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Preface

Light is not everything, but without light there would not be life as we know it. For good reasons,
the sun has been venerated in most ancient civilizations as a god. It has a powerful light and affects
our lives on a daily basis. Light drives, controls, or is generated in numerous chemical reactions
in nature. It is responsible for processes as essential as vision or photosynthesis, is part of the
enchanting phenomena which is bioluminescence but can also be detrimental, such as causing
skin damage. Its power has been exploited by mankind since earliest times, not only to heat but to
heal, e.g., treating epidermal conditions, to name just one example. Today, sunlight is the hope for
providing clean renewable energies. The ways in which the benefits of light can be harnessed go
beyond the boundaries of chemistry, into physics, biology and medicine.

Driven by curiosity and interest, many researchers have been fascinated in understanding how
light interacts with molecules as only then light can be rationally exploited in many applications.
Theory is particular useful for this endeavor, as it allows many details, which are often invisible in
experiments, to be disentangled. This particular research field, that could be termed as theoretical
photochemistry, took off in the early nineties. Thus, the field is not new but there is still much
room for further developments. When a molecule receives a photon of light, its energy changes,
or in the language of quantum mechanics, it gets electronically excited. Thus, the computational
study of electronic excited states requires the inclusion of quantum effects (at least in part) and
this makes it still a challenging problem today except for the smallest molecules. However, recent
years have witnessed an explosion of methods able to tackle the study of electronic states and its
evolution in time in many different ways. This expansion has been accompanied by thousands of
publications dealing with applications involving light. As of 2020, a search in the Web of Science
with the words “excited states” and “theory” returned almost 30 000 hits, of which half are just
from the last ten years! It is for this reason, that we considered it appropriate to bring this book
to light(!), introducing advanced undergraduates, graduate students, and interested researchers to
the many flavors in which the field has developed so far.

The book was born with the ambition to collect most of the computational methods that exist
today able to solve first the time-independent and then the time-dependent Schrödinger equation
for electronic excited states. Accordingly, after an introductory chapter dealing with basic concepts,
the book is divided into two parts. Part I contains 9 chapters dealing with electronic structure the-
ory, i.e., solving the time-independent Schrödinger equation and creating building blocks to be
used in subsequent dynamics simulations. Part II is divided in 10 chapters devoted to the dynamics
of molecules, i.e., solving the time-dependent equation. The solution to the former equation pro-
vides energies and other properties, of the electronic excited states in a static manner. It provides
multidimensional potential energy surfaces and the corresponding wave functions associated to a
particular geometry, which allow molecular spectroscopical properties to be computed. The latter
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equation delivers a complementary picture of the system, being in motion, indulging time scales
and predicting branching ratios. The richness and broadness of the book invites the reader to reflect
on which method could be suitable for a particular problem. We hope that this book fills a gap in
the theoretical and computational community dealing with light–matter interactions and becomes
a guide in hand, as well as a reference for scientists in the field.

From basic theoretical foundations to the latest theoretical developments, every chapter is
self-contained and encompasses the fundamental ideas behind a particular method, its strengths
and limitations, as well as selected applications. The chapters are written with the aim to be
understandable by master students and newcomers to the field while also informing experts about
the state-of-the-art in the field.

Last but not least, we want to express our warm gratitude to all the authors who gracefully
accepted the invitation to be part of this adventure, for their enthusiasm, patience and critical sug-
gestions. We are also thankful to our coworkers, for lively discussions and helpful exchanges, in
particular, to Philipp Marquetand, Sebastian Mai, Sandra Gómez, and Ignacio Fernández Galván.
Their help was priceless.

Leticia González (Vienna)
Roland Lindh (Uppsala)
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Motivation and Basic Concepts
Sandra Gómez1, Ignacio Fdez. Galván2, Roland Lindh2, and Leticia González1

1Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
2Department of Chemistry – BMC, Uppsala University, SE-751 23 Uppsala, Sweden

Abstract

This chapter describes what electronic excited states are and why they are important to study and
therefore motivates the need for theoretical tools able to characterize them. Further and most impor-
tantly, in this introductory chapter, we put together in a comprehensive manner a collection of basic
concepts that might be needed, depending on the background of the reader, to understand the remaining
chapters of this book.

1.1 Mission and Motivation

When a photon of light strikes a molecule, the latter’s electrons are promoted from the electronic
ground state to higher electronic levels. Typically, the electronic ground state of a molecule is a
singlet state, but depending on the number of electrons and their most favorable way of pairing, it
can be a doublet, a triplet, or a state of higher multiplicity. Assuming the electronic ground state
is a singlet, upon light absorption the molecule will be excited to another singlet state, as high
in energy as the energy contained in the photon allows. Once excited, a number of radiative and
non-radiative decay processes are possible. These are collected in the Jabłoński diagram shown in
Figure 1.1(a), which assumes an electronic singlet ground state.

Radiative processes include fluorescence or phosphorescence, depending on whether the emis-
sion of light involves a transition between two states of the same multiplicity, for example from the
lowest singlet S1 to the S0, or involves a change of spin, as shown in Figure 1.1, from the triplet T1
to the S0. Typically, as in the example depicted, the emitted light has a longer wavelength than the
absorbed radiation because luminescence occurs from lower energy levels, and thus absorption and
emission spectra are easy to identify from experimental data. In this example, the molecule returns
to the original ground state from where it started and thus there was no photochemical reaction,
one would say that a photophysical process has taken place.

Non-radiative processes can be much more complicated to observe experimentally, as they typi-
cally involve not only the bright or absorbing state defined by the wavelength employed to irradiate,
but also dark states, i.e., states that do not have a significant oscillator strength but are populated
from the bright states. A transition between electronic states of the same multiplicity is known as

Quantum Chemistry and Dynamics of Excited States: Methods and Applications,
First Edition. Edited by Leticia González and Roland Lindh.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.



�

� �

�

2 1 Motivation and Basic Concepts

E
n
e
rg

y

S0

S1

S2

T1

hν

IC
ISC

P
F

(a)

E
n
e
rg

y

hν

P

F

S0

S1
S2

T1

IC

ISC

(b)

Figure 1.1 (a) Jabłoński diagram with levels. After absorption of a photon with energy h𝜈, different
processes can occur: radiative processes are fluorescence (F) and phosphorescence (P), non-radiative
processes are internal conversion (IC) and intersystem crossing (ISC). (b) Jabłoński diagram with potential
energy surfaces.

internal conversion, e.g., from S2 to S1. When two states of different multiplicities are involved, e.g.,
from the S1 to T1, one speaks of intersystem crossing.

The electronic levels of a molecule are defined through potential energy surfaces (PES) that
extend along 3N − 6 dimensions (with N the number of atoms contained in the molecule). PES are
the direct consequence of invoking the Born–Oppenheimer approximation (BOA), see section 1.7.
As comfortable as it might seem for a chemist to employ electronic states to envision the course
of a chemical reaction from a reactant to a product, sticking to the BOA when talking about elec-
tronic excited states implies that the coupling between different PES is neglected. However, these
so-called non-adiabatic couplings between PES are the “salt and pepper” of photochemistry, as they
are essential to understand which states and geometrical conformations are populated after excita-
tion. One key concept in this respect is the non-adiabatic transition around a conical intersection, see
section 1.9. Named after the ideal topology two PES adopt when they intersect (see Figure 1.1(b)),
a conical intersection is the molecular funnel that allows for internal conversion, and it can also
be seen as the transition state in photochemistry, which connects a reactant with a product. Like-
wise, intersystem crossing is mediated by spin–orbit coupling, which is another form of vibronic
or non-adiabatic coupling between electronic levels.

Figure 1.1(b) summarizes the radiative and non-radiative processes described before, now in
terms of PES. If after the detour via the different PES, the molecule ends up at a different geomet-
rical configuration from which it started after irradiation, one speaks of a photochemical reaction;
if instead, it returns back to the electronic ground state of the reactant, the term photophysics is
employed.

Be it photophysics or photochemistry, light-induced processes are all around us. As Ciamician
already recognized in 19121, “reactions caused by light are so many, that it should not be diffi-
cult to find some of practical value”. Indeed, just to give one representative example, the dream
of using solar fuel to produce sustainable energy is keeping many scientists around the world
busy. In an effort to mimic natural photosynthesis, one needs among others, to design efficient
antenna complexes able to harvest the broad solar spectrum and direct the electrons towards the
catalytic centers. This design requires a profound understanding of the underlying processes that
take place in the molecules after light excitation. Theoretical modeling can help explain existing
experiments and hopefully guide new ones. Which are the electronic states that are populated after

1 Giacomo Ciamician, “The photochemistry of the future”, Science 36 (1912) 385–394.
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excitation? How does the molecule evolve along the complicated PES associated to these electronic
states? Often these two simple questions are not easy to answer. They imply a need to get an
accurate solution of two key equations, the electronic time-independent Schrödinger equation and
the time-dependent Schrödinger equation. Both equations are challenging to solve, except for very
small molecules, and so approximations and numerical strategies are required. The solution of the
first equation is the goal of electronic structure theory and the solution of the second, the target of
chemical dynamics. Both fields have tremendously evolved in the last decades, with the emergence
of many different methods that have a common objective.

The mission of this book is to keep up-to-date with the recent development in these two inter-
twined fields, setting the focus at solving electronic excited states and following their time evo-
lution. Accordingly, Part I collects the most important electronic structure methods that can be
used nowadays to calculate electronic excited states as well as associated PES and other electronic
properties. Part II, in turn, covers the state of the art for solving molecular motion in the elec-
tronic excited states. The variety and extension of the methods collected in this book speaks for
itself about how much progress has been achieved in this branch of theoretical chemistry, which
undoubtedly has also massively profited in the last years from enormous advances in computational
resources. It would not be fair, however, to pretend that theoretical photochemistry has reached its
cusp. A deeper reading of the chapters will reveal to the reader not only how far we have come but
also how much still remains to be done.

In an effort to make the contents of this book accessible to undergraduates and newcomers to
the field, the rest of this chapter contains a number of basic concepts to ease the reading. All the
chapters have been written in a fully consistent manner, so as to allow them to be studied inde-
pendently from the others. The chapters are, nevertheless, organized such that they try to reflect
a natural progression. In this respect, the chapters are grouped in two sections consisting of Part I
and Part II – electronic structure theory and methods for molecular dynamics, respectively.

In the electronic structure section the selected order of the chapters tries, to some extent, to be in
the order of sophistication. However, in some cases chapters are clustered together because of com-
mon grounds or methodology. In that sense, Part I starts with the chapters based on density func-
tional theory (DFT) – the chapters on time-dependent DFT (TD-DFT) and multi-configurational
DFT (MC-DFT). This is followed by chapters revolving around equation-of-motion coupled cluster
theory (EOM-CC) and the algebraic-diagrammatic construction (ADC) scheme for the polarization
propagator, which are grouped together due to the technical similarities of the methods. Finally,
five chapters are grouped together based on the use of a configurational interaction (CI) type of
wave function. Initially, the basics of the so-called complete active space SCF (CASSCF) and related
methods – the foundation of multi-configurational quantum chemistry – is introduced. This is
followed by two chapters on techniques describing how to solve the associated equations – the
chapters on density matrix renormalization group (DMRG) and the quantum Monte-Carlo (QMC)
approaches. To conclude Part I, two chapters about the inclusion of electronic dynamical corre-
lation follow – the chapters on the multi-reference configuration interaction (MRCI) method and
the multi-configurational reference perturbation theory (MRPT). A pictorial summary of the meth-
ods described is provided in Figure 1.2. Starting from Hartree–Fock (HF), different methods cover
different degrees of dynamic and static correlation, all the way to the exact full-CI (FCI).

Part II, dealing with the time evolution of nuclear configurations, starts with three chapters
that can be considered within the realm of quantum dynamics. The first one introduces the
time-dependent Schrödinger equation and how to solve it exactly in a grid – what is known as
wave packet dynamics. Due to the cost of obtaining PES, wave packet dynamics is typically done
in reduced dimensionality. The multi-configuration time-dependent Hartree (MCTDH) family of
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Figure 1.2 Scheme of quantum chemical methods for electronic structure. The lower left corner contains
the most basic ab initio method, Hartree–Fock (HF), while the exact solution of the time-independent
Schrödinger equation, full configuration interaction (FCI), lies, mostly unreachable, on the upper right
corner. A panoply of methods described in Part I of this book, identified by their acronyms, try to “correct”
HF, adding the missing electronic correlation and thus approximating the ideal FCI. The methods are
arranged, qualitatively, based on their algorithmic relations and their prioritization of so-called static or
dynamic correlation, which ultimately lead to the same end point.

methods is presented next, as a method that can alleviate in part the cost of grid-based wave packet
methodologies. This chapter ends, bridging with the next block of four chapters that are based on
quantum-mechanical and quantum-classical methods using on-the-fly computation of PES. These
chapters are arranged in sort of going from more to less “quantum” – direct dynamics variational
multi-configurational Gaussian (DD-vMCG) method, full and ab initio multiple spawning (FMS
and AIMS), Ehrenfest methods, and surface hopping (SH). The next four chapters are based on
alternative formulations of quantum dynamics. Exact factorization is based on an alternative way
to express the electronic–nuclear wave function, Bohmian dynamics is based on wave theory,
while semi-classical and path integral methods are based on Feynman’s path integral formulation.
Figure 1.3 illustrates pictorically the dynamical methods explained here.

Given the diversity of methods and authors it is unavoidable that every chapter follows its own
writing style. For that reason, we considered it useful to collect here some underlying mathematical
background, assuming basic knowledge of quantum mechanics, as well as a few photochemical
concepts, that naturally arise in many chapters.

1.2 Atomic Units

A comment on atomic units is in order here. Hartree atomic units can elegantly simplify equations
by setting to 1 the numerical value of some fundamental constants. Typical examples are the mass
of the electron me, the electron charge e, the Coulomb or electric force constant ke =

1
4𝜋𝜖0

and the

reduced Plank constant ℏ = h
2𝜋

. Other useful constants used as units, derived from those funda-
mental quantities and used in this book are the bohr, a0 ≈ 0.529 Å, and the hartree, Eh ≈ 27.21 eV.
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Figure 1.3 Grouping of dynamics methods by families and degree of exactness. Grid methods include the
standard method to solve the time-dependent Schrödinger equation (GRID), the multi-configurational
time-dependent Hartee method (MCTDH) and partially Gaussian MCTDH (G-MCTDH). From Bohmian
trajectories, formally exact to frozen Gaussian methods, such as variational multi-configurational Gaussian
(vMCG), full multiple spawning (FMS), multi-configurational Ehrenfest (MCE) and ab-initio multiple
spawning (AIMS). Coupled trajectories mixed quantum classical (CT-MQC) is the trajectory method derived
from exact factorization. Ehrenfest method and trajectory surface hopping (SH), follow next, since they are
based on uncoupled trajectories. Derived from the formally exact path integral method, semi-classical and
ring-polymer molecular dynamics (RPMD) arise.

However, using this notation forces readers to keep track of the omitted units, preventing a straight-
forward dimensionality analysis. For this reason, atomic units have been avoided as much as pos-
sible in most chapters, unless otherwise stated.

1.3 The Molecular Hamiltonian

The time evolution of a system is described by the time-dependent Schrödinger equation,

iℏ𝜕Ψ(r,R, t)
𝜕t

= ĤΨ(r,R, t), (1.1)

where Ĥ is the Hamiltonian of the system and Ψ(r,R, t) is the wave function describing the
molecule, with r and R, the electronic and nuclear coordinates, respectively. When applied to
the wave function, Ĥ yields the respective energy. If assumed as time-independent, Ĥ can be
expressed as,

Ĥ(r,R) = −
N∑

i=1

ℏ2

2me
∇2

i

⏟⏞⏞⏞⏟⏞⏞⏞⏟

T̂e

−
K∑

A=1

ℏ2

2MA
∇2

A

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

T̂n

+
N∑

i=1

N∑
j>i

e2

4𝜋𝜖0|ri − rj|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

V̂ ee

+
K∑

A=1

K∑
B>A

e2ZAZB

4𝜋𝜖0|RA − RB|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

V̂ nn

−
N∑

i=1

K∑
A=1

e2ZA

4𝜋𝜖0|ri − RA|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

V̂ ne

,

(1.2)
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where the terms labeled as T̂ are kinetic energy terms for K nuclei and N electrons, and the rest,
labeled as V̂ are the potential energy terms describing interactions between electrons or nuclei
themselves, or between nuclei and electrons.

In atomic units, this equation reads simply as

Ĥ(r,R) = −
N∑

i=1

1
2
∇2

i −
K∑

A=1

1
2MA

∇2
A +

N∑
i=1

N∑
j>i

1|ri−rj|
+

K∑
A=1

K∑
B>A

ZAZB|RA−RB| −
N∑

i=1

K∑
A=1

ZA|ri−RA| .
(1.3)

1.4 Dirac or Bra-Ket Notation

The Dirac notation is a very compact way of describing quantum states and their inner prod-
ucts used in quantum mechanics, where the kets (|⋅⟩) are column vectors and the bras (⟨⋅|) their
Hermitian transpose row vectors, such as:

⟨Ψ| = |Ψ⟩∗ . (1.4)

Ket vectors are normally used in this context to specify the state of a system in whatever space basis
we are currently working on. Therefore, a wave function Ψ in x coordinates could be expressed as:

Ψ(x) ≡ ⟨x|Ψ⟩ . (1.5)

In the same way, applying an operator on this state would lead to:

ÂΨ(x) ≡ ⟨x|Â|Ψ⟩ . (1.6)

This notation can also be used to express integrals over products of wave functions – or rather a
wave function and a complex-conjugate wave function. For example, ⟨Ψ|Ψ⟩ is nothing but a short-
hand notation for

∫ Ψ∗(r)Ψ(r)dr ≡ ⟨Ψ|Ψ⟩ . (1.7)

where r symbolizes all the coordinates on which Ψ depends, and the integration is done over the
whole domain. An operator can be included as in

∫ Ψ∗(r)ÂΨ(r)dr ≡ ⟨Ψ|Â|Ψ⟩ , (1.8)

In practical quantum chemistry calculations, one commonly uses a one-electron basis set to
expand wave functions, i.e., a set of functions that depend on the coordinates of a single electron. In
this context, a few particular forms of integrals are especially useful, and their usual notation will be
introduced here. First, there is a term that collects the one-electron operators in the Hamiltonian,
the kinetic energy and the nuclei–electron attraction (see section 1.3), and is expressed as

hpq = ⟨𝜙p|ĥ|𝜙q⟩ (1.9)

= −∫ 𝜙∗
p(r)

(
ℏ2

2me
∇2 + e

4𝜋𝜖0

K∑
A=1

ZA|r − RA|
)
𝜙q(r)dr (1.10)

= − ℏ2

2me ∫ ∇𝜙∗
p(r)∇𝜙q(r)dr − e

4𝜋𝜖0

K∑
A=1 ∫

ZA𝜙
∗
p(r)𝜙q(r)|r − RA| dr (1.11)
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where 𝜙p as 𝜙q are two basis functions. The other important term to note corresponds to the
two-electron repulsion:

(pq|rs) = gpqrs = ⟨𝜙p𝜙r|ĝ|𝜙q𝜙s⟩ (1.12)

= e2

4𝜋𝜖0 ∫
𝜙∗

p(r1)𝜙q(r1)𝜙∗
r (r2)𝜙s(r2)|r1 − r2| dr1dr2 . (1.13)

Some alternative notations for these two-electron integrals are:

⟨pq|rs⟩ = (pr|qs) (1.14)

⟨pq||rs⟩ = ⟨pq|rs⟩ − ⟨pq|sr⟩. (1.15)

1.5 Index Definitions

In several chapters of this book we will use the following convention with respect to the indexation
of orbitals;

● a, b, c, d,… to denote empty (virtual) orbitals;
● i, j, k, l,… to denote doubly occupied (inactive) orbitals;
● t,u, 𝑣, x,… to denote active orbitals; and
● p, q, r, s,… as general indices to denote orbitals of unspecified type.

1.6 Second Quantization Formalism

We will now give a very brief introduction to the formalism of second quantization and how it is
used to express the Hamiltonian. In the original formulation of quantum mechanics for a fixed
number of particles, it was natural that the electronic Hamiltonian was expressed in terms of oper-
ators which are sums over particles – this was later called first quantization,

Ĥel =
N∑

i=1
(T̂e

i (ri) + V ne(ri)) +
e2

4𝜋𝜖0

N∑
i=1

N∑
j>i

1|ri − rj| , (1.16)

where i is the index of an electron, T̂e
i is the kinetic energy operator of electron i, and

V ne(ri) = − e
4𝜋𝜖0

K∑
A=1

ZA|ri − RA| (1.17)

is the attraction experienced by electron i from all the nuclei in the system. The last term is the
electron–electron repulsion term. However, with the onset of quantum field theory the notion
of a system having a fixed number of particles was abandoned and a new formalism was intro-
duced – second quantization – in which the summations run over the orbital space and the Hamilto-
nian operator is expressed in terms of operators that “probe” whether a particle (electron) is present
in some orbital and if so, include the contribution of that particular orbital. In this formalism the
electronic Hamiltonian is expressed as

Ĥel =
∑
pq

Êpqhpq +
1
2
∑
pqrs

êpqrs(pq|rs), (1.18)
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where the summations are now in terms of the electronic orbitals2, hpq and (pq|rs) are the one- and
two-electron integrals introduced in Section 1.4, where 𝜙 are normalized molecular orbitals. The
remaining operators are the “probing” operators in which the first operator

Êpq =
∑

𝜎={𝛼,𝛽}
â†

p𝜎 âq𝜎 (1.19)

is the spin-averaged electron replacement operator (â†
p𝜎 and âq𝜎 are standard creation and

annihilation operators for electrons of spin 𝜎 in orbitals p and q, respectively), which moves one
electron from spatial orbital q to orbital p. The second operator is a two-electron replacement
operator, which can be expressed in terms of the one-electron replacement operator as

êpqrs = ÊpqÊrs − 𝛿qrÊps . (1.20)

In this formalism the Hamiltonian is now invariant to the number of particles – in terms of cal-
culations in a finite basis; however, the Hamiltonian is a function of the size of the basis set. This
formalism has several advantages and is now the standard in multi-configurational electron struc-
ture theory. Let us now briefly explore the probing nature of the operator in Eq. (1.19). In the
case Êpp operates on a closed-shell Slater determinant (SD), constructed from a set of orthonormal
orbitals, we will have

Êpp𝜓SD =

{
2𝜓SD if p is an occupied orbital
0𝜓SD if p is an empty orbital,

(1.21)

the operator will simply try to remove the electron and then try to put it back – this special case
of the electron replacement operator is also called the occupation number operator. Since every
occupied orbital in a closed-shell SD carries two electrons, we will get an occupation number of
two, alternatively, if no electrons are found in orbital p the operator will be a null operator. In
general we have that∑

p
ÊppΨ = NΨ, (1.22)

where N is the number of particles (electrons) in the system. The following commutation relations
apply to the one- and two-electron replacement operators:

[Êpq, Êxy] = Êpy𝛿xq − Êxq𝛿py (1.23)

[êpqrs, Êxy] = êpyrs𝛿xq − êxqrs𝛿py + êpqry𝛿xs − êpqxs𝛿ry . (1.24)

Finally we define the one- and two-particle density matrices as

Dpq = ⟨Ψ|Êpq|Ψ⟩ , (1.25)

and

Γpqrs = ⟨Ψ|êpqrs|Ψ⟩ . (1.26)

It is important to note the four-fold permutational symmetry of the two-electron density matrix:

Γpqrs = Γrspq = Γqpsr = Γsrqp . (1.27)

2 We have used a shorthand notation to indicate multiple summations (
∑

pq =
∑

p
∑

q), and we leave the summation
limits implicit
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In this perspective we compute the electronic energy of a normalized wave function Ψ with the
general expression

E =
∑
pq

Dpqhpq +
1
2
∑
pqrs

Γpqrs(pq|rs). (1.28)

Finally, this expression can be transformed from a molecular orbital basis to any other basis. In
particular, given that the orbitals 𝜙 are expressed as linear combinations of the one-particle basis
functions 𝜒 as

𝜙p =
∑
𝜇

cp𝜇𝜒𝜇 , (1.29)

we have that the one- and two-electron density matrices in the one-particle basis function expan-
sion are generated by

D𝜇𝜈 =
∑
pq

cp𝜇Dpqcq𝜈 (1.30)

and

Γ𝜇𝜈𝛾𝛿 =
∑
pqrs

cp𝜇cq𝜈Γpqrscr𝛾cs𝛿 , (1.31)

and we get

E =
∑
𝜇𝜈

D𝜇𝜈h𝜇𝜈 +
1
2
∑
𝜇𝜈𝛾𝛿

Γ𝜇𝜈𝛾𝛿(𝜇𝜈|𝛾𝛿). (1.32)

This expression has a special advantage in so-called direct methods, since the energy can be com-
piled directly from the integrals as they are generated in the one-particle basis set.

1.7 Born–Oppenheimer Approximation and Potential Energy
Surfaces

The BOA is one of the most used approximations in quantum chemistry to solve the
time-independent Schrödinger equation. Taking advantage of the fact that protons and neu-
trons are about 2000 times heavier than electrons, it neglects the kinetic energy of the nuclei.
Therefore, at every nuclear position the electrons will feel an average potential depending on
where the nuclei are located. This fact allows a separation of the Schrödinger equation into an
electronic and a nuclear part. It is then possible to solve the electronic Schrödinger equation
for every specific nuclear configuration, in which the Hamiltonian, eigenstates and eigenvalues
depend parametrically on the nuclear position,

ĤelΨel(r;R) = Eel(R)Ψel(r;R). (1.33)

Grouping the remaining terms of the molecular Hamiltonian (Eq. (1.2)), one arrives to the
time-independent nuclear Schrödinger equation:

iℏ
𝜕|Ψnuc(R)⟩

𝜕t
= Ĥ|Ψnuc(R)⟩ = [T̂n(R)) + Eel(R)]|Ψnuc(R)⟩ . (1.34)

This equation represents nuclei that can move on effective potential surfaces represented by the
electronic energies Eel. This representation of energies of electrons that depend parametrically on
the nuclear coordinates is precisely what is called the potential energy surface (PES). This approx-
imation will be valid whenever nuclei and electrons approximately decouple.
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1.8 Adiabatic Versus Diabatic Representations

If the nuclei move extremely slowly, the electronic Hamiltonian will change very slowly with time,
since it depends on the value of the nuclear coordinates. This means that if the starting electronic
state was an eigenstate of the electronic Hamiltonian at the initial position, it will continue being an
eigenstate during its time evolution. In this sense, the BOA is also known as the adiabatic approxi-
mation, since it assumes that the system behaves all the time “adiabatically”, i.e., without changing
its electronic wave function. However, there are some cases where the BOA breaks down.

Let us here express the total electronic wave function as a product of the electronic and nuclear
ones using all electronic eigenstates (𝛼 indices):

|Ψ(r,R)⟩ = ∑
𝛼

|Ψel
𝛼 (r;R)⟩ ⋅ |Ψnuc

𝛼 (R)⟩ , (1.35)

also known as the Born–Huang expansion. This expression can be inserted into the electronic
Schrödinger equation to yield(

T̂n + Eel
𝛼

) |Ψnuc
𝛼 (R)⟩ +∑

𝛽

T̂NAC
𝛽𝛼

|Ψnuc
𝛽

(R)⟩ = E|Ψnuc
𝛼 (R)⟩ . (1.36)

When comparing Eq. (1.36) and Eq. (1.34), one can see that the difference arises from the T̂NAC
𝛽𝛼

term, that can be expanded as

T̂NAC
𝛽𝛼

= −
K∑

A=1

1
2MA

[⟨Ψel
𝛼 |∇2

A|Ψel
𝛽
⟩ + ⟨Ψel

𝛼 |∇A|Ψel
𝛽
⟩∇A] . (1.37)

Since neglecting these kinetic coupling terms is the core of the BOA, they can be seen as correc-
tions. While the first term is known as BO diagonal coupling and is normally negligible, the second
term – called derivative or non-adiabatic coupling (NAC) – can be rather large in regions where the
electronic wave function changes fast with the nuclear coordinates. ∇A|Ψel

𝛽
⟩ is the gradient of the

electronic wave function and gives us the direction where it changes fastest. After projecting it
onto ⟨Ψel

𝛼 |, i.e., calculating its overlap with it, the term can be seen as how much the change of the
electronic wave function agrees with another electronic eigenstate. Its extent tells us how likely
non-adiabatic events are, its direction the coordinate motions where this change is larger, always
for a specific pair of electronic states. Note that this equation is still adiabatic, but corrected with
terms corresponding to non-adiabatic events or the breakdown of the Born–Oppenheimer approx-
imation. Thus, a total Hamiltonian might be composed of a Born–Oppenheimer one plus the NAC
terms that generate transitions between BO states.

In contrast, we could define a basis where the electronic states do not depend on the nuclear
coordinates (this labeling of the electronic wave function is normally called its character, so in this
case we would say the electronic state keeps its electronic character). This basis can be defined at a
particular geometry R0 where the electronic states were eigenstates of the electronic Hamiltonian.
Those states are called diabatic states and do not diagonalize Hel at geometries different from R0,

|Ψel
𝛼 (R)⟩ = ∑

i
c𝛼i(R)|Ψel

𝛼 ⟩dia , (1.38)

where there is no dependence of |Ψel
𝛼 ⟩dia on the nuclear coordinates R. Doing so, we can already

neglect the NAC terms, since there is no change of the electronic wave function with the nuclear
coordinates and therefore the coupling between electronic states is absorbed in the off-diagonal
terms of the Hamiltonian matrix. A scheme depicting adiabatic and diabatic states can be seen in
Figure 1.4.
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Figure 1.4 Schematic representation of adiabatic (states ordered by energy) and diabatic (states ordered
by their symmetry label or character) potential energy curves.

For systems having more than two electronic states, it is usually not possible to find strictly
diabatic states, so quasi-diabatic states are defined as a set of electronic states that minimize the
NAC terms. In general, the diabatic representation is used whenever one needs to integrate in time
domain over all the configurational space (see, for example, chapters 11 and 12) since the diabatic
couplings are smoothly varying with the nuclear coordinates, making numerics easier. In contrast,
dynamical methods based on local approaches (see e.g., chapters 14, 15 and 16), prefer the adiabatic
picture due to the peaked localized NACs that will tell when the BOA breaks down.

1.9 Conical Intersections

The case depicted in Figure 1.4 is typical, where the adiabatic states display an avoided crossing
along a particular coordinate: they become close in energy, but not exactly degenerate. Indeed, in
systems with only one internal nuclear degree of freedom (diatomic molecules), and for electronic
states of the same spin and spatial symmetry, this is almost always the case. In larger systems,
however, the greater number of degrees of freedom allows for situations where the adiabatic states
(as well as the diabatic states) are actually degenerate, these are known as conical intersections.

A conical intersection point is a particular geometry R× at which two adiabatic electronic states
are exactly degenerate. The degeneracy is lifted in two independent directions or nuclear displace-
ments, any geometrical distortion in these directions causes the PES to split, creating a generic
double cone shape that is the origin for the name (see Figure 1.1b). Conversely, distortions in
orthogonal directions do not break the degeneracy, which indicates that R× is not an isolated point,
but is part of a connected 3N − 8-dimensional subspace of geometrical configurations, known as
intersection space or seam. The points where the energy of the degenerate states is a local mini-
mum within the intersection space are called minimum energy conical intersections (MECI). The
two dimensions that do lift the degeneracy form the branching space or branching plane, and are
usually denoted as g (the difference between the gradients of the two states) and h (the derivative
or non-adiabatic coupling vector). Since the two adiabatic states are exactly degenerate at R×, they
are both eigenstates of the Hamiltonian with the same eigenvalue, and therefore any linear com-
bination of them is also an eigenstate with the same eigenvalue. This means that the two states at
the intersection are not uniquely defined, and neither are most state-specific properties or the g
and h vectors. The branching plane, however – the space spanned by the two vectors – is uniquely
defined and independent of which particular linear combinations of the two states is considered.

Conical intersections can be classified according to the topography of the PES in their vicinity.
The most common distinction is between peaked and sloped intersections. Peaked intersections
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are exemplified by the ideal shape displayed in Figure 1.1b: when the PES are represented in the
branching plane, the intersection point is manifested as local maximum on the lower surface and
a local minimum on the upper surface. This latter fact allows them to act as funnels or sinks from
the upper to the lower surface. Sloped intersections, on the other hand, can be visualized by tilting
the double cone’s vertical axis until parts of the upper surface become lower in energy than the
vertex (and parts of the lower surface higher than the vertex), at which point the intersection is
neither a local maximum nor a local minimum, and its role as attractor is reduced in comparison to
peaked intersections. An interesting property of sloped intersections is that they allow the existence
of paths that go from the lower surface to the upper surface while continuously decreasing the
potential energy.

1.10 Further Reading

For a deeper and more detailed discussion on the topics presented in this introductory chapter, the
reader is referred to books on general computational or quantum chemistry, such as those listed
below.

● Modern Quantum Chemistry. Attila Szabo and Neil S. Ostlund. McGraw–Hill, New York, 1989.
● Molecular Electronic-Structure Theory. Trygve Helgaker, Poul Jørgensen and Jeppe Olsen. Wiley,

Chichester, 2000.
● Essentials of Computational Chemistry: Theories and Models. Christopher J. Cramer. Wiley, New

York, 2002.
● Multiconfigurational Quantum Chemistry. Björn O. Roos, Roland Lindh, Per Åke Malmqvist,

Valera Veryazov and Per-Olof Widmark. Wiley, Hoboken, 2016.
● Introduction to Computational Chemistry. Frank Jensen. 3rd ed. Wiley, Chichester, 2017.
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Time-Dependent Density Functional Theory
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Abstract

Linear-response time-dependent density functional theory (LR-TDDFT) in the adiabatic approximation
is one of the most popular methods for calculating excited-state properties of molecular systems. This
chapter provides a brief overview of the method. We start presenting the formal foundations underlying
it. Then, its practical use for calculating vertical excitations and potential energy surfaces, including
conical intersections, is accessed. Finally, the use of LR-TDDFT for excited-state nonadiabatic dynamics
is discussed. Diverse variants of the method and alternative ways to predict excited states based on DFT
are presented as well. Throughout all these sections, our goal has been to highlight the strengths and
weaknesses of the method, to provide a guide for best practice when using LR-TDDFT.

2.1 Introduction

Excited states are complicated. Unlike the electronic density of molecules in their ground state,
excited-state electronic structure challenges our chemical intuition. Indeed, while the ground state
is relatively isolated from the other states, excited states often share a crowded spectral region with
states with multiple diabatic characters, distinct multiplicities, and different charges. It is enough
to make a slight displacement in the nuclear coordinates and all these states switch their relative
energetic order, creating highly anharmonic adiabatic landscapes. This intrinsic complexity of the
excited states can even affect the ground state: the forces stabilizing the nuclei in the excited states
often drive the molecules to geometries where the ground state can no longer be described by a
single configuration.

Until the middle of the 1990s, describing excited states was a demanding task. The performance
of the configuration interaction with single excitations (CIS), the workhorse at that time, was piti-
ful [1]. Although methods such as the complete active space self-consistent field (CASSCF) [2] and
multi-reference configuration interaction (MRCI) [3] would deliver qualitatively correct answers,
they were prohibitively expensive and would still show large numerical deviations from the exper-
imental values, even at the Franck–Condon region. Moreover, these methods required advanced
expertise for the construction and optimization of active and reference spaces (for a recent review
on multi-reference methods, see Ref. [4].)

Quantum Chemistry and Dynamics of Excited States: Methods and Applications,
First Edition. Edited by Leticia González and Roland Lindh.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.
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It was around that time, however, that things started to change for excited-state computational
research. Methods like the complete active space perturbation theory to the second order (CASPT2)
[5], approximated coupled-cluster (CC2, CC3) [6, 7], and time-dependent density functional theory
(TDDFT) [8, 9] were developed and implemented in major quantum-chemistry packages. Their
accuracy allowed vertical excitation energies to be acquired as near the experimental results as
0.2 eV, and their usage was as close to a black box methodology as we could desire.

The jewel in this popularization of excited-state calculations was the linear-response (LR)
TDDFT. Fast, usually reliable, easy to employ, based on conventional ground-state Kohn–Sham
(KS) DFT functionals, and counting on analytical energy gradients: it is no wonder the LR-TDDFT
quickly established itself as the new routine methodology to aid the assignment of experimental
data and analyze reaction mechanism in photoexcited species [10]. Later, with the help of
auxiliary wave functions to estimate non-adiabatic couplings [11–13], LR-TDDFT also became a
popular option for non-adiabatic mixed quantum-classical (NA-MQC) dynamics, especially in the
trajectory surface hopping framework [14].

LR-TDDFT was not bulletproof though. Soon, it was clear that it could dramatically fail to
describe the energy in many cases frequently encountered in photochemistry, such as charge-
transfer states [10, 15], strongly correlated excited states [16–18], Rydberg states [19], and
open-shell excited states [20, 21]. It could also undergo triplet instabilities [22] and deliver conical
intersections with the wrong dimensionality [23]; not to mention the problems inherited from the
failure of the KS assumption of DFT, such as in bond dissociations or state crossings, incorrect
treatment of weak interactions [24], and strong sensitivity to functionals [25].

In the more than two decades since Casida’s seminal paper on LR-TDDFT [8], the field of compu-
tational excited-state calculations, either with wave function theory or density functional theory,
experienced remarkable progress, as we can attest from the other chapters in this book. Never-
theless, LR-TDDFT still shines as the most popular option for the general chemist to interpret
spectroscopic data. Due to its operational simplicity and broad availability, LR-TDDFT tends to
be uncritically used, with little knowledge of the pathway from the formally exact TDDFT the-
ory underlying it to the approximated LR-TDDFT performed in practice. There is the real risk of
misusing LR-TDDFT, working on qualitatively wrong results [26].

The goal of this chapter is to deliver a quick guide into TDDFT, from the formal aspects to its prac-
tical use, with a particular focus on its connection to NA-MQC dynamics. Rather than presenting a
collection of particular applications, we intend to review the fundamentals and potential problems,
to allow a critical and informed use of the method. The reader will be spared the in-depth theoret-
ical details but will be presented with the core of the theory, with plenty of references to follow up.
Moreover, we discuss the main handicaps in the method and ways to overcome them. Thus, we
hope to provide a guideline for best practice in TDDFT. Working on this text, the reader we bore
in mind was a graduate student taking their course on computational chemistry. They may profit
from this chapter as a complementary reading to their lecture notes.

2.2 TDDFT Fundamentals

2.2.1 The Runge–Gross Theorems

TDDFT is a formally exact theory [27–37]. In essence, TDDFT states that the time-dependent (TD)
density can be used to completely and unequivocally describe a system under a TD external per-
turbation. Despite initial criticisms to the exact foundations of TDDFT [38–40], it is a general and
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well-established theory, grounded on two theorems initially developed by Runge and Gross in 1984
[27], extending the Hohenberg–Kohn theorems of DFT to problems involving TD external poten-
tials [41]. The currently accepted version of the two TDDFT theorems states:

● Theorem 1: One-to-one correspondence. There is a one-to-one correspondence between the
𝑣-representable TD density 𝜌(r, t) and the TD external potential 𝑣ext(r, t) up to an additive time
function 𝜓(t).

𝜌(r, t)
j(r,t)
←−→ 𝑣ext(r, t) + 𝜓(t) (2.1)

● Theorem 2: Variational principle. The exact TD density can be found by applying the least
action principle to the Frenkel–Dirac action defined as:

A[𝜌] = ∫
tf

t0

dt
⟨
Ψ[𝜌](t)

||||iℏ 𝜕𝜕t
− Ĥ(t)

||||Ψ[𝜌](t)
⟩
− iℏ⟨Ψ[𝜌](tf )|𝛿Ψ[𝜌](tf )⟩ , (2.2)

in which Ψ[𝜌](t) is the exact time-dependent wave function functional of the time-dependent den-
sity, 𝛿Ψ[𝜌](t) is the first-order differential of the wave function, Ĥ(t) is the time-dependent Hamil-
tonian, and t0 and tf are the initial and final times. As usual, ℏ is the reduced Planck constant.

The first theorem states that the expectation value O of any operator Ô can be evaluated by the TD
density, thus, O[𝜌(r, t)]. In principle, the expectation values would also depend on the initial state
wave function O[𝜌(r, t); Ψ(r, t0)] [42]. However, the Hohenberg–Kohn theorems prove the bijective
mapping between the initial density and wave function 𝜌(r, t0) → Ψ(r, t0). Therefore, the operators
can be expanded solely by the knowledge of 𝜌(r, t). The proof of this theorem is only valid for Taylor
expandable external potentials, densities, and currents evaluated around the initial time, given an
initial density 𝜌(r, t0) and 𝜕𝜌(r,t0)

𝜕t
[27, 31, 34, 37]. The proof is performed in two steps: (i) the bijective

mapping between TD external potentials 𝑣ext(r, t) and TD current densities j(r, t) is proved, and,
then, (ii) the one-to-one correspondence between TD current densities and TD densities through
the continuity equation is proved [27, 28]. In fact, TD current densities can be used in the same way
as TD densities as an exact theory to evaluate expectation values, a theory known as TD current
density functional theory (TDCDFT) [43].

The second theorem was under debate for a long time [29, 32, 38, 40, 44–47]. The initial proposal
of Runge and Gross allowed definition of a TDDFT functional, but induced formal problems like
the break of causality between the time-dependent perturbation and the time-dependent response
[29, 48]. Several solutions have been proposed for defining a TDDFT functional by using Keldysh
contour integrations [29], Liouville space pathways [49], or Berry curvatures [32]. The Vignale form
of the action principle is shown in Eq. (2.2) [32]. Some of the exact properties of the exact TDDFT
functional and its derivatives are known [50].

Perhaps the most remarkable and unique property of TDDFT functionals is the “spatial ultra-
non-locality” problem [51]. This property implies that strict local density approximations (LDA)
like in DFT are not allowed in TDDFT [52]. The spatial ultra-non-locality specifically appears in
functionals of the TD density, but disappear in functionals of the TD current density [53]. There
exists also a “time ultra-non-locality” of TDDFT functionals, commonly known as “memory
effects,” which states that the time evolution of the density depends on the whole history of
the density from the initial time t0 to the current time t [54]. Several memory corrections to the
exchange-correlation have appeared in the literature trying to introduce memory character to
the time-independent (adiabatic) exchange correlation functionals [55–57]. Direct construction
of the exact TDDFT functional is a difficult task (even more difficult than the exact DFT func-
tional), several procedures have appeared to compute exact functional derivatives employing the
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time-dependent optimized effective potential procedures [58] or the time-dependent version of
the Sham–Schlüter equation [59]. From these approaches, diverse exact TD exchange and TD
correlation potentials and kernels have been derived [16, 18, 60–62].

2.2.2 The Time-Dependent Kohn–Sham Approach

From the least-action principle applied to Theorem 2 of Runge and Gross (with the proper defi-
nition of the action including Vignale’s correction) [27, 28, 32], one can derive a time-dependent
Schrödinger equation of the form

iℏ
𝜕|Ψ[𝜌](t)⟩

𝜕t
= Ĥ(t)|Ψ[𝜌](t)⟩ , (2.3)

in which, by means of Theorem 1, the electronic wave function Ψ is a functional of the time-
dependent density. In the spirit of the KS procedure for DFT [63], one can construct a TD
non-interacting system that will have the same time evolution as the real interacting TD system,
with time-dependent electron density

𝜌(r, t) =
∑

p
fp|𝜙p(r, t)|2 , (2.4)

in which fp is the orbital occupation and 𝜙p(r, t) is the time-dependent KS spin orbitals. These
orbitals follow the Schrödinger-like set of equations commonly known as time-dependent
Kohn–Sham (TDKS) equations,

iℏ
𝜕𝜙i(r, t)
𝜕t

= ĥKS[𝜌](t)𝜙i(r, t) . (2.5)

In the TDKS, the TD Kohn–Sham Hamiltonian ĥKS(t) is a functional of the time-dependent density,
and it is defined as

ĥKS(t) = t̂s + 𝑣̂ext(t) + 𝑣̂H[𝜌](t) + 𝑣̂xc[𝜌](t) , (2.6)

formed by summing the non-interacting kinetic energy t̂s, the time-dependent external potential
𝑣̂ext(t), the time-dependent Hartree potential 𝑣̂H[𝜌](r, t), and the time-dependent exchange-
correlation (xc) potential 𝑣̂xc[𝜌](r, t). The non-interacting kinetic energy is defined as

t̂s = − ℏ2

2me
∇2 , (2.7)

in which me is the electron mass, and the time-dependent Hartree potential is

𝑣̂H[𝜌](r, t) = ∫ dr′ 𝜌(r
′, t)|r − r′| . (2.8)

It is important to note that the time-dependent Hartree potential depends only locally on the instan-
taneous density at time t, but not on previous densities. This is not the case of the TD xc potential,
which depends on all the density history from t0 to the current time.

TDDFT in the TDKS formulation is formally exact (considering the validity of the KS assump-
tion), with the sole condition of knowing the exact TD xc potential. In practice, it has proven to
be an arduous task even to obtain an approximation to it. The most widely used approximation is
the so-called adiabatic approximation, which completely neglects time-memory effects. In other
words, the adiabatic approximation supposes that the TD xc potential depends only on the instan-
taneous density (hereafter referred as 𝜌t to distinguish it from the set of TD densities at all times
named 𝜌). In addition, we can also suppose that the xc functional of DFT (the t0 xc functional) is
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a good approximation to describe the xc effects at all times. Within these two hypotheses, we can
straightforwardly define the adiabatic approximation to the TD xc potential as

𝑣A
xc[𝜌](r, t) = 𝛿(t)

𝛿Exc[𝜌t]
𝛿𝜌t(r)

. (2.9)

Still, the exact DFT functional is also unknown, and further approximations are required to Exc[𝜌t]
for practical applications.

2.2.3 Solutions of Time-Dependent Kohn–Sham Equations

There are two basic ways to solve the TDKS equations (Eq. 2.5). We can employ:

● Real time (RT) integration. In this case, the TDKS equations are integrated in the real-time
domain [64]. The information on the excited states appears through a population transfer
between KS orbitals induced by an external field. Having the time-evolution of the dipole
momentum, the excitation spectrum is computed by Fourier transforming it [65]. In RT-TDDFT,
the nuclei are usually kept frozen during the time integration. Nevertheless, they can be let to
evolve coupled to the electrons [66].

● Linear response (LR) theory. In the response theory, the poles in the response function occur
when the frequency of an external perturbation is resonant with the eigenvalues of the unper-
turbed system [67]. When the response function is expanded up to linear terms in the pertur-
bation, the approach is called linear-response theory, and the problem is cast as a generalized
eigenvalue equation. LR-TDDFT is the popular method usually referred to when we talk about
TDDFT.

Both RT and LR approaches are discussed in more detail in the next two sections.

2.2.3.1 Real-Time TDDFT
The TDKS can be integrated directly, as discussed in Ref. [64]. Alternatively, it can be integrated
through an unitary time-evolution operator as discussed below.

The TD Schrödinger equation can be conveniently rewritten in terms of a time-evolution operator
Û(t, t0),

iℏ
dÛ(t, t0)

dt
= Ĥ(t)Û(t, t0) . (2.10)

The evolution operator can propagate a wave function from t0 to time t,

|Ψ(t)⟩ = Û(t, t0)|Ψ(t0)⟩ , (2.11)

in which the time-evolution operator is formally defined as

Û(t, t′) = e−iℏ ∫ t
t′ dt′Ĥ(t′) . (2.12)

For a non-interacting KS system, one can similarly write a formal solution to the TDKS equation
defined in Eq. (2.5) in terms of a non-interacting evolution operator,

𝜙i(r, t) = Ûs(t, t0)𝜙i(r, t0) , (2.13)

in which the non-interacting time-evolution propagator Ûs(t, t0) is defined as

Ûs(t, t0) = e−iℏ ∫ t
t′ dt′ĥKS(t′) , (2.14)
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where the TD KS Hamiltonian is defined in Eq. (2.6). Since the exact and the KS Hamiltonians are
unitary, the exponentials of the time-evolution operators are anti-Hermitian, and, therefore, they
are unitary operators. In addition, due to the additivity of integrals on intervals, one can write

Û(t, t0) = Û(t, t′)Û(t′, t0) . (2.15)

This property is used to perform numerical constructions of Û, by applying the operator n times in
intervals of Δt = (t − t0)∕n,

𝜙i(r, t) = Ûn
s (Δt)𝜙i(r, t0) . (2.16)

If Δt is sufficiently small, the time-evolution operator can be written as

Ûs(Δt) = e−iℏĥKS(Δt) . (2.17)

Numerical approximations of the exponential are then straightforward. For example, the linear
term of the Taylor expansion of the operator is

Ûs(Δt) ≈ 1̂ − iℏĥKS(Δt) . (2.18)

Using Eq. (2.18) in Eq. (2.16), one can construct the whole evolution of the KS orbitals, which
are then used to construct the TD density (Eq. 2.4), from which all properties of the system can
be computed. The real-time (RT) solution of TDKS is applicable to weak and intense TD external
potentials, and it has a good scaling with the system size since it requires only the knowledge of
occupied molecular orbitals. The RT-TDDFT equations can be used in a varied range of applications
[68], such as simulation of spectra [69], coupled electron–nuclear dynamics [66], and quantum
control [70].

2.2.3.2 Linear-Response TDDFT
In cases for which the external perturbation is weak, it is advantageous to extract the density infor-
mation using the perturbative approach in the frequency domain. TDDFT in the frequency domain
is conveniently formulated using response theory. The basic quantity to construct is the so-called
density–density response function, which relates variations in the exact TD density to variations of
the TD external potential. Response theory is a powerful technique [71], which allows various types
of information to be extracted from the response of the density, not only in the linear regime, but
also higher order responses [72], or using special classes of excitation operators such as spin–flip
[73] or spin-adapted excitation operators for open-shell systems [74–76]. Here, we discuss the most
common form of linear-response TDDFT equations first derived by Casida in 1995 [8], and alter-
natively derived by Petersilka et al. [77] a year later. An alternative perturbative solution of the
LR-TDDFT equations, known as the Sternheimer equation, is another way of solving the linear
response of the density [51, 78, 79].

The first-order response (linear response) can be written as

𝛿𝜌(r, t) = ∫
t

−∞
dt′ ∫ dr′𝜒(r, r′, t − t′)𝛿𝑣ext(r′, t′) , (2.19)

in which 𝜒(t − t′) is the response function, and the first-order changes in density and external
potential are respectively defined as 𝛿𝜌(t) = 𝜌(t) − 𝜌(t0), 𝛿𝑣ext(t) = 𝑣ext(t) − 𝑣ext(t0). Equivalently, one
can write the response function of the non-interacting system as

𝛿𝜌(r, t) = ∫
t

−∞
dt′ ∫ dr′𝜒s(r, r′, t − t′)𝛿𝑣s(r′, t′) , (2.20)
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in which 𝜒̂s(t − t′) is the response function based on the wave function for the non-interacting refer-
ence state (hereafter referred to as the non-interacting response function) and the first-order change
in the TDKS potential is written as 𝛿𝑣s(t) = 𝛿𝑣ext(t) + 𝛿𝑣H(t) + 𝛿𝑣xc(t). Applying the Fourier trans-
form to Eqs. 2.19 and 2.20, one arrives at the so-called Lehmann or sum-over-state representation
of the response functions. For the response function based on the wave function of the interacting
system (hereafter referred to as the interacting response function), it takes the form (hereafter we
omit the space integrations and variables for simplicity)

𝜒̂(𝜔) = lim
𝜂→0+

∑
I

⟨Ψ0|𝜌̂|ΨI⟩⟨ΨI|𝜌̂|Ψ0⟩
𝜔 − ΩI + i𝜂

−
⟨Ψ0|𝜌̂|ΨI⟩⟨ΨI|𝜌̂|Ψ0⟩

𝜔 + ΩI − i𝜂
, (2.21)

in which ΨI is the wave function of state I, ΩI is the true excitation energy of state I, and 𝜌̂ is the
density operator. The non-interacting response function takes the form

𝜒̂s(𝜔) = lim
𝜂→0+

∑
pq

(fq − fp)
𝜙̂p𝜙̂

∗
p𝜙̂q𝜙̂

∗
q

𝜔 − (𝜖q − 𝜖p) + i𝜂
, (2.22)

in which fp is the occupation number of KS spin orbital 𝜙p and 𝜖p is the KS eigenvalue. Hereafter,
we consider that occupation numbers are 0 and 1 only.

It is important to note that when the frequency is equal to the true excitation energy of the
system (𝜔 = ΩI), the exact response function has a pole (𝜒̂(ΩI) = ±∞), while the same is true for
the non-interacting response function when the frequency is equal to the difference of eigenval-
ues (𝜒̂s(𝜖a − 𝜖i) = ±∞). These criteria are used to extract excitation energies from the interacting
system given the knowledge of the non-interacting response function and the exact TD xc kernel.
To see this, one needs to substitute the external potential of Eqs. 2.19 in 2.20, and after Fourier
transforming, one arrives to the Dyson-type equation for LR-TDDFT

(1̂ − 𝜒̂s(𝜔)fHxc(𝜔))𝜒̂(𝜔) = 𝜒̂s(𝜔) , (2.23)

in which we define the exchange-correlation kernel as fHxc(𝜔) =
𝛿𝑣H (𝜔)
𝛿𝜌(𝜔)

+ 𝛿𝑣xc(𝜔)
𝛿𝜌(𝜔)

. When 𝜔 = ΩI , the
left-hand side of Eq. (2.23) tends to infinite, while the right-hand side is finite. To solve this inde-
termination, the first term in the left-hand side must be 0 when 𝜔 = ΩI . This is easily imposed by
solving the eigenvalue problem

(1̂ − 𝜒̂s(𝜔)fHxc(𝜔))X(𝜔) = 𝜔X(𝜔) . (2.24)

This equation is the celebrated linear-response TDDFT equation (LR-TDDFT), which, by expand-
ing it in the KS spin orbital basis, takes the usual Casida form[

A(𝜔) B(𝜔)
−B∗(𝜔) −A∗(𝜔)

] [
X(𝜔)
Y(𝜔)

]
= 𝜔

[
X(𝜔)
Y(𝜔)

]
. (2.25)

The matrices A(𝜔) and B(𝜔) are defined as

Aia,jb(𝜔) = 𝛿ij𝛿ab(𝜖a − 𝜖i) + (ia|f̂Hxc(𝜔)|bj) (2.26)

Bia,jb(𝜔) = (ia|f̂Hxc(𝜔)|jb) (2.27)

and we use the Mulliken notation for two-electron integrals

(pq|f̂Hxc(𝜔)|rs) = ∫ dr ∫ dr′𝜙∗
p(r)𝜙q(r)

[
1|r − r′| + fxc(r, r′, 𝜔)

]
𝜙∗

r (r′)𝜙s(r′) . (2.28)

(For extensions of these integrals for hybrid and range-separated functionals, respectively check
equations 15 and 16 of Ref. [80].)
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The LR-TDDFT equation presented here is formally exact to determine the first-order response
of the TD density at a true excitation energy of the system,

𝛿𝜌(r,ΩI) =
∑

ia
(Xia(ΩI)𝜙∗

a(r)𝜙i(r) + Yia(ΩI)𝜙a(r)𝜙∗
i (r)) , (2.29)

from the sole knowledge of the exact 𝑣̂xc(𝜔) and an initial KS density. However, approximations
to Eq. (2.25) are necessary for practical applications. The main common approximations can be
summarized as follow:

● Adiabatic approximation of the TD xc potential: Employing the adiabatic approximation
of the xc potential (Eq. 2.9) in the LR-TDDFT results in a frequency-independent xc terms
f̂Hxc(𝜔) → f̂ A

Hxc. The main consequence is that LR-TDDFT becomes a linear eigenvalue problem
and, unlike the exact LR-TDDFT equations, the number of solutions is the same as the dimen-
sions of A and B matrices. These matrices have the dimensions of one-electron excitations, thus
losing the extra solutions corresponding to double and higher electronic excitations. Another
consequence is that the xc effects do not take into account the character of the excited state,
which can largely affect the quality of the excitation energies obtained by A-LR-TDDFT.
This approximation affects only the excited state calculation. Currently, most LR-TDDFT
code implementations employ this approximation by default.

● Approximation of the Exc functional: If one employs the adiabatic approximation, one
is forced to use an approximated form of the DFT exact Exc functional. This will affect the
quality of the excitation energies, especially when long-range interactions are required like in
charge-transfer states, Rydberg states, etc. This approximation affects both the ground and the
excited state calculation. The choice of functional has to describe correctly the virtual orbital
space, which is largely influenced by the exchange and correlation functionals.

● Tamm–Dancoff approximation (TDA): In TDA, one decouples excitations from de-excitations
in the LR-TDDFT, B(𝜔) = 𝟎 in Eq. (2.25). The solution of TDA LR-TDDFT form a Hermitian
eigenvalue problem of the form A(𝜔)X(𝜔) = 𝜔X(𝜔) and less sensitive to instabilities of the
ground state. This approximation affects only the excited state calculation, and it can improve
the description of the energies at the expense of approximate properties [81].

2.3 Linear-Response TDDFT in Action

2.3.1 Vertical Excitations and Energy Surfaces

Adiabatic LR-TDDFT (hereafter we refer to it simply as LR-TDDFT) is by far the most popular
approximation of the exact LR-TDDFT approach. Nevertheless, popularity does not necessarily
translate into accuracy and generality. For this reason, we will discuss LR-TDDFT successes and
failures in some length, having in mind the question whether it is possible to assess the quality of
the calculated excitation energies.

In order to understand the physical meaning of the LR-TDDFT equations (see Eq. 2.25), one can
apply the so-called single pole approximation (SPA) to a single electron-hole transition as

𝜔SPA = 𝜖a − 𝜖i + (ia|f A
Hxc|ai) . (2.30)

As can be seen from this approximation, the excitation energies are mainly represented by two
ingredients:

● the KS orbital energy gap, which gives a zero order approximation to a one electron excitation;
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● the Hartree-exchange-correlation kernel, which give a first-order correction to the orbital energy
difference, taking into account not only the coupling between the electron created in orbital a
and the hole in orbital i, but the relaxation that affects that modulate the orbital gap [18].

As previously discussed in this chapter, we emphasize that the adiabatic approximation (i.e., the
xc potential instantaneously changes with the density) simply wipes out strong correlation effects
(represented in wave function theory by double- and higher-order determinants) from LR-TDDFT
spectrum [62]. Moreover, the quality of the reference state (i.e., the choice of the ground state
exchange-correlation functional, the choice of the basis set, the choice of a geometry, and many
other parameters entering the molecular model) also impacts the quality of the LR-TDDFT excita-
tion energies.

In the following, by quality we mean “how close to a state-of-the-art calculation a LR-TDDFT
excitation energy is,” using the same structure, the same basis set, the same convergence thresholds,
etc. This is usually achieved by a systematically benchmarking LR-TDDFT, using different sets of
molecules. The extensive review of these benchmarks by Laurent and Jacquemin [82] is definitively
a must-read. Of course, the very large number of species in the xc-functional zoo makes the choice
heavily system-dependent, ultimately calling for a somehow arbitrary human-made decision. Ide-
ally, this decision should be based on the benchmarking of LR-TDDFT against highly correlated
wave function methods.

2.3.1.1 Vertical Excitations: How Good are They?
As a first note regarding the quality of LR-TDDFT vertical excitation energies, it should be remem-
bered that the quality of a higher energy excited state is frequently degraded. This is because of
the wrong representation of virtual orbitals due to the incorrect long-range tails of the xc poten-
tials of DFT, which underestimate the ionization potential and place a too low spectral continuum
[19]. This induces a mixture of states above the continuum threshold, making them usually too
diffuse. This mixture is even more important when the basis set size is increased. In general, it is
advised that long-range corrected functionals for TDDFT are used, or at least consider with care
states above the ionization threshold (which can be approximated as −𝜖HOMO). Accordingly, for the
rest of this section, we only consider the low-lying excited states below the ionization threshold.

Much of the analysis of the quality of the LR-TDDFT vertical excitations has been done around
the Mülheim molecular set [83]. This molecular set is a collection of 14 small organic molecules,
for which diverse quantum-chemical methods have been computed. It encompasses over 100
singlet–singlet transitions. Tens of functionals have been benchmarked against the theoretical best
estimates (TBE) of this molecular set. Using the data collected by Laurent and Jacquemin [82]
from diverse references for over 40 functionals, the mean signed errors (MSE) for singlet–singlet
vertical excitations are shown in Figure 2.1 by class of functional. We can learn a few different
things from this figure:

● The MSE may be anything between −0.5 and +0.6 eV.
● Pure functionals tend to underestimate the excitation energy.
● There is an overall trend of improvement in the order pure→ hybrid→ range separated→ double

hybrid, evoking the concept of a Jacob ladder [84].
● Nevertheless, because the variation of MSE within each class of functional may span more of

0.5 eV, there is no guarantee that the results for the higher class will be better than for the lower
class.

We also recall that the results in Figure 2.1 correspond to a very homogeneous class of molecules.
There are no guarantees that errors (or even the ordering between classes) would still be similar
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Figure 2.1 Mean signed error (MSE) in the vertical excitation energies (singlet–singlet) in the Mülheim
molecular set, for different classes of functionals. Data from Table 2 of Ref. [82]. A few popular functionals
are indicated.

to those shown there for different systems (like crystals or metals). In Ref. [85], for instance, the
errors for functionals tested on a molecular set of halogenated compounds showed very different
trends. Moreover, the description of the excited states should go beyond their energies. For many
applications we need to know other properties such as transition dipole moments [86]. It has been
reported that for certain cases, a good transition energy does not necessarily correspond to a good
description of the electronic density [87].

The data in Figure 2.1 are averages over many different states. Nevertheless, a particular func-
tional may have different performance depending on the type of excitation. Usually, vertical exci-
tations are classified into different types, depending on the nature of the electronic structure mod-
ification triggered by the absorption of a photon. Several criteria to diagnostic the states have been
developed over the years [88, 89], and a useful quantity to help with the state classification is the Λ
parameter [15], available in many quantum chemical programs. Advanced state analysis for large
molecular assemblies can also be done with diverse descriptors based on the transition density [90].

The main types of excitations are:

● Local valence excitations. When the excited state electronic structure does not differ much
from the ground state one, involving, e.g., a typical 𝜋 → 𝜋∗ or a n → 𝜋∗ single excitation of an
organic chromophore or a metal-centered transition in a transition metal complex [91]. Bench-
mark studies indicate that such excitations can be predicted with an overall good accuracy of
about 0.3 eV, if global hybrid xc functionals are used (as we saw, pure functionals underestimate
transition energies, while range-separated ones may overestimate them).

● Rydberg excitations. They correspond to transitions to hydrogenoid-like and very diffuse
excited states. Because of the self-interaction error and the wrong long-range asymptotic
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behavior of most common GGA and hybrid functionals, this kind of transition is often charac-
terized by large energy errors (≫ 0.5 eV) [92]. Modifications of GGA exchange-enhancement
factor can improve the excitation energies [93]. Employing range-separated hybrid functional
helps to reduce the discrepancy to about 0.5 eV [94].

● Charge transfer (CT) excitations. In a molecular system, they correspond to a transition
between two states in which some electron density displaced from the donor subsystem to the
acceptor subsystem. (In other words, the electron and the hole do not overlap.) Similarly to
Rydberg states, range-separated hybrid functionals are the best choice, usually with an error
lower than 0.4 eV [81]. However, if this conclusion applies well to many organic systems, it has
to be mitigated when organometallic compounds featuring metal-to-ligand or ligand-to-ligand
charge transfer transitions are considered [91]. Among the most recent xc functionals, the
double-hybrid ones seem to do an excellent job for both local and charge transfer excitation
energies (with a mean error about 0.1 eV) [95] and shall be considered as a promising alternative
to commonly used functionals.

● Core excitations. These X-ray transitions are characterized by marked electronic structure
modifications due to the promotion of an electron from atom-like inner shells to valence
orbitals. Core orbitals are extremely compact and will not significantly overlap with valence
ones. Accordingly, standard GGA and hybrid xc functionals fail with a very significant
(much larger than 10 eV) — but constant — error, which can be pragmatically overcome
either through the application of a xc functional-dependent uniform shift, or with a more
involved re-parametrization of the xc functional, usually including both short- and long-range
Hartree-Fock exchange [96, 97].

We should be cautions about range-separated functionals. These functional have a parameter
controlling the separation between the short- and long-range regime [80]; and the value of this
parameter has different effects on different types of states. It may, for instance, provide an accurate
CT excitation energy at the cost of downgrading the description of local excitations [98]. This ref-
erence also shows that the default value adopted in some popular quantum chemistry packages is
overestimated.

Of course, the comparison of LR-TDDFT vertical excitations to experimental spectra is not
straightforward. Improved models need to take into account other effects, like adiabatic transi-
tions instead of vertical ones and vibronic couplings [99], but also effects of the chromophore
surroundings [100], excitonic couplings with other chromophores [89], etc. The comparison with
experimental data should also consider that the vertical excitation is in general blue-shifted by
about 0.1–0.2 eV in relation to the band maximum [101].

2.3.1.2 Reconstructed Energy Surfaces: How Good are They?
LR-TDDFT computes vertical excitation energies with respect to a reference state calculated at
the DFT level, usually the ground state of the chromophore at a given geometry. Accordingly, the
excitation energies of all the excited states of interest can be calculated as well. It is then possi-
ble to reconstruct the potential energy surfaces of the excited states by systematically changing
the nuclear geometric parameters of the molecular system. The broad availability of LR-TDDFT
analytical gradients (with respect to nuclear coordinates) [102] and, more recently of analytical
Hessian matrices [103], allows location of excited-state stationary energy structures (minima and
saddle points), search for minimum energy paths, and to perform excited-state molecular dynamics
simulations (see section 2.3.4).

When we systematically explore an adiabatic surface in discrete geometric steps, we usually
encounter regions where the character of the adiabatic excited states change between two
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Figure 2.2 Schematic representation of an avoided crossing point between two potential energy curves,
occurring between two geometries x0 and x1. In x0 (resp. x1), the adiabatic lower electronic state is
described by the diabatic state Φj (resp. Φi). The red arrow indicates the “slow” adiabatic pathway, while the
blue one indicates the “fast” diabatic one.

consecutive geometries (say, x0 and x1, as in Figure 2.2), indicating that an avoided crossing or
even a state crossing is located between the two geometries. At such a bifurcation point, two paths
become available, with different probabilities: from a Landau–Zener perspective [104], either the
system slowly evolves on the same adiabatic state or it ballistically jumps to the other adiabatic
state, maintaining its electronic character (Figure 2.2). The characterization of such an event is
essential for understanding the molecular photochemistry, as will be highlighted below (section
2.3.2). Therefore, it is clear that the quality of such intersection regions, and more generally, the
quality of the LR-TDDFT reconstructed energy surfaces is of tremendous importance to achieve
meaningful computational conclusions on photochemical processes.

There are examples in the LR-TDDFT literature reporting bad surface shapes, even if the vertical
excitation energy calculated at the Franck–Condon geometry is reasonable. The infamous case of
the pentadieniminium cation, the minimum model of retinal (and also known as PSB3), is one such
example [105]. It is well known that the ultrafast photoinduced isomerization of PSB3 primarily
involves the bond length alternation (BLA) coordinate, eventually turning the isomerizing double
bond into a single one [106]. At the same time, close carbon–carbon bonds are also modified to
a lower extent. Such BLA alteration manifests itself in the nuclear forces at the Franck–Condon
geometry. In the case of LR-TDDFT description of PSB3, looking at the various cases reported in
Figure 2.3, the BLA alteration is not satisfactorily reproduced in most of the forces obtained from
GGA and hybrid functionals. Although the set of xc-functionals considered in Figure 2.3 is limited,
this example clearly shows the extra care required for investigating photochemical processes with
LR-TDDFT.

In Figure 2.4, we compare the quality of the potential energy curves obtained from LR-TDDFT
against those from CASSCF along the dissociation coordinate of molecular hydrogen. The CASSCF
curves show three avoided crossings: (i) between the ground and first excited state at interatomic
distances >2 Å, (ii) between the first and second excited state at 0.68 Å, and (iii) between the
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Figure 2.3 PSB3 retinal model LR-TDDFT nuclear forces at the ground state minimum energy geometry.
None of the xc functionals is able to capture the correct BLA modification shown by the reference CASPT2
level of theory.

second and the third excited state at 0.95 Å. The first avoided crossing is formed due to the
interaction between electronic configurations corresponding to the initial configuration (𝜎1)2(𝜎∗1 )0

and the double excitation (𝜎1)0(𝜎∗1 )2. The second avoided crossing involves two singly-excited
configurations (𝜎1)2(𝜎∗1 )1(𝜎2)0 and (𝜎1)2(𝜎∗1 )0(𝜎2)1. Finally, the third avoided crossing is due to the
interaction of (𝜎1)2(𝜎∗1 )0(𝜎2)1 with the double excitation (𝜎1)0(𝜎∗1 )2.

None of these crossings is captured by the adiabatic approximation of the TD xc potential.
First, A-LR-TDDFT lacks one of the potential energy surfaces corresponding to the doubly-excited
configuration (𝜎1)0(𝜎∗1 )2. Indeed, the lack of a frequency-dependent xc kernel in the LR-TDDFT
equations (Eq. 2.25) results in the lack of doubly-excited configurations. Several consequences
can be observed due to this approximation: (i) the potential energy surface of the ground state
does not lead to the right dissociation limit of −1.0 Ha. This is, however, a failure that should not
be attributed to TDDFT but rather to KS-DFT. (ii) The first excited state is largely overestimated



�

� �

�

28 2 Time-Dependent Density Functional Theory

1.0
–1.5

–1.0

–0.5

0.0

0.5

1.0

2.0

Interatomic distance (Å)

E
le

ct
ro

ni
c 

en
er

gy
 (

H
a)

3.0 4.0

σ1*

σ1*

σ1*
σ1*

σ1
σ1

σ1
σ1

σ2

Figure 2.4 Excited states of molecular hydrogen along the dissociation coordinate. The potential energy
surfaces of A-LR-TDDFT using B3LYP/6-31G* (solid lines) are compared to the CASSCF(2,3)/6-31G* (dashed
lines) and the diabatic surfaces (dotted black lines). The main configuration in each diabatic surface is
shown as an offset.

and does not feature the avoided crossing with the second excited state. Such an avoided crossing
should in principle be well described in TDDFT, but the wrong description of xc effects in the first
excited state underestimates its energy and thus the crossing is absent. (iii) The second excited
state at small interatomic distances is absent in LR-TDDFT. This absence is because of the lack
of doubly excited configurations in the adiabatic approximation. (iv) The third excited state is
represented as a diabatic surface in TDDFT rather than as an adiabatic state as shown in CASSCF.
This is indeed another effect of the lack of the double excitation character in A-LR-TDDFT.

Several methods and extensions beyond the A-LR-TDDFT have been proposed to solve the inac-
curacies due to a lack of double excitations in LR-TDDFT. Most solutions of the H2 dissociation
imply descriptions beyond the KS assumption from the ground state using fractional occupation
numbers, from which the correct avoided crossing of H2 excited states are extracted. Examples
of such theories are time-dependent density-matrix functional theory [107], the constricted vari-
ational DFT approach [108], the generalized adiabatic connection in ensemble density-functional
theory [109], and restricted ensemble KS (REKS) theory [110]. Another more pragmatic approach is
to extend the successful adiabatic xc potential derivatives with frequency-dependence terms. This
is the basis of the dressed TDDFT approach of Maitra et al. [16] and generalized by Casida and
Huix-Rotllant using many-body perturbation theory [18]. This method features doubly-excited con-
figurations and their interaction with the ground-state configuration, showing an improved surface
topology.

2.3.2 Conical Intersections

Conical intersections are state degeneracies characterized by a bi-dimensional linear branching
space [111]. They play a central role for ultrafast internal conversion, being the corner-stone of
femtochemistry [105]. In 2006, Levine and co-workers [23] raised an important warning: the
topology of state intersections described with LR-TDDFT could have the wrong dimensionality.
They showed that, although the TDDFT and DFT energies of the state intersection between the
first-excited and ground states could be accurate compared to multi-configurational results, the



�

� �

�

2.3 Linear-Response TDDFT in Action 29

branching space was anomalously one-dimensional. They tracked down the origin of the problem
to the “CIS structure” of the restricted TDDFT (i.e., the exclusive dependence of the method on
singly-excited determinants), in which the coupling between the ground state and the excited states
is zero by construction. If the closed-shell restriction is lifted by an unrestricted approach, then
the branching space becomes bi-dimensional as it should be. Gozem et al. [106] have shown that
this same anomalous topology is not exclusive of TDDFT, and it is found in several other methods.

Huix-Rotllant et al. [112] have conducted a systematic investigation of conical intersections com-
puted with wave function theory and density functional methods, including spin-flip DFT and
REKS in addition to LR-TDDFT. Benchmarking over eight molecules and twelve conical inter-
sections between S1 and S0, they confirmed the findings of Ref. [23] that (1) restricted LR-TDDFT
can be used to predict minimum-energy conical intersections but (2) that the dimensionality of the
branching space is wrong.

A conical intersection between two states happens when at a certain nuclear geometry RX (i) the
two diabatic states become degenerated,

H11(RX ) = H22(RX ), (2.31)

and (ii) the diabatic coupling between them is null,

H12(RX ) = 0. (2.32)

In these equations, HIJ are the electronic Hamiltonian matrix elements between the diabatic states
I and J.

The problems with restricted LR-TDDFT for the description of conical intersections involving the
ground state are related to both conditions. First, near the degeneracy (Eq. 2.31), the eigenvalues
of the highest occupied and lowest unoccupied KS orbitals tends also to be degenerated, 𝜀HOMO ≈
𝜀LUMO. Under this situation, DFT may show instabilities, with 𝜀HOMO > 𝜀LUMO (sometimes this is
referred as a hole below the Fermi level) [22]. These instabilities lead to imaginary excitation energies
in the LR-TDDFT routine, which, in practical terms, means that the calculations tend to break
down near the degeneracy.

Second, LR-TDDFT only calculates excitation energies. They are summed to the DFT
ground-state energy to deliver the excited-state energies. Therefore, the Hamiltonian coupling
matrix element between the ground and first excited states is always zero, independently of the
geometry and not only at RX as required by Eq. (2.32). In a multi-reference method, any small
nuclear distortion 𝛿R along the direction 𝜕H12∕𝜕R lifts the degeneracy because H12(RX + 𝛿R) ≠ 0.
Nevertheless, in LR-TDDFT, H12(RX + 𝛿R) is still null, causing the wrong dimensionality of the
branching space [23]. Tapavicza et al. [113] showed that the first problem in LR-TDDFT can
be alleviated by using TDA. According to their analysis, the breaking down of TDDFT near the
intersection, where the excitation energy tends to become imaginary, does not occur when TDA is
assumed (although the excitation energy can still be negative). TDA alone, however, does not fix
the dimensionality problem [114].

The right dimensionality of the intersection seam can be recovered if the excited state is repre-
sented by an auxiliary wave function as demonstrated by Li et al. [114] at TDA-TDDFT level. (The
construction of these auxiliary wave functions is discussed in Section 2.3.3.1.) In their approach,
denominated configuration interaction-corrected Tamm–Dancoff approximation (CIC-TDA), an
auxiliary wave function composed of the most relevant singly-excited determinant is used to com-
pute the Hamiltonian matrix element with the closed-shell determinant. This matrix element is,
then, used to expand the A matrix in TDA to include the closed-shell determinant in the basis.
Finally, this new A matrix is diagonalized to get the corrected CIC-TDA energies.
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Restricted LR-TDDFT fails to describe the topology of the S1/S0 intersection due to the lack of
coupling between the ground and excited states. This problem does not occur if both the ground and
the excited states are calculated as excitations of the same reference. This is exactly what happens
in spin-flip TDDFT, which can properly describe the intersection seam with the ground state [115].
For the same reason, the description of conical intersections between excited states is expected to
have the correct dimensionality, too.

2.3.3 Coupling Terms and Auxiliary Wave Functions

2.3.3.1 The Casida Ansatz
Neither DFT nor TDDFT produces wave functions by the end of the calculations. Nevertheless,
for several types of analysis, we may need specific information about them. This is the case, for
instance, of the computation of non-adiabatic couplings between two adiabatic electronic states I
and J,

dIJ = ⟨ΨI|𝛁RΨJ⟩. (2.33)

In this equation, the 𝛁R operator indicates the derivatives over the nuclear coordinates R.
Casida [8] showed that the assignment of the excited states calculated with LR-TDDFT can be

done using the linear-response coefficients (X + Y)I from Eq. (2.25) to build the auxiliary wave
function

|ΨI⟩ = N−1∕2
I

∑
ia
(X + Y )I

ia|Θa
i ⟩, (2.34)

where NI = ⟨(X + Y)|(X + Y)⟩ is the normalization factor. For a functional without Hartree–Fock
exchange, NI = 1. Note that in terms of the FI coefficients in Casida’s original notation, the (X + Y)I

vectors are

(X + Y )I
ia =

√
𝜀a − 𝜀i

ΔEI
FI

ia, (2.35)

where 𝜀k is the KS energy of orbital k and ΔEI is the excitation energy of state I.
The auxiliary multi-electron wave function (AMEW) given in Eq. (2.34), which has the simple

CIS format, has been often used for computations of a variety of properties, including not only state
assignment as originally proposed, but also:

● time-derivative non-adiabatic couplings [11–13];
● non-adiabatic coupling vectors [116];
● spin–orbit couplings [117–119];
● Dyson orbitals [120, 121];
● transition dipole moments [116, 122].

The general theory for using AMEW Ansatz to calculate transition properties has been developed
by Tavernelli and co-authors [116, 123].

The use of AMEW as a guess wave function has extrapolated the domains of LR-TDDFT and has
been explored in other LR methods like coupled cluster and algebraic diagrammatic construction
[26]. Because the calculation of non-adiabatic couplings using such auxiliary functions has been
crucial to the development of methods for non-adiabatic dynamics based on LR-TDDFT, we will
look at this point in more detail in the next subsection.

Going beyond the use of AMEW, the formal development and implementation of couplings for
LR-TDDFT is an active field. Starting from the seminal works of Chernyak and Mukamel [124] and
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Baer [125], new methods for couplings between ground and the first excited state [126, 127] as well
as between excited states [128–130] have been proposed more recently.

2.3.3.2 Time-Derivative Non-Adiabatic Couplings
In NA-MQC dynamics, the non-adiabatic information at time t enters in the formalism through
the time-derivative of the electronic wave function [14],

𝜎IJ(t) =
⟨
ΨI ||||𝜕ΨJ

𝜕t

⟩
, I ≠ J. (2.36)

When non-adiabatic coupling vectors dIJ (Eq. 2.33) are available, the chain rule allows this
time-derivative coupling term to be rewritten as 𝜎IJ(t) = v(t) ⋅ dIJ(t), where v is the nuclear veloc-
ity. However, as proposed by Hammes-Schiffer and Tully (HST) [131], 𝜎IJ can also be computed
via finite differences

𝜎IJ(t) ≈
1

2Δt

[
SIJ

(
t − Δt

2
, t + Δt

2

)
− SIJ

(
t + Δt

2
, t − Δt

2

)]
, (2.37)

where SIJ are the overlap terms

SIJ(t′, t) ≡ ⟨ΨI(t′)|ΨJ(t)⟩. (2.38)

In the previous equation (and in the others in this section), the time dependence is introduced
indirectly through the time dependence of the nuclear coordinates R(t). Thus, ΨI(t) should be
understood as a short notation for ΨI(R(t))

To avoid computing overlaps in between time steps, a linear extrapolation can be used to conve-
niently rewrite the coupling as [132]

𝜎IJ(t) ≈
1

4Δt
[3SIJ(t − Δt, t) − 3SJI(t − Δt, t) − SIJ(t − 2Δt, t − Δt) + SJI(t − 2Δt, t − Δt)].

(2.39)

Note that this expression only depends on integers Δt intervals and does not require any informa-
tion after t. Therefore, its use in dynamics propagation is straightforward.

Now, assuming that the electronic wave function can be written as a linear combination of Slater
determinants (just like in the Casida’s Ansatz, Eq. 2.34),|ΨI⟩ = ∑

ia
CI

ia|Θa
i ⟩, (2.40)

the overlap terms become

SIJ(t′, t) =
∑
ijab

CI†
ia CJ

jbsijab(t′, t), (2.41)

where sijab is the overlap between Slater determinants

sijab(t′, t) ≡ ⟨Θa
i (t

′)|Θb
j (t)⟩. (2.42)

(Although we are focusing on singly-excited determinants, this theory is general and applies for
any excitation rank.)

If t = t′, the sijab overlap is trivial due to the orthogonality of the Slater determinants. Neverthe-
less, in dynamics, t and t′ are different byΔt, corresponding to slightly different geometries. Löwdin
showed long ago [133] that the overlap between determinants built with different spin–orbital bases
(𝜙) is given as the determinant of the spin–orbital overlap matrix

sijab(t′, t) = det{⟨𝜙k(t′)|𝜙l(t)⟩}, (2.43)

where k runs over the spin–orbitals forming |Θa
i ⟩ and l over those forming |Θb

j ⟩.
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As a final step, if the spin–orbitals are formed as a linear combination of atomic orbitals (LCAO),
𝜙̃, each element in the spin–orbital overlap matrix becomes

⟨𝜙k(t′)|𝜙l(t)⟩ = 𝛿spin(k),spin(l)
∑
𝜇𝜈

c𝜇k(t′)c𝜈l(t)⟨𝜙̃𝜇(t′)|𝜙̃𝜈(t)⟩. (2.44)

𝛿spin(k),spin(l) is the Kronecker delta selecting only same-spin terms and c𝜇k are the KS orbital coeffi-
cients. The overlap between AOs can be obtained as an output of any quantum chemistry program.

Some of the first implementations of the HST (also known as determinant-derivative, DD) algo-
rithm for TDDFT are reported in Refs. [11–13].

The calculation of all spin–orbital overlap matrix elements has a high computational cost. This
cost can be reduced if some overlaps terms are neglected when the product of their CI coefficients
drops below some threshold or if its excitation rank is too high [13]. If redundancies are eliminated,
even larger computational savings are achieved [134].

Following a different approach from HST, Ryabinkin, Nagesh, and Izmaylov (RNI) [135] have
shown that, instead of applying the finite difference scheme to ΨI as done in Eq. (2.37), the
time-derivative coupling 𝜎IJ can be computed by formal differentiation of the AMEW. leading to

𝜎IJ =
∑
ijab

[
CI†

ia

𝜕CJ
jb

𝜕t
⟨Θa

i |Θb
j ⟩ + CI†

ia CJ
jb

⟨
Θa

i

||||||
𝜕Θb

j

𝜕t

⟩]
. (2.45)

Then, in the RNI (or orbital-derivative, OD) algorithm, the finite differences are applied directly to
orbitals, after the antisymmetric structure of the determinants is accounted for. Such an algorithm
also leads to large computational savings compared to the bare implementation of the HST. (Both
HST and NRI algorithms are available in the Newton-X program [136].)

In recent years, the use of wave function overlaps has gained a new function in NA-MQC dynam-
ics beyond the coupling estimate: to detect the so-called trivial or state-unavoided crossings [137].
In situations of weak coupling between states, the non-adiabatic coupling is strongly concentrated
in space. It can be so narrow, that it may be missed during the integration of the Newton equations
if the time step is too large, leading to wrong predictions of state populations [14]. Several algo-
rithms have been proposed to deal with such narrow coupling functions [138–141], all of them
using the overlap elements to keep track of diabatic transformations and correcting the dynamics
when needed.

2.3.4 Non-Adiabatic Dynamics

To perform non-adiabatic mixed quantum-classical (NA-MQC) dynamics on-the-fly, we need three
basic elements coming from the electronic structure calculations: potential energies of the excited
states, energy gradients, and non-adiabatic couplings between the states [14]. Energies and gra-
dients can be routinely computed with any standard TDDFT program. With them, it is already
possible to simulate dynamics on a single potential energy surface. Non-adiabatic couplings, how-
ever, are not so readily available. The use of AMEW has enabled the computation of couplings dur-
ing dynamics simulations with LR-TDDFT, especially within the Hammes-Schiffer/Tully approach
[131] discussed above. Moreover, implementation of non-adiabatic coupling vectors at TDDFT has
also been an area of recent development [116, 127–129].

Usually, the specific NA-MQC dynamics methods (surface hopping (see Chapter 16), Ehrenfest
(see Chapter 15), etc.) is blind to the electronic structure method, which produced energies,
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gradients, and couplings. Therefore, the use of these three quantities to propagate non-adiabatic
dynamics is exactly the same, no matter that they were delivered by LR-TDDFT or, say, ab
initio MRCI. For this reason, we will skip the discussion about the dynamics implementation
and application. The readers interested in these topics are refereed to chapters 11–20 (see also
Refs. [14, 142]). There are a few aspects, however, concerning the dynamics propagation with
LR-TDDFT we would like to examine. We list them here:

Conical intersections: Conical intersections in DFT are discussed separately in Section 2.3.2.
Here we just summarize that (1) the crossing between exited states may be described with
LR-TDDFT and that (2) the dynamics just up the first excited state reaches the crossing point
with the ground state may also be fine (although it should be carefully checked). Transitions to the
ground state should be avoided with LR-TDDFT.

Momentum correction: In surface hopping, we must adjust the momentum after the molecule
hops to another surface to ensure energy conservation [143]. This momentum adjustment, stem-
ming from the Pechukas’ forces [144, 145], should be done along the direction of the non-adiabatic
coupling vector. If, however, only time-derivative couplings (Eq. 2.36) are computed, this direc-
tion is unknown. The usual procedure in such cases is to adjust the momentum along the nuclear
momentum direction. Although the total energy will be conserved, there is no theoretical justifi-
cation for using this direction.

Dissociation and spin contamination: Dissociation is not well described by the Kohn–Sham
DFT [35] and naturally this will impact dynamics, if it follows a dissociative coordinate. TDA and
unrestricted (U) DFT may alleviate the problem [113]. In the case of U-DFT, we will most likely
have to deal with spin contamination.

Charge-transfer states and multiple excitations: All common problems in LR-TDDFT
should be expected to occur during the dynamics propagation. Over-stabilization of charge-transfer
states [10, 15] and missing multiple excitations [8, 23] are among the most important deficiencies.
Charge-transfer problems can be alleviated by using range-separated functionals [146]. There is not
much to do about multiple excitations in the context of LR-TDDFT with adiabatic approximation,
but to use some auxiliary method to monitor the occasional presence of multiple excitations in the
spectral region of interest, and to stop the dynamics if they show up.

Software: At the time of writing, the following are some of the public software enabling
NA-MQC with TDDFT:

● DFTBaby - TSH with LR-TD-DFTB [147].
● CPMD - TSH and CT-MQC with LR-TDDFT [12].
● GPAW - MFE with RT-TDKS [148].
● Jade - TSH with LR-TDDFT [149].
● Newton-X - TSH with LR-TDDFT and LR-TD-DFTB [136].
● Octopus - MFE with RT-TDKS [66].
● PYXAID - TSH with RT-TDKS (TD-SDKS) [150].
● QCHEM - TSH with LR-TDDFT [151].
● SHARC - TSH with LR-TDDFT [152].
● Turbomole - TSH with LR-TDDFT (only first excited state) [153].

In this list, TSH stands for trajectory surface hopping [154], MFE for mean-field Ehrenfest [155],
and CT-MQC [156] coupled-trajectories mixed quantum-classical dynamics.
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2.4 Excited States and Dynamics with TDDFT Variants and Beyond

LR-TDDFT is the most common DFT approach to investigate electronic excited states in molecules
and finite molecular assemblies. Nevertheless, it is not the only one [142]. In this section, we com-
pile a brief summary of few complementary and alternative DFT-based methods, which have been
used or have the potential to be used for excited-state investigations and non-adiabatic dynamics.

BSE-GW (Bethe–Salpeter equation with GW): The Bethe–Salpeter equation (BSE) applied
within the GW approximation has been the most successful method to compute exciton properties
in periodic systems typical of condensed-matter physics [157]. More recently, it has begun to
be applied to calculate excitation energies in finite systems, being considered a potential way
to overcome some of the deficiencies in TDDFT. In practical terms, BSE-GW for finite systems
is computed analogously to LR-TDDFT, by solving a similar eigenvalue equation, nevertheless,
with different A and B matrices [158]. These matrices are written in terms of the quasi-particle
energies of the many-body GW approach and the screened Coulomb interaction. To the best of
our knowledge, BSE-GW has not yet been used in NA-MQC dynamics of molecules mainly due
to its computational cost and lack of analytical gradients. It has, however, good potential to be an
alternative to LR-TDDFT.

MR-DFT (Multi-reference DFT): Kohn–Sham DFT is based on a single-determinant ground
state. There are cases, however, where such a determinant is not flexible enough to describe the
state density [159]. For such cases, diverse flavors of MR-DFT have been developed, including
(i) semi-empirical MRCI with DFT (e.g., DFT/MRCI by Grimme and Waletzke [160]), (ii) hybrid
wave-function DFT (e.g., CAS-srDFT [161, 162]), (iii) multi-configurational DFT (e.g., CAS-DFT
[163, 164] and MC-PDFT [165]), and (iv) ensemble DFT (e.g., REKS [166] and GOK-DFT [185]).
Among all these methods, the only one that is developed enough to be used in NA-MQC dynam-
ics is REKS. For this reason, it is discussed separately below. Analytical gradients for state-specific
ground state have been recently reported for MC-PDFT [167]. Chapter 3 is dedicated to MR-DFT
where the interested reader can seek further detail.

REKS (Spin-restricted ensemble-referenced Kohn–Sham): REKS is a rigorous multi-reference
DFT approach [166]. It assumes that the ground state density corresponds to that of a weighted
average of KS determinants, and variationally builds excited states in small subspaces of electrons
and KS orbitals. There have been a series of new developments in REKS, including larger spaces
[168], analytical gradients [110], and couplings. Moreover, this method has recently been employed
to NA-MQC dynamics [169].

ROKS (Restricted open-shell Kohn–Sham): surface hopping based on ROKS was one of the first
on-the-fly NA-MQC methods implemented. Restricted to a single excited state, it was pioneered
by Doltsinis and Marx in the early 2000s [170, 171], being applied to investigate the ultrafast
dynamics of diverse systems. In their version of ROKS, the excited state is given by the sum
of two spin-adapted KS determinants. The KS orbitals for the ground and excited states are
determined separately. Differently from the usual Born–Oppenheimer molecular dynamics
(BOMD), the Doltsinis–Marx implementation of surface hopping dynamics with ROKS is based
on Car–Parrinello molecular dynamics (CPMD) [172].

RT-TDDFT; RT-TDKS (Real-time TDDFT; real-time Kohn–Sham): RT-TDDFT is discussed in
Section 2.2.3.1. This electronic dynamics can be directly coupled to the nuclear dynamics in a
mean-field Ehrenfest scheme [14] to work on real-space grids [173], plane-waves [174], or atomic
orbitals [148]. To adapt RT-TDKS to surface hopping is not straightforward due to the lack of
many-electron states required by the fewest switches algorithm [154]. Nonetheless, it has been put
forward by Prezhdo et al. [175, 176] as discussed in the entry TD-SDKS below.
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sTDDFT (Simplified TDDFT): Bannwarth and Grimme have recently proposed [177] a method-
ology that strongly reduces the costs of LR-TDDFT, enabling the calculation of molecules with up to
1000 atoms. sTDDFT is based on neglecting some terms in the A and B matrices in the LR-TDDFT
equations, Eq. (2.25); replacing some other terms in these matrices by damped Coulomb interac-
tions; and truncating the single-excitation reference space.

SF-TDDFT (Spin-flip TDDFT): In SF-TDDFT, electronic configurations from excitations oper-
ators with ΔMs = ±1 are allowed. Thus, SF-TDDFT applied to an open-shell triplet reference |ia⟩
will generate the singlet configurations |iī⟩ (closed shell; the bar indicates a 𝛽 spin), |iā⟩ (single
excitation), |īa⟩ (another single excitation), and |aā⟩ (double excitation). As a result, ground and
excited singlet states can be treated on the same footing, enabling, for instance, the correct descrip-
tion of conical intersections and even the description of doubly-excited states. The implementation
and testing of SF-TDDFT are discussed in Refs. [73, 178]. Dynamics based on SF-TDDFT is
discussed in Ref. [179]. Spin contamination can be reduced in SF-TDDFT by using both high-spin
components of the triplet state as done in the mixed reference (MR) SF-TDDFT [186].

TDA (Tamm–Dancoff Approximation): TDA is introduced in Section 2.2.3.2. For dynamics,
Tapavicza et al. [113] claimed that TDA-TDFT may improve the dynamics results, by reducing the
effects of singlet and triplet instabilities.

TD-DFTB (Time-dependent density functional tight binding): DFTB is a parameterized version
of DFT [180]. It assumes that the ground-state reference density can be written as a sum of neutral
densities of all atoms. This reference is perturbed and the total energy expanded, giving rise to a
hierarchy of models (DFTB1, DFTB2 or SCC-DFTB, DFTB3, …). Moreover, DFTB uses a minimum
basis set and neglects three-center integrals. Hamiltonian and orbital overlap terms are tabulated
from atomic DFT calculations. Thanks to these approximations, DFTB may be thousands of times
faster than DFT [181]. Excited states with DFTB can be computed with LR-TD in the same way as
TD-DFT [182]. Non-adiabatic dynamics with TD-DFTB has been reported in Refs. [183, 184].

TD-SDKS (Time-dependent single-determinant Kohn–Sham): Aiming at extreme com-
putational savings to allow dynamics for extended molecular assemblies, Prezhdo’s group has
pioneered a surface hopping method based on excited states represented by single KS determinants
[175, 176]. In this approach, which is a surface-hopping variant of RT-TDKS, the excited-state
energies are reduced to KS orbitals’ energy gaps, while couplings are obtained for the derivative of
KS orbitals. Time-dependent coefficients are propagated for each electron independently. They are
then assembled into a product to represent a many-electron time-dependent coefficient needed to
feed the surface hopping algorithm. The method is available in the PYXAID program [150].

2.5 Conclusions

Throughout this chapter, we have discussed several aspects concerning the time-dependent density
functional theory, from its fundamentals to its applications to modeling of potential energy surfaces
and non-adiabatic dynamics.

We have seen that the method commonly known as TDDFT corresponds to solving the
time-dependent Kohn–Sham formalism using the linear-response theory and neglecting
time-memory effects in the exchange-correlation potential, the so-called adiabatic approximation.
This methodological formulation owes its popularity to its high computational efficiency and
satisfactory accuracy when dealing with many kinds of molecular systems. Nevertheless, a
collection of problems entangled in the adiabatic LR theory (and also even in the ground states
KS formalism) imposes diverse limitations on the use of the method. Strong dependence on the
functional, lack of multiple excitations in the electronic state description, wrong dimensionality
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of certain features of the potential energy surface, among other problems, require that we remain
cautious at every step of the investigation.

The accumulated experience with LR-TDDFT in the last two decades has taught us a great deal
about what we can or cannot do with the method. A large number of computational benchmarks is
also available to help to gauge the accuracy of the method for different kinds of application. Some of
the main lessons from this common-sense best practice in LR-TDDFT are discussed in this chapter.

The TDDFT research field is still evolving on several different fronts: new functionals either tai-
lored for specific applications or for general improved accuracy, algorithms for calculating diverse
properties like analytical Hessians and couplings, parametrized formulations to reduce compu-
tational costs, methods to recover multiple excitation effects and to account for strong electron
correlation, all these features have been the focus of intense development. In fact, this develop-
mental effort goes far beyond TDDFT, with many novelties being announced in the more general
field of excited states based on DFT. We expect that this chapter may serve as an proper introduction
to such prolific field.
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Abstract

Kohn-Sham density functional theory (KS-DFT) in its time-dependent (linear response) formulation has
often provided accurate accounts of electronic excitations and excited state processes. The main features
of DFT and its linear response variant are a cost efficient and quite accurate description of dynamical
correlation, which is a large challenge for methods based on traditional wave function theory. However,
DFT also has limitations, e.g., electronic states where several configurations are of importance; a sce-
nario often encountered for electronically excited states. For these cases a correct description requires
a genuine multi-configurational ansatz. The high computational cost of multi-configurational meth-
ods has, however, been a large hindrance for their general usage. This has led to development of a
number of methods combining DFT and multi-configurational wave functions. The goal is to let the
multi-configurational wave function include the configurations required for a physically correct descrip-
tion of the electronic state, while DFT efficiently can recover the dynamical correlation. In this chapter
we provide an overview of different methods, combining multi-configurational wave functions and DFT.
We discuss the main challenges with outset in three different models namely MRCI/DFT, MC-PDFT
and MC-srDFT. These three models have been applied to describe excited states of a large number of
organic molecules and to a lesser degree also transition metals; hence an preliminary assessment of their
performance for chemically different systems can be made.

3.1 Introduction

Kohn–Sham density functional theory (KS-DFT) has in many ways revolutionized the role of com-
putational and theoretical chemistry, also regarding electronically excited states [1–4]. The success
of DFT can often be attributed to a reliable representation of the short-range dynamical corre-
lation. For excited states, DFT has become particularly popular in its time-dependent formula-
tion, usually denoted TD-DFT. Yet, it is today clear that the approximations employed for the
exchange–correlation functionals impose limitations. These limitations become evident for molec-
ular systems where several configurations are of importance. In this case a correct description
requires a genuine multi-configurational ansatz [5, 6]. The electron-correlation associated with this
scenario is denoted static correlation. Describing static correlation is a general problem of DFT, both
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for ground and excited states. In this context, it should be mentioned that TD-DFT avoids explicit
optimization of the excited state wave function, and hence may work well if the ground-state is
not multi-configurational, although a number of conditions still need to be fulfilled. For instance,
states corresponding to configurations higher than singly excited with respect to the ground state
are not described by common DFT approximations (for developments addressing these issues,
see Refs. [7, 8] or Chapter 2). Moreover, excitations of charge-transfer (CT) [9–13] or Rydberg
character are known to be drastically underestimated by TD-DFT.

Development of wave function methods to handle multi-configurational systems is an active
field of research [6]. One of the main obstacles faced when applying these wave functions is a pro-
hibitively large computation cost. This has led to a large variety of different multi-configurational
schemes. The most common schemes define a complete active space CAS(m,n) of m electrons in
n orbitals in which all configurations (fulfilling additional spin and symmetry constraints) are
included. This is usually combined with optimization of orbital parameters in what is denoted
a complete-active-space self-consistent field (CASSCF) procedure. Unfortunately, many systems
require active space sizes beyond the current limitations to give physically meaningful results. Sev-
eral groups have focused on lifting the limitations for the size of active space with methods such as
the density-matrix renormalization group (DMRG) [14–17], quantum Monte Carlo (QMC) [18–20],
restricted-active-space (RAS) [21] or generalized-active-space (GAS) [22–24]. These methods are
described in chapters 7, 8 and 6, respectively. Yet, even with extended active orbital spaces, essen-
tial parts of the dynamical electron correlation cannot be obtained, except for the smallest systems.
Typically, dynamical correlation for such multi-configurational systems is obtained after initially
obtaining a correct representation of a zeroth-order Hamiltonian (including static correlation).
The exact nature of the subsequent steps responsible for recovering dynamical correlation depends
on the chosen method, but well-known examples are multi-configurational perturbation theories
[25–29] such as complete-active-space second-order perturbation theory (CASPT2) [25, 26] and
n-electron valence state perturbation theory (NEVPT2) [29].

A computationally cheap alternative to obtain dynamical correlation with multi-configurational
wave functions is to combine them with a DFT functional and thereby exploit the efficiency
of DFT, while maintaining a correct description of multi-configurational systems. In turn, the
combination can also correct the errors observed in current DFT approximations for excited
states. Still, the combination is not straightforward, since static and dynamical correlation are
merely phenomenological terms and cannot be strictly separated. A part of the dynamical
correlation is therefore always included in the multi-configurational wave function, leading to
double-counting of correlation effects if no special precautions are taken in the combination. The
double-counting issue has been addressed in different ways but there is currently no consensus
on the best strategy. This chapter provides a summary of the main developments in combining
DFT and multi-configurational wave functions, including how the different methods address the
double-counting issue. The field has been active for many years, and constitutes by now a vast
body of literature. Larger overviews have been given recently, e.g., by Ghosh et al. [30] and Lischka
et al. [31]. Following Lischka et al. [31], one can roughly divide multi-configurational DFT into
four different families, although the boundaries between these families are loose: the different
families are listed in Table 3.1. A complete overview of these different families is beyond the
scope of this chapter. Instead, we discuss the progress and challenges in the field with attention
on a few, selected methods, focusing on methods that have been applied to describe excited
states. This more narrow focus will also allow us to scrutinize the mathematical framework
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Table 3.1 Overview over different families of multi-configurational wave functions and DFT.

Class Examples Excited states Selected references

Conventional DFT State-specific (ΔSCF)/TD-DFT/Real-time 2–4
Semi-empirical MRCI/DFT State-specific/State-average 32, 33, 47
On-top pair density MC-PDFT State-specific/State-average 34, 35, 48
Range-separated MC–srDFT State-specific/State-average/TD-MC-srDFT 36,49–52
Ensemble DFT REKS State-specific/State-average 43–46

of the selected methods in more detail. We have chosen to focus on methods that are in active
development, namely MRCI/DFT [32, 33], multi-configurational pair-density functional theory
(MC-PDFT) [34, 35] and multi-configurational ranged-separated short-range DFT (MC–srDFT)
[36, 37]. The chosen methods belong to different families, and have been tested on a number of
different systems for electronically excited states. We will in the last section use this to illustrate
their performance for vertical excitation energies. The first method we describe (MRCI/DFT) is
a semi-empirical method. In these methods, DFT functionals from regular KS theory are added
to a multi-configurational wave function. Double counting is minimized by either scaling the
density employed in the DFT functional, or by scaling matrix elements of the Hamiltonian. The
next two methods (MC-PDFT and MC-srDFT) are more elaborate and avoid double-counting by
either re-defining the DFT functionals in terms of a so-called on-top pair density or decompose the
electron–electron repulsion into long- and short-range parts. In Table 3.1, it is also indicated that
the three methods can utilize different strategies to calculate excited states and the corresponding
excitation energies. We comment on this for the individual methods. When discussing the indi-
vidual methods, references to methods building on similar ideas will be given, but the reference
list is not intended to be exhaustive. Moreover, it should also be noted that the class of methods
building on ensemble DFT [38–40] in Table 3.1 is left out of this overview. This does not reflect lack
of development in this branch of multi-configurational DFT models. In fact, quite the opposite
is the case as illustrated by recent works by Pernal and co workers [41] as well as the work by
Franck and Fromager [42]. These methods have, however, not yet been throughly benchmarked.
Their performance in excited state calculations over a larger set of systems is therefore yet to be
seen. A number of important contributions have also been made by Filatov in what is denoted
the spin-restricted ensemble-references Kohn–Sham (REKS) method [43–45]. The REKS method
is among the few multi-configurational DFT models developed for conical intersections [46];
an area where TD-DFT can be problematic. Our main argument to leave out ensemble DFT is
length considerations and that REKS and conical intersections are discussed in more depth in
Chapter 2.

This chapter starts with brief overviews of wave function theory (Section 3.2), and density func-
tional theory (Section 3.3). The latter is also treated in the chapter on TD-DFT, but is retained
here to make this chapter self-contained. These two first sections will introduce the nomenclature
required to discuss the multi-configurational hybrid models in Section 3.4. Further, Section 3.3 will
also discuss common approximations applied in DFT (and TD-DFT), and their consequences for
calculations on excited states. In Section 3.5, we investigate how the models discussed on Section
3.4 perform for vertical excitation energies, while an outlook is given in Section 3.6.
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3.2 Wave Function Theory

We begin with the time-independent, electronic (non- or scalar-relativistic) Hamiltonian, Ĥ, whose
eigenstates, |Ψ⟩, are solutions to the time-independent Schrödinger equation

Ĥ|Ψ⟩ = E|Ψ⟩, (3.1)

where Ĥ is given in Chapter 1 (deviations from the nomenclature given in Chapter 1 will be explic-
itly stated). For brevity, we introduce a short form of the electron repulsion operator

gij =
1|ri − rj| . (3.2)

As discussed in Chapter 1, the parametrization of a multi-configurational wave function is most
convenient in a second-quantization formulation [53]. A difference to Chapter 1 is that we will
sometimes require explicit reference to spin-indices in the one- and two-particle density matrices

D̄p𝜎q𝜎 = ⟨Ψ|â†
p𝜎 âq𝜎|Ψ⟩ (3.3)

Γ̄p𝜎q𝜎r𝜏s𝜏 = ⟨Ψ|â†
p𝜎 â†

r𝜏 âs𝜏 âq𝜎|Ψ⟩, (3.4)

which are related to the matrices given in Chapter 1 as

Dpq = ⟨Ψ|Êpq|Ψ⟩ = ∑
𝜎

D̄p𝜎q𝜎 (3.5)

Γpqrs = ⟨Ψ|êpqrs|Ψ⟩ = ∑
𝜎𝜏

Γ̄p𝜎q𝜎r𝜏s𝜏 . (3.6)

The spin-averaged one- and two-electron replacement operators (Êpq and êpqrs) are defined in terms
of the creation (â†

p𝜎) and annihilation (âq𝜎) operators (see Chapter 1 for their definition).

3.3 Kohn–Sham Density Functional Theory

The most commonly employed form of DFT is the KS formulation, and the multi-configurational
extensions discussed in the next section also builds on this formulation. In the KS framework, the
total energy is described as a functional of the electron density, divided into the terms

EDFT[𝜌] = TS[𝜌] + Eext[𝜌] + EH[𝜌] + Exc[𝜌]. (3.7)

The individual terms are described in more detail below. The first term in Eq. (3.7) is the kinetic
energy, which in KS-DFT is obtained as the expectation value over a single-determinant wave
function, |Φ⟩

TS[𝜌] =
∑

i
⟨Φ|T̂i|Φ⟩, (3.8)

where T̂i is the kinetic energy operator. The single-determinant wave function is comprised of
orbitals {𝜙i(r)} and is an exact wave function for a system of non-interacting electrons; hence |Φ⟩
is denoted the non-interacting reference system. The connection to the real system is obtained by
requiring that the non-interacting reference system has the same electron density

𝜌(r) =
∑

i
𝜙∗

i (r)𝜙i(r) =
∑

i
|𝜙(r)|2, (3.9)
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as the real system with wave function |Ψ⟩,
𝜌(r) = N ∫ …∫ Ψ∗(x1, x2,… , xN )Ψ(x1, x2,… , xN )d𝝈1dx2dx3 · · · dxN , (3.10)

where x denotes spatial (r) and spin variables (𝜎), respectively.
An obvious difference between the non-interacting and real systems is that the real system expe-

riences electron-repulsion. In the Kohn–Sham scheme the electron-repulsion is decomposed into
a classical term, EH[𝜌], and a non-classical part, Exc[𝜌]. With this decomposition, all classical elec-
trostatic terms are contained in Eext[𝜌] and EH[𝜌]

EH[𝜌] =
1
2 ∫ ∫

𝜌(r1)𝜌(r2)|r1 − r2| dr1dr2 (3.11)

Eext[𝜌] =
∑

i
⟨Φ|V̂ext(ri)|Φ⟩ = ∫ 𝜌(r) V̂ext(r)dr. (3.12)

In absence of other external potentials, V̂ext(ri) is comprised solely of the nuclear–electron attraction
term, represented by V̂ne(ri) in Chapter 1. The non-classical parts of the electron–electron interac-
tion (exchange and correlation) are collected in the exchange-correlation functional, Exc[𝜌]. The
true (exact) kinetic energy, T[𝜌], is obtained after adding a correction, TC[𝜌], to the kinetic energy
obtained from a single Slater determinant, i.e., T[𝜌] = TS[𝜌] + TC[𝜌]. Thus, it is apparent by isolat-
ing Exc[𝜌] in Eq. (3.7) that Exc[𝜌] formally also contains a kinetic energy contribution in addition to
the contributions from exchange and correlation. The expression for Exc[𝜌] is thus

Exc[𝜌] = T[𝜌] − TS[𝜌] + Eee[𝜌] − EH[𝜌]. (3.13)

To combine more elaborate (multi-configurational) wave functions and DFT, it is convenient
to formulate DFT in second-quantization. We here follow Refs. [54, 55] and parameterize the
Kohn–Sham reference state as

|Φ(𝜿)⟩ = e−𝜅̂|Φ⟩, (3.14)

where the orbital coefficients, 𝜿, are given within the orbital-rotation operator

𝜅̂ =
∑
pq
𝜅pqÊpq =

∑
p>q

𝜅pq(Êpq − Êqp) ≡
∑
p>q

𝜅pqÊ−
pq, (3.15)

and 𝜅̂ is defined as an antisymmetric, real singlet operator (see also Chapter 1). We can now define
a charge-density operator for Eq. (3.10) and translate the density functionals in Eqs. (3.11), (3.12)
and (3.13) to second-quantization [54, 55]. Although we only require the charge-density for the
exact expressions, we here follow Ref. [37] and introduce a more general nomenclature that allows
definition of both charge- and spin-densities; the latter is often employed in approximate exchange
correlation functionals. We define the density operators

𝜌̂x(r) =
∑
pq

Ωpq(r)X̂pq, (3.16)

where Ωpq(r) = 𝜙∗
p(r)𝜙q(r). In this nomenclature, the superscript x = c is used for the regular

charge-density operator (in this case X̂pq ≡ Êpq), while x = s denotes the spin-density operator that
goes with

X̂pq ≡ T̂pq = â†
p𝛼 âq𝛼 − â†

p𝛽 âq𝛽 , (3.17)

which is required to describe spin-density effects (in a non-relativistic framework). As noted
in Ref. [37], for a spin-restricted, multi-configurational model (which encompasses all models
discussed here), the charge- and spin-density operators are singlet and triplet operators (both of
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MS = 0 type), respectively. The electron charge or spin densities can for any wave function, |Ψ⟩, be
obtained as

𝜌x(r) = ⟨Ψ|𝜌̂x|Ψ⟩ = ∑
pq

Ωpq(r)Dx
pq, (3.18)

where Dx
pq is the (p, q) element of the one-particle density matrix (cf. Eq. 3.5) or the one-particle

spin-density matrix, Ds
pq = D̄p𝛼q𝛼 − D̄p𝛽q𝛽 . We note that it is also possible to define 𝜌𝛼(r) and 𝜌𝛽(r)

densities according to

𝜌𝜎(r) = ⟨Ψ|𝜌̂𝜎|Ψ⟩ = ∑
pq

Ωpq(r)⟨Ψ|â†
p𝜎 âq𝜎|Ψ⟩ = ∑

pq
Ωpq(r)D̄p𝜎q𝜎, (3.19)

and thus decompose the total electron density in Eq. (3.10) in terms 𝛼 and 𝛽 spin-densities [56]

𝜌(r) =
∑
𝜎

𝜌𝜎(r) = 𝜌𝛼(r) + 𝜌𝛽(r). (3.20)

Both 𝜌s(r), 𝜌𝛼(r) and 𝜌𝛽(r) can be employed for approximate exchange–correlation functionals. In
the conventional KS formalism, Eq. (3.18) is obtained with the KS determinant and the one-particle
density matrix is thus obtained as DSCF, leaving the energy as

EDFT[𝜌] =
∑
pq

hpqDSCF
pq + 1

2
∑
pqrs

(pq|rs)DSCF
pq DSCF

rs − 1
2
𝛾HF

∑
pqrs

(pq|rs)DSCF
ps DSCF

rq + Exc[𝜌], (3.21)

with the one- and two-electron integrals defined as in Chapter 1. Although we keep the more elab-
orate forms in this part, it should be noted that DSCF attains a rather simple (diagonal) form and
the energy expression thus simplifies as expected from the first-quantized form in Eqs. (3.9) and
(3.11)–(3.12).

The energy in Eq. (3.21) can be obtained by solving a set of self-consistent equations, known as
the Kohn–Sham equations. The equations are formulated as the eigenvalue problem

f̂ KS|Φ⟩ = 𝝐|Φ⟩, (3.22)

where 𝝐 is a diagonal matrix and f̂ KS is the Kohn–Sham operator,

f̂ KS =
∑
pq

∑
𝜎

f KS
pq â†

p𝜎 âq𝜎, (3.23)

with matrix elements

f KS
pq = hpq −

∑
rs

∑
𝜎

((pq|rs) − 𝛾HF(pr|sq))D̄SCF
r𝜎s𝜎 + ∫ 𝑣̂xcΩpq(r)dr. (3.24)

We have in Eq. (3.24) again refrained from simplification, and kept D̄SCF. The potential from the
exchange–correlation energy in Eq. (3.24) is defined 𝑣̂xc =

𝛿Exc
𝛿𝜌

, while the integrals have been
defined previously (cf. Chapter 1). We note that the Coulomb integrals are sometimes written

(pq|rs) = ∫ ∫
Ωpq(r1)Ωrs(r2)|r1 − r2| dr1dr2. (3.25)

The 𝛾HF coefficient in Eqs. (3.21) and (3.24) is often employed in DFT approximations, where
𝛾HF ≠ 0 are denoted hybrid functionals since they include a fraction of HF-type exchange (obtained
with KS orbitals), mimicking the Hartree–Fock scheme. These models will also modify the extent of
the exchange obtained from the exchange–correlation potential (see Table 3.2). We discuss approx-
imate exchange–correlation functionals further in Section 3.3.1 below but 𝛾HF is included here for
completion.



�

� �

�

3.3 Kohn–Sham Density Functional Theory 53

3.3.1 Density Functional Approximations

The KS theory is exact if no approximations are introduced in Exc[𝜌], even when employing a
single-determinant reference state. We can formally write

Exc[𝜌] = ∫ exc(𝜌) dr, (3.26)

where exc(𝜌) is the exchange-correlation energy density. The exact form of Exc[𝜌], and hence of
𝜖xc(𝜌) would ensure the equality in Eq. (3.13), and provide the exact energy of any given N-electron
system. Unfortunately, the exact form of this functional is generally unknown, and approximations
must be employed in practice. The first entries of Table 3.2 show commonly employed approx-
imations (the lower entries are functionals modified for multi-configurational wave functions
discussed in the next sections). The simplest functional forms are based on the local density
approximation (LDA), constructed for a model system based on a uniform electron gas. In this
case, the exact exchange functional is known, while there exist very accurate parameterizations
for the correlation functional [57, 58]. The next steps are the generalized gradient approximation
(GGA) and meta-GGA which additionally involves the gradient, 𝜉, and parts of the kinetic
energy, 𝜏

𝜉(r) = ∇𝜌(r) ⋅ ∇𝜌(r) (3.27)

𝜏(r) =
∑
pq

(∇𝜙p(r))(∇𝜙q(r))∗Dpq. (3.28)

The approximate exchange-correlation functional can now be written

Exc[𝜌, 𝜉, 𝜏] = ∫ exc(𝜌, 𝜉, 𝜏)dr. (3.29)

Table 3.2 Common DFT exchange–correlation functionals for regular KS-DFT and for
multi-configurational KS-DFT. The examples are composite functionals, i.e., they contain both exchange and
correlation parts (an expression for EHF

x in the hybrid functional is given in Eq. 3.21). For a shorter notation,
the functionals have not been generalized to depend on spin.

Method Input parameters Examples

Conventional
LDA Exc[𝜌] VWN [57], PW92 [58]
GGA Exc[𝜌, 𝜉] BLYP [60, 61], PW91 [62], PBE [63]
Hybrid (1 − 𝛾HF)Ex[𝜌, 𝜉] + 𝛾HFEHF

x [{𝜙i}] + Ec[𝜌, 𝜉] PBE0, B3LYP [64]
meta-GGA Exc[𝜌, 𝜉, 𝜏] TPSS [65]

On-top density (multi-configurational)
LDA Esr

xc[𝜌;P2] tVWN [34],
GGA Eot

xc[𝜌, 𝜉,P2], Eot
xc[𝜌, 𝜉,P2,∇P2] tPBE [34], tBLYP [34], ftPBE [66], ftBLYP [66]

Range-separated (multi-configurational)
LDA Esr

xc[𝜌;𝜇] sr-VWN [36, 49, 67, 68], sr-PW92 [69]
GGA Esr

xc[𝜌, 𝜉;𝜇] PBEHSE(RI) [51,70–72], PBEGWS [69]
Hybrid (1−𝛾HF)Esr

x [𝜌, 𝜉;𝜇]+𝛾HFEsr-HF
x [{𝜙i};𝜇]+Ec[𝜌, 𝜉;𝜇] PBE0-GWS

meta-GGA Exc[𝜌, 𝜉, 𝜏;𝜇] TPSS-GEMH [73]
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So far, we have not included any reference to electron spin in the exchange–correlation functionals;
introducing such a dependence is not necessary from a theoretical point of view where the exact
energy can be solely defined from the total density. Yet, it has turned out that approximate
semi-local functionals must depend on the spin density (and its gradients) to be accurate for
open-shell systems [59]. We thus define a general approximate functional as

Exc[𝜌𝛼, 𝜌𝛽 ,…] = ∫ exc(𝜌𝛼, 𝜉𝛼, 𝜉𝛽 , 𝜉𝛼𝛽 · · · )dr, (3.30)

where 𝜉𝜎𝜎′ is defined

𝜉𝜎𝜎
′ = ∇𝜌𝜎(r) ⋅ ∇𝜌𝜎′ (r). (3.31)

The gradient or spin-gradient in Eqs. (3.27) and (3.31) are calculated as

∇𝜌𝜎 =
∑
pq

D̄p𝜎q𝜎∇Ωpq. (3.32)

The 𝜏 in Eq. (3.28) can be generalized to be spin-dependent in a similar manner. For open-shell
systems, an alternative to Eqs. (3.31)–(3.32) is to employ the spin-density 𝜌s and its gradients
(cf. Eq. 3.16).

3.3.2 Density Functional Theory for Excited States

The by far most common method to calculate excited states and excitation energies with DFT is the
TD-DFT formalism [1, 74, 75]. In practical implementations, the TD-DFT formulations employ a
linear response framework, originally formulated for wave function theory [76–78]. Since TD-DFT
is treated in more detail in Chapter 2, we will not provide a detailed derivation of the underlying
equations; here, we just note that the TD-DFT equations in second-quantization can be formulated
by means of time-dependent orbital rotation operators

𝜅̂(t) =
∑
pq

(𝜅pq(t)Êpq + 𝜅∗pq(t)Êqp). (3.33)

We only investigate excitations resulting in singlet states here, but the formalism can be extended
to higher multiplicities, which requires more general orbital rotation operators. When applied as
in Eq. (3.14), 𝜅̂(t) can be employed to describe the time-development of |0⟩ ultimately leading
to the eigenvalue problem [21] given in Chapter 2. Here we provide a more general form of this
equation[(

A B
B∗ A∗

)
− 𝜔

(
𝚺 𝚫

−𝚫∗ −𝚺∗

)](
X
Y∗

)
= 𝟎 (3.34)

which can also accommodate a multi-configurational wave function, as required in the subse-
quent sections. Staying now in a single reference framework, the A and B matrices become in our
second-quantization formulation

Apq,rs = ⟨0|[Êpq, [f̂ KS
0 , Ê†

rs]]|0⟩ + ⟨0|[Êpq, (f̂ 𝜔Hxc,rs)
†]|0⟩ (3.35)

Bpq,rs = ⟨0|[Êpq, [f̂ KS
0 , Êrs]]|0⟩ + ⟨0|[Êpq, f̂ 𝜔Hxc,rs]|0⟩, (3.36)

where, f̂ KS
0 is the unperturbed Kohn–Sham operator, and f̂ 𝜔Hxc contains the Hartree-exchange-

correlation kernel (cf. Chapter 2). The X and Y vectors contain the (Fourier transformed) 𝜿

coefficients from Eq. (3.33). Finally, the structures of the 𝚺 and 𝚫 matrices are

𝚺pq,rs = ⟨0|[Êpq, Ê
†
rs]|0⟩ (3.37)
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𝚫pq,rs = ⟨0|[Êpq, Êrs]|0⟩. (3.38)

For regular KS TD-DFT, 𝚺 reduce to a simple diagonal matrix with 1 or −1 on the diagonal while 𝚫
vanish. Employing this simple diagonal form in Eq. (3.34) leads to the form given in Chapter 2, but
note that a similar reduction does not occur for multi-configurational wave functions. For further
details on the underlying equations for TD-DFT we refer to Chapter 2 as well as Refs. [55, 78, 79]
concerning the second-quantization formulation of TD-DFT.

The equations in Eqs. (3.34)–(3.38) are the core equations employed in TD-DFT for calcula-
tion of excitation energies and oscillator strengths. From Eqs. (3.35)–(3.38) we infer that this set
of equations are expressed with the ground-state orbitals as the basis, and that the orbital rotation
operator is employed to generate this basis. This has some consequences for which processes can be
described. Moreover, the approximations employed in the construction of the exchange-correlation
functionals also have consequences, and we investigate these consquences below. In Section 3.4 on
multi-configurational DFT, we will see that some of the restrictions from conventional (TD)-DFT
is lifted by the use of a multi-configurational wave function.

3.3.2.1 Issues Within the Time-Dependent Density Functional Theory Ansatz
The orbital rotation operator used to generate a basis for the TD-DFT equations (see Eqs. (3.34, 3.38)
above) only generates configurations that are singly excited with respect to the ground state. There-
fore, higher order excitation classes such as excitations with a high degree of double excitation
character are not included in TD-DFT, unless they are described through the exchange–correlation
functional. This is not the case within the adiabatic approximation, [7, 8, 80, 81] which is the
standard approach in most quantum chemistry codes today. Using ground-state orbitals to
generate a basis also means that excited states with orbitals very different from the ground-state
are likely not to be described well. Thus, TD-DFT lack orbital relaxation effects which are included
in state-specific (and to some degree also in state-average) optimization procedures. An example
where orbital relaxation has a large effect is core-spectroscopy. However, large effects have also
occasionally been observed for valence excitations (see e.g., Ref. [82]). Moreover, the linear
response formulations only obtain excitation energies (and possibly oscillator strengths), but the
actual wave function for the excited state is not obtained. Hence, the formalism is not optimal
to investigate properties that requires this wave function directly. Finally, for compounds with
significant multi-configurational character, the TD-DFT formalism is likely to fail (as is the case
for the ground-state).

3.3.2.2 Self-Interaction Error
Without modifications, the KS scheme is plagued by a spurious self-interaction error, which can
be inferred by comparing the KS equations to the corresponding HF scheme. Both the KS and HF
methods employ a single Slater determinant, and the schemes have an overall similar structure
(cf. Eq. 3.22). In the HF scheme, the KS operator is replaced by the Fock operator

f̂ =
∑
pq

∑
𝜎

fpqâ†
p𝜎 âq𝜎, (3.39)

where the matrix elements are given

fpq = hpq +
∑

rs

∑
𝜎

((pq|rs) − (pr|sq))D̄SCF
r𝜎s𝜎. (3.40)

As for Eq. (3.24), the expression for D̄SCF has been kept so that we can directly compare the two
equations. Comparing Eqs. (3.24) and (3.40) reveals an important difference between Hartree–Fock
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theory: for a single-electron (p = q = r = s), the two-electron terms cancel exactly in Hartree–Fock
theory. This is not the case in KS-DFT, since the exchange part of 𝑣̂xc does not exactly match
the part containing the two-electron integrals. Accordingly, an electron can interact with itself in
DFT. This unphysical behavior can naturally cause issues both in ground and excited state cal-
culations. For calculation of excited states, one consequence of the self-interaction error is that
Rydberg and CT excitations are often severely underestimated by TD-DFT [9–13]. To amend this
behavior, an often employed method is to replace the two-electron operator with a range-separated
variant

ĝij = ĝlr
ij + ĝsr

ij . (3.41)

The long-range part is described exact (i.e., using KS orbitals with the HF expression), whereas
the short-range part is described through an exchange functional. The function controlling the
separation has often been taken to be the error function

ĝlr
ij =

erf(𝜇rij)|ri − rj| and ĝsr
ij =

1 − erf(𝜇rij)|ri − rj| , (3.42)

where 𝜇 is the range-separation parameter, given in reciprocal Bohr. In this chapter, we focus exclu-
sively on the error function to control the range-separation (as in Eq. 3.42), but it should be noted
that the definition of ĝlr

ij and ĝsr
ij can differ [72]. The procedure in Eqs. (3.41) leads to so-called

range-separated hybrid functionals [83] such as CAM-B3LYP [84]. The range-separation technique
has also been employed to merge multi-configurational wave functions and DFT, and we return to
this in Section 4.3, where we also discuss the range-separation parameter.

3.3.2.3 Degeneracies, Near-Degeneracies and the Symmetry Dilemma
Many of the problems in DFT and TD-DFT are closely associated with the definition of a single
Slater determinant for the non-interacting reference system. Degeneracies imposed by spatial or
spin symmetry are often not possible to represent correctly with this wave function ansatz; an
example is the introduction of spin in DFT where it is only possible to describe the spin com-
ponent with MS = S or MS = −S within a given spin multiplet. However, the electronic state of
interest may have an intermediate MS value −S < MS < S. Such a state can only be represented by
a determinant of broken spin-symmetry, where the spin-densities become unphysical (see e.g., Ref.
[85, 86]). The best known example is probably the H2 dissociation curve where a broken-symmetry
solution has lower energy for elongated H−H distances. Peculiarly, the dissociation curves of H2
and several other small molecules with spin-dependent LDA and GGA functionals from a bro-
ken spin-symmetry solution give energies in good correspondence with experiment [59, 87] while
large errors are obtained when the correct spin-symmetry is imposed. This has been denoted as the
symmetry-dilemma of DFT [88] and the same dilemma exists for the Hartree–Fock theory [89, 90].
The dilemma can also occur for equilibrium structures as, e.g., in Cr2 [91, 92]. A slightly different
aspect of the dilemma is that spin in DFT can be formulated from either open-shell spin-restricted
or spin-unrestricted single-Slater determinants and this has consequences for the definition of the
exchange–correlation functionals. Yet, none of the present approximations takes this into account
(see Jacob and Reiher [93] for an in-depth discussion of this aspect).

While the symmetry-dilemma in DFT may seem to be a problem for ground-states, it naturally
extends to excited states if DFT behaves unphysical in the ground-state. In such cases, TD-DFT is
expected to be erratic. In the next section, we investigate methods that attempt to fix such wrong
behavior by incorporation of a multi-configurational wave function into DFT (and TD-DFT).
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3.4 Multi-Configurational Density Functional Theory

With the definitions in the previous section, we can now formulate a generic energy expression for
multi-configurational DFT. We define a multi-configurational wave function, parameterized as

|Ψmc⟩ = e−𝜅̂
(∑

j
cj|j⟩

)
, (3.43)

where c contains the configuration interaction coefficients and the orbital rotation operator were
defined in Eq. (3.15). The density as well as one- and two-particle density matrices evaluated from
this wave function are denoted 𝜌mc(r), Dmc and 𝚪mc (and similarly for the corresponding spin den-
sities and matrices). The matrices can be calculated according to Eqs. (3.5), (3.6) and (3.18). The
energy can now be defined,

E[𝜌mc
𝛼 , 𝜌mc

𝛽
, · · · ] = E′

mc + E′
H[𝜌

mc] + Exc[𝜌mc
𝛼 , 𝜌mc

𝛽
, · · · ]

= E′
mc +

1
2
∑
pqrs

(pq|rs)′Dmc
pq Dmc

rs + Exc[𝜌mc
𝛼 , 𝜌mc

𝛽
, · · · ]. (3.44)

The energy expressions for E′
mc is typically similar to the usual expression for a multi-

configurational wave function and also E′
H[𝜌

mc] will generally have the same forms as in
DFT (cf. Eq. 3.11). However, since DSCF is replaced by Dmc the expressions are typically modified
in some way to avoid double-counting of electron correlation. Therefore, the two first terms are
denoted with a prime. The approximate functional is denoted Exc[𝜌mc

𝛼 , 𝜌mc
𝛽
,…] and will often (but

not always) differ from the functional approximations in Eq. (3.30) which are made to comply with
single-determinant reference states. The modifications made in the individual terms in Eq. (3.44)
are different in different models, and not all models modify all terms. These details are discussed
below with outset in three different multi-configurational DFT methods.

3.4.1 Semi-Empirical Multi-Configurational Density Functional Theory

The simplest hybrids between DFT and multi-configurational wave functions are semi-empirical.
These methods typically employ conventional DFT functionals with a scaling factor to reduce the
issue with double-counting of the electron correlation. A typical scheme do not calculate E′

H[𝜌
mc]

and only employs the correlation part of Emc from conventional approximations in Eq. (3.44).
This correlation part is then scaled accordingly. Early work in this direction was done by Lie and
Clementi [94, 95] who employed the natural occupation numbers to scale the correlation energy.
Later work has defined different scaling schemes [96]. We focus here on one of these later models,
namely the MRCI/DFT method defined by Grimme and Waletzke [32]. We follow the derivation
in the original paper, and note that the HF energy corresponding to Eq. (3.40) can be written

EHF =
∑
pq

hpqDSCF
pq + 1

2
∑
pqrs

(pq|rs)ΓSCF
pqrs. (3.45)

Following Ref. [32] we focus on a closed-shell system where the only non-zero elements of the
one-particle density matrix are inactive orbitals. In general, the one-particle density matrix is then
given D̄SCF

i𝜎j𝜎 = 𝛿ij and D̄i𝜎i𝜎 = 𝜔̄i, where 𝜔̄i is the occupation number. For a closed-shell system,
DSCF

ij = 2𝛿ij and 𝜔i = 𝜔̄i𝛼 + 𝜔̄i𝛽 are always 2. Moreover, the two-electron density matrix can be
reduced to ΓSCF

ijkl = DSCF
ij DSCF

kl − 1
2

DSCF
il DSCF

kj . The Fock-operator in Eq. (3.40) can now be simplified

fkl = hkl +
∑

i

(
(kl|ii) − 1

2
(ki|il))𝜔k, (3.46)
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and the energy in Eq. (3.45) can be expressed

EHF =
∑

i
fii𝜔i −

1
2
∑

ik

(
(ii|kk) − 1

2
(ik|ki)

)
𝜔i𝜔k. (3.47)

The HF energy can be related to a given configuration in a configurational interaction (CI) Hamil-
tonian by the effective Hamiltonian [97]

Ĥ − EHF = −
∑

i
fii𝜔i −

1
2
∑

ik

(
(ii|kk) − 1

2
(ik|ki)

)
𝜔i𝜔k

+
∑

ij
fijÊij −

∑
ijk

(
(ij|kk) − 1

2
(ik|jk))𝜔kÊij +

1
2
∑
ijkl

(ij|kl)êijkl, (3.48)

which can be applied to construct an effective MRCI/DFT Hamiltonian. Grimme and Waletzke
then define the Hamiltonian for diagonal elements as [32]

⟨K|ĤMRCI/DFT − EDFT|K⟩ = ⟨K|Ĥ − EHF|K⟩
−

nexc∑
i
(fii − f KS

ii ) +
nexc∑

i
(faa − f KS

aa ) +
1

nexc

nexc∑
ai
(pJ(aa|ii) − p[No](ai|ai)), (3.49)

where the first term involves the expression from Eq. (3.48), and the remaining terms are DFT
corrections. Notably, the elements f KS

aa are KS orbital energies, while pJ and p[No] are fitting con-
stants. As noted in Ref. [98], the nomenclature can be slightly misleading since faa and EHF are
not truly HF orbital and total energies, respectively. Rather they are calculated as HF-like expres-
sions (Eqs. (3.46) Eq. (3.47)), but with KS orbitals. The nexc denotes the excitation level in the parent
configuration. Concerning the off-diagonal elements, these are scaled by an exponential factor

⟨K|ĤMRCI/DFT|L⟩ = ⟨K|Ĥ|L⟩p1 exp(−p2(ΔEKL)4 ), (3.50)

where p1 and p2 again are scaling factors and ΔEKL is the energy difference between the two
configurations. The MRCI/DFT method generally calculates the KS matrix elements using a full
exchange-correlation functional (i.e., with both exchange and correlation parts). The original
MRCI/DFT method was optimized to the BHLYP functional [32]. More recent developments for
the MRCI/DFT method has been carried out by Beck et al. [99] and the group of Marian [98, 100],
re-designing the MRCI/DFT Hamiltonian to employ less empirical corrections than the original
version.

Excited states and excitation energies in MRCI/DFT are naturally included through optimization
of several roots during the wave function optimization, either through state-specific or state-average
procedures (cf. Table 3.1).

3.4.2 Multi-Configurational Density Functional Theory Based the On-Top Pair
Density

The DFT models discussed so far employ the electron density as a basic variable. However,
higher-order density matrices can also be employed. In fact, the concept of a N-electron density
matrix in quantum chemistry is rather old [89, 101], and has also been used prior to its introduction
in quantum chemistry, e.g., in statistical mechanics and thermodynamics [102]. It seems a natural
next step to expand approximate DFT functionals to higher-order density matrices. In these
functionals, mutual inter-relations between density matrices are exploited to replace 𝜌𝛼(r) and
𝜌𝛽(r) with quantities that do not suffer from breaking of spin-symmetry. The relations applied here
can be found in the general overviews of density matrices and their use in quantum chemistry
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[53, 56, 101, 103]. Here we focus on a branch of methods which employ the so-called on-top pair
density [88].

Below, we first define the on-top pair density. With focus on the MC-PDFT method defined
by Truhlar and Gagliardi [34], we next discuss how the on-top pair density can be used in
exchange-correlation functionals together with multi-configurational wave functions, and how
this method treats electronically excited states.

3.4.2.1 Density Matrices and the On-Top Pair Density
In addition to the one-electron charge density in Eq. (3.10), we can define the two-electron density
matrix, 𝜌2(r1, r2) as [104]

𝜌2(r1, r2) = N(N − 1)∫ …∫ Φ∗(x1, x2,… , xN )Φ(x1, x2,… , xN )d𝝈1d𝝈2dx3 · · · dxN . (3.51)

The densities can be expressed in terms of the diagonal elements of reduced density matrices
𝛾1(x1; x1) and 𝛾2(x1, x2; x1, x2)

𝜌(r1) = ∫ 𝛾1(x1, x1)d𝜎1 (3.52)

𝜌2(r1, r2) = ∫ ∫ 𝛾2(x1, x2)d𝜎1𝜎2. (3.53)

We define the reduced density matrices below in second quantization [53],

𝛾1(x1, x1) =
∑
pq

∑
𝜎𝜏

D̄p𝜎q𝜏𝜙
∗
p𝜎(x1)𝜙q𝜏 (x1) (3.54)

𝛾2(x1, x2; x1; x2) =
∑
pqrs

∑
𝜎𝜏𝜇𝜈

Γ̄p𝜎q𝜏r𝜇s𝜈𝜙
∗
p𝜎(x1)𝜙q𝜏 (x1)𝜙∗

r𝜇(x2)𝜙s𝜈(x2). (3.55)

Thus, the spatial part in Eq. (3.53) is

𝜌2(r1, r2) = ⟨0|𝜌̂2(r1, r2)|0⟩ = ∑
pqrs

Ωpq(r1)Ωrs(r2)Γpqrs, (3.56)

from which it can be inferred that 𝜌̂2(r1, r2) =
∑

pqrsΩpq(r2)Ωrs(r2)êpqrs. Our main focus here is the
on-top pair density, which is related to the two-electron reduced density matrix as

P2(r) = ∫ ∫r1=r2

𝛾2(x1, x2; x1, x2)d𝝈1d𝝈2. (3.57)

According to the definitions in Eqs. (3.56) and (3.57) we can write the on-top pair density as

P2(r) =
∑
pqrs

Ωpq(r)Ωrs(r)Γpqrs. (3.58)

Before we discuss the multi-configurational on-top pair density functional theory defined by Truh-
lar and Gagliardi [34], it should be noted that this method has a number of predecessors, building
on similar ideas: many of these methods were proposed in the early to mid 2000’s by Gräfenstein
and Cremer [105, 106], Gusarov et al. [107] and Takeda et al. [108]. Even prior to these efforts, the
use of on-top pair densities in DFT together with multi-configurational wave functions has been
proposed. For instance, Moscarda and San-Fabian [109] already defined such a method in the
beginning of the 1990s. Earlier still, Ziegler, Rauk and Baerends pointed out that atomic multiplet
energies (which requires more than a single-determinant wave function) could not be
obtained within regular KS–DFT [110]. In view of the discussion of Ziegler et al. [110],
Perdew and co-workers discussed the pair-density in relation to strong correlation [88, 111],
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while Becke et al. [112] discussed how to transform the spin-polarized LDA functional, depending
on 𝜌𝛼(r) and 𝜌𝛽(r) to functionals depending on 𝜌(r) and P2(r).

It is instructive for the discussion of the MC-PDFT method of Ref. [34] to summarize how 𝜌s(r),
𝜌𝛼(r) and 𝜌𝛽(r) are related to P2(r). As noted previously in this chapter, the one- and two-particle
density matrices significantly simplify for a single-determinant wave function. In this case it can
be shown that 𝛾2(x1x2; x1x2) can be resolved as

𝛾2(x1, x2; x1, x2) = 𝛾1(x1; x1)𝛾1(x2; x2) − 𝛾1(x2; x1)𝛾1(x1; x2). (3.59)

Both 𝛾1(x1; x2) and 𝛾2(x1, x2; x1, x2) can further be resolved into 𝛼 and 𝛽 parts [56]. Here we only
need the expression for 𝛾1(x1; x2)

𝛾1(x1; x2) = 𝛾𝛼𝛼1 (x1; x1) + 𝛾
𝛽𝛽

1 (x1; x1). (3.60)

By applying Eq. (3.60) when inserting Eq. (3.59) into the definition of P2(r) (cf. Eq. (3.57) or
Eq. 3.58), the on-top pair density can be resolved (after carrying out the spin integration) into

P2(r) = 2𝜌𝛼(r)𝜌𝛽(r). (3.61)

From Eq. (3.61) a relation between the spin-density 𝜌s(r) in Eq. (3.18) and the on-top pair density
can be established

𝜌s(r) = 𝜌(r)
(

1 −
2P2(r)
𝜌2(r)

) 1
2

. (3.62)

The above expression is the one employed in Ref. [34] to define a multi-configurational DFT model.
We continue discussing this model in the section below.

3.4.2.2 Energy Functional and Excited States with the On-Top Pair Density
With the definition of the on-top pair density in the previous section, we can now define a DFT func-
tional with 𝜌(r) and P2(r). The goal is to handle static correlation through a multi-configurational
wave function, while the functional complies with the symmetry imposed by this wave function
(and is not exposed to symmetry-breaking).

It should be noted, however, using present DFT approximations with an on-top pair density and
a multi-configurational wave function in Eq. (3.44), will lead to double counting of electron cor-
relation effects. This led Truhlar and Gagliardi [34] to suggest an MC-PDFT method where only
the Coulomb energy and the one-electron terms of the Hamiltonian are obtained from the MCSCF
wave function (reducing E′

mc in Eq. (3.44) to E1e
mc, containing only the kinetic and electron-nuclear

attraction parts). This avoids double counting and the remaining energy is obtained from an on-top
pair density functional, for which the MCSCF wave function is employed to obtain 𝜌(r) and P2(r),
and possibly their gradients. Accordingly, the MC-PDFT energy is defined

E[𝜌mc,Pmc
2 ,…] = E1e

mc + EH[𝜌mc] + Eot
xc[𝜌mc,Pmc

2 ,…]

=
∑
pq

hpqDmc
pq + 1

2
∑
pqrs

(pq|rs)Dmc
pq Dmc

rs + Eot
xc[𝜌mc,Pmc

2 ,…]. (3.63)

The superscript “mc” indicates (as in Eq. 3.44) that the density and on-top pair density are obtained
through Eq. (3.18) and Eq. (3.58), i.e., the one- and two-particle density matrices are obtained from
a multi-configurational wave function. Currently, a number of different multi-configurational wave
functions have been combined with MC-PDFT, ranging from CASSCF [34] to RASSCF [113] and
GASSCF [114]. Very recently, a DMRG variant was also reported [115].
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While advantages over traditional DFT functionals are certainly seen for pair-density functionals,
a few comments on their use in MC-PDFT are in order. First, it should be noted that Eot

xc in Eq. (3.63)
is evaluated as a correction after obtaining a density from a multi-configurational wave function;
thus the energy is not obtained self-consistently. A similar procedure has previously been employed
in models that translate the correlation part of Exc in terms of 𝜌(r) and P2(r) [116, 117]. Moreover,
the manipulations used in the previous section to relate spin- and on-top pair densities (Eq. 3.62),
assumed the wave function to be a single determinant. Hence, the use of Eq. (3.62) is not without
issues for multi-configurational wave functions: values of 2P2∕𝜌2 below 1 will generate complex
values for 𝜌s(r). Further, although formal constraints on P2(r)

0 ⩽ P2(r) ⩽
1
2
𝜌2(r), (3.64)

can be derived, the upper limit P2(r) =
1
2
𝜌2(r) is not valid for multi-configurational wave functions

[112]. Hence, a procedure for these cases must be developed. One possibility is to extrapolate the
functional to imaginary values; this route was taken by Mielich et al. [116]. Another method [116] is
to redefine P2(r) to P2(r) = 0 or P2(r) =

𝜌2(r)
2

. The route taken in Ref. [34] uses the P2(r) = 0 strategy
to translate existing functionals from conventional DFT directly according to

Eot
xc[𝜌mc,Pmc

2 ] = Eot
xc

⎡⎢⎢⎢⎢⎢⎣
𝜌mc,

⎧⎪⎪⎨⎪⎪⎩
𝜌

(
1 −

2Pmc
2

𝜌2

) 1
2

if
( 2Pmc

2

(𝜌mc)2

) 1
2 ≤ 1

0 if
( 2Pmc

2

(𝜌mc)2

) 1
2

> 1

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦
. (3.65)

We have for brevity only defined an LDA form, i.e., the functional only depends on 𝜌mc(r) and
Pmc

2 (r). We here follow Ref. [34] and refer to Eq. (3.65) as an on-top pair density translated func-
tional, denoted tDFT. For GGA functionals, one can either employ partly translated functionals,
which only employ a gradient of 𝜌(r) or fully translated functionals [66] with gradients of both 𝜌(r)
and P2(r). A number of examples are listed in Table 3.2.

The MC-PDFT method from Ref. [34] relies on either a state-specific or state-average method
for excited states (cf. Table 3.1). Since the contribution from the exchange–correlation functional
is evaluated after the wave function optimization, the method cannot easily be adapted to a linear
response formalism in its current form. However, methods that include an on-top functional are
not fundamentally restricted to state-specific (or state-average) optimization of excited states. If the
underlying wave function is optimized along with the contribution from the wave function, they
may be adapted to a linear response framework.

3.4.3 Multi-Configurational Density Functional Theory Based on Range-Separation

We previously saw that the range-separation of the two-electron operator (Eq. 3.41) can be applied
to alter the amount of exact exchange, relieving the self-interaction error in approximate DFT
functionals. The method of range-separation has also been suggested as a means to combine a
multi-configurational wave function with DFT. In this way, the long-range interaction can be
described by a multi-configurational wave function [36, 49]. The last method we discuss employs
this strategy and is denoted multi-configurational short-range DFT (MC-srDFT) [50].
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3.4.3.1 Energy Functional and Excited States in Range-Separated Methods
With a range-separated two-electron repulsion operator (cf. Eqs. 3.41 and 3.42), the resulting energy
expression for a multi-configurational wave function is

E = Elr
mc + Esr

H[𝜌
mc] + Esr

xc[𝜌mc
𝛼 , 𝜌mc

𝛽
,…;𝜇]

= ⟨Ψmc|Ĥlr|Ψmc⟩ + 1
2
∑
pqrs

(pq|rs)srDmc
pq Dmc

rs + Esr
xc[𝜌mc

𝛼 , 𝜌mc
𝛽
,…;𝜇]. (3.66)

The long-range Hamiltonian, Ĥlr, and the corresponding energy expression are identical to the
regular MCSCF counterparts, but with the two-electron integrals replaced by integrals with the
long-range part of ĝij in Eq. (3.42). Likewise, the Coulomb term, Esr

H[𝜌
mc], is evaluated with integrals

over the short-range part of ĝij and hence denoted the short-range Coulomb interaction. The wave
function |Ψmc⟩ is thus a multi-configurational wave function (cf. Eq. 3.43) for a fictitious system
with long-range interaction ĝlr

ij and with the same ground-state density as the real system.
The range-separation procedure ensures that double counting of electron correlation is rigor-

ously avoided. Unfortunately, it also means that approximate exchange-correlation functionals
constructed for the regular two-electron repulsion operator cannot be straightforwardly employed.
Tailored functionals are required, as they must be constructed explicitly for a modified two-electron
interaction. We denote these functionals short-range DFT functionals (srDFT). Development of
such functionals is still ongoing, but today both srLDA [36, 67], srGGA [69, 118] and meta-srGGA
[73] variants have been developed (see Table 3.2).

Applications of MC–srDFT have so far mainly employed CASSCF type wave functions
[52, 119–121] for which we use the acronym CAS–srDFT. However, both RASSCF, DMRG [122]
and NEVPT2 [123] variants of multi-configurational wave functions have been implemented.
These works extend previous works, combining srDFT functionals with CI and CC wave functions
[69, 124]. In this context, it should be noted that although the wave function can be of any spin
symmetry S, the current MC–srDFT model is restricted to wave functions corresponding to spin
components MS = S or MS = −S, since only these values give an appropriate spin density to input
in the approximate exchange-correlation functional [37]. Therefore, investigations of dissociation
energies have, as expected, led to considerable error [51] and investigation of excited states (or
ground-states) with spin-couplings resulting in intermediate values of MS are likewise expected
to be problematic. In this regard, the MC-PDFT method is advantageous. It would, therefore, be
interesting to combine the two methods. Such a method was in fact reported recently, although
not with a multi-configurational wave function [125].

Concerning electronically excited states, the MC–srDFT method is unique among multi-
configurational methods, as it is possible to obtain excited states through both a state-specific [50],
state-average [126] and in a multi-configurational generalization of TD-DFT, which we here denote
TD-MC–srDFT [127]. The latter gives rise to equations which are structurally equivalent to Eq.
(3.34), but in which Eq. (3.34)–(3.38) are extended with configurational states and wave function
parameters (for details, see Refs. [119, 127]). From these, it is possible to describe any rank of
excitation with respect to the ground-state, unlike conventional TD-DFT. The TD-MC–srDFT
variant of range-separated multi-configurational DFT is the model that has been most thoroughly
investigated for excited states, and all results presented here (see Section 3.5) are calculated with
this formalism.

3.4.3.2 The Range-Separation Parameter in Excited State Calculations
For multi-configurational DFT, the parameter 𝜇 defined together with Eq. (3.42) determines
the separation between wave function theory and DFT. For the exact functional, the final
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result will be 𝜇-independent. However, for approximate functionals a dependence on 𝜇 enters.
Therefore, the definition of an optimal 𝜇 parameter has been a goal for many studies in the field
[51, 52, 128].

In an in-depth analysis for ground-state energetics of small molecules [51], it has been shown that
an optimal 𝜇 parameter allocates as much dynamical correlation as possible within the DFT func-
tional, while allowing the wave function to describe the remaining (static or dispersion) correlation
effects. By comparison of HF–srDFT and MC–srDFT energies for both multi-configurational and
single-reference systems, values in the vicinity of 𝜇 = 0.4 was found to be optimal for this purpose.
To investigate whether these conclusions could be transfered to excited states, a series of studies
was recently carried out with MC–srDFT [52, 120, 122] and different values of 𝜇 for a set of organic
molecules containing common classes of electronic transitions (e.g., n → 𝜋∗ and 𝜋 → 𝜋∗ transi-
tions). The set of molecules was chosen from the work by by Sauer, Thiel and co-workers [129–132]
who have carried out extensive reference calculations with various electronic structure methods,
including CASPT2, CC2, CC3 and DFT. The mean absolute deviations (MADs) for CAS–srDFT
with respect to the other wave function methods are shown in Figure 3.1. The figure also shows
the MAD against the compilation of best theoretical estimates from Ref. [129]. Note that in the lim-
its of 𝜇 → ∞ and 𝜇 → 0, the MC–srDFT method reduces to pure MCSCF or pure DFT, respectively.
These limits are also included in Figure 3.1.

From Figure 3.1, it is clear that values between 𝜇 = 0.3 to 𝜇 = 0.5 gives the best correspondence
with the literature results. Hence, this range is also optimal for excitation energies (at least for the

Figure 3.1 MADs for vertical excitation energies calculated with TD-CAS–srPBE with various 𝜇-values
against CC2, CC3, CASPT2 and the best estimates from Ref. [129]. Reproduced from Ref. [52].
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set of organic molecules investigated). Initial studies for MnO4
− suggest that similar values also

work well for transition metal complexes, but here studies have been more sparse (see Section 3.5).
The two methods MRCI/DFT and MC-PDFT have also been investigated for some of the molecules
from Refs. [129–132]. We discuss these results in more detail below.

3.5 Illustrative Examples

In this section we focus on the performance of the three methods, MRCI/DFT, MC-PDFT
and MC–srDFT. Our focus here is on performance for vertical excitation energies for which a
wealth of data are available in the literature. We have selected a few recent studies on excited
states of small to medium sized organic molecules. Although these systems in most cases do
not posses multi-configurational ground states, they occasionally still can cause issues for
TD-DFT. For instance, among the investigated molecules are linear polyenes whose 21Ag states
are predominantly of double-excitation character. As seen from the discussion in the previous
sections, this excitation class cannot be described by conventional TD-DFT.

In addition to simple organic molecules, we also compare the performance of the three methods
for MnO4

−, which is a notoriously difficult case, known to posses multi-configurational ground
and excited states.

3.5.1 Excited States of Organic Molecules

In Table 3.3 we have compiled vertical excitation energies a few molecules selected from the
larger investigation in Refs. [129–132]. Columns 3–6 contain results from CAS–srPBE [120, 122],
CAS–tPBE [48], MRCI/DFT [130] and the conventional PBE functional [48]. First, it should be
noted that the computational procedures are not entirely uniform for the methods in Table 3.3.
Apart from occasional use of different basis sets, the CAS–srPBE excitation energies as well as exci-
tation energies from PBE are calculated from a linear response formalism (i.e., TD-MC–srDFT and
TD-DFT). The same is true for the reference CC2 excitation energies [129] in column 8, whereas
the CASPT2 reference excitation energies (column 7) [129] are obtained from a state-average
formalism. Similarly, the MRCI/DFT and CAS-tPBE results are obtained from state-average or
state-specific optimizations. With this precaution in mind, we can comment on a few trends.
Overall, all methods that combine DFT and a multi-configurational wave function compare better
to the reference CC2 and CASPT2 values than pure DFT. Although the test set is still somewhat
small, a trend that can be inferred is that PBE generally underestimates the excitation energies,
compared to CASPT2 and CC2. The excitation energies generally increase when combining DFT
with a multi-configurational wave function (for all three methods) and are in most cases closer
to CASPT2 and CC2. In fairness, it should be mentioned that using a hybrid functional is also
expected to result in higher excitation energies from TD-DFT.

A few of the systems deserve closer investigation. The 21Ag(𝜋 → 𝜋∗) states in ethene, butadiene
and hexatriene are examples of doubly excited states, which are not included in regular TD-DFT,
neither for hybrid nor for non-hybrid functionals. Unfortunately, no CAS–tPBE results were
reported for this state in Ref. [48]. The MRCI/DFT is slightly off the CASPT2 values, while
CAS–srPBE is closer. For the 21Ag states also the reference values from CASPT2 and CC2 are
rather different. The former is expected to be most accurate for excitations with a large degree of
double excitation character.
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Table 3.3 Excitation energies (in eV) from taken from the literature. The CAS–srDFT results are from
Refs. [120, 122], the CAS–tPBE and PBE results from Ref. [48] and the MRCI/DFT results from Ref. [130].
The reference CASPT2 and CC2 values were taken from Ref. [129].

Molecule State CAS–srPBE CAS–tPBE MRCI/DFT PBE CASPT2 CC2

Ethene 11B1u(𝜋 → 𝜋∗) 7.87 6.77 7.96 7.35 8.62 8.40
Butadiene 11Bu(𝜋 → 𝜋∗) 6.10 6.03 6.02 5.41 6.47 6.49

21Ag(𝜋 → 𝜋∗) 6.94 6.18 6.63 7.63
Hexatriene 11Bu(𝜋 → 𝜋∗) 5.09 5.48 4.95 4.42 5.31 5.41

21Ag(𝜋 → 𝜋∗) 5.73 4.92 5.42 6.67
Benzene 11B2u(𝜋 → 𝜋∗) 5.87 5.09 5.04 5.14 5.05 5.27
Naphthalene 11B3u(𝜋 → 𝜋∗) 4.60 4.40 4.10 4.02 4.24 4.45
Furan 11B2(𝜋 → 𝜋∗) 6.42 6.51 6.33 5.87 6.43 6.75
Pyridine 11B1(n → 𝜋∗) 5.08 4.80 5.12 4.32 5.14 4.75
Pyrazinea 11B3u(n → 𝜋∗) 4.18 3.86 4.00 3.52 4.12 4.26
Pyrimidine 11B1(n → 𝜋∗) 4.61 4.06 4.36 3.75 4.44 4.49
Pyridazine 11B1(n → 𝜋∗) 3.83 3.24 3.63 3.11 3.78 3.90
s-Tetrazine 11B3u(n → 𝜋∗) 2.50 2.48 2.35 1.84 2.24 2.47
Formaldehyde 11A2(n → 𝜋∗) 3.81 3.55 3.71 3.77 3.99 4.09
Acetone 11A2(n → 𝜋∗) 4.31 4.35 4.23 4.20 4.44 4.52

The linear polyenes comprise an important class of organic molecules, and has been employed
as simple model systems for carotenoids in photosynthetic pigments and light-sensor proteins
such as rhodopsins. These biologically relevant systems also have low-lying excited states with
double-excitation character [133]. Recent studies showed that MC–srDFT indeed could describe
these states correctly [119]. Notably, part of these studies were carried out employing advanced
embedding models to capture the effect of the protein [126].

Finally, we note that CT excitations have been investigated for both the MC-PDFT [113, 134] and
MC–srDFT [119] methods, and both show marked improvement, compared to conventional DFT.

3.5.2 Excited States for a Transition Metal Complex

We now move to a more difficult system to illustrate the advantages of multi-configurational DFT.
For this purpose, we chose the permanganate ion which is among the few transition metal com-
plexes that has been investigated with all of the three multi-configurational DFT methods we con-
sider here. The permanganate ion is a notorious multi-configurational system [135] as has been
revealed by a number of theoretical studies on the absorption spectrum: a selection of studies is pro-
vided in Refs. [136–148] (see Ref. [144] for a short historical overview). The absorption spectrum
has been the subject of some controversy: a well-resolved crystal spectrum was obtained in 1967
[149], but a number of different assignments [138–140, 142, 147] have been obtained from methods
based on a single-reference wave function. Multi-configurational methods have been hampered by
fairly large required active space, estimated to be 24 electrons in 17 orbitals [5, 150, 151]. A study on
the MnO4

− electronic absorption spectrum from 2013 managed to reach the required active space
with RASPT2 [152] and we use this as reference here.
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Table 3.4 Excitation energies (in eV) the lowest intense transitions of the MnO4
− ion in vacuum from

selected works. The CAS–srPBE, RAS–tPBE and MRCI/DFT energies are taken from Ref. [121], Ref. [155] and
[154], respetively. The DFT (SOAP) and RASPT2 results are from Ref. [152]. The experimental values are
from the crystal spectrum obtained in Ref. [149].

State CAS(14,12)–srPBE RAS(24,17)-tPBE MRCI(10,10)/DFT SOAP RAS(24,17)PT2 Exp.

11T2 2.21 2.22 2.80 3.06 2.33 2.2/2.3
21T2 3.61 3.29 4.23 4.11 3.53 3.6
31T2 4.01 3.90 4.84 4.97 4.20 4.1
41T2 5.13 – – 6.06 5.71 ≈5.4

Several studies have also applied TD-DFT, but the method is noted to significantly overestimate
the absolute excitation energies [141, 143, 144], although recent development in so-called con-
stricted variational DFT seems to offer some improvement [148].

We have compiled results from the three multi-configurational DFT methods together with the
RASPT2 and DFT results from Ref. [152] in Table 3.4. The experimental values are taken from
the crystal spectrum [149]. As noted in Ref. [121] the marked vibronic progressions in the exper-
imental UV-vis spectrum make the band-maxima somewhat ambiguous, which introduces some
uncertainty in the comparison between theory and experiment. Slightly different experimental val-
ues therefore exist in the literature, e.g., the first state in Refs. [145, 148, 152] seems to correspond
to the 𝑣0 → 𝑣′2 peak, whereas others [137, 139, 140, 143, 144, 147, 153] report the band-maximum as
the 𝑣0 → 𝑣′1 peak. Following Ref. [121], we have reported both values in Table 3.4 although using
any of the two values will not affect the conclusions: both CAS–srPBE and CAS–tPBE compare well
to RASPT2 and to the experimental values. The two methods do not suffer from the overestimation
seen for other DFT models. The MRCI/DFT results are in this particular case not a significant
improvement to DFT, as they also overestimate the transitions somewhat. In Ref. [154], this was
speculated to be due to a too small active space. In this regard, CAS-srDFT usually offers an advan-
tage: unlike CAS-tPBE and CASPT2 (and the corresponding RAS variants) CAS–srDFT obtains
dynamical and static correlation simultaneously, whereas both the CAS-tPBE and CASPT2 meth-
ods obtain dynamical correlation after initially optimization the CAS wave function. This difference
means that CAS-srDFT often can be employed with much smaller CAS expansions, which is also
evident from Table 3.4.

3.6 Outlook

This chapter has surveyed the current status in multi-configurational DFT with emphasis on
three methods. A number of issues with conventional (single determinant) DFT for calcula-
tion of excited states have been summarized. Many of these issues may be solved by moving to a
multi-configurational reference state. The main challenge when combining a multi-configurational
wave function and DFT is avoiding double counting of electron correlation, while maintaining an
efficient and accurate scheme. The three methods summarized here are chosen as they illustrate
different strategies to mimimize the double counting issue. The first method (MRCI/DFT) is
semi-empirical and uses a fitting procedure when combining an MRCI Hamiltonian with DFT.
Although this does not rigorously remove double counting, it has turned out to work well for a
number of cases, including cases where DFT usually fails. The two remaining schemes rely on
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pair-density functionals or range-separation. While these schemes are more elaborate and do
not rely on fitting, they also face larger challenges in their development. A particular challenge
is that they require tailored functionals, and improving the employed functionals will still be
an important branch of development over the coming years. Still, even with current functionals
the methods have shown significant improvements over conventional DFT, both for excited
states of organic chromophores and for transition metal complexes. Another important branch of
development will be to extend the methods to the condensed phase. This work has been initiated
for some of the methods, but is still in its infancy.

Acknowledgments

EDH thanks the Carlsberg foundation, the Villum Young Investigator Program (Grant No. 29412),
and the European Commission (MetEmbed, project 745967) for funding.

References

1 Runge, E. and Gross, E.K.U. (1984). Density-functional theory for time-dependent systems.
Phys. Rev. Lett. 52: 997–1000.

2 Marques, M.A.L. and Gross, E.K.U. (2004). Time-dependent density functional theory. Annu.
Rev. Phys. Chem. 55: 427–455.

3 Casida, M.E. and Huix-Rotllant, M. (2012). Progress in time-dependent density-functional
theory. Annu. Rev. Phys. Chem. 63: 287–323.

4 Adamo, C. and Jacquemin, D. (2013). The calculations of excited-state properties with
time-dependent density functional theory. Chem. Soc. Rev. 42: 845–856.

5 Veryazov, V., Malmqvist, P.-Å., and Roos, B.O. (2011). How to select active space for multi-
configurational quantum chemistry? Int. J. Quantum Chem. 111: 3329–3338.

6 Szalay, P.G., Müller, T., Gidofalvi, G. et al. (2012). Multiconfiguration self-consistent field and
multireference configuration interaction methods and applications. Chem. Rev. 112: 108–181.

7 Maitra, N.T., Zhang, F., Cave, R.J., and Burke, K. (2004). Double excitations within
time-dependent density functional theory linear response. J. Chem. Phys. 120: 5932–5937.

8 Elliot, P., Goldson, S., Canahui, C., and Maitra, N.T. (2011). Perspectives on double-excitations
in TDDFT. Chem. Phys. 391: 110–119.

9 Tozer, D. and Handy, N.C. (1998). Improving virtual Kohn-Sham orbitals and eigenvalues:
application to excitation energies and static polarizabilities. J. Chem. Phys. 109: 10180–10189.

10 Liao, M.-S., Lu, Y., and Scheiner, S. (2003). Performance assessment of density-functional
methods for study of charge-transfer complexes. J. Comput. Chem. 24: 623–631.

11 Fabiano, E., Sala, F.D., Barbarella, G. et al. (2006). Optical properties of N-succinimidyl bithio-
phene and the effects of the binding to biomolecules: comparison between coupled-cluster and
time-dependent density functional theory calculations and experiments. J. Phys. Chem. B 110:
18651–18660.

12 Perpetè, E., Preat, J., André, J.-M., and Jacquemin, D. (2006). An ab initio study of the absorp-
tion spectra of indirubin, isoindigo, and related derivatives. J. Phys. Chem. A 110: 5629–5635.

13 Dreuw, A. and Head-Gordon, M. (2004). Failure of time-dependent density functional the-
ory for long-range charge transfer excited States: the zincbacteriochlorin-bacteriochlorin and
bacteriochlorophyll-spheroidene complexes. J. Am. Chem. Soc. 126: 4007–4016.



�

� �

�

68 3 Multi-Configurational Density Functional Theory: Progress and Challenges

14 Marti, K.H. and Reiher, M. (2010). The density matrix renormalization group algorithm in
quantum chemistry. Z. Phys. Chem. 224: 583–599.

15 Chan, G.K.L. and Sharma, S. (2011). The density matrix renormalization group in quantum
chemistry. Annu. Rev. Phys. Chem. 62: 465–481.

16 Kurashige, Y. (2014). Multireference electron correlation methods with density matrix renor-
malisation group reference functions. Mol. Phys. 112: 1485–1494.

17 Knecht, S., Hedegård, E.D., Keller, S. et al. (2016). New approaches for ab initio calculations of
molecules with strong electron correlation. Chimia 70: 244–251.

18 Filippi, C., Assaraf, R., and Moroni, S. (2016). Simple formalism for efficient derivatives and
multideterminant expansions in quantum Monte Carlo. J. Chem. Phys. 144: 194105.

19 Li Manni, G., Smart, S.D., and Alavi, A. (2016). Combining the complete active space
self-consistent field method and the full configuration interaction quantum Monte Carlo
within a super-CI framework, with application to challenging metal-porphyrins. J. Chem.
Theory Comput. 12: 1245–1258.

20 Thomas, R.E., Sun, Q., Alavi, A., and Booth, G.H. (2015). Stochastic multiconfigurational
self-consistent field theory. J. Chem. Theory Comput. 11: 5316–5325.

21 Olsen, J., Roos, B.O., Jørgensen, P., and Jensen, H.J.Å. (1988). Determinant based
configuration-interaction algorithms for complete and restricted configuration-interaction
spaces. J. Chem. Phys. 89: 2185–2192.

22 Fleig, T., Olsen, J., and Marian, C.M. (2001). The generalized active space concept for the rel-
ativistic treatment of electron correlation. I. Kramers-restricted two-component configuration
interaction. J. Comp. Phys. 114: 4775.

23 Thyssen, J., Fleig, T., and Jensen, H.J.Å. (2008). A direct relativistic four-component multicon-
figuration self-consistent-field method for molecules. J. Comp. Phys. 129: 034109.

24 Ma, D., LI Manni, G., and Gagliardi, L. (2011). The generalized active space concept in multi-
configurational self-consistent field methods. J. Chem. Phys. 135: 044128.

25 Andersson, K., Malmqvist, P.-Å., Roos, B.O. et al. (1990). Second-order perturbation theory
with a CASSCF reference function. J. Phys. Chem. 94: 5483–5488.

26 Andersson, K., Malmqvist, P.-Å., and Roos, B.O. (1992). Second-order perturbation theory with
a complete active space self-consistent field reference function. J. Chem. Phys. 96: 1218–1226.

27 Malmqvist, P.-Å., Pierloot, K., Shahi, A.R.M. et al. (2008). The restricted active space followed
by second-order perturbation theory method: theory and application to the study of CuO2 and
Cu2O2 systems. J. Chem. Phys. 128: 204109.

28 Ma, D., Li Manni, G., Olsen, J., and Gagliardi, L. (2016). Second-order perturbation theory
for generalized active space self-consistent-field wave functions. J. Chem. Theory Comput. 12:
3208–3213.

29 Angeli, C., Cimiraglia, R., Evangelisti, S. et al. (2001). Introduction of n-electron valence states
for multireference perturbation theory. J. Chem. Phys. 114: 10252–10264.

30 Ghosh, S., Verma, P., Cramer, C.J. et al. (2018). Combining wave function methods with
density functional theory for excited states. Chem. Rev. 118: 7249–7292.

31 Lischka, H., Nachtigallova, D., Aquino, A.J.A. et al. (2018). Multireference approaches for
excited states of molecules. Chem. Rev. 118: 7293–7361.

32 Grimme, S. and Waletzke, M. (1999). A combination of Kohn-Sham density functional theory
and multi-reference configuration-interaction methods. J. Chem. Phys. 111: 5645–5655.

33 Kleinschmidt, M., Marian, C.M., Waletzke, M., and Grimme, S. (2009). Parallel multireference
configuration interaction calculations on mini-𝛽-carotenes and 𝛽-carotene. J. Chem. Phys. 130:
044708.



�

� �

�

References 69

34 Li Manni, G., Carlson, R.K., Luo, S. et al. (2014). Multiconfiguration pair-density functional
theory. J. Chem. Theory Comput. 10: 3669–3680.

35 Gagliardi, L., Truhlar, D.G., Li Manni, G. et al. (2017). Multiconfiguration pair-density func-
tional theory: a new way to treat strongly correlated systems. Acc. Chem. Res. 50: 66–73.

36 Savin, A. and Flad, H.-J. (1995). Density functionals for the Yukawa electron-electron interac-
tion. Int. J. Quantum Chem. 56: 327–332.

37 Hedegård, E.D., Toulouse, J., and Jensen, H.J.Å. (2018). Multiconfigurational short-range
density-functional theory for open-shell systems. J. Chem. Phys. 148: 214103.

38 Theophilou, A.K. (1972). The energy density functional formalism for excited states. J. Phys. C
12: 5419–5430.

39 Gross, E.K.U., Oliveira, L.N., and Kohn, W. (1988). Rayleigh-Ritz variational principle for
ensembles of fractionally occupied states. Phys. Rev. A 37: 2805–2808.

40 Gross, E.K.U., Oliveira, L.N., and Kohn, W. (1988). Density-functional theory for ensembles of
fractionally occupied states. I. Basic formalism. Phys. Rev. A 37: 2809–2820.

41 Pastorczak, E., Gidopoulos, N.I., and Pernal, K. (2013). Calculation of electronic excited states
of molecules using the Helmholtz free-energy minimum principle. Phys. Rev. A 87: 062501.

42 Franck, O. and Fromager, E. (2014). Generalized adiabatic connection in ensemble
density-functional theory for excited states: example of the H2 molecule. Mol. Phys. 112:
1684–1701.

43 Filatov, M. and Shaik, S. (2014). A spin-restricted ensemble-referenced Kohn-Sham method
and its application to diradicaloid situations. Chem. Phys. Lett. 304: 429–437.

44 Filatov, M., Martinez, T.J., and Kim, K.S. (2016). Using the GVB Ansatz to develop ensemble
DFT method for describing multiple strongly correlated electron pairs. Phys. Chem. Chem.
Phys. 18: 21040–21050.

45 Filatov, M., Liu, F., Kim, K.S., and Martínez, T.J. (2016). Self-consistent implementation of
ensemble density functional theory method for multiple strongly correlated electron pairs.
J. Chem. Phys. 145: 244104.

46 Filatov, M. (2013). Assessment of density functional methods for obtaining geometries at coni-
cal intersections in organic molecules. J. Chem. Theory Comput. 9: 4526–4541.

47 Marian, C.M. and Gilka, N. (2008). Performance of the density functional theory/
multireference configuration interaction method on electronic excitation of extended-systems.
J. Chem. Theory Comput. 4: 1501–1515.

48 Hoyer, C.E., Ghosh, S., Truhlar, D.G., and Gagliardi, L. (2016). Multiconfiguration pair-density
functional theory is as accurate as CASPT2 for electronic excitation. J. Phys. Chem. Lett. 7:
586–591.

49 Savin, A. (1996). On degeneracy, near degeneracy and density functional theory. In: Recent
Developments of Modern Density Functional Theory (ed. J.M. Seminario), 327–357. Amsterdam:
Elsevier.

50 Pedersen, J.K. (2004). Description of Correlation and Relativistic Effects in Calculations of Molec-
ular Properties, Ph.D. thesis, University of Southern Denmark.

51 Fromager, E., Toulouse, J., and Jensen, H.J.Å. (2007). On the universality of the long-/short
range separation in multiconfigurational density-functional theory. J. Chem. Phys. 126: 074111.

52 Hubert, M., Jensen, H.J.Å., and Hedegård, E.D. (2016). Excitation spectra of nucleobases with
multiconfigurational density functional theory. J. Phys. Chem. A 120: 36–43.

53 Helgaker, T., Jørgensen, P., and Olsen, J. (2004). Molecular Electronic-Structure Theory. Wiley.
54 Saue, T. and Helgaker, T. (2002). Four-component relativistic Kohn-Sham theory. J. Comput.

Chem. 23: 814–823.



�

� �

�

70 3 Multi-Configurational Density Functional Theory: Progress and Challenges

55 Sałek, P., Vahtras, O., Helgaker, T., and Ågren, H. (2002). Density-functional theory of linear
and nonlinear time-dependent molecular properties. J. Chem. Phys. 117: 9630–9645.

56 Parr, R. and Yang, W. (1989). Density-Functional Theory of Atoms and Molecules. Oxford
University Press.

57 Vosko, S.H., Wilk, L., and Nusair, M. (1980). Accurate spin-dependent electron liquid correla-
tion energies for local spin density calculations: a critical analysis. Can. J. Phys. 58: 1200–1211.

58 Perdew, J.P. and Wang, Y. (1992). Accurate and simple analytic representation of the electron-
gas correlation energy. Phys. Rev. B 45: 13244–13249.

59 Gunnarson, O. and Lundqvist, B.I. (1976). Exchange and correlation in atoms, molecules, and
solids by the spin-density-functional formalism. Phys. Rev. B 13: 4274–4298.

60 Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic
behavior. Phys. Rev. A 38: 3098–3100.

61 Lee, C., Yang, W., and Parr, R.G. (1988). Development of the Colle-Salvetti correlation-energy
formula into a functional of the electron density. Phys. Rev. B 37: 785–789.

62 Perdew, J.P. (1991). Unified theory of exchange and correlation beyond the local density
approximation. In: Electronic Structure of Solids ‘91 (eds. P. Ziesche and H. Eschrig), 11–20.
Berlin: Akademie Verlag.

63 Perdew, J.P., Burke, K., and Ernzerhof, M. (1996). Generalized gradient approximation made
simple. Phys. Rev. Lett. 77: 3865–3868.

64 Becke, A.D. (1993). Density-functional thermochemistry. III. The role of exact exchange.
J. Chem. Phys. 98: 5648–5652.

65 Tao, J., Perdew, J.P., Staroverov, and Scuseria, G.E. (2003). Climbing the density functional
ladder: nonempirical meta-generalized gradient approximation designed for molecules and
solids. Phys. Rev. Lett. 91: 146401.

66 Carlson, R.K., Truhlar, D.G., and Gagliardi, L. (2015). Multiconfiguration pair-density func-
tional theory: a fully translated gradient approximation and its performance for transition
metal dimers and the spectroscopy of Re2Cl8

2−. J. Chem. Theory Comput. 11: 4077–4085.
67 Toulouse, J., Savin, A., and Flad, H.-J. (2004). Short-range exchange-correlation energy of a

uniform electron gas with modified electron-electron interaction. Int. J. Quantum Chem. 100:
1047–1056.

68 Paziani, S., Moroni, S., Gori-Giorgi, P., and Bachelet, G.B. (2006). Local-spin-density functional
for multideterminant density functional theory. Phys. Rev. B 73: 155111.

69 Goll, E., Werner, H.-J., and Stoll, H. (2005). A short-range gradient-corrected density func-
tional in long-range coupled-cluster calculations for rare gas dimers. Phys. Chem. Chem. Phys.
7: 3917–3923.

70 Heyd, J., Scuseria, G.E., and Ernzerhof, M. (2003). Hybrid functionals based on a screened
Coulomb potential. J. Chem. Phys. 118: 8207–8215.

71 Heyd, J. and Scuseria, G.E. (2004). Assessment and validation of a screened Coulomb hybrid
density functional. J. Chem. Phys. 120: 7274–7280.

72 Toulouse, J., Colonna, F., and Savin, A. (2004). Long-range-short-range separation of the
electron-electron interaction in density-functional theory. Phys. Rev. A 70: 062505.

73 Goll, E., Ernst, M., Moegle-Hofacker, F., and Stoll, H. (2009). Development and assessment of
a short-range meta-GGA functional. J. Chem. Phys. 130: 234112.

74 Casida, M.E. (1996). Time-dependent density functional response theory for molecules.
In: Recent Advances in Density Functional Methods. Part I, vol. 1 (ed. D.P. Chong), 155–192.
World Scientific.



�

� �

�

References 71

75 Bauernschmitt, R. and Ahlrichs, R. (1995). Treatment of electronic excitations within the
adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 256:
454–464.

76 Linderberg, J. and Öhrn, Y. (1973). Propagators in Quantum Chemistry. London: Academic
Press.

77 Zubarev, D.L. (1974). Nonequilibrium Statistical Thermodynamics. New York: Consultant
Bureau.

78 Olsen, J. and Jørgensen, P. (1985). Linear and non-linear response functions for an exact state
and for an MCSCF state. J. Chem. Phys. 82: 3235–3264.

79 Sałek, P., Helgaker, T., and Saue, T. (2005). Linear response at the 4-component relativistic
density-functional level: application to the frequency-dependent dipole polarizability of Hg,
AuH and PtH2. Chem. Phys. 311: 187–201.

80 Neugebauer, J., Baerends, E.J., and Nooijen, M. (2004). Vibronic coupling and double excita-
tions in linear response time-dependent density functional calculations: dipole-allowed states
of N2. J. Chem. Phys. 121: 6155–6166.

81 Burke, K. (2012). Perspective on density functional theory. J. Chem. Phys. 136: 150901.
82 Eriksen, J.J., Sauer, S.P.A., Mikkelsen, K.V. et al. (2013). Failures of TDDFT in describing

the lowest intramolecular charge-transfer excitation in para-nitroaniline. Mol. Phys. 111:
1235–1248.

83 Tawada, Y., Tsuneda, T., and Yanagisawa, S. (2004). A long-range-corrected time-dependent
density functional theory. J. Chem. Phys. 120: 8425–8433.

84 Yanai, T., Tew, D.P., and Handy, N.C. (2004). A new hybrid exchange-correlation functional
using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393: 51–57.

85 Koch, W. and Holthausen, M.C. (2008). A Chemist’s Guide to Density Functional Theory, 2 ed.
Wiley.

86 Neese, F. (2004). Definition of corresponding orbitals and the diradical character in broken
symmetry DFT calculations on spin coupled systems. J. Phys. Chem. Solids 65: 781–785.

87 Seminario, J.M. (1994). A study of small systems containing H and O atoms using nonlocal
functionals: comparisons with ab initio and experiment. Int. J. Quantum Chem. S28: 655–666.

88 Perdew, J.P., Savin, A., and Burke, K. (1995). Escaping the symmetry dilemma through a
pair-density of spin-density functional theory. Phys. Rev. A 51: 4531–4541.

89 Löwdin, P.-O. (1955). Quantum theory of many-particle systems. I. Physical interpretations by
means of density matrices, natural spin-orbitals, and convergence problems in the method of
configurational interaction. Phys. Rev. 97: 1474–1489.

90 Löwdin, P.-O. (1955). Quantum theory of many-particle systems. II. Study of the ordinary
Hartree-Fock approximation. Phys. Rev. 97: 1474–1489.

91 Delley, B., Freeman, A.J., and Ellis, D.E. Metal-metal bonding in Cr-Cr and Mo-Mo dimers:
another success of local spin-density theory. Phys. Rev. Lett. 50: 488–491.

92 Dunlap, B.I. (1983). X𝛼, Cr2, and the symmetry dilemma. Phys. Rev. A 27: 2217–2219.
93 Jacob, C.R. and Reiher, M. (2012). Spin in density-functional theory. Int. J. Quantum Chem.

112: 3661–3684.
94 Lie, G.C. and Clement, E. (1974). Study of the electronic structure of molecules. XXI. Correla-

tion energy corrections as a functional of the Hartree–Fock density and its application to the
hydrides of the second row atoms. J. Chem. Phys. 60: 1275–1287.

95 Lie, G.C. and Clement, E. (1974). Study of the electronic structure of molecules. XXII. Correla-
tion energy corrections as a functional of the Hartree Fock type density and its application to
the homonuclear diatomic molecules of the second row atoms. J. Chem. Phys. 60: 1288–1296.



�

� �

�

72 3 Multi-Configurational Density Functional Theory: Progress and Challenges

96 Malcolm, N.O. and McDouall, J.J. (1998). A simple scaling for combining multiconfigurational
wave functions with density functionals. Chem. Phys. Lett. 282: 121–127.

97 Wetmore, R.W. and Segal, G.A. (1975). Efficient generation of configuration interaction ele-
ments. Chem. Phys. Lett. 36: 478–483.

98 Marian, C.M., Heil, A., and Kleinschmidt, M. (2019). The DFT/MRCI method. WIREs Comput.
Mol. Sci. 9: e1394.

99 Beck, E.V., Stahlberg, E.A., Burggraf, L.W., and Blaudeau, J.-P. (2008). A graphical unitary
group approach-based hybrid density functional theory multireference configuration interac-
tion method. Chem. Phys. 349: 158–169.

100 Lyskov, I., Kleinschmidt, M., and Marian, C.M. (2016). Redesign of the DFT/MRCI Hamilto-
nian. J. Chem. Phys. 144: 034104.

101 McWeeny, R. (1959). The density matrix in many-electron quantum mechanics. I. Generalized
product functions. Factorization and physical interpretation of the density matrices. Proc. R.
Soc. Lond. A 253: 242–259.

102 McWeeny, R. (1960). Some recent advances in density matrix theory. Rev. Mod. Phys. 32:
335–369.

103 McWeeny, R. (2004). Spins in Chemistry. Dover.
104 McWeeny, R. and Sutcliffe, B.T. (1969). Methods of Molecular Quantum Mechanics. Academic

Press London.
105 Gräfenstein, J. and Cremer, D. (2000). The combination of density functional theory with mul-

ticonfiguration methods–CAS-DFT. Chem. Phys. Lett. 316: 569–577.
106 Gräfenstein, J. and Cremer, D. (2005). Development of a CAS-DFT method covering non-

dynamical and dynamical electron correlation in a balanced way. Mol. Phys. 103: 279–308.
107 Gusarov, S., Malmqvist, P.-Å., and Lindh, R. (2004). Using on-top pair density for construction

of correlation functionals for multideterminant wave functions. Mol. Phys. 102: 2207–2216.
108 Takeda, R., Yamanaka, S., and Yamaguchi, K. (2004). Approximate on-top pair density into

one-body functions for CAS-DFT. Chem. Phys. Lett. 96: 463–473.
109 Moscarda, F. and San-Fabian, E. (1991). Density-functional formalism and the two-body prob-

lem. Phys. Rev. A 44: 1549–1553.
110 Ziegler, T., Rauk, A., and Baerends, E.J. (1977). On the calculation of multiplet energies by the

Hartree-Fock- Slater method. Theoret. Chim. Acta 271: 261–271.
111 Perdew, J.P., Ernzerhof, M., Burke, K., and Savin, A. (1997). On-top pair-density interpretation

of spin density functional theory, with applications to magnetism. Int. J. Quantum Chem. 61:
197–205.

112 Becke, A.D., Savin, A., and Stoll, H. (1995). Extension of the local-spin-density exchange-
correlation approximation to multiplet states. Theor. Chim. Acta 91: 147–156.

113 Presti, D., Truhlar, D.G., and Gagliardi, L. (2018). Intramolecular charge transfer and local
excitation in organic fluorescent photoredox catalysts explained by RASCI-PDFT. J. Phys.
Chem. C 122: 12061–12070.

114 Ghosh, S., Cramer, C.J., Truhlar, D.G., and Gagliardi, L. (2017). Generalized-active-space
pair-density functional theory: an efficient method to study large, strongly correlated, conju-
gated systems. Chem. Sci. 8: 2741–2750.

115 Sharma, P., Bernales, V., Knecht, S., Truhlar, D.G., and Gagliardi, L. (2019). Density matrix
renormalization group pair-density functional theory (DMRG-PDFT): singlet-triplet gaps in
polyacenes and polyacetylenes. Chem. Sci. 10: 1716–1723.

116 Miehlich, B., Stoll, H., and Savin, A. (1997). A correlation-energy density functional for multi-
determinantal wave functions. Mol. Phys. 91: 527–536.



�

� �

�

References 73

117 McDouall, J.J. (2003). Combining two-body density functionals with multiconfigurational wave
functions: diatomic molecules. Mol. Phys. 101: 361–371.

118 Goll, E., Werner, H.-J., Stoll, H. et al. (2006). A short-range gradient-corrected spin density
functional in combination with long-range coupled-cluster methods: application to alkali-metal
rare-gas dimers. Chem. Phys. 329: 276–282.

119 Hedegård, E.D., Heiden, F., Knecht, S. et al. (2013). Assessment of charge-transfer excitations
with time-dependent, range-separated density functional theory based on long-range MP2 and
multiconfigurational self-consistent field wave functions. J. Chem. Phys. 139: 184308.

120 Hubert, M., Hedegård, E.D., and Jensen, H.J.Å. (2016). Investigation of multiconfigurational
short-range density functional theory for electronic excitations in organic molecules. J. Chem.
Theory Comput. 12: 2203–2213.

121 Olsen, J.M.H. and Hedegård, E.D. (2017). Modeling the absorption spectrum of the perman-
ganate ion in vacuum and in aqueous solution. Phys. Chem. Chem. Phys. 19: 15870–15875.

122 Hedegård, E.D. (2016). Assessment of oscillator strengths with multiconfigurational
short-range density functional theory for electronic excitations in organic molecules. Mol.
Phys. 115: 26–38.

123 Fromager, E., Cimiraglia, R., and Jensen, H.J.Å. (2010). Merging multireference perturbation
and density-functional theories by means of range separation: potential curves for Be2, Mg2,
and Ca2. Phys. Rev. A 81: 024502.

124 Leininger, T., Stoll, H., Werner, H.-J., and Savin, A. (1997). Combining long-range configura-
tion interaction with short-range density functionals. Chem. Phys. Lett. 275: 151–160.

125 Garza, A.J., Bulik, I.W., Henderson, T.M., and Scuseria, G.E. (2015). Range separated
hybrids of pair coupled cluster doubles and density functionals. Phys. Chem. Chem. Phys.
17: 22412–22422.

126 Hedegård, E.D., Olsen, J.M.H., Knecht, S. et al. (2015). Polarizable embedding with a multi-
configuration short-range density functional theory linear response method. J. Chem. Phys.
142: 114113.

127 Fromager, E., Knecht, S., and Jensen, H.J.Å. (2013). Multi-configuration time-dependent
density-functional theory based on range separation. J. Chem. Phys. 138: 084101.

128 Fromager, E., Réal, F., Wåhlin, P. et al. (2009). On the universality of the long-/short-range
separation in multiconfigurational density-functional theory. II. Investigating f 0 actinide
species. J. Chem. Phys. 131: 054107.

129 Schreiber, M., Silva-Junior, M.R., Sauer, S.P.A., and Thiel, W. (2008). Benchmarks for electron-
ically excited states: CASPT2, CC2, CCSD, and CC3. J. Chem. Phys. 128: 134110.

130 Silva-Junior, M.R., Schreiber, M., Sauer, S.P.A., and Thiel, W. (2008). Benchmarks for electron-
ically excited states: time-dependent density functional theory and density functional theory
based multireference configuration interaction. J. Chem. Phys. 129: 104103.

131 Silva-Junior, M.R., Schreiber, M., Sauer, S.P.A., and Thiel, W. (2010). Basis set effects on cou-
pled cluster benchmarks of electronically excited states: CC3, CCSDR(3) and CC2. Mol. Phys.
108: 453–465.

132 Silva-Junior, M.R., Schreiber, M., Sauer, S.P.A., and Thiel, W. (2010). Benchmarks of electroni-
cally excited states: basis set effects on CASPT2 results. J. Chem. Phys. 133: 174318.

133 König, C. and Neugebauer, J. (2012). Quantum chemical description of absorption properties
and excited-state processes in photosynthetic systems. ChemPhysChem 13: 386–425.



�

� �

�

74 3 Multi-Configurational Density Functional Theory: Progress and Challenges

134 Ghosh, S., Sonnenberger, A.L., Hoyer, C.E. et al. (2015). Multiconfiguration pair-density
functional theory outperforms Kohn-Sham density functional theory and multireference per-
turbation theory for ground-state and excited-State charge transfer. J. Chem. Theory Comput.
11: 3643–3649.

135 Buijse, M.A. and Baerends, E.J. (1990). Analysis of nondynamical correlation in the
metal-ligand bond. Pauli repulsion and orbital localization in MnO−

4 . J. Chem. Phys. 93:
4129–4141.

136 Wolfsberg, M. and Helmholz, L. (1952). The spectra and electronic structure of the tetrahedral
ions MnO−

4 , CrO−
4 , and ClO−

4 . J. Chem. Phys. 20: 837–843.
137 Johnson, K. and Smith, F.J. (1971). Scattered-wave model for the electronic structure and opti-

cal properties of the permanganate ion. Chem. Phys. Lett. 10: 219–223.
138 Johansen, H. and Rettrup, S. (1983). Limited configuration interaction calculation of the

optical spectrum for the permanganate ion. Chem. Phys. 74: 77–81.
139 Nakai, H., Ohmori, Y., and Nakatsuji, H. (1991). Theoretical study on the ground and excited

states of MnO−
4 . J. Chem. Phys. 95: 8287–8291.

140 Nooijen, M. (1999). Combining coupled cluster and perturbation theory. J. Chem. Phys. 111:
10815–10826.

141 van Gisbergen, S.J.A., Groeneveld, J.A., Rosa, A. et al. (1999). Excitation energies for transi-
tion metal compounds from time-dependent density functional theory. Applications to MnO−

4 ,
Ni(CO)4, and Mn2(CO)10. J. Phys. Chem. A 103: 6835–6844.

142 Nooijen, M. and Lotrich, V. (2000). Extended similarity transformed equation-of-motion cou-
pled cluster theory (extended-STEOM-CC): applications to doubly excited states and transition
metal compounds. J. Chem. Phys. 113: 494–507.

143 Boulet, P., Chermette, H., Daul, C. et al. (2001). Absorption spectra of several metal complexes
revisited by the time-dependent density-functional theory-response theory formalism. J. Phys.
Chem. A 105: 885–894.

144 Neugebauer, J., Baerends, E.J., and Nooijen, M. (2005). Vibronic structure of the permanganate
absorption spectrum from time-dependent density functional calculations. J. Phys. Chem. A
109: 1168–1179.

145 Jose, L., Seth, M., and Ziegler, T. (2012). Molecular and vibrational structure of tetroxo d0

metal complexes in their excited states. A study based on time-dependent density functional
calculations and Franck-Condon theory. J. Phys. Chem. A 116: 1864–1876.

146 Ziegler, T. (2012). A chronicle about the development of electronic structure theories for
transition metal complexes. Struct. Bond. 143: 1–38.

147 Almeida, N.M., McKinlay, R.G., and Paterson, M.J. (2015). Excited electronic states of MnO−
4 :

challenges for wave function and density functional response theories. Chem. Phys. 446: 86–91.
148 Seidu, I., Krykunov, M., and Ziegler, T. (2015). Applications of time-dependent and

time-independent density functional theory to electronic transitions in tetrahedral d0 metal
oxides. J. Chem. Theory Comput. 11: 4041–4053.

149 Holt, S.L. and Ballhausen, C. (1967). Low temperature absorption spectra of KMnO4 in KClO4.
Theor. Chim. Acta 7: 313–320.

150 Hedegård, E.D., Jensen, H.J.Å., and Kongsted, J. (2014). Polarizable embedding based on mul-
ticonfigurational methods: current developments and the road ahead. Int. J. Quantum Chem.
114: 1102–1107.

151 Stein, C.J. and Reiher, M. (2016). Automated selection of active orbital spaces. J. Chem. Theory
Comput. 12: 1760–1771.



�

� �

�

References 75

152 Su, J., Xu, W.-H., Xu, C.-F. et al. (2013). Theoretical studies on the photoelectron and absorp-
tion spectra of MnO−

4 and TcO−
4 . Inorg. Chem. 52: 9867–9874.

153 Hillier, I.H. and Saunders, V.R. (1970). Ab initio molecular orbital calculations of the ground
and excited state of the permanganate and chromate ions. Proc. R. Soc. A 320: 161–173.

154 Escudero, D. and Thiel, W. (2014). Theoretical studies on the photoelectron and absorption
spectra of MnO−

4 and TcO−
4 . J. Chem. Phys. 140: 194105.

155 Sharma, P., Truhlar, D.G., and Gagliardi, L. (2018). Multiconfiguration pair-density functional
theory investigation of the electronic spectrum of MnO−

4 . J. Chem. Phys. 148: 124305.



�

� �

�

77

4

Equation-of-Motion Coupled-Cluster Models
Monika Musiał

Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland

Abstract

Various computational schemes hidden under the name EOM-CC (equation-of-motion coupled-cluster)
create a path through which the CC theory is applied to investigate excited, ionized and
electron-attached molecular systems. In this chapter we consider five realizations of the EOM-CC
approach focused on the studies of electronic excitations (EE), ionization potentials (IP),
electron-attached (EA) states, double ionization potentials (DIP) and double-electron-attached
(DEA) states. The direct application of the considered methods allows to study electronic states of
the reference system as well as those differing from the reference by one (IP, EA) or two (DIP, DEA)
electrons. In addition we propose an indirect application of the EOM-CC schemes which in some
cases may be more interesting than the direct one. Namely, when the open-shell system A is studied
then we may adopt as the reference one of its charged analogues: A+, A−, A2+, A2−on condition that it
represents the closed-shell structure implying using the restricted Hartree-Fock (HF) reference. Then
to recover the data relevant to the neutral system A we need to apply the EA, IP, DEA or DIP variant
of the EOM-CC scheme, respectively. This can be generalized in the following way: to study with the
EOM-CC approach the system A (charged or neutral) we may select as the reference that form of A
which is of closed-shell character and differs from A by no more than 2 electrons. Then by using one
of the EOM variants listed above we may recover an original structure. Owing to that we may avoid
calculations based on the potentially spin-contaminated unrestricted HF reference. Moreover, the DIP
and DEA approaches open the way to describe in a correct way a homolytic dissociation of the single
bond without necessity to deal with the open-shell products. For all five considered methods (i.e.,
EE-EOM-CC, IP-EOM-CC, DIP-EOM-CC, EA-EOM-CC, DEA-EOM-CC) we provide detailed working
equations both at the CCSD and CCSDT level in the form ready to code. For each of the considered
EOM schemes we give illustrative results which make it possible to compare the performance of the
E0M-CCSD and EOM-CCSDT approaches.

