
Grid Computing
A Research Monograph

(Book + CD)

Grid Computing
A Research Monograph

(Book + CD)

D. Janakiram

Distributed & Object Systems Lab,

Department of Computer Science and Engineering

Indian Institute of Technology

Madras

Tata McGraw-Hill Publishing Company Limited

NEW DELHI

McGraw-Hill Offices
New Delhi New York St Louis San Francisco Auckland Bogotá

Caracas Kuala Lumpur Lisbon London Madrid Mexico City Milan
Montreal San Juan Santiago Singapore Sydney Tokyo Toronto

Copyright © 2005, by Tata McGraw-Hill Publishing Company Limited.

No part of this publication may be reproduced or distributed in any form or by

any means, electronic, mechanical, photocopying, recording, or otherwise or

stored in a database or retrieval system without the prior written permission of

the publishers. The program listings (if any) may be entered, stored and

executed in a computer system, but they may not be reproduced for publication.

This edition can be exported from India only by the publishers,

Tata McGraw-Hill Publishing Company Limited.

ISBN 0-07-060096-1

Published by the Tata McGraw-Hill Publishing Company Limited,

7 West Patel Nagar, New Delhi 110 008, typeset in Baskerville BE Regular

at The Composers, 260, C.A. Apt., Paschim Vihar, New Delhi 110 063 and

printed at Ram Book Binding, C-114, Okhla Industrial Area, Phase 1,

New Delh110 020

Cover: De-Unique

RAACRDRBRYQCY

Preface

Grid Computing is a monograph depicting, in a chronological order,
the evolution and progress of models of computation, from clusters
to grid computing.

In the early 90s, clusters of workstations were popular in the
academic computing scenario. The attempt to optimally use them
beyond standalone workstations propelled the beginnings of
models that used workstations for parallel computing. The
interesting evolution of these models over the past 10 years at the
Distributed and Object Systems Lab, IIT, Madras, forms the subject
of this monograph. It depicts the growth of models for parallel
computations on workstations from cluster computing to grid
computing in general.

The initial efforts, which began in the early 90s, focused on
proving the concept of mixing parallel loads with sequential loads
on the same network of computing systems. The challenges
included operating system, hardware heterogeneities, differences
in computing speeds of the machines, and load imbalances.
Various models were proposed over the years to achieve this
goal. These programming language constructs, designed for parallel
programming, are simple and can be used to teach the designing
and implementation of distributed languages. The performance
studies bring out the tradeoffs between providing flexibility to the
programmer versus efficiently implementing the constructs at run-
time.

Anonymous Remote Computing (ARC) is an attempt at cleanly

separating the programmer’s concerns from the system’s concern.

vi PREFACE

The programmer only attempts to express the maximum
parallelism available in the program. It is left to the system at run-
time to decide how to exploit the parallelism. ARC is a
programming model that allows the coexistence of sequential and
parallel loads in a cluster environment. Performance studies over
ARC using parallel TSP shows the load adaptability of the model.
ARC illustrates excellently the problem of load balancing in a
heterogeneous cluster environment and its related issues. The
ARC model reveals the issues of load balancing on a practical
network consisting of several Sun Workstations and IBM RS/
6000 machines with widely differing computing capabilities.
Students are encouraged to do wide variety of experimentation
on a campus network to understand these issues on load balancing
and process migration in heterogeneous clusters.

ARC solves the problem of handling dynamically changing
loads on the nodes of the network by keeping the program
oblivious of these nodes at the time of writing the program. The
run-time system shifts the blocks of instructions (Anonymous
Remote Instruction blocks) to the lightly loaded nodes on the
network. This introduces an interesting problem when these ARC
blocks need to communicate with each other the partial results of
the computation; which was solved by extending ARC to provide
inter-task communication using the concept of Distributed Pipes
(DP). The resultant new model was named Anonymous Remote
Computation and Communication (ARCC). Iterative grid
computation problems, such as the steady state problem from
fluid dynamics, were solved over DP to illustrate the linear to
super linear speed up, obtained by overlapping computation and
communication. Both ARC and ARCC use low level network
programming for implementation. ARCC displays the importance
of both computation and communication in the context of grid
computing. ARCC exhibits clearly the importance of memory,
network bandwidth, and computing cycles with reference to grid
computing. A number of small experiments each establishing the
importance of these three parameters for specific application tasks
could be undertaken by students who have read this chapter.
This will help the students grasp the interplay between parameters
in the performance of the applications. The effect of memory on
the application’s performance is clearly demonstrated in the ARCC

model. The ARCC model can be used by researchers in the
Computation Fluid Dyanmics(CFD) community for parallel
programming CFD applications on workstation clusters.

To raise the abstraction level, the use of middleware for cluster
computing was explored. We built P-CORBA, an extension to
the Common Object Request Broker Architecture (CORBA),
which introduced the notion of concurrency and two key services,
namely object migration and load balancing, into CORBA. P-
CORBA was our pivotal work in joining the two areas of object
orientation and parallel computing over clusters. The chapter helps
grasp the manner in which extensions over CORBA can be
designed and implemented.

A preliminary grid model named Sneha-Samuham was built to
explore distributed problem solving across wide-area clusters.
Sneha-Samuham provides task splitting capabilities, and schedules
tasks according to the Grid Computing Capacity Factor (GCCF).
A neutron shielding application, implemented to evaluate the
performance of the model, showed linear speed up over wide-
area clusters. The DP and Sneha-Samuham models were combined
to solve iterative grid computing problems over the Internet. Fault-
tolerance capabilities were incorporated into the model to handle
the dynamic nature of the Internet. Sneha-Samuham and it later
version of the model called VISHWA are good models for e-
science applications on grids.

At the next level, we built Moset, an anonymous remote mobile
cluster computing paradigm. Moset enables the integration of
mobile devices (mainly laptop kind of devices) into the cluster. It
identifies the key issues that help realize mobile cluster computing,
namely connectivity, architecture and operating system
heterogeneities, timeliness, load fluctuations, and dynamic network
conditions. Moset was tested using a distributed image-rendering
algorithm over a simulated mobile cluster model. This document
also presents our grand vision of building a mobile grid named
DOS Grid, as an integration of computation, data, and service
grids. The mobile grid enables any device to access or provide
the required computing power, information or other services, from
or to the grid.

PREFACE vii

This monograph also includes a CD containing software
developed for the models proposed, namely ARC, DP, P-CORBA
and Sneha-Samuham. There are a number of interesting student
projects that can be given around these softwares. You can send
an email to me to get these projects. Some of them are available
at the web page http://dos.iitm.ac.in/GridComputing

A number of research scholars working in the area of grid
computing will find this monograph useful in generating novel
research ideas. The book is primarily an aid for researchers in
scientific computing, to program their applications using the
software given along with the book.

In its entirety, the monograph is useful as an advanced elective
at the postgraduate level. It provides study on the systems
developed and their associated software, and students can be
asked to produce a term paper consisting of their own
experimentation on the software.

The monograph is pertinent for undergraduate students as study
material for their grid computing course and project. The material
can be used as a self-study elective, since the published journal
papers have been interwoven as a collection. It is also a
supplemental reference book for teachers. The chapters provide
extra study material, and student projects can be given around
the software. The suggested chapters for a grid computing course
are Chapter 3 (ARC), Chapter 5(ARCC) and Chapter 6 (P-
CORBA), though other chapters are also pertinent.

Last but not the least, this work is primarily a joint work with a
number of research students who worked at the DOS lab. Their
names have been included in the appropriate chapters. My wife,
Bhavani, and our daughters, Pooja and Sowmya, have always
been supportive of my long hours at work: needless to say they
are the peaceful and blissful part of my life.

D JANAKIRAM

viii PREFACE

Acknowledgements

Parts of the material in the chapters have been taken from the
following earlier published papers:

1. R. K. Joshi and D. Janakiram, TUParset : A Language Construct
for system independent parallel programming on loosely coupled
distributed systems, UT <http://dos.iitm.ac.in/LabPapers/parset.pdf>
Microprocessing and Microprogramming, Euromicro Journal,
41(1995) pp. 245–259.

2. Rushikesh K. Joshi and D. Janakiram, TUAnonymous Remote
Computing: A Paradigm for Parallel Programming on Interconnected
Workstations, UTI EEE Transactions on Software Engineering,
Vol. 25, No.1, Jan, 1999, pp. 75–90.

3. Binu K. J. and D. Janakiram, TUIntegrating Task Parallelism in
Data Parallel Languages for Parallel Programming on NOWs,
UT Concurrency—Practice & Experience,. 2000; 12: pp.
1291–1315.

4. Binu K. J., Karthikeyan R. and D. Janakiram, TUDP: A
Paradigm for Anonymous Remote Computation and Communication
for Cluster ComputingUT <http://dos.iitm.ac.in/LabPapers/
DP.pdf>T, TIEEE Transactions on Parallel and Distributed
Systems, Vol. 12, No.10, October 2001, pp. 1–14.

5. D. Janakiram, A. Vijay Srinivas and P. Manjula Rani, TUA
Model for Parallel Programming Over CORBAUT <http://
dos.iitm.ac.in/LabPapers/PCORBApaperJPDC.pdf>T, T Journal of
Parallel and Distributed Computing, Vol. 64, No. 11,
November 2004, pp. 1256–1269.

6. D. Janakiram, N.V. Palankeswara Rao, A. Vijay Srinivas and
M.A. Maluk Mohamed, TUSneha-Samuham: A Parallel
Computing Model over Grids, UT in preceedings of the 2005
International Conference on Grid Computing and Application
(GCA ’05), June 2005, Las Vegas, USA.

7. M. A. Maluk Mohamed, A. Vijay Srinivas and D. Janakiram,
TUMoset: An Anonymous Remote Mobile Cluster Computing
ParadigmUTT, TTo appear in Special Issue on Design and
Performance of Networks for Super-, Cluster-, and Grid-
Computing to appear in the Journal of Parallel and
Distributed Computing (JPDC).

8. K. Krishna, K. Ganeshan and D. Janakiram, TUDistributed
Simulated Annealing Algorithms for Job Shop SchedulingUT, IEEE
Transactions on Systems, Man, and Cybernetics, No.7,
Vol. 25, July 1995, pp. 1102–1109.

9. D. Janakiram, T. H. Sreenivas and Ganapathy Subramaniam,
TUParallel Simulated Annealing AlgorithmsUT <http://
dos.iitm.ac.in/LabPapers/%20parallelSAJPDC.pdf>T, TJournal of
Parallel and Distributed Computing, Vol.37, No. 2, 1996,
pp. 207–212.

x ACKNOWLEDGEMENTS

Contents

Preface v

Acknowledgements ix

Abbreviations xv

1. Introduction: Cluster to Grid Computing 1
1.1 Cluster Computing Models 1
1.2 Grid Models 3
1.3 Mobile Grid Models 3
1.4 Applications 5
1.5 DOS Grid: Vision of Mobile Grids 5

2. Parset: System-independent Parallel Programming
on Distributed Systems 7
2.1 Motivation and Introduction 7
2.2 Semantics of the Parset Construct 10
2.3 Expressing Parallelism through Parsets 17
2.4 Implementing Parsets on a Loosely Coupled

Distributed System 22
2.5 Discussion and Future Work 31
2.6 Conclusions 32
References 32

3. Anonymous Remote Computing Model 34
3.1 Introduction 34
3.2 Issues in Parallel Computing on Interconnected

Workstations 37
3.3 Existing Distributed Programming Approaches 40
3.4 The ARC Model of Computation 43
3.5 The Two-tiered ARC Language Constructs 52
3.6 Implementation 62

3.7 Performance 67
3.8 Conclusions 75
References 75

4. Integrating Task Parallelism with Data Parallelism 80
4.1 Introduction and Motivation 80
4.2 A Model for Integrating Task Parallelism into Data

Parallel Programming Platforms 82
4.3 Integration of the Model into ARC 87
4.4 Design and Implementation 94
4.5 Applications 101
4.6 Performance Analysis 103
4.7 Guidelines for Composing User Programs 109
4.8 Related Work 110
4.9 Future Work 111
4.10 Appendix 111
References 116

5. Anonymous Remote Computing and Communication
Model 119
5.1 Introduction 119
5.2 Location-independent Inter-task Communication

With DP 121
5.3 DP Model of Iterative Grid Computations 121
5.4 Design and Implementation of Distributed Pipes 129
5.5 Case Study 137
5.6 Performance Analysis 144
5.7 Future Works 152
References 153

6. Parallel Programming Model on CORBA 155
6.1 Introduction 155
6.2 Existing Works 156
6.3 Notion of Concurrency 160
6.4 System Support 163
6.5 Implementation 191
6.6 Performance 194
6.7 Suitability of CORBA: An Introspection 202
6.8 Conclusions 202
References 204
End Notes 208

xii CONTENTS

7. Sneha–Samuham: Grid Computing Model 210

7.1 Introduction 210
7.2 Sneha-Samuham: A Parallel Computing Model

Over Grids 212
7.3 Design and Implementation of the Model 218
7.4 Performance Studies 221
7.5 Related Work 225
7.6 Conclusions 226
References 227
End Notes 229

8. Introducing Mobility into Anonymous Remote
Computing and Communication Model 230
8.1 Introduction 230
8.2 Issues in Mobile Clusters and Parallel Computing

on Mobile Clusters 233
8.3 Moset Overview 237
8.4 Moset Computation Model 239
8.5 Implementation 242
8.6 Performance 246
8.7 Conclusions and Future Work 251
References 252

9. Distributed Simulated Annealing Algorithms for
Job Shop Scheduling 255
9.1 Introduction 255
9.2 Overview 256
9.3 Distributed Algorithms For Job Shop Scheduling 260
9.4 Implementation 268
9.5 Results and Observation 270
9.6 Conclusions 276
References 276

10. Parallel Simulated Annealing Algorithms 278
10.1 Introduction 278
10.2 Simulated Annealing Technique 279
10.3 Clustering Algorithm for Simulated

Annealing (SA) 280
10.4 Combination of Genetic Algorithm and Simulated

Annealing (SA) Algorithm 281

CONTENTS xiii

10.5 Implementation of the Algorithms 283
10.6 Case Studies 285
10.7 Conclusions 289
References 290

11. DOS Grid: Vision of Mobile Grids 292
11.1 Introduction 292
11.2 DOS Grid 294
11.3 Mobile Grid Monitoring System 298
11.4 Healthcare Application Scenario 301
11.5 Related Work 302
11.6 Conclusions 304
References 305

xiv CONTENTS

Abbreviations

ARC Anonymous Remote Computing

NOW Network of Workstations

DP Distributed Pipes

CORBA Common Object Request Broker Architecture

GCCF Grid Computation Capacity Factor

MPI Message Passing Interface

MCC Mobile Cluster Computing

ARMCC Anonymous Remote Mobile Cluster Computing

SA Simulated Annealing

JSS Job Shop Scheduling Problem

TSP Travelling Salesman Problem

RPC Remote Procedure Calls

XDR External Data Representation

SPMD Single Program, Multiple Data

MPMD Multiple Program, Multiple Data

RO Read-Only

RW Read-Write

WO Write-Only

RIBs Remote Instruction Blocks

REV Remote Evaluation

NFS Network File System

PVM Parallel Virtual Machine

xvi ABBREVIATIONS

COP Collection of Processes

FDDI Fiber Distributed Data Interface

MPVM Menage Parallel Virtual Machine

LAN Local Area Network

DSM Distributed Shared Memories

OBS Object-based Sub-contracting

RFE Remote Function Evaluation

ARCPs ARC Primitives

HPF Horse Power Factor

HPU Horse Power Utilization

FSM Finite State Machine

PTT Program and Task Table

RIT Recovery Information Table

RLT Results List Table

TT Task Table

ET Event Table

LP Linear Predictive

HPF High Performance Fortran

TCP Transmission Control Protocol

IGM Iterative Grid Module

GCT Grid Computation Task

GCP Grid Computation Problem

UPT User Process Information Table

UPBWT User Processes Blocked for Write Table

GCTST Grid Computation Task Submitted Table

DPT Distributed Pipes Table

LCT Local Coordinators Table

ABBREVIATIONS xvii

GCWT Grid Computation Work Table

GCTT Grid Computation Task Table

IGC Iterative Grid Computation

CPU Central Processing Unit

IDL Interface Definition Language

ORB Object Request Broker

ARTS Adaptive Runtime System

MPP Massively Parallel Processor

WAN Wide Area Network

POA Portable Object Adaptor

IIOP Internet Inter-operability Protocol

MNO Mobile Network Object

DCOM Distributed Component Object Model

AMI Asynchronous Method Invocation

IBM International Business Machines

GCA Genetic Clustering Algorithm

GA Genetic Algorithm

MHz Mega Hertz

GHz Giga Hertz

CC Cluster Coordinator

NAT Network Address Translation

API Application Programming Interface

FMI Friend Machines Interface

GUI Graphical User Interface

FCT Friend Clusters Table

STT Sub-task Table

MH Mobile Host

xviii ABBREVIATIONS

MSS Mobile Support Station

UT Upper Threshold

LT Lower Threshold

cc Coordinators

CT Computed Tomography

SPARC Scalable Processor Architecture

CPM Critical Path Method

TMA Temperature Modifier Algorithm

LEA Locking Edges Algorithm

MLEA Modified Locking Edges Algorithm

VAL (Lar Vaanhoren, Aarts and Lenstra)

DiPs Distributed Problem Solver

SSA Sequential Simulated Annealing

DSO Distributed Shared Object

CH Cluster Head

SO Surrogate Object

PRAM Pipelined Random Access Memory

GIS Grid Information Services

MA Mobile Agent

CERN European Organization for Nuclear Research

LHC Large Hadron Collider

LCG LHC Computing Grid

IPG Information Power Grid

PPDG Particle Physics Data Grid

ARCC Anonymous Remote Computing and
Communication

DPS Distributed Processing System

IPC Inter Process Communication

ABBREVIATIONS xix

RAID Redundant Array of Independent Disks

CSP Communicating Sequential Processes

LISP LIST Processing

NCL Network Command Language

www World Wide Web

SCV Stop Consonant Vowel

lc local coordinator

sc system coordinator

GMM Gaussian Mixture Model

CSM Constraint Satisfaction Model

NOP No Parallelism

TD Task and Data Parallelism exploited

no Network Overhead

Rn Resilience to Network Load

lf Load Fluctuation Factor

OO Object Orientation/Oriented

oid object identity

DII Dynamic Invocation Interface

XML Xtensible Markup Language

WP Worker Process

IIT Indian Institute of Technology

DNS Domain Name Server

DTSS Distributed Task Sharing System

ABZ Adams, Balas and Zawack method

MSS Matsuo, Suh and Sullivan method

CA Clustering Algorithm

D Janakiram is currently Professor at the
Department of Computer Science and
Engineering, Indian Institute of Technology (IIT),
Madras, where he heads and coordinates the
research activities of the Distributed and Object
Systems Lab. He obtained his Ph.D degree from
IIT, Delhi.

He is Founder of the Forum for Promotion of Object Technology,
which conducts the National Conference on Object Oriented
Technology (NCOOT) and Software Design and Architecture
(SoDA) workshop annually. He is also principal investigator for a
number of projects including the grid computing project at the
Department of Science and Technology, Linux redesign project
at the Department of Information Technology, and Middleware
Design for Wireless Sensor Networks at the Honeywell Research
Labs. He is Program Chair for the 8th International Conference
on Management of Data (COMAD). He has guided 5 Ph.D, 23
M.S (research), 50 M.Tech and 31 B.Tech students. He is currently
guiding 9 Ph.D and 11 M.S (research) students. He has published
over 30 international journal papers, 60 international conference
papers and has edited 5 books. He has given several invited and
keynote talks at national and international conferences on grid
computing.

Professor Janakiram has taught courses on distributed systems,
software engineering, object-oriented software development,
operating systems, and programming languages at graduate and
undergraduate levels at IIT, Madras. He is a consulting engineer
in the area of software architecture and design for various
organizations. His research interests include distributed and grid
computing, object technology, software engineering, distributed
mobile systems and wireless sensor networks, and distributed and
object databases. He is a member of IEEE, the IEEE Computer
Society, the ACM, and is a life member of the Computer Society
of India.

Chapter 1

Introduction: Cluster to Grid
Computing

1.1 Cluster Computing Models

Parallel computing on interconnected workstations is becoming a
viable and attractive proposition due to the rapid growth in speeds
of interconnection networks and processors. In the case of
workstation clusters, a considerable amount of unused computing
capacity is always available in the network. However, heterogeneity
in architectures and operating systems, load variations in machines,
variations in machine availability, and the failure susceptibility of
networks and workstations complicate the situation for the
programmer. In this context, new programming paradigms that
reduce the burden involved in programming for distribution, load
adaptability, heterogeneity, and fault tolerance gain importance.
We have identified the issues involved in parallel computing on a
network of workstations. The Anonymous Remote Computing
(ARC) paradigm is proposed to address the issues specific to
parallel programming on workstation systems. ARC differs from
the conventional communicating process model as it treats a
program as one single entity consisting of several loosely coupled
remote instruction blocks instead of treating it as a collection of
processes. The ARC approach results in transparency in both
distribution and heterogeneity. At the same time, it provides fault
tolerance and load adaptability to parallel programs on
workstations. ARC is developed in a two-tiered architecture
consisting of high-level language constructs and low-level ARC

2 GRID COMPUTING

primitives. This chapter describes an implementation of the ARC
kernel supporting ARC primitives.

ARC is a pure data parallel approach and assumes that there is
no inter-task communication. We have explored the transparent
programmability of communicating parallel tasks in a Network of
Workstations (NOW). Programs which are tied up with specific
machines will not be resilient to the changing conditions of a
NOW. The Distributed Pipes (DP) model enables location-
independent inter-task communication among processes across
machines. This approach enables the migration of communicating
parallel tasks according to runtime conditions. A transparent
programming model for a parallel solution to Iterative Grid
Computations (IGC) using DP is also proposed. Programs written
by using the model are resilient to the heterogeneity of nodes and
changing conditions in the NOW. They are also devoid of any
network-related code. The design of runtime support and function
library support are presented. An engineering problem, namely,
the Steady State Equilibrium Problem, is studied over the model.
The performance analysis shows the speed-up due to parallel
execution and scaled down memory requirements. We present a
case wherein the effect of communication overhead can be nullified
to achieve a linear to super-linear speed-up. The analysis discusses
the performance resilience of IGCs, and characterizes synchroni-
zation delay among sub-tasks, and the effect of network overhead
and load fluctuations on performance. The performance satura-
tion characteristics of such applications are also studied.

Both ARC and ARCC (Anonymous Remote Computing and
Communication) use low-level network programming for
implementation. In order to raise the abstraction level, the use of
middleware for cluster computing was explored and we built
P-CORBA. Existing models for parallel programming over
Common Object Request Broker Architecture (CORBA) do not
address issues specific to parallel programming over NOWs. P-
CORBA, a model for parallel programming over CORBA
addresses these issues. The transmission and distribution of
computing power of a NOW are facilitated by P-CORBA. The
main contribution of the work is to bring a notion of concurrency
into CORBA. The model illustrates a method for balancing the

INTRODUCTION: CLUSTER TO GRID COMPUTING 3

load on a CORBA-based distributed system. It also provides a
new idea for achieving object migration in CORBA. We present
detailed performance studies from a prototype of the model that
has been implemented. A detailed performance comparison of
the model is made with a widely used parallel programming tool,
namely Message-Passing Interface (MPI). We demonstrate that in
spite of its overheads, CORBA can be used for parallel
programming over a NOW and significant speed-ups can be
obtained.

1.2 Grid Models

The Sneha–Samuham grid computing model is an attempt to
provide an adaptive parallel computing support over computational
grids for solving computation-intensive applications. Unlike other
grid computing models, Sneha–Samuham provides task-splitting
capabilities, wherein the given task is split according to the
computational capabilities of the nodes participating in the
computation. Aggregating resources in Sneha–Samuham is as
simple as making friends by using an instant messenger. The
runtime environment of Sneha–Samuham executes a task
efficiently by sharing the task among the participating machines,
depending on their computation capability, which is measured by
using a Grid Computation Capacity Factor (GCCF). The Sneha–
Samuham grid computing model has been implemented over a
nationwide grid. The model has been evaluated by using neutron
shielding simulation application. The results show that it achieves
almost linear speed-up. A comparison with MPI shows that Sneha–
Samuham outperforms MPI, especially when machines with
varying GCCFs comprise the grid. Currently, scientific applications
that are purely data parallel and coarse-grained can benefit from
Sneha–Samuham.

1.3 Mobile Grid Models

Advances of technology in terms of cellular communications and

4 GRID COMPUTING

the increasing computing power of the mobile systems, have made
it convenient for people to use mobile systems more than static
systems. This has seen the greater use of mobile devices in personal
and distributed computing, thus making the computing power
ubiquitous. The combination of wireless communication and cluster
computing in many applications has led to the integration of
these two technologies to emerge as a Mobile Cluster Computing
(MCC) paradigm. This has made parallel computing feasible on
mobile clusters, by making use of the idle processing power of
the static and mobile nodes that form the cluster. In order to
realize such a system for parallel computing, various issues such
as connectivity, architecture and operating system heterogeneities,
timeliness issues, load fluctuations in machines, machine availability
variations, and failures in workstations and network connectivities
need to be handled. Moset, an Anonymous Remote Mobile Cluster
Computing (ARMCC) paradigm is being proposed to handle these
issues. Moset provides transparency to the mobility of nodes,
distribution of computing resources, and to heterogeneity of wired
and wireless networks. The model has been verified and validated
by implementing a distributed image rendering algorithm over a
simulated mobile cluster model.

Advancement in technology has enabled mobile devices to
become information and service providers by complementing or
replacing static hosts. Such mobile resources are highly essential
for on-field applications that require advanced collaboration and
computing. This creates a need for the merging of mobile and
grid technologies, leading to a mobile grid paradigm. The key
idea in building the mobile grid is to integrate the computational,
data and service grids. Thus a mobile device from anywhere and
at any time, can harness computing power, and the required
resources and services seamlessly. Simultaneously, the device could
also be providing location-sensitive data to the grid. We have
designed and prototyped a middleware for a mobile grid that
transparently manages and bridges the requirement of the mobile
users and the actual providers.

INTRODUCTION: CLUSTER TO GRID COMPUTING 5

1.4 Applications

Simulated Annealing (SA) has been considered a good tool for
complex non-linear optimization problems. The technique has
been widely applied to a variety of problems. However, a major
disadvantage of the technique is that it is extremely slow and
hence unsuitable for complex optimization problems such as
scheduling. There are many attempts to develop parallel versions
of the algorithm. Many of these algorithms are problem-dependent
in nature. We present two general algorithms for SA. The
algorithms have been applied to the Job Shop Scheduling Problem
(JSS) and the Travelling Salesman Problem (TSP), and it has
been observed that it is possible to achieve super-linear speed-ups
using the algorithm.

Job Shop Scheduling (JSS) belongs to the class of NP-hard
problems. There are a number of algorithms in the literature for
finding near optimal solution for the JSS problem. Many of these
algorithms exploit problem specific information and hence, are
less general. However, simulated annealing algorithm for JSS is
general and produces better results when compared to other
algorithms. But one of the main drawbacks is that the execution
time is high. This makes the algorithm inapplicable to large scale
problems. One possible approach is to develop distributed algori-
thms for JSS using simulated annealing. Three different algorithms
have been developed, namely Temperature Modifier, Locking
Edges and Modified Locking Edges algorithms.

1.5 DOS Grid: Vision of Mobile Grids

We finally present our grand vision of building a mobile grid as
an integration of computation, data and service grids. The mobile
grid enables any device to access or provide the required comp-
uting power, information or other services from or to the grid.
The data considered also includes lower-level data collected or
aggregated from the sensor devices. The mobile grid requires
monitoring data for a variety of tasks such as fault detection,

6 GRID COMPUTING

performance analysis, performance tuning, performance predic-
tion, and scheduling. The requirements and essential services are
outlined that must be provided by a mobile grid monitoring sys-
tem. We also present its realization as a peer-to-peer overlay over
a distributed shared object space. The proposed mobile grid model
visualizes the architecture as a distributed shared object space,
wherein all the participating mobile devices are modelled as
surrogate objects which reside on the wired network. We illustrate
the mobile grid through a mobile health care application.

Chapter 2

Parset: System-independent
Parallel Programming on
Distributed Systems*

2.1 Motivation and Introduction

During the last decade, a significant amount of interest has been
shown in the development of parallel programs on loosely coupled
distributed systems. An example of such a system is a set of
powerful multi-programmed workstations connected through a
local area network. Several mechanisms for performing inter-pro-
cess communication, synchronization, mutual exclusion and remote
accession have been proposed to cope up with the challenges
arising out of the distributed nature of these systems. Some
examples of these mechanisms are client-server communication,
message-passing multiple programs, and Remote Procedure Calls
(RPC). An excellent review of such programming paradigms for
distributed systems appeared in [l]. Writing parallel programs on
loosely coupled systems demands the effective use of these
paradigms in the program. For example, in [2], Bal, et al. demons-
trate how RPCs [6] can be used for writing parallel programs. In
addition to making an effective use of these paradigms, several
tasks such as creating remote processes on various nodes and
writing External Data Representation (XDR) routines have to be
performed by the programmer. Distributed programs written with

*Rushikesh K. Joshi, D. Janakiram

8 GRID COMPUTING

these mechanisms are generally difficult to understand and to
debug. A programmer can start his processes on heavily loaded
nodes, thereby causing severe load imbalances, resulting in under-
utilization of the network. This can also adversely affect the
performance of other programs running in the network. A key
property of distributed systems is that they are open-ended. Various
system parameters like node configuration and node availability
keep changing over a period of time. In such cases, the programs
need to adapt themselves dynamically to the changing system
configurations.

Programming tools and languages such as ConcurrentC [5], P4
[3] and PVM [8] exist for developing such parallel programs.
These systems have greatly unified the concept of coarse grain
parallel programming on several architectures by providing the
architecture-independent interface to the programming paradigms
in distributed systems. But the programmer has not been relieved
of the burden of distributed programming and he needs to write
the program as a collection of processes which communicate and
synchronize explicitly.

Thus, there is no clear separation between the programmer’s
concerns and the system’s concerns in the present approaches to
distributed programming. It has become necessary to provide
high-level language constructs which can do this task. These
constructs should be provided with adequate low-level runtime
support which can achieve the separation between the system’s
concerns and the programmer’s concerns. These language con-
structs can be provided as extensions to existing programming
languages. The programmer can specify his coarse parallel blocks
within his program by making use of these high-level language
constructs. These language constructs are suitably translated and
handled by the low-level system mechanisms. The various
advantages of using such constructs are listed below.

2.1.1 Advantages from the System�s Point of View

If the selection of nodes for performing computation is made at
the programming level, the programmer can write programs which
can generate heavy load imbalances in the system. For example,
P4 gives the choice of node selection to the user. At the time of

PARSET: SYSTEM-INDEPENDENT PARALLEL PROGRAMMING 9

node selection, the user may not be in a position to predict the
actual load on the selected nodes at the time of execution.

Also, the programs may not make use of dynamically changing
loads on the machines due to its rigid process configuration. For
example, a program in PVM may create a fixed number of
processes. In such a case, the program will not be able to utilize
the additional capacity in the system if some nodes become lightly
loaded when the program actually starts executing.

With appropriate high-level language constructs, the program-
mer can only express the willingness of parallel execution. With
this, the programs need not be modelled as a pre-configured
collection of processes. This provides maximum flexibility to the
system to make effective use of the available resources.

2.1.2 Advantages from the Programmer�s

Point of View

(i) The user can be relieved of the burden of creating processes
and performing explicit communication and synchronization
among them.

(ii) The number of available nodes and their interconnection
pattern vary from one distributed system to the other, and
also from time to time in a single distributed system. The
load on the machines frequently keeps changing. In such a
case, if a program is written as a collection of a fixed number
of processes, it cannot make use of the dynamically changing
loads in the system. By using the high-level language
constructs, the programs can be written in a system-
independent fashion, thereby making them scalable and
portable.

(iii) Several programming errors, which occur during program-
ming inter-process communication, synchronization, termi-
nation etc., can be avoided by programming with such
language constructs.

In this chapter, we present a language construct called parset
and the low-level runtime support for implementing it. Parsets
can be used for expressing coarse grain parallelism on distributed

10 GRID COMPUTING

systems. The parset construct consists of a data structure and a set
of functions which operate on this data structure. The construct
has been specially designed for capturing several kinds of coarse
grain parallelism occurring in distributed systems. The use of
parsets relieves the programmer of the burden of handling the
remote processes, inter-process communication, remote procedure
calls, etc. A low-level distributed parset kernel creates sub-tasks,
locates suitable remote nodes, and gets the code executed on the
remote nodes. This makes the programs that are written using
parsets, scalable over varying system parameters. Thus, parsets
draw a clear distinction between the system’s concerns and the
programmer’s concerns.

We develop the parset constructs in Section 2. Parsets can
capture both SPMD (Single Program, Multiple Data) and MPMD
(Multiple Program, Multiple Data) kinds of parallelism. This is
explained in Section 3. We implemented the parsets on a network
of workstations. This implementation, with a case study of an
application program, is discussed in Section 4.

2.2 Semantics of the Parset Construct

In this section, we first describe the parset data structure with the
basic operations which manipulate the data structure. When
functions receive parsets as their arguments, they derive special
meanings. The function semantics on parsets are explained
subsequently. Finally in this section, a special case of parset called
indexparset is described.

2.2.1 The Parset Data Structure

Parset is a set type of data structure. The elements of a parset can
be:

l Basic data types,

l Untyped,

l Functions.

PARSET: SYSTEM-INDEPENDENT PARALLEL PROGRAMMING 11

When the elements of a parset belong to a basic data type, it is
called a simple parset. When the elements are untyped, it is an
untyped parset. A function parset has functions as its elements. Simple
parsets can be used to express the SPMD kind of parallelism.
This is discussed in detail in Section 2.3.1. Untyped parsets find
applications in expressing MPMD kind of parallelism using
polymorphic functions [4]. Function parsets are the most general
ones, and by using them, it is possible to express the MPMD
parallelism in a general way. The MPMD parallelism using parsets
is discussed in detail in Section 2.3.2.

A parset is kept logically ordered on the basis of the entry of its
elements on a first-come-first-served basis. Cardinality is an
attribute associated with a parset. The cardinality of an empty
parset is zero. A typed parset declares the type of the elements
held by the parset. For example,

parset P of int;

declares a parset P of elements of type integer.

The operations that can be performed on parsets are insert(),
flush(), get(), delete(), getcard() and setcard(). The functions
that can be executed on parsets have their arguments tagged as
RO (read-only), RW (read–write) or WO (write-only). This scheme
is very similar to the Ada language approach which places the
reserved keywords IN, OUT, and INOUT before the arguments.
The semantics of these tags are as follows:

WO : The argument is only modified inside the function
but not read.

RO : The argument is passed to the function only for
reading.

RW : The argument is read as well as written to inside the
function.

When functions taking parsets as arguments are executed, the
arguments are locked in a proper mode. For example, if an
argument is tagged as RO, it is locked in read mode. This tagging
scheme allows the exploitation of parallelism in control flow. When
two functions are sequenced one after the other in a program,

12 GRID COMPUTING

they can be run in parallel if the earlier function does not lock the
arguments needed for execution of the second function. For
example, if two functions take the same argument tagged as RO,
they can be executed in parallel. On the other hand, if the
argument is tagged as RW, unless one function releases the locks
on the argument, the other function cannot start execution. The
argument tagging performs an important role in the case of parsets
and has implications in implementation. This is discussed in detail
in Section 2.4.4.2.

The operations which manipulate the parsets are as follows:

insert (WO P, RO i, WO order)

Inserts an element i in the parset P as its last element. The car-
dinality of P increases by 1 after the insertion operation. The
argument order returns the order of the inserted element. P is
tagged as WO here as the function writes an element into the
parset but does not read any element from it.

flush (WO P)

Flushes the parset P. After flushing, the cardinality of P becomes
zero.

delete (WO P, RO n)

Deletes the nth element from the parset P. The delete operation
leaves the order of the parset intact.

get (RO P, RO n, WO element)

The argument element returns the nth element of the parset P.

getcard (RO P, WO c)

The argument c returns the cardinality of the parset P.

The above operations provide the means for manipulating the
elements of a parset. When functions are called on parsets, they
acquire special meanings. This is explained below.

PARSET: SYSTEM-INDEPENDENT PARALLEL PROGRAMMING 13

2.2.2 Function Semantics on Parsets

When a parset is passed as an argument to a function, three
possibilities exist for the execution of the function. The function
can execute in parallel on each element of the parset. This is the
first type of execution. The function can also execute sequentially
on each element of the parset one after the other. This is the
second type of execution. In the third type of execution, the
function takes the parset as a simple argument for further
processing within the function. In order to differentiate between
these three function types, the two keywords par and seq are
used. We now illustrate the three types of function calls with
simple examples.

par function call:

Example: par process (RO P);

The function process() is applied to each element of P in parallel.
Each activation proceeds asynchronously. If a function has more
than one parset as its arguments, then the cardinalities of all of
them must be the same. This will enable a particular function
activation to pick up the corresponding element from each parset.
The par function call exploits the data parallelism expressed in a
parset.

seq function call:

Example: seq print (RO P);

The function print() is applied to each element of P sequentially
in the order of the elements.

Ordinary function call:

Example: myprint (RO P);

Here no keyword is prefixed to the function call. Hence this is
treated as an ordinary function call, and the parset P is passed
just as a plain argument to it.

14 GRID COMPUTING

As an example, the following can be the description of myprinto:

Function myprint (RO P) {

seq print (P);

}

A special function called ‘myid’ is provided to identify the
element of the parset on which the present function activation is
operating. This function returns the order of the element of the
parset on which a par or a seq function call is operating.

2.2.2.1 Defining the Functions which Execute on a Parset

When a par or a seq function is called with a parset as its argument,
each activation of that function receives one element of the parset.
Hence, the function is defined for one element of the parset. On
the other hand, a function, which takes a parset as a plain argument
as in the case of an ordinary function call, declares its argument
type the same as the parset type itself. The following example
illustrates the difference. In this example, add() concatenates strings
and howMany tells the cardinality of a collection of strings.

Function MassConcat() {

. . .

parset P of string = „Work“, „Think“,
„Speak“;

parset Q of string = „hard“, „deep“,
„truth“;

parset R of string;

int n;

. . .

. . .

. . .

par add (P, Q, R);

howMany (R, n);

. . .

}

PARSET: SYSTEM-INDEPENDENT PARALLEL PROGRAMMING 15

Function add (string RO x, string RO y,
string WO z)

{

concat (x, y, z);

}

Function howMany (parset RO WO n)

{

getcard (strset, n);

}

Each activation of function add() binds an element of parset P
to argument x, and the corresponding element of parset Q to y.
The returned argument z is bound to the corresponding element
of R . The cardinality of the parset P and Q must be the same in
this case.

2.2.2.2 Concurrent Execution of Multiple Function Calls on

Parsets

There can be situations wherein a parset, which is an output
parameter of one function call, becomes an input parameter in a
subsequent parset function call. This offers additional possibilities
of concurrent execution. This is explained in the following
example:

Function Encourage () {

. . .

parset E of employee, A of assessment, R
 of reward;

par assess (RO E, WO A);

par encourage (RO A, WO R);

. . .

}

In the function Encourage () as given above, the employee
records are assessed so as to encourage the employees by offering
them suitable rewards. The output of assess (), which is parset A,

16 GRID COMPUTING

is an input to Encourage (). As soon as the function assess ()
finishes with any one of its multiple activations, the WO lock on
the corresponding element of the parset is released. After the
release of the lock, the next function Encourage () acquires the
RO lock for that particular element of the parset. Once the lock is
acquired, the function can start its execution. Thus, multiple
functions can execute concurrently providing additional parallelism
in control flow.

