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From reviews of Physics of elasticity and crystal defects

‘Sutton is a giant in the field... I am certain this book will be a classic.’ Craig Carter, MIT

‘Superb… and written in an excellent, engaging style... Sutton is an internationally
respected expert in structural materials science and condensed matter physics, one
of very few people to have such status in these two domains simultaneously.’ T.D.
Swinburne, CNRS, Aix-Marseille Université

‘Sutton emphasizes the physical meaning behind the mathematical models he clearly
introduces. The style is simple, didactic, and effective. The coverage of some of the
Open Questions in Chapter 10 (e.g. electroplasticity) is entirely unique to this book.’
Beñat Gurrutxaga-Lerma, University of Cambridge

‘Although there are other relevant texts in this field, this book includes connections
to atomic treatments of defects. These are timely additions, and provide new physical
insights. Although the book contains much mathematics, it is essentially readable, and
stimulating.’ Sir Peter Hirsch, University of Oxford

‘This is an outstanding book. Students will appreciate the clarity of the arguments,
including careful derivations of some important formulas for elasticity.’ Robert Rudd,
Series Editor, Oxford Series on Materials Modelling

‘The book is highly accessible, and provides the level of insight into the subject that you
would rarely find in academic literature… It is particularly significant that the author has
made a clear connection between Physics and Elasticity andDefects in this book. There is
an established element of tradition here, where L.D. Landau and E.M. Lifshitz included
Theory of Elasticity in their famous Course in Theoretical Physics. This new book by
Adrian Suttonmatches the Landau-Lifshitz book extremely well, providing new,modern
insights into the phenomena, and matching the needs of contemporary generations of
students and researchers.’ Sergei Dudarev, UK Atomic Energy Authority

‘It is quite obvious that the majority of the content is material that the author has worked
through from scratch, much of it original, and this is especially reflected in the problems,
which are detailed and novel.’ Tony Paxton, King’s College London
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Foreword

All crystalline materials are imperfect. Common defects are vacancies, dislocations
and cracks. These affect mechanical properties in important ways—some beneficial,
others causing problems. Dislocations confer ductility to crystalline materials, cracks
facilitate fracture. Dislocations enable metals and alloys to be mechanically worked,
rolled, pressed, drawn etc., to change their shape without cracking, thus increasing
immensely their range of use, and enriching our everyday lives. The behaviour of
dislocations and cracks is greatly affected by stress, and in order to optimise their effect
on mechanical properties, it is important to understand their interaction with stress. This
is an important objective of this book. The first part deals with the fundamentals of strain
and stress, and discusses the important role of Green’s Function in linear elasticity, and
introducesHooke’s Law. This is followed by discussion of properties of defects in crystals
and their interaction with stress and with each other.

Dislocations are particularly complicated defects, firstly because they are flexible
line defects characterised by the atomic displacements (Burgers vector) these cause
when moving through the crystal lattice, and whose modes of motion are affected by
their directions in the lattice. Secondly, the displacement at the centre of a dislocation
results in a long-range elastic stress field which interacts with other dislocations over
long distances, while at the centre of the atomic line defect linear elasticity does not
apply, but large forces exist which lead to strong interactions with point defects, e.g.
solute atoms, causing solution hardening. These short-range interactions require atomic
scale quantum mechanical treatments. While such treatments are outside the scope
of this book, the author identifies the situations where such treatments are necessary.
A further complication is that depending on the crystal lattice and the Burgers vector,
such dislocations can dissociate into partial dislocations, with smaller Burgers vector,
bounding a stacking fault and lowering their energy.

Themobility of dislocations is important, as it affects the strain-rate at whichmaterials
can be deformed. As the dislocation moves from one line in the atomic lattice to the
next, bonds are broken and reformed. The mobility is therefore determined by the
interatomic forces at the centre (the core) of the dislocation. The fact that diamond
is hard and aluminium relatively soft is due to the different interatomic bond strengths
in these materials. The classical treatments are discussed carefully by the author. But
just as the macroscopic shear of a crystal occurs by the motion of individual dislocations
which cause one atomic step displacement at a time, so the individual dislocations do
not advance simultaneously along their entire line, but the motion occurs by the creation
and movement of atomic scale lengths, called kinks, on the dislocations. So it is these
kinks, which are point-type defects, which control mobility. The author includes an
example in his book. Sometimes the mobility of a dislocation causing a particular atomic
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displacement can differ greatly depending on the direction of the dislocation line in the
lattice. An extreme example occurs in the body-centred cubic lattice, where transmission
electron microscopy observations showed that edge dislocations (Burgers vector normal
to the dislocation line) move much more rapidly than screw dislocations (same Burgers
vector but parallel to the dislocation line, and to the triad symmetry axis in the crystal).
Such screw dislocations can spread out their cores on three planes intersecting along the
dislocation. They have to be constricted before movement can take place on a particular
atomic slip plane. Such a process is assisted by thermal activation, and results in a sharp
rise in yield stress at low temperature, which can cause structural integrity problems
under such conditions.

The book includes an excellent discussion of the interaction of dislocations with sharp
cracks in the presence of stress. The stress field of a stressed crack is conveniently
modelled in terms of arrays of virtual dislocations with infinitesimal Burgers vectors.
In the absence of crack tip plasticity, cracks cause brittle fracture at critical stresses, as
described in the famous Griffith formula. Such behaviour is found in ceramic crystals
in which dislocation mobility is low. But in metals and alloys the plastic deformation
generated by the stress concentrations ahead of a stressed sharp crack can shield and
blunt the cracks, resulting in stable crack extension and large increases in failure stress.
This property is of great importance in the structural integrity of stressed components
such as nuclear reactor pressure vessels, or bridges, etc. The variation with temperature
of dislocation mobility, and correspondingly the plastic yield stress, gives rise to a brittle–
ductile transition with temperature, which affects critically the structural integrity of
pressure vessels in nuclear reactors where the yield stress can be impaired by radiation
damage.

Much research has been carried out on problems which can be treated by the inter-
actions of individual dislocations with each other, and with other defects. This approach
has provided much understanding of the processes occurring in the interaction
of dislocations with different Burgers vectors intersecting each other (leading to
‘forest hardening’), for which there is much corroborating experimental evidence by
transmission electron microscopy. The interaction of dislocations with non-deformable
obstacles (e.g. a dispersion of oxide particles in copper) can be solved in a similar way and
leads to a simple formula (the Orowan equation) relating yield stress with inter-particle
separation (as explained in the text), which can be used to predict the macroscopic yield
stress in terms of particle separation.

But other macroscopic mechanical properties, such as workhardening, involve the
mutual interactions of many dislocations through their long-range elastic stress field,
a many-bodied problem which cannot be treated in this way. Early transmission
electron microscope observations showed that in heavily deformed polycrystals (such as
aluminium, copper, nickel, etc.) the dislocations tend to form cell structures; in relatively
soft materials such as aluminium, the cells are subgrains separated by low-energy low-
angle boundaries on the scale of microns. It appears therefore that a mechanism of self-
organisation into low-energy structures is operating, very likely facilitated by the ability
of screw dislocations to cross-slip from one plane to another and annihilate. The scale at
which these substructures occur is not properly understood.
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The last chapter of the book on unsolved problems, includes an excellent account by
the author of recent theories of workhardening of single crystals. Instead of treating the
deformation in terms of the movement of individual dislocations in this many-bodied
problem, the unit of deformation is a slip band formed by avalanches of dislocations
generated by dislocation sources on individual glide planes. These slip bands are
modelled as ellipsoids in which the stress inside the ellipsoid does not affect the primary
dislocations forming the slip bands, and producing the shear, but generates dislocations
on intersecting slip systems, which stabilise the slip bands and cause ‘forest hardening’.
It has been shown that such a model gives rise to a linear increase in hardening with
increasing strain, as observed experimentally. But, as the author points out, there remain
some unanswered questions.

This book provides materials scientists, physicists, and engineers with interest in
mechanical properties of crystalline materials with an excellent account of the basic
armoury needed to address the many unsolved problems in the mechanical properties of
materials. It is beautifully written and the author emphasises the physical basis underlying
the mathematical treatment of the various topics, providing insight and understanding.
This book should be essential reading for graduate students, and in fact for anyone
working in this field.

P.B. Hirsch
22 September 2019
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Preface

My aim in writing this book is to provide mathematically inclined physicists and
engineers with an introduction to elasticity, and to take them relatively quickly to
advanced concepts and ideas about its application to defects in crystals. The first six
chapters are based on a course I gave for ten years in the EPSRC Centre for Doctoral
Training (CDT) on Theory and Simulation of Materials at Imperial College London.
The last four chapters cover material I would have included had there been more time.
The CDT was created in 2009 to attract first class physicists and engineers with a taste
for theory into materials science. Some of their research appears in this book.

Some justification is needed for another book in an area that already benefits from
excellent texts. By discussing the connections to treatments of defects at the atomic scale
I have tried to make the text more appealing to physicists. This approach is also quite
novel for engineers, and I suspect that even the treatment of stress in the second chapter
contains sections that are new to them. Having given this course to physics graduates
from the UK and continental Europe I know that most of the material covered in this
course, in many cases all of it, was new to them too. I hope this book treats the subject in
a way that will appeal to students with backgrounds in physics and engineering. I hope
it will also appeal to materials scientists who would like to see a more mathematical
approach to the subject.

Until the late 1960s, in some of the strongest departments of physics around the
world, ‘metal physics’ was focused on the physics of crystal defects and their interactions.
But today such metal physics has become unfashionable and it has vanished almost
completely from physics departments. The study of metals and alloys by physicists
has morphed into functional properties such as superconductivity, plasmonics and
magnetism. Undergraduate courses of physics in the UK rarely include anything on
defects in crystals, other than dopants in semiconductors. Physics students could be
forgiven for thinking the world is made of perfect single crystals. However, the industrial
need for an understanding of defect-related mechanisms of deformation and mechanical
failures has never been greater. Some major manufacturing companies have recognised
they cannot make reliable assessments of the lifetimes of certain components critical for
safety unless they understand the defect-related mechanisms that limit their service life.
On the other hand, university engineering departments do not have a tradition of thinking
about materials at the atomic scale. For example, hydrogen embrittlement is a problem
that cuts across swathes of current and proposed technologies, but it has fallen between
physics and engineering, and very little progress has been made into the fundamental
mechanisms after a century and a half of research. The physics of defects will remain
important as long as metals and alloys are used to make things like jet engines, cars, ships,
rail track, bridges, skyscrapers, wind turbines and nuclear power stations.
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Such a short book as this about such a huge subject cannot be self-contained. I have
included a list of recommended books which should be consulted. I have also included
references to research papers in footnotes, and a list of them all at the end of the book,
with web addresses when I have been able to find them online. Clicking on the URL
will take the reader directly to where the paper is located on the web, although most
of them are behind paywalls. Exercises and problem sets are included in each chapter,
except the last. Some of the problems extend the material covered in the text into more
advanced areas, and the reader is guided through them. Solutions to the exercises and
problem sets are available free of charge to course instructors at https://global.oup.com/
academic/category/science-and-mathematics/physics/solutions/.

The theory of elasticity has a long history going back to Euler in the eighteenth
century. Its evolution through the nineteenth and twentieth centuries involved some of
the most familiar names in the development of mathematical physics. Brief information
is included about these people where it is available. I regret that for some prominent
contributors to the subject I could find no information. It will be seen that many of
them were Fellows of the Royal Society (FRS), with one President (PRS) and six
Foreign Members (ForMemRS).1 Four recipients of Nobel Prizes in physical sciences
also appear in this book. I hope this information will persuade readers that the subject
has attracted some of the finest minds in theoretical and mathematical physics, and that
it will help to inspire them to make their own contributions to advancing the subject. The
subject is still evolving and the final chapter introduces four areas for further research
with suggestions for challenging PhD projects.

Since the Second World War the global number of published science papers has
doubled approximately every 9 years.2 In 1665 The Royal Society published the first
scientific journal—The Philosophical Transactions of the Royal Society. In 2009 it was
estimated there were more than 50 million published scholarly papers.3 Today in 2019
that figure is likely to bemore than 100million, published in tens of thousands of journals.
Modern science has become so specialised and fragmented it has become very difficult
to raise our eyes above our own narrow furrows of research. I hope this book will provide
some satisfaction to readers who feel the need to broaden their horizons.

I am very grateful to Professor Sir Peter Hirsch FRS for writing the Foreword. I thank
Luca Cimbaro, Luca Reali, Tchavdar Todorov, Michele Valsecchi and Kang Wang
for spotting errors in earlier drafts of the manuscript, and Professor Bob Balluffi for
encouragement throughout the writing of this book. Professor Stan Lynch provided
helpful comments on an earlier draft of section 10.5. Professors Mick Brown FRS,
Tony Paxton and Vasek Vitek read the whole manuscript and provided many helpful
suggestions and comments. I am also grateful for useful suggestions from an anonymous
reviewer. Remaining errors are entirely my responsibility.

I am grateful to my colleagues in the Department of Physics at Imperial College
London who in 2004 took the bold decision to hire a materials scientist, thereby allowing

1 The Royal Society is the National Academy of Sciences for the UK and the Commonwealth. Founded in
1660 it is the oldest of all the national academies. https://royalsociety.org/

2 http://blogs.nature.com/news/2014/05/global-scientific-output-doubles-every-nine-years.html
3 Jinha, AE, Learned Publishing 23, 258–63 (2010). https://doi.org/10.1087/20100308

https://global.oup.com/academic/category/science-and-mathematics/physics/solutions/
https://global.oup.com/academic/category/science-and-mathematics/physics/solutions/
https://royalsociety.org/
http://blogs.nature.com/news/2014/05/global-scientific-output-doubles-every-nine-years.html
https://doi.org/10.1087/20100308
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a trojan horse into their midst to recruit some of their best students into materials science.
Working with these students has been the most fulfilling period of my academic career.
I dedicate this book to them.

Imperial College London
August 2019
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Strain

1.1 The continuum approximation

Condensed matter is lumpy. It comprises very dense atomic nuclei packed a few
angstroms apart, with electrons inmuch less dense clouds between them.The continuum
approximation smears out this lumpiness into a uniform, structureless jelly with the same
density as a macroscopic lump of the matter it approximates. In addition to its density
the continuum is given elastic properties, which characterise how easy it is to deform it
in a reversible manner. The elastic properties of the continuum are equated to those of
the material it approximates.

What physics do we leave out by approximating the discrete atomic structure of a
material with a continuummodel?Whenever the discrete atomic structure of thematerial
becomes essential to the physics we can expect the continuum model to be a poor
approximation. For example, when we consider structural defects inside the material
we can expect the continuum model to become increasingly unreliable as we get closer
to the centre of the defect because there the discrete atomic structure of the defect can
no longer be ignored. But once we get beyond a few nanometres, in many cases just
one nanometre, from the centre of a defect the continuum approximation becomes an
accurate description of the distortion the defect generates.

Whereas the smallest separation of atoms in a material provides a natural length
scale there is no natural length scale associated with the continuum. This has significant
consequences for dynamical properties, such as the propagation of atomic vibrations.
There are just three waves that can propagate in the continuum with speeds that vary
in general with the direction of propagation. In contrast to vibrations in a crystal the
elastic waves are dispersionless, that is, their speed of propagation does not depend on
their wavelength. The dispersion of vibrations in a crystal is a direct consequence of
its discrete atomic structure. Waves in the crystal and in its continuum representation
coincide only in the limit of long wavelengths compared with the spacing of atoms,
where the discreteness of the atomic structure no longer plays a significant role in wave
propagation.

Physics of elasticity and crystal defects. Adrian P. Sutton, Oxford University Press (2020). © Adrian P. Sutton.
DOI: 10.1093/oso/9780198860785.001.0001
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1.2 What is deformation?

When a body changes shape or volume in response to external or internal forces it
is deformed. In contrast to a rigid rotation or translation, deformation alters distances
between points within the body. Materials may undergo changes of volume and shape in
response to changes of temperature, applied electric and magnetic fields and other fields
including gravitational. In this book we will be concerned principally with deformation
created by mechanical forces applied to bodies and by defects within them. The focus
of this chapter is the mathematical description of deformation and strain.

The simplest deformation is a homogeneous expansion or contraction where the
distance between any two points changes by an amount proportional to their separation
in the undeformed state. The word ‘homogeneous’ here means ‘the same everywhere’.
When a body is deformed inhomogeneously the deformation depends on position in the
undeformed state. The deformation is then a field.

Let 𝐗 be the position vector of a point in the body before any deformation occurs. Let
𝐗+d𝐗 be the position vector of a point in the undeformed body infinitesimally close to
𝐗. These two points are separated by |d𝐗| = √dXidXi, whereXi is Cartesian component
i of 𝐗, and summation is implied here and throughout this book whenever subscripts are
repeated. Thus, dXidXi is shorthand for dX2

1 +dX2
2 +dX2

3.
Suppose 𝐗 and 𝐗+d𝐗 become 𝐱 and 𝐱+d𝐱 in the deformed state. In general 𝐱 is a

function of 𝐗. The chain rule enables us to write down the components of d𝐱 in terms
of the components of d𝐗:

dxi =
𝜕xi
𝜕Xj

dXj (1.1)

The 3× 3 matrix Fi j = 𝜕xi/𝜕Xj is called the deformation tensor. It follows that the change
in the squared separation of the points is given by

dxidxi −dXjdXj = ( 𝜕xi𝜕Xj

𝜕xi
𝜕Xk

−𝛿jk)dXjdXk, (1.2)

where 𝛿jk is the Kronecker delta: 𝛿jk = 1 if j = k, and 𝛿jk = 0 if j ≠ k.

Exercise 1.1

(i) Prove that the deformation tensor Fi j satisfies the tensor transformation law under a
rotation of the coordinate system. This is what defines Fi j as a tensor.

(ii) Show that in matrix notation eqn. 1.2 becomes

(d𝐱T ⋅d𝐱)− (d𝐗T ⋅d𝐗) = d𝐗T ⋅ (𝐅T𝐅− 𝐈) ⋅d𝐗,

where the T superscript denotes transpose and 𝐈 is the identity matrix.
(iii) Hence prove that if the deformation tensor is a rotation the change in the separation of

points is zero.
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You may recognise 𝐅T𝐅 as the metric tensor 𝐠 which measures the distance between
two points in the deformed state. Consider first the distance between two points in the
undeformed state. If 𝐗 = 𝐗(𝜆) is a parametric equation of a path in the undeformed state
between two points A and B, where 𝜆 = 𝜆A and 𝜆 = 𝜆B respectively, then the distance
between these points along the path in the undeformed state is given by

s =∫
𝜆=𝜆B

𝜆=𝜆A
√(dX1

d𝜆 )
2

+(dX2

d𝜆 )
2

+(dX3

d𝜆 )
2

d𝜆

=∫
𝜆=𝜆B

𝜆=𝜆A
√

dXi

d𝜆 gi j
dXj

d𝜆 d𝜆

and we see the metric tensor in the undeformed state is the identity matrix.
In the deformed state the path becomes 𝐱 = 𝐱(𝐗(𝜆)) and points A and B are moved

to new positions. The distance between points A and B along the deformed path is
given by

s =∫
𝜆B

𝜆=𝜆A
√dxk(𝜆)dxk(𝜆)d𝜆 =∫

𝜆B

𝜆=𝜆A√
dXi

d𝜆
𝜕xk
𝜕Xi

𝜕xk
𝜕Xj

dXj

d𝜆 d𝜆 (1.3)

and the metric tensor is gi j = (𝜕xk/𝜕Xi)(𝜕xk/𝜕Xj), or 𝐠 = 𝐅T𝐅 in matrix notation.

1.3 The displacement vector and the strain tensor

We may always express 𝐱(𝐗) as 𝐗+𝐮(𝐗), where 𝐮(𝐗) is the displacement undergone by
a point at 𝐗 in the undeformed body when the body is deformed. The gradient of the
displacement vector is related to the deformation tensor as follows:

Fki =
𝜕xk
𝜕Xi

= 𝛿ki +
𝜕uk
𝜕Xi

. (1.4)

Exercise 1.2

Show that the squared separation of points that were at 𝐗 and 𝐗+d𝐗 in the undeformed
state becomes the following in the deformed state:

(ds)2 = (𝛿kj +
𝜕uk
𝜕Xj

+
𝜕uj
𝜕Xk

+ 𝜕ui
𝜕Xk

𝜕ui
𝜕Xj

)dXkdXj. (1.5)

Equation 1.5 is exact provided |d𝐗| is infinitesimal, and it leads to nonlinear theories of
elasticity. To obtain a linear approximation the assumption is made that the gradients of
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the displacement vector are small in comparison to unity. It is important to recognise
that this assumption does not require the displacements themselves to be small. Taking
the square root of both sides of eqn. 1.5, and dividing both sides by |d𝐗|, we obtain

ds
|d𝐗| =√

1+ ̂lk (
𝜕uk
𝜕Xj

+
𝜕uj
𝜕Xk

+ 𝜕ui
𝜕Xk

𝜕ui
𝜕Xj

) ̂lj

≈ 1+ ̂lkekj ̂lj, (1.6)

where the unit vector ̂𝐥 is parallel to d𝐗 and ekj is the strain tensor:

ekj =
1
2
( 𝜕uk𝜕Xj

+
𝜕uj
𝜕Xk

+ 𝜕ui
𝜕Xk

𝜕ui
𝜕Xj

). (1.7)

Since the displacement gradients are assumed to be small the last term in eqn. 1.7 is
neglected and thus we obtain the strain tensor used in linear elasticity, and in the rest of
this book:

ekj =
1
2
( 𝜕uk𝜕Xj

+
𝜕uj
𝜕Xk

). (1.8)

We see the strain tensor is symmetric. The displacement gradient may also contain an
asymmetric part:

𝜕uk
𝜕Xj

= ekj +𝜔kj,

where 𝜔kj =
1

2
(𝜕uk/𝜕Xj −𝜕uj/𝜕Xk) is asymmetric because 𝜔kj = −𝜔jk.

Exercise 1.3

Given the following general expression for the rotation matrix describing a rotation by 𝜃
about an axis ̂𝝆:

Ri j = cos𝜃𝛿i j + ̂𝜌i ̂𝜌j(1−cos𝜃)− 𝜀ijk ̂𝜌k sin𝜃,

where 𝜀ijk is the permutation tensor, show that in the limit 𝜃 → 0 the rotation matrix becomes

Ri j = 𝛿i j − 𝜀ijk ̂𝜌k𝜃.

Hence show that the axis of the rotation described by the three independent components of
𝜔kj is parallel to curl𝐮.
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1.3.1 Normal strain and shear strain

The diagonal and off-diagonal components of the strain tensor of eqn. 1.8 are called
normal and shear strains respectively. An example of a normal strain in two dimensions
is illustrated in Fig. 1.1(a), for which the deformation tensor is

𝐅 = [ 1+ 𝜀 0
0 1 ]

and the corresponding strain tensor is

𝐞 = [ 𝜀 0
0 0 ] .

A shear strain arises when the displacement in a particular direction varies with a
perpendicular distance. These two types of strain are illustrated in two dimensions in
Fig. 1.1.

Two common types of shear strain are a pure shear and a simple shear, both of which are
illustrated in two dimensions in Fig. 1.1. Figure 1.1(b) illustrates the pure shear described

1

1
x1

x2

1 ε

1
x1

x2

1

1
x1

x2

1

(a)

(b)

(c)

1
x1

x2

1

1 + ε
x1

x2

1 ε

ε

1
x1

x2

Figure 1.1 Illustrations in two dimensions of (a) normal strain along x1 of magnitude 𝜀, (b) pure shear
strain of magnitude 𝜀 and (c) simple shear strain of magnitude 𝜀. In each case the unit square on the left
is deformed into the shape on the right by the corresponding strain.
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by the following deformation tensor:

𝐅 = [1 𝜀
𝜀 1]

for which the corresponding strain tensor is

𝐞 = [0 𝜀
𝜀 0] .

The symmetric nature of the deformation tensor ensures it is a pure shear because no
rotations are involved.

A simple shear involves a pure shear and a rotation. An example of a simple shear is
illustrated in Fig. 1.1(c), for which the deformation tensor is

𝐅 = [1 𝜀
0 1] .

This may be decomposed into a pure shear strain of 𝜀/2 and a rotation by 𝜃 = 𝜀/2 about
an axis normal to the page:

𝐅 = [1 0
0 1]+ [

0 𝜀/2
𝜀/2 0 ]+ [ 0 𝜀/2

−𝜀/2 0 ] .

Simple shears occur in mechanical twinning, which is a mechanism of deformation of
many crystalline materials.

1.4 Closing remarks

The normal strain illustrated in Fig. 1.1(a) changes the volume of the material. The
shear strains illustrated in Fig. 1.1(b) and (c) do not change the volume, but unless the
material is a liquid1 there will be an elastic resistance to these deformations. Young2

was the first to consider shear as an elastic strain in 1807. He noticed that the elastic
resistance of a body to shear is different from its resistance to extension or compression,
but he did not introduce a separate elastic modulus to characterise the rigidity to
shear. The famous ‘Young’s modulus’ refers only to the rigidity of the material to

1 Real liquids do resist shear deformations in a time-dependent manner through their viscosities. We are
thinking here of the response of the material after a long period of time when any time-dependent relaxation
processes have finished. An ideal liquid has no viscosity and displays no resistance to shear stresses.

2 Thomas Young FRS, 1773–1829, British physicist, physician, optician, linguist, Egyptologist, musician.
For an engrossing biography of this exceptional polymath see Robinson, A, The last man who knew everything,
One World: Oxford (2006). ISBN 978-0452288058
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elastic extension or compression. Love3 commenting4 on Young’s introduction of his
modulus wrote

This introduction of a definite physical concept, associated with the coefficient of
elasticity which descends, as it were from a clear sky, on the reader of mathematical
memoirs, marks an epoch in the history of the science.

We will come back to the moduli of elasticity in Chapter 3.
It should be noted that the concepts of the deformation tensor and the strain tensor

rest on the existence of a reference state of the material where the deformation is sensibly
regarded as zero. In a crystalline material the perfect crystal itself is a natural choice for
the reference state. But in a glass or amorphous material there is no obvious choice of a
reference state, and the concept of strain is much less useful. However, as we shall see in
the next chapter the concept of stress is just as applicable in an amorphous material as
it is in a crystal.

1.5 Problem set 1

1. Prove that the strain tensor of eqn. 1.8 satisfies the tensor transformation law under
a rotation of the coordinate system.

2. Under a homogeneous strain the displacement of a point at 𝐗 in the undeformed
body is given by 𝐮(𝐗) = 𝐞 ⋅𝐗, where 𝐞 is a constant symmetric matrix, in which
the elements are small compared to unity. Consider two points 𝐗(1) and 𝐗(2)

in the undeformed body. Show that the change in the separation of the two
points in the homogeneously deformed state to first order in the strain is given
by ||𝐗(2) −𝐗(1)|| liei jlj, where li is the unit vector (X(2)

i −X(1)
i )/ ||𝐗(2) −𝐗(1)||.

3. Prove that the trace of the strain tensor, ekk, is invariant with respect to rotations
of the coordinate system.

4. Recall the eigenvectors of a symmetric matrix are orthogonal and the eigenvalues
are real numbers. Consider a unit sphere 𝐗T ⋅ 𝐗 = 1 embedded in a body before it
is deformed. The body is subjected to a homogeneous strain 𝐞. Show that the sphere
becomes an ellipsoid with its axes aligned along the eigenvectors of the strain
tensor. This ellipsoid is called the strain ellipsoid. If the eigenvalues of the strain
tensor are 𝜆1, 𝜆2 and 𝜆3 determine the equation of the ellipsoid. These eigenvalues
are called principal strains. To first order in the strain show that the ratio of the
change in the volume of the sphere to its original volume is equal to the trace of the
strain tensor. The trace of the strain tensor is called the dilation. Sketch the sphere
and the ellipsoid, and for an arbitrarily chosen 𝐗, show 𝐱 and 𝐮 in your sketch.

3 Augustus Edward Hough Love FRS, 1863–1940, British physicist.
4 Love, AEH, A treatise on the mathematical theory of elasticity, Dover: New York (1944), p.4. ISBN 0-486-

60174-9
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Stress

2.1 What is stress?

Imagine you are stretching an elastic band between your fingers by applying an equal and
opposite tensile force F at either end. The elastic band has reached a new stable length
and you keep your hands in a fixed position. There is no net force acting on any element
of the elastic band. If that were not true the elastic band would not be in equilibrium and
some further displacement would take place. But if you release the elastic band from one
end it immediately shrinks back to its natural length.

We say ‘the elastic band is under tension’ to describe its state when it is stretched.
If the stretched elastic band were cut anywhere between your fingers the tension would
be released. The tension is transmitted across every transverse plane within the elastic
band. The atoms on the left side of every transverse plane in the elastic band are exerting
forces on the atoms of the right hand side. Conversely the atoms on the right hand side
of every transverse plane are exerting forces on the left hand side. The resultant forces
exerted by atoms on each side on the other side are equal and opposite when the elastic
band is in equilibrium.

Suppose we stretch a thicker elastic band of the same material with the same force F.
Obviously it will not stretch as much as the first elastic band. The task of transmitting
the tension F across every transverse plane is shared by more atoms on either side of the
plane. It follows that the area of the transverse plane is just as significant as the tension F
in characterising the internal mechanical state of the elastic band. The concept of stress
brings together the force F and the area of the plane on which it acts:

The stress acting on an element of area of a plane within a body is defined as the resultant
force exerted by atoms on one side of the plane on atoms on the other side of the plane,
where lines connecting those atoms pass through the element of area. The resultant force
is divided by the area of the element through which it acts to yield the stress.

This is illustrated in Fig. 2.1. This atomic-level definition of stress was developed by
Cauchy1 and Saint-Venant2 in the nineteenth century before the existence of atoms

1 Baron Augustin-Louis Cauchy ForMemRS 1789–1857, French mathematician and physicist.
2 Adhémar Jean Claude Barré de Saint-Venant 1797–1886, French engineer and mathematician.

Physics of elasticity and crystal defects. Adrian P. Sutton, Oxford University Press (2020). © Adrian P. Sutton.
DOI: 10.1093/oso/9780198860785.001.0001
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Figure 2.1 To illustrate the Cauchy–Saint-Venant definition of stress at the atomic scale. The green
shaded area is a circle viewed in perspective. The stress acting on it is defined by those forces exerted by
blue atoms on red atoms, where the line between the centres of each pair of blue and red atoms passes
through the green shaded area. The total force exerted through the shaded area becomes proportional to
its size as its size increases. This is the continuum limit.

was universally accepted, and long before any real understanding of interatomic forces
was developed.3 Given the lack of knowledge about interatomic forces in the 1820s
Cauchy developed a pragmatic continuum definition of stress, which is the way most
engineers think about stress today. However, physicists have continued to develop
atomic-level descriptions of stress up to the present day. In this chapter we will discuss
both approaches.

The concept of pressure is closely related to stress: they both have dimensions of
force per unit area, with units newtons per square metre, which are called pascals. The
key difference is that with pressure the force acting on the plane is always normal to the
plane, whereas with stress the force can be inclined to the plane normal and it can even
be in the plane. The tensorial nature of stress then becomes apparent because it depends
on the direction of the resultant force and the direction of the normal to the plane on
which it acts.

2.2 Cauchy’s stress tensor in a continuum

Cauchy’s definition of stress is simple but brilliant. He considered the force 𝐟 per unit area
acting on a plane in a continuumwith unit normal 𝐧̂. Not knowing about the spatial range

3 See Timoshenko, SP, History of strength of materials, Dover Publications: New York (1983), p.108. ISBN
0-486-61187-6. Stephen Prokofievitch Timoshenko ForMemRS 1878–1972, Ukrainian born US engineer.
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and nature of atomic interactions this force was assumed to have a negligible range and
to exist only when the regions of the continuum on either side of the plane were in direct
contact. If the plane is not flat its normal will vary with position. Apart from corners,
where the normal changes discontinuously, it is always possible to define an infinitesimal
element of area where the normal is constant. The concept of the continuum makes all
this possible.

Consider a body in mechanical equilibrium but loaded in some arbitrary way, for
example by forces applied to its surfaces. How do we calculate the infinitesimal force d𝐟
per unit area acting on an infinitesimal area dS with normal 𝐧̂ at any point inside the
body? At first sight this might appear to be a hopeless task because there are an infinite
number of directions of the plane normals. Cauchy showed it can be done by defining a
tensor field of just six independent components, the stress field, inside the body.

Define a right-handed global Cartesian coordinate system in the body, with axes
x1,x2,x3 and an arbitrary origin. Consider the plane through the point 𝐱 with normal
along the positive xj direction. Let dS be an infinitesimal element of area of this plane at
𝐱. Then component i of the force per unit area acting on dS is the component 𝜎i j(𝐱) of
the Cauchy stress tensor 𝝈.

We will show that the force per unit area acting on an infinitesimal element of area with
an arbitrary outward unit normal 𝐧̂ at 𝐱 can be expressed in terms of the stress tensor
components 𝜎i j(𝐱) and 𝐧̂. Let 𝐧̂ = [n1,n2,n3] in this coordinate system. A plane with this
normal has intercepts 1/n1,1/n2,1/n3 along the x1,x2,x3 axes respectively, which is the
plane ABC in Fig. 2.2. The area of the triangle ABC is 1/(2n1n2n3).

The plane ABC is parallel to the infinitesimal area element at 𝐱. At equilibrium the net
force acting on the body OABC must be zero. Component i of the force acting on the
face OBC is −𝜎i1 × 1/(2n2n3), where the negative sign is because the outward normal to
the face OBC is along −x1, and 1/(2n2n3) is the area of OBC. Similarly, component i of

C

1/n3

1/n2

1/n1
B

A

[n1,n2,n3]

x3

x1

x2

Figure 2.2 The triangle ABC has unit normal 𝐧̂ = [n1,n2,n3] and area 1/(2n1n2n3).
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the forces acting on the faces OAC and OAB are −𝜎i2 × 1/(2n1n3) and −𝜎i3 × 1/(2n1n2)
respectively. If 𝐟 is the force per unit area acting on the plane ABC then equilibrium of
OABC requires

fi
2n1n2n3

− 𝜎i1
2n2n3

− 𝜎i2
2n1n3

− 𝜎i3
2n1n2

= 0,

from which it follows that

fi = 𝜎i1n1 +𝜎i2n2 +𝜎i3n3,

or

fi = 𝜎ijnj. (2.1)

This equation gives the force per unit area acting on a plane with normal 𝐧̂ in terms
of the components of the stress tensor. In Exercise 2.2 the requirement that there is no
torque acting on a volume element in the body leads to the condition 𝜎i j = 𝜎ji, that is,
the stress tensor is symmetric. Thus, there are only six independent components of the
stress tensor. Equation 2.1 also shows that at equilibrium the forces per unit area acting
on either side of a plane are equal and opposite because the sense of the plane normal
reverses on either side. Finally, if 𝜎i j varies with position it becomes a stress field and the
force per unit area acting on planes with a given normal also varies with position.

Exercise 2.1

Using eqn. 2.1 prove that 𝜎i j satisfies the tensor transformation law under a rotation of the
coordinate system.

Exercise 2.2

(a) Sketch a cube of side length equal to unity with edges parallel to the axes Ox1,Ox2,Ox3.
Each face has unit area. As a result of a stress field each face experiences a force. On
your sketch show the force acting on each face as an arrow and label it in terms of the
components of the stress tensor. For example, on the face with normal parallel to the
positive x1 direction the three components of the force are (𝜎11,𝜎21,𝜎31) with respect to
the x1, x2 and x3 axes respectively. But on the face with normal parallel to the negative
x1-axis the three components of the force are (−𝜎11,−𝜎21,−𝜎31), so their arrows point in
the opposite directions to those on the first face.

(b) By taking moments of the forces about the centre of the cube show that the condition
for there to be no torque on a volume element is 𝜎i j = 𝜎ji.
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2.3 Normal stresses and shear stresses

We have seen that the force per unit area acting on an element of area of a plane may
have components in the plane as well as normal to it. The components parallel to the
plane give rise to shear stresses, and they correspond to off-diagonal components of
the stress tensor. The components normal to the plane are called normal stresses, and
they correspond to diagonal components of the stress tensor. However, the designation
of normal or shear stress may change under a rotation of the coordinate system, as
shown in Exercise 2.3. Tensile and compressive stresses are normal stresses. Shear
stresses arise in frictional sliding and they play a central role in plastic deformation of
crystalline materials.

Exercise 2.3

A stress 𝜎 has the following representation in a Cartesian coordinate system Ox1x2x3:

𝜎 = [
−s 0 0
0 s 0
0 0 0

].

Although this matrix has only diagonal elements it must correspond to a pure shear because
the trace of the matrix is zero. When 𝜎 is represented in a rotated coordinate systemOx′1x

′
2x

′
3,

obtained by rotating Ox1 and Ox2 in a positive sense by 𝜋/4 about Ox3, show that its matrix
representation becomes

𝜎 = [
0 s 0
s 0 0
0 0 0

].

2.4 Stress at the atomic scale

After studying Cauchy’s analysis of stress in terms of forces between elastic continua in
contact it may be surprising that the concept of stress can be developed at the atomic
scale involving interactions between discrete atoms. An early treatment of stress at the
atomic scale may be found in Note B, p.616 of Love’s treatise of 1927, albeit for a perfect
crystal. The treatment we shall give here is more general, but it does assume the total
force on an atom may be expressed as a sum of contributions from surrounding atoms.

Consider a cluster of atoms which may be subject to forces exerted by atoms outside
the cluster. The cluster may be any size, from molecules to macroscopic components.
The potential energy of the cluster is defined by the energy of interaction between all
atoms in the cluster, and between atoms in the cluster and those outside it. Atoms in the
cluster may be in a perfect crystal configuration, or a defective crystal or an amorphous
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state. Let 𝐟 (a) be the total force acting on atom a inside the cluster. We assume this force
comprises a sum of forces exerted by other atoms in the cluster, and by any atoms outside
the cluster. Let 𝐟 (m/a) be the force exerted by atom m upon atom a, where atom m may
be inside or outside the cluster. Then 𝐟 (a) =∑m≠a 𝐟 (m/a).

Let the position of atom a be 𝐗(a). Imagine all atoms inside the cluster are displaced
by infinitesimal amounts 𝛿𝐗(a). Different atoms may be displaced in different directions.
The change in the total potential energy of the cluster is

𝛿𝒱 = −∑
a

𝐟 (a) ⋅ 𝛿𝐗(a)

= −1
2
∑
a

∑
m≠a

𝐟 (m/a) ⋅ 𝛿(𝐗(a) −𝐗(m)) , (2.2)

where the sum over a is taken over all atoms inside the cluster and the sum over m is
taken over all atoms inside and outside the cluster. The factor of

1

2
takes into account the

sharing of the interaction between atoms a andm. Thus, eqn. 2.2 includes all interactions
between atoms inside the cluster and between atoms inside and outside the cluster. The
latter determine the forces exerted on the cluster by the surrounding medium.

Suppose the infinitesimal displacements of atoms are a result of the application of a
homogeneous, infinitesimal strain 𝛿ei j applied to all atoms inside and outside the cluster.4

Since the applied strain is homogeneous and infinitesimal the change of (X (a)
i −X (m)

i )
is 𝛿ei j(X (a)

j −X (m)
j ). Therefore the change in potential energy of the cluster in eqn. 2.2

becomes the following:

𝛿𝒱 = −1
2
∑
a

∑
m≠a

f (m/a)i 𝛿ei j (X (a)
j −X (m)

j ) . (2.3)

We may use eqn. 2.3 to define atomic level stresses:

𝛿𝒱 =∑
a

Ω(a)𝜎(a)i j 𝛿ei j, (2.4)

where Ω(a) and 𝜎(a)i j are the volume associated with atomic site a and the stress tensor
associated with atomic site a inside the cluster. Comparing with eqn. 2.3 we obtain

𝜎(a)i j = 1
2Ω(a) ∑

m≠a
f (m/a)i (X (m)

j −X (a)
j ) , (2.5)

where the sum overm is taken over atomic sites inside and outside the cluster. The atomic
volume Ω(a) may be defined by a Voronoi construction.

4 When a homogeneous strain is applied to the cluster it also has to be applied to atoms outside the cluster,
otherwise the changes of separation between atoms inside and outside the cluster will be incorrect because the
cluster will have changed shape and/or volume but the surrounding medium will not have changed.
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In eqn. 2.5 it is clear that even if the net force on an atom is zero it may still be in
a state of stress. For example, the atoms inside the cluster may be in a perfect crystal
environment where each atom experiences zero net force, but the cluster is subjected to
compression or tension through forces exerted by atoms outside the cluster that appear
in eqn. 2.3.

Provided no heat is exchanged between the cluster and its surroundings as a result
of the application of the strain the change in the potential energy of the cluster is equal
to the change in its internal energy, 𝛿E. Then in a continuum approximation eqn. 2.4
becomes the following volume integral over the cluster:

𝛿E =∑
n

Ω(n)𝜎(n)i j 𝛿ei j ≈∫d3X𝜎i j(𝐗)𝛿ei j(𝐗),

which leads to a new definition of stress in a continuum as the following functional
derivative:

𝜎i j(𝐗) =
𝛿E

𝛿ei j(𝐗)
, (2.6)

where the variation is carried out adiabatically, that is, at constant entropy. The definition
of stress in eqn. 2.6 is based on the existence of a strain energy function describing the
potential energy of the body as a function of a homogeneous elastic strain applied to it.
The notion of a strain energy function was introduced by Green5 in 1837 and put on
a rigorous thermodynamic foundation by Thomson6 in 1855. This definition of stress
appears to be quite different from Cauchy’s definition, but they are equivalent.

Not all models of atomic interactions enable the total force on an atom to be
expressed as a sum of contributions from surrounding atoms. In quantum mechanics
the Ehrenfest–Hellmann–Feynman force on an atomic nucleus depends on the self-
consistent electronic charge density at the nucleus. The self-consistent charge density at
the nucleus depends on the positions of surrounding atoms in a way that cannot be bro-
ken down into a sum of separate contributions from each surrounding atom. However,
the definition of stress in eqn. 2.6 may be applied to all models of atomic interactions.

2.5 Invariants of the stress tensor

Let 𝐞̂1, 𝐞̂2, 𝐞̂3 be unit vectors along the right-handed Cartesian coordinate system
x1,x2,x3. Let 𝐞̂′1, 𝐞̂′2, 𝐞̂′3 be unit vectors along the right-handed Cartesian coordinate
system x′1,x′2,x′3. The rotation matrix which rotates 𝐞̂1, 𝐞̂2, 𝐞̂3 into 𝐞̂′1, 𝐞̂′2, 𝐞̂′3 has
components Ri j = (𝐞̂′i ⋅ 𝐞̂j), that is, 𝐞̂′i = Ri j𝐞̂j. Since stress is a second rank tensor it
satisfies the following transformation law:

𝜎′jk = RjiRkp𝜎ip, (2.7)

5 George Green 1793–1841, British mathematical physicist and miller.
6 Sir William Thomson FRS OM 1824–1907, Scots-Irish mathematical physicist and engineer, who became

Lord Kelvin in 1892.
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where 𝝈′ and 𝝈 are the matrix representations of the stress tensor in the primed and
unprimed coordinate systems respectively.

Since the components of the matrix representing the stress tensor change under a
coordinate transformation, individual stress tensor components have limited physical
significance. However, there are three quantities that remain invariant under a rotation
of the coordinate system, and they can be used to construct more physically significant
quantities. The key to identifying invariants of the stress tensor is to recall that the
eigenvalues do not depend on the choice of coordinate system. It follows that the
cubic polynomial that defines the eigenvalues must have the same coefficients in all
coordinate systems. Let the eigenvalues be s1, s2, s3. These eigenvalues are called principal
stresses. When the coordinate system is aligned with the three eigenvectors of the matrix
representing the stress tensor, thematrix becomes diagonal with s1, s2, s3 along the leading
diagonal. The cubic polynomial defining these eigenvalues is

(s− s1)(s− s2)(s− s3) = 0,

or

s3 − (s1 + s2 + s3)s2 + (s1s2 + s2s3 + s3s1)s− s1s2s3 = 0.

Therefore, the following three quantities are invariants:

I1 = s1 + s2 + s3
I2 = s1s2 + s2s3 + s3s1
I3 = s1s2s3. (2.8)

Any quantity that may be expressed in terms of these invariants is also invariant. I1 is the
trace of the stress tensor, Tr𝜎. The hydrostatic stress is defined as the average normal
stress, which is I1/3. The hydrostatic pressure, p, is the negative of the hydrostatic stress:

p = −1
3
Tr𝜎. (2.9)

The second and third invariants may be expressed in any coordinate system as follows:

I2 =
1
2
[(Tr𝜎)2 −Tr𝜎2] (2.10)

I3 =
1
6
[(Tr𝜎)3 + 2Tr𝜎3 − 3 (Tr𝜎)(Tr𝜎2)] . (2.11)

We note also that I3 is the determinant of the stress tensor.
Stress invariants are useful for characterising the stress fields of defects in crystals,

for example grain boundaries, because they are independent of the coordinate system.
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Strain energy functions are also often expressed in terms of stress invariants for similar
reasons. The strain tensor has equivalent invariants.

2.6 Shear stress on a plane and the von Mises
stress invariant

In the previous section we saw that the hydrostatic stress is an invariant of the stress
tensor. As the average of the three normal stresses in any coordinate system it is a scalar
quantity which indicates the degree of compression or tension. It is useful to have another
invariant quantity that measures the shear content of the stress tensor. This is somewhat
more difficult because shear stresses, unlike hydrostatic stresses, depend on the normal
of the plane where they act. Therefore, we begin this section by evaluating the magnitude
of the shear stress acting on any plane for an arbitrary stress tensor.

Consider a stress tensor 𝜎i j with eigenvalues s1, s2, s3 and corresponding unit eigenvec-
tors 𝐞̂1, 𝐞̂2, 𝐞̂3. The eigenvectors form an orthonormal set, which defines the Cartesian
coordinate system we shall use. Consider a plane with unit normal 𝐧̂ = ni𝐞̂i. The force
per unit area acting on this plane is 𝐟 = s1n1𝐞̂1 + s2n2𝐞̂2 + s3n3𝐞̂3. The magnitude of the
component of 𝐟 along the normal 𝐧̂ is fn = 𝐟 ⋅ 𝐧̂ = s1n21 + s2n22 + s3n23. Therefore, the force
per unit area normal to the plane is 𝐟𝐧 = fn𝐧̂. The force per unit area parallel to the plane
is 𝐟𝐩 = 𝐟− (𝐟 ⋅ 𝐧̂) 𝐧̂. Thus,

𝐟𝐩 = [s1n1 − fnn1, s2n2 − fnn2, s3n3 − fnn3] .

We may obtain a useful expression for the square of the magnitude of 𝐟𝐩 as follows (the
summation convention is temporarily suspended to derive eqn. 2.12):

f2p =∑
i

(sini − fnni)2

=∑
i

n2i s
2
i −∑

i

sin
2
i ∑

j

sjn
2
j

=∑
i

n2i s
2
i ∑

j

n2j −∑
i

sin
2
i ∑

j

sjn
2
j

=∑
i

∑
j

n2i n
2
j s

2
i − n2i n2j sisj

= 1
2
∑
i

∑
j

n2i n
2
j (s2i + s2j − 2sisj)

=∑
i<j
∑
j

n2i n
2
j (si − sj)2

= (s1 − s2)
2 n21n

2
2 + (s2 − s3)

2 n22n
2
3 + (s3 − s1)

2 n23n
2
1. (2.12)

If the stress is purely hydrostatic then, as expected, eqn. 2.12 shows that the shear stress
on all planes is zero. Consider the plane n3 = 0 where f2p = (s1 − s2)2n21n22. This function
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Figure 2.3 Plot of f2p = n21n22, in the plane n3 = 0. The axes are aligned with the principal stress
directions 𝐞̂1 and 𝐞̂2. The maximum value of f2p is located at 45

∘ to the principal stress directions, where
it is 0.25.

is plotted in Fig. 2.3 for s1 − s2 = 1, where it is seen that the maximum shear stress acts
on planes at 45∘ to the principal stress directions 𝐞̂1 and 𝐞̂2, where f2p = 0.25.

Exercise 2.4

(a) Show that f2p = 𝐧̂T𝜎2 𝐧̂ − (𝐧̂T𝜎 𝐧̂)2, where 𝐧̂T is the transpose of 𝐧̂.
(b) Show that 𝐟𝐩 is unaffected if 𝜎i j is replaced by 𝜎(D)i j = 𝜎i j −

1

3
(Tr𝜎)𝛿i j, where 𝜎(D) is called

the deviatoric stress.
(c) Using eqn. 2.12 show that the average value of f2p , where the averaging is over all

orientations of 𝐧̂ on the surface of a unit sphere, is

< f2p > = 1
15

((s1 − s2)2 + (s2 − s3)2 + (s3 − s1)2)

= 1
15

(3Tr𝜎2 − (Tr𝜎)2) . (2.13)

The von Mises7 stress is an invariant used to characterise the degree of shear in a
stress tensor. It is used for example as a yield criterion to decide whether the stress in a
body enables plastic deformation to take place. It is defined by

7 Richard Edler von Mises 1883–1953, US mathematician, engineer and philosopher, born in what is now
Ukraine.
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𝜎vM = 1

√2
√(s1 − s2)2 + (s2 − s3)2 + (s3 − s1)2. (2.14)

The von Mises shear stress is 𝜎vM =√15/2×√< f2p >, and is therefore directly related
to the average shear stress on a plane.

2.7 Mechanical equilibrium

We come now to one of the most important ideas in the continuum theory of elasticity,
that of mechanical equilibrium. We have seen already that the stress tensor has to be
symmetric if there are no torques acting. We consider now the equilibrium of a region
ℛ that experiences a force per unit volume 𝐟(𝐗) within a body. This force may be
gravitational for example, and it is called a body force. The continuum surrounding ℛ
distorts generating stresses that balance the net body force acting on ℛ. These stresses
are transmitted to ℛ through the surface 𝒮 surrounding it.

Mechanical equilibrium requires that the total force acting on ℛ is zero:

∫
ℛ
fi(𝐗)dV−∫

𝒮
𝜎i jnjdS = 0,

where nj is component j of the inward pointing normal 𝐧̂ at the surface 𝒮 of the region
ℛ. We have chosen the inward pointing normal because we are considering the force
that the surrounding medium exerts on the region ℛ. But we normally use the outward
pointing normal in which case we must change the minus sign to a plus sign:

∫
ℛ
fi(𝐗)dV+∫

𝒮
𝜎i jnjdS = 0,

where nj is now component j of the outward pointing normal 𝐧̂ at the surface 𝒮 of the
region ℛ. Using the divergence theorem this may be rewritten as

∫
ℛ
( fi(𝐗)+𝜎ij, j) dV = 0,

where the comma denotes differentiation (Z, j means 𝜕Z/𝜕Xj) and 𝜎ij, j is the divergence
of the stress tensor. Since this balance of forces must hold for all regions ℛ within the
body we arrive at the following differential equations for mechanical equilibrium:

𝜎ij, j + fi = 0. (2.15)

There are three equations here, one for each component i of the body force, and
𝜎ij, j consists of three derivatives for each value of i. These equations are analogous to
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Poisson’s equation in electromagnetismwhere the divergence of the electric displacement
vector is the electric charge density, and electric charges are the sources of electric fields.
In eqn. 2.15 body forces are sources of stress fields originating within the body.8

Exercise 2.5

Consider the resultant torque Ti acting on a region ℛ with surface 𝒮 within a body. It is
acted on by a distribution of body forces fi(𝐱) within ℛ and surface tractionsa ti(𝐱) on 𝒮. If
the region ℛ is in mechanical equilibrium prove that the condition for the torque Ti to be
zero is that the stress tensor is symmetric.

Hint
With respect to an arbitrary origin the torque acting on the region ℛ is given by

𝐓 =∫
ℛ
𝐱× 𝐟dV+∫

𝒮
𝐱× 𝐭dS.

Rewrite this equation in component form using suffix notation and use the divergence
theorem to convert the surface integral into a volume integral. Then use the equilibrium
condition 𝜎ij, j + fi = 0 to simplify the terms and deduce the symmetry of the stress tensor as
the condition for Ti = 0.

Why is the expression for the torque 𝐓 independent of the choice of origin?

aA ‘surface traction’ is a force per unit area acting on a surface.

Exercise 2.6

In this question we use the equilibrium condition 𝜎ij, j + fi = 0 to prove 𝜎i j = 𝛿E/𝛿ei j(𝐱).

Consider a region ℛ with surface 𝒮 within a body in which there is a distribution of body
forces fi(𝐱) within ℛ and surface tractions ti(𝐱) on 𝒮. There is no net force acting on ℛ.
Suppose an infinitesimal displacement field 𝛿ui(𝐱) is applied to points within ℛ and on 𝒮,
which does not disturb the equilibrium of the body. The work done 𝛿W by the body forces
in ℛ and surface tractions on 𝒮 is

𝛿W = −{∫
ℛ
fi(𝐱)𝛿ui(𝐱)dV+∫

𝒮
𝜎i j(𝐱)𝛿ui(𝐱)nj(𝐱)dS} ,

where the normal vector in the surface integral points outwards. The corresponding change
in the internal energy of the region ℛ is 𝛿E = −𝛿W. Thus, continued

8 There may also be stress fields generated by forces applied to the surface of the body, but their divergence
is zero.
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𝛿E =∫
ℛ
fi(𝐱)𝛿ui(𝐱)dV+∫

𝒮
𝜎i j(𝐱)𝛿ui(𝐱)nj(𝐱)dS.

Use the divergence theorem to express the surface integral as a volume integral and simplify
the resulting terms using the equilibrium condition to show that

𝛿E =∫
ℛ
𝜎i j𝛿ui, jdV.

Using the symmetry of the stress tensor show that this expression is equivalent to

𝛿E =∫
ℛ
𝜎i j𝛿ei jdV.

Hence deduce

𝜎i j(𝐱) = 𝛿E/𝛿ei j(𝐱). (2.16)

2.8 Adiabatic and isothermal stress

We will show in this section that the stress in eqn. 2.16 is the isentropic or adiabatic
stress because it ignores any exchange of heat. In a real solid it is not the same as a
stress calculated when heat flows to maintain a constant temperature, which is called the
isothermal stress. Both adiabatic and isothermal stresses may arise depending on how
the strain is applied. If a material is deformed so rapidly that there is insufficient time for
heat to flow the immediate stress response will be adiabatic. But with the passage of time
heat will flow, and the stress will evolve to the isothermal limit.

In a continuummodel there is no distinction between isothermal and adiabatic stresses
unless the continuum model also displays thermal strain, which is strain caused by a
change of temperature at constant stress. In a continuum model the influence of the
rate of elastic deformation is usually limited to distinguishing between adiabatic and
isothermal elastic constants, which we shall return to in the next chapter.

In an atomistic model the isothermal and adiabatic stresses are not the same in general.
But the definition of an isothermal stress atomistically has been controversial, with some
investigators believing that the momenta of atoms contribute to the Cauchy stress, and
others claiming that the Cauchy stress arises only from forces acting between atoms. The
controversy appears to originate from a failure to distinguish conceptually between the
pressure exerted by an ideal gas on the walls of a container and the Cauchy stress.

In an ideal gas there are no forces acting between atoms except when they collide.
The gas exerts a pressure on the wall of a container through the exchange of momentum
when gas atoms bounce off it. Therefore, the pressure exerted by the gas on the wall
of a container is determined by the distribution of atomic momenta in the gas, as in the
kinetic theory of gases.
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In contrast, we see in Fig. 2.1 that the Cauchy stress does not arise from an exchange
of momentum: it arises exclusively from interatomic forces acting across a plane. For
example, if the plane is within the solid it is only notional in the sense that no atoms are
bouncing off it and no impulses are imparted to it. The role of the plane is merely to
separate the medium into two distinct parts so that the total force per unit area acting
on one part due to the other can be calculated. However, interatomic forces vary with
temperature owing to their anharmonicity.9 It is this temperature dependence that gives
rise to thermal strain. If atomic interactions were strictly harmonic there would be no
thermal strain no matter how much atoms vibrate about their equilibrium positions: the
solid would get hot but its shape and volume would not change because no internal
stresses would be generated to drive those changes.

The combined first and second laws of thermodynamics for a solid may be expressed
as follows:

dE = TdS+∫𝜎Si j (𝐱)dei j(𝐱)dV, (2.17)

where E is the internal energy of the solid and S is the entropy. The integral
∫𝜎Si j (𝐱)dei j(𝐱)dV is the work done by the solid when an infinitesimal strain field dei j(𝐱) is
applied to the solid and there is a pre-existing stress field 𝜎Si j (𝐱). The position dependence
of the stress tensor allows for the possibility that the body is not homogeneous. The local
stress in eqn. 2.16 is obtained from eqn. 2.17 by an adiabatic variation of the internal
energy with respect to a local strain, that is, at constant entropy. The superscript S on
the stress tensor is to remind us that it is obtained by a variation of the internal energy at
constant entropy:

𝜎Si j (𝐱) = ( 𝛿E
𝛿ei j(𝐱)

)
S

. (2.18)

The Helmholtz free energy of the solid is defined by A = E−TS, so that

dA = −SdT+∫𝜎Tij (𝐱)dei j(𝐱)dV. (2.19)

It follows that

𝜎Tij (𝐱) = ( 𝛿A
𝛿ei j(𝐱)

)
T

. (2.20)

In contrast to the local adiabatic stress in eqn. 2.18, the local isothermal stress is obtained
by a variation of the Helmholtz free energy with respect to the local strain tensor at

9 There is a related discussion of the temperature dependence of interatomic forces in section 3.9 of Sutton,
AP and Balluffi, RW, Interfaces in crystalline materials, Oxford classic texts in the physical sciences, Clarendon
Press: Oxford (2006). ISBN 978-0-19-921106-7. Robert Weierter Balluffi (1924–), US materials physicist.
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constant temperature. That is indicated by the superscript T on the stress tensor. The
two stress tensors 𝜎Si j and 𝜎Tij are equal at absolute zero.10 But in general they differ as
the temperature becomes finite.

As an illustration of eqn. 2.20 consider a perfect crystal with one atom in each unit
cell. The crystal is initially in equilibrium at absolute zero with a volume V, so that the
stress tensor is zero throughout the crystal. The temperature of the crystal is then raised
to T, less than the melting point, while its shape and volume V are constrained to remain
as they were at absolute zero. We will show that a stress is generated within the crystal if
and only if atomic interactions are anharmonic. It is this stress which drives the thermal
strain of the crystal when the constraints on its shape and volume are relaxed.

The homogeneity of the crystal enables eqn. 2.19 to be rewritten as follows:

dA = −SdT+V𝜎Tij dei j. (2.21)

Since the Helmholtz free energy is a state function the following Maxwell relation must
apply:

−(
𝜕𝜎Tij
𝜕T )

e

= 1
V
( 𝜕S𝜕ei j

)
T,e′

. (2.22)

−(𝜕𝜎Tij /𝜕T)e = 𝛽i j is known as the thermal stress tensor. It is evaluated with all strain
components held constant, which is indicated by the e outside the bracket. Similarly,
the thermal strain tensor is defined as 𝛼i j = (𝜕ei j/𝜕T )𝜍, where the 𝜎 outside the bracket
indicates that all stress components are held constant, and usually that constant is zero.
The partial derivative on the right is evaluated at constant temperature and all strain
components except ei j and eji, which is indicated by the prime on the e outside the
bracket.11 When thisMaxwell relation is applied to a crystal it shows that the temperature
dependence of a stress component, at a constant crystal configuration, is determined
by the dependence of the entropy of the crystal on the same component of the strain
tensor when all other strain components and the temperature are held constant. This
immediately tells us that anharmonicity is involved in the temperature dependence of
the stress, because in a harmonic crystal the elastic stiffness matrix is independent of
strain. We will now show this explicitly.

Let the sum of the atomic interaction energies at absolute zero be the potential energy
EP. Then since the crystal is in equilibrium at absolute zero we have 𝜕EP/𝜕ekl = 0 because
there are no internal stresses. When the temperature is raised to T there is a free energy
associated with the thermal vibrations. In the harmonic approximation the Helmholtz
free energy of the crystal becomes

10 This statement assumes the zero point energy is included in both the internal energy E and the free
energy A.
11 When this Maxwell relation is applied to an ideal gas it becomes the usual (𝜕P/𝜕T)V = (𝜕S/𝜕V)T, which

is satisfied by PV= RT with S−So = R ln(V/Vo), where So and Vo refer to a reference state of the gas and R
is the gas constant.
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A = EP + kBT∑
n

ln[2sinh( ℏ𝜔n
2kBT

)] , (2.23)

where kB is the Boltzmann constant and 𝜔n is the angular frequency of normal mode n.
The normal modes are obtained by solving the equations of motion:

müAi = −∑
Bj

SAiBjuBj, (2.24)

where uAi is the displacement of atom A along the xi direction,m is the atomic mass and S
is the elastic stiffness matrix consisting of the second derivatives of the potential energy12

with elements SAiBj = 𝜕2EP/𝜕uAi𝜕uBj. Since we are assuming each atom is performing
harmonic vibrations we write uAi =UAiei𝜔t. Then the angular frequency of normal mode
n satisfies the following equation:

𝜔2
n =

1
m
∑
Ai

∑
Bj

U(n)
Ai U

(n)
Bj SBjAi, (2.25)

where we have used the symmetry of the stiffness matrix to write SAiBj = SBjAi, the

orthonormality of its eigenvectors U (n), and the eigenvectors of a symmetric matrix can
always be expressed as real numbers.

Differentiating the free energy in eqn. 2.23 with respect to a homogeneous strain at
constant temperature, and remembering 𝜕EP/𝜕ekl = 0, we obtain

𝜎Tkl =
1
2
∑
n

coth( ℏ𝜔n
2kBT

) ℏ
2𝜔n

𝜕𝜔2
n

𝜕ekl

= 1
2
∑
n

coth( ℏ𝜔n
2kBT

) ℏ
2m𝜔n

∑
Ai

∑
Bj

U(n)
Ai U

(n)
Bj

𝜕SBjAi
𝜕ekl

= 1
2
∑
Ai

∑
Bj

⟨UAiUBj⟩
𝜕SBjAi
𝜕ekl

. (2.26)

⟨UAiUBj⟩ is the equal time displacement–displacement correlation function. We see that
the stress is non-zero if and only if there are non-zero derivatives of the elastic stiffness
matrix with respect to strain. If EP consists of only harmonic interactions each SBjAi is
constant and the strain derivatives are all zero. In that case the stress is independent of
temperature and 𝜎Tij = 𝜎Si j at all temperatures. But in a real crystal atomic interactions are
never purely harmonic and there are higher order derivatives of EP. The stress is then
dependent on temperature and 𝜎Tij ≠ 𝜎Si j . By taking the limit T→ 0 in eqn. 2.26 it is seen

12 These second derivatives are sometimes called force constants. Since they are constant only if EP is a sum
of harmonic interactions (i.e. a sum of quadratic functions of the atomic separations) we prefer to call them
stiffnesses. This terminology allows for their variation when separations between atoms change owing to the
existence of higher order derivatives in EP.
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that there is a contribution to 𝜎Tij even at absolute zero which arises from the zero point
motion.

When the constraints on the surface of the crystal to maintain its shape and volume
are removed it undergoes a spontaneous strain to relieve the stress 𝜎T of eqn. 2.26. This
is the origin of thermal strain. Once this strain has occurred the time-average separations
of atoms in the crystal change slightly, and they have new mean positions, as determined
by the anharmonicity of the interatomic forces. The model of atomic interactions is then
called quasi-harmonic because the potential energy EP is still expanded only to second
order in the displacements of atoms from their mean positions, but the stiffnesses SAiBj,
which are evaluated at the new mean atomic positions, change owing to the existence of
higher order derivatives in EP.

To evaluate the isothermal Cauchy stress of eqn. 2.20 in a molecular dynamics
simulation we calculate the time average of the expression in eqn. 2.5, with the vectors
defining the periodic supercell and the temperature held constant. When the supercell
vectors are allowed to relax, thermal stresses create thermal strains changing the volume
and/or shape of the supercell. But it should be remembered that at temperatures below
the Debye temperature quantum effects become significant and classical molecular
dynamics does not capture them.

To summarise, isothermal and adiabatic stresses differ only because interatomic forces
are anharmonic. Increasing the kinetic energies of atoms enables them to experience
forces that are increasingly anharmonic, but atomic momenta do not appear explicitly in
the Cauchy stress at a finite temperature.

2.9 Problem set 2

1. With respect to Cartesian axes x1,x2,x3 a stress tensor 𝜎 is represented by the
matrix

𝜎 = [
2 1 3
1 0 −1
3 −1 1

].

(a) Show that the force per unit area on the plane 2x1 + x2 − 2x3 = 0 is 𝐟 =
1/3[−1,4,3].

(b) Show that the normal stress on this plane is −4/9.
(c) Show that the shear stress on this plane is√1962/27 and that it acts along the

[−1,40,19] direction.
(d) Show that the stress tensor when referred to a new set of Cartesian axes

obtained by rotating the x1 and x3 axes by −45∘ about the positive x2-axis
(i.e. [010]) is given by
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𝜎 = 1
2
[

9 0 −1
0 0 −2√2
−1 −2√2 −3

].

2. Consider an atomistic model in which the total potential energy is described by a
sum of pairwise interactions:

E = 1
2
∑
m

∑
n≠m

V(X (mn)),

where X (mn) is the separation ||𝐗(m) −𝐗(n)|| between atoms m and n and V(X) is a
function of the separation between pairs of atoms, for example a Lennard-Jones
potential. The factor of one half is to correct for the double counting in the sum
over m and n. Show that the atomic level stress tensor at atom k is given by

𝜎(k)i j = 1
2Ω(k) ∑

n≠k

(X (n)
i −X (k)

i )(X (n)
j −X (k)

j )

X (nk) (dV
dX

)
X=X (nk)

.

3. (a) Using eqns. 2.14 and 2.13 show that

𝜎vM = 1

√2
√(𝜎11 −𝜎22)2 + (𝜎22 −𝜎33)2 + (𝜎33 −𝜎11)2 + 6(𝜎2

12 +𝜎2
23 +𝜎2

31).

(2.27)

(b) Show that the second invariant I2 (see eqn. 2.10) of the deviatoric stress tensor
(𝜎i j −𝛿i j𝜎kk/3) is directly proportional to the square of the von Mises stress
𝜎vM, eqn. 2.13.

4. This question is more advanced. It provides insight into the relationship between
the equilibrium condition 𝜎ij, j + fi in a continuum and the Cauchy–Saint-Venant
definition of stress in terms of interatomic forces illustrated in Fig. 2.1. It is based
on the work of Noll.13

We return to the definition of stress at the beginning of this chapter in terms
of atomic interactions. Atoms are discrete objects and this poses a mathematical
difficulty in applying the condition for mechanical equilibrium in a continuum
embodied in eqn. 2.15. Noll’s analysis overcomes this difficulty by replacing the
discrete force that one atom exerts on another with a continuous force density
𝐟(𝐱′,𝐱) with units of force per unit volume squared. Then 𝐟(𝐱′,𝐱)dV𝐱′dV𝐱 is the
force that a volume element dV𝐱′ at 𝐱′ exerts on a volume element dV𝐱 at 𝐱. Notice
that 𝐟(𝐱′,𝐱) = −𝐟(𝐱,𝐱′). If the stress tensor at 𝐱 is 𝜎i j(𝐱) then Noll proves that

13 Walter Noll 1925–2017, US mathematician, born in Germany, see http://www.math.cmu.edu/~wn0g/. On
this website there are many fascinating articles, including a very thought-provoking short essay on The role of
the professor at http://www.math.cmu.edu/~wn0g/RP.pdf.

http://www.math.cmu.edu/~wn0g/
http://www.math.cmu.edu/~wn0g/RP.pdf
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𝜎ij, j(𝐱) =∫
V

fi(𝐱′,𝐱)dV𝐱′ . (2.28)

This is the resultant force acting on a volume element at 𝐱 arising from the
surrounding medium. It is important to recognise that although 𝐟(𝐱′,𝐱) depends
only on 𝐱′ and 𝐱 this does not amount to an assumption of pairwise interactions
that depend only on the separation of 𝐱′ and 𝐱. In other words 𝐟(𝐱′,𝐱)may depend
on the environments of 𝐱′ and 𝐱. It is also not necessarily the case that the force
𝐟(𝐱′,𝐱) is parallel to 𝐱−𝐱′.

Following Noll we will show that

𝜎i j(𝐱) =
1
2
∫
S

dΩm∫
∞

r=0

dr r2∫
1

𝛼=0

d𝛼 fi(𝐱+𝛼r𝐦̂,𝐱− (1−𝛼)r𝐦̂)rmj, (2.29)

where dΩm is an element of solid angle centred on the direction 𝐦̂ and the integral
over S is over the unit sphere centred at 𝐱. The magnitude of the vector 𝐫 is r.
The function fi(𝐱+𝛼r𝐦̂,𝐱− (1−𝛼)r𝐦̂) is the force exerted by a volume element
at 𝐱+𝛼r𝐦̂ on the volume element at 𝐱− (1−𝛼)r𝐦̂, where these volume elements
are separated by r at all values of 0 ≤ 𝛼 ≤ 1. As 𝛼 varies between 0 and 1 in the third
integral the forces of interaction that pass through 𝐱 between all points separated by
r along the direction 𝐦̂ are included. In the second integral r ranges over all possible
separations, and in the first integral all possible directions 𝐦̂ are considered. In this
way all forces of interaction that pass through 𝐱 between points on either side of
𝐱 contribute to the stress, in accord with the definition of stress due to Cauchy
and Saint-Venant in section 2.1. Each interaction is counted twice, and this is
corrected by the factor of one half. The reason for the final factor rmj will become
clear shortly.

To prove eqn. 2.29 we show that it satisfies eqn. 2.28.

Let 𝐮 = 𝐱+𝛼r𝐦̂ and 𝐯 = 𝐱− (1−𝛼)r𝐦̂. Show that

𝜕fi
𝜕xj

= 𝜕fi
𝜕uj

+ 𝜕fi
𝜕vj

.