4.1 Introduction

Coupled-cluster (CC) [1–7] theory provides a powerful computational tool to study the electronic
structure of atoms and molecules. As many of the Hartree–Fock (HF) based methods the CC wave
function is expanded in terms of the reference and ”excited” configurations and the latter are

Quantum Chemistry and Dynamics of Excited States: Methods and Applications,
First Edition. Edited by Leticia González and Roland Lindh.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.
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obtained by replacement of one-electron functions by their virtual counterparts in the reference
single Slater determinant. The exponential parameterization of the wave function makes the CC
method a robust computational scheme which in recent years has dominated the field of ab initio
calculations. It is commonly known that one of the practical realizations of CC theory based on
the inclusion of singles and doubles into the CC expansion augmented by non-iterative triples
[8] is considered the ”gold” standard of quantum chemical methods and has tens of thousand of
applications.

A principal realization of the CC approach is the method focused on properties and energetics
of atoms and molecules with the ground state dominated by a single reference (SR). One of the
possibilities to go beyond the SR formulation is to use its multi-reference extension (MR) [9]. The
latter scheme offers a way to treat radicals and ionized species or, in general, systems which require
a multi-determinantal description of the ground state. The MR-CC scheme also provides a possibil-
ity to describe excited states. However, due to a rather complicated formal background the MR-CC
schemes have a moderate popularity and their best days are yet to come.

On the other hand applying CC theory to study atomic and molecular excited states has a long
history which is connected with merging the CC approach with the equation-of-motion (EOM)
formalism. The EOM approach goes back to the works of Rowe [10] who designed the general
pattern of incorporating the time-dependent Schrödinger equation into the methodology of elec-
tronic structure calculations. Subsequent works [11–14] represent successful attempts to combine
the EOM formalism with CC theory. However, the real breakthrough was achieved by Stanton and
Bartlett who in their seminal paper [15] introduced the EOM-CCSD scheme into high level stud-
ies of excited electronic (EE) states. They derived the working equations in connection with the
generalized Davidson diagonalization procedure, demonstrated the use of EOM-CCSD in property
calculations and finally implemented the EOM-CCSD scheme into the ACES program package for
general, i.e., UHF (Unrestricted HF) reference functions. From the same group, papers appeared
later on extending the EOM formalism to ionization potential (IP) [16] calculations as well as to
electron-attached (EA) [17] states. In the following years the EOM-CCSD scheme was extended to
include also triply excited configurations, first partially [18–22] and then in a full manner [21–25].
A similar development, i.e., inclusion of full triples, was accomplished for the IP [21, 26–28] and
EA [21, 28–30] variants.

In this chapter we will focus on the principal variants of the EOM-CC approach. Since this book
is devoted to the description of excited states the obvious field of our study will be the EE-EOM-CC
scheme. However, we would like to point out that the IP-EOM-CC scheme, developed to compute
ionization potentials, can also be employed to study excited electronic states of singly ionized sys-
tems. Hence, e.g., to obtain the electronic states of the CN radical we may use either the UHF-based
EE-EOM-CC method or the RHF-based IP-EOM-CC scheme applied to CN− closed-shell ion for
that purpose. Since closed-shell calculations are generally easier to carry out we will generally pre-
fer the second option. The same strategy can be applied in the case of the EA-EOM-CC scheme
which can be used to study electronic excitations in systems with an extra electron.

In the same spirit we may use the EOM-CC methods aimed at the calculation of the double
ionization potential, i.e., the DIP-EOM-CC [31–35]. The latter scheme can be applied to study
electronic states of a system A in the situations where the reference function is more easily
recovered for the A2− ion, i.e., for the system with two added electrons. Applying the DIP-EOM-CC
method will provide excitation energies for the neutral A molecule. In an analogous way the
EOM-CC approach can be applied to study systems with two attached electrons, DEA-EOM-CC
(double-electron-attached EOM-CC) [35, 36]. Here, we compute the reference function for the A2+

ion and by doing DEA-EOM-CC calculations we again recover results for the neutral A species.
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In the following we will describe in detail all five above mentioned realizations of the EOM-CC
approach: EE-EOM-CC, IP-EOM-CC, EA-EOM-CC, DIP-EOM-CC and DEA-EOM-CC in the
spin-free formulation (i.e., non-orthogonally spin-adapted) based on a closed-shell (restricted)
reference. For each one we will consider two coupled-cluster models: CCSD and CCSDT
supplemented with illustrative examples of the results.

In addition, EOM-CC is closely related to the coupled-cluster linear response (CCLR) method
[37–41] whose eigenvalues are the same for the full models, e.g., CCSD, CCSDT etc., and to the
SAC-CI (symmetry-adapted cluster configuration interaction) method [42–44] which is more like
CI than CC with additional approximations.

4.2 Theoretical Background

In this section we will present a formal derivation of the EOM equations in connection with
coupled-cluster theory. Our starting point is the Schrödinger equation for the ground (or more
generally: reference) state:

Ĥ|Ψ0⟩ = E0|Ψ0⟩ (4.1)

where the Hamiltonian Ĥ is expressed in the second-quantized formalism as:

Ĥ =
∑
pq

f p
q â†

pâq +
1
2
∑
pqrs

𝑣
pq
rs â†

pâ†
qâsâr

It is more convenient to write the Schrödinger equation using the Hamiltonian operator in the
normal-order form, ĤN :

ĤN |Ψ0⟩ = ΔE0|Ψ0⟩ (4.2)

where ΔE0 = E0 − ⟨Φ0|Ĥ|Φ0⟩ and |Φ0⟩ is a single Slater determinant, usually chosen to be the
Hartree–Fock reference state and ĤN is defined as:

ĤN = Ĥ − ⟨Φ0|Ĥ|Φ0⟩
=
∑

p
ep{â†

pâp} +
∑
p≠q

f p
q {â†

pâq} +
1
2
∑
pqrs

𝑣
pq
rs {â†

pâ†
qâsâr}

= Ĥo
N + F̂N + V̂N (4.3)

where ep are one-particle eigenenergies and F̂N and V̂N are one- and two-body operators with
F̂N disappearing for the canonical Hartree–Fock reference state and 𝑣pq

rs is a two-electron integral
defined as:

𝑣
pq
rs = ∫ ∫ 𝜑∗

p(1)𝜑∗
q(2)

1
r12
𝜑r(1)𝜑s(2)d𝑣1d𝑣2 (4.4)

This 𝑣pq
rs symbol introduces a more compact form of the integrals compared to that given in Eq. (1.4)

of the Introductory Chapter which makes them more convenient for the cumbersome EOM-CC
equations. The braces {âpâq} indicate the normal-order form of the operators âpâq.

4.2.1 Coupled-Cluster Wave Function

The ground state wave function within the coupled-cluster [1–8, 45–54] formalism is expressed as:

|Ψ0⟩ = eT̂|Φ0⟩ (4.5)
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where T̂ is a cluster operator responsible for excitations:

T̂ = T̂1 + T̂2 + ... + T̂N =
∑
a,i

ta
i â†

aâi +
1
2
∑
ab,ij

tab
ij â†

aâ†
bâjâi +

1
6

∑
abc,ijk

tabc
ijk â†

aâ†
bâ†

c âkâjâi + ... (4.6)

N is the number of electrons in the system and the coefficients tab…
ij… are cluster amplitudes. Note that

âi, âj, · · · second-quantized operators which annihilate electrons from occupied levels become – in
the particle–hole formalism – creation operators (responsible for creation of holes). In connection
with that the second-quantized operators present in the definition of the T̂ operators are all creation
operators. The same applies to the R̂ operators defined in the following sections.

Inserting the wave function into the Schrödinger equation

ĤN eT̂|Φ0⟩ = ΔE0eT̂|Φ0⟩ (4.7)

we obtain the desired solutions, i.e., by multiplying from the left with e−T̂ and projecting against|Φ0⟩ we get the correlation energy:

ΔE0 = ⟨Φ0|e−TĤN eT|Φ0⟩ = ⟨Φ0| ̂̄HN |Φ0⟩ (4.8)

Projecting against the configurations |Φab…
ij… ⟩ we obtain the coupled-cluster equations:

⟨Φab…
ij… | ̂̄HN |Φ0⟩ = 0 (4.9)

In the equations above we introduced the ̂̄HN symbol representing a similarity transformed Hamil-
tonian:

̂̄HN = e−T̂ĤN eT̂ (4.10)

The similarity-transformed Hamiltonian ̂̄HN is a crucial quantity in the derivation and exploita-
tion of the EOM scheme. Due to the Baker–Campbell–Hausdorff formula:

̂̄HN = ĤN + [ĤN , T̂] +
1
2
[[ĤN , T̂], T̂] +

1
6
[[[ĤN , T̂], T̂], T̂] +

1
24

[[[[ĤN , T̂], T̂], T̂], T̂]

̂̄HN is expressed as a terminating commutator series, hence all CC equations occur in closed form.

4.2.2 The Equation-of-Motion Approach

The equation-of-motion [7, 11–36, 55–63] approach is a useful tool for the study of states obtained
via excitation, ionization and electron attachment processes for which the ground state is described
within CC theory. To begin with we do not need to specify the type of process involved. We assume
that the wave function |Ψk⟩ resulting from the action of the linear operator R̂(k) on the ground state
wave function |Ψ0⟩:|Ψk⟩ = R̂(k)|Ψ0⟩ (4.11)

is a solution of the Schrödinger equation:

ĤN |Ψk⟩ = ΔEk|Ψk⟩ (4.12)

or

ĤN R̂(k)|Ψ0⟩ = ΔEkR̂(k)|Ψ0⟩ (4.13)

where the ΔEk = Ek − ⟨Φ0|H|Φ0⟩ and Ek is the total energy of the target k-state. Multiplying Eq.
(4.2) by R̂(k) from the left and subtracting from the above we obtain:

[ĤN , R̂(k)]|Ψ0⟩ = 𝜔kR̂(k)|Ψ0⟩ (4.14)



�

� �

�

4.2 Theoretical Background 81

where𝜔k = ΔEk − ΔE0 = Ek − E0 is the transition energy connected with the studied process. Sub-
stituting the exponential ansatz, Eq. (4.5), for |Ψ0⟩ and multiplying from the left with e−T̂ we obtain:

e−T̂[ĤN , R̂(k)]eT̂|Φ0⟩ = 𝜔ke−T̂ R̂(k)eT̂|Φ0⟩ (4.15)

Since the operators T̂ and R̂ commute, we finally get the EOM-CC equation:

[ ̂̄HN , R̂(k)]|Φ0⟩ = 𝜔kR̂(k)|Φ0⟩ (4.16)

Defining the normal-ordered similarity-transformed Hamiltonian in a slightly different manner

H̄N = e−T̂ĤeT̂ − ⟨Φ0|e−T̂ĤeT̂|Φ0⟩ (4.17)

we may write the EOM equation as an eigenproblem of the H̄N operator:

H̄N R̂(k)|Φ0⟩ = 𝜔kR̂(k)|Φ0⟩ (4.18)

The most general form of the R̂(k) operator can be written out as:

R̂(k) = r0(k) + R̂1(k) + R̂2(k) +… + R̂N (k) (4.19)

Some of the components of R̂(k) disappear for specific processes, e.g., r0 vanishes for ionization and
electron attachment, R̂1 does not occur for double ionization and double electron attachment, etc.

Note that the H̄N operator is not Hermitian, hence we will have two types of eigenvectors: the
right-hand solution, Eq. (4.18), and the left-hand solution:⟨Φ0|L̂(k)H̄N = ⟨Φ0|L̂(k)𝜔k (4.20)

L̂ is a de-excitation operator and the two sets of eigenfunctions R̂|Φ0⟩ and ⟨Φ0|L̂ are
bi-orthonormal, i.e.,⟨Φ0|L̂(k)R̂(l)|Φ0⟩ = 𝛿kl (4.21)

Both L̂(k) and R̂(k) have the same 𝜔k eigenvalue and both are needed to obtain ordinary and tran-
sition density matrices but both bra and ket states are not needed if we are only interested in the
energy eigenvalues.

4.2.3 Similarity-Transformed Hamiltonian

The main step in EOM calculations is the diagonalization of the H̄N operator within the proper
configurational subspace. The type of subspace depends on the class of the EOM problem under
consideration. For example, solving the EE-EOM-CCSD problem, we diagonalize the H̄N operator
in the subspace of |Φa

i ⟩ and |Φab
ij ⟩ configurations; going to the CCSDT model we expand the working

space to include triple excitation configurations |Φabc
ijk ⟩. Performing IP-EOM-CCSD calculations we

limit the diagonalization subspace to the configurations |Φi⟩ and |Φa
ij⟩, i.e., representing the single

ionization plus those with an additional single excitation. Going to the IP-EOM-CCSDT model
we add the |Φab

ijk⟩ configurations. Analogous rules apply to all other classes of EOM problems. For
EA-EOM-CC the respective subspace includes |Φa⟩, |Φab

i ⟩ and |Φabc
ij ⟩ (CCSDT) configurations; for

DIP-EOM-CC: |Φij⟩ and |Φa
ijk⟩ (CCSDT); for DEA-EOM-CC |Φab⟩ and |Φabc

i ⟩ (CCSDT).
An additional comment is needed with respect to the structure of the EOM matrix in case of

the treatment of electronic excitations. The H̄N matrix corresponding to the CCSD model can be
expressed in the following way, where S represents the |Φa

i ⟩ and D – the |Φab
ij ⟩ configurations:

H̄N =
⎡⎢⎢⎣
⟨0|H̄N |0⟩ ⟨0|H̄N |S⟩ ⟨0|H̄N |D⟩

0 ⟨S|H̄N |S⟩ ⟨S|H̄N |D⟩
0 ⟨D|H̄N |S⟩ ⟨D|H̄N |D⟩

⎤⎥⎥⎦
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The matrix elements ⟨Φa
i |H̄N |Φ0⟩ (≡ ⟨S|H̄N |0⟩) and ⟨Φab

ij |H̄N |Φ0⟩ (≡ ⟨D|H̄N |0⟩) are 0 due to the
fulfillment of the CC equations, Eq. (4.9). Hence, diagonalization of H̄N within the subspace of the
excited configurations will give the same eigenvalues as a diagonalization of the full matrix. In the
latter case, we also get the ⟨0|H̄N |0⟩ (≡ ⟨Φ0|H̄N |Φ0⟩ = 0) reference energy unchanged.

The full EOM-CCSDT method requires solution of the CC equations, Eq. (4.9), for the T1, T2 and
T3 amplitudes and then construction of the H̄N operator up to four-body elements, according to Eq.
(4.17). In column 1 of Table 4.1 we list all categories of the H̄N operator and in column 2 the terms
contributing to each H̄N element.

Emphasizing the many-body structure of the H̄N we may decompose it into individual n-body
contributions In as follows:

H̄N = I1 + I2 + I3 + I4 (4.22)

We skipped the H̄N components with 0 annihilation lines since they cannot be contracted with
the R̂ operators. We can easily identify a particular term in column 1 of Table 4.1 with the proper In

component of Eq. (4.22) bearing in mind that the term with the total number of indices equal to 2n
belongs to the In element of H̄N . In Table 4.1 the one-, two-, three- and four-body terms are separated
with solid horizontal lines. We may further classify the particular In term into In

k components where
the subscript k indicates the number of annihilation lines (terminology used in the diagrammatic
formulation of the EOM equations [7]) or – equivalently – the number of particle–hole annihilation
operators.

I1 = I1
1 + I1

2

I2 = I2
1 + I2

2 + I2
3 + I2

4

I3 = I3
1 + I3

2 + I3
3

I4 = I4
2 + I4

3 (4.23)

The number of particle–hole annihilation operators in each term of column 1 is equal to the
sum of particle indices in the subscript position and hole indices in the superscript position.
E.g., the first two-body term in Table 4.1, Iai

bc is connected with three annihilation operators: one
(i) hole-index as a superscript and two (b, c) particle-indices as subscripts. Similarly, the first
three-body I-component, Iiab

jkl is connected with one annihilation operator (one annihilation line in
the diagrammatic formalism) since there is only one hole-index (i) in the superscript position and
zero particle-indices in the subscript position. The presence of annihilation operators is crucial
in the derivation of the EOM equations since only those can be contracted with the R operators
and the number of summation indices in the terms contributing to the EOM equation is equal
to the number of annihilation lines in the respective H̄N element. Note that not all four-body
terms are listed in Table 4.1 but only those which occur in the EOM-CC equations up to the
CCSDT level. This is why we skipped the I4

1 element in Eq. (4.23) in the EOM-CCSDT model.
Moreover, throughout the chapter we adopted tensor notation with implied summation over
repeated indices.

4.2.4 Davidson Diagonalization Algorithm

In this section we indicate the main points of the diagonalization of large matrices developed by
Davidson [64] which is a crucial procedure in the solution of the EOM-CC equations. The matrix
diagonalization is also an essential step in the many quantum chemical schemes, compare the
MRPT approach presented in Chapter 2. The original work of Davidson applied to Hermitian
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Table 4.1 Algebraic expressions for the elements of H̄N used in the EOM-CCSD and EOM-CCSDT models
(orbital formalism).

Expressiona)

Ii
a f i

a + 2te
n𝑣

in
ae − te

n𝑣
in
ea

Ia
b (1 − 𝛿a

b )f
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b + 2te
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n𝑣
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be − 2tea

no𝑣
no
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no𝑣
no
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a) P(ka∕lb) implies sum of the additional components with ka permuted with lb and similarly to the rest of
P(pq∕rs). 𝛿p

q designates the usual Kronecker delta.
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matrices was later generalized to non-Hermitian cases by Nakatsuji and Hirao [65]. The Davidson
procedure is aimed at recovering only a few eigenvalues while the dimension of the matrix, in this
case it is H̄N, may go to millions and larger dimensions. We assume the initial (guess) vector r𝟏
which is in general a very crude approximation to the true eigenvector of H̄N. Taking the product

b𝟏 = H̄N × r𝟏

and the dot product 𝜆1 = ⟨b𝟏|r𝟏⟩ we get an approximation to the H̄N eigenvalue, in general very far
from the true value. Then we construct the error vector e

e = b𝟏 − 𝜆1r𝟏

and on the basis of the latter we obtain a vector r𝟐 (called the Davidson correction vector) which
initiates the second iteration and the elements of which are obtained as:

r2i = ei∕(𝜆1 − H̄ii) i = 1, 2, ...,n

where H̄ii is a diagonal element of the H̄N matrix. Next we take the product H̄N × r2 to obtain the
b𝟐 vector and the situation is repeated. In each iteration the crucial step is taking the product of H̄N
and the ri vector. This is the most time consuming and difficult step to carry out. In order to avoid
a construction of the H̄N matrix we take the product H̄ × R̂ at the operator level. Applying Wick’s
theorem and performing proper contractions we obtain elements of the target vector H̄NR. The
EOM equations which are presented in the next subsection represent contributions to the target
H̄NR vector via contractions of the H̄ component Ipq···

rs··· and the elements of the R̂ operator. Thus
using the H̄ and R̂ components we can obtain the elements of the target vector without construction
of the large H̄N matrix.

4.3 Excited States: EE-EOM-CC

From the analysis presented above it follows that the crucial step in a real calculation based on
the generalized Davidson algorithm is a construction of the product of (H̄N R). In most cases this
product is calculated by taking contractions between the H̄N and R̂ operators. As was shown in the
previous subsection some of the H̄N elements (e.g., three-body and four-body ones) are difficult
and costly to compute and storing them would require a large amount of disk space. In order to
make the EOM scheme more feasible some contributions to (H̄N R) are calculated according to the
original expression:

H̄N R̂ = e−T̂ĤN̄ eT̂R̂ = e−T̂ĤN̄ R̂eT̂ = e−T̂𝜒eT̂ (4.24)

where ĤN̄ = Ĥ − ⟨Ψ0|Ĥ|Ψ0⟩ and the second equality results from the fact that R̂ and eT̂ operators
commute. So in order to avoid cumbersome construction of the H̄N element we may first contract
ĤN and R̂ to get the 𝜒 intermediate. Then, to get the contribution to (H̄N R) we need to make the
𝜒eT̂ contraction. However, the price we pay for the construction of the simpler𝜒 intermediate is the
fact that we have to do it in each iteration while the H̄N elements are computed only once. Below
we present the detailed contributions to the (H̄N R) elements both at the CCSD and CCSDT levels.

4.3.1 EE-EOM-CCSD Model

In the singles and doubles approximation (EOM-CCSD) the R̂(k) operator takes the form:

R̂(k)SD = r0(k) +
N𝑣∑
a

No∑
i

ra
i (k)â

†
aâi +

1
2

N𝑣∑
ab

No∑
ij

rab
ij (k)â

†
aâ†

bâjâi (4.25)
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Table 4.2 The EE-EOM-CCSD equations in the orbital
formalism.

Expressiona)

(H̄N R)a
i = −ra

mIm
i + re

i Ia
e − re

mIma
ie + 2re

mIma
ei + 2rae

imIm
e

−rea
imIm

e − 2rae
mnImn

ie + rea
mnImn

ie + 2ref
imIam

ef − ref
miI

am
ef

(H̄N R)ab
ij = P(ia∕jb)[re

i I′ab
ej − ra

mI′mb
ij − rab

imIm
j + rae

ij Ib
e

−reb
mjI

ma
ie − rae

mjI
mb
ie + 2reb

mjI
ma
ei − rea

imImb
ej ]

+rab
mnImn

ij + ref
ij Iab

ef + Fab
ij

Fab
ij

b)= P(ia∕jb)[−re
mI′mab

iej − 2rae
mnImnb

iej − ref
miI

amb
efj

+2ref
imIamb

efj + rea
mnImnb

iej ] + 2re
mI′mab

eij

Fab
ij

c)= P(ia∕jb)[tae
ij 𝜒

b
e − tab

im𝜒
′m
j ]

𝜒 ′i
j = 2re

mIim
je − re

mImi
je + 2ref

jm𝑣
im
ef − ref

jm𝑣
mi
ef

𝜒a
b = 2re

mIam
be − re

mIam
eb − 2rae

mn𝑣
mn
be + rae

mn𝑣
mn
eb

a) P(ia∕jb) implies sum of the additional components with
ia permuted with jb; all elements of H̄N (Ipq...

rs... ) are defined
in Table 4.1.

b) Standard version.
c) Factorized version.

where r0(k) is a non-zero constant if the kth state has the same symmetry as the ground state,
otherwise is zero. No (N𝑣) indicates the number of occupied (virtual) levels in the system. The R̂(k)
operator can be expressed through the elementary creation-annihilation operators. It is obvious
that by operating with the sequence â†

aâi on the Fermi vacuum |Φ0⟩ we obtain a singly excited
configuration:

â†
aâi|Φ0⟩ = |Φa

i ⟩
The algebraic contributions to the H̄N R elements within the considered model are shown in

Table 4.2. The adoption of the orbital formalism means that we have integrated over spin com-
ponents (hence in some terms we have the factor of 2) and resulting equations are spin-free.

Before presenting the explicit formula for the target (H̄N R) amplitudes we return to equation
(4.18) to evaluate the r0 parameter. Solving the EOM-CC equation (4.18) we get the 𝜔 eigenvalue
which can be used to determine the r0 parameter. Projecting Eq. (4.18) against |Φ0⟩ and bearing in
mind the expression for R̂(k), Eq. (4.25), we obtain:

𝜔kr0(k) = ⟨Φ0|H̄N (R̂1(k) + R̂2(k))|Φ0⟩
which can be transformed into the working formula:

r0(k) = (2
∑

ia
Ii

ara
i (k) +

∑
ijab

(2𝑣ij
ab − 𝑣

ji
ab)r

ab
ij (k))∕𝜔k

Note that to each term in Tables 4.2 and 4.3 the proper permutation of the external indices should
be applied.

We may also illustrate here how the factorization works in practice. In Table 4.2 we have the
quantity Fab

ij marked with b) contributing to the (H̄N R)ab
ij element which is computed via the stan-

dard formula based on the three-body elements of H̄N requiring in most cases an n7 scaling (here
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Table 4.3 The EE-EOM-CCSDT equations in orbital formalism (additional
terms not included in the EE-EOM-CCSD model).

Expressiona)

(H̄N R)a
i = 2refa

mni𝑣
mn
ef − 2refa

min𝑣
mn
ef − rfea

mni𝑣
mn
ef + refa

imn𝑣
mn
ef

(H̄N R)ab
ij = P(ia∕jb)[re

i Iab
ej − ra

mImb
ij + 2refb

mijI
ma
ef − refb

imjI
ma
ef − reaf

imj I
mb
ef

−2reab
mnjI

mn
ei + raeb

mnjI
mn
ei + reab

imnImn
ej − 1reab

imj Im
e ] + 2reab

mij Im
e + Fab

ij

Fab
ij

b)= −P(ia∕jb) − re
mImab

iej + 2re
mImab

eij

Fab
ij

c)= −P(ia∕jb)teab
imj𝜒

m
e + 2teab

mij𝜒
m
e

(H̄N R)abc
ijk = P(ia∕jb kc)[−ra

mImbc
ijk + rbc

mnIamn
ijk + rebc

ijk Ia
e − rabc

mjkIm
i

+raef
ijk Ibc

ef + rabc
imnImn

jk − rebc
mjkIma

ie + 2rebc
mjkIma

ei ]

+P(ia∕jb∕kc)[rae
ij Ibc

ek − rab
imImc

jk − rabe
imkImc

je − reac
imkImb

ej ] + Fabc
ijk

Fabc b)
ijk = P(ia∕jb kc)[re

i Iabc
ejk − re

mImabc
iejk + 2rea

miI
mbc
ejk − rea

imImbc
ejk

+ref
jk Iabc

ief + 2ref
imIambc

efjk − ref
miI

ambc
efjk − 2rae

mnImnbc
iejk + rea

mnImnbc
iejk ]

+2re
mImabc

eijk + P(ia∕jb∕kc)[−rec
mkImab

iej − rae
mjI

mbc
iek + 2refb

mijI
mac
efk

−refb
mijI

amc
efk − reaf

imj I
mbc
efk − 2reab

mnjI
mnc
eik + reab

mnjI
mnc
iek + reab

imnImnc
ejk ]

Fabc c)
ijk = P(ia∕jb kc)[−tabc

mjk𝜒
m
i + tebc

ijk 𝜒
a
e − tebc

mjk𝜒
am
ei + 2tebc

mjkI𝜒ma
ei

+tabc
imn𝜒

mn
jk ] + P(ia∕jb∕kc)[−tab

im𝜒
mc
jk + tae

ij 𝜒
bc
ek − tebc

imk𝜒
am
ej − teab

imj𝜒
mc
ek ]

a) P(ia∕jb) implies sum of the additional components with ia permuted with jb;
the symmetrizers P(ia∕jb∕kc) and P(ia∕jb kc) are defined in a similar way to
P(ia∕jb); all elements of H̄N (Ipq...

rs... ) are defined in Table 4.1 whereas the
intermediates 𝜒p...

q... are defined in Tables 4.2 and 4.4.
b) Standard version.
c) Factorized version.

and elsewhere in the chapter n is the number of correlated occupied and unoccupied orbitals, i.e.,
n = No + N𝑣). The same contribution can be obtained via Fab

ij marked with c), computed with an
n5 scaling which engages the 𝜒b

e and 𝜒m
j intermediates. The formulas for the latter quantities are

given in the same table and, as we can see, they are also obtained with an n5 scaling. It should be
clarified though that since they engage the contraction with the R̂ operator, they must be computed
in each iteration.

4.3.2 EE-EOM-CCSDT Model

Within the EOM-CCSDT model the R̂(k)SDT operator includes also the component responsible for
triple excitations:

R̂(k)SDT = R̂(k)SD + R̂3(k) = R̂(k)SD + 1
6

N𝑣∑
abc

No∑
ijl

rabc
ijl (k)â†

aâ†
bâ†

c âlâjâi

Inclusion of triply excited configurations is connected with much more complicated formulas for
the H̄N R elements and with much larger computational effort due to larger scaling, n8 vs. n6 (in
case of EOM-CCSD).

The expressions listed in Table 4.3 include terms additional to Table 4.2 which are due to the T̂3
and R̂3 operators. Thus we observe the contributions to (H̄N R)a

i to include some terms originating
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Table 4.4 Algebraic expression for the 𝜒p...
q... intermediates

used inthe EE-EOM-CCSDT model in orbital formalism
(additional terms not included in the EE-EOM-CCSD model).

Expressiona)

𝜒 i
j = 𝜒 ′i

j + re
j Ii

e

𝜒 i
a = −re

m𝑣
mi
ae + 2re

m𝑣
mi
ea

𝜒 ia
jk = 2rae

kmImi
aj − rea

kmImi
ej − rea

jmIim
ek − rae

kmImi
je + tea

jk 𝜒
i
e + ref

jk Iia
ef

+2raef
kmj𝑣

mi
ef − raef

kjm𝑣
mi
ef − reaf

kmj𝑣
mi
ef + re

j Iia
ek + re

kIia
je

𝜒ab
ci = 2rbe

imIma
ec − reb

imIma
ec − rae

miI
mb
ce − rbe

imIma
ce + re

i Iba
ec

𝜒
ij
kl = ref

kl Iij
ef + re

kIij
el

𝜒ai
bj = −rae

mjI
mi
be + re

j Iia
eb

𝜒
aj
ib = 2rae

imImj
eb − rea

imImj
eb − rae

imImj
be + re

i Ija
be

a) All elements of H̄N (Ipq...
rs... ) are defined in Table 4.1 whereas

𝜒 ′i
j - in Table 4.2.

from the R̂3 operator (all r amplitudes equipped with six indices). In the case of the (H̄N R)ab
ij ampli-

tudes we have of course terms engaging R3 amplitudes but in addition we have terms with modified
H̄N elements, e.g., I′ab

ej is replaced with Iab
ej , the latter element includes contribution from T̂3.

Within the CCSDT model the factorization procedure, i.e., replacing the contraction among ĤN
and T̂k operators with contractions engaging the R̂ operators is much more important since it makes
it possible to avoid difficult three-body and four-body elements of H̄N .

4.3.3 EE-EOM-CC Results

To illustrate the performance of the EE-EOM-CC method we selected two examples presented
in Tables 4.5 and 4.6. In Table 4.5 we collected values of the vertical excitation energies obtained
at the EOM-CCSD and EOM-CCSDT levels for the N2 and CO molecules. The used basis set
(aug-cc-pVQZ) is large enough to be sure that the errors due to the basis set limitations are rather
small. All computed excited states are dominated by singly excited configurations hence the effect
of connected triples is meaningful but not dramatic. Comparing the mean absolute error (MAE)
obtained with respect to the experimental values we notice a significant improvement: 0.259 eV
reduced to 0.031 eV for the N2 molecule and for the CO molecule: 0.245 eV reduced to 0.073 eV.
The deviations from experiment quoted in parenthesis indicate a very good performance of the
EE-EOM-CCSDT scheme even for high-lying excited states. The largest error occurs for the 1Σ+

state of the CO molecule.
As a second example we selected results obtained for the ozone molecule. Here the applied basis

set is rather poor (POL1) hence the results are not that close to the experiment as in previous cases.
We should pay attention to the large error obtained for the first excited singlet state of symmetry
A1 which is dominated by double excitation (configuration obtained by moving an electron from
6a1 to 2b1 and from 4b2 to 2b1). At the CCSD level we obtain the excitation energy of 9.95 eV while
after inclusion of triples it goes down to 4.93 eV compared to the experimental value of 4.5 eV. Thus
the general conclusion is that connected triples must be included to the model if the configurations
dominated by the doubles dominate the excited states.
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Table 4.5 Vertical excitation energiesa) (in eV) of the N2 and CO molecules with EOM-CC methods in
aug-cc-pVQZb) basis set compared to experimental data (deviations from experiment in parenthesis).

State EOM-CC State EOM-CC

sym. SD SDT Exp.c) sym. SD SDT Exp.c)

N2
1Πg 9.504 9.329 9.34 CO 1Π 8.656 8.497 8.52

(0.164) (−0.011) (0.136) (−0.023)

1Σ−
u 10.131 9.897 9.88 1Σ− 10.171 9.979 9.90

(0.251) (0.017) (0.271) (0.079)

1Δu 10.568 10.301 10.27 1Δ 10.306 10.112 10.13

(0.298) (0.031) (0.176) (−0.017)

1Πu 13.371 13.114 13.05 1Σ+ 11.178 10.952 10.78

(0.321) (0.064) (0.398) (0.172)

MAEe) 0.259 0.031 0.245 0.073

a) From Ref. [66].
b) Valence electrons correlated. Ref. [67].
c) From Ref. [68].
d) Mean absolute error.

Table 4.6 Vertical excitation energies (eV) of the O3 molecule with EOM-CC methods and POL1a) basis set
(from Ref. [69]).

Nominal EOM

state CCSD CCSDT Exp.

21A1 (6a2
1 → 2b2

1, 4b2
2 → 2b2

1) 9.95b) 4.93b) 4.5c)

11A2 (4b2 → 2b1) 2.39b) 2.06b) 1.6d),1.92e)

11B1 (6a1 → 2b1) 2.40b) 2.16b) 2.1d)

11B2 (1a2 → 2b1) 5.50b) 5.13b) 4.86d)

13A2 (4b2 → 2b1) 1.97b) 1.81b) 1.80d)

13B2 (1a2 → 2b1) 1.48b) 1.54b) 1.43; 1.29d)

13B1 (6a1 → 2b1) 1.77b) 1.71b) 1.67d)

a) Valence electrons correlated. Ref. [70].
b) The optimum (for the given method, i.e., at the CCSD or CCSDT level) geometry has been adopted.
c) Ref. [71].
d) Ref. [72].
e) Ref. [73].
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4.4 Ionized States: IP-EOM-CC

The IP realization of EOM-CC theory is introduced by the appropriate definition of the R̂ operator.
The principal component of the latter is an operator removing the electron from the system, e.g.,
singly-ionized configurations are obtained by the action of the âi annihilation operator on the |Φ0⟩:

âi|Φ0⟩ = |Φi⟩
i.e., by removing an electron from the ith orbital and with |Φi⟩ representing the configuration con-
taining N − 1 electrons.

Thus the principal target of the IP-EOM-CC scheme is a description of the electronic structure
of cations adopting as a reference system the closed-shell neutral molecule, i.e., performing calcu-
lations for the, e.g., H2O molecule we get results relating to the H2O+ cation. However, an inverse
situation is also possible. For instance, in order to study the electronic structure of the open-shell
neutral radical e.g., CN we may do IP-EOM-CC calculations for the closed-shell anion CN−. This
strategy offers a way to avoid calculations based on a potentially spin-contaminated UHF reference.

4.4.1 IP-EOM-CCSD Model

Within the CCSD model the R̂ operator is composed of two terms:

R̂(k)SD = R̂1(k) + R̂2(k) =
No∑
i

ri(k)âi +
N𝑣∑
a

No∑
ij

ra
ij(k)â

†
aâjâi

where R̂1 is responsible for the ionization and R̂2 – for ionization and single excitation.
In Table 4.7 we list the contributions to the (H̄N R) target amplitudes. Similarly as in the pre-

vious case (EE) most of the terms are the results of contractions between the H̄N elements and
R amplitudes. Two terms engaging three-body H̄N elements were replaced with their factorized
counterparts, see the F b

ij terms.

4.4.2 IP-EOM-CCSDT Model

Within the CCSDT variant the R̂ operator includes the R̂3 component responsible for ionization
and double excitation.

R̂(k)SDT = R̂(k)SD + 1
2
∑
ab

∑
ijl

rab
ijl (k)â

†
aâ†

bâlâjâi

Table 4.7 The IP-EOM-CCSD equations in the orbital formalism.

Expressiona)

(H̄N R)i = −rmIm
i − 2r e

mn Imn
ie + r e

mn Imn
ei + 2r e

im Im
e − r e

mi Im
e

(H̄N R) b
ij = −rmI′mb

ij − r b
im Im

j − r b
mj Im

i + r e
ij Ib

e + r b
mn Imn

ij + 2r e
im Imb

ej − r e
mi Imb

ej − r e
im Ibm

ej

−r e
mj Imb

ie + F b
ij

F b
ij

b) = −2r e
mn Imnb

iej + r e
nm Ibnm

jei

F b
ij

c) = tbe
ji 𝜒e

𝜒a = −2r e
no 𝑣

no
ae + r e

no 𝑣
no
ea

a) All elements of H̄N (Ipq...
rs... ) are defined in Table 4.1.

b) Standard version.
c) Factorized version.



�

� �

�

90 4 Equation-of-Motion Coupled-Cluster Models

Table 4.8 The IP-EOM-CCSDT equations in the orbital formalism (additional terms
not included in the IP-EOM-CCSD model).

Expressiona)

(H̄N R)i = 2r ef
imn 𝑣

mn
ef − 2r ef

min 𝑣
mn
ef − r ef

imn 𝑣
mn
fe + r fe

nmi𝑣
nm
fe

(H̄N R) b
ij = −rmImb

ij + 2r ef
imj Imb

ef − r ef
ijm Imb

ef − r ef
mij Imb

ef − 2r eb
imn Imn

ej + r be
imn Imn

ej + r eb
min Imn

ej

−2r eb
mnj Imn

ie + r eb
nmj Imn

ie + r eb
mjn Imn

ie + 2r eb
imj Im

e − r eb
ijm Im

e − r eb
mij Im

e + F b
ij

(H̄N R) bc
ijk = P(jb∕kc)[r e

ij Ibc
ek − r b

im Imc
jk − r c

mk Imb
ij + r b

mn Imnc
ijk ] − r bc

mjk Im
i − P(jb∕kc)[r bc

imk Im
j

−r ec
ijk Ib

e − r bc
mnk Imn

ij ] + r bc
imn Imn

jk + r ef
ijk Ibc

ef − P(jb∕kc)[r ec
mjk Imb

ie + r ec
ijm Ibm

ek

+r ec
imk Ibm

ej − 2r ec
imk Imb

ej + r eb
ijm Imc

ek + r ec
mik Imb

ej ] + F bc
ijk

F bc
ijk

b) = −rmImbc
ijk + 2r e

im Imbc
ejk − r e

mi Imbc
ejk − P(jb∕kc)[r e

im Ibmc
ejk + r e

mj Imbc
iek ] − 2r e

nm Inmcb
iekj

+r e
mn Imncb

eikj + P(jb∕kc)[2r ef
imj Imbc

efk − r ef
imj Ibmc

efk − r ef
mij Imbc

efk − 2r eb
imn Imnc

ejk

+r eb
imn Imnc

jek + r eb
min Imnc

ejk − 2r eb
mnj Imnc

iek + r eb
nmj Imnc

iek + r be
mnj Imcn

ike ]

F bc
ijk

c) = −rmI′mbc
ijk + P(jb∕kc) tbef

jik 𝜒
c

ef + 2r e
im I′mbc

ejk − r e
mi I′mbc

ejk − P(jb∕kc)[r e
im I′bmc

ejk

+r e
mj I′mbc

iek + tbce
jmi𝜒

m
ke] − tcbe

kjm𝜒
m

ei + 2tbce
jkm𝜒

m
ei − P(jb∕kc) tbce

jmk𝜒
m
ei + tebc

ijk 𝜒e

−P(jb∕kc)[tbc
mk𝜒

m
ij − tec

jk𝜒
b

ie − tec
ik𝜒

b
ej ]

𝜒 i
jk = 2r ef

knj 𝑣
ni
ef − r ef

knj 𝑣
in
ef − r ef

nkj 𝑣
ni
ef

𝜒 b
ac = −rnInb

ac

𝜒a
bi = −2r ea

ino 𝑣
no
eb + r ea

ino 𝑣
no
be + r ea

nio 𝑣
no
eb

𝜒 i
aj = −r e

nj 𝑣
ni
ae

𝜒 a
bi = −2r ea

noi 𝑣
no
be + r ea

noi 𝑣
no
eb + r ae

noi 𝑣
no
be

𝜒 i
ja = 2r e

jn 𝑣
ni
ea − r e

jn 𝑣
ni
ae − r e

nj 𝑣
in
ae

a) See footnote to Table 4.7.
b) Standard version.
c) Factorized version.

Following the presentation manner introduced in the EE part, in Table 4.8 only those contribu-
tions to the (H̄N R)i and (H̄N R) b

ij target amplitudes which originate from the R̂3 operator are shown.
Additionally in the (H̄N R) b

ij equation the incomplete I′mb
ij is replaced with its complete counterpart

Imb
ij . Table 4.8 contains also all terms contributing to the full (H̄N R) bc

ijk equation.

4.4.3 IP-EOM-CC Results

In Table 4.9 we see computed values for the ionization potentials of three molecules: N2, CO and
F2. The employed basis set is aug-cc-pVQZ, the assumed bond length are given in table. The results
computed at the CCSDT level are in excellent agreement with the available experimental data. For
the N2 molecule the CCSD error of 0.15 eV goes down to less than 0.01 eV upon inclusion of triples;
the same is observed for the CO molecule: CCSD is off by 0.25 eV, CCSDT is right on the target. In
the worst case, i.e., for the F2 molecule we observe the reduction from 0.08 eV to 0.04 eV.

In the second example, Table 4.10, we show excitation energies for the cations: N+
2 , CO+ and

F+
2 computed on the basis of the RHF reference calculated for the neutral molecules. The triples

contribution to the excitation energies is also meaningful. For the 2Πu and 2Σu states of N+
2 the
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Table 4.9 Vertical ionization potentialsa) (eV) with IP-EOM-CC methods (N2 ∶ R=1.097685
Å, CO: R=1.128323 Å, F2 ∶ R=1.41193 Å).

aug-cc-pVQZb)

Molecule Sym. EOM-CCSD EOM-CCSDT Exp.c)

N2 𝜎g 15.75 15.60 15.60
CO 𝜎 14.26 14.01 14.01
F2 𝜋g 15.75 15.79 15.83

a) From Refs. [26].
b) Ref. [67].
c) Refs. [74].

Table 4.10 Computed vertical excitation energies (eV) with IP-EOM-CC methods.

aug-cc-pVQZ

Cation Sym. EOM-CCSD EOM-CCSDT Exp.a)

N+
2

2Πu 1.59 1.45 1.38
2Σ−

u 3.23 3.19 3.18
CO+ 2Π 2.92 3.08 2.9

2Σ+ 5.63 5.65 5.71
F+

2
2Πu 3.34 3.18 2.97
2Σ+

g 5.52 5.39 5.27

a) Refs. [74].

deviations of the excitation energies from experiment are reduced from 0.21 eV to 0.07 eV and from
0.05 eV to 0.01 eV for both states, respectively. The excitation energies of the two states of CO+

shown in Table 4.10, 2Π and 2Σ, are already quite well reproduced at the CCSD level (deviations of
0.02 and 0.08 eV, respectively). The full CCSDT in the first case increases the error to 0.18 eV and
in the second case reduces to 0.06 eV. In the F+

2 case the CCSD values are off by 0.37 eV and 0.25 eV
for the two states shown in Table 4.10 and improved due to inclusion of triples by 0.16 and 0.13 eV,
respectively.

4.5 Electron-Attached States: EA-EOM-CC

The EA-EOM-CC realization of the EOM-CC method is fully analogous in its canonical equations
to the IP counterpart. However, in the practical realization the factorization procedure is somewhat
different hence the working equations are modified. The single-electron attached configurations
are obtained by creating an electron in one of the virtual orbitals with the operator â†

a:

â†
a|Φ0⟩ = |Φa⟩

where |Φa⟩ is a configuration with N + 1 electrons.
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4.5.1 EA-EOM-CCSD Model

Within the CCSD model the R̂ operator is composed of two terms:

R̂(k)SD =
∑

a
ra(k)â†

a +
∑
ab

∑
i

rab
i (k)â†

aâ†
bâi

The last term represents the operator placing the additional electron in the virtual level a with an
accompanying single excitation.

Algebraic contributions to the (H̄N R)a and (H̄N R)ab
i target amplitudes are shown in Table 4.11.

Similarly as in the IP case the factorized contributions are represented by the Fab c)
i term in order

to avoid employing the three-body H̄N elements.

4.5.2 EA-EOM-CCSDT Model

Within the CCSDT model the R̂ operator includes an additional term responsible for attaching an
electron and accompanying double excitation:

R̂(k)SDT = R̂(k)SD + 1
2
∑
abc

∑
ij

rabc
ij (k)â†

aâ†
bâ†

c âjâi

Algebraic contributions to the target (H̄N R)a, (H̄N R)ab
i amplitudes due to the T̂3 and R̂3 operators

are presented in Table 4.12 together with the full set of terms occurring in the (H̄N R)abc
ij equation.

However the EA variant is computationally much more demanding than its IP equivalent due to
the fact that the number of EA amplitudes is of the order of N2

o N5
𝑣 compared to the N5

o N2
𝑣 and

usually the number of virtual levels is much larger than the number of occupied ones. Hence the
factorization introduced in the EA-EOM-CCSDT approach is much deeper than in the IP scheme.

4.5.3 EA-EOM-CC Results

To illustrate the usefulness of the EA-EOM-CC approach in the calculations of the excited states we
show computed values of the atomic energy levels for the open-shell atoms Li and Na in Table 4.13.
The RHF-based reference calculations were done for the closed-shell ions Li+ and Na+. Applying
the EA-EOM-CC scheme we get the energies of the neutral open-shell atoms. In the case of Li both
the CCSD and CCSDT results are very close to experiment with errors oscillating around 0.001 eV.
Note that the EA-EOM-CCSDT results for a Li atom are identical to the FCI values. The triples
effect is small, of the order of 0.0001 eV, but in all cases goes in the right direction. For the Na atom

Table 4.11 The EA-EOM-CCSD equations in the orbital formalism.

Expressiona)

(H̄N R)a = reIa
e + 2ref

m Ima
ef − ref

m Iam
ef + 2rea

m Im
e − rea

m Im
e

(H̄N R)ab
i = reI′ab

ie + reb
i Ia

e + rae
i Ib

e − rab
m Im

i + ref
i Iab

ef + 2reb
m Iam

ie − rbe
m Iam

ie − reb
m Iam

ei − rae
m Imb

ie + Fab
i

Fab
i

b) = 2ref
m Iamb

ief − ref
m Ibma

efi

Fab
i

c) = −tab
im𝜒

′m

𝜒 ′i = 2rfg
m𝑣

mi
fg − rfg

m𝑣
im
fg

a) See footnote to Table 4.7.
b) Standard version.
c) Factorized version.
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Table 4.12 The EA-EOM-CCSDT equations in the orbital formalism.

Expressiona)

(H̄N R)a = +2refa
mn𝑣

mn
ef − 2reaf

mn𝑣
mn
ef − refa

mn𝑣
mn
fe + raef

mn𝑣
mn
ef

(H̄N R)ab
i = reIab

ie + reb
i Ia

e + 2refb
im Iam

ef − refb
mi Iam

ef − rebf
im Iam

ef + 2raef
im Imb

ef − raef
im Ibm

ef − reaf
im Imb

ef

−2raeb
mn Imn

ie + reab
mn Imn

ie + rabe
mn Imn

ie + 2raeb
im Im

e − reab
im Im

e − rabe
im Im

e

(H̄N R)abc
ij = P(ia∕jb)[rec

j Iab
ie + rbe

j Iac
ie − rbc

m Iam
ij ] + rabe

ij Ic
e + P(ia∕jb)[raec

ij Ib
e − rabc

im Im
j

+raef
ij Ibc

ef ] + refc
ij Iab

ef + rabc
mn Imn

ij − P(ia∕jb)[rabe
im Imc

je + raec
mj Imb

ie + raec
im Imb

je

−2raec
im Ibm

je + rebc
jm Iam

ie + race
im Ibm

je ] + Fabc
ij

Fabc
ij

b) = reIabc
ije + 2rec

mIabm
ije − rce

mIabm
ije − P(ia∕jb)[rec

mIabm
iej + rbe

m Iamc
ije − ref

j Iabc
ief ]

+2ref
m Iabmc

ijef − ref
m Iabcm

ijef + P(ia∕jb)[2refc
jm Iabm

ief − refc
mj I

abm
ief − recf

jm Iabm
ief

+2raef
im Ibmc

jef − raef
im Ibcm

jef − rbef
mj Iamc

ief − 2rbec
mnIamn

ije + rebc
mnIamn

ije + rbce
mnIamn

ije ]

Fabc
ij

c) = −tabc
ijm𝜒

m − P(ia∕jb) [tab
im𝜒

mc
j + tac

im𝜒
bm
j − tae

ij 𝜒
bc
e + taec

ijm𝜒
bm
e ] − tabe

ijm𝜒
cm
e

+2tabe
ijm𝜒

mc
e − P(ia∕jb)[tabe

imj𝜒
mc
e − tabc

imn𝜒
mn
j ]

𝜒 i = 𝜒′i + rf Ii
f

𝜒 ia
j = rf Iia

jf + rfg
j Iia

fg − rfa
mImi

jf + 2rfa
mIim

jf − raf
m Iim

jf + 2rfga
jm 𝑣

im
fg − rfga

jm 𝑣
mi
fg − rfag

jm 𝑣
im
fg

𝜒
aj
i = rf Iaj

if + rfg
i Iaj

fg − raf
m Imj

if + 2rafg
im 𝑣

mj
fg − rafg

im 𝑣
jm
fg − rfag

im 𝑣
mj
fg

𝜒ab
c = rf Iab

cf − raf
m Imb

cf − rfb
mIam

fc + 2rfb
mIam

cf − rbf
m Iam

cf − 2rafb
mn𝑣

mn
cf + rafb

mn𝑣
mn
fc + rabf

mn𝑣
mn
cf

𝜒ai
b = rf Iai

bf − raf
m 𝑣

mi
bf

𝜒 ib
a = rf Iib

af − rfb
m𝑣

mi
af + 2rfb

m𝑣
im
af − rbf

m 𝑣
im
af

𝜒 ik
j = rf Iik

jf + rfg
j 𝑣

ik
fg

a) See footnote to Table 4.7. For definition of intermediate (𝜒 ′i) see Table 4.11.
b) Standard version.
c) Factorized version.

Table 4.13 Atomic energy levels (eV) within EA-EOM-CC methods and the unANO-RCC+ basis set (from
Ref. [75]).

Atom Sym. EA-EOM-CCSD 𝚫a)SD EA-EOM-CCSDT 𝚫a)SDT Exp.c)

Li 2P 1.8492 0.0014 1.8491b) 0.0013 1.8478
2S 3.3707 −0.0024 3.3709b) −0.0022 3.3731
2P 3.8339 −0.0004 3.8341b) −0.0002 3.8343
2D 3.8757 −0.0029 3.8761b) −0.0025 3.8786

Na 2P 2.0871 −0.0152 2.0963 −0.0060 2.1023
2S 3.1721 −0.0193 3.1826 −0.0088 3.1914
2D 3.5939 −0.0231 3.6067 −0.0103 3.6170
2P 3.7311 −0.0215 3.7431 −0.0095 3.7526

a) Deviation from experiment.
b) Equivalent to FCI value.
c) Refs. [76, 77].
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Figure 4.1 Potential energy curves of the LiK+ ion with the EA-EOM-CCSD method in unANO-RCC+ basis
set (from Ref. [75]).

the deviations from experiment are larger, see respective columns (ΔSD, ΔSDT) and also the triples
effect is larger amounting in all considered cases to ca. 0.01 eV.

As a second example demonstrating the possible use of the EA-EOM-CC scheme in the character-
ization of excited states we selected calculations of the potential energy curves (PEC) for the LiK+

ion. The adopted computational strategy is as follows: we want to compute PEC for the open-shell
system by a method based on the RHF function. As the reference system we adopted the double
positive cation LiK2+ which dissociates LiK2+ → Li+ + K+ into the closed-shell fragments Li+ and
K+ in the whole region of interatomic distances. By doing EA-EOM calculations for each point of
the PEC we can plot the energy values for the LiK+ ion. The adopted strategy ensures a generation
of the smooth energy curves as shown in Figure 4.1.

4.6 Doubly-Ionized States: DIP-EOM-CC

This variant of EOM-CC is aimed at the evaluation of double ionization potentials and the energies
of the excited electronic states of doubly ionized system. Doubly ionized states can be accessed
experimentally, hence the performance of the DIP-EOM-CC method can be easily verified.
Before we introduce the respective equations we would like to indicate another possibility to use
DIP-EOM-CC results. For instance, adopting the system A with two attached electrons, i.e., A2−

as a reference, and performing the DIP-EOM-CC calculations we obtain results pertaining to the
neutral molecule A. This strategy could be of particular interest in situations when the ground state
(in this case it is more appropriate to use the reference state) CC calculations are easier to obtain
for A2− than for A. Consider, e.g., the dissociation of the F2 molecule. The proper description of
the potential energy curve encounters some difficulties since the closed-shell molecule dissociates
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(we consider a homolytic process) into open-shell fragments:

F2 → F + F

To account properly for the open-shell character of the products we need to use the UHF approach
with its well known deficiencies. The alternative route would be to adopt the F2−

2 ion dissociating
into the closed-shell fragments as a reference system:

F2−
2 → F− + F−

(F− being isoelectronic with the neon atom). When computing PEC with the DIP-EOM-CC scheme
for F2−

2 system we can use the RHF based approach for the whole range of interatomic distances
computing at each point the energy of the neutral F2 molecule. Below we will recall the other
situations for which the DIP-EOM-CC calculations seem particularly suitable. As before we will
discuss two CC models: CCSD and CCSDT.

4.6.1 DIP-EOM-CCSD Model

Within the CCSD model the R̂ operator is represented by one term only, responsible for the removal
of two electrons from the system:

R̂(k)SD = 1
2
∑

ij
rij(k)âjâi

Consequently the resulting equation for the (H̄N R)ij target amplitude is rather straightforward,
see Table 4.14.

4.6.2 DIP-EOM-CCSDT Model

Within the CCSDT model R̂(k)SDT is defined as:

R̂(k)SDT = R̂SD(k) +
1
2
∑

ijl

∑
a

r a
ijl (k)â†

aâlâjâi

The R̂(k)SDT given above includes the component responsible for the annihilation of two electrons
connected with a single excitation.

The resulting equations are more complex and in the standard form engage the three-body
elements of H̄N eliminated in the factorized form and replaced with the 𝜒 intermediates, see
Table 4.15.

Moreover in the case of DIP and DEA the hybrid method (acronyms DIP-EOM-CCSDT’,
DEA-EOM-CCSDT’) are considered. In these variants the ground state is solved at the CCSD level
(scaling n6) instead of CCSDT (scaling n8) and in EOM part (scaling n6) the R2 and R3 equations
are taken as in the full CCSDT method (see Refs. [33, 36] for more details). These new variants
give results of comparable quality to the full DIP-EOM-CCSDT and DEA-EOM-CCSDT methods
but with lower scaling.

Table 4.14 The DIP-EOM-CCSD
equation in the orbital formalism.

Expressiona)

(H̄N R)ij = P(i∕j)[−rimIm
j + 1

2
rmnImn

ij ]

a) See footnote to Table 4.7.
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Table 4.15 The DIP-EOM-CCSDT equations in the orbital formalism. (additional
terms not included in the DIP-EOM-CCSD model).

Expressiona)

(H̄N R)ij = P(i∕j)[rmnImn
ij − 2r e

imn Imn
je + r e

imn Imn
ej + r e

mnj Imn
ie + r e

ijm Im
e − r e

imj Im
e ]

(H̄N R) a
ijk = P(i∕j)[−rimIma

jk + 1
2

r e
ijk Ia

e − 1
2

r a
ijm Im

k − r a
mjk Im

i + 1
2

r a
mnk Imn

ij

+r a
imn Imn

jk − r e
imk Ima

je − 1
2

r e
ijm Ima

ke + r e
ijm Ima

ek − r e
imj Ima

ek ] + F a
ijk

F a
ijk

b)= P(i∕j)[ 1
2

rmnImna
ijk − 2r e

imn Imna
jek + r e

imn Imna
ejk + r e

mnj Imna
iek ]

F a
ijk

c)= P(i∕j)[ 1
2

tefa
ijk 𝜒ef + tea

jk 𝜒ie]

𝜒ab = rmn𝑣
mn
ab

𝜒ia = rmnImn
ia − r e

imn 𝑣mn
ae + r e

mni 𝑣
mn
ae + r e

imn 𝑣mn
ea

a) See footnote to Table 4.7.
b) Standard version.
c) Factorized version.

4.6.3 DIP-EOM-CC Results

In Table 4.16 we listed vertical double ionization potentials for a set of closed-shell molecules. Note
that the results collected here represent the energy difference between the ground singlet state of
the neutral molecules and the ground and excited states of their double positive ions. Thus the

Table 4.16 Vertical double ionization potentialsa) (eV) with the EOM-CC methods in the POL1 basis set
(from Ref. [78]).

DIP-EOM

CCSD CCSDT CCSDT’

GS ∶ n6 GS ∶ n8 GS ∶ n6

Mol. Sym. EOM ∶ n4 EOM ∶ n6 EOM ∶ n6 Exp.b)

H2O 1A1 50.39 41.73 41.63 41.3
1B1 51.78 43.24 43.14 42.0

CO 1Σ+ 46.72 41.91 41.76 41.7
1Π 47.02 42.71 42.53 42.2
1Σ+ 51.75 45.94 45.72 45.8

C2H2
1Δg 38.13 33.88 33.63 33.0
1Πu 43.71 39.15 38.93 37.6
1Πg 45.82 41.30 41.09 39.3

C2H4
1Ag 35.59 31.20 30.96 30.1
1Ag 37.06 32.79 32.58 32.2
1B3u 40.66 35.57 35.34 34.0

MAE 6.32 0.93 0.75

a) Assumed experimental geometry for the ground state.
b) Refs. [79–84].
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Figure 4.2 Potential energy curves of the ground state of the F2 molecule within CC and DIP-EOM-CC
methods (from Ref. [78]).

energy values listed in the first row at each molecule represent the double ionization potential and
can be used to get the ground state energy of the M2+ ions. The energy values corresponding to
higher states can be used to evaluate the excitation energy for the M2+ ions. An important issue is
also molecular geometry at which the energy values are computed. If the vertical excitation energy
of the doubly ionized M2+ is required the DIP calculations must be done for the optimum geometry
of the lowest lying state. Comparing the results given in Table 4.16 with available experimental data
we may assess the importance of the inclusion of the triples in the DIP calculations. In all cases the
triples are critical in recovering a satisfactory agreement with experiment reducing the error from
several eV to a few tenths of an eV. This can be seen by comparing the mean absolute error of
6.32 eV for the CCSD variant and 0.73 for the CCSDT one.

Another example of using the the DIP-EOM scheme is shown in Figure 4.2. The plot represents
the potential energy curves of the F2 molecule obtained with the assumption of the DIP strategy
discussed above. The reference system is represented by the F2−

2 dianion which dissociates into the
closed-shell F− ions isoelectronic with the neon atom. As a result, smooth curves are computed for
bond distances ranging from equilibrium to infinity.

4.7 Doubly Electron-Attached States: DEA-EOM-CC

At first sight an evaluation of the states with two attached electrons seems to be of little interest
since such states are rarely available experimentally. Hence the direct calculation of the transition
energy connected with attaching of two electrons to a neutral molecule has little sense. In the appli-
cation described below we focus on using the DEA-EOM approach in the inverse manner: i.e., we
will apply the DEA scheme to characterize neutral atoms or molecules by adopting the doubly
ionized system as the reference. For example, using the standard coupled-cluster or configuration
interaction schemes to get the electronic structure of the (open-shell) carbon atom would result
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in a broken symmetry solution (unless we use FCC or FCI schemes). In the DEA calculations we
assume the doubly ionized cation C2+ as the reference system and using DEA-EOM scheme we
recover the correct symmetry and energy both of ground and excited states of the neutral carbon
atom. Similarly – in analogy to the DIP calculations discussed in the previous section – we may
reproduce correct potential energy curves for the Na2 dimer assuming the closed-shell Na2+

2 ion as
the reference system dissociating into two closed-shell fragments:

Na2+
2 → Na+ + Na+

(Na+ being isoelectronic with the neon atom).
Bearing this in mind it becomes worthwhile to develop the DEA-EOM-CC approach.

4.7.1 DEA-EOM-CCSD Model

Computationally the DEA variant based on the R̂2 operator (R̂1 does not occur both in DIP and
DEA variants) is rather straightforward:

R̂(k)SD = 1
2
∑
ab

rab(k)â†
aâ†

b

The R̂(k) operator places additional electrons on virtual levels a and b with a and b running over
all virtuals. In analogy to the DIP variant the (H̄N R)ab target amplitudes are composed of two terms,
see Table 4.17. The size of the problem is significantly larger than in the DIP case.

4.7.2 DEA-EOM-CCSDT Model

We formally introduced the DIP and DEA EOM variants at the CCSD level although they are of
little practical use. The usefulness of this method can be shown only at the CCSDT level where the
R̂3(k) operator is added to the R̂SD(k) one:

R̂(k)SDT = R̂SD(k) +
1
2
∑
abc

∑
i

rabc
i(k)â

†
aâ†

bâ†
c âi

Applying a generalized Davidson scheme the target (H̄N R)abc
i amplitudes include the terms given

in Table 4.18.
In this case, i.e., at the CCSDT level, the factorization of the DEA contribution is necessary to

avoid construction of the three-body H̄N elements engaging i.a. five virtual levels.

4.7.3 DEA-EOM-CC Results

An example illustrating the usefulness of the DEA-EOM scheme is shown in Table 4.19 containing
the term energy values of the carbon atom. We adopt the closed-shell C2+ ion (1s22s2 configuration)

Table 4.17 The DEA-EOM-CCSD
equation in the orbital formalism.

Expressiona)

(H̄N R)ab = P(a∕b)[raeIb
e + 1

2
ref Iab

ef ]

a) See footnote to Table 4.7.
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Table 4.18 The DEA-EOM-CCSDT equations in the orbital formalism.
(additional terms not included in the DEA-EOM-CCSD model).

Expressiona)

(H̄N R)ab = P(a∕b)[2raef
mIbm

ef − raef
mImb

ef − refb
mIam

ef + rabe
mIm

e − raeb
mIm

e ]

(H̄N R)abc
i = P(a∕b)[raeIbc

ei + 1
2

rabe
iI

c
e −

1
2

rabc
mIm

i + rebc
iI

a
e + 1

2

∑
ef refc

iI
ab
ef

+raef
iI

bc
ef − raec

mIbm
ei − 1

2
rabe

mImc
ie + rabe

mImc
ei − raeb

mImc
ei ] + Fabc

i

Fabc
i
b)= P(a∕b)[ 1

2
ref Iabc

efi + 2raef
mIbmc

efi − raef
mImbc

efi − refb
mIamc

efi ]

Fabc
i
c)= P(a∕b)[ 1

2
tabc
mni𝜒

mn − tbc
mi𝜒

am]

𝜒 ij = ref 𝑣
ij
ef

𝜒ai = ref Iai
ef + 2raef

m𝑣
im
ef − refa

m𝑣
im
ef − raef

m𝑣
mi
ef

a) See footnote to Table 4.7.
b) Standard version.
c) Factorized version.

Table 4.19 Term energies (eV) for the C atom using the DEA-EOM-CC methods in the POL1 basis set (from
Ref. [85]).

DEA-EOM

CCSD CCSDT CCSDT’

GS ∶ n6 GS ∶ n8 GS ∶ n6

Sym. EOM:n4 EOM ∶ n6 EOM ∶ n6 Exp.a)

2p2 1D 1.308 1.480 1.481 1.26
2p2 1S 1.771 2.802 2.805 2.68
2p3s 3P0 5.834 7.318 7.320 7.48
2p3s 1P0 5.963 7.520 7.521 7.68
2p3p 1P 7.107 8.503 8.504 8.54
2p3p 3D 7.228 8.670 8.671 8.64
2p3p 3S 7.411 8.869 8.870 8.77
2p3p 3P 7.748 9.026 9.027 8.85
2p3p 1D 8.051 9.382 9.384 9.00
MAEb) 1.175 0.154 0.155

a) Ref. [86].
b) MAE – mean absolute error.

as reference and then by using DEA-EOM schemes we recover the energy of the neutral C atom.
The basis set is rather modest hence the results for the EOM-CCSDT scheme are off the experiment
by 0.1–0.2 eV. The average error for nine electronic states is 0.154 eV, i.e., by more than 1 eV lower
than those for the CCSD method.

In Figure 4.3 we present the potential energy curves for the Na2 dimer. The adopted reference
system is Na2+

2 dissociating according to the scheme Na2+
2 → Na+ + Na+, i.e., into two closed-shell

fragments. The DEA-EOM calculations recover the original process engaging the neutral molecule
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Figure 4.3 Potential energy curves for the ground state of the Na2 molecule within CC and DEA-EOM-CC
methods (from Ref. [85]).

and atoms, i.e., Na2 → Na + Na. The obtained PECs correctly reproduce the experimental
curves [85].

4.8 Size-Extensivity Issue in the EOM-CC Theory

An attractive feature of the coupled-cluster theory is its size-extensivity property. This means that
the total energy of the collection of non-interacting units is a sum of the energies computed sep-
arately for each unit. Within EOM-CC theory this problem is more complicated. Let us consider
two non-interacting molecules A and B and use the EOM-CC method to get excitation energies (we
assume that we have truncated expansion of the R̂ operator). If the method is size extensive then
all possible types of excitations comply to the condition that we get the same energy for the com-
plex as for the separate calculations for the components. First we want to investigate whether the
excitation energies computed separately for the molecules A and B are the same as the excitation
energies computed for the AB complex. The EOM-CC provides a positive answer to that problem.
If we get from the calculations for the AB complex the energies of the local excitations (i.e., occur-
ring within A or within B unit) then we get the identical results as for the monomer calculations.
This feature of the method is called size-intensivity [38, 39, 87–89] and the EOM-CC method is
size-intensive.

However, there is a different situation for the charge-transfer (CT) calculations, i.e., when the
electron removed from the monomer, say, A (donor), is placed on the virtual level of monomer B
(acceptor). For such a CT state the energy at large internuclear separation should be expressed as:
EE = IP(D) + EA(A) − e2∕RDA, where the IP and EA values are taken from the IP/EA-EOM-CC cal-
culations and the last term represents the electrostatic interaction between the donor and acceptor.
For the EOM-CC the expression for CT at the separable limit does not hold. This is rather a small
effect but it is a formal deficiency of the theory that should be fixed.
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Table 4.20 Behavior of charge transfer excitation in a Be· · · C2 complexa) (from Ref. [90]).

EE − (IP + EA) (in eV)

EOM-CC

R (Å) − e2

R
(eV) SD SDT SDx

5 −2.880 −2.937 −2.872 −3.012
(−0.057) (0.008) (−0.132)

10 −1.440 −1.375 −1.437 −1.440
(0.065) (0.003) (0.000)

100 −0.1440 −0.0799 −0.1411 −0.1440
(0.064) (0.003) (0.000)

1000 −0.0144 0.0496 −0.0115 −0.0144
(0.064) (0.003) (0.000)

a) In parenthesis: Δ = EE − (IP + EA) + e2

R
(eV) for large R represents size-extensivity error.

The problem of the behavior of EEs when a system is separated into two non-interacting sub-
systems has been discussed on the example of the Be...C2 complex (see Ref. [90] for computational
details). The results obtained there are presented in Table 4.20. In the columns with headers SD and
SDT we have the difference between the CT excitation energy and the sum of ionization potential
and electron affinity (EE − (IP + EA)). This value for larger distances should be equal to the elec-
trostatic interaction energy between donor and acceptor (listed in the second column). As we see
the size-extensivity error is not large, at the CCSD level it is equal to 0.064 eV while upon inclusion
of connected triples it is reduced to 0.003 eV. Thus for higher EOM-CC models the size-extensivity
errors are negligible.

In the same table in the last column we have shown that the method denoted as EOM-CCSDx
obtained by small modifications of the regular EOM-CCSD scheme provides size-extensive results.
The general prescription for such modification relies on the addition of selected terms to the H̄N
elements to eliminate the terms causing the size-extensivity errors (in the diagrammatic language
they are called unlinked terms). An exhaustive discussion of the charge-transfer separability (CTS)
problem and why it is not satisfied by ordinary EOM-CC or CCLR has been given by Stanton [89].

It should be mentioned here that the method with correct size-extensivity has been proposed by
Nooijen and coworkers [91, 92] who considered a modification of the standard EOM-CC approach
by introducing a second similarity transformation to the EOM equations (STEOM - Similarity
Transformed EOM). It also correctly describes charge-transfer separability. The true remedy for
the size-extensivity problem of the EOM-CC approach is to use the multi-reference Fock space
CC approach (MR-FS-CC) [7, 9] which by definition provides size-extensive results and correctly
describes CT separability since it provides a valence universal wave operator built on an exponen-
tial ansatz. Moreover, IH-MR-FS-CCSD (IH - Intermediate Hamiltonian) reduces to STEOM-CCSD
when all orbitals are active [90, 93]. However, EOM-CCx is different from both.

The proper formulation of the MR-FS-CC method via the intermediate Hamiltonian formulation
in the two valence sectors (i.e., for EE - (1,1), DIP - (0,2) and DEA - (2,0)) offers an easy way to replace
the iterative solution of the Bloch equation by direct diagonalization of the properly constructed
matrix (”dressed” H̄N called IH) [66, 78, 85, 93, 94] with the help of the EOM-CC strategy. Moreover,
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at the (0,1) (IP) and (1,0) (EA) level the IH formulation reduces the MR-FS-CC methods to the
IP-EOM-CC and EA-EOM-CC ones. As is known these vectors give the same eigenvalues with the
only difference being that the cluster amplitudes for the (0,1) and (1,0) sectors must be determined
from the sets of the IP- and EA-EOM-CC eigenvectors. Thus, the EOM-CC solution can be obtained
either by direct diagonalization of the H̄N matrix within the appropriate configurational subspace
or by solving the Bloch equation iteratively (see Ref. [90] for more details).

4.9 Final Remarks

The various computational schemes hidden under the name EOM-CC create a path through which
coupled-cluster theory unifies the studies of excited, ionized and electron-attached molecular sys-
tems. EOM-CC theory offers a plethora of computational schemes depending on the definition of
the R̂ operator. All of them have similar structure, i.e., within each one we can distinguish two
principal stages: I – the calculations for the reference system and II – the EOM part. Stage I is iden-
tical to all EOM variants and may be formally divided into three steps: (i)solving Hartree–Fock
equations via SCF calculation, (ii)solving coupled-cluster equation for the assumed reference state
(iii)construction of the similarity transformed Hamiltonian, H̄N . Stage II relies on the diagonal-
ization of the H̄N matrix within the configurational subspace defined by the EOM variant. From
a formal point of view, to recover the excited state of any atomic or molecular system (neutral
closed-shell, radical, negative or positive ions) it is enough to have access to the EE-EOM-CC
variant. By doing the reference calculation (Stage I) using general wave functions (RHF or UHF
depending on the situation) we can apply the general purpose EE-EOM-CC scheme to get the EE
states. However, in most cases we are forced to do a reference calculation for open-shell systems on
the basis of UHF calculations with the well known limitation of that approach, e.g., spin contami-
nation.

Having access to various realizations of the EOM-CC approach (EE, IP, EA, DIP, DEA, etc.) we
propose a different computational strategy. In order to get access to excited states of species A we
adopt one of the uncharged or charged analogues (A, A+, A−, A2+, A2−, …) as a reference which
form a closed-shell system. Our experience tells us that even very sophisticated calculations are
much easier to do for a RHF reference and to that aim we adjust our strategy. For instance, if we
want to get the excited states of the A− system we will use:

● the EE-EOM-CC method if A− is a closed-shell species
● the EA-EOM-CC method if A turns out to be a closed-shell system
● the IP-EOM-CC method if A2− turns out to be a closed-shell system.

Another example: in order to make successful calculations of potential energy curves for the
AB molecule we assume one of the following systems: AB, AB+, AB−, AB2+, AB2− as reference
which fulfill the condition that upon homolytic dissociation the closed-shell molecule creates
closed-shell fragments. And according to this selection we will use either the EE-, EA-, IP-, DEA-
or DIP-EOM-CC method, respectively.

For all five methods considered we have provided detailed working equations both at the CCSD
and CCSDT level in the form ready to code. We are convinced that the computational method can
be understood if we can see the working equations which can be directly coded into a computer pro-
gram. For each of the considered EOM schemes we provided illustrative results which demonstrate
the superiority of the EOM-CCSDT method. In several examples the CCSD errors are unacceptably
large. In that case the obvious remedy is to include triple excitations.

We should mention that an efficient treatment of excited states is also possible within the EOM
spin flip formalism of Krylov et al. [95–97] or the active space route [98, 99]. In EOM-sf the excited
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states are sought in the basis of determinants conserving the total number of electrons but one has
to change the number of 𝛼 and 𝛽 electrons. The reference function is computed for the high-spin
state (e.g., Sz=1) then at the EOM level we arrive at the low-spin state (e.g., Sz=0) (see Ref. [55]
for more details). A reverse spin-flip procedure has been applied recently in [100], where the spin
non-conserving R̂(k) operator acting on the Sz=0 reference state produces the high-spin (Sz ≠ 0)
configurations. This made it possible to create a robust scheme to get triplets and quintets.
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Abstract

The algebraic-diagrammatic construction scheme (ADC) for the polarization propagator is introduced
and the key steps of the original derivation via Green’s functions as well as a more recent one via the
intermediate state representation (ISR) are presented. The ISR provides an elegant and efficient route to
excited state properties and excited-state wave function analysis tools. Properties and limitations of the
ADC scheme for excitation energies are discussed, before specialized variants of ADC like unrestricted
ADC (UADC), spin-flip (SF) ADC, spin-opposite-scaled (SOS) ADC and core-valence-separated (CVS)
ADC are described in a bit more detail. The chapter concludes with the description of photochemistry
by ADC and a brief summary and outlook.

Over the last ten years, the algebraic diagrammatic construction scheme for the polarization
propagator of second order (ADC(2)) has become more and more popular as the excited-state
method for the investigation of photochemistry of medium-sized, mostly organic molecules
[1, 2]. It is also often employed as the benchmark method for computationally more efficient but
also more approximate excited-state methods like time-dependent density functional theory or
semi-empirical methods. It can be used as an alternative to coupled-cluster approaches. The success
of ADC(2) is certainly related to the ongoing efforts to provide user-friendly and efficient computer
codes. Meanwhile, the ADC(2) method is implemented in a whole bunch of quantum chemical
program packages, for example, in Turbomole [3], Psi4 [4], Orca [5], and Q-Chem [6] to name a few.
In addition, ADC approaches are so-called black-box methods and offer user-friendly application
because expert knowledge is not required to run the calculation. In other words, no a priori knowl-
edge of the molecular system is required and only a basis set and the number of excited states to
be calculated have to be chosen to run an ADC calculation. As ab initio methods, ADC approaches
possess a stable and predictable and widely established accuracy for a large class of molecules.

However, ADC(2) is only one specialized approach of a whole family of ADC methods and as
will be shown below, algebraic diagrammatic construction (ADC) refers to a general formalism
to construct computational schemes starting from Green’s functions, i.e., propagators. It was
developed in the early 1980s for the calculation of ionization potentials, electron affinities and
excitation energies [1, 7, 8]. In analogy to coupled-cluster approaches it is thus important to
indicate the variant by either specifying the propagator that has been constructed via the ADC

Quantum Chemistry and Dynamics of Excited States: Methods and Applications,
First Edition. Edited by Leticia González and Roland Lindh.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.
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formalism or by specifying the property to be computed. ADC(n) for the polarization propagator
yields excitation energies (EE), while ADC(n) for the hole or electron propagator yields ionization
potentials (IP) or electron affinities (EA). Hence, it is suggested that the established coupled-cluster
nomenclature is followed, i.e., to use the abbreviation EE-ADC, IP-ADC and EA-ADC to specify
the variant of ADC. Since, in the following, the focus lies on EE-ADC schemes exclusively, here
ADC(n) will always refer to EE-ADC(n).

This chapter is organized as follows. Following the historical pathway, the original derivation of
ADC(n) schemes via Green’s function, i.e., propagators, will be first briefly reviewed (Section 5.1)
before the approach of the intermediate state representation (ISR) is introduced (Section 5.2), and
exploited to compute excited-state and transition properties (Section 5.3.1). In Section 5.4, connec-
tions to other theoretical methods are made and properties and limitations of EE-ADC schemes are
discussed. Afterwards specialized variants of EE-ADC are introduced (Section 5.5), before finally,
in Section 5.6, the simulation of organic photochemistry with EE-ADC approaches is described.
The chapter concludes with a brief summary and outlook of future developments.

5.1 Original Derivation via Green’s Functions

The Green’s function formalism represents a successful technique to solve inhomogeneous differ-
ential equations [9]. Instead of solving the inhomogeneous differential equation, if it is possible at
all, a corresponding differential equation is solved, in which the inhomogeneity I(r) is replaced by
the Dirac delta distribution 𝛿(r − r′). The solution of this modified differential equation is called
Green’s function. Knowing the Green’s function, the solution of the full inhomogenous differential
equation can then be obtained via

f (r) = ∫ dr′G(r − r′)I(r′). (5.1)

In analogy, a Green’s function can be defined for the time-dependent single-particle Schrödinger
equation{

𝚤
𝜕

𝜕t
− Ĥ(r)

}
G(rt; r′t′) = 𝛿(r − r′)𝛿(t − t′) (5.2)

This is particularly useful if the Hamiltonian Ĥ can be separated into one part Ĥ0 for which
the Schrödinger equation can be solved and a small perturbation V̂(r). Then, the solution of the
Schrödinger equation with Ĥ is given by

|Ψ(rt)⟩ = |Ψ0(rt)⟩ + ∫ dr′ ∫ dt′G(rt; r′t′)V̂(r′)|Ψ0(r′t′)⟩, (5.3)

where |Ψ0(rt)⟩ is the solution of the Schrödinger equation with Ĥ0.
In many-body systems the definition of a Green’s function as in the single-particle case is gen-

erally no longer possible. However, similar building blocks can be defined which yield solutions
to certain problems within the many-body system. These building blocks are also called Green’s
functions or propagators. Most important are the one- and two-particle Green’s function, which
are defined as [10]

Gp,q(tp, tq) = −𝚤⟨Ψ0|T̂ {
âp(tp)â

†
q(tq)

} |Ψ0⟩ (5.4)

Gp,q;r,s(tp, tq; tr , ts) = (−𝚤)2⟨Ψ0|T̂ {
âp(tp)âq(tq)â

†
r (tr)â

†
s (ts)

} |Ψ0⟩ (5.5)
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where |Ψ0⟩ refers to the exact N-particle ground state. Many-body Green’s functions are
ground-state expectation values of a time-ordered series of creation (â†

p(t)) and annihilation (âp(t))
operators, which create or annihilate a particle at time t in a single-particle orbital 𝜙p(r). The
single-particle Green’s function thus gives the probability that an electron that has been in the
single-particle state q at time tq appears in the single-particle state p at later time tp, and the
two-particle Green’s function analogously for two electrons.

Since Green’s functions are defined as ground-state expectation values, some information about
the ground state of the system is lost compared to the ground state wave function. However,
the information content of the one-particle Green’s function Eqn. (5.4) still suffices to calculate
ground-state expectation values of single-particle operators, the ground-state energy, as well as
the ionization and absorption spectra of the system. The two-particle Green’s function Eqn. (5.5)
can be employed to calculate ground-state expectation values of two-particle operators and the
excitation spectrum. For the latter, even the polarization propagator is sufficient, which is obtained
from the two-particle Green’s function via

Πpq,rs(t, t′) = lim
tq→t

lim
ts→t′

𝚤{Gp,s;q,r(t, ts; tq, t′) − Gp,q(t, tq)Gs,r(ts, t′)}. (5.6)

The first term on the right hand side of Eqn. (5.6) corresponds to the two-particle Green’s function
related to the probability that at time t two electrons in the single-particle states p and s occur at time
t′ in the states q and r. The product Gp,q(t, tq)Gs,r(ts, t′) is subtracted, which describes the probability
that the single-particle transitions p to q and s to r occur independently from each other. Hence, the
difference corresponds to the influence of one single-particle transition onto the other. Physically
this influence is polarization, which becomes clear when both fluctuations are imagined to occur
on spatially separated atoms for example. If the atoms do not interact, density fluctuations occur
independently, and only when the atoms polarize each other, density fluctuations are vice versa
induced, and the polarization propagator is non-zero.

A more intuitive expression for the polarization propagator is obtained after insertion of a
compete set of eigenfunctions and Fourier transform into energy space. This so-called spectral
Lehmann representation takes on the form

Πpq,rs(𝜔) =
∑
(n≠0)

⟨Ψ0|â†
qâp|Ψn⟩⟨Ψn|â†

r âs|Ψ0⟩
𝜔 + E0 − En

+
∑
(n≠0)

⟨Ψ0|â†
r âs|Ψn⟩⟨Ψn|â†

qâp|Ψ0⟩
−𝜔 + E0 − En

(5.7)

= Π+
pq,rs(𝜔) + Π−

pq,rs(𝜔). (5.8)

Π+ has poles at excitation energies andΠ− carries information about “de-excitations” of the system.
For the derivation of the second- or third-order polarization propagator approaches, SOPPA and
TOPPA [11, 12], respectively, the full polarization propagator is taken into account. In contrast,
in the algebraic diagrammatic construction schemes only Π+ is considered, which in its diagonal
form, i.e., in the eigenstate basis of the Hamiltonian, reads as

Π+(𝜔) = x†(𝜔 −𝛀)−1x. (5.9)

For the derivation of approximate expressions for the polarization propagator the existence of a
non-diagonal form is assumed

Π+(𝜔) = f†(𝜔 − M)−1f , (5.10)
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and diagrammatic perturbation theory is used to construct algebraic expressions for the matrix ele-
ments of f and M

M = K + C(𝟏) + C(𝟐) + · · · C(n) (5.11)

f = f(0) + f(1) + f(2) · · · f(n) (5.12)

Without going further into the mathematical details, which can be found in Ref. [1], the order n
of perturbation theory used for the matrix elements of M, the ADC matrix, and f, the matrix of
modified transition moments, determines the order of the algebraic diagrammatic construction
scheme ADC(n). More specifically, n refers to the order of perturbation theory up to which the
primary particle–hole (p–h) states are exact. K corresponds in Eqn. (5.11) to zeroth order, i.e., the
expectation value of the Fock operator of the zeroth-order intermediate states, the Slater determi-
nants. Hence, K is diagonal with orbital energy difference between occupied and virtual orbitals.
Diagonalization of the matrix M, i.e., solution of the corresponding Hermitian eigenvalue equation,
yields directly excitation energies 𝜔n and ADC vectors yn according to

MY = 𝛀Y with Y†Y = 𝟏, (5.13)

with Y and Ω being the matrices of ADC eigenvectors and excitation energies, respectively. The
transition moments are then obtained from the converged ADC vectors via

xn = y†
nf , (5.14)

i.e., by contraction with the previously determined modified transition moments (Eqn. (5.12)).
The unusual name of Algebraic Diagrammatic Construction originates from this first derivation

via diagrammatic perturbation theory to construct algebraic expressions and it refers to a general
mathematical procedure and is generally applicable to any propagator. As we have seen, ADC for
the polarization propagator yields a Hermitian eigenvalue equation with excitation energies and
transition vectors as eigenvalues and eigenvectors. When the one-particle propagator is used (Eqn.
5.4), Hermitian ADC schemes are obtained which yield ionization potentials or electron affinities.
Hence, it is important to refer to the propagator used to classify the ADC scheme. For example,
ADC(3) for the polarization propagator yields excitation energies of primary particle–hole states
consistently up to third order [13, 14], while ADC(3) for the hole-propagator yields ionization
potentials [7, 15]. In analogy to coupled-cluster approaches, the abbreviations EE-ADC, IP-ADC
or EA-ADC for excitation energy, ionization potential or electron affinity ADC are thus suggested
to be used in a more general context.

5.2 The Intermediate State Representation

An alternative approach for the derivation of ADC schemes is provided by the formalism of the
intermediate state (IS) representation [16, 17]. In the original derivation via the Green’s function
formalism, the existence of a non-diagonal form of the polarization propagator (Eqn. 5.10) has been
postulated. Almost 20 years later, the basis of the non-diagonal form leading to the ADC expressions
for the polarization propagator has been identified. This is the so-called Intermediate State (IS)
basis.

Conceptually, the construction of the IS basis is simple. By acting with physical excitation oper-
ators on the correlated electronic ground state according to

|ΨCE
I ⟩ = ĈI|Ψ0⟩ with ĈI = {â†

aâi; â†
bâjâ

†
aâi · · · }, (5.15)
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a set of correlated excited-state basis functions is first constructed. â†
a and âi correspond to the typ-

ical creation and annihilation operators of second quantization. The ΨCE
I are generally not orthog-

onal and are thus step-wise orthogonalized with respect to the electron ground state and other
excitation classes. This results in the orthogonal intermediate state basis ΨIS

I for excited states.
When this basis is used to represent the shifted Hamiltonian (Ĥ − E0), with E0 being the correlated
ground state energy, a matrix is obtained which reads

{M}IJ = ⟨ΨIS
I |Ĥ − E0|ΨIS

J ⟩. (5.16)

Clearly, diagonalization of M, i.e., solving the eigenvalue equation MY = 𝛀Y yields excitation ener-
gies. So far, this derivation is exact as long as the exact ground state wave function and ground state
energy are employed in Eqn. (5.15) and (5.16), respectively. For the derivation of ADC schemes,
however, the Møller–Plesset ground state energy as well as the corresponding wave function are
employed. In general, the perturbation theoretical order of the ADC(n) scheme is then determined
by the order of the MPn quantities used. Thereby, identical expressions for the matrix elements of
M are obtained as via the traditional route of diagrammatic perturbation theory. In other words,
the IS basis is that basis, in which the ADC matrix and so the converged ADC vectors yn are even-
tually represented. Therefore, knowledge of the IS basis vectors {ΨIS

I } is required to construct an
excited state wave function from an ADC eigenvector via

Ψn =
∑

I
ynIΨIS

I , (5.17)

where I runs over all intermediate states, the ground state excluded. ADC amplitudes are important
to realize – not to correspond to coefficients of Slater-determinants as in configuration interac-
tion – but to expansion coefficients of a correlated excited state basis. Hence, an interpretation of
ADC vectors in the orbital picture is not appropriate. Equation (5.17) provides furthermore access
to linear and non-linear excited-state properties at ADC level by computing expectation values or
evaluating higher-order response functions (vide infra).

It is worthwhile to note that using MP0 values in the ISR formalism, i.e., the HF ground state
and the expectation value of the Fock-operator

∑
i𝜖i, yields an ADC(0) matrix with the dimension

nocc × n𝑣irt with just orbital energy differences 𝜖a − 𝜖i on the diagonal. Using MP1 values, ADC(1)
is obtained which is identical to the uncorrelated CIS method. Only when MP2 or MP3 serve as
a starting point for the ISR derivation, ADC(2) or ADC(3), respectively, are obtained, which are

2

p-h

p-h

2p-2h

ADC(2) ADC(3)

2p-2h

p-h 2p-2h

1

1 0

3 2

2 1

Figure 5.1 Structure of the ADC(2) and ADC(3) matrices. The number in the corresponding block refers to
the order of perturbation theory to which the matrix elements of the block are exact. For example, the
(p–h/p–h) block of the ADC(2) matrix is exact up to second order, the (p–h/2p-2h) and (2p-2h/p–h)
coupling blocks up to first order and the (2p-2h/2p-2h) block only up to zeroth order. In other words the
latter block has only orbital energy differences (𝜖a + 𝜖b − 𝜖i − 𝜖j) on the diagonal.
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correlated excited state methods. Both matrices exhibit the dimension of a CISD matrix contain-
ing singly-excited, also called particle–hole (p–h) states and doubly excited, two-particle two-hole
(2p-2h) states (Figure 5.1). Until today, the ADC(4) scheme for the polarization propagator has not
been realized, and its ADC(4) matrix would extend to the (3p-3h) space, i.e., have the dimension
of a CISDT matrix.

Within the derivation of the ADC schemes the MPn ground state energy is formally subtracted,
canceling the corresponding terms in the Hamiltonian Ĥ = F̂ + Û, which is perturbation theoret-
ically expanded exactly. Hence these ground state terms do not occur in the ADC matrix, and thus
a ground state MP calculation is generally not required prior to an ADC calculation for excitation
energies only. The only necessary ingredients are one-particle energies and molecular orbitals
stemming from a (canonical) Hartree–Fock calculation. This is important to realize, as it will
become relevant when external one-particle potentials are to be included in an ADC calculation
(Section 5.6.2).

Finally it should be briefly mentioned that besides the derivation via Green’s functions and the
ISR approach, ADC equations can also be obtained via further routes. For ADC(2), yet another
alternative route exists via the configuration interaction singles with perturbative doubles correc-
tion (CIS(D∞) scheme [18]. It has been recognized that the ADC(2) matrix is obtained, when the
Lagrangian of the CIS(D∞) is symmetrized according to

MADC(2) =
1
2
{ACIS(D∞) + A†

CIS(D∞)}. (5.18)

In the context of CIS(D∞) or CC2, one speaks of a Lagrangian instead of a Hamiltonian, as these
matrices are not Hermitian. Since CC2 is related to CIS(D∞) by a similarity transformation of the
Hamiltonian, CC2 is also closely related to ADC(2) explaining their similar accuracies and range
of applicability. More details on this derivation route can be found in the literature [18].

Early on, it was realized that unitary coupled cluster (UCC) provides yet a different derivation
route for ADC schemes in general [19, 20], if appropriate assumptions are made during the deriva-
tion. Without going into detail here, one of the key assumptions lies in the termination of the
Baker–Campbell–Hausdorff expansion, which does not terminate naturally for the UCC ansatz.
However, it has also been shown recently that UCC polarization propagator theory can lead to
Hermitian UCC3 equations for excited states which are structurally identical to ADC(3) [21]. The
difference lies in the description of the electronic ground state. While at ADC(3) level it is simply
the MP3 ground state, UCC(3) requires the solution of the ground-state UCC3 equation. Hence,
UCC3 is computationally more expensive than ADC(3), for cases where MP3 yields a poor ground
state description, UCC3 performs slightly better than ADC(3).

5.3 Calculation of Excited State Properties and Analysis

5.3.1 Excited State Properties

The calculation of transition properties as well as excited-state properties, such as transition dipole
moments between excited states or the dipole moment of an excited state, is straightforwardly
possible by virtue of the ISR (Section 5.2) [16, 17]. Diagonalization of the ADC matrix yields the
corresponding ADC vectors yn, which are the expansion coefficients of excited state wave functions
represented in the IS basis according to Eqn. (5.17). For the computation of an expectation value of
excited state n

𝜇n = ⟨Ψn|𝜇̂|Ψn⟩ (5.19)
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the complete IS basis can be inserted

𝜇n =
∑

I
⟨Ψn|ΨIS

I ⟩⟨ΨIS
I |𝜇̂|ΨIS

I ⟩⟨ΨIS
I |Ψn⟩ (5.20)

yielding

𝜇n = y†
nDISyn, (5.21)

where DIS is the representation of the dipole operator in the IS basis. Hence, for the computation of
an excited-state dipole moment as expectation value, the dipole operator needs to be represented in
the IS basis and the resulting matrix contracted with the corresponding ADC vector, or equivalently,
with the ADC excited-state density. Just as simple, the transition dipole moment 𝜇nm between two
excited states can be calculated as

𝜇nm = y†
nDISym. (5.22)

Since the expressions for the IS basis are analytically known, the formalism is not only limited
to the dipole operator, but can easily be extended to other first-order properties. It has already
been successfully applied to compute different excited-state and transition properties, for example,
spin–orbit coupling elements within the AMFI approximation [22].

Not only can first-order properties easily be computed as expectation values using the ISR for-
malism, but also higher-order response properties like non-linear optical properties are accessible
[23–25]. For example, resonant two-photon absorption cross sections for the simultaneous absorp-
tion of two photons given as a sum-over-states expression as

S𝛼𝛽 =
∞∑
n

(⟨Ψ0|𝜇̂𝛼|Ψn⟩⟨Ψn|𝜇̂𝛽 |Ψf ⟩
𝜔n − 𝜔

2

+ 𝛼 ↔ 𝛽

)
, (5.23)

with 𝛼, 𝛽 ∈ {x, y, z}. Using the ISR, Eqn. (5.23) is transformed into a matrix expression

S𝛼𝛽 = F†
𝛼(M − 𝜔

2
)−1B𝛽Yf +

𝜇𝛼00𝜇
𝛽

0f

E0
𝜔

2

+ 𝛼 ↔ 𝛽, (5.24)

where F𝛼 is the matrix of modified transition moments along the direction 𝛼, B𝛽 is the IS repre-
sentation of the dipole operator in direction 𝛽, and Yf is the ADC eigenvector of the final state. It
should be noted that the intermediate state basis does not contain the ground state and hence the
ground state contribution is not included in the matrix representation and needs to be added sep-
arately. In principle, the ADC matrix has to be inverted and thus fully diagonalized to determine
the two-photon cross section, which is computationally quite demanding. To circumvent this costly
procedure, a vector x†

𝛼 is defined

x†
𝛼 = F†

𝛼

(
M − 𝜔

2

)−1
, (5.25)

which is thus the solution of the following set of linear equations

x†
𝛼

(
M − 𝜔

2

)
= F†

𝛼. (5.26)

Once this system of linear equations is solved for each component 𝛼 ∈ {x, y, z}, pseudo-densities
are built

𝜌𝛼f = x†
𝛼DYf , (5.27)

which are eventually used to compute the two-photon cross sections according to

S𝛼𝛽 =
∑
pq
𝜌𝛼f𝜇

𝛽
pq +

𝜇𝛼00𝜇
𝛽

0f

E0 −
𝜔

2

+ 𝛼 ↔ 𝛽. (5.28)
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Within the ISR formalism outlined so far, excited state properties are computed as expectation
values of the corresponding wave function, which according to the postulates of quantum mechan-
ics is the formally rigorous approach. However, excited-state properties can also be computed as
derivative of the excited state energy. For example, the dipole moment of an excited state is also
defined as the derivative of the total energy with respect to the electric field components at zero
field strength.

𝜇𝛼n =
(
𝜕En

𝜕F𝛼

)
F=0

mit 𝛼 ∈ {x, y, z}. (5.29)

Accordingly, the electric dipole moment and all excited-state properties that can be formulated as
derivative of the energy can be computed following this procedure. In modern quantum chemistry
codes, these derivatives are calculated using a Lagrangian formalism [3–6]. This gives rise to the
distinction between relaxed and unrelaxed properties, i.e., whether orbital relaxation is taken into
account or not, respectively [26]. The calculation of relaxed excited-state properties is computation-
ally more expensive, since a coupled-perturbed Hartree–Fock equation needs to be solved for each
excited state to determine the orbital relaxation. Of course, the calculated excited state properties
generally differ depending on whether the ISR formalism, or relaxed or unrelaxed derivatives are
employed, however, in the limit of an exact theory, all approaches converge to the same value.

5.3.2 Excited-State Wave Function and Density Analyses

As mentioned previously, the expansion coefficients of the ADC vector are inappropriate to be
interpreted in the uncorrelated picture of HF orbitals as they refer to correlated IS basis functions
according to Eqn. (5.17). The key for any analysis of the electronic structure of excited states at ADC
level is, however, also only possible by virtue of Eqn. (5.17) making a wave function accessible at
all. Also for density-based analyses of the electronic structure of excited states in ADC, knowl-
edge of the ISR is indispensable for the construction of the excited-state one-electron densities and
one-electron transition densities (1-TDM). The latter represent an excellent means to visualize and
thus understand the electronic excitation process as the 1-TDM reveals the vertical nature of the
electronic transition [27–29]. It is defined as

T0n
pq = ⟨Ψ0|â†

pâq|Ψn⟩. (5.30)

The single-particle functions diagonalizing the 1-TDM are the natural transition orbitals (NTO)
[30], which can be, and often are, utilized to visualize the nature of the corresponding electronic
transition. Associated with the 1-TDM, the so-called electron-hole amplitude of the polarization
propagator can be defined as [28]

𝜒(rh, re) =
∑
p,q

T0n
pq𝜙

∗
p(rh)𝜙q(re), (5.31)

recognizing the application of â†
p creates a hole in orbital𝜙p whereas the operator âq acts to the right

to annihilate an electron in orbital 𝜙q. The two-particle wave function 𝜒(rh, re) can be interpreted
as an exciton wave function nicely connecting the exciton picture with molecular excited electronic
states [31]. Based on this exciton wave function and among other things, hole and particle densities
can be assigned, as

𝜌h(rh) = ∫ |𝜒(rh, re)|2d3re, (5.32)



�

� �

�

5.4 Properties and Limitations of ADC 117

and

𝜌e(re) = ∫ |𝜒(rh, re)|2d3rh, (5.33)

respectively. Plotting these densities nicely reveals the nature of the electron transitions.
A complementary approach to understand the electronic structure of an excited state and not

the electronic transition is provided by the one-electron difference density matrix (1-DDM), which
is the difference between electron densities of the ground and excited states. [28, 29] It is thus
defined as

Δpq = Pn
pq − P0

pq = ⟨Ψn|â†
pâq|Ψn⟩ − ⟨Ψ0|â†

pâq|Ψ0⟩. (5.34)

The corresponding one-electron difference density is given by

𝜌Δ(r) =
∑
p,q

Δpq𝜙
∗
p(r)𝜙q(r), (5.35)

which integrates to zero and can already be plotted to visualize the excited state electronic structure.
However, the difference density possesses positive and negative parts and sometimes a compli-
cated nodal structure. In such cases, the so-called detachment/attachment density plots offer a
more convenient way for analyzing the electronic structure [32]. For their construction, Δ is first
diagonalized and then decomposed into its negative and positive parts, the diagonal detachment D
and attachment A density matrices, respectively. After re-transformation into the molecular orbital
basis, the attachment density is obtained as

𝜌A(r) =
∑
p,q

Apq𝜙
∗
p(r)𝜙q(r). (5.36)

and can be easily plotted. The detachment density is obtained analogously.
Summarizing, hole/electron plots characterize the vertical nature of the electronic transition

while detachment/attachment density plots show the electronic structure of the final state. Their
comparison can nicely visualize orbital relaxation processes occurring in excited states, which are
particularly pronounced, for instance, in core-excited states [33]. Since the amplitudes of the ADC
vector do not refer to Slater-determinants, but to correlated excited-state basis functions, a direct
interpretation in the molecular orbital is not adequate and only zeroth-order. Therefore, one should
always resort to density-based analyses when interpreting ADC results, depending on the problem
and personal taste: transition or difference-density based approaches.

5.4 Properties and Limitations of ADC

In general, all EE-ADC schemes are represented by Hermitian eigenvalue equations (Eqn. (5.13)).
Hence, there exists only one set of eigenvectors, and not like in standard equation-of-motion (EOM)
or linear response (LR) CC schemes left and right ones, which are generally both required to rig-
orously compute transition moments and properties. Solving ADC(2) and ADC(3) equations thus
boils down to a straightforward diagonalization of the corresponding matrix using some iterative
diagonalization scheme, like the Davidson or Lanczos procedure [34, 35]. In the case of ADC(2),
a DIIS formalism can be employed and the contributions of the diagonal (2p-2h/2p-2h)-block can
be folded into the (p–h) block, such that the dimension of the matrix is reduced to that of a CIS
matrix [36].

In contrast to configuration interaction schemes, ADC total energies given as EI(ADC(n)) =
E0(MPn) + 𝜔I(ADC(n)) are size-extensive, i.e., they scale linearly with the number of inde-
pendent particles, because the excitation energies are size-intensive and the MP2 ground state
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Table 5.1 Comparison of the general properties
of single-reference configuration interaction (CI),
coupled-cluster (CC) and ADC methods.

CI CC ADC

hermiticity yes no yes
size-consistency no (yes)a) yes
compactness n m+1/m+2b) m+1
ground state CI CC MP

a) Energies are always size-extensive, properties
and transition moments only in LR-CC

b) for even/odd order of perturbation theory
(see text).

energy is size-extensive [1]. The excitation energies are independent of the number of computed
non-interacting molecules, as they are strictly localized on one molecule only. Also the transition
moments and other excited-state properties are size-intensive at ADC level of theory. Comparing
to EOM-CC and LR-CC approaches, the energies are also size-extensive. The transition moments
and properties are size-intensive in case of LR-CC but not in case of EOM-CC.

Compared to CI and CC schemes, ADC is more compact. In general, compactness of an excited
state method is defined as the extension of the configuration space required to describe primary
excited (p–h) states correct to a certain order n in perturbation theory. For example, doubly excited
states are required in CI to describe (p–h) states correct to second order, triply excited states for
a correct description to third order. Hence, the compactness of standard single-reference CI is
linear, n. For even numbered orders of perturbation theory n = 2m, ADC and CC are equiva-
lently compact, as both need the (2p-2h) space to describe (p–h) states correct in second order
perturbation theory, and their compactness is m + 1. For odd numbered orders n = m + 1, ADC
is more compact than CC. While for example CC theories require already (3p-3h) configurations
to describe (p–h) states correct up to third order, ADC(3) stays within the (2p-2h) configuration
space. Hence, the compactness for odd-numbered order amounts to m + 2 for CC theories and
only m + 1 for ADC schemes. This manifests itself also in the computational effort. While all
second-order EOM- or LR-CC schemes and ADC(2) scale formally as O(N5), with N being the
number of single-particle basis functions, ADC(3) scales only as O(N6) in contrast to CC3 (O(N7))
or EOM/LR-CCSDT (O(N8)) [2, 37].

Until the derivation route via the ISR was found, the electronic ground state was neither accessi-
ble nor rigorously known. Only by virtue of the ISR, has MPn been identified as the most obvious
reference state. This perturbative MP reference state is also the largest drawback of ADC methods,
which limits standard ADC methods to molecules which are already fairly well described by a single
Slater determinant, i.e., via Hartree–Fock theory. This limits the applicability range of ADC essen-
tially to well-behaved organic molecules, i.e., organic photochemistry. Closed-shell metal com-
plexes can also be described [38]. In addition, as will be described below in more detail, MP2 is
usually only applicable in the vicinity of the equilibrium geometry, and as soon as large distortions
or bond breaking occurs, the ground state usually acquires multi-reference character and the MP
description breaks down. The ADC also becomes no longer reliable and large errors in the excita-
tion energy are likely to occur. CC approaches offer a better ground state treatment, via the corre-
sponding underlying ground-state coupled-cluster equations. Hence, their range of applicability is



�

� �

�

5.5 Variants of EE-ADC 119

slightly larger and the methods remain stable longer when approaching multi-reference situations.
However, prior to EOM/LR-CC excitation energy calculations the ground-state equation must be
solved, which is not the case in ADC, adding some extra computational cost to CC methods. As we
will see below, tricks exist to extend the range of single-reference ADC and CC methods alike when
multi-reference situations are encountered via the so-called spin-flip approach (Section 5.5.3).

Finally, let us have a look at the accuracy of the standard closed-shell EE-ADC schemes. Since
they are only applicable to single-reference systems, for which MP2 yields an accurate ground-state
description, the appropriate test set is the one devised by Thiel [39, 40], which provided theoreti-
cal best estimates for 141 vertical excited singlet and 71 triplet states of 28 small to medium-sized
organic molecules. The standard ADC(2) scheme has revealed good accuracies of 0.22±0.38 eV
for singlet and 0.12±0.16 eV for triplet excited states of this test set, which is very similar to the
accuracy of CC2, which however has a smaller standard deviation [14]. Going one order higher
in perturbation theory to ADC(3), the accuracy gets higher. With an error of only 0.12±0.28 eV
for singlet states and −0.18±0.16 eV for triplet states, ADC(3) is highly accurate and can be safely
used as a benchmark method for lower level methods, provided medium-sized closed-shell organic
molecules are the target [14]. A recent benchmark on a set of 18 very small molecules with up to
three non-hydrogen atoms revealed larger mean absolute errors of ADC(3) of 0.28 and 0.17 eV for
valence and Rydberg states, respectively [41]. Third-order CC methods perform substantially better
for this subset, which may be related to their improved ground state description and larger impor-
tance of dynamical correlation in smaller molecules. In the context of ADC methods, the so-called
Dyson expansion method allows to further include higher-order terms in the self-energy Σ∞ and
the ground-state one-particle density matrix to improve the description of the electronic ground
state and thus the overall performance of ADC(3). However, this has not yet been demonstrated
and remains to be numerically tested.

5.5 Variants of EE-ADC

The traditional derivation route of ADC schemes requires the existence of an appropriate propaga-
tor. This prevented, for a long time, the derivation of specialized variants of EE-ADC schemes, for
example like unrestricted ADC, since no open-shell polarization propagator could be defined. In
contrast, the derivation route via the construction of an ISR basis provides this flexibility. In fact, the
choice of the MPn scheme as well as the definition of the set of annihilation and creation operators
in Eqn. (5.15) allow for the derivation of different variants of EE-ADC, which will be demonstrated
in the following. It is important to note that in general the formal limitations of ADC apply to all
variants as well. However, due to the similar overall structure of the variants, analysis tools and
property calculations are available and readily applicable to all EE-ADC variants within Q-Chem.

5.5.1 Extended ADC(2)

In the ADC(2) scheme [42], primary (p–h) states are correct up to second order perturbation theory,
while (2p-2h) states are given only at zeroth order leading to a tremendous energetic overestima-
tion of (2p-2h) states, i.e., too large excitation energies. In an attempt to improve their descrip-
tion within ADC(2), the extended ADC(2) scheme (ADC(2)-x) has been devised, in which the
matrix elements of the (2p-2h) block are ad hoc extended to first order in perturbation theory with-
out any formal justification [42]. This extension leads to an increased computational effort from
O(N5) for ADC(2) to now O(N6) for ADC(2)-x. Indeed, the excitation energies of primarily (2p-2h)
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states are drastically reduced, but this ad hoc extension leads to an imbalanced description of the
valence-excited states and to a substantial underestimation of the excitation energies with an over-
all lower accuracy than that of the parent ADC(2) method. The extended ADC(2)-x scheme has an
overall low accuracy of only −0.70 ± 0.37 eV for singlet-excited states and −0.55 ± 0.20 for triplet
states. It is thus fair to say, that ADC(2)-x is not a useful excited-state method for the investigation
of the low-lying valence-excited states of molecular systems.

However, ADC(2)-x has its value for the calculation of core-excited states, i.e., X-ray absorp-
tion spectra, as will be seen below (Section 5.5.5), and as a diagnostic tool for the importance of
doubly-excited states by comparison of results obtained with ADC(2) and ADC(2)-x [43]. Typically,
the excitation energies of valence excited (p–h) states are lowered by a few tenths of an eV when
going from ADC(2) to ADC(2)-x, while excitation energies of states with large double-excitation
character are lowered by several eV. For example, the singly-excited 1Bu state of s-trans-butadiene
is obtained at 7.09 eV and 6.69 eV at ADC(2) and ADC(2)-x level when the 6-31G basis set is used,
while the doubly-excited 2Ag state occurs at 8.34 and 5.19 eV, respectively [43]. Such a strong low-
ering of the excitation energy as in the latter case is indicative of doubly excited states, and excludes
ADC(2) and related second-order approaches as useful excited-state methods for the system under
investigation. Instead one needs to resort to some higher level of theory like for instance ADC(3),
EOM-CCSDT, CC3 or multi-reference methods.

5.5.2 Unrestricted EE-ADC Schemes

Although an open-shell version of the polarization propagator is missing, unrestricted EE-ADC
schemes can be formally derived via the intermediate state representation following Eqn.
(5.15). Instead of using a closed-shell reference MP ground state, the corresponding unre-
stricted MP scheme can serve as a starting point for the construction of the ISR and the shifted
Hamiltonian-matrix M [44]. In this case, the annihilation and creation operators in Eqn. (5.15)
must refer to spin-orbitals

ĈU
I = {â†

a𝜎 âi𝜎 ; â†
b𝜏 âj𝜏 â†

a𝜎 âi𝜎 · · · }, (5.37)

instead of spatial orbitals as in the closed-shell reference case. Following the same ISR derivation
route to arrive at UADC(2), for example, ĈU

I acts on the unrestricted UMP2 ground state and an
unrestricted IS basis {ΨUIS

I } is obtained, in which the shifted Hamiltonian is represented

{M}UADC(2)
IJ = ⟨ΨUIS

I |Ĥ − EUMP2
0 |ΨUIS

J ⟩. (5.38)

Again, it is in principle not required to perform an UMP2 calculation prior to the UADC(2) calcu-
lation, since only the unrestricted set of molecular orbitals and corresponding orbital energies of
an underlying UHF calculation are needed to build the matrix elements of the UADC matrix dur-
ing the iterative diagonalization. However, UHF can suffer from spin-contamination, which has a
general influence also on the accuracy of UADC. Therefore it is useful to perform an UMP2 calcu-
lation, anyways, since its accuracy and applicability is a prerequisite for the UADC schemes to give
reliable results. In other words, if UMP2 works fine for the molecular open-shell system of interest,
UADC(2) and UADC(3) will work well too.

A pathway to circumvent spin-contamination is to start the ISR derivation from a restricted
open-shell reference instead of an unrestricted reference. However, this has not yet been realized,
essentially for two main reasons. On one hand, it requires changes in the block structure of the
ADC matrix, as unoccupied, singly- and doubly-occupied orbitals need to be distinguished and
the corresponding matrix elements evaluated. One the other hand, and more importantly, it seems
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more advisable to follow an IP-ADC route to excited states of open-shell systems, in strict analogy
to IP-EOM-CC schemes [45, 46]. Here, the calculation starts from a closed-shell (2n)-electronic
reference and ionization potentials and open-shell (2n-1)-electronic states are calculated. The exci-
tation spectrum of the open-shell species can then be obtained as differences between the lowest
calculated IP0 and the higher IPn, 𝜔n=IPn-IP0, and the transition dipole moments by virtue of the
corresponding IP-ISR representation of the dipole operator in analogy to Eqn.(5.22). This procedure
naturally yields spin-pure open-shell states, and as in the case of IP-EOM-CC schemes probably also
to higher accuracy.

5.5.3 Spin-Flip EE-ADC Schemes

In standard ADC schemes, restricted or unrestricted, the singlet MP ground-state is used as refer-
ence and the excitation operators ĈJ are restricted toΔms = 0 excitations to conserve the spin of the
system (Eqns. (5.15) and (5.37)). Therefore, standard ADC schemes are expected to yield accurate
and reliable results for molecular systems with single-reference electronic ground states, which
are well described with Møller–Plesset perturbation theory. This limitation essentially excludes
the description of systems with multi-reference character including rare cases like open-shell sin-
glets, like diradical or diradicaloid systems, but also important chemical situations like single-bond
dissociation and ground-state conical intersections.

A clever trick to extend the range of applicability of single-reference methods also to a certain set
of multi-reference situations is the spin-flip idea [47, 48]. In spin-flip methods, the triplet ground
state is used as reference as it often is a single-reference state even when the singlet ground state has
multi-reference character. This is for example typically the case in single-bond breaking situations.
Therefore, in spin-flip ADC schemes [49], the triplet ground state is chosen as reference and the
excitation operators need to be restricted to perform a spin flip (Δms=−1) to generate all basis
functions, including the singlet ground state as well as all triplet states with ms=0 according to

ĈSF
I = {â†

a𝛽 âi𝛼; â†
b𝜏 âj𝜏 â†

a𝛽 âi𝛼 · · · }, (5.39)

In the (2p-2h) excitations, only one spin is flipped, while the second excitation conserves spin and
follows the Δms=0 rule. Using the resulting IS basis for the representation of the shifted Hamilto-
nian readily yields SF-ADC schemes

MSFX = 𝛀X with X†X = 1. (5.40)

Straightforward diagonalization of MSF yields excitation energies of the target states relative to the
triplet ground state and the corresponding ADC transition vectors in the IS basis. The target states
comprise “all” relevant singlet and triplet excited states, including the potentially multi-reference
singlet ground state. As a consequence, SF-ADC schemes allow for the investigation of diradicaloid
molecules with open-shell singlet ground states, single-bond breaking and ground-state conical
interactions [50]. Moreover, SF-ADC schemes yield highly accurate results for singlet-triplet gaps
[51], because singlets and triplets are treated on an absolutely identical footing, i.e., in the reference
space of the SF-ADC matrix. In analogy to UADC approaches, SF-ADC approaches require only a
preceding UHF calculation. Therefore, the calculated target states are generally not spin-pure and
can be spin contaminated leading to a tedious discrimination of singlet and triplet states. In contrast
to UADC, SF-ADC approaches can also easily make use of a restricted open-shell HF reference
calculation reducing the spin-contamination. However, in all tested cases this had however only
little influence on the accuracy of the SF-ADC results [49].
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Figure 5.2 (a) Ground state potential energy curves of hydrogen fluoride at various levels of SF-ADC. For
comparison also the MP3, full-CI and SF-EOM-CCSD curves are shown. (b) Optimized S1/S0 conical
intersection of formaldinium at the level of SF-ADC(3). The optimized minimum energy structure is shown
in the inset and compared to CASPT2 values [in brackets].

To demonstrate the applicability of SF-ADC approaches to multi-reference situations, the
potential energy curves of the ground state of hydrogen fluoride (HF) obtained at various levels
of SF-ADC and the optimized conical intersection of formaldinium at the level of SF-ADC(3) are
shown in Figure 5.2. While the parent ground state method, i.e., MP3 experiences a variational
break down along the dissociation of HF all SF approaches are capable of obtaining the quali-
tatively correct shape of the dissociation curve. Of course, SF-ADC(3) agrees better with the full
configuration interaction (full-CI) curve than ADC(2)-x and ADC(2). The optimized minimum
energy conical intersection at SF-ADC(3) level agrees remarkably well with the one obtained at
CASPT2 level. Moreover, also the potential energy surface along the coupling and tuning mode,
i.e., the cone of the intersection are in excellent agreement (Figure 5.2(b)). At this point it is impor-
tant to realize the SF-ADC(3) calculations to be straightforward black-box calculations without
the need for tedious choice of active space or other parameters. The plot in Figure 5.2(b) has been
obtained by simple scanning along the relevant modes only choosing the method and basis set.

However, a final word of warning must be noted. SF-ADC methods are not genuine
multi-reference methods as the system under investigation is required to possess a stable single-
reference triplet state for the methods to provide reliable results. This is typically the case in
situations when the singlet ground state is dominated by two leading references, in other words,
when two electrons are decoupled as in single-bond breaking or double-bond rotation. For such
cases the term “few-reference” situation has been coined, and therefore, all SF methods should
thus be termed rather “few-reference” methods and not “multi-reference”.

5.5.4 Spin-Opposite-Scaled ADC Schemes

To reduce the computational effort and to increase the accuracy of MP2, spin-component scaling
(SCS) and spin-opposite scaling (SOS) variants of MP2 have been developed, in which the same-spin
components and opposite-spin components of the correlation energy are individually scaled with
semi-empirical factors [52, 53]. Among the different variants, SOS-MP2 is particularly interesting,
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since here only the spin-opposite correlation energy is calculated and scaled appropriately

ESOS−MP2 = cosEos
MP2 (5.41)

with cos = 1.3 reducing the cost of an MP2 calculation. The SOS-MP2 ground state energy and
corresponding wave function can of course serve as a basis for the derivation of SOS-ADC(2)
schemes following the ISR formalism as outlined above. However, a rigorous derivation leads to
an ISR-SOS-ADC(2) scheme of the same size as the original ADC(2), because the only change
occurs in a scaling of the t-amplitudes in the (ph/ph)-block. This substitution leads to a systematic
shift of the excitation energies by about 0.02–0.3 eV to lower but not improved excitation energies
[53]. At the same time, no significant saving in computational effort can be achieved as no entries
of the original ADC(2)-matrix vanish.

To arrive at a computationally more efficient SOS-ADC(2) scheme, further approximations
have to be made and additional semi-empirical parameters need to be introduced. In analogy to
SOS-CC2, an efficient SOS-ADC(2) scheme can be devised by: (1) replacing all t-amplitudes by
their spin-opposite scaled analogs as in SOS-MP2 (and ISR-SOS-ADC(2)), (2) deleting all entries
from same spin contributions in the double excitation manifold and (3) scaling of all remaining
entries in the (ph/2p2h) and (2p2h/ph) coupling blocks by the additional factor of cos

coupling, which
can be freely chosen as for example

cos
coupling =

1 + cos

2
= 1.15, (5.42)

or be fitted to minimize the deviation from benchmark values. Extensive fitting revealed cos=1.3
and cos

coupling=1.17 to possess the smallest errors in singlet and triplet excitation energies compared
to theoretical best estimates for organic molecules with a mean absolute error of only 0.14±0.11 eV
[53]. The deletion of same-spin (2p2h) configurations leads in addition to a significant reduction
of the size of the ADC matrix and a reduction of the computational effort.

The concept of semi-empirical scaling has been extended to ADC(2)-x as well to devise a
second-order method providing a balanced description of singly- and doubly-excited state.
Therefore a third scaling factor cx is introduced in the off-diagonal elements of (2p-2h) block thus
modulating the coupling strength between the (2p-2h) configurations. Fitting against theoretical
best estimates and DFT/MRCI values revealed optimal values of cos=1.3, cos

coupling=1 and Cx=0.9
for SOS-ADC(2)-x. Statistical error analysis revealed an error of this semi-empirical method of
0.17±0.16 eV for singly-excited states and 0.21eV±0.18 eV for doubly-excited states [53]. This
SOS-ADC(2)-x is a pragmatic semi-empirical approximation to ADC(2)-x reducing its computa-
tional cost substantially. However, prior to ist use for the investigation of organic photochemistry
a thorough testing and benchmarking of the quality of the results against higher-order methods is
strongly recommended.

5.5.5 Core-Valence Separated (CVS) EE-ADC

Electronic excitations of a core-electron into the valence region, so-called core-excited states, repre-
sent a special class of excited states. Their calculation with standard excited-state methods is usually
difficult, because the electronic spectrum of a molecule is usually converged from the low-energy
end towards higher energies. Also, the ADC eigenvalue problem is solved numerically via iterative
diagonalization schemes yielding the energetically lowest excited states. Since core-excited states
are in the high energy X-ray region of the spectrum, this solution strategy becomes cumbersome
and quite expensive due to the necessity to compute all energetically lower-lying excited states
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Figure 5.3 By neglecting all couplings of the singly core-excited states to the valence-excited and doubly
core-excited states, the CVS-ADC matrix is obtained which contains singly core-excited states only.

beforehand. This would limit the calculation of core-excited states to very small molecular sys-
tems. With a simple trick, however, it is possible to avoid this problem, i.e., the ADC scheme can
be combined with the core-valence separation (CVS) approximation [54].

The CVS approximation exploits the fact that core-excited states lie in a very different energy
regime than valence-excited states and couple thus only very weakly, i.e., practically not, to them.
In the CVS approximation, these coupling are consequently set to zero.

⟨Ip|qr⟩ = ⟨pI|qr⟩ = ⟨pq|Ir⟩ = ⟨pq|rI⟩ = 0, (5.43)⟨IJ|pq⟩ = ⟨pq|IJ⟩ = 0, (5.44)⟨IJ|Kp⟩ = ⟨IJ|pK⟩ = ⟨Ip|JK⟩ = ⟨pI|JK⟩ = 0. (5.45)

Here, I, J,K refer to core-orbitals while p, q, r refer to valence orbitals. This procedure leads
to a strict decoupling of the singly core-excited states from the valence-excited and the doubly
core-excited configurations. As a consequence, the singly core-excited block, the CVS-ADC matrix
(Figure 5.3), can be diagonalized individually, yielding the core-excited states directly. Thereby
also significant savings in computational effort are achieved. Instead of a posteriori decoupling of
the core-excitations from the rest, the CVS-ADC matrix is similarly obtained via the ISR route, if
in Eqn. (5.15) exactly one annihilation operator of each excitation class is chosen to correspond to
a core-orbital.

In the context of EE-ADC schemes, the CVS approximation has been applied to the restricted
and unrestricted versions of ADC(2), ADC(2)-x as well as ADC(3) [55–57]. For a selected set of
small molecules, CVS-ADC(3) has been shown to possess a mean error of 0.61%±0.32% at the
CBS limit. In contrast, CVS-ADC(2)-x exhibits a smaller error of only −0.23%±0.1% [57]. Using
the 6-311++G** basis set in combination with CVS-ADC(2)-x yields even better results with a very
small error of only about 0.1%. It has been shown that this is, of course, due to fortuitous error
compensation of basis set truncation, neglect of relativistic effects, electron correlation, and orbital
relaxation. In the meantime, many K-edge X-ray absorption spectra of organic molecules have been
computed using CVS-ADC(2)-x/6-311++G**, and the accuracy has always been that high proving
the described error compensation to be stable for typical organic molecules with second-row ele-
ments. This error compensation is then broken at the third order level, because the ratio between
relaxation and polarization effects is changed and the excitation energy increases [57]. Core-excited
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state properties and densities can be computed in strict analogy to valence-excited states following
the ISR formalism as described above in Section 5.3.1 [58].

5.6 Describing Molecular Photochemistry with ADC Methods

In principle, the theoretical description of molecular photochemistry, i.e., photoinduced processes
in molecules, requires the treatment of quantum or semi-classical dynamics of nuclear motion,
since their outcome is practically always kinetically controlled and not, as in ground state chem-
istry, thermodynamically. In other words, the involved energy barriers do not necessarily deter-
mine the course of the reaction, in particular when they are fast, but much more an interplay of
the initial forces driving the reaction into a particular reaction, the amount of excess energy and
their dissipation as well as competing radiative processes determine the result of this time-scale
competition. However, dynamical simulations are often simply not feasible either because the
molecule is too large or the number of required nuclear degrees of freedom is not tractable. In
such cases, “static” investigations of the potential energy surfaces (PES) of the electronic states
involved are often the only manageable pathway to gain insights into the ongoing mechanisms.
Recently, ADC methods have more and more been used to perform such investigations and are
used as benchmark methods to evaluate the accuracy of computationally more efficient but less
reliable approaches like semi-empirical methods or time-dependent density functional theory. In
addition, PES, nuclear excited-state gradients, non-adiabatic coupling elements, spin-orbital cou-
plings, transition moments, etc. are anyways necessary ingredients for dynamical simulations. In
this context, ADC(2) has already been used as underlying electronic structure method to devise
these required informations [59].

5.6.1 Potential Energy Surfaces

With ADC being originally a propagator method, yielding “just” excitation energies and neither
total energies nor excited-state wave functions, all the above mentioned properties, first and fore-
most potential energy surfaces, could not be rigorously calculated. Usually a ground state potential
surface at some suitable level of theory (often even at the Hartree–Fock level) was chosen and the
excitation energies added to obtain excited-state surfaces. Only with the advent of the ISR formal-
ism, MPn has been clarified to be the correct reference ground state method for ADC(n). Hence,
total energies of excited states are obtained as

EADC(n)
n = EMPn

0 + 𝜔ADC(n)
n , (5.46)

i.e., the sum of MPn ground state energy and ADC(n) excitation energy [16]. Although this allows
for a more rigorous construction of excited-state PES, they inherit the problems of the underly-
ing ground state MPn method. This includes, for example, the variational collapse of MPn along
single-bond breaking (as seen in Figure 5.2), and one can generally not expect MP approaches
to remain accurate farther away from the ground-state equilibrium geometry, where the ground
state usually acquires multi- or few-reference character as described in section 5.5.3. Therefore,
whenever ADC methods are used as underlying electronic structure method for nuclear dynamics
simulations their applicability must constantly be carefully checked. However, if ADC is applica-
ble, all other required ingredients, like excited-state gradients, non-adiabatic couplings or spin-orbit
couplings are available [59].
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5.6.2 Environment Models within ADC

Another important aspect for the theoretical investigation of photochemistry and, in particular,
for the simulation of spectroscopy of medium-sized and large molecules, is the inclusion of the
molecular environment in the calculation. For most experimental studies are performed in solution
or molecular matrices, or the chromophore of interest is embedded in a protein environment. Very
scarcely, an experimental spectroscopic investigation on larger organic compounds is performed in
the gas phase.

In the context of EE-ADC, the inclusion of molecular environments, which are often represented
as one-particle potentials, is pretty straightforward and here only the general strategy will be
presented rather than individual environment models discussed. Due to the structure of the
ADC matrix (Eqn. (5.11)), two different pathways for treating external one-particle potentials
𝑣ext(r) within ADC are generally possible. On one hand, it can be included in the Fock-operator,
F̂ = F̂0 + 𝑣ext(r) whit F̂0 being the unperturbed Fock operator, of the preceding Hartree–Fock
calculation to obtain perturbed one-particle energies and orbitals. Subsequently, a standard ADC
calculation is performed utilizing those. On the other hand, the one-particle potential can be
added to the ADC matrix after an unperturbed HF calculation has been performed

M = M0 + Vext, (5.47)

with M0 being the unperturbed ADC matrix and Vext is the external potential represented in the
IS basis. At approximate ADC levels, both approaches offer advantages, however, to include a
one-particle potential at HF level provides fully relaxed orbitals with respect to the potential and
only minimal changes to the existing ADC codes need to be made. The latter is thus the route usu-
ally followed in the development of environment models within ADC. State-specific corrections
for the solvent influence are then usually performed a posteriori, i.e., after the ADC calculation
has finished, as perturbative corrections. Following this procedure, polarizable continuum models
(PCMs) [60–62], polarizable embedding (PE) [63], the effective fragment potential (EFP) method
[64], and frozen-density embedding (FDE) [65, 66] have been combined with EE-ADC methods
and their accuracy established.

5.7 Brief Summary and Perspective

The gist of the ADC family method is best described by a quote from the very first introductory
paper by Jochen Schirmer: “Thus, the ADC may be viewed as representing an advantageous mixtum
compositum of a diagonalization problem and perturbation theory.” [1]. Since then ADC methods
have matured to valuable computational tools for organic photochemistry, as they have been imple-
mented into several quantum chemistry packages and they are enjoying increasing popularity in
various fields of application. Their reliability, accuracy and range of applicability are nowadays well
established. ADC schemes augment existing established excited state methods, possessing different
strengths and weaknesses than others, thereby complementing the toolbox of the computational
photochemist.

In the future, the limits of the ADC methods need to be addressed, which are practically all
connected to the poor description of the electronic ground state by plain Møller–Plesset perturba-
tion theory. One promising avenue to improve and to achieve a higher accuracy in vertical excita-
tion energies, may be the approach via unitary CC theory as briefly sketched in section 5.2. How-
ever, this will mostly not solve the problem with multi-reference situations like bond-breaking or
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ground-state conical intersections, the single-reference UCC ground state will probably just break
later. Another avenue for future development in this direction would be to follow a multi-reference
path, similar to multi-reference coupled cluster, however, this would mean sacrificing computa-
tional efficiency as well as the black-box character of ADC, two appealing features responsible for
its current success.
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Abstract

After introducing the fundamental goals—solving the Schrödinger equation—and the associated prob-
lems of quantum chemistry, we describe the basics of multiconfigurational approaches to solve the latter.
As an exact—or full configuration interaction (FCI)—solution, even in a finite basis set, comes with an
exponential scaling cost, the importance of an efficient representation in either a Slater determinant
or configuration state function basis is discussed. With the help of such an efficient representation it
is possible to apply iterative techniques, like the Davidson method, to obtain the exact solution of the
most important low-lying eigenstates of the Hamiltonian, describing a quantum chemical system. As
the exponential scaling still restricts these direct approaches to rather modest system sizes, we discuss in
depth the multi-configurational extension of the self-consistent field method (MCSCF), which captures
the static correlation of a problem and serves as a starting point for many more elaborate techniques.
In addition, we present the complete active space approach—and the generalized and restricted exten-
sions thereof—, which allows an intuitive construction of the chemically important reference space and
enables a much more compact description of the important degrees of freedom of a problem at hand.
We explain the state-specific and state-averaged approaches to obtain excited states within the MCSCF
method and conclude this chapter by presenting stochastic Monte-Carlo approaches to solve the FCI
problem for unprecedented active space sizes.

When describing chemical systems at the quantum mechanical level, electronic properties are
derived from an N-electron wave function,Ψ, a complex-valued function depending on the position
and spin of all electrons, that fully captures the stationary state of the system and its properties,
such as the energy, E. The electronic wave function, Ψ, is determined by solving the non-relativistic
time-independent Schrödinger equation

ĤΨ = EΨ, (6.1)

where Ĥ is the Hamiltonian operator describing the system. The properties of the system are
obtained from expectation values of suitable operators with respect to the wave function, Ψ.
Solving the Schrödinger equation exactly is extremely difficult, and the exact solution is available
only for a limited number of special cases.

Even though the stationary Schrödinger equation has been formulated in real-space, and
the N-electron wave function, Ψ, is a continuous function of 3N space variables and spin,
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many methods rely on the discretization of the wave function, with the atomic orbitals (AOs)
representing the one-particle basis, and the Slater determinants (SDs) the N-electron basis. In
modern methods, the discretization of the wave function starts from the selection of a finite list of
AOs, and in doing so an unavoidable basis set truncation error is introduced. From the AO basis,
molecular orbitals are obtained and the N-electron wave function |Ψ⟩ is built, using one or more
SDs. The discretized wave function takes the following simple form|Ψ⟩ =∑

i
Ci|i⟩ , (6.2)

with |i⟩ = |𝜒i1𝜎1
… 𝜒in𝜎n

⟩ being the SDs used as N-electron basis, and Ci the corresponding coef-
ficients. For convenience, the short notation |i⟩ is used from now to denote SDs instead of the
full expansion. The vector C = {Ci} is referred to as the configuration interaction (CI) vector and
obtaining the CI vector of the ground state is equivalent to solving the Schrödinger equation within
the given N-electron basis for the lowest eigenvalue.

Replacing the continuous function, Ψ, with the finite N-electron expansion of Eq. (6.2), the
Schrödinger equation can be reformulated into a linear algebra problem. Starting from Eq. (6.1)
and multiplying with ⟨j| from the left, one obtains∑

i
⟨j|Ĥ|i⟩ Ci = E

∑
i
⟨j|i⟩ Ci (6.3)

and by using an orthonormal basis set, with ⟨i|j⟩ = 𝛿ij, Eq. (6.3) will be simplified as∑
i
⟨j|Ĥ|i⟩ Ci = E Cj. (6.4)

Various ways of choosing the N-electron basis (how many and which SDs) lead to different levels
and flavors of quantum chemistry methods, and an accurate description of the many-body wave
function can be obtained with a sensible choice of the underlying basis set, while having the strik-
ing advantage that the Schrödinger equation, previously a partial differential equation, is now a
finite-dimensional eigenvalue problem.

Possible approaches to solve the eigenvalue problem of Eq. (6.4) will be discussed in Section 6.4.
Expanding the many-electron wave function on the basis of SDs has the big advantage of mak-

ing the evaluation of non-vanishing ⟨j|Ĥ|i⟩ terms extremely simple (see Section 6.2.1). However,
Slater determinants are in general not eigenfunctions of the total spin operator, Ŝ2, and in many
cases solutions of the CI eigenvalue problems are obtained which are not eigenvectors of Ŝ2 (spin
contamination), making any characterization of the molecular system in terms of spin impossi-
ble. To avoid this limitation the discretization of wave functions can be carried out on the basis of
spin-adapted functions, also referred to as configuration state functions (CSFs). CSFs can be con-
structed as a particular linear combination of SDs, that preserves the total spin. Construction and
coupling of CSFs will be discussed in greater detail in Section 6.3.

Only the combination of an increasingly large one-electron basis, up to the complete basis set
(CBS) limit, and the use of more elaborate methods approaching the full configuration interaction
(FCI) limit, yields the exact solution of the given non-relativistic Schrödinger equation, as depicted
in Figure 6.1. However, the number of the N-electron functions, |i⟩ for a given one-electron basis,
quickly becomes prohibitively large, for chemical systems of practical interest.

A configurational space of all possible SDs arising from the distribution of all the electrons in the
available MO space is known as full configuration interaction (FCI). FCI is the theoretical limit for
a given one-electron basis set. Since FCI accounts for all possible degrees of freedom, it is invariant
with respect to any orbital rotation.
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HF
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Method

Figure 6.1 The exact solution of the Schrödinger equation of a system is approached by increasing the
basis set and using of more accurate methods at the same time.

In the simple Hartree–Fock (HF) method, for the selected one-electron basis set, MOs are
variationally optimized with respect to the field generated by a single SD, the HF determinant. We
refer to it as a single-configurational approach. The Hartree–Fock wave function is invariant with
respect to occupied–occupied and virtual–virtual orbital rotations. However, any occupied–virtual
orbital mixing will displace the HF wave function from its variational minimum. One may enlarge
the determinantal expansion and optimize the CI expansion coefficients, Ci, while keeping the
HF orbitals (or any other suitable choice of MOs) fixed. This approach is at the core of the
configuration interaction (CI) methods, discussed in some details in Section 6.4.1. Using a space
that consists of all single and double excitations from one reference configuration, usually the HF
determinant, is denoted as configuration interaction singles and doubles (CISD). This method has
the same invariance with respect to orbital rotations as HF. A determinantal expansion generated
by exciting a selected number of active electrons, N, in a selected subset of active orbitals, n,
around the Fermi level (frontier orbitals) in all possible ways, compatible with space and spin
symmetry constraints, leads to the complete active space configuration interaction, CASCI(N,n),
wave function. More options exist and some of them will be discussed in Section 6.6. In the
multi-configurational self-consistent field (MCSCF) methods, both expansion coefficients and
MOs are simultaneously variationally optimized. As opposed to the Hartree–Fock method, in
MCSCF the MOs are optimized under the averaged field generated by a multi-configurational
wave function. The MCSCF wave function parametrization and its optimization will be discussed
in great detail in Section 6.5. A commonly used MCSCF method is the complete active space
self-consistent field (CASSCF) approach, where the CI expansion is obtained as the full-CI in a
suitable active space. The main drawback of the CASSCF method is that the CAS wave function
grows exponentially with the size of the active space, and for practical simulations, the current
computational limit on the size of the active space is of about 18 electrons and 18 orbitals,
CAS(18,18). One approach that is used to partially circumvent the exponential scaling is to use
truncated wave functions. Various forms of truncations of the CAS wave function have been
successfully applied, such as the restricted active space (RAS) and the generalized active space
(GAS) wave functions leading to the RASSCF and the GASSCF approaches. RAS and GAS wave
functions will be discussed in Section 6.6, with a focus on how they are constructed and applied
in various branches of quantum chemistry.
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In recent years, alternative methods to tackle the exponential scaling in CASSCF calculations
have been developed, with the Density Matrix Renormalization Group (DMRG-SCF) method and
the Stochastic-CASSCF being promising examples. The Stochastic-CASSCF method is based on
the FCI Quantum Monte Carlo approach (FCIQMC) as the CI eigensolver. The DMRG method is
discussed in Chapter (7) while FCIQMC and Stochastic-CASSCF will be discussed in Section 6.8.

6.1 Scaling Problem in FCI, CAS and RAS Wave Functions

The major drawback of FCI and CAS methods is the exponential scaling behavior with the number
of correlated orbitals and electrons, such that, even for small active spaces, the size of the considered
Hilbert space can be prohibitively large.

The total number of Slater determinants, NSD, that can be generated by considering all possible
distributions of N electrons in n orbitals with a total spin projection eigenvalue Ms and without
imposing space symmetry constraints is given by

NSD(N,n,Ms) =
(

n
N
2
+ Ms

)(
n

N
2
− Ms

)
. (6.5)

When expressed in terms of 𝛼 and 𝛽 electrons, this equation can be written as

NSD(n,N𝛼,N𝛽) =
(

n
N𝛼

)(
n

N𝛽

)
(6.6)

as N = N𝛼 + N𝛽 and Ms = (N𝛼 − N𝛽))∕2.
The number of Slater determinants and the memory required to store the corresponding CI vector

for a series of complete active space sizes, CAS(N,n), with N = n and S = Ms = 0 is listed in Table 6.1
showing that there is a tight technical limit on how many electrons and orbitals can be explicitly
correlated in multi-configurational methods. Even though additional symmetry constraints, such
as point group symmetry, can reduce the size of the wave function, this is typically only by one
order of magnitude, such that the accessible system sizes cannot be substantially increased.

Slater determinants are not eigenfunctions of the total spin operator, Ŝ2, and Eq. (6.6) represents
an upper bound to the number of spin eigenfunctions. The non-relativistic Hamiltonian Ĥ from
Chapter 1 (Eq. (1.18)) is spin independent, hence, all states with a given total spin quantum number
S are degenerate, regardless of their MS eigenvalue. It is therefore sufficient to consider only one

Table 6.1 Number of SDs and memory requirement for different
active space choices.

(N,n) NSDs Memory per vector

(8,8) 4900 ∼38.3 kB
(12,12) 853776 ∼6.51 MB
(16,16) 165636900 ∼1.23 GB
(20,20) 34134779536 ∼254.32 GB
(24,24) 7312459672336 ∼53.21 TB

Number of slater determinants NSDs and memory requirement for storing a
single CI vector for a problem of N electrons in n orbitals with N = n and
ms = 0 and assuming a size of 8 bytes per entry of the CI vector.
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state per value of S, which reduces the size of the targeted space. The number of spin-adapted
electronic configurations, referred to as configuration state functions, CSFs, with a specific total
spin quantum number S = Ms, are obtained by removing the determinants with higher spin from
Eq. (6.6)

NCSF(N,n, S) = NSD(n,N𝛼,N𝛽) − NSD(n,N𝛼 + 1,N𝛽 − 1)

=
(

n
N𝛼

)(
n

N𝛽

)
−
(

n
N𝛼 + 1

)(
n

N𝛽 − 1

) (6.7)

The Weyl–Paldus dimension formula can also be used to count the total number of spin adapted
functions

NCSF(N,n, S) =
2S + 1
n + 1

(
n + 1
N
2
− S

)(
n + 1

n − N
2
− S

)
. (6.8)

Note that Eq. (6.8) and Eq. (6.7) are equivalent.
The number of determinants and configuration state functions for a series of complete active

space sizes, CAS(N,n), with N = n and S = Ms = 0 is also reported in Figure 6.2. The gray
area represents the zone where the calculations require significant computational resources
and dedicated large-memory machines. Beyond the gray area, calculations become technically
impossible nowadays. If Stirling’s approximation is used, n! ∼

√
2𝜋n

(
n
e

)n
, the equations for the

total number of SDs and CSFs can be approximated (with N =n) by

NSD ≅ 2
𝜋n

4n (6.9)

NCSF ≅
(

1 −
( n

n + 2

)2
)

2
𝜋n

4n. (6.10)
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Figure 6.2 Number of determinants (orange squares) and CSFs (blue circles) for a complete active space of
N electrons in n orbitals, where N = n and Ms = 0.
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Eq. (6.9) and Eq. (6.10) clearly show that the number of SDs and CSFs grows exponentially with
the number of orbitals in the active space. The growth of SDs and CSFs approximated by Stirling’s
formula is represented by solid lines in Figure 6.2. The exponential scaling can also be demonstrated
via a more qualitative argument, by considering that the number of ways one can fill n orbitals
with electrons is equal to 4n, as each orbital can be either doubly occupied, singly occupied with
one 𝛼 or one 𝛽 electron, or unoccupied, independent of the occupancy of the other orbitals. This
generates all possible configurations of any electron number in n orbitals, but the scaling behavior
is qualitatively the same as for a fixed number of electrons. The use of the term “factorial scaling”
referring to the binomial coefficient is not recommended as this would imply a much faster growth
than the 4n growth demonstrated above.

6.2 Factorization and Coupling of Slater Determinants

The exponential scaling of FCI and CASCI wave functions quickly makes dense matrix opera-
tions prohibitively expensive. Iterative methods (see Section 6.4.1), such as the Davidson method
[1, 2], have been recommended to avoid full diagonalization of large Hamiltonian matrices. These
methods require storage of the 𝜎-vector, 𝜎 = HC, instead of the full Hamiltonian matrix. In order
for the contraction to the 𝜎-vector to be practical its evaluation must be done efficiently. Methods
for an efficient evaluation of the sigma vector have been reported by Siegbahn [3], Knowles and
Handy [4].

In this section we will discuss Handy’s technique [5] of separating Slater determinants in
𝛼-strings and 𝛽-strings, which represents a major milestone in determinant based CI techniques.
This procedure is used to generate determinants in a well defined order and to evaluate density
matrix or sigma-vector contributions in a computationally advantageous manner. The strength
of this approach will be made more clear in Section 6.4.2, when the Direct-CI algorithm will be
discussed [6, 7].

According to Handy’s approach a Slater determinant is factorized as follows|𝛼(I𝛼)𝛽(I𝛽)⟩ = 𝛼̂(I𝛼)𝛽(I𝛽)|𝑣ac⟩. (6.11)

The 𝛼-string, 𝛼̂(I𝛼), and the 𝛽-string, 𝛽(I𝛽), are products of n𝛼 and n𝛽 creation operators for
𝛼-spin-orbitals and 𝛽-spin-orbitals, respectively. The dimension of each string is a constant and it
is defined by the total number of electrons, N, and the spin projection, Ms (z component of the
total spin) for the given system

n𝛼 = (N + 2Ms)∕2 (6.12)

n𝛽 = (N − 2Ms)∕2. (6.13)

The number of 𝛼- and 𝛽-strings is obtained by the binomial coefficients

N𝛼
strings =

(
n

N𝛼

)
(6.14)

N𝛽

strings =
(

n
N𝛽

)
(6.15)

with N𝛼 (or N𝛽) electrons distributed in n orbitals. Their product gives the total number of Slater
determinants

Ndet =
(

n
N𝛼

)(
n

N𝛽

)
(6.16)
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as seen already in the previous section. The factorization of strings allows Slater determinants to
be read, processed and stored in a matrix form. This approach makes the evaluation of operators
acting only on 𝛼 (or 𝛽) electrons highly efficient. Identically, CI vectors and sigma vectors can be
vectorized and stored in matrix form.

A graphical representation of strings is used to order the strings. String ordering is advantageous
as the position of a string in a string-list provides information on the distribution of the electrons
in orbitals. We consider the case of N 𝛼-electrons in n orbitals. Each string can be represented as
a path in an n × N graph, obtained by drawing arcs between vertices (k,m), where k is the orbital
index and m the number of electrons in the orbitals up to orbital k (see Figure 6.3). All paths start at
(0,0) and end at (n,N). A vertical arc on the path from vertex (k,m) to (k + 1,m) means that orbital
(k + 1) is unoccupied. A diagonal arc from vertex (k,m) to (k + 1,m + 1) means that orbital (k + 1)
is occupied. For example, the 𝛼-string of 3 electrons in 5 orbitals, â†

1𝛼 â†
3𝛼 â†

5𝛼|𝑣ac⟩ can be written as
a vector

â†
𝟏𝛼 â†

𝟑𝛼 â†
𝟓𝛼|vac ⟩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

k m
1 1
2 1
3 2
4 2
5 3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(6.17)

and graphically represented by the path in Figure 6.3.
Strings are ordered in reverse lexical order, that is, string X comes before string Y if, in the last

occupation where they differ, string X has a lower orbital number. For instance, in distributing 3
𝛼-electrons into 5 orbitals, 𝛼-string a†

1𝛼a†
2𝛼a†

4𝛼|𝑣ac⟩ comes before 𝛼-string a†
1𝛼a†

3𝛼a†
5𝛼|𝑣ac⟩. In order to

obtain the reverse lexical ordering from the graphical representation of strings, a vertex weight Wk,m
is associated to each allowed vertex (a vertex is called allowed if it is visited by at least one path)
equal to the number of different paths from (0,0) to (k,m). Since all such paths must come from
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Figure 6.3 Path describing string a†1𝛼a
†
3𝛼a

†
5𝛼|𝑣ac⟩ (in red). The path contains three diagonal arcs (occupied

orbitals) and two vertical arcs (unoccupied orbitals).
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either (k − 1,m − 1) or (k − 1,m), the following recurrence relation between the vertex weights
(Eq. (6.18)) is derived

Wk,m = Wk−1,m + Wk−1,m−1 (6.18)

This equation clearly shows that the weight of each vertex is given by the sum of the weights of the
vertex right above and top-left. The head vertex (0,0) has a weight equal to one (W0,0 = 1). Weights
of forbidden vertices are set to zero. All other vertex weights are computed from Eq. (6.18). We also
introduce the arc weights using the following recursive relation

Yk+1,m+1 = Wk+1,m+1 − Wk,m = Wk,m+1 (6.19)

which is equal to the vertex weight located on the top-right side of the arc. Arc weights of zero are
attributed to vertical arcs. A path weight is then obtained as a sum of arc weights along the consid-
ered path. For the example given in Figure 6.3, we find that the path weight is I𝛼 = 5. Path weights
represent the indexing number of reverse lexically ordered determinants. With path weights in
hand, any list of strings can be written and sorted according to the reverse lexical order. 𝛼- and
𝛽-strings with lower path weight occur earlier in the ordered string list. We refer to the literature
for further details on the topic [7, 8].

6.2.1 Slater Condon Rules

An efficient way to evaluate Hamiltonian matrix elements

Hij = ⟨Di|Ĥ|Dj⟩ (6.20)

between Slater determinants is essential in quantum chemistry applications. As the electronic
Hamiltonian contains at most two-body interactions, any matrix element between two determi-
nants |Di⟩ and |Dj⟩ that differ by more than four spin-orbitals vanishes.

First, suppose |Di⟩ and |Dj⟩ differ by exactly four spin-orbitals, that is, there are two spin-orbitals
R,S1 that are occupied in |Di⟩ and not in |Dj⟩ and two orbitals P,Q that are occupied in |Dj⟩ and not
in |Di⟩, while all other spin-orbitals have identical occupation number in |Di⟩ and |Dj⟩. We refer to|Dj⟩ as a double excitation of |Di⟩, and it can then be written as

|Dj⟩ = â†
Pâ†

QâRâS|Di⟩ . (6.21)

Inserting the expression of the Hamiltonian operator from Chapter 1, Eq. (1.18), into the element⟨Dj|Ĥ|Di⟩ and considering that all terms not involving the double excitation â†
Pâ†

QâRâS vanish yields

Hij =
1
2
((pr|qs)⟨Dj|ÊprÊqs|Di⟩ + (qs|pr)⟨Dj|ÊqsÊpr|Di⟩

+ (ps|qr)⟨Dj|ÊpsÊqr|Di⟩ + (qr|ps)⟨Dj|ÊqrÊps|Di⟩)
= (pr|qs) − (ps|qr) (6.22)

Thus, in case of a double excitation, the matrix element only depends on the excitation operator
and is independent of the remaining orbitals.

For a single excitation

|Dj⟩ = â†
PâR|Di⟩ , (6.23)

1 Capital letters indicate the combined spatial- and spin-coordinate of a spin-orbital.
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the following expression is obtained

Hij = hpr⟨Dj|Êpr|Di⟩ + 1
2
∑

k
((pr|kk)⟨Dj|ÊprÊkk|Di⟩ + (kk|pr)⟨Dj|ÊkkÊpr|Di⟩

+ (pk|kr)⟨Dj|ÊpkÊkr − Êpr|Di⟩ + (kr|pk)⟨Dj|ÊkrÊpk − Êpr|Di⟩)
= hpr +

∑
k
[(pr|kk) − (pk|kr)]⟨Di|n̂k|Di⟩ , (6.24)

where n̂k = â†
kâk is the occupation number operator of spatial-orbital k, which restricts the sum to

occupied orbitals. That is, in contrast to the double excitations, the matrix element now depends
on which orbitals are occupied.

For diagonal matrix elements Hii no contribution arises from excitation operators that change
the occupancy of the spin-orbitals, and

Hii =
∑

k
hkk⟨Di|Êkk|Di⟩ + 1

2
∑

kl
((kk|ll)⟨Di|ÊkkÊll|Di⟩

+ (ll|kk)⟨Di|ÊllÊkk|Di⟩ + 2(kl|lk)⟨Di|ÊklÊkl − Êkl|Di⟩)
=
∑

k
hkk⟨Di|n̂k|Di⟩ +∑

kl
[(kk|ll) − (kl|lk)]⟨Di|n̂kn̂l|Di⟩ (6.25)

Again, the expectation values of the occupation number operators restrict the sums to occupied
spatial-orbitals.

Equations (6.22–6.25) are referred to as the Slater–Condon rules and reduce the evaluation of the
Hamiltonian matrix elements of an N-electron problem to the computation of one- and two-body
integrals. The computational cost of evaluating a matrix element only scales linearly with the num-
ber of occupied orbitals and it is independent of the number of virtual orbitals of the involved SDs.

As a final remark, the expression of |Dj⟩ as an excitation of the form (6.21) or (6.23) is essential
for the applicability of the Slater–Condon rules. However, the order of the operators in Eq. (6.21) is
not fixed and a different ordering of the fermionic creation/annihilation operators, i.e., a†

Pa†
QaSaR,

can introduce a change of sign.

6.3 Configuration State Functions

Slater determinants are eigenfunctions of the z-component, Ŝz, of the spin-vector operator Ŝ, with
associated eigenvalue ms. However, they are not eigenfunctions of the total spin operator Ŝ𝟐, as can
be demonstrated by a simple two electrons in two orbitals example. We denote the two orbitals as
A and B. A total of six Slater determinants can be built

|A(𝛼)A(𝛽)⟩, |B(𝛼)B(𝛽)⟩, |A(𝛼)B(𝛽)⟩, |A(𝛽)B(𝛼)⟩, |A(𝛼)B(𝛼)⟩, |A(𝛽)B(𝛽)⟩ (6.26)

with the other combinations of single-particle basis functions, such as |A(𝛼)A(𝛼)⟩, being for-
bidden by the Pauli exclusion principle. All six determinants are eigenfunctions of Ŝz, but
only four are eigenfunctions of Ŝ𝟐, namely |A(𝛼)A(𝛽)⟩, |B(𝛼)B(𝛽)⟩ (singlet, S = 0, ms = 0) and|A(𝛼)B(𝛼)⟩, |A(𝛽)B(𝛽)⟩ (triplet, S = 1, ms = ±1). Determinants |A(𝛼)B(𝛽)⟩ and |A(𝛽)B(𝛼)⟩ are not
eigenfunctions of Ŝ2. Determinants containing only doubly occupied orbitals, such as |A(𝛼)A(𝛽)⟩
and |B(𝛼)B(𝛽)⟩ are called closed-shell determinants and are always pure singlet spin functions.
Determinants containing singly occupied orbitals, such as |A(𝛼)B(𝛽)⟩, |A(𝛽)B(𝛼)⟩, |A(𝛼)B(𝛼)⟩,|A(𝛽)B(𝛽)⟩ are referred to as open-shell determinants. Open-shell determinants are spin eigen-
functions only when all singly occupied orbitals have parallel spin, such as in the |A(𝛼)B(𝛼)⟩ case.



�

� �

�

142 6 Foundation of Multi-Configurational Quantum Chemistry

In all other cases open-shell determinants are not pure spin eigenfunctions. However, open-shell
determinants with non-parallel spins can be utilized as bases in the diagonalization of

Ŝ2 = (ŜA + ŜB)2, (6.27)

where ŜA and ŜB are the total spin operators of orbital A and B, to obtain spin-eigenfunctions. In
the previous example, the two-dimensional matrix arising from the combination of |A(𝛼)B(𝛽)⟩ and|A(𝛽)B(𝛼)⟩ via the total spin operator leads to the two spin-adapted functions

S = 0∶ 1√
2
(|A(𝛼)B(𝛽)⟩ − |A(𝛽)B(𝛼)⟩), (6.28)

S = 1∶ 1√
2
(|A(𝛼)B(𝛽)⟩ + |A(𝛽)B(𝛼)⟩), (6.29)

The first eigenfunction, Eq. (6.28), is a singlet state (S = 0, ms = 0). The second eigenfunction,
Eq. (6.29), is a triplet state, (S = 1, ms = 0). These spin adapted eigenfunctions are called config-
uration state functions (CSFs).

CSFs for more electrons can be created analogously, by diagonalizing Ŝ2 in the subspace spanned
by the “complete” set of open-shell Slater determinants with non-parallel spins. The CSFs for N
electrons can be created from those for N − 1 orbitals by adding ŜN to ŜN−𝟏 and diagonalizing the
matrix corresponding to the new total spin, ŜN . The form of the resulting eigenvectors of Ŝ2 Eqs.
(6.28, 6.29) does not depend on the choice of the single-particle basis and an orbital rotation is not
sufficient to enforce spin conservation.

The diagonalization of the Ŝ𝟐 operator in a full basis of SDs is not a practical approach for a large
number of electrons N and more elaborate techniques have been developed for this scope.

As CSFs are linear combinations of Slater determinants, simple rules such as the Slater–Condon
rules are not available to the CSF per se, although they still apply to each of the Slater determinants
of which a CSF is composed. This feature represents a major challenge for computing Hamiltonian
matrix elements in a CSF basis. An elegant approach to efficiently build CSFs and couple them
through the Hamiltonian operator is the graphical unitary group approach (GUGA) [9, 10] that
will be discussed in the next few sections.

6.3.1 The Unitary Group Approach (UGA)

The unitary group approach (UGA) is an elegant and efficient method to create a spin-adapted basis
(CSFs) and to calculate the Hamiltonian matrix elements in this basis. The method was pioneered
by Moshinsky [11], Paldus [12] and Shavitt [9, 13], who also introduced the graphical-UGA (GUGA)
for practical and fast evaluation of the Hamiltonian matrix elements.

The UGA is based on the important observation that the spin-free excitation operators Eq. (1.19)
in the non-relativistic Hamiltonian Eq. (1.18) (from Chapter 1) follow the same commutation rela-
tions

[Êij, Êkl] = 𝛿jkÊil − 𝛿ilÊkj, (6.30)

as the generators of the unitary group U(n)2, with n being the number of spatial orbitals.
Usually in CI calculations one uses a single particle basis set of 2n spin-orbitals, with associ-

ated (2n)2 operators a†
k𝜎al𝜎′ , that correspond to the U(2n) group. Due to the spin-independence

of the Hamiltonian Eq. (1.18), we can use the direct product U(n) × U(2) = U(2n), where U(n)

2 The unitary group of degree n is the group of all n × n unitary matrices with the matrix multiplication as the
group operation.
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corresponds to the spatial orbital part and U(2) to the spin. To generate a spin adapted basis we
only need to treat the spatial U(n) subgroup, since the direct product with U(2) produces spin
eigenfunctions.

6.3.1.1 Analogy between CSFs and Spherical Harmonics
The connection between CSFs and the generators of the unitary group U(n) is rather complex and
requires a large mathematical background. A rigorous explanation goes beyond the scope of the
present chapter and will not be attempted. A qualitative analogy with spherical harmonics is here
made to provide the elements involved in this connection, but it can be skipped, if desired.

The components L̂x, L̂y and L̂z, of the orbital angular momentum operator L̂ are the generators
of the group of rotations in three-dimensional space, SO(3). Operators which commute with all
generators of a group are called Casimir operators. As [L̂2, L̂i] = 0 (i = x, y, z), the L̂2 operator is
the Casimir operator of SO(3). At the same time L̂z is the Casimir operator of the 2D rotational
group, SO(2). The spherical harmonics, Ylm, are simultaneous eigenfunctions of these commuting
Casimir operators, L̂2 of SO(3) and L̂z of SO(2). Therefore they are adapted to the group chain
SO(3) ⊃ SO(2). The values l and m, that completely define the eigenfunctions Ylm, are directly
related to the eigenvalues of L̂2 and L̂z, respectively. Thus they specify the irreducible represen-
tation (irrep) of SO(3) and SO(2) respectively. Restrictions on the possible values of m for a given
l apply, namely −l ≤ m ≤ l. The action of the generators of SO(3), L̂x, L̂y and L̂z, on Ylm results in
linear combinations of spherical harmonics with differing m, but identical l quantum number

L̂xYlm =
∑
m′

cmYlm′ . (6.31)

Thus they form an invariant (l does not change) and irreducible3 ({Ylm} remains orthogonal) basis
under the action of the generators of SO(3).

A similar approach is utilized for the generators of the unitary group U(n), to obtain a particular
spin-adapted basis, called the Gel’fand-Tsetlin (GT) basis [14–16].

The group U(n) has n2 generators, Êij, and a total of n Casimir operators. Similar to the Ylm, which
are based on the group chain SO(3) ⊃ SO(2), the GT basis is based on the group chain

U(n) ⊃ U(n − 1) ⊃ · · · ⊃ U(2) ⊃ U(1), (6.32)

where U(1) possesses a one-dimensional irrep Each subgroup U(n − 1),U(n − 2),… ,U(1) has n −
1,n − 2,… , 1 Casimir operators, resulting in a total of n(n + 1)∕2 commuting operators. The simul-
taneous eigenfunctions of these operators form the GT basis, uniquely labeled by a set of n(n + 1)∕2
integers related to the eigenvalues. The focus of the next section will be the practical generation of
the GT basis and their properties.

6.3.1.2 Gel’fand-Tsetlin Basis
We represent a general N-electron CSF in the following table

[m] =

⎡⎢⎢⎢⎢⎢⎣

m1,n m2,n · · · mn−1,n mn,n
m1,n−1 · · · mn−1,n−1

⋱ · · · ⋰
m1,2 m2,2

m1,1

⎤⎥⎥⎥⎥⎥⎦
(6.33)

referred to as the Gel’fand pattern [14–16].

3 There is no subset that would form an invariant basis.
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The integers mij, with i ≤ j, j = 1, 2,… ,n, n being the total number of orbitals, represent the
n(n + 1)∕2 eigenvalues of the Casimir operators of the unitary group subduction chain Eq. (6.32).
The j index represents the level the entry is located (row number), with j = 1 at the bottom level
and j = n the uppermost. The i entry represents the position of the mij element inside the jth row.
The mij entries satisfy the so called in-between condition [17], that is

mi,j+1 ≥ mij ≥ mi+1,j+1 (6.34)

and as a consequence

m1n ≥ m2n · · · ≥ mnn (6.35)

Thus, the entries in each row are sorted in decreasing order. This is analogous to the in-between
condition in angular momentum eigenvalues {l,ml} with −l ≤ ml ≤ l.

The n non-increasing integers of the top row of Eq. (6.33), [m]n = [m1n,m2n,… ,mnn], are called
the highest weights of the representation, and uniquely define the state to represent, just as l does
for the spherical harmonics. The following n − 1 rows define the states belonging to the chosen
irrep, similar to ml in the case of Ylm.

When the Gel’fand tables are used for building electronic wave functions for an (N-electrons,
n-orbitals) system, mij entries are restricted to

0 ≤ mij ≤ 2 (6.36)

due to the Pauli exclusion principle. Two more conditions are enforced for spin and particle con-
serving systems

n∑
i=1

min = N, (6.37)

n∑
i=1

𝛿1,min
= 2S. (6.38)

to ensure that the number of electron N distributed among the n space orbitals is kept constant,
and that the number of singly occupied orbitals in the considered state is equal to twice the total
spin, S.

Therefore the electronic Gel’fand Table 6.39⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 1 1 0 0 0 0
2 2 1 1 0 0 0

2 1 1 0 0 0
2 1 1 0 0

2 1 0 0
1 1 0

1 0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.39)

represents a system with n = 8 (the table contains eight rows), N = 6 (the sum of the top row entries
is equal to six) and S = 1 (the sum of the singly occupied orbitals is equal to two).

As a second example, the top row of [m]3 = [2, 1, 0] specifies an electronic state with 3 electrons
(the sum of the top row entries is equal to 3) in 3 spatial orbitals (3 entries in the top-row) with a
total spin of S = 1∕2 (the sum of the singly occupied orbitals is equal to 1). All CSFs belonging to
this irrep are obtained by filling the Gel’fand pattern with integers mij in all possible ways, fulfilling
the in-between condition Eq. (6.34). These are shown in Table 6.2.
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Table 6.2 The 8 CSFs belonging to the irrep [m]3 = [2, 1, 0], corresponding
to N = 3, n = 3 and S = 1∕2, represented by their Gel’fand patterns.

⎡⎢⎢⎢⎣
2 1 0

2 1
2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
2 1 0

2 1
1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
2 1 0

2 0
2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
2 1 0

2 0
1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
2 1 0

2 0
0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
2 1 0

1 1
1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
2 1 0

1 0
1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
2 1 0

1 0
0

⎤⎥⎥⎥⎦
6.3.1.3 Paldus and Weyl Tables
Considering that entries in Tables 6.39 and 6.2 assume only values 0, 1 and 2, a more compact
“three-column table” can be utilized⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 1 1 0 0 0 0
2 2 1 1 0 0 0

2 1 1 0 0 0
2 1 1 0 0

2 1 0 0
1 1 0

1 0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai bi ci
2 2 4
2 2 3
1 2 3
1 2 2
1 1 2
0 2 1
0 1 1
0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.40)

counting the number of 2′s, 1′s and 0′s in each row i, denoted by ai, bi and ci. They are referred to
as Paldus tables [12]. For each row

ai + bi + ci = i, (i = 1,… ,n), (6.41)

so any two columns are sufficient to uniquely determine the state. Paldus AC tables can also be
drawn as in Figure 6.4. where the number of blocks on the left and right sides of the red “spine”
represent the entries in the AC table for each level.

The top row of any Paldus table satisfies the following properties

a = an = 1
2

N − S (6.42)

b = bn = 2S (6.43)

c = cn = n − a − b = n − 1
2

N − S (6.44)

The Paldus table emphasizes the cumulative aspects of the coupling between electrons, with the
ith row providing information on number of electrons, Ni (up to ith level) and the spin, Si

Ni = 2ai + bi (6.45)

Si =
1
2

bi, (6.46)

with the restriction that for any i the intermediate value of the total spin
i∑

j=1
Sj ≥ 0. (6.47)
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Figure 6.4 Paldus AC table representing the distribution of 6 electrons in 8 orbitals and S = 1, as in
Table 6.40. The number of blocks on the left and right sides of the red “spine” represent the entries in the
AC table for each level.

Paldus tables can be recast into variation-tables with Δxi = xi − xi−1 (x = a, b, c) as in Table 6.48.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai bi ci
2 2 4
2 2 3
1 2 3
1 2 2
1 1 2
0 2 1
0 1 1
0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δai Δbi Δci
0 0 1
1 0 0
0 0 1
0 1 0
1 −1 1
0 1 0
0 0 1
0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.48)

The Δa and Δc entries are restricted to 1 and 0 values, while Δb may assume 1, 0 and −1. By
construction Δa + Δb + Δc = 1, and at each new level (from bottom to top) only one action of
the following is permitted: (1) add an empty orbital, (2) add a singly occupied orbital, (3) add
a doubly occupied orbital, (4) add a doubly occupied and an empty orbital and remove a singly
occupied orbital. The last composite action occurs when Δb = −1. Analogously, given the row, i,
of the Paldus AC table, (see Figure 6.4), at most four actions can follow for obtaining the lower
row, (i − 1):

1. remove one block from the right, Δci = 1,
2. do not remove any block, Δbi = 1,
3. remove one block on each side or the spine, Δbi = −1,
4. remove one block from the left, Δai = 1.

Lexically ordered CSFs are obtained when the steps (1)–(4) are followed in the order given
above. The top row, i = n, is uniquely defined by the total number of orbitals, n, total number
of electrons, N and the target spin, S. If the ΔAC table is used to represent a configuration, the
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corresponding Gel’fand table is simply represented by two binary strings of length n (number of
orbitals).

By writing the row indices of the entries 1 (0) of the left (right) column of a ΔAC table into
the second (first) column of a new table system, the Weyl table representation is obtained, (see
Figure 6.5). The top row of the Gel’fand pattern, [m]n, specifies the shape of the Weyl table, as it
provides the number of boxes for each row of the Weyl table, i.e., m1n boxes in the first row, m2n
boxes in the second row and so on. Due to the Pauli exclusion principle, 0 ≤ mij ≤ 2, Weyl tables are
restricted to two columns at most. This shape is then filled with tokens 1, 2,… ,n, representing the
occupied spatial orbitals. As shown in Figure 6.5 tokens are allowed to be repeated in a Weyl table.
Tokens are non-decreasing from left to right in each row and increasing from top to bottom in each
column. The practical interpretation of the Weyl table follows: it is an electronic configuration with
a well defined spin (S), where the left column indicates the spin-up contributions (increasing the
total spin by 1/2) and the right column the spin-down contribution (lower the total spin by 1/2).
The value of each individual token represents the orbital in the given order.

There is a one-to-one correspondence between a Gelfand pattern, a Paldus table and a Weyl table
specifying a CSF. An example of this correspondence is shown in Table 6.3 for a system of 2 electrons
in 3 spatial orbitals for S = 0 and S = 1.

Row (i) Δ a Δ c Row (i)

8

7

6

5

4

3

2

1

0

1

0

0

1

0

0

0

1

0

1

0

1

0

1

0

8

7

6

5

4

3

2

1

1

3

5

7

4

7

up
spin

down
spin

Figure 6.5 One-to-one mapping between ΔAC tables and Weyl table representing the same electronic
configuration.
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Table 6.3 Conjugate irreps of the spatial U(3) and spin U(2) group for the singlet, S = 0, and triplet, S = 1,
states of 2 electrons in 3 spatial orbitals. The spatial U(n) irreps are determined by the spin-states states. All
the CSFs belonging to this irrep are obtained by filling orbital “tokens” (1,2,3) with no repetitions in the
same column in the Weyl table representation. The correspondence of Gel’fand pattern is also shown.

S = 0:
U (3)

⊗

U (2)

S = 1:

U (3)
U (2)

1 1 1 3
1

2

1 2 2 3
1

3

2 0 0
2 0

2

2 0 0
2 0

1

2 0 0
2 0

0
2 2

2 0 0
1 0

1

2 0 0
1 0

0

2 0 0
0 0

0
3 3

1 1 0
1 1

1

1 1 0
1 0

1

1 1 0
1 0

0

2

3

⊗

A practical example. Let us consider a system with three orbitals (n = 3) and four electrons
(N = 4) coupled to a singlet spin (S = 0). For the top row (i = 3), we would have

a3 = 1
2

N − S = 2 (6.49)

b3 = 2S = 0 (6.50)

c3 = n − a − b = 1 (6.51)

Following the four rules given above all possible CSFs can be generated directly in lexical order as
shown in Figure 6.6.

6.3.1.4 The Step-Vector
It has been discussed earlier that there are four possible actions to move from level i to the lower
(i − 1) in the Paldus ΔAC table. These four different actions can be represented also by the more
compact step-vector

di = 2Δai − Δci + 1. (6.52)

The step vector can assume four integer values, 0, 1, 2 and 3, corresponding to one of the allowed
actions. Table 6.4 summarizes the correspondence between the step-vector value and the variations
Δai, Δbi, Δci, ΔNi and ΔSi.

All basis functions of a chosen irrep of U(n) can be generated by constructing all possible distinct
step-vectors |d⟩ that lead to the same top-row of the Paldus table, Equations (6.42–6.44), with the
restriction Si ≥ 0,∀ i. An example summarizing the connection between Paldus table, step-vector
and Weyl table is given in Table 6.5.

6.3.2 The Graphical Unitary Group Approach (GUGA)

The graphical unitary group approach (GUGA) of Shavitt [13, 18] is based on the step-vector rep-
resentation of CSFs and on the observation that there is a lot of repetition of possible rows in the
Paldus arrays specifying the CSFs of a chosen irrep (see for instance the rows in Paldus tables of
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Figure 6.6 Example of the generation of a CSF basis in canonical lexical order for a system with 4
electrons in 3 orbitals coupled to a singlet state. The number of blocks on the left and right sides of each of
the red “spines” represent the entries in the Paldus AC tables for each level (as in Figure 6.4). Paldus AC
tables are translated into variation-tables and finally into Weyl’s table (last row of tables).

Table 6.4 Possible values of the step-vector, di and
corresponding variations in ai , bi , ci , Ni and Si .

di 𝚫ai 𝚫bi 𝚫ci 𝚫Ni 𝚫Si

0 0 0 1 0 0
1 0 1 0 1 1/2
2 1 −1 1 1 −1/2
3 1 0 0 2 0

Figure 6.6 above). Instead of storing all possible Paldus tables, Shavitt suggested to just list the pos-
sible sets of non-equivalent rows in a table, called the distinct row table (DRT). One example of DRT
is given in Table 6.6. The number of all elements in this table is given by [13]

NDRT = (a + 1)(c + 1)
(

b + 1 + d
2

)
− d(d + 1)(d + 2)

6

=
(N

2
− S + 1

)(
n − N

2
− S + 1

)(
2S + 1 + d

2

)
− d(d + 1)(d + 2)

6
, (6.53)
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Table 6.5 Correspondence of Paldus table (ai , bi , Ni), step-vector (di)
and Weyl table (right) representation of a CSF belonging to the N = 8,
n = 7 and S = 1 irrep of U(n). For each column in the Paldus
table/step-vector, the current values of Ni and Si are given.

orbital (i) ai bi Ni Si di

1/2 2

1/2 0

1/2 1

7 3 2 8 1 3

6 2 2 6 1 1

5 2 1 5

4 1 2 4 1 1

3 1 1 3

2 1 1 3

1 1 0 2 0 3

0 0 0 0 0

1 1

2 5

4 7

6

7

a

b

Table 6.6 Distinct row table for n = 3, N = 4 and S = 0.

a b c i j d0 d1 d2 d3 u0 u1 u2 u3

2 0 1 3 1 2 0 3 4 - - - -
2 0 0 2 2 0 0 0 5 1 0 0 0
1 1 0 2 3 0 5 0 6 0 0 1 0
1 0 1 2 4 5 0 6 7 0 0 0 1
1 0 0 1 5 0 0 0 8 4 3 0 2
0 1 0 1 6 0 8 0 0 0 0 4 3
0 0 1 1 7 8 0 0 0 0 0 0 4
0 0 0 0 8 - - - - 7 6 0 5

with d = min(a, c) = min(N∕2 − S,n − N∕2 − S), which is drastically smaller than the total number
of corresponding CSFs (given by Eq. (6.8)) as seen in Figure 6.7.

Each row in DRT (see Table 6.6) is identified by a pair of indices (i, j) with i = aij + bij + cij being
the level index, with values from 0 to the number of space orbitals, n, and j being the lexical row
index such that j < j′ if aij > a′

ij or if aij = a′
ij and bij > b′

ij.
A simple example. For a system with n = 3, N = 4 and S = 0 the DRT of Table 6.6 is derived.
Relations between distinct rows are indicated by the downward, ddk

, and upward, udk
, chaining

indices, with dk = 0, 1, 2, 3 being the four possible step-values, mentioned in Section 6.3.1.4. These
indices indicate the connection of a given lexical row to a neighboring level index after the action
of a step-value, d. A zero entry indicates an invalid (non-existing) connection associated with the
given step-value. From the DRT table any of the possible CSFs can be generated by connecting
distinct rows linked by chaining indices.

This DRT table can be represented as a graph (Figure 6.8), where each distinct row is represented
by a vertex (node) and non-zero chaining indices are indicated by arcs connecting the nodes. The
arcs are labeled according to the step number (Eq. (6.52)). The vertices are labeled according to the
lexical row index, j, starting at the unique head node at the top, which corresponds to the highest
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Figure 6.7 Number of total CSFs and entries of the distinct row table (DRT) for S = 0 and N = n as a
function of n.

8

765

432

1

graph tail

graph head

Figure 6.8 Graph representing the DRT of Table 6.6.

row (a, b, c), and ending at the second unique tail row, (0, 0, 0). Vertices are arranged on a regular
grid. Vertices with the same i-value of Table 6.6 are at the same level on this grid. The highest i-value
is at the top and the lowest at the bottom. Vertices have also left–right order with respect to the a
values, and vertices that share the same a value are further ordered (still horizontally) with respect
to their b values.

CSFs are represented by directed walks through the graph. The green and orange lines in
Figure 6.8 are two examples. Such a walk spans n arcs (number of orbitals) and visits one node
at each hierarchical level. There is a direct correspondence between the Paldus table, Gel’fand
patterns and directed walks on Shavitt graphs for representing all possible CSFs of a given
electronic configuration.

A lengthy example. Consider a system with n = 6, N = 5 and S = 1
2

. Table 6.7 shows the 32
possible distinct rows for this system, while the total number of CSFs is NCSF = 210. Notice that
from the row with j = 3 we have generated only one new row that satisfies condition (4): remove
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Table 6.7 Distinct row table for n = 6, N = 5 and S = 1
2
.

a b c i j d0 d1 d2 d3 u0 u1 u2 u3

2 1 3 6 1 2 3 4 5 - - - -
2 1 2 5 2 6 7 8 9 1 0 0 0
2 0 3 5 3 7 0 9 10 0 1 0 0
1 2 2 5 4 8 9 11 12 0 0 1 0
1 1 3 5 5 9 10 12 13 0 0 0 1
2 1 1 4 6 14 15 16 17 2 0 0 0
2 0 2 4 7 15 0 17 18 3 2 0 0
1 2 1 4 8 16 17 19 20 4 0 2 0
1 1 2 4 9 17 18 20 21 5 4 3 2
1 0 3 4 10 18 0 21 22 0 5 0 3
0 3 1 4 11 19 20 0 0 0 0 4 0
0 2 2 4 12 20 21 0 0 0 0 5 4
0 1 3 4 13 21 22 0 0 0 0 0 5
2 1 0 3 14 0 23 0 24 6 0 0 0
2 0 1 3 15 23 0 24 25 7 6 0 0
1 2 0 3 16 0 24 0 26 8 0 6 0
1 1 1 3 17 24 25 26 27 9 8 7 6
1 0 2 3 18 25 0 27 28 10 9 0 7
0 3 0 3 19 0 26 0 0 11 0 8 0
0 2 1 3 20 26 27 0 0 12 11 9 8
0 1 2 3 21 27 28 0 0 13 12 10 9
0 0 3 3 22 28 0 0 0 0 13 0 10
2 0 0 2 23 0 0 0 29 15 14 0 0
1 1 0 2 24 0 29 0 30 17 16 15 14
1 0 1 2 25 29 0 30 31 18 17 0 15
0 2 0 2 26 0 30 0 0 20 19 17 16
0 1 1 2 27 30 31 0 0 21 20 18 17
0 0 2 2 28 31 0 0 0 22 21 0 18
1 0 0 1 29 0 0 0 32 25 24 0 23
0 1 0 1 30 0 32 0 0 27 26 25 24
0 0 1 1 31 32 0 0 0 28 27 0 25
0 0 0 0 32 - - - - 31 30 0 29

one block from the left. Conditions (1) is redundant (it would generate row (2,0,2) that already
exists); condition (2) does not apply as it would raise i index; condition (3) is redundant as well.
Obviously any row (aij, bij, cij) can only appear at level i = aij + bij + cij and only between rows at
levels i ± 1 which are related to it by one of the four possible rules (1)–(4) given above. The graph
corresponding to Table 6.7 is shown in Figure 6.9.
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Figure 6.9 Graph representing the DRT of Table 6.7. The a and b values indicating the ordering in the
graph are shown at the top and the level index i is indicated on the left. The different step-values d
connecting the nodes are shown for the node 1 at the top.

With the ordering of the vertices according to their a and b values, the slope of each arc is in
direct correspondence to the step-value d, connecting two vertices. Values of d = 0 correspond to
vertical lines, and the slope of the other arcs increases with the step-value d.

A DRT table can be truncated by omitting distinct rows or by zeroing selected chaining indices.
This approach is followed in generating restricted active space, RAS, or generalized active space,
GAS, wave functions, as discussed in Section 6.6.

6.3.3 Evaluation of Non-Vanishing Hamiltonian Matrix Elements

Given the expression of the non-relativistic spin-free Hamiltonian operator, Eq. (1.18), a matrix
element between two SDs or CSFs is given by

⟨m′|Ĥ|m⟩ =∑
ij

hij⟨m′|Êij|m⟩ + 1
2
∑
ij,kl

(ij|kl)⟨m′|êij,kl|m⟩. (6.54)

The matrix elements, ⟨m′|Êij|m⟩ and ⟨m′|êij,kl|m⟩, are the coupling coefficients between two given
SDs or CSFs, and hij and (ij|kl) are the electron repulsion integrals. The coupling coefficients are
independent of the orbital shape and depend only on the actual coupling between the SDs or CSFs,|m′⟩ and |m⟩, involved. Therefore, for a given set of MO integrals the problem of computing Hamil-
tonian matrix elements is simply reduced to the evaluation of these coupling coefficients. For SDs,
the Slater–Condon rules apply to efficiently evaluate the coupling coefficients (see Section 6.2.1).



�

� �

�

154 6 Foundation of Multi-Configurational Quantum Chemistry

Unfortunately the Slater–Condon rules, cannot be applied for CSFs and the evaluation of the cou-
pling coefficients between two CSFs is more involved, compared to SDs.

The graphical representation of CSFs is a powerful tool in evaluating these coupling coefficients,
thanks to the formidable contribution of Paldus, Boyle and Shavitt [9, 19]. The strength of the
graphical approach is the efficient identification and fast evaluation of non-vanishing coupling
coefficients between two CSFs, ⟨m′|Êij|m⟩.
6.3.3.1 One-Body Coupling Coefficients
The excitation operators, Êij are classified according to their indices. The diagonal Êii elements are
called weight (W) generators, elements Êij with i < j are referred to as raising (R) generators, and
elements Êij with i > j are the lowering (L) generators. The excitation operators are called raising
and lowering generators due to the fact that their effect on a given CSF is to increase or decrease
their lexical order.

Opposed to Slater determinants, when a Êij operator acts onto a CSF |m⟩ yields a linear combi-
nation of CSFs, |m′⟩

Êij|m⟩ =∑
m′

|m′⟩⟨m′|Êij|m⟩ (6.55)

with an electron moved from spatial orbital j to orbital i without changing the spin of the resulting
states |m′⟩.

A graphical representation of the Hamiltonian matrix elements is obtained by first identifying
the two CSFs, |m′⟩ and |m⟩ in terms of their complete walks in the corresponding DRT graph (as
in Figure 6.8). Next, a connection is made between the coupled CSFs and the coupling excitation
operator of interest, for instance Êij. Shavitt [13] showed that for non-vanishing one-body coupling
coefficients, the walks of the coupled CSFs, |m⟩ and |m′⟩, on the DRT graph must coincide outside
the range (i, j), where i and j are the two MOs involved in the excitation via the Êij operator. The
range S0, from min(i, j) to max(i, j), is referred to as the range of the generator Êij. The coupling
coefficient will vanish if the walks in the DRT graph do not coincide outside the range (i, j). The
two vertices in the DRT graph, related to orbital i and j represent the points of separation of the
walks, and they are named loop head and loop tail. The two sections of overlapping walks are called
upper- and lower-walk. The value of the coupling coefficient ⟨m′|Êij|m⟩ is independent of the the
upper- and lower-walks. It only depends on the shape of the loop formed by the two graphs in the
range (i, j) of the generator Êij. Figure 6.10 illustrates the graphical representation of the coupling
coefficient together with the important elements of the graphs discussed above.

Considering the symmetry

Ê†
ij = Êji (6.56)

only the raising generators Êij will be discussed in the following. Shavitt showed that for a general
raising generator Êij, the condition of a non-vanishing coupling coefficient ⟨m′|Êij|m⟩ is that at
each level

k = i, i + 1,… , j − 1 (6.57)

inside the loop, the vertices of the |m′⟩ and |m⟩ walks are related by the following relations

N′
k = Nk + 1 and S′

k = Sk ±
1
2
, for k ∈ S0, (6.58)
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Figure 6.10 Graphical representation of a matrix element ⟨m′|Êij|m⟩ as a loop shape created by two CSFs|m′⟩ and |m⟩ on a Shavitt graph.

where Nk (N′
k) and Sk (S′

k) represent the cumulative occupation number and spin, respectively, up
to the k level in the |m⟩ (|m′⟩) walk. The above conditions are equivalent to

2a′
k + b′

k = 2ak + bk + 1 (6.59)

b′
k = bk ± 1. (6.60)

in the Paldus representation of walks Eq.(6.45–6.46).
Based on the graphical approach, Shavitt [9] proved that matrix elements of the generators Êij

can be factorized in the product

⟨m′|Êij|m⟩ = j∏
k=i

W(Qk; d′
k, dk,Δbk, bk), (6.61)

where each term corresponds to a segment of the loop in the range S0. The value bk is the b value
of |m⟩ at level k. Additionally, W(Qk; d′

k, dk,Δbk, bk) depends on the segment shape of the loop,
determined by the segment type Qk = W (weight), R (raising) or L (lowering), the step values d′

k
and dk and Δbk = bk − b′

k. If the segment related to the |m⟩ state is on the right, coincides or is on
the left of the segment related to the |m′⟩ state one will have raising (R), weight (W) or lowering
(L) segments types, respectively. If the two segments of |m′⟩ and |m⟩ states close the loop at the top
they are denoted R̄ or L̄. If they close the loop at the bottom they are denoted R or L. The non-zero
segment shapes for a raising (R) generator are shown in Figure 6.11.

In Table 6.8 non-vanishing one-electron coupling coefficients for the generator Êij are given as
functions of segment shape symbol, step-values and the b-value. They are expressed in terms of the
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Figure 6.11 Non-zero segment shapes of a raising generator Êij(i ≥ j). The numbers next to the lines
indicate the step-values d′ and d. R(R̄) correspond to the loop tail (head) segments and R to shapes inside
the generator range S0. Δbk indicates the possible difference of b′

k and bk leading to non-zero matrix
elements.

Table 6.8 Non-zero matrix contributions of the one-body operator Êij in terms of the
auxiliary functions Eq. (6.62, 6.63).

d′d W d′d ̄R L d′d R ̄L

00 −𝜇 01 1 1 10 1 1
11 1 − 𝜇 02 1 1 20 1 1
22 1 − 𝜇 13 A(b, 0, 1) A(b, 2, 1) 31 A(b, 1, 0) A(b, 0, 1)
33 2 − 𝜇 23 A(b, 2, 1) A(b, 0, 1) 32 A(b, 1, 2) A(b, 2, 1)

R L
d′d Δb = −1 Δb = +1 Δb = −1 Δb = +1
00 1 1 1 1
11 −1 C(b, 0) C(b, 1) −1
12 −1∕(b + 2) – 1∕(b + 1) –
21 – 1∕b – −1∕(b + 1)
22 C(b, 2) −1 −1 C(b, 1)
33 −1 −1 −1 −1

following auxiliary functions

A(b, x, y) =
√

b + x
b + y

(6.62)

C(b, x) =
√
(b + x − 1)(b + x + 1)

b + x
. (6.63)

A simple example. Figure 6.12 shows the graphical representation of the matrix element⟨030300|Ê25|010320⟩, with |m′⟩ and |m⟩ in their step-vector representation. Each segment shape
is obtained from Figure 6.11 and the corresponding value from Table 6.8 and the resulting matrix
element as the product of them.
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1

0

3

2

3

0

3

0

R = A(1, 1, 0) = √

R = 1

R = –1

R = 1

mʹ|Ê ij|m = – 2

2

√

Figure 6.12 Graphical representation of the matrix element ⟨030300|Ê25|010320⟩ = −
√

2.

6.3.3.2 Two-Body Matrix Elements
The matrix elements of the two-body operators êij,kl are more involved than the one-body operators.
Similar to the one-electron operators, the states |m⟩ and |m′⟩must coincide outside the ranges (i, j)
and (k, l) for ⟨m′|eij,kl|m⟩ to be non-zero. The form of the matrix element depends on the overlap
range of the two ranges

S1 = (i, j) ∩ (k, l). (6.64)

For non-overlapping ranges, S1 = ∅, the matrix element just reduces to the product

⟨m′|eij,kl|m⟩ = ⟨m′|EijEkl|m⟩ = ⟨m′|Eij|m′′⟩⟨m′′|Ekl|m⟩, (6.65)

where |m′′⟩ must coincide with |m⟩ in the range (i, j) and with |m′⟩ in range (k, l). The same rules
and matrix elements as for one-body operators apply in this case.

For S1 ≠ ∅, we define the non-overlap range

S2 = (i, j) ∪ (k, l) − S1, (6.66)

where the same restrictions and matrix elements as for one-body operators apply. In the overlap
range, S1, different restrictions for the visited Paldus table vertices p apply for the matrix element
to be non-zero. This depends on the type of the two generators involved and were worked out by
Shavitt [18]. For two raising generators the following conditions apply

a′
p = ap, b′

p = bp + 2, c′p = cp − 2 for Δbp = −2 (6.67)

a′
p = ap + 2, b′

p = bp + 2, c′p = cp for Δbp = +2 (6.68)

a′
p = ap + 1, b′

p = bp, c′p = cp − 1 for Δbp = 0; (6.69)

for two lowering generators:

a′
p = ap + 2, b′

p = bp + 2, c′p = cp, for Δbp = −2 (6.70)

a′
p = ap, b′

p = bp − 2, c′p = cp + 2 for Δbp = +2 (6.71)

a′
p = ap − 1, b′

p = bp, c′p = cp + 2 for Δbp = 0; (6.72)
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and for a mixed combination of raising and lowering generators:

a′
p = ap − 1, b′

p = bp + 2, c′p = cp − 1, for Δbp = −2 (6.73)

a′
p = ap + 1, b′

p = bp − 2, c′p = cp + 1 for Δbp = +2 (6.74)

a′
p = ap, b′

p = bp, c′p = cp for Δbp = 0. (6.75)

Drake and Schlesinger [20], Paldus and Boyle [19], Payne [21] and Shavitt and Paldus [18] were able
to derive a scheme, where the two-body matrix elements can be computed as a product of segment
values similar to the one-body case, Eq. (6.61)

⟨m′|êij,kl|m⟩ = ∏
p∈S1

W(Tp, bp)
∑

x=0,1

∏
p∈S2

Wx(Tp, bp), (6.76)

where S1 and S2 are the overlap and non-overlap ranges defined above Eq. (6.64, 6.66). W(Tp, bp)
are the already defined single operator segment values (Table 6.8) and Wx(Tp, bp) are new seg-
ment values of the overlap range. There is a sum over two products in S2, x = 0 corresponding
to singlet coupled intermediate states, with a non-zero contribution if Δbp = 0,∀p ∈ S2 and x = 1,
corresponding to a triplet intermediate coupling. For further details interested readers are referred
to Shavitt’s paper [18].

6.4 Configuration Interaction Eigenvalue Problem

When replacing the continuous wave function with the discretized form

|Ψ⟩ =∑
i

Ci|i⟩ , (6.77)

the Schrödinger equation reduces to a simple eigenvalue problem∑
i
⟨j|Ĥ|i⟩ Ci = E Cj , (6.78)

and finding its solutions is equivalent to diagonalizing the Hij = ⟨Di|Ĥ|Dj⟩ matrix, and obtaining
its CI-eigenvectors, CK , and eigenvalues, EK . Slater determinants or CSFs may be used as the basis
{Di} for building and diagonalizing the Hamiltonian matrix, with the CSFs preserving the spin
symmetry as discussed earlier.

The Jacobi method [22], is an efficient full diagonalization technique, for finding all solutions
of the eigenvalue problem. It is based on the assumption that the entire Hamiltonian matrix and
eigenvalues for all states can be stored in memory. The computational cost for full diagonalizations
increases as N3

conf with Nconf being the dimension of the CI vector. As discussed in Section 6.1 the
dimensionality of the CI space scales exponentially, and the Hamiltonian matrix is often too large
to be stored in memory. In these cases the eigenvalue problem is not within reach for full diagonal-
ization schemes, and other approaches are required. Also, in most cases a complete diagonalization
is not needed, as only a few energetically lowest states are of interest. Efficient algorithms to obtain
the lowest eigenvalues and the corresponding eigenvectors are crucial, considering the size of the
CI vector.

Iterative methods have been recommended for state specific CI optimizations. The strength of
these methods is that they do not require the entire list of Hamiltonian matrix elements and can
rely on the contracted 𝜎-vector

𝛔 = HC . (6.79)
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This idea is the foundation of the Direct-CI approach, introduced by Roos in 1972 [6], and promoted
by Handy and Knowles [4] and Olsen [7]. Methods to solve the eigenvalue problem for selected
states are discussed in Section 6.4.1, while the Direct-CI algorithm is introduced in Section 6.4.2.

6.4.1 Iterative Methods

In this section we give a short overview on iterative sparse eigensolvers, here simply referred to as
iterative methods, for finding specific solutions to the Schrödinger equation. Iterative methods are
based on the principle of approaching a solution to Eq. (6.78) by repeated (iterative) application of
Ĥ, or a function of it, onto a trial vector C0. By projecting out any contribution from excited states
to the state parametrized by C0, this procedure converges to the solution of Eq. (6.78).

The power method [23] is a simple iterative method, that solely relies on repeated application of
Ĥ. Consider a random initial vector C0 which can formally be decomposed into eigenvectors vm
of Ĥ as

C0 =
∑

m
cmvm , (6.80)

with some coefficients cm and eigenvalues Em. Assume the eigenvectors are ordered such that E0
has the highest absolute value. Then, applying Ĥn to C0 yields

ĤnC0 =
∑

m
En

mcmvm

= En
0

(
c0v0 +

∑
m>0

cm

(Em

E0

)n

vm

)
→ En

0 c0v0(n → ∞,normalized) . (6.81)

By shifting the Hamiltonian such that the ground state energy has the highest absolute value, this
scheme, when normalizing the vector, converges to the ground state CI vector. The convergence of
this scheme can be very slow depending on the fractions Em

E0
, and even though ĤnC0 is computed for

a wide range of n, only the last one is utilized, discarding all intermediate results. For these reasons,
while the simple scheme of repeatedly applying the transformation C → ĤC is a valid approach, it
has little practical relevance for solving Eq. (6.78).

6.4.1.1 Lanczos Algorithm
In the Lanczos algorithm [24] the intermediate results

Cn = ĤnC0 (6.82)

are utilized by implementing the ground state search as a Krylov-subspace procedure [25]. In the
Lanczos procedure, at each iteration, the following ansatz space is considered

K = span{C0,C1,C2 …} (6.83)

spanned by the initial guess C0 and all previous intermediate results, Cn, obtained by C → HC. The
vectors Cn are not orthogonal by default; hence, the basis of K is orthonormalized in each iteration,
leading to a new basis {bi} of K

K = span{b0,b1,b2 …} . (6.84)

The application of Ĥ to bn expands the ansatz space K by a new basis vector, C = Hbn. By this
scheme an orthonormal basis of K, {bi}, is iteratively obtained, with each new vector

bn+1 ∈ span{b0, b1 … bn, Hbn} (6.85)
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H =

H11 H12 0 ··· 0

H21
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . H(n – 1)n

0 ··· Hn(n – 1) Hnn

ˆ

Figure 6.13 Hamiltonian matrix in tridiagonal form.

orthogonalized against the existing K-space basis vectors. In the case that Ĥbn ∈ K, bn+1 is chosen
as a random vector orthogonal to K instead, as under those circumstances orthogonalization is not
possible. The full scheme is summarized in Algorithm 1.

Given the hermiticity of Ĥ (symmetric for real-valued matrix elements), a particular property of
the Lanczos method is that Ĥ is tridiagonal on K (see Figure 6.13). This follows directly from the
fact that

Hij = bT
i Ĥbj = 0 if j < i − 1 , (6.86)

for bi is orthogonalized against all previous vectors bj, including Hbj for all j < i − 1. From the
hermiticity of Ĥ it also follows that

Hij = bT
j Ĥbi = 0 if j < i − 1 , (6.87)

which implies that the matrix elements Hij of Ĥ on K are non-zero only for |i − j| ≤ 1

Hij ≠ 0 ⇒ |i − j| ≤ 1 . (6.88)

This particular property makes the Lanczos algorithm inexpensive in terms of memory require-
ments, as only the last two vectors bn−1 and bn are required to obtain the new orthogonal vector
bn+1.

6.4.1.2 Davidson Algorithm
The Davidson algorithm [1, 2], as for the Lanczos approach, is an iterative method, based on the
repeated application of Ĥ onto a trial vector. The main difference with the Lanczos method lies in
how the basis vector is updated.