2.2.3 Indexparset

The indexparset is a special case of parset. It holds no elements
but carries an index. The index can be seen as cardinality of the
indexparset. A function call on an indexparset is activated index
number times. Hence the indexparsets can be used when multiple
activations of the same function are required. An indexparset can
be declared as:

indexparset I ;

Only three operations, namely setcard(), getcard(), and flush
(), are performed on an indexparset. The last two are the same as
described in Section 2.2.1 on parsets. Operation setcard sets the
cardinality of the indexparset I to a given value c and is defined
as:

setcard (WO I, RO c);

When an indexparset becomes an argument to a par or a seq
function call, each function activation receives an integer which
represents the order of that particular activation. The following
example demonstrates the use of an indexparset. It collects the
status of distributed resources in a parset called StatusSet.

Function CollectStatus {

indexparset I;

parset StatusSet of int;

setcard (I, 10);

par myread (I, StatusSet);

/ * The activations of myread collect
the status of 10

PARSET: SYSTEM-INDEPENDENT PARALLEL PROGRAMMING 17

resources */

…..

}

Function myread (int RO ResourceId, int
WO s)

{

/ * ResourceId = current function activation
number * /

ReadStatus (ResourceId, status);

S = Status;

}

2.3 Expressing Parallelism through Parsets

Parsets can be employed for expressing both SPMD and MPMD
kinds of parallelism. This is discussed in the following sections.

2.3.1 Expressing the SPMD Parallelism through

Simple Parsets

The SPMD parallelism can be expressed by using simple parsets
with par function calls. When a par function is called on a simple
parset, the function executes in parallel on different elements of
the parset. The simple parsets can be created in two ways. An
empty parset can be declared initially and the elements can be
inserted into the parset explicitly by insert calls. The other method
of creating simple parsets is to convert an array of elements into a
parset with a grain control mechanism. These two methods of
creating simple parsets are explained in Sections 2.3.1.1 and 2.3.1.2,
respectively.

2.3.1.1 Creation of Simple Parsets using Explicit Insert ()

Calls

First a simple parset of the desired data type is declared. Multiple
data belonging to the same data type can now be added to the

18 GRID COMPUTING

parset using the insert () function. Then a function can be executed
on this parset by a par function call. In order to express the
SPMD parallelism in the processing of arrays, one may create a
parset and explicitly insert the array elements into the parset with
this method. An easy way to convert an array into a parset is
through the grain control mechanism, which is specially designed
for this purpose.

2.3.1.2 Conversion of Arrays into Simple Parsets by the Grain

Control Mechanism

Through this mechanism, one can indicate the granularity that is
desired to build such a parset out of an array. The mechanism
consists of two constructs, namely granularity, which is a metatype,
and a function CrackArray(). The granularity works as a metatype
in the sense that its value is a data type.

As an example, we may specify a granularity of int[100] to
convert an array of type int[1000] into a parset. The parset will
have ten elements, each of type int[100] as specified by granularity.
It is possible to covert a multi-dimensional array into a parset by
cracking the array in any dimension. For example, we may specify
a granularity of int[25][100] to convert a row major array of type
int[100][100] into a parset. In this case, the parset will have four
elements, each of type int[25][100].

We take the following image transformation example to
demonstrate the use of this mechanism. In this example, the array
named A is converted into a parset. The array A consists of 1000
elements. Each element of the parset is constructed by combining
100 elements of the array. Thus the parset will have ten elements
in it.

Function ProcessArray () {

int A [1000];

granularity g = int [100];

parset P, Q of g;

CrackArray (A, P, g);

par transform (P, Q);

PARSET: SYSTEM-INDEPENDENT PARALLEL PROGRAMMING 19

par plot (Q);

flush (P);

}

Converting a data structure like an array into a group of several
grains of specific granularity becomes possible with the metatype
‘granularity’. The target parset is declared as a simple parset of
the same data type as that of the granularity. The array is converted
into a parset by using the function CrackArray (). The function
takes three arguments: the source array, the target parset handle
and the granularity. When the function returns, the parset handle
corresponds to the new parset that is built out of this array.

After the conversion, there are two ways to access the array.
One is by manipulating the new parset handle, and the other is
by directly using the array name. The array name refers to the
copy of the array which is local. The parset handle refers to the
copy of the array which may be scattered in the network. Now if
both the handles are allowed to manipulate the array, it will
create inconsistencies between these two copies. Hence till the
parset handle is active, the array must be accessed only through
the parset handle. However, a flush () call on the parset handle
has the special function of deactivating the handle and storing
back the new values of the array into its local copy. After the
flush, the array can be referenced in the normal way.

By setting the granularity, the user can set an upper bound on
the number of processors that can be utilized by the underlying
parset kernel for an execution. For example, for a single-
dimensional array of size 1000, the granularity may be set to 100
or 250, thereby creating parsets of size 10 or 4. Thus a varying
degree of parallel execution on a parset can be obtained by using
granularity.

The grain control mechanism thus achieves two goals. First, it
allows an array to be treated directly as a parset without the need
for multiple insert () calls. Secondly, it can control the degree of
parallel execution of a function on an array.

20 GRID COMPUTING

Dynamic Specification of Granularity

When a granularity variable is declared as an array, the dimensions
of the array can be specified during runtime. The following
example demonstrates this:

Function ProcessArray () {

int A [1000];

granularity g = int [];

parset P, Q of g;

int dim;

dim = 100;

CrackArray (A, P, g [dim]);

par transform (P, Q);

par plot (Q);

flush (P);

}

It can be noted that the value of the granularity variable has
been declared as an integer array of single dimension without
mentioning its dimension value. The dimension of 100 has been
specified during runtime in this example.

2.3.2 Expressing MPMD Parallelism through

Parsets

The MPMD parallelism can be expressed with parsets by using
two mechanisms. The first is to use polymorphic functions with
untyped parsets. It offers a limited way of expressing MPMD
parallelism, and can be readily implemented in a language which
provides function polymorphism. The other mechanism is a
general one and uses function parsets. These mechanisms are
described in the following sub-sections.

2.3.2.1 MPMD Parallelism through Polymorphic Functions

Untyped parsets can be used for expressing MPMD parallelism.
In a typed parset, only the elements of the specified type can be

PARSET: SYSTEM-INDEPENDENT PARALLEL PROGRAMMING 21

inserted, whereas in untyped parsets, elements of any type can be
inserted. An untyped parset declaration does not mention the
type of its elements. As an example, an untyped parset Q can be
declared as:

parset Q;

In this case, a parset is created as a collection of data belonging
to different types. A polymorphic function identifies the type of
each element and executes the required code on it. For example,
with a function call such as par process (Q), various activations of
the function process() may receive arguments of different types.
In this way, we can obtain the concurrent execution of different
codes on different data.

But this mechanism cannot fully capture the MPMD parallelism
for the following reason. Always the same piece of code is executed
on two different elements of a parset if they are of the same type.
So we cannot execute different codes on the elements of the same
type by this mechanism. By using the function parsets, this
limitation can be overcome.

2.3.2.2 MPMD Parallelism with Function Parsets

A function parset can hold a collection of functions. Another
parset is used to hold the corresponding argument set. The
cardinalities of these two parsets must be the same. The function
parset can now be invoked on the corresponding argument parset
to achieve the general MPMD parallelism. The following example
shows the structure of such a program:

Function MPMD-Prog-Structure () {

int d11, d12, d3;

char d2;

parset F of func = {f1 (int, int), f2
 (char), f3 (int)};

parset Dl = {dll, d2, d3};

parset D2 = {d12, NIL, NIL};

par (F) (Dl, D2);

}

22 GRID COMPUTING

Function f1 (int RO d11, int RO d12) {

. . .

}

Function f2 (char RO d2) {

. . .

}

Function f3 (int RO d3) {

. . .

}

In the above example, function f1() will take its first argument
from the first element of parset D1, and the second argument
from the first element of parset D2. Similarly, the functions f2()
and f3() pick up their arguments from D1 and D2.

2.4 Implementing Parsets on a Loosely
Coupled Distributed System

We discuss an implementation of the parset constructs on a network
of workstations consisting of Sun 3/50 and Sun 3/6Os, running
SunOS version 4.0.3. The environment supports the Network File
System (NFS). TCP/IP has been used for inter-process
communication. The parset constructs are provided as extensions
to the C language. A parset pre-processor translates the parset
constructs into C code. An overview of the implementation is
now given followed by the description of various components.
We studied the performance of an application using the
implementation.

2.4.1 Overview of the Implementation

The heart of the implementation consists in a distributed parset
kernel. The kernel is divided into resident and volatile parts.
Each parset has an associated process called P-Process to maintain
and manipulate the elements of the parset. A par function call on
a parset is executed with the help of separate processes called

PARSET: SYSTEM-INDEPENDENT PARALLEL PROGRAMMING 23

E-Processes. P-Processes and E-Processes form the volatile kernel.
P-Processes reside on the same node where the user program resides.
E-Processes reside on different nodes to exploit the parallelism.

The resident kernel consists of daemon processes which are
started during the boot-up time on the machines that are willing
to participate in the execution of programs that use parsets. The
copy of the resident kernel is obtained by nodes from a designated
node using the NFS. In this way, both diskless as well as diskful
machines can obtain the resident kernel. The resident kernel
manages the P-Processes and the E-Processes. It provides an interface
to user programs to create the parset processes and to execute
various functions on it.

2.4.2 The Parset Preprocessor

Figure 2.1 shows the functionality of the parset preprocessor. The
high-level user program is provided with clean parset constructs,
as described in the earlier sections, which hide the underlying
distributed implementation. The parset preprocessor then translates
the user program into a low-level C code, which makes calls to
the resident kernel and the parset processes.

FIG. 2.1

The Parset Preprocessor

24 GRID COMPUTING

The parset preprocessor identifies the par function calls separately
as Remote Instruction Blocks (RIBS). An RIB contains a code
which can be migrated at runtime to a remote node. The migration
of the RIB code is the migration of the passive RIBs and not
active processes or tasks. The RIB is given control for actual
execution at the remote node. RIBs are named and compiled
separately by the preprocessor.

2.4.3 Remote Instruction Blocks (RIB)

The RIB facility was developed during the course of this
implementation. The facility is similar to Remote Evaluation (REV)
[7] developed by Stamos and Gifford. With the RIB primitives, as
opposed to the RPC primitives [6], we can migrate a code to be
executed to a remote site at runtime and get it executed there.

The parset preprocessor names and compiles the RIBs
separately. Whenever a block has to be executed on a remote
node, its name and address is made known to the remote node.
The remote node can access the RIBs by using the NFS, and can
execute it as and when required.

2.4.4 The Distributed Parset Kernel

The parset kernel is distributed over the network. It consists of a
resident and a volatile part. The resident part of the kernel is
always present on all the nodes that participate in distributed
execution. The volatile part is dynamically created on selective
nodes depending upon the requirements. Figure 2.2 shows the
organization of various components in the implementation. The
functionalities of each are described in the following sections:

2.4.4.1 The Resident Kernel

The resident kernel performs the low-level system-dependent tasks
which deal with the primitives for RIBs, creation and termination
of P-Processes and E-Processes, etc. It is responsible for selecting the
lightly loaded nodes for execution and managing the distributed

PARSET: SYSTEM-INDEPENDENT PARALLEL PROGRAMMING 25

FIG. 2.2

The Parset System Components

execution. Each local resident kernel contacts other resident kernels
and finds about the lightly loaded nodes. Achieving the program
scalability is also a function of the kernel.

The resident kernel provides an interface to low-level user
programs. The interface consists of the calls for registration and
de-registration of a user process, creation and destruction of parset
processes, and notifications of function execution on parsets. When
an executing user program declares a parset variable, the resident
kernel spawns a parset process called P-Process. This P-Process
manages the parset on the node where the user program runs.
Any further manipulations performed by the user program on
this parset with insert(), get(), delete(), getcar() and flush()
calls, are directed to the corresponding P-Process bypassing the
resident kernel.

During the remote execution of a function in a par call, the
resident kernel creates new E-Processes, or locates free executor
processes depending on their availability on the nodes suitable

26 GRID COMPUTING

for the execution. For a particular function execution, the resident
kernel helps P-Processes and the corresponding E-Processes to
synchronize. After the synchronization, P-Processes send the required
parset elements to E-Processes.

In order to improve the execution efficiency, the kernel can
combine several elements in a parset together to form a super-
grain. It can be noted that the super-grain formation is different
from the grain control mechanism. The latter is a mechanism
meant for the user whereas the former is used by the kernel,
making it transparent to the user. The resident kernel guides the
volatile kernel for the super-grain formation.

2.4.4.2 The Volatile Kernel

The volatile part of the kernel consists of P-Processes and E-Processes,
as mentioned earlier. For a function execution, the P-Processes
which correspond to parsets involved in the execution, perform
the required inter-process communication with the allotted E-
Processes. In this fashion, all P-Processes and E-Processes proceed
concurrently. An E-Process can be allocated for other incoming
execution requests after the current request is completely processed.
Similarly, a P-Process is derailed by the resident kernel when it
receives a destroy () call.

As discussed earlier, a P-Process manages one single parset
variable. A parset variable is a collection of multiple grains
(elements). When a par or a seq function takes a parset variable as
its argument, it specifies the parset variable as an RO, WO, or
RW variable depending on its usage inside the function. At the
time of actual execution, the elements of the parset have to be
locked according to these specifications in order to exploit the
concurrency as discussed in Section 2.2. In case of multiple parallel
activations of a function, each activation operates on a different
grain. Hence each activation can proceed independently as long
as it can obtain the required locks.

At first sight, it appears that in the place of WO locks, one may
use RW locks, thereby eliminating the need for additional WO
locks. This is based on the fact that along with a write permission,
there is no harm in granting a read permission also. But this is not

PARSET: SYSTEM-INDEPENDENT PARALLEL PROGRAMMING 27

so in reality because when an argument gets a read lock, it has to
be moved to the remote site where the function is executing. But
a WO argument need not be moved to the site of the remote
function, since the function does not read the value of this
argument. Thus these three distinct locks help in minimizing the
communication overhead.

With an execution request of a par or a seq function, a parset
process first establishes contact with the remote E-Process through
the resident kernel. Then it continues to set the locks on the
grains. As and when a lock is set, S the following action is taken
corresponding to each lock:

RO: 1. Send a copy of the grain to the remote E-Process.

2. Release the lock on the grain.

WO: 1. Receive the grain value from the remote E-Process.

2. Update the grain value in the parset.

3. Release the lock.

RW: 1. Send a copy of the grain to the remote E-Process.

2. Receive the grain value from the remote E-Process.

3. Update the grain value in the parset.

4. Release the lock.

2.4.5 A Case Study

In this section, we discuss a simple case study of the image
transformation problem encountered in computer graphics.
Two examples of such transformations are rotation and dragging.
Figure 2.3 shows the test program for image transformation using
parsets. The program was run on a network of Sun workstations.
Since the transformation problem was an SPMD type of problem,
we used the techniques presented in Section 2.3.1.2.

The following observations can be made with respect to the
case study program:

l The program only expresses the parallelism present in solving
the graphics rotation problem without any explicit use of
system-dependent primitives.

28 GRID COMPUTING

#define TotalPoints 20000

#define GrainSize 400

typedef struct {int x, y;} point;

typedef point grain [GrainSize];

Main:

point image [TotalPoints];

granularity G = grain;

parset P of G;

read-image (image);

CrackArray (image, P, G);

par transform (P);

flush (P);

EndMain

Function: transform (grain RW image-
grain) {

int i;

for (i = 0; i < GrainSize; i++)

image-grain = rotate (image-grain);

}

FIG. 2.3

The Image Transformation Problem

l The user can control the size of the grain by specifying the
grain size in the program.

l The function transform() will be compiled separately as an
RIB so that it can be migrated to a remote node for execution.
The system will make appropriate choice of nodes and the
mechanism is completely transparent to the user program.

l The program is easy to understand and to debug.

PARSET: SYSTEM-INDEPENDENT PARALLEL PROGRAMMING 29

l The program can be executed on a distributed system
supporting the parset construct and hence can be ported
easily to other systems.

l In the case of node failures, the kernel can reassign the sub-
tasks which remain unevaluated to other nodes without the
involvement of the user.

The above program has been executed on the current
implementation of parsets on Sun 3/50s and 3/60s, and the
performance has been measured.

The Program Performance

Table 2.1 summarizes the performance of the program with various
problem sizes on a varying number of nodes. As the problem size
increases, it is possible to use a higher number of nodes. The
upper bound on the number of nodes that the system can choose
for a given problem size is dictated by the grain size as discussed
in Section 2.3.1.2.

Table 2.1 Performance of the Program

Problem Tseq Grain #nodes Tpar Speed-up Utilization
size (sec) size N (sec)

2000 17.85 1000 2 10.71 1.66 83
500 4 7.50 2.38 59

4000 36.02 2000 2 20.36 1.76 88
1000 4 12.84 2.80 70

10000 90.04 5000 2 48.00 1.87 93
2500 4 26.48 3.40 85
1250 8 16.93 5.31 66

From Table 2.1, it can be observed that as the problem size
increases, it is possible to employ more nodes thereby achieving
better speedup and utilization.

30 GRID COMPUTING

A Comparison with PVM

The same application program has been implemented using PVM.
Table 2.2 shows a comparison between parsets and PVM. The
execution speeds using parsets compare favourably with PVM. A
negligible average overhead of less than two seconds was observed
in the implementation of parsets.

Table 2.2 A Comparison with PVM

Problem Grain #nodes Timings for parsets Timings for PVM
size size N (sec) (sec)

2000 1000 2 10.71 10.04
500 4 7.50 5.78

4000 2000 2 20.36 19.02
1000 4 12.84 10.52

10000 5000 2 48.00 46.28
2500 4 26.48 24.26
1250 8 16.93 14.28

The Scalability Test

The image array was converted into a parset with a grain size of
400 points. As the load on different nodes varied, the system
automatically chose the nodes for executing the program. During
different runs of the program, the system used nodes from 4 to 10
depending on their availability and load. The results are given in
Table 2.3. From this table, it can be seen that the parset constructs
provide a high degree of scalability to the program without

Table 2.3 Scalability of the Program Problem Size: 20,000 Points,

Sequential Time: 179.99 sec

#nodes Parallel time (sec) Speed-up

2 93.94 1.91
4 54.50 3.30
10 25.44 7.07

PARSET: SYSTEM-INDEPENDENT PARALLEL PROGRAMMING 31

significant overheads. The scalability is completely transparent to
the user. The system is able to handle the node availability
dynamically, making use of the nodes as and when they become
available on the network.

2.5 Discussion and Future Work

The parsets provide a clear separation between the system-
dependent tasks and the expression of parallelism. The
programmer need not know about the underlying distributed
system model. The user program has to only express the willingness
for parallel execution through the parset constructs. The decision
of the degree of parallelism that is actually exploited is delayed
until runtime. This decision is taken by the distributed parset
kernel. For example, in the case of high activity on the network,
the same program still runs on a fewer number of nodes, even on
a single node. The kernel takes care of all the system-dependent
tasks such as node selection, process creation, remote execution
and synchronization.

Each element of a parset is a potential source of concurrent
execution. A par function call captures the data parallelism that
exists among the various elements of a parset. On a single element
of a parset, two separate functions can execute concurrently if
they obtain the necessary lock on that element. In this way,
multiple function calls on parsets capture the parallelism present
in the control flow.

Fault tolerance is an important issue in distributed systems.
The parsets can be made to tolerate node failures in the midst of
function execution. This can be ensured at the kernel level with
the help of the locking mechanism without the involvement of
the high-level program. Whenever a node failure is detected, a
new activation for the function executing on that node is spawned
on a healthy node. The locks are not released till the activation
returns successfully.

32 GRID COMPUTING

The RIBs used in this implementation were designed for a
homogeneous system. We are planning to extend them for
heterogeneous systems. This will enable us to run the parset
programs over a wide area network and exploit the computation
power that is available over heterogeneous systems.

2.6 Conclusions

We presented the parset language construct for writing coarse
grain parallel programs on distributed systems. Parsets achieve a
clear separation between the system’s concerns and the program-
mer’s concerns. Programmers can write neat and simple parallel
programs on distributed systems by using the parset constructs. A
parallel program written with parsets becomes scalable and easily
portable to other distributed systems supporting parsets. Language
constructs like parsets can make parallel programming on distrib-
uted systems an easy task. The parset approach can prove to be
an extremely promising direction for parallel programming on
distributed systems.

References

l. Andrews, G.R., “Paradigms for Process Interaction in Dis-
tributed Programs’’, ACM Comput. Surveys, Vol. 23, No. 1, pp.
49–90, March 1991.

2. Bal, H.E., R.V. Renesse and A.S. Tanenbaum, “Implement-
ing Distributed Algorithms Using RPC’’, Proceedings of AFIPS
National Computer Conference, Chicago, Illinois, June 15–18,
AFIPS Press, Reston, Virginia, Vol. 56 pp. 499–506, June
15–18, 1987.

3. Butler, R. and E. Lusk, “User’s Guide to the P4 Parallel
Programming System’’, Technical Report ANL92/17,
Argonne National Laboratory, October 1992.

PARSET: SYSTEM-INDEPENDENT PARALLEL PROGRAMMING 33

4. Cardelli, L. and P. Wegner, “On Understanding Types, Data
Aabstractions and Polymorphism’’, ACM Comput. Surveys, Vol.
17, No. 4, pp. 471–522, December 1985.

5. Cmelik, R.F., N.H. Gehani and W.D. Roome, “Experience
with Multiple Processor Versions of ConcurrentC’’, IEEE
Trans. Soft. Eng., Vol. 15, No. 3, pp. 335–344, March 1989.

6. Nelson, B.J., “Remote Procedure Calls’’, ACM Trans. Comput.
Sys., Vol. 2, No. 1, pp. 39–59, February 1984.

7. Stamos, J.W. and D.K. Gifford, “Remote Evaluation’’, ACM
Trans. Prog. Lang. Syst., Vol. 12, No. 4, pp. 537–565, October
1990.

8. Sunderam, V.S., “PVM: A Framework for Parallel Distributed
Computing, Concurrency’’, Practice and Experience, Vol. 2(4),
pp. 315–339, December 1990.

Chapter 3

Anonymous Remote Computing
Model*

3.1 Introduction

Workstation clusters are becoming increasingly popular in aca-
demic and scientific computing. The processing power of the work-
station has witnessed tremendous growth, resulting in clusters of
workstations possessing the computing power of a supercomputer.
Many approaches have been proposed for improving the utility
of workstation clusters in recent times, with the notable ones
being the Berkeley NOW project [3] and the Batrun project at
Iowa [41]. Broadly, these approaches can be classified into three
levels—the operating system level, the resource level, and the pro-
gramming language level. Some examples of operating system
level approaches are the Amoeba distributed operating system
[30], the V Distributed System [15], the Coda distributed file
system [33], Sun’s NFS support, the load leveller on IBM RS/
6000 system, and the Batrun’s Distributed Processing System (DPS).
Cooperative file caching [16] and Reduntant Array of Indepen-
dent Disks (RAID) systems [3] are examples of the resource level
approach. At the programming language level, many program-
ming languages and paradigms have been proposed for loosely
coupled distributed systems from the point of view of writing
distributed programs as well as developing client-server applica-
tions [4], [6].

*Rushikesh K. Joshi, D. Janakiram

ANONYMOUS REMOTE COMPUTING MODEL 35

Parallel programming on workstation systems is a relatively
new field and has been an attractive proposition ever since it was
used in some of its early forms such as the RPC thread-based
system of Bal, Renesse, and Tanenbaum [8]. Other examples of
parallel programming approaches on workstation systems are the
Inter Process Communication (IPC) [38] based message-passing
systems, RPC thread-based systems [32], distributed shared
memories [39] such as Mether system [28], programming tools
such as PVM [40] and P4 [11] and programming languages such
as Orca [7] and Linda [12].

Most of the existing parallel programming approaches on work-
station systems follow the Collection of Processes (COP) model in
which processes communicate via message abstractions or shared
memory abstractions. Although this model has been widely used
in the context of tightly-coupled systems such as multiprocessors,
it has several drawbacks when applied to loosely coupled open-
ended workstations. Each workstation typically runs its own oper-
ating system and provides a multi-user environment. Worksta-
tions in a network can be heterogeneous. Loads on workstations
keep changing from time to time. Moreover, it may not be pos-
sible to support a common file system for all workstations in a
domain. Network links and workstations themselves are prone to
failures. The number of workstations in a domain keeps changing.
These factors pose serious difficulties from the point of view of
open-endedness, fault tolerance, load adaptability and program-
ming ease, when the COP model is adopted. For example, as the
load on the workstations keeps changing dynamically, it is not
possible for the programmer to know which of the nodes will
have lighter load when the program starts executing (since the
load varies dynamically) and start the processes on these nodes.
Dynamic load variations may slowdown the performance of a
process that has been mapped onto a particular workstation.
Similarly, when a node fails during the execution of a program, a
process’ state is lost, which requires re-execution of the entire
program. Workstations may get connected to a domain during
the execution of a program which may not be able to utilize the
additional computing power. Such situations make parallel pro-

36 GRID COMPUTING

gramming on workstation clusters a complicated task. In order to
reduce the burden of programming on these systems, new para-
digms are required.

In this chapter, we present the ARC approach to parallel pro-
gramming on workstation systems that attempts to address these
issues at the language level. The ARC computational model takes
a diversion from the conventional COP model. A program is
treated as one single entity made up of multiple loosely coupled
RIBs, which are open program fragments that are heterogeneous
and fault-tolerant. ARC makes distribution and heterogeneity trans-
parent to the programmer. An ARC task, namely RIB, may be
sent by the ARC system for remote execution, or executed on the
host node itself if a suitable remote node is not available. An RIB
is open in the sense that it may migrate for execution to an
anonymous workstation of a different architecture.

ARC provides a two-tiered architecture. At the lower layer, the
primitives which are built over a kernel provide the basic support
for anonymous remote computing while at the upper layer, vari-
ous easy-to-use high-level programming language constructs are
supported. The ARC kernel provides support for migration, fault
tolerance, heterogeneity, load adaptability, and asynchronous in-
timations for availability, thereby keeping the programming lay-
ers very elegant. The ARC model has been implemented on a
network of workstations consisting of Sun 3s, Sun Sparcs, and
IBM RS/6000 workstations. The network has two independent
file systems. The RS/6000s are connected via a 100 MB/sec FDDI
(Fiber Distributed Data Interface) network and the Suns are con-
nected via a 10 MB/sec Ethernet.

The rest of the chapter is organized as follows. Section 3.2
discusses the issues involved in parallel programming on work-
station clusters followed by an overview and analysis of the exist-
ing approaches in Section 3.3. The computational model of ARC
is presented in Section 3.4. Section 3.5 discusses the two-tiered
ARC architecture. In Section 3.6, the implementation of ARC is
presented, followed by the performance study in Section 3.7.

ANONYMOUS REMOTE COMPUTING MODEL 37

3.2 Issues in Parallel Computing on
Interconnected Workstations

Parallel computing on tightly-coupled distributed systems has so
far been widely popular. However, recent advances in commu-
nication technology and processor technology make parallel
programming on loosely coupled distributed systems, especially
on interconnected workstations, a viable and attractive proposi-
tion. Several key issues distinguish parallel computing on work-
station clusters from that of tightly-coupled massively parallel ar-
chitectures. We discuss these issues in detail in the following four
major categories:

1. Changing loads on the nodes of the network,

2. Changing node availability on the network,

3. Differences in processor speeds and network speeds,

4. Heterogeneity in architecture and operating systems.

3.2.1 Changing Loads on the Nodes of the

Network

A distributed system consisting of interconnected workstations
experiences a wide fluctuation of loads on individual nodes. A
considerable amount of unused computing capacity is always
present in the network. Figure 3.1 shows a trace of average loads
on four workstations that we obtained in our environment which
is predominantly academic. Vanavil and green are IBM RS/6000
workstations. Vanavil is a busy openly used machine with 48 user
terminals, whereas green is managed by a load leveller that
maintains a steady flow of batch jobs for the consumption of the
machine. Bronto and elasmo are two Sun Sparcs which are situated
in a smaller laboratory. It can be observed from Fig. 3.1 that the
load pattern varies drastically from time to time depending upon
the specific user characteristics. It is a challenging task to execute
parallel programs in such an environment while achieving a fair
amount of load balance. A program is said to be ‘load-adaptive’ if
it adapts to the changing load in the system. However a

38 GRID COMPUTING

programmer may not be able to use the knowledge of load
fluctuation in the program unless an adequate language support is
provided.

FIG. 3.1

Load Variation on Four Machines in an
Academic Environment

The traditional COP model in which the programmer explicitly
starts processes on named nodes will be counter-productive in
this case. This is because of the fact that a programmer will not be
able to identify the changing load patterns in the network. The
named node where the programmer starts the processes can get
heavily loaded during the course of execution of the program,
thereby degrading the performance instead of improving it. Some
systems such as PVM (Parallel Virtual Machine) can delay the
decision of selecting a node for a process until execution time, but
keep this mapping rigid till the process completes its execution. If
a load on a particular machine increases during execution, PVM
processes on that node would suffer.

3.2.2 Changing Node Availability on the Network

Distributed systems are characterized by nodes that keep going
down and coming up over a period of time. Ideally, the
computation should not get affected by the changing node

ANONYMOUS REMOTE COMPUTING MODEL 39

availability in the network. For example, a program at a given
instance of execution may have made use of five nodes while in
another instance, it may have only three nodes available. It is also
possible that node failures are transient with respect to one single
execution of the program. While computing a sub-task, a node or
a link might crash, and may again come up before the completion
of the execution of the program.

3.2.3 Differences in Processor Speeds and

Network Speeds

Distributed systems consisting of interconnected workstations are
characterized by differences in processor speeds and network
speeds. The communication overhead in this class of distributed
systems is fairly high. Hence these systems are suitable only for
coarse grain parallelism. Communication overheads play a major
role in influencing speed-ups of parallel tasks on these systems.
For example, an investigation on the Apollo Domain network
reveals the effect of communication overheads on the speed-up
for an RPC-based system [32]. In a heterogeneous cluster,
processors have different speeds. However, during runtime, the
effective capacity may vary due to loading effects. Selecting
appropriate grain sizes during runtime becomes important as a
consequence of this variation. Thus, the programming model aimed
at interconnected workstations should provide for easy variation
of the task grain size.

3.2.4 Heterogeneity in Architecture and

Operating Systems

Interconnected workstations normally display some amount of
heterogeneity in operating systems and architectures. Heterogeneity
in operating systems is being bridged through distributed operating
systems, distributed file systems, and standardization of software.
Distributed file systems such as NFS are common in the inter-
connected workstation environment in order to make the file
system available over the network. The architectural differences
between workstations are more difficult to handle than operating
system differences. Since the binary executable files are not

40 GRID COMPUTING

compatible between architectures, it will not be possible to directly
execute the binaries relating to a task on the other nodes.

The issues discussed above pose several difficulties in parallel
programming on workstation clusters. The management of
distribution at the programming level further adds to these
difficulties. The existing systems address only a subset of these
issues. Providing a single approach addressing all the issues, and
at the same time, keeping parallel systems simple to program and
to understand, is a real challenge. Most of the current parallel
programming approaches for workstation systems follow the COP
model that communicates via various messages passing or shared
memory abstractions. The COP model gives rise to many
difficulties while programming for variations in loads and speeds,
heterogeneity, and fault tolerance. The following section provides
an overview of the existing approaches, analysing their suitability
for parallel programming on distributed workstation systems.

3.3 Existing Distributed Programming
Approaches

The COP approaches to programming on workstation systems
can be grouped under the following categories with some amount
of overlap between the various categories.

l Bare socket programming,

l Remote procedure calls,

l Remote execution,

l Message-passing abstractions,

l Shared memory abstractions,

l Object-oriented abstractions.

Some of them have been proposed for parallel programming
whereas others are intended for providing distributed services.
We analyse the suitability of these approaches from the parallel
programming point of view.

ANONYMOUS REMOTE COMPUTING MODEL 41

3.3.1 Socket Programming

The most primitive constructs for inter-process communication
between workstations are sockets. Communication is at the level
of untyped byte streams. This approach provides no support for
the requirements discussed in almost all the four categories.
Support for intermediate representation such as XDRs is provided
in order to handle the heterogeneity of data representation.
However, issues such as the selection of nodes, tackling of failures,
load adaptability, and heterogeneity at the level of the executable
code, have to be handled explicitly by the program.

3.3.2 Remote Procedure Calls (RPCs)

An RPC attempts to bridge the semantic gap between a local call
and a remote call. Communication is typed and the services are
predetermined. Usually, parallel programs are written with RPC
in combination with lightweight threads [8], [32]. There have been
attempts to extend the RPC mechanism to heterogeneous
environments [10], [42]. These attempts largely focus on the issue
of the design of the stub generator for heterogeneous RPC systems.
However, these constructs do not address the specific issues in
parallel programming on loosely coupled distributed systems. RPC
requires services to be placed on servers and exported before a
program starts executing. A programmer can explicitly start
processes on nodes, which might lead to severe load imbalances
in the system. In other words, these constructs do not make a
distinction between the programmer’s concerns and the system’s
concerns in the case of loosely coupled distributed systems. RPC
is more appropriate for providing distributed services rather than
for writing parallel programs on workstation clusters.

3.3.3 Remote Execution

A remote execution facility allows for migrating code fragments
to remote servers for execution. The REV has been developed for
providing migration of executable code to servers [37]. The main
motivation in developing REV is to reduce the client-server
communication. Instead of moving large amounts of data from
servers to clients for processing, the executable code is migrated

42 GRID COMPUTING

to the server site and the results are sent back to the client. A
similar approach can also be found in computation migration
[23]. Remote execution as a standalone paradigm is also not
suitable for parallel programming on workstations due to its lack
of adequate support for heterogeneity, load adaptability, and fault
tolerance.

3.3.4 Message Passing Abstractions

These are the higher level abstractions to bare socket programming.
The concept of typed data communication is introduced and
untyped byte communication can still be retained. Programming
languages such as Lynx [35] and programming platforms such as
PVM [40], P4 [11], and MPI [29] support various abstractions of
message-passing. For example, PVM supports the transmission of
several data types such as integer or float streams along with byte
streams. Some of the problems faced by the bare socket program-
ming model are eliminated here. The model is easier to use due
to its elegant abstractions. However, adequate support is not
provided for heterogeneity, migration, load adaptability and fault
tolerance. If a remote machine fails, the state of a process on that
machine is lost and such a failure has to be handled explicitly at
the programmer’s level. Message Parallel Virtual Machine (MPVM)
[14], a version of PVM, provides support for process migration.
However, process migration-based solutions are useful for adapt-
ing to load variations on homogeneous systems only.

3.3.5 Distributed Shared Memory Abstractions

They range from bare distributed shared memory support such as
the Mether system [28], TreadMarks [2], and Munin [13] to high-
level shared memory abstractions such as Orca [7] and Linda
[12]. Shared memory abstractions appear to provide a much easier
programming interface than message-passing. Linda supports
distributed data structures to which multiple processes can have
simultaneous access. Multiple processes can be started on different
nodes. In Orca, objects are shared between processes and their
children. A new process can be forked explicitly on a processor
by using a ‘fork’ construct. Once a process is forked on a machine,
it may suffer from loading effects. Once the number of processes

ANONYMOUS REMOTE COMPUTING MODEL 43

is fixed by a program, it cannot utilize the additional computing
power that becomes available during runtime.

3.3.6 Object-oriented Abstractions

In recent years, several object-based and object-oriented paradigms
such as Emerald [9], Orca [7], CHARM++ [27], and Mentat [18]
have been proposed for distributed computing. Processes are
replaced by objects. The communication in this case is inter-
object rather than inter-process. Consequently, the COP model is
still preserved but at the level of objects. The various drawbacks
of these abstractions in the context of workstation systems have
been discussed in [26].

In this context, we introduce the paradigm of ARC that
eliminates the problems of the COP model of parallel program-
ming on workstations. Programs are not written as a collection of
communicating processes, but as a collection of several loosely
coupled RIBs within a single program entity. RIBs are open-
ended and migrate to convenient anonymous remote nodes dur-
ing runtime. This approach makes programs fault-tolerant,
heterogeneous and load-adaptable. At the same time, ARC keeps
programs easy to understand by separating the system’s concerns
from the programmer’s concerns.

For the programmer, the nodes in the network remain
anonymous and a runtime system starts the required processes on
remote nodes by considering the loads on these nodes. In order
to handle architectural differences, the source code of tasks that
are RIBs, is identified and stored separately. The mechanisms of
migration and lazy compilation of RIBs are used for executing the
tasks on heterogeneous nodes. Primitives are provided for handling
variations in loads and speeds dynamically.

3.4 The ARC Model of Computation

The ARC model of computation is designed to meet the following
two goals of parallel programming on workstation systems:

44 GRID COMPUTING

1. Clear separation between programmer’s concerns and
system’s concerns, and

2. Account for heterogeneity, fault tolerance, load adaptability,
and processor availability.

The origin of the conventional COP model of parallel pro-
gramming on workstation systems can be traced to the process-
based multi-programmed machine with various inter-process
communication mechanisms. Networking of multiple multi-
programmed machines led to a direct adaptation of this model to
distribute programming as in Synchronizing Resources (SR) [5]
and Lynx [35], and subsequently to parallel programming as in
PVM [40]. The trends in the cluster computers show proliferation
of a large number of heterogeneous workstations in a Local Area
Network (LAN) configuration. An important characteristic of this
cluster of workstations is the dynamically changing loads on them,
which makes the task of harnessing the idle computing capacity
for parallel programming a very challenging task. The changing
load on these systems coupled with link and processor failures
make the conventional COP model unsuitable for parallel pro-
gramming on these systems. The ARC model has been proposed
to address these requirements of parallel programming on a
cluster of workstations.

Since multiple processes are involved in the COP model, pro-
grams are difficult to understand and debug in it. The explicit
programming of communication between entities may lead to
synchronization errors. The ARC model aims at eliminating the
creation of explicit entities mapped onto different machines. A
program in the ARC model consists of a single entity comprising
multiple loosely coupled blocks.

Figure 3.2 shows an overview of the ARC model. An ARC
program consists of several loosely coupled RIBs linked via
synchronizers. An RIB is a code fragment that can be executed
on an anonymous remote machine. An ARC program may have
multiple RIBs that can be executing simultaneously. RIBs are
synchronized with the help of synchronizers. RIBs do not involve
mechanisms of process creation, or inter-task communication. The
nodes on which the RIBs have to execute remain anonymous to

ANONYMOUS REMOTE COMPUTING MODEL 45

FIG. 3.2

Overview of the ARC Model

the program. The runtime system known as the ARC system
decides the nodes on which RIBs are to be executed. The target
node thus remains anonymous to the program. It is also possible
to migrate an RIB onto a heterogeneous node. An RIB is submitted
for a possible remote execution by a user program. At a time,
multiple programs can be generating RIBs and multiple anony-
mous remote participants can be joining or leaving the ARC
system. An RIB can further generate new RIBs.

3.4.1 Comparing ARC and COP Models

The computing entities in the COP model are processes or objects
working directly on top of the operating system, whereas in the
ARC model, they are remote instruction blocks within a single
program. Figure 3.3 brings out the differences between the current
COP approaches and the ARC model on the basis of patterns of
synchronization among the computing entities. The COP appro-
aches are classified into five classes, viz. task synchronous, call
synchronous, call asynchronous, message synchronous, and mes-
sage asynchronous systems.

46 GRID COMPUTING

FIG. 3.3

Comparing COP and ARC Models

3.4.1.1 Task Synchronous Systems

A task synchronous system provides synchronization between
computing entities at the task level. Two computing entities are
synchronized at initiation time or the completion time of tasks.
The Linda [12] system is an example of the task synchronous
COP approach. Tasks can be deposited in a tuple space and
decoupled processes pick up the deposited tasks.