Using the chain rule show that

𝜕fi
𝜕𝛼 = ( 𝜕fi𝜕uj

+ 𝜕fi
𝜕vj

) rmj =
𝜕fi
𝜕xj

rmj

Using these results obtain eqn (2.28). We observe the following:

• The stress in eqn. 2.29 has the correct units, that is, force per unit area.

• The stress at 𝐱 is attributed to forces that act not only on 𝐱 but also through 𝐱.
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• Equation 2.29 is a continuum version of the discrete atomic-level stress tensor
of eqn. 2.5.

• In eqn. 2.28 the force flux is inward towards the point 𝐱: it is the resultant
force the surrounding medium exerts on the point 𝐱. If this resultant
force is not zero mechanical equilibrium requires there is an equal and
opposite force exerted from 𝐱 on the surrounding medium. This is the body
force at 𝐱. The right hand side of eqn. 2.28 is therefore equal and opposite to
the body force at 𝐱.



OUP CORRECTED PROOF – FINAL, 22/5/2020, SPi

3

Hooke’s law and elastic constants

3.1 Generalised Hooke’s law: elastic constants
and compliances

Robert Hooke 1635–1703 was one of the most versatile and accomplished experimen-
talists of all time.1 He was appointed ‘Curator of Experiments’ in the Royal Society in
1662, two years after the Society was formed, a post he held for 40 years until his death
in 1703.

The modern form of the law which takes his name is that the stress tensor is
proportional to the strain tensor, and conversely the strain tensor is proportional to the
stress tensor. Since both stress and strain are second rank tensors the proportionality
constants are fourth rank tensors:

𝜎i j = cijkl ekl (3.1)

ei j = sijkl𝜎kl, (3.2)

where cijkl is called the elastic stiffness tensor, or elastic constant tensor, and sijkl is called
the elastic compliance tensor. By substituting eqn. 3.2 into eqn. 3.1, and noting that the
stress and strain tensors are symmetric, it is seen that the elastic constant and compliance
tensors are related as follows:

cijkl sklmn =
1
2
(𝛿im𝛿jn +𝛿in𝛿jm) . (3.3)

Exercise 3.1

Verify eqn. 3.3.

The direct proportionality between stress and strain is the basis of linear elasticity.
Hooke’s ‘law’ is an approximation because nonlinear terms become significant as the
magnitude of the strain increases, but are neglected in the linear theory. Physically, stiffer

1 See Jardine, L. The curious life of Robert Hooke, Harper Collins: London (2003). ISBN 978-0007151752

Physics of elasticity and crystal defects. Adrian P. Sutton, Oxford University Press (2020). © Adrian P. Sutton.
DOI: 10.1093/oso/9780198860785.001.0001
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bonds between atoms lead to larger elastic constants and smaller elastic compliances.
Thus, in diamond, which is a very stiff insulator, c1111 is 1079GPa, while in lead, which is
a soft metal, it is 49.66GPa. Inmost metals the elastic constants are of order 1011 Pa. One
GPa (gigapascal) is 109 Pa, and 1 Pa = 1 Nm−2 = 1 Jm−3; 1 GPa ≈ 6.24× 10−3 eVÅ−3.

3.2 The maximum number of independent elastic
constants in a crystal

Since the elastic constant tensor is a fourth rank tensor it appears at first sight that there
are 34 = 81 independent elastic constants. If that were true the theory of elasticity would
bemuch less useful because it would require the measurement of 81material parameters.
Symmetry enables the number of independent elastic constants to be reduced to a much
more manageable number. The smallest number of independent elastic constants is just
two, and this is the case in an elastically isotropic material like rubber. In cubic crystals
there are just three independent elastic constants and in hexagonal crystals five. Since
these restrictions are determined by symmetry they apply to the elastic compliance tensor
in the same way as they do to the elastic constant tensor.

The largest number of independent elastic constants in any material is 21. This is
the case in a triclinic crystal where there are no rotational symmetries in the point group.
The first reduction is achieved by enforcing the symmetry of the stress and strain tensors:
𝜎i j = 𝜎ji, ekl = elk. Therefore we must have cijkl = cjikl = cijlk = cjilk. The second reduction is
more subtle and was first shown by George Green when he introduced the strain energy
function, or elastic energy density.

3.2.1 The elastic energy density

In linear elasticity the elastic energy density is given by

E = 1
2
𝜎i jei j

= 1
2
cijklei jekl. (3.4)

This expression comes from integrating dE = 𝜎i jdei j with respect to strain from ei j = 0 to
the final strain and using Hooke’s law to express stress in terms of strain. The factor of
one half is a consequence of the linear relationship between stress and strain. The elastic
energy density has units of Jm−3, the same as the elastic constants. The total elastic
energy is then the integral of the elastic energy density over the volume of the body.

The elastic constants are second derivatives of the elastic energy density with
respect to strain. For example, consider the terms involving the product e12e32.
Since e12 = e21 and e32 = e23 we cannot vary e12 and e32 without also varying e21
and e23. Therefore, there are four terms in the elastic energy density to consider:
1

2
[c1232e12e32 + c2132e21e32 + c1223e12e23 + c2123e21e23]. We have already seen that c1232 =

c2132 = c1223 = c2123. Therefore these four terms amount to 2c1232e12e32, and
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c1232 =
1
2

𝜕2E
𝜕e12𝜕e32

.

But there are also four terms in the elastic energy density involving the product e32e12.
They amount to 2c3212e32e12, and

c3212 =
1
2

𝜕2E
𝜕e32𝜕e12

.

Green argued that the order of differentiation in these two second derivatives cannot
matter. It follows that c1232 = c3212. More generally,

cijkl = cklij. (3.5)

Thus the elastic constant tensor displays the following symmetries in all materials:

cijkl = cjikl = cijlk = cjilk = cklij = clkij = cklji = clkji. (3.6)

There are six independent {ij} and {kl} combinations: 11, 22, 33, 23, 13 and 12. The
symmetry embodied in eqn. 3.5 reduces the number of independent elastic constants
from 6× 6 = 36 to 6+ 5+ 4+ 3+ 2+ 1 = 21. This was first demonstrated by Green in
1837.2 Any further reduction in the number of independent elastic constants depends
on the point group symmetry of the material.

3.2.2 Matrix notation

Green’s analysis above suggests that Hooke’s law can be expressed in a convenient matrix
form where each index signifies two indices in the tensor form of the equation:

11→ 1, 22→ 2, 33→ 3, 23 or 32→ 4, 13 or 31→ 5, 12 or 21→ 6.

For example, 𝜎31 →𝜎5 and c1232 → c64. Hooke’s law may then be written in the following
matrix form:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 c13 c14 c15 c16
c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36
c41 c42 c43 c44 c45 c46
c51 c52 c53 c54 c55 c56
c61 c62 c63 c64 c65 c66

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e1
e2
e3
e4
e5
e6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (3.7)

2 Green, G, Trans. Cambridge Philos. Soc., 7, 1 (1839), https://archive.org/details/transactionsofca07camb

https://archive.org/details/transactionsofca07camb
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Now we see explicitly that there are just 21 independent components of the matrix 𝐜. Let
us compare this equation with the tensor form of Hooke’s law, eqn. 3.1. For example,
consider 𝜎11 in eqn. 3.1:

𝜎11 = c1111e11 + c1122e22 + c1133e33 + 2c1123e23 + 2c1113e13 + 2c1112e12.

This has to be equivalent to 𝜎1 in eqn. 3.7:

𝜎1 = c11e1 + c12e2 + c13e3 + c14e4 + c15e5 + c16e6.

For these two expressions to be equivalent we must have:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e1
e2
e3
e4
e5
e6

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e11
e22
e33
2e23
2e13
2e12

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Note the factors of 2 for the off-diagonal elements of the strain tensor.
It is important to recognise that 𝝈,𝐜 and 𝐞 in eqn. 3.7 are not tensors because they

do not transform according to the tensor transformation law under a rotation. They
are merely a convenient way of writing the tensor relationship in eqn. 3.1 as a matrix
equation. This highlights the difference between tensors and their representations as
matrices.

An example of a triclinic crystal for which all 21 elastic constants have been deter-
mined experimentally is low albite (NaAlSi3O8), which is a plagioclase feldspar mineral.3

With the x2-axis parallel to the crystal b-axis, the x1-axis perpendicular to crystal b and c
axes and the x3-axis completing a right-handed Cartesian coordinate system, the matrix
𝐜 is as follows:

𝐜 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

69.1 34.0 30.8 5.1 −2.4 −0.9
34.0 183.5 5.5 −3.9 −7.7 −5.8
30.8 5.5 179.5 −8.7 7.1 −9.8
5.1 −3.9 −8.7 24.9 −2.4 −7.2
−2.4 −7.7 7.1 −2.4 26.8 0.5
−0.9 −5.8 −9.8 −7.2 0.5 33.5

⎤
⎥
⎥
⎥
⎥
⎥
⎦

GPa.

3 Brown, JM, Abramson, EH and Angel, RJ, Phys. Chem. Minerals 33, 256–65 (2006), https://doi.org/10.
1007/s00269-006-0074-1

https://doi.org/10.1007/s00269-006-0074-1
https://doi.org/10.1007/s00269-006-0074-1
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3.3 Transformation of the elastic constant tensor
under a rotation

We have seen that since stress and strain are second rank tensors they are related in
Hooke’s law by a fourth rank tensor, which is either the elastic constant tensor or the
elastic compliance tensor. For a rotation of the Cartesian coordinate system defined as
in eqn. 2.7 the elastic constant tensor transforms as follows:

c′ijkl = RimRjnRkpRlqcmnpq. (3.8)

We shall use this transformation to reduce the number of independent elastic constants
to less than 21 when 𝐑 represents a rotational symmetry of the material.

We note a further useful transformation property. If (x′1,x′2,x′3) and (x1,x2,x3) are the
coordinates of a point in the rotated and unrotated coordinate systems respectively then

x′ix
′
jx
′
kx

′
l = RimRjnRkpRlqxmxnxpxq. (3.9)

This equation shows that the elastic constant tensor cmnpq transforms under a rotation in
exactly the same way as the product of coordinates xmxnxpxq. We shall make use of this
observation extensively below.

3.3.1 Neumann’s principle

This is a fundamental principle that relates the symmetry displayed by a physical
property of a crystal to the point group symmetry of the crystal. It is arguably the most
fundamental structure–property relationship in materials science. It was formulated by
Neumann4 and first appeared in print in 1885.5 Here is how the International Union of
Crystallography states the principle:

The symmetry elements of any physical property of a crystal must include all the
symmetry elements of the point group of the crystal.

Mathematically, Neumann’s principle means that any physical property is invariant
with respect to every symmetry operation of the crystal. This means that when we
transform the elastic constant tensor according to eqn. 3.8, with the rotation 𝐑 being
one of the symmetry rotations of the crystal, we must obtain an elastic constant tensor
that is equivalent to the elastic constant tensor before the rotation was applied.

Note the word ‘include’ in Neumann’s principle: the physical property may display
more symmetry than the point group of the crystal. For example, the diffusivity tensor
in a cubic crystal is isotropic, so that it displays the symmetry of a sphere in 3D, that
is, the rotation group SO(3), which has infinitely more rotational symmetries than a

4 Franz Ernst Neumann 1798–1895, German mineralogist, physicist and mathematician.
5 Neumann, FE,Vorlesungen über die Theorie der Elastizität der festen Körper und des Lichtäthers, ed. OEMeyer,

Leipzig: B G Teubner-Verlag, (1885).
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cube or octahedron or tetrahedron. The elastic constant tensor always displays inversion
symmetry because if a homogeneous stress and strain were inverted through any centre
no change would be apparent in the elastic properties since a state of homogeneous stress
or strain is centrosymmetrical.6 This remains true even in a crystal that does not display
inversion symmetry in its point group. All point group operations are either rotations
or rotations combined with an inversion (e.g. mirror planes are two fold rotations
followed (or preceded) by an inversion). Since the elastic constant tensor already displays
inversion symmetry it is necessary to ask how it transforms under only the rotational
symmetries of the point group. Eleven of the 32 point groups contain only rotational
symmetries, and they are known as the proper groups, or enantiomorphous groups. They
are the point groups that determine the numbers of independent elastic constants in all
32 point groups.

3.4 Isotropic materials

An elastically isotropic material is one in which the elastic constants do not depend
on direction in the material: they have the symmetry of SO(3). Examples of isotropic
materials are rubber, glass and amorphous materials.

If cijkl is the same in all directions then cijkl = ⟨cijkl⟩where<⋯>means an average taken
over all radial directions within a sphere. It follows from eqn. 3.9 that ⟨cijkl⟩ is proportional
to ⟨xixjxkxl⟩, where xi are the coordinates of a point on the surface of the unit sphere,
with respect to an origin at its centre. We find

< xixjxkxl > = < x21x22 >𝛿i j𝛿kl(1−𝛿jk) + < x21x22 > 𝛿ik𝛿jl(1−𝛿kj)
+ < x21x22 > 𝛿il𝛿jk(1−𝛿jl) + < x41 > 𝛿i j𝛿jk𝛿kl

= 1
15
(𝛿i j𝛿kl +𝛿ik𝛿jl +𝛿il𝛿jk)

+ 1
15
(3𝛿i j𝛿jk𝛿kl −𝛿i j𝛿kl𝛿jk −𝛿ik𝛿jl𝛿i j −𝛿il𝛿jk𝛿ik)

= 1
15
(𝛿i j𝛿kl +𝛿ik𝛿jl +𝛿il𝛿jk), (3.10)

where < x21x22 >=< x22x23 >=< x23x21 >=
1

15
and < x41 >=< x42 >=< x43 >=

1

5
have been

used. It follows that an isotropic elastic constant tensor has the following form:

cijkl = 𝜆𝛿i j𝛿kl +𝜇𝛿ik𝛿jl +𝜇′𝛿il𝛿jk,

where 𝜆, 𝜇 and 𝜇′ are constants.

6 Nye, JF, Physical properties of crystals, Oxford University Press: Oxford (1957), p.21. ISBN 0-19-851165-5.
John Frederick Nye FRS 1923–2019, British physicist.
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Since cijij = cijji (no summation) we must have 𝜇 = 𝜇′. Therefore there are just two
independent elastic constants in an isotropic material:

cijkl = 𝜆𝛿i j𝛿kl +𝜇(𝛿ik𝛿jl +𝛿il𝛿jk) . (3.11)

𝜆 is called Lamé’s first constant,7 and 𝜇 is sometimes called Lamé’s second constant but
more commonly the shear modulus.

Exercise 3.2

Derive eqn. 3.10 in detail.

Exercise 3.3

Verify that cijkl = 𝜆𝛿i j𝛿kl +𝜇(𝛿ik𝛿jl +𝛿il𝛿jk) is invariant when it substituted into eqn. 3.8 for any
rotation 𝐑.

When we substitute the isotropic elastic constants, eqn. 3.11, into Hooke’s law,
eqn. 3.1, we obtain the following equations:

𝜎11 = 2𝜇e11 +𝜆(e11 + e22 + e33)
𝜎22 = 2𝜇e22 +𝜆(e11 + e22 + e33)
𝜎33 = 2𝜇e33 +𝜆(e11 + e22 + e33)
𝜎23 = 2𝜇e23
𝜎13 = 2𝜇e13
𝜎12 = 2𝜇e12, (3.12)

where we recognise ekk = e11 + e22 + e33 as the dilation ΔV/V. Thus c11 = 2𝜇+𝜆, c12 = 𝜆
and c44 = 𝜇. Therefore in an isotropic material we have

A = 2c44
c11 − c12

= 1. (3.13)

This is called the anisotropy ratio, about which we will say more in the context of cubic
crystals where A ≠ 1.

To relate 𝜆 and 𝜇 to Young’s modulus Y consider a tensile test where a sample is
loaded in tension along the x3-axis and no constraints or loads are applied along x1 and
x2. There are no shear strains and eqns. 3.12 become

7 Named after Gabriel Lamé 1795–1870, French mathematician.
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0 = 2𝜇e11 +𝜆(e11 + e22 + e33)
0 = 2𝜇e22 +𝜆(e11 + e22 + e33)

𝜎33 = 2𝜇e33 +𝜆(e11 + e22 + e33).

Solving these equations for e11, e22 and e33 we find e11 = e22 = −𝜆𝜎33/{2𝜇(2𝜇+ 3𝜆)} and
e33 = 2(𝜇 +𝜆)𝜎33/{2𝜇(2𝜇+ 3𝜆)}. From these relations we deduce the following:

Y = 𝜇(2𝜇+ 3𝜆)
𝜇 +𝜆 (3.14)

𝜈 = − e11
e33

= 𝜆
2(𝜇 +𝜆) (3.15)

𝜇 = Y
2(1+𝜈) (3.16)

𝜆 = 2𝜇𝜈
1− 2𝜈 , (3.17)

where 𝜈 is called Poisson’s8 ratio. Poisson’s ratio is the ratio of the contraction in the
lateral x1 and x2 directions to the tensile strain along x3. Most materials contract along
the lateral directions when they are stretched, and expand along the lateral directions
when they are compressed. Materials that do the opposite are called ‘auxetic’, and they
have negative Poisson’s ratios.9 In terms of the Young’s modulus and Poisson’s ratio the
strains may be expressed in terms of the stresses as follows:

e11 =
𝜎11
Y

− 𝜈𝜎22
Y

− 𝜈𝜎33
Y

e22 =
𝜎22
Y

− 𝜈𝜎11
Y

− 𝜈𝜎33
Y

e33 =
𝜎33
Y

− 𝜈𝜎11
Y

− 𝜈𝜎22
Y

e23 =
1+𝜈
Y

𝜎23 =
𝜎23
2𝜇

e13 =
1+𝜈
Y

𝜎13 =
𝜎13
2𝜇

e12 =
1+𝜈
Y

𝜎12 =
𝜎12
2𝜇 . (3.18)

Another commonly used elastic constant is the bulk modulus, B. This relates the
hydrostatic pressure p = −Tr𝜎/3 to the dilation ΔV/V =Tre:

8 Siméon Denis Poisson 1781–1840. French mathematician, engineer and physicist.
9 Most auxetic materials are cellular solids such as honeycombs and foams. But they also occur naturally, for

example human artery walls and skin and a form of silica (SiO2) known as α-cristobalite. The Poisson’s ratio
of cork is almost zero, which makes it ideal for sealing wine in bottles.
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p = −BΔV
V
. (3.19)

Using eqns. 3.12 it is deduced that

B = 1
3
(2𝜇+ 3𝜆) = 2𝜇(1+𝜈)

3(1− 2𝜈) . (3.20)

It is stressed that in isotropic elasticity only two of the Young’s modulus Y, the
shear modulus 𝜇, Poisson’s ratio 𝜈, the bulk modulus B and Lamé’s first constant 𝜆 are
independent.

Exercise 3.4

(a) Why must the value of 𝜈 always be between −1 and
1

2
?

(b) What do these two limits correspond to physically?

Exercise 3.5

Show that in an isotropic medium Hooke’s law may be expressed in the following equivalent
ways:

𝜎i j = 2𝜇e(d)i j +𝛿i jBekk

ei j =
1
2𝜇𝜎

(d)
i j +𝛿i j

𝜎kk
9B

,

where e(d)i j and 𝜎(d)i j are the deviatoric strain and stress tensors. By introducing the deviatoric
stress and strain tensors we see a clear separation between shear and dilational contributions,
involving the shear modulus and bulk modulus respectively, to the total stress and strain
tensors.

Exercise 3.6

(a) By orienting the axes along the eigenvectors of the stress tensor show that the elastic
energy density in an isotropic medium may be expressed as follows:

E = 1
2Y

(s21 + s22 + s23 − 2𝜈 (s1s2 + s2s3 + s3s1)) ,

where si are the eigenvalues of the stress tensor. continued
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Exercise 3.6 Continued

(b) Show that the elastic energy density may be expressed as

E =
I21
18B

+
I21 − 3I2

6𝜇 = p2

2B
+ (𝜎vM)2

6𝜇 ,

where I1 and I2 are the first and second invariants of the stress tensor, p is the hydrostatic
pressure and 𝜎vM is the von Mises shear stress given by eqn. 2.14. We see here that the
elastic energy density in an isotropic medium also separates into dilational and shear
contributions.

3.5 Anisotropic materials

There are no crystalline materials that are exactly elastically isotropic, but tungsten is
almost isotropic. In this section we will illustrate how point group symmetry is used to
reduce the number of independent elastic constants from 21 in a crystal. As an example
we will show there are three independent elastic constants in cubic crystals.

3.5.1 Cubic crystals

In this section we will make use of the observation in eqn. 3.9 that the elastic constant
tensor cmnpq transforms under a rotation in exactly the same way as the product of
coordinates xmxnxpxq.

Cubic crystals are defined by four three fold rotational symmetry axes along ⟨111⟩
directions. These rotational symmetries generate a further three two fold rotation axes
along ⟨100⟩. In this way we obtain the cubic point group ‘23’ in Hermann–Mauguin
notation or T in Schönflies notation.

Rotating the coordinate axes by 𝜋 about [100] results in x′1 = x1, x′2 = −x2, x′3 =
−x3. Therefore the following eight elastic constants must be zero because they are
equal to their own negative under this rotation: c1112 = c16, c1113 = c15, c2212 = c26,
c2213 = c25, c3312 = c36, c3313 = c35, c2312 = c46, c2313 = c45, where we are specifying the
4-index tensor component and its corresponding element of the 6× 6 matrix in eqn. 3.7.

Similarly rotating the coordinate axes by 𝜋 about [010] results in x′1 = −x1,
x′2 = x2, x′3 = −x3, and four additional elastic constants are found to be zero: c1123 =
c14, c2223 = c24, c3323 = c34, c1312 = c56.

No additional information is obtained by rotating by 𝜋 about [001]. Rotating by 2𝜋/3
anti-clockwise about [111] results in x′1 → x2,x′2 → x3,x′3 → x1. Therefore the following
elastic constants must be equal: c1111 = c2222 = c3333; c1122 = c2233 = c3311; c2323 = c3131 =
c1212, which in matrix notation are c11 = c22 = c33; c12 = c23 = c31; c44 = c55 = c66. No
additional information is obtained by invoking any of the other symmetry operations.

The conclusion is that there are three independent elastic constants in a cubic crystal:
c11, c12, c44:
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𝐜 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (3.21)

This conclusion remains the same with the cubic point group ‘432’ in Hermann–
Mauguin notation orO in Schönflies notation. Therefore, all cubic point groups have an
elastic constant matrix of the same form as that shown in eqn. 3.21. This is conveniently
summarised in the following formula for the elastic constants in cubic crystals:

cijkl = c12𝛿i j𝛿kl + c44 (𝛿ik𝛿jl +𝛿il𝛿jk)+ (c11 − c12 − 2c44)𝛿i j𝛿jk𝛿kl. (3.22)

The elements of the elastic constant matrix with value zero in a cubic crystal are
the same as those in an isotropic medium. The only difference between the cubic and
isotropic cases is that the anisotropy ratio, eqn. 3.13, in a cubic crystal is not unity. Let
us look at this more closely. A pure shear strain e23 in a cubic crystal is on (010) and
(001) planes, and it is created by the shear stress 𝜎23 = 2c44e23. Therefore, c44 measure
the resistance to shear on {100} planes in the cubic crystal. If we rotate the coordinate
system by 𝜋/4 about [100] then e′23 is a pure shear on (011) and (011̄) planes. After
transforming the elastic constant tensor it is found that c′2323 = (c11 − c12)/2. Therefore,
(c11 − c12)/2 measures the resistance to shear on {110} planes in the cubic crystal, and
it is called C′ (pronounced ‘C prime’). It follows that the anisotropy ratio in a cubic
crystal is the ratio of the shear resistance on {100} planes to the shear resistance on {110}
planes. In an isotropic crystal the resistances are the same. The anisotropy ratio can have
a strong influence on the elastic fields of defects and modes of plastic deformation in
cubic crystals.

3.5.2 The directional dependence of the elastic constants
in anisotropic media

In an anisotropic medium the elastic constants vary with direction. For a chosen elastic
constant this variation can be depicted graphically by plotting a surface r(𝜃,𝜙) where r is
the magnitude of the elastic constant along the direction (𝜃,𝜙) in spherical coordinates.
In an isotropic medium this surface is a sphere.

As a first example consider the variation of c11 with direction in a cubic crystal.
Orienting the Cartesian axes along the ⟨100⟩ directions the variation of c11 = c1111 as
the coordinate system is rotated is given by eqn. 3.8:

c′1111 = R1iR1jR1kR1lcijkl. (3.23)
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Let R1i = ̂𝜂i. This vector is parallel to the x′1-axis. eqn. 3.23 provides the value of c11
along the direction ̂𝜼 with respect to the cube axes. We obtain

c′11 = c′1111 = c11 + 2(c11 − c12)(
2c44

c11 − c12
− 1)( ̂𝜂21 ̂𝜂22 + ̂𝜂22 ̂𝜂23 + ̂𝜂23 ̂𝜂21) , (3.24)

where we see that the directional dependence is proportional to the deviation of the
anisotropy ratio A (eqn. 3.13) from unity. For A > 1 the maximum value of c′11 is along
⟨111⟩ directions. A plot of c′11 is shown in Fig. 3.1 for copper, where c11 = 168.4 GPa,
c12 = 121.4 GPa, c44 = 75.4 GPa and the anisotropy ratio is A = 3.21. The average value
of c′11, where the averaging is over all directions, is c11 +

2

5
(A− 1)(c11 − c12), and in copper

this is 210 GPa.
The variation of the shear elastic constant c44 with direction is more complicated

because it depends on two directions: the plane normal and the direction of shear.
Invoking the transformation law:

c′1212 = R1iR2jR1kR2lcijkl = ̂𝜂i ̂𝜉j ̂𝜂k ̂𝜉lcijkl, (3.25)

where ̂𝜉j = R2j is any unit vector perpendicular to ̂𝜼. In this equation ̂𝜼may be interpreted
as the normal to the plane where c′1212 is evaluated and ̂𝝃 as the direction of shear in that
plane. Thus, c′1212 is a function of three independent variables. After some algebraic
manipulations we obtain

Figure 3.1 Polar plot of c′11 given by eqn. 3.24 for copper inside a bounding cube aligned with the
⟨100⟩ directions of the fcc crystal.
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c′44 = c′66 = c′1212 = c44 − (c11 − c12)(
2c44

c11 − c12
− 1)( ̂𝜂21 ̂𝜉21 + ̂𝜂22 ̂𝜉22 + ̂𝜂23 ̂𝜉23 ) . (3.26)

For example, when ̂𝜼 = [110]/√2 and ̂𝝃 = [11̄0]/√2 we obtain c′44 =
1

2
(c11 − c12), which

is C′. For completeness we also state the variation of the elastic constant c12 with two
orthonormal directions ̂𝜼 and ̂𝝃:

c′12 = c′1122 = c12 − (c11 − c12)(
2c44

c11 − c12
− 1)( ̂𝜂21 ̂𝜉21 + ̂𝜂22 ̂𝜉22 + ̂𝜂23 ̂𝜉23 ) . (3.27)

3.6 Further restrictions on the elastic constants

For structural stability the elastic energy density must be positive definite. Otherwise
the material will spontaneously distort to a lower energy structure. The elastic energy
density may be written in matrix notation as

1

2
𝜎iei =

1

2
ci jeiej. For the quadratic form ci jeiej

to be positive definite all six of the leading principal minors of the 6× 6 matrix 𝐜 must
be positive definite.

In an isotropic medium this condition leads to 𝜆+ 2

3
𝜇 > 0 and 𝜇 > 0. Since the bulk

modulus is given by B = 𝜆+ 2

3
𝜇 (see eqn. 3.20) the first condition is equivalent to

requiring the bulk modulus is positive. In Exercise 3.6 it was also shown that the elastic
energy density is positive definite provided B > 0 and 𝜇 > 0.

In a cubic crystal the elastic energy density is positive definite provided c11 − c12 > 0,
c44 > 0 and c11 + 2c12 > 0. Thus, the elastic energy density is positive definite provided
the two shear elastic constants and the bulk modulus are all positive. c12 has to lie between
−c11/2 and c11, and therefore Poisson’s ratio, which is c12/(c11 + c12), has to lie between
−1 and

1

2
.

3.7 Elastic constants and atomic interactions

Elastic constants may be calculated for a crystal if we have a description of atomic
interactions. Consider a crystal with one atom at each lattice site. Since all atoms are at
centres of inversion there is no net force acting on any atom. Let u(n)i be a small arbitrary
displacement of atom n. Then the change in the energy of the crystal to second order in
the displacements is

E =∑
n

𝜕E
𝜕u(n)i

u(n)i + 1
2
⋅∑
n

∑
p

𝜕2E
𝜕u(n)i 𝜕u(p)j

u(n)i u(p)j . (3.28)

This is the usual harmonic expansion of the energy of the crystal, where the derivatives
are evaluated in the perfect crystal configuration. The first term on the right is zero
because the forces on all atoms are zero at equilibrium.
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If u(n)i = ti for all n, where ti is a small constant vector, then the energy E in eqn. 3.28
should be invariant, because the crystal has undergone a rigid body translation. This is
achieved if the following equation is satisfied:

𝜕2E
𝜕u(n)i 𝜕u(n)j

= −∑
p≠n

𝜕2E
𝜕u(n)i 𝜕u(p)j

,

for each site n. When this is substituted into eqn. 3.28 the second order term becomes

1
2
⋅∑
n

∑
p

𝜕2E
𝜕u(n)i 𝜕u(p)j

u(n)i u(p)j = 1
2
⋅∑
n

∑
p≠n

𝜕2E
𝜕u(n)i 𝜕u(p)j

u(n)i (u(p)j − u(n)j )

= −1
2
⋅ 1
2
⋅∑
n

∑
p≠n

𝜕2E
𝜕u(n)i 𝜕u(p)j

(u(p)i − u(n)i )(u(p)j − u(n)j ) . (3.29)

Let the displacements be created by a small homogeneous strain ekl, such that u(p)i −
u(n)i = eik (X (p)

k −X (n)
k ), where 𝐗(p) is the position of atom p in the unstrained crystal. All

atoms remain at centres of inversion during this operation and therefore the net force
on any atom remains zero. Since the strain is homogeneous and since all atoms in the
crystal remain equivalent we need to consider the change in the energy of just atom n,
which we call 𝛿En:

𝛿En = −1
4
∑
p≠n

eik (X (p)
k −X (n)

k )S(np)i j ejl (X (p)
l −X (n)

l ) , (3.30)

where S(np)i j = 𝜕2E/𝜕u(n)i 𝜕u(p)j . We may rewrite this equation in terms of the elastic
constants:

𝛿En =
1
2
Ωcikjl eik ejl

whereΩ is the volume of a primitive unit cell of the crystal. Comparing this with eqn. 3.30
we obtain

cikjl = − 1
2Ω∑

p≠n
(X (p)

k −X (n)
k )S(np)i j (X (p)

l −X (n)
l ) . (3.31)

It is evident that this expression satisfies the symmetry cikjl = cjlik. To satisfy the other

symmetries of eqns. 3.6 we set cikjl =
1

4
(cikjl + ckijl + ciklj + ckilj):



OUP CORRECTED PROOF – FINAL, 22/5/2020, SPi

Isothermal and adiabatic elastic moduli 43

cikjl = − 1
8Ω {∑

p≠n
(X (p)

k −X (n)
k )S(np)i j (X (p)

l −X (n)
l )

+∑
p≠n

(X (p)
i −X (n)

i )S(np)kj (X (p)
l −X (n)

l )

+∑
p≠n

(X (p)
k −X (n)

k )S(np)il (X (p)
j −X (n)

j )

+∑
p≠n

(X (p)
i −X (n)

i )S(np)kl (X (p)
j −X (n)

j )} .

If there is more than one atom associated with each lattice site those atoms not
on lattice sites may undergo small displacements in addition to those prescribed by a
homogeneous strain. These additional displacements are sometimes called the ‘internal
strain’. Although the strain is still imposed by displacing atoms at lattice sites, atoms
between lattice sites will experience net forces as a result of the strain if they are not at
centres of inversion. Relaxation of those forces reduces the energy of the homogeneously
strained crystal, and therefore it affects the calculated elastic constants.

3.8 Isothermal and adiabatic elastic moduli

So far the elastic moduli10 we have considered are those obtained by an adiabatic
variation of the internal energy. In this section we follow the treatment11 by Wallace12 to
show the relationships between elastic moduli obtained adiabatically and isothermally.
Insightful relationships for the temperature dependences of the isothermal elastic con-
stant tensor and the isothermal elastic compliance tensor are also derived. Whether
adiabatic or isothermal moduli should be used in any given thermoelastic process
depends on the rate of elastic deformation. For example, ultrasonic pulse experiments
measure adiabatic elastic moduli, whereas isothermal elastic moduli are measured in
tensile and torsion tests at constant temperature.

In a homogeneous crystal the adiabatic and isothermal elastic moduli differ because
there is always a finite thermal strain or stress tensor owing to the anharmonicity of atomic
interactions. However the difference between them tends to zero as the temperature
approaches absolute zero.13 The elastic moduli normally assigned to a continuum are
either adiabatic or isothermal. But if a continuum model is required to display either
adiabatic or isothermal moduli over a range of thermoelastic conditions,14 the continuum
must also be assigned a thermal stress tensor and/or a thermal strain tensor and specific

10 That is, elastic constants and elastic compliances.
11 Wallace, DC, Thermodynamics of crystals, John Wiley & Sons Inc.: New York (1972), section 2. ISBN
9780471918554.
12 Duane C Wallace 1931–, US materials physicist.
13 This is a requirement of the third law of thermodynamics.
14 For example, in a simulation of a shock impact.
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heats at constant strain and/or constant stress spanning the range of temperatures
required.

The combined first and second laws of thermodynamics for a solid was given in
eqn. 2.17. For simplicity we consider a crystal of just one atomic species in which there
is one atom associated with each lattice site.15 The homogeneity of the crystal enables
the combined first and second laws to be written as follows:

dE = TdS+V𝜎i jdei j, (3.32)

where V is the volume of the crystal in its current state of strain.
The Gibbs free energy is defined by G = E−TS−V𝜎i jei j. Then we have

dG = −SdT−Vei jd𝜎i j. (3.33)

Since dG is an exact differential the following Maxwell relation holds:

1
V
( 𝜕S𝜕𝜎i j

)
T,𝜍 ′

= (
𝜕ei j
𝜕T )𝜍

= 𝛼i j, (3.34)

where 𝛼i j is the thermal strain tensor.16 We will use this Maxwell relation below.
Writing the strain component as a function of all the stress tensor components and

temperature, ei j = ei j(𝜎,T), we have

dei j = (
𝜕ei j
𝜕𝜎kl

)
T

d𝜎kl +(
𝜕ei j
𝜕T )𝜍

dT

= sTijkld𝜎kl +𝛼i jdT, (3.35)

where sTijkl is a component of the isothermal elastic compliance tensor. Since dei j is an
exact differential we have the following Maxwell relation:

(
𝜕sTijkl
𝜕T )

𝜍

= (
𝜕𝛼i j
𝜕𝜎kl

)
T,𝜍′

. (3.36)

This Maxwell relation shows that the temperature dependence of the isothermal elastic
compliance tensor at constant stress is determined by the stress dependence of the
thermal strain tensor at constant temperature.

15 If there is more than one atomic species present and/or more than one atom associated with each lattice
site we have to include the relaxations of atoms not carried to their final positions by the strain tensor.
16 In the partial derivative (𝜕S/𝜕𝜍i j)T,𝜍′ all stress components except 𝜍i j and 𝜍ji are held constant as well as

the temperature. In (𝜕ei j/𝜕T)𝜍 all stress components are held constant.
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Writing the entropy as a function of the stress tensor and temperature, S = S(𝜎,T),
we have

dS = ( 𝜕S𝜕𝜎kl
)
T,𝜍 ′

d𝜎kl +(
𝜕S
𝜕T)𝜍

dT

= V𝛼kld𝜎kl +
C𝜍
T

dT, (3.37)

where we have used the Maxwell relation of eqn. 3.34 and C𝜍 is the specific heat at
constant stress of the crystal. During an adiabatic change dS = 0. Using eqn. 3.37 we find
that the corresponding change in temperature when the stress is changed adiabatically is
as follows:

dT = −VT
C𝜍

𝛼kld𝜎kl. (3.38)

Putting this expression for dT into eqn. 3.35 we obtain the following relationship
between the adiabatic elastic compliance tensor sSijkl and the isothermal elastic compliance

tensor sTijkl:

sTijkl = s
S
ijkl +

VT
C𝜍

𝛼i j𝛼kl. (3.39)

This equation shows that the isothermal and adiabatic elastic compliances of a crystal
differ owing to the anharmonicity of atomic interactions, without which the thermal strain
is zero. A similar conclusion was reached in section 2.8 where the anharmonicity of
atomic interactions was shown to be responsible for the difference between isothermal
and adiabatic stresses.

Exercise 3.7

By writing the stress as a function of strain and temperature, 𝜎i j = 𝜎i j(e,T), show that

d𝜎i j = cTijkldekl −𝛽i jdT, (3.40)

where 𝛽i j = −(𝜕𝜎Tij /𝜕T)e is the thermal stress tensor (see section 2.8). Setting d𝜎i j = 0, show
that

𝛽i j = cTijkl𝛼kl. (3.41)

d𝜎i j(e,T) is an exact differential. Show that the corresponding Maxwell relation is as follows:

(
𝜕cTijkl
𝜕T )

e

= −(
𝜕𝛽i j
𝜕ekl

)
T,e′

. (3.42)

continued
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Exercise 3.7 Continued

The temperature dependence of the isothermal elastic constant tensor at constant strain is
seen here to be determined by the strain dependence of the thermal stress tensor at constant
temperature.

By considering the entropy S as a function of strain and temperature show that at constant
entropy:

dT = −VT
Ce

𝛽kldekl, (3.43)

where Ce = T(𝜕S/𝜕T)e is the specific heat of the volume V at constant strain. Inserting this
expression for dT into eqn. 3.40 show that the isothermal and adiabatic elastic constants are
related as follows:

cTijkl = cSijkl −
VT
Ce

𝛽i j𝛽kl. (3.44)

Substituting d𝜎kl = cTklmndemn −𝛽kldT into eqn. 3.37, and using eqn. 3.41, show that

C𝜍 −Ce = VT𝛼i jCT
ijkl𝛼kl. (3.45)

Since 𝛼i jCT
ijkl𝛼kl > 0 for mechanical stability this equation demonstrates that C𝜍 is always

larger than Ce.
For copper at 25∘C the linear thermal expansion coefficient is 17.1× 10−6 K−1, the density

is 8.96 g cm−3 and the specific heat is 0.385 J g−1K−1. The adiabatic elastic constants at 25∘C
are cS11 = 1.684× 1011 Pa, cS12 = 1.214× 1011 Pa and cS44 = 0.754× 1011 Pa.

Using eqns. 3.41 and 3.44 calculate the isothermal elastic constants cT11, cT12, cT44
at 25∘C.

Hence calculate CP −CV for copper at 25∘C, where CP and CV are the specific heats in
units of J g−1 K−1 at constant pressure and constant volume respectively.

3.9 Problem set 3

1. In a face-centred cubic crystal with lattice constant a the 12 nearest neigh-
bours of an atom are at ±a/2[110],±a/2[11̄0],±a/2[101],±a/2[101̄],±a/2[011],
±a/2[011̄]. Consider a model of the crystal in which the bonding is represented
by linear springs, with spring constant k, between nearest neighbours only. By
considering the elastic energy density of the crystal when an arbitrary small elastic
strain is applied calculate the elastic constants c11, c12 and c44.

Answers: c11 = 2k/a and c12 = c44 = k/a. It is interesting to note that the anisotropy
ratio for this simple model is 2 and Poisson’s ratio is

1

3
.
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2. This question and the next are based on sections 5.3.1 and 5.3.2 of the book17

by Finnis.18 Let a homogeneous strain tensor be written as ei j = 𝛾Ti j, where 𝛾
is a scalar which scales the magnitude of the strain and the matrix elements Ti j
are constant. The component Xi of a vector 𝐗 becomes (𝛿i j +𝛾Ti j)Xj. If X = |𝐗|
show that

dX
d𝛾 =

XiTi jXj

X
(3.46)

d2X
d𝛾2 =

XiTi jTjkXk

X
−
(XiTi jXj)

2

X3
. (3.47)

3. In a pairwise interaction model of a crystal the interaction energy between any
two atoms is a function of their separation only. The total energy is then the sum
of all such pairwise interactions. Let V(X) be the interaction energy between two
atoms separated by X. For example, V(X) might be a Lennard-Jones potential:

V(X) = 𝜀 [(X0

X
)
12

− 2(X0

X
)
6

] ,

which leads to repulsion between atoms separated by X <X0, attraction when
X >X0 and V(X) has a minimum at X =X0 where V(X) = −𝜀. Consider a cubic
crystal in which there is just one atom per lattice site. Let the origin of a Cartesian
coordinate system be located at an atomic site, and orient the axes along the ⟨100⟩
directions of the crystal. The energy of the atom at the origin is then

Ec =
1
2
∑
n

V(X (n)),

where X (n) is the distance to atom n, and the factor of one half is because each
pairwise interaction is shared by two atoms.

In this question you will prove the following:

• The equilibrium volume of the crystal is determined by the equation:

1
6Ω∑

n

X (n)V ′(X (n)) = 0,

where the prime denotes differentiation.

17 Finnis, MW, Interatomic forces in condensed matter, Oxford University Press: Oxford (2003). ISBN 978-
0198509776.
18 Michael William Finnis 1950–, British materials physicist.
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• The elastic constants c11, c12 and c44 are as follows:

c11 =
1
6Ω∑

n

V ′(X (n))X (n)

+(V ′′(X (n))(X (n))
2
−V ′(X (n))X (n))F(X(n)

1 ,X(n)
2 ,X(n)

3 )

c12 =
1
6Ω∑

n

(V ′′(X (n))(X (n))
2
−V ′(X (n))X (n))H(X(n)

1 ,X(n)
2 ,X(n)

3 )

c44 =
1

12Ω∑
n

V ′(X (n))X (n)

+ 1
6Ω∑

n

(V ′′(X (n))(X (n))
2
−V ′(X (n))X (n))H(X(n)

1 ,X(n)
2 ,X(n)

3 ),

where

F(X(n)
1 ,X(n)

2 ,X(n)
3 ) =

(X (n)
1 )

4
+(X (n)

2 )
4
+(X (n)

3 )
4

(X (n))
4

H(X(n)
1 ,X(n)

2 ,X(n)
3 ) =

(X (n)
1 )

2
(X (n)

2 )
2
+(X (n)

2 )
2
(X (n)

3 )
2
+(X (n)

3 )
2
(X (n)

1 )
2

(X (n))
4

= 1
2
(1−F(X(n)

1 ,X(n)
2 ,X(n)

3 )) .

• At the equilibrium volume of the crystal it follows that c12 = c44 for all
pairwise interaction models of cubic crystals.

The equilibrium volume of the crystal is determined by the condition that the
pressure arising from all the pairwise interactions is zero. Mathematically, this
amounts to the condition that dEc/dΩ= 0 where Ω is the atomic volume. Setting
the tensor Ti j of the previous question equal to 𝛿i j show that

dEc
dΩ = 1

3Ω (dEc
d𝛾 )𝛾=0

.
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Hence show that

dEc
dΩ = 1

6Ω∑n
X (n)V′(X (n)). (3.48)

In a pairwise interaction model the volume per atom in cubic crystal with just
one per lattice site is determined by the condition that the above sum is zero.

For an arbitrary homogeneous strain ei j = 𝛾Ti j the elastic energy per atom in the
cubic crystal is

Eel =
1
2
𝛾2ΩcijklTi jTkl,

so that

d2Eel
d𝛾2 =ΩcijklTi jTkl.

Show that

d2Ec
d𝛾2 = 1

2
∑
n

V ′′(X (n))(dX
(n)

d𝛾 )
2

+V ′(X (n))d
2X (n)

d𝛾2 ,

where the derivatives with respect to 𝛾 are given by eqn. 3.46 and eqn. 3.47.

Equating the change in Ec to the elastic energy we obtain

cijklTi jTkl =
1
2Ω∑

n

V ′′(X (n))(dX
(n)

d𝛾 )
2

+V ′(X (n))d
2X (n)

d𝛾2 . (3.49)

By choosing Ti j = 𝛿i j show that

cijklTi jTkl = 3(c11 + 2c12)

dX (n)

d𝛾 =X (n)

d2X (n)

d𝛾2 = 0

and hence

c11 + 2c12 =
1
6Ω∑

n

V ′′(X (n))(X (n))
2
, (3.50)

which is three times the bulk modulus.
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To obtain an expression for C′ = 1

2
(c11 − c12) we may set Ti j = 𝛿i1𝛿j1 −𝛿i2𝛿j2.

Then cijklTi jTkl = 2(c11 − c12) = 4C′. Using cubic symmetry show that

C′ = 1
24Ω∑

n

V ′′(X (n))(X (n))
2
(3F(X(n)

1 ,X(n)
2 ,−1)

+ 3V ′(X (n))X (n) [1−F(X(n)
1 ,X(n)

2 ,X(n)
3 )] . (3.51)

Using eqn. 3.50 and eqn. 3.51 derive the formulae for c11 and c12 stated above.

To obtain c44 we may set Ti j = 𝛿i1𝛿j2 +𝛿i2𝛿j1 +𝛿i2𝛿j3 +𝛿i3𝛿j2 +𝛿i3𝛿j1 +𝛿i1𝛿j3.
Show that

cijklTi jTkl = 12c44

dX (n)

d𝛾 =
2(X (n)

1 X (n)
2 +X (n)

2 X (n)
3 +X (n)

3 X (n)
1 )

X (n)

d2X (n)

d𝛾2 =
2[(X (n)

1 )
2
+(X (n)

2 )
2
+(X (n)

3 )
2
]

X (n)

+
2[(X (n)

1 )(X (n)
2 )+ (X (n)

2 )(X (n)
3 )+ (X (n)

3 )(X (n)
1 )]

X (n)

−
4[(X (n)

1 )(X (n)
2 )+ (X (n)

2 )(X (n)
3 )+ (X (n)

3 )(X (n)
1 )]

2

(X (n))
3

.

Hence, using cubic symmetry derive the formula stated above for c44.

In the first question of this problem set the harmonic springs between nearest

neighbours are described by V(X) = 1

2
k[X− (a/√2)]

2
, where a/√2 is the

equilibrium bond length. Show that the equations derived in this question for
c11, c12 and c44 are consistent with the elastic constants obtained in the first
question.

Comments: The difference c12 − c44 = −(1/12Ω)∑nV
′(X (n))X (n) is called the

Cauchy pressure. In a model where all the cohesion is provided by only pairwise
interactions the Cauchy pressure is zero when the crystal is at its equilibrium
volume. Therefore, c12 = c44 for all pairwise interaction models of cubic crystals
at their equilibrium volumes. The experimental fact that c12 and c44 are not
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equal to each other in any cubic crystal at equilibrium indicates that the pairwise
interaction model fails as a description of atomic interactions. Not knowing any
better in the nineteenth century Cauchy assumed a pairwise interactionmodel for
all atomic interactions and showed there are six such relations between the elastic
constants. They are: c23 = c44; c14 = c56; c31 = c55; c25 = c46; c12 = c66; c45 = c36.
In a cubic crystal c23 = c31 = c12 and c66 = c55 = c44 so we expect c12 to equal c44.
These six equalities are known as the Cauchy relations and Cauchy used them to
argue (incorrectly) that the maximum number of independent elastic constants
is not 21 but 15. The Cauchy relations are now only of historical significance.
But the extent to which they are violated is an indication of how well atomic
interactions in a crystal may be described by pair potentials only.

In metals with nearly free electrons, such as aluminium and the alkali metals,
the cohesive energy of the crystal is described quite accurately by a term that
depends only on the average electron density in the metal together with a sum
of pairwise interaction energies which are themselves dependent on the local
electron density.19 The presence of the density-dependent energy and the density
dependence of the pairwise interactions ensures that the Cauchy pressure is not
zero, and that c12 ≠ c44. Similarly, in transition metals the Finnis–Sinclair model20

also ensures c12 ≠ c44 through the addition to a sum of pairwise interaction
energies a new term that is the square root of a sum of pairwise interactions. The
square root ensures the Cauchy pressure is not zero.

4. With respect to arbitrary rotations of the coordinate system prove that cijij and
ciijj are invariant in all crystals. In a cubic crystal show that the invariant cijij − ciijj
is equal to 6 (c12 − c44).

5. Show that cijij = c11 + c22 + c33 + 2(c44 + c55 + c66) and ciijj = c11 + c22 + c33 +
2(c12 + c13 + c23). Show that ciijj is directly related to the bulk modulus in any
crystal structure.

6. Consider a polycrystal in which all crystals are elastically anisotropic and identical
except for the orientations of their crystal axes. In general, when an arbitrary
homogeneous stress is applied to the polycrystal the strain generated within each
crystal is different owing to the elastic anisotropy. Consequently to maintain
continuity of displacements and tractions at the grain boundaries additional
stress fields are generated. These additional stresses are called compatibility
stresses, and they are often of the same order of magnitude as the applied
stress. However, there is a notable exception to this general rule. Show that
if a purely hydrostatic stress is applied to a polycrystal, in which all crystals have
the same cubic structure, there are no compatibility stresses required at the grain
boundaries because the strain in all crystals is the same pure dilation.

19 See Chapter 6 of the book by Finnis.
20 See section 7.10 of the book by Finnis.
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7. In a monoclinic crystal the only rotational symmetry is a two fold rotation axis
along x3. Prove that the following eight elastic constants are zero: c14, c15, c24,
c25, c34, c35, c46, c56.

8. In an orthorhombic crystal there are two fold rotation axes along each of the
Cartesian axes x1,x2,x3. Starting from the reduced elastic constant matrix of the
monoclinic crystal prove that the effect of the two fold rotation axes along x1
or x2 is to make the following four additional elastic constants zero: c16, c26, c36,
c45.Hence show there are nine independent elastic constants in an orthorhombic
crystal.

9. In a tetragonal crystal the x3-axis is a four fold rotational symmetry axis. Starting
from the reduced elastic constant matrix of the orthorhombic crystal prove that
the effect of the four-fold rotation axis is to make: c11 = c22; c13 = c23; c44 = c55.
Hence show that there are six independent elastic constants in a tetragonal
crystal with point group 422 (D4): c11, c12, c13, c33, c44, c66. The only
difference between this elastic constant matrix and the elastic constant matrix
for hexagonal crystals is that c66 is no longer independent in a hexagonal crystal:
c66 =

1

2
(c11 − c12).

10. Show that in hexagonal crystals the elastic constant matrix is invariant with
respect to rotations about the x3-axis. The elastic constant matrix in a hexagonal
crystal is as follows:

𝐜 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0

1

2
(c11 − c12)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.52)

This is why hexagonal crystals are described as ‘transversely isotropic’.

11. Show that the following restrictions must apply to the elastic constants in a
hexagonal crystal: c11 > 0; c11 > c12; c44 > 0; c33 (c11 + c12) > 2c213. Hence deduce
that c33 > 0; c11 + c12 > 0.

12. If the elastic constants of a crystal are averaged over all possible orientations with
respect to a fixed coordinate system the elastic constants obtained are those of
an isotropic medium. To obtain the elastic constants 𝜆 and 𝜇 of this isotropic
medium we can use the two invariants of the elastic constant tensor cijij and ciijj
mentioned in problem 4.

Show that in an isotropic medium cijij = 3𝜆+ 12𝜇 and ciijj = 9𝜆+ 6𝜇.

In a cubic crystal show that cijij = 3c11 + 6c44 and ciijj = 3c11 + 6c12.
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Hence show that

𝜆 = c12 +
1
5
(c11 − c12 − 2c44)

𝜇 = c44 +
1
5
(c11 − c12 − 2c44) .

Hence show that the average values of c11, c12 and c44 over all orientations of a
cubic crystal are given by

5 ⟨c11⟩ = 3c11 + 2c12 + 4c44
5 ⟨c12⟩ = c11 + 4c12 − 2c44
5 ⟨c44⟩ = c11 − c12 + 3c44 (3.53)

where ⟨c11⟩ = ⟨c12⟩ + 2 ⟨c44⟩. These averages may be obtained directly from
eqns. 3.24, 3.27 and 3.26 respectively.
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The Green’s function in linear
elasticity

4.1 Differential equation for the displacement field

Imagine you are applying pressure with your finger against a piece of supported rubber.
You see the rubber distorts until you can’t push any further. Equilibrium has been
achieved between the force you are applying through your finger and the stresses created
within the rubber by the distortion. This is the physics of eqn. 2.15: 𝜎i j, j(𝐱)+ fi(𝐱) = 0.
The force fi acting at 𝐱 creates a stress field with a divergence that exactly balances the
force and keeps the body in equilibrium. We can make this more explicit by using
the divergence theorem. Let the body force be a point force located at 𝐱0, such that
fi(𝐱) = ℱi𝛿(𝐱−𝐱0). Then we can write

∫
ℛ

fidV =∫
ℛ

ℱi𝛿(𝐱−𝐱0)dV = ℱi = −∫
ℛ

𝜎i j, jdV = −∫
𝒮

𝜎i jnjdS. (4.1)

Here ℛ is any region in the continuum containing the body force at 𝐱0. The surface of
ℛ is 𝒮. The stresses created by the distortion of the medium in response to the body
force at 𝐱0 give rise to tractions, 𝜎i jnj, on the surface 𝒮, which when integrated over the
whole surface surrounding ℛ exactly cancel the force ℱi.

If we substituteHooke’s law into the equilibrium condition 𝜎i j, j(𝐱)+ fi(𝐱) = 0we obtain
a differential equation for the strain field created by the body force: ci jkl ekl, j(𝐱)+ fi(𝐱) = 0.
If we then use the relationship between the strain and the displacement field, ekl(𝐱) =
1

2
(uk,l(𝐱)+ ul,k(𝐱)), we obtain a second order differential equation for the displacement

field:

ci jkl uk,lj(𝐱)+ fi(𝐱) = 0, (4.2)

where we have used the symmetry of the elastic constant tensor to write ci jkl ul,k = ci jlk ul,k.
The assertion that the strain field is the symmetrised gradient of the displacement

Physics of elasticity and crystal defects. Adrian P. Sutton, Oxford University Press (2020). © Adrian P. Sutton.
DOI: 10.1093/oso/9780198860785.001.0001
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field, ekl(𝐱) =
1

2
(uk,l(𝐱)+ ul,k(𝐱)), ensures that the material surrounding the region of the

body force fits together compatibly, that is with no holes or overlapping material.1 This
assertion cannot be made where the body forces act.

Equation 4.2 plays the same role in elasticity as Poisson’s equation in electrostatics.
The equivalent in elasticity of Laplace’s equation in electrostatics is ci jkl uk,lj = 0.Whereas
electrostatics relies on invisible electric fields and ‘action at a distance’ to transmit
forces between charges, in elasticity the forces acting between defects in the material
are conveyed by the elastic displacement field which is real and can sometimes be seen
in detail in the electron microscope using modern imaging techniques.

The apparent simplicity of eqn. 4.2 is deceptive. It comprises three equations, one for
each component of the body force. Each of these equations involves second derivatives
of all three components of the displacement field. Below we consider the simplest case,
which arises when the isotropic elastic approximation is made.

Boundary value problems in elasticity amount to finding solutions of eqn. 4.2 subject
to boundary conditions of three principal types. The first is where displacements are
prescribed on the surface of the body. The second is where tractions on the surface of
the body are prescribed. The third is a mixture of the first two, where displacements
are prescribed on parts of the surface of the body and tractions on the surface of the
body where displacements are not prescribed. There are uniqueness theorems for the
solutions of eqn. 4.2 for both simply connected and multiply connected bodies.2

4.1.1 Navier’s equation

The elastic constant tensor in isotropic elasticity is conveniently expressed in eqn. 3.11.
When this is inserted into eqn. 4.2 we obtain the following differential equation:

𝜇ui, jj + (𝜆+𝜇)uk,ki + fi = 0, (4.3)

which can be expressed in vector form as follows:

𝜇∇2𝐮+ (𝜆 +𝜇)∇(∇ ⋅ 𝐮)+ 𝐟 = 0. (4.4)

This is known as Navier’s equation.3

1 For an illuminating discussion of compatibility and incompatibility see section 10, p.65-73 of Mura, T,
Micromechanics of defects in solids, 2nd edn., Kluwer: Dordrecht (1991). ISBN 90-247-3256-5.
Toshio Mura 1925–2009. Japanese born US scientist and engineer.

2 See section 6.2 of Teodosiu, C, Elastic models of crystal defects, Springer Verlag: Berlin (1982). ISBN 0-
387-11226-X. Cristian Victor Teodosiu 1937–, Romanian mathematician, physicist and engineer.

3 Claude-Louis Navier 1785–1836, French engineer and physicist.
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Exercise 4.1

Derive eqn. 4.3 from eqn. 3.11 and eqn. 4.2.

4.2 The physical meaning of the elastic Green’s function

4.2.1 Definition of the Green’s function in linear elasticity

We consider an infinite homogeneous elastic medium in which there is a point force
𝐟 acting at 𝐱 = 𝐱0. In linear elasticity the Green’s function gives the elastic displacement
field created by this point force:

ui(𝐱) =Gi j(𝐱−𝐱0) fj(𝐱0). (4.5)

This may be taken as the definition of the Green’s function in linear elasticity, although it
does not by itself enable the Green’s function to be evaluated. Since eqn. 4.2 is linear the
displacement due to a distribution of body forces 𝐟 (𝐱) is found by linear superposition:

ui(𝐱) =∫Gi j(𝐱−𝐱′) fj(𝐱′)d3x′. (4.6)

The elastic fields of many structural defects in crystals arise from forces between
atoms in the centre of the defect, otherwise known as the core of the defect. Atoms
move from their perfect crystal positions until the forces on them are counteracted by
forces from their neighbours, including those further from the defect. The neighbours
of the neighbours move from their ideal crystal positions until the net forces on them
return to zero, and so the displacement field spreads from the defect. The displacements
each neighbour shell undergoes decay with distance from the defect because the forces
are distributed among more atoms. For example, consider a missing atom in a crystal,
which is called a vacancy. The atoms neighbouring the vacancy experience a net force
as a result of the missing atom. They move in response to the net forces acting on them,
which sets up forces on their neighbours, and so their neighbours also move but by
generally smaller amounts. When equilibrium is re-established the net force acting on
any atom is zero and an elastic displacement field is set up in the crystal which decays,
in an infinite crystal, as the inverse square of the distance from the vacancy.

The Green’s function is unlikely to estimate accurately the displacements of atoms
in the core of the defect where the forces may be very large. In this region it is best
to use an atomistic model with a sound description of atomic interactions. But it is
generally found that at distances of no more than a nanometre or so from the defect
core the description of the relaxation displacements is quite accurately described by
linear anisotropic elasticity. Conversely, atomistic models are inappropriate for long-
range interactions between defects partly because the numbers of atoms involved may be
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far greater than can be treated computationally, but also because elasticity theory is likely
to be more accurate and certainly a lot more informative for long-range interactions.

Before we derive the equation that determines the Green’s function in linear elasticity
we note some of its properties. First, since the medium is assumed to be homogeneous it
follows that Gi j depends only on the relative position of the field point 𝐱 and the location
𝐱0 of the point force. If the material were inhomogeneous then Gi j would become a
function of both 𝐱 and 𝐱0. Secondly,Gi j(𝐱) =Gi j(−𝐱) because the infinite, homogeneous
elastic continuum is everywhere centrosymmetric.

Thirdly,Gi j(𝐱) =Gji(𝐱). This follows from a result in mechanics, known as Maxwell’s
reciprocity theorem4, which may be stated as follows: the work done by a force 𝐅(1)
when its point of application is displaced by 𝐮(2) due to another force 𝐅(2) is equal to the
work done by the force 𝐅(2) when its point of application is displaced by 𝐮(1) due to
the force 𝐅(1).

To prove this theorem we apply a point force 𝐅(1) gradually at 𝐱(1). It produces a
displacement 𝐮(1) at 𝐱(1), and the work done is W (1) = 1

2
𝐅(1) ⋅ 𝐮(1)(𝐱(1)). The factor of

a half is because the force is gradually built up from zero to 𝐅(1), during which the
displacement of 𝐱(1) increases linearly from zero to 𝐮(1).

Now we introduce the force 𝐅(2) gradually at 𝐱(2). The additional work done isW (2) +
W (12) where W (2) = 1

2
𝐅(2) ⋅ 𝐮(2)(𝐱(2)) and W (12) = 𝐅(1) ⋅ 𝐮(2)(𝐱(1)). Note the absence of

the factor of a half inW (12) because the force 𝐅(1) at 𝐱(1) already exists in full. Thus the
total work done is

1

2
𝐅(1) ⋅ 𝐮(1)(𝐱(1)) + 1

2
𝐅(2) ⋅ 𝐮(2)(𝐱(2)) +𝐅(1) ⋅ 𝐮(2)(𝐱(1)).

Repeat the process, but introduce the force 𝐅(2) gradually at 𝐱(2) and then introduce
the force 𝐅(1) gradually at 𝐱(1). The total work done must be same, but now it is
1

2
𝐅(1) ⋅ 𝐮(1)(𝐱(1)) + 1

2
𝐅(2) ⋅ 𝐮(2)(𝐱(2)) +𝐅(2) ⋅ 𝐮(1)(𝐱(2)). Thus, we arrive at Maxwell’s reci-

procity relation:

𝐅(1) ⋅ 𝐮(2)(𝐱(1)) = 𝐅(2) ⋅ 𝐮(1)(𝐱(2)). (4.7)

Since u(1)i (𝐱(2)) =Gi j(𝐱(2) −𝐱(1))F (1)
j and u(2)i (𝐱(1)) =Gi j(𝐱(1) −𝐱(2))F (2)

j then the left
hand side of eqn. 4.7 becomes

F (1)
i u(2)i (𝐱(1)) = F (1)

i Gi j(𝐱(1) −𝐱(2))F (2)
j

and the right hand side becomes

F (2)
i u(1)i (𝐱(2)) = F (2)

i Gi j(𝐱(2) −𝐱(1))F (1)
j .

4 James Clerk Maxwell FRS 1831–79. The theorem is in this paper: Maxwell, JC, L. On the calculation of
the equilibrium and stiffness of frames, Phil. Mag. 27, 294–9 (1864). http://www.tandfonline.com/doi/abs/10.
1080/14786446408643668

http://www.tandfonline.com/doi/abs/10.1080/14786446408643668
http://www.tandfonline.com/doi/abs/10.1080/14786446408643668
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Swopping the dummy indices i and j in the last line and using Gi j(𝐱) =Gi j(−𝐱) the right

hand side becomes F (2)
j Gji(𝐱(1) −𝐱(2))F (1)

i . Equating this to the left hand side we obtain
the final result, Gi j(𝐱) =Gji(𝐱).

Green’s functions can be defined for other linear differential equations. For example,
for Poisson’s equation in a vacuum, ∇2V(𝐱) = −𝜌(𝐱)/𝜀0, the Green’s function is the
familiar potential at 𝐱 of a unit point charge at 𝐱′: G(𝐱−𝐱′) = 1/(4𝜋𝜀0 |𝐱−𝐱′|). The
linearity of Poisson’s equation enables the potential at 𝐱 of a charge density 𝜌(𝐱′) to
be calculated as a linear superposition of the potentials from the charges 𝜌(𝐱′)d3x′ in the
distribution:

V(𝐱) =∫G(𝐱−𝐱′)𝜌(𝐱′)d3x′

=∫ 𝜌(𝐱′)
4𝜋𝜀0 |𝐱−𝐱′|

d3x′.

4.2.2 The equation for the Green’s function in an infinite medium

In this section we derive a partial differential equation for the Green’s function in
linear elasticity. Consider a point force 𝐅 applied at 𝐱0 in an infinite, homogeneous
elastic continuum. From the definition of the Green’s function, eqn. 4.5, this force sets
up an elastic displacement field given by ui(𝐱) =Gi j(𝐱−𝐱0)Fj(𝐱0). Differentiating this
displacement field and using Hooke’s law we find the stress field associated with this
displacement field is as follows:

𝜎kp(𝐱) = ckpimGi j,m(𝐱−𝐱0)Fj(𝐱0),

where the derivative of the Green’s function is with respect to xm. Consider any region
ℛ, with surface 𝒮, containing 𝐱0. For mechanical equilibrium we must have

Fk(𝐱0) +∫
𝒮

𝜎kp(𝐱)npdS(𝐱) = 0,

where np is the outward normal at 𝐱 to the surface 𝒮. Therefore,

Fk(𝐱0) +∫
𝒮

ckpimGi j,m(𝐱−𝐱0)Fj(𝐱0)npdS(𝐱) = 0.

Applying the divergence theorem to the surface integral we transform it into a volume
integral over ℛ:
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Fk(𝐱0) +∫
ℛ

ckpimGi j,mp(𝐱−𝐱0)Fj(𝐱0)dV = 0.

We bring Fk(𝐱0) inside the volume integral by writing it as ∫
ℛ
𝛿jk 𝛿(𝐱−𝐱0)Fj(𝐱0)dV, where

the integration is again over 𝐱 inside the region ℛ. We then obtain

∫
ℛ

[ckpimGi j,mp(𝐱−𝐱0) + 𝛿jk 𝛿(𝐱−𝐱0)] Fj(𝐱0)dV = 0.

Since this must hold for all point forces at 𝐱0, and for all regions ℛ containing 𝐱0, the
expression in square brackets must be zero:

ckpimGi j,mp(𝐱−𝐱0) + 𝛿jk 𝛿(𝐱−𝐱0) = 0. (4.8)

This is the partial differential equation that enables us to calculate the Green’s function.

Exercise 4.2

Show that 𝛿(h𝐱) = (1/|h|3)𝛿(𝐱), where h is any scaling factor. Therefore the delta function in
eqn. 4.8 behaves as a homogeneous function of degree −3. Hence show that

Gi j(𝐱−𝐱0) =
1

|𝐱−𝐱0|
gi j, (4.9)

where gi j depends only on the orientation of 𝐱−𝐱0. This separation of the Green’s function
into radial and orientational dependencies applies in all cases regardless of the degree of
anisotropy.

4.2.3 Solving elastic boundary value problems with
the Green’s function

This section illustrates the usefulness of the Green’s function for solving boundary value
problems. To do this we do not need explicit functional forms for the Green’s function,
only its defining differential equation, eqn. 4.8. We will see how and why we can use the
Green’s function for an infinite medium even when we are dealing with a finite medium,
which of course has a surface. We shall use two spatial variables 𝐱 and 𝐱′. Differentiation
with respect to the primed variable will be indicated by a prime on the subscript, thus
𝜕f/𝜕x′m ≡ f,m′ . If there is no prime on a subscript after a comma it signifies differentiation
with respect to the corresponding component of 𝐱.
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All linear elastic fields must satisfy the equation of mechanical equilibrium, eqn. 4.2:

ckpim ui,m′p′(𝐱′) + fk(𝐱′) = 0. (4.10)

Replacing 𝐱0 in eqn. 4.8 with 𝐱′ the Green’s function Gi j(𝐱−𝐱′) satisfies

ckpimGi j,mp(𝐱−𝐱′) + 𝛿jk 𝛿(𝐱−𝐱′) = 0. (4.11)

Multiplying eqn. 4.11 by uk(𝐱′) and eqn. 4.10 by Gkj(𝐱−𝐱′) and subtracting we obtain

ckpimGi j,mp(𝐱−𝐱′)uk(𝐱′) + 𝛿jk 𝛿(𝐱−𝐱′)uk(𝐱′)
− ckpim ui,m′p′(𝐱′)Gkj(𝐱−𝐱′) − fk(𝐱′)Gkj(𝐱−𝐱′) = 0.

Integrating this equation with respect to 𝐱′ over a region ℛ containing 𝐱 we get

uj(𝐱) =∫
ℛ

Gjk(𝐱−𝐱′)fk(𝐱′)d3x′

+∫
ℛ

ckpim ui,m′p′(𝐱′)Gkj(𝐱−𝐱′)d3x′

−∫
ℛ

ckpimGi j,m′p′(𝐱−𝐱′)uk(𝐱′)d3x′,

where we have usedGi j,mp(𝐱−𝐱′) =Gi j,m′p′(𝐱−𝐱′). We can combine the last two volume
integrals as follows:

∫
ℛ

ckpim ui,m′p′(𝐱′)Gkj(𝐱−𝐱′)d3x′ −∫
ℛ

ckpimGi j,m′p′(𝐱−𝐱′)uk(𝐱′)d3x′

=∫
ℛ

ckpim [ui,m′(𝐱′)Gkj(𝐱−𝐱′) − uk(𝐱′)Gi j,m′(𝐱−𝐱′)],p′ d
3x′,

where we have used the symmetry of the elastic constant tensor ckpim = cimkp to achieve
a cancellation of two additional terms that arise in the differentiation of the expression
in square brackets. Applying the divergence theorem to the resulting volume integral we
obtain the following surface integrals over the surface 𝒮 of the region ℛ:
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∫
ℛ

ckpim [ui,m′(𝐱′)Gkj(𝐱−𝐱′) − uk(𝐱′)Gi j,m′(𝐱−𝐱′)],p′ d
3x′

=∫
𝒮

Gjk(𝐱−𝐱′)ckpmi ui,m′(𝐱′)np′ d2x′ −∫
𝒮

Gji,m′(𝐱−𝐱′)cmikp uk(𝐱′)np′ d2x′,

where we observe that ckpmi ui,m′ np′ = 𝜎kp(𝐱′) np′ = tk(𝐱′) is the traction acting on 𝒮 at 𝐱′.
Replacing the last two volume integrals in the above equation for uj(𝐱) with these two
surface integrals we obtain finally:

uj(𝐱) =∫
ℛ

Gjk(𝐱−𝐱′) fk(𝐱′)d3x′

+∫
𝒮

Gjk(𝐱−𝐱′) tk(𝐱′)d2x′

−∫
𝒮

Gji,m′(𝐱−𝐱′)cmikp uk(𝐱′)np′ d2x′. (4.12)

Here are some observations to illustrate the usefulness of this result. First, consider a
distribution of body force, such as that created by a structural defect, inside a finite
body with free surfaces. If we use only the first line of eqn. 4.12 to evaluate the
displacement field in the finite body the answer will be wrong because the Green’s
function is constructed for an infinite body. In particular, this displacement field will
predict tractions at the surface of the finite body, when the surface should be free of
such tractions. To correct for this we may calculate the displacement field caused by an
equal and opposite distribution of surface tractions using the second line of eqn. 4.12.
Wemay then use the superposition principle and add this to the displacements caused by
the distribution of body forces in the first line to obtain the correct solution with surfaces
free of tractions. In this way we are able to use the Green’s function for an infinite body
to solve a problem in a finite body, which is very convenient because all bodies are finite
in practice. Secondly, if there are additional tractions applied to the surface of the body
they may be included in the surface integral on the second line. The surface integral on
the third line is used when displacements are specified on the surface 𝒮. Here the surface
may include a cut made from the external surface of the body into some point inside the
body, where there is a discontinuity in the displacement across the cut. This will be very
useful when we discuss dislocations in Chapter 6.

