates is given in Table 4.13. Because of the axial symmetry 
of the centre only one representative ligand ion for each plane needs to be 
specified. 

Different from Zhou Yi-Yang [265] and Zheng Wen-Chen [266] the sub- 
sequent SPM analysis includes the Lennard-Jones-type expression. In order 
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Fig. 4.13. KTaO3:Fe3+-OI 2- defect configuration. The defect is aligned on the 
z-axis. O(1)-O(4): upper oxygen plane; 0(5)-0(8):  central oxygen plane; 0 (9) -  
O(12): lower oxygen plane; Oi: oxygen interstitial 

to keep the number  of variables small the calculations employ a simplified 
t rea tment  of the relaxation of the oxygen ligands. The 12 oxygen anions sur- 
rounding the potassium site are divided among three planes perpendicular to 
the axial direction of the defect centre. The displacements of the oxygen ions 
are confined to these planes, i.e. the movements in the upper  and lower plane 
are along [100]-type directions and in the central plane along [l l0]-type di- 
rections (Fig. 4.13). The movement was parametrized by the distance of the 
oxygens from their original positions. Such relaxations have also been in- 
cluded in the approach of Zhou Yi-Yang [265]. Essentially, the results remain 
qualitatively unaltered when different choices of relaxation are made. 

In addition, different off-centre displacements of Fe 3+ along the z-axis 
are considered, including both  b2(r) dependences, i.e. the inverse power law 
and the Lennard-Jones- type  dependence, and for isolated Fe 3+ as well as 

~ 3 +  /-~2- Table  4.13. Coordinates from shell model calculation for f~K - u t  in KTaO3 (co- 
ordinates and displacements are given in fractions of the lattice parameter a : 
3.9885 A) 

Species Unrelaxed coordinates Relaxed coordinates Displacement 

xola yola zola xla yla zla dla 

Fe 3+ 0.0 0.0 0.25 0.0000 0.0000 0.1496 0.1004 

0 F- 0.0 0.0 -0.25 0.0000 0.0000 -0.3082 0.0582 

0 2- 0.5 0.0 0.50 0.4496 0.0000 0.4329 0.0840 

0 2- 0.5 0.5 0.00 0.5015 0.5015 -0.0097 0.0099 

02 -  0.5 0.0 -0.50 0.6136 0.0000 -0.5663 0.1315 
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for Fe 3+ - OI. The local geometry is therefore given by the distance of the 
oxygen ions from their original positions and the off-centre coordinate of the 
iron defect. Figure 4.13 shows the site assumed for possible oxygen interstitial 
ions. 

The geometrical configurations which yield the experimental  value of b ~ = 
4.46 cm -1 are shown in Figs. 4.14 and 4.15. In the calculations on which these 
figures are based an oxygen interstitial is present at a fixed position 1/~ below 
the central oxygen plane. 
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Fig. 4.14. Geometrical configurations which yield the experimental value for 
b ~ = 4.46 cm -1 using the inverse power law b2(r) function. An oxgen interstitial 
anion was positioned at 1 /~ below the central oxygen plane. The iron displace- 
ment starting in the central oxygen plane is along the z-axis towards the upper 
oxygen plane. The oxygen ligand ions are displaced towards the z-axis within their 
respective planes 

Figure 4.14 shows the solutions in the case of the inverse power function. 
In order to reproduce the measured b ~ value a relaxation of the oxygen lig- 
ands of at least 0.32/~ towards the z-axis is required. A displacement of the 
Fe 3+ of approximately 2.00 /~ along the z-axis corresponds to this oxygen 
displacement. Thus, the iron must approach the upper  oxygen plane in order 
to account for the experimental  b ~ value. 

For such solutions the effect of a possible oxygen interstitial can be ne- 
glected because of its large distance from Fe 3+. Two important  points should 
now be noted. Firstly, because of ion-size arguments oxygen relaxations (such 
as specified in this subsection) which significantly exceed 0.3 /~ should be 
ruled out, otherwise there would be strong overlap repulsion between the 
oxygen ions. Already an oxygen relaxation of 0.3/~ leads to oxygen~)xygen 
separations of 2.4 /~ (this value is to be compared with twice the oxygen 
radius, 2.5-2.8 /~). Secondly, in neither of the defect cases, isolated Fe 3+ 
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Fig. 4.15. Geometrical configurations which yield the experimental value for b ~ = 
4.46 cm -1 using a Lennard-Jones-type ~ (r) function. An oxygen interstitial anion 
was positioned at 1/k below the central oxygen plane 

or Fe 3+ - O i ,  does one find a plausible explanation for such a large Fe a+ 
off-centre displacement. 

There are other solutions which require less off-centre displacement of the 
iron, but  these lead to an even larger contraction of the oxygens surrounding 
the defect. Moreover, if corrections resulting from charge-misfit effects are 
included, i.e. reduction of the absolute value of b2(Ro) by about  22%, one 
comes up with even more unrealistic oxygen relaxations in order to explain 
the observed b ~ value. In addition it is noted that  large iron and oxygen relax- 
ations are also ruled out on the basis of shell model calculations. In summary,  
the solutions in Fig. 4.14 correspond to rather  unphysical relaxations. 

If  a superposition model analysis is performed using the Lennard-Jones  
function instead of the inverse power law, one observes tha t  the Fe 3+ - Oi 
defect complex together with moderate  oxygen ligand relaxations is the only 
physically reasonable solution. The straight line in Fig. 4.15 corresponds to 
this solution. The curved part  in Fig. 4.15 belongs to solutions based on large 
oxygen ligand relaxations, which are physically unreasonable. Calculations 
with the Lennard-Jones- type  radial function yield the correct b ~ value for a 
Fe 3+ - O i  distance of ~ 1 .5 /L This can clearly be seen from Fig. 4.15, where 
the line indicates the correct solution for an iron off-centre shift of just  under 
0 .5 /L  To this the distance of the interstitial oxygen from the central oxygen 
plane of 1.0/~ (fixed) has to be added. Shifting the position of the oxygen 
interstitial results in a parallel shift of the straight line in Fig. 4.15, leading 
to the same distance between Fe 3+ - Oi of ~ 1.5/~ in every case. 

I t  is emphasized tha t  the superposition model analysis given so far can 
only give some useful qualitative hints, because of the well known problems 



146 4. Potassium Niobate and Potassium Tantalate 

with b2(r) functions, and because of the possible limitations of the superpo- 
sition model itself in this special case. 

Thus, we should not at tempt to interpret the calculated Fe 3+-OI  distance 
of 1.5 /~ as being significant, but instead we should invoke the principle 
occurrence of a physically satisfactory solution if we are using the Lennard- 
Jones-type function. It is finally recalled that  the occurrence of this axial K 
site defect complex originates in the combined effect of self-compensation of 
iron and an iron-assisted oxygen Frenkel defect formation (Sect. 4.1.2). 



5. L i th ium N i o b a t e  

When considering photorefractive oxides, most attention has been devoted to 
LiNbO3. The technical properties largely depend on the type and concentra- 
tion of defects. Whereas Ti-doped LiNbO3 is used as a waveguiding medium, 
the incorporation of iron makes it useful for photorefractive applications. In 
contrast with all other oxide materials discussed in this volume, the defect 
chemistry of LiNbO3 and relevant material properties are largely determined 
by high concentrations (in the percentage range) of cationic intrinsic defects, 
which are formed to accommodate the most commonly observed Li20 non- 
stoichiometry. The precise knowledge of these intrinsic defect structures is 
indispensable for a microscopic understanding of impurity-related effects. 

The photorefractive properties of Li20-deficient LiNbO3 are subject to 
drastic changes upon doping this material with magnesium. Whereas the 
photorefractive effect is useful for the storage of volume phase holograms, 
it is unwanted in optical waveguides, where it induces disturbing scattering 
effects. Zhong et al. [267] discovered that this optical damage is significantly 
reduced in crystals grown from a congruent melt containing at least 4.6 mol-% 
MgO 1. Several physical properties show characteristic changes when the MgO 
content is raised above this threshold concentration. Analogous effects are ob- 
served by keeping the MgO content fixed and varying instead the [Li]/[Nb] 
ratio [268, 269]. Thus Mg cations only indirectly influence the threshold be- 
haviour. The key to an understanding of the underlying physics relates to 
the idea that the magnesium solution modes are highly correlated with the 
stoichiometry-induced intrinsic defect structures in LiNbO3. 

The following sections summarize the most important results of electronic- 
structure and shell model simulations. In particular, the latter modelling 
studies provided a wealth of information on the ionic aspects of defect for- 
mations in LiNbOa. 

5.1 E l e c t r o n i c  S t r u c t u r e  C a l c u l a t i o n s  

Ferroelectric LiNbO3 belongs to the family of perovskite oxides. However, 
the small size of Li ions leads to significant distortions of the crystal struc- 

1 In comparison, the crystalline MgO concentration is enhanced by a factor 1.2, 
i.e. [MgO]cryst ~ 5 - - 6  mol-%. 



148 5. Lithium Niobate 

ture with respect to the ideal perovskite structure (see [270] for details). The 
paraelectric space group is R3c and the ferroelectric R3c. The complicated 
structure might be the reason that there are only two band structure calcu- 
lations for this material [52, 271]. There are no efforts to elucidate the nature 
of ferroelectricity by employing ab initio calculations. However, the FE-PT 
driving mechanisms could be similar to those discussed for oxide perovskites 
in Sect. 3.1. 

The recent calculations of Ching et al. [52] are of first-principle-type. 
They are based on an LCAO scheme within DFT and assume perfectly built 
stoichiometric LiNbO3. Further, the LDA approximation has been improved 
by introducing a quasi-particle self-energy correction. As a result, the pure 
LDA gap of 2.62 eV increases to 3.56 eV in the self-energy corrected case. 
In comparison the experimental optical gap equals 3.78 eV. Moreover, the 
calculated gaps are indirect along/1 - X with energy differences correspond- 
ing to a few hundredths of an eV. All subsequently reported results refer 
to the self-energy corrected calculation. The upper valence band (VB) has 
a width of 5.3 eV and corresponds mainly to oxygen 2p-states (with cova- 
lent admixtures of Nb 4d states); the lower conduction band (CB), in turn, 
essentially consists of Nb 4d levels. The CB width is 2 eV. An analysis of 
the charge density map supports the idea of an ionic crystal with covalent 
bonding contributions between niobium and oxygen. The authors report the 
formula Li~ Ching et al. also calculated the dielectric func- 
tion ~(w) as well as the ordinary and extraordinary refractive indices no(W), 
ne(W). Most importantly, the results show that the inclusion of a self-energy 
correction is necessary in order to obtain reliable values. The reported excel- 
lent agreement between theoretical and experimental refractive indices seems 
to be fortuitous to some extent, because the experimental values refer to 
nomstoichiometric crystals. Theoretical refractive indices are by 0.1-0.2 too 
large. However, the agreement is satisfactory in comparison to uncorrected 
LDA results. 

Up to the present day only a few studies have been concerned with the 
electronic structure of defects. So far, all investigations have employed a sim- 
plified cluster approach. The earlier calculations of Michel-Calendini et al. 
[272, 273] were based on Slater's Xa approximation and on the Muffin Tin 
potential approximation. The clusters consisting of a central cation M n+ 
(Nb 5+, Fe 2+/3+ or Cr 3+) and its nearest oxygen neighbours were embedded 
inside a neutralizing Watson sphere. Additionally, in the case of M~i + a larger 
cluster corresponding to (NbMOg) (13-n)- has been considered. The major in- 
accuracies of these calculations might be related to the Watson sphere (see 
Sect. 2.1), to the MT approximation and to the neglect of lattice relaxations. 
Care is needed when interpreting calculated energies. Most reliable are total 
energies or orbital energy differences calculated on the basis of the transition 
state procedure [18]; otherwise, orbital energies have no proper meaning, be- 
cause Koopmans' theorem does not apply to the Xc~ scheme. Further, the MT 
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approximation has been stated [78] to underestimate the covalency effects in 
favour of an atomically localized description influencing crystal field split- 
tings and energy level positions. From such calculations one can certainly 
draw valuable qualitative conclusions concerning defect levels and optical 
properties. However, they are insufficient to decide upon the incorporation 
site of impurities. To indicate computational implications I quote a further 
cluster calculation on Cr 3+ in LiNbO3 which also employed the Xa approxi- 
mation but did not use Muffin Tin potentials [274]. These calculations have 
been done in vacuo, i.e. all effects of the embedding crystal lattice have been 
neglected. Further, a frozen core approximation has been applied to oxygen 
ls states and Cr ls-3p states. More importantly, oxygen-related polarizing 
d-functions, which are known to be necessary to model oxygen ions properly, 
have been omitted from the basis set used. As a result the calculated opti- 
cal transition energies between crystal-field states are significantly reduced 
for Cr 3+ and increased in the case of Cr~ +, compared with the results of 
Michel-Calendini. In spite of the similarity of the cluster models the specific 
computational differences lead to deviations in crystal field energies ranging 
between 2000 and 6000 cm -1. 

DeLeo et al. [275] employed X(~ cluster calculations in order to study a hy- 
pothetical oxygen vacancy. The calculations were done for a small and a large 
cluster, i.e. for VoLi2Nb2 and VoLi2Nb2012, respectively. The calculations 
employed embedding Watson spheres. In the case of the large cluster, addi- 
tional corrections due to the crystalline Madelung potential were taken into 
account. Without discussing this work in further detail, it is worth emphasiz- 
ing that an electron trapped by the vacancy (F + centre) becomes localized 
on the Nb ions adjacent to the vacancy. There are hints that this behaviour 
of oxygen vacancies is characteristic for all oxide perovskites (see also Chap. 
3). 