3.4.1.2 Call Synchronous Systems

In a call synchronous system, two computing entities communicate
by calling methods defined by each other. When an entity calls a
method, it expects an action to be taken and further blocks for
the result to return. RPC [31] and the Distributed Processes model
[21] are the examples of call synchronous COP systems.

ANONYMOUS REMOTE COMPUTING MODEL 47

3.4.1.3 Call Asynchronous Systems

Some of the distributed object-oriented programming systems are
call asynchronous systems. In these systems, method calls return
immediately in a non-blocking fashion. Either a ‘future’ mechanism
is used or a ‘call back mechanism’ is implemented to obtain the
return value of a call. The ‘latency tolerance’ mechanism of
CHARM++ [27] is an example of a call back system whereas the
‘return-to-future’ mechanism of Mentat [18] is an example of a
future-based call asynchronous system.

3.4.1.4 Message Synchronous Systems

Two computing entities exchange messages such as arbitrary data
values. Message communication is blocking. Communicating
Sequential Processes (CSP) [22] is an example of a message
synchronous COP system.

3.4.1.5 Message Asynchronous Systems

Two entities exchange messages such as data values at any arbitrary
point of time. This type of synchronization can be achieved by
shared memory as well as message-passing techniques. Since a
message can arrive at any time, messages are usually typed and
the receiving process knows the type of the incoming message.
The conventional Distributed Shared Memories (DSMs) and
message-passing mechanisms such as PVM [40] and MPI [29] are
the examples of a message asynchronous COP system.

3.4.1.6 The ARC Approaches

ARC extends the computing entities in the horizontal domain to
RIBs. However, in the vertical domain, ARC can be classified as
a task synchronous system. In an ARC system, the synchronization
is provided at the beginning or completion of RIBs that can be
seen as loosely coupled tasks. The synchronization is provided
with the help of synchronizers as discussed later in this section.
Parsets [25] and Object-based Sub-contracting (OBS) [26] are two
high-level ARC approaches proposed by us that fall into this
category.

48 GRID COMPUTING

The development of message synchronous and message
asynchronous procedural ARC paradigms, and call synchronous
and call asynchronous object-oriented ARC paradigms requires
support for communication among RIBs executing on anonymous
nodes. This is a very challenging task and needs further research.
The arrowhead in Fig. 3.3 captures the scope for future develop-
ments in ARC paradigms.

3.4.2 RIBs and Synchronizers

Figure 3.4 shows an example adaptive quadrature [4] program
depicting the use of RIBs and synchronizers. RIBs are the code
segments that can be executed at anonymous nodes. Synchroniza-
tion between independently executing RIBs is achieved through
synchronizers.

3.4.2.1 Remote Instruction Blocks

In Fig. 3.4, a special variable called RIB variable R is introduced
to mark a control specification as a remotely executable block.
The variable R is bound to a function call AQ() that computes the
area under a curve bounded by given left and right boundaries.
Once an RIB variable is bound, a reference to the variable in an
EXEC call executes the code associated with the RIB variable.
The EXEC call encapsulates the system’s concerns such as fault
tolerance, heterogeneity and load adaptability from the program.
An RIB is migrated to a suitable remote node by the runtime
system. In the case of heterogeneity, the RIB source code is
migrated and the mechanism of lazy compilation is used to execute
the RIB.

The approach of the migrating code was exploited earlier by
researchers in the case of functional languages. Falcone developed
a LISP-based language called NCL to support Remote Function
Evaluation (RFE) [19]. In a different approach, Stamos and Gifford
developed a remote form of evaluation [37], which introduces the
execution of a function at a remote node. In contrast to these
approaches, RIBs are open-ended blocks for which the target
machine for execution is unknown until execution time. An RIB
execution isolates the programmer from the addressing system’s
concerns at the programmer’s level.

ANONYMOUS REMOTE COMPUTING MODEL 49

main () {

...

double left, right, middle;

double area1, area2, totalArea;

RIB R;

SYNC S;

...

middle = (left + right)/2;

//divide the task

R area1 = AQ (left, middle);

// mark one task as RIB

S = EXEC R; // execute RIB

area2 = AQ (middle, right);

// inlined code of second

task

WAITFOR S; // synchronizer

totalArea = Area1 + area2;

...

}

An RIB should support the following two basic properties:

1. Open-endedness,

2. Fault tolerance.

Open-endedness

The target machine for execution is unspecified. As a consequence
of this property, heterogeneity and load adaptability are supported.
Since the target machine is unspecified, a suitable anonymous
node may be selected at runtime depending upon the load

FIG. 3.4

An Example of an ARC Code

50 GRID COMPUTING

conditions. If the anonymous node is heterogeneous, the source
code of the RIB needs to be migrated.

Fault Tolerance

Support is provided to make sure that an RIB is executed at least
once. In case of the failure of an anonymous node, the RIB may
be executed on a different node, or in the worst case, execution
on the host node can be guaranteed. The choice of a scheme of
fault tolerance depends upon the semantics of the high-level ARC
constructs. For example, an ARC construct may provide automatic
execution on the host node by in-lining the failed unit in the case
of repeated failures, whereas another ARC construct may report
the failure to the program and leave the decision of re-executing
the code fragment to the program.

ARC is developed in a two-tiered architecture. At the top layer,
RIBs are expressed in a high-level program by using language
extensions to existing languages such as C or C++. At the lower
level, the basic primitives for anonymous remote computing are
provided. It is possible to develop different higher level paradigms
that provide the above two basic characteristics of RIBs. We have
earlier proposed two high-level ARC paradigms, Parsets and OBS,
which are tailored to the needs of procedural and object-oriented
programming, respectively. These two paradigms extract RIBs
from specially designed language constructs.

3.4.2.2 Synchronizers

Synchronizers are mechanisms that are needed to achieve
synchronization between independently executing RIBs. Two types
of synchronizers called ‘Sync variables’ and ‘lock specifications’
are provided. Figure 3.4 shows the first type of synchronizer, the
SYNC variable. An RIB execution is assigned to a SYNC variable,
S. At any later point, the program can be made to wait on the
SYNC variable to assure that the execution sequence of the
associated RIB is completed. Functional languages have used
similar variables called future variables [20].

Parsets and OBS use lock specifications as synchronizers. In
Parsets, function arguments are locked as RO, WO, or RW during

ANONYMOUS REMOTE COMPUTING MODEL 51

execution. If an argument is RO-locked, it can be made available
to a subsequent function execution. A function begins its execution
when desired locks on all of its arguments are obtained. A similar
scheme is used in OBS wherein locks are obtained on objects for
message invocations. Locks provide auto-synchronization whereas
SYNC variables are explicit synchronizers.

3.4.3 Dynamically Growing and Shrinking Trees

Computationally, ARC programs can be represented as
‘dynamically growing and shrinking trees’ as shown in Fig. 3.5.
An RIB can further generate new RIBs. As RIBs complete
execution, the tree shrinks.

FIG. 3.5

Dynamically Growing and Shrinking RIBs

If more RIBs are generated during execution, a shrinking tree
may again start growing. Since ARC is a task synchronous system,
synchronization is provided at the beginning or completion of an
RIB. Communication between RIBs is not supported. The
capability of RIBs to spawn new RIBs along with the task
synchronization scheme results in the dynamically growing and
shrinking tree model. Achieving different types of RIB communi-
cation rather than just task synchronization is a very challenging
task and needs further research.

52 GRID COMPUTING

3.4.4 Benefits of the ARC Model

The ARC model is based on RIBs contained in a program instead
of a COP that communicates explicitly. This approach grants
distribution transparency to parallel programs on workstations.
RIBs can be made heterogeneous by the ARC system by runtime
source-code migration and re-compilation. In this way, ARC also
provide heterogeniety transparency. Transparency to distribution
and heterogeneity removes the burden of programming for
distribution and handling of heterogeneity at the programmer’s
level. The ARC approach grants the property of statelessness to a
remote server executing a parallel task. Since ARC avoids the
notion of processes containing state of parallel computation, it
does not face the problems that arise in the COP model out of the
failures of its participant processes. Stateless executors and the
ability to locally or remotely re-execute RIBs free the programmer
from the task of handling failures at the programming level. The
ARC model makes programs load-adaptable. The dynamically
growing nodes of a task tree may be suitably clustered and awarded
to available machines. Transparency to distribution and heteroge-
neity makes it possible to load the tasks dynamically on suitable
machines. Moreover, ARC provides an abstraction called Horse
Power Factor (HPF), which gives a measure of the current pro-
cessing power of a machine. Abstracting load and speed (i.e.
heterogeneity) in this way makes it possible for a parallel program
to execute on unevenly loaded heterogeneous machines.

3.5 The Two-tiered ARC Language Constructs

In this section, we introduce the two-tiered ARC language
constructs. The lower layer provides primitives to support system
tasks such as the creation of RIBs, fault tolerance, load sensing
and source code migration. The upper layer consists of higher
level language extensions that advocate ARC programming
methodology.

ANONYMOUS REMOTE COMPUTING MODEL 53

3.5.1 The Evolution of RIB

Execution of the code at remote nodes is a widely used program-
ming paradigm in distributed systems. As classified in Section 3.3,
they fall into two categories of RPCs and remote execution. Table
3.1 summarizes the main differences between the RIB approach
and these paradigms.

RPC is perhaps the most popular remote execution paradigm
used to build distributed applications. Many specific RPC protocols
have been developed in recent years to meet the application-
specific requirements. For example, the blocking RPC [31] has
been extended to MultiRPC, in which, the client can make calls
simultaneously to multiple servers for locating files [34]. In the
conventional RPC paradigm, the remote procedure is compiled
and registered with the server process. In other words, the server
exports a set of procedures that can be invoked by the clients. In
the case of ARC, a program identifies several RIBs that may be
executed on remote nodes concurrently. Thus the RIBs are part
of client programs and not of the procedures that servers export.
RIBs can be migrated and executed on other nodes.

Migration of RIBs is different from the heavyweight process
migration employed by operating systems for load balancing [1],
[36]. However, a programmer may not distinctly benefit from
process migration mechanisms unless the program is broken into
a collection of concurrent processes as in the COP model.

REV has been developed for providing the migration of
executable code to servers [37]. The main motivation in developing
REV is to reduce the client-server communication. Instead of
moving large amounts of data from servers to clients for processing,
the executable code is migrated to the server site and the results
are sent back to the client. A similar approach can also be found
in computation migration [23]. The computation is migrated to
the data site to exploit the locality of data references. Although
our approach resembles the REV and the computation migration
in migrating the code to the remote node, the motivation is parallel
programming on anonymous nodes providing fault tolerance,
heterogeneity and load adaptability rather than distributed
application development with well-known servers and clients.

54 GRID COMPUTING

Table 3.1 The Evolution of RIB

Mechanism Motivation Execution Remarks

Process
Migration

Computation
migration

RPC

muti-RPC

REV

RIB

Load balancing

Enhancing loca-
lity of references

Transparent
access to remote
procedures

Multiple remote
calls at a time

To reduce
c l i en t - s e rve r
communication

To support
ARC paradigm,
to integrate fault
tolerance, load
adap tab i l i t y ,
scalability, hete-
rogeneity from
p a r a l l e l i s m
point of view at
language level

Runtime migra-
tion of processes

Migrate compu-
tation accessing
remote data

Blocks the client
when server
executes the call

Multiple RPC
calls made to
servers

Function mig-
rates from client
to server at
runtime

P r o c e d u r e s
migrated at
runtime, servers
are anonymous

Heavy migration
cost, unsuitable
for heterogeneous
architectures

Does not address
parallelism

Placement of
functions on
servers is pre-
d e t e r m i n e d ,
parallelism not
supported

Used in locating
files from multiple
servers, function
placement is pre-
determined

Parallelism is not
addressed, focus
is on distributed
system services,
program is given
control over loca-
tion of processing

Supports anony-
mous computing
on workstation
systems, nested
RIBs possible,
runtime as well as
compile time sup-
port is required

ANONYMOUS REMOTE COMPUTING MODEL 55

RIBs are the basic building blocks of an ARC program. The
lower layer ARC interface consists of a set of constructs which are
used to specify and manipulate various parameters associated with
RIBs. The distributed ARC kernel provides the runtime support
for the RIBs. An RIB can be submitted, executed, and manipulated
with the help of the ARC kernel interface calls.

3.5.2 The Design of the Lower Layer ARC

Interface

The lower layer ARC provides support for the execution of RIBs,
fault tolerance and load adaptability. An ARC-distributed kernel
implements these functionalities. The implementation of the kernel
is described in the next section while the ARC interface is described
in detail in this section. In this sub-section, a detailed overview of
the ARC Primitives (ARCPs) is provided.

An RIB execution goes through the following steps:

1. obtain a lock on an anonymous computing unit,

2. pack the arguments to the RIB,

3. post the RIB on the lock obtained,

4. obtain the results of the RIB execution.

Locks have to be obtained on anonymous remote nodes as a
confirmation for execution. The kernel releases locks depending
upon the number of anonymous computing units in the systems.
Locks are associated with an HPF. The HPF encodes the load
and processing capacity of an anonymous node. After obtaining a
lock, an ARC program may dynamically post a larger or a smaller
RIB grain depending upon the lock value. After securing a lock,
the arguments to RIB are packed together and the RIB is posted
to the kernel. The results of an earlier posted RIB can be obtained
at a later point of time. The ARCPs are discussed in three groups
namely, start-up and close-down primitives, RIB support primitives
and the HPF and asynchronous intimation primitives for load
adaptability.

56 GRID COMPUTING

3.5.2.1 Start-up and Close-down Primitives

Before generating the ARC calls, a program needs to identify
itself with the ARC kernel. This is done by using the ARC start-
up() primitive. A call to this primitive establishes the necessary
connections and performs the necessary initializations. The kernel
keeps track of open connections. The ARC close-down() primitive
unlinks the program from the ARC kernel, disconnects already
established connections, and advises the kernel to update its state.

3.5.2.2 Primitive Support for RIBs

This section explains the RIB primitives for packaging arguments,
posting RIBs and receiving remote results. RIBs are extracted
from an ARC program and kept separately in the local file system.
They are made available in the form of compiled code as well as
in the form of source code. Depending upon the location of the
remote machine and its heterogeneous or homogeneous nature,
the source code or the executable code is migrated.

Primitives for Packaging

The openDataPack() primitive returns a new data-pack handler, in
which an arbitrary number of arguments can be inserted by using
the insertDataPack() primitive. Data is inserted into the data-pack
pointed by the data-pack handler. Any number of insert calls can
be made on a particular data-pack handler till the handler is
closed for further inserts. A contiguous packet is prepared for all
the inserted arguments by calling the primitive closeDataPack().
Every RIB prepares its new data-packet with these three primitives.

Primitives for RIB Posting

The postRib() primitive is used to post an RIB to the ARC kernel
which can allocate the RIB to an earlier obtained lock. It is a non-
blocking call, and it returns immediately with a work identifier.
The work identifier can be used at a later point of time to obtain
its results and also to alter the parameters related to the
corresponding RIB. Its arguments are the RIB identifier, the
argument packet handler, and parameters to control re-execution.

ANONYMOUS REMOTE COMPUTING MODEL 57

If the remote node fails, the retries parameter can suggest re-
execution on a possibly available anonymous node if the time-out
for the RIB is not elapsed. The retries parameter gives the
maximum number of retries to be made within the given time-out
for the RIB. A specific fault-tolerant behaviour can be obtained
with the help of this retry-till-time-out mechanism. These two
parameters can be changed dynamically as explained subsequently.

The primitive obtainResult() is used to obtain the results of an
earlier RIB posted for remote execution. It returns a structure
containing a status value along with other information such as the
actual result pointer and execution time for the successful
execution.

The status value WORK_IN_PROGRESS is returned if the time-
out is reached but the result is not yet available. In this case, the
time-out value may be incremented with the help of a call to
setParam(). If the time-out is not reached, the call blocks.
Subsequently, if the RIB is successfully executed, the call returns
with a status value RESULT_OBTAINED along with the actual
result. In case of a failure of the remote node, if the time-out
value for the RIB is not crossed and retries are warranted, it tries
to obtain a lock on an anonymous node to resend the RIB for re-
execution. In case of a successful resend, the call returns with a
value FRESH_TRY. If an anonymous node cannot be contacted
due to its unavailability or due to the time-out value, a value
REM_FAILURE is returned. In this case, the program is advised to
execute the code by in-lining or to try again at a later time for a
remote execution.

Primitives for Parameter Setting

The setParam() primitive is used to set the control parameters for
a particular RIB posting. The parameters that can be controlled
are the time-out value and the number of maximum retries that
can be made within the time-out period in the case of failures.
The time count starts when the work is posted. In the case of
failures, the ARC kernel internally manages a fresh execution of
the ARC call as explained above. The values of the parameters
can be altered dynamically. A fresh call to setParam() resets the

58 GRID COMPUTING

parameters to new values. Time-out can be set to an arbitrarily
large value of INFINITY.

3.5.2.3 Horse Power Factor and Asynchronous Intimations

Load adaptability is a major concern for ARC. ARC provides
basic primitives to provide load adaptability to programs without
enforcing the actual load distribution scheme at the kernel
implementation level in contrast to earlier schemes such as the
multi-level scheduling in CHORES runtime system [17]. HPF
and asynchronous intimations are the two primitives that help
programs to become adaptable to variations in loads and speeds
of machines in the clusters.

The Horse Power Factor (HPF) Primitive

An HPF corresponding to a machine at a given time represents its
processing capability at that time. It is a dynamically varying
number. Various machines in the network are normalized by a
benchmark program to obtain a relative index of speeds. This
relative index is statically obtained. The HPF for a machine is
dynamically obtained by considering this relative index and the
load on that machine. The motivation behind the HPF is that, if
differently loaded heterogeneous machines generate the same HPF
figure, a task awarded to them is ideally expected to take the
same time. Table 3.2 captures the utility of the HPF. The task run
was a double precision 200 × 200 matrix multiplication program.
The test was conducted on load conditions. The task was sub-
divided into four smaller tasks based on the HPF obtained. It can
be seen that a fair amount of load balance is obtained. More
detailed studies for dynamically generated tasks are presented in
the Performance section.

The obtainLock() primitive is used to secure a lock on an
anonymous node and obtain the HPF for the locked unit in return.
Using the HPF, the program may post an RIB with an appropriate
grain size. The call takes an input argument that specifies an
expected processing power. The expected processing power can
be chosen from the available standard values of LOW, MEDIUM,
HIGH, XHIGH, and ANY.

ANONYMOUS REMOTE COMPUTING MODEL 59

Table 3.2 Performance of the Horse Power Factor

Task: 200 ¥ 200 Matrix Multiplication

Machine No. of users HPF Allocated Execution
on the machine observed task size time (sec)

Pelcan (Sun 3/50) 2 72 2 ¥ 200 10.76
Bunto (Sun Sparc) 4 853 18 ¥ 200 9.83
Pterano (Sun Sparc) 9 1457 30 ¥ 200 8.29
Vanavill (IBM RS/6000) 8 7420 150 ¥ 200 10.87

The Asynchronous Intimation Primitive

The asynchronous intimation facility is provided in order to sup-
port dynamically growing tasks. With this facility, whenever an
anonymous node becomes ready to accept remote RIB requests,
an intimation can be delivered to an ARC-registered program.
Such an intimation is only an indication of a possible availability
and not a guaranteed allocation. A lock can be obtained upon the
delivery of an asynchronous intimation.

A call to the intimationReceived() primitive returns a value TRUE
if an asynchronous intimation is received earlier. Any subsequent
call to this function requires the receipt of a new intimation in
order to obtain a value TRUE again. Asynchronous intimations
help in reducing lock-seek time, since every lock-seek operation
involves contacting the ARC-distributed kernel whereas asynchro-
nous intimations are accessible with a function call. If the call
returns a value FALSE, the lock-seek overhead can be avoided.
This facility is especially useful for dynamically growing tasks. In
such cases, upon the receipt of an asynchronous intimation, a
lock can be tried and subsequently, a new task can be posted.

3.5.3 The Upper Layer ARC Constructs

The primitives explained above are built over the ARC kernel. A
high-level ARC language paradigm may use these primitives in
various ways to provide easy-to-use ARC language constructs.
We have earlier proposed Parsets and OBS, the two ARC language

60 GRID COMPUTING

paradigms for procedural and object-oriented programming,
respectively. Although these paradigms use a specific implemen-
tation different from the one described above, they are good
examples of high-level ARC paradigms. They use argument lock-
ing and object locking for synchronization. RIBs are function calls
in the case of Parsets and meta message invocations called sub-
contracts in the case of OBS.

We present another example of a high-level ARC construct,
the ARC function call, in the following section. While Parsets and
OBS capture parallelism within a single method invocation or a
single sub-contract, the ARC function call models a sequential
function invocation which may be executed at an anonymous
remote node. An ARC function call can be made blocking or
non-blocking. A non-blocking ARC function call is provided with
a synchronizer in order to support concurrency outside the ARC
call.

3.5.3.1 Blocking and Non-blocking ARC Calls

In this scheme, the user can tag the functions as belonging to one
of the blocking or the non-blocking call classes. Examples for
these calls are provided in Fig. 3.6. While generating the lower
level ARC interface calls from these specifications, appropriate
default values are set for time-out and retries parameters. The
blocking adaptive quadrature call may be executed on a remote
anonymous node and the call returns only after successful
completion. Internally, the runtime environment should manage
the re-execution or in-lining in the worst case. Default values for
time-out and retries can be chosen as INFINITY and ZERO. The
blocking ARC function call provides functionality similar to RPC,
with the difference of the client migrating the function to be
executed on an anonymous node. Instead of running a function
on a slow host, it can be migrated transparently to a fast node.
The blocking ARC function call is not designed for providing
parallelism, but is targeted at providing speed-up to a conventional
sequential function call.

The non-blocking version of the ARC function call needs a
synchronizer. While the call returns a synchronizer, it may be

ANONYMOUS REMOTE COMPUTING MODEL 61

double AQ-blocking (double lower, double
upper)

<< BLOCKING ARC >> {

double area;

// compute area under the curve
with given cut offs

return (area);

}

SYNC AQ-nonBlocking (double lower, double
upper) : double

<< NONBLOCKING ARC >> {

double area;

// compute area under the curve
with given cut offs

return (area);

}

main () {

double L, U, Area;

SYNC S; ...

S = AQ-nonBlocking (L, U); // function
call returns immediately

...

Area = AQ-blocking (L, U); // blocks
till completion

print Area; // return value of the
blocking function

waitOn (S, &Area); // synchronizer

print Area; // return value of the
nonblocking function

}

FIG. 3.6

Blocking and Non-blocking ARC Function Calls

62 GRID COMPUTING

executing on a remote anonymous node. At a later point of time,
the result of the non-blocking call can be obtained by waiting on
the corresponding synchronizer. It can be seen that the synchroni-
zation scheme in Fig. 3.6 differs in a minor way from the scheme
given in Fig. 3.4. In the example shown in Fig. 3.4, the high-level
ARC construct makes only a particular function invocation as an
ARC call by using RIB variables, whereas, in this example, all
invocations of a given function are treated as ARC calls. The
postRib() function call described above is an example of a lower
level non-blocking ARC function call. In this way, it is possible to
provide appropriate higher level ARC language semantics to suit
the higher level requirements. More detailed higher level ARC
language constructs are discussed elsewhere [25], [26].

3.6 Implementation

The anonymous remote computing mechanism is provided as an
extension to C language. It is implemented on a heterogeneous
cluster of workstations consisting of IBM RS/6000s, Sun Sparcs
and Sun 3s. There are four IBM RS/6000 running AIX, three
Sparcs running Solaris 2.3, and 18 Sun-3s running SunOS 4.0.3.
In this section, we describe the implementation of ARC in this
environment.

Figure 3.7 depicts the architecture of the ARC implementation.
A distributed ARC kernel is spread over the workstations that
participate in anonymous remote computing. The entire domain
is partitioned into three logical clusters having a separate file
system for each one. The ARC kernel consists of multiple local
coordinators to co-ordinate local activities and one system coordi-
nator to co-ordinate the global activity. Each machine that in-
tends to participate in the ARC system runs a local coordinator.
The kernel supports the lower layer ARC primitives. It is possible
to write ARC programs by directly using these primitives. Upper
layer ARC programs such as those discussed in earlier sections
can be converted into lower layer ARC programs consisting of
these primitive calls.

ANONYMOUS REMOTE COMPUTING MODEL 63

FIG. 3.7

The Distributed ARC Kernel

3.6.1 The System Coordinator

There is only a single system coordinator in a given domain of
logically grouped clusters. The system coordinator’s functions are
to manage locks, route RIBs, and maintain migration history. It
only functions as a policeman controlling and routing the traffic
of ARC calls. It does not function as a task heap. In the following
sub-sections, we discuss the various functions of the system coor-
dinator.

64 GRID COMPUTING

Lock Management

Whenever a machine wants to improve its utilization, it registers
with the system coordinator through its local coordinator. The
system coordinator then creates a free lock for this machine. A
machine may deposit any number of free locks with the system
coordinator through its local coordinator in order to boost its
utilization. A ‘wait queue’ is built for local coordinators seeking
external RIBs through these free locks. Whenever a lock request
arrives, a statistics-daemon is contacted to access the current load
information for a given machine. From the current load information
and the normalized speed of the machine, the HPF is computed
and returned in response to the lock request.

Routing RIBs

An RIB posting is routed to the corresponding free local coordi-
nator for execution. An RIB posting consists of the argument
data-packet, the source code or compiled code, whichever is
appropriate, and the make directives for various architectures. In
case of heterogeneity, the RIB source code is requested. Along
with the source, the relevant make directives are also supplied. In
our implementation, all homogeneous machines have access to
RIB binaries through the file system, whereas, across heterogeneous
machines, the source code is migrated and RIB binaries are
prepared for the target machine. The results of the RIBs are sent
back to the corresponding local coordinators.

Maintaining Migration History

A history of recent migrations is maintained. In the case of
dynamically growing tasks, a machine may receive an RIB task
belonging to an earlier posted source code. If an RIB source is
already posted to a machine in a heterogeneous cluster, the binaries
available in the file system of that cluster can be accessed directly.
Thus, if an RIB with the same source arrives later for any machine
in that cluster, repetitive migration and recompilation are avoided
by using the history of recent migrations across clusters.

ANONYMOUS REMOTE COMPUTING MODEL 65

3.6.2 The Local Coordinator

The local coordinator runs on a machine that participates in the
ARC system either to improve its utilization or to share its work
with an anonymous remote node. Any ARC communication to
or from the local processes is achieved through the local coordi-
nator. The tasks of the local coordinator are described in the
following sub-sections.

Improve Local Utilization

An online command can be executed that directs the local coor-
dinator to obtain a particular amount of work from the ARC
system. This generates an asynchronous intimation that travels to
the remote programs which may possibly use them to execute
newly generated RIBs. When an RIB arrives, the local coordina-
tor creates a task executor process corresponding to the RIB.
Communication between a task executor and the coordinator is
implemented by using Unix Domain sockets. The task executor
process receives the RIB arguments and executes the RIB code.
The results are forwarded to the local coordinator. In the case of a
dynamically growing task, the task executor is retained and an-
other set of arguments for the same RIB may arrive. A task ex-
ecutor may also generate new RIBs. These RIBs can be further
submitted for remote execution.

Accept RIBs from Local Processes

RIBs are initially generated by user processes. Later the RIBs
themselves may generate new RIBs. A new RIB may be generated
upon the receipt of an asynchronous intimation. The local coordi-
nator provides the intimation to a program by using a signal.
When the results of remote RIBs arrive, they are queued up in a
result queue. When a synchronizer in the program requires a
particular result, the result queue is searched.

3.6.3 The RIBs

RIBs are extracted from the program by using an ARC compiler.
Following are the major tasks of the ARC compiler. An RIB code

66 GRID COMPUTING

is generated by using a generic RIB process that accepts arbitrary
arguments and posts a result. Dynamic RIBs do not die immedi-
ately and can further accept a new set of arguments. A specialized
RIB is prepared from the generic RIB by integrating the required
code fragments into it. Also associated with each RIB is a set of
make directives that dictate the compilation process on different
available architectures. Whenever an RIB is migrated to a hetero-
geneous architecture, the appropriate make directive is also mi-
grated. Using the make directive, the remote local coordinator
compiles the RIB.

3.6.4 Time-outs and Fault Tolerance

The code that maintains the time-outs is integrated with the code
that generates RIBs. A timer signal ticks at regular intervals. The
time-out parameter in the lower layer ARC primitives is specified
in terms of this interval. The current clock value is maintained in
a variable that is accessed by the obtainResult() primitive to provide
the time-out semantics as explained in the earlier section.

A remote node failure is detected by the system coordinator
when the local coordinator fails. The system coordinator main-
tains a list of incomplete jobs allocated to various local coordina-
tors. Whenever the failure of a coordinator is detected, an RIB
failure intimation is sent to the source program. A local coordina-
tor may detect the failure of an executing RIB process, which
might possibly occur due to program bugs. Such failures of an
RIB are also reported back to the source program of the RIB.
Upon the detection of a failure, if the values of the time-out and
retries parameters permit a re-execution, the RIB may be resent to
another suitable remote node.

3.6.5 Security and Portability

Security in ARC implementation is built over the security provided
by operating systems over which ARC is implemented. The sys-
tem coordinator accepts connections only from local coordinators
on trusted clients. The addition of a new machine into the system
has to be registered with the system coordinator before it can be
used to run ARC programs. A remote local coordinator accepting

ANONYMOUS REMOTE COMPUTING MODEL 67

RIBs arriving from anonymous nodes runs with specific user per-
missions especially created for the purpose of ARC computa-
tions.

Portability to ARC programs is provided by making various
ARC libraries portable across systems that are registered with the
ARC system coordinator. Typically, the libraries that support the
implementation of ARC primitives are made portable. However,
the portability of the user’s C code has to be ensured by the user.

When an RIB migrates to a heterogeneous node for dynamic
compilation, the directives for the compiling environment are
also migrated along with the RIB source code. An example of the
compiling environment directive is the –lm option for compilation
of an RIB that references functions supported by a portable math.h
package.

3.7 Performance

The ARC approach provides an alternative to the conventional
COP approach of parallel programming on a network of
workstations. ARC provides for heterogeneity, fault tolerance and
load adaptability to parallel programs. In this section, we detail
various performance tests to highlight these aspects of ARC.

3.7.1 Adaptability on Loaded Heterogeneous

Workstations

This test was conducted to highlight the capability of an ARC
program to run effectively on a heterogeneous system in the
presence of load. The network consisted of IBM RS/6000s, Sun
Sparcs and Sun 3/50s and Sun 3/60s workstations. The test was
conducted for a TSP using a variant of SA algorithm described by
Janakiram, et al. [24]. This problem was chosen for the adaptability
test due to its high computation to communication ratio, and
dynamic task generation capabilities. The program starts with an
initial solution space and an initial temperature. Locks are obtained
on available anonymous processors by dividing the initial solution

68 GRID COMPUTING

space among them. Each processor carries out a number of itera-
tions over each grain that it receives. As the results are brought
back, the temperature is gradually reduced. As the temperature
reduces, the tree is expanded by a factor of 2 to generate tasks
dynamically. The tree can have smaller depths while it explores
more breadth-wise. Each time a node finishes its task, a fresh lock
is deposited by the node in order to obtain a new set of tasks. The
ARC program assigns a varying number of tasks on a lock based
on its judgment of the corresponding HPF. In every hop, a
processor may get a different task size based on its current HPF.
Obtaining a lock involves an RPC call by the system coordinator.
The system under test consisted of two different networks, an
FDDI ring of 100 MB/sec capacity and an Ethernet of 10 MB/sec
capacity. The lock time was of the order of 100 msec on load
conditions.

The results of the test are summarized in Tables 3.3 and 3.4.
The load on the machines consisted of programs such as editing
and compiling, simulation experiments generating CPU load,
worldwide web (www) browsers generating heavy network traffic,
and background batch jobs. We introduce the Horse Power
Utilization (HPU) figure to capture the utilization of a loaded
heterogeneous multi-programming multi-processor environment.
All the timing figures are quoted as the real-time taken. The HPU
for p processors and k heterogeneous clusters can be computed
as:

HPU =

Total remote computation time
+ Total remote compilation time

 * Total execution time taken
by the host program

P

=
= =

+Â Â
1 1

P k

ci compile j
i j

t

T T

pT
where

Tt = Total time taken by the host program,

Tci = Computation time taken by i th processor

Tcompile j = Compilation time taken by j th heterogeneous cluster

ANONYMOUS REMOTE COMPUTING MODEL 69

Table 3.3 The Heterogeneity Load Test, Sixteen Processors

Task A dyanamically generated tree of total 3100
notes with 2000 iterations per node

Machine No. Average No. of Compilation Processing
of hops HPF per tree nodes time time
taken hop processed (sec) (sec)

IBM RS/6000 33 9209 831 1.31 514.89
IBM RS/6000 18 5088 441 waiting time 592.65
IBM RS/6000 19 5040 441 waiting time 581.80
IBM RS/6000 18 4916 440 waiting time 584.21
Sun Sparc 16 1127 286 20.55 571.44
Sun Sparc 14 959 220 waiting time 563.60
Sun 3/60 40 54 70 nil 540.92
Sun 3/60 39 53 67 nil 546.70
Sun 3/50 35 36 45 nil 574.08
Sun 3/50 34 36 44 nil 556.98
Sun 3/50 36 36 47 nil 565.92
Sun 3/50 30 35 39 nil 566.92
Sun 3/50 29 32 37 nil 557.10
Sun 3/50 30 32 38 nil 562.56
Sun 3/50 29 31 35 nil 554.16
Sun 3/50 17 24 19 nil 580.66

Total no. of locks obtained (total no. of hops) 437
Time spent in obtaining locks 135.24

Total Processing Time 661.84
HP Utilization 85.34%

Task Imbalance 0.15%

Tt includes the total time spent in obtaining locks which provide
the current HPFs for the corresponding locks. Table 3.3 shows
the load shared by 16 heterogeneous workstations. The number
of hops taken is the number of times a workstation obtained
anonymous computing units. The average HPF per hop is indicated
as a measure of availability of a workstation. The total number of
TSP tree nodes processed by a workstation are indicated in the
next column.

70 GRID COMPUTING

T
ab

le
 3

.4
L

o
ad

 A
d
ap

ta
b
il

it
y

T
es

t

N
o.

 o
f

pr
oc

es
so

rs
M

ac
hi

ne
T

re
e

si
ze

 i
n

N
o.

 o
f

 i
te

ra
ti

on
s

A
ve

ra
ge

 H
P

F
L

oa
d

H
P

U
ar

ch
it

ec
tu

re
s

N
o.

 o
f

no
de

s
pe

r
T

re
e

N
od

e
pe

r
H

op
Im

ba
la

nc
e

(%
)

(%
)

4
1

IB
M

 R
S
/6

00
0,

46
5

15
00

12
08

1.
13

85
.8

5
2

S
u
n

 S
p

ar
cs

1
S
u
n

 3
/6

0
8

4
IB

M
 R

S
/6

00
0s

,
15

50
20

00
54

29
0.

43
86

.4
0

2
S
u
n

 s
p

ar
cs

,
2

S
u
n

 3
/6

0s
12

4
IB

M
 R

S
/6

00
0s

,
24

89
20

00
22

16
0.

31
84

.6
5

2
S
u
n

 S
p

ar
cs

2
S
u
n

 3
/6

0s
,

4
S
u
n

 3
/5

0s
16

4
IB

M
 R

S
/6

00
0s

,
31

00
20

00
14

27
0.

15
85

.3
4

2
S
u
n

 S
p

ar
cs

,
2

S
u
n

 3
/6

0s
,

8
S
u
n

 3
/5

0s

ANONYMOUS REMOTE COMPUTING MODEL 71

When a new task arrives at a heterogeneous cluster for the first
time, the source code is transmitted for compilation. The compila-
tion times are also mentioned in Table 3.3. While a task was
getting compiled on a node in a cluster, other nodes in that
cluster waited for the completion of the compilation process. The
last column lists the computation time taken by each workstation.
It can be seen that in spite of large variations in speeds and loads
of the workstations, a good balance was achieved. An HPU figure
is computed as a measure of effectiveness of using the loaded
heterogeneous workstations by a program. HPU includes all
runtime overheads of the system. A load imbalance figure is
computed in terms of the time spent in processing by each
workstation. It gives an indication of the load balance achieved
by the program using the HPF. Load imbalance is computed as
the percentage average deviation from mean processing time.

Imbalance =
=

-Â c mean
1
| |

mean

p

ci
i

c

T T

pT

Table 3.4 shows the results of the test conducted with increasing
task sizes on increasing number of nodes. As we increase the task
size, the HPU on a loaded heterogeneous system can be maintained
at the same high-level with increasing workstation processing
power, similar to the trends in the conventional efficiency figure
on no load parallel systems. However, our experimentation on
dynamic systems shows that it can be extremely difficult to obtain
good HPUs on loaded heterogeneous workstations, irrespective
of task sizes, if good load balancing is not obtained. The HPF
figure can be effectively used in a load balancing scheme that is
developed to implement a given application.

Table 3.4 lists four tests conducted on 4–16 workstations at
different times. From the average HPF per hop figure as listed in
column 5 of Table 3.4, it can be observed that the load in the
network varied from test to test. For all the tests, a good HPU was
obtained with low imbalance figures. The number of iterations
per TSP tree node are also listed in Table 3.4 along with the total
number of tree nodes processed as an indication of the overall
task size.

72 GRID COMPUTING

It can be concluded from Tables 3.3, 3.4, that ARC enables a
parallel program to run in a network of heterogeneous workstations
along with other existing sequential programs running in the
system. The ARC parallel program has no control over the
sequential programs that are started independently on different
machines either from respective consoles or through remote logins.
Instead, the ARC parallel programs adapt themselves to varying
loads and speeds.

3.7.2 The Fault Tolerance Test

The fault tolerance test was conducted by artificially injecting
faults by terminating remote processes. The results are summed
up in Table 3.5. The time-out figure is used for deciding on re-
execution in case of a failure. It can be noted that time-out does
not specify an upper bound on the completion of the task.
Whenever a specified time-out is exceeded by a remote execution,
a new execution is not tried automatically in the case of a failure.
Instead, the failure is reported. However, if the time-out is not
exceeded and a failure is detected, a re-execution is tried
automatically. An upper bound on the number of re-tries is
specified by the retries parameter.

Table 3.5 Fault Tolerance Test

Task: 200 ¥ 200 matrix multiplication
divided into four ARC postings

No. of Time-out Retries Time-out Result of failed
injected specified specified exceeded by ARC postings

failures failed units

0 1000 0 NA Successful
1 1000 0 No Unsuccessful
2 1000 2 No Successful
0 0 0 NA Successful
1 0 0 Yes Unsuccessful
1 0 1 Yes Unsuccessful

ANONYMOUS REMOTE COMPUTING MODEL 73

As an example, in Table 3.5, the third test specifies a time-out
of 1,000 units and a maximum of two retries. Two artificial failures
were injected within the specified time-out, and the ARC posting
was successful in its third attempt. By altering the time-out and re-
tries parameters, a desired fault tolerance semantics can be
obtained.

3.7.3 The Parallelism No Load Test

This test was conducted by using a double precision matrix multi-
plication program on a network of homogeneous workstations on
no load conditions to compare the overheads of ARC with a
widely used traditional COP paradigm, the PVM. The results
were compared with the same program implemented by using
PVM on no load. Table 3.6 summarizes the speed-up figures
obtained for various task sizes. It can be observed that ARC has
slightly more overheads than PVM due to an additional message
indirection through the ARC kernel. These overheads are due to
the fact that ARC provides fault tolerance, load adaptability and
automatic handling of heterogeneity not supported by the conven-
tional COP approaches such as PVM.