Algorithm 1 Lanczos Algorithm
- Choose an initial state 𝐛0 and a maximum iteration number m
for n = 0,… , m do

- Construct the space K = span{𝐛0,…𝐛n}
- Obtain 𝐂 = Ĥ𝐛n
if 𝐂 ∈ K then

- Set bn+1 to a random vector orthogonal to K
else

- Orthogonalize 𝐂 against K, yielding 𝐛n+1
end if

end for
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The Davidson method can be derived from the quasi-Newton method, applied to solve Eq. (6.78)
[26]. We decompose the Hamiltonian operator into a dominant part and a correction

Ĥ = Ĥ0 + Ĥ1, (6.89)

The updated CI vector, C′ is also decomposed into an initial guess, C, and a correction b

C′ = C + b , (6.90)

The correction b can be separated into a component b∥ = 𝜆C parallel to C and a component b⟂
perpendicular to C

b = 𝜆C + b⟂ . (6.91)

As rescaling C′ via the parallel component of b does not influence its property of being or not
being a solution of Eq. (6.78), the contribution from b∥ can always be eliminated and the update
simplified as

C′ = C + b⟂ , (6.92)

The eigenvalue problem is thus expressed as

(Ĥ0 + Ĥ1)(C + b⟂) = E(C′)(C + b⟂) . (6.93)

If the corrections are small and second order terms in H1 and b are neglected, the eigenvalue prob-
lem becomes

b⟂ = −(Ĥ0 − E(C))−1(H − E(C′))C , (6.94)

where we have defined

E(C) = CHC
CC

. (6.95)

The right hand side still depends on b via E(C′). However, by considering that C and b⟂ are orthog-
onal one can solve for E(C′)

0 = Cb⟂ = −C(H0 − E(C))−1(Ĥ − E(C′))C . (6.96)

leading to

E(C′) =
C(H0 − E(C))−1HC
C(H0 − E(C))−1C

(6.97)

Inserting Eq. (6.97) into Eq. (6.94) the explicit expression for the quasi-Newton step is obtained

b = −(H0 − E(C))−1
(
(Ĥ − E(C)) −

C ⋅ (H0 − E(C))−1(H − E(C))C
C ⋅ (H0 − E(C))−1C

)
C . (6.98)

This approach relies on the assumption that higher order terms, H1 and b⟂ are negligible, and there-
fore that the initial vector C is close to the actual solution Ceigen. Like with the power method, one
relies on an iterative scheme, that requires repeated application of Eq. (6.98) to gradually converge
to Ceigen, as each iteration decreases the required correction b⟂ and therefore improves the qual-
ity of the expansion, yielding a better result in the next iteration. The vector C′ is not necessarily
normalized after each iteration.

The strength of this method rests on the good partition (Eq. (6.89)) [27], as both, the effect of
Ĥ1 cannot be too large, which would hinder convergence, and the inverse of (H0 − E(C)) must be
easily computable. Under these circumstances, the quasi-Newton method is an efficient alternative
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to the simple power method, at comparable cost per iteration, while potentially converging much
faster [26].

At convergence, it is E(C) = E(C′) and one additional approximation may be employed in
Eq. (6.94), namely replacing E(C′) with E(C), leading to the Davidson step

b = −(H0 − E(C))−1(Ĥ − E(C))C . (6.99)

The Davidson method is one of the most frequently applied methods for treating the CI problem
in quantum chemistry. While at comparable cost per iteration, in contrast to the quasi-Newton
method, the Davidson algorithm is less sensitive to H0 being close to H, but also does not necessarily
improve when Ĥ0 → Ĥ. A common choice for H0 is the diagonal part of H [1], which minimizes
the effort required to invert (Ĥ0 − E(C)).

As the residual vector

r = (Ĥ − E(C))C (6.100)

is computed to perform each step, an estimate of convergence is readily obtained from the norm
of r.

Typically, the Davidson method is carried out building an ansatz space from the results of pre-
vious iterations, similar to the Lanczos method. As the correction vectors are not orthogonal by
default, an additional orthogonalization step has to be performed after each iteration. As each iter-
ation increases the dimension of K by one, it can be useful to truncate the ansatz space to some
maximum dimension to keep the orthogonalization step feasible. The Davidson algorithm is sum-
marized in Algorithm 2.

Algorithm 2 Davidson Algorithm
- Choose an initial state 𝐛0 and a maximum iteration number m
for n = 0,… , m do

- Construct the space K = span{𝐛0,… , 𝐛n}
- Obtain the ground state 𝐂 of Ĥ in the K-space
if |(H − E(𝐂))𝐂| is below tolerance then

- Exit
end if
- Obtain the next vector 𝐛n+1 as

𝐛n+1 = −
(

H0 − E(𝐂)
)−1 (H − E(𝐂))𝐂

end for

6.4.2 Direct-CI Algorithm

Let us write the CI expansion as

|0⟩ =∑
I𝛼 I𝛽

C(I𝛼, I𝛽)|𝛼(I𝛼)𝛽(I𝛽)⟩. (6.101)

This form of the CI expansion highlights the factorization of Slater determinants into 𝛼 (I𝛼) and 𝛽
(I𝛽) strings and the possibility to recast the CI vector into a rectangular matrix, C(I𝛼,I𝛽). Using this
form of the CI vector the 𝜎 vector can also be expressed as a rectangular matrix

𝜎(I𝛼, I𝛽) =
∑
J𝛼J𝛽

⟨𝛼(I𝛼)𝛽(I𝛽)|Ĥ|𝛼(J𝛼)𝛽(J𝛽)⟩C(J𝛼, J𝛽). (6.102)
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Slater–Condon rules are used to evaluate the Hamiltonian matrix elements. Non-zero terms are
multiplied by the corresponding C(I𝛼, I𝛽) and the contribution added to the sigma vector. While
this simple scheme is a valid approach, it is highly inefficient as it scales as N2

conf . The direct-CI
approach is based on the realization that Slater determinants are coupled via single and double
excitations, and for a given Slater determinant it is possible to know a priori the entire list of cou-
pled determinants, while avoiding the explicit evaluation of the vanishing Hamiltonian matrix
elements. Although still quite costly, this method scales as the number of non-vanishing matrix
elements, significantly reduced with respect to the explicit evaluation of all Hamiltonian matrix
elements. The minimal operation-count (MOC) variant of the Direct-CI was introduced by Olsen
et al. in 1988 [7] and it is entirely based on the possibility to separate the 𝛼 and 𝛽 contributions in
the evaluation of the sigma vector. For simplicity we rewrite the Hamiltonian operator as

Ĥ =
∑
pq

kpqÊpq +
1
2
∑
pq,rs

(pq|rs)ÊpqÊrs, (6.103)

where

kpq = hpq −
1
2
∑

r
(pr|rq). (6.104)

The one- and two-electron terms of the 𝜎-vector can be separated as

𝜎(I𝛼, I𝛽) = 𝜎(I𝛼, I𝛽)(1) + 𝜎(I𝛼, I𝛽)(2) (6.105)

with

𝜎(I𝛼, I𝛽)(1) =
∑
pq

∑
J𝛼J𝛽

kpq⟨𝛼(I𝛼)𝛽(I𝛽)|Êpq|𝛼(J𝛼)𝛽(J𝛽)⟩C(J𝛼, J𝛽), (6.106)

𝜎(I𝛼, I𝛽)(2) =
1
2
∑
pqrs

∑
J𝛼J𝛽

(pq|rs)⟨𝛼(I𝛼)𝛽(I𝛽)|ÊpqÊrs|𝛼(J𝛼)𝛽(J𝛽)⟩C(J𝛼, J𝛽). (6.107)

Considering the separation of the 𝛼 and 𝛽 component of the excitation operator (Chapter 1,
Eq. (1.19)), the 𝜎(1) term can be further decomposed into the 𝛼 and the 𝛽 contribution

𝜎(I𝛼, I𝛽)(1) = 𝜎(I𝛼, I𝛽)(1𝛼) + 𝜎(I𝛼, I𝛽)(1𝛽) (6.108)

with

𝜎(I𝛼, I𝛽)(1𝛼) =
∑
pq

∑
J𝛼J𝛽

kpq⟨𝛼(I𝛼)|Ê𝛼pq|𝛼(J𝛼)⟩𝛿𝛽(I𝛽 )𝛽(J𝛽 )C(J𝛼, J𝛽) (6.109)

=
∑
pq

∑
J𝛼

kpq⟨𝛼(I𝛼)|Ê𝛼pq|𝛼(J𝛼)⟩C(J𝛼, I𝛽). (6.110)

Introducing the matrix representation of the one-electron operator

k̂𝛼I𝛼J𝛼
=
∑
pq

kpq⟨𝛼(I𝛼)|Ê𝛼pq|𝛼(J𝛼)⟩ (6.111)

we finally obtain

𝜎(I𝛼, I𝛽)(1𝛼) =
∑

J𝛼

k̂𝛼I𝛼J𝛼
C(J𝛼, I𝛽). (6.112)

The matrix in Eq. (6.111) is rather sparse. For a given I𝛼 there are only [N𝛼(n − N𝛼) + 1]
non-vanishing k̂𝛼I𝛼J𝛼

terms, as that is the number of coupling J𝛼 terms via the single excitation
operator (n is the total number of orbitals, N𝛼 the number of 𝛼 electrons). Additionally the
computed k̂𝛼I𝛼J𝛼

terms are the same for any choice of I𝛽 string. An identical argument is carried
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out for the 𝜎(I𝛼, I𝛽)(1𝛽). The evaluation of the 𝜎(I𝛼, I𝛽)(1) is therefore reduced to two matrix-matrix
multiplications, k × C, with a total operation count (to the leading term) of

[N𝛼(n − N𝛼) + N𝛽(n − N𝛽)]Ndet (6.113)

The two-electron contribution can be divided into three terms: one term involving two𝛼 excitations,
one involving two 𝛽 excitations, and a third one involving mixed excitations

Ĥ(2) = Ĥ(2)
𝛼𝛼 + Ĥ(2)

𝛽𝛽
+ Ĥ(2)

𝛼𝛽
(6.114)

H(2)
𝛼𝛼 = 1

2
∑
pqrs

(pq|rs)Ê𝛼pqÊ𝛼rs (6.115)

H(2)
𝛽𝛽

= 1
2
∑
pqrs

(pq|rs)Ê𝛽pqÊ𝛽rs (6.116)

H(2)
𝛼𝛽

=
∑
pqrs

(pq|rs)Ê𝛼pqÊ𝛽rs (6.117)

The contribution to the 𝜎-vector thus is

𝜎(I𝛼, I𝛽)
(2)
𝛼𝛼 = 1

2
∑
pqrs

∑
J𝛼

(pq|rs)⟨𝛼(I𝛼)|Ê𝛼pqÊ𝛼rs|𝛼(J𝛼)⟩C(J𝛼, I𝛽) (6.118)

𝜎(I𝛼, I𝛽)
(2)
𝛽𝛽

= 1
2
∑
pqrs

∑
J𝛽

(pq|rs)⟨𝛽(I𝛽)|Ê𝛽pqÊ𝛽rs|𝛽(J𝛽)⟩C(I𝛼, J𝛽) (6.119)

𝜎(I𝛼, I𝛽)
(2)
𝛼𝛽

=
∑
pqrs

∑
J𝛼J𝛽

(pq|rs)⟨𝛼(I𝛼)|Ê𝛼pq|𝛼(J𝛼)⟩
× ⟨𝛽(I𝛽)|Ê𝛽rs|𝛽(J𝛽)⟩C(J𝛼, J𝛽) (6.120)

As for the one-electron contribution, a matrix representation of the two-electron operators may be
introduced

G𝛼𝛼
I𝛼J𝛼

= 1
2
∑
pqrs

(pq|rs)⟨𝛼(I𝛼)|Ê𝛼pqÊ𝛼rs|𝛼(J𝛼)⟩ (6.121)

and the 𝜎-vector contribution rewritten as

𝜎(I𝛼, I𝛽)
(2)
𝛼𝛼 =

∑
J𝛼

G𝛼𝛼
I𝛼J𝛼

C(J𝛼, I𝛽) (6.122)

𝜎(I𝛼, I𝛽)
(2)
𝛽𝛽

=
∑

J𝛽

G𝛽𝛽

I𝛽 J𝛽
C(I𝛼, J𝛽) (6.123)

For a given 𝛼(I𝛼) string the number of non-vanishing G𝛼𝛼
I𝛼J𝛼

is 1
4
[N2

𝛼 (n − N𝛼)2] (to the leading terms).
Therefore the operation count for the 𝜎(I𝛼, I𝛽)

(2)
𝛼𝛼 and 𝜎(I𝛼, I𝛽)

(2)
𝛽𝛽

is

1
4
[N2

𝛼 (n − N𝛼)2 + N2
𝛽 (n − N𝛽)2]Ndet (6.124)

For the mixed term 𝜎(I𝛼, I𝛽)
(2)
𝛼𝛽

the following intermediate matrices are introduced

G𝛽

I𝛽 J𝛽
[pq] =

∑
rs
(pq|rs)⟨𝛽(I𝛽)|Ê𝛽rs|𝛽(J𝛽)⟩ (6.125)

D𝛼
I𝛼J𝛽

[pq] =
∑

J𝛼

⟨𝛼(I𝛼)|Ê𝛼pq|𝛼(J𝛼)⟩C(J𝛼J𝛽) (6.126)
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and the 𝜎(I𝛼, I𝛽)
(2)
𝛼𝛽

term can be rewritten as

𝜎(I𝛼, I𝛽)
(2)
𝛼𝛽

=
∑
pq

∑
J𝛽

G𝛽

I𝛽 J𝛽
[pq]D𝛼

I𝛼J𝛽
[pq] (6.127)

For a given 𝛼(I𝛼) there are only [N𝛼(n − N𝛼) + 1] non-vanishing D𝛼
I𝛼J𝛽

[pq] with variable pq pairs.
This operation count is independent of the 𝛽(J𝛽) value and is to be multiplied for the total number
of determinants, Ndet. The number of non-vanishing G𝛽

I𝛽 J𝛽
[pq] depends on the 𝛽-strings, namely for

each 𝛽(I𝛽) there are [N𝛽(n − N𝛽) + 1] non-vanishing G terms. Therefore the total operation count
for 𝜎(I𝛼, I𝛽)

(2)
𝛼𝛽

is to the leading term

N𝛼N𝛽(n − N𝛼)(n − N𝛽)Ndet (6.128)

Thus the total operation count for the three two-electron components of the 𝜎-vector is[1
4

N2
𝛼 (n − N𝛼)2 + 1

4
N2
𝛽
(n − N𝛽)2 + N𝛼N𝛽(n − N𝛼)(n − N𝛽)

]
Ndet (6.129)

Graphical methods to label and order Slater determinants as discussed in Section 6.2 further
simplify the mapping between coupled 𝛼- and 𝛽-strings, increasing the overall efficiency of the
Direct-CI algorithm.

6.5 The CASSCF Method

The Hartree–Fock (HF) method has contributed to the popularity of quantum chemistry in
electronic structure predictions, due to its ability to provide accurate zeroth order reference wave
functions for closed-shell molecular systems in their ground state geometries. However, the HF
method neglects electron correlation (except for the spin) and fails in situations where this is
important, such as in bond formation or breaking processes. In these situations single config-
urational wave functions, such as the HF wave function, are not sufficient and, more than one
configuration is necessary to obtain a qualitatively correct wave function. Multi-configurational
(MC) approaches have been developed as an extension to the Hartree–Fock method to circumvent
its limitations for MC molecular systems. MC self-consistent field (MCSCF) approaches have
played a central role in the field of MC methods. In MCSCF both CI coefficients and molecular
orbitals are variationally optimized. The optimization of the molecular orbitals lifts the bias
introduced by the initial conditions. The purpose of the MCSCF method, also considering its
state-averaged formulation, is to obtain qualitatively correct electronic wave functions for all
states considered along a given potential energy surface. Correlation effects not described by the
MCSCF wave function are generally recovered by subsequent MRCI or PT2 treatments that use
the MCSCF wave function as zeroth order approximation.

A Two-Configuration Wave Function for the Dissociation of H2

The failure of the restricted Hartree–Fock (RHF) method in describing the dissociation of the H2
molecule is used here as motivation for more advanced MC approaches. We construct symmetry
adapted orthonormal molecular orbitals from a minimal basis set

𝜎g = Ng(1sA + 1sB) (6.130)

𝜎u = Nu(1sA − 1sB), (6.131)
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where 𝜎g and 𝜎u are the bonding and anti-bonding MOs, respectively. Ng and Nu are the normaliza-
tion factors and 1sA and 1sB the atomic orbitals centered at atom A and B of the hydrogen molecule.
The ground state RHF wave function is represented by the following single Slater determinant

Ψ = (𝜎g)2 =
√

1
2
|𝜎g(1)𝛼(1)𝜎g(2)𝛽(2)| (6.132)

Expanding the Slater determinant one obtains

Ψ = N2
g [1sA(1)1sA(2) + 1sA(1)1sB(2) + 1sB(1)1sA(2) + 1sB(1)1sB(2)]𝜃(1, 2) (6.133)

Terms 1sA(1)1sB(2) and 1sB(1)1sA(2) describe the homolytic dissociation of the molecule, with one
electron in 1sA and one in 1sB. Terms 1sA(1)1sA(2) and 1sB(1)1sB(2) represent the unphysical and
undesired ionic dissociation to H−

A and H+
B . The function 𝜃(1, 2) is a function of the spin. The energy

expression at dissociation, associated to the single-determinantal wave function is

E∞ = 2E(H) + 1
2
(1sA1sA|1sA1sA) (6.134)

The term 2E(H) is twice the value of the atomic energy and, it is the only value expected to remain
in the energy expression for the two non-interacting hydrogen atoms. The above energy expression,
however, contains the extra term (1sA1sA|1sA1sA). This term derives from the ionic configurations
and it is positive, unphysically raising the total energy for the system at dissociation.

To overcome this problem the following two-configuration wave function is introduced

|0⟩ = C1Ψ1 + C2Ψ2, (6.135)

with Ψ1 defined as in Eq. (6.132) and Ψ2 represented by

Ψ2 = (𝜎u)2 =
√

1
2
|𝜎u(1)𝛼(1)𝜎u(2)𝛽(2)| (6.136)

At dissociation C1 = −C2 and the ionic contributions cancel out, revealing the correct wave func-
tion and energy. The two-configuration wave function for the dissociation of the H2 molecule is a
simple example of a MC wave function.

In the early days of MCSCF, small CI expansions were constructed by a manual selection of the
relevant determinants and, CI coefficients and molecular orbitals were simultaneously optimized.
The manual selection of electronic configurations, however, was rather problematic as it required
experience based on a trial-and-error approach and could lead to biased results, as missing con-
figurations could be important for the chemical system investigated. The complete active space
self-consistent field (CASSCF) approach [28–31] is a special form of MCSCF in which the configu-
ration interaction expansion is chosen to be complete inside a user-specific orbital subset, the active
space. In CASSCF, orbitals are divided into five groups. Frozen orbitals are doubly occupied in all
configurations of the CI expansion and their shape is fixed to the one obtained in the preceding
HF optimization, assuming that HF is the method used to generate the starting orbitals. Inactive
orbitals are doubly occupied in all electronic configurations of the CI expansion. Contrarily to the
frozen orbitals, the inactive orbital coefficients are optimized during the MCSCF procedure. Active
orbitals represent the basis in which a full-CI expansion is generated. Thus, their occupation can
vary in the range [0 − 2] in the electronic configurations of the CI expansion. Virtual (or secondary)
orbitals are the empty analogs of the inactive orbitals. These orbitals are empty in all electronic
configurations of the CI expansion and their MO coefficients optimized in the MCSCF procedure.
Deleted orbitals are the empty analogs of the frozen orbitals. They are empty in all configurations
of the CI expansion and their orbital coefficients are not modified by the MCSCF orbital relaxation.
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The N electrons that populate the n active orbitals are referred to as the active electrons and together
with the active orbitals they form the active space, commonly labeled as CAS(N,n).

The full-optimized reaction space (FORS), proposed by Ruedenberg in 1982, [32] is conceptu-
ally very similar to the CASSCF. Comprehensive reviews about the initial development of MCSCF
procedures are available in the literature [33, 34].

Suffering from an exponential growth [35] of the full-CI expansion with respect to the number
of active electrons and orbitals, active spaces beyond CAS(18,18) (coupled to a singlet spin state)
are out of reach for conventional approaches (Davidson diagonalization and Direct-CI algorithm
for step-vector updates) [7].

Development of methods to circumvent the exponential scaling in MCSCF represents an active
area of research. The Stochastic-CASSCF [36] method, the density matrix renormalization group
DMRG-SCF [37, 38] method and the variational-2RDM [39] method are common approaches to
tackle the exponential scaling problem in the MCSCF procedure, in principle without loss of infor-
mation about the intricate coupling among electronic configurations (in practice for large active
spaces containing about 30 electrons and 30 orbitals, these methods provide approximations to
the true wave functions and their energies [40]). Other approaches such as the restricted active
space, RAS, [41] and the generalized active space [42], reduce the exponential scaling at the cost of
removing some of the configurations from the CI expansion. In principle, by using these methods
only deadwood configurations are removed. In practice, also some important configurations are
eliminated from the CI expansion, potentially compromising the accuracy of the procedure.

From an algorithmic point of view current MCSCF procedures can be categorized in two classes:
(1) methods based on the direct minimization of the energy, expanded up to second order in some
orbital rotations parameters and, (2) methods based on the generalized Brillouin theorem [28, 29,
43–46] (see Section 6.5.8).

Orbitals and CI coefficients can be coupled (faster convergence at higher computational costs) or
optimized alternately in a decoupled procedure (slower convergence and reduced computational
costs).

In the initial development of the MCSCF approach, considerable progress was made with
respect to full second order procedures (including orbital-CI coupling terms), [34, 47–57] decou-
pled quasi-second order algorithms (with second order procedures for the orbital optimization
step) [30, 31] and, first order methods [28, 29, 43, 44]. In second order MCSCF approaches, gradient
and Hessian (first and second derivatives) of the energy with respect to all variational parameters
(CI coefficients and MO coefficients) are evaluated exactly. The energy is then approximated by
a second order Taylor expansion and a stationary point is found, leading to updated variational
parameters. Higher order derivatives may as well be included to increase convergence. This
route is rarely undertaken in full, due to the exceedingly high computational demand. Various
higher order terms (but not all) are included in the Werner, Meyer, Knowles (WMK) approach
[47, 53, 56, 57] and, the advantage of adding these terms is documented. Early MCSCF calculations
on relatively large active spaces could not be done without the progress on direct-CI techniques
for fast and efficient CI optimizations [3, 4, 6].

6.5.1 The MCSCF Parameterization

In MCSCF theory the wave function is parameterized over the CI coefficients, Ci0

|0⟩ =∑
i

Ci0|Φi⟩ (6.137)
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and the orbital parameters, k𝛼r

𝜑r =
∑
𝛼

k𝛼r𝜒𝛼 (6.138)

We assume the orthonormality condition of the wave function⟨ΦI|ΦJ⟩ = 𝛿IJ

∑
I

C2
I = 1 (6.139)

and orbitals⟨𝜑r|𝜑s⟩ = 𝛿rs (6.140)

The 𝜒𝛼 are approximations to the atomic orbitals (AOs), namely contracted Gaussian functions or
Slater-type orbitals. Throughout this section molecular orbitals are assumed to be real functions.
The total energy is minimized with respect to both parameters, E(k,C). The variational parameters,
k𝛼r and Ci0, are introduced in the form of unitary transformations of the wave function. These
unitary transformations are realized via exponential representation of the corresponding operators,
namely eR̂ for the orbital relaxation and, eŜ for the CI optimization. The operators R̂ and Ŝ are
anti-Hermitian matrices (Rqp = −R∗

pq). The exponential of an anti-Hermitian matrix is a unitary
matrix. When unitary transformations are applied to orthonormalized vectors the resulting vectors
are still orthonormal; thus, no orthonormalization procedure is required upon each transformation.
Variations of the MCSCF wave function are thus written as|0′⟩ = eR̂eŜ|0⟩. (6.141)

This expression of the MC wave function is also referred to as the exponential-i-lambda (EIL)
parameterization [49–51]. The operator R̂ is defined as

R̂ =
∑
pq

Rpqâ†
pâq. (6.142)

The matrix R represents the set of independent orbital rotations parameters. When operating on
the wave function, this operator will transform each spin-orbital, 𝜑s, of the original wave function
into a new spin-orbital 𝜑̃s

𝜑̃s =
∑

r
eRrs𝜑r (6.143)

For real molecular orbitals, the matrix R is real and anti-symmetric (Rpq = −Rqp) and the operator
takes the compact form

R̂ =
∑
p>q

Rpq(Êpq − Êqp) =
∑
p>q

RpqÊ−
pq (6.144)

The operator Ê−
pq is referred to as the “replacement” operator. The Rpq factors are the actual opti-

mization parameters. When stationary condition is reached, the matrix of the optimum Rpq ele-
ments is used to derive U = eR and U used to transform the MO coefficients as

𝜑̃s =
∑

r
𝜑rUrs (6.145)

or in matrix form

X̃ = XU. (6.146)

The operator Ŝ is defined as

Ŝ =
∑
K≠0

SK0(|K⟩⟨0| − |0⟩⟨K|) (6.147)

where |K⟩ represent the complement states orthogonal to the target state |0⟩.
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Eq. (6.141) can be thought as first applying the eŜ transformation to |0⟩ and then apply the orbital
transformation to the transformed |0̃⟩ state. In principle, Eq. (6.141) could also be written as|0′⟩ = eŜeR̂|0⟩ (6.148)

with orbital and configuration operators in switched order. This form leads to the unnecessary
complication of evaluating the overlap between untransformed and transformed orbitals and for
this reason is not considered in practice.

6.5.2 The MCSCF Gradient and Hessian

With the optimization parameters (orbital and CI coefficients) arranged in a column vector, p, we
make a Taylor expansion of the energy, E = E(p), around the reference state

E(p) = E(0) +
∑

i

(
𝜕E
𝜕pi

)
0
pi +

1
2
∑

i,j
pi

(
𝜕2E
𝜕pi𝜕pj

)
0

pj +… (6.149)

The methods used to solve this equation can be divided into two main classes, depending on the
rate of convergence. First order methods are based only on the calculation of the energy and its
first derivative (first order expansion). Second order methods are based on the calculation of the
energy and its first and second derivatives (second order expansion). Higher order expansions are
of rather little practical importance due to the exceedingly large computational costs associated to
them. However, including higher order derivative terms in an approximate way has been demon-
strated important to improve convergence of the second order Taylor expansion [56, 57]. In the local
region (that is when the trial CI and orbital parameters are not too far from a stationary point) a
second order Taylor expansion ensures a quadratically converging optimization (the energy change
decreases quadratically at each iteration). However, in non-local regions second order approxima-
tions may not be optimal and second order algorithms require some improvements to guarantee
convergence [47, 53, 56, 57].

The Super-CI method, discussed in Section 6.5.8, is a special first order procedure, which has
been proven to have near-second order convergence in practical application. The method is not
based on direct minimization of the energy expression expanded up to a certain order. Instead, it
is better classified as a Brillouin theorem driven approach.

Defining the gradient vector, E(𝟏), and the Hessian matrix (second derivative), E(𝟐), with elements

E(1)
i =

(
𝜕E
𝜕pi

)
0

(6.150)

E(2)
ij =

(
𝜕2E
𝜕pi𝜕pj

)
0

(6.151)

one obtains to the second order

E(p) = E(0) + E(𝟏)†p + 1
2

p†E(𝟐)p. (6.152)

Setting the derivative of E(p) with respect to all variational parameters, p, equal to zero, a system
of inhomogeneous linear equations is obtained

E(𝟐)p = −E(𝟏) (6.153)

Solving the above equation can be achieved by a sequence of Newton–Raphson iterations, where
E(𝟏) and E(𝟐) are computed for a given trial wave function, Eq. (6.153) is then solved and, a new
vector p is obtained. This new vector is used to redefine the new point of expansion, rebuild E(𝟏)

and E(𝟐) and return to Eq. (6.153).
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6.5.3 One-Step and Two-Step Procedures

Orbital coefficients and CI coefficients can be separated from the collective column vector, p, and
the gradient and Hessian written in the following block form

E(1) =
(cE(1)

oE(1)

)
(6.154)

E(2) =
(ccE(2) coE(2)

ocE(2) ooE(2)

)
(6.155)

Superscripts o and c indicate the derivatives with respect to the orbital coefficients and the CI expan-
sion coefficients, respectively. The second derivatives are of three types: orbital–orbital type (oo),
configuration–configuration type (cc), and CI–orbital coupling type (co). The block form of the
Newton–Raphson equations is then obtained as(ccE(2) coE(2)

ocE(2) ooE(2)

)(
S
R

)
= −

(cE(1)

oE(1)

)
(6.156)

The direct solution of Eq. (6.156) is called a one-step procedure as S and R vectors are updated
simultaneously. The solution of this equation is not very practical due to the size of the ccE(2) block
that scales as M2, with M of the size of the CI vector. Also, the evaluation of the CI-orbital coupling
terms are not easy to evaluate and store. In large MCSCF calculations the explicit construction and
storage of the Hessian matrix is not feasible. It is therefore advisable to look for simplifications that
avoid some of the difficult computations of the full second order procedure.

Orbital parameters can be separated from the CI parameters by solving for S first. From the first
row of Eq. (6.156) one obtains

S = −ccE(2)−1(cE(1) + coE(2)R) (6.157)

which can be inserted into the second row to obtain an equation in the only variable R

(ooE(2) − ocE(2)ccE(2)−1coE(2))R = ocE(2)ccE(2)−1cE(1) − oE(1) (6.158)

For a given set of orbitals a CI optimization may be performed first to obtain the initial CI eigen-
vectors. Being in a stationary point, it follows that

cE(1) = 0 (6.159)

and Eq. (6.158) is simplified to

(ooE(2) − ocE(2)ccE(2)−1coE(2))R = oE(1) (6.160)

This equation is the basis of the folded two-step Newton–Raphson procedure. A transformed set of
orbitals may be obtained and a new CI optimization carried out. In the two-step procedure the
orbital rotation parameters are always obtained on the basis of CI eigenstates. Equation (6.160) is
not computationally more advantageous than Eq. (6.158), given among its terms the inverse of the
generally large ccE(2) block. This problem could be circumvented only if the ccE(2) matrix is diagonal,
that is by solving the CI problem to all orders. And this is generally prohibitively expensive as for
very large CI expansion we are not able to obtain all eigensolutions of the CI problem.

A convenient and successful procedure widely used in modern quantum chemistry software
packages is to neglect the coupling terms altogether. This leads to the uncoupled two-step
Newton–Raphson procedure and the equations to solve become

ooE(2)R = −oE(1) (6.161)
ccE(2)S = −cE(1) (6.162)
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It should be pointed out that this approach is no longer quadratically convergent as the CI-orbital
coupling terms are now missing. Including orbital-CI coupling terms is essential in full second
order methods as only then the fast quadratic convergence of the macro-iterations is achieved, and
only this justifies the expensive computational costs associated with the two indices AO-MO trans-
formations, required in second order procedures. As discussed in Sections 6.5.6–6.5.7, orbital-CI
coupling terms can be included during the micro-iterations of the Newton–Raphson method or
other methods [47, 56], to a large extent circumventing the complication of solving the CI problem
in all orders.

6.5.4 Augmented Hessian Method

In non-local regions the Hessian, E(𝟐), is generally not positive-definite (it shows negative eigenval-
ues), thus, compromising the convergence. Level shift techniques can be used to make the Hessian
positive-definite by introducing a parameter, k, in Eq. (6.153)

(E(𝟐) + k𝟏)p = −E(𝟏) (6.163)

The level shift parameter can be chosen to be

k = −𝜆𝜖 (6.164)

with

𝜖 = 𝜆(E(𝟏))†p. (6.165)

This choice of the level shift is motivated by the fact that at stationary point the gradient is zero, 𝜖
vanishes and Eq. (6.163) reduces to Eq. (6.153). Far from stationarity, E(𝟏) ≠ 0, the shift parameter,
k, provides a positive shift to the Hessian terms, and by adjusting the numerical parameter, 𝜆, the
Hessian can be made positive definite. Additionally, the system of inhomogeneous linear equations
can be transformed into an eigenvalue problem(

−𝜖 (E(1))†
E(1) (E(2)∕𝜆) − 𝜖

)(
1∕𝜆

p

)
= 𝟎 (6.166)

From the top row of Eq. (6.166) Eq. (6.165) is easily derived and from the bottom row, Eq. (6.163)
emerges. The 𝜆 parameter add more flexibility to the shift. For 𝜆 = 1, the level shift method is
referred to as the augmented Hessian method (AHM) [52].

6.5.5 Matrix form of the First and Second Derivatives in MCSCF

We write the energy as a function of the variational parameters

E(R, S) = ⟨0|e−Ŝe−R̂ĤeR̂eŜ|0⟩ (6.167)

Recalling the Baker–Campbell–Hausdorff (BCH) expansion

e−ABeA = B + [B,A] + 1
2!
[[B,A],A] + 1

3!
[[[B,A],A],A] +… (6.168)

The second order expansion of the energy expression becomes

E(R, S) = ⟨0|Ĥ|0⟩ + ⟨0|[Ĥ, (R̂ + Ŝ)]|0⟩ + 1
2
⟨0|[[Ĥ, (R̂ + Ŝ)], (R̂ + Ŝ)]|0⟩ (6.169)

The first term is the zeroth order energy, the reference energy. The second term collects first deriva-
tives with respect to the orbital and the CI coefficients, respectively. The third term contains second
derivatives with respect to both variational parameters.
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Orbital Gradient
Expanding the orbital rotation operator in matrix form (Eq. (6.144)), the following result is obtained
for the first derivative with respect to the orbital variations

⟨0|[Ĥ, R̂]|0⟩ =∑
p>q

Rpq⟨0|[Ĥ, Ê−
pq]|0⟩ (6.170)

where the Rpq elements are the variational coefficients in the orbital space and,

oE(1)
pq = ⟨0|[Ĥ, Ê−

pq]|0⟩ (6.171)

the derivative in the pq direction. At stationary points

⟨0|[Ĥ, Ê−
pq]|0⟩ = 0 (6.172)

This condition is referred to as the generalized (or extended) Brillouin theorem (GBT) [43, 44], due
to the close resemblance to the Brillouin theorem in Hartree–Fock theory. The meaning of this
equation is straightforward: there is no interaction, via the Hamiltonian operator, between the opti-
mized wave function |0⟩ and single excitations from it, Ê−

pq|0⟩. Notice that if p and q are both in the
same space (inactive, active or virtual) the equation is identically zero for simple rules of second
quantization related to the replacement operator, E−

pq (creation of an electron in a occupied orbital
or annihilation of an empty orbital equal zero).

Orbital Hessian
For a quadratically converging orbital optimization the orbital Hessian, ooE(2), is also necessary

ooE(2)
pq,rs = ⟨0|[[Ĥ, Ê−

pq], Ê−
rs]|0⟩. (6.173)

The explicit expressions of these matrix elements in terms of one- and two-electron density matrices
and integrals can be derived using the simple commutation relations of one- and two-excitation
generators in the language of second quantization [30, 31]. The orbital Hessian elements contain
integrals of the type (pq|ij) and (pi|qj) where indices p and q run over all orbitals and i and j over the
inactive and active orbitals. These two-electron integrals in MO basis are obtained by a four-index
transformation. The transformation is sometimes referred to as “second order” transformation as
two indices span the entire orbital space. The operation count for the transformation from AO to
MO basis is proportional to noccN4

tot (nocc is the number of active plus inactive orbitals, Ntot is the
total number of orbitals) and, represents the most time consuming part in the second order orbital
optimization procedure when large basis set are employed.

Without considering reduction by space symmetry constraints, the size of the Hessian matrix is
(noccNtot)2. For example, if a calculation is performed with nocc = 150 and Ntot = 1000, ∼180 GB of
memory would be required to store the Hessian elements.

In Section 6.5.6 a commonly used quadratically converging procedure will be discussed in detail,
and in Section 6.5.8 the first order Super-CI method will be presented to reduce the computational
cost of second order procedures.

CI Gradient
Recalling the definition of the exponential operator for the CI expansion

Ŝ =
∑
K≠0

SK0(|K⟩⟨0| − |0⟩⟨K|) (6.174)
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the first derivative with respect to the CI parameters is obtained

⟨0|[Ĥ, Ŝ]|0⟩ = ∑
K≠0

SK0⟨0|[Ĥ, (|K⟩⟨0| − |0⟩⟨K|)]|0⟩
=
∑
K≠0

SK0(⟨0|Ĥ|K⟩ + ⟨K|Ĥ|0⟩) (6.175)

In this equation SK0 are the variational coefficients and the term in parenthesis the first derivatives.
For real wave functions, elements ⟨0|Ĥ|K⟩ are symmetric therefore the derivative reduces to

cE(1)
K = 2⟨0|Ĥ|K⟩ (6.176)

When a stationary point is obtained the first derivative is zero and the optimized state will not
interact, via the Hamiltonian operator, with any state of the orthogonal complement space. This
statement is equivalent to saying that the target state |0⟩ is a solution to the secular problem

(H − E𝟏)C = 0 (6.177)

where H is the Hamiltonian matrix, C the eigenvectors for the target states and E the corresponding
eigenvalues.

CI Hessian
The CI Hessian is expressed as

ccE(2)
K,L = 1

2
⟨0|[[Ĥ, ŜK], ŜL]|0⟩ = 2⟨K|Ĥ − E0|L⟩ (6.178)

The ⟨K|Ĥ|L⟩ terms are the coupling matrix elements of the MCSCF Hamiltonian over the
complement space orthogonal to |0⟩. Their values are accessible only if the CI eigenvalue problem
is solved exactly at each MCSCF iteration for all eigenstates. In practice, the CI space is too large
to perform a full diagonalization and as a consequence elements ⟨K|Ĥ|L⟩ are, in general, not
available. Cheaper methods have been recommended to replace the exact Hessian with approxi-
mated ones. In modern chemistry software packages the Davidson approach is the quasi-Newton
method of choice [1]. The Davidson procedure can be described as a diagonal approximation
of the Hessian in Eq. (6.162). This approximation simplifies the evaluation and inversion of the
Hessian matrix during the CI vector update step. The method is presented in more detail in
Section 6.4.1.

Although an exact second order optimization in the orbital and CI coefficients is possible, it is
in practice rarely done due to the prohibitively large computational cost of evaluating and process-
ing Hessian matrix elements. For practical calculations quasi-second order procedures are adopted
for which full knowledge of the Hessian is not required. When a stationary point is reached the
gradient is zero. If available, Hessian terms would contain information about the curvature of the
hypersurface. When the eigenvalues of the Hessian are all positive a local minimum is reached.
Mixed positive and negative values identify saddle points. In two-step and quasi-second order pro-
cedures, Hessian terms are not available to be used as indicators of stationarity.

Explicit forms of Gradient and Hessian terms
Gradient and Hessian terms can be further expanded in terms of MO integrals and one- and
two-reduced density matrices by inserting the explicit expression of the Hamiltonian operator into
Eqs. (6.171), (6.173), (6.176) and (6.178).
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By inserting the explicit expression for the Hamiltonian operator, Eq. (1.18) from Chapter 1, into
Eq. (6.171) the following expression for the orbital gradient is obtained

oE(1)
xy = ⟨0|[Ĥ, Ê−

pq]|0⟩
=
∑
pq

hpq⟨0|[Êpq, Ê−
xy]|0⟩ + 1

2
∑
pqrs

(pq|rs)⟨0|[êpqrs, Ê−
xy]|0⟩. (6.179)

Recalling the commutation properties of the one- and two-excitation operators, the definition
of one- and two-electron density matrices, the eight-fold permutational symmetry among
two-electron integrals and, the four-fold symmetry of the two-electron density matrices we arrive
to the following expression for the orbital gradient

oE(1)
xy = ⟨0|[Ĥ, Ê−

xy]|0⟩ = 2(Fxy − Fyx) (6.180)

where we have introduced the generalized Fock matrix [31]

Fxy =
∑

q
Dxqhqy +

∑
qrs

Γxqrs(yq|rs). (6.181)

Since Γpqrs terms are in the energy expression traced with the integrals, they are commonly further
symmetrized

Γs
ij,kl =

1
2
(Γij,kl + Γji,kl). (6.182)

without loss of generality. It follows the eight-fold symmetry for Γs, in analogy to the two-electron
integrals. This additional symmetry can already be utilized in Eq. (6.181).

The generalized Fock matrix is in general not Hermitian (non-symmetric for real functions), and
the difference 2(Fxy − Fyx) equals the value of the orbital gradient at the point of expansion. It is
symmetric only at stationary points, where the gradient is zero. Thus, a symmetric generalized Fock
matrix is a sufficient condition for a stationary wave function with respect to orbital rotations. This
statement is an alternative definition of the generalized Brillouin theorem [43, 44].

The evaluation of the generalized Fock matrix can be simplified if the separation of the orbital
spaces in inactive (indices i, j, k, l), active (indices t,u, 𝑣, x) and virtual (indices a, b) is taken into
account. The elements of the one- and two- electron density matrices vanish if one or more of the
MO indices are virtual. Simplifications apply also for density matrices with one inactive index. The
result of these simplifications can be summarized as

Fip = 2(FI
pi + FA

pi) (6.183)

Ftp =
∑

u
FI

puDtu +
∑
u𝑣x

Γtu𝑣x(pu|𝑣x) (6.184)

Fap = 0 (6.185)

where we have introduced the inactive, FI , and active, FA, Fock matrices with elements

FI
pq = hpq +

∑
i
(2(pq|ii) − (pi|iq)) (6.186)

FA
pq =

∑
tu

Dtu

(
(pq|tu) − 1

2
(pu|tq)) (6.187)

The index p has been used as generic label. Inactive and active Fock matrices, FI and FA, are
always symmetric, in contrast to the generalized Fock matrix that is symmetric only at station-
ary points. Additionally, matrices FI and FA can easily be computed in AO basis at costs equivalent
to Hartree–Fock theory, then transformed into MO basis when needed.
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With these equations in hands the operation count and therefore the computational costs can be
estimated. For the non-separated generalized Fock matrix (Eq. (6.181)) there are noccNtot non-zero
elements (nocc = nin + nact). This follows from the fact that variable y in Eq. (6.181) spans the entire
orbital space, while variable x spans only the internal orbital space, as Dxq and Γxqrs vanish for x
in the virtual space. The evaluation of each of those elements requires nocc multiplications for the
one-electron part and n3

occ for the two-electron part. Therefore, the operation count for this form
of the generalized Fock matrix is, to the leading terms, Ntotn4

occ. The construction of this matrix is
thus a fifth order process.

If we use the form expressed in terms of inactive and active Fock matrix the operation count
is much smaller. For the FI matrix the total operation count is N2

totnin (we have included in the
count also those elements with first index virtual, even though they are not needed for the evalua-
tion of the generalized Fock matrix blocks). For the active Fock matrix the total operation count is
N2

totn
2
act. The operation count for the term containing the two-body density matrix is Ntotn4

act. The
total of these operations has to be compared to the operation count of the non-separated expression,
Ntotn4

occ, showing that the separation of the generalized Fock matrix in blocks has a clear advan-
tage. It has to be mentioned that in this discussion only the operation count for the construction of
the generalized Fock matrix has been analyzed. The AO to MO integral transformation has been
omitted. This transformation is expensive (without special techniques it scales as N5

tot) and, usually
dominates the computation.

6.5.6 Quadratically Converging Method with Optimal Convergence

Although the AHM or other level shift techniques can improve convergence, they do not com-
pletely prevent convergence to be slow, when starting from non-local regions. The cause of this
instability in non-local regions has been identified by Werner and Meyer [47, 58] and, it is related
to the orthogonality condition over the orbital variations.

For a given set of molecular orbitals and CI coefficients the energy is written as

E0 =
∑

ij
hijDij +

1
2
∑
ijkl

Γijkl(ij|kl) (6.188)

or

E0 =
∑

ij
⟨i|ĥ|j⟩Dij +

1
2
∑
ijkl

Γijkl⟨i|Ĵkl|j⟩ (6.189)

where the generalized Coulomb operator, Ĵkl is defined as

⟨i|Ĵkl|j⟩ = Jkl
ij = (ij|kl). (6.190)

Notice that in the energy expression, Eq. (6.189) labels refer only to internal orbitals, as for external
orbitals density matrices D and 𝚪 vanish and do not provide a contribution to the energy of the
MCSCF wave function. If the energy is expanded in the transformed orbitals

𝜑̃s =
∑

r
𝜑rUrs (6.191)

its expression becomes a fourth order function of U as

(ij|kl)(U) =
∑
pqrs

UpiUqj(pq|rs)UrkUsl, (6.192)



�

� �

�

176 6 Foundation of Multi-Configurational Quantum Chemistry

and of infinite order of R (U = eR̂ = 1 + R + 1
2

R𝟐 +…). A second order expansion of the energy in
R is not able to describe correctly the periodic energy variations over the orbital rotations, leading
to a slow (or wrong) convergence behavior.

Werner and Meyer [47] and Werner and Knowles [56] realized that convergence of second order
procedures can be improved by expanding the orthogonal transformation matrix, U as

U = 𝟏 + T (6.193)

where the transformation matrix, T, can be described as a perturbation of the starting orbitals. The
transformed orbitals are then written as

𝜑̃s = 𝜑s +
∑

r
𝜑rTrs (6.194)

The energy expression is thus expanded to the second order in T (instead of R), and E(T𝟐) is min-
imized, instead of E(R𝟐). The second order expansion in T contains terms of infinite order in R,
as opposed to E(R𝟐). The explicit energy expression to the second order in T is simply derived by
inserting Eq. (6.194) into Eq. (6.189) for each of the four orbital indices, i, j, k and, l

E(T𝟐) = E0 + 2
∑
ij𝑤

T𝑤i⟨𝑤|F̂ij|j⟩ +∑
ij𝑤x

T𝑤i⟨𝑤|Ĝij|x⟩Txj, (6.195)

where F̂ij and Ĝij are defined as

F̂ij = ĥDij +
∑

kl
Γs

ij,klĴkl (6.196)

Ĝij = F̂ij + 2
∑

kl
Γs

ik,jlK̂kl (6.197)

with the generalized exchange operator K̂kl defined as

⟨r|K̂kl|s⟩ = Kkl
rs = (rk|ls). (6.198)

The Γs
ij,kl elements are the symmetric contraction of the two-electron density matrices

Γs
ij,kl =

1
2
(Γij,kl + Γji,kl). (6.199)

Using the expression of the generalized Fock matrix (see Eq. (6.181)), Eq. (6.195) can be rewritten as

E(T𝟐) = E0 + 2
∑
i𝑤

T𝑤iF𝑤i +
∑
ij𝑤x

T𝑤iG
ij
𝑤xTxj (6.200)

where also the ⟨𝑤|Ĝij|x⟩ = Gij
𝑤x equivalence has been used. As Dpq and Γpqrs elements vanish if one

or more of the MO indices are virtual, the matrices Fij and Gij can be calculated from the set of
operators Jij and Kij with indices i and j spanning only the inactive and active space (also referred
as internal space). Thus in Eq. (6.195) labels i and j refer to internal orbitals and,𝑤 and x to generic
orbitals.

The Tpq parameters are obtained by solving the following equation

𝜕

𝜕Tpq

(
E(T𝟐) −

∑
ij
𝜀ij[(U†U)ij − 𝛿ij]

)
= 0 (6.201)

The term multiplied by the Lagrangian multipliers, 𝜀ij, accounts for the orthogonality. Inserting
Eq. (6.195) into Eq. (6.201) the following set of nonlinear equations is obtained

2
∑

j
⟨p|Fqj|j⟩ + 2

∑
jk
⟨p|Gqj|k⟩Tkj − 2(U𝜀)pq = 0. (6.202)
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and defining

Bpq = 2
∑

j
⟨p|Fqj|j⟩ + 2

∑
jk
⟨p|Gqj|k⟩Tkj (6.203)

Eq. (6.202) can be written in the more compact matrix form

U†B − B†U = 0. (6.204)

Analogously to F̂ij and Ĝij terms Bpq depend on Dqj and Γqjkl and, thus, they vanish whenever q
refers to a virtual orbital and, only Bpq terms are required with index q in the primary space. It is
important to notice that B depends on T, and the system of equations (6.204) needs to be solved
iteratively. These internal iterations are often referred to as micro-iterations, to be distinguished
from the macro-iterations in which a new set of Coulomb and exchange integrals (via a four-index
transformation) are evaluated and, a new CI eigenvalue problem solved. In each micro-iteration
the updated B(T) matrix is obtained via a one-index transformation of the one- and two-electron
integrals:

h̃rj = (hU)rj (6.205)

J̃kl
rj = (JklU)rj (6.206)

K̃kl
rj = (KklT)rj (6.207)

This transformation scales as 3
2

N2n3, and is cheap with respect to the four-index transformation
needed at each macro-iteration. The second order orbital optimization procedure can thus be sum-
marized as:

● Calculate Fij and Gij (Eqs. (6.196) and (6.197)) from the list of MO integrals, hij, Jijkl and Kijkl and
density matrices.

● Calculate the B matrix, Eq. (6.203).
● Solve Eq. (6.204) in order to obtain U. As B depends on T = U − 1, this equation is solved itera-

tively (micro-iteration).
● Rotate the initial orbitals X̃ = XU.
● A new macro-iteration is started by computing new MO integrals and solving a new CI eigenvalue

problem in the new MO basis, X̃.

At this point we may discuss the computational effort for the algorithm given above. The ⟨p|Ĝrs|q⟩
matrices are linear combinations of the ⟨p|Ĵrs|q⟩ and ⟨p|K̂rs|q⟩ MO integrals. If r and s refer to
active orbitals the total operation count for the G block is n4

actN
2
tot. If r refer to active and s to inac-

tive the operation count is n2
actninN2

tot. The operation count for r and s both in the inactive space
is only quadratic in the number of inactive orbitals. With the G matrix elements computed and
stored, the evaluation of the B matrix at each micro-iteration requires n2

occN2
tot operations. This step

is cheaper than the evaluation of the generalized Coulomb and exchange terms; however, it still
has a non-negligible impact to the total computational cost.

The evaluation and transformation of the two-electron integrals Jij and Kij is referred to as “sec-
ond order” transformation as MOs with two indices in the entire orbital space have to be built. This
step has a total operation count of about

3
8

N4
totnocc +

35
12

N3
totn

2
occ +

11
3

N3
totnocc (6.208)
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and represents the rate determining step when large basis sets are employed. It should be noted
that current chemistry software packages can utilize density fitting (DF) [59] or Cholesky decom-
position (CD) [60, 61] approximations, which reduce the operation count to N3

totn
2
occ.

Some approximations have been suggested [47], to reduce the computational costs associated
to the inactive orbitals, that reduce the number of operators Jij, Kij, Fij and Gij required. By
these approximations the quadratic convergence is lost. It has been recommended not to use
first order approximations for core orbitals within the framework of quadratically converging
procedures, as they would spoil convergence [56]. Instead a commonly used strategy is to freeze
energetically low lying core orbitals to the shape determined by the preceding Hartree–Fock
approach, here assumed to be the method that generates the starting orbitals for the subsequent
MCSCF calculation [56, 62]. This approach certainly guarantees a stable second order convergence.
However, it introduces a severe constraint to the MCSCF optimization. Some orbital rotations
in the MCSCF procedure, involving core, semi-core or low-lying valence orbitals, are induced
by the modified valence mean-field generated by the multi-configurational wave function and
having a frozen orbital space certainly compromises the MCSCF relaxation. It is recommended
not to have a frozen space for MCSCF optimizations, or, when unavoidable to limit it only to
core orbitals energetically well separated from the valence region, namely 1s shells for first-row
main group atoms and, 1s2s2p shells for first-row transition metal atoms. When dealing with
large molecules (long chains would be a better attribute), where only a small portion shows
multi-configurational character, frozen orbitals can be chosen in some localized basis rather than
in the canonical Hartree–Fock orbital basis. In this specific case, the latter orbital sets are not well
suited for the purpose of freezing core orbitals since, they appear rather delocalized and extend
from regions of space in proximity of the multi-configurational site and far out to the tail of the
system. Much better results are obtained if the HF orbitals are first localized allowing a more
obvious separation of the orbitals that could be involved in the MCSCF relaxation (the ones in
close proximity of the multi-configurational site) from the orbitals that would only marginally
be affected by the MCSCF orbital relaxation. Then the latter orbitals are chosen to be frozen
[63]. Alternatively, the Super-CI approach, discussed in Section 6.5.8, is to be considered as a
robust alternative, that circumvents the computational limitations associated to second order
procedures.

6.5.7 Orbital-CI Coupling Terms

In the two-step decoupled Newton–Raphson approach, where the CI-orbital coupling Hessian
blocks are neglected, the second order convergence behavior is in general lost, making any effort
to keep a quadratically converging behavior for the orbital part in vain. Quadratically converging
procedures are relevant only if the orbital-CI coupling terms are considered in the MCSCF
procedure. Energy-based second order MCSCF procedures allow for the orbital-CI coupling in a
straightforward way [33, 58, 64]. In this section, the method proposed by Werner and Knowles will
be presented [56, 58], that avoids the evaluation of density matrices derivatives and includes the
coupling terms via a set of nonlinear equations.

When evaluating the one-index-transformed one- and two-electron integrals (Eqs. 6.205–6.207)
also the second half transformation is performed and the following integrals evaluated:

h(2)
ij = (U†hU)ij (6.209)

(ij|kl)(2) = −(ij|kl) + (U†JklU)ij + (U†JijU)kl

+ (1 + 𝜏ij)(1 + 𝜏kl)(T†KikU)jl (6.210)
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where 𝜏ij exchanges labels i and j.
These integrals are used to compute an updated Hamiltonian

Ĥ(2) =
∑

ij
h(2)

ij Êij +
∑
ijkl

(ij|kl)(2)êijkl. (6.211)

With the updated Hamiltonian, Ĥ(2), a CI-step is performed (to be distinguished from the CI
optimization performed at the beginning of each macro-iteration) to obtain a coupled-corrected CI
vector. In the original development of this method the update was performed by the Davidson pro-
cedure [56]. The perturbatively updated CI vector is used to build new density matrices, D andΓ and
together with the one-index-transformed integrals, Eqs. (6.205–6.207), in a new micro-iteration,
in order to obtain a new B matrix. It has been found that the perturbative CI update does not have
to be performed at each new micro-iteration. Instead it has been suggested that it be performed
every 3–5 micro-iterations. This minimized the number of CI updates per macro-iteration, a factor
that is certainly important in CI-problem dominated MCSCF optimizations.

6.5.8 Super-CI for the Orbital Optimization

The Super-CI method has been developed to circumvent the limitations in the orbital optimization
step of second order procedures. The method was first developed by Grein [45] and Ruedenberg [46]
and is based on the Generalized Brillouin theorem (GBT, Eq. (6.172)) [43, 44], which represents the
necessary and sufficient condition for a local minimum in the multi-configurational hypersurface.
In the context of the uncoupled two-step procedure, we assume that every MCSCF iteration starts
by solving the CI problem and as a consequence the optimized ground state wave function, |0⟩,
does not interact with the complement space.

We define a Super-CI wave function that contains the ground state wave function, |0⟩, and all
possible singly excited states

|p → q⟩ = (Êpq − Êqp)|0⟩. (6.212)

Here the effect of the excitation operators (Êpq − Êqp) on each configuration of |0⟩ is that of creating
two new configurations in which the orbital of index q is replaced by p and vice versa. The singly
excited states, |p → q⟩ are referred to as Brillouin states, because their interaction with |0⟩ via the
Hamiltonian operator generates the Brillouin terms (Eq. (6.172)). The Super-CI wave function,|SCI⟩, is therefore defined as

|SCI⟩ = |0⟩ +∑
p>q

𝜒pq|p → q⟩. (6.213)

The method involves solving the corresponding secular equations to obtain the Super-CI coeffi-
cients, 𝜒pq. These coefficients are subsequently used in matrix exponential form to define a unitary
transformation of the orbitals in |0⟩ (or some approximation to it [65]). Far from the stationary
points the wave function is improved by adding all single excitation contributions to |0⟩. Coeffi-
cients 𝜒pq will decrease as the SCF optimization proceeds and at convergence all coefficients will
vanish, implying that no more rotations are needed and |0⟩ will reveal the variationally optimized
wave function. This condition is equivalent to the Brillouin condition (Eq. (6.172)). Super-CI states
are not orthonormalized to each other, in fact

⟨0|Ê−
pqÊ−

rs|0⟩ ≠ 𝛿pq,rs. (6.214)

However, they are orthogonal to the reference state

⟨0|Ê−
pq|0⟩ = 0. (6.215)
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In the particular case of CAS wave functions, only indices p and q belonging to different subspaces
have to be considered, as rotations between two orbitals in the same subspace are redundant. Thus,
only inactive–active, active–virtual and inactive–virtual rotations are considered when generating
the |p → q⟩ states

|i → a⟩ = Êai|0⟩ (6.216)

|t → a⟩ = Êat|0⟩ (6.217)

|i → t⟩ = Êti|0⟩ (6.218)

where label i refers to inactive, a to virtual, and t to active orbitals. Normalization factors can be
introduced at this stage, but have been neglected here for simplicity. Notice that the Hermitian
terms (Êia|0⟩, Êta|0⟩ and Êit|0⟩) always vanish, and the Brillouin condition reduces to

⟨0|ĤÊai|0⟩ = 0 (6.219)

⟨0|ĤÊat|0⟩ = 0 (6.220)

⟨0|ĤÊti|0⟩ = 0. (6.221)

These equations represent the necessary and sufficient condition for optimized orbitals at each
CASSCF macro-iteration. In practice, the Super-CI Hamiltonian matrix is built and diagonalized.
Hamiltonian matrix elements between the reference state and the Brillouin states, ⟨0|Ĥ|p → q⟩, as
well as coupling terms between Brillouin states, ⟨s ← r|Ĥ|p → q⟩, are required when solving the
Super-CI eigenvalue problem. If solved exactly, the Super-CI secular problem would be more costly
than the Newton–Raphson method as it implies the evaluation of up to third order density matrix
elements, Q𝑣xyztu, with indices in the active space [30]. However, it is not necessary to use the exact
expressions for the ⟨s ← r|Ĥ|p → q⟩ terms. Approximations are possible as long as the Brillouin
condition is fulfilled.

Based on the work of Hinze [66], Roos and co-workers [28, 29] proposed an approximated
generalized-Fock-matrix-based Super-CI approach that avoids the evaluation of third order
density matrices [29]. Recalling that the generalized Fock-matrix elements are expressed as

Fxy =
∑

q
Dxqhqy +

∑
qrs

Γxqrs(yq|rs). (6.222)

and that the orbital gradient ⟨0|[Ĥ, Ê−
pq]|0⟩ can be expressed in terms of the generalized Fock matrix

(Eq. (6.180)), the Brillouin terms can be expressed as

⟨0|ĤÊai|0⟩ = Fai (6.223)⟨0|ĤÊat|0⟩ = Fat (6.224)⟨0|ĤÊti|0⟩ = Fti − Fit. (6.225)

When calculating matrix elements between singly excited states, ⟨s ← r|Ĥ|p → q⟩, terms of the type
Fna appear, where index, a, refers to secondary orbitals. In this case the generalized Fock-matrix
elements vanish (due to the vanishing Dqa and Γqrsa elements). A different expression of the Fock
matrix is thus used that leads to non-vanishing coupling terms between Brillouin states. A model
one-particle Hamiltonian of the form

Ĥ′ =
∑
pq

ÊpqF′
pq (6.226)
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is introduced and used only for the matrix elements coupling singly excited states, ⟨s ← r|Ĥ′|p →
q⟩. F′

pq = Fpq when p is in the primary space (inactive and active orbitals), otherwise

F′
ab = Fss

ab = hab +
∑
pq

Dpq

[
(ab|pq) − 1

2
(ap|bq)

]
. (6.227)

The (ss) superscript refers to the fact that this matrix expression is used only for the secondary
subspace. One important computational aspect arising from the choice of the one-electron
model Hamiltonian operator, is that matrix elements do not depend on “second order” MO
integral transformations (the two index transformations). Several Super-CI Hamiltonian matrix
elements are evaluated directly from a list of atomic one- and two-electron integrals (similar to
the closed-shell HF method). A small additional effort is required to evaluate the two-electron
MO integrals of the type (q𝑣|xy) where q runs over the entire orbital space while 𝑣, x and y are
limited to the active space. The transformation of these integrals from AO to MO basis requires
about nactN4∕2 operations. The second order transformation needed to form (ab|xy) (two general
indices) in quadratic procedures requires around noccN4 operations. For cases with a large number
of inactive orbitals the advantage of using the first order procedure is obvious. One- and two-body
reduced density matrices are also required in the Super-CI approach presented here (in the exact
Super-CI approach also three-body density matrices are required). Two-body density matrices Γpqrs
simplify to first order density matrices if any of the four indices refers to the inactive orbital space.
The remaining part contains indices that run only over the active space. None of the two-body
density matrix blocks represents a limiting factor. The asymptotic convergence of the Super-CI
approach is only first order, and it slows down in proximity of the stationary point. Convergence
can be improved by using a quasi-Newton update approach [41].

6.5.9 Redundancy of Active Orbital Rotations

In MCSCF theory some orbital rotations do not lead to energy changes upto first order, and may
even interfere with the optimization procedure, introducing singularities in the Hessian and
slowing down the iterative procedure that leads to minimization. These rotations are referred to
as redundant. It is important to identify and eliminate such redundancies. Ways to identify and
eliminate redundancies have been suggested in the literature [67]. In CASSCF, given the simple
partitioning of the orbital space into inactive, active and virtual orbitals, the identification of
redundancies is rather trivial. We recall the orbital rotation operator, introduced in Section 6.5.1

R̂ =
∑
p>q

Rpq(Êpq − Êqp) =
∑
p>q

RpqÊ−
pq (6.228)

where the generic indices p and q independently span the inactive, active and virtual spaces, with-
out restrictions. Rotations within inactive orbitals (p and q inactive) or within virtual (p and q
virtual) are redundant as any Ê−

ij or Ê−
ab operators acting on a CAS wave function with i, j inac-

tive and a, b virtual indices equals to zero. This follows from the property of the Êpq operator that
creating electrons in occupied orbitals or annihilating electrons from empty orbitals yields zero.
Active–active rotations are also redundant as the effect of any of these orbital rotations is already
accounted for by the complete CI expansion in the active space that certainly contains configura-
tions of the type Êtu|0⟩. These easy-to-identify redundancies are set to zero (no intra-space rotations
are performed) in order to avoid convergence difficulties.

Rotations that mix different orbital spaces (inactive–active, inactive–virtual, active–virtual) are
non-redundant, and are the only ones that need to be addressed in CASSCF orbital optimiza-
tions. For more general MCSCF procedures (where the configurational space is not complete) the
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identification of redundant orbital rotations is more difficult. For instance in RAS or GAS wave
functions, where inter-space excitations (say from RAS1 to RAS2) are not complete, rotations of
orbitals belonging to different spaces are not completely redundant as due to the truncation in
the excitation level not all orbital rotation parameters are represented by the CI parameters. As a
consequence general MCSCF procedures (including RAS and GAS wave functions) have slower
convergence when compared to CASSCF.

6.6 Restricted and Generalized Active Space Wave Functions

In the previous section some theoretical and algorithmic details of MCSCF procedures were intro-
duced, with the main focus on the CASSCF method. In the CASSCF approach a full-CI expansion
is built within the active space. The main drawback of the complete expansion in the active space
is that the number of configurations scales exponentially with the size of the active space and, with
conventional CI eigensolving techniques, active spaces larger than 18 electrons in 18 orbitals are
in practice out of reach. The development of large-scale parallel computing [68] and, methods for
tackling large CI eigenvalue problems, such as the SplitGAS approach [69, 70], full configuration
interaction quantum Monte Carlo (FCIQMC) [36, 40, 71–76], density matrix renormalization group
(DMRG) [37, 77–82], the restricted active space (RAS) [7, 41, 83, 84] and the Generalized Active Space
(GAS) approaches [42, 70, 85] have made larger active space problems solvable within MCSCF. The
RAS and the GAS approaches are presented in this section. An overview of the FCIQMC algorithm
will be given in the next section while the DMRG technique will be presented in Chapter 7.

CI Hamiltonian matrices and eigenvectors are generally extremely sparse. A limited list of elec-
tronic configurations completely characterize the electronic wave function of nearly all chemical
systems, while most of the configurations do not contribute or contribute only marginally. These
ineffective configurations (also referred to as deadwood configurations) represent up to 99% of the
FCI space. Thus, in principle the computational cost of multi-configurational procedures could be
greatly reduced with little to no loss in accuracy, by imposing constraints on the active space that
remove deadwood configurations. This procedure clearly raises the question of how to identify the
unnecessary configurations and selectively choose the effective ones. Several schemes have been
devised, based on the partitioning of the active space into several subspaces, and apply restrictions
on their electron occupation. Depending on which and how restrictions are chosen, different
types of wave functions are obtained. Known procedures are the generalized valence bond (GVB)
method [86], constrained CASSCF (C-CASSCF) [87], quasi-CASSCF (Q-CASSCF) [88], Restricted
CI (RCI) [89, 90], occupation restricted multiple active space (ORMAS) SCF [91], Restricted Active
Space (RAS) SCF [7, 41, 83, 84] and, the Generalized Active Space (GAS) SCF [42, 70, 85] approach.

RAS wave functions are obtained by dividing the active orbitals into three subsets, commonly
referred to as RAS1, RAS2 and RAS3. The CI expansion is then defined by three parameters: the
total number of active electrons in the three RAS spaces, the maximum number of holes in RAS1
nhole,1, and the maximum number of particles in RAS3, nelec,3. Generally, near doubly occupied
orbitals are chosen to be in RAS1, near empty orbitals in RAS3, and the strongly correlated orbitals
in RAS2. Compared to CAS wave functions constructed from the same number of active orbitals
and electrons, in RAS, configurations that have occupations in RAS1 or RAS3 smaller or larger
than the user-specific constraints, are not included in the RAS-CI expansion. RAS wave functions
can also be viewed as an extension of CAS wave functions. If no orbitals are chosen for the RAS1
and RAS3 spaces, the RAS scheme reduces to the CAS approach.
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The generalized active space (GAS) concept, firstly proposed by Olsen [7, 92], is a further general-
ization of the RAS concept. Instead of three spaces, in GAS an arbitrary number of active spaces can
in principle be chosen. The GAS wave function is completely defined by the following parameters:
the number of GAS subspaces, ngas, the list of orbitals belonging to each GAS space and, accumu-
lated minimum and maximum electron occupation numbers for the GAS spaces, nmin(igas) and
nmax(igas). The ith entry contains the minimum and maximum allowed number of electrons in the
first i GAS spaces combined. As a result, nmin(ngas) and nmax(ngas) should equal the total number
of active electrons, nactive. An example of the GAS approach and the concept of accumulated occu-
pation numbers is given in Table 6.9. In this example the first orbital space, GAS1, contains two
to four electrons; the first two spaces together contain four electrons in total; the first three spaces
contain from four to five electrons; and finally the four spaces together contain five electrons.

There are two different types of GAS sub-spaces, disconnected and connected. GAS spaces are
referred to as disconnected when no inter-space excitations are permitted and, are referred to as
connected if inter-space excitations are allowed. In the same GAS calculation both connected and
disconnected spaces can occur.

It is easy to demonstrate that CAS and RAS wave functions are special cases of GAS wave
functions. Regardless of the chosen ansatz, good choices of active spaces still rely on a general
understanding of the electronic structure of the system investigated.

For RAS and GAS wave functions, the total number of determinants is reduced because of the
constraints imposed on the distribution of electrons among the active orbitals and the exponen-
tial scaling partially circumvented. As an example we consider a RAS active space consisting of
N electrons and n orbitals, with n1,n2,n3 orbitals in RAS1, RAS2 and RAS3 and, N𝛼1, N𝛼2,N𝛼3,
N𝛽1, N𝛽2,N𝛽3 alpha and beta electrons distributed in the RAS1, RAS2 and RAS3 spaces of the ref-
erence determinant, respectively. Also we choose a maximum of h holes in RAS1 and p electrons
in RAS3. The total number of determinants is then given by

NSD(n,N𝛼,N𝛽) =
n1∑

N𝛼1,N𝛽1=n1−h
N𝛼1+N𝛽1≥2n1−h

p∑
N𝛼3,N𝛽3=0

N𝛼3+N𝛽3≤p

(
n1

N𝛼1

)(
n1

N𝛽1

)(
n2

N𝛼 − N𝛼1 − N𝛼3

)

×
(

n2
N𝛽 − N𝛽1 − N𝛽3

)(
n3

N𝛼3

)(
n3

N𝛽3

)
(6.229)

With an empty RAS2 space, and up to triple excitations from RAS1 to RAS3 (sdt), a total of 40 elec-
trons can be correlated in 40 orbitals. If quadruple excitations are also included (sdtq), the active
space size limit is reached with a total of ∼ 36 orbitals. The size of the RAS wave function grows
rapidly with the number of orbitals in RAS2. For a RAS2 space with 12 orbitals and 12 electrons
(in the reference determinant), and considering single and double (sd) RAS1/RAS3 excitations the
active space can contain at most 20 orbitals. If triples are also considered (sdt) the maximum num-
ber of total active orbitals is reduced to 16. Similar considerations apply to the scaling of GAS wave

Table 6.9 An example of GAS occupation
number restriction.

GAS1 GAS2 GAS3 GAS4

nmin 2 4 4 5
nmax 4 4 5 5
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functions except that due to the flexibility of the GAS approach more GAS spaces and more restric-
tions to the orbital occupations can be chosen.

6.6.1 GUGA Applied to CAS, RAS and GAS Wave Functions

As for CAS wave functions, CSFs of RAS and GAS wave functions can be represented by GUGA
diagrams. In Figure 6.14 a RAS GUGA diagram has been constructed, by eliminating arcs and
nodes from the corresponding CAS GUGA diagram (see example in Section 6.3.1 for comparison).
The CAS DRT has been listed in Table 6.7 and, Figure 6.9 shows the unconstrained CAS GUGA
diagram. The CAS space consists of an active space of five electrons in six orbitals, coupled to a spin
S = 1

2
. In RAS the six orbitals are divided into three RAS spaces with two, three and one orbitals,

respectively. In RAS1 at most two holes are permitted; and in RAS3 at most one particle is allowed.
These restrictions imply that in the GUGA diagram the occupation number at the level of orbital
two can only be in the range (2–4), and the occupation number at level of orbital five only (4–5).
Hence, vertices 5, 27 and 28 (and all the ones in between) in Figure 6.9 are removed in order to
satisfy the RAS constraints and, the GUGA diagram reduces to the one shown in Figure 6.14. The
RAS CI space only consists of 106 CSFs, instead of the 210 CSFs of the unconstrained CAS CI
expansion. In the RAS GUGA diagram (Figure 6.14), the left edge of the diagram is not altered with
respect to the CAS GUGA diagram, and only the vertices at the right hand side are removed with
respect to the CAS GUGA diagram. This feature is related to the closure property for RAS wave
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Figure 6.14 Graph representing the DRT of a RAS wave function. The a and b values indicating the
ordering in the graph are shown at the top, and the level index i is indicated on the left. The different
step-values, d, connecting the nodes are shown for the node 1 at the top.
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functions, that has some consequences when density matrices and other properties of truncated
wave functions are computed (see below) and it represents a distinctive difference with the more
general GAS wave functions.

In RAS, for a given active space (RAS1+RAS2+RAS3), electron excitations can be divided into
allowed and forbidden excitations according to the RAS occupation constraints. An excitation that
leads to a forbidden configuration is also referred to as an out-of-space excitation. Out-of-space
configurations are part of the unconstrained CAS CI expansion but do not belong to the RAS CI
expansion. Since the RAS CI expansion can always be considered as a subspace of the CAS CI
expansion, built from the same active space, active–active excitations will always exist that take a
certain configuration out of the RAS CI space, but still inside the CAS CI space.

It will now be demonstrated that within the RAS approach, out-of-space excitations never con-
tribute to the corresponding density matrix elements. To show this property we recall the definition
of the one- and two-body density matrices

Dtu = ⟨0|Êtu|0⟩ =∑
IJ

CICJ⟨I|Êtu|J⟩, (6.230)

Γtu𝑣𝑤 = ⟨0|êtu𝑣𝑤|0⟩ =∑
IJ

CICJ⟨I|êtu𝑣𝑤|J⟩ =
=
∑

IJ
CICJ⟨I|ÊtuÊ𝑣𝑤|J⟩ −∑

IJ
CICJ⟨I|Êt𝑤|J⟩𝛿u𝑣, (6.231)

According to Eq. (6.230), if a single excitation Êtu excites one electron of a |J⟩ configuration, from
RAS1 or into RAS3, so that the resulting configuration does not fulfill the occupation restrictions of
the chosen RAS, then this resulting CSF (or SD) will not overlap with any of the ⟨I| configurations
and the excitation will not contribute to the one-body density matrix element, Dtu.

According to Eq. (6.231), for two-body density matrices, double excitations have to be considered.
In principle, if an out-of-space excitation Ê𝑣𝑤 takes one electron out of RAS1, then Êtu could still
take it back into RAS1 leading to an allowed configuration that overlaps with ⟨I| and, thus, pro-
vides a contribution to the density matrix element, Γtu𝑣𝑤. Therefore, in this case an auxiliary space
would be necessary, of the size of the CAS CI expansion that stores information for the intermediate
excitations. However, for RAS wave functions the contribution from the out-of-space excitations to
the two-body matrix elements can be removed by using the following permutation relation

ÊtuÊ𝑣𝑤 = Ê𝑣𝑤Êtu + 𝛿u𝑣Êt𝑤 − 𝛿t𝑤Ê𝑣u, (6.232)

defining the ordering of the single excitations Êtu

(tu) = (t − 1)N + u, (6.233)

with N being the number of active orbitals, and considering only elements with (tu) ≥ (𝑣𝑤). Under
these circumstances if an out-of-space excitation Ê𝑣𝑤 takes one electron out of RAS1, then Êtu is
not able to take the electron back into RAS1 given that (tu) ≥ (𝑣𝑤). The resulting ÊtuÊ𝑣𝑤|J⟩ con-
figuration would not have any overlap with any ⟨I| configuration of the RAS CI expansion, and no
contribution to the two-body density matrix element Γtu𝑣𝑤 obtained. This strategy emerges from
the closure property in RAS wave functions and, represents an efficient way to make the auxiliary
space not necessary in RAS expansion and thus, to reduce the overall computational cost in RAS
calculations.

Table 6.9 summarizes the occupation constraints of a GAS example that further restricts the
dimensionality of the CI problem with respect to the CAS(5,6) wave function. Some similarities
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Figure 6.15 Graph representing the DRT of GAS. The a and b values indicating the ordering in the graph
are shown at the top and the level index i is indicated at the left. The different step-values d connecting the
nodes are shown for the node 1 at the top.

can be found between this GAS and the above mentioned RAS constraints, for example GAS1 is
equivalent to RAS1. The GAS GUGA diagram is shown in Figure 6.15.

At the level of orbital four the occupation number is restricted to be four, therefore all the ver-
tices and arcs not fulfilling this condition are eliminated. As shown in Figure 6.15, in GAS GUGA
diagrams also vertices on the left hand side are eliminated. This property follows from the fact that
GAS wave functions are more flexible and more configurations can be eliminated from the CI space.
In the above example only 52 CSFs remain in the GAS CI expansion. Meanwhile the property of
closure discussed above for RAS wave function is lost for GAS wave functions and some compli-
cations arise when building the density matrices or using GAS wave functions as reference wave
functions for post-GASSCF approaches, such as in GASPT2 [85].

6.6.2 Redundancies in GASSCF Orbital Rotations

As already discussed in Section 6.5.9, active–active orbital rotations are already described by the
complete CI expansion of the CAS wave function and are, redundant. Difficulties in the MCSCF
optimization procedure may arise, if these redundant rotations are included in the CASSCF orbital
relaxation. Also inactive–inactive and virtual–virtual rotations are redundant. These redundant
rotations are easy to identify and eliminate. Therefore, in CASSCF procedures only inter-space
orbital rotations are kept.
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For GASSCF, the identification and elimination of redundant orbital rotations is a bit more com-
plicated as it is dependent on the user choice of the inter-space excitations. A practical choice is
to include all inter-space orbital rotations and to eliminate all the intra-space orbital rotations in
analogy to CASSCF. This means that GAS1-GAS2, GAS1-GAS3, GAS2-GAS3, and so on, are con-
sidered during the GASSCF orbital relaxation. This, however, implies that some of the redundant
rotations are included, namely the ones that are represented in the CI space by inter-space elec-
tron excitations, when connected GAS spaces are considered. Connected GAS sub-spaces cause
inter-space orbital rotations to become redundant.

The parameters to define a certain configurational space is not unique in the GAS ansatz. A
CAS wave function will be used as an example to show this point. The easiest way to build a CAS
wave function, from a GAS perspective, is simply to set ngas = 1 and nmin = nmax = nactive. The
orbital rotations included in the orbital optimization procedure are all the inter-space rotations,
namely the inactive–active, inactive–virtual and, active–virtual. No redundancy in orbital rota-
tions appears. The same configurational space can also be obtained in different ways, for example,
by splitting the active space into two spaces and allowing all possible excitations between these
two spaces. This form consists of two connected GAS spaces and, although they lead to exactly
the same CI wave function as the simple CAS construction, it is obvious that the GAS form con-
tains extra orbital rotations to optimize, namely the GAS1–GAS2 rotations. These rotations are all
redundant, as they are already described by the CI expansion. This example shows that general-
izations towards more flexible ansatz spaces, within MCSCF, can introduce redundancies, which
have to be taken into account to prevent difficulties in the convergence. If only part, but not all,
of the excitations among GAS spaces are allowed, it becomes more difficult to identify and easily
eliminate the redundant orbital rotations.

6.6.3 MCSCF Molecular Orbitals

CASSCF wave functions are invariant with respect to inactive–inactive, active–active, and
virtual–virtual orbital rotations. Therefore, several invariant orbital transformations are pos-
sible, which do not mix orbitals of different spaces within each other. Generally, inactive and
virtual orbitals are rotated into canonical orbitals. This is obtained by block diagonalizing the
Hartree–Fock Fock matrix for the inactive and virtual orbitals separately. The eigenvalues are the
orbital energies of the MOs, and the eigenvectors are the canonical orbitals. Orbitals of the active
space can be represented in a number of ways.

By diagonalizing the one-body density matrix in the active space, the eigenfunctions and eigen-
values lead to the active natural orbitals and their occupation numbers, respectively. This procedure
is invariant only for CAS wave functions. For RAS and GAS wave functions this procedure is not
invariant, due to the inter-space rotations. One can also block-diagonalize the active space density
matrix within each RAS (or GAS) space, instead of the whole active space. The obtained orbitals
are called pseudonatural orbitals. The transformation to pseudonatural orbitals is invariant. For
state-averaged MCSCF calculations, several CI wave functions are optimized simultaneously, shar-
ing the same set of MOs. Each state is characterized by its own density matrices, which can be diag-
onalized separately (or block-diagonalized for RAS and GAS) to obtain one set of natural orbitals (or
pseudonatural orbitals) and corresponding occupation numbers per state. These orbitals are com-
monly used to calculate state-specific properties. During the CASSCF macro-iterations, however,
density matrices are weight-averaged, and the weight-averaged energy is minimized with respect to
a common set of MOs. The natural orbitals of averaged density matrices are generally also referred
to as pseudonatural orbitals.
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If the generalization of the Fock matrix for multi-configurational wave functions

Fpq = hpq +
∑

rsDrs

[
(pq|rs) − 1

2
(pr|qs)

]
(6.234)

is diagonalized, canonical orbitals are obtained, the eigenvalues representing the corresponding
orbital energies. Analogously to the natural orbitals case, this procedure is invariant only for CAS
wave functions. For RAS and GAS wave function pseudo-canonical orbitals might be generated,
which also represent invariant rotations. These orbitals are generally used for spectral properties
and as reference orbitals for subsequent PT2 treatments.

6.6.4 GASSCF Applied to the Gd2 Molecule

Gd2 is the diatomic molecule with highest spin multiplicity in its ground state known to
date, its ground state being a 19Σ−

g , corresponding to the following electronic configuration
(𝜎1
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u. The experimentally determined ground state vibrational constant

and dissociation energy are 𝜔e = 138.7 ± 0.4 cm−1 and De = 2.1 ± 0.7 eV respectively [93]. Here
we present the CASSCF and GASSCF ground state potential energy curve of Gd2 [42] and compare
them with the experimental values.

A reasonable CAS choice for the entire potential energy curve of Gd2, is the full valence shell
active space, which consists of the 20 valence electrons and 32 molecular orbitals, arising from 4f ,
5d, 6s and 6p AOs of each Gd atom. This CAS(20,32) generates about 1.4 billion Slater determinants
for the 19Σ−

g state, currently impossible to tackle with standard methods. The smaller CAS(20,26)
is a possible alternative. This active space is obtained by removing the six 6p orbitals from the
CAS(20,32). This wave function contains 2.1 million determinants. A GAS-2(20,26), analogous
to the CAS(20,26), is built by dividing the active space into two disconnected GAS spaces: GAS1
contains the 14 4f orbitals and, GAS2 the rest. This restriction leaves only 23808 determinants
in the wave function. A GAS-5(20,32) with 5 disconnected GAS spaces can be utilized to corre-
late all 32 valence orbitals and, thus, overcome the computational limitations of the CAS(20,32).
Of the 32 active orbitals, the 14 4f orbitals are separated into four different GAS spaces, based on
space symmetry consideration. The remaining six electrons and 18 orbitals form the fifth space. The
resulting CI space contains only 138 304 determinants, which is four orders of magnitude smaller
than CAS(20,32). The optimized active orbitals of the GAS-5(20,32) and their distribution among
the five GAS space is shown in Figure 6.16. The ground state, 19Σ−

g , potential energy curves for
the Gd2 system at the CAS(20,26), GAS-2(20,26) and GAS-5(20,32) level of theory are presented
in Figure 6.17. The curves obtained by the CAS(20,26) and GAS-2(20,26) approaches are almost
identical, indicating that mostly deadwood configurations have been removed in the GAS-2(20,26)
with respect to the CAS(20,26) and, the accuracy of the MCSCF calculation is preserved. How-
ever, the two curves are not smooth throughout the dissociation pathway. This is due to orbital
flipping (in and out of the active space) along the dissociation and, the active orbitals in the bond-
ing region and in the dissociation region are different. In the region R=5.20 Å to 5.40 Å, the active
orbitals 5d𝜋u and 5d𝜋g are progressively replaced by the 6p𝜋u and 6p𝜋g orbitals. The CAS(20,26) and
GAS-2(20,26) are not large enough to accommodate all competing correlating orbitals necessary to
describe the dissociation path consistently. This behavior is cured in the GAS-5(20,32) approach
discussed above, which includes all the relevant orbitals along the dissociation. For this choice of
active space orbital-flipping is not observed, orbitals of the same character are correlated along the
reaction and, as a result a smooth potential energy curve is obtained.

By fitting the GAS-5(20,32) potential energy curve to a Morse potential, the dissociation energy De
and vibrational constant 𝜔e were determined to be 2.1 eV and 140 cm−1, respectively. These values
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GAS1
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Figure 6.16 Natural orbitals of Gd2 GAS-5(20,32) at equilibrium bond distance [42].

are in good agreement with the experimental values, demonstrating the strength of the GASSCF
method.

6.7 Excited States

An important property of MCSCF procedures is the possibility to simultaneously optimize ground
and excited states, while accounting for correlation and relaxation effects, with no bias for any
of the computed states. This feature, however, relies on two conditions. First, the CI eigensolver
must be able to simultaneously optimize multiple low-lying states. Second, the orthogonality of the
resulting states has to be preserved by the MCSCF procedure or, it has to be restored by a posteriori
procedures.
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6.7.1 Multi-State CI Solver

If several eigenvalues of a Hermitian matrix H are to be computed, a straightforward approach
which can be applied to a wide class of CI solvers is to restrict the search space to the orthogonal
complement (oc) of a set of already converged eigenvectors. If n eigenvectors vi of H are already
known, construct the matrix

U = [v1,… , vn] (6.235)

and then apply the CI solver to the restricted Hamiltonian

H|oc = (𝟏 − UU†)H(𝟏 − UU†) (6.236)

where (𝟏 − UU†) projects out the components of the vn eigenvectors from the trial wave function
during the optimization. Hence, when using H|oc, only orthogonal components will contribute to
the target vector. A little caution has to be applied to the circumstances that may lead to trivial
solutions of H|oc, namely the ones corresponding to zero eigenvalues. This problem can be circum-
vented by shifting the Hamiltonian.

By iteratively applying this scheme, excited states can subsequently be generated, finding a state
orthogonal to the previous ones in each iteration and thus creating a set of orthonormal eigenvec-
tors. This is typically limited by the precision of the orthogonalization, as numerical inaccuracy
leads to an increasing loss of orthogonality of the computed vectors as more and more vectors are
added.

Often, however, more efficient schemes can be applied for targeting multiple states. For
Krylov-subspace type methods, a straightforward extension of the single-state schemes discussed
in Section 6.4.1 can be made by adding multiple states to the Krylov space per iteration, leading to
the Block Lanczos Method [94].

This increases the dimension of the ansatz space by up to n per iteration, n being the number of
targeted states.



�

� �

�

6.8 Stochastic Multiconfigurational Approaches 191

This approach, however, comes with the drawback, that to obtain the nth excited state, all pre-
vious states have to be computed too, making it costly or even impossible to obtain higher excited
states. An alternative approach to target eigenvalues in the proximity of a given value 𝜏 is the family
of shift-and-invert methods, which search for the largest eigenvalue of a transformed matrix

A = (H − 𝜏)−1 (6.237)

For the Davidson method, that can be implemented without the need to explicitly compute the
inverse, by using a modified ansatz space that is

K′ = span{(H − 𝜏)c|c ∈ K} . (6.238)

See Reference 2 for more details.

6.7.2 State-Specific and State-Averaged MCSCF

Targeting multiple states within one single MCSCF calculation comes with the complication that
a straightforward optimization of the orbital basis for each of the targeted states will produce as
many orbital sets as the number of optimized states.

In the state-specific CASSCF method, a dedicated CASSCF calculation is performed for each of
the targeted states. In each calculation, only the density matrices of the targeted state are used
for the orbital optimization step. Typically, even for the state-specific approach, the CI eigensolver
requires to compute several CI states in each calculation, namely for the jth state, j states have to
be calculated. In addition to the added computational costs (j vectors are stored and processed), in
practical applications this approach is plagued by convergence problems.

The state-specific CASSCF approach yields non-orthogonal states and orbitals. A subsequent
diagonalization of the Hamiltonian in the basis of the optimized states is thus required.

Another common approach to circumvent the difficulty of different orbital sets for different CI
eigenstates is the state-averaged CASSCF technique, which uses weight averaged density matrices

D̃ =
n∑

i=1
𝑤iDi (6.239)

Γ̃ =
n∑

i=1
𝑤iΓi, (6.240)

to minimize the averaged energy of the target states in a common single set of orbitals. The weight
factors,𝑤i, determine the impact of each single state on the orbital relaxation. Weights can either be
chosen equal or tuned to enhance convergence. The resulting orbitals are in general not optimal for
any particular state and in general deteriorate when the number of states is enlarged. The advantage
of this procedure is that states are expressed in a shared set of orbitals and are therefore orthogonal.

The SCF schemes discussed for ground state MCSCF procedure are unchanged except for the
usage of the state-averaged density matrices instead of the state specific density matrices, making
the approach straightforward to extend in principle to any number of states.

6.8 Stochastic Multiconfigurational Approaches

In Section 6.1, the computational limitations of MCSCF procedures related to the exponential
growth of the wave function with respect to the number of correlated electrons and orbitals has been
discussed. These limitations can be substantially reduced by treating the CI eigenvalue problem
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stochastically, circumventing the need for storing the full CI vector. Stochastic algorithms to find
solutions to the CI eigenvalue problem can be designed in numerous ways, both by projective and
variational techniques [95]. With stochastic CI eigensolvers, active spaces of significantly increased
size become treatable, with CI vectors containing up to ∼1018 Slater determinants. Within the
CASSCF framework, active spaces with up to 40 electrons and 38 orbitals have been reported with
unprecedented accuracy [40, 76].

In this section, stochastic CI eigensolvers are discussed using the example of the Full Configura-
tion Interaction Quantum Monte Carlo (FCIQMC) algorithm, outlining the calculation of reduced
density matrices from a stochastically sampled wave-function. Its extension to MCSCF procedures
is straightforward, relying on the stochastic sampling of the active space one- and two-body density
matrices [74] and their usage within approximated uncoupled approaches for the orbital opti-
mization step [36, 75]. Stochastic second-order procedures with CI-orbital coupling as discussed
in Section 6.5.6 and 6.5.7 are - to our knowledge - not available to date.

6.8.1 FCIQMC Working Equation

Similar to the deterministic iterative algorithms, in the FCIQMC ground state optimizations,
all but the ground state contributions are eliminated from some initial wave function, |𝜓(0)⟩.
At convergence this procedure will reveal the true ground state wave function. Conversely to
the deterministic approaches, mostly based on the solution of the stationary time-independent
Schrödinger equation, the FCIQMC approach and many others electronic structure QMC
algorithms aim at solving the imaginary-time Schrödinger equation

i 𝜕
𝜕t
|𝜓(t)⟩ = Ĥ|𝜓(t)⟩ t=−i𝜏

−−−−→ − 𝜕

𝜕𝜏
|𝜓(𝜏)⟩ = Ĥ|𝜓(𝜏)⟩ , (6.241)

which is simply obtained from the Schrödinger equation by substituting t = −i𝜏.
The formal solution to the imaginary-time Schrödinger equation is given by

|𝜓(𝜏)⟩ = e−𝜏Ĥ|𝜓(0)⟩ ≡ Û(𝜏)|𝜓(0)⟩. (6.242)

An important property of the imaginary-time propagator is that it decays exponentially with 𝜏 and,
since adding a constant to the Hamiltonian does not affect the eigenvectors, we can assume the
energy E0 of the ground state |𝜓0⟩ of Ĥ, (with Ĥ|𝜓0⟩ = E0|𝜓0⟩) to be equal to 0.4 With E0 = 0 one
can easily verify that

lim
𝜏→∞

e−𝜏Ĥ|𝜓(𝜏)⟩→ |𝜓0⟩ (6.243)

given that

⟨𝜓(0)|𝜓0⟩ ≠ 0 , (6.244)

since all excited state contributions |𝜓i⟩ with Ei > E0 get exponentially suppressed.
The stochastic imaginary time evolution (Eqn. (6.241)) of the ground state wave function in the

space of Slater determinants is at the core of the FCIQMC method [71, 72, 98].
To evaluate the imaginary-time evolution, the propagation is carried out repeatedly for small

time steps Δ𝜏, such that the full propagator Û(Δ𝜏) can be approximated by the first-order Taylor
expansion

Û(Δ𝜏) ≈ Û (1)(Δ𝜏) = 𝟏̂ − Δ𝜏(Ĥ − S(𝜏)𝟏̂) , (6.245)

4 However, we will come back to the practical implementation of this constant shift in the next section.
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with an variable energy shift S(𝜏). Above, the possibility of adding a constant to the Hamiltonian to
shift the ground state energy to 0 was mentioned. This is precisely what S(𝜏) is required for. As the
ground state energy is unknown in the beginning of the calculation, S(𝜏)will be updated iteratively;
converging to the correct ground state energy, lim𝜏→∞S(𝜏) = E0.

The wave function at time 𝜏 + Δ𝜏 is obtained from the wave function |𝜓(𝜏)⟩ at time 𝜏 by a single
application of Û (1) as

|𝜓(𝜏 + Δ𝜏)⟩ = Û (1)(Δ𝜏)|𝜓(𝜏)⟩ . (6.246)

For a sufficiently small timestep Δ𝜏 the approximated propagation converges to the exact ground
state, as can be readily seen from expanding |𝜓(0)⟩ in an eigenbasis of Ĥ and applying Û1(Δ𝜏)n.

To evaluate Ĥ|𝜓⟩, the FCIQMC method works on a sparsely sampled wave function in Slater
determinant space. A sampled wave function

|𝜓(𝜏)⟩ =∑
i

ci(𝜏)|Di⟩ , (6.247)

is stored, where ci(𝜏) ≠ 0 only for a small fraction of the Hilbert space at each iteration; these deter-
minants are referred to as occupied determinants. Notably, the wave function used in FCIQMC is
not normalized, and to profit from the sparse structure of the wave function, a minimal value cmin,
typically cmin = 1, for |ci| is imposed for the coefficients to be stored, with any coefficient below cmin
being stochastically rounded. This is done via a stochastic round function R, which is given by

R(x) =
⎧⎪⎨⎪⎩

x if x ≥ cmin,

cmin if x < cmin with prob. x
cmin

0 else,

, (6.248)

such that, for example, a coefficient of ci(𝜏) = 0.6 cmin is rounded up to cmin with a probability of
60% and discarded with a probability of 40%.

Doing so keeps the number of occupied determinants under control, as less important determi-
nants will get neglected more often, removing the need of storing their coefficients. The L1-norm

‖𝜓(𝜏)‖1 =
∑

i
|ci(𝜏)| (6.249)

of |𝜓(𝜏)⟩ plays the role of a control parameter, as increasing it leads to more coefficients being above
cmin and therefore sampling the wave function more precisely. In the limit of infinite L1 norm, the
method becomes exact as all coefficients will be stored.

The striking advantage of a sparse sampling of the wave function, as used in the FCIQMC method
is, that the number of occupied determinants in each iteration is typically much lower than the total
number of determinants forming the Hilbert space of the problem.

Inserting the representation (6.247) into Eq. (6.246) yields the working equations of FCIQMC as

|𝜓(𝜏 + Δ𝜏)⟩ = [𝟏̂ − Δ𝜏(Ĥ − S(𝜏)𝟏̂)]
∑

i
ci(𝜏)|Di⟩

=
∑

i
(1 − Δ𝜏(Hii − S(𝜏)))ci(𝜏)|Di⟩ − Δ𝜏

∑
i,j≠i

Hjici(𝜏)|Dj⟩, (6.250)

where the identity 𝟏̂ =
∑

j|Dj⟩⟨Dj| was inserted.
The evaluation of Û (1)(Δ𝜏)|𝜓(𝜏)⟩ is performed in three steps, of which the first two calculate

Δ𝜏Ĥ|𝜓(𝜏)⟩ and the third one returns the propagated wave function. We now carry out these three
algorithmic steps of FCIQMC, namely (1) spawning, (2) death and (3) annihilation.
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(1) In the spawning step of a FCIQMC iteration, the off-diagonal part of Eq. (6.250) is evaluated
by sampling the sum over j stochastically, that is, we randomly pick some matrix elements to apply,
neglecting the others while making sure that on average, the correct action of Ĥ is obtained.

Consider now the contribution Δ|𝜓⟩i from a single determinant |Di⟩, which is

Δ|𝜓⟩i = −Δ𝜏
∑
j≠i

Hjici(𝜏)|Dj⟩ . (6.251)

To approximate the sum over j, we first have to decide on how many matrix elements to select.
To use the coefficient ci(𝜏) as a number of sampled matrix elements has proven to be a sensible
choice, as this approximates the contributions from important determinants better than those from
unimportant ones. Since ci(𝜏) is not necessarily an integer, it is stochastically rounded to an integer
number M. If for example ci(𝜏) = 1.5, M will be chosen to be 1 in 50% of the cases and 2 in the other
50%. The sign of ci(𝜏)has to be kept separately, as it cannot be contained in a (positive) integer. Then,
the off-diagonal contribution can be expressed as

Δ|𝜓⟩i ≈ −sgn(ci(𝜏))
M∑

k=1

∑
j≠i

HjiΔ𝜏|Dj⟩ . (6.252)

For each k, the second sum is now approximated by randomly selecting just one single value for
j, which is denoted as jk, and neglecting all the other terms. We therefor introduce probabilities
pgen(j|i) of selecting determinant |Dj⟩ for a given value of i. As, on average, a determinant |Dj⟩ will
then appear M pgen(j|i), whereas it should appear just M times, we need to unbias by dividing by
pgen(j|i). The resulting expression is now

Δ|𝜓⟩i ≈ −
∑

k
sgn(ci(𝜏))

HjkiΔ𝜏
pgen(jk|i) |Djk

⟩ , (6.253)

For large values of M, this expression becomes more and more accurate, as each j gets picked
M pgen(j|i) times on average, eventually yielding the original sum in the limit of M → ∞. Δ|𝜓⟩i
still includes a potentially large number of determinants, with potentially very small amplitudes.
However, as a minimal value cmin is imposed on the coefficients, the new contributions to the coef-
ficients of the sampled |Djk

⟩ have to be rounded using the stochastic round R from Eq. (6.248) if
their absolute value is below cmin. If the outcome of the round is 0, the contribution does not have
to be stored. This ensures that the number of accounted determinants does not grow rapidly to
unmanageable numbers. The full off-diagonal contribution is then obtained by summing over all
determinants with non-zero coefficient. The exact off-diagonal contribution is then replaced with
the stochastic approximation

Δ|𝜓off
approx⟩ = −

∑
i

∑
k

sgn(ci)R

(
HjkiΔ𝜏

pgen(jk|i)
)|Djk

⟩. (6.254)

The newly created contributions Δ|𝜓off
approx⟩ will be added to the coefficient of |Djk

⟩ in the next iter-
ation, but are kept separately as spawns for now, which will be added to the existing ones later in
step (3). This is important as they do not contribute to the diagonal part in step (2).

(2) The death step takes care of the diagonal contribution of Eq. (6.250), which is carried out by
multiplying each coefficient ci(𝜏) with (1 − Δ𝜏(Hii − S(𝜏))). Again, only those determinants have to
be considered, which have non-zero coefficients in the sampled wave function, for all others, the
contribution is simply zero. While Δ𝜏(Hii − S(𝜏))ci(𝜏) can be obtained with little effort, again, the
minimal value of ci(𝜏) has to be guaranteed. Therefore, if ci(𝜏) < cmin, ci(𝜏) is stochastically rounded
to cmin.
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In practice, having Δ𝜏(Hii − S(𝜏)) > 1 can lead to instabilities, as it allows the coefficients to
change drastically within one iteration, and should be prevented by choosing a sufficiently small
timestep Δ𝜏.

(3) In the annihilation step, the new contributions Δ|𝜓off
approx⟩ to the coefficients from the spawn

step are added back to the sampled wave function. We now update the wave function as

|𝜓(𝜏 + Δ𝜏)⟩ =∑
i

R([1 − Δ𝜏(Hii − S(𝜏))]ci(𝜏))|Di⟩ + Δ|𝜓off
approx⟩ . (6.255)

Obtaining a good value for the variable shift S(𝜏) is essential for preventing the norm of the state
to diverge or vanish, since Eq. (6.243) assumed the ground state energy of Ĥ − S𝟏̂ to be 0. Any
other average value will inadvertently lead to divergence or vanishing of the norm. This is directly
related to the L1 norm of the state, which dictates the numerical cost of an iteration. In this way,
S(𝜏) becomes an instrument for controlling the L1 norm: By lowering S(𝜏), we can increase ‖𝜓‖1
and vice versa. Ideally, S(𝜏) should be equal to the ground state energy, but requiring this value
as an input defeats the purpose, such that the value of the shift is iteratively updated to maintain
a constant ‖𝜓‖1. A very efficient way of updating S(𝜏) is to adjust it every m steps based on the
change in ‖𝜓‖1 during these m steps. As S(𝜏) enters the evolution of ‖𝜓‖1 exponentially, the update
should be of logarithmic form. Adding a damping 𝜒 to prevent large oscillations leads to the update
instruction

S(𝜏 + nΔ𝜏) = S(𝜏) −
𝜒

mΔ𝜏
log

(‖𝜓(𝜏 + nΔ𝜏)‖1‖𝜓(𝜏)‖1

)
. (6.256)

Since any other value of S would lead to either vanishing or diverging norm, in a converged calcu-
lation at least the average of S(𝜏) has to be the ground state energy, given the sampling of |𝜓(𝜏)⟩ is
accurate. This energy value itself is only of minor practical relevance since it comes with compa-
rably large fluctuations, but it can be used as a consistency check. A more stable estimate for the
energy is the projected energy onto a suited reference determinant |D0⟩, given by

Eproj =
⟨D0|Ĥ|𝜓⟩⟨D0|𝜓⟩ . (6.257)

This projected energy is the value of the energy eigenvalue the state |𝜓⟩ had if it were an eigenstate
of Ĥ. Hence, it is not variational, but becomes exact in the exact limit of FCIQMC.

Because the sampling of the wave function is of stochastic nature, and for any 𝜏, it only rep-
resents a “snapshot” of the full ground state wave function, derived quantities like the projected
energy carry stochastic noise, creating the need to average them over numerous iterations once
convergence is reached.

There are further improvements and modifications of the FCIQMC method, such as the initiator
approximation (i-FCIQMC) [72, 73] or the semi-stochastic method [98, 99], which can enhance
the potential of the approach and allow for study of substantially larger-sized systems with FCI
accuracy.

Especially the initiator approximation is of great importance, as it addresses the sign prob-
lem arising within FCIQMC. While the antisymmetry of the wave function is guaranteed by
working in Slater determinant space, the CI coefficients themselves can have both positive and
negative sign. For determinants with a small coefficient (possibly just cmin), that coefficient, by
stochastic error, can carry the wrong sign. In the unmodified algorithm, these sign errors quickly
propagate.
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6.8.2 Multi-Wave Function Approach for Excited States

The FCIQMC method sketched so far can only target the ground state, but an excited state search
can be realized by projecting out lower energy states in the spirit of using a restricted Hamiltonian
[98], similar to Eq. (6.236) mentioned in Section 6.7.1.

However, projecting out a previously converged state seems like a poor approach, as we will be
using only a snapshot of the full wave function. When projecting out a previously obtained state,
in the second calculation there is no guarantee that we will not end up with contributions from the
ground state which were not part of that snapshot.

A more promising and efficient method is to perform multiple FCIQMC calculations in parallel,
evolving n wave functions |𝜓 (1)⟩ to |𝜓 (n)⟩ at the same time. Then, in each iteration, the kth wave
function is orthogonalized against the first k − 1 wave functions. In practice, this is realized by
using the modified imaginary-time evolution

|𝜓 (k)(𝜏 + Δ𝜏)⟩ = P̂k(𝜏 + Δ𝜏)Û (1)(Δ𝜏)|𝜓 (k)(𝜏)⟩ , (6.258)

where we define the instantaneous projector

P̂k(𝜏) = 𝟏̂ −
∑
l<k

|𝜓 (l)(𝜏)⟩⟨𝜓 (l)(𝜏)|⟨𝜓 (l)(𝜏)|𝜓 (l)(𝜏)⟩ , (6.259)

which acts as a projection operator on the wave function snapshots |𝜓 (1)⟩… |𝜓 (k−1)⟩. The
projection is carried out instantaneously, that is, using P̂k(𝜏 + Δ𝜏) to obtain |𝜓 (k)(𝜏 + Δ𝜏)⟩, which
is possible since P̂k only depends on the instantaneous wave functions |𝜓 (l)(𝜏 + Δ𝜏)⟩ with l < k,
such that the projection can be carried out one after the other starting from k = 1. The modified
evolution can then be seen as performing one iteration with all n wave functions and subsequently
orthogonalizing them by removing the components of the new wave function proportional to all|𝜓 (l)(𝜏 + Δ𝜏)⟩ with l < k. This procedure maintains a total of n orthogonal wave functions. As the
first one is not orthogonalized against any other wave function, it behaves just as in the ground
state calculation, eventually converging to the ground state. The second wave function then is
orthogonal to the ground state, and thus converges to the first excited state, and so on.

6.8.3 Sampling Reduced Density Matrices

To use the FCIQMC method as the CI solver in a CASSCF calculation, we need a way to obtain the
one- and two-body reduced density matrices (RDMs)

Dij = ⟨𝜓0|a†
i aj|𝜓0⟩, (6.260)

Γijkl = ⟨𝜓0|a†
i a†

j akal|𝜓0⟩. (6.261)

Computing an approximation of the full expectation value with the sampled wave function |𝜓(𝜏)⟩
as an estimate for |𝜓0⟩, scales quadratically in the number of determinants sampled in |𝜓(𝜏)⟩,
quickly making the full evaluation unfeasible. But recall that any quantity derived from the instan-
taneous wave function is carrying stochastic noise and therefore needs to be averaged anyway. So
adding additional noise by evaluating the expectation value stochastically seems to be tolerable,
and reduces the cost of obtaining the RDMs to a minimum.

To understand how the sampling can be performed in an efficient way [74, 99], consider the
one-body RDM

Dij =
∑

kl
⟨Dk|a†

i aj|Dl⟩c∗k(𝜏)cl(𝜏) . (6.262)
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Algorithm 3 FCIQMC algorithm
- Pick an initial state
loop

for all occupied determinants |Di⟩ do
set M = ⌊ci⌋
with probability ci(𝜏) − M, increase M by 1
for all k = 1,… ,M do

- randomly pick a determinant |Djk⟩ (with Hijk ≠ 0

- Create a spawn of weight
HjkiΔ𝜏

pgen(jk|i) on |Djk⟩
- Round the spawn stochastically to a minimal value if necessary

end for
- Multiply ci(𝜏) by 1 − (Hii − S(𝜏)), then roundstochastically if necessary

end for
for all determinants |Di⟩ do

- Sum up ci(𝜏) and all spawns to obtain new ci(𝜏 + Δ𝜏)
end for

end loop

Here, for each determinant |Dl⟩ contained in |𝜓(𝜏)⟩, we need the products of its coefficient cl(𝜏)
with the coefficients ck(𝜏) of any single-excitation |Dk⟩ of |Dl⟩. The stochastic evaluation of this sum
can be carried out by only taking some of the single excitations, weighted with the probability of
picking them. However, this random choice of excitations for each determinant is anyway a part of
the core FCIQMC algorithm (3). Therefore, when performing the spawning step, we can easily get
a stochastic evaluation of the one-body RDM by logging all spawning attempts to single-excitations
and adding the weighted product of the coefficients to the Dij. Doing so yields a stochastic expecta-
tion value of Dij for each iteration, and averaging over numerous iterations, after convergence with
respect to 𝜏, gives reliable values for the one-body RDM.

Unsurprisingly, the method to evaluate the two-body RDM is analogous, with the only difference
being that instead of the spawning attempts to single-excitations, those to double-excitations have
to be logged now.

At this point, one might object that the RDMs are quadratic in the stochastic quantity |𝜓(𝜏)⟩
and must therefore be biased, as noise cannot fully average out. And indeed, the quadratic depen-
dence on the coefficients does introduce a bias. If however, the two coefficients ck(𝜏) and cl(𝜏) in
Eq. (6.262) come from different, independent samplings of the wave function, this problem would
not occur, as they then also carry different, independent noise. Hence, to obtain the RDMs, two
FCIQMC calculations have to be performed in parallel, yielding two independent samplings |𝜓 (a,b)⟩
of the same state. Then, computing estimates for the RDMs as

Dij = ⟨𝜓 (a)|a†
i aj|𝜓 (b)⟩, (6.263)

Γijkl = ⟨𝜓 (a)|a†
i a†

j akal|𝜓 (b)⟩ , (6.264)

“unbiases” the expectation values, such that they now average to the correct value.
While the produced stochastic error is controllable and vanishes in the limit of infinite L1

norm, this sampling also introduces a potential systematic error, which is linked to how the
excitations are generated in the FCIQMC spawning step. Consider some determinant |Dk⟩ with a
significant coefficient ck(𝜏). Spawning attempts to determinants with a vanishing matrix element
will never be successful but those determinants might very well contribute to the RDMs. Consider
a single- or double-excitation |Dl⟩ of |Dk⟩ with ⟨Dk|H|Dl⟩ = 0 but a significant coefficient cl(𝜏),
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then the product c∗l (𝜏)ck(𝜏) is never taken into account for the evaluation of the RDMs, even if it is
non-negligible.

While in general, we can assume this special case to be an exception, when working with
Hartree–Fock orbitals, there is a relevant case which has to be taken care of, and this is the
Hartree–Fock determinant. The Hartree–Fock determinant has almost always significant weight
and, due to the Brillouin theorem, is not coupled to its single-excitations, even though they often
contribute significantly to the RDMs. An efficient and straightforward way to still get the correct
contribution to the RDMs from the HF determinant is now to just calculate these deterministically
by explicitly taking into account all products of the coefficient of the Hartree–Fock determinant
with the sampled single- and double-excitations when computing the RDMs.
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Abstract

The density matrix renormalization group (DMRG), originally introduced by White in 1992 in solid
state physics, has since found numerous applications in quantum chemistry. DMRG allows one to
approximate the full CI wave function with polynomial scaling, making active spaces with about 100
orbitals accessible. Together with self-consistent field orbital optimization (DMRG-SCF), it allows for
much larger active spaces than the complete active space self-consistent field (CASSCF) method. In this
chapter, we provide an introduction to the theory behind DMRG, both in the original renormalization
group formulation, as well as in the more modern formulation where wave functions and operators
are represented as matrix product states and matrix product operators, respectively. We further discuss
quantum-information-theoretical orbital entanglement measures that are accessible through DMRG,
which pave the way to automated active space selection in multicongurational calculations, and factors
that control DMRG convergence and accuracy. Finally, we review modern developments in and around
DMRG, such as post-DMRG methods for the description of dynamic correlation and environment
effects, tensor network states, as well as applications of DMRG and DMRG-SCF in quantum chemistry.

7.1 Introduction

Accurate calculations of ground- and excited-state properties of large molecules and clusters
are important applications of modern electronic structure theory. When such systems (and,
in particular, their excited states) show strong electron correlation (also referred to as static
correlation, left-right correlation, or non-dynamic correlation in the literature), they cannot be
adequately described by a single-determinant wave function ansatz, but require a multi-reference
method instead.

An important branch of modern multi-reference methods is based on exact or approximate
complete active space self-consistent field (CASSCF) wave functions [1, 2] (also called fully
optimized reaction space (FORS) approximation [3–5]). Construction of a CASSCF wave function
requires a definition of an active orbital space, solution of the full configuration interaction (full
CI) problem within this active space (which yields an exact solution of the Schrödinger equation
within the basis spanned by the active orbitals), and orbital optimization. The grand challenge
of CAS-based methods is overcoming the exponential scaling of the CI problem with the size of

Quantum Chemistry and Dynamics of Excited States: Methods and Applications,
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the active space. Exact CASSCF, even with the latest hardware and a massively parallel optimized
code, are currently limited to about 22 electrons in 22 orbitals [6], which can be a severe limitation
for many multi-reference problems.

Therefore, numerous efforts in the development of the multi-reference methods have focused
on developing approximations to the full CI problem to allow for calculations with larger active
spaces.

The traditional approach to this objective reduces the configuration space (and therefore the
dimensions of the CI problem) by restricting the excitations within the active space, leading
to methods such as the restricted active space self-consistent field (RASSCF) [7], its exten-
sion – the generalized active space SCF (GASSCF) [8], occupation restricted multi-level active
space (ORMAS) [9], and related methods, which are described in Chapter 6. A related set of
approaches is the Split-CAS [10] and its extension Split-GAS [11] by Gagliardi and co-workers,
where the active space is partitioned into a small primary and a larger extended space, the latter
one being incorporated with a perturbative treatment. Zimmerman [12] recently presented a
novel CI scheme with incremental truncations, approaching full CI accuracy. Similarly, Eriksen
et al. [13, 14] recently developed another CI scheme with incremental truncations based on the
many-body expansions.

Other approaches sample the configuration space. This includes methods such as full CI
Quantum Monte-Carlo (FCIQMC) [15, 16] or heat-bath CI [17, 18], the adaptive sampling
CI (ASCI) [19, 20] or the semistochastic FCIQMC, which is related to all the previous methods
[21, 22]. Many of these approaches incorporate ideas that are based on the CIPSI method of
Malrieu and co-workers [23] and the work of Buenker and Peyerimhoff [24] from the 1970s.
Other noteworthy CIPSI-based methods are the difference-dedicated CI (DDCI) method, again by
Malrieu and co-workers [25, 26] and the spectroscopically oriented CI (SORCI) by Neese [27].

Another promising research direction aims at finding low-rank approximations to the CI prob-
lem by exploiting various (approximate) decompositions of the full CI vector. Olsen et al. [28] have
incorporated a decomposition of the CI vector reshaped in a matrix into an approximation of the
CI singles and doubles (CISD) method. Koch and Dalgaard [29] considered a decomposition of
the CI vector with variationally determined decomposition coefficients. Based on these ideas, a
very promising CI approximation named rank-reduced full CI has been developed very recently
by Martínez and co-workers [30]. Shepard et al. [31–35] have devised the graphically contracted
function CI (GCF-CI). Although not strictly a decomposition-based method, it employs a reduced
number of variational parameters similar to other decomposition-based methods. The variational
parameters in GCF-CI arise from the graphical unitary group approach (GUGA) representation
[36, 37] of the full CI wave function and span the same space as the full set of the CI coefficients.
However, by far the largest class of CI vector decomposition-based approximations are the ten-
sor decomposition methods, in which the CI vector is decomposed into a series of tensors and
low-rank approximations are devised for the tensors at hand. The density matrix renormalization
group (DMRG) belongs to this group.

Introduced by White [38, 39] in 1992 for one-dimensional computational problems in physics
(such as Heisenberg spin chains), DMRG has been applied to quantum chemistry in 1998 with
the Pariser-Parr-Pople Hamiltonian to model excited states of conjugated systems [40, 41] and
quickly broadened its range of quantum chemical applications with the implementation of the full
non-relativistic Coulomb Hamiltonian in the late 1990s and early 2000s by White and co-workers
[42, 43], Mitrushenkov et al. [44–46], Chan et al. [47–51], Legeza et al. [52], Reiher et al. [53, 54],
Zgid and Nooijen [55–57] and Yanai et al. [58], finding numerous applications in quantum chem-
istry ever since (see Section 7.5). DMRG is capable of producing variational approximate solutions
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to the full CI problem at polynomially scaling costs. It is iterative and introduces approximations,
but it has the capability of error control [47, 59–62]. These features have made DMRG (and its
related methods) a rising star among the multi-configurational quantum chemical methods, with
applications to systems with active orbital spaces even as large as 100 electrons in 100 orbitals [63].

7.2 DMRG Theory

The formulation of the DMRG algorithm may follow either the original renormalization group
formulation or a formulation based on matrix product states and matrix product operators
(MPS-MPO). In Section 7.2.1 we discuss the concepts of DMRG within the framework of its
original formulation. Then, Section 7.2.2 introduces matrix product states and operators, and
Section 7.2.3 presents the variational MPS-MPO formulation of DMRG. This chapter is in no way
an exhaustive review of DMRG, for which the reader is referred to the reviews of Schollwöck
[64, 65] and Hallberg [66, 67] which give an exhaustive introduction into DMRG theory, and to the
numerous reviews by Chan et al. [68–72], Marti and Reiher [61, 73] and Wouters and Van Neck
[74] on DMRG in quantum chemistry.

A Brief Note on Terminology
In DMRG, orbitals are called sites and are arranged on a one-dimensional lattice, resembling the
one-dimensional nature of the algorithm. This choice of terminology originates from the original
formulation of DMRG for a Heisenberg spin chain, where the spins are physically situated on adja-
cent sites on a one-dimensional lattice. However in quantum chemistry the sites correspond to
molecular orbitals which usually do not resemble the one-dimensional structure of the lattice at
all. In fact, different orbital orderings on the lattice change the convergence behavior of DMRG, as
will be discussed later.

7.2.1 Renormalization Group Formulation

We express a multi-configurational wave function in terms of a superposition of occupation number
vectors:

|Ψ⟩ = ∑
𝜎

c𝜎|𝜎⟩ (7.1)

The basis states |𝜎⟩ (not to be confused with electronic states |Ψ⟩) span all possible occupations
of L spatial orbitals and correspond to Slater determinants. These many-particle basis states are
constructed as a direct product of basis states of the single orbitals |𝜎l⟩:

|𝜎⟩ = L⨂
l=1

|𝜎l⟩. (7.2)

There are four possible single-orbital basis states for each |𝜎l⟩, corresponding to four possible
occupations of an orbital: empty (|−⟩), spin-up (|↑⟩), spin-down (|↓⟩) and doubly-occupied (|↑↓⟩).
The full dimension of the vector space spanned by |𝜎⟩ is then 4L, and therefore grows exponentially
with L. For example, for two orbitals we have 42 = 16 basis states, depicted in Table 7.1. Introducing
electron number conservation or spin symmetry reduces the number of basis states. For the treat-
ment of symmetries in DMRG we may refer to the reviews of Sharma and Chan [75] and Wouters
and Van Neck [74], as well as to our work [76].
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Table 7.1 Basis states for a two-orbital lattice consisting of two
single-orbital basis states.

|−⟩ |↑⟩ |↓⟩ |↑↓⟩

|−⟩ |−−⟩ |− ↑⟩ |− ↓⟩ |− ↑↓⟩|↑⟩ |↑ −⟩ |↑ ↑⟩ |↑ ↓⟩ |↑ ↑↓⟩|↓⟩ |↓ −⟩ |↓ ↑⟩ |↓ ↓⟩ |↓ ↑↓⟩|↑↓⟩ |↑↓ −⟩ |↑↓ ↑⟩ |↑↓ ↓⟩ |↑↓ ↑↓⟩
Matrix Representation of the Elementary Operators
We consider the non-relativistic quantum chemical electronic Hamiltonian expressed in second
quantization,

Ĥ =
∑

i,j
𝜏

hija
†
i𝜏aj𝜏 +

1
2
∑
i,j,k,l
𝜏,𝜏′

Vijkla
†
i𝜏a†

k𝜏′al𝜏′aj𝜏 , (7.3)

with the one- and two-electron integrals hij and Vijkl, respectively, given in the molecular orbital
basis. The creation and annihilation operators we denote a†

i𝜏 and ai𝜏 , respectively, for an orbital i
and spin 𝜏. We now construct matrix representations of the elementary creation and annihilation
operators operating on a particular basis state. For example, consider a representation of a creation
operator a†

i↑ operating on a basis state |𝜎i⟩ belonging to the single-orbital basis: {|−⟩, |↑⟩, |↓⟩, |↑↓⟩},
which translates to the following set of matrix operators:

a†
i↑|−⟩ = |↑⟩ =⇒

⎛⎜⎜⎜⎜⎝
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
1
0
0
0

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎟⎠
, (7.4)

a†
i↑|↑⟩ = 0 =⇒

⎛⎜⎜⎜⎜⎝
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
0
0
0
0

⎞⎟⎟⎟⎟⎠
, (7.5)

a†
i↑|↓⟩ = |↑↓⟩ =⇒

⎛⎜⎜⎜⎜⎝
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
0
0
1
0

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
0
0
0
1

⎞⎟⎟⎟⎟⎠
, (7.6)

a†
i↑|↑↓⟩ = 0 =⇒

⎛⎜⎜⎜⎜⎝
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
0
0
0
1

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
0
0
0
0

⎞⎟⎟⎟⎟⎠
. (7.7)

A representation of the same operator on a basis state belonging to a basis of L orbitals |𝜎1..L⟩ =
{|−⟩, |↑⟩, |↓⟩, |↑↓⟩}⊗L then reads

a†
i↑ =

⎛⎜⎜⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞⎟⎟⎟⎟⎠1

⊗ · · ·⊗

⎛⎜⎜⎜⎜⎝
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎞⎟⎟⎟⎟⎠i

⊗ · · ·⊗

⎛⎜⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎠L

(7.8)
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Figure 7.1 An illustration of a lattice partitioning in DMRG into system, two active sites a and b and the
environment in a microiteration step of a two-site DMRG optimization.

i.e., the operator acts only on site i, leaving other sites untouched. Note that the minus signs in
matrices for sites to the left of site i arise from the Jordan–Wigner transformation [77], which is
required for fermionic anticommutation. From such matrix representations of elementary opera-
tors, a matrix representation of a Hamiltonian acting on any basis state can be constructed by matrix
multiplications, weighting with the corresponding integrals and summation of all such terms in the
Hamiltonian.

DMRG Iterations
For two-site DMRG, the lattice is partitioned into the system, two explicitly treated active sites a and b
and the environment (see Figure 7.1). We denote the basis spanned by the basis states on the system
and environment as |sys⟩ and |env⟩ respectively, and the local basis states on a and b as |a⟩ and |b⟩.

We now assume that we can limit the dimension of |sys⟩ and |env⟩ by a certain maximum number
of renormalized states m by some yet undefined procedure (which will be explained later), such that

dim(|sys⟩) = {
4Lsys ; 4Lsys < m
m; 4Lsys ≥ m

dim(|env⟩) = {
4Lenv ; 4Lenv < m
m; 4Lenv ≥ m

with Lsys and Lenv being the number of sites in the system and the environment, respectively.
Next, we may absorb site a into the system and site b into the environment, forming the bases of

the enlarged system and the enlarged environment |i⟩ and |j⟩, respectively:

|i⟩ = |sys⟩⊗ |a⟩; |j⟩ = |b⟩⊗ |env⟩
with

dim(|i⟩) = dim(|sys⟩) ⋅ dim(|a⟩) = 4 ⋅ dim(|sys⟩)
dim(|j⟩) = dim(|env⟩) ⋅ dim(|b⟩) = 4 ⋅ dim(|env⟩)

so that the dimension of |i⟩ or |j⟩ never exceeds 4m.
Any state defined on the total orbital space may then be expanded in a tensor product basis com-

posed of enlarged-system and enlarged-environment states:

|Ψ⟩ = ∑
ij

cij|i⟩⊗ |j⟩. (7.9)

Consequently, the total dimension of the basis |i⟩⊗ |j⟩ no longer grows exponentially with the
number of sites in the system and environment, but instead does not exceed m ⋅ 4 ⋅ 4 ⋅ m = 16m2.

The reduced-dimensional state is then optimized in the following iterative procedure:

1. Enlarging system and environment by one of the active sites to form basis states |i⟩ and |j⟩, called
blocking.

2. The superblock Hamiltonian (Eq. (7.3)) in this basis is constructed from the elementary
operators (cf. Eq. (7.8)) defined in the basis |i⟩⊗ |j⟩, and then diagonalized. This yields the set
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Figure 7.2 An illustration of the transformation of elementary operators a leading to a reduction of
dimension. From reduced-dimensional operators ã a reduced-dimensional Hamiltonian is then constructed.

of coefficients cij in Eq. (7.9). Note that the construction of the matrix representation of the
elementary operators is at first performed explicitly as described before, but is adjusted to the
reduced-dimensional basis if the decimation step (see step 4) is performed.

3. From the coefficients cij, a reduced density matrix 𝝆
s/e of dimension dim(|i⟩) × dim(|i⟩), i.e., at

most 4m × 4m, is formed by tracing out the environment states:

𝜌s/e
ii′ =

∑
j∈|j⟩ cijci′j (7.10)

4. Then, m eigenvectors of 𝝆s/e that correspond to the largest eigenvalues are chosen to form a
rectangular transformation matrix O (of dimension m × 4m). By transforming an elementary
operator a with this matrix according to O†aO, their dimension (and hence, the dimension of
the Hamiltonian) is reduced from 4m to m. The dimension reduction, called decimation, is pic-
torially illustrated in Figure 7.2. The decimation step ensures that the dimension of the system
basis does not grow beyond m. Note that if the dimension of 𝝆s/e is less than m × m, no decima-
tion needs to be performed.
It can be shown [38] that the decimation procedure based on the reduced density matrix yields
an optimal approximation |Ψ̃⟩ to the un-truncated wave function in Eq. (7.9) in a least-squares
sense, i.e., it minimizes the error |Ψ − Ψ̃|2.

5. Once this microiteration step has been accomplished, the active sites are shifted to the right
by one site on the lattice (so that the environment shrinks by one site). Steps 1–4 are repeated
until the environment consists of only one site. Then, the environment and the system exchange
their roles: the new system is growing to the left of the lattice and the active sites are shifted from
right to left. A complete set of repeated blocking-optimization-decimation steps along the lattice
is called a sweep. Figure 7.3 depicts DMRG microiteration steps schematically.

7.2.2 Matrix Product States and Matrix Product Operators

Three years after White [38, 39] published his first papers on DMRG, Östlund and Rommer [79, 80]
made a connection of the DMRG optimization algorithm with a wave function form of specific
parametrization, the so-called matrix product states (MPS). In this and in the following section, we
will closely follow Refs. [64, 65] and [81].

A general multi-configurational wave function (cf. Eq. (7.1)) can be brought through a series of
singular-value decompositions (SVD) [65] into the following form:

|Ψ⟩ = ∑
𝜎

M𝜎1 M𝜎2 · · · M𝜎L |𝜎⟩ (7.11)

which after writing the matrix–matrix multiplications explicitly reads

|Ψ⟩ = ∑
𝜎1…𝜎L

∑
a1…aL−1

M𝜎1
1a1

M𝜎2
a1a2

· · ·M𝜎L
aL−11|𝜎1 ⊗ 𝜎2 ⊗ · · · 𝜎L⟩ (7.12)
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Figure 7.3 Illustration of DMRG microiterations. |sys⟩, |a⟩, |b⟩ and |env⟩ represent the states on the system,
sites a and b and the environment, respectively. Adapted from Ref. [78].

where a tensor with elements M𝜎l
al−1al

corresponds to each site l. As we are summing over all local
basis states |𝜎l⟩ as defined in Section 7.2.1, so that each 𝜎l corresponds to a local occupation of a
site l, there are four such possible local occupations. Each tensor {M𝜎l

al−1al
} therefore can be consid-

ered as a vector of four matrices with vector elements M𝜎l . For an exact decomposition of a full CI
state, the dimensions of the M𝜎l matrices are 1 × 4, 4 × 16, …, 4L∕2−1 × 4L∕2, 4L∕2 × 4L∕2−1, …, 4 × 1.
However, with the help of SVD (see below) we can reduce the matrix dimensions to m. Here we
will not go into the details of how the MPS structure is derived: for this, the interested reader is
referred to Ref. [64].

Singular Value Decomposition
A general p × n matrix M may be factorized as

M = USV† (7.13)

with a p × min(p,n) matrix U, diagonal min(p,n) × min(p,n) matrix S with real non-negative ele-
ments, and a min(p,n) × n matrix V. Matrices U and V have orthogonal columns, i.e., U†U =
V†V = I. If we write out the matrix multiplication explicitly, the SVD will read

Mpn =
∑

k=min(p,n)
UpkSkkV†

kn. (7.14)

We may build a matrix M′ by setting all but the largest m diagonal elements Skk to zero
and using only the first m columns of U and V, which is referred to as truncated SVD. The
truncated SVD ensures that M′ provides the best low-rank approximation to M such that the error
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||M − M′||2 =
∑

ij(Mij − M′
ij)

2 is minimal. Employing this procedure in the MPS construction
ensures that the matrix dimension in the MPS does not exceed m. In Section 7.2.4 we will see that
SVD is equivalent to the reduced density matrix diagonalization in the decimation step.

Left- and Right-Normalization
An MPS representation is not unique: if we insert an identity matrix I = XX−1 between any two
matrices M𝜎i and M𝜎i+1 (note that, as above, M𝜎i is a vector element of the tensor M at site i,
reshaped into a vector of matrices) and thus replace M𝜎i and M𝜎i+1 with M̄𝜎i = M𝜎i X and M̄𝜎i+1 =
X−1M𝜎i+1 , the overall MPS will not change. This property allows us to bring the MPS into a so-called
left-canonical form

|Ψ⟩ = ∑
𝜎

A𝜎1 A𝜎2 · · · A𝜎L |𝜎⟩ (7.15)

where the A𝜎l matrices are left-normalized (
∑4
𝜎i=1 A𝜎i†A𝜎i = I), or into a right-canonical form

|Ψ⟩ = ∑
𝜎

B𝜎1 B𝜎2 · · · B𝜎L |𝜎⟩ (7.16)

where the B𝜎l matrices are right-normalized (
∑4
𝜎i=1 B𝜎i B𝜎i† = I). A form that is important in the

sweep procedure is the mixed-canonical form

|Ψ⟩ = ∑
𝜎

A𝜎1 · · · A𝜎l−1 M𝜎l B𝜎l+1 · · · B𝜎L |𝜎⟩ (7.17)

where at an arbitrary site l the matrices to the left are left-normalized and the matrices to the right
are right-normalized. These canonical representations will come in handy when calculating over-
laps, expectation values and optimizing the MPS.

The left-normalization is usually achieved with an SVD: if one reshapes the tensor M at site l
(with the elements M𝜎l

al−1al
) in Eq. (7.17) (note that the state in Eq. (7.17) must be only partially

left-normalized, i.e., tensors at sites > l need not be right-normalized) as one matrix with elements
M(𝜎lal−1),al

and performs an SVD, one will obtain

M(𝜎lal−1),al
=
∑

sl

U(𝜎lal−1),sl
Ssl ,sl

V†
sl ,al

(7.18)

U(𝜎lal−1),sl
is then reshaped back into a tensor with elements A𝜎l

al−1sl
which obeys the left normalization

condition, and SV† is pre-multiplied into the matrices at site l + 1.
Right-normalized matrices are obtained in a similar manner by starting from a partially

right-normalized state: this time, we group the 𝜎l index with al, resulting in an SVD

Mal−1,(𝜎lal) =
∑

sl

Usl
Ssl ,sl

V†
sl ,(𝜎lal)

(7.19)

Now V†
sl ,(𝜎lal)

is reshaped back into a tensor B𝜎l
al−1sl

which obeys the right normalization condition
and US is post-multiplied into the matrices at site l − 1.

In principle, one may use the QR decomposition to perform the normalization instead of SVD.
However, with the QR decomposition it is not possible to perform truncation, which, although
not required in the normalization step, may be required in the sweep algorithm: more details will
follow at the end of Section 7.2.3.
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Overlaps
An overlap of two MPSs is straightforward to calculate. Given the state

|Ψ̄⟩ = ∑
𝜎

∑
a1…aL−1

M̄𝜎1
1a1

M̄𝜎2
a1a2

· · · M̄𝜎L
aL−11|𝜎⟩, (7.20)

the overlap can be calculated as

⟨Ψ|Ψ̄⟩ = ∑
a′

1 ,…,a′
L−1

a1 ,…,aL−1
𝜎

(M𝜎1
1a1

· · ·M𝜎L
aL−11)

∗(M̄𝜎1
1a′

1
· · · M̄𝜎L

a′
L−11) (7.21)

or, regrouped for a more efficient computation

⟨Ψ|Ψ̄⟩ = ∑
aL−1a′

L−1
𝜎L

M𝜎L†
1aL−1

⎛⎜⎜⎜⎜⎝
…

∑
a1a′

1
𝜎2𝜎′2

M𝜎2†
a2a1

(∑
𝜎1

M𝜎1†
a11 M̄𝜎1

1a′
1

)
M̄𝜎2

a′
1a′

2
· · ·

⎞⎟⎟⎟⎟⎠
M̄𝜎L

a′
L−11. (7.22)

Matrix Product Operators
Analogously to an MPS, an operator ̂ of general form

̂ =
∑
𝜎,𝜎′

c𝜎,𝜎′ |𝝈⟩⟨𝝈′| (7.23)

may be brought to the matrix product operator (MPO) form

̂ =
∑
𝜎,𝜎′

∑
b1…bL−1

W𝜎1𝜎
′
1

1b1
W𝜎2𝜎

′
2

b1b2
· · ·W𝜎L𝜎

′
L

bL−11|𝝈⟩⟨𝝈′| (7.24)

To understand, how an MPO is constructed, let us simplify Eq. (7.24) by introducing

Ŵ [l]
bl−1bl

=
∑
𝜎l ,𝜎l′

W𝜎l𝜎l′

bl−1bl
|𝝈l⟩⟨𝝈′

l | (7.25)

so that Eq. (7.24) becomes

̂ =
∑

b1…bL−1

Ŵ [1]
1b1

Ŵ [2]
b1b2

· · · Ŵ [L]
bL−11 (7.26)

= Ŵ[1]Ŵ[2] · · · Ŵ[L] (7.27)

Matrices Ŵ[l] are operator-valued, i.e., each matrix element Ŵ [l]
bl−1bl

is an operator. Moreover, matri-
ces Ŵ[l] collect all operators which act on site l in matrix form: to see this, we may write, for example,
the creation operator a†

l↑ in the form analogous to Eq. (7.23), using the basis states at site l:

a†
l↑ = |↑↓⟩ ⟨↓| + |↑⟩ ⟨−| (7.28)

The equivalence of this form of the operator to its matrix form may be easily verified by inserting
the above equation into Eqs. (7.4) to (7.7) and obtaining the matrix form. Hence, the a†

l↑ operator
may be a matrix element Ŵ [l]

bl−1bl
of the matrix Ŵ[l] for a particular index pair bl−1, bl. But how do we

determine the indices bl−1, bl and the dimensions of the matrix Ŵ[l]? It turns out that determining
these indices is not trivial and there is not a unique way to determine them. Construction of MPOs,
including an optimal MPO construction algorithm is described thoroughly in Ref. [81].
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Expectation Values
The expectation value of any operator reads in the MPS-MPO form as follows:

⟨Ψ|̂|Ψ̄⟩ = ∑
a′

1 ,…,a′
L−1

a1 ,…,aL−1
𝜎𝜎′

(M𝜎1
1a1

· · ·M𝜎L
aL−11)

∗
∑

b1 ,…,bL−1

W𝜎1𝜎
′
1

1b1
· · ·W𝜎L𝜎

′
L

bL−11(M̄
𝜎′1
1a′

1
· · · M̄𝜎′L

a′
L−11) (7.29)

The sum may be regrouped to (analogously to Eq. (7.22)),

⟨Ψ|̂|Ψ̄⟩ = ∑
aL−1a′

L−1bL−1
𝜎L𝜎′L

M𝜎L∗
1aL−1

W𝜎L𝜎
′
L

bL−11

⎛⎜⎜⎜⎜⎝
…

∑
a1a′

1b1
𝜎2𝜎′2

M𝜎2∗
a2a1

W𝜎2𝜎
′
2

b1b2
×

×
⎛⎜⎜⎝
∑
𝜎1𝜎

′
1

M𝜎1∗
a11 W𝜎1𝜎

′
1

1b1
M̄𝜎′1

1a′
1

⎞⎟⎟⎠ M̄𝜎′2
a′

1a′
2
· · ·

⎞⎟⎟⎠ M̄𝜎′L
a′

L−11, (7.30)

where we begin contracting the tensors from the first site and continue to the right. This can be
turned into a recursive equation with

𝕃b0
a0a′

0
= 1, (7.31)

𝕃b1
a1a′

1
=
∑
𝜎1𝜎

′
1

M𝜎1∗
a11 W𝜎1𝜎

′
1

1b1
M̄𝜎′1

1a′
1
, (7.32)

𝕃bl
ala′

l
=

∑
al−1a′

l−1bl−1
𝜎l𝜎

′
l

M𝜎l∗
alal−1

W𝜎l𝜎
′
l

bl−1bl
𝕃bl−1

al−1a′
l−1

M̄𝜎′l
a′

l a
′
l−1
, (7.33)

𝕃bL
aLa′

L
= ⟨Ψ|̂|Ψ̄⟩. (7.34)

We refer to 𝕃 as the left boundary. Similarly, a right boundary ℝ may be defined as

ℝbl−1
a′

l−1al−1
=

∑
ala′

l bl−1
𝜎l𝜎

′
l

M̄𝜎l
a′

l−1a′
l
W𝜎l𝜎

′
l

bl−1bl
ℝbl

a′
l al

M𝜎l∗
alal−1

(7.35)

by starting the tensor contraction in Eq. (7.30) at the last site instead of the first and proceeding
to the left. The expectation value ⟨Ψ|̂|Ψ̄⟩ may then be calculated at any site l from left and right
boundaries as

⟨Ψ|̂|Ψ̄⟩ = ∑
ala′

l bl

𝕃bl
ala′

l
ℝbl

a′
l al
. (7.36)

The notion of the left and right boundaries, especially their recursive definition, is tightly con-
nected with a sweep in the MPS-MPO formulation of DMRG, described in the next Section. Left
and right boundaries are usually constructed from the left- and right-normalized matrices, respec-
tively, which is a requirement for the derivation of the eigenvalue equations used in the sweep
procedure.

7.2.3 MPS-MPO Formulation of DMRG

With the help of MPS and MPO, it is possible to express the DMRG algorithm as a variational
problem. The ground state search may be formulated as a sequential variational optimization of the
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expectation value of the superblock Hamiltonian ⟨Ψ|Ĥ|Ψ⟩ with respect to elements of the matrices
M𝜎l at one site l at a time, under the constraint that Ψ is normalized, i.e., as an optimization of the
following Lagrangian functional with a constraint [82]:

 = ⟨Ψ|Ĥ|Ψ⟩ − 𝜆(⟨Ψ|Ψ⟩ − 1). (7.37)

To arrive at the eigenvalue equation, we first insert Eq. (7.34) into Eq. (7.36):

⟨Ψ|̂|Ψ⟩ = ∑
ala′

l bl

∑
al−1a′

l−1bl−1
𝜎l𝜎

′
l

M𝜎l
alal−1

W𝜎l𝜎
′
l

bl−1bl
𝕃bl−1

al−1a′
l−1

M𝜎′l
a′

l a
′
l−1
ℝbl

a′
l al
. (7.38)

Taking the first derivative of Eq. (7.37) with respect to M𝜎l
al−1al

(employing Eqns. (7.22) and (7.38)),
assuming𝕃 andℝ are formed from the left- and right-normalized matrices, respectively, and setting
it to zero, we arrive at the eigenvalue equation∑

al−1a′
l−1bl−1bl
𝜎′l

W𝜎l𝜎
′
l

bl−1bl
𝕃bl−1

al−1a′
l−1

M𝜎′l
a′

l a
′
l−1
ℝbl

a′
l al

= 𝜆M𝜎l
al−1al

. (7.39)

We may reshape it into a canonical eigenvalue problem H𝑣 = 𝜆𝑣 by setting

H(𝜎lal−1al)(𝜎′l a′
l−1a′

l )
=

∑
bl−1bl

W𝜎l𝜎
′
l

bl−1bl
𝕃bl−1

al−1a′
l−1
ℝbl

a′
l al

(7.40)

and

𝑣(𝜎lal−1al) = M𝜎l
al−1al

. (7.41)

Sweeping in the MPS-MPO Formulation
The sweep procedure in the variational DMRG formulation then proceeds as follows. Starting from
a guess MPS in the right-canonical form, we calculate all expressions for the right boundaries ℝ.
Then, from site l = 1 to L − 1, we need to

● solve the eigenvalue equation (7.39) for M𝜎l

● left-normalize M𝜎l – obtain A𝜎l from U and multiply SV† into M𝜎l+1 .
● calculate 𝕃bl

a′
l al

and move one site to the right on the lattice.

At site l = L, the procedure is reversed, so that for sites l = L to 2 we proceed as follows:

● solve the eigenvalue equation (7.39) for M𝜎l

● right-normalize M𝜎l – obtain B𝜎l from V† and multiply US into M𝜎l−1 .
● calculate ℝbl

a′
l al

and move one site to the left on the lattice.

The sweep procedure is schematically illustrated in Figure 7.4 for one-site DMRG (see below). Due
to the normalization procedure, the wave function is always in the mixed-canonical form.

One-Site and Two-Site DMRG
The above MPS-MPO formulation has been described for the optimization of a single site
only, whereas the DMRG algorithm in the renormalization group formulation, as described in
Section 7.2.1, features two sites. It is, however, possible, to modify the algorithm to optimize
two sites simultaneously by introducing two modifications to the single-site algorithm. The first
modification is introduced in the eigenvalue equation. We introduce the two-site MPS tensor

P𝜎l𝜎l+1
al−1al+1

=
∑

al

M𝜎l
al−1al

M𝜎l+1
alal+1

(7.42)
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Figure 7.4 Illustration of sweeps for one-site DMRG in the MPS-MPO formulation.

and the two-site MPO tensor

V̂
𝜎l𝜎l+1𝜎

′
l 𝜎

′
l+1

bl−1bl+1
=
∑

bl

Ŵ𝜎l𝜎
′
l

bl−1bl
Ŵ

𝜎l+1𝜎
′
l+1

blbl+1
(7.43)

and substitute the corresponding tensors in Eq. (7.39). If we consider the local spaces 𝜎l𝜎l+1 as a
single 16-dimensional local space 𝜏l,l+1, the new eigenvalue equation will become∑

a′
l−1a′

l+1bl−1bl+1
𝜏′l,l+1

V
𝜏l,l+1𝜏

′
l,l+1

bl−1bl+1
𝕃bl−1

al−1a′
l−1

P
𝜏′l,l+1

a′
l−1a′

l+1
ℝbl+1

a′
l+1al+1

= 𝜆P𝜏l,l+1
al−1al+1

. (7.44)

The second modification to the single-site DMRG algorithm affects the normalization step. Instead
of left- or right-normalization, after the solution of the eigenvalue equation, the two-site tensor is
again split into M𝜎l

al−1al
and M𝜎l+1

alal+1
with the help of the truncated SVD. We first reshape P𝜎l𝜎l+1

al−1al+1
into

a matrix P(𝜎lal−1)(𝜎l+1al+1) and then perform the SVD

P(𝜎lal−1)(𝜎l+1al+1) =
∑

sl

U(𝜎lal−1)sl
Sslsl

V†
sl(𝜎l+1al+1)

(7.45)

To construct M𝜎l
al−1al

and M𝜎l+1
alal+1

, we retain only m singular values in S, yielding Salal
. Now, the M

matrices are obtained by reshaping U and SV†:

M𝜎l
al−1al

= U(𝜎lal−1)sl
(7.46)

M𝜎l+1
alal+1

= 1∑m
ãl=1 Sãlãl

Salal
V†

al(𝜎l+1al+1)
(7.47)
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where in Eq. (7.47) the matrix elements have been scaled with the sum of the retained singular
values

∑
ãl

Sãlãl
for normalization. From the sum of the retained singular values we may derive the

truncation error 𝜀 [60]

𝜀 = 1 −
m∑

ãl=1
Sãlãl

(7.48)

which allows us to estimate the accuracy of the calculation.
Note how we perform truncation here in the two-site DMRG algorithm only: in the single-site

algorithm, there is no truncation, but only a left- or right-normalization step at this point. This turns
out to be a large disadvantage of the single-site algorithm. In the two-site algorithm, at each trun-
cation step, m and therefore the dimension of the al and al+1 indices may be updated: the basis in
which the variational search during the DMRG optimization is performed, therefore, is also opti-
mized. This guarantees variational flexibility and avoids local energy minima. In the single-site
algorithm, m is determined prior to the optimization during the construction of the MPS guess and
is kept fixed during the whole optimization. This leads to a slower convergence and a large tendency
to get stuck in local minima [57]. It is, however, possible to introduce truncation at the normaliza-
tion step also in single-site DMRG by constructing a reduced density matrix as in the renormal-
ization group formulation (cf. Eq. (7.53)), adding noise [47] or a perturbative correction [83] to
it and performing the truncation based on the perturbed reduced density matrix. The majority of
quantum chemical calculations, however, employ the two-site DMRG algorithm due to the afore-
mentioned better convergence properties. The two-site algorithm is also the closest to the original
renormalization group formulation.

7.2.4 Connection between the Renormalization Group and the MPS-MPO
Formulation of DMRG

Consider an MPS in a mixed-canonical representation with a two-site tensor at sites l and l + 1:

|Ψ⟩ = ∑
𝜎,a1 ,…,aL−1

A𝜎1
1a1

· · ·A𝜎l−1
al−2al−1

P𝜎l𝜎l+1
al−1al+1

B𝜎l+2
al+1al+2

· · ·B𝜎L
aL−11|𝜎⟩. (7.49)

We define MPSs that represent two states on the sublattices 𝜎1 … 𝜎l−1 and 𝜎l+2 … 𝜎L|al−1⟩ = ∑
𝜎1…𝜎l−1,a1…al−2

A𝜎1
1a1

· · ·A𝜎l−1
al−2al−1

|𝜎1 … 𝜎l−1⟩ (7.50)

|bl+1⟩ = ∑
𝜎l+2…𝜎L ,al+2…aL

B𝜎l+2
al+1al+2

· · ·B𝜎L
aL−11|𝜎l+2 … 𝜎L⟩ (7.51)

and insert Eqs. (7.50) and (7.51) into Eq. (7.49). With the relation |𝜎⟩ = |𝜎1 … 𝜎l−1⟩⊗ |𝜎l⟩⊗|𝜎l+1⟩⊗ |𝜎l+2 … 𝜎L⟩, we arrive at

|Ψ⟩ = ∑
𝜎l ,𝜎l+1 ,al−1,al+1

P𝜎l𝜎l+1
al−1al+1

|al−1⟩⊗ |𝜎l⟩⊗ |𝜎l+1⟩⊗ |bl+1⟩ (7.52)

We immediately recognize the equivalence of Eq. (7.52) and Eq. (7.9) and the lattice partitioning
from Figure 7.1: the sublattices 𝜎1 … 𝜎l−1 and 𝜎l+2 … 𝜎L and sites l and l + 1 correspond to the sys-
tem, environment and the active sites a and b, respectively. The mixed-canonical representation
ensures the orthogonality of the bases |al−1⟩ and |bl+1⟩.

The solution of the eigenvalue equation (7.44) is equivalent to diagonalizing the Hamiltonian
and obtaining coefficients cij in Eq. (7.9): if we reshape the two-site tensor P𝜎l𝜎l+1

al−1al+1
into a matrix P
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with matrix elements P(𝜎lal−1)(𝜎l+1al+1), we see that the first combined index (𝜎lal−1) corresponds to i
in cij and the second combined index (𝜎l+1al+1) corresponds to j. The reduced density matrix 𝝆

s/e is
simply given as the product PP†. By definition of the matrix multiplication we obtain

(PP†)ii′ =
∑

j
PijP

†
ji′ (7.53)

which is recognized as equivalent to Eq. (7.10). Inserting the SVD of P in this equation

PP† = USV†(USV†)† = USV†VS†U† = USS†U† = U𝜆U†

we arrive at the eigendecomposition of the reduced density matrix PP†. Hence, the matrix U which
contains eigenvectors of the reduced density matrix (and which is used in the decimation step in
the renormalization group formulation of DMRG) can be equally obtained with the SVD of P.

The left- and right-boundary propagation in the MPS-MPO formulation correspond to basis
transformations of the operators and to the shift of the system and the environment blocks in
the renormalization group formulation. However, these procedures are not strictly equivalent:
in the renormalization group formulation, the operator representation (and, in particular, the
Hamiltonian) are always dependent on the basis of the system and the environment block. In
the MPS-MPO formulation the operators are constructed independently of the wave function
optimization, i.e., the bi indices in the MPO representation (cf. e.g., Eq. (7.24)) are determined
during the MPO construction and remain fixed throughout the whole optimization process.
This is the main advantage of the MPS-MPO formulation: the MPO construction is completely
independent of the sweep procedure, which allows for easier implementation of various operators,
as well as the calculation of expectation values of arbitrary operators independently of the wave
function optimization.

7.2.5 Developments to Enhance DMRG Convergence and Performance

To accelerate DMRG calculations, and to gain access to even larger active orbital spaces, several
approximations to DMRG have been devised. Quadratic scaling DMRG [63, 84] exploits the local-
ity of the two-electron integrals in a localized basis and employs pre-screening, which removes
renormalized operators based on integrals that are on sites too far away from each other on the
lattice and vanish. The method works particularly well for elongated systems, where the integrals
decay quickly in one dimension.

Ren et al. [85] devised the inner space perturbation theory, which replaces the exact optimization
of M𝜎l by an approximate solution with perturbative correction. A conceptually similar approach
is followed in perturbative DMRG (p-DMRG) of Guo et al. [86] Here, a perturbative correction is
applied on top of a converged DMRG wave function obtained for a small m.

All of the three algorithms improve the convergence compared to standard DMRG, especially for
small m values, but at a price of not being fully variational anymore.

7.3 DMRG and Orbital Entanglement

The DMRG algorithm provides means for characterizing the wave function in terms of measures
from quantum information theory [87]. Consider a DMRG bipartition of the system (Eq. (7.9))
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where the system |i⟩ consists only of one orbital and the environment |j⟩ incorporates all other
orbitals. The reduced density matrix (Eq. (7.10)) is then referred to as a one-orbital RDM (1o-RDM),
and it is possible to define a von-Neumann-type entropy, namely the single-orbital entropy s(1)i
based on its eigenvalues 𝜔𝛼,i [88–91]:

s(1)i = −
4∑
𝛼=1

𝜔𝛼,i ln𝜔𝛼,i (7.54)

Since |i⟩ refers to only one spatial orbital, the dimension of the 1o-RDM is 4 × 4, corresponding to
the four single-orbital basis states {|−⟩, |↑⟩, |↓⟩, |↑↓⟩}, and 𝛼 therefore runs over the four eigenval-
ues of the 1o-RDM.

The single-orbital entropy quantifies the deviation of the state |i⟩ from a pure state (correspond-
ing to one of the four local basis states), and, at the same time, the entanglement of the orbital i
with all other orbitals, i.e., its contribution to the multi-configurational character of the state. If the
orbital i shows the same occupation in all Slater determinants of the total wave function, the state|i⟩ will be pure and correspond to that occupation, yielding a zero s(1)i. If the occupation of orbital
i differs for various Slater determinants, the state |i⟩ will have contributions from different basis
states and will, therefore, deviate from a pure state, leading to a non-zero s(1)i.

Analogously, we may introduce a two-orbital entropy s(2)ij for a pair of orbitals i and j by extend-
ing the system in Eq. (7.9) to two orbitals and constructing the two-orbital reduced density matrix
(2o-RDM):

s(2)ij = −
16∑
𝛼=1

𝜔𝛼,ij ln𝜔𝛼,ij (7.55)

where 𝛼 runs over the 16 eigenvalues of the 2o-RDM, corresponding to 16 possible basis states for
two orbitals. Subtracting the two-orbital entropy from the two single-orbital entropies, we obtain
the mutual information Iij

Iij =
1
2
(s(1)i + s(1)j − s(2)ij)(1 − 𝛿ij) (7.56)

where we follow the definition of Iij from Rissler et al. [89], noting that a definition with an inverted
sign can also be found in the literature (see, e.g., Refs. [92, 93]).

Originally introduced for improving the convergence of DMRG calculations, single-orbital
entropy and mutual information have since found numerous applications in theoretical physics
and chemistry [94]. Examples are the characterization of static and dynamic correlation in
molecules with a multi-configurational character [90, 95] and the automated active space selection
for multi-configurational calculations [96–98]. We have successfully applied the automated active
space selection to several multi-configurational studies: characterization of novel dinuclear
Ir(IV,V) complexes [99], elucidation of a N–I bond activation, a key step in the catalytic cycle of a
photoactivated iodine-mediated C–H amination [100], multi-configurational perturbation theory
calculations on dissociation reactions of transition metal complexes [101], and for the exploration
of reaction coordinates and excited states [102]. In addition, we have developed a multi-reference
diagnostic based on the orbital entanglement measures [103].

Note that it is also possible to define the 1o-RDM and 2o-RDM in terms of the traditional
n-particle reduced density matrices [91–93] and may, in principle therefore, be obtained with any
quantum chemical method.
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7.4 DMRG in Practice

7.4.1 Calculating Excited States with DMRG

The original ansatz for calculating excited states in the traditional formulation involves the
calculation of several eigenstates of the superblock Hamiltonian and employing an average
reduced density matrix for all states (Eq. (7.10)) for the decimation step [66, 74, 104]. This
algorithm is referred to as state-averaged DMRG (not to be confused with the state-averaged
DMRG-SCF, where the average orbitals are optimized, just as in state-averaged CASSCF). Alter-
natively, in the MPS-MPO formalism one may employ a state-specific algorithm, which optimizes
each state individually, but orthogonalizes the solution of the eigenvalue problem against lower
excited states [81, 105]. Further algorithms include the harmonic Davidson algorithm [84], which
is able to target specific excited states or regions in the spectrum, or calculate excited states with
the linear response formalism [104].

7.4.2 Factors Affecting the DMRG Convergence and Accuracy

Initial Guess
The DMRG algorithm may converge with a random initial guess, but its convergence may be far
from optimal. By applying several techniques, one may accelerate the convergence and decrease
the required number of renormalized states m [88, 106] to reach convergence. As mentioned in
Section 7.2.3, one, for example, may add noise [47] or a perturbative correction [83] to the reduced
density matrix (Eq. (7.10) or (7.53)) before renormalization to prevent the algorithm from getting
stuck in a local minimum and accelerate convergence. Alternatively, a guess may be obtained from a
chemically sound wave function, e.g., consisting of one or several Slater determinants [107]. Legeza
and Sólyom [88] have developed CI-DEAS (CI-guided dynamically extended active space) – a proce-
dure which constructs a guess with the most important Slater determinants based on entanglement
information from a preliminary DMRG calculation.

Orbital Choice and Ordering
Due to the inherent structure of an MPS and the sweep procedure that optimizes the sites sequen-
tially, the convergence of DMRG is greatly affected by the orbital ordering. Legeza and Sólyom
[88] have suggested using the ordering based on quantum information measures and to place the
strongly correlated orbitals next to each other and towards the middle of the lattice. One may
calculate a weighted graph from the sites and their mutual information and construct a so-called
Fiedler vector [108] of this graph, which can then be exploited for the orbital ordering. A Fiedler
ordering may, however, lead to a poorer convergence than even a random ordering if the orbitals
are not ordered in groups of the same irreducible representations [108]. Alternatively, instead of
exploiting the mutual information, one may base the Fiedler ordering on the absolute values of
the exchange integral matrix elements between orbital pairs [71]. As an alternative for the Fiedler
ordering, genetic-algorithm-based ordering has been proposed [53, 71].

The DMRG convergence (and energy), of course, also depends on the kind of orbitals employed
in the calculation. For this reason, just as CI in a truncated orbital space, DMRG may be com-
bined with the orbital optimization procedure, resulting in the DMRG self-consistent field method
(DMRG-SCF) [56, 109–111]. However, in general, a DMRG wave function is not invariant under
orbital rotations (unless a large m is used), and hence the energy also depends on which types
of orbitals are employed. In addition to canonical or natural orbitals, localized or split-localized
orbitals are often used [46, 47, 51, 63, 71].
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Number of Renormalized States
The number of renormalized states m is the principal parameter in DMRG that controls the accu-
racy and the computational resources required. Hence, choosing the right m is always a tradeoff
between speed and accuracy. Typically, a value of m between 100 and 10000 is used for the electronic
structure calculations, depending on active space size, initial guess, and the orbital ordering.

Unfortunately, the entanglement generally increases with the size of the orbital space and there-
fore m must be also increased to retain the same accuracy.

The truncation error 𝜀 (Eq. (7.48)) may be used to estimate the accuracy of a DMRG calculation.
As the truncation error decreases with the increasing m, it is possible to perform DMRG calcula-
tions with several different m values and obtain an extrapolated energy Eext for a truncation error
limit of zero, which corresponds to m → ∞ with a function fit. The following fit function has been
suggested by Legeza et al. [60]:

ln
EDMRG − Eext

Eext
= a ln 𝜀max + b (7.57)

where EDMRG are the energies obtained from calculations with different m values and 𝜀max is the
maximum truncation error from the corresponding calculation.

Instead of fixing m, one may start with a predefined truncation error 𝜀max and adjust m during
every SVD truncation step (Eq. (7.47)) so that the truncation error does not exceed the predefined
value. This approach, dubbed dynamic block state selection (DBSS) [60], allows to converge the
energy up to a target accuracy. Instead of 𝜀max, it is also possible to have an entropy-based cutoff
criterion [112], or to apply an iterative Richardson extrapolation scheme [61].

7.4.3 Post-DMRG Methods for Dynamic Correlation and Environment Effects

Although DMRG is capable of attaining an almost full-CI accuracy for active spaces up to 100
electrons in 100 orbitals in certain cases, this will usually not be sufficient to describe dynamic
correlation in many large systems [113], where even thousands of orbitals may be correlated.
Therefore, in the spirit of the traditional multi-configurational methods such as CASSCF,
one may use DMRG-(SCF) to capture the static correlation of the system and complement
it with an a-posteriori method to describe dynamic correlation. As for the CASSCF method,
multi-configurational second-order perturbation-theory constitutes the first choice for the
post-DMRG methods to describe dynamic correlation. Hence, implementations of the complete
active space second-order perturbation theory and of the n-electron valence state second-order
perturbation theory based on a DMRG reference wave function (DMRG-CASPT2 [114–117] and
DMRG-NEVPT2 [118, 119]) have emerged: they are based on the reduced density matrix-based
formulations of the perturbation theories and obtain the reduced density matrix elements from
the DMRG wave function. This dependence on the reduced density matrices, in particular,
higher-order reduced density matrices, turns out to be one of the largest drawbacks of these meth-
ods, especially when a reference wave function with a large active space is employed. For example,
CASPT2 requires certain elements of the four-particle reduced density matrix (4e-RDM), while
NEVPT2 requires full 4e-RDM, the evaluation of which scales as L8. Due to this steep scaling, it is
prohibitively expensive to evaluate the 4e-RDM for active space sizes with more than 30 orbitals.
Higher-order RDMs may be approximated with the cumulant approximation [120–122]. The
cumulant approximation for the RDMs has been implemented for NEVPT2 [123], DMRG-CASPT2
[116, 124] and also for the internally-contracted [125, 126] and the externally-contracted [127]
multi-reference configuration interaction (DMRG-icMRCI and DMRG-ecMRCI, respectively). An
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extensive benchmark study of cumulant-approximated DMRG-CASPT2 has been conducted by
Phung et al. [128], stating that errors do not exceed 1–2 kcal mol−1 for active spaces with less than
24 active orbitals, but becomes more pronounced for larger active spaces. However, Zgid et al.
[123] have shown that the cumulant approximation may introduce false intruder states in both
CASPT2 and NEVPT2, as well as discontinuities in the potential energy surfaces. It is, therefore,
even more welcome to see the development of the perturbation theory methods that avoid the
higher-order RDMs altogether: the MPS perturbation theory by Sharma et al. [129, 130], which
exploits the MPS structure and the sweep algorithm for both the reference and the first-order
wave function; its combination with the internally-contracted NEVPT2 approach by the same
authors [131]; the time-dependent formulation of NEVPT2 by Sokolov et al. [132, 133]; and
the projected approximation by Roemelt et al. [134] Another method which does not rely on
higher-order RDMs is the canonical transformation theory by Chan et al. [135–141], who employ
an approximate similarity transformation of the Hamiltonian, transferring the complexity and the
requirement to approximate the description of the dynamic correlation from the wave function to
the Hamiltonian.

Density functional theory (DFT) has also been used in combination with DMRG to handle
dynamic correlation. In particular, the short-range DFT, introduced by Savin et al. [142, 143] and
applied in MCSCF calculations by Fromager et al. [144] separates the two-electron interaction into
long-range and short-range parts. The short-range part is treated by DFT and the long-range part
by wave function theory, e.g., a multi-configurational method, resulting in multi-configurational
short-range DFT (MC-srDFT) [144–146]. We implemented an MC-srDFT variant with a DMRG
reference wave function (DMRG-srDFT) [147]. Interestingly, DMRG-srDFT results are much less
sensitive to the size of the active space, compared to standard CASSCF or DMRG calculations.

Veis et al. [148, 149] have combined the tailored coupled cluster (TCC) method with DMRG
(DMRG-TCC). DMRG-TCC features a single-reference coupled cluster ansatz, where a part of the
amplitudes are obtained from a preceeding DMRG calculation and are kept fixed in the CC proce-
dure. For several multi-reference problems, the DMRG-TCCSD showed a better performance than
standard single-reference CCSD. Another new development combining the coupled-cluster theory
and DMRG is the multi-reference linearized coupled cluster theory based on MPS by Sharma and
Alavi [150], which follows a similar ansatz to MPS-PT.

In addition to post-DMRG methods describing dynamic correlation, embedding schemes with
DMRG have been developed. A DMRG-in-DFT embedding scheme [151] and an implementation
of DMRG combined with polarizable embedding (PE) has recently been developed in our group
[152].

Multi-configurational calculations on large systems, in addition to the requirement of larger
active spaces, must also overcome the bottleneck of the increasing basis set size, and in particular,
the bottleneck of handling the increasing number of two-electron integrals. Both well-established
methods such as the resolution of the identity (RI) approximation [153–157] or the Cholesky
decomposition of two-electron integrals [158–160], as well as novel domain-based pair nat-
ural orbital approximation [161] have found their way into multi-configurational methods
and allow multi-configurational calculations to be performed on systems with over 5000 basis
functions.

7.4.4 Analytical Energy Gradients and Non-Adiabatic Coupling Matrix Elements

Many phenomena, especially in photochemistry, rely on the optimization of excited state struc-
tures, conical intersections, potential energy surface crossings and ab initio molecular dynamic
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simulations. They require not only the calculation of the ground-state and excited-state energies,
but also of energy gradients and non-adiabatic couplings. Analytical energy gradients with respect
to a perturbation x of a wave function which is fully variational with respect to all its parameters,
may be calculated according to the Hellmann–Feynman theorem:

dEΨ

dx
=
⟨
Ψ
||||𝜕Ĥ
𝜕x

||||Ψ
⟩

=
∑

ij

𝜕hij

𝜕x
𝛾ij +

1
2
∑
ijkl

𝜕Vijkl

𝜕x
Γijkl, (7.58)

where 𝜕hij∕𝜕x and 𝜕Vijkl∕𝜕x are the one- and two-electron integral derivatives, and 𝛾ij Γijkl respec-
tively are elements of the one- and two-particle RDMs. The former are of no concern to us since
these are required in every analytical gradient implementation, and the latter may be obtained
from a converged DMRG wave function with Eq. (7.30). However, the DMRG wave function is
fully variational with respect to all of its parameters only in the case of a single-state DMRG-SCF
wave function, i.e., when both the orbitals and the MPS are variationally optimized. If this is not
the case, the RDMs in Eq. (7.58) must be replaced with the so-called effective RDMs 𝜸

e and 𝚪e,
respectively,

𝜸
e = 𝜸 + 𝜸

o + 𝜸
MPS, (7.59)

𝚪e = 𝚪 + 𝚪o + 𝚪MPS, (7.60)

where the matrices with the superscripts o and MPS denote the contributions from the
non-variationality of the wave function with respect to the orbitals and the MPS, respec-
tively. These can be calculated with the help of a Lagrangian [162–164], and the corresponding
Lagrange multipliers are obtained from the solution of the coupled-perturbed MCSCF equations
[165, 166], whose form is identical to Eq. (6.156) in Chapter 6 of this book:( ccE(2) ocE(2)

coE(2) ooE(2)

)(
S
R

)
= −

( cE(1)

oE(1)

)
. (7.61)

For energy gradients, cE(1) is zero, R are orbital Lagrange multipliers, and for DMRG wave functions
S are MPS Lagrange multipliers. For a state-specific DMRG (not DMRG-SCF) gradient, the MPS
contribution in Eqs. (7.59) and (7.60), as well as S in Eq. (7.61) vanish, and Eq. (7.61) must be solved
only for the orbital block. Hu and Chan [167] first presented such an implementation of analytical
DMRG gradients.

In the case of a state-averaged DMRG-SCF wave function (cf. Chapter 6), the wave function is
no longer variational, neither with respect to orbitals nor to the MPS, and hence Eq. (7.61) must be
solved in its full form. This raises the question of the parameter space, or, in other words, which
basis defines S? For comparison, in state-averaged CASSCF analytical gradients S is defined in the
basis of configuration state functions (CSFs), which is not possible for a DMRG wave function. In
our recent work [168], we addressed this problem and presented an implementation of approximate
state-averaged DMRG-SCF analytical gradients. Rather than employing the space encompassing all
MPS tensors (which would be very large and highly redundant), we may choose a site (preferably in
the middle of the lattice), and express the MPS at the mixed-canonical form at this site, analogously
to Eq. (7.52):

|Ψ⟩ = ∑
𝜎lal−1,al

M𝜎l
al−1al

|al−1⟩⊗ |𝜎l⟩⊗ |bl⟩. (7.62)

The MPS Lagrange multipliers S may now be defined in the basis |al−1⟩⊗ |𝜎l⟩⊗ |bl⟩ and in the
same parameter space as the MPS tensor M𝜎l

al−1al
. With this definition we may obtain expressions
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for S similar to those found in the CASSCF analytical gradient formulation and similarly solve
Eq. (7.61). An expression for the non-adiabatic coupling matrix elements between states is obtained
in a similar manner to gradients [169–171]: the main difference is that transition density matrices
between the states in question instead of state-specific density matrices are employed in Eqs. (7.59)
and (7.60).

7.4.5 Tensor Network States

The one-dimensional structure of the DMRG lattice and the MPS is naturally best for describing
one-dimensional systems, or at least systems, in which the correlation is between neighboring sites.
In fact, the most accurate and the largest calculations have been performed for one-dimensional
or quasi one-dimensional systems [63]. (see Section 7.5) Nevertheless, DMRG still works well in
describing the correlation in molecules (which is in general, three-dimensional), but in general
usually requires a much larger m value to obtain an accurate solution. One would, however, expect
a higher-dimensional lattice to capture the multi-dimensional correlation better, and therefore,
several multi-dimensional generalizations of MPS have been designed – tensor network states (TNS)
with various topologies.

Many TNS topologies have been developed (see e.g., Refs. [172–175] and references therein) and
have found applications in physics, however, only two types have been applied in quantum chem-
istry so far [176]: the complete graph tensor network states (CGTNS) [177–179], where in a lattice
every site is connected to all other sites and the tree tensor network states (TTNS) [108, 180–183]
featuring a tree topology. Figures 7.5(b) and (c) show topologies of example CGTNS and TTNS,
respectively.

The more complicated topology of TNS, while being its largest advantage when it comes to
capturing correlation, is also its largest disadvantage: the optimization of the parameters of a
high-dimensional tensor network is highly non-trivial and is of much higher numerical cost. Many
TNS, in particular CGTNS cannot be optimized variationally and one must resort to numerical
techniques such as Monte-Carlo optimization [178]. Although TTNS allow DMRG-like variational
optimization algorithms [183] the scaling is still worse than that of traditional DMRG. For these
reasons, TNS in quantum chemistry have not yet been established and the progress in the field of
TNS in recent years has been fairly limited.

Figure 7.5 (a) Graphical representation of an MPS. The circles denote tensors, the virtual indices ai are
contracted over and are denoted by the connecting lines, the physical indices 𝜎i are denoted with the
unconnected lines. (b) An analogous representation of an example topology of CGTNS and (c) for TTNS.
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DMRG and post-DMRG methods have become powerful tools in the multi-configurational toolbox.
The majority of DMRG applications can be divided into three classes. The first class constitutes the
classical benchmark applications, which are primarily used to demonstrate the applicability and
the performance of the methods. Typical benchmark studies include ground state energies of ethy-
lene and higher polyenes [47, 51, 63, 125, 138, 184, 185], hydrogen chains, rings or two-dimensional
aggregates [46, 47, 56, 57, 63, 186–188], water [42, 47–49, 60, 61, 88, 104, 112, 141, 152, 188, 189],
dissociation curves of N2 [44, 45, 47, 50, 88, 89, 91, 107, 125, 132, 141, 148, 187, 189], the chromium
dimer [44, 53, 58, 75, 107, 110, 114, 115, 118, 132, 148, 150, 187, 189] and relative energies of the
bis-𝜇-oxo and the 𝜇-𝜂2 ∶ 𝜂2-peroxo isomers of Cu2O2 [58, 108, 138, 190].

The second class exploits the one-dimensional nature of DMRG and comprises studies of
strongly correlated problems in pseudo-one-dimensional systems. Examples of applications
belonging to this class are studies of the radical character of polyacenes [184], polyphenylenecar-
benes [191, 192], but also graphene nanoribbons [185] or meta-benzyne [193]. There are also
studies of excited state properties of polyenes [104, 109, 167] and other elongated systems. Most
commonly, in these applications DMRG is used as a standalone method, although post-DMRG
methods such as DMRG-CASPT2 are occasionally used as well [194]. Furthermore, many polyene
studies employ the Pariser–Parr–Pople (PPP) Hamiltonian [40, 41, 195–197], which has also been
employed to study polyphenylenes [198], polyacenes [199], polythiophenes [200, 201], phenyl-
and stilbene-substituted dendrimers [202], graphene nanoribbons [203], and also non-elongated
systems such as porphines and metalloporphines [204, 205].

The final (and, by far, the largest) class of DMRG applications exploits its capability as an approx-
imate CI solver and constitutes applications to a broad range of multi-reference problems which
require a large active space. In these studies DMRG is generally employed with orbital optimiza-
tion (i.e., as the DMRG-SCF method) and is complemented by post-DMRG methods describing
dynamic correlation. Below we discuss some application examples from this class, sorted into
different categories.

Bioinorganic Chemistry
A large number of studies focus on the electronic structure of transition metal complexes and
clusters, the majority of which find their application in bioinorganic chemistry. Although DMRG
should not be applicable to such problems due to its inherent one-dimensional structure, we argued
10 years ago [190] that it still may be superior to traditional approaches.

Biomimetic manganese complexes that mimic the manganese cluster in photosystem II [206]
and find application as water oxidation catalysts [207, 208] have received much attention in studies
with DMRG, due to the strong multi-reference nature of the Mn cluster and its requirement for
a large active space. Binding of first-row diatomics to heme models has been also shown to be
a highly multi-reference problem and a challenging computational task requiring large basis
sets and high-level correlation treatment [209], hence Phung and Pierloot [210] very recently
performed a study on electronic structure and binding energies of Fe and Mn porphyrin-O2
adducts. Metal-nitrosyl bonds, like metal-O2 bonds show an intricate electronic structure and
a strong multi-reference character (NO is a well-known non-innocent ligand): several studies
of metal nitrosyl complexes have been performed in our group in the past [95, 119, 211]. Other
bioinorganic chemistry-related studies include reaction mechanism studies on the non-heme iron
active site of Δ9 desaturase [212], diferrate-mediated water oxidation [213], 𝜂2 metal-ethene adduct
formation [214] or on H2 binding to the active site of the NiFe hydrogenase [215]. In addition to the
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electronic structure and energies, spin densities [211, 216] and magnetic couplings [208, 217–221]
are also of interest. A special mention is warranted of studies of spin-state energetics of spin
crossover compounds [222], which will be described next.

Spin Crossover Compounds
Spin symmetry plays an important role in the electronic structure and reactivity of transition
metal complexes. Many transition metal complexes (dubbed spin crossover (SCO) compounds)
[223–227] have close-lying states of different spin multiplicities and may undergo spin crossover
even upon heating. Even if a transition metal complex does not show spin crossover behav-
ior, different spin states may still be important for its reactivity [228, 229]. Hence, the correct
description of the spin and electronic structure of the ground and the lower excited states is
crucial for the chemistry of transition metal complexes. It is, however, equally challenging
[225–227], given the large multi-reference character in many transition metal complexes, the
energetic vicinity of different spin states in SCO compounds and the resulting high demands
to the accuracy of theoretical methods to even qualitatively predict the correct spin state.
Unsurprisingly, there have been many spin-state studies with DMRG and post-DMRG methods
[104, 119, 126, 128, 190, 215, 222, 230–233]. As an example, below we will present a study on
electronic structure and spin-state energetics of a cobalt tropocoronand complex with DMRG-SCF
and DMRG-NEVPT2, carried out in our group [119].

Tropocoronand ligands (see Figure 7.6(a)) provide a porphyrin-like constrained coordination
environment for metal complexes, tunable by varying length n of the alkyl chain. Transition metal
nitrosyl complexes show intricate electronic structure due to the non-innocence of the NO ligand
and cannot be reliably described by single-reference methods such as density functional theory
[95]. Franz et al. [234] synthesized and characterized cobalt tropocoronand nitrosyl complexes with
n = 3 and 4. They found that the complex with n = 3 ([Co(TC-3,3)NO], Figure 7.6(b) was param-
agnetic, which, however, was in contradiction with a later DFT and experimental reinvestigation
[235]. Based on this controversy and the multi-reference character of the complex, we opted for
a reinvestigation of the electronic structure and the spin-state energetics of [Co(TC-3,3)NO] with
DMRG-SCF and DMRG-NEVPT2 employing Cholesky decomposition of the two-electron integrals
(CD-DMRG-NEVPT2).

Figure 7.6 (a) The tropocoronand ligand; (b) [Co(TC-3,3)NO]. Adapted from Ref. [119].
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Table 7.2 Singlet-triplet energy gap (in kcal mol−1) of [Co(TC-3,3)(NO)] calculated with CD-DMRG-NEVPT2
(abbreviated as NEVPT2) and other methods. Adapted from Ref. [119]. DFT results from Ref. [235] are
provided for the state of an equivalent character.

NEVPT2 DMRG-SCF OLYP [235] PW91 [235] B3LYP-D3 [235]

T1 35.0 38.6 – – –
T2 36.1 29.6 23.8 25.1 10.4

The S0 state shows the natural orbital occupation numbers (NOON) for the 3dz2 and the 𝜋∗
NO,y

orbitals strongly deviating from 2 or 0, which is a sign of a strong multi-reference character typ-
ical for metal nitrosyl complexes [95]: also the T1 state shows NOON for the 3dyz and the 𝜋∗

NO,y
close to 1.5 and 0.5, which corresponds to a situation between a d7 and d8 cobalt and neutral and
cationic NO. This strongly differs from the state character described by the DFT calculation in the
previous study by Hopmann et al. [235], which characterizes T1 state as d7 Co and neutral NO.
Also the character of T2 in our work differs from that in Ref. [235], even though it hardly shows
any multi-configurational character according to NOONs. The single-configurational nature of the
Kohn–Sham DFT does not allow for an adequate description of multi-reference states, and there-
fore the discrepancies between DFT and our DMRG-SCF state characters are not surprising.

Having characterized the electronic structure of the states in [Co(TC-3,3)(NO)] with DMRG-SCF,
we also calculated the S0–T1 and S0–T2 energy gaps with CD-DMRG-NEVPT2, which are presented
in Table 7.2. Although NEVPT2 has been presented in two different formulations in the original lit-
erature [236–238] – the “strongly contracted” and the “partially contracted” formulation, we have
found that the “partially contracted” formulation shows numerical instabilities when used with
a DMRG reference wave function obtained with small m values, whereas the “strongly contract-
ed” formulation does not show this behavior. Therefore, all NEVPT2 results reported below are
obtained with the “strongly contracted” formulation.

Both CD-DMRG-NEVPT2 and DMRG-SCF predict S0 as the ground state, agreeing with the new
experimental data and all DFT functionals in the study by Hopmann et al. [235], contradicting
the previous reports of the paramagneticity of the complex. However, the CD-DMRG-NEVPT2
singlet–triplet gaps are at least 10 kcal mol−1 larger than the results obtained with DFT.

Heavy Element Chemistry
Heavy element studies require an adequate treatment of relativistic effects. Both four-component
DMRG [220, 239] and the simplified treatment of scalar relativistic effects with the Douglas–Kroll–
Hess transformation [54, 218] and the spin–orbit coupling with the state-interaction method [219,
221, 240, 241] have been implemented. We have formulated the state-interaction approach for
arbitrary MPS with non-orthogonal MO bases [219], named MPS-SI. The key concept behind the
method is the transformation of the MPS into a biorthonormal basis representation [242], similar
to the state interaction approach by Malmqvist and Roos [243] for CI wave functions. Heavy ele-
ment systems studied by DMRG include CsH [54, 91], TlH [220, 239], plutonium oxides [219, 244],
a dysprosium(III) complex [220] or noble-gas coordination reaction to CUO [245].

Photochemistry
Photochemical studies involving DMRG are also abundant. While we have mentioned some
prototypical studies of polyenes and other quasi-one-dimensional systems at the beginning of this
section, there are certainly more. Some studies focus on potential energy curves of diatomics: LiF
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[52], CsH [54] and C2 [246]; others on elucidation of photophysical and photochemical processes
such as the ring opening of spiropyran [247], singlet fission in donor–acceptor copolymers [248],
vinylogous Nazarov-type photocyclization [249], the delayed fluorescence in carbene-metal
amides [250], or the electronic structure of a naphtalene excimer [251]. State-specific analytical
ground- and excited-state gradients for DMRG-SCF wave functions have been developed, allowing
for excited state structure optimizations [167] or the calculation of resonance Raman spectra
[252]. Recently, we have also developed a formulation for analytical gradients for state-averaged
DMRG-SCF wave functions [168]. Below we will discuss the resonance Raman spectra of uracil
from Ref. [252] in more detail.

Resonance Raman (RR) spectroscopy [253, 254] allows the selective observation of vibrational
modes that are associated with a selected electronic transition, providing access to the structure
and dynamics of a particular excited state. Hence, calculations of RR spectra are required for the
interpretation of the experimental studies, enhance our understanding of the RR effect and pro-
vide insights into the nature of the excited state in question. Investigating excited states of DNA
nucleobases gives insights into DNA photostability and photodamage mechanisms [255].

By following the Kramers–Kronig relation [256] and several simplifications, including
(a) neglecting vibronic couplings, (b) considering only one excited state in resonance, (c) inde-
pendent mode displaced harmonic oscillator (IMDHO) model [31–35]), the RR intensities may
be calculated employing the ground state vibrational frequencies, the gradients of the excited
state energy with respect to ground state normal coordinates at the ground-state equilibrium
position and the transition dipole moment between the ground and the excited state (for details,
see Refs. [252] and [254] and references therein).

Previous studies of RR spectra of uracil [254, 257–259] showed the need to obtain an accurate
excited state PES and excited state gradients. For this reason, the RR spectra of uracil in Ref. [252]
have been calculated with TD-DFT (PBE0), CI singles, CASSCF, CASSCF/CASPT2 and DMRG-SCF
employing various active spaces. An incident wavelength of 266 nm and an absorption band max-
imum of 234 nm (corresponding to 5.29 eV, i.e., the excitation energy for the S2 obtained with
TD-DFT) were chosen for all calculations.

First, the spectra were calculated with CASSCF and CASPT2 employing an active space com-
prising 14 electrons in 10 orbitals (14,10), as in the study of Mercier et al. [260] However, a large
discrepancy between the CASSCF and the CASPT2 RR intensities and the S2 excitation energies
(but not S1 excitation energies) was found, which led to the belief that this active space does not
allow for an exhaustive description of the static correlation effects in the S2 state. Therefore, several
larger active spaces have been devised: (14,18) and (14,26), corresponding to the (14,10) active space
augmented with different sets of Rydberg orbitals, (30,26), corresponding to the full valence space
of uracil (but without Rydberg orbitals) and (18,23), a reduced valence space retaining orbitals in
the bonds important for the structural changes during the excitation and the subsequent structure
relaxation in the S2 state.

Figure 7.7 shows the RR spectra for uracil calculated with different methods. In general
the TD-DFT/PBE0 spectrum reproduces the experimental spectrum fairly well, except for the
relative intensities of the peaks above 1400 cm−1. Of the multi-configurational methods, DMRG-
SCF(30,26), not surprisingly, yields best results. The largest discrepancies with the experiment
are found in the low-frequency modes, which are delocalized ring bending/stretching modes (see
Ref. [260] for the peak assignment). In particular, the correct peak intensity ratio of the two most
intensive low-frequency modes at 579 and 789 cm−1 is reproduced only with DMRG-SCF(30,26)
and with PBE0, indicating that only the full-valence (30,26) active space provides a balanced



Figure 7.7 Resonance Raman spectra for uracil, calculated with different methods. Adapted from figures 4 and 5 of Ref. [252].
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description of the electron correlation. Concerning the effect of Rydberg orbitals on the RR inten-
sities, the addition of Rydberg orbitals balances the intensity ratio of the two highest-frequency
peaks which correspond to the carbonyl stretches.

In summary, of the multi-configurational methods, DMRG-SCF(30,26) was found to give the best
qualitative agreement between the calculated and the experimental spectrum. DMRG-SCF(18,23)
spectrum agrees well with DMRG-SCF(30,26), with a notable exception for the intensities of the
low-frequency delocalized modes. These results, therefore, indicate the importance of a choice of
a balanced active space for the multi-configurational calculation.

Vibrational DMRG
In addition to the electronic structure problems in quantum chemistry, vibrational DMRG
(vDMRG) has been developed in our group [261]. vDMRG is based on a vibrational CI ansatz,
where a full CI expansion is carried out in a basis of the harmonic vibrational modes. In analogy
to the full CI of an electronic problem, vDMRG approximates the full vCI solution. As the Hamil-
tonian, an approximate Watson Hamiltonian [262] (i.e., a form of a second-quantized vibrational
Hamiltonian) is employed: the flexibility of the MPS-MPO ansatz allows the construction of
the Watson Hamiltonian as an MPO and performing a subsequent DMRG calculation including
the same formalism (and the implementation) of the DMRG algorithm as for the electronic
problem. vDMRG also closely relates to the vibrational tensor-train approach of Rakhuba and
Oseledets [263].

DMRG Software
Currently, there are five widely-used computer programs available for DMRG calculations in quan-
tum chemistry: QC-DMRG-BUDAPEST by Legeza et al. [60], the program by Kurashige and Yanai [58],
BLOCK by the Chan group [47, 49, 71, 75, 109], CHEMPS2 by Wouters et al. [246] and QCMAQUIS devel-
oped in our group [81, 264]. The last three programs are available for free: BLOCK from Ref. [265],
CHEMPS2 from Ref. [266] and QCMAQUIS from Ref. [267].

All of the DMRG programs require precalculated two-electron integrals and information about
the active orbital space. To obtain these, a general-purpose quantum chemistry programs is usually
involved, or the DMRG calculation is performed employing an interface between a DMRG code and
a general-purpose program.

BLOCK and CHEMPS2 implement the DMRG algorithm in its traditional renormalization group
formulation, although they use MPS to represent the wave function. QCMAQUIS, on the other hand,
presents a DMRG implementation based fully on the MPS-MPO formalism. Other MPS-MPO
implementations have been presented by Nakatani [268] and by Legeza, however they have not
been described in detail in the literature.

7.6 Conclusions

In this chapter, we attempted to give the reader an overview of the concepts, theory, the new
developments in density matrix renormalization group and its applications in quantum chem-
istry. Although originally designed for one-dimensional or quasi-one-dimensional systems, at its
best, DMRG has found applications in many other quantum chemical systems. Together with the
post-DMRG methods it has found its place within the multi-configurational quantum chemistry
methods for large active spaces. The orbital entanglement measures have proven themselves as a
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very valuable concept for the analysis of electron correlation and the automated active space selec-
tion. Although in recent years many new methods to solve the CI problem for large active spaces
have been developed, potentially being competitors for DMRG, the popularity of DMRG-based
methods is still on the rise.
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Abstract

Quantum Monte Carlo methods are first-principle approaches that approximately solve the Schrödinger
equation stochastically. As compared to traditional quantum chemistry methods, they offer important
advantages such as the ability to handle a large variety of many-body wave functions, the favorable scal-
ing with the number of particles, and the intrinsic parallelism of the algorithms which are particularly
suitable to modern massively parallel computers. In this chapter, we focus on the two quantum Monte
Carlo approaches most widely used for electronic structure problems, namely, the variational and diffu-
sion Monte Carlo methods. We give particular attention to the recent progress in the techniques for the
optimization of the wave function, a challenging and important step to achieve accurate results in both
the ground and the excited state. We conclude with an overview of the current status of excited-state
calculations for molecular systems, demonstrating the potential of quantum Monte Carlo methods in
this field of applications.

8.1 Introduction

Quantum Monte Carlo (QMC) methods are a broad range of approaches which employ stochastic
algorithms to simulate quantum systems. They have been used to study fermions and bosons at
zero and finite temperature with very different many-body Hamiltonians and wave functions in
the fields of molecular chemistry, condensed matter, and nuclear physics. While all QMC meth-
ods, despite the diversity of applications, share some core algorithms, we restrict ourselves here to
the two zero-temperature continuum QMC methods1 that are most commonly used in electronic
structure theory, namely, variational (VMC) and diffusion (DMC) Monte Carlo [1–3].

As compared to deterministic quantum chemistry approaches, solving the Schrödinger equation
by stochastic means in VMC or DMC offers several advantages. The stochastic nature of the integra-
tion allows for greater flexibility in the functional form of the many-body wave function employed,
which can for instance include the explicit dependence on the inter-electronic distances. As a con-
sequence, more compact wave functions can be used (the number of determinants needed to get
the same energy is reduced by a few orders of magnitude) and, further, the dependence on the basis

1 A quantum Monte Carlo approach not in real space but in Slater determinant space (i.e., the full configuration
interaction QMC method) is briefly introduced in Chapter 6.

Quantum Chemistry and Dynamics of Excited States: Methods and Applications,
First Edition. Edited by Leticia González and Roland Lindh.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.
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Figure 8.1 Interaction energies of the complexes A–C computed with DMC and density functional theory
with two different dispersion corrections (D3) and the many-body dispersion method (MBD). Adapted from
Ref. [4].

set is much weaker. Even though VMC and DMC are expensive, they have a favorable scaling with
the system size (a mere polynomial N4 in the number of electrons N), which has enabled simula-
tions with hundreds and even thousands of electrons also in condensed matter, where traditional
highly-correlated approaches are very difficult to apply. Finally, the intrinsically parallel nature of
QMC algorithms renders these methods ideal candidates to take advantage of the massively par-
allel computers which are now available. An impressive example of such calculations is shown in
Figure 8.1 where the interaction energy dominated by dispersion is benchmarked with DMC for
remarkably large complexes [4].

That said, when inspecting the literature, it is evident that VMC and DMC methods have tra-
ditionally been employed to calculate mainly total energies and total energy differences as the
computation of quantities other than the energy is more complicated. QMC calculations are, for
instance, generally carried out on geometries obtained at a different level of theory and also the
construction of the many-body wave function and its optimization are not straightforward. Partic-
ular care must in fact be paid to this step since the residual DMC error can be larger than sometimes
assumed in the past, when calculations were anyhow limited to relatively simple wave functions
and it was not feasible to extensively explore the dependence of the results on the choice of wave
function. We will come back to this point later, which is especially relevant for excited states.

The last few years have, however, seen remarkable progress in methodological developments to
overcome these and other limitations, as well as extend the applicability of QMC to larger systems
both in the ground and the excited state. In particular, robust optimization algorithms for the
parameters in the wave function have been developed for ground states [5–8] and extended to the
state-average [9] as well as state-specific [10, 11] optimization of excited states. Importantly, it
has recently become possible to efficiently compute the quantities needed in these optimization
schemes (i.e., the derivatives of the wave function and the action of the Hamiltonian on these
derivatives) at a cost per Monte Carlo step which scales like the computation of the energy
alone [12–14]. Consequently, the determinantal component of a QMC wave function does not
have to be borrowed from other quantum chemical calculations but can be consistently optimized
within VMC after the addition of the correlation terms depending on the inter-electronic distances.
These developments also enable the concomitant optimization of the structural parameters in
VMC even when large determinantal expansions are employed in the wave function [14, 15]. The
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possibility of performing molecular dynamics simulations with VMC forces has also been recently
demonstrated [16, 17].

Researchers have also been actively investigating more complex functional forms [18–22] to
recover missing correlation and allow a more compact wave function than the one obtained with a
multi-determinant component. A local correlation description has also been shown to be a promis-
ing route to achieve smaller expansions and reduced computational costs for ground and excited
states [23, 24]. In parallel, algorithms have been explored for a more automatic selection of the
determinantal component, avoiding the possible pitfalls of a manual choice based on chemical
intuition [15, 25–30]. Importantly, effort has been devoted to develop algorithms for the compu-
tation of quantities other than the energy via estimators characterized by reduced fluctuations as
well as wave function bias [5, 31–36]. In addition to these methodological advances, various tools
have become available to facilitate the calculations, such as tables of pseudopotentials and corre-
sponding basis sets especially constructed for QMC [37–42]. Finally, multi-scale methods have been
proposed to include the effects of a (responsive) environment on an embedded system treated with
QMC [43–48].

After a brief description of the VMC and DMC methods, we will focus here on some of these
recent developments, paying special attention to the algorithms employed to optimize the varia-
tional parameters in the wave function. We will then review relevant work and recent advances in
the calculation of excited states and their properties, mainly for molecular systems. We note that
useful sources for QMC are the introductory book to Monte Carlo methods and their use in quan-
tum chemistry [49], and the reviews on QMC methods and their applications to solids [1, 50–52]
and to non-covalent interactions [53]. A detailed introduction to VMC and DMC can be found in
Ref. [54]. Finite-temperature path integral Monte Carlo methods are covered in Ref. [55].

8.2 Variational Monte Carlo

Variational Monte Carlo is the simplest flavor of QMC methods and represents a generalization
of classical Monte Carlo to compute the multidimensional integrals in the expectation values of
quantum mechanical operators. The approach enables the use of any “computable” wave function
without severe restrictions on its functional form. This must be contrasted with other traditional
quantum chemical methods which express the wave function as products of single particle orbitals
in order to perform the relevant integrals analytically.

To illustrate how to compute an expectation value stochastically, let us consider the variational
energy Ev, namely, the expectation value of the Hamiltonian Ĥ on a given wave function Ψ, which
we rewrite as

Ev =
∫ Ψ(R)∗ĤΨ(R)dR

∫ |Ψ(R)|2dR
=

∫ |Ψ(R)|2 ĤΨ(R)
Ψ(R)

dR

∫ |Ψ(R)|2dR
= ∫ 𝜌(R)EL(R)dR , (8.1)

where we have introduced the probability distribution, 𝜌(R), and the local energy, EL(R),
defined as

𝜌(R) = |Ψ(R)|2
∫ |Ψ(R)|2dR

and EL(R) = ĤΨ(R)
Ψ(R)

, (8.2)

with R denoting the 3N coordinates of the electrons. We note that we can interpret 𝜌(R) as a prob-
ability distribution since it is always non-negative and integrates to one.
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Figure 8.2 Local energy (circle) and its running average (green line) in a typical VMC run. The size of the
root-mean-square fluctuations of the local energy, 𝜎v, is also indicated.

The integral can then be estimated by averaging the local energy computed on a set of M config-
urations {Rk} sampled from the probability density 𝜌(R) as

Ev ≈ ĒL = 1
M

M∑
k

EL(Rk) . (8.3)

According to the central limit theorem, this estimator converges to the exact value, Ev, with an
increasing number of Monte Carlo configurations with a statistical uncertainty which decreases as

err(ĒL) ∝
𝜎v√

M
, (8.4)

where 𝜎2
v = ∫ 𝜌(R)(EL(R) − Ev)2dR is the variance of the local energy. For this relation to hold, the

chosen wave function must yield a finite variance of the sampled quantity, in this case, the local
energy. A typical VMC run is illustrated in Figure 8.2, where the local energy is computed at each
Monte Carlo step together with its running average.

Importantly, the statistical uncertainty decreases as 1/
√

M regardless the number of dimensions;
therefore, Monte Carlo displays a faster convergence than deterministic numerical integration
already for small numbers of dimensions.2 Furthermore, as the trial wave function3 improves,
the Monte Carlo estimate of the variational energy requires fewer Monte Carlo steps to converge.
In the limit of the wave function being an exact eigenstate of the Hamiltonian, the variance
approaches zero and a single configuration is sufficient to obtain the exact variational energy. This
zero-variance principle applies straightforwardly to the Hamiltonian and operators commuting
with the Hamiltonian (therefore, the large number of total energy calculations found in the QMC
literature). This principle can however be generalized to arbitrary observables by formulating an
equivalent, improved estimator having the same average but a different, reduced variance [31].
Reduced variance estimators have been derived for the computation of electron density [56, 57],
the electron pair densities [34], interatomic forces [33, 35], and other derivatives of the total
energy [5].

In practice, the probability distribution 𝜌(R) is sampled with the Metropolis–Hastings algorithm
by simulating a Markov chain. This is a sequence of successive configurations, R1,… ,RM , gen-
erated with a transition probability, P(R′|R), where the transition to a new configuration R′ only

2 For instance, the error for the Simpson’s integration rule decreases as 1∕M(4∕d) with d the number of dimensions
and M the number of integration points, so Monte Carlo integration is already more efficient for d > 8.
3 A trial wave function is a wave function used as an approximation to the state of interest.
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depends on the current point R. The transition probability is stochastic, which means that it has
the following properties:

P(R′|R) ≥ 0 and ∫ P(R′|R)dR′ = 1 . (8.5)

Repeated application of P generates a Markov chain which converges to the target distribution 𝜌 as

lim
M→∞∫ P(R|RM)…P(R2|R1)𝜌init(R1)dR1 …RM = 𝜌(R) , (8.6)

if P is ergodic (it is possible to move between two different configurations in a finite number of
steps) and fulfills the so-called stationarity condition:

∫ P(R′|R)𝜌(R)dR = 𝜌(R′) . (8.7)

The stationarity condition tells us that, if we start from the desired distribution 𝜌, we will continue
to sample 𝜌. Moreover, if the stochastic probability P is ergodic, it is possible to show that this
condition ensures that any initial distribution will evolve to 𝜌 under repeated applications of P.