The recent in vacuo cluster calculations of Michel-Calendini et al. [276, 
277] employ the linear combination of Gaussian-type basis functions within 
DFT-LDA. Total energy calculations have been used to study ground and 
excited crystal field states of 3d transition metal cations in LiNbO3. Though 
there is no general justification for excited state DFT these investigations 
may be correct for the following reason. All considered states have different 
symmetries. Therefore, the excited states can be interpreted as being ground 
states within their respective symmetry classes; it is, however, important 
to implement appropriate symmetry restrictions during density optimization 
[278]. Without imposing any symmetry restrictions the investigations corre- 
spond to excited state calculations using the ground state energy functional, 
leading to lower bounds for the required crystal field splittings. This argu- 
ment complies with the theorem of Perdew and Levy, which was considered 
briefly in Sect. 2.1. The calculations of Michel-Calendini et al. demonstrate 
the sensitivity of energy differences as a function of the cation positions along 
the c-axis. However, contrary to the authors' claim, lattice site occupations 
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cannot be predicted on the basis of these in vacuo cluster calculations due to 
the neglect of all the important effects of the embedding host lattice which, 
for example, controls the donor/acceptor behaviour of impurities on the Li 
or Nb site, respectively. 

5.2 Shell  Mode l  Simulat ions  
of  Defect  Chemical  Propert ies  

The ionic picture emerging from the band structure calculations of Ching et 
al. (Sect. 5.1) backs the earlier simulations of Donnerberg et al. [124, 279] 
which were based on a formally ionic shell model description. These simula- 
tions successfully reproduced both the R3c and the ferroelectric R3c phases. 
Potential parameters were either transferred from appropriate binary oxides 
or were obtained through empirical fitting procedures with respect to the 
structural, elastic and dielectric properties of LiNbO3 (see also Sect. 2.2.2). 
In particular, the inclusion of the oxygen core-shell polarization vectors as 
adjustable variables during the fitting facilitated the simulation of the fer- 
roelectric phase, being about 0.1 eV more favourable than the paraelectric 
crystal phase. 

The major interest in these potential simulations has been devoted to 
elucidating the defect chemistry of LiNbO3. The most important results [124, 
279, 280] are summarized in the following subsections. Note that many of 
the impurity-related predictions have been a posteriori confirmed by ESR, 
EXAFS and channelling experiments. However, it should be emphasized that 
the interpretation of channelling-induced dips [281] in particular refers to the 
observed perfect crystal structure of LiNbO3. Deviations due to imperfections 
and lattice distortions are not accounted for systematically. It is not clear to 
what extent this neglect could be responsible for certain inconsistencies. As 
an example we shall consider the magnesium solution in LiNbO3 (see Sect. 
5.2.2). 

5.2.1 Intrinsic Defect  Structure 

The intrinsic defect structure is dominated by defects related to Li20 defi- 
ciency, which is found to exist in most crystal samples. Non-stoichiometry 
is accommodated on the cationic sublattices, whereas the oxygen sublattice 
remains unaffected. The energetically most favourable reaction (in Kr5ger- 
Vink notation [205]) is given by 

'LiNbO3' ~ 3Li20 + 4V L + Nb~ - LiNbO3. (5.1) 

Equation (5.1) describes the out-diffusion of Li20 from the bulk of LiNbO3 
(denoted as tLiNbO3'). The formation of cationic defects is accomplished 
by dissolving one formula unit LiNbO3 from the surface into the bulk. For 
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congruently grown LiNbO3 (~48.5 mol-% Li:O) (5.1) predicts about 1 mol- 
% Nb-antisite defects. On the other hand, earlier X-ray studies of Abrahams 
and Marsh [282] and NMR investigations of Peterson and Carnevale [283] 
suggested the formation of 5-6 mol-% Nb antisites according to the reaction 

tLiNbO3 r * 3Li20 + 4v~b + 5Nb~ - LiNbO3, (5.2) 

which may be rearranged to become 

5' 4. 4, (5.3) ~LiNbO3 ~ * 3Li20 + 4(VNbNbLi ) + NbLi - LiNbO3 �9 

Equation (5.3) looks similar to (5.1) with 51 4. (VNbNbLi) replacing the ordi- 
nary Li vacancies. Model (5.1) corresponds to the chemical sum formula 
Lil-sxNbl+~O3 and the models (5.2-5.3) to (Lil-5~Nbsx)Nbl-4xO3. 

Shell model calculations have shown that (5.3) is by 10.6 eV per Li20 
molecule less favourable than reaction (5.1), and does not represent a realistic 
alternative to (5.1). Smyth [284] resolved this contradictory situation by the 
observation that (5.2) is equivalent to (5.1) if one assumes the Li20 deficiency 
to occur within ilmenite-structured LiNbO3 intergrowths. Perfect LiNbO3 
and ilmenite-like LiNbO3 differ in their cationic stacking sequence along the 
c-axis, i.e. 

...NbLi[]NbLi[]NbLi[]NbLi... (5.4) 

...NbLi[]LiNb[]NbLi[]LiNb..., (5.5) 

respectively, with [] denoting structural cation vacancies. Therefore the il- 
menite structure offers a natural source of additional Nb antisites. Both 
structural modifications of LiNbO3 are energetically almost equivalent. The 
calculated lattice energies differ by 0.1 eV per formula unit in favour of perfect 
LiNbO3, which is in excellent agreement with the calorimetric measurements 
of Mehta et al. [285]. Further, the loss of Li20 has been found to be almost 
equivalent energetically within both structural modifications [124]. Together, 
these results are able to lend support in favour of the Smyth model. 

Due to the observation that 5-6 mol-% Nb antisites correspond exactly 
to the Li20 deficiency in congruent LiNbO3 according to (5.2), one must 
assume that the hypothetical ilmenite-structured intergrowths are massively 
Li-depopulated. Additional ilmenite-structured but stoichiometric crystal re- 
gions would lead to surplus antisite defects being independent of (5.2) and, 
therefore, the total antisite concentration should significantly exceed the 
observed 5-6 mol-%. Stated in a different way, the present discussion sug- 
gests the formation of extended clusters consisting of intrinsic stoichiometry- 
related defects, and the structure of these clusters resembles the ilmenite 
modification. 

However, the structure investigations of Iyi et al. [286] and Wilkinson et 
al. [287] based on sensitive neutron diffraction techniques could not reproduce 
the results of Abrahams and Marsh, but favoured the Li vacancy model (5.1). 
Moreover, the NMR studies of Bliimel et al. [288] are in agreement with these 
recent structural analyses. Therefore one is inclined to favour the Li vacancy 
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model (5.1); however, the ultimate proof is still lacking. It does not seem 
unambiguously clear which of the two models correctly describes the intrinsic 
defect chemistry of LiNbO3 related to the observed non-stoichiometry. It 
might be possible that both models are correct to some extent, since the 
detailed growth conditions could influence nature's choice of the particular 
reaction. Additional investigation must be devoted to this topic. 

In view of this situation, both model options, which merely differ by a 
shift of Nb cations, should be considered. Table 5.1 displays the binding en- 
ergies of some basic intrinsic defect clusters. Two important conclusions may 
be drawn from Table 5.1. First, it is seen that the energy gain due to agglom- 
eration is more efficient in the Nb vacancy model of Abrahams and March 
which complies with the preceding discussion of ilmenite-structured LiNbO3 
representing an infinite cluster description. Second, significant binding ener- 
gies are also obtained in the ordinary Li vacancy model. Thus, both defect 
models indicate the existence of intrinsic defect clusters. For stability reasons 
these clusters may be imagined as consisting of the electrically neutral build- 

4~ 51 4~ ing units 4vii  ... Nb~ or 4(NbLiVNb) ... NbLi. In particular, the discussion 
of the Nb vacancy model suggests that these clusters should be spaciously ex- 
tended in order to be competitive energetically with the propper Li vacancy 
model. It is noted that, in principle, the Li vacancy model is also compatible 
with extended defect clusters. 

Table 5.1. Binding energies between intrinsic defects. The energies refer to defect 
species separated by "..." 

Defect species Binding energy (eV) 

4.  51 ... N k 4 *  
( N b L i V N b )  OLi - - 2 . 4  

Vii N *'4~ . . . .  Li - - 0 . 7  

v l i  [,'~xrl Nb4.~ -'- I, ')VLi Li ) -0.3 

Unfortunately, Mott-Littleton-type defect calculations (see Sect. 2.2) are 
not feasible for investigating the energetics of such extended defect clusters, 
but there are independent experimental observations which may be inter- 
preted in favour of stoichiometry-related defect clusters. The observed inho- 
mogeneity of LiNbO3 single crystals detected by TEM measurements [289] 
seems to agree with the proposition of extended intrinsic defect clusters. Sup- 
port is also given by electron spin resonance (ESR) investigations of Nb 4+ 
in electrochemically reduced LiNbO3 (see also at the end of this subsec- 
tion). The defects could be assigned to Nb3] antisites with associated defects 
on neighbouring cation sites [290] (it is emphasized that the ESR signal of 
normal-site small polarons NblNb looks significantly different [133]). Further, 
measurements of the AC response of reduced congruent LiNbO3 proved these 
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crystals to be highly inhomogeneous [291]. The observed partition into insu- 
lating and conducting regions might be understood on the basis of extended 
stoichiometry-related defect clusters which contain Nb-antisite defects act- 
ing as electron traps. Therefore the defect clusters would constitute the AC 
conducting regions. 

Both non-stoichiometry defect models can be unified by employing the 
generalized notation V 1 to denote the singly charged cation vacancies, which 
are part of the assumed defect clusters. From a structural point of view these 
vacancies may resemble either ordinary Li vacancies or the defect complexes 

4, 51 
(NbLiVNb). 

The calculations on Li vacancies bound to antisites, reported in Table 5.1, 
indicate that the binding energy of a cation vacancy is a function of the local 
ratio of concentrations [vl]/[Nb~]]. Thus, one may assume that the following 
relation holds true: 

> E(V~i ) for [V1]/[Nb~] > 4 
E ( V  1) = (5.6) 

< E(V~i ) for [Vl]/[Nb~] _< 4. 

Whereas E(V l) refers to cation vacancies within defect clusters, E(Vli) de- 
notes the formation energy of isolated Li vacancies. It is emphasized that 
an analogous relation does not make sense for isolated intrinsic defects. In- 
stead, the defects should be considered as being completely independent of 
each other. The defect chemical consequences of these pronounced model dif- 
ferences will be discussed further in the context of impurity solution modes 
(Sect. 5.2.2). 

Analogous to non-stoichiometry, electrochemical reduction of LiNbO3 af- 
fects only the cationic sublattices. In particular the shell model calculations 
give no hints in favour of oxygen vacancies. The following reduction mecha- 
nisms axe favourable: 

~LiNbOa' z O~ + Li20 + Nb~- + 4e 1 - LiNbO3, (5.7) 

3 4. (5.8) ~LiNb03 ~ + 2V 1 ) 702 + NbLi § 6e 1 - LiNbO3. 

Reaction (5.8) takes advantage of stoichiometry-related cation vacancies, e l 
denotes Nb~ + small polarons which are generated during reduction. Elec- 
tron spin resonance proves that the electronic ground state of LiNbO3 after 
reduction is diamagnetic. Isolated polarons 4+ (NbLi) are observable only af- 
ter illumination or thermal activation. These results are in agreement with 
shell model-based simulations which suggest that the formation of electronic 
bipolarons is favourable. The bipolarons consist of Nb pairs (Nb4+ _ Nbib )a+ 
orientated along the c-axis. Bipolarons are stabilized by lattice relaxations 
and covalency. Crude estimates of direct covalent bonding contributions be- 
tween the respective niobium 4d(eg)-type orbitals may be given on the basis 
Harrison's solid state matrix elements [20]. The resulting binding energies 
have been reported to be of the order of 1 eV [124]. 
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Finally, we briefly consider a recent crystal growth technique which allows 
us to obtain stoichiometric LiNb03 crystals of high quality. These samples 
show reduced optical damage effects due to the absence of intrinsic defects. 
The growth technique employs a congruent Li20-Nb205 melt which is en- 
riched by adding the oxide K20 (~ 10 mol-% [292]). Note that potassium does 
not enter the LiNbO3 crystals significantly. Possible explanations of these re- 
sults can be based on the the lowering of the melting temperature of the 
mixed system Li20-K20-Nb205 facilitating the formation of stoichiomet- 
ric LiNbO3. Further arguments may be derived from simplified shell model 
simulations: due to their similar lattice energies both LiNbO3 and KNbO3 
may be assumed to be grown from the melt. Shell model simulations yield 
ELat ---- --173.8 eV and ELat ---- --173.3 eV per formula unit of LiNbO3 and 
KNbO3, respectively. Since K20 tends to bind a significant proportion of 
Nb205, the melt ratio [Li20]/[Nb2Os] is effectively increased, which in turn 
favours the formation of stoichiometric LiNbO3. Moreover, the Li/K cation 
exchange (solid state) reaction 

'KNbO3' +'  LiNbO3' , Li~ + K~i (5.9) 

needs 4.4 eV per cation pair, which clearly indicates that the system avoids 
any mixing of LiNbO3 and KNbO3. For simplicity we have considered the 
formation of KNbO3 during the process, but using instead any different com- 
pound of the K20-Nb205 subsystem would not change the quality of the 
arguments. 

5.2.2 Incorporation of Impurities 

The incorporation sites for impurity cations and the possible modes of charge 
compensation have been found to depend on the degree of the Li20 non- 
stoichiometry. The impurity concentrations given below refer to crystalline 
values, not to melt compositions. They are defined in terms of ternary phase 
diagrams made up of Li20, Nb205 and the actual impurity oxide, i.e. 