Table 3.6 No Load Parallelism Test

Task size Nodes Speed up for PVM Speed up for ARC

50 ¥ 50 2 1.81 1.46
100 ¥ 100 2 1.97 1.75

4 3.72 3.2
5 4.30 3.8

150 ¥ 150 3 2.96 2.63
6 5.55 4.75

200 ¥ 200 4 3.84 3.48
5 4.80 3.48
8 7.20 6.24

3.7.4 ARC vs Sequential Program

This test was conducted to show the system overhead in the case

74 GRID COMPUTING

of a total absence of remote anonymous workstations. In such a
case, the program may still execute on the host node dynamically
by keeping track of availability through asynchronous intimations
as described in Section 3.5.2.3. Table 3.7 shows the results of the
no load inlining test conducted on a Sun 3, with a matrix
multiplication program with varying problem sizes. Absolute timing
figures are given along with percentage slowdown incurred in the
case of in-lining. A significant component of the inlining overhead
is the lock obtaining time. When a program starts, to obtain a first
lock, the system always calls the system coordinator. If a remote
anonymous node is not available, a lock is not ensured and the
program may inline the code. Any further tries to obtain locks
return immediately without success till an asynchronous intimation
arrives, thereby indicating the possibility of an available and willing
remote node. The asynchronous intimations thus help in reducing
the number of unsuccessful calls to the system coordinator. It can
be observed from Table 3.7 that an ARC program can continue
to execute on the host node without incurring significant slow-
downs when the problem sizes are sufficiently large.

Table 3.7 No Load Inlining Test

Task size Pure ARC on same node Slowdown
sequential (sec) by inlining (sec) (%)

25 ¥ 25 2.00 2.06 3.00
50 ¥ 50 16.08 16.28 1.25
75 ¥ 75 54.88 55.18 0.55

100 ¥ 100 129.44 130.4 0.75

3.7.5 ARC Calls vs RPC

This test was performed to estimate the overhead of making ARC
function calls as compared to remote procedure calls. The tests
were carried out on homogeneous machines. A major component
in this overhead comes from the dynamic loading of the RIB for
execution by the local coordinator on the remote node. A standard
matrix multiplication program with varying sizes was executed by

ANONYMOUS REMOTE COMPUTING MODEL 75

using both RPC and ARC function calls. ARC function calls used
the same nodes of the network as used by the RPC. ARC showed
a 4 to 5 per cent overhead in terms of time as compared to its
equivalent RPC call in which the code to be executed was al-
ready available at the known server. This additional cost is very
nominal as ARC provides the flexibility of choosing a varying
number of appropriate nodes for execution at run-time. It can be
noted that this overhead is incurred only once in a particular
program when it makes multiple ARC calls as in the TSP dis-
cussed earlier. The ARC kernel recognizes the availability of an
already active RIB code waiting to receive a sub-task eliminating
restarting of the RIB again on the remote node.

3.8 Conclusions

The specific issues involved in parallel programming on work-
station clusters have been examined in detail. The ARC para-
digm has been proposed for parallel programming on loaded
heterogeneous cluster of workstations. The ARC model is devel-
oped in a two-tiered ARC architecture. The lower level consists
of a number of ARC primitives that are built over a distributed
ARC kernel. The primitives provide the support for load adapt-
ability, fault tolerance and heterogeneity to ARC-based parallel
programs. The ARC model was implemented on a network of
heterogeneous workstations and the performance tests showed
that ARC is a highly promising approach for parallel program-
ming in practical work environments.

References

1. Agrawal, R. and A.K. Ezzat, “Location-independent Remote
Execution in NEST”, IEEE Trans. Software Eng., Vol. 13,
No. 8, pp. 905–912, August 1987.

2. Amza, C., A. Cox, S. Dwakadas, P. Keleher, H. Lu, R.
Rajamony, W. Yu and W. Zwaenepoel, “TreadMarks: Shared

76 GRID COMPUTING

Memory Computing on Networks of Workstations”, Computer,
Vol. 29, No. 2, pp. 18–28, February 1996.

3. Anderson, T.E., D.E. Culler, D.A. Patterson and the NOW
Team, “A Case for NOW (Networks of Workstations)”, IEEE
Micro, Vol. 15, No. 1, pp. 54–64, February 1995.

4. Andrews, G.R., “Paradigms for Process Interaction in
Distributed Programs”, ACM Computing Surveys, Vol. 23, No.
1, pp. 49–90, March 1991.

5. Andrews, G.R., R.A. Olsson, M. Coffin, I. Elshoff, K. Nilsen,
T. Purdin, and G. Townsend, “An Overview of the SR
Language and Implementation”, ACM Trans. Programming
Languages and Systems, Vol. 10, No. 1, pp. 51–86, January
1988.

6. Bal, H.E., J.G. Steiner, and A.S. Tanenbaum, “Programming
Languages for Distributed Computing Systems,” ACM
Computing Surveys, Vol. 21, No. 3, pp. 261–322, September
1989.

7. Bal, H.E., M.F. Kaashoek, and A.S. Tanenbaum, “Orca: A
Language for Parallel Programming of Distributed Systems,”
IEEE Trans. Software Eng., Vol. 18, No. 3, pp. 190–205, March
1992.

8. Bal, H.E., R.V. Renesse, and A.S. Tanenbaum, “Implement-
ing Distributed Algorithms Using Remote Procedure Calls,”
Proc. AFIPS Conf. National Computing, Vol. 56, pp. 499–505,
Chicago, June 1987.

9. Black, A., N. Hutchinson, E. Jul, H. Levy, and L. Carter,
“Distribution and Abstract Types in Emerald,” IEEE Trans.
Software Eng., Vol. 13, No. 1, pp. 65–76, January 1987.

10. Bershad, B.N., D.T. Ching, E.D. Lazowska, J. Sanislo and
M. Schwartz, “A Remote Procedure Call Facility for
Interconnecting Heterogeneous Computer Systems,” IEEE
Trans. Software Eng., Vol. 13, No. 8, pp. 880–894, August 1987.

11. Butler, R., and E. Lusk, “User’s Guide to the P4 Parallel
Programming System,” Technical Report ANL-92/17,
Argonne National Laboratory, October 1992.

ANONYMOUS REMOTE COMPUTING MODEL 77

12. Carriero, N., and D. Gelernter, “The S/Net.s Linda Kernel,”
ACM Trans. Computer Systems, Vol. 4, No. 2, pp. 110–129,
May 1986.

13. Carter, J.B., J.K. Bennett, and W. Zwaenepoel, “Implementa-
tion and Performance of Munin,” Proc. 13th ACM SOSP, pp.
152–164, October 1991.

14. Casas, J., D. Clark, R. Konuru, S. Otto, R. Prouty, and J.
Walpole, “MPVM: A Migration Transparent Version of
PVM,” Technical Report CSE-95-002, Oregon Graduate
Institute, February 1995.

15. Cheriton, D.R., “The V Distributed System,” Comm. ACM,
Vol. 31, No. 3, pp. 314–333, March 1988.

16. Dahlin, M., R. Wang, T. Anderson, and D. Patterson, “Co-
operative File Caching: Using Remote Client Memory to
Improve File System Performance,” Proc. First Conf. Operating
Systems Design and Implementation, November 1994.

17. Eager, D.L. and J. Zahorjan, “Chores: Enhanced Runtime
Support for Shared Memory Parallel Computing,” ACM Trans.
Computing Systems, Vol. 11, No. 1, pp. 1–32, February 1993.

18. Grimshaw, A.S., “Easy-to-Use Object-Oriented Parallel
Processing with Mentat,” Computer, Vol. 26, No. 5, pp. 39–51,
May 1993.

19. Falcone, J.R., “A Programmable Interface Language for
Heterogeneous Distributed Systems,” ACM Trans. Computing
Systems, Vol. 5, No. 4, pp. 330–351, November 1987.

20. Halstead Jr., R.H., “Parallel Computing Using Multi-lisp,”
Parallel Computation and Computers for Artificial Intelligence, J.S.
Kowalik, (ed.), pp. 21–49, Kluwer Academic, 1988.

21. Hansen, B., “Distributed Processes: A Concurrent Program-
ming Construct,. Comm. ACM, Vol. 21, No. 11, pp. 934–941,
November 1978.

22. Hoare, C.A.R., “Communicating Sequential Processes, Comm.
ACM, Vol. 21, No. 8, pp. 666–677, August 1978.

78 GRID COMPUTING

23. Hsieh, W.C., P. Wang, and W.E. Weihl, “Computation
Migration: Enhancing Locality for Distributed-Memory
Parallel Systems,” PPOPP.93, ACM SIGPLAN, pp. 239–248,
July 1993.

24. Janakiram, D., T.H. Sreenivas and G. Subramanyam, “Parallel
Simulated Annealing Algorithms, J. Parallel and Distributed
Computing, Vol. 37, pp. 207–212, 1996.

25. Joshi, R.K. and D. Janakiram, “Parset: A Language Construct
for System-independent Parallel Programming on Distributed
Systems,” Microprocessing and Microprogramming, pp. 245–259,
June 1995.

26. Joshi, R.K. and D. Janakiram, “Object-based Subcontracting
for Parallel Programming on Loosely-Coupled Distributed
Systems,’’ J. Programming Languages, Vol. 4, pp.169–183,
1996.

27. Kale, L.V, and S. Krishnan, “CHARM++: A Portable
Concurrent Object–Oriented System based on C++,”
OOPSLA.93, ACM SIGPLAN Notices, pp. 91-108, October
1993.

28. Minnich, R.G., “Mether: A Memory System for Network
Multiprocessors,” PhD thesis, Computer and Information
Sciences, University of Pennsylvania, 1991.

29. The MPI Forum, “MPI: A Message Pssing Interface,” Proc.
Supercomputing, Vol. 93, pp. 878–883, 1993.

30. Mullender, S.J., G. Rossum, A.S. Tanenbaum, R. Renesse,
and H. Staveren, “Amoeba: A Distributed Operating System
for the 1990’s,” Computer, Vol. 23 No. 5, pp. 44–53, May
1990.

31. Nelson, B.J., “Remote Procedure Calls,” ACM Trans. Computing
Systems, Vol. 2, No. 1, pp. 39–59, February 1984.

32. Pekergin, M.F., “Parallel Computing Optimization in the
Apollo Domain Network,” IEEE Trans. Software Eng., Vol.
18, No. 4, pp. 296–303, April 1992.

ANONYMOUS REMOTE COMPUTING MODEL 79

33. Satyanarayanan, M., J.J. Kistler, P. Kumar, M.E. Okasaki,
E.H. Siegel, and D. Steere, “Coda: A Highly Available File
System for a Distributed Workstation Environment,” IEEE
Trans. Computers, Vol. 39, No. 4, pp. 447–459, April 1990.

34. Satyanarayanan, M. and E. Siegel, “Parallel Communication
in a Large Distributed Environment,” IEEE Trans. Computers,
Vol. 39, No. 3, pp. 328–348, March 1990.

35. Scott, M.L., “Language Support for Loosely Coupled
Distributed Programs,” IEEE Trans. Software Eng., Vol 13,
No. 1, pp. 88–103, January 1987.

36. Smith, J.M., “A Survey of Process Migration Mechanisms,”
ACM SIGOPS, Vol. 22, No. 3, pp. 28–40, July 1988.

37. Stamos, J.W., and D.K. Gifford, “Implementing Remote
Evaluation,” IEEE Trans. Software Eng., Vol. 16, No. 7,
pp. 710–722, July 1990.

38. Stevents, W.R., “Unix Network Programming”, Englewood Cliffs,
N.J., Prentice Hall, 1990.

39. Stumm, M. and S. Zhou, “Algorithms Implementing Distribu-
ted Shared Memory,” Computer, Vol. 23, No. 5, pp. 54–64,
May 1990.

40. Sunderam, V.S., “PVM: A Framework for Parallel Distribu-
ted Computing,” Concurrency: Practice and Experience, Vol. 2,
No. 4, pp. 315–339, December 1990.

41. Tandiary, F., S.C. Kothari, A. Dixit, and W. Anderson,
“Batrun: Utilizing Idle Workstation for Large-Scale
Computing,” IEEE Parallel and Distributed Technology, pp. 41–
49, 1996.

42. Wei, Y., A.D. Stoyenko, and G.S. Goldszmidt, “The Design
of a Stub Generator for Heterogeneous RPC Systems,” J.
Parallel and Distributed Computing, Vol. 11, No. 3, pp. 188–
197, March 1991.

Chapter 4

Integrating Task Parallelism
with Data Parallelism*

4.1 Introduction and Motivation

Data parallelism refers to the simultaneous execution of the same
instruction stream on different data elements. Several programming
platforms target the exploitation of data parallelism [1, 2]. Control
parallelism refers to the simultaneous execution of different
instruction streams [2]. This is also referred to as task parallelism
or functional parallelism [2]. Some of the tasks that constitute the
problem may have to honour precedence relationships amongst
themselves. The control parallelism with precedence constraints
can be expressed as a task graph wherein nodes represent tasks
and directed edges represent their precedences. It is the parallel
execution of distinct computational phases that exploit a problem’s
control parallelism [3]. This kind of parallelism is important for
various reasons. Some of these reasons are:

l Multi-disciplinary applications: There is an increased interest
in parallel multi-disciplinary applications wherein different
modules represent different scientific disciplines and may be
implemented for parallel computation [4]. As an example,
the airshed model is a Grand Challenge Application that
characterizes the formation of air pollution as the interaction

*K. J. Binu, D. Janakiram.

INTEGRATING TASK PARALLELISM WITH DATA PARALLELISM 81

between wind and reactions among various chemical species
[5].

l Complex simulations: Most of the complex simulations
developed by scientists and engineers have potential task
and data parallelism [6]. A data parallel platform would not
be able to exploit the potential control parallelism in them.

l Software engineering: Independent of issues relating to parallel
computing, treating separate programs as independent tasks
may achieve benefits of modularity [7].

l Real-time requirements: Real-time applications are character-
ized by their strict latency time and throughput requirements.
Task parallelism lets the programmer explicitly partition
resources among the application modules to meet such
requirements [4].

l Performance: Task parallelism allows the programmer to
enhance locality and hence performance by executing
different components of a problem concurrently on disjoint
sets of nodes. It also allows the programmer to specify
computation schedules that could not be discovered by a
compiler [7].

l Problem characteristics: Many problems can benefit from a
mixed approach, for instance, with a task parallel coordina-
tion layer integrating multiple data parallel computations.
Some problems admit both data and task parallel solutions,
with the better solution depending upon machine character-
istics or personal taste [7].

Very often, task and data parallelism are complementary rather
than competing programming models. Many problems exhibit a
certain amount of both data parallelism and control parallelism.
Hence, it is desirable for a parallel program to exploit both data
and task parallelism inherent in a problem. A parallel programming
environment should provide adequate support for both data and
task parallelism to make this possible [8].

82 GRID COMPUTING

4.2 A Model for Integrating Task Parallelism
into Data Parallel Programming Platforms

4.2.1 Expectations from an Integrated Platform

The expectations from a high-level parallel programming
platform stem from the nature of applications which could utilize
the platform. The requirements come from the desired expressibility
of the application, possible transparency in programming, exploi-
tation of parallelism, and achievable performance optimizations
for the application. There factors are detailed below.

l Expressibility: In order to exploit parallelism in an applica-
tion, the program must express potential parallel execution
units. The precedence relationships among them must also
be expressed in the program. An elegant expressibility scheme
should reflect the task parallel units, data parallel units and
precedence dependence among the tasks in the program.
This would ease programming, improve readability and en-
hance maintainability of the code. However, the expressibility
that can be provided is influenced by the nature and organi-
zation of the underlying run-time support and the native
language into which it is converted.

l Transparency: It is desirable to relieve the programmer from
details relating to underlying network programming. This
results in the programmer concentrating on his application
domain itself. With network programming details coded in
the application, a major portion of the program will be
unrelated to the application. Consequently, such programs
suffer from readability and hence maintainability problems.

l Performance: System level optimizations by the parallel
programming platform can improve the performance of
applications. In addition, the system can achieve load
balancing for the application, thereby further enhancing
performance. The run-time scheduling decisions by the
system, both the time of scheduling and the node to
be scheduled, are the other factors that can improve
performance.

INTEGRATING TASK PARALLELISM WITH DATA PARALLELISM 83

Other desirable properties of the system include fault resilience,
fault tolerance, accounting for heterogeneity in machine architec-
ture and operating system, and portability of application.

4.2.2 Programming Model

This model permits a block-structured specification of the parallel
program with arbitrary nesting of task and data parallel modules.
This is one of the most important qualities of an integrated model
[8]. A block could be a high-level characterization of a data parallel
module in accordance with the principles of the underlying data
parallel platform. In the model, the system takes the responsibility
of intimating the user process when an event of its interest occurs.
Events of interest signify the completion of one or more tasks
which meet the pre-conditions for another task that is waiting to
be executed. This takes care of the probability factor in the order
of completion of tasks that constitute the program. The model
provides for templates through which events of interest could be
registered with the system.

The model aims at a parallel programming platform that permits
expressibility for task and data parallelism so that both can be
exploited. In view of a large number of existing data parallel
programming platforms for NOWs, it would be useful to formulate
the problem as integrating task parallelism into existing data
parallel platforms. This poses some challenges. The data parallel
model of computation of these platforms could be different.
Consequently, the program structure favoured by these platforms
would be different. The system services provided by them, viz.
migration, result collection, etc., could also be different. Hence, at
the programming level, the model restricts itself to expressing
tasks and their precedence relationships. This makes sure that an
integration of the model to an existing data parallel platform does
not contradict its existing goals and the rules by which it handles
data parallel computation. Also, it inflicts only minimal disturbance
on the existing system.

Another issue which crops up during the integration pertains
to data parallel sub-division of divisible tasks. The underlying

84 GRID COMPUTING

data parallel model could be sub-dividing a data parallel task into
sub-tasks. These sub-tasks could be migrated to different nodes
over the network. The underlying data parallel platform could be
considering sub-tasks as separate entities from the time it is
spawned to its result collection. The platform would have had no
purpose to identify a task as a collection of sub-tasks that constitute
it. However, the completion of a task could be a significant event
in the proposed integrated model since the system has to intimate
the user process when an event of its interest occurs. The
completion of a task depends upon the completion of the sub-
tasks into which it is split by the underlying data parallel model.
Hence, it becomes necessary to integrate to the existing system,
the notion of a task as a collection of sub-tasks.

The program expressibility of the model reflects the task parallel
blocks and precedence relationships in the task graph. Two
constructs, viz. Task begin and Task end, are introduced to demarcate
the blocks in the block-structured code. Another construct, viz.
OnFinish, is provided to specify the pre-conditions of the tasks.
The syntax and semantics of these constructs are described below.

Task_begin(char *TaskName) OnFinish(char
*WaitforTask, ...)

This marks the beginning of a block. Each
block signifies a task. The task name of the
task it signifies is the only argument to the
construct. If the task has precedence
relationships to be met, the Task_begin has to
be immediately followed by another construct,
viz. OnFinish with the names of the tasks it
has to wait for as its arguments. If OnFinish
is not furnished, the parser will presume that
there are no pre-conditions to the task. OnFinish
could have a variable length of arguments.

Task_end(char *TaskName)

This marks the end of a block. The only
argument is the name of the task that the block
signifies.

INTEGRATING TASK PARALLELISM WITH DATA PARALLELISM 85

4.2.3 Program Structure and Translation of a Task

Graph

A sample task graph and its block-structured code are shown to
illustrate the expressibility provided by the model. Also, it illustrates
the translation of a given task graph into the program structure
favoured by the model. The task graph given in Fig. 4.1 is used
for the same.

Task_begin(Task1)

...

Task_begin(Task3) OnFinish(Task1)

...

Task_end(Task3)

Task_end(Task1)

Task_begin(Task2)

...

Task_begin(Task4) OnFinish(Task1, Task2)

...

Task_end(Task4)

Task_begin(Task5) OnFinish(Task2)

...

Task_begin(Task6) OnFinish(Task3, Task4,
Task5)

...

Task_end(Task6)

Task_end(Task5)

Task_end(Task2)

Pseudo Code 1: The block structuring corre-
sponding to the task graph in Fig. 4.1.

The outline program given in Fig. 4.1 shows the expressibility
of a task graph in the model. At the first level, Task1 and Task2
could be executed in a control parallel fashion at the beginning of
the run itself. This is evident from their Task begin constructs,
since it is not followed by the construct OnFinish. A task which

86 GRID COMPUTING

has to wait for another task to finish is written inside its predecessor
task’s block. Also, the Task begin construct of such tasks would be
immediately followed by the construct OnFinish which specifies
the pre-conditions. In the case where a task has to wait for more
than one task, it can be placed inside one of those blocks which
represents a predecessor task. But, its OnFinish should carry the
name of all its immediate predecessors. This could be seen from
the OnFinish directives of task4 and task6.

Typically, data parallel platforms split divisible tasks into sub-
tasks. Hence the model provides for a call, viz. task(), to register a
task as a collection of sub-tasks. The syntax and semantics of the
call are described in Section 4.3.3.

4.2.4 Separation of System�s and Programmer�s

Concerns

The system is organized in such a way that the user process
registers events of interest (completion of one or more tasks)
which are required in order to meet the precedence constraints
and the system, in turn, signals the user process on occurrence of

FIG. 4.1

A Sample Task Graph with Precedence Relationships

INTEGRATING TASK PARALLELISM WITH DATA PARALLELISM 87

any registered event. This relieves the programmer of the need to
design applications for non-determinism in the order of completion
of tasks.

With the program translation capabilities that are provided, the
model relieves the programmer of the need for using network-
related code. Another responsibility lying with the translator is
the need to contend with the conflicting interests of expressibility
and performance. Arguments from the expressibility point of view
favour a control structure that best reflects the precedence
relationships in the code. This, in turn, would create an argument
for the structuring of programs such that the pieces of code that
are executed at the completion of its predecessor task appear as a
program segment inside the program segment of (one of) its
predecessor task itself. Such a structure suitably describes the task
graph and contributes to the elegance of the code. However, it
does not support non-determinism in the order of completion of
tasks according to the flow of control permitted by traditional
languages. Hence, in order to allay the differences between these
demands, the program translator allows a program expressibility
scheme, which satisfies the expectations from the expressibility
point of view. This, in turn, is parsed and translated into a control
structure that well answers the concerns of non-determinism.

The program translation provided with the current model
permits a control structure similar to the block-structured code
that programmers are familiar with. At the same time, it reflects
the task graph and precedence relationships of the application.
The parser and sample translated code are described in section
4.4.1.

4.3 Integration of the Model into ARC

4.3.1 ARC Model of Computation

In the ARC paradigm [9], a parallel program for NOW is written
as a collection of several loosely coupled blocks called RIBs within
a single program entity. An RIB is a code fragment that can be

88 GRID COMPUTING

migrated into a convenient anonymous remote node at runtime
for execution. RIBs do not involve any mechanism of process
creation or inter-task communication at the programming language
level. The nodes at which RIBs need to be executed remain
anonymous to the program. The ARC runtime system decides
the nodes for RIB execution. At a given time, multiple programs
could be generating RIBs and multiple anonymous remote
participants could be joining or leaving the ARC system. ARC
addresses heterogeneity in the architecture and operating system,
fault tolerance, load balancing with other loads co-existing, and
resilience to the changing availability of nodes. However, ARC
targets data parallel applications. The control parallelism along
with its precedence relationships cannot be expressed in ARC.

In order to achieve load balancing, the ARC model provides a
system service which can be used by the user program to get the
current availability and load of machines. The user program can
use this information, along with the machine handles returned by
the call, to migrate his RIBs to least loaded machines. For data
parallel modules, the load ratio on machines could be used to
decompose the domain of computation to achieve load balancing.
Subsequently, each grain of computation can be migrated to the
corresponding machines, along with the relevant initial data. The
ARC model provides two calls for functionalities related to result
collection. By availing of these services, the user program can get
the status of a submitted task as well as collect the results when
they are ready. The syntax and semantics of the calls supported
by ARC are given below.

LFmessage get_load_factor(int numberOfMachines
Needed)

This call is used to obtain information
about various machines available in the system
and their loads. The parameter to this call is
the number of machines required by the program.
The return value is a structure which gives the
number of machines actually available, their
load information and machine indices, and is
used by the underlying system to identify the
machine.

INTEGRATING TASK PARALLELISM WITH DATA PARALLELISM 89

ARC_function_call(char *funct_name, int
timeout, int retries, char * arg_data, int
arg_size, int result_size, int machine_index,
int tag)

This call is used to submit a task. The
first argument specifies the function that
specifies the task. The second argument is the
time-out period. The third argument is the
number of retries that should be made. The
fourth argument is the raw data that represents
the arguments to the task. The fifth argument
is the size of the result. The next argument is
the index of the machine, obtained by using
get_load_factor call. The last argument is the
tag to identify the particular task submitted.
The value of the tag is returned by the call.

char *obtain_results(int tag);

This call is to collect the results of a
task. The only argument is the unique id of the
task. The call blocks till the results are
available.

int peek_results(int tag);

This is a non-blocking call for a program
to check if the results are available. The only
argument is a tag for the piece of computation
of which the result is requested. The return
value is 1 if the results are available,
otherwise it is –1. When the results are
available, it can be collected by obtain_results
call.

4.3.2 Outline of ARC Runtime Support

This sub-section outlines the runtime support of ARC [10]. The
support consists of a daemon running on each machine present in
the pool of machines which cooperate for parallel computation.
This daemon is termed ‘local coordinator’ (lc). It is the responsi-
bility of the lc to coordinate the processes initiated on the

90 GRID COMPUTING

machine on which it runs. Any process which intends to make
use of the system services registers itself with the lc that runs on its
machine. This is done by the call initialize ARC. Complementing
the call is close ARC which deregisters the user process from the
system. The syntax and semantics of the calls are given below.

void initialize_ARC(void);

It takes no arguments and returns no values.
It registers the user program with the runtime
system. In response to this call, the lc allots
an exclusive communication channel between the
lc and the user program for subsequent
communication.

void close_ARC(void);

It takes no arguments and returns no values.
It de-registers the user program from the runtime
system. The system updates its tables
accordingly.

One of the machines in the pool is selected to run a daemon
which co-ordinates the lcs of all the machines which participate in
the pool. This daemon is termed ‘system co-ordinator’ (sc). The sc
keeps track of the lc s in the pool and hence the machines
participating in the pool. It also facilitates communication between
individual lcs. The lc and sc communicate by virtue of predefined
messages (through a dedicated channel). Similarly, the user process
communicates with the lc through predefined messages. In a typical
session, a message session sequence would be initiated by the
user process by sending a message to its lc. The lc, in turn, sends
the appropriate message to the sc. The sc may either reply to this
message or send a message to another lc if required. In the first
case, the lc, on receiving the message, would generate and send a
message to the user process which initiated the sequence. In the
latter case, the lc, which receives the message from the sc, would
send a reply on completion of the responsibility. This message
would be passed to the lc which initiated the sequence. The lc
would generate and send a message to the actual user process
which initiated the message sequence.

INTEGRATING TASK PARALLELISM WITH DATA PARALLELISM 91

4.3.3 The Integrated Platform

The integration of the model into the ARC framework includes,
provision for additional function calls and modifications to the
existing runtime support. The crux of such modifications is
presented in this section.

The additional calls supported include a call to register a task
as a collection of sub-tasks, calls to initialize and close the system,
and a call to register events of interest with the system. The ARC
model permits the division of the number of sub-tasks at runtime.
Different tasks could also be divided into different numbers of
grains. For these reasons, the call to register a task as a collection
of its sub-tasks, viz. task(), provides for a variable length argument.
The responsibilities of the calls to initialize and close the system,
viz. TaskInit() and TaskClose(), are trivial. The call to register the
event, viz. RegisterEvent(), is inserted by the parser during program
translation. The syntax and semantics of the calls are given below.

int task(char *TaskName, int SubTaskId,
...)

The call registers a task as a collection
of sub-tasks. The first argument is the task
name itself. The second argument is an integer
which denotes a sub-task. If the task is not
sub-divided, the task_no itself is to be
furnished here. If the task is sub-divided,
there could be more arguments, each of which
represents a sub-task. The number of arguments
depends upon the number of sub-tasks that
constitute the task. The return value is either
SUCCESS or ERRNO corresponding to the error.

int RegisterEvent(int EventId, char* TaskNames,
...)

The call registers an event of interest
with the system. The first argument is the
event identifier. Following it is a variable
length argument list of task names constituting
the event. The return value is either SUCCESS
of ERRNO corresponding to the error.

92 GRID COMPUTING

The modifications to the runtime support of ARC could be
summarized as additional table management, additional message
protocols between daemons, and minimal changes to the system’s
response to some existing messages. Additional table management
includes mapping tasks to their sub-tasks, storing the events of
interest for a process and the status of finished tasks. Additional
message protocols are those which access and modify these tables.
There has been an inevitable change in the existing system. This
was to make the system generate a message to a user process
when an event of its interest occurs. In ARC, a task can be
considered to have finished its execution only when all its sub-
tasks finish their execution. The local lc gets a message from
remote lcs when the sub-tasks given to them finish their execution.
The ARC lc stores the result and waits for the user process to ask
for it. In the integrated system, the lc has an additional responsibility
when a sub-task returns. It checks if the sub-task that has finished
is the last sub-task of the task. If the task can be considered to
have finished its execution, it would check the status of finished
tasks and events of interest to find out if any event of interest to
the user process has occurred with the completion of the task. If
an event of interest has occurred with the completion of the task,
it initiates a message sequence to intimate the event to the
corresponding user process. Additional messages are defined in
order to intimate the event of interest to the corresponding user
process. These messages are discussed in the Appendix.

4.3.4 A Sample Block in the Integrated Platform

The program structure of the integrated platform would be the
same as the one shown with the model. It has been mentioned
earlier that the code inside a block would be meant for the platform
to which the model is integrated. A sample block is given to
provide a comprehensive view of the integrated platform. The
semantics of the calls have been discussed in Section 4.3.1.

Task_begin(TaskN) OnFinish(TaskM)

// Collect the results of an earlier task
for subsequent processing.

// The earlier task was data parallelized
into two parts with

INTEGRATING TASK PARALLELISM WITH DATA PARALLELISM 93

// TaskMTag1 and TaskMTag2 representing sub-
tasks.

ObtainResults(TaskMTag1);

ObtainResults(TaskMTag2);

// GetLoadFactor returns a structure which
gives details of the available machines,
their loads, processing powers etc.

// The only argument specifies the maximum
number of machines sought for.

MachineAvailability = GetLoadFactor(3);

if (MachineAvailability.Count == 3)

{

// Data parallelize into three with the
division based on the

// load and processing power of three
machines returned.

ARC_function_call(TaskN, ..., TaskNTag1);

ARC_function_call(TaskN, ..., TaskNTag2);

ARC_function_call(TaskN, ..., TaskNTag3);

task(TaskN, TaskNTag1, TaskNTag2, TaskNTag3);

}

if (MachineAvailability.Count == 2)

{

// Data parallelize into two with the
division based on the

// load and processing power of two machines
returned

ARC_function_call(TaskN, ..., TaskNTag1);

ARC_function_call(TaskN, ..., TaskNTag2);

task(TaskN, TaskNTag1, TaskNTag2);

}

if (MachineAvailability.Count == 1)

{

94 GRID COMPUTING

// Cannot be data parallelized due to non-
availability of nodes. Hence run as a
sequential program.

ARC_function_call(TaskN, ..., TaskNTag1);

task(TaskN, TaskNTag1);

}

Task_end(TaskN)

Pseudo Code: A typical block in the
integrated platform.

The code shows how ARC decides the number of sizes of
grains of computation at runtime after collecting the load informa-
tion. Also, note that the arguments to the task() call reflect the
actual division employed. The block is marked by Task begin and
Task end. OnFinish specifies the pre-condition of TaskN as the
completion of TaskM.

4.4 Design and Implementation

The parser for program translation, the lc daemon for user pro-
cess coordination, the sc daemon for coordination of the pool of
workstations and functional library support to avail system services,
are the constituent elements of the system.

4.4.1 Parser

The parser translates the program submitted by the user into the
final runnable program. This involves insertion of appropriate
network-related code, translation of the pseudo-control structure
provided by the model to one which is supported by the native
language, construction of events of interest to the user process,
and transparent insertion of some system service calls.

In the first scan of the user-submitted program, the parser
constructs the precedence graph. It marks the tasks which do not
have any precedence relationship to be met. It finds the events of
interest to the user process. The calls to register these events with
the system are inserted in the code. A header file is generated to

INTEGRATING TASK PARALLELISM WITH DATA PARALLELISM 95

define the event names and the file is included in the user program
file. This permits event names themselves to be used as cases in
the final flat switch-case structure. The tasks which do not have to
meet any precedence relationships are extracted and placed before
the flat switch-case structure since they can be executed without
waiting for any events.

In the second scan, the parser constructs an infinite loop which
waits on a socket to read event interrupts. A switchcase structure
is placed inside the loop with event names as cases. The body of
a case is the code fragment of the task which waits for the event.
This control structure is a flat one, unlike the control structure
permitted by the model. The termination would become part of
the case which corresponds to the final task.

The prototypic version of the parser developed can convert the
code only into one native language, viz. C. It is relatively
straightforward to extend the scope of the parser to cater to other
native languages.

Given below is a sample translated code. The code is obtained
by translation of Pseudo Code 1. The transformations by the
parser could be seen by mapping the sample translated code with
Pseudo Code 1.

/* Sample Defines file */

#define EVENT_Task1 1

#define EVENT_Task2 2

#define EVENT_Task1_Task2 3

#define EVENT_Task3_Task4_Task5 4

/* Register Events */

RegisterEvent(EVENT_Task1, “Task1”)

RegisterEvent(EVENT_Task2, “Task2”);

RegisterEvent(EVENT_Task1_Task2, “Task1”,
“Task2”);

RegisterEvent(EVENT_Task3_Task4_Task5,
“Task3”, “Task4”, “Task5”);

/* Contents of the Block for Task1 */

...

96 GRID COMPUTING

/* Contents of the Block for Task2 */

...

while(1)

{

Event = WaitForEvent();

switch (Event)

{

case EVENT_Task1 :

/* Contents of the Block for Task3 */

...

break;

case EVENT_Task2 :

/* Contents of the Block for Task5 */

...

break;

case EVENT_Task1_Task2 :

/* Contents of the Block for Task4 */

...

break;

case EVENT_Task3_Task4_Task5 :

/* Contents of the Block for Task6 */

...

exit();

break;

}

}

Pseudo-code : A translated code for Pseudo Code
1

4.4.2 Local Co-ordinator (lc) Daemon

Each workstation which enrols in the pool of machines for parallel
computation runs a daemon, viz. localdaemon(lc). The user processes

INTEGRATING TASK PARALLELISM WITH DATA PARALLELISM 97

communicate and interact with the system through the lc. Servicing
requests from the user processes, linking the node on which they
are run to the system, and book-keeping for the user process
running on its machine, are the responsibilities of the lc.

Figure 4.2 gives the Finite State Machine (FSM) of the lc. In the
INIT state, lc initializes its data structures and cleans up the
auxiliary system files left behind by an earlier lc process. After
this, it establishes a TCP socket connection with the sc and registers
itself with the sc. In the LISTEN state, the lc checks for messages
from the sc and waits for user programs to register with the system.
On a message from the sc, it transits to the SC Msg RECVD
state where it services the message. On a message from a user
process, it transits to UP Msg RECVD where it services the
request from the user process.

FIG. 4.2

FSM of LC

The initial communication between a process and the lc is
through a known common channel. This is for a user process to
get itself registered with the lc. Once it is registered with the lc, it
is given an exclusive communication channel though which
subsequent communication is effected. When the lc is initiated,

98 GRID COMPUTING

the communication with the sc is effected by giving the address of
the machine on which the sc is run as a command line argument.

The tables maintained by the lc could be distinguished as those
required to support task parallelism and others. This separation
eases a clean integration of task parallelism into the existing
systems.

In ARC, the lc maintained three tables, viz. the Program and
Task Table (PTT), Recovery Information Table (RIT) and Results
List Table (RLT). PTT maintains the mapping between the process
ids of the processes on the machine and the socket descriptors of
the sockets that connect the processes to the lc. It also demarcates
processes as user processes initiated on the node and the tasks
submitted by user processes on other nodes. RIT maintains
information that is relevant for recovery in the event of a failure.
RLT stores the results of the tasks submitted by user processes on
the machine as and when they are available. This is stored until
they are claimed by the user process.

It can be seen that the system does not keep track of the sub-
tasks which constitute a task. The significance of keeping track of
sub-tasks that constitute a task has already been discussed. Hence,
a new table, viz. Task Table (TT), is maintained which maps tasks
to the sub-tasks into which it is divided. This mapping is done on
a per process basis. The table is updated when a task is sub-
divided. The programming language interface for updating of the
table has already been discussed.

In the integrated system, the lc keeps track of the events of
interest to the user processes. It maintains a table, viz. Event
Table (ET), for this purpose. It stores the pre-declared events of
interest on a per process basis. The interface for updating of the
table is inserted by the parser by interpreting the events of interest
from the user code.

Other than the additions of the above-mentioned tables, their
programming language level interfaces and the message sequences
that they initiate, there are some modifications to the existing lc.
This is to enable the lc to inform the user process when an event
of interest occurs. A task finishes its execution when the last sub-
task of the task finishes. Hence, when the lc gets an intimation of

INTEGRATING TASK PARALLELISM WITH DATA PARALLELISM 99

the completion of a sub-task from the sc, it checks if the task has
finished its execution with the sub-task that has returned. If the
task is over, the lc checks to see if it triggers any event of interest.
If so, the lc initiates a message to the user process intimating the
occurence of the event. TT and ET are the tables consulted by
the lc in order to accomplish this job. In cases where completion
of a sub-task results in more than one event of interest, they are
intimated with separate messages one after the other. Given below
are the structures of ET and TT.

struct EventTable

{

int EventIdentifier; // Event Name

char ** WaitForTaskNames; // Task Names for
this Event

BOOLEAN* TasksOver; // Task Completed Array

int NumberofWaitForTask; // Number of Task
for the Event

}

struct TaskTable

{

char TaskName[TASKNAME_LENGTH];

// Name of
the Task

int * SubTaskIdentifier; // Sub task
indentifiers

BOOLEAN * SubTaskOver; // Sub task
completion status

int NumberofSubTask; // Number of sub
tasks

}

4.4.3 System Coordinator (sc) Daemon

The sc coordinates the set of lcs that constitutes the system. The sc
maintains the global information of the system. Also, for small

100 GRID COMPUTING

sessions, the sc routes the messages between lcs so that the overhead
for frequent connection establishment and closing is minimized.
The sc is connected to lcs through TCP sockets. The message
structure includes a field to indicate the destination address in
order to facilitate this. The sc that is employed by the ARC is a
fairly thin deamon with minimal information stored, and hence it
scales up quite well with respect to the number of lc s that
participate in the pool.

As shown in Fig. 4.3, in the state INIT, sc cleans up the current
directory for any auxiliary system files left behind by an earlier sc
process. It then initializes its structures. In the LISTEN state, the
sc polls for connection requests from lcs and registers them with
the system, establishing a TCP socket between itself and the lc. It
then listens for messages from the lcs on these exclusive channels
and services the requests. The sc remains in this state throughout
its lifetime or until it encounters an error.

Our implementation for the integration of task parallelism into
ARC does not disturb the existing sc.

FIG. 4.3

FSM of SC

INTEGRATING TASK PARALLELISM WITH DATA PARALLELISM 101

4.5 Applications

Applications with coarse grain control parallelism or coarse grain
data parallelism or both are the target of our platform. We have
already discussed some broad classes of applications that could
potentially benefit from the platform. In addition, here we will
discuss some specific applications.