It may be puzzling that the derivative of the Green’s function appears in the third line
of eqn. 4.12 to satisfy the boundary condition where a displacement is specified. To get
some insight into this we offer a slightly modified version of an argument from the book5

5 Landau, LD and Lifshitz, EM, Theory of elasticity, 3rd edn., Pergamon Press: Oxford (1986), section 27,
p.111. ISBN 0-08-033916-6.
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by Landau6 and Lifshitz.7 Consider an infinite planar fault with unit normal 𝐧̂ in an
infinite continuum. The half space on the negative side of the fault has the displacement
vector 𝐮 = 𝝉/2, and 𝐮 = −𝝉/2 in the positive half space. To deal with the singularity in the
displacement gradient in the plane of the fault we assign a finite thickness Δ to the fault,
and subsequently take the limit Δ→ 0. The displacement gradient is then ui,k = −𝜏ink/Δ
inside the fault and zero outside. The strain tensor is the constant value eik = − 1

2
(𝜏ink +

ni𝜏k)/Δ inside the fault and zero outside. Thus the stress changes discontinuously at the
planes where the faulted region begins and ends. Discontinuous changes in stress are
unphysical because they correspond to infinite forces. Therefore we use the equilibrium
condition 𝜎im,m + fi = 0 to introduce sheets of body force to cancel these discontinuities.
The displacement field is then given by

ui(𝐱) = ∫
all space

Gi j(𝐱−𝐱′)fj(𝐱′)d3x′

= − ∫
all space

Gi j(𝐱−𝐱′)𝜎jm,m′(𝐱′)d3x′

= − ∫
all space

Gi j(𝐱−𝐱′)cjmklekl,m′(𝐱′)d3x′

= − ∫
all space

{(Gi j(𝐱−𝐱′)cjmklekl(𝐱′)),m′ −Gi j,m′(𝐱−𝐱′)cjmklekl(𝐱′)}d3x′

= − ∫
fault surfaces

(Gi j(𝐱−𝐱′)cjmklekl(𝐱′))nm′d2x′

+ ∫
all space

Gi j,m′(𝐱−𝐱′)cjmklekl(𝐱′)d3x′.

The surface integral is over the surfaces of the fault region where the displacement
gradient begins and ends. In the limit Δ→ 0 these surface integrals cancel because the
surface normal changes sign on either side of the fault. The region of integration in the
volume integral in the last line reduces to the volume occupied by the fault, which is Δ
per unit area; this cancels the Δ in the denominator of ekl. As Δ→ 0 we obtain

6 Lev Davidovich Landau 1908–68, Nobel Prize-winning Soviet physicist.
7 Evgeny Mikhailovich Lifshitz ForMemRS 1915–85, Soviet physicist.
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ui(𝐱) = − ∫
fault plane

Gi j,m′(𝐱−𝐱′)cjmkl
1
2
(𝜏knl + nk𝜏l)d2x′

= − ∫
fault plane

Gi j,m′(𝐱−𝐱′)cjmkl𝜏knld2x′, (4.13)

where we have used the symmetry of the elastic constant tensor cjmkl = cjmlk in the final
integral.

In summary, to create a fault with normal 𝐧̂ and a constant relative translation of 𝝉 we
introduce dipolar sheets of forces on either side of the fault. It is because the constant
displacement is created by force dipoles that the derivative of the Green’s function is
involved. There is an analogy here with a jump in the electrostatic potential on either
side of an interface at which there are dipolar sheets of charges.

4.3 A general formula for the Green’s function in
anisotropic elastic media

We turn now to deriving a general formula for the Green’s function in an anisotropic
elastic continuum. We shall follow the treatment given in the review8 by Bacon, Barnett
and Scattergood. There are only two cases where the Green’s function can be obtained
in closed form analytically for any direction within a crystal, and they are the cases of
elastic isotropy and hexagonal symmetry. However, in the third problem of the set at the
end of this chapter perturbation theory is used to derive an approximate analytic form
of the elastic Green’s function in a cubic crystal when the anisotropy ratio differs only
slightly from unity.

We start from eqn. 4.8:

cjlmsGmp,ls(𝐱)+ 𝛿jp 𝛿(𝐱) = 0,

where we have used the translational invariance of the infinite, homogeneous continuum
to replace 𝐱−𝐱0 with just 𝐱. Taking the Fourier transform of this equation we obtain

cjlmsklks G̃mp(𝐤) = 𝛿jp,

8 Bacon, DJ, Barnett, DM and Scattergood RO, Anisotropic continuum theory of lattice defects, Prog.Mater.
Sci. 23, 51–262 (1979). ISBN 0080242472. https://doi.org/10.1016/0079-6425(80)90007-9. David J Bacon,
British materials physicist and engineer. David M Barnett, US materials physicist and engineer. Ronald O
Scattergood, US materials engineer.

https://doi.org/10.1016/0079-6425(80)90007-9
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where

G̃mp(𝐤) =∫Gmp(𝐱)ei𝐤⋅𝐱d3x

Gmp(𝐱) =
1

(2𝜋)3 ∫G̃mp(𝐤)e−i𝐤⋅𝐱d3k.

We now introduce a matrix (kk) that plays a central role in many aspects of anisotropic
elasticity. It is where all the information about the elastic constants is stored:

(kk)jm = cjlmsklks, (4.14)

Note that (kk) is a symmetric matrix. The 3× 3 matrix of Fourier transforms is just the
inverse of the matrix (kk):

G̃mp(𝐤) = [(kk)−1]
mp
,

where we put square brackets around (kk)−1 to make clear that G̃mp(𝐤) is themp-element
of the inverse matrix of (kk) not the inverse of the matrix element (kk)mp. Taking the
inverse transform we obtain

Gmp(𝐱) =
1

(2𝜋)3 ∫[(kk)−1]
mp
e−i𝐤⋅𝐱d3k. (4.15)

We introduce some additional vectors to help us evaluate this triple integral. Let the
unit vectors 𝐞̂1, 𝐞̂2, 𝐞̂3 be alignedwith theCartesian axes used to define the elastic constant
tensor. We may express 𝐱 in spherical polar coordinates defined with respect to 𝐞̂1, 𝐞̂2,
𝐞̂3 as follows:

𝐱 = x ̂𝝆 = x [sin𝜃 cos𝜙 𝐞̂1 +sin𝜃 sin𝜙 𝐞̂2 +cos𝜃 𝐞̂3] ,

where we have also introduced x as the length of 𝐱 and ̂𝝆 as the direction of 𝐱. It is useful
to introduce two more orthonormal vectors 𝐚̂ and 𝐛̂ which are perpendicular to 𝐱, such
that 𝐚̂, 𝐛̂ and ̂𝝆 form a right-handed set, 𝐚̂ × 𝐛̂ = ̂𝝆:

𝐚̂ = sin𝜙𝐞̂1 −cos𝜙𝐞̂2
𝐛̂ = cos𝜃 cos𝜙𝐞̂1 +cos𝜃 sin𝜙𝐞̂2 −sin𝜃𝐞̂3
̂𝝆 = sin𝜃 cos𝜙𝐞̂1 +sin𝜃 sin𝜙𝐞̂2 +cos𝜃𝐞̂3.

Let k be the length of the vector 𝐤 and let ̂𝝃 be the direction of 𝐤. Then 𝐤 may be
expressed in the coordinate system 𝐚̂, 𝐛̂, ̂𝝆 as follows:
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ζ

ψ

x = xx

â

ˆ

ˆ

ˆ

b

k = kξ

Figure 4.1 To illustrate the vectors and angles used to define 𝐱 and 𝐤.

𝐤 = k ̂𝝃 = k [sin𝜁 cos𝜓𝐚̂+ sin𝜁 sin𝜓𝐛̂+ cos𝜁 ̂𝝆] ,

where 𝜁 is the angle between 𝐱 and 𝐤, see Fig. 4.1.
At this point we recover the separation of variables in eqn. 4.9. Since (kk) = k2(𝜉𝜉)

then the Fourier transform G̃mp(𝐤) is given by

G̃mp(𝐤) = [(kk)−1]mp =
1
k2
[(𝜉𝜉)−1]

mp
,

where we recognise 1/k2 as being proportional to the Fourier transform of 1/x and the
directional dependence of gmp is contained in the inverse transform of [(𝜉𝜉)−1]

mp
. We

note that since (kk) is symmetric, so is its inverse, and thereforeGmp(𝐱) is also symmetric,
as required by the Maxwell reciprocity theorem. Since d3k = k2 sin𝜁dkd𝜁d𝜓 and 𝐤 ⋅ 𝐱 =
kxcos𝜁, eqn. 4.15 becomes

Gmp(𝐱) =
1

(2𝜋)3

2𝜋

∫
0

d𝜓
𝜋

∫
0

d𝜁 sin𝜁 [(𝜉𝜉)−1]
mp

∞

∫
0

dk
1

��k2
��k2 cos(kxcos𝜁).

The integration over k may be evaluated as follows:

∞

∫
0

dkcos(kxcos𝜁) = 1
2

∞

∫
−∞

dkeikxcos𝜁 = 𝜋𝛿(xcos𝜁) = 𝜋
xsin𝜁 𝛿(𝜁 −𝜋/2).
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This simplifies the evaluation of Gmp(𝐱) considerably:

Gmp(𝐱) =
1

(2𝜋)3

2𝜋

∫
0

d𝜓
𝜋

∫
0

d𝜁���sin𝜁 [(𝜉𝜉)−1]
mp

𝜋
x���sin𝜁

𝛿(𝜁 −𝜋/2)

= 1
8𝜋2x

2𝜋

∫
0

[(𝜉𝜉)−1]
mp

d𝜓. (4.16)

The anticipated separation into radial (1/x) and orientational dependences is now
explicit. The delta function 𝛿(𝜁 −𝜋/2) requires that the integration with respect to 𝜓 is
around the unit circle perpendicular to the vector 𝐱, with its centre at the origin. On this
circle ̂𝝃 = 𝐚̂cos𝜓 + 𝐛̂sin𝜓. Thus, the orientational dependence of the Green’s function
resides in this line integral. In most cases of elastic anisotropy the line integral may be
evaluated only numerically. But it is only one integral to be evaluated for each direction
̂𝝆, in contrast to the three integrals in the inverse Fourier transform of eqn. 4.15, and it is

numerically stable. Finally, it is stressed that eqn. 4.16 is valid in all crystal symmetries.
This remarkable result was first shown by Synge.9 The derivation of eqn. 4.16 appears in
his book The hypercircle in mathematical physics, Cambridge University Press: Cambridge
(1957), p.411–3.

4.4 The Green’s function in an isotropic elastic medium

In an isotropic medium the Green’s function10 can be determined directly by taking the
inverse Fourier transform in eqn. 4.15.

Using eqn. 3.11 for the elastic constants in an isotropic elastic medium the matrix
element (kk)jm is as follows:

(kk)jm = 𝜇k2𝛿jm + (𝜆+𝜇)kjkm. (4.17)

As we have seen in the previous section, the inverse of this matrix is the matrix of
Fourier transforms (kk)jmG̃mp(𝐤) = 𝛿jp. Rather than taking the brute force approach and
evaluating the inverse of (kk) directly, we may multiply both sides of (kk)jmG̃mp(𝐤) = 𝛿jp
by kj and obtain an equation for kmG̃mp(𝐤):

kmG̃mp(𝐤) =
kp

(𝜆 + 2𝜇)k2 .

9 John Lighton Synge FRS 1897–1995, Irish mathematician and physicist.
10 The solution in an isotropic medium for the displacement field of a point force was first derived by Lord

Kelvin FRS in 1848, in a short paper entitled Note on the integration of the equations of equilibrium of an elastic
solid, which can be found in Article 37 of Volume 1 of his Mathematical and Physical Papers, p.97, https://
archive.org/details/mathematicaland01kelvgoog

https://archive.org/details/mathematicaland01kelvgoog
https://archive.org/details/mathematicaland01kelvgoog
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When this is substituted into (𝜇k2𝛿jm + (𝜆+𝜇)kjkm)G̃mp(𝐤) = 𝛿jp we find

G̃jp(𝐤) =
𝛿jp
𝜇k2 −

(𝜆+𝜇)kjkp
𝜇(𝜆 + 2𝜇)k4 . (4.18)

It may be shown by contour integration that

∫ 1
k2
e−i𝐤⋅𝐱d3k = 2𝜋2

x

∫
kjkp
k4

e−i𝐤⋅𝐱d3k = 𝜋2 (
𝛿jp
x
−
xjxp
x3

),

where x = |𝐱|. Using these integrals to evaluate the inverse Fourier transform we obtain

Gjp(𝐱) =
1

8𝜋𝜇(𝜆 + 2𝜇)x ((𝜆 + 3𝜇)𝛿jp + (𝜆+𝜇)
xjxp
x2

)

= 1
16𝜋𝜇(1−𝜈)x ((3− 4𝜈)𝛿jp +

xj xp
x2

) . (4.19)

We shall use this result extensively.

4.5 The multipole expansion

Consider a point defect in a crystal such as a foreign atom occupying a site that would
normally be occupied by a host atom, that is, a substitutional point defect. Let 𝐟 (n) be the
excess force exerted on the nth host atom when the site is occupied by the foreign atom
as compared to when the site is occupied by a host atom. At equilibrium the net force
on each atom is zero. But as we saw in section 2.4 the excess forces exerted by the defect
on the host atoms in this equilibrium state are the source of the stress field it creates in
the host. We call the excess force that the defect exerts on a host atom a ‘defect force’. In
this equilibrium state the defect may be viewed as a collection of defect forces that sum
to zero because their sum is the negative of the net force on the defect atom, which is
zero at equilibrium. The elastic displacement field generated by this collection of defect
forces may be computed using the superposition principle and the Green’s function.
This does involve approximations because the Green’s function and the superposition
principle assume linear elasticity is valid. But beyond some distance from the defect the
predicted displacement, stress and strain fields are expected to be accurate. Indeed, when
we wish to calculate interaction energies between defects over distances much larger than
the spatial extent of their defect forces, elasticity theory is very accurate. It provides also
unrivalled physical insight into such interactions.
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Let the foreign atom be located at 𝐝. Let the position of the nth neighbour relative to
the foreign atom be 𝐗(n), and let the defect force it experiences be 𝐟 (n). Therefore the
displacement at 𝐱 caused by the defect is

ui(𝐱) =∑
n

Gi j(𝐱−𝐝−𝐗(n))f (n)j . (4.20)

Within linear elasticity this is exact, but the approximations of linear elasticity are such
that this expression becomes accurate only when |𝐱−𝐝| ≫ |𝐗(n)|. When this condition is
satisfied we can expand the Green’s function as a Taylor series:

Gi j(𝐱−𝐝−𝐗(n)) =Gi j(𝐱−𝐝)−Gi j,k(𝐱−𝐝)X(n)
k + 1

2
Gi j,kl(𝐱−𝐝)X(n)

k X(n)
l − . . . .

Inserting this expansion into eqn. 4.20 we obtain the following series:

ui(𝐱) =Gi j(𝐱−𝐝)∑
n

f (n)j

−Gi j,k(𝐱−𝐝)∑
n

X(n)
k f (n)j

+ 1
2
Gi j,kl(𝐱−𝐝)∑

n

X(n)
k X(n)

l f (n)j

− 1
6
Gi j,klm(𝐱−𝐝)∑

n

X(n)
k X(n)

l X(n)
m f (n)j . . . . (4.21)

This equation is called the multipole expansion of the displacement field of a point
defect. At equilibrium the first term on the right hand side of eqn. 4.21 is zero
because the defect forces sum to zero. The next term involves the first moment of
the defect forces, which is called the elastic dipole tensor: 𝜌kj =∑nX

(n)
k f (n)j . The next

term involves the second moment of the defect forces, qklj =∑nX
(n)
k X(n)

l f (n)j and is
called the elastic quadrupole tensor. The next term involves the third moment of
the defect forces oklmj =∑nX

(n)
k X(n)

l X(n)
m f (n)j , and is called the elastic octupole tensor,

and so on.

Exercise 4.3

Equilibrium requires not only that the net force on the point defect is zero but also that the
net torque exerted on the defect atom is zero. Show that this condition is satisfied provided
the elastic dipole tensor is symmetric: 𝜌i j = 𝜌ji.
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The multipole expansion reveals how the elastic displacement field of a point defect
decays with distance x. The dipole tensor gives rise to a displacement field that decays
as 1/x2, the quadrupole as 1/x3, the octupole as 1/x4 and so on. The displacement fields
from higher order poles become increasingly significant as the defect is approached.
The orientational dependence of each of these contributions to the displacement field is
contained in the derivatives of the Green’s functions.

The multipole expansion reflects the symmetry of the atomic environment surround-
ing the point defect. This is very significant for those point defects that have particular
symmetries, such as crowdions which have a distinct axial symmetry.

Finally, we note that eqn. 4.21 is an exemplar of ‘multi-scale modelling’. It takes
information from the atomic scale, namely the defect forces, and applies the theory of
elasticity to determine the elastic field of the point defect at long range. It is a bridge
between the atomic and continuum length scales, and perhaps this is why it was described
by Leibfried and Breuer as themost important new concept in defect physics.11 Kröner12

was the first to introduce a systematic description of point defects in terms of force
multipoles.13

The multipole expansion in electrostatics is often used to determine the electric field
of a cluster of charges at distances larger than the cluster itself. The same idea applies to
the multipole expansion in eqn. 4.21: it may be used to calculate the displacement field of
a cluster of point defects at distances larger than the cluster itself. The sums in eqn. 4.21
are taken over all atoms within the cluster of point defects and the atoms with which they
interact surrounding the cluster. In this way dipole, quadrupole, octupole, . . . tensors
may be defined for point defect clusters of any size and used to calculate their long range
elastic fields.

4.6 Relation between the Green’s functions for an elastic
continuum and a crystal lattice

Consider a crystal containing N lattice sites, with one atom at each lattice site. In
harmonic lattice theory the potential energy of the distorted crystal is expanded to second
order in the displacements of atoms from their perfect crystal positions. Using a slightly
different notation from eqn. 3.28 the potential energy is as follows:

E = −∑
n

fi(𝐗(n))ui(𝐗(n)) + 1
2
∑
n

∑
p

Si j(𝐗(n) −𝐗(p))ui(𝐗(n))uj(𝐗(p)). (4.22)

We have replaced u(n)i and S(np)i j in eqn. 3.28 with ui(𝐗(n)) and Si j(𝐗(n) −𝐗(p)), respec-
tively. The force fi(𝐗(n)) is not zero this time because now there is a crystal defect that

11 Leibfried, G and Breuer, N, Point defect in metals I, Springer-Verlag: Berlin (1978), p.146. ISBN 978-
3662154489. Günther Leibfried 1915–77, German physicist.
12 Ekkehart Kröner 1919–2000, German physicist.
13 Kröner, E,Kontinuumstheorie der Versetzungen und Eigenspannungen, Springer-Verlag: Berlin (1958). ISBN

978-3540022619.
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displaces the atom from its perfect crystal position at 𝐗(n). It is equivalent to the body
forces we have discussed in elasticity. This is different from eqn. 3.28, where the forces
were all set to zero, because the perfect crystal configuration was being considered with
no defects present.

By minimising the energy in eqn. 4.22 with respect to the displacements we obtain
the following equation:

fm(𝐗(n)) =∑
p

Smj(𝐗(n) −𝐗(p))uj(𝐗(p)). (4.23)

We want the inverse of this relationship, that is, we want an expression for the displace-
ments in terms of the forces:

ul(𝐗(n)) =∑
p

Glh(𝐗(n) −𝐗(p))fh(𝐗(p)). (4.24)

This equation is equivalent in the discrete lattice to eqn. 4.6 in the continuum, and it
defines the crystal lattice Green’s function. In this section we investigate the relationship
between this crystal lattice Green’s function and the Green’s function in linear elasticity.
To invert eqn. 4.23 we use discrete Fourier transforms defined by

W̃(𝐤) =∑
n

W(𝐗(n))ei𝐤⋅𝐗(n) (4.25)

W(𝐗(p)) = 1
N
∑
𝐤
W̃(𝐤)e−i𝐤⋅𝐗(p) . (4.26)

Born von Karman periodic boundary conditions are applied to the crystal faces, and
there are N wave vectors 𝐤 in the Brillouin zone. Taking the discrete Fourier transform
of eqn. 4.23 we obtain

̃fm(𝐤) = ̃Smj(𝐤) ̃uj(𝐤), (4.27)

where ̃Smj(𝐤) is a 3× 3 matrix for each wave vector 𝐤 in the Brillouin zone. Inverting this
equation we obtain

̃ul(𝐤) = [ ̃S−1(𝐤)]
lh

̃fh(𝐤). (4.28)



OUP CORRECTED PROOF – FINAL, 22/5/2020, SPi

72 The Green’s function in linear elasticity

Taking the discrete inverse Fourier transform we find

ul(𝐗(n)) = 1
N
∑
𝐤
[ ̃S−1(𝐤)]

lh
̃fh(𝐤)e−i𝐤⋅𝐗

(n)

= 1
N
∑
𝐤
[ ̃S−1(𝐤)]

lh
(∑

p

fh(𝐗(p))ei𝐤⋅𝐗(p))e−i𝐤⋅𝐗(n)

=∑
p

( 1
N
∑
𝐤
[ ̃S−1(𝐤)]

lh
e−i𝐤⋅(𝐗

(n)−𝐗(p))) fh(𝐗(p)).

Comparing this with eqn. 4.24 we obtain the desired expression for the crystal lattice
Green’s function:14

Glh(𝐗(n) −𝐗(p)) = 1
N
∑
𝐤
[ ̃S−1(𝐤)]

lh
e−i𝐤⋅(𝐗

(n)−𝐗(p)). (4.29)

To aid comparison we quote here the Green’s function from eqn. 4.15:

Gmp(𝐱) =
1

(2𝜋)3 ∫[(kk)−1]
mp
e−i𝐤⋅𝐱d3k.

Since Smj(𝐗(n)) = Smj(−𝐗(n)), and ∑nSmj(𝐗(n)) = 0 , we may write15

̃Smj(𝐤) =∑
n

Smj(𝐗(n))ei𝐤⋅𝐗(n)

= 1
2
∑
n

Smj(𝐗(n))(ei𝐤⋅𝐗(n) + e−i𝐤⋅𝐗(n) − 2)

= 1
2
∑
n

Smj(𝐗(n))(2cos(𝐤 ⋅𝐗(n))− 2)

= −2∑
n

Smj(𝐗(n))sin2(𝐤 ⋅𝐗
(n)

2
).

14 This Green’s function has been used to calculate the displacement fields of defects in discrete lat-
tices where atoms interact by harmonic potentials. See Tewary, VK, Adv. Phys. 22, 757–810 (1973).
https://doi.org/10.1080/00018737300101389
15 See Solid state physics by Ashcroft, NW and Mermin, ND, pp. 437–40 (1976). ISBN 978-0030839931.

https://doi.org/10.1080/00018737300101389
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In the limit of long wavelengths the magnitude of the wave vector 𝐤 becomes very small.
In that limit we may write

̃Smj(𝐤) → −1
2
∑
n

Smj(𝐗(n))(𝐤 ⋅𝐗(n))
2

= [−1
2
∑
n

Smj(𝐗(n))X(n)
h X(n)

l ]khkl.

Comparing with the expression for the elastic constant tensor cikjl in eqn. 3.31 we
recognise the term in square brackets as being Ωcmhjl, and therefore in the limit of long
wavelengths ̃Smj(𝐤) → Ω(kk)mj.

Each 𝐤-point in the Brillouin zone is associated with a volume in 𝐤-space of
(2𝜋)3/(NΩ). Replacing the sum over 𝐤-points in eqn. 4.29with a continuous integral over
all 𝐤-space we find the crystal lattice Green’s function, in the limit of long wavelengths,
becomes

Gmp(𝐗(n)) → 1
NΩ

NΩ
(2𝜋)3 ∫d3k [(kk)−1]

mp
e−i𝐤⋅𝐗

(n)

= 1
(2𝜋)3 ∫d3k [(kk)−1]

mp
e−i𝐤⋅𝐗

(n) , (4.30)

which is identical to the Green’s function in linear elasticity. We conclude that the elastic
and crystal lattice Green’s functions are equivalent only in the limit of long wavelengths
compared to the distance from the force creating the displacement, so that 𝐤 ⋅ 𝐱 ≪ 1. At
smaller wavelengths the lattice Green’s function may be expected to deviate significantly
from the Green’s function in linear elasticity. The implication is that when we are
studying the elastic displacement fields of defects with the Green’s function in linear
elasticity the fields nearer to the defect are less accurate than those further away. At
larger distances from the defect the smaller wavelength contributions to the crystal lattice
Green’s function tend to cancel out, leaving only the longer wavelength components.

4.7 Eshelby’s ellipsoidal inclusion

One of the most useful applications of the Green’s function is to the solution of the elastic
fields of inclusions. It is also a rare example of an analytic solution to a three-dimensional
problem in elasticity. A region, which will become the inclusion, in an infinite, homo-
geneous, isotropic, elastic medium undergoes a transformation which changes its shape
and or size. If the region were not constrained by the surrounding medium it would
undergo a homogeneous ‘transformation strain’ eTij , where the superscript T signifies it
is the transformation strain. The transformation strain is sometimes called an eigenstrain
or ‘stress-free strain’. But given that the inclusion is constrained by the surrounding
medium in reality, what is the final elastic state of the inclusion and the surrounding
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medium? Eshelby16 formulated a set of operations for solving the problem, and a detailed
solution for an ellipsoidal inclusion,17 where the inclusion and the surrounding matrix
have the same isotropic elastic constants. Applications include mechanical twinning and
slip bands (see section 10.2.6), where the ‘inclusion’ is a region of the host material
that undergoes a simple shear in response to an applied shear stress. It has also been
applied to martensitic transformations where a region undergoes a spontaneous phase
change involving a shape change with shear and dilation components in general. Mura
has solved the inclusion problem in anisotropic elasticity.18

Eshelby’s elegant thought-experiment to formulate and solve the ellipsoidal inclusion
problem may be summarised as follows. Cut out from the medium the ellipsoidal region
ℛ that is to transform. Allow it to undergo the homogeneous transformation strain eTij
without any constraint applied to its surface 𝒮. At this point there is no stress in the
inclusion or in thematrix. The regionℛ no longer fits back into the hole fromwhich it was
removed. Return the transformed region to its original shape by applying tractions−𝜎Tij nj
to the surface 𝒮, where 𝜎Tij = 2𝜇eTij +𝜆𝛿i jeTkk. The ellipsoidal regionℛ is then inserted back
into the hole and the bonds across the interface are reformed. At this point there is no
strain in the matrix or inclusion but there are tractions −𝜎Tij nj in the interface. These
tractions are annihilated by applying an equal and opposite distribution +𝜎Tij nj which
produce the constrained displacements uCi in the inclusion and the surrounding medium,
from which strains eCij and stresses 𝜎Cij may be calculated. The final constrained stresses

in the surrounding medium are 𝜎Cij . But since the inclusion was already stressed by −𝜎Tij
the final constrained stresses in the inclusion are 𝜎Ii j = 𝜎Cij −𝜎Tij .

The Green’s function is used to calculate uCi :

uCi (𝐱) =∫
𝒮

Gi j(𝐱−𝐱′)𝜎TjknkdS(𝐱′), (4.31)

where the integral is over the surface 𝒮 of the inclusion before it is transformed. The field
point 𝐱may be inside or outside the inclusion. Eshelby showed that when this formulation
is applied to an ellipsoidal inclusion the total final stress and strain are homogeneous
inside the inclusion. Markenscoff 19 has proved20 in isotropic and anisotropic elasticity
that ellipsoids are the only shapes of inclusions in which the total stress and strain fields
are homogeneous throughout them. The versatility of Eshelby’s analysis stems in part
from the wide range of shapes that can be described by ellipsoids, including needles,
discs, prolate and oblate spheroids and spheres.

16 John Douglas Eshelby, FRS 1916–81, British physicist.
17 Eshelby, JD, Proc. R. Soc. A 241, 376–96 (1957). https://doi.org/10.1098/rspa.1957.0133. This is one of

the most highly cited papers in the mechanics of materials, possibly the most highly cited.
18 See Chapter 3 of Mura, T, Micromechanics of defects in solids, Kluwer Academic Publishers: Dordrecht

(1991). ISBN 90-247-3256-5.
19 Xanthippi Markenscoff 1947–, Greek born, US theoretical materials scientist and engineer.
20 Markenscoff, X, J. Elast. 49, 163–6 (1998). https://doi.org/10.1023/A:1007474108433

https://doi.org/10.1098/rspa.1957.0133
https://doi.org/10.1023/A:1007474108433
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The surface integral in eqn. 4.31 is transformed into a volume integral over the interior
ℛ of the inclusion using the divergence theorem:

uCi (𝐱) =∫
ℛ

Gi j,k′(𝐱−𝐱′)𝜎Tjk dV ′

= −∫
ℛ

Gi j,k(𝐱−𝐱′)𝜎Tjk dV ′. (4.32)

In these integrals the integration variable is 𝐱′, as signified by the prime on the dV. In
the first line the Green’s function Gi j(𝐱−𝐱′) is differentiated with respect to xk′ . In the
second line it is differentiated with respect to xk, which introduces the minus sign.

Using eqn. 4.70 for the derivative of the Green’s function the constrained displace-
ment field becomes

uCi (𝐱) =
𝜎Tjk

16𝜋𝜇(1−𝜈) ∫
ℛ

1

|𝐱−𝐱′|2
((3− 4𝜈)𝜌k𝛿i j −(𝜌j𝛿ik +𝜌i𝛿jk)+ 3𝜌i𝜌j𝜌k) dV ′, (4.33)

where 𝜌i is the direction cosine (xi − x′i)/ |𝐱−𝐱′|, which specifies the direction of the
vector from 𝐱′ to 𝐱. Exploiting the symmetry of the stress tensor 𝜎Tjk = 𝜎Tkj this integral
may be rewritten as follows:

uCi (𝐱) =
𝜎Tjk

16𝜋𝜇(1−𝜈) ∫
ℛ

1

|𝐱−𝐱′|2
((1− 2𝜈)(𝜌k𝛿i j +𝜌j𝛿ik)−𝜌i𝛿jk + 3𝜌i𝜌j𝜌k) dV′

=
𝜎Tjk

16𝜋𝜇(1−𝜈) ∫
ℛ

1

|𝐱−𝐱′|2
fi jk(𝝆)dV′, (4.34)

where

fi jk(𝝆) = (1− 2𝜈)(𝜌k𝛿i j +𝜌j𝛿ik)−𝜌i𝛿jk + 3𝜌i𝜌j𝜌k. (4.35)

Using Hooke’s law the integral in eqn. 4.34 may also be expressed in terms of the
transformation strain tensor eTjk:
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uCi (𝐱) =
eTjk

8𝜋(1−𝜈) ∫
ℛ

1

|𝐱−𝐱′|2
((1− 2𝜈)(𝜌k𝛿ji +𝜌j𝛿ik −𝜌i𝛿jk)+ 3𝜌i𝜌j𝜌k) dV′

=
eTjk

8𝜋(1−𝜈) ∫
ℛ

1

|𝐱−𝐱′|2
gi jk(𝝆)dV′, (4.36)

where

gi jk(𝝆) = (1− 2𝜈)(𝜌k𝛿i j +𝜌j𝛿ik −𝜌i𝛿jk)+ 3𝜌i𝜌j𝜌k. (4.37)

From afar the inclusion looks like a point defect. In that case, with the origin of the
coordinate system at the centre of the inclusion, we have |𝐱| ≈ |𝐱−𝐱′|. The displacement
field of the inclusion is then

uCi (𝐱) =
𝜎TjkV

16𝜋𝜇(1−𝜈)x2 fi jk(𝝆) (4.38)

=
eTjkV

8𝜋(1−𝜈)x2 gi jk(𝝆), (4.39)

where 𝐱 = x𝝆 and V is the volume of the inclusion. As we shall see in the next chapter the
decay of the displacement field as the inverse square of the distance from the inclusion
is consistent with the radial dependence of the displacement field of a point defect. The
angular dependence of uCi (𝐱) is contained in 𝜎Tjk fi jk(𝝆) and eTjkgi jk(𝝆).

Consider a field point 𝐱 inside the ellipsoid. It is convenient to redefine 𝜌i as
(x′i − xi)/|𝐱−𝐱′|. Since gi jk(𝝆) is an odd function of 𝝆 this redefinition will introduce a
minus sign into eqn. 4.36. To evaluate the volume integral in eqn. 4.36 we divide ℛ into
an infinite number of infinitesimal cones, with their apices located at 𝐱. Each cone axis is
along a particular direction 𝝆, and it terminates at the surface 𝒮 of the ellipsoid. Let the
length of the cone from 𝐱 along the direction 𝝆 to 𝒮 be L = L(𝝆). If d𝜔 is the infinitesimal
solid angle subtended at the cone apex the infinitesimal area of the base of a right circular
cone is L2d𝜔.

To evaluate the contribution of each infinitesimal cone to ∫ℛ dV′/|𝐱′ −𝐱|2 consider a
right circular cone with its apex at the origin of a Cartesian coordinate system, its axis
along the x1-axis, its length L, and the radius of its base R. We evaluate ∫dV/|𝐱|2 for
this cone and take the limit that R becomes infinitesimal. Consider an element of area
dx1dx2 at (x1,x2,0) inside the cone.When this element of area is rotated about the x1-axis
it traces a ring of volume 2𝜋x2dx1dx2. The distance of all points on this ring from the

origin is |𝐱| =√x21 + x22. Therefore, for this finite cone we have:
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∫ dV
|𝐱|2 =

L

∫
x1=0

dx1

Rx1/L

∫
x2=0

dx2
2𝜋x2
x21 + x22

= 𝜋L ln(1+R2/L2). (4.40)

Taking the limit R→ 0 this integral becomes (dS)/L where dS = 𝜋R2 is the area of the
cone base. Since dS = L2d𝜔 the contribution of an infinitesimal cone to ∫ℛ dV′/|𝐱′ −𝐱|2
is L(𝝆)d𝜔.

Remembering the minus sign arising from the redefinition of 𝝆 the constrained
displacement field inside the ellipsoid, eqn. 4.36, becomes the following:

uCi (𝐱) = −
eTjk

8𝜋(1−𝜈) ∫L(𝝆)gi jk(𝝆)d𝜔, (4.41)

where the integral is over 4𝜋 steradians.21

To find L(𝝆) let 𝐫 = 𝐱+𝜉𝝆 be the vector equation of the straight line through 𝐱 in the
direction of 𝝆, where 𝜉 is an arbitrary real number. Let (X1,X2,X3) be a point on the
surface of the ellipsoid satisfying the equation:

X2
1

a21
+
X2

2

a22
+
X2

3

a23
= 1, (4.42)

where a1, a2, a3 are the semi-axes of the ellipsoid. Then L(𝝆) is determined by the positive
solution of the following quadratic equation:

(x1 +L𝜌1)2
a21

+ (x2 +L𝜌2)2
a22

+ (x3 +L𝜌3)2

a23
= 1. (4.43)

The positive root is given by

L(𝝆) =
√
f 2

g2
+ e
g
− f
g
, (4.44)

21 A steradian is a unit of solid angle.
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where

e = 1−(
x21
a21

+
x22
a22

+
x23
a23
)

f = x1𝜌1
a21

+ x2𝜌2
a22

+ x3𝜌3
a23

g = 𝜌2
1

a21
+ 𝜌2

2

a22
+ 𝜌2

3

a23
. (4.45)

When eqn. 4.44 is inserted in eqn. 4.41, the square root, which is even in 𝝆, multiplies
gi jk(𝝆), which is odd in 𝝆. The contributions to the integrand in eqn. 4.41 from the square
root for ±𝝆 cancel.

Defining the vector (𝜆1,𝜆2,𝜆3) = (𝜌1/a21, 𝜌2/a22, 𝜌3/a23) the constrained displacement
field of eqn. 4.41 then becomes

uCi (𝐱) =
eTjkxm

8𝜋(1−𝜈) ∫
𝜆mgi jk
g

d𝜔. (4.46)

The constrained strains inside the ellipsoid are then as follows:

eCil =
1
2
(
𝜕uCi
𝜕xl

+
𝜕uCl
𝜕xi

) =
eTjk

16𝜋(1−𝜈) ∫
𝜆igi jk +𝜆lgi jk

g
d𝜔. (4.47)

We see the constrained strains, and hence the stresses, inside the ellipsoid are homoge-
neous throughout the ellipsoid. They depend only on its shape. They remain homoge-
neous also in anisotropic elasticity.

It is convenient to rewrite eqn. 4.47 as a tensor equation as follows:

eCil = Sil jkeTjk, (4.48)

where Siljk is often called the Eshelby tensor:

Siljk =
1

16𝜋(1−𝜈) ∫
𝜆igi jk +𝜆lgi jk

g
d𝜔. (4.49)

It is not difficult to see that for a general ellipsoid terms of the form S1122 and S2211
are not equal. All terms Siljk containing any component of 𝝆 raised to an odd power
are zero. Thus all terms coupling extensions to shears are zero, such as S2212. Similarly
all terms coupling different shear components are zero, such as S1213. The non-zero
components of Siljk are those coupling extensions to extensions, such as S1111 and S1133,
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and those coupling shear components to the same shear components, such as S1212. In
detail:

S1111 =
1

8𝜋(1−𝜈) ∫
𝜆1g111
g

d𝜔

= (1− 2𝜈)
8𝜋(1−𝜈) ∫

𝜌2
1

a21g
d𝜔+

3a21
8𝜋(1−𝜈) ∫

𝜌4
1

a41g
d𝜔

= (1− 2𝜈)
8𝜋(1−𝜈) I1 +

3a21
8𝜋(1−𝜈) I11 (4.50)

S1122 =
1

8𝜋(1−𝜈) ∫
𝜆1g122
g

d𝜔

=
a22

8𝜋(1−𝜈) ∫
3𝜌2

1𝜌2
2

a21a
2
2g

d𝜔− (1− 2𝜈)
8𝜋(1−𝜈) ∫

𝜌2
1

a21g
d𝜔

=
a22

8𝜋(1−𝜈) I12 −
(1− 2𝜈)
8𝜋(1−𝜈) I1 (4.51)

S1212 =
1

16𝜋(1−𝜈) ∫
𝜆1g212 +𝜆2g112

g
d𝜔

= (1− 2𝜈)
16𝜋(1−𝜈) ∫

𝜌2
1

a21g
+ 𝜌2

2

a22g
d𝜔+

(a21 + a22)
16𝜋(1−𝜈) ∫

3𝜌2
1𝜌2

2

a21a
2
2g

d𝜔

= (1− 2𝜈)
16𝜋(1−𝜈)(I1 + I2) +

(a21 + a22)
16𝜋(1−𝜈) I12. (4.52)

Other components of the Eshelby tensor are found by cyclic permutation of the indices
in eqns. 4.50 to 4.52. The integrals I1, I11 and I12 are defined as follows:

I1 =∫ 𝜌2
1

a21g
d𝜔 = 2𝜋a1a2a3

∞

∫
0

du
(a21 + u)Δ(u)

I11 =∫ 𝜌4
1

a41g
d𝜔 = 2𝜋a1a2a3

∞

∫
0

du
(a21 + u)2Δ(u)

I12 =∫ 3𝜌2
1𝜌2

2

a21a
2
2g

d𝜔 = 2𝜋a1a2a3

∞

∫
0

du
(a21 + u)(a22 + u)Δ(u)

. (4.53)
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The 𝜔-integrations are over 4𝜋 steradians. The expressions on the right of each line

in eqn. 4.53 were derived by Routh.22 The function Δ(u) =√(a21 + u)(a22 + u)(a23 + u).
Using eqn. 4.53 the following relations between the integrals, and their cyclic permuta-
tions, are easily deduced:

I1 + I2 + I3 = 4𝜋

3I11 + I12 + I13 = 4𝜋/a21
3a21I11 + a22I12 + a23I13 = 3I1

(I1 − I2)
(a22 − a21)

= I12. (4.54)

The fourth line in eqn. 4.54 is obtained by splitting the factor (a21 + u)−1(a22 + u)−1 in I12
in eqn. 4.53 into partial fractions.
I1, I2 and I3 may be expressed in terms of elliptic integrals.23 Assuming a1 > a2 > a3

we find

I1 =
4𝜋a1a2a3

(a21 − a22)√(a21 − a23)
[K(𝜃,k2)−E(𝜃,k2)]

I2 =
4𝜋a1a2a3

(a21 − a22)(a22 − a23)√(a21 − a23)

× [(a21 − a23)E(𝜃,k2)− (a22 − a23)K(𝜃,k2)−
a3
a1a2

(a21 − a22)√(a21 − a23)]

I3 =
4𝜋a1a2a3

(a22 − a23)√(a21 − a23)

⎡
⎢
⎢
⎣

a2√(a21 − a23)
a1a3

−E(𝜃,k2)
⎤
⎥
⎥
⎦
, (4.55)

where the amplitude 𝜃 = sin−1
√(1− a23/a21) and the modulus k2 = (a21 − a22)/(a21 − a23).

K (𝜃,z) is the incomplete elliptic integral of the first kind:

22 Routh, EJ, A treatise on analytical statics, Vol. 2, Cambridge University Press: London (1892) p. 106–8.
https://archive.org/details/treatiseonanalyt02routiala/page/n8. Edward John Routh FRS 1831-1907, British
mathematician.
23 Kellogg, OD, Foundations of potential theory, Dover Publications: New York (1954) p.192–6. ISBN

0486601447. Oliver Dimon Kellogg 1878–1932, US mathematician.
The integrals appear more explicitly in Gradshteyn, IS and Ryzhik, IM Table of integrals, series and products,

5th edn. corrected and enlarged by Alan Jeffrey, Academic Press Inc.: Orlando (1980). ISBN 0-12-294760-
6. Expressions for I1, I2 and I3 appear in 3.133, numbers 1, 7 and 13 respectively on p.220-222. Izrail
Solomonovich Gradshteyn 1899–1958, Russian mathematician. Iosif Moiseevich Ryzhik ?–1941, Russian
mathematician.

https://archive.org/details/treatiseonanalyt02routiala/page/n8
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K (𝜃,z) =
𝜃

∫
0

d𝜙

√1− zsin2𝜙
. (4.56)

E(𝜃,z) is the incomplete elliptic integral of the second kind:

E (𝜃,z) =
𝜃

∫
0

√1− zsin2𝜙 d𝜙 . (4.57)

Having evaluated any two of I1, I2 and I3 the third follows immediately using the first line
of eqn 4.54. The integrals I12, I23 and I31 then follow from the last line of eqn. 4.54 and
its cyclic permutations. I11, I22 and I33 may then be deduced from the second or third
lines of eqn. 4.54 and their cyclic permutations. Thus, once any two of I1, I2 and I3 have
been evaluated using eqn. 4.55 all the other integrals can be deduced without explicit
evaluation.

The constrained stresses 𝜎Cij inside the ellipsoid are deduced from the strains eCkl using
Hooke’s law and eqn. 4.48:

𝜎Cij = 2𝜇Si jkleTkl +𝛿i j
2𝜇𝜈

1− 2𝜈Smmkle
T
kl. (4.58)

As explained at the beginning of this section the total stress inside the ellipsoid is
𝜎Ii j = 𝜎Cij −𝜎Tij . In question 6 of the problem set of this chapter it is shown that the
total elastic energy of the ellipsoidal inclusion and matrix is −(V/2)𝜎Ii jeTij . The elastic
interaction energy between an ellipsoidal inclusion and an applied strain field is derived
in question 10 of problem set 6, where it is also expressed as a volume integral taken
over the inclusion only. Eshelby showed24 how the elastic field outside an ellipsoidal
inclusion may be calculated in detail. In that paper and the 1957 paper he also showed
how his analysis may be adapted to determine how a uniform stress field is disturbed by
an ellipsoidal inhomogeneity, where the local elastic constants differ from those of the
surrounding medium, such as an ellipsoidal crack. In section 10.2.6 we model slip bands
as ellipsoidal inclusions to develop a theory of work hardening.

4.8 The equation of motion and elastic waves

We shall use Hamilton’s principle of classical mechanics25 to derive the equation of
motion of the continuum. Hamilton’s principle states that the following integral is

24 Eshelby, JD, Proc. R. Soc. A 252, 561–9 (1959). https://doi.org/10.1098/rspa.1959.0173
25 For example, see Goldstein, H, Classical mechanics, Addison-Wesley: Reading, MA (1980). ISBN 0-201-

02969-3

https://doi.org/10.1098/rspa.1959.0173
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stationary with respect to variations 𝛿ui of the displacement field which vanish at times
t = t1 and t = t2 and on the surface of the volume V:

𝛿
t2

∫
t1

dt∫
V

dVℒ(ui, ̇ui,ui, j) = 0. (4.59)

ℒ is the Lagrangian density, which is the difference between the kinetic energy and the
potential energy densities:

ℒ = 1
2
𝜌 ̇u2i −(−fiui +

1
2
ci jklui, juk,l).

In this expression 𝜌 is the mass density, ̇ui is the velocity of the medium at 𝐱 and we have
included a contribution from body forces fi in the potential energy density. Substituting
this Lagrangian density into eqn. 4.59 and performing the variation we obtain

𝛿
t2

∫
t1

dt∫
V

dVℒ(ui, ̇ui,ui, j) =
t2

∫
t1

dt∫
V

dV 𝜌 ̇ui𝛿 ̇ui + fi𝛿ui − ci jklui, j𝛿uk,l

=∫
V

dV�����[𝜌 ̇ui𝛿ui]
t2
t=t1 −

t2

∫
t1

dt∫
V

dV𝜌üi𝛿ui − fi𝛿ui +(ci jklui, j𝛿uk),l − ci jklui,jl𝛿uk

= −
t2

∫
t1 ��������
∫
S

ci jklui, j𝛿uknldS −
t2

∫
t1

dt∫
V

dV(𝜌üi − fi −𝜎i j, j)𝛿ui (4.60)

We have used 𝛿ui = 0 at t = t1 and t = t2, and on the surface S of the body at all times.
We have also used the divergence theorem to convert a volume integral into a surface
integral. In order for the variation to be zero the integrand must be zero:

𝜌üi = fi +𝜎i j, j, (4.61)

which is the equation of motion of the continuum.

4.8.1 Elastic waves

In the absence of forces in the equation of motion, eqn. 4.61, we try a wave solution of
the form ui(𝐱, t) = Ai(𝐤,𝜔)ei(𝐤⋅𝐱−𝜔t), which leads to the following equation:

(𝜌𝜔2𝛿i j − (kk)i j)Aj(𝐤,𝜔) = 0. (4.62)
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This is a set of three equations in the wave amplitudes Ai(𝐤,𝜔), and the condition for
non-trivial solutions is that the following 3× 3 determinant is zero:

|
|
|
|
|
|

(kk)11 −𝜌𝜔2 (kk)12 (kk)13
(kk)12 (kk)22 −𝜌𝜔2 (kk)23
(kk)13 (kk)23 (kk)33 −𝜌𝜔2

|
|
|
|
|
|

= 0. (4.63)

In general this provides a set of three solutions for 𝜔2 = 𝜔2(𝐤), which are known as the
three branches of the dispersion relations. By writing (kk) = k2(𝜉𝜉) and by making 𝜔/k
the quantity to be determined the determinant can be rewritten as follows:

|
|
|
|
|
|

(𝜉𝜉)11 −𝜌𝜔2/k2 (𝜉𝜉)12 (𝜉𝜉)13
(𝜉𝜉)12 (𝜉𝜉)22 −𝜌𝜔2/k2 (𝜉𝜉)23
(𝜉𝜉)13 (𝜉𝜉)23 (𝜉𝜉)33 −𝜌𝜔2/k2

|
|
|
|
|
|

= 0. (4.64)

This makes it clear that 𝜔 is a linear function of k and that 𝜔 varies in general with the
direction of 𝐤. Thus, in general, the group velocity of the wave, 𝐯g = ∇𝐤𝜔(𝐤), depends on
the direction of the wave but not on its frequency. In particular, we note that in general
the wave does not travel in the direction of its wave vector because in general 𝐯g is not
parallel to 𝐤. Since the (𝜉𝜉) matrix is symmetric its eigenvalues are always real and its
eigenvectors are always perpendicular to each other. The eigenvectors are the amplitudes
𝐀(𝐤,𝜔) in eqn. 4.62 and their directions relative to the wave vector 𝐤 determine whether
the waves are longitudinal or transverse or a mixture of the two.

In the isotropic elastic approximation (kk) is given by eqn. 4.17. One solution of the
dispersion equations, eqn. 4.63, is c2l = 𝜔2/k2 = (𝜆+ 2𝜇)/𝜌, and is independent of the
direction of 𝐤, as expected in an isotropic medium. When this solution is substituted
back into eqn. 4.62 it is found the wave amplitude is parallel to the wave vector and it
is called the longitudinal wave or ‘P-wave’. This wave produces alternating compression
and dilation of the medium along the direction of propagation of the wave. The other
two solutions are degenerate with c2t = 𝜔2/k2 = 𝜇/𝜌, and they are also independent of the
direction of the wave vector. In these cases the wave amplitudes are perpendicular to each
other and to the wave vector, and they are called transverse waves, or ‘S-waves’. These
waves produce shears of the medium and are not associated with local volume changes.
For all three waves the group velocity is always parallel to the wave vector, and there is
always one purely longitudinal wave and two purely transverse waves for all wave vectors.
This combination of features of the propagation of elastic waves in isotropic materials is
unique, and may be found in anisotropic materials only when the wave vector coincides
with a direction of high rotational symmetry.

In section 4.6 we saw that the crystal lattice Green’s function converged to the elastic
Green’s function in the limit of long wavelengths. For the same reason the dispersion
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relations for the crystal lattice converge to those of the elastic continuum in the limit of
long wavelengths, that is, as |𝐤| → 0.

4.9 The elastodynamic Green’s function

Having analysed the properties of elastic waves we are in a position to tackle the time-
dependent Green’s function of elastodynamics. The time-dependent generalisation of
eqn. 4.8 for the elastostatic Green’s function is to consider a point force that is applied as
an infinitely abrupt pulse at t = 0 that generates a displacement field that propagates away.
In an isotropic medium we can expect a spherical longitudinal wave to travel outwards
from the point pulse followed by two degenerate spherical shear waves. Thus in the
equation of motion, eqn. 4.61, we set fi = 𝛿im𝛿(𝐱)𝛿(t) to describe a pulse of force of
unit magnitude along the xm-axis at the origin at time t = 0. The elastodynamic Green’s
function in an infinite, homogeneous elastic medium is then defined by the following
partial differential equation:

ci jklGkm,lj(𝐱, t) + 𝛿im𝛿(𝐱)𝛿(t) = 𝜌G̈im(𝐱, t), (4.65)

where as usual the two dots over the Green’s function signify the second derivative with
respect to time.

To solve this equation we exploit the translational symmetry of the medium in space
and time through four-dimensional Fourier transforms:

̃f (𝐤,𝜔) =∫∫ f (𝐱, t)ei(𝐤⋅𝐱−𝜔t)d3xdt (4.66)

f (𝐱, t) = 1
(2𝜋)4 ∫∫ ̃f (𝐤,𝜔)e−i(𝐤⋅𝐱−𝜔t)d3kd𝜔. (4.67)

Applying the four-dimensional Fourier transform to eqn. 4.65 we obtain

((kk)ik −𝜌𝜔2𝛿ik)G̃km(𝐤,𝜔) = 𝛿im, (4.68)

from which it follows that

Gkm(𝐱, t) =∫∫[((kk) − 𝜌𝜔2I )−1]
km
e−i(𝐤⋅𝐱−𝜔t)d3kd𝜔,

where I is the 3× 3 identity matrix.
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As with the elastostatic Green’s function we resort to the isotropic elastic approxima-
tion to make further progress,26 whereupon we have

((kk) − 𝜌𝜔2I)ik = (𝜇k2 −𝜌𝜔2)𝛿ik + (𝜆+𝜇)kikk,

Exercise 4.4

Using the same procedure to invert (kk) following eqn. 4.17 show that

G̃im(𝐤,𝜔) = [((kk) − 𝜌𝜔2I)−1]
im
= 1
𝜌 [

𝛿im − kikm/k2
c2t k2 −𝜔2

+ kikm/k2
c2l k

2 −𝜔2
] .

Taking the inverse Fourier transform we obtain the following Green’s function for
t > 0 for the point force pulse at the origin:

4𝜋𝜌xGi j(𝐱, t) =
𝛿(x− clt)

cl

xixj
x2

+ 𝛿(x− ctt)
ct

(𝛿i j −
xixj
x2

)

+ [H(x− clt) −H(x− ctt)]
t
x2
(𝛿i j −

3xixj
x2

), (4.69)

where H(x) is the Heaviside step function: H(x) = 1 if x > 0, H(x) = 0 if x < 0. We see
in this solution two spherical waves emanating from the point force pulse at the origin,
with the longitudinal wave expanding faster than the shear wave. The material beyond
the longitudinal wave front is undeformed.

4.10 Problem set 4

1. Derive the Green’s function in linear isotropic elasticity using the line integral in
eqn. 4.16.

2. A dumb-bell interstitial defect27 has axial symmetry and is located at the origin
of a Cartesian coordinate system in an elastically isotropic medium. With its axis
along the unit vector 𝐞̂ it exerts a defect force f 𝐞̂ at h 𝐞̂ and another defect force
−f 𝐞̂ at −h 𝐞̂. Write down the dipole tensor for the defect.

26 This was first done by Stokes in Trans. Camb. Phil. Soc. 9 1–62 (1849). https://archive.org/stream/
transactionsofca09camb. Sir George Gabriel Stokes PRS 1819–1903, Irish mathematician and physicist.
27 An interstitial defect occupies a site between those of the host crystal. The defect force for an interstitial

defect is therefore the entire force it exerts on a neighbour in the relaxed configuration.

https://archive.org/stream/transactionsofca09camb
https://archive.org/stream/transactionsofca09camb
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Show that in an isotropic medium

Gi j,k(𝐱) =
−1

16𝜋𝜇(1−𝜈)x2 ((3− 4𝜈)𝜌k𝛿i j − (𝜌j𝛿ik +𝜌i𝛿jk) + 3𝜌i𝜌j𝜌k) , (4.70)

where 𝜌i = xi/x.

Hence show that for x≫ h the displacement field at 𝐱 of the dumb-bell defect is
given by

ui(𝐱) =
2fh

16𝜋𝜇(1−𝜈)x2 [(3cos
2𝛼 − 1)𝜌i + 2(1− 2𝜈)(cos𝛼)ei]

where cos𝛼 = ej𝜌j.

Hence show that at a given distance x from the point defect the elastic displacement
along the axis of the defect is 4(1−𝜈) larger than the displacement along any
direction perpendicular to the defect axis, and of opposite sign.

3. Consider a cubic crystal where the elastic anisotropy ratio is close to 1. Then
D = c11 − c12 − 2c44 is small compared to c12 and c44. Equation 3.22 for the elastic
constant tensor in a cubic crystal may always be expressed as

ci jkl = c0i jkl +𝛿i j𝛿jk𝛿klD,

where c0i jkl is the elastic constant tensor for an isotropic crystal where we choose

c012 = c12 = 𝜆, c044 = c44 = 𝜇. Let (KK)jm = cjlmsklks and (kk)jm = c0jlmsklks. Show that

(KK)−1 = (kk)−1 − (kk)−1V(KK)−1,

where Vjm =D(k21𝛿j1𝛿m1 + k22𝛿j2𝛿m2 + k23𝛿j3𝛿m3). This equation28 is exact whatever
the magnitude of D. Although it can be solved for (KK)−1 the inverse Fourier
transform requires the solution of a sextic equation to locate the poles, which can
be done only numerically.

However, since D/𝜇 is small it suggests a perturbation expansion:

(KK)−1 = (kk)−1 − (kk)−1V(kk)−1 + (kk)−1V(kk)−1V(kk)−1 − . . .

28 This is aDyson equation—see Economou, EN,Green’s functions in quantum physics, Springer-Verlag: Berlin
(1983). ISBN 978-3642066917.
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Using eqn. 4.18 for [(kk)−1]
jp
show that to first order inD/c44 the Green’s function

tensor in the cubic crystal in k-space becomes

G̃i j(𝐤) = [(KK)−1]
i j

= 1
𝜇
𝛿i j
k2

− 1
𝜇 (

𝜆+𝜇
𝜆+ 2𝜇)

kikj
k4

+ D
𝜇

1
𝜇
(𝛿i1k21𝛿j1 +𝛿i2k22𝛿j2 +𝛿i3k23𝛿j3)

k4

− D
𝜇

1
𝜇 (

𝜆+𝜇
𝜆+ 2𝜇)

(k31(𝛿i1kj + ki𝛿j1) + k32(𝛿i2kj + ki𝛿j2) + k33(𝛿i3kj + ki𝛿j3))
k6

+ D
𝜇

1
𝜇 (

𝜆+𝜇
𝜆+ 2𝜇)

2

kikj
(k41 + k42 + k43)

k8
(4.71)

Hence show that the first order corrections to the Green’s functions in isotropic
elasticity are

ΔG̃11(𝐤) =
D
𝜇

1
𝜇 (

k21
k4

−𝜒
2k41
k6

+𝜒2
k21(k41 + k42 + k43)

k8
)

ΔG̃12(𝐤) =
D
𝜇

1
𝜇 (−𝜒

k31k2 + k1k32
k6

+𝜒2
k1k2(k41 + k42 + k43)

k8
)

where 𝜒 = (𝜆 +𝜇)/(𝜆 + 2𝜇). To invert these Fourier transforms the following
integral is useful (it may be derived by contour integration):

1
(2𝜋)3 ∫

1
k2n

e−i𝐤⋅𝐱d3k = − 1
4𝜋

(−1)nx2n−3

(2n− 2)! ,

where n = 1,2,3, . . . . Other integrals needed to evaluate the inverse transformsmay
by obtained by differentiating this integral with respect to components of 𝐱. Thus,
we obtain the following inverse transforms

1
(2𝜋)3 ∫

k21
k4
e−i𝐤⋅𝐱d3k = 1

8𝜋x (1−
x21
x2
)
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1
(2𝜋)3 ∫

k31kj
k6

e−i𝐤⋅𝐱d3k = 3
32𝜋x (𝛿1j −

x1xj
x2

)(1−
x21
x2
)

1
(2𝜋)3 ∫

k51kj
k8

e−i𝐤⋅𝐱d3k = 5
64𝜋x (𝛿1j −

x1xj
x2

)(1−
x21
x2
)
2

1
(2𝜋)3 ∫

k21k
4
2

k8
e−i𝐤⋅𝐱d3k = 1

64𝜋x (1−
x22
x2
)(

x23
x2
+ 5

x21x
2
2

x4
)

1
(2𝜋)3 ∫

k1k2k
4
3

k8
e−i𝐤⋅𝐱d3k = − 1

64𝜋x
x1x2
x2

(1−
x23
x2
)(1− 5

x23
x2
).

Hence show that

ΔG11(𝐱) =
1
𝜇
D
𝜇

1
8𝜋x [(1−

x21
x2
)− 3𝜒

2
(1−

x21
x2
)
2

+ 𝜒2

8
(5(1−

x21
x2
)
3

+(1−
x22
x2
)(
x23
x2
+ 5

x21x
2
2

x4
)+(1−

x23
x2
)(
x22
x2
+ 5

x21x
2
3

x4
))]

ΔG12(𝐱) =
1
𝜇
D
𝜇

1
8𝜋x

x1x2
x2

[3𝜒
4
(1+

x23
x2
)− 𝜒2

8
(5((1−

x21
x2
)
2

+(1−
x22
x2
)
2

)

+(1−
x23
x2
)(1− 5

x23
x2
))].

The other elements of the Green’s function are found by permuting the subscripts.

4. In a hexagonal crystal show that the (kk) matrix is as follows:

(kk) =
⎡⎢⎢⎢⎢
⎣

c11k
2
1 + c66k22 + c44k23

1

2
(c11 + c12)k1k2 (c44 + c13)k1k3

1

2
(c11 + c12)k1k2 c66k

2
1 + c11k22 + c44k23 (c44 + c13)k2k3

(c44 + c13)k1k3 (c44 + c13)k2k3 c44(k21 + k22) + c33k23

⎤⎥⎥⎥⎥
⎦

,

where c66 =
1

2
(c11 − c12).

Since the elastic constant tensor is invariant with respect to rotations about the
hexagonal axis (which is the x3-axis), we may choose 𝐤 = (0,k2,k3). With this
simplification the determinant in eqn. 4.63 can be factorised. Determine the three
solutions for 𝜔2 = 𝜔2(0,k2,k3).
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Determine the frequencies and polarisations of the three waves with 𝐤 in the basal
plane and normal to the basal plane.

5. Consider theGreen’s function, 𝛾km(𝐱, t) in isotropic elasticity, for an oscillatory unit
body force located at the origin described by fi(t) = 𝛿im𝛿(𝐱)cos(𝜔t). The equation
of motion for 𝛾km(𝐱, t) is as follows:

ci jkl𝛾km,lj(𝐱, t) + 𝛿im𝛿(𝐱)cos(𝜔t) = 𝜌 ̈𝛾im(𝐱, t).

To satisfy the time dependence in this equation we must have29 𝛾im(𝐱, t) =
𝜒 im(𝐱)cos𝜔t, where 𝜒(𝐱) satisfies following equation:

ci jkl𝜒km,lj(𝐱)+ 𝛿im𝛿(𝐱) = −𝜌𝜔2𝜒im(𝐱)

Show that the Fourier transform ̃𝜒(𝐤) satisfies

[(kk)ik −𝜌𝜔2𝛿ik] ̃𝜒km = 𝛿im

and therefore, in an isotropic medium,

̃𝜒im = 1
𝜌 [

𝛿im − kikm/k2
c2t k2 −𝜔2

+ kikm/k2
c2l k

2 −𝜔2
] .

Hence show that

𝜒im(𝐱) =
𝛿im

4𝜋𝜌c2t
cos(𝜔x/ct)

x
+ 1

4𝜋𝜌𝜔2x
𝜕
𝜕xi

𝜕
𝜕xm

(cos(𝜔x/ct) − cos(𝜔x/cl)) .

6. It was shown in section 4.7 that the stress in an inclusion, which would undergo
a homogeneous strain eTij if it were not constrained by the surrounding matrix, is

given by 𝜎Ii j = 𝜎Cij −𝜎Tij , where 𝜎Tij and 𝜎Cij are the stresses related respectively to the
strain eTij and the constrained strain eCij by Hooke’s law. The stress and strain fields

in the matrix surrounding the inclusion are the constrained fields 𝜎Cij and eCij . Let

the strain related to 𝜎Ii j through Hooke’s law be eIi j = e
C
ij − eTij . Then the total elastic

energy is

Eel =
1
2
∫
ℛ

𝜎Ii jeIi jdV+
1
2
∫

matrix

𝜎Cij eCijdV,

where ℛ is the region that has transformed and matrix is the surrounding matrix.
Using the continuity of surface tractions and of constrained displacements at all

29 If damping were included in the equation of motion there would be a phase difference between the
vibrations of the medium and those of the oscillator.
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points in the interface surrounding the inclusion, and the divergence theorem,
prove that

1
2
∫

matrix

𝜎Cij eCijdV = −1
2
∫
ℛ

𝜎Ii jeCijdV.

Hence show that the total elastic energy may be expressed as the following volume
integral over the inclusion only, regardless of its shape:

Eel = −1
2
∫
ℛ

𝜎Ii jeTijdV.

Since the constrained stress and strain fields are homogeneous inside an ellipsoidal
inclusion the elastic energy is −(V/2)𝜎Ii jeTij , where V is the volume of the ellipsoid.

In question 10 of Problem set 6 it is shown that the interaction energy between
an ellipsoidal inclusion and an applied strain field eAi j is as follows:

Eint = −∫
ℛ

𝜎Tij eAi jdV,

where again the volume integral is taken over the inclusion only.

7. Show that the Green’s function in isotropic elasticity (eqn. 4.19) may be
expressed as

Gi j(𝐱−𝐱′) =
1

4𝜋𝜇
𝛿i j

|𝐱−𝐱′| −
1

16𝜋𝜇(1−𝜈)
𝜕
𝜕xi

𝜕
𝜕xj

|𝐱−𝐱′| .

An inclusion would undergo a homogeneous transformation strain eTjk if it were not

constrained by the surrounding matrix. Let 𝜎Tjk be the stress obtained by applying
Hooke’s law to the transformation strain eTij . By applying the divergence theorem to

eqn. 4.31 for the constrained displacement field uCi (𝐱), and using the above form
of the Green’s function, show that the displacement field when the inclusion is
constrained by the matrix is given by

uCi (𝐱) = −𝜎Tjk {
1

4𝜋𝜇𝛿i j𝜙,k −
1

16𝜋𝜇(1−𝜈) 𝜓,i jk} ,



OUP CORRECTED PROOF – FINAL, 22/5/2020, SPi

Problem set 4 91

where 𝜙(𝐱) and 𝜓(𝐱) are the potentials:

𝜙(𝐱) =∫
ℛ

d3x′

|𝐱−𝐱′|

𝜓(𝐱) =∫
ℛ

|𝐱−𝐱′|d3x′.

The integrations in these potentials are carried over the region ℛ occupied by the
inclusion before it transforms. Show that

∇2𝜓(𝐱) = 2𝜙(𝐱)

∇2𝜙(𝐱) = { 4𝜋 if 𝐱 is in ℛ
0 otherwise

Consider an inclusion in which the stress-free transformation strain is a dilation
eTij =

eT

3
𝛿i j. Show that

uCi (𝐱) = − (1+𝜈)
12𝜋(1−𝜈) e

T𝜙,i(𝐱).

Hence prove that the dilation in the matrix is zero, while the dilation in the
inclusion is

eC = eT

3
(1+𝜈
1−𝜈).

Show that the stress in the inclusion is

𝜎Ijk = 𝜎Cjk −𝜎Tjk = −4𝜇eC
3

𝛿jk = −4𝜇eT
9

(1+𝜈
1−𝜈)𝛿jk.

Remarkably, these results are independent of the shape of the inclusion, but they
do assume the elastic constants inside the inclusion are the same as those outside,
and that they are isotropic. For 𝜈 = 1

3
we find the matrix reduces the dilation of the

inclusion by a factor of
1

3
.
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Point defects

The theory perhaps suffers from the disadvantage that its limitations are more
immediately obvious than are those of other approximate methods which have to be
used in dealing with the solid state . . . . A simple treatment at cottage-industry level
may sometimes provide a certain degree of insight into some phenomenon or other
when an exact calculation, based on a theoretical model which apes reality precisely,
will give accurate answers but may be too unsurveyable, or too numerical, to give
much insight.

JD Eshelby in Point defect behaviour and diffusional processes, ed. RE Smallman and E
Harris, The Metals Society: London (1977), pp.3–10. Copyright © Institute of
Materials, Minerals and Mining, reprinted by permission of Taylor & Francis Ltd,
http://www.tandfonline.com, on behalf of Institute of Materials, Minerals and Mining.

5.1 Introduction

Point defects are ubiquitous in crystalline materials. They are classified as either intrinsic
or extrinsic. Intrinsic point defects are vacancies and self-interstitials. A vacancy is a
vacant atomic site that would normally be occupied by a host atom. A self-interstitial
is created when one of the atoms of the crystal is occupying a site in the space,
called the ‘interstice’, between usual crystal sites. Extrinsic point defects are foreign
atoms that have been incorporated into the crystal structure either on substitutional or
interstitial sites.

Unlike linear and planar defects there may be populations of point defects in
thermodynamic equilibrium in a crystal. For example, the equilibrium concentration of
vacancies in a crystal at a given temperature and pressure is exp(−G f/kBT ) where G f is
the Gibbs free energy of formation of the point defect. The thermodynamic equilibrium
concentration of foreign atoms in a crystal depends on their chemical potentials, which
in turn depend on the partial pressures of these impurities in the vapour phase in
equilibrium with the crystal.

Thermodynamic equilibrium is seldom achieved in crystals, but its existence is
important because it indicates the state of the system towards which it will naturally
evolve under prescribed environmental conditions provided it is not being driven away
from thermodynamic equilibrium by external influences such asmechanical deformation
or irradiation. The diffusion of point defects leads tomass transport and possibly changes
of phase in the solid state. For example, diffusion in pure crystals usually occurs through

Physics of elasticity and crystal defects. Adrian P. Sutton, Oxford University Press (2020). © Adrian P. Sutton.
DOI: 10.1093/oso/9780198860785.001.0001
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the migration of vacancies, as they are the only sites in the crystal that can undergo a
change of occupation through a host atom jumping into one of them. This is analogous
to electronic conduction in a p-type semiconductor which occurs through the movement
of electronic holes at the top of the valence band.

Point defects may be created in concentrations far in excess of those prescribed
by thermodynamic equilibrium through processes such as plastic deformation and
irradiation by high-energy particles. When this happens the point defects may aggregate
and form small interstitial and vacancy clusters that can be very mobile, especially when
they are small. Intrinsic point defects such as vacancies may be attracted to foreign atoms
and form new combined defects called complexes. The variety of point defects can
be huge.