N(MnO,..) (5.10) 
[M,Om] -- N(Li20) + N(Nb205) + N(M,Om) ' 

where N denotes the number oxide molecules given in brackets. 
First we briefly discuss stoichiometric crystals which are characterized 

by the absence of Nb antisites and cation-type vacancies. It is noticed that 
congruently grown crystals containing high concentrations of appropriate im- 
purity cations (e.g. 4.6 mol-% magnesium in the melt) behave similar to 
stoichiometric LiNbO3, in that massive doping leads to the disappearance 
of stoichiometry-induced intrinsic defects. If additional impurities are to be 
solved, the respective solution modes correspond to stoichiometric LiNbO3. 
As an example, we consider divalent impurity cations M 2+ . A choice of pos- 
sible incorporation reactions is given by 
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MO +'  LiNbO3' , M~i + v l i  -~- Li20, (5.11) 
1 1 

MO +'  LiNbOJ ) M~i + e 1 + 502 + ~Li20, (5.12) 

2MO +'  LiNbOs' ~ 2M~b + 3V~" + Nb205, (5.13) 

4MO +' LiNbO3' ,3M~. i + M~b + LiNbO3 + Li20. (5.14) 

Similar equations may be formulated for cations with different charge states. 
Equation (5.14), i.e. self-compensation, represents the most favourable so- 
lution mode for all divalent cations. Self-compensation is also preferred for 
other impurity charge states [279]. Various experimental data confirm the 
occupation of Li and Nb sites. ESR measurements on LiNbO3:Mg co-doped 
with iron ([Mg] > 5 mol-%) demonstrated the existence of two different Fe 3+ 
signals [293]. The given interpretation due to Li and Nb site occupation has 
been supported by recent extended X-ray absorption fine structure (EXAFS) 
investigations on LiNbO3:Mg,Fe [294]. Malovichko et al. [295] identified Fe 3+ 
and Fe 3+ defects in otherwise stoichiometric LiNbO3. Further evidence is 
given by the incorporation of magnesium: for very large MgO concentra- 
tions reaction (5.14) directly explains the formation of MgaNb209 which is 
well known from the Li20-MgO-Nb205 phase diagram [296]. It is finally 
recalled that self-compensation has been also predicted to be favourable in 
the related AI+B5+O 3 (Chap. 4) and A2+B4+O3 (Chap. 3) perovskites and 
in SBN (Chap. 6). A further phenomenon which is closely related to self- 
compensation refers to the intrinsic cation interchange (or inversion) in YIG 
(Sect. 7.3) and SBN (Chap. 6), it is also known to occur in many spinel-type 
oxides AB2Oa [12]. As a common feature we may infer the incorporation of 
a particular cation species at different sites in one crystal. 

Within a few tenths of an eV (5.11) and (5.12) are energetically compet- 
itive to each other, but external reducing conditions would be in favour of 
(5.12). Due to the factor 1/4 the formation entropy of gaseous oxygen does 
not appreciably affect the calculated reaction energies. In any case, both re- 
actions are by ~ 2 eV significantly less favourable than self-compensation. It 
is noted, however, that electronic compensation could receive some limited 
relevance due to deep electronic gap levels. This possibility has also been 
discussed for the other ABO3 oxide materials (see Sects. 3.2 and 4.1.2). 

In order to circumvent the creation of both donor and acceptor defects 
as induced by self-compensation it is worth considering the incorporation of 
hexavalent impurity cations M 6+, e.g. tungsten. Certainly, these cations fit 
best in the Nb sites, thus forming donor-type defects. The most favourable 
solution modes are given by 

MO3 +'  LiNbO3' ~ MTvb + VtLi + LiNbO3, (5.15) 

1 1N MO3 +' LiNbO3' -----* M~v b -}- e t + 502 + ~ b205, (5.16) 

with the reaction energies being equal up to 0.1 eV. The earlier remarks 
on (5.11) and (5.12) also apply to the present case. One may thus assume 
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that electrons and Li vacancies will compensate for the solution of hexavalent 
impurity cations. 

It is important to note that the impurity incorporation modes in stoi- 
chiometric LiNbO3 do not impose any limits for solubility. This situation is 
completely different in Li20-deficient LiNbO3, to which we now turn. 

For Li20-deficient crystals most cations are incorporated at Li sites irre- 
spective of their charge state. Charge compensations are maintained through 
consumption of intrinsic Nb antisites and cation vacancies. For example, the 
most favourable solution mode for low concentrations of divalent cations M 2+ 
is given by (see also [279, 280]) 

5MO + 3V ~ + 2Nb4~ ~ 5M~i + Nb205, (5.17) 
4 .  51 with the understanding that V l refers either to Li-type vacancies o r  (NbLiVNb) 

(see Sect. 5.2.1). In what follows the detailed structure of the included cation 
vacancies is not important. Only the assumed extensive agglomeration of 
cation vacancies and Nb antisites will play a significant role. But irrespective 
of the defect cluster hypothesis, all impurity solution modes in Li20-deficient 
LiNbO3 are subject to particular solubility limits which are determined by 
the finite amount of Vl-compensating Nb antisite defects (i.e. 1 mol-% of 
the total niobium content in congruent LiNbO3). For example, the solubility 
limit in (5.17) is given by [MO]max = 2.5 mol-%. It is important to note that 
the Nb antisite defects exactly disappear at the respective solubility limit. 
Moreover, if the stoichiometry-induced defects were not bound to clusters, 
solution modes like (5.17) would be operative up to their particular solubil- 
ity limits, giving rise to a change of the incorporation mechanism at even 
higher impurity concentrations. 

To be explicit we next consider the incorporation of magnesium Mg 2+. 
Figure 5.1 displays the calculated [279, 280] and measured Li20 and Nb205 
concentrations as a function of the MgO content. The experimental data have 
been taken from chemical analyses performed by Grabmaier et al. [297]). Re- 
cent investigations of Iyi et al. [298] strongly support these earlier data. It 
is observed from Fig. 5.1 that the Li20 concentration is significantly more 
affected by the MgO content than the Nb205 counterpart. The experimen- 
tally established dependence [Li20]=f([MgO]) suggests the existence of two 
pronounced kinks, with the first occurring at ~1.5 mol-% magnesium and 
the second between 5 and 6 mol-% MgO (i.e. the well-known threshold con- 
centration). 

Any theoretical model accounting for these two kinks must be, in addition, 
consistent with further experimental constraints. ESR and optical absorption 
experiments on Mg-doped LiNbO3 proved the existence of Nb antisites for all 
concentrations below the threshold value, but antisites cease to exist above 
the threshold [299, 300]. This information complies with second harmonic 
generation (SHG) investigations [301]. The composition dependence of the 
SHG phase-matching temperature is significantly affected in vapour transport 
equilibrated (VTE) materials for all Mg concentrations below the threshold. 



5.2 Shell Model Simulations of Defect Chemical Properties 157 

55 

50 

45 

40 

�9 N b 2 0  5 (exp.) 

--- N b 2 0  5 (theor.) 

. . . .  ~_. �9 �9 [MgOl/mol-% 
I -i . . . .  i . . . .  1 - - ' - : - . - - . t  I ,  ; 

x L i 2 0  (exp.) 

- -  L i 2 0  (theor.) 

Fig. 5.1. Comparison of calculated and experimental Li20 and Nb205 concen- 
trations as a function of the MgO content. The results refer to congruent melt 
compositions 

There are no corresponding changes above this critical concentration. Thus, 
VTE treatments only influence Li20-deficient LiNbO3 containing antisites 
and cation vacancies. 

One might at tempt to explain the threshold concentration due to the 
reaction 

5MO + 5Li~i + Nb4"Li ~ 5M~i + VLi -~- LiNbO3 + 2Li20, (5.18) 

neglecting the fact that  it is not the most favourable solution mode for small 
impurity concentrations, but which could be operative for all concentrations 
below the threshold value of 5 tool-%. However, this reaction, when taken 
alone, is unable to reproduce the observed dependence [Li20]=f([MgO]) in 
this regime. In particular, no account is made to model the first kink. 

In general, any model is to be ruled out which aims to relate the first 
kink to a solubility limit due to disappearence of antisites. Corresponding 
models have been recently suggested by Iyi et al. [298] and by Kling et al. 
[281]. In both of these scenarios Nb antisites disappear at about 3 mol-% 
magnesium. It is emphasized that  this value is twice as large as the observed 
concentration of the first kink shown in Fig. 5.1. The model of Kling et al., 
which is based on interpretations of channelling results, may be written as: 

3MgO + V ] + Nb~ + Li~i ~ 3Mg~i + LiNbO3 

for [MgO] < 3 mol-% (5.19) 

and 
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3MgO § V 1 + Nb~b + Li~i ----* 2Mg~i § Mg~b + LiNbO3 

for [MgO] > 3 mol-%. (5.20) 

Moreover, this model suffers from its inability to provide an explanation for 
the threshold phenomena around 5 mol-%. It is recalled that explanations 
Of channelling experiments employ the perfect crystal structure, which could 
lead to misinterpretations for highly perturbed LiNbO3. The model of Iyi et 
al. extends the channelling-based model by inclusion of the solution reaction 
(5.11) in the intermediate regime 3 tool-% < [MgO] < 5 mol-%, with the self- 
compensation-type reaction (5.20) then being employed beyond the thresh- 
old. Although able to explain the existence of two kinks, this latter model 
bears the additional inconsistency that (5.11) is by 2.6 eV less favourable 
than (5.20). 

It is important to realize that the occurrence of the first kink cannot be 
reasonably accounted for on the basis of isolated defect models, since any 
attempts at explanation would rest on solubility limit arguments. Therefore, 
the observed kink at about 1.5 mol-% magnesium, which has been also iden- 
tified in Zn-doped crystals [302], directly indicates the existence of extended 
intrinsic defect clusters, as proposed in the preceding section. 

The calculated concentration dependences displayed in Fig. 5.1 anticipate 
the existence of extended intrinsic defect clusters. It is assumed that mag- 
nesium cations substitute for the vacancies and Nb antisites forming these 
clusters. On the basis of (5.17) the (divalent) Mg ions predominantly re- 
place the (pentavalent) antisites at low dopant concentrations, leading to 
an increase of the ratio [vl]/[Nb4~] and, thus, to a destabilization of the 
cation vacancies (see (5.6)). Consequently, the kink around 1.5 mol-% refers 
to a crossover to solution modes compensating for the rising imbalance: Mg 
cations still replace both types of stoichiometry-induced defects, but the em- 
phasis is now placed on substituting for cation vacancies. The corresponding 
solution modes, which are chosen to be as energetically favourable as possible, 
require the formation of additional charge-compensating intrinsic defects, of 
which Li vacancies represent the most natural choice in this case 2. The model 
is explained in some detail in [280]. Approaching the threshold concentration 
the stoichiometry-induced defects disappear completely, and the relevant so- 
lution mode becomes (5.20) beyond the threshold. Finally, after consumption 
of any Li vacancies, proper self-compensation (5.14) substitutes for reaction 
(5.20), leading to inclusions of the complex compound Mg4Nb209 for mag- 
nesium concentrations greater than 25 mol-% [296]. 

2 Electronic compensation would be almost equally favourable, but could not ac- 
count for the observed decrease of the Li20-content, i.e. d[Li20]/d[MgO] ~ -1 
between 1.5 and 5-6 mol-% MgO. Instead, only oxygen gas would be released 
into the environment. Further, the typical ESR and optical absorption spectra 
should be observable. However, this has not been reported. In summary, although 
electronic compensation cannot be completely ruled out on theoretical grounds, 
this is finally possible due to the experimental facts. 
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The solution of trivalent impurities behaves differently from the diva- 
lent counterpart discussed above. For trivalent cations (Sc 3+ and In 3+) the 
threshold concentration is reduced to 1-2 moI-% [300, 303]. In this case the 
threshold concentration may correspond to the solubility limit (1.67 mol-%) 
of the predicted most favourable solution mode [279]: 

M203 + 4V l + 6Nb~] --~ 10M~,] + 3Nb205 �9 (5.21) 

By assuming intrinsic defect clusters, this means that  trivalent cations are 
better suited to substituting for antisites than divalent ions, in that  the im- 
purity-induced charge misfit perturbations of the defect cluster are reduced. 
It is further noted that  trivalent cations are more effective in consuming the 
antisites than divalent cations, because the ratio of replacement is increased 
from 2:5 (5.17) to 3:5 (5.21). 
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The ferroelectric oxide SBN ((Srl_xBax)Nb206) exists as a solid solution 
with compositions corresponding to 0.25 < x < 0.75. The material shows pro- 
nounced photorefractive properties due to the large electrooptic and dielectric 
material parameters (see [304] for a compilation of physical properties). The 
corresponding figure of merit is better than for BaTiO3 and KNbO3 [2], but 
depends on x. 

The crystal stucture of SBN corresponds to the tetragonal tungsten 
bronze structure. It may be characterized (viewing along the c-axis) as be- 
ing built up of two perovskite-structured slabs linked with two additional 
sequences of corner-sharing NbO6 octahedra. The realization of this struc- 
ture requires significant distortions of the octahedra. The ferroelectric space 
group is P4bm, of which the unit cell contains five formula units. Nb ions 
have octahedral coordination spheres corresponding to the 2b and 8d lattice 
positions. The complete corner-sharing NbO6 framework gives rise to three 
types of channels along the c~axis with triangular, square and pentagonal 
shapes, which contain the ninefold lattice site (denoted C subsequently), the 
twelvefold site 2a and the fifteenfold lattice site 4c, respectively. The 4c lat- 
tice sites are partially occupied by Ba and Sr, but Sr is also found on the 2a 
sites. Interstitial sites refer to vacant 2a and 4c sites as well as the ninefold 
coordinated lattice sites C. The C positions remain completely unoccupied. 
There is also significant disorder on the oxygen sublattice. 