Many applications in signal processing have potential coarse
grain control and data parallelism. A good proportion of signal
processing applications do some form of signal transformation.
These transformations are typically followed by a filtering module,
which filters the transformed signal. The inverse of the transfor-
mation could follow the filtering stage. As an example, an appli-
cation could consist of a Fourier transform followed by some filter
module that is dependent on the purpose of the application which
is followed by the inverse Fourier transform. Fourier transform
and its inverse are amenable to data parallel computation. Similar
is the case with many other signal transforms. The exploitation of
parallelism in signal processing becomes even more important in
real-time signal processing.

Here, we discuss the exploitation of parallelism in one such
application, viz. the speaker verification problem. The speaker
verification program starts with a sample of the time domain
signal. A solution to the problem starts with a linear predictive
analysis [11] of the input time domain signal to yield Linear
Predictive (LP) coefficients. From the set of LP coefficients, LP
Cepstrums, which are features of the input signal, are obtained.
There are different methods to obtain evidence for verification
from the LP Cepstrums: the Gaussian Mixture Model (GMM)
method [12], neural network methods, etc. are some examples.
Some methods prove better than the rest according to the nature
of the input set. Different methods could be applied control
parallely on the same set of LP Cepstrums. The Constraint
Satisfaction Model (CSM) [13] combines evidence obtained from
each of these models. Each of the methods, in turn, could exploit
the data parallelism in the problem.

102 GRID COMPUTING

Given below is a sample pseudo-code for the application on
the integrated platform, the task graph of which is given in
Fig. 4.4.

FIG. 4.4

Task Graph of the Application

LPAnalyse();

ComputeLPCepstrums();

// GMM and NeuralNet blocks are task
parallelized

Task_begin(GMM) // Start of GMM ARC block

// migrate to four lightly loaded nodes

GetLoadFactor(4);

// Data parallelized

ARC_function_call(GMM,...,GMMTag1);

INTEGRATING TASK PARALLELISM WITH DATA PARALLELISM 103

ARC_function_call(GMM,...,GMMTag2);

ARC_function_call(GMM,...,GMMTag3);

ARC_function_call(GMM,...,GMMTag4);

Task_end(GMM)

Task_begin(NeuralNet) // Start of NeuralNet
ARC block

// migrate to three lightly loaded nodes

GetLoadFactor(3);

// Data parallelized
ARC_function_call(NeuralNet,...,NeuralNet
Tag1);

ARC_function_call(NeuralNet,...,NeuralNet
Tag2);

ARC_function_call(NeuralNet,...,NeuralNet
Tag3);

// Wait for GMM and NeuralNet to complete

Task_begin(ConstriantStatisfactionModel)
OnFinish(GMM, NeuralNet)

ObtainResult(GMMTag1);

ObtainResult(GMMTag2);

ObtainResult(GMMTag3);

ObtainResult(GMMTag4);

ObtainResult(NeuralTag1);

ObtainResult(NeuralTag2);

ObtainResult(NeuralTag3);

CalculateConstriantStatisfactionModel();

Task_end(ConstriantStatisfactionModel)

Task_end(NeuralNet)

4.6 Performance Analysis

This section presents performance-related aspects of the work.
The test bed for the experiments consists of a heterogeneous

104 GRID COMPUTING

collection of interconnected workstations with other loads
co-existing. The problem that is considered has control as well as
data parallelism. The task graph of the problem is given in
Fig. 4.5.

FIG. 4.5

Task Graph of the Application

As the program starts its run, the two tasks, viz. T1 and T2, can
start their execution. These two tasks perform matrix multiplication
on two different sets of large matrices. Task T3 is a user-defined
function to operate on the resultant matrix of T1. Similarly T4 is
a user-defined function to operate on the resultant matrix of T2.
T3 and T4 can start execution only after the respective completion
of T1 and T2. The average completion time registered by T1 and
T2 on a representative single machine falls between 20 and 25
minutes. These measurements occur at relatively lightly loaded
CPU conditions, though there could be spurts of loads that occur
during the period of the run. The computational requirements of
T3 and T4 are dependent upon the values of the input itself. This
would cause another probabilistic factor in the completion time of
these tasks. Consequently, T3 and T4 register an average
completion time in the range of 8–20 minutes under the same

INTEGRATING TASK PARALLELISM WITH DATA PARALLELISM 105

conditions. T5 is executed when T3 and T4 complete their
execution. In the problem considered, T5 is a thin task with its
only responsibility being collecting the results of its two predecessor
tasks. The task completion time of T5 is insignificant and hence
not considered for the analysis.

The control parallelism in the problem is exploited by
independent execution of two control parallel arms in the task
graph. The data parallelism in the problem is through data parallel
execution of each of the tasks T1, T2, T3 and T4.

In the first experiment, tasks T1 to T4 are executed in a data
parallel fashion on three nodes each. The run is repeated five
times and the time of completion of each of the tasks is observed.
During data parallel division, the existing load conditions are
taken. The grain size of individual data parallel sub-tasks is
determined by using these load snapshots.

The time of completion of a task is shown in Table 4.1 as its
critical path. The terminology is adopted because a task is said to
have completed when the last among its sub-tasks is completed.
Along with the time of completion of T1 to T4 is given the larger
value of the time of completion of the first and second arm of the
task graph. The last column gives the difference in the time of
completion of the two arms.

Table 4.1 Some Sample Scenarios (Time in Minutes)

No. Crit-T1 Crit-T2 Crit-T3 Crit-T4 CritPath Diff-Crit-Path

1 7.9 9.1 5.3 4.7 13.8 – 0.6
2 8.1 10.8 4.8 4.7 15.5 – 2.6
3 11 8 7 5 18 +5.0
4 8 10.5 7.2 4.9 15.4 – 0.2
5 11.2 8 4.8 7.1 16 +0.9

The observations of interest from the experiments can be
summarized as follows:

l In spite of a task division policy based on runtime load
conditions, the completion time of tasks could vary

106 GRID COMPUTING

considerably. It can be seen from Table 4.1 that T1 registers
a high of 11.2 in the fifth observation against a low of 7.9 in
the first observation, yielding a difference of 3.3 minutes,
which is 41 per cent of the lower value.

l Any of the control parallel arms could finish before the
other and the difference in their completion time could be
substantial. A negative value of difference in critical path
signifies the first arm finishing before the second and vice
versa.

l The difference in critical paths of the arms could have
cumulating or compensating effects from the individual
completion times of the tasks in the arms. Observation 3
show the cumulating effect whereas observations 4 and 5
show the compensating effect.

l The values presented are taken without inducing any artificial
loads. Under heavy load fluctuations or with artificially
altering load, the probabilistic values would fluctuate even
more.

The earlier experiment has brought out the probabilistic factors
in the time of completion of tasks. The next set of values presents
the effect of pre-supposing the order of completion of tasks to
schedule the subsequent tasks. In Table 4.2, each row is derived
from the corresponding row of the last table. The first column
shows that the critical path if T1 is waited for before execution of
T2 and the second column if the expected sequence is opposite.
The last column shows an event-driven model.

Table 4.2 Effect of Various Scheduling

No. T3_T4 T4_T3 Event_driven

1 13.8 14.4 13.8
2 15.5 15.6 15.5
3 18 18 18
4 15.4 17.7 15.4
5 18.3 16 16

INTEGRATING TASK PARALLELISM WITH DATA PARALLELISM 107

The observations of interest from the experiments can be
summarized as follows:

l When the difference in critical path compensates in an arm,
the difference between the two scheduling schemes would
be greater. Observations 4 and 5 present cases for the same.

l When the difference in critical path cumulates in an arm,
there will not be any difference between the two scheduling
schemes since the critical arm remains critical regardless of
however it is scheduled.

l The event-driven scheduling always gives the same perfor-
mance as the better of the two schemes. As the task graph
becomes more complicated, there would be more possible
schemes and only one of them would perform as well as the
event-driven model.

l The scheduling schemes that are referred to above are mainly
targeted at scheduling the various arms of the task graph in
an integrated task-data parallel model. These strategies do
not stem from a perspective of scheduling for load balancing.

The next experiment (see Table 4.3) was conducted to show
the effect of exploiting data parallelism, task parallelism, and both
task and data parallelism. For comparison, the sequential time of
execution is also presented. The second column states the nature
of the parallelism exploited: NOP, for No Parallelism exploited;
DP for Data Parallelism exploited; TP for Task parallelism
exploited; and TD for Task and Data Parallelism exploited. The
other columns show the number of machines utilized for parallel
computation and the time of completion of the problem. The split
up of the time of completion is also shown.

The first row corresponds to the sequential execution of the
problem. The split up of total time is the time taken for T1 to T4,
respectively. The second and third rows present the results with
data parallel execution on two and three nodes, respectively. The
split up in this case is also the time taken for T1 to T4, respectively.
The scaling down of the time of execution is accounted for by the
data parallel execution of tasks. The fourth row shows the task
parallel execution on two machines. The split up in this case is

108 GRID COMPUTING

Table 4.3 The Effect of Exploiting Task and Data Parallelism (Time in

Minutes)

No. Parallelism No. of Time of Split up
machines completion

1 NOP 1 74.2 23 + 24 + 12 + 15.2
2 DP 2 41.7 14 + 14.2 + 6.5 + 7
3 DP 3 26.3 8 + 9 + 4.5 + 4.7
4 TP 2 36 24 + 12
5 TD 4 19.8 (13.3, 12.7) + (6.5, 5.2)
6 TD 6 13.2 (8.4, 8.2, 8.0) + (4.3, 4.1, 4.8)

the time of tasks in the critical path. The last two runs employ
both task and data parallelism with two nodes per task and three
nodes per task, respectively. The split ups in these cases represent
the time taken by data parallel sub-tasks of the tasks in the arm
which proves to be the critical path.

The observations of interest from the experiments can be
summarized as follows:

l The problem is a case where the task and data parallelism
are complementary.

l The control parallelism in the problem saturates with the
utilization of two nodes. This is because there are only two
control parallel arms in the application.

l The data parallelism in the problem starts saturating with the
utilization of three nodes. It could be seen from the third
row that the granule size has reached around four minutes of
execution time. Further sub-divisions for parallelism do not
yield results because of the fixed time overheads of splitting
the problem, migrating the code and arguments, compiling
the code, and collecting the results.

l It can be seen that with the exploitation of both task and
data parallelism, six nodes are utilized for parallel execution
before the same granule size of four minutes is reached.

INTEGRATING TASK PARALLELISM WITH DATA PARALLELISM 109

4.7 Guidelines for Composing User Programs

Composing a program over the platform involves translation of
the task graph of the application into the final code. A task graph
can be expressed as a directed graph with nodes representing
tasks and links precedence relationships. A task could be a starting
task, an intermediate task or the final task. Starting tasks are those
which do not have to meet any pre-conditions for their execution.
Intermediate tasks have precedence constraints to honour. The
final task is one which is responsible for termination of the program.

The Task begin of starting tasks needs no OnFinish directives
whereas it is required for the intermediate tasks and the final task.
The final task should take care of the termination of the program,
otherwise the program will wait in an infinite loop for further
events to come. In cases where there are more than one final task,
the methodology insists on keeping a single pseudo-final task which
takes care of termination.

It was mentioned earlier that the expressibility provided employs
block structuring of the code. A block designates a task and could
contain other blocks in it. Blocks written inside a block are those
which can execute only after the completion of the outer block.
The complete precedence requirements, including the implications
from the structure of the code, have to be specified.

Tasks which have more than one precedence relationship to be
met could be written as a block inside any one of their parent
blocks. In such cases, the choice of the parent block is left to the
programmer’s discretion. However, the placing of such blocks
would not have any effect on the translated code. It should be
noted that such tasks should not be placed in more than one
parent block. Also, readability of the code can be enhanced by
placing appropriate comments wherever such discretions are made.

While composing programs with existing modules, programs
for each task could be available as individual files. In such cases,
the structuring policy need not be strictly followed. The only
modification that is to be done in such cases is to wrap the code
for each task with task demarcating constructs, Task begin and
Task end, along with their OnFinish directives.

110 GRID COMPUTING

The passing of arguments to tasks should be carried out keeping
in mind the syntax, semantics and limitations of the call which
supports it. Some systems are not designed for the tasks to take
more than one stream as argument. In such cases, the programmer
has to explicitly pack the argument streams before passing the
argument, and then unpack it in the target task.

The Register event calls are inserted by the parser itself. The call
has at least once semantics. A redundant insertion of the call by
the programmer would be ignored.

While programming for anonymous execution, no assumption
should be made about the underlying system. Although the
portability of the system is provided, the portability of the
migratable user program has to be ensured by the programmer
himself.

4.8 Related Work

There have been a few attempts at integrating task and data
parallelism in the literature. The notable ones include Opus [14],
Fx [15], Data Parallel Orca [16] and Braid [17]. Opus integrates
task parallel constructs into data parallel High Performance Fortran
(HiPF). A task in Opus is defined as a data parallel program in
execution. Due to this heavyweight notion of a task, inter-task
communication is costly and hence, Opus is suited only to coarse-
grained parallelism. Fx also adds task parallel constructs into HiPF.
However, it uses directives to support task parallelism. It does not
allow the arbitrary nesting of task and data parallelism. Data
parallel Orca uses language constructs to integrate data parallelism
into task parallel Orca. It has a limited notion of data parallelism
as it does not support operations that use multiple arrays. This is
because Orca applies operations only to single objects. Braid is a
data parallel extension to task parallel Mentat. It uses annotations
to determine which data an operation needs. The four models are
cases of integrating task and data parallelism in specific languages.
The proposed model, however, is a generalized methodology to
integrate task parallelism into any data parallel language. The

INTEGRATING TASK PARALLELISM WITH DATA PARALLELISM 111

model targets coarse grain real task-data parallel computing on
loaded NOWs. Furthermore, it supports the arbitrary nesting of
task and data parallelism, unlike the existing models. Table 4.4
summarizes the comparison of our model with the existing works.

4.9 Future Work

A further challenge in transparent platforms for NOWs is to
support communicating parallel tasks. The key issue in such an
area is to provide message-passing abstractions in the premises of
distribution transparency. Such an attempt needs to address
problems with patterns in their process interaction. Optimizations
possible with different interaction schemes could be explored.

A generic specification scheme for programs to specify the
constraints on task/sub-task mapping could be explored. This,
along with anonymous execution, will make it possible for the
programmer to exploit the best of task and data parallelism. The
constraints could be inflexible when a piece of code makes
assumptions concerning the underlying system. The set of
constraints could also include directives by the programmer of
some hidden possibilities of optimizations that could be exploited.

An approach to characterize nodes in a pool of machines
keeping in view the spectrum of distributed computations, could
be attempted.

4.10 Appendix

This section describes the messages that are exchanged between
the daemons and the user processes. Message exchanges occur
between a user process and the lc on its machine, between lcs and
the sc, and between an lc and the processes which have migrated
to its machine for execution.

112 GRID COMPUTING

T
ab

le
 4

.4
C

o
m

p
ar

is
o
n

 o
f

V
ar

io
u

s
T

as
k

-d
at

a
P

ar
al

le
l

In
te

gr
at

io
n

 M
o
d
el

s

Sy
st

em
F

x
O

pu
s

D
at

a
pa

ra
ll
el

 o
re

a
B

ra
id

O
ur

 m
od

el

A
im

In
te

gr
at

e
ta

sk
In

te
gr

at
e

ta
sk

In
te

gr
at

e
d

at
a

In
te

gr
at

e
d

at
a

In
te

gr
at

e
ta

sk
p

ar
al

le
li
sm

 i
n

to
p

ar
al

le
li
sm

 i
n

to
p

ar
al

le
li
sm

 i
n

to
p

ar
al

le
li
sm

p
ar

al
le

li
sm

 i
n

to
d

at
a

p
ar

al
le

l
H

P
F

H
P

F
ta

sk
 p

ar
al

le
l

in
to

 t
as

k
p

ar
al

le
l

an
y

d
at

a
p

ar
al

le
l

O
rc

a
M

en
ta

t
la

n
gu

ag
e

B
as

is
 o

f
C

o
m

p
il
er

R
u
n

ti
m

e
R

T
S

A
n

n
o
ta

ti
o
n

R
T

S
im

p
le

m
en

ta
ti

o
n

S
ys

te
m

 (
R

T
S
)

E
x
p

re
ss

ib
il
it

y
R

es
tr

ic
te

d
 f

o
rm

F
u
ll

R
es

tr
ic

te
d

F
u
ll

F
u
ll

(e
x
p

)
o
f

ta
sk

ex
p

fo
rm

 o
f

d
at

a
ex

p
ex

p
p

ar
al

le
lis

m
p

ar
al

le
lis

m

C
o
m

m
u
n

ic
at

io
n

S
h

ar
ed

 a
d

d
re

ss
S
h

ar
ed

 o
b

je
ct

S
h

ar
ed

 o
b

je
ct

S
h

ar
ed

 o
b

je
ct

D
ep

en
d

en
t

b
et

w
ee

n
 t

as
ks

sp
ac

e
o
n

 n
at

iv
e

d
at

a
p

ar
al

le
l

la
n

gu
ag

e

G
ra

in
 s

iz
e

F
in

e
C

o
ar

se
F

in
e

F
in

e
C

o
ar

se

INTEGRATING TASK PARALLELISM WITH DATA PARALLELISM 113

The messages received by the lc are as follows:

From the user program:

l Get load factor: Prior to the submission of a set of tasks, a
user program requests the load.

l Information of a required number of nodes: In response to
this, the lc forwards this message to the sc.

l Take work: This is a task submission message. The destination
is indicated in the message itself, and this is followed by the
string representing the RIBs source file name and the
arguments to the task. The lc forwards this set of messages to
the sc after recording the information required for recovery.

l Check results: This message is sent when the user program
calls the peek results() function. The lc checks in its structures
for the presence of the required results and sends a
corresponding reply to the user program. The content of this
reply is the return value of the function.

l Want results: This message is sent when the user program
calls the obtain results() function call. In response to this, the
lc checks in its structures for the presence of the required
results and sends a corresponding reply to the user program.
The function call is blocking and sends this message
repeatedly after a waiting period, incorporating task re-
submissions if necessary.

l User is terminating: This message says that the user program
is terminating. In response to this, the lc invalidates the user-
program-related information maintained in its structures.

l Register event: This message is used by the user program to
inform the lc of the events of its interest. In response to this,
the lc updates the event table corresponding to the user
process.

l Register tasks: This message is used by the user program to
declare a task as a collection of sub-tasks. In response to this,
the lc updates the task table corresponding to the user process.

114 GRID COMPUTING

From the sc:

l Take load factor: This message is in response to an earlier get
load factor message sent on behalf of a user program. It is
followed by a message which represents the actual load
factors. This set of messages is forwarded to the user program.

l Take work: This message represents a task submission. It is
followed by the source file name for the task and the
arguments to the task. The lc checks whether the said task is
already running, i.e. whether the current message represents
a re-submission. If not, or if the task failed, the lc compiles
the source file and spawns a task process to execute the task.

l Take results: This message represents the results of an earlier
submitted task. It is followed by the actual result. The lc
stores the result in its structures, so that it can immediately
respond to a want results or check results from the user program.
Also, with each of the take results, the lc checks if some
event of interest registered in the event table has occurred. If
so, it informs the user process by generating an event occurred
message.

l Generator failed: This message indicates that a particular
user program has failed. The lc uses its recovery information
to track all the tasks created by this particular user program
and kills them, since they are no longer useful.

l LC is terminating: This message indicates that a particular lc
has failed. The lc uses its recovery information to track all
the tasks created by the user programs on the machine and
kills them.

l Terminate: This message is sent by the sc asking lc to quit. In
response to this, the lc quits.

From the task process:

l Take results: This is a message from the task process saying
that it has completed the task assigned to it. This message is
followed by the actual results of task execution, after which
the task process exists. The lc forwards the result to the sc,
after which it invalidates the recovery information maintained
for the task.

INTEGRATING TASK PARALLELISM WITH DATA PARALLELISM 115

l Give arguments: This message is sent by the task process as
soon as it comes up. It is a request for the arguments of the
task. The lc responds with a take arguments message followed
by the actual arguments for the task.

The messages received by the sc are as follows:

l Get load factor: This messages is sent by an lc to the sc prior
to the submission of tasks to the system. The purpose of this
message is to ask for a certain number of machines in order
to perform tasks. In response to this, the sc finds the requisite
number of least loaded machines from the sc structures, orders
their load factors in ascending order and sends it to the
requesting lc.

l Take load factor: This message is sent by an lc to the sc to
inform it of the current load factor on its machine. In response
to this, the sc makes a record of this information in its
structures.

l Take work: This message, initiated by a user program, is
forwarded by an lc to the sc. It represents a task submission.
It is followed by the string representing the RIB source file
name and the arguments to the task. In response to this, the
sc sends this set of messages to the appropriate lc as indicated
in the first message.

l Get code: This message is sent from an lc to the sc and is
meant for another lc. It represents a request for the source
code for a migratable module, and will be needed if the two
machines in question are not on the network file system. In
response to this, the sc forwards this to the corresponding lc.

l Take code: This message is the counterpart of the previous
message. The sc handles this message in the same way as the
previous one.

l Take results: This message is sent by an lc to the sc and
represents the results of a task submission. This is followed
by a message containing raw data, which represents the actual
results. In response to this, the sc forwards this set of messages
to the appropriate lc.

116 GRID COMPUTING

l Generator failed: This message is sent by an lc to the sc
informing it that a particular use program on its machine has
failed. This is helpful because the tasks submitted by the user
program no longer need to be executed, and hence can be
killed, removing a possibly substantial workload. In response
to this, the message is forwarded to the corresponding lcs.

l lc is terminating: This fact is recorded by the sc either when
an lc terminates of its own accord or fails suddenly, or the
network connection to it fails. In response to this, the sc
broadcasts this message to all the other lcs.

All the messages that a user program receives are from lc. The
messages received by the user program are as follows:

l Take load factor: This is in response to one of the earlier get
load factor message generated by the user program. It gives
the required machine indices and their load factors to the
user program.

l Result availability: This is in response to a check results message
generated by the user program. This message lets the user
program know if the results are available or not.

l Take results: This is in response to a want results message
generated by the user program. This message passes the
results to the user program.

l Event occurred: This message is used to let the user program
know the occurrence of an event of its interest. It specifies
the event or events that have occurred. In response to this,
the user process can determine its further course of
computation.

References

1. Hatcher, P.J. and M.J. Quinn, Data-parallel Programming on
MIMD Computers, The MIT Press, Cambridge, MA, 1991.

2. Kumar, V., A. Grama, A. Gupta and G. Karypis, Introduction
to Parallel Computing, The Benjamin/Cummings Publishing
Company Inc., 1994.

INTEGRATING TASK PARALLELISM WITH DATA PARALLELISM 117

3. Seevers, B.K., M.J. Quinn and P.J. Hatcher, “A Parallel
Programming Environment Supporting Multiple Data Parallel
Modules’’, SIGPLAN, pp. 44–47, January 1993.

4. Gross, T., D.R. O’Hallaron and J. Subhlok, “Task Parallelism
in a High-performance Fortran Framework’’, IEEE Parallel
and Distributed Technology, Vol. 2, No. 3, pp. 16–26, 1994.

5. McRae, G., A. Russell and R. Harley, CIT Photochemical Airshed
Model: Systems Manual, 1992.

6. Chapman, B., H. Zima and P. Mehnotna, “Extending HPF
for Advanced Data Parallel Applications’’, IEEE Parallel and
Distributed Technology, Vol. 2, No. 3, pp. 59–70, 1994.

7. Foster, I., “Task Parallelism and High-performance
Languages’’, IEEE Parallel and Distributed Technology, Vol. 2,
No. 3, pp. 27–36, 1994.

8. Bal, H.E. and M. Haines, “Approaches for Integrating Task
and Data Parallelism’’, IEEE Concurrency, pp. 74–84, 1998.

9. Joshi, R.K. and D.J. Ram, “Anonymous Remote Computing:
A Paradigm for Parallel Programming on Interconnected
Workstations’’, IEEE Transactions on Software Engineering,
Vol. 25, No. 1, pp. 75–90, 1999.

10. Parthasarathy, R., “Designing a Robust Runtime System for
ARC’’, Project Report, Acc. No. 97-BT-04, Department of
Computer Science and Engineering, IIT, Chennai, 1997.

11. Ramachandran, R.P., M.S. Zilovic and R.J. Mammone, “A
Comparative Study of Robust LP Analysis Methods with
Applications to Speaker Identification’’, IEEE Transactions on
Speech, Audio Processing, Vol. 3, pp. 117–125, 1995.

12. Reynolds, D.A. and R.C. Rose, “Robust Text-independent
Speaker Identification Using Gaussian Mixture Speaker
Models’’, IEEE Transactions on Speech, Audio Processing, Vol. 3,
pp. 72–83, 1995.

13. Chandrasekhar, C., B. Yegnanarayana and R. Sundar, “A
Constraint Satisfaction Model for Recognition of Stop
Consonant–Vowel (SCV) Utterances in Indian Languages’’,

118 GRID COMPUTING

Proceedings of the International Conference on Communication Tech-
nologies (CT-96), Indian Institute of Science, Bangalore, pp.
134–139, December 1996.

14. Chapman, B., et al., “Opus: A Coordination Language
for Multi-disciplinary Applications’’, Scientific Programming,
Vol. 6, No. 2, 1997.

15. Sublhok, J. and B. Yang, “A New Model for Integrated Nested
Task and Data Parallel Programming’’, Proceedings of the ACM
Symposium on Principles and Practice of Parallel Programming,
ACM Press, pp. 1–12, 1996.

16. Hassen, S.B. and H.E. Bal, “Integrating Task and Data
Parallelism Using Shared Objects’’, Proceedings of the 10th
ACM International Conference on Supercomputing, ACM Press,
pp. 317–324, 1996.

17. West, E.A. and A.S. Grimshaw, “Braid: Integrating Task and
Data Parallelism’’, Proceedings of the Frontiers 1995: Fifth Symp.
Frontiers of Massively Parallel Computation, IEEE CS Press, pp.
211–219, 1995.

Chapter 5

Anonymous Remote Computing
and Communication Model*

5.1 Introduction

Harnessing the potential parallel computing power of a non-
dedicated cluster of workstations is an arduous task. The set of
nodes which comprise the cluster of workstations changes over
time. The nodes, as well as the communication links, are liable to
failure. The nodes could exhibit heterogeneity in architecture,
processing power and operating systems. Parallel programs on
such non-dedicated nodes of the network would need to co-exist
with the regular load on these nodes. This results in an uneven
load across the nodes and changes in load characteristics with
time.

Prior research has reported an effective parallel solution to
problems without inter-task communication. Condor [1], Piranha
[2], ADM [3], ARC [4], Sprite [5], V system [6], and EMPS [7] are
some of the notable efforts. However, most of them do not address
inter-task communication.

The effective parallel solution of problems on NOWs require
the runtime selection of nodes. The granularity of individual sub-
tasks may have to be deferred until runtime for load balancing.
Dynamic schemes may be needed to make the programs resilient
to changing conditions. Support for inter-task communication in

*Binu K. Johnson, R. Karthikeyan, D. Janakiram

120 GRID COMPUTING

high-level parallel programming platforms which support runtime
and dynamic policies, leads to several issues. Some of these issues
are as follows:

l In ARC, the node to which a sub-task is migrated is decided
at runtime. The nodes remain anonymous to the user program
which initiates the migration. Thus, a sub-task would be
unaware of the location of other sub-tasks in order to
communicate with them.

l Another issue pertains to the dynamic schemes employed
by the platforms. The system support may migrate an already
running task, reshuffle the load allotted to individual sub-
tasks, etc. Such dynamic policies detach processes from
specific nodes. Hence, communication primitives which
assume the location of processes are unsuitable.

Transparent inter-task communication will facilitate a number
of application domains to exploit the parallel computing power of
clusters of workstations.

Some of these application domains are as follows:

l Iterative grid computations comprise a large class of
engineering applications. When the domain of computation
of an iterative grid computation problem is divided, the sub-
domains will need to exchange their boundary values. Grid
computations are used to solve problems, such as elliptical
partial differential equations by finite differences [8].

l Parallel solutions of the class of sub-optimal algorithms like
simulated annealing are discussed in [9]. The problem
partitioning adopted requires the sub-tasks to exchange their
intermediate results.

l Some problems can be partitioned for parallel solution as a
network of filters. Networks of filters can be used to solve a
variety of programming problems. Reference [10] describes
a prime number sieve and a matrix multiplication network
using this pattern. Such problems would also require the
communication of intermediate results.

The current work explores the transparent programmability of
communicating parallel tasks on loaded heterogeneous workstations.

ANONYMOUS REMOTE COMPUTING AND COMMUNICATION MODEL 121

5.2 Location-independent Inter-task
Communication with DP

Distributed Pipes (DP) is a model for transparent programming of
communicating parallel tasks. It addresses issues specific to parallel
programming on NOWs. DP provides a set of high-level location-
transparent communication primitives, which support data flow
between processes that are independent of their location. This
enables the model to accommodate anonymous migration of
communicating parallel tasks.

In the model, the communication channels between the nodes
of a network are considered as global entities. The information
pertaining to them is maintained globally on a designated node.
A communication channel is created or deleted at runtime.
Communicating parallel tasks created at runtime can be connected
by using DP. The high-level abstractions of DP provide an elegant
set of programming interfaces that are free from low-level network
details. This contributes to the readability and maintainability of
the code. Programs in the model are not tied up to specific nodes.
Hence, it accommodates a changing pool of workstations, and
relieves the programmer from the task of programming for specific
machines, thereby rendering the resultant code portable to a
different network. The DP provides a uniform set of interfaces for
communication across heterogeneous nodes. This addresses
heterogeneity among the nodes in both architecture and the
operating system. DP uses the external data representation to
handle heterogeneity. The programming level abstractions of DP
wrap TCP abstractions. Message sizes exceeding the size limit
imposed by TCP are handled transparently by splitting and
coalescing the message appropriately.

5.3 DP Model of Iterative Grid Computations

Figure 5.1 shows the nature of a typical iterative grid computation.
The iterative marching in space and time dimensions are shown
in the illustration on the left in Fig. 5.1. The expanded grid on the

122 GRID COMPUTING

right of Fig. 5.1 shows the boundary value exchanges. The typical
program structure of the problem for sequential execution is as
follows:

Pseudo Code 1: Program Structure of typical iterative grid
computations

FOR Time = StartTime TO EndTime

FOR XAxis = StartX TO EndX

FOR YAxis = StartY TO EndY

UserDefinedFunction()

ENDFOR

ENDFOR

ENDFOR

The outer loop of the pseudo code marches in time and the
inner loops march in each dimension of space.

5.3.1 The Model

The model employs a master-worker model of computation. The
program for the model consists of a master process and several
worker processes. The master process is the process which initiates
the computation. Worker processes are spawned on the nodes

FIG. 5.1

Grid Computation Problem

ANONYMOUS REMOTE COMPUTING AND COMMUNICATION MODEL 123

which participate in parallel computation. Worker processes are
called Iterative Grid Modules (IGMs).

The model accomplishes parallel execution of the problem by
domain decomposition. Each IGM is allotted a sub-domain of
computation. The boundary value exchange of values between
IGMs is effected through DPs. IGMs return the results of their
computation to the master process. The model permits communica-
tion between anonymously migrated IGMs.

In the model, the system handles domain decomposition,
selection of least loaded nodes, load balanced division of tasks,
anonymous migration of IGMs, transparent laying of communica-
tion primitives between IGMs, result collection, and aspects related
to fault tolerance.

The model offers various advantages. The programs in the
model are not tied up to specific machines. Such programs can
accommodate a changing pool of workstations. It also makes the
programs portable to a different network. The number of IGMs is
not decided a priori. Hence, the system can utilize the optimum
number of nodes according to the runtime conditions. The
programs written for the model can tolerate a heterogeneous
collection of unevenly loaded workstations. The programs in the
model are devoid of any underlying network code. This results
in greater readability of the program and, hence, in greater
maintainability.

Figure 5.2 illustrates the parallel solution of a grid computation
problem using the model. In Fig. 5.2, thick circles represent IGMs,
the thin circle represents the master process, ellipses represent
runtime daemons, thick lines represent TCP connections, thin
lines represent Unix Domain socket connections, and dashed lines
depict DPs between IGMs. Grid Computation Tasks, (GCTs)
represent IGMs and GCP (Grid Computation Problem) represents
the Master Process.

5.3.1.1 Initialization

The master process and IGMs need to register with the system in
order to avail of system services. The master process registers

124 GRID COMPUTING

with the system by using the call InitializeWork(). Upon completion,
a complementary call CloseWork() is used.

IGMs register with the system by using the call InitializeIGM().
Upon completion, a complementary call CloseIGM() is used.

5.3.1.2 Domain Decomposition

In the model, the master process sends the grid information to
the system. The system decides the optimum number of IGMs to
be employed, the granularity of computation to be allotted to
individual IGMs, and the nodes to be assigned for each IGM.

FIG. 5.2

Grid Computation Problem System Structure

ANONYMOUS REMOTE COMPUTING AND COMMUNICATION MODEL 125

The master process gathers this information from the system and
packs initial data for individual IGMs to migrate the IGMs and to
create channels that collect results from each IGM.

The master process provides the grid information to the system
by using the call SendGridInfo(). Similarly, it obtains the number
of IGMs employed by using the call ObtainNumberOfSplits(). The
granularity of each IGM is obtained by using the call
ObtainSplitInfo().

A brief description of the calls is given below.

l int SendGridInfo (int WorkId, int SpaceInX, int SpaceInY, int
SpaceInZ, int History, int SplitDirection).

SendGridInfo() sends the grid information of a grid computa-
tion work to the system.

WorkId is the index by which the system identifies a grid
computation work.

SpaceInX, SpaceInY, and SpaceInZ are the number of grids in
X, Y, and Z dimensions of space.

History specifies the number of previous time slices to be
stored.

SplitDirection specifies the direction of the split.

l int ObtainNumberOfSplits(int WorkId).

ObtainNumberOfSplits() collects the number of IGMs for the
grid computation work denoted by the WorkId.

l int ObtainSplitInfo(int WorkId, int SplitId, int* Start, int* Total).

ObtainSplitInfo() gathers information related to a split of the
work. The starting grid of the sub-domain and the number
of grids in the sub-domain are stored at the addresses pointed
to by Start and Total, respectively.

5.3.1.3 Load Balancing

The system gathers availability and load information of the nodes
in the network in order to decide the optimum number of IGMs
to be employed and their individual granularities. Machines with

126 GRID COMPUTING

load indices higher than a designated value are ignored. The
domain of computation is sub-divided among the other machines.
The granularity of individual sub-domains depends upon the load
ratio of the machine. The load balancing scheme is discussed in
Section 5.5.

Our approach to load balancing offers several advantages. The
actual means of gathering and interpreting load information on
the participating machines are hidden from the programmer. In a
heterogeneous collection of workstations, the processing power of
individual nodes is also used for load balancing. In our approach,
the programmer is relieved of the task of specifying the ratio of
the processing power in a collection of heterogeneous nodes. The
load balancing scheme may have to be altered to accommodate
different types of nodes or to prune the load interpretation
mechanism. In such cases, the user programs need not be modified
in order to change the load balancing scheme.

Figure 5.3 illustrates the load balanced division of the grid
computation work into IGMs of different granularities on a
heterogeneous collection of unevenly loaded workstations. The
DPs connecting them are also shown.

5.3.1.4 Anonymous Migration of Sub-tasks

The anonymous migration of an IGM is initiated when the master
process invokes the Migrate() call. However, the master process
does not furnish any machine specific arguments to the Migrate()
call. The realization of anonymous migration is discussed in Section
5.4. The information required for an IGM to initialize its data
structures as well as the initial data for the IGM are the parameters
to the call. These are retained with the local lc of an IGM until
the IGM claims them. The syntax and semantics of the call are
given below.

l int Migrate(int WorkId, int SplitId, char* MigrateFile, int DataType,
void* Data, int SpaceInX, int SpaceInY, int SpaceInZ, int History,
char* ResultPipe).

Migrate() migrates the code for an IGM and provides it with
initial data. The data consists of the number of grid points in X,

ANONYMOUS REMOTE COMPUTING AND COMMUNICATION MODEL 127

Y, and Z dimensions of space. ResultPipe is the name of the DP to
which the IGM writes its results.

5.3.1.5 Information Gathering by IGMs

The lc which collects anonymously migrated IGMs, compiles the
IGM code and spawns the IGM process. An IGM process has to
initialize its data structures to hold the initial data, and collect the
initial data with which to begin computation, the position of the
IGM, and the name of the Result Pipe to write its result. The size
of the initial data is required to initialize the data structures. This
is facilitated by the call ObtainTask-GridInfo(). After initializing the
data structures, the IGM collects the initial data by invoking the
call ObtainTask-Data(). The call ObtainTaskMachineInfo() provides
the position of the IGM process and the name of the Result Pipe
to be opened.

FIG. 5.3

Load Balancing Mechanism

128 GRID COMPUTING

In our approach, the information pertaining to an IGM is not
tied up with the code of the IGM. At runtime, the system provides
information relevant to individual IGMs. The syntax and semantics
of the calls are given below.

l int ObtainTaskGridInfo(int* SpaceInX, int* SpaceInY, int*
SpaceInZ, int* History).

ObtainTaskGridInfo() provides the number of grid points in
X, Y, and Z dimensions of space.

l int ObtainTaskData(void* Data, int SpaceInX, int SpaceInY, int
SpaceInZ, int History).

ObtainTaskData() stores the initial data matrix at the address
pointed to by Data.

l int ObtainTaskMachineInfo(int* WhichMachine, char*
ResultPipeName).

ObtainTaskMachineInfo() stores the location of the IGM in the grid
computation work at the address pointed to by WhichMachine.

5.3.1.6 Transparent Communication

Each IGM has to communicate with its neighbouring IGMs to
exchange boundary values. Support for communication between
IGMs brings with it two issues. Since the IGMs are migrated to
anonymous nodes, an IGM will not know the location of its
neighbouring IGMs. The second issue pertains to the position of
an IGM. The number of neighbours of an IGM depends upon
the position of the IGM. Hence, the number of DPs to be opened
by the IGM cannot be known until runtime.

In the model, an IGM collects information about its neighbours
and the number of DPs to be opened at runtime.

This is facilitated by the calls

ObtainTaskOpenPipeNames..

and

ObtainTaskNoOfPipesToBeOpened..:

ANONYMOUS REMOTE COMPUTING AND COMMUNICATION MODEL 129

Following is a description of the call:

l int ObtainTaskOpenPipeNames(char** PipeNames, int* AccessMode,
int NoOfOpenPipes).

l ObtainTaskOpenPipeNames() provides the number, names
and access modes of the Distributed Pipes to be opened.

l int ObtainTaskNoOfPipesToBeOpened(int* NoOfOpen-
Pipes).

ObtainTaskNoOfPipesToBeOpened() stores the number of
Distributed Pipes to be opened at the address pointed to by
NoOfOpenPipes.

5.4 Design and Implementation of Distributed
Pipes

5.4.1 Runtime Support

The runtime support consists of an lc daemon running on each
node participating in parallel computation and a sc daemon on a
designated node.

Figure 5.4 illustrates the overall structure of the system. Circles
represent the user processes, ellipses represent runtime daemons,
thick lines represent TCP sockets, thin lines represent Unix
Domain sockets, and dashed lines represent Distributed Pipes.

5.4.1.1 Local Coordinator (lc)

The lc runs on each node that participates in parallel computation.
The lc services requests generated by user processes on its node.
Also, it maintains information required to coordinate the user
processes.

The lc maintains two tables to support bare DP services, namely,
the User Process Information Table (UPT) and the User Processes
Blocked for Write Table (UPBWT). The UPT maintains
information pertaining to user processes which have registered
with the lc on its node. UPBWT keeps track of processes which

130 GRID COMPUTING

have opened a DP in write mode and have not been opened by
any other process for reading. The writing process is blocked
until the DP is opened by some other process in read mode. The
lc maintains the table in order to inform the blocked processes
when another process opens the DP in read mode.