In this chapter we will focus on how point defects interact with each other through
their elastic fields. We begin with the model of a point defect as a misfitting sphere. We
will go on to consider models of point defects that capture the symmetry of the atomic
environment of the point defect.

5.2 The misfitting sphere model of a point defect

The simplest model of a point defect is a misfitting sphere1 due to Bilby.2 Cut out
a spherical hole of radius rh in an elastic continuum. Insert into the hole a sphere of
radius rs ≠ rh and weld the interface. The sphere may be larger or smaller than the
hole. We consider first the case where the inserted sphere is rigid and the contin-
uum is infinite in extent. All the deformation occurs in the continuum surrounding
the sphere.

Let 𝐮∞(𝐫) be the displacement field in the continuum surrounding the sphere at radius
r. The superscipt ‘infinity’ is to remind us that the continuum is infinite in extent. The
displacement field will be purely radial so that 𝐮∞(𝐫) = 𝐮∞(|𝐫|) = 𝐮∞(r). In the isotropic
approximation the displacement field must satisfy Navier’s equation, eqn. 4.4, which in
the absence of body forces becomes

𝜇∇2𝐮∞ + (𝜆+𝜇)∇(∇ ⋅ 𝐮∞) = 0. (5.1)

We have to be careful how we interpret this equation in spherical polar coordinates.
If we naively substitute the usual expressions for the Laplacian, gradient and divergence
in spherical polar coordinates (r,𝜃,𝜙) we will go wrong. When we rotate a Cartesian
coordinate system (x1,x2,x3) into another Cartesian coordinate system (x′1,x′2,x′3) the
transformation is the same at all points in space. But when we use spherical polar
coordinates (or other curvilinear coordinates) the transformation varies with position
because the coordinates r, 𝜃 and 𝜙 vary with position. Consequently, (dur,du𝜃,du𝜙) does

1 Bilby, BA, Proc. Phys. Soc. A 63, 191 (1950). https://doi.org/10.1088/0370-1298/63/3/302
2 Bruce Alexander Bilby FRS 1922–2013, British materials physicist.

https://doi.org/10.1088/0370-1298/63/3/302


OUP CORRECTED PROOF – FINAL, 22/5/2020, SPi

The misfitting sphere model of a point defect 95

not form a vector. The solution is to use tensor calculus, following Sokolnikoff.3 Then
it is found that the strain tensor in spherical polar coordinates is as follows:

err =
𝜕ur
𝜕r

e𝜃𝜃 =
1
r
𝜕u𝜃
𝜕𝜃 + ur

r

e𝜙𝜙 =
1

rsin𝜃
𝜕u𝜙
𝜕𝜙 + ur

r
+ u𝜃

cot𝜃
r

er𝜙 =
1
2
( 1
rsin𝜃

𝜕ur
𝜕𝜙 −

u𝜙
r
+
𝜕u𝜙
𝜕r )

er𝜃 =
1
2
(1
r
𝜕ur
𝜕𝜃 − u𝜃

r
+ 𝜕u𝜃

𝜕r )

e𝜙𝜃 =
1
2
(1
r

𝜕u𝜙
𝜕𝜃 −

u𝜙 cot𝜃
r

+ 1
rsin𝜃

𝜕u𝜃
𝜕𝜙 ).

Hooke’s law in isotropic elasticity in spherical polar coordinates is as follows:

𝜎rr = 2𝜇err +𝜆(err + e𝜃𝜃 + e𝜙𝜙)

𝜎𝜃𝜃 = 2𝜇e𝜃𝜃 +𝜆(err + e𝜃𝜃 + e𝜙𝜙)

𝜎𝜙𝜙 = 2𝜇e𝜙𝜙 +𝜆(err + e𝜃𝜃 + e𝜙𝜙)

𝜎r𝜃 = 2𝜇er𝜃
𝜎r𝜙 = 2𝜇er𝜙

𝜎𝜃𝜙 = 2𝜇e𝜃𝜙.

The equations of equilibrium in isotropic elasticity in spherical polar coordinates are
as follows:

𝜕𝜎rr
𝜕r + 1

rsin𝜃
𝜕𝜎r𝜙
𝜕𝜙 + 1

r
𝜕𝜎r𝜃
𝜕𝜃 +

2𝜎rr −𝜎𝜃𝜃 −𝜎𝜙𝜙 +𝜎r𝜃 cot𝜃
r

+ fr = 0

3 Sokolnikoff, IS, Mathematical theory of elasticity, 2nd edn., section 48, McGraw-Hill: New York (1956).
ISBN 978-0070596290. Ivan Stephan Sokolnikoff 1901–76 Russian-born, US mathematician.
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𝜕𝜎𝜙r
𝜕r + 1

rsin𝜃
𝜕𝜎𝜙𝜙
𝜕𝜙 + 1

r

𝜕𝜎𝜙𝜃
𝜕𝜃 +

3𝜎𝜙r + 2𝜎𝜙𝜃 cot𝜃
r

+ f𝜙 = 0

𝜕𝜎𝜃r
𝜕r + 1

rsin𝜃
𝜕𝜎𝜃𝜙
𝜕𝜙 + 1

r
𝜕𝜎𝜃𝜃
𝜕𝜃 +

3𝜎𝜃r + (𝜎𝜃𝜃 −𝜎𝜙𝜙)cot𝜃
r

+ f𝜃 = 0,

where (fr, f𝜃, f𝜙) is the body force at (r,𝜃,𝜙).

Exercise 5.1

Consider a radially symmetric elastic displacement field. In spherical polar coordinates the
displacement field 𝐮 is then purely radial, 𝐮 = [ur,0,0] and ur is a function of r only. Using
the equations above for the strain tensor, Hooke’s law and the equations of equilibrium in
spherical polar coordinates show that the equations of equilibrium become just one equation:

𝜕𝜎rr
𝜕r +

2𝜎rr −𝜎𝜃𝜃 −𝜎𝜙𝜙
r

+ fr = 0.

Hence derive a differential equation for ur in isotropic elasticity, in the absence of body force,
and show that the general solution is

ur(r) = Ar+D/r2, (5.2)

where A and D are arbitrary constants.

Returning to themisfitting sphere in an infinite mediumwe note that since 𝐮∞ must be
finite at r =∞ we choose u∞(r) =D/r2. The constant D is determined by the boundary
condition at the surface of the hole: u∞(rh) = rs − rh. Therefore D = (rs − rh)r2h.

One of the surprising features of this model is that the dilation is zero everywhere.
Inside the sphere there is no elastic strain because the sphere is assumed to be rigid.
Outside the sphere the strain in the radial direction is err = du∞r /dr = −2D/r3, while e𝜃𝜃 =
e𝜙𝜙 = ur/r =D/r3, so that the trace of the strain tensor is zero. But there is an overall
volume change ΔV∞ and it is all located in the misfitting sphere: ΔV∞ = (4𝜋/3)(r3s − r3h) ≈
4𝜋r2h(rs − rh) = 4𝜋D.

In reality all bodies are finite. Consider a finite body with a free surface 𝒮. The solution
for the misfitting sphere in an infinite medium has to be corrected by applying surface
tractions−𝜎∞i j nj over the surface 𝒮, where 𝜎∞i j = 2𝜇𝜕u∞i /𝜕xj, and in Cartesian coordinates
u∞i =Dxi/r3. These tractions cancel those that would exist on the surface if the infinite
solution were not corrected. To calculate the change ΔVI in the volume of the body
caused by this distribution of surface tractions consider the integral:
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∫
𝒮

𝜎∞i j xinjdS =∫
V

(𝜎∞i j xi),jdV =∫
V

𝜎∞ij,jxi +𝜎∞i j 𝛿i jdV =∫
V

−fixidV+V ⟨𝜎ii⟩ ,

where the divergence theorem and the equilibrium condition have been used. Since there
is no body force in V the average trace of the stress tensor is ⟨𝜎ii⟩ inside the body when
the distribution of surface tractions −𝜎∞i j nj is applied is given by

V ⟨𝜎ii⟩ = −∫
𝒮

𝜎∞i j xinjdS

= −∫
𝒮

2𝜇D(
𝛿i j
r3
−

3xixj
r5

)xinjdS

= 4𝜇D∫
𝒮

xini
r3

dS,

where (xini/r3)dS is an element of solid angle, and the final surface integral is therefore
4𝜋. The change in volume, ΔVI, caused by the elimination of the surface tractions is
given by 3BΔVI = ⟨𝜎ii⟩V = 16𝜋𝜇D = 4𝜇ΔV∞. The total volume change caused by the
misfitting sphere in a finite body is given by

ΔV = ΔV∞ +ΔVI = 4𝜋D(3B+ 4𝜇
3B

) = 3ΔV∞ (1−𝜈
1+𝜈), (5.3)

where we have used B = 2𝜇(1+𝜈)/(3(1− 2𝜈)), and 𝜈 is Poisson’s ratio. For 𝜈 = 1/3,
which is typical of many metals, the increase in the overall volume of the body as a result
of the presence of free surfaces is approximately 50%. It is remarkable that this result does
not depend on the size of the body, or its shape, or where the defect is located within it.
This is an example of an insight from a simple model into a universal property of point
defects that would be virtually impossible to obtain from a purely atomistic model.

Exercise 5.2

Consider a misfitting deformable sphere at the centre of a much larger sphere of radius R on
the surface of which there are no tractions. The radius of the hole into which the misfitting
sphere is inserted is rh. The radius of the unconstrained (i.e. stress-free) deformable sphere
is rs. The bulk modulus and the shear modulus of the large sphere of radius R are B and 𝜇
respectively, and the bulk modulus of the misfitting sphere is B′.

To first order in the difference rs − rh show that the volume change of the sphere of radius
R is continued
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Exercise 5.2 Continued

ΔV = (
1+ 4𝜇

3B

1+ 4𝜇
3B′

)𝛿v,

where 𝛿v = 4𝜋r2h(rs − rh) is the misfit volume.
Show that the dilation in the large sphere is

eii =
4𝜇
3B

1+ 4𝜇
3B′

𝛿v
V
,

where V = 4𝜋R3/3 is the volume of the sphere of radius R.

5.3 Interaction energies

The misfitting sphere model has been used widely owing to its attractive simplicity.
But its central assumption that the defect has spherical symmetry limits its applicability
principally to substitutional defects at sites of cubic symmetry. It is less applicable to
interstitial defects which may display highly non-spherical symmetries, such as split
interstitials and crowdion defects. We saw in section 4.5 how the multipole expansion
may be applied to derive the displacement field of a substitutional point defect. It may
also be applied to the displacement field of an interstitial defect, with the sole difference
that the defect forces are the entire forces, rather than the excess forces, exerted by
the foreign atom on the surrounding neighbours in the equilibrium state. The multipole
expansion captures the symmetry of the site occupied by the defect. In this section we
consider the interaction energy between two point defects using the multipole expansion.
This is a hybrid approach using interatomic forces to describe the sources of the elastic
fields and elasticity theory to describe the interactions over distances much larger than
the atomic scale. The analysis of this section follows Siems.4

We begin by thinking about the problem entirely from an atomistic viewpoint. In
eqn. 3.28 we wrote down the harmonic expansion of the potential energy of the crystal.
Here we write it slightly differently:

E = −∑
n

f (n)i u(n)i + 1
2
∑
n

∑
p

𝜕2E
𝜕u(n)i 𝜕u(p)j

u(n)i u(p)j , (5.4)

4 Siems, R, Phys. Stat. Sol. 30, 645–58 (1968). https://doi.org/10.1002/pssb.19680300226

https://doi.org/10.1002/pssb.19680300226
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where we interpret the forces f (n)i as being forces due to an existing defect which create

the displacement field u(n)i . Let the vector of defect forces be 𝐟, the vector of atomic
displacements be 𝐮 and the matrix of second derivatives be 𝐒. Then we can rewrite
eqn. 5.4 for the potential energy of the defect as follows:

E = −𝐟 ⋅ 𝐮+ 1
2
𝐮𝐒𝐮 = −1

2
𝐟 ⋅ 𝐮 = −1

2
𝐮𝐒𝐮,

where E is minimised when 𝐟 = 𝐒𝐮. Notice that this energy is negative. It is the energy
of relaxing the system of defect forces and harmonic atomic interactions. The defect
forces do work when the atoms on which they act are displaced thereby reducing the
potential energy by−𝐟 ⋅ 𝐮. These displacements induce further displacements that extend
throughout the crystal and which raise the potential energy by

1

2
𝐮𝐒𝐮. A balance between

these two competing terms is established when 𝐟 = 𝐒𝐮, and the reduction in the potential
energy is then only half of −𝐟 ⋅ 𝐮.

If there is a second defect, with defect force vector ̃𝐟 and vector of atomic displace-
ments 𝐮̃, with ̃𝐟 = 𝐒𝐮̃ and Ẽ = − 1

2
̃𝐟 ⋅ 𝐮̃, we may use the linear superposition principle to

write the total potential energy as follows:

ET = −(𝐟+ ̃𝐟) ⋅ (𝐮+ 𝐮̃)+ 1
2
(𝐮+ 𝐮̃)𝐒(𝐮+ 𝐮̃)

= E+ Ẽ+Eint,

where the interaction energy Eint is given by

Eint = −(𝐟 ⋅ 𝐮̃ + ̃𝐟 ⋅ 𝐮)+ 1
2
(𝐮𝐒𝐮̃+ 𝐮̃𝐒𝐮)

= −𝐟 ⋅ 𝐮̃ = − ̃𝐟 ⋅ 𝐮. (5.5)

The last equality follows from Maxwell’s reciprocity theorem. This result for the
interaction energy may be understood in the following way. Suppose the first defect
already exists and we introduce the second defect. The atoms on which the defect forces
𝐟 of the first defect act are displaced further by the displacement field 𝐮̃ of the second
defect. The additional work done is −𝐟 ⋅ 𝐮̃. If we repeat the argument but with the second
defect existing before the first the work done is − ̃𝐟 ⋅ 𝐮.

To describe the interaction energy over large separations between the defects we
may use defect forces from an atomistic calculation and elasticity theory to evaluate the
displacement field. That is why we call this a hybrid approach.

With the first point defect at the origin of the Cartesian coordinate system the
interaction energy with a second point defect at 𝐱 is

Eint = −∑
n

̃fi(𝐑(n))ui(𝐱+𝐑(n)), (5.6)
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where ̃fi(𝐑(n)) is the force exerted by the defect at 𝐱 on its neighbour at the relative position
𝐑(n) and ui(𝐱+𝐑(n)) is the displacement of this neighbour due to the defect at the origin.
Provided |𝐱| ≫ |𝐑(n)| we may expand ui(𝐱+𝐑(n)) about ui(𝐱):

ui(𝐱+𝐑(n)) = ui(𝐱)+R(n)
j ui,j(𝐱)+

1
2
R(n)
j R(n)

k ui,jk(𝐱)+
1
6
R(n)
j R(n)

k R(n)
l ui,jkl(𝐱)+… (5.7)

Substituting this Taylor expansion into the interaction energy, eqn. 5.6, we obtain

Eint = −
������
(∑

n

̃fi(𝐑(n)))ui(𝐱)− ̃𝜌i jui,j(𝐱)−
1
2
̃qijkui,jk(𝐱)−

1
6
̃oijklui,jkl(𝐱)−…, (5.8)

where the sum of the defect forces is zero provided the defect at 𝐱 is relaxed and ̃𝜌i j, ̃qijk
and ̃oijkl are the dipole, quadrupole and octupole moments respectively of the forces
exerted by the defect at 𝐱.

We can now use the multipole expansion, eqn. 4.21, to expand the displacement field
due to the defect at the origin:

ui(𝐱) =∑
m

Gia(𝐱−𝐑(m))fa(𝐑(m))

=∑
m

(Gia(𝐱)−R(m)
b Gia,b(𝐱)+

1
2
R(m)
b R(m)

c Gia,bc(𝐱)−
1
6
R(m)
b R(m)

c R(m)
d Gia,bcd(𝐱)+…) fa(𝐑(m))

=Gia(𝐱)
�����∑
m

fa(𝐑(m)) −Gia,b(𝐱)𝜌ab +
1
2
Gia,bc(𝐱)qabc −

1
6
Gia,bcd(𝐱)oabcd + . . . (5.9)

The sum of the forces exerted by the defect at the origin on its neighbours is zero
provided the defect is relaxed. The dipole, quadrupole and octupole moments of the
forces exerted by the defect at the origin are 𝜌ab, qabc and oabcd respectively. Inserting
the displacement field ui(𝐱) into the interaction energy of eqn. 5.8, and collecting terms
involving the same order of differentiation of the Green’s function we obtain finally:

Eint = ̃𝜌i jGia,bj(𝐱)𝜌ab

+ 1
2
( ̃qijkGia,bjk(𝐱)𝜌ab − ̃𝜌i jGia,bcj(𝐱)qabc)

+ 1
12

(2 ̃oijklGia,bjkl(𝐱)𝜌ab + 2 ̃𝜌i jGia,bcdj(𝐱)oabcd − 3 ̃qijkGia,bcjk(𝐱)qabc)+…
(5.10)

The first line is the dipole–dipole interaction and it decays as 1/|𝐱|3. The second line
is the dipole–quadrupole interaction and it decays as 1/|𝐱|4. The third line describes
interactions that depend on the fourth derivative of the Green’s function, which
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decays as 1/|𝐱|5, and involves quadrupole–quadrupole interactions and dipole–octupole
interactions.

5.4 The 𝜆-tensor
In the previous section we saw that a point defect at 𝐱 has an interaction energy with
another elastic field according to eqn. 5.8. Thus, if the strain field with which it interacts
is homogeneous then the interaction energy involves only the dipole tensor, a strain
gradient at 𝐱 will interact with the quadrupole tensor, the second derivative of the strain
at 𝐱 will interact with the octupole tensor of the defect and so on. If there is a dilute
solution of these point defects their dipole tensors can drive a change of shape of the
crystal. If c is the atomic concentration of the point defect then the 𝜆-tensor describes
the rate of change of the spontaneous homogeneous strain of the crystal with c in the
absence of any forces applied to the surface of the crystal:

𝜆kl =
dehkl
dc

(5.11)

To expose the relationship between the 𝜆-tensor and the dipole tensor consider the
elastic energy of the crystal containing a solution of the defects. It is assumed that
the defects are sufficiently far apart that their defect forces do not overlap, and therefore
the dipole tensors are the same as those for an isolated defect. In a volume V let
there be N defects. If the atomic volume of the host atoms is Ω then c =NΩ/V in the
dilute limit. If the crystal undergoes a homogeneous strain ehi j the elastic energy of the
volume V becomes

E = −N𝜌i jehi j +
V
2
cijkle

h
i je
h
kl.

Minimising this elastic energy with respect to the homogeneous strain we obtain

N𝜌i j = Vcijklehkl.

Substituting N = Vc/Ω and differentiating the resulting expression with respect to the
concentration c we obtain

𝜌i j =Ωcijkl𝜆kl. (5.12)

This is a very useful relationship because the 𝜆-tensor is experimentally measurable using
X-ray diffraction for example. By measuring the dependence of the homogeneous strain
on concentration c of the solute atoms, in the limit of small concentrations, the 𝜆-tensor
may be deduced using eqn. 5.11.
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5.5 Problem set 5

1. Consider two point defects occupying sites of cubic point group symmetry in
a slightly anisotropic cubic crystal, such as aluminium for which the anisotropy
ratio is 1.2. Their elastic dipole tensors are ̃𝜌i j = ̃d𝛿i j and 𝜌i j = 𝛿i jd. The elastic
interaction energy at large separations is given by

Eint = ̃𝜌i jGia, jb(𝐱)𝜌ab = ̃ddGij, ji(𝐱).

Show that in an elastically isotropic medium Gij, ji = 0.

Using eqn. 4.71 for the first order correction to the Fourier transform of the
Green’s function in a cubic crystal show that

Gij, ji(𝐱) = −( c11 − c12 − 2c44
(c12 + 2c44)2

) 1
(2𝜋)3 ∫

k41 + k42 + k43
k4

e−i𝐤⋅𝐱d3k

= −( 3
8𝜋)(

c11 − c12 − 2c44
(c12 + 2c44)2

) 1
x3
[5
x41 + x42 + x43

x4
− 3] . (5.13)

2. Consider a substitutional point defect located at the origin of a Cartesian
coordinate system in an infinite simple cubic crystal structure with lattice constant
a. The forces exerted by the defect on each of the six nearest neighbours have
magnitude f, and they are directed along the bonds. Show that the displacement
field ui(𝐱) at 𝐱 is approximately −2afGij,j(𝐱), and state the nature of the
approximation.

Show that in the isotropic elastic approximation:

ui(𝐱) =
(1− 2𝜈)af
4𝜋𝜇(1−𝜈)

xi
x3
.

Hence calculate the volume change ΔV∞ associated with the point defect in an
infinite medium. By comparing your answer with ΔV∞ in the model of a point
defect as a misfitting sphere in an infinite medium obtain an expression for
D = ΔV∞/(4𝜋) in the misfitting sphere model in terms of the bond length a and
defect force f.

3. Consider two vacancies in tungsten, which has a body-centred cubic crystal
structure, and its elastic properties are well approximated as isotropic.5 Aligning
the coordinate axes with the sides of the cubic unit cell show that the dipole tensor
is 𝜌i j = p𝛿i j.

5 This problem is inspired by section 23.2 of Teodosiu’s book.
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In the first problem of this set it was shown that dipole–dipole interaction energy
is zero because Gij, ji = 0. The symmetry of atomic sites in the bcc crystal dictates
that the quadrupole tensor is zero.

Show that there are only two types of non-zero independent elements of the
octupole tensor: o1111 and o1122. Note that o1122 = o1212 = o1221. Hence show that
the octupole tensor may be expressed as

oijkl = o1111𝛿i j𝛿jk𝛿kl + o1122 (𝛿i j𝛿kl +𝛿ik𝛿jl +𝛿il𝛿jk − 3𝛿i j𝛿jk𝛿kl) .

Show that the first non-zero term in the interaction energy between the defects is

Eint =
1
6
Gij,jiii [p( ̃o1111 − 3 ̃o1122) + ̃p(o1111 − 3o1122)] +

1
2
Gij,jikk(p ̃o1122 + ̃po1122),

where Gij,jiii means G1j,j111 +G2j,j222 +G3j,j333.

Hence show that

Eint =
7(1− 2𝜈)

8𝜋𝜇(1−𝜈)x5 [p( ̃o1111 − 3 ̃o1122)](
5(x41 + x42 + x43)

x4
− 3).

Thus, in an infinite isotropic cubic crystal like tungsten two vacancies interact
through the dipole–octupole interaction. This interaction energy displays the
same angular dependence,6 as was found in the first problem of this set for the
dipole–dipole interaction energy between two point defects occupying sites of
cubic symmetry in a weakly anisotropic cubic crystal. However, the dipole–dipole
interaction energy in a cubic crystal varies with separation x as 1/x3, as compared
with 1/x5 for the variation of the dipole–octupole interaction energy in an isotropic
crystal. Therefore, whenever there is a departure of the anisotropy ratio from unity
in a cubic crystal the dipole–dipole interaction will dominate at long range.

6 The angular dependence is the cubic harmonic K4,1 = (√21/4)[5((x1/x)4+(x2/x)4+(x3/x)4)− 3],
which is normalised as follows: ∫(K4,1)

2
dΩ= 4𝜋 where dΩ= sin𝜃d𝜃d𝜙 is an element of solid angle. Cubic

harmonics are combinations of spherical harmonics with cubic symmetry. See Fehlner, WR and Vosko, SH,
Can. J. Phys. 54, 2159–69 (1976). https://doi.org/10.1139/p76-256

https://doi.org/10.1139/p76-256
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6.1 Introduction

When crystals are deformed there is a limit to which the deformation remains elastic
or reversible. Beyond this limit the crystal fractures if it is brittle. If it is ductile further
deformation takes place, but the additional deformation is irreversible or ‘plastic’. When
the load is removed from a ductile crystal that has been deformed plastically the shape
of the crystal has changed permanently. It is a characteristic property of many metals
and alloys that they can undergo plastic deformation before they fracture, which enables
them to be extruded, pressed, rolled and forged into everyday objects from car bodies to
drink cans and furniture to girders for bridges and skyscrapers.

In the early twentieth century there was a great deal of interest to discover what
happened inside a crystal when it ceased to deform elastically and began to deform
plastically. It was a mystery why some crystals such as copper and gold were extremely
ductile whereas others such as diamondwere brittle, at least at room temperature. Equally
baffling was the observation that some body-centred cubic (bcc) metals that were ductile
at room temperature became brittle at low temperatures displaying almost no ductility
before they fractured, while some face-centred cubic (fcc) metals remained ductile at
temperatures as low as a few kelvin. The rate at which a crystal was deformed was
also found to have a strong influence on the ductile/brittle behaviour of many crystalline
materials. The purity of the crystal was also found to affect the stress required to make it
deform plastically. Beginning to address these questions brought about the birth of the
science of materials in the 1930s. Today our understanding of all these phenomena and
processes is based on dislocations and how they interact with other defects in thematerial.
It is the movement of dislocations that leads to plastic deformation of crystalline matter,
and in general this happens more readily in metals than non-metals. During the 1950s
transmission electron microscopy made it possible to observe dislocations moving inside
very thin crystals undergoing plastic deformation. The complexity of many processes
involved in plasticity is so great that our understanding is still far from complete, and we
shall return to some of these issues in Chapter 10.

Physics of elasticity and crystal defects. Adrian P. Sutton, Oxford University Press (2020). © Adrian P. Sutton.
DOI: 10.1093/oso/9780198860785.001.0001
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6.2 Dislocations as the agents of plastic deformation

To a very good approximation crystals deform plastically at constant volume. Perma-
nent changes of shape are brought about by shearing processes in which planes of
atoms slide over each other. The sliding creates steps at the surface of the crystal,
which creates surface roughness that can be felt with a finger if a metal paperclip is
straightened. In 1926 Frenkel1 produced a startling back-of-an-envelope calculation
demonstrating that the stress required to slide a plane of atoms enmasse over another was
orders of magnitude larger than the stresses observed to initiate plastic deformation of
many metals.

Consider two adjacent planes of atoms in a crystal spaced d apart. Let the crystal
periodicity in the plane in the direction of sliding be b. Frenkel sought to calculate the
maximum stress required to slide one entire plane rigidly over the other. Let x be the
relative displacement of the two atomic planes in the direction of sliding. Let 𝛾(x) be
the energy per unit area of the plane associated with this relative displacement. What do
we know about 𝛾(x)? We know it must be periodic, with a period of b, and that 𝛾(x) is
minimised when x = nb where n in an integer. Therefore we can write

𝛾(x) = A0 +
∞
∑
n=1

An cos(
2n𝜋x

b
)+Bn sin(

2n𝜋x
b

), (6.1)

which is just a Fourier expansion of 𝛾(x). If we make the simplest approximation and
assume 𝛾(x) is an even function, taking just the first term of the cosine series we obtain
𝛾(x) = Asin2(𝜋x/b), where A is a positive constant with the dimensions of energy per
unit area. Here we have chosen x = 0 to be at a minimum of 𝛾(x). The slope of 𝛾(x)
is the negative of the stress required to sustain the relative displacement x. Frenkel
argued that as x→ 0 this slope is determined by the elastic shear modulus 𝜇 because
d𝛾/dx = (A𝜋/b)sin(2𝜋x/b) → A2𝜋2x/b2 and this has to be equated to 𝜇x/d. Therefore,
A = (𝜇b2)/(2𝜋2d) and the stress required to slide one plane of atoms rigidly and en masse
over another is of order 𝜇b/(2𝜋d).

The stress required to transition from elastic to plastic deformation is called the yield
stress. Frenkel’s estimate of the yield stress is of order 𝜇/10. Experimentally observed
values of the yield stress are typically between three and five orders of magnitude less
than this. We have to conclude that entire planes of atoms do not slide en masse over
each other during plastic deformation.

The resolution of this paradox came with the independent but almost simultane-
ous insights of Orowan2 in Budapest, Polanyi in Manchester (UK)3 and Taylor4 in

1 Jacov Frenkel 1894–1952, Soviet condensed matter physicist.
2 Egon Orowan FRS 1902–89, Hungarian/British/US physicist and metallurgist, in Z. Physik 89, 634. https:

//doi.org/10.1007/BF01341480
3 Michael Polanyi FRS 1891–1976, Hungarian/British polymath, in Z. Physik 89, 660. https://doi.org/10.

1007/BF01341481
4 Sir Geoffrey Ingram Taylor FRS OM 1891–1976, British physicist and mathematician, in Proc. R. Soc. A

145, 388. https://doi.org/10.1098/rspa.1934.0106

https://doi.org/10.1007/BF01341480
https://doi.org/10.1007/BF01341480
https://doi.org/10.1007/BF01341481
https://doi.org/10.1007/BF01341481
https://doi.org/10.1098/rspa.1934.0106
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Cambridge (UK) in 1934 who suggested that planes ‘slip’ past each other through
the movement of linear defects called dislocations separating slipped and unslipped
regions. Taylor’s paper is especially remarkable as it includes a detailed discussion of the
crystallographic nature of slip, namely the observation that it occurs on particular planes
in particular directions, and of the hardening of crystals that occurs with increasing
plastic deformation, which is called work hardening, and elastic interactions between
dislocations leading to stable and unstable configurations of dislocations. Taylor drew
on the earlier mathematical treatment of dislocations by Volterra5 who was interested
in the elastic equilibrium of bodies rendered multiply connected through the existence
of dislocations.6

The sliding of one crystal plane over another, which is called slip, begins with the
nucleation of a small dislocation loop. The plane where slip occurs is called the slip
plane. Inside the loop the planes have slipped past each other by a vector 𝐛, which is
called the Burgers vector. Outside the loop the planes have not slipped. The dislocation
is the line separating the slipped and unslipped regions of the slip plane—see Fig. 6.1.
We will show that under the influence of an applied shear stress on the slip plane in the
direction of 𝐛 the loop expands converting more of the unslipped region into the slipped

slipped region

b

unslipped region

dislocation loop

Figure 6.1 A dislocation loop lying in a slip plane separating slipped and unslipped regions. The
dislocation is the line separating the slipped and unslipped regions of the slip plane. Inside the loop the
material beneath the slip plane has been translated with respect to material above it by the Burgers
vector 𝐛.

5 Vito Volterra 1860–1940, Italian mathematician and physicist.
6 Volterra, V, Annales scientifiques de l’École Normale Supérieure 24, 401–517 (1907). http://www.numdam.

org/item?id=ASENS_1907_3_24__401_0

http://www.numdam.org/item?id=ASENS_1907_3_24__401_0
http://www.numdam.org/item?id=ASENS_1907_3_24__401_0
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region, enabling the applied shear stress to do more work thereby reducing the potential
energy of the whole system including an external loading mechanism if there is one. If
the loop is in a single crystal then when it reaches the surfaces of the crystal the entire
crystal on one side of the slip plane has slipped by 𝐛 with respect to the other side, and
there is a step on the surface with unit normal 𝐧̂ of height (𝐛 ⋅ 𝐧̂). If the Burgers vector 𝐛 is
a crystal lattice vector in the slip plane then as the dislocation moves it recreates the same
crystal structure in its wake. In principle 𝐛may be any lattice vector in the slip plane, but
we shall see that the elastic energy of the dislocation varies as |𝐛|2 so that usually only
the smallest lattice vectors are found. The smallest lattice vectors tend to occur in planes
with the largest spacing.

The key physical insight of Orowan, Polanyi and Taylor in 1934 is that slip by
dislocation motion localises the inevitable bond breaking and making, when one plane
slides over another, to the very much smaller region where the dislocation line is located.
In contrast, when an entire plane slides en masse over another the bond breaking
and making occurs everywhere in the slip plane simultaneously. Therefore, the stress
required to move a dislocation is orders of magnitude less than that required to slide a
plane of a macroscopic crystal over another en masse. This was a giant step forward.
But fundamental questions remained, such as why some crystals seem to undergo very
limited slip, if any, before they fracture, why some are brittle at low temperatures
and ductile at higher temperatures, why small concentration of impurities can have a
seemingly disproportionate effect on the ease of slip, the choice of slip plane and Burgers
vector, the stress to move a dislocation, how dislocations are created and even whether
they do in fact exist. Answering these questions over the intervening years has led to
some of the most interesting experimental, theoretical and computational condensed
matter physics, and to have profound consequences for engineering and technology.

6.3 Characterisation of dislocations: the Burgers circuit

Consider a dislocation loop lying in a slip plane. Within the loop there is a constant
relative displacement of the crystals above and below the slip plane equal to the Burgers
vector. Because the relative displacement is constant throughout the slipped region inside
the loop it does not vary with the direction of the dislocation line. Where the direction of
the dislocation line is perpendicular to the Burgers vector the dislocation is said to have
‘edge’ character. Perhaps the reason for this name is that the dislocation line is then along
the edge of a terminating half-plane, as shown in Fig. 6.2. An edge dislocation is a long
straight dislocation where the dislocation line is everywhere perpendicular to the Burgers
vector. The edge dislocation appeared in Taylor’s paper of 1934. When the dislocation
line is parallel to the Burgers vector the dislocation is said to have ‘screw’ character. A
screw dislocation is a long straight dislocation where the dislocation line is everywhere
parallel to the Burgers vector. The screw dislocation was introduced by JM Burgers7 in

7 Johannes Martinus Burgers 1895–1981, Dutch physicist, whose brother, Wilhelm Gerard Burgers 1897–
1988, also a Dutch physicist, also worked on dislocations.
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Figure 6.2 A schematic illustration of an edge dislocation viewed along the dislocation line. Each dot
represent a column of atoms normal to the page. The horizontal line is the trace of the slip plane. Above
the slip plane there is an extra half plane shown by dotted lines. The edge dislocation is located at the
termination of this extra half plane, which is shown by the red column of atoms.

1939.8 The reason for this name is that the crystal lattice planes normal to the dislocation
line become a helicoidal surface like the thread of a screw, as shown in Fig. 6.3. If the
angle between the line direction and the Burgers vector is 𝜙 then the dislocation may
be regarded as a superposition of an edge dislocation with Burgers vector 𝐛sin𝜙 and a
screw dislocation with Burgers vector 𝐛cos𝜙. Such a dislocation is said to have ‘mixed’
character, and its atomic structure changes from screw to edge type as 𝜙 varies from 0
to 𝜋/2.

Suppose we see some defect in a crystal. How do we know whether it is a dislocation
or some other defect? If it is a dislocation how do we determine its Burgers vector?
The answer to both questions is the Burgers circuit construction. This is a geometrical
construction that was introduced by Frank9 in a paper10 which defined rigorously many

8 Burgers, JM,Koninklijke Nederlandsche Akademie vanWetenschappen 42, 293 (1939), http://www.dwc.knaw.
nl/toegangen/digital-library-knaw/?pagetype=publDetail&pId=PU00014649

9 Sir (Frederick) Charles Frank FRS 1911–98, British physicist.
10 Frank, FC, Phil. Mag. 42, 809 (1951), http://dx.doi.org/10.1080/14786445108561310

http://www.dwc.knaw.nl/toegangen/digital-library-knaw/?pagetype=publDetail&pId=PU00014649
http://www.dwc.knaw.nl/toegangen/digital-library-knaw/?pagetype=publDetail&pId=PU00014649
http://dx.doi.org/10.1080/14786445108561310
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Figure 6.3 A schematic illustration of a screw dislocation. The dislocation line is shown by the
horizontal arrow. Solid circles and solid lines are below the page. Open circles and dotted lines are above
the page. Planes of atoms are converted into a continuous spiral by the dislocation. This drawing was
adapted from Hull, D, and Bacon, DJ, Introduction to dislocations, 3rd edn., Pergamon Press:
Oxford (1984). ISBN 0-08-028720-4.

of the terms in use today when discussing dislocations and plasticity of crystals. The
construction is illustrated in Fig. 6.4 for an edge dislocation. We draw a closed circuit
in the elastically distorted crystal surrounding the dislocation which begins and ends at
the same site. The circuit comprises steps between lattice sites of the elastically distorted
crystal. It is important that the circuit passes through material that is recognisable as
perfect crystal that has only been elastically strained, and that it does not go near the
core of the dislocation where the local atomic environment cannot be mapped onto the
perfect crystal. It does not matter how far the circuit goes from the dislocation as long as
it does not enclose any other dislocations and as long as it keeps away from the dislocation
core. The circuit is thenmapped onto a perfect lattice, as shown in Fig. 6.4. If the defect is
a dislocation the circuit mapped onto the perfect lattice will not close. By convention, the
closure failure from the finish to the start of the circuit mapped onto the perfect crystal is
the Burgers vector when the circuit is taken in a clockwise sense when looking along the
dislocation line, that is, into the page in Fig. 6.4. But if the circuit is started somewhere
else or follows a different closed path in the dislocated crystal the Burgers vector will
always be the same provided the circuit does not enclose any other dislocations and that
it does not pass through the dislocation core. The Burgers vector is an invariant property
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(a)

S,F

FS

(b)

b

Figure 6.4 Illustration of the Burgers circuit construction for an edge dislocation. The line sense of the
edge dislocation in (a) is defined to be positive looking into the page. A right handed circuit is drawn
around the dislocation line, starting at S and finishing at the same site F. The circuit is mapped, step by
step, onto the perfect crystal in (b). It is found that S and F are no longer coincident, and therefore the
circuit has a closure failure. The vector joining F to S, shown by the arrow in red, is defined by the
FS/RH convention as the Burgers vector 𝐛 of the dislocation.

of the dislocation. The existence of the closure failure when the circuit is mapped into
the perfect crystal is the defining property of a dislocation.11 There is no closure failure
if the circuit encloses a point defect only.

In a continuum there is no lattice to define a Burgers circuit in the manner of Fig. 6.4.
If 𝐮 is the elastic displacement field of the dislocation then the Burgers vector is defined
in a continuum by the line integral:

bi =∮
C

𝜕ui

𝜕xk
dxk, (6.2)

whereC is any clockwise circuit taken around the dislocation line viewed along its positive
direction. Aword of caution: this convention is followed bymany authors but some define
the Burgers vector as the negative of this integral.

Both the Burgers circuit construction for a dislocation in a crystal and the line integral
of eqn. 6.2 for a dislocation in a continuum depend on the direction of the dislocation
line. If the line direction reverses then the Burgers vector changes sign. A dislocation
is therefore defined by two vectors: the direction of its line ̂𝐭 and its Burgers vector 𝐛.
Together these two vectors define the sign of a straight dislocation. If just one of ̂𝐭 or 𝐛
changes sign then the sign of the dislocation changes. If both ̂𝐭 and 𝐛 change sign then the
dislocation retains the same sign. Dislocations with the same sign repel while dislocations

11 The Burgers circuit is an example of anholonomy which arises elsewhere in physics including the
Aharonov–Bohm effect, Foucault’s pendulum and the Berry phase.
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of opposite sign attract each other. We will see in this chapter that dislocations are often
created in the form of loops. At all points of a dislocation loop the Burgers vector is the
same but the line direction changes. Dislocation segments in the loop with opposite line
directions have opposite signs and if they come together they annihilate. We will see an
example of this in the operation of a Frank–Read source.

A bit more terminology: when the Burgers vector is a lattice vector the dislocation is
said to be a ‘perfect’ dislocation. When the Burgers vector is a fraction of a lattice vector
the dislocation is called a ‘partial’ dislocation, or sometimes an ‘imperfect’, dislocation.

6.4 Glide, climb and cross-slip

When dislocations move in their slip plane no diffusion of atoms is required. This kind
of motion is called glide or conservative because the number of atoms at the dislocation
as it moves along is conserved. The normal to the slip plane of an edge dislocation is
𝐧̂ = 𝐛̂ × ̂𝐭, where 𝐛̂ is a unit vector parallel to the Burgers vector and ̂𝐭 is a unit vector
along the line direction. As long as an edge dislocation moves within its slip plane the
number of atoms in the extra half-plane associated with the dislocation does not change,
and this is why such motion is conservative.

If an edge dislocation moves out of its slip plane then the extra half plane either
grows or shrinks requiring atoms to be added or removed from it. This is called climb or
non-conservative motion. Because diffusion is involved the speed of climb is generally
much less than the speed of glide. Climb may enable an edge dislocation to overcome an
obstacle blocking glide on its slip plane, but since diffusion is involved this is a thermally
activated process. The extra half plane of an edge dislocation grows when atoms are
added to it, which is equivalent to saying that vacancies are emitted from it. In this way
edge dislocations are sources and sinks for vacancies and self-interstitials, and thus they
can regulate the populations of these point defects when the populations deviate from
those in thermal equilibrium, for example due to irradiation.

In contrast to an edge dislocation the slip plane of a screw dislocation is not uniquely
defined because 𝐛 and ̂𝐭 are parallel or anti-parallel to each other. Consequently a screw
dislocation gliding on one plane may switch to gliding on another plane, which is a
process called cross-slip. For example, a screw dislocation in a bcc crystal with Burgers
vector 𝐛 = 1/2[111] gliding on a (11̄0) plane may cross-slip onto the planes (101̄) or
(01̄1). As a result screw dislocations move only conservatively. Cross-slip provides a
mechanism for screw dislocations to overcome barriers to glide on a slip plane by gliding
on an inclined plane over or under the obstacle. Although cross-slip is a process that
happens during glide it is thermally activated. In fcc crystals this is because perfect
dislocations may be dissociated into partial dislocations separated by stacking faults (see
the next chapter), and before cross-slip can take place the partial dislocations have to
be recombined which is a process requiring energy. But even when perfect dislocations
cross-slip the atomic structure of the dislocation core has to adjust from that on one slip
plane to that on another, and this is also a process requiring energy.
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Exercise 6.1

During irradiation with high energy neutrons a highly non-equilibrium population of
vacancies is created in a metal. In a bcc crystal some of the vacancies cluster together on
a {111}-type plane forming hexagonal dislocation loops with sides along ⟨11̄0⟩ directions.
The Burgers vector of the dislocation loop is 1/2 ⟨111⟩ type. Show that such a loop may
move in a conservative manner in the direction of its Burgers vector, tracing out a hexagonal
prism as it moves. Such a loop is called ‘prismatic’ for this reason. This example illustrates
how individual defects, vacancies in this case, may come together to form a new defect, a
prismatic dislocation loop in this case, and the mechanism of their motion changes from
diffusion of individual vacancies to glide of the loop as a whole involving no diffusion at all.

6.5 The interaction energy between a dislocation and
another source of stress

This section and the following section are based on the analysis presented in section 5 of
a review article by Eshelby.12 Consider a dislocation D in a body with external surface
So. There may be constant tractions acting on the surface of the body, and other defects
D′ inside the body creating internal stresses. Define a closed surface S inside the body
enclosing D only so that it separates D from other sources of internal stress and the
external load. The position of S is otherwise arbitrary. The internal surface S divides
the body into two regions: region I contains D and region II is the rest of the body, as
illustrated in Fig. 6.5.

Let the elastic fields created by D be uD
i , e

D
ij and 𝜎D

ij . Let uA
i , e

A
ij and 𝜎A

ij be the elastic
fields created by the constant loads applied to the external surface and by sources of
internal stress other than D. Using linear superposition the total elastic fields in the body
are 𝜎ij = 𝜎D

ij +𝜎A
ij , eij = eDij + eAij and ui = uD

i + uA
i . The total elastic energy density is

1

2
𝜎ijeij =

1

2
(𝜎D

ij +𝜎A
ij )(eDij + eAij ). The elastic interaction energy density involves only the cross terms

between D and A, so that the total interaction energy is the following integral:

Eint =
1
2
∫
V

(𝜎D
ij e A

ij +𝜎A
ij e

D
ij ) dV. (6.3)

In region I uD
i cannot be defined everywhere owing to the elastic singularity D, but uA

i is
well defined throughout region I. Similarly uA

i cannot be defined everywhere in region II,
but uD

i is well defined throughout region II. It follows fromHooke’s law that 𝜎A
ij e

D
ij = 𝜎D

ij eAij .
Therefore eqn. 6.3 can be rewritten as

12 Eshelby, JD, Solid State Phys., 3, 79–144 (1956). https://doi.org/10.1016/S0081-1947(08)60132-0

https://doi.org/10.1016/S0081-1947(08)60132-0
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SoSo

SS

DD

D′D′

II

IIII

Figure 6.5 A schematic illustration of a body with an external surface So containing a dislocation D
and other defects represented by D′. The internal closed surface S separates D from the other defects in
the body, and divides the body into region I containing D only and region II which is the remainder of
the body.

Eint =∫
I

𝜎D
ij uA

i,jdV+∫
II

𝜎A
ij u

D
i,jdV. (6.4)

Furthermore, 𝜎D
ij,j = 0 and 𝜎A

ij,j = 0 in the absence of body forces and therefore 𝜎D
ij uA

i,j =
(𝜎D

ij uA
i ),j and 𝜎A

ij u
D
i,j = (𝜎A

ij u
D
i ),j. The divergence theorem then transforms eqn. 6.4 into

the following surface integrals:

Eint =∫
S

𝜎D
ij uA

i njdS+∫
S0

𝜎A
ij u

D
i njdS−∫

S

𝜎A
ij u

D
i njdS. (6.5)

If there is no external loading mechanism then the external surface is free of tractions
and 𝜎A

ij nj = 0. The integral over S0 then vanishes. But if there is a load applied to the
surface S0 of the body then the integral over S0 is the work done by the external loading
mechanism and the change of the potential energy of the external loading mechanism
must be included in the total interaction energy.

Suppose D moves by an additional infinitesimal amount. Then the displacement
field uD

i will change by 𝛿uD
i and the external load will do additional work given by

∫S0
𝜎A
ij 𝛿uD

i njdS. The potential energy of the loading mechanism will then change by

−∫S0
𝜎A
ij 𝛿uD

i dS because it has expended energy to do this work. For a constant external
load this is exactly the same as wewould calculate for the change in the potential energy of
the external loadingmechanism if the potential energy of the external loadingmechanism
were given by the following relationship:
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Eext = −∫
S0

𝜎A
ij u

D
i njdS. (6.6)

Thus the total interaction energy, including the potential energy of the loading
mechanism, is as follows:

ET
int = Eint +Eext =∫

S

(𝜎D
ij uA

i −𝜎A
ij u

D
i ) njdS. (6.7)

The reduction of the potential energy of any external loading mechanism is equal to the
work done by the external load on the body. But this is merely a redistribution of energy
within the system as whole, where the system comprises the body and an external loading
mechanism; it does not contribute to the change of the energy of the system as a whole.
We see that the integral over the external surface of the body in eqn. 6.5 vanishes in the
total interaction energy irrespective of whether there is an external load applied to the
body or not.

As it stands eqn. 6.7 has limited utility because 𝜎D
ij and uD

i are the stress and
displacement field of the defect D that satisfy the boundary conditions at the surface
S0 of the body. But suppose we replace 𝜎D

ij and uD
i with 𝜎D

ij +𝜎W
ij and uD

i + uW
i where 𝜎W

ij

and uW
i are any stress and displacement fields that have no singularities within S. Then

a straightforward application of the divergence theorem shows that the additional terms
do not change the integral in eqn. 6.7. It follows that 𝜎D

ij and uD
i may be replaced by any

stress and displacement fields that have the same singularities within S. In particular they
may be replaced by 𝜎D∞

ij and uD∞
i where 𝜎D∞

ij and uD∞
i are the stress and displacement

fields of D in an infinite medium. With this change eqn. 6.7 is very useful indeed.
If D is a dislocation loop enclosing a surface Σ then Σ may be taken as the cut on

either side of which the displacement by the Burgers vector 𝐛 exists. Then the surface
S may be taken as the positive and negative sides of Σ together with a tube surrounding
the dislocation line, as shown in Fig. 6.6. The positive side of the loop is defined by
the right-hand screw rule: progressing around the loop along the positive direction of
the dislocation line advances a right-hand screw in the direction of the positive loop
normal. As the radius of the tube shrinks to zero it contributes nothing to the integral in
eqn. 6.7 because the dislocation is not associated with a resultant line of force. The term

Σ
+

Σ
−

Figure 6.6 Illustration of the surface of the integral in eqn. 6.7 for a dislocation loop. The loop is
viewed edge on and the plane of the loop is the thicker horizontal line. The positive sense of the
dislocation line is coming out of the page on the left and into the page on the right. The positive loop
normal points upwards. The surface S comprises the surfaces Σ+ and Σ− above and below the plane of
the loop and a tube surrounding the dislocation. The positive loop normal points from the negative
surface Σ− to the positive surface Σ+.
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𝜎D
ij u

A
i is the same at opposing points on Σ+ and Σ−, and therefore this term contributes

nothing to the integral. But there is a discontinuity in the displacement uD
i on either side

of the cut with uD
i on Σ+ minus uD

i on Σ− equal to −bi. Therefore the total interaction
energy becomes

ET
int = +bi∫

Σ+
𝜎A
ij njdS. (6.8)

This equation has a clear physical interpretation. If we imagine the dislocation loop is
created in the presence of the stress field 𝜎A

ij then −ET
int represents the work done by the

stress field 𝜎A
ij when the surface Σ− is translated by the Burgers vector with respect to the

surface Σ+. For example, in the case of an interstitial loop formed in a tensile stress field
with the tensile axis along the loop normal ET

int < 0 because 𝐛 ⋅ 𝐧̂ < 0.

Exercise 6.2

Using Maxwell’s reciprocity theorem (eqn. 4.7) show that the interaction energy between
two dislocation loops A and B is as follows:

Eint = bA
i ∫

ΣA

𝜎B
ij nj dS = bB

i ∫
ΣB

𝜎A
ij nj dS. (6.9)

6.6 The Peach–Koehler force on a dislocation

Now that we have the interaction energy in eqn. 6.8 we may derive a general expression
for the force on a dislocation due to an applied stress field. This force was first derived13

by Peach and Koehler14 and it is known as the Peach–Koehler force.
Consider a dislocation where the local direction of the dislocation line is ̂𝐭. Suppose

an infinitesimal segment dl of the dislocation line is displaced by a vector 𝐝𝐬, as shown
in Fig. 6.7. Bearing in mind the convention for defining the positive loop normal, with
the shaded area in Fig. 6.7 in the plane of the page, the positive loop normal points into
the page. Then the vector area swept by the displaced segment is positive if it is defined
as 𝐝𝐀 = 𝐝𝐬×dl ̂𝐭. The displacement of the dislocation segment changes the surface Σ in
the surface integral of eqn. 6.8. As in the previous section let 𝜎A

ij be the stress field acting
locally on the dislocation segment, where this stress is the resultant of the stresses due to
an external loading mechanism and sources of internal stresses. The work done by the

13 Peach, MO and Koehler, JS, Phys. Rev. 80, 436 (1950), https://doi.org/10.1103/PhysRev.80.436
14 This work formed part of the doctoral thesis of MO Peach under the supervision of James Stark Koehler

1914–2006 undertaken at Carnegie Institute of Technology.

https://doi.org/10.1103/PhysRev.80.436
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ds

ds

dlt

Figure 6.7 A segment of dislocation of length dl moves by the vector 𝐝𝐬 sweeping the area shaded.

applied stress is given by the change of −ET
int in eqn. 6.8:

dw = −dET
int = −bi𝜎A

ij dl𝜀jpqdsp tq. (6.10)

The force acting on the dislocation segment is 𝜕w/𝜕sq = −𝜕ET
int/𝜕sq = Fqdl, where Fq is

the force per unit length:

Fq = bi𝜎A
ij 𝜀jpqtp = 𝜀qjp (𝜎A

ji bi) tp. (6.11)

In vector notation this is 𝐅 = (𝝈𝐛)× ̂𝐭. This is the Peach–Koehler force. The force is
always perpendicular to the dislocation line. For edge dislocations, where the slip plane
is uniquely defined, it includes components that promote glide and climb of dislocations.
If 𝐧̂ is the normal to the slip plane the climb component is 𝐅c = (𝐅 ⋅ 𝐧̂)𝐧̂ and the glide
component is 𝐅g = 𝐅−𝐅c = 𝐧̂× (𝐅× 𝐧̂).

Exercise 6.3

Show that the glide component of the Peach–Koehler force per unit length on any dislocation
is 𝜏b, where 𝜏 is the shear stress resolved on the slip plane in the direction of the Burgers vector
and b is the magnitude of the Burgers vector.

Show that the climb component of the Peach–Koehler force on an edge dislocation is 𝜎b,
where 𝜎 is the resolved normal stress in the direction of the Burgers vector.
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6.7 Volterra’s formula

We come now to the derivation of a general expression for the displacement field of a
dislocation loop in anisotropic elasticity. This expression is useful because, as shown15

byNabarro,16 the displacement field for an infinitesimal loopmay be integrated to obtain
solutions for loops of arbitrary shapes and sizes, which may then be differentiated to give
strain fields and stress fields using Hooke’s law. Assign a line sense to the dislocation loop.
As before, the positive loop normal 𝐧̂ is defined by the right-hand screw rule applied to
the positive line direction of the dislocation loop. Looking along the positive direction
of the dislocation line draw a right-handed circuit around the dislocation to define the
Burgers vector 𝐛, as in eqn. 6.2. The surface inside the loop may be taken as the cut
on either side of which the displacement field changes discontinuously by the Burgers
vector. More precisely, the displacement field on the negative side of this cut minus the
displacement field on the positive side of this cut is equal to the Burgers vector. The third
line of eqn. 4.12 gives the displacement field in an infinite medium when displacements
are prescribed on a surface 𝒮. We may use this relation to write down the displacement
field of a dislocation loopℒwith a displacement discontinuity equal to the Burgers vector
between the negative and positive sides of a cut surface 𝒮 bounded by ℒ. The result is
known as Volterra’s formula:

uj(𝐱) = −cmikp bk ∫
𝒮+

Gij,m′(𝐱−𝐱′)np′dS′ = cmikp bk ∫
𝒮+

Gij,m(𝐱−𝐱′)np′dS′, (6.12)

where the integration is carried out on the positive side 𝒮+ of the cut only.
A dislocation loop created in this way is called a Volterra dislocation. It is a mathemat-

ical simplification of a real dislocation in the sense that it is a mathematical line where
the displacement discontinuity equal to the Burgers vector appears infinitely abruptly.
In other words a Volterra dislocation has no width, and the displacement by the Burgers
vector appears as a step function at the dislocation line. Real dislocations in crystals
have finite widths, which are called dislocation cores, where the relative displacement
by the Burgers vector accumulates over several interatomic bond lengths. Nevertheless
the concept of a Volterra dislocation describes the elastic field away from the core quite
accurately. In the next chapter we will meet more realistic models of dislocations.

The stress and strain fields of the loop are more significant physically than the
displacement field because they determine the energy of the loop and its interaction with
other defects. In contrast to the stress and strain fields of the loop, the displacement field
is inevitably dependent on the choice of the cut where the displacement by the Burgers
vector is introduced. Differentiation of the displacement field obtained with Volterra’s
formula yields the strain field, whichmust be independent of the location of the cut. Later
in this chapter we will derive Mura’s formula for the strain field of the dislocation which

15 Nabarro, FRN, Phil. Mag. 42, 1224 (1951), http://dx.doi.org/10.1080/14786444108561379
16 Frank Reginald Nunes Nabarro FRS 1916–2006, South African physicist born and educated in England.

http://dx.doi.org/10.1080/14786444108561379
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depends only on the configuration of the dislocation line, and not on the cut bounded
by it.

We have implied in this section that the choice of the cut plane is arbitrary. In an elastic
continuum that is true. The dislocation is defined by the line where the cut terminates
inside the medium. The location of the cut does affect the displacement field because it
has to show the discontinuity by the Burgers vector on crossing the cut. But it does not
affect the strain field and hence the stress field of the dislocation. For a crystal dislocation
the location of the cut is defined by the slip plane of the dislocation when it glides. For an
edge crystal dislocation the slip plane is uniquely defined by the cross product between
the Burgers vector and the dislocation line direction. For a crystal screw dislocation the
slip plane may change, as in cross-slip, but there is still only a finite number of choices of
cut plane. Only in an elastic continuum is the cut plane truly arbitrary, and there it does
not even need to be flat.

6.8 The infinitesimal loop

Consider a loop of infinitesimal area 𝛿A and unit normal np located at 𝐱′. Volterra’s
formula, eqn. 6.12, provides the displacement field at 𝐱:

𝛿uj(𝐱) = 𝛿Acmikp bk npGij,m(𝐱−𝐱′). (6.13)

This expression is exact within linear anisotropic elasticity. If the loop is finite, with a
characteristic size L, then it remains a good approximation provided |𝐱−𝐱′| is more
than about 2L. To see that this is true consider a finite, planar, centrosymmetric loop,
with its centre located at 𝐑, where we take the cut to be the plane of area A bounded by
the loop. Writing 𝐱′ = 𝐑+𝝆 we have the Taylor expansion:

Gij,m(𝐱−𝐑−𝝆) =Gij,m(𝐱−𝐑)−𝜌pGij,mp(𝐱−𝐑)+
1
2
𝜌p𝜌qGij,mpq(𝐱−𝐑)− . . .

Inserting this into Volterra’s formula, eqn. 6.12, we obtain an expansion for the displace-
ment field of the loop in terms of its areal moments:

uj(𝐱) = cmikp bk np [Gij,m(𝐱−𝐑)A−Gij,mp(𝐱−𝐑)∫
S

𝜌pdS

+1
2
Gij,mpq(𝐱−𝐑)∫

S

𝜌p𝜌qdS − . . .] . (6.14)

For a centrosymmetric loop, such as a circle, ellipse, rectangle, hexagon, etc., only
the even moments are non-zero. The first correction to eqn. 6.13 comes from second
moments of the form Gij,mpp(𝐱−𝐑)∫S𝜌2

pdS, which is of order L4/|𝐱−𝐑|4. Thus, pro-
vided the distance from a finite centrosymmetric loop is more than about twice its size
eqn. 6.13 is remarkably accurate.
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In isotropic elasticity eqn. 6.13 becomes

𝛿uj(𝐱) = −
𝛿Abk np

8𝜋(1−𝜈) [(1− 2𝜈)
𝛿kjXp +𝛿pjXk −𝛿kpXj

X3
+ 3

XkXpXj

X5
] , (6.15)

where 𝐗 = 𝐱−𝐱′. By integrating this expression the displacement fields of finite loops
may be derived in isotropic elasticity. The displacement fields of infinite straight
dislocations may be found by considering loops closed at infinity.

6.9 The dipole tensor of an infinitesimal loop

The leading term in the interaction energy between two point defects in the multipole
expansion of eqn. 5.10 involves their dipole tensors. Since an infinitesimal dislocation
loop is a point defect it should also be possible to define a dipole tensor for it. One way
to derive the dipole tensor for an infinitesimal loop is to consider the interaction energy
between two infinitesimal loops A and B using eqn. 6.9. If loop A is at the origin and
loop B is at 𝐱 then the interaction energy between them is as follows:

𝛿Eint = bBf n
B
g (𝛿AB)(𝛿𝜎A

fg (𝐱)), (6.16)

where 𝛿AB is the area of loop B and 𝛿𝜎A
fg (𝐱) is the stress field of the infinitesimal loop

A located at the origin evaluated at loop B. Taking only the first term of the moment
expansion of the displacement field of a loop in eqn. 6.14, and differentiating it to obtain
the strain field we obtain

𝛿𝜎A
fg (𝐱) = cfgjlcmikpb

A
k n

A
p (𝛿AA)Gij,ml(𝐱). (6.17)

Inserting this stress field into eqn. 6.16 we obtain an expression for the elastic interaction
energy in terms of the dipole tensors 𝛿𝜌 of the infinitesimal loops:

𝛿Eint = 𝛿𝜌B
jl Gij,ml(𝐱)𝛿𝜌A

mi, (6.18)

where

𝛿𝜌A
mi = cmikpb

A
k n

A
p (𝛿AA)

𝛿𝜌B
jl = cjlfgb

B
f n

B
g (𝛿AB). (6.19)

As with the interaction energy between two point defects eqn. 6.18 separates prop-
erties of the loops themselves contained in the dipole tensors from the radial and
angular dependences of their interaction energy contained in the second derivatives of
the Green’s function. The dipole tensor of a loop in eqn. 6.19 has a simple physical



OUP CORRECTED PROOF – FINAL, 22/5/2020, SPi

The dipole tensor of an infinitesimal loop 121

interpretation. As first discussed17 by Kroupa,18 a dislocation loop may be thought of as
a region that has undergone a transformation strain eTkp =

1

2
(bknp + bpnk)/Δ where Δ is the

thickness of the transformed region in the direction of the loop normal. (We will take the
limit Δ→ 0.) The transformation strain gives rise to a stress 𝜎T

im = cimkpe
T
kp = cimkpbknp/Δ.

The surfaces of the loop are separated by the vector 𝐧̂Δ. These surfaces are subjected
to equal and opposite forces per unit area equal to 𝜎T

imnm. The displacement at 𝐱 is then
given by

uj(𝐱) =∫
S′

Gji(𝐱−𝐱′)𝜎T
imnmdS′, (6.20)

where the integration is over the surface of the transformed region constituting the loop.
Inside the loop 𝜎T

im is constant. Applying the divergence theorem we obtain

uj(𝐱) = 𝜎T
im∫

V′
Gji,m(𝐱−𝐱′)dV′, (6.21)

where the integral is over the volume of the transformed region. In the limit of an
infinitesimal loop, and in the limit of Δ→ 0, the volume integral becomes Gji,m(𝐱)(𝛿A)Δ
where 𝛿A is the area of the loop with normal 𝐧̂. The displacement field of the infinitesimal
loop is therefore as follows:

uj(𝐱) = cimkp
bknp

Δ Δ(𝛿A)Gji,m(𝐱) = cimkpbknp(𝛿A)Gji,m(𝐱) = 𝜌imGji,m(𝐱). (6.22)

As discussed by Landau and Lifshitz19 and the paper20 by Burridge and Knopoff,21 the
displacement by the Burgers vector at a dislocation may be thought of as the response of
the medium to a dipolar distribution of fictitious forces across the cut. These forces are
fictitious in the sense that they are the forces required by linear elasticity to generate the
displacement by the Burgers vector. They are equivalent to Kanzaki forces in harmonic
lattice theory, which are the forces required to create a defect within a harmonic model
of atomic interactions. The real forces are what we have called ‘defect forces’, and they
are the true forces acting between atoms, as determined by quantum mechanics. But in
a linear elastic theory it is the fictitious forces we need to generate a dislocation and they
appear in the dipole tensor for the dislocation loop.

17 Kroupa, F in Theory of crystal defects, Proceedings of the Summer School held in Hrazany in September
1964, Academia Publishing House of the Czechoslovak Academy of Sciences (1966), pp. 275–316.
18 František Kroupa 1925–2009, Czech physicist.
19 Landau, LD and Lifshitz, EM, Theory of elasticity, 3rd edn., Pergamon Press: Oxford (1986), section 27,

p.111. ISBN 978-0750626330.
20 Burridge, R and Knopoff, L, Bull. Seismol. Soc. Am. 54, 1875–88 (1964), http://bssa.geoscienceworld.org/

content/ssabull/54/6A/1875.full.pdf
21 Leon Knopoff 1925–2011, US geophysicist and musicologist.

http://bssa.geoscienceworld.org/content/ssabull/54/6A/1875.full.pdf
http://bssa.geoscienceworld.org/content/ssabull/54/6A/1875.full.pdf
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Volterra’s formula, eqn. 6.12, follows directly from eqn. 6.21. That is because 𝜎T
im =

cimkpbknp/Δ and dV′ = dS′Δ so that eqn. 6.12 follows. This way of deriving Volterra’s
formula is arguably more satisfying than the rather formal presentation in section 6.7. A
dislocation loop may thus be viewed in two equivalent ways. As discussed in section 6.7
the dislocation delineates a region in a plane which has undergone a displacement by
the Burgers vector 𝐛. The second is that it delineates a region which has undergone a
transformation strain eTkp =

1

2
(bknp + bpnk)/Δ, where Δ is the thickness of the transformed

region in the direction of the loop normal and is very small compared to the diameter of
the loop except in nanoscale loops. The transformed region inside the loop sets up closely
spaced dipolar sheets of surface tractions inside the loop which generate the elastic field
of the loop. This secondway of viewing dislocations is particularly useful in themodelling
of cracks as distributions of dislocations, as we shall see in Chapter 9.

Does this picture of terminating dipolar sheets of forces at a dislocation apply in an
atomistic model? As a dislocation glides atoms on either side of the slip plane experience
forces that introduce the relative displacement by the Burgers vector and enlarge the
slipped region. Those forces generate vibrations of the crystal lattice, and as discussed
in section 10.4.4 this radiation is a principal source of drag on the dislocation, and it gives
rise to acoustic emission which can be detected experimentally: the forces are real and
they have observable consequences. Once the dislocation has moved on the forces return
to zero if the perfect crystal structure is recreated in the wake of the dislocation.22 Since
there is no crystal structure in a continuum the forces required to shear the medium to
establish the relative displacement by the Burgers vector persist even after the dislocation
has moved on. However, they produce no stress or strain field in the limitΔ→ 0, and only
the relative displacement by the Burgers vector on either side of the slip plane. Another
difference is that the minimum value of Δ in a crystal is the spacing of atomic planes
parallel to the slip plane, whereas in a continuum the limit Δ→ 0 is usually taken.

Exercise 6.4

For a screw dislocation along the x3-axis, with Burgers vector bk = b𝛿k3, with the sheets
occupying the half spaces x1 > 0,x2 = Δ/2 and x1 > 0,x2 = −Δ/2 show that in isotropic
elasticity:

𝜎T
im =

𝜇b
Δ (𝛿i3𝛿m2 +𝛿i2𝛿m3) .

An edge dislocation along the x3-axis may be created with bk = b𝛿k1 and the same location of
the sheets of force as in the screw dislocation. Show that for an edge dislocation in isotropic
elasticity:

𝜎T
im =

𝜇b
Δ (𝛿i1𝛿m2 +𝛿i2𝛿m1) .

22 This is always true for a perfect dislocation. More generally the forces return to zero for any dislocation
separating regions of the slip plane that correspond to local minima in the 𝛾-surface.
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6.10 The infinitesimal loop in isotropic elasticity

The stress field of an infinitesimal loop is readily obtained in isotropic elasticity by
differentiating the displacement field in eqn. 6.15 to get the distortion tensor and then
applying Hooke’s law:

𝜎ij(𝐱) = − 𝜇(𝛿A)b
4𝜋(1−𝜈)x3

× {[3(1− 2𝜈)(𝐛̂ ⋅ 𝐱̂)(𝐧̂ ⋅ 𝐱̂) + (4𝜈 − 1)(𝐛̂ ⋅ 𝐧̂)]𝛿ij

+ (1− 2𝜈)( ̂binj + ni
̂bj) + 3𝜈 [(𝐛̂ ⋅ 𝐱̂)(ni ̂xj + ̂xinj) + (𝐧̂ ⋅ 𝐱̂)( ̂bi ̂xj + ̂xi

̂bj)]

+ 3(1− 2𝜈)(𝐛̂ ⋅ 𝐧̂) ̂xi ̂xj − 15(𝐛̂ ⋅ 𝐱̂)(𝐧̂ ⋅ 𝐱̂) ̂xi ̂xj}. (6.23)

where b is the magnitude of the Burgers vector, 𝐛̂ = 𝐛/b is the unit vector parallel to 𝐛
and 𝐱̂ = 𝐱/x.

In isotropic elasticity the second derivative of the Green’s function is as follows:

Gik,jl(x) =
1

16𝜋𝜇(1−𝜈)x3

× {(3− 4𝜈)𝛿ik (3 ̂xl ̂xj −𝛿lj)

+ 15 ̂xi ̂xj ̂xk ̂xl − 3(𝛿ij ̂xk ̂xl +𝛿il ̂xj ̂xk +𝛿jl ̂xi ̂xk

+𝛿kj ̂xi ̂xl +𝛿kl ̂xi ̂xj) + (𝛿il𝛿kj +𝛿kl𝛿ij)}. (6.24)

When this expression is inserted in eqn. 6.18 we obtain, after some tedious algebra, the
following expression for the elastic interaction energy between two infinitesimal loops, A
and B, in isotropic elasticity:23

E (AB)
int =

𝜇b AbB (𝛿AA)(𝛿AB)
4𝜋(1−𝜈)x3

[15(𝐛̂A ⋅ 𝐱̂)(𝐛̂B ⋅ 𝐱̂)(𝐧̂A ⋅ 𝐱̂)(𝐧̂B ⋅ 𝐱̂)

− 3𝜈 {(𝐛̂A ⋅ 𝐛̂B)(𝐧̂A ⋅ 𝐱̂)(𝐧̂B ⋅ 𝐱̂) + (𝐛̂A ⋅ 𝐧̂B)(𝐧̂A ⋅ 𝐱̂)(𝐛̂B ⋅ 𝐱̂)

+ (𝐧̂A ⋅ 𝐛̂B)(𝐧̂B ⋅ 𝐱̂)(𝐛̂A ⋅ 𝐱̂) + (𝐧̂A ⋅ 𝐧̂B)(𝐛̂A ⋅ 𝐱̂)(𝐛̂B ⋅ 𝐱̂)}

23 Dudarev, SL and Sutton, AP, Acta Mater. 125, 425–30 (2017). https://doi.org/10.1016/j.actamat.2016.11.
060. Sergei Lvovich Dudarev 1960–, British materials physicist born in Belarus.

https://doi.org/10.1016/j.actamat.2016.11.060
https://doi.org/10.1016/j.actamat.2016.11.060
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− 3(1− 2𝜈)(𝐛̂A ⋅ 𝐧̂A)(𝐛̂B ⋅ 𝐱̂)(𝐧̂B ⋅ 𝐱̂)

− 3(1− 2𝜈)(𝐛̂B ⋅ 𝐧̂B)(𝐛̂A ⋅ 𝐱̂)(𝐧̂A ⋅ 𝐱̂)

− (1− 2𝜈){(𝐛̂A ⋅ 𝐛̂B)(𝐧̂A ⋅ 𝐧̂B) + (𝐛̂A ⋅ 𝐧̂B)(𝐧̂A ⋅ 𝐛̂B)}

− (4𝜈 − 1)(𝐛̂A ⋅ 𝐧̂A)(𝐛̂B ⋅ 𝐧̂B)] . (6.25)

In this expression the loops are of arbitrary character, where the character is prismatic
(𝐛̂ ⋅ 𝐧̂ = 1 for a vacancy loop and 𝐛̂ ⋅ 𝐧̂ = −1 for an interstitial loop), shear (𝐛̂ ⋅ 𝐧̂ = 0)
or a mixture (0 < |𝐛̂ ⋅ 𝐧̂| < 1). The interaction energy separates into an inverse cube
dependence on the separation between the loops and a term that depends on no less
than ten angles. The ten angles are all the angles, taken in pairs, between the five unit
vectors 𝐱̂, 𝐛̂A, 𝐛̂B, 𝐧̂A, 𝐧̂B. Together with the magnitudes of the Burgers vectors, the loop
areas and the distance between the loop centres, the interaction energy is a function of
fifteen variables, and it is remarkable that this function has a closed form. Equation 6.25
may be applied to finite-sized planar loops provided the separation between them is more
than about twice their size.