The ferroelectric Curie temperature ranges between about 50 and 200 ~ 
and correlates directly with increasing x. For T > Tc all crystal ions are lo- 
cated within equidistant mirror planes perpendicular to c. Below Tc the metal 
ions move off their respective mirror planes giving rise to the spontaneous 
polarization Ps. The displacements are largest for niobium ions [6]. 

So far, no electronic structure calculations have been reported for this 
complex oxide. Recently, Baetzold [305] reported shell model-based simula- 
tions of the material's defect chemistry employing x = 0.4. The most impor- 
tant results of these investigations will now be reviewed. 

The potential parameters have been transferred from SrO, BaO and 
LiNbO3. In order to account for the random lattice site occupations, par- 
ticularly of the Ba and Sr cations, a random number routine has been em- 
ployed. However, the simulations reveal that random distributions of crys- 
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tal ions affect the lattice energy of the completely relaxed perfect crystals 
only marginally. The energy variations amount to a few hundreths of an 
eV per formula unit (Srl-xBa~)Nb206 and may thus be safely neglected. 
The corresponding energy differences are considerably larger (a few eV per 
(Srl-xBax)Nb206) prior to the necessary lattice equilibrations. 

The most important results concerning defect formations can be sum- 
marized as follows: the intrinsic defect structure of SBN is determined by 
randomness of Sr 2+ and Ba 2+ cations. For these cations Frenkel disorder and 
the formation of Ba~r and S r ~  antisite defects are likely to occur. Whereas 
the Sr/Ba cation interchange reaction 

Srs~ + Ba~a , Sr~a + Bas~ (6.1) 

needs 0.6 eV per defect, the formation of Frenkel defects requires only 0.3 eV 
per defect. These small energy values corrrelate directly with the correspond- 
ing results of perfect lattice simulations quoted above. On the other hand, 
Schottky-type defects are not favoured to occur. Moreover, due to the large 
Nb vacancy formation energy, disorder involving these cations seems to be 
unlikely. 

Impurities with electronic states in the band gap are indispensable for 
the photorefractive effect. As in the other materials discussed in this volume, 
the impurity charge states and incorporation sites are decisive with respect 
to donor/acceptor behaviour. The investigations of Baetzold are restricted 
to the donor levels of defects, which respond to electron transport in the 
conduction band. 

In most instances trivalent and tetravalent impurity cations prefer an 
incorporation by means of self-compensation. For the dominant cerium and 
iron impurities this results in Nb and Ba/Sr site incorporations. In the case 
of Ce 4+ self-compensation reads as: 

1 . .  
CeO2 +'  SBN' , -~Cesr + Celb  + 

1 .. 
CeO2 +'  SBN' , -~CeBa + Celb  + 

Nb205 + 1SrO (6.2) 

1Nb205 + 3BaO. (6.3) 

Similar reactions may be formulated for trivalent cations. Most competitive 
to self-compensation is the formation of charge-compensating Ba or Sr va- 
cancies, e.g. for Ce4+: 

CeO2 +'  SBN' , Ce~r + V ~  + 2SrO (6.4) 

CeO2 +'  SBN' ) Ce~,~ + VZsta + 2BaO.  (6.5) 

Typically self-compensation and vacancy-assisted solution differ in energy 
(per molecule of the impurity oxide) by a few tenths of an eV. In some 
cases the latter incorporation mode is even preferred. For example, trivalent 
manganese is found at the Ba/Sr sites according to the reaction: 

Mn203 +'  SBN' ,2Mn~a + V~a + 3BaO. (6.6) 
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Whereas a minority of the impurity cations can be incorporated at interstitial 
2a and 4c sites, there are no theoretical indications of impurity incorporations 
at the ninefold coordinated lattice site C. 

Divalent cations consistently prefer an incorporation at Ba/Sr sites. There 
is no requirement for charge compensations. 

Donor states of impurity cations, such as Ce 3+, Fe 2+ and Mn 2+, are stable 
on the Ba/Sr sites, but would be ionized in the case of Nb site incorporation. 
If electronic transport takes place via the conduction band, the stable donor 
states will provide the relevant defect levels for the photorefractive effect 
to be operative. The donor levels have been estimated by combining defect 
formation energies and ionization potentials of free ions according to 

M n+ , M (n+l)+ + Nb~ + , (6.7) 

where Nb~ + ions represent conduction band states which have been simulated 
assuming small polarons to be favourable. It seems noticeable that iron and 
cerium may possess several energy levels in the band gap. This result would 
be related to the existence of different Ba and Sr sites in the material. 

Due to the use of free-ion ionization potentials the results should not be 
interpreted quantitatively, but the results might provide helpful qualitative 
predictions. However, significant uncertainties may be due to the neglect of 
covalency differences and crystal field splitting contributions, which axe par- 
ticularly important in the case of 3d transition metal impurities. Quantitative 
estimates, on the other hand, would demand the employment of embedded 
cluster calculations including lattice relaxation. 



7. Y t t r i u m  Iron Garnet  

Garnet crystals play an important role in many technological devices. For 
example, yttrium aluminium garnet (YAG) doped with Nd 3+ ions is one of 
the most commonly used laser materials. Further examples include magnetic 
garnets, of which the ferrimagnetic yttrium iron garnet (YIG) represents 
the most prominent member. YIG devices are used extensively in various 
microwave applications [3]. 

Recent developments concern the construction of magnetooptical device 
components for their use in integrated optics. The corresponding techniques 
are based on thin YIG films deposited on substrate garnet materials [3, 4, 5]. 
Similar to the electrooptic materials the basic physical crystal properties 
of YIG (e.g. optical absorption, Faraday rotation and photomagnetic effects) 
depend to a considerable extent on its defect structure. For example, Fe 2+ and 
Fe 4+ ions as well as Bi 3+ dopants strongly modify the magnetooptical crystal 
properties. Similar influences can be ascribed to Pb 2+ impurities which are 
always present in YIG as part of the usual crystal growth techniques [3]. 
Garnet crystals are well suited to accommodating many different cation types 
with various valencies and with concentrations in the percentage range [3]. 
The optimization of technical properties of the material should be facilitated 
by controlled impurity incorporation - a procedure which may be described 
as "molecular engineering". 

Because there are no electronic structure calculations for complex garnet 
crystals, the present chapter is restricted to providing a detailed discussion of 
shell model-based potential simulations. The emphasis is placed on the defect 
chemistry of YIG. In spite of the extensive experimental work in this field, 
there is still a need for a definite and generally accepted defect model, which 
covers the basic questions referring to the dominant intrinsic defects as well 
as the incorporation sites and modes of charge compensation of impurity ions. 
Certainly, the corresponding knowledge is the first important step towards a 
successful molecular engineering. 

7.1 P o t e n t i a l  M o d e l s  

In the present simulation study on YIG we consider two sets of shell model 
potential parameters (Table 7.1). 
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Table 7.1. Shell model parameters according to parameter sets 1 and 2 

Interaction A (eV) Q (h) C (eV h 6) 

02-.. .  02-  1 22764.0 0.149 27. 8 

2 22764.0 0.149 87.5 

y3+... 02-  1 1345.1  0.3491 0.0 

2 1388.0 0.3561 0.0 

3-t- 0 2 -  1 1102.4 0.3299 0.0 Fe(~)... 

2 993.9 0.3400 0.0 

3+ 02 - 1 1102.4 0.3299 0.0 Fe(d)... 

2 852.3 0.3490 0.0 

Ion Y(I e [) k (eV h -2) 

0 2- 1 -2.811 103.07 

2 -3.148 43.31 
y3+ 1 - 

2 - -  

3+ 1 4.97 304.7 Fe(~) 

2 5.30 408.0 

Fe(ad% 1 4.97 304.7 

2 4.65 205.0 

The first (1) was obtained by transferring empirical shell model parame- 
ters from Y203 and c~-Fe203 [122] to YIG, while the second (2) was derived 
by empirical fitting to the properties of YIG. In order to keep the number of 
degrees of freedom per unit cell manageable, the yt t r ium ions have been de- 
fined to be unpolarizable in both parameter sets, both of which reproduce the 
observed crystal structure to sufficient accuracy (neglecting slight distortions 
arising from the ferrimagnetic order in YIG) [3]. Deviations with respect to 
ion positions are less than 0.05 A. It is noted that  magnetic interactions me- 
diated by superexchange cannot be accounted for within classical shell model 
simulations. 

Garnet  crystals possess a cubic body-centred Bravais lattice belonging to 
the space group Ia 3d (O~~ The basis consists of four formula units of YIG 

(A Y3Fe5012), where the y3+ ions occupy the 24c dodeca.hedrally coordi- 
nated sites and Fe 3+ ions both the octahedral 16a and the tetrahedral 24d 
sites. More accurately one should write (Y3)24c(Fe2)16a(Fe3)24dO12. Figure 
7.1 (reproduced from [3]) shows the spatial connection of the various oxygen 
polyhedra existing in YIG. 
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Fig. 7.1. Spatial connection of oxygen octahedra in garnets. The framework of al- 
ternating tetrahedra and octahedra (shaded) and of eightfold dodecahedra is shown. 
Large open circles represent oxygen anions; small circles represent cations 

By inspection of Table 7.1 we observe tha t  in set 2 tetrahedrally and 
octahedrally coordinated Fe 3+ ions have been assigned different interatomic 
potential  parameters,  which in principle is reasonable due to possible changes 
of cation properties (e.g. ion size) as a function of coordination number. In 
YIG, however, such coordination dependent differences turn out to be small. 

Table 7.2 summarizes calculated and experimentally determined macro- 
scopic constants. 

It  is seen that  only set 2 can accurately reproduce the dielectric behaviour 
of YIG, which is of considerable importance in predicting reliable defect en- 
ergies. All defect energies reported below refer to the parameter  set 2, except 
when indicated to the contrary. 

Figure 7.2 displays a typical region I used in the subsequent M o t t -  
Litt leton defect calculations (see also Sect. 2.2). 

Table  7.2. Comparison of calculated and measured macroscopic constants 

Macroscopic constant Calculated Experiment [3, 306] 

set 1 set 2 

Cll (GPa) 326.0 273.4 268.0 - 270.1 

ClU (GPa) 111.5 129.8 110.6 - 110.9 

C44 (GPa) 101.2 68.7 76.6 - 77.5 

e0 10.3 17.5 ~-- 17 

eoo 2.11 5.3 --~ 5 
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Fig. 7.2. A typical region I used in the defect simulations in YIG. This crystal 
region which immediately surrounds an octahedrally coordinated iron site defect 
is explicitly relaxed according to the underlying potential model. The direction of 
viewing is perpendicular to a (100) crystal plane 

7 .2  C h e m i c a l  S t a b i l i t y  o f  Y I G  

Having demonstrated the success of the potential models in describing struc- 
tural properties of YIG we continue with consideration of the extent to which 
they are compatible with the observed stoichiometry variations and phase re- 
lations of the material. 

Under most practical conditions the phase diagram appropriate to YIG 
can be described by the binary Y203-Fe203 system. Deviations from this 
description will only occur if the system is exposed to reducing or oxidizing 
atmospheres [3, 307]. In this latter case the analysis must include the relevant 
defect redox reactions. 

At the present stage it is sufficient to take advantage of the "pseudo- 
binary" system and thus to consider reactions of the following type: 

2Y3Fe5012 ~ 3Y203 + 5Fe203 (7.1) 

or alternatively 

Y3Fe5On ) Fe203 + 3YFeO3. (7.2) 

The energies of reaction can be estimated by combining calculated lattice 
energies (per formula unit) using the YIG potential parameters (Table 7.1). In 



7.2 Chemical Stability of YIG 169 

(7.2) we have included the perovskite structured yttrium orthoferrite YFeO3, 
which is readily formed on the yttrium-rich side of the phase diagram. It is 
also noted that Y203, Fe203 and YFeO3 are fairly well modelled using the 
YIG parameters. For example, the calculated lattice constant of YFeO3, a -- 
3.863/~, is only 0.016/~ larger than the experimental value. 

As a result one obtains (per formula unit YIG) +1.56 eV and +2.91 eV 
for reactions (7.1) and (7.2), respectively. These values show that the stoi- 
chiometric formation of YIG is favourable. The same qualitative conclusion 
is reached if parameter set 1 is used instead of 2. 

We conclude this section with some preliminary considerations on non- 
stoichiometry, to which we return later when discussing defect calculations. 
We consider both Y203 and Fe203 excess in YIG crystals by modelling 
Y3(Fe4Y)O12 and (Y2Fe)Fe5012 respectively. Thus in the first case 1/5 of 
the Fe in the garnet is replaced by Y, and in the second 1/3 of the Y is 
replaced by Fe. This procedure, despite the fact that the compositions show 
greater Y and Fe excess than observed experimentally, nevertheless allow us 
to probe the energetics associated with non-stoichiometry. Thus calculations 
are performed using the parameter sets in Table 7.1 for the following reac- 
tions: 

Y203 + 3Fe203 ~ (Y2Fe)Fe5012 (7.3) 

for which the calculated energy is 1.33 eV and 

2Y203 + 2Fe203 ~ Y3(Fe4Y)O12 (7.4) 

where -0.77 eV is calculated for the energy of reaction. 
W h e r e a s  Fe203 excess turns out to be slightly endothermic, Y 2 0 3  ex-  

cess  is seen to be exothermic. At first sight this result seems to contradict 
the observed phase diagram, from which a small possible Fe203 excess can 
be inferred but n o  Y203 excess. In order to resolve this contradiction one 
can suggest that the formation of YFeO3 might be preferred over Y203-rich 
YIG. Indeed, by calculation of appropriate lattice energies, and taking into 
account that one unit of Y3(FeaY)O12 corresponds to four units of YFeO3, 
this interpretation turns out to be reasonable, by reference to the following 
lattice energies: 

ELatt (YFeO3) = - 141.1eV (-142.5 eV) 
1 

ELatt(Y3(FeaY)O12 ) = -141.7eV (-141.9 eV). 