In order to support grid computations, the lc maintains a Grid
Computation Task Submitted Table (GCTST). The lc uses the
GCTST to service the requests of a task. The table is indexed by
the process id of the task. The GCTST is updated either when a
new task is submitted or when an already submitted task
terminates. If the service needs additional parameters, the lc
forwards the information to the sc.

The FSM of lc is given in Fig. 5.5. In the INIT state, the lc
initializes its data structures and cleans the auxiliary system files.
The lc establishes a TCP connection with the sc and registers with
the sc. In the LISTEN state, the lc waits for messages from the sc
or any user process. When it receives a message from the sc, it
changes its state to SC Msg RECVD and services the message.

FIG. 5.4

System Structure

ANONYMOUS REMOTE COMPUTING AND COMMUNICATION MODEL 131

When it receives a message from a user process, it changes its
state to UP Msg RECVD and services the request.

The initial communication between a process and the lc is
through a known common channel. This is required for a user
process to register with the lc. User processes which register with
the lc are given exclusive communication channels for subsequent
communication.

5.4.1.2 System Coordinator (sc)

The sc coordinates the lcs in the pool. Also, the sc keeps track of
individual lcs and facilitates communication between them. The sc
is connected to lcs through TCP sockets. The sc maintains TCP
socket descriptors which connect it to individual lcs.

The sc maintains two tables, namely, the Distributed Pipes Table
(DPT) and the Local Coordinators Table (LCT). The DPT keeps
track of the DP channels. The table is updated when a DP is
created, opened, closed, or deleted. When a process opens a DP
to write to, before the pipe is opened for reading, the corresponding
lc information is also stored in the DPT. Thus, the process can be
intimated when some other process opens the DP in read mode.

FIG. 5.5

FSM of Local Coordinate (lc)

132 GRID COMPUTING

The LCT keeps track of the lcs in the system. The table is updated
when a new lc joins the pool or when an existing lc leaves the
pool.

The sc maintains two additional tables in order to support grid
computations, namely, the Grid Computation Work Table
(GCWT) and the Grid Computation Task Table (GCTT). The
GCWT maintains information pertaining to grid computation work
that is submitted to the sc. It is updated either when a work is
submitted to the sc or when a work is completed. The GCTT
maintains information pertaining to individual tasks that constitute
the grid computation work. The table is updated when the work
is sub-divided into tasks, when a task begins execution, or when a
task terminates. The GCTT is a part of the GCWT.

The FSM of sc is given in Fig. 5.6. In the INIT state, the sc
initializes its data structures and cleans the auxiliary system files.
In the LISTEN state, the sc polls for connection requests from the
lcs. When a connection request from an lc is received, it registers
the lc with the system and establishes a TCP socket connection
between them. It then listens for messages from the registered lcs
on exclusive channels, and continues to listen for new connection
requests. When a message from an lc is received, it changes its
state to LC Msg RECVD and processes the message. Once the
message is processed, it returns to the LISTEN state.

FIG. 5.6

FSM of System Coordinator (sc)

ANONYMOUS REMOTE COMPUTING AND COMMUNICATION MODEL 133

5.4.2 Functional Library Support

The functional library support consists of services to support loca-
tion-transparent communication with DPs and services to support
the DP model of iterative grid computations. Variants of the calls
are provided to support communication across heterogeneous ar-
chitectures, by utilizing the external data representation. The li-
brary is built over TCP and Unix domain stream protocol.

5.4.2.1 Basic Distributed Pipe (DP) Services

The following are the basic DP services:

l int CreateDistPipe(char* PipeName).

CreateDistPipe() initiates a message to the sc through the lc
running on its machine. The sc creates the DP if another
channel with the same name does not exist and makes an
entry in the DPT.

l int OpenDistPipe(char* PipeName, int AccessMode).

OpenDistPipe() initiates a message to the sc through the lc
running on its machine with the name of a DP as a param-
eter. The sc completes the message sequence by informing
the user process if the DP is created or not.

Corresponding to an open request in Write Mode, a TCP
socket is created and another message sequence is initiated
by sending a message to sc through lc. The message contains
the TCP socket descriptor, access mode, and process id of
the requesting process. The sc updates DPT with this infor-
mation. If the DP is already opened by another process in
Read Mode, the information of the read process is returned
to the caller. The open call uses this information to connect
to the read process. If the DP is not opened for reading, it
causes the update of DPT at sc and UPBWT at lc. Subse-
quently, the call blocks until it receives a message from the lc
intimating the information of read process.

Corresponding to an open request in Read Mode, a TCP
socket is created and bound to a local port. A message is

134 GRID COMPUTING

generated to the sc to update the DPT with the TCP socket
descriptor, port number, access mode, and the process id.
Further, the sc intimates the user processes which have
requested to open the channel in Write Mode with the details
of the read process. The call listens on the TCP socket for
connection requests.

l int ReadDistPipe(int PipeDescriptor, char* Buffer, int BufferSize).

A ReadDistPipe() call translates to the read system call. It
reads from the socket descriptor for the DP descriptor. The
PipeDescriptor returned is the actual socket descriptor in
order to make it a direct translation. Hence, the read call
does not cause any overheads. The call handles message
sizes exceeding the limits of TCP messages.

l int WriteDistPipe(int PipeDescriptor, char* Buffer, int BufferSize).

A WriteDistPipe() call translates to the write system call. It
writes to the socket descriptor for the DP descriptor. The
PipeDescriptor returned is the actual socket descriptor in
order to make it a direct translation. Hence, the write call
does not cause any overheads. The call also handles message
sizes exceeding the limits of TCP messages.

l int CloseDistPipe(int PipeDescriptor)

CloseDistPipe() call translates to the close system call. It closes
the socket descriptor for the DP descriptor. Further, the call
initiates a message to the sc through the lc with the name of
the DP and process id as parameters. This causes the DPT
table at the sc to be updated.

l int DeleteDistPipe(char* PipeName).

DeleteDistPipe() initiates a message to the sc through lc with
the name of the DP as an argument. In response to the
message, the sc deletes the corresponding entry in DPT and
returns the deletion status to the call.

5.4.2.2 Overhead of Interfaces

The overhead of each call is caused by the message sequences
initiated by the call. The calls CreateDistPipe, CloseDistPipe, and

ANONYMOUS REMOTE COMPUTING AND COMMUNICATION MODEL 135

DeleteDistPipe result in a message to the lc on the node, a message
from the lc to the sc over the network, a reply from the sc to the lc
over the network, and a message from the lc back to the user
process. The call OpenDistPipe constitutes two such message
sequences and, hence, twice the overhead. The typical size of
data-packets exchanged is around 100 bytes. The round trip time
of communication over network could range from 0.4 milliseconds
(ms) to a few milliseconds. Typically, the average round trip time
is less than two milliseconds. However, these calls are used only
once during the lifetime of a DP. Hence, these overheads become
insignificant. The calls ReadDistPipe and WriteDistPipe are directly
translated to the underlying system call. Hence, they do not incur
any overheads. These calls are used many times during the lifetime
of a DP.

5.4.2.3 Extended Services for IGC

The extended sevices for IGC are as follows:

l int InitializeGridComputationWork().

InitializeGridComputationWork initiates a message to the sc
through lc. The sc creates an entry for the work in GCWT
and returns the WorkId.

l int SendGridInfo(int WorkId, int SpaceInX, int SpaceInY, int
History, int SplitDirection).

SendGridInfo initiates a message to the sc through lc.

The message carries the arguments to the call. The sc updates
the information in GCWT and returns the updated status.

l int ObtainNumberOfSplits(int WorkId).

ObtainNumberOfSplits initiates a message to the sc through lc.
The sc, in response to the message, collects the load
information of all machines from the corresponding lcs. This
information is used by the sc to split the work. Further, the sc
creates a new entry in GCTT to store the information about
the split and returns the number of splits.

136 GRID COMPUTING

l int ObtainSplitInfo(int WorkId, int SplitId, int *Start, int *Total).

ObtainSplitInfo initiates a message to the sc through the lc.
The sc gathers the information from GCTT and returns the
starting and total number of grids for the split.

l int Migrate(int WorkId, int SplitId, char *MigrateFile, int DataType,
void *Data, int SpaceInX, int SpaceInY, int History, char
*ResultPipe).

Migrate initiates a message to the sc through lc with its WorkId
and SplitId. The sc gathers the information of lcs from GCWT
and GCTT and sends messages to them. In response to the
message, each lc creates a TCP socket, binds the TCP socket
to a local port, and listens on it. Also, the port numbers are
returned to the sc. The sc passes the collected information to
the lc which initiated the migration. The lc which initiated
the migration makes a TCP connection and transfers the
code, data, and result DP name to the other lc. The GCTST
of the migrated lc is updated by using this information. Once
the migration is over, the TCP connection is closed and the
sc is informed.

l int CloseGridComputationWork(int WorkId).

CloseGridComputationWork initiates a message to the sc through
lc with WorkId. In response to the message, the sc purges the
corresponding entry from GCWT.

l int InitializeGridComputationTask.

InitializeGridComputationTask initiates a message to the sc
through the lc. In response to the message, the sc updates
GCTT with the new task entry and returns TaskId.

l int ObtainTaskGridInfo(int *SpaceInX, int *SpaceInY, int *History).

ObtainTaskGridInfo initiates a message to the sc through the
lc. The message contains the process id of the task. The lc
collects the relevant information from the GCTST.

l int ObtainTaskMachineInfo(int *WhichMachine, char *ResultPipe
Name).

ANONYMOUS REMOTE COMPUTING AND COMMUNICATION MODEL 137

ObtainTaskMachineInfo initiates a message to the sc through
the lc. The sc returns the position of the sub-domain for
which the task is responsible to the lc. The lc returns this
information and the ResultPipeName to the task.

l int ObtainTaskData(void *Data, int SpaceInX, int SpaceInY, int
History).

ObtainTaskData initiates a message to the lc. The lc gathers
the information from GCTST and returns it to the task.

l int ObtainTaskNoOfPipesToBeOpened(int *NoOf OpenPipes).

ObtainTaskNoOfPipesToBeOpened initiates a message to the sc
through the lc. The process id of the task is passed along the
message. The sc gathers information from the GCWT and
returns the number of DPs to be opened by the task.

l int ObtainTaskOpenPipeNames(char **PipeNames, int *AccessMode,
int NumberOfOpenPipes).

ObtainTaskOpenPipeNames initiates a message to the sc through
the lc. The process id is passed along with the message. In
response to the message, the sc returns the names of DPs to
be opened and their Access Modes.

l int CloseGridComputationTask(int TaskId).

CloseGridComputationTask initiates a message to the lc. The lc
deletes the corresponding entry from the GCTST and
forwards the message to the sc. In response to the message,
the sc updates GCWT.

5.5 Case Study

Iterative grid computations comprise a large class of engineering
applications. This class of applications exhibit a pattern in their
process interaction [11]. Steady State Equilibrium Problem is
considered for our case study. The problem computes intermediate
temperature flux distribution of a rod whose both ends are kept
in constant temperature baths. Similar computational problems

138 GRID COMPUTING

exist in many engineering disciplines to compute pressure distri-
bution, composition distribution, etc.

5.5.1 Problem Description

The problem iteratively computes the temperature values at each
grid point. Each iteration computes the function for a time slice.
The temperature of a grid at a time slice is influenced by the
temperature of the grid in the previous time slice along with the
temperature of adjacent grids in the previous time slice. This
accounts for the temperature flux by conduction. The problem
considers the temperature flux in only one dimension. The points
at which temperature is to be computed are evenly spaced. Also,
the temperature of a grid point is evaluated at regular intervals in
time.

The data dependency among adjacent grids is shown in equa-
tion (1).

Tg,t = f (Tg–1,t –1, Tg,t –1, Tg+1,t –1) (equation 1)

where Ti, j is the temperature of grid i during the time slice j.

Temperature values of the fixed temperature baths, length and
distance between adjacent grid points, and time interval between
two successive computations are the data furnished at the beginning
of the run. The equations that characterize the flow of temperature
are space-time domain equations.

5.5.2 DP Model of Computation

In the model, the problem is expressed as a master process and
several worker processes. A worker process is responsible for
computation over a sub-domain. The grain size of the sub-domain
allotted to a worker process depends upon the load ratio of the
node on which it executes. The master process initiates the
computation. The master process also communicates with the
system to coordinate the parallel computation.

5.5.2.1 The Master Process

The master process initiates the parallel computation by initializing
the grid computation work with the system. The grid information

ANONYMOUS REMOTE COMPUTING AND COMMUNICATION MODEL 139

of the problem is sent to the system. The system decides the
number of worker processes, their individual granularities, and
the machines on which they execute. It has been mentioned earlier
that availability and load information of the machines in the pool
influences this decision. The master process collects the number
of worker processes that constitute the computation. Further, the
master process collects the information of each split from the
system. This is used by the master process to construct data-
packets for each worker process. The Result Pipe for each worker
process is created and migrated. Further, the master process opens
the Result Pipes and waits for the results. The Result Pipes are
closed and deleted after the results are collected. A sample code
of the master process is given below (Pseudo Code 2).

Pseudo Code 2: Sample Program of the Master Process

int main ()

{

...

WorkID = InitializeGridComputationWork();

...

SendGridInfo(WorkID, NoOfRows, NoOfCols,

1, SPLIT_COLUMNS);

. . .

Number of Splits = ObtainNumberOfSplits
(WorkID);

...

for(SplitId = 0; SplitId < NumberofSplits;
SplitId++)

{

ObtainSplitInfo(WorkID, SplitId,
andStart, andTotal);

...

MakeDataPacket(Matrix, NoOfRows, Start,
Total, 1, SPLIT_COLUMN, DataPacket);

...

140 GRID COMPUTING

ResultPipe = HostName.“Result”.WorkID.
SplitIndex;

CreateDistPipe(ResultPipe);

Migrate (WorkID, SplitIndex,
MigrateFile, FLOAT_TYPE, DataPacket,
ResultPipe);

}

...

for(SplitId = 0; SplitId < NumberofSplits;
SplitId++)

{

ResultPipe = HostName.“Result”.WorkID.
SplitId;

PipeFd[SplitId] = OpenDistPipe(Result
Pipe, READ_MODE);

}

for(SplitId = 0; SplitId < NumberofSplits
SplitId++)

{

ReadSignedCharacter(PipeFd[SplitId],
andMoreResult, sizeof(MoreResult),

CONVERT_XDR);

while(MoreResult)

{

ReadFloat(PipeFd[SplitId], andResult
sizeof(Result), CONVERT_XDR);

ReadSignedCharacter(PipeFd[SplitId],
andMoreResult,sizeof(MoreResult),
CONVERT_XDR);

}

}

for(SplitId = 0; SplitId < NumberofSplits;
SplitId++)

ANONYMOUS REMOTE COMPUTING AND COMMUNICATION MODEL 141

{

CloseDistPipe(PipeFd[SplitId]);

ResultPipe = HostName.“Result”.WorkID.
SplitId;

DeleteDistPipe(ResultPipe);

}

CloseGridComputationWork(WorkID);

return 1;

}

5.5.2.2 Iterative Grid Module (IGM)

IGMs are migrated to anonymous remote nodes for execution.
An IGM starts its execution by initializing itself with its local lc.
IGMs collect information regarding the sub-domain allotted to
them from the system. Similarly, IGMs collect the relevant
information from the system by using the services provided. Pseudo
Code 3 shows the system services availed by an IGM and the
corresponding course of action taken.

Pseudo Code 3: Sample Program of an IGM

int main()

{

...

TaskId = InitializeGridComputationTask();

...

ObtainTaskGridInfo(andNoOfRows, andNoOfCols,
andDepth, andSplitDirection);

ObtainTaskMachineInfo(andWhichMachine,
ResultPipeName);

...

OpenDistPipe(ResultPipeName, PIPE_READ);

...

ObtainTaskData(Data);

...

142 GRID COMPUTING

ObtainTaskNumberofPipesToBeCreatedAnd

Opened(andNoOfCreatePipe, &NoOfOpenPipes);

...

ObtainTaskCreatePipeNames(CreatePipes,
NoOfCreatePipe);
for(PipeIndex = 0;
PipeIndex < NoOfCreatePipes; PipeIndex++)

{

CreateDistPipe(CreatePipes [PipeIndex]);

}

...

ObtainTaskOpenPipeNames(OpenPipes,
AccessModes, NoOfOpenPipes);

for(PipeIndex = 0; PipeIndex < NoOfOpen
Pipes; PipeIndex++)

{

PipeFd[PipeIndex] = OpenDistPipe(Open
Pipes[PipeIndex], AccessModes

[PipeIndex]);

}

...

if (WhichMachine ! = LAST_GCTM)

{

WriteFloat(NextMachineWd, andPrevTimePrev
Grid, sizeof(float), 1, CONVERT_XDR);

}

if (WhichMachine ! = FIRST_GCTM)

{

WriteFloat(PrevMachineWd, andPrevTimeNext
Grid, sizeof(float), 1, CONVER_XDR);

}

for(Time = 0; Time < MAX_TIME; Time++)

{

if (WhichMachine ! = FIRST_GCTM)

ANONYMOUS REMOTE COMPUTING AND COMMUNICATION MODEL 143

{

ReadFloat(PrevMachineRd, andPrevTime
PrevGrid, sizeof(float), 1, CONVERT_
XDR);

WriteFloat(PrevMachineWd, andPrevTime
NextGrid, sizeof(float), 1, CONVERT_
XDR);

}

else

{

...

}

for(Grid = Start; Grid < Total -1;
Grid++)

{

...

}

if(WhichMachine ! = LAST_GCTM)

{

ReadFloat(NextMachineRd, andPrevTimeNext
Grid, sizeof(float), 1, CONVERT_XDR);

...

WriteFloat(NextMachineWd, andPrevTimePrev
Grid, sizeof(float), 1, CONVERT_XDR);

}

else

{

...

}

}

...

for(PipeIndex = 0; PipeIndex < NoOfOpenPipes;
PipeIndex++)

144 GRID COMPUTING

{

CloseDistPipe(PipeFd[PipeIndex]);

}

for(PipeIndex = 0; PipeIndex < NoOfCreate
Pipes; PipeIndex++)

{

DeleteDistPipe(CreatePipes[PipeIndex]);

}

CloseGridComputationTask(TaskId);

return 1;

}

5.6 Performance Analysis

The performance analysis intends to show the speed-up achieved
by the parallel execution of the problem and scaled down memory
requirements. It presents a case wherein the communication
overhead can be concealed to achieve a linear to super-linear
speed-up. The analysis discusses the performance resilience of the
application, synchronization delay among sub-tasks, effect of the
network overhead, and load fluctuations on performance and
performance saturation.

The Steady State Equilibrium Problem is considered for our
experiments and performance analysis. It represents computa-
tionally intensive problems with high memory requirements and
patterns in process interactions.

5.6.1 Effect of Memory Scaling

The problem iteratively computes a function on a huge set of grid
points. The data required for evaluation of the function, the
intermediate data, and the result constitute a large set. Hence, the
program may need to use secondary storage during the course of
computation. The use of secondary storage during the computation
proves expensive in time. When the problem is partitioned, the

ANONYMOUS REMOTE COMPUTING AND COMMUNICATION MODEL 145

total memory requirement gets divided among the sub-tasks. In
the case we explore, the memory requirement scales down linearly
with the number of sub-tasks. This can potentially dispense the
expensive I/O during the course of computation. Also, as the
memory requirement decreases, performance increases due to
cache advantage and reduced memory swapping. The graph in
Fig. 5.7 presents a case.

FIG. 5.7

Synchronization Delay vs. Number of Sub-tasks

The graph in Fig. 5.7 quantifies the increase in task finish time
with respect to memory requirements. The same program is run
for the increasing number of grid points. Consequently, the
memory requirement increases. The result shows that task
completion time increases more than linearly with an increase in
the scale of the problem.

5.6.2 Results of Parallel Execution

The problem was executed parallel-wise on a heterogeneous
collection of unevenly loaded workstations. The load variations
on individual machines are unpredictable. The problem is run for

146 GRID COMPUTING

1,551 iterations over 100,000 grid points. Each sub-task computes
the function over a sub-domain and exchanges its boundary values
with the neighbours on either sides once in each iteration. Hence,
each sub-task would receive and send data 3,002 times during the
course of its execution. The two sub-tasks which compute the two
ends of the domain, will have only one neighbour each. The
experiment was repeated to parallelize the problem on two to
five nodes.

Table 5.1 summarizes the results of parallel execution. The
table shows the load on each node (Load), the grain size of
computation allotted for each node (Grain Size), the time of
completion of individual sub-tasks (Task Time), synchronization
delay suffered by each sub-task (Sync. Time), and the speed-up
achieved by each parallel run (Speed-up).

Table 5.1 Results with Equal Load Division

#Nodes Node Load Grain Task time Sync. Speed-up
no. size (Grids) (in sec) time (in sec)

1 1 10800 200001 348 NA NA
2 1 14275 100001 161 1 2.148

2 14358 100000 162 3
3 1 4570 66667 106 3 3.252

2 11228 66667 107 1
3 9930 66667 106 1

4 1 17603 50001 86 0 4.046
2 6841 50000 85 8
3 2716 50000 85 9
4 3000 50000 85 3

5 1 4200 40001 69 11 4.971
2 6508 40000 70 3
3 9358 40000 70 6
4 2780 40000 69 12
5 7358 40000 70 9

The grain size of a sub-task (Grain Size) represents the number
of grid points allotted to the sub-task. Task time of a sub-task is
the time taken for completion of the sub-task. It is the sum of the

ANONYMOUS REMOTE COMPUTING AND COMMUNICATION MODEL 147

actual CPU time of the sub-task and the synchronization delay
suffered by the sub-task. The time of finish of a task is defined as
the time at which all sub-tasks of the task are completed. Total
synchronization delay of a sub-task (Sync. Time) is defined as the
total time the sub-task spent waiting to receive data from
neighbouring sub-tasks. It is the sum of the synchronization delay
in each iteration. Speed-up is defined as the ratio of sequential
execution time of the problem to its parallel execution time.

A larger test on a slightly modified version of the problem
yields mostly sub-linear speed-ups due to more time being spent
waiting for boundary values from neighbouring nodes. These
results are summarized in Table 5.2.

Table 5.2 Results with Larger Tasks

#Nodes Grain size Iterations Task time Speed up
(Grids per node) per node (in sec)

1 480000 1000 8722.73 —

4 120000 1000 2423.00 3.60
8 60000 1000 1166.67 7.86

12 40000 1000 781.671 11.22
16 30000 1000 580.71 15.02
20 24000 1000 459.79 18.971

5.6.3 Load Balancing

The load indices shown in Table 5.1 are values obtained from
LINUX machines using the sysinfo call. The load is balanced over
the participating machines by allotting granule sizes of computation
according to the current load of the machines. However, the
quantitative translation of the load balancing is more involved.
The load indices obtained from the system quantify the average
contention for the CPU at each CPU time slice. Under lightly
loaded conditions, a large number of CPU cycles are wasted. The
load index obtained under such conditions ranges from a few
hundred to a few thousand. When a CPU intensive process is run
on a machine, it contends for the CPU at every time slice.

148 GRID COMPUTING

Correspondingly, on a Linux node, the load index increases by
an additive factor of around 60,000. This value is several times
more than the values obtained during lightly loaded conditions.
When the parallel sub-tasks are started on the nodes, the system
works on this high values of load. Due to these observations, we
employ the following two heuristics in our load balancing scheme:

l The values of load differences of the order of a few thousand
are not substantial and, hence, ignored.

l The load ratio is calculated on the projected values of the
load with the load increase that would occur when the sub-
tasks start their execution.

The load values obtained from different operating systems are
normalized for comparison. Also, a rough index of the processing
power of different nodes is derived from the experience of running
computationally intensive jobs on them. This index of processing
power is also utilized for load balancing.

5.6.4 Synchronization Delay

The total synchronization delay of individual sub-tasks is an
important set of parameters for two reasons. It reflects load
imbalances and performance saturation. A high value of Si for
one sub-task alone signifies that the sub-task completes its work
faster than the neighbouring sub-tasks. Hence, the grain size for
the sub-task can be increased to facilitate better load distribution.

As more machines participate in parallel computation, the
average grain size decreases. This would result in performance
saturation beyond which more machines would not contribute
significantly to the speed-up. Performance saturation is reflected
as a high value of Si for most of the sub-tasks.

For each run, more than one node may have a non-zero value
for the Total Synchronization Delay. This is explained by spurs of
load variations during the run. Consequently, for some iterations,
a sub-task may reach the synchronization point ahead of its
neighbouring sub-task. Similarly, the neighbouring sub-task may
reach the synchronization point earlier during the other iterations.

ANONYMOUS REMOTE COMPUTING AND COMMUNICATION MODEL 149

It can be seen that the Sync. Time is considerably low for the
initial experiments. The data required for a sub-task is generated
by its neighbour in its last beat of computation. This conceals the
communication overhead through the network and achieves linear-
like speed-up. The scaled down memory requirements further
enhance the performance to achieve super-linear speed-up.

The synchronization delay of a sub-task i in a beat of computa-
tion j (Si, j) could be expressed as:

Si, j = (ti, j, available – ti, j, read) if (ti, j, available > ti, j, read), (equation 2)

Si, j = 0 if (Ti, j, available <= ti, j, read)

where ti, j, available is the time at which the data is available for sub-
task i and ti, j, read the time at which sub-task i issues a read.

The total synchronization delay of a sub-task i (Si) could be
expressed as

J = last

Si = SSi, j (equation 3)

J = 0

The increase in total synchronization delay of individual sub-
tasks with respect to the number of sub-tasks in the experiment is
shown in Fig. 5.8. The graph shows the average of the total
synchronization delay suffered by individual sub-tasks. As the
number of sub-tasks for the task increases, the granularity of each
sub-task decreases. This potentially results in an increased syn-
chronization delay at each sub-task.

5.6.5 Performance Resilience

It was already mentioned that the data to be read by a sub-task is
written by its neighbouring sub-task during its last iteration. Hence,
the synchronization delay would become apparent only if the
time for the data to be available exceeds the time for the reading
sub-task to reach the synchronization point. However, these time
durations are probabilistic and are subject to change with load
fluctuations of the nodes and network. We define the resilience of
performance of a sub-task i in a beat of computation j (Ri, j) as the

150 GRID COMPUTING

sum of delay at the neighbouring task and delay in the underlying
network which can be tolerated by sub-task i in the jth iteration
without affecting performance.

K = (ni – 1)

Ri, j = St fk

K = 0 (equation 4)

where ni is the number of grids allotted for task i and tfk the time
taken by the task to compute the function f on k th grid. If the
sending sub-task and the receiving sub-task were progressing alike,
Ri, j is the time by which the send would have preceded the receive.

Network Overhead (no) is defined as the transit time for a
communication. Resilience to Network Load (Rn) is defined as
the maximum delay in the network which a sub-task can tolerate
without allowing its performance to be affected, when the sub-
tasks which send and receive progress alike.

no = ti, receive – ti –1, send (equation 5)

where ti, receive is the time at which the receiving sub-task reaches
the synchronization point and ti–1; send the time at which the
sending sub-task reaches the synchronization point.

The rate of progress of individual sub-tasks may differ due to
the difference in load fluctuations of machines. Resilience to load
fluctuations during the execution of sub-tasks (Rl) is defined as
the difference in time of the completion of sub-tasks that a sub-
task can tolerate without allowing its performance to be affected.
Load Fluctuation Factor (lf) is defined as the difference in time of
the completion of a beat of computation of the receive task and
the send task.

lf = tbreceive – tbsend (equation 6)

where tbreceive and tbsend represent the time taken for a beat of
computation by receive and send sub-tasks, respectively. Using
(5), (6), and (7), the synchronization delay of a sub-task in a beat
of computation (Si, j) can be expressed as:

Si, j = no + lf – Ri, j if (no + lf) > Ri, j (equation 7)

Si, j = 0 if (no + lf) <= Ri, j

ANONYMOUS REMOTE COMPUTING AND COMMUNICATION MODEL 151

5.6.6 Performance Saturation

The experimental results presented for parallel execution have
shown a linear to super-linear scale-up. However, for a given
problem, the speed-up does not scale up beyond some value of
number of nodes. The granularity of sub-tasks, computational
requirements of the function to be evaluated, network overheads,
and load fluctuation factor are the factors which affect the saturation
point. An increase in the granularity of sub-tasks and computational
requirements of the function to be evaluated improves the
saturation point of performance. Increases in network overheads
and load fluctuation factor result in an early saturation of
performance.

Granularity increases if the number of grid points is increased.
When the number of nodes increases, the domain is split into
more sub-domains. Hence, the average granularity of sub-tasks
decreases. This results in an increased synchronization delay at
each sub-task. It must be recalled that the time of completion of a
sub-task is the sum of its actual CPU time and synchronization
time.

tti = tti, cpu + tti, syn (equation 8)

where tti is the task time of sub-task i, tti, cpu is the CPU time of
sub-task i, and tti, syn is the synchronization delay of sub-task i.

The relationship between synchronization delay and granularity
was established using (5), (8) and (9). The computational
requirements of the function to be evaluated constitute an index
of the time taken by the function to compute the value at a grid
point. Equation (5) shows its relationship with performance
resilience.

The graph in Fig. 5.7 shows a steep increase in synchronization
delay as the number of sub-tasks is increased. In the experiment,
the performance starts saturating beyond five sub-tasks. We define
saturation point as the value of the absolute granularity of sub-
tasks at which average synchronization delay of sub-tasks exceeds
10 per cent of the average of task time. However, in practice, a
few more nodes could be utilized to effect marginal improvement
in speed-up. The absolute granularity of a sub-task is synonymous

152 GRID COMPUTING

with its performance resilience. The value of absolute granularity
with five sub-tasks is calculated to be around 45 ms. The observed
values of round trip network delay among the nodes used for our
parallel computation vary from 0.3–3.5 ms with an average of
0.45 ms. This accounts for only 10 per cent of the performance
resilience. The difference in load fluctuations accounts for the
sum of no and lf exceeding the performance resilience.

5.6.7 Static Overheads

The programming model supports code migration, argument
passing, transparent laying of DPs, and result collection. They
result in some fixed time overheads. The typical fixed time
overheads encountered are given in Table 5.3.

Table 5.3 Static Overheads

Source of overhead Order of overhead

Code Migration Overhead 10s of seconds
Compilation Time few seconds
Argument Passing Overhead few seconds
Transparent Pipe Layout Overhead few seconds

5.7 Future Works

The class of problems with similar patterns in process interactions
can be studied. The issues in extending the model for problems
of adaptive nature can be explored. The concepts presented in
the work can be utilized for adaptive load balancing by load
redistribution. The issues encountered while redistributing com-
municating parallel tasks can be studied. The concepts
presented in the work can be integrated into existing high-level
parallel platforms to support inter-task communication. The study
of many problem domains for the separation of the system and
the programmer’s concern can lead to generic metaprograms for
classes of applications. The system can achieve transparent
optimizations in the parallel execution of such metaprograms.

ANONYMOUS REMOTE COMPUTING AND COMMUNICATION MODEL 153

Such metaprograms can also specify the fault tolerance and
checkpointing schemes appropriate for them.

References

1. Litzkow, M. and M. Solomon, “Supporting Checkpointing
and Process Migration Outside the UNIX Kernel,” Proc.
Usenix Winter Conf., pp. 283–290, January 1992.

2. Gelernter, D. and D. Kaminsky, “Supercomputing Out of
Recycled Garbage: Preliminary Experience with Piranha,”
Proc. Sixth ACM Int’l Conf. Supercomputing, pp. 417–427,
July 1992.

3. Casas, J., R. Konuru, S. Otto, R. Prouty, and J. Walpole,
“Adaptive Load Migration Systems for PVM,” Proc.
Supercomputing, pp. 390–399, November 1994.

4. Joshi, R.K. and D. Janakiram, “Anonymous Remote
Computing: A Paradigm for Parallel Programming on
Interconnected Workstations,” IEEE Trans. Software Eng., Vol.
25, No. 1, pp. 75–90, January 1999.

5. Douglis, F. and J. Ousterhout, “Transparent Process
Migration: Design Alternatives and the Sprite Implementa-
tion,” Software Practice and Experience, Vol. 21, No. 8,
pp. 757–785, August 1991.

6. Cheriton, D.R., “The V Distributed System,” Comm. ACM,
Vol. 31, No. 3, pp. 314–333, March 1988.

7. Van Dijk, G.J.W. and M.J. Van Gils, “Efficient Process
Migration in the EMPS Multiprocessor System,” Proc. Sixth
Int’l Parallel Processing Symp., pp. 58–66, March 1992.

8. Fox, G., M. Johnson, G. Lyzenga, S. Otto, J. Salmon and D.
Walker, Solving Problems on Concurrent Processors, Vol. 1.
Englewood Cliffs, Prentice-Hall, New Jersey 1988.

9. Sreenivas, T.H., “A Class of Sub-optimal Algorithms for
Schedule Optimization Problems,” Ph.D thesis, Dept. of

154 GRID COMPUTING

Computer Science and Eng., Indian Institute of Technology
Madras, Chennai, July 1998.

10. Hoare, C.A.R., “Communicating Sequential Processes,”
Comm. ACM, Vol. 21, No. 8, pp. 666–677, August 1978.

11. Andrews, G.R., “Paradigms for Process Interaction in
Distributed Programs,” ACM Computing Surveys, Vol. 23,
No. 1, pp. 49–89, Engineering, Indian Institute of Technology,
March 1991.

Chapter 6

Parallel Programming Model on
CORBA*

6.1 Introduction

The Common Object Request Broker Architecture (CORBA) [30]
has emerged as a standard for distributed object computing. It is
being used for several applications such as building digital libraries
[31], scientific problem solving [11], multimedia applications [8],
network management [24], etc. This chapter explains the attempt
to use CORBA for parallel programming in a Network of
Workstations (NOW).

Exploiting NOWs for parallel computing is not easy due to the
following factors:

l Load fluctuations in the nodes of the NOW,

l Dynamic availability of the nodes,

l Heterogeneity in architecture and operating systems,

l Varying processor and network speeds, and

l Possibility of failure of nodes.

In the literature, there exist several parallel programming mod-
els that address some of the above issues and utilize the NOW
for parallel computing. The notable ones include ARC [20],
Piranha [7], Mentat [13], the Berkeley NOW project [1], Batrun

*D. Janakiram, A. Vijay Srinivas, P. Manjula Rani

156 GRID COMPUTING

[34], Condor [25], etc. A taxonomy of the programming language
level efforts is given in [2].

CORBA is not inherently suitable for parallel programming
because of two reasons. First, a notion of concurrency does not
exist in the CORBA specification. Second, no services which ad-
dress any of the above issues have been built over CORBA. P-
CORBA brings a notion of concurrency into the CORBA domain.
Existing approaches tend to introduce different kinds of objects
into CORBA, whereas in P-CORBA, there is only one kind of
object that CORBA deals with. P-CORBA also demonstrates how
load balancing can be achieved in CORBA-based distributed
systems. The load balancing approach of P-CORBA is also different
from other existing approaches, in the sense that it builds load
balancing as a separate service while approaches such as [3]
integrate load balancing into existing CORBA services.

The rest of the chapter is organized as follows. Section 6.2
explains the related works. Sections 6.3 and 6.4 explain the
proposed model, with Section 6.3 explaining the notion of
concurrency and Section 6.4 explaining the system support that is
provided. Section 6.5 explains the implementation and gives the
performance studies. Section 6.6 gives a brief summary of the
usage of CORBA for parallel programming. Section 6.7 gives
future research directions and concludes the chapter.

6.2 Existing Works

To the best of the authors’ knowledge, there have been only two
other attempts at parallel programming over CORBA. These are
the PARDIS [22] and the Cobra [3] systems. PARDIS is a system
which ensures that parallel distributed applications interoperate
by extending the Interface Definition Language (IDL) of CORBA.
An SPMD object is pushed into CORBA to capture data parallel
computations. Cobra is an environment for parallel programming
in which the main focus is the design of high-performance
applications using independent software components. Cobra also
introduces a parallel object into CORBA by extending the IDL of

PARALLEL PROGRAMMING MODEL ON CORBA 157

CORBA. The fundamental difference between Cobra and PARDIS
is that PARDIS lets the programmer handle object distribution
whereas in Cobra, a resource allocator exists which makes the
mapping from objects to machines. In both the models, the objects
constituting the parallel object communicate through a mechanism
outside CORBA, for example a message passing library such as
MPI [27].

P-CORBA is similar to the above models in the sense that a
new object called a meta-object which looks similar to the parallel
object is introduced. The critical difference is that the meta-object
is translated by a parser into a CORBA object. The consequence
of this is that CORBA can uniformly handle only one kind of
object. But in both PARDIS and Cobra, CORBA has to handle
two different kinds of objects. This may lead to problems at the
middleware level. For instance, the implementation repository
which stores address information for activating objects, may have
to be extended to handle two different kinds of objects. The
entity which handles object location and request delivery1 needs
extension.

The other advantage of the translator-based approach is that
the translator and the runtime system can be modified to make
use of a different middleware. For example, one may think of
using DCOM [9] in some Windows NT clusters since it integrates
closely with the operating system and hence performs well.

This work differs from the earlier works in its handling of load
fluctuations in a NOW. In Cobra, the resource allocator decides
on which machines the objects are to be executed statically at
compile time. In PARDIS, the programmer has to make this
decision at compile time.2 Thus, in these models dynamic load
fluctuations in the NOW cannot be handled. One of our key
observations relating to load fluctuations is that, in a NOW, wide
fluctuations in the load of the machines take place during the
execution of a parallel program. An important aspect of P-CORBA
is that the runtime system is designed to handle this problem. The
proposed model can also handle differences in processor speeds
through the use of the load factor. The load factor is a function of
the processor speed as well as the load conditions on the system.

158 GRID COMPUTING

Further, P-CORBA can handle the dynamic availability of
machines. Hence, the most important difference between
PCORBA and the other two models is that the latter models do
not address issues specific to parallel programming on NOWs.

A component-based architecture for scientific problem solving
is presented in [11]. It provides a mechanism by which components
built in different languages can be instantiated and run on remote
machines. It also provides a resource allocator which lets the user
decide on which machine a particular component is to be run.
However, the emphasis of this work seems to be more on ensuring
interoperability of the components rather than on issues relating
to parallel computing.

Charm++ [21] is similar to P-CORBA in that it is also an OO-
based parallel programming system. Recent extensions to
Charm++ [5] introduce object arrays and dynamic load balancing
by object migration. An object array is a multi-dimensional
collection of data-driven objects, that allows messages to be sent
to any subset of its objects. The object array is similar to P-
CORBA’s meta-object, as one could form a grid of communicating
objects using both. Further, the user does not need to know where
the objects reside at runtime as this decision is made by the
system dynamically. This is true for both Charm++ as well as P-
CORBA. The essential difference between the recent extensions
to Charm++ and P-CORBA arises in the actual migration
mechanism. In Charm++, after an object migrates, the home
processor acts as a location broker. In P-CORBA, the filter acts as
a location broker. But in P-CORBA, the filter can throw a Rebind
exception (CORBA specific user-defined exception) to a client so
that subsequent messages do not need to go through the filter [18]
whereas in Charm++, every message has to make at least one
extra hop [5]. This makes the migration mechanism of P-CORBA
more efficient than the mechanism used in Charm++.