In the Metropolis–Hastings algorithm, the transition to a new state is carried out in two steps:
a new configuration is generated by a (stochastic) proposal probability and the proposed step is
then accepted or rejected with an acceptance probability. The latter can be constructed so that the
combined proposal and acceptance steps fulfill the stationarity condition. Most importantly, the
acceptance depends only on ratios of 𝜌(R) so that the generally unknown normalization of the
distribution 𝜌 is not required. We note that it is desirable to reduce sequential correlation among
configurations. Proposing large steps to quickly explore the phase space must therefore be balanced
against the rate of acceptance which decreases with large steps. For these reasons, electrons are
generally moved one at the time to allow larger steps with a reasonable acceptance rate – this is a
necessary feature as the system size grows since the size of the move would need to be decreased
to have a reasonable acceptance of a move of all particles.

VMC is a very powerful method as the stochastic nature of integration gives a lot of freedom in the
choice of the functional form of the wave function. It also allows us to learn a great deal about a sys-
tem by exploring which ingredients in the wave function are necessary for its accurate description.
Finally, in VMC, there is no sign problem associated with Fermi statistics, which generally plagues
other quantum Monte Carlo approaches as we will see below. The obvious drawback is that, for each
particular problem, a parametrization of the wave function has to be constructed. This process can
be non-trivial and tends to be biased towards simpler electronic states: for example, it is easier to
construct a good wave function for a closed-shell than an open-shell system so that the energy of
the former will be closer to the exact result than the latter. Furthermore, properties other than the
energy (or expectation values of operators commuting with the Hamiltonian) can be significantly
less accurate since they are first order in the error of the wave function instead of second order as
for the energy. It has, however, been shown that it is possible to extend this favorable property of
the energy to arbitrary observables by using modified estimators which lead not only to reduced
fluctuations but also to a reduced bias due to the wave function [33] as convincingly demonstrated
in some promising applications [33, 34, 36, 57]. An example of this so-called zero-variance (ZV)
zero-bias (ZB) approach applied to the computation of the intracule density is shown in Figure 8.3:
the use of a ZV estimator significantly reduces the statistical fluctuations of the density and the
further ZB formulation yields the correct result even when a simple Hartree–Fock wave function
is employed. In general, the VMC approach is an extremely valuable tool and, in recent years, its
use and impact has in fact become greater thanks to the availability of robust methods to opti-
mize the many parameters in the wave function and, consequently, to increase the accuracy of the
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Figure 8.3 Spherically-averaged intracule density I(u) as a function of the electron–electron distance u for
the He atom calculated in VMC with a histogram, a zero-variance, and a zero-variance zero-bias estimator
and the same Hartree–Fock wave function (without a Jastrow factor). Adapted from Ref. [34].

observables of interest already at the VMC level. Finally, characterizing and optimizing the trial
wave function in VMC represents a necessary ingredient for more advanced projector Monte Carlo
methods like the diffusion Monte Carlo approach described in the next Section.

8.3 Diffusion Monte Carlo

Projector Monte Carlo methods are QMC approaches which remove (at least in part) the bias of the
trial wave function which characterizes VMC calculations. They are a stochastic implementation of
the power method for finding the dominant eigenstate of a matrix or integral kernel. In a projector
Monte Carlo method, one uses an operator that inverts the spectrum of Ĥ to project out the ground
state of Ĥ from a given trial state.

Diffusion Monte Carlo (DMC) uses the exponential projection operator e−t(Ĥ−ET) with ET a trial
energy whose role will become immediately apparent. To understand the effect of applying this
operator on a given wave function, let us consider a trial wave function Ψ, which we expand on the
eigenstates of Ĥ, Ψi with eigenvalues Ei. In the limit of infinite time t, we then obtain

lim
t→∞

e−t(Ĥ−ET)|Ψ⟩ = lim
t→∞

∑
i

e−t(Ei−ET)|Ψi⟩⟨Ψi|Ψ⟩ = lim
t→∞

e−t(E0−ET)|Ψ0⟩⟨Ψ0|Ψ⟩ , (8.8)

where, in the last equality, we used that the coefficients in front of the higher eigenstates decay
exponentially faster than that of the ground state. If we adjust ET to E0, the projection will yield
the ground state Ψ0. Note that the starting wave function must have a non-zero overlap with the
ground-state one.

In the position representation, this projection can be rewritten as

Ψ(R′, t) = ∫ G(R′|R, t)Ψ(R)dR , (8.9)

where we introduced the coordinate Green’s function defined as

G(R′|R, t) = ⟨R′|e−t(Ĥ−ET)|R⟩ . (8.10)
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This representation readily allows us to see how to translate the projection into a Markov process
provided that we can sample the Green’s function and the trial wave function. For fermions, the
wave function is antisymmetric and cannot therefore be interpreted as a probability distribution, a
fact that we will ignore for the moment.

A further complication is that the exact form of the Green’s function is not known. Fortunately,
in the limit of small time steps 𝜏, Trotter’s theorem tells us that we are allowed to consider the
potential and kinetic energy contributions separately since

e−𝜏(T̂+V̂ ) = e−𝜏T̂e−𝜏V̂ + (𝜏2) , (8.11)

so that

⟨R′|e−𝜏Ĥ|R⟩ ≈ ⟨R′|e−𝜏T̂e−𝜏V̂ |R⟩ = ∫ dR′′⟨R′|e−𝜏T̂|R′′⟩⟨R′′|e−𝜏V̂ |R⟩
= ⟨R′|e−𝜏T̂|R⟩e−𝜏V(R) . (8.12)

Therefore, we can rewrite the Green’s function in the short-time approximation as

G(R′|R, 𝜏) = (2𝜋𝜏)−3N∕2 exp
[
−(R′ − R)2

2𝜏

]
exp[−𝜏 (V(R) − ET)] + (𝜏2) , (8.13)

where the first (stochastic) factor is the Green’s function for diffusion while the second term mul-
tiplies the distribution by a positive scalar. The repeated application of the short-time Green’s
function to obtain the distribution at longer times (Eq. 8.9) can be interpreted as a Markov pro-
cess with the difference that the Green’s function is not normalized due to the potential term, and
we therefore obtain a weighted random walk.

The basic DMC algorithm is rather simple:

1. An initial set of M0 so-called walkers R1,… ,RM0
is generated by sampling the trial wave function

Ψ(R) with the Metropolis algorithm as in VMC. This is the zeroth generation and the number
of configurations is the population of the zeroth generation.

2. Each walker diffuses as R′ = R + 𝜉 where 𝜉 is sampled from the 3N-dimensional Gaussian dis-
tribution g(𝜉) = (2𝜋𝜏)−3N∕2 exp(−𝜉2∕2𝜏).

3. For each walker, we compute the factor

p = exp[−𝜏(V(R) − ET)] . (8.14)

and perform the so-called branching step, namely, we branch the walker by treating p as the
probability to survive at the next step: if p < 1, the walker survives with probability p while, if
p > 1, the walker continues and new walkers with the same coordinates are created with prob-
ability p − 1. This is achieved by creating a number of copies of the current walker equal to the
integer part of p + 𝜂 where 𝜂 is a random number between (0,1). The branching step causes
walkers to live in regions with a low potential V < ET and die in regions with high V .

4. We adjust ET so that the overall population fluctuates around the target value M0.

Steps 2–4 are repeated until a stationary distribution is obtained and the desired properties are
converged within a given statistical accuracy. A schematic representation of the evolution for a sim-
ple 1-dimensional problem is shown in Figure 8.4. Since the short-time expression of the Green’s
function is only valid in the limit of 𝜏 approaching zero, in practice, DMC calculations must be
performed for different values of 𝜏 and the results extrapolated for 𝜏 which goes to zero.

The direct sampling of this Green’s function proves, however, to be highly inefficient and unstable
since the potential can vary significantly from configuration to configuration or also be unbounded
like the Coulomb potential. For example, the electron-nucleus potential diverges to minus infinity
as the two particles approach each other, and the branching factor will give rise to an unlim-
ited number of walkers. Even if the potential is bounded, the approach becomes inefficient with
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Figure 8.4 Schematic representation of a DMC simulation showing the evolution of the walkers in a
1-dimensional potential V (x). The walkers are uniformly distributed at the start and converge to the
ground-state distribution Ψ0 after a number of time steps (adapted from Ref. [1]).

increasing size of the system since the branching factor also grows with the number of particles.
These difficulties can be overcome by using importance sampling, where the trial wave function,
Ψ, is used to guide the random walk. Starting from Eq. (8.9), we multiply each side by Ψ(R′) and
define the probability distribution f (R, t) = Ψ(R, t)Ψ(R) which satisfies

f (R′, t) = ∫ G̃(R′|R, t)Ψ(R)2dR , (8.15)

where the importance sampled Green’s function is given by

G̃(R′|R, t) = Ψ(R′)⟨R′|e−t(Ĥ−ET)|R⟩∕Ψ(R) . (8.16)

In the limit of long times, this distribution f (R, t) approaches Ψ0(R)Ψ(R).
Assuming for the moment that Ψ(R′)∕Ψ(R) > 0, the importance sampled Green’s function in the

short-time approximation becomes

G̃(R′|R, 𝜏) ≈ (2𝜋𝜏)−
3
2

N exp
[
−(R′ − R − 𝜏V(R))2

2𝜏

]
exp[−𝜏(EL(R) − ET)] , (8.17)

where one has assumed that the drift-velocity V(R) = ∇Ψ(R)∕Ψ(R) and the local energy (Eq. 8.2)
are constant in the step from R to R′. There are two important new features of G̃. First, the quan-
tum velocity V(R) pushes the walkers to regions where Ψ(R) is large. In addition, the local energy
EL instead of the potential appears in the branching factor. Since the local energy becomes con-
stant and equal to the eigenvalue as the trial wave function approaches the exact eigenstate, we
expect that, for a good trial wave function, the fluctuations in the branching factor will be sig-
nificantly smaller. In particular, imposing the cusp conditions on the wave function will remove
the instabilities coming from the singular Coulomb potential. The simple DMC algorithm can be
easily modified by sampling the square of the trial wave function in a VMC calculation (step 1),
drifting before diffusing the walkers (step 2), and employing the exponential of the local energy
as branching factor (step 3). Several important modifications to this bare-bones algorithm can and
should be introduced to reduce the time-step error, which are described in detail along with further
improvements in Ref. [58].

Up to this point, we have assumed that the wave function does not change sign. This is true for
the ground state of a bosonic system, whose wave function can be in principle projected exactly in a
DMC simulation. For fermions, however, a move of a walker can lead to a change of sign due to the
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(a) (b)

(c) (d)

Figure 8.5 A 3-dimensional slice of the nodal surface of the N (top) and P (bottom) atoms obtained as a
scan of the wave function moving one electron and keeping the others at snapshot positions (green/blue
spheres). The black spheres mark the positions of the nucleus. (a, c) Nearly exact nodes and (b, d)
Hartree–Fock nodes. Adapted from Ref. [59].

antisymmetry of the wave function. While it is possible to work with weights that carry a sign, the
stochastic realization of such a straightforward approach is not stable since the separate evolution
of the populations of positive and negative walkers will lead to the same bosonic solution, and the
fermionic signal will be exponentially lost in the noise. This is known as the fermionic sign problem.
To circumvent this problem, we can simply forbid moves in which the sign of the trial wave function
changes and the walker crosses the nodes which are defined as (3N −1)-dimensional surfaces where
the trial wave function is zero. Imposing the nodal constraint can be achieved either by deleting the
walkers which attempt to cross the nodes or by using the short-time importance sampled Green’s
function, where walkers do not cross the nodes in the limit of a zero time step. This procedure
is known as the fixed-node approximation. Forbidding node crossing is equivalent to finding the
exact solution with the boundary condition of having the same nodes as the trial wave function.
The Schrödinger equation is therefore solved exactly inside the nodal regions but not at the nodes
where the solution will have a discontinuity of the derivatives. The fixed-node solution will be
exact only if the nodes of the trial wave function are exact. In general, the fixed-node energy will
be an upper bound to the exact energy. A cut through the nodal surface of the N and P atoms for
a simple Hartree–Fock and a highly-accurate wave function (Figure 8.5) reveals that considerable
differences are possible which are atom dependent and directly translate in a larger size of the
fixed-node error for the N atom when a mono-determinantal wave function is used [59].

The fixed-node DMC algorithm can also be used to study excited states. There is no particular
difficulty in applying DMC to the lowest state of a given symmetry by simply employing a trial wave
function of the proper spatial and spin symmetry.4 For excited states which are energetically not the

4 More precisely, the DMC energy is variational if the trial function transforms according to a 1-dimensional
irreducible representation of the symmetry group of the Hamiltonian [60].
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lowest in their symmetry, all that we know is that fixed-node DMC will give the exact solution if we
employ a trial wave function with the exact nodes [60]. However, there is no variational principle
and one may expect a stronger dependence of the result on the choice of the wave function, which
is now not only used to overcome the fermion-sign problem but also to select the state of interest.
In our experience, unless we intentionally generate a wave function with a large overlap with the
ground-state one, we do not suffer from lack of variationality in the excited-state calculation. In fact,
the use of simplistic wave functions (e.g., HOMO-LUMO Hartree–Fock, configuration-interaction
singles, non-reoptimized truncated complete-active-space expansions) has been shown to gener-
ally lead to an overestimation of the excitation energy also in DMC, especially when the excited
state has a strong multi-determinant character [61]. Consequently, while DMC cannot cure the
shortcomings of a poor wave function, such a choice will likely yield smaller fixed-node errors in
the ground than the excited state and, ultimately, an overestimation of the DMC excitation energy.

8.4 Wave Functions and their Optimization

The key quantity which determines the quality of a VMC and a fixed-node DMC calculation is the
trial wave function. The choice of the functional form of the wave function and its optimization
within VMC are key steps in a QMC calculation as they are crucial elements to obtain accurate
results already at the VMC level and to reduce the fermionic-sign error in a subsequent DMC
calculation.

Most QMC studies of electronic systems have employed trial wave functions of the so-called
Jastrow–Slater form, that is, the product of a sum of determinants of single-particle orbitals and
a Jastrow correlation factor as

Ψ =  ∑
k

ckDk , (8.18)

where Dk are Slater determinants of single-particle orbitals and the Jastrow correlation function is
a positive function of the interparticle distances, which explicitly depends on the electron–electron
separations. The Jastrow factor plays an important role as it is used to impose the Kato cusp con-
ditions and to cancel the divergences in the potential at the inter-particle coalescence points. This
leads to a smoother behavior of the local energy and therefore more accurate and efficient VMC
as well as DMC calculations thanks to the smaller time-step errors and reduced fluctuations in the
branching factor.

Moreover, the Jastrow factor introduces important correlations beyond the short electron–
electron distances [62] and QMC wave functions enjoy therefore a more compact determinantal
expansion than conventional quantum chemical methods. Even though the positive Jastrow
function does not directly alter the nodal structure of the wave function which is solely determined
by the antisymmetric part, the optimal determinantal component in a QMC wave function will
be different than the one obtained for instance in a multi-configuration self-consistent-field
calculation (MCSCF) in the absence of the Jastrow factor. Upon optimization of the QMC wave
function, the determinantal component will change and it is often possible to obtain converged
energy differences in VMC and DMC with relatively short determinantal expansions in a chosen
active space. Furthermore, thanks to the presence of the Jastrow factor, QMC results are generally
less dependent on the basis set. For instance, excitations and excited-state gradients show a faster
convergence with basis set than multi-configurational approaches, and an augmented double
basis set with polarization functions is often sufficient in both VMC and DMC for the description
of excited-state properties [24, 63, 64].
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An important requirement for the optimization of the many parameters in a QMC wave func-
tion is the ability to efficiently evaluate the derivatives of the wave function and the action of the
Hamiltonian on these derivatives during a QMC run. In general, this is central to the computation
of low-variance estimators of derivatives of the total energy as, for instance, the derivatives with
respect to the nuclear coordinates (i.e., interatomic forces). Computing these derivatives at low
cost is, therefore, crucial to enable higher accuracy as well as to extend the application of QMC to
larger systems and a broader range of molecular properties. Automatic differentiation was success-
fully applied for the computation of analytical derivatives [12] but the application to large computer
codes is not straightforward and the memory requirements might become prohibitive.

Recently, an efficient and simple analytical formulation has been developed to compute a com-
plete set of derivatives of the wave function and of the local energy with the same scaling per
Monte Carlo step as computing the energy alone both for single- and multi-determinant wave func-
tions [13, 14]. This formulation relies on the straightforward manipulation of matrices evaluated
on the occupied and virtual orbitals and can be very simply illustrated in the case of a single deter-
minant in the absence of a Jastrow factor:

D = det(A) = |𝜙1𝜙2 …𝜙N | , (8.19)

where A is a Slater matrix defined in terms of the N occupied orbitals, 𝜙i, as Aij = 𝜙j(ri). For this
wave function, it is not difficult to show that the action of a one-body operator Ô = O(r1) +… +
O(rN ) on the determinant can be written as the trace between the inverse A matrix and an appro-
priate matrix B,

ÔD
D

= tr(A−1B) , (8.20)

where B is obtained by applying the operator O(r) to the elements of A as

Bij = (O𝜙j)(ri) . (8.21)

For instance, if we consider the kinetic operator, we obtain

T̂ det(A) = −1
2
∑

i
Δi det(A) = −1

2
∑

i

[∑
j
Δ𝜙j(ri) (A−1)ji det(A)

]
, (8.22)

which can be rewritten as
T̂ det(A)
det(A)

=
∑

i

∑
j

Bkin
ij (A−1)ji = tr(A−1Bkin) , (8.23)

where Bkin
ij = − 1

2
ΔiAij = − 1

2
Δ𝜙j(ri). It is possible to show that an equivalent trace expression

holds also in the presence of the Jastrow factor but with a B matrix which depends not only on the
orbitals but also on the Jastrow factor.

The compact trace expression of a local quantity (Eq. 8.20) offers the advantage that its derivative
with respect to a parameter 𝜇 can be straightforwardly written as

𝜕𝜇
ÔD
D

= tr(A−1𝜕𝜇B − X𝜕𝜇A) , (8.24)

where 𝜕𝜇A and 𝜕𝜇B are the matrices of the derivatives of the elements of A and B, respectively, and
the matrix X is defined as

X = A−1BA−1 . (8.25)

This can easily be derived by using 𝜕𝜇(A−1) = −A−1𝜕𝜇A A−1 and the cyclic property of the trace.
Therefore, if one computes and stores the matrix X , it is then possible to evaluate derivatives at
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Figure 8.6 Cost per Monte Carlo step of computing a complete set of derivatives of the wave function and
local energy relative to a VMC run where only the energy is calculated. Left: increasing number of
variational parameters for the series CnHn+2 with n between 4 and 44 (reproduced from Ref. [13]). Right:
increasing number of determinants in the Jastrow–Slater wave function for CnHn+2 with n between 4 and 60
(reproduced from Ref. [14]).

the cost of calculating a trace, namely, O(N2). Consequently, this procedure enables, for instance,
the efficient calculation of the O(N) derivatives of the local energy (Ô = Ĥ) with respect to the
nuclear coordinates, reducing the scaling of computing the interatomic forces per Monte Carlo
step to the one of the energy, namely, O(N3). The same scaling is also obtained for the optimization
of the orbital parameters as shown in Figure 8.6 (left panel) and further discussed in Ref. [13]. This
simple formulation and its advantages in the calculation of energy derivatives can be extended
to multi-determinant wave functions to achieve a cost in the computation of a set of derivatives
proportional to the one of evaluating the energy alone [14] as illustrated in Figure 8.6 (right panel)
for the interatomic derivatives.

With all the derivatives of the wave function and the corresponding local quantities at hand,
the next step is to use them for the optimization of the wave function. The use of wave functions
with a large number of parameters requires efficient algorithms and the two most commonly used
approaches, the linear method and the stochastic reconfiguration method, are discussed in the
following. We will begin with the simpler case of the optimization in the ground state (or an excited
state which is energetically the lowest for a given symmetry).

8.4.1 Stochastic Reconfiguration Method

In the stochastic reconfiguration (SR) method [65, 66], one starts from a given wave function, Ψ,
and obtains an improved state by applying the operator (1 − 𝜏Ĥ), namely, a first-order expansion of
the operator e−𝜏Ĥ used in DMC. The new state is then projected in the space spanned by the current
wave function and its derivatives, {Ψi} = {Ψ, 𝜕iΨ} as

Np∑
j=0
𝛿pj|Ψj⟩ = P̂SR(1 − 𝜏Ĥ)|Ψ⟩ , (8.26)

where Np is the number of wave function parameters and Ψ0 = Ψ. By taking the internal product
with ⟨Ψi| and eliminating the scaling 𝛿p0 through the i = 0 equation, one derives a set of equations
for i = 1,… ,Np, which can be written in matrix notation as

S̄ 𝛿p = −𝜏
2

g , (8.27)
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where g is the gradient of the energy with respect to the parameters,

gi = 2

[⟨Ψi|Ĥ|Ψ⟩⟨Ψ|Ψ⟩ − Ev
⟨Ψi|Ψ⟩⟨Ψ|Ψ⟩

]
≡ 𝜕iEv , (8.28)

and S̄ is related to the overlap matrix between the derivatives, S, as

S̄ij =
⟨Ψi|Ψj⟩⟨Ψ|Ψ⟩ −

⟨Ψi|Ψ⟩⟨Ψ|Ψ⟩ ⟨Ψ|Ψj⟩⟨Ψ|Ψ⟩ ≡ Sij − Si0S0j . (8.29)

With an appropriate choice of 𝜏, a new set of parameters can be determined as p′
i = pi + 𝛿pi and the

procedure iterated until convergence. Therefore, the SR method is like a Newton approach where
one follows the downhill gradient of the energy, but using the matrix S̄ instead of the Hessian of
the energy. Even though the method can display a slow convergence since 𝜏 scales like the inverse
of the energy range spanned by the wave function derivatives [67], it was recently employed to
successfully optimize very large numbers of parameters [14, 15]. We will come back to this point
when discussing the linear method below.

In a VMC run of SR optimization, one needs to compute the gradient and the overlap matrix S
by sampling the distribution 𝜌 given by the square of the current wave function (Eq. 8.2) as

Sij =
⟨Ψi|Ψj⟩⟨Ψ|Ψ⟩ =

∫ Ψi(R)Ψj(R)dR

∫ Ψ(R)2dR

= ∫
Ψi(R)
Ψ(R)

Ψj(R)
Ψ(R)

𝜌(R)dR ≈ 1
M

M∑
k

Ψi(Rk)
Ψ(Rk)

Ψj(Rk)
Ψ(Rk)

. (8.30)

For a large number of parameters, not only does the storage of this matrix become problematic but
also its calculation whose cost scales as (MN2

p ). However, if we use a conjugate gradient method
to solve the linear equations (8.27), we only need to repeatedly evaluate S acting on a trial vector of
parameter variations as

Np∑
j=1

Sij𝛿pj =
1
M

M∑
k

Ψi(Rk)
Ψ(Rk)

Np∑
j=1

Ψj(Rk)
Ψ(Rk)

𝛿pj , (8.31)

where the order of the sums in the last expression has been swapped [68]. Therefore, if we compute
and store the M × Np matrix of the ratios Ψi(Rk)∕Ψ(Rk) during the Monte Carlo run, we can reduce
the memory requirements by exploiting the intrinsic parallelism of Monte Carlo simulations: we
can employ a small M per core and increase instead the number of cores to obtain the desired statis-
tical accuracy. The computational cost of solving the SR equations is also reduced to (NCGMNp),
where NCG is the number of conjugate gradient steps, which we have found to be several orders of
magnitude smaller than the number of parameters in recent optimization of large determinantal
expansions [14, 15].

8.4.2 Linear Method

The linear optimization method is related to the so-called super configuration interaction
(super-CI) approach used in quantum chemistry to optimize the orbital parameters in a
multi-determinant wave function. The starting point is the normalized wave function,

|Ψ̄⟩ = 1√⟨Ψ|Ψ⟩ |Ψ⟩ , (8.32)

which we expand to first order in the parameter variations around the current values in the basis
of the current wave function and its derivatives, {Ψ̄i} = {Ψ̄, 𝜕iΨ̄} with Ψ̄0 = Ψ̄. The important
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advantage of working with the “barred” functions is that they are orthogonal to the current wave
function since

|Ψ̄i⟩ = 1√⟨Ψ|Ψ⟩
(|Ψi⟩ − ⟨Ψ|Ψi⟩⟨Ψ|Ψ⟩ |Ψ⟩

)
, (8.33)

which has been found to yield better (non-linear) parameter variations and a more robust
optimization than simply using the derivatives of the wave function.

The change of the parameters 𝛿p is then determined by minimizing the expectation value of
the Hamiltonian on the linearized wave function in the basis {Ψ̄i}, which leads to the generalized
eigenvalue equations:

Np∑
j=0

H̄ij𝛿pj = Elin

Np∑
j=0

S̄ij𝛿pj , (8.34)

where H̄ij = ⟨Ψ̄i|Ĥ|Ψ̄j⟩ and S̄ij = ⟨Ψ̄i|Ψ̄j⟩. We note that the overlap S̄ is equivalent to the expression
introduced above in the SR scheme (Eq. 8.29). A new set of parameters can be generated as p′

i = pi +
𝛿pi∕𝛿p0 and the algorithm iterated until convergence. Importantly, in a Monte Carlo run, the matrix
H̄ will not be symmetric for a finite sample and a non-obvious finding is that the method greatly
benefits from reduced fluctuations if one does not symmetrize the Hamiltonian matrix, as originally
shown by Nightingale and Melik-Alaverdian for the optimization of the linear parameters [32].
Other important modifications can be introduced to further stabilize the approach and improve
the convergence as discussed in Ref. [7].

It is simple to recognize that, at convergence, the linear method leads to an optimal energy if we
express explicitly the secular equations above in matrix form as(

Ev
1
2

gT

1
2

g H̄

)(
𝛿p0
𝛿p

)
= Elin

(
1 0
0 S̄

)(
𝛿p0
𝛿p

)
, (8.35)

where we have used that H̄00 = ⟨Ψ̄|Ĥ|Ψ̄⟩ is the current energy and the elements of the first column
and row, H̄i0 = ⟨Ψ̄i|Ĥ|Ψ̄⟩ and H̄0i = ⟨Ψ̄|Ĥ|Ψ̄i⟩, respectively, are both mathematically equal to the
components of the energy gradient (Eq. 8.28). Therefore, when the wave function parameters are
optimal, the variations with respect to the current wave function will no longer couple to it (𝛿pi = 0)
and the H̄i0 and H̄0i elements must therefore become zero. This directly implies that the gradient
of the energy with respect to the parameters is identically zero.

To further understand how the linear method is related to other optimization schemes, one can
recast its equations as a Newton method [69]:

(A + 𝛼S̄)𝛿p = −1
2

g , (8.36)

where A = H̄ − EvS̄ and 𝛼 = Ev − Elin > 0. Therefore, the parameters are varied along the downhill
gradient of the energy with the use of an approximate Hessian A level-shifted by the positive def-
inite matrix 𝛼S̄. The presence of the latter renders the optimization more stable and effective than
the actual Newton method even when the exact Hessian matrix is used. While the linear method is
in principle significantly more efficient than, for instance, the SR approach, we find that its stochas-
tic realization suffers from large fluctuations in the elements of H̄ when one optimizes the orbital
parameters or the linear coefficients of particularly extended multi-determinant wave functions
(where the derivatives are very different from the actual wave function used in the sampling). As
a result, the optimization requires long VMC runs to achieve reliable variations in the parameters
or a large shift added to the diagonal elements of H̄ (except H̄00) [7] to stabilize the procedure. In



�

� �

�

8.5 Excited States 261

these cases, we find that the SR scheme, which only makes use of the S̄ matrix, is more robust and
efficient since it allows less strict requirements on the error bars.

Finally, we note that, as in the SR scheme, it is possible to avoid explicitly constructing the full
matrices H̄ and S̄: one stores the local quantities Ψi(R)∕Ψ(R) and ĤΨi(R)∕Ψ(R) in the Monte Carlo
run and uses for instance a generalized Davidson algorithm to find the eigenvectors where only
matrix-vector products with trial vectors are evaluated, significantly reducing the computational
and memory requirements [68].

8.5 Excited States

For excited states of a different symmetry than the ground state, one can construct a trial wave
function of the desired space and spin symmetry (with an appropriate choice of the determinantal
component) and apply either the SR or the linear method to minimize the energy in VMC, subse-
quently refining the calculation in DMC. For excited states which are energetically not the lowest
in their symmetry class, one can instead follow different routes as in other quantum chemistry
methods to find an accurate excited-state wave function. We will begin by describing the possibili-
ties within energy minimization and then consider optimization schemes targeting the variance of
the energy which has a minimum for each eigenstate of the Hamiltonian.

8.5.1 Energy-Based Methods

While the linear method is generally employed for ground-state wave function optimizations, it is
in fact possible to use it in a state-specific manner for the optimization of excited states [70]. One
can target a higher-energy state and linearize the problem with respect to the chosen state. Solving
a generalized eigenvalue problem as in Eq. (8.35) will yield lower energy roots as well as the state of
interest. The resulting wave function will be only approximately orthogonal to the lower ones since
orthogonality is only imposed in the basis of the variations of the optimal target wave function with
respect to the parameters. Furthermore, since following such a higher root leads to the optimization
of a saddle point in parameter space, the procedure may exhibit convergence problems so that the
parameters do not converge to the desired state. One may also observe flipping of the roots: As the
optimization proceeds, the optimized excited target state can obtain a lower eigenvalue than the
unoptimized ground state. Such problems will be particularly severe in the case of close degeneracy
as in proximity of conical intersection regions.

A different route to optimize multiple states of the same symmetry lies in the generalization of
state-average (SA) approaches to QMC [9]. We start from a set of Jastrow–Slater wave functions
for the multiple states that are constructed as linear combinations of determinants multiplied by a
Jastrow factor as

ΨI =  ∑
k

cI
kDk , (8.37)

where the index I labels the states. The wave functions of the different states are therefore character-
ized by different linear coefficients cI

i but share a common set of orbitals and the Jastrow factor  .
The optimal linear coefficients cI

i can be easily determined through the solution of the generalized
eigenvalue equations∑

j
HijcI

j = EI

∑
j

SijcI
j , (8.38)



�

� �

�

262 8 Excited-State Calculations with Quantum Monte Carlo

where the matrix elements are here given by

Hij = ⟨ Di|Ĥ| Dj⟩ and Sij = ⟨ Di| Dj⟩ , (8.39)

and are computed in a VMC run, where we do not symmetrize the Hamiltonian matrix for finite
Monte Carlo sampling to reduce the fluctuations of the parameters as discussed above for the gen-
eral linear method. After diagonalization of Eq. (8.38), the optimal linear coefficients are obtained
and, at the same time, orthogonality between the individual states is automatically enforced.

To obtain a robust estimate of the linear coefficients of multiple states, it is important that the
distribution sampled to evaluate Hij and Sij has a large overlap with all states of interest (and all
lower lying states). A suitable guiding wave function can for instance be constructed as

Ψg =
√∑

I
|ΨI|2 , (8.40)

and the distribution 𝜌g in the VMC run defined as the square of this guiding function. The matrix
elements Sij (and, similarly, Hij) are then evaluated in the Monte Carlo run as

Sij⟨Ψg|Ψg⟩ =
∫  Di(R) Dj(R)dR

∫ Ψ2
g(R)dR

= ∫
 Di(R)
Ψg(R)

 Dj(R)
Ψg(R)

𝜌g(R)dR

≈ 1
M

M∑
k

 Di(Rk)
Ψg(Rk)

 Dj(Rk)
Ψg(Rk)

. (8.41)

We note that we can introduce the denominator ⟨Ψg|Ψg⟩ if we simply divide by it both sides of
Eq. (8.38).

As done in state-average multi-configurational approaches to obtain a balanced description of
the states of interest, one can optimize the non-linear parameters of the orbitals and the Jastrow
factor by minimizing the state-average energy

ESA =
∑

I
𝑤I

⟨ΨI|Ĥ|ΨI⟩⟨ΨI|ΨI⟩ , (8.42)

with the weights of the states 𝑤I kept fixed and
∑

I𝑤I = 1. The gradient of the SA energy can be
rewritten as

gSA
i =

∑
I
𝑤I⟨Ψ̄I

i |Ĥ|Ψ̄I⟩ , (8.43)

where, similar to Eq. (8.33), we have introduced for each state the variations, |ΨI
i ⟩ = |𝜕iΨI⟩, and the

corresponding “barred” functions orthogonal to the current state |ΨI⟩:
|Ψ̄I

i ⟩ = 1√⟨ΨI|ΨI⟩
(|ΨI

i ⟩ − ⟨ΨI|ΨI
i ⟩⟨ΨI|ΨI⟩ |ΨI⟩) . (8.44)

The variations in the parameters can be obtained as the lowest-energy solution of the generalized
eigenvalue equation in analogy to the linear method for the ground state,(

ESA 1
2
(gSA)T

1
2

gSA H̄SA

)(
𝛿p0
𝛿p

)
= E

(
1 0
0 S̄SA

)(
𝛿p0
𝛿p

)
. (8.45)

The state-average matrix elements are defined as

H̄SA
ij =

∑
I
𝑤I

⟨Ψ̄I
i |Ĥ|Ψ̄I

j ⟩⟨Ψ̄I|Ψ̄I⟩ , (8.46)
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and an analogous expression for S̄SA
ij is introduced. To compute these matrix elements in VMC, we

perform a single run sampling the square of a guiding wave function Ψg (Eq. 8.40) and compute
the numerators and denominators in the matrix expressions for all relevant states. We note that
the state-average equations (Eq. 8.45) are not obtained by minimizing a linearized expression of
the SA energy (Eq. 8.42) but are simply inspired by the single-state case. However, since the first
row and column in Eq. (8.45) are given by the gradient of the SA energy, at convergence, the optimal
parameters minimize the SA energy. We find that the use of these state-average Hamiltonian and
overlap matrices leads to a similar convergence behavior as the linear method for a single state.

Following this procedure, the algorithm alternates between the minimization of the linear and
the non-linear parameters until convergence is reached. The obtained energy ESA is stationary with
respect to variations of all parameters while the energies of the individual states, EI , are only sta-
tionary with respect to the linear but not the orbital and Jastrow parameters. If the ground state
and the target excited state should be described by very different orbitals, a state-specific approach
may yield more accurate energies.

8.5.2 Time-Dependent Linear-Response VMC

A very different approach to the computation of multiple excited states is a VMC formulation
of linear-response theory [71]. Given a starting wave function Ψ with optimal parameters p0,
a time-dependent perturbation V̂(t) is introduced in the Hamiltonian Ĥ with the coupling
constant 𝛾 as

Ĥ(t) = Ĥ + 𝛾V̂(t) , (8.47)

so that the ground-state wave function itself becomes time-dependent as the variational parame-
ters p(t) evolve in time. It is convenient to work with a wave function subject to an intermediate
normalization,

|Ψ̄(t)⟩ = |Ψ(t)⟩⟨Ψ0|Ψ(t)⟩ , (8.48)

where the starting wave function Ψ0 ≡ Ψ is taken to be normalized. This choice leads to wave
function variations to first and second order that are orthogonal to the current optimal wave
function Ψ0.

At each time t, one can apply the Dirac–Frenkel variational principle to obtain the parameters
p(t) as

𝜕

𝜕p∗
i

⟨Ψ̄(t)|Ĥ(t) − i 𝜕
𝜕t
|Ψ̄(t)⟩⟨Ψ̄(t)|Ψ̄(t)⟩ = 0, (8.49)

where the parameters can now in general be complex. To apply this principle to linear order in 𝛾 ,
the wave function is expanded to second order in 𝛿p(t) around p0:

|Ψ̄(t)⟩ = |Ψ̄0⟩ +∑
i
𝛿pi(t)|Ψ̄i⟩ + 1

2
∑

ij
𝛿pi(t)𝛿pj(t)|Ψ̄ij⟩ , (8.50)

with |Ψ̄i⟩ = |𝜕iΨ̄⟩ and |Ψ̄ij⟩ = |𝜕i𝜕jΨ̄⟩ computed at the parameters p0. These can be explicitly written
as

|Ψ̄i⟩ = |Ψi⟩ − ⟨Ψ0|Ψi⟩|Ψ0⟩|Ψ̄ij⟩ = |Ψij⟩ − ⟨Ψ0|Ψi⟩|Ψj⟩ − ⟨Ψ0|Ψj⟩|Ψi⟩
+ (2⟨Ψ0|Ψi⟩⟨Ψ0|Ψj⟩ − ⟨Ψ0|Ψij⟩)|Ψ0⟩ , (8.51)
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where we use the same notation as above for the derivatives of Ψ, namely, |Ψi⟩ = |𝜕iΨ⟩ and |Ψij⟩ =|𝜕i𝜕jΨ⟩. Inserting this wave function in Eq. (8.49) and keeping only the first order terms in 𝛿p(t), in
the limit of 𝛾 → 0, one obtains

A 𝛿p(t) + B 𝛿p(t)∗ = iS̄
𝜕𝛿p(t)
𝜕t

, (8.52)

with the matrix elements Aij = ⟨Ψ̄i|Ĥ − E0|Ψ̄j⟩ = H̄ij − E0S̄ij and Bij = ⟨Ψ̄ij|Ĥ|Ψ0⟩. If we search for
an oscillatory solution,

𝛿p(t) = Xne−i𝜔nt + Y∗
nei𝜔nt , (8.53)

with 𝜔n an excitation energy and Xn and Yn the response vectors, we obtain the well-known
linear-response equations, here formulated as a non-Hermitian generalized eigenvalue equation,(

A B
B∗ A∗

)(
Xn
Yn

)
= 𝜔n

(
S̄ 𝟎
𝟎 −S̄∗

)(
Xn
Yn

)
. (8.54)

Neglecting B leads to the Tamm–Dancoff approximation,

AXn = 𝜔nS̄Xn , (8.55)

which is equivalent to the generalized eigenvalue equations of the linear method (Eq. 8.35) for an
optimized ground-state wave function (when the gradients of the energy are therefore zero):

H̄Xn = (𝜔n + E0)S̄Xn . (8.56)

The energy E0 is the variational energy, Ev, for the optimized ground state. Therefore, upon opti-
mization of the ground-state wave function in the linear method, we can simply use the higher
roots resulting from the diagonalization of the equations to estimate the excitation energies as
𝜔n = (Elin)n − E0 together with the oscillator strengths [71].

The time-dependent linear-response VMC approach has so far only been applied to the
excitations of the beryllium atom within the Tamm–Dancoff approximation and with a simple
single-determinant Jastrow–Slater wave function [71]. These calculations represent an interesting
proof of principle that multiple excitations of different space and spin symmetry can be read-
ily obtained after optimizing the ground-state wave function. A systematic investigation with
multi-configurational wave functions is needed to fully access the quality of the approach, also
beyond the Tamm–Dancoff approximation.

8.5.3 Variance-Based Methods

Variance minimization is a different approach to optimize the wave function compared to the meth-
ods described so far, which, in principle, allows optimization of excited states in a state-specific
fashion. The target quantity for the minimization is the variance of the energy:

𝜎2
v =

⟨Ψ|(Ĥ − Ev)2|Ψ⟩⟨Ψ|Ψ⟩ =
∫ Ψ2(R)(EL(R) − Ev)2dR

∫ Ψ2(R)dR
. (8.57)

While the (global) minimum of the variational energy is only obtained for the ground state, the
variance has a known minimum of zero for each eigenstate of the Hamiltonian. The optimization
of the variance can be performed using either a Newton approach with an approximate expression
of the Hessian of the variance [5] or reformulated as a generalized eigenvalue problem, namely, a
linear method for the optimization of the variance [69]. For excited states, the initial guess of the
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trial wave function might, however, be very important to select a specific state and ensure that the
minimization of the variance leads to the correct local minimum.

More robust state-specific variational principles for excited states can be formulated so that
the optimization of the excited state yields a minimum close to an initial target energy. A simple
possibility is to substitute the wave function-dependent average energy in 𝜎v with a guess value
𝜔 as in

𝜎2
𝜔 =

⟨Ψ|(Ĥ − 𝜔)2|Ψ⟩⟨Ψ|Ψ⟩ ≡ (Ev − 𝜔)2 + 𝜎2
v , (8.58)

as was done in the early applications of variance minimization on a fixed Monte Carlo sample [72],
where 𝜔was chosen equal to a target value at the beginning of the optimization and then adjusted
to the current best energy. If one updates 𝜔 in this manner, minimizing 𝜎𝜔 is equivalent to
minimizing 𝜎v.

Alternatively, minimization of the variance can also be achieved by optimizing the recently pro-
posed functional Ω defined as

Ω =
⟨Ψ|𝜔 − Ĥ|Ψ⟩⟨Ψ|(𝜔 − Ĥ)2|Ψ⟩ =

𝜔 − Ev

(𝜔 − Ev)2 + 𝜎v
, (8.59)

where 𝜔 is adjusted during the optimization to be equal to the current value of Ev − 𝜎v [10, 11].
While the functional has formally a minimum for a state with energy directly above𝜔 + 𝜎v, keeping
𝜔 fixed would lead to lack of size consistency in the variational principle [11]. Therefore, after some
initial iterations,𝜔 is gradually varied to match the current value of Ev − 𝜎v required to achieve vari-
ance minimization. As in the case of the energy and the variance, this functional can be optimized
in VMC through a generalization of the linear method [10, 30].

8.6 Applications to Excited States of Molecular Systems

The status of excited-state quantum Monte Carlo calculations closely parallels the methodologi-
cal developments that have characterized the last decade as we have outlined above in the context
of wave function optimization. Since the early applications to excited states, QMC methods were
mainly employed as a tool to compute vertical excitation energies and validate results of more
approximate methods. Input from other – sometimes much less accurate – quantum chemical
approaches was, however, then used for the construction of the wave function, whose determi-
nant component was generally not optimized in the presence of the Jastrow factor. The success
of the calculation was therefore often heavily relying on the ability of DMC to overcome possible
shortcomings of the chosen trial wave function. This must be contrasted to the recent situation of
VMC having matured to a fully self-consistent method as regards the wave function and the geom-
etry with a rich ecosystem of tools ranging from basis sets and pseudopotentials to multi-scale
formulations.

One of the first QMC computations of two states of the same symmetry was carried out for the
H2 molecule [73]: the wave function was obtained from a multi-reference calculation and DMC
was shown to be able, in this case, to correct for the wave function bias. Over the subsequent years,
a number of studies of vertical excitation energies were carried out with this basic recipe, namely,
performing DMC calculations on a given simple wave function obtained at a lower level of the-
ory [74–83]. Some of these early excited-state calculations were in fact pioneering as they were
applied to remarkably large systems such as silicon and carbon nanoclusters with more than 100
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atoms [74, 76, 79]. Given the size of the systems, the choice of excited-state wave function was
then very simple and consisted of a single determinant correlated with a Jastrow factor and con-
structed with the HOMO and LUMO orbitals from a density functional theory (DFT) calculation.
Nevertheless, the resulting DMC excitation energies clearly represented an improvement on the
time-dependent DFT values and captured much of the qualitative physics of the problem. Even
though doubts on the validity of this simplistic recipe [82, 83] led researchers to investigate the
use of orbitals and pseudopotentials obtained with different density functionals [79] as well as a
multi-determinant description [83], a rather heuristic approach erring on the side of computational
saving characterized excited-state calculations in this earlier period.

More recently, the development of algorithms for wave function optimizations in a state-specific
or state-average fashion has allowed us to better understand the proper ingredients in an
excited-state QMC calculation through the study of simple but challenging molecules. In partic-
ular, it has become apparent that large improvements in the accuracy of both VMC and DMC
excited states can be achieved by optimizing the determinantal component in the presence of
the Jastrow factor at the VMC level [9, 61, 64, 67, 70, 84]. For instance, accurate excitations for
low-lying states of ethene can only be obtained if the orbitals derived from a complete-active-space
self-consistent-field (CASSCF) calculation are reoptimized in the presence of the Jastrow factor to
remove spurious valence-Rydberg mixing in the final DMC energies [67]. The analysis of various
small organic molecules reveals that the use of simplistic wave functions such as a HOMO-LUMO
Hartree–Fock or a configuration-interaction-singles ansatz may lead to significant errors also
in DMC [61]. An investigation of the ground and excited states of methylene shows that the
optimization of all variational parameters reduces the dependency of both VMC and DMC on the
size of the active space employed for the trial wave function as shown in Figure 8.7 [70]. In general,
while a minimal requirement is to optimize the linear coefficients together with the Jastrow factor,
the optimization of the orbitals is highly recommended, especially if one employs a truncated
expansion in computing the excitation energies. Furthermore, evidence has been given that the
optimization of excited-state geometries requires the optimization of all wave function parameters
in order to obtain accurate gradients and, consequently, geometries [63]. Finally, by construction,
linear-response VMC depends strongly on the quality of the ground-state wave function for the
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Figure 8.7 Convergence of VMC and DMC adiabatic excitation energies for the first and second excited
states of methylene with increasing CAS size. Three levels of optimization have been used for the wave
function: Jastrow, Jastrow and linear coefficients, and all parameters. Adapted from Ref. [70].
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description of excited states and, therefore benefits considerably from orbital optimization in the
ground state [71].

While these and other examples of excited-state QMC calculations clearly illustrate the impor-
tance of using wave functions with an adequate description of static correlation and consistently
optimized in VMC, they also demonstrate the robustness of QMC approaches and some of their
advantages with respect to standard multi-configurational methods. In particular, the VMC and
DMC excitations are well converged already when very few determinants of a CAS expansion are
kept in the determinantal component of the wave function [9, 84]. Furthermore, the demands on
the size of the basis set are also less severe and one can obtain converged excitation energies with
rather small basis sets [24, 63, 64]. We note that most of the recent QMC calculations for excited
states have attempted to achieve a balanced static description of the states of interest either by
employing a CAS in the determinantal component or a truncated multi-reference ansatz where
one keeps the union of the configuration state functions resulting from an appropriate truncation
scheme (e.g., the sum of the squared coefficients being similar for all states). Interestingly, match-
ing the variance of the states has recently been put forward as a more robust approach to achieve a
balanced treatment of the states in the computation of excitation energies [30, 85].

The ability to optimize geometries even in the ground states has been a very recent achieve-
ment for QMC methods, so most QMC calculations also outside the Franck–Condon region
have been performed on geometries obtained at a different level of theory [30, 61, 70, 83, 86–88].
Nevertheless, these investigations have led to very promising results, showing interesting prospects
for the application of QMC to geometry relaxations in the excited state, where most quantum
chemical methods either lack the required accuracy or are computationally prohibitive due
to their scaling with system size. For example, QMC was successfully employed to assess the
accuracy of various time-dependent DFT methods in describing the photochemisty of oxirane
through exploration of multiple excited-state potential energy surfaces, also in proximity of conical
intersection regions [86, 87]. Another application demonstrating the very good performance of
DMC was the study of different conformers of azobenzene in the ground and excited states [88].
To the best of our knowledge, to date, the few attempts to optimize an excited-state geometry
via QMC gradients are our studies of the retinal protonated Schiff base model [24, 63] and
benchmark calculations on small organic molecules in the gas phase [89] and in a polarizable
continuum model [46]. As shown for the retinal minimal model in Figure 8.8, the results are
very encouraging as they demonstrate that the QMC structures relaxed in the excited state are in
very good agreement with other highly-correlated approaches. As already mentioned, the VMC
gradients are sensitive to the quality of the wave function and the orbitals must be reoptimized in
VMC to obtain accurate results. Tests also indicate that the use of DMC gradients is not necessary
as DMC cannot compensate for the use of an inaccurate wave function while it yields comparable
results to VMC when the fully optimized wave function is employed.

Finally, we mention the recent developments of multi-scale methods in combination with QMC
calculations for excited states. Multi-scale approaches are particularly relevant for the description of
photoactive processes that can be traced back to a region with a limited number of atoms, examples
being a chromophore in a protein or a solute in a solvent. While this locality enables us to treat
the photoactive region quantum mechanically, excited-state properties can be especially sensitive
to the environment (e.g., the polarity of a solvent or nearby residues of a protein), which cannot
therefore be neglected but are often treated at lower level of theory. Multi-scale approaches are
well-established in traditional quantum chemistry but represent a relatively new area of research
in the context of QMC. The first steps in this direction were made by combining VMC with a con-
tinuum solvent model, namely, the polarizable continuum model (PCM) [90]. The approach was
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Figure 8.8 Planar excited-state geometry of a retinal protonated Schiff base model optimized with
CASSCF, second order perturbation theory (CASPT2), and VMC. Adapted from Ref. [63].

used to investigate solvent effects on the vertical excitation energies of acrolein [44] and on the
optimal excited-state geometries of a number of small organic molecules [46]. A notable advantage
of VMC/PCM is that the interaction between the polarizable embedding and the solute is described
self-consistently at the same level of theory. This stands for instance in contrast to perturbation
approaches which include the interaction with the environment obtained self-consistently only at
the zero-order level (e.g., CASSCF).

To achieve a more realistic description of the environment, a static molecular mechanics envi-
ronment coupled via electrostatic interactions with the VMC or DMC chromophore was used to
describe the absorption properties of the green fluorescent protein and rhodopsin [91, 92]. The
limitations of such a non-polarizable embedding scheme led to further developments, replacing
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Figure 8.9 Energies of the 𝜋 → 𝜋∗ excitation of methylenecyclopropene in vacuum and embedded in a
cluster of water molecules, computed with time-dependent DFT, CASPT2, VMC, and DMC. The water
molecules are described with a static TIP3P force field and a MMpol approach with no polarization (nopol),
with induced ground-state (polGS) and state-specific (polSS) dipoles, and in a supermolecular calculation
(super). Adapted from Ref. [47].
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the static description with a polarizable one in a so-called VMC/MMpol approach [47]. The force
field consists of static partial charges located at the positions of the atoms as well as atomic polar-
izibilities. These are used to compute induced dipoles in equilibrium with the embedded system at
the level of VMC, which are then kept fixed in subsequent DMC calculations. The computation of
the QMC excitation energies can be carried out for two polarization schemes: either the induced
dipoles are determined for the ground state and used also for the excited state (polGS), or the exci-
tation energy is computed in a state-specific manner as the difference between the ground- and
excited-state energies both obtained self-consistently in equilibrium with the respective induced
dipoles (polSS). As illustrated in Figure 8.9, the vertical excitation energies of small molecules in
water clusters depend strongly on the sophistication of the embedding scheme. Only the polariz-
able force field with two separate sets of induced dipoles for the ground and excited states leads
to a very good agreement with the supermolecular excitation. Again, the QMC results agree with
complete-active-space second-order perturbation theory (CASPT2) which however is found to be
rather sensitive to the choice of the active space. The most sophisticated QMC embedding scheme
has so far been realized using a wave-function-in-DFT method and including differential polariza-
tion effects through state-specific embedding potentials [45]. As in the case of the polSS approach,
the use of different potentials in the ground and excited state is particularly important for excita-
tions which involve large polarization effects due to a considerable rearrangement of the electron
density upon excitation.

8.7 Alternatives to Diffusion Monte Carlo

In some of the applications we presented, VMC has been shown to be sufficient to provide accu-
rate excited-state properties without the need to perform a DMC calculation. The reason is that
the burden and complexity of the problem have now been moved from the DMC projection to the
construction and optimization at the VMC level of sophisticated wave functions with many param-
eters. It is therefore natural to ask if there are alternatives to DMC, which do not require us to build
and optimize complicated many-body wave functions.

The Cerperley–Bernu method [93] can, in principle, be used to compute the lowest-energy eigen-
states and the corresponding relevant matrix elements by constructing a set of many-body basis
states and improving upon them through the application of the imaginary-time projection oper-
ator also used in DMC. The Hamiltonian and overlap matrices are computed on these improved
basis states during the projection and the eigenvalues and eigenstates are then obtained by solv-
ing this generalized eigenvalue problem. The method requires, however, that the fixed-node con-
straint is relaxed during the projection, and therefore amounts to an expensive “nodal-release”
approach. The approach has been successfully applied to the computation of low-lying excitations
of bosonic systems [32, 93] and has also been used to compute tens of excited states of the fermionic,
high-pressure liquid hydrogen in order to estimate its electrical conductivity [94].

If we move beyond a continuum formulation of QMC, the auxiliary-field quantum Monte Carlo
(AFQMC) method by Zhang and coworkers [95] represents a very distinct, feasible alternative to
DMC. In this approach, the random walk is in a space of single-particle Slater determinants, which
are subject to a fluctuating external potential. The fermion-sign problem appears here in the form
of a phase problem and is approximately eliminated by requiring that the phase of the determi-
nant remains close to the phase of a trial wave function. The method is more expensive than DMC
but has been applied to a variety of molecular and extended systems (mainly in the ground state)
and appears to be less plagued by the phase constraint as compared to the effect of the fixed-node
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approximation in DMC. A very recent review of AFQMC and its applications also to excited states
can be found in Ref. [96].

Finally, we should mention another QMC approach in determinantal space, namely, the full
configuration interaction quantum Monte Carlo method [97, 98] where a stochastic approach is
used to select the important determinants in a full configuration interaction expansion. The method
has been described in Chapter 6 together with its extension to excited states.
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Abstract

The multireference configuration interaction (MRCI) method is a simple and robust way of treating
non-dynamic and dynamic correlation on an equal footing. In its original form, it is based on a straight-
forward linear expansion of the wave function into Slater determinants or configuration state functions
(CSFs) and the application of the variational principle. In this chapter the construction of this expan-
sion space by means of reference configurations and a hierarchy of excitations thereof is discussed
and a classification of the corresponding orbital spaces is provided. The violation of size-extensivity is
explained using a simple model example and the possibilities of a posteriori and intrinsic corrections to
restore approximate size-extensivity are presented. Contraction schemes based on internally contracted
(ic)-MRCI, which alleviate the high computational demand of the uncontracted MRCI, are explained.
The description of configuration selection schemes and different options for choosing orbitals to be used
in the MRCI conclude this chapter.

9.1 Introduction

The multi-reference configuration interaction (MRCI) method is a way of treating non-dynamic
and dynamic electron correlation on an even footing. MRCI operates by initially constructing a
space of reference configurations, exciting electrons out of these configurations, and solving the
electronic Schrödinger equation by variationally minimizing the energy in the resulting config-
uration space. In its uncontracted (uc) variant, excitations are performed with respect to each
individual reference configuration. In addition, different contraction schemes have been devel-
oped to cope with the rapidly increasing computational cost of uc-MRCI through a reduction of
the number of configurations, from which the most popular one is the internal contraction (ic).
The MRCI method is conceptually simple and, in its uncontracted form, the working equations are
equivalent to the single reference (SR) case with the exception that a larger set of configurations
is considered. As a consequence, the MRCI method is very flexible, both in the choice of config-
uration space and the construction of the molecular orbitals and can be applied to a wide variety
of molecular systems. Furthermore, MRCI is a variational method, which means that the energy
obtained is never lower than the true ground state energy. The variationality of MRCI also leads
to the fact that wave function properties, such as dipole moments, and energy gradients can be
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computed fairly easily, particularly in the case of uc-MRCI. The main downside of MRCI is its lack
of size-extensivity whenever the CI expansion is truncated at a specific excitation level. Practically
this means that the description deteriorates as the size of the molecule increases.

This chapter is intended as a compact and easy-to-read introduction to the topic of MRCI. For a
more comprehensive discussion, we refer the reader to the literature [1–5]. Several of the mathe-
matical foundations and procedures are being discussed in other chapters of this book and we will
refer to them as needed. Here, we start by discussing the basic definitions and concepts, focusing
on uc-MRCI (Section 9.2). We continue by specifying different variants of MRCI in Section 9.3 and
finish by listing popular implementations (Section 9.4).

9.2 Basics

In this section, we first discuss the basic points underlying MRCI starting with the main working
equations of CI and showing how these lead to a method satisfying the variational principle
(Section 9.2.1). In Section 9.2.2, we discuss how truncated CI invariably leads to a lack of
size-extensivity. We continue by explaining the construction of configuration spaces (Section 9.2.3)
and the different choices for the underlying many-electron basis functions (Section 9.2.4). As a final
point, we outline the workflow in practical uc-MRCI computations considering the determination
of the energy and its gradient with respect to variations in the geometry (Section 9.2.5).

9.2.1 Configuration Interaction and the Variational Principle

The general idea of the configuration interaction (CI) method is to compute the many-electron
wave function of an electronic state as a linear combination of pre-defined many-electron basis
functions. Explicitly, the wave function |Ψ𝛼⟩ of state 𝛼 is written as

|Ψ𝛼⟩ = NCI∑
k=1

c𝛼k |Φk⟩ (9.1)

Here, the |Φk⟩ are the many-electron basis functions representing the electronic configurations,
which will be discussed in more detail in Section 9.2.4. The c𝛼k are the CI-coefficients, which are
usually collected in the CI-vector c𝛼 whose length is given by NCI. To derive the main working
equation of CI, we start with the electronic Schrödinger equation

Ĥ|Ψ𝛼⟩ = E𝛼|Ψ𝛼⟩ (9.2)

where Ĥ is the electronic Hamiltonian operator and E𝛼 is the energy of state 𝛼. After insertion of
Eq. (9.1) one obtains

NCI∑
k=1

c𝛼k Ĥ|Φk⟩ = NCI∑
k=1

c𝛼k E𝛼|Φk⟩. (9.3)

In the next step, we project the above equation onto ⟨Φl| – in other words, we left-multiply the
equation by the function Φl and integrate over all space – to obtain

NCI∑
k=1

c𝛼k⟨Φl|Ĥ|Φk⟩ = NCI∑
k=1

c𝛼k E𝛼⟨Φl|Φk⟩. (9.4)

To proceed, we define the CI-matrix H whose elements are defined as

Hlk = ⟨Φl|Ĥ|Φk⟩. (9.5)
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In addition, we assume that the chosen many-electron basis functions form an orthonormal set so
that ⟨Φl|Φk⟩ = 𝛿lk. Inserting these two expressions into Eq. (9.4) leads to

NCI∑
k=1

Hlkc𝛼k = E𝛼c𝛼l . (9.6)

This is a set of NCI different equations, one for each possible index of l. This set of equations can be
conveniently written in matrix form to yield

Hc𝛼 = E𝛼c𝛼. (9.7)

This is the main working equation of CI. The significance of this is that the initial operator eigen-
value equation (9.2) has been turned into a matrix eigenvalue equation. Equation (9.7) can be
addressed by standard linear algebra techniques whereas the direct solution of the many-electron
Schrödinger equation (9.2) is a daunting task that can be tackled only in very specific cases.

Equation (9.7) holds equivalently for the SR and MR cases where the only difference is that dif-
ferent sets of configurations are considered. Furthermore, there is no specific requirement on the
underlying orbitals used. Equation (9.7) also provides a direct route to the computation of excited
states in the uc-MRCI method. Whereas the ground state corresponds to the lowest energy eigen-
value of H, excited states simply correspond to higher energy eigenvalues. These properties reflect
the conceptual simplicity of the MRCI method and contribute to its flexibility.

In practice, the dimension of the CI vector NCI may well exceed 109 configurations. In this case, it
is clearly not possible to store the whole CI matrix H in memory or even on disk. For this purpose,
the CI matrix is generated on-the-fly from the MO integrals in the direct CI procedure [6].

One of the main properties of the CI method is the fact that it is variational. It fulfills two
important properties in this context. First, if we construct any trial wave function according
to Eq. (9.1)

|Ψtrial⟩ = NCI∑
k=1

ctrial
k |Φk⟩ (9.8)

then its energy expectation value

Etrial =
⟨Ψtrial|Ĥ|Ψtrial⟩⟨Ψtrial|Ψtrial⟩ ≥ E0,exact (9.9)

will always be greater or equal to the true ground state energy of the system E0,exact. This simply fol-
lows from the fact that the CI energy is computed as an expectation value. Furthermore, the energy
of any trial wave function is always greater or equal to the lowest eigenvalue E0 of the CI-matrix H,
which corresponds to the CI energy of the ground state. This can be readily seen if the expectation
value is given in matrix form

Etrial = (ctrial)THctrial

(ctrial)Tctrial ≥ E0. (9.10)

In the case of a non-degenerate ground state, the equality Etrial = E0 is obtained only if |Ψtrial⟩ cor-
responds to the ground-state wave function. In the case, of a degenerate ground state, this relation
holds whenever |Ψtrial⟩ is formed as a linear combination of the degenerate ground-state wave func-
tions. In summary, it holds that the CI ground-state energy is the lowest possible energy expectation
value for any possible trial wave function within the configuration space and that this energy will
always be greater or equal to the exact ground state energy. Note that neither of these statements
holds for the coupled-cluster method.
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The variational theorem can be generalized to excited states [2]. To see this, we start with the
CI-matrix H whose lowest eigenvalues are E0,E1,E2,… as indicated in Eq. (9.7). Next, a basis func-
tion is added to the configuration space and a new Hamiltonian matrix with an extra row and an
extra column is generated

H̃ =
(

H ṽ
ṽT 𝜖

)
(9.11)

The Hylleraas–Undheim theorem [7] now states that for the eigenvalues of H̃, denoted
Ẽ0, Ẽ1, Ẽ2,…, the following relation holds

Ẽ0 ≤ E0 ≤ Ẽ1 ≤ E1 ≤ Ẽ2 ≤ E2 ≤ … (9.12)

This can be understood in the following way

● If 𝜖 is lower than a specific eigenvalue E𝛼 , it will directly contribute to a new lower eigenvalue of
H̃.

● If 𝜖 ≥ E𝛼 it will either leave the eigenvalue unchanged or lower it through off-diagonal coupling
terms.

The first relation of Eq. (9.12), that is Ẽ0 ≤ E0, corresponds to the usual variational theorem: the
lowest eigenvalue either stays the same or becomes lower as the variational space is increased.
Equation (9.12) shows that a similar relation holds for every individual eigenvalue. The energy of
any specific state E𝛼 can never increase as the variational space is increased. This argument can be
extended and it can be understood that the CI eigenvalues are upper bounds to the exact eigenvalues
(the solutions of Eq. (9.2)) and it holds that

E0 ≥ E0,exact (9.13)

E1 ≥ E1,exact (9.14)

E2 ≥ E2,exact (9.15)

…

Finally, two words of caution are in order. First, Eqs. (9.13)–(9.15) only hold for the total energies
of the states and it is not possible to make a similar statement about excitation energies. Second,
these equations only apply if all excited states are obtained as eigenvalues of the same matrix.

An alternative way of deriving the CI working equations (9.7) starts with Eq. (9.10) and minimizes
Etrial explicitly invoking the variational principle. For this purpose, a Lagrange multiplier formalism
can be used to make Etrial stationary with respect to variations in the CI coefficients and enforce
a normalized wave function [8]. The fact that the CI energy is stationary with respect to the CI
coefficients facilitates the computation of wave function properties, gradients and non-adiabatic
couplings [5, 8]. This holds also in the MR case and implementations of gradients and non-adiabatic
couplings have been reported for uncontracted MRCI [9–11] and are widely used.

9.2.2 The Size-Extensivity Problem of Truncated CI

In practical cases, it is most common to truncate the CI expansion at a specific excitation level. In
the SR case one might use singles (CIS), doubles (CISD), triples (CISDT) while in the MR case, the
MRCIS and MRCISD methods are commonly used. The main practical problem of these truncated
methods is their lack of size-extensivity. Here, the term “extensive” comes from thermodynamics
where the term is used to describe a physical quantity whose magnitude is proportional to the size
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of the system. The electronic correlation energy of a system is clearly supposed to be an extensive
property of the system. A computational method is called “size-extensive” if its correlation energy
scales correctly with the size of the system [12, 13], i.e., the correlation energy is truly an extensive
property. A different way of viewing size-extensivity is the requirement that the correlation energy
per particle does not tend to zero as the system size increases [14]. For practical purposes, it is often
easier to think about the related concept of size-consistency. Here, a size-consistent method is a
method where a computation of non-interacting systems will lead to the same energy as the sum
of calculations on the isolated systems [15].

Before proceeding it is worth noting that two commonly used CI methods, SRCIS (if based
on canonical orbitals) and full CI, are indeed size-extensive. The Brillouin theorem states that
singly excited configurations do not interact with the converged Hartree–Fock wave function. As
a consequence, the SRCIS ground state is equivalent to the Hartree–Fock ground state, which is
size-extensive [16, 17]. The size-extensivity of the SRCIS excited state energies follows, for example,
from the fact that these are equivalent to the energies of the size extensive coupled cluster singles
(CCS) method. Full CI is also size-extensive but this happens at the cost of exponential scaling
with the system size.

To explain the lack of size consistency of truncated CI, we may start by the following qualitative
argument:

● CISD is equivalent to full CI for a two-electron system.
● CISD is no longer equivalent to full CI for two non-interacting two-electron systems.

Thus, the description of two non-interacting systems is different from the description of the indi-
vidual systems, which violates the definition of size-consistency given above.

To understand the problem in some more detail, it is convenient to start with a hydrogen
molecule in a minimal basis set or any other two-electron system, see also Ref. [13]. The hydrogen
molecule possesses two molecular orbitals, the bonding 𝜎g orbital and the anti-bonding 𝜎∗u orbital.
The Hartree–Fock reference determinant Φ0 corresponds to the situation where the 𝜎g orbital is
doubly occupied. For symmetry reasons this determinant can only interact with the doubly excited
configuration ΦD. The wave function for an isolated hydrogen atom is thus given as:

|Ψ⟩ = c0|Φ0⟩ + cD|ΦD⟩. (9.16)

It is a linear combination of the reference determinant and a doubly excited configuration. This
wave function can be completely described by the CISD method. CISD is equivalent to full CI for
this system and this holds for any two-electron system independent of the basis set.

If two non-interacting hydrogen molecules are present, one can – ignoring the Pauli princi-
ple – write the total wave function ΨAB of the system as a product of the wave functions of the
individual hydrogen atoms ΨA and ΨB

|ΨAB⟩ = |ΨA⟩|ΨB⟩ = (9.17)

(c0|ΦA
0 ⟩ + cD|ΦA

D⟩)(c0|ΦB
0 ⟩ + cD|ΦB

D⟩) = (9.18)

c0
2|ΦA

0 ⟩|ΦB
0 ⟩ + c0cD(|ΦA

0 ⟩|ΦB
D⟩ + |ΦA

D⟩|ΦB
0 ⟩) + cD

2|ΦA
D⟩|ΦB

D⟩ (9.19)

The first term in Eq. (9.19) is the closed-shell reference of the combined system. The two following
configurations are doubly excited with respect to this reference and the final configuration shown
is quadruply excited. In a short-hand notation, we can rewrite Eq. (9.19) as

|ΨAB⟩ = c0
2
[|ΦAB

0 ⟩ + cD

c0

√
2|ΦAB

D ⟩ + cD
2

c0
2 |ΦAB

Q ⟩] (9.20)
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Here, we have constructed normalized functions for the combined system representing the refer-
ence, doubly and quadruply excited configurations, respectively, using the definitions

|ΦAB
0 ⟩ = |ΦA

0 ⟩|ΦB
0 ⟩ (9.21)

|ΦAB
D ⟩ = 1∕

√
2(|ΦA

0 ⟩|ΦB
D⟩ + |ΦA

D⟩|ΦB
0 ⟩) (9.22)|ΦAB

Q ⟩ = |ΦA
D⟩|ΦB

D⟩. (9.23)

Quadruply excited configurations naturally arise even though the individual hydrogen molecules
are only doubly excited. It is no longer possible to construct a wave function of the form of Eq. (9.19)
using the CISD method, as only the first two terms can be included. This means that the CISD
wave function is not size-consistent as the description of the combined system is different from the
description of the individual systems.

In the case of only two hydrogen molecules in a minimal basis set, there is only one possible
quadruple excitation and we can assume that its weight is small considering that c0 ≫ cD. How-
ever, the situation changes once the number of particles is increased for combinatorial reasons. If
there are N hydrogen molecules, then there are N possibilities of exciting one of them and N(N−1)

2
possibilities of exciting two of them at the same time. As a consequence, for N hydrogen molecules
Eq. (9.19) takes the form

|ΨAB…N⟩ =
c0

N

[|ΦAB…N
0 ⟩ + cD

c0

√
N|ΦAB…N

D ⟩ + cD
2

c0
2

√
N(N − 1)

2
|ΦAB…N

Q ⟩ +…

]
. (9.24)

Here, |ΦAB…N
0 ⟩ refers to the product of the N reference determinants in analogy to Eq. (9.21) while|ΦAB…N

D ⟩ and |ΦAB…N
Q ⟩ are normalized linear combinations of all doubly excited and pairs of doubly

excited configurations, respectively. Eq. (9.24) shows that, no matter how small CD is, the contribu-
tion of the quadruples will become important when N is increased. More generally, as the system
size increases, higher excitations will become dominant in the wave function expansion and the
weight of the reference determinant and the lower excitations ultimately tends toward zero.

The higher excitation terms in Eq. (9.24) are often denoted “disconnected” excitations, using
the language of diagrammatic perturbation theory [13]. The coefficients of these excitations are
not determined by independent wave function parameters but their magnitude depends on the
CI-coefficient cD of the doubly excited configuration of the isolated system. This observation is at
the heart of coupled-cluster theory: it is enough to know the coefficients of the double excitations to
compute higher excitations as products of the lower excitations. In the case of MRCI, it is possible
to use similar arguments for approximate extensivity corrections, see Section 9.3.2.

9.2.3 Multi-Reference Configuration Spaces

MRCI computations are usually carried out by first constructing a space of reference configurations
and subsequently allowing a fixed number of excitations out of this reference space. The reference
space is intended to cover non-dynamic electron correlation whereas the excitations out of it rep-
resent dynamic correlation. In this section, we will first discuss the separation of the molecular
orbitals (MOs) into different spaces and will subsequently show how the different electronic con-
figurations are constructed using these orbital spaces.

Before setting up an MRCI computation, it is necessary to divide the MOs into different sub-
spaces as shown in Figure 9.1. At the bottom of Figure 9.1 are the frozen core orbitals. These
remain doubly occupied in the reference space as well as the actual MRCI configuration space.
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External/virtual orbitals

Active orbitals

Reference doubly occupied orbitals

Frozen core orbitals

Internal orbitals

Figure 9.1 Division of the MRCI molecular orbital space into different subspaces.

The default is to consider the inner electron shells of the system, e.g., the 1s orbitals of second row
elements, as frozen core orbitals. But sometimes more orbitals are frozen to save computational
cost. For example, it is possible to freeze all 𝜎 electrons in a π-system [18]. Next, the reference dou-
bly occupied (refdocc) orbitals follow. These are doubly occupied in all reference configurations but
excitations out of these orbitals are allowed when generating the MRCI wave function. The next set
of orbitals considered are the active orbitals. These possess various occupation patterns already in
the reference configurations. It is also common to refer to the combined set of active and reference
doubly occupied orbitals as internal orbitals as indicated in Figure 9.1 on the left. The last space
to be considered are the external or virtual orbitals. These are unoccupied in the reference config-
urations but are populated by one or two electrons during the MRCI procedure. Finally, it is also
possible to freeze and, thus, effectively delete virtual orbitals from the computation. Frozen virtual
orbitals do not affect the MRCI results at all and are, therefore, not shown in Figure 9.1.

Having defined the different orbital spaces, we can now proceed by discussing the MRCI con-
figuration space, as shown in Figure 9.2. At the heart of the MRCI computation is the reference
space. The reference space is constructed by exciting electrons within the active orbital space. It is
common to construct the reference space as a complete active space, i.e., by allowing all possible
occupations within the active orbital space, in analogy to the CASSCF wave function (see Chapter
6). Alternatively, additional occupation restrictions, as discussed also in Chapter 6, can be imposed
to reduce the size of the reference space and ultimately the configuration space. The reference space
is shown in the upper left of Figure 9.2 representing a CAS(2,2) space.

Once the reference space is defined, the MRCI wave function is defined by exciting electrons out
of this space. In MRCI there are four distinct types of excitations:

● refdocc → active
● active → external
● refdocc → external
● active → active

In the following, we will consider the uc-MRCISD method where excitations are performed
with respect to the individual reference configurations and in total two excitations are allowed.
This, first, leads to various singly excited configurations, which are shown on the upper right
of Figure 9.2. The first two are of refdocc → active type, the following is active → external, and
finally three refdocc → external configurations are shown. The fourth type of excitation (active →

active) only comes into play for incomplete reference spaces and is not shown here. In the case
of doubly excited configurations, the situation is even more complicated as any combination of
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Reference Space Singly Excited Configurations

Doubly Excited Configurations

Figure 9.2 Division of the uc-MRCI configuration space into a reference space and the spaces of singly and
doubly excited configurations. Active electrons are shown in red; electrons originating from the reference
doubly occupied orbitals are shown in blue.

the above-mentioned excitation types is possible. In the bottom panel of Figure 9.2, a number of
different doubly excited configurations are shown where different numbers of refdocc and active
electrons are distributed over the different spaces.

Considering the representation of Figure 9.2, the MRCISD wave function can be written in
the form

|Ψ⟩ = Nref∑
k=1

cref
k |Φref

k ⟩ +∑
l

cS
l |ΦS

l ⟩ +∑
m

cD
m|ΦD

m⟩ (9.25)

where |Φref
k ⟩ are the reference configurations and |ΦS

l ⟩ and |ΦD
m⟩ are the singly and doubly excited

configurations, respectively.
Figure 9.2 illustrates the complexity of the MRCI wave function. Whereas in the single-reference

case only one type of excitation exists (from occupied to virtual orbitals), three different orbital
spaces and excitations between them have to be considered for MRCI. A practical problem in this
context is that the same final excited configuration can often be reached through excitations from
different references. For example, the first singly excited configuration in Figure 9.2 could be con-
structed in three different ways:

● starting from the first reference configuration and exciting an electron from the refdocc orbital
to the higher-lying active orbital (as indicated by the colors in Figure 9.2),

● starting from the second reference configuration and exciting an electron from the refdocc orbital
to the lower-lying active orbital,

● or starting from the third reference configuration and exciting two electrons (refdocc → active
and active → active).
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Thus, depending on the choice made, this configuration would either be counted as a |ΦS
l ⟩ or a|ΦD

m⟩ configuration and it is clear that the expansion (9.25) creates linear dependencies. In the case
of MRCI this is mainly an “accounting problem” and different methods have been developed for
removing redundancies in the expansion space and creating a unique list of configurations [19, 20].
By contrast, the existence of different orbital spaces is a major hindrance in the development of MR
coupled cluster approaches as no uniquely defined “Fermi vacuum” exists that can be used as a
starting point for the coupled cluster expansion [5, 14].

The division into reference, singly and doubly excited configurations, as shown in Figure 9.2, is
most convenient when constructing the configuration space. As opposed to this representation, it
is also common to divide the configuration space according to the number of electrons in internal
orbitals, see Figure 9.3. In this representation one starts with the internal space, which is composed
of all configurations where the electrons are in internal (refdocc and active) orbitals. These corre-
spond to the reference configurations and all configurations obtained through refdocc → active
excitations shown on the left and right, respectively, in the upper panel of Figure 9.3. In the case of
an incomplete reference space, also active → active excitations are included here. The 1-external
space corresponds to all configurations where one external orbital is singly occupied (Figure 9.3,
lower left). These configurations are either obtained by single excitations out of the internal space
or double excitations where one electron stays in the internal space and the other one is excited
out of it. The 2-external space is obtained by double excitations. It is usually the largest part of the
configuration space. Finally, it is possible to differentiate whether the two electrons excited into the

Internal Space

1-External Space 2-External Space

Figure 9.3 Division of the uc-MRCI configuration space into an internal space and configurations with one
or two electrons in external orbitals. Active electrons are shown in red; electrons originating from reference
doubly occupied orbitals are shown in blue.
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external space are of the same or opposite spin. In the example shown, the two electrons have the
same spin for all except the last 2-external configuration.

In light of the representation of Figure 9.3, the MRCISD wave function can be written in the form

|Ψ⟩ = ∑
k

cint
k |Φint

k ⟩ +∑
l

c1-ext
l |Φ1-ext

l ⟩ +∑
m

c2-ext
m |Φ2-ext

m ⟩ (9.26)

where |Φint
k ⟩ are the internal configurations and |Φ1-ext

l ⟩ and |Φ2-ext
m ⟩ are the configurations with one

and two electrons in external orbitals, respectively. As opposed to Eq. (9.25), this is a unique repre-
sentation where every configuration fits only into one of the categories. A more compact description
is given by only separating the internal and external configurations

|Ψ⟩ = ∑
k

cint
k |Φint

k ⟩ +∑
l

cext
l |Φext

l ⟩, (9.27)

and this separation is used in the definition of some extensivity corrected methods as discussed in
Section 9.3.2.

9.2.4 Many-Electron Basis Functions: Determinants and CSFs

In the above section, we have discussed different electron configurations without discussing the
nature of the underlying many-electron basis functions. This is the focus of this section. In practice,
there are two common options: Slater determinants and configuration state functions (CSFs). The
difference between them is that Slater determinants are only eigenfunctions of the Ŝz operator, i.e.,
the spin-operator projected onto one spatial dimension, while CSFs are also eigenfunctions of the
total spin operator Ŝ2. Slater determinants are uncorrelated aside from Fermi correlation mandated
by the Pauli principle. CSFs encode additional non-trivial static correlation effects.

The simplest way of constructing a configuration for CI is in the form of a Slater determinant

ΦS(x1, x2,… , xn) =
1√
n!

|||||||||
𝜙1(x1) 𝜙2(x1) … 𝜙n(x1)
𝜙1(x2) 𝜙2(x2) … 𝜙n(x2)

⋮ ⋮ ⋱ ⋮
𝜙1(xn) 𝜙2(xn) … 𝜙n(xn)

|||||||||
(9.28)

where the 𝜙i are the molecular orbitals, xi refers to the coordinates of the ith electron, and n is the
number of electrons. The defining feature of a Slater determinant is that it yields an antisymmetric
wave function compliant with the Pauli principle, i.e., ΦS(x2, x1,… , xn) = −ΦS(x1, x2,… , xn). This
follows from the fact that the exchange of two electrons corresponds to the exchange of two rows
in the determinant, which changes the sign of the determinant.

The advantage of the application of Slater determinants is that matrix elements between them,
which are needed to form the CI matrix in Eq. (9.4), can be evaluated in a straightforward way by
means of the Slater–Condon rules.

If a Slater determinant is formed from the usual 𝛼 and 𝛽 spin-orbitals, then it is also naturally an
eigenfunction of the operator Ŝz. However, a Slater determinant is an eigenfunction of the total spin
operator Ŝ2 only under the condition that either all electrons are paired or, if unpaired electrons
exist, that all of these possess the same spin. Spin-eigenfunctions generally have to be constructed
as a linear combination of several Slater determinants.

The construction of spin-eigenfunctions is most readily illustrated in the case of two unpaired
electrons placed in two orbitals. There are four possibilities to place two unpaired electrons in two
orbitals as illustrated in Figure 9.4. The functions Φ𝛼𝛼 and Φ𝛽𝛽 are already spin-eigenfunctions as
all unpaired electrons possess the same spin. By contrast, linear combinations of Φ𝛼𝛽 and Φ𝛽𝛼 have
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Φαβ Φβα Φαα Φββ

Figure 9.4 Possibilities for placing two unpaired electrons in two orbitals.

to be formed to obtain spin-eigenfunctions. In total the space spanned by the functions shown in
Figure 9.4 contains one singlet component

|ΦS⟩ = 1∕
√

2(|Φ𝛼𝛽⟩ − |Φ𝛽𝛼⟩) (9.29)

and three triplet components with different MS values|ΦT,+1⟩ = |Φ𝛼𝛼⟩ (9.30)

|ΦT,0⟩ = 1∕
√

2(|Φ𝛼𝛽⟩ + |Φ𝛽𝛼⟩) (9.31)|ΦT,−1⟩ = |Φ𝛽𝛽⟩. (9.32)

Generally speaking, CI carried out in a Slater determinant basis will lead to correct spin-pure
solutions as long as a spin-complete basis constructed from spin-restricted orbitals is used. This
follows from the fact that Ĥ and Ŝ2 commute and, more specifically, that configurations of different
spin do not interact in the CI procedure. Spin contamination only comes into play if unrestricted
orbitals are used or if the set of basis functions is not spin-complete, e.g., in the case of spin-flip
methods [21]. The practical problem for performing CI in a basis of Slater determinants is not that
one obtains incorrect results but that unnecessary basis functions are carried along. For example,
in the case of Figure 9.4, one would have to consider, both, Ψ𝛼𝛽 and Ψ𝛽𝛼 as basis functions even
though it is a priori known that only their linear combination ΨS will contribute to a singlet wave
function. Thus, in a case of two open-shell electrons one would already have to include twice as
many configurations as necessary and this factor increases strongly for more open shells.

To overcome the above problem, it is possible to combine several Slater determinants into eigen-
functions of the Ŝ2 operator. The resulting functions are usually called configuration state functions
(CSF). Every CSF is formed as a linear combination of Slater determinants, all possessing the same
spatial occupation but different spin. Using CSFs allows the efficiency of CI to be increased by
reducing the size of the CI vector. However, it also complicates the CI algorithm. While matrix ele-
ments between Slater determinants can simply be evaluated according to the Slater–Condon rules,
things become more complicated for CSFs. In fact, much of the algorithmic development in MRCI
is concerned with constructing CSFs and computing the matrix elements between them. For this
purpose, different approaches such as the symmetric group [20] and the unitary group approach
[19] have been developed.

9.2.5 Workflow

A typical workflow for practical uc-MRCI computations is shown in Figure 9.5. The steps involved
in the computation of the MRCI energy are shown on the left side, going from bottom to top,
whereas the steps for the gradient are on the right side, going from top to bottom. Initially, one
has to specify the molecular geometry and basis set, and this information is encoded in the AO
integrals. The AO integrals are usually stored on disk. The next crucial step is the generation of the
molecular orbitals. This step, discussed in more detail in Section 9.3.4, is most commonly done by
MCSCF. To carry out the MCSCF step, the AO integrals are needed as input, and the main param-
eters for MCSCF are concerned with the active space definition. Subsequently, the MO coefficients
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Figure 9.5 Workflow of a typical MRCI computation: Steps for computing the MRCI energy and gradient
are shown on the left and right panels, respectively.

are used to transform the AO integrals into the MO basis. The resulting MO integrals are the only
type of input data that is required by the MRCI step. The main parameters for the MRCI step are
the definition of the reference space and the excitation level. At this point, the matrix eigenvalue
equation (9.7) is solved using the MO integrals to construct the H matrix on-the-fly and the energies
E𝛼 and CI vectors c𝛼 are obtained as output.

On the right side of Figure 9.5, we also show the computation of energy gradients, which are
required for geometry optimizations or on-the-fly dynamics simulations (see chapters 13–17). Due
to the variational nature of MRCI and the simple form of its uncontracted variant, it is relatively
straightforward to compute analytic gradients based on uc-MRCI and the computational cost is
usually only a fraction of the energy calculation. For a detailed discussion on analytic MRCI gra-
dients and the related non-adiabatic coupling vectors we refer readers to Refs [5, 10, 11, 22]. The
gradient computation follows similar routes to the energy computation only that it goes the oppo-
site way (starting in the MO basis and finishing in the AO basis) and that the use of AO/MO integrals
are exchanged with that of density matrices. In a first step, the density matrices are computed in
the MO basis. Subsequently, it is necessary to compute relaxed density matrices that incorporate
non-Hellmann–Feynman terms [23], which derive from the fact that the MO-coefficients are not
variationally optimized for the MRCI computation, see e.g., Ref. [5]. This step is often denoted the
Z-vector equation. The resulting relaxed density matrices are now transformed from the MO to the
AO basis. In a final step, the density matrices are contracted with the derivatives of the AO integrals
to obtain the energy gradients.
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For practical applications, in particular for on-the-fly dynamics simulations, it is important to
realize that the workflow proceeds through a number of steps of different scaling behavior and
other computational characteristics. For example, the integral computation and transformation
steps only depend on the choice of the underlying one-electron basis while the other steps also
depend on the many-electron expansion. The MCSCF, MRCI, and Z-vector steps are iterative in
nature meaning that the required computational effort can vary between geometries, and the
MCSCF and Z-vector steps are both known for causing convergence problems. Depending on the
choice of the one-electron basis, active space and excitation level, any one of the steps involved
can become the bottleneck of the computation.

9.3 Types of MRCI

In this section, we discuss different variants of MRCI that are used in practical computations. We
first discuss the possibility for contracting the CI expansion (Section 9.3.1) to reduce the size of
the configuration space. In Section 9.3.2, we continue by specifying different practical methods
that allow us to overcome the size-extensivity problem explained in Section 9.2.2. We finish by
mentioning two more specific issues: selection schemes for MRCI configuration spaces and the
construction of the orbitals underlying the expansion.

9.3.1 Uncontracted and Contracted MRCI

The CI expansion given in Eq (9.1) provides a straightforward and flexible definition for construct-
ing MR wave functions and also leads to a formally simple variational prescription to obtain energy
and expansion coefficients by means of Eq. (9.7). This expansion is usually called an uncontracted
(uc) MRCI expansion. The main problem of the uc-MRCI expansion is that it can lead to exceed-
ingly high memory requirements and computational cost as the reference space is increased.

The length of the CI vector for uc-MRCI is approximately given as [1]

NCI ≈ Nref ×
(

nel
l

)
×
(

next
l

)
≈

Nref × nel
l × next

l

(l!)2 (9.33)

where Nref is the number of reference configurations, nel and next are the numbers of electrons and
external orbitals, and l is the excitation level. This is because for constructing a configuration one
has to pick l out of nel electrons and has to place them into l external orbitals, and this has to be done
for all Nref reference configurations. In the Davidson algorithm one usually uses a fixed number of
subspace expansion vectors, meaning that the memory requirements are proportional to NCI. For
practical use cases the computational cost for MRCI scales according to

(Nref × nl
docc × n(l+2)

ext ) (9.34)

as explained in Ref. [1]. The problem for, both, memory and computational cost is that these do not
just scale with the number of orbitals, as in usual SR computations, but that Nref comes into play as
an additional factor. As discussed in Chapter 6, even a moderate reference space such as a CAS(8,8)
already contains about 1000 configurations. This means that the memory requirements and the
computational cost are increased by a factor of 1000 for uc-MRCI based on this reference space
as compared to the SR case. Hence, uc-MRCI can lead to exceedingly high memory requirements
and computational cost. This problem can be mitigated by running the calculation in parallel and
storing the CI vector in distributed memory [24, 25] allowing computations with over a billion
configurations [18], but in many cases it is desirable to reduce the computational effort.
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For this reason, contraction schemes have been developed which strongly mitigate the growth
of the CI expansion and the concomitant computational cost. One of the most popular contraction
schemes is the internal contraction introduced independently by Meyer [26], Werner [27], and
Siegbahn [28]. In this approach, taking the electronic ground state as example, the reference con-
figurations are contracted to a fixed function Φ0 as

|Φ0⟩ = Nref∑
m=1

cref
m |Φref

m ⟩ (9.35)

usually substituting the CSF expansion coefficients cm of a preceding CASSCF/MCSCF calculation
for the cref

m coefficients of Eq (9.35). Single and double excitations are then constructed from this
contracted reference wave function by the application of spin-free excitation operators in analogy
to the single-reference case only that the reference determinant is replaced by |Φ0⟩. In the case of
double excitations from the internal orbitals i,j to active or virtual orbitals p,q this results in the
functions

|Φpq
ij ⟩ = Êpq

ij |Φ0⟩ (9.36)

where Êpq
ij is a spin-free double-excitation operator. In this equation the internal contraction

coefficients are kept fixed. The total internally contracted wave function Ψ is then written as a
linear combination

|Ψ⟩ = c0|Φ0⟩ + int∑
ij

act+virt∑
pq

cpq
ij |Φpq

ij ⟩ (9.37)

where the indices i,j run over internal orbitals and p,q over active plus virtual orbitals. The main
advantage achieved by this expansion is the fact that the number of configurations is independent
of the number of reference configurations, i.e., one can get rid of the prefactor Nref in Eq. (9.33). The
number of variational parameters scales like that of a SRCI expansion, a fact which is responsible
for the substantial savings in comparison to the uncontracted MRCI approach.

It should be noted, however, that the internal contraction approach leads to a significantly more
involved formalism for the calculation of the matrix elements in comparison to those appearing
in Eq. (9.7), since higher-order density matrices are required. Moreover, the internally contracted
many-electron basis is non-orthogonal.

This ic-MRCISD approach has been successfully developed by Werner and Knowles [29, 30]. In
this specific approach, only the double excitations are internally contracted, a procedure which is
usually denoted WK or partially contracted (PC) scheme in order to avoid the calculation of reduced
density matrices of orders higher than four.

Whereas the calculation of excited states is straightforward in the case of uncontracted MRCI via
Eq. (9.7), the situation is more complicated in the case of internally contracted MRCI. In contrast
to the uncontracted case, the reference wave function is state-specific. Generalizing Eq. (9.35) and
using for the contraction coefficients the MCSCF expansion coefficients for each reference state 𝛼
separately yields:

|Φ(𝛼)
0 ⟩ = Nref∑

m=1
cref,(𝛼)

m |Φref
m ⟩ (9.38)

Thus, the double excitations of Eq. (9.36) inherit this state-dependence by defining

|Φpq
ij,(𝛼)⟩ = Êpq

ij |Φ(𝛼)
0 ⟩ (9.39)

where Êpq
ij is a spin-summed double excitation operator.
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A straightforward but computationally expensive method, denoted as the multi-state approach
[31], is to take the union of all internally contracted configurations formed from all separate ref-
erence functions for all states 𝛼 up to and including a predefined state 𝛽 of interest. The wave
function for state 𝛼 is then written as a linear combination of the reference configurations ΦI , the
single excitations Φa

S and the double excitations Φab
ij,𝛾

Ψ(𝛼) =
∑

I
c(𝛼)I ΦI +

∑
S

∑
a
[c(𝛼)S ]aΦa

S +
𝛽∑
𝛾=1

∑
i≥j

∑
ab

[c(𝛼)ij,𝛾 ]abΦab
ij,𝛾 . (9.40)

The index I runs over internal configurations, S and a denote the internal and external indices of
the single excitations; i, j and a, b denote internal and external orbital indices, respectively. Within
this configuration space a variational calculation is performed as outlined in [31].

A computationally simpler method has also been described [31], in which only one state is calcu-
lated at a time. In this direct CI procedure, the excited-state eigenvector Ψ(𝛼) is expanded in terms
of subspace vectors ΔΨ(𝛼)

𝜆
as

Ψ(𝛼) =
∑

I
c(𝛼)I ΦI +

∑
𝜆

d(𝛼)
𝜆
ΔΨ(𝛼)

𝜆
(9.41)

The index 𝜆 counts the subspace iterations. The subspace vectors ΔΨ(𝛼)
𝜆

are written as

ΔΨ(𝛼)
𝜆

=
∑

S

∑
a

[Δc(𝛼,𝜆)S ]aΦa
S +

∑
i≥j

∑
ab

[ΔC(𝛼,𝜆)
ij ]abΦab

ij (9.42)

and the expansion coefficients are computed from perturbation theory. Note that only contracted
functions for state 𝛼 are involved. For the 𝛽th state the lowest 𝛽 eigensolutions Ψ(𝛼), 𝛼 = 1,… , 𝛽 are
calculated and the root most similar to the reference state is selected for Ψ(𝛼) and then the subspace
iterations are performed.

One problem encountered in this procedure is root-flipping since the expansion functions for
a desired higher excited root might describe a lower-lying root less efficiently and, thus, could be
located energetically lower. To circumvent this problem, a projection operator method has been
developed in which a modified Hamiltonian matrix is constructed where the lower eigensolutions
are removed. For the 𝛽th state, the following projection matrix is defined:

P(𝛽) = 𝟏 −
𝛽−1∑
𝛼=1

c(𝛼)c(𝛼)† (9.43)

and used for the construction of the corresponding projected Hamiltonian matrix

H(𝛽) = P(𝛽)HP(𝛽) (9.44)

c(𝛼) represents the eigenvector of the 𝛼th state, which is the lowest eigenvector of H(𝛼). Because of
the contracted CI, construction of the full projector is not feasible. Instead, an approximate vector
is constructed where only such configurations are chosen for c(𝛼) of Eq. (9.43) which are included
in the configuration set of both the 𝛼th and 𝛽th state calculation.

Finally, all wave functionsΨ(𝛽), 𝛽 ≤ 𝛼, are used to solve the non-orthogonal eigenvalue problem of
H𝛽𝛼 = ⟨Ψ(𝛽)|Ĥ|Ψ(𝛼)⟩, S𝛽𝛼 = ⟨Ψ(𝛽)|Ψ(𝛼)⟩. It was found that this approach gave almost identical results
to the above-mentioned multi-state method.

9.3.2 MRCI with Extensivity Corrections

As outlined in Section 9.2.2, the lack of size-extensivity is a major problem in the practical
application of MRCI. For this reason a number of different extensivity corrections have been
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introduced. One differentiates between two types of extensivity corrections, a posteriori and
intrinsic corrections.

The main idea of a posteriori extensivity corrections is to add an energetic correction term at the
end of an MRCI computation. In the original Davidson correction [32], this term is given as

ΔEDC = (1 − c2
0)ΔE (9.45)

where ΔE is the correlation energy and c2
0 is the combined weight of the reference configurations

c2
0 =

Nref∑
k=1

(cref
k )2 =

Nref∑
k=1

⟨Ψ|Φref
k ⟩2. (9.46)

Subsequently, a number of related a posteriori corrections have been suggested, mostly based on
ΔE, c2

0, and the number of electrons, see Ref. [3] for additional information. The advantage of a
posteriori corrections is that these are computationally cheap and numerically stable. The main
disadvantage of these methods is that they are no longer variational. This has two important con-
sequences: (i) the extensivity corrected energy is no longer an upper bound to the true energy and
(ii) it is not readily possible to compute the gradient of the extensivity corrected energy or to com-
pute extensivity corrections to other wave function properties.

As a second option, intrinsic extensivity corrections have been suggested, which modify the iter-
ative procedure itself. Two prominent procedures in this context are the averaged coupled pair
functional (ACPF) [33] and the averaged quadratic coupled cluster (AQCC) methods [34]. In both
methods the correlation energy is written as a functional of the CI vector c using the following form

F(c) =

⟨∑NCI
m=1 cmΦm|Ĥ − Eref|∑NCI

m=1 cmΦm

⟩
∑

k(cint
k )2 + G

∑
l(cext

l )2
(9.47)

where Eref is the energy of the reference wave function. The summations in the denominator go
over the internal and external configurations, cf. Eq (9.27). The G value determines the method
where the following values are commonly used:

● MRCI: G = 1
● MR-ACPF: G = 2∕nel

● MR-AQCC: G = 1 −
(nel − 3)(nel − 2)

nel(nel − 1)
Note that in the case of G = 1, the functional simply turns into the MRCI expectation value of
Eq. (9.10) whereas non-trivial results are obtained for MR-ACPF and MR-AQCC. It can be shown
that the vector minimizing F(c) is an eigenvector of a shifted CI matrix where the energies of all
external configurations are lowered by a value of (1 − G)ΔE. Practically, MR-ACPF and MR-AQCC
implementations proceed by solving the eigenvalue problem (9.7) with the difference that the ener-
gies of all external configurations are shifted using the current estimate of the correlation energy.
Upon convergence, this procedure leads to the MR-ACPF/MR-AQCC energy. The CI coefficients
are optimized variationally during the MR-ACPF and MR-AQCC procedures and, as a consequence,
a generalized Hellmann–Feynman theorem applies, which means that gradients and other prop-
erties can be readily computed [35]. However, the obtained energies are not upper bounds to the
true energies, i.e., Eqs (9.13)–(9.15) do not hold. In fact convergence of the equations is not guar-
anteed at all [25], which could lead to a situation where the energy tends toward negative infinity.
This occurs because, as the Hamiltonian matrix elements are shifted down, the correlation energy
increases, which in turn shifts the Hamiltonian matrix elements further. This problem is similar
to the intruder-state problem of CASPT2, see Chapter 10. A second problem deriving from the
more complicated form is that the computation of excited states is not as straightforward anymore.
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Whereas in the original MRCI method excited states are computed as eigenvectors of the same
matrix as the ground state, things become more complicated for MR-ACPF and MR-AQCC as the
different states have different correlation-energy dependent shifts. This complicates the compu-
tation of transition moments. To overcome this problem, the linear-response theory variant of
AQCC (LRT-AQCC) has been developed [36]. This operates by inserting the ground-state corre-
lation energy into Eq. (9.47) independently of the state.

In summary, both types of corrections and different variants of them are in common use. One
cannot make a clear preference and the choice of correction will depend on the molecular system
under study and on the properties of interest.

9.3.3 Types of Selection Schemes

Selection schemes provide important tools to adjust the often extremely large size of the
MRCI expansion. General restrictions such as partitioning the orbital spaces according to
RASSCF/GASSCF schemes have already been mentioned in Chapter 6. The occupation restriction
of the virtual orbital space is another efficient measure already discussed above. Mostly, excitations
of only one or two electrons will be allowed from the internal into the virtual orbital space. The
first-order interacting space is a convenient restriction to reduce the amount of double excitations
[37, 38]. It includes all configurations which have a non-zero Hamiltonian matrix element with one
of the members of the reference space. Single excitations are usually excluded from this restriction.

In many cases the selection of the number and types of active orbitals will be performed based
on “chemical intuition” or on experience with previous, similar calculations. Systematic exten-
sions of such orbital spaces are in most cases restricted to smaller molecules. Interesting investiga-
tions have been made by Pulay and Hamilton [39] based on the natural orbitals of an unrestricted
Hartree–Fock (UHF) calculation to determine recommended sizes of active orbitals, which has led
later on to the UNO-CAS procedure [40].

A different approach for reducing the number of configurations is to analyze the energetic con-
tribution of individual configurations and to discard them based on a given energy threshold. Such
approaches have been applied successfully already in the early days of CI calculations by Buenker
and Peyerimhoff [41, 42] in their MRD-CI program [43]. Extrapolation methods are used to esti-
mate full CI limits. Other advanced computational algorithms have been developed by Hanrath
and Engels in their DIESEL-MR-CI program [44]. A similar philosophy embedded in an iterative
approach has been used in the difference-dedicated CI procedure of Malrieu and co-workers [45].
The idea has been further refined by Neese leading to the spectroscopically oriented CI method [46].

9.3.4 Construction of Orbitals

The availability of adequate orbitals is a prerequisite for the MRCI calculation and is crucial to the
result. There are no formal requirements with respect to the orbitals used in MRCI and a number
of different choices are in common use. Note that this is different to methods based on many-body
perturbation theory where stricter conditions apply usually, e.g., that the orbitals diagonalize the
Fock matrix.

In standard applications, MCSCF calculations are performed for the generation of orbitals.
They can be performed at the CASSCF or RASSCF levels, depending on the requirements. When
excited state calculations are performed, one usually (but not necessarily always) chooses to
apply state-averaging in order to obtain a combined set of MOs that facilitates the computation of
transition moments and non-adiabatic couplings. While state-averaging is a common and useful
procedure, it is worth pointing out that – at least in a variational sense – the description of each
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individual state becomes worse the more states are included in the procedure. This problem can
be partially alleviated through performing MRCI on top of the state-averaged orbitals. The MRCI
protocol not only introduces correlations through double excitations but also allows for a partial
relaxation of the orbitals for each specific state through the single excitations.

The use of MCSCF orbitals is not always the best way to proceed. MCSCF calculations could
be too costly because of too large active spaces and/or could show convergence problems or
multiple-minima solutions. Furthermore, the orbitals optimal for the uncorrelated MCSCF com-
putation are often no longer adequate once dynamic correlation is included. The use of natural
orbitals (NOs), generated by a computationally simpler method, has been suggested, for example.
One advantage would be that orbital truncation schemes could be applied in a straightforward
way based on NO occupation numbers, especially for the virtual orbitals. Frozen natural orbitals
[47] have been found to be well-suited. They are constructed by diagonalizing the virtual orbital
block of the density matrix separately. Related topics can be found in the IVO-CASCI method [48]
and the high-multiplicity NOs [49].

An interesting path for reducing the computation costs for MRCI has been shown by the group
of Carter [50, 51] introducing a local correlation (LC) approach based on localized orbitals. This
method follows the work of Sæbo and Pulay on the weak pairs (WP) approximation [52]. It restricts
the excitations to only those cases where orbitals are in spatial proximity and, therefore, is especially
of relevance for molecules of increasingly larger size.

9.4 Popular Implementations

Before concluding, we give a list of some MRCI implementations focusing on codes that are in wide
use and can be readily obtained online (either freely or commercially). For this purpose, Table 9.1

Table 9.1 Popular implementations of variants of the MRCI method.

Program package Type of MRCI Availability

COLUMBUS Ab initio, uc-MRCI Free
www.univie.ac.at/columbus

DALTON General MR computations Free
http://daltonprogram.org

DFT/MRCI Semi-empirical Free
www.theochem.hhu.de/software/dftci.html

GAMESS Ab initio, uc-MRCI Free
www.msg.chem.iastate.edu

MOLCAS Ab initio, uc-MRCI Free
gitlab.com/Molcas

MOLPRO Ab initio, ic-MRCI Commercial
www.molpro.net

MNDO Semi-empirical (OM2/MRCI) Commercial
Available on request

ORCA Ab initio, selected MRCI Free
cec.mpg.de/orcadownload

TIGERCI Ab initio, localized orbitals Free
carter.princeton.edu/research/software



�

� �

�

References 295

gives an overview of electronic structure codes that feature the MRCI method, shows the main
characteristics and provides a link for download.

9.5 Conclusions

The basic principles of the MRCI method and the underlying schemes to construct the space of
the many-electron basis used for the expansion have been described. The use of the MR approach
requires a certain understanding of the role of the molecular orbitals taking part in the electronic
excitation processes. A division into frozen, reference doubly occupied and reference active orbitals
facilitates an efficient construction of the reference configurations. A critical analysis of the choice
for the different orbital groups is especially important for the uncontracted MRCI because of the
drastic increase of computational resources with increasing active spaces, basis sets and molec-
ular size. In this respect, internal contractions have been proven to enhance the computational
efficiency drastically. Overall, MRCI is a useful tool, which can be applied for a large variety of
problems, but which probably is most attractive and useful in case of truly difficult problems such
as computing energy surfaces for excited states and interactions of different electronic states.
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Multi-Configurational Reference Perturbation Theory with a CASSCF
Reference Function
Roland Lindh and Ignacio Fdez. Galván

Department of Chemistry – BMC, Uppsala University, SE-751 23 Uppsala, Sweden

Abstract

The purpose of the present chapter is to give students a detailed introduction to time-independent
multi-configurational reference perturbation theory (MRPT), in particular the CASPT2 method, one
of the standard tools for the study of excited states of molecular systems of small to intermediate size.
To achieve this, in as closed a form as possible, we believe that the chapter should begin with the
very basics of Rayleigh–Schrödinger (RS) and Møller–Plesset (MP) perturbation theory (PT) before we
present the MRPT. The multi-configurational version of perturbation theory has many features and
flaws which are either a direct consequence of the original Rayleigh–Schrödinger formulation, or due
to the choice of the zeroth order Hamiltonian. These flaws or peculiarities have to be clearly identified
and understood before we proceed toward the more elaborate multi-configurational reference pertur-
bation theories. This is then followed by a section dedicated to the most popular versions of single-state
multi-configurational reference perturbation theory. Here we again present the formulation of these
methods and also address the various problems they encounter. Multi-state versions of perturbation
theory are today based on effective Hamiltonian approximations. Hence, these deserve their own treat-
ment due to the fact that this approach introduces its own kind of features and problems, which need
to be addressed separately. At the very end of this chapter we summarize and present an outlook on the
subject of MRPT.

Let us briefly, before we start, address the reason behind the need of a perturbation theory
based on “multi-configurational reference” functions. Single-configuration reference methods,
such as standard coupled-cluster methods and Møller–Plesset perturbation theory, have been
successful in modeling molecular systems close to their equilibrium structure. However, at
molecular geometries at which such reference functions are qualitatively wrong, as in the case
of bond breaking, for example, single-configuration reference perturbation or coupled-cluster
theory has shown convergence problems. These approaches frequently produce significant
artifacts at such instances. This effect has been demonstrated to be associated with the qualitative
incorrectness of the reference functions, from which coupled-cluster or perturbation theory will
not be able to recover. Hence, the need for a theory based on reference functions which are
qualitatively correct – multi-configurational reference functions. It is not uncommon to find the
term “multi-reference” perturbation theory used to mean the same kind of theory. However, it
should not be confused with quasi-degenerate perturbation theory, that simultaneously treats
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several functions (which can be single- or multi-configurational) as their reference, and we avoid
this usage, except when it is part of a specific method’s name.

10.1 Rayleigh–Schrödinger Perturbation Theory

This section will cover a brief introduction to perturbation theory as presented originally by
Schrödinger [1], who based it on previous work by Lord Rayleigh [2]. We will develop the theory
explicitly up to second order, extensions to higher order are trivial. We will introduce the standard
equation for the perturbed wave functions and the corresponding energies, but we will will also
introduce the so-called 2n + 1 rule for the efficient computation of energies. This section will
be split into two sections: one for the basics of the single-state theory and a section on the issue
of convergence properties and intruder states. The former is consistent with the conventional
presentation of the subject, while the latter is often not discussed in the depth that students would
appreciate. The second section deals with an important problem which arises in both single-
and multi-configurational reference PTs. The discussion of the foundations will be resumed with
quasi-degenerate perturbation theory after the most significant single-state multi-configurational
reference perturbation methods have been presented.

10.1.1 The Single-State Theory

We would first like to point out that the formulation introduced by Schrödinger does not make any
explicit reference to the model used for describing wave functions – single configuration, multiple
configurations, or something else – but is basically a thought experiment based on the notion that
exact solutions (energies and wave functions) are known for a particular Hamiltonian

Ĥ0Ψ
(0)
i = E(0)

i Ψ(0)
i , (10.1)

these energies and wave functions are denoted as unperturbed reference energies and wave func-
tions of state i, the “(0)” is a notation that we will use to indicate the unperturbed entities. We also
note that, due to the Hamiltonian being a Hermitian operator, the corresponding eigenfunctions
form a set of complete functions, i.e., any other function can be expressed as a linear combination
of these eigenfunctions. We will then try to find out to what extent this information can be used to
solve the Schrödinger equation for any other Hamiltonian – a perturbed Hamiltonian – which can
be expressed as

Ĥ = Ĥ0 + 𝜆V , (10.2)

provided that V , the perturbation potential, is “small”. In the context of this chapter, and of RS
theory, V is a time-independent perturbation. 𝜆 is here introduced as the perturbation parameter,
and when it takes the values 0 and 1 this Hamiltonian is equal to the unperturbed Hamiltonian and
to the fully perturbed or “target” Hamiltonian, respectively. At this point we note that the theory is
independent of what the actual nature of the partitioning and the unperturbed reference functions
is, so these are completely arbitrary, apart from the desire that the resulting perturbation expansion
be rapidly converging such that the approach will be useful in practice. There will now follow two
different ways to derive the theory – the conventional and the variational approach.

10.1.1.1 The Conventional Projectional Derivation
The perturbation parameter is instrumental in our pursuit to make any sense of how the
information of the unperturbed system can be of any use. In passing we note that RS perturbation
theory is based on a global partitioning of the Hamiltonian, something it does not share with
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subsequent implementations of perturbation theory. The theory then proceeds with introducing
a Taylor expansions of the energy and the wave functions in terms of the perturbation parameter
and with the unperturbed energies and wave functions as the reference points of the expansions.
That is,

Ei = E(0)
i + E(1)

i 𝜆 + E(2)
i 𝜆2 +… (10.3)

for the energies and

Ψi = Ψ(0)
i + Ψ(1)

i 𝜆 + Ψ(2)
i 𝜆

2 +… (10.4)

for the wave function, where E(k)
i and Ψ(k)

i correspond to the kth-order correction to the perturbed
energy and wave function, respectively, as a function of the perturbation. At this time we do not
need to discuss what these corrections are, apart the obvious fact that the E(k)

i are the kth-order
derivatives of the energy with respect to the perturbation parameter𝜆. In the following we will make
a difference between the nth-order corrected energy and the nth-order correction of the energy.
While the latter is E(n), as found in Eq. (10.3), the former is the sum of the unperturbed energy and
all corrections up to the nth order:

E[n]
i =

n∑
i=0

E(i)
i . (10.5)

The RS theory now proceeds with expressing the Schrödinger equation of the perturbed system
in terms of the unperturbed Hamiltonian, energies and wave functions, that is,

(Ĥ0 + 𝜆V)(Ψ(0)
i + Ψ(1)

i 𝜆 + Ψ(2)
i 𝜆

2 +…)

= (E(0)
i + E(1)

i 𝜆 + E(2)
i 𝜆2 +…)(Ψ(0)

i + Ψ(1)
i 𝜆 + Ψ(2)

i 𝜆
2 +…) . (10.6)

After reordering the terms in the equation we find that

(Ĥ0Ψ
(0)
i − E(0)

i Ψ(0)
i )𝜆0

+ (Ĥ0Ψ
(1)
i + VΨ(0)

i − E(0)
i Ψ(1)

i − E(1)
i Ψ(0)

i )𝜆1

+ (Ĥ0Ψ
(2)
i + VΨ(1)

i − E(0)
i Ψ(2)

i − E(1)
i Ψ(1)

i − E(2)
i Ψ(0)

i )𝜆2

+… = 0. (10.7)

The Schrödinger equation is fulfilled for any value of the perturbation parameter, 𝜆. Hence, this
implies that each row of the equation above is independently identical to zero, and we have the
following equations explicitly up to second order of the perturbation,

Ĥ0Ψ
(0)
i = E(0)

i Ψ(0)
i (10.8)

Ĥ0Ψ
(1)
i + VΨ(0)

i = E(0)
i Ψ(1)

i + E(1)
i Ψ(0)

i (10.9)

Ĥ0Ψ
(2)
i + VΨ(1)

i = E(0)
i Ψ(2)

i + E(1)
i Ψ(1)

i + E(2)
i Ψ(0)

i , (10.10)

and then in general,

(Ĥ0 − E(0)
i )Ψ(n)

i = −VΨ(n−1)
i +

n∑
k=1

E(k)
i Ψ(n−k)

i . (10.11)

We identify the first equation as the Schrödinger equation of the unperturbed system. The sub-
sequent equations, however, leave us far from our goal – expressions of the corrections to the
perturbed energies and wave functions defined completely in terms of entities of the unperturbed
system. We note that Eq. (10.11) is invariant to any admixture of the reference state, Ψ(0)

i , into the
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nth-order correction, Ψ(n)
i , since this will leave the the left-hand side (LHS) unchanged. We relieve

this ambiguity by the introduction of the intermediate normalization:

⟨Ψ(0)
i |Ψ(k)

i ⟩ = 𝛿0,k . (10.12)

The combination of Eqs. (10.11) and (10.12) leads to two important results. First, Eq. (10.11) com-
pletely defines the nth-order correction of the wave function from lower-order corrections. Here
we note a recursive nature of Eq. (10.11), a non-recursive variant would lead to an expression in
terms of the Bloch equation – more about this later. Second, the exact energy can be computed as

Ei = ⟨Ψ(0)
i |Ĥ|Ψi⟩ . (10.13)

Equations (10.9) to (10.11), and so forth, can now be projected from the LHS and integrated with
the unperturbed wave functions. We start by projecting Eq. (10.11) with Ψ(0)

i this gives

⟨Ψ(0)
i |(Ĥ0 − E(0)

i )|Ψ(n)
i ⟩ = −⟨Ψ(0)

i |V |Ψ(n−1)
i ⟩ + n∑

k=1
⟨Ψ(0)

i |E(k)
i |Ψ(n−k)

i ⟩ . (10.14)

Using the Hermiticity Ĥ0 and the intermediate normalization this expression reduces to

E(n)
i = ⟨Ψ(0)

i |V |Ψ(n−1)
i ⟩ . (10.15)

This seems to mean that we need the (n − 1)th-order correction to the wave function in order to
compute the nth-order correction to the energy. This is, however, far from true and will be discussed
below.

Let us now return to the corrections of the wave function and Eq. (10.11). We will rearrange the
equation to form our general vehicle for the computation of corrections to the wave function. We
first note that the equation is devoid of any component of Ψ(0)

i . This property was actually used
when going from Eq. 10.14 to Eq. 10.15, since

⟨Ψ(0)
i |(Ĥ0 − E(0)

i )|Ψ(n)
i ⟩ = ⟨Ψ(0)

i |Ĥ0|Ψ(n)
i ⟩ − ⟨Ψ(0)

i |E(0)
i |Ψ(n)

i ⟩
= E(0)

i 𝛿0,n − E(0)
i 𝛿0,n = 0. (10.16)

This means that we can now multiply Eq. (10.11) with the inverse of (Ĥ0 − E(0)
i ) avoiding any sin-

gularity problems. We get

Ψ(n)
i = (Ĥ0 − E(0)

i )−1

(
−VΨ(n−1)

i +
n∑

k=1
E(k)

i Ψ(n−k)
i

)
. (10.17)

Knowing that the correction and any term of Eq. (10.15) are devoid of Ψ(0)
i , we introduce the pro-

jection operator

Q̂ = 1 − |Ψ(0)
i ⟩⟨Ψ(0)

i | . (10.18)

We can now simplify Eq. (10.17) without any approximation and get

Ψ(n)
i = Q̂(Ĥ0 − E(0)

i )−1Q̂

(
−VΨ(n−1)

i +
n−1∑
k=1

E(k)
i Ψ(n−k)

i

)
. (10.19)

Note that we have reduced the summation range, the projection operator will now, whenever
needed, cancel any appearance of the reference wave function. Let us pause at this point and see
what we have accomplished. We have first derived our master equation (10.11). From this equation
we have derived a general expression for the correction to the energy, see Eq. (10.15), in which the
nth-order correction to the energy requires the (n − 1)th-order correction to the wave function.
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Finally, in Eq. (10.19) we now have a recursive approach in which corrections to the wave function
can be computed. We also note that in RSPT the corrected energy is neither an eigenvalue nor an
expectation value, and the corrected wave function is not an eigenfunction to the Hamiltonian.

Before we complete this section let us return to our dangling question: “To which order do we
need to know the correction of the wave function if we want to compute the nth-order correction
to the energy?” From what we have seen so far the answer seems to be (n − 1). However, as noted
before, this is wrong. Consider that the first- and second-order corrections to the wave function,
according to Eq. (10.19), can be expressed as

Ψ(1)
i = −Q̂(Ĥ0 − E(0)

i )−1Q̂VΨ(0)
i , (10.20)

and

Ψ(2)
i = Q̂(Ĥ0 − E(0)

i )−1Q̂(−V + E(1)
i )Ψ(1)

i . (10.21)

We can then, for example, write the third-order correction of the energy as

E(3)
i = ⟨Ψ(0)

i |V |Ψ(2)
i ⟩

= ⟨Ψ(0)
i |VQ̂(Ĥ0 − E(0)

i )−1Q̂(−V + E(1)
i )|Ψ(1)

i ⟩
= ⟨Ψ(1)

i |V − E(1)
i |Ψ(1)

i ⟩ . (10.22)

This clearly demonstrates that the third-order energy can be computed from the first-order correc-
tions to the wave function, a first demonstration of Wigner’s 2n + 1 rule. To develop this in more
depth is beyond the scope of this chapter. For those students interested in this we recommend
the excellent book by Helgaker and co-workers [3], where this particular issue is analyzed with a
variational Lagrangian approach.

Up to this point we have not been specific about the corrections to the wave function, other than
the fact that we use the intermediate normalization. At this point we will make an ansatz based on
our observation that the corrections are orthogonal to the reference functions, that is, we will take
the set of unperturbed eigenfunctions as a basis set,

Ψ(1)
i =

∑
j≠i

cjiΨ
(0)
j . (10.23)

Using our master equation, Eq. (10.11), replacing the nth-order correction with the previous ansatz,
left-multiplying with ⟨Ψ(0)

l | and finally integrating we get∑
j≠i

cji⟨Ψ(0)
l |(Ĥ0 − E(0)

i )|Ψ(0)
j ⟩ = −⟨Ψ(0)

l |V |Ψ(0)
i ⟩ , (10.24)

which simplifies to

cli =
⟨Ψ(0)

l |V |Ψ(0)
i ⟩

E(0)
i − E(0)

l

. (10.25)

Following Eq. (10.15) and substituting the first-order correction as described above, we can formu-
late the second-order correction to the energy as

E(2)
i =

∑
j≠i

⟨Ψ(0)
i |V |Ψ(0)

j ⟩⟨Ψ(0)
j |V |Ψ(0)

i ⟩
E(0)

i − E(0)
j

. (10.26)

At this point we stop any further analysis. There are several reasons for this. Two dominating
ones are that the expressions get more and more complicated and cumbersome, but also, and maybe
more importantly, perturbation theory beyond second-order corrections to the energy has not been
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found to constitute a significant enough improvement to compensate the additional complexity and
computational expense. The curious readers can either derive the next set of equations themselves
or find them published elsewhere.

10.1.1.2 The Bi-Variational Approach
In the above conventional approach we projected the Schrödinger equation from the left with the
reference wave function, Ψ(0)

i . This introduces an asymmetry which is in particular manifested by
the shape of the equation in which we compute corrections to the energy (see Eq. 10.15). In this
section we will explore an alternative derivation which will be in accordance with Wigner’s 2n + 1
rule. To explore this we start from an expression which is originally symmetric with respect to its
bra and ket side. For convenience, in the rest of this section we will omit the subindex i in the
wave functions and energies, since all expressions refer to a single state. In order to maintain the
symmetry we will use a bi-functional expression of a generalization of the expectation value for the
energy, that is

(𝜆, Ψ̄, Ψ̃) = ⟨Ψ̄|Ĥ(𝜆)|Ψ̃⟩ , (10.27)

which we note is equivalent to the variational expression of the exact energy,

(𝜆,Ψ,Ψ) = E(𝜆,Ψ),

given an arbitrary actual value of the perturbational parameter, and if the normalized wave func-
tions Ψ̄ and Ψ̃ are equivalent to the exact eigenfunction, Ψ, of the Hamiltonian Ĥ(𝜆), in which case
we can also write

⟨Ψ|Ĥ(𝜆) − (𝜆,Ψ,Ψ)|Ψ⟩ = 0. (10.28)

We note that, (𝜆,Ψ,Ψ), the exact energy, is at the global minimum and the gradient, with respect
to any variation of the wave function, is zero:

∇Ψ̄|Ψ̄=Ψ = 0

∇Ψ̃|Ψ̃=Ψ = 0. (10.29)

Since this holds for any value of the perturbational parameter, we also have that the derivatives
must vanish order by order, for k > 0:

∇Ψ̄ (n)|Ψ̄=Ψ = 0 ∇Ψ̄(k) (n)|Ψ̄=Ψ = 0

∇Ψ̃ (n)|Ψ̃=Ψ = 0 ∇Ψ̃(k) (n)|Ψ̃=Ψ = 0. (10.30)

These conditions of vanishing gradients for the variational parameters will help us later in simpli-
fying the equations we derive. From now on, we will consider the case where Ψ̄ = Ψ̃ = Ψ, but we
will continue to make a difference between the two functions, Ψ̄ and Ψ̃, although we set them to
be identical, Ψ.

We proceed from Eq. (10.28) and replace Ψ with Ψ(0) + Q̂Ψ⟨Ψ(0)|Ĥ − |Ψ(0)⟩ + ⟨Ψ(0)|Ĥ − |Q̂Ψ⟩
+ ⟨Q̂Ψ|Ĥ − |Ψ(0)⟩ + ⟨Q̂Ψ|Ĥ − |Q̂Ψ⟩ = 0. (10.31)

After expanding Ĥ = Ĥ0 + 𝜆V and some rearrangement, noting that ⟨Ψ(0)|QΨ⟩ = 0, we have

(𝜆,Ψ,Ψ) = ⟨Ψ(0)|Ĥ0|Ψ(0)⟩ + 𝜆⟨Ψ(0)|V |Ψ(0)⟩
+ 𝜆⟨Ψ(0)|V |Q̂Ψ(𝜆)⟩ + 𝜆⟨Q̂Ψ(𝜆)|V |Ψ(0)⟩
+ ⟨Q̂Ψ(𝜆)|Ĥ0 + 𝜆V − (𝜆,…)|Q̂Ψ(𝜆)⟩ , (10.32)
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where the third and fourth terms have not been merged together to reflect the difference of the
bra and ket wave functions. It could be argued that nothing has been gained by the introduction
of this equation, compared with a conventional approach using a projection with the reference
wave function on the Schrödinger equation. In particular, the exact energy appears on both sides
of the equation and it is more complicated. However, there is a significant important advantage
with this approach as will become evident soon. Moreover, an analysis order by order shows that
the contribution from the energy on the right-hand side (RHS) will only depend on lower-order
corrections to the energy than the LHS and will not involve the actual value of the exact energy.
That is, at the stationary point at which  = Eexact, we have that

 (n) = E(n) = 𝛿n0E(0) +
n−1∑
k=0

⟨Ψ(k)|V |Ψ(n−1−k)⟩
+

n−1∑
k=1

⟨Ψ(k)|Ĥ0 − E(0)|Ψ(n−k)⟩
−

n−2∑
k=1

E(k)
n−k−1∑

l=1
⟨Ψ(l)|Ψ(n−k−l)⟩ . (10.33)

In particular, we note that this formulation is completely symmetric with respect to the treatment
of the bra and ket sides. At this point we stop using the explicit reference to  and will just use E.
However, we should keep in mind that when we differentiate we do that on  ! To continue, Eq.
(10.33) now trivially provides us with expressions for the corrected energy up to first order which
are identical to those obtained from the projectional derivation,

E(0) = ⟨Ψ(0)|Ĥ0|Ψ(0)⟩ (10.34)

E(1) = ⟨Ψ(0)|V |Ψ(0)⟩ , (10.35)

However, at second order things take a different direction, we get

E(2) = ⟨Ψ(0)|V |Ψ(1)⟩ + ⟨Ψ(1)|V |Ψ(0)⟩ + ⟨Ψ(1)|Ĥ0 − E(0)|Ψ(1)⟩ (10.36)

instead of (cf. Eq. 10.15) just E(2) = ⟨Ψ(0)|V |Ψ(1)⟩! For the third-order correction we do not get E(3) =⟨Ψ(0)|V |Ψ(2)⟩, but

E(3) = ⟨Ψ(0)|V |Ψ(2)⟩ + ⟨Ψ(1)|V |Ψ(1)⟩
+ ⟨Ψ(2)|V |Ψ(0)⟩ + ⟨Ψ(1)|Ĥ0 − E(0)|Ψ(2)⟩
+ ⟨Ψ(2)|Ĥ0 − E(0)|Ψ(1)⟩ − E(1)⟨Ψ(1)|Ψ(1)⟩ . (10.37)

What is going on? Well, remember that these expressions are variational. Taking the second-order
energy correction, for example, differentiating with respect to Ψ̄(1), and equating to zero we find that

∇Ψ̄(1)E(2) = V |Ψ(0)⟩ + (Ĥ0 − E(0))|Ψ(1)⟩ = 0, (10.38)

and similarly for Ψ̃(1). That allows us to reduce Eq. (10.36) in two different ways getting,

E(2) = ⟨Ψ(0)|V |Ψ(1)⟩ = ⟨Ψ(1)|V |Ψ(0)⟩ . (10.39)

To continue, for the third-order correction to the energy, we find that the gradient reveals the
following conditions,

∇Ψ̄(1)E(3) = (Ĥ0 − E0)|Ψ(2)⟩ + (V − E(1))|Ψ(1)⟩ = 0 (10.40)

∇Ψ̄(2)E(3) = V |Ψ(0)⟩ + (Ĥ0 − E(0))|Ψ(1)⟩ = 0, (10.41)
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and the equivalent equations for the bra side. Here we are left with some ambiguity: Which of the
relations should we use to eliminate redundancies and in which order? We will, of course, use the
conditions that eliminate the higher-order corrections first, and continue until we have exhausted
all possibilities. For the third-order energy correction, for example, we note that if we use one of
the last conditions (e.g., for the bra) first and then the corresponding one of the first conditions,
we will gain nothing – we will simply regenerate the Eq. (10.15) expression, albeit in a very clumsy
way. However, using the two last conditions we compile the third-order correction to the energy as

E(3) = ⟨Ψ(1)|V − E(1)|Ψ(1)⟩ , (10.42)

where we have completely eliminated Ψ(2) from the expression!
We will now generalize this procedure to reduce Eq. (10.33), for which we examine all elements

of the form

⟨Ψ(k)|Ô|Ψ(l)⟩ ,
that is,

⟨Ψ(k)|V |Ψ(n−1−k)⟩⟨Ψ(k)|Ĥ0 − E(0)|Ψ(n−k)⟩⟨Ψ(m)|Ψ(n−k−m)⟩ .
To tackle this reduction let us rewrite Eq. (10.33) in a grid form, representing the ⟨Ψ(k)|Ô|Ψ(l)⟩ terms.
The indices k and l will be used to label columns and rows, and each cell contains the associated
operator Ô (empty cells are zero). We will display cells in green if they survive the reduction process.

Starting with n = 1, we get
k 0l

0 V

where the only cell represents ⟨Ψ(0)|V |Ψ(0)⟩. To proceed with n = 2, we have

k 0 1l

0

1

V

V Ĥ0 − E (0)

1

V

− E

The gradient conditions are now seen as full rows or columns, and we can eliminate one of them,
indicated with a zigzag strike-out. The result corresponds to ⟨Ψ(0)|V |Ψ(1)⟩. For n = 3 we again see
the gradient conditions as rows and columns, and we can strike out k = 2 and l = 2:

k 0 1 2l

0

1

2

V

V

Ĥ0 − E (0)

ˆ

V − E (1)

2

V

− E

2 V Ĥ0 − E (0)
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It is only allowed to strike out a row or column if it contains no non-empty cell that has already
been stricken out. We could have stricken out k = 2 and k = 1 to generate ⟨Ψ(0)|V |Ψ(2)⟩, but instead
we have here obtained ⟨Ψ(1)|V − E(1)|Ψ(1)⟩, which requires only first-order entities (cf. Eq. 10.22).
Similarly, for n = 4

k 0 1 2 3l

0

1

2

3

V

V

Ĥ0 − E (0)

Ĥ0 − E (0)

Ĥ0 − E (0)

V − E (1)

V − E (1)

− E (2)

and for n = 5

k 0 1 2 3 4l

0

1

2

3

4

V

V

Ĥ0 − E (0)

Ĥ0 − E (0)

Ĥ0 − E (0)

Ĥ0 − E (0)

V − E (1)

V − E (1)

V − E (1)

− E (2)

− E (2)

− E (3)

3

− E

− E

4

V

− E

H0HH − E (0)3 V − E (1)

4 V Ĥ0H − E (0)

As for n = 3, we could eliminate all columns k > 0 (or rows l > 0), and we would end up with
Eq. (10.15). But in order to eliminate higher-order entities, we proceed by eliminating the rows and
columns with the highest k and l indices until elimination is impossible. By inspection we find that

E(4) = ⟨Ψ(2)|V − E(1)|Ψ(1)⟩ − E(2)⟨Ψ(1)|Ψ(1)⟩ (10.43)
E(5) = ⟨Ψ(2)|V − E(1)|Ψ(2)⟩ − 2E(2)⟨Ψ(1)|Ψ(2)⟩ − E(3)⟨Ψ(1)|Ψ(1)⟩ . (10.44)

Thus, a general grid representation gives us the following table.

k 0 1 2 . . . i . . . n − 3 n − 2 n − 1l

0

1

2
...

i

...
n − 3

n − 2

n − 1

V

V Ĥ0 − E (0)

Ĥ0 − E (0)

Ĥ0 − E (0)

Ĥ0 − E (0)

V − E (1)

V − E (1)

V − E (1)

V − E (1)

−E (2)

−E (2)

−E (n−i−1)−E (n−i−2) V − E (1)

−E (n−i−2)

−E (n−i−1)

−E (n−4)

−E (n−3)

−E (n−3)

−E (n−2)
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First, it is obvious from the elimination process that all rows and columns that contain the oper-
ator Ĥ0 − E(0) can be ignored. At the end of the elimination process we will be left with a block of
elements of the size m × (m − 1) if n = 2m, the even case, or m × m if n = 2m + 1, the odd case – the
green blocks in all table representations above. We note that in all terms but one the operator is
of the nature −E(o) and that o has a value such that, together with the order indices of the wave
function corrections, adds up to n (k + l + o = n). The remaining element is

⟨Ψ(m)|V − E(1)|Ψ(m+i−1)⟩
if we generalize the odd and even case to n = 2m + i, where i is 0 or 1 for the even and odd cases,
respectively. Summing up the remaining elements row-/column-wise we derive the following
general expression:

n = 2m + i, i ∈ {0, 1}

E(n) = ⟨Ψ(m)|V |Ψ(m+i−1)⟩ − m∑
k=1

m+i−1∑
l=1

E(n−k−l)⟨Ψ(k)|Ψ(l)⟩ . (10.45)

This expression can be found in ref. [3] – in a derivation based on a variational analysis of a Lagrange
multiplier approach – albeit a different order of summation. To conclude this section, the primary
benefit of this formulation was the derivation of a variational expression for the second-order cor-
rection to the total energy – a feature some developers use for finding the correction in an efficient
way. Additionally, if higher-order corrections are to be computed this formalism offers an optimal
procedure for that purpose.

10.1.2 Convergence Properties and Intruder States

The use of perturbation theory seems at first glance to be a rock-solid approach that would never
fail. However, this is unfortunately not the case. Here we will discuss the convergence properties
of perturbation theory to some extent and the associated issue of intruder states. This short section
will not only clarify the issue but will also suggest a remedy to correct the problem. The presentation
here, based on Kato’s work [4], will be simplified and brief. A longer and more detailed presentation
can be found in refs. [5] and [3].

In the text that follows we will address the issue of the convergence properties of RSPT. We will
do the core analysis based on a simple two-state case – a study of a multi-state case would make the
analysis complicated and messy. We will initially do that on the assumption that the perturbation
strength parameter 𝜆 takes only real values. This will give us insight into how the relative values
of the energy gap between the two states and the coupling element play a fundamental role in
determining whether or not the perturbation series of a particular partitioning will converge. We
will then introduce a generalization of this by allowing the perturbation strength to take complex
values – this will improve and clarify the analysis. In combination with this we will introduce the
notion of degeneracies, which can be characterized as the origin of the so-called front- or back-door
intruder states. Finally, we will, in the two-state model, introduce a gap-shift parameter which will
let us model and modify the conditions of perturbation expansion convergence and the appearance
of intruder states. The gap-shift technique will also be the inspiration for techniques to improve the
convergence and remove intruder states.

Assume that we, in a two-state model, partition the Hamiltonian as follows:

H =
(
𝛼 0
0 𝛽

)
+ 𝜆

(
0 𝛿

𝛿 0

)
, (10.46)
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where 𝛼 and 𝛽 represent the eigenvalues of the zeroth-order states, 𝛿 corresponds to the interaction
term between the reference states over the perturbation potential, and 𝜆 is the standard perturba-
tional strength parameter. For this trivial case we can compute the exact energies of the final states
as

E± = 𝛼 + 𝛽
2

±
√
(𝛽 − 𝛼)2 + 4𝜆2𝛿2

2
. (10.47)

We rewrite this for the ground state as

E = 𝛼 + 𝛽
2

− |𝛽 − 𝛼|
2

√
1 + 4𝜆2𝛿2

(𝛽 − 𝛼)2 , (10.48)

and note that the way forward to reshape this into an RS summation order by order goes via the
Taylor expansion of

√
1 + x for which we know that the expansion converges if |x| < 1. This leads,

as a requirement for convergence, to the inequality

4𝛿2

(𝛽 − 𝛼)2 < 1 (10.49)

and we get the following final convergence condition:

|𝛽 − 𝛼| > 2|𝛿|, (10.50)

that is, the energy gap between the states should be larger than twice the interaction between the
unperturbed states over the perturbation potential to guarantee convergence in a perturbational
approach. This is now a tool that will assist us in using information from the unperturbed states.
Clearly, it suggests that we have a serious problem if two unperturbed states are close to degenerate.

To proceed, we will also have to analyze what happens when we have a degeneracy for the per-
turbed states. To do this we will use the technique of Kato [4]. That is, we follow the same procedure
as above with the two new ingredients, (i) 𝜆 is allowed to take complex values, 𝜆 = 𝜆R + i𝜆I, and
(ii) we identify values for 𝜆 at which the two states are degenerate, Ei(𝜆R + i𝜆I) = Ej(𝜆R + i𝜆I). In
passing it is noted that these degeneracies occur in conjugate pairs (𝜆, 𝜆∗).

In this analysis it is found that the convergence of the perturbation series depends on the behav-
ior of the energies Ei(𝜆) inside the unit circle |𝜆| ≤ 1 in the complex plane. That is, if the value
of 𝜆 that causes a degeneracy in the perturbed states represents a point inside the unit circle, we
have a convergence issue and the state that becomes degenerate with the reference state is called
an intruder state. The intruder states are divided into two classes, (i) front-door intruders (𝜆R > 0),
which in real life tend to correspond to low-excitation states, and (ii) back-door intruders (𝜆R < 0),
corresponding to high-excitation states. The difference between the front- and back-door intrud-
ers is manifested in different convergence patterns of the energy (oscillating versus alternating),
change in reference weight (slow versus abrupt), etc.

To get a better understanding of this situation an alternative partitioning is utilized,

H =
(
𝛼 0
0 𝛽 + 𝛾

)
+ 𝜆

(
0 𝛿

𝛿 −𝛾

)
, (10.51)

where 𝛾 ∈ ℝ is the gap-shift parameter. The solutions in this case are given by

E± = 𝛼 + 𝛽 + (1 − 𝜆)𝛾
2

±
√
[|𝛽 − 𝛼| + (1 − 𝜆)𝛾]2 + 4𝜆2𝛿2

2
. (10.52)

We note that this particular partitioning is such that at 𝜆 = 1 the energy does not depend on the
gap-shift parameter. Equation (10.52) has a degeneracy (as can be found by setting the expression
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in the square root to zero) for a value of the perturbation strength parameter of

𝜆± = |𝛽 − 𝛼| + 𝛾
4𝛿2 + 𝛾2 (𝛾 ± i2𝛿), (10.53)

and if |𝜆±| < 1 we have a convergence problem and a corresponding intruder state. We can twist
this analysis around and reformulate it to answer the question “What is the minimal gap-shift
parameter which will make the perturbation expansion converge?”, arriving at the result

𝛾c =
4𝛿2 − (𝛽 − 𝛼)2

2|𝛽 − 𝛼| . (10.54)

Alternatively, we can paraphrase Eq. (10.50) to see the influence of the gap-shift on the original
convergence condition, that is

2|𝛿| < |𝛽 − 𝛼|√1 + 2𝛾|𝛽 − 𝛼| . (10.55)

To conclude the analysis, convergence is not an obvious property of the perturbation expansion.
The relative sizes of energy differences and interactions over the perturbation are of significance
for the convergence condition. We find that when convergence breaks down this is associated with
front- or back-door intruder states. It was finally demonstrated that the convergence issue could
be managed by introducing a gap-shift parameter which, with the appropriate value, will guaran-
tee convergence of the perturbation expansion. We will now continue with a presentation of two
methods that will solve convergence issues in perturbation theory (as implemented in the CASPT2
method): the real and imaginary shift methods – both draw their inspiration from the gap-shift
parameter trick.

10.1.2.1 Real and Imaginary Shift Techniques
In the gap-shift technique suggested in association with multi-state situations the partitioning of
the Hamiltonian is established as

Ĥ = (Ĥ0 + 𝜖Q̂) + (V − 𝜖Q̂), (10.56)

where 𝜖 is the gap-shift (also referred to by some as a level-shift) parameter – a small real number.
With this partitioning we get that the energy corrected up to first order is invariant to the gap-shift
parameter,

E[1] = E(0) + E(1)

= ⟨Ψ(0)|Ĥ0 + 𝜖Q̂|Ψ(0)⟩ + ⟨Ψ(0)|V − 𝜖Q̂|Ψ(0)⟩
= ⟨Ψ(0)|Ĥ0|Ψ(0)⟩ + ⟨Ψ(0)|V |Ψ(0)⟩ . (10.57)

However, after this we will start to see effects from the gap-shift parameter, for example, the coeffi-
cients of the first-order correction to the wave function under the influence of the gap-shift param-
eter are computed as (see Eq. 10.25)

c̃ji = −
⟨Ψ(0)

j |V |Ψ(0)
i ⟩

E(0)
j − E(0)

i + 𝜖
=

⟨Ψ(0)
j |V |Ψ(0)

i ⟩
E(0)

i − E(0)
j − 𝜖

, (10.58)

and the second-order energy correction, which also depends on the gap-shift parameter, is
expressed as

Ẽ(2)
i =

∑
j≠i

⟨Ψ(0)
i |V |Ψ(0)

j ⟩⟨Ψ(0)
j |V |Ψ(0)

i ⟩
E(0)

i − E(0)
j − 𝜖

, (10.59)
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where we indicate with a tilde that these quantities are obtained in the presence of the gap shift.
We will try to remove the influence of the gap-shift parameter as if there was no intruder-state

problem. This dependence is removed by the following procedure and approximation. First we note
that we can, after some struggle, rewrite the level-shifted second-order correction to the energy as

Ẽ(2)
i = E(2)

i + 𝜖
∑
j≠i

c̃2
ji

⎛⎜⎜⎝1 − 𝜖

E(0)
i − E(0)

j

⎞⎟⎟⎠ , (10.60)

which under the assumption |E(0)
j − E(0)

i | ≫ |𝜖| (equivalent to not having an intruder-state prob-
lem) gives us the approximation

E(2)
i ≈ Ẽ(2)

i − 𝜖
(

1
𝜔̃i

− 1
)

≡ E(2),LS
i , (10.61)

where 𝜔̃i =
(∑

j≠ic̃2
ji + 1

)−1
is the weight of the reference function in the normalized expansion of

the wave function including the first-order correction under the influence of the gap-shift param-
eter. As can be seen from the equation, in the absence of any intruder state Ẽ(2)

i is linear with
respect to the gap-shift parameter, and E(2),LS

i , the level-shift (LS) corrected second-order energy,
is, to first order in 𝜖, equal to the result of the original approach. Hence, the technique of gap
shifting can be used in general, since it will not significantly affect the result when there is no
convergence problem. For a detailed description of this type of a real-shift technique and results
of using it can be found in the work by Roos and Andersson [6]. In particular, they have demon-
strated that the potential energy surface away from the molecular structures at which singularities
arise is unaffected by the gap-shift approach and the use of the level-shifted corrected values for the
second-order energy corrections gives results which are much more independent of the size of the
gap-shift parameter. See fig. 10.1 for a case in which the method is instrumental in avoiding intruder
states.

This work inspired Forsberg and Malmqvist [7] to find alternative ways to get a second-order
corrected energy which was even more independent of the size of the gap-shift parameter. Forsberg
and Malmqvist introduced the imaginary gap-shift parameter, i𝜖, to investigate this. It should be
mentioned that the idea of an imaginary shift had been explored just a year earlier [8]. Similar to the
case of a real-valued gap-shift parameter we will have that the energy up to first order is unaffected
by the perturbation, the parameter shows up again in the second-order correction to the energy
and elimination will have to be made in a fashion different from what was demonstrated above.
We get trivially that the second-order energy correction is

Ẽ(2)
i =

∑
j≠i

⟨Ψ(0)
i |V |Ψ(0)

j ⟩⟨Ψ(0)
j |V |Ψ(0)

i ⟩(E(0)
i − E(0)

j − i𝜖)

(E(0)
i − E(0)

j )2 + 𝜖2
, (10.62)

where we are interested in the real part and want to explicitly eliminate the dependence of the
strength of the gap-shift parameter. This would be trivial if the calculation was performed with
complex arithmetic, but that is seldom the case and something which we try to avoid. To our assis-
tance comes the formalism we derived using the bi-functional variational technique to derive the
energy equations order by order. In particular, we have that the second-order energy correction
(Eq. 10.36), can be expressed as (now with the modified Ĥ0 and V terms)

 (2)
i (Ψ̄i = Ψi, Ψ̃i = Ψi)

= ⟨Ψ(0)
i |V |Ψ(1)

i ⟩ + ⟨Ψ(1)
i |V |Ψ(0)

i ⟩ + ⟨Ψ(1)
i |Ĥ0 + i𝜖 − E(0)

i |Ψ(1)
i ⟩ , (10.63)
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Figure 10.1 The potential energy curve for the ground state of Cr2 for three values of the level shift,
0.05 Eh (solid line), 0.10 Eh (dashed line), and 0.20 Eh (dotted line). The LS correction of Eq. (10.61) has been
applied. The lower diagram gives the corresponding weight of the CASSCF reference function. Reprinted
with permission from ref. [6]. Copyright 1995, Elsevier.

where the gap-shift parameter associated with V disappears due to the orthogonality of Ψ(0) and
Ψ(1) under intermediate normalization. The derivative of the expression above is

∇Ψ̄(1)
i
 (2)

i |Ψ̄i=Ψi ,Ψ̃i=Ψi
= V |Ψ(0)

i ⟩ + (Ĥ0 + i𝜖 − E(0)
i )|Ψ(1)

i ⟩ = 0, (10.64)

which we can solve in an iterative manner using a preconditioned conjugate gradient (PCG)
procedure (it should be of no surprise that this equation becomes equivalent to Eq. (10.11) if
we project with Q̂ – we are only interested in the part of the LHS which is perpendicular to the
reference function). In the implementation of the PCG a particular routine and the preconditioner
are slightly modified to incorporate the imaginary shift. At convergence the trial vector is used in
a last call to the routine, but this time for the unshifted Ĥ0 and the corrected energy is computed
using Eq. (10.63). In the closing of their report, Forsberg and Malmqvist list the advantages of the
new method compared to the real-shift approach. First, the effect of the imaginary-shift approach
on points away from the singularity is smaller than that of the real-shift method (compare
figs. 10.1 and 10.2). Second, the imaginary-shift method has the advantage that it does not create
new singularities – the real-valued shift technique does – but removes the singularities altogether.
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Figure 10.2 The CASPT2 potential energy curves for the (1Σ+
g ) ground state of Cr2, unshifted and with five

values of the imaginary shift (called 𝜎 here). Reprinted with permission from ref. [7]. Copyright 1997,
Elsevier.

This is particularly important for the purpose of studies of excited states. To summarize their
conclusions, the imaginary-shift technique includes no calculations using complex arithmetic, the
computed energy is real, and the procedure seems to have an edge over real-valued shift techniques
in resolving cases with close to perturbation expansion divergence and the associated intruder
states. We finally note that the iterative procedure mentioned above is a normal procedure in
perturbation theory, although for some cases such as the Møller–Plesset partitioning in association
with single determinant wave functions a non-iterative approach is accessible.

We will later see other examples of shift techniques, in particular the sometimes controver-
sial IPEA shift (see section 10.3.3.5). We will have examples in which the shift is not universal
but actually specific with respect to the state in the first-order interacting space. This is trivially
achieved with a state-specific shift parameter designed as follows∑

j≠i
𝜖j|Ψ(0)

j ⟩⟨Ψ(0)
j | , (10.65)

where the sum runs over the space of the complementary states. We will return to this as we discuss
the IPEA shift.

This ends the discussion of single-state perturbation theory from the perspective of RSPT. In the
subsequent sections we will see examples of specifics with respect to the partitioning of the Hamil-
tonian, how to deal with the fact that we do not have a complete reference space, what happens if
the partitioning is state dependent as in the case of a multi-state formalism, etc.

10.2 Møller–Plesset Perturbation Theory

Møller–Plesset perturbation theory (MPPT), in which the reference functions are single determi-
nants, is discussed here for several reasons. One, it deals with the issue of what to do if there
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is no set of known reference functions which are eigenfunctions to Ĥ0. Two, CASPT2 theory is
designed to coincide with MPPT2 results in the case the complete active space SCF collapses to a
single-determinant SCF wave function. Hence, a special study of MPPT has its merits. We will also
introduce the use of the second-quantization formalism here, where it is simpler, such that the stu-
dent will be familiar with the technique once it is used later in the chapter. There exist alternative
single-determinant partitioning schemes, such as, for example, the Epstein–Nesbet partitioning
[9, 10]. However, the use of these in combination with multi-configurational reference functions is
limited and will not be discussed in this chapter.

10.2.1 The Reference Function

The preceding sections leave us in the position of being able to discuss the Møller–Plesset PT
without any new twists or approximations as compared to the Rayleigh–Schrödinger approach.
However, let us first inspect the implications of our reference function’s being a single Slater deter-
minant (SD). This is at this time a bit tedious, but it will help us in understanding the procedure and
decisions that will be made at the CASPT2 level of theory. Due to the single-determinant nature of
the self-consistent field (SCF) wave function the one- and two-electron particle density matrices,
expressed in the basis of the SCF canonical orbitals, reduce to

Dij = 2𝛿ij (10.66)

and

Γijkl = 4𝛿ij𝛿kl − 2𝛿il𝛿jk , (10.67)

and correspondingly the closed-shell SCF energy (an expectation value, not an eigenvalue),
expressed in spatial doubly occupied orbitals, is compiled as

ESCF = 2
∑

i
hii +

∑
ij
[2(ii|jj) − (ij|ji)] , (10.68)

note that we have not added the constant corresponding to the nucleus–nucleus repulsion, VNN, as
is conventionally added to the electronic SCF energy. The corresponding orbital Fock operator, is
written as

f̂pq(Ψ(0)) = Êpq

(
hpq +

∑
k
[2(pq|kk) − (pk|kq)]

)
(10.69)

= Êpq(hpq + 𝑣pq(Ψ(0))) , (10.70)

note that the summation over the orbitals k is in terms of the occupied orbitals of the reference
SCF wave function Ψ(0) – this part of the equation expresses the interaction of a single electron
with all other electrons. Hence, the recursive nature of the operator. This operator will yield the
Fock matrix, which on diagonalization produces the canonical orbitals and the eigenvalues 𝜖i – the
orbital energy of canonical orbital i. At convergence, the orbitals in the summation, expressing the
electron density, are identical to the canonical orbitals – self-consistency is reached.

Let us define a molecular Fock operator as

F̂(Ψ(0)) =
∑
pq

f̂pq(Ψ(0)), (10.71)

which has the following expectation value for the restricted closed-shell SCF wave function:

⟨Ψ(0)|F̂(Ψ(0))|Ψ(0)⟩ = 2
∑

i
𝜖i , (10.72)
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where the summation runs over the n doubly occupied spatial orbitals and their associated orbital
energy (whereas in Eq. (10.71) the double summation runs over all spatial orbitals, note the index
usage according to Section 1.5). The orbitals energies, 𝜖i, in the canonical SCF basis is expressed as

𝜖i = hii +
∑

j
[2(ii|jj) − (ij|ij)]. (10.73)

This allows us to write the restricted closed-shell SCF electronic energy as

ESCF = 2
∑

i
𝜖i −

∑
ij
[2(ii|jj) − (ij|ji)] . (10.74)

In the sum of the orbital energies we sum the interaction energies of one electron with all other
electrons. This summation will double-count the electron–electron interaction, hence the subtrac-
tion of the latter term in the expression above to remove the double counting. Alternatively, we can
write the SCF energy without making explicit use of the two-electron integrals:

ESCF =
∑

i
(hii + 𝜖i). (10.75)

To further elaborate on the implications, a given molecular Fock operator – i.e., the interaction
field defined by the set of occupied canonical orbitals – has eigenfunctions which are determinants
of n orbitals selected out of the full set of occupied and virtual canonical orbitals. We note that
there is one determinant which corresponds to the determinant of only the occupied canonical
orbitals – the self-consistent solution – while the other determinants, although they certainly are
valid eigenfunctions of the given molecular Fock operator, they do not correspond to self-consistent
excited states. This is, however, not a requirement or a problem for perturbation theory. We only
require that any Hamiltonian operator we use has a set of eigenfunctions which span the full Hilbert
space of the system and that we can express them in a systematic and efficient way.

10.2.2 The Partitioning of the Hamiltonian

Now we naturally follow Møller and Plesset, who suggested using as a reference Hamiltonian the
molecular Fock operator, Ĥ0 = F̂, that is, the total Hamiltonian is partitioned as follows,

Ĥ = ĥ(1) + V̂

= F̂ + 𝜆

(
V̂ −

∑
pq

Êpq𝑣pq

)
. (10.76)

By defining ̂ as the term in parentheses and introducing a constant C (to be determined later), we
get,

Ĥ = (F̂ + C) + 𝜆(̂ − C). (10.77)

Note that, while the RHS expression in Eq. (10.76) is general, this partitioning depends on the
reference function – the Fock operator is a function of the electron density of the reference state.
This trivially gives us the reference energy,

E(0)
MP = ⟨Ψ(0)|F̂ + C|Ψ(0)⟩ = 2

∑
i
𝜖i + C, (10.78)

and the first-order correction of the energy,

E(1)
MP =

⟨
Ψ(0)|V̂ −

∑
pq

Êpq𝑣pq − C|Ψ(0)

⟩
= ⟨Ψ(0)|̂|Ψ(0)⟩ − C. (10.79)



�

� �

�

316 10 Multi-Configurational Reference Perturbation Theory with a CASSCF Reference Function

The energy corrected to first order (recall Eq. 10.5) is identical to the SCF energy,

E[1]
MP = EMP1 = ⟨Ψ(0)|F̂|Ψ(0)⟩ + C + ⟨Ψ(0)|̂|Ψ(0)⟩ − C

= ⟨Ψ(0)|F̂ + ̂|Ψ(0)⟩ = ESCF . (10.80)

That is, the SCF total energy of the determinant is in general recovered only after the first-order
correction and actual corrections to the SCF energy appear first at second order in the perturbation
expansion. An alternative approach is to set C = ⟨Ψ(0)|̂|Ψ(0)⟩, using a shifted-Ĥ0 operator. In this
approach we have that E(0) = ESCF and E(1) = 0, and for higher orders of the correction the parame-
ter disappears altogether due to the orthonormality of the reference states – in all, the modification
could be considered semantic. In fact, the only significant difference is that the SCF determinants
are now eigenfunctions of the shifted-Ĥ0 operator, something which we will meet in association the
description of some of the multi-configurational reference function approaches discussed below.

To continue, the second-order correction to the energy can be computed as

E(2)
MP = ⟨Ψ(0)|̂|Ψ(1)⟩ = ⟨Ψ(0)|Ĥ − Ĥ0|Ψ(1)⟩ , (10.81)

which suggests that we need to explicitly resolveΨ(1), something we will do in the following section.

10.2.3 The First-Order Interacting Space and Second-Order Energy Correction

In order to proceed, we need to find the states with which, to first order, the reference function
will interact. Before that, however, let us contemplate the impact of this statement. As we explore
the effect of the excited states of the unperturbed system on the first-order correction to the wave
function, we note that there is a hidden simplification in the equations. In our general ansatz,
Eq. (10.23), we imply a summation over all excited states. However, upon examination of the
equation for the corresponding coefficients of the first-order corrections (see Eq. 10.25) we find
that only excited states which interact with the reference state over the perturbation potential have
coefficients which are non-zero. We call this space the first-order interacting space, a space much
smaller than the full Hilbert space. For the SCF reference determinant this translates to the fact
that the first-order interacting space contains determinants which at most correspond to double
replacements of orbitals from the reference SD.

For a given Fock operator, that is, once we have defined the reference SD which generates the ref-
erence electronic density and the operator, we can generate all excited states (eigenfunctions of the
unperturbed system) for that particular operator by doing replacements of the occupied orbitals
with the virtual (unoccupied) orbitals, starting with one, then two, and so on. As noted above,
these “excited states” do not correspond to the true self-consistent excited states of the SCF pro-
cedure – that would require us to iteratively redefine the electronic density of the Fock operator
to be self-consistent. One would then assume that the first-order correction to Ψ(0) would corre-
spond to such generated eigenfunctions by doing a single excitation – from an occupied to a virtual
orbital – that is, to form states as

Ψa(0)
i = ÊaiΨ(0) . (10.82)

That would require us to form matrix elements such as

⟨Ψ(0)|Ĥ − Ĥ0|Ψa(0)
i ⟩ = ⟨Ψ(0)|Ĥ|Ψa(0)

i ⟩ = fai = 0 (10.83)

when we determine the coefficients of those states in the first-order correction to the wave function
(see Eq. 10.23). However, as seen above, the matrix element is identical to zero: the second term
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vanishes since the reference state is an eigenstate to Ĥ0 while the first term is zero due to the varia-
tional minimization of the SCF energy – the Fock matrix is diagonalized such that these elements
are identical to zero (Brillouin’s theorem).

Let us now (i) construct the excited states, (ii) obtain their coefficients in the first-order corrected
wave function, and (iii) subsequently compute the second-order correction of the energy. We do this
using both spin-specific and spin-averaged operators, the latter used in the second quantization
formalism, as they operate on the reference closed-shell single determinant. In the first case the
procedure will be trivial, while in the second case the maths will not be kind to us. The latter
will train us for the ordeal that will come when generating excited states for multi-configurational
reference functions, a procedure which is always done in the spin-averaged formalism. Here we
will have to introduce a new strategy to work around the problem.

We start with the spin-specific case where the replacement operator is expressed as â†
a𝜎 âi𝜎 . In it

we will have an operator that annihilates an electron with spin 𝜎 in occupied orbital i and places
an electron with the same spin in virtual orbital a. For the rest of this subsection, on the use of
spin-specific replacement operator, we will use spin-orbitals and index accordingly – that is, no
explicit index for the spin. As discussed above the ground-state reference function will not interact
with states that correspond to a single replacement – we need double replacements. To proceed, we
will represent the doubly excited states as

Ψab
ij = â†

bâjâ
†
aâiΨ(0) . (10.84)

In a setting of using normalized molecular spin-orbitals the replacement operators will generate
a new normalized determinant. Moreover, we note that these generated states are orthogonal – a
desirable property. Finally, we have to take the four-fold permutational symmetry, Ψab

ij = Ψba
ji =

Ψab
ji = Ψba

ij into account. That is, the first-order wave function is expressed as

Ψ(1) =
∑
a>b
i>j

cijabΨab
ij , (10.85)

where the restricted summation over the spin-orbitals is introduced to include only the unique
excited states. The individual coefficients are computed as

cijab =
⟨Ψ(0)|V̂ |Ψab

ij ⟩
E(0) − Eab

ij

. (10.86)

The denominator trivially reduces to 𝜖i + 𝜖j − 𝜖a − 𝜖b since Eab
ij = E(0) − 𝜖i − 𝜖j + 𝜖a + 𝜖b. The

numerator is computed to be

⟨Ψ(0)|V̂ |Ψab
ij ⟩ = (ai|bj) − (aj|bi). (10.87)

Thus, the first-order correction to the wave function is expressed as

Ψ(1) =
∑
a>b
i>j

(ai|bj) − (aj|bi)
𝜖i + 𝜖j − 𝜖a − 𝜖b

Ψab
ij . (10.88)

We are now in a position to compute the second-order energy correction in terms of spin-orbitals
as

E(2) = ⟨Ψ(0)|V̂ |Ψ(1)⟩ = ∑
a>b
i>j

[(ai|bj) − (aj|bi)]2

𝜖i + 𝜖j − 𝜖a − 𝜖b
. (10.89)
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If we unrestrict the summation, expand the square expression and finally sum over the spin we
obtain the second-order correction of the energy in spatial orbitals as

E(2) = 1
4

∑
abij

[(ai|bj) − (aj|bi)]2

𝜖i + 𝜖j − 𝜖a − 𝜖b

= 1
2

∑
abij

(ai|bj)2

𝜖i + 𝜖j − 𝜖a − 𝜖b
− 1

2
∑
abij

(ai|bj)(aj|bi)
𝜖i + 𝜖j − 𝜖a − 𝜖b

(10.90)

where we use the fact that the
∑

(ai|bj)2 and
∑

(aj|bi)2 terms are equal, since they are independent
of the order of summation, now we switch to spatial orbital indexation

E(2) = 2
∑
abij

(ai|bj)2

𝜖i + 𝜖j − 𝜖a − 𝜖b
−

∑
abij

(ai|bj)(aj|bi)
𝜖i + 𝜖j − 𝜖a − 𝜖b

=
∑
abij

(ai|bj)[2(ai|bj) − (aj|bi)]
𝜖i + 𝜖j − 𝜖a − 𝜖b

. (10.91)

We have obtained the appropriate equations for the computation of the second-order correction
to the energy expressed in both spin-orbitals (see Eq. 10.90) and spatial orbitals (see Eq. 10.91). We
did so by using a technique expressed in spin-orbitals, which provided us with (i) an easy way to
generate orthonormal excited states and (ii) trivial equations to compute the corresponding coef-
ficients for the first-order correction to the wave function. In closing this passage, we note that
the computation of the second-order correction of the energy in the closed-shell case of MP can
be solved in a single step. We do not need to explicitly store the coefficients of the first-order cor-
rected wave function – these are evaluated from analytical integrals which are computed on the
fly as we need them. This is a luxury we will not find in the multi-configurational reference func-
tion version of the theory – here the coefficients have to be computed in an iterative procedure and
need to be explicitly stored before we compile the second-order correction to the energy. It should
also be pointed out that the summations in the above equations run over all orbitals in the system.
It is common in practical calculations to reduce the ranges by ignoring the lowest-lying occupied
orbitals and/or the highest-lying virtual orbitals. In the first case – what is usually known as frozen
core approximation – the inner occupied orbitals are not considered when generating the first-order
interacting space, but their Coulomb potential must still be taken into account.

We will now see how we would proceed if we had to repeat these steps using spin-averaged
replacement operators in association with a second-quantized Hamiltonian. The procedure will,
to some extent, introduce a formalism that is not obviously simpler, however, it will be a general
recipe that will guarantee that the generated states have the same eigenvalues of the spin opera-
tors Ŝ2 and Ŝz as the reference functions, since Êpq commutes with these operators. We start now
with the process of defining the first-order interacting space. Here we note that the operator Êai
will, when it operates on a single closed-shell SD, generate two determinants, one in which an 𝛼
electron has been replaced and another for the 𝛽 electron. Thus, we have that an orthonormalized
singly excited state is expressed as,

Ψa
i = 1√

2
ÊaiΨ(0) , (10.92)

since

⟨Ψb
j |Ψa

i ⟩ = ⟨Ψ(0)|ÊjbÊai|Ψ(0)⟩ = 2𝛿ij𝛿ab .

Again, for the reasons discussed above, we need excited states that are doubly excited relative to the
reference function if we are to form the first-order correction to the wave function. We now explore
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the normalization using a pair of replacement operators. We define doubly excited states as

Ψab
ij = ÊbjÊaiΨ(0) , (10.93)

for which we have the squared norm

⟨Ψab
ij |Ψab

ij ⟩ = 4 + 4𝛿ij𝛿ab − 2𝛿ij − 2𝛿ab . (10.94)

This is consistent with the fact that each replacement operator generates two determinants when
operating on a closed-shell determinant. In the trivial case of no equal indices, i ≠ j and a ≠ b,
applying the two replacement operators we should get four determinants. This leads us to conclude
that we need to incorporate the normalization of the excited states as we use them in our equations.
Let us now explore the orthogonality within the set under a permutation of the indices. A double
permutation, which translates to a change of order in the application of the replacement operators,
does not cause any difference in the generated excited states, since

ÊbjÊai = ÊaiÊbj + 𝛿ajÊbj − 𝛿bjÊaj , (10.95)

where the two latter terms for obvious reasons disappear, that is Ψab
ij = Ψba

ji . However, under the
condition of a single permutation of the virtual or the occupied indices, we find that the generated
determinants are not identical, but they obey the relation

⟨Ψba
ij |Ψab

ij ⟩ = ⟨Ψab
ji |Ψab

ij ⟩ = −2 − 2𝛿ij𝛿ab + 4𝛿ij + 4𝛿ab , (10.96)

which implies that we not only have to normalize the states generated by Eq. (10.93): we have
to orthonormalize them. Given the above result in the spin-specific approach we are guaranteed
that the generated excited states are not redundant, except, of course, when they are identical by
not properly constraining the indices in Eq. (10.93). Hence, we should not have to worry about
redundancy and its elimination – this has to be considered for the case of a multi-configurational
reference function. We note that some, if not all, of the non-orthogonality can be removed by form-
ing the appropriate linear combinations asΨab,±

ij = Ψab
ij ± Ψba

ij , corresponding to a singlet and triplet
coupling of the virtual orbitals. This is achieved in a similar manner to how configurations of two
electrons in two orbitals are linearly combined to produce singlet and triplet spin eigenstates with
Ms = 0.

Let us, for the sake of convenience, simply index the doubly excited states generated in Eq. (10.93)
with a compound index I = I(i, j, a, b), such that Ψab

ij = ΨI . To resolve the issue of orthonormaliza-
tion we form the overlap matrix

SIJ = ⟨ΨI|ΨJ⟩ , (10.97)

which we subsequently diagonalize

s = U†SU , (10.98)

where s is a diagonal (L × L) matrix with the eigenvalues and U is the eigenvector matrix. Since in
closed-shell MPPT L can be limited to run over just the non-redundant space of double excitations,
U is guaranteed to be square. However, in the general case the size of U will be (M × L), where
M is the size of the original partially redundant double excitation space. However, we proceed by
combining the eigenvectors with the eigenvalues according to

Ũ = Us−
1
2 . (10.99)

We now have a set of orthonormalized doubly excited states which are computed as

Ψ̃I =
∑

J
ŨJIΨJ . (10.100)
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This will then render the equations for the computation of the coefficients in the first-order cor-
rection to the wave function and the second-order correction to the energy to be, starting with the
former,

Ψ(1) =
∑

I
cIΨ̃I (10.101)

with the coefficients as

cI =
⟨Ψ(0)|V̂ |Ψ̃I⟩

𝜖i + 𝜖j − 𝜖a − 𝜖b
, (10.102)

where the indices of the eigenvalues of the Fock operator are resolved for the compound index I.
The second-order energy correction is now computed as

E(2) =
∑

I

⟨Ψ(0)|V̂ |Ψ̃I⟩2

𝜖i + 𝜖j − 𝜖a − 𝜖b
. (10.103)

Before we are finished here, let us break this down one step further and use a matrix representa-
tion all along. First we define the following matrices and vectors,

(H0)IJ = ⟨ΨI|Ĥ0|ΨJ⟩ (10.104)

and

V I = ⟨ΨI|V |Ψ(0)⟩ . (10.105)

We transform these matrices to the space of the orthonormalized excited states,

H̃0 = Ũ†H0Ũ (10.106)

and

Ṽ = Ũ†V . (10.107)

The coefficients C̃ in the expression for the first-order correction to the wave function, are found
by solving

(H̃0 − E(0)𝟏)C̃ = −Ṽ , (10.108)

and the second-order correction to the energy is expressed as

E(2) = C̃†Ṽ . (10.109)

A final note here, in this approach we will be forced to use a two-step approach – first compute the
coefficients and then the energy. With this we are now ready to discuss some particularities of the
CASPT2 and some other related methods.

10.3 State-Specific Multi-Configurational Reference Perturbation
Methods

After this rather lengthy introduction to perturbation theory, in this section we will, in chronolog-
ical order, present the four most popular versions of multi-configurational reference perturbation
theory, namely the complete active space second-order Møller–Plesset (CAS-MP2) [11], the
complete active space second-order perturbation theory (CASPT2) [12, 13], the multi-reference
second-order Møller–Plesset (MRMP2) [14–17] and the n-electron valence state second-order
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perturbation theory (NEVPT2) [18–20]. In particular, we will devote special attention to the
CASPT2 method and present it in some detail, while the three other approaches are presented
more briefly and in order to mention the fundamental differences between the approaches. Briefly,
the major differences between these four methods are associated with the initial selection of the
reference functions Ψ(0) and the partitioning of the Hamiltonian into the reference Hamiltonian,
Ĥ0, and the perturbation potential, V . We would also like to point out that the three latter methods
CASPT2, MRMP2 and NEVPT2 have in common a diagonalize-then-perturb approach. That is, the
CASSCF equations are effectively solved via a diagonalization-like approach and the dynamic cor-
relation is introduced using perturbation technique. The CAS-MP2 method, on the other hand, is a
hybrid somewhere in between a diagonalize-then-perturb and a perturb-then-diagonalize approach
(see section 10.4 et seq.). The drawbacks and advantages of the four different approximations
are discussed. In addition to these four versions of multi-configurational reference perturbation
theory, a number of other flavors exist. They will not, however, be discussed in this chapter, mostly
because they have not, to date, made any significant impact on standard applications. Those desir-
ing a complete list of other such methods are recommended to consult the review paper by Lischka
and co-workers [21] and specifically the subsection on “Mutireference [sic] Perturbation Theory”.

10.3.1 The Generation of the Reference Hamiltonian

Before we proceed, however, let us address an issue relevant to most versions of multi-configura-
tional reference perturbation theory beyond single determinant RSPT: What to do if (i) our ref-
erence function is not an eigenfunction to Ĥ0, and (ii) we have only exact knowledge about the
reference functions, and not about the complementary functions that extend to the full Hilbert
space. In this context there would be a problem to apply RSPT to known wave function models. Let
us address the first problem here by constructing a new operator to solve the problem as follows.
Let us assume that we have an operator, Ô, for which our reference and complementary states are
not eigenfunctions, but which we for some practical reason want to use. Then an initial operator
can be constructed for the model space – the space spanned by all our reference functions – as

̂̃O =
∑

i
|Ψ(0)

i ⟩⟨Ψ(0)
i |Ô|Ψ(0)

i ⟩⟨Ψ(0)
i | , (10.110)

for which now all the functions Ψ(0)
i of the model space are eigenfunctions. This has now solved the

first issue. The second problem is related to the fact that in most quantum chemistry simulations
one does not have explicit access to the eigenfunctions of the complementary space. Hence, let us
further assume that we can construct a complementary space to our model space, with functions
that are all orthonormalized. To proceed we note that to the general expression above we are at
liberty to add any complementary space we can construct, as long as these functions are mutually
orthonormal. In that respect we can rewrite the expression above as

̂̃O =
d∑

i=1
|Ψ(0)

i ⟩⟨Ψ(0)
i |Ô|Ψ(0)

i ⟩⟨Ψ(0)
i | + ∞∑

i=d+1
|𝜓i⟩⟨𝜓i|Ô|𝜓i⟩⟨𝜓i| , (10.111)

where Ψ(0)
i are our d reference functions, which we know exactly, and 𝜓i are artificial functions

with the properties ⟨𝜓i|𝜓j⟩ = 𝛿ij and ⟨Ψ(0)
i |𝜓j⟩ = 0. This now solves the second problem – the lack

of a complete knowledge of all eigenfunctions. The remaining obstacle is the construction of the
artificial complementary space. Here a standard procedure is used, applying sets of spin-averaged
electron replacement operators to our known reference wave functions – in MPPT this procedure
actually leads to true eigenfunctions of the molecular Fock operator – combined with the operator
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Q̂ = 1 − P̂ (see Eq. 10.18) and the orthonormality conditions, to generate arbitrary complementary
spaces.

10.3.2 CAS-MP2 Theory

In 1988 McDouall and co-workers published the first practical solution for extending normal
single-configuration MPPT to the case of multi-configuration reference functions, in particular
using a CASSCF reference function [11]. Their procedure is based on a Löwdin-type partitioning
[22] of the full Hamiltonian into the subspace of the electronic configurations (Slater determinants
or configuration state functions), and the complementary space. The resulting equations are
subsequently solved using simple MPPT. Let us outline, in some detail, the approach here. We
define a model space that includes all the CASSCF states. In this aspect we have that the projection
operators P̂ and Q̂ play the same role as in the section on the multi-state case (see section 10.4).
In this formalism we divide the Hamiltonian by blocks into P and Q spaces. In particular we note
that P̂ =

∑
i|Ψ(0)

i ⟩⟨Ψ(0)
i |, where Ψ(0)

i are solutions to the CASSCF equations. We then introduce a
transformation, U , which transforms the Hamiltonian into a representation in which the P and Q
spaces are decoupled, that is(

HPP HPQ

HQP HQQ

)
U = U

(
Heff 𝟎
𝟎 W∗

)
. (10.112)

In this matrix representation HPP = PHP and so on. For the model space we have the normal
CASSCF solutions to the time-independent Schrödinger equation,

P̂ĤP̂Ψ(0)
i = E(0)

i Ψ(0)
i . (10.113)

The transformation matrix, U , will have diagonal blocks in which the transformation is arbitrary,
for the sake of convenience we set the matrix to have the form

U ≡
(
𝟏 −CT

C 𝟏

)
, (10.114)

where C is a set of column vectors, one for each function in the model space. This now generates
two working equations,

(Heff)ij = (HPP)ij + (HQP)T
i Cj (10.115)

and

(HQP)i + HQQCi =
∑

j
(Heff)jiCj , (10.116)

where two subindices indicate a matrix element, and one subindex indicates a whole column. The
total energy for state i is then approximated as

Ei ≈ ⟨Ψ(0)
i |Ĥeff|Ψ(0)

i ⟩ . (10.117)

McDouall and co-workers point out that this approach – a hybrid approach between a
diagonalize-then-perturb and a perturb-then-diagonalize scheme – comes with two advantages.
First, single-excitation contributions are zero, and second, the off-diagonal correction of Eq.
(10.115) is expected to be small and can be ignored. The energy is now expressed as

Ei ≈ E(0)
i + ⟨Ψ(0)

i |(ĤQP)T
i Ĉi|Ψ(0)

i ⟩ , (10.118)
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where X̂i is the operator representation of the ith column of matrix X . What remains now is to com-
pute C using MPPT theory. The authors note that one can approximate Eq. (10.116) by restricting
the summation on the RHS to only include the same C-vector as on the LHS – i.e., taking only j = i,
an approximation which affects the results only at the third order of the perturbation. This leaves
us the following equation,

Ci = −(HQQ − (Heff)ii𝟏)−1(HQP)i . (10.119)

We can now proceed solving this by applying the follow procedure. First, the inverse problem in
Eq. (10.119) is approached with the use of a power series expansion. Second, sums over states are
replaced with sums over orbitals. Third and finally, the diagonal elements of the matrix to invert are
replaced with orbital energy differences from the diagonal elements of some reference one-electron
Hamiltonian ĥi. To be explicit, the authors used the power series expansion

(A − B)−1 = A−1 + A−1BA−1 +… , (10.120)

where A is the matrix of the diagonal elements of HQQ − (Heff)ii𝟏. Moreover, for the reference
one-electron Hamiltonian the authors used different ĥi for each reference state i. This makes sense
since in some reference state (read determinant or possibly configuration state function) an active
orbital might be occupied while in another state it is empty. Using a unified ĥ operator under these
conditions would render the perturbation expansion to diverge. However, the rules for the defi-
nition of the ĥi are to some extent ad hoc and sensitive to the orbital representation, McDouall
and co-workers have selected to use a localization of the active orbitals leading to an orthogonal
valence-bond expansion. As for the performance with respect to computer time the authors state
that the method will cost n times the cost of a single-reference MP2, where n is the number of
functions in the reference space. This fact means that the approach is not often used. Furthermore,
the literature lacks any benchmarks comparing this approach to any of the other MRPT methods
presented in this section. From a theoretical ground there is no reason for the CAS-MP2 approach
to be worse than the methods that will follow, rather it might actually have a slight edge due to
the use of a hybrid approach. However, the poor scaling with the size of the CI expansion will, in
general, render the approach not useful.

10.3.3 CASPT2 Theory

Here we present the mathematical equations which govern the complete active space second-order
perturbation theory (CASPT2) method, a second-order perturbation method.1 More specifically, we
will present the state-specific CASPT2 method (SS-CASPT2), in which each state is treated inde-
pendently. In this approach we note that, if we have a perturbation series which is convergent,
each of the states we consider will, as we go towards infinite order, get the energy and wave func-
tion correct. We will be able to compute the ground and any excited states which are spanned by
the active space of the reference CASSCF wave function. In general this will work very well if the
original CASSCF states are good qualitative representatives of the final states. However, conver-
gence will be slow if the reference states are poor and the successive iterations over the order of the
perturbational strength parameter are desperately needed for the corrected wave function to mir-
ror the exact wave function of the state under study in a qualitative way. Examples of this can be
numerous, for instance, the lack of dynamic electron correlation in the CASSCF model can cause

1 A review of the state-specific CASPT2 method was presented by Andersson and Roos in 1995 [23]. This section is
an extension of that review and we recommend students to consult that material in parallel.
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the reference functions to artificially mix states beyond the one they are trying to represent to be
used in a perturbational approach. We will present below approaches that will fix these problems,
but more on that later.

The CASPT2 method is based on (i) a multi-configurational reference wave function, the CASSCF
wave function, as described in detail in Chapter 6, and (ii) a partitioning of the Hamiltonian, such
that it reduces down to Møller–Plesset partitioning, that is, the definition of Ĥ0 is the same – a
one-electron operator – if the CASSCF wave function is reduced down to a single-determinant
wave function. The selection of Ĥ0 is for reasons of simplicity required to be a one-electron oper-
ator, alternative but similar partitionings have been introduced [24] but have over the years been
abandoned due to suboptimal performance. As we proceed we face two issues. First, we need a
generalization of the Fock operator to wave functions of arbitrary spin and number of open shells.
Second, we need to formulate a Ĥ0 for which the CASSCF wave function is an eigenfunction.

10.3.3.1 The Partitioning of the Hamiltonian
Let us start with the mathematical description of the SS-CASPT2 method, as it is applied to a gen-
eral CASSCF state. The generalized Fock operator, the Ĥ0 operator of the SS-CASPT2 method, is
defined as

F̂(D) =
∑
pq

fpq(D)Êpq , (10.121)

where D is the CASSCF one-particle reduced density matrix of the state of interest, represented by
the state Ψ(0). The scalar value fpq is computed as

fpq(D) = 1
2

𝛽∑
𝜎=𝛼

⟨Ψ(0)|[â†
p𝜎 , [âq𝜎 , Ĥ]]|Ψ(0)⟩ (10.122)

= hpq +
∑

rs
Drs

[
(pq|rs) − 1

2
(pr|qs)

]
, (10.123)

which in the case of the standard closed-shell single-determinant case will boil down to the conven-
tional matrix elements of the molecular orbital Fock operator. In passing we note that the matrix f
formed by the fpq values can be broken down into nine blocks based on the division of the orbitals
into inactive, active and virtual orbitals,

orbital class inactive active virtual

inactive

active

virtual

𝜖i fit 0

fti 𝜖t fta

0 fat 𝜖a

The diagonal block of this matrix (green boxes above) can be diagonalized independently resulting
in four remaining non-zero blocks (red boxes) (the inactive–active, active–inactive, active–virtual,
and virtual–active blocks) and two zero blocks (the inactive–virtual and virtual–inactive blocks).
In the initial implementation of CASPT2 the Fock operator was approximated to be diagonal to
simplify the calculation and compute the second-order energy and coefficients of the first-order
wave function simultaneously [12]. However, this approximation, called D-CASPT2, proved to be
too severe and later an iterative implementation was presented in which the non-diagonal nature
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of the Fock matrix is kept [13], the N-CASPT2 methods. This prefix has now been dropped, the
D-CASPT2 results are very poor and all CASPT2 results now refer to the use of the full Fock matrix.

10.3.3.2 The First-Order Interacting Space
We have now solved our first problem – we have a Ĥ0 operator, however, in contrast to MP theory
our CASSCF reference wave functions are not eigenfunctions to the generalized Fock operator.
In this respect we will have to follow the recipe described a couple of sections above, that is we
introduce the identity as defined by the projection operators

1 = |Ψ(0)⟩⟨Ψ(0)| + P̂K + P̂SD + P̂TQ +… , (10.124)

in which the projection operators P̂K, P̂SD, etc., are defined as

P̂X =
∑
i∈X

|Ψi⟩⟨Ψi| ,
where Ψi is a orthonormal state of the X space (X ∈ {K, SD,TQ,…}). More specifically, P̂K projects
into the complementary space, wave functions corresponding to all other possible wave functions
that are a solution in the CAS space, but are not in the reference space. P̂SD corresponds to states
which are single or double replacements (SD)2, relative to the reference function, generated
as ÊpqÊrs|Ψ(0)

i ⟩. Note that, as in the case of MPPT, single replacements can be safely ignored,
since for a variationally optimized CASSCF wave function their interaction with Ψ(0) is zero
(Brillouin–Levy–Berthier theorem). We selected this approach before for a reason. Let us visit the
SD space in a bit more detail, since if we are only to compute second-order corrected energies
we need only worry about the design and structure of this space. In the SD space the electron
replacements (see below) are complete or partial replacements out of the inactive–active space
into the active–virtual space. This includes the so-called semi-internal replacements, involving the
coupling of an internal replacement (inactive–active replacement) with an external replacement
(inactive–virtual or active–virtual promotion). To present all the SD space, it is divided into eight
classes of operators acting on the reference wave function (VA,… ,VH), they are presented as:

internal

{
VA , k = 1 ∶ ÊtiÊu𝑣

VB , k = 2 ∶ ÊtiÊuj

semi-internal
⎧⎪⎨⎪⎩

VC , k = −1 ∶ ÊatÊu𝑣

VD , k = 0 ∶ ÊaiÊtu , ÊtiÊau

VE , k = 1 ∶ ÊtiÊaj

external
⎧⎪⎨⎪⎩

VF , k = −2 ∶ ÊatÊbu

VG , k = −1 ∶ ÊaiÊbt

VH , k = 0 ∶ ÊaiÊbj ,

where i and j are inactive orbital, a and b are virtual orbital, and t, u, and 𝑣 are active orbital
indices of the CASSCF wave function. The classification as internal, semi-internal or external
corresponds to the number of virtual indices, 0, 1 or 2, respectively. The index k denotes the change
of number of electrons in the active space under the application of the replacement operator – this
is used in the NEVPT2 terminology to divide the first-order interacting space into subclasses

2 It is a confusing fact that both Slater determinants and the single and double replacement space of the first-order
interacting space in the literature are abbreviated SD. However, we hope that it will be clear from the context what
the abbreviation refers to.
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(see section 10.3.5 below). We note that the last case corresponds to the normal set of parameters
found in conventional MP2 theory and they are the ones that are the largest set. As in the case of
MPPT, non-orthogonalities in the first-order interacting space can be removed by taking linear
combinations of operators, as in ÊaiÊbj ± ÊbiÊaj.

Despite the block nature of F̂(D), we will not get a block-diagonal Hamiltonian – this would
translate to the correction vectors spanning the full Hilbert space. To overcome this we construct a
projected Ĥ0 operator as

Ĥ0 = |Ψ(0)⟩⟨Ψ(0)|F̂(D)|Ψ(0)⟩⟨Ψ(0)|
+ P̂KF̂(D)P̂K + P̂SDF̂(D)P̂SD

+ P̂TQF̂(D)P̂TQ +… . (10.125)

Thus, this Ĥ0 operator will be block-diagonal as follows

space 0 K SD TQ . . .

0

K

SD

TQ

...

H0
(0,0)

H0
(K,K)

H0
(SD,SD)

H0
(TQ,TQ)

. . .

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

which will assure us that the first-order correction to the wave function is completely defined by
the SD subspace.

Proceeding with a brief analysis of the SD space we first note that we will have a set of excited
states which are neither normalized nor orthogonal. Even worse, they are not necessarily lin-
early independent. Hence, orthonormalization and elimination will have to be included in the
process in which the overlap matrix SIJ in Eq. (10.97) is processed (block by block) to generate
a non-redundant set of orthonormalized excited states. This is now used to make the appropriate
transformations to generate the matrix H̃0 and the vector Ṽ . All this is used in the equation to derive
the coefficients of the first-order corrections to the wave function (see Eq. 10.108). Second, different
to standard MPPT, with the use of a single closed-shell determinant as a reference wave function,
the matrix of the unperturbed Hamiltonian will not be trivially diagonal, while still block-diagonal.
A brute force approach would be to diagonalize the matrix on the LHS, however, that would limit
the size of the calculations we could do – the space of the doubly excited states would be too large
for the explicit storage of the H̃0 matrix. Rather the Equation will have to be solved in an itera-
tive fashion using a preconditioned conjugate gradient approach computing vectors (known as 𝜎
vectors) of the form

𝜎 = (H̃0 − E(0)𝟏)C(1) , (10.126)

where C(1) is a trial vector of the coefficients of the excited states in the SD subspace. In this con-
text we will evaluate the matrix on the fly as we make the contraction (product) with the trial
vector. That is, the matrix H̃0 − E(0)𝟏 is not stored explicitly. Rather, as an element of the 𝜎 vector
is generated only those parts of the H̃0 − E(0)𝟏 matrix which are required are generated on the fly.
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Moreover, as the projection operator, P̂, is extended further to sets of two further replacements – the
TQ manifold, and so on – we achieve a continued block diagonalization of Ĥ0 over the blocks of
the reference function, the complementary CAS space, the SD space, the TQ space, etc.

We are now at the point at which we need to form the matrix elements (I, J are compound indices
for the states in the SD space)

(H0)IJ = ⟨ΨI|Ĥ0|ΨJ⟩ ,

SIJ = ⟨ΨI|ΨJ⟩ , and

V I = ⟨ΨI|V̂ |Ψ(0)⟩ ,
where

V̂ =
∑
pqrs

êpqrs(pq|rs) − Êpq

∑
rs

Drs

[
(pq|rs) − 1

2
(pr|qs)

]
. (10.127)

We will use these matrices and vectors to (i) eliminate linear dependence, (ii) introduce a
non-redundant orthonormal space of states in the SD space, (iii) commence the iterative pro-
cedure to compute the coefficients of the first-order correction to the wave function, and (iv)
compute E(2).

Before we continue let us examine, in some detail, the matrix elements which have to be com-
puted and what this is associated with (a complete list of all required equations for the compilation
of the CASPT2 energy are collected in the Appendix). We have that the wave functions ΨI and
ΨJ contain the product of two one-electron replacement operators, and so does V̂ , while Ĥ0 is a
one-electron operator and contains single replacement operators. Therefore, the worst case could
be expected to be the computation of matrix elements for Ĥ0. For example, for one of the external
cases (VH), we need to evaluate expressions such as∑

pq
⟨Ψ(0)

i |ÊkcÊldÊpqÊaiÊbj|Ψ(0)
j ⟩ . (10.128)

This and other expressions seem to indicate that n-particle density matrices up to five-particle
matrices would be needed, since there are five replacement operators. However, the general reduc-
tion (for a complete list of the equations up to the second-order correction of the energy see the
Appendix) will be such that the Hamiltonian will eliminate the four virtual indices, that is, a
CASPT2 implementation needs, in addition to the one- and two-particle density matrices, three-
and partially contracted four-particle density matrices (effectively of the size of a three-particle
density matrix). The actual storage and computation cost for all the n-particle density matrices (1-,
2-, 3- and partially contracted 4-particle density matrices) will scale in the range of m6–m8, where
m is the number of active orbitals. This seems to be tractable right now but, as will be seen later
in section 10.3.6, the density matrix renormalization group approach to CASSCF calculations will
facilitate large active spaces, at which point, when m can easily be of the order 102, the computation
and handling of the density matrices can become a serious bottleneck.

We are almost done. However, we should not forget to address the issue of size-extensivity of
the CASPT2 method. The CASSCF and MP2 methods (the latter at least in the case of closed-shell
systems) are size-extensive. Does this hold for the CASPT2 method too? Helgaker and co-workers
[3] show that since Ĥ0 is not additively separable (due to the projection operators present in the
Ĥ0 definition), the CASPT2 model is not a size-extensive perturbation model. Further, they note
that as the reference wave function increases the multi-configurational character, the extent of the
non-size-extensivity increases.



�

� �

�

328 10 Multi-Configurational Reference Perturbation Theory with a CASSCF Reference Function

10.3.3.3 Other Active Space References
The CASPT2 method, as should be clear from the preceding and following sections, is not free
of issues. To the just mentioned non-size-extensivity, we can add the possibility of intruder
states (10.1.2), the overstabilization of open-shell states (10.3.3.5) and the non-orthogonality of
the first-order wave functions (10.5). It should be noted that these problems are not specific to
CASPT2, and other multi-configurational reference perturbation methods can also show some
or all of them to some extent. There is, however, a simple – and not particularly useful – recipe
to solve or mitigate these problems: increase the active space size. From a purely theoretical
point of view, by increasing the active space size we approach the full CI solution, at which point
our reference CASSCF functions are the exact solutions, the zeroth-order Hamiltonian Ĥ0 is the
exact Hamiltonian and the perturbation V vanishes. It “solves” the problems by making the PT
treatment superfluous. From a practical standpoint, the exponential increase in the number of SDs
with the size of the active space makes the required CASSCF calculations intractable for anything
beyond about 20 orbitals, not to mention the PT2 step.

As described in Chapter 6, other approaches have been proposed to allow extending an active
space beyond what is practically possible with CASSCF, while keeping the number of SDs manage-
able. Two of these approaches are the restricted active space SCF (RASSCF) and generalized active
space SCF (GASSCF) methods. How can we apply a perturbative treatment to reference functions
based on RASSCF or GASSCF, instead of CASSCF?

The corresponding extensions of CASPT2, RASPT2 [25] and GASPT2 [26], have been published
relatively recently. In the case of RASPT2, the matrix representation of the Fock operator can be
easily obtained from the one in CASPT2, noting that now the active space is split into three different
subspaces:

orbital class inactive

active

RAS1 RAS2 RAS3 virtual

inactive

a
ct

iv
e

RAS1

RAS2

RAS3

virtual

𝜖i fit 0

fti

𝜖t

𝜖t

𝜖t

ftt ftt

fttftt

ftt ftt

fta

0 fat 𝜖a

where we see that the active–active block cannot be fully diagonalized, because the different RAS
spaces cannot be mixed without altering the reference wave function. The first-order interacting
space for a RASPT2 wave function contains all the eight classes considered for CASPT2 plus a fully
active class given by ÊtuÊ𝑣x, where all indices refer to active orbitals. This class is absent in CASPT2
because all possible excitations within the active space are already included in the reference or
complementary space, but in RASPT2 some of these excitations would violate the RASSCF restric-
tions and should therefore be included in the first-order interacting space. In GASPT2, for every
pair of not fully connected GAS spaces (where not all possible interspace excitations are allowed),
there exists a fully active class as in RASPT2.

The implementation of a rigorous PT2 treatment of such a structure poses some challenges. First,
including active–active excitations would require sorting out those that still fulfill the RAS or GAS
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Figure 10.3 CASPT2(12,12) and GASPT2(12,12) potential energy curves for Cr2. Reprinted with permission
from ref. [26]. Copyright 2016, American Chemical Society.

restrictions from those that do not – the former should be removed, the latter should stay in the
first-order interacting space. Furthermore, the computation of the matrix elements over Ĥ0 would
require four-particle density matrices, which would be impractical for larger active spaces, and
it is precisely for the use of large active spaces that we would like to use these methods. There-
fore, in the current implementations of both RASPT2 and GASPT2, an approximation is employed
in removing the active–active excitations from the first-order interacting space. The effect of this
approximation is a degradation in the accuracy of the perturbative treatment, but it is expected that
the possibility of using larger active spaces for the reference functions will compensate for it. As an
example, fig. 10.3 shows a comparison of CASPT2 and GASPT2 curves for the difficult case of Cr2,
where a CASPT2 calculation is still affordable. The GASPT2 calculation was done by splitting the
active space into six separate GAS spaces of two orbitals (bonding and antibonding) with two elec-
trons, with no interspace excitations allowed. The difference between the two curves around the
equilibrium geometry is attributed to the missing interspace excitations in the GASSCF treatment,
which GASPT2 cannot recover due to the approximation employed.

10.3.3.4 Benchmark Results
A few words on the quality of the CASPT2 results are opportune at this point. The very first bench-
mark of the CASPT2 method was conducted by Andersson and Roos [27]. In this benchmark,
molecular structures and binding energies were computed for some 27 molecules containing first-
and second-row atoms (H–Ne). The results indicate an accuracy in bond distances and bond angles
of 0.01 Å and 0–2 degrees, respectively. Furthermore, it is found that atomization energies are
underestimated by 3–6 kcal mol−1 times the number of unpaired electrons created in the atom-
ization process – the “correction” of this systematic error led to the so-called IPEA-shift tech-
nique, which is discussed below. Finally, the error in isogyric reactions – reactions which preserve
the number of unpaired electrons – was in the range of −2.5–1 kcal mol−1. In 2003 Guner and
co-authors [28] reported benchmark results for 11 pericyclic reactions of unsaturated hydrocar-
bons. In particular they studied properties such as transition state structures, reaction enthalpies
and entropies, and activation enthalpies and entropies. They reported, for example, mean absolute



�

� �

�

330 10 Multi-Configurational Reference Perturbation Theory with a CASSCF Reference Function

deviations (MAD) for the reaction and activation enthalpies of 1.6 kcal mol−1 and 1.7 kcal mol−1,
respectively, at the CASPT2/6-31G∗//CASSCF3 level of approximation. Schreiber and co-workers
[29] performed a comparative study of singlet (121 transitions) and triplet (71 transitions) vertical
excitation energies computed at the CASPT2 and the CC3 levels. They reported MADs of 0.08 eV
and 0.20 eV for the triplet and singlet transitions, respectively. These results, especially the organic
spectroscopic data, were summarized by Serrano-Andrés in a special issue of IJQC [30] in honor
of Björn O. Roos. In the same issue Pierloot [31] and Gagliardi [32] report on the state of the art
of CASPT2 studies of transition metal compounds and actinide chemistry, respectively. Recently
Budzák and collaborators established a database of ground-state and excited-state structures from
some 35 molecules. Again, it was demonstrated that the CASPT2 method yields deviations of only
0.01 Å in any bond type when compared to the “gold standard” coupled-cluster methods [33].

10.3.3.5 IPEA Shift
As mentioned above, Andersson and Roos reported large deviations in atomization energies – up
to 20 kcal mol−1. Initially this caused much alarm, however, after some analysis it was established
that this was a systematic error depending on the change of the number of unpaired electrons
in the process under study. That is, an imbalance in the treatment of the reference Hamiltonian,
Ĥ0, of closed-shell electrons with respect to unpaired electrons. In general this leads to too low
bond and excitation energies. To remedy this artifact, Andersson introduced corrections to the Fock
matrix, named G1, G2, and G3 [24]. Although these corrections could relieve the problem in some
cases, it was limited to situations where the energy gap between active and virtual orbitals is large.
Ghigo and co-workers [34], however, suggested an alternative shift which seemed to reduce the
systematic error significantly. In their analysis they identified that the systematic error could eas-
ily be resolved using a two-electron term, à la Dyall [35] (see section 10.3.5 on NEVPT2, where
it is described in some detail), in the zeroth-order Hamiltonian. This would, however, lead to an
increase in the computational expense, and a modification should preferably fit within the scope of
a one-electron-operator-based formalism. Ghigo et al. further noted that for closed-shell orbitals the
negative of the diagonal value of the Fock matrix corresponds to the ionization potential (IP), while
for an empty orbital the value corresponds to an electron affinity (EA). This is trivially the case for
the inactive and the virtual spaces, respectively, in the CASSCF model. For the active space, how-
ever, the situation is not that simple and the nature of the diagonal value is closely associated with
the occupation number. To proceed, let us reformulate Eq. (10.123) as an interpolation between the
two cases that the active orbital is doubly occupied (−IP) or empty (−EA),

fpp = −1
2
(Dpp(IP)p + (2 − Dpp)(EA)p) . (10.129)

Here we have an expression which is correct for Dpp = 0, 1, or 2 and in general mimics the behav-
ior of the diagonal elements of the Fock matrix for the active orbitals. In particular this expression
highlights that we will have a problem when an electron is attached to or removed from a singly
occupied orbital. As a result, the denominators of the coefficients in the first-order correction of
the wave function will be too small, the coefficients will be too large and thus contribute too much
to the second-order correction to the energy. This is what had been empirically found – the pertur-
bation energy is overestimated for open shells. Additionally, this will be yet another source for the
manifestation of intruder states.