(where energies in brackets refer to parameter set 1). We should approach 
these results with some caution, owing to the uncertainties introduced by 
transferring YIG parameters to different materials as well as by neglecting 
any thermal effects. Nevertheless the qualitative conclusions are reasonably 
clear: yttrium excess may be accommodated by formation of the perovskite 
YFeO3 rather than non-stoichiometric phases, as there is very little difference 
in the lattice energies of the two phases. 
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7.3 Intrinsic Defect  Structures 

We now discuss point defect formation mechanisms involving yttrium, iron 
or oxygen ion species only. Impurity point defects will be considered in Sect. 
7.5. 

Table 7.3 lists the basic defect formation energies, from which it is 
straightforward to consider the energetics of Schottky- and Frenkel-type de- 
fect formation. 

Table 7".3. Basic defect formation energies using parameter set 2 

Defect Defect formation energy (eV) 

31 VFe(a ) 51.49 
31 

VFe(d ) 50.88 

V~ ~ 21.43 

V~) 42.96 

Fe~ -8.03 

Y• 9.63 Fe(a) 

yFXe(d) 10.57 

O~ 1 -14.32 

Fei 3~ -39.02 
y3.  -26.05 

In all subsequent reactions the defect notation of KrSger and Vink [205] 
will be used; the symbol ~YIG' denotes the bulk crystal. 

S c h o t t k y  Disorder: 

'YIG' , Fe203 -}- 2V3Fle -b 3V~) ~ (7.5) 

'YIG' ' Y203 + 2V~) + 3V~" (7.6) 

'YIG' ' Y3FesO12 + 3V~ + 5V31e + 12V~" (7.7) 
~r31 • . ~ r - .  (7 .8 )  'YIG ~ ~ YFeO3 + V~) + --fe 7- o--o 

(where only reaction (7.7) represents true Schottky disorder, as the others 
result in a change in the chemical composition of the material) 

F renke l  Disorder: 

'YIG' ----* VFle q-Fe 3~ (7.9) 

'YIG' - - -  V,~ + Yi 3~ (7.10) 

t W I G  ! ~ Vo  ~ -~- O~ 1 . (7.11) 

The respective energies are summarized in Table 7.4. 
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Table 7.4. 
reactions 

Reaction energies (per defect) for Schottky-like and Frenkel disorder 

Disorder reaction Reaction energy per defect (eV) 

Schottky-like 

(7.5) 3.11 

(7.6) 3.54 

(7.7) 3.13 
(7.8) 3.41 

Frenkel 

(7.9) 5.93 

(7.10) 8.45 

(7.11) 3.55 

The creation of iron vacancies is assumed to involve tetrahedral iron sites 
only, because corresponding defect energies are smaller compared with oc- 
tahedral sites (see Table 7.3). Even the most favourable defect reactions in 
Table 7.4 need for their creation large formation energies per defect of about 
3.1-3.5 eV. In accordance with previous investigations [122, 124] it can be 
concluded that Schottky- and Frenkel-type disorder are insignificant on en- 
ergetical grounds. 

A different type of intrinsic disorder may be introduced by interchanging 
y3+ and Fe 3+ cations according to the solid state reaction 

Y~ + Fe~(~) - -*  Y• -{- Fe,~, (7.12) 

for which is calculated a reaction energy of 0.8 eV per defect. The shortened 
subscript (a) denotes the octahedral iron site. The comparatively small re- 
action energy suggests that this type of disorder should exist in most YIG 
crystals. Experimental evidence in favour of antisite defects occurring as in 
(7.12) has been reported recently by Wagner et al. [308]: The satellite signals 
in the NMR spectra of 57Fe in nominally pure YIG could be partly assigned to 
existing antisite defects. The cation interchange specified above does not alter 
the magnetic moment per formula unit, because the 24c and 16a sublattices 
have parallel spin alignment [3]. The defect chemical results discussed so far 
refer to YIG crystals which are perfectly grown otherwise, but as most YIG 
crystals are known to be affected by considerable impurity concentrations 
(e.g. Bi 3+ ions), corresponding influences should be included. Importantly, 
the cation interchange energy is reduced in all crystals which are doped with 
large cations. This is verified, for example, by simulating the cation inter- 
change in Y3(Fe4Y)O~2 (0.54 eV per defect) and in (Y~ Bi~ )FesOI~ (0.70 
eV per defect). For modelling of the latter compound a Bi...O short-range in- 
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teraction potential has been transferred from preliminary simulation studies 
on BaBiO3 [309]. 

A further source for antisite defects provides the accommodation of non- 
stoichiometry. Generally, the obvious manifestations of non-stoichiometry, i.e. 
Fe203 or Y203 excess, may be compensated by antisite defects, interstitial 
ions or vacancies: 

~Y203 +l YiG ~ ~ y x  1F (a) + ~ e203 (7.13) 

Y203 +' YIG' ) 2Yi 3" + 30~ 1 (7.14) 

Y203 +'  YIG' 2YFeO3 + 2V3~ + 3V~)" (7.15) 

- 2Fe203 +'  YIG' Fe~ + 1y203  (7.16) 
Z 

Fe203 +'  YIG' 2Fei 3~ + 30~' (7.17) 

Fe203 +'  YIG' 2YFeO3 + 2V~ + 3V~)'. (7.18) 

Inspection of Table 7.5 shows that the formation of interstitial ions and va- 
cancies is energetically unfavourable. It should be further noted that in agree- 
ment with the previous calculations of chemical stability (Sect. 7.2), excess of 
Y203 is preferred to surplus Fe203. However, as we have already discussed in 
Sect. 7.2 the formation (or phase separation) of yttrium orthoferrite is likely 
to reduce the occurrence of excess Y203 in YIG crystals. Fe203 excess is 

Table 7.5. Energetics of Y203 and Fe203 excess in YIG 

Reaction Reaction energy (eV) 

per molecule A203 

(7.13) 1.24 
(7.14) 37.44 

(7.15) 16.43 

(7.16) 1.96 

(7.17) 29.52 

(7.18) 18.61 

well known to occur in otherwise pure YIG [310, 311]. In contrast, evidence 
for excess Y203 has only been found in YIG doped with one aluminium 
ion per formula unit [312]. Finally, the formation of Fe,~ antisites resulting 
from surplus Fe203 should induce a decrease in the lattice constant due to 
ion-size differences. Corresponding support is given by various experimental 
investigations [310, 313]. For example, Hansen et al. [313] found strong ev- 
idence for Fey antisite defects by studying the lattice constant of YIG as 
a function of Fe203 non-stoichiometry. The lattice constant is significantly 
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smaller in non-stoichiometric crystals than in stoichiometric samples. On the 
basis of ion-size arguments a concentration of ~0.01 Fey antisites per for- 
mula unit YIG has been reported. This value is consistent with the known 
Fe203 non-stoichiometry. However, the actual antisite concentration could 
be significantly larger if interchange reactions are considered as discussed in 
(7.12). These reactions are even more favourable than processes related to 
non-stoichiometry. Since both Fey and Y(a) antisites are the products of such 
interchange reactions, there are probably no measurable effects upon the lat- 
tice constant. In any case, the antisite concentration is sufficiently large in 
order to influence other defect formation mechanisms. 

7 . 4  I n t r i n s i c  E l e c t r o n i c  P r o p e r t i e s  

In this section we remark on reduction and oxidation treatments, electrical 
conductivity and optical absorption mechanisms in YIG crystals, within the 
obvious limitations imposed by a treatment based on effective potentials. Re- 
dox processes induce the formation of additional Fe 2+/4+ ion species which 
are modelled by appropriately changing the ionic charge states with respect 
to the intrinsic 3+ state. As the modification of short-range potential param- 
eters, at the same time, is expected to be small, these parameters are taken 
to be unaltered. 

YIG crystals annealed in atmospheres with low oxygen partial pressure 
contain additional electrons which lead to the formation of ferrous ions, Fe 2+. 
Even under growth conditions Fe 2+ ions have been observed in YIG [314]. It 
has been suggested that  these extra charges may be compensated either by 
oxygen vacancies or by interstitial ions [310]. Shell model calculations confirm 
that  oxygen vacancies are more likely to occur: 

iYiG , 3 , ~O2(g) + 3V~)" + 6Fe 1 (7.19) 

3y 
'YIG'  , O2(g) + 5Fe 3" + 15Fe 1 - Y3Fe5012 + ~ 203, (7.20) 

where (7.20) represents the most favourable reduction mechanism involving 
interstitial ions. It should be noted that  the interstitial type reaction requires 
one formula unit of YIG to redissolve from the surface into the bulk lattice. 
However, this process is energetically costly: (7.19) is by about 6 eV per 02 
molecule more favourable than (7.20). 

The absolute reduction energies depend on the precise formation energy of 
Fe 2+ ions. These may be estimated by combining shell model defect energies 
with the appropriate free-ion ionization energies [315]. In perfectly grown 
YIG octahedrally coordinated Fe 2+ ions are by 0.6 eV more favourable than 
tetrahedrally coordinated Fe 2+ ions. Possible corrections due to differences 
between the octahedral and tetrahedral crystal field splitting contributions 
are small and range between 0.0 and 0.2 eV in favour of the tetrahedral  
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site, where the precise correction depends on the employed cubic crystal field 
splitting energies usually denoted by 10Dq. If Fe~ antisite defects are present 
(e.g. resulting from non-stoichiometry or from cation interchange discussed 
above) these defects become the favoured "traps" for additional electrons. 
The existence of antisite defects lowers the reduction energy by further 4.6 
eV per 02, and the reaction energy of (7.19) becomes 11.9 eV per 02. Despite 
the considerable amount (see also below) this value is by about 25 eV per 
O2 smaller than the reduction energy calculated for YAG [316], which is in 
qualitative agreement with the observation that YIG can be to some extent 
reduced, but not YAG [316]. Table 7.6 summarizes binding energies between 
oxygen vacancies and trapped electrons. The binding energy is defined as 
the reaction energy corresponding to Fe I + V~) ~ --~ (FelV~) ~ (complex). The 
inclusion of binding energies reduces the calculated reduction energies even 
further. The last defect complex in Table 7.6 is, however, assumed to be defect 
chemically insignificant because of the comparatively low concentrations of 
the constituent defect species. All reduction mechanisms discussed so far can 
be used to describe the observed thermal decomposition of YIG which takes 
place under strong reducing conditions [317]. For example, (7.19) may be 
reformulated as follows: 

6Y3Fe5OI2 ) O2 + 2V~)~ + 4Fel + 26Fete + 18Y~ + 70 O~) 

) 02 + 18YFeO3 + 4(Fe I + 2FeFe + 40~)) 

' 02 + 18YFeO3 + 4Fe304 �9 (7.21) 

Table 7'.6. Binding energies (eV) of electrons at oxygen vacancies 

Defect complex Binding energy (eV) 

(vs" Fe a)) -038 
(VS" Fe}d)) -0.56 
(VS" Fe ) -085 

We now consider the oxidation of YIG in oxygen-rich atmospheres. The 
following reaction refers to perfectly grown YIG crystals: 

O2(g) 4-' YIG' , 20[ 1 -t- 4Fe~d), (7.22) 

for which one calculates an energy of 17.6 eV per 02 molecule which is 
prohibitively high. However, in most YIG crystals oxygen vacancies will be 
present either as frozen-in from high-temperature reducing growth conditions 
or as charge compensators for divalent impurities. Later oxidation treatments 
may then be viewed as simply filling oxygen vacancies: 
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4Fe~d ) + O2(g) + 2V~) ~ , 20~) + 4Feid ) . (7.23) 

The oxidation energy in this latter case is calculated to be 3.3 eV per 02. In 
conclusion, the oxidation of YIG will have a reasonably small reaction energy 
only if there exists an oxygen vacancy population prior to oxidation. Note 
that holes at tetrahedral iron sites are more favourable than holes localized 
at octahedral iron sites (by 4.2 eV) as well as at oxygen sites (by 1.6 eV). 

It must be emphasized that the calculated redox reaction energies are 
very sensitive to the accuracy with which electronic energy terms can be ac- 
counted for in shell model simulations (note the amplifying factor of four per 
02 molecule occuring in (7.19)-(7.23)). Thus, using free-ion ionization poten- 
tials for iron would probably overestimate redox energies by a few eV. The 
discussion in Sect. 3.2 confirms that the deviations of in-crystal ionization 
potentials from their free-ion counterparts essentially result from covalent 
charge transfer and crystal field splitting terms. It is possible that, due to 
filled antibonding d states of iron, the covalency contributions are smaller 
than the crystal field splitting terms, which would enhance the electron affin- 
ity of YIG in comparison with calculated affinities based on free-ion ionization 
potentials. Thus, the embedding lattice-induced cationic level shifts might be 
directed oppositely to the case of the oxide perovskites (see Sect. 3.2). The 
qualitative importance of our present estimates, however, in predicting the 
favourable redox processes is obvious, since the possible shortcomings re- 
garding the electronic structure have been noted consistently throughout the 
present work. Moreover, in order to determine the precise driving forces of 
redox reactions, i.e. the Gibbs free energy A G  = A H  - T A S ,  it is necessary 
to include relevant entropy terms referring to the formation (reduction) or 
consumption (oxidation) of oxygen gas (e.g. using standard entropy data for 
oxygen one finds T A S  ___2.2 eV at T _~ 600 ~ Thus, AG < AH is obtained 
in the case of reduction, but z ig  > AH for oxidation. The inclusion of en- 
tropy terms, however, would not influence the qualitative predictions of the 
most favourable reduction and oxidation mechanisms. 