6.11 Mura’s formula

We have already noted that the displacement field of a dislocation depends on the choice
of the cut across which the relative displacement by the Burgers vector is introduced. This
is explicit in Volterra’s formula, eqn. 6.12. However, the strain and stress fields cannot
depend on the choice of cut. Nevertheless, we can differentiate Volterra’s formula to get
the distortion field:

uj,g(𝐱) = cmikpbk∫
𝒮+

Gij,mg(𝐱−𝐱′)np′dS′, (6.26)

but this also involves an integral over the cut surface. The distortion field should be
independent of the choice of the cut and dependent only on the configuration of
the dislocation line. Mura’s formula makes this explicit by transforming the surface
integral in eqn. 6.26 into a line integral along the dislocation line using a version of
Stokes’ theorem.

A familiar form of Stokes’ theorem is

∫
S

𝜀ijkVk,j(𝐱−𝐱′)nidS(𝐱) =∮
L

Vp(𝐱−𝐱′)dxp, (6.27)

where L is the closed line where the surface S terminates. In this equation 𝐱′ is constant
and 𝐱 ranges over the surface S and around the line L. In the following we revert to
our usual notation dS(𝐱) = dS. To obtain the version of Stokes’ theorem needed here
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let Vk(𝐱−𝐱′) = f(𝐱−𝐱′)𝛿kq so that the vector function 𝐕(𝐱−𝐱′) has only one non-zero
component and that is Vq(𝐱−𝐱′) = f(𝐱−𝐱′). Then Stokes’ theorem becomes

𝜀qij∫
S

f,j(𝐱−𝐱′)nidS =∮
L

f(𝐱−𝐱′)dxq.

Multiplying both sides of this equation by 𝜀qpg we obtain the following:

𝜀qpg 𝜀qij ∫
S

f,j(𝐱−𝐱′)nidS = 𝜀qpg ∮
L

f(𝐱−𝐱′)dxq

(𝛿ip𝛿jg −𝛿jp𝛿ig) ∫
S

f,j(𝐱−𝐱′)nidS = 𝜀qpg ∮
L

f(𝐱−𝐱′)dxq

∫
S

f,g(𝐱−𝐱′)npdS =∫
S

f,p(𝐱−𝐱′)ngdS+ 𝜀qpg ∮
L

f(𝐱−𝐱′)dxq.

(6.28)

Now we switch the integration variable from 𝐱 to 𝐱′, treating 𝐱 as constant. Writing dS′

for dS(𝐱′) we obtain

∫
S

f,g′(𝐱−𝐱′)n′pdS′ =∫
S

f,p′(𝐱−𝐱′)n′gdS′ + 𝜀qpg ∮
L

f (𝐱−𝐱′)dx′q. (6.29)

If we set f (𝐱−𝐱′) =Gij,m′(𝐱−𝐱′) then we obtain

∫
S

Gij,m′g′(𝐱−𝐱′)n′pdS′ =∫
S

Gij,m′p′(𝐱−𝐱′)n′gdS′ + 𝜀qpg ∮
L

Gij,m′(𝐱−𝐱′)dx′q. (6.30)

Multiplying both sides by cmikp we obtain

cmikp∫
S

Gij,m′g′(𝐱−𝐱′)n′pdS′ = cmikp∫
S

Gij,m′p′(𝐱−𝐱′)n′gdS′

+ cmikp𝜀qpg ∮
L

Gij,m′(𝐱−𝐱′)dx′q. (6.31)

Recalling that Gij,m′p′ =Gij,mp, it follows from the defining equation (eqn. 4.8) for the
Green’s function that cmikpGij,m′p′ = 0 at all points except 𝐱′ = 𝐱. Since the surface S can
always be chosen to avoid 𝐱 the surface integral on the right hand side is zero. Inserting
this result in eqn. 6.26 we obtain Mura’s formula for the distortion tensor:

uj,g(𝐱) = 𝜀qpg cmikpbk ∮
L′

Gij,m′(𝐱−𝐱′)dxq′ . (6.32)
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The stress field of the dislocation follows from Hooke’s law: 𝜎ab(𝐱) = cabjguj,g(𝐱). In
isotropic elasticity this becomes

𝜎ab(𝐱) = cabjg
𝜀qpgbk

8𝜋(1−𝜈) ∮L′
[(1− 2𝜈)

𝛿kjXp +𝛿pjXk −𝛿kpXj

X3
+ 3

XkXpXj

X5
]dxq′ ,

where 𝐗 = 𝐱−𝐱′. Defining the line integral Ikjpq as

Ikjpq =∮
L′
[(1− 2𝜈)

𝛿kjXp +𝛿pjXk −𝛿kpXj

X3
+ 3

XkXpXj

X5
]dxq′

the stress field may be conveniently expressed as follows:

𝜎ab(𝐱) =
𝜇bk

8𝜋(1−𝜈) [
2𝜈

1− 2𝜈𝛿ab𝜀qpjIkjpq + 𝜀qpbIkapq + 𝜀qpaIkbpq] . (6.33)

6.12 The stress field of an edge dislocation
in isotropic elasticity

To illustrate the application of Mura’s formula the stress field of an infinitely long edge
dislocation along the x3-axis with 𝐛 = [b,0,0] will be derived. In eqn. 6.33 we have
bk = b𝛿k1 and q = 3. We obtain

𝜎11 =
𝜇b

4𝜋(1−𝜈)(1− 2𝜈) (𝜈I1213 − (1−𝜈)I1123)

𝜎12 = 𝜎21 =
𝜇b

8𝜋(1−𝜈) (I1113 − I1223)

𝜎13 = 𝜎31 = − 𝜇b
8𝜋(1−𝜈) I1323

𝜎22 =
𝜇b

4𝜋(1−𝜈)(1− 2𝜈) ((1−𝜈)I1213 −𝜈I1123)

𝜎23 = 𝜎32 =
𝜇b

8𝜋(1−𝜈) I1313

𝜎33 =
𝜇b

4𝜋(1−𝜈)(1− 2𝜈)𝜈(I1213 − I1123) = 𝜈 (𝜎11 +𝜎22) .
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It is straightforward to evaluate the integrals:

I1213 = −2(1− 2𝜈)x2

(x2
1 + x2

2)
+

4x2
1x2

(x2
1 + x2

2)
2

I1123 =
2(1− 2𝜈)x2

(x2
1 + x2

2)
+

4x2
1x2

(x2
1 + x2

2)
2

I1113 =
2(1− 2𝜈)x1

(x2
1 + x2

2)
+

4x3
1

(x2
1 + x2

2)
2

I1223 =
2(1− 2𝜈)x1

(x2
1 + x2

2)
+

4x1x
2
2

(x2
1 + x2

2)
2

I1313 = I1323 = 0.

We obtain the following stress components for an edge dislocation in isotropic elasticity:

𝜎11 = − 𝜇b
2𝜋(1−𝜈)x2

3x2
1 + x2

2

(x2
1 + x2

2)
2

𝜎12 =
𝜇b

2𝜋(1−𝜈)x1

x2
1 − x2

2

(x2
1 + x2

2)
2

𝜎13 = 0

𝜎22 =
𝜇b

2𝜋(1−𝜈)x2

x2
1 − x2

2

(x2
1 + x2

2)
2

𝜎23 = 0

𝜎33 = − 𝜇b𝜈
𝜋(1−𝜈)

x2

(x2
1 + x2

2)
. (6.34)

We see in eqn. 6.34 that the stress field is inversely proportional to the distance from the
dislocation line. This is a general feature of straight dislocations. In particular the stress
diverges as the dislocation line is approached. This follows from the assumption that the
dislocation is a mathematical line with no width. In more realistic models the dislocation
has a finite width and the stress does not become infinite.
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Exercise 6.5

Sketch the stress component 𝜎12 of eqn. 6.34 in the x1 − x2 plane. Sketch the hydrostatic
stress

1

3
Tr𝜎 for an edge dislocation in the x1 − x2 plane. Edge dislocations attract misfitting

atoms. Where would a larger misfitting atom tend to locate itself to lower its elastic energy?

6.13 The elastic energy of a dislocation

The elastic energy of a dislocation is just the volume integral of the elastic energy density
it creates:

Eel =
1
2
∫
V

𝜎ijui,jdV.

It would be quite laborious to evaluate the elastic energy in this way as there are usually
many non-zero stress and strain components. However, the task can be simplified
significantly by applying the divergence theorem.

Consider an infinite straight dislocation parallel to the x3-axis in an anisotropic elastic
medium. Let the cut surface coincide with the half-plane x2 = 0 where x1 ≥ 0, as shown
in Fig. 6.8. Applying the divergence theorem to the elastic strain energy per unit length
along x3, and recalling that 𝜎ij,j = 0, we obtain

Σ
+

Σ
−

x1

rc

x2

R

Figure 6.8 To illustrate the evaluation of the surface integral in eqn. 6.35 for a straight dislocation
lying along the x3-axis. The positive line sense of the dislocation is coming out of the page. A
right-handed circuit C is therefore anticlockwise, as shown by the arrows.
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Eel =
1
2
∫
C

𝜎ij ui njdS, (6.35)

where the surface C comprises four segments of unit length along x3. The first is the
almost complete small cylinder of radius rc around the dislocation line. In the limit the
separation of the surfaces on either of the cut becomes infinitesimal the cylinder of radius
rc becomes complete. The integral of 𝜎ijnj around the cylinder is then zero because there
is no resultant force associated with the dislocation line. The same argument applies to
the segment around the outer cylinder of radius R, and it too is zero. That leaves the two
contributions from the segments Σ+ and Σ− on either side of the cut. As the separation
of the segments shrinks to zero they yield

Eel =
1
2

R

∫
rc

𝜎i2(x1,0)bidx1. (6.36)

For example, for an edge dislocation bi = b𝛿i1 and the only stress component contributing
to this integral is 𝜎12(x1,0). Thus we obtain the following energy per unit length of an
edge dislocation in isotropic elasticity:

Eedge
el = 1

2

R

∫
rc

𝜇b2
2𝜋(1−𝜈)

dx1

x1
= 𝜇b2

4𝜋(1−𝜈) ln(R/rc). (6.37)

For a screw dislocation bi = b𝛿i3 and the only stress component contributing to the
integral in eqn. 6.36 is 𝜎32(x1,0). In the isotropic elastic approximation the energy per
unit length of a screw dislocation is as follows:

Escrew
el = 𝜇b2

4𝜋 ln(R/rc). (6.38)

The logarithmic divergence of the energy of a straight dislocation is common to other line
singularities in physics, for example the electrostatic energy per unit length of an infinitely
long thin line of charge or the magnetic energy per unit length of an infinitely long thin
wire carrying a constant current. Of course dislocations exist in crystals of finite size,
so their energy never becomes infinite. More significantly, dislocations often lower their
elastic energies by organising themselves into configurations where their elastic fields
have much shorter spatial extent than they would have if each dislocation were isolated.
A classic example of such screening is the elastic field of a grain boundary comprising
an array of dislocations with a spacing d. It is found (see the Problem set at the end of
this chapter) that the elastic field decays exponentially from the grain boundary with a
decay distance of d.
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The surface C for the integral in eqn. 6.35 has to avoid the singularity at x1 = x2 = 0
where the stress tensor diverges. rc is often called the core radius, but as we have argued
the core has no radius in this theory. The meaning of rc is more accurately described as
the radius at which the elastic solution provides an acceptable description of the actual
stresses near the dislocation. It is of order 0.5 nm in most crystalline materials. However,
it is not necessarily the circular cross section that has been assumed here and many other
places. For example, in fcc metals it is often found that the core is spread on the slip
plane, so that it is much longer in that direction than it is normal to the slip plane by as
much as a factor of ten. The total energy per unit length of the dislocation is the sum of
the elastic energy and the core energy per unit length.

The surface tension of a liquid arises because the surface of the liquid has an energy
per unit area. If the surface is stretched more surface area is created by diffusion of atoms
from beneath the surface, which raises the energy of the system. The increase in energy
may be thought of as the work done against the surface tension. Similarly a line tension
may be associated with the energy per unit length of a dislocation: in isotropic elasticity
if there are no other forces acting on them dislocations will always seek to minimise their
lengths. But this is not necessarily true in elastic anisotropy because the energies per unit
length of some line directions may be significantly less than those of other directions. In
that case the total elastic energy may decrease even though there is an overall increase in
the length of dislocation line.

The logarithmic singularity in the elastic energy per unit length of a dislocation is
weak. Changing the outer radius R by an order of magnitude changes the elastic energy
per unit length by only a factor of ln10. Sometimes we need a rough estimate of the
energy of a dislocation per unit length for back-of-an-envelope calculations, and then we
use 𝜇b2/2. This is also a useful approximation for the line tension of a dislocation. It is

of order 0.1 to 1 eVÅ
−1

. This is also the range of energies per unit length of the core.
The energy of a dislocation loop is also given by eqn. 6.35 where the surface C is that

shown in Fig. 6.6. The energy of the loop is then

Eloop
el = 1

2
∫
Σ+
𝜎ij bi njdS, (6.39)

where the integral is taken over the positive side of the cut surface inside the loop. This
expression may be understood as the work done against the self-stress of the loop when
it is created by increasing its Burgers vector from zero to the final bi. By the conservation
of energy this work becomes the elastic energy of the medium.

6.14 The Frank–Read source

For many years after it became accepted that dislocations are the agents of plastic
deformation in metals it was not clear how they were created. To create a dislocation loop
by homogeneous nucleation requires stresses approaching the theoretical shear strength,
which are much higher than those observed when a metal yields at normal strain rates.
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1
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A

F G

B

Figure 6.9 Schematic illustration of the operation of a Frank–Read source. A segment of dislocation
line is pinned at A and B (configuration 1). Under the action of an applied shear stress on the slip plane
in the direction of the Burgers vector the dislocation segment bows (configuration 2) against the line
tension tending to keep it straight. Eventually a critical configuration is reached, configuration 3, where
the radius of curvature of the dislocation segment is a minimum. The segment continues to expand
(configurations 4, 5). Segments F and G have opposite line senses and attract each other. When they
meet, a loop is liberated and expands under the action of the applied stress, configuration 7. A segment is
left behind, configuration 8, and returns to AB and the process starts again.

Amechanism of generating dislocations was needed to explain these relatively small yield
stresses. One of the most commonly observed mechanisms was proposed before it was
observed by Frank and Read24 and is known as a Frank–Read source.25

Figure 6.9 illustrates the operation of a Frank–Read source. We consider a segment of
a dislocation pinned at A and B. There are many ways the dislocation could be pinned at
two points. In the paper by Frank and Read they considered a rectangular prismatic loop
ABCD with Burgers vector normal to the plane of the loop; see Fig. 6.10. A pure shear
stress on the plane containing the Burgers vector and the line segment AB will make
segments AB and CD move in opposite directions, but the segments AD and BC will
experience no Peach–Koehler force and remain static. The result is that the segments
AB and CD are pinned at their ends.

24 Frank, FC and Read, WT, Phys. Rev. 79, 722 (1950). https://doi.org/10.1103/PhysRev.79.722. W
Thornton Read was a US physicist.
25 There is an interesting account by Sir Charles Frank of how he and Thornton Read developed the idea

of their dislocation source independently and precisely simultaneously in Proc. R. Soc. A 371, 136 (1980).
http://dx.doi.org/10.1098/rspa.1980.0069

https://doi.org/10.1103/PhysRev.79.722
http://dx.doi.org/10.1098/rspa.1980.0069
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A B

C D

Figure 6.10 A rectangular prismatic loop ABCD with Burgers vector normal to the page initially
occupies the shaded area. A shear stress is applied in the direction of the Burgers vector on planes
containing the Burgers vector and the lines AB and CD. Segments AB and CD bow under the influence
of this applied shear stress. However, segments AC and BD experience no resolved shear stress and
remain static. Segments AB and CD may then operate as Frank–Read sources of loops, as illustrated in
Fig. 6.9. Jaehyun Cho has uploaded a movie of such a pair of Frank–Read sources operating at
https://www.youtube.com/watch?v=jwK-TF7o2Oo.

Let 𝜏 be the resolved shear stress on the slip plane in the direction of the Burgers vector
of the segment AB. The Peach–Koehler force acting on the segment is then 𝜏b where,
as usual, b is the magnitude of the Burgers vector. This force acts in a direction normal
to the line and the dislocation bows out between the pinning points (see configuration 2
in Fig. 6.9). As a result the dislocation line length increases and this is opposed by the
line tension, T. As the radius of curvature of the bowed segment decreases the stress
required to make it bow further increases. Eventually a critical configuration is reached
(configuration 3) where the radius of curvature is a minimum and the bowed segment
expands with no further increase in the applied stress required. The segments F and G
(see Fig. 6.9) have opposite line directions and they attract each other and annihilate.
This reaction liberates a loop (configuration 7) which then expands freely under the
influence of the applied stress, leaving behind a segment (configuration 8) which returns
to the configuration AB at the beginning of the operation of the source. The process then
repeats, sending out a succession of loops into the slip plane. Eventually these loops meet
obstacles such as grain boundaries where they may form a ‘pileup’. The dislocations in
the pileup exert a stress on the source, called a ‘back stress’, which eventually reduces
the total stress acting on the source to zero. Further operation of the source then requires
the applied stress to be increased.

https://www.youtube.com/watch?v=jwK-TF7o2Oo
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It is instructive to derive an approximate expression for the stress required to operate
a Frank–Read source. This is a good example of a ‘back-of-an-envelope’ estimate that
provides insight. Let the length of the pinned segment AB be L. We assume that when
the dislocation starts to bow it forms the arc of a circle with a radius R. An element dl
of the arc experiences an outward force due to the applied stress equal to 𝜏bdl. It also
experiences an inward force due to the line tension, given by Tdl/R where T ≈ 𝜇b2/2.
At equilibrium 𝜏 ≈ 𝜇b/(2R). As the segment bows further R decreases and 𝜏 increases
until the critical configuration is reached where R is a minimum. This happens when
the bowed segment is a semicircle, with R = L/2. Thus, the minimum stress required to
operate the source is 𝜏min ≈ 𝜇b/L.

Efforts have been made to improve on this rough estimate. They include replacing the
line tension approximation with an evaluation of the dislocation self-interactions when it
bows, using anisotropic elasticity and including a friction stress that must be overcome
before a dislocation will move. These are all possible but much more difficult than our
simple estimate.

The relationship 𝜏 ≈ 𝜇b/L is known as the Orowan flow stress.26 It provides under-
standing in a variety of contexts of strengthening mechanisms, and it is one of the most
useful in the theory of dislocations. Here are three examples of its usefulness:

• Precipitation hardening. One way metals are made stronger is by alloying them with
elements that result in a dispersion of second phase particles. Dislocations moving
in their slip planes encounter these particles. If the particles are sufficiently large
that dislocations cannot cut through them they bow out between them and proceed
on the slip plane after leaving a loop around each precipitate. The critical stress
required for this process is of order 𝜇b/L, where L is the average separation of the
precipitates. This is a key relationship in designing age-hardened alloys.

• Work hardening. Another way metals are made stronger is by deforming them
plastically. This is called work hardening and it is discussed in Chapter 10. It
arises because dislocations moving on one slip plane encounter dislocations moving
on inclined slip planes, as a result of which a variety of obstacles may form that
impede slip on both slip planes. Further slip then proceeds by dislocations bowing
out between these obstacles. If L is the separation between the obstacles then the
stress required for further slip is again of order 𝜇b/L. The spacing L is related to
the dislocation density 𝜌, which is defined as the number of dislocations crossing
unit area or equivalently the total dislocation length per unit volume: 𝜌 ≈ 1/L2.
Therefore the stress required for dislocations to glide varies as 𝜇b/L ≈ 𝜇b√𝜌. This
relationship was first proposed byGITaylor in his paper of 1934where he proposed
dislocations as the agents of plasticity.

• Plasticity in nanocrystals. We saw at the beginning of this chapter that dislocations
are the agents of plasticity because the stress required to slide an entire plane of
atoms within a crystal over an adjacent plane is far too large. But if the area of the
plane where slip occurs is very small, there might be a transition from slip mediated

26 The flow stress is the stress required to sustain the glide of dislocations when they encounter obstacles.
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by dislocations to ‘block slip’, where an entire plane of atoms can slide over another.
If a dislocation is introduced into a cubic crystal of side L it will tend to be pinned
by the surfaces. The stress required to make it bow out will be of order 𝜇b/L. Thus
if L ≈ 10− 100b the stress required to move the dislocation becomes comparable to
that required for block slip.

6.15 Problem set 6

1. In eqn. 4.13 the displacement field of an infinite planar fault was derived:

ui(𝐱) = −∫
fault

Gij,l′(𝐱−𝐱′)cjlmp tm npd
2x′, (6.40)

where 𝐭 is the translation of the medium on the negative side of the fault relative
to that on the positive side. In isotropic elasticity we have

cjlmpGij,l′(𝐗)=
1

8𝜋(1−𝜈) [(1− 2𝜈)
𝛿miXp +𝛿piXm −𝛿mpXi

X3
+ 3

XmXpXi

X5
] , (6.41)

where 𝐗 = 𝐱−𝐱′. If the fault is in the plane x3 = 0 verify that eqn. 6.40 yields
ui(𝐱) = − 1

2
sgn(x3)ti.

2. Using Volterra’s formula for the displacement field of a dislocation in the form

ui(𝐱) = −cjlmp bm∫
𝒮+

Gij,l′(𝐱−𝐱′)n′pdS′,

and using eqn. 6.41, show that, with the cut in the half-plane x2 = 0,x1 ≥ 0, the
displacement field of a screw dislocation in isotropic elasticity is as follows:

u1(x1,x2) = 0

u2(x1,x2) = 0

u3(x1,x2) =
b
2𝜋 [tan

−1(x2

x1
)−𝜋].

3. Using Mura’s formula, eqn. 6.32, in isotropic elasticity show that the strain and
stress fields of a screw dislocation lying along the x3-axis with Burgers vector
𝐛 = [0,0,b] are as follows:
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e11 = e22 = e33 = e12 = 0

e13 = − b
4𝜋

x2

x2
1 + x2

2

e23 =
b
4𝜋

x1

x2
1 + x2

2

𝜎11 = 𝜎22 = 𝜎33 = 𝜎12 = 0

𝜎13 = −𝜇b
2𝜋

x2

x2
1 + x2

2

𝜎23 =
𝜇b
2𝜋

x1

x2
1 + x2

2

. (6.42)

Verify that your answer is consistent with the displacement field of the screw
dislocation derived in the previous question.

4. Calculate the elastic energy of a screw dislocation in isotropic elasticity two ways:

(i) by integrating the elastic energy density
1

2
𝜎ijeij using the stress and strain

tensors derived in the previous question;

(ii) by using eqn. 6.36.

5. An isotropic elastic crystal contains edge dislocations with Burgers vectors ±𝐛
gliding on a set of parallel slip planes. Let the dislocations lie along the x3-axis
and let the normal to the slip planes be [0,1,0]. An edge dislocation with Burgers
vector 𝐛 = [b,0,0] is pinned at the origin of the coordinate system. A second
edge dislocation with Burgers vector 𝐛 = [b,0,0] is gliding on a parallel slip plane.
The distance between the slip planes of the two dislocations is D. Show that the
position of stable equilibrium of the second dislocation is at x1 = 0,x2 =D. If now
the Burgers vector of the second dislocation is 𝐛 = −[b,0,0] show that it has two
positions of stable equilibrium at x1 = ±D,x2 =D.

6. Stress field of a symmetric tilt boundary.

This question illustrates how dislocations may organise themselves into
configurations where they screen their elastic fields, reducing the overall elastic
energy.

A small angle symmetric tilt grain boundary in the plane x1 = 0 comprises an
infinite array of edge dislocations with Burgers vector [b,0,0]. The dislocation
lines are parallel to the x3-axis and their positions along the x2-axis are x2 = 0,
±p, ±2p, ±3p, . . . , ±∞. Using the components of the stress tensor for an edge
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dislocation given in eqn. 6.34 show that the non-zero stress components of the
grain boundary are

𝜎11(X1,X2) = − 𝜇b
2𝜋(1−𝜈)p

∞
∑

n=−∞
(X2 − n)(

3X2
1 + (X2 − n)2

(X2
1 + (X2 − n)2)2

)

𝜎12(X1,X2) =
𝜇b

2𝜋(1−𝜈)p

∞
∑

n=−∞
X1(

X2
1 − (X2 − n)2

(X2
1 + (X2 − n)2)2

)

𝜎22(X1,X2) =
𝜇b

2𝜋(1−𝜈)p

∞
∑

n=−∞
(X2 − n)(

X2
1 − (X2 − n)2

(X2
1 + (X2 − n)2)2

)

𝜎33(X1,X2) = − 𝜇b𝜈
𝜋(1−𝜈)p

∞
∑

n=−∞

X2 − n
X2

1 + (X2 − n)2
,

where X1 = x1/p and X2 = x2/p.

The sums may be evaluated as contour integrals using the Sommerfeld–Watson
transformation. For example,

∞
∑

n=−∞

1
n+ a

= 1
2𝜋i∮C

𝜋cot(𝜋z) 1
z+ a

dz = 𝜋cot𝜋a,

where the contour includes all the poles of cot(𝜋z) along the real axis where z = n,
but excludes the pole at z = a and is closed by a circle at infinity. The result holds
for real or complex a. We may use this result to derive all the sums we need to
evaluate the stress components for the grain boundary. For example, since

1
n+X2 + iX1

+ 1
n+X2 − iX1

= 2(n+X2)
(n+X2)2 +X2

1

we deduce that

∞
∑

n=−∞

n+X2

(n+X2)2 +X2
1

= 𝜋sin(2𝜋X2)
cosh(2𝜋X1) − cos(2𝜋X2)

.
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Hence show that the non-zero components of the stress tensor associated with
the grain boundary are as follows:

𝜎11 = − 𝜇b
2(1−𝜈)p

sin(2𝜋X2) [cosh(2𝜋X1) − cos(2𝜋X2) + 2𝜋X1 sinh(2𝜋X1)]
(cosh(2𝜋X1) − cos(2𝜋X2))

2

𝜎12 =
𝜋𝜇b

(1−𝜈)p
X1 [cosh(2𝜋X1)cos(2𝜋X2) − 1]
(cosh(2𝜋X1) − cos(2𝜋X2))

2

𝜎22 = − 𝜇b
2(1−𝜈)p

sin(2𝜋X2) [cosh(2𝜋X1) − cos(2𝜋X2) − 2𝜋X1 sinh(2𝜋X1)]
(cosh(2𝜋X1) − cos(2𝜋X2))

2

𝜎33 = − 𝜇b𝜈
(1−𝜈)p

sin(2𝜋X2)
(cosh(2𝜋X1) − cos(2𝜋X2))

.

When |x1| > p show that these stress components are approximately proportional
to e−2𝜋|x1|/p.

Show that in the limit p→∞ these stress components become those of an isolated
dislocation, given in eqn. 6.34.

7. Having derived the stress component 𝜎12(x1,x2) for the symmetrical tilt grain
boundary in the previous question we may use it to calculate the energy of the
boundary. Let the cut associated with each edge dislocation at x1 = 0,x2 = np
be in the half-plane x2 = np,x1 ≥ 0. Following the same argument using the
divergence theorem to derive eqn. 6.36, where the contour C now involves an
infinite number of circuits around the cuts and the dislocations in the grain
boundary, show that the elastic energy of the grain boundary per unit area is
as follows:

EGB =
1
p

⎡
⎢
⎢
⎣

1
2

R

∫
rc

𝜎12(x1,0)bdx1 +Ec

⎤
⎥
⎥
⎦

where Ec is the energy per unit length of the material inside the radius rc of each
dislocation that cannot be described with elasticity. It is assumed that Ec does not
vary with the misorientation angle 𝜃. This assumption is reasonable provided 𝜃
is small. In that case 𝜃 = b/p is also a good approximation.

Given the standard integral

∫ u

sinh2 u
du = ln(sinhu) − ucothu,
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show that

EGB = 𝜃[{Ec

b
+ 𝜇b

4𝜋(1−𝜈) ln(
eb

2𝜋rc
)}− 𝜇b

4𝜋(1−𝜈) ln𝜃] .

This equation has the form EGB = 𝜃(A−B ln𝜃) where A and B are constants:

A = Ec

b
+ 𝜇b

4𝜋(1−𝜈) ln(
eb

2𝜋rc
)

B = 𝜇b
4𝜋(1−𝜈)

It is known as the Read–Shockley27 formula.28

8. In this question we repeat the calculation of the energy of a small-angle sym-
metrical tilt grain boundary in a more heuristic but insightful way. The insight
is to exploit the mutual screening of the elastic fields of the edge dislocations
it contains. The larger radius R in eqn. 6.37 for the energy of an isolated edge
dislocation may be taken as half the spacing p of the dislocations in the boundary.
Show that the energy per unit area of the grain boundary is then

EGB ≈
1
p
[ 𝜇b2
4𝜋(1−𝜈) ln(

p
2rc

)+Ec] ,

where Ec is the energy of the material inside the radius rc which cannot be
described with elasticity. As before, the angle 𝜃 of misorientation across the
boundary is approximately b/p.

Show that EGB has the form

EGB ≈ 𝜃(A−B ln𝜃), (6.43)

where A and B are constants with the dimensions of energy per unit area:

A = Ec

b
+ 𝜇b

4𝜋(1−𝜈) ln(
b
2rc

)

B = 𝜇b
4𝜋(1−𝜈) .

This heuristic solution is very close to the more rigorous solution in the previous
question.

27 William Bradford Shockley 1910–89, US Nobel Prize-winning physicist.
28 Read, WT, and Shockley, W, Phys. Rev. 78, 275 (1950). https://doi.org/10.1103/PhysRev.78.275

https://doi.org/10.1103/PhysRev.78.275
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9. One application of eqn. 6.25 is to the evolution of prismatic loops in tungsten
created by irradiation with high energy neutrons. Tungsten is very close to being
elastically isotropic, and the distribution of loops evolves in time driven in part
by their elastic interactions. Suppose the prismatic loops are such that 𝐛̂ ⋅ 𝐧̂ = 1.
Show that eqn. 6.25 simplifies as follows, and discuss its validity:

E (AB)
int =

𝜇bAbB (𝛿AA)(𝛿AB)
4𝜋(1−𝜈)x3

{15(𝐧̂A ⋅ 𝐱̂)2(𝐧̂B ⋅ 𝐱̂)2

− (4𝜈 − 1) − 12𝜈(𝐧̂A ⋅ 𝐧̂B)(𝐧̂A ⋅ 𝐱̂)(𝐧̂B ⋅ 𝐱̂)

− (1− 2𝜈)[3(𝐧̂B ⋅ 𝐱̂)2 + 3(𝐧̂A ⋅ 𝐱̂)2 + 2(𝐧̂A ⋅ 𝐧̂B)2]}. (6.44)

Note the angular dependence has been reduced from ten to just three angles
between the unit vectors 𝐱̂, 𝐧̂A, 𝐧̂B taken in pairs.

10. The elastic interaction energy between a defect D and an applied field A is
expressed as a surface integral in eqn. 6.7 where the integration surface encloses
D only. In this question we apply this expression to the ellipsoidal inclusion
of section 4.7 to derive the interaction energy between an applied elastic field
and an ellipsoidal inclusion. The interaction energy was stated without proof in
question 6 of Problem set 4, where the various terms used in this question are
defined.

Take the surface S of the surface integral in eqn. 6.7 just outside the surface 𝒮 of
the inclusion. The interaction energy is then

Eint =∫
𝒮

(𝜎C
ij u

A
i −𝜎A

ij u
C
i )njdS.

Using the continuity of tractions on the surface of the inclusion, 𝜎C
ij nj = 𝜎I

ijnj,
and continuity of displacements uC

i on either side of the surface of the inclusion,
and applying the divergence theorem, show that the interaction energy may be
expressed as the following volume integral over the interior of the inclusion ℛ:

Eint =∫
ℛ

(𝜎I
ije

A
ij −𝜎A

ij e
C
ij )dV.

Using 𝜎A
ij e

C
ij = 𝜎C

ij e
A
ij and 𝜎I

ij = 𝜎T
ij +𝜎C

ij hence show that

Eint = −∫
ℛ

𝜎T
ij e

A
ij dV = −∫

ℛ

𝜎A
ij e

T
ij dV.
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Hybrid models of dislocations

7.1 Introduction

The treatment of dislocations in an elastic continuum in the previous chapter has
a number of faults which are remedied in this chapter by taking into consideration
the discrete atomic structure of the crystal. In the continuum theory of dislocations
the Burgers vector is arbitrary. But in a crystal to maintain equivalent structures in
slipped and unslipped regions of a slip plane the Burgers vector must be a crystal
lattice translation vector. The stress associated with a Volterra dislocation becomes
infinite at its centre because the dislocation is treated as a line singularity separating
slipped and unslipped regions. Infinite stresses cannot be sustained. In reality the relative
displacement across the slip plane by the Burgers vector is accumulated over a finite
number of interatomic distances in the dislocation core, giving the core a finite width
within which the Burgers vector is distributed. By including the energy of distorted
bonds between atoms on either side of the slip plane the Frenkel–Kontorova and Peierls–
Nabarro models predict a finite core width, and stresses remain finite in the dislocation
core. The Peierls–Nabarro model also shows there is a finite stress required to move
a dislocation, which is a direct result of its discrete atomic structure. This leads to a
mechanism of dislocation motion involving kinks on dislocations, which is thermally
activated, and which provides an explanation for brittle to ductile transitions in some
pure crystals, as well as the strain rate dependence of the stress at which dislocations
move in pure crystals.

A key concept in this chapter is the 𝛾-surface introduced in section 7.3. The 𝛾-surface
provides the restoring force tending to keep the dislocation core as narrow as possible.
The 𝛾-surface also indicates the possible existence of metastable planar faults in the
crystal which may enable dislocations with Burgers vectors equal to lattice translation
vectors to split into two or more partial dislocations separated by the metastable fault(s),
as discussed in section 7.4.

Physics of elasticity and crystal defects. Adrian P. Sutton, Oxford University Press (2020). © Adrian P. Sutton.
DOI: 10.1093/oso/9780198860785.001.0001
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7.2 Frenkel–Kontorova model

The Frenkel–Kontorova model1 is a development of a model introduced2 ten years
earlier by Dehlinger.3 The model considers a chain of atoms connected by identical
harmonic springs, with spring constant 𝜅 and natural length a, placed on a rigid substrate
characterised by a sinusoidally varying potential Vsin2(𝜋x/a). In the ground state the
position of each atom along the x-axis is x = na, where n is an integer, and since all springs
have their natural length a and all atoms sit in the minima of the substrate potential the
total energy is zero. If un is the displacement of atom n from its ground state position
x = na the total energy of the system is as follows:

E =∑
n

1
2
𝜅 (un − un−1)

2 +Vsin2(𝜋un/a). (7.1)

Now suppose the chain is stretched by a. If the chain were not in the presence of the
substrate potential the stretch would be taken up equally by all the springs in the chain.
But in the presence of the substrate potential this is unlikely because the constant strain
would put too many atoms at and near the maximum in the potential. The substrate
potential tends to localise the strain to a region where the strain is correspondingly large,
so that the stretch displaces a smaller number of atoms from the minima in the potential.
Minimisation of the total energy in eqn. 7.1 leads to a balance between the elastic
energy, tending to delocalise and minimise the strain in a large region, and the substrate
potential, tending to localise the strain in a small region where it is large.

The relationship of this one-dimensional model to an edge dislocation is illustrated
in Fig. 7.1. It is assumed the dislocation core is planar lying in the slip plane, and
corresponds to the atoms shown in red in Fig. 7.1. But rather than there being one
chain of atoms separated by harmonic springs sitting in a rigid periodic potential
there are two harmonic chains, which interact with each other. Far from the location of
the extra half plane of the dislocation each harmonic chain provides a periodic potential
for the other, as in the original Frenkel–Kontorova model. But in the dislocation core
both chains distort, with one being compressed by a/2 and the other stretched by a/2, to
accommodate the Burgers vector with magnitude equal to a, as illustrated in the lower
sketch in Fig. 7.1.

It is straightforward to modify the original Frenkel–Kontorova model to have two
interacting harmonic chains. If vn describes the deviation of atom n in the second
harmonic chain we may express the total energy of both chains as follows:

E =∑
n

1
2
𝜅 (un − un−1)

2 + 1
2
𝜅 (vn − vn−1)

2 +Vsin2 (𝜋(un − vn)
a

). (7.2)

1 Frenkel, J, and Kontorova, T, J. Phys. Acad. Sci. USSR 1, 137–49 (1939).
2 Dehlinger, U, Ann. Phys. 394 749–93 (1929). https://doi.org/10.1002/andp.19293940702
3 Ulrich Dehlinger 1901–81, theoretical physicist at the Technische Hochschule Stuttgart (now University

of Stuttgart).

https://doi.org/10.1002/andp.19293940702
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Figure 7.1 A sketch to illustrate the relationship between the Frenkel–Kontorova model and an edge
dislocation in a two-dimensional square lattice. The upper figure is a sketch of the atomic structure of an
edge dislocation. The atoms coloured red are on either side of the horizontal slip plane. These atoms are
reproduced in the lower figure, which is a sketch of the Frenkel–Kontorova model. In each chain of atoms
nearest neighbours are linked together by harmonic springs. The disregistry between nearest neighbour
atoms in either chain is shown by blue arrows. When there is no disregistry the arrows are vertical. The
disregistry is seen to increase to a maximum where the extra half plane of the dislocation terminates.

The first two terms are the elastic energies of the harmonic chains. The third term is the
energy associated with the disregistry un − vn between atoms n in the two chains.

Provided the displacement fields un and vn are slowly varying we may replace the
discrete sums in eqn. 7.2 with integrals. In that limit ∑n →∫ dx

a
, un → u(x), un+1 →

u(x+ a) → u(x) + adu/dx and similarly for v. We can then write eqn. 7.2 as follows:

E =
∞

∫
−∞

{𝜅a
2

2
[(du

dx
)
2

+(dv
dx
)
2

]+Vsin2 (𝜋(u− v)
a

)} dx
a
. (7.3)

Minimisation of the integral in eqn. 7.3 leads to the following coupled Euler–Lagrange
equations:
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𝜅ad
2u

dx2
= 𝜋V
a2

sin(2𝜋(u− v)
a

) (7.4)

𝜅ad
2v

dx2
= −𝜋V

a2
sin(2𝜋(u− v)

a
). (7.5)

By subtracting and adding eqns. 7.4 and 7.5 we obtain

d2(u− v)
dx2

= 2𝜋V
𝜅a3 sin(2𝜋(u− v)

a
) (7.6)

d2(u+ v)
dx2

= 0. (7.7)

To model a dislocation with a Burgers vector of magnitude a we impose the boundary
conditions u(−∞) = v(−∞) = 0 and u(+∞) = a/2,v(+∞) = −a/2. It follows from these
boundary conditions and eqn. 7.7 that u(x) = −v(x) for all x. It then follows from eqn. 7.6
that u(x) is determined by the sine-Gordon equation:

d2u
dx2

= 𝜋V
𝜅a3 sin(

4𝜋u
a

). (7.8)

The solution to this equation satisfying the boundary conditions for u(x) at ±∞ is as
follows:

u = a
𝜋 tan

−1 [exp {√
V
𝜅a2

2𝜋x
a

}] . (7.9)

The strains in the two chains are equal and opposite:

du
dx

= −dv
dx

=√
V
𝜅a2 sech(√

V
𝜅a2

2𝜋x
a

). (7.10)

These strains are plotted in Fig. 7.2, where it is seen they are localised around the
origin x = 0. The width of the strain profiles may be defined by

W = a
2𝜋√

𝜅a2
V

. (7.11)

The physics of the Frenkel–Kontorova model is clear. The disregistry associated with
the Burgers vector between atoms on either side of the slip plane is accommodated in a
finite width characterised by W. The magnitude of W increases with increasing spring
stiffness 𝜅 and decreasing amplitude V of the interaction potential between the chains.
When V→∞ the curves in Fig. 7.2 become two delta functions at x = 0 of opposite
sign, and the relative displacement of the chains by the Burgers vector becomes a step
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Strain

Stretched chain

Compressed chain

−10W

−a/2πW

a/2πW

10W

Figure 7.2 Plot of the strains in a pair of interacting chains stretched (solid line) and compressed
(broken line) by a/2. Reproduced from Hammad, A, Swinburne, TD, Hasan, H, Del Rosso, S,
Iannucci, L and Sutton, AP, Proc. R. Soc. A 471 20150171 (2015).
http://dx.doi.org/10.1098/rspa.2015.0171. This is an open access paper.

function at the origin: the core of a Volterra dislocation has no width. In the next section
the Peierls–Nabarro model also predicts a finite core width, and goes further by treating
the crystals above and below the red atoms in Fig. 7.1.

Exercise 7.1

Derive the solution, eqn. 7.9, to the sine-Gordon equation, eqn. 7.8, with the boundary
conditions stated above.

Hint: Multiply both sides of eqn. 7.8 by du/dx and integrate. Then use an arctangent
substitution.

Exercise 7.2

Show that in the ground state there is equipartition of the total energy between the elastic
energy of the harmonic springs (i.e. the first two terms in eqn. 7.3 and the misfit energy (the
third term in eqn. 7.3 and that each is equal to 2VW/a = 𝜅a3/(2𝜋2W).

(In the problems at the end of this chapter it is shown that this is an example of the
equipartition of the total energy between the elastic energy and the misfit energy in the
Frenkel–Kontorova model for any functional form of the misfit energy.)

http://dx.doi.org/10.1098/rspa.2015.0171
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7.3 Peierls–Nabarro model

Although the physics of the Frenkel–Kontorova model is appealing it treats the inter-
action between only two linear chains of atoms. It does not address the elastic energy
stored in the semi-infinite crystals on either side of the slip plane. The Peierls4–Nabarro
model treats both the elastic energy of the dislocation and the misfit energy in the slip
plane, albeit in a simplified manner. We will develop the model for an edge dislocation,
following Eshelby’s approach5 of treating the dislocation as a continuous distribution of
edge dislocations along the slip plane with infinitesimal Burgers vectors.6

We regard the edge dislocation shown in Fig. 7.1 as a projection of its atomic structure
viewed along the dislocation line. The atoms coloured red are in (010) planes, seen edge
on, on either side of the geometrical slip plane, which is midway between them. As in
the Frenkel–Kontorova model the disregistry between these atoms will be treated, but as
the relative translation along x between columns of atoms on either side of the slip plane
rather than between single atoms in linear chains.

Vitek7 introduced the 𝛾-surface in 1968.8 There is a 𝛾-surface for every plane within a
crystal. Each 𝛾-surface describes the energy 𝛾 associated with the imposition of a relative
translation by 𝐭 of one crystal half with respect to the other on either side of the plane.
The relative translation vector is in the plane. The planar defect formed as a result of
the relative translation is called a ‘generalised fault’. The 𝛾-surface is an atomic-scale
property of the crystal, and it is calculated increasingly using electronic density functional
theory. An example is shown if Fig. 7.3. The relative translation 𝐭 parallel to the chosen
crystal plane is imposed as a step function on atoms on either side of the plane. Atoms
are allowed to move only along the plane normal to positions where they experience
no normal force. 𝛾(𝐭) is the excess energy per unit area of the whole crystal containing
the fault in this partially relaxed and constrained state. When the plane contains two
non-parallel sets of lattice vectors 𝛾(𝐭) is periodic in two dimensions. If 𝐭 = 0 coincides
with the perfect crystal configuration there is a global energy minimum at 𝐭 = 0 and at all
translation vectors equal to lattice vectors within the plane. If there are n atoms associated
with each lattice site of the crystal then there are up to n 𝛾-surfaces on each plane. We
will return to the 𝛾 surface in section 7.4. The purpose of introducing it here is to put
the Peierls–Nabarro model, in particular eqn. 7.12, in the context of current thinking.

In the Frenkel–Kontorova and Peierls–Nabarro models we consider relative transla-
tions of the two crystal halves on either side of the slip plane, where the translations
are parallel to the Burgers vector of the dislocation. The energy associated with these
relative translations is a section through the 𝛾-surface on the slip plane. Equation 6.1
is a general expression for the energy per unit area of the generalised faults created by

4 Sir Rudolf Ernst Peierls FRS 1907–95, German born British physicist.
5 Eshelby, JD, Phil. Mag. 40, 903–12 (1949). https://doi.org/10.1080/14786444908561420
6 We have chosen to present the model for an edge dislocation because it is most easily visualised. The model

is equally applicable to screw and mixed edge and screw dislocations, although in all cases the core is usually
assumed to be planar.

7 Vaclav Vitek 1940–, Czech born British and US materials physicist.
8 Vitek, V, Phil. Mag. 18, 773–86 (1968). https://doi.org/10.1080/14786436808227500

https://doi.org/10.1080/14786444908561420
https://doi.org/10.1080/14786436808227500
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Figure 7.3 The 𝛾-surface for widely spaced (1101) atomic planes in titanium computed by density
functional theory. The energy surface is viewed from above like a map showing hills in red and valleys
in blue with contours separated by 50 mJm−2. The periodic cell contains two lattice sites - one at the
four corners and one in the centre. There is a local minimum at [0.00, 0.22] in fractional coordinates
which is seen most clearly at [0.5, 0.72], where the energy is 279 mJm−2. Reproduced with permission
by Taylor & Francis (www.tandfonline.com) from Ready, AJ, Haynes, PD, Rugg, D, and Sutton, AP,
Phil. Mag. 97, 1129–43 (2017). http://dx.doi.org/10.1080/14786435.2017.1292059

www.tandfonline.com
http://dx.doi.org/10.1080/14786435.2017.1292059
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these relative translations along one direction in the 𝛾-surface. The Peierls–Nabarro and
Frenkel–Kontorova models simplify eqn. 6.1 by taking just the first harmonic of the
Fourier expansion.

To illustrate the Peierls–Nabarro model consider an edge dislocation in a simple cubic
crystal, with just one atom at each lattice site. The slip plane is assumed to be (010) and
the Burgers vector 𝐛 = [a,0,0], where a is the lattice constant of the simple cubic crystal.
Let w be the relative translation in the [100] direction of the crystal halves on either side
of the (010) slip plane. As with the Frenkel–Kontorova model 𝛾(w) is approximated as
follows:

𝛾(w) = Vsin2 (𝜋w
a
) , (7.12)

where V is the amplitude of the energy variation with relative translation w.
The dislocation creates a relative displacement parallel to [100] between atomic

columns along [001] that were directly opposite each other on either side of the slip plane
(010) before the dislocation was introduced. This relative displacement is the disregistry,
w, between the atomic columns, and inside the dislocation core it varies with position:
w = w(x). Provided the disregistry does not vary too rapidly with position we may define
the misfit energy, Ec, of the dislocation per unit length of the dislocation line by the
following integral:

Ec =
∞

∫
−∞

𝛾(w(x)) dx. (7.13)

This is the energy associated with the misfitting atomic bonds across the slip plane. Far
from the dislocation core 𝛾(w) is zero. Although the limits of the integral extend from
minus infinity to plus infinity the dominant contribution to Ec is confined to the region
where w(x) is changing, which is in the dislocation core. It is worth noting that Peierls
and Nabarro did not allow any displacements of atoms normal to the slip plane. This
has two consequences. The first is that their 𝛾(w) differs from a section of the 𝛾-surface
as defined above, where relaxations normal to the plane are allowed. Secondly, the misfit
energy of eqn. 7.13 would be reduced if normal relaxations were allowed.

So far the Peierls–Nabarro model does not differ much from the Frenkel–Kontorova
model. It is the treatment of the elastic energy where they diverge, because it is non-local
in the Peierls–Nabarromodel. The dislocation is now viewed as a continuous distribution
of dislocations with infinitesimal Burgers vectors. In the case of a Volterra dislocation of
Burgers vector a at the origin the distribution is a𝛿(x). The 𝛿-function is smeared out by
writing the distribution of the Burgers vector as af (x) where the integral ∫+∞

−∞ f (x)dx = 1.
Then af (x)dx is the infinitesimal Burgers vector of a dislocation between x and x+dx.
Note that f (x) has the dimensions of one over length. It is clear that when f (x) ≠ 0 the
disregistry w(x) is changing. More precisely, af (x)dx = dw, which leads to the following
relation:

dw
dx

= af (x). (7.14)
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The Peach–Koehler force on an edge dislocation with Burgers vector b1 at x due to
another edge dislocation with Burgers vector b2 at x2 in isotropic elasticity is as follows:

F = 𝜇b1b2
2𝜋(1−𝜈)

1
(x− x2)

.

Integrating −F between x = x2 + rc, where rc is the radius of the core of each dislocation,9

and x = x1 we obtain their interaction energy:

Eint = − 𝜇b1b2
2𝜋(1−𝜈) ln(

|x1 − x2|
rc

). (7.15)

It follows that for the continuous distribution of dislocations comprising the dislocation
with Burgers vector a the elastic energy is as follows:

Eel = −1
2

𝜇a2
2𝜋(1−𝜈)

∞

∫
−∞

dx1

∞

∫
−∞

dx2 f (x1)f (x2) ln(
|x1 − x2|

rc
), (7.16)

where the factor of one half is to correct for the double counting in the double integral.
Combining eqns. 7.13, 7.14 and 7.16, Christian10 and Vitek obtain11 the following
expression for the total energy of the dislocation per unit length in the Peierls–Nabarro
model:

EPN =
∞

∫
−∞

Vsin2 (𝜋w(x)
a

)dx − 𝜇
4𝜋(1−𝜈)

∞

∫
−∞

dx1

∞

∫
−∞

dx2 (
dw
dx

)
x=x1

(dw
dx

)
x=x2

ln( |x1 − x2|
rc

).

(7.17)

This equation is the analogue of eqn. 7.3 in the Frenkel–Kontorova model, where the
disregistry is u(x) − v(x). Minimising the integral in eqn. 7.17 with respect to variations
𝛿w(x) we obtain the following Euler–Lagrange equation:

𝜇
2𝜋(1−𝜈) P

∞

∫
−∞

dx1
(dw/dx)x=x1

x− x1
= − d𝛾

dw(x) = −V𝜋
a
sin(2𝜋w(x)

a
). (7.18)

Although mathematically this is a nonlinear, singular, integro-differential equation,
physically it is just a balance of shear stresses at each point on the slip plane: the left hand
side is the elastic shear stress at x arising from the continuous distribution of dislocations,
and the right hand side the shear stress at x arising from the 𝛾(w). The P in front of

9 It has to be non-zero because the force becomes infinite when the dislocations are coincident. It is not
present in the final equation, so its value is unimportant.
10 John Wyrill Christian FRS 1926–2001, British materials scientist.
11 Christian, JW and Vitek, V, Rep. Prog. Phys. 33, 307 (1970). https://doi.org/10.1088/0034-4885/33/1/307

https://doi.org/10.1088/0034-4885/33/1/307
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the integral signifies it is a Cauchy principal value integral because each dislocation in
the distribution interacts with all the other dislocations in the distribution, but not with
itself. As with the Frenkel–Kontorova model, the elastic energy is tending to make the
distribution of dislocations as wide as possible, so that the gradient of the disregistry
is minimised. But 𝛾(w) is tending to make the distribution of dislocations as narrow as
possible. The actual distribution is determined by a balance between these two opposing
tendencies.

The boundary conditions on the disregistry are that w(−∞) = 0 and w(+∞) = a.
Peierls12 guessed the following solution and showed that it solved eqn. 7.18:

w(x) = (a/𝜋)tan−1(x/𝜁)+ a/2 (7.19)

since it satisfies the boundary conditions. The derivative of w(x) shows that the distribu-
tion f (x) of the Burgers vector is a Lorentzian:

f (x) = 1
𝜋

𝜁
x2 +𝜁2 . (7.20)

The full width at half maximum of this distribution is 2𝜁. Therefore, we may define 2𝜁
as the width of the dislocation core.

Exercise 7.3

Verify that eqn. 7.19 solves eqn. 7.18 provided

𝜁 = 𝜇a2
4𝜋2V(1−𝜈) . (7.21)

Hint: Differentiate eqn. 7.19 and substitute the derivative dw/dx into the principal value
integral, which may be evaluated using contour integration. When the expression for w(x) is
substituted into the right hand-side of eqn. 7.18 it is found the equation is satisfied provided
eqn. 7.21 holds. It is customary to invoke the Frenkel argument of section 6.2 to express the
amplitude V as V = 𝜇a2/(2𝜋2d), where d is the spacing of atomic planes parallel to the slip
plane. Then we obtain

𝜁 = d
2(1−𝜈) .

Show that the misfit energy in eqn. 7.13 is given by

Ec = 𝜋V𝜁 = 𝜇a2
4𝜋(1−𝜈) . (7.22)

12 Peierls, R, Proc. Phys. Soc. 52, 34 (1940). https://doi.org/10.1088/0959-5309/52/1/305

https://doi.org/10.1088/0959-5309/52/1/305
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Having replaced a Volterra edge dislocation with its singular core by a more realistic
dislocation with a finite core width, the stress and strain fields of the dislocation no longer
become infinite at the centre of the dislocation. This may be seen by convolving the
components of the stress tensor for a Volterra edge dislocation in eqn. 6.34 with the
Burgers vector distribution function af (x) given by eqn. 7.20:

𝜎11(x1,x2) = − 𝜇a
2𝜋(1−𝜈)

∞

∫
−∞

dx′1
x2 (3(x1 − x′1)2 + x22)

((x1 − x′1)2 + x22)
2

𝜁
𝜋(𝜁2 + (x′1)2)

𝜎22(x1,x2) =
𝜇a

2𝜋(1−𝜈)

∞

∫
−∞

dx′1
x2 ((x1 − x′1)2 + x22)

((x1 − x′1)2 + x22)
2

𝜁
𝜋(𝜁2 + (x′1)2)

𝜎12(x1,x2) =
𝜇a

2𝜋(1−𝜈)

∞

∫
−∞

dx′1
(x1 − x′1)((x1 − x′1)2 − x22)

((x1 − x′1)2 + x22)
2

𝜁
𝜋(𝜁2 + (x′1)2)

.

These integrals may be evaluated using contour integration to yield the following stress
components:

𝜎11(x1,x2) =
𝜇a

2𝜋(1−𝜈) (
3x2 + 2𝜁

x21 + (x2 +𝜁)2
− 2x2(x2 +𝜁)2

(x21 + (x2 +𝜁)2)
2)

𝜎22(x1,x2) =
𝜇a

2𝜋(1−𝜈) (
x2

x21 + (x2 +𝜁)2
−

2x21x2

(x21 + (x2 +𝜁)2)
2)

𝜎12(x1,x2) = − 𝜇a
2𝜋(1−𝜈) (

x1
x21 + (x2 +𝜁)2

− 2x1x2(x2 +𝜁)
(x21 + (x2 +𝜁)2)

2)

𝜎33(x1,x2) = 𝜈(𝜎11(x1,x2) + 𝜎22(x1,x2)). (7.23)

The presence of the finite value of 𝜁 in the denominators of these expressions removes the

singularity, which is present in the stress field of a Volterra dislocation as√x21 + x22 → 0.

7.3.1 Comments on the Peierls–Nabarro model

Like its predecessor the Frenkel–Kontorova model, the Peierls–Nabarro model captures
the physics of the balance between the misfit energy tending to make the dislocation
as narrow as possible and the elastic energy tending to make it as wide as possible. In
both cases this is achieved by introducing new physics into the Volterra treatment of
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a dislocation, namely atomic interactions across the slip plane, and a new length scale,
namely the atomic spacing. Whereas the Frenkel–Kontorova model involves just two
interacting linear chains of atoms, the Peierls–Nabarro model treats the dislocation in a
three-dimensional medium. In both models the misfit energy arising from the distortion
of bonds across the slip plane is approximated by a simple sinusoidal form. This is
undoubtedly a gross simplification, as atomistic calculations of 𝛾-surfaces have shown
for a variety of slip planes in different crystal structures. The small value of the calculated
width 2𝜁 of the Burgers vector distribution leads to strains near the dislocation centre that
are far too large to be described by linear elasticity. It also raises serious doubts about
the neglect of gradient terms in eqn. 7.13 for the misfit energy. But the most serious
weakness of both the Frenkel–Kontorova and Peierls-Nabarromodels is the presumption
that the dislocation core is planar. As Vitek13 has stressed, in any given crystal there may
be some orientations of the dislocation line where the cores are planar, but there may
be other orientations where the cores are non-planar. Orientations of dislocations with
non-planar cores govern plastic deformation because they require higher stresses tomake
them glide. For example, in bccmetals screw dislocations have non-planar cores, whereas
edge dislocations have planar cores; plastic deformation in these metals is limited by the
motion of screw dislocations.14

The genesis of the Peierls–Nabarro model has been described by Peierls.15 He
explained that the key idea of embedding a slab on the slip plane, where the misfit
is treated atomistically, between elastic continua, was conceived by neither Peierls nor
Nabarro, but by Orowan. Orowan approached Peierls for help with the mathematical
formulation of the model. Peierls derived the integral equation, eqn. 7.18, but not by the
method followed here. Seeing its nonlinear form he thought it was probably insoluble. He
guessed the arctan solution, eqn. 7.19, and when he inserted it into the integral equation
he was amazed to discover it was the solution. He introduced an error of a factor of
two in the algebra associated with the stress required to move the dislocation, which
appears in a large exponent and therefore had dramatic consequences. The error was
corrected by Nabarro seven years later,16 and thereafter it was known as the Peierls–
Nabarro model. Peierls had tried to persuade Orowan to publish the 1940 paper under
Orowan’s name alone, or as a joint paper, because Orowan had conceived the model.
But Orowan refused. Peierls’ concern about the authorship of the 1940 paper grew as
its fame increased, and he felt he should have insisted Orowan was at least a coauthor, if
not the sole author.

13 Vitek, V, private communication (2019).
14 Vitek, V, Prog. Mater. Sci. 56, 577–85 (2011). https://doi.org/10.1016/j.pmatsci.2011.01.002
15 Peierls, RE, Proc. R. Soc. A 371, 28–38 (1980). https://doi.org/10.1098/rspa.1980.0053. A slightly more
complete account by Peierls is given on pages xiii–xiv ofDislocation dynamics, ed. ARRosenfield, GTHahn, AL
Bement Jr and RI Jaffee. McGraw-Hill: New York (1968). Peierls’ original derivation of the integral equation
and his solution is transcribed on pages xvii–xx of this book.
16 Nabarro, FRN, Proc. Phys. Soc. 59, 256 (1947). https://doi.org/10.1088/0959-5309/59/2/309

https://doi.org/10.1016/j.pmatsci.2011.01.002
https://doi.org/10.1098/rspa.1980.0053
https://doi.org/10.1088/0959-5309/59/2/309
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7.4 Stacking faults and partial dislocations

Sometimes there are local minima in the 𝛾-surface in addition to global minima. Suppose
there is a local minimum at 𝐭 = 𝐭0 relative to the nearest global energy minimum. A
metastable planar fault in the crystal may arise at which there is a relative translation of
the crystals on either side of the fault equal to 𝐭0. It sometimes happens that the fault may
also be created through a local change in the normal sequence of the stacking of atomic
planes parallel to the fault. It is then called a stacking fault. When the energy associated
with these faults is relatively small they may enable dislocations to reduce their elastic
energy by dissociating into two or more partial dislocations separated by one or more
faults.

We will illustrate these ideas with the example of the dissociation of crystal lattice
dislocations into partial dislocations in face-centred cubic (fcc) lattices. Slip takes
place in these lattices on {111} planes with Burgers vectors

1

2
⟨110⟩, where we have set

the lattice constant to 1. In the 𝛾-surface of the (111) plane there are global minima at
the three lattice vectors

1

2
[11̄0], 1

2
[101̄] and 1

2
[011̄] and integer combinations of these

vectors, where there is no misfit and the energy 𝛾 may be set to zero. Relative to each of
these lattice vectors there are three local minima at 𝐭 = 1

6
[21̄1̄], 1

6
[1̄21̄] and 1

6
[1̄1̄2], where

the energy 𝛾(𝐭) = 𝛾SF > 0. Therefore, faults may exist in these lattices with
1

6
⟨211⟩ fault

vectors on {111} planes. In addition to being created by these relative translations they
may also be created by altering the stacking sequence of {111} planes by removing a plane,
so that the perfect crystal sequence . . .ABCABCABC . . .becomes . . .ABCBCABCA . . . .
These particular faults are therefore ‘stacking faults’.

Consider a dislocation with Burgers vector
1

2
[11̄0] on the (111) slip plane. This

dislocation may dissociate into two partial dislocations, called Shockley partials, as
follows:

1
2
[11̄0] → 1

6
[21̄1̄] + 1

6
[12̄1]. (7.24)

Thus, a dislocation with Burgers vector
1

2
[11̄0] becomes two dislocations with Burgers

vectors
1

6
[21̄1̄] and 1

6
[12̄1] separated by a ribbon of stacking fault. The driving force for

the dissociation is the reduction of the elastic energy of the dislocation which depends
on the square of the magnitude of the Burgers vector. The separation of the partial
dislocations is determined by a balance between the Peach–Koehler force of repulsion
between them and the magnitude of the stacking fault energy 𝛾SF. In fcc crystals with
large stacking fault energies, such as aluminium, the separation of the partials, if it
exists, may be too small to resolve experimentally. In silver the stacking fault energy
is relatively small and the partial dislocations are clearly resolved in the transmission
electron microscope.
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In isotropic elasticity the force per unit length acting between two parallel, straight
dislocations with Burgers vectors 𝐛1 and 𝐛2 and line direction ̂𝝃, with a separation S, is
as follows:17

Fel =
𝜇

2𝜋S (𝐛1 ⋅
̂𝝃 )(𝐛2 ⋅ ̂𝝃 ) + 𝜇

2𝜋(1−𝜈)S [(𝐛1 ×
̂𝝃 ) ⋅ (𝐛2 × ̂𝝃 )] . (7.25)

If the separation increases by dS the change in the energy per unit length of the elastic
interaction between the dislocations is −FeldS. At the same time the change in the energy
of the stacking fault, per unit length of dislocation line, is 𝛾SFdS. At equilibrium these two
changes cancel exactly, so that 𝛾SF = Fel. Thus, a measurement of S enables the stacking
fault energy to be determined. The tails of the Burgers vector distributions associated
with each partial dislocation extend into the stacking fault slightly, which introduces an
error that diminishes with increasing S/𝜁.

The existence of partial dislocations separated by stacking faults reduces the ability
of screw dislocations to cross slip because the partials have to be forced to form a
constriction before they can cross-slip.18 The ease of cross-slip has consequences for
macroscopic plasticity because it enables dislocations to overcome obstacles and it may
also lead to new slip systems being activated. It is a remarkable fact that the origin of
these macroscopic properties can be traced to local minima in the 𝛾-surfaces of slip
planes, which in turn are determined by the quantum mechanical behaviour of electrons
in the distorted bonding environments sampled at each point of the 𝛾-surface.

7.5 The static friction stress on a dislocation

Peierls and Nabarro calculated the minimum stress required to initiate glide of an edge
dislocation on its slip plane. This is a static friction stress originating from the discrete
atomic structure of the crystal, and it is often called a Peierls stress or lattice friction
stress. In section 10.4 we will consider sources of dynamic friction a dislocation has to
overcome to keep gliding once it has overcome the Peierls stress.

Consider the glide of the edge dislocation shown in Fig. 7.1. As the dislocation centre
moves from one atomic row to the next along the slip plane its elastic energy does
not change if we assume the disregistry w(x) is rigidly translated with the dislocation
with no change to its functional form. But the misfit energy Ec changes as bonds are
stretched across the slip plane, switch from one neighbour to the next, and return to
their original length. The maximum slope of this periodic function is the stress required
to initiate dislocation glide. This was a significant advance because it had been presumed
since 1934, when dislocations were proposed as the agents of plastic deformation, that
the stress required to move dislocations in metals was several orders of magnitude less

17 Hirth, JP and Lothe, J, Theory of dislocations, 2nd edn., Krieger: Malabar, FL (1982), p.117. ISBN
0-89464-617-6. John Price Hirth 1930–, US theoretical materials engineer. Jens Lothe 1931–2016, Norweigan
physicist.
18 See section 2.4 of Kubin, LP, Dislocations, mesoscale simulations and plastic flow, Oxford University Press:
Oxford (2013). ISBN 978-0-19-852501-1. Ladislas P Kubin, French materials scientist.
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than the shear modulus. But it was not demonstrated theoretically until Peierls calculated
it. To evaluate the Peierls stress we have to evaluate the misfit energy Ec as a discrete sum
rather than a continuous integral, as the dislocation centre moves along the slip plane.

To evaluate the misfit energy Ec as a sum of discrete interactions between atoms we
assume eqn. 7.19 for the disregistry w(x) remains valid as the dislocation moves. The
calculation proceeds by evaluating the energy per unit length of each row of atoms on
either side of the slip plane. The misfit energy 𝛾(w) per unit area given by eqn. 7.12 is
shared by all atoms in the two atomic planes on either side of the slip plane. The energy
per unit length per row of atoms on either side of the slip plane is then given by

Erow =
aV
2
sin2 (𝜋w(x)

a
)

= 𝜇a3
4𝜋2d

sin2 (𝜋w(x)
a

)

= 𝜇a3
8𝜋2d

[1−cos(2𝜋
a
( a𝜋 tan

−1 (x𝜁 )+
a
2
))]

= 𝜇a3
8𝜋2d

(1+cos(2 tan−1 (x𝜁 )))

= 𝜇a3
4𝜋2d

𝜁2
𝜁2 + x2 . (7.26)

Before the dislocation is introduced the positions of atomic rows on say the lower
side of the slip plane are xn = na and on the upper side they are xn = (n+ 1

2
)a. Assuming

the disregistry w(x) is accommodated equally by the two crystal halves, the positions of
atomic rows on the lower side of the slip plane become xn = na+𝛽a/2 and on the upper
side xn = (n+ 1

2
)a−𝛽a/2, where 0 ≤ 𝛽 ≤ 1. The misfit energy then becomes

Ec =
𝜇a3
4𝜋2d

𝜁2
a2

⎛
⎜⎜
⎝

∞
∑

n=−∞

1

𝜁2

a2
+(n+ 1

2
− 𝛽

2
)
2
+ 1

𝜁2

a2
+(n+ 𝛽

2
)
2

⎞
⎟⎟
⎠

= 𝜇a3
4𝜋2d

𝜁2
a2

𝜋a
𝜁 ( sinh(2𝜋𝜁/a)

cosh(2𝜋𝜁/a) + cos(𝜋𝛽) +
sinh(2𝜋𝜁/a)

cosh(2𝜋𝜁/a) − cos(𝜋𝛽))

= 𝜇a2
2𝜋(1−𝜈)

sinh(4𝜋𝜁/a)
cosh(4𝜋𝜁/a) − cos(2𝜋𝛽)

≈ 𝜇a2
2𝜋(1−𝜈) (1+ 2cos(2𝜋𝛽)exp(−4𝜋𝜁/a)) . (7.27)
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As expected the energy is a periodic function of 𝛽 with the periodicity of the crystal
lattice. The periodic variations in the energy is called the Peierls potential and its
amplitude is equal to [𝜇a2/(𝜋(1−𝜈))]e−4𝜋𝜁/a. The stress required to initiate glide
is determined by the maximum value of (1/a2)𝜕Ec/𝜕𝛽, which is called the Peierls
stress, 𝜎P:

𝜎P =
2𝜇

(1−𝜈) e
−4𝜋𝜁/a. (7.28)

Provided a dislocation has a planar core eqn. 7.28 explains why the resolved shear stress
required to initiate glide in single crystals of pure metals is so much less than the shear
modulus. The Peierls stress is smaller for dislocations with smaller Burgers vectors in slip
planes with larger interplanar spacings. These predictions are broadly consistent with the
selection of slip systems found experimentally in a wide range of crystals, but they are
unreliable when the core is non-planar.

The details of the Peierls analysis may be criticised on many fronts, but the central
ideas have been seminal. The existence of a minimum stress required to initiate glide
over the periodic energy surface, Ec in eqn. 7.27, is a key distinction between dislocation
motion in a crystal lattice as compared to a continuum. The maxima and minima in this
energy surface are often referred to as Peierls barriers and Peierls valleys respectively. The
undulations in this energy surface reflect the changes in bonding between atoms on either
side of the slip plane as the dislocation glides.19 When the core is very narrow a small
number of atomic rows undergo a short sequence of relatively large shear displacements
on either side of the slip plane.With a wider core a larger number of atomic rows undergo
a longer sequence of smaller shear displacements, which require a smaller stress 𝜎P to
bring about.

In some pure fcc metals, such as copper, the resistance to dislocation motion is
extremely small, and plastic deformation can occur at cryogenic temperatures. But in
many body-centred cubic metals, such as iron and tungsten, the resistance to the motion
of screw dislocations is greater because their cores are non-planar. Consequently, at
low temperatures these metals become brittle because cracks can grow before there is
significant dislocation motion to reduce their exposure to an applied stress. However,
at higher temperatures they undergo a brittle-to-ductile transition, and they deform
plastically more readily. In pure single crystals of these metals the brittle to ductile
transition is associated with the temperature dependence of the formation and mobility
of kinks on the dislocations (see the next section).