We would like to have a formalism such that we would use an electron affinity if we excite into an
orbital and an ionization potential if we remove an electron from it. Ghigo and co-workers suggest

3 This acronym indicates that the study was conducted with a 6-31G∗ basis set, structures optimized at the CASSCF
level, and finally the energies are computed with the CASPT2 method.
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that this can be achieved by the introduction of a shift, the IPEA shift. In the case we move an
electron into an orbital p, we would like to shift Eq. (10.129) by the value

𝜎EA = 1
2

Dpp((IP)p − (EA)p) , (10.130)

while in the case of the removal of an electron from the same orbital, we would like to shift by the
value

𝜎IP = −1
2
(2 − Dpp)((IP)p − (EA)p) . (10.131)

This would be completely in line with the possibility of implementing a state-specific shift (see
Eq. 10.65), where in this case the summation is limited to the states in the first-order interacting
space and the shift is specific to each of the classes of states in this space. Subsequently Ghigo and
co-workers took a leap of faith – considering that the definition of and the value of (IP)p − (EA)p
is not well defined nor is it in general known – they suggested the use of a single parameter 𝜎,
to be determined from accurate calculations or experimental results. They conclude their study by
demonstrating, using a 𝜎 value of 0.25 Eh, that the computed dissociation energy errors for some 49
molecule can be reduced from more than 0.2 eV to less than 0.1 eV (see fig. 10.4). This value of the
shift, 0.25 Eh, has since then been the default value in the MOLCAS quantum chemistry program
package. [36] It should again be pointed out that this shift factor will be applied differently for each
of the eight different classes of the first-order interacting space (see Eq. 10.65, and read refs. [37]
and [38] for a detailed description of the implementation of the IPEA shift).

The IPEA-shift technique has, over the years, been an origin of irritation and many have criti-
cized the approach. Some claim the shift makes the CASPT2 method semi-empirical, others state
that the shift should be significantly larger, etc. [37, 39, 40]. To resolve the degree of “correctness”
and validity of the IPEA shift, Zobel and co-workers [38] recently reported results from (i) an exten-
sive study of literature of CASPT2 excitation energies, (ii) full configuration interaction benchmark
results compared with CASPT2 results, and (iii) extensive studies using different values of 𝜎. From
the results Zobel and co-authors observed that the correction scales with the amount of dynamic
correlation and is a function of the size of the basis set (see fig. 10.5). Thus they conclude that
the notion of an universal IPEA shift does not have any support and that the practice should be
abandoned.

10.3.4 MRMP2 Theory

About two years after the proposal and implementation of the CASPT2 theory, Hirao suggested
a variation of the theory named multi-reference second-order Møller–Plesset perturbation theory
(MRMP2) [14–17]. This proposal is similar in many respects to the CASPT2 theory and the differ-
ences will be briefly presented below. The major difference lies in the design of the Ĥ0 operator and
the definition of the first-order interacting space.

10.3.4.1 The Partitioning of the Hamiltonian
The zeroth-order Hamiltonian is trivially defined as

Ĥ0 =
∑

i
E(0)

i |Ψ(0)
i ⟩⟨Ψ(0)

i | , (10.132)

where Ψ(0)
i are CASSCF wave functions and E(0)

i are the reference energies defined as follows. First,
the reference energy is defined as a sum over orbital-energy-like terms, generalized orbital energies,

E(0)
i =

∑
p
𝜖pp⟨Ψ(0)

i |Êpp|Ψ(0)
i ⟩ , (10.133)
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Figure 10.4 Errors in the dissociation energy for 49 diatomic molecules obtained with the IPEA shift
parameter equal to 0.25 Eh and with no IPEA shift. Reprinted with permission from ref. [34]. Copyright 2004,
Elsevier.

where Êpp is the number operator (it returns the occupation number for the pth orbital). It is impor-
tant to note that these matrix elements are given in the orbital representation that diagonalizes the
diagonal blocks of the Fock matrix. In this orbital representation the generalized orbital energies
are computed as

𝜖pq = hpq +
∑

rs
Drs

[
(pq|rs) − 1

2
(pr|qs)

]
. (10.134)

10.3.4.2 The First-Order Interacting Space
While the CASPT2 and NEVPT2 methods (see section 10.3.5 below) define the first-order interact-
ing space by the use of replacement operators applied to the contracted CASSCF wave function(s),
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Figure 10.5 Mean signed errors (MSEE) in eV of CASPT2 vertical excitation energies compared to
experimental reference data for different ANO-RCC basis sets and IPEA shift values 𝜖 (in Eh) Reprinted from
ref. [38], published by The Royal Society of Chemistry, distributed under Attribution 3.0 Unported (CC BY
3.0) license.

the MRMP2 method defines the space by collecting all SDs that correspond to a single or double
replacement relative to the SDs that span the CASSCF CI space. In that respect this space is larger
than the corresponding space in, for example, the CASPT2 approach, however it comes with the
benefit that the representation provides a diagonal representation of Ĥ0. This space has, of course,
to be subjected to elimination of linear dependences.

We conclude this section by noting that the MRMP2 method is not used extensively and there
is a lack of any significant amount of benchmarking in the literature, compared to other MRPT
methods.

10.3.5 NEVPT2 Theory

The n-electron valence state for multi-reference perturbation theory (NEVPT2) was introduced
some 10 years after the CASPT2 method [18]. At the time three different versions of the method
were introduced: the totally uncontracted, the partially contracted (PC), and the strongly contracted
(SC). Different to CASPT2, NEVPT2 uses an Ĥ0 operator that includes two-electron terms, and the
method is attributed to avoid the problems with intruder states, which frequently cause issues in
CASPT2 studies. Thus, two of the major advantages that the method claims are (i) exempt from the
intruder state problem and (ii) the method is size consistent.

The totally uncontracted method entails a high computational cost and has not been used in
practical applications (for some recent developments, see the end of section 10.3.6). The two latter
versions, the PC-NEVPT2 and the SC-NEVPT2 versions, however, are in common use. Hence, we
will discuss these methods briefly.

10.3.5.1 The Partitioning of the Hamiltonian
Below, we will describe the Ĥ0, however, in the case of NEVPT2 this requires the generation of the
functions in the first-order interacting space – also known as perturbers, since they will perturb
the wave function as we include corrections through the perturbation expansion. We will, at this
point, assume that these perturbers are generated and denoted, Ψ{k}

l and Ψ{k}
l𝜇 , for the strongly and

the partially contracted NEVPT2 versions, respectively. Here k and l index the class and subclass,
respectively, of the first-order interacting functions, and 𝜇 is a particular member of such a sub-
class – this will become clearer in the next section. We can now write two different definitions of
the Ĥ0 operator, namely

ĤSC
0 =

CAS∑
m

|Ψ(0)
m ⟩E(0)

m ⟨Ψ(0)
m | + ∑

kl
|Ψ{k}

l ⟩E{k}
l ⟨Ψ{k}

l | (10.135)
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and

ĤPC
0 =

CAS∑
m

|Ψ(0)
m ⟩E(0)

m ⟨Ψ(0)
m | + ∑

kl𝜇
|Ψ{k}

l𝜇 ⟩E{k}
l𝜇 ⟨Ψ{k}

l𝜇 | , (10.136)

for the strongly and partially contracted versions of NEVPT2, respectively. The first term involves all
possible states of the CASSCF wave function, while the second term includes the normalized per-
turbers of the first-order interacting space. Since, after the next section, we have these perturbers,
we only need to find a way to obtain the associated “eigenenergies” E{k}

l∕l𝜇 . To do this, we will employ
Dyall’s Hamiltonian, Ĥ [35] (see below), in which the associated eigenvalues are simply computed
as

E{k}
l = ⟨Ψ{k}

l |Ĥ|Ψ{k}
l ⟩ (10.137)

for the strongly contracted case. For the partially contracted case a more elaborate procedure is
engaged. First a projected Hamiltonian, based on Ĥ, is formed with eigenfunctions and eigenval-
ues given by

P̂{k}
l ĤP̂{k}

l Ψ{k}
l𝜇 = E{k}

l𝜇 Ψ{k}
l𝜇 , (10.138)

where Ψ{k}
l𝜇 are spanned by the linearly independent functions Φ{k}

lm of the space S{k}
l .

Before we continue, let us mention Dyall’s Hamiltonian – here presented in a form invariant
to unitary rotations inside each orbital class (inactive, active, and virtual). This Hamiltonian is
introduced as an approximation to the electronic Hamiltonian and is subdivided, for computational
efficiency, into an inactive–virtual part (iv) and an active part (act) as

Ĥ = Ĥiv + Ĥact , (10.139)

where the inactive–virtual part is a simple one-electron diagonal operator,

Ĥiv =
∑

ij
fijÊij +

∑
ab

fabÊab + C, (10.140)

where we use the index definitions of Chapter 1, section 1.5. The constant C and the Fock matrix
elements fpq are defined below. For the active part of the operator, Ĥact, we have the following
expression,

Ĥact =
∑

tu
heff

tu Êtu + 1
2

∑
tu𝑣x

(tu|𝑣x)êtu𝑣x , (10.141)

where heff
tu = htu +

∑
i(2(tu|ii) − (ti|ui)) are the effective one-electron integrals, introducing the field

of the inactive electrons into the active part of the Hamiltonian. Furthermore, the constant C is
chosen to be,

C = 2
∑

i
hii +

∑
ij
[2(ii|jj) − (ij|ji)] − 2

frozen∑
k
𝜖k , (10.142)

with which the result is equivalent to the full Hamiltonian within the CAS space,

ĤΨ(0)
m = E(0)

m Ψ(0)
m . (10.143)

Finally the Fock matrix elements fpq are defined as

fij = −⟨Ψ(0)
m |â†

i Ĥâj|Ψ(0)
m ⟩ + 𝛿ijE

(0)
m (10.144)
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and

fab = ⟨Ψ(0)
m |âaĤâ†

b|Ψ(0)
m ⟩ − 𝛿abE(0)

m . (10.145)

In this fashion the Dyall Hamiltonian is equivalent to the Møller–Plesset Ĥ0 in the inactive and
the virtual space while in the active space it is the complete active space Hamiltonian. The latter
ensures that the NEVPT2 approach is a size-consistent method.

10.3.5.2 The First-Order Interacting Space
Here we will describe the first-order interacting space (also denoted the SD-space) for the strongly
contracted and the partially contracted schemes. In the SC-NEVPT2 version we will use only one
perturber from each class in the first-order interacting space, while in the PC-NEVPT2 method
we will include all possible states of the SD-space (just as in the CASPT2 method). The classes
are similar to the classification in the CASPT2 method (see section 10.3.3.2 above). The index k,
ranging from −2 to 2, represents the change in the number of electrons in the active space. An
additional index, l, is used to discriminate between subclasses when there are several types of oper-
ators belonging to the same k-class. We note that we have eight different types of subclasses, just as
in the CASPT2 method, although the primary classification scheme there was based on internal,
semi-internal, and external excitations, instead of the k index.

In the SC-NEVPT2 method a single perturber per subclass is generated as follows,

Ψ{k}
l = P̂{k}

l ĤΨ(0)
m , (10.146)

where Ψ(0)
m is the reference function of state m, and P̂{k}

l is the projector onto S{k}
l , the subspace of

all states in subclass l of class k. To some extent this is similar to the first iteration in a CI solver
algorithm. Since only one perturber is picked from each type of class there will be no problem with
linear dependences.

For the PC-NEVPT2 method, however, we will employ all possible states in each subclass, just
as in the CASPT2 method, and as in the CASPT2 case we will have possible linear dependences.
Thus a similar procedure is adopted to generate a set of linearly independent functions, Φ{k}

lm , of
subspace S{k}

l . The final functions, Ψ{k}
l𝜇 , to be used in the Ĥ0 operator, are generated by finding the

eigenvalues and eigenvectors of the projection of Dyall’s Hamiltonian on S{k}
l Eq. (10.138).

To sum up the technical description of the NEVPT2 formalism and highlight significant differ-
ences: (i) NEVPT2 uses a two-electron Ĥ0 resulting in longer computation time and the need of
up to explicit four-particle density matrices, on the other hand, in NEVPT2 the Hamiltonian is
actually block-diagonal for each excitation class, which reduces the size of the problem, (ii) the
NEVPT2 method is strictly size extensive – CASPT2 is not, and (iii) the NEVPT2 method does
not, from a practical perspective, suffer from intruder-state problems. The latter property is due
to the fact that with the NEVPT2 partitioning of the Hamiltonian the energies of the perturbing
wave functions – the states in the first-order interacting space – are far from degenerate with the
energy of the zeroth-order state. The worst case is associated with an excited state corresponding
to a semi-internal excitation which will effectively generate an energy denominator correspond-
ing to the sum of the ionization potential of an active electron and the energy of a virtual orbital.
The former should be negative and can at worst be close to zero for a Rydberg orbital, while the
latter is positive (for neutral species) and rarely close to zero. Therefore, calculations for electronic
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Figure 10.6 Potential energy curves for the 1Σ+ states of Cr2 (ANO basis set, (12/12) CAS-CI space). Dashed
line (CASSCF) and full line (SC-NEVPT2). Reprinted with permission from ref. [19]. Copyright 2001, Elsevier.

excited states should be possible with NEVPT2 without experiencing any intruder state problem.
For a detailed discussion on this we recommend the reader to consult ref. [41].

Finally, extensive benchmarking of the NEVPT2 method does not exist at present. However, let
us again point out that different to CASPT2 the intruder state problem is effectively removed and
the result is strictly size consistent. The former is explicitly demonstrated in fig. 10.6, in which the
curve was generated without the need for any type of level-shifting technique. Preliminary bench-
mark studies by Angeli and co-workers [42] on valence and Rydberg transitions in formaldehyde
and acetone indicated errors in the range of 0.1–0.2 eV and an absence of intruder states. A recent
benchmark by Shapiro et al. [43] on vertical excitation energies of some 28 medium sized organic
molecules, does not provide decisive arguments for any discrimination between the PC-NEVPT2,
SC-NEVPT2, and SS-CASPT2 methods based on the accuracy of the predictions – if any, SS-CASPT2
has a small edge (see fig. 10.7). For example, the mean unsigned error is 0.28 eV, 0.23 eV, and 0.21 eV
for the methods as ordered above. Rather than accuracy, it will be qualities such as computer effi-
ciency and others that will, from case to case, be the determining factor in the selection of which
method to use.

10.3.6 Performance Improvements

The use of the CASPT2 and NEVPT2 methods has been very successful in predicting and
understanding a number of phenomena. However, the conventional implementations suffer from
various bottlenecks such as the transformation of the integrals to the molecular orbital basis
or the evaluation of the amplitudes. The former scales effectively as (n5) where n is the size
of the basis set, while the latter suffers from the “exponential wall” typical of a conventional
configuration-interaction treatment of the wave function. This limits the use of the methods to
modest-sized systems with active spaces of up to about 18 electron in 18 orbitals.

For moderate active spaces, the integral transformation step tends to dominate. This
integral-transformation bottleneck was effectively removed by the use of a CASPT2 imple-
mentation based on Cholesky decomposed (CD) integrals, the CD-CASPT2 approach [44]. This
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Figure 10.7 Histograms of the frequency of deviations in the singlet excitation energies in eV. Statistics of
all excitation energies are shown in gray and those below 7 eV are represented by yellow bars. Reprinted
with permission from ref. [43]. Copyright 2013, American Chemical Society.

reduced the scaling of the integral transformation by one order of magnitude while simultaneously
reducing cache faults and I/O requests. Benchmarks demonstrate that CD in combination with
CASSCF/CASPT2 reduces the computer time by a factor of four up to 1–2 orders of magnitude,
with a loss of accuracy for excitation energies of organic molecules of about 0.001 eV [45]. Another
early, but not as successful, approach is the frozen natural orbital CASPT2 (FNO-CASPT2) method
[46, 47]. In this approach, an approximation to the one-particle density matrix corrected up to
second order is diagonalized in the virtual–virtual block. Subsequently eigenvectors are eliminated
if the corresponding eigenvalue is below a predefined threshold. It has been demonstrated that
the use of this kind of reduced virtual space recovers some 95 % of the second-order correction
to the energy while significantly reducing the computational expense. Some more recent and
significant progress, however, has been made for both the CASPT2 and the NEVPT2 methods
with respect to molecular-size scaling given a fixed active space – an ability which can be of
significance in the study of transition metals with large ligands. In these approaches the effective
number of amplitudes in the first-order interacting space is dramatically reduced without any
significant loss of accuracy by a combined initial generation of projected atomic orbitals (PAO)
[48] and a subsequent generation of pair natural orbital (PNO) [49]. Both the PNO-CASPT2
[50] and the domain-based local PNOs flavor of NEVPT2 (DBLPNO-NEVPT2) [51] methods
have demonstrated, given a fixed active space, linear scaling with respect to molecular size in
combination with insignificant loss of accuracy – recovering 99.9 % of the second-order correction
to the energy. More recent developments using density matrix renormalization group (DMRG)
approximations to treat large active spaces in CASPT2 [52–56] and NEVPT2 [57–59] – the
DMRG-CASPT2 and DMRG-NEVPT2 methods – have been very successful in removing the
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conventional limitation on the size of the active space. Finally, the progress in overcoming the
bottleneck of the higher-order n-particle matrix evaluation should be mentioned [60–64]. In these
studies, the efficiency of different approaches has been explored, with mixed results, namely: (i)
approximating the cumulants of the higher-order reduced density matrices [60, 65], (ii) using a
matrix product state representation (found, for example, in DMRG) in the computation of the
first-order interacting space – called MPS-PT2 – in state-specific or quasi-degenerate (see below)
PT [61, 62, 66], (iii) using a time-dependent formulation of MRPT [63], (iv) and a projection of the
first-order interacting space in an SC-NEVPT2 setting onto a renormalized Hilbert space [64].

10.4 Quasi-Degenerate Perturbation Theory

In the course of using the SS-CASPT2 method, it was evident that the approach is only usable
when the reference functions are close to qualitatively correct, and that the first-order correction
to the wave function would be sufficient for a quantitatively correct energy only if the perturbation
expansion terminates at second order. Anything else would be wishful thinking. In the literature
there are ample cases in which the reference CASSCF wave functions are qualitatively wrong due
to the lack of dynamic electron correlation – see, for example, the case of the V -state of ethylene,
in which CASSCF introduces an artificial mixing of Rydberg and valence character, something the
SS-CASPT2 approach never recovers from [67]. The trivial solution to this problem could have been
to increase the active space or to go beyond second order in the perturbation series – which sounds
trivial but is expensive, complicated, or not even feasible. A more pragmatic approach involves for-
mulating a multi-state version of perturbation theory, something that is not straightforwardly done
from the single-state theory. What is the problem? Well, the single-state approach has the problem
that, if applied to several states at the same time, it does not allow the reference states to trivially
mix with each other as the perturbation is introduced order by order. To avoid this, multi-state
perturbation theories use an effective Hamiltonian procedure to produce corrected energies origi-
nating from corrected model states, which are linear combinations of the original reference states.
This gives rise to quasi-degenerate perturbation theory (QDPT), the basics of which we will see in
this section.

To proceed with a multi-state theory, however, some new tools have to be derived – the Bloch
equations and the wave operator (see, for example, refs. [68–70]). We start by defining a model
space – or reference space – commonly denoted P, spanned by some eigenfunctions of the Hamil-
tonian of the unperturbed system Ĥ0, the reference states,

Ψ(0)
i i = 1,… , d, (10.147)

where d is the dimension of the model space. We also define the operators

P̂ =
d∑

i=1
|Ψ(0)

i ⟩⟨Ψ(0)
i | , and (10.148)

Q̂ = 1 − P̂. (10.149)

The operator P̂ can now be used to project the exact wave function of state i onto the the model
space as

P̂Ψi = ΨP
i =

d∑
j=1

cijΨ
(0)
j , (10.150)
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where ΨP
i is the model state of state Ψi, expressed by a linear combination of the reference states in

the model space. These linear combinations are found by diagonalization of the multi-state Hamil-
tonian matrix. The wave operator, Ω̂, does the corresponding back-transformation, acting on the
model states it generates the exact states,

Ψi = Ω̂ΨP
i i = 1,… , d, (10.151)

where we note the similarities to Eq. (10.19) for the single-state case – both provide a recipe to
find the corrections of the wave function(s) to arbitrary order. For completeness, Ω̂ is defined
as a null operator when operating on the complementary space, i.e., Ω̂Q̂ = 0 and therefore
Ω̂P̂ = Ω̂(1 − Q̂) = Ω̂.

We will here derive the Bloch equation – the master equation to express the wave operator – in
which an explicit dependence on the exact energy is avoided. First, we start by left-multiplying the
“exact” Schrödinger equation with Ω̂P̂, that is,

Ω̂P̂(Ĥ0 + V)Ψi = EiΨi . (10.152)

The operator Ω̂P̂ will project any exact wave function to the reference space and then subsequently
regenerate the exact wave function. Hence, the operator will leave an exact wave function
untouched, and the RHS of the equation is identical to the original expression. Using [Ĥ0, P̂] = 0,
and with the help of Eqs. (10.150) and (10.151), the following expression is found

(Ω̂Ĥ0 + Ω̂P̂VΩ̂)ΨP
i = EiΨi , (10.153)

and by using Eq. (10.151), Ω̂P̂ = Ω̂, and the original Schrödinger equation to eliminate the energy,
one gets

(Ω̂Ĥ0 + Ω̂VΩ̂)ΨP
i = (Ĥ0Ω̂ + VΩ̂)ΨP

i , (10.154)

which holds for the model space. Since the operators on both sides are null when operating on the
complementary space, it holds for any state, and can be paraphrased into the generalized form of
the Bloch equation,

[Ω̂, Ĥ0] = VΩ̂ − Ω̂VΩ̂. (10.155)

In the single-state case the equation can be rewritten as

(E(0)
i − Ĥ0)Ω̂ = VΩ̂ − Ω̂VΩ̂. (10.156)

Expanding the wave operator in powers of the perturbation with Ω̂(0) = P̂ [68] we have

Ω̂ = P̂ + Ω̂(1) + Ω̂(2) + … , (10.157)

and finally, due to the recursive nature of the Bloch equation we have

[Ω̂(n), Ĥ0] = Q̂VΩ̂(n−1) −
n−1∑
k=1

Ω̂(n−k)VΩ̂(k−1) . (10.158)

Then we get the wave operator, up to third order, as

[Ω̂(1), Ĥ0] = Q̂VP̂ = Q̂ĤP̂, (10.159)

[Ω̂(2), Ĥ0] = Q̂VΩ̂(1) − Ω̂(1)VP̂, and (10.160)

[Ω̂(3), Ĥ0] = Q̂VΩ̂(2) − Ω̂(2)VP̂ − Ω̂(1)VΩ̂(1) . (10.161)
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In the single-state case the LHS is replaced with (E0
i − Ĥ0)Ω̂

(n)
i , where the wave operator is unique

to the state i, and the general wave operator is now expressed as

Ω̂(n) =
d∑

i=1
Ω̂(n)

i |Ψ(0)
i ⟩⟨Ψ(0)

i | . (10.162)

The effective Hamiltonian, by definition, is written as

Ĥeff = P̂ĤΩ̂P̂, (10.163)

which we note only acts on the reference space. The model states, Ψ(0)
i , i = 1,… , d, are eigenfunc-

tions of the effective Hamiltonian,

ĤeffΨ(0)
i = EiΨ

(0)
i , (10.164)

and the effective Hamiltonian up to second order is

Ĥeff[2] = P̂ĤP̂ + P̂ĤΩ̂(1)P̂. (10.165)

We note at once that the energy corrected up to first order is computed as

E[1]
i = ⟨Ψ(0)

i |Ĥ0 + V |Ψ(0)
i ⟩ , (10.166)

and the second-order correction to the energy is expressed as

E(2)
i = ⟨Ψ(0)

i |Ĥ|Ψ(1)
i ⟩ . (10.167)

Let us look at the first-order corrected wave function in terms of a single- and multi-state for-
malism. The first-order correction to the wave function in a single-state formalism is expressed
as

Ψ(1)
i = Ω̂(1)

i Ψ(0)
i =

∞∑
j=1
j≠i

CijΨ
(0)
j , (10.168)

while in a multi-state approach we have (see Eqs. 10.150 and 10.162)

Ψ(1),P
i = Ω̂(1)ΨP

i (10.169)

=
d∑

j=1
Ω̂(1)

j |Ψ(0)
j ⟩⟨Ψ(0)

j |ΨP
i ⟩

=
d∑

j=1
cji

∞∑
k=1
k≠j

CjkΨ
(0)
k

=
d∑

j=1
cjiΨ

(1)
j . (10.170)

Note that this does not imply that the first-order corrected model states are orthogonal, they will
only be so at infinite order. The coefficients, Cjk, are computed from the general Bloch equation
according to∑

j≠i
Cij⟨Ψ(0)

k |(E(0)
i − Ĥ0)|Ψ(0)

j ⟩ = ⟨Ψ(0)
k |Ĥ|Ψ(0)

i ⟩ , (10.171)

which simplifies to

Cik =
⟨Ψ(0)

k |V |Ψ(0)
i ⟩

E(0)
i − E(0)

k

, (10.172)
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and now allows the computation of the second-order energy as described above. The matrix ele-
ments of the effective Hamiltonian are now expressed as

⟨Ψ(0)
i |Ĥeff[2]|Ψ(0)

i ⟩ = E[2]
i (10.173)

and

⟨Ψ(0)
i |Ĥeff[2]|Ψ(0)

j ⟩ = ⟨Ψ(0)
i |Ĥ|Ψ(0)

j + Ψ(1)
j ⟩ . (10.174)

Given these matrix elements we can now proceed with a diagonalization and derive the model
states of the model space. To conclude, this approach can be viewed as perturb-then-diagonalize,
in which we use perturbation theory to set up the effective Hamiltonian which is subsequently
diagonalized.

10.5 Multi-State Multi-Configurational Reference Perturbation
Methods

In the pursuit of practical methods to overcome single-state MRPT limitations, the tools of
quasi-degenerate perturbation theory come in handy. Defining a relevant model space of several
states provides a pathway in which (i) the computational effort only increases linearly with the
number of states in the model space and (ii) artificial redundancies (due to deficiencies on the
CASSCF treatment) are removed, in one single step, under the influence of the perturbation
(that is, including electron–electron correlation). These methods will now be of the nature
diagonalize-then-perturb-then-diagonalize approach, in the sense that we will use basis functions
in the setup of the effective Hamiltonian which are based on a diagonalize-then-perturb technique.
Specifically, below we will describe two such methods in some detail – the multi-state and the
extended multi-state CASPT2 (MS-CASPT2 and XMS-CASPT2). Similar approaches have suc-
cessfully been applied to both the MRMP2 (multi-configurational quasi-degenerate second-order
perturbation theory, MCQDPT2) [71, 72] and NEVPT2 single-state theories (QD-NEVPT2) [73].

10.5.1 Multi-State CASPT2 Theory

As described above, QDPT requires that Ĥ0 and Ĥeff[2]
i be unique for all the reference states.

However, much of the success of SS-CASPT2 lies in the use of an Ĥ0 that is specifically tai-
lored to the state under study. In 1998 Finley and co-workers suggested a hybrid approach
of SS-CASPT2 with quasi-degenerate perturbation theory [74] – the multi-state CASPT2
(MS-CASPT2) method – to improve the SS-CASPT2 method in those cases where the reference
CASSCF wave function does not meet the qualitative requirements for a fast convergence of
the perturbation expansion, additionally it should remove erroneous behavior of SS-CASPT2 at
points of degeneracy. This approach is very similar to what was described above for standard
quasi-degenerate perturbation theory, that is a perturb-then-diagonalize approach. However,
in this case the starting reference functions have already been the subject of a diagonaliza-
tion procedure – the CASSCF procedure – and in this aspect the MS-CASPT2 procedure is a
diagonalize-then-perturb-then-diagonalize-like procedure. The suggestion of Finley et al. revolves
entirely around Eqs. (10.173) and (10.174). How are those equations to be used in association
with the SS-CASPT2 approach? In this respect the authors suggest the following. First, and maybe
trivial, the diagonal elements in the effective Hamiltonian are simply the individual SS-CASPT2
energies,

⟨Ψ(0)
i |ĤMS-CASPT2|Ψ(0)

i ⟩ = ESS-CASPT2
i = ⟨Ψ(0)

i |Ĥeff[2]
i |Ψ(0)

i ⟩ . (10.175)
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At this point we also recognize the significant difference to Eq. (10.173): the effective Hamiltonian
operator and the corresponding implicit partitioning of the Hamiltonian is state-specific [75]. This
raises a problem when we proceed to the computation of the off-diagonal elements of the effective
Hamiltonian matrix, that is,

⟨Ψ(0)
i |Ĥeff[2]

j |Ψ(0)
j ⟩ = ⟨Ψ(0)

i |Ĥ|Ψ(1)
j ⟩ ≠ ⟨Ψ(0)

j |Ĥ|Ψ(1)
i ⟩ = ⟨Ψ(0)

j |Ĥeff[2]
i |Ψ(0)

i ⟩ , (10.176)

which for obvious reason produces a non-symmetric Hamiltonian matrix. In the current imple-
mentation this problem is fixed with a simple symmetrization of the matrix with the limitation
that results should be questioned if corresponding off-diagonal elements are large and different.
The MS-CASPT2 results are generally in line with SS-CASPT2 results. In the original report
by Finley and co-workers, the authors demonstrated explicitly how the MS-CASPT2 approach
solves the problem with the artificial valence–Rydberg mixing in the V -state of ethane, and
how MS-CASPT2, unlike SS-CASPT2, provides qualitatively correct results around the avoided
crossing of the ionic–neutral states in the dissociation of LiF (see fig. 10.8). When MS-CASPT2
and SS-CASPT2 results differ, however, the prudent user will have to address the issue of whether
or not the MS-CASPT2 results should be trusted. In particular, it has been demonstrated that the
MS-CASPT2 method resolves cases with accidental degeneracy at the CASSCF level if it does not
persist at the SS-CASPT2 level. On the other hand, the MS-CASPT2 is known to provide erroneous
behavior around conical intersections [76, 77] and other cases of near-degeneracy. The latter
problem is known to be a consequence of the use of state-specific effective operators, a procedure
will be suggested below to remove these problems.

10.5.2 Extended MS-CASPT2 Theory

Granovsky analysed MCQDPT theory and put forward qualitative criteria which a quasi-degenerate
perturbation theory should satisfy [77]. One of these is that the eigenvalues of the effective Hamil-
tonian should be invariant to the particular basis functions selected to span the model space, as long
as they span the same subspace. In this respect Granovsky suggested that the Ĥ0 operator should
be extended from

Ĥ0 =
∑

i
|Ψ(0)

i ⟩⟨Ψ(0)
i |F̂|Ψ(0)

i ⟩⟨Ψ(0)
i | (10.177)

to

Ĥ0 =
∑

ij
|Ψ(0)

i ⟩⟨Ψ(0)
i |F̂|Ψ(0)

j ⟩⟨Ψ(0)
j | , (10.178)

where F̂ is a Fock-like operator, as in CASPT2. Thus, the Ĥ0 operator is explicitly independent
of the selection of the basis functions spanning a particular model space. This new technique
is denoted as extended MCQDPT (XMCQDPT). This extension has been applied to MS-CASPT2
theory yielding the method known as XMS-CASPT2 [78]. In this approach the Ĥ0 matrix is diag-
onalized. The “non-extended” procedure is then continued in the basis of these eigenfunctions
ΨX(0)

i .
It should be noted that the XMS-CASPT2 approach requires the use of a state-specific parti-

tioning to be abandoned, as used in the MS-CASPT2 method. The state-specific approach and
the MS-CASPT2 method have been successful in predicting vertical excitation energies. The



�

� �

�

10.6 Summary and Outlook 343

−0.9

−0.91

−0.92

−0.93

−0.94

−0.95

−0.96

T
o
ta

l 
E

n
er

g
y
 +

 1
0
6
 a

.u
.

Li-F distance (a.u.)

−0.97

−0.98

−0.99

−1
7 8 9 10 11 12

Figure 10.8 Potential energy curves for the two lowest 1Σ+ states of LiF in the region of their
neutral–ionic avoided crossing. The dotted lines represent the SS-CASPT2 calculations and the solid lines
represent the MS-CASPT2 calculations. The points indicate the FCI calculations. Reprinted with permission
from ref. [74]. Copyright 1998, Elsevier.

XMS-CASPT2 method certainly will resolve some of the flaws of the MS-CASPT2 theory in and
close to conical intersections (see fig. 10.9). However, this will be at the expense of accuracy of
predicting vertical excitation energies for well-separated states. Furthermore, in the XMS-CASPT2
method the eigenvalues of the model space are sometimes too sensitive to changes of the model
space by including more or fewer states.

10.6 Summary and Outlook

In this chapter we have described the CASPT2, MS-CASPT2, and XMS-CASPT2 methods in some
detail. We have also lightly touched on some related methods such as the CAS-MP2, MRMP2, and
NEVPT2 approximations. This has been presented in a bottom-up order, starting with a thorough
presentation of Rayleigh–Schrödinger perturbation theory. Here we also discussed the issue of the
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Figure 10.9 Potential energy curves (PECs) of the LiF molecule near the avoided crossing area computed
using different MS-MRPT approaches. MRSDCI PECs are given as reference. PECs were intentionally left
non-shifted to a common dissociation limit. Reprinted with permission from ref. [77]. Copyright 2011,
American Institute of Physics.

convergence of the perturbation expansion and how divergence or near-divergence is manifested
as the presence of intruder states. In the analysis of these we introduced the gap-shift technique.
This tool later became a general technique to avoid divergence – real and imaginary shift tech-
niques – or a way to compensate for systematic errors – the IPEA shift. This was followed up by a
detailed presentation of the Møller–Plesset partitioning in association with the single determinant
SCF wave function – the CASPT2 model is supposed to reduce to this as the active space is reduced
to null. Here we also discussed numerical methods to compute the first-order correction to the wave
function and subsequently the second-order correction to the energy, when analytical solutions
do not exist. At this point the single-state multi-configurational perturbation schemes were intro-
duced (CAS-MP2, CASPT2, MRMP2, and NEVPT2). The chapter discussed the benchmark results
of these methods, which clearly exhibit explicit or implicit properties of the single-state approaches.
These second-order perturbation approaches have their limitations and multi-state versions of per-
turbation theory have, sometimes, to be used to relieve these shortcomings. For that purpose we
presented, in some detail, the basic steps of quasi-degenerate perturbation theory – this allowed us
to pave the way for an understanding of the multi-state versions of perturbation theories mentioned
above. Prepared by this introduction, we proceeded with a description of the multi-state version of
CASPT2, which has some parallels with the corresponding MRMP2 and NEVPT2 versions. Finally,
an extended version of MS-CASPT2 was introduced – based on extended quasi-degenerate pertur-
bation theory – which will have an Ĥ0 operator whose eigenvalues are invariant to rotations of the
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states in the model space. This, in particular, should resolve some problems of MS-CASPT2 with
artificial surface crossings observed close to or at conical intersections.

The future of MRPT, its implementation and approximations, is closely connected with the
partitioning of the Hamiltonian for the CASPT2 method. Here there is still room for significant
improvement. While the NEVPT2 model does not suffer from the intruder-state problem to the
degree that CASPT2 does, it derives this character at a larger computational cost. For the NEVPT2
approach to become tractable for larger active spaces, approximations will have to be developed to
reduce this disadvantage compared to the CASPT2 method. Additionally, with the advent of the
DMRG approach to enable CASSCF calculations with large active spaces, both the CASPT2 and
the NEVPT2 methods have to be recast to overcome the issues that computing and storing the
whole (or partially contracted) four-particle density matrix – at least if the notion of contracted
reference functions is to survive. For recent developments in MRPT, we point the reader to the
references mentioned at the end of section 10.3.6. Finally, the issue of how to select the reference
functions needs to be readdressed. Is there maybe a golden path to be explored in which the
reference function already – through some simple approach – carries a significant part of the
dynamic electron correlation?
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Appendix

The following is an almost verbatim copy of appendix A in K. Andersson’s thesis [79], reproduced
here with her kind permission. Some adaptation has been applied in order to maintain consistency
with the notation used in the rest of this chapter. Where different this will be pointed out.

This appendix is a collection of all matrix elements and vector components used in the first-order
equation (see for example eqs. 10.24 and 10.108). We note that the orbital basis used in the appendix
is the one in which the diagonal blocks of the Fock matrix (inactive, active and virtual), have been
diagonalized. To emphasize this the Fock matrix elements are denoted f ′ so that there is a distinc-
tion with respect to a Fock matrix in a general orbital representation, f .

The following additional definitions and notations have been used (note that the two-particle
density-matrix elements, Γpqrs, carry a factor 1

2
in the work of Andersson, while here we stand by

the definition in Chapter 1, section 1.6):

êut = 2𝛿ut − Êut ,

dut = ⟨Ψ(0)|êut|Ψ(0)⟩ , and

𝛾utx𝑣 = ⟨Ψ(0)|êutêx𝑣 − 𝛿u𝑣êxt|Ψ(0)⟩ .
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The index notation specified in Chapter 1, section 1.5, will be used strictly in this appendix except
in the following formula:

f I
pq = hpq +

∑
k
[2(pq|kk) − (pk|kq)] ,

where k runs over both the frozen and inactive subspaces, i.e., over all doubly-occupied orbitals.
In the evaluation of the matrix elements and vector components the following commutation

relations have been useful:

[Êpq, Êrs] = 𝛿rqÊps − 𝛿psÊrq ,

[êpq, êrs] = 𝛿psêrq − 𝛿rqêps .

Matrix elements and vector components, with respect to combinations stemming from interac-
tions between states of the same class within the first-order interacting space, will be presented
in the following section. Corresponding matrix elements between states of different classes of the
first-order interacting space will be presented subsequently. We note also that we will use the fol-
lowing abbreviation: |Ψ(0)⟩ = |0⟩ and similarly for the bra.

The Diagonal Blocks
The following elements are given in this section:

⟨𝜎|Ĥ0 − E(0)|𝜏⟩ , ⟨𝜎|V |0⟩ , |𝜎⟩, |𝜏⟩ ∈ VX ,

where Ĥ0 =
∑

pqf ′pqÊpq and X ∈ {A,… ,H}. We note that, f ′pq = 𝛿pq𝜖p, if both indices, p and q,
belong to the same orbital class, i.e., inactive, active, and virtual. Non-zero elements are found in
the four inactive–active and active–virtual blocks.

Internal excitations: X ∈ {A,B}

A B i ≥ j, k ≥ l, t ≥ u, x ≥ y|itu𝑣⟩ = ÊtiÊu𝑣|0⟩ |ijtu⟩± = [ÊtjÊui ± ÊtiÊuj]|0⟩⟨itu𝑣|Ĥ0 − E(0)|kxyz⟩ ±⟨ijtu|Ĥ0 − E(0)|klxy⟩±
= 𝛿ik[𝛼iSA

tu𝑣,xyz + Btu𝑣,xyz] = 𝛿ik𝛿jl[1 ± 𝛿ij][𝛼ijS±
tu,xy + B±

tu,xy]⟨itu𝑣|V |0⟩ = V i
tu𝑣

±⟨ijtu|V |0⟩ = 1
2
[1 ± 𝛿ij](S

±W ij,±)tu

𝛼i = −𝜖i −
∑

𝑤𝜖𝑤D𝑤𝑤 𝛼ij = −𝜖i − 𝜖j +
∑

𝑤𝜖𝑤d𝑤𝑤
SA

tu𝑣,xyz = ⟨0|Ê𝑣uêxtÊyz|0⟩ S±
tu,xy = Stu,xy ± Stu,yx , Stu,xy = 2𝛾xtyu

Btu𝑣,xyz = 𝜖x⟨0|Ê𝑣uêxtÊyz|0⟩ B±
tu,xy = Btu,xy ± Btu,yx

+
∑

𝑤𝜖𝑤⟨0|Ê𝑣uêxtÊ𝑤𝑤Êyz|0⟩ Btu,xy = [𝜖t + 𝜖y][2𝛾xtyu + 𝛿tydxu]
V i

tu𝑣 = 2f I
tiD𝑣u − f I

uiD𝑣t −
∑

𝑤Γ𝑣u𝑤tf I
𝑤i +2

∑
𝑤𝜖𝑤[𝛿ty𝛾xu𝑤𝑤 − ⟨0|êyuê𝑤𝑤êxt|0⟩]

+
∑

𝑤xy⟨0|Ê𝑣uê𝑤tÊxy|0⟩(𝑤i|xy) W ij,±
tu = 1

1+𝛿ij

[
1 − 1

2
𝛿tu

]
[(ti|uj) ± (ui|tj)]
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Semi-internal excitations: X ∈ {C,D, E}

C D|atu𝑣⟩ = ÊatÊu𝑣|0⟩⟨atu𝑣|Ĥ0 − E(0)|cxyz⟩
= 𝛿ac[𝛼aSC

tu𝑣,xyz + Btu𝑣,xyz]⟨atu𝑣|V |0⟩ = V a
tu𝑣

𝛼a = 𝜖a −
∑

𝑤𝜖𝑤D𝑤𝑤

SC
tu𝑣,xyz = ⟨0|Ê𝑣uÊtxÊyz|0⟩

Btu𝑣,xyz = −𝜖x⟨0|Ê𝑣uÊtxÊyz|0⟩
+
∑

𝑤𝜖𝑤⟨0|Ê𝑣uÊtxÊ𝑤𝑤Êyz|0⟩
V a

tu𝑣 =
∑

𝑤xy⟨0|Ê𝑣uÊt𝑤Êxy|0⟩(a𝑤|xy)

+
∑

𝑤[Γ𝑣ut𝑤 + 𝛿utD𝑣𝑤]
[
f I
a𝑤 −

∑
y(ay|y𝑤)]

E i ≥ j, k ≥ l|ijat⟩± = [ÊtjÊai ± ÊtiÊaj]|0⟩
±⟨ijat|Ĥ0 − E(0)|klcx⟩±

= 2[2 ∓ 1]𝛿ac𝛿ik𝛿jl[1 ± 𝛿ij][𝛼ijaStx + Btx]
±⟨ijat|V |0⟩ = [2 ∓ 1][1 ± 𝛿ij](SW ija,±)t

𝛼ija = 𝜖a − 𝜖i − 𝜖j +
∑

𝑤𝜖𝑤d𝑤𝑤
Stx = dxt

Btx = −
∑

𝑤𝜖𝑤𝛾𝑤𝑤xt

W ija,±
t = 1

1+𝛿ij
[(ai|tj) ± (aj|ti)]

|iatu⟩1 = ÊaiÊtu|0⟩, |iatu⟩2 = ÊtiÊau|0⟩
Q⟨iatu|Ĥ0 − E(0)|kcxy⟩P

= 𝛿ac𝛿ik[𝛼iaSQ,P
tu,xy + BQ,P

tu,xy]
Q⟨iatu|V |0⟩ = V ia,Q

tu P,Q ∈ {1, 2}
𝛼ia = 𝜖a − 𝜖i −

∑
𝑤𝜖𝑤D𝑤𝑤

S =

[
S1,1 S1,2

S2,1 S2,2

]
, B =

[
B1,1 B1,2

B2,1 B2,2

]
S1,1

tu,xy = −2S2,1
tu,xy = 2[Γutxy + 𝛿txDuy]

S2,2
tu,xy = −[Γxtuy − 2𝛿txDuy]

B1,1
tu,xy = −2B2,1

tu,xy

= 2
∑

𝑤𝜖𝑤⟨0|ÊutÊ𝑤𝑤Êxy|0⟩
B2,2

tu,xy = [𝜖u − 𝜖x]Γxtuy + 𝜖u𝛿tuDxy

+2𝜖x𝛿txDuy +
∑

𝑤𝜖𝑤[2𝛿txΓ𝑤𝑤uy

+𝛿tuΓ𝑤𝑤xy − ⟨0|ÊxtÊ𝑤𝑤Êuy|0⟩]
V ia = f I

aiU + SW ia

V ia =

[
V ia,1

V ia,2

]
, U =

[
U1

U2

]
, W ia =

[
W ia,1

W ia,2

]
U1

tu = 2Dut, U2
tu = −Dut

W ia,1
tu = (ai|tu), W ia,2

tu = (ti|au)

External excitations: X ∈ {F,G,H}

F a ≥ b, c ≥ d, t ≥ u, x ≥ y G a ≥ b, c ≥ d|abtu⟩± = [ÊbtÊau ± ÊatÊbu]|0⟩ |iabt⟩± = [ÊbiÊat ± ÊaiÊbt]|0⟩
±⟨abtu|Ĥ0 − E(0)|cdxy⟩± ±⟨iabt|Ĥ0 − E(0)|kcdx⟩±

= 𝛿ac𝛿bd[1 ± 𝛿ab][𝛼abS±
tu,xy + B±

tu,xy] = 2[2 ∓ 1]𝛿ik𝛿ac𝛿bd[1 ± 𝛿ab][𝛼iabStx + Btx]
±⟨abtu|V |0⟩ = 1

2
[1 ± 𝛿ab](S

±W ab,±)tu
±⟨iabt|V |0⟩ = [2 ∓ 1][1 ± 𝛿ab](SW iab,±)t

𝛼ab = 𝜖a + 𝜖b −
∑

𝑤𝜖𝑤D𝑤𝑤 𝛼iab = 𝜖a + 𝜖b − 𝜖i −
∑

𝑤𝜖𝑤D𝑤𝑤

S±
tu,xy = Stu,xy ± Stu,yx , Stu,xy = 2Γtxuy Stx = Dtx

B±
tu,xy = Btu,xy ± Btu,yx Btx =

∑
𝑤𝜖𝑤Γ𝑤𝑤tx

Btu,xy = −[𝜖t + 𝜖y][2Γtxuy + 𝛿tyDux] W iab,±
t = 1

1+𝛿ab
[(at|bi) ± (bt|ai)]

−2
∑

𝑤𝜖𝑤[𝛿tyΓux𝑤𝑤 − ⟨0|ÊuyÊ𝑤𝑤Êtx|0⟩]
W ab,±

tu = 1
1+𝛿ab

[
1 − 1

2
𝛿tu

]
[(au|bt) ± (at|bu)]

H i ≥ j, k ≥ l, a ≥ b, c ≥ d

|ijab⟩± = [ÊbjÊai ± ÊajÊbi]|0⟩
±⟨ijab|Ĥ0 − E(0)|klcd⟩± = 4[2 ∓ 1]𝛿ik𝛿jl𝛿ac𝛿bd[1 ± 𝛿ij][1 ± 𝛿ab][𝜖a + 𝜖b − 𝜖i − 𝜖j]

±⟨ijab|V |0⟩ = 2[2 ∓ 1][(ai|bj) ± (aj|bi)]
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The Nondiagonal Blocks
The following elements are given in this section:

⟨𝜎|Ĥ0|𝜏⟩ , |𝜎⟩ ∈ VX , |𝜏⟩ ∈ VY , X ≠ Y ∈ {A,… ,H} .

AB k ≥ l, x ≥ y

⟨itu𝑣|Ĥ0|klxy⟩± =
∑

𝑤[𝛿ilf ′𝑤k ± 𝛿ikf ′
𝑤l]{−[S

A
tu𝑣,xy𝑤 ± SA

tu𝑣,yx𝑤]

+[2 ∓ 1][𝛿y𝑤(2𝛿xtD𝑣u − 𝛿uxD𝑣t − Γ𝑣uxt) ± 𝛿x𝑤(2𝛿ytD𝑣u − 𝛿uyD𝑣t − Γ𝑣uyt)]}

CF c ≥ d, x ≥ y

⟨atu𝑣|Ĥ0|cdxy⟩± =
∑

𝑤[𝛿adf ′𝑤c ± 𝛿acf ′
𝑤d]

×{[SC
tu𝑣,x𝑤y − 𝛿𝑤x(Γ𝑣uty + 𝛿utD𝑣y)] ± [SC

tu𝑣,y𝑤x − 𝛿𝑤y(Γ𝑣utx − 𝛿utD𝑣x)]}

AD CD⟨itu𝑣|Ĥ0|kcxy⟩1 = 𝛿ik
∑

𝑤f ′𝑤cSA
tu𝑣,𝑤xy ⟨atu𝑣|Ĥ0|kcxy⟩1 = −𝛿ac

∑
𝑤f ′
𝑤kSC

tu𝑣,𝑤xy⟨itu𝑣|Ĥ0|kcxy⟩2 = 𝛿ik
∑

𝑤f ′𝑤cSA
tu𝑣,x𝑤y ⟨atu𝑣|Ĥ0|kcxy⟩2 = −𝛿ac

∑
𝑤f ′
𝑤k[S

C
tu𝑣,yx𝑤

−2𝛿𝑤x(Γ𝑣uty + 𝛿utD𝑣y) − 𝛿xy(Γ𝑣ut𝑤 + 𝛿utD𝑣𝑤)]

BE i ≥ j, k ≥ l, t ≥ u

±⟨ijtu|Ĥ0|klcx⟩± = 2𝛿ik𝛿jl[1 ± 𝛿ij]
∑

𝑤f ′𝑤c[𝛾xt𝑤u ± 𝛾xu𝑤t]

DE k ≥ l

1⟨iatu|Ĥ0|klcx⟩± = −[2 ∓ 1]𝛿ac
∑

𝑤[𝛿ikf ′
𝑤l ± 𝛿ilf ′𝑤k][Γutx𝑤 + 𝛿txDu𝑤 − 2𝛿x𝑤Dut]

2⟨iatu|Ĥ0|klcx⟩± = 𝛿ac
∑

𝑤[𝛿ilf ′𝑤k ± 𝛿ikf ′
𝑤l]

×{[Γu𝑤xt + 𝛿x𝑤Dut − 2𝛿txDu𝑤] ± [Γutx𝑤 + 𝛿txDu𝑤 − 2𝛿x𝑤Dut]}

FG a ≥ b, c ≥ d, t ≥ u

±⟨abtu|Ĥ0|kcdx⟩± = −2𝛿ac𝛿bd[1 ± 𝛿ab]
∑

𝑤f ′
𝑤k[Γuxt𝑤 ± Γu𝑤tx]

DG c ≥ d

1⟨iatu|Ĥ0|kcdx⟩± = [2 ∓ 1]𝛿ik
∑

𝑤[𝛿adf ′
𝑤c ± 𝛿acf ′

𝑤d][Γut𝑤x + 𝛿t𝑤Dux]

2⟨iatu|Ĥ0|kcdx⟩± = 𝛿ik
∑

𝑤[𝛿adf ′
𝑤c ± 𝛿acf ′

𝑤d]{[−Γut𝑤x − 𝛿t𝑤Dux] ± [−Γux𝑤t + 2𝛿t𝑤Dux]}

EH i ≥ j, k ≥ l, c ≥ d

±⟨ijat|Ĥ0|klcd⟩± = 2[2 ∓ 1]𝛿ik𝛿jl[1 ± 𝛿ij]
∑

𝑤[𝛿acf ′
𝑤d ± 𝛿adf ′

𝑤c]d𝑤t

GH a ≥ b, k ≥ l, c ≥ d

±⟨iabt|Ĥ0|klcd⟩± = −2[2 ∓ 1]𝛿ac𝛿bd[1 ± 𝛿ab]
∑

𝑤[𝛿ilf ′𝑤k ± 𝛿ikf ′
𝑤l]Dt𝑤

The remaining upper-triangular blocks are equal to zero and the lower-triangular blocks are
given by symmetry, since Ĥ0 is a Hermitian operator.
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Abstract

The present chapter outlines basic and advanced concepts of grid-based quantum dynamics for molecu-
lar systems. Simulations within this framework are used to investigate the time-evolution of a molecular
quantum system during a physical or chemical process of interest. The goal is to give the reader a concise
introduction to wave packet simulations and strategies to reduce complex systems to few coordinates.
Strengths and limitations are discussed using applied examples. A comprehensive flowchart on how
to set up a wave packet simulation is given. Being principally exact, a solution of the time-dependent
Schrödinger equation for the nuclear dynamics is only feasible in few dimensions due to exponential
computational cost. This means the most crucial step is to find a representation of the molecular pro-
cess using only few important coordinates. The concept of reactive coordinates is introduced, being
determined either by chemical intuition or the adaptation of machine learning techniques. Using a
certain reduced-dimensional representation, all terms within the molecular Hamiltonian are discussed
along with the means to obtain them. A special focus lies on the kinetic energy operator, where the
G-Matrix formalism is introduced as a very general scheme to transform it from cartesian coordinates
to an arbitrary set of linear or non-linear reactive coordinates. Another focus lies on the evaluation
of non-adiabatic coupling matrix elements and their implementation within the reduced-dimensional
quantum dynamical framework. This allows for the simulation of wave packets passing through conical
intersections, a feature determining the outcome of virtually all fast photochemical processes. Applied
examples using the introduced concepts are illustrated.

11.1 Introduction

In nuclear quantum dynamics, the time evolution of atomic nuclei is simulated by solving the
time-dependent Schrödinger equation (TDSE). Within the principally exact TDSE framework,
the molecular motion is represented by wave packets on electronic potential energy surfaces
(PESs). This allows for the description of quantum effects like coherence phenomena, tunneling
processes, branching at conical intersections or the interaction with light (e.g., ultrashort laser
pulses). The molecular wave packet is usually discretized on a spatial grid, where an exact (i.e.,
full-dimensional) wave packet representation of a non-linear molecule with N atoms includes
3N-6 intramolecular degrees of freedom. Thus, a small organic molecule like benzene already
contains 30 internal degrees of freedom. Assuming a required amount of 128 grid points in each

Quantum Chemistry and Dynamics of Excited States: Methods and Applications,
First Edition. Edited by Leticia González and Roland Lindh.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.
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dimension, a full-dimensional description of benzene would require 12830 = 1.6× 1063 grid points,
which is very far from being realizable on modern computational architectures and known as
the curse of dimensionality. However, especially in ultrafast chemical processes, the number of
relevant degrees of freedom involved in a chemical reaction is often much smaller than 3N-6, and
the dimensionality of the problem can be reduced. Specifically, the typical number of dimensions
included in a simulation on explicit ab initio PESs is between one and three. For the previous
example, this would reduce the number of grid points to a feasible number between 1281 = 128
and 1283 = 2,097,152 grid points. This reduction of dimensionality is the biggest approximation in
grid-based quantum dynamics. Therefore, this chapter will outline criteria and methods to arrive
at an optimal low-dimensional coordinate space for a given molecular process, along with applied
simulation examples from the chemical and biological domain.

After a general introduction to quantum dynamics, we will begin with the most intuitive
approach, which is the manual selection of coordinates by chemical intuition. Chemical motions
like bond-cleavage or proton transfer can be described, for example, by taking normal modes
such as changes in bond distances or angles as reactive coordinates and omitting all other degrees
of freedom. This approach will be demonstrated using the example of the photoinduced ring
opening of cyclohexadiene and can produce meaningful results in straightforward cases. In more
complex cases, it is also possible to construct reactive coordinates by combining several normal
modes in a single displacement vector, which will be exemplified by the ultrafast photorelaxation
of the RNA-nucleobase uracil. These approaches rely on the chemical intuition of the researcher
and/or extensive preliminary work. This can become very challenging for complex processes
with many contributing modes. It is therefore desirable to automate this process and leave the
search for objectively well-suited coordinate spaces to machines. Following on from this idea, three
(semi-)automatic techniques to obtain meaningful coordinates for quantum dynamical simulations
will also be described in this chapter. This comprises the use of machine-learning methodologies,
which can even enable the construction of reasonable non-linear coordinate spaces. In addition,
guidelines will be given to set up the complete Hamiltonian for quantum dynamical simulations
in arbitrary reduced coordinates. This involves the computation and use of PESs and non-adiabatic
couplings for the potential energy operator, as well as a general transformation protocol for the
kinetic energy operator from Cartesian coordinates x to arbitrary coordinates q.

11.2 Fundamentals of Molecular Quantum Dynamics

Due to the complexity of quantum dynamical simulations, analytical solutions are rarely possible
and numerical propagation schemes need to be applied. The calculations can be performed based
either on a grid or on an eigenstate representation [1]. In the latter case, the eigenfunctions and
eigenvalues have to be known. Both approaches differ in the choice of the basis functions and can
easily be transferred to each other. In the following, the basic tools to solve the TDSE for complex
molecules will be summarized.

11.2.1 Wave Packet Dynamics

The time evolution of a molecular system is governed by the TDSE:

iℏ 𝜕
𝜕t
Ψmol(t) = ĤtotΨmol(t) (11.1)
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with the Hamiltonian Ĥtot, comprising the molecular Hamiltonian Ĥ0 and possible external per-
turbations, and the system’s wave function Ψmol(t). The wave function can formally be separated
into nuclear Ψnuc(R, t) and electronic Φel(r, t; R) wave functions, which depend parametrically on
the nuclear coordinates R:

Ψmol(t) = Ψnuc(R, t)Φel(r, t;R) (11.2)

In this chapter, we focus on the intramolecular nuclear dynamics where only the nuclear wave
function is propagated in time. In addition, the Born–Oppenheimer approximation is used, which
allows for a separation of electronic and nuclear motion. The electronic Schrödinger equation can
be solved with standard quantum chemical program packages for different nuclear configurations
R to obtain the respective PES. The intramolecular motion of the nuclei is thus described by the
evolution of the nuclear wave function Ψnuc(R, t) on a pre-calculated PES. From now on the sub-
script nuc as well as the R-dependence will be omitted for the nuclear wave function, which will
be denoted by Ψ(t), except if the explicit form is needed for clarification. For a time-independent
Hamiltonian Ĥ0 including the kinetic energy operator T̂ and the potential energy operator V̂ of the
system, the nuclear Schrödinger equation now reads:

iℏ 𝜕
𝜕t
Ψ(t) = Ĥ0Ψ(t). (11.3)

Integrating the time-dependent nuclear Eq. (11.3) determines the equations of motion as the
action of a propagator U(t, t0) on the nuclear wave function:

Ψ(t) = U(t, t0)Ψ(t0) = e−Ĥ0(t−t0)Ψ(t0). (11.4)

Due to the propagator U(t, t0) the nuclear wave function evolves from the initial time t0 to the
final time t under the influence of its Hamiltonian. For the case where the eigenvalue problem of
Ĥ0 is solved, the propagator can be written in the basis of the vibrational eigenfunctions 𝜓 i

U(t, t0) =
∑

i
e−iEi(t−t0)∕ℏ|𝜓i⟩⟨𝜓i|, (11.5)

with the corresponding vibrational eigenenergies Ei. Now we can answer the question: When does
the time evolution of a nuclear wave function show up? The observable is the probability density
given by the square amplitude of the wave function. In the case of a single vibrational wave function
𝜓Ej

with eigenvalue Ej (which is called a special solution in David Tannor’s book [1]) no temporal
evolution is observable:

|Ψj(R, t)|2 = (𝜓Ej
(R)e−iEj t∕ℏ)∗(𝜓Ej

(R)e−iEj t∕ℏ) = |Ψj(R)|2. (11.6)

The more general solution for the time-dependent nuclear wave function, also referred to as a
wave packet, is a linear combination of special solutions:

Ψwp(R, t) =
∑

i
ci𝜓ie

− i
ℏ

Eit. (11.7)

For the easiest case, i.e., a two-state superposition, we now observe a temporal change in the
probability density, meaning that the wave packet moves around in the coordinate space:

|Ψwp(R, t)|2 = |c1|2|𝜓E1
(R)|2 + |c2|2|𝜓E2

(R)|2 + 2Re
{

c∗1c2𝜓
∗
E1
(R)𝜓E2

(R)e−
i
ℏ
(E2−E1)t

}
. (11.8)

Note that the third term, called the interference term between the two special solutions, contains
all the time-dependence and coherence information of the wave packet.
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11.2.2 Time-Propagator Schemes

Molecular chemical processes typically include bond breaking and formation. Thus, not only
bound vibrational states but also continuum states are involved, which makes the pre-calculation
of the respective eigenfunction, i.e., the eigenstate approach, more elaborate and the grid approach
more favorable. One of the widely used grid methods is the pseudospectral method which operates
on a basis of unit delta functions located at each of the grid points in the nuclear coordinate
space. In this spatial representation, the PES and all possible coupling elements are simply given
by their value at the grid point and the wave functions by their amplitudes. As a special case of
pseudospectral methods, the Fourier method operates on a grid of evenly spaced points. It has two
implementations: the Fourier Grid Hamiltonian method [2], which involves the construction of
the Hamilton matrix in the pseudospectral Fourier basis to evaluate the bound state eigenvalues
and eigenstates and the Dynamic Fourier Method [3], in which the action of the Hamiltonian on
the wave function HΨ(t) is calculated directly.

The Dynamic Fourier Method requires explicit propagator schemes, all relying on time discretiza-
tion. The total propagator for the time interval [t0,t] is written as a product function over small time
intervals Δt with NΔt = t

U(t, t0) = e−iĤ0(t−t0)∕ℏ = e−iĤ0Δt∕ℏ•e−iĤ0Δt∕ℏ · · · e−iĤ0Δt∕ℏ
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

N times

(11.9)

This formulation also allows the time-dependent perturbation to be included in the Hamiltonian,
such as an external electric field 𝜀(t) interacting with the molecular system. The light field

𝜀(t) = 𝜀0exp
⎡⎢⎢⎣
⎡⎢⎢⎣−

(
t

FWHM∕
√

2ln2

)2⎤⎥⎥⎦ cos(𝜔(t)t)
⎤⎥⎥⎦ (11.10)

is described in the dipole approximation with the field amplitude 𝜀0, the frequency 𝜔, and a Gaus-
sian shaped field envelope characterized by the full width half maximum (FWHM) of the light
pulse. The coupling to the molecule is mediated by the dipole moment 𝜇 and the total Hamiltonian
becomes:

Ĥtot = Ĥ0 − 𝜇𝜀(t). (11.11)

For any time-dependent Hamiltonian Ĥtot, the propagation has to be performed in sufficiently
small time steps, so that the perturbation can be regarded as constant during the time interval Δt.
From Eq. (11.9) it becomes clear that the Hamiltonian has to be applied to the wave function in
every time step, requiring a fast operation. The breakthrough came with the fast Fourier trans-
form technique for the evaluation of the kinetic part of the Hamiltonian [4, 5]. This method takes
advantage of the fact that the momentum operator and its square are non-local in the coordinate
representation but local in the momentum representation, where their action can be evaluated by
simple multiplication. For the complete operation ĤΨ(t) the wave function is Fourier-transformed
to the momentum space before the second derivative operator of the kinetic part is applied:

𝜕2

𝜕x2 Ψ(x) =
1

2𝜋 ∫
+∞

−∞

𝜕2

𝜕x2 [Ψ(k)e
ikx]dk = 1

2𝜋 ∫
+∞

−∞
−k2Ψ(k)eikxdk. (11.12)

As the potential energy operator is local in the coordinate representation, the wave function has
to be transformed back to the real space. In the context of quantum dynamics, the sequence

Ψ(x)
IFT

−−−−→Ψ(k) → −k2Ψ(k)
FT

−−−−→ 𝜕2

𝜕x2 Ψ(x) (11.13)

is applied in each time step Δt .
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The grid space representation of the Fourier method requires the discretized form of the Fourier
transform (DFT) and its inverse (IDFT)

DFT∶ F(kj) =
1
N

N
2∑

n=− N
2
+1

f (xn)e−inj∕N

IDFT∶ f (xn) =

N
2∑

j=− N
2
+1

F(kj)einj∕N

(11.14)

The total range A=NΔx in coordinate space is defined by the number N of grid points and the uni-
form spacing Δx between the grid points. The index n defines the grid points in coordinate space
(xn=nΔx) and the corresponding index j in momentum space (kj=jΔk). The grid size and spac-
ing selected in the coordinate space determines the grid size in momentum space, whose central
point is taken as k0=0. Thus, A defines the longest wavelength and therefore the smallest frequency
(k-value) in the momentum space Δk=2𝜋/NΔx. To discretize the wave function without loss of
information one has to follow Shannon’s sampling theorem, which also directly links the spacing
Δx with the largest representable momentum via Δx ≤ 𝜋ℏ

pmax
= 𝜋

kmax
.

The numerical evaluation of the time propagator e−iĤtotΔt𝜓(t) can be performed efficiently with
different techniques. A comparison of the various propagation schemes can be found in [6]. The
easiest to implement is the second order difference (SOD) [6] method

e−
i
ℏ

ĤtotΔt ≈ 1 − i
ℏ
ΔtĤtot, (11.15)

in which the exponential functional is expanded in a Taylor series. Its further advantage is that
there are no special requirements on the structure of the kinetic part of the Hamiltonian. A draw-
back is that the time steps chosen have to be very small, limiting the ability of this method for
multi-dimensional long-time dynamics. A very efficient and accurate propagation scheme is the
split operator (SPO) method introduced by Feit and Fleck [4]. The sum of the kinetic and potential
energy operators in the exponent of the propagator is approximated by the product of the individual
exponential operators:

e−
i
ℏ

ĤtotΔt ≈ e−
i
ℏ

T̂
2
Δte−

i
ℏ

V̂Δte−
i
ℏ

T̂
2
Δt. (11.16)

In the symmetrized form of Eq. (11.16) the error introduced due to the non-commuting oper-
ators T̂ and V̂ can be kept to the order of O(Δt)3. However, the SPO cannot be used when cross
partial derivatives appear in the kinetic energy operator. In such situations the Chebychev polyno-
mial expansion [7] can be applied as a fast and accurate method. Here, the propagator U(t, t0) is
expressed as

e−
i
ℏ

ĤtotΔt ≡
N∑
n

an(t) Φn(−iĤtot), (11.17)

where Φn are complex Chebychev polynomials, depending on the Hamiltonian and obeying the
recursion relation:

Φn+1 = −2iĤtotΦn + Φn−1. (11.18)

The time-dependent expansion coefficients an(t)

an(t) = 2Jn(t) and a0(t) = J0(t) (11.19)
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are determined by Bessel functions Jn(t). For the implementation, the argument of Φn has to be
mapped onto the interval [−i, i]. Consequently, the eigenvalues of Ĥtot are scaled to the range
[−1, 1]. The propagation is performed with the normalized Hamiltonian introducing a shift param-
eter to compensate for the normalization. The chosen order of the expansion N has to be large
enough to ensure convergence of the series [7].

11.2.3 Excited State Wave Packet Dynamics

Fast dynamical processes are mostly started by photoexcitation into an excited electronic state with
typical time scales in the femto- to picosecond range. The initial nuclear wave function is typi-
cally the lowest vibrational eigenfunction in the electronic groundstate. It can be evaluated, e.g., in
the scope of the Dynamic Fourier Method by propagating the Schrödinger equation with a guess
input function of Gaussian shape in imaginary time [8] or by applying the Fourier grid method as
described by Marston et al. [2]. To initiate and follow their dynamics, femtosecond laser pulses are
needed. Several PESs may be involved in these molecular processes and Eq. (11.1) changes to:

iℏ 𝜕
𝜕t

⎛⎜⎜⎝
a1(t)Ψ1(t)

⋮
an(t)Ψn(t)

⎞⎟⎟⎠ =
⎛⎜⎜⎝

H11 · · · H1n
⋮ ⋱ ⋮

Hn1 · · · Hnn

⎞⎟⎟⎠
⎛⎜⎜⎝

a1(t)Ψ1(t)
⋮

an(t)Ψn(t)

⎞⎟⎟⎠ . (11.20)

The nuclear wave function can now be distributed over several PESs. The distribution is given
by the time-dependent expansion coefficients an(t). The entries on the diagonal of the Hamilto-
nian matrix describe the uncoupled dynamics on the individual PES Hii = Tii +V ii(R) with the
pre-calculated PES V ii(R) of state i, and the kinetic energy operation Tii, which is equal for all
states. Coupling between the different electronic states is described by the off-diagonal elements.
They may reflect the interaction with the laser light, an intramolecular coupling like non-adiabatic
and spin–orbit coupling, or all couplings simultaneously.

11.2.4 Surfaces and Coupling Elements in Reactive Coordinates

As our aim is to perform quantum dynamics in reduced dimensionality on highly accurate PESs,
we need to find a way to express the PES and coupling elements in the reduced coordinates. The
PES can be evaluated using any electronic structure level method appropriate for the system and
the process. The respective structures are optimized in full dimensionality and then projected onto
the reduced-dimensional space of reactive coordinates. After the projection, the Thin-Plate-Spline
method [9] can be used to interpolate the PES. This allows its representation on arbitrarily spaced
grids, which is necessary for wave packet propagations.

Ultrafast dynamics is often mediated by conical intersections and is described by non-adiabatic
coupling elements [10]. They are neglected in the Born–Oppenheimer approximation but can be
introduced as off-diagonal elements in Eq. (11.20). Two implementations are possible: the diabatic
(see, e.g., ref [11]) or the adiabatic (see, e.g., ref [12]) implementation. The complete Hamiltonian
including the non-adiabatic coupling between two degenerate electronic states then reads:

Ĥ =
(

T11 K12
−K12 T22

)
+
(

V11 0
0 V22

)
. (11.21)

where T11 = T22 denotes the kinetic part of the Hamiltonian and V 11, 22 the adiabatic potentials.
K12 is the non-adiabatic coupling (NAC) term formulated in Cartesian nuclear coordinates xj

K12 = −
∑

j

1
mj

(
f (j)12 𝜕xj

+ 1
2

g(j)12

)
(11.22)



�

� �

�

11.2 Fundamentals of Molecular Quantum Dynamics 363

with the mass mj of the jth atom and using the notation (𝜕x = 𝜕/𝜕x) for convenience. The first- and
second-order derivative (non-adiabatic) coupling elements for the electronic wave functions Φ1,2
are given by

f (j)12 = ⟨Φ1 ∣ 𝜕xj
Φ2⟩ and g(j)12 = ⟨Φ1 ∣ 𝜕2

xj
Φ2⟩ . (11.23)

With K12 included, the complete nuclear Schrödinger equation is solved for the coupled states
and all quantum effects like interferences or phase effects are included, provided one keeps
track of the phases of the electronic wave functions. The NACs are calculated like the PES in the
full-dimensional space and then projected onto the subspace spanned by the reactive coordinates
[13]. This leads to a consistent description of the PES and NACs and includes contributions from
full dimensionality. The resulting NACs f̃ r

12 and f̃ 𝜑12 (already including the masses) typically exhibit
a spiky behaviour, requiring many grid points for the wave packet propagation and making the
calculations quite time consuming.

Besides the spiky behavior, another much more fundamental issue has to be taken into account
which is connected to the second derivative terms gj

12 of the non-adiabatic coupling. This problem
has already been introduced and treated in [14, 15], but due to its importance it is briefly outlined
again here. The second derivative terms gj

12 are mostly much smaller than the first derivative
terms and hence are usually believed to be negligible. However, their omission will lead to a
non-Hermitian Hamiltonian due to a non-Hermitian coupling

K(j) = f̃ (j)12 𝜕qj

(
0 1
−1 0

)
. (11.24)

The hermiticity of K(j) requires

K(j)
12 = f̃ (j)12 𝜕qj

!
= −(Kj

12)
†. (11.25)

The adjunct of an operator A = BC with B† = B and C† = −C is

A† = −BC + [B,C], (11.26)

and requiring A to be anti-Hermitian (A = −A†) is equivalent to the commutator equalling zero.
In the actual case B = f̃ (j)12 and C = 𝜕qj

do not commute, thus K(j)
12 is not anti-Hermitian and there-

fore the total Hamiltonian is not Hermitian. To avoid this artifact, the non-Hermitian part can be
compensated by anti-symmetrizing A = f̃ (j)12 𝜕qj

:

Ã = A − A†

2
= A − 1

2
[B,C]

⇒ Ã† = −Ã . (11.27)

In the present case, the commutator [B,C] results in:

[f , 𝜕q]Ψ = f 𝜕qΨ − (𝜕qf )Ψ − f 𝜕qΨ

= −(𝜕qf )Ψ (11.28)

and we arrive at the extension

f̃ (j)12 𝜕qj
→ f̃ (j)12 𝜕qj

+ 1
2
𝜕qj

f̃ (j)12 (11.29)

leading to

K̃12 ≈
∑

j

(
f̃ (j)12 𝜕qj

+ 1
2
𝜕qj

f̃ (j)12

)
. (11.30)
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Actually (11.29) is the first part of the decomposition of the second derivative term

g(j)12 = 𝜕xi
f (j)12 + h(j)

12; (11.31)

thus Eq. (11.30) only neglects the Hermitian part h(j)
12 = ⟨𝜕xj

Φ1|𝜕xj
Φ2⟩ of g(j)12 and provides a very

efficient way to calculate Hermitian non-adiabatic couplings.

11.3 Choice of Dynamical Coordinates and Hamiltonian in Reduced
Dimensionality

To minimize the loss of information that comes with the reduction of dimensionality,
process-adapted coordinates are needed, which describe the relevant structural changes and
contain all modes that are active on the intrinsic timescale of the reaction. This approach is
particularly suited for the femtosecond time regime. Typically only few fast reactive motions
dominate the molecular process here. In the following, we will describe three different approaches
developed in our group, ranging from manual to automated selection of the reduced reactive
coordinates.

11.3.1 Manual Selection by Chemical Intuition

During a chemical reaction, the molecular geometry continuously changes, making the often used
normal mode expansion unattractive as, typically, a large number of normal modes is needed.
Instead, the use of process adapted (reactive) coordinates is more promising. Note that each reactive
coordinate includes projections on several normal modes. As a well-studied text-book example, we
discuss the photoinduced electrocyclic ring-opening in cyclohexadiene (CHD) [13–15]. The manu-
ally performed selection procedure was based on a thorough analysis of the geometrical structures,
which were known from quantum chemistry to be important in the full coordinate space. These
characteristic structures are the ground state geometry of cyclohexadiene and hexatriene as well as
the geometries of the conical intersections that mediate the ultrafast transition from the S1 state to
the ground state [16–19]. Including all important structures, an appropriate coordinate space was
constructed using the modes depicted in Figure 11.1 (left).

Three C2-symmetry conserving modes, describing the structural changes from CHD to hexa-
triene, are involved: The torsions 𝛽 and 𝛾 as well as the bond length R of the 𝜎-bond where the
ring opening occurs. The remaining asymmetric motion is represented by the angle 𝛼 and needs
to describe the structural changes along the relevant conical intersection seam. For the dynamical

R

m1

m4

r r

m3

m2

α

γ γ

φβ

ϑ

Figure 11.1 Reduced set of coordinates for the ring opening of CHD with a detailed explanation given in
the text.
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description of the system, these coordinates are not suitable due to their high degree of kinetic
coupling. Thus, they are transformed into a set of only three coordinates (see Figure 11.1, right)
reducing, at the same time, the complexity in the kinetic Hamiltonian. The asymmetric coordi-
nate is now represented by the length of the diagonal r using a linear approximation for the angle
𝛼 whereas the second diagonal r̃ is kept constant. The C2-symmetric angle 𝜗 describes a scissor-
ing motion leading to a stretching of the 𝜎-bond. Finally, the remaining symmetric coordinate 𝜑
distorts the molecule further away from planarity comprising both the torsions 𝛽 and 𝛾 .

The corresponding kinetic Hamiltonian is derived from the full Cartesian nuclear kinetic energy
operator:

T̂x = −ℏ
2

2

3N∑
i=1

1
mi

𝜕2

𝜕x2 . (11.32)

First, all H-atoms are assigned to the corresponding C-atoms and the masses of the remain-
ing six atoms are contracted to four points of mass according to the broken lines in Figure 11.1,
right. Thus, the masses of the C-atoms located on the horizontal dashed line are split between the
two adjacent atoms. Eliminating the center of mass motion and transforming to mass-weighted
Cartesian Jacobi coordinates leaves nine degrees of freedom, which are then transformed to the
previously selected reactive coordinates. These considerations finally yield a reduced Hamiltonian
in three dimensions

T̂ = −1
2

{
B
r
𝜕2

r r +
(

B
r2 + B̃

r̃2

)(
1

sin2𝜗
𝜕2
𝜑 + 𝜕2

𝜗
+ cot𝜗 𝜕𝜗

)}
. (11.33)

The kinetic energy operator T̂ resembles a combination of two operators in spherical harmonics,
sharing the same angular variables 𝜗 and 𝜑. As r̃ is kept constant, its derivative terms vanish. The
inverse reduced masses B and B̃ are given by

B = 1
m2

+ 1
m4

, B̃ = 1
m1

+ 1
m3

(11.34)

with m1 = m2 = 1.5(mC +mH) and m3 = m4 = 1.5mC + 2.5mH . For details of the derivation see [13].
For the example of the electrocyclic ring-opening of CHD, the resulting PES for ground and
first excited state include the equilibrium geometries of reactant (cyclohexadiene) and product
(cZc-hexatriene) states, an extended Franck–Condon (FC) region, and energetically accessible
conical intersection [13, 15] between excited and ground state.

The quantum dynamical calculations performed for the photoinduced electrocyclic ring-opening
of CHD in the adiabatic representation in reduced dimensionality were well able to reproduce the
observed overall timescale as well as the product distribution [14, 15]. This good agreement of the
computational results with the experimental data validated the concept of reactive coordinates and
their manual selection as outlined above.

11.3.2 The G-Matrix Formalism

The transformation of the kinetic operator from Cartesian to spherical coordinates was not straight-
forward and is quite specific to the given molecular process. Since we would like to employ reactive
coordinates, which are very specific to the chemical process in question, it is desirable to develop a
general formalism which allows for a convenient transformation of the kinetic energy operator to
any arbitrary set of coordinates. The G-matrix formalism [20, 21] introduced in this section provides
a way to achieve this goal.
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11.3.2.1 General Setup
Originally introduced by Podolsky [22] in 1928, the fundamental step is a Jacobian transformation
from Cartesian coordinates xi to a new set qr via

qr =
3N∑
i=1

j−1
ir xi. (11.35)

It uses the Jacobian Matrix

jir =
𝜕xi

𝜕qr
(11.36)

containing all partial first derivatives. The metric tensor grs of the new set of coordinates is thus
given by

grs =
3N∑
i=1

jrijis =
3N∑
i=1

𝜕xi

𝜕qr

𝜕xi

𝜕qs
. (11.37)

Denoting g as the determinant of grs, the kinetic operator T̂q can be written as [22]

T̂q = − ℏ
2

2𝜇

M∑
r=1

M∑
s=1

g−1∕4 𝜕

𝜕qr

(
g 1∕2grs 𝜕

𝜕qs
g−1∕4

)
. (11.38)

Here, grs is the cofactor matrix of grs, and the mass 𝜇 is identical for all particles. Obviously, it is
desirable to be able to attribute different masses for different particles. Wilson and co-workers [20]
thus write the G-matrix as

Grs(q) =
3N∑
i=1

1
mi

𝜕qr

𝜕xi

𝜕qs

𝜕xi
, (11.39)

where the summation is conducted over all 3N degrees of freedom of each atom i with its mass mi,
and the G-matrix Grs is symmetric (Grs = Gsr).

The terms required to set up T̂q within Eq. (11.38), and thus the G-matrix in Eq. (11.39), are
dependent on the coordinates q. Assuming that the Jacobian determinant is constant [21] and the
coordinate dependence can be disregarded, Eq. (11.38) simplifies to

T̂q ≃ −ℏ
2

2

M∑
r=1

M∑
s=1

𝜕

𝜕qr

[
Grs

𝜕

𝜕qs

]
. (11.40)

We therefore arrive at a very general formulation of the kinetic energy operator T̂q, which is
expressed in arbitrary coordinates q and can be used after a direct transformation from Cartesian
coordinates. In contrast to T̂x (Eq. (11.32)), T̂q contains cross partial derivatives with respect
to qr and qs, which represent a kinetic coupling between two coordinates. These cross terms
originate from non-orthogonal connections of Cartesian components and mean that a motion
along qr induces a motion along qs with a certain amplitude corresponding to the degree of the
kinetic coupling. If we consider linear reactive coordinates, the diagonal elements of Grs can be
regarded as the reciprocal reduced mass along this motion, equivalent to the reduced mass of
molecular normal modes [20]. It is also straightforward to set up Grs for non-linear coordinates
(i.e., the molecular motion changes between different regions of the coordinate). In these cases,
the elements of Grs are no longer constant along a given coordinate but can be set up in the
same way as for linear coordinates. In some cases, the use of non-linear coordinates violates the
approximation of the Jacobian determinant j being constant, which can lead to artifacts in the
wave packet simulations. As outlined in ref. [23], this problem can be handled by rescaling the
reactive coordinates q such that the change in volume due to coordinate transformation – and
thus j – is constant at all points along the coordinate.
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11.3.2.2 Practical Computation of the G-Matrix Elements
In practice, the G-matrix is more accessible and easier to calculate via its inverse elements [24]:

G−1
rs =

3N∑
i=1

mi
𝜕xi

𝜕qr

𝜕xi

𝜕qs
. (11.41)

The dependence of variables is reversed, and the elements of G−1
rs can simply be calculated via

finite differences by representing the molecule in the Cartesian space and displacing it along the
reactive coordinates qr and qs. If the G-matrix is chosen to be accessed via its inverse elements,
the coordinate transformation must be unique – i.e., it must be reversible – for the G-matrix to
be invertible. One crucial criterion for this is that the Eckart conditions [25] are fulfilled, which
ensure the separation of internal from external coordinates. This means that with the displacement
of atoms along the reactive coordinates, the center of mass must not change, and the molecule
must not gain angular momentum. The first Eckart condition excludes translational motion by
requesting that the mass weighted scalar products of atomic positions xi(q) and displacement vec-
tors xi(q+ dq) cancel each other out:

N∑
i=1

mi[xi(q)•xi(q + dq)] = 0. (11.42)

This can be ensured by putting the molecular center of mass in the origin at all points along the
coordinate. The second Eckart condition

N∑
i=1

mixi(q) × xi(q + dq) = 0 (11.43)

excludes rotational degrees of freedom and can be fulfilled by applying a pseudo-rotation procedure
as outlined in ref. [26].

11.3.2.3 Photorelaxation of Uracil in Linear Reactive Coordinates
In this section, a practical example of using reduced linear reactive coordinates along with the
G-matrix is given. The intention was to model the photophysical relaxation of the RNA nucleobase
uracil out of the excited state S2 and steer it by light [27]. By performing wave packet simulations
on PESs, the photochemical pathway of the molecule, as well as excited state lifetimes, can be
extracted. From various stationary quantum chemistry calculations of the excited state profile,
three important molecular structures were identified to play a major role during the relaxation
process: the FC point where the wave packet enters the excited state surface, a conical intersection
where the wave packet decays to the lower-lying S1 state, and a local intermediary energetic min-
imum in the S2 state. As three non-collinear points in space span a plane, these three structures
can be used to construct a two-dimensional coordinate space. Specifically, the displacement vector
from the FC point geometry xFC to the optimized conical intersection xCoIn was taken as the first
coordinate q1 = xCoIn − xFC . The second coordinate q2 = xS2min − xFC was obtained through the dis-
placement vector from xFC to the local S2 minimum xS2min and subsequent orthogonalization to q1.
Both q1 and q2 are shown in Figure 11.2.

Using quantum chemical calculations on the MRCI/CASSCF level of theory, energy values for
ground and excited states can be assigned to every molecular structure spanned by the combined
displacement along q1 and q2, yielding PES for the adiabatic electronic states. The PES for the
ground state and the second excited state (bright state) of uracil are also illustrated in Figure 11.2.
Along with the energy, transition dipole moments that are necessary for laser excitation and the
NACs between S2 and S1 (cf. section 11.2.4) were also obtained from quantum chemistry. All these
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Figure 11.2 Two-dimensional representation of uracil. The displacement vectors q1 and q2 are shown in
(a) and (b) respectively. The PES of the S0 and S2 electronic states according to MRCI/CASSCF calculations
performed for combined displacements of q1 and q2 are shown in (c) and (d). The three specified molecular
geometries in (d) were used to construct the displacement vectors to set up the low-dimensional
representation.

elements are part of the potential energy operator V̂ in the TDSE (11.3), and the setup of the kinetic
energy operator T̂q in reduced coordinates was conducted with the G-matrix procedure described
in the previous section. As q1 and q2 are linear reactive coordinates, the G-matrix elements are
constant along both dimensions, and the G-matrix itself used in Eq. (11.40) and noted in atomic
units takes the following form:

Gq1q2
=
(

q11 q12
q21 q22

)
= 10−4•

(
1.67 −0.70
−0.70 1.39

)
. (11.44)

As described above, Gq1q2
was obtained by calculating its inverse matrix according to Eq. (11.41)

by finite differences after displacing the molecular structure represented in Cartesian space along
both coordinates. The diagonal elements of Gq1q2

can be regarded as the reciprocal reduced mass
along the respective coordinate, which is 3.28 atomic mass units for a vibration along q1 and 3.95
atomic mass units for a vibration along q2 respectively. The associated frequencies are 900 cm−1 for
q1 and 480 cm−1 for q2, which is similar to common angular or out-of-plane vibrations found in
small organic molecules. The off-diagonal element q12 is the value of the kinetic coupling between
q1 and q2, and Gq1q2

is symmetric (q12 = q21). Using this simulation setup, the performed wave
packet simulations were able to correctly reproduce the experimentally measured excited state life-
times [27, 28]. The setup of the G-matrix demonstrated here is straightforward and can be translated
to any other reasonable linear coordinate space or molecule. For non-linear coordinates, the only
difference is that the matrix elements are not constant along the specific dimensions and must be
computed at each grid point, according to the local displacement.
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11.3.3 Automatic Generation of Linear Coordinates

We now introduce two methods to automate the search for linear coordinates as described in
ref [29]. These techniques are also appropriate for finding low-dimensional coordinate spaces in
cases where chemical intuition reaches its limits. This can be, for example, a ground state reaction
taking place on slower timescales (picosecond and longer) and involving many normal modes.

At the start of all further considerations, the critical points of the reaction, such as reactant, prod-
uct and transition state need to be identified. The vectors connecting the molecular structures at
these points already span a reduced-dimensional space of linear coordinates that will be extended
with two different techniques in the following. The first one uses the full-dimensional intrinsic
reaction coordinate (IRC) [30] to map the reaction path. The IRC is defined as a path of minimum
energy on the PES that connects the reactant geometry with any transition states and the prod-
uct. The second method presented in this section employs semi-classical trajectories to sample the
configuration space of the reaction. Both techniques are summarized as flowcharts in Figure 11.3.

11.3.3.1 IRC Based Approach
The IRC based approach presents a relatively simple method to automate the search for linear coor-
dinates. First, the IRC of the reaction is calculated using conventional quantum-chemical methods.

IRC based approach

• Choose critical points
• Choose prerequired degrees of freedom
• Calculate full IRC

Pick a point on the
IRC for each additional

dimension needed

Run trajectories
from TS towards lower

lying critical points

Remove degrees of freedom
that are prerequired or correspond to
Eckart conditions and critical points

from trajectory data points

Perform PCA on data points
and extract the needed number

of additional dimensions
according to variance

Save subspace for
calculations and evaluate it
by determining its IRCsub

Create subspace while
satisfying Eckart conditions

and calculate IRCsub

Compare IRCsub with
full IRC and previous

best IRCsub

Reached
convergence?

(i.e., IRCsubS are not getting
better by some

degree)

Save subspace and
use it for calculations

yes

no

Trajectory based approach

Figure 11.3 Flowcharts illustrating the IRC based and trajectory-based approaches for the semi-automatic
search for reduced linear coordinate spaces.
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Figure 11.4 One possibility to construct IRC based subspaces. Additional to the transition state (TS) and
reactant state (RS), an additional point (AP) is chosen along the IRC. The three corresponding geometries
are used to construct to the vectors a⃗i pointing from the TS to the other two structures and spanning the
new subspace.

The goal of the dimensionality reduction is to reproduce this non-linear IRC as well as possible
within the new set of linear coordinates. Additional coordinates to the ones determined by the
critical points are defined by segmenting the IRC with additional points as shown in Figure 11.4.

The number of possible reduced-dimensional subspaces Nss is technically only limited by the
number of IRC points NIRC and dimensions D:

Nss =
NIRC!

(NIRC − D)!
. (11.45)

However, the number of actual subspaces can be reduced by omitting points that are close to
the critical points and, in the case of more than one additional dimension, to each other. A suitable
strategy to further reduce the number of subspaces is to start with a coarse segmentation of the IRC,
identify the best subspaces and optimize them by finer segmentation near the corresponding points.

The basis vectors for reduced-dimensional subspaces are constructed by connecting a reference
structure with the predetermined critical points of the reaction and the additional points along the
IRC. In this example, the transition state structure is used as a reference (Figure 11.4), but there are
of course other ways to construct the basis vectors by choosing different reference structures. Once
the basis vectors have been constructed, any external degrees of freedom need to be removed from
the subspaces by satisfying the Eckart conditions [25] for all molecular structures with respect to
the reference structure.

Finally, the constructed subspaces need to be tested for their ability to reproduce the reaction
pathway. This can be achieved by calculating a low-dimensional IRCsub within the newly con-
structed subspaces and comparing it to the full-dimensional IRC. Note that IRCsub is not the pro-
jection of the full-dimensional IRC onto the subspace as illustrated in Figure 11.5.

The IRCsub can be compared to the full-dimensional IRC by using a distance criterion ΔAi as
well as an energy criterion ΔBi as quality measures for the ith subspace. For the former, the dis-
tance Δr(IRCi

sub) from each point of the IRCsub to its full-dimensional counterpart is evaluated.
Integration over all points yields the distance quality criterion ΔAi:

ΔAi = ∫ Δr(IRCi
sub)dIRCi

sub. (11.46)
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Figure 11.5 Two-dimensional affine subspace of a three-dimensional potential spanned by three critical
points (red circles). The color map of the two-dimensional slice encodes the potential energy landscape
ranging from high energy (red) to low energy (purple) regions. It is overlaid with the full-dimensional IRC
(blue), its projection onto the subspace (green) and the reduced-dimensional IRCsub (black).

The second quality measure is calculated analogously but uses the energy difference ΔE(IRCi
sub)

between each point of the IRCsub and the full-dimensional IRC:

ΔBi = ∫ ΔE(IRCi
sub)dIRCi

sub. (11.47)

Finally, a combined quality criterion Qi can be formulated by averaging over both quantities:

Qi = NΔAi∑N
j=1 ΔAj

+ NΔBi∑N
j=1 ΔBj

. (11.48)

In this way, the subspaces can be directly compared, where a smaller Qi means better reproduc-
tion of the full-dimensional IRC and, therefore, a better subspace i.

11.3.3.2 Trajectory-Based Approach
The second approach to construct linear coordinates employs semi-classical trajectories to sample
the configuration space of the reaction. A good starting point is to calculate trajectories from the
area around the transition state towards the product and extract geometries at regular intervals to
obtain a data set that maps the reaction space. This set of molecular structures can be subsequently
decomposed using principal component analysis (PCA) to extract the most important degrees of
freedom and thus a set of linear coordinates for quantum dynamics.

The basic idea of PCA is to find a set of orthogonal dimensions and sort them by the variance of
data along them. For example, in Figure 11.6 the variance of the blue dataset is highest along u⃗
and second highest along 𝑣. The vectors u⃗ and 𝑣 are called the principal components of the dataset.

For higher-dimensional data, it is often sufficient to project the data points onto the first two or
three principal components and discard the others, where the variance becomes negligibly small.
PCA is a widely used procedure in data science for dimensionality reduction, feature extraction
and visualization of large data sets. For an arbitrary data set X with M data points, it works by
computing the covariance matrix C:

C = 1
M − 1

(X − X̄)(X − X̄)T . (11.49)

C contains the variance of the data along dimension i as diagonal elements xii and the covariance
between dimensions i and j as off-diagonal elements xij. PCA now aims to eliminate correlation
between the dimensions, so that the off-diagonal elements become zero and C is diagonal. The
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Figure 11.6 Principal component analysis of the blue dataset. The vectors u⃗ and 𝑣 are the principal
components of the two-dimensional distribution and scaled by the variance of the data along them.

eigenvectors of C obtained in the process of diagonalization are the principal components of the
data and the corresponding eigenvalues give the variance along these new dimensions.

Using PCA on trajectory data is an established technique [31–34], its application to construct
reduced-dimensional PES for quantum dynamical simulations is, however, quite recent [29]. In this
context, a raw data matrix Y contains the geometries of an n-atomic molecule along the trajectories
as row vectors in the format (x1, y1, z1, x2, y2, z2, …, xn, yn, zn). It is important that all data points
satisfy the Eckart conditions [25] with respect to a given reference point (e.g., the transition state
of the reaction), to remove any rotational or translational degrees of freedom that would skew the
results of the PCA. The data is subsequently centered around the Cartesian origin by shifting each
column vector by the value of its mean, yielding a matrix Ỹ. The subspace containing the critical
points is removed by constructing a matrix V that contains the orthonormal basis vectors of the
subspace as row vectors and calculating the final data matrix X:

X = Ỹ − (Ỹ ⋅ VT)V. (11.50)

The PCA is then applied to X and the principal component vectors with the highest eigen-
values along with the row vectors of V can be used as basis vectors q⃗i for the construction of a
reduced-dimensional coordinate space. The quality of this subspace is evaluated according to
Eqs. (11.46) to (11.48), analogously to the IRC-based method.

11.3.3.3 Comparison of Both Techniques for Linear Subspaces
As an example, to compare the linear coordinate spaces obtained with both techniques, the pro-
ton transfer between the oxygen atoms of (Z)-hydroxyacryloyl chloride will be discussed [35–37].
Modelling a reaction such as this is a typical task in quantum dynamics. The reaction takes place
in the ground state, is therefore slower, and involves more normal modes than an ultrafast photo-
chemical process. Both the IRC and the trajectory based method were used to reduce the number
of dimensions from 27 to 3 [29]. The IRC of the reaction is shown along with the structures of the
critical points in Figure 11.7(a).

For the IRC based approach, the part of the IRC between reactant and transition state was seg-
mented with 245 points with a distance of 0.0028 Å to each other. Starting with the sixth point, a
subspace was created every ten IRC points using the transition state structure as a reference. The
quality of the resulting subspaces was evaluated with the criteria defined in Eqs. (11.46) to (11.48).

For the trajectory-based approach, 50 semi-classical trajectories were calculated. Starting
structures were generated by displacing the transition state geometry in steps of 0.002 Å along
the imaginary mode towards the reactant state. Each trajectory was propagated without initial
momentum for a total of 100 fs, during which all trajectories passed the reactant structure. Sub-
sequently, the PCA was employed to obtain a subspace that was evaluated according to the same
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Figure 11.7 Energy profile (a) along the IRC of the proton transfer reaction in (Z)-hydroxyacryloyl chloride.
The product is shown on the left, the transition state in the middle and the reactant on the right. The cross
marks the IRC point which yielded the best subspace in the IRC based method. Reduced-dimensional
subspaces aim to represent the part between transition state and reactant. Energy difference ΔE(IRCi

sub) and
distance functions Δr(IRCi

sub) between the IRC of the subspace and the full-dimensional IRC are plotted in
(b) and (c) respectively to provide a quality measure for the subspaces. The red curve corresponds to the
trajectory based method (ΔQi = 2.438), while the green (ΔQi = 1.233) and blue (ΔQi = 0.510) curves belong
to selected subspaces obtained with the IRC based method.

quality criteria as the ones generated with the IRC based method. Selected results are compiled in
Figure 11.7. For a more extensive comparison, please refer to the original publication [29].

Figure 11.7 shows that the energy difference is mostly dominated by noise in both methods,
discernible by the fluctuations around 0 Eh. This can be explained by the fact that the proton
transfer is well described in three dimensions and the IRCsub follow the full-dimensional IRC very
closely. The main reasons for energy deviations in this case are discretization errors that can be
reduced by employing a finer grid for the IRCs.

Another observation is that the distance function is larger for the trajectory-based method than
for the best subspaces obtained with the IRC based technique. Because the latter approach employs
an additional point on the IRC, the resulting IRCsub is bound to be closer to the full-dimensional
IRC than one calculated with the trajectory-based method.

Finally, the coordinate vectors spanning the three-dimensional subspaces obtained with both
methods are visualized in Figure 11.8. The two vectors on the left show the displacement from the

a) b) c) d)

Figure 11.8 Basis vectors spanning three-dimensional subspaces for the proton transfer reaction in
(Z)-hydroxyacryloyl chloride. On the left the displacement vectors from the transition state to the reactant
(a) and the product (b) are shown. The third coordinate was determined with the trajectory-based approach
(c) and the IRC- based method (d) respectively.
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transition state to the reactant (a) and the product (b), respectively. These two basic coordinates
are the same in both methods. On the right, the best third coordinate obtained with the IRC based
method (c) and the one obtained with the trajectory-based method (d) are shown. Both approaches
yield a very similar third coordinate and are, therefore, very comparable in accuracy. In both cases,
this third coordinate contains a rather unintuitive motion of atoms not directly involved in the
reaction as well as an in-plane movement of the proton away from the ring. As such a coordinate
would probably be omitted in manual selection procedures, this example illustrates the importance
of unbiased, automated techniques to construct coordinate spaces for quantum dynamics.

11.3.4 Automatic Generation of Non-Linear Coordinates

In grid-bases quantum dynamics, the distance between two grid points corresponds to a Cartesian
displacement vector between two molecular geometries. This displacement vector will be the same
across the grid in a linear subspace, whereas a non-linear subspace means that the displacement
vector can change at every grid point. Quantum dynamics in non-linear subspaces typically
requires fewer coordinates than in linear subspaces to describe the same reaction. The technique
presented in this section provides a way of constructing generalized non-linear subspaces. For
this, we will employ an artificial neural network, specifically (but not exclusively) designed for
dimensionality reduction—an autoencoder [38].

Autoencoders consist of two parts (Figure 11.9): an encoder that compresses the input into a
central, reduced-dimensional representation, called the code layer, and a decoder that attempts to
reconstruct the input from the information in the code layer. The bottleneck architecture, some-
times referred to as an undercomplete autoencoder, drives the dimensionality reduction, as the
number of neurons in the code layer determines the maximum number of features to learn. By
minimizing the error between the reconstruction and the original input, the neural network should
learn the best reduced-dimensional representation of the input.
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Figure 11.9 Schematic representation of an autoencoder. Each Cartesian coordinate of a diatomic
molecule AB constitutes a green input node on the left. The network learns a one-dimensional
representation (red) of the original data on the left and uses it to reconstruct the input. Restricted
Boltzmann machines (RBMs) are used to pre-train the weights and biases for the actual autoencoder.
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The learning process itself works by optimizing the connections between the various neurons. In
this context, the activation zj of a neuron j in the current layer of the neural network is determined
by the weighted sum of the activation values xi from the previous layer:

zj = 𝜎j

( n∑
i=1

𝑤ijxi + bj

)
. (11.51)

The weights wij define how strongly two neurons i and j interact, i.e., how much the activation of
i contributes to that of j. Additionally, a bias bj shifts the activation value of the neuron and provides
a threshold for meaningful activation. For instance, a bias of –5 means the neuron only activates
when the weighted sum of activations from the previous layer is greater than 5. The resulting value
is mapped onto a predefined data range with an activation function 𝜎j(u) that also introduces the
non-linearity between the layers. In the example discussed below, 𝜎j will be a sigmoid function

𝜎j(u) =
1

1 + exp(u)
(11.52)

that maps the activation onto the range between 0 and 1 for all hidden layers. During training,
the weights and biases of the autoencoder are optimized to minimize the loss function L. In this
example, L is the mean squared error between the input coordinates x⃗inp

i and the reconstructed
output z⃗rec

i for N training samples:

L = 1
N

N∑
i=1

(x⃗inp
i − z⃗rec

i )2. (11.53)

Using Eqs. (11.51) and (11.52), the chain rule is applied to Eq. (11.53) to calculate the gradient
of L with respect to the weights wij and biases bj. This procedure is known as backpropagation [39]
and has become one of the most popular algorithms to train artificial neural networks.

In practice, especially for autoencoders with many hidden layers, training can be slow or even
fail to converge if the initial guess for weights and biases differs strongly from a useful solution.
This problem can be handled by employing a set of smaller neural networks, Restricted Boltzmann
machines (RBMs), to pre-train the autoencoder [40]. An RBM only contains an input layer and one
hidden layer and learns a probability distribution over its input nodes by optimizing the weights
and biases between the two layers. The initial weights for an RBM can be chosen as a normal dis-
tribution and the biases can simply be initialized as zeros. Once an RBM is trained, the activations
of its hidden layer can be used as input in the next RBM until all RBMs are trained. The number
of neurons per layer in each consecutive RBM is chosen to reflect the architecture of the autoen-
coder (see also Figure 11.9), so that the weights and biases of the trained RBMs can enter as initial
guesses in the actual training routine of the autoencoder.

However, before the training can begin, the autoencoder needs a dataset whose features it can
learn. In this case, the data is composed of molecular geometries that sample the reaction space.
Such structures can be generated by calculating the IRC of the reaction and exploring the space
around it via a swarm of semi-classical trajectories from regularly spaced points along the IRC.
For this approach to work, the trajectories need to be constrained by an algorithm like RATTLE
[41] to run orthogonal to the IRC and to prevent them from simply following the gradient descent.
Furthermore, the Eckart conditions [25] need to be satisfied in every time step with respect to the
starting structure of the respective trajectory to remove any translations and rotations that might
have been introduced by the constraints.

The resulting set of molecular geometries typically contains a high degree of redundancy, espe-
cially when many trajectories are launched from the same starting point. This can be problematic,
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as the unnecessarily large dataset slows down the training routine without adding information
and might even skew the results if the redundancies are not evenly distributed. It is therefore
advisable to clean the data by calculating the Euclidean distance between all data points and
removing points that fall below a certain threshold. Finally, all data points should be normalized
so that the components of every Cartesian coordinate vector are between 0 and 1, which generally
improves training efficiency.

Once the autoencoder has learned a low-dimensional representation of this molecular dataset,
it is time to generate a grid on which to perform quantum dynamics. The construction of a
rectangular grid in a non-linear coordinate space can however be quite challenging, because the
autoencoder coordinates can be highly curvilinear. It is easier to choose a linear subspace similar to
that found by the autoencoder, construct a rectangular grid there and project it onto the non-linear
subspace. For this purpose, a PCA can be performed on the training data to extract its principal
components and use them as basis vectors for a rectangular grid. The encoder part of the trained
autoencoder can now be employed to map the grid points onto the low-dimensional coordinate
space given by the code layer and refine this projection using the decoder part. In the following,
let y⃗′ = F(y⃗) be a mapping of the full-dimensional vector y⃗ onto a low-dimensional subspace. Its
inverse mapping y⃗′′ = H(y⃗′) transforms the reduced-dimensional vector y⃗′ to a full-dimensional
vector y⃗′′. Both mappings are ideal in the sense that the reconstruction y⃗′′ equals the original
vector y⃗ if y⃗ lies within the subspace and that the distance ‖y⃗′′ − y⃗‖ is as small as possible if y⃗ lies
outside of the subspace. The encoder F̃ and decoder H̃ of the autoencoder are approximations to
these optimal mappings F and H. The trained autoencoder therefore produces the approximate
projection y⃗′′ = H̃(F̃(y⃗)). This allows the construction of a set of basis vectors a⃗j by adding a small
perturbation 𝜀e⃗j to the activations of each node j in the central code layer, where e⃗j is a unit vector
and 𝜀 determines the magnitude of the perturbation:

a⃗j = H̃(y⃗′ + 𝜀e⃗j) − H̃(y⃗′). (11.54)

This projection is approximate and can be refined by minimizing the distance ‖H̃(y⃗′) − y⃗‖ with
respect to variations in y⃗′. Therefore, the distance vector is projected onto the basis vectors a⃗j using
the non-orthonormal projection matrix A = [a⃗1, a⃗2,… , a⃗S] with S dimensions in the subspace. The
first step of this iterative optimization is

y⃗′1 = y⃗′ + h𝜀(ATA)−1(y⃗ − H̃(y⃗′))TA, (11.55)

where h is the step size. The next steps are

y⃗′k = y⃗′k−1 + h𝜀(ATA)−1(y⃗ − H̃(y⃗′k−1))
TA (11.56)

until ‖H̃(y⃗′) − y⃗‖ is minimal and the rectangular PCA grid is completely mapped onto the
non-linear subspace found by the autoencoder. Finally, a PES can be calculated on the non-linear
grid and used in quantum dynamical simulations. The kinetic energy is represented with the
G-matrix formalism described in section 11.3.2.

To evaluate the quality of this method, once again the proton transfer in (Z)-hydroxyacryloyl
chloride will be used as a test system with the projection of the IRC onto the subspace to the
full-dimensional IRC as a quality measure. Figure 11.10 illustrates the distance Δr of the projected
IRC from its full-dimensional counterpart for a two- and three-dimensional non-linear subspace
(blue and green curves). Additionally, the same distance measures are plotted for a two- and
three-dimensional linear subspace (red and cyan curves) generated by performing PCA on the
autoencoder training data.
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Figure 11.10 Distance between the full-dimensional IRC and an IRC projected onto the low-dimensional
subspace. The blue and green curves correspond to a two- and three-dimensional non-linear subspace,
respectively, whereas the red and cyan curves belong to a two- and three-dimensional linear subspace,
respectively. The linear subspaces were determined by a PCA on the training dataset.
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Figure 11.11 Two-dimensional, non-linear PES for the proton transfer in (Z)-hydroxyacryloyl chloride. On
the left, the surface is projected onto the first three principal components of the training data. On the right,
the same surface is plotted in internal coordinates and overlaid with snapshots of the wave packet
propagation at 0 fs (solid white), 17 fs (dashed white), 31 fs (dashed black) and 68 fs (solid black).

It is expected that Δr decreases with the number of additional dimensions as long as these
dimensions are beneficial for the description of the reaction. Therefore, Figure 11.10 allows the
conclusion that three linear coordinates are needed for an adequate representation of the proton
transfer while two non-linear coordinates suffice to achieve the same goal.

The non-linear PES is shown in Figure 11.11. On the left, the two-dimensional, non-linear sur-
face is projected into a linear coordinate space spanned by the first three principal components of
the training data to illustrate its strong curvature. The same surface is shown in internal, non-linear
coordinates on the right, where the double minimum structure with the transition state of the reac-
tion on the central barrier is clearly discernible.

A quantum dynamical simulation was performed on this surface for 500 fs with a time-step of
0.24 fs [38]. The Gaussian wave packet was started near the transition state and its temporal evo-
lution is also illustrated in Figure 11.11. During the simulation, the wave packet evolved towards
the deeper minimum and was reflected with a cycle period of 70 fs. This is about half of the cycle
period of 120 fs reported for the full proton transfer reaction [42]. The timescales of nuclear motion
agree with those of the keto-enol switching in malondialdehyde [43] calculated in full dimensional-
ity with semi-classical techniques. The same simulation in linear coordinates results in a too short
reaction time. This illustrative example shows that the propagation in non-linear coordinates found
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by the autoencoder can adequately describe a chemical reaction and serves as proof-of-concept for
this automated procedure. Note, that the interpretation of the wave packet moving in a non-linear
coordinate space found by the autoencoder may be challenging.

11.4 Summary and Further Remarks

An overview of the necessary steps to set up a wave packet simulation in reduced coordinates on
explicitly evaluated ab intio PESs is given in the following flowchart. All examples discussed in this
chapter were performed accordingly.

Coordinate Reduction

Grid Construction

Determination of Initial Wave function

Wave packet Propagation

Potential Operator V Kinetic Operator T

Manual or automatic selection of reactive coordinates

Choose appropriately
e.g., eigenfunctions or Gaussian wave packets

Solve TDSE, e.g., with SPO, Chebychev, etc.

▸ Displace molecular geometry along coordinate vectors
▸ Obtain a spatial grid in reduced dimensionality

▸ Multiplicative in real space
▸ Solve TISE (see part I)

▸ Multiplicative in Fourier space
▸ Use G-matrix to transform T
    to arbitrary coordinate spaces

A detailed description of the individual steps can be found in this chapter (e.g., G-matrix, prop-
agators) as well as in chapters 2 to 10 (for the electronic structure methods).

The given examples for arbitrary low-dimensional coordinate spaces are only feasible due to
the generality of the G-matrix formalism. With this technique the setup of the kinetic operator
is straightforward. Its flexibility further allows easy modification of the reactive subspace. For
example, structural relaxation can be directly incorporated in the reactive modes [44] as has
been demonstrated for the photodisscociation of diphenylmethyl halogenides. Also the reactive
subspace can easily be extended with normal modes and their harmonic PESs to test the influence
of additional degrees of freedom [27].
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The quantum dynamics in reactive subspaces can also be embedded in complex, explicitly treated
environments [45–47], allowing to describe the solvent cavity effect during the dissociation or the
steric hindrance and electrostatic influence of an RNA strand on the photorelaxation of uracil. In all
these examples, subtle changes of the PES were observed to strongly influence the dynamics. In this
context, highly local changes in the PES of photoexcited uracil in RNA could severely decrease or
prolong the excited state lifetime compared to the isolated base. Alternative methods like MCTDH
are able to include more modes at the expense of the topographical information of the PES. The
examples mentioned above, however, emphasize the importance of such information for the wave
packet behavior and the choice of method depends on the nature of the specific process and the
question to be answered.
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Abstract

This chapter reviews multi-configurational wave function propagation methods of the Multi-
Configuration Time-Dependent Hartree (MCTDH) family, with special emphasis on the connection
between MCTDH and its Gaussian wave packet based variants. These include the Gaussian-based
G-MCTDH approach and the closely related variational Multi-Configurational Gaussian (vMCG)
method, as well as a recently developed two-layered (2L-GMCTDH) version. Besides these fully
variational schemes, we also consider a classical-limit formulation leading to a Multi-Configuration
Ehrenfest (MCE) type dynamics. This spectrum of methods illustrate the flexibility of varia-
tional wave function evolution for high-dimensional quantum dynamics and its semiclassical and
quantum-classical variants. A comparative application is presented for ultrafast non-adiabatic
dynamics in a charge transfer complex involving up to 100 vibrational modes.

12.1 Introduction

The Multi-Configuration Time-Dependent Hartree (MCTDH) method [1–3] is a powerful
approach to the approximate, variational solution of the time-dependent Schrödinger equation
(TDSE). In this method, high-dimensional wave functions are represented as sums over config-
urations – i.e., products of so-called single-particle functions (SPFs) – and the time evolution is
broken down into low-dimensional SPF subspaces. Correlations are included by the superposition
of configurations, leading to time evolution under multi-configurational mean-field Hamiltonians
in the SPF subspaces. This approach allows one to go far beyond the standard method relying
on time-independent product basis sets, whose exponential scaling with f Nf+1 (where f is the
number of degrees of freedom and N is the number of basis functions) [3–5] typically restricts
propagation to f ∼ 5. By contrast, MCTDH permits accurate propagation for up to f ∼ 50 or more
degrees of freedom. We refer to Chapter 11 for a detailed discussion of the standard method.

Many applications of the method over the past 25 years have demonstrated the efficiency
of MCTDH [3–6]. On the formal side, a number of variants have been introduced, including
MCTDH-F for fermionic systems [7–9] and MCTDH-B for bosonic systems [10]. Furthermore, a
hierarchical multi-layer version of MCTDH has been developed [11–14], denoted ML-MCTDH,

Quantum Chemistry and Dynamics of Excited States: Methods and Applications,
First Edition. Edited by Leticia González and Roland Lindh.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.
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which is able to take the method towards even higher dimensions, up to hundreds of degrees of
freedom. A statistical treatment using density operators was also introduced [15, 16].

In addition, MCTDH has been formulated for moving Gaussian basis sets [17, 18], yielding the
G-MCTDH method [19–21] and its variational Multi-Configurational Gaussian (vMCG) variant
[22–24], as well as the multi-layer ML-GMCTDH approach [25–27]. This class of methods, even
though formulated for Gaussian wave packets (GWPs) that are less flexible than the standard
SPFs of the MCTDH method, show good convergence properties and provide a natural connection
to more approximate GWP methods and trajectory-based approaches that have a long tradition
in semiclassical dynamics [18, 28, 29]. Variational GWP approaches are obviously suitable for
system-bath type problems and statistical treatments, as well as for on-the-fly dynamics, see the
detailed discussion of the direct-dynamics vMCG (DD-vMCG) approach [24] in Chapter 13 as
well as the discussion of the Ab Initio Multiple Spawning (AIMS) approach [30] in Chapter 14.
These approaches further connect to quantum-classical schemes such as the Multi-Configuration
Ehrenfest (MCE) approach [31, 32] which can be understood as a quantum-classical limit of a
hybrid SPF/GWP approach within the G-MCTDH framework [33, 34]. See also Chapter 15 for
further background on Ehrenfest dynamics.

Complementary to these developments in the chemical physics community, there has been a
growing interest in recent years in the connection between MCTDH and low-rank tensor approx-
imation schemes [35, 36] that have been addressed from the mathematical side. In this context,
tangent space projection techniques [37] are employed, which introduce a different angle of vision
on the variational approach. From this viewpoint, a reformulation of the MCTDH equations of
motion (EOM) has recently been proposed [38–40].

Against this background, this chapter spotlights the generality and flexibility of variational
wave packet approaches and their applications, with special emphasis on the connection between
MCTDH and its GWP based variants. To summarize our perspective, Figure 12.1 illustrates the
relations between the approaches that are discussed in this chapter.
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Figure 12.1 Schematic illustration of the MCTDH related methods that are discussed in this chapter. See
text for the acronyms used in the figure.
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As an explanatory note regarding GWP based methods, we use the term semiclassical to refer
to the fact that GWP bases preserve the classical phase space structures in a quantum context. In
this sense, the hybrid G-MCTDH method has been termed a quantum-semiclassical method [19].
In contrast, the MCE approach is referred to as a mixed quantum-classical approach – i.e., the
quantum-classical limit of the G-MCTDH formulation in the strict sense of Ref. [33]. However,
MCE also exemplifies that these boundaries are loosely defined, since several alternative versions
of the MCE approach [31, 32, 34], as also discussed below, rather fall into a quantum-semiclassical
regime.

The remainder of the chapter is organized as follows. In the second section, we introduce
the MCTDH equations of motion and connect to the above mentioned tangent space projection
techniques and low-rank tensor approximation schemes. We further introduce the hierarchically
structured ML-MCTDH variant. The third section is specifically devoted to GWP based methods,
notably the G-MCTDH, vMCG and ML-GMCTDH approaches. The fourth section then addresses
the quantum-classical limit and the resulting MCE dynamics. In the fifth section, a brief How-To
summarizes some practical aspects. Finally, the sixth section illustrates the various levels of
treatment for a case study of ultrafast non-adiabatic dynamics in a donor–acceptor complex
[41, 42], and the last section is the conclusion.

12.2 Time-Dependent Variational Principle and MCTDH

In this section, we briefly review the MCTDH method and its derivation from the time-dependent
Dirac–Frenkel Variational Principle (DFVP). We also address the basic concept of the hierarchical
ML-MCTDH approach.

12.2.1 Variational Principle and Tangent Space Projections

The DFVP is the overarching principle of MCTDH and its variants, by defining the optimal time
evolution of the approximate wave functions that characterize the different approaches shown in
Figure 12.1. Specifically, the MCTDH equations of motion are derived from a multi-configurational
ansatz for the wave function – i.e., a sum over Hartree products as detailed in Section 12.2.2 – in
conjunction with the DFVP [43–48],

⟨𝛿Ψ|i𝜕t − Ĥ|Ψ⟩ = 0 (12.1)

where we use 𝜕t = 𝜕∕𝜕t and units such that ℏ = m = 1. This convention will be employed through-
out this chapter. In Eq. (12.1), 𝛿Ψ is an allowed variation of the wave function which keeps the
form of the chosen ansatz. The linear variation 𝛿Ψ is an element of the tangent space TΨ (see
Figure 12.2) which is defined with respect to the smooth submanifold of the Hilbert space where
we are seeking an approximation to the time evolving quantum state Ψ. The time evolution result-
ing from the DFVP according to Eq. (12.1) guarantees that Ψ is the best possible approximation
to the exact solution of the time-dependent Schrödinger equation, given the restricted form of the
wave function ansatz [37].

The DFVP has been shown to be equivalent to the McLachlan Variational Principle (MLVP) [47],
provided that the tangent space TΨ is a complex linear space [46, 94]. The MLVP formulates a
geometric condition in terms of which the approximate time derivative of the wave function fea-
tures a minimal distance from the exact solution,

𝛿‖i
.
Ψ − ĤΨ‖2 = 0 (12.2)
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HΨ
TΨTΨ1

i

Ψ

Ψ



Figure 12.2 Pictorial representation of the tangent-space projection. At a given point Ψ of the variational
manifold  of the full Hilbert space, the tangent-space TΨ is constructed as the vector space spanned by
the first-order variation of the wave function. According to the DFVP, the best local approximation to the
time-derivative (1∕i) Ĥ Ψ is given by

.
Ψ, its orthogonal projection onto the tangent space. Reprinted from

Ref. [40] with permission from Elsevier.

This condition can be naturally fulfilled by introducing tangent space projectors [37] such that the
best approximate wave function derivative, at any point in time, is constructed as the orthogonal
projection of ĤΨ onto the tangent space TΨ,

i
.
Ψ = ̂(Ψ)ĤΨ (12.3)

where ̂(Ψ) is the orthogonal projector onto the tangent space. Given that
.
Ψ is a vector of TΨ by

construction, it belongs to the range of the projector ̂(Ψ). Thus Eq. (12.3) can be rearranged as a
projected TDSE [37],

̂(Ψ)[i
.
Ψ − ĤΨ] = 0 (12.4)

A schematic representation of the tangent space projection is shown in Figure 12.2. Details of this
formulation of the DFVP, which is most common in the mathematical literature, can be found in
Ref. [37].

In the standard derivation of the MCTDH method, Eq. (12.1) is employed to obtain the EOMs.
However, we will also discuss Eq. (12.4), which opens an alternative perspective on the MCTDH
equations. Notably, this route has recently been employed in deriving a novel projector splitting
formulation of the MCTDH equations [38–40], i.e., relying on a suitable splitting of ̂(Ψ).

12.2.2 MCTDH: Variational Multi-Configurational Wave Functions

Since the MCTDH approach, in its original form, defines the roadmap to be followed in the context
of the various related schemes to be discussed in this chapter, we start by reviewing the MCTDH
wave function form and the derivation of the variational EOMs.

12.2.2.1 MCTDH Wave Function Ansatz
The MCTDH ansatz [1–3] corresponds to a multi-configurational form of the wave function [3, 37],

Ψ(x, t) =
∑

J
AJ(t)ΦJ(x, t)

=
n1∑

j1=1

n2∑
j2=1

· · ·
nf∑

jf =1
Aj1 ,j2 ,…,jf

(t)
f∏

𝜅=1
𝜑
(𝜅)
j𝜅
(x𝜅 , t) . (12.5)

with complex-valued coefficients AJ ≡ Aj1 ,j2 ,…,jf
and configurations ΦJ ≡ ∏f

𝜅=1 𝜑
(𝜅)
j𝜅

which are
Hartree products of time-dependent single-particle functions (SPFs) 𝜑(𝜅)

j . Here, the multi-index
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J = (j1, j2,… , jf ) collects all SPF indices for a given configuration ΦJ . The index 𝜅 = 1, 2,… , f
enumerates a collection of modes x = (x1, x2,… , xf ), where each mode x𝜅 corresponds either to a
single degree of freedom or else a combination of degrees of freedom x𝜅 = (x𝜅,1,… , x𝜅,d𝜅 ). In the
latter case, x𝜅 represents a so-called combined mode (d𝜅 > 1) [3, 49]. For each 𝜅, n𝜅 SPFs 𝜑(𝜅)

j𝜅
, with

j𝜅 = 1, 2,… ,n𝜅 , are specified; i.e., n𝜅 defines the dimension of the SPF basis for a given mode 𝜅.
Throughout this chapter, small letters xi are used to label nuclear coordinates, mostly correspond-

ing to internal vibrational modes; also, we occasionally employ small letters ri or capital letters Ri
to label specific internal coordinates. (By contrast, electronic coordinates do not appear explicitly,
i.e., Dirac notation is used to represent electronic states, generally referring to a diabatic picture.)

When expressing the time-evolving SPFs in a time-independent product basis {𝜒 (1)
i1

…𝜒
(f )
if
}

(sometimes denoted primitive basis), Eq. (12.5) can be re-expressed as

Ψ(x, t) =
N1∑

i1=1

N2∑
i2=1

…
Nf∑

if =1
Yi1 ,i2 ,…if

(t)
f∏

𝜅=1
𝜒
(𝜅)
i𝜅

(x𝜅) (12.6)

with

Yi1 ,i2 ,…if
(t) =

n1∑
j1=1

…
nf∑

jf =1
Aj1 ,j2 ,…jf

(t)
f∏
𝜅

U (𝜅)
i𝜅 j𝜅

(t) (12.7)

where U (𝜅)
i𝜅 j𝜅

= ⟨𝜒 (𝜅)
i𝜅

|𝜑(𝜅)
j𝜅
⟩ is the representation matrix of the 𝜅-mode SPFs on the primitive grid.

From a tensor algebra perspective [50], Eq. (12.7) is known as Tucker decomposition of the tensor
Yi1 ,i2 ,…if

into the core tensor Aj1 ,j2 ,…jf
and the set of matrices U (𝜅)

i𝜅 j𝜅
. As the number of SPFs is obvi-

ously smaller than the size of the primitive basis, the Tucker decomposition entails a reduction in
dimensionality of the original tensor, taking advantage of its possible sparsity.

The representation of Eq. (12.5) is not unique, since an alternative SPF basis can be found that
spans the 𝜅th subspaces such that

Ψ =
∑

J
AJ

f∏
𝜅=1

𝜑
(𝜅)
j𝜅

=
∑

J̃

ÃJ̃

f∏
𝜅=1

𝜑̃j̃𝜅 ,

This gauge freedom in defining the MCTDH ansatz is exploited by specifying initial SPFs 𝜑(𝜅)
j (0)

that are orthonormal and unambiguously fixing their time evolution such that they stay orthonor-
mal at all times [3],

⟨𝜑(𝜅)
j (t)|𝜑(𝜅)

j′ (t)⟩ = 𝛿jj′ .

The remaining freedom in the definition of the SPFs is captured by an explicit, unitary time evolu-
tion inside the 𝜅th subspaces,

i⟨𝜑(𝜅)
l | .
𝜑
(𝜅)
j ⟩ − ⟨𝜑(𝜅)

l |ĥ(𝜅)
c |𝜑(𝜅)

j ⟩ = 0 (12.8)

or equivalently,

P̂(𝜅)(t)(i𝜕t − ĥ(𝜅)
c )|𝜑(𝜅)

j (t)⟩ = |0⟩ (12.9)

where

P̂(𝜅)(t) =
∑

j
|𝜑(𝜅)

j (t)⟩⟨𝜑(𝜅)
j (t)| (12.10)

is the orthogonal projector onto the 𝜅th subspace. In Eqs. (12.8)–(12.9), the so-called constraint
operator ĥ(𝜅)

c is an arbitrary Hermitian operator; this operator is most often set to zero [3], as is also
the case in this chapter. Note that the projector P̂(𝜅) is different from the tangent space projector
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̂(Ψ) of Eq. (12.3), which is represented in calligraphic style for clarity. With the gauge Eq. (12.8),
one obtains unambiguous EOMs for the coefficients AJ and SPFs 𝜑(𝜅)

j .
As a notational issue, the wave function can be expressed as a product of SPFs and single-hole

functions (SHFs) denoted 𝜓 (𝜅)
j𝜅

[3],

Ψ(x, t) =
n𝜅∑

j𝜅=1
𝜑
(𝜅)
j𝜅
(x𝜅 , t)𝜓

(𝜅)
j𝜅

(x1,… , x𝜅−1, x𝜅+1,… , xN , t) (12.11)

which is convenient when defining the evolution equations for the 𝜅th subspace. The SHFs are
non-orthogonal – despite the orthogonality of the SPFs – and their overlap appears as the reduced
density matrix in the 𝜅th subspace,

𝜌
(𝜅)
l𝜅 l′

𝜅

= ⟨𝜓 (𝜅)
l𝜅

|𝜓 (𝜅)
l′
𝜅

⟩ (12.12)

noting that 𝜌(𝜅)l𝜅 l′
𝜅

= ⟨𝜑(𝜅)
l′
𝜅

|𝜌(𝜅)|𝜑(𝜅)
l𝜅
⟩ where 𝜌(𝜅) = Tr𝜅′≠𝜅{ΨΨ∗} is the reduced density operator in the

𝜅th subspace.

12.2.2.2 MCTDH Equations of Motion
The variational EOMs for the wave function ansatz Eq. (12.5) can be derived from the DFVP in the
form of Eq. (12.1), or alternatively, from Eq. (12.4). The former route corresponds to the standard
procedure, where the wave function variation is specified as

𝛿Ψ =
∑

J
𝛿AJ ΦJ +

∑
𝜅

(∑
l𝜅

𝛿𝜑
(𝜅)
l𝜅
𝜓

(𝜅)
l𝜅

)
(12.13)

and independent variations 𝛿AJ and 𝛿𝜑(𝜅)
l𝜅

are inserted into Eq. (12.1).
Alternatively, the tangent space projector of Eq. (12.3) can be obtained explicitly [39, 40],

̂(Ψ) = ̂0(Ψ) +
∑
𝜅

̂𝜅(Ψ) (12.14)

and the component projectors pertaining to the A coefficients and SPFs are inserted into the pro-
jected TDSE of Eq. (12.4).

In Eq. (12.14), the projectors ̂0(Ψ) and ̂𝜅(Ψ) correspond to a projector on the configurations|ΦJ⟩ in the full space, and a combination of SPF subspace projectors P̂(𝜅) (see Eq. (12.10)) and SHF
projectors Q̂(𝜅),

̂0(Ψ) =
∑

J
|ΦJ⟩⟨ΦJ | ̂𝜅(Ψ) = (1̂ − P̂(𝜅))⊗ Q̂(𝜅) (12.15)

where the SHF projector is given as

Q̂(𝜅) =
∑
l,l′

|𝜓 (𝜅)
l ⟩ (𝜌(𝜅))−1

ll′ ⟨𝜓 (𝜅)
l′ | (12.16)

noting that the form of Q̂(𝜅) follows from the non-orthogonality of the SHFs. Reference [40] provides
further details of this procedure.

The EOMs resulting from either procedure – i.e., Eq. (12.13) in conjunction with Eq. (12.1), or
else Eq. (12.14) in conjunction with Eq. (12.4) – are given as follows:

i
.
AI =

∑
J
⟨ΦI|Ĥ|ΦJ⟩ AJ (12.17)

where HIJ = ⟨ΦI|Ĥ|ΦJ⟩ corresponds to elements of the Hamiltonian matrix in the basis of config-
urations, and

i .
𝝋

(𝜅) = (1̂ − P̂(𝜅))(𝝆(𝜅))−1 Ĥ
(𝜅)

𝝋
(𝜅) (12.18)
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where 𝝋
(𝜅) is the vector composed of the SPFs for mode 𝜅, P̂(𝜅) is the subspace projector of

Eq. (12.10), 𝝆(𝜅) is the reduced density matrix of Eq. (12.12), and Ĥ
(𝜅)

is a matrix of mean-field
Hamiltonian operators,

Ĥ(𝜅)
jk = ⟨𝜓 (𝜅)

j |Ĥ|𝜓 (𝜅)
k ⟩ (12.19)

where |𝜓 (𝜅)
k ⟩ are the SHFs of Eq. (12.11). Hence, besides the standard equations for the wave func-

tion coefficients, the SPFs are found to be coupled by mean fields: i.e., every SPF𝜑(𝜅)
j evolves under

an effective single-particle Hamiltonian obtained by averaging the full many-particle Hamiltonian
Ĥ over the remaining degrees of freedom 𝜅′ ≠ 𝜅. In Eq. (12.18), the (1̂ − P̂(𝜅)) projection results from
the tangent space projection ̂𝜅 of Eq. (12.15) and implies that the SPF evolution exclusively takes
into account the part of the time evolution that is not absorbed into Eq. (12.17) for the A coefficients.

In the simplest, single-configurational Time-Dependent Hartree (TDH) case, a single effective
mean-field Hamiltonian is given per mode 𝜅. In the multi-configurational (MCTDH) case, the SPFs
of each mode 𝜅 evolve under a matrix of mean-field Hamiltonians.

Besides the numerical effort for the propagation of the coefficient vector A, the integrations
involved in the calculation of the mean field Hamiltonian are the numerically most expensive
parts of MCTDH. To carry out the relevant integrals, the SPFs 𝜑(𝜅)

j , which are of arbitrary form,
are expanded in a primitive time-independent basis set {𝜒 (1)

i1
…𝜒

(f )
if
} (see Eq. (12.6)), usually using

a Discrete Variable Representation (DVR) [3]. Furthermore, a sum-over-products (SOP) form of
the Hamiltonian is required for an efficient integral evaluation, matching the product form of the
wave function.

In Eq. (12.18), the presence of the inverse of the subspace density matrix, (𝝆(𝜅))−1, renders the
EOMs highly non-linear. At the start of the propagation, singularities typically occur since most
SPFs are initially unoccupied, necessitating a numerical regularization procedure [3]. An improved
approach has been developed in Ref. [51] where optimal initial SPFs are constructed. Also, Ref.
[52] proposes a novel regularization scheme for the A coefficient tensor. Finally, the recently devel-
oped projector splitting algorithm [38–40] circumvents the direct inversion of the density matrix,
by recasting the EOMs in a linear form, using an auxiliary set of orthogonal SHFs.

12.2.3 ML-MCTDH: Hierarchical Representations

While MCTDH was originally employed for one-dimensional SPFs (d𝜅 = 1, see Section 12.2.2.1),
the use of multi-dimensional SPFs (d𝜅 > 1) – as foreseen in Eq. (12.5) – can be advantageous to
accommodate correlations within the combined-mode subspaces [3, 49]. This strategy allows one
to substantially reduce the number of configurations, i.e., the length of the A vector. Mode com-
bination was therefore a key step towards treating high-dimensional systems [49, 53]. However, a
balance needs to be found between the gain in the A vector propagation and the cost of propagating
combined-mode SPFs, which scales exponentially with d𝜅 [3].

In view of this, an improved and systematic strategy is to represent each combined mode by
an MCTDH type ansatz for a given subspace. This leads to the following multi-layer MCTDH
(ML-MCTDH) ansatz [11–14], where the hierarchy is started by expanding the overall wave func-
tion Ψ in first-layer SPFs:

Ψ(t) =
∑

J
A[1]

J (t)Φ[1]
J (t)

=
∑

J
A[1]

J (t)
f [1]∏
𝜅1=1

𝜑
[1](𝜅1)
j𝜅1

(t) (12.20)
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While this expansion is formally identical to Eq. (12.5), the same type of multi-configurational
representation is now also used for the first-layer SPFs 𝜑[1](𝜅1)

j𝜅1
, which are in turn expanded in

second-layer SPFs 𝜑[2](𝜅1 ,𝜅2)
j𝜅2

:

𝜑
[1](𝜅1)
j (t) =

∑
J

A[2](𝜅1)
j,J Φ[2](𝜅1)

J (t)

=
∑

J
A[2](𝜅1)

j,J

f [2]
𝜅1∏

𝜅2=1
𝜑
[2](𝜅1 ,𝜅2)
j𝜅2

(t) (12.21)

Moreover, the procedure can be re-iterated for an M-layer representation, such that the SPFs of the
first M − 1 layers are given as,

𝜑
[m−1](𝜅1…𝜅m−1)
j (t) =

∑
J

A[m](𝜅1…𝜅m−1)
j,J (t)Φ[m](𝜅1…𝜅m−1)

J (t)

=
∑

J
A[m](𝜅1…𝜅m−1)

j,J (t)
f [m]
𝜅1…𝜅m−1∏
𝜅m=1

𝜑
[m](𝜅1…𝜅m)
j𝜅m

(t) (12.22)

where m = {2, 3,… ,M} runs over the number of layers and the SPF index𝜅m = 1, 2,… , f [m]
𝜅1…𝜅m

runs
over the mth-layer modes. Finally, the SPFs of the final (Mth) layer are represented in a primitive
DVR basis.

From a mathematical tensor algebra perspective, the representation of Eqs. (12.20)–(12.22) is also
denoted hierarchical Tucker decomposition [50], in line with the discussion in Section 12.2.2.1.

The EOMs for the multi-layer approach involve a hierarchy of mth-layer coefficients evolving
under the corresponding mth-layer mean fields. For details, we refer to Refs. [11, 12] and Refs.
[13, 14] which describe a recursive algorithm to represent these equations. Below, we will focus on
a two-layer and multi-layer variant of Gaussian-based MCTDH which shares the basic features of
the above representation.

12.3 Gaussian-Based MCTDH

We now turn to a variant of the MCTDH scheme which employs parametrized SPFs, instead of
the conventional SPFs which rely on the representation in a primitive basis. Specifically, GWPs are
highly suitable for this approach, given that Gaussian matrix elements can be straightforwardly
calculated analytically. Hence, we will be concerned with the Gaussian-based G-MCTDH method
[19–21], as well as the related vMCG [22–24] and ML-GMCTDH [25–27] approaches.

12.3.1 G-MCTDH and vMCG

In the G-MCTDH approach [19–21], some or all SPFs are represented by GWPs, whose time
evolution is defined in terms of the time-evolving GWP center in phase-space (q,p), along with
the time-evolving width and phase. While some flexibility in the wave function representation is
lost, the potential gain is an efficient treatment of a large number of modes, benefiting from the
analytical calculation of high-dimensional integrals. Applications of the G-MCTDH method range
from model Hamiltonians for dissipative dynamics [20] to high-dimensional vibronic coupling
dynamics [21], and the realistic description of photoexcited chromophores in rare-gas environ-
ments [55, 56]. Also, G-MCTDH wave functions were recently combined with a mixed-state
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density matrix representation [57]. In the context of on-the-fly applications, the vMCG variant of
the G-MCTDH scheme has mainly been employed [23, 24], where all SPFs are replaced by GWPs
in the full dimensionality, providing a semiclassical, localized, variational basis that is superior to
classically evolving GWPs.

12.3.1.1 G-MCTDH Wave Function Ansatz
In Ref. [19], hybrid configurations were introduced which restrict a subset of modes in the 𝜅th
subspace to Gaussian form. This ansatz was specifically tailored to system-bath type problems
[20, 21] where a subset of “primary” degrees of freedom are represented by fully flexible SPFs 𝜑(𝜅)

j
while the remaining – potentially many – “secondary” degrees of freedom are combined into less
flexible GWPs g(𝜅)j ,

Ψ =
∑

J
AJ

( p∏
𝜅=1

𝜑
(𝜅)
j𝜅

)( f∏
𝜅=p+1

g(𝜅)j𝜅

)
(12.23)

with 𝜑(𝜅)
j as in standard MCTDH and

g(𝜅)j (x𝜅 , t) = exp[xT
𝜅a(𝜅)

j (t) x𝜅 + (𝝃(𝜅)j (t))Tx𝜅 + 𝜂
(𝜅)
j (t)] (12.24)

multi-dimensional GWPs whose time evolution is determined by the complex time-dependent
parameters 𝚲(𝜅)

j (t) = (a(𝜅)
j (t), 𝝃(𝜅)j (t), 𝜂(𝜅)j (t)). Here, the complex symmetric, negative definite, matrix

a(𝜅)
j controls the width of the Gaussian g(𝜅)j and its off-diagonal elements describe correlations

between the degrees of freedom within a GWP combined mode. The complex vector 𝝃(𝜅)j describes
the center of the GWP in phase space. (More precisely, writing 𝝃

(𝜅)
j = −2a(𝜅)

j q(𝜅)
j + ip(𝜅)

j with q(𝜅)
j

and p(𝜅)
j real, q(𝜅)

j is the GWP center in position space and p(𝜅)
j is its center in momentum space.)

Finally, the real part of 𝜂(𝜅)j fixes the GWP norm ‖g(𝜅)j ‖ and the imaginary part of 𝜂(𝜅)j is a phase
factor.

Starting from Eq. (12.24), two types of GWPs are used in practice: thawed Gaussians (TGs)
[58–60] whose width matrix a(𝜅)

j is a time-dependent variational parameter and frozen Gaussians
(FGs) [29] whose width matrix a(𝜅)

j is kept fixed, such that the parameter vector is reduced to
𝚲(𝜅)

j (t) = (𝝃(𝜅)j (t), 𝜂(𝜅)j (t)). Like the general multi-configurational form Eq. (12.5), the representation
Eq. (12.23) of the wave function Ψ is not unique. At the level of the Gaussians g(𝜅)j this results in a
free choice of 𝜂(𝜅)j (t). (In fact, the variational equations for this parameter are ill determined [19].)
Conventionally, the real part Re(𝜂(𝜅)j (t)) is fixed such that g(𝜅)j (t) is always normalized, and the
imaginary part Im(𝜂(𝜅)j (t)) is either set to zero [20, 21] or else is taken to evolve with the classical
action [61, 62]. Thus the parameters whose time evolution is determined by the DFVP Eq. (12.1)
reduce to 𝚲(𝜅)

j (t) = (a(𝜅)
j (t), 𝝃(𝜅)j (t)) for TGs and 𝚲(𝜅)

j (t) = 𝝃
(𝜅)
j (t) for FGs. Note that the free choice

of 𝜂(t) does not suffice to make the Gaussians g(𝜅)j mutually orthogonal, i.e., they always form a
non-orthogonal basis set.

In the majority of applications, multi-dimensional FGs are used, in view of the numerical insta-
bilities incurred by TG propagation. (See, however, Ref. [20] for an example of TG-based G-MCTDH
propagation.) With a constant diagonal width matrix, (a(𝜅)

j )kl = 𝛿kl(a
(𝜅)
j )kk, and the phase conven-

tion Im(𝜂(𝜅)j (t)) = 0, Eq. (12.24) reduces to

g(𝜅)j (x𝜅 , t) =
d𝜅∏
l=1

N((a(𝜅)
j )ll, (𝝃

(𝜅)
j )l(t)) exp[(a(𝜅)

j )llx2
𝜅,l + (𝝃(𝜅)j )l(t)x𝜅,l] (12.25)
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with N(a, 𝜉) = (−2Re(a)∕𝜋)1∕4 exp((Re(𝜉))2∕4Re(a)) and the shorthand notation x𝜅,l = (x𝜅)l. That
is, each multi-dimensional FG corresponds to a product of one-dimensional FGs, or coherent states
[61–64].

Finally, the ansatz Eq. (12.23) is often restricted to a “GWP-only” wave function where no primary
modes are present (p = 0),

Ψ =
∑

J
AJ

f∏
𝜅=1

g(𝜅)j𝜅
(x𝜅 , t) (12.26)

A special case of this restricted form is employed in the variational Multi-Configurational Gaus-
sian (vMCG) scheme [22, 23, 65, 66] where all degrees of freedom are combined into a single
high-dimensional GWP (p = 0, f = 1),

ΨvMCG =
∑

j
Aj(t)gj(x, t) (12.27)

Assuming that Eq. (12.26) and Eq. (12.27) employ the FG type GWPs of Eq. (12.25), both wave
functions can be broken down into products of one-dimensional FGs. The difference lies in the
number of coefficients, noting that in Eq. (12.26), AJ ≡ Aj1 ,j2 ,…,jf

is a multi-index as in the original
MCTDH wave function form of Eq. (12.5). In contrast, vMCG does not employ an MCTDH type
structure of the wave function – i.e., superpositions of Hartree products with coefficients labeled
by multi-indices – such that the coefficients Aj of Eq. (12.27) are single-index quantities. Hence,
vMCG has the appeal of using the simplest GWP based wave function form, but does not benefit
from the reduction of the dynamical problem to low-dimensional subspaces, as further discussed
in Section 12.3.1.3.

12.3.1.2 G-MCTDH Equations of Motion
The derivation of the G-MCTDH equations of motion proceeds analogously to the MCTDH case,
but the wave function variation now includes terms that relate to the GWP parameters. A detailed
description of the derivation is given in Ref. [19]. In the general hybrid case of Eq. (12.23), the
G-MCTDH equations of motion combine a MCTDH-like evolution in the primary subspace with
the GWP evolution in the Gaussian subspaces. Differences from the MCTDH equations will
appear due to the non-orthogonality of the GWP basis function, and hence, the configurations of
Eq. (12.23).

In detail, the equations read as follows [19] for the time-dependent A coefficients,

iS
.

A = (H − i𝝉)A (12.28)

time-dependent primary-mode SPFs,

i .
𝝋

(𝜅) = (1̂ − P̂(𝜅))(𝝆(𝜅))−1 ⟨Ĥ⟩(𝜅) 𝝋(𝜅) (12.29)

and time-dependent GWP parameters 𝚲,

iC(𝜅) .
𝚲(𝜅) = Y (𝜅) . (12.30)

where the matrix C(𝜅) and vector Y (𝜅) are given as follows,

C(𝜅)
j𝛼,j′𝛽 = 𝜌

(𝜅)
jj′ ⟨𝜕𝛼g(𝜅)j |(1 − P̂(𝜅))|𝜕𝛽g(𝜅)j′ ⟩

Y (𝜅)
j𝛼 =

∑
j′
⟨𝜕𝛼g(𝜅)j |(1 − P̂(𝜅))Ĥ(𝜅)

jj′ |g(𝜅)j′ ⟩ (12.31)
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In Eq. (12.28), the Hamiltonian matrix elements HJJ′ = ⟨ΦJ |Ĥ|ΦJ′⟩ refer to the basis of configura-
tions, as in Eq. (12.17). However, the overlap matrix,

SJJ′ = ⟨ΦJ |ΦJ′⟩ = p∏
𝜅=1

𝛿j𝜅 l𝜅

f∏
𝜅=p+1

S(𝜅)
j𝜅 l𝜅

(12.32)

now appears in the coefficient equations Eq. (12.28), along with the differential overlap 𝜏JJ′ =⟨ΦJ |𝜕tΦJ′⟩, due to the non-orthogonality of the GWP basis. Similar EOMs for the time-evolving
coefficients appear in various GWP-based methods, including the AIMS approach [30] and the
MCE approach [31, 34]. These approaches are further discussed in Chapters 14 and 15, respectively.

In Eq. (12.31), 𝜕𝛼g(𝜅)j = (𝜕g(𝜅)j ∕𝜕Λ(𝜅)
j𝛼 ) denotes the partial derivatives with respect to the GWP

parameters, and Ĥ(𝜅)
jj′ represent the mean-field Hamiltonian operator as in Eq. (12.19). Further,

P̂(𝜅) is the orthogonal projector on the 𝜅th subspace, which in the case of a non-orthogonal basis
set is given by

P̂(𝜅) =
∑
j,j′

|g(𝜅)j ⟩((S(𝜅))−1)jj′⟨g(𝜅)j′ | (12.33)

with S(𝜅)
jj′ = ⟨g(𝜅)j |g(𝜅)j′ ⟩ the overlap matrix between the GWPs.

To summarize, the dynamical equations (12.28)–(12.31) combine (i) a modified EOM for the A
coefficients, taking into account the non-orthogonality of the hybrid configurations, (ii) the EOM
for the primary-mode SPFs which is formally unchanged as compared with the standard MCTDH
equations, and (iii) the new EOM for the GWP parameters, Eqs. (12.30)–(12.31).

The numerical scaling of the EOMs for the GWP parameters is determined by the solution of
the coupled linear differential equations Eqs. (12.30)–(12.31), which involves an inversion of the C
matrix in the standard implementation. Given the dimensionality (nd)2 of the C matrix, where n is
the number of GWPs in the 𝜅th subspace and d is the number of degrees of freedom combined in
a given FG mode, the numerical effort scales with (nd)3, growing rapidly with FG dimensionality.

12.3.1.3 vMCG Equations of Motion
In the vMCG scheme, pertaining to the wave function form Eq. (12.27), the EOMs Eq. (12.28) and
Eq. (12.30)–(12.31) simplify – while keeping their formal appearance – and the mean-field structure
disappears, along with the coupling to a primary subspace. The EOMs therefore take the following
form, for the A coefficients (cf. Eq. (12.28)),

iS
.

A = (H − i𝝉)A (12.34)

and time-dependent GWP parameters 𝚲 [19] (cf. Eq. (12.30)),

iC
.
𝚲 = Y (12.35)

where the matrix C and vector Y are now given as follows (cf. Eq. (12.31)),

Cj𝛼,j′𝛽 = 𝜌jj′⟨𝜕𝛼gj|(1̂ − P̂)|𝜕𝛽gj′⟩
Yj𝛼 =

∑
j′
⟨𝜕𝛼gj|(1̂ − P̂)Ĥjj′ |gj′⟩ (12.36)

where 𝜌jj′ = A∗
j Aj′ and the projector P̂ =

∑
jj′ |gj⟩((S)−1)jj′⟨gj′ | corresponds to Eq. (12.33) but now

spans the full space. As compared with the general G-MCTDH scheme, the number of GWP sub-
spaces is reduced to f = 1 and the primary modes have been eliminated (see also Eq. (12.27)). Due
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to the cubic scaling of the Gaussian EOMs with (nd)3, the increase of the vMCG numerical cost
with the dimensionality of the system is a critical issue.

For further details of the vMCG approach and its use as a direct dynamics method with on-the-fly
potentials, see Chapter 13.

12.3.2 2L-GMCTDH

Since parametrized functions such as GWPs are less flexible than the SPFs employed in standard
MCTDH, a larger number of GWPs are required to correctly represent the wave function in the
𝜅th subspace. Furthermore, GWPs of FG type are not well suited to describe correlations between
the combined degrees of freedom, which are represented as simple products of one-dimensional
GWPs. (In contrast, the original concept of combined-mode TGs relies on the fact that the latter
capture time-evolving correlations through the off-diagonal elements of the width matrix [19].) For
these reasons, it is desirable to seek new wave function representations which combine the GWP
representation with the flexibility of SPFs. This is the objective that led to the ML-GMCTDH – and
specifically 2L-GMCTDH – method [25–27] which will be discussed in the following.

12.3.2.1 Wave Function Ansatz
As detailed in Ref. [25], the 2L-GMCTDH method aims to remedy the shortcomings of the factoriz-
able FG Gaussian basis sets that are commonly employed in the G-MCTDH and vMCG approaches,
by introducing a hierarchically structured wave function composed of two layers. The first (“outer”)
layer contains flexible SPFs, as in the conventional MCTDH wave function ansatz,

Ψ(x, t) =
∑

J
AJ(t)ΦJ(x, t) =

∑
J

AJ(t)
f∏

𝜅=1
𝜒
(𝜅)
j𝜅

(x𝜅 , t) (12.37)

Differently from MCTDH, the SPFs 𝜒 (𝜅)
j𝜅

are now expressed as superpositions of multi-dimensional
FG Gaussians, which form the second (“inner”) layer,

𝜒
(𝜅)
j (x𝜅 , t) =

∑
L

B(𝜅)
j,L (t)G

(𝜅)
L (x𝜅 , t) =

∑
L

B(𝜅)
j,L (t)

f𝜅∏
𝜇=1

g(𝜅,𝜇)l𝜇
(x𝜅,𝜇, t) (12.38)

with multi-indices L = (l1, l2,… , lf 𝜅 ), l𝜇 ∈ {1, 2,… ,n𝜅,𝜇}, second-layer coefficients B(𝜅)
j,L (t) and

multi-dimensional FGs g(𝜅,𝜇)l (x𝜅,𝜇, t). The latter are defined as in Eq. (12.25) except for the addi-
tional indices labeling each GWP in the (𝜅, 𝜇) subspace. Hence, the wave function is of the same
type as the 2L-MCTDH wave function of Eqs. (12.20)–(12.21), but now contains GWPs in the
second layer.

In the above two-layer ansatz, the first-layer SPFs 𝜒 (𝜅)
j clearly have more flexibility than conven-

tional GWPs, due to the time-evolving B(𝜅)
j,L coefficients. Each second-layer GWP mode is uniquely

specified by the index pair (𝜅, 𝜇), where 𝜅 labels the first-layer mode and 𝜇 labels the second-layer
mode. The index l𝜇 runs over the basis set of second-layer GWPs g(𝜅,𝜇)l𝜇

which is of length n𝜅,𝜇 .
In line with the above representation, two types of projector will appear in the equations of

motion presented below: First, a projector onto the first-layer 𝜅th subspace:

P̂(𝜅) =
∑

j
|𝜒 (𝜅)

j ⟩⟨𝜒 (𝜅)
j | (12.39)

and, second, a projector onto the second-layer (𝜅, 𝜇)th subspace:

P̂(𝜅,𝜇) =
∑
l,l′

|g(𝜅,𝜇)l ⟩((S(𝜅,𝜇))−1)ll′⟨g(𝜅,𝜇)l′ | (12.40)
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where the latter is adapted to the non-orthogonal GWP representation, with S(𝜅,𝜇)
ll′ = ⟨g(𝜅,𝜇)l |g(𝜅,𝜇)l′ ⟩

the overlap matrix elements between the GWPs.
Following conventional MCTDH notation, the wave function of Eqs. (12.37)–(12.38) can further

be expressed in terms of products of SPFs and SHFs (see Eq. (12.11)),

Ψ =
∑

j
𝜒
(𝜅)
j 𝜓

(𝜅)
j =

∑
l

g(𝜅,𝜇)l 𝜓
(𝜅,𝜇)
l (12.41)

where 𝜓 (𝜅)
j and 𝜓 (𝜅,𝜇)

l refer to first-layer and second-layer SHFs, respectively,

𝜓
(𝜅)
j =

∑
J(𝜅)

AJ(𝜅∶j)ΦJ(𝜅) ,

𝜓
(𝜅,𝜇)
l =

∑
j

[∑
L(𝜇)

B(𝜅)
j,L(𝜇∶l)G

(𝜅)
L(𝜇)

]
𝜓

(𝜅)
j

(12.42)

Here we again used a shorthand notation for multi-indices and configurations, i.e., J(𝜅) =
(j1,… , j𝜅−1, j𝜅+1,… , jf ) , J(𝜅∶j) = (j1,… , j𝜅−1, j, j𝜅+1,… , jf ) and ΦJ(𝜅) =

∏
𝜅′≠𝜅𝜒 (𝜅′)

j𝜅′
. The quantities

L(𝜇) , L(𝜇∶l) and G(𝜅)
L(𝜇) are defined analogously.

Using the above definitions, first- and second-layer density matrices are defined in terms of the
overlap of the corresponding SHFs,

𝜌
(𝜅)
jj′ = ⟨𝜓 (𝜅)

j |𝜓 (𝜅)
j′ ⟩ , 𝜌

(𝜅,𝜇)
ll′ = ⟨𝜓 (𝜅,𝜇)

l |𝜓 (𝜅,𝜇)
l′ ⟩ (12.43)

As is seen below, the SHFs also appear in the mean fields for both layers.
Importantly, the gauge freedom of MCTDH permits us to keep the first layer of the wave function

representation orthogonal, while the second layer is composed of non-orthogonal GWP functions.
As detailed in Ref. [33], the construction of Eqs. (12.37)–(12.38) can be continued to an arbitrary
number of M SPF layers, the last of which is represented in terms of GWPs. This is entirely anal-
ogous to the standard multi-layer (ML-MCTDH) approach described in Section 12.2.3, except that
the last layer is represented by non-orthogonal functions.

12.3.2.2 Equations of Motion
The equations of motion for the two-layer G-MCTDH ansatz of Eqs. (12.37)–(12.38) involve cou-
pled non-linear differential equations for two types of time-dependent coefficients, i.e., first-layer
coefficients A and second-layer coefficients B(𝜅),

i
.

A = HA (12.44)

iS(𝜅) .
B(𝜅) = [H(𝜅) − i 𝝉 (𝜅)]B(𝜅) (12.45)

along with the equations of motion for the second-layer GWP parameters 𝚲(𝜅,𝜇),

iC(𝜅,𝜇) .
𝚲(𝜅,𝜇) = Y (𝜅,𝜇) (12.46)

The dynamical equations Eqs. (12.44)–(12.46) combine (i) a standard MCTDH-like EOM for
the first-layer A coefficients (due to the orthogonality of the first-layer SPFs), (ii) a G-MCTDH
like equation for the second-layer B(𝜅) coefficients (defined for a given 𝜅-subspace), and (iii) a
G-MCTDH like equation for the GWP parameters 𝚲(𝜅,𝜇), which are now defined for the (𝜅, 𝜇)th
subspace. By the two-layer structure, the GWP parameter evolution is restricted to low-dimensional
(𝜅, 𝜇)-subspaces, leading to a significant reduction of the numerical cost. This needs to be balanced
against the cost increase due to the additional second-layer coefficients.

In further detail, in Eq. (12.44) for the first-layer coefficients, the Hamiltonian matrix comprises
the elements

HJJ′ = ⟨ΦJ |Ĥ|ΦJ′⟩ (12.47)
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i.e., Hamiltonian matrix elements in the basis of the first-layer configurations. Further, the follow-
ing overlap matrix elements and Hamiltonian matrix elements pertaining to the 𝜅-subspace appear
in Eq. (12.45) for the second-layer coefficients,

S(𝜅)
jL,j′L′ = 𝛿jj′⟨G(𝜅)

L |G(𝜅)
L′ ⟩ , 𝜏

(𝜅)
jL,j′L′ = 𝛿jj′⟨G(𝜅)

L |𝜕tG
(𝜅)
L′ ⟩ (12.48)

H(𝜅)
jL,j′L′ =

⟨
G(𝜅)

L
||||(1 − P̂(𝜅))

[
(𝝆(𝜅))−1Ĥ

(𝜅)]
jj′

G(𝜅)
L′

⟩
(12.49)

where S(𝜅)
jL,j′L′ represents the overlap of second-layer configurations, and 𝜏 (𝜅)jL,j′L′ represents the cor-

responding differential overlap element. In Eq. (12.49), 𝜌(𝜅)jj′ denotes the overlap of the first-layer
SHFs, see Eq. (12.43), and Ĥ(𝜅)

jj′ = ⟨𝜓 (𝜅)
j |Ĥ|𝜓 (𝜅)

j′ ⟩ denotes the first-layer mean fields, while P̂(𝜅) is the
orthogonal projector of Eq. (12.39).

Finally, in Eq. (12.46) for the GWP parameter vector, the C(𝜅,𝜇) matrix and Y (𝜅,𝜇) vector of the
(𝜅, 𝜇)-subspace have the following elements:

C(𝜅,𝜇)
l𝛼,l′𝛽 = 𝜌

(𝜅,𝜇)
ll′

⟨
𝜕𝛼g(𝜅,𝜇)l

|||(1 − P̂(𝜅,𝜇))||| 𝜕𝛽g(𝜅,𝜇)l′

⟩
(12.50)

Y (𝜅,𝜇)
l𝛼 =

∑
l′

⟨
𝜕𝛼g(𝜅,𝜇)l

|||(1 − P̂(𝜅,𝜇))Ĥ(𝜅,𝜇)
ll′

||| g(𝜅,𝜇)l′

⟩
(12.51)

where we again used a shorthand notation for the partial derivatives with respect to the GWP
parameters, 𝜕𝛼g(𝜅,𝜇)l = (𝜕g(𝜅)l ∕𝜕Λ(𝜅,𝜇)

l𝛼 ). Further, 𝜌(𝜅,𝜇)ll′ denotes the overlap of the second-layer single
hole functions and Ĥ(𝜅,𝜇)

ll′ = ⟨𝜓 (𝜅,𝜇)
l |Ĥ|𝜓 (𝜅,𝜇)

l′ ⟩ represents the second-layer mean fields.
Additional details regarding the derivation of Eqs. (12.44)–(12.46), along with the generalization

to a multi-layer (ML-GMCTDH) method can be found in Ref. [25].

12.4 Quantum-Classical Multi-Configurational Approaches

The GWP parameter dynamics, which result from the application of the DFVP to a parametrized
wave function [48], exhibit a symplectic structure – very similar to Hamilton’s equations of clas-
sical mechanics. This structure follows from the analogy of the quantum Lagrangian L = ⟨H⟩ −
i
∑
𝛼⟨Ψ|(𝜕Ψ∕𝜕Λ𝛼)⟩ .

Λ𝛼 and the classical Lagrangian L = H − p .q [45, 46, 48, 63]. In this sense, the
Gaussian parameter dynamics is indeed pseudo-classical, and reduces to the classical equations of
motion if applied to a single GWP [59, 60].

Given that the G-MCTDH approach can be interpreted as a hybrid quantum-semiclassical
method, it is therefore natural to explore the quantum-classical limit of this approach. This line of
investigation has been pursued in Refs. [33, 34] and will be summarized in the present section.

12.4.1 Quantum-Classical Limit of G-MCTDH

Specifically, we consider the following simple G-MCTDH type wave function, following Ref. [33],

Ψ(r, x, t) =
J∑

j=1

L∑
l=1

Bjl(t)𝜑j(r, t)gl(x;𝚲l(t)) (12.52)

where r is the quantum variable while x is going to be taken to the classical limit. In the
quantum-classical limit, the FG wave packet gl(x;𝚲l(t)) of Eq. (12.52) is effectively contracted to a
phase-space point, by a scaling procedure detailed in Ref. [33], such that

Ψ𝜀(r, x, t) =
J∑

j=1

L∑
l=1

Bjl(t)𝜑j(r, t)e
i
𝜀

Scl
l (t)g𝜀l (x;ql(t),pl(t)) (12.53)
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where 𝜀 → 0 defines the classical limit [33], noting that we formally use ℏ = 1. The phase factors
involve the classical action Scl

l (t), and the scaled FG wave packet is given as

g𝜀l (x;ql(t),pl(t)) = N𝜀 exp
[
(x − ql(t))Tal(x − ql(t))∕𝜀 +

i
𝜀

pT
l (t)(x − ql(t))

]
(12.54)

In the following, we will consider the case of a quantum subspace comprising a discrete electronic
basis |n⟩ such that the 𝜀-scaled wave function takes the form

|Ψ𝜀(x, t)⟩ = N∑
n

L∑
l

Bnl(t)e
i
𝜀

Scl
l (t)g𝜀l (x;ql(t),pl(t))|n⟩ (12.55)

In the context of MCTDH, this type of wave function ansatz corresponds to the so-called single-set
form [3] for non-adiabatic dynamics. Eq. (12.55) also corresponds to a semiclassically scaled variant
of a vMCG [23] wave function in single-set form [24]. Application of the DFVP now yields equations
where the Bj,l coefficients are found to be decoupled for different l ≠ l′, i.e., configurations associ-
ated with different trajectories (ql,pl) evolve independently:

i
.
Bl = H(ql) Bl (12.56)

where Bl = (B1l,B2l,… ,BNl)T and the Hamiltonian matrix relates to the quantum subspace Hamil-
tonian augmented by the interaction potential evaluated at the classical position ql,

Ĥnn′ (ql(t)) = hnn′ + V̂nn′ (x = ql(t)) (12.57)

where the Hamiltonian is assumed to take a generic diabatic form Ĥ(x) =
∑

n,n′ (hnn′ +
V̂nn′ (x))|n⟩⟨n′|. From the DFVP, one further obtains classical evolution equations for the
scaled Gaussians,

.ql = pl
.pl = −∇ql

V̄l(ql) (12.58)

where the mean-field potential is given as

V̄l(ql) =

[∑
n

|Bnl|2
]−1 ∑

n

∑
n′

B∗
nlBn′l⟨n|V̂(x = ql)|n′⟩ (12.59)

In the following, we will employ the normalization condition
∑

n|Bnl|2 = 1.
The above equations, i.e., Eq. (12.56) and Eqs. (12.58)–(12.59) correspond to the standard Ehren-

fest equations [67, 68], such that the wave function of Eq. (12.55) can be interpreted as a sum of
independently evolving Ehrenfest configurations |Φqc

l (x, t)⟩,
|Ψ𝜀(x, t)⟩ = L∑

l=1
|Φqc

l (x, t)⟩ (12.60)

where the quantum-classical (qc) Ehrenfest configurations are given by

|Φqc
l (x, t)⟩ = N∑

n=1
Bnl(t)e

i
𝜀

Scl
l (t)g𝜀l (x;ql(t),pl(t))|n⟩ (12.61)

Hence, the wave function Eq. (12.60) can be denoted a Multi-Configuration Ehrenfest (MCE)
form (which is, however, different from the MCE approaches introduced in Refs. [31, 32]). In the
quantum-classical wave function Eq. (12.60), phase information is kept by attaching the phase
factor exp( i

𝜀
Scl

l (t)) to each trajectory. However, due to the vanishing overlap of the trajectory-like
g𝜀l functions, decoherence is effectively induced in the quantum subsystem.
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12.4.2 Quantum-Classical Scheme with Finite-Width Wave Packets

In applications to molecular systems, the vibrational motions are not truly classical, but rather of
semiclassical nature. Therefore, we return to the finite-width GWPs of Eq. (12.52), and combine
these with the classical-limit dynamics of Eqs. (12.56)–(12.59). When doing so, it turns out,
though, that the resulting dynamics is inconsistent since the normalization of the wave function
is not conserved.

To impose norm conservation, we associate an additional set of coefficients Al with each Ehren-
fest configuration, and determine these coefficients from the DFVP. The modified wave function
ansatz is given as follows [34],

|Ψ(x, t)⟩ = L∑
l=1

Al(t)|Φl(x, t)⟩ (12.62)

where the Ehrenfest configurations (now omitting the “qc” superscript) are given as

|Φl(x, t)⟩ = N∑
n=1

Bnl(t)gl(x; Λl(t)) |n⟩ (12.63)

Here, the GWPs are taken to follow the classical equations of motion Eq. (12.58) even though they
are in practice finite-width wave packets. All phase factors have now been absorbed into the wave
function coefficients (as in Eq. (12.25)) such that the phase depending on the classical action no
longer appears explicitly.

The resulting equations of motion read as follows [34],

iS
.

A = (H̃ − i𝝉) A (12.64)

i
.
Bl = H(ql) Bl (12.65)
.ql = pl

.pl = −∇ql
V̄l(ql) (12.66)

where Eqs. (12.65)–(12.66) are unchanged from Eq. (12.56) and Eq. (12.58) while the new equation
Eq. (12.64) determines the variational time evolution of the A coefficients.

All matrix elements appearing in the equation for the A coefficients are formulated in the basis
of Ehrenfest configurations |Φl⟩ and read explicitly as follows,

H̃lk = ⟨Φl|Ĥ|Φk⟩ = ∑
n

∑
n′

B∗
nlBn′k⟨n|⟨gl|Ĥ|gk⟩|n′⟩ (12.67)

and similarly for the overlap matrix elements

Slk = ⟨Φl|Φk⟩ = ∑
n

B∗
nlBnk⟨gl|gk⟩ (12.68)

and for the differential overlap matrix element,

𝜏lk = ⟨Φl| .
Φk⟩ = ∑

n
(B∗

nl
.
Bnk⟨gl|gk⟩ + B∗

nlBnk⟨gl| .gk⟩) (12.69)

In the last two equations, we used the orthogonality of the primitive electronic basis |n⟩.
In Eq. (12.69), the derivative matrix element on the right hand side can be evaluated using
.gk =

∑
𝛼(𝜕gk∕𝜕Λk𝛼)

.
Λk𝛼 where the parameters Λk𝛼 constitute the parameter vector, 𝚲k = {Λk𝛼}. As

a result, all matrix elements can be expressed as Gaussian moments.
Eqs. (12.65)–(12.66) are no longer fully variational, in contrast to Eq. (12.56) and Eq. (12.58)

which are variational in the quantum-classical limit 𝜀→ 0. However, the equation for the B coef-
ficients is variational in a weaker sense: namely, the application of the DFVP to a single Ehrenfest
configuration yields Eq. (12.56), if the phase relation Im .

𝜇 = p ⋅
.q∕ℏ is fulfilled.
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12.4.3 Related Approaches

The wave function ansatz of Eqs. (12.62)–(12.63), with variational coefficients Al but
non-variational Ehrenfest configurations Φl is equivalent to the MCEv2 (i.e., MCE version
2) ansatz described by Shalashilin [32], except for the phase convention that is employed. This
approach uses superpositions of independently evolving Ehrenfest configurations, in contrast to
the MCEv1 approach [31] where these configurations are permitted to interact. While the latter
approach is more flexible, MCEv2 is very convenient to use due to the independent evolution of
the configurations. Notably, MCEv2 has been employed in on-the-fly AIMC-MCE calculations
[69]. However, as detailed in Ref. [70] and also in our recent work [34], sampling strategies are a
critical issue in the application of MCE.

A related hierarchy of Ehrenfest methods based on the vMCG ansatz has been presented in
Ref. [73], while a recent approximate approach, starting from the exact factorization ansatz of Gross
and co-workers [72] (see Chapter 17), can also relate vMCG to an Ehrenfest picture while retaining
the GWP couplings [74]. In the context of on-the-fly calculations, Chapter 15 addresses the use of
Ehrenfest methods.

In the general context of MCE type dynamics, it should be emphasized that energy is not a strictly
conserved quantity, in contrast to fully variational schemes like G-MCTDH or vMCG. This short-
coming is common to all quantum methods that are based on classically moving Gaussians [34, 71].

12.5 How to use MCTDH & Co

The MCTDH method and its variants have been implemented in several publicly available pack-
ages, notably the Heidelberg MCTDH code [75] and more recently the QUANTICS package [76, 93].
The code of the latter package largely matches the Heidelberg MCTDH code, but also includes a
GWP based branch with an implementation of the vMCG and G-MCTDH methods (where vMCG
naturally arises as a special case of G-MCTDH as explained in Section 12.3.1). Both codes have
been extensively optimized and employ, e.g., integration schemes – notably the constant mean field
(CMF) integrator – that are specifically tailored to the MCTDH equations. Furthermore, various
development versions exist; e.g., all 2L-GMCTDH and MCE calculations reported in this chapter
have been carried out with an in-house code of the Frankfurt group.

All MCTDH type codes combine the integration of time-dependent wave function coefficients
(e.g., Eq. (12.17)) with the integration of time-dependent SPFs (e.g., Eq. (12.18)), or the corre-
sponding equations for GWP based approaches (i.e., Eq. (12.28) and Eq. (12.30) in the G-MCTDH
case). In the MCTDH and ML-MCTDH methods, the SPFs are expressed in a primitive basis of
time-independent DVR functions as mentioned in Section 12.2.2.2. In this sense, the standard
MCTDH approach can be understood as a two-layered method. In contrast, the GWP based
schemes obviate the distinction between the SPF basis and the primitive basis, since the GWPs are
directly represented by the time-dependent parameter vector 𝚲(t), and the equations of motion
are formulated in terms of the latter.

Initial conditions are specified in terms of one or more initially occupied configurations, whose
coefficients and SPFs or GWPs are indicated. For example, in the case of FG type GWPs, initial
positions and momenta have to be specified. Time propagation also requires initial conditions for
initially unoccupied SPF or GWP functions, which are often fixed automatically by the program;
e.g., in the case of GWPs, a regular distribution on a coordinate space or phase space grid could be
chosen, with grid spacings that avoid initial linear dependencies.
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Many useful details on the set-up of MCTDH calculations, which largely carry over to the related
methods and implementations, can be found in the User’s Guide of the Heidelberg MCTDH
Package [77].

12.6 Synopsis and Application to Donor–Acceptor Complex

In this section, we illustrate the methods addressed above for a non-adiabatic coupling situation
in a donor–acceptor (DA) system composed of an oligothiophene (OT4) donor moiety and a
fullerene (C60) acceptor moiety. This system is a minimal model for the description of charge
transfer in a paradigm DA system of organic photovoltaics, composed of poly-3-hexylthiophene
(P3HT) and phenyl-C61 butyric acid methyl ester (PCBM) components [78–80]. The P3HT-PCBM
system exhibits ultrafast charge transfer dynamics, on a time scale of ∼ 50 fs to 200 fs [79, 80]. In
a previous study [41, 42] we employed a Linear Vibronic Coupling (LVC) Hamiltonian in con-
junction with the MCTDH method to describe the ultrafast, coherent electron transfer dynamics
in this system. The Hamiltonian was parametrized by electronic structure calculations using
long-range-corrected density functional theory and the diabatization procedure described in Ref.
[41], along with an ab initio generated spectral density of the phonon modes of the DA complex.
In Refs. [81–84], extensions of this model to multiple electronic states are described.

12.6.1 Hamiltonian, Spectral Densities, and Potential Surfaces

The above mentioned LVC model describes the coupling of an excitonic donor state (OT∗
4-C60),

denoted XT, to a charge separated state (OT+
4 -C−

60), denoted CT. As illustrated in Figure 12.3, this
type of model can be employed either to molecular building blocks or else to coarse-grained units
where, e.g., a fullerene “super-particle” is constructed [81–84].
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Figure 12.3 (a) Schematic representation of a OT4-C60 donor–acceptor model complex representative of a
P3HT-PCBM interface; here, the elementary building blocks are either molecular units or else coarse-
grained “super-particles” as illustrated for the PCBM domain. (b) Vibronic couplings {𝜅i} pertaining to the
OT4-C60 system described in Refs. [41, 42], for various re-discretizations, for Nbath = 39, 59, 99 modes. The
resulting discretized spectral densities J(𝜔) = (𝜋∕2)

∑Nbath

i=1 𝜅2
i 𝛿(𝜔 − 𝜔i) yield the same dynamical evolution

for times t < 𝜏P where 𝜏P = 2𝜋∕Δ𝜔 is the Poincaré recurrence time.
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The XT/CT two-state Hamiltonian is a function of N nuclear coordinates and can be cast in the
form of a system-bath Hamiltonian [42],

Ĥ = Ĥ0 + ĤR + ĤB (12.70)

where Ĥ0 refers to the electronic part,

Ĥ0 = −ΔXT-CT|CT⟩⟨CT| + 𝛾(|XT⟩⟨CT| + |CT⟩⟨XT|) (12.71)

while ĤR is a vibronic part of the Hamiltonian depending on the inter-fragment distance coordinate
R (see Figure 12.3(a)),

ĤR =
𝜔R

2
(R̂2 + P̂2) + 𝜅RR̂|CT⟩⟨CT| + 𝛾RR̂(|XT⟩⟨CT| + |CT⟩⟨XT|) (12.72)

and ĤB represents a collection of Nbath = N − 1 intra-molecular “bath” modes pertaining to the
oligothiophene and fullerene fragments. These are taken to be diagonally coupled to the CT state,
assuming that the reference equilibrium geometry refers to the XT state,

ĤB =
Nbath∑
i=1

𝜔i

2
(x̂2

i + p̂2
i ) +

Nbath∑
i=1

𝜅ix̂i|CT⟩⟨CT| (12.73)

In Eqs. (12.70)–(12.73), ΔXT-CT is the electronic offset, 𝛾 is a coordinate-independent diabatic
coupling, 𝜅R and 𝛾R are electronically diagonal and off-diagonal vibronic couplings due to the
intermolecular R-mode, and {𝜅i} describe electronically diagonal vibronic couplings of the bath
modes. The above Hamiltonian employs mass- and frequency-weighted coordinates throughout.
All parameters of the model are specified in Ref. [42].

As mentioned above, the vibronic coupling parameters 𝜅R and {𝜅i} express the displacement of
the CT equilibrium geometry from the XT reference geometry. These couplings were determined
by projecting the displacement between the XT and the CT minima onto normal mode coordi-
nates for the separate OT+

4 and C−
60 fragments, for 246 normal modes in total for both fragments

[42]. The discrete distribution of electron–phonon couplings in the original normal-mode repre-
sentation is subsequently used to construct a smooth spectral density function J(𝜔), representing a
continuous density of modes that gives a better description of the high-dimensional polymer sys-
tem. Here, we refer to a realization of this spectral density obtained with a Lorentzian broadening
with width parameter Δ = 0.25 Δ0, where Δ0 = 4.36 10−4 a.u. (96 cm−1) corresponds to the RMS of
the sampling distance of the original data (see Ref. [42] for details). Finally, the continuous spectral
density J(𝜔) can be re-discretized with an arbitrary number of Nbath bath modes with an equidistant
sampling interval Δ𝜔 such that several set-ups with variable dimensionality are generated [85, 86].

Using this re-discretization scheme, three realizations of ĤB were obtained with Nbath = 39, 59
and 99 modes, shown in Figure 12.3(b). The corresponding Poincaré recurrence times 𝜏p = 2𝜋∕Δ𝜔
are given as 446, 676, and 1135 fs. The different bath sizes allow us to explore the effect of the
dimensionality on the performance and the convergence of the various propagation methods.

In Figure 12.4, the diabatic and adiabatic potential energy surfaces (PES) pertaining to the LVC
Hamiltonian are plotted as a function of the inter-fragment coordinate R̂ and an effective “Brown-
ian oscillator” mode defined as Q̂ = (1∕D)

∑
i𝜅ix̂i [87] which subsumes the coupling of the bath

modes to the electronic subsystem and determines the short-time dynamics. In our dynamical
simulations, the wave packet starts at the minimum of the XT potential, representing a relaxed
exciton state. Due to the fact that the XT-CT coupling and the electronic offset take similar val-
ues, 𝛾 ≃ ΔXT-CT, the wave packet starts to oscillate between the two diabatic states. Eventually, the
system relaxes to a quasi-stationary state which is predominantly of CT character (∼90%) with
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Figure 12.4 Diabatic (a) and adiabatic (b) representations of the PESs pertaining to the Hamiltonian Eqs.
(12.70)–(12.73) shown as a function of the R coordinate and of an effective mode defined as Q̂ = 1∕D

∑
i𝜅i x̂i

[87] which subsumes the coupling of the bath modes to the electronic subsystem. The trajectories
correspond to state-specific expectation values in the diabatic versus adiabatic representation, departing
from the initial condition on the XT surface, marked by a circle. The concerted oscillatory motion in the
diabatic representation (panel (a)) indicates that the wave packet exhibits a sustained coherent
superposition of the portions belonging to the two diabatic states. In contrast, the residual wave packet
portion in the upper adiabatic state essentially remains stationary (see panel (b)). Adiabatic coordinate
expectation values were calculated for a 20-mode system using a simplified diabatic-to-adiabatic
transformation along the paths defined by the full set of time-evolving coordinate expectation values.
Reprinted from Ref. [34] with the permission of AIP Publishing.

a non-negligible XT admixture (∼10%). When evolving towards the quasi-stationary state, about
0.5 eV of excess energy is transferred to the bath modes. At the same time, the R coordinate is dis-
placed to negative values, indicating a reduction of the inter-fragment distance. As illustrated by
the time-evolving state-specific expectation values in Figure 12.4, concerted oscillations of the XT
and CT portions of the wave packet are observed throughout the simulation interval.

12.6.2 Ultrafast Coherent Charge Transfer Dynamics

In Figure 12.5, time-evolving populations of the initially occupied XT state are shown along with
the concomitant dynamics of the electronic coherences,

𝜌XT,CT(t) = Tr{|CT⟩⟨XT|𝜌(t)} (12.74)

Here, the imaginary part Im𝜌XT,CT determines the transient state-to-state population flux,
ΓXT,CT = (−2𝛾∕ℏ)Im𝜌XT,CT where 𝛾 is the diabatic coupling, while the real part Re𝜌XT,CT captures
the quasi-stationary XT-CT superposition that was mentioned above [42].

As illustrated in Figure 12.5, the coherent evolution between the two states plays an important
role throughout the dynamics. The initial oscillatory decay of the XT state mirrors the profile of
Im𝜌XT,CT(t) which decays to zero within about 50 fs. Beyond this time, the XT state population
correlates with the real part of the electronic coherence, Re𝜌XT,CT (panel (b)), which tends towards
a quasi-stationary value indicating that the lower adiabatic state is reached within approximately
100 fs.
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Figure 12.5 Time-dependent XT state population (left panels) and real and imaginary parts of the
electronic coherence 𝜌XT,CT (right panels) are shown for different sizes of the bath (N = Nbath+1 = 100, 60,
40 modes) and different propagation methods, from MCTDH and ML-MCTDH to G-MCTDH and 2L-GMCTDH,
MCE and statistical Ehrenfest. A detailed discussion of the results is given in the text.

In the following, we comment on the performance of the various methods for this system.

12.6.3 Comparison of Methods

The results shown in Figure 12.5 range from a 100-mode realization to 60-mode and 40-mode real-
izations of the system. As mentioned above, the resulting dynamics is identical a priori, since the
observation window lies below the respective Poincaré times.

In panel (a), for the 100-mode system, a converged 2L-GMCTDH calculation is compared with
a ML-MCTDH reference propagation comprising M=6 layers. (Details of the latter calculation are
provided in the Supp. Mat. of Ref. [27]). Both for the ML-MCTDH reference calculation and for
the 2L-GMCTDH calculation, a single-set type wave function is employed. The partitioning of the
2L-GMCTDH calculation is illustrated in Figure 12.6; here, the bath modes are combined into 20- to
30-dimensional first-layer particles, which are in turn split into three or four second-layer particles.
The intermolecular R mode is taken separately as a one-dimensional particle.
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Figure 12.6 Two-layer tree for the 2L-GMCTDH calculation for a 100-mode system using a single-set
set-up [27]. The numbers indicated inside the ellipses representing second-layer particles give the number
of combined modes, and the numbers shown at the edges of the graphs indicate the number of first-layer
and second-layer SPFs. Reprinted from Ref. [27] with the permission of AIP Publishing.

For the 60-mode system, a conventional MCTDH calculation is feasible, which compares well
with the ML-MCTDH result, as shown in panel (b). However, a much higher computational cost
arises for the MCTDH calculation (see Table 12.1).

In the above calculations for a rather large number of degrees of freedom, convergence is con-
tingent upon the multi-configurational partitioning of the wave function. For the more approxi-
mate methods that do not employ any partitioning into subspaces – notably the vMCG and MCE
approaches – convergence is out of reach for 60 or more modes. Hence, results for these more
approximate methods are now discussed for a 40-mode realization, where these methods are able
to approach the exact result.

Table 12.1 Complementary to the discussion of Section 12.6.3, the performance
of different methods in terms of CPU times and memory requirements is
illustrated. The Heidelberg MCTDH code [75] was employed for MCTDH and
ML-MCTDH calculations, along with a predecessor version of the QUANTICS
package [76] for the G-MCTDH and vMCG calculations, as well as an in-house code
(Frankfurt University) for the 2L-GMCTDH and MCE calculations.

Number of
modes Method

Number of
coefficients

CPU
time [s]

RAM
[MB]

40 MCTDH 143 616 1310 264
40 G-MCTDH hybrid 143 616 791 34
40 G-MCTDH GWP only 143 616 4966 35
40 G-MCTDH GWP only 2 890 080 37 167 652
40 vMCG (2,2) 4 3879 2
40 vMCG (6,6) 12 33 455 14
40 vMCG (10,10) 20 109 161 37
40 vMCG (12,12) 24 189 871 53
40 vMCG (14,14) 28 311 647 72
40 MCE, 2000 traj. 2000 607 860 57
60 MCTDH 18 040 320 56 989 3394
60 ML-MCTDH, M=6 65 433 9152 13

100 2L-GMCTDH, single-set 15 021 14 588 20
100 ML-MCTDH, M=6 46 501 36 488 13
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Panels (c)–(f) show various results using the MCTDH, G-MCTDH, vMCG, MCE, and Ehrenfest
approaches. Among the GWP-based methods, it turns out that only the G-MCTDH calculations are
well converged (panel (c)). The vMCG results are rather poor for two GWPs per state, but improve
quite significantly for 12 GWPs per state (panel (d)). Interestingly, the vMCG calculation with two
GWPs shows a large deviation of the real part of the electronic coherence, Re𝜌XT,CT, and is appar-
ently not suitable to describe the XT-CT quasi-stationary coherent superposition that characterizes
the asymptotic state.

The MCE and Ehrenfest calculations shown in panels (e)–(f) illustrate that approximate conver-
gence is feasible for MCE, using 2000 GWPs, with an enhanced sampling approach as detailed in
Ref. [34]. In contrast, the standard statistical Ehrenfest approach – here employed for 5000 trajecto-
ries, using Wigner function sampling – is not able to correctly describe the system’s time evolution.
The reason for this is clearly the failure of the Ehrenfest method to correctly describe the XT-CT
coherent superposition state, as is seen from the incorrect representation of Re𝜌XT,CT on the right
hand side of panel (f). This is not unexpected, given the failure of the Ehrenfest method to cap-
ture detailed balance [88, 89]. On the shortest time scales, the deviations are even larger than in
the vMCG calculations restricted to two GWPs. A detailed assessment of the MCE vs. Ehrenfest
schemes for the 40-mode case is given in Ref. [34].

Table 12.1 summarizes the performance of the different methods, in terms of CPU times and
memory requirements. All GWP based methods are favorable in terms of memory requirements,
but CPU times vary significantly depending on the degree of mode combination and the hierar-
chical construction of the wave function. Clearly, multi-layer methods – both ML-MCTDH and
2L-GMCTDH – show a very favorable scaling.

12.7 Conclusions and Outlook

Over the past few decades, high-dimensional quantum dynamics has made big strides due to the
advent of the MCTDH method. The variational, multi-configurational approach is a systematic
route towards accurate, correlated quantum dynamics. Recently introduced multi-layer variants
permit the treatment of correlations to be carried out for hundreds of modes. Current progress
at the interface of chemistry, physics, and mathematics, benefits from the connections between
MCTDH and low-rank tensor approximation schemes, leading to new developments.

While high-dimensional wave function methods are often seen as disjoint from trajectory-based
methods, this chapter attempts to show that the multi-configurational approach permits a smooth
transition from a fully quantum, to a semiclassical and quantum-classical treatment. This transi-
tion is best understood from the viewpoint of the Gaussian-based MCTDH method, i.e., G-MCTDH,
whose EOMs involve non-classically coupled evolution of the moving Gaussian basis. This chapter
shows how several variants – including vMCG and ML-GMCTDH – emerge and how these methods
perform as a function of the dimensionality and correlations of the system. Furthermore, an addi-
tional step is made towards classically evolving Gaussians, as employed in the multi-configuration
Ehrenfest scheme [34], and we analyzed to what extent these different types of methods are able to
capture quantum coherent dynamics.

Regarding the spin-boson type system that was chosen as an application to non-adiabatic dynam-
ics in many dimensions, we conclude that despite the near-harmonic dynamics in the bath sub-
spaces, the system provides an informative testbed for a comparative study. Besides the necessity
of employing multi-configurational approaches to achieve convergence in the higher-dimensional
simulations, a key criterion for the convergence of the dynamics is the correct representation of the
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electronic coherence evolution. While the statistical Ehrenfest approach clearly falls short of this
requirement, the MCE method is able to reach convergence, albeit at a high numerical cost.

Due to the multi-configurational wave function form employed in MCTDH type methods, poten-
tial energy surfaces need to be fitted to a sum-over-products form. While this is a restriction a
priori – especially in the context of on-the-fly dynamics – various novel PES fitting strategies, includ-
ing neural network fitting [90, 91] and other schemes, potentially alleviate this constraint. Hence,
the direct use of MCTDH and related schemes in on-the-fly applications is in reach [92, 94]. In this
context, complementary approaches can be pursued where trajectory-based on-the-fly information
can be employed as input to accurate quantum propagation.
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Abstract

This chapter provides an overview of the variational multi-configurational Gaussian (vMCG) approach,
which belongs to the family of Gaussian wave packet (GWP) methods. It is based on similar grounds
to the spawning and related approaches (see Chapter 14), but has explicit coupling between the GWP
quantum amplitudes. This means that it relies on “quantum trajectories” followed by the centers
of the GWPs, rather than classical ones. By this, it is to be understood that the mean positions and
momenta are specifically obtained from equations of motions derived from a variational solution to the
time-dependent Schrödinger equation (TDSE), in addition to the expansion coefficients, thus resulting
in a favorable convergence on the exact solution. GWP methods are attractive ways to solve the TDSE,
alternative to grid-based methods such as the multi-configurational time-dependent Hartree (MCTDH)
approach (see Chapter 12). Their main advantage is that they provide a way to run direct dynamics with
quantum nuclei, whereby the potential-energy surfaces and non-adiabatic couplings are calculated
on-the-fly, much as in trajectory-based approaches (see Chapters 13–17). This is achieved via an
interface between quantum-dynamics and quantum-chemistry programs. The direct dynamics variant
of vMCG is known as DD-vMCG. The implementation of the method and its performance will be illus-
trated with three examples: salicylaldimine to show phase-space coverage and tunneling, the butatriene
cation to demonstrate how it works within a non-adiabatic context, and formamide to exemplify direct
dynamics.

13.1 Historical Background

Using Gaussian wave packets (GWPs) for solving the time-dependent Schrödinger equation (TDSE)
and simulating quantum nuclear dynamics within molecular systems dates back to the seminal
work of Heller [1, 2]. Such basis functions provide a link between the delocalized description of
quantum mechanics with wave packets and the localized, trajectory-based, description of classical
mechanics. GWP-based methods thus provide a way to run direct quantum dynamics, calculating
the potential-energy surfaces and non-adiabatic couplings on-the-fly, thus bypassing a big bottle-
neck to practical simulations while still including all quantum effects.

Quantum Chemistry and Dynamics of Excited States: Methods and Applications,
First Edition. Edited by Leticia González and Roland Lindh.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.
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Originally, Heller used a single GWP, which in one dimension (coordinate x) has the form [1]

g(x, t) = exp
[ i
ℏ
(𝛼(t)(x − q(t))2 + p(t)(x − q(t)) + 𝛾(t))

]
, (13.1)

to approximate the time evolving wave packet. In this, 𝛼(t), proportional to the squared recipro-
cal width, the mean position and momentum, q(t) and p(t), and the complex phase, 𝛾(t), are all
time-dependent parameters. It was shown that in a solution of the TDSE, {q(t), p(t)} follow a classi-
cal trajectory in phase space, 𝛼(t) oscillates with time, while the real part of 𝛾(t) carries the quantum
information along the trajectory and is known as the action (its imaginary part is related to the norm
of the wave packet).

Extending this to a multi-dimensional case, when the reciprocal width becomes a matrix with
off-diagonal elements carrying the correlation between nuclear coordinates, is straightforward
[3]. It is a standard result of quantum mechanics to show that in a harmonic potential energy a
time-evolving GWP is the exact solution, and it is assumed to be a reasonable solution in other
cases when the potential energy is changing slowly compared to the width. This approximation
has been used in a number of studies, but gives good results only for simple systems and very short
timescales. The single thawed GWP ansatz, with time-dependent width, is simply not flexible
enough to follow a real molecular system.

To improve this, Heller introduced the idea of describing the wave packet by a superposition of
frozen GWPs with constant widths [2],

Ψ(x, t) =
∑

j
gj(x, t) , (13.2)

each following a different classical trajectory. Much work has been done to make the frozen Gaus-
sian superposition a useful, general method by connection to semiclassical approaches [4–6] and
the use of a variational minimum error method [7–9]. Despite the promise of a simple scheme,
however, GWP propagation was found to be numerically very unstable.

A resurgence of interest, continuing to the present day, was driven by the development of the
spawning algorithm of Martínez, Ben-Nun, and Levine [10, 11] (see Chapter 14). This uses an
expansion of frozen GWPs with redundant coefficients,

Ψ(x, t) =
∑

j
Aj(t)gj(x, t) . (13.3)

The GWPs still follow classical trajectories, but the coefficients evolve so as to variationally solve
the TDSE within the GWP basis set, much as in any multi-configurational time-dependent method.
The redundant coefficients are helpful for the stability of the method, as the GWPs can be kept as
normalized functions with constrained phases.

Spawning has pioneered direct quantum dynamics whereby potential-energy surfaces and
non-adiabatic couplings are provided on-the-fly [12, 13] via an interface to quantum chemistry. In
this form, known as ab initio multiple spawning (AIMS), the spawning method and other related
ones (see Chapter 14) have become powerful tools for simulating non-adiabatic dynamics in
photoexcited molecules.

The subject of the present chapter is a method termed variational multi-configurational Gaussian
(vMCG), with its direct dynamics variant being known as DD-vMCG, in which the GWPs no longer
follow classical trajectories. Instead, it stems from the multi-configurational time-dependent Hartree
(MCTDH) method (see Chapter 12), where a fully variational solution to the TDSE is derived using
a time-dependent basis set of low-dimensional functions for different parts of the system which are
coupled through mean-field operators. The Gaussian MCTDH (G-MCTDH) scheme uses GWPs as
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the basis functions, either for all or a subset of degrees of freedom. If multi-dimensional GWP basis
functions are used that include all degrees of freedom of the system, the approach boils down to
a GWP-based method, namely vMCG. As a result of the fully variational development, the vMCG
GWPs do not follow classical trajectories, and it is thus expected that fewer basis functions are
required for a given convergence threshold.

A description of the vMCG and DD-vMCG methods is given in a number of the original papers
as their development proceeded [14–24]. Here we summarize the general formalism of the vMCG
method and illustrate the principles of its current direct dynamics implementation in the Quantics
quantum-dynamics package [25] with three examples: salicylaldimine to show phase-space cov-
erage and tunneling, the butatriene cation to demonstrate how it works within a non-adiabatic
context, and formamide to exemplify direct dynamics.

13.2 Basic Theory

13.2.1 Gaussian Wave Packets

Before entering into the details of the vMCG machinery, it is useful to recall some basic properties
of GWPs expressed in various ways. A one-dimensional description is sufficient at the moment in
order to grasp the essentials.

Let us first consider a normalized Gaussian distribution, function of x, with centre q (mean posi-
tion) and variance 𝜎 (standard deviation or width),

|g(x)|2 = 1
𝜎
√

2𝜋
exp

(
−1

2

(x − q
𝜎

)2
)
, (13.4)

where

∫
+∞

−∞
|g(x)|2dx = 1 . (13.5)

In quantum-mechanical terms, |g(x)|2 stands for a density of probability within the x-space. The
corresponding amplitude of probability is the following wave function,

g(x) = 1√
𝜎
√

2𝜋
exp

(
−1

4

(x − q
𝜎

)2
+ i𝜙(x)

)
, (13.6)

where 𝜙(x) is a real-valued phase function, yet to be specified.
The ground eigenstate of the following harmonic Hamiltonian operator,

Ĥ = − ℏ
2

2𝜇
d2

dx2 + k
2
(x − c)2 , (13.7)

reads (conventionally taken with a unity phase factor)

g0(x) =
(𝜇𝜔
𝜋ℏ

)1∕4
exp

(
−𝜇𝜔(x − c)2

2ℏ

)
, (13.8)

where 𝜔 =
√

k
𝜇

. The natural unit of length1 of this system is 𝛽 =
√

ℏ

𝜇𝜔
.

1 The shifted and frequency-mass-weighted coordinate X = (x − c)∕𝛽 is dimensionless, and the corresponding
ground eigenstate reads G0(X) = 𝜋−1∕4 exp

(
− X2

2

)
. Its standard deviation is 1√

2
.
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If the arbitrary phase factor ei𝜙(x) is a constant, the two Gaussian functions, g(x) and g0(x) match
(up to the arbitrary phase), provided both q = c and 𝜎 = 𝛽√

2
. Let us now consider the time evolution

of a GWP, g(x, t), such that g(x, t = 0) ≡ g(x). If q < c, it will move to the right, and to the left if q > c.
The mean position will then oscillate at the fundamental angular frequency, 𝜔. Now, if 𝜎 < 𝛽√

2
,

it will start spreading, or contracting if 𝜎 > 𝛽√
2

, and the standard deviation will then oscillate at
twice the fundamental angular frequency, 2𝜔. Meanwhile, the wave packet will acquire a finite
mean momentum, hence a group velocity, which also will oscillate at 𝜔. In addition, the density
of probability will stay a Gaussian function over time. Such a quasiclassical behavior for a GWP
within a harmonic well is a well-known textbook result of quantum mechanics (see also the work
of Heller [1, 2]).

The general expression of the normalized GWP is thus

g(x, t) = 1√
𝜎(t)

√
2𝜋

exp

(
−1

4

(
x − q(t)
𝜎(t)

)2

+ i
p(t)(x − q(t))

ℏ
+ i𝜃(t)

)
, (13.9)

where p(t) is the mean momentum and 𝜃(t) a real phase offset. In a semi-classical context ℏ𝜃(t) is
known as the action. Note that the phase function now reads 𝜙(x, t) = p(t)(x−q(t))

ℏ
+ 𝜃(t).