Macroscopic crystal properties such as electrical conductivity and optical 
absorption are significantly influenced by existing Fe 2+ and Fe a+ ions. These 
species may be investigated by means of shell model calculations, which have 
the advantage that lattice relaxation effects are properly taken into account. 
Quantum mechanical terms, on the other hand, can only be considered in a 
very approximate way by adding appropriate free-ion ionization energies and 
(where necessary) crystal field stabilization energies. A shell model treatment 
of electron or hole species necessarily implies a small-polaron model. The 
stability condition favouring small polarons is given by 

]EB[ > -~,  (7.24) 

where EB means the small-polaron binding energy and /k the appropriate 
band width. The right-hand side of (7.24) represents the delocalization energy 
gain within a band model, which may be considered to be competitive with 
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small-polaron formation. In the case of electrons the band width A = 0.6 eV 
is derived from the octahedral t2g (Fe 2+) states [318]. For the small-polaron 
binding energy, which is determined from the lattice relaxation around an 
octahedrally coordinated Fe 2+, IEBI=I.3 eV is obtained. This value is the 
difference between the energy calculated with full lattice relaxation and that 
obtained when only shells are allowed to relax and the cores (representing 
the nuclei) are frozen. If we further include the crystal field splitting energy 
and its dependence upon nearest neighbour distances (10Dq c< (rML) -5) [EBI 
is finally reduced to about 1.18 eV assuming 10Dq _ 1 eV for the optical 
(unrelaxed) case and taking into account the calculated outward displacement 
of the oxygen ligands (-~ 0.15 A) in the fully relaxed (thermal) case. Thus, 
on the basis of (7.24) we find that the small electron polaron is stable in 
pure YIG. We should emphasize that the reliability of the calculated binding 
energy EB depends to some extent on the ability of our shell model parameter 
set (2) to model the dielectric properties of YIG with sufficient accuracy. 

Consequently, polaron hopping seems to represent the dominant electronic 
conductivity mechanism in YIG. However, it is difficult to prove this conjec- 
ture experimentally as well as theoretically. First, there is a considerable 
scatter in measured conductivity data resulting from differing experimental 
conditions regarding the precise chemical composition and type of the YIG 
samples, the growth conditions and the experimental techniques employed, 
etc. The conductivity activation energy is found to vary between -~0.3 eV and 
-~1.8 eV [3]. Very careful conductivity measurements have been performed in 
the case of Si-doped YIG single crystals [318]. The conductivity activation 
energy (0.3 eV) has been interpreted as the binding energy of electrons at 
Si 4+ dopant ions with no appreciable contributions from mobility activation 
(< 0.1 eV), which led to the assumption of band-like electrons. Next, it is 
recalled that small-polaron theories provide different regimes of possible po- 
laron hopping depending on temperature, phonon energies, adiabaticity and 
on jump correlations [319, 320, 321]. As a result, in some cases the drift and 
Hall mobilities need not manifest a clear thermally activated behaviour. Thus, 
the experimentally observed absence of mobility activation, as was claimed 
in Si-doped YIG, cannot definitely prove the non-existence of small polarons. 

Assuming the validity of the non-adiabatic hopping regime in the high- 
temperature limit [319] allows us to calculate an upper bound for the polaron 
hopping activation energy in (pure) YIG. One calculates EH = 0.6 eV follow- 
ing the approach of Norgett and Stoneham [322], in which the saddle-point 
energy is obtained by first distributing the electron charge equally over the 
two neighbouring cation sites and allowing the lattice to relax to equilibrium. 
This configuration is then frozen and the energy recalculated with the elec- 
tron localized on one of the sites. This value is in good agreement with the 
prediction EH : �89 from the Holstein "molecular crystal model" [323]. 
It is, however, too large compared with the results for Si-doped YIG [318], 
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indicating that the non-adiabatic high-temperature regime is probably not 
applicable in this case. 

Beyond the "mobility problem" we have, as in the case of band-like elec- 
trons, to consider possible electron traps leading to an additional contribution 
to the activation energy related to the charge carrier concentration. Intrinsic 
trapping centres are provided by oxygen vacancies V~ ~ (mainly resulting from 
prior reduction treatments or possibly from charge compensation of divalent 
impurities) and by Fe,~ antisite defects. Thus, the reactions 

(V~) ~ Fela)) ~ V~)" § Fela ) (7.25) 

Fe~) + Fe~ , Fela ) + Fe~ (7.26) 

define corresponding electronic charge carrier activation modes. The reaction 
energies are calculated to be 0.38 eV for (7.26) (see Table 7.6) and 1.16 eV 
for (7.26). The reaction energy for (7.26) involving the predicted Fey anti- 
site defects has been calculated by neglecting corrections due to crystal field 
splittings and other electronic energy contributions which are not accounted 
for within the shell model. If, for example, the crystal field splitting of Fey 
antisites is to some extent smaller than the corresponding term of Fe(~) ions, 
the reaction energy for (7.26) may be substantially lower than our calculated 
value. 

Extrinsic trapping centres are given by higher valent impurity ions as 
Si 4+. The conductivity activation energy of 0.3 eV for Si-YIG [318] has been 
interpreted as the binding energy of (Siid) Fela)) defect complexes. The cal- 
culated binding energy of 0.28 eV obviously provides some support for this 
interpretation. 

In the case of holes as dominant charge carriers the existence of small-hole 
polarons remains unclear, because the appropriate valence band width is not 
known exactly. It has been estimated as ~_4 eV [324]. However, the band 
width should be greater than 6 eV if band-like holes are to be predicted. The 
calculated smail hole polaron binding energy is IEBI --~ 3 eV. This value must 
be compared with the correspondingly large valence band widths which are 
characteristic of several oxides [325], e.g. MgO (6.5 eV), TiO2 (5.5 eV), VO2 
(5.6 eV) and SrTiO3 (6.5 eV). 

In order to complete our discussion of basic electronic properties in YIG 
we consider some optical absorption processes related to electron/hole trans- 
fer between different ions. For crude estimates we may use shell model defect 
energies appropriately corrected by ionization and crystal field energies. It is 
understood that all absorption energies subsequently reported mainly yield 
qualitative guidance for interpretations and should not be taken quantita- 
tively. This, of course, would demand that we explicitly include the electronic 
structure by means of exact quantum mechanical procedures as embedded 
cluster calculations (Sect. 2.1.2). Similar comments also apply to some extent 
to our investigations related to conductivity, as discussed above. However, in 
that case, in contrast to the present optical calculations, lattice relaxation 
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effects are fully taken into account and these dominant terms may outweigh 
the uncertainties due to the inaccuracy in treating the electronic structure. 
Thus thermal energies are expected to be quantitatively more reliable than 
optical energies. 

Table 7.7 compiles the various optical absorption energies as calculated 
on the basis of the shell model. All lattice positions of the ion cores have 
been held fixed during the absorption processes denoted in Table 7.7. The 
shell model formation energies of iron have been corrected by suitable crystal 
field splitting energies [320]. All lattice configurations correspond exactly to 
the initial states. Thus, in all cases initially involving defects, the appropriate 
lattice geometry is that  of the relaxed initial defect configuration. Only ion 
shells (representing valence electrons) are allowed to move during absorption 
processes. 

The qualitative features of interest may be summarized as follows: 

�9 The charge transfer processes between oxygen and iron ions show similar 
absorption energies to those between pairs of iron ions. 

�9 The energy gap is determined by the iron pair process: 

Table 7.7. Optical absorption processes 

Absorption process Absorption energies (eV) 

Electron transfer between iron pairs 

Fe~() + Fe~(d)--* Fe~d ) + Fe~) 

Fe~(d) + Fe~(~)--, Fe~d ) + Fel, ) 

2Fe~(a) --* Fe~a ) + Fe~a) 

2Fe~(d) --, Fe~d ) + Fe~d) 

11.12 

7.02 

11.02 

9.65 

Charge transfer, 02- --~ Fe 3+ 

Fe~.) + O~) --~ Fe~) + O~) 

Fe~d ) + O~ --* Fe~d ) + O~) 

Fe; + + 05 

9.09 

9.83 

7.24 

Absorption related to surplus electrons and holes 

Fe~a ) + Fe~a ) -~ Fe~a ) + Fe~a ) 2.67 

Fela ) + Fe~d ) --* Fe~a ) + Fe~d ) 3.06 

+ Fe d)-  + 410 
Fe 1 + FeS)--, Fe~, + Fe~a ) 3.60 

Fe~d ) + Fe~(d) --* Fe~(d) + Fe~d ) 5.78 
F • • " 8.32 Fe~d ) + e(~) --~ Fe(d ) + Fe(a) 
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 e;a) +  e;d) ' Fe}a) + reid ) 

�9 An absorption band close to the fundamental absorption (gap) is predicted 
to stem from charge transfer between oxygen and Fey antisite defects. 

�9 Excess electrons and holes essentially lead to optical absorptions within 
the gap region. Hole transfer needs more energy than electron transfer. 
The ordering of absorption energies agrees with that corresponding to con- 
ductivity activation energies for n- and p-type YIG crystals respectively 
[3]. 

Note that the aforementioned assignment of the electronic gap is in line with 
photoconductivity [326] and electrical conductivity [318] measurements. 

7.5 Impurities 

The shell model simulations described in the preceding sections have shown 
that the iron-related antisite defects in particular (i.e. Fe~ in KrSger-Vink 
notation [205]) play a major role in YIG crystals. Antisite defects may result 
from Fe203 non-stoichiometry, but the actual antisite concentration is sig- 
nificantly larger if interchange reactions (Sect. 7.3) are taken into account. 
The total number of antisites is expected to be sufficiently large in order to 
influence other defect formation mechanisms. 

In this section we discuss the incorporation of extrinsic (or impurity) de- 
fect cations. Divalent, trivalent and tetravalent impurity defects are consid- 
ered. Whereas trivalent ions substituting for intrinsic cations do not require 
charge compensating defects for their incorporation, such defects are indis- 
pensable for aliovalent ions to maintain the charge neutrality of the YIG 
lattice. Lead and silicon represent important examples of such aliovalent im- 
purity ions. Special attention will be paid to the particular influence of antisite 
defects. 

Interionic cation-oxygen potential parameters modelling the short-range 
impurity-lattice interaction have been taken from the work of Lewis and 
Catlow [122, 158] on oxide crystals, with the exception of the parameters for 
pb2+... 0 2- [327] and Bi3+... 0 2- [328]. In the case of the rare earth ions the 
"A" parameters of the impurity-oxygen short-range Buckingham potentials 
are increased by 150 (eV) in order to reproduce better the observed lattice 
constants of the corresponding rare earth iron garnets. Table 7.8 lists the 
calculated lattice constants of various garnets using the original potentials 
from Lewis et al. and those calculated with the modified parameters. The 
observed lattice constants are included, too. Table 7.9 compiles all impurity- 
oxygen potential parameters used in the simulations. 
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T a b l e  7.8. Simulated latt ice constants of some rare earth iron garnets. Details 
are given in the text  

Garnet  Lattice constant (/~) 

R 3+... 0 2- from Lewis Corrected R 3+... 0 2 -  Exp. value [3] 

LuIG 12.09 12.19 12.28 

YbIG 12.09 12.23 12.30 

GdIG 12.31 12.44 12.47 

NdIG 12.45 12.58 12.60 

LaIG 12.61 12.73 12.73 

T a b l e  7.9. List of all short-range impuri ty~)xygen potentials used in our simula- 
tion study. The potentials were cut off at a distance from the impurity cations of 
13.6/~ 

Interaction A (eV) Q (/~) 

Mg2+... 0 2 -  1428.5 0.2945 

Ca2+... 0 2 -  1090.4 0.3437 

pbu+... 0 2 -  5444.4 0.2994 

Lu3+... 0 2- 1497.1 0.3430 

yb3+.. .  O 2- 1459.6 0.3462 

Gd3+... 0 2 -  1486.8 0.3551 

Ho3+... 0 2- 1500.2 0.3487 

Eu3+... 0 2 -  1508.0 0.3556 

Nd3+... 0 2- 1529.9 0.3601 

La3+... 0 2 -  1589.7 0.3651 

Bi3+... 0 2- 11059.7 0.2751 

A13+... 0 2 -  1. 1474.4 0.3006 

A13+... 0 2 -  2. 1114.9 0.3118 

Mn3+... 0 2 -  1257.9 0.3214 

Sc3+... 0 2 -  1299.4 0.3312 

Si4+... 0 2 -  913.2 0.3428 

Zr4+... 0 2 -  1608.1 0.3509 

Th4+... 0 2 -  1147.7 0.3949 
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7.5.1 Incorporation of  Trivalent Impurities 

The  genera l  so lu t ion  mechan i sm for t r iva len t  i m p u r i t y  ca t ions  is given by  the  
r eac t ion  

1 M 1 
2 0  3 ~-' Y I G '  ) M~ + ~ 6 2 0 3  . (7.27) 

In  (7.27) ' Y I G '  means  the  bu lk  crys ta l ,  M the  specif ied t r iva len t  i m p u r i t y  
ion and  C one of t he  rep laced  in t r ins ic  ca t ions  in YIG,  i.e. Y, Fe(a) or  Fe(d). 
Due to  the  absence  of charge  misfit  effects the  ionic radi i  are  mos t  decisive 
in d e t e r m i n i n g  the  l a t t i ce  s i te  a t  which the  i m p u r i t y  is i nco rpora t ed .  Ion-  
size effects are  desc r ibed  accu ra t e ly  by  means  of the  a p p r o p r i a t e  shor t - r ange  
impur i t y~oxygen  pa i r  po ten t ia l s .  Accord ing  to  (7.27) the  defect  fo rma t ion  
energy of M~ measures  the  ion-size misfi t  be tween  the  ca t ions  M and  C. 
Moreover ,  in o rder  to  ca lcu la te  t he  prefer red  i nco rpo ra t i on  si te  of an impu-  
r i ty ,  e.g. Y and  Fe(a), one mus t  compa re  t he  co r re spond ing  difference in the  
defect  energy wi th  ha l f  the  difference of the  respec t ive  6 2 0 3  l a t t i ce  ener-  
gies, which to  some ex ten t  reflects the  different  sizes of the  in t r ins ic  cat ions .  
Table  7.10 summar i ze s  the  theo re t i ca l ly  p red i c t ed  and  expe r imen ta l l y  found 
i nco rpo ra t i on  si tes of  var ious  t r iva len t  cat ions .  T h e  si te  s t ab i l i za t ion  energy  
in Table  7.10 is def ined as the  energy difference accord ing  to  (7.27) for the  
two mos t  favourable  i nco rpo ra t i on  sites.  