In crystals with strong bonding the Peierls stress of dislocations even with planar cores
can be very high. For example, diamond has an fcc lattice with the same slip systems as
copper, but dislocation motion in diamond at room temperature is much more difficult
because the Peierls barriers are much larger owing to the strong covalent bonding. In this

19 Note that unlike the 𝛾-surface the Peierls energy surface is not a property of the slip plane alone because
it also depends on the orientation of the dislocation line: there are different Peierls barriers and valleys for
dislocations with different line directions in the same slip plane.
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case also dislocation motion can occur only through a kink mechanism, which requires
thermal activation.

Vitek and Paidar20 have shown21 that non-planar dislocation cores are common in
crystallinematerials, evenwhen atomic bonding is not directional. Themodern approach
to Peierls barriers is to use atomistic modelling of dislocation motion with a variety of
models of atomic interactions from empirical potentials to density functional theory.
Since bond breaking and making are always involved in dislocation motion methods
that treat the quantum mechanical nature of bonding explicitly should be more reliable,
provided the size of the system modelled is sufficient for the calculation to be credible.

7.6 Dislocation motion by a kink mechanism

Dislocations are the agents of slip because they localise in the dislocation core the far
more extensive bond breaking and making that would occur if one plane of atoms were
to slide en masse over another. But when the Peierls barrier is too large for the dislocation
line itself to move en masse over the barrier the bond breaking and making is further
localised to a small region where the dislocation crosses the Peierls barrier, called a kink.
The motion of the dislocation line over the Peierls barrier is then effected by the sideways
propagation of the kink along the Peierls barrier, as illustrated in Fig. 7.4(a). The energy
of the kink along the line is also periodic and the maxima are called secondary Peierls
barriers. The further localisation of the bond breaking and making associated with the
motion of a kink reduces the barrier to dislocation motion significantly. Movement of the

(a)

(b)

(c)

Figure 7.4 Schematic illustrations of kinks. Black solid lines are Peierls barriers. Black broken lines
are Peierls valleys. The dislocation line is shown in red. If the single kink in (a) moves to the left(right)
the dislocation line moves up(down). In (b) a kink pair is nucleated and separates in (c) enabling a
segment of the dislocation line to move up.

20 Vaclav Paidar 1946–, Czech materials physicist.
21 Vitek, V and Paidar, V, Dislocations in solids, ed. FRN Nabarro, Vol. 14, Elsevier: Amsterdam (2008),
pp.439–514. ISBN 9780444531667.
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kink over the secondary Peierls barriers may be thermally activated, with an activation
Gibbs free energy of migration, Gm.

Kinks are geometrically necessary when a dislocation line is inclined to the Peierls
valleys. Changes in direction of the dislocation line are effected through variations in
the number and sense of kinks per unit length of dislocation line. Kink pairs may be
introduced into a straight dislocation by a nucleation process as illustrated in Fig. 7.4(b)
and (c).

As an example of a calculation using current computational techniques, Fig. 7.5 shows
the relaxed structure of a kink on a Shockley partial dislocation in silicon calculated
with density functional theory. The bonds within the kink are fully reconstructed and
comparable in strength to those in the crystal and along the dislocation line. For the kink
to move one crystal period to the left the bond between atoms 1 and 2 has to be rotated
into the orientation of the bond between atoms 3 and 4. When this rotation was applied
in nine equal steps, using a constrained energy minimisation procedure, the activation
energy for migration of the kink was found to be 1.1 eV, in agreement with experiment.

Figure 7.5 Valence electronic charge density (in electrons Å
−3
), viewed in the slip plane, of a relaxed

kink on a Shockley partial edge dislocation in silicon calculated quantum mechanically with density
functional theory. The broken line is the centre of the dislocation. Atoms (circles) lie either slightly above
or below the plane of the figure. Solid lines signify bonds between atoms. Reprinted with permission from
Valladares, A, White, JA and Sutton, AP, Phys. Rev. Lett., 81, 4903–6 (1998).
https://doi.org/10.1103/PhysRevLett.81.4903. Copyright 1997 by the American Physical Society.

https://doi.org/10.1103/PhysRevLett.81.4903


OUP CORRECTED PROOF – FINAL, 22/5/2020, SPi

Problem set 7 159

Since kinks are defects on linear objects they are point defects, and the thermody-
namics of points defects applies to them. The lowest energy state of a dislocation at
absolute zero is achieved when it lies in a Peierls valley along its entire length. At a
finite temperature kink pairs may be nucleated through thermal fluctuations along the
dislocation. Let the Gibbs free energy of formation of a kink pair be G f

kp =H
f
kp −TS

f
kp,

where H f
kp is the enthalpy of formation and Sfkp is the vibrational entropy of formation

of a kink pair. Then if 𝜆 is the period of the atomic structure along the dislocation line
in the Peierls valley there are 1/𝜆 possible sites for the nucleation of a kink pair per unit
length of dislocation line. In each kink pair we may designate one kink as positive and the
other as negative. Let c+ and c− be the number of positive and negative kinks per unit
length of dislocation line. In thermal equilibrium the rate at which positive and negative
kinks annihilate each other is equal to the rate at which they are generated. This leads to
the following law of mass action:22

c+c− =
1
𝜆2 exp(−Gkp/kBT ). (7.29)

Once the separation between the positive and negative kinks of a pair exceeds a few
atomic spacings they escape their mutual attraction and they perform a random walk
along the dislocation line. There is an activation free energy for migration of the kinks,
which in general is not the same for positive and negative kinks. In the presence of a
resolved shear stress on the slip plane in the slip direction the nucleation and migration
of the kinks is biased and the dislocation acquires a drift velocity, which is proportional to
the resolved shear stress.23 Since both the formation and migration of kinks are thermally
activated plasticity becomes easier with increasing temperature, and the transition from
brittle to ductile behaviour may be quite abrupt owing to the exponential dependence of
the rates of these processes on temperature.

The macroscopic strain rate achieved by dislocation motion depends on the average
velocity of mobile dislocations, which varies linearly in the kink mechanism with stress.
Conversely if a strain rate is imposed on the material the stress required to maintain the
strain rate will increase as it increases. Here we have an explanation for the dependence
of the stress required to achieve plastic deformation on the rate at which it is applied.

7.7 Problem set 7

1. In this question we show how the energy for the two-chain Frenkel–Kontorova
model in eqn. 7.2 arises from a description of atomic interactions. To be specific
we assume atoms interact through Lennard-Jones pair potentials:

22 It may be helpful to compare this with the concentrations, n and p, of electrons and holes in an intrinsic
semiconductor with a band gap of Eg, where np= constant×exp(−Eg/kBT). In an n-type semiconductor this
relation still holds but n≫ p. The analogue of doping in the case of kinks is to tilt the dislocation line at some
angle to the Peierls valley. If it is tilted in a positive sense then c+ ≫ c−
23 For a detailed discussion see Hirth, JP and Lothe, J, Theory of dislocations, 2nd edn., Krieger: Malabar, FL
(1982), section 15-2. ISBN 0-89464-617-6.
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ELJ =
1
2
∑
i

∑
j≠i
𝜀 [( r0

ri j
)
12

− 2( r0
ri j
)
6

] , (7.30)

where 𝜀 and r0 are parameters with the dimensions of energy and length, i and
j label atoms in the two chains and ri j is the distance between atoms i and j.
Since the Frenkel–Kontorova model assumes harmonic springs exist only between
neighbouring atoms in either chain we also assume that atoms in the same chain
interact only with their nearest neighbours. In that case show that r0 must equal
a, and 𝜅 = 72𝜀/a2.

Let the separation of the chains be 𝜌. Let atoms in the first chain be at x = na,
where n is an integer. Let the atoms in the second chain be at x = na+Δ where Δ
is a constant. The distance between the atom at x = 0 in the first chain and atom n
in the second chain is then (𝜌2 + (na+Δ)2)1/2. The energy of interaction between
the atom at x = 0 in the first chain and all atoms in the second chain is then

Eint = 𝜀
∞
∑

n=−∞
{( a12

[𝜌2 + (na+Δ)2]6
)− 2( a6

[𝜌2 + (na+Δ)2]3
)} . (7.31)

The sum in this equation is taken over all atoms n in the second chain to ensure
that the interaction energy is a smooth, periodic function of Δ. These sums may
be evaluated exactly using the Sommerfeld–Watson transformation. A simpler
approach is to note that the interaction energy is an even periodic function of
Δ, and therefore it can be expanded as a Fourier cosine series:

Eint = c0 +
∞
∑
m=1

cm cos(
2m𝜋Δ
a

). (7.32)

The constant c0 is of no significance. Show that form ≠ 0, cm is given by the Fourier
integral:

cm = 2𝜀
∞

∫
−∞

[ 1

(𝜁2 + z2)6
− 2

(𝜁2 + z2)3
]e i2m𝜋zdz, (7.33)

where 𝜁 = 𝜌/a ≈ 1. There are third and sixth order poles at z = i𝜁. Without
evaluating the integral in detail it is clear24 it is going to be a polynomial multiplied

24 For example,

I6 =
∞

∫
−∞

e i2m𝜋z

(z2+𝜁2)3 dz=
4𝜋2m2𝜁2+ 6𝜋m𝜁 + 3

8𝜁5 𝜋 e−2m𝜋𝜁

and

I12 =
∞

∫
−∞

e i2m𝜋z

(z2+𝜁2)6 dz=− 1
60

d3I6
d(𝜁2)3 .
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by exp(−2m𝜋𝜁). Therefore, if we assume that terms with m > 1 in eqn. 7.32 are
negligible then Eint may be expressed approximately as Vsin2(𝜋Δ/a), ignoring the
unimportant termwhich is independent ofΔ. Equation 7.2 then follows if wemake
a local approximation for Δ, that is, if we ignore the contributions to the interaction
energy arising from gradients in Δ.

2. In the Frenkel–Kontorova model let 𝛾(w(x)) be the misfit energy associated with
the disregistry at x, where w(x) = u(x) − v(x). In the continuum approximation the
total energy of the two interacting linear chains in eqn. 7.3 becomes

E =
∞

∫
−∞

{𝜅a
2

2
[(du

dx
)
2

+(dv
dx
)
2

]+ 𝛾(w(x))} dx
a
.

By minimising the integral with respect to variations in u(x) and v(x) and applying
the same boundary conditions as in section 7.2 show that

𝜅a2
2

d2w
dx2

= d𝛾
dw

. (7.34)

Show that the misfit energy is equal to the elastic energy stored in the chains,
that is,

∞

∫
−∞

𝛾(w(x))dx
a
=

∞

∫
−∞

𝜅a2
2

[(du
dx
)
2

+(dv
dx
)
2

] dx
a
.

Hint: Integrate the left hand side by parts and use eqn. 7.34.

3. Prove that for any function 𝛾(w) satisfying the integral equation in eqn. 7.18,
the misfit energy of eqn. 7.13 is equal to 𝜇a2/[4𝜋(1−𝜈)]. This surprising result,
due originally to AJE Foreman,25 demonstrates that the total misfit energy is
independent of the functional form of the 𝛾-surface in the Peierls–Nabarro model.

25 See Nabarro, FRN, Adv. Phys. 1, 269–394 (1952), p.360. https://doi.org/10.1080/00018735200101211

https://doi.org/10.1080/00018735200101211
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The force on a defect

8.1 Introduction

Wehave already encountered the concept of the force on a defect with the Peach–Koehler
force on a dislocation. In this chapter we will generalise the concept to other defects
including point defects and interfaces. In the following chapter we will consider the force
on a crack tip. The forces we are concerned with are often called configurational forces.
They arise from changes in the total potential energy of the system when a defect is
displaced. The total potential energy comprises the elastic energy of the body in which
the defects reside and the potential energy of any external mechanism applying tractions
to the surface of the body. The configurational force on the defect is then defined as
minus the gradient of the total potential energy of the system with respect to the position
of the defect. It follows that it is always a conservative force.1

This chapter is based on a series of papers by Eshelby,2 who first introduced the
concept of the force on an elastic singularity in a paper published in 1951.3 He defined
an elastic singularity in an infinite homogeneous elastic medium in the following way.
Draw a closed surface 𝒮 inside the medium. There is an elastic singularity inside 𝒮 if the
stresses inside 𝒮 could not be produced by body forces outside 𝒮 or tractions on 𝒮. The
stresses inside 𝒮 are not necessarily singular in the mathematical sense, e.g. the stress
field of a dislocation with a finite core width does not display a mathematical singularity.
Nevertheless, a dislocation with a finite core width is an elastic singularity in the sense
defined by Eshelby.

1 There are other forces on defects arising from an exchange of momentum with another field, such as an
electric current flowing through the medium. Such current-induced forces may be regarded as body forces and
it has been shown that they are generally non-conservative—see Todorov, TN, Dundas, D, Lü, J-T, Brandbyge
M, and Hedegård, P, Eur. J. Phys. 35, 065004 (2014). https://doi.org/10.1088/0143-0807/35/6/065004.

2 Eshelby, JD, Phil. Trans. R. Soc. A 244, 87–111 (1951) https://doi.org/10.1098/rsta.1951.0016; Solid
State Phys. 3, 79–144 (1956) https://doi.org/10.1016/S0081-1947(08)60132-0; In Inelastic behaviour of solids,
ed. MF Kanninen, WF Adler, AR Rosenfield and RI Jaffee, McGraw-Hill: New York (1970), pp.77–115;
J. Elast. 5, 321–35 (1975) https://doi.org/10.1007/BF00126994; In Continuum models of discrete systems, ed.
E Kröner and K-H Anthony, University of Waterloo Press: Waterloo, p.651–665, (1980). All these papers are
available inCollected works of J. D. Eshelby, ed. XMarkenscoff and AGupta, Springer: Dordrecht (2006). ISBN
9781402044168 hard back, ISBN 9789401776448 soft cover.

3 Published one year after his PhD in Physics at the University of Bristol.

Physics of elasticity and crystal defects. Adrian P. Sutton, Oxford University Press (2020). © Adrian P. Sutton.
DOI: 10.1093/oso/9780198860785.001.0001

https://doi.org/10.1088/0143-0807/35/6/065004
https://doi.org/10.1098/rsta.1951.0016
https://doi.org/10.1016/S0081-1947(08)60132-0
https://doi.org/10.1007/BF00126994
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8.2 The electrostatic force on a charge

To introduce the idea of the force on a defect we will first review the use of the Maxwell
electrostatic stress tensor to calculate the force on a charge. Suppose there is some charge
density 𝜌(𝐱) in a vacuum and an associated electric field 𝐄(𝐱). The two are related by
∇ ⋅𝐄 = 𝜌(𝐱)/𝜀0, where 𝜀0 is the permittivity of free space. The charge density may consist
of a set of point charges or a continuous distribution. Consider a closed region ℛ of the
distribution of charges, and let 𝒮 be the surface of ℛ. We can write down the force 𝐅
acting on the charges inside ℛ as the following volume integral over ℛ:

𝐅 =∫
ℛ
𝜌(𝐱) 𝐄(𝐱) dV. (8.1)

In this expression 𝐄(𝐱) includes contributions to the electric field from both inside and
outside ℛ. If the integrand could be expressed as the divergence of a second rank tensor
Mi j(𝐱), that is, 𝜌(𝐱)Ei(𝐱) =Mi j, j, it would be possible to use the divergence theorem to
express the force as a surface integral over 𝒮:

Fi =∫
ℛ
𝜌(𝐱) Ei(𝐱) dV =∫

ℛ
Mij,j dV =∫

𝒮
Mij nj dS. (8.2)

As shown in texts on electromagnetism,4 the tensorMij does exist and it is the Maxwell
electrostatic stress tensor:

Mij = 𝜀0 {EiEj −
E2

2
𝛿ij} (8.3)

Exercise 8.1

Prove that Mi j, j = 𝜌Ei.

Imagine the charge distribution is a set of point charges and we wish to calculate the force
on one of them. Suppose the surface 𝒮 surrounding our chosen point charge is deformed
into another surface 𝒮′ in such a way that no other point charges are included within 𝒮′.
Since there are no charges between 𝒮 and 𝒮′ the divergence Mij,j is zero everywhere
between the surfaces, and therefore the surface integrals ∫𝒮 MijnjdS and ∫𝒮′ MijnjdS are
equal.

In the following sections we will derive a tensor whose divergence can replace
the integrand in a volume integral representing the force on a defect. Then, using

4 For example, Griffiths, DJ, Introduction to electrodynamics, international edn., Prentice-Hall (1999), p.351.
ISBN 978-9332550445.
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the divergence theorem this volume integral can be converted into a surface integral
enclosing the defect, which can be deformed arbitrarily so long as it does not include any
other defects, to give an expression for the configurational force on the defect.

8.3 The pressure on an interface

In this section we derive the force per unit area on an interface separating two regions A
and B of a body. The interface may enclose a region or it may extend through the body
and terminate at its surface. The forces we are concerned with arise from differences
in the elastic energy densities WA and WB, for example stemming from different elastic
constants inA andBwhenA andB are elastically deformed, or differences in the densities
of dislocations and point defects which drive recrystallisation. The interface may also be
an agent of deformation, as in mechanical twinning and martensitic transformations,
where movement of the interface is accompanied by deformation of the region through
which it sweeps. There are other sources of forces on interfaces, which we will not
be concerned with, arising from curvature of the interface, and chemical free energy
differences on either side of the interface during a phase change. In the following we
assume the interface is coherent in the sense that the elastic displacement field and
tractions are continuous across the interface.

Let the local normal vector to the interface be directed from B to A, with its tail on
the interface. At each point on the interface ℐ we imagine it migrates by the infinitesimal
vector 𝛿𝜉ni to a new position ℐ′. With 𝛿𝜉 > 0 this results in the consumption of A and
the growth of B. Let 𝛿Etot be the change in the total energy of the system resulting from
this migration.

Cut out and remove the sliver of A between ℐ and ℐ′ before the interface has migrated,
applying suitable tractions to the freshly created surfaces to prevent relaxation. The
change in the energy of A accompanying this first step is

𝛿E(1) = −∫
ℐ
WA𝛿𝜉dS. (8.4)

The elastic displacements on the newly created surface of A are uAi +𝛿𝜉nkuAi,k, and the

tractions are 𝜎Aij nj +O(𝛿𝜉). The elastic displacements on the surface of A will relax to
final values uFAi , where the difference uFAi −(uAi +𝛿𝜉nkuAi,k) is of order 𝛿𝜉. Therefore, the
surface tractions on the surface of A do work, which gives a second contribution to the
change of the energy:

𝛿E(2) = −∫
ℐ
𝜎Aij nj [uFAi −(uAi +𝛿𝜉nkuAi,k)]dS + O(𝛿𝜉2). (8.5)

Now consider changes on the B-side. First there is the elastic energy arising from the
creation of the sliver B between ℐ and ℐ′:
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𝛿E(3) =∫
ℐ
WB𝛿𝜉dS. (8.6)

The elastic displacements on the newly created surface of B are uBi +𝛿𝜉nkuBi,k and they
relax in the final state to uFBi . The tractions on the surface of B are 𝜎Bij nj +O(𝛿𝜉). The
work done by them during the relaxation to the final state is

𝛿E(4) = +∫
ℐ
𝜎Bij nj (uFBi − (uBi +𝛿𝜉nkuBi,k))dS + O(𝛿𝜉2). (8.7)

The minus sign in front of the integral in eqn. 8.5 is a plus sign in eqn. 8.7 because the
sense of the normal is reversed.

In the final configuration the tractions and elastic displacements are continuous across
the interface. Therefore, 𝜎Aij nj = 𝜎Bij nj = 𝜎ijnj and uFAi = uFBi = ui. The change in the total
energy is then

𝛿Etot = 𝛿E(1) +𝛿E(2) +𝛿E(3) +𝛿E(4)

= −∫
ℐ
nj {(WA𝛿jk −𝜎ijuAi,k) − (WB𝛿jk −𝜎ijuBi,k)}𝛿𝜉nkdS

= −∫
ℐ
nj {PAjk −PBjk}𝛿𝜉nkdS, (8.8)

where

Pjk =W𝛿jk −𝜎ijui,k (8.9)

is called the static energy-momentum tensor of the elastic field. A formal derivation of the
static energy-momentum tensor is given in section 8.5. This is the first time we meet it
and it plays a central role in the configurational force on any defect, not just an interface.
The pressure acting on an element of area of the interface is then

p = − 𝛿Etot
𝛿𝜉 dS = nj (PAjk −PBjk)nk. (8.10)

Exercise 8.2

Consider a flat interface with unit normal 𝐧̂ between two semi-infinite media with elastic
constants cAijkl and cBijkl with reference to a common coordinate system. Suppose a uniform
distortion ui, j is applied to both media, such that continuity of tractions and displacements
at the interface is maintained. Show that the pressure generated on the interface is equal to
the difference in the elastic energy densities.
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8.4 The force on a static defect

Consider a body occupying a regionℛ containing a defect D at (𝜉1,𝜉2,𝜉3). For simplicity
we will assume the elastic constants are the same throughout the body. The external
surface 𝒮 of the body may be loaded with tractions by some external mechanism. If Fk
is the force on the defect and if it undergoes a small displacement 𝛿𝜉m then the change
in the total energy of the body and the external loading mechanism, is

𝛿Etot = −Fm𝛿𝜉m, (8.11)

where

Fm =∫
𝒮

PmjnjdS (8.12)

and Pjk is the static energy-momentum tensor given by eqn. 8.9.
To prove eqn. 8.11 we proceed by first rigidly displacing the entire displacement field

of the defect, thus uDi (𝐱) → uDi (𝐱− 𝛿𝝃). This will then need to be adjusted at the surface
of the body to satisfy the boundary conditions on 𝒮. To calculate the change in the total
energy we consider changes in both the elastic energy of the body and the potential
energy of the loading mechansim.

In the first step the change in elastic energy of the body when the displacement field
of D is rigidly translated is given by

𝛿E(1)
el =∫

ℛ

W(𝐱− 𝛿𝝃)−W(𝐱)dV

= −𝛿𝜉m∫
ℛ

𝜕W
𝜕xm

dV+O(𝛿𝜉2)

= −𝛿𝜉m∫
𝒮

WnmdS+O(𝛿𝜉2). (8.13)

The derivative of the elastic energy in the integrand of the volume integral may diverge,
and this raises the question of whether it is integrable. But by converting the volume
integral into a surface integral in the last line only a thin sliver around the surface of
the body contributes to the integral, which is far from the elastic singularity at D and
therefore the surface integral always converges.

In the second step we make a correction to satisfy the boundary conditions on the
surface 𝒮 of the body. Following the rigid displacement of the elastic field of D in
the first step the surface tractions on 𝒮 are {𝜎ij(𝐱)− 𝛿𝜉m𝜎ij,m(𝐱)}nj +O(𝛿𝜉2). Following
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the correction these surface tractions are returned to 𝜎ij(𝐱)nj plus a term of order 𝛿𝜉
depending on the ‘hardness’ of the mechanism applying the surface tractions. If the
mechanism is soft the loading will be ‘dead’ and the traction will be returned to 𝜎ij(𝐱)nj.
If the loading is rigid (infinitely hard) the difference in the surface traction from 𝜎ij(𝐱)nj
will still be of order 𝛿𝜉. The surface displacements after the rigid translation of the field
of D are ui(𝐱)− 𝛿𝜉mui,m(𝐱), where 𝐱 is on 𝒮. After the adjustment they become uFi (𝐱),
which can be determined only by detailed calculation. Therefore the change in the elastic
energy of the body resulting from the restoration of the original surface tractions on the
surface 𝒮 is

𝛿E(2)el =∫
𝒮

𝜎ij {uFi (𝐱)− ui(𝐱)+ 𝛿𝜉mui,m(𝐱)}nj dS+O(𝛿𝜉2). (8.14)

We see that this expression is independent of the hardness of the loading mechanism
because variations in 𝛿E(2)

el arising from the hardness are second order in 𝛿𝜉. The work
done by the external loading mechanism at the end of both steps is also independent of
its hardness to first order in 𝛿𝜉:

𝛿wext =∫
𝒮

𝜎ij {uFi (𝐱)− ui(𝐱)}njdS+O(𝛿𝜉2). (8.15)

The change in the potential energy of the loading mechanism is −𝛿wext. Adding 𝛿E(1)
el ,

𝛿E(2)el and −𝛿wext we obtain the change in the total energy of the body and loading
mechanism:

𝛿Etot = −𝛿𝜉m∫
𝒮

(W𝛿mj −𝜎ijui,m)njdS+O(𝛿𝜉2), (8.16)

from which eqn. 8.12 follows.
So far we have considered the somewhat unrealistic case of a body containing just

one defect. The extension to the more realistic case of the force on D arising from the
elastic fields of other defects within the body, in addition to or instead of loads applied to
the surface of the body, is straightforward. Construct an internal surface S surrounding
D and no other defects. The sum of the elastic energy and the potential energy of the
external loading mechanism remains the same if we redefine the elastic energy to be the
elastic energy of the region R within S, and redefine the potential energy to be the sum
of the elastic energy between S and the external surface 𝒮 and the potential energy of the
external loading mechanism. The above steps may then be repeated regarding R as the
body loaded by surface tractions on S arising from other defects between S and 𝒮 and
from external loads applied to 𝒮. Thus, we arrive at the more general result that the force
on D is the following integral:
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Fm =∫
S

(W𝛿mj −𝜎ijui,m)njdS, (8.17)

where S is any surface enclosing only D inside the body.
The invariance of the force in eqn. 8.17 if the surface S is changed to S′, provided no

defects exist between S and S′, follows because the divergence of the integrand is then
zero. We will now prove this for a general elastic energy density W that depends on the
elastic displacement field and the displacement gradients:5 W =W(ui,ui, j).

The partial derivative ofW with respect to xm is as follows:

𝜕W
𝜕xm

= 𝜕W
𝜕up

𝜕up
𝜕xm

+ 𝜕W
𝜕up,q

𝜕up,q
𝜕xm

= −fp up,m +𝜎pq up,qm, (8.18)

where −𝜕W/𝜕up = fp is a body force and 𝜕W/𝜕up,q = 𝜎pq is a component of the stress
tensor. Therefore the divergence of the integrand in eqn. 8.17 is as follows:

Pmj,j = (W𝛿mj −𝜎ijui,m),j
= −fp up,m +𝜎pq up,qm −𝜎ij,jui,m −𝜎ijui,mj. (8.19)

We see that Pmj,j = 0 because the equilibrium condition ensures 𝜎ij,j + fi = 0. It follows
that S may be deformed into S′ and the integral in eqn. 8.17 is invariant.

The divergence Pmj,j is non-zero when there is a defect because the elastic energy
density then has an explicit dependence on position: W =W(ui,ui, j,xi). For then the
gradient ofW with respect to position becomes

𝜕W
𝜕xm

= −fp up,m +𝜎pq up,qm +(
𝜕W
𝜕xm

)
exp

. (8.20)

The explicit partial derivative (𝜕W/𝜕xm)exp is evaluated by displacing the point xm by
a virtual amount 𝛿xm while keeping fixed all other points in the body and keeping the
elastic displacements and displacement gradients fixed. If there is a defect at𝐗 then when
𝐱 = 𝐗 the partial derivative (𝜕W/𝜕xm)exp is nonzero because the defect undergoes a virtual
displacement.6 The divergence Pmj,j is then (𝜕W/𝜕xm)exp and the force Fm becomes

Fm =∫
R

( 𝜕W𝜕xm
)
exp

dV. (8.21)

If there is just one defect in the region R at 𝐗 then (𝜕W/𝜕xm)exp = (𝜕W/𝜕Xm)exp 𝛿(𝐱−𝐗).

5 Note that the relation between stress and strain may be nonlinear
6 Alternatively, the explicit partial derivative is non-zero in regions where the elastic constants depend on

position.
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It is emphasised that although a virtual displacement of the defect will induce a change
in the displacement gradients of the same order throughout the body they must not be
taken into account in the evaluation of the force. For example, for a point defect at 𝐗
with an elastic dipole tensor 𝜌ij the elastic interaction energy with a displacement gradient
ui, j(𝐱) is −𝜌ijui, j(𝐗). This is the part of the elastic energy density that depends explicitly
on 𝐗. Therefore the force on the point defect is

Fm = −𝜌ijui,jm(𝐗), (8.22)

where ui, j(𝐗) is the frozen displacement gradient at 𝐗 arising from other defects and
from the boundary conditions on the surface of the body. This is reminiscent of the
force theorem in electronic density functional theory7 (DFT) for the force on a nucleus,
where the changes in the self-consistent electronic charge density caused by the virtual
change in the position of the nucleus must not be taken into account in the evaluation of
the force.

Exercise 8.3

For the elastic energy density W =W(ui,ui, j) show that the elastic energy of a body is
minimised when:

𝜕W
𝜕ui

− 𝜕
𝜕xj

( 𝜕W𝜕ui, j
) = 0. (8.23)

What is the physical meaning of this equation?

8.5 Relationship to the static energy-momentum tensor

In this section we will use the formal methods of classical field theory to derive the static
energy-momentum tensor. We will show that it is equal to the integrand of the expression
in eqn. 8.17 for the force on a defect.

We begin with the time-independent Lagrangian density, which we write as
L = L(ui,ui, j,xm). As usual ui and ui, j are the displacements and displacement gradients.
The presence of inhomogeneities such as defects introduces an explicit dependence of

7 The force theorem is due to DG Pettifor and was published in Commun. Phys. 1, 141–6 (1976), which
is unavailable online. David Godfrey Pettifor FRS 1945–2017, British theoretical materials physicist. An
online account of it may be found in Heine, V, Solid State Phys. 35, 114–20 (1980). https://doi.org/10.
1016/S0081-1947(08)60503-2. Volker Heine FRS 1930–, German born British theoretical condensed matter
physicist.

https://doi.org/10.1016/S0081-1947(08)60503-2
https://doi.org/10.1016/S0081-1947(08)60503-2
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the Lagrangian density on position, as in eqn. 8.20. Since we are ignoring kinetic energy
the Lagrangian density is just −W, where W is the elastic energy density.

The integral of the Lagrangian density over the volume of the body is minimised with
respect to variations 𝛿ui of the displacement field, where 𝛿ui = 0 on the surface of the
body, when the following Euler–Lagrange equation is satisfied:

𝜕
𝜕xj

( 𝜕L
𝜕ui, j

)− 𝜕L
𝜕ui

= 0. (8.24)

With L = −W this is the equation of mechanical equilibrium.
Consider the partial derivative of the Lagrangian density with respect to xl. To be

clear, it is defined as

𝜕L
𝜕xl

= lim
𝛿xl→0

L(xl +𝛿xl) −L(xl)
𝛿xl

. (8.25)

It has both implicit contributions and an explicit contribution:

𝜕L
𝜕xl

= 𝜕L
𝜕ui

ui,l +
𝜕L
𝜕ui, j

ui,jl +(
𝜕L
𝜕xl

)
exp

= [ 𝜕L𝜕ui
ui,l −

𝜕
𝜕xj

( 𝜕L
𝜕ui, j

)ui,l]+
𝜕
𝜕xj

( 𝜕L
𝜕ui, j

)ui,l +
𝜕L
𝜕ui, j

ui,jl +(
𝜕L
𝜕xl

)
exp

= 𝜕
𝜕xj

{( 𝜕L
𝜕ui, j

)ui,l}+ (
𝜕L
𝜕xl

)
exp

. (8.26)

The term in square brackets is zero, owing to the Euler–Lagrange equation eqn. 8.24.
Equation 8.26 can be rewritten as follows:

( 𝜕L𝜕xl
)
exp

= − 𝜕
𝜕xj

Pjl, (8.27)

where

Pjl =
𝜕L
𝜕ui, j

ui,l −L𝛿jl (8.28)

is the static energy-momentum tensor. Setting L = −W, and using 𝜕W/𝜕ui, j = 𝜎ij, we see
that eqn. 8.28 is the same as eqn. 8.9. Note that in eqn. 8.27 the explicit partial derivative
of the Lagrangian is equated to the divergence of the static energy-momentum tensor,
which is analogous to the divergence of theMaxwell electrostatic stress tensor in eqn. 8.3
as an expression of the electrostatic force on a point charge in Exercise 8.1.
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8.6 The force due to an applied stress and image forces

The elastic energy densityW, the stress tensor 𝜎ij and the displacement gradient ui,m in
eqn. 8.17 include contributions from all elastic fields present in the body. In addition to
the elastic fields 𝜎D∞ij ,uD∞i of the defect in an infinitemedium there are contributions from
other defects and from forces applied to the surface of the body, which we collectively
label 𝜎Aij ,uAi , and from satisfying the boundary conditions on the surface of the body
𝜎Iij,uIi which are often called image fields. In linear elasticity we have

𝜎ij = 𝜎D∞ij +𝜎Aij +𝜎Iij

ui = uD∞i + uAi + uIi

When these sums are inserted in eqn. 8.17 the force becomes

Fm =∫
Σ

(D∞,D∞)+ (A,A) + (I, I) + (D∞,A) + (A, I) + (I,D∞) dS. (8.29)

The diagonal terms are given by

(X,X) = (1
2
𝜎XpquXp,q𝛿mj −𝜎Xij uXi,m)nj (8.30)

and the off-diagonal terms by

(X,Y) = (1
2
(𝜎XpquYp,q +𝜎YpquXp,q)𝛿mj −(𝜎Xij uYi,m +𝜎Yij uXi,m))nj. (8.31)

To proceed we need a version of Stokes’ theorem:

∮
C

𝜀jliwidxj =∫
Σ
(wm,m𝛿jl −wj,l)njdS, (8.32)

where wi is a differentiable function, and the left hand side is a line integral taken around
the closed contour C and Σ is an open surface bounded by C.
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Exercise 8.4

Derive eqn. 8.32 by applying the familiar form of Stokes’ theorem to Ajl = 𝜀jliwi. Hence, for
a closed surface show that

∫
Σ
wm,m𝛿jlnjdS =∫

Σ
wj,lnjdS. (8.33)

Another way to derive this formula is to consider the change in the integral of 𝐰⋅ ̂𝐧̂, where
𝐧̂ is the local unit normal, taken over a closed surface Σ when the surface is displaced by an
infinitesimal amount 𝜀 along the xl-axis. The change in the surface integral is

𝜀∫
Σ

𝜕
𝜕xl

𝐰⋅ 𝐧̂ dS.

This integral is equal to the integral on the right hand side of eqn. 8.33 multiplied by 𝜀. But
this is also equal to

∫
Σ′
wjnjdS−∫

Σ
wjnjdS,

where Σ′ is the surface following the displacement of Σ by 𝜀 along xl. By the divergence
theorem this difference in surface integrals is equal to the volume integral of the divergence
of 𝐰 taken over the thin sliver between Σ and Σ′. A volume element of this sliver is 𝜀 𝐞̂l ⋅ 𝐧̂dS,
where 𝐞̂l is a unit vector along the xl-axis. Therefore,

𝜀∫
Σ
∇ ⋅𝐰 (𝐞̂l ⋅ 𝐧̂) dS = 𝜀∫

Σ

𝜕
𝜕xl

𝐰⋅ 𝐧̂ dS.

Equation 8.33 then follows.

Using eqn. 8.33 with wq = 𝜎XpquYp +𝜎YpquXp we obtain

∫
Σ
(𝜎XpquYp,q +𝜎YpquXp,q)nmdS =∫

Σ
(𝜎Xpj uYp +𝜎Ypj uXp ),m njdS

=∫
Σ
(𝜎Xpj,muYp +𝜎Xpj uYp,m +𝜎Ypj,muXp +𝜎Ypj uXp,m) njdS,

(8.34)

where the equilibrium condition 𝜎pq,q = 0 has been used. The contribution F(XY)m to the
force Fm on the defect arising from the (XY) term in eqn. 8.31 is then
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F(XY)m = 1
2
∫
Σ
(𝜎Xpj,muYp +𝜎Ypj,muXp −𝜎Xpj uYp,m −𝜎Ypj uXp,m)njdS. (8.35)

Using the divergence theorem we may convert this to a volume integral over the volume
V enclosed by Σ:

F(XY)m = 1
2
∫(𝜎Xpj,muYp,j +𝜎Ypj,muXp,j −𝜎Xpj uYp,mj −𝜎Ypj uXp,mj) dV, (8.36)

where we have again used the equilibrium condition 𝜎ij,j = 0. If 𝜎Xpj = cpjkluXk,l and 𝜎Ypj =
cpjklu

Y
k,l then it is easy to show that this volume integral is zero remembering that cijkl =

cklij. But if X and/or Y is D∞ this is no longer true because eD∞pj ≠ (1/2)(uD∞p,j + uD∞j,p )
throughoutV. Thus all the off-diagonal terms in eqn. 8.31 are zero except those involving
D∞. The diagonal terms (A,A) and (I, I) are zero by the same argument. The diagonal
term (D∞,D∞) is zero because Σ may be taken at infinity where the integral tends to
zero provided 𝜎ij decays at least as rapidly as 1/r2 in three dimensions and at least as
rapidly as 1/r in two dimensions.

The conclusion is that only the two off-diagonal terms involving D∞ are non-zero:
(D∞,A) and (D∞, I). These are the forces arising from the applied stress and the image
field. The force arising from an applied stress is

FAm =∫
Σ
(𝜎D∞pj,muAp −𝜎ApjuD∞p,m )njdS (8.37)

and the force arising from the image field is

FIm =∫
Σ
(𝜎D∞pj,muIp −𝜎IpjuD∞p,m )njdS. (8.38)

In eqn. 8.37 we see that the force on a defect in a finite body due to other defects or
tractions applied to the external surface of the body involves the field of the defect in an
infinite medium, not those in the finite body. This is a very significant simplification.

8.7 The Peach–Koehler force revisited

In this section we apply the general expression for the force on a defect in eqn. 8.17 to
rederive the Peach–Koehler formula for the force per unit length on a dislocation due to
an applied stress 𝜎Aij , which was first obtained in section 6.6.

To apply eqn. 8.37 to a dislocation consider a straight Volterra dislocation with its
positive line sense along the positive x3-axis of a Cartesian coordinate system with an
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arbitrary Burgers vector bi. The surface S of the integral in eqn. 8.37 has to enclose only
the dislocation, but is otherwise arbitrary. It is defined by the line integral (see eqn. 6.2)

bi =∮
C

𝜕uD∞i
𝜕xk

dxk, (8.39)

where the circuit C is any clockwise circuit taken around the positive sense of the
dislocation line. The absence of a resultant body force associated with the dislocation
ensures that the first term in the integrand in eqn. 8.37 integrates to zero. We are
left with

FAm = −∫
S

𝜎Aij uD∞i,m njdS. (8.40)

Define axes x1 and x2 in the plane normal to the dislocation line. Let the cut plane be the
half-plane x2 = 0,x1 > 0. We choose S to consist of the surfaces S+ and S− extending
from x1 = −∞ to x1 = +∞, infinitesimally above and below the x1-axis, as shown in
Fig. 8.1, and closed by infinitesimal segments along x2 at x1 = ±∞. On S+ and S− we
have 𝜎Aij (x1,0+,x3)nj = 𝜎Aij (x1,0−,x3)nj. We also have uD∞i (x1,0+,x3) − uD∞i (x1,0−,x3) =
−bi for all x1 > 0 and for all x3, and u

D∞
i (x1,0+,x3) − uD∞i (x1,0−,x3) = 0 for all x1 < 0

and for all x3. Therefore, uD∞i,1 (x1,0+,x3) − uD∞i,1 (x1,0−,x3) = −bi𝛿(x1), which is consistent
with eqn. 8.39. Following section 6.6 the positive normal to the cut half-plane is along
−x2, that is nj = −𝛿j2. Carrying out the integration around S, in the sense indicated in
Fig. 8.1, we obtain the force per unit length of dislocation line, F A

1 = 𝜎Ai2bi, where 𝜎Ai2 is
evaluated at the origin. This agrees with eqn. 6.11 with tp = 𝛿p3.

To find FA2 we choose the cut plane to be the half-plane x1 = 0,x2 > 0 and we
choose S+ and S− to extend from x2 = −∞ to x2 = +∞ with x1 = ±𝜀, where 𝜀 is a

x2

x1

S
+

S
−

Figure 8.1 To illustrate the evaluation of the Peach–Koehler force. A straight dislocation lies along the
x3-axis, with its positive line sense along the positive x3 direction. The cut is in the plane x2 = 0, along
x1 ≥ 0. The surface integral in eqn. 8.40 is taken in the clockwise sense along the positive direction of the
dislocation line sense, which appears anticlockwise in the figure because we are looking along −x3. S+
and S− are surfaces infinitesimally above and below the x1-axis.
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positive infinitesimal number. Repeating the argument with nj = 𝛿j1 and uD∞i,2 (0+,x2,x3) −
uD∞i,2 (0−,x2,x3) = bi𝛿(x2), which is consistent with eqn. 8.39, we obtain FA2 = −𝜎i1bi. This
also agrees with eqn. 6.11.

8.8 Problem set 8

1. In an invariant plane strain deformation an interface separates deformed and
undeformed regions of a medium. The interface is an invariant plane of the
deformation, so that it is neither deformed nor rotated. Consider a flat interface
between semi-infinite regions A and B. The positive sense of the normal 𝐧̂ to
the interface points from region B to region A. Region A has not undergone the
invariant plane strain, but region B has. If 𝐞̂ is a unit vector perpendicular to the
unit normal 𝐧̂ show that the distortion tensor of a general invariant plane strain is
as follows:

uBi,k = s ̂ei ̂nk +𝜆 ̂ni ̂nk,

and state the meaning of s and 𝜆. Verify that any vector lying in the interface is
unchanged by this deformation, and hence the interface is invariant. In deforma-
tion twinning 𝜆 = 0, and the twin crystal and the parent crystal are related by a
simple shear.

If only linear elastic forces were at play then any movement of the interface
induced by an applied stress would be reversed when the stress is removed. In both
deformation twinning and martensitic phase changes the elastic energy densityW
becomes a nonlinear function of the distortion tensor. That is because after the
crystal has been twinned or transformed martensitically it corresponds to a local
minimum of the elastic energy density W in the space of distortions. The elastic
energy density W then describes the change in the energy of the crystal along a
path between the initial and final states of the crystal in this space. The variation of
the elastic energy density along such a path can be calculated using modern DFT
methods. When the distortion from a local minimum in this space is sufficiently
small the change in the energy is described adequately by linear elasticity. But
linear elasticity fails to capture the existence of other local minima.

In the absence of an applied stress we writeWA =WA0 whereWA0 is the energy
density of region A at the local minimum. Similarly, WB =WB0 is the energy
density of region B at its local minimum. Show that the pressure on the interface
is then WA0 −WB0. This difference in the energy densities may depend on other
variables such as temperature and applied magnetic or electric fields. The pressure
WA0 −WB0 may the regarded as a chemical pressure because it arises from atomic
interactions in undistorted crystals A and B. In mechanical twinning WA0 =WB0

because the crystal structures of states A and B are related by a rotation.
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When there is an applied stress the displacement field in region A is just the elastic
displacement uAi from the atomic configuration at the local energy minimum. The
displacement field in region B is uB0i + uBi where uB0i is the displacement due to
the invariant plane strain and uiB is the additional elastic displacement caused by
the applied stress. Show that the pressure on the interface in the presence of an
applied stress becomes:

p = nj [(WA0 +WA
el −WB0 −WB

el)𝛿jk +𝜎ij (u
B0
i,k + uBi,k − uAi,k)]nk

In general the components of the distortion tensor of the invariant plane strain are
much larger than those due to elastic distortions of regions A and B. In that case
we may ignore the elastic distortions uAi,k and u

B
i,k in comparison to uB0i,k . Show that

the pressure on the interface then becomes:

p = (WA0 −WB0 +WA0
el −W

B0
el )+ [{ni𝜎ijej} s+ {ni𝜎ijnj}𝜆] .

In a martensitic transformation the term in round brackets may be influenced by
other fields such as thermal, magnetic or electric. The term in square brackets
shows that resolved components of the applied stressmay drive the transformation,
converting region A into region B, by promoting the simple shear and the tensile
strain normal to the interface. In shape memory alloys these two terms are played
off against each other. Even though WB0 may be slightly greater than WA0 a
suitably applied stress may drive the transformation and convert region A into
the martensite phase B: this is ‘stress-induced martensite’. Then by adjusting the
temperature or some other field WB0 −WA0 may become sufficiently negative
to drive the transformation in the reverse direction. This reversibility of the
martensitic phase change is the basis of the ‘shape memory effect’.

2. In the derivation of the pressure on an interface in eqn. 8.10 it was assumed there is
continuity of displacements and tractions across the interface. These assumptions
apply when the interface is ‘coherent’. At high temperatures, or when there is
a large misfit strain between the crystal lattices on either side of the interface,
some interfaces become incoherent. In that case only the normal displacements
and normal tractions are continuous across the interface. The tractions parallel
to the interface are assumed to be relaxed to zero through sliding of one crystal
with respect to the other as if the interface were greased. In general there are
then discontinuous changes in the displacement vector parallel to the interface.
Show that the pressure on an incoherent interface is p = ni (QA

ij −QB
ij )nj, where

Qij =W𝛿ij −𝜎ij (nkum,knm).
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Cracks

9.1 Introduction

The nucleation and propagation of cracks leads to fracture. For this reason cracks have
been studied for about a century. There are many shapes and sizes of cracks, and
a range of theoretical and computational methods has been developed to solve their
elastic fields. In this chapter we will focus on just one theoretical technique in which
cracks are represented by continuous distributions of dislocations. There are two reasons
for choosing this technique. Cracks in all but the most brittle crystalline materials are
associated with some degree of plasticity in their vicinity, called plastic zones. Plastic
zones contain crystal dislocations which interact with the elastic field of the crack. The
representation of the crack itself in terms of dislocations enables these interactions to be
described conveniently using dislocation theory. Conversely, the elastic fields of cracks
are intimately related to the elastic fields of dislocation pileups, where dislocations pile
up against barriers such as grain boundaries and precipitates during plastic deformation.
Dislocation pileups may also nucleate cracks. There are thus physical and mathematical
close relationships between cracks and dislocations.

Various criteria for crack propagation have been proposed in the literature. The most
fundamental is the Griffith criterion, which states that for a crack to grow the total
energy of the system must decrease, where the ‘system’ includes the external loading
mechanism. The Griffith criterion is discussed in section 9.5. A recurring feature of the
theory of fracture is its incompleteness—the lack of knowledge about atomicmechanisms
at the root of a crack and how they are influenced by temperature, strain rate, local stress,
local chemical composition and microstructure. In 1921 Griffith wrote in the seminal
paper containing his criterion for fracture that no criterion for strength or fracture
could be considered complete without taking into consideration interatomic forces. This
incompleteness will emerge several times in this chapter. We will see in section 9.6 that
dislocations ahead of a crack may either reduce or increase the stress acting on the crack
tip. Forces acting on atoms at the crack tip are thus strongly influenced by groups of
dislocations, and other defects, that may be further away. The multi-scale nature of
fracture is also one of its key features. Screening of applied stresses acting at crack tips
by dislocations is another central theme of this chapter.

Physics of elasticity and crystal defects. Adrian P. Sutton, Oxford University Press (2020). © Adrian P. Sutton.
DOI: 10.1093/oso/9780198860785.001.0001
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9.2 Mathematical preliminaries

In this chapter we will encounter singular integral equations of the Cauchy type. They
have the following form:

P

1

∫
−1

F(u)
v− udu =H(v), (9.1)

where v lies between −1 and 1. The P in front of the integral signifies it is a principal
value type. The standard way to deal with these equations is to use complex analysis
following the work1 in this area by Muskhelishvili.2 We shall follow a simpler approach
using Chebyshev3 polynomials.4 This will limit our use of complex analysis to evaluating
contour integrals, of which there will be many in this chapter.

9.2.1 Chebyshev polynomials

Chebyshev polynomials of the first kind are defined as follows:

Tn(cos𝜃) = cosn𝜃, where n ≥ 0. (9.2)

Using the addition formula for cosines it is easy to show

Tn+1(cos𝜃) = 2cos𝜃Tn(cos𝜃)−Tn−1(cos𝜃),

where n ≥ 1. Replacing cos𝜃 by x we have the recurrence relation:

Tn+1(x) = 2xTn(x) −Tn−1(x), (9.3)

where Tn(x) = cos(ncos−1 x), and T0(x) = 1, T1(x) = x.
Chebyshev polynomials of the second kind are defined as follows:

Un(cos𝜃) =
sin(n+ 1)𝜃

sin𝜃 , where n ≥ 0. (9.4)

1 Muskhelishvili, NI, Singular integral equations, Dover Publications: New York (2008), ISBN
9780486462424.

2 Nikolay Ivanovich Muskhelishvili 1891–1976, Georgian mathematician, physicist and engineer.
3 Pafnuty Lvovich Chebyshev 1821–94, Russian mathematician.
4 This is the approach taken by Bilby, BA, and Eshelby, JD, Dislocations and the theory of fracture, in

Fracture, ed. H Liebowitz, volume 1, Academic Press: New York (1968), Chapter 2. Although these authors
did not explicitly mention Chebyshev polynomials the mathematics they used is the mathematics of Chebyshev
polynomials.
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Using the addition formula for sines it is easy to show

Un+1(cos𝜃) = 2cos𝜃Un(cos𝜃)−Un−1(cos𝜃),

where n ≥ 1. Replacing cos𝜃 by x we have the recurrence relation:

Un+1(x) = 2xUn(x) −Un−1(x), (9.5)

where Un(x) = sin((n+ 1)cos−1 x)/sin(cos−1 x), and U0(x) = 1, U1(x) = 2x.

Exercise 9.1

Using the recurrence relations determine the Chebyshev polynomials of the first and second
kind up to n = 6.

Prove the following orthogonality relations on the interval −1 ≤ x ≤ 1:

1

∫
−1

Tm(x)Tn(x)
√1− x2

dx =
⎧
⎨
⎩

0, n ≠m
𝜋, n =m = 0

𝜋/2 n =m ≠ 0,
(9.6)

and

1

∫
−1

Um(x)Un(x)√1− x2 dx = {0, n ≠m
𝜋/2 n =m.

(9.7)

Hint: Make the substitution x = cos𝜃.

As a result of the orthogonality relations, eqn. 9.6, any integrable function F(x) on
the interval −1 ≤ x ≤ 1 may be expanded in terms of Chebyshev polynomials of the first
kind:

F(x) =
∞
∑
n=0

anTn(x), (9.8)

where

a0 =
1
𝜋

1

∫
−1

F(x)
√1− x2

dx
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am =
2
𝜋

1

∫
−1

F(x)Tm(x)
√1− x2

dx. (9.9)

Chebyshev polynomials of the first and second kind are related by the following
principal value integrals:

P

1

∫
−1

Tn(y)
(y− x)√1− y2

dy = 𝜋Un−1(x), |x| ≤ 1 (9.10)

P

1

∫
−1

√1− y2 Un−1(y)
(y− x) dy = −𝜋Tn(x), |x| ≤ 1. (9.11)

Exercise 9.2

Prove eqns. 9.10 and 9.11.

Hint: Making the substitutions y = cos𝜃 and x = cos𝜙 show that eqn. 9.10 becomes

P

𝜋

∫
0

cosn𝜃
cos𝜃 − cos𝜙 d𝜃 = 𝜋sinn𝜙

sin𝜙

and eqn. 9.11 becomes

−P
𝜋

∫
0

sin𝜃 sinn𝜃
cos𝜃 − cos𝜙 d𝜃 = 𝜋cosn𝜙.

These integrals are even in 𝜃. They may be transformed to Cauchy principal value integrals
around the unit circle in the complex plane by making the substitution z = ei𝜃. There are
simple poles on the contour at z = e±i𝜙, for which the residues cancel in both integrals. This
leaves poles of order n, n− 1 and n+ 1 at z = 0, for which the residues may be evaluated by
splitting the integrands into partial fractions. These contour integrals take a bit of effort to
evaluate but the method outlined here is straightforward if somewhat tedious. The results of
the above two integrals are stated without proof in Appendix C of the paper by Bilby and
Eshelby (1968).

9.2.2 Solution of the Cauchy type integral equation

We now have the tools we need to solve the integral equation, eqn. 9.1. Let F(u) =
L(u)/√1− u2, where L(u) is an integrable function on [−1,1] to be determined by solving
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the integral equation. We may expand L(u) in terms of Chebyshev polynomials of the
first kind:

L(u) = a0 +
∞
∑
n=0

anTn(u). (9.12)

Inserting this expansion into eqn. 9.1 we obtain

P

1

∫
−1

(a0 +
∞
∑
n=0

anTn(u))
1

√(1− u2)
1

(v− u) du =H(v). (9.13)

Using eqn. 9.10 to evaluate the integral this equation becomes

∞
∑
n=1

an𝜋Un−1(v) = −H(v). (9.14)

Note that a0 is undetermined because

P

1

∫
−1

1

√1− u2
1

(v− u) du = 0, (9.15)

as may be verified by contour integration. The constant a0 is the solution of the
homogeneous equation, where H(v) is zero, and we shall see it is determined by the
boundary conditions at u = ±1.

If we now multiply both sides of eqn. 9.14 by √1− v2/(v− u) and integrate over v
from v = −1 to v = 1, making use of eqn. 9.11, we obtain

𝜋2
∞
∑
n=1

anTn(u) = P

1

∫
−1

H(v)√1− v2
v− u dv. (9.16)

Using eqn. 9.12 and the definition L(u) = √1− u2F(u) we reach the solution of the
integral equation:

F(u) = a0

√1− u2
+ 1
𝜋2 P

1

∫
−1

H(v)
(v− u) √

1− v2
1− u2 dv. (9.17)
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Quite often we are confronted with a different range of integration for the integral
equation, such as

P

b

∫
a

D(y)
x− y dy =Q(x), (9.18)

where a ≤ x ≤ b. But if we let u = (2y− a− b)/(b− a) and v = (2x− a− b)/(b− a) this
integral equation becomes identical to eqn. 9.1, and the corresponding solution is readily
obtained from eqn. 9.17:

D(y) = 1

𝜋2√(y− a)(b− y)
[C+ P

b

∫
a

Q(x)
x− y√(x− a)(b− x) dx], (9.19)

where C is again an arbitrary constant determined by the boundary conditions on D(y)
at y = a,b. The solution in eqn. 9.19 diverges at y = a,b. If a solution is sought where
D(y) is bounded at y = a then the term in square brackets in eqn. 9.19 is set to zero at
y = a, which yields

C = −P
b

∫
a

Q(x)
x− a √(x− a)(b− x) dx.

When this is substituted back into eqn. 9.19 we obtain

D(y) = 1
𝜋2√

(y− a)
(b− y) P

b

∫
a

Q(x)
√

(b− x)
(x− a)

1
(x− y) dx. (9.20)

Similarly, a solution bounded at y = b is as follows:

D(y) = 1
𝜋2√

(b− y)
(y− a) P

b

∫
a

Q(x)
√

(x− a)
(b− x)

1
(x− y) dx. (9.21)

If this solution is also required to be bounded at y = a then the integral in eqn. 9.21 has
to be zero at y = a, or equivalently the integral in eqn. 9.20 has to be zero at y = b. Both
are satisfied if the following relationship holds:
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b

∫
a

Q(x)
√(x− a)(b− x)

dx = 0. (9.22)

The solution of the integral equation then becomes

D(y) = 1
𝜋2√

(b− y)
(y− a) { P

b

∫
a

Q(x)
√

(x− a)
(b− x)

1
(x− y) dx −

b

∫
a

Q(x)
√(x− a)(b− x)

dx}

= 1
𝜋2

√(y− a)(b− y)P
b

∫
a

Q(x)
√(x− a)(b− x)

1
(x− y) dx. (9.23)

9.2.3 Some contour integrals

In this chapter we use contour integration extensively. There are some contour integrals
that involve a careful analysis of the contribution from the closure of the contour at
infinity. For example, consider the following familiar integral:

I =
a

∫
−a

√a2 − x2dx.

It is trivial to evaluate this integral by making the substitution x = asin𝜃 or x = acos𝜃 to
obtain I = 𝜋a2/2. Although there are no poles it may also be evaluated in the complex
plane by considering the following contour integral:

J1 =∮
C

√z2 − a2dz, (9.24)

where the contour C is illustrated in Fig. 9.1. On the upper surface of the branch cut
between −a and +a we find √z2 − a2 = i√a2 − x2, and on the lower surface √z2 − a2 =
−i√a2 − x2. Therefore the contribution to the contour integral from the loop around
the branch cut is 2iI. The contributions from the small circles at z = ±a are zero. The
contour is closed at infinity by a large circle z = Rei𝜃, where 0 ≤ 𝜃 ≤ 2𝜋 and we take the
limit5 R→∞. The contribution from this large circle is evaluated as follows:

5 The process of taking limits may be illustrated by the following example attributed to Konrad Zacharias
Lorenz 1903–89, Nobel Prize-winning Austrian zoologist: Philosophers are people who know less and less
about more and more, until they know nothing about everything. Scientists are people who know more and
more about less and less, until they know everything about nothing.
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ix2

x1

R

–a a

Figure 9.1 Contour to evaluate the integral in eqn. 9.24. The limit R→∞ is taken.

lim
R→∞

2𝜋

∫
0

(R2e2i𝜃 − a2)
1

2 iRei𝜃 d𝜃 = lim
R→∞

2𝜋

∫
0

Rei𝜃 (1− a2

R2e2i𝜃
)

1

2

iRei𝜃 d𝜃

= lim
R→∞

2𝜋

∫
0

Rei𝜃 (1− a2

2R2e2i𝜃
+ . . .) iRei𝜃 d𝜃

= −𝜋ia2.

Since there are no poles inside the contour Cauchy’s theorem tells us that 2iI−𝜋ia2 = 0,
and therefore I = 𝜋a2/2, as before.

We will also encounter principal value integrals of the form

I = P
a

∫
−a

√a2 − x2
x− b dx, −a ≤ b ≤ a.

It may also be evaluated by considering a contour integral:

J2 =∮
C

√z2 − a2
z− b dz, (9.25)
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ix2

x1
–a ab

R

Figure 9.2 Contour to evaluate the integral in eqn. 9.25. The limit R→∞ is taken.

where C is the contour shown in Fig. 9.2. There is a simple pole on the branch cut at
z = b. However, the contributions from the semi circles above and below the pole are
equal and opposite because the square root changes sign on either side of the branch
cut. Therefore the contribution from the loop around the branch cut is 2iI, including the
semicircles around the pole. The contour is again closed by a large circle of radius R,
giving the following contribution:

lim
R→∞

2𝜋

∫
0

(R2e2i𝜃 − a2)
1

2

(Rei𝜃 − b)
iRei𝜃d𝜃 = lim

R→∞

2𝜋

∫
0

Rei𝜃 (1− a2

R2e2i𝜃
)

1

2

Rei𝜃 (1− b

Rei𝜃
)

iRei𝜃d𝜃

= lim
R→∞

2𝜋

∫
0

(1− a2

2R2e2i𝜃
)(1+ b

Rei𝜃
) iRei𝜃d𝜃

= 2𝜋ib.

Since there are no poles inside the contour C Cauchy’s theorem tells us that
2iI+ 2𝜋ib = 0, or I = −𝜋b.
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Exercise 9.3

Prove the following integrals using contour integration:

a

∫
−a

1

√a2 − x2
dx = 𝜋

P

a

∫
−a

1

√a2 − x2
1

x− b dx = 0, −a ≤ b ≤ a

a

∫
−a

1

√a2 − x2
1

x− b dx = − 𝜋
√b2 − a2

, b > a.

9.3 Representation of loaded cracks as distributions
of dislocations

Consider a slit crack in the plane x2 = 0 between x1 = a and x1 = b, with a < b, and
infinitely long along the x3-axis. A slit crack is a rectangular cut in an infinite elastic
continuum, which is infinitely long in one direction and finite in the perpendicular
direction. The faces of the cut undergo a relative displacement in response to an applied
load. Suppose a uniform tensile stress 𝜎22 = 𝜎 is applied to the medium at x2 = ±∞.
The faces of the crack separate slightly under the action of the applied stress. Let s(x1)
denote the x2-coordinate of the upper crack face at a ≤ x1 ≤ b minus the x2-coordinate
of the lower crack face at x1, where s(a) = s(b) = 0. The function s(x1) is called the crack
opening displacement.

The variation of s(x1) with x1 may be modelled mathematically as the result of a
continuous distribution of edge dislocations in a ≤ x1 ≤ b, with their lines parallel to
the x3-axis and their Burgers vectors along the x2-axis. Let the positive sense of the
dislocation lines be along the positive direction of the x3-axis. Let f (x1)dx1 be the Burgers
vector of dislocations between x1 and x1 +dx1. Then the relationship between the crack
opening displacement and f (x1) is as follows:

s(x1) = −
x1

∫
a

f (x′1) dx′1 (9.26)

where the negative sign in front of the integral is consistent with the FS/RH convention
and the definition of s(x1). The distribution of dislocations in a ≤ x1 ≤ b representing the
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x2
(a)

(b)x2

a b

a b

x1

x1

Figure 9.3 To illustrate the representation of a slit crack under a normal tensile load by a distribution
of dislocations. (a) A slit crack occupies a ≤ x1 ≤ b and is subjected to a tensile stress along x2. The crack
faces separate in (b) forming an ellipse. The elliptical crack faces may also be thought of as the interface
surrounding an inclusion comprising a stack of interstitial loops shown in (b). When the locations of the
edge dislocations bounding these interstitial loops are projected by the vertical broken lines onto the slit
crack in (a) we obtain the representation of the loaded slit crack as a distribution of edge dislocations. As
the spacing between the horizontal planes on which the interstitial loops lie becomes infinitesimal the
distribution of dislocations representing the crack becomes continuous, and their Burgers vectors become
infinitesimal. The normal tractions created on the crack faces by the dislocations cancel the tractions
arising from the applied normal stress so that the crack faces are free of tractions.

crack opening is illustrated in Fig. 9.3(a).6 In Fig. 9.3(b) it is shown that the distribution
in (a) may be viewed as a distribution of interstitial loops collapsed onto the plane x2 = 0.
The loops transform the slit crack into the ellipse shown in (b). Since these loops are
interstitial in character they create a compressive stress field inside the ellipse which
generates tractions on the crack faces that exactly cancel the tractions arising from the

6 Historical note. There is a drawing similar to Fig. 9.3 on p.215 of the book Les dislocations by Friedel
(Jacques Friedel ForMemRS 1921–2014, French materials physicist and President of the French Academy of
Sciences 1992–94.), where he called the dislocations representing the crack les dislocations de clivage—cleavage
dislocations. The first suggestion that cracks and slip bands may both be represented by arrays of dislocations
appears to be due to Zener (Clarence Melvin Zener 1905–93, US physicist) in 1948 in Fracturing of metals,
Symposium, American Society for Metals: Cleveland, OH, p.3. The close relationship between a crack and a
pileup of dislocations was also discussed in Eshelby, JD, Frank, FC, and Nabarro, FRN, Phil. Mag. 42, 351–
64 (1951), https://doi.org/10.1080/14786445108561060. The mathematics for the replacement of arrays of
discrete dislocations in pileups by continuous distributions of infinitesimal dislocations was developed by Zener,
Leibfried (Leibfried, G, Z. Phys. 130, 244 (1951) https://doi.org/10.1007/BF01337695) and by Head and
Louat (Head, AK, and Louat, N, Aust. J. Phys. 8, 1 (1955). https://doi.org/10.1071/PH550001). Alan Kenneth
Head FRS 1925–2010, Australian physicist. Norman P Louat 1920–2010, Australian and US physicist.

https://doi.org/10.1080/14786445108561060
https://doi.org/10.1007/BF01337695
https://doi.org/10.1071/PH550001


OUP CORRECTED PROOF – FINAL, 22/5/2020, SPi

190 Cracks

applied load. The requirement that there are no net tractions on the faces of the loaded slit
crack is a boundary condition that must be satisfied by f (x1).

So far we have discussed the loading of a slit crack with normal along x2 by a normal
stress 𝜎22. This is called mode I loading. The crack may also be loaded by a shear stress
𝜎12 and this is called mode II loading. A slit crack loaded in mode II may be represented
by a distribution of edge dislocations with Burgers vectors parallel to x1. If the slit crack
is loaded by a shear stress 𝜎23 this is called mode III loading. A slit crack loaded in
mode III may be represented by a distribution of screw dislocations along the x3-axis.
More complex loadings on a slit crack may be modelled by combining these dislocation
representations.

9.4 Elastic field of a mode I slit crack and the stress
intensity factor

In this section we will set up and solve the integral equation for the Burgers vector density
f (x1) representing the mode I slit crack loaded by an applied normal tensile stress 𝜎 of
the previous section. Far from the crack the stress field is just the applied normal stress.
But this field is perturbed very significantly near the crack, and we shall see it becomes
singular at the crack tips at x1 = a,b. In this sectionwe assume the response of themedium
is purely elastic so that no plasticity takes place.

The applied normal stress 𝜎 creates tractions −𝜎𝐞̂2 on the crack faces. These tractions
have to be cancelled by tractions created by the edge dislocations representing the crack.
An edge dislocation at (x′1,0) with Burgers vector 𝐛 = [0,b,0] creates a stress field at
(x1,x2) with the following components:

𝜎11(x1,x2) =
𝜇b

2𝜋(1−𝜈)
(x1 − x′1)((x1 − x′1)2 − x22)

((x1 − x′1)2 + x22)
2

𝜎22(x1,x2) =
𝜇b

2𝜋(1−𝜈)
(x1 − x′1)(3x22 + (x1 − x′1)2)

((x1 − x′1)2 + x22)
2

𝜎12(x1,x2) = 𝜎21(x1,x2) =
𝜇b

2𝜋(1−𝜈)
x2 ((x1 − x′1)2 − x22)

((x1 − x′1)2 + x22)
2

𝜎33(x1,x2) = 𝜈 (𝜎11(x1,x2) + 𝜎22(x1,x2))

𝜎13(x1,x2) = 𝜎31(x1,x2) = 𝜎23(x1,x2) = 𝜎32(x1,x2) = 0. (9.27)

In the plane of the slit crack x2 = 0 and the only component of the stress field of a
dislocation at (x′1,0) contributing to tractions on the crack faces is 𝜎22(x1,0):
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𝜎22(x1,0) =
𝜇b

2𝜋(1−𝜈)
1

(x1 − x′1)
. (9.28)

The total normal stress at (x1,0) arising from the distribution of edge dislocations in
the crack is

Σ22(x1,0) =
𝜇

2𝜋(1−𝜈) P
b

∫
a

f (x′1)
(x1 − x′1)

dx′1. (9.29)

The integral is a principal value integral because the edge dislocation at x1 does not
exert a stress upon itself. The requirement of zero tractions on the crack faces leads to
the following integral equation for the Burgers vector density:

P

b

∫
a

f (x′1)
(x1 − x′1)

dx′1 +
2𝜋(1−𝜈)

𝜇 𝜎 = 0. (9.30)

The solution to this equation follows from eqn. 9.19. The arbitrary constant C in
eqn. 9.19 is determined by the condition that the total Burgers vector content of the
distribution is zero:

f (x1) =
2(1−𝜈)𝜎

𝜇
1

√(x1 − a)(b− x1)
(x1 −(

a+ b
2

)). (9.31)

This solution is plotted in Fig. 9.4.

3

2

1

–1

–2

–3

–1.0 –0.5 0.5 1.0 1.5 2.0

x1

Figure 9.4 Plot of the Burgers vector density for an elastic mode I crack, given by eqn. 9.31. In this
example the crack tips are at x1 = −1 and x1 = 2, where the Burgers vector density diverges. The
vertical axis is in units of 2(1−𝜈)𝜎/𝜇.

.
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Exercise 9.4

Derive eqn. 9.31 from eqn. 9.19 by using contour integration to evaluate the integrals.a

Compare the continuous distribution f (x1) with the distribution of discrete dislocations
sketched in Fig. 9.3.

Show that under the action of the applied stress the crack opening displacement s(x) attains
a maximum value of (1−𝜈)(𝜎/𝜇)(b− a) in the middle of the crack, and that the crack shape
is an ellipse with the following equation:

(x1 −(
a+ b
2

))
2

+( 𝜇x2
(1−𝜈)𝜎 )

2

= (b− a
2

)
2

. (9.32)

a The following integral may be evaluated by contour integration paying attention to the contribution
from the contour at infinity, as discussed in section 9.2.3:

P

b

∫
a

√(x′1− a)(b− x′1)

x′1− x1
dx′1 =−𝜋(x1−(a+ b)/2).

Along the x1-axis at x1 > b the total stress 𝜎T22(x1,0) is given by:7

𝜎T22(x1,0) = 𝜎 + 𝜎
𝜋

b

∫
a

1
(x1 − x′1)

x′1 − (a+ b)/2

√(x′1 − a)(b− x′1)
dx′1

= 𝜎 ( x1 − (a+ b)/2
√(x1 − a)(x1 − b)

) . (9.33)

The crack generates stress singularities at its tips. In eqn. 9.33 let x1 = b+Δ where
Δ≪ (b− a). We obtain

𝜎T22(b+Δ,0) =
𝜎
2√

(b− a)
Δ +O(

√
Δ

(b− a) ) . (9.34)

Thus, the applied stress field is intensified near the crack tips, displaying an inverse
square root singularity. The stress intensity factor is defined by

KI = lim
∆→0

√Δ 𝜎T22(b+Δ,0) = 𝜎√(b− a)
2

= 𝜎√c/2, (9.35)

7 Equation 9.33 was derived by Zener (1948), using the method followed here, but for a mode II slit crack.
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where 2c = (b− a) is the crack length. The units of the stress intensity factor are Pam1/2

or equivalently Nm−3/2.
Expressions for the stress field of the loaded crack throughout the medium may be

obtained using the Burgers vector density in eqn. 9.31 and the stress components of an
individual edge dislocation, eqn. 9.27. For example,

𝜎T12(x1,x2) =
𝜎x2
𝜋

b

∫
a

((x1 − x′1)2 − x22)

((x1 − x′1)2 + x22)
2

(x′1 − (a+ b)/2)

√(x′1 − a)(b− x′1)
dx′1, (9.36)

which can be evaluated by contour integration. See the problems at the end of this
chapter.