Now, let us make the connection with the usual formulation used in the literature on vMCG.
Considering the exponent as a quadratic form yields

g(x, t) = exp(𝜁(t)x2 + 𝜉(t)x + 𝜂(t)) . (13.10)

Note that the normalization factor has been exponentiated for convenience.2 Identification with
Eq. (13.9) yields

𝜁(t) = − 1
4𝜎(t)2 , (13.11)

𝜉(t) =
q(t)

2𝜎(t)2 + i
p(t)
ℏ

, (13.12)

𝜂(t) = −
q(t)2

4𝜎(t)2 − i
p(t)q(t)
ℏ

+ i𝜃(t) −
ln(𝜎(t)

√
2𝜋)

2
. (13.13)

Using Heller’s form, as in Eq. (13.1), we would have

𝜂(t) = i
ℏ
(𝛼(t)q(t)2 − p(t)q(t) + 𝛾(t)) , (13.14)

with the complex phase

𝛾(t)
ℏ

= 𝜃(t) + i
ln(𝜎(t)

√
2𝜋)

2
. (13.15)

The real part of this term corresponds to a phase convention, and the imaginary part to a normal-
ization constraint.

From now on, we shall restrict our discussion to frozen GWPs for which 𝜎 is a constant with
respect to time. The normalization factor is thus a constant too, and its contribution to the real
part of 𝜂(t) can be safely removed from its definition and rather used explicitly as a prefactor (this

2 Exponentiation of the normalization factor is formally and numerically acceptable, but not physically because it
is a dimensioned quantity, the unit of which will not appear to a unique order in the power series. More rigorously,
we should first divide 𝜎 by the working unit of length, [L], thus getting ln(𝜎

√
2𝜋∕[L])
2

into the exponent, and multiply
the exponential by the prefactor [L−1∕2].
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will be of no consequence on the expression of the time derivative of 𝜂(t)). Now, the real-valued
function 𝜃(t) appears as a gauge angle that remains to be determined upon using some conventional
constraint. This redundancy is typical of a multi-configurational wave function ansatz, where some
or all of the phase can be incorporated into the expansion coefficients in Eq. (13.3). In the current
implementation of vMCG we have chosen 𝜃(t) ≡ 0, which seems to often result in a more stable
propagation.

In what follows, we will thus use the two following GWP forms,

g(x, t) = 1√
𝜎
√

2𝜋
exp

(
−
(x − q(t))2

4𝜎2 + i
p(t)(x − q(t))

ℏ

)
, (13.16)

or

g(x, t) = 1√
𝜎
√

2𝜋
exp

(
− x2

4𝜎2 + 𝜉(t)x + 𝜂(t)
)
, (13.17)

with

𝜉(t) =
q(t)
2𝜎2 + i

p(t)
ℏ

, (13.18)

𝜂(t) = −
q(t)2

4𝜎2 − i
p(t)q(t)
ℏ

. (13.19)

Such a GWP thus appears as a normalized Gaussian envelope centered on q(t) multiplied by a
Fourier basis function also centered on q(t). Other choices for 𝜃(t)may result in the Fourier function
centered elsewhere. Only the complex, first-order parameter, 𝜉(t), must be varied with time explic-
itly. This is equivalent to getting the time evolution of the real phase-space parameters, q(t) and p(t).
The complex, zeroth-order parameter, 𝜂(t) can be reconstructed at any time from the knowledge of
the former two.

Now, let us consider a basis set of GWPs, gj(x, t), each determined by its own {pj(t), qj(t)} or 𝜉j(t).
As will be made clearer later on, Gaussian moments are fundamental quantities for expressing
Gaussian matrix elements. They can be obtained from the moment generator as follows (omitting
the dependence on time for notational simplicity),

Mjk(u) = ⟨gj|eux̂|gk⟩ = exp

(
𝜎2

2
u2 +

(qj + qk

2

)
u − i

(pj − pk)𝜎2

ℏ
u

)
Sjk , (13.20)

where the overlap can be expressed as

Sjk = ⟨gj|gk⟩ = exp
⎛⎜⎜⎜⎝−

(
qj−qk

2

)2

2𝜎2 −
(pj − pk)2𝜎2

2ℏ2 + i
(pj + pk)

(
qj−qk

2

)
ℏ

⎞⎟⎟⎟⎠ . (13.21)

Differentiation once and twice with respect to u yields

M′
jk(u) = ⟨gj|x̂eux̂|gk⟩ =

(
𝜎2u +

(qj + qk

2

)
− i

(pj − pk)𝜎2

ℏ

)
Mjk(u) , (13.22)

M′′

jk(u) = ⟨gj|x̂2eux̂|gk⟩ = ⎛⎜⎜⎝𝜎2 +

(
𝜎2u +

(qj + qk

2

)
− i

(pj − pk)𝜎2

ℏ

)2⎞⎟⎟⎠Mjk(u) . (13.23)
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The first three Gaussian moments are obtained upon setting u = 0,

M(0)
jk = Mjk(0) = ⟨gj|1̂|gk⟩ = Sjk , (13.24)

M(1)
jk = M′

jk(0) = ⟨gj|x̂|gk⟩ = 𝜎2(𝜉∗j + 𝜉k)Sjk , (13.25)

M(2)
jk = M′′

jk(0) = ⟨gj|x̂2|gk⟩ = 𝜎2(1 + 𝜎2(𝜉∗j + 𝜉k)2)Sjk . (13.26)

13.2.2 General Equations of Motion

13.2.2.1 Coefficients and Parameters
The vMCG equations of motion (EOMs) are obtained, consistent with the MCTDH approach, by
applying the Dirac–Frenkel variational principle [26, 27] to the TDSE,

⟨𝛿Ψ(t)|Ĥ − iℏ 𝜕
𝜕t
|Ψ(t)⟩ = 0 , (13.27)

guaranteeing the optimal evolution (minimal error) of the approximate nuclear wave packet.
The following derivation is general and applies to any sum of time-dependent, parametric basis

functions, multiplied by time-dependent expansion coefficients,

|Ψ(t)⟩ = ∑
j

Aj(t)|gj(t)⟩ . (13.28)

Each |gj(t)⟩ is a given functional form, fully determined by a set of complex, time-dependent param-
eters {· · · , 𝜆j(t), · · · , 𝜈j(t), · · ·}. The parametric basis set is a priori non-orthogonal. At this stage, it
does not have to be Gaussian.

Applying the Dirac–Frenkel variational principle (Eq. (13.27)) to the wave packet ansatz
(Eq. (13.28)), two coupled EOMs are obtained: one for the time-dependent coefficients, A(t) =
{· · · ,Aj(t), · · · ,Ak(t), · · ·}, and one for the time-dependent parameters, 𝚲(t) = {· · · , 𝜆j(t), · · · , 𝜈j(t),
· · · , 𝜆k(t), · · · , 𝜈k(t), · · ·}.

Varying both coefficients and parameters yields

iℏ
∑

k
Sjk
𝜕Ak

𝜕t
+ iℏ

∑
k

∑
𝜈

S(0𝜈)
jk

𝜕𝜈k

𝜕t
Ak =

∑
k

HjkAk , (13.29)

iℏ
∑

k
S(𝜆0)

jk A∗
j
𝜕Ak

𝜕t
+ iℏ

∑
k

∑
𝜈

S(𝜆𝜈)
jk

𝜕𝜈k

𝜕t
A∗

j Ak =
∑

k
H(𝜆0)

jk A∗
j Ak , (13.30)

where Sjk is the overlap matrix element,

Sjk = ⟨gj|gk⟩ , (13.31)

Hjk is the Hamiltonian matrix element,

Hjk = ⟨gj|Ĥ|gk⟩ , (13.32)

and additional definitions are

S(0𝜈)
jk =

⟨
gj

|||||
𝜕gk

𝜕𝜈k

⟩
; S(𝜆0)

jk =

⟨
𝜕gj

𝜕𝜆j

|||||gk

⟩
; S(𝜆𝜈)

jk =

⟨
𝜕gj

𝜕𝜆j

|||||
𝜕gk

𝜕𝜈k

⟩
, (13.33a)

H(𝜆0)
jk =

⟨
𝜕gj

𝜕𝜆j
|Ĥ|gk

⟩
. (13.33b)
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Note that
⟨
𝜕gj

𝜕𝜆j

|||| means that g∗j is complex-differentiated with respect to the complex-conjugate
parameter 𝜆∗j (whereas gk is complex-differentiated with respect to the original parameter 𝜈k in||| 𝜕gk
𝜕𝜈k

⟩
).

Now, we introduce the density matrix element for the expansion coefficients,

𝜌jk = A∗
j Ak , (13.34)

and the overlap time-derivative matrix element,

𝜏jk =

⟨
gj

|||||
𝜕gk

𝜕t

⟩
=
∑
𝜈

S(0𝜈)
jk

𝜕𝜈k

𝜕t
. (13.35)

The diagonal of this matrix must be purely imaginary for the basis functions to stay normalized
during the propagation. In addition, various phase conventions can be applied.

The EOM for the time-dependent coefficients, Eq. (13.29), can be recast as

iℏ𝜕A
𝜕t

= S−1(H − iℏ𝝉)A , (13.36)

which is typical of a standard coefficient-EOM, except for the basis set not being orthogonal which
results in the presence of the inverse of S. Note that iℏ𝝉 plays a similar role to the matrix of the
phase-constraint operator in MCTDH EOMs, see Chapter 12, and requires a real diagonal for the
basis functions to stay normalized. This equation is the same as the one for the coefficient time
evolution in G-MCTDH (See Eq. (12.28) in Chapter 12) and in spawning (See Chapter 14).

Injecting Eq. (13.36) into Eq. (13.30) and regrouping terms involving 𝜕𝜈k
𝜕t

yields

iℏ
∑

k

∑
𝜈

𝜌jk(S
(𝜆𝜈)
jk − [S(𝜆0)S−1S(0𝜈)]jk)

𝜕𝜈k

𝜕t
=
∑

k
𝜌jk(H

(𝜆0)
jk − [S(𝜆0)S−1H]jk) . (13.37)

The parameter-EOM thus gets a compact matrix form [14],

iℏ𝜕𝚲
𝜕t

= C−1Y , (13.38)

where the matrix C, and vectors Y and 𝚲 are defined as

Cj𝜆,k𝜈 = 𝜌jk(S
(𝜆𝜈)
jk − [S(𝜆0)S−1S(0𝜈)]jk) , (13.39a)

Yj𝜆 =
∑

k
𝜌jk(H

(𝜆0)
jk − [S(𝜆0)S−1H]jk) , (13.39b)

Λj𝜆 = 𝜆j . (13.39c)

Note that both C and Y are functionals of 𝚲 via the various overlap/Hamiltonian-type matrices
involved. They also are functionals of A via the density matrix. Similarly, the right-hand side of the
coefficient-EOM, Eq. (13.36), is a functional of both 𝚲 and A. We thus have coupled, first-order dif-
ferential equations with respect to time that must be solved simultaneously. Details on integration
schemes can be found elsewhere, for example in Ref. [23] and references therein.

13.2.2.2 CX-Formalism
Solving the parameter-EOM involves inversion of the matrix C, which may cause numerical diffi-
culties. A reformulation of the EOM aims at minimizing potential sources of error due to this.
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Examining the respective expressions of C (Eq. (13.39a)) and Y (Eq. (13.39b)) reveals a simi-
lar structure, which can be exploited if Hamiltonian-type matrices can be expressed in terms of
overlap-type matrices. First, let us separate Ĥ into two parts,

Ĥ = Ĥ0 + ĤR , (13.40)

where the zeroth-order Hamiltonian operator is specifically defined such that

Ĥ0|gk⟩ = X (0)
k |gk⟩ +∑

𝜈

X (𝜈)
k

||||𝜕gk

𝜕𝜈k

⟩
, (13.41)

with X-coefficients that are to be determined according to the specific problem at hand, and ĤR is
the remaining part of the total Hamiltonian operator. We then get

Hjk = SjkX (0)
k +

∑
𝜈

X (𝜈)
k S(0𝜈)

jk + HR
jk , (13.42a)

H(𝜆0)
jk = S(𝜆0)

jk X (0)
k +

∑
𝜈

X (𝜈)
k S(𝜆𝜈)

jk + HR(𝜆0)
jk , (13.42b)

such that Y can in turn be separated into two parts,

Y = Y0 + YR , (13.43)

where3

Y 0
j𝜆 =

∑
k

∑
𝜈

Cj𝜆,k𝜈X (𝜈)
k . (13.44)

This leads to a partial decoupling of the parameter-EOM [14, 18],

iℏ𝜕𝚲
𝜕t

= X + C−1YR . (13.45)

The contribution due to X induces uncoupled time evolution of the GWP parameters.
The so-called CX-formalism has advantages. First, it improves the stability of the propagation

upon decreasing the possible numerical error due to the C-matrix inversion, especially if the “resid-
ual” contribution is small compared to that due to X. Second, as described in subsection 13.2.3, it
allows a division of the parameter-EOM into “classical” and “non-classical” parts. A more rigorous
discussion of the classical limit of vMCG is given in Chapter 12 and Ref. [28].

13.2.2.3 Nuclear and Electronic Degrees of Freedom
Let us now separate explicitly the nuclear (coordinates x) and electronic (index s, with a parametric
dependence on x) degrees of freedom. The electronic basis set is considered orthonormal,

∀x, ⟨s; x|r; x⟩ = 𝛿sr . (13.46)

In vMCG, as in MCTDH, there are two alternative formulations for non-adiabatic problems that
involve multiple electronic states. In the multi-set formalism, a different set of GWPs is used for
each electronic state [18],

|Ψ(x, t)⟩ = ∑
s

∑
j

A(s)
j (t)g(s)j (x, t)|s; x⟩ . (13.47)

3 Contributions involving X (0)
k (see Eqs. (13.42a) and (13.42b)) do not affect Y0, hence do not enter the

parameter-EOM, since the corresponding term in H(𝜆0)
jk − [S(𝜆0)S−1H]jk is S(𝜆0)

jk X (0)
k − [S(𝜆0)S−1S]jkX (0)

k = 0. However,
they do not disappear from the coefficient-EOM and may induce uncoupled phase shifts within the expansion
coefficients: iℏ 𝜕Aj

𝜕t
= X (0)

j Aj +
∑

k(· · ·)jkAk.
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In contrast, in the single-set formalism, a unique and common set of nuclear basis functions is
used, which implies that the electronic states are included as an extra degree of freedom described
by its own finite basis set4,

|Ψ(x, t)⟩ = ∑
j

(∑
s

A(s)
j (t)|s; x⟩) gj(x, t) . (13.48)

This is similar to an Ehrenfest approach: each nuclear wave packet is multiplied by
a time-dependent, weighted sum of electronic states,

∑
sA

(s)
j (t)|s; x⟩, which generates a

time-dependent, average potential energy.
In the multi-set formalism, the EOMs are obtained from the same way as the general ones, sim-

ply upon replacing |gj(t)⟩ by gj(x, t)|s; x⟩ and using the orthonormality of the electronic basis set.
Overlap-type matrices thus have a single electronic index, while Hamiltonian-type matrices have
two electronic indices, able to couple nuclear basis functions on different electronic states. For the
coefficients, we get

iℏ𝜕A(s)

𝜕t
= S(s)−1(H(ss) − iℏ𝝉 (s))A(s) +

∑
r≠s

H(sr)A(r) , (13.49)

and for the parameters,

iℏ𝜕𝚲
(s)

𝜕t
= C(s)−1Y(s) , (13.50)

with

C(s)
j𝜆,k𝜈 = 𝜌

(ss)
jk (S(s,𝜆𝜈)

jk − [S(s,𝜆0)S(s)−1S(s,0𝜈)]jk) , (13.51a)

Y (s)
j𝜆 =

∑
r

∑
k
𝜌
(sr)
jk (H(sr,𝜆0)

jk − [S(s,𝜆0)S(s)−1H(sr)]jk) . (13.51b)

In the single-set formalism, it must be understood that a variation of a parameter 𝜆j produces a

term involving a weighted sum over all electronic states,
⟨
𝜕gj

𝜕𝜆j

||||
(∑

sA
(s)∗
j (t)⟨s; x|) in lieu of the single,

(s, j)-composite-indexed term,
⟨
𝜕g(s)j

𝜕𝜆j

|||| ⟨s; x|A(s)∗
j (t) that occurs in the multi-set formalism. In other

words, the single-set formalism involves an extra contraction over the electronic index. Overlap-type
matrices no longer depend on the electronic index, but the Hamiltonian-type matrices keep two
electronic indices, and are still able to couple nuclear basis functions on different electronic states.
For the coefficients, this yields

iℏ𝜕A(s)

𝜕t
= S−1(H(ss) − iℏ𝝉)A(s) +

∑
r≠s

H(sr)A(r) , (13.52)

and for the parameters,

iℏ𝜕𝚲
𝜕t

= C−1Y , (13.53)

4 Within the MCTDH framework, the multi-set formalism corresponds to single particles combining nuclear and
electronic degrees of freedom together, while the single-set formalism involves direct products of two types of single
particles – nuclear and electronic – with repeated indices: {· · · , gj|s⟩, · · · , gk|s⟩, · · · , gj|r⟩, · · · , gk|r⟩, · · ·}. Contracting
over electronic degrees of freedom thus creates mean fields for the nuclear basis functions.
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with

Cj𝜆,k𝜈 =
∑

s
𝜌
(ss)
jk (S(𝜆𝜈)

jk − [S(𝜆0)S−1S(0𝜈)]jk) , (13.54a)

Yj𝜆 =
∑

s

∑
r

∑
k
𝜌
(sr)
jk (H(sr,𝜆0)

jk − [S(𝜆0)S−1H(sr)]jk) . (13.54b)

In general it is found that the multi-set formalism is preferred in MCTDH calculations, as the
basis functions are able to adapt better to the different states so the number of expansion coeffi-
cients is minimized. However, it does require more basis functions, which for direct dynamics may
be a crucial expense, as more quantum-chemistry calculations may be required. In addition, basis
functions with very small coefficients may follow erratic trajectories, which may cause numeri-
cal issues, especially for direct dynamics. DD-vMCG calculations are thus rather run within the
single-set formalism.

13.2.3 Variational Multi-Configurational Gaussian Approach

Here, we provide some additional specifics about the EOMs when a GWP functional form is used
for the basis functions. The vMCG ansatz is given by Eqs. (13.3), (13.47), or (13.48), assuming that
gj(x, t) or g(s)j (x, t) are GWPs; see Eqs. (13.16) or (13.17) in the one-dimensional case exposed in
subsection 13.2.1. As already mentioned, we shall not focus in this chapter on thawed GWPs, as
they have proved to yield numerical instabilities. Frozen GWPs are given in Eqs. (13.9) or (13.10),
with an explicit normalization constraint and the most usual phase convention.

For several degrees of freedom and in the separable case (diagonal width matrix), each
multi-dimensional GWP is a product of one-dimensional GWPs. However, it must be understood
that there is no redundancy of one-dimensional basis functions among the set of multi-dimensional
basis functions. In other words, each basis function corresponds to a single particle made of all
degrees of freedom combined together.5

For one-dimensional, frozen GWPs, the complex, time-dependent parameters are {𝜂j, 𝜉j}. They
can be reconstructed from {qj, pj}, from Eqs. (13.18) and (13.19) (note that various phase conven-
tions can be used for 𝜂j). In the multi-dimensional case, 𝜂j is still a scalar, but 𝝃j is a vector the size
of x, and the linear term in the exponent of the GWP is the scalar product of 𝝃j with x.

Let us now consider a typical harmonic Hamiltonian (see Eq. (13.7)), expanded around x = qk,

Ĥ = − ℏ2

2𝜇k

d2

dx2 + Vk + V ′
k(x − qk) +

1
2

V ′′
k (x − qk)2 , (13.55)

where Vk, V ′
k, and V ′′

k are the potential energy and its gradient and Hessian at qk. If qk is specifically
taken as the centre of the GWP gk(x, t), this is called a local harmonic approximation (LHA). Each
GWP “feels” its own local quadratic potential. As qk depends on time, we can consider that the
centre of the GWP follows a “quantum trajectory”, along which the potential energy and its first and
second derivatives can be calculated on-the-fly, as in any classical or semiclassical trajectory-based
direct dynamics. This is the bottom line of the DD-vMCG approach and will be further illustrated
in the next section.

5 Let us consider four two-dimensional GWPs: {g1(x, y, t), g2(x, y, t), g3(x, y, t), g4(x, y, t)}. Assuming one-dimensional
single particles would imply that the basis set is a direct product of, for example, two one-dimensional GWP per
mode: {g(x)1x

(x, t), g(x)2x
(x, t)}

⨂
{g(y)1y

(y, t), g(y)2y
(y, t)}, whereby {1, 2, 3, 4} ≡ {1x1y, 1x2y, 2x1y, 2x2y}. Doing so, the centers

of the four GWPs would then be constrained to be at the vertices of a rectangle within the (x, y)-plane.
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Each LHA Hamiltonian matrix element can be expanded in terms of the first three Gaussian
moments (Eqs. (13.24), (13.25), and (13.26)),

Hjk = M(0)
jk X (0)

k + M(1)
jk X (1)

k + M(2)
jk X (2)

k , (13.56)

where the X-coefficients in Eq. (13.56) are as follows,

X (0)
k = −ℏ

2

𝜇k

(
− 1

4𝜎2 +
𝜉2

k

2

)
+ Vk − V ′

kqk +
1
2

V ′′
k q2

k , (13.57a)

X (1)
k = ℏ2

𝜇k

𝜉k

2𝜎2 + V ′
k − V ′′

k qk , (13.57b)

X (2)
k = −ℏ

2

𝜇k

1
8𝜎4 + 1

2
V ′′

k . (13.57c)

Note that the first-order coefficients can be recast as

X (1)
k = iℏ 1

2𝜎2

pk

𝜇k
+ V ′

k − 2X (2)
k qk . (13.58)

Similar approximations for the potential are used in the spawning and coherent coupled states
(CCS) GWP methods to take advantage of analytic expressions in forming the required integrals. In
spawning, under the name of saddle-point approximation, only the zero-order energy is used [29].
More recently the bra-ket averaged Taylor (BAT) approximation has been introduced in conjunc-
tion with the CCS method [30]. This includes the zero- and first-order terms, and averages over
expansions at the centers of the bra and ket GWPs, rather than second-order expansion around the
centre of the ket as used in vMCG.

Let us now come back to the CX-formalism, discussed in subsection 13.2.2. The extent of the
zeroth-order Hamiltonian is determined by the representability of the Gaussian moments by S(0𝜈).
From Eq. (13.17), we easily get

M(0)
jk = S(0𝜂)

jk ; M(1)
jk = S(0𝜉)

jk ; M(2)
jk = S(0𝜁 )

jk , (13.59)

where the constraint on 𝜂k in terms of the other two parameters is not accounted for at this stage.
In addition, M(0)

jk = Sjk, which effectively removes any explicit involvement of 𝜂k.
For a frozen GWP, only zeroth- and first-order moments are available from S(0𝜂)

jk and S(0𝜉)
jk

(getting second-order moments from S(0𝜁 )
jk requires 𝜁k to be varied with time). The corresponding

zeroth-order Hamiltonian matrix elements can be written as

H0
jl = S(0)

jk X (0)
k + S(0𝜉)

jk X (1)
k , (13.60)

Thus, the zeroth-order part of the EOMs for 𝜉k = 𝜉0
k + 𝜉R

k are of the form

iℏ
𝜕𝜉0

k

𝜕t
= iℏ 1

2𝜎2

𝜕qk

𝜕t
−
𝜕pk

𝜕t
= X (1)

k (13.61)

= iℏ 1
2𝜎2

pk

𝜇k
+ V ′

k − 2X (2)
k qk , (13.62)

while the classical Newton EOMs for 𝜕qk
𝜕t

and 𝜕pk
𝜕t

have the following form,

𝜕qk

𝜕t
=

pk

𝜇
, (13.63a)

𝜕pk

𝜕t
= −V ′

k . (13.63b)
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In order to separate the EOMs into classical and non-classical terms, we can choose to put the
extra term (a sort of width-induced, “local quantum force”), −2X (2)

k qk, into YR. All “quantum” con-
tributions are thus kept in YR, and ignoring them means that each GWP will follow a classical
trajectory. This slightly modified CX-formalism connects the variational GWPs of vMCG with the
classical basis functions of the spawning or coupled coherent states (CCS) approaches. A detailed
comparison showing the relationship between vMCG and CSS is given in [31].

Finally, it should also be mentioned that for coherent states in a harmonic well, the extra term
cancels for the appropriate time-dependent width. Indeed, in Eq. (13.57c), if 𝜎 =

√
ℏ

2𝜇k𝜔k
with

𝜔k =
√

V ′′
k
𝜇k

(see subsection 13.2.1), then X (2)
k = 0. This is consistent with the common knowledge

that thawed GWPs in a harmonic well move classically, so that in our notation iℏ𝜕𝚲
𝜕t

= X is the com-
plete solution (further details can be found in Refs. [7, 14, 18]). This also implies the decoupling
of the parameter-EOMs among all GWPs, which only stay coupled via the expansion coefficients.
In contrast, the frozen-width case derived above is, surprisingly, more complicated in terms of the
separation of the classical and non-classical contributions [18].

13.3 Example Calculations

There are two classes of system that must be treated with the TDSE rather than classical mechanics
for correct results. The first class of molecules for which quantum effects are key are those in which
tunneling is significant. This is particularly important for reactions in which a proton transfer is
the rate limiting step. In the second class are molecules that possess a manifold of electronic states
coupled by vibronic coupling. In many cases, this non-adiabatic coupling between the electronic
and nuclear motion results in a conical intersection being present between potential-energy sur-
faces which can provide pathways for ultrafast crossing between electronic states (See Chapter 1).
Below we will demonstrate that vMCG can indeed treat both of these types of system.

In addition to capturing the quantum features of a system, a useful quantum-dynamics method
has also to show stability and good convergence. Scaling with system size is also a key feature.
As the examples show, vMCG has excellent convergence and is an exact numerical method if the
integrals are evaluated exactly.

Scaling of the method is usually dominated by the size of the C-matrix in the GWP
parameter-EOM, Eq. (13.38), that needs to be inverted at each step. For the standard frozen
GWP formulation, this matrix scales as (n × f )2 where n is the number of functions and f the
number of degrees of freedom. Thus this can become very large. It is, however, possible to
reduce this scaling by using an MCTDH formulation with sets of low-dimensional GWPS in a
direct-product expansion of the wave function. The properties of this formulation in terms of
accuracy is the same as standard vMCG and we will not look further at this possibility here.

Nothing, however, can be said in general about the number of functions needed, as this is highly
dependent on the system studied. As with the MCTDH method the number of basis functions
required depends on the strength of correlation among degrees of freedom. If many modes are
strongly coupled more functions are required to describe the complicated dynamics than in a sys-
tem with many lightly coupled modes that effectively undergo harmonic motion: in the limit of
uncoupled harmonic oscillators only one GWP is required, irrespective of system size. The number
of functions required also depends on the property calculated and the accuracy desired.

Due to the need for the inversion of the C-matrix, and also the inversion of the GWP overlap
matrix in the coefficient-EOMs, Eq. (13.36), the vMCG EOMs can be numerically unstable. While
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the results of a calculation does not depend on the initial positions of the basis functions, in practice
this plays a role in the stability. The main choice is whether to distribute initially unpopulated GWPs
in coordinate space or momentum space, or randomly in phase space. It appears that distribution
in momentum space is the best choice, as all GWPs are then guaranteed to have sensible initial
potential energy.

13.4 Tunneling Dynamics: Salicylaldimine

Salicylaldimine is a molecule that can undergo proton transfer between an oxygen and a nitrogen
atom attached to an aromatic ring. This makes it a good test system, as the rigidity means that
the proton transfer is only minimally coupled to the other vibrations. The proton transfer can be
described by two vibrational modes corresponding to the transfer mode, 𝜈1, and the in-plane proton
vibration, 𝜈36. These are shown in Figure 13.1(a). A model potential energy in terms of these modes
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Figure 13.1 (a) Salicylaldimine proton transfer modes and 2D potential-energy surface. (b)–(d) Flux
through the barrier for a tunneling dominated reaction. In red is the exact solution and green lines are for
(b) 16 vMCG GWPS and fourth order integrals (c) 32 vMCG narrow GWPs and 2nd order integrals (d) 64
classical GWPs and second order integrals. (e), (f) phase space plots for mode 𝜈1 using (e) 32 vMCG GWPs
and (f) 32 classical GWPs.
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has been fitted to HF/6-31G* calculations [32] and can be represented by the following expression
(in terms of frequency-mass-weighted, dimensionless, normal coordinates),

Ĥ =
∑
𝜅=1,36

ℏ𝜔𝜅
2

(
𝜕2

𝜕q2
𝜅

+ q2
𝜅

)
+

4∑
n=1

Anqn
1 + B11q1q36 + B22q2

1q2
36

+B31q3
1q36 + B13q1q3

36 . (13.64)

The potential is an asymmetric double well and is also shown in Figure 13.1(a).
The flux for proton transfer from oxygen to nitrogen is also shown in Figure 13.1, calculated using

MCTDH and vMCG after starting with a small bond compression, but with an initial energy below
the barrier height so that transfer is dominated by tunneling. In Figure 13.1(b) the GWP basis func-
tions have a width corresponding to the ground-state vibrational wave packet. These are 0.57 along
𝜈1 and 0.7071 along 𝜈36. Integrals were calculated to fourth order, i.e., the calculation is complete,
and the initial wave packet was composed of a single GWP, i.e., only one GWP is populated. It can
be seen that the calculation is converged with 16 GWPs.

If the integrals are performed using an LHA to the potential energy, it is necessary to use narrower
GWPs to achieve convergence due to the error in the integrals. Fitting of the GWPs to the initial
wave packet is now required to use the same one as before. The flux is shown in Figure 13.1(c), and
with widths of 0.25 along 𝜈1 and 0.65 along 𝜈36 is converged with 32 GWPs. Figure 13.1(d) shows
the same calculation but with 64 GWPs that follow classical trajectories rather than the coupled
vMCG equations of motion. It is clear that the quality of the result is not as good.

To understand why vMCG converges better than a classical GWP basis, phase-space plots for the
centers of the basis functions used in vMCG and classical GWPs calculations, both with 32 GWPs
starting with the same distribution, are shown in Figures 13.1e,f. The classical GWPs keep to the
periodic orbits defined by their initial conditions, whereas the vMCG GWPs spread out to cover
phase space better.

13.5 Non-Adiabatic Dynamics: The Butatriene Cation

A classic example of a non-adiabatic system is the butatriene radical cation. The lowest two bands
of the photoelectron spectrum are joined by a well-structured band which has been shown to be
due to a conical intersection between the states [33]. The spectrum can be well reproduced using
a simple vibronic model Hamiltonian. In this, a diabatic basis set is assumed, and the Hamiltonian
operator is written in a matrix form with potential-energy surfaces and smooth couplings written
as Taylor expansions around the Franck–Condon point. This is a standard model for describing
a manifold of coupled states and has had much success in describing the short-time dynamics of
photo-excited molecules [34, 35]. For the butatriene cation the Hamiltonian can be written (again,
in terms of frequency-mass-weighted, dimensionless, normal coordinates)

Ĥ =
∑

i

ℏ𝜔i

2

(
− 𝜕2

𝜕Q2
i

+ Q2
i

)(
1 0
0 1

)
+
(
𝜖1 0
0 𝜖2

)

+
4∑

i∈Ag

(
𝜅
(1)
i 0
0 𝜅

(2)
i

)
Qi +

(
0 𝜆

𝜆 0

)
QAu

(13.65)

+…

Table 13.1 shows the results from four sets of calculations to demonstrate the convergence and
scaling properties of vMCG for this model. The four calculations use different sets of modes. The
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Table 13.1 Computer resources required for calculating the autocorrelation function of varying size
models of the butatriene cation to 100 fs using MCTDH and vMCG convergence on a Linux cluster.

MCTDH vMCG

Time Mem Time Mem
Model Config (min) (MB) GWPs (min) (MB)

2D 2100 0.5 1.4 40 6 14
5D 9498 1 4.5 60 93 42
12D 259436 24 151 80 140 1371
18D 466720 63 185 100 399 15449

2D model includes just the 𝜈5 and 𝜈14 vibrations that are modes with the strongest linear coupling
responsible for the conical intersection. The 5D model includes the remaining tuning modes with
Ag symmetry. The 12D model includes a further seven vibrations that have the most significant
second-order terms in the Hamiltonian, while the 18D model includes all modes and are thus
complete calculations of the model to second order.

The results show that vMCG requires more computational effort than grid-based MCTDH. In par-
ticular the scaling of computer time with system size is poor. This is mainly due to the need for small
step sizes and is an area that requires work. One of the main advantages of the method, however,
is to enable direct-dynamics calculations in which the potential energies are computed on-the-fly
rather than requiring pre-computed functions. The GWP basis functions combined with an LHA of
the potential energies make it straightforward to compute the integrals required using the energy,
gradient, and Hessian calculated using an electronic-structure code; the Quantics program has been
interfaced to a number of such codes to allow this to happen. Details of the implementation are to be
found in Ref. [23] but the main novelty is the use of a “database” in which the quantum-chemistry
results are stored. These are not calculated at every step along the propagation but only when
new points of data are required. Interpolation is then used to provide the global surfaces. This
has the advantage of not only reducing the number of (expensive) quantum-chemistry calcula-
tions required but also providing potential-energy surfaces that can be used for analysis and further
refinement.

A drawback of using an LHA is that calculations of non-adiabatic systems must be run in the
diabatic picture to ensure continuity when crossing the seam. The question then is how can these
diabatic surfaces be defined when the quantum-chemistry calculations provide adiabatic quanti-
ties? The simplest general option is to use a “propagation diabatization” scheme, which makes use
of the relationship

𝛁U = −FU , (13.66)

where F is the (first-order) non-adiabatic coupling matrix and U is the diabatic-to-adiabatic basis
transformation matrix that is propagated along with the basis functions [36]. Figure 13.2 shows the
surfaces produced during a DD-vMCG simulation of the butatriene cation including the first and
second states. The conical intersection between the states can be seen in the adiabatic surfaces,
and the diabatic surfaces are smooth intersecting sheets, as desired. It should be kept in mind that
Eq. (13.66) is only exact for a full manifold of states. Truncating the manifold, as is done in all
practical calculations, may result in a path dependency of the calculated transformation matrices,
and further work is needed to see how important this may be.
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Figure 13.2 Potential-energy surfaces of the butatriene cation calculated at the SA-CAS(5,6)/3-21G level
of theory from DD-vMCG simulations. (a) Adiabatic surfaces; the red surface corresponds to the D0 state, the
blue to D1. (b) Diabatic surfaces; the red surface corresponds to the X̃ state, the blue to Ã.

13.6 Direct Non-Adiabatic Dynamics: Formamide

The potential of DD-vMCG calculations using the propagation diabatization for studying
non-adiabatic systems is shown by the results from preliminary calculations on formamide [37].
This is the smallest molecule containing C, N, and O. As a building block of DNA bases, it is
thought to have been a key part of the initiation of life after irradiation to photochemically form
formimidic acid. In Table 13.2 the energy and characterization are given for each of the first seven

Table 13.2 Formamide energies, oscillator strengths, and coefficients of main configurations (values
> 0.15) from an SA-8-CAS(10,8)/6-31G* calculation. OLP: oxygen lone pair; NH+NH: orbital is on NH2 with a
node between the NH bonds

H1

H2

H3

Oscillator Main

Energy strength configurations

(eV) (a.u.)

S1 5.61 0.0008 0.69(OLP–𝜋∗)
S2 8.02 0.0004 0.66(𝜋 – NH+NH)
S3 8.16 0.0225 0.54(OLP – NH+NH) + 0.34(𝜋 –𝜋∗)
S4 9.12 0.0000 0.66(𝜋 – NH+NH)
S5 10.03 0.0710 0.63(OLP – NH+NH)
S6 10.57 0.7258 0.44(𝜋 –𝜋∗) + 0.37 (OLP – NH+NH)
S7 11.45 0.0013 0.55(𝜋1 – NH+NH) + 0.36(𝜋 –𝜋∗)
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Figure 13.3 Results from DD-vMCG simulations of formamide with SA-8-CAS(10,8)/6-31G*
potential-energy surfaces. Left column – Diabatic state populations starting in different states: (a) S1; (b) S2;
(c) S3. S0: purple; S1: green; S2: light blue; S3: orange; S4: yellow; S5: dark blue; S6: red; S7: black. Total
density (squared norm): thick black. Right column – The fraction of density going into different product
channels starting in different states: (d) S1; (e) S2; (f) S3. Each line represents the different products defined
either by the bond that breaks or the products formed. IP and OOP signify if the dissociation occurs in- or
out-of-plane.

excited singlet states calculated at the SA-CAS(10,8)/6-31G* level of theory. These calculations
demonstrate the sensitivity of excited-state calculations to the choice of number of states included
in addition to the size of the CAS space and basis set. The S3 state, which has some 𝜋𝜋∗ character,
is the first state with significant oscillator strength.

In Figure 13.3 the results from DD-vMCG simulations starting with vertical excitations to the low-
est three excited states are shown. In addition to the state populations an analysis of the products
formed is shown. Each simulation used 48 GWPs. A clear difference in behavior of the molecule
after excitation to S1 is seen compared to that after excitation to S2 or S3. Looking at the state pop-
ulations, both S2 and S3 (Figure 13.3(b,c)) undergo very fast decay, seen by the decay of the total
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population (black line), accompanied by population transfer predominantly to the neighboring
states. The decay is due to complex absorbing potentials (CAPs) placed along each axis to remove
parts of the wave packet that dissociate. In both cases the decay is completed by 70 fs. In contrast,
after excitation to S1 the dissociation is slower and seems to be equilibrating with 20 % of the wave
packet left as formamide in the S1 state (Figure 13.3). Minimal population transfer to the other
states is seen.

To analyze the products formed, the trajectories at the centre of the basis functions can be exam-
ined. Each trajectory can then be weighted by the gross Gaussian population (GGP) which takes the
overlap between the basis functions and apportions the density equally between the overlapping
functions. The GGP for a function i is defined as

GGPi = ℜ
∑

j
A∗

i SijAj . (13.67)

The fraction of a wave packet ending in different products is also shown in Figure 13.3. Again
the behavior is different for S1 (Figure 13.3(d)) and S2 or S3 (Figures 13.3(e,f)). In the latter cases
the majority of the product is formed by a direct hydrogen loss from the nitrogen via an in-plane
motion. In contrast, from S1 a number of fragments are formed and hydrogen loss from the nitrogen
is out-of-plane.

Cuts through the potential-energy surfaces resulting from the DD-vMCG calculations in both
the diabatic and adiabatic representations are shown in Figure 13.4. It can be seen that, again, the
diabatic curves possess smooth crossings, while the adiabatic ones contain cusps at crossing points.
An important feature that can be seen in the cuts along the N–H stretch in Figure 13.4(a,b) is that
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Figure 13.4 Cuts through the SA-8-CAS(10,8)/6-31G* potential-energy surfaces of formamide from
DD-vMCG simulations. (a) 𝜈11 (N-H2 symmetric stretch) adiabatic; (b) 𝜈11 diabatic; (c) 𝜈12 (N-H2
antisymmetric stretch) adiabatic; (d) 𝜈12 diabatic.
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the electronic-structure level of theory is clearly breaking down along the dissociation, resulting in
a discontinuity.

13.7 Summary

The vMCG method is a flexible and potentially accurate way of treating an evolving wave packet.
The GWP basis functions are directly coupled using variational EOMs, both for expansion coef-
ficients and Gaussian parameters, which leads to fast convergence. It also means that quantum
effects such as tunneling or non-adiabatic crossing are correctly treated. The variational nature of
the EOMs also implies that the best result is obtained irrespective of the initial placement of the
GWPs, making it, in principle, a black-box method.

The method can be used either with traditional analytical potential-energy functions or in a
direct-dynamics mode. However, the present implementation is somewhat resource hungry, and
the numerical problems prevent really accurate calculations. Future work will be required to solve
these issues. It is, however, a perfect method for initial explorations of a system to test the stability
and accuracy of electronic-structure calculations before doing large-scale potential-energy fitting.
It can also be used to calculate points relevant for dynamics. In short, it is a method with great
potential in the field of quantum dynamics.

13.8 Practical Implementation

The vMCG and DD-vMCG methods are available in the QUANTICS Package [25]. This is a general
suite of programs able to solve the time-dependent Schrödinger Equation using a number of dif-
ferent algorithms. In addition to the GWP methods described in this chapter, the package contains
the full set of grid-based and MCTDH methods described in Chapter 12. There are a range of anal-
ysis programs to plot typical quantities such as spectra and state populations. Input of both the
system and operator are via text files. Quantics is interfaced to a number of electronic structure
codes (Gaussian, Molpro, QChem and Molcas) to enable direct dynamics calculations. The code is
available on request to the authors.
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Abstract

This Chapter describes the method for non-adiabatic quantum molecular dynamics called Full Multiple
Spawning. The Full Multiple Spawning framework proposes to portray nuclear wave functions by lin-
ear combinations of classically-traveling multi-dimensional Gaussian functions, called trajectory basis
functions. The number of trajectory basis functions can be adapted when needed during the excited-state
dynamics through a spawning algorithm, and all basis functions are coupled together.
Hence, Full Multiple Spawning is a formally exact method for non-adiabatic dynamics in the limit
of a large number of basis functions. Full Multiple Spawning can be extended to the description of
light/matter interaction or the inclusion of spin-orbit coupling effects. Two controlled approximations
can be performed on the Full Multiple Spawning equations and lead to the Ab Initio Multiple Spawning
technique, which allows for on-the-fly non-adiabatic quantum dynamics of medium-size molecules. In
addition to describing the formalism and algorithms of the Full- and Ab Initio Multiple Spawning, this
Chapter presents a dissection of a typical Ab Initio Multiple Spawning dynamics run, as well as different
successful applications of this technique.

14.1 Introduction

Simulating the excited-state dynamics of a molecular system requires going beyond the
Born–Oppenheimer approximation, accounting for certain critical nuclear quantum effects,
usually neglected in ground-state dynamics. Two main families of methods have emerged to tackle
this challenge: (i) expressing the time-dependent Schrödinger equation on a grid (Figure 14.1(a),
see also Chapter 11) or (ii) representing nuclear wave packets by a swarm of trajectories – whether
they are quantum, classical, coupled, or uncoupled (Figure 14.1(b)). This chapter focuses on a
strategy called Full Multiple Spawning (FMS), which aims to offer an in principle exact frame-
work to perform ab initio non-adiabatic quantum molecular dynamics, that is, simulating the
excited-state quantum dynamics of molecules in their full dimensionality and without the need
to precompute electronic structure quantities. FMS achieves this goal by combining features from
both of the strategies mentioned above, portraying nuclear wave functions as a linear combination
of frozen Gaussian functions, which are not static but will evolve in position and momentum

Quantum Chemistry and Dynamics of Excited States: Methods and Applications,
First Edition. Edited by Leticia González and Roland Lindh.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.



�

� �

�

436 14 Full and Ab Initio Multiple Spawning

a) b)
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Figure 14.1 Different strategies to picture nuclear wave functions in excited-state dynamics (the
horizontal axis represents a given nuclear coordinate, while the vertical axis corresponds to time). (a) The
nuclear wave function (grey area) can be expressed on a fixed grid (dots in the R direction) that does not
change over time. (b) The probability density of the nuclear wave function can be portrayed by a swarm of
quantum or classical trajectories (black-green dots, moving over time). (c) The nuclear wave function can be
expanded in a basis of coupled Gaussian functions that can move over time.

space (Figure 14.1(c)) – a sort of moving grid of Gaussian functions. The idea of describing
nuclear wave packets utilizing frozen, traveling Gaussian functions is rooted in the seminal work
of Heller [23–25]. Since then, different flavors of this strategy have appeared in the context of
non-adiabatic dynamics and mostly differ from each other by their choice of equations of motion
for the Gaussians.

In this chapter, we begin by discussing the representation of the time-dependent molecular
Schrödinger equation in a basis of moving Gaussian functions, as well as the different ways of
propagating these Gaussian functions (Section 14.2). We then introduce the FMS framework
(Section 14.3), focusing on the so-called spawning algorithm as well as on the critical coupling
between Gaussian functions. We present different extensions of FMS (Section 14.4), which aim
to include additional physical processes in the FMS framework, such as spin–orbit coupling
or the effect of an external time-dependent electromagnetic field. We then discuss the central
approximations applied to the FMS equations to generate the Ab Initio Multiple Spawning (AIMS)
technique (Section 14.5), allowing for on-the-fly non-adiabatic dynamics of molecular systems.
We comment on the quality of AIMS approximations and put them in perspective with those
of surface hopping for the treatment of non-adiabatic events. Finally we describe how an AIMS
simulation is performed, provide a detailed example of an AIMS run (Section 14.6), and present a
series of successful applications of the method to molecular systems (Section 14.7).

14.2 Time-Dependent Molecular Schrödinger Equation in a
Gaussian Basis

14.2.1 Central Equations of Motion

In a non-relativistic framework, the time-dependent Schrödinger equation describes the dynamics
of electrons and nuclei in a molecular system and is written as

Ĥ(r,R)Ψ(r,R, t) = i 𝜕
𝜕t
Ψ(r,R, t) , (14.1)

where Ψ(r,R, t) is the total molecular wave function, with r = (r1,… , ri,… , rnel
), R =

(R1,… ,RI ,… ,RNn
) (nel being the number of electrons and Nn the number of nuclei). The

molecular Hamiltonian Ĥ(r,R) contains the kinetic energy operator for both the electrons and the
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nuclei, as well as all the interaction potentials between electrons and nuclei (i, j label the electrons,
I, J the nuclei; atomic units are used throughout this chapter1):

Ĥ(r,R) = −
Nn∑
I

1
2MI

∇2
I −

nel∑
i

1
2
∇2

i +
∑
i<j

1|ri − rj| −
∑

I,i

ZI|RI − ri| +
∑
I<J

ZIZJ|RI − RJ |
= −

Nn∑
I

1
2MI

∇2
I + ̂el(r,R) = T̂n(R) + ̂el(r,R) . (14.2)

̂el(r,R) is called the electronic (or Born–Oppenheimer) Hamiltonian. For a fixed set of nuclear
coordinates, one can write an eigenvalue equation for this Hamiltonian,

̂el(r,R)Φ𝜈(r;R) = Eel
𝜈 (R)Φ𝜈(r;R) , (14.3)

defining the time-independent electronic Schrödinger equation. The eigenfunctions of Eq. (14.3),
{Φ𝜈(r;R)}, are the electronic (adiabatic) wave functions, while the eigenvalues {Eel

𝜈 (R)} are called
electronic energies (𝜈 is a label for the electronic state under consideration). More information
about the adiabatic (and diabatic) representation can be found in Chapter 1.

In the so-called Born–Huang (BH) representation [9, 15], the electronic eigenstates defined above
are used as an orthonormal basis to express the total molecular wave function,

Ψ(r,R, t) =
∞∑
𝜈

Φ𝜈(r;R)X𝜈(R, t) , (14.4)

where X𝜈(R, t) are time-dependent expansion coefficients, usually associated with a time-
dependent nuclear wave function in electronic state 𝜈. We note here that, while the BH ansatz
is one of the most commonly employed representations for the molecular wave function, others
are possible – for example the exact factorization, described in detail in Chapter 17. The BH
representation (Eq. (14.4)) is at the heart of our portrayal of photo-physical and photo-chemical
processes in molecules, i.e., time-dependent nuclear wave functions evolving on time-independent
potential energy surfaces. In the limit where one restricts the BH summation to only one electronic
state, the nuclei would be forced to evolve on a single electronic adiabatic eigenstate – the so-called
Born–Oppenheimer approximation [83]. Here, we will focus on the more general case where
non-adiabatic effects, that is, couplings between nuclear motion and electronic states, are fully
accounted for.

In the following, we shall investigate a special strategy to describe the nuclear amplitudes in
Eq. (14.4): the use of a basis set composed of moving multi-dimensional Gaussian functions, called
trajectory basis functions (TBFs),

X𝜈(R, t) =
N𝜈

TBFs∑
k

C(𝜈)
k (t)𝜒 (𝜈)

k (R; R̄(𝜈)
k (t), P̄(𝜈)

k (t),𝜶(𝜈)
k (t), 𝛾̄ (𝜈)k (t)) . (14.5)

This equation expresses a given nuclear amplitude X𝜈(R, t) as a linear combination of N𝜈
TBFs

multi-dimensional Gaussian functions 𝜒 (𝜈)
k (R; R̄(𝜈)

k (t), P̄(𝜈)
k (t),𝜶(𝜈)

k (t), 𝛾̄ (𝜈)k (t)), each of them associ-
ated with a time-dependent complex coefficient C(𝜈)

k (t) (k labels a specific TBF, here evolving in
electronic state 𝜈). The multi-dimensional Gaussian functions are centered at the position R̄(𝜈)

k (t)
and momentum P̄(𝜈)

k (t), have a time-dependent width matrix 𝜶
(𝜈)
k (t) as well as a phase 𝛾̄ (𝜈)k (t). It

is key here to realize that the Gaussian functions will be moving over time, i.e., their centers

1 In this system of units, ℏ, me, e, and 1
4𝜋𝜖0

are all equal to 1 atomic unit (a.u.) and their respective symbol will be
omitted from the equations.
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(position and momentum) are time-dependent and not just fixed – as it would be the case for a
simple grid (see Figure 14.1).

Each multi-dimensional Gaussian function is described as a product of one-dimensional Gaus-
sian functions,

𝜒
(𝜈)
k (R; R̄(𝜈)

k (t), P̄(𝜈)
k (t),𝜶(𝜈)

k (t), 𝛾̄ (𝜈)k (t)) = ei𝛾̄ (𝜈)k (t)
3Nn∏
𝜌

𝜒
(𝜈)
k𝜌 (R𝜌; R̄(𝜈)

k𝜌 (t), P̄
(𝜈)
k𝜌 (t), 𝛼

(𝜈)
k𝜌 (t)) , (14.6)

where 𝜌 runs over all 3Nn nuclear coordinates. Each one-dimensional Gaussian function is then
expressed as

𝜒
(𝜈)
k𝜌 (R𝜌; R̄(𝜈)

k𝜌 (t), P̄
(𝜈)
k𝜌 (t), 𝛼

(𝜈)
k𝜌 (t)) =

(2𝛼k𝜌

𝜋

)1∕4

exp[−𝛼k𝜌(R𝜌 − R̄(𝜈)
k𝜌 )

2 + iP̄(𝜈)
k𝜌 (R𝜌 − R̄(𝜈)

k𝜌 )] . (14.7)

To summarize, we will attempt in the following to solve the time-dependent molecular Schrödinger
equation using a BH representation for the molecular wave function, where each nuclear amplitude
will itself be expressed as a linear combination of TBFs2, that is,

Ψ(r,R, t) =
∞∑
𝜈

N𝜈
TBFs∑
k

C(𝜈)
k (t)𝜒 (𝜈)

k (R; R̄(𝜈)
k (t), P̄(𝜈)

k (t),𝜶(𝜈)
k (t), 𝛾̄ (𝜈)k (t))Φ𝜈(r;R) . (14.8)

At this stage, a large number of questions should come to mind: how should we evolve the TBFs?
How many TBFs do we need? How should we set the parameters of the Gaussian functions? We
shall answer these questions progressively as we define the different strategies employing TBFs for
non-adiabatic dynamics.

What happens if we (i) inject our TBFs version of the BH representation (Eq. (14.8)) into the
time-dependent molecular Schrödinger equation (Eq. (14.1)), (ii) left multiply the result by

[Φ𝜇(r;R)𝜒 (𝜇)
k′ (R; R̄(𝜇)

k′ (t), P̄
(𝜇)
k′ (t),𝜶(𝜇)

k′ (t), 𝛾̄
(𝜇)
k′ (t))]∗ , (14.9)

and integrate over both electronic and nuclear coordinates? We obtain a set of equations of motion
in a matrix form for all the complex amplitudes,

dC
dt

= −iS−1[(H − i
.
S)C] . (14.10)

This equation, which is in fact the time-dependent molecular Schrödinger equation expressed in
a basis of TBFs, is composed of the overlap matrix S, the Hamiltonian matrix H, and the overlap
matrix including the time derivative of the basis functions

.
S. We can give explicit expressions for

each element of these matrices by selecting a TBF k (in electronic state 𝜇) and k′ (in electronic
state 𝜈):

(S)𝜇𝜈kk′ = ⟨𝜒 (𝜇)
k |𝜒 (𝜈)

k′ ⟩R𝛿𝜇𝜈 , (14.11)

(H)𝜇𝜈kk′ = ⟨Φ𝜇𝜒
(𝜇)
k |Ĥ|𝜒 (𝜈)

k′ Φ𝜈⟩r,R , (14.12)

(
.
S)𝜇𝜈kk′ = ⟨𝜒 (𝜇)

k | 𝜕
𝜕t
𝜒
(𝜈)
k′ ⟩R𝛿𝜇𝜈 . (14.13)

We will provide a more detailed description of these matrix elements in Section 14.3, in particular
those of the Hamiltonian matrix H, focusing on how they are computed, how one can extend them
to include new physics in the dynamics, and also, in Section 14.5, how one can approximate them.

It is pivotal to realize that Eq. (14.10) couples all the TBFs together, and that – in the limit of a
large number of TBFs – the solution of Eq. (14.10) would tend to a numerically exact solution of
the time-dependent Schrödinger equation. However, the idea in the following is to capitalize on the

2 We note here that alternative formulations of the total molecular wave function using TBFs were
proposed [29, 42].
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dynamics of the TBFs to reduce as much as possible the number of basis functions required for the
dynamics, NTBFs, by ensuring that they constitute a proper support for the nuclear wave functions.
This goal will be achieved by playing with the time-dependence of the Gaussian parameters, namely
R̄(𝜈)

k (t), P̄(𝜈)
k (t), 𝜶(𝜈)

k (t), and 𝛾̄ (𝜈)k (t), as described in the next section.

14.2.2 Dynamics of the Trajectory Basis Functions

As mentioned in Section 14.2 (and shown in Figure 14.1(c)), the TBFs can be seen as Gaussian
functions following a certain dynamics. The question is: which dynamics should the TBFs follow to
ensure a proper description of the underlying nuclear wave functions? Answering this question will
allow us to define the three main methods employing TBFs for non-adiabatic quantum dynamics:
variational Multi-configuration Gaussian (vMCG), multi-configuration Ehrenfest (MCE), or FMS.

In vMCG [33, 34, 43, 57, 82, 84], the equations of motion for all the Gaussian parameters are
determined from the Dirac–Frenkel variational principle. This strategy ensures that the Gaussian
dynamics will follow as closely as possible the one of the underlying nuclear wave functions. Hence,
vMCG makes use of the best trajectories to minimize the overall number of TBFs required to
describe the quantum dynamics accurately (see also Chapters 13 and 18 for more information on
quantum trajectories and vMCG). This feature comes at the cost of the rather complex coupled
dynamics of the TBFs, that is, the equations of motion for the parameters of a given Gaussian
depend on the other Gaussians.

In MCE [37, 58, 60, 61], TBFs follow mean-field Ehrenfest trajectories (see Chapter 15 for a
description of Ehrenfest dynamics). Depending on the version of the MCE algorithm considered,
the dynamics of the Gaussian parameters can be coupled (as in vMCG) or independent, i.e., the
propagation of the Gaussian parameters for one specific TBF does not depend on the other TBFs.
MCE furthermore uses a time-independent width matrix, 𝜶(𝜇)

k (t) → 𝜶. The use of Ehrenfest tra-
jectories implies that, in regions of strong non-adiabatic coupling, a TBF can follow an average
potential energy surface (composed of a linear combination of the coupled adiabatic potential
energy surfaces, with weights given by electronic coefficients being propagated). An extension of
the MCE, called Ab Initio Multiple Cloning (AIMC), proposes cloning trajectories on each adiabatic
state after a non-adiabatic region, ensuring that the TBFs explore the different potential energy
surfaces properly [38].

In FMS [3, 5, 7, 11, 22, 40, 41, 80], TBFs simply follow classical dynamics on their associated
electronic state 𝜇, and their width is frozen. For example, the position and momentum component
𝜌 of the TBF k evolving in electronic state 𝜇 is given by Hamilton’s equation of motion:

𝜕R̄(𝜇)
k𝜌 (t)

𝜕t
=

P̄(𝜇)
k𝜌 (t)

M𝜌

(14.14)

𝜕P̄(𝜇)
k𝜌 (t)

𝜕t
= −

𝜕Eel
𝜇 (R)
𝜕Rk𝜌

|Rk𝜌=R̄(𝜇)
k𝜌 (t)

. (14.15)

The phase 𝛾̄ (𝜇)k (t) is time-evolved by integrating the classical Lagrangian3, based on semiclassical
arguments,

𝜕𝛾̄
(𝜇)
k (t)
𝜕t

=
3Nn∑
𝜌

(P̄(𝜇)
k𝜌 (t))

2

2M𝜌

− Eel
𝜇 (R̄

(𝜇)
k (t)) . (14.16)

3 We note that the phase could also be absorbed into the time-dependent complex coefficients. However, this choice
of phase allows an interaction picture for the complex coefficients to be defined, reducing their oscillations [11].
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Hence, the dynamics of the TBFs in FMS becomes extremely simple. This simplicity comes at a
cost, though, as an accurate description of the nuclear wave functions is likely to require a more
significant number of classically-driven TBFs than vMCG ones (vMCG TBFs can explore a broader
region of phase space). Also, a classical propagation for the TBFs prevents the description of tunnel-
ing processes, which can be accurately described in vMCG thanks to the variationally-propagated
TBFs. FMS, however, overcome these difficulties by using a spawning algorithm that dynamically
adapts the number of TBFs during the dynamics, ensuring that a proper number of TBFs are present
in the case of non-adiabatic events. This algorithm will be described in Section 14.3.2.

Readers interested in more details about the MCE or the vMCG strategies can consult Chapter 13
as well as references [11, 37, 57]. In the following, we will focus our attention on the FMS frame-
work.

14.3 Full Multiple Spawning

14.3.1 Full Multiple Spawning Equations

The FMS framework describes nuclear wave functions as linear combinations of frozen,
classically-evolving Gaussians. The FMS dynamics starts with a certain number of parent TBFs,
noted Nini. To each parent is associated a given branch 𝛽 (hence, there are Nini branches).
As described in Section 14.3.2, each TBF can create new TBFs via the spawning algorithm. For the
moment, it is sufficient to note that each parent TBF 𝛽 can have child TBFs (and that each child
TBFs can spawn additional TBFs).

Hence, we can rewrite Eq. (14.17) in a slightly different way [11, 22], highlighting the link
between parent and child TBFs more explicitly:

Ψ(r,R, t) =
Nini∑
𝛽

Ψ̃𝛽(r,R, t)

=
Nini∑
𝛽

∞∑
𝜈

N𝛽
𝜈∑

k
C(𝜈)

k𝛽 (t)𝜒
(𝜈)
k𝛽 (R; R̄(𝜈)

k𝛽 (t), P̄
(𝜈)
k𝛽 (t),𝜶, 𝛾̄

(𝜈)
k𝛽 (t))Φ𝜈(r;R) . (14.17)

The first line of Eq. (14.17) indicates that one can split the molecular wave function into (inter-
acting) branches, labeled 𝛽, and each branch is initiated by a parent TBF. N𝛽

𝜈 indicates the overall
number of TBFs in electronic state 𝜈 in the branch of parent TBF 𝛽. For example, the parent TBF
in the first branch (𝛽 = 1) in state 𝜈 would have a complex coefficient denoted C(𝜈)

11 (t), while the
complex coefficient for the first child from this first parent TBF, in state 𝜇, would be denoted by
C(𝜇)

21 (t). We also note that the width matrix in Eq. (14.17) is now time-independent, and that the
TBFs will follow classical trajectories, as described in Section 14.2.2. Employing the same protocol
as described previously, we can derive equations of motion for the complex amplitudes:

dC𝜇

dt
= −i(S−1)𝜇𝜇

[
(H𝜇𝜇 − i

.
S𝜇𝜇)C𝜇 +

∞∑
𝜈≠𝜇

H𝜇𝜈C𝜈

]
. (14.18)

This equation is similar to Eq. (14.18), just focusing on the evolution of the complex coefficients
in a given electronic state 𝜇. The overlap matrices are described as before, (S)𝜇𝜇k𝛽,k′𝛽′

= ⟨𝜒 (𝜇)
k𝛽 |𝜒 (𝜇)

k′𝛽′
⟩R

and (
.
S)𝜇𝜇k𝛽,k′𝛽′

= ⟨𝜒 (𝜇)
k𝛽 | 𝜕𝜕t

𝜒
(𝜇)
k′𝛽′

⟩R.
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Let us now focus on the Hamiltonian matrix element between TBF k (from parent branch 𝛽)
evolving in state 𝜇 and TBF k′ (from parent branch 𝛽′) evolving in state 𝜈:

(H)𝜇𝜈k𝛽,k′𝛽′
= ⟨Φ𝜇𝜒

(𝜇)
k𝛽 |Ĥ|𝜒 (𝜈)

k′𝛽′
Φ𝜈⟩r,R

= ⟨𝜒 (𝜇)
k𝛽 |T̂n|𝜒 (𝜈)

k′𝛽′
⟩R𝛿𝜇𝜈 + ⟨𝜒 (𝜇)

k𝛽 |Eel
𝜈 |𝜒 (𝜈)

k′𝛽′
⟩R𝛿𝜇𝜈

−
3Nn∑
𝜌

1
M𝜌

⟨𝜒 (𝜇)
k𝛽 |⟨Φ𝜇| 𝜕

𝜕R𝜌
|Φ𝜈⟩r

𝜕

𝜕R𝜌
|𝜒 (𝜈)

k′𝛽′
⟩R

−
3Nn∑
𝜌

1
2M𝜌

⟨𝜒 (𝜇)
k𝛽 |⟨Φ𝜇| 𝜕2

𝜕R2
𝜌

|Φ𝜈⟩r|𝜒 (𝜈)
k′𝛽′

⟩R . (14.19)

If the two TBFs are evolving on the same electronic state, their coupling is determined by the first
two terms on the right-hand side of Eq. (14.19), that is, the terms containing the nuclear kinetic
energy operator and the electronic energy, as well as the diagonal contribution (𝜇 = 𝜈) of the last
term of the right-hand side, containing, in this case, diagonal Born–Oppenheimer corrections
(DBOCs)

D𝜇𝜇(R) = ⟨Φ𝜇| 𝜕2

𝜕R2
𝜌

|Φ𝜇⟩r . (14.20)

These three terms are responsible for the description of intrastate couplings (Figure 14.2(b))
and will be central to adequately describing the dynamics of the nuclear amplitude on a given
electronic state.

If the two TBFs are in different electronic states, they will interact via the third term on the r.h.s
of Eq. (14.19) that depends on the non-adiabatic coupling vectors,

d𝜇𝜈(R) = ⟨Φ𝜇| 𝜕𝜕R
|Φ𝜈⟩r , (14.21)

and the off-diagonal contribution in the last term of the r.h.s, containing the second-order
non-adiabatic coupling:

D𝜇𝜈(R) = ⟨Φ𝜇| 𝜕2

𝜕R2
𝜌

|Φ𝜈⟩r . (14.22)

The non-adiabatic coupling terms provide interstate couplings (Figure 14.2(a)) and are responsi-
ble for the transfer of nuclear amplitude between electronic states due to nuclear motion, i.e., the
non-Born–Oppenheimer effects. Figure 14.2 provides a schematic representation of the couplings
between three TBFs, where the red areas indicate interstate couplings and the blue area refers to
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Figure 14.2 Schematic representation of an interstate (a) and an intrastate (b) coupling between two TBFs.
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an intrastate coupling. It is worth pointing out that FMS would tend towards an exact solution of
the time-dependent molecular Schrödinger equation if we were to use a large number of TBFs and
could compute all Hamiltonian matrix elements (Eq. (14.19)) exactly.

14.3.2 Spawning Algorithm

Up to this point, we have considered that we can define a certain number of parent TBFs (Nini),
each having a fixed number of child TBFs – leading to an overall number of TBFs in state 𝜇 for the
branch 𝛽 given by N𝛽

𝜇 . The description of a crucial ingredient of FMS is still missing: the spawning
algorithm, which permits the number of TBFs to be adapted dynamically during the non-adiabatic
dynamics. The idea of spawning TBFs is as follows: one starts with a swarm of Nini coupled parent
TBFs, whose distribution and complex coefficients are chosen such that they reproduce an initial
nuclear wave packet (for example, generated after photo-excitation of a molecule to a given excited
electronic state). A strategy would be to use a considerable number of TBFs from time t = 0 and
hope that the TBFs will follow the nuclear wave packet(s) during the excited-state dynamics.
Instead, an FMS dynamics starts with a rather small number of TBFs (enough to describe the
early stage of the dynamics) but will give the opportunity to each TBF (being it parent or child) to
spawn new TBFs on a coupled electronic state whenever non-adiabatic regions are encountered.
For example, if one parent TBF reaches a region of strong non-adiabaticity, it can spawn a child
TBF onto the coupled electronic state. By spawn, we mean here that a new TBF is created, which
implies (i) that the number of TBFs in each electronic state for each branch can change over
time, N𝛽

𝜇 → N𝛽
𝜇 (t), and (ii) that the size of the matrices in Eq. (14.18) will change over time too.

Hence, one should make sure that these new TBFs are introduced in the dynamics only when the
coupling between electronic states is still small to ensure a smooth propagation of the amplitudes:
this is the role of the spawning algorithm.

The main steps of the spawning algorithm are represented in Figure 14.3. t0 corresponds to the
time where a TBF k (from branch 𝛽) in state 𝜈 is approaching a region of strong non-adiabatic
coupling. At each nuclear time step, the TBF monitors an effective non-adiabatic coupling with all
other electronic states 𝜇, Λeff

𝜇𝜈 (R̄
(𝜈)
k𝛽 ). Different definitions for the effective coupling have been pro-

posed, and the most commonly employed one in the adiabatic representation is the modulus of the
non-adiabatic coupling vectors, Λeff

𝜇𝜈 (R̄
(𝜈)
k𝛽 ) = |d𝜇𝜈(R̄(𝜈)

k𝛽 )|, or the projection of the non-adiabatic cou-

pling vectors on the TBF classical velocities, Λeff
𝜇𝜈 (R̄

(𝜈)
k𝛽 ) = |d𝜇𝜈(R̄(𝜈)

k𝛽 ) ⋅
.

R̄
(𝜈)
k𝛽 |. The value of Λeff

𝜇𝜈 (R̄
(𝜈)
k𝛽 (t))

along the TBF is represented in Figure 14.3 by the thin blue line. When the TBF enters a region
(blue area in Figure 14.3) where Λeff

𝜇𝜈 (R̄
(𝜈)
k𝛽 (t)) is larger than a predefined threshold (dashed horizon-

tal line in Figure 14.3), the dynamics enters the so-called spawning mode. From this time on, called
the entry time tentry, the propagation of the complex amplitudes is suspended (this is represented in
the central panel of Figure 14.3 by the use of dotted lines for the TBFs) and one simply propagates
the TBF classically, until a maximum in Λeff

𝜇𝜈 (R̄
(𝜈)
k𝛽 (t)) is recorded. If such a maximum is detected, a

new TBF is created (at time tspa𝑤n) on the coupled state 𝜇, with a complex coefficient set to zero
(flat dotted line in Figure 14.3). From this point, both TBFs are back-propagated in time from tspa𝑤n
to tentry. It is important to realize that the newly created TBF will have a different dynamics than the
parent TBF as it evolves on electronic state 𝜇. Once tentry is reached, the dynamics leaves the spawn-
ing mode and the FMS dynamics can resume, with equations of motion for the complex amplitudes
augmented by a new function. The original TBF k in electronic state 𝜈 will meet the newly-created
TBF evolving in state 𝜇 exactly in the region of strong non-adiabatic coupling, ensuring a proper
description of the nuclear quantum dynamics and a potential transfer of amplitude between the
two TBFs. More information on the spawning algorithm can be found in Refs. [5, 11].
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Figure 14.3 Schematic representation of the spawning algorithm: the entry in a region of strong
non-adiabaticity (upper panel), the spawning mode (central panel), and the subsequent dynamics upon
spawning of a new TBF. Adapted with permission from Ref. [11]. Copyright (2018) American Chemical
Society.

The spawning algorithm described above is rather simple and only allows for interstate spawn-
ings. Other, different, strategies for spawning TBFs have been described in the literature [5, 6, 86],
also for the specific case of tunneling where intrastate spawning is required [4].

14.4 Extending Full Multiple Spawning

The FMS equations of motion introduced up to now account for the non-adiabatic dynamics
of nuclear wave packets in an in principle exact way. TBFs are coupled via intra- and interstate
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S1

S0

Intrastate

NACs

Figure 14.4 Coupling pattern between TBFs in the original version of FMS. Intrastate couplings (red
dotted line) are mediated by the nuclear kinetic energy operator, the electronic energy, and the DBOCs.
Interstate couplings (light red dashed arrow) originate from first- and second-order non-adiabatic couplings.

terms, which depend on the nuclear kinetic energy operator, electronic energy, and non-adiabatic
coupling terms of first and second order (Figure 14.4). Hence, the FMS framework, in its original
flavor, allows for the description of non-radiative de-excitation of molecules via internal conversion
pathways. There are, however, other different physical processes related to excited states one
may want to describe such as intersystem crossings (transfer of nuclear wave packets between
states with different spin multiplicities due to spin–orbit coupling) or the explicit interaction of a
molecule with an external electromagnetic field. Such processes can easily be included in FMS
by adding to the molecular Hamiltonian (Eq. (14.2)) any desired interaction Hamiltonians. In an
FMS picture, these new interactions will simply add new couplings between TBFs and require
additional spawning events. In the following, we detail two extensions of FMS that propose
including the effect of an explicit external field and spin–orbit coupling.

14.4.1 External Field in Full Multiple Spawning

Most non-adiabatic molecular dynamics simulations start at time t0 with a nuclear wave packet
placed in a chosen excited electronic state. This transfer of a ground-state nuclear wave function
into a given excited electronic state is expected to mimic the result of a photo-excitation process
conducted with an ultrashort laser pulse. But how can we simulate this photo-excitation process
explicitly in FMS?4 A simple solution is to explicitly include the coupling between a time-dependent
external field and the molecular dipole moment. In other words, we need to supplement the original
molecular Hamiltonian defined in Eq. (14.2) by a new interaction term between the molecule and
the time-dependent external (electric) field E(t),

Ĥ(r,R) → ̂(r,R, t) = Ĥ(r,R) − 𝝁̂(r,R) ⋅ E(t) , (14.23)

where 𝝁̂(r,R) = 𝝁̂
e(r) + 𝝁̂

n(R) is the molecular dipole moment, composed of an electronic and a
nuclear part. In the following, underlined bold symbols indicate 3D vectors and ̂ designates a
modified molecular Hamiltonian. The presence of the coupling with an external field will induce
new couplings between TBFs. We can substitute the molecular Hamiltonian by the modified
one defined in Eq. (14.23) in the time-dependent Schrödinger equation, and re-derive the FMS
equations (using the recipe described in Section 14.3). The equations of motion for the complex
coefficients will be similar to Eq. (14.18), except that now the Hamiltonian matrix elements

4 We note that the effect of an external field in FMS has also been included in a Floquet-type approach [30, 31].
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S1

S0

External field

Figure 14.5 Coupling pattern between TBFs in the eXternal Field Full Multiple Spawning (XFFMS)
technique. In comparison to the original FMS (Figure 14.4), the external field causes additional intrastate
(blue dotted arrow) and interstate (blue dashed arrows) couplings between TBFs.

contain new terms originating from the coupling with the external field:

()𝜇𝜈k𝛽,k′𝛽′
= ⟨Φ𝜇𝜒

(𝜇)
k𝛽 |Ĥ|𝜒 (𝜈)

k′𝛽′
Φ𝜈⟩r,R − ⟨Φ𝜇𝜒

(𝜇)
k𝛽 |𝝁̂|𝜒 (𝜈)

k′𝛽′
Φ𝜈⟩r,R ⋅ E(t)

= ⟨Φ𝜇𝜒
(𝜇)
k𝛽 |Ĥ|𝜒 (𝜈)

k′𝛽′
Φ𝜈⟩r,R − ⟨𝜒 (𝜇)

k𝛽 |𝝁̂n|𝜒 (𝜈)
k′𝛽′

⟩R ⋅ E(t)𝛿𝜇𝜈
− ⟨𝜒 (𝜇)

k𝛽 |⟨Φ𝜇|𝝁̂e|Φ𝜈⟩r|𝜒 (𝜈)
k′𝛽′

⟩R ⋅ E(t) . (14.24)

Comparing with the original FMS Hamiltonian matrix elements (Eq. (14.19)), we observe that
the term depending on the nuclear component of the dipole moment (second term on the
right-hand side of Eq. (14.24)) adds an extra intrastate coupling between TBFs (dotted blue arrow
in Figure 14.5). If the two TBFs are in the same electronic state, the electronic part of the dipole
moment (last two terms on the right-hand side of Eq. (14.24)) contributes an intrastate coupling
term (dotted blue arrow in Figure 14.5) via the electronic dipole moment

𝝁
e
𝜇𝜇
(R) = ⟨Φ𝜇|𝝁̂e|Φ𝜇⟩r . (14.25)

If, on the other hand, the TBFs are in two different electronic states, the external field can couple
them via the corresponding transition dipole moment,

𝝁
e
𝜇𝜈
(R) = ⟨Φ𝜇|𝝁̂e|Φ𝜈⟩r . (14.26)

It is this interstate coupling term (dashed blue arrow in Figure 14.5) that is responsible for the
transfer of amplitude between electronic state mediated by the external field (or laser pulse).

The spawning algorithm needs to be adapted to ensure that TBFs are present in regions of cou-
pling induced by the external field. As the external field is known in advance, a simple way to extend
the spawning algorithm is to induce a spawning event to the coupled state whenever E(t) shows
an extremum. The overall method is called eXternal Field Full Multiple Spawning (XFFMS), and
allows for an in silico photo-chemical experiment: an XFFMS dynamics starts with a molecule in its
ground electronic state coupled with an explicit time-dependent external field, eventually leading
to amplitude transfer to a coupled electronic state and followed by non-adiabatic relaxation towards
the ground electronic state. XFFMS also permits the simulation of more advanced pump–probe
experiments by defining a more complex laser pulse pattern [46, 49]. Additional details can be
found in Refs. [11, 44, 47].

14.4.2 Spin-Orbit Coupling in Full Multiple Spawning

FMS, in its original formulation, focuses on non-adiabatic transitions involving internal conver-
sion processes only (transfer of nuclear amplitude between electronic states sharing the same spin
multiplicity), but is unable to describe intersystem crossings that would require the inclusion of
couplings between states of different spin multiplicities (singlet and triplet states, for example).
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S1

S0

SOC

T2

T1

Figure 14.6 Coupling pattern between TBFs in the Generalized Full Multiple Spawning (GFMS) technique.
As an example, two singlet states (black) are coupled to two triplet states (blue). A triplet TBF is depicted
with three Gaussian shapes, symbolizing the three different complex amplitudes – one for each spin
sublevel. Red arrows indicate the couplings between TBFs induced by spin–orbit coupling. Couplings from
the original FMS formulation are depicted by light red arrows (intrastate: dotted; interstate: dashed). (Note
that for clarity we do not indicate all the possible couplings between spin sublevels.)

This omission is the direct result of the use of a non-relativistic formulation of quantum mechan-
ics, that is, the use of the time-dependent Schrödinger equation Eq. (14.1) as the starting point of our
derivation. The relativistic effect called spin–orbit coupling [39, 54] can, however, still be included
in the Schrödinger equation by employing the spin–orbit contribution to the so-called Breit–Pauli
Hamiltonian. Modifying the molecular Hamiltonian (Eq. (14.2)) to include the spin–orbit coupling
contribution, we obtain:

Ĥ(r,R) → ̂(x,R) = Ĥ(r,R) + ĤSOC(x,R) , (14.27)

where x = (r, s) (we indicate here the spin component for the electronic degrees of freedom only).
As was done in the original derivation of FMS, we will use in the following spin-free adiabatic elec-
tronic states, leading to a dynamics in a spin-diabatic representation [20, 36, 54]. We need, however,
to indicate explicitly the spin multiplicity and spin-projection eigenvalue for each electronic state
considered. Hence, we will note in the following the spin-free, adiabatic electronic wave functions
as ΦMS𝜈

𝜈 (x;R), with S𝜈 the total spin of electronic state 𝜈 and MS𝜈 its spin-projection eigenvalue.5
Using this notation, the FMS version of the BH representation (Eq. (14.17)) becomes

Ψ(x,R, t) =
Nini∑
𝛽

∞∑
𝜈

N𝛽

𝜈,MS𝜈∑
k

C(𝜈,MS𝜈 )
k𝛽 (t)𝜒 (𝜈,MS𝜈 )

k𝛽 (R; R̄(𝜈,MS𝜈 )
k𝛽 (t), P̄(𝜈,MS𝜈 )

k𝛽 (t),𝜶, 𝛾̄ (𝜈,MS𝜈 )
k𝛽 (t))ΦMS𝜈

𝜈 (x;R) .

(14.28)

It is important to note that Eq. (14.28) and Eq. (14.17) are equivalent – the former simply includes
additional information about the spin-state of a given electronic state. In this formulation, a TBF
evolving on a singlet state 𝜈 (S𝜈 = 0) will have a label MS𝜈 = 0. In the specific case of a triplet elec-
tronic state 𝜇 (S𝜇 = 1), we have to define TBFs for each triplet sublevel, i.e., for MS𝜇 = −1, MS𝜇 = 0,
and MS𝜇 = 1. Hence, a Gaussian function evolving on a triplet state will have three distinct complex
coefficients, one for each triplet sublevel (see Figure 14.6).

Inserting Eq. (14.28) into the time-dependent Schrödinger equation, using the modified Hamil-
tonian defined in Eq. (14.27), we obtain – after some algebra similar to what was described in
Section 14.3 – a set of equations of motion for the complex amplitudes whose form is reminiscent
to the one of FMS (Eq. (14.18)). Two main differences have to be noted: (i) the complex coeffi-
cients have an additional label defining the spin sublevel of the electronic state to which they are
attached, and (ii) the TBFs suffer additional couplings coming from the spin–orbit coupling term
in Eq. (14.27).

5 For a singlet state, we have S = 0 and MS = 0. A triplet state is characterized by S = 1 and MS = −1, 0, or 1.
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Let us investigate a Hamiltonian matrix element between TBF k (from parent branch 𝛽) evolving
in state 𝜇 with spin-projection MS𝜇 and TBF k′ (from parent branch 𝛽′) evolving in state 𝜈 with
spin-projection MS𝜈 :

()
𝜇MS𝜇 ,𝜈MS𝜈

k𝛽,k′𝛽′
= ⟨ΦMS𝜇

𝜇 𝜒
(𝜇,MS𝜇 )
k𝛽 |Ĥ|𝜒 (𝜈,MS𝜈 )

k′𝛽′
ΦMS𝜈
𝜈 ⟩r,R𝛿MS𝜇MS𝜈

+ ⟨ΦMS𝜇
𝜇 𝜒

(𝜇,MS𝜇 )
k𝛽 |ĤSOC|𝜒 (𝜈,MS𝜈 )

k′𝛽′
ΦMS𝜈
𝜈 ⟩x,R . (14.29)

The coupling between TBFs generated by the spin–orbit coupling Hamiltonian (last term on the
right-hand side of Eq. (14.29)) can be rewritten as

(HSOC)
𝜇MS𝜇 ,𝜈MS𝜈

k𝛽,k′𝛽′
= ⟨ΦMS𝜇

𝜇 𝜒
(𝜇,MS𝜇 )
k𝛽 |ĤSOC|𝜒 (𝜈,MS𝜈 )

k′𝛽′
ΦMS𝜈
𝜈 ⟩x,R

= ⟨𝜒 (𝜇,MS𝜇 )
k𝛽 |⟨ΦMS𝜇

𝜇 |ĤSOC|ΦMS𝜈
𝜈 ⟩x|𝜒 (𝜈,MS𝜈 )

k′𝛽′
⟩R , (14.30)

highlighting the fact that the spin–orbit coupling will induce a rather complex coupling pattern
between TBFs. In short: in addition to the already existing non-relativistic couplings, spin–orbit
coupling can provide an intrastate coupling for TBFs on the same electronic state and same
spin sublevel, an interstate coupling for TBFs on the same electronic state but with different
spin-sublevels, an interstate coupling between TBFs on different electronic states but with the
same spin multiplicity and different spin-sublevels, and finally an interstate coupling for TBFs
in different electronic states with different spin multiplicity. Figure 14.6 provides a schematic
representation of the different couplings induced by spin–orbit coupling.

The spawning algorithm is adapted to detect regions of important spin–orbit coupling, and the
effective coupling described in Section 14.3.2 not only monitors non-adiabatic couplings, but also
the strength of spin–orbit coupling (in a spin-diabatic picture) felt by a TBF k evolving in state 𝜈
with MS𝜈 :

Λeff
𝜇𝜈 (R̄k(t)) =

(∑S𝜇
MS𝜇=−S𝜇

∑S𝜈
MS𝜈=−S𝜈

|⟨ΦMS𝜇
𝜇 (R̄k)|ĤSOC|ΦMS𝜈

𝜈 (R̄k)⟩x|2)1∕2

|Eel
𝜈 (R̄k) − Eel

𝜇 (R̄k)| . (14.31)

This overall extension of FMS to both intersystem crossing and internal conversion processes is
called Generalized Full Multiple Spawning (GFMS) and more details can be found in Refs. [11, 12].
An alternative implementation of spin–orbit coupling in FMS is presented in Refs. [16, 17].

14.5 Ab Initio Multiple Spawning

14.5.1 From Full- to Ab Initio Multiple Spawning

In the following, we introduce the AIMS method, which translates the FMS framework to the
excited-state dynamics of molecules in their full configuration space. The formalism of FMS pre-
sented above, as well as its extensions, is in principle exact given a sufficiently large number of TBFs
and the possibility to compute all the Hamiltonian matrix elements (Eqs. (14.19) for the original
FMS). While these conditions can be achieved for model systems in low dimensions, simulating
the excited-state dynamics of molecules implies the introduction of two central approximations6

that will define the AIMS method [3, 4, 22, 40].

6 In addition to the AIMS approximations described in this paragraph, we note that a practical application of AIMS
requires the definition of a subset of coupled electronic states, i.e.,

∑∞
𝜇 →

∑Ns
𝜇 with Ns being the number of

electronic states explicitly considered for the dynamics.
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The first approximation, called the saddle-point approximation, is related to the calculation of
the Hamiltonian matrix elements. In Eq. (14.19), some integrals are performed over the nuclear
coordinates while containing electronic structure quantities like the electronic energies or the
non-adiabatic couplings. Calculating these integrals would imply knowing these electronic
structure quantities over the entire configuration space – in other words, we would have to
precompute all electronic structure quantities in advance, for all possible nuclear displacements,
as done in numerically-exact wave packet propagation on a grid. The cost associated with this
process would hamper the simulation of molecules in their full configuration space, and one needs
to approximate the Hamiltonian matrix elements.

Let us first consider a typical integral between TBF k in 𝜇 and TBF k′ in 𝜈 containing the arbitrary
electronic structure quantity 𝜃𝜇𝜈(R) = ⟨Φ𝜇|𝜃̂(R)|Φ𝜈⟩r :

(𝜽)𝜇𝜈k𝛽,k′𝛽′
= ⟨𝜒 (𝜇)

k𝛽 |⟨Φ𝜇|𝜃̂|Φ𝜈⟩r|𝜒 (𝜈)
k′𝛽′

⟩R . (14.32)

We now define the centroid position of the product of the two Gaussian functions,

R̄(𝜇𝜈)
k𝛽,k′𝛽′ =

(R̄(𝜇)
k𝛽 + R̄(𝜈)

k′𝛽′ )
2

, (14.33)

and Taylor-expand the electronic structure quantity 𝜃𝜇𝜈(R) around this position:

𝜃𝜇𝜈(R) = 𝜃𝜇𝜈(R̄
(𝜇𝜈)
k𝛽,k′𝛽′ ) +

3Nn∑
𝜌

(R𝜌 − R̄(𝜇𝜈)
𝜌,k𝛽,k′𝛽′

)
𝜕𝜃𝜇𝜈(R)
𝜕R𝜌

|||||R𝜌=R̄(𝜇𝜈)
𝜌,k𝛽,k′𝛽′

+ 1
2

3Nn∑
𝜌𝜌′

(R𝜌 − R̄(𝜇𝜈)
𝜌,k𝛽,k′𝛽′

)
𝜕2𝜃𝜇𝜈(R)
𝜕R𝜌𝜕R𝜌′

|R𝜌=R̄(𝜇𝜈)
𝜌,k𝛽,k′𝛽′

,R𝜌′ =R̄(𝜇𝜈)
𝜌′ ,k𝛽,k′𝛽′

(R𝜌′ − R̄(𝜇𝜈)
𝜌′k𝛽,k′𝛽′

) + ... (14.34)

Owing to the locality of Gaussian functions, we can consider that the electronic structure quantity
of interest only slightly varies within the region where the two TBFs overlap substantially. Hence,
we could only keep the term of order zero (containing the electronic structure quantity evaluated
at the centroid position) in Eq (14.34) and neglect the R dependence of 𝜃𝜇𝜈(R) by neglecting all the
terms containing derivatives:

𝜃𝜇𝜈(R) ≈ 𝜃𝜇𝜈(R̄
(𝜇𝜈)
k𝛽,k′𝛽′ ) . (14.35)

As a result of this approximation, the integrals containing electronic structure quantities (of the
form of Eq. (14.32)) in the Hamiltonian matrix elements can be approximated by

(𝜽)𝜇𝜈k𝛽,k′𝛽′
= ⟨𝜒 (𝜇)

k𝛽 |⟨Φ𝜇|𝜃̂|Φ𝜈⟩r|𝜒 (𝜈)
k′𝛽′

⟩R

≈ 𝜃𝜇𝜈(R̄
(𝜇𝜈)
k𝛽,k′𝛽′ )⟨𝜒 (𝜇)

k𝛽 |𝜒 (𝜈)
k′𝛽′

⟩R . (14.36)

This approximation, called saddle point approximation of order zero (SPA0), substantially simplifies
the calculation of coupling matrix elements between TBFs. Applying the SPA0 to Eq. (14.19) and
neglecting the second-order couplings leads to the AIMS Hamiltonian matrix elements:

(H)𝜇𝜈k𝛽,k′𝛽′
≈ ⟨𝜒 (𝜇)

k𝛽 |T̂n|𝜒 (𝜈)
k′𝛽′

⟩R𝛿𝜇𝜈 + Eel
𝜈 (R̄

(𝜇𝜈)
k𝛽,k′𝛽′ )⟨𝜒 (𝜇)

k𝛽 |𝜒 (𝜈)
k′𝛽′

⟩R𝛿𝜇𝜈

−
3Nn∑
𝜌

1
M𝜌

(d𝜇𝜈(R̄
(𝜇𝜈)
k𝛽,k′𝛽′ ))𝜌⟨𝜒 (𝜇)

k𝛽

||||| 𝜕

𝜕R𝜌

|||||𝜒 (𝜈)
k′𝛽′

⟩R . (14.37)

The SPA0 is not only valid for FMS, but can also be used in XFFMS (to approximate the matrix
elements containing the dipole and transition dipole moments in Eq. (14.24)) or in GFMS (to
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approximate the matrix elements containing spin–orbit coupling in Eq. (14.29)), leading to the
methods named XFAIMS and GAIMS, respectively.

The second possible approximation when treating molecular systems is called the independent
first generation approximation (IFGA). As detailed previously, the FMS dynamics is initiated at
time t = 0 by considering a set of Nini coupled parent TBFs that reproduce the initial nuclear wave
packet in a given (excited) electronic state (see Eq. (14.17)). However, a high-dimensional nuclear
wave packet will usually rapidly spread in phase space as soon as dynamics in the excited state
starts, meaning that the originally coupled parent TBFs will rapidly move away from each other
and become uncoupled. Hence, we could approximate that the parent TBFs are, from the begin-
ning of the dynamics, uncoupled. Within this approximation, we are allowed to sample the parent
TBFs independently (for example from a Wigner distribution), set their initial amplitude to 1, and
propagate them independently. In other words, the complex coefficients of TBFs evolving in the
branch 𝛽 are not coupled to those of TBFs evolving in a different branch 𝛽′ [5, 22]. Mathemati-
cally, this approximation can be enforced by applying the conditions (S𝜇𝜈)k𝛽,k′𝛽′ ≈ (S𝜇𝜈)k,k′𝛿𝛽𝛽′ and
(H𝜇𝜈)k𝛽,k′𝛽′ ≈ (H𝜇𝜈)k,k′𝛿𝛽𝛽′ , ∀𝜇, 𝜈.

Applying the SPA0 and the IFGA to the FMS framework defines the AIMS method (see
Figure 14.7, left panel). More information about these approximations can be found in Refs. [5, 11].

14.5.2 Testing the Approximations of Ab Initio Multiple Spawning

The AIMS method relies on the validity of the SPA0 and the IFGA. Different works have focused
on assessing the quality of these approximations [2–4, 6, 22, 40, 72], and we describe here a strin-
gent test based on the use of an ultrashort light pulse within XFFMS to generate highly interfering
nuclear wave packets [44]. More specifically, this test focuses on the photo-excitation of lithium
hydride (LiH), a one-dimensional system. By sending an ultrashort pulse on this molecule, orig-
inally in its ground electronic state (S0), part of the nuclear amplitude is transferred to the first
electronic state (S1) and forms a nuclear wave packet. Due to the different shape of the potential
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Figure 14.7 Left panel: Scheme representing the different approximations applied to QD to reach (XF)FMS
and (XF)AIMS. Right panel: Time-dependent dipole moment as computed with XFFMS (black), XFAIMS
(blue), fixed Gaussian (FG, orange), and exact QD (red). The gray area represents the time window during
which the ultrashort pulse is switched on. Adapted from Ref. [44] with the permission of AIP Publishing.
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energy curves between S0 and S1, the nuclear wave packet formed on S1 will immediately leave
the Franck–Condon region. A challenging observable one could use to assess the quality of the
XFFMS (within the SPA0 and the IFGA) simulation is the time-dependent dipole moment, which,
in an FMS notation, reads

⟨Ψ|𝝁̂|Ψ⟩r,R =
Nini∑
𝛽𝛽′

∞∑
𝜇𝜈

⎡⎢⎢⎣
N𝛽
𝜇 (t)∑
k

N𝛽′
𝜈 (t)∑
k′

(C(𝜇)
k𝛽 (t))

∗C(𝜈)
k′𝛽′

(t)[⟨𝜒 (𝜇)
k𝛽 |𝝁̂n|𝜒 (𝜈)

k′𝛽′
⟩R𝛿𝜇𝜈

+ ⟨𝜒 (𝜇)
k𝛽 |⟨Φ𝜇|𝝁̂e|Φ𝜈⟩r|𝜒 (𝜈)

k′𝛽′
⟩R]

⎤⎥⎥⎦ . (14.38)

The time-dependent dipole moment relies on a proper description of both intra- and interstate
interactions between the TBFs in the underlying simulation, and therefore offers a rather
challenging expectation value to simulate. XFAIMS provides a qualitative description of the
time-dependent dipole moment oscillations (blue line on Figure 14.7, right panel), despite the use
of the critical IFGA (as mentioned in Section 14.5.1, the IFGA was proposed for the simulation of
high-dimensional systems) and the SPA0. The dephasing observed at a later time can be corrected
by relaxing the IFGA [44]. If the SPA0 is relaxed too (leading to XFFMS, left panel Figure 14.7),
the time-dependent moment dipole is in almost perfect agreement with the numerically-exact
quantum dynamics (QD) reference (black line on Figure 14.7, right panel). The small dephasing
at the end of the simulation is due to the rather limited number of TBFs employed in the FMS
simulation, 14 in this particular case. The QD result is perfectly recovered by adding an important
number of fixed Gaussian functions in the simulation (orange line on Figure 14.7, right panel).
We note that the behavior of the time-dependent dipole moment at a later time, when the nuclear
wave packet in S1 comes back into the Franck–Condon region, is still in qualitative agreement
with the QD simulation when using XFAIMS or XFFMS (see Ref. [44]).

While these tests are limited to a single molecular system, they are designed to stress the AIMS
approximations in different conditions and provide a satisfactory assessment of their quality.
We finally note that other strategies to improve the quality of the SPA0 approximation [37, 38] or
efficiently compute Hamiltonian matrix elements have been proposed in the literature [2].

14.5.3 On-the-Fly Ab Initio Multiple Spawning

Owing to the SPA0, AIMS dynamics can be performed on-the-fly, i.e., without the need to precom-
pute potential energy surfaces and non-adiabatic couplings before performing the nuclear dynam-
ics. In AIMS, TBFs are propagated using ab initio molecular dynamics, that is, by computing the
electronic energy and the nuclear gradient at each nuclear integration time step to solve the classi-
cal equations of motion (Eqs. (14.14), (14.15), and (14.16)). Then, by computing electronic structure
quantities – electronic energies, non-adiabatic coupling vectors, and also spin–orbit coupling or
(transition) dipole moments if required – at the centroid positions between all TBFs present in the
dynamics (and, if needed, at the position of the TBFs), we can construct the Hamiltonian matrix
from the matrix elements in Eq. (14.37) and solve the equations of motion (14.18) (within the
SPA0) to propagate the complex coefficients on the support of the TBFs. Formally, the number
of electronic-structure calculations required per integration time step, considering a total num-
ber of NTBFs, is NTBFs×(NTBFs+1)

2
. This computational overhead is the price we have to pay for preserving

the couplings between TBFs and not enforcing an independent trajectory approximation as done
for example in surface hopping (see Section 14.5.4). While the calculation of Hamiltonian matrix
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elements in AIMS can lead to computationally expensive runs when a large number of TBFs are
spawned, it is clear from the form of Eq. (14.37) that one can screen for the important matrix ele-
ments to be computed by monitoring the overlaps between TBFs [35].

AIMS can be interfaced with any electronic-structure method that can provide the aforemen-
tioned electronic-structure quantity. Non-adiabatic dynamics with AIMS were, for example,
performed with state-averaged complete active space self-consistent field (SA-CASSCF),
multi-state complete active space perturbation of second order (MS-CASPT2), multi-reference
configuration interaction (MRCI), linear-response time-dependent density functional theory
(LR-TDDFT), or floating occupation molecular orbital complete active space configuration inter-
action (FOMO-CASCI). More information about these electronic-structure methods can be found
in Chapters 2–10 of this book. More recently, AIMS was combined with the electronic-structure
code TeraChem [76–79], which capitalizes on the significant acceleration offered by graphics
processing units (GPUs). The combination of AIMS with GPU-accelerated electronic structure
methods has allowed the photo-chemistry and photo-physics of larger and/or more complex
molecular systems with SA-CASSCF [66], LR-TDDFT [13], or FOMO-CASSCI [56] to be studied.

14.5.4 Ab Initio Multiple Spawning versus Trajectory Surface Hopping

We briefly summarize here the main differences between AIMS and Trajectory Surface Hopping
(TSH, see Chapter 16 for an extensive discussion of this method), which is one of the most com-
monly employed on-the-fly non-adiabatic dynamics schemes for molecules. In short, TSH portrays
the non-adiabatic dynamics of nuclear wave packets as a swarm of independent classical trajec-
tories that can hop between electronic adiabatic states. The most commonly employed hopping
algorithm – the Fewest Switches defined by Tully in 1990 [75] – computes after each nuclear time
step a hopping probability (based on the strength of non-adiabatic couplings as well as complex
amplitudes propagated along the classical trajectory) that will be used in a stochastic algorithm to
determine if a trajectory has to jump from one electronic state to another. TSH and AIMS make use
of classical trajectories differently: AIMS propagates Gaussian functions, having a certain width
both in position and momentum coordinates, along classical trajectories, while TSH propagates
purely classical trajectories, i.e., 𝛿-function like. In AIMS, a Gaussian function is combined with
a single complex coefficient and associated with one specific electronic state – any coupling with
another electronic state requires the creation of a new TBF in the said state via the spawning algo-
rithm (Section 14.3.2). In TSH, a trajectory carries one complex coefficient for each electronic state
considered in the dynamics, and the trajectory can jump onto a different state thanks to the hop-
ping algorithm. In this sense, a TSH trajectory is completely independent of the other trajectories
of the swarm, while in AIMS all TBFs of a given parent branch 𝛽 will be coupled. While the inde-
pendent classical trajectory approximation (ITA) makes TSH a remarkably simple algorithm to
use (all trajectories can be calculated independently), it also leads to the so-called overcoherence
problem [8, 10, 14, 18, 69]. Briefly, the overcoherence problem originates from the fact that all the
TSH complex coefficients C̃𝛼

𝜇(t) associated with a trajectory 𝛼 are forced to evolve along the same
classical trajectory. The equations of motion for the TSH coefficients are given by

i
dC̃𝛼

𝜇(t)
dt

= Eel
𝜇 (R𝛼)C̃𝛼

𝜇(t) − i
∞∑
𝜈

d𝜇𝜈(R𝛼) ⋅
.

R𝛼C̃𝛼
𝜈 (t) , (14.39)

where R𝛼 stands for the position of the trajectory 𝛼 at time t (and
.

R𝛼 its classical velocity). Compar-
ing Eq. (14.39) with the equations of motion for the AIMS coefficients (Eq. (14.18) highlights the
independent nature of the trajectories in TSH: the TSH coefficients are evolved along the trajectory



�

� �

�

452 14 Full and Ab Initio Multiple Spawning

𝛼 and no couplings with other trajectories are considered (due to the ITA mentioned before). In
AIMS, all TBFs from a branch 𝛽 are coupled together, and a complex coefficient for an electronic
state 𝜇 is attached to a Gaussian evolving on this particular state only. In a very pictorial way, one
could think of a TSH trajectory as a set of infinitely narrow TBFs, one per electronic state, whose
dynamics is dictated by a single TBF at the time, the one evolving on the running state. In this
picture, all the TBFs are forced to follow the dynamics associated to the TBF on the driving state,
until a hop takes place, at which point the TBF on the new driving state start driving the dynamics.
This picture, while naive, helps us understand one of the central advantages of coupling TBFs in
AIMS as compared to the single trajectory picture of TSH: the description of decoherence effects
after a region of non-adiabaticity.
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Figure 14.8 Schematic representation of a decoherence event as pictured by exact quantum dynamics (a),
AIMS (b), or TSH (c). The first non-adiabatic crossing is depicted on the left panel, while the second passage
through the non-adiabatic region is pictured on the right one. In TSH, the trajectory driving the dynamics is
indicated by a filled circle, while the “ghost” trajectory on the other state, which follows the driving
trajectory, is given by a dashed circle (we consider here that the driving trajectory does not hop and stays on
the upper state). The bar on top of the trajectories symbolizes the amount of amplitude carried by each
state: 1 for the upper state at the beginning of the dynamics (long bar), shared between both states after
the first crossing (smaller bars).
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Figure 14.8 gives an example of decoherence following a non-adiabatic event. From a nuclear
quantum dynamics perspective (Figure 14.8(a)), a nuclear wave packet enters a non-adiabatic
region, where a branching takes place, leaving after the coupling region a substantial amount of
the nuclear wave packet on the upper state. Once the crossing is passed, the lower potential energy
curve drives the nuclear wave packet (on the lower state) away from the coupling region rapidly
(left panel of Figure 14.8(a)). On the other hand, the wave packet on the upper state might reach
a repulsive region of the potential energy curve that will push it back towards the intersection
region: the two nuclear wave packets decohere, i.e., their overlap falls to zero. As the nuclear
wave packet on the upper state comes back into the non-adiabatic coupling region (right panel of
Figure 14.8(a)), it can transfer additional amplitude to the lower state, but importantly there are
in this case no interferences between the upper nuclear wave packet and the lower one created in
the first crossing event as decoherence happened.

In AIMS (Figure 14.8(b)), a TBF evolving on the upper state reaches the non-adiabatic region,
spawns a new TBF in the lower state, and amplitude will be transferred between the two TBFs,
which then evolve according to their respective potential energy curve. The TBF on the lower
state rapidly leaves the coupling region, while the one on the upper state reaches the repulsive
part of the potential and moves back towards the coupling region. As the lower TBF leaves the
non-adiabatic coupling region, its coupling with the upper TBF vanishes (the overlap in the last
term of the Hamiltonian matrix element between the TBF, Eq. (14.37) and Figure 14.2(a), is close
to zero) and no interference between them takes place. In other words, the TBFs have decohered.
Hence, the upper TBF, when reaching the coupling region for a second time, spawns a new TBF
on the lower state and amplitude transfer takes place.

In TSH (Figure 14.8(c)), a trajectory 𝛼 is initiated in the upper state, with the complex coefficient
corresponding to this state set to 1 and all other coefficients set to zero. When the trajectory
reaches the region of strong non-adiabatic coupling, the amplitude is transferred from the upper
to the lower state based on Eq. (14.39). The fewest-switches algorithm may allow the trajectory
𝛼 to remain on the upper electronic state, in which case both the amplitudes on the upper and
the lower state are evolved on the support of the 𝛼 trajectory still evolving on the upper state.
When the trajectory reaches the repulsive part of the potential energy curve, it comes back
towards the non-adiabatic region. However, the amplitude associated with the lower state still
follows the trajectory 𝛼 and has not decohered. When the trajectory reaches the non-adiabatic
region, the complex coefficient on the upper part will interact with the one on the lower state,
leading to artificial interferences. Hence, TSH would, in this particular case, be unable to describe
this non-adiabatic event as a single crossing, unless one artificially suppresses the amplitude
on the non-running state – a strategy followed by different methods to include decoherence in
TSH [19, 27, 28, 62–64, 70, 71]. It should be noted that the TSH trajectory on the upper state
could have jumped during the first passage through the non-adiabatic region, naturally then
leaving the coupling region with no decoherence problem. Hence, the overcoherence issue
of the original (non-corrected) TSH is particularly critical when multiple crossings between
the same electronic states take place. This issue is naturally solved in AIMS by using coupled
TBFs, at the cost of relaxing the computationally-interesting ITA of TSH [21, 45]. Recent mixed
quantum/classical approaches [10], in particular based on the exact-factorization of the molecular
wave function [1, 50, 51], have proposed recovering a detailed description of decoherence effects in
non-adiabatic dynamics by coupling trajectories. The interested reader is referred to the Chapter 17
of this book for more information.
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14.6 Dissecting an Ab Initio Multiple Spawning Dynamics

Section 14.5 presented AIMS from a formal perspective. We propose in this section to explain in
more detail the steps involved in an AIMS calculation, to exemplify some of the concepts introduced
earlier, and to discuss a practical example of AIMS dynamics.

14.6.1 The Different Steps of an Ab Initio Multiple Spawning Dynamics

Different implementations of AIMS have been proposed, in particular of the spawning algorithm,
and the flowchart presented in Figure 14.9 presents a simplified AIMS algorithm as included in the
software package Molpro [81] (since version 2012) and discussed in great detail in Ref. [35]. Within
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Figure 14.9 Flowchart summarizing the critical steps of a typical algorithm performing Ab Initio Multiple
Spawning. The Spawning Algorithm (red box) is discussed in more detail in Section 14.3.2. Figure based on
Ref. [35].
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the IFGA, the AIMS dynamics starts with a single TBF at time t = 0 (for a given run 𝛽). For each time
step, the electronic structure is first calculated for all the TBFs present in the simulation (spawning
events keep increasing the number of TBFs) and the Hamiltonian matrix elements (Eq. (14.37),
within the SPA0) are constructed. All TBF quantities (positions, momenta, phase, as well as their
coupled complex amplitude) are then propagated for one time step. At this point, the spawning
algorithm monitors the strength of the effective couplings, and the dynamics can enter a spawning
mode and increase the number of TBFs if necessary (see Section 14.3.2 for additional details on
the spawning algorithm). Different tests are finally performed to detect potential issues with norm
or energy conservation, as well as potential electronic-state flipping during this integration step.
If such problems are identified, the time step can be rejected, and its size reduced until tests are
eventually passed [35]. If the time step is accepted, the dynamics proceeds further.

14.6.2 Example of Ab Initio Multiple Spawning Dynamics – the Photo-Chemistry
of Cyclohexadiene

In the following, we discuss how an AIMS simulation takes place in practice and how it can be
analyzed, using the non-adiabatic dynamics of cyclohexadiene (CHD) as an example. It should
be noted, though, that this section does not intend to propose a detailed mechanistic study of the
photo-chemistry of this molecule, but only to explain how AIMS is used in practice. Upon light
absorption, CHD (see inset of Figure 14.10(b) can be promoted into its first excited electronic state
(S1). This process triggers an excited-state dynamics that can potentially lead to the ring opening
of CHD to form hexatriene. The electronic structure employed for the following calculations is
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Figure 14.10 Non-adiabatic dynamics of cyclohexadiene with AIMS. Analysis of a single branch (𝛽 = 1) of
AIMS dynamics, starting with a TBF in S1 (𝜒 (S1)

11 ), which spawns three child TBFs in S0. (a) Electronic energies
along the four TBFs. Full lines indicate the electronic energy followed by each TBF, while the dashed lines
(with corresponding colors) highlight the electronic energy of the other electronic states at the current
position of the TBF. The three insets depict the molecular geometries at the time of spawning for the three
child TBFs. (b) Electronic-state populations during the AIMS dynamics. The S1 (S0) population is given by a
thick palatinate (green) line, while the TBF populations are given by thin lines with colors matching the
ones on panel (a) (see text for more details). The structure of cyclohexadiene is given in the inset.
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SA(3)-CASSCF(4/3), combined with a 6-31G∗ basis set (this level of electronic-structure theory
was validated in previous work [30, 31, 66]).

The first step consists of sampling some initial conditions for the TBFs, i.e., determine their ini-
tial nuclear positions and momenta. For the most general use of AIMS, we shall consider that
the molecule is originally in its ground electronic and vibrational state and will be excited by an
ultrashort pulse. In other words, we are simply going to project the ground-state nuclear wave
function on the desired electronic state (here S1), forming a nuclear wave packet at time t = 0.
More complex initial conditions can be generated, for example when XFAIMS is employed and the
photo-excitation process is treated explicitly. A general strategy to sample positions and momenta
for a ground vibrational nuclear wave function is to compute its Wigner distribution [55]. For
molecular systems, one actually computes an approximate Wigner distribution for a set of uncou-
pled harmonic oscillators (for more details on this subject, the reader is referred to Refs. [11, 55]
as well as Chapter 16). The construction of this approximate Wigner distribution only requires a
ground-state optimized geometry and corresponding harmonic frequencies – quantities that can
easily be obtained with most electronic-structure methods. A sampling is performed from this dis-
tribution, providing for each selected point a set of positions and momenta. These will define the
initial conditions, R̄(𝜇)

k𝛽 (t = 0) and P̄(𝜇)
k𝛽 (t = 0), for each parent TBF 𝛽 in electronic state 𝜇 (in the

case of CHD, 𝜇 corresponds to S1). Within the IFGA, all parent TBFs will be run independently,
meaning that the complex amplitude for the parent TBF k in branch 𝛽 attributed to state 𝜇 is simply
set to unity at the beginning of the dynamics: C(𝜇)

k𝛽 (t = 0) = (1.0, 0.0). The AIMS dynamics is then
initiated with only the parent TBF present until it encounters a region of strong non-adiabaticity,
where the spawning of a new child TBF can take place. The dynamics continues, with new spawn-
ing events possible for both parent and child TBFs, until a certain termination criterion is met, for
example when most of the nuclear wave packet is returned to the ground electronic state.

Figure 14.10 gives an example of the dynamics of a parent TBF and the creation of child TBFs
for the excited-state dynamics of CHD. As mentioned above, only the parent TBF is present at
time t = 0. The parent has the label k = 1 (being the first TBF of the branch), is on branch 𝛽 = 1,
and is running on the electronic state S1: its notation is therefore 𝜒 (S1)

11 . The electronic energy of
the parent TBF during the AIMS run is indicated by the thick gray line in Figure 14.10(a). The
corresponding time-trace for the population of this TBF, |C(S1)

11 (t)|2, is given by a similar line in
Figure 14.10(b). The parent TBF evolves originally adiabatically, i.e., without any strong interaction
with the other electronic states. However, after 30 fs of dynamics, the S0 state comes closer (in
energy) to the running state S1 (lower dashed gray line in Figure 14.10(a)), until both states become
nearly degenerate (at t ∼ 36 fs). At this point, the parent TBF enters a region of strong coupling and
spawns a new TBF, 𝜒 (S0)

12 , on the coupled state (𝛽 = 1, k = 2, 𝜇 = S0), depicted by a thick blue line.
The two lines become nearly degenerate at the time of the spawning, and it is interesting to note
that the blue segment before the intersection region results from the dynamics from tentry to tspa𝑤n,
as detailed in Section 14.3.2. The spawning geometry for 𝜒 (S0)

12 is given as an inset in Figure 14.10(a)
(with a blue shadow). The child TBF 𝜒

(S0)
12 evolves on the ground electronic state S0 and relaxes

towards a lower electronic energy rapidly, pushing the excited electronic states higher in energy (see
dashed blue lines in Figure 14.10(a)). When looking at the transfer of amplitude, the parent TBF
efficiently transfers a large amount of its population to the first child TBF (large variations in the
gray and blue curves in Figure 14.10(b) at around 36 fs). When the TBF leaves the coupling region
and is no more coupled to any other TBFs, its dynamics can be stopped (explaining why the curves
for 𝜒 (S0)

12 stops after 42 fs). The parent TBF continues its evolution in S1 and rapidly hits again the
S1/S0 intersection seam, spawning a second child TBF, 𝜒 (S0)

13 (red lines in Figure 14.10), with whom
it only exchanges a small amount of population (∼ 8%). After 68 fs of dynamics, the parent TBF
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finally hits for the last time the intersection seam, transferring almost all its remaining amplitude
to the newly-created TBF 𝜒 (S0)

14 (orange). This AIMS run highlights the interaction between TBFs
and the fact that they all have their independent dynamics while being connected via their complex
coefficients.

In the previous paragraph, we discussed the concept of “TBF population”, given by |C(𝜇)
k𝛽 (t)|2. It is

important to realize that the population of a given electronic state, say 𝜆, is not obtained by simply
adding up all the TBF populations for TBF evolving in 𝜆, as we are using a non-orthogonal Gaussian
basis set. The population in state 𝜆 for a given branch 𝛽 is obtained by calculating the expectation
value of the projector ̂𝜆 = |Φ𝜆⟩⟨Φ𝜆| using the AIMS molecular wave function:

P𝛽
𝜆
(t) =

∞∑
𝜇𝜈

⎡⎢⎢⎣
N𝛽
𝜇 (t)∑
k

N𝛽
𝜈 (t)∑
k′

(C(𝜇)
k𝛽 (t))

∗C(𝜈)
k′𝛽

(t)⟨Φ𝜇𝜒
(𝜇)
k𝛽 |̂𝜆|𝜒 (𝜈)

k′𝛽
Φ𝜈⟩r,R

⎤⎥⎥⎦
=

N𝛽

𝜆
(t)∑

kk′

(C(𝜆)
k𝛽 (t))

∗C(𝜆)
k′𝛽

(t)⟨𝜒 (𝜆)
k𝛽 |𝜒 (𝜆)

k′𝛽
⟩R =

N𝛽

𝜆
(t)∑

kk′

(C(𝜆)
k𝛽 (t))

∗C(𝜆)
k′𝛽

(t)(S)𝜆𝜆k𝛽,k′𝛽
. (14.40)

Equation (14.40) highlights the potential importance of the Gaussian interference terms in the
calculation of AIMS expectation values. The population trace for the S1 and S0 states of the branch
𝛽 = 1 (P1

𝜆
(t), with 𝜆 = S1, S0) is given in Figure 14.10(b) with thick lines.

The results presented up to now were all for a single branch 𝛽 = 1, i.e., the AIMS dynamics origi-
nating from a single parent TBF (a single initial condition). We know, however, that we need more
than one branch to reproduce the dynamics of the initial nuclear wave packet adequately. How
should we then compute expectation values in AIMS?

In FMS, one would compute the expectation value of a given operator ̂ as

(t) = ⟨Ψ(t)|̂|Ψ(t)⟩r,R⟨Ψ(t)|Ψ(t)⟩r,R

=

∑Nini
𝛽𝛽′

∑∞
𝜇𝜈

∑N𝛽
𝜇 (t)

k
∑N𝛽′

𝜈 (t)
k′ (C(𝜇)

k𝛽 (t))
∗C(𝜈)

k′𝛽′
(t)⟨Φ𝜇𝜒

(𝜇)
k𝛽 |̂|𝜒 (𝜈)

k′𝛽′
Φ𝜈⟩r,R∑Nini

𝛽𝛽′
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𝜇𝜈

∑N𝛽
𝜇 (t)

k
∑N𝛽′

𝜈 (t)
k′ (C(𝜇)

k𝛽 (t))
∗C(𝜈)

k′𝛽′
(t)(S)𝜇𝜈k𝛽,k′𝛽′

, (14.41)

where we used the definition of the FMS molecular wave function Eq. (14.17) and considered
the spawning algorithm (the number of TBFs is time-dependent). If one now applies the IFGA,
Eq. (14.41) reduces to

(t) ≈ 1
Nini

Nini∑
𝛽

⎡⎢⎢⎣
∑∞
𝜇𝜈

∑N𝛽
𝜇 (t)

k
∑N𝛽

𝜈 (t)
k′ (C(𝜇)

k𝛽 (t))
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(t)⟨Φ𝜇𝜒

(𝜇)
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k′𝛽
Φ𝜈⟩r,R∑∞

𝜇𝜈

∑N𝛽
𝜇 (t)

k
∑N𝛽

𝜈 (t)
k′ (C(𝜇)

k𝛽 (t))
∗C(𝜈)

k′𝛽
(t)(S)𝜇𝜈k𝛽,k′𝛽

⎤⎥⎥⎦ , (14.42)

where interferences between TBFs coming from different branches 𝛽 are neglected and the final
expectation value is obtained by averaging incoherently over all the branches (or initial conditions).
Hence, replacing ̂ by ̂𝜆 = |Φ𝜆⟩⟨Φ𝜆| in Eq. (14.42) gives,

P𝜆(t) ≈
1

Nini

Nini∑
𝛽

⎡⎢⎢⎢⎣
∑N𝛽

𝜆
(t)

kk′ (C(𝜆)
k𝛽 (t))

∗C(𝜆)
k′𝛽

(t)(S)𝜆𝜆k𝛽,k′𝛽∑∞
𝜇𝜈

∑N𝛽
𝜇 (t)

k
∑N𝛽

𝜈 (t)
k′ (C(𝜇)

k𝛽 (t))
∗C(𝜈)

k′𝛽
(t)(S)𝜇𝜈k𝛽,k′𝛽

⎤⎥⎥⎥⎦ , (14.43)

which, considering that the total (FMS or AIMS) molecular wave function is normalized, corre-
sponds to an average of Eq. (14.40) over all Nini branches. In other words, the AIMS expectation
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value for the population of a given electronic state is obtained by propagating several initial condi-
tions (several branches) and averaging them together. More information about the calculation of
expectation values in AIMS and FMS can be found in Ref. [11].

Returning to the non-adiabatic dynamics of CHD, one needs to run more AIMS branches to per-
form the average given in Eq. (14.43). A converged AIMS usually consists of tens to hundreds
of independent branches, depending on the type of expectation values or quantities one wants
to calculate. As an example, we summarize here the results obtained with 12 different branches
(Nini = 12) for CHD (we should keep in mind that more initial conditions would be desirable to
converge the simulation fully). Figure 14.11(a) presents the time trace for the population of state
S1 (PS1

(t), as defined in Eq. (14.43)), averaged over 12 branches whose initial configurations are
given in the inset. The nuclear wave packet, originally generated in S1, relaxes towards the ground
electronic state in less than 180 fs. The S1 population for each individual branch (P𝛽S1

(t), as obtained
from Eq. (14.40)) is reported as dashed lines in Figure 14.11(a). While the AIMS dynamics was initi-
ated with 12 parent TBFs, the spawning algorithm allowed for an important increase in the number
of TBFs, reaching 72 by the end of this non-adiabatic dynamics.

A simple and informative analysis that can be performed on an AIMS simulation is the projection
of the TBFs onto a specific molecular coordinate. In the particular case of CHD, we focus on the
C—C bond (see inset of Figure 14.11(a)) responsible for the ring opening. Figure 14.11(b) shows a
projection of the 72 TBFs generated during the AIMS dynamics onto this coordinate, the thickness
of each line being proportional to the TBF population |C(𝜇)

k𝛽 |2. Each line represents a TBF, and is
depicted in palatinate if the TBF evolves in S1, in green for S0, and orange for S2. This representation
clearly shows the spreading of the AIMS wave packets during the non-adiabatic dynamics. At the

0

1.5

2C
--

-C
 b

o
n
d
 l
e
n
g
th

 (
Å

)

2.5

3

3.5 2.5

2

1.5
500

50150100500
0

0.2

0.4

0.6

P
o
p
u
la

ti
o
n

0.8

1

Time (fs)

b)a)

100 150

Time (fs)

PS1 

(Nini=12)

PS1 

β

χ
~

kβ

(S2)

χ
~

11
(S1)

χ
~

21
(S0)

χ
~

31
(S0)

χ
~

41
(S0)

χ
~

kβ

(S1)

χ
~

kβ

(S0)

C---
C
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12 initial conditions (or branches), generating 72 TBFs in total. (a) The overall population of the S1 state,
PS1

(t), obtained by averaging the 12 P𝛽S1
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beginning of the dynamics, when the nuclear wave packet formed in S1 is in the Franck–Condon
region, the TBFs exhibit standard C—C bond lengths (around 1.54 Å). However, the wave packet
rapidly starts to leave the Franck–Condon region (stretch of the C—C bond), and approaches a
non-adiabatic region after only 25 fs of dynamics, leading to the spawn of new TBFs in S0 (green
lines appear in Figure 14.11(b)) and population transfer towards S0 (green lines become thicker, and
population in S1 decays, as also observed in Figure 14.11(a)). The TBFs in S1 keep evolving with an
elongated C—C, until they reach the intersection seam again and transfer population again towards
the ground electronic state. We note that the TBFs in S0, upon creation, show a rapid C—C stretch
(towards a ring opening) or C—C contraction (towards a ring closure).

The inset of Figure 14.11(b) shows the same projection, but only for the branch 𝛽 = 1 described
above in Figure 14.10 (the color code in the inset is chosen to match the one introduced in the
previous discussion of the branch 𝛽 = 1). The inset shows that the C—C bond length of the parent
TBF, 𝜒 (S1)

11 , rapidly stretches and hits the intersection seam, leading to the spawning of a new TBF,
𝜒
(S0)
21 , and to amplitude transfer (the gray line becomes thinner and the blue one thicker – see also

Figure 14.10(b)). The C—C bond length of 𝜒 (S0)
21 appears to evolve towards ring closure, following

the dynamics of the parent TBF at the time of the spawning. The parent TBF spawns a second time,
forming 𝜒 (S0)

31 (red line in the inset of Figure 14.11(b)) and leading to a smaller population transfer.
Interestingly though, this spawn takes place when the C—C bond of 𝜒 (S1)

11 is in an elongation pro-
cess, leading to a child TBF, 𝜒 (S0)

31 , evolving towards a ring opening. The parent TBF finally spawns
a last TBF, transferring most of its remaining amplitude (as described in the analysis above).

14.7 In Silico Photo-Chemistry with Ab Initio Multiple Spawning

Over the last decades, AIMS has helped shed light on the non-adiabatic dynamics of a wide range
of organic as well as inorganic molecules (a table summarizing different molecular applications of
AIMS is available in Ref. [11]). In the following, we describe representative applications of AIMS
to the non-adiabatic dynamics of three different molecules, demonstrating the potential and pre-
dictive power of this method.

Ethylene – C2H4 (inset of Figure 14.12) – may appear to be a small and simple molecule, but it
suffers a surprisingly complex excited-state dynamics and is considered as a prototypical molecule
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Figure 14.12 (a) Experimental and (b) predicted (AIMS/MS-CASPT2) time-resolved photo-electron kinetic
energy spectra of ethylene (inset). Adapted from Ref. [32]. Copyright 2015 American Chemical Society.
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to study photo-isomerization around a double bond. As such, ethylene has been the subject of a
number of important experimental and theoretical studies. AIMS combined with MS-CASPT2 [74]
has been employed to study the non-adiabatic dynamics following photo-excitation of ethylene
in its bright 𝜋𝜋∗ excited state [73]. An excellent agreement between experiment and AIMS
was observed, in particular when comparing an AIMS-simulated femtosecond time-resolved
photo-electron spectrum with the measured total ion yield from a vacuum UV/vacuum UV
pump–probe experiment [73]. This analysis further explained why the theoretical S1 lifetimes
predicted by different excited-state dynamics methods are significantly longer (89–180 fs) than
the experimentally observed lifetime (∼50 fs): the photo-excited ethylene molecule can enter into
a region of the S1 potential energy surface where the experimental probe pulse is insufficiently
energetic to induce an ionization process. Therefore, the decay of the measured photo-ion
yield does not directly correspond to the decay of the S1 population (when using such a probe
pulse), explaining the mismatch between experiment and theory. Another validation of the
accuracy of AIMS/MS-CASPT2 can be found in Figure 14.12, which compares the experimental
(a) and AIMS-simulated (b) time-resolved photo-electron kinetic energy spectra of ethylene. The
spectra obtained with AIMS [52] largely reproduce the trends observed experimentally [32], in
particular, the fast decrease of the photo-electron kinetic energy. It is important to note that the
AIMS/MS-CASPT2 spectra reported in Figure 14.12(b) was in fact predicted three years before
the experimental spectra in Figure 14.12(a) could be recorded. More recently, AIMS was used
to simulate a time-resolved x-ray absorption spectroscopy (TRXAS) experiment performed on
ethylene, predicting that this technique could potentially provide a signature of the dynamics near
conical intersections [53]. Interestingly, such dynamics near conical intersections has recently
been observed for the molecule CF3I using ultrafast gas-phase electron diffraction combined
with AIMS dynamics, which closely reproduce the experimental observables and support the
experimental interpretation [85].

As described in Section 14.5.3, the development of GPU-accelerated electronic-structure meth-
ods paved the way for the non-adiabatic dynamics of even larger (or more complex) molecular
systems. The combination of GPU-accelerated SA-CASSCF [26, 67, 68] with AIMS permits large
molecular systems to be treated while offering an accurate description of both the electronic
structure and the nuclear dynamics – in other words, it allows the compromise between efficiency
and accuracy inherent to any non-adiabatic molecular dynamics simulation to be pushed further.
The potential of this combination is particularly well illustrated by a recent study focusing on
the non-radiative deactivation of the provitamin-D3 molecule [66]. Provitamin-D3 contains a
cyclohexadiene moiety (see inset of Figure 14.13) that, as described in Section 14.6, can absorb light
and undergo a ring-opening mechanism in the excited state. Upon non-radiative relaxation to the
ground electronic state, either the parent provitamin-D3 is recovered or a ring-open form, called
previtamin-D3, can be observed. Further reorganization of previtamin-D3 leads to the well-known
vitamin D molecule. The photo-chemistry of provitamin-D3 has been studied using AIMS with
GPU-SA-CASSCF(6/4) for the electronic structure7, considering the first three electronic states:
the ground state S0, the first excited state S1 (bright state), as well as a the second-state S2 (exhibit-
ing a double-excitation character). The molecule considered has 51 atoms, and up to 330 TBFs in
total are generated during the 2 ps of non-adiabatic dynamics. Experimentally, the non-radiative
decay of provitamin-D3 exhibits a bi-exponential decay – a behavior closely reproduced by the
AIMS/GPU-SA-CASSCF non-adiabatic (Figure 14.13). Fitting the decay of the S1 population

7 This level of theory was benchmarked against high-level calculations for the cyclohexadiene/hexatriene
molecules.
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Chemical Society.

provides lifetimes and amplitudes in close agreement with experimental observations (inset of
Figure 14.13). Further investigations of the AIMS dynamics revealed that the bi-exponential decay
is caused by a non-equilibrium dynamics upon photo-excitation linked to the ring opening and
closing motion. This theoretical interpretation of the bi-exponential decay was later validated by
experiments based on ultrafast transient absorption spectroscopy [65].

The chemistry taking place upon photo-excitation of the small molecule thioformaldehyde-S-
oxide (see Figure 14.14(b), called in the following “sulfine”) is surprisingly rich. Experimentally,
a large number of somewhat exotic molecules could be observed upon irradiation of sulfine
in an argon matrix [59] (see molecules depicted in Figure 14.14(c)). Are all these molecules
formed in the excited states, or are they the result of a subsequent hot ground-state dynamics?
AIMS/MS-CASPT2, combined with ab initio molecular dynamics using GPU-accelerated density
functional theory (DFT), has been employed to answer this question [48]. Upon photo-excitation,
the sulfine molecule relaxes towards the ground electronic state in less than 1 ps, coming back to
its original form or generating the cyclic molecule oxathiirane, the latter case happening for ∼ 30%
of the original sulfine population (Figure 14.14(a)). By further propagating all the TBFs formed in
the ground electronic state using GPU-accelerated ab initio molecular dynamics, all the molecules
detected experimentally could subsequently be observed in the simulation (Figure 14.14(c)).
Hence, the non-adiabatic dynamics of the sulfine only leads to the formation of oxathiirane (or
regeneration of the original sulfine), and the subsequent hot dynamics in the ground state allows
for the generation of the other molecules. However, the timescale for the formation of these
molecules in S0 is much shorter than one would expect from transition state theory, which implies
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ground state. For clarity, the different molecules formed are grouped in families (see structures), and a
corresponding color code is used to plot the populations. Reprinted from Ref. [48] with permission from
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that a non-statistical dynamics takes place in the ground electronic state [48]. In other words,
the molecule does not have the time to vibrationally relax upon non-adiabatic relaxation, and the
large amount of kinetic energy released after the passage through the conical intersection triggers
ground-state chemical reactions in a non-statistical (or athermal) way.

14.8 Summary

This chapter introduced the framework of FMS – a method for non-adiabatic quantum molec-
ular dynamics that portrays nuclear wave functions as adaptive linear combinations of frozen
Gaussians following classical trajectories. In the limit of a large number of trajectory basis
functions and an exact evaluation of their couplings, the FMS framework becomes, in principle,
exact. Approximations have been devised around the FMS strategy to allow for the on-the-fly
non-adiabatic dynamics of molecules in their full configuration space – a method coined Ab
Initio Multiple Spawning. Ab Initio Multiple Spawning naturally preserves a proper description of
decoherence effects following non-adiabatic transitions, thanks to the coupling between trajectory
basis functions. Owing to the straightforward derivation of their running equations from first
principles, both FMS and Ab Initio Multiple Spawning can easily be extended to the description of
intersystem crossings or the coupling with an external time-dependent electric field. We detailed
the different steps of an Ab Initio Multiple Spawning dynamics for the excited-state dynamics of
the cyclohexadiene molecule, and summarized some successful applications of this method to
molecular systems of experimental interest.
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Abstract

Rapid advances in ultrafast experiments have contributed to the rise of trajectory-based methods for
describing nonadiabatic dynamics of molecular systems. In the present Chapter, we review theoretical
methods that represent the time-dependent nuclear wave packet with trajectories that evolve classically
on mean-field potential energy surfaces. The simplest form is the Ehrenfest method, which employs
an ensemble of independent trajectories. We also present the Multi-Configurational Ehrenfest method
in which Ehrenfest trajectories are used as a basis to solve the time-dependent Schrödinger equation.
Strategies for overcoming the limitations of the methods are also discussed. Finally, we present applica-
tions of these simulation methods to electron dynamics induced by attosecond photoionisation and to
nuclear dynamics probed by ultrafast x-ray scattering.

15.1 Introduction

The initial and critical steps in photo-chemical reactions occur on short time scales, and quantum
effects such as nuclear motion on multiple electronic states, non-adiabatic couplings and coni-
cal intersections, tunneling, coherence and interference play an important role [26, 93, 118, 126].
In time-resolved pump-probe experiments, the initially excited wave packet is rather localized
and the evolution of the system is probed over a comparatively short stretch of time. Femtosec-
ond (1 fs = 10−15 s) lasers have allowed the experimental study of fundamental intramolecular
dynamics since the late 1980s [125], by using light pulses that are shorter than the characteristic
time for nuclear motion. In 2001, the “femtosecond barrier” was broken with the first synthesis
of attosecond (1 as = 10−18 s) pulses [36, 74]. The developments in attoscience make it possible
to observe electronic motion on its intrinsic timescale. Despite astonishing advances in ultrafast
spectroscopies and imaging techniques [19, 38, 40, 81], the observables in most experiments only
provide a partial picture of the dynamics, making simulations a critical tool for the interpretation
of experiments.

The time evolution of a (non-relativistic) molecular system is determined by the time-dependent
Schrödinger equation:

iℏ 𝜕
𝜕t

|Φ(r⃗, R⃗, t)⟩ = Ĥ|Φ(r⃗, R⃗, t)⟩, (15.1)

Quantum Chemistry and Dynamics of Excited States: Methods and Applications,
First Edition. Edited by Leticia González and Roland Lindh.
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where |Φ(r⃗, R⃗, t)⟩ is the total molecular wave function, r⃗ and R⃗ are the electronic and nuclear
coordinates respectively. The problem will be solved in the framework of the Born–Oppenheimer
approximation, as discussed in Part I. In brief, the Hamiltonian operator reads: Ĥ = T̂N + T̂e + V̂ ,
with T̂N = −

∑
I
ℏ2

2MI
∇2

I the kinetic energy operator of the nuclei, T̂e = −
∑

i
ℏ2

2me
∇2

i the kinetic energy
operator of the electrons, and V̂ the operator for inter-particle interactions (electron–electron,
nucleus–nucleus and electron–nucleus). The latter two operators are normally combined to
form the electronic Hamiltonian for fixed nuclei R⃗, Ĥe = T̂e + V̂ . The indices i and I refer to the
electrons and the nuclei respectively; me is used to denote the mass of an electron and MI is used
to denote the mass of the nucleus I.1 Unfortunately, solving this equation and simulating quantum
dynamics in molecules remains a fundamentally difficult problem, due to the non-local nature
of quantum mechanics and the associated exponential scaling of the computational effort with
the number of degrees of freedom [85]. The field of theoretical chemistry is thus dominated by
developments of numerical and approximate methods.

Trajectory-based methods partially circumvent the exponential scaling problem by focusing
efforts on the most relevant part of the phase-space [34]. This includes surface-hopping (see
Chapter 16), simple Ehrenfest (as discussed in the current chapter), and methods that originate in
the frozen Gaussian expansion of the nuclear wave function [34, 37, 86]. Modern implementations
of the latter include the ab-initio multi-configurational Ehrenfest (AI-MCE) method [61] (this
chapter), the ab-initio multiple spawning (AIMS) [54] (see Chapter 14), and the variational
multi-configurational Gaussian (vMCG) [77] (see Chapter 13). The recently devised ab-initio
multiple cloning (AIMC) method [57] can be seen as a hybrid of the AI-MCE and AIMS methods.
A major feature that differentiates the various methods is the treatment of the nuclear motion.
Some methods, like the surface hopping or AIMS methods, use a different set of basis trajectories
for each electronic state, i.e., each basis trajectory evolves on a single potential energy surface
at any given time. In technical terms, a “multi-set” formalism is used. In other methods, like
the Ehrenfest or AI-MCE methods, a single set of basis trajectories is used to treat the dynamics
in all electronic states and basis trajectories follow the gradient of a superposition of electronic
states and therefore evolve on an effective potential energy surface: a “single-set” formalism
is used.

The focus in this chapter is on the latter class of methods, more specifically on the Ehrenfest
and AI-MCE methods [61, 80, 84, 85]. In sections 15.2 and 15.3, the equations of motion for the
former and the latter are derived, respectively, highlighting the similarities and differences between
the two. The underlying approximations are explicitly stated and the implications discussed. In
section 15.4, illustrative applications of these methods to simulate electron and nuclear dynamics
are presented.

15.2 Theory of the (Simple) Ehrenfest Method

The Ehrenfest method has been extensively discussed in the literature [7, 22, 23, 37, 55, 98, 106,
123]. The presented derivation follows Refs. [108, 113] closely.

1 The use of Cartesian coordinates is not necessary and other representations of internal coordinates are also
possible.



�

� �

�

15.2 Theory of the (Simple) Ehrenfest Method 471

15.2.1 Wave Function Ansatz

In order to derive mixed quantum-classical dynamics, the nuclear and electronic variables have to
be separated. The simplest possible form is a product ansatz:

|Φ(r⃗, R⃗, t)⟩ = |Ψ(r⃗, t)⟩|Ξ(R⃗, t)⟩. (15.2)

The first approximation made in the Ehrenfest method is thus the factorization of the total wave
function into a product of electronic and nuclear parts. It is noted that, following the work of
Hunter [39], there have been theoretical derivations of an exact factorization of the total molecular
wave function into a product of an electronic wave function and a nuclear wave function. There,
the electronic wave function is not an eigenfunction (nor a superposition of eigenfunctions) of the
traditional electronic Hamiltonian Ĥe but that of a somewhat more involved electronic Hamilto-
nian which depends on the nuclear wave function itself [5, 17]. Here, the ansatz (15.2) is called a
single-configuration ansatz for the total wave function. It is emphasized that “single-configuration”
refers to the total molecular wave function ansatz, and not to the electronic structure method (the
latter is not discussed in this chapter).

One may expand the electronic wave function in a basis of Ns orthonormal electronic states {Ψ𝛽}
that depend parametrically on R⃗. This will be used to obtain practical equations of motion. The
total wave function ansatz in Eq. (15.2) thus reads:

|Φ(r⃗, R⃗, t)⟩ = ( Ns∑
𝛽=1

a𝛽(t)|Ψ𝛽(r⃗; R⃗)⟩) |Ξ(R⃗, t)⟩. (15.3)

Each of the electronic eigenfunctions is multiplied by a complex amplitude, a𝛽(t), such that |a𝛽(t)|2

is the population on the corresponding electronic state 𝛽. Since the electronic basis wave functions
are orthonormal ⟨Ψ𝛽(r⃗ ; R⃗)|Ψ𝛽′ (r⃗ ; R⃗)⟩r⃗ = 𝛿𝛽𝛽′ and 1 =

∑Ns
𝛽=1 |a𝛽(t)|2, the total wave function is nor-

malized (assuming a normalized nuclear wave function ⟨Ξ(R⃗, t)|Ξ(R⃗), t⟩R⃗ = 1). The subscripts r⃗ and
R⃗ indicate the coordinate of integration.

It is noted that the single-configuration ansatz (15.2) is different from the Born–Oppenheimer
ansatz [10] for separating the electronic and nuclear variables even in its one-determinant limit,
where only a single electronic eigenstate of Ĥe would be included in the expansion. Here, the elec-
tronic wave function |Ψ(r⃗, t)⟩ does not have to be a single adiabatic state.

One deficiency of the ansatz (15.2) is the fact that the electronic wave function does not have
the possibility to decohere: the populated electronic states in |Ψ(r⃗, t)⟩ share the same nuclear wave
packet |Ξ(R⃗, t)⟩ by definition of the total wave function. Decoherence here is defined as the tendency
of the time-evolved electronic wave function to behave as a statistical ensemble of electronic states
rather than a coherent superposition of them [127]. The neglect of electronic decoherence could
lead to non-physical asymptotic behavior in the case of bifurcating paths, for instance into different
product channels during a chemical reaction.

In order to simplify the appearance of the expressions at a later stage of the derivation [106], a
phase factor is introduced for the total wave function in Eq. (15.2),

|Φ(r⃗, R⃗, t)⟩ = |Ψ(r⃗, t)⟩|Ξ(R⃗, t)⟩ exp
(

i
ℏ∫

t
E(t′)dt′

)
, (15.4)

and also some internal phase factors for the two individual wave functions,

iℏ
⟨
Ξ
||||𝜕Ξ𝜕t

⟩
R⃗
= Etot and iℏ

⟨
Ψ

||||𝜕Ψ𝜕t

⟩
r⃗
= E(t), (15.5)

with E(t) = ⟨ΞΨ|Ĥe|ΞΨ⟩R⃗,r⃗ and Etot = ⟨ΞΨ|Ĥ|ΞΨ⟩R⃗,r⃗ .
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15.2.2 Equations of Motion

Inserting the ansatz (15.4) with the additional phase factors into Eq. (15.1), and closing on the left
by ⟨Ξ(R⃗, t)| and ⟨Ψ(r⃗, t)| gives respectively:

iℏ
𝜕|Ψ(r⃗, t)⟩

𝜕t
= T̂e|Ψ(r⃗, t)⟩ + ⟨Ξ(R⃗, t)|V̂(r⃗, R⃗)|Ξ(R⃗, t)⟩R⃗|Ψ(r⃗, t)⟩ (15.6)

iℏ
𝜕|Ξ(R⃗, t)⟩

𝜕t
= T̂N |Ξ(R⃗, t)⟩ + ⟨Ψ(r⃗, t)|Ĥe(r⃗; R⃗)|Ψ(r⃗, t)⟩r⃗|Ξ(R⃗, t)⟩. (15.7)

The set of coupled Eqs. (15.6) and (15.7) are the basis of the time-dependent self-consistent field
(TD-SCF) method [24, 32], also referred to as time-dependent Hartree (TDH) when the nuclear
wave function |Ξ(R⃗, t)⟩ is written as a simple product of (time-dependent) one-dimensional func-
tions. The same equations could have been obtained by applying the Dirac–Frenkel variational
principle [113]. The mean-field origin of the TD-SCF approach imposes limitations, as already
discussed above. By looking at the second term on the right-hand side of Eq. (15.6), we see that
the interaction between electrons at points r⃗ and nuclei at points R⃗ is weighted by the probability
that the nuclei are at these particular points. This is the effective potential experienced by the elec-
trons due to the nuclei. The corresponding comment can be made about the second term on the
right-hand side of Eq. (15.7). According to the set of coupled equations (15.6) and (15.7), both
electrons and nuclei move thus in time-dependent effective potentials obtained from appropriate
expectation values of the nuclear and electronic wave functions respectively. In other words, the
feedback between electronic and nuclear degrees of freedom is described in a mean-field manner,
in both directions.

The Ehrenfest method is the classical analogue to the TD-SCF method [28] and therefore inherits
the same limitation. It is obtained by taking the classical limit for nuclear motion of Eqs. (15.6)
and (15.7). To do that in Eq. (15.7), the nuclear wave function is (exactly) rewritten as,

|Ξ(R⃗, t)⟩ = exp
( i
ℏ

S(R⃗, t)
)
, (15.8)

allowing for a complex phase S [100]. After inserting ansatz (15.8) in (15.7), we obtain:
𝜕S
𝜕t

+
∑

I

1
2MI

(∇⃗IS)2 + ⟨Ψ(r⃗, t)|Ĥe(r⃗; R⃗)|Ψ(r⃗, t)⟩R⃗ = iℏ
∑

I

1
2MI

∇2
I S. (15.9)

Equation (15.9) is equivalent to the original Eq. (15.7). The right-hand side term (proportional to
ℏ) may be thought of as a time-dependent “quantum correction”. The classical Hamilton–Jacobi
equation [30], one of many possible formulations of classical mechanics, is obtained when taking
the limit ℏ→ 0:

𝜕S
𝜕t

+
∑

I

1
2MI

(∇⃗IS)2 + ⟨Ψ(r⃗, t)|Ĥe(r⃗; R⃗)|Ψ(r⃗, t)⟩r⃗ = 0. (15.10)

The resulting Eq. (15.10) is thus equivalent to Newton’s equation of motion, where P⃗ = ∇⃗IS = 𝜕S
𝜕R⃗

gathers the classical nuclear momentum coordinates:

dP⃗
dt

= F⃗ = − 𝜕

𝜕R⃗
⟨Ψ(r⃗, t)|Ĥe(r⃗; R⃗)|Ψ(r⃗, t)⟩r⃗ , (15.11)

where F⃗ is the mean-field force experienced by the nuclei due to the electronic wave packet |Ψ(r⃗, t)⟩.
Expanding the electronic wave function in terms of the basis of electronic states as in Eq. (15.3),

the expression for the force (15.11) becomes:

F⃗ = −
∑
𝛽,𝛽′

a∗
𝛽
(t)a𝛽′ (t)

𝜕

𝜕R⃗
⟨Ψ𝛽(r⃗; R⃗)|Ĥe(r⃗; R⃗)|Ψ𝛽′ (r⃗; R⃗)⟩r⃗ . (15.12)
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In the case of a basis of adiabatic states (as provided by electronic structure packages), it reads:

F⃗ = −
∑
𝛽

|a𝛽(t)|2
dE𝛽(R⃗)

dR⃗
−

∑
𝛽≠𝛽′

a∗
𝛽(t)a𝛽′ (t)d⃗𝛽𝛽′ (R⃗)(E𝛽′ (R⃗) − E𝛽(R⃗)), (15.13)

with E𝛽(R⃗) the electronic eigenvalues and d⃗𝛽𝛽′ (R⃗) = ⟨Ψ𝛽 | 𝜕𝜕R⃗
Ψ𝛽′⟩ = ⟨Ψ𝛽 |( 𝜕

𝜕R⃗
Ĥe)|Ψ𝛽′ ⟩

E𝛽′ (R⃗)−E𝛽 (R⃗)
the non-adiabatic

coupling matrix elements (NACMEs). The first sum on the right-hand side of Eq. (15.13) gives the
nuclear gradients of the individual electronic basis states weighted by their population. The second
sum accounts for the change in population because of non-adiabatic transitions; it determines the
component of the gradient in the direction of the derivative couplings. This means that the effective
force felt by the nuclei contains contributions from the non-adiabatic couplings.

To integrate the equation of motion for the nuclear geometry, one could also directly compute
the nuclear gradient of the global electronic wave packet |Ψ(r⃗, t)⟩ and use Eq. (15.11), instead of
computing the gradient for each individual electronic state as well as the NACMEs for each pair
of states. This is one of the advantages of the Ehrenfest approach. A general approach to compute
the gradient and Hessian of configuration interaction-like wave functions is the method of Almlöf
and Taylor [6]. For more detailed information regarding this, the reader is referred to Refs. [44,
108]. Here, as in other methods, one can make a local harmonic approximation of the effective
potential energy surface around a point R⃗0 using the first and second derivatives of the energy of
the electronic wave packet:

E(R⃗) = E0 + G⃗0 ⋅ (R⃗ − R⃗0) +
1
2
(R⃗ − R⃗0)† ⋅ H0 ⋅ (R⃗ − R⃗0), (15.14)

where E0 = E(R⃗0), G⃗0 = dE(R⃗)
dR⃗

||||R⃗0

and H0 = d2E(R⃗)
dR⃗2

||||R⃗0

are the energy, the gradient and the Hessian

evaluated at R⃗0, respectively. Newton’s equation of motion on a quadratic surface is:

dP⃗
dt

= −G⃗0 − H0 ⋅ (R⃗ − R⃗0). (15.15)

The velocity Verlet algorithm or any other propagator may then be used to integrate Eq. (15.15).
However, if a Hessian is included, a higher order propagator should be used.

In the electronic equation of motion (15.6), the classical limit is taken by replacing |Ξ(R⃗, t)⟩ by a
delta function at the classical trajectory R⃗(t):

iℏ
𝜕|Ψ(r⃗, t; R⃗)⟩

𝜕t
=

(
−
∑

i

ℏ2

2me

𝜕2

𝜕r⃗2
+ V̂(r⃗, R⃗(t))

)|Ψ(r⃗, t; R⃗)⟩
= Ĥe(r⃗; R⃗(t))|Ψ(r⃗, t; R⃗)⟩. (15.16)

Here, the electronic wave function depends parametrically on R⃗(t) through V̂(r⃗, R⃗(t)) and thus
Ĥe(r⃗; R⃗(t)).

Substituting the electronic basis expansion (15.3) into Eq. (15.16) and closing on the left by⟨Ψ𝛼(r⃗; R⃗)| gives:

da𝛼(t)
dt

= − i
ℏ

∑
𝛽

a𝛽(t)⟨Ψ𝛼|Ĥe|Ψ𝛽⟩ −∑
𝛽

a𝛽(t)
⟨
Ψ𝛼

|||| 𝜕𝜕t
Ψ𝛽

⟩
. (15.17)

Eq. (15.17) gives the time-dependent amplitude coefficients of the electronic states. Note that the
same equations define the time-dependence of the electronic basis amplitudes for the surface hop-
ping method.
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One can work in the adiabatic representation using the electronic eigenstates. Then, the sum
in the first term on the right-hand side of Eq. (15.17) disappears since the electronic Hamiltonian
matrix is diagonal in the adiabatic basis:

da𝛼(t)
dt

= − i
ℏ

a𝛼(t)E𝛼(R⃗) −
∑
𝛽≠𝛼

a𝛽(t)d⃗𝛼𝛽(R⃗) ⋅
dR⃗
dt
. (15.18)

The NACMEs present a singularity at the point of degeneracy of the electronic eigenstates,
which may cause numerical problems. One can avoid the singularity problem by working in a
different representation where the electronic Hamiltonian is not necessarily diagonal but where
the non-adiabatic coupling is (approximately) zero. Such a basis is called a (quasi-)diabatic basis
[21, 56, 65]. Equation (15.17) then reads:

da𝛼(t)
dt

= − i
ℏ

∑
𝛽

a𝛽(t)⟨Ψ𝛼|Ĥe|Ψ𝛽⟩. (15.19)

The coupling between electronic states is now due to the off-diagonal elements of the electronic
Hamiltonian matrix. Equations (15.11) and (15.16), and equivalently (15.13) and (15.18) using the
electronic adiabatic basis set, define the Ehrenfest method. One advantage of the Ehrenfest method
is that it is, in principle, representation-independent; its applications and results do not depend on
the choice of electronic basis functions (if complete). By treating the nuclear motion classically, we
lose the spatial delocalization of the nuclear wave packet: the nuclear motion is now described by
a classical trajectory, i.e., by a line in phase space. To obtain a realistic description of the dynamics
of the system, one mimics the nuclear wave packet motion by propagating a swarm of independent
classical trajectories starting with sampled positions R⃗ and momenta P⃗ of the nuclei. Because of
the mean-field treatment of the interactions between electrons and nuclei, the Ehrenfest method
succeeds in describing nuclear motion if the potential energy surfaces of the various electronic
states are similar in topology and energies [41]. However, in the case of weakly coupled electronic
states, the nuclear motion will be dominated by the potential corresponding to the highly populated
electronic state and regions of space accessible only on the sparsely populated electronic state may
not be explored properly [31, 105]. Non-physical asymptotic behaviors could be obtained in the case
of bifurcating paths. A practical approach to overcome this problem will be presented below.

15.3 Theory of the Multi-Configurational Ehrenfest Method

In this section, we review the multi-configurational Ehrenfest (MCE) method and how it builds
on the (simple) Ehrenfest method presented above. The variants considered here include Ab-Initio
MCE (AI-MCE) [80, 84, 85] and Ab-Initio Multiple Cloning MCE (AIMC-MCE) [57, 58]. These are
closely related to the coupled coherent states (CCS) method [86] and Ab-Initio Multiple Spawning
(AIMS) method [62, 64].

15.3.1 Wave Function Ansatz

In the multi-configurational Ehrenfest method, the total molecular wave function |Φ(r⃗, R⃗, t)⟩ is
expanded as a sum of Ntrj Ehrenfest wave packets |Φ𝜇(r⃗, R⃗, t)⟩ with complex coefficients D𝜇(t) [84]:

|Φ(r⃗, R⃗, t)⟩ = Ntrj∑
k=1

D𝜇(t)|Φ𝜇(r⃗, R⃗, t)⟩. (15.20)
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Each Ehrenfest wave packet reads,

|Φ𝜇(r⃗, R⃗, t)⟩ =
[ Ns∑
𝛽=1

a𝛽𝜇(t)|Ψ𝛽(r⃗ ; R⃗)⟩] |g𝜇(R⃗, t)⟩, (15.21)

where Ns is the number of electronic states |Ψ𝛽(r⃗ ; R⃗)⟩ considered. Equation (15.21) is equivalent
to the ansatz (15.3), where the nuclear wave packet |Ξ(R⃗, t)⟩ is now a normalized frozen Gaus-
sian wave packet |g𝜇(R⃗, t)⟩, akin to a constant width Gaussian in a harmonic potential. This is also
known as a coherent state, and given by,

|g𝜇(R⃗, t)⟩ = (
𝛼

𝜋

)Ndof∕4
exp

(
−𝛼

2
[R⃗ − R⃗𝜇(t)]2 + i

ℏ
P⃗𝜇(t)[R⃗ − R⃗𝜇(t)] +

i
ℏ

P⃗𝜇(t)R⃗𝜇(t)
2

)
, (15.22)

where Ndof is the number of nuclear degrees of freedom, R⃗𝜇(t) the position and P⃗𝜇(t) the momentum
coordinates of the wave packet in phase-space, and the final term is the semiclassical phase 𝛾𝜇 [86],

𝛾𝜇(t) =
P⃗𝜇(t)R⃗𝜇(t)

2
. (15.23)

The width-parameter 𝛼 is fixed, according to the frozen Gaussian approximation [33], and can
be specified individually for each degree of freedom, for instance according to the type of atom
and chemical context using a prescription elaborated in Ref. [103]. Further context on the width
parameters provided is in Ref. [49]. The nuclear probability distribution of the different coherent
states is then given by,

|g𝜇(R⃗, t)|2 =
(
𝛼

𝜋

)Ndof∕2
exp(−𝛼[R⃗ − R⃗𝜇(t)]2), (15.24)

which is a Gaussian-shaped distribution around the central coordinate R⃗𝜇(t). Each coherent state
is normalized, ⟨g𝜇(R⃗, t)|g𝜇(R⃗, t)⟩ = 1, and the overlap of two coherent states is,

Ω𝜇′𝜇(t) = ⟨g𝜇′ (R⃗, t)|g𝜇(R⃗, t)⟩ = exp
⎛⎜⎜⎝Z⃗∗

𝜇′ (t)Z⃗𝜇(t) −
Z⃗∗
𝜇′
(t)Z⃗𝜇′ (t)

2
−

Z⃗∗
𝜇(t)Z⃗𝜇(t)

2

⎞⎟⎟⎠ , (15.25)

where Z⃗𝜇(t) = 𝛼1∕2R⃗𝜇(t) + i𝛼−1∕2ℏ−1P⃗𝜇(t) (and analogously for Z⃗𝜇′ (t)) is a compound coordinate
that allows for compact representation of phase-space coordinates [86]. The overlap matrix for the
Ehrenfest wave packets defined in Eq. (15.21) is similar, but includes the electronic components,

Ω̃𝜇′𝜇(t) = ⟨Φ𝜇′ (r⃗, R⃗, t)|Φ𝜇(r⃗, R⃗, t)⟩ =
(∑

𝛽

a𝛽∗
𝜇′
(t)a𝛽𝜇(t)

)
Ω𝜇′𝜇(t). (15.26)

As a consequence of Eqs. (15.25) and (15.26) it is clear that the Ehrenfest states are not orthonormal.
The identity operator 1̂ must account for this non-orthonormality and is given by,

1̂ =
∑
𝛽𝛾

|Φ𝛽(r⃗, R⃗, t)⟩ Ω̃−1
𝛽𝛾
(t) ⟨Φ𝛾 (r⃗, R⃗, t)|. (15.27)

The norm of the total molecular wave function in Eq. (15.20) is therefore calculated as⟨Φ𝜇(r⃗, R⃗, t)|1̂|Φ𝜇(r⃗, R⃗, t)⟩ with 1̂ as defined in Eq. (15.27) above.
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15.3.2 Equations of Motion

The time evolution of the total molecular wave function, |Φ(r⃗, R⃗, t)⟩ in Eq. (15.20), is given by the
expansion coefficients D𝜇(t) and the propagation of each individual wave packet |Φ𝜇(r⃗, R⃗, t)⟩. The
quantum mechanically most appropriate manner of propagation is obtained using the variational
principle [52] as is done in the vMCG [77, 119, 120] and G-MCTDH [13] methods. However, the
resulting equations do not parallelize well since all variables (positions, momenta, and amplitudes)
become coupled and solving the equations may become numerically unstable. Therefore, MCE
takes a simpler approach where each individual wave packet |Φ𝜇(r⃗, R⃗, t)⟩ is guided along an inde-
pendent semiclassical trajectory in phase-space according to classical equations for that specific
wave packet only. In the following, we derive the equations of motion for the MCE approach, start-
ing with the expansion coefficients D𝜇(t), then proceeding to the amplitudes a𝛽𝜇(t) and phase-space
coordinates (R⃗𝜇(t), P⃗𝜇(t)) of the individual wave packets. The numerical solution of the equations
of motion ultimately requires electronic potential energies, gradients and non-adiabatic couplings
from ab-initio electronic structure calculations. For a more detailed derivation of variant forms of
MCE, including for instance those formulated in a diabatic basis, the reader is directed to a review
by Makhov et al [61] (for adiabatic versus diabatic representations see Part I). Notably, MCE appears
in two main versions referred to as MCEv1 and MCEv2 [61]. The focus in this chapter is entirely
on MCEv2 which was developed specifically for ab-initio direct dynamics. Here, the trajectories
are propagated independently and only coupled a posteriori via the time-dependent expansion
coefficients D𝜇(t). In contrast, in MCEv1 all trajectories are coupled throughout the calculation,
with each trajectory influenced by all other trajectories. This gives good convergence [83], but is
impractical for ab-initio direct dynamics.

The time-evolution of the coefficients D𝜇(t) is due to a posteriori coupling between different
trajectories and is obtained by substituting the ansatz in Eq. (15.20) into the time-dependent
Schrödinger Eq. (15.1) and closing by ⟨Φ𝜇′ (r⃗, R⃗, t)| on the left,

∑
𝜇

Ω̃𝜇′𝜇

dD𝜇(t)
dt

= − i
ℏ

∑
𝜇

(⟨Φ𝜇′ (r⃗, R⃗, t)|Ĥ|Φ𝜇(r⃗, R⃗, t)⟩
− i

⟨
Φ𝜇′ (r⃗, R⃗, t)

||||||
𝜕Φ𝜇(r⃗, R⃗, t)

𝜕t

⟩)
D𝜇(t). (15.28)

Solving Eq. (15.28) requires the overlap between two wave packets, which appears on the left-hand
side of Eq. (15.28) and which was obtained in Eq. (15.26) previously, as well as the following two
terms which appear on the right-hand side of Eq. (15.28):

⟨Φ𝜇′ (r⃗, R⃗, t)|Ĥ|Φ𝜇(r⃗, R⃗, t)⟩ = ∑
𝛽𝛽′

⟨g𝜇′ (R⃗, t)|⟨Ψ𝛽(r⃗ ; R⃗)|Ĥ|Ψ𝛽′ (r⃗ ; R⃗)⟩|g𝜇(R⃗, t)⟩a𝛽∗
𝜇′
(t)a𝛽

′

𝜇 (t),

(15.29)

and ⟨
Φ𝜇′ (r⃗, R⃗, t)

|||||
𝜕Φ𝜇(r⃗, R⃗, t)

𝜕t

⟩
=

⟨
g𝜇′ (R⃗, t)

|||||
𝜕g𝜇(R⃗, t)
𝜕t

⟩∑
𝛽

a𝛽∗
𝜇′
(t)a𝛽𝜇(t)

+
⟨

g𝜇′ (R⃗, t)
|||g𝜇(R⃗, t)⟩∑

𝛽

a𝛽∗
𝜇′
(t)

da𝛽𝜇(t)
dt

. (15.30)
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We proceed to find more detailed expressions for Eqs. (15.29, 15.30), beginning with the Hamilto-
nian matrix element on the right-hand side of Eq. (15.29). We recall that Ĥ = T̂N + Ĥe, and consider
each of the contributions from T̂N and Ĥe separately.

To calculate the contribution due to the electronic Hamiltonian Ĥe we note that the electronic
potential terms are diagonal in an adiabatic basis,

⟨Ψ𝛽(r⃗ ; R⃗)|Ĥe|Ψ𝛽′ (r⃗ ; R⃗)⟩ = E𝛽(R⃗) 𝛿𝛽𝛽′ . (15.31)

The computational cost of the diagonal potential matrix elements is minimized by approximating
the potential with the value at the center of the coherent state,

⟨g𝜇(R⃗, t))|E𝛽 |g𝜇(R⃗, t)⟩ ≈ E𝛽(R⃗𝜇). (15.32)

The corresponding off-diagonal matrix elements must be calculated using at least a first-order
approximation with respect to the coherent state [61],

⟨g𝜇′ (R⃗, t))|E𝛽 |g𝜇(R⃗, t)⟩ ≈ 1
2
⟨g𝜇′ (R⃗, t)|g𝜇(R⃗, t)⟩[E𝛽(R⃗𝜇′ ) + E𝛽(R⃗𝜇)]

+ 1
2
⟨g𝜇′ (R⃗, t)|(R⃗ − R⃗𝜇′ )|g𝜇(R⃗, t)⟩dE𝛽(R⃗𝜇′ )

dR⃗𝜇′

+ 1
2
⟨g𝜇′ (R⃗, t)|(R⃗ − R⃗𝜇)|g𝜇(R⃗, t)⟩dE𝛽(R⃗𝜇)

dR⃗𝜇
. (15.33)

This first-order approximation only uses the values of energies and gradients at the central coor-
dinates R⃗𝜇 of the wave packets, which are always calculated during the propagation, meaning that
the coupling between wave packets is obtained with little computational effort.

Subsequent evaluation of the contribution to Eq. (15.29) from the kinetic energy operator
T̂N yields the derivative coupling due to the parametric R⃗-dependence of the electronic wave
functions responsible for non-adiabatic population transfer between electronic states. Ignoring the
second-derivative terms since they only have a small impact on the dynamics [2, 47, 63] results in,

⟨g𝜇(R⃗, t)|⟨Ψ𝛽(r⃗ ; R⃗)| T̂N |Ψ𝛽′ (r⃗ ; R⃗)⟩|g𝜇(R⃗, t)⟩
≈ − ℏ2

2M

⟨
g𝜇(R⃗, t)

||||||
⟨
Ψ𝛽 r⃗ ; R⃗)|Ψ𝛽′ r⃗ ; R⃗)

⟩||||||
𝜕2g𝜇(R⃗, t)

𝜕R⃗2

⟩

−ℏ
2

M

⟨
g𝜇(R⃗, t)

||||||
⟨
Ψ𝛽 r⃗ ; R⃗)

|||||
𝜕Ψ𝛽′ r⃗ ; R⃗)

𝜕R⃗

⟩||||||
𝜕g𝜇

𝜕R⃗

⟩

≈
P⃗𝜇(t)2

2M
𝛿𝛽𝛽′ − iℏ

P⃗𝜇(t)2

M
d⃗𝛽𝛽′ (R⃗𝜇), (15.34)

where M is a diagonal matrix with the masses of each associated degree of freedom along the diag-
onal. For the matrix elements of T̂N between different trajectories, a simple approximation is used,

⟨g𝜇′ (R⃗, t)|⟨Ψ𝛽(r⃗ ; R⃗)| T̂N |Ψ𝛽′ (r⃗ ; R⃗)⟩|g𝜇(R⃗, t)⟩
≈ ⟨g𝜇′ (R⃗, t)|T̂N |g𝜇(R⃗, t)⟩𝛿𝛽𝛽′

−iℏ
P⃗𝜇(t)
2M

(
d⃗𝛽𝛽′ (R⃗𝜇′ ) + d⃗𝛽𝛽′ (R⃗𝜇)

)
, (15.35)
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where the following expression concludes our exploration of the contributions to Eq. (15.29),

⟨g𝜇′ (R⃗, t)|T̂N |g𝜇(R⃗, t)⟩ = ⟨g𝜇′ (R⃗, t)|g𝜇(R⃗, t)⟩
2M

⎡⎢⎢⎣
(

P⃗𝜇(t) + P⃗𝜇′ (t)
2

)2

+ 𝛼ℏ2 − 𝛼2ℏ2(R⃗𝜇(t) − R⃗𝜇′ (t))2

− i𝛼ℏ(R⃗𝜇(t) − R⃗𝜇′ (t))(P⃗𝜇(t) + P⃗𝜇′ (t))
⎤⎥⎥⎦ . (15.36)

We proceed to find an expression for the derivative overlap between two coherent states that
appears on the right-hand side of Eq. (15.30),⟨

g𝜇(R⃗, t)
||||||
𝜕g𝜇(R⃗, t)
𝜕t

⟩
=

dR⃗𝜇
dt

⟨
g𝜇(R⃗, t)

||||||
𝜕g𝜇(R⃗, t)

𝜕R⃗𝜇

⟩
+

dP⃗𝜇
dt

⟨
g𝜇(R⃗, t)

||||||
𝜕g𝜇(R⃗, t)

𝜕P⃗𝜇

⟩
+ i
ℏ

d𝛾𝜇
dt
,

(15.37)

where the evolution of the phase 𝛾𝜇(t), which was defined in Eq. (15.23) previously, is given by [86],

d𝛾𝜇(t)
dt

=
P⃗𝜇
2

dR⃗𝜇
dt

. (15.38)

Then, using the following expressions for the matrix elements,⟨
g𝜇(R⃗, t)

||||||
𝜕g𝜇(R⃗, t)

𝜕R⃗𝜇

⟩
= − i

ℏ
P⃗𝜇(t), (15.39)

and ⟨
g𝜇(R⃗, t)

||||||
𝜕g𝜇(R⃗, t)

𝜕P⃗𝜇

⟩
= 0, (15.40)

we obtain⟨
g𝜇(R⃗, t)

||||||
𝜕g𝜇(R⃗, t)
𝜕t

⟩
= − i

2ℏ
dR⃗𝜇
dt

P⃗𝜇(t), (15.41)

which provides the final component for the evaluation of Eq. (15.28). Having thus defined all com-
ponents required to propagate the expansion coefficients D𝜇(t) via Eq. (15.28), we proceed to the
equations of motion for the Ehrenfest wave packets.

In the propagation of the individual Ehrenfest wave packets, we have to consider the amplitudes
a𝛽𝜇(t) and phase-space coordinates (R⃗𝜇(t), P⃗𝜇(t)). We begin with the amplitudes a𝛽𝜇(t), which can
be obtained by considering a single Ehrenfest wave packet in the time-dependent Schrödinger
equation, analogously to what was done previously in Eq. (15.28) for the D𝜇(t) coefficients. This
leads to the following equation [61],

da𝛽𝜇(t)
dt

= − i
ℏ

∑
𝛽′

⟨g𝜇(R⃗, t)|⟨Ψ𝛽(r⃗ ; R⃗)|Ĥ|Ψ𝛽′ (r⃗ ; R⃗)⟩|g𝜇(R⃗, t)⟩a𝛽
′

𝜇 (t)

−

⟨
g𝜇(R⃗, t)

||||||
𝜕g𝜇(R⃗, t)
𝜕t

⟩
a𝛽𝜇(t). (15.42)
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Substituting Eqs. (15.31) and (15.41) and the approximations in Eqs. (15.32) and (15.34) into Eq.
(15.42), we obtain,

da𝛽𝜇(t)
dt

= − i
ℏ

a𝛽𝜇(t)E𝛽(R⃗𝜇) −
∑
𝛽′≠𝛽

a𝛽
′

𝜇 (t)d⃗𝛽𝛽′ (R⃗𝜇) ⋅
dR⃗𝜇
dt

. (15.43)

This is identical to Eq. (15.18) derived in the (simple) Ehrenfest method. The absence of coupling
between the amplitudes a𝛽𝜇(t) for different Ehrenfest wave packets is important, as it simplifies the
computational procedures making this multi-configurational approach suitable for direct ab-initio
dynamics.

Finally, we must obtain the forces used to classically propagate the phase-space coordinates
(R⃗𝜇(t), P⃗𝜇(t)) of each Ehrenfest wave packet. Direct substitution of the Ehrenfest ansatz yields the
average (mean-field) Ehrenfest force as,

F⃗𝜇 = −
∑
𝛽𝛽′

a𝛽∗𝜇 (t)a𝛽
′

𝜇 (t)
𝜕

𝜕R⃗𝜇
⟨g𝜇(R⃗, t)|⟨Ψ𝛽(r⃗ ; R⃗)|Ĥe|Ψ𝛽′ (r⃗ ; R⃗)⟩|g𝜇(R⃗, t)⟩

= −
∑
𝛽

|a𝛽𝜇(t)|2
dE𝛽(R⃗𝜇)

dR⃗𝜇
−

∑
𝛽≠𝛽′

a𝛽∗𝜇 (t)a𝛽
′

𝜇 (t) d⃗𝛽𝛽′ (R⃗𝜇) (E𝛽′ (R⃗𝜇) − E𝛽(R⃗𝜇)), (15.44)

where we make use of the fact that the coherent states are local, the electronic wave functions
change slowly, and that the NACMEs are antisymmetric, d⃗𝛽𝛽′ (R⃗𝜇) = −d⃗𝛽′𝛽(R⃗𝜇). This is identical to
Eq. (15.13) derived in the (simple) Ehrenfest method.

15.3.3 Computational Aspects

Standard practice in the simulations is to sample the phase space of the ground state using a
Wigner distribution and allocate the initial coordinates to electronic states according to the tran-
sition dipole moments and excitation energy. This approximation, although common, does not
explicitly account for the excitation process and there are now procedures to do so even in tra-
jectory based simulations [48, 59, 82, 95]. In low-dimensionality systems where numerically exact
quantum propagation methods are applicable, this is common procedure [4, 117] and constitutes
a prerequisite for many types of coherent control schemes [3, 102]. For a calculation that starts in
the ground state of the system, it is generally easiest to obtain the initial ground state by imaginary
time propagation or by solving for the lowest eigenvalue of the Hamiltonian matrix in the basis
of the ansatz wave functions [48]. For simulations of molecules, Cartesian coordinates are most
commonly used, although other effective or internal coordinates are of course possible. It is impor-
tant to evaluate the level of electronic structure theory used to calculate energies, gradients, and
couplings to ensure that it is appropriate for the dynamics one wishes to simulate [8]. Examples
of how simulations can be analysed are provided via the examples in the Application Section 15.4.
Furthermore, one should examine how the simulations converge with respect to the number of
trajectories, and also with respect to the sampling methods employed as discussed next.

The approximate form of propagation employed in MCE presents advantages in terms of numer-
ical convenience, scalability, and stability compared to fully variational approaches such as vMCG
[77, 119, 120] and G-MCTDH [13], but as a consequence we must pay extra attention to conver-
gence. The approximate nature of the propagation of the individual trajectories can be compensated
for via improved sampling. This is an extensive topic, discussed at length in for instance Refs.
[60, 87, 97]. Here, we restrict ourselves to pointing out that the propagation of swarms of trajec-
tories ensures that overlap, and thus coupling, of the propagated coherent states is maintained.
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A swarm is generated from a tight distribution (e.g., a Husimi or Wigner distribution) with small
shifts in initial positions and momenta. The utility of each trajectory can be further improved by
propagating a train of coherent states along each trajectory, rather than just one coherent state,
which does not add much to the computational overheads of the calculations.

Another issue to consider is a built-in deficiency in the Ehrenfest ansatz. The Ehrenfest basis
is guided by a mean-field potential, which can be advantageous when quantum transitions are
frequent and there are dense manifolds of electronic states with similar topology. However, if
the electronic states are quite different, quantum mechanics allows for the nuclear wave packets
on the different states to propagate away from each other. The enforced sharing of the coherent
state across electronic states in the Ehrenfest wave packet prevents this, with an associated
risk of over-coherence and misguiding of the Ehrenfest trajectories. There is a similar problem
of over-coherence in surface-hopping because each surface-hopping trajectory also carries
coefficients for all states (see e.g., [94]).

The situation can be remedied by a procedure included in Ab-Initio Multiple Cloning
(AIMC-MCE) algorithm [57], inspired by Ab-Initio Multiple Spawning (AIMS) [62, 64]. The proce-
dure is applied shortly after a trajectory passes near a conical intersection, when the non-adiabatic
coupling is sufficiently low and if the ”breaking force” that pulls the state 𝛽 away from the other
remaining states,

Fbreak
𝛽𝜇

= |a𝛽𝜇|2

(|∇⃗IE𝛽(R⃗𝜇)| −∑
𝛽′

|a𝛽′𝜇 |2|∇⃗IE𝛽′ (R⃗𝜇)|
)
, (15.45)

is sufficiently strong. The procedure clones the Ehrenfest wave packet to render two clones, where
one proceeds on the single potential energy surface 𝛽 while the second is guided by an Ehrenfest
force on the remaining electronic states. Although this procedure means that the number of trajec-
tories increases during the simulation, it does act to remedy the single-set limitation of the MCE
method. In a similar spirit, numerical procedures can be applied to improve the tunneling of the
classically guided Ehrenfest wave packets [61].

15.4 Applications

In this section, we present illustrations of the theoretical dynamics methods just reviewed to sim-
ulate electron and nuclear dynamics of medium-sized organic molecules (Figure 15.1). In the first
example, the (simple) Ehrenfest method is used to simulate coupled electron and nuclear dynamics
upon sudden ionization, a topic of great interest with the recent development of attoscience. In par-
ticular, we study the effect of the nuclear motion on coherent electron dynamics and the nature of

(a) (b)

(c)

Figure 15.1 Structure of the molecules studied in the present applications. (a) BMA[5,5] and (b) BMA[6,5]:
modified bismethylene-adamantane molecules where the cage consists of four connected cyclopentane
rings, and two cyclohexane and two cyclopentane rings respectively. (c) Ethylene.
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nuclear motion induced by an electronic wave packet. In the second example, inspired by the recent
and important developments of new pulsed x-ray and electron sources capable of imaging molecu-
lar motion with femtosecond resolution, the MCE method is used to simulate non-adiabatic nuclear
dynamics and to predict the x-ray and electron scattering signals that could be expected to be seen
in an experiment. Importantly, the simulations allow us to investigate the effect of dispersion and
non-locality in the wave packet on the experimental signal, and thus gain deeper understanding of
what aspects of molecular motion can be observed in experiments.

15.4.1 Coupled Electron and Nuclear Dynamics Upon Sudden Ionization

Because of the time-energy uncertainty principleΔEΔt ≥ ℏ, attosecond pulses have a large spectral
bandwidth and ionization by them leads to the coherent population of several cationic electronic
states, thus breaking the Born–Oppenheimer approximation. The system is no longer confined to
being in a single stationary electronic state but is now a superposition of electronic states, called
an electronic wave packet: such a superposition is non-stationary, i.e., its probability density is
time-dependent. This type of pure electron dynamics is called “charge migration” in the literature
[18] and can happen without nuclear motion.

Initial theoretical studies of charge migration considered only the electronic degrees of freedom
[76]: typically, a single and fixed nuclear geometry was used. This means neglecting both the motion
of the nuclei and the spreading of the nuclear wave packet. In such a framework, it was predicted
that quantum interference between the populated electronic eigenstates would alternate between
constructive and destructive, and thus leads to long-lived oscillating motion of the electronic den-
sity with a period inversely proportional to the electronic energy gap. A fundamental challenge has
been to understand to what extent the electronic wave packet retains its coherence, i.e., how long
the oscillations in the electronic density survive in the presence of interactions with the nuclear
degrees of freedom. We argue that the mean-field “single-set” class of methods (Ehrenfest being
the simplest) is particularly natural for the simulation of such coupled electron–nuclear dynamics
since each nuclear trajectory “feels” the multiple coupled potential energy surfaces.

In this example, we present results of a theoretical study [112] of coupled electron and nuclear
dynamics in modified bis-methylene adamantanes (BMA) (Figures 15.1a and b) using the Ehren-
fest method. The two lowest-energy electronic states of BMA cation correspond to an electron
being removed from the 𝜋 bonds. The equilibrium geometry of the neutral BMA is a point of
degeneracy between these two cationic states and thus, there is no pure electron dynamics upon
valence ionization of the 𝜋 system in this molecule (since the period of oscillation in the electronic
density is inversely proportional to the energy gap). An appropriate chemical modification can be
used to lift the degeneracy and “engineer” electron dynamics [110]. Here, we consider two modified
molecular species where the number of carbon atoms in the cage rings are altered: BMA[6,5] where
two of the cyclohexane rings of the cage have been replaced by cyclopentanes (Figure 15.1(b)) and
BMA[5,5] where all four rings are cyclopentanes (Figure 15.1(a)).

The effect of the mean-field nuclear motion was investigated by comparing simulations of pure
electron dynamics and simulations of electron dynamics coupled to Ehrenfest nuclear motion (con-
sidering a single nuclear geometry to start with). For the electronic structure, the complete active
space self-consistent field (CASSCF) method is used, state-averaging over the two lowest-energy
states, with the 4 𝜋 orbitals as active; the 6-31G∗ basis set is used [78]. The equations of motion
are integrated with a fixed mass-weighted length step size of 0.01 amu1∕2bohr (corresponding to a
varying time step of approximately 0.1 fs). To follow the evolution of the electronic wave packet,
the electronic spin density – that locates the unpaired electron – is computed and partitioned on
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the atoms [70] at each step of the simulation. The implementation of the above methods in a devel-
opment version of Gaussian was used [27]. Figures 15.2a and b show the time evolution of the spin
density on the left methylene group upon population of an equal in-phase superposition of the
two lowest-energy states: Ψ = 1√

2
(Ψ0 + Ψ1). With fixed nuclei (solid lines), the unpaired electron

initially localized on the left methylene group migrates to the other methylene group, and then
returns to its initial position. The whole process repeats itself and the hole thus oscillates back and
forth between the two terminal bonds. The nature and amplitude of the electron dynamics are the
same for the two molecules. However, the time scale is different, as expected, because of the dif-
ferent energy gap between the two electronic states. The effect of the nuclear motion on electron
dynamics (dashed lines) is different in the two molecules. In BMA[5,5], the electron dynamics is
barely affected by the nuclear motion. In BMA[6,5], the electron dynamics with nuclei fixed and
moving nuclei are identical up to approximately 5 fs; then, the oscillations get faster when the
nuclei are allowed to move. Also, the unpaired electron does not come back completely to its initial
position since the amplitude of the oscillations decreases. In brief, the nuclear motion can alter
both the period and amplitude of the oscillations in the electronic density from only a few fem-
toseconds. The magnitude of the effect of the nuclear motion is however very system-dependent
[107, 110]. The smaller the energy gap, the slower the electron dynamics, the stronger the cou-
pling with the nuclear coordinates and the more significant the effect of the nuclear motion on the
electron dynamics.

The effect of the width of the nuclear wave packet on the electron dynamics was studied in
BMA[5,5] with simulations started at 500 nuclear geometries and velocities sampled from a Wigner
distribution to mimic the vibrational ground state nuclear wave packet of the neutral species before
ionization. Figure 15.2(c) shows again the time evolution of spin density on the left methylene
group, but for the ensemble of trajectories simulated independently: the individual oscillations
dephase with time because of the different energy gaps at the different sampled geometries. The
solid lines show the average spin density oscillation amplitude for different sample sizes. It is impor-
tant to note that the result depends on the number of samples taken into account. Care must
be taken so that convergence is reached since a too small ensemble may lead to the misleading
result that electron dynamics would survive longer. With an ensemble of 500 geometries, the mean
oscillation is quickly damped with time, resulting in the spin density being, on average, equally
delocalized over the two methylene groups. A coherence half-life of ≈8 fs is obtained. In short, the
effect of the nuclear wave packet width is substantial: it leads to a fast dephasing of the electron
dynamics [42, 43, 111]. In BMA[5,5], it is larger than the effect of the nuclear motion per se. Because
of the relatively “long” coherence half-life (8 fs) and because of the short period of oscillations (4.9
fs), several oscillations in the electronic density can be observed before dephasing occurs.

How are the nuclei actually moving in the meantime? Nuclear motion induced by a coherent
superposition of electronic states is called “charge-directed reactivity” in the literature, suggesting
that non-stationary electronic wave packets could play a chemical role. We present here an
analysis of the nuclear motion in BMA[5,5] upon population of the equal in-phase superposition
of the two lowest-energy states of the cation. As a reference, population of the ground state of the
cation solely leads to symmetric stretching of the two methylene bonds with a period of about
20 fs, as expected since an electron has been removed (symmetrically) from the two bonding 𝜋
bonds. Figure 15.3(a) shows the time evolution of the average (blue) and difference (cyan) in bond
lengths of the two methylene groups in the case of the non-stationary electronic wave packet, for a
single nuclear trajectory. The superposition of the two lowest-energy electronic states induces an
asymmetric stretching of the two terminal methylene bonds because of the unpaired electron not
being equally delocalized over the two terminal groups. The oscillations with time in the electronic
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Figure 15.2 Time evolution of the spin density on the left methylene group in (a) BMA[6,5], (b,c) BMA[5,5].
(a,b) Simulations with a single nuclear geometry with fixed nuclei (solid) and nuclei moving (dashed).
(c) Simulation for an ensemble of 500 geometries. The colour axis indicates the number of sampled
trajectories in each pixel of the heat map. The solid lines indicate the spin density averaged over ensembles
of different sizes. Adapted from Ref. [112] with permission from The Royal Society of Chemistry.
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Figure 15.3 Time evolution of the bond lengths of the two methylene groups (average length in blue with
the left y-axis and difference in cyan with the right y-axis) in BMA[5,5] for (a) a single nuclear trajectory and
(b) an ensemble of 500 trajectories (with sampled geometries and velocities). The black dashed lines
remind the reader of the oscillations in the electronic density from Figures 15.2b and c. Adapted from Ref.
[112] with permission from The Royal Society of Chemistry.

density result in oscillations in the nuclear motion as well, the nuclei continuously trying to adapt
to the time-dependent electronic distribution. Figure 15.3(b) shows the time evolution of the
difference in bond lengths of the two methylene groups, averaged over the ensemble of 500
trajectories to take into account the width of the nuclear wave packet. The oscillations in the bond
length difference are damped just as the oscillations in the electronic density dephase (recalled by
the black dashed curve). In short, this example and others [66, 109] illustrate the “charge-directed
reactivity” concept but also its limitation. The effect of the nuclear wave packet width is again
crucial. As the electron dynamics dephase and the unpaired electron becomes equally delo-
calized over the two methylene groups, the asymmetry in the stretching of the two 𝜋 bonds
disappears.

To conclude: we have presented theoretical simulations of electron dynamics coupled to nuclear
motion treated classically with the Ehrenfest method and where the intrinsic distribution of geome-
tries in a nuclear wave packet is taken into account using an ensemble of independent trajectories.
Although these are obviously a more realistic description than simulations considering only the
electronic degrees of freedom, one can question the approximations used. Indeed, the effect of
the nuclear motion may be underestimated with a mean-field approach and the quantum behavior
of the nuclei will not be described by independent trajectories. One of the main drawbacks of the
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(simple) Ehrenfest method is that the nuclear wave packets on different electronic states cannot
move in different ways, which could affect the electronic coherence and therefore the predicted
electron dynamics. Recent theoretical studies of “charge migration” coupled to quantum nuclear
motion using the DD-vMCG method confirm the ultrafast electronic decoherence due to a dephas-
ing mechanism [114].

15.4.2 Ultrafast Scattering as a Probe of Nuclear Dynamics

In recent years, rapid development of pulsed x-ray and electron sources have made ultrafast scatter-
ing experiments possible [12, 29, 45, 53, 67–69, 79, 81, 88, 91, 116, 121, 122, 124]. Scattering methods
probe the structure of molecules and sequences of time-resolved structures can then be assembled
into so-called molecular movies that show the structural dynamics of the molecule. The comple-
mentarity between spectroscopy, which predominantly probe molecules in the energy domain, and
scattering means that powerful insight into complex photo-chemical processes can be gained by
combining observations from the two types of techniques [46, 75]. In this section, we will exam-
ine ultrafast x-ray and electron scattering using simulations of the molecule ethylene shown in
Figure 15.1(c), and consider the effect of the nuclear wave packet, its delocalization and disper-
sion, on the experimental signal, as well as the importance of simulation parameters such as the
wave packet widths [49, 50, 92].

The non-adiabatic dynamics of ethylene following excitation by an optical pump laser is simu-
lated using the AI-MCE approach [50, 80, 92]. The electronic potential energies, their gradients,
and the non-adiabatic couplings are calculated on-the-fly at the three-state-averaged CASSCF level
using the MOLPRO quantum chemistry package [115], with a small CAS(2,2) active space, known
to describe the lowest two electronic excited states qualitatively [9, 54, 80], and the Dunning
cc-ppVDZ basis [101]. The initial conditions are obtained using Monte Carlo sampling of the
Wigner distribution [11] for the 𝜈 = 0 vibrational ground state. The initial electronic population
is assumed to be completely localized on the first excited S1 𝜋𝜋

∗ state. A total of 1000 Ehrenfest
trajectories are propagated for 150 fs with a 0.1 fs time step.

The simulations show that upon photo-excitation to the Franck–Condon region of the 𝜋𝜋∗ elec-
tronic S1 state, ethylene undergoes cis-trans isomerization around the C=C double bond followed
by decay via two competing processes. The first is non-radiative decay through a twisted or pyra-
midalized conical intersection, and the second is H-atom migration to form ethylidene (CH3CH),
which then decays through a different conical intersection (although CAS(2,2) does not account
for H-migration very accurately [80]). The population of S1 changes slowly during the first 30 fs, at
which point the excited molecular wave function reaches a region where the gap between S1 and
S0 is sufficiently small to allow for efficient population transfer and the population then decays
exponentially with an approximate lifetime of 𝜏 ≈ 112 fs. The overall dynamics is consistent with
previous calculations using AIMS [54].

The time evolution of the nuclear wave function is depicted in Figure 15.4(a) in terms of a prob-
ability density contour plot in the twist and pyramidalization angles. The twist angle corresponds
to a rotation around the carbon–carbon double bond, and the pyramidalization angle reflects the
degree of deviation of the two carbons from sp2 hybridization. At first, the nuclear wave function
moves ballistically (i.e., without spreading significantly) along the twisting coordinate with a period
of ∼40 fs (the twisting of ethylene on the electronic ground state S0 has a period of ∼33 fs). Dur-
ing the first twisting cycle, the wave function is almost totally located on the S1 state but at later
times the population starts transferring to the S0 state. From 50 fs and onwards, the wave function
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Figure 15.4 (a) Contour plot showing the probability distribution of the C=C twist angle and the degree of
pyramidalization of the carbon atoms at times t = 10, 20, 40, and 125 fs (with t = 0 set by the pump pulse).
The solid red lines show the probability contour for the wave packet on the S1 state, while the dashed blue
line (which appears in the 125 fs frame) corresponds to the probability contour on the S0 state. (b) Median
distance between the carbon atoms in Å as a function of time in fs (solid red line), calculated for 1000
trajectories. The first (black dashed) and third quartile (black dot-dashed) are also shown. Adapted from Ref.
[50] under CC-BY license from the American Chemical Society.

becomes increasingly dispersed. The dynamics can also be viewed in terms of the C-C bond dis-
tance as shown in Figure 15.4(b), which shows the median C-C bond distance, as well as the first
and third quartiles which together enclose 50% of the bond distances. At short times, the C-C bond
oscillates coherently, with the dispersion becoming strongly apparent after approximately 50 fs as
previously seen in the density plot.

We proceed to calculate the scattering signal from the ethylene simulation, using the
well-established independent atom model (IAM) [1, 20]. The IAM has shortcomings [15, 72, 73],
but provides more than sufficient accuracy in the present context. According to IAM the
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rotationally averaged elastic scattering is proportional to the squared molecular form factor|fIAM(q, 𝜏)|2 given by,

|fIAM(q, 𝜏)|2 =
Nat∑
I=1

|f 0
I (q)|2 +

Nat∑
J≠I

f 0
I (q)f

0
J (q)

sin(qRIJ(𝜏))
qRIJ(𝜏)

, (15.46)

where RIJ(𝜏) is the distance between atoms I and J in the molecule, 𝜏 is the time, and
q = (4𝜋∕𝜆) sin(𝜃∕2) is the amplitude of the momentum transfer vector for the scattering,
with 𝜃 the deflection angle of the scattered particle relative to the direction of the incoming probe
beam and 𝜆 its de Broglie wavelength. The atomic form factors f 0

I (q) are tabulated for both x-ray
and electron scattering [1]. In the case of electron scattering, they contain additional contributions
to account for the scattering from nuclei as well as corrections to compensate for relativistic effects
and deviations from the Born approximation [1]. The first sum on the right-hand side of Eq.
(15.46) is the atomic term, which is independent of molecular structure, while the second sum is
the molecular term, which contains the scattering interferences that yield structural information.

The differential scattering cross-section is proportional to the molecular scattering form factor
convoluted by the molecular geometry, as given by the nuclear wave function Ξ(R⃗, 𝜏) and the inten-
sity profile of the probe pulse I(𝜏) [49, 50],

dS(q, t) = ∫ I(𝜏) ⟨Ξ(R⃗, 𝜏)| |fIAM(q, 𝜏)|2 |Ξ(R⃗, 𝜏)⟩R⃗ d𝜏, (15.47)

where t is the time-delay between the pump and probe pulses and the distances between atoms in
the molecular form factor are seen to act as operators.

Finally, the diffraction signal ΔdS(q, t) is given in terms of a laser on–laser off percentage differ-
ence signal, commensurate with how experimental data is presented [69],

ΔdS(q, t) = 𝛾exc
dS(q, t) − dSoff(q)

dSoff(q)
, (15.48)

where 𝛾exc is the fraction of excited molecules, dS(q, t) is the laser on signal corresponding to the
excited molecular wave function, and dSoff(q) is the laser off background signal from unpumped
molecules. A Gaussian-profile probe pulse with duration 25 fs (FWHM) is used, with the range of
q running from 0 to 14 Å−1 (corresponding to 13.8 keV x-ray photons) and an excitation fraction for
the molecules of 𝛾exc = 9%.

The rotationally averaged elastic x-ray scattering difference signal calculated according to
Eq. (15.48) from the full simulation is shown in Figure 15.5 as a function of time. In IAM, the
contribution to the signal from each atom is proportional to the number of electrons in the atom
squared. The signal is therefore dominated by the two carbon atoms, which account for 12 out
of the 16 electrons in the molecule, making the contribution from the four hydrogen atoms
comparatively minor. The variation in the signal in Figure 15.5(a) becomes progressively smaller
over time. This is to be anticipated given the increase in dispersion of the nuclear wave function
observed in Figure 15.4, with the associated delocalization averaging out specific molecular
geometries and motions. At times t < 50 fs, however, the coherent stretch of the C–C bond, clearly
visible in Figure 15.4(b), results in a strong signature in the scattering signal across the whole
range of the momentum transfer q.

The sensitivity of the calculated scattering signalΔdS(q, t) to the number of Ehrenfest trajectories
included can be seen when comparing Figure 15.5(a) with Figure 15.5(b), which has been calcu-
lated using a small randomly selected subset of 20 trajectories rather than 1000. Although the exact
appearance of the signal from the smaller set will depend on which 20 trajectories are included
(meaning that the signal is prone to noise), a subset of 20 is sufficiently large to make these differ-
ences rather small. Interestingly, even the small subset correctly depicts the main features of the
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Figure 15.5 Elastic x-ray scattering difference signal, ΔdS(q, t), in percent, shown as a function of
momentum transfer, q in Å−1, and pump-probe delay time, t in fs, calculated using Eq. (15.48) and rotational
averaging. (a) Signal calculated for 1000 trajectories and (b) a representative signal for a subset of 20
randomly selected trajectories. Adapted from Ref. [50] under CC-BY license from the American Chemical
Society.

scattering signal. This is consistent with previous findings [68, 104], which demonstrated that if
the trajectories can be clustered into self-similar sets, then the experimental signal from an ultra-
fast scattering experiment, which is sensitive to molecular geometry above all, can be reproduced
using only a comparatively small number of trajectories with the number corresponding to the
number of self-similar sets. However, the smaller subset will generally (and does so here) underes-
timate the dispersion of the nuclear wave packet at longer times, as can be seen from the features
present at long times in the small set in Figure 15.5(b), but absent from the full set in Figure 15.5(a).
Thus using a single trajectory to represent the dynamics would strongly overestimate the amount
of detail present in the signal.

We continue by examining the effect of the width of the individual wave packets. The widths
are determined by the factors 𝛼 of each coherent state as shown in Eq. (15.22). In Figure 15.6 we
compare the default scattering difference signal, ΔdS(q, t), with the signal obtained using modified
values of 𝛼. Specifically, the comparison is to 𝛼∕3, corresponding to a more delocalized, and to
3𝛼, corresponding to a more localized wave packet than default. The results show that the more
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dot-dashed line). Adapted from Ref. [50] under CC-BY license from the American Chemical Society.
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Figure 15.7 Comparison of the elastic scattering signal for photo-excited ethylene obtained with electron
scattering versus x-ray scattering, plotted in a contour plot as a function of the momentum transfer q (s) and
delay-time t. The absolute difference between the two, |ΔdSelec(q, t) − ΔdSxray(q, t)|, is shown. Adapted from
Ref. [92] under CC-BY license from Elsevier.

delocalized the wave packet is, the weaker the signal becomes at large q. Even the comparatively
modest reduction to 𝛼∕3 is sufficient to almost completely eliminate the signal for q > 8 Å−1. It must
be noted that due to the local phase-space coordinate propagation of the Ehrenfest wave packets, the
AI-MCE quantum dynamics approach is robust only if sufficiently narrow coherent states are used
as a basis for the nuclear dynamics [50]. Another important point is that if the quantum molecular
dynamics simulations are fully converged, an admittedly rare situation, the total molecular wave
function will have a ”shape” which is independent of the 𝛼 width parameters used.
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The capacity of x-ray scattering to detect small features in the nuclear probability density is
ultimately limited by the fact that it uses approximately atom-sized probes to sketch the nuclear
probability density. What if we had a sharper, more point-like probe? This is exactly what happens
in ultrafast electron diffraction. Electrons scatter not just from the electron density, but also from
the nuclei, which allows electron diffraction to trace the nuclear probability distribution more
sharply. In Figure 15.7, we compare the signal resulting from x-ray scattering with the signal from
electron diffraction by showing |ΔdSelec(q, t) − ΔdSxray(q, t)|. The difference between the two sig-
nals is small at small values of q (corresponding to large distances in the molecule where the size of
the probe is unimportant), but increases at intermediate and large values of q. The large values of
q map onto small distances in the molecule, and the result thus confirms that the electron diffrac-
tion is able to probe smaller, more local features in the nuclear probability density. The electron
scattering can also be shown to be more sensitive to the hydrogens in ethylene, and especially at
longer times the most distinct nuclear motion is associated with the hydrogen atoms [92].

In conclusion, a detailed MCE simulation of a pump-probe experiment in ethylene has been used
to examine how experimental observables relate to the simulation. We find that a description of the
nuclear dynamics beyond a single trajectory is important in order to predict realistic signals, and
that simulation parameters such as the width of the coherent states can have a strong influence on
the results. As we approach a point where experiments probe the nuclear wave function in greater
detail, the comparisons between experiment and theory will become more demanding. Methods
such as MCE, which carry a reasonable (or at least feasible) computational cost and are, at least
in principle, capable of representing the evolution of the nuclear wave function accurately, will
become increasingly important. At the same time, this new generation of ultrafast experiments
will provide opportunities to examine the veracity of simulations. In the context of scattering and
diffraction, the physical model used to calculate the signals can be markedly improved by consid-
ering corrections to the independent atom model [15, 71–73], accounting for inelastic scattering
[14, 16], and coherence effects [25, 35, 50, 90, 99]. The latter effects might even prove useful to
observe electron dynamics using x-ray scattering [25, 48, 51, 82, 89, 90, 96]. With the rapid and ongo-
ing development of simulations techniques and ultrafast experiments we can expect the intense
interaction between experiments, simulations, and theory to continue.