T a b l e  7.10. Predicted ( . )  and observed (o) incorporation sites for trivalent im- 
puri ty cations. In addition, the calculated next favoured site is indicated by a "+".  
The predictions refer to shell model simulations of defects in otherwise pure YIG 

Impuri ty  Subst i tuted intrinsic cation Site stabilization Impuri ty 

3+ 3+ energy (eV) Ion radius (A_) a cation y3+ Fe(a ) Fe(d ) 

AI 3+ �9 + o 0.17 0.4 

Cr 3+ �9 o + 1.50 0.615 

Mn 3+ �9 o + 0.90 0.645 

Sc 3+ �9 o + 1.14 0.745 

Lu 3+ �9 o + 0.38 0.972 

Yb 3+ �9 o + 0.43 0.982 

Ho 3+ �9 o + 0.59 1.02 

Gd 3+ * o % 0.77 1.061 

Eu 3+ �9 o + 0.81 1.073 

Nd 3+ �9 o + 0.97 1.12 

Bi 3+ �9 0 + 2.10 1.132 

La 3+ �9 o q- 1.16 1.19 

a R. D. Shannon and C. T. Prewitt .  Acta Cryst., B25:925, 1969 
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In the case of Cr 3+ and Mn 3+ the shell model site stabilization energies 
have been corrected by (cubic) crystal field energy terms in order to take 
electronic open-shell effects for these 3d-transition metal ions into account. 
Crystal field energies are estimated using the expressions 

A l~oct 3 D "CF ---- ~ e g ( 1 0  q ) o c t -  nt2~(10Dq)oct 

for octahedrally coordinated transition metal ions and similarly 

2 3 A l~tet ~CF ---- ~ nt2g (10Dq)tet - ~ ~eg (10Dq)tet 

(7.28) 

(7.29) 

for cations replacing tetrahedrally coordinated iron ions. For simplicity we 
assume as a crude approximation (10Dq)oct ~ (10Dq)tet with (10Dq)oct 
2eV [329]. In using this value we overestimate the tetrahedral crystal field 
contributions, which, in turn, leads to a slight underestimation of the now 
pronounced octahedral site stabilization energies for Cr 3+ and Mn 3+. n~g and 
nt2g denote the electronic occupation numbers of the eg and t2g one-electron 
states, respectively. The predictions for these two transition metal ions do not 
depend critically upon the inclusion of such crystal field corrections, since the 
uncorrected octahedral site stabilization energies (which then represent lower 
bounds) are 0.7 eV for Cr 3+ and 0.5 eV for Mn 3+. Crystal field corrections 
have been neglected in the case of open-shell rare earth ions, because the 
corresponding energy terms are expected to be small due to the shielding of 
4f electrons against the embedding crystal field. 

Inspecting Table 7.10 we observe the very satisfactory agreement between 
theory and experiment. Only in the case of A13+ are the predictions uncer- 
tain, as there is only a small energy difference between the respective lattice 
sites. For aluminium an octahedral site preference is predicted; however, the 
tetrahedral site occupation is only 0.17 eV less favourable, suggesting that the 
aluminium might be close to a critical ion size where a change of the incorpo- 
ration in favour of the tetrahedral cation site takes place. In order to investi- 
gate this problem further we use a second A13+... 0 2- short-range potential 
suggested by Lewis et al. [122]. This potential is slightly less repulsive than 
the first one. However, it favours the tetrahedral site occupation by only 0.02 
eV. Both A13+-related short-range potentials must be tested by examining 
their ability to reproduce the lattice structure and macroscopic properties of 
yttrium aluminium garnet (YAG). For this purpose the respective aluminium 
parameters are substituted for the iron parameters in the YIG parameter set. 
As a result the second potential underestimates the YAG lattice constant by 
0.2 A, whereas the first potential is significantly more accurate in reproduc- 
ing structure and macroscopic properties of YAG (i.e. it gives a calculated 
lattice constant of 11.99 A compared with the observed value of 12.006 A [3]). 
Moreover, it is not reasonable to scale "A"-Buckingham parameters appro- 
priate to the various coordination numbers of cations in garnet crystals. The 
scaling procedure originally proposed by Lewis et al. [122] leads in the case of 
garnets to less satisfactory simulations of the lattice structure. The present 



7.5 Impurities 183 

simulations on YIG and YAG suggest that the cation-oxygen short-range po- 
tentials for the octahedral and tetrahedral lattice sites are nearly identical. 
This finding is in agreement with earlier investigations on YAG [316]. 

In conclusion, the first Al...O potential is better suited for modelling 
aluminium impurities in YIG. Thus, we would not predict a pronounced 
tendency for A13+ ions to enter the tetrahedral cation site. In contrast to 
these calculations, experimental investigations [3] show that A13+ ions oc- 
cupy the tetrahedral site with occupation fractions n(d)/(n(a ) T n(d)) > 0.8. 
When comparing the theoretical predictions with experimental investigations 
it should be kept in mind, however, that the simulations refer to perfectly 
grown YIG. On the other hand, most existing YIG crystals are defective 
to some extent. Many samples are non-stoichiometric (i.e. Fe203 excess) or 
contain a considerable amount of different impurity ions, e.g. Bi 3+, Pb 2+ or 
other big cations which dilate the lattice. The present simulations confirm 
that the existence of big cations tends to favour the incorporation of A13+ 
on tetrahedral lattice sites. A simulation of A13+ in (Y~ Bi~)Fe5012 (see also 
Sect. 7.2) yields a reduced octahedral site stabilization energy of ~0.1 eV 
using the first A13+... 02-  potential but a pronounced tetrahedral site pref- 
erence corresponding to a stabilization energy of 0.5 eV in the case of the 
second short-range potential. Although quantitatively not fully satisfactory, 
these calculations readily demonstrate the qualitative trend resulting from 
lattice dilation due to large cations. Similarly, small rare earth cations such 
as Lu 3+ would preferentially enter the octahedrally coordinated iron site in 
garnet crystals with expanded lattices compared with perfect YIG (indeed, 
calculations show that the dodecahedral site stabilization energy of Lu 3§ in 
(Y~Bi�88 is reduced by ~0.1 eV compared with perfect YIG). It is 
observed in this context that Suchow et al. [330] succeeded in preparing gal- 
lium garnets in which the octahedral lattice sites were occupied by Lu 3+ ions 
after expanding the whole lattice with large rare earth ions (e.g. Nd 3+) on 
dodecahedral sites. In contrast, the presence of significant concentrations of 
small cations leading to a lattice contraction of YIG would stabilize the A13+ 
octahedral site occupation, whereas in the case of small rare earth ions the 
dodecahedral site preference became more pronounced. 

Further influences on impurity solutions may be certain magnetic effects 
which are neglected within shell model simulations. Crude estimates suggest 
that such terms are small, but in the case of A13+ these terms may help to in- 
crease the tetrahedral site occupancy. Employing the "LCM"-model of Nowik 
and Rosencwaig [331, 332] according to which a superexchange interaction 
is assumed to be present only between nearest iron ions, we can estimate a 
contribution of 0.1 eV from magnetic energy terms favouring the tetrahedral 
site, which is of the order of the octahedral site preference determined for 
A13+ in otherwise perfect YIG. This value is calculated from the observation 
that Fe(d) has four Fe(a) nearest neighbours but that Fe(a), in turn, has six 
Fe(d) nearest neighbours. Incorporation of diamagnetic cations such as A13+ 
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diminishes the superexchange energy, which in perfect crystals maintains the 
observed ground state ferrimagnetic order. The magnetic energy difference 
between tetrahedral and octahedral site occupation is then given by: 

AEm = 4JadS(S + 1), (7.30) 

employing a Heisenberg type Hamiltonian 7-/i = --2Jad ~-~j Si.Sj describing 
the antiparallel spin coupling between nearest iron neighbours with J~d = 
--0.003 eV [333] and S = 5 

2" 
We conclude that, in order to predict from shell model simulations the cor- 

rect incorporation of trivalent impurity cations which do not show a definite 
site preference in perfectly grown YIG, it seems to be necessary to include 
the precise chemical composition of YIG crystals under investigation as well 
as small magnetic effects. 

7.5.2 Incorporat ion of  Divalent  and Tetravalent Impurit ies  

We start our considerations by separately discussing the incorporation of 
divalent and tetravalent impurity ions. The results are relevant for YIG crys- 
tals which dominantly or exclusively contain the respective impurity species. 
Finally, we shall consider the combined incorporation of both divalent and 
tetravalent impurity cations in order to single out possible impurity-restricted 
compensation mechanisms. Such extrinsic charge compensations have often 
been proposed in the literature (see [3], which also gives additional refer- 
ences). 

Divalent impurity ions represent point defects which are negatively charged 
with respect to the embedding host lattice. Charge compensators must there- 
fore be positively charged. Due to the present calculations the most favourable 
incorporation reactions for divalent impurity ions are given by 

2MO +' YIG' ,2M~ + V~)" + Y203 (7.31) 

2MO +'  YIG' ~ 2M[/+ 2Y~a ) + V~)" + Fe203 (7.32) 

2MO +' YIG' -----* 2MIa ) + V~" + Fe203 (7.33) 

2MO +' YIG' ~ 2Mld ) + V~)" + Fe203, (7.34) 

i.e. irrespective of their incorporation site these impurities are compensated 
by the formation of oxygen vacancies. Equation (7.32) in addition describes 
the formation of Y(a) antisite defects. Table 7.11 summarizes the correspond- 
ing site stabilization energies for Mg 2+, Ca 2+ and Pb 2+. 

The predicted substitution of Mg 2+ for octahedrally coordinated iron as 
well as the yttrium site incorporation of Ca 2+ and Pb 2+ impurities are in 
agreement with the corresponding experimental results [3]. Reaction (7.32) 
is by only 0.6 eV less favourable than (7.31). This reaction energy differ- 
ence is further reduced if the YIG crystals under investigation contain an 
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Table 7.11. Oxygen vacancy mediated incorporation of divalent impurity cations. 
Positive energies mean that the first site is favoured over the second one 

Impurity cation Predicted Site stabilization energy (eV) per MO 

incorporation site Y over Fe(a) Fe(~) over Fe(d) 

Mg 2+ Fe(a) -0.50 1.20 

Ca 2+ Y 0.39 3.02 

Pb 2+ Y 1.43 0.27 

appreciable proportion of large cations such as Pb 2+ on a Y site or y3+ on 
octahedral iron sites (resulting from impurity incorporation, for instance). 
For example, the energy difference in Y3(Fe4Y)O12 is only half as large as 
in perfect YIG. These calculations only simulate the effect of Y(a) antisite 
defects. It is speculated that  the additional existence of Pb 2+ ions could lead 
to a preference for (7.32) over (7.31). Thus, (7.32) is expected to represent 
the dominant "high-concentration" incorporation mechanism for divalent im- 
purities on dodecahedral cation sites. The incorporation of big cations leads 
to a dilation of the crystal lattice and, thus, to an increasing formation of 
Y(~) antisite defects. As a result, the variation of the lattice constant should 
be more pronounced than that  caused by the impurity cations alone. Indeed, 
in the case of Pb 2+ the change in the lattice constant has been reported to 
be twice as large as expected by incorporation of these impurities ([3] and 
references therein). Corresponding changes in magnetic properties are in line 
with the formation of yt tr ium antisite defects. Similar effects have also been 
observed in other garnet crystals [334, 335]. 