The approach closest in resemblance to the proposed model is
the Adaptive Runtime System (ARTS) [6]. ARTS is a middleware
for parallel processing in the PEACE operating system [35]. It
provides runtime services for parallel processing in a distributed
object space. These services include naming and binding services

PARALLEL PROGRAMMING MODEL ON CORBA 159

as well as services for load management and object migration.
The main differences between the proposed model and ARTS are
as follows:

l ARTS is not designed to handle heterogeneity (in operating
systems or in architectures) whereas P-CORBA can be used
over NOWs that could be heterogeneous in architecture,
operating systems, etc.

l ARTS has been implemented over a parallel Manna computer,
which is a Massively Parallel Processor (MPP) whereas the
proposed model has been built over a NOW. Targeting
NOWs necessitates the addressing of very specific issues, as
this chapter points out.

l ARTS cannot handle inter-task communication. Thus, it
cannot model a class of computations such as IGCs whereas,
P-CORBA can handle such computations.

l Since ARTS is a new middleware layer that has been built
specifically for parallel processing, it could be more efficient.
But it may not be a good approach to build a specialized
middleware layer for every application. It may, however,
also be infeasible to build a general middleware that can
handle every conceivable application. Thus, the approach of
the authors is better: use the standard middleware for all
applications, extending it if required.

P-CORBA is also similar to Mentat [13] in the sense that the
underlying philosophy of separation of the concerns of the system
and the programmer are the same. Mentat also achieves this
separation by relieving the programmer of the task of handling
lower level details such as synchronization. However, there are
some critical differences. P-CORBA can handle dynamic load
fluctuations. However, no concept of object migration exists in
Mentat and hence, load balancing is done at compile time. Further,
the runtime system in Mentat needs to handle two different kinds
of objects, viz. independent and contained objects, whereas in P-
CORBA, the runtime system handles only normal CORBA objects.
Legion [14] is a middleware approach targeted at providing a
global virtual computer abstraction that is built on top of Mentat.

160 GRID COMPUTING

The above-mentioned problem of runtime system handling two
different objects also exists in Legion, whereas P-CORBA does
not suffer from it. But Legion is targeted at Wide Area Networks
(WANs), while P-CORBA currently does not address issues specific
to WANs.

6.3 Notion of Concurrency

This section explains the notion of concurrency that is used in P-
CORBA. It also gives the application developer’s view of the
model. The basis of this notion of concurrency is given in the
OBS model [19].

The notion of concurrency is based on the sub-contract mech-
anism which models concurrency at the method level. A method
can be invoked concurrently on multiple objects through the sub-
contract. The key idea in achieving the sub-contract is the meta-
object. The meta-object is an entity which can aggregate objects of
the same class. Meta-objects can be created by instantiating a
meta-class called Parclass. The application developer can insert
objects into the meta-object and then invoke the sub-contract on
the meta-object. This ensures that the method is invoked on all
these objects simultaneously.

6.3.1 User Interface

The sample code in Fig. 6.1 is for solving a simple parallel matrix
multiplication problem to illustrate the user’s view of the model.
It shows the syntax of the user program in the model. The matrix
class has methods to initialize the matrix, to compute the partial
product, and to print the results of the partial computation. Each
matrix class computes a portion of the product. In this program,
results are not returned to the meta-object for the sake of simplicity.
In the main body of the program, the meta-class and objects of
the class matrix are instantiated. As shown in the code, the objects
can be inserted into the meta-object through the insert (symbol
<<) operator. After this step, the sub-contract call on the meta-

PARALLEL PROGRAMMING MODEL ON CORBA 161

class matrix {

public :

voild Initialize (..); // Initializes
the matrix

void Inverse (..); // Matrix Inversion

void PrintMatrix(..); // Prints the
matrix

};

main() {

Parclass ParMatrix holds matrix;

// metaclass Parmatrix can hold objects
of class matrix

Parmatrix P; // instantiating metaclass
matrix m1, m2;

m1. Initialize(..);

m2. Initialize(..);

P << m1;

// Insert operator, insert matrix m1
into metaobject

P << m2;

P..Inverse(U); // subcontract operator,
call for parallel execution of Inverse on
all objects of the metaobject P (U is
unordered)

P..PrintMatrix(0);

// print matrices in order, no concurrency
here (0 is ordered)

FIG. 6.1

Sample Code for Explaining the User Interface

object is made through the subcontract (symbol..) operator. This
ensures that all the objects do the partial computation in parallel.

162 GRID COMPUTING

A runtime system ensures that the objects that are part of a
sub-contract can be migrated to the best available machines3 based
on the load conditions (Fig. 6.2). The notable point is that the
application developer partitions the data by creating the different
objects of the same class and inserting them into the meta-object.
The runtime system decides on which machines these objects are
to execute at runtime. This concept illustrates how cleanly the
functions of the system and the programmer are separated in the
model. The meta-object also abstracts the concept of fault tolerance
in the sense that if any of the method call fails, it is re-executed on
a different node.

FIG. 6.2

An Illustration of the Model

PARALLEL PROGRAMMING MODEL ON CORBA 163

In the OBS model, support for inter-object communication is
not provided. So computations involving communicating tasks
cannot be modelled. The authors have introduced a new operator
called ‘message sender’ (symbol 0 Æ 0) on the meta-object through
which a message can be sent from one object to another object in
the meta-object’s collection. The sample code in Fig. 6.3 illustrates
how grid computations like the ones discussed in [10] which involve
communicating tasks, can be modelled in the program. Each grid
object can be initialized with a part of a grid on which it performs
the computation. During the computation, it also exchanges
boundary values with other objects, say after every iteration. This
is done by invoking the message sender operator on the meta-
object.

The point to be noted in this context is that in the proposed
model, CORBA is transparent to the application developer. From
the viewpoint of the application developer, the meta-object and
sub-contracting are the key points. The system programmer is the
only one who is aware of CORBA. It is the responsibility of the
system programmer to ensure that the code written by the
application developer is translated into calls on CORBA.4 This is
a fundamental difference between P-CORBA and the other two
models, PARDIS and Cobra. In both these models, the application
developer is aware of CORBA and the programs on top of an
extended CORBA model.

6.4 System Support

This section presents the system programmer’s view of the model.
The key components of the system include the translator and the
runtime system or what the authors refer to as the ‘kernel’. The
translator converts the application developer’s program into calls
on the kernel and calls on CORBA’s ORB. The kernel is
responsible for executing the sub-contract, load balancing and
fault tolerance.

164 GRID COMPUTING

class grid {

public:

void Initialize(..); //Initializes the
grid

void Computation(..);//The actual
computation to be performed

void PassBoundaryValue(..);//To pass
boundary value to another object

void ReceiveBoundaryValue(..);//Receives
values from another object

};

main() {

grid g1, g2, g3;

Parclass ParGrid holds grid;

ParGrid Pg;// grid meta object

g1. Initialize(..);//similarly for the other
two grids

Pg << g1; //similarly for the other two
grids

Pg..Computation(U);

Pg 0 Æ 0 g1 to g2;

//message sender operator on the meta object,
message sent from g1 to g2

Pg 0 Æ 0 g2 to g3;

Pg..Computation(..);

//next iteration

}

FIG. 6.3

Sample Code to Explain Inter-object Communication

PARALLEL PROGRAMMING MODEL ON CORBA 165

6.4.1 Translator

The translator parses the program written by the application
developer. It converts the meta-object into a CORBA object that
aggregates the object references of the objects in its collection.
Each object in the collection is converted into a server object in
CORBA while the meta-object becomes the client object in
CORBA. If the application developer makes the objects in the
collection communicate with each other, then these calls are
converted into CORBA method invocations by the translator.
Hence, the translator is also responsible for ensuring inter-object
communication.

This concept illustrates another difference between P-CORBA
and the two other models, viz. PARDIS and Cobra. The
communication between the objects in the collection is through a
mechanism outside CORBA in both the models. But it is not
explained clearly how a process-based communication mechanism
such as MPI integrates into the object-based communication
paradigm of CORBA in these models, whereas in P-CORBA this
communication is also through the ORB. However, this may result
in a higher overhead for the inter-object communication in the
proposed model. But this simplifies the handling of heterogeneity
whereas in the other models, the heterogeneity handled by the
system is restricted by the mechanism used for inter-object
communication.

The translator converts the code of Fig. 6.1 into the form shown
in Fig. 6.4. This figure shows the IDL file Matrix.idl. It shows
some additional methods such as Update, SaveState, etc. These
methods are required for the filtering mechanism used during
object migration, as will be detailed in Section 6.4.3. The Fig. 6.4
also shows the implementation file Matrix_impl.cc. The
Matrix_server.cc file is the code for actually deploying the server
objects. The client code is the meta-object, which makes method
invocations on all server objects concurrently. The code shown is
specific to mico, the CORBA ORB used in the implementation of
P-CORBA.

166 GRID COMPUTING

M
a
t
r
i
x
_
c
l
i
e
n
t
.
c
e
=
M
e
t
a
O
b
j
e
c
t

C
O
R
B
A
:
:
O
R
B
_
v
a
r

o
r
b
=
C
O
R
B
A
;
O
R
B
_
i
n
t
e
r
(
a
r
g
v
,

“
n
i
c
o
-

l
o
c
a
l
-
o
r
b
”
)
;

G
e
t

o
b
j
e
c
t

r
e
f
e
r
e
n
c
e
s

o
f

s
e
r
v
e
r
;

C
a
n

u
s
e

N
a
m
i
n
g

S
e
r
v
i
c
e

o
r

S
i
m
p
l
e
r

s
t
i
l
l
-
m
i
c
o
’
s

b
i
n
d

c
a
l
l
.

C
O
R
B
A
:
:
O
b
j
e
c
t
_
v
a
r

o
b
j
l
=
o
r
b
Æ
b
i
n
d
(
“
I
D
L
:

m
a
t
r
i
x
:
1
.
0
”
,

a
r
g
v
(
2
)
)
;

C
O
R
B
A
:
:
O
b
j
e
c
t
_
v
a
r

o
b
j
2
=
Æ
b
i
n
d
(
“
I
D
L
:

m
a
t
r
i
x
:
1
.
0
”
,

a
r
g
v
(
3
)
)
;

C
o
r
b
a
:
:
O
b
j
e
c
t
_
v
a
r

o
b
j
3
=
o
r
b
Æ
b
i
n
d
(
“
I
D
L
:

m
a
t
r
i
x
:
1
.
0
”
,

a
r
g
v
(
4
)
)
;

U
s
e

D
L
I

a
n
d

m
a
k
e

i
n
v
o
c
a
t
i
o
n

o
n

s
e
r
v
e
r

o
b
j
e
c
t

m
a
t
r
i
x
_
v
a
r

C
l
i
e
n
t
1
_
r
e
f
=
S
A
;
;
_
n
a
r
r
o
w
(
o
b
j
1
)
;

C
O
R
B
A
;
;
O
b
j
e
c
t
_
p
t
r

o
b
j
_
r
e
q
1
=
(
C
O
R
B
A
;
;
O
b
j
e
c
t
_

p
t
r
)
C
l
i
e
n
t
_
r
e
f
;

/
/

I
n
i
t
a
l
i
z
e

m
a
t
r
i
x

.

.

.

C
O
R
B
A
;
;
R
e
q
u
e
s
t

p
t
r

r
e
q
1
=
o
b
j

r
e
q
1
Æ
r
e
q
u
e
s
t
)

“
I
n
v
e
r
s
e
”
)
;

S
i
m
i
l
a
r
l
y

f
o
r

t
h
e

o
t
h
e
r

s
e
r
v
e
r

o
b
j
e
c
t

.
.
.

M
a
t
r
i
x
.
i
d
l

i
n
t
e
r
f
a
c
e

m
a
t
r
i
x

{

o
n
e
w
a
y

v
o
i
d

I
n
i
t
i
a
l
i
z
e
(
.
.
)

v
o
i
d

U
p
d
a
t
e
(
i
n

s
t
r
i
n
g

n
e
w
L
o
c
a
t
i
o
n
)

v
o
i
d

A
t
t
a
c
h
i
.
.
.
)

s
t
r
i
n
g

S
a
v
e
S
t
a
t
e
(
.
.
)

v
o
i
d
R
e
s
t
o
r
e
S
t
a
t
e
(
.
.
)

o
n
e
w
a
y

v
o
i
d

I
n
v
e
r
s
e
(
.
.
)

o
n
e
w
a
y

v
o
i
d

P
r
i
n
t
M
a
t
r
i
x
(
.
.
)

}

PARALLEL PROGRAMMING MODEL ON CORBA 167

M
a
t
r
i
x
_
i
m
p
a
c
t

c
l
a
s
s
m
a
t
r
i
x
_
i
m
p
t
:
v
i
r
t
u
a
l

p
u
b
l
i
c

P
O
A
_
m
a
t
r
i
x
{

.
.
.

i
m
p
l
e
m
e
n
t
a
t
i
o
n
s

f
o
r

a
l
l

t
h
e

m
e
t
h
o
d
s

i
n

t
h
e

I
D
L

}

M
a
t
r
i
x
_
s
e
r
v
e
r
.
c
e

{
/
/
D
e
p
l
o
y

s
r
v
e
r

o
b
j
e
c
t

C
O
R
B
A
:
:
O
R
B
_
v
a
r

o
r
b
=
C
O
R
B
A
:
:
O
R
B

i
n
i
a
t
a
r
g
c
,

a
r
g
v
,

“
m
i
c
o
-
l
o
c
a
l
-
o
r
b
”
)

C
O
R
B
A
:
:
O
b
j
e
c
t
_
v
a
r

p
o
a
o
b
j
=
o
r
b
Æ
r
e
s
o
l
v
e
_
i
n
i
t
i
a
l
_

r
e
f
e
r
e
n
c
e
s
(
“
R
o
o
t
P
O
A
”
)
;

P
o

r
t

a
b

l
e

S
e

r
v

e
r

:
:

P
O

A
_

v
a

r
p
o
a
=
P
o
r
t
a
b
l
e
S
e
r
v
e
r
:
:
P
O
A
:
:
_
n
a
r
r
o
w
(
p
a
o
b
j
)
;

P
o
r
t
a
b
l
e
S
e
r
v
e
r
:
:
P
O
A
M
a
n
a
g
e
r
_
v
a
r
m
g
r
=
p
o
a
Æ
t
h
e
_

P
O
A
M
a
n
a
g
e
r
(
)
;

M
a
t
r
i
x
_
i
m
p
l

S
e
r
v
e
r
=
n
e
w

M
a
t
r
i
x
_
i
m
p
l
(
)
;

P
o
r
t
a
b
l
e
S
e
r
v
e
r
;
;
O
b
j
e
c
t
d
_
v
a
r

O
l
d
=
p
o
a
Æ
a
c
t
i
v
a
t
e
_

o
b
j
e
c
t
(
S
e
r
v
e
r
)
;

.
.
.

m
g
r
Æ
a
c
t
i
v
a
t
e
(
)
;

.
.
.

o
r
b
Æ
r
u
n
(
)
;

p
o
a
Æ
d
e
s
t
r
o
y
(
T
R
U
E
,
T
R
U
E
)
;

d
e
l
e
t
e

S
e
r
v
e
r
;

r
e
t
u
r
n
(
)
;

}

F
IG

.
6.

4

In
te

rm
e
d
ia

te
 T

ra
n
sf

o
rm

 C
o
d
e

168 GRID COMPUTING

6.4.2 The Kernel

The kernel is designed as a distributed kernel that is resident on
all the nodes of the system. Each of the kernel entities monitors
the load conditions on the respective nodes of the system. When
the application developer starts the program on a particular node
of the system, the kernel entity on that node is called. This entity
interacts with the other kernel entities and gets to know the least
loaded machines that are available. It migrates the objects in the
program to these nodes and the sub-contract is then executed.

The kernel also takes care of the sub-contract directives and
the locking specifications. The kernel uses the concurrency service
specification [29] of CORBA for handling locking problems. The
concurrency specification provides a mechanism for ensuring the
consistency of the state of an object that is accessed by concurrently
executing computations. It provides an interface called LockSet
interface that has methods for acquiring and releasing locks. In
the context of the model, the base class is made to inherit from
the LockSet interface. The kernel acquires the necessary locks before
making the method invocation. The concurrency specification
provides many locking modes that can be used by the kernel to
ensure consistency in the state of the object. But in reality, the
authors had to implement the required parts of the concurrency
service as most CORBA vendors do not provide an implementation
of this service5.

6.4.2.1 Load Balancing Strategy

The most important issue in any load balancing strategy is the
load index. Several load indices for measuring the load have
been proposed and used. The list includes CPU queue length,
time-averaged CPU queue length, available memory and the CPU
utilization among others. In the proposed model, the CPU queue
length is used as the load index as it has been found to be simple
and effective [23]. A threshold policy is used to classify the nodes
of the system into three categories. If the load on a node is greater

PARALLEL PROGRAMMING MODEL ON CORBA 169

than a threshold, T1, then the node is called a sender. A node is
termed as a receiver if its load is less than a threshold, T2, with
T2 < T1. Other nodes are grouped into the third category. Nodes
in this category do not take part in task transfer. If a user program
is initiated at a particular node, then that node automatically
becomes a sender.

In sender initiated load balancing algorithms, the task migration
is initiated by the heavily loaded node. These algorithms perform
well when the load on the system is low, i.e. when it is easier to
find a lightly loaded node. When we say that the load on the
system is low, it means that the load on a majority of the nodes is
low. In contrast, in receiver initiated load balancing algorithms,
the task migration is initiated by the lightly loaded node. These
algorithms perform well when the load on the system is high, in
which case it is easier to find a heavily loaded node. The adaptive
algorithm that is used in the proposed model combines the
advantages of both the sender-initiated and the receiver-initiated
algorithms [33].

There are two major components in the algorithm. One is a
sender-initiated component which is triggered on a node when it
becomes a sender. The other is a receiver-initiated component
which is triggered on a node when it becomes a receiver. It can
be observed that a node can become a sender or a receiver at
different points of time depending on how the load changes in
that node. Each node maintains its view of the load on the system
in the form of three lists containing the nodes which fall into each
of the categories mentioned above. The information about other
nodes is collected when nodes poll each other to initiate the
transfer of tasks. The task transfer is equivalent to object migration
in the proposed model.

If a node is a sender at a particular time, then it tries to migrate
the objects residing in that node to the nodes in its receiver list. If
a node is a receiver, then it tries to migrate objects to itself from
the nodes in its senders list. Hence, this algorithm performs well
when the load on the system is low (or the sender-initiated part
dominates) and even when the load on the system is high (or the
receiver-initiated component dominates).

170 GRID COMPUTING

6.4.2.2 Load Balancing Service

The interface of the kernel object is shown in Fig. 6.5. The load
balancing service consists of the collection of kernel objects. The
important guidelines that were observed when building the load
balancing service are:

l Built on CORBA concepts: The object model of CORBA is
strictly adhered to. Thus, concepts like the separation of
interface and implementation, and clients depending only
on interfaces and not on the implementation are used.

l Allows for local and remote implementations: This could be
important, if for instance, the performance requirement of
an application is such that the service must be executed in
the same process as the client.

l Flexible: Since services are designed as objects, they could
be combined in interesting ways. For instance, as shown in
this chapter, the load balancing service and object migration
service are combined to balance the load on a NOW.

l Finding a service is orthogonal to using it: This means that
since services are designed as a collection of CORBA objects,
there need not be any special ways of finding them. It is left
to the ORB vendor to make the service available to clients.
But, this chapter goes a step further and gives general
guidelines to the ORB vendor for deployment of the services
(refer to Section 6.5.1).

The load balancing service depends on the object migration
service for balancing the load on a NOW. This is similar to the
dependencies between services as given in the CORBA services
specification. For instance, the lifecycle service depends on the
naming service and the transaction service depends on the
concurrency service.

6.4.3 Object Migration

6.4.3.1 Introduction

As the use of distributed object systems is increasing rapidly, it is
evident that support for moving objects across machines has

PARALLEL PROGRAMMING MODEL ON CORBA 171

Interface Kernel {

void GetMachinesList(out List L1);

// This method queries other kernel objects,
gets load conditions, computes

// load factors and returns list of available
machines.

void GetLocalLoadCondition(out double Bool);

// This method returns the current local load
condition. This is called by

// other kernel entities to know the load
conditions on this machine.

void InitiateMigration(string ObjRef);

// This gets list of machines, chooses target
for migration, calls migration service

// to migrate the object (with ref ObjRef), to
the target machine,

void QueryForHighLoad();

// This corresponds to the reciever initiated
component in the load balancing algorithm.

// This method is called by a receiver that
wants to initiate migration. Will check local

// load condition and decide whether to migrate
or not.

void AddMeToMachinesList(string Address);

// This method is called by any new machine
joining the system. This is implemented

// as a distributed dissemination algorithm.
This is important to handle dynamic

// availability of machines.

}:

FIG. 6.5

Kernel Interface

172 GRID COMPUTING

become essential. The following applications may need object
migration:

l Large scale distributed systems such as Globe [37] for
replication and caching purposes,

l Object-based parallel programming [38] for parallelism and
load balancing,

l Collaborative applications [39] for information sharing.

Object migration involves two major issues. One is the physical
movement of the object with its state. The other is the location
problem, which can be posed as, “How can requests sent by
clients already holding references to the migrated object be sent
to the new location without any changes in the client code or to
the object reference?” The physical movement of objects can be
difficult to handle if the target object is of a different architecture
or if it runs on a different operating system. In such a case, this
may require source code migration and recompilation in addition
to restoring the state. The location problem could also become
difficult, especially if the address of the server is encoded in the
object reference.

CORBA [30] is emerging as a standard for distributed object
computing. It is being used for different purposes such as parallel
programming, building digital libraries, network management,
scientific problem solving, multimedia applications, etc. The variety
of applications illustrates the need for a proper specification and
implementation of object migration in CORBA.

The Life Cycle Service of CORBA [29] describes how clients
can control the lifecycle of CORBA objects. It addresses object
creation, destruction, copying and movement. The Life Cycle
Service implements an operation called move(). This method can
be invoked by clients for physically moving the object from one
machine to another without invalidating the existing references.
The move() operation gives rise to the following problems:

l CORBA provides location transparency to clients. So, the
notion of clients moving server objects is contrary to the
object model of CORBA.

PARALLEL PROGRAMMING MODEL ON CORBA 173

l Clients will have to be aware of the protocol used by the
target object otherwise, clients may lose connectivity with
the target object.

l Existing ORBs are not capable of moving individual objects
without invalidating the object reference. This is because the
implementation repository cannot store address information
at the granularity of objects for scalability reasons [26]. The
implementation repository stores entries at the POA (Portable
Object Adaptor) level. If only a few objects within a POA
move (and not the entire POA), then these objects cannot be
located.

The move() operation of the Life Cycle Service of CORBA has
been described in [15] [16] as ‘unimplementable in at least the
general case’. Thus, the migration of individual objects is currently
a big problem in CORBA.

The fundamental contribution of this chapter is a facility for
allowing individual objects to migrate without breaking existing
references. The proposed idea bypasses the implementation
repository for locating migrated individual objects. Further, the
chapter shows how the location mechanism can be extended to a
migration service in CORBA.

6.4.3.2 Introduction to Message Filters

This section gives an overview of the concept of message filters
and a means of implementing message filters over CORBA.
Message filters for object-oriented systems [40] have been proposed
to separate message control from message processing in a
transparent manner. Message processing refers to the actual actions
taken by the server when it receives a client invocation. Message
control refers to the intermediate message manipulations that can
be done by a filter object. A filter relationship can be introduced
between a filter object and its client. Thus method calls to member
functions of a server object can be intercepted by corresponding
member functions of a filter object. This is possible only if there
exists a filter relationship between them7. The filter member
function can perform the required message manipulations. It can

174 GRID COMPUTING

either pass the request to the destination or bounce it back to the
source.

The message filters model supports both upward and downward
filtering mechanisms. This facilitates the transparent interception
of an upward message and its return value. The binding of filter
member functions to the corresponding member functions in the
client can be dynamic. This means that filters can be plugged or
unplugged at runtime. Some instances of manipulations that can
be carried out by message filters include transparent security
checks, load balancing of replicated servers, maintaining server
side caches, etc.

6.4.3.2.1 An Implementation of Message Filters Over

CORBA

A mechanism for implementing message filters over CORBA is
given in [41]. A special interface called ‘filterable interface’ which
has two methods, attach() and detach(), is provided. These methods
can be used for dynamically plugging and unplugging a filter
object. A server object that needs to be filtered must inherit from
this interface at the IDL level. An implementation of the server
inherits from a library implementation of the filterable interface,
called Filterable_impl 8 . The IDL compilation phase generates a
filter base interface as an IDL for implementing filter objects. The
methods in the filter base interface are invoked automatically
when the corresponding methods in the server are invoked by
clients.

A filter object can be implemented by providing an
implementation of the filter base interface or by implementing a
filter interface that inherits from the filter base interface. This
method of implementing message filters requires two main
modifications to the IDL compiler. One is to generate the filter
base interface. The other modification involves the dispatch()
method of the server skeleton. This method is modified to invoke
the member function in the filter before the corresponding member
function in the object is invoked. In a similar way, by modifying
the respective methods in the stubs, it is possible to have filters in
the client side to filter the return values.

PARALLEL PROGRAMMING MODEL ON CORBA 175

6.4.3.3 Locating Migrated Objects: A Filter-based Approach

In this section, it is assumed that an external entity (for instance, a
migration service) physically moves the object from one location
to the other9. This section explains the use of message filters for
locating migrated objects in CORBA. The key idea for locating a
migrated object is the use of message filters. Every object has a
filter plugged to it, at its home location. If the object migrates, the
filter (which is always static) is updated with the new location.
Thus, this filter acts as a location broker for the object. This is
illustrated in Fig. 6.6.

FIG. 6.6

Filter as Location Broker

176 GRID COMPUTING

An object which should be migratable must inherit from a
standard interface called migratable interface (refer to Fig. 6.7).
This interface has methods SaveState() and RestoreState(). These
are used by the migrating entity to save and restore the object
state during migration. The other method of this interface is the
update() method. This is used by the migrating entity to inform
the filter about the new location of the object. The migratable
interface itself inherits from the filterable interface. This means
that if an object needs to be migrated, it implicitly gives permission
for filtering. The server implementation must inherit from a library
implementation of the migratable interface called Migratable_impl 10.
The Migratable_impl inherits from the Filterable_impl so that
implementations of the attach() and detach() methods are available.

interface Migratable: Filterable{

string SaveState();

void RestoreState(in string State);

void update(in string NewAddress);

}

FIG. 6.7

IDL of the Migratable Interface

The inheritance hierarchy mentioned above has the following
two important implications:

l It facilitates dynamic plugging (and unplugging) of filters. A
migrating entity can plug the filter to the object by calling
the attach() method on the object reference.

l It provides an elegant updation mechanism. By filtering the
update() method on the object, the filter can update the
changed location of the object.

The redirection of the client requests by the filter methods can
be modelled in two ways in CORBA. These are explained in the
next two sections.

PARALLEL PROGRAMMING MODEL ON CORBA 177

6.4.3.3.1 Filter as Client

The filter method is always called before the call to the server.
This method acts as a client to the object in the new location. The
following two requirements need to be met if this is to be achieved
in CORBA:

l The filter must acquire a reference to that object. This can
be acquired by the filter in certain specific ways. For instance,
in our current implementation using the mico ORB [42], the
filter makes a bind() call to the new location.

l For invoking the method, the filter should be able to marshal
the parameters of the call. This is also possible because the
stub is attached to the filter when the IDL file is compiled.

The filter gets back the result of the invocation and subsequently
returns the result to the client. This means that with respect to the
original semantics of message filters, the filter does a ‘bounce’ on
the request and not a ‘pass’. Thus, transparent redirection of client
requests is achieved.

6.4.3.3.2 Filter as Forwarder

An ideal approach to model the filter as forwarder is as follows.
The filter gives a ‘location forward’ reply to the client with the
new address of the object. The client gets the new location and
rebinds to that address. As a result, it gets a new reference to the
object. However, there are two problems associated with this
scenario, which are:

l The filter cannot give a ‘location forward’. As per the POA
specification of CORBA, only the servant locator or servant
activator entities can throw the ForwardRequest exception.
This exception is propagated back to the client as a
LocationForward reply. The client side ORB can reconnect
to the new location.

l If the filter throws a user-defined exception, this is propagated
back to the client. But this makes the exception visible to the
client. Thus, it violates client transparency.

178 GRID COMPUTING

Filter marshals parameters

Extra time delay for large
message sizes

May not be able to handle
simultaneous requests and
large message sizes

No such modifications are
required

The above-mentioned problems can be handled by using a
client side filter. The original filter (from now, on this is referred
to as the server side filter) throws a non-system exception called
Rebind exception. This exception is caught by the client side filter.
The new location of the object is transmitted as a string in the
exception body. Thus, the client side filter rebinds to this new
location and gets the new reference. The client side filter marshals
the request by using the same stub that was used by the client
initially. It makes the method call on the reference and gets back
the result. It subsequently returns the result to the client. For
implementing this approach, the following two modifications are
necessary.

l The Rebind exception must be understandable to both the
client and the server. It is declared in the IDL of the Migratable
interface11.

l The stub must be modified to implement the client side
filter. This is similar to the modification of the stub to
implement server side filters.

A comparison of the two approaches is given in Table 6.1.

Table 6.1 A Comparison of the Two Approaches

Filter as forwarder Filter as client

Processing is negligible

No extra delay, even for large
message sizes

Can handle simultaneous requests
and large message sizes

Needs additional modifications to
the IDL complier

6.4.3.4 Migration Service in CORBA

This section explains the extension of the location mechanism to
a migration service in CORBA. In the first part of the section, the

PARALLEL PROGRAMMING MODEL ON CORBA 179

functions of the migrating entity are described. The modelling of
this entity as a CORBA object and of its function as a migration
service, are explained in the next part.

6.4.3.4.1 The Migrating Entity

The migrating entity is responsible for:

l The physical movement of the object across machines,

l Plugging the server side filter,

l Handling the ‘window’ period during object migration.

This entity can be called by a load balancing entity for object
migration, or a system administrator for administrative reasons or
by the application itself. Following is the sequence of steps that
should be followed by this entity when called upon to migrate an
object:

l It invokes the attach() method on the object reference. This
ensures that the filter is plugged to the server object, at its
home location. If the migrating entity is never called to
migrate a server object, then no filter is plugged to this object.
This means that objects which are static will not have the
filter plugged. Thus, method calls go directly to the object
(unfiltered). Once the filter is plugged, it receives all method
calls that are made on this object.

l Then it invokes a method called SaveState() on the object.
The object saves its state in a file and returns a unique file
name12 to the migrating entity.

l The migrating entity migrates the source code of the object
to the new location, similar to code mobility [43].

l It creates a new object at the new location. This is possible
once the source code is migrated and recompiled. In CORBA,
this means that a new server object of the same type has
been created at the new location.

l The migrating entity migrates the state of the object to the
new location. It sends a RestoreState() method to the new
object13. This restores the state of the object. The new object
is now ready to receive client requests.

180 GRID COMPUTING

l The migrating entity sends the Update() method on the
original object reference. This call is trapped by the server
side filter (at the home location of the object). The filter
updates its view of the location of the object.

l The migrating entity does not advertise the new object
reference. This means that clients always get the original
object reference. Client requests always come through the
server side filter which re-directs it to the new location.

The migrating entity takes care of the ‘window’ period during
object migration. The filter traps SaveState() method call and sets
an internal flag called ObjectInMotion. The Update() method,
which is also filtered, resets the flag. Thus the flag is set during the
window period. Client requests arriving during this period are
sent back with a ‘Transient’ exception. From the client’s
perspective, this means that the object is currently not reachable.
The client could retry after some time. But a clever solution is for
the client side filter to trap this exception. The client side filter
could re-try after a given time-out period. It could also propagate
the exception back to the client code.

6.4.3.4.2 A Migration Service

The migrating entity is modelled as a CORBA object that has a
method called migrate(). This method takes as parameter a string.
This is the stringified form of the reference of the object to be
migrated. The other parameters of this method call include the
(current) location of the object and the target location. The code
for the migrate() method based on the sequence of steps outlined
above is shown in Fig. 6.8. A prototypical implementation of the
migration service is in the testing phase.

The ORB vendor must address two issues with respect to the
migration service. One is the method by which applications acquire
an object reference of the migrating entity. The other is the
deployment of the migrating entity. These two issues are discussed
below.

PARALLEL PROGRAMMING MODEL ON CORBA 181

class MigrationService_impl : public.. {

..

void Migrate (string Ref, string
OldAddress, string NewAddress) {

objREf->attach (Filter);

// object reference obtained from Ref

StateFile = objRef->SaveState ();

move source code of object from
OldAddress to NewAddress.

move StateFile from OldAddress to
NewAddress.

create new object at NewAddress with
NewRef as reference.

NewRef->RestoreState (StateFile);

ObjRef->Update (NewAddress);

}

FIG. 6.8

Migration Service Implementation

There are two ways whereby the object reference of the
migrating entity can be made available to applications. These are:

l Advertise the object reference of the migrating entity in
naming/trading services. This method is easier to implement
as it requires no modification to the ORB.

l Modify the resolve_initial_references() method of the ORB. In
this case, the migrating entity is included in the list of basic
services which can be resolved by the ORB itself. This is
more difficult to implement as it necessitates modification of
a method of the ORB.

There are two ways of deploying the migrating entity. These
are:

182 GRID COMPUTING

l There can be one migrating entity for every machine of the
system. This method reduces the time required to migrate an
object. This is because two of the method invocations made
by the migrating entity [SaveState() and RestoreState()] become
local method calls.

l A group of machines can use a single migrating entity. This
method may be easier to implement, especially if the
machines have a shared file system. But in this case, there is
a limit on the number of objects that can be handled by this
single entity.

The above two issues should not be considered in isolation by
the ORB vendor. It is better to modify the resolve_initial_references()
method of the ORB if the deployment policy is one entity for
every machine. The method can return a local pointer instead of
an actual object reference. But if the other deployment policy14 is
used, then it is better to advertise the object reference of the
migrating entity.

Different applications can make use of this migration service to
migrate objects. A specific policy for selecting the target nodes for
migration could be built into the migration service. The migration
service could also work in tandem with other services such as a
load balancing service [3] to determine the target for migration.
The other way to determine the target location is for the application
programmer to specify it on the basis of some application-specific
criteria.

6.4.3.5 Implementation

The mechanism for locating a migrated object by using message
filters has been implemented over a 10 Base T ethernet network,
with all the nodes running the LINUX operating system. The
CORBA implementation that was used is a public domain ORB
called mico. It is a fully CORBA-compliant ORB with a C++
language mapping. This section describes the implementation of
the location mechanism using message filters. Another approach
for locating migrated objects by using a servant manager is also
explained. The performance-related aspects are discussed.

PARALLEL PROGRAMMING MODEL ON CORBA 183

6.4.3.5.1 Filter as Client

Figure 6.9 shows the sequence of steps that are required to make
the client requests reach the migrated object. The method call
made by the client is intercepted by the server side filter. This
filter makes a bind call to the current location of the object. This
returns the new object reference to the filter. The filter subsequently
makes the method invocation on this reference. As per the
semantics of message filters, the filter bounces the request with
the return values of this method invocation. The code for the
filter implementation is illustrated in Fig. 6.10.

FIG. 6.9

Filter as Client

6.4.3.5.2 Filter as Forwarder

Figure 6.11 shows the sequence of steps in this case. The method
invocation is intercepted by the server side filter. The server side
filter throws the Rebind exception. This exception is caught by the

184 GRID COMPUTING

class FilterAsClient : public ... {

private:

..

public:

ReturnType m1 (..){

// filtering method m1 () in the
object.

Address = LookUp();

// lookup for current object address,
may be from a persistent store (this
may be required if object is
persistent).

ref = orbÆbind(Address,ObjectName);

// bind to new location and get
reference

Objref = InterfaceName ::
_narrow(ref);

// narrow to appropriate type

ReturnValue = ObjRefÆm1 (..);

// actual method call.

return ReturnValue;

// return to client.

}

};

client side filter. The client side filter makes the bind call to the
new location. It gets the new object reference and makes the
method invocation. Finally, it returns the results to the original

FIG. 6.10

Code: Filter a Client

PARALLEL PROGRAMMING MODEL ON CORBA 185

FIG. 6.11

Filter as Forwarder

client. The code for both client side and server side filter is shown
in Fig. 6.12.

6.4.3.5.3 Using POAs Servant Manager

The specification of the POA in the current version of CORBA
explains how the POA can be configured to use a servant manager.
The servant manager provides implementations for CORBA
objects (servants). The servant manager can be of two types
depending on the ServantRetention policy of the POA. The first
type must support the ServantLocator interface while the other
must support the ServantActivator interface [16]. The implemen-
tations of both the ServantLocator and ServantActivator can raise

186 GRID COMPUTING

class FilterAsForwarder: public ...{

// Server side filter

..

public:

ReturnType m1 (..){

Address = LookUp();

// same as before.

throw Rebind(Address);

}

};

class ClientSideFilter : public ...{

// client side filter implemented as a proxy.

..

public:

ReturnType m1 (..){

try {

ReturnValue = OldServerReferenceÆm1 (..)

return ReturnValue;

}

catch(Rebind r) {

ref = orbÆbind(r.Address, ObjectName);

// bind to new location and get reference

ObjRef = InterfaceName::_narrow(ref);

// narrow to appropriate type

ReturnValue = ObjRefÆm1 (..);

// actual method call.

return ReturnValue;

// return to client.

}

};

FIG. 6.12

Code: Filter as Forwarder

PARALLEL PROGRAMMING MODEL ON CORBA 187

a ForwardRequest exception. If the ORB uses Internet
Interoperability Protocol (IIOP), then this exception is propagated
back to the client as a Location_Forward reply. The body of the
exception contains the new object reference. It is the responsibility
of the client side ORB to reconnect to the new location.

There are two main problems in using this method to locate
migrated objects in CORBA. First, if the object moves further,
then there must be a servant manager at each of the old locations
of the object. This method cannot be modelled as a home-based
model. This is because updation is not easy15. This makes the
approach a chain-based one for locating migrated objects. The
performance of the chain-based model may degrade if the chain
length increases. This is further illustrated in the performance
studies.

Another difficulty of using this scheme arises because the servant
manager is at the POA level. The identity associated with objects
within the POA called ‘oid’ must be generated by the application.
The oid must be passed to the incarnate() of ServantActivator or
preinvoke() of ServantLocator. These methods can return different
locations to the clients, based on the oid (this may be the case,
since different objects could move to different locations). The
application programmer must be aware of all these details to
locate migrated objects, whereas in the case of the filter based
model, the migrating entity takes care of these details. Further,
since the filter code is the same for all objects16, it can be generated
automatically.

6.4.3.5.4 Performance Studies

Two experiments have been conducted on the basis of the three
implementations described above. The goal of the first experiment
is to show that the home-based model (the filter approach) performs
better than the servant manager-based chain model. If an object
moves from its home location to another machine, it is said to
have migrated by one hop. The experiment was conducted with
the object moving an increasing number of hops.

The performance of the servant manager approach degrades as
the number of hops increases. The filter approach (for this

188 GRID COMPUTING

experiment, the model used was the filter acting as client), however,
performs well irrespective of the number of times the object moved.
This is because the filter always acts as a home agent and connects
directly to the new location of the object. The result of this
experiment is shown in Table 6.2.

Table 6.2 Comparison of Filter and Servant Manager Approach

Number of hops Filter as client Servant manager as forwarder
Time in milliseconds

1 18.45 13.78
2 21.75 21.70
3 21.75 32.30
4 21.75 36.89
5 21.75 44.25
6 21.75 51.05

The other experiment that was conducted in entailed comparisons
of the two variants of the filter-based approach. The performance
of the two approaches was measured with increasing message
sizes. As the message size increased, the filter as client approach
started performing poorly, as compared to the filter as forwarder
approach. The reason for this is that in the filter as client approach,
the filter has to marshal the parameters again. If the message size
is large, the time for marshalling the parameters increases. Hence,
the result is as shown in Table 6.3.

Table 6.3 Comparison of Two Variants of the Filter Approach

Method parameter Filter as forwarder Filter as client

No Parameter 18.65 milli secs 18.45 milli secs
Float 20 milli secs 22 milli secs
2-d Array of size
500*500 600 milli secs 1.3 secs
Structure of 2 arrays
and 3 long integers 2.5 secs 4.5 secs

PARALLEL PROGRAMMING MODEL ON CORBA 189

6.4.3.6 Related Work

Object migration in distributed object systems has been addressed
in several systems such as Emerald [44], Mobile Network Objects
(MNO) [45], Shadows [46], etc. In this section, the filter-based
migration model is compared with these models.