9.5 Energy considerations and Griffith’s fracture criterion

It is often said that when a crack grows the elastic energy stored in the body is reduced.
Thus, one often sees in the literature the expression ‘the elastic energy release rate’, which
is supposed to drive the growth of a crack. Following Bilby and Eshelby (1968) we will
show that the elastic energy of the body increases as the crack grows at constant applied
load,8 but the sum of the elastic energy and the potential energy of the external loading
mechanism decreases when the crack grows. It is this sum which drives crack growth and
leads to Griffith’s thermodynamic criterion for fracture. Since the elastic energy stored
in the body is a form of potential energy we may call the rate of decrease of the sum
of the elastic energy stored in the body and the potential energy of the external loading
mechanism the potential energy release rate rather than the elastic energy release rate. We
will show that the potential energy release rate is identical to what is commonly called
the elastic energy release rate.

Consider a body subjected to constant forces on its external surface. The body
contains a crack which can grow. Let the stress and displacement fields in the body
when the crack has a length L be 𝜎i j and ui. The elastic energy stored in the body is the
usual expression:

Eel =
1
2
∫
V

𝜎i j ui,jdV

= 1
2
∫
𝒮0

𝜎i j ui njdS. (9.37)

8 If you are unconvinced consider a catapult. For a given applied force the elastic energy stored in the catapult
bands increases as the compliance of the bands increases. As a crack grows the body it is in becomes more
deformable, that is, more compliant. Therefore, for the same forces applied to the surface of the body the
elastic energy increases as the crack grows.
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The integral over the volume of the body in the first line is transformed in the second line
using the divergence theorem into a surface integral. The surface comprises the external
surface 𝒮0 of the body and the faces of the crack. But the tractions on the surface of the
crack are zero, and therefore the crack faces do not contribute to the surface integral,
which may therefore be taken over the external surface only. The equilibrium condition
𝜎i j,j = 0 has been used in the second line.

When the crack grows by 𝛿L let the stress and displacement fields in the body become
𝜎′i j and u′i . The elastic energy of the body changes by

𝛿Eel =
1
2
∫
𝒮0

(𝜎′i ju′i −𝜎i jui) njdS

= 1
2
∫
𝒮0

𝜎i j (u′i − ui) njdS, (9.38)

where use has been made of 𝜎i jnj = 𝜎′i jnj because the loading is constant. At the same
time the potential energy of the external loading mechanism is reduced because it does
work on the body:

𝛿Uext = −∫
𝒮0

𝜎i j (u′i − ui) njdS. (9.39)

Therefore the sum 𝛿U of the changes in the elastic energy of the body and the potential
energy of the external loading mechanism is as follows:

𝛿U = 𝛿Eel +𝛿Uext = −𝛿Eel =
1
2
𝛿Uext = −1

2
∫
𝒮0

𝜎i j (u′i − ui) njdS. (9.40)

Thus, the potential energy release rate is equal in magnitude to the change of the elastic
energy but they have opposite signs. As anticipated at the beginning of this section the
elastic energy of the body increases as the crack grows under a constant load.

To calculate the change in the total potential energy of the body and the loading
mechanism when the crack is introduced we may extend the same argument. Let 𝜎Ai j and
uAi be the stress and displacement fields in the loaded body before the crack is introduced.
Let 𝜎′i j and u′i be the stress and displacement fields in the body after the crack has been
introduced, and where the surface of the body is subjected to the same surface tractions.
The change in elastic energy of the body associated with the introduction of the crack
is then
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ΔEel =
1
2
∫
V

𝜎′i ju′i,j −𝜎Ai j uAi,jdV

= 1
2
∫
𝒮0

(𝜎′i ju′i −𝜎Ai j uAi )njdS

= 1
2
∫
𝒮0

𝜎Ai j (u′i − uAi )njdS

= 1
2
∫
𝒮0

𝜎′i j (u′i − uAi )njdS. (9.41)

The surface 𝒮0 includes the faces of the crack. But in the last line 𝜎′i jnj = 0 on the crack
faces, so the contributions from the crack faces are zero. Therefore, 𝒮0 may be taken as
the external surface of the body.

The change in the potential energy of the external loading mechanism following the
introduction of the crack is

ΔUext = −∫
𝒮0
𝜎Ai j (u′i − uAi ) njdS. (9.42)

The change in the total potential energy following the introduction of the crack is

ΔU = ΔEel +ΔUext = −1
2
∫
𝒮0
𝜎Ai j (u′i − uAi ) njdS = −1

2
∫
𝒮0
(𝜎Ai j u′i −𝜎′i juAi ) njdS. (9.43)

If there are no other defects present in the body the divergence of (𝜎Ai j u′i −𝜎′i juAi ) is zero
throughout the body except at the crack. The surface 𝒮0 may therefore be deformed to
a closed surface 𝒮 just outside and infinitesimally close to the crack faces. Equation 9.43
then becomes

ΔU = −1
2
∫
𝒮
(𝜎Ai j u′i −𝜎′i juAi ) njdS = −1

2
∫
𝒮
𝜎Ai j u′i njdS, (9.44)

where use has been made of 𝜎′i jnj = 0 on the crack faces. Since uAi and 𝜎Ai j are continuous
at the crack we obtain

ΔU = −1
2
∫
𝒮

𝜎Ai j uCi njdS, (9.45)

where uCi is the displacement of the crack faces due to the applied load.
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When this equation is applied to the slit crack loaded in mode I of the previous section
it becomes

ΔU = −1
2

b

∫
a

𝜎 s(x1) dx1

= −1
2
(1−𝜈)𝜎2

𝜇

b

∫
a

√(b− a)2 − (2x1 − (a+ b))2 dx1

= −𝜋(1−𝜈)𝜎
2c2

2𝜇 , (9.46)

where ΔU is the change of potential energy per unit length of the slit crack and 𝜎 is the
applied normal stress far from the crack.

The total energy of the body per unit length of the slit crack is ΔU plus the energy of
the crack surfaces. If 𝛾 is the energy per unit area of the crack surfaces then since there
are two surfaces, each of length 2c, the crack surface energy is 4𝛾c. Griffith9 argued10 that
for the crack to grow the total energy of the system must decrease with increasing crack
length. The critical crack length c∗, above which the total energy of the system decreases
with increasing crack length (and below which it increases with increasing crack length),
is thus

c∗ = 4𝛾𝜇
𝜋(1−𝜈)𝜎2 . (9.47)

This equation is equivalent to saying that the stress intensity factor, KI = 𝜎√c/2, has to
reach a critical value KIc for the crack to grow:

KIc =√
2𝛾𝜇

𝜋(1−𝜈) =√
𝛾Y

𝜋(1−𝜈2) , (9.48)

where Y is the Young’s modulus.
This is a very important result because KIc is a property of the material. For

𝛾 ≈ 1 Jm−2, Y ≈ 1011 Pa, 𝜈 ≈ 1/3, we find KIc ≈ 0.2 MPam1/2. The presence of the
surface energy in KIc reflects the work that has to be done to break bonds if the crack is
to grow. The presence of the elastic constants reflects the increase in the elastic energy
of the entire system if the crack were to grow under the influence of a constant external
load. It is evident that the energetics of crack growth involves a wide range of length
scales from atomic bonds to the size of the component.

9 Alan Arnold Griffith FRS 1893–1963, British engineer.
10 Griffith, AA, Phil. Trans. R. Soc. A 221, 163–98 (1921). https://doi.org/10.1098/rsta.1921.0006

https://doi.org/10.1098/rsta.1921.0006
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The analysis of this section has explicitly excluded plasticity, and other forms of
irreversibility such as the excitation of crystal lattice vibrations. Griffith’s analysis applies
to a crack in a perfectly elastic mediumwhere the crackmay grow or shrink quasistatically
and hence reversibly. In practice there are very few cases where this applies. The stress
singularity ahead of a crack in metallic systems and many other crystalline materials
invariably leads to some dislocation generation even in so-called ‘brittle’ materials.
The work of fracture in such materials is typically an order of magnitude larger than
twice the surface energy, and in more ductile materials it may be several orders of
magnitude larger. It is therefore essential to include some degree of plasticity in a more
realistic model of a crack in a crystal. Orowan11 proposed that Griffith’s criterion can
be generalised to include plasticity by reinterpreting the 𝛾 in eqn. 9.47 as the sum of the
plastic work of fracture and the surface energy of the crack.

Although the plastic work of fracture usually vastly exceeds the surface energy of the
crack faces, the surface energy remains crucially important. That is because the degree
of plasticity is determined by the maximum stress that can be sustained by bonds at
the crack tip, which is directly related to the surface energy.12 A greater ease of breaking
bonds at the crack tip is one mechanism by which crystalline materials may be embrittled
by impurities along the crack path, for example in intergranular embrittlement where
cracks propagate along grain boundaries containing segregated impurities.

The stress intensity factor for any particular crack in a specimen depends on the
size and geometry of both the crack and the sample in which it is located. Calculating
the stress intensity factors in different geometries is the field of linear elastic fracture
mechanics. It has enabled standardised sample geometries to be introduced to measure
critical stress intensity factors. Although the critical stress intensity factor is a material
property it does depend on temperature and the strain rate of the loading mechanism.
It also depends sensitively on the microstructure of the material, which is determined
by the history of its thermal and mechanical treatment and its impurity content. As a
material parameter the critical stress intensity factor is similar in this respect to the yield
stress.

9.6 The interaction between a dislocation and a slit crack

The stresses created by defects such as dislocations may act as loads on cracks. The
principal difference compared to the previous sections is that the loading on the crack
faces is no longer uniform. But the boundary condition that there can be no tractions
on the crack faces remains the same. Such interactions between other defects and cracks
may decrease or increase the local loading on a crack by externally applied forces on
the body. In this section we consider the case of an edge dislocation with Burgers vector
𝐛 = [0,b,0] with its line parallel to the x3-axis at (D,0). It is placed ahead of a slit crack

11 Orowan, E, Trans. Inst. Eng. Shipbuilders, Scotland 89, 165 (1945). Unavailable online. See also Orowan,
E, Rep. Prog. Phys. 12, 185–232 (1949). https://doi.org/10.1088/0034-4885/12/1/309
12 This insight was due to Jokl, ML, Vitek, V and McMahon Jr., CJ, Acta Metall. 28, 1479–88 (1980).
https://doi.org/10.1016/0001-6160(80)90048-6. Charles J McMahon Jr. 1933–, US metallurgist.

https://doi.org/10.1088/0034-4885/12/1/309
https://doi.org/10.1016/0001-6160(80)90048-6
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x2

x1

D

–2c crack

Figure 9.5 To illustrate the geometry for the calculation of the Burgers vector density induced by an
edge dislocation at a distance D ahead of a long crack of length 2c, where D≪ 2c. The crack is not
subjected to any loading apart from that created by the edge dislocation at D.

with a = −2c and b = 0, as shown in Fig. 9.5. No external forces are applied to the body,
so that the only tractions on the crack faces are those arising from the dislocation at (D,0).

The traction created on the crack faces at x1 by the dislocation at (D,0) arises from
its stress component 𝜎D22(x1,0):

𝜎D22(x1,0) =
𝜇b

2𝜋(1−𝜈)
1

x1 −D
. (9.49)

The crack surfaces deform in such a way as to annihilate these tractions. The induced
deformation may be modelled by a continuous distribution of dislocations in the crack
with Burgers vector density f (x′1). As before, f (x′1)dx′1 is the infinitesimal Burgers vector
of induced edge dislocations between x′1 and x′1 +dx′1 with their lines parallel to the
x3-axis. The requirement that there are no resultant tractions on the crack faces then
leads to the following Cauchy principal value integral equation:

𝜇
2𝜋(1−𝜈) P

0

∫
−2c

f (x′1)
x1 − x′1

dx′1 = − 𝜇
2𝜋(1−𝜈)

b
x1 −D

, (9.50)

where −2c ≤ x1 ≤ 0. Using eqn. 9.19 we can write down the solution:

f (x1) =
b

𝜋2√(x1 + 2c)(−x1)
⎡
⎢
⎢
⎣
C−P

0

∫
−2c

1
x′1 −D

√(x′1 + 2c)(−x′1)
x′1 − x1

dx′1
⎤
⎥
⎥
⎦
. (9.51)

Evaluating the integral by contour integration we obtain

f (x1) =
b

𝜋√(x1 + 2c)(−x1)
[C ′ − √D(D+ 2c)

D− x1
] , (9.52)

where the constant C ′ is determined by the condition that the integral of f (x1) over the
length of the crackmust be zero. This condition follows from the conservation of the total
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Burgers vector, and it yields C′ = 1. The induced Burgers vector density is therefore as
follows:

f (x1) =
b

𝜋√(x1 + 2c)(−x1)
[1−

√D(D+ 2c)
D− x1

] . (9.53)

Exercise 9.5

Verify that the Burgers vector density of eqn. 9.53 satisfies eqn. 9.50.

9.6.1 Shielding and anti-shielding of cracks by dislocations

It is interesting to see how the stress field 𝜎22(x1,0) of the dislocation is modified by the
presence of the crack. For this purpose we evaluate 𝜎22(x1,0) with x1 > 0:

𝜎22(x1,0) =
𝜇b

2𝜋(1−𝜈)
1

(x1 −D)
+ 𝜇

2𝜋(1−𝜈)

0

∫
−2c

f (x′1)
(x1 − x′1)

dx′1. (9.54)

Inserting the Burgers vector density in eqn. 9.53 into the integral we obtain

𝜎22(x1,0) =
𝜇b

2𝜋(1−𝜈)
1

√x1 (x1 + 2c)
(√D(2c+D)(x1 −D)

+ 1). (9.55)

This is plotted in Fig. 9.6.
The presence of the crack introduces the square root pre-factor into the stress field of

the dislocation. This can be made clearer by considering the case where the crack length
2c is much larger than D and x1. In that case:

𝜎22(x1,0) ≈
𝜇b

2𝜋(1−𝜈)√
D
x1

1
(x1 −D)

. (9.56)

For x1 close to D the stress field is very close to that of the isolated dislocation. But as x1
approaches the crack tip at x1 = 0 the stress field has an inverse square root singularity.
The stress intensity factor KD

I at the crack tip due to the dislocation is as follows:

KD
I ≈ lim

x1→0
√x1

𝜇b
2𝜋(1−𝜈)√

D
x1

1
(x1 −D)

≈ − b
2𝜋(1−𝜈)D 𝜇√D. (9.57)
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Figure 9.6 Plot of the normal stress component 𝜎22(x1,0), as given by eqn. 9.55, for an edge
dislocation with Burgers vector [0,b,0] located at x1 = 1,x2 = 0 in front of an otherwise unloaded slit
crack between x1 = −100 and x1 = 0 on x2 = 0. The vertical axis is in units of 𝜇b/[2𝜋(1−𝜈)]. In
addition to the normal 1/x1 divergence at the dislocation core there is a 1/√x1 divergence in the field
near the crack tip.

If the crack tip is subjected to an applied stress intensity factor KI, dislocations with
positive Burgers vectors will reduce KI. Such dislocations are described as ‘shielding’
because they screen the crack tip from the stress field that is creating KI. Dislocations
with negative Burgers vectors are described as ‘anti-shielding’ because they increase the
stress intensity factor KI. The resultant stress intensity factor comprising the applied
stress intensity factor and the intensity factors contributed by dislocations outside the
crack is called the local stress intensity factor. The local stress intensity factor is the
resultant stress intensity factor acting on the crack tip. At the other side of the crack,
at x1 = −2c, the Burgers vectors of shielding and anti-shielding dislocations are negative
and positive respectively.

The induced Burgers vector density in eqn. 9.53 generates a Peach–Koehler force
along the x1-axis per unit length on the dislocation at (D > 0,0) given by

F ind1 (D,0) = 𝜇b
2𝜋(1−𝜈)

0

∫
−2c

f (x1)
(D− x1)

dx1

= 𝜇b2
2𝜋2(1−𝜈)

0

∫
−2c

dx1
(D− x1)

1

√(−x1)(x1 + 2c)
[1− √D(D+ 2c)

(D− x1)
]

= − 𝜇b2
2𝜋(1−𝜈) [

(D+ c)
D(D+ 2c) −

1

√D(D+ 2c)
] . (9.58)

This is often called an image force and it always attracts the dislocation towards the crack
tip. If c≫D then the image force is the force of attraction between two edge dislocations
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with Burgers vectors [0,b,0] and [0,−b,0] spaced 2D apart along the x1-axis. As with
image charges in a metal surface the ‘image dislocation’ has the opposite sign Burgers
vector and it is located at D on the other side of the crack tip from the real dislocation.

Using eqn. 9.33 we can write down the stress 𝜎22(D,0) arising from the applied normal
stress 𝜎 and the distribution of dislocations in the crack required to annihilate the surface
tractions on the crack faces:

𝜎22(D,0) = 𝜎 (D+ c)
√D(D+ 2c)

. (9.59)

Combining the last two equations, the total force per unit length acting on the edge
dislocation at (D > 0,0) when there is an applied normal stress 𝜎 is therefore as follows:

FT1 (D,0) = [𝜎 (D+ c)
√D(D+ 2c)

− 𝜇b
2𝜋(1−𝜈) (

(D+ c)
D(D+ 2c) −

1

√D(D+ 2c)
)]b. (9.60)

Thus, anti-shielding dislocations at (D > 0,0), with Burgers vectors [0,−b,0], are
attracted to the crack tip, whereas shielding dislocations, with Burgers vectors [0,+b,0],
move away from the crack tip under a sufficiently high applied stress 𝜎 to overcome the
image force. It follows that dislocations emitted by the crack are shielding dislocations.13

The square brackets contain the resultant normal stress acting on the edge dislocation
at (D,0). The dislocation will move only if this stress is greater in magnitude than the
friction stress opposing dislocation motion.

Some comments are in order concerning the interpretation of the dislocation friction
stress. Since we have focussed on mode I cracks the dislocations that formally make
up the crack, and the real dislocation ahead of the crack, are edge dislocations with
their Burgers vectors along x2. Therefore if they are to move along x1 they will do
so by climb. But if the edge dislocation ahead of the crack had had a Burgers vector
parallel to x1 both the induced formal dislocations in the crack and the real dislocation
would have been glide edge dislocations. Furthermore the integral equation defining the
Burgers vector density of the induced glide dislocation density in the mode II crack
would have been identical to the induced climb dislocation density in eqn. 9.50. The only
difference would have beeen the involvement in the tractions on the crack faces of the
stress component 𝜎12(x1 − x′1) for 𝐛 = [b,0,0] rather than 𝜎22(x1 − x′1) for 𝐛 = [0,b,0], but
these stress components are mathematically identical. Therefore, from a mathematical
point of view we can map the mode I loading of the slit crack involving climb dislocations
onto a mode II loading of the slit crack involving glide dislocations. From a physical point
of view we should acknowledge that the geometry of these one-dimensional models is a
gross simplification of the reality of three-dimensional cracks interacting with dislocation
loops. Therefore, it would not be appropriate to interpret the friction stress as anything
other than the resistance to dislocation glide since that is how dislocations move in the

13 This is analogous to the reduction in stress ahead of a pileup at a grain boundary by transmission of slip
into the adjacent grain.
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vicinity of a real crack, except possibly during creep rupture at elevated temperatures
when climb may be involved.

Exercise 9.6

When c≫D in eqn. 9.60 show that the force FT1 (D,0) becomes

FT1 (D,0) = ( KI

√D
− 𝜇b

4𝜋(1−𝜈)D)b, (9.61)

where KI = 𝜎√c/2 is the stress intensity factor of the bare, elastic crack. For a shielding
dislocation b is positive, and for an anti-shielding dislocation b is negative.

9.7 Dugdale–Bilby–Cottrell–Swinden (DBCS) model

This model14 extends the representation of an elastic slit crack as an array of dislocations
to include regions of plasticity adjacent to the crack tips. These regions are the plastic
zones and they are also represented by dislocation arrays. In contrast to the formal repre-
sentation of a loaded crack as a continuous distribution of dislocations, the dislocations in
the plastic zone are not formal but real objects, although they are treated mathematically
in the same way as the dislocations representing the loaded crack. The idea is that the
singularities in the elastic solution at the crack tips generate stresses that exceed the elastic
limit and lead to plasticity in the plastic zones. In the absence of work hardening the stress
in the plastic zones is assumed to be a constant, which is a friction stress that is equated
to the yield stress, 𝜎1. As a result of the plastic zones the stress singularities at the crack
tips are eliminated and the local stress intensity factors are zero. This section is based on
the treatment by Lardner.15

Consider a slit crack loaded in mode I, as shown in Fig. 9.7. The crack is between
x1 = −c and x1 = c on the x2 = 0 plane and extends from x3 = −∞ to x3 = +∞. There
are plastic zones between x1 = −a and x1 = −c and between x1 = c and x1 = a. We shall
find that the size of each plastic zone, a− c, is determined by the crack length 2c, the
yield stress 𝜎1 and the applied load normal stress 𝜎 at x2 = ±∞.

The crack and the plastic zones are represented by a continuous distribution of
edge dislocations along the x1-axis with Burgers vectors along ±x2 and their positive
line directions along the positive x3-axis. As before, f (x1)dx1 is the Burgers vector of
dislocations between x1 and x1 +dx1. There are two boundary conditions to be satisfied:

14 Dugdale, DS, J. Mech. Phys. Solids 8, 100–4 (1960). https://doi.org/10.1016/0022-5096(60)90013-2.
David S Dugdale, British engineer. Bilby, BA, Cottrell AH and Swinden KH, Proc. R. Soc. A 272, 304–
14 (1963). https://doi.org/10.1098/rspa.1963.0055. Sir Alan Howard Cottrell FRS 1919–2012, British metal-
lurgist.
15 Lardner, RW, Mathematical theory of dislocations and fracture, University of Toronto Press: Chapter 5
(1974), ISBN 0-8020-5277-0. Robin W Lardner, Canadian applied mathematician.

https://doi.org/10.1016/0022-5096(60)90013-2
https://doi.org/10.1098/rspa.1963.0055


OUP CORRECTED PROOF – FINAL, 22/5/2020, SPi

Dugdale–Bilby–Cottrell–Swinden (DBCS) model 203

x2

x1

–a –c c a

σ σ σ σ

σ σ σ σ

Figure 9.7 To illustrate the geometry of the Dugdale–Bilby–Cottrell–Swinden (DBCS) model.

𝜇
2𝜋(1−𝜈) P

a

∫
−a

f (x′1)
(x1 − x′1)

dx′1 +𝜎 = {
0 in |x1| < c,

𝜎1 in c < |x1| < a.
(9.62)

At the ends of the plastic zones where x1 = ±a the distribution f (x1) → 0 because there
are no barriers for the dislocations to pile up against and eqns. 9.22 and 9.23 apply. The
solution to the integral equation is then as follows:

f (x1) = − 1
𝜋2

2𝜋(1−𝜈)
𝜇 √a2 − x21

⎡
⎢
⎢
⎣
𝜎P

c

∫
−c

1

√a2 − x′21

dx′1
x′1 − x1

+(𝜎−𝜎1)P
−c

∫
−a

1

√a2 − x′21

dx′1
x′1 − x1

+ (𝜎 −𝜎1)P
a

∫
c

1

√a2 − x′21

dx′1
x′1 − x1

⎤
⎥
⎥
⎦
. (9.63)

Since

P

a

∫
−a

1

√a2 − x′21

dx′1
x′1 − x1

= 0, (9.64)

eqn. 9.63 may be rewritten as follows:

f (x1) = − 𝜎1
𝜋2

2𝜋(1−𝜈)
𝜇 √a2 − x21P

c

∫
−c

1

√a2 − x′21

dx′1
x′1 − x1

. (9.65)
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The integral may be evaluated using the following indefinite integral, valid for |x1| < a:

∫ 1

√a2 − x′21

dx′1
x′1 − x1

= − 1

√a2 − x21
ln{√

(a− x1)(a+ x′1) +√(a+ x1)(a− x′1)

√(a− x1)(a+ x′1) −√(a+ x1)(a− x′1)
} .

(9.66)
Thus, we obtain the solution:

f (x1) =
2(1−𝜈)

𝜋
𝜎1
𝜇 ln

|||||

x1√a2 − c2 + c√a2 − x21

x1√a2 − c2 − c√a2 − x21

|||||
. (9.67)

This solution is plotted in Fig. 9.8. The discontinuity in the stresses at the crack tips
gives rise to logarithmic singularities at |x1| = c.

The condition, eqn. 9.22, for this solution in eqn. 9.67 to exist is as follows:

−c

∫
−a

(𝜎 −𝜎1)

√a2 − x′21
dx′1 +

c

∫
−c

𝜎

√a2 − x′21
dx′1 +

a

∫
c

(𝜎 −𝜎1)

√a2 − x′21
dx′1 = 0. (9.68)

These integrals lead to the following expression for the size, a− c, of each plastic zone:

a− c = c(sec( 𝜋𝜎
2𝜎1

)− 1), or c/a = cos(𝜋𝜎/2𝜎1). (9.69)

Thus, as the yield stress 𝜎1 increases the size of the plastic zone decreases; when the
plastic zone is small compared to the crack this condition is known as small scale yielding.

1 2 3–3 –2

–2

2

4

6

–4

–6

–1

x1

Figure 9.8 Plot of the Burgers vector density f (x1) for the DBCS model, given by eqn. 9.67. In this
example the half-length of the crack c = 2, and the plastic zones have length 1, so that a = 3. The vertical
axis is in units of 2(1−𝜈)𝜎1/(𝜋𝜇). Note the logarithmic divergences at the crack tips at x1 = ±2.
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As 𝜎 → 𝜎1 the plastic zone becomes much larger than the crack, a condition known as
general yielding.

As a result of the plastic zones the crack opening displacements are increased. This
may be understood physically as a result of the dislocations in each plastic zone having
been emitted from the adjoining crack tip, thereby opening the crack. From eqn. 9.26
the crack tip opening displacement at x1 = c is

s(c) = −
c

∫
a

f (x1)dx1. (9.70)

The Burgers vector density given by eqn. 9.67 may be integrated by making the change
of variable x1 = acos𝜃. The integral in eqn. 9.70 then becomes

s(c) = −2(1−𝜈)
𝜋

𝜎1
𝜇 a

𝜙

∫
0

ln |||
sin(𝜙+𝜃)
sin(𝜙−𝜃)

||| sin𝜃d𝜃, (9.71)

where cos𝜙 = c/a, and 𝜙 = 𝜋𝜎/(2𝜎1). After integrating by parts the following crack
opening displacement is obtained:16

s(c) = −2(1−𝜈)
𝜋

𝜎1
𝜇 a[cos𝜃 ln|||

sin(𝜙+𝜃)
sin(𝜙−𝜃)

||| + cos𝜙 ln
|||
sin𝜃 − sin𝜙
sin𝜃 + sin𝜙

||| ]
𝜃=𝜙

𝜃=0

= 2(1−𝜈)
𝜋

𝜎1
𝜇 c ln(sec𝜙) = 2(1−𝜈)

𝜋
𝜎1
𝜇 c ln(a/c). (9.72)

The physical significance of the crack tip opening displacement is that it is often observed
that fracture in a material where plastic deformation can occur is preceded by a critical
amount of plastic deformation at the crack tip. The crack tip opening displacement
then has to reach a critical value for fracture to occur. This introduces a dependence
of whether fracture will occur on the size of the sample: if it is less than the size of
the plastic zone then fracture will occur only when yielding has occurred throughout the
sample, which is the general yielding condition. But if the sample is much larger than
the size of the plastic zone, fracture can occur at a smaller stress once the plastic zone
has reached its critical size, which amounts to a critical value of the crack tip opening
displacement. Understanding this size dependence of the fracture criterion in an elastic-
plastic material was the initial motivation for the seminal paper by Bilby, Cottrell and
Swinden (1963). They argued 𝜎1 depends on the size of the plastic zone. If the plastic
zone is contained within one grain it may be identified with the friction stress opposing
dislocation motion within that grain. That might consist of the Peierls stress and the
friction stress created by impurities in solution or as precipitates. But when the plastic

16 We note this is a factor of 2 less than the value given by Lardner (1974) in his equation 5.55, p.165.
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zone is larger than a single grain plasticity has to propagate across grain boundaries, and
that increases the value of 𝜎1 because it involves renucleating plasticity in each grain.

9.8 The dislocation free zone model

The assumption of the DBCS model that the plastic zone extends from the crack tip
eliminates the elastic stress singularity at the crack tip. As a result the local stress intensity
factor is zero. Furthermore, the stress acting at the crack tip in their model is 𝜎1, which is
typically of the order of 10−100MPa. A stress of 100MPa creates forces between atoms

of order 0.01 eVÅ
−1

. As Thomson17 points out on p.88 of his review article,18 this is far

too small to break bonds at the crack tip, which requires forces of order 0.1−1 eVÅ
−1

.
The shielding of the crack tip by the plastic zone in the DBCS model is too complete to
enable the crack to propagate by breaking bonds at the crack tip. Instead the plastic zone
increases in size as the applied stress 𝜎 increases, and the crack tip opening displacement
increases indefinitely. The DBCS model always predicts ductile fracture.

The plastic zone is made up of shielding dislocations which reduce the local stress
intensity factor. In section 9.6.1 we found that, at a sufficiently high applied stress to
overcome the attraction of the image force, shielding dislocations are repelled from the
crack tip. Anti-shielding dislocations are always attracted towards the crack where they
can be absorbed, creating steps on the crack surfaces. If shielding dislocations were
emitted from the crack tip at a sufficiently high applied stress to escape the attraction
to the crack they will move from the crack tip until they are stopped by the friction stress
𝜎1. Alternatively, both shielding and anti-shielding dislocations may be generated from
sources near the crack tip: anti-shielding dislocations run into the crack, while shielding
dislocations move away from the crack and establish the plastic zone. These scenarios
raise the possibility of a dislocation free zone between the crack tip and the plastic zone.
Inside the dislocation free zone shielding dislocations are repelled into the plastic zone
and anti-shielding dislocations are attracted into the crack.

If the plastic zone is located further from the crack tip the shielding of the crack tip
decreases and the local stress intensity factor rises. Also, as the size of the dislocation free
zone increases the size of the plastic zone decreases because the stress field of the crack
decreases with distance from its tip. Eventually, shielding by the plastic zone diminishes
to such an extent that we recover the elastic limit and the local stress intensity factor is
that of the bare elastic crack, 𝜎√c/2 (see eqn. 9.35). This describes the completely brittle
limit. In the DBCS limit there is no dislocation free zone and the local stress intensity
factor is zero. This describes the completely ductile limit. As the size of the dislocation
free zone varies between these limiting cases we span the range of behaviour from purely
brittle to purely ductile.

17 Robb Milton Thomson 1925–, US materials physicist.
18 Thomson, R, Solid State Phys. 39, 2–129 (1986). https://doi.org/10.1016/S0081-1947(08)60368-9

https://doi.org/10.1016/S0081-1947(08)60368-9
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Figure 9.9 To illustrate the geometry of the dislocation free zone model.

Experimental evidence for the existence of dislocation free zones at cracks has been
published.19 Chang and Ohr20 extended the DBCS model to include a dislocation free
zone. Here we consider the force balance on dislocations in a plastic zone separated from
the crack by a dislocation free zone. This section is based on the paper21 by Majumdar22

and Burns23 (1983), but for a mode I crack rather than a mode III crack.
As before we consider a slit crack in the x2 = 0 plane between x1 = −2c and x1 = 0. It

is loaded by a tensile stress 𝜎22 = 𝜎 at x2 = ±∞. There is a plastic zone between x1 = p
and x1 = q, where q > p > 0. There is a dislocation free zone between x1 = 0 and x1 = p.
The crack length 2c is assumed to be much larger than p and q, which amounts to the
assumption of small scale yielding. This set-up is illustrated in Fig. 9.9. The friction
stress, which we again equate to the yield stress, is 𝜎1.

Let f (x1) be the continuous distribution of Burgers vector density in the plastic zone.
The infinitesimal Burgers vector between x1 and x1 +dx1, where p ≤ x1 < q, is db(x1) =
f (x1)dx1. Equation 9.61 gives the force on the dislocation at x1 arising from the loaded
crack and from the image interaction. This force is

dF(x1) =
KIdb(x1)
√x1

− 𝜇db(x1)db(x1)
4𝜋(1−𝜈)x1

. (9.73)

If this dislocation were the only dislocation in the plastic zone this would be the total
force acting on it in the presence of the crack, apart from the friction force. But it also
experiences a force arising from the stresses 𝜎22 generated in the presence of the crack

19 Horton JA and Ohr SM, J. Mater. Sci. 17, 3140–8 (1982). https://doi.org/10.1007/BF01203476;
Chia, KY and Burns, SJ, Scripta Metall. 18, 467–72 (1984). https://doi.org/10.1016/0036-9748(84)90423-X
20 Chang, S-J and Ohr, SM, J. Appl. Phys. 52, 7174–81 (1981). http://dx.doi.org/10.1063/1.328692;
Chang, S-J and Ohr, SM, Int. J. Fract. 23, R3–R6 (1983). https://doi.org/10.1007/BF00020160
21 Majumdar, BS and Burns, SJ, Int. J. Fract. 21, 229–40 (1983). https://doi.org/10.1007/BF00963390
22 Bhaskar S Majumdar, Indian and US engineer.
23 Stephen J Burns, US engineer.

https://doi.org/10.1007/BF01203476
https://doi.org/10.1016/0036-9748(84)90423-X
http://dx.doi.org/10.1063/1.328692
https://doi.org/10.1007/BF00020160
https://doi.org/10.1007/BF00963390
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by other dislocations in the plastic zone. These stresses are given by eqn. 9.56. Thus the
force balance on the dislocation at x1 becomes the following:

KIdb(x1)
√x1

− 𝜇db(x1)db(x1)
4𝜋(1−𝜈)x1

+ db(x1)P
q

∫
x′1=p

𝜇
2𝜋(1−𝜈)

f (x′1)
x1 − x′1 √

x′1
x1

dx′1 = 𝜎1db(x1).

(9.74)

Since the image force involves the product of two infinitesimal quantities it may be
neglected. Thus we arrive at the following integral equation:

q

∫
p

g(x′1)
x1 − x′1

dx′1 =
2𝜋(1−𝜈)

𝜇 (𝜎1√x1 −KI) , (9.75)

where g(x1) = f (x1)√x1. Since the distribution must be zero at x1 = p,q, the solution of
this integral equation is given by eqn. 9.23, provided the condition embodied in eqn. 9.22
is satisfied. Thus,

f (x1) =
2(1−𝜈)
𝜋𝜇 √

(x1 − p)(q− x1)
x1

P

q

∫
p

(𝜎1√x′1 −KI)

√(x′1 − p)(q− x′1)
1

(x′1 − x1)
dx′1, (9.76)

provided the following condition is satisfied:

q

∫
p

(KI −𝜎1√x1)
√(x1 − p)(q− x1)

dx1 = 0. (9.77)

This condition leads to the following relationship:

𝜋KI

2𝜎1√q
= E(q− p

q
) , (9.78)

where E(z) is the complete elliptic integral of the second kind:

E(z) =
𝜋/2

∫
0

√(1− zsin2 𝜃)d𝜃. (9.79)
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For given values of KI and 𝜎1 we can use eqn. 9.78 to show that as the plastic zone is
located further from the crack, the width of the plastic zone decreases. The argument
is as follows. When p = 0 the plastic zone begins at the crack tip, which is the DBCS
limit. Then (q− p)/q = 1 and E(1) = 1. When p = q the plastic zone vanishes and we
have the elastic limit. In that case (q− p)/q = 0 and E(0) = 𝜋/2. Let q = qBCS in the DBCS
limit, and q = qel in the elastic limit. Using eqn. 9.78 we find qel = (4/𝜋2)qBCS. Thus, as
p increases from zero to qel, q decreases monotonically from qBCS to (4/𝜋2)qBCS, and the
width of the plastic zone decreases monotonically from qBCS to zero. From eqn. 9.78
the width, qBCS, of the plastic zone in the DBCS limit is 𝜋2𝜎2c/(8𝜎2

1 ). This agrees with
eqn. 9.69 in the limit 𝜎 ≪ 𝜎1, which is the appropriate limit when the crack is much
longer than the plastic zone.

The integral in eqn. 9.76 may be expressed in terms of elliptic integrals:

f (x1) =
4(1−𝜈)

𝜋
𝜎1
𝜇 √

(x1 − p)
(q− x1) √

q
x1
P

𝜋/2

∫
0

1− q−p
q
sin2 𝜃

(1− q−p
q−x1

sin2 𝜃)√1− q−p
q
sin2 𝜃

d𝜃

= 4(1−𝜈)
𝜋

𝜎1
𝜇 √

(x1 − p)
(q− x1)√

q
x1

{x1
q
Π( q− p

q− x1
, q− p
q

)+ (1− x1
q
)K(q− p

q
)} ,

(9.80)

where

Π(n,z) =
𝜋/2

∫
0

d𝜃
(1− nsin2 𝜃)√1− zsin2 𝜃

(9.81)

is the complete elliptic integral of the third kind, and

K(z) =
𝜋/2

∫
0

d𝜃
√1− zsin2 𝜃

(9.82)

is the complete elliptic integral of the first kind, not to be confused with KI the applied
stress intensity factor.

Exercise 9.7

Derive eqn. 9.80 from eqn. 9.76.
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In the previous section we found that in the DBCS model the local stress intensity
factor at the crack tip is zero—the crack tip is completely screened by the plastic zone.
We may use eqn. 9.57 and eqn. 9.80 to calculate the local stress intensity factor in the
dislocation free zone model:

kDFZI =KI −
𝜇

2𝜋(1−𝜈)

q

∫
p

f (x1)
√x1

dx1

=KI −
2𝜎1
𝜋2

𝜋/2

∫
0

d𝜃√q− (q− p)sin2 𝜃 P
q

∫
p

dx1
√(x1 − p)(q− x1)

x1(q− (q− p)sin2 𝜃 − x1)

=KI −
2𝜎1
𝜋

𝜋/2

∫
0

d𝜃√q− (q− p)sin2 𝜃(1− √pq
q− (q− p)sin2 𝜃

)

=KI −
2𝜎1√q
𝜋 (E(q− p

q
) − √p/q K(q− p

q
)). (9.83)

If we now use eqn. 9.78 the local stress intensity factor may be rewritten more succinctly
as follows:

kDFZI = √p/q K(1− (p/q))
E(1− (p/q)) KI. (9.84)

When p = 0 we recover the DBCS limit and eqn. 9.84 confirms the local stress
intensity factor on the crack tip is zero. When p = q the plastic zone vanishes and we
recover the elastic limit where eqn. 9.84 confirms the local stress intensity factor is the
applied stress intensity factor, KI.

Figure 9.10 shows a plot of kDFZI /KI against p/q, obtained using eqn. 9.84. It is
seen that kDFZI /KI increases very rapidly for small values of p/q and approaches unity
asymptotically. The asymptotic expansion for the elliptic function of the first kind near
z = 1 is as follows:24

K(1− 𝜀) → 1
2
ln(16𝜀 )+O(𝜀 ln𝜀), (9.85)

where 0 < 𝜀 ≪ 1. Using this expansion, eqns. 9.78 and 9.84 and E(z) → 1 as z→ 1 we
obtain the following relations for small values of p/q:

24 http://functions.wolfram.com/EllipticIntegrals/EllipticK/introductions/CompleteEllipticIntegrals/05/

http://functions.wolfram.com/EllipticIntegrals/EllipticK/introductions/CompleteEllipticIntegrals/05/
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Figure 9.10 A plot of eqn. 9.84. The vertical axis is kDFZI /KI. The horizontal axis is p/q.

KI =
2𝜎1√q
𝜋 (9.86)

kDFZI = 2𝜎1
𝜋 √p(ln4− 1

2
ln p
q
) (9.87)

kDFZI

KI
=√

p
q
(ln4− 1

2
ln p
q
). (9.88)

Equation 9.86 is an equation for q (which is approximately the width of the plastic zone
when p/q≪ 1) in terms of the applied stress intensity factor KI and the yield stress 𝜎1.
Equation 9.87 expresses the local stress intensity factor of the crack tip in terms of the
width p of the dislocation free zone, the approximate width of the plastic zone q, and the
yield stress 𝜎1. It is seen in this equation, and graphically in Fig. 9.10 at small values of
p/q, that small changes in the width p of the dislocation free zone have a more marked
influence on the local stress intensity factor than changes in the width of the plastic
zone. Equations similar to eqns. 9.86 to 9.88 were published by Weertman et al. in
1983.25 The accuracy of the approximation in eqn. 9.88 may be gauged by plotting
it and the exact result, eqn. 9.84, on the same graph at small values of p/q. This is done
in Fig. 9.11 where it is seen that the approximation underestimates the screening by the
plastic zone. Nevertheless it is reasonably accurate up to p/q ≈ 0.1, which spans the range
0 ≤ kDFZI /KI ≲ 0.7.

Both the DBCS and dislocation free zone models assume dislocations are available
and mobile to populate the plastic zone. One possibility is that shielding dislocations
are emitted from the crack tip, under the influence of the high stresses present there.
Another is that sources operate near the crack, also driven by the stress field near the

25 Weertman, J, Lin, I-H and Thomson, R, Acta Metall. 31, 473–82 (1983). https://doi.org/10.1016/
0001-6160(83)90035-4. Johannes Weertman 1925–2018, US materials scientist and geophysicist.

https://doi.org/10.1016/0001-6160(83)90035-4
https://doi.org/10.1016/0001-6160(83)90035-4
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Figure 9.11 Comparison of kDFZI /KI (vertical axis) as a function of p/q for 0 ≤ p/q ≤ 0.1 as given
exactly (solid line) by eqn. 9.84 and approximately (dashed line) by eqn. 9.88.

tip, sending anti-shielding dislocations into the crack and shielding dislocations away
from it to form the plastic zone. However, if the operation of dislocation sources, or
dislocation glide, is thermally activated,26 this may give rise to a transition from brittle
behaviour at low temperatures, where a plastic zone cannot form, to ductile behaviour at
higher temperatures. Such a transition may occur over a narrow range of temperatures
if there are very few available sources and the dependence of the dislocation mobility
on temperature is strong. Dislocation mobility is influenced by other microstructural
features too, such as solute atoms raising the friction stress, and obstacles such as
precipitates and grain boundaries. The brittle to ductile transition temperature is not
a material parameter.

9.9 The influence of interatomic forces on slit cracks

The stress singularities at the crack tips of section 9.4 are a consequence of the use of
linear elasticity to describe the elastic field. These singularities lead to infinite stresses at
the crack tips, which are unrealistic. Even the elliptical shape of the crack is doubtful,
particularly at the crack tips where it is rounded. In reality interatomic forces at the
tip will pull the faces of the crack towards each other, so that far from being rounded
the profile is more like a cusp. In other words, the Burgers vector density f (x1) should

26 See Samuels, J and Roberts, SG, Proc. R. Soc. A 421, 1–23 (1989). https://doi.org/10.1098/rspa.1989.0001;
Hirsch, PB, Roberts, SG and Samuels, J, Proc. R. Soc. A 421, 25–53 (1989). https://doi.org/10.1098/rspa.1989.
0002. Sir Peter Bernhard Hirsch FRS 1925–, British physicist and materials scientist born in Germany.

https://doi.org/10.1098/rspa.1989.0001
https://doi.org/10.1098/rspa.1989.0002
https://doi.org/10.1098/rspa.1989.0002
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tend to zero at the crack tips, not the infinite value predicted by linear elasticity
in eqn. 9.31.

The Barenblatt27 model28 of slit cracks addresses these shortcomings of the theory
of the elastic crack presented in section 9.4 by including cohesive forces acting between
the crack faces. In a metal these forces are significant only when the crack faces are
separated by no more than a few angstroms. The regions where these cohesive forces are
significant are limited to ‘cohesive zones’ of the order of 10 Å in length from the crack
tips. Where the cohesive zones begin the attraction between the crack faces is considered
just about negligible. It quickly rises towards the cracks tips, becoming much larger than
the tractions on the crack faces arising from the applied normal loads. It is reasonable
to assume that the cohesive forces in the cohesive zones are independent of the surface
tractions arising from the applied normal loads.

As shown29 by Willis30 and more generally by Rice31 the Barenblatt model does not
alter the Griffith criterion for fracture. This is because, regardless of the existence of the
cohesive zones, if the crack length increases by 𝛿c the surface area of the two crack faces
increases by 2𝛿c per unit length, and thus the energy cost remains 2𝛾𝛿c.

The Griffith and Barenblatt models are continuum models. For a given applied load
they predict a unique crack length where the crack is in equilibrium: if it is smaller than
the equilibrium length the crack will tend to close completely, if it is larger it will tend to
continue to grow. This picture changes when we take into account the discrete atomic
structure of a crack. Recall that in the treatment of a single dislocation in a continuum
the energy of the dislocation is independent of its position. But the energy of a single
dislocation in a crystal is a periodic function of its position in the slip plane. The peaks
in the energy oscillations are the Peierls barriers discussed in section 7.5. Similar barriers
may exist for cracks in a crystal lattice, and if they become sufficiently large cracks may
become trapped in the energyminima. This phenomenon is known as ‘lattice trapping’.32

The Peierls barriers for dislocations decrease as the core width increases. We may expect
a similar trend in the case of cracks: the longer the cohesive zone the smaller the barrier
to crack growth. The Frenkel–Kontorova model would suggest that the length of the
cohesive zone increases with the stiffness of the bonds between the crack faces and
decreases with the amplitude of the periodic variations of the energy of the crack as
a function of its position.

27 Grigory Isaakovich Barenblatt ForMemRS 1927–2018, Russian mathematician and physicist.
28 Barenblatt, GI, J. Appl. Math. Mech. 23, 622–36 (1959). https://doi.org/10.1016/0021-8928(59)90157-1;
Barenblatt, GI, J. Appl. Math. Mech. 23, 1009–29 (1959). https://doi.org/10.1016/0021-8928(59)90036-X;
Barenblatt, GI, Adv. Appl. Mech. 7, 55–129 (1962). https://doi.org/10.1016/S0065-2156(08)70121-2
29 Willis, JR, J. Mech. Phys. Solids 15, 151–62 (1967). https://doi.org/10.1016/0022-5096(67)90029-4; Rice,
JR, J. Appl. Mech. 35, 379–86 (1968). https://doi.org/10.1115/1.3601206
30 John Raymond Willis FRS, British mathematician.
31 James Robert Rice ForMemRS 1940–, US engineer and geophysicist.
32 Thomson, R, Hsieh, C and Rana, V, J. Appl. Phys. 42, 3154–60 (1971). https://doi.org/10.1063/1.1660699

https://doi.org/10.1016/0021-8928(59)90157-1
https://doi.org/10.1016/0021-8928(59)90036-X
https://doi.org/10.1016/S0065-2156(08)70121-2
https://doi.org/10.1016/0022-5096(67)90029-4
https://doi.org/10.1115/1.3601206
https://doi.org/10.1063/1.1660699
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9.10 Problem set 9

1. Consider a slit crack between x1 = −2c and x1 = 0 loaded in mode I by a tensile
stress 𝜎22 = 𝜎 far from the crack. Using eqns. 9.27 and 9.31 show that at (x1,x2) =
(𝜌cos𝛼,𝜌sin𝛼), where 𝜌 ≪ c, the stress field of the crack is as follows:

𝜎11(𝜌cos𝛼,𝜌sin𝛼) =
KI

√𝜌
(cos(𝛼/2) − 1

2
sin(3𝛼/2)sin𝛼)

𝜎22(𝜌cos𝛼,𝜌sin𝛼) =
KI

√𝜌
(cos(𝛼/2) + 1

2
sin(3𝛼/2)sin𝛼)

𝜎12(𝜌cos𝛼,𝜌sin𝛼) =
KI

2√𝜌
cos(3𝛼/2)sin𝛼, (9.89)

where KI = 𝜎√c/2.

Hint: Write down an integral for each stress component like eqn. 9.36. Evaluate
these integrals using contour integration, noting the second order poles at 𝜌e±i𝛼.
Then identify the dominant terms when c≫𝜌.

Hence show that the elastic energy density close to the crack tip is given by

W =
K2
I

4𝜇𝜌 (2(1− 2𝜈)cos2(𝛼/2) + 1
2
sin2𝛼). (9.90)

2. Show that the stress field components in eqn. 9.89 are related to the following
displacement field components through Hooke’s law:

u1(𝜌cos𝛼,𝜌sin𝛼) =
KI√𝜌
𝜇 cos(𝛼/2)(1− 2𝜈 + sin2(𝛼/2))

u2(𝜌cos𝛼,𝜌sin𝛼) =
KI√𝜌
𝜇 sin(𝛼/2)(2(1−𝜈)− cos2(𝛼/2)) . (9.91)

Hint: Show that the displacement gradients are as follows, and then apply
Hooke’s law:

u1,1 =
KI

2𝜇√𝜌
[(1− 2𝜈)cos(𝛼

2
)− 1

2
sin𝛼 sin(3𝛼

2
)]

u2,2 =
KI

2𝜇√𝜌
[(1− 2𝜈)cos(𝛼

2
)+ 1

2
sin𝛼 sin(3𝛼

2
)]
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u1,2 =
KI

2𝜇√𝜌
[2(1−𝜈)sin(𝛼

2
)+ 1

2
sin𝛼cos(3𝛼

2
)]

u2,1 =
KI

2𝜇√𝜌
[−2(1−𝜈)sin(𝛼

2
)+ 1

2
sin𝛼cos(3𝛼

2
)] .

Comment: The force per unit length on the mode I crack tip at x1 = 0, tending
to make it advance along the x1-axis, may be obtained by evaluating the integral
in eqn. 8.17, where S is any surface enclosing the tip. In the context of fracture
this integral is called the J-integral, where it was discovered independently by
Rice (1968). To use the stress components of eqn. 9.89 we should choose S
to be close to the crack tip. Since the crack geometry is invariant along x3
the surface integral becomes a line integral around the crack tip. The terms
required to evaluate the line integral are contained in eqns. 9.89, 9.90 and the
four displacement gradients above. The following result is obtained:

F1 =
𝜋(1−𝜈)K2

I

𝜇 ≡ JI, (9.92)

where KI = 𝜎√c/2 as before. When KI reaches the critical value for the crack to
grow according to Griffith’s criterion, eqn. 9.48, the force on the crack tip, JI,
reaches 2𝛾. At this critical condition the force JI, which arises from the change in
the sum of the potential energy of the external loading mechanism and the elastic
energy of the crack, exactly balances the force 2𝛾 required to increase the area of
the two crack faces. Thus, for an elastic crack, criteria for crack growth based on
critical values of KI and JI are equivalent. But this equivalence breaks down when
there is plasticity because JI becomes dependent on whether the contour S includes
the plastic zone. However, when there is a dislocation free zone the elastic field
at the crack tip again becomes singular. The singularity is characterised by a local
stress intensity factor kI (see eqn. 9.83) which reflects the screening of the applied
stress by the plastic zone. S may then be chosen to enclose the crack tip only in
which case eqn. 9.92 is recovered with KI replaced by the local stress intensity
factor kI.

3. Consider a slit crack between x1 = −2c and x1 = 0 on x2 = 0 loaded in mode III by
a shear stress 𝜎23 = 𝜎A at x2 = ±∞. The tractions created on the crack faces by the
applied stress must be eliminated. This is achieved by introducing a distribution
of screw dislocations in−2c ≤ x1 ≤ 0, with lines parallel to x3, and a Burgers vector
density f (x1). Using the stress field of a screw dislocation in eqn. 6.42 show that
the integral equation governing the distribution f (x1) is as follows:

P

0

∫
−2c

f (x′1)
x1 − x′1

dx′1 = −2𝜋𝜎A
𝜇 . (9.93)
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Show that solution of this equation is

f (x1) =
2𝜎A
𝜇

(x1 + c)
√(x1 + 2c)(−x1)

. (9.94)

Show that non-zero stress field components of the crack at (x1,x2) are as follows:

𝜎13(x1,x2) = −𝜎
Ax2
𝜋

0

∫
−2c

(x′1 + c)

√(x′1 + 2c)(−x′1)
1

(x1 − x′1)2 + x22
dx′1

𝜎23(x1,x2) =
𝜎A
𝜋

0

∫
−2c

(x′1 + c)

√(x′1 + 2c)(−x′1)

(x1 − x′1)
(x1 − x′1)2 + x22

dx′1. (9.95)

Evaluate these integrals by contour integration to obtain the following expressions:

𝜎13(x1,x2) = 𝜎A Im{ x1 + ix2 + c
√(x1 + ix2 + 2c)(x1 + ix2)

}

𝜎23(x1,x2) = 𝜎ARe{ x1 + ix2 + c
√(x1 + ix2 + 2c)(x1 + ix2)

} . (9.96)

For (x1,x2) = (𝜌cos𝛼,𝜌sin𝛼), where 𝜌/c≪ 1, show that these stress components
become the following close to the crack tip at (0,0):

𝜎13 = −𝜎A√
c
2𝜌 sin(𝛼/2)

𝜎23 = 𝜎A√
c
2𝜌 cos(𝛼/2). (9.97)

It follows that the stress intensity factor for the mode III slit crack is also 𝜎A√c/2.
Show that the crack opening displacement s(x1) is as follows:

s(x1) =
2𝜎A
𝜇 √c2 − (c+ x1)2. (9.98)
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Show that the change in the total potential energy following the introduction of
the crack is

ΔU = −
𝜋(𝜎A)2 c2

2𝜇 . (9.99)

Hence show that the Griffith criterion for the growth of a mode III slit crack is as
follows:

𝜎A√c/2 =√
2𝛾𝜇
𝜋 . (9.100)

4. Show the force along the x1-axis on unit length of the tip of the mode III slit crack

of the previous question is JIII = (𝜎A)2𝜋c/(2𝜇).WhenGriffith’s criterion is satisfied
show that JIII = 2𝛾.

5. A Frank–Read source in the centre of a rectangular grain emits dislocation loops
under the action of a shear stress resolved on the slip plane in the direction of the
Burgers vector. If the boundaries surrounding the grain are impenetrable obstacles
the loops pile up at them, as illustrated in Fig. 9.12. If one side of the grain is

A

B

x2

x1
B AS

b

GB GB

x1

x3

Figure 9.12 Upper: Plan view of a rectangular grain in a polycrystal containing a Frank–Read source
at its centre which is emitting dislocation loops that pile up at the grain boundaries, shown as thicker
lines. The Burgers vector 𝐛 is along x1, and the grain sides are parallel to x1−x2 and x3−x2 planes of a
Cartesian coordinate system. The normal to the page is along x2. The broken line AB passes through
edge dislocations piled up at the upper and lower grain boundaries. Lower: Side view of the edge
dislocation pileups along AB looking along the x3-axis. S signifies the Frank–Read source, GB signifies
a grain boundary. The same coordinate system is used in both figures.
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parallel to the Burgers vector the dislocations parallel to that side have pure screw
character, and on the perpendicular sides they have pure edge character. If there
are many dislocations in each pileup we may make the continuum approximation
to derive the stress field created by the pileups.

Consider the two pileups of edge dislocations and approximate the edge
dislocations lines as having infinite length. Let the normal to the slip plane be
along the positive x2-axis, and the Burgers vector of each dislocation be parallel to
x1 (see Fig. 9.12). The edge dislocation line directions are then along the ±x3-axis.
The edge dislocations on either side of the source have opposite signs because
their line directions are reversed (since they form loops). We may treat them
equivalently as having the same line sense but opposite sign Burgers vectors. Let
𝜎A be the effective resolved component of the applied stress acting on the slip plane
in the direction of the Burgers vector.33 Let f (x1) be the Burgers vector density of
dislocations in the two pileups. The source continues to emit dislocations until 𝜎A
is counteracted by the shear stress created by the pileups. The system is then in
mechanical equilibrium.

Using the stress field of an edge dislocation given in eqn. 6.34 show that the
condition for mechanical equilibrium of the two pileups is as follows:

𝜇
2𝜋(1−𝜈)P

d

∫
−d

f (x′1)
x1 − x′1

dx′1 = −𝜎A, (9.101)

where d is the length of each pileup. By now this should look very familiar. The
solution follows immediately from eqn. 9.31:

f (x1) =
2(1−𝜈)𝜎A

𝜇
x1

√d2 − x21
. (9.102)

If b is the magnitude of the Burgers vector of the discrete dislocations in the pileups
show that the number n of dislocations in each pileup is

n = 2(1−𝜈)𝜎A
𝜇

d
b
. (9.103)

Following the same procedure that led to the stress components in eqn. 9.89, it
may be shown that at (x1,x2) = (d+𝜌cos𝛼,𝜌sin𝛼), where 𝜌/d≪ 1 the stress field
close to the tip of the pileup has the following components:

33 By ‘effective’ we mean after the shear stress required to operate the Frank–Read source has been subtracted
from the resolved component of the applied stress.
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𝜎11(d+𝜌cos𝛼,𝜌sin𝛼) = −𝜎A
√

d
2𝜌 (2sin(

𝛼
2
)+ 1

2
sin𝛼cos(3𝛼

2
))

𝜎22(d+𝜌cos𝛼,𝜌sin𝛼) = 𝜎A
√

d
2𝜌 (

1
2
sin𝛼cos(3𝛼

2
))

𝜎12(d+𝜌cos𝛼,𝜌sin𝛼) = 𝜎A
√

d
2𝜌 (cos(

𝛼
2
)− 1

2
sin𝛼 sin(3𝛼

2
)). (9.104)

These stress components 𝜎i j(𝜌,𝛼) are expressed in the coordinate system of
the grain containing the pileup.34 In the adjacent grain let the normal to a
slip plane and the corresponding slip direction be 𝐧̂(𝛽) = [−sin𝛽,cos𝛽,0] and
̂𝐬(𝛽) = [cos𝛽,sin𝛽,0] respectively, expressed in the coordinate system of the grain
containing the pileup. Let there be a source in the adjacent grain at a distance
𝜌 = 𝜌s from the end of the pileup, where 𝜌s/d≪ 1. If the resolved shear on the
adjacent slip system required to activate the source is 𝜏s show that the following
condition must be satisfied if the source is to be activated:

𝜎A
4 √

d
2𝜌s

[cos(𝛽
2
)+ 3cos(3𝛽

2
)] = 𝜏s (9.105)

The average of value of [cos(𝛽/2) + 3cos(3𝛽/2)] between 𝛽 = −𝜋/2 and 𝛽 = +𝜋/2
is 4√2/𝜋. Writing 𝜎A = 𝜎y −𝜎f, where 𝜎y is the yield stress at which plastic
deformation is propagated from one grain to another, and 𝜎f is the friction stress
opposing dislocation motion, eqn. 9.105 may be written in the following form for
a polycrystal:

𝜎y = 𝜎f + kyd−1/2, (9.106)

where ky = 𝜋𝜏s√𝜌s is a factor that determines how easily slip is transmitted from
one grain to the next. Equation 9.106 is called the Hall–Petch relation after Hall.35

and Petch36 who found it experimentally.37 From a technological point of view it
is useful because it shows the yield stress may be raised by decreasing the grain
size. A smaller grain size may be achieved by a combination of plastic deformation
and carefully controlled annealing to induce and arrest recrystallisation to freeze
in a small grain size.

6. Griffith’s criterion for crack growth assumes a pre-existing crack, which raises
the question of how cracks form in a metal. Following an earlier suggestion38 by

34 They also describe the stress field close to the tip of a mode II slit crack.
35 Eric O Hall, New Zealand physicist.
36 Norman James Petch FRS 1917–92, British metallurgist.
37 Hall, EO, Proc. Phys. Soc. B64, 747–53 (1951). https://doi.org/10.1088/0370-1301/64/9/303;
Petch, NJ, J. Iron Steel Inst. 174, 25 (1953).
38 Mott, NF, Proc. R. Soc. A 220, 1 (1953). https://doi.org/10.1098/rspa.1953.0167

https://doi.org/10.1088/0370-1301/64/9/303
https://doi.org/10.1098/rspa.1953.0167
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Mott,39 Stroh40 showed41 during his doctorate how the stress concentration ahead
of a dislocation pileup may nucleate a crack. Consider a mode I crack nucleated
ahead of a pileup. We assume this happens when the tensile stress across some
plane just ahead of the pileup exceeds a critical value. For this to happen the total
energy of the systemmust decrease as a result of the nucleation of the crack. Using
eqn. 9.46 for the potential energy released when a mode I slit crack of length 2c
forms, and taking into account the energy 4𝛾c of creating the two crack surfaces,
show that the total energy decreases provided:

𝜎 >
√

8𝛾𝜇
𝜋(1−𝜈)c . (9.107)

The stress field ahead of the pileup is given by eqn. 9.104. The next step is to
identify the angle 𝛼 in eqn. 9.104 associated with the largest tensile stress along
the normal 𝐧̂ = [−sin𝛼,cos𝛼]. This is given by 𝜎(𝛼) = ni𝜎i jnj. Show that

𝜎(𝛼) = −3𝜎A
√

d
2𝜌 sin(𝛼/2)cos

2(𝛼/2). (9.108)

𝜎(𝛼) is a maximum when 𝛼 = −cos−1(1/3), which is −70.5∘. Show that the
corresponding maximum tensile stress is

𝜎max =
2

√3√
d
2𝜌𝜎

A. (9.109)

If the crack is nucleated its length 2c will equal 𝜌. Hence show that the condition
for the pileup to nucleate a mode I crack is as follows:

𝜎A√d > 2
√

6𝛾𝜇
𝜋(1−𝜈) . (9.110)

In brittle metals, where fracture occurs before slip is transmitted across grain
boundaries, the fracture stress has an inverse square root dependence on the grain
size. This has also been confirmed experimentally.

39 Sir Nevill Francis Mott FRS 1905–96, British Nobel Prize-winning theoretical physicist, who established
solid state physics in the UK.
40 Alan N Stroh 1926–62, South African theoretical physicist, studied with Eshelby and Mott for his PhD in
Bristol, creator of the elegant and widely used sextic formalism of anisotropic elasticity, his career cut short at
age 36 by a fatal car accident in Colorado. A more extensive biography is available on pp.159–61 of Anisotropic
elasticity by Ting, TCT, Oxford University Press: Oxford and New York (1996). ISBN: 0195074475
41 Stroh, AN, Proc. R. Soc. A 223, 404–14 (1954). https://doi.org/10.1098/rspa.1954.0124

https://doi.org/10.1098/rspa.1954.0124
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Open questions

10.1 Introduction

In this chapter four areas of current research in the physics of crystal defects are
introduced. The presentation differs from earlier chapters in being more like research
seminars than detailed expositions. References to the literature are given where further
information may be found. There are other large areas of current research in the physics
of defects such as very high strain rate deformation and irradiation damage. The four
topics selected here have been chosen because they can be introduced relatively briefly,
and questions to frame further research can be formulated.

10.2 Work hardening

10.2.1 The nature of the problem

Work hardening, or strain hardening as it is sometimes called, is the increase in the
flow stress of a metal as a result of plastic deformation. As Cottrell noted1 in 1953 it
is a spectacular effect enabling the yield strengths of pure copper and aluminium to be
raised a hundredfold. The goal of a theory of work hardening is to explain and predict
the stress–strain relation of a material as a function of temperature, strain rate, grain
size, alloy composition and microstructural features such as second phase particles and
the distribution of grain orientations known as texture. Since dislocations are the agents
of plastic deformation it is their collective behaviour that leads to the observed stress–
strain relation. Their collective behaviour involves short- and long-range interactions
with each other, and with other microstructural features. In 1953 Cottrell pointed out
that work hardening was the first problem to be tackled by dislocation theory, and may
well prove to be the last to be solved. Almost fifty years later he expressed the magnitude
of the enduring challenge of developing a successful theory of work hardening as
follows:

1 Cottrell, AH, Dislocations and plastic flow in crystals, Clarendon Press: Oxford (1953), Chapter 10.

Physics of elasticity and crystal defects. Adrian P. Sutton, Oxford University Press (2020). © Adrian P. Sutton.
DOI: 10.1093/oso/9780198860785.001.0001
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It is sometimes said that the turbulent flow of liquids is the most difficult remain-
ing problem in classical physics. Not so. Work hardening is worse. . . .Whereas fluid
dynamics can be treated by continuum methods, so that everything can be reduced to
the purely mathematical problem of solving standard differential equations, there is no
similar escape in work hardening, for the discrete structures of dislocations render the
theory intrinsically atomistic, even though in their lengthwise dimensions dislocations are
macroscopic objects, governedmainly by a classical physics which is unusual in not being
reducible to continuum theory. . . . Another unusual and extremely complicating feature
is of course that dislocations are lines, not the familiar point particles of mainstream
physics—and flexible lines at that—so that the standard methods of particle theory are
inapplicable. . . . Furthermore, neither of the two main strategies of theoretical many-
body physics—the statistical mechanical approach; and the reduction of the many-body
problem to that of the behaviour of a single element of the assembly—is available to
work hardening. The first fails because the behaviour of the whole system is governed
by that of weakest links, not the average, and is thermodynamically irreversible. The
second fails because dislocations are flexible lines, interlinked and entangled, so that the
entire system behaves more like a single object of extreme structural complexity and
deformability. . . . Of course, the properties of single dislocations have long been well-
established: glide, climb, cross-slip and sessile kinematic modes; reactions, combinations
and dissociations; Frank–Read sources, etc. These properties provide the alphabet in
which the story of work hardening must be written. But only the alphabet, no more
than that.2

10.2.2 Work hardening of fcc single crystals

Early experiments on tensile stress–strain relations of single crystals of ductile face-
centred cubic (fcc) metals such as copper and aluminium revealed at least three stages of
work hardening. If the crystal is oriented so that only one slip system is activated initially
the crystal enters stage I where the slope d𝜎/de is very small at about 10−4𝜇. This small
hardening, often called ‘easy glide’, arises from having to overcome attractive multipolar
interactions between trains of dislocations on parallel slip planes. The trains are moving
in opposite directions because the Burgers vectors in one train have the opposite sign to
those in the other train. As plastic strain increases the crystal axes rotate and the resolved
shear stress due to the applied load on a second slip system increases. When the resolved
shear stress due to the applied load on the second slip system becomes comparable to
that on the first, the two slip systems are equally active, and the stress–strain curve has
then fully entered stage II. However, secondary slip is activated by local internal stresses
before the resolved stress due to the applied load is sufficient to activate it. Consequently
the transition from stage I to stage II occurs gradually over a range of plastic strains. Stage
II is the dominant part of the stress–strain curve, where the slope is remarkably constant
at about 𝜇/300 and independent of temperature. Slip takes place on inclined slip planes
and dislocations on one slip plane have to cut through those on inclined planes forming

2 Reprinted from Dislocations in solids 11, ed. FRN Nabarro and MS Duesbery, Commentary: a brief view
of work hardening, by AH Cottrell, pages vii–xvii, Copyright 2002, with permission from Elsevier. Elsevier:
Amsterdam, ISBN 0-444-50966-6.
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steps or ‘jogs’ on the dislocation lines. If the jogs are sessile additional stress leads to the
formation of dislocation dipoles and point defects. Dislocations in inclined slip planes
may also combine and form sessile dislocations which may block the passage of further
dislocations on either slip plane. These interactions between dislocations on inclined slip
planes are collectively called ‘forest’ interactions and they are responsible for the large
increase in the hardening rate in stage II compared to stage I. The Orowan flow stress
predicts that in stage II the increase in the flow stress due to these forest interactions is
𝛼𝜇b√𝜌f where 𝜌f is the density of forest interactions3 and 𝛼 ≈ 0.3. Stage II ends and stage
III begins when the slope starts to decrease and ductile fracture eventually occurs at a
stress which depends on temperature. If the crystal is oriented so that two or more slip
systems are activated by the external load as soon as plasticity begins there is no stage I
and stage II is entered straight away. For the same reason in a fcc polycrystal stage II is
entered as soon as plasticity begins. Conversely, in some hexagonal crystals where slip
occurs only on one slip plane, stage II is never entered before fracture occurs.

It is not difficult to show that during stage II most of the work of plastic deformation
is not stored in the deformed body as potential energy but is dissipated as heat.4 During
stage II the stress–strain relation is 𝜎 = (𝜇/300)e. The work done per unit volume during
an increment de of strain is dW = 𝜎de = 300(𝜎/𝜇)d𝜎. The increment in the density
of stored potential energy is dE ≈ 1

2
𝜇b2d𝜌, where 𝜌 is the average dislocation density.

Assuming 𝜎 = 0.3𝜇b√𝜌f, where 𝜌f is the density of forest interactions, and 𝜌f = 𝛽𝜌where5

𝛽 ≈ 1

2
, we obtain dE/dW ≈ 1/14. Work hardening is a dissipative process.

10.2.3 The Cottrell–Stokes law

In Fig. 10.1 we see two schematic stress–strain curves for a polycrystalline sample under
uniaxial tension measured at the same strain rate and at temperatures T1 and T2, where
T2 > T1. Consider the sample at the higher temperature T2 strained to the point A. The
flow stress is then at the point B. If the sample is unloaded and immediately reloaded
at the lower temperature T1 plastic flow recommences at D, above B, and rises to join
the curve for T1. If the change of temperature from T2 to T1 is made quickly BD is
the reversible thermal change of flow stress, since cycling between T1 and T2 the flow
stress alternates between D and B. DC is the athermal difference in the levels of work
hardening reached at T1 and T2 at the same strain and reflects the differences in the
densities and distributions of dislocations in the two samples at these temperatures. The
Cottrell–Stokes law6 is that AB/AD is found experimentally to be independent of strain
and dependent only on T1 and T2. It follows that BD/AB, the ratio of the reversible

3 It is a sobering fact that the dependence of the flow stress on the square root of dislocation density first
appeared in GI Taylor’s paper of 1934.

4 Nabarro, FRN, Basinski, ZS and Holt, DB, Adv. Phys. 13, 193–323 (1964). https://doi.org/10.1080/
00018736400101031. Zbigniew Stanislaw Basinski FRS 1928–99.