Tetravalent impurity cations which are positively charged with respect 
to the lattice are compensated by negatively charged defects, such as cation 
vacancies, excess electrons or some intrinsic defect clusters with negative net 
charge. Since in the present context we neglect the existence of other alio- 
valent impurity species, we are obliged to consider intrinsic charge compen- 
sators. The most energetically favourable incorporation reactions involving 
vacancies are given by: 

MO2 + '  YIG' M(a ) + V~" 31 (7.35) " § VFe(d) § F e 2 0 3  

MO2 + '  YIG' Mid ) + V~)* 31 (7.36) § VFe(d ) § Fe203 
�9 31 3MO2 + '  YIG' - -~  3M(a ) + VFe(d ) + 2Fe203 (7.37) 

3MO2 + '  YIG' ---* 3M~a) + V~ + YFeO3 + Fe203 (7.38) 

31 (7.39) 3MO2 +P YIG ~ ~ 3M~'d) + VFe(d ) § 2Fe203 

3MO2 § YIG ~ ~ 3M('d) § V~ § YFeO3 § Fe203 (7.40) 

3MO2 + '  YIG' ~ 3M~, + V~) + 2Y203 (7.41) 
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3MO2 + '  YIG' , 3 M ~  + VaFle(d) + YFeO3 + Y203.  (7.42) 

Equations (7.35) and (7.36) show an example of suitable compensating defect 
clusters, i.e. (Vo + VFe(d)) n (it is noted that  both vacancy partners are not 
located on nearest lattice sites, since this configuration would be unstable, 
i.e. 1.1 eV less favourable than separated vacancies). In the case of impurity 
incorporation on iron sites (7.37) and (7.39) are by 5.2 eV (per molecule 
MO2) more favourable than (7.35) and (7.36), respectively. Consequently, we 
may conclude that  (Vo + VFe(d)) II clusters do not play a significant role as 
charge compensators of tetravalent impurity ions. Similarly, one can rule out 
(Vo + V y )  n defect clusters. Thus, single cation vacancies are significantly pre- 
ferred as charge compensators. Since reaction (7.38) is by only 0.24 eV (per 
MO2) less favourable than (7.37) charge compensating iron vacancies are only 
slightly preferred against alternative yt t r ium vacancies. Y site incorporation, 
on the other hand, is accommodated by reaction (7.42) which is by 0.47 eV 
per MO2 more favourable than (7.41). We conclude that  iron vacancies seem 
to represent the majority of charge compensating cation vacancies accompa- 
nying the incorporation of tetravalent impurity cations. As the formation of 
YFeO3 is energetically favourable 1, y t t r ium vacancies may to some extent 
take part in compensating tetravalent cations on iron sites. We emphasize 
that  the majority of assumed iron vacancies refer to the tetrahedral  iron site, 
since the formation of V31e(a) vacancies is by 0.6 eV less favourable (see Sect. 

7.3). Table 7.12 compiles the site stabilization energies for Si a+, Zr a+ and 
Th  a+ cations. 

The predictions for these impurity ions are in agreement with correspond- 
ing experimental investigations [3]. However, in the case of Zr a+ the calcu- 
lations suggest an almost equal distribution of these cations between dodec- 
ahedral and octahedral sites, as the site stabilization energy favouring the 
octahedral site is not very significant. Subsequently we will see that  these 
predicted site occupations remain qualitatively unaltered if charge compen- 
sation is given by divalent impurities instead of intrinsic defects. Moreover, 
the octahedral site stabilization energy for Zr 4+ increases if compensating 
divalent extrinsic ions occupying the yt t r ium site are involved. Before dis- 

1 In order to obtain reliable defect chemical predictions one must use the ener- 
getically most favourable structure simulating a crystal corresponding to the 
chemical formula YFeO3. According to the present potential model for YIG (set 
2 in Sect. 7.1) this structure corresponds to Y-rich garnet. However, the dis- 
cussion in the preceding sections also indicated that YFeO3 with the perovskite 
structure could instead be slightly more favourable. This would fit with the ob- 
servation that there is no YIG with excess yttrium. The shell model simulations 
are ultimately inconclusive in this respect, since small potential variations turned 
out to be sufficient to reverse the results. This uncertainty does not influence the 
present defect calculations seriously. The only effects would consist of a slightly 
more pronounced role of yttrium vacancies and of an increased octahedral site 
stabilization energy for Zr 4+ when compensated by divalent cations on yttrium 
sites. 
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Table 7'.12. Cation vacancy mediated incorporation of tetravalent impurity 
cations. Positive energies mean the first site is favoured over the second one 

Impurity cation Predicted site stabilization energy (eV) per MO2 

incorporation site Y over Fe(~) Fe(a) over Fe(d) 

Si 4+ Fe(d) --6.16 --3.2 

Zr 4+ Fe(a) -0.06 4.2 

Th 4+ Y 0.47 5.7 

cussing the combined incorporation of divalent and tetravalent cations we 
consider charge-compensating electrons as an alternative to the formation of 
compensating cation vacancies. The corresponding reactions are: 

I F 1 MO2 + '  YIG' ) M~e + Fe~) + ~ e203 + ~O2(g), (7.43) 

for incorporation on iron sites and 

1 y  1 
MO2 + '  YIG' , M~ + Fela ) + ~ 203 + ~O2(g) (7.44) 

describing the substitution for ya+  cations. Analogous equations may be 
formulated by assuming the presence of Fe~, antisite defects, e.g.: 

1F~ 1 M02 + Fe,~ + '  YIG' * M~e + Fe~ + ~ e203 + ~02(g) �9 (7.45) 

The calculations show that  electronic compensation is as favourable as 
vacancy-assisted impurity incorporation only if Fev antisite defects are as- 
sumed to exist. The reaction energy difference between (7.45) and (7.43), 
given by AE = (E(Fe~) - E(Fe,~)) - E(Fela)) , amounts to -1.15 eV per 
molecule MO2. The incorporation mechanisms with vacancy and electronic 
Fe~( charge compensation differ in energy by only 0.4 eV. Additional crystal 
field splitting terms for Fe~, neglected so far would favour reaction (7.45) over 
(7.39), if we assume a typical crystal field splitting energy of 10Dq N 1-2 
eV. There are experimental indications in favour of the electronic compen- 
sation: in Si-doped YIG single crystals a one-to-one correspondence between 
the Si and ferrous concentration has been observed [310]. However, there is a 
maximum Si concentration si (xm~ • ,,~0.1 Si per formula unit [336]) up to which 
this correspondence holds. For larger Si concentrations a vacancy-type charge 
compensation has been suggested. These experimental findings fit with reac- 
tion mechanisms (7.39) and (7.45), with (7.45) being slightly more favourable 
than (7.39). According to this model the maximum Si content with electronic 
compensation is determined by the concentration of Fey antisite defects. The 
suggested value for x~ i is in agreement with this interpretation, xSix may 
be slightly larger than the maximum concentration of antisite defects since, 
in addition, some Si ions should be charge-compensated by certain divalent 
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impurities which are always present in YIG. We now consider in further detail 
the possibility of such charge compensation mechanisms. 

If, for example, divalent and tetravalent impurity species are present in 
YIG crystals with comparable concentrations one could imagine the possibil- 
ity of charge compensation among the impurity cations (extrinsic compensa- 
tion). A typical incorporation mechanism is given by 

MO + NO2 +t YIG' ~ M~y + Nid ) + YFeO3, (7.46) 

where M and N denote divalent and tetravalent impurity ions, respectively. 
It is straightforward to formulate further incorporation reactions with differ- 
ent choices for the substitution sites. By taking the appropriate differences 
of the separate impurity incorporation reactions given by (7.31)-(7.42) and 
the extrinsic compensation mechanisms (such as (7.46), for example) we can 
determine which is the most energetically favoured of the latter type of re- 
actions. The relevant energy differences are independent of the respective 
impurity defect energies. The detailed energy expressions AE(M~, N~) de- 
scribing a divalent cation M on site c~ and a tetravalent cation N on site/3 
are given as follows: 

AE(M~,N~) = E(V~)')+ ~ ~--Fe(d), +/__.,Ji -- L,t, (7.47) 
i 

where V a'/~ are rational numbers, depending on sites a and fl, to be multiplied J i  

with the lattice energy ELa t of the oxide i (--Y203, Fe203, YFeO3). The 
calculated energies are summarized in Table 7.13. 

For all possible combinations of impurity site occupations the extrinsic 
compensation is more favourable than incorporation mechanisms involving 
intrinsic charge compensators (the alternative assumption of compensating 
electrons, i.e. Fe~,., instead of vacancies would not change the results qualita- 
tively). This result is in excellent agreement with the large number of observed 
impurity compensations [3]. As a further consequence of the above consid- 
erations we conclude that the incorporation sites of impurity ions remain 

Table 7.13. Comparison of intrinsic and extrinsic charge compensations for diva- 
lent and tetravalent cations. Positive energies mean that the extrinsic compensation 
solution mode is favoured over the alternative separate incorporation by means of 
intrinsic vacancies 

Impurity species AE(M~, N~) (eV) 
l �9 M,~, N~ 

M~, N,~ 2.46 

M~,, N~e 2.59 
1 �9 MFe, NFe 2.59 

M~e, N,~ 2.59 
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unchanged compared with those found with intrinsic charge compensators. 
This can be seen by comparing the site stabilization energies listed in Table 
7.12 with corresponding energy differences in Table 7.13. In particular, it is 
observed that charge-compensating divalent cations on the yttrium site lead 
to an increased octahedral site stabilization energy of 0.2 eV for Zr a+. 

Finally, we briefly consider the formation of Pb 4+ ions. Since there is not 
currently an appropriate Pb 4+... 02-  short-range potential, we can approxi- 
mate this by taking the Zr 4+... 0 2- potential. This procedure is justified as 
a crude approximation by the observation that both ion species are of nearly 
the same size and, in addition, do not possess an open electronic (sub)shell. 
Since the usual melt compositions from which YIG crystals are grown contain 
PbO, we should assume that lead ions naturally occur as divalent cations in 
YIG and that the formation of Pb a+ involves oxidation taking place during 
the crystal growth. Inspection of Table 7.12 shows that Pb a+ ions prefer to 
occupy the octahedral iron site. Possible chemical reactions governing the 
formation of Pb 4+ ions in YIG are given by 

1 0 2PbO + ~ 2(g) + '  YIG'  , Pb~r + Pb~a ) + FeYO3 (7.48) 

10 2PbO + ~ 2(g) +'  YIG' , Pb~ + Pb~ + Y203 (7.49) 

Note that an evaluation of the reaction energies of (7.48) and (7.49) in- 
volves the third and fourth ionization potentials of Pb atoms (I3b=31.9 eV, 
Ip4b=42.1 eV [337]). The calculated reaction energies per molecule PbO are 
0.46 eV and 0.74 eV for (7.48) and (7.49), respectively. These results indicate 
that tetravalent lead ions will occupy both the dodecahedral and the octahe- 
dral cation sites with slight preference for the octahedral site. Moreover, the 
predicted reaction energies suggest that Pb 4+ ions could be present in YIG at 
significant concentrations. However, whereas the pb2+/pb 4+ mechanisms are 
endothermic (note also that the incorporation of gaseous oxygen corresponds 
to a negative entropy change leading to AG > AE, as was already mentioned 
in Sect. 7.4), the alternative lead incorporation reactions discussed above are 
exothermic. It thus follows that Pb a+ ions represent a minority charge species 
compared with divalent lead. Of course, the actual Pb 4+ concentration de- 
pends on the external oxygen pressure applied to the system. From (7.48) 
and (7.49) it is obvious, however, that even the highest oxygen pressures 
would result in equal concentrations of divalent and tetravalent lead ions. 
"Complete" oxidation type lead incorporation reactions in which lead ions 
exclusively occur as tetravalent cations are given by 

3 0  + '  31 3PbO + ~ 2(g) YIG' ~ 3Pb~a ) + Vfe(d ) + 2Fe203 (7.50) 

3 0 +'  31 3PbO + ~ 2(g) YIG' ~ 3Pb~ + VFe(d ) + YFeO3 + Y203 (7.51) 
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with calculated reaction energies of 4.74 eV and 4.80 eV per PbO, respec- 
tively. These results suggest that it is impossible to achieve complete oxida- 
tion of lead ions in YIG. 



8. Summary and Conclusions 

This volume reviews atomistic simulations of complex oxides as used in many 
electro- and magnetooptic applications. Generally, corresponding materials 
are characterized by bonding properties intermediate between covalent and 
ionic bonding; covalency effects are significantly intermixed with lattice relax- 
ations, giving rise to what we may call semi-ionicity. This general behaviour 
becomes particularly obvious in defect formation. It should be accounted for 
in any theoretical simulation study. We recall, that defects are responsible 
for many technological material properties. 

Atomistic crystal properties are usually investigated by - sometimes ex- 
pensive - experiments and by suitable theoretical simulations. In many in- 
stances such "computer experiments" provide a reasonable and reliable guide 
to interpretations of experimental data. Whereas the atomistic properties of 
metals and semiconducting materials can be inferred solely from state-of- 
the-art electronic structure calculations, ionic crystals, on the other hand, 
may be modelled reliably by means of potential simulations, of which the 
shell model parametrized in terms of suitable pair potentials is the cheapest 
and most flexible one that accounts for important long-range lattice defor- 
mations. Further, the electronic properties of ionic materials closely resemble 
well-understood free-ion properties, and may be described by an embedded 
atom approach. Simulations of semi-ionic systems require various approaches, 
ranging from all-electron supercell calculations to pure potential simulations 
in order to account for the intermediate nature of these materials. Of partic- 
ular importance are embedded cluster calculations, which may be considered 
a hybrid between electronic structure calculations and potential simulations. 
They have been found to be well suited to studying defects and their lo- 
cal electronic structure properties taking long-range defect-induced lattice 
deformations and covalency effects into account self-consistently. Many de- 
fect simulations of this type have been performed during the recent years 
for perovskite-structured oxides AB03, but more complex systems like SBN 
and YIG are still awaiting their embedded cluster simulations. The situation 
is similar for LiNbO3. These investigations should be part of forthcoming 
research programmes. At the same time, the high quality of present simula- 
tion techniques could be increased slightly further by enlarging the quantum 
clusters in the case of embedded cluster calculations and by including lattice 
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relaxations beyond nearest-neighbour atom shells of defects within supercell 
simulations. However, the latter task requires the use of very large supercells 
in order to avoid any spurious interactions between different supercells. 
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