15.5 Conclusion

In this chapter, we have reviewed possible theoretical methods for the description of coupled elec-
tron and nuclear dynamics. Both the Ehrenfest and MCE treat the electronic degrees of freedom
quantum mechanically. To describe the nuclear degrees of freedom, the Ehrenfest method uses
an ensemble of independent trajectories propagated classically on a mean-field potential, follow-
ing the gradient of a superposition of electronic states. The main approximation of the Ehrenfest
method is thus the mean-field treatment of the coupling between electronic and nuclear degrees of
freedom. The MCE method extends this approach by using the ensemble of Ehrenfest trajectories
as a basis to solve the time-dependent Schrödinger equation. The time evolution of the coupling
coefficients of the Ehrenfest wave packets, and thus the transfer of population between them, is
thus determined quantum mechanically, while individual Ehrenfest wave packet propagates classi-
cally, simplifying the computational implementation for direct dynamics. A practical approach for
describing the nuclear wave packet branching properly is proposed. After deriving the equations of
motion of these two methods, we have presented applications for each method illustrating their use
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in simulating non-adiabatic dynamics of medium-sized organic molecules relevant to attosecond
and femtosecond time-resolved experiments.

The rapid advances in ultrafast imaging techniques will undoubtedly continue, enabling ever
more detailed comparisons between experiments and theory. In response to this challenge, it
is important that existing simulation methods for non-adiabatic molecular quantum dynamics
continue to be developed. This must include improvements in the ab-initio electronic structure
calculations and the propagation of the nuclear wave packet, but also in methods to calculate
experimental observables such as photo-ionization or scattering directly from the simulations.
Eventually, the combination of new experiments and state-of-the-art theory should lead to a more
detailed and complete understanding of both photo-chemistry and photo-physics.
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Abstract

In this chapter we review the wide-spread trajectory surface hopping method for non-adiabatic dynam-
ics simulations. The surface hopping method belongs to the class of mixed quantum-classical methods
that propagate electrons quantum mechanically and nuclei classically. The main focus of the review is
to present the most important concepts of the surface hopping method in an accessible and practically
oriented way. The covered concepts include nuclear motion, wave function propagation, decoherence
correction, the actual algorithm determining the surface hops, nuclear momentum adjustment, and
inclusion of diverse coupling terms. Furthermore, the chapter discusses practical aspects of surface
hopping simulations, like the choice of electronic structure method, initial condition generation, and
ensemble analysis. A fully worked example completes the overview over the surface hopping method.

16.1 Introduction

The description of molecular motion requires approximations in almost all cases, due to the
complexity of multi-dimensional molecular wave functions. One very popular and effective
approximation is the use of classical mechanics instead of quantum mechanics. The use of
classical mechanics is motivated here by its favorable scaling with system size, which is in stark
contrast to the exponential scaling of quantum mechanics. The classical approximation is sensible
as long as quantum-mechanical effects like tunneling or interference are negligible and the
energetic spacing between the quantum levels of that particle is sufficiently small compared to the
kinetic energy. Since nuclei are much heavier than electrons, this spacing between quantum levels
is usually much smaller for nuclear degrees of freedom than for electronic ones. Hence, it makes
sense to treat the nuclei with classical mechanics while the electrons are treated with quantum
mechanics. This combination of classical and quantum mechanical descriptions could be called
semiclassical dynamics, but more common terms are mixed quantum-classical dynamics [1] or
ab initio molecular dynamics, where the latter gives credit to the ab initio electronic structure
calculations involved.

In general, in mixed quantum-classical dynamics, the nuclear motion is described with Newton’s
equation of motion a = F∕m, i.e., acceleration equals force divided by mass [2]. The forces acting
on the nuclei are determined by the attractive and repulsive interactions among the nuclei and
electrons. Within the Born–Oppenheimer approximation, the forces on the nuclei are obtained as
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the negative derivative of the electronic energy (the energy gradient) with respect to the nuclear
coordinates, i.e., F = − 𝜕Eel

𝜕R⃗
. Here, it can be seen that Eel is a function of the nuclear coordinates R⃗,

which is known as a potential energy surface (PES). As long as only a single PES is considered, the
resulting method is often termed Born–Oppenheimer molecular dynamics (note that this is a type of
ab initio molecular dynamics, but often not considered to be a mixed quantum-classical method).

The situation becomes much more complicated when more than one electronic PES is involved
in the physical process under investigation. This is usually the case for excited-state dynamics that
occur after a molecule is electronically excited by absorption of a photon. In particular, whenever
several electronic states have similar energies, the Born–Oppenheimer approximation becomes
invalid and one has to include a description of non-adiabatic processes. These non-adiabatic pro-
cesses occur in radiationless photo-processes such as internal conversion and intersystem crossing,
but can also be present in photo-reactions involving dissociation or electron transfer. In these cases,
it is a priori unclear how the mixed quantum-classical scheme can be applied to the problem.
Several approaches have been devised for this purpose in the last decades, of which some are
described in other chapters of this book.

Here, we shall present the surface hopping (SH) method, which is a popular approach to mixed
quantum-classical dynamics including multiple electronic states. There are many excellent reviews
on the topic, for example in Refs. [3–11]. Some of these focus primarily on the concepts [3, 7], some
are more practically oriented [4–6], and others target new developments in the field [8–11]. In this
chapter, we aim at a mixture of a conceptual and a practical review, with a focus on all important
aspects necessary for beginners to carry out SH simulations on their own.

16.2 Basics of Surface Hopping

We start by giving an overview over the general ideas behind SH. This method was first proposed
by Tully and Preston in the 1970s [12]. The basic assumption is that during non-adiabatic dynamics
the nuclei move adiabatically for most of the time, and only for relatively short periods of time—and
in relatively small regions of the configuration space—undergo non-adiabatic transitions. Hence,
they proposed that, pragmatically, one could approximate the non-adiabatic transitions by instan-
taneous switches—or hops—between adiabatic PESs.

In order to illustrate this concept, in Figure 16.1, we compare the evolution of a quantum mechan-
ical wave packet to the evolution of classical trajectories including surface hopping. As explained
in the caption, the central event is the non-adiabatic transition at the avoided crossing. The quan-
tum wave packet is split during this event, creating two branches which then evolve differently. In
order to mimic this splitting, SH requires many independent trajectories, each of which undergoes
stochastic hopping events.

16.2.1 Advantages and Disadvantages

Originally, SH was proposed as an ad hoc approach to non-adiabatic dynamics, without detailed
theoretical justification. Since then, there were several attempts to rigorously derive SH from
quantum mechanics [13, 14]. On the one hand, these approaches start at the quantum-classical
Liouville Eq. [13, 14] and assume (i) unique trajectories (i.e., at any given time t, there is only
one trajectory at any phase space point (R⃗, p⃗), excluding recoherence) [13], (ii) large nuclear
velocities, and (iii) that electronic decoherence with a rate proportional to force differences is
taken into account. In particular, the last point might be unclear to new readers, but it will be
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(a) Quantum wave packet
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Figure 16.1 Comparison of a quantum wave packet (a) and SH trajectories (b). In (a), after the wave packet
is initially promoted to the upper PES, it moves to the right, where it splits into two parts at the avoided
crossing. The wave packet that crossed to the lower state continues motion to the right, whereas the wave
packet that stayed on the upper state is eventually reflected by the steep PES. In (b), five SH trajectories are
initially promoted to the upper state. At the avoided crossing, three trajectories hop and follow the lower
PES, while two trajectories do not hop and get subsequently reflected on the upper PES.

discussed in detail below in section 16.3.3. On the other hand, the exact factorization ansatz
for the molecular wave function [15, 16] (see Chapter 17) can be reduced to SH employing (i)
a trajectory ansatz and (ii) neglecting quantum forces arising from coupled trajectories [10].
Besides these approximations, limitations of SH naturally arise from the classical description of
nuclei, meaning that SH misses quantum effects, such as a correct description of the zero-point
energy, tunneling, or nuclear interferences. Combined, these approximations mean that it is not
possible to systematically converge to the exact quantum dynamical result with surface hopping,
unlike more advanced methods like full multiple spawning (see Chapter 14) or direct-dynamics
variational multi-configurational Gaussians (see Chapter 13).

Even though SH is not fully theoretically justified, it is among the most extensively used
approaches to perform non-adiabatic dynamics simulations. Its advantages [5] include simplicity,
practicality, and scalability. The first of these refers to the fact that the concepts of a classically
evolving molecule and of hopping between states are intuitively accessible concepts for most
chemists, which helps with the interpretation of results. The two other advantages refer to the
ability of SH to deal with large polyatomic systems efficiently and to the possibility of computing
many independent trajectories in parallel. Finally, it has been shown by several groups that SH
(including decoherence) can provide accurate results compared to exact methods for a large
number of model systems [17–19], provided an adequate level of theory is employed for the
electronic structure calculations.

16.2.2 General Algorithm

Within SH, the nuclei follow Newton’s classical equation of motion:

MA
𝜕2R⃗A

𝜕t2 = −𝜕Eel

𝜕R⃗A

, (16.1)
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where MA and R⃗A are the mass and position of nucleus A, and Eel is the current electronic energy. In
practice, the nuclear velocity 𝑣A is also explicitly included. The temporal evolution of the position
of all nuclei R⃗(t) is then referred to as a trajectory.

Besides the nuclei, in SH an electronic wave function is also considered. This wave function is
expressed as a linear combination of basis states:

|Φel(t)⟩ = ∑
𝛼

c𝛼(t)|Ψ𝛼(t)⟩, (16.2)

where 𝛼 runs over the basis states, c𝛼(t) are time-dependent coefficients, and |Ψ𝛼(t)⟩ are the basis
states. Most often, these basis states are adiabatic states, but this topic will be discussed in more
detail in section 16.3.6. Now it is only important to realize that the temporal evolution of this
wave function follows the time-dependent Schrödinger equation and that it is affected by the R⃗(t)
through the parametric dependence of the electronic Hamiltonian on R⃗(t). In turn, the evolution
of R⃗(t) depends on the gradient of the electronic energy Eel and thus on the evolution of |Φel(t)⟩,
showing that the classical nuclear evolution and the quantum-mechanical electronic evolution are
intimately coupled.

The specific connection between the electronic wave function and the electronic gradient is the
defining aspect of SH. In SH, the electronic gradient is given by the gradient of the active state.
The active state, denoted by 𝛽 in the following, is chosen stochastically in each time step such that
across the trajectory ensemble the fraction of trajectories with active state 𝛽 is equal to the electronic
population of that state:

N𝛽(t)
Ntraj

= 1
Ntraj

Ntraj∑
i
|ci
𝛽
(t)|2, (16.3)

where i runs over all trajectories. Accordingly, if the electronic population |c𝛽(t)|2 changes, a corre-
sponding number of trajectories will hop from/to 𝛽 to fulfill Eq. (16.3). More details on the actual
hopping algorithm will be given below.

In a very simplistic way the SH algorithm for one time step is composed of the following compu-
tations:

1. Calculate the new positions of the nuclei,
2. Compute electronic quantities: energies, gradients, couplings,
3. Calculate the new electronic coefficients,
4. Choose the new active state and obtain the corresponding forces,
5. Continue at step 1.

A much more detailed tutorial for an SH algorithm is given in the next section, where special
attention is also paid to the first time step. Here, we finally want to draw attention to step 2,
where the electronic quantities are computed. There are two general approaches to obtain these.
Historically, before an SH simulation was performed, the full form of the PES was defined, usually
through parametrized functions. All electronic properties were then computed directly from these
functions. However, nowadays most SH simulations are performed on-the-fly, meaning that no
pre-defined PESs are used but all required quantities are computed for the current time step,
using semi-empirical, density-functional-based, or ab initio electronic structure methods. The
on-the-fly scheme has been pivotal in the success of SH, as it eliminates the non-trivial and very
time-consuming step of preparing an accurate and complete PES, as it is necessary for propagating
quantum wave packet dynamics (see Chapters 11 and 12).
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16.3 Surface Hopping Ingredients

While the basic idea of SH—as explained above—is very simple, recent decades have seen dozens
of variants of SH. In general, these variants modify some part of the SH algorithm, e.g., the equation
used to compute the hopping probabilities or the way in which the total energy is conserved during
a hop. These modifications are usually applied in order to improve the agreement with quantum
dynamics reference computations, or in order to fulfill some theoretical requirement. Hence, in this
section, we describe in detail all components of the surface hopping method and the most common
techniques applied.

For convenience, in Figure 16.2 we provide an overview of the most important quantities that
are involved in the SH simulations, how they evolve from time step t to time step t + Δt, and in
which order these computations can be carried out. These steps are (1) update the nuclear positions
R⃗, (2) compute the gradients ∇⃗E𝛽 , energies (in matrix H), and couplings (matrix K), (3) update
the nuclear velocities 𝑣 with the newly computed forces via the acceleration a⃗, (4) propagate the
electronic coefficients c⃗, (5) compute the hopping probabilities h⃗, (6) stochastically select the new
active state 𝛽, and (7) compute the gradient of the new active state for the next iteration. In the
following subsections, some of these steps are explained in more detail.

Naturally, in order to start the iterations shown in Figure 16.2 it is necessary to obtain all quan-
tities for t = 0. This involves two steps. First, the preparation of initial conditions according to the
physical or chemical problem at hand provides values for R⃗(0), 𝑣(0), c⃗(0), and 𝛽(0). Second, an
electronic structure calculation provides values for H(0), K(0), and ∇⃗E𝛽(0). These two steps are
discussed further below in section 16.4.

16.3.1 Nuclear Motion

In SH, one of the most ubiquitous algorithms to solve Newton’s equation is the velocity-Verlet
algorithm [20]. In this algorithm, first the nuclear positions are updated with the following
equation:

R⃗A(t + Δt) = R⃗A(t) + 𝑣A(t)Δt + 1
2
∇AE𝛽(t)

MA
Δt2. (16.4)

Nuclear Electronic

t

t + ∆t

R v H,K c βa ∇Eβ∼

R v H,K c βa ∇Eβ∼

h
1

2

3

4
5

6

7

⃗ ⃗ ⃗ ⃗ ⃗

⃗

⃗⃗⃗⃗⃗

Figure 16.2 Overview of the computations carried out during one step (from t to t + Δt) of a SH
simulation. The seven steps are described in the text. The dashed box denotes the results of the electronic
structure calculation. Not shown here are the modification of c⃗ due to the decoherence correction scheme
and the modification of 𝑣 due to momentum adjustments after a hop.
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Note how the right-hand side of this equation only depends on quantities from step t, which means
that this equation is naturally the very first one carried out at the beginning of a time-step iteration.
In Figure 16.2, it is denoted as (1).

The second half of the velocity-Verlet algorithm is the update of the nuclear velocities:

𝑣A(t + Δt) = 𝑣A(t) +
1
2
∇⃗AE𝛽(t) + ∇⃗AE𝛽(t + Δt)

MA
Δt. (16.5)

This step is denoted as (3) in Figure 16.2. Note how here the gradient ∇⃗AE𝛽(t + Δt) is required,
which means that the electronic structure calculations (2) have to be performed between (1) and
(3). For proper energy conservation, in both equations the same state 𝛽 should be considered. This
means that the decision to hop is taken after the velocities have been updated. The gradient of the
new active state hence only enters the propagation in the next iteration. Hence, this step is denoted
in Figure 16.2 as (7).

16.3.2 Wave Function Propagation

By inserting the electronic wave function expansion into the time-dependent Schrödinger equation,
the equation of motion for the electrons can be obtained:

𝜕

𝜕t
c𝛽 = −

∑
𝛼

[ i
ℏ

H𝛽𝛼 + K𝛽𝛼

]
c𝛼, (16.6)

or in matrix notation:
𝜕

𝜕t
c⃗ = −

[ i
ℏ

H + K
]

c⃗, (16.7)

where ℏ is the reduced Planck constant, H𝛼𝛽 = ⟨Ψ𝛼|Ĥ|Ψ𝛽⟩ and K𝛼𝛽 = ⟨Ψ𝛼|𝜕∕𝜕t|Ψ𝛽⟩ =
𝜕R⃗∕𝜕t ⋅ ⟨Ψ𝛼|𝜕∕𝜕R⃗|Ψ𝛽⟩ = 𝑣 ⋅ ⟨Ψ𝛼|∇⃗|Ψ𝛽⟩. Given c⃗(t), H(t), H(t + Δt), K(t), and K(t + Δt), this
equation can be integrated to find c⃗(t + Δt). In Figure 16.2, this step is denoted as (4). The
numerical integration can be accomplished, e.g., with Runge–Kutta/Butcher algorithms or with
short-time matrix exponential methods, as described for example in [4]. The short-time matrix
exponential method can be written as:

c⃗(t + Δt) = ̂ exp
[
−∫

t+Δt

t

( i
ℏ

H(𝜏) + K(𝜏)
)

d𝜏
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
P(t+Δt,t)

c⃗(t). (16.8)

where ̂ is the time-ordering operator and P(t + Δt) is the propagator (time evolution) matrix.
While the above equation of motion arises naturally from the Schrödinger equation, it is numeri-

cally difficult to integrate, mainly because K(t) can change extremely quickly locally. Furthermore,
K(t) is usually computed from the non-adiabatic coupling (NAC) vectors ⟨Ψ𝛼|∇⃗|Ψ𝛽⟩, which are
often not available in current implementations of several electronic structure methods (e.g., most
single-reference methods). Hence, many SH implementations compute K(t) approximately from
the numerical differentiation of wave function overlaps [21, 22]:

K𝛼𝛽

(
t + Δt

2

)
≈ 1

2Δt
(S𝛼𝛽(t, t + Δt) − S𝛼𝛽(t + Δt, t)). (16.9)

with the overlaps S𝛼𝛽 defined as:

S𝛼𝛽(t, t + Δt) = ⟨Ψ𝛼(t)|Ψ𝛽(t + Δt)⟩. (16.10)
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The advantage of this scheme is that the overlaps can always be computed if a configuration
interaction-like representation of the electronic states is known [23–25].

An even more sophisticated method is the so-called local diabatization scheme [27, 28], which
has been shown [28] to be numerically more stable than the normal scheme of integrating K.
This stability is achieved by avoiding the combination of numerical differentiation of S(t, t + Δt)
(Eq. (16.9)) to obtain K and subsequent integration of this K (Eq. (16.8)). These numerical prob-
lems with the normal scheme of integrating K are exemplified in Figure 16.3, where it is shown that
narrow peaks in K, found at so-called “trivial crossings” [26], might be missed if the time step is too
long. Within the local diabatization scheme, K or the NAC vectors are never explicitly computed.
Instead, the overlap matrix S—which is closely related to the integral of K—is directly employed
in propagating the wave function coefficients c⃗:

c⃗(t + Δt) = S(t, t + Δt)†̂ exp
[
−∫

t+Δt

t

i
ℏ

S(t, 𝜏)H(𝜏)S(t, 𝜏)†d𝜏
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
P(t+Δt,t)

c⃗(t). (16.11)

Here, in the expression S(t, 𝜏)H(𝜏)S(t, 𝜏)† the Hamiltonian matrix H is diabatized, which is the
origin of the name of the method.

16.3.3 Decoherence

Only a few years after the publication of the original SH algorithm [29], it was realized that there
is one systematic problem in SH [30, 31]. This problem is that the electronic populations are prop-
agated with too much coherence [9, 13, 29, 32, 33].

An example of this problem is shown in Figure 16.4(a), where a single trajectory passes through
a double crossing. Initially, the trajectory is moving on the upper state, with 100% of the electronic
amplitudes corresponding to that state. After the first crossing, 60% of the amplitude is transferred
to the lower state, inducing a surface hop. From that point, the trajectory follows the gradient of
the lower state, and hence the trajectory is able to move further to the right. In contrast, if no hop
had occurred, the trajectory would have been reflected at the classically forbidden barrier in the
upper state. The central problem of the shown trajectory is that the amplitudes on the upper state
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Figure 16.3 Influence of the width of the non-adiabatic coupling and the time step on SH. If the coupling
is broad (a), then it can be integrated accurately and the non-zero integral might induce a hop. However, if
the coupling is narrow (b and c), then short time steps Δt are needed for an accurate integration (b).
Otherwise, the narrow peak is missed, leading to a too small value of the integral and failure to perform the
hop (c). In the literature, this problem of strong, narrow couplings is sometimes called the “trivial crossing
problem” [26].
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Figure 16.4 Sketch explaining the problem of decoherence in SH. It shows a single trajectory passing
through a double crossing. The numbers in the circles denote the population (in %) in the respective state
at each time step, with a thick circle denoting the active state. Without decoherence correction (a), the
population in the upper state is wrongly dragged over the barrier because the lower state is the active
state. When lower and upper states interact at the second crossing, artificial interference arises. In (b) and
(c), the problem is circumvented by applying a decoherence correction, see text.

(40%) also follow the gradient of the lower state and move to the right, although this should be clas-
sically forbidden. Once the trajectory arrives at the second crossing point, there will be electronic
interference between the 40% on the upper state and the 60% on the lower one. This interference
will strongly affect the amount of transferred population depending on the relative complex phase
between the two states. However, as the upper amplitudes should not have reached this crossing at
all, no interference should occur.

One way to solve this problem—electronic amplitudes following the gradient of another state—is
to split the trajectories when a hop occurs. This is basically the idea that led to the development of
the multiple spawning [34] and multiple cloning [35] methods (see Chapters 14 and 15), which are
more accurate alternatives to SH because they treat the nuclei quantum-mechanically. When in
the SH framework, decoherence can instead be realized by a decoherence correction algorithm
that over time collapses or decreases the amplitudes of the non-active states, so that far away
from crossing regions, every trajectory eventually recovers a pure wave function. This is shown
in Figure 16.4(b) and c, where non-active amplitudes are damped. In Figure 16.4(b), after the hop
to the lower state, the decoherence correction destroys the population of the upper state, so that
no interference occurs at the second crossing. It is important here to note that in our example the
total population across all trajectories (e.g., Ntraj=100) does not change: at the first crossing, there
are 100 trajectories with 40% in the upper state and 60% in the lower one. After the decoherence
correction has taken full effect, there are 60 trajectories with 100% in the lower state. Additionally,
as shown in Figure 16.4(c), there are 40 trajectories with 100% in the upper state, showing that the
total electronic populations did not change.

In practice, different decoherence schemes exist for SH which differ in the way the decay of the
non-active amplitudes is modeled. Early approaches [36] simply set the amplitude of a non-active



�

� �

�

16.3 Surface Hopping Ingredients 507

state to zero as soon as the coupling with the active state falls below a predefined threshold [37].
A more elaborate and very popular approach for decoherence is based on the “decay of mixing”
concept [32, 38] and its descendents [33, 39]. There, the non-active amplitudes are damped expo-
nentially in time, with the decay rate dependent on the kinetic energy—such that no decoherence
occurs if the nuclei are not moving—and the energy gap to the active state, with larger gaps induc-
ing faster decay. No additional quantities are required, making this approach very simple and
explaining its widespread use [11, 40, 41].

The most advanced decoherence correction schemes introduce auxiliary trajectories for each
electronic state [33, 42–44]. These extra variables propagate along each principal trajectory and rep-
resent how fast the active and non-active amplitudes separate in phase space, thus allowing a realis-
tic decoherence rate to be estimated. The big advantage of some of these schemes [42–44] is that the
decoherence rate is proportional to the difference in gradients between the different states, which
is the theoretically correct relationship [9, 30, 31]. This was shown by the above-mentioned deriva-
tions of the surface hopping algorithm from first principles either through the quantum-classical
Liouville equation or through the exact factorization method [13, 14, 16].

While the decoherence correction might seem like a rather technical detail of SH, it has a
quite tangible effect—for an ensemble of trajectories, it enforces the “internal consistency“ that is
described by Eq. (16.3). In other words, it guarantees that the fraction of trajectories in each state
(called the “classical“ population; left-hand side of (16.3)) is consistent with the average of the
squared electronic amplitudes (the “quantum“ population; right-hand side of (16.3)). As shown
above, decoherence corrections also make the electronic propagation much more accurate in any
system where a trajectory passes through more than one crossing region. Hence, nowadays all SH
simulations should employ some decoherence correction scheme, optimally one that incorporates
the difference gradients [42–44].

16.3.4 Surface Hopping Algorithm

Besides the mentioned decoherence correction, SH trajectories are largely influenced by the actual
algorithm that is used for the hopping procedure. There are three main aspects which need to be
considered here.

First, there are two main concepts to decide when to hop. One approach is to hop only at specific
geometries or points along the trajectory, defined either prior to the simulations (e.g., optimized
crossing points) or detected during the simulation (e.g., minimum in the energy gap, maximum in
the coupling term). This approach is historically the oldest, but still in use, for example in the con-
text of the Zhu–Nakamura SH method [45–47]. However, the approach is not very extensively used
nowadays, because it is often not practical to define all hopping points a priori, and hopping point
detection can become complicated or ill-defined for systems with many states. Instead, many SH
implementations allow surface hops in principle in any simulation time step [29]. This is especially
advantageous if hops can occur in a large phase space volume, where it is not possible to determine
the single most important point. Thus, in the following we will only consider SH algorithms that
allow transitions to take place at any time step.

The second aspect of the SH algorithm is the equation that governs the hopping probabilities for
each time step. The process of computing these probabilities is shown in the overview in Figure 16.2
as (5). Most reported equations incorporate the fewest-switches criterion [29], which demands that
Eq. (16.3) has to be fulfilled with the smallest possible number of hops. This restriction was intro-
duced after it was realized that excessive hopping in SH makes the trajectories move according
to the average of several PESs, which is unphysical. Hence, as long as the electronic populations
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do not change, no hop should be performed. This fewest switches criterion can be satisfied by
never hopping out of state 𝛽 if |c𝛽 |2 increases and otherwise hopping out of this state with total
probability:

p𝛽→ = 1 −
|c𝛽(t + Δt)|2|c𝛽(t)|2 . (16.12)

For example, this equation means that if |c𝛽(t + Δt)|2 is half as large as |c𝛽(t)|2, the probability is
50% to hop out of state 𝛽.

Unfortunately, the fewest-switches criterion does not provide any guidance on how this total
probability should be partitioned over the possible target states 𝛼. Hence, there are different recipes
that can be used. In Tully’s original formulation [29], assuming a short time step Δt, one can make
the approximation:

p𝛽→ ≈ − 2Δt|c𝛽(t)|2 ℜ
(

c∗
𝛽
(t)
𝜕c𝛽(t)
𝜕t

)
. (16.13)

The term 𝜕c𝛽(t)∕𝜕t can then be substituted by the right-hand side of Eq. (16.6):

p𝛽→ ≈ − 2Δt|c𝛽(t)|2 ℜ
(

c∗
𝛽
(t)

∑
𝛼

[ i
ℏ

H𝛽𝛼 + K𝛽𝛼

]
c𝛼(t)

)
. (16.14)

The expressions for each individual p𝛽→𝛼 are then simply obtained by splitting the sum over 𝛼.
Other approaches prefer to use the expression in Eq. (16.12) and partition it either based on the

propagator matrix in Eq. (16.8) [27, 48], e.g.,:

p𝛽→𝛼 =

(
1 −

|c𝛽(t + Δt)|2|c𝛽(t)|2
)

ℜ[c𝛼(t + Δt)P∗
𝛼𝛽

c𝛽(t)]|c𝛽(t)|2 −ℜ[c𝛽(t + Δt)P∗
𝛽𝛽

c𝛽(t)]
, (16.15)

or based solely on increases and decreases of the squared amplitudes [49, 50].
The third aspect regards the stochastic sampling carried out based on the computed probabilities,

and the selection of a new active state for the next time step. This selection is shown in Figure 16.2 as
(6). Nowadays, almost all SH implementations use the “anteater” technique [12], where a random
number r between 0 and 1 is drawn in each time step. A hop from 𝛽 to 𝛼 is performed if:

𝛼−1∑
i=1

h𝛽→i < r ≤ h𝛽→𝛼 +
𝛼−1∑
i=1

h𝛽→i (16.16)

with random number r between 0 and 1. This stochastic scheme is exemplified in Figure 16.5.
The name of this technique comes from the analogy with the anteater (the trajectory) that tends
to follow the path where most ants (the electronic population) walk. There also exist alternative
sampling schemes, for example the “army ants” algorithm [51] where the hopping decision is made

0 Probability 1

pβ→1 pβ→2 pβ→3 Stay in β

State 2 new active state!

Random number

Figure 16.5 Sketch explaining the anteater technique to decide on a new state based on computed
hopping probabilities. In this example, the random number falls within the interval corresponding to state
2, which thus becomes the new active state, except if the hop is frustrated (see below).
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from uniform probabilities (i.e., hops to all states are equally likely) but the values h𝛽→𝛼 are stored
to weigh the trajectories during final analysis. This technique might be useful for better sampling
of rare reaction channels if they are the focus of the investigation.

To end this subsection, some more specialized variants for the hopping probability will be men-
tioned. An interesting example is “decoherence-induced surface hopping” [52], where the deco-
herence correction is incorporated in the electronic equation of motion as a dissipative term, and
surface hops only occur if the current active state is collapsed by decoherence. Another special
surface hopping method is Liouville-space SH [53], where in addition to the adiabatic surfaces, tra-
jectories may hop to coherence surfaces if 𝜌𝛼𝛽 = c∗𝛼c𝛽 is large. These surfaces are computed simply
as the average of the two involved states, and are typically only populated in interaction regions.

In contrast to these sophisticated hopping schemes, an approach that is sometimes used
[10, 54–56] is to assume a unit hopping probability if the energy gap between two states becomes
small. The latter approach is sometimes used if the electronic structure method is not able to
describe crossings between S0 and S1, like most single-reference methods. However, much caution
has to be applied with this severe approximation, as the actual dynamics close to the intersection
seam is not simulated and the decay rates might be significantly overestimated [56].

16.3.5 Kinetic Energy Adjustment and Frustrated Hops

After the decision has been made to hop to a new active state, it is usually necessary to adjust
the kinetic energy of the nuclei. This step is required because the new active state will have a
different potential energy than the previous active state, but the total energy (i.e., kinetic plus
potential energy) needs to be conserved. The kinetic energy is adjusted by modifying the veloc-
ity vector 𝑣 such that the new kinetic plus potential energy equals the total energy. This is sketched
in Figure 16.6(a) and (b) for the cases of increasing or decreasing kinetic energy.

The simplest prescription for the kinetic energy adjustment is to rescale the complete velocity
vector 𝑣 according to:

𝑣 adjusted =

√
Etotal − E𝛽
Etotal − E𝛼

𝑣, (16.17)

where E𝛼 is the potential energy of the old active state, E𝛽 the potential of the new active state,
and Etotal the total energy. As can be seen, no additional quantities (like NAC vectors) are required.
This approach is, therefore, regularly employed [23, 57, 58], but one should keep in mind that
it makes the SH algorithm size-inconsistent. By size-inconsistent we mean the following: imagine
two SH simulations, the first for a molecule A and the second for the same molecule A plus another
molecule B at infinite distance. In both simulations, the dynamics of molecule A should be iden-
tical, since A and B are not interacting. At some time step, in A the decision is made to hop to a
state with an energy that is higher than the total energy of A. Naturally, in the first system (only A
present) the hop is frustrated and cannot be made. However, in the second system (A + B), the total
energy of the system is large enough to permit the hop. In this situation, the rescaling of the full
velocity vector is unphysical, because the energy to hop between states of A is paid by slowing down
the atoms of B, although the two systems should not interact. This general problem does not only
occur for infinitely-separated systems, but also for finitely-separated systems containing weakly
interacting subsystems. The problem is especially severe in large systems like chromophores in
solution or bio-environments. Here, an ad hoc solution is to only apply the velocity adjustment to
atoms of the chromophore while ignoring the kinetic energy of the environment atoms [11].
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Figure 16.6 Sketches of different scenarios that can occur during kinetic energy adjustment. The top row
shows simple examples of hops where the potential energy of the active state (a) decreases during the hop
or (b) increases. In the middle row, the available kinetic energy for (c) full 𝑣 scaling is compared to (d)
adjustment only parallel to the NAC vector T⃗ . As can be seen, in the latter less energy is available to make
the hop. In the bottom row, we show an example of a frustrated hop (e), where the total energy is lower
than the potential energy of the designated new active state. When a frustrated hop is detected, the active
state is not changed, and the velocity vector is either unchanged (f) or the component along T⃗ is reflected.

The instantaneous modification of the velocity vector can be regarded as the application of an
infinitely large force to the nuclei. The correct direction of that force vector can be shown—by
invoking the effective quantum force method of Pechukas [59, 60]—to be the direction of the NAC
vector that induced the transition from the old state to the new state. This approach is rigorous
[61–63] and size-consistent. The equation for rescaling 𝑣 is much more involved than the one
above and can be found in the literature, e.g., Ref. [4]. Its biggest disadvantage is that it requires the
computation of the relevant NAC vector, which might be computationally expensive or not even
available in all electronic structure programs.

In any case, during the velocity rescaling there is only a certain amount of energy available to
“pay” for hops to states with higher potential energy. When rescaling is applied to the full 𝑣, the
full nuclear kinetic energy is available and hops are possible to all states whose potential energy
is below the total energy. However, if rescaling is applied parallel to the NAC vector, only kinetic
energy along this vector is available for hops. This difference is exemplified in Figure 16.6(c) and
(d). If this available energy is less than the energy difference between the old active state and the
designated new active state picked by the hopping procedure, then the hop cannot be performed.
Such a hop is called “frustrated”, and is rejected during the SH algorithm, so that the trajectory
simply continues on the previous active state without change. An interesting alternative approach
here is “surface hopping with time uncertainty” [64], where trajectories are allowed to hop slightly
earlier or later (according to the energy-time uncertainty ΔEΔt ≈ ℏ) if the hop is forbidden at the
current time step. Some authors also have suggested that after a hop is rejected, the component of
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𝑣 in the direction of the relevant NAC vector should be inverted [21, 65, 66], whereas other authors
report that this reflection should not be carried out [57]. The concepts of frustrated hops and of no
reflection/reflection are visualized in Figure 16.6(e–g).

16.3.6 Coupling Terms and Representations

In the electronic equation of motion (16.7), the Hamiltonian and non-adiabatic coupling matrix
elements appear. These can be written as

H𝛽𝛼(t) = ⟨Ψ𝛽(t)|Ĥ|Ψ𝛼(t)⟩ (16.18)

and

K𝛽𝛼(t) =
∑

A
𝑣A ⋅ ⟨Ψ𝛽(t)|∇⃗A|Ψ𝛼(t)⟩, (16.19)

respectively. These quantities are affected by (i) the choice of the electronic Hamiltonian operator Ĥ
and (ii) the choice of the basis functions Ψ𝛼(t) and Ψ𝛽(t). The choice of the electronic Hamiltonian
fundamentally determines which processes can be described with the SH simulation. The simplest
electronic Hamiltonian is the molecular Coulomb Hamiltonian (MCH), which is written as:

ĤMCH = −
∑

i

ℏ2

2me
∇2

i

+ e2

4𝜋𝜀0

[∑
A<B

ZAZB|R⃗A − R⃗B| −
∑

A

∑
i

ZA|R⃗A − r⃗i| +
∑
i<j

1|r⃗i − r⃗j|
]
, (16.20)

where e is the elementary charge, 1
4𝜋𝜀0

is the Coulomb constant, Z are the nuclear charges, A and
B run over nuclei, and i and j run over electrons. Using this Hamiltonian, it is possible to describe
adiabatic and internal conversion dynamics for molecules. To include further processes, one needs
a Hamiltonian which contains additional terms:

Ĥfull = ĤMCH + Ĥadditional. (16.21)

For example, for ISC Ĥadditional should include a spin–orbit operator, like the Breit–Pauli opera-
tor [67]:

ĤSO,BP = ℏe2

2m2
ec2

[ nel∑
i

nnuc∑
A

ZA(r⃗iA × p⃗i) ⋅ s⃗i

r3
iA

−
nel∑
i≠j

(r⃗ij × p⃗i) ⋅ s⃗i

r3
ij

+ 2
nel∑
i≠j

(r⃗ij × p⃗i) ⋅ s⃗j

r3
ij

]
, (16.22)

where c is the speed of light, and r⃗, p⃗, and s⃗ are distance, momentum, and spin vectors, respec-
tively. Instead of using the full Breit–Pauli operator that is very expensive to evaluate, nowadays
much work is performed with mean-field one-electron approximations to the Breit–Pauli opera-
tor [68–71]. For absorption or stimulated emission, instead, one requires the interaction between
an electric field and the charge distribution of the system. In the usual dipole approximation, the
corresponding Hamiltonian to be included is:

ĤDFC =

(
−

nel∑
i

r⃗i +
nnuc∑

A
ZAR⃗A

)
⋅ ⃗ , (16.23)
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where DFC is an acronym for dipole-field coupling. Other choices of additional Hamiltonians are
also possible, for example by adding also a polarization-square of field term, or a term allowing for
spontaneous emission [72].

The choice of the basis functions |Ψ𝛼(t)⟩ in Eq (16.2) (this choice is usually called representation)
also significantly affects the form of the matrix elements (16.18) and (16.19). For example, when
represented in a diabatic basis, H will generally be non-diagonal and K will be zero. On the other
hand, if the basis is an eigenbasis of the full Hamiltonian, then H will be diagonal and K will be
non-zero. We want to note here that—unlike in nuclear quantum dynamics (see Chapters 11 and
12)—in SH the choice of the basis is not just important for an efficient and accurate numerical
treatment, but actually affects the physical outcome of the simulations. There are several reasons
for this. First, in SH the trajectories always follow the gradients of the PESs of the basis states,
but never the gradient of a linear combination. As shown in Figure 16.7, different representations
lead to different PESs. This can, e.g., mean that a reaction barrier is classically forbidden in one
basis, but allowed in another basis (compare the barrier between the two low-lying minima in
Figure 16.7(a/b) with (c)). Second, all decoherence correction schemes enforce that eventually the
electronic wave function becomes a pure basis state, never a linear combination. Third, if spin–orbit
couplings (SOCs) are considered, then the hopping probabilities into the components of multiplets
depend on the representation [73]. Furthermore, in different representations the electronic cou-
plings can be either localized or delocalized, which affects how many trajectories are required to
properly sample all reaction pathways.

For all these reasons, the choice of the optimal representation for SH is a topic discussed at length
in the literature [1, 9, 14, 48, 73–75]. Generally, the best representation seems to be the adiabatic one,
i.e., the one that diagonalizes the full electronic Hamiltonian including all additional couplings.
Unfortunately, nowadays electronic structure codes cannot routinely compute excited eigenstates
of the full electronic Hamiltonian including SOC or other additional couplings, especially for mul-
tiple excited states including gradients and non-adiabatic couplings, with few exceptions [76, 77].
Hence, some SH codes [11, 78]–including the SHARC (surface hopping including arbitrary cou-
plings) package [11]–resort to a two-step approach that is based on quasi-degenerate perturbation
theory [79]. In the first step, a desired number of MCH eigenstates {ΨMCH

𝛼 } are found (e.g., the few
lowest singlet and triplet states). For these MCH states, electronic structure codes can routinely
deliver gradients, dipole moments, and all relevant couplings. In the second step, these quantities
are transformed from the MCH basis to the diagonal one. To this end, the matrix representation of

(c) Spectrosc. states
diabatic basis

1
ππ

∗ 1nπ
∗

3nπ
∗

Coordinate

E

(a) MCH states
eigenstates of ˆHMCH

S1

S2 T 1

Coordinate

E

(b) Diagonal states
eigenstates of ˆH full

1

2 3,4 5

Coordinate

E

Figure 16.7 Example PESs for the three most common representations used in SH. The MCH states (a) are
usually the ones computed with electronic structure methods. The diagonal states (b) are obtained by
specialized electronic structure or by a posteriori diagonalization. The spectroscopic states (c) consist of
coordinate-independent basis states, which generally do not exist for poly-atomic molecules. Adapted from
Ref. [11]: Mai, Marquetand, González, WIREs: Comp. Mol. Sci. 8 e1370 (2018) under CC-BY license.
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the full Hamiltonian in the basis of these MCH states is constructed and diagonalized:

⟨Ψdiag
𝛼 |Ĥfull|Ψdiag

𝛽
⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛿𝛼𝛽Hdiag
𝛼𝛽

=
∑
𝜇

∑
𝜈

⟨Ψdiag
𝛼 |ΨMCH

𝜇 ⟩
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

U†
𝜇𝛼

⟨ΨMCH
𝜇 |Ĥfull|ΨMCH

𝜈 ⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

HMCH
𝜇𝜈

⟨ΨMCH
𝜈 |Ψdiag

𝛽
⟩

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
U𝜈𝛽

, (16.24)

where the HMCH
𝜇𝜈 elements are computed by the electronic structure code after the {ΨMCH

𝛼 } have
been found. The transformation matrix U with elements U𝛼𝛽 can then be used to transform all
required properties like the gradients and couplings. The approximation here is that the diagonal-
ization step only includes the small number of considered states instead of all possible states. In
many cases, this is a good approximation, especially when considering SOC without very heavy
atoms [80, 81].

16.4 Practical Remarks

Besides the actual SH algorithm and the different possible ingredients reviewed above, the success
of an SH study critically depends on a number of further aspects. Two very important issues need
to be considered before the SH simulations can even be started. One is the choice and validation
of the electronic structure level of theory for the on-the-fly calculations. After a suitable level of
theory has been found, the next step is to prepare suitable initial conditions, which are typically
chosen to represent some (hypothetical) experimental setup. Only once these initial conditions are
ready, can the dynamics simulations themselves be carried out. Finally, the large amount of data
produced by the simulations needs to be analyzed, interpreted, and set in relation to experimental
evidence, if available.

16.4.1 Choice of the Electronic Structure Method

An electronic structure method is required in SH in order to find solutions of the electronic
Schrödinger equation at every time step. These solutions then deliver energies, gradients, and
(non-adiabatic, spin–orbit, or any other type of) couplings that are required to propagate the
nuclear and electronic degrees of freedom in the SH algorithm.

The selection of the electronic structure method is actually one of the decisive choices that affects
the outcome and feasibility of an SH project. This is because the electronic structure method affects
the shape and accuracy of the PESs on which the dynamics is carried out, and inaccurate PESs
will lead to systematically wrong dynamics. However, the electronic structure calculations also
account for the vast majority of the computational cost, and therefore it is always necessary to
find a compromise between accuracy and feasibility, especially when also aiming at a significant
number of trajectories and/or a long simulation time.

The problem of choosing an electronic structure method is further complicated when electronic
states of different characters need to be described simultaneously. This is because the different
characters—valence states (e.g., n → 𝜋∗, 𝜋 → 𝜋∗, 𝜋 → 𝜎∗), Rydberg states, metal-centered (d →

d) states, charge transfer states, double excitations, etc.—often require different correlation treat-
ments. Hence, finding a single method that describes all states in a balanced and reasonable way
might not be trivial.

In many instances of non-adiabatic dynamics, the system evolves to situations where the ground
state acquires a partial open-shell character, e.g., at near-degeneracies of ground state and an
excited state, bond cleavage, or large molecular deformations. Often, these open-shell situations
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cannot be described qualitatively correctly by a single Slater determinant, so that it is necessary
to employ a multi-configurational method [82]. This is the reason why a significant amount of
SH studies in the last decades have been based on the complete active space self-consistent field
(CASSCF) method [83] (see Chapter 6). Its advantages are its multi-reference description, com-
putational efficiency, and availability of analytical gradients and NAC vectors, but unfortunately
in CASSCF statical and dynamical electron correlation are not well balanced. This can lead, e.g.,
to an overestimation of energies of 𝜋𝜋∗ states by 1–3 eV. Such accuracy problems in CASSCF can
be solved by employing a correlated multi-reference method, for example using multi-reference
configuration interaction (MRCI, see Chapter 9) [84–86] or CAS perturbation theory (CASPT2,
see Chapter 10) [87–89]. Both are among the most accurate excited-state electronic structure
methods used nowadays, but their steep computational scaling restricts them to rather small
molecules. Furthermore, for larger systems the accuracy of MRCI can be strongly deteriorated
due to its lack of size-extensivity [82], whereas the results of CASPT2 depend on a number of
empirical shift parameters (e.g., real/imaginary level shift [90], IPEA shift [91, 92]). Finally, for
all multi-configurational and multi-reference methods one should keep in mind that accuracy
and computational cost strongly depend on the size and choice of the active space, although in
the future more elaborate active space schemes, like restricted active space SCF (RASSCF) or
generalized active space SCF (GASSCF), might help alleviate these problems (see Chapter 6).
Another important issue of these methods is the complexity of optimizing the employed wave
functions, which might lead to reliability problems like bad convergence, undesired orbital
rotations, discontinuous PESs, or intruder states.

Due to the limitations of multi-reference methods, single-reference methods have become very
attractive for use in SH simulations, as they can deliver satisfactory accuracy at significantly
lower computational cost [93]. Unfortunately, for the above-mentioned open-shell ground state
situations, most single-reference methods will fail—either by not converging the ground state
wave function or by producing unphysical S1∕S0 conical intersection topologies. This strongly
contrast to intersections between two excited states, which are generally described correctly
with single-reference methods [94]. For this reason, it is usually recommended to employ
single-reference methods only for dynamics which does not involve decay to the ground state [10].

Among the usable excited-state single-reference methods, (linear response) time-dependent den-
sity functional theory (TD-DFT) [95, 96] with or without the Tamm-Damcoff approximation (TDA),
and also including the closely related time-dependent Hartree–Fock (TD–HF) and configuration
interaction with singles (CIS), are likely the most popular electronic structure methods for SH sim-
ulations (see Chapter 2). Its attractiveness originates from its computational efficiency combined
with the generally good accuracy of TD–DFT (at least when employing a suitable density func-
tional). For a detailed discussion of the strengths and limitations of TD–DFT combined with SH,
several recent publications can be recommended [97, 98] (see also Chapter 2).

A more recent alternative is correlated wave-function-based single-reference methods, most
prominently the algebraic diagrammatic construction method, like the efficient ADC(2) or the
more sophisticated ADC(3) [99, 100] (see Chapter 5). These methods have been shown [101] to
yield accurate PESs for excited states, at a cost that is higher than TD–DFT but typically much
lower than correlated multi-reference methods, and have been successfully employed in SH
simulations [24, 102]. Another method that is closely related to ADC(2) is approximate coupled
cluster (CC2) [103]. At approximately twice the cost of ADC(2), CC2 can deliver slightly more
accurate results, owing to the fact that the ground state in CC2 is more strongly correlated. How-
ever, the Jacobian matrix in CC2 theory is non-Hermitian, which can lead to severe convergence
problems whenever two excited states become degenerate [101]–making CC2 of limited use in SH



�

� �

�

16.4 Practical Remarks 515

simulations. One exception is dynamics involving only S1 and S0, as it has been shown recently
that CC2 can produce correct S1∕S0 conical intersection topologies [94]. Another related way to
obtain correlated single-reference wave functions is given by the family of equation-of-motion
coupled cluster (EOM-CC) methods [104, 105] (see Chapter 4).

Some of the mentioned electronic structure methods–CASSCF, CASPT2, MRCI, CC2, ADC(2),
and TD-DFT/TDA/TD–HF/CIS–constitute a set of ab initio methods that have been used for SH
simulations. In order to compare these methods, Table 16.1 lists some of their strengths and limita-
tions. The first part of the table shows which electronic situations can be covered with the methods.
In the second part, we show which electronic quantities are available for these methods as of
2020. Besides the capabilities presented in the table, one also usually needs to consider how easily
usable a method is—i.e., how much the method suffers from convergence problems, root switching,
intruder states, required user effort, parametrization, etc.

Another, much cheaper, way in addition to ab initio methods is offered by semi-empirical elec-
tronic structure methods [27, 106, 107]. For excited states, most of the semi-empirical methods
combine a form of CI or MRCI with a specifically parametrized Hamiltonian, for example OMx
[106], AM3/PM3 [27], or some form of DFT [108]. These methods are typically orders of magni-
tude faster than ab initio methods, and can achieve reasonable accuracy if carefully parametrized.
However, the parametrization is often not transferable, thus requiring reparametrization for each
system. An independent method that shares the semi-empirical character and high efficiency is
time-dependent density functional tight binding [109, 110], which is related to TD–DFT.

There are also a number of emerging electronic structure methods, which might be applied
to SH simulations in the near future. Among the multi-reference methods, two interesting new
approaches are the density matrix renormalization group [111, 112] (DMRG, see Chapter 7) tech-
nique and the Quantum Monte Carlo [113–115] (QMC, see Chapter 8) technique. Both methods
allow the optimization of large multi-reference wave functions, e.g., with complete active spaces

Table 16.1 Qualitative overview over the capabilities of different electronic structure methods with
respect to SH simulations.
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of at least 30 orbitals [116], opening up multi-reference methods for much more demanding sys-
tems than before. Among the single-reference methods, one example is the combination of the
GW (Green’s function G and screened Coulomb interaction W) method with the Bethe–Salpeter
equation approach (GW/BSE) [117, 118], which is a popular method in solid-state physics but only
recently started to be applied to molecular systems. Here, GW is a perturbative correction to a
Kohn–Sham ground state [118], whereas the BSE is a Green’s function ansatz to calculate excited
states based on the GW ground state. As such, GW/BSE is a single-reference method with similar
scaling to TD-DFT but a somewhat improved accuracy [118]. Other examples for emerging tech-
niques focus on combining the advantages of single- and multi-reference methods (see Chapter 3).
A general approach—applicable to different electronic structure methods like TD-DFT [119] or
ADC [120]—is the spin–flip technique [121], where an open-shell triplet is used as the reference
state and all singlet states—including S0 are described consistently as spin–flip excitation from this
reference. In this way, conical intersections between S1 and S0 can be described correctly [120].
Another technique is (state-average) spin-restricted ensemble-referenced Kohn–Sham (SA-)REKS
[122, 123], which, loosely speaking, can be thought of as a DFT analogue of MCSCF theory.

A very important step in the preparation of SH simulations is a thorough validation of the
electronic structure method. The first step is to check whether the vertical excitation energies at
the S0 minimum, calculated with the method of choice, are in agreement with the experimental
absorption spectrum or with higher-level computations. However, a good agreement at this
geometry does not necessarily mean that the electronic structure method will also describe
energies properly outside of the Franck–Condon region. Hence, it is recommended that critical
geometries are optimized—such as excited-state minima, minimum-energy crossing points, or
transition states—that are relevant for the processes of interest. Then, the energies at these critical
points and along paths connecting the critical points can be compared with a higher-level reference
method to gain a more reliable estimation of the accuracy of the chosen method. For even more
scrutiny, all relevant critical geometries should be found (independently) with the higher-level
method, in order to ensure that the chosen method does not miss any important reaction path.
To this end, a (possibly expensive but exhaustive) strategy is to run dynamics simulations with
some initially chosen electronic structure method in order to explore the relevant configuration
space. The results are then validated with higher-level single point calculations, and the electronic
structure method for dynamics is appropriately adapted. Then, new dynamics simulations
can be performed in a feedback loop until one is certain that the level of theory for dynamics
is adequate.

16.4.2 Initial Conditions

In Section 16.3, we described in detail how in SH all nuclear and electronic properties can be prop-
agated from a time step t to the next step, t + Δt. Of course, in order to set up such a trajectory, one
has to provide the SH program with the values of all nuclear and electronic properties at t = 0. The
set of values is called initial conditions.

According to Figure 16.2, the main nuclear and electronic variables that are propagated are:
(i) nuclear positions R⃗, (ii) nuclear velocities p⃗, (iii) electronic wave function coefficients c⃗, and
(iv) active electronic state 𝛽. The other quantities shown in Figure 16.2–acceleration/gradient,
Hamiltonian matrix, and coupling matrix–directly depend on R⃗ and thus require no separate initial
value. Hence, in order to compute all quantities at t = 0, one needs to define R⃗, p⃗, c⃗, as well as 𝛽,
and then perform an electronic structure calculation at R⃗.
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The initial values of R⃗, p⃗, c⃗, and 𝛽—the initial conditions in the narrower sense—are depen-
dent on the chemical problem that one is trying to describe. For the most common case in SH
simulations—excitation of a molecule in a thermally equilibrated ground state—R⃗ and p⃗ depend
on the phase space distribution in the ground state, and c⃗, and 𝛽 depend on the excitation process.
There are two common techniques to randomly sample R⃗ and p⃗, which are shown in Figure 16.8(a)
and b. In Wigner sampling one computes a (approximate) phase space probability distribution func-
tion representing the density of the ground state vibrational state, and then stochastically draws
samples from this distribution. This has the advantage that quantum effects like zero-point energy
can be adequately considered, but usually it is not trivial to find an appropriate distribution func-
tion. For polyatomic molecules, one usually resorts to a Wigner distribution of the solutions of
a quantum harmonic oscillator in linear normal modes [124], which works well for small, stiff
molecules.

An alternative to Wigner sampling is to run a long classical molecular dynamics simulation in the
ground state, and randomly pick (R⃗, p⃗) pairs from this trajectory. This approach will not represent
quantum effects like zero-point energy well, but does work well for large, poly-molecular systems
with anharmonic or nonlinear modes and with multiple local minima in the ground state PES.

Once (R⃗, p⃗) pairs have been obtained by sampling, one can find the initial c⃗ and 𝛽. In the simplest
case, one can use c𝛼(0) = 𝛿𝛼𝛽 , with 𝛽 being one of the excited states. This 𝛽 can be simply defined by
the user (e.g., all trajectories start in S2). A more appropriate and popular approach is to perform
a single point calculation for each sampled R⃗ and compute a selection probability based on the
obtained excitation energies and oscillator strengths of each state [125]:

p𝛼(R⃗) =
1

pnorm

f𝛼(R⃗)|E𝛼(R⃗) − Einit(R⃗)|2 , (16.25)

where Einit(R⃗) is the energy of the initial state, f𝛼 is the oscillator strength of state 𝛼, and pnorm is
chosen such that the largest of all probabilities for all R⃗ is equal to unity. With these probabilities,
one can stochastically select initial states. Additionally, often some restrictions on |E𝛼(R⃗) − Einit(R⃗)|
are imposed, in order to consider only a small excitation energy window. A more realistic alterna-
tive would be to explicitly simulate the interaction of a laser pulse with the molecule for every R⃗,
although naturally this approach would be very expensive.

When preparing initial conditions, a very important thing to keep in mind is the size of the simu-
lation ensemble, as SH simulations are basically stochastic samples of the photo-physical process.
This entails at least three aspects: (i) the sampling of the initial phase space volume, (ii) the sam-
pling of the initial active state and electronic coefficients, and (iii) the sampling of all hopping
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Figure 16.8 Overview of important steps in the initial condition generation. In (a) and (b), the two
alternatives for phase space (R⃗, p⃗) sampling are shown. One of these techniques is required to generate the
initial nuclear positions and velocities. In (c), the subsequent step of initial state selection is presented. This
step is required to define the initial electronic coefficients and active state of the SH trajectories.
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events during the trajectories. Hence, optimally one would prepare a large set of (R⃗, p⃗) pairs, for
each pair one would consider all relevant initial 𝛽 and c⃗, and for each (R⃗, p⃗, 𝛽, c⃗) one would prepare
multiple trajectories that differ only in their random number sequence for hopping. In practice,
one is usually limited in the number of trajectories one can compute by the availability of compu-
tational resources and the expense of the chosen electronic structure method, and therefore these
sampling requirements can only be partially fulfilled.

16.4.3 Example Application and Trajectory Analysis

In order to explain possible ways of analyzing SH trajectories, in this section, we discuss a real-world
example of a complete SH study. We will be investigating the excited-state dynamics of the methy-
lene immonium cation CH2NH+

2 (also called the aminomethyl cation) in gas phase. This ion is
isoelectronic to ethylene, but its positive charge reduces the influence of the Rydberg states that
make simulations on ethylene very challenging [126]. The photo-induced dynamics of CH2NH+

2
was first simulated with SH in 2006 [127] at the CASSCF level of theory. Here, we will provide a
description of the work flow for a SH study of this molecule with the MR-CISD(6,4)/aug-cc-pVDZ
method for three singlet states.

On the left side of Figure 16.9, we sketch the work flow of preparation steps for the SH sim-
ulations. First, an optimization and frequency calculation is performed at the MR-CISD level of
theory to obtain the ground state equilibrium geometry R⃗eq, the vibrational frequencies {𝜔i}, and
the normal mode vectors {n⃗i}. With this information, it is possible to solve the quantum harmonic
oscillator for the ground state. From the resulting Wigner distribution, we obtain the set of initial
(R⃗, p⃗) pairs, where we generated 1000 initial conditions for this example. Subsequently, a vertical
excitation calculation is carried out at every R⃗k, yielding lists of excitation energies and oscillator
strengths. Using this data and Gaussian convolution, one can simulate the absorption spectrum of
the molecule, which is shown on the right of Figure 16.9.

For the initial state selection, we choose an excitation window with a width of 0.3 eV centered
at the band maximum, specifically from 9.29 to 9.59 eV. In this way, all trajectories will start in
S2, as for all 1000 geometries the S1 energy is outside this window. For the S2, 233 geometries give
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Figure 16.9 Scheme for a usual setup work flow of a SH simulation (left) and the simulated absorption
spectrum of CH2 NH+

2 . The dashed lines indicate the energy window from where initial states were selected.
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energies inside the window, and the stochastic selection process of Eq. (16.25) accepts 210 initial
conditions.

In the next step, these 210 trajectories are propagated for 100 fs, using the MR-CISD method
described above. Inspection of all trajectories will reveal that many of them display some violation
of total energy conservation. Here, this is because the CAS(6,4) active space (𝜋, 𝜋∗, 𝜎CN, 𝜎∗CN) is
actually too small to describe all possible processes, especially the dissociation of H atoms. In these
cases, large orbital rotations lead to discontinuities in the PESs and these lead to the total energy
violations. Hence, for the remainder of this example, we have removed all problematic trajectories,
so that for the statistical analysis 90 trajectories remain. In general, such a large number of problem-
atic trajectories should instead be combated with an adjustment of the electronic structure method,
e.g., enlargement of the active space.

In Figure 16.10, we present an overview of many results obtained from the analysis of the trajec-
tories. In panel (a), we present an energy plot for a representative trajectory, showing the evolution
from the initially occupied S2 state at 9.6 eV. At 15 fs, the trajectory hops to the S1 state, and after
additional 45 fs to the ground state. The color of the plotted line indicates the oscillator strengths
of the states, which is useful because in many cases the diabatic character can be learned from the
oscillator strength, e.g., 𝜋𝜋∗ states are bright and n𝜋∗ states are dark. As discussed above, a single
SH trajectory is of limited value, and instead statistical analysis should be carried out. In that sense,
inspecting plots like the one in panel (a) is mostly useful to check all trajectories for computational
artifacts and to formulate general hypotheses about the dynamics that can then be verified with
statistics.

In panel (b) we show the evolution of the electronic populations in the ensemble of 90 trajectories.
As can be seen, in CH2NH+

2 the initially excited S2 state decays very quickly to the S1, which
subsequently decays to S0. The S0 population after 100 fs is about 80%. This is consistent with
the total number of surface hops, shown in panel (c). As there are very few hops to the upper
state, one can qualitatively describe the dynamics by a simple sequential reaction model, i.e., S2 →

S1 → S0. When the evolution of the populations is fit to the integrated rate laws of the kinetic
model

NS2
(t) = NS2

(0) exp
(
− t
𝜏1

)
, (16.26)

NS1
(t) = NS2

(0)
1
𝜏1

1
𝜏1
− 1

𝜏2

[
exp

(
− t
𝜏2

)
− exp

(
− t
𝜏1

)]
, (16.27)

NS0
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(0)
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1
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− 1
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)
−

1
𝜏1

1
𝜏1
− 1

𝜏2

exp
(
− t
𝜏2

)
+ 1

⎞⎟⎟⎠ , (16.28)

it is possible to extract the time constants 𝜏1 and 𝜏2 from the fit. These give the decay time constant
for the excited states, which in the example are 18 fs for S2 and 51 fs for S1. These time constants
can then be compared to experimental results. For this purpose, it is also convenient to compute
the sampling error [51, 58] of the time constants, which indicate whether the ensemble is large
enough and the trajectories long enough to provide meaningful time constants. Together, panels
(b) and (c) provide the most important information about the temporal evolution of the electronic
wave function. Note, however, that in SH simulations one typically only has access to adiabatic pop-
ulations, as the ones shown in (b), although diabatic populations are usually more useful because
they directly relate to the electronic character and to experimental results. Obtaining diabatic pop-
ulations from SH trajectories is possible in special cases [128, 129], but for polyatomic molecules in
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Figure 16.10 Collection of results from an ensemble of 90 SH trajectories for the CH2NH+
2 cation. The

figure is discussed in the text.

general is very difficult. In this respect, automatic wave function analysis tools like the TheoDORE
package [130] can be used to track the qualitative wave function character along a trajectory [28].

Besides the electronic evolution, SH trajectories also deliver a large amount of data about the
nuclear degrees of freedom. In panel (d), we plot the evolution of the C–H and N–H bond length
distribution. As can be seen, for these bonds no strong oscillations occur after excitation, show-
ing that the bonds have similar lengths in the ground and excited state (𝜋𝜋∗). However, in some
trajectories dissociation of a H atom seems to occur. Most probably, in these trajectories the elec-
tronic wave function character changed from 𝜋𝜋∗ to a state involving a 𝜎∗ orbital, which leads to
a repulsive PES. Of course, similar plots could be created for other degrees of freedom, depending
on which process is most interesting to the researcher. Panels (e) and (f) show two techniques that
help in finding important degrees of freedom in the dynamics. In normal mode analysis [131, 132],
the nuclear motion is transformed to the ground state normal modes and, subsequently, the activity
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in each normal mode is computed through statistical means. Normal modes with a higher activ-
ity, like in panel (e) the first three a1 modes (scissoring and C=N stretch) or the second b1 mode
(pyramidalization at the carbon), can be regarded as more important for the dynamics. In essen-
tial dynamics analysis [133] (panel (f)), the Cartesian displacements from an average structure are
statistically analyzed to find, directly, the most active degrees of freedom, i.e., not in terms of nor-
mal modes, but in terms of describing the dynamics with as few modes as possible via principal
component analysis. In the example, this analysis yields as the strongest displacements the carbon
pyramidalization (contributing a variance of 3.33 Å2), followed by C=N stretch (1.93 Å2) and the
torsional mode (1.33 Å2). Together, these three modes already account for 63% of the variance in the
nuclear motion—showing that essential dynamics analysis can be used for effective dimensional
reduction of the information in the trajectories.

Panel (g) shows how the potential energy of the trajectories evolves with time. It nicely presents
how the ensemble reaches the S2∕S1 crossing for the first time at 5 fs and splits into a branch staying
on S2 (>8.5 eV) and a branch that continues on S1 (<8.5 eV). For later times, the upper branch again
approaches the crossing around 20 fs, and eventually all trajectories assume a broad distribution of
potential energy

Finally, panel (h) presents the relaxation mechanism found through the dynamics simulations—
the hopping geometries served as starting points to optimize the conical intersections, and the
plot in (h) was then obtained by linear interpolation in internal coordinates between the
Franck–Condon point and these intersections. According to the scan, after excitation to S2, the
molecule should first pyramidalize to reach the S2∕S1 crossing. Afterwards, torsion around the
C=N double bond leads to the S1∕S0 crossing and facilitates relaxation. Although this is a good qual-
itative description of the dynamics, we note that the simulated dynamics does not necessarily have
to go through the optimized minimum-energy crossing points. In fact, panels (e) and (f) indicate
that in the dynamics pyramidalization of the carbon atom is much stronger than pyramidalization
of the nitrogen, whereas in panel (h) both atoms are pyramidalized at the S2∕S1 intersection.
This issue—that the real dynamics does not go exactly through the minimum of the intersection
seam—should always be kept in mind when investigating the relaxation mechanism of a molecule.

16.5 Popular Implementations

Until the year 2020, the number of publicly available implementations of SH was relatively small,
compared to the number of electronic structure codes. Hence, a brief mention of the most impor-
tant SH codes is in order here, although it can be expected that this situation will have changed
in the future. A more complete, up-to-date list of SH programs as of 2018 is given in Ref. [10].
In particular, that reference discusses that there are two basic types of implementations. In the
first type, SH modules are provided as part of electronic structure packages, as e.g., in MOLCAS
[134], TURBOMOLE [135], CPMD [97], or QChem [136]. This option is convenient for users, but is
usually somewhat limited with regard to initial condition setup, ensemble management, and statis-
tical analysis. The second type of implementation are the stand-alone SH packages with interfaces
to electronic structure packages. Popular SH packages are ANT [137], JADE [41], Newton-X [40],
PYXAID [138], and the SHARC package [11]. These packages are typically more complicated to
operate, but usually offer large tool sets to perform automatized setup, management, and analysis
tasks. They are also more likely to implement more sophisticated surface hopping algorithms like
modern decoherence corrections, propagation schemes, or hopping methods.
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16.6 Conclusion and Outlook

In this chapter we have reviewed the surface hopping method, which is a popular method for
carrying out non-adiabatic dynamics simulations. Surface hopping is a mixed quantum-classical
method, where electrons are described quantum mechanically and nuclei classically. The nuclear
trajectories follow the potential energy surfaces obtained from solving the electronic Schrödinger
equation, and non-adiabatic transitions between electronic states are included through instanta-
neous hops. Many independent trajectories are necessary to recover the branching into different
possible relaxation pathways. The advantages of this approach is that due to the classical approxi-
mation for the nuclei large systems with hundreds of atoms can be treated, as long as the electronic
Schrödinger equation can be approximately solved. Additionally, the independent trajectories
make the surface hopping approach computationally efficient. Among the non-adiabatic dynamics
methods presented in this volume, surface hopping is one of the cheapest methods. However, this
efficiency comes at the price that surface hopping neglects a number of quantum effects, such as
tunneling, nuclear interference, or zero-point energy.

The chapter comprehensively reviewed all parts of the surface hopping algorithm–nuclear
motion, wave function propagation, decoherence correction, how to make the hopping decisions,
nuclear momentum adjustment, and the inclusion of diverse coupling terms. We hope that these
descriptions enable interested readers to choose appropriate algorithms for all these components
of surface hopping, either when investigating the non-adiabatic dynamics of a chemical system,
or when implementing their own surface hopping code.

A point that we did not highlight in this chapter, but which will surely grow continually in
importance is the simulation of experimental observables based on surface hopping ensembles.
Using appropriate methods, it is possible to simulate many different kinds of time-dependent
spectra. For example, transient absorption spectra [139] can be computed from the transition
dipole moments between active state and the other electronic states [140], whereas time-dependent
photo-electron spectra [141] are accessible through photo-ionization cross sections [142–144].
Other spectroscopic methods that can, in principle, be computed, are time-resolved infrared
spectroscopy [145], time-resolved X-Ray scattering [146] (see also Chapter 15), or time-resolved
electron diffraction [147]. While these spectra simulations usually add to the computational cost of
the surface hopping ensemble, they provide additional insight into the origin of the experimental
signals and at the same time help validating the correctness of the surface hopping dynamics.
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Abstract

In this Chapter we review the exact factorization of the electron-nuclear wave function. The molecular
wave function, solution of a time-dependent Schröodinger equation, is factored into a nuclear wave
function and an electronic wave function with parametric dependence on nuclear configuration. This
factorization resembles the (approximate) adiabatic product of a single Born-Oppenheimer state and
a time-dependent nuclear wave packet, but it introduces a fundamental difference: both terms of the
product are explicitly time-dependent.
Such feature introduces new concepts of time-dependent vector potential and time-dependent potential
energy surface that allow for the treatment of nonadiabatic dynamics, thus of dynamics beyond the
Born-Oppenheimer approximation. The theoretical framework of the exact factorization is presented,
also in connection to the more standard Born-Huang (still exact) representation of the molecular wave
function. A trajectory-based approach to nonadiabatic dynamics is derived from the exact factorization.
A discussion on the connection between the molecular Berry phase and the corresponding quantity
arising from the exact factorization is briefly discussed.

17.1 Introduction

Ab initio molecular dynamics is nowadays a cornerstone of the fields of Theoretical Chemistry and
Chemical Physics. Numerical simulations allow us to achieve a profound understanding of struc-
tural and dynamical properties of matter at the microscopic level, for a large variety of systems,
from isolated molecules, or liquids, to proteins, and a large variety of phenomena, from equilib-
rium processes to ultrafast photo-activated relaxation. Ab initio molecular dynamics relies on some
approximate solution of the time-dependent Schrödinger equation for systems of electrons and
nuclei (see for instance Refs. [1–7]). Approximations are indeed necessary since the exponential
scaling of the (exact) quantum-mechanical problem with the number of degrees of freedom makes
its numerical treatment prohibitive, for all but the smallest systems.

In 1927, Born and Oppenheimer [8] posed the basis for what is currently the standard way of
visualizing motion in molecular systems: the electrons generate the potential(s) felt by the nuclei
during their evolution. This picture is retained either within the adiabatic, Born–Oppenheimer,
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approximation, where the electrons are “statically” found in a single eigenstate, or in non-adiabatic
situations, when multiple excited states are populated and can exchange amplitude during the
dynamics. Although this perspective is perhaps the most adequate for practical applications in
combination with quantum chemistry, alternative viewpoints, such as the pre-Born–Oppenheimer
molecular structure theory [9–11], have been proposed and are presently being developed.

The Born–Oppenheimer perspective of coupled electronic and nuclear motion in molecules
relies on the concept of electronic (adiabatic) potential energy surfaces. It appears to be very useful
for developing approximations to the quantum-dynamical problem: those potentials, in fact, can
be used to guide the classical-like evolution of the nuclei. Perhaps the most successful approxi-
mation used in the field of quantum molecular dynamics simulations is the use of – quantum,
semiclassical, or classical – trajectories to sample the nuclear configuration space and to mimic
the quantum-mechanical nuclear motion. Within the adiabatic approximation, when a single
electronic eigenstate (usually the ground state), and the corresponding potential energy surface, is
populated, trajectories are generated according to the force determined from the single potential
that appears in the problem. Clearly, the situation becomes more involved in non-adiabatic
circumstances, that is when excited states are also available during the dynamics. In those cases,
a generally applied procedure to guide nuclear trajectories does not yet exist, due to the fact that it
is not possible to identify in this framework the potential determining the force. Solutions to this
problem can be envisaged, and currently include surface hopping methods [4, 12] (where trajec-
tories can hop between adiabatic surfaces), Ehrenfest dynamics [3, 13] (where trajectories follow
a mean-field potential), or multiple spawning approaches [2, 14] (where trajectory-basis functions
are spawned in regions of strong coupling between states and are coupled together). However, it
seems that the Born–Oppenheimer framework cannot help to easily, and uniquely, answer the
question: What force governs the classical-like evolution of the nuclei in non-adiabatic dynamics?

In addition to these issues arising in the Born–Oppenheimer framework, conical intersections
should also be mentioned as curious, and problematic, features of the adiabatic potential energy
surfaces. Conical intersections are often invoked to interpret relaxation processes undergone by
photoexcited molecules. They are typical examples of the breakdown of the Born–Oppenheimer
approximation, and represent efficient funnels [15–17] for population transfer between electronic
states, mediated by nuclear motion. They are regions of configuration space where the adiabatic
potential energy surfaces are degenerate – thus producing a diverging coupling between the corre-
sponding electronic states – and exhibit, within the so-called branching space, a double-cone shape.
In the literature, conical intersections have been studied not only for their role in non-adiabatic pro-
cesses, but also for the effect that the related Berry phase has on adiabatic phenomena [17–33].
The concept of conical intersections is based on the Born–Oppenheimer representation of the
electron–nuclear problem. Despite the fundamental and numerical challenges encountered when
dealing with conical intersections, such representation is still commonly employed to perform
non-adiabatic ab initio molecular dynamics simulations.

In this chapter, an alternative perspective on the electron–nuclear time-dependent problem will
be proposed and analyzed: the exact factorization of the electron–nuclear wave function [34–37]. In
the exact-factorization framework, the issues related to the Born–Oppenheimer perspective raised
in the previous paragraphs can be easily solved. In particular, as the Born–Oppenheimer repre-
sentation is abandoned, (i) a uniquely-defined expression for the classical force driving nuclear
dynamics in non-adiabatic conditions naturally emerges, while (ii) the concept of conical inter-
sections disappears. These features of the exact factorization suggest promising applications in the
field of ab initio molecular dynamics. The purpose of this chapter is to justify this statement and
thoroughly discuss the properties of the exact factorization.
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The theoretical framework will be introduced in Section 17.2, and will be compared to
the Born–Oppenheimer representation in Section 17.3. Here, the theoretical analysis will be
supported by numerical data. A strategy yielding a quantum-classical algorithm for ab initio
molecular dynamics based on the exact factorization will be described in Section 17.4, along
with its application to the photo-induced dynamics of oxirane. In Section 17.5, we briefly present
some observations on the molecular Berry phase, by comparing the traditional geometric phase
coming from the Born–Oppenheimer approximation with the phase associated with the exact
factorization. Conclusions are presented in Section 17.6.

17.2 The Time-Dependent Molecular Problem in the
Exact-Factorization Formulation

A system of interacting electrons and nuclei is described, in the non-relativistic limit, by the molec-
ular Hamiltonian

Ĥ(r,R) =
Nn∑

K=1

−ℏ2

2MK
∇2

K + T̂e(r) + V̂ee(r) + V̂nn(R) + V̂en(r,R) (17.1)

=
Nn∑

K=1

−ℏ2

2MK
∇2

K + ĤBO(r,R). (17.2)

The first term on the right-hand side is the nuclear kinetic energy operator, with ∇K the gradient
with respect to the position of the Kth nucleus, and MK its mass; ℏ is the reduced Planck’s con-
stant. The symbols r and R are used to indicate the sets of 3Nel and 3Nn electronic and nuclear
coordinates, respectively. The electronic kinetic energy operator is indicated as T̂e(r), whereas the
electron–electron, nucleus–nucleus, and electron–nucleus interaction potentials are indicated as
V̂ee(r), V̂nn(R), and V̂en(r,R), respectively. The sum of the electronic kinetic energy and of the inter-
action potentials is denoted ĤBO(r,R), i.e., the Born–Oppenheimer (BO) Hamiltonian. In what
follows, we will not consider explicitly time-dependent Hamiltonians, where, for instance, a clas-
sical time-dependent field acts on the electrons, V̂ext(r, t), and/or on the nuclei, V̂ext(R, t). However,
such contribution can be easily included.

17.2.1 Wave Function Ansatz

The time-dependent Schrödinger equation (TDSE)

Ĥ(r,R)Ψ(r,R, t) = iℏ 𝜕
𝜕t
Ψ(r,R, t), (17.3)

determines the evolution of the molecular wave function, Ψ(r,R, t). As shown in Refs. [35, 36], the
molecular wave function can be factored, without making any approximation, as

Ψ(r,R, t) = Ξ(R, t)ΦR(r, t), (17.4)

withΞ(R, t) the nuclear wave function, andΦR(r, t) an electronic factor that depends parametrically
on the nuclear positions R. Existence and uniqueness, up to a gauge transformation, can be easily
proven by imposing the partial normalization condition

∫ dr|ΦR(r, t)|2 = 1 ∀ R, t (17.5)
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on the electronic wave function. It follows from Eq. (17.5) that the exact nuclear density is

∫ dr|Ψ(r,R, t)|2 = |Ξ(R, t)|2. (17.6)

Therefore, the nuclear wave function can be written as

Ξ(R, t) = exp
[ i
ℏ

S(R, t)
]√

∫ dr|Ψ(r,R, t)|2. (17.7)

Here, S(R, t) is a real function of nuclear positions and time, which will be discussed below. The
electronic wave function can be determined inverting Eq. (17.4)

ΦR(r, t) =
Ψ(r,R, t)

exp
[

i
ℏ

S(R, t)
] |Ξ(R, t)| . (17.8)

Equation (17.7) and (17.8) prove the existence of the factored form of the molecular wave func-
tion: they are proof that a molecular wave function can be rewritten as the single product given in
Eq. (17.4). The electronic ΦR(r, t) and nuclear Ξ(R, t) wave functions can be used to construct the
total wave function Ψ(r,R, t) at all times, provided that they evolve according to the equations of
motion derived in Section 17.2.2. If, for a particular nuclear configuration R, the nuclear density is
zero (thus Ξ(R, t) has a node), |Ψ(r,R, t)|2 has to be zero as well, ∀r. In fact, in Eq. (17.6) the nuclear
density is given as the sum of positive-definite terms. In this case, the electronic wave function from
Eq. (17.8) might still be well-defined, being the ratio of two quantities both tending to zero.

The factored form of the molecular wave function in Eq. (17.4) is invariant under a gauge-like
transformation of the electronic and nuclear wave functions: if Ξ(R, t) is multiplied by a phase
factor that only depends on R and t, and ΦR(r, t) is multiplied by its complex conjugate, the final
product remains unchanged. We prove below that this gauge freedom is the only freedom in the
definition of Ξ(R, t) and ΦR(r, t) that shall be dealt with by making a choice of gauge. Suppose that
two different products yield the same total wave function, namely

Ψ(r,R, t) = Ξ(R, t)ΦR(r, t) = Ξ̃(R, t)Φ̃R(r, t). (17.9)

We can divide the second and third term by Ξ(R, t) and by Φ̃R(r, t), obtaining

Ξ̃(R, t)
Ξ(R, t)

=
ΦR(r, t)
Φ̃R(r, t)

= g(R, t). (17.10)

The quantity on the left-hand side depends on (R, t) only, and we have indicated it as g(R, t).
Equation (17.10) provides a relation between the electronic wave functions ΦR(r, t) and Φ̃R(r, t),
namely

ΦR(r, t) = g(R, t)Φ̃R(r, t). (17.11)

For both ΦR(r, t) and Φ̃R(r, t), the partial normalization condition has to hold. By imposing such a
condition in both sides of the equality,

1 = ∫ dr|ΦR(r, t)|2 = |g(R, t)|2 ∫ dr|||Φ̃R(r, t)
|||2 = |g(R, t)|2, (17.12)

we find that the only freedom in the definition of Ξ(R, t) and ΦR(r, t) lies in a phase factor g(R, t) =
exp[(i∕ℏ)𝜃(R, t)], where 𝜃(R, t) is a real function of nuclear positions and time. Clearly, the total
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molecular wave function is invariant under such (R, t)-dependent gauge transformations,

Ξ(R, t) → Ξ̃(R, t) = exp
[
− i
ℏ
𝜃(R, t)

]
Ξ(R, t) (17.13)

ΦR(r, t) → Φ̃R(r, t) = exp
[ i
ℏ
𝜃(R, t)

]
ΦR(r, t). (17.14)

Uniqueness of Eq. (17.4) is guaranteed upon fixing the gauge freedom with a suitable choice of
𝜃(R, t). The gauge function 𝜃(R, t) can be absorbed into the phase S(R, t) of the nuclear wave func-
tion, since choosing S(R, t) is fully equivalent to choosing the gauge. This point will be clarified in
the sections below, where we discuss possible ways of fixing the gauge freedom.

17.2.2 Equations of Motion

As illustrated in great detail in Ref. [38], inserting the factored form of the molecular wave function,
Eq. (17.4), in the TDSE (17.3), and using the partial normalization condition (17.5) [39, 40], the
evolution equations[ Nn∑

K=1

[−iℏ∇K + AK(R, t)]2

2MK
+ 𝜖(R, t)

]
Ξ(R, t) = iℏ 𝜕

𝜕t
Ξ(R, t) (17.15)

[ĤBO(r,R) + Ûen[ΦR,Ξ] − 𝜖(R, t)]ΦR(r, t) = iℏ 𝜕
𝜕t
ΦR(r, t), (17.16)

can be derived. Equation (17.15), the nuclear equation, has the form of a standard TDSE, where a
time-dependent vector potential and a time-dependent scalar potential represent the effect of the
electrons on nuclear dynamics [41–46]. It is worth mentioning here that the nuclear Hamiltonian
(the quantity in square brackets in Eq. (17.15)), and in particular the time-dependent scalar poten-
tial 𝜖(R, t)), does not depend on Ξ. We clarify this statement in the next paragraph where we intro-
duce its explicit expression. Since no approximation has been invoked so far in the derivation
of nuclear (17.15) and electronic (17.16) equations, those potentials can incorporate excited-state
effects. One can show that Ξ(R, t) is a genuine nuclear wave function [38], because (i) it evolves
according to the TDSE (17.15), (ii) yields by definition the exact nuclear N-body density (Eq. (17.6)),
and (iii) gives the exact nuclear N-body current density,

JK(R, t) =
1

MK
[Im (Ξ∗ (R, t)ℏ∇KΞ(R, t)) + |Ξ(R, t)|2AK (R, t)]. (17.17)

In analogy to the expression of the nuclear density given in Eq. (17.6), Eq. (17.17) can be derived
from its definition in terms of the full wave function, i.e., JK(R, t) = [ℏ∕MK] ∫ drIm[Ψ∗(r,R, t)
∇KΨ(r,R, t)], introducing the factored form of Ψ(r,R, t).

In Eqs. (17.15) and (17.16) the terms responsible for the dynamical, i.e., beyond the adiabatic BO
approximation, coupling between electronic and nuclear motion are the time-dependent vector
potential A𝜈(R, t) [46, 47],

AK(R, t) = ⟨ΦR(t)| − iℏ∇KΦR(t)⟩r , (17.18)

the electron–nuclear coupling operator Ûen[ΦR,Ξ] [35, 36, 43, 44, 48–52]

Ûen[ΦR,Ξ] =
Nn∑

K=1

1
MK

[ [−iℏ∇K + AK(R, t)]2

2
+
(−iℏ∇KΞ(R, t)

Ξ(R, t)
+ A𝜈(R, t)

)
⋅ (−iℏ∇K − AK(R, t))

]
(17.19)
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and the time-dependent potential energy surface (TDPES) 𝜖(R, t) [35, 38, 41, 42, 44–46, 53, 54],

𝜖(R, t) = ⟨ΦR(t)|ĤBO + Ûen − iℏ 𝜕
𝜕t
|ΦR(t)⟩r . (17.20)

The symbol ⟨ ⋅ ⟩r indicates an integration over electronic coordinates only. The TDPES is expressed
in Eq. (17.20) as the “expectation value” on ΦR(r, t) of the sum of three operators: ĤBO, Ûen, and
−iℏ 𝜕

𝜕t
. The term depending on the electron–nuclear coupling operator seems to depend on Ξ(R, t)

via the second term in square brackets in Eq. (17.19). However, ⟨ΦR(t)| − iℏ∇K − AK(R, t)|ΦR(t)⟩r =⟨ΦR(t)| − iℏ∇K|ΦR(t)⟩r − AK(R, t) = 0, which follows from the definition of the time-dependent
vector potential of Eq. (17.18) and the partial normalization condition. Therefore, 𝜖(R, t) and the
nuclear Hamiltonian in Eq. (17.15) do not depend on Ξ.

Under the gauge transformations (17.13) and (17.14), the scalar potential and the vector potential
transform as

𝜖(R, t) = 𝜖(R, t) + 𝜕

𝜕t
𝜃(R, t) (17.21)

ÃK(R, t) = AK(R, t) + ∇K𝜃(R, t) . (17.22)

The evolution equations, (17.15) and (17.16), are form-invariant under such a transformation.
A large amount of literature can be found on different topics related to the exact factorization

of the electron–nuclear wave function. For instance, still in the time-dependent context, studies
have focused on proposing trajectory-based solutions [55–63] of the coupled nuclear (17.15) and
electronic (17.16) equations, on introducing a perturbation-theory framework to treat situations
of weak non-adiabatic coupling between electronic and nuclear motion [48–51] and to cure the
inconsistencies of the BO approximation, on deriving a density-functional theory of the coupled
electron–nuclear problem [64–66], on exploiting the “inverse” exact-factorization formalism to
derive the exact electronic TDSE with non-classical nuclei [67–69], on reformulating the dynam-
ical problem for systems different from electrons and nuclei, as purely electronic systems [70] or
electron-photon systems [71, 72]. The static formulation of the exact factorization, relying on the
time-independent Schrödinger equation, has also been the subject of extensive studies that focus
on the properties of the wave functions and of the potentials [73–85], or, interestingly, on tackling
the problem of geometric phases in molecular problems [86–88].

A review of all these topics is beyond the scope of this chapter. Therefore, we will present here
(i) the relationship between the exact factorization and the, more standard, BO representation of
the electron–nuclear problem, based on the analysis of the time-dependent potentials of the theory,
(ii) a procedure to solve – approximately – the coupled electronic and nuclear equations, (iii) the
exact-factorization perspective on molecular geometric phases.

17.3 The Born–Oppenheimer Framework and the
Exact Factorization

Standard approaches to formulate and solve the electron–nuclear dynamical problem rely on the
Born–Huang expansion of the time-dependent molecular wave function,

Ψ(r,R, t) =
∑
𝛼

Ξ(𝛼)
BO(R, t)Φ

(𝛼)
R (r), (17.23)

which we have previously also referred to as the BO framework. Here, {Φ(𝛼)
R (r)}𝛼=1,… are the eigen-

states of the (electronic) BO Hamiltonian ĤBO, determined for each value of the parameter R, and
Ξ(𝛼)

BO(R, t) are expansion coefficients. The corresponding eigenvalues are denoted 𝜖(𝛼)BO(R), the adi-
abatic, or BO, potential energy surfaces (PESs). We introduce also the matrix of non-adiabatic
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coupling vectors, d𝛽𝛼,K(R) = ⟨Φ(𝛽)
R |∇KΦ

(𝛼)
R ⟩r , which are three-dimensional vectors for each value

of the nuclear index K, to be used in the following. When only one term of the expansion (17.23)
is retained, the resulting molecular wave function is known as the adiabatic approximation. Since
the adiabatic states are orthonormal, the nuclear density following from Eq. (17.23) is|Ξ(R, t)|2 =

∑
𝛼

|Ξ(𝛼)
BO(R, t)|2. (17.24)

The quantity Ξ(𝛼)
BO(R, t) is sometimes indicated as the adiabatic contribution of the nuclear wave

packet in state 𝛼. Being a proper electronic basis, the adiabatic states can be used to expand the
electronic wave function of the exact factorization (17.4) as well,

ΦR(r, t) =
∑
𝛼

C𝛼(R, t)Φ
(𝛼)
R (r), (17.25)

where the coefficients satisfy the relation∑
𝛼

|C𝛼(R, t)|2 = 1 ∀ R, t (17.26)

by virtue of the partial normalization condition (17.5). It is interesting to note that, even though
the nuclear wave packet might have contributions, i.e., the Ξ(𝛼)

BO(R, t), in different electronic states,
the single-product representation of the molecular wave function still holds. In fact,

Ψ(r,R, t) =

(
e

i
ℏ

S(R,t)
√∑

𝛼

|Ξ(𝛼)
BO(R, t)|2

)(∑
𝛼

C𝛼(R, t)Φ
(𝛼)
R (r)

)
(17.27)

which follows from Eqs. (17.7) and (17.25), where the first term in parenthesis is the nuclear wave
function Ξ(R, t) and the second term is the electronic wave function ΦR(r, t).

The identity relation between Eqs. (17.4) and (17.23),

Ξ(R, t)
∑
𝛼

C𝛼(R, t)Φ
(𝛼)
R (r) =

∑
𝛼

Ξ(𝛼)
BO(R, t)Φ

(𝛼)
R (r) (17.28)

yields a relationship between the expansion coefficients

Ξ(R, t)C𝛼(R, t) = Ξ(𝛼)
BO(R, t). (17.29)

To help the reader relate the exact factorization to the standard BO framework, we give below
the expressions of the time-dependent vector potential and of the TDPES in terms of adiabatic
quantities. Inserting Eq. (17.25) into Eq. (17.18), one obtains

AK(R, t) = −iℏ

[∑
𝛼

C∗
𝛼(R, t)∇K C𝛼(R, t) +

∑
𝛼,𝛽

C∗
𝛼(R, t)C𝛽(R, t)d𝛼𝛽,K(R)

]
. (17.30)

When this expression is used in the definition of the electron–nuclear coupling operator, one also
gets Ûen in terms of adiabatic quantities. The TDPES in Eq. (17.20) is the sum of three terms, each
expressed in the adiabatic basis as⟨ΦR(t)|ĤBO|ΦR(t)⟩r =

∑
𝛼

|C𝛼(R, t)|2𝜖(𝛼)BO(R), (17.31)

⟨ΦR(t)|Ûen|ΦR(t)⟩r =
∑

K

ℏ2

MK

∑
𝛼,𝛽

[||∇KC𝛼(R, t)||2𝛿𝛼𝛽 + ((
∇K C∗

𝛼(R, t)
)

C𝛽(R, t)

−C∗
𝛼(R, t)

(
∇K C𝛽(R, t)

))
⋅ d𝛼𝛽,K(R) + C∗

𝛼(R, t)C𝛽(R, t)D𝛼𝛽,K(R)
]

−
∑

K

A2
K(R, t)
2MK

, (17.32)

⟨ΦR(t)| − iℏ 𝜕
𝜕t
|ΦR(t)⟩r = −iℏ

∑
𝛼

C∗
𝛼(R, t)

𝜕

𝜕t
C𝛼(R, t). (17.33)
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The scalar quantity D𝛼𝛽,K(R) = ⟨∇KΦ
(𝛼)
R |∇KΦ

(𝛽)
R ⟩r in Eq. (17.32) indicates the second-order non-

adiabatic coupling.
Equations (17.24)–(17.33) show the relationship between the BO representation of the electron–

nuclear wave function and the exact factorization. The key difference between the two represen-
tations is that in the latter, the electronic wave function acquires an explicit time dependence.
In contrast, in the BO framework, the electrons appear in the problem as the eigenstates of the
electronic BO Hamiltonian, providing the static potentials driving nuclear dynamics. Therefore,
within a BO perspective of non-adiabatic dynamics, processes are visualized employing static adia-
batic PESs that are coupled in regions of nuclear space where they are close or degenerate, i.e.,
avoided crossings (see Section 17.3.1) or conical intersections (see Section 17.3.2). The nuclear
wave packet has adiabatic contributions evolving “on” the different surfaces, and transfers ampli-
tude to other states in the regions of coupling. Such a perspective is revisited within the exact
factorization.

In Section 17.3.1, for a one-dimensional model system, the Shin–Metiu model [89], we will show
that a single PES, uniquely defined up to a gauge [35, 36, 41, 42, 44, 53, 54], that changes with time
is able to guide the nuclear dynamics in different ways in different portions of nuclear configura-
tion space. It is able to achieve this result simply by changing its shape over time: it has a diabatic
shape in the region where the BO PESs are close in energy [41, 42, 44]; it develops steps connect-
ing adiabatic shapes, forcing the wave packet to spatially split onto BO PESs of different slopes
[41, 42, 44]; it has a mean-field character when the adiabatic contributions of a nuclear wave packet
are localized in the same region [45]; it presents oscillations to account for interference effects [45].
Clearly, the TDPES encodes all features of (electronic) dynamics, and this information is transferred
to the nuclear TDSE.

In Section 17.3.2, we will generalize our observations on the TDPES of Section 17.3.1 to a
two-dimensional case. Additionally, we will discuss the time-dependent vector potential. The
vector potential couples to the momentum in the nuclear TDSE [44], and it can be related to the
nuclear velocity field [46, 47], as shown in Eq. (17.17). The feature highlighted in this section is
that, in general, the time-dependent vector potential is not irrotational, meaning that it cannot be
written as the gradient of a scalar function of R and t. The consequence is that the vector potential
cannot be gauged away in general situations, a property that is important to keep in mind when
approximations to the exact evolution equations, Eqs. (17.16) and (17.15), are to be developed.

17.3.1 One-Dimensional Case: Time-Dependent Potential Energy Surface

To proceed with the analysis of the TDPES and its relation to the static BO PESs, it is instructive to
decompose the TDPES into gauge-invariant (GI) and gauge-dependent (GD) components, 𝜖(R, t) =
𝜖GI(R, t) + 𝜖GD(R, t), where

𝜖GI(R, t) = ⟨ΦR(t)|ĤBO|ΦR(t)⟩r +
Nn∑

K=1

ℏ2

2MK
⟨∇KΦR(t)|∇KΦR(t)⟩r −

Nn∑
𝜈=1

A2
K(R, t)
2MK

(17.34)

and

𝜖GD(R, t) = ⟨ΦR(t)| − iℏ 𝜕
𝜕t
|ΦR(t)⟩r . (17.35)

The second and third terms on the right-hand side of Eq. (17.34) are obtained from the action of
the electron–nuclear coupling operator of Eq. (17.19) on the electronic wave function. The GI part
of the TDPES, 𝜖GI , is invariant under the gauge transformation (17.14): 𝜖GI(R, t) = 𝜖GI(R, t); the GD
part, on the other hand, transforms as 𝜖GD(R, t) = 𝜖GD(R, t) +

𝜕

𝜕t
𝜃(R, t).
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The analysis of the TDPES will be based, in this section, on a one-dimensional model for
proton-coupled electron transfer [89], the details of which are given in Refs. [41–44]. The model
consists of two positively-charged ions fixed at a distance L, a positively-charged ion of mass M
(in this case, the proton mass is used) moving in one dimension between the two fixed ions, thus
interacting with the fixed ions via a bare Coulomb potential, an electron moving in one dimension
and interacting with all ions via a soft-Coulomb potential. The schematic representation of the
model is given in Figure 17.1.

Since we are dealing with a one-dimensional problem, we can choose a gauge such that the
time-dependent vector potential is always zero. Inverting Eq. (17.4) to express ΦR(r, t) in terms
of Ψ(r,R, t) and of Ξ(R, t), and inserting such an expression in the definition of the vector poten-
tial (17.18), we obtain a relationship between the vector potential itself, the nuclear velocity field,
and the phase S(R, t) of the nuclear wave function

AK(R, t) =
Im⟨Ψ(t)|ℏ∇KΨ(t)⟩r|Ξ(R, t)|2 − ∇K S(R, t). (17.36)

Adopting a one-dimensional representation of the vectors, A(R, t) = ℏIm⟨Ψ(t)| 𝜕
𝜕R
Ψ(t)⟩r∕|Ξ(R, t)|2 − 𝜕

𝜕R
S(R, t), and imposing A(R, t) = 0, leads to an expression that defines the phase

of the nuclear wave function,

S(R, t) = ∫
R

dR′
ℏIm⟨Ψ(t)| 𝜕

𝜕R′ Ψ(t)⟩r|Ξ(R′, t)|2 , (17.37)

in this gauge. Since the time-dependent vector potential is identically zero all along the dynamics,
only the TDPES appears in the nuclear TDSE (17.15). Therefore, the TDPES is the only potential
affecting the nuclear dynamics and carrying information about electronic dynamics.

The dynamics is initiated by setting a Gaussian wave packet, with zero average velocity, on the
first excited adiabatic state S1, centered at R0 = −4 bohr and with variance 𝜎 = 1∕

√
2.85 bohr.

Figure 17.1 shows the BO PESs corresponding to the ground S0 and first-excited S1 states (which are
the only states populated during the dynamics). The time evolution of the molecular wave func-
tion is generated by solving the full TDSE by using the split-operator technique [90] with time
step dt = 2.4 10−3 fs (0.1 a.u.). Therefore, in this analysis, the exact-factorization equations (17.15)
and (17.16) are not directly solved to determine the nuclear Ξ(R, t) and electronic ΦR(r, t) wave
functions. Instead, using Eq. (17.7) and fixing the gauge as in Eq. (17.37), Ξ(R, t) is computed from
Ψ(r,R, t) and ΦR(r, t) from Eq. (17.8). A numerical study on the direct integration of Eqs. (17.15)
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Figure 17.1 Left: Schematic representation of the model for proton coupled electron transfer. Right: GI
part (black) and GD part (gray) of the TDPES at times t = 4.84, 14.52, 24.20, 31.46 fs. The two lowest BO
surfaces are shown for reference. The TDPES is shown in the regions where the nuclear density (blue lines
in the panels) is larger than 10−8. The GD part of the TDPES is shifted in all panels to superimpose it on the
plot of the GI part.
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and (17.16) can be found in Ref. [91]. Once the electronic wave function is known, Eqs. (17.34)
and (17.35) allow one to determine the TDPES. We will propose here a qualitative analysis of
the TDPES and of its relation to the BO PESs. A more quantitative discussion can be found in
Refs. [41–45].

Figure 17.1 shows different snapshots along the dynamics of the nuclear density (blue curves)
and of the TDPES, decomposed in its GI (black lines) and GD (gray lines) components. The nuclear
dynamics is initiated in the first excited state, corresponding to the green curve, in the negative
R-region. Then, the nuclear wave packet slides down towards the avoided crossing, where the
energy gap between S0 (corresponding to the red curve) and S1 closes. While crossing the region
of coupling, amplitude is transferred to the ground state, producing a two-component wave packet
evolving with different speeds depending on the shapes of the corresponding BO PES: in the posi-
tive R-region the red curve accelerates the wave packet, whereas the green curve slows it down.

At early times (t = 4.84 fs), the dynamics is driven simply by the excited state, as the GI part of
the TDPES completely lies on the green curve; later on (t = 14.52 fs), 𝜖GI has a diabatic shape, con-
necting the adiabatic surfaces smoothly through the avoided crossing, thus allowing amplitude to
“flow” from S1 to S0; finally (t = 24.20 fs and t = 31.46 fs), the GI component of the TDPES presents
different adiabatic shapes in different portions of R-space connected by steps, clearly suggesting that
the nuclear wave packet is driven by different forces on the two sides of the steps. The spatial split-
ting of the nuclear density is, therefore, attributable to the appearance of the steps. However, one
should keep in mind that the GD component of the TDPES also has an effect on the dynamics. As
shown in Figure 17.1, 𝜖GD is either constant or piecewise constant, with steps appearing at the same
positions as the steps in 𝜖GI . Therefore, 𝜖GD does not modify the slope of the GI component, it only
reduces the size of the steps. These observations have been supported by an analytical justification
in Refs. [41, 44], which proves their general validity. In particular, in Ref. [44] it is demonstrated
that the height of the step in 𝜖GD in the region where the nuclear density splits (for instance, at
around R = 4 bohr in the last panel at t = 31.46 fs of Figure 17.1) approximately amounts to the
energy difference between the BO PESs, similar to the height of the step in 𝜖GI .

According to Eq. (17.24), the nuclear density can be decomposed into adiabatic contributions,
and this property is verified in Figure 17.2. Initially at time t = 4.84 fs, the nuclear density has
only the contribution corresponding to S1 (green curve). When the wave packet crosses the
non-adiabatic coupling region at time t = 14.52 fs, the ground-state and excited-state contributions
are localized in the same region. The spatial splitting appears at later times, t = 24.20 fs and
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Figure 17.2 Nuclear density |Ξ(R, t)|2 (blue lines), along with its BO contributions |Ξ(1)
BO(R, t)|2 (red lines)

and |Ξ(2)
BO(R, t)|2 (green lines) at times t = 4.84, 14.52, 24.20, 31.46 fs.
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t = 31.46 fs, and in Figure 17.2 it is evident that the S0 component (red curve) is localized in the
same region where the GI part of the TDPES has the shape of the lower BO PES, while the S1
component is localized on the other side of the step in the TDPES.

The coefficients C𝛼(R, t) for 𝛼 = 1, 2 (corresponding to S0 and S1, respectively) of the expansion of
the electronic wave function on the adiabatic basis, Eq. (17.25), have a similar behavior, that is ana-
lyzed in Figure 17.3 by reporting their squared moduli. The quantity |C𝛼(R, t)|2 is determined from
Eq. (17.29), thus it is only shown in regions where the nuclear density |Ξ|2 is (numerically) larger
than zero. In general, |C𝛼(R, t)|2 is equal to unity if the corresponding portion of the nuclear density
is fully localized in one electronic state (see for instance the green curve at time t = 4.84 fs or the red
curve at t = 24.20 fs for R > 2 bohr). The plots of the coefficients at the final times of the dynamics
present a sigmoid shape, and cross when the nuclear wave packet changes character, i.e., when it
splits into different components evolving on different BO surfaces. This observation is fundamen-
tal for accounting for the spatial nuclear splitting, in fact, if expansion (17.25) is inserted in the
first term on the right-hand side of Eq. (17.34) one gets ⟨ΦR(t)|ĤBO|ΦR(t)⟩r =

∑
𝛼|C𝛼(R, t)|2 𝜖(𝛼)BO(R).

This expression is simply a weighted average of the BO PESs, however if this average is computed
at time t = 31.46 fs, it yields a form of the GI part of the TDPES that is far from a smooth potential,
as the steps in |C𝛼(R, t)|2 translate to the steps in the time-dependent potential [92].

It is instructive at this point to take a look at the time-dependent vector potential, even though in
a one-dimensional problem the vector potential can always be gauged away by solving Eq. (17.37).
If a function 𝜃(R, t) is introduced to transform the electronic and nuclear wave functions (as indi-
cated in Eqs. (17.13) and (17.14)) such that 𝜖GD(R, t) = 𝜖GD(R, t) +

𝜕

𝜕t
𝜃(R, t) = 0 in the new gauge, the

vector potential becomes non-zero, Ã(R, t) = − ∫ t
0 dt′𝜖GD(R, t′), and its action can be related to the

momentum-rescaling prescription of surface-hopping algorithms [12, 44]. We analyze below the
time-dependent vector potential in this new gauge, and we report numerical results in Figure 17.4
for the same model system as in Figure 17.1.

The time-dependent vector potential appears in the nuclear Hamiltonian of Eq. (17.15) as a
contribution to the nuclear momentum. Therefore, in order to investigate its effect, we evaluate the
average nuclear momentum, PN (t) = ⟨Ψ(t)| − iℏ 𝜕

𝜕R
|Ψ(t)⟩r,R = ∫ dR[ 𝜕

𝜕R
S(R, t) + A(R, t)]|Ξ(R, t)|2,

and analyze the momentum density 𝜕

𝜕R
S(R, t) + A(R, t). In Figure 17.4, at different time-steps

along the dynamics, we report the vector potential (red lines), the phase contribution to the total
momentum density (green lines), i.e., the term 𝜕

𝜕R
S(R, t), and their sum (black lines). The effect of

the vector potential is basically zero at early times, since the nuclear wave packet is propagating
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Figure 17.4 Components of the nuclear momentum density at times t = 4.84, 14.52, 24.20, 31.46 fs in the
gauge 𝜖GD(R, t) = 0. In black the full momentum density 𝜕

𝜕R
S(R, t) + A(R, t) is shown. The phase contribution,

i.e., 𝜕

𝜕R
S(R, t), is represented in green, while the vector potential A(R, t) is represented in red. The nuclear

density is shown in gray to highlight the region where it is substantially larger than zero (thus where the
numerical results are reliable).

under the effect of a single BO PES. After the passage through the avoided crossing located at
−2 bohr, it becomes non-zero (it is negative) mainly in the region of R-space corresponding to
the portion of the nuclear wave packet propagating “on” S1. With this choice of gauge, the vector
potential acts by slowing down the portion of the wave packet that is higher in energy. Therefore,
its action is reminiscent of the momentum corrections applied to the classical trajectories that are
propagated according to the surface-hopping algorithm [12, 44]: surface hopping prescribes that,
when a trajectory undergoes a non-adiabatic hop from one BO PES to another one that is higher in
energy, such a trajectory loses its kinetic energy via a discontinuous rescaling of the momentum.

17.3.2 Two-Dimensional Case: Time-Dependent Potential Energy Surface
and Time-Dependent Vector Potential

The purpose of this section is to generalize to higher dimensions the observations presented in
Section 17.3.1 concerning the TDPES and to analyze the time-dependent vector potential in a
situation where it cannot be set to zero by any choice of gauge. To this end, we will be dealing with
a two-dimensional model and a more general choice of gauge than in the previous section will be
made. We choose the gauge such that the nuclear wave function Ξ(R, t) is real and non-negative,
i.e., Ξ = |Ξ| ∀ R, t, achieved by imposing the condition S(R, t) = 0. The time-dependent vector
potential is a two-dimensional vector field depending on the nuclear coordinates R = X ,Y and
time t, and with this choice of gauge the expression for the X-component is

AX (R, t) =
Im⟨Ψ(t)|ℏ 𝜕

𝜕X
|Ψ(t)⟩r|Ξ(R, t)|2 , (17.38)

and an analogous expression for theY -component. The numerator of Eq. (17.38) (divided by the
nuclear mass) is the Cartesian X-component of the nuclear velocity field. The additional term of
Eq. (17.36) depending on the gradient of the nuclear phase S(R, t) is exactly zero in the chosen
gauge. The details of the model Hamiltonian used in this section can be found in Ref. [47].

In the diabatic representation, this model describes the crossing of two similar parabolas, one
being slightly displaced both in the X direction and in energy. The adiabatic PESs present a
conical intersection at (3.0, 0.0) bohr. The initial nuclear wave packet is taken as Gaussian, with
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conical intersection. Figure adapted from Ref. [47].

widths 𝜎X = 0.15 bohr and 𝜎Y = 0.197 bohr, and is centered at R0 = (X0,Y0) = (2.0, 0.0) bohr. The
dynamics is initiated in the second adiabatic state (S1).

Figure 17.5 shows snapshots of the nuclear wave packet in the X ,Y -plane. It is initialized on
S1 (red contour lines), slides down towards the conical intersection (the red dot in the figure),
transferring amplitudes to S0 (gray contour lines), and finally separates into two wave packets, one
accelerating on the lower surface (gray contour lines) and one moving slower on the more confining
upper surface (red contour lines). The dynamics is similar to the case studied in Section 17.3.1, but
here it takes place in a two-dimensional space and it involves a funneling process through the con-
ical intersection. The analysis reported here will focus on two main points: first, we are interested
in understanding if the TDPES shows peculiar features related to the conical intersection; second,
and more importantly, we look for the appearance of any singular behavior of the time-dependent
vector potential.

Figure 17.6 shows two views of the TDPES at times t = 24 fs (left panel) and t = 48 fs (right
panel). At t = 24 fs we report only a cut of the TDPES along the Y -axis for X = 3 bohr, the position
of the conical intersection. At this time, the nuclear wave packet is localized around the conical
intersection, and in fact we observe two contributions, denoted |Ξ(1)

BO|2 and |Ξ(2)
BO|2, corresponding

to the lower BO PES S0 and to the upper BO PES S1, respectively. In this analysis, the GI part of the
TDPES has been decomposed into three contributions 𝜖GI = 𝜖GI1 + 𝜖GI2 + 𝜖GI3, that are the three
terms in the expression (17.34). The cut of 𝜖GI1 lies between the adiabatic surfaces, and in this case
does not present steps, in fact the two portions of the wave packet are localized in the same region:
the TDPES resembles an average potential. Additionally, we observe a peculiar feature of |Ξ(1)

BO|2 and|Ξ(2)
BO|2, namely peaks at the position of the conical intersection. At this position, there is an infinite

coupling between the states S0 and S1 (the non-adiabatic coupling diverges here). However, the
peaks exactly cancel out, yielding a very smooth [93] (total) nuclear density |Ξ|2 = |Ξ(1)

BO|2 + |Ξ(2)
BO|2.

In Figure 17.6, it appears that 𝜖GI2 + 𝜖GI3 is exactly zero: this is not a general feature of 𝜖GI2 and
𝜖GI3, however, we have observed in various situations that their sum is a smooth function of R.
Such observation should be kept in mind, since in Section 17.4 those terms will be completely
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neglected [55–57, 60] in the approximations introduced to construct the trajectory-based solution
of the exact equations (17.15) and (17.16). Finally, in our choice of gauge, the GD part of the
TDPES is mostly constant and would lead to a rigid shift of the GI parts of the TDPES.

In Figure 17.6 (right panel) a color-map of the TDPES at t = 48 fs is shown1, along with the
contour lines representing the nuclear density (black) and its two adiabatic contributions. The steps
observed in a one-dimensional case in Section 17.3.1, leading to a splitting of the nuclear wave
packet and explained – in a BO framework – by the S1 nuclear component separating from the
S0 nuclear component, is clearly visible from the TDPES. The TDPES is composed of two main
regions (3.7 < X < 4.6 bohr and 4.6 < X < 5.5 bohr), with a pronounced change of behavior at their
interface. A sharp repulsive potential in the X direction composes the first region, supplemented
by a central repulsive component at Y = 0 bohr. Conversely, the second region only shows a slowly
increasing potential towards a larger X value. This strong variation of the TDPES is responsible for
the splitting of the nuclear wave packet into two components.

To conclude the analysis of the TDPES, we have observed that the fundamental features of the
TDPES highlighted in Section 17.3.1 can also be identified in a two-dimensional case, and can
therefore be expected to be retained in more general, higher-dimensional problems. Additionally,
the TDPES always appears to be a smooth function of R, an appealing property if one is to employ
the exact-factorization framework, and thus the TDPES, to numerically simulate non-adiabatic
dynamics in electron–nuclear systems.

In the chosen gauge, the time-dependent vector potential equals the nuclear velocity field. There-
fore, it encodes information about how the nuclear wave packet moves. The vector potential is
shown in Figure 17.7 at times t = 24 fs (left panel) and t = 48 fs (right panel). The color-code indi-
cates the modulus of the vector field, whereas the arrows indicate the direction. For reference, the
position of the nuclear wave packet is represented by the black contour lines.

The time-dependent vector potential exhibits a simple behavior when the wave packet reaches
the non-adiabatic region: it mainly points towards larger X , with a strength increasing along
X , since the nuclear wave packet itself, after being initiated on S1, moves rapidly towards the
conical-intersection region without spreading significantly in the Y -direction. After the passage

1 We do not include 𝜖GD(R, t) in this sum as it only contributes a nearly constant negative contribution to TDPES.



�

� �

�

17.4 Trajectory-Based Solution of the Exact-Factorization Equations 545

1
–1.5

–0.5

0.5

1.5

2 3

X (bohr)

Y
 (

b
o
h
r)

X (bohr)

Y
 (

b
o
h
r)

4 5 3.5
 –0.60

5

10

15

20

20

15

25

25

30

30

40

40

50

50

55

35

35

45

45

 –0.3

0

0.3

0.6

4 4.5 5 5.5 6
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through the conical intersection (t = 48 fs), the time-dependent vector potential still mostly
points towards larger X , but now with some variations in the region 3.5 < X < 4.5 bohr. In the
region 4.0 < X < 4.5 bohr, the magnitude of A(R, t) is lower than at larger values of X , reflecting
the change in behavior of the nuclear wave packet: the nuclear wave packet component on S0
overtakes the one on S1 at t = 48 fs, which feels the repulsive potential of S1. Therefore, the nuclear
component evolving on S1, localized in the region 4.0 < X < 4.5 bohr, moves slower than the
one on S0, that spreads along larger values of X . In the region 4.5 < X < 6.0 bohr, the magnitude
of A(R, t) starts decreasing, reflecting how the wave packet slows down when it enters a more
repulsive part of the PES.

Computing the circulation of the vector potential along a closed path ,

𝛾K() = ∮
AK(R, t) ⋅ dRK = ∫

curl AK(R, t) ⋅ ds (17.39)

we find that, in general, the circulation integral (here denoted 𝛾K()) is non-zero and depends
on the path. The line integral along  can be replaced by a surface integral according to Stokes’
theorem, yielding the flux of the vector field curl AK(R, t) through  , with  the surface enclosed
by . If 𝛾K ≠ 0, it means that curl AK(R, t) ≠ 0: the time-dependent vector potential AK(R, t)
has non-zero curl, therefore it cannot be written as the gradient of a scalar function (since the
curl of a gradient is exactly zero). Recalling the transformation expression of AK(R, t) under
a change of gauge, ÃK(R, t) = A(R, t) + ∇K𝜃(R, t), it is clear that one can set ÃK(R, t) = 0 if
AK(R, t) = −∇K𝜃(R, t). While this is always possible for one-dimensional problems, in higher
dimensions the vector potential may have a non-vanishing curl and hence, in general, the vector
potential cannot be gauged away.

17.4 Trajectory-Based Solution of the Exact-Factorization
Equations

The coupled nuclear (17.15) and electronic (17.16) evolution equations derived from the exact
factorization (17.4) of the molecular wave function have been solved based on the represen-
tation of the nuclear dynamics in terms of trajectories in Refs. [57, 60, 61, 63]. Note that, as
discussed in Ref. [38], the nuclear time-dependent Schrödinger equation (17.15) can be exactly
reformulated as two coupled equations, i.e., a Hamilton–Jacobi equation for the phase of the
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nuclear wave function Ξ and a continuity equation for the nuclear density |Ξ|2. The former,
a partial differential equation that determines the phase of Ξ, can be solved by characteristics
(sometimes referred to as quantum trajectories). When the coupling between the Hamilton–Jacobi
and the continuity equations is neglected (see discussion in Section 17.4.1 below), an approximate
solution of Eq. (17.15) is achieved. We denote this procedure “quantum-classical”, as the electronic
equation, solved at the quantum-mechanical level, is employed to determine the time-dependent
potentials, that, in turn, are used to compute the force that generates classical, thus approximate,
trajectories [38, 55–60, 62, 63]. The idea is to employ the time-dependent potential appearing in
the nuclear Schrödinger equation (17.15) to uniquely define the force [58, 60] that generates the
trajectories. In the exact factorization the electronic system is not represented in terms of “static”
states and multiple potential energy surfaces, but, instead, we have a single time-dependent
potential energy surface, thereby overcoming the ambiguity in the definition of the force driving
nuclear motion in non-adiabatic conditions. The algorithm has been dubbed coupled-trajectory
mixed quantum-classical (CT-MQC). CT-MQC has been employed to simulate non-adiabatic
dynamics in model systems [38, 57, 60, 61, 63], and implemented in a developer version of the
electronic-structure package CPMD [94], based on (time-dependent) density functional theory
(TDDFT), to simulate the photo-induced dynamics in oxirane [34, 56, 62]. We will summarize in
Section 17.4.1 the approximations that have led to the derivation of the algorithm, and we will
present the results for oxirane in Section 17.4.2.

We will mainly focus on two phenomena occurring in non-adiabatic events, the amplitude trans-
fer between electronic states and quantum decoherence. The former is mainly induced by the
non-adiabatic coupling vectors, thus occurring in regions of configuration space where the adi-
abatic states are close in energy. The latter [55, 95–115] is usually defined as the decay of the
off-diagonal elements of the reduced density matrix of the electronic subsystem, a consequence
of the coupling with the nuclear environment. Within the BO framework, the electronic subsys-
tem is expected to collapse onto a selected adiabatic state after the dynamics has led the full system
through a region of non-adiabatic coupling. It will be argued that decoherence is related to the
spatial splitting, or delocalization, of the nuclear wave function.

17.4.1 CT-MQC: The Approximations

Trajectories will be employed to mimic the dynamics of the nuclear wave function Ξ(R, t), that
evolves according to the TDSE (17.15). The trajectories can be interpreted as a moving grid, thus
we calculate time derivatives “along the flow”: partial time derivatives are replaced by total deriva-
tives, using the chain rule d

dt
= 𝜕

𝜕t
+
∑

K V K ⋅ ∇K . The velocity of the moving grid point, i.e., of the
trajectory, is V K = PK∕MK .

Writing the nuclear wave function in polar form, Ξ(R, t) = |Ξ(R, t)|e(i∕ℏ)S(R,t), the real part of
Eq. (17.15) yields

𝜕

𝜕t
S(R, t) = −

Nn∑
K=1

[∇K S(R, t) + AK(R, t)]2

2MK
− 𝜖(R, t) −

Nn∑
K=1

−ℏ2

2MK

∇2
K|Ξ(R, t)||Ξ(R, t)| , (17.40)

a Hamilton–Jacobi equation in the presence of the time-dependent vector potential AK(R, t), the
TDPES 𝜖(R, t), and of a potential term (the last term in Eq. (17.40)) known in the framework of

2 This derivation is a standard quantum-mechanics exercise. The idea is to insert the polar form of the wave
function, i.e., its expression in terms of modulus and phase, into the time-dependent TDSE and to separate the real
and imaginary parts. The corresponding Hamilton–Jabobi equation for the phase and continuity equation for the
modulus is straightforwardly obtained. The result for the real part is given in Eq. (17.40).
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Bohmian dynamics as quantum potential [38]. The imaginary part of Eq. (17.15) yields a conti-
nuity equation for the nuclear density. Neglecting the quantum potential, Eq. (17.40) decouples
from the continuity equation, and becomes a (standard) classical Hamilton–Jacobi equation. Then,
we define the linear momentum as MKVK = ∇K S(R, t) + AK(R, t) = PK , we introduce the full time
derivative of S(R, t), and we apply the spatial derivative ∇K′ on both sides. Equation (17.40) reduces
to Newton’s equation,

d
dt

PK(t)|R(I)(t) = −∇K

(
𝜖(R, t) +

Nn∑
K′=1

AK′ (R, t) ⋅
PK′ (R, t)

MK′

)
+ d

dt
AK(R, t)

||||R(I)(t)
, (17.41)

i.e., to one of the characteristic (ordinary differential) equations associated to the Hamilton–Jacobi
equation (17.40) without the quantum potential (as shown in Ref. [38]). At time t all quantities
are evaluated at R(I)(t). The gauge is imposed so as to set to zero the term in parenthesis, 𝜖(R, t) +∑

K AK(R, t) ⋅ PK(R, t)∕MK = 0. Equation (17.41) thus becomes d
dt

PK(t) =
d
dt

AK(t).
The expression of the TDPES is simplified within CT-MQC by neglecting the terms 𝜖GI2 and 𝜖GI3

(remember that in Section 17.3.2 we observed that their sum has a smoother R-dependence than
𝜖GI1). It is worth noting that both terms have to be neglected in order to maintain gauge invariance.
In addition, the approximate expression of the TDPES has to contain the total time derivative of
ΦR(r, t) rather than the partial time derivative.

In order to allow for the interface of CT-MQC with standard quantum-chemistry codes, the
BO representation of the electronic wave function is introduced, such that energies, forces and
non-adiabatic coupling vectors appear in Eq. (17.16) and can be computed on the fly. The par-
tial time derivative of the electronic wave function in Eq. (17.16) is replaced by the total time
derivative, 𝜕

𝜕t
ΦR(r, t)|R(I)(t) =

d
dt
ΦR(r, t) −

∑Nn
K=1

PK (t)
MK

⋅ ∇KΦR(r, t)|R(I)(t). These two operations allow
us, starting from Eq. (17.16), to derive a set of coupled partial differential equations for the coeffi-
cients C𝛼(R, t) → C(I)

𝛼 (t) – that become functions of the trajectory R(I)(t), and are thus indicated with
a superscript (I). In the expression of the electron–nuclear coupling operator Ûen of Eq. (17.19), a
dependence on the nuclear wave function appears explicitly. Employing its polar representation,

−iℏ∇KΞ(I)(t)
Ξ(I)(t)

+ A(I)
𝜈 (t) =

[
∇K S(I)(t) + A(I)

K (t)
]
+ i

−ℏ∇K|Ξ(I)(t)||Ξ(I)(t)|
= P(I)

K (t) + i(I)
K (t), (17.42)

we express such dependence in terms of P(I)
K (t), the classical nuclear momentum, and (I)

K (t), the
signature quantity of the exact factorization that we have dubbed “quantum momentum”.

The only approximation introduced so far in the electronic equation (17.16) has been the neglect
of 𝜖GI2 and 𝜖GI3 in the TDPES. Additionally, (i) we will neglect all terms that contain products of the
quantum momentum and the non-adiabatic coupling vectors, and (ii) we will express the spatial
derivatives of the expansion coefficients

∇KC(I)
𝛼 (t) ≃ i

ℏ
f (I)
𝛼,K(t)C

(I)
𝛼 (t) = i

ℏ

(
−∫

t
dt′∇K𝜖

(𝛼),(I)
BO

)
C(I)
𝛼 (t). (17.43)

Approximation (i) is justified if the non-adiabatic region is sufficiently localized. Approximation
(ii) is discussed in detail in Ref. [57] and is of a more “phenomenological” nature. This approx-
imation is essential to transform the set of partial differential equations for the coefficients in a
set of ordinary differential equations, as it allows us to neglect the spatial derivative of the modu-
lus of the coefficients C(I)

𝛼 (t) and to express the spatial derivative of the phase in terms of f (I)
𝛼,K(t)

(time-integral along the trajectory I of the adiabatic forces). Following from Eq. (17.29), the phase of
the electronic coefficients C𝛼(R, t) can be expressed as S𝛼(R, t) − S(R, t), i.e., the difference between
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the phase of the nuclear wave packet Ξ(𝛼)
BO(R, t) and the phase of the nuclear wave function Ξ(R, t).

Based on semiclassical arguments, the phases are related to the momentum of the moving wave
packet, that can be expressed as the time-integral of the force (where the force is the time derivative
of the momentum). This approximation has been devised based on previous analysis [41–44, 58] of
the expansion coefficients.

In conclusion, the CT-MQC equations can be cast in a very simple form, that is
d
dt

C𝛼(t) =
d
dt

CEh.
𝛼 (t) + d

dt
Cqm
𝛼 (t), (17.44)

FK = FEh.
K + Fqm

K , (17.45)

where the first terms on the right-hand sides are Ehrenfest-like terms (Eh.), whereas the sec-
ond terms depend on the quantum momentum (qm). The Ehrenfest-like terms in Eqs. (17.44)
and (17.45) are

d
dt

CEh.
𝛼 (t) = − i

ℏ
𝜖
(𝛼)
BOC𝛼(t) −

Nn∑
K=1

V K ⋅
∑
𝛽

d𝛼𝛽,K C𝛽(t) (17.46)

FEh.
K = −

∑
𝛼

|C𝛼(t)|2∇K𝜖
(𝛼)
BO −

∑
𝛼,𝛽

C∗
𝛼(t)C𝛽(t)

(
𝜖
(𝛽)
BO − 𝜖(𝛼)BO

)
d𝛼𝛽,K . (17.47)

The additional terms, instead, are

d
dt

Cqm
𝛼 (t) =

Nn∑
K=1

K

ℏMK
⋅

[
f 𝛼,K −

∑
𝛽

|C𝛽(t)|2f 𝛽,K

]
C𝛼(t) (17.48)

Fqm
K =

∑
𝛽

|C𝛽(t)|2
( Nn∑

K′=1

2K′

ℏMK′
⋅ f 𝛽,K′

)[
f 𝛽,K −

∑
𝛼

|C𝛼(t)|2f 𝛼,K

]
. (17.49)

All R-dependent quantities have to be evaluated along a trajectory (I). Equations (17.47) and (17.49)
generate the trajectory, that is coupled to n evolution equations (𝛼, 𝛽 = 1,… ,n) representing the
evolution of the electronic system according to Eqs. (17.46) and (17.48).

As is clear from Eq. (17.42), the quantum momentum tracks the spatial variation of the
nuclear density, as it contains its spatial derivative. At each time step of the simulated dynamics,
the nuclear density has to be reconstructed, for instance by computing a histogram from the
distribution of classical trajectories (plus smoothing, by using Gaussian functions localized at
the positions of the trajectories [56]). Such calculation requires that at the end of each step
of dynamics, the trajectories “communicate” – all at the same time – information about their
positions, in order to compute the quantum momentum. Once (I)

K (t) is known, the trajectories
can perform a new step of dynamics. On the fly calculation of the quantum momentum is possible
only if the trajectories are propagated all at the same time, that is why the underlying algorithm
has been dubbed “coupled-trajectory”-MQC. It has been shown [55–57, 60–63] that inclusion of
the quantum momentum is essential to reproduce quantum decoherence effects.

As an example of the importance of the spatial delocalization of a nuclear wave packet, we show
here the nuclear density reconstructed from the distribution of CT-MQC trajectories for a two-state
one-dimensional model of extended non-adiabatic coupling with reflection [12, 57, 60, 61, 63]. The
adiabatic PESs are plotted in black in Figure 17.8. A Gaussian-shaped wave packet centered at
−15 bohr is prepared “on” the lower surface and launched with a positive initial momentum of
20 bohr−1 towards the region of non-adiabatic coupling between the two adiabatic states. When
the coupling region is overcome, the lower BO PES has a well, whereas the upper BO PES has
a barrier. For the chosen initial momentum, the contribution propagating on the lower state is
transmitted, while the contribution propagating on the upper state is reflected. In Figure 17.8 the
first crossing of the non-adiabatic region of the incoming wave packet (left panel), along with the
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Figure 17.8 Snapshots at t = 30, 48, 57 fs of the nuclear density constructed from the distribution of
CT-MQC-evolved trajectories (blue lines) for a model of extended non-adiabatic coupling with reflection.
CT-MQC results are compared with exact dynamics (red lines). The adiabatic BO PESs are shown in all plots
in black, and the positions of the trajectories moving the TDPES (the TDPES is approximated in CT-MQC as
described in the main text) are represented as orange dots. The classical distributions are more localized
than the quantum-mechanical, an issue that can be corrected by including the quantum potential (last term
in Eq. (17.40)) as discussed in Ref. [38]. We remind you here that the quantum potential is not taken into
account in CT-MQC, only the quantum momentum is.

splitting of the transmitted and reflected portions of the wave packet (central and right panels) are
represented at different time-steps. Here, we compare the histograms constructed from the distri-
bution of classical trajectories (blue lines) with the solution of the full time-dependent Schrödinger
equation (red lines). The orange dots show the actual positions of the trajectories that move on the
(CT-MQC-approximate form of the) TDPES.

17.4.2 CT-MQC: Photo-Induced Ring Opening in Oxirane

Simulations of the photo-dynamics of oxirane C2H4O start at the time in which, upon absorbing a
photon, the molecule is excited from its ground electronic state S0 to the lowest-lying bright state,
S2. The photo-excitation induces rearrangements of the molecular structure that drive the system
through a conical intersection between S2 and S1 within 7 to 15 fs [56, 62]. This process is illustrated
in Figure 17.9, which shows (in the upper panel) the average population of the electronic states, i.e.,
𝜌𝛼(t) = N−1

traj
∑

I|C(I)
𝛼 (t)|2, with Ntraj = 100 the number of trajectories (𝛼 = 1, 2, 3 or, equivalently, S0,

S1 and S2). When the molecule reaches the region of the conical intersection, population is trans-
ferred from S2 (fully populated at time t = 0) to the first excited state S1. After that, the dynamics
carries on until a conical intersection between S1 and S0 is eventually reached (this second event
is not discussed here).

Additional information about the S2-to-S1 transfer process can be extracted from the analysis
of the decoherence indicator 𝜂23(t) = N−1

traj
∑

I|C(I)∗
2 (t)C(I)

3 (t)|2, presented in the lower panel of
Figure 17.9. The quantity 𝜂23(t) (black line in Figure 17.9) shows two pronounced peaks, indica-
tion that two groups of trajectories funnel through the S1/S2 conical intersection at subsequent
times. In order to understand if the time delay between different passages through the conical
intersection has an effect on the overall dynamics, the indicator of decoherence has been decom-
posed in different contributions, associated to different final molecular configurations. We observe
four final product structures, (i) a right-open ring structure (with probability 36%), shown in the
inset representing the molecular structure in the upper left panel of Figure 17.10, (ii) a left-open
ring structure (with probability 47%), (iii) a CC-extended bond structure (with probability 10%),
shown in the inset representing the molecular structure in the upper right panel of Figure 17.10,
and (iv) a closed-ring structure (with probability 7%). All reported values are computed as the
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Figure 17.9 Upper panel: electronic populations of S0 (orange), S1 (green) and S2 (red) as functions of time.
Lower panel: (normalized) indicator of decoherence for the element S1∕S2 (black line), and its decomposition
in contributions from the three sets of reactive trajectories. The trajectory sets labeled with C1O (cyan line)
and C2O (magenta line) lead to a final configuration where the oxirane ring opens via the breaking of one of
the two equivalent CO bonds; the set of trajectories labeled C1C2 (blue line) yields final configurations
where the ring opens through the elongation of the CC bond. The error-bars are computed as the standard
deviations of the data. Figure adapted from Ref. [62], Copyright (2018) with permission Springer Nature.
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Figure 17.10 Upper panels: populations of the electronic states S0, S1, and S2 as functions of time for two
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Figure 17.9. Lower panels: energy profiles (in eV) along the selected trajectories. The zero is set to be the
value of the energy of S0 at time t = 0. In the upper panels, oxirane at the final time is shown. Figure
adapted from Ref. [62], Copyright (2018) with permission Springer Nature.
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ratio between the number of trajectories ending up in the target configuration and the total
number of trajectories (Ntraj = 100). Structures (i) and (ii) are equivalent, and we expect that the
observed difference in percentage can be reduced by improving the statistics, thus by increasing
the number of simulated trajectories. In these two cases, the ring-opening of oxirane is obtained
through the breaking of one of the two CO bonds. In structure (iii), the oxirane ring opens via
the elongation of the CC bond. A few trajectories, identified as structure (iv), are not reactive and
remain close to the original molecular configuration. The decoherence indicator is decomposed
into contributions associated to the “reactive trajectories”. Therefore, we observe that the first peak
(cyan and magenta curves in Figure 17.9) between 6 and 12 fs is produced by trajectories that lead
to the breakage of one of the two CO bonds. However, these curves do not decay monotonically.
Instead, the curves corresponding to the C1O and C2O groups both contribute to the second peak
(between 12 fs and 17.5 fs), indicating that the first group of trajectories (associated to the first
peak) is reached by a second group while funneling through the conical intersection. The main
contribution to the second peak (blue line in Figure 17.9) between 12 and 16 fs is produced by
trajectories yielding an extended CC bond. These trajectories clearly encounter the non-adiabatic
region with some delay when compared to the sets of trajectories (i) and (ii).

The different reaction channels are clearly a consequence of the topology of the TDPES in con-
figuration space. Therefore, we will now analyze the TDPES for the reactive trajectories of type (i)
and (iii). It is worth recalling that, even though the adiabatic basis has been used to expand the elec-
tronic wave function of the exact factorization, the nuclear dynamics is still governed by the TDPES
and by the time-dependent vector potential of Eq. (17.15), in their approximate quantum-classical
form. The electronic adiabatic basis has been used for practical purposes. Representative trajec-
tories have been selected for the groups (i) (Figure 17.10, left) and (iii) (Figure 17.10, right). The
populations of the electronic states and the adiabatic potential energy for each configuration visited
along the trajectories are reported in Figure 17.10 (upper and lower panels, respectively).

The upper panels of Figure 17.10 confirm that the region of strong coupling between states S2 and
S1 is encountered by trajectories of type (i) at earlier times compared to trajectories of type (iii). In
fact, the populations of the electronic states corresponding to group (i) sharply switch at the conical
intersection at around 10 fs. This behavior is the consequence of the different shapes of the TDPES,
represented as dotted lines in Figure 17.10. The trajectories of group (iii) are driven by a TDPES
that is initially flat for about 10–15 fs, following the shape of S2 adiabatic state, until it smoothly
approaches and then switches to S1. Later, these trajectories continue on S1 without showing a
clear tendency to approach the S1/S0 conical intersection. In contrast, the TDPES sampled by the
trajectories of group (i) follow a steeper path that brings to a fast closure the S2/S1 gap (within about
15 fs) and subsequently the S1/S0 gap (after about 25 fs), suggesting the presence of a funneling
process that guides the trajectories to the ground state.

These calculations have been performed with the plane-wave based electronic structure package
CPMD [94], employing the PBE [116] functional for ground-state and excited-state calculations.
Linear-response TDDFT calculations [117–119] are based on the Tamm–Dancoff approxima-
tion [120, 121]. The Kleinman–Bylander [122] pseudo-potential has been used for all atom species
together with a plane-wave cutoff of 70 Ry. Initial conditions, i.e., positions and momenta, have
been sampled from an ab initio ground-state trajectory of 2 ps at 300 K. The Ntraj = 100 trajectories
are propagated with a time step of 0.12 fs (5 a.u.).

17.4.3 CT-MQC: The Algorithm

Currently, for on the fly ab initio calculations, the CT-MQC algorithm is only implemented in a
developer version of the CPMD electronic-structure software [94], thus it is not yet released. A code
for model-systems calculations based on CT-MQC is available as a module of the E-CAM Software
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library [123]. A flowchart describing the actions to be performed in the actual implementation of
CT-MQC are given in Figure 17.11. One of the advantages of the CT-MQC algorithm if compared,
for instance, with the surface-hopping algorithm [12] is that it is not stochastic. The electronic
equation (17.44), for instance, yields the actual populations of the adiabatic states, including deco-
herence effects. It follows that even a small number of trajectories is able to provide reliable and
accurate results. However, as of today, a systematic investigation of the relation between the num-
ber of nuclear degrees of freedom of the molecular system of interest and the number of trajectories
required for achieving converged results has not yet been conducted.

As for probably most of the trajectory-based approaches to non-adiabatic dynamics, the compu-
tational bottleneck still lies in the calculation of electronic structure properties. This bottleneck
is even more severe in CT-MQC, since the electronic properties (adiabatic energies and forces,
and non-adiabatic coupling vectors) need to be evaluated at each time for all adiabatic states.
Furthermore, CT-MQC requires explicit calculations of the non-adiabatic coupling vectors and not
only of their products with the classical nuclear momentum, as is the case, for instance, in the sur-
face hopping algorithm. CT-MQC is based on the propagation of coupled trajectories, namely, the
Ntraj trajectories have to be generated simultaneously, which increases the computational cost. The
parallelization of the code is, thus, essential.

START

t = 0: initialize trajectories (positions and momenta)

and electronic populations

distribute information to the

processors (for parallel versions)

compute BO properties (energies, forces,

coupling vectors) at the position of each trajectory

collect information (positions)

from all trajectories

calculate the quantum momentum

of Eq. (42)

calculate the time derivative of the

electronic coefficients of Eq. (44)

calculate nuclear forces of Eq. (45)

update electronic coefficients,

positions and momenta

END

YES

NO
t > tmax?

compute the time-integrated adiabatic forces

f
i,v 

(t) given in Eq. (43)(I)

Figure 17.11 Flowchart describing the numerical implementation of the CT-MQC. The blue boxes indicate
the operations that each trajectory can perform independently, i.e., the operations that can be parallelized;
the red boxes are the operations that cannot be parallelized.
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17.5 The Molecular Berry Phase

Before concluding, we briefly present some observations concerning a feature extensively discussed
in the literature in relation to adiabatic and non-adiabatic dynamics in molecular systems: the Berry
phase. To this end, we focus on the stationary Schrödinger equation for a system of interacting
electrons and nuclei, and formulate the time-independent version of the exact factorization.

In order to introduce the concept of the molecular Berry phase, we start from the time-
independent version of the adiabatic approximation,

Ψadia
𝛼 (R, r) = Ξ(𝛼)

BO(R)Φ(𝛼)
R (r) (17.50)

whereΦ(𝛼)
R (r) is one single BO state. If one variationally optimizes the nuclear wave functionΞ(𝛼)

BO(R)
using the Rayleigh–Ritz principle [124]

0 = 𝛿

𝛿Ξ(𝛼)∗
BO (R)

[⟨
Ψadia
𝛼

||| Ĥ|||Ψadia
𝛼

⟩
R,r

− E𝛼 ∫ dR|Ξ(𝛼)
BO(R)|2] (17.51)

one obtains the following variational equation for Ξ(𝛼)
BO(R)[ Nn∑

K=1

[−iℏ∇K + A(𝛼)
BO,K(R)]2

2MK
+ 𝜖(𝛼)BO(R)

]
Ξ(𝛼)

BO(R) = E𝛼Ξ
(𝛼)
BO(R), (17.52)

with

A(𝛼)
BO,K(R) = ⟨Φ(𝛼)

R |−iℏ∇KΦ
(𝛼)
R ⟩r (17.53)

and

𝜖
(𝛼)
BO(R) = 𝜖

(𝛼)
BO(R) +

Nn∑
K=1

(
1

2MK
⟨∇KΦ

(𝛼)
R |∇KΦ

(𝛼)
R ⟩r −

[A(𝛼)
BO,K(R)]2

2MK

)
. (17.54)

A(𝛼)
BO,K(R) is known as Berry connection [125]. The loop integral of this object around a conical inter-

section of the kth BO PES

𝛾
(𝛼)
BO,K = ∮ A(𝛼)

BO,K(R) ⋅ dRK (17.55)

may give a non-vanishing Berry phase 𝛾 (𝛼)BO,K . This quantity has been the subject of a huge body of
literature [17–20, 22–25, 29, 30, 126–134].

It is worth mentioning here that the time-dependent vector potential of Eq. (17.18) and the
TDPES of Eq. (17.20) can be interpreted as time-dependent generalizations of the similar, static,
quantities in Eqs. (17.53) and (17.54), appearing within the BO approximation. A formal connec-
tion can be established [48, 87], since in the limit of infinite nuclear mass M → +∞, or equivalently
in the limit of the electron–nuclear mass ratio tending to zero 𝜇 = me∕M → 0, the adiabatic quan-
tities are recovered.

While mathematically perfectly well-defined, there is an intrinsic difficulty when one tries to
connect the BO geometric phase with the real world. The difficulty is as follows: Similar to Cauchy’s
theorem referring to complex-valued functions, the loop integral (17.55) can give a non-vanishing
value only if the loop encloses some kind of non-analyticity, such as a conical intersection. If the
dependence on R of the function under the integral is smooth, the loop integral is zero. So, on
one hand, the sharp feature of conical intersections of BO surfaces is necessary to give a finite
𝛾
(k)
BO,K , and, on the other hand, the point of intersection is exactly the point in nuclear configuration

space where the BO approximation breaks down because there is no clear separation of electronic
and nuclear energy scales. This raises the question: Can we define a quantity analogous to the
molecular Berry phase but without making the BO approximation? This is indeed possible by using
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the time-independent version [79, 82, 84, 85, 135] of the exact factorization. This allows one to write
the full solution of the stationary electron–nuclear Schrödinger equation

ĤΨ(R, r) = EΨ(R, r) (17.56)

as a single product

Ψ(R, r) = Ξ(R)ΦR(r), (17.57)

with ∫ dr|ΦR(r)|2 = 1 for each R. Note that each 𝛼th eigenfunction Ψ𝛼(R, r) of the full
Hamiltonian, corresponding to the eigenvalue E𝛼 , can be factored in the form (17.57). How-
ever, we will not label the electronic and nuclear wave functions with the index 𝛼, i.e., we will use
the notation Ψ(R, r) = Ξ(R)ΦR(r) for Ψ𝛼(R, r) = Ξ(𝛼)(R)Φ(𝛼)

R (r).
Equations similar to those derived in the time-dependent version of the exact factorization are

given below, namely the equations defining the nuclear and electronic components of Ψ(r,R), and
the potentials. The nuclear wave function satisfies the stationary Schrödinger equation[ Nn∑

K=1

[−iℏ∇K + AK(R)]2

2MK
+ 𝜖(R)

]
Ξ(R) = E Ξ(R), (17.58)

while the electronic conditional amplitude is determined by the equation[
ĤBO +

Nn∑
K=1

1
MK

( [−iℏ∇K − AK]2

2
+
(−iℏ∇KΞ(R)

Ξ(R)
+ AK

)
⋅ (−iℏ∇K − AK)

)]
ΦR(r)

= 𝜖(R)ΦR(r). (17.59)

The nuclear Schrödinger equation (17.58) contains a scalar potential, 𝜖(R), which we call exact
PES. This quantity appears as R-dependent eigenvalue in the exact electronic equation (17.59).
Furthermore, the nuclear Schrödinger equation contains a vector potential

AK(R) = ⟨ΦR|−iℏ∇KΦR⟩r (17.60)

reminiscent of the Berry connection (17.53) appearing in the adiabatic approximation.
The difference between Eq. (17.53) and Eq. (17.60) is that the electronic wave function appear-

ing in Eq. (17.53) is a BO state while ΦR(r) in Eq. (17.60) is the solution of the exact electronic
equation (17.59). Therefore, we call AK(R) the exact Berry connection and

𝛾K = ∮ AK(R) ⋅ dRK (17.61)

the exact Berry phase. It should be noted that 𝛾K is not a geometric phase in the traditional sense
because it does not involve the notion of adiabatic parallel transport [19]. Here, adiabatic parallel
transport is intended as the slow variation of the parametric dependence of the electronic wave
function from R to a neighbor R′ with the condition Im ⟨ΦR|dΦR′⟩r = 0 [136]. That is the crucial
advantage which allows us to define, by Eq. (17.61), a geometric phase without making the adi-
abatic approximation. Hence, the latter is potentially measurable in experiments [86]. How the
BO Berry phase (17.55) compares to the exact concept (17.61) has been investigated in two differ-
ent model systems for which the full electron–nuclear problem can be exactly numerically solved.
Both model systems refer to triangular molecules. The first one [87] is the Shin–Metiu model of
Section 17.3.1 extended to two dimensions. The relevant nuclear degrees of freedom are vibrational
modes. In the second model system [88], the total energy of the complete electron–nuclear system
is highly degenerate and the relevant nuclear mode is a pseudo-rotation.

In the BO approximation, the Shin–Metiu model yields a standard Berry phase of value 𝜋. In the
second model, one also obtains a Berry phase in the BO approximation, but its value lies in the
interval [0, 𝜋] and the specific value depends on the state, i.e., on the choice of linear combination
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in the degenerate subspace. In both cases, the BO Berry phase does not depend on the path chosen
for the loop integral in Eq. (17.55) as long as it encloses the conical intersection. If one calculates
the exact phase in Eq. (17.61), the exact solution of the Shin–Metiu model yields the value zero [87].
Hence, for this particular case, one can rightfully say that the BO Berry phase is an artifact. In view
of this result, one might be tempted to believe that the exact phase (17.61) always vanishes. This,
however, is not the case. In the model where the relevant nuclear mode is a pseudo-rotation, the
exact phase (17.61) can be non-zero. Its value also lies in the interval [0, 𝜋] (as in the BO approxi-
mation) but the phase is not a topological phase, i.e., its value depends on the path chosen in the
loop integral (17.61). A detailed analysis is given in Ref. [88].

An interesting aspect arises from the fact that the BO approximation can be viewed as
infinite-nuclear-mass limit of the full problem [48]. How can it be that for any finite value of the
nuclear mass the Shin–Metiu model yields zero for the exact Berry phase (17.61) while the infinite
nuclear mass limit, i.e., the BO approximation, yields the value of 𝜋? Knowing that a non-zero
Berry phase can only come from some non-analyticity in the R-dependence of the electronic wave
function ΦR(r), it is useful to study this R-dependence as a function of nuclear mass. For the
purpose of visualization only, we do not look at the wave function ΦR(r) directly (simply because
it depends on four coordinates and is, therefore, difficult to plot) but instead we visualize a derived
quantity, namely

D(R) = ∫ dr r ΦR(r). (17.62)
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Figure 17.12 Plots of the vector field D(R) = D(X , Y) for different values of the nuclear mass
M = 10 me, 20 me, 50 me,+∞ in the two-dimensional Shin–Metiu model of Ref. [60]. In the BO limit, for
M = +∞, the electronic wave function used in Eq. (17.62) is the first excited state of ĤBO. The red lines are a
guide for the eyes.
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Note that ΦR(r) is the solution of Eq. (17.59). For each nuclear configuration R, it has a change of
sign as function of r in our particular model system. Therefore, D(R) visualizes the wave function,
at each R, as an arrow that points from the positive to the negative values of ΦR(r). Figure 17.12
shows the two-dimensional vector field D(R) = D(X ,Y ) for four different values of the nuclear
mass, increasing from the upper left to upper right, to lower left to lower right panels. The lower
right panel corresponds to the infinite nuclear mass limit. While for any finite value of the nuclear
mass the vector field D(R) is perfectly smooth, and hence leads to a vanishing Berry phase, the
M → +∞ limit shows a discontinuous jump at 12 o’clock. This non-analyticity explains the value
𝜋 for the BO Berry phase. The plot clearly shows that the BO limit is a singular limit. For any
real-world nuclear mass M < +∞, there is no Berry phase for this model system.

17.6 Conclusions

In this chapter we have presented the exact factorization of the electron–nuclear wave function.
The basic theory has been discussed, along with the connection between the exact-factorization
perspective on non-adiabatic dynamics and the, more standard, Born–Oppenheimer repre-
sentation. In doing so, we have introduced the concepts of time-dependent vector potential
and time-dependent potential energy surface, that are the potentials accounting for electronic
excited-state effects on nuclear dynamics. The analysis of the time-dependent potentials has been
based on one- and two-dimensional model systems, for which exact quantum-mechanical results
are easily accessible. The features of the time-dependent potentials have been presented in typical
non-adiabatic situations, namely for the photo-activated dynamics of nuclear wave packets that
relax through an avoided crossing or through a conical intersection. We have also shown how
those potentials can be determined within a numerical scheme that describes nuclear dynamics
in terms of classical trajectories, and that solves electronic dynamics via determining adiabatic
energies, forces and couplings on the fly based on standard quantum-chemistry calculations.
The coupled-trajectory mixed quantum-classical, CT-MQC, algorithm derived from the exact
factorization has been applied to simulate the photo-induced ring-opening processes in oxirane.
Finally, we have briefly discussed how to translate the concept of the molecular Berry phase,
arising in the context the BO treatment of the stationary electron–nuclear problem, to the language
of the exact factorization. Interesting differences between the two approaches have emerged,
which are the subject of ongoing investigations.
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Abstract

In this chapter we focus on Bohmian mechanics and on how this route to quantum mechanics offers an
alternative to the so-called quantum wave packet methods. We will differentiate between approaches
to non-adiabatic dynamics based on the Born-Huang decomposition of the molecular wave function
and approaches that are formulated in the position-space representation of the full electron-nuclear
Schrödinger equation. In the Born-Huang basis, time-dependent wave packets representing the nuclear
motion are discretized into a set of Bohmian fluid elements and are followed in time by integrating
coupled equations of motion that are solved in the Lagrangian picture of fluid motion according to the
Hamilton-Jacobi equations. Techniques based on this framework have been applied to describe consid-
erably large molecules, mainly thanks to their suitability to be coupled with well established electronic
structure methods. Alternatively, in Bohmian approaches based on the position-space representation of
the full molecular wave function, time-dependent electrons (nuclei) are described by waves that para-
metrically depend, via the Coulombic potential energy of the system, on nuclear (electronic) trajectories.
These approaches allow to bypass the, typically necessary, computation of multiple Born-Oppenheimer
potential-energy surfaces and non-adiabatic coupling terms and hence offer a new and attractive route
to calculate molecular observables and time-correlation functions.

18.1 Introduction

Understanding the several formulations (and the connections among them) of a given mathemati-
cal theory not only helps to better appreciate its physical soundness but also allows new approaches
to be conceived for addressing a particular physical problem. In quantum mechanics, while most
practical problems are solved using the so-called orthodox or Copenhagen [1] interpretation, other
well established formulations such as Feynman’s path integrals have innumerable and very suc-
cessful applications in, e.g., quantum statistics or quantum field theory [2].

In this chapter we focus on Bohmian mechanics [3] and on how this alternative formulation of
quantum mechanics can lead to novel numerical approaches for addressing molecular dynamics
problems. Bohmian mechanics was proposed by Louis de Broglie [4, 5] even before the Copenhagen
explanation of quantum phenomena was established. In the 1950s, David Bohm [6–8] clarified the
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meaning and applications of this explanation of quantum mechanics in terms of point-like particles
guided by waves. Historically, Bohmian mechanics has been involved in many metaphysical dis-
putes about the role of waves and particles when trying to provide a hierarchy between different
quantum formulations. However, as far as one looks for a formalism that reproduces experimental
results, all quantum theories (orthodox, Bohmian, Feynman, many-worlds, etc.) are perfectly valid.
Hence, the relevant question that we address in this chapter is whether Bohmian mechanics can
help in the numerical description of non-adiabatic quantum dynamics.

One of the most important developments in molecular dynamics, is the so-called ab-initio
molecular dynamics method, which combines nuclear dynamics with forces obtained from
electronic structure calculations. The Born–Oppenheimer potential energy surfaces (BOPESs)
are the central concept for understanding ab-initio molecular dynamics. BOPESs have been
mapped out with higher and higher accuracy for larger and larger molecular systems with
accurate first principles electronic structure methods (such as density functional theory, DFT, or
time-dependent density functional theory, TDDFT). Under the assumption that electrons adjust
adiabatically to the slower motion of the nuclei, nuclear dynamics simulations have been carried
out on top of single BOPESs, both assuming classical equations of motion or with more accurate
quantum mechanical propagation schemes for small systems, sometimes with spectacular success
in reproducing experiments [9].

Many challenging chemical processes, however, cannot be properly described with a single
BOPES. The assumption that electrons adjust instantaneously to the motion of the nuclei becomes
meaningless whenever electronic and nuclear motions occur on comparable time-scales [10].
Electronic (non-adiabatic) transitions between different BOPESs play, indeed, a pivotal role in
numerous chemical processes, such as electron transfer in electrochemical reactions, ion-molecule
reactions, or in proton-coupled electron transfer [11]. Similarly, electronic transitions are essential
to asses the performance of single-molecule electronic devices [12].

To study these non-adiabatic processes it is necessary to go beyond the quasi-static view of the
electron–nuclear interaction. Mixed quantum-classical approaches, where electrons are treated
quantum mechanically and the nuclei are described with classical mechanics, have become
particularly appealing because of the localized nature of the nuclei in many relevant scenarios.
The interaction between classical and quantum degrees of freedom is usually addressed assuming
a self-consistent field, i.e., nuclei evolve on top of a single effective potential energy surface
defined as a weighted average of the involved adiabatic BOPESs. Branching of the nuclear wave
packet into several BOPESs is not well described by these (Ehrenfest-like) approaches because
the back-reaction between classical and quantum subsystems is described under mean-field
assumptions [13–16]. See, e.g., a detailed derivation of the Ehrenfest approach in Chapter
15. Multi-configuration schemes, such as Tully’s surface hopping, are in general required to
account for bifurcation paths [17, 18] (see also a detailed discussion of the Surface Hopping
approach in Chapter 16). Despite the undeniable success of these mixed approaches to describe
many non-adiabatic phenomena, some limitations arise when quantum nuclear effects such as
tunneling [19], decoherence [20] or interferences [21] occur.

Bohmian mechanics offers a trajectory-based scheme to describe quantum nuclear effects, and
in this way represents an alternative to the so-called quantum wave packet methods [22, 23] (a
detailed derivation of the basic equations of motion in the multi-configurational time-dependent
Hartree method can be found, e.g., in Chapter 12). Since the pioneer work of Wyatt in 1999
[24], several schemes based on Bohmian mechanics have been proposed to describe molecular
dynamics beyond the adiabatic regime. In this chapter we will differentiate between approaches to
non-adiabatic dynamics based on the so-called Born–Huang (BH) decomposition of the molecular
wave function and approaches that are formulated in the position-space representation of the
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full electron–nuclear Schrödinger equation. In practice, all quantum dynamics methods are
essentially formulated using a discrete (truncated) Hilbert space representation for the electronic
degrees of freedom. In this picture, the Born–Oppenheimer approximation naturally emerges as
classical nuclear dynamics on the electronic ground state BOPES [25], and non-adiabatic effects
are introduced by including multiple electronic potential energy surfaces and non-adiabatic
coupling terms (NACTs) [23]. An alternative to the BH picture, is to use the (real space) position
representation for both electrons and nuclei. This allows to go beyond the BO picture without
the need to explicitly calculate several BOPESs and NACTs [26]. This is an attractive feature from
a computational point of view, as these quantities may be demanding to obtain from ab-initio
electronic structure calculations.

This chapter is organized as follows. In Section 18.2 we provide a quick introduction to Bohmian
mechanics including a hands-on oriented list of its essential mathematical ingredients. In Section
18.3 we introduce the time-dependent molecular Schrödinger equation as it is written in the full
(electron–nuclear) position-space representation. In the same section, we will derive the equations
of motion of electrons and nuclei as the position basis is replaced by the so-called Born–Huang basis
set. Section 18.4 will be devoted to discussing Bohmian approaches that are derived starting from
the Born–Huang representation of the molecular wave function. Alternatively, in Section 18.5 we
will discuss Bohmian approaches that are based on the full position representation of the molecular
wave function. A summary of the state-of-the-art of Bohmian approaches to non-adiabatic dynam-
ics is provided in Section 18.6.

18.2 A Practical Overview of Bohmian Mechanics

Bohmian mechanics is presented in this section in a very practical way, i.e., paying attention only
to those mathematical elements that will be strictly necessary later in practical implementations.
The particularization of the formalism to molecular dynamics problems will depend on the choice
of the basis, viz., Born–Huang or position-space, and hence will be detailed later in Sections 18.4
and 18.5 respectively.

18.2.1 The Postulates

We first present the theory of Bohmian mechanics through a small set of very short and simple
working postulates. These Bohmian postulates are only valid for non-relativistic quantum systems,
where the number of particles does not change with time. The generalization of these postulates
for systems described by quantum field theory is not within the scope of this chapter. Furthermore,
and for the sake of brevity, we will assume spinless particles and will not consider at this point
any symmetrization postulate. A more general practical introduction to Bohmian mechanics can
be found in Ref. [27].

First Postulate (dynamics of a quantum system): The dynamics of a non-relativistic quantum
system of N spinless particles comprises a many-particle wave function Ψ(r, t), defined in the
configuration space r = (r1, r2,… , rN ) and time t, and a many-particle trajectory r(t) = (r1(t),
r2(t),… , rN (t)) that evolves continuously under the guidance of the wave function. The wave
function is a solution of the Schrödinger equation:

iℏ𝜕Ψ(r, t)
𝜕t

=

( N∑
k=1

Tk + V(r, t)

)
Ψ(r, t) (18.1)
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where Tk is the kinetic energy operator of particle k and the potential V(r, t) includes all interactions
in the system (internal and with an arbitrary external scalar potential). Each component rk(t) of the
trajectory is obtained by time-integrating the particle velocity vk(t) = vk(r(t), t) defined through the
velocity field vk(r, t) = jk(r, t)∕|Ψ(r, t)|2, where jk(r, t) is the kth particle current density.

Second Postulate (quantum equilibrium hypothesis): The initial position r(t0) of the trajectory
r(t) cannot be known with certainty, and it is randomly distributed according to the quantum prob-
ability density |Ψ(r, t0)|2. This condition can be written mathematically as:

|Ψ(r, t0)|2 = lim
M→∞

1
M

M∑
𝛼=1

N∏
k=1

𝛿(rk − r𝛼k(t0)) (18.2)

Notice the presence of two indices, 𝛼 = 1,… ,M denotes an infinite ensemble of trajectories
accounting for the initial uncertainty and k = 1,… ,N accounts for the total number N of particles.
The initial velocity of the trajectory r𝛼(t) is then determined by v𝛼k (t0) = vk(r𝛼(t0), t0).

18.2.2 Computation of Bohmian Trajectories

In Bohmian mechanics, a quantum system is described by both a wave function and a particle
position which describes a well-defined trajectory guided by the wave function. There are mainly
two approaches to compute the dynamics of a system in Bohmian mechanics, viz., the analytic and
the synthetic algorithms to which we will dedicate this section.

The basis of the analytic approaches consists in computing first the wave function and then
obtaining the Bohmian trajectories from it (see Section 18.2.2.1). In a sense, the trajectories do
not contribute to the structure of the algorithm, but are simply obtained by the equations in the
formalism. While these algorithms do not add, in principle, any computational advantage, e.g., the
trajectory computation is an additional step to integrating the Schrödinger equation, they can be
easily implemented to obtain the trajectory dynamics which can be very useful to gain insights
into the dynamics. On the other hand, they are at the foundation of the conditional wave function
algorithms which will be discussed in Section 18.5. We note here that the conditional wave func-
tion concept is different from the conditional probability that appears in the exact factorization
approach to molecular dynamics (see Chapter 17 for a detailed derivation of the exact factorization
method).

Alternatively, in the synthetic algorithms, Bohmian trajectories play a key part in the algorithm
to perform the computations, i.e., as the points where the wave function is evaluated (see Section
18.2.2.2). Thus, these algorithms require an extra step in formulating them, i.e., the solution of the
quantum Hamilton–Jacobi equation. This “synthetic” approach to Bohmian mechanics was the
one used by David Bohm in his formulation of the theory in the early 1950s [6, 7]. This approach
allows to obtain the trajectories without first computing the wave function, and it is the source
of many hydrodynamic algorithms, some of them discussed in Section 18.4. Furthermore, it sets
the basis for extensions such as Bohmian mechanics with complex action which will be briefly
described in Section 18.2.2.3.

18.2.2.1 Trajectories from the Schrödinger Equation
As in standard quantum mechanics, the time evolution of the wave function is given by the
Schrödinger equation in Eq. (18.1). The solutions of the Schrödinger equation obey a continuity
equation. From Eq. (18.1) it is easy to see that

𝜕𝜌(r, t)
𝜕t

+ ∇ ⋅ J(r, t) = 0, (18.3)
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where we have defined a probability density and its associated current respectively as 𝜌(r, t) =|Ψ(r, t)|2 and

J(r, t) =
∑

k
jk(r, t) =

∑
k

[
ℏ

mk
Im(Ψ∗(r, t)∇kΨ(r, t))

]
(18.4)

These densities lead to the definition of a velocity field,

v(r, t) = J(r, t)
𝜌(r, t)

=
∑

k

[
ℏ

mk
Im

(∇kΨ(r, t)
Ψ(r, t)

)]
, (18.5)

which provides a guidance law for an N-particle trajectory r𝛼(t) = (r𝛼1 (t),… , r𝛼N (t)):
.r𝛼(t) = v(r𝛼(t), t). (18.6)

The initial positions {r𝛼(0)} of the trajectories {r𝛼(t)} are distributed according to the quantum
equilibrium hypothesis in Eq. (18.2). Then, the continuity equation in (18.3) ensures that the tra-
jectories will be distributed following 𝜌(r, t) at all later times. It is important to note that the velocity
field associated with each particle is defined on the entire configuration space. Specifically, .r𝛼k(t) =
vk(r𝛼(t), t), where vk(r, t) = jk(r, t)∕𝜌(r, t). Thus the trajectory of each particle in the system experi-
ences non-local effects through the positions of the remaining particles.

18.2.2.2 Trajectories from the Hamilton–Jacobi Equation
Two working equations are obtained by expressing the wave function in polar form, Ψ(r, t) =
(r, t)eiS(r,t)∕ℏ, and then introducing it into the Schrödinger equation (18.1), viz.:

𝜕2

𝜕t
+ ∇ ⋅

∑
k
2 ∇kS

mk
= 0, (18.7)

and
𝜕S(r, t)
𝜕t

+
∑

k

(∇kS(r, t))2

2mk
+ V(r, t) + Q(r, t) = 0. (18.8)

The first equation is equivalent to the continuity equation in (18.3), while Eq. (18.8) is known as
the quantum Hamilton–Jacobi equation, analogous to its classical counterpart but with Q as an
additional potential term (commonly known as quantum potential) defined as:

Q(r, t) = −
∑

k

ℏ2

2mk

∇2
k(r, t)
(r, t)

. (18.9)

Equation (18.8) can then be used to describe an ensemble of trajectories defined by:

.r𝛼(t) =
∑

k

∇kS(r, t)
mk

|||||r=r𝛼 (t)

, (18.10)

and initially sampled according to the quantum equilibrium hypothesis in Eq. (18.2). Notice that
Eq. (18.10) is equivalent to Eq. (18.6).

By taking the limit Q → 0 the (classical) Hamilton–Jacobi equation is recovered, from where
classical trajectories would be obtained. Since Q accounts for the quantum (and non-local) behavior
of the trajectories, it is named the quantum potential, and its magnitude gives an estimation of the
deviation of quantum trajectories from their classical counterparts. Nevertheless, thinking of it
as a classical potential can be misleading since it depends on the shape of the wave function (cf.
Eq. (18.9)).
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The numerical integration of the Hamilton–Jacobi equation is more convoluted than the
Schrödinger equation. To begin with, the Hamilton–Jacobi equation is a nonlinear equation (with
respect to the modulus of the wave function), and thus numerical instabilities are bound to appear
more easily. Furthermore, the computation of the wave function (modulus and phase) in regions
where the modulus is small (for instance, near wave function nodes) should be handled with
special care because, depending on the implemented algorithm, the trajectories in those areas can
become sparse. Algorithms such as the derivative propagation and trajectory stability methods [28]
were proposed to avoid this kind of problem.

18.2.2.3 Trajectories from a Complex Action
As we may find in classical and semiclassical treatments [29], Bohmian mechanics can also be
recast in a complex form in terms of a complex action, S̄, and extended by analytic continuation to
the complex plane. This complexification gives rise to alternative dynamical behaviors, which are
specified by a complex-valued time-dependent quantum Hamilton–Jacobi equation,

𝜕S̄
𝜕t

+ (∇S̄)2

2m
+ V − iℏ

2m
∇2S̄ = 0, (18.11)

where the last term on the left-hand side is the complex quantum potential. The relationship
between S̄ and the usual wave function is given by the transformation relation

S̄(r, t) = ℏ

i
lnΨ(r, t). (18.12)

From this equation, one can now define a complex-valued local velocity vector field,

v̄(r, t) = ∇S̄
m
. (18.13)

Taking this expression into account, the complex quantum potential can be expressed in terms of
the first spatial derivative of the complex velocity:

Q̄(r, t) = − iℏ
2m

∇2S̄ = − iℏ
2

∇v̄. (18.14)

That is, within this formulation in terms of a complex action, also known as complex Bohmian
mechanics, there is a direct relationship between the quantum potential and the local velocity field,
thus stressing the direct role of Q̄ on the quantum dynamics.

Because S̄ is in general a complex field, the only dynamics compatible with Eq. (18.13) has to
be complex, which means that we cannot use the real variable, r, but must use a complex one,
z, obtained by analytic continuation. This means that the corresponding complex trajectories are
obtained after integration of the (complex) equation of motion dz∕dt = v̄.

A direct correspondence cannot be established between the trajectories obtained from this
equation and the usual Bohmian trajectories in real space, since a one to one correspondence
among them does not exist. Rather, each Bohmian trajectory is to be considered as the result of
the crossing of the real axis, at subsequent times, of a continuous set of complex trajectories [30].

The complex version of Bohmian mechanics has been invoked as an alternative computational
tool, the so-called Bohmian mechanics with complex action, developed since 2006 by Tannor and
coworkers [31–37] from an earlier, independent derivation of Eq. (18.11) [38], with extensions
to non-adiabatic molecular dynamics [39, 40]. Bohmian mechanics with complex action aims to
obtain the wave function directly from the trajectories, as the quantum trajectory method [24] or
the derivative propagation methods [41] do in real space. In other words, this complexified Bohmian
mechanics is also an alternative synthetic method but in complex space [42].
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18.2.3 Computation of Expectation Values

To see how the language of operators can be merged with a trajectory-based formulation of quan-
tum mechanics, one can proceed as follows. The Hermitian operator Ô and the expectation value⟨Ô⟩Ψ can always be written in the position representation. Then, the mean value of this operator
over the wave function Ψ(r, t) is given by:

⟨Ô⟩Ψ = ∫
∞

−∞
Ψ∗(r, t)O(r, iℏ∇)Ψ(r, t)dr. (18.15)

Alternatively, the same mean value can be computed from Bohmian mechanics by defining a spatial
average of a “local” magnitude OB(r, t) weighted by 2(r, t):

⟨Ô⟩Ψ = ∫
∞

−∞
2(r, t)OB(r, t)dr. (18.16)

In order to obtain the same result with Eqs. (18.15) and (18.16), one can easily identify the local
mean value OB(r, t) with

OB(r, t) = Re
[
Ψ∗(r, t)O(r, iℏ∇)Ψ(r, t)

Ψ∗(r, t)Ψ(r, t)

]
Ψ=ei S

ℏ

, (18.17)

where only the real part is taken into account because the mean value of Eq. (18.17) is real.
For practical purposes, expectation values are computed using Eq. (18.16) by means of a large 𝛼 =

1,… ,M number of Bohmian trajectories with initial positions selected according to the quantum
equilibrium hypothesis Eq. (18.2). The initial positions r𝛼(t0) of the trajectories are used to rewrite
2(r, t) in Eq. (18.16) as:

⟨Ô⟩Ψ = lim
M→∞

1
M

M∑
𝛼=1

OB(r𝛼(t)). (18.18)

By construction, in the limit M → ∞, the value of Eq. (18.18) is identical to the value of Eq. (18.15)
and Eq. (18.16).

18.3 The Born–Huang Picture of Molecular Dynamics

18.3.1 The Molecular Schrödinger Equation in Position Space

The starting point for the development of quantum dynamics in molecular systems is the
time-dependent Schrödinger equation:

HmolΨ(r,R, t) = iℏ 𝜕
𝜕t
Ψ(r,R, t), (18.19)

where R = (R1,R2,… ,RNn
) is the collective vector of the Nn nuclear positions in ℝ3Ni and r =

(r1, r2,… , rNel
) the one for the Nel electrons. In Eq. (18.19), Ĥmol is the molecular Hamiltonian

Hmol(r,R) = −
∑

A

ℏ2

2MA
∇2

A −
∑

i

ℏ2

2m
∇2

i +
∑
i<j

1|ri − rj| −
∑
A,i

ZA|RA − ri| +
∑
A<B

ZAZB|RA − RB|
= −

∑
A

ℏ2

2MA
∇2

A +el(r,R) (18.20)

and Ψ(r,R, t) is the total wave function of the nuclear (labelled A and B) and electronic (labelled i
and j) degrees of freedom. Here 𝛾 and 𝜁 will be used to label electronic states. Later, indices 𝛼 and
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𝛽 will be also used to label trajectories. In the following, atomic units will be used except for the
reduced Planck constant ℏ and the electronic mass m which will be retained for clarity.

In this first section, we will derive the equation of motion for the nuclear and electronic degrees
of freedom using what is known as a trajectory-based approach. In this framework, the electrons
are described at a quantum mechanical level, while the nuclear wave packet is discretized into
an ensemble of points in phase space and then propagated along classical (or Bohmian quantum)
trajectories that, as we will see, keep some essential quantum character including non-adiabatic
effects.

The first step in the derivation of the equations of motion for the combined electron–nuclear
dynamics is the definition of a suitable representation of the total system wave function. Depending
on the particular choice of this expansion we can obtain different (approximated) solutions of the
initial molecular Schrödinger equation (Eq. (18.19)). In the following we will restrict ourselves to
the Born–Huang representation of the total molecular wave function, which can be used to derive
trajectory-based non-adiabatic molecular dynamics solutions like Born–Oppenheimer dynamics
and Bohmian dynamics.

The following derivation is partially inspired by the articles of J. C. Tully (Ref. [43]), the book of
Marx and Hutter on ab-initio molecular dynamics [44], and Curchod et al. [45–48].

18.3.2 Schrödinger Equation in the Born–Huang Basis

The Born–Oppenheimer MD equations can be derived starting from the Born–Huang representa-
tion of the molecular wave function [49, 50]

Ψ(r,R, t) =
∞∑
𝛾

Ω𝛾 (R, t)Φ𝛾 (r;R) . (18.21)

In this equation, {Φ𝛾 (r;R)} describes a complete set of orthonormal electronic wave function solu-
tions of the time-independent Schrödinger equation

̂el(r;R)Φ𝛾 (r;R) = Eel
𝛾 (R)Φ𝛾 (r;R) (18.22)

with ⟨Φ𝜁 |Φ𝛾⟩ = 𝛿𝛾𝜁 and where ‘;R’ denotes the parametric dependence of the electronic
Schrödinger equation from the position of the atoms. Note that only the nuclear wave function
depends explicitly on time, while ̂el(r;R) and Φ𝛾 (r;R) will only depend on t through the implicit
time-dependence of R(t).

Inserting Eq. (18.22) into the time-dependent Schrödinger equation, Eq. (18.19), we obtain (after
multiplying by Φ∗

𝜁
(r;R) from the left-hand-side and integrating over the electronic degrees of free-

dom, r)

iℏ 𝜕
𝜕t
Ω𝜁 (R, t) =

[
−
∑

A

ℏ2

2MA
∇2

A + Eel
𝜁
(R)

]
Ω𝜁 (R, t) +

∑
𝛾

𝛾𝜁Ω𝛾 (R, t) (18.23)

The quantities 𝛾𝜁 (R)

𝛾𝜁 (R) =∫ dr Φ∗
𝜁
(r;R)

[
−
∑

A

ℏ2

2MA
∇2

A

]
Φ𝛾 (r;R)

+
∑

A

1
MA

{
∫ dr Φ∗

𝜁
(r;R)[−iℏ∇A]Φ𝛾 (r;R)

}
[−iℏ∇A] (18.24)
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Figure 18.1 Schematic depiction of two different representations for the description of the correlated
electron–nuclear motion: (Left panel) the Born–Huang expansion of the electron–nuclear wave function,
and (right panel) the full configuration space picture. We distinguish between approaches where the
nuclear dynamics occurs in a reduced nuclear subspace, on Born–Oppenheimer (BO) potential energy
surfaces, and approaches where it occurs in the full electron–nuclear Hilbert space.

are the non-adiabatic couplings (NACs), with a contribution from the nuclear kinetic energy oper-
ator and a second from the momentum operator. In the most general case, the non-diagonal ele-
ments of 𝛾𝜁 (R) are non-zero and induce a coupling between different electronic states due to
the motion of the nuclei. In fact, the last term in Eq. (18.23) brings amplitude (𝛾𝜁Ω𝛾 (R, t)) from
the “electronic state with energy” Eel

𝜁
(R), solution of the electronic time-independent Schrödinger

equation (18.22)), to the actual state 𝜁 , with energy Eel
𝜁
(R). This interpretation of the nuclear wave

function dynamics Eq. (18.23) is at the basis of almost all approaches to molecular dynamics includ-
ing, e.g., the surface hopping description of non-adiabatic dynamics. See Figure 18.1 for a pictorial
comparison between the position-space and the BH representations of the time-dependent molec-
ular Schrödinger equation.

18.3.2.1 The Born–Oppenheimer Approximation: The Adiabatic Case
In the Born–Oppenheimer approximation only the diagonal terms, 𝜁𝜁 , are retained

𝜁𝜁 = ∫ Φ∗
𝜁 (r;R)

[
−
∑

A

ℏ2

2MA
∇2

A

]
Φ𝜁 (r;R)dr , (18.25)

which only induce a shift of the electronic potential energy surfaces Eel
𝜁
(R) felt by the nuclear wave

functions (the second term of Eq. (18.24) is zero for 𝛾 = 𝜁 , when Φ𝛾 (r;R) are real).
In this approximation, the nuclei move in the potential of a single electronic state, the potential

energy surface (PES) Eel
𝜁
(R), and the electronic (Eq. (18.22)) and nuclear (Eq. (18.23)) Schrödinger

equations become completely decoupled. The term 𝜁𝜁 (R) is called the Born–Oppenheimer diago-
nal correction [51, 52] and, depending on the nuclear mass, induces an isotope-dependence [53–55]
of the total energy, Eel

𝜁
(R) + 𝜁𝜁 (R). However, this term is usually small and is neglected in the

so-called Born–Oppenheimer adiabatic approximation [56].
In order to derive a trajectory-based representation of the nuclear dynamics, we introduce the

polar representation of the nuclear wave function Ω𝜁 (R, t) as we did in Section 18.2.2,

Ω𝜁 (R, t) = 𝜁 (R, t) exp
[ i
ℏ

S𝜁 (R, t)
]
. (18.26)

Inserting this polar representation into Eq. (18.23) (with all 𝛾𝜁 (R) = 0) and separating the real and
the imaginary parts, we obtain

𝜕S𝜁
𝜕t

= ℏ2

2m
∑

A

1
MA

∇2
A𝜁

𝜁

− 1
2
∑

A

1
MA

(∇AS𝜁 )2 − Eel
𝜁

(18.27)
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𝜕𝜁

𝜕t
= −

∑
A

1
MA

∇A𝜁 ⋅ ∇AS𝜁 −
1
2
∑

A

1
MA

𝜁∇2
AS𝜁 (18.28)

where all dependences S, A and Eel
𝜁

from the electronic and nuclear coordinates are omitted to
simplify the notation.

Taking the classical limit ℏ→ 0 [57] in Eq. (18.27), we obtain a Hamilton–Jacobi equation for
the action function S𝜁 (R, t)

𝜕S𝜁
𝜕t

= −1
2
∑

A

1
MA

(∇AS𝜁 )2 − Eel
𝜁
, (18.29)

which correspond to a classical point-particle time evolution of the nuclei, and from Eq. (18.28)
a continuity equation [58] for the propagation of the amplitude on the adiabatic state of interest,
d∕dt(∫ dR |Ω𝜁 (R, t)|2) = 0. We observe that the potential acting on the nuclei is obtained from a
static expectation value of the electronic Hamiltonian computed for the time-independent state
Φ𝜁 (r;R) solution of the electronic Schrödinger equation Eq. (18.22).

Using the relation, ∇AS𝜁 |R(t) = PA
𝜁 (t), we obtain a Newton-like equation of motion for the “clas-

sical” nuclei:

MAR̈A(t) = −∇AEel
𝜁
(R(t)) . (18.30)

In summary, the Born–Oppenheimer molecular dynamics (BO-MD) equations can be described
by the following system of coupled equations

̂el(r;R(t))Φ𝜁 (r;R(t)) = Eel
𝜁
(R(t))Φ𝜁 (r;R(t)) (18.31)

MAR̈A(t) = −∇AEel
𝜁
(R(t)) = − ∇A

minΦ𝜁

⟨Φ𝜁 |̂el|Φ𝜁 ⟩ , (18.32)

where only the second one describes an explicit time evolution. The electronic energies and the
forces acting on the nuclei are computed statically solving Eq. (18.31) on-the-fly at each new posi-
tion sampled along the trajectory R(t). Note that in BO-MD there is no explicit time-dependence
of the electronic degrees of freedom. It is important to further stress that, due to the assumption
that 𝛾𝜁 = 0, the BO-MD always evolves on a single electronic PES, even in the case in which the
system approaches regions of strong coupling between electronic and nuclear degrees of freedom.
In practice, the state of interest is the ground state for which the adiabatic separation from all other
states (excited states) holds in most (non-metallic) cases.

The combination of BO-MD with DFT for the on-the-fly calculation of the electronic structure
properties (energies and forces) at each MD step is straightforward and can be found in many
textbooks (see for instance [44]). Using the Hohenberg–Kohn theorem one first maps the elec-
tronic structure problem from the wave function space into the density space and then, within the
Kohn–Sham formulation of DFT, the electronic ground state energy functional, E0[𝜌(r;R)], and its
gradients are computed.

18.3.2.2 Non-Adiabatic Dynamics
The adiabatic approximation breaks down when the electronic states get close in energy, which
especially occurs when the dynamics is initiated in one of the electronic excited states of the sys-
tem. This is the usual situation encountered in a pump–probe experiment, where an initial pulse
is exciting the system while a second one is monitoring its time-dependent relaxation towards the
ground state (or a stable excited state).
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The starting point is the time-dependent Schrödinger equation for the molecular system
Eq. (18.23) that we rewrite as

iℏ
𝜕Ω𝜁 (R, t)

𝜕t
= −

∑
A

ℏ2

2MA
∇2

AΩ𝜁 (R, t) + Eel
𝜁
(R)Ω𝜁 (R, t)

+
∑
A𝛾

ℏ2

2MA
DA
𝛾𝜁
(R)Ω𝛾 (R, t) −

∑
A,𝛾≠𝜁

ℏ2

MA
dA
𝛾𝜁 (R) ⋅ ∇AΩ𝛾 (R, t) (18.33)

where

dA
𝛾𝜁 (R) = ∫ Φ∗

𝜁
(r;R)∇AΦ𝛾 (r;R)dr (18.34)

are the first-order non-adiabatic couplings (or non-adiabatic coupling vectors), and

DA
𝛾𝜁
(R) = −∫ Φ∗

𝜁
(r;R)∇2

AΦ𝛾 (r;R)dr (18.35)

are the second-order coupling elements.

18.4 BH-Based Approaches

As was shown in Section 18.3, electrons and nuclei are treated asymmetrically in the Born–Huang
picture of molecular dynamics. Specifically, electrons are described through a time-independent
Schrödinger equation that is parametrically dependent on the nuclear degrees of freedom that are,
at the same time, recast into an effective time-dependent Schrödinger equation. Starting from this
picture, in Bohmian approaches to non-adiabatic dynamics, the nuclear motion is represented by
time-dependent wave packets that are discretized into a set of Bohmian fluid elements, these are
propagated in time by integrating coupled equations of motion that are solved in the Lagrangian
picture of fluid motion according to the Hamilton–Jacobi equations (see Section 18.2.2).

18.4.1 The Non-Adiabatic Bohmian Dynamics Equations (NABDY)

Using the polar representation for the nuclear wave function Eq. (18.26) in Eq. (18.33) we obtain,
after separating real and imaginary parts,

−
𝜕S𝜁 (R, t)

𝜕t
=
∑

A

1
2MA

(∇AS𝜁 (R, t))2 + Eel
𝜁
(R) −

∑
A

ℏ2

2MA

∇2
A𝜁 (R, t)
𝜁 (R, t)

+
∑
A𝛾

ℏ2

2MA
DA
𝛾𝜁
(R)

𝛾 (R, t)
𝜁 (R, t)

ℜ[ei𝜙𝛾𝜁 (R,t)] −
∑

A,𝛾≠𝜁
ℏ2

MA
dA
𝛾𝜁 (R)

⋅
∇A𝛾 (R, t)
𝜁 (R, t)

ℜ[ei𝜙𝛾𝜁 (R,t)]

+
∑

A,𝛾≠𝜁
ℏ

MA

𝛾 (R, t)
𝜁 (R, t)

dA
𝛾𝜁 (R) ⋅ ∇AS𝛾 (R, t)ℑ[ei𝜙𝛾𝜁 (R,t)] (18.36)
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and

ℏ
𝜕𝜁 (R, t)

𝜕t
= −

∑
A

ℏ

MA
∇A𝜁 (R, t) ⋅ ∇AS𝜁 (R, t) −

∑
A

ℏ

2MA
𝜁 (R, t)∇2

AS𝜁 (R, t)

+
∑
A𝛾

ℏ2

2MA
DA
𝛾𝜁 (R)𝛾 (R, t)ℑ[ei𝜙𝛾𝜁 (R,t)] −

∑
A,𝛾≠𝜁

ℏ2

MA
dA
𝛾𝜁 (R)

⋅ ∇A𝛾 (R, t)ℑ[ei𝜙𝛾𝜁 (R,t)]

−
∑

A,𝛾≠𝜁
ℏ

MA
𝛾 (R, t)d

A
𝛾𝜁 (R) ⋅ ∇AS𝛾 (R, t)ℜ[ei𝜙𝛾𝜁 (R,t)], (18.37)

where both S𝜁 (R, t) and 𝜁 (R, t) are real fields and 𝜙𝛾𝜁 (R, t) =
1
ℏ
(S𝛾 (R, t) − S𝜁 (R, t)). Equations

(18.36) and (18.37) correspond to the exact Schrödinger equation for a nuclear wave function
evolving in the potential of the different electronic surfaces determined by the time-independent
Schrödinger equation. In comparison with the single surface case or with the diabatic formulation,
time evolution of phases and amplitudes involves first- and second-order coupling elements that
mix contributions from other potential energy surfaces. In particular, transfer of amplitude from
one PES to another becomes possible thanks to the coupling terms, which however, make the
solution of the set of Eqs. (18.36) and (18.37) more involved. In the dynamics that emerges, the first
equation is the equivalent of the classical Hamilton–Jacobi (HJ) equation (first two terms) for the
action S(R, t), augmented with two additional parts of quantum nature of order ℏ and ℏ2. The
third term is the quantum potential 𝜁 (R, t) describing all quantum effects on a single PES and
introducing non-locality [59], and the fourth to sixth terms constitute the non-adiabatic quantum
potential

∑
𝛾𝛾𝜁 (R, t) describing interstate contributions.

After applying the gradient with respect to the nucleus B on both sides of Eq. (18.36) and moving
to the Lagrangian frame [48], we obtain a Newton-like equation of motion (using the HJ definition
of the momenta ∇BS𝜁 (R, t)|R(t) = PB

𝜁 (t))

MB
d2RB(t)
(dt𝜁 )2 = −∇B

[
Eel
𝜁
(R(t)) +𝜁 (R(t), t) +

∑
𝛾

𝛾𝜁 (R(t), t)

]
(18.38)

describing the time evolution (trajectory) of the RB components of a fluid element with collective
variable R(t) (d∕dt𝜁 = 𝜕∕𝜕t +

∑
A∇AS𝜁 (R, t)∕MA ⋅ ∇A).

In the same moving frame, the time-evolution of the amplitudes becomes

ℏ
d
dt

A𝜁 (R(t), t) = −ℏ
2
∑

A
M−1

A 𝜁 (R(t), t)∇2
AS𝜁 (R(t))

+
∑
𝛾

H𝛾𝜁 (R(t))𝛾 (R(t), t)ℑ
[

e(
i
ℏ

S𝛾−𝜁 (R(t)))
]

+ ℏ2

2m
∑
A𝛾

1
MA

DA
𝛾𝜁
(R(t))𝛾 (R(t), t)ℑ

[
e(

i
ℏ

S𝛾−𝜁 (R(t)))
]

− ℏ2
∑

A,𝛾≠𝜁
1

MA
dA
𝛾𝜁∇A𝛾 (R(t), t)ℑ

[
e(

i
ℏ

S𝛾−𝜁 (R(t)))
]

− ℏ
∑

A,𝛾≠𝜁
1

MA
dA
𝛾𝜁
𝛾 (R(t), t)∇AS𝛾 (R(t))ℜ

[
e(

i
ℏ

S𝛾−𝜁 (R(t)))
]
. (18.39)

Note that the difficulties associated with the non-crossing rule between fluid elements in config-
uration space [59] becomes less severe as the dimensions of the system increase (the most difficult
case being the one-dimensional dynamics).
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Figure 18.2 NABDY applied to the collision of H with H2 (𝜒 = 89∘ and d(H-H) = 1.4 a.u., see the inset). An
initial Gaussian wave packet (wp) is prepared on the ground state (t1 = 0 a.u.) with an initial momentum
k = 75 a.u. Shown is the probability density of the nuclear wp obtained with 352 trajectories at the initial
time (t1) and after the region of coupling (t3 = 300 a.u.). The displacement of the resulting wps in the
vertical direction is arbitrary. Blue: wp on state 1; orange: wp on state 2; black dotted line: non-adiabatic
coupling strength. The inset shows the time evolution of the population transfer obtained using the
different schemes (TSH: 3112 trajectories).

The most severe limitation in the implementation of NABDY is related to the calculation of the
derivatives in the configuration space such as that of the amplitudes, ∇A𝜁 (R(t), t), and of the
phases ∇AS𝜁 (R(t), t). In fact, as the size of the system increases, it becomes very impractical to per-
form such derivatives on a real grid of dimensions 3Nn − 6. In Figure 18.2 we show an application
of NABDY in the study of the collision of a fast moving hydrogen atom with a standing hydrogen
molecule [60]. The initial conditions are chosen such that the system evolves trough a geometry
that lies close to a conical intersection between the ground and the first excited state (equilateral
structure) leading to a “thermal” or “kinetic” induced excitation of the system.

18.4.2 Implementation in Molecular Dynamics: The Adiabatic Case

The NABDY approach can be adapted to perform quantum dynamics in the high-dimensional,
unconstrained, phase space of large molecular systems. In this case, the main challenge lies in the
calculation of the phase space derivatives of the quantum potential and nuclear amplitudes, which
are best performed analytically [61]. To this end, we introduce a decomposition of the nuclear
wave packet into a sum of Gaussian functions, which are then propagated in time using a set
of differential equations derived from quantum hydrodynamics equations. Within this numeri-
cal approximation, the phase space derivatives used in the calculation of the quantum potential



�

� �

�

576 18 Bohmian Approaches to Non-Adiabatic Molecular Dynamics

can be performed analytically, thus providing a solution to the instability problem related to the
discontinuities of the quantum potential.

The applications of this approach are, however, restricted to the adiabatic case, which well illus-
trate the theoretical and numerical challenges associated to this type of dynamics and its level of
accuracy without introducing additional complications related to non-adiabaticity. Further numer-
ical investigations are needed to extend the method to the non-adiabatic case.

The main step consists of the representation of the molecular amplitude wave function with the
product

A(R1(t),R2(t),R3(t),… ,RNn
(t), t) = Φ1(R1(t), t)Φ2(R2(t), t)Φ3(R3(t), t)…ΦNn

(RNn
(t), t)

(18.40)

where ΦA(RA(t), t) is given by a sum of Gaussians centered at R𝛼
A(t) ∈ ℝ3

ΦA(RA(t), t) =
M∑
𝛼=1

𝜙̃𝛼𝛼(RA(t) − R𝛼
A(t); a𝛼A(t), 𝜎

𝛼
A(t))

=
M∑
𝛼=1

𝜙𝛼A(RA(t);R𝛼
A(t), a

𝛼
A(t), 𝜎

𝛼
A(t)) (18.41)

and

𝜙𝛼A(RA(t);R𝛼
A(t), a

𝛼
A(t), 𝜎

𝛼
A(t)) =

a𝛼A(t)
 𝛼

A (t)
e
−

(RA (t)−R𝛼A (t))2

2(𝜎𝛼A (t))2 , (18.42)

where  𝛼
A (t) = (2𝜋)3∕2(𝜎𝛼A(t))

3. The solution of Eq. (18.39) with the product amplitude given in
Eqs. (18.41) and (18.42) is still computationally very impractical. Therefore, we tentatively propose
a dynamics in which the centers of the Gaussians follow the time evolution of the trajectories of
Eq. (18.38) while the amplitudes of the Gaussians obey Eq. (18.39). This approach can be formalized
using a (coarse-grained) configuration-space representation of the amplitude [62, 63]

A(R, t) =
∏

A

M∑
𝛼=1

A(R𝛼
A, t)𝛿(RA − R𝛼

A) , (18.43)

where the R𝛼
A are uniformly distributed points in the configuration space with associated amplitude

A(R𝛼
A, t) and evolve according to Eq. (18.38). The residual, explicit dynamics of A(R, t) is described

by Eq. (18.39). For computational purposes, we introduce a broadening of the Dirac-delta function
and work with the representation

A(R, t) =
∏

A

M∑
i=1

A(R𝛼
A, t)g

𝛼
A(RA − R𝛼

A), (18.44)

where g𝛼A(RA − R𝛼
A) stays for a Gaussian of the form given in Eq. (18.42) (that gives the Dirac-delta

in the limit of 𝜎𝛼A going to zero), A(R𝛼
A, t) = a𝛼A(t), and the centers of the Gaussians, R𝛼

A, evolve – once
more – along the trajectories in Eq. (18.38). The Gaussians appearing in Eq. (18.44) have nothing in
common with the Gaussian wave packets used in previous works (see for instance reference [64])
and are not individual solutions of the original time-dependent Schrödinger equation, but they
mainly serve as support for the amplitude dynamics given in Eq (18.39).

This approach has been applied to the study of the tunneling-enhanced proton transfer (PT) pro-
cess in a protonated di-ammonia complex: 2(NH3)H+ (Fig. IV B) [61]. The two nitrogen atoms
are kept fixed at a distance such that PT cannot occur using a classical description of the nuclear
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Figure 18.3 Upper left panel: ball-and-stick representation of the (NH3)2 H+ system. Thirty fluid elements
(FEs) per atom are used in the quantum dynamics (small spheres). Larger atom-centered vdW spheres are
used to wrap up all atomic FEs (blue: nitrogen, white hydrogen). Upper right panel: collection of all FE
centers collected along the entire simulation. Lower panel: time-series of the two NH distances with the
shared proton; (t < 0): dynamics with classical nuclei; (t > 0): dynamics with quantum trajectories. Two
characteristic paths are shown in color to highlight the transition.

dynamics (in this case DFT-based Born–Oppenheimer dynamics using the PBE [65] functional).
However, when the dynamics is switched to quantum using the ABDY approach described above
(see also Ref. [61]) the PT becomes possible in the fs timescale (Fig. 18.3). This example shows
how a suitable choice for the representation of the nuclear wave packet (in this case using an
atom-centered Gaussian basis set) can lead to a stable propagation of the Bohmian quantum tra-
jectories.

18.4.3 The Approximate Quantum Potential Approach

As pointed out in the previous section, the numerical implementation of the quantum potential
poses challenges due to the fact that (R(t), t) is singular at the nodes of the nuclear wave packet,
which makes the dynamics extremely sensitive to the accuracy of the corresponding quantum
forces near the nodes.

In Section 18.4.2, we presented an expansion of the nuclear wave packet as a product of Gaus-
sians centered at the position of the atoms. The reconstructed wave packet (Eq. (18.44)), although
approximate, has the very interesting properties of being analytically differentiable in all space,
including in the vicinity of the nodes.
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A similar strategy was also developed in the group of S. Garashchuk [66] using a semi-empirical
implementation of Bohmian quantum trajectories based on an approximate quantum potential
(AQP). In this approach, the non-classical quantum momentum

(R, t) = ∇A(R, t)
A(R, t)

(18.45)

is approximated by a linear combination of a small set of Nb basis functions f (R) = (f1(R), f2(R),…),
so that

̃(R, t) = c(t) ⋅ f (R) (18.46)

and

̃(R, t) = − ̃2(R, t) + ∇2̃(R, t)
2M

. (18.47)

where M is the mass. Within this approximation, all gradients needed for the propagation of the
quantum trajectory

dR
dt

= P(R, t)
M

(18.48)

dP(R, t)
dt

= −∇V(R) − ∇ ̃(R, t)(R) = −
dPcl(R, t)

dt
− d̃(R, t)

dt
(18.49)

are obtained analytically [66]. The value of the expansion coefficients c(t) are obtained from the
minimization of the function

I = ⟨( ̃(R, t) − ∇A(R, t)
A(R, t)

)2⟩ (18.50)

by setting

∇cI = 0 . (18.51)

Note that using the evolution equation for the trajectories given in Eqs. (18.48) and (18.49), the
weights associated with the volume element 𝛿R of each trajectory

𝑤(R, t) = A2(R, t) 𝛿R(t) (18.52)

remains constant in time, d𝑤(R,t)
dt

= 0.
The equations of motion (Eqs. (18.48) and (18.49)) for the quantum trajectories are then solved

using the AQP approximation for the spatial derivatives of the momenta
dP(R, t)

dt
= −∇V(R) + 1

2M
(2̃(R, t)∇R + ∇2

R) ̃(R, t) (18.53)

d̃(R, t)
dt

= − 1
2M

(2̃(R, t)∇R + ∇2
R) P(R, t) . (18.54)

The ̃(R, t) becomes therefore a trajectory-based variable sampled along the dynamics. Note that
the function (R, t) derived from Eq. (18.45) can be compared at each time step with the approxi-
mated function ̃(R, t), giving a measure of the error associated to the AQP approximation.

A further simplification of this scheme can be obtained using the linearized quantum force
approximation (LQF) obtained introducing an expansion of ̃ in a linear basis [67]. This approach
is exact for Gaussian wave packets and, in general, is capable of describing leading quantum effects,
such as the wave packet branching, tunneling, and zero point energy (ZPE). Advantages and dis-
advantages of the LQF approach are carefully discussed in Refs. [68–71]
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18.5 Non-BH Approaches

A number of Bohmian approaches to electron–nuclear coupled dynamics have been also derived
without relying on the Born–Huang basis set, i.e., by considering the molecular Schrödinger
equation in Eq. (18.19) as the starting point. These approaches allow to bypass the, typically
necessary, computation of multiple BOPESs and NACTs and hence offer a new and attractive
route to calculate observables and time correlation functions without relying on the widely
used Born–Oppenheimer picture. Furthermore, the calculation of quantum potentials, which
is a major bottleneck for methods based on the Born–Huang basis, is also avoided by these
approaches.

Here we will focus on two approaches, viz., the Conditional Wave function approach [26, 72–74],
recently developed by the authors of this chapter, and the so-called time-dependent Monte Carlo
approach to molecular dynamics developed by I. P. Christov [75–80]. Other relevant techniques
have been derived, e.g., in the groups of C. Meier [81–84] or O. Prezhdo [85, 86].

18.5.1 The Conditional Wave Function Approach

The conditional wave function (CWF) approach is an exact decomposition and recasting of the
unitary time-evolution of a closed quantum system, that yields a set of coupled, non-Hermitian,
equations of motion [72]. The CWF approach allows one to describe the evolution of arbitrary
subsets of the degrees of freedom in a system, on a formally exact level. In addition, this alterna-
tive formulation of the many-body quantum dynamics problem allows novel approximate schemes
to be developed [73, 87] providing a completely new perspective to deal with the long-standing
problems of non-adiabatic dynamics in complex interacting systems. Remarkably, the resulting
propagation scheme does not require the computation of the quantum potential, in this manner
overcoming a bottleneck in quantum trajectory-based approaches. We note here that the condi-
tional wave function concept is different from the conditional probability that arises in the context
of the exact factorization approach to molecular dynamics (see Chapter 17 for a detailed derivation
of the exact factorization method).