5 Basinski, ZS and Basinski, SJ, Phil. Mag. 9, 51–80 (1964). https://doi.org/10.1080/14786436408217474
6 Cottrell, AH and Stokes, RJ, Proc. R. Soc. A 233, 17–34 (1955). https://doi.org/10.1098/rspa.1955.0243

https://doi.org/10.1080/00018736400101031
https://doi.org/10.1080/00018736400101031
https://doi.org/10.1080/14786436408217474
https://doi.org/10.1098/rspa.1955.0243
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Figure 10.1 Schematic of two stress–strain curves obtained at the same strain rate and temperatures
T1 and T2, where T2 > T1. After Cottrell and Stokes (1955).

thermal component of the flow stress to the total flow stress, must also be independent
of strain and dependent only on T1 and T2

Similarly, when the sample at the lower temperature T1 is strained to the point A
the flow stress rises to the point C. If the sample is unloaded and reloaded quickly at
the higher temperature T2 plastic flow recommences at E, beneath the stress at C, and
on further straining it eventually reaches the T2 curve. This is called work-softening,
since the flow stress decreases with increasing strain. Cottrell and Stokes found the ratio
AE/AC, at a given strain rate, was also independent of strain and dependent only on T1
and T2 over a wide range of temperatures and plastic strains.

Basinski7 made equivalent experimental observations where the strain rate was
changed abruptly at constant temperature. The explanation put forward by Basinski
(1959) for both the Cottrell–Stokes law and his own observations was that both the
thermal and athermal contributions to the flow stress arise from the same source, namely
the forest interactions between dislocations on inclined slip planes. This suggestion was
developed further by Nabarro8 and Brown,9 who showed that the Cottrell–Stokes law
could be explained provided just one type of obstacle is present at all plastic strains, which
on average has the same finite strength and range, and provided dislocations advance

7 Basinski, ZS, Phil. Mag. 4, 393–432 (1959). https://doi.org/10.1080/14786435908233412
8 Nabarro, FRN, Acta Metall. 38, 161–4 (1990). https://doi.org/10.1016/0956-7151(90)90044-H
9 Brown, LM, in Dislocations in solids, ed. FRN Nabarro and MS Duesbery, Elsevier: Amsterdam (2002),

pp.193–210. ISBN 0-444-50966-6. Lawrence Michael Brown FRS, 1936–, Canadian and British materials
physicist.

https://doi.org/10.1080/14786435908233412
https://doi.org/10.1016/0956-7151(90)90044-H
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rapidly over these obstacles so that they do not have time to relax to their equilibrium
shapes.

10.2.4 Work hardening and self-organised criticality

The density of dislocations in a heavily deformed ductile metal, such as copper, may
reach 1012 cm−2. It is remarkable that this is equivalent to ten million kilometres of
dislocation line in each cubic centimetre, or roughly one in every thousand atoms is
in a dislocation core. However, one of the most significant discoveries by transmission
electron microscopy of deformed samples is that dislocations are not distributed uni-
formly during plastic deformation. A cellular structure is formed, with the cell walls made
of dense bundles or ‘braids’ of dislocations separated by regions where the dislocation
density is much smaller. This is an example of self-organisation of dislocations. During
work-hardening dislocations tend to organise themselves into low energy configurations
in which their long-range elastic fields are mutually screened.10 For example, dislocations
of opposite sign tend to form dipoles, while edge dislocations of the same sign tend to
form small angle grain boundaries, often called subgrain boundaries. Screw dislocations
of opposite sign will also tend to form dipoles and they may also annihilate each other by
cross-slip. If a group of dislocations within a region has a net Burgers vector its elastic
field will stimulate the migration of neighbouring dislocations into the region to reduce
the net Burgers vector to zero, possibly through the activation of sources. Observations
have also shown that most dislocations are at rest most of the time in metals subjected to
heavy deformation at moderate strain rates, indicating that dislocations are in temporary
local states of mechanical equilibrium. When dislocation motion occurs it is in bursts
or avalanches involving groups of dislocations forming slip bands. This has led Brown
to describe plasticity as ‘constantly intermittent’,11 and it contrasts with the assumption
made in continuum plasticity of continuous deformation. These characteristic features
of plasticity are also common to systems displaying self-organised criticality.

Self-organised criticality (SOC) combines the two concepts of self-organisation and
criticality.12 Self-organisation is the ability of a non-equilibrium system to develop
structures and patterns without any external interference. Criticality is precisely defined
in statistical mechanics of second order phase transitions where at the transition tem-
perature a localised disturbance can propagate across the entire system even though
interactions between constituent particles have much shorter range. In the words of
Bak,13 who developed the concept of SOC,

10 Kuhlmann-Wilsdorf, D, Mater. Sci. Eng. 86, 53–66 (1987). https://doi.org/10.1016/0025-5416(87)
90442-3. Doris Kuhlmann-Wilsdorf 1922–2010, US metallurgist born in Germany.
11 Brown, LM, Mater. Sci. Technol. 28, 1209–32 (2012).

https://doi.org/10.1179/174328412X13409726212768
12 Jensen, HJ, Self-organized criticality, Cambridge University Press: Cambridge (1998). ISBN: 0521483719.
13 Per Bak 1948–2002, Danish theoretical physicist who worked in Denmark, the US and the UK.

https://doi.org/10.1016/0025-5416(87)90442-3
https://doi.org/10.1016/0025-5416(87)90442-3
https://doi.org/10.1179/174328412X13409726212768
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. . . complex behaviour in nature reflects the tendency of large systems with many
components to evolve into a poised, ‘critical’ state, way out of balance, where minor
disturbances may lead to events, called avalanches, of all sizes. Most of the changes
take place through catastrophic events rather than by following a smooth gradual path.
The evolution to this very delicate state occurs without design from any outside agent.
The state is established solely because of the dynamical interactions among individual
elements of the system: the critical state is self-organised.14

In the context of work hardening SOC describes self-organisation of the dislocation
structure resulting in every part of the structure having an equal probability over time
of being a site where further plastic deformation is initiated. Brown describes15 this self-
organised, critical state as one of maximum ‘suppleness’. Before the material reaches
this state plastic deformation is initiated at particular susceptible sites. As deformation
proceeds all regions are ‘invaded’ by slip bands. Eventually the material enters a critical
state where all regions are on the verge of an avalanche of plastic deformation. In the
language of dynamical systems the self-organised critical state is an ‘attractor’16 towards
which the dislocation structure of the metal evolves. When it is slightly disturbed by
the creation of a new slip band it returns to the self-organised critical state. Brown
(2016) argued that ductile crystals provide model systems to study SOC free from
uncontrollable variables. One of the features of SOC is that it leads to power laws between
various observable quantities. Brown (2016) discusses a number of such power laws in
work hardening.

10.2.5 Slip lines and slip bands

Slip lines are traces of a slip plane where dislocation glide has introduced a relative
displacement on either side of the slip plane. The slip line is created where the slip plane
exits at a free surface and it is made visible by the formation of a step on the surface.
Slip bands are long blade-like regions with an aspect ratio of about 50:1 that have been
sheared by the collective motion of dislocation loops on parallel slip planes. Thus slip
bands comprise groups of slip lines. Brown (2012) has compiled the following list of
experimental observations, with references to the literature in his paper, about slip lines
and slip bands during work hardening of pure metals not subjected to cyclic loading:

• The average plastic displacement associated with a slip line, as determined by the
height of steps where they emerge at a surface, varies by at most a factor of three,
typically between 3 and 10 nm, as the stress level changes by a factor of fifty. This
behaviour is found in Cu, Zn and NaCl. Although there is much greater variability
in the plastic displacement associated with individual slip lines the average plastic

14 Reproduced with permission by Oxford University Press from Bak, P,How nature works, Oxford University
Press: Oxford (1997), pp.1–2. ISBN 0198501641. Copyright 1997.
15 Brown, LM, Phil. Mag. 96, 2696–713 (2016). https://doi.org/10.1080/14786435.2016.1211330
16 Prigogine, I, From being to becoming, W.H. Freeman and Co.: San Francisco (1980), pp.7–8. ISBN

0-7167-1108-7. Ilya Romanovich Prigogine 1917–2003, Russian born, Nobel Prize-winning physical chemist,
who worked in Belgium and the US.

https://doi.org/10.1080/14786435.2016.1211330
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displacement is observed to be roughly constant and independent of the material,
throughout the deformation.

• Over the same range of stress and strain the average length of slip lines decreases
inversely with stress by a factor of sixty, from about 20 μm at the beginning of
stage II.

• Acoustic emissions from plastically deformed copper single crystals indicate that
the bursts of slip last a few microseconds at the onset of stage II. The intensity of
an acoustic emission is proportional to the slipped area multiplied by the plastic
displacement. Since the average plastic displacement is approximately constant,
and the slipped area is inversely proportional to the stress squared, the intensity of
the acoustic emission is expected to vary with the inverse square of the stress, which
is observed in acoustic emission experiments.

• To produce the observed plastic displacements and the observed intensity of
acoustic emissions some tens of dislocationsmove during a slip burst, which implies
they move in a cooperative manner. The speed of the dislocations during a burst is
of order metres per second.

• Once a slip line has emerged at a surface the height of the surface step is stable
and does not increase with time. The steps formed when slip bands intersect inside
the crystal also do not change after they have been formed. These observations
indicate that once a slip band has been formed it becomes inactive and does not
continue to grow. Further slip occurs through the formation of new slip bands.
The crystal becomes a palimpsest,17 where each region of the crystal is sheared
repeatedly through participation in slip bands. Brown (2012) estimated that after
10% plastic strain each atom has participated in a slip band about 100 times.

• There are observations of slip bands inclined by 1−5∘ to the slip direction. A slip
band is nearly planar. By analogy with aerodynamics the ‘pitch’ is the angle between
the slip band and the slip direction. The angle of ‘roll’ is between the perpendicular
to the slip direction and the slip band. Thus, slip bands have two more degrees of
freedom than dislocation pileups on single slip planes.

10.2.6 Slip bands as the agents of plastic deformation

The observations listed in the previous section suggest a coarse-grained model in which
slip bands are the agents of plastic deformation, an idea apparently first suggested18

by Jackson19 in 1985 who treated slip bands as ellipsoidal regions undergoing simple
shear. As Jackson noted the great advantage of treating slip bands as ellipsoids is that
the stresses and strains inside and outside the shear band are readily calculated using
Eshelby’s theory of ellipsoidal inclusions (Eshelby (1957)). It follows that dislocation
loops making up the slip band experience the same stress provided they are located

17 A palimpsest is a document that has been cleaned and written on again, such as a slate written on with
chalk and wiped clean to be written on again.
18 Jackson, PJ, Acta Metall. 33, 449–54 (1985). https://doi.org/10.1016/0001-6160(85)90087-2
19 Paul J Jackson, South African materials physicist.

https://doi.org/10.1016/0001-6160(85)90087-2
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on the surface of an ellipsoid, a condition that imposes collective motion on the
loops. In particular a slip band comes to rest when all dislocation loops on its surface
simultaneously come to a stop, because they experience the same Peach–Koehler force.
Brown models slip bands as long blade-like ellipsoids. During the few microseconds
it takes for a slip band to form it lengthens and it can change the orientation of its
principal axes so long as it remains ellipsoidal. An as yet unanswered question is whether the
intermittency of slip and self-organised criticality observed experimentally can be captured by
a model in which slip bands, treated as ellipsoids, interact with each other through long- and
short-range forces.

Consider first a shear band represented by an ellipsoid with no pitch or roll. Let
the principal axes of the ellipsoid define a right-handed Cartesian coordinate system
x1,x2,x3, with the origin at the centre of the ellipsoid, and let the shortest axis of the
ellipsoid be along x3 and the longest along x1. The slip planes of the dislocation loops
are parallel to the x1−x2 plane, and their Burgers vectors have magnitude b and they are
parallel to x1. This is the primary slip system. The equation of the ellipsoid is x21/a21 +
x22/a22 + x23/a23 = 1, where a1 ≥ a2 ≫ a3. The material inside the ellipsoid undergoes a
simple shear on the x1−x2 plane of magnitude 𝜀. This simple shear produces a pure shear
eT13 = eT31 = 𝜀/2, and all other strain components are zero. The T superscript indicates this
is a transformation, or stress-free, strain. It is the strain the material inside the ellipsoid
would undergo if it were not constrained by the surrounding matrix. Eshelby (1957)
showed how to calculate the uniform constrained strain inside the ellipsoid assuming
isotropic elasticity, and hence the uniform stress inside the ellipsoid. Using the detailed
solutions to the Eshelby ellipsoidal inclusion problem provided by Mura,20 the only non-
zero components of the stress tensor inside the ellipsoid are

𝜎13(in) = 𝜎31(in) = −2𝜇eT13
a3
a2
( 𝜈
1−𝜈 a

2
2

K(k2) −E(k2)
a21 − a22

+E(k2)) , (10.1)

where k2 = (a21 − a22)/a21 andK(k2) and E(k2) are complete elliptic integrals of the first and
second kind as defined in eqns. 9.82 and 9.79 respectively. If the ellipsoid is inmechanical
equilibrium the total shear stress acting on each dislocation loop has to be zero. This
requires 𝜎13(in) + 𝜎A13 +𝜎f = 0 where 𝜎A13 is the applied shear stress and 𝜎f is the friction
stress opposing glide of dislocations. In the absence of a friction stress 𝜎13(in) = −𝜎A13.

When the ellipsoid is a long blade-like structure a1 ≫ a2 ≫ a3 and k2 is slightly less
than unity. The following asymptotic expansions21 of the complete elliptic integrals
apply:

20 Mura, T,Micromechanics of defects in solids, 2nd edn., Chapter 2, Kluwer Academic Publishers: Dordrecht
(1991). ISBN 90-247-3256-5.
21 http://functions.wolfram.com/EllipticIntegrals/EllipticK/introductions/CompleteEllipticIntegrals/05/

http://functions.wolfram.com/EllipticIntegrals/EllipticK/introductions/CompleteEllipticIntegrals/05/
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K(1−𝛿) = 1
2
ln(16𝛿 )− 𝛿

8
ln𝛿 +O(𝛿2 ln𝛿)

E(1−𝛿) = 1+ 𝛿
4
[ln(16𝛿 )− 1]+O(𝛿2 ln𝛿), (10.2)

where 𝛿 ≪ 1. With 𝛿 = a22/a21 ≪ 1 we find 𝜎13(in) is as follows:

𝜎13(in) = −2𝜇eT13
a3
a2

+𝜇O(a2a3/a21). (10.3)

When the ellipsoid is penny-shaped we have a1 = a2 ≫ a3. Taking the limit a1 → a2 in
eqn. 10.1 we obtain

𝜎13(in) = −2𝜇eT13 (
2−𝜈
1−𝜈)

𝜋
4
a3
a1

= −𝜇𝜀(2−𝜈
1−𝜈)

𝜋
4
a3
a1
. (10.4)

Returning to the more general case of eqn. 10.1, the stress immediately outside the
slip bandmay also be calculated using the theory described by Eshelby (1957). If ni is the
local unit normal to the surface of the ellipsoid the stress 𝜎il(out)(𝐧̂) immediately outside
the slip band is as follows:

𝜎il(out) = (𝜎il(in) + 2𝜇eTil )(𝛿i1𝛿l3 +𝛿i3𝛿l1) +
4𝜇eT13n1n3

1−𝜈 (ninl −𝜈𝛿il)

− 2𝜇eT13(𝛿i1n3nl +𝛿l1nin3 +𝛿i3n1nl +𝛿l3n1ni). (10.5)

It is not difficult to show that 𝜎il(out)nl = 𝜎il(in)nl, as required for continuity of tractions
across the interface. It follows that

𝜎13(out) = 𝜎13(in) + 2𝜇eT13 [n22 +
2n21n

2
3

1−𝜈 ]. (10.6)

The maximum values of 𝜎13(out) are found at 𝐧̂ = (0,±1,0) where 𝜎13(out) = 𝜎13(in) +
2𝜇eT13. If we ignore the friction stress 𝜎f the stress concentration factor at these
points is

𝜎13(out)
𝜎A13

= (a2/a3)(1−𝜈)
𝜈a22 (K(k2) −E(k2))/(a21 − a22) + (1−𝜈)E(k2)

− 1. (10.7)

In contrast to the infinite stress concentration factor of a planar dislocation pileup this
stress concentration factor is finite and thereforemore realistic. For example, for a penny-
shaped ellipsoid it is as follows:
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𝜎13(out)
𝜎A13

≈ 4
𝜋
(1−𝜈)
(2−𝜈)

a1
a3
. (10.8)

Consider the case where the ellipsoid has a small angle of pitch equal to 𝜃. The pitch is
a small rotation of the slip band about the x2-axis. In the coordinate system of the rotated
ellipsoid the transformation strain tensor becomes

eTij =
𝜀
2
[
−sin2𝜃 0 cos2𝜃

0 0 0
cos2𝜃 0 sin2𝜃

] ≈ 𝜀
2
[
−2𝜃 0 1
0 0 0
1 0 2𝜃

]+O(𝜃2). (10.9)

Note the diagonal components. To first order in 𝜃 the shear strain eC13(in), and hence
the shear stress 𝜎13(in), is unaffected by the rotation. However, normal strains appear as
follows:

eC11(in) = −{(1− 2𝜈
1−𝜈 ) a2a3

(K(k2) −E(k2))
a21 − a22

+O(a23/a21)} 𝜀𝜃

eC22(in) = −{ 1
2(1−𝜈)

a21
a21 − a22

(a3E(k
2)

a2
− 2a2a3(K(k2) −E(k2))

a21 − a22
)+O(a23/a22)}𝜀𝜃

eC33(in) =
1

2(1−𝜈) {2(1− 2𝜈)+ a2a3(K(k2) −E(k2))
a21 − a22

+ (4𝜈 − 1)a3E(k
2)

a2
}𝜀𝜃. (10.10)

These normal strains give rise to normal stresses inside the ellipsoid as follows:

𝜎11(in) = 2𝜇(eC11(in) + 𝜀𝜃)+
2𝜇𝜈

1− 2𝜈 e
C(in)

𝜎22(in) = 2𝜇eC22(in) +
2𝜇𝜈

1− 2𝜈 e
C(in)

𝜎33(in) = 2𝜇(eC33(in) − 𝜀𝜃)+
2𝜇𝜈

1− 2𝜈 e
C(in), (10.11)

where eC(in) = eC11(in) + eC22(in) + eC33(in) is the dilation in the ellipsoid. 𝜎C11(in) is called
the fibre stress by analogy with the normal stress carried by a fibre in a fibre-reinforced
composite material. It changes sign with 𝜃, and it increases linearly with 𝜃 and with
the magnitude of the simple shear 𝜀 in the slip band. If the ellipsoid has a penny shape
(a1 = a2 ≫ a3) the non-zero components of the stress tensor expressed in the coordinate
system of the tilted ellipsoid are as follows:
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𝜎11(in) =
2𝜇𝜀𝜃
1−𝜈 +𝜇O(

a3
a1
𝜀𝜃) = Y

(1−𝜈2) 𝜀𝜃 +O(
a3
a1
𝜀𝜃) ≈ Y𝜀𝜃 +O(a3

a1
𝜀𝜃)

𝜎22(in) =
2𝜇𝜈𝜀𝜃
1−𝜈 +𝜇O(a3

a1
𝜀𝜃)

𝜎33(in) = 0+𝜇O(a3
a1
𝜀𝜃)

𝜎13(in) = −𝜇𝜀(2−𝜈
1−𝜈)

𝜋
4
a3
a1
, (10.12)

where we have treated a3/a1, 𝜀 and 𝜃 as comparably small quantities, and retained only
the terms containing products of two of them at a time. Brown (2012) has derived similar
expressions for when a penny-shaped ellipsoid undergoes a small angle of roll and mixed
pitch and roll.

The fibre stress 𝜎11 inside the ellipsoid has no influence on slip on the primary slip
system. But as first noted by Jackson (1985) it can activate secondary slip systems within
the ellipsoid, that is, slip on planes and in directions inclined to those of the primary slip
system. Activation of secondary slip systems reduces the fibre stress inside the ellipsoid.
When loops of the primary and secondary slip systemsmeet on the periphery of the ellip-
soid they interact and form obstacles—these are the ‘forest interactions’. Thus the loops
of the primary slip system block further slip, or contraction, of loops on the secondary
slip systems and vice versa. The ellipsoid is thus stabilised by these forest interactions
on its periphery. The walls of the slip band consist of arrays of primary and secondary
dislocations. They are almost parallel to the primary slip plane because of the long thin
shape of the slip band. The interior of the slip band is virtually free of dislocations.
In cross section this produces the cellular structure observed in transmission electron
microscopy. Brown22 has estimated the linear hardening rate on the primary slip system
in this ellipsoidal slip band model. On the primary slip plane it involves the spacing of
obstacles arising from forest interactions with secondary dislocations. These obstacles
act as pinning points between which the primary dislocations have to bow out to escape.
The stress required for them to bow out is inversely proportional to the spacing of
the secondary dislocations, which is directly proportional to the simple shear 𝜀 on the
primary slip system, and hence linear hardening results.

Because the thickness (a3) of the ellipsoid is so much less than its width (a2) and its
length (a1) the extent of secondary slip is much less than primary slip. This is why the
rotation of the crystal is due almost entirely to slip on the primary system. As the crystal
rotates the resolved shear stress on one or more secondary slip systems increases, while
the resolved shear stress on the primary slip system decreases. Eventually the sum of
the applied stress and the fibre stress resolved onto one or more secondary slip systems
enables secondary dislocations to bow out between the obstacles provided by the primary
dislocations and create shear bands on secondary systems.

22 Brown, LM, Metall. Trans. A, 22, 1693–708 (1991). https://doi.org/10.1007/BF02646493

https://doi.org/10.1007/BF02646493
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We have here the rudiments of a coarse-grained model for work hardening. It
needs considerably more work to formulate a protocol for a simulation in two or three
dimensions in which slip bands are created self-consistently and overwrite each other.
It would be very interesting, not only as a model of work hardening but as a possible
paradigm for SOC, to see whether the model leads to a self-organised critical state and
whether it captures the ‘constantly intermittent’ nature of slip.

10.3 Electroplasticity

10.3.1 Introduction and experimental observations

In 1963 in the former Soviet Union it was discovered that a direct electric current reduces
the flow stress of a metal and improves its overall ductility. During irradiation of zinc
single crystals with 1MeV electrons, with the crystals being deformed in uniaxial tension
at liquid nitrogen temperatures, Troitskii and Likhtman23 observed a significant decrease
in the flow stress and higher ductility when the electron beam was in the basal slip plane,
compared to when it was normal to the basal plane. The elongation at fracture also
increased when the electron beamwas in the basal plane compared to when it was normal
to the plane, and compared to when there was no irradiation. The predominant slip
systems in zinc have Burgers vectors in the basal plane. These observations suggested
the possibility that the passage of a directed electron current through a metal increases
the mobility of dislocations.

Troitskii and other Soviet scientists carried out further experiments revealing the
influence of pulses (≲100 μs) of direct currents (103−105 Acm−2) on the flow stress,
stress relaxation, creep, dislocation generation and mobility, brittle fracture, fatigue and
metal-working. For references see the reviews24 by Conrad25 and co-workers. The pulses
were short to minimise Joule heating and the current densities were high to maximise
their effect. The influence of the current pulses on plasticity was called the electroplastic
effect. Figure 10.2 shows the load against displacement for a wire single crystal of zinc,26

diameter 1 mm and length 15 mm, stretched at a constant speed of 0.01 cm min−1

equivalent to a strain rate of 1.1× 10−5 s−1. Pulses of direct current of duration ∼10−4 s
and between 600 A and 1800 A were passed through the wire. The current between the
pulses did not exceed 0.3 A. As soon as each pulse was applied the load dropped, and
the size of the drop increased with increasing current. Load drops were not observed
during the elastic deformation, or during stress relaxation when the load was turned off,
and they began only when the sample had started to deform plastically. Troitskii and
co-workers found the load drop ΔP varied between 10% and 40% of the applied load,
increased approximately linearly with the current density 𝐉, varied with the direction of

23 Troitskii, OA and Likhtman, VI, Dokl. Akad. Nauk SSSR 148, 332–4 (1963). In Russian.
24 Sprecher, AF, Mannan, SL and Conrad, H Acta Metall. 34, 1145–62 (1986). https://doi.org/10.1016/

0001-6160(86)90001-5; Conrad, H and Sprecher, AF in Dislocations in solids, 8, North-Holland: Amsterdam
(1989), pp.497–541. ISBN 978-0444705150; Conrad, H, Mater. Sci. Eng. A 287, 276–87 (2000). https:
//doi.org/10.1016/S0921-5093(00)00786-3
25 Hans Conrad 1922–. US materials scientist.
26 Troitskii, OA, JETP Lett. 10, 11–14 (1969). http://www.jetpletters.ac.ru/ps/1686/article_25672.shtml

https://doi.org/10.1016/0001-6160(86)90001-5
https://doi.org/10.1016/0001-6160(86)90001-5
https://doi.org/10.1016/S0921-5093(00)00786-3
https://doi.org/10.1016/S0921-5093(00)00786-3
http://www.jetpletters.ac.ru/ps/1686/article_25672.shtml
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Figure 10.2 Load–displacement curve for a single crystal of zinc, subjected to DC current pulses while
it is deformed in uniaxial tension at 78 K at a strain rate of 1.1× 10−5 s−1. The horizontal axis is
time. The voltage is increased in steps of 25 V from 50 V to 150 V, where 100 V corresponds to a
current of approximately 1.5× 105 Acm−2. The load falls with each current pulse, and rises again when
the pulse ends. The size of the load drops increases with the voltage (and current) of the current pulses.
When the test machine is shut off there is stress relaxation and the current pulses then have a much
smaller influence. Reproduced with permission from Troitskii, OA, JETP Lett. 10, 11–14 (1969).

𝐉 relative to crystal axes, increased with decreasing temperature, tended to decrease with
increasing strain rate and occurs in compression as well as tension.

Stimulated by these results Conrad and others in the US confirmed and extended
these studies to polycrystalline samples of Al, Cu, Pb, Ni, Fe, Nb, W, Sn and Ti.
Figure 10.3 from Okazaki et al.27 shows the relation between true stress and true strain
for a polycrystalline wire of Ti (99.97% purity), ∼50 mm gauge length and 0.51 mm
diameter, subjected to a uniaxial tensile loading and pulses of current of duration≲100 μs
at a nominal temperature of 300 K with forced air cooling. The current density has to
exceed a threshold value of about 1000 A mm−2 before a load drop is seen. Note the
immediate stress relaxation when the pulse is applied and the return to a continuation of
the upper envelope of the stress–strain curve after the pulse. They also found the upper
envelope of the stress-strain curve with current pulses was the same as that for a separate
specimen which had been deformed without current pulses. These observations indicate
that whatever changes occur in the wire, as a result of the current pulses, they must be
reversible.

10.3.2 Possible mechanisms

The reversibility of the load drops seen clearly in Fig. 10.3 suggests that they are
associated with the thermal component of the flow stress, as discussed in section 10.2.3 in

27 Okazaki, K, Kagawa, M and Conrad, H, Scripta Metall. 12, 1063–8 (1978). https://doi.org/10.1016/
0036-9748(78)90026-1

https://doi.org/10.1016/0036-9748(78)90026-1
https://doi.org/10.1016/0036-9748(78)90026-1
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Figure 10.3 True stress–true strain relation for a Ti wire deformed in tension and subjected to current
pulses of increasing current density. Reprinted from Okazaki, K, Kagawa, M and Conrad, H, Scripta
Metall. 12, 1063–8 Copyright 1978, with permission from Elsevier.

connection with the Cottrell–Stokes law. The picture is as follows. Dislocation segments
are pinned at obstacles, such as forest interactions. To overcome the free energy barrier
these obstacles present dislocations require the assistance of thermal activation. Conrad
(2000) argued that the primary influence of the current is to alter the pre-exponential fac-
tor in the rate at which these obstacles are overcome. This factor includes the frequency
of vibration made by pinned dislocation segments and the entropy of the activated state.
It also includes geometrical terms unlikely to be influenced by the current. To increase
the frequency of vibration of the dislocation the local shear modulus would have to be
increased by the current. This seems unlikely because electrons in states below the Fermi
level are excited into states above the Fermi energy, which will tend to make the material
softer. It is more likely that the current increases the entropy of the activated state.
Current-carrying electrons may reduce the stiffnesses of bonds in the dislocation core,
increasing the entropy associated with the atomic rearrangements in the activated state.
Secondly the activated statemay excite current-carrying electrons to higher energy states,
increasing their entropy. Both contributions would reduce the free energy barrier to dislo-
cation motion. Troitskii28 also suggested, in more general terms, that the principal mech-
anism of the electroplastic effect is to facilitate dislocations overcoming barriers to slip.

28 Troitskii, OA, Strength Mater. 7, 804–9 (1975). https://doi.org/10.1007/BF01522653

https://doi.org/10.1007/BF01522653
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Since the principal influence of the current pulses is on the thermal component of the
flow stress the question arises whether they inject pulses of heat. This has been carefully
considered by Troitskii (1975) and by Conrad’s reviews. If the load drops were due
to Joule heating the magnitude of the drops would vary with the square of the current
density. The linear dependence of the load drops on the current density rules out Joule
heating as a mechanism.

The orientational dependence of the electroplastic effect, observed by Troitskii and
Likhtman (1963), and in other experiments reviewed by Antolovich29 and Conrad,30

suggests the effect of the current is greatest when it is parallel to the Burgers vector.
Indeed, when the current is perpendicular to the Burgers vector it is difficult to see how
it can have any influence on the dislocation mobility. In the following we consider how
the current may contribute to the glide force on a dislocation.

The Peach–Koehler glide force on a dislocation is a configurational force. In con-
tradistinction, a current-induced glide force is a body force. Electromigration is a related
phenomenon where point defects experience current-induced body forces making them
drift in particular directions. For example, consider the current-induced force on a
vacancy. It arises from current-induced changes in the forces between its neighbours,
which alter the probabilities of them jumping into the vacancy slightly from when there
is no current. A point defect presents a scattering potential V to the electron current,
measured from the bottom of the conduction band. If V > 0 the point defect obstructs
the current and electrons impinging on the point defect are reflected back creating an
excess of electrons on the electron source side of the defect and a deficit on the electron
drain side. The resulting dipole of charge establishes an electric field in the opposite
direction to the current flow. If V < 0 the defect locally facilitates the current flow and
the current-induced electric field is in the same direction as the electron current flow.
The current-induced electric field exerts a body force on the defect. This picture of the
current-induced force is equivalent to the ‘electron-wind force’, the origin of which is
the transfer of momentum from current-carrying electrons to the point defect.31 For a
vacancy the dipole introduces an asymmetry in the forces between neighbouring atoms.
Bonds on one side of the vacancy become slightly stronger while bonds on the opposite
side become slightly weaker. This is the origin of the slight bias in the probability of where
the vacancy jumps next. Conversely, if the local conductivity is enhanced, for example
through the formation of a shorter bond enabling faster electron hopping between atoms,
the sense of the dipole is reversed.32

29 Stephen D Antolovich, US materials engineer.
30 Antolovich, SD and Conrad, H, Mater. Manuf. Process. 19, 587–610 (2004). http://dx.doi.org/10.1081/

AMP-200028070
31 Bosvieux, C and Friedel, J, J. Phys. Chem. Solids 23, 123–36 (1962). https://doi.org/10.1016/

0022-3697(62)90066-5
32 The Bosvieux–Friedel dipole is not to be confused with the Landauer residual resistivity dipole. The

Landauer dipole accounts for the contribution to the macroscopic resistivity of the sample caused by the
defect. The Bosvieux–Friedel dipole does not contribute to the macroscopic resistivity. The Bosvieux–Friedel
dipole depends on V to first order, and hence it changes sign when V changes sign. The Landauer dipole
depends on V2 and is thus independent of the sign of V. For further discussion of the Landauer and Bosvieux–
Friedel dipoles see Sorbello, RS, Phys. Rev. B 23, 5119–27 (1981). https://doi.org/10.1103/PhysRevB.23.5119;
Sorbello, RS, and Chu, CS, IBM J. Res. Dev. 32, 58–62 (1988). http://dx.doi.org/10.1147/rd.321.0058;
Sorbello, RS, Solid State Phys. 51, 159–231 (1998). https://doi.org/10.1016/S0081-1947(08)60191-5. Rolf
William Landauer 1927–99, German born US physicist. Richard S Sorbello, US physicist.

http://dx.doi.org/10.1081/AMP-200028070
http://dx.doi.org/10.1081/AMP-200028070
https://doi.org/10.1016/0022-3697(62)90066-5
https://doi.org/10.1016/0022-3697(62)90066-5
https://doi.org/10.1103/PhysRevB.23.5119
http://dx.doi.org/10.1147/rd.321.0058
https://doi.org/10.1016/S0081-1947(08)60191-5
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Figure 10.4 Sketch to illustrate a current-induced charge quadrupole at an edge dislocation. The large
arrows show an incident electron current of density 𝐉 from the left. The red atoms signify an excess of
electronic charge and the blue a deficit. The quadrupole generates forces, shown by small arrows, on
atoms either side of the slip plane (broken line) in the dislocation core. These body forces create a shear
stress on the dislocation core.

For an electron current to exert a glide force on a dislocation it has to generate a resolved
shear stress on atoms in the dislocation core. This requires atoms in the core on either
side of the slip plane to experience resolved forces parallel and anti-parallel to the
Burgers vector 𝐛. Since a dipole of electronic charge creates a net force on a point
defect the current has to induce a quadrupole of charge along the dislocation line to
create a shear stress. The quadrupole of charge generates a dipole of forces, with the
directions of the forces parallel and anti-parallel to 𝐛, as sketched in Fig. 10.4 for an edge
dislocation. At the termination of the extra half plane atoms are forced closer together
which facilitates current flow leading to a dipole of charge as shown. Just below the
termination of the extra half-plane atoms are forced apart, obstructing current flowwhich
creates a dipole of the opposite sense. Thus, the current-induced charge distribution is a
quadrupole.33

To establish whether there is a current-induced charge quadrupole, leading to a
current-induced force dipole, in a dislocation core requires a self-consistent treatment of
the electronic structure of the dislocation in the presence of an electron current flow. At
the time of writing (2019) this does not appear to have been done. In Fig. 10.3 the flow
stress in Ti reduces by ∼100 MPa when the current density is of order 106 Amm−2. For
atoms ∼2 Å apart a shear stress of order ∼100 MPa requires current-induced forces

on atoms in the core of the order of 2× 10−3 eVÅ
−1
. This force is about two orders

of magnitude larger34 than might be expected to be produced by a current density of
order 106 Amm−2. We conclude it is unlikely that the electroplastic effect is caused by

33 It may be thought that since a kink on a dislocation is effectively a point defect only a current-induced
dipole of charge is needed to make it drift. But the movement of a kink also requires a local shear stress and
hence a quadrupole of current-induced charge.
34 Hoekstra, J, Sutton, AP, Todorov, TN and Horsfield A P, Phys. Rev. B 62, 8568–71 (2000). https://doi.

org/10.1103/PhysRevB.62.8568

https://doi.org/10.1103/PhysRevB.62.8568
https://doi.org/10.1103/PhysRevB.62.8568
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current-induced shear stresses on the dislocation core augmenting the Peach–Koehler
glide force. This conclusion is consistent with Conrad (2000) who maintained that the
current does not affect significantly the activation enthalpy for dislocations to overcome
barriers.

Finally in this sub-section we consider tensile stresses in the wire created by the
electrodynamics of current pulses. There is experimental evidence that a pulse of
sufficient current density may create tensile stresses along the wire. These stresses may
be sufficient to fracture the wire in the solid state, for example, see Graneau35 (1983).36

This raises the intriguing possibility that the load drops seen in Figs. 10.2 and 10.3 are
a result of additional plastic strain caused by transient tensile stresses due to the current
pulses. It is a complex magnetothermoelastodynamic problem.37 It involves the coupling
of elastodynamic equations with thermal expansion caused by Joule heating and a radial
body force due to the Lorentz force, while allowing the radial distribution of the current
to diffuse through the skin effect. However, it is not obvious that this effect can explain
the reversibility of the load drops seen most clearly in Fig. 10.3, or the very small effect
of the current pulses seen in Fig. 10.2 when the externally applied load is removed.

10.3.3 Recommendations for further research

Further systematic experimental research on fully characterised single crystals of the
highest purity, with the current flow along defined crystal orientations, is needed to
elucidate the mechanism of the electroplastic effect in metals. Self-consistent electronic
structure calculations of dislocations, with and without kinks, in the presence of electron
currents along defined directions will provide realistic values of the current-induced
charge quadrupoles and associated shear stresses in the core. It would be useful to model
scattering of current-carrying electrons by stationary dislocations with DFT methods,
to elucidate its effect on softening interatomic forces in the dislocation core and its effect
on the electronic entropy. Finally the influence of electromagnetic induction associated
with current pulsing, including the skin effect and the inverse skin effect,38 on plasticity
in the wires is an area rich with possibilities.

10.4 The mobility of dislocations in pure single crystals

In this section we consider the factors limiting themobility of a single dislocation in a pure
single crystal where there are no other defects or microstructure to limit its motion. We
may think of this mobility as an intrinsic dislocation mobility, limited only by properties
of the dislocation itself and the surrounding pure crystal.

35 Peter Graneau 1921–2014, electrical engineer and physicist who worked in the UK and the US, born in
Silesia.
36 Graneau, P, Phys. Lett. 97A, 253–55 (1983). https://doi.org/10.1016/0375-9601(83)90760-0
37 Wall, DP, Allen, JE and Molokov, S, J. Appl. Phys. 98, 023304 (2005). https://doi.org/10.1063/1.1924871.

John Edward Allen 1928–, British plasma physicist.
38 Haines, MG, Proc. Phys. Soc. 74, 576–84 (1959). https://doi.org/10.1088/0370-1328/74/5/310. Malcolm

Golby Haines 1936–2013. British plasma physicist, born in Northern Ireland.

https://doi.org/10.1016/0375-9601(83)90760-0
https://doi.org/10.1063/1.1924871
https://doi.org/10.1088/0370-1328/74/5/310
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10.4.1 Static vs. dynamic friction

In section 7.5 the Peierls–Nabarro model was used to estimate the stress required to
enable a dislocation to glide in a crystal lattice. According to this model, once the Peierls
stress has been overcome a dislocation continues to move indefinitely until it meets an
obstacle, or it exits the crystal. As the dislocation glides over the landscape of the periodic
Peierls potential the rises and falls of its potential energy are exactly compensated by the
falls and rises of the kinetic energy. The Peierls–Nabarro model treats the motion of a
dislocation in the absence of any energy dissipation.

Experimental reality could not be more different. Observations indicate that even
in the purest single crystals dislocation glide is overdamped. As a dislocation glides in
a metal the breaking and making of bonds between atoms in the core excites crystal
lattice vibrations and electronic transitions to states above the Fermi energy. The Peierls
stress may be thought of as the static frictional stress that has to be overcome to set the
dislocation in motion. But once it is moving the physics of the dynamic frictional stress is
different, its origin being the coupling to the elementary excitations of the crystal. The
dissipative nature of dislocation glide is consistent with the observation in section 10.2.2
that more than 90% of the work done on a metal during plastic deformation is converted
into heat. It also gives rise to energy absorption in internal friction experiments.

In the elastodynamic theory of moving dislocations the self-energy of a dislocation
comprises an elastic potential energy and a kinetic energy associated with the motion
of volume elements throughout the continuum. The self-energy diverges at the shear
wave speed ct suggesting that the shear wave speed is an upper limit on the speed of a
dislocation. However, the dependence of the self-energy on the speed of the dislocation
is a separate matter from dissipation of its energy due to friction. In elastodynamics an
isolated dislocation in an infinite continuum moving at constant velocity experiences no
energy dissipation: it continues to move at the same velocity indefinitely. That is because
in the inertial frame of the dislocation core the system is time-invariant. No elastic waves
are radiated from a dislocation moving at a constant velocity in elastodynamics, and
therefore the self-energy of the dislocation is constant. Elastic waves are radiated from
a dislocation in elastodynamics only when it is accelerated or created or annihilated in
the continuum.

In an attempt to include the physics that is missing in elasticity theory of a dislocation
moving at a constant speed v it is usual to introduce an ad hoc viscous drag force fdrag
per unit length through an empirical relation of the form

fdrag = B ⋅ v, (10.13)

where B is the drag coefficient, with units Nm−2s = Pa s. The drag coefficient is thus an
inverse mobility. When v≪ ct a dislocation moves at a constant speed of 𝜏b/B, where 𝜏b
is the usual Peach–Koehler glide force on the dislocation. At such low dislocation speeds
it is reasonable to assume the drag coefficient is independent of v and dependent only
on whether the dislocation is edge or screw or mixed, and dependent on the vibrational
and electronic properties of the crystal. In the following we estimate contributions to the
drag coefficient from fundamental physical principles.
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10.4.2 Drag forces due to the phonon wind and fluttering mechanisms

Much of the early work focused on the drag coefficient at a finite temperature where
the dislocation scatters phonons impinging on it. Two mechanisms were considered.
A rigid, stationary dislocation in a temperature gradient experiences a ‘phonon wind’.
The distortion of the crystal lattice created by a rigid dislocation scatters incident
phonons, which diminishes the thermal conductivity.39 The resulting force imparted to
the dislocation is called a phonon wind force. Conversely, a rigid dislocation moving
in a crystal at a uniform finite temperature, with the same structure as when it was
stationary, experiences the same phonon wind force. This is the first mechanism. Of
course, dislocations are not rigid objects and an incident phonon induces atoms in a
moving dislocation to vibrate emitting secondary waves, and the dislocation loses energy.
This is called the ‘fluttering mechanism’.40 It is expected to dominate over the phonon
wind force only at low temperatures. At temperatures above the Debye temperature the
two contributions add to give41

Bwind ≈
0.02𝜇b
ct

. (10.14)

For lattice dislocations in aluminium Bwind ≈ 5× 10−5 Pa s.
Calculations of phonon scattering in the continuum elastic field of a dislocation,

such as those described in the previous paragraph, predict the drag force increases
linearly with temperature. This disagrees with molecular dynamics simulations that find
a temperature-independent contribution to the drag force for highly mobile dislocations
in body-centred cubic (bcc) metals and for nanoscale defects, such as crowdions and
nanoscale loops. A new theory for the drag coefficient on defects in crystals arising
from their interaction with crystal vibrations has been developed by Swinburne and
Dudarev.42 It treats the discrete atomic structure of the defect and the full nonlinear
nature of atomic interactions in the defect core. Contrary to the assumption of phonon-
scattering theory they find the vibrational modes of the crystal change as the defect
moves, and this is the origin of the temperature-independent contribution to the drag
coefficient.

10.4.3 Drag forces due to electronic excitations

As lattice vibrations propagate in a crystal they excite electrons at the Fermi surface of
a metal. The vibrations decay partly as a result of this energy transfer to the electrons.

39 For a recent theoretical treatment of the contribution of dislocations to the thermal resistance and a review
of the experimental and theoretical literature see Lund, F and Scheihing, B, Phys. Rev. B 99 214102 (2019).
https://doi.org/10.1103/PhysRevB.99.214102. This paper recognises that the interaction between phonons
and a dislocation involves the resolved shear stress, which leads to the Peach–Koehler force. Fernando Lund,
Chilean materials physicist.
40 Alshits, VI, in Elastic strain fields and dislocation mobility, ed. VL Indenbom and J Lothe, North-Holland:

Amsterdam (1992), pp.625–97. ISBN 0444887733. Vladimir Iosifovich Alshits 1941–. Russian materials
physicist.
41 Hirth, JP and Lothe, J, Theory of dislocations, 2nd edn., Krieger: Malabar, FL (1982), p.209. ISBN

0-89464-617-6.
42 Swinburne, TD and Dudarev, SL, Phys. Rev. B 92, 134302 (2015). https://doi.org/10.1103/PhysRevB.92.

134302

https://doi.org/10.1103/PhysRevB.99.214102
https://doi.org/10.1103/PhysRevB.92.134302
https://doi.org/10.1103/PhysRevB.92.134302
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The strain field of a gliding dislocation may be viewed as a collection of lattice vibrations
moving at the speed of the dislocation. They are also capable of exciting electrons at the
Fermi surface and this electronic excitation is another source of drag on a dislocation.
The modern approach to electron–phonon interactions is based on first principles DFT
methods and has predictive capabilities.43 As far as I know these methods have not been
applied to a gliding dislocation.

A more direct approach would be to use time-dependent DFT to simulate the
excitation of electrons by a gliding dislocation with Ehrenfest dynamics. In Ehrenfest
dynamics the atomic nuclei satisfy Newtonian equations of motion with forces coupled
explicitly to the evolving electronic structure, while the electrons are treated fully
quantum mechanically and self-consistently by solving the time-dependent Schrödinger
equation.44 I am not aware this has been done (in May 2019) either.

Existing approaches in the literature have been superseded by the capabilities of
modern methods, although they have not been applied to dislocations in metals. For
example, consider the analysis by Holstein,45 which appeared in the appendix to a
paper46 by Tittmann and Bömmel. His analysis is based on the concept of a deformation
potential to provide the link between the moving strain field of a dislocation and a
potential that excites electrons in first order time-dependent perturbation theory. For
an approach based on deformation potentials to be valid the strain field has to be
slowly varying relative to the atomic spacing, which breaks down in the dislocation
core. This is particularly serious in metals because the rapidly changing potentials in
the dislocation core are screened in reality, which cannot be treated adequately by
deformation potentials. Modern methods do not have these deficiencies. But perhaps
the most significant concern about the use of deformation potentials is that in a cubic
crystal they have no shear components to first order in the strain. Since shear is the
key feature of the movement of any dislocation this is indeed a serious weakness.
For example, the application of Holstein’s analysis to a screw dislocation in isotropic
elasticity would predict no electronic excitations.

To calculate the electronic excitations in simulations of moving dislocations using
modern DFT methods would be a major undertaking. It would provide, for the first
time, reliable information about the contributions of electronic excitations to the drag on
dislocations as a function of their speed. It would also be useful to investigate electronic
excitations in a metal at moving kinks on a dislocation, which might be more tractable.

10.4.4 Radiation of atomic vibrations from a moving dislocation

In section 6.9 we introduced the concept of a force dipole to introduce the displacement
by the Burgers vector of a dislocation. As a dislocation glides, atoms on either of its
slip plane experience impulses to raise them over the potential barrier provided by the

43 See Giustino, F, Rev. Mod. Phys. 89 015003 (2017). https://doi.org/10.1103/RevModPhys.89.015003;
Erratum Rev. Mod. Phys. 91, 019901 (2019). https://doi.org/10.1103/RevModPhys.91.019901
44 See, for example, Mason, DR, Le Page, J, Race, CP, Foulkes, WMC, Finnis, M W and Sutton, AP, J. Phys.
Condens. Matter 19, 436209 (2007). https://doi.org/10.1088/0953-8984/19/43/436209
45 Theodore David Holstein 1915–85, US theoretical physicist.
46 Tittmann, BR and Bömmel, HE, Phys. Rev. 151, 178–89 (1966). https://doi.org/10.1103/PhysRev.151.178

https://doi.org/10.1103/RevModPhys.89.015003
https://doi.org/10.1103/RevModPhys.91.019901
https://doi.org/10.1088/0953-8984/19/43/436209
https://doi.org/10.1103/PhysRev.151.178
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𝛾-surface and bring about the relative displacement across the slip plane by the Burgers
vector. Once they have surmounted the potential barrier they fall into the next potential
well and their potential energy is converted into kinetic energy which is radiated into
the surrounding crystal. This is the origin of acoustic emission of dislocations when
they glide. If the potential barrier has a height VB, the dislocation speed is v, its core
width is w and the atomic mass is ma, the minimum average force imparted to an atom
is √2maVB(v/w). Each atom on either side of the slip plane moves by ±b/2 but the
maximum in the potential barrier is reached in approximately half this distance b/4.
Therefore the work done by the force on each atom is∼√2maVB(bv/(4w)). If the spacing
of atoms along the dislocation line is s the power injected into the crystal lattice per unit
length of dislocation is ∼√2maVB(v2/(2sw)), which yields a drag coefficient of

Brad ≈
√2maVB

2sw
. (10.15)

Putting in numbers for aluminium, if we assume VB is the energy of a metallic bond
∼ 0.3 eV, s ∼ 3 Å, w ∼ 5 Å, we obtain Brad ∼ 2.2× 10−4 Pa s. It arises at all temperatures
because the vibrations are created by the dislocation itself, not by thermal excitation
of crystal lattice vibrations. It is clearly a consequence of the atomic structure of the
dislocation.

Recent research47 has suggested that the crystal lattice vibrations created by a dislo-
cation gliding at a sufficiently high speed can spawn the creation of further dislocations.
This is a result of a resonance between the vibrations created by the dislocation and
the natural vibrations of the crystal lattice. Although these resonances were identified
in earlier papers,48 it was not recognised that they may lead to mechanical instabilities
resulting in the formation of new dislocations. A resonance arises when the group and
phase velocities of the lattice waves travelling in the same direction as the dislocation
equal the dislocation velocity. When this condition is satisfied the energy dissipated in
the dislocation core cannot escape and its accumulation eventually leads to the creation
of two further dislocations with equal and opposite Burgers vectors, thus conserving
the total Burgers vector. This mechanism of generating dislocations kinematically
was confirmed by molecular dynamics simulations in the NVE-ensemble of screw
dislocations in tungsten by Verscheuren et al. (2018). A resonance was found at 0.24ct,
where ct is the transverse wave speed, accompanied by an avalanche of dislocation loops.
The kinematic generation mechanism takes a small but finite time to act. A dislocation
accelerated from rest will behave in one of two ways. If there is sufficient time for the
generationmechanism to act when resonances occur, it will act repeatedly and avalanches
of dislocations will be created, limiting the speeds of the dislocations to those at which

47 Verschueren, J, Gurrutxaga-Lerma, B, Balint, DS, Sutton, AP and Dini D, Phys. Rev. Lett. 121, 145502
(2018). https://doi.org/10.1103/PhysRevLett.121.145502
48 Atkinson, W and Cabrera, N, Phys. Rev. 138, A763–6 (1965). https://doi.org/10.1103/PhysRev.138.A763;

Celli, V and Flytzanis, N, J. Appl. Phys. 41, 4443–7 (1970). https://doi.org/10.1063/1.1658479; Ishioka, S, J.
Phys. Soc. Jpn. 30, 323–7 (1971). https://doi.org/10.1143/JPSJ.30.323; Caro, JA and Glass N, J. Phys. Lett. 45,
1337–45 (1984). https://doi.org/10.1051/jphys:019840045080133700

https://doi.org/10.1103/PhysRevLett.121.145502
https://doi.org/10.1103/PhysRev.138.A763
https://doi.org/10.1063/1.1658479
https://doi.org/10.1143/JPSJ.30.323
https://doi.org/10.1051/jphys:019840045080133700
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the resonances occur.49 Alternatively, if the dislocations are accelerated so rapidly there
is insufficient time for the generation mechanism to act their speeds will not be limited
by the resonance speeds. Of course if dislocations are injected at speeds above those of
the resonances they are avoided altogether.

The kinematic generation of dislocations at resonant speeds may be relevant to
adiabatic shear. Failure of metallic components subjected to very high rate deformation
often occurs through the formation of narrow shear bands, 5−500 μmwide, in which the
shear strain is extremely high. These shear bands are ‘adiabatic’ because they are formed
so rapidly there is insufficient time for most of the heat generated within them to escape.
It would be interesting and useful to test this idea by simulating an adiabatic shear failure
allowing for the possibility of kinematic generation of dislocations at resonant dislocation
speeds.

10.5 Hydrogen-assisted cracking in metals

10.5.1 Introduction

Hydrogen-assisted cracking is one of themost common forms of embrittlement of metals
and alloys. In this section we review briefly the mechanisms that have been proposed in
the light of experimental observations. It is fair to say that after nearly a century and
a half of research there is no single widely accepted mechanism for hydrogen-assisted
cracking. But hydrogen-assisted cracking remains a major concern for many industries
including energy production, automobiles, aerospace, shipping, construction, defence,
oil extraction and the burgeoning hydrogen economy.

In 1875 Johnson50 presented a remarkable paper51 to the Royal Society in which he
described a series of elegant experiments that established a good deal of what is known
today about the embrittlement of iron and steel by hydrogen. He observed that when
iron is immersed for a few minutes in acids that result in the generation of hydrogen the
toughness and ductility of the metal are reduced significantly. When a fractured surface
of the embrittled iron was moistened it frothed as bubbles of hydrogen gas were released
from the metal. The embrittlement was reversible because when the iron was left for
sufficiently long for the hydrogen to escape, its ductility returned. The time taken for
the ductility to return decreased if the iron was warmed. These observations showed it is
hydrogen that can diffuse in the metal that is responsible for the embrittlement. If there
were any remaining hydrogen trapped in the metal it was harmless, although as discussed
below this is not true if the hydrogen is trapped in brittle hydride phases. He observed
that if the iron was exposed to hydrogen gas its toughness and ductility were not reduced,
proving that hydrogen in its molecular form was not responsible for the embrittlement.
Johnson also proved that the embrittlement was due to the ingress of nascent hydrogen

49 These limiting speeds may be much less than the shear wave speed and they have nothing to do with the
divergence of the self-energy of the dislocation at the shear wave speed in elastodynamics.
50 William H Johnson, British metallurgist.
51 Johnson, WH, Proc. R. Soc. 23, 168–79 (1875). https://doi.org/10.1098/rspl.1874.0024

https://doi.org/10.1098/rspl.1874.0024
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and not to the acid by connecting iron wires to the electrodes of an electrochemical cell in
which the electrolyte was Manchester town water so that there was no acid present. The
iron attached to the electrode where hydrogen was released became embrittled while the
iron attached to the electrode where oxygen was released retained its ductility.

10.5.2 Possible mechanisms

Hydrogen-enhanced decohesion (HEDE) was proposed by Pfeil52 in his 1926 paper53

regarding tensile tests during ‘pickling’ of ferritic steels. He observed intergranular and
transgranular failures, and he suggested they were caused by a reduction in strength of
metal–metal bonds. He did not offer an explanation for the reduction, and even today
there does not seem to be any direct experimental evidence for weakening of metallic
bonds caused by hydrogen.54 Nevertheless hydrogen-induced decohesion remains a
plausible mechanism, particularly for some intergranular fractures.

In 1969 Westlake55 noticed that whenever hydrides form they are almost always
brittle.56 A mechanism arises in which hydrogen is attracted elastically to a loaded
crack tip, leading to supersaturation and precipitation of a hydride particle. The hydride
particle grows and it becomes brittle. It provides an easy path for crack growth. The crack
pauses at the interface between the hydride and matrix until more hydrogen accumulates
ahead of the crack and the process repeats. There are many observations of such a
mechanism, and there does not appear to be any controversy about it. In the remainder
of this section we consider the influence of hydrogen when hydrides are not formed.

Three years later Beachem57 published a paper58 that has proved seminal. Before
the widespread use of high resolution scanning electron microscopes to image fracture
surfaces he had the brilliant idea of looking at them with carbon replica techniques in a
transmission electron microscope. At higher stress intensity factors he observed dimples
on the fracture surfaces, indicating that the crack grew as a result of microvoid coales-
cence. As the stress intensity factor was reduced the extent of the plastic deformation
decreased gradually and the fracture mode changed to quasi-cleavage, and eventually,
at the lowest stress intensity, to intergranular fracture. In a sense, Beachem turned the
thinking up to that point about hydrogen embrittlement on its head. He wrote

The flat, brittle fractures produced at surprisingly low stresses in the laboratory or in
service are therefore thought to be caused by severe, localized crack-tip deformation
even when the cracks are propagating along prior austenite grain boundaries, and are

52 Leonard Bessemer Pfeil FRS 1898–1969, British metallurgist.
53 Pfeil, LB, Proc. R. Soc. A 112, 182–95 (1926). https://doi.org/10.1098/rspa.1926.0103
54 Several theories of HEDE are based on the assumption that hydrogen attracts electrons from neighbouring

metallic bonds and that those bonds are always weakened as a result. But if the valence band of the metal is more
than half full then taking electrons from metallic bonds will strengthen them because electrons are removed from
anti-bonding states. The assumption on which these theories are based is valid only when the valence band is
less than half full, so that electrons occupy bonding states in the metal only.
55 Donald G Westlake, US metallurgist.
56 Westlake, DG, ASM Trans. Q. 62, 1000–6 (1969).
57 Cedric D Beachem, US metallurgist.
58 Beachem, CD, Metall. Trans. 3, 441–55 (1972). https://doi.org/10.1007/BF02642048
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not believed to be the result of a cessation, restriction, or exhaustion of ductility. There-
fore, the term hydrogen-assisted cracking is probably more descriptive than hydrogen
‘embrittlement’ cracking.
(Reprinted by permission from Springer Nature Customer Service Centre GmbH.
Published by Springer Nature in Metallurgical Transactions 3, 441–55, A new model for
hydrogen-assisted cracking (hydrogen “embrittlement”), by CD Beachem. Copyright
1972. Journal homepage: https://www.tms.org/pubs/journals/mt/.)

In the late 1970s, Lynch59 proposed a mechanism of adsorption-induced dislocation
emission (AIDE).60 He suggested that hydrogen at crack tips facilitates the emission of
dislocations, enabling the crack to advance into microvoids thereby limiting the degree
of ductile tearing. This was based in part on his remarkable observations of similarities
between the fracture surfaces seen in hydrogen-embrittled materials, and those seen
in liquid metal embrittlement. In liquid metal embrittlement there is limited mutual
solubility of the liquid and host metals, for example mercury and aluminium alloys,
and cracks can grow at speeds up to several hundred mms−1. Therefore, the liquid
metal must be confined to the crack surface. The liquid metal enhances the emission
of dislocations at the crack, enabling the crack to advance into microvoids, resulting
in fracture surfaces displaying small dimples. The same features are seen on the crack
faces in Beachem’s experiments. Lynch argued it is adsorption of hydrogen at the
crack tip, not hydrogen in solution ahead of the crack tip, that leads to plasticity being
more localised than during fracture in inert environments. This occurs because more
dislocations are emitted from crack tips promoting the advance of cracks towards voids.61

In inert environments little or no dislocation emission occurs from crack tips, and crack
growth occurs by plastic deformation around crack tips. It is the extent of dislocation
emission from crack tips compared with the extent of plasticity around crack tips that
determines the degree of embrittlement. His papers contain many examples in fcc,
bcc and hexagonal close-packed (hcp) metals. The generality of his observations is
compelling.

In the late 1980s, Birnbaum62 and co-workers proposed63 hydrogen-enhanced
localised plasticity, or HELP. In this case, hydrogen in solution ahead of the crack
tip, not hydrogen adsorbed at the crack tip, is responsible for the localisation of plasticity
reported by Beachem. Beachem (1972) had argued on the basis of his torsion tests
that hydrogen in solid solution lowered the macroscopic flow stress, and he presumed
it would also reduce the microscopic flow stress at crack tips. Birnbaum et al. (1994)
presented experimental evidence that the activation energies for dislocation motion in Ni
and Ni–C alloys decrease in the presence of hydrogen. Birnbaum et al. observed highly

59 Stanley Peter Lynch 1945–, British and Australian metallurgist.
60 Lynch, SP, Scripta Metall. 13, 1051–6 (1979). http://dx.doi.org/10.1016/0036-9748(79)90202-3. The

mechanism was first proposed in Lynch, SP and Ryan, NE, in Proceedings of the 2nd International Congress
on Hydrogen in Metals, Paper 3D12, Pergamon Press: Oxford (1977). ISBN 0080221084.
61 Lynch, S, Corros. Rev. 37, 377–95 (2019). https://doi.org/10.1515/corrrev-2019-0017
62 Howard Kent Birnbaum 1932–2005, US metallurgist.
63 Shih, DS, Robertson, IM and Birnbaum, HK, Acta Metall. 36, 111–24 (1988). http://dx.doi.org/10.1016/

0001-6160(88)90032-6; Birnbaum, HK and Sofronis, P, Mater. Sci. Eng. A 176, 191–202 (1994). http://dx.
doi.org/10.1016/0921-5093(94)90975-X
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localised ductile failure by microvoid coalescence, and they presumed it was facilitated
by enhanced mobility of dislocations (edge, screw and mixed types) in fcc, bcc and hcp
metals where hydrogen is in solution.

Following in-situ observations by transmission electron microscopy, Birnbaum and
co-workers put forward an explanation of the enhanced dislocationmobility based on the
screening of elastic interactions resulting from segregation of hydrogen to dislocations.
The degree of segregation is sensitive to strain rate and temperature. There seems little
reason to doubt that hydrogen is attracted elastically to dislocations forming Cottrell
atmospheres. Hydrogen may also be segregated to dislocation cores. Once hydrogen
has segregated to dislocations it will certainly reduce the strength and range of elastic
interactions between dislocations.

However, the connection between reduced elastic interactions and enhanced dislo-
cation mobility is less obvious. Obstacles to dislocation motion such as second phase
particles and high angle grain boundaries are short range and the ability of these obstacles
to impede dislocation motion is largely unaffected by elastic interactions. Intrinsic
dislocation mobility is determined by properties of the core, such as the formation
and migration energies of kinks, the mobilities of which are also largely unaffected by
elastic interactions. One scenario where reduced elastic interactions certainly would
enhance dislocation mobility is in stage I work hardening, where elastic multipole
interactions between dislocations on parallel slip planes inhibit their motion. But these
elastic interactions are relatively weak compared to the short-range interactions operating
in stage II. Once dislocations are saturated with hydrogen they will be less able to attract
other impurities through their elastic fields, but the hydrogenmay pin a dislocation rather
than enhance its mobility.

There are some experimental observations that cannot be explained by the HELP
mechanism. When hydrogen enters some metals at the crack tip the crack may grow
at speeds much faster than hydrogen can diffuse in the metal.64 But the fracture
surfaces may still display dimples indicating localised plasticity. It has also been shown
experimentally by a number of researchers65 that abrupt changes in the environment
of a fracture test, such as changing the partial pressure of hydrogen gas or adding
oxygen to the hydrogen gas, have an immediate effect on the crack growth rate and
the appearance of the fracture surfaces. These observations are consistent with the view
that hydrogen enhances dislocation emission at the crack tip, but not with the view it
enhances dislocation mobility ahead of the crack tip.

Segregation of hydrogen to dislocations brings about a reduction in the free energy
of the system, as described by the Gibbs adsorption isotherm. As Kirchheim66 has
noted67 this may be viewed as a reduction in the free energy of formation of dislocation
kinks. In that case hydrogen may increase the mobility of dislocations moving by a kink
mechanism. But it may also raise the free energy of migration of kinks, since hydrogen
atoms would either have to be dragged along with the kinks or kinks would have to break

64 Lynch, SP, Acta Metall. 36, 2639–61 (1988). http://dx.doi.org/10.1016/0001-6160(88)90113-7
65 See references in Lynch (2019).
66 Reiner Kirchheim 1943–, German materials scientist.
67 Kirchheim, R, Scripta Mater. 67, 767–70 (2012). https://doi.org/10.1016/j.scriptamat.2012.07.022
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free from them. In bcc metals it is usually the case that the Peierls valleys are so deep that
dislocations domove by a kinkmechanism. But in some fccmetals, such as copper, which
can deform by dislocation motion at liquid helium temperatures,68 it seems unlikely that
kinks are involved in dislocation motion, or they are so wide they are unlikely to attract
more hydrogen atoms than straight dislocations. It is therefore unclear whether hydrogen
segregation to dislocation kinks is necessary to increase dislocation mobility.

In 2001 Nagumo proposed that hydrogen is attracted to vacancies, based on interpre-
tations of thermal desorption experiments.69 This work suggests that hydrogen lowers
the free energy of formation of vacancies, similar to Kirchheim’s idea that hydrogen
lowers the free energy of formation of dislocation kinks, so that hydrogen enhances the
equilibrium concentration of vacancies. DFT calculations by Hickel et al.70 also showed
that the energy of hydrogen in solution in iron is reduced when the hydrogen sits in a
vacancy. If the vacancies cluster this may lead to greater ease of formation of microvoids.

10.5.3 Theory of hydrogen in metals

If a hydrogen molecule is adsorbed chemically at a metal surface the anti-bonding orbital
of the molecule becomes occupied and the hydrogen atoms separate and enter the metal.
In 1980 Stott71 and Zaremba72 calculated the energy of inserting a hydrogen atom into
a homogeneous, paramagnetic electron gas as a function of its density.73 They found the
energy of the hydrogen atomwas minimised when the number density of the electron gas
was approximately 0.017 Å−3 (i.e. rs = 4.6 a0 where rs is the radius of a sphere containing
one electron and a0 is the Bohr radius, which is 0.529Å). This is a relatively small electron
density, comparable to that of potassium metal, and it is consistent with the observation
that hydrogen atoms tend to segregate to surfaces and vacancies in metals where they can
find such relatively low electron densities. In these calculations they found the s-state of
the hydrogen atom is doubly occupied so that it is present as H−. The negative charge on
this ion is screened by a depletion in the electron density surrounding it. The diameter
of the screened hydrogen ionmust be at least the Fermi wavelength, since this determines
the smallest size of any local variation of the electronic charge density. But as with any
point defect in a free electron gas there are also long-range Friedel oscillations in the
charge density around it.

It has been found inDFT calculations of single hydrogen interstitials that the energy of
the 1s-state of the hydrogen atom is less than the bottom of the s-p-d conduction band in
iron.74 When this occurs the 1s-orbital of the hydrogen atom is a localised state forming
a delta-function in the density of electronic states, occupied by two electrons. In this

68 For example, Basinski, ZS and Basinski, SJ, Prog. Mater. Sci. 36, 89–148 (1992). http://dx.doi.org/10.1016/
0079-6425(92)90006-S
69 Nagumo, M, ISIJ Int. 41, 590–8 (2001). https://doi.org/10.2355/isijinternational.41.590
70 Hickel, T, Nazarov, R, McEniry, EJ, Leyson, G, Grabowski, B and Neugebauer, J, JOM 66, 1399–405

(2014). http://dx.doi.org/10.1007/s11837-014-1055-3
71 Malcolm J Stott, Canadian physicist.
72 Eugene Zaremba, Canadian physicist.
73 Stott, MJ and Zaremba, E, Phys. Rev. B 22, 1564–83 (1980). https://doi.org/10.1103/PhysRevB.22.1564
74 Paxton, AT (2018), private communication. Anthony Thomas Paxton 1953–, British materials physicist.
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configuration the screened H− ion cannot form covalent bonds to the metal because it
is isoelectronic to helium. The local bonding is then an electrostatic interaction between
the imperfectly screened H− ion and the neighbouring imperfectly screened positive
metal ions that have transferred some of their electronic charge to the proton. The
screening is imperfect because the screening clouds overlap as their size is comparable to
the spacing between the host metal atoms. This picture is consistent with the repulsion
that is often observed between hydrogen atoms in transitionmetals at normal pressures. It
is also consistent with hydrogen atoms acting as centres of dilation of the host metal lattice
because the screened H− ion is significantly larger than a neutral hydrogen atom. It is
quite different from bonding in a transition metal hydride, where metal atoms are further
apart than in the pure metal, enabling s-states on the hydrogen atoms to hybridise with
d-states of the metal atoms forming a band of hybridised states. It is conceivable that the
increase in the separation of transition metal atoms surrounding a hydrogen interstitial
weakens those metal–metal bonds. The bonds may also be weakened electrostatically
by the metal atoms surrounding the interstitial becoming slightly positively charged as a
result of the transfer of one electron from them to the proton. It would be useful to test
all these ideas with accurate electronic structure calculations.

Nazarov et al.75 carried out DFT calculations for hydrogen atoms in vacancies in
twelve fcc metals. They found hydrogen was bound to vacancies in all twelve metals,
with binding energies from 0.17 to 0.86 eV. In all cases the hydrogen atom was off-
centre in the vacancy. As the chemical potential of hydrogen is raised, for example by
exposing the metal to higher partial pressures of hydrogen gas, they found H2 molecules
are more stable in a vacancy than two H-atoms in silver, gold and lead. At extremely high
hydrogen partial pressures they found up to eight stable H2 molecules inside a vacancy
in silver. In contrast two H-atoms in nickel and rhodium never bonded to each other in
a vacancy.

10.5.4 Suggestions for further research

This brief review suggests the following points for further research:

1. Is there any direct experimental evidence for the weakening ofmetal–metal bonding
by hydrogen with respect to either tensile or shear deformation? Dislocation glide
involves bond switching events where bonds crossing the slip plane are broken and
reformed. Haydock76 coined the term ‘bond mobility’77 to describe the ease with
which bonds are broken and reformed in such a process. Strong directional bonds
like those in diamond have very limited mobility at room temperature, whereas
those in pure copper are much more mobile. Therefore, a sharper question is to
ask whether hydrogen increases the mobility of bonds at the surface and within
the interior of a metal.

75 Nazarov, R, Hickel, T and Neugebauer, J, Phys. Rev. B 89, 144108 (2014). https://doi.org/10.1103/
PhysRevB.89.144108
76 Roger Haydock, US physicist.
77 Haydock, R, J. Phys. C: Solid State Phys. 14 3807 (1981). https://doi.org/10.1088/0022-3719/14/26/016
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2. Liquid lithium is a potent embrittling element of some transition metals and like
hydrogen it has a half-filled valence s-shell. But lithium is a larger atom owing to
its full 1s-core. A detailed comparison of the local electronic structures of relaxed
configurations of hydrogen, helium and lithium interstitials in solid solution would
highlight the unique chemistry of hydrogen in these metals.

3. Replacing hydrogen with deuterium will highlight the role of the mass of the
atom. For example, if dislocation mobility is enhanced by hydrogen then replacing
hydrogen with deuterium should reduce dislocation mobility at a given tempera-
ture and stress state, assuming the hydrogen/deuterium is transported with the
dislocation.

4. How does hydrogen enhance the emission of dislocation loops from cracks? This
question is germane to the AIDE mechanism. Answering this question requires a
multi-million atom 3D simulation with a realistic crack geometry including steps
on the crack front where loops can nucleate heterogeneously. It also requires a
credible model of interatomic forces for hydrogen in the metal.
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as agents of plastic

deformation, 227
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as a palimpsest, 227
coarse-grained model, 232
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