The CWF approach can be developed starting from the full molecular Schrödinger equation in
Eq. (18.19). The total Hamiltonian for the molecular system in Eq. (18.20) can be rewritten as

Hmol = Te(r) + Tn(R) + W(r,R, t), (18.55)

where the kinetic energy operators for each species of electrons and nuclei have been respectively
defined as Te(r) = −

∑
i
ℏ2

2m
∇2

i and Tn(R) = −
∑

A
ℏ2

2MA
∇2

A, and the full Coulombic energy of the system

is gathered in W(r,R, t) =
∑

i<j
1|ri−rj| −

∑
A,i

ZA|RA−ri| +
∑

A<B
ZAZB|RA−RB| .

The molecular wave function, Ψ(r,R, t), can be exactly decomposed in terms of the CWFs of
either of the two subsystems as:

𝜓𝛼
e (r, t) ∶= ∫ dR𝛿(R𝛼(t) − R)Ψ(r,R, t), (18.56)

𝜓𝛼
n (R, t) ∶= ∫ dr𝛿(r𝛼(t) − r)Ψ(r,R, t). (18.57)
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Using these definitions in Eq. (18.57) and Eq. (18.58), one can show that the CWFs,𝜓𝛼
e (t) and𝜓𝛼

n (t),
obey the following equations of motion [72]:

iℏ
d𝜓𝛼

e

dt
= (Te(r) + W(r,R𝛼, t) + 𝜂𝛼n(r, t))𝜓𝛼

e , (18.58)

iℏ
d𝜓𝛼

n

dt
= (Ti(R) + W(r𝛼,R, t) + 𝜂𝛼e (R, t))𝜓𝛼

n , (18.59)

where we have suppressed the explicit time-dependence of the coordinates, i.e., {r𝛼,R𝛼} ≡
{r𝛼(t),R𝛼(t)}. The complex potentials 𝜂𝛼n(r, t) and 𝜂𝛼e (R, t) are functionals of the full wave function,
and are respectively defined as [26, 72]:

𝜂𝛼n(r, t) = TnΨ(r,R, t)|R𝛼 (t) + iℏ∇RΨ(r,R, t)|R𝛼 (t) ⋅
.

R𝛼(t), (18.60)

𝜂𝛼e (R, t) = TeΨ(r,R, t)|r𝛼 (t) + iℏ∇rΨ(r,R, t)|r𝛼 (t) ⋅ .r𝛼(t). (18.61)

The conditional wave functions, (18.56) and (18.57), represent slices of the full wave function
taken along the degrees of freedom of the two disjoint subsets (see Figure 18.4). Each individ-
ual conditional wave function constitutes an open quantum system, whose time-evolution is
non-unitary, due to the complex potentials.

While not required in principle, in practice it is useful to propagate both the nuclear and elec-
tronic conditional wave functions, Eqs. (18.58) and (18.59), to compute the quantum trajectories
via conditional velocity fields defined as

.r𝛼i (t) =
ℏ

m
Im

[∇i𝜓
𝛼
e (r, t)

𝜓𝛼
e (r, t)

]
r𝛼 (t)

, (18.62)

.
R𝛼

A(t) =
ℏ

MA
Im

[∇A𝜓
𝛼
n (R, t)

𝜓𝛼
n (R𝛼, t)

]
R𝛼 (t)

. (18.63)

Support of the full
Wave Function at t0
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Wave Function at tf

{r𝛼 (t), R
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�Ψ (r, R, t0)�2 �Ψ (r, R, tf)�2

�ψ𝛼
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�ψ𝛼
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 (R, tf )�2
n

Figure 18.4 Schematic representation of the CWF approach to molecular dynamics for a two-dimensional
system. The full nuclear probability-density |Ψ(r,R, t)|2 is plotted at two different times t0 and tf , together
with a pair of conditional amplitudes |𝜓𝛼

e (r, t)|2 (in red) and |𝜓𝛼
i (R, t)|2 (in blue) for a particular trajectory

{r𝛼(t),R𝛼(t)}. Black arrows denote the velocity field { .
r𝛼(t),

.
R𝛼(t)}, and contour plots of the full nuclear wave

function are also shown for clarity.
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In this way the reconstruction of the full wave function is avoided at the expense of solving the
number of equations of motion twice [72]. Remarkably, the resulting propagation scheme, namely
Eqs. (18.58) and (18.59) together with the trajectories in (18.71) and (18.72), does not require the
computation of the quantum potential.

18.5.1.1 Hermitian Conditional Wave Function Approach
An approximate solution to Eqs. (18.58) and (18.59) can be formulated [72] by expanding the com-
plex functionals around the conditional coordinates, and then truncating them such that 𝜂𝛼n(r, t) =
f (R𝛼, t) and 𝜂𝛼e (R, t) = g(r𝛼, t). In this limit, these potentials only engender a pure time-dependent
phase that can be omitted, as the conditional velocity fields are invariant under such global phase
transformations [72]. The resulting propagation scheme is thus restored to a Hermitian form:

iℏ
d𝜓𝛼

e

dt
= (Te(r) + W(r,R𝛼, t))𝜓𝛼

e , (18.64)

iℏ
d𝜓𝛼

n

dt
= (Tn(R) + W(r𝛼,R, t))𝜓𝛼

n , (18.65)

with the velocity fields defined as in Eqs. (18.71) and (18.72).
This approximate version of the CWF formalism is referred to as the Hermitian-CWF approach

[72]. The Hermitian-CWF propagation scheme recasts the full quantum time-propagator as a set of
independent single-species propagators, which is clearly a major simplification of the full problem.
Hence, this form of the conditional decomposition allows one to circumvent the problem of stor-
ing and propagating the full many-body wave function, whose size scales exponentially with the
number of degrees of freedom. Furthermore, the propagation of Eqs. (18.64) and (18.65) does not
entail integrals over the electronic degrees of freedom and hence it is expected to be of particular
interest in scenarios where several BOPESs and external electromagnetic fields are involved.

The Hermitian-CWF has been numerically tested using the so-called Shin–Metiu model system,
which consists of three positively charged nuclei (ions) and a single electron in one dimension [88].
This model is very flexible and, based on the parameter regime chosen, can give rise to a number
of challenging situations where electron–nuclear correlations play a crucial role in the dynamics.
The Shin–Metiu model prescribes two ions that are fixed at a distance L = 19.0a0, and the third
ion and the electron are free to move in one dimension along the line joining the fixed ions (see
Figure 18.5). The total Hamiltonian for the system can be written as:

H(r,R) = − 1
2m

𝜕2

𝜕r2 − 1
2M

𝜕2

𝜕R2 + W(r,R), (18.66)

where m is the electron mass, and M is the proton mass. The coordinates of the electron and the
mobile ion are measured from the center of the two fixed ions, and are labeled r and R, respectively.
The full electron–nuclear potential reads:

W(r,R) = 1| L
2
− R| + 1| L

2
+ R| −

erf
( |R−r|

Rf

)
|R − r| −

erf
(|r− L

2
|

Rr

)
|r − L

2
| −

erf
(|r+ L

2
|

Rl

)
|r + L

2
| , (18.67)

Figure 18.5 Schematic representation of the Shin–Metiu model [88]. Two ions are fixed (black) and a third
one (red) and an electron (blue) are free to move in one dimension.
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Figure 18.6 (a) Exact (black solid-line) and approximated (blue circles) nuclear probability densities at
four different times. (b) Arrows refer to the (two-dimensional) velocity field computed from the
approximated conditional wave functions. The gray contour lines represent the corresponding electron–
nuclear two-dimensional potential energy surface. (c) First (red), second (green) and third (magenta) BOPESs
involved in the non-adiabatic process. In the inset: adiabatic populations as a function of time computed
from the exact solution.

where erf() represents the error function. In Ref. [72] the Shin–Metiu model system was studied
under the parameter regime defined by: Rf = 7a0, Rl = 4.4a0 and Rr = 3.1a0. In this way, the first
BOPES, 𝜖(1)BO, is strongly coupled to the second BOPES, 𝜖(2)BO, within an extended region defined by
R < −4a0. In addition, there is a moderate coupling between the second BOPES, 𝜖(2)BO, and the third
BOPES, 𝜖(3)BO for R > 2a0 (see Figure 18.6(c)). The coupling to the rest of the BOPESs is negligible. In
Ref. [72], the system was initially excited to 𝜖(2)BO and the initial nuclear wave function was defined
to be a Gaussian wave packet with 𝜎 = 1∕

√
2.85, centered at R = −7.0a0. Starting with this ini-

tial state, one first samples its probability density with trajectories and then propagate Eq. (18.71)
together with the Hermitian equations of motion in Eq. (18.64). In Fig.18.6.a snapshots at different
times of the nuclear probability density are shown for the exact calculation (black solid line) and
for the approximated solution (blue circles). Showing an excellent agreement, the Hermitian-CWF
scheme is demonstrated to capture not only the conspicuous electronic transition between 𝜖(2)BO and
𝜖
(1)
BO, but also the interferences originating at later times from contributions of higher adiabatic pop-

ulations (see the rise of the population of 𝜖(3)BO in the inset on Figure 18.6(c)). For this exactly solvable
model system, the zero order approximation is able to accurately reproduce complex non-adiabatic
dynamics (see Figure 18.6) with quantum nuclear effects included [72]. Furthermore, the use of
Bohmian trajectories adds interpretative value to the method and provides a numerically stable
algorithm to avoid the calculation of the unstable quantum potential.

18.5.2 The Interacting Conditional Wave Function Approach

Using a stochastic wave function ansatz that is based on a set of interacting single-particle Her-
mitian conditional wave functions, the recently developed Interacting-CWF propagation scheme
allows to go beyond the Hermitian-CWF described in Section 18.5.1.1 while avoiding the compu-
tation of the non-local complex potentials, 𝜂𝛼n(r, t) and 𝜂𝛼e (R, t).
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In Ref. [74] the following ansatz was considered for the full many-body wave function:

Ψ(r,R, t) =
M∑
𝛼=1

C𝛼(t)𝜓𝛼
e (r, t)𝜓𝛼

n (R, t). (18.68)

The basis functions in this sum are chosen to be Hermitian-CWFs, and the upper limit of the sum,
M, refers to the total number of stochastically sampled trajectories (we will show below that these
can be kept to a very low number, making the present scheme computationally very efficient).
Including interactions between the trajectories in the ensemble corrects the Hermitian-CWF evo-
lution, through the set of complex time-dependent coefficients, C(t) = {C1(t), ...,CM(t)}. The time
evolution of these coefficients, is obtained by inserting Eq. (18.68) into Eq. (18.1),

iℏ𝕄
.
C(t) = (𝕎 −𝕎1 −𝕎2)C(t), (18.69)

where the matrix elements of 𝕄, 𝕎, 𝕎1, and 𝕎2 are:

M𝛼,𝛼′ = ∫ dr𝜓𝛼′∗
e 𝜓𝛼

e ∫ dR𝜓𝛼′∗
n 𝜓𝛼

n (18.70a)

W𝛼,𝛼′ = ∫ drdR𝜓𝛼′∗
e 𝜓𝛼

e 𝜓
𝛼′∗
n 𝜓𝛼

n W(r,R) (18.70b)

W𝛼,𝛼′

e = ∫ dr𝜓𝛼′∗
e 𝜓𝛼

e W(r,R𝛼)∫ dR𝜓𝛼′∗
n 𝜓𝛼

n , (18.70c)

W𝛼,𝛼′

n = ∫ dr𝜓𝛼′∗
e 𝜓𝛼

e ∫ dR𝜓𝛼′∗
n 𝜓𝛼

n W(r𝛼,R). (18.70d)

Obtaining these matrix elements is straightforward and, except for (18.71b), they can be easily
calculated from independent single species integrals. Evaluating the matrix elements of 𝕎, in prin-
ciple, requires the reconstruction of the full (ansatz) wave function. This does not restrict the use
of the method to cases where the potential energy W(r,R) can be fit to a sum-of-products form, as
in the multi-configurational time-dependent Hartree method [22] for example, but it does pose a
potential numerical challenge in the case of a large trajectory ensemble (see a detailed descrip-
tion of this problem within the multi-configurational time-dependent Hartree method in, e.g.,
Chapter 12).

Once the coefficients C(t) are known, the velocity fields { .r𝛼,
.

R𝛼} are then constructed according
to the exact expressions for each subsystem:

.r𝛼i (t) =
ℏ

m
Im

[∑
𝛼C𝛼(t)𝜓𝛼

n (R𝛼, t)(∇i𝜓
𝛼
e (r, t))|r𝛼 (t)∑

𝛼C𝛼(t)𝜓𝛼
e (r𝛼, t)𝜓𝛼

n (R𝛼, t)

]
, (18.71)

.
R𝛼

A(t) =
ℏ

MA
Im

[∑
𝛼C𝛼(t)𝜓𝛼

e (r𝛼, t)(∇A𝜓
𝛼
n (R, t))|R𝛼 (t)∑

𝛼C𝛼(t)𝜓𝛼
e (r𝛼, t)𝜓𝛼

n (R𝛼, t)

]
. (18.72)

The Interacting-CWF method, described above, does not require the electronic BOPES or NACs as
input, or for time propagation. This feature is potentially quite advantageous for treating processes
that involve many quantum states or continua, as in light-induced dynamics or surface-scattering
phenomena.

In Ref. [74] the Shin–Metiu model (see Figure 18.8) system was studied using the Interacting-
CWF for the parameter regime defined by: Rf = 5a0, Rl = 4a0 and Rr = 3.1a0. Under this condi-
tion, the ground BOPES, 𝜖(1)BO, is strongly coupled to the first excited adiabatic state, 𝜖(2)BO, around
Rac = −2a0 (see Figure 18.7). The coupling to the rest of the BOPESs is negligible. The system
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Figure 18.7 BOPESs for the Shin–Metiu model system. Ground state, 𝜖(1), first excited state, 𝜖(2), and
second excited state, 𝜖(3) , BOPESs are shown respectively as a red solid line, blue dashed line, and green
dotted line.
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Figure 18.8 Dynamics in the Shin–Metiu model for photo-induced proton-coupled electron transfer [74].
Exact results (black line), Interacting-CWF with a number of trajectories M = 250 (open green circles) and
Ehrenfest mean field theory (blue dots). Left panel: Evolution of the BO state populations P1(t) and P2(t).
Right panel: Time-dependent decoherence indicator D12(t); Interacting-CWF results with 10 trajectories (red
dashed line).

was supposed to be initially uncorrelated, as if prepared by a short laser pulse, in the first excited
electronic state, 𝜖(2)BO, while the initial nuclear wave function is a Gaussian wave packet, with
𝜎 = 1∕

√
2.85, has been supposed to be centered on the equilibrium geometry of the ground

BO state, at R = −4.0a0. The time-step used for integrating the TDSE is 2.4 × 10−3fs (or 0.1a0).
The fourth-order Runge–Kutta algorithm was used to propagate the CWF equations of motion
and the corresponding trajectories. Propagating Eq. (18.70) requires the matrix inverse of 𝕄
in Eq. (18.71a). However, this matrix can become ill-conditioned when different products of
CWFs strongly overlap, or if the basis becomes overdetermined, for example. In Ref. [74] the
Moore–Penrose pseudo-inversion method was used to ameliorate this numerical complication.
Simulation results for the above described model system show that the Interacting-CWF method
captures a quantitatively accurate physical picture, while using a number of trajectories that
is orders of magnitude lower than the corresponding mean-field simulation (see Figure 18.8).
Furthermore there is minimal cross-talk between trajectories, which makes the algorithm com-
putationally efficient in massively parallel architectures. The degree of computational efficiency
offered by this approach creates the possibility to treat dynamics in molecular and extended
quantum systems with unprecedented accuracy without the need to pre-compute the BOPESs
or NACTs, while providing access to all observables relevant for describing non-equilibrium
dynamical phenomena.
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18.5.3 Time-Dependent Quantum Monte Carlo

I. P. Christov has also presented an ab-initio method to solve quantum many-body problems of
molecular dynamics where both electronic and nuclear degrees of freedom are represented by
ensembles of Bohmian trajectories. In [89], the guiding waves are solutions of a set of approxi-
mated Schrödinger equations evaluated along electronic and nuclear trajectories. The quantum
non-locality is incorporated into the model through effective potentials which are efficiently cal-
culated by Monte Carlo integration. Unlike other many-body methods based on density functional
calculations of the electronic structure, this approach uses explicit Coulomb potentials instead of
parametrized exchange-correlation potentials.

The so-called Time-Dependent Quantum Monte Carlo (TDQMC) can be derive by starting with
a single configuration ansatz (single Hartree product) for the total wave function where the nuclear
and electronic coordinates are separated, Ψ(r,R, t) = 𝜒(R, t)Φ(r, t), where in addition we assume
full factorization of the many-body wave functions for the nuclei 𝜒(R, t) and for the electrons
Φ(r, t), i.e.,:

Ψ(r,R, t) =
Nn∏

A=1
𝜒A(RA, t)

Ne∏
i=1

Φi(ri, t). (18.73)

In Eq. (18.74) it is assumed that the separate nuclear and electronic wave functions are normal-
ized to unity at every instant of time. Following the standard procedure of Hartree theory one can
derive a set of coupled nonlinear integro-differential equations for the nuclear and electronic wave
functions,

iℏ 𝜕
𝜕t
𝜒A(RA, t) =

[
−ℏ2

2MA
∇2

A +
∑
B≠A

∫ dRBVn−n(RA − RB)|𝜒B(RB, t)|2
+
∑

i
∫ driVn−e(RA − ri)|Φi(ri, t)|2 + Vext(RA, t)

]
𝜒A(RA, t) (18.74)

and

iℏ 𝜕
𝜕t
Φi(ri, t) =

[
−ℏ2

2m
∇2

i +
∑
j≠i

∫ drjVe−e(ri − rj)|Φj(rj, t)|2
+
∑

A ∫ dRAVe−n(ri − RA)|𝜒A(RA, t)|2 + Vext(ri, t)

]
Φi(ri, t), (18.75)

where in Eqs. (18.74) and (18.75) A,B = 1, ...,Nn and i, j = 1, ...,Ne. Terms which do not depend on
RA in Eq. (18.75) and on ri in Eq. (18.76), respectively, have been omitted because these terms do
not influence the motion of the corresponding Bohmian trajectories. Note that Eqs. (18.74) and
(18.75) differ from the standard self-consistent field equations in that here we use one-body wave
functions.

It is known, however, that the single determinant ansatz (Hartree) approximation and
the resulting mean-field equations Eqs. (18.74) and (18.75) disregard important local and
non-local quantum correlation effects. One approach to overcome these difficulties is to use a
multi-configuration ansatz where multiple wave functions for the electron degree are used, which
leads to multi-configuration time-dependent self-consistent field theory [22] (a detailed derivation
of the basic equations of motion in the multi-configurational time-dependent Hartree method can
be found, e.g., in Chapter 12). The TDQMC methodology assigns a separate set of wave functions
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and trajectories to each physical particle where the wave functions guide the Bohmian trajectories
for both the electron and nuclear degrees according to:

.r𝛼i (t) =
1
m

Im
[∇iΦ(r, t)

Φ(r, t)

]
r𝛼i (t)

, (18.76)

.
R𝛼

A(t) =
1

MA
Im

[∇A𝜒(R, t)
𝜒(R, t)

]
R𝛼

A(t)
. (18.77)

An important quantum correlation effect which is neglected in Hartree approximation is related
to a specific quantum non-locality that arises due to the dependence of many-body wave functions
in Eq. (18.74) on the coordinates in 3K + N dimensional configuration space. This non-locality
is evidence of an interaction between different points in configuration space which represent the
momentary coordinates of different replicas of the quantum system. One simple and efficient way
to account for these quantum effects is to formally represent the particle densities in (18.74) and
(18.75) by smoothed interpolation with, e.g., Gaussian kernels that are centered at the positions of
the Bohmian trajectories (kernel density estimation). For the electrons one then has

|Φi(ri, t)|2 =
M∑
𝛼=1

1
z𝛼i

exp

[
−
|ri − r𝛼i (t)|2
𝜎𝛼i (r

𝛼
i , t)2

]
, (18.78)

and for the nuclei,

|𝜒A(RA, t)|2 =
M∑
𝛼=1

1
Z𝛼

A
exp

[
−
|RA − R𝛼

A(t)|2
Σ𝛼A(R

𝛼
A, t)2

]
, (18.79)

where M is the number of Bohmian trajectories and zj and ZA are weighting factors to preserve the
norm of the states for the electrons and the nuclei, respectively.

Substituting Eqs. (18.78) and (18.79) into Eqs. (18.74) and (18.75) and assigning a separate guid-
ing wave to each Bohmian trajectory, one can transform the nonlinear Hartree equations (18.74)
and (18.75) into a set of coupled linear Schrödinger equations for the guiding waves,

iℏ 𝜕
𝜕t
𝜒𝛼A(RA, t) =

[
−ℏ2

2MA
∇2

A +
∑
B≠A

V eff
n−n(RA − R𝛼

B(t))

+
∑

j
V eff

n−e(RA − r𝛼j (t)) + Vext(RA, t)

]
𝜒𝛼A(RA, t) (18.80)

and

iℏ 𝜕
𝜕t
Φ𝛼

i (ri, t) =

[
−ℏ2

2m
∇2

i +
∑
j≠i

V eff
e−e(ri − r𝛼j (t))

+
∑

B
V eff

e−n(ri − R𝛼
B(t)) + Vext(ri, t)

]
Φ𝛼

i (ri, t), (18.81)

where the non-local effective potentials are calculated as sums over the smoothed trajectory distri-
butions,

V eff
n−n(RA − R𝛼

B(t)) =
1

Z𝛼
B

M∑
𝛽=1

Vn−n(RA − R𝛽

B(t)) exp

[
−
|R𝛽

B(t) − R𝛼
B(t)|2

Σ𝛼B(R
𝛼
B, t)2

]
, (18.82)

V eff
n−e(RA − r𝛼j (t)) =

1
z𝛼j

M∑
𝛽=1

Vn−e(RA − r𝛽j (t)) exp
⎡⎢⎢⎣−

|r𝛽j (t) − r𝛼j (t)|2
𝜎𝛼j (r

𝛼
j , t)2

⎤⎥⎥⎦ , (18.83)



�

� �

�

18.5 Non-BH Approaches 587

V eff
e−e(ri − r𝛼j (t)) =

1
z𝛼j

M∑
𝛽=1

Ve−e(ri − r𝛽j (t)) exp
⎡⎢⎢⎣−

|r𝛽j (t) − r𝛼j (t)|2
𝜎𝛼j (r

𝛼
j , t)2

⎤⎥⎥⎦ , (18.84)

V eff
e−n(ri − R𝛼

B(t)) =
1

Z𝛼
B

M∑
𝛽=1

Ve−n(ri − R𝛽

B(t)) exp

[
−
|R𝛽

B(t) − R𝛼
B(t)|2

Σ𝛼B(R
𝛼
B, t)2

]
, (18.85)

where

z𝛼j =
M∑
𝛽=1

exp
⎡⎢⎢⎣−

|r𝛽j (t) − r𝛼j (t)|2
𝜎𝛼j (r

𝛼
j , t)2

⎤⎥⎥⎦ , (18.86)

Z𝛼
B =

M∑
𝛽=1

exp

[
−
|R𝛽

B(t) − R𝛼
B(t)|2

Σ𝛼B(R
𝛼
B, t)2

]
. (18.87)

are the weighting factors. In fact, the effective potentials in Eqs. (18.82) and (18.83) describe the
weighted non-local Coulomb interaction experienced by a given trajectory from the 𝜈th nuclear
ensemble from the trajectories that belong to the 𝜉th nuclear ensemble and from those from the jth
electronic ensemble. The width of the Gaussian kernel Σ𝛼B(R

𝛼
B, t) plays the role of the characteristic

length of the non-local quantum correlations that depend on the nuclear density (the density of
trajectories) in the quantum system. At space locations where the trajectory density is higher the
nuclear correlation length Σ𝛼B(R

𝛼
B, t) in Eqs. (18.82) and (18.85) is smaller in order to compensate

for the higher number of interpolating Gaussians at that location. In these regions there are more
intense interactions between the 𝛼th trajectory from the 𝜈th nuclear ensemble and the trajectories
that represent the rest of electrons and nuclei. Because of the symmetry between the equations
for electrons and nuclei (Eqs. (18.80) and (18.81)), similar considerations hold for the electronic
non-local correlation length 𝜎𝛼j (r

𝛼
j , t). The non-local correlation lengths Σ𝛼B(R

𝛼
B, t) and 𝜎𝛼j (r

𝛼
j , t) are

not free parameters and can be estimated using simple formulas

Σ𝛼B(R
𝛼
B, t) = Σ

√
GB

P𝛼B(R, t)
, (18.88)

𝜎𝛼j (r
𝛼
j , t) = 𝜎

√
gj

𝜌𝛼j (r, t)
, (18.89)

where P𝛼B(R, t) and 𝜌𝛼j (r, t) are pilot density estimates of the trajectory distributions for the 𝜉th
nucleus and the jth electron, which can be obtained using kernel density estimation with constant
bandwidths Σ and 𝜎, and GB and gj are the geometric means of the values of P𝛼B(R, t) and 𝜌𝛼j (r, t) for
𝛼 = 1, ...,M, respectively.

Equations (18.80) and (18.81) represent the quantum–quantum version of TDQMC-MD where
both electronic and nuclear degrees are treated by sets of coupled Schrödinger equations and by the
corresponding guiding equations for the Bohmian trajectories, Eqs. (18.76) and (18.77). Different
approximations to the quantum–quantum description can be derived from Eqs. (18.80) and (18.81)
by, for example, disentangling the system replicas for the nuclear degrees of freedom by letting
Σ𝛼B → 0 (this limit is known as the ultracorrelated nuclei) and then taking the classical limit of the
nuclear degrees of freedom by taking the ℏ→ 0 limit.

Unlike other many-body quantum methods TDQMC does not involve calculation of overlap,
exchange, and correlation integrals, which significantly improve its scaling properties. It also uses
explicit Coulomb potentials instead of parametrized exchange-correlation potentials. The calcula-
tion of quantum potentials, which has been a major bottleneck for all particle methods, is avoided
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Figure 18.9 Left panel: Time-dependent ionization for one-dimensional hydrogen molecule in an external
optical pulse with carrier frequency 𝜔 = 0.137a.u. (335 nm) and peak intensity of 9 ⋅ 1014W cm−2. Black
solid line: Ehrenfest MD; blue line: quantum-classical TDQMC result; red line: quantum-quantum TDQMC
result; dashed line: TDHF. Reprinted from [I.P. Christov, J. Chem. Phys. 129, 214107 (2008)], with the
permission of AIP.

in TDQMC. The model calculations for the dynamics of low-dimensional hydrogen molecules
in external fields reveal that the TDQMC predictions for the ionization and for the internuclear
distance are slightly enhanced as compared with the results from the exact Ehrenfest molecular
dynamics (see Chapter 15), but they differ significantly from the TDHF results (see Figure 18.9). It
is also remarkable that the TDQMC method is easily parallelized and requires little communication
between the processors only for calculation of the non-local quantum correlation effects.

18.6 Conclusions

In this chapter we made a separation between approaches that are derived starting from the
Born–Huang representation of the molecular wave function, and approaches that can be derived
starting from the full (electron–nuclear) position-space representation of the time-dependent
molecular Schrödinger equation. While in this work, we mainly focused our investigation on
the use of Bohmian dynamics as a numerical approach for the reconstruction of the quantum
dynamics of complex systems, it is worth mentioning that in the so-called analytic approach,
Bohmian trajectories can also be reconstructed ‘a posteriori’ from the evolution of the system
wave function becoming a new interpretative paradigm for the description of interesting quantum
phenomena such as self-interference and entanglement [90].

In the Born–Huang basis electrons are described through a time-independent Schrödinger
equation that is parametrically dependent on the nuclear degrees of freedom. Time-dependent
wave packets representing the nuclear motion are discretized into a set of Bohmian fluid elements
and are followed in time by integrating coupled equations of motion that are solved in the
Lagrangian picture of fluid motion according to the Hamilton–Jacobi equations. Some of these
techniques are already mature in the field of non-adiabatic molecular dynamics and have been
applied to describe very large molecules, mainly thanks to their suitability to being coupled
with well established electronic structure methods like multi-configurational self-consistent field
(CASSCF) with or without corrections to include dynamical correlation [91], Coupled Clus-
ter [92], and time-dependent density functional theory (TDDFT) [48, 93, 94]. Certainly, Bohmian
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approaches based on the Born–Huang basis require the propagation of the exact Hamilton–Jacobi
equation and hence cannot avoid the cumbersome computation of the quantum potential. Only
under certain approximations can this problem be resolved [45, 46, 69, 86, 96]. Unfortunately, since
the quantum potential does carry crucial information about the quantum nature of the nuclei,
these approaches often fail to capture quantum nuclear effects such as tunneling, interference
or the splitting of the nuclear probability density.

Alternatively, in Bohmian approaches based on the position-space representation of the full
molecular wave function electrons and nuclei are treated in a symmetric way and are both repre-
sented by time-dependent equations of motion. Time-dependent electrons (nuclei) are described
by waves that parametrically depend, via the Coulombic potential energy of the system, on nuclear
(electronic) trajectories. These approaches allow to bypass the, typically necessary, computation of
multiple BOPESs and NACTs and hence offer a new and attractive route to calculate observables
and time correlation functions without relying on the widely used Born–Oppenheimer picture.
Furthermore, the calculation of quantum potentials, which is a major bottleneck for methods
based on the Born–Huang basis, is also avoided in these approaches. Despite the potential of these
approaches to capture quantum nuclear effects, they have only been applied to model systems
of very small molecules and their extension to systems made of more than a few atoms remains
questionable mainly due to the lack of a proper procedure to couple them with well established
electronic structure/dynamics methods [26, 72–74, 76, 77]. Overcoming these drawbacks may be
just a matter of time, and would result in a prominent computational tool to describe non-adiabatic
molecular dynamics.
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Semiclassical Molecular Dynamics for Spectroscopic Calculations
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Abstract

We present some historical and recently developed techniques to perform semiclassical spectroscopy
calculations with both ground and excited state dynamics. The illustrated topics begin with a
derivation of the basic semiclassical van Vleck propagator starting from Feynman’s path integral
formulation, followed by the description of the initial value representation formalism and a derivation
of the Heller–Herman–Kluk–Kay semiclassical propagator. The chapter continues by introducing
the time averaging technique and its very recent developments consisting in the multiple coher-
ent, divide-and-conquer, and mixed semiclassical approaches. The main features of each method
are described through examples with the intent of helping readers have a gentle learning curve.
The chapter ends with a workflow chart, a few representative applications, a summary, and some
conclusions.

19.1 Introduction

The primary research goal in the field of spectroscopy is the study of the interaction between light
and matter. Depending on the frequency of the radiation, the term spectroscopy is usually specified
as ultraviolet (UV), infrared (IR), microwave, and others. The different energy ranges of the radia-
tion actually translate into different targets of investigation. For instance, UV spectroscopy focuses
on electronic transitions, IR or Raman spectroscopies on molecular vibrations, and microwave
spectroscopy on molecular rotations.

Infrared spectroscopy experiments are important tools for chemical characterization of unknown
samples. In fact, peak positions in an IR spectrum are correlated to the molecular structures of the
unknown chemical species. Many molecules strongly absorb in the mid-infrared region, defined
by frequencies in the range between approximately 400 and 4000 cm−1, with characteristic spectral
patterns that can be compared to those of the unknown sample. The spectrum can also be employed
in a quantitative way by exploiting peak intensities to estimate the species concentrations once
a reference has been set. Furthermore, the width of the peaks can provide useful insights about
the environment in which the molecule is embedded including pH conditions and the presence of
hydrogen bonding. Finally, the experimental technique is fast and has enough sensitivity to require
just a minimum amount of material.

Quantum Chemistry and Dynamics of Excited States: Methods and Applications,
First Edition. Edited by Leticia González and Roland Lindh.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.
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However, the assignment of experimental spectra may become difficult when the complexity
or dimensionality of molecular systems increases. Theoretical simulations can provide the neces-
sary support by identifying spectral features with more confidence and relating them to the actual
molecular motion. To this end, every theoretical method has to reconcile two different objectives.
First, it must describe quantum effects like zero-point energies, overtones, and resonances, which
cannot be neglected in spectroscopy. Secondly, it should be sufficiently manageable to be employed
also for high dimensional systems.

The starting point of quantum theoretical spectroscopy is the time-independent eigenvalue
equation ĤΨ(r⃗, R⃗) = EΨ(r⃗, R⃗) because, once eigenvalues and eigenvectors of the molecular Hamil-
tonian are known, frequencies of vibration and absorption spectra can be determined. The general
molecular Hamiltonian (neglecting spin-orbit interactions, and indicating electronic coordinates
with r⃗ and nuclear ones with R⃗) can be written as a sum of five terms

Ĥ = T̂N (R⃗) + T̂e(r⃗) + V̂eN (r⃗, R⃗) + V̂NN (R⃗) + V̂ee(r⃗) (19.1)

corresponding to the kinetic energies of nuclei and electrons and to the electron–nuclei,
nuclei–nuclei, and electron–electron interaction potential energies [1]. The Hamiltonian is not
separable into a nuclear and an electronic part due to the presence of V̂eN (r⃗, R⃗) which makes
the original eigenvalue problem difficult to solve. This interaction term is large and cannot be
neglected, so in order to separate nuclear and electronic motions an approximation must be
invoked. This is known as the Born–Oppenheimer approximation (for details see Chapter 1).
Solution of the electronic problem leads to the construction of the potential energy surface for the
system. Since the problem is solved at a discrete number of nuclear configurations, an analytical
form of the global surface is obtained only upon application of a fitting procedure, which may be
quite a difficult task and often constitutes a research topic on its own [2]. Furthermore, for each
electronic state a different potential energy surface can be constructed.

The eigenvalues of the vibrational Hamiltonian associated with a specific electronic state are
the vibrational energy levels Ek, starting with the zero-point one (E0), from which it is straight-
forward to compute the frequencies of all spectral transitions. For instance, the frequency of the
transition between the ground state and the generic k state with energy Ek is given by the differ-
ence (Ek − E0)∕ℏ. As for intensities, if the eigenfunctions are available, then (at least in principle)
all dipole matrix elements 𝜇0k = ⟨Ψ0|𝜇̂|Ψk⟩ could be calculated and, eventually, the absorption
formula

Iabs(E) ∝ E
∑

k
Δ(E − Ek + E0) |𝜇0k|2 (19.2)

can be evaluated, where Δ(E − Ek + E0) is a bell-shaped function (rigorously a Dirac 𝛿) peaked at
Ek − E0. However, the calculation may become prohibitive when the density of vibrational states is
very large, which, for high dimensional systems, may happen at low energies.

The goal of this second part of the book is to deal with dynamical approaches. Calculations of
vibrational frequencies and absorption spectra can indeed be undertaken by means of a dynam-
ical approach. Specifically, the eigenenergies of the vibrational Hamiltonian can be computed
from the Fourier transform of the survival amplitude ⟨Ξ|Ξ(t)⟩ of a generic reference state |Ξ⟩.
In fact,
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I(E) = 1
2𝜋ℏ ∫

+∞

−∞
dt eiEt∕ℏ⟨Ξ|Ξ(t)⟩

= 1
2𝜋ℏ ∫

+∞

−∞
dt eiEt∕ℏ⟨Ξ|e−iĤt∕ℏ|Ξ⟩

= 1
2𝜋ℏ ∫

+∞

−∞
dt eiEt∕ℏ

∑
k

|⟨Ξ|Ek⟩|2e−iEkt∕ℏ

=
∑

k
|⟨Ξ|Ek⟩|2𝛿(E − Ek). (19.3)

Peaks in the plot of I(E) obtained from numerical implementation of the first relation in Eq. (19.3)
are located at the vibrational eigenenergies of the system. Quantum vibrational frequencies are
then found easily by scaling the eigenenergies with respect to the ground state energy (i.e., the
vibrational zero point energy). A similar expression can be employed for absorption spectra. In
fact, in this latter case, the relevant formula is [3]

Iabs(E) ∝ E ∫
+∞

−∞
dt eiEt∕ℏ ⟨𝜇̂(0)𝜇̂(t)⟩, (19.4)

where the average is over the density matrix of the system.
In the case of a photo-absorption involving two different electronic states (in the low temperature

limit) [4]

⟨𝜇̂(0)𝜇̂(t)⟩ = ⟨Ξgs|𝜇̂e−iĤf t∕ℏ𝜇̂eiĤit∕ℏ|Ξgs⟩, (19.5)

where |Ξgs⟩ is the ground vibrational state of the lower electronic state, while Ĥi and Ĥf are the
nuclear Hamiltonians in the lower and upper electronic surface respectively. This leads to the fol-
lowing working formula

Iabs(E) ∝ E ∫
+∞

−∞
dt ei(E+E0)t∕ℏ ⟨Θ(0)|Θ(t)⟩, (19.6)

where |Θ⟩ is obtained by applying the electronic transition moment𝜇 to the ground vibrational state|Ξgs⟩ in the starting electronic state, i.e., |Θ⟩ = 𝜇̂|Ξgs⟩. E0 in Eq. (19.6) is the energy of |Ξgs⟩. Within
the Condon approximation, the electronic transition moment is taken as a constant. In this way, the
initial wave packet for the excited state dynamics (|Θ(0)⟩) is prepared in a non-stationary state. By
evolving it on the excited electronic state, the vibronic absorption spectrum is obtained similarly
to power spectra and shows peaks at the energy E of the vibronic transitions. In photoemission
calculations formulae are similar. The two surfaces are treated symmetrically, but there is a cubic
dependence on the energy in front of the integration [3].

Many different theoretical approaches to spectroscopy have been developed to calculate I(E) and
Iabs(E). In this chapter we focus on semiclassical (SC) molecular dynamics for spectroscopic calcu-
lations [5]. In this context “semiclassical” and “semiclassical dynamics” refer to a set of theories
and time-dependent approaches based on an approximate quantum propagator (i.e., the semiclas-
sical propagator) dependent on classical quantities. Therefore, the hallmark of SC dynamics is
represented by the possibility to extract quantum features from classical molecular dynamics simu-
lations [6]. This is permitted by the mathematical structure of the semiclassical propagator, which
is based on classically evolved trajectories with remarkable ease of computational needs. Due to
this property, semiclassical dynamics is a promising tool for high-dimensional applications. Other
advantages include the possibility to work in Cartesian coordinates and to use the potential energy
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obtained from the electronic problem “as is” and without any further approximation. In particular
the potential can be provided in the form of an analytical surface or calculated ab initio on-the-fly
for the whole dynamics. Finally, being based on classical dynamics, semiclassical methods may
provide a more intuitive picture with respect to quantum approaches.

In this chapter devoted to SC dynamics we illustrate first the derivation of the basic semiclassical
propagator as a stationary-phase approximation to Feynman’s path integral formulation of quan-
tum mechanics. Then the Heller–Herman–Kluk–Kay propagator is derived. It serves as the starting
point for developing the multiple coherent and divide-and-conquer techniques, which are neces-
sary to extend the applicability of semiclassical spectroscopy to high dimensional systems. These
techniques are described theoretically and through examples that guide the reader in their appli-
cation. We introduce also another family of semiclassical propagators known as “thawed Gaussian
propagators” and a promising approach to condensed phase spectroscopy, before moving to appli-
cations concerning vibrational and vibronic spectroscopy. The methods presented can be applied
to studies involving both ground-state and excited-state dynamics. Some general conclusions end
the chapter.

19.2 From Feynman’s Path Integral to van Vleck’s Semiclassical
Propagator

Among the many alternative derivations of the semiclassical propagator [7–9], perhaps the most
intuitive one originates from Feynman’s path integral formulation of the exact quantum propagator
[10]. For more information on Feynman’s propagator see Chapter 20.

We start from the observation that the differential Schrödinger equation

iℏ
𝜕|Ξ⟩
𝜕t

= Ĥ|Ξ⟩ → |Ξ(t)⟩ = e−iĤt∕ℏ|Ξ(0)⟩ (19.7)

can be written in the path integral form by projecting the state |Ξ⟩ onto the coordinate q⃗-space

Ξ(q⃗′(t)) ≡ ⟨q⃗′|Ξ(t)⟩ = ⟨q⃗′|e−iĤt∕ℏ|Ξ(0)⟩ = ∫
+∞

−∞
dq⃗0⟨q⃗′|e−iĤt∕ℏ|q⃗0⟩⟨q⃗0|Ξ(0)⟩. (19.8)

Insertion of the identity ∫ +∞
−∞ dq⃗0|q⃗0⟩⟨q⃗0| into Eq. (19.8) introduces the idea of quantum propagation

as the summation over all possible values in q⃗ − space of the probability amplitude ⟨q⃗′|e−iĤt∕ℏ|q⃗0⟩
matrix times the state vector ⟨q⃗0|Ξ(0)⟩. The focus for solving the quantum propagation is now
shifted to a suitable representation of the probability amplitude, instead of the wave function calcu-
lation as originally in Eq. (19.7). The first step consists in breaking N times the total time-evolution
interval into infinitesimal Δt = t∕N time slices

⟨q⃗′|e−iĤt∕ℏ|q⃗0⟩ = lim
Δt→0

⟨q⃗′|(e−iĤΔt∕ℏ)N |q⃗0⟩ = lim
Δt→0

⟨q⃗′|(e−iT̂Δt∕ℏe−iV̂Δt∕ℏ)N |q⃗0⟩, (19.9)

where T̂ is the kinetic energy operator, V̂ the potential energy one, and the last equality is often
referred to as the Suzuki–Trotter decomposition formula. The power of N can be interpreted as a
product of N terms, so the next step consists in the insertion of N − 1 quantum mechanical identi-
ties

⟨q⃗′|e−iĤt∕ℏ|q⃗0⟩ = lim
Δt→0 ∫

+∞

−∞
dq⃗1 …∫

+∞

−∞
dq⃗N−1⟨q⃗′|(e−iT̂Δt∕ℏe−iV̂Δt∕ℏ)|q⃗N−1⟩

×⟨q⃗N−1|(e−iT̂Δt∕ℏe−iV̂Δt∕ℏ)|q⃗N−2⟩ · · · ⟨q⃗1|(e−iT̂Δt∕ℏe−iV̂Δt∕ℏ)|q⃗0⟩. (19.10)
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In the time limit Δt → 0 the potential can be approximated to a constant, the value being that
of the potential at the mid-point between the two coordinates of each bracket in Eq. (19.10). The
effect is twofold. On the one hand the exponential involving the potential can be evaluated straight-
forwardly. On the other hand what is left corresponds to a product of free-particle probability
amplitudes which is analytically known. In fact, for a single probability amplitude

⟨q⃗N−1|(e−iT̂Δt∕ℏe−iV̂Δt∕ℏ)|q⃗N−2⟩ = e−i V(q⃗N−1 )+V(q⃗N−2 )
2

Δt∕ℏ⟨q⃗N−1|e−iT̂Δt∕ℏ|q⃗N−2⟩. (19.11)

Eventually, Feynman derived the following expression for the coordinate representation of the
quantum propagator of a system of mass m (in the first sum qN = q′)

⟨q⃗′|e−iĤt∕ℏ|q⃗0⟩ = lim
N→∞

( m
2𝜋iℏΔt

)N∕2

∫
+∞

−∞
dq⃗1...∫

+∞

−∞
dq⃗N−1

exp

[
imΔt

2ℏ

N∑
K=1

(qK − qK−1

Δt

)2
]

exp

[
− iΔt
ℏ

(
V(q⃗0)

2
+

V(q⃗′)
2

+
N−1∑
k=1

V(q⃗K)

)]

= ∫ [q⃗(t)]eiSt(q⃗′ ,q⃗0)∕ℏ (19.12)

St(q⃗′, q⃗0) is the action along the path going from q⃗0 to q⃗′ in time t. It is defined as the time integral
of the difference between kinetic and potential energies. ∫ [q⃗(t)] is a special functional measure
proportional to the product

∏N−1
i=1 ∫ +∞

−∞ dq⃗i. In Figure 19.1 the integration of Eq. (19.12) is pictorially
represented, with the time interval on the x-axis and the dashed vertical lines which are examples
of time slices. Composition of all possible q⃗𝛼 values at each time slice accounts for all possible path
integrations.

Some of the possible paths are reported as continuous lines in Figure 19.1. Paths can be of any
type, including polygonal chains (red curves). In general, they are not classical paths. Identifica-
tion of all possible paths is, however, a formidable task which needs to be eased by approximating
Eq. (19.12) in an appropriate way.

A stationary phase approximation [7] to the quantum propagator leads to what is called the semi-
classical propagator. In detail, the stationary phase approximation to an oscillatory 1-dimensional
integral can be written as

∫
+∞

−∞
dx eif (x) ≈

∑
{xj|df (xj)∕dx=0}

√
2𝜋i

d2f (xj)∕dx2 eif (xj). (19.13)

0

q0

q(t)

sp
ac

e

t
time

Generic
Paths

Classical
Paths

Figure 19.1 Pictorial representation of the Feynman path integral integration.
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Easy extension to the multi-dimensional case is obtained by substituting d2f (xj)∕dx2 with the cor-
responding determinant of the matrix of second derivatives of f with respect to the position (i.e.,
the Hessian). This anticipates that in a SC simulation Hessian calculations are required along the
trajectory. From classical mechanics it is known (Hamilton’s principle) that for classical paths the
functional derivative of the action with respect to a given path q⃗(t) is zero. This is exactly the station-
ary phase condition for the path integral. Thus, the stationary phase approximation to the Feynman
probability amplitude between q⃗0 and q⃗′ in Eq. (19.12) leads to the following sum over all possible
classical paths (called roots) connecting points q⃗0 and q⃗′ in time t including fluctuations up to the
second order around the classical action of each path

⟨q⃗′|e−iĤt∕ℏ|q⃗0⟩ ∝ ∑
roots

ei
(

Scl
t (q⃗

′ ,q⃗0)+
𝜕

𝜕q⃗(t) Scl
t (q⃗

′ ,q⃗0)+
𝜕2

𝜕q⃗(t)2
Scl

t (q⃗
′ ,q⃗0)

)
∕ℏ
, (19.14)

where 𝜕Scl
t (q⃗

′, q⃗0)∕𝜕q⃗(t) = 0 because the sum is over classical paths. This is pictorially represented
by the blue lines in Figure 19.1. Finding all the roots is not a trivial problem, which is generally
known as the “double boundary problem”. A suitable technique to overcome this formidable issue
will be presented in the next section.

In the following we proceed with the algebra to determine explicitly an analytical formula for
the coordinate representation of the semiclassical propagator. For simplicity we work in single
dimensionality, but formulae are easily generalizable to multiple dimensions. The Feynman path
integral is

⟨q′|e−iĤt∕ℏ|q0⟩ = lim
N→∞

( Nm
2𝜋iℏt

)N∕2

∫
+∞

−∞
dqN−1 …∫

+∞

−∞
dq1eiSN (q)∕ℏ, (19.15)

with (qN = q′) and

SN (q) =
Nm
2t

N∑
K=1

(qK − qK−1)2 − t
N

[N−1∑
K=1

V(qK) +
1
2
(V(q0) + V(qN ))

]
. (19.16)

The stationary phase condition is 𝜕SN∕𝜕qK = 0 for K = 1,N − 1 leading to the following relation
for each qK

−V ′(qK) = m
qK+1 + qK−1 − 2qK

Δt2 ≈ mq̈K , (19.17)

where the second derivative of the position is approximated with a central finite difference for-
mula. Equation (19.17) is nothing other than Newton’s law for the classical motion of a particle of
mass m moving in the potential V , thus confirming that application of the stationary phase con-
dition restricts the general Feynman paths to classical trajectories only. To perform the stationary
phase integration (see Eq. (19.13)), upon insertion of Eq. (19.16) into Eq. (19.15) one integrates the
Gaussian integrals of each path fluctuation. By writing [11]|||||

𝜕2SN

𝜕qi𝜕qj

|||||
−1

= −
( t

Nm

)N |||||
𝜕2SN

𝜕q0𝜕qN

||||| , (19.18)

the final, multidimensional expression is

⟨
q⃗′ |||e− i

ℏ
Ĥt||| q⃗0

⟩
≈

∑
roots

⎡⎢⎢⎣−
||| 𝜕2St
𝜕q⃗′𝜕q⃗0

|||
(2𝜋iℏ)F

⎤⎥⎥⎦
1∕2

e
i
ℏ

St(q⃗′ ,q⃗0)

ei𝜐𝜋∕2

=
∑
roots

[
(2𝜋iℏ)F

||||| 𝜕q⃗′

𝜕p⃗0

|||||
]−1∕2

e
i
ℏ

St(q⃗′ ,q⃗0)

ei𝜐𝜋∕2

(19.19)
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where we have introduced the formula valid for classical trajectories 𝜕St(q⃗′, q⃗0)∕𝜕q⃗0 = −p⃗0 and F
indicates the number of degrees of freedom [12, 13]. In Eq. (19.19) the sum is only over classical
trajectories.

Equation (19.19) represents the semiclassical approximation to Feynman’s path integral [7], an
expression analogous to the one proposed by van Vleck many years before [13]. The exponential
term e−i𝜐𝜋∕2 ensures the continuity of the complex square root of the pre-exponential factor and
𝜐 is called the Maslov index [14]. It is important to stress that the semiclassical approximation is
not simply a sum over all possible classical paths of the exact Feynman path integral, but each
path takes into account the second-order fluctuations around the classical path. In other words,
the semiclassical approximation is able to reproduce quantum effects with high accuracy because
it does not only include the interference effects generated by the sum of many classical trajectories
weighted by the complex quantity exp [iS(q⃗′, q⃗0)∕ℏ], but it also reproduces the quantum fluctua-
tions 𝜕2St∕𝜕q⃗′𝜕q⃗0 up to the second order around each path.

19.3 The Semiclassical Initial Value Representation and
the Heller–Herman–Kluk–Kay Formulation

Equation (19.19) has the intriguing feature of reproducing quantum effects starting from classical
trajectories, but nevertheless its application has been quite limited. The reason for this limitation
is twofold.

First, simulations are hindered by the presence of caustic points (defined by the relation
𝜕q⃗′∕𝜕p⃗0 = 0) at which the determinant in the pre-exponential factor becomes singular. q⃗′ is a
caustic (or focal) point for the classical trajectories started at q⃗0 when the trajectories reach q⃗′

independently of their initial momentum. As an example, we calculate the caustic points of a
1-dimensional harmonic oscillator of unitary mass that starts at (p0, q0). After an evolution time T

q(T) = q0cos(𝜔T) +
p0

𝜔
sin(𝜔T). (19.20)

The condition for caustic points 𝜕q(T)∕𝜕p0 = 0 is in this case equivalent to sin(𝜔T)∕𝜔 = 0. This
means that at times T = n𝜋∕𝜔 the trajectory lands on the caustic points, which are located at ±q0,
i.e., the inversion points of the harmonic oscillator if no momentum is given initially.

Secondly, a search for multidimensional trajectories satisfying the double boundary condition is
requested.

Even though the first of the two issues can be removed analytically by means of “uniformization”
approximations, which consist in switching to appropriate, caustic-free representations in proxim-
ity of the singularity, solving the double boundary problem is quite a cumbersome task in spite of
the ever increasing availability of computational power.

To overcome both issues, William H. Miller incorporated an initial value representation
(IVR) into the SC approximation [15]. In semiclassical IVR (SCIVR) the sum over all possible
boundary-ended classical trajectories is replaced by an integration over initial momenta, such that
the final position is equal to q⃗′

∑
roots

→ ∫ dp⃗0

||||| 𝜕q⃗′

𝜕p⃗0

||||| 𝛿(q⃗t − q⃗′). (19.21)

In Eq. (19.21) the determinant is the Jacobian for the change of variables from q⃗′ (the final position)
to p⃗0 (the starting momentum), while the delta function enforces the desired boundary condition.
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This change of variables presents two advantages. First, the pre-exponential singularity is removed
and the semiclassical approximation is uniform. Secondly, the root search is replaced by a phase
space integration, which can be evaluated by means of Monte Carlo techniques with much less
computational effort. Eventually, the SCIVR version of Eq. (19.19) is⟨

q⃗′ |||e− i
ℏ

Ĥt||| q⃗0

⟩
≈ ∫ dp⃗0𝛿(q⃗t − q⃗′)

[ |𝜕q⃗′∕𝜕p⃗0|
(2𝜋iℏ)F

]1∕2
e

i
ℏ

St(p⃗0,q⃗0)

ei𝜐𝜋∕2 . (19.22)

For numerical calculations, the Dirac delta in Eq. (19.22) can be conveniently represented as an
appropriately narrowed Gaussian function.

However, the SCIVR probability amplitude is not employed per se, but rather for calculating phys-
ical observables. We will use it for spectroscopic calculations using the time-dependent approach of
Eq. (19.3). By inserting twice the q⃗-space identity and by means of the SCIVR probability amplitude
of Eq. (19.22), the survival amplitude becomes⟨

Ξ |||e− i
ℏ

Ĥt|||Ξ⟩ = ∫ dq⃗′dq⃗0⟨Ξ|q⃗′⟩ ⟨q⃗′|e− i
ℏ

Ĥt|q⃗0

⟩ ⟨q⃗0|Ξ⟩
≈ ∫ dp⃗0 ∫ dq⃗0

[
1

(2𝜋iℏ)F

|||||
𝜕q⃗t

𝜕p⃗0

|||||
]1∕2

e
i
ℏ

St(p⃗0,q⃗0)

ei𝜐𝜋∕2 Ξ∗(q⃗t)Ξ(q⃗0). (19.23)

As anticipated, the great advantage of Eq. (19.23) is that now the survival probability can be
evaluated via Monte Carlo integration. Calculations aimed at vibrational spectroscopy are
commonly performed in normal mode coordinates. By diagonalizing the Hessian matrix at
the equilibrium geometry the normal frequencies of vibrations are obtained, and the associ-
ated eigenvectors serve to define the transformation matrix from normal modes to Cartesian
coordinates.

Further advances in SC dynamics were introduced by Heller [16], who inspired later work by
Herman and Kluk [17], and eventually Kay [18–20]. They represented the semiclassical propagator
in terms of coherent states. Coherent states (|p⃗, q⃗⟩) have a Gaussian representation in coordinate
space

⟨x⃗|p⃗, q⃗⟩ = (
det(Γ)
𝜋F

)1∕4

e−(x⃗−q⃗)T Γ
2
(x⃗−q⃗)+ip⃗ T(x⃗−q⃗)∕ℏ, (19.24)

where the Gaussian width is determined by the (usually diagonal) Γ width parameter matrix. It is
possible either to reformulate the Feynman paths directly in terms of coherent states [21, 22], or to
represent Eq. (19.23) on the basis of coherent states [17]. In both instances the following expression
for the survival amplitude is derived⟨

Ξ |||e− i
ℏ

Ĥt|||Ξ⟩ ≈ 1
(2𝜋ℏ)F ∫ ∫ dq⃗0dp⃗0Ct(p⃗0, q⃗0)e

i
ℏ

St(p⃗0,q⃗0)

× ⟨Ξ|p⃗t, q⃗t⟩⟨p⃗0, q⃗0|Ξ⟩, (19.25)

where, in its most general form [18],

Ct(p⃗0, q⃗0) =

√|||||1
2

(
𝜕q⃗t

𝜕q⃗0
+ Γ−1

𝜕p⃗t

𝜕p⃗0
Γ − iℏ

𝜕q⃗t

𝜕p⃗0
Γ + iΓ−1

ℏ

𝜕p⃗t

𝜕q⃗0

)|||||. (19.26)

The semiclassical way to calculate the survival amplitude of Eq. (19.25) numerically is to perform
the phase space integration by Monte Carlo methods upon sampling of the initial phase space coor-
dinates (p⃗0, q⃗0). The real part of the term ⟨p⃗0, q⃗0|Ξ⟩ in Eq. (19.25) constitutes a natural weight for
the Monte Carlo sampling. After the classical evolution is performed employing preferentially a
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simplectic algorithm [23], at the generic time t, starting from the values of p⃗t and q⃗t, the classi-
cal action St(p⃗0, q⃗0) and the pre-exponential factor Ct(p⃗0, q⃗0) are calculated. Eventually, the power
spectrum is obtained by Fourier transforming Eq. (19.25)

I(E) = 1
2𝜋ℏ ∫

+∞

−∞
dteiEt∕ℏ 1

(2𝜋ℏ)F ∫ ∫ dq⃗0dp⃗0Ct(p⃗0, q⃗0)

× eiSt(p⃗0 ,q⃗0)∕ℏ⟨Ξ|p⃗t, q⃗t⟩⟨p⃗0, q⃗0|Ξ⟩. (19.27)

19.4 A Derivation of the Heller–Herman–Kluk–Kay Propagator

Once the mathematical expression of the Heller–Herman–Kluk–Kay (HHKK) propagator has been
introduced

(e−iĤt∕ℏ)HHKK = 1
(2𝜋ℏ)F ∫ ∫ dq⃗0dp⃗0Ct(p⃗0, q⃗0)eiSt(p⃗0 ,q⃗0)∕ℏ|p⃗t, q⃗t⟩⟨p⃗0, q⃗0|, (19.28)

following Miller’s original derivation [24] we detail how Eq. (19.25) – and consequently
Eq. (19.28) – can be derived from Eq. (19.23).

For simplicity we work in one dimension and begin by showing that an appropriate filter
can be introduced into an oscillatory integral to speed up the convergence of the integration.
This technique, known as Filinov filtering, is based on the insertion of a Gaussian identity into the
target integral. Specifically

I = ∫ dx0ei𝜙(x0) = ∫ dx0 ∫ dxG

√
A
𝜋

e−A(xG−x0)2 ei𝜙(x0), (19.29)

which can be approximated by expanding to the second order the function 𝜙(x0) around xG and
then integrating analytically in the x0 variable

I ≈
√

A
𝜋 ∫ dxG ∫ dx0e−A(x0−xG)2 ei[𝜙(xG)+𝜙′(xG)(x0−xG)+

1
2
𝜙′′(xG)(x0−xG)2]

= ∫ dxG ei𝜙(xG)
√

A
A − i

2
𝜙′′(xG)

e−𝜙′(xG)2∕[4A−2i𝜙′′(xG)]. (19.30)

Equation (19.30) retains the original integrand with the addition of a damping factor that facili-
tates numerical convergence [25]. The A parameter can be chosen arbitrarily, but Makri and Miller
suggested employing the value A = [i𝜙′′(xG) + c−1]∕2, where c is a constant or a constant matrix in
the multidimensional case. This choice is justified by the observation that the Gaussian identity is
still approximately valid even if A is a function of the variable of integration [26].

The next step consists in applying this Filinov filter to calculate the propagation from a coherent
state |Ξi⟩ ≡ |pi, qi⟩ to a coherent state |Ξf ⟩ ≡ |pf , qf ⟩ (both of Γ width) by means of van Vleck’s
propagator according to⟨

Ξf
|||e− i

ℏ
Ĥt|||Ξi

⟩
= ∫ dqtdq0 (2𝜋iℏ 𝜕qt∕𝜕p0)−1∕2 eiSt(qt ,q0)∕ℏ ⟨pf ,qf |qt⟩ ⟨q0|pi, qi⟩, (19.31)

where the exponential with the Maslov index is left implicit. We work out the case of a
1-dimensional system (i.e., a bidimensional phase space) but results are generalizable to multiple
dimensions. We assume also that the complex-valued pre-exponential factor in Eq. (19.31) is slowly
varying with respect to the rest of the integrand, so that the filter applies only to the latter. Then, by
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rearranging Eq. (19.31) in the form I = ∫ dqt dq0 A′ ei𝜙(qt ,q0) with A′ including the pre-exponential
factor and normalization constants, we need to evaluate the first and second derivatives of 𝜙(qt,q0)

𝜙(qt, q0) = St(qt, q0) + pi(q0 − qi) − pf (qt − qf ) + iΓ
2
(qf − qt)2 + iΓ

2
(qi − q0)2 (19.32)

𝜕𝜙(qt, q0)
𝜕q0

= −p0 + pi + iΓ(q0 − qi)
𝜕𝜙(qt,q0)
𝜕qt

= pt − pf + iΓ(qt − qf ) (19.33)

⎛⎜⎜⎜⎜⎝
𝜕2𝜙(qt,q0)

𝜕q2
t

𝜕2𝜙(qt, q0)
𝜕q0𝜕qt

𝜕2𝜙(qt, q0)
𝜕qt𝜕q0

𝜕2𝜙(qt, q0)
𝜕q2

0

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
𝜕pt

𝜕qt
+ iΓ

𝜕pt

𝜕q0

−
𝜕p0

𝜕qt
−
𝜕p0

𝜕q0
+ iΓ

⎞⎟⎟⎟⎠ , (19.34)

and then choose a diagonal Filinov parameter matrix

c =
(

c0 0
0 c1

)
. (19.35)

In agreement with Eq. (19.30) the Filinov filtered version of the integral in Eq. (19.31) becomes

I ≈ ∫ dqtdq0

(Γ
𝜋

)1∕2 (
2𝜋iℏ

𝜕qt

𝜕p0

)−1∕2

det[1 + ic𝜙′′]1∕2 e[−𝜙
′T c

2
𝜙′+i𝜙], (19.36)

where𝜙′ is shorthand for the vector of first derivatives (Eq. (19.33)) and𝜙′′ for the matrix of second
derivatives in Eq. (19.34). Eventually, moving to the IVR framework

I ≈ (2𝜋ℏ)−1 ∫ dp0dq0

(
−2iℏΓ

𝜕qt

𝜕p0

)1∕2

CFil e[i𝜙+𝜙Fil]. (19.37)

Matrix–matrix and matrix–vector products appearing in Eq. (19.36) can be evaluated using stan-
dard algebraic manipulations. This leads to

C2
Fil = (1 − c0Γ)(1 − c1Γ) +

(
𝜕qt

𝜕p0

)−1 (
ic1
𝜕qt

𝜕q0
(1 − c0Γ) + ic0(1 − c1Γ)

𝜕pt

𝜕p0
− c0c1

𝜕pt

𝜕q0

)
𝜙Fil = −

c1

2
[(pt − pf )2 + 2iΓ(pt − pf )(qt − qf ) − Γ2(qt − qf )2]

−
c0

2
[(p0 − pi)2 + 2iΓ(pi − p0)(q0 − qi) − Γ2(q0 − qi)2],

and the HHKK propagator of Eq. (19.28) in the mono-dimensional case is obtained by choosing
c0 = c1 = 1∕2Γ. This demonstrates that the more practical HHKK propagator can be derived as an
approximate version of the van Vleck one. The key advantages of the former lie in the built-in
Gaussian probability density for Monte Carlo integration and in the possibility to preserve the uni-
tarity of the propagator longer in time thanks to its pre-exponential factor [27].

19.5 The Time-Averaging Filter

Application of the original HHKK propagator is limited to low-dimensional systems due to the
presence of the oscillatory exponential in the integrand. Several methods such as cellular dynamics
[28–30], Filinov and generalized Filinov filtering [26, 31, 32] have been proposed and can be effec-
tive to speed up the convergence of the Monte Carlo integration of Eq. (19.27). Here we describe in
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detail a different approach based on the insertion of a time-averaging (TA) filter. Time-averaging
was introduced by Elran and Kay [33, 34], and later by Kaledin and Miller [35, 36]. The idea is that
starting from a phase space average of the form of the HHKK propagator

IPS = ∫ ∫ dp⃗0dq⃗0 A(p⃗0, q⃗0), (19.38)

one can speed up convergence by time-averaging the integrand, thus damping disadvantageous
oscillations. In practice, the time averaged version of IPS is

IPS-TA = ∫ ∫ dp⃗0dq⃗0
1
T ∫

T

0
dt A(p⃗t, q⃗t), (19.39)

which is fully equivalent to IPS. The demonstration is achieved first by changing the order of integra-
tions, and then by invoking Liouville’s theorem, which guarantees that the phase-space distribution
function is constant along the trajectories and the change of variables dp⃗0dq⃗0 → dp⃗tdq⃗t has a uni-
tary Jacobian.

IPS-TA = 1
T ∫

T

0
dt ∫ ∫ dp⃗0dq⃗0A(p⃗t, q⃗t)

= 1
T ∫

T

0
dt ∫ ∫ dp⃗tdq⃗tA(p⃗t, q⃗t)

= 1
T ∫

T

0
dtIPS = IPS

(19.40)

The phase-space and time integrations commute, but Eq. (19.40) is exact only when, within numer-
ical accuracy, both integrations have converged. Kaledin and Miller [35, 36] worked out the follow-
ing time averaged version of Eq. (19.27)

I(E) = 1
(2𝜋ℏ)F ∫ ∫ dq⃗0dp⃗0

1
T ∫

T

0
dt1

Re
𝜋ℏ ∫

+∞

0
dteiEt∕ℏ

× Ct1+t(p⃗t1
, q⃗t1

)eiSt1+t(p⃗t1 ,q⃗t1 )∕ℏ⟨Ξ|p⃗t1+t, q⃗t1+t⟩⟨p⃗t1
, q⃗t1

|Ξ⟩. (19.41)

Finally, moving from the integration variable t to t2 = t1 + t, Eq. (19.41) becomes

I(E) = 1
(2𝜋ℏ)F ∫ ∫ dq⃗0dp⃗0

Re
𝜋ℏT ∫

T

0
dt1

× ∫
+∞

t1

dt2e
i
ℏ
(St2 (p⃗0 ,q⃗0)+Et2)⟨𝜒|p⃗t2

, q⃗t2
⟩e−

i
ℏ
(St1 (p⃗0 ,q⃗0)+Et1)

× ⟨p⃗t1
, q⃗t1

|𝜒⟩Ct2
(p⃗t1

, q⃗t1
)

(19.42)

which is the time-averaged SCIVR (TA-SCIVR) formula for power spectrum calculations.
We now focus on the bound states and consider a number N𝑣ib of vibrational degrees of

freedom. In order to get to a simpler form of Eq. (19.42), we approximate the pre-exponential
factor Ct2

(p⃗t1
, q⃗t1

) in Eq. (19.42), in agreement with previous work [36]. We note that for the
harmonic oscillator Ct2

(p⃗t1
, q⃗t1

) = e−i(ℏ𝜔)(t2−t1)∕2ℏ = e−i(𝜙(t1)−𝜙(t2))∕ℏ, which is a complex number of
unit modulus with a time-dependent phase. The pre-exponential factor is analytically separable,
i.e., Ct2

(p⃗t1
, q⃗t1

) = Ct2
(p⃗t0

, q⃗t0
)C∗

t1
(p⃗t0

, q⃗t0
), where Ct(p⃗0, q⃗0) ≈ ei𝜙(t)∕ℏ. Inspired by this consideration,

we decide to approximate for any bound degree of freedom the exact Herman Kluk prefactor
to an element of unitary norm dependent on the prefactor phase Ct(p⃗0, q⃗0) ≈ ei𝜙(t)∕ℏ, where
𝜙(t) = phase[Ct(p⃗0, q⃗0)], as suggested in Ref. [36]. Finally, noting that the integration over t2 is for
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practical purposes limited to the simulation time T and duplicating the integral by integrating
from 0 to T also in t2 (and consequently dividing the result by a factor of 2), the power spectrum
formula obtained by means of this separable approximation is

I(E) =
( 1

2𝜋ℏ

)N𝑣ib

∫ ∫ dp⃗0dq⃗0
1

2𝜋ℏT

×
|||||∫

T

0
dte

i
ℏ
[St(p⃗0,q⃗0)+Et+𝜙t]⟨Ξ|p⃗tq⃗t⟩|||||

2

. (19.43)

Equation (19.43) is the “separable” version of TA SCIVR. For the phase-space integration in
Eq. (19.43) the quantity |⟨p⃗0, q⃗0|Ξ⟩|2 is often employed as Monte Carlo importance sampling
density and named “Husimi distribution”, if the reference state |Ξ⟩ is chosen to be a coherent
state. The choice of this Gaussian sampling density is, however, arbitrary and it can be tuned
by varying the Gaussian width. The convergence issue in TA SCIVR is much alleviated since a
number of trajectories of the order of just 1000 per degree of freedom is generally required, and the
approach has permitted evaluation of vibrational frequencies accurately for a set of small isolated
molecules including water, formaldehyde, and methane [37]. For such molecules pure quantum
dynamical calculations have been also performed, so the challenge for semiclassical dynamics is
to investigate much larger systems. However, for this purpose it is necessary to develop the semi-
classical theory further in order to obtain reliable results on the basis of just a handful of classical
trajectories.

19.6 The Multiple Coherent States SCIVR

The time-averaged version of the semiclassical propagator has permitted the first semiclassical
vibrational spectroscopy calculations on real molecular systems for which high-level potential
energy surfaces (PES) are available. However, the approach is strongly limited by the neces-
sity to rely on precise, but fast-to-compute, versions of the potential. For large molecular and
supra-molecular systems analytical potentials are usually not available because of the difficulty
to fit an analytical expression to such large systems, or, in case a force field exists, it may be not
accurate enough for reliable spectroscopic calculations. A way to overcome this PES issue is to
employ ab initio on-the-fly (i.e., direct) molecular dynamics simulations, in which the potential
energy and gradient calls are performed at each time step while the dynamics is in progress [38].
These simulations are very computationally demanding though, and the number of trajectories
required, even by a time averaged semiclassical simulation, is too large and not affordable.

Nevertheless, ab initio on-the-fly semiclassical spectroscopy has become possible by the recent
introduction of the multiple coherent (MC) technique [39]. The foundation of MC SCIVR lies in
pioneering work by De Leon and Heller [40] who demonstrated on low-dimensional model sys-
tems that accurate semiclassical eigenenergies and eigenfunctions can be obtained even by means
of a single trajectory if it is run at the correct (quantum) energy. MC SCIVR assumes that reliable
frequency estimates can be secured also for real molecular systems if a single trajectory is employed
with an energy in the neighborhood of the true (but unknown) quantum one. A straightforward
way to accomplish this goal is to work in normal mode coordinates by starting the trajectory from
the equilibrium molecular geometry (q⃗eq) with momenta selected according to a harmonic approxi-
mation, i.e., p⃗eq =

√
(2n⃗ + 1)ℏ𝜔⃗. Another pillar on which MC SCIVR is based concerns the choice of

the reference state |Ξ⟩. In order to enhance the Fourier transform signal of the vibrational mode of
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interest, the reference state is chosen as a coherent state centered at the phase-space point (p⃗eq, q⃗eq)
from which the classical trajectory has originated. In general, one different trajectory per each of
the Nst states to be investigated is run. For each state (K), the corresponding reference state |Ξ(K)⟩
is appropriately chosen as

|Ξ(K)⟩ = N𝑣ib∏
J=1

N𝛼∑
𝛼=1

𝜀
(K)
𝛼,J | p(K)

eq,𝛼,J , q(K)
eq,𝛼,J⟩. K = 1,… ,Nst. (19.44)

N𝛼 is the number of coherent states and associated coefficients 𝜀(K)
𝛼,J that are employed to enforce

parity or molecular symmetry to favor detection of signals corresponding to specific mode excita-
tions or symmetry species. The examples reported below will clarify this aspect. Equation (19.43)
still serves as the working formula and, for the exact case of the harmonic oscillator, the phase-space
integration is substituted by a sum over the tailored trajectories (Ntr = Nst) [41–43]

I(E) =
( 1

2𝜋ℏ

)N𝑣ib
Ntr∑

K=1

1
2𝜋ℏT

|||||∫
T

0
dte

i
ℏ
[S(K)

t (p⃗ (K)
0 ,q⃗ (K)

0 )+Et+𝜙(K)
t ]⟨Ξ(K)|p⃗ (K)

t q⃗ (K)
t ⟩|||||

2

. (19.45)

In the general case of an anharmonic and coupled potential, the total spectrum is obtained as the
convolution of the spectral features provided by each trajectory in an energy range close to the
energy of the trajectory.

The water molecule serves as a representative example of the technique. There are N𝑣ib = 3 vibra-
tional degrees of freedom, and initially we consider simulations based on just one classical trajec-
tory (Ntr = 1) to point out the features of a specific choice of the reference state |Ξ⟩ [44]. By choosing
N𝛼 = 1 and |Ξ⟩ = ∏N𝑣ib

J=1 𝜀J |peq,J , qeq,J⟩, the total power spectrum can be easily simulated. We intro-
duce for shorthand notation the total vector (𝜀) collecting the coefficients 𝜀J , which, in this case,
is made of three elements (one per degree of freedom) all equal to 1. Figure 19.2 shows indeed
the time averaged power spectrum obtained by running a single classical trajectory with harmonic
zero point energy (indicated in Table 19.1 as “TA SCIVR 1traj (zpe)”) and 𝜀 = (1;1;1) – semicolons
separate the different degrees of freedom – on an analytical potential energy surface constructed

0 5000

Ezpe

(0,0,0)ε = (1;1;1)

(0,2,0)

(0,1,0)

(0,0,1)

Higher Overtones(1,0,0)

10000

E (cm–1)

15000

Figure 19.2 Total power spectrum of water using a single trajectory with harmonic zero point energy.
Peaks are assigned and labeled by means of the usual quantum harmonic notation (symmetric stretch,
bending, asymmetric stretch).
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Table 19.1 Values (cm−1) of zero point energy and some vibrational transitions of water. Frequency
estimates are given in harmonic approximation (second column), with time averaged semiclassical
dynamics based on a single trajectory with harmonic zero-point energy (third column), by means of MC
SCIVR (fourth column), and quantum mechanically with a DVR technique (last column). In the last row the
mean absolute error with respect to the QM values is reported. The usual quantum harmonic state notation
has been employed with the first index corresponding to the symmetric stretch, the second index to the
bending mode, and the third index to the asymmetric stretch.

Transition Harm TA SCIVR 1traj (zpe) MC SCIVR QM (DVR)

(0,0,0) 4711 4632 4632 4660
(0,0,0) → (0,1,0) 1650 1608 1584 1587
(0,0,0) → (0,2,0) 3300 3209 3171 3139
(0,0,0) → (1,0,0) 3830 3732 3706 3716
(0,0,0) → (0,0,1) 3941 3813 3813 3803
(0,0,0) → (1,1,0) 5480 5340 5231 5292
(0,0,0) → (0,1,1) 5591 5423 5307 5350
(0,0,0) → (2,0,0) 7660 7461 7410 7417
(0,0,0) → (0,0,2) 7882 7545 7500 7499

MAE 176 40 19 –

by Thiel et al. [45]. Due to the energetics of the trajectory, the most accurate peak is expected to be
the zero-point energy (ZPE) one.

To assign peaks in the power spectrum with more confidence it is possible to insert symmetry
into the calculations. This is obtained by duplicating the number of coherent states (N𝛼 = 2) that
make up the reference state in Eq. (19.44). The dimensionality of 𝜀 is also doubled. Specifically,
parity symmetry can be enforced by choosing the reference states as |Ξ⟩ = ∏N𝑣ib

J=1(𝜀1,J |peq,J , qeq,J⟩ +
𝜀2,J |−peq,J , qeq,J⟩). In fact, the sign of 𝜀2,J determines if an odd (𝜀2,J = −1) or even (𝜀2,J = 1) number
of quanta in the mode J is associated to the peak to be assigned. For instance, for the ground state
𝜀 = (1, 1; 1, 1; 1, 1), while for the first excited state 𝜀 = (1,−1; 1, 1; 1, 1). This is also evident from
the upper plot in Figure 19.3 where in the first of the four panels only the ZPE peak is enhanced.
There are also minor peaks which can be barely seen at high energy. Some of them correspond to
double excitations of the modes. In the other three panels of the same plot the first excited states of
each mode have been enhanced with an appropriate choice of the 𝜀 components. All spectra were
obtained from the very same single trajectory with harmonic zero point energy.

As for the molecular symmetry we note that symmetric stretch and bending of water are of a1
symmetry, while the asymmetric stretch is of b2 symmetry. This means that we can enforce the
desired symmetry and get the corresponding peaks in the power spectrum by employing the refer-
ence state |Ξ⟩ = ∏N𝑣ib

J=1(𝜆1,J |peq,J , qeq,J⟩ + 𝜆2,J |−peq,J ,−qeq,J⟩). Note that the second coherent state in
the linear combination is now centered at (−peq,J ,−qeq,J), and the symmetry parameters have been
renamed as 𝜆 to help the reader. To discriminate between peaks, we set the value of the 𝜆2 compo-
nent relative to the asymmetric stretch equal to 1 (a1 symmetry) or −1 (b2 symmetry). Figure 19.3
reports on the bottom plot the two simulations for water in which peaks are distinguished according
to their molecular symmetry. The proposed methodology to enforce parity or molecular symmetry
is rigorous for the harmonic oscillator but, as demonstrated by the simulations here presented, it
is effective also for realistic molecular systems.
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Ezpe

Ezpe

ε = (1,1;1,1;1,1)

ε = (1,–1;1,1;1,1)

Ezpe
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Figure 19.3 Top: Selection of water semiclassical eigenvalues from a single trajectory with harmonic zero
point energy. Panel (a): zero point energy (4632 cm−1, black line); panel (b): bending mode (red); panel (c):
symmetric stretch (blue); panel (d): asymmetric stretch (green). Frequencies of the fundamental transitions
can be obtained as differences with respect to the zero point energy. They are: 𝜔b = 1608 cm−1; 𝜔s = 3732
cm−1; 𝜔a = 3813 cm−1. Bottom: peaks are selected on the basis of molecular symmetry. On the top panel (e)
modes with a1 symmetry are presented, while the bottom panel (f) illustrates peaks with b2 symmetry. Note
that in the simulations the elements of 𝜀 and 𝜆 are ordered according to the ascending harmonic frequency
of the modes.

So far a single harmonic zpe trajectory has been employed but, in the true spirit of the multiple
coherent states technique (Ntr = Nst), results can be refined in a peak-by-peak fashion by running
for each mode one trajectory with one quantum of excitation in that specific mode and employ-
ing the corresponding reference state. This leads to a better estimate of fundamental transition
frequencies and especially overtones. Table 19.1 reports a comparison of the frequencies provided
by different approaches. As expected, the enhanced accuracy of a multiple coherent technique is
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evident when comparing semiclassical estimates to the quantum benchmark obtained by means
of a discrete variable representation (DVR) calculation in normal mode coordinates. We stress that
the simulations yield the spectrum (i.e., the eigenvalues) of the vibrational Hamiltonian, so we are
able to assign a frequency even to those vibrational transitions which are not IR or Raman active.

Among remarkable applications of the MC-SCIVR method we recall a study of ammonia, which
has permitted detection of the spectrum of this molecule and to mimic its peculiar tunneling split-
ting feature with just eight trajectories [46], and an investigation of the simplest aminoacid: glycine
[47]. Glycine is characterized by several conformers as demonstrated by the multiple minimum
structure of its potential energy surface. An ab initio on-the-fly MC-SCIVR approach has allowed
investigation of all these conformers in full dimensionality and to estimate the potential effect of
conformer interconversion on vibrational frequencies. More details on this system will be presented
in Section 19.10. The advantage with respect to other methods based on calculations confined
to a single well is evident. Furthermore, electronic theory calculations are needed only for the
geometries experienced along the dynamics so a global full-dimensional surface (which can be
very difficult to construct) is not required.

19.7 The “Divide-and-Conquer” SCIVR

Perhaps the most relevant issue that semiclassical dynamics and other quantum approaches must
face is the scaling of computational overheads with the dimensionality of the system under inves-
tigation. In the case of SC approaches the challenge is to get a well resolved spectroscopic signal
when the number of degrees of freedom exceeds 25–30. The principal reason for this issue is the
multidimensional coherent state overlap which characterizes the SC formulation as in the case,
for instance, of Eq. (19.43). In fact, a sensible signal requires all mono-dimensional coherent state
overlaps to be simultaneously not negligible at each step of the dynamics, a request which is harder
and harder to satisfy as the dimensionality of the problem increases. There is an evident difference
with respect to classical simulations based on the Fourier transform of the dipole–dipole auto-
correlation function in which a scalar product of 3-dimensional vectors is involved whatever the
dimensionality of the system is.

Approaches have been developed to identify the effective vibrational modes for the calculations
[48], while here we focus on the possibility to work in reduced dimensionality by projecting the
full-dimensional problem onto a set of lower dimensional ones, where it is easier to have a recur-
ring coherent state overlap. The total spectrum is eventually recollected as a convolution of the
lower dimensional spectra [49]. Figure 19.4 depicts this “divide-and-conquer” (DC-SCIVR) idea.
We note that the trajectory, i.e., the classical dynamics, is still performed in full dimensionality,

(p,q)

(p1,q1)~ ~(p 2
,q 2

)

~
~

Figure 19.4 Pictorial representation of the DC-SCIVR idea. The black line is the full-dimensional trajectory
while the red and blue lines represent its projection onto two different subspaces.
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while associated quantities are projected onto different subspaces in which the semiclassical sim-
ulations are undertaken. The multiple coherent states reduced-dimensionality (MC-DC SCIVR)
working formula becomes

Ĩ(E) =
( 1

2𝜋ℏ

)M Ntr∑
K=1

1
2𝜋ℏT

|||||∫
T

0
dte

i
ℏ
[S̃ (K)

t ( ̃⃗p
(K)

0 , ̃⃗q
(K)

0 )+Et+ ̃⃗
𝜙

(K)

t ]⟨Ξ̃(K)| ̃⃗p (K)
t

̃⃗q
(K)

t ⟩|||||
2

, (19.46)

where M is the dimensionality of the subspace. Equation (19.46) is at the heart of the
MC-DC-SCIVR approach. Mathematically, the projection process is equivalent to a singular
value decomposition which allows to reduce the dimensionality of the system.

In practice, after the full-dimensional trajectory has been run, the reduced quantities appearing
in Eq. (19.46) are calculated. Specifically, the prefactor phase is estimated by employing the
appropriate sub-block of monodromy matrix elements, and evaluation of the coherent state
overlap is straightforward. Calculation of the projected action is more complicated instead,
due to the non-separability of the potential energy. In fact, if the degrees of freedom not
belonging to the M-dimensional subspace are simply downgraded to parameters, then the
resulting potential V(q⃗(t)) ≡ V(q⃗M(t); q⃗ eq

N𝑣ib−M) is in general not suitable to reproduce the “correct”
low-dimensional dynamics. An ideal reduced-dimensional potential should permit generation
of a reduced-dimensional dynamics which, starting from the initial point in phase space (p⃗0, q⃗0),
visits all points (p⃗t, q⃗t) obtained projecting the full-dimensional trajectory onto the subspace. This
is not the case for the trivial definition proposed above. Instead, it is possible to introduce a time
dependent external field

Ṽ(q⃗M(t)) = V(q⃗M(t); q⃗ eq
N𝑣ib−M) + 𝜆(t); (19.47)

𝜆(t) = V(q⃗M(t); q⃗N𝑣ib−M(t)) − V(q⃗M(t); q⃗ eq
N𝑣ib−M) − V(q eq

M ; q⃗N𝑣ib−M(t)).

This choice of the field returns the exact dynamics in the case of a separable potential, while it
still provides a reliable approximation in the general instance of a non-separable potential. This
means that in the DC-SCIVR simulations the projected action must be calculated by means of
the potential defined in Eq. (19.47). This is achieved by performing, after the trajectory is com-
plete, a single-energy calculation for each configuration of the dynamics upon substitution of the
coordinates of the modes belonging to the subspace of interest with their equilibrium values. As
usual, the transformation from normal mode coordinates to Cartesian ones is done by means of the
matrix of eigenvectors of the equilibrium Hessian. The interested reader can find further details in
Refs. [49–51].

Once the mathematical formalism of DC-SCIVR has been introduced, an efficient strategy to
partition the full-dimensional problem into lower-dimensional ones must be devised. An educated
choice of subspaces has to deal with the trade-off between simulation accuracy, which is maximum
(at the net of compensation of errors) for the full-dimensional system, and the necessity to work in
reduced dimensionality to get a sensible spectroscopic signal from the Fourier transform. The intu-
itive way to proceed consists in collecting the normal modes that are more strongly interacting into
the same subspace. For this purpose a few strategies have been developed. The first one (known as
the Hessian decomposition method) is based on averaging the off-diagonal elements of the normal
mode Hessian matrix (which are initially 0 since the normal-mode Hessian is diagonal at the start-
ing equilibrium geometry) dynamically along the harmonic zero-point-energy trajectory and then
comparing them to an arbitrary threshold. The average Hessian elements are taken as an estimate
of the coupling between the modes, so, if they are above the threshold, the two involved modes
are set into the same subspace. The method has been proved effective in a number of applications
[49, 50] even if it suffers from the arbitrariness of the threshold choice. In fact, if the threshold is
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Figure 19.5 Influence of the choice of the threshold parameter on the partition of a 6-dimensional space
into subspaces. For 𝜀 = 1.5 ⋅ 10−6 the six vibrational modes are collected into a 4-dimensional space and a
2-dimensional one. For 𝜀 = 1.5 ⋅ 10−5 there are two bi-dimensional subspaces and two mono-dimensional
ones identified by a red entry in the diagonal. Diagonal Hessian elements are not of interest and they have
not been reported.

too small, then the full-dimensional work space is left unchanged, whereas, if the threshold is too
big, then all subspaces are inaccurately chosen to be mono-dimensional ones. Figure 19.5 exem-
plifies the different partition into subspaces obtained for a 6-mode model system when modifying
the threshold parameter. Note that in the top panel modes 𝜈3 and 𝜈5 are in the same subspace even
if they are not sufficiently coupled. This is because they are both strongly coupled to other modes
(𝜈1 and 𝜈2 in this specific case). A similar methodology, but still dependent on an arbitrary param-
eter, is based on an average along the trajectory of the monodromy matrix elements instead of the
Hessian [48].

To make the subspace partition less arbitrary, a procedure based on the unitarity of the determi-
nant of the phase-space Jacobian in the subspaces has been developed [50]. This approach is known
as the Jacobi decomposition method. The starting point is the definition of the full dimensional
Jacobian (equivalent to the monodromy matrix) as

J(t) =

(
𝜕q⃗t∕𝜕q⃗0 𝜕q⃗t∕𝜕p⃗0

𝜕p⃗t∕𝜕q⃗0 𝜕p⃗t∕𝜕p⃗0

)
, (19.48)

whose determinant is equal to 1 at all times. This property is easy to demonstrate because at time
0 the determinant equals 1, and its time derivative is identically zero independently of time. A
direct and important consequence is that dp⃗tdq⃗t = dp⃗0dq⃗0, one of the ways to express Liouville’s
theorem of Hamiltonian mechanics. If we define a set of Nsub subspaces as requested by DC SCIVR,
the determinant of the full-dimensional Jacobian can be calculated as the product of the partial
determinants defined by the projected positions and momenta, i.e., det(J) =

∏Nsub
i=1 det(J̃i). If the
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system is separable, the unitarity of the determinant is valid also in the reduced-dimensionality
subspaces (i.e., dp⃗tdq⃗t = dp⃗0dq⃗0) but this is no longer true for the generic case of a non-separable
system. In general, the determinant of the Jacobian is not conserved in the subspaces, so a good
criterion to select the best way to collect vibrational modes is one that preserves as much as possible
the Jacobian determinant. For this purpose it is possible to employ an iterative procedure consisting
in evaluating along the dynamics the Jacobian determinants of all possible reduced-dimensional
subspaces. At each time step and for each dimensionality, the best subspace is the one with the
closest Jacobian determinant to unity. Within a given dimensionality the overall best subspace is
then chosen to be the one that most frequently had det(J̃) closest to unity. Finally, the representative
candidates of all subspaces of different dimensionality are compared among them and the one
with the Jacobian determinant closest to unity is selected. The whole procedure is then repeated
for the remaining degrees of freedom until all of them have been assigned. Figure 19.6 sketches the
methodology for a 6-dimensional model system. Note that in the example a 4-dimensional subspace
is selected, which means the procedure will be repeated involving only modes four and six that end
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Figure 19.6 Schematic representation of the Jacobi decomposition method. First the best set of modes for
each possible subspace dimensionality is calculated at every step along the trajectory. This is shown in the
four boxes, where the “Subs” column indicates the subspace dimensionality and the “Count” one the
incremental number of times that particular set of modes has been selected along the trajectory. For each
subspace dimensionality the most frequent mode combination acts as the representative of that subspace
dimensionality and it is highlighted (violet). Then, |1 − det J̃| values of all the representatives are averaged
over the trajectory and compared (bottom, triangles). The 4-dimensional subspace made of modes 1,2,3,5
has the lowest |1 − det J̃| average value and it is therefore selected. Modes 4 and 6 are left and the
procedure is reiterated for these two remaining degrees of freedom to check out if they belong to the same
bi-dimensional subspace or if they split into a pair of mono-dimensional subspaces.
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up either in a single 2-dimensional subspace or in two separate mono-dimensional subspaces. The
latter instance is, in principle, not desirable but part of the interactions are anyway preserved due
to the full-dimensional trajectory on which projected quantities are based. The Hessian and Jacobi
decomposition methods provide generally different types of subspace partitions. On the one hand,
the Jacobi approach has been shown to lead to more accurate results [50], but it is harder and
harder to apply it as the total number of degrees of freedom increases due to the necessity to check
all possible vibrational mode subsets. On the other hand, the Hessian decomposition approach is
less accurate and depends on an arbitrary parameter, but its application is instantaneous once the
averaged Hessian has been computed.

We conclude this section by reporting on an application of DC SCIVR to C60 fullerene, a sys-
tem made of 174 vibrational degrees of freedom. A force field originally created to study graphene
layers is adapted to permit analytical potential calls but, nevertheless, these are very time consum-
ing, so a MC-DC-SCIVR approach is employed by running 175 classical trajectories about 1.2 ps
long (1 at harmonic zero point energy plus other 174, each one with a harmonic quantum of
excitation in a different mode). The subspaces are determined by means of the Hessian decom-
position criterion based on the harmonic zero-point energy. We first scan the maximum subspace
dimensionality for different values of the threshold parameter as shown in Figure 19.7, and then
choose for the threshold the value 𝜀 = 10−6 corresponding to a maximum subspace dimensionality
of 25. This choice is driven by the trade-off between expected accuracy and the possibility to col-
lect a sensible spectral signal. The whole degrees of freedom are consequently collected into one
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Figure 19.7 Maximum subspace dimensionality versus threshold when applying the Hessian
decomposition method to the C60 fullerene molecule (top). The red arrow indicates the chosen threshold
and the corresponding maximum subspace dimensionality. The green dashed lines determine the desired
range for the maximum subspace dimensionality. The table reports the detailed partition into subspaces.
On the bottom, a bi-dimensional DC-SCIVR spectrum (involving modes 110 and 147) is shown (the zpe of
the subspace has been shifted to zero).
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25-dimensional, two 14-dimensional, one 8-dimensional, two 6-dimensional, three 3-dimensional,
one bi-dimensional, and 90 mono-dimensional subspaces.

Once the subspaces have been determined, MC-DC-SCIVR calculations can be performed. On
the bottom of Figure 19.7 an example concerning a bi-dimensional subspace is reported where
the two fundamentals and some overtones are clearly detected. For detailed results we refer to a
previous publication (see Ref. [49]). Here we conclude this section by pointing out that even if,
as already demonstrated, molecular symmetry can be incorporated into semiclassical dynamics to
facilitate peak assignment, it does not help speed up calculations and it is not necessary for a good
outcome of DC-SCIVR simulations, which are successful independently of symmetry.

19.8 Mixed SCIVR Dynamics: Towards Semiclassical Spectroscopy
in Condensed Phase

The various semiclassical methodologies so far presented have in common the characteristic to
be based on the evolution of Gaussian wave packets of fixed width. Such propagators go under
the collective name of “Frozen Gaussian propagators”. Another family of semiclassical Gaussian
propagators has been introduced [52] in which the Gaussian width is permitted to change in time.
They are called “Thawed Gaussian propagators”. In practice (for simplicity we illustrate equations
in one dimension, but generalization to multiple dimensions is straightforward) the wave packet is
chosen to be of the coherent state form

Ξ(q, t) =
(Γ0

𝜋

)1∕4

exp
[
−
Γt

2
(q − qt)2 + i

ℏ
pt(q − qt) +

i
ℏ
𝛿t

]
, (19.49)

with the usual Hamiltonian evolution for qt and pt, and the appropriate equations of motions for
Γt and 𝛿t

−iℏ
dΓt

dt
= −ℏ2Γ2

t +
d2V(qt, t)

dq2
t

d𝛿t

dt
=

p2
t

2
− V(qt, t) −

ℏ2

2
Γt. (19.50)

Thawed Gaussian propagation is known to be less accurate than the Heller–Herman–Kluk–Kay
one, but its major flexibility allows results of good accuracy to be gained with just a single Gaussian
propagation.

An interesting development of semiclassical dynamics involving both Frozen and Thawed Gaus-
sian propagators is represented by Grossmann’s hybrid (or mixed) SCIVR and its recent simplified
version [53]. The method is based on the observation that the Thawed Gaussian propagator can
be obtained as an approximation to the HHKK one [54]. In mixed SCIVR, the higher HHKK level
of theory is reserved for a few degrees of freedom, while all the others are treated by means of the
computationally cheaper Thawed Gaussian propagator. A promising application of the technique is
represented by the spectroscopic investigation of a molecular system embedded in an environment.
In spectroscopic applications of the mixed SCIVR the starting point is the time-averaged version
of the HHKK propagator in Eq. (19.43). On this propagator the mixed approximation is inserted.
The total 2F phase-space variables are divided into 2FHHKK for the system and 2FTG for the bath.
The system, on which more accurate information is sought, is represented with the HHKK label,
meaning it is treated at the HHKK level of theory, whereas the environmental degrees of freedom
are indicated with the subscript TG and treated by means of the Thawed Gaussian propagator. The
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method, similarly to DC SCIVR, is characterized by classical dynamics runs in full dimensionality.
The partition of the degrees of freedom is adopted only in the semiclassical formalism. In fact, if
the Gaussian reference state |Ξ⟩ = |p⃗eq, q⃗eq⟩ is chosen, where q⃗eq is the equilibrium position and
p⃗eq is the momentum corresponding to an approximate eigenenergy, then the initial phase space
coordinates (p⃗0, q⃗0) are defined as

p⃗0 =

(
p⃗HHKK,0

p⃗eq,TG

)
, q⃗0 =

(
q⃗HHKK,0

q⃗eq,TG

)
. (19.51)

The HHKK initial conditions (p⃗HHKK,0, q⃗HHKK,0) are selected by means of the usual Monte Carlo
sampling around (p⃗eq,HHKK, q⃗eq,HHKK), while the bath starting coordinates are always at the equilib-
rium positions, (p⃗TG,0, q⃗TG,0) = (p⃗eq,TG, q⃗eq,TG). Then, expansion of classical trajectories and action
to first and second order, respectively, in the displacement coordinates of the bath subspace allows
the phase-space integration over the original initial bath conditions (p⃗TG,0, q⃗TG,0) to be performed
analytically. In this way the dimensionality of the phase space integration is reduced. Finally, by
expanding all quantities to second order for the bath variables we arrive at the separable mixed
TA-SCIVR (M-TA SCIVR)

I(E) = 1
(2ℏ)F

1
𝜋FHHKK

1
2𝜋ℏT ∫ dp⃗HHKK,0 ∫ dq⃗HHKK,0

|||||∫
T

0
dt ei[Et+𝜙t(p⃗0,q⃗0)+St(p⃗0,q⃗0)]∕ℏ

× ⟨p⃗eq,HHKK, q⃗eq,HHKK|p⃗HHKK,t, q⃗HHKK,t⟩⟨p⃗eq,TG, q⃗eq,TG|p⃗TG,t, q⃗TG,t⟩
× 1

[det(A(t) + A∗(t))]1∕4 exp
{1

4
b⃗ T

t (A(t) + A∗(t))−1b⃗t

}||||
2
. (19.52)

The elements of the matrix A(t) are defined as

A11(t) =
1
4

MT
21(t) 𝚪M21(t) +

1
4ℏ2 MT

11(t) 𝚪
−1M11(t)

A12(t) =
1
4

MT
21(t) 𝚪M22(t) +

1
4ℏ2 MT

11(t) 𝚪
−1M12(t)

A21(t) =
1
4

MT
22(t) 𝚪M21(t) +

1
4ℏ2 MT

12(t) 𝚪
−1M11(t)

A22(t) =
1
4

MT
22(t) 𝚪M22(t) +

1
4ℏ2 MT

12(t) 𝚪
−1M12(t),

(19.53)

while the vector b⃗(t) ≡ (b⃗ T
1,t, b⃗

T
2,t)

T is made of the sub-vectors

b⃗ T
1,t = −1

2
(q⃗(t) − q⃗(0))T

[
𝚪M21(t) +

i
ℏ

M11(t)
]

− 1
2ℏ2 (p⃗(t) − p⃗(0))T [𝚪−1M11(t) − iℏM21(t)]

b⃗ T
2,t = −1

2
(q⃗(t) − q⃗(0))T

[
𝚪M22(t) +

i
ℏ

M12(t)
]

− 1
2ℏ2 (p⃗(t) − p⃗(0))T[𝚪−1M12(t) − iℏM22(t)],

(19.54)
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where (p⃗(t), q⃗(t)) is the trajectory starting from the initial conditions defined in Eq. (19.51). The Mij
in the above equations are the F × FTG sub-matrices of the stability matrix,

M11(t) =
𝜕p⃗t

𝜕p⃗TG,0
, M12(t) =

𝜕p⃗t

𝜕q⃗TG,0
,

M21(t) =
𝜕q⃗t

𝜕p⃗TG,0
, M22(t) =

𝜕q⃗t

𝜕q⃗TG,0
.

(19.55)

In Eq. (19.52) the Monte Carlo integration involves only the system coordinates, while the bath
degrees of freedom are included through the dynamics which starts from the conditions in
Eq. (19.51). The interested reader will find more details in Refs. [53, 55, 56].

The mixed SC-IVR approach is effective, but, when studying systems characterized by a large
number of degrees of freedom, spectra are noisy and difficult to interpret. To overcome this issue
a simplified approach to M-TA SCIVR (SAM) has been introduced. It is based on two assump-
tions. First, the following bath components are replaced by their analytic harmonic oscillator
results

1
[det(AHO(t) + A∗

HO(t))]1∕4 ≈ (2ℏ)FTG∕2

b⃗ T
t,HO(AHO(t) + A∗

HO(t))
−1b⃗t,HO ≈ 0,

(19.56)

(where HO stands for Harmonic Oscillator) which permits Eq. (19.52) to be considerably simplified,
transforming it into

I(E) = 1
(2𝜋ℏ)FHHKK

1
2𝜋ℏT ∫ dp⃗HHKK,0 ∫ dq⃗HHKK,0

×
|||||∫

T

0
dt ei[Et+𝜙t(p⃗0,q⃗0)+St(p⃗0,q⃗0)]∕ℏ ⟨p⃗eq, q⃗eq|p⃗t, q⃗t⟩|||||

2

. (19.57)

Then, the multiple coherent technique is employed and the final SAM working formula is

I(E) = 1
(2𝜋ℏ)FHHKK

1
2𝜋ℏT ∫ dp⃗HHKK,0 ∫ dq⃗HHKK,0||||∫ dt ei[Et+𝜙t(p⃗0,q⃗0)+St(p⃗0,q⃗0)]∕ℏ⟨p⃗eq,HHKK, q⃗eq,HHKK|p⃗HHKK,t, q⃗HHKK,t⟩||||

2
. (19.58)

It should be pointed out that, in spite of the different derivations of SAM and DC SCIVR, both
methods are in fact related. Adoption of the few-trajectory approach from MC SCIVR to Eq. (19.58)
by replacing the HK initial state |p⃗eq, HHKK, q⃗eq, HHKK⟩ with |Ξ⟩ from Eq. (19.44) turns the phase
space integration into a sum over (few) trajectories. The resulting equation has the same structure
as the MC-DC-SCIVR working formula of Eq. (19.46), except for the specific form of the action and
the prefactor phase. In this sense, SAM can be seen as an intermediate step between HK SCIVR and
DC SCIVR. A remarkable application of the method has permitted a full study of anharmonic vibra-
tions of the iodine molecule to be performed (I2) in a krypton matrix made of 218 atoms [56]. This
shows that SAM is a promising tool for performing highly accurate condensed phase spectroscopy
in the near future.
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19.9 Semiclassical Spectroscopy Workflow

Before showing some applications of SC dynamics, we present a workflow chart (Figure 19.8) sum-
marizing the steps on which the various semiclassical approaches previously described are based.
This chart keeps evolving as new semiclassical methodologies are being developed.

Relevant input data for the simulations include the reference state and the number of clas-
sical trajectories to be run. A preliminary routine optimization of the equilibrium geometry
and calculation of harmonic frequencies (as usual via Hessian diagonalization) are requested.
Afterwards, the chart branches according to the number of trajectories chosen. On the one hand,
if just a single or a few trajectories are employed, then either thawed Gaussian propagation or
the family of multiple coherent approaches is enabled. In this case, initial conditions for the
trajectories are tailored, and upon classical evolution and Hessian calculation the corresponding
mathematical expressions are used to get the spectrum. On the other hand, when Monte Carlo
phase-space integration is performed by means of thousands of trajectories, initial conditions
are sampled from a distribution (generally a Husimi one). Again, after dynamics evolution and
Hessian calculation, application of the appropriate equations allows us to get the spectrum. A
third instance is represented by M-TA SCIVR, which employs a multiple trajectory approach for
the system and a thawed Gaussian (single trajectory) approach for the bath. For the required
electronic structure calculations the freely available NWChem suite of codes is suggested [57] due
to its interface with VENUS. VENUS is another free software for ab initio dynamical calculations
[58] which includes semiclassical codes [59].

Semiclassical Spectroscopy Simulation Workflow

Initial Setup
(N. Trajectories, Reference State)

Are You Adopting
a Single (Few)

Trajectory?

Classical Dynamics
Evolution

and Hessian Calculation

MC-TA-SCIVR MC-DC-SCIVR DC-SCIVR TA-SCIVR HHKKM-TA-SCIVR

Determine
Subspaces

Determine
Subspaces

Eq. (44) Eq. (51)

SC Spectra

Eq. (42) Eq. (27)

Eq. (45–47) Eq. (45*–47)
*Integral form

Classical Dynamics
Evolution

and Hessian Calculation

Classical Dynamics
Evolution
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Monte Carlo Sampling of
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Figure 19.8 Workflow chart.
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19.10 A Taste of Semiclassical Spectroscopy

A few relevant applications of semiclassical spectroscopy to molecular power, photoemission, and
photoabsorption spectra are presented in this section. The semiclassical calculations of power and
photoemission spectra involve electronic ground state dynamics, while photoabsorption spectra
rely on electronic excited state dynamics in agreement with the formulae reported in the introduc-
tory section of the chapter.

The first application regards gas-phase glycine [47]. An analysis of the potential energy surface
of this simple amino acid reveals quite a complex landscape with the presence of four conformers.
Three of them are separated by small barriers which may favor conformer interconversion. The
dynamics employed in the SC simulations shows that conformer interconversion takes place when
exciting selectively some of the normal modes or when starting from Conf IV. This is confirmed in
the top panel of Figure 19.9 by the much broader peaks obtained for Conf IV whose dynamics at
harmonic zero point energy (even if less than 1 ps long) moves fast back and forth to Conf I. This
aspect allows us to point out a couple of peculiar features of semiclassical dynamics. One is that
the dynamics permits us to visit the effective portion of the potential energy surface and in this way
construction of a global PES is not needed and ab initio on-the-fly calculations are fully legitimated.
The second characteristic is that power spectra have a band shape determined by the dynamics.
Results for Conf IV are corroborated by experiments performed at 13 K in argon matrices, which are
much more difficult and less resolved for Conf IV [60]. The semiclassical calculations performed for
glycine are based on an ab initio molecular dynamics at DFT-B3LYP level of theory with aVDZ basis
set associated to MC SCIVR in full dimensionality. Results are in good agreement with experiments,
and the interested reader can find all the details in Ref. [47]. Very recent work in the field has
permitted calculation of the semiclassical IR spectrum of glycine [71].
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Figure 19.9 Left: Energetics of glycine calculated at DFT-B3LYP level of theory with aVDZ basis set.
Energy values in parentheses include the harmonic zero-point energy contribution. Right: High frequency
range vibrational power spectra for the four conformers of glycine. Peaks identify the OH (black), NH2
asymmetric (orange), NH2 symmetric (green), CH2 asymmetric (blue), and CH2 symmetric (red) stretches.
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Another interesting application of semiclassical spectroscopy involving glycine is represented
by the supra-molecular system made of protonated glycine tagged with hydrogen molecules. The
goal is to reproduce and explain on a quantum mechanical basis the intriguing features of a recent
experiment by Williams, Rizzo and coworkers [61]. In particular, in the experiment, the OH stretch
signal presents twin peaks, separated by about 50 cm−1, where it appears that at least three hydro-
gen molecules are present. The reason is that while the first pair of H2 molecules interacts with
the amino group of the protonated glycine, the third H2 moiety can still interact either with the
NH3 group or with the hydroxyl. In this latter instance, the OH stretch is weakened and a second
red-shifted peak is found in the experiment consistently with the mixture of the two conform-
ers. Another feature of Williams and Rizzo’s spectra is that the lowest in frequency among the
three NH3 bands is more and more blue-shifted as the number of tagging H2 molecules increases,
with a second peak appearing when three hydrogen molecules are involved. The blue shift is of
about 60 cm−1. This time the effect can be explained with a re-orientation of the NH3 group which
weakens the intramolecular hydrogen bond leading to a blue shift of the NH3 signal. A theoreti-
cal description at the harmonic level fails even upon an ad-hoc scaling of frequencies calibrated
on the OH stretch. In particular, the blue shift of the NH3 peak is too overestimated predicting a
complete cleavage of the intramolecular hydrogen bond instead of its simple weakening. This draw-
back is found also in a classical simulation based on the Fourier transform of the velocity–velocity
correlation function. Conversely, a semiclassical description is able to gather both features, and fre-
quencies are found within 20–30 cm−1 of the experiment. This SC simulation has been performed
by means of the MC-DC-SCIVR technique interfaced to an ab initio on-the-fly molecular dynamics
less than 1 ps long at DFT-B3LYP level of theory and with aVDZ basis set. Inclusion of dispersion
corrections has been considered, but without any relevant gain in accuracy [62].

So far applications have been focused on power spectra that describe vibrational features on the
ground electronic state, but semiclassical approaches can also be employed to simulate vibronic
emission and absorption spectra that involve different electronic surfaces. A key example is given
by the on-the-fly photoemission spectra of oligothiophenes calculated by the Vaníček group on
the basis of the Fourier transform of a dipole–dipole autocorrelation function in Franck–Condon
approximation (i.e., vertical electronic transition) for the initial wave packet [48]. The working for-
mula is similar to Eq. (19.6) with the roles of the electronic ground (S0) and excited (S1) states
interchanged, and a cubic dependence on the energy difference in front of the Fourier integra-
tion. A Thawed Gaussian approach was employed, and the emission spectrum was obtained upon
short-time evolution (≈ 200 fs) of the vibrational ground state of S1 on the S0 surface. This dynam-
ical approach permits us to go beyond a static global harmonic approximation and to account for
anharmonicities. Energy calculations and geometry optimization on the excited state surface were
performed with TD-DFT, CAM-B3LYP functional and 6-31+G** basis set. The DFT level of theory
was employed instead for the dynamics on the ground electronic state. Figure 19.10 reports the
semiclassical photoemission spectra of a series of oligothiophenes and shows excellent agreement
with the experimental results. Furthermore, in this work a strategy has been implemented to assess
couplings between vibrational degrees of freedom during the dynamics, and their contribution to
the spectral features. The same strategy permits us also to generate a partially uncoupled dynamics
in reduced dimensionality, which may serve for application of more refined semiclassical or quan-
tum techniques. The approach is different from DC SCIVR (which is based on a frozen instead of
thawed Gaussian propagator), but it makes clear that DC SCIVR as well as the other techniques
described in the chapter have the potential to also be applied successfully to the simulation of
photoemission (absorption) spectra.
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Figure 19.10 Photoemission spectra for oligothiophenes of increasing size. “OTF-AI-TGA” stands for
on-the-fly ab initio thawed Gaussian approximation. Reproduced from Marius Wehrle, Miroslav S̆ulc, and
Jiří Vaníček The Journal of Chemical Physics 140, 244114 (2014), with the permission of AIP Publishing.

As a final application we consider another very recent work by the Vaníček group concerning
the photoabsorption spectrum of benzene [63]. The relevant equation is Eq. (19.6), but in this
case the Condon approximation cannot be invoked because the (Ã1 B2u ← X̃1 A1g) electronic
transition is symmetry forbidden. However, it is vibronically allowed due to the contribution
of the gradient of the transition dipole. In order to simulate the absorption spectrum of ben-
zene one has to resort to the more refined Herzberg–Teller approximation in which the dipole
depends linearly on the nuclear coordinates, i.e., 𝜇(R⃗) ≈ 𝜇(R⃗eq) + ∇R⃗𝜇(R⃗eq) ⋅ (R⃗ − R⃗eq). The
Franck–Condon–Herzberg–Teller (FCHT) absorption spectrum of benzene (see Figure 19.11)
was obtained by multiplying the initial Gaussian wave packet by a polynomial (linear) term. This
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Figure 19.11 Semiclassical absorption spectra of benzene Ã1 B2u ← X̃1 A1g. In the top panel, a comparison
between experiment and Franck–Condon–Herzberg–Teller (FCHT) spectra obtained from on-the-fly excited
electronic state dynamics (OTF-AI), static adiabatic harmonic (AH), and static vertical harmonic (VH)
approximations is presented. Scaled intensities are reported for each approach next to the peaks. In the
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.8b00827. Requests for further reuse should be directed to the ACS.

permitted adoption of ab initio on-the-fly thawed Gaussian semiclassical dynamics with inclusion
of the Herzberg–Teller approximation. The electronic excited state dynamics was performed
for 2 ps with TD-DFT, B3LYP functional, and 6-31+G** basis set. DFT was employed for the
optimization at the electronic ground state. The importance of a semiclassical approach able to
account for the anharmonicities of the potential is pointed out in Figure 19.11, where a comparison
between FCHT spectra adopting on-the-fly ab initio dynamics and the static adiabatic harmonic
(AH) and vertical harmonic approximations (VH) is presented. In the AH approximation the
upper electronic surface is obtained by means of a second-order expansion of the potential around
the minimum, while the VH approximation is similar but based on the equilibrium configuration
of the lower electronic state. The semiclassical approach outperforms the other two very clearly,
with the VH approach returning very inaccurate results. Also in this application a different
semiclassical approach based on a frozen Gaussian propagator and the techniques previously
illustrated can be adopted.

19.11 Summary and Conclusions

In this chapter we have presented the derivation of the basic van Vleck and Heller–Herman–Kluk–
Kay semiclassical propagators followed by a description of some recently developed SC techniques
tailored for spectroscopy simulations. The multiple coherent states approach permits us to adopt
ab initio on-the-fly molecular dynamics for semiclassical simulations with the advantage of avoid-
ing construction of a global analytical potential energy surface. The divide-and-conquer technique
allows us to investigate the quantum spectroscopic features of large molecular and supra-molecular
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systems beating the so-called “curse of dimensionality”. The simplified mixed semiclassical method
is a promising tool that employs both frozen and thawed Gaussian semiclassical propagators to
study vibrations of a molecule in a bath. Finally, some representative applications have been pre-
sented. They include power spectra of molecular and supra-molecular glycine (experimentally
tagged with H2 molecules), photoemission spectra of oligothiophenes, and the photoabsorption
spectrum of benzene. In general, the described semiclassical techniques can be employed both for
simulations on the electronic ground state and for calculations involving excited state dynamics.

To conclude we would like to review a few aspects of semiclassical spectroscopy that have either
been recently solved or are the focus of current methodological developments. The bottleneck of
semiclassical calculations lies in the determination of the Hessian matrix for the configurations
visited along the trajectory, which is necessary for evolving the monodromy matrix elements and
calculating the pre-exponential factor. This overhead has been alleviated by means of an interpo-
lation scheme based on gradient estimates [64–66], and further improvements have recently led
to an efficient strategy based on the dynamical construction of databases of Hessian matrices [67].
In the case of thawed Gaussian propagators, even an approximation based on a single Hessian
has been recently proposed [68]. A potential issue of semiclassical simulations comes from the
chaoticity of classical dynamics. Chaotic trajectories lead to a numerical loss of the unitarity of
the determinant of the monodromy matrix and to unphysical values of the pre-exponential factor.
This may endanger the entire calculation and often chaotic trajectories have to be discarded [20].
Some approximations to the pre-exponential factor have been proposed for overcoming this issue
[69], and substantial progress on this issue has been achieved recently through development of
an adiabatic switching technique for semiclassical spectroscopy [74]. As for the intensity of the
calculated spectroscopic signals, apart from the possibility to simulate IR spectra starting from
the dipole–dipole autocorrelation function, it is also possible to calculate them from the oscilla-
tor strengths once the wave functions are known. A procedure to determine the semiclassical wave
functions expanding them on a harmonic basis set has been recently presented [70], followed by
another approach capable of returning the semiclassical IR spectrum starting from power spectra
even in the case of systems characterized by high densities of vibrational states [71].

Altogether we believe that semiclassical dynamics is a powerful tool for molecular spectroscopy
with specific features that may make it the privileged approach for simulations of high dimensional
systems. For instance, application of semiclassical spectroscopy has permitted the explaination of
some features of two experiments which were left unanswered [62], while a very recent investiga-
tion focused on nucleobases [72]. Furthermore, the first calculations of vibrational semiclassical
spectroscopy for molecules adsorbed on titania surfaces are now accessible [75]. We think that
quantum effects should not be neglected a priori when investigating large systems spectroscopi-
cally. This is in part due to the quantum nature of spectroscopy itself and partly because of the not
unusual presence of hydrogen bonds which require a quantum formalism to be described correctly.
An advantage of semiclassical approaches is that they can be interfaced with ab initio molecular
dynamics quite easily, since neither approximations to the potential energy nor ad hoc parameters
are required. However, electronic calculations are computationally expensive and only a desirable
speed up of electronic theory routines will permit employment of the highest levels of electronic
theory in ab initio semiclassical simulations. Within the precision permitted by the electronic the-
ory employed, an estimate of the accuracy of semiclassical simulations can be obtained by looking
at the full width at half maximum of spectral peaks. This is generally found to be of the order of
20–25 cm−1 with occasional lower accuracy for particularly complex systems or spectral features,
which may require further refinement. For example, a preliminary application of semiclassical
spectroscopy to the Zundel cation (H5O2)+ has demonstrated that accuracy is good even for this
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Table 19.2 Principal strengths and weaknesses of semiclassical spectroscopy.

Strengths
+ Quantum effects from classical dynamics simulations.
+ Real potential energy, no approximations.
+ Interface to both analytical PESs and ab initio molecular dynamics.
+ No tunable nor ad hoc parameters.
+ Applicability to ground and excited electronic states.
+ Applicability to high dimensional systems.

Weaknesses
− Hessian calculation required.
− Classical chaotic trajectories may hamper simulations.
− Low ab initio level of electronic theory due to computational overhead.

floppy molecule [50]. A more refined and targeted study of this particular chemical species has
been undertaken [76], leading to results of accuracy comparable to that of quantum calculations.
A general formula to estimate the error with respect to the exact quantum mechanical result is not
available, but formalisms to correct the semiclassical estimate towards the exact quantum mechan-
ical result have been proposed by Kay and Pollak [9, 73].

Finally, we provide a brief summary of the main strengths and weaknesses of semiclassical spec-
troscopy, as reported in Table 19.2.
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Abstract

In this chapter, we describe methods for simulating non-adiabatic dynamics based on the path-integral
formulation of quantum mechanics. In order to employ trajectory calculations to a system of more than
one electronic state, we introduce the mapping formalism and explain how this approach can be used
with linearized semiclassical or ring-polymer molecular dynamics.

20.1 Introduction

In order to simulate non-adiabatic processes in complex systems of many degrees of freedom, a fully
quantum mechanical approach is impossible to apply in practice. Instead, we would like to make
a compromise between accuracy and efficiency and in particular make use of extensions of the
molecular dynamics technique, which has proved itself invaluable for the simulation of adiabatic
systems. The path-integral approach to quantum mechanics [1] leads to a formally exact description
of non-adiabatic dynamics from which it is possible to make approximations leading to practical
simulation methods. In this chapter, we discuss a class of methodologies which utilize molecular
dynamics trajectories but include the quantum mechanical effects of nuclear delocalization and
tunneling as well as allowing for non-adiabatic transitions. This is done using the non-adiabatic
mapping formalism in conjunction with path-integral molecular dynamics.

Here we are interested in simulating the quantum dynamics of the following nuclear Hamilto-
nian, written in the diabatic representation (see Chapter 1),

Ĥ =
̂⃗P2

2M
+ Û + V̂ , (20.1)

where M is the nuclear mass, the state-independent potential is Û = U( ̂⃗R) and the state-dependent
potential is

V̂ = V1(
̂⃗R)|1⟩⟨1| + V2(

̂⃗R)|2⟩⟨2| + Δ( ̂⃗R)(|1⟩⟨2| + |2⟩⟨1|), (20.2)

where |1⟩ and |2⟩ are the electronic states, and R⃗ and P⃗ are the Cartesian coordinate and
conjugate momentum vectors of length F, corresponding to the nuclear degrees of freedom.

Quantum Chemistry and Dynamics of Excited States: Methods and Applications,
First Edition. Edited by Leticia González and Roland Lindh.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.
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The state-dependent potential can also be written in matrix form as

V(R⃗) =

(
V1(R⃗) Δ(R⃗)
Δ(R⃗) V2(R⃗)

)
, (20.3)

where the basis functions are the electronic states. This two-state system can easily be extended to
describe problems of more than two electronic states, as can the methodologies presented below
for simulating the dynamics.

The two diabatic potentials are thus U(R⃗) + V1(R⃗) and U(R⃗) + V2(R⃗) and are coupled together by
Δ(R⃗). While this separation into Û and V̂ is not unique, the quantum dynamics are independent of
this choice. The dynamics are also independent of the representation, such that it would be possible
to rotate the electronic basis to the adiabatic representation, thus introducing non-adiabatic cou-
pling into the kinetic energy, but resulting in equivalent dynamics.

To simplify the presentation, we assume that the coordinates have been mass scaled such that
the same mass, M, can be used for all degrees of freedom.

When studying complex systems, especially those in the condensed phase, the observables of
interest are typically correlation functions defined by

CAB(t) = ⟨Â(0)B̂(t)⟩𝜌̂ = Tr[𝜌̂ÂeiĤt∕ℏB̂e−iĤt∕ℏ]. (20.4)

Here the dynamics start from an initially-prepared state defined by the density matrix, 𝜌̂. In gen-
eral this may be a non-equilibrium state, but a special class of correlation function is initialized
from the thermal equilibrium state, 𝜌eq = e−𝛽Ĥ∕Z, where the partition function is Z = Tr[e−𝛽Ĥ] and
𝛽 = 1∕kT is the inverse temperature. This defines the equilibrium correlation function

Ceq
AB(t) = ⟨Â(0)B̂(t)⟩eq = 1

Z
Tr[e−𝛽ĤÂeiĤt∕ℏB̂e−iĤt∕ℏ]. (20.5)

The same information content is also contained in other representations, such as the Kubo-
transformed correlation function [2],

C̃AB(t) =
1

Z𝛽 ∫
𝛽

0
Tr[e−(𝛽−𝜆)ĤÂe−𝜆ĤeiĤt∕ℏB̂e−iĤt∕ℏ] d𝜆, (20.6)

which has the particular advantage of being real-valued at all times and is the natural form which
leads to the approximation of ring-polymer molecular dynamics (RPMD) [3] as will be explained
below. This transform can be thought of as an average over every possible splitting of the e−𝛽Ĥ

operator, with 𝜆 acting as the arbitrary integration variable. Once the Kubo-transformed correlation
function is known, it is easy to obtain the ordinary equilibrium correlation function, Ceq

AB(t), by
scaling the former’s Fourier transform [4],

∫ Ceq
ABe−i𝜔t dt = 𝛽ℏ𝜔

1 − e−𝛽ℏ𝜔 ∫ C̃AB(t)e−i𝜔t dt. (20.7)

Many important experimental observables can be related to thermal correlation functions [5]. In
particular, by taking a Fourier transform of the dipole–dipole correlation functions, we can obtain
the vibronic spectrum [6, 7, 9, 10] and by integrating over the flux–flux correlation function, the
rate of a non-adiabatic process can be found [11–17].

In some cases, a simpler time-dependent observable is of interest, which can be defined in the
same way by simply setting the operator Â to the identity. The expectation value of an operator B̂
at time t later is then given by

PB(t) = ⟨B̂(t)⟩𝜌̂ = Tr[𝜌̂ eiĤt∕ℏB̂e−iĤt∕ℏ]. (20.8)
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Because the equilibrium distribution commutes with the time propagators, the equilibrium time
average of an observable is constant, ⟨B̂(t)⟩eq = ⟨B̂⟩eq. Therefore, this observable is typically only
studied for non-equilibrium initial conditions.

In this chapter, we describe how these time-dependent observables and correlation functions can
be approximately simulated in an efficient way. The major difficulty for simulating the dynamics
of this system is due to the fact that the electronic states are described by a discrete basis, |1⟩ or|2⟩, whereas the nuclear degrees of freedom have a continuum of position and momentum states.
Typically an approximation is made to treat the nuclei classically and the electronic states quantum
mechanically [18]. However, we would like to treat the nuclear and electronic degrees of freedom
on an equal footing, in order to also include nuclear quantum effects. We will, therefore, introduce
the mapping approach [19, 20] to rigorously convert the discrete electronic basis into a continuous
basis. This will then be used first to obtain linearized path-integral dynamics and then ring-polymer
molecular dynamics. We show results of non-equilibrium and equilibrium correlation functions
applied to example systems and discuss their behaviour.

20.2 Semiclassical Theory

There have been a number of theories developed for simulating semiclassical non-adiabatic
dynamics [21], including surface hopping approaches [22] and mean-field dynamics [23]. Here
we will introduce the mapping formalism for representing discrete electronic states by continuous
phase-space variables. This will allow us to obtain classical equations of motion for these variables
and to calculate the correlation functions as averages over ensembles of the trajectories.

20.2.1 Mapping Approach

A classical model of non-adiabatic transitions was created by Meyer and Miller [19] in terms of
an additional set of variables to describe the electronic state. This model was later formalized by
Stock and Thoss [20] and shown to be rigorously derived from quantum mechanics. The proof is
based on the equivalence between an L-level system and a set of L harmonic-oscillator creation and
annihilation operators, â†

𝜈 and â𝜈 . The operators and states are mapped to the new representation
according to the following relations:|𝜈⟩⟨𝜇| → â†

𝜈 â𝜇 (20.9a)|𝜈⟩ → |01, · · · , 1𝜈 , · · · , 0L⟩. (20.9b)

The original electronic states are thus represented by singly-excited harmonic oscillator states in L
degrees of freedom, and the operators act on these states by moving the excitation between different
degrees of freedom. One can show that this mapping preserves the commutation relation of the
original system,

[|𝜈⟩⟨𝜇|, |𝜈′⟩⟨𝜇′|] = |𝜈⟩⟨𝜇′|𝛿𝜇𝜈′ − |𝜈′⟩⟨𝜇|𝛿𝜇′𝜈 . (20.10)

The advantage of changing the representation to one based on creation and annihilation opera-
tors of harmonic oscillators is that these can themselves be represented using position and momen-
tum operators, x̂𝜈 = (â†

𝜈 + â𝜈)∕
√

2 and p̂𝜈 = i(â†
𝜈 − â𝜈)∕

√
2, given in the continuous (dimensionless)

position and momentum representations by

⟨x|𝜈⟩ = √
2

𝜋L∕4 x𝜈 e−
1
2
|x|2 , ⟨p|𝜈⟩ = −i

√
2

𝜋L∕4 p𝜈 e−
1
2
|p|2 , (20.11)

where x = (x1, · · · , xL) and p = (p1, · · · , pL) are vectors of the mapping positions and momenta.
This is visualized in Figure 20.1.
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|1〉

|2〉

x1

x2

Figure 20.1 A schematic of the mapping approach. The two-state quantum system in state |1⟩, as shown
on the left, is mapped to a set of two harmonic oscillators, with an excitation in the mode corresponding to
the populated state.

Using the fact that the commutator [x̂𝜈 , p̂𝜇] = i𝛿𝜈𝜇, the state operators are mapped to

|𝜈⟩ ⟨𝜈| = 1
2
(x̂2
𝜈 + p̂2

𝜈 − 1) (20.12a)

|𝜈⟩ ⟨𝜇| + |𝜇⟩ ⟨𝜈| = x̂𝜈 x̂𝜇 + p̂𝜈 p̂𝜇 𝜈 ≠ 𝜇 , (20.12b)

and therefore the mapping Hamiltonian can be defined as

̂ =
̂⃗P2

2M
+ Û + 1

2
[x̂TV̂x̂ + p̂TV̂p̂ − trV̂]. (20.13)

The propagator based on this mapping Hamiltonian leads to equivalent dynamics to the unmapped
Hamiltonian as ⟨𝜈|e−iĤt∕ℏ|𝜇⟩ = ⟨01, · · · , 1𝜈 , · · · , 0L|e−i̂t∕ℏ|01, · · · , 1𝜇, · · · , 0L⟩. The advantage of
the mapping representation is that the Hamiltonian has a well-defined classical analogue, in which
x𝜈 and p𝜈 are used not as operators, but as canonical variables that evolve according to Hamilton’s
equations.

In principle, the mapping presented above is formally exact. However, this is no longer true
once classical equations of motions are employed. In particular, the true quantum dynamics are
constrained to a physical subspace of singly-excited oscillators, although due to zero-point energy
leakage, the classical dynamics may leave this subspace [24, 25]. Other mapping approaches have
also been developed including using a spin degree of freedom rather than singly-excited harmonic
oscillators. This gives rise to the same equations of motion but may have certain advantages in that
the classical dynamics cannot leave the physical subspace [26].

While these definitions were given in the diabatic representation, there is an equivalent formu-
lation of the mapping approach in the adiabatic representation. This is easily obtained using a
canonical transformation and thus gives identical results [27, 28]. A middle ground is provided by
quasi-diabatic representations which may lead to simpler methods when combined with on-the-fly
ab initio calculation of the potential energy surfaces [29].

20.2.2 Linearized Semiclassical Dynamics

In order to obtain a practical simulation method, some approximations must be made to the quan-
tum dynamics. In particular, we would like to employ a classical trajectory method to propagate
the system defined in the mapping representation. To make a connection with the quantum cor-
relation functions defined in Eq. (20.4), the quantum operators are first Wigner transformed into
classical phase-space representations.

The Wigner transform of an operator ̂ is defined as

w(R⃗, P⃗, x, p) = ∫ ∫ eiP⃗⋅R⃗′∕ℏ+ip⋅x′
⟨

R⃗ − R⃗′

2
, x − x′

2
|||̂||| R⃗ + R⃗′

2
, x + x′

2

⟩
dx′ dR⃗′ , (20.14)
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where x′ and R⃗′ are integration variables in the same space as {x, p} and {R⃗, P⃗} respectively, facil-
itating the Wigner transform over ̂. The exact quantum correlation function can be written in
these terms as

CAB(t) =
1

(2𝜋ℏ)F(2𝜋)L ∫ ∫∫ ∫ 𝜌w(R⃗, P⃗, x, p)Aw(R⃗, P⃗, x, p)[B̂(t)]w (R⃗, P⃗, x, p) dx dp dR⃗ dP⃗.

(20.15)

So far, no approximation has been made, but even though the formula is written in terms of clas-
sical phase-space distributions, it is not a practical method because the Heisenberg representation
of the quantum operator B̂(t) is only known at short times and is impractical to compute at long
times. A simple approximation is obtained by using time-dependent classical trajectories to obtain
the Wigner-transformed operator at later times. This results in the correlation function defined as

CAB(t) ≈
1

(2𝜋ℏ)F(2𝜋)L ∫ ∫∫ ∫ 𝜌w(R⃗, P⃗, x, p)Aw(R⃗, P⃗, x, p)Bw(R⃗(t), P⃗(t), x(t), p(t))dx dpdR⃗dP⃗ ,

(20.16)

where the time-dependent quantities are found by propagating the initial conditions according to
the classical mapping Hamiltonian

 = P⃗2

2M
+ U(R⃗) + 1

2
[xTVx + pTVp − trV]. (20.17)

The equations of motion of the mapping variables are
.
x = Vp (20.18a)
.
p = −Vx , (20.18b)

and of the nuclear coordinates and momenta,
.
R⃗ = P⃗

M
(20.18c)

.
P⃗ = −𝜕U

𝜕R⃗
− 1

2

[
xT 𝜕V

𝜕R⃗
x + pT 𝜕V

𝜕R⃗
p − tr 𝜕V

𝜕R⃗

]
. (20.18d)

One important aspect to note about these equations is that |x|2 + |p|2 is a conserved quantity.
The equations of motion can be solved iteratively using extensions of standard molecular dynam-
ics [25]. An example calculation performed by this method will be presented in the following
section.

This approximate approach can be derived rigorously in the semiclassical limit by linearizing
the path-integral representation of the operator B̂(t). This approach is, therefore, known as the
linearized semiclassical initial-value representation (LSC-IVR) [30–32]. It is also strongly related
to the quantum-classical Liouville equation [33–35].

There also exist less drastic approximations where the path-integral is not fully linearized. These
give semiclassical dynamics including phase contributions from the trajectories [20, 27, 36] as well
as partially-linearized dynamics [15, 37–39]. Alternative approaches based on the same dynamics
have also been suggested using binned conditions for the mapping variables [40].

20.3 Non-Equilibrium Dynamics

One of the key challenges in condensed matter physics is the description of the dynamics in dis-
sipative quantum systems. The physical phenomena affected by the complexity of dissipation in
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condensed phase systems include electron transfer, hydrogen tunneling as well as a number of
others [41–43].

20.3.1 Spin-Boson Systems

The Spin-Boson model captures the key aspects needed to describe quantum dissipation. It has
been widely studied to this end [13, 31, 44–51] owing to the relative simplicity of its Hamiltonian.
The model consists of a two-level subsystem, coupled linearly to a bath, approximated as a set of
harmonic oscillators.

The general form of the Spin-Boson Hamiltonian is written as a sum of subsystem, system-bath
and bath Hamiltonians, Ĥs, Ĥsb and Ĥb respectively.

Ĥ = 𝜀𝜎̂z + Δ𝜎̂x

⏟⏞⏞⏟⏞⏞⏟

Ĥs

+
F∑

j=1
cjRj𝜎̂z

⏟⏞⏞⏟⏞⏞⏟

Ĥsb

+
F∑

j=1

[
P2

j

2Mj
+ 1

2
Mj𝜔

2
j R2

j

]
̂

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Ĥb

, (20.19)

where 𝜀 is the energy bias, Δ is the inter-state or electronic coupling and cj are the system-bath,
intra-state or vibronic coupling coefficients. F is the total number of bath modes, Rj and Pj denote
the position and momentum of bath degree of freedom j, while Mj is its mass and 𝜔j its frequency.

Systems featuring two discrete states, of which the Spin-Boson Hamiltonian is a key example, are
generally described by the Pauli matrices, which are

𝜎̂x =
(

0 1
1 0

)
𝜎̂y =

(
0 −i
i 0

)
𝜎̂z =

(
1 0
0 −1

)
, (20.20)

and the identity ̂. While convenient as descriptions of a two state system in their matrix form, in
order to express the operators associated with the Pauli matrices in the mapping formalism, the
equivalent expressions in Dirac notation are used,

𝜎̂x = |2⟩ ⟨1| + |1⟩ ⟨2| 𝜎̂y = i(|2⟩ ⟨1| − |1⟩ ⟨2|) 𝜎̂z = |1⟩ ⟨1| − |2⟩ ⟨2| . (20.21)

Given these definitions and the relation between state operators and creation and annihilation
operators, given in Eq. (20.9a), the mapping representations of the Pauli matrix operators are

𝜎̂x → x̂1x̂2 + p̂1p̂2 (20.22a)

𝜎̂y → x̂1p̂2 − p̂1x̂2 (20.22b)

𝜎̂z →
1
2
(x̂2

1 + p̂2
1 − x̂2

2 − p̂2
2) . (20.22c)

As mentioned in section Section 20.2.1, classical analogues to these operators can be arrived at
by replacing the x̂ and p̂ operators with the classical phase-space variables, x and p, leading to a
classical set of Pauli matrix representations, similar to Eqs. (20.22), such that for example,𝜎cl

x (x, p) =
x1x2 + p1p2.

Another strategy for arriving at classical phase-space representations of quantum operators,
already mentioned in section Section 20.2.2, utilizes the Wigner transform, defined as in Eq.
(20.14). When applying this to the Spin-Boson Hamiltonian and therefore taking the transform
over the Pauli matrix operators, a crucial distinction must be made which representation of these
operators is used [25].

The Wigner transform of the Pauli operators, written in terms of the mapping variable operators,
x̂ and p̂, shown in Eqs. (20.22), results in phase-space representations identical to the classical
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equivalents of Eqs. (20.22), e.g., 𝜎cl
x (x, p). If we instead use the Pauli operators in their state vector

form, as shown in Eq. (20.21), that is projected onto the harmonic oscillator subspace, this results
in a different set of phase-space representations:

𝜎w
𝛼 (x, p) = 16 𝜎̃𝛼(x, p) e−(x2

1+p2
1+x2

2+p2
2) 𝛼 ∈ {x, y, z} , (20.23)

where

𝜎̃x(x, p) = x1x2 + p1p2 (20.24a)

𝜎̃y(x, p) = x1p2 − p1x2 (20.24b)

𝜎̃z(x, p) =
1
2
(x2

1 + p2
1 − x2

2 − p2
2) . (20.24c)

We note that 𝜎̃𝛼(x, p) ≡ 𝜎cl
𝛼 (x, p) for 𝛼 ∈ {x, y, z} and that the functional forms of 𝜎w

x , 𝜎w
y and 𝜎w

z are,
therefore, simply given by their classical equivalent multiplied by an exponential factor. Of note is
that the exponent is a conserved quantity of the mapping Hamiltonian.

The properties of the harmonic bath and its coupling to the quantum subsystem, namely the
frequencies 𝜔j, masses Mj, and coefficients cj are determined by the spectral density, J(𝜔), given by

J(𝜔) = 𝜋

2
∑

j

c2
j

Mj𝜔j
𝛿(𝜔 − 𝜔j) . (20.25)

A common choice for the spectral density is for it to resemble the exponential form,

J(𝜔) ≈ 𝜋

2
K𝜔s exp(−𝜔∕𝜔c) , (20.26)

where the Kondo parameter, K, and the characteristic frequency of the bath, 𝜔c, form the two key
parameters determining the effect of the bath. When the exponent s = 1, the resulting spectral
density is commonly referred to as having Ohmic character. This case corresponds to one of the
most widely studied Spin-Boson problems, as the systems resulting from varying K and 𝜔c display
a wide range of behaviors, from perfectly coherent to highly non-adiabatic [46, 49–51].

For any given Ohmic Spin-Boson problem, once the Kondo parameter and characteristic fre-
quency of the bath have been chosen, what remains is to sample from this distribution a set of
F representative frequencies, 𝜔j, and corresponding coupling coefficients, cj. The computational
challenge of the underlying problem is highly dependent on the strategy chosen, as, for example, an
abundance of high frequency bath modes, or modes with vanishing coefficients, can result in a sig-
nificantly larger number of bath degrees of freedom being required to converge a given observable.

A number of different discretization schemes have been proposed [52–55]. In this work, we select
them according to the density

𝜌(𝜔j) = F∕𝜔c exp(−𝜔j∕𝜔c) , (20.27)

such that j = ∫ 𝜔j
0 𝜌(𝜔)d𝜔. This gives us the couplings

cj =

√
2M𝜔jJ(𝜔j)
𝜋𝜌(𝜔j)

= 𝜔j
√

MK𝜔c∕F , (20.28)

and the frequencies

𝜔j = −𝜔c ln

( 1
2
+ j
F

)
. (20.29)

This particular discretization scheme has the advantage that it reproduces the exact value for the
reorganization energy, 2

∑
jc2

j ∕M𝜔2
j = 2K𝜔c, for any number of bath modes.
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The Spin-Boson Hamiltonian can be used to model a number of different physical processes,
including electron transfer reactions, proton tunneling as well as a number of photo-induced phe-
nomena [41–43]. We are, however, also interested in more general molecular systems which cannot
be accurately described by sets of harmonic oscillators. For this reason, in the following, we will
not assume that the Hamiltonian has the Spin-Boson form and we will discuss methods based on
classical trajectories which can be applied equally well to more realistic anharmonic systems. The
Spin-Boson model is however a convenient system for benchmarking their accuracy.

20.3.2 Non-Equilibrium Correlation Functions

As mentioned in Section 20.1, most properties of interest related to the study of complex systems
are defined in terms of time correlation functions. Here we will consider non-equilibrium correla-
tion functions which are initially prepared in an uncoupled thermal bath state. At time t = 0, the
coupling is switched on and the dynamics are initiated.

The thermal density matrix of the bath is given by 𝜌b = e−𝛽Ĥb∕Zb where Zb = Trb[e−𝛽Ĥb ] is a trace
over the bath modes only. Because there are two electronic states, Tr[𝜌̂b] = 2, so the initial density
matrix is defined as 𝜌̂ = 1

2
𝜌̂b, such that Tr[𝜌̂] = 1.

Sampling initial conditions for the nuclear (bath) degrees of freedom is straightforward for this
system, as it is simply a set of uncoupled harmonic oscillators. The thermal Wigner distribution,
defined by the Wigner transform discussed above, can be used to straightforwardly sample
phase-space variables for a quantum system. In the case of the Spin-Boson Hamiltonian, this
distribution for the bath is

𝜌w
b (R⃗, P⃗) =

F∏
j=1

2 tanh
(1

2
𝛽ℏ𝜔j

)
exp

[
− 1
ℏ

(
P2

j

Mj𝜔j
+ Mj𝜔jR2

j

)
tanh

(1
2
𝛽ℏ𝜔j

)]
, (20.30)

which is normalized such that 1
(2𝜋ℏ)F ∫ 𝜌w

b (R⃗, P⃗)dR⃗dP⃗ = 1.
As discussed in section Section 20.2.2, the definition of the LSC-IVR correlation function involves

Wigner transforms of the correlated operators. For this Hamiltonian, and in fact any system writ-
ten in terms of the Pauli matrices, sampling the electronic degrees of freedom, i.e., the mapping
variables x and p is, therefore, somewhat more involved, owing to the different ways to Wigner
transform the Pauli operators, discussed above.

Given the different results of the Wigner transform, based on the representation chosen for the
Pauli matrix operators, there are two strategies for turning the operators Â and B̂ into functions of
the extended phase-space variables, allowing them to be calculated from semi-classical trajectories.
Therefore, two different types of LSC-IVR correlation functions of Pauli matrices are possible.

The first uses two Wigner transformed operators, as given in Eqs. (20.23), which corresponds to
two projections onto the harmonic oscillator subspace, one for each operator. Because the exponen-
tial term is conserved by the dynamics, one can sample the initial values of the mapping variables
from a function, 𝜌(2)s (x, p), corresponding to the square of the exponential factor shared by Aw and
Bw, namely

𝜌
(2)
s (x, p) = (2∕𝜋)2 e−2(x2

1+p2
1+x2

2+p2
2) , (20.31)

where the superscript (2) represents the two projections carried out for the operators. After sam-
pling from this distribution, the values of the Pauli operators are calculated from the mapping
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variables using the expressions in Eqs. (20.23). The correlation function is, therefore, given by

CAB(t) ≈
1

(2𝜋ℏ)F(2𝜋)2 ∫ ∫∫ ∫
1
2
𝜌w

b (R⃗, P⃗)A
w(x(0), p(0))Bw(x(t), p(t)) dx dp dR⃗ dP⃗ (20.32a)

= 8⟨Ã(x(0), p(0)) B̃(x(t), p(t))⟩𝜌w
b 𝜌

(2)
s
, (20.32b)

where Â and B̂ have been assumed to be pure subsystem operators. The angular brackets imply a
classical ensemble average,

⟨⟩𝜌 = ∫∫∫∫ 𝜌 dx dp dR⃗ dP⃗

∫∫∫∫ 𝜌 dx dp dR⃗ dP⃗
, (20.33)

and can be computed from an average of the value of  obtained from random sample of the dis-
tribution 𝜌.

Intuitively, one sets Ã = 1 in order to obtain an expression for the time-dependent observable
averages,

PB(t) ≈
1

(2𝜋ℏ)F(2𝜋)2 ∫ ∫∫ ∫
1
2
𝜌w

b (R⃗, P⃗)B
w(x(t), p(t)) dx dp dR⃗ dP⃗ (20.34a)

= 8⟨B̃(x(t), p(t))⟩𝜌w
b 𝜌

(2)
s
. (20.34b)

A different approximation to the correlation function is obtained if only one of the operators
is projected onto the harmonic oscillator subspace before Wigner transforming, the other being
taken to be of the classical form shown in Eqs. (20.22). This second definition differs only in the
number of exponential prefactors present in the phase-space representation of the operator. The
same prescription for calculating CAB(t) can therefore be followed, if the mapping variables are
sampled from

𝜌
(1)
s (x, p) = 𝜋−2e−(x2

1+p2
1+x2

2+p2
2) , (20.35)

where the superscript (1) represents a single projection onto the harmonic oscillator subspace. This
second definition of the correlation function is therefore

CAB(t) ≈
1

(2𝜋ℏ)F(2𝜋)2 ∫ ∫∫ ∫
1
2
𝜌w

b (R⃗, P⃗)A
cl(x(0), p(0))Bw(x(t), p(t)) dx dp dR⃗ dP⃗ (20.36a)

= 2⟨Ã(x(0), p(0))B̃(x(t), p(t))⟩𝜌w
b 𝜌

(1)
s
. (20.36b)

We would have obtained an equivalent expression using Aw and Bcl. Choosing Ã = 1,

PB(t) ≈
1

(2𝜋ℏ)F(2𝜋)2 ∫ ∫∫ ∫
1
2
𝜌w

b (R⃗, P⃗)B
w(x(t), p(t))dx dp dR⃗ dP⃗ (20.37a)

= 2⟨B̃(x(t), p(t))⟩𝜌w
b 𝜌

(1)
s
. (20.37b)

A third approach, which does not project either operator onto the harmonic oscillator subspace,
is clearly not allowed. This would not be physically relevant as it would not map back onto the
real non-adiabatic problem. Furthermore, in the absence of projected operators, there exists no
distribution to sample the mapping variables from, as the exponential distributions in Eq. (20.31)
and Eq. (20.35) arise from the Wigner transforms of the projected operators.

To illustrate the difference between the two approximations for the correlation functions and
expectation values introduced above we have calculated the Pauli operator correlation functions
and expectation values for a biased Spin-Boson Hamiltonian, the results and parameters of which
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Figure 20.2 Pauli operator correlation functions and expectation values from LSC-IVR for a Spin-Boson
model with energy bias 𝜖 = Δ, bath characteristic frequency 𝜔c = 2.5Δ and Kondo parameter K = 0.2, at
inverse temperature 𝛽 = 10Δ−1 [56]. The solid blue line corresponds to a doubly projected correlation
function, as per Eq. (20.32), the red dashed line to the singly projected version, shown in Eq. (20.36).
Numerically exact QUAPI results [56] are shown as black dots.

are given in Figure 20.2. Owing to the efficient discretization scheme chosen for the bath degrees of
freedom, only F = 36 bath modes were required to reach convergence with respect to numerically
exact quasi-adiabatic propagator path integral (QUAPI) results. Operators were calculated as aver-
ages over a total of 107 semiclassical trajectories. Comparing the doubly (solid blue lines) and singly
projected (red dashed lines) correlation functions and expectation values, it becomes clear that the
difference is relatively small, all major structural features being present in both. A more detailed
comparison of the two formulations can be found in Ref. [57].

The correlation functions display a number of highly symmetrical properties. In cases where
Â = B̂ for example, the initial value is CAB(0) = 1, while in all other cases where Â ≠ B̂, it is CAB(0) =
0. These values in the short time limit are exact and retained by the approximation, as they analyt-
ically derive from the underlying algebra of the Pauli matrices. Furthermore, at times t > 0, there
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exists a set of symmetry relationships where

C𝜎x𝜎y
(t) = −C𝜎y𝜎x

(t) (20.38a)

C𝜎z𝜎y
(t) = −C𝜎y𝜎z

(t) (20.38b)

C𝜎x𝜎z
(t) = C𝜎z𝜎x

(t) . (20.38c)

These symmetries are also obeyed by both approximations.
When using the Spin-Boson Hamiltonian to model processes such as electron transfer, it is typical

to study the dynamics of a system initialized in one of the states and to calculate the population
difference between the electronic states as a function of time. The population difference is measured
by the 𝜎z operator but the initial conditions are different from those employed above. Although we
have not directly computed the function of interest, we are able to take linear combinations of our
correlation functions to obtain the required result.

In the notation of the Pauli matrices, the initial condition corresponds to |1⟩ ⟨1|, which can, in
terms of the Pauli matrices, be constructed as follows

|1⟩ ⟨1| ≡ (
1 0
0 0

)
= 1

2

[(
1 0
0 1

)
+
(

1 0
0 −1

)]
= 1

2
(̂ + 𝜎̂z) . (20.39)

Therefore the function of interest can be calculated as follows:

Tr[𝜌̂b|1⟩ ⟨1|𝜎̂z(t)] ≡ C𝜎z
(t) + C𝜎z𝜎z

(t) ≡ P𝜎z
(t) + C𝜎z𝜎z

(t) . (20.40)

The second equivalency holds in the exact quantum picture, but not in the semiclassical approxima-
tion. Refs. 56 and 57 show computing the correlation functions in this way significantly improves
the quality of semiclassical dynamics results for population differences. Note that the factor of half
in Eq. (20.39) is included in Eq. (20.40) as part of the normalization of the correlation functions.

Figure 20.3 shows the population difference, with the system starting in the |1⟩ state at t = 0,
calculated using both doubly (solid blue line) and singly projected operators (red dashed line), as
well as numerically exact results from a grid based QUAPI calculation [56]. Overall, this example
serves to show how well LSC-IVR combined with the mapping approach can describe the dynamics
of the Spin-Boson model. Again the difference between the two strategies for computing correlation
functions is rather small, the double projection definition being in slightly better agreement with
the exact result.

0 5 10 15 20

t

−1

0

1

P
σ z
(t

)
+

 C
σ z

 σ
z(

t)

Figure 20.3 Population difference starting from electronic state |1⟩, computed from LSC-IVR correlation
functions and expectation values. Solid blue and red dashed lines correspond to doubly and singly
projected correlation functions respectively, black dots to numerically exact QUAPI results [56].
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20.4 Non-Adiabatic Path-Integral Theory

In the previous sections, we have discussed the use of linearized path-integral methods for simu-
lating the dynamics of non-adiabatic systems. Such approaches employ purely classical dynamics
for the nuclear degrees of freedom and are combined in various ways with a quantum descrip-
tion of the electronic-state dynamics. In this section, we introduce imaginary-time path-integral
methods which allow us to include quantum effects in both the electronic and nuclear degrees of
freedom.

These methods are particularly useful for simulating dynamics initialized from an equilibrium
distribution, as the imaginary-time path-integral methods sample this naturally. Much progress has
been made with these techniques for studying single-PES adiabatic systems in order to obtain ther-
modynamic information on condensed-phase systems [59–62]. Real-time correlation functions can
also be obtained using ring-polymer molecular dynamics [3, 63]. This is an approximate method,
but as it is also based on the imaginary-time path-integral, it can be shown that it tends to the exact
result in the short-time limit. A number of non-adiabatic extensions of RPMD have been suggested
based on the mapping approach [64–66]. We will introduce the idea below and show benchmark
results from this methodology.

20.4.1 Mean-Field Path-Integral Sampling

First we will give a derivation of the imaginary-time path-integral approach for computing thermo-
dynamic quantities in non-adiabatic systems [67]. This, like the original path-integral methodology
[1], can be derived from a splitting of the quantum Boltzmann operator.

The total partition function is the trace of the Boltzmann operator,

Z = Tr[e−𝛽Ĥ], (20.41)

and can be split into factors depending alternately on the potential or kinetic energy operators

Z ≃ Tr

[ N∏
i=1

e−𝛽N (Û+V̂)∕2e−𝛽N
̂⃗P

2
∕2Me−𝛽N (Û+V̂ )∕2

]
, (20.42)

where 𝛽N = 𝛽∕N. This expression is exact in the N → ∞ limit where 𝛽N is small.
We now insert a complete set of position states, 1 = ∫ |R⃗i⟩ ⟨R⃗i|dR⃗i, for each value of i to evalu-

ate the potential operators, e−𝛽N (Û+V̂)∕2|R⃗i⟩ = e−𝛽N (U(R⃗i)+V(R⃗i))∕2|R⃗i⟩. Similarly we evaluate the kinetic
operators by inserting complete sets of momentum states 1 = ∫ |P⃗i⟩ ⟨P⃗i|dP⃗i. The momentum vari-
ables can be integrated out analytically because the integrand is Gaussian. In the case of a single
potential energy surface, V ≡ 0, this yields the expression

Z ≃
(

M
2𝜋𝛽Nℏ

2

)NF∕2

∫ e−𝛽N UN (R)dR, (20.43)

where R = {R⃗1,… , R⃗N}, F is the number of nuclear degrees of freedom, and

UN (R) =
N∑

i=1

(
M

2𝛽2
Nℏ

2
|R⃗i − R⃗i−1|2 + U(R⃗i)

)
, (20.44)

with cyclic indices such that R⃗0 ≡ R⃗N , is an effective potential. We will call it the ring-polymer poten-
tial because one can interpret it as the potential of a classical ring-polymer with N beads connected
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by harmonic springs. This can be generalized to a multi-surface system with diabatic potential
matrix V in which case we instead have

Z ≃
(

M
2𝜋𝛽Nℏ

2

)NF∕2

∫ W0(R)e−𝛽N UN (R)dR, (20.45)

with

W0(R) = tr

[ N∏
i=1

e−𝛽N V(R⃗i)

]
, (20.46)

where the notation tr[•] refers to a trace over only the electronic degrees of freedom.
In order to compute quantum equilibrium statistical averages of an operator Â = A( ̂⃗R), a similar

derivation gives

⟨Â⟩eq = 1
Z

Tr[A( ̂⃗R)e−𝛽Ĥ] (20.47a)

≃
∫ Ā(R)𝜌0(R)dR

∫ 𝜌0(R)dR
≡ ⟨Ā(R)⟩𝜌0

, (20.47b)

where 𝜌0(R) = W0(R)e−𝛽N UN (R) and Ā(R) = 1
N

∑
iA(R⃗i). Here we have used the fact that all beads are

equivalent to define the statistical average in a symmetric way. This will reduce the statistical error
from a given sample.

In order to compute the average over a state-dependent operator, Â = |𝜈⟩ ⟨𝜇|, a projection onto
the required states is inserted into the trace over matrix exponentials. This gives

⟨Â⟩eq = 1
Z

Tr[|𝜈⟩ ⟨𝜇|e−𝛽Ĥ] (20.48a)

≃
∫ [Γ𝜈𝜇(R)∕W0(R)]𝜌0(R)dR

∫ 𝜌0(R)dR
≡
⟨Γ𝜈𝜇(R)

W0(R)

⟩
𝜌0

, (20.48b)

where here Γ𝜈𝜇(R) =
[∏N

i=1 e−𝛽N V(R⃗i)
]
𝜈𝜇

. A similar symmetrization procedure could also be applied
in this case, since the trace is cyclically permutable.

These statistical averages can be evaluated either by path-integral Monte Carlo techniques [68]
or by path-integral molecular dynamics using an effective potential of UN (R) − 1

𝛽N
ln W0(R). We

emphasize that such dynamics is just a sampling tool and cannot be used to calculate real-time
dependence, in contrast to what will be presented in section 20.4.2. It may be noted that sometimes
the estimator Ā at zero time is better incorporated by modifying the distribution than by an aver-
age over beads and mapping variables [69]. Extensions to deal with operators of momenta can be
obtained in the usual way [4].

20.4.2 Non-Adiabatic Ring-Polymer Molecular Dynamics

In Section 20.4.1, we introduced a non-adiabatic imaginary-time path-integral formulation which
can be used to compute statistical properties of systems with multiple electronic states. However,
such a formulation cannot be directly employed to obtain information on real-time dynamics as it
has no memory for the populations of the diabatic states and treats them only in an average way.
In Section 20.2.2 we already explored one method to approximate real-time dynamics, LSC-IVR,
which has the disadvantage that it requires us to compute a Wigner transform, which is only pos-
sible for simple potentials. To allow initial distributions on general potential energy surfaces, we
will make use of the path-integral formalism.
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First we briefly present how to generate real-time dynamics on a single potential energy surface
(V ≡ 0) using ring-polymer molecular dynamics (RPMD). It has been shown that if one generates
equations of motion from the Hamiltonian

RPMD
N = P2

2M
+ UN (R), (20.49)

the dynamics can be used to approximate Kubo-transformed correlation functions C̃AB(t), defined
in Eq. (20.6). The correlation functions are exact at t = 0, accurate to an order of at least (t4) for
general A( ̂⃗R), B( ̂⃗R), and reduces to classical dynamics at high temperature [63]. Compared to a clas-
sical treatment, RPMD includes nuclear quantum effects by treating the nuclei in a delocalized way.

In order to get real-time information from ring-polymer dynamics on multiple surfaces
(general V), we follow the mapping approach and represent the discrete electronic levels by
continuous phase-space variables. In particular we will present the approach called non-adiabatic
ring-polymer molecular dynamics (NRPMD) [64].

The NRPMD Hamiltonian is defined as [9, 64]

NRPMD
N = P2

2M
+ UN (R) +

N∑
i=1

1
2
[xT

i Vixi + pT
i Vipi − tr Vi], (20.50)

where x = {x1,… , xN} and p = {p1,… , pN} are sets of mapping variables assigned to each
ring-polymer bead, and Vi = V(R⃗i). The first two terms are the same as in standard (single surface)
RPMD, and the third term adds contributions from different potential energy surfaces. From this
Hamiltonian we obtain the equations of motion

.
R⃗i =

P⃗i

M
(20.51a)

.
P⃗i = − 𝜕U

𝜕R⃗i

− 1
2

[
xT

i
𝜕Vi

𝜕R⃗i

xi + pT
i
𝜕Vi

𝜕R⃗i

pi − tr
𝜕Vi

𝜕R⃗i

]
(20.51b)

.
xi = Vipi (20.51c)
.
pi = −Vixi. (20.51d)

In the ring-polymer molecular dynamics ansatz, one uses the dynamics of such a Hamiltonian
to compute real-time correlation functions. The dynamics of these trajectories will only be approx-
imate, but can still give reasonable results on short time scales, which are the most important in
many applications. The initial conditions for the trajectories should be sampled from the quantum
Boltzmann distribution, written in a path-integral form.

We cannot directly use the distribution obtained in Section 20.4.1 as this would not give a dis-
tribution for the mapping variables. Therefore, instead of computing the partition function in a
mean-field way, we will express it in terms of mapping variables. This gives us an equilibrium dis-
tribution similar to the one derived by Ananth and Miller [70]. Extending the derivation in Section
20.4.1 by also inserting complete sets of eigenstates of the operators x̂i and p̂i, and further factorizing
each factor e−𝛽N V(R⃗i) into two matrices, we can write [9, 64]

W1(R, x,p) = tr

[ N∏
i=1

L∑
𝛼,𝛽,𝛾,𝛿=1

e−𝛽N V(R⃗i)∕2|𝛼⟩⟨𝛼|xi⟩⟨xi|𝛽⟩⟨𝛽|e−𝛽N V(R⃗i)∕2|𝛾⟩⟨𝛾|pi⟩⟨pi|𝛿⟩⟨𝛿|
]
.

(20.52)

The factors
∑L
𝛼=1 |𝛼⟩⟨𝛼| ≡ ∑L

𝛼=1 |01,… , 1𝛼 … , 0L⟩⟨01,… , 1𝛼,… , 0L| are required to project the
mapping variables on to the physical subspace of singly-excited oscillators [70].
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The total partition function can now be written in the form

Z ≃ 1
(2𝜋ℏ)NF ∫ 𝜌1(R,P, x,p) dR dP dx dp, (20.53)

where the distribution is

𝜌1(R,P, x,p) =
( 4
𝜋2

)N
W1(R, x,p)e−x2−p2 e−𝛽N [P2∕2m+UN (R)] , (20.54)

and

W1(R, x,p) = tr[Γ(R, x,p)] . (20.55)

The state-independent potentials U(R⃗i) are included in UN (R), Eq. (20.44), whereas the potential
matrices, V(R⃗i), are in

Γ(R, x,p) =
N∏

i=1
Mixix

T
i Mipip

T
i , (20.56)

through the matrices

Mi = e−𝛽N V(R⃗i)∕2. (20.57)

Thermodynamic statistical quantities can be obtained similar to the mean-field approach
described in Section 20.4.1, and, in the limit of N → ∞, these will tend to the exact quantum result.
The distribution 𝜌1 can be sampled in a Monte Carlo scheme using trial moves for both nuclear
and electronic coordinates. It is important to notice that W1 (and thereby also 𝜌1) in general is not
positive definite. When sampling the thermal average of an observable  one therefore needs to
weight each sample by its sign

⟨⟩𝜌1
=

⟨sgn 𝜌1⟩|𝜌1|⟨sgn 𝜌1⟩|𝜌1| . (20.58)

For high N this can decrease the sampling efficiency and we will discuss a way to alleviate this
problem in Section 20.4.3. Therefore, for thermodynamic quantities, one should use the mean-field
approach and the advantage of the distribution 𝜌1 is that it can be used to sample initial values for
real time trajectories.

As in the standard RPMD ansatz [3], this method can be used to approximate Kubo-transformed
correlation functions, Eq. (20.6). In NRPMD this is computed from trajectories initialized according
to the distribution 𝜌1,

C̃AB(t) ≈ ⟨Ā(R(0), x(0),p(0))B̄(R(t), x(t),p(t))⟩𝜌1
, (20.59)

where B̄ = 1
N

∑N
i B(R⃗i, xi, pi) and B is obtained by replacing the quantum operators in the mapping

representation of B̂ by classical coordinates [9]. The operator Ā is defined in a similar way if it
is an operator of nuclear positions. However, for an operator of the form Â = |𝜈⟩⟨𝜇|, the explicit
expression is

Ā =
Γ𝜈𝜇(R, x,p)
W1(R, x,p)

, (20.60)

or alternatively

Ā = 1
N

N∑
i=1

[pi−1]𝜈[Mixi]𝜇
pT

i−1Mixi
, (20.61)

where we have used the cyclicity of the trace to symmetrize over beads and mapping variables.
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It should be mentioned that the method presented above is not the only way to unite mapping
variables and RPMD. A similar approach by Chowdhury and Huo [66], Coherent State-RPMD
(CS-RPMD), is based on a coherent state mapping basis and uses the same Hamiltonian for the
dynamics, but has a different initial distribution than in the NRPMD approach. The so-called
mapping-variable RPMD (MV-RPMD) by Ananth [65] uses a different Hamiltonian for the
dynamics designed to conserve the Boltzmann distribution, which is not generally true for
NRPMD and CS-RPMD. Unfortunately this comes with the disadvantage that it cannot exactly
describe Rabi oscillations in an uncoupled two-level system, which is possible with NRPMD
and CS-RPMD.

20.4.3 Alleviation of the Negative Sign

It is possible to carry out a canonical transformation to the action-angle coordinates Jin, 𝜃in,

xi𝜈 =
√

2Ji𝜈 + 1 sin 𝜃i𝜈 (20.62a)

pi𝜈 =
√

2Ji𝜈 + 1 cos 𝜃i𝜈 . (20.62b)

The action coordinates Ji𝜈 thus have the form 1
2
(x2

i𝜈 + p2
i𝜈 − 1) which is equivalent to the classical

mapping function, Eq. (20.12a), of the population of state |𝜈⟩. We will therefore refer to Ji𝜈 as pop-
ulation variables. In these coordinates the Hamiltonian has the form

 = P2

2M
+ UN (R) +

N∑
i=1

[∑
𝜈

Ji𝜈V𝜈(R⃗i) +
∑
𝜈≠𝜇

V𝜈𝜇(R⃗i)
√

2Ji𝜈 + 1
√

2Ji𝜇 + 1 cos(𝜃i𝜈 − 𝜃i𝜇)

]
.

(20.63)

The Hamiltonian depends only on angular differences so that there is always an average angle
Θi =

1
L

∑
𝜈𝜃i𝜈 of which the Hamiltonian is independent. This implies that the total population

∑
𝜈Ji𝜈

is conserved. It has been shown that it is possible to analytically integrate out this angular degree of
freedom and that this alleviates the negative sign problem [9]. If one electronic level is uncoupled
from the others, an additional angle can be integrated out. In the case of an uncoupled two-level sys-
tem this means that both angles can be integrated out, which completely removes the sign problem
for this system [9].

Nonetheless, in general, the distribution remains non-positive definitive. Special techniques
developed to sample other non-positive definite distributions may also be applied in this case. One
example is that of a set of fermions, for which a recent method was developed to sample both the
positive and negative parts efficiently based on enhanced sampling with Metadynamics [71]. We
note, however, that the fermionic sign problem is not necessarily equivalent to our sign problem,
which appears to be much less problematic.

20.4.4 Practical Implementation of Monte Carlo Sampling

This section describes how to implement the Monte Carlo sampling of 𝜌1(R, x,p) in practice. We
will use the generalized Metropolis algorithm [72], in which we generate trial moves according
to an a priori sampling distribution T(s → s′), that are accepted with probability A(s → s′). A suffi-
cient condition for equilibrium is to assert that the total transition probability P(s → s′) = T(s → s′)
A(s → s′) satisfies detailed balance, which means that the average number of accepted moves from
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s to s′ is canceled out by the average number of reverse moves for any pair of two states s and s′, i.e.,
𝜌(s)P(s → s′) = 𝜌(s′)P(s′ → s), where 𝜌(s) is the equilibrium distribution we want to sample. One
can show that detailed balance holds if the acceptance probability is computed as

A(s → s′) = min
[

1,
T(s′ → s)𝜌1(s′)
T(s → s′)𝜌1(s)

]
. (20.64)

Here, s and s′ are labels for the total state described by R, x and p.
There are many ways to generate trial moves. A simple and common type of move is to displace

a coordinate with a random displacement vector sampled uniformly from within a cube of a given
size. This is referred to as the classic move and can be used to update nuclear coordinates, R⃗i, as
well as mapping variables xi𝜈 , pi𝜈 . Typically, this move is too inefficient to sample the distribution
on its own, and it is better to use a menu of different types of moves, where each move in the
menu is used with a predefined probability. Rather than displacing just a single bead, we could
as well displace the whole polymer (all beads) by the same vector, which is called a displacement
move. Alternatively one can resample a nuclear bead coordinate between two neighboring beads
according to a Gaussian distribution in the distance from their midpoint, a procedure called the
free-particle move. This move will, in general, have a shorter correlation time than the classic move.

If the ring polymer has a large number of beads, it will be inefficient to use single-bead moves
like the classic and free-particle moves. A faster way to generate new configurations is through
normal-mode sampling, in which all the non-zero normal modes of the ring polymer are resampled
from Gaussian distributions. For practical considerations of this and other nuclear sampling moves,
the reader is referred to Ref. [68].

For the mapping variables we can add another set of trial moves. The simplest one, except for the
classic move, is to generate the trial configuration from a Gaussian distribution

xi𝜈 ∼ (2𝜋𝜎2
x )

− 1
2 exp

(
−

x2
i𝜈

2𝜎2
x

)
(20.65a)

pi𝜈 ∼ (2𝜋𝜎2
p)

− 1
2 exp

(
−

p2
i𝜈

2𝜎2
p

)
, (20.65b)

where 𝜎x and 𝜎p are typically chosen to be 1∕
√

2 but can be tuned to increase the average traveled
distance per attempt. Another trial move is to swap the components of the mapping variables for a
single bead: (xi𝜈 , xi𝜇) → (xi𝜇, xi𝜈) (and simultaneously the same operation for the p variables). This
will increase the probability to cross between regions in phase space that are dominated by different
potential energy surfaces. In a similar fashion, we can also let the mapping variables of different
beads swap, (xi𝜈 , xi′𝜈) → (xi′𝜈 , xi𝜈). Finally, the action-angle coordinates in Eqs. (20.62) allows for
types of moves in which 𝜃i𝜈 are resampled uniformly from the interval [0, 2𝜋).

The correlation functions are evaluated using the same methods used in classical mechanics and
standard RPMD. First, values of R0, x0 and p0 are selected from a Metropolis simulation, whereas
P0 is chosen from a multidimensional normal distribution,

Pi ∼ (2𝜋M∕𝛽N )
− 1

2 exp(−𝛽N P2
i ∕2M). (20.66)

Trajectories are then run from these initial values using a velocity Verlet scheme, taking advantage
of analytical updates for both the free ring-polymer normal modes and the harmonic mapping
coordinate motions.
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20.5 Equilibrium Correlation Functions

For illustration of the performance of the NRPMD method, we consider a system with two elec-
tronic states and a single vibrational mode, modeling, e.g., a vibrationally coupled electron-transfer
process between a donor and acceptor state. The diabatic potentials are

U(R) = 1
2

M𝜔2R2 − 𝜆(R) (20.67a)

V1(R) = +𝛼 + 𝜅R + 𝜆(R) (20.67b)

V2(R) = −𝛼 − 𝜅R + 𝜆(R) , (20.67c)

where 𝜅 is the vibronic coupling and 2𝛼 the energy bias; the electronic coupling, Δ, is chosen con-
stant. Reduced units are used such that M and ℏ are equal to 1, and by setting the frequency 𝜔 = 1,
we effectively measure energy in units of 𝜔. The function 𝜆(R) =

√
(𝛼 + 𝜅R)2 + Δ2 is chosen in

order to force the lowest eigenvalue of V(R) to be 0 everywhere. This was found to improve the
convergence of calculations.

In the separable case where 𝜅 = 0, the electronic and nuclear degrees of freedom are independent
and the dynamics of the non-adiabatic RPMD method converges, in the large N limit, to the exact
quantum result for the Kubo-transformed electronic correlation function,

C̃22(t) =
1 + 𝛾2

4
+ tanh 𝛽ℏΩ

2

(
𝛾 + 1 − 𝛾2

2𝛽ℏΩ
cos 2Ωt

)
, (20.68)

where ℏΩ =
√
𝛼2 + Δ2, 𝛾 = 𝛼∕ℏΩ and the Rabi oscillation frequency is seen to be 2Ω.

The results of one such calculation are given in Figure 20.4. The correct Rabi frequency is clearly
observed in both the classical (N = 1) and ring-polymer (N = 4) versions. However, unlike the com-
putation of population probabilities [30], it is necessary, just as with semiclassical methods [70], to
use the ring-polymer form in order to compute the correct amplitude of the thermal correlation
function. These short-time results are presented in Table 20.1 and seen to tend quickly to the exact
result.

To provide more stringent tests to the proposed method, correlation functions were computed
for three non-separable systems and compared with numerically exact quantum results from a
discrete-variable representation (DVR) calculation [73].

For strong electronic coupling, Δ = 4, the timescale of the electronic oscillations is much shorter
than that of the nuclear dynamics, such that the nuclei move in a mean field of the diabatic
surfaces. This is close to the adiabatic limit where the nuclear dynamics tend to standard RPMD,
which as shown in Figure 20.5(a), are almost exact in this case as U(R) is approximately harmonic
[3]. The proposed non-adiabatic RPMD method, converged with four beads, also provides an
excellent approximation to the electronic correlation function, which only degrades slightly after
a few oscillations, and is a significant improvement over the single-bead result. The reason why
the method performs so well here is because of the choice 𝜆(R) such that the lowest eigenvalue of
V(R) is zero, whereas the other is very high and unpopulated.

Table 20.1 Initial values of the electronic
correlation function for the separable system
with 𝜅 = 0, 𝛼 = 0.5 and Δ = 1.

N 1 2 4 Exact

C̃22(0) 0.639 0.629 0.625 0.625
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Figure 20.4 Calculated electronic correlation function, Eq. (20.68), for the separable system with 𝜅 = 0,
𝛼 = 0.5 and Δ = 1 compared with the exact solution (black dots). The blue line shows the results with
N = 1 and the green with N = 4.

2

(a) (b) (c)
1

0

~ C
R

R
(t

)
~ C

1
1
(t

)

–1

2

1

0

–1

2

1

0

–1

0.4 0.04

0.03

0.02

0.01

0.00

0.5

0.4

0.3

0.2

0.1

0.3

0.2

0.1
0 1 2 3

t
4 5 0 1 2 3

t
4 5 0 1 2 3

t
4 5

Figure 20.5 Calculated correlation functions, Eq. (20.59), for three systems with 𝜅 = 1 and 𝛽 = 1: (a) close
to the adiabatic limit with 𝛼 = 0 and Δ = 4; (b) with a strong bias, 𝛼 = 2 and Δ = 1; (c) in an intermediate
regime with 𝛼 = 0 and Δ = 1; compared with the DVR results (black dots). The blue, green, and red lines
show the results of one, four, and eight bead calculations. Reproduced from Ref. [64].

With the parameters 𝛼 = 2 and Δ = 1, the system enters the inverted Marcus regime. The major
dynamical effects can be captured with the proposed method as shown in Figure 20.5(b), where
again at least four beads are needed to describe them accurately. It is seen that the equilibrium
population of the |1⟩ state is much reduced in this case and is quickly lost to the lower-energy |2⟩
state. The position autocorrelation function also shows that the system remains almost entirely on
only one diabatic surface, but only with N ≥ 4 is the method able to predict the correct amount of
anharmonicity.

We finally consider a more challenging intermediate system with Δ = 1 but without bias such
that the timescales of the nuclear and electronic vibrations are similar. As seen in Figure 20.5(c),
short-time results correct to within graphical accuracy are obtained with at least four beads. The
approximation does, however, degrade after the first electronic oscillation, although this can be
improved slightly using eight beads.

Finally, we note that, although exact quantum mechanics would predict a time-independent
value of an observable when averaged over equilibrium conditions, this is not necessarily true of the
non-adiabatic ring-polymer approach presented here. In order to test the behavior of the NRPMD
approach, we present results in Figure 20.6 which show the deviation from the correct behavior. It
appears that as N increases, the deviation becomes less troublesome. This may be one of the reasons
why the NRPMD method is seen to give an improvement over the N = 1 version.



�

� �

�

648 20 Path-Integral Approaches to Non-Adiabatic Dynamics

t

0.34

0.46

0.58

0.70

0 1 2 3 4 5 0 1 2 3 4 5
t

0.23

0.26

0.29

0.32

P
1
(t

)

P
R
(t

)

Figure 20.6 Calculated expectation values, Eq. (20.8), of the nuclear operator, x̂, and the population of the
electronic state |1⟩, in the intermediate regime with 𝛼 = 0.5 and Δ = 1. Blue, magenta, and green lines
correspond to the results of calculations employing one, two, and four beads and the dashed line to the
exact result.

20.6 Conclusions

We have presented two approaches based on path-integral methodology and the mapping rep-
resentation for simulating non-adiabatic dynamics. These methods have been tested on simple
model systems, but are also applicable directly to more complex and anharmonic descriptions of
molecules.

LSC-IVR simulations compared very well with exact results, in particular the first version in
which both operators use the projected Wigner transform. Results also show that the non-adiabatic
RPMD method performs well in all regimes tested and tends to the exact, or at least standard RPMD,
results in a number of limiting cases. It was also found to consistently improve upon the classi-
cal (single-bead) implementation of the mapping approach, presumably because of its accuracy in
the short-time limit and better conservation of the harmonic oscillator subspace and Boltzmann
distribution.

Nonetheless, both approaches are based on approximations which will break down under certain
conditions. These methods will not provide correct long-time results in systems where nuclear
quantum coherences play an important role, and are in fact only expected to be accurate at short
times. We should expect NRPMD to be subject to the usual RPMD limitations such as causing
spurious frequencies to appear in vibrational spectra [74, 75] and to have difficulties in describing
correlation functions of strongly nonlinear operators [63].

Within a quasi-classical implementation of the mapping approach, problems with the flow of
zero-point energy between the nuclear and electronic coordinates have been identified [52, 76].
In some circumstances, the population of a state can become negative, effectively inverting the
potential [77, 78]. It is, however, expected that the NRPMD approach will alleviate these problems
as the number of beads is increased [9].

The dynamics methods presented here can be used to obtain information about quantum statis-
tics and dynamics of molecular systems and hence to determine observables such as rate constants
and absorption spectra. Note, however, that in order to obtain rate constants, there may be more
direct simulation routes based on approaches such as semiclassical instanton theory [79, 82], quan-
tum instanton [12, 83, 84], and other forms of ring-polymer molecular dynamics [85, 86]. It may also
be possible to combine these approaches with the mapping dynamics to develop further improved
methods.
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adiabatic switching 623
algebraic diagrammatic construction (ADC) 109
𝛼-string in configuration interaction 138
analytic approach in Bohmian dynamics 566
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approximate quantum potential (AQP) 577–578
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auxiliary multi-electron wave function (AMEW)
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averaged coupled pair functional (ACPF) 292
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𝛽-string in configuration interaction see 𝛼-string
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function/screened Coulomb approach
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Bohmian dynamics see non-adiabatic Bohmian

dynamics (NABDY)
Bohmian fluid elements 574
Bohmian mechanics 563
Bohmian mechanics with complex action 568
Bohmian quantum trajectories algorithm 578
Born–Huang expansion 10, 437, 536, 570
Born–Oppenheimer approximation 9, 532, 571
Born–Oppenheimer diagonal coupling see

diagonal Born–Oppenheimer correction
Born–Oppenheimer molecular dynamics 500,

572
Born–Oppenheimer potential energy surfaces

(BOPESs) 564
boundary in DMRG 214
bra-ket notation see Dirac notation
breaking force in ab initio multiple cloning
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Breit–Pauli Hamiltonian 446, 511
Brillouin states in configuration interaction
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canonical orbitals in MCSCF 188
Casida Ansatz in TDDFT 30
CAS-srDFT see multi-configurational

ranged-separated short-range DFT
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CAS-tPBE see multi-configurational pair-density
functional theory (MC-PDFT)
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CI gradient in CASSCF solver 172
CI-guided dynamically extended active space

(CI-DEAS) in DMRG 220
CI Hessian in CASSCF solver 173
classical limit 472, 572
classical trajectories 473, 499
closure property in MCSCF 184
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compactness in excited-state electronic structure
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complete active space second-order

Moller–Plesset (CAS-MP2) 322
complete active space second-order perturbation

theory (CASPT2) 323
complete active space self-consistent field
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complex action in Bohmian dynamics 568
complex potentials in Bohmian dynamics 568,

580
conditional wave function (CWF) approach

579
configuration interaction (CI) 158
configuration interaction-corrected

Tamm–Dancoff approximation (CIC-TDA)
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configuration-space representation in Bohmian
dynamics 576

configuration state function (CSF) 141,
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conical intersection 11, 28, 33, 532
core excitations 25, 123
core-valence separation in algebraic

diagrammatic construction 124
correlation functions 630, 636, 646
coupled coherent states (CCS) 423
coupled cluster 77, 79
coupled-trajectory mixed quantum-classical

(CT-MQC) 546, 552
coupling coefficients in configuration interaction
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CX-formalism 420

d
Davidson algorithm in configuration interaction

82, 160
Davidson correction 292
Davidson diagonalization in configuration

interaction see Davidson algorithm
death in FCIQMC 193, 194
decoherence 452, 505, 509, 546
density matrix in electronic structure 8, 50, 59,

173, 196, 210
density matrix in nuclear dynamics 388, 636
density matrix renormalization group (DMRG)

205
detachment density see attachment density
diabatic representation 10
diagonal Born–Oppenheimer correction (DBOC)

10, 441, 571
diffusion Monte Carlo (DMC) 252
dimensionality reduction in quantum dynamics

364
dipole–dipole autocorrelation function 620
Dirac–Frenkel variational principle (DFVP)

385, 418
Dirac notation 6
direct configuration interaction (direct CI) 162
direct dynamics see on-the-fly
direct dynamics-variational multi-configurational

Gaussian (DD-vMCG) 414
disconnected excitations in configuration

interaction 282
discrete variable representation (DVR) 389
distinct row table (DRT) in GUGA 149
divide-and-conquer semi-classical initial value

representation (DC-SCIVR) 610
double boundary problem in path integral

600
doubly-electron-attachment equation of motion

coupled cluster (DEA-EOM-CC) 97
doubly-ionized-potentials equation of motion

coupled cluster (DIP-EOM-CC) 94
Dyall’s Hamiltonian 334
dynamic Fourier method 360

e
Eckart conditions 367
effective non-adiabatic coupling in AIMS 442
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Ehrenfest approach 470
electron affinities-algebraic-diagrammatic

construction (EA-ADC) 110
electron-attachment equation of motion coupled

cluster (EA-EOM-CC) 91
electron correlation 47
electron density 50
electron dynamics 481
electronic correlation see electron correlation
electronic excitation equation of motion coupled

cluster (EE-EOM-CC) 84
electronic population 457, 502, 549
electronic spin density 52
electronic structure properties 30, 114
electronic wave function 9, 534
electron–nuclear dynamics 481, 570
ensemble density functional theory (ensemble

DFT) 34, 49
equations of motion in quantum dynamics 388,

392, 393, 418, 436, 472, 476, 501, 535,
633

equations of motion coupled cluster (EOM-CC)
77

error function in short-range DFT 56
exact decomposition see conditional wave

function approach
exact factorization 531, 579
exchange-correlation functional (XC functional)

22
excitation energies-algebraic-diagrammatic

construction (EE-ADC) 110
excitation energy 21, 109
excited-state dipole moment 115
excited-state one-electron density 116
excited state properties see electronic structure

properties
exciton 116
exponential scaling 136, 383
extended ADC(2) (ADC(2)-X) 119
extended MS-CASPT2 (XMS-CASPT2) 342
external electric field 360
external field full multiple spawning (XFFMS)

445

f
factorization see exact factorization
fast Fourier transform (FFT) 360

fermionic sign problem in quantum Monte Carlo
255

fewest-switches surface hopping 508
few-reference in multi-reference methods 122
Feynman’s path integral 598, 602, 629
Fiedler orbital ordering in DMRG 220
Filinov filtering 603
first-order interacting space 316, 325, 332, 335
fixed-node approximation in quantum Monte

Carlo 255
floating occupation molecular orbital complete

active space configuration interaction
(FOMO-CASCI) 451

Fock operator 55, 314, 324
Fourier grid Hamiltonian 360
frequency domain 20
frozen core approximation in correlation methods

282, 318
frozen Gaussian approximation 391, 475,

602
frozen Gaussian propagators 615
frozen orbitals (CASSCF) 166
frustrated hop in surface hopping 510
full configuration interaction (FCI) 4, 133
full configuration interaction quantum Monte

Carlo (FCIQMC) 192
full multiple spawning (FMS) 435, 439, 457

g
gap shift in CASPT2 see level shift
GAS subspaces 183
gauge in exact factorization 534
gauge freedom in MCTDH 395
Gaussian wave packet (GWPs) 384, 413, 438, 576
generalized active space (GAS) 182
generalized active space second-order

perturbation theory (GASPT2) 328
generalized Brillouin theorem (GBT) 167,

172
generalized full multiple spawning (GFMS) 447
G-matrix formalism 365
Gaussian multi-configuration time-dependent

Hartree (G-MCTDH) 383, 390
graphical unitary group approach (GUGA) 142,

148
Green’s function and screened Coulomb

interaction method (GW) 34, 516
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Green’s function in DMC 252
Green’s function in ADC 109

h
Hamilton–Jacobi equations 472, 546, 567
Hartree product 386, 585
Heller–Herman–Kluk–Kay (HHKK) propagator

601, 603
Hermitian conditional wave function approach

581
Hessian decomposition method 611
hierarchical Tucker decomposition 390
hole below the Fermi level in TDDFT 29
hopping algorithm in surface hopping 507
Husimi distribution 606
Hylleraas–Undheim theorem 280

i
imaginary excitation energies 29
imaginary shift see level shift
imaginary-time Schrödinger equation 192
importance sampling 254
inactive orbitals in CASSCF 166
independent atom model in X-ray scattering

486
independent classical trajectory approximation

(ITA) 451
independent first generation approximation

(IFGA) 449
independent samplings in quantum Monte Carlo

197
initial condition in nuclear dynamics 456, 503,

516
initial value representation (IVR) 601
interacting conditional wave function approach

582
intermediate Hamiltonian in coupled cluster

101
intermediate normalization 302
intermediate state representation (ISR) 112
internal conversion 2
internally contracted multi-reference

configuation interaction (ic-MRCI) 290
interstate couplings 441
intersystem crossing (ISC) 2
intrastate couplings 441
intrinsic reaction coordinate (IRC) 369

intruder states in CASPT2 309, 330
ionization-potential algebraic diagrammatic

construction (IP-ADC) 110
ionization potential electron affinity shift (IPEA

shift) in CASPT2 330
ionization potential equation of motion coupled

cluster (IP-EOM-CC) 89

j
Jacobi transformation 366
Jacobi decomposition method 612
Jacob ladder 23
Jastrow correlation function 256

k
kinetic coupling 366
kinetic energy adjustment in surface hopping

509
kinetic energy operator 365
Krylov subspace 159

l
Lanczos algorithm 159
least action principle 17
level shift in CASPT2 309, 311
linearized quantum force (LQF) approximation

578
linearized semiclassical dynamics 632
linear optimization method 259
linear response theory (LR theory) 19
linear-response time-dependent density

functional theory (LR-TDDFT) 20
linear vibronic coupling Hamiltonian (LVC) 400
Liouville’s theorem 605
local diabatization 505
local harmonic approximation 422, 473
local valence excitations 24

m
macro-iterations in CASSCF solver 177
mapping approach in path integral 631
Maslov index 601
matrix product operator (MPO) in DMRG 207
matrix product state (MPS) in DMRG 207
McLachlan variational principle (MLVP) 385
mean-field Hamiltonian 389
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mean-field potential 397
Metropolis–Hastings algorithm 250
micro-iterations in CASSCF solver 177
minimal operation count in direct configuration

interaction 163
minimum-energy crossing point (MECP) 521
mixed quantum-classical dynamics 385, 471,

499, 546, 564
mixed semiclassical initial value representation

(mixed SCIVR) 615
molecular Coulomb Hamiltonian (MCH) see

molecular Hamiltonian
molecular dynamics sampling 517
molecular Hamiltonian 5, 437, 511, 569
molecular Schrödinger equation see molecular

Hamiltonian
Møller–Plesset ground state in ADC 113
Møller–Plesset perturbation theory (MPn) 313
momentum correction see kinetic energy

adjustment 33
monodromy matrix 612, 623
Monte Carlo 192, 247, 585, 602, 644
moving Gaussian basis sets see Gaussian

wavepacket
multi-configurational density functional theory

(MC-DFT) 34, 47
multi-configurational pair-density functional

theory (MC-PDFT) 49, 59
multi-configurational range-separated

short-range DFT (MC–srDFT) 49
multi-configurational time-dependent Hartree

(MCTDH) 383, 399, 414
multi configuration Ehrenfest (MCE) 383, 474
multi-configuration time-dependent

self-consistent field see
multi-configurational time-dependent
Hartree

multi-dimensional Gaussian function see
Gaussian wavepacket

multi-layer multi-configurational time-dependent
Hartree (ML-MCTDH) 383, 389, 394

multiple coherent states semiclassical initial
value representation (MC SCIVR) 606

multi-reference configuration interaction (MRCI)
277

multi-reference density functional theory see
multi-configurational density functional
theory

multi-reference Fock space coupled cluster
(MR-FS-CC) approach 101

multi-reference perturbation theory (MRPT)
299

multi-reference second-order Møller-Plesset
perturbation theory (MRMP2) 331

multi-state complete active space second-order
perturbation theory (MS-CASPT2)
341–342, 451, 460

mutual information in orbital entanglement 219

n
natural orbitals 187
natural transition orbitals (NTO) 116
n-electron valence state multi-reference

perturbation theory (NEVPT2) 333
Newton-like equation of motion in Bohmian

dynamics 574
Newton–Raphson procedure 170, 178
Newton’s equation 472, 501
non-adiabatic Bohmian dynamics (NABDY) 573
non-adiabatic couplings (NAC) 10, 362, 441,

473, 504, 570, 573
non-adiabatic mixed quantum-classical

(NA-MQC) dynamics 32
non-adiabatic quantum potential 574
non-adiabatic ring polymer molecular dynamics

(NA-RPMD) 641
non-adiabatic transition 2, 473, 500
non-Born–Huang approaches 579
non-linear optical properties 115
non-radiative processes 1
normal-ordered similarity-transformed

Hamiltonian (H̄N operator) 81
nuclear excited-state gradient 125
nuclear quantum effects 435, 564, 631
nuclear wave function 10, 534
nuclear wave packet 418, 435
number of renormalized states in DMRG 209

o
one-electron difference density matrix 117
one-electron transition densities 116
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one-step procedure in CASSCF solver 170
on-the-fly dynamics 450, 502, 551, 606
on-top pair density 49, 53, 58
orbital entanglement 218
orbital gradient in CASSCF solver 172
orbital Hessian in CASSCF solver 172
orbital relaxation 116
overcoherence problem see decoherence

p
parametrized single particle function (SPF) 390
partition function 630, 640, 643
path-integral molecular dynamics 629, 641
Pauli matrices 634, 639
perturbation theory 112, 299
pilot density estimate 587
polarization propagator 109
potential energy surface (PES) 2, 25, 125, 500
power method 159
principal component analysis (PCA) 371
projection operator 196, 252, 291, 302
propagation diabatization 427
propagator 109, 359, 504
pseudo-canonical orbitals 188
pseudonatural orbitals 187
pseudospectral method 360

q
quantum-classical algorithm 396, 546
quantum dynamics 358
quantum equilibrium hypothesis 566
quantum hydrodynamics equations 575
quantum Lagrangian 396
quantum momentum 547
quantum non-locality 586
quantum nuclear effects see nuclear quantum

effects
quantum potential 567
quantum probability density 566
quantum propagation 598
quantum-semiclassical see quantum classical
quantum trajectories 567, 580
quasi-degenerate perturbation theory (QDPT)

338
quasi-Newton method in CASSCF solver

161

r
Rabi frequency 646
radiative processes 1
range-separated functional 25, 49, 53, 56, 61, 62
Rayleigh–Schrödinger perturbation theory 300
reactive coordinates 364
real time integration in TDDFT 19
real-time Kohn–Sham 34
reduced density matrix see density matrix
reduced mass 365
redundant orbital rotation in CASSCF solver

182, 187
reference space in MRCI 282
reference state in SCIVR 606
replacement operator in MCSCF 168
restricted active space (RAS) 182
restricted active space second order perturbation

theory (RASPT2) 328
restricted active space self-consistent field

(RASSCF) 182
restricted ensemble Kohn-Sham (REKS) 49
restricted open-shell Kohn–Sham (ROKS) 34
ring-polymer molecular dynamics (RPMD) 630,

640
Runge–Gross theorem 16
Rydberg excitations 24

s
saddle-point approximation 448
secondary orbital see virtual orbital
second-order difference (SOD) method 361
second-order non-adiabatic coupling 441, 573
second quantization 7, 50, 208
selection scheme in MRCI 293
self-interaction error 24
semiclassical approximation in SCIVR 601
semiclassical dynamics in SC dynamics 595, 597
semiclassical initial value representation (SCIVR)

601, 605
Shannon’s sampling theorem 361
Shavitt graph 151
Shin–Metiu model 538, 581
short-range density functional theory (srDFT)

62
short-range dynamical correlation 47, 62
short-time approximation 253
𝜎−vector in configuration interaction 158, 326
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similarity-transformed equation of motion
(STEOM) 101

simplified time-dependent density functional
theory (sTDDFT) 35

single-configuration ansatz in molecular
wavefunction 471

single-orbital entropy in orbital entanglement
219

single-particle function (SPF) 386
singular value decomposition (SVD) 211
size-extensivity 100, 117, 280
size-intensivity 117
Slater–Condon rules 140
Slater determinant 136, 286
spawning in FCIQMC 194
spawning algorithm in FMS 442
spectral density 400, 635
spin-boson system 634, 639
spin-component scaling (SCS) 122
spin contamination 33
spin-diabatic representation 446
spin eigenfunctions see configuration state

functions
spin-flip formalism 35, 102, 121
spin-opposite scaling (SOS) 122
spin-orbit coupling (SOC) 446, 511
spin-restricted ensemble-referenced Kohn–Sham

(REKS) 34
split operator 361
state-averaged complete active space

self-consistent field (SA-CASSCF) see
complete active space self-consistent field

state-average optimization 261
state-specific complete active space second-order

perturbation theory (SS-CASPT2) 324
state-specific complete active space

self-consistent field (SS-CASSCF) 191
state-unavoided crossing see trivial crossing

problem
stationary phase approximation 599
step vector in GUGA 148
stochastic reconfiguration 258
stochastic sampling in surface hopping 508
super-CI optimization method 179
surface hopping 451, 500, 564, 571
surface hopping including arbitrary couplings

(SHARC) 512

Suzuki–Trotter decomposition 598
sweep in DMRG 215
symplectic structure 396
synthetic approach in Bohmian dynamics see

analytical approach
system-bath Hamiltonian 401

t
Tamm–Dancoff approximation (TDA) 22
tangent-space projection in MCTDH

385, 388
tensor network states 205
thawed Gaussian propagators 615
thawed Gaussian 391
time-averaged semiclassical initial value

representation (TA-SCIVR) 605
time-dependent density functional theory

(TDDFT) 15
time-dependent density functional tight binding

(TDDFTB) 35
time-dependent dipole moment 450
time-dependent external field see external electric

field
time-dependent Hartree (TDH) 472
time-dependent Kohn–Sham (TDKS) 18
time-dependent linear response variational

Monte Carlo (TD-LR-VMC) 263
time-dependent potential energy surface (TDPES)

536
time-dependent quantum Monte Carlo (TDQMC)

585
time-dependent Schrödinger equation (TDSE)

383, 413, 436, 469, 570
time-dependent self-consistent field (TDSCF) see

time-dependent Hartree
time-dependent single-determinant Kohn–Sham

35
time-dependent variational principle 385
time-dependent vector potential 535
time-derivative coupling 31
time-independent Schrödinger equation (TISE)

570
trajectory-based method 470
trajectory basis function (TBF) 437, 440
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trajectory surface hopping (TSH) see surface
hopping

transition dipole moment 115
translated functional (tDFT) 61
trivial crossing problem 32, 505
truncated configuration interaction

280
Tucker decomposition 387
Tully surface hopping see surface hopping
tunneling 424
two-configuration wave function 165
two-orbital entropy in orbital entanglement

219
two-layer multiconfigurational time-dependent

Hartree (2L-MCTDH) see multi-layer
multi-configurational time-dependent
Hartree

u
ultra-non-locality in TDDFT 17
uncontracted multireference configuration

interaction (uc-MRCI) 283
unrestricted algebraic diagrammatic construction

(UADC) 120
unrestricted Møller–Plesset perturbation theory

(UMP2) 120
uncoupled two-step Newton–Raphson procedure

in CASSCF solver 170
unitary coupled cluster (UCC) 114
unitary group approach (UGA) 142

v
van Vleck’s propagator 601, 603
variance minimization 264
variational Monte Carlo (VMC) 249
variational multiconfigurational Gaussian

(vMCG) 383, 414, 439
variational principle in electronic structure 278
velocity-Verlet algorithm 503
vertical double ionization potential 96
vertical excitation 22
vertical harmonic approximation 622
vibronic coupling 424, 634
vibronic spectrum 630
virtual orbital 166
v-representable time-dependent density 17

w
wave function overlap 32, 504
wave packet dynamics 358
Werner-Meyer-Knowles (WMK) approach in

CASSCF solver 167
width matrix 391, 602
width parameter matrix see width matrix
Wigner distribution 456
Wigner sampling 517
Wigner’s 2n + 1 rule 303
Wigner transform 632, 634, 636

x
X-ray absorption spectra 124