Emerald was among the earliest distributed object systems to
provide support for object mobility. It uses the concept of object
descriptor which consists of a forwarding address and an object
identity (oid). It provides support for different granularities of
migration. This means that objects from small data objects to
large process objects can migrate. Each node maintains information
on local objects for which remote references exist and on remote
objects for which local references exist. Further, locating an object
involves tracing through the path of forward references. Sometimes,
even broadcasting may be involved. For these two reasons, the
migration mechanism of Emerald is not a scalable one. However,
the filter-based approach is scalable. Since a per-object filter is
used, there are no centralized components that impede scalability.

MNO is the work that is closest to the filter-based approach.
MNO uses object wrappers called ‘proxies’. The proxy executes
some code just before and after the invocation on the object. This
makes the proxy of MNO similar to the filters used in this chapter.
But there are some critical differences. First, the client must get a
reference to a proxy and not to a server object in the MNO. But
in the filter approach, clients get reference to only the server
object. The filter is transparent. Further, plugging a filter can be
dynamic. The other difference between MNO and the filter
approach is that MNO uses a chain-based forwarding model
whereas the filter uses a home-based model and this has been
shown (in Section 6.5) to perform better than a chain-based model.

The Shadows system supports mobile objects through the use
of a location-transparent object reference scheme. Objects can
migrate between object managers which are entities in each node
that manage objects within that node. The main contribution of
the Shadows system is that it incorporates fault tolerance
mechanisms that allow for both safety and liveness of objects. But
the concept of compound references that it uses for redundancy

190 GRID COMPUTING

could complicate the invocation path and result in a performance
penalty. Further, it uses a chain-based forwarding model, which
has been shown to perform poorly as compared to the home-
based approach of this chapter. However, the filter-based approach
does not address fault tolerance currently.

Interceptors were proposed in [47] and subsequently included
in the CORBA specification. Interceptors are similar to the concept
of message filters used in this chapter. Hence, one can think of
solving the object migration problem by using interceptors. There
are a couple of problems in this approach. First, to the best
knowledge of the authors, the idea of using interceptors for object
migration has not been explored in the literature. Secondly, there
are some important differences between message filters and
interceptors. These are:

l The main motivation for proposing interceptors was fault
tolerance and security, not concerns such as replication or
migration.

l Message filters can be plugged at runtime. This is not possible
with interceptors. Thus, method calls to a static server object
will not be filtered. But they will be intercepted (if interceptors
are used).

6.4.3.7 Summary

This section has presented a simple and elegant mechanism for
locating migrated objects in CORBA by using message filters.
The location mechanism has been extended to an object migration
service in CORBA. The location mechanism has been
implemented while the migration service is in the prototypical
stage. The contribution of the model becomes significant because
it allows individual objects to migrate without involving the
implementation repository. Currently no mechanisms exist in
CORBA that allow individual objects to migrate without
compromising on the scalability of the ORB. Further, the message
filter-based location mechanism is scalable.

The idea of using message filters for locating migrated objects
can be extended to other middleware such as DCOM (Distributed

PARALLEL PROGRAMMING MODEL ON CORBA 191

Component Model). This could result in message filters becoming
a generic and scalable solution to the location problem in
distributed object systems. Methods for incorporating fault
tolerance into the location mechanism can also be explored.

6.4.4 Method Invocation

After the objects are migrated to the best possible machines in the
system, the meta-object (now the client) invokes the method on
all the server objects simultaneously. One way of achieving
concurrency at the client side is by using the one-way calls of
CORBA’s Dynamic Invocation Interface (DII). But this does not
apply to the proposed model because the client has to receive the
replies from the servers to collect the results of the computation.
So the only option left is to use the deferred synchronous calls of
the DII. This requires the ORB to be multi-threaded. But few
non-commercial ORBs provide efficient support for multi-
threading. Thus, if a client makes a number of parallel calls, it has
proved to be difficult to implement.

Support for this also comes from the Asynchronous Method
Invocation (AMI) which is a messaging specification [28]. By using
the AMI, a client can make a request on multiple server objects
concurrently and later receive the results by polling or by a call-
back model. But, the problem is that the AMI has only recently
been drafted into the CORBA specification and only few, if any,
ORBs provide implementations of the AMI.

6.5 Implementation

P-CORBA is being implemented on a network of workstations
consisting of an IBM Intellistation and three Pentium machines of
different vendors connected through a 10 base-T ethernet, all
running LINUX-operating system. The implementation of CORBA
that is being used is mico [32], a public domain implementation. It
is fully compliant with CORBA and has an IDL mapping to
C++. This section gives an overview of the implementation.

192 GRID COMPUTING

The main entities of the implementation are the kernel and the
translator. The kernel is modelled as an active object that is
instantiated on all the nodes of the system. It monitors the load
conditions on that machine by using the uptime call to the LINUX
kernel. It also maintains its local view of the load conditions on
the other nodes of the system. This view is updated whenever any
communication is received from any of the other kernel objects.
This is one of the ways of maintaining information in a load
balancing algorithm as suggested in [33].

The translator parses the user program and converts the objects
into server objects in CORBA. This is done by first generating an
IDL file, generating the implementation17 and finally generating
the server code. The translator also converts the meta-object in
the user’s program into a CORBA client object. The object
references of the server are stringified and are made data members
of the client object. The translator finally adds a method called
subcontract() to the client object.

The client object interacts with the kernel object of that node to
specify which objects in its collection are to be migrated. The
kernel object decides on which machines these objects are to be
migrated and performs the actual migration. This ensures that the
computation is started off on the best possible nodes. The sub-
contract is then executed. If any of the calls fail, then that call is
re-executed on a different node. Figure 6.13 shows the interfaces
of the meta-object (aggregate CORBA object).

The important point to be noted is that since the kernel object
is a CORBA object, it can be accessed through the ORB. If the
resolve_initial_references() method in the CORBA ORB can be
modified to give a reference to the kernel object, then this could
become a stand-alone load balancing service in CORBA. The
list_initial_services() method also needs to be modified if it is
implemented by the particular ORB. This has been implemented
in the mico source code and is currently being tested. This
approach is different from the one suggested in [3] for load
balancing in CORBA-based systems. In this approach, the load
balancing functionality is integrated into an existing service, the
naming service of CORBA. The naming service chooses one of
several replicated servers based on load conditions, when a client

PARALLEL PROGRAMMING MODEL ON CORBA 193

// the meta-object is only an aggregate
COBRA object.

meta-object {

ObjRefList; // List of object references
part of the meta-object.

also contains the list of source codes and
states.

Subcontract (..)

// Called by the translator entity within
the node. handles the subcontract.

}

FIG. 6.13

Interface of the Meta-object

makes a request for name binding. The naming service returns a
transient object reference, forcing the client to rebind through the
naming service after every session.

6.5.1 Deployment of Load Balancing Service

The ORB vendor must address two issues for providing any service
to clients. One is the method by which applications acquire an
object reference of the service. The other is the deployment of the
service. These two issues are discussed below.

There are two ways by which the object reference of the service
can be made available to applications. These are:

l Advertise the object reference of the service in naming/trading
services. This method is easier to implement as it requires no
modification to the ORB.

l Modify the resolve_initial_references() method of the ORB. In
this case, the service is included in the list of basic services
which can be resolved by the ORB itself. This is more difficult
to implement as it requires modifying a method of the ORB.

194 GRID COMPUTING

There are two ways of deploying the service. These are:

l The objects that form the service can reside on every machine
of the system.

l A group of machines can be configured to share the service.

The above two issues should not be considered in isolation by
the ORB vendor. It is better to modify the resolve_initial_references()
method of the ORB if the deployment policy is one entity for
each machine. The method can return a local pointer instead of
an actual object reference. But if a number of machines are
configured to share the service, then it is better to advertise the
object reference of the service.

In the case of the load balancing service, the deployment policy
must be one kernel entity per machine (to monitor the load on
every machine). Thus, it is better to modify the
resolve_initial_references() method of the ORB. This method can be
made to return a local pointer as a result. This optimization can
be done by the ORB vendor.

6.6 Performance

This section details the performance studies conducted over a
prototypical implementation of P-CORBA that has been built
and tested. A comparison with MPI, a widely used parallel
programming tool, is also presented. The first case study was
done over an implementation of the Genetic Clustering Algorithm
(GCA) [17] for the TSP. The second case study uses an IGC
problem.

6.6.1 Case Study 1

The key concept behind GCA is that it is a combination of
Simulated Annealing (SA) and Genetic Algorithm (GA). SA is a
neighbourhood algorithm in the sense that given a good initial
solution, it can converge to the actual solution. GA is an algorithm
adapted from the field of genetic engineering for improving the
whole population. This means that GA can search the whole
solution space and potentially yield a number of good solutions.

PARALLEL PROGRAMMING MODEL ON CORBA 195

Hence, the GCA uses the GA for generating the initial solutions
to be fed to SA. The main reason why this problem was chosen is
that the computation to communication ratio is high. This kind of
coarse-grained problems are well-suited to run on NOWs.

In the context of the model, the client runs GA and gets the
required number of good initial solutions. The servers run SA,
with each one searching a particular region of the solution space.
A similar prototype was implemented over MPI also. The client
in this case is the native process which sends the GA results to all
the other processes. These processes run SA.

Table 6.4 shows the overhead of using MPI versus the overhead
of using CORBA. This was measured by making a simple method
call in the case of CORBA. In the case of MPI, the overhead was
measured by a simple send call. These measurements were made
on a 10 Mbps ethernet cluster. Table 6.5 shows similar measure-
ments over a 100 Mpbs ethernet cluster.

Table 6.4 Comparison of Overheads of CORBA and MPI: 10 Mbps

Network

Data sent Method call in CORBA Message send in MPI

(Time in milliseconds)

No data 0.996 0.169
Integer 1.0 0.276
Float 1.2 0.327
Long array of 500 890 82.9

Table 6.5 Comparison of Overheads of CORBA and MPI: 100 Mbps

Network

Data sent Method call in CORBA Message send in MPI

(Time in milliseconds)

No data 0.458 0.15
Integer 0.519 0.198
Float 0.533 0.255
Long array of 500 111 14

196 GRID COMPUTING

Table 6.6 shows the worst case, average case and the best case
time delays for the GCA over P-CORBA and MPI. The best case
delay was measured when load on the system was very less (almost
no load). The worst case delay was measured when the load on
the nodes (on which computation is started) becomes high. The
average delay was measured by evaluating the performance over
different load conditions. The load was measured by using a Linux
specific system call sysinfo. The performance studies were conducted
on a cluster of eight machines, with the computation being started
on four of the eight machines. In the heavily loaded case, six of
the machines are loaded, while two machines which did not start
the computation were free. In the lightly loaded case, all the eight
machines are lightly loaded. In the average case, two machines of
each category (which started the computation and ones which did
not start the computation) were heavily loaded. The machines
were artificially loaded by a CPUhog process18.

Table 6.6 Performance of CORBA and MPI for GCA

Load conditions CORBA MPI
(on nodes in which computation starts) (Time in seconds)

Light (best-case) 35 34
Average 39 45
Heavy (worst-case) 45 59

It can be seen that under light load, MPI and P-CORBA perform
nearly the same, with MPI having a slight improvement. However,
under average (or heavy) load conditions, MPI performs poorly.
But since P-CORBA can handle dynamic load fluctuations, it
performs well under these conditions.

The point to be noted from the results is that the overhead of
using MPI is much less as compared with that of using CORBA.
But P-CORBA clearly outperforms MPI. This is because PCORBA
ensures that computation does not continue on a heavily loaded
machine whereas in MPI, the task continues to run on the same
heavily loaded node and incurs significant overheads. Thus, in
MPI, even though computation can start off on the best possible

PARALLEL PROGRAMMING MODEL ON CORBA 197

nodes, dynamic load fluctuations cannot be handled. The set of
machines on which computation starts is the same as the set in
which computation ends. But in P-CORBA, the two sets can be
different which results in better load adaptability and hence, in
increased speed-up.

6.6.2 Case Study 2

The main motivation for the second case study is to illustrate the
modelling of communicating tasks. The prototype for this case
study consists of an implementation of the steady state equilibrium
problem. The problem is to compute the temperature distribution
of a rod whose ends are kept at fixed temperature baths. This
problem is taken from the area of fluid dynamics [4]. It falls in the
category of IGCs, which comprises a large class of engineering
applications.

The problem iteratively computes the temperature values at
equally spaced grid points, at regular intervals of time. Each
iteration consists of computing the function for a time slice. The
temperature of a grid at a particular time slice is a function of the
temperature of this grid and its adjacent grids in the previous time
slice. This is depicted in Equation 1. This dependency arises due
to the influence of conduction in the temperature distribution.
The problem considers the flux in only one dimension.

Tx,t = f (Tx, t – 1, Tx – 1, t – 1, Tx + 1, t – 1) (equation 1)

where Tx, t refers to the temperature at a grid point x at time t.

The experimental set up was a cluster of Linux-based Intel
PCs, with 256 MB of main memory and 333 MHz Intel Pentium
PII processors, connected by a 10 Mbps LAN. Table 6.7 shows
the speed-up obtained as a result of parallel execution of the IGC
problem. The grain size is the number of grids that is allocated to
each computing entity. The task time is the time taken for the
entity to calculate the temperature distribution over the region
allocated to it, for a fixed number of iterations (till a steady state is
reached). For instance, the task time in Table 6.7 was computed
after running the problem for 1500 iterations. The synchronization
time is the time taken by each entity to obtain the data for its next

198 GRID COMPUTING

(Contd)

iteration. The synchronization time includes the overhead of one
object migration. One of the machines was artificially loaded by
the CPUhog process. When the load increased beyond a pre-
defined threshold, the task was migrated to a different node (lightly
loaded).

In Table 6.7, the speed-up obtained is linear up to five machines.
However, for six machines, the speed up is sub-linear because the
problem has reached saturation point (this is evident from the fact
that the synchronization delay for all the nodes is very high). This
means that the time taken for one iteration (by any of the
computing entities) is nearly equal to the communication delay
(message sending overhead) between the entities. If the computation
time is lowered any further (by reducing the grain size), it will
become less than the communication delay and hence will not
yield an increased speed-up. Thus, for this problem size, the
addition of further machines will not result in an increased speed
up.

Table 6.7 Speed-up for Steady State Problem: 300,000 Grid Points

Number of Node Grain size Task Waiting Speed up
nodes time(s) time(s)

1 1 300000 378 NA NA
2 1 160000 175 10 2.04

2 140000 170 13
3 1 110000 124 8 2.84

2 100000 122 10
3 90000 120 15

4 1 90000 82 10 3.78
2 75000 80 16
3 75000 82 18
4 60000 88 10

5 1 59000 70 10 4.72
2 59000 65 11
3 59000 66 9
4 59000 63 12
5 65000 66 9

PARALLEL PROGRAMMING MODEL ON CORBA 199

(Contd)

6 1 49000 47 28 5.04
2 49000 53 21
3 49000 51 21
4 49000 51 22
5 49000 54 21
6 55000 49 23

Table 6.8 shows the overhead of providing the two services.
The load balancing service overhead includes getting load
information from all kernel entities, computing load factors and
deciding the target for object migration. These overheads
(especially the object migration overhead) are not small. Further,
the overhead of using CORBA is also high, as Table 6.4 shows.
But in spite of both these factors, P-CORBA is able to achieve
significant speed ups. The main reasons for this are:

Table 6.8 Overhead of Providing Services

Service Overhead

Load-balancing service 200–300 ms
Object migration service 2–3 s

l P-CORBA can dynamically migrate objects to appropriate
machines and thus take care of load fluctuations in the NOW.

l P-CORBA takes into account the processing speed of the
various machines, before choosing the target for migration.
This is very important for proper load distribution.

l While choosing the target for migration, machines which
join the pool dynamically are also considered. By addressing
issues specific to parallel programming over NOWs compre-
hensively, the overheads (in providing services or in message
sending) can be offset by the gain in performance. Thus, by
smoothening load fluctuations in the NOW, P-CORBA
performs well as a parallel programming platform.

200 GRID COMPUTING

P-CORBA achieves significant speed-ups for a specific class of
problems over a loaded workstation cluster by overlapping
computation with communication. If the grain size is too small,
the communication overheads may dominate and result in sub-
linear speed-ups. We conducted an experiment to determine the
minimum grain size at which the overheads of providing services
on a loaded workstation cluster can be tolerated and maximum
speed-up obtained. Table 6.9 shows the speed-up obtained for
eight machines with increasing problem size on a loaded cluster.
This set of performance studies were conducted on a Linux cluster
of Acer PCs with 3.2 GHz Intel Pentium IV dual processors and
1GB of main memory, connected by a 100 Mbps LAN.

Table 6.9 Speed-up with Increasing Grain Size: Eight Machines

S.no. Problem size Average Average waiting Single node Speed-up
task time(s) time(s) time(s)

1 200,000 4 6 70 7
2 300,000 7 6 104 8
3 400,000 8.5 6.5 138 9.2
4 500,000 10.5 7 191 10.91

The set up is illustrated in Fig. 6.14. In this case also, by using
CPUhog, one of the eight machines was artificially loaded and
the task migrated at runtime. It shows that a problem size of 200
000 grid points does not scale up and gives only sub-linear speed-
ups. However, at 300000 grid points, the speed-up is exactly linear
(communication time is nearly equal to computation time).
However, problem sizes beyond 300000 result in super-linear
speed-ups. This shows that even on a loaded workstation cluster,
P-CORBA can achieve linear to super-linear speed-ups.

Another interesting experiment was conducted to determine
the range of load fluctuations that can be tolerated by P-CORBA.
We determined the load threshold on the target machine for task
migration, a non-trivial task. In the previous experiment (eight
machines + problem size 500000), a further study was conducted.

PARALLEL PROGRAMMING MODEL ON CORBA 201

FIG. 6.14

Iterative Grid Computation (IGC) Problem

The results are tabulated in Table 6.10. The CPUhog process
mentioned before was used. This program can be configured to
generate many tasks and hog the CPU. In the first case, a load of
4.8 was generated by creating six tasks with the CPUhog process.
The load of 6.8 was generated by using two CPUhog processes,
each with four tasks. In order to generate the load of 9.5, twoPuhog
processes, each with six tasks were run. The load was measured
by using the top command, which measures the load as the average
CPU queue length. It can be observed that up to loads of almost
8 (all these machines are dual processor machines), the node can
be the target of task migration and linear or super-linear speed-up
can be achieved. The threshold can be fixed at 8, as a load of 9.5
slows down the node drastically and increases the waiting time
for other tasks, resulting in sub-linear speed-ups.

202 GRID COMPUTING

Table 6.10 Determining Target Load Threshold: 500000 Grid Points

and Eight Machines

Serial Load on target Average task Average Speed-up
number (top command) time(s) waiting time(s)

1 4.8 10.5 7 10.91
2 6.8 12 11.5 8.3
3 9.5 15 16 6.1

6.7 Suitability of CORBA: An Introspection

The important question at this stage is whether CORBA is suitable
for parallel programming or not. Its advantages are two-fold. First,
its support for object orientation facilitates object-based parallel
computing. The authors believe that it is the right approach for
parallel programming over NOWs. The object location mechanism
as well as the remote activation mechanism supported by CORBA
ORBs automatically, prevent the system programmer from
handling low-level network details. Secondly, it handles hetero-
geneity in architecture and operating systems. This is an important
issue for parallel programming over a NOW.

Addition of two features into CORBA could make parallel
programming much easier. One is a load-balancing service,
implemented as either a standalone service as suggested in the
model or integrated into naming or trading services [3]. The other
is a proper object migration facility, as the model suggests. Further,
the drafting of AMI into the CORBA specification will ease parallel
programming considerably.19 Implementation of the Concurrency
service may also be important, especially if the notion of concurr-
ency used is similar to the one used in this model.

6.8 Conclusions

This chapter has presented P-CORBA, a model for parallel
programming over CORBA that addresses issues specific to parallel

PARALLEL PROGRAMMING MODEL ON CORBA 203

computing over a NOW. The main contribution of the model is
the introduction of the notion of concurrency into the CORBA
domain. The model also demonstrates one way of balancing the
load in a CORBA environment. The performance comparison
over MPI suggests that it is a good idea to use CORBA for parallel
programming over NOWs. The performance studies also show
that P-CORBA can obtain linear to super-linear speed-ups for
certain classes of applications. This work has established that in
spite of the relatively high message sending overhead in CORBA,
it can be used for parallel programming over NOWs. Further,
several attempts are being made to reduce the message sending
overhead in CORBA [12]. These are being incorporated into the
next version of CORBA (3.0) through a real-time CORBA
specification. A fast CORBA combined with the parallel program-
ming model presented in this work could provide the best possible
support for utilizing the computing power of a NOW. It would be
interesting to explore the possibility of wide area parallel
computing over a real-time CORBA.

Parallel programming was not the fundamental design goal of
CORBA. The fact that it may be easily used in this domain shows
the adaptability of the specification. This suggests possible
extensibility and its applicability in various other areas too. Hence,
the evaluation of CORBA for parallel programming could be an
indication of the very survival of CORBA over a longer period of
time.

DCOM [9] can also be used as the middleware for parallel
programming. The ultimate step might be to use DCOM for
Windows clusters (due to good performance) and CORBA for
heterogeneous clusters. Parallel programming with DCOM and
CORBA over WANs could be explored.

The integration of eXtensible Markup Language (XML) [36]
with CORBA can be explored. This could facilitate the exchange
of intermediate results in parallel programming through the
standard for data interchange, XML. Thus, P-CORBA could
provide a single parallel programming model in which code
distribution is handled through CORBA and data distribution is
handled through XML.

204 GRID COMPUTING

References

1. The NOW Team, Anderson, T.E., D.E. Culler, D.A.
Patterson, “A Case for NOW (Network of Workstations)”,
IEEE Micro, Vol. 15, No. 1, pp. 54–64, February 1995.

2. Bal, H.E., J.G. Steiner, A.S. Tenenbaum, “Programming
Languages for Distributed Computing Systems”, ACM Comput.
Surveys, Vol. 21, No. 3, pp. 261–322, September 1989.

3. Barth, T., et al., “Load Distribution in a CORBA Environ-
ment”, International Conference on Distributed Objects and
Applications (DOA), Edinburgh, Scotland, September 1999.

4. Binu, K.J., R. Karthikeyan, D. Janakiram, “DP: A Paradigm
for Anonymous Remote Computation and Communication
for Cluster Computing”, IEEE Trans. Parallel Distributed Systems
Vol. 12, No. 10, pp. 1–14, October 2001.

5. Brunner, R.K., L.V. Kalé, “Adapting to Load on Workstation
Clusters”, The Seventh Symposium on the Frontiers of
Massively Parallel Computation, IEEE Computer Society
Press, Silver Spring, MD, pp. 106–112, February 1999.

6. Buttner, L., J. Nolte, W. Schroder-Preikschat, “ARTS of
PEACE—A High-performance Middleware Layer for Parallel
Distributed Computing”, J. Parallel Distributed Comput. 59
pp. 155–179, September 1999.

7 Carriero, N., et al., “Adaptive Parallelism and Piranha”, IEEE
Comput., Vol. 28, No. 1, pp. 40–49, January 1995.

8. Coulson, G., D. Waddington, “A CORBA-compliant Real-
time Multimedia Platform for Broadband Networks”,
International Workshop on Trends in Distributed Systems
(TreDS), Lecture Notes in Computer Science, Vol. 1161,
Springer, Berlin, October 1996.

9. DCOM: Distributed Component Object Model Protocol—
DCOM/1.0, http://msdn.microsoft.com/library/specs/
distributedcomponentobjectmodelprotocoldcom10.htm.

PARALLEL PROGRAMMING MODEL ON CORBA 205

10. Fox, G.C., et al., “Solving Problems on Concurrent Process-
ors”, General Techniques and Regular Problems, Vol. 1, Prentice-
Hall, Engelwood Cliffs, New Jersey, 1988.

11. Gannon, D., et al., “Developing Component Architecture for
Distributed Scientific Problem Solving”, IEEE Comput. Sci.
Eng., Vol. 5, No. 2, pp. 50–63, April–June 1998.

12. Gokhale, A.S., D. Schmidt, “Measuring and Optimizing
CORBA Latency Over High-speed Networks”, IEEE Trans.
Comput., Vol. 47, No. 4, pp. 319–412, April 1998.

13. Grimshaw, A.S., “Easy-to-use Object-oriented Parallel
Processing with Mentat”, IEEE Comput., Vol. 27, No. 5, pp.
30–51, May 1993.

14. Grimshaw, A.S., W. Wulf, “The Legion Vision of a
Worldwide Virtual Computer”, Comm. Assoc. Comput. Mach.,
Vol. 40, No. 1, pp. 39–45, January 1997.

15. Henning, M., “Binding, Migration and Scalability in
CORBA”, Comm. Assoc. Comput. Mach., Vol. 41, No. 10, pp.
62–71, October 1998.

16. Henning, M., S. Vinoski, “Advanced CORBA Programming
with C++”, Addison-Wesley, Reading, MA, 1999.

17. Janakiram, D., T.H. Sreenivas, G. Subramaniam, “Parallel
Simulated Annealing Algorithms”, J. Parallel Distributed
Comput., Vol. 37, pp. 207–212, 1996.

18. Janakiram, D., A. Vijay Srinivas, “Object Migration in
CORBA”, J. Comput. Soc. India, Vol. 32, No. 1, pp. 18–27,
March 2002.

19. Joshi, R.K., D. Janakiram, “Object-based Sub-contracting: A
model for Parallel Programming on Loosely Coupled
Workstations”, J. Programming Languages 4, pp. 169–183, 1996.

20. Joshi, R.K., D. Janakiram, “Anonymous Remote Computing:
A Paradigm for Parallel Programming on Interconnected
Workstations”, IEEE Trans. Software Eng., Vol. 25, No. 1, pp.
75–90, January/February 1999.

206 GRID COMPUTING

21. Kalé, L.V., S. Krishnan, “CHARM++: A Portable Concurrent
Object-oriented System based on C++”, in A. Paepcke (ed.),
Proceedings of OOPSLA’93, ACM Press, pp. 91–108, New
York, September 1993.

22. Keahey, K., D. Gannon, “PARDIS: CORBA-based
Architecture for Application Level Parallel Distributed
Computation”, in SuperComputing 97, August 1997.

23. Kunz, T., “The Influence of Different Workload Descriptions
on a Heuristic Load Balancing Scheme”, IEEE Trans. Software
Eng., Vol. 12, No. 4, pp. 269–284, July 1991.

24. Leppinen, M., P. Pulkkinen, A. Rautiainen, “Java and
CORBA-based Network Management”, IEEE Comput., Vol.
30, No. 6, pp. 85–87, June 1997.

25. Litzkow, M.J., M. Livny, M.W. Mutka, “Condor—A Hunter
of Idle Workstations”, IEEE International Conference on
Distributed Computing Systems, IEEE Press, New York, pp.
104–111, June 1998.

26. Manjula Rani, P., A. Vijay Srinivas, D. Janakiram, “Scalability
Issues in CORBA”, The Fifth International Symposium on
Software Engineering for Parallel and Distributed Systems
(PDSE 2000), Limerick, Ireland, June 2000.

27. MPI Forum, “MPI: A Message Passing Interface Standard”,
1995.

28. Object Management Group, “CORBA Messaging
Specification”, OMG Document orbos/98-05-05 (ed.), 1998.

29. Object Management Group, CORBA Services: Common Object
Services Specification, Revised edition, December 1998.

30. Object Management Group, The Common Object Request Broker:
Architecture and Specification. 2. 3. 1, October 1999.

31. Paepcke, A., et al., “Using Distributed Objects to Build the
Stanford Digital Library Infobus”, IEEE Comput., Vol. 32,
No. 2, pp. 80–87, February 1999.

32. Puder, A., K. Romer, MICO is CORBA; http://
www.dpunkt.de/mico/.

PARALLEL PROGRAMMING MODEL ON CORBA 207

33. Shivaratri, N.G., P. Krueger, M. Singhal, “Load Distributing
for Locally Distributed Systems”, Computer, Vol. 25, No. 12,
pp. 33–44, December 1992.

34. Tandiary, F., et al., “Batrun: Utilizing Idle Workstations for
Large-scale Computing”, IEEE Parallel and Distributed
Technology, pp. 41–49, 1996.

35. Wolfgang, S., The Logical Design of Parallel Operating Systems,
Prentice-Hall, Englewood Cliffs, New Jersey, 1994.

36. W3C Recommendation, “eXtensible Markup Language
(XML)”, http://www.w3c.org, February 1998.

37. M.V., Steen, P. Homburg and A.S. Tanenbaum, “Globe: A
Wide-Area Distributed System”, IEEE Concurrency, Vol. 7,
No. 1, pp. 70-78, January-March 1999.

38. Janakiram, D., A. Vijay Srinivas and P. Manjula Rani, ‘A
Model for Parallel Programming Over CORBA’, Tech
Report, IITM-CSE-DOS-99-06, Distributed and Object
Systems Lab, Dept. of CS&E, IIT Madras, Chennai,
December, 1999, communicated to Cluster Computing Journal,
Baltzer Science Publications, Netherlands, available at http://
lotus.iitm.ac.intechrep.

39. Pasala, A. and D. Janakiram, “FlexiFrag: A Design Pattern
for Flexible File Sharing in Distributed Collaborative
Applications”, Journal of Systems Architecture: The Euro Micro
Journal, Elsiever Science, Vol. 44, pp. 937–954, 1998.

40 R.K., Joshi, N. Vivekananda and D. Janakiram, “Message
Filters for Object-oriented Systems”, Software-Practice and
Experience, Vol. 27, No. 6, pp. 677–699, June 1997.

41. Sriram Reddy, G. and R.K. Joshi, “Filter Objects for
Distributed Object Systems”, to appear in Journal of Object-
oriented Programming.

42. Puder, Arno and Kay Romer, “MICO is CORBA”, http://
www.dpunkt.de/mico.

43. Fuggetta, A., G.P. Picco and G. Vigna, “Understanding Code
Mobility”, IEEE Transactions on Software Engineering , Vol. 24,
No. 5, pp. 342–361, May 1998.

208 GRID COMPUTING

44. Jul, E., H. Levy, M. Hutchinson and A. Black, “Fine-grained
Mobility in the Emerald System”, ACM Transactions on
Computer Systems, Vol. 6, No. 1, pp. 109–133, February 1988.

45. Shillner, R.A., and E.W. Felton, “Mobile Network Objects”,
Technical Report, TR-534-96, University of Princeton,
October 1996.

46. Caughey, S.J. and S.K. Shrivatsava, “Architectural Support
for Mobile Objects in Large-scale Distributed Systems”,
International Workshop on Object Oriented Systems, 1995.

47. Narasimhan, P., L.E. Moser and P.M. Melliar-Smith, “The
Interception Approach to Reliable Distributed CORBA
Objects”, Proceedings of the 3rd Conf. on Object-oriented
Technologies and Systems, June 1997, available at http://
www.usenix.org/publications/library/proceedings/coots97/
narasimhan.pdf.

End Notes

1. This is the Object Request Broker (ORB) in CORBA.

2. This decision should not be left to the programmer as he
may not be aware of the load conditions on the nodes of the
NOW.

3. ‘Best available machines’ refers to the machines with the
lowest load factor. It is a simple mathematical function of the
load and processing power on a node. The lower the load
factor, the higher is the load that the machine can take.

4. This task can actually be automated. In fact, the translator
does precisely this function as Section 6.4.1 explains.

5. Popular ORBs such as visibroker, orbix, omniorb, and mico
have not implemented this. Only IBM’s Component Broker
and Washington University’s TAO provide implementations.

6. These guidelines are general in nature. Any service must
adhere to these principles [29].

PARALLEL PROGRAMMING MODEL ON CORBA 209

7. Server object is the client of the filter object

8. The filterable-impl class provides implementations for the
attach() and detach() methods

9. The functions of this entity are discussed comprehensively in
the next section.

10. This provides implementations of all the three methods of
the interface.

11. This is equivalent to declaring the exception in the object’s
IDL due to the inheritance hierarchy.

12. This can be generated as a Universally Unique IDentifier
(UUID) as in DCOM [12].

13. Since it created the new object, it has a reference to that
object.

13. A number of machines are configured to use a single
migrating entity.

15. Since the POA interface is standarized, adding a new method
for updation is not easy.

16. If filters are used for a different purpose, then the code may
have to be changed. In this case, the filters only redirect
client requests. The only thing that changes for each filter is
the location and possibly the return value types of the
methods.

17. This is available in the source code of the object.

18. A process which deliberately hogs the CPU and generates
configurable loads. Check http://www.xmailserver.org/linux-
patches/lnxsched.html for more details.

19. The recently released CORBA specification incorporates AMI
in the form of the messaging specification.

Chapter 7

Sneha�Samuham: Grid
Computing Model*

7.1 Introduction

The Internet has become an attractive means of sharing informa-
tion across the globe. The idea of ‘grid computing’ has emerged
from the fact that the Internet can also be used for several other
purposes such as sharing the computing power, storage space,
scientific devices and software programs. The term ‘grid’ is cho-
sen as it is analogous to the electric power grid where it provides
consistent, pervasive, and ubiquitous power irrespective of its
source [1]. The focus of this chapter is on computational grids. A
computational grid is a sub-class of a general grid, wherein it
contains only computing resources. The aim of management
software running on a computational grid is to efficiently execute
applications submitted by the user apart from providing support
for heterogeneity, fault tolerance, security, etc.

There exist a considerable number of parallel computing models
that can exploit coarse grain parallelism over a NOW. The sig-
nificant efforts include PVM[2], MPI[3], ARC[4], DP[5], Linda[6],
Piranha[7], Condor[17], etc. However, these models lack the in-
frastructure to extend over the Internet. There are some models
which can provide global computing, such as Javelin[8], ATLAS[9],
POPCORN[10], Globus[11], Legion[12], etc. Some of these

*D. Janakiram, N.V. Palankeswara Rao, A. Vijay Srinivas M.A. Maluk Mohamed

SNEHA–SAMUHAM: GRID COMPUTING MODEL 211

models in general, and Globus in particular, address a lot of grid
computing issues such as security, authentication, fault tolerance,
etc. But none of the above models provides support for an adaptive
parallel execution of an application by transparently splitting a
task into sub-tasks of appropriate granularity.

The Sneha-Samuham1 model provides adaptive parallel execu-
tion of tasks over a computational grid. Its strength lies in trans-
parent splitting of a parallel task into sub-tasks of appropriate
granularity, depending on the computation capability of partici-
pating nodes. Moreover, its user interface for sharing the comput-
ing resources across the Internet, makes the model user-friendly.
Users can harness the computing power of ‘friendly’ computers
over the Internet for parallel processing.

A good parallel computing mechanism can boost the perform-
ance of a computational grid to execute applications. None of the
existing grid computing models supports automatic task splitting,
even though it is possible for many classes of applications. These
systems expect the user to submit a batch of jobs to the system
and the scheduler schedules these jobs on the participating nodes.
In the proposed model, automatic task splitting support has been
provided for certain classes of applications. This relieves the user
from the burden of task splitting related issues. Also, the user
does not need to know the computation capabilities of individual
nodes participating in the grid. Currently, Sneha-Samuham
supports only purely data parallel scientific applications that are
coarse-grained. We are extending the applicability of the model
to a wider range, especially to support applications involving
communicating tasks.

The rest of the chapter is organized as follows. Section 7.2
gives an overview of the ‘Sneha–Samuham’ model. Section 7.3
provides the design and implementation details of the model.
Section 7.4 discusses the performance evaluation of the model.
Section 7.5 describes some of the existing grid computing models.
Section 7.6 concludes the work. It also gives new ideas for future
research.

212 GRID COMPUTING

7.2 Sneha-Samuham: A Parallel Computing
Model Over Grids

In the Sneha–Samuham model, a computer, over the Internet,
can donate its computing power to other computers as well as use
the computing power of other computers. The computer which
donates its computing power is called a ‘donor’ and the computer
which makes use of another computer’s computing power is called
an ‘acceptor’. A node2 can act either as a ‘donor’ or as an ‘acceptor’
or both as an ‘acceptor’ and a ‘donor’. Ideally, the number of
donors should be much higher as compared to the number of
acceptors. An acceptor can use the computing power of its donors
for executing parallel applications. The topology, architecture,
various components and the computation model of Sneha–
Samuham are explained in the following sub-sections.

7.2.1 System Topology

The Internet can be treated as an interconnection of individual
LANs as shown in the Fig. 7.1. The collection of nodes within an
individual LAN is referred to as a ‘cluster’. A designated node in
each cluster acts as a mediator between the nodes inside its cluster
and the outside world.

The mediator is called a Cluster Coordinator (CC). If a cluster
contains a single node, then that node itself acts as the CC for that
cluster. Any node inside a cluster (including the CC) can act
either as a ‘donor’ or as an ‘acceptor’ or both as an ‘acceptor’ and
as a ‘donor’ or may not participate in the grid computing at all.

There are several advantages with this kind of topology. Since
there is no global coordinator, the model is scalable and there
won’t be any single point failures. The next advantage is that
every node of a cluster participating in the grid computation need
not be accessible from outside, over the Internet. Since every
cluster that participates in the computation, contains a CC, it is
sufficient if that CC is accessible over the Internet. The machines
inside a remote cluster can be accessed through the CC of that
cluster. Private addressing and source Network Address Translation

SNEHA–SAMUHAM: GRID COMPUTING MODEL 213

FIG. 7.1

System Topology

(NAT) of a LAN need not be disturbed while the machines of the
LAN are used for grid computing. Its other advantage is that
providing authentication, security and fault tolerance for grid
computing becomes easy. For example, there is no need to secure
a machine from other machines inside its cluster. It is enough to
have a good security system in the CC to secure the machines of
a cluster from outside machines.

7.2.2 Layered Architecture of Sneha�Samuham

The Sneha–Samuham model is viewed as a five-tiered architecture,
with the middle three layers constituting the core. The functionality
of each layer is explained in this section.

l Computing Resources

This layer contains various computing resources, with varying
processor speeds, memory, architecture and operating system
running on them. In this model, a computing resource implies,
the combination of both the hardware resource and the local
management software (operating system) running on it.

214 GRID COMPUTING

l Runtime Environment

Runtime environment interacts with local operating systems exist-
ing in the computing resources layer. It is responsible for collecting
the sub-tasks from the user interface, migration and execution of
these sub-tasks on the remote machines over the Internet, and
getting the results back to the node, where the computation was
initiated. The runtime environment of the system contains three
components that run as daemons on the respective nodes: acceptor,
donor and ccdaemon. A node which acts as both a donor as well
as an acceptor runs both the daemons. Every CC runs a daemon
called ccdaemon to coordinate between the acceptors and the
donors. The node to which a parallel task is submitted should
have the acceptor daemon running. Also, the nodes where the
donor daemon is running can participate in the parallel
computation by sharing work from acceptors. The interactions
among these three daemons is governed by a well-defined protocol.
The core grid computing services provided by the runtime
environment can be accessed by using the APIs provided in the
layer above it.

Whenever a cluster wants to participate in the parallel compu-
tation, it initially starts the ccdaemon on its CC. After a donor or
an acceptor starts at a node, it registers with its local CC through
the ccdaemon running on that CC.

l Application Programming Interfaces (APIs)

This layer contains various APIs to access the services provided
by the runtime environment for grid computing. This layer is
introduced to make the runtime environment application-
independent. These APIs provide a standard way for the above
layer (user interface), to request the runtime environment for
various kinds of grid computing services, such as collecting friend
CCs information, migration of a sub-task to a remote node, getting
back the results of a sub-task, etc. This layer, including the runtime
environment layer, provides core grid computing services and the
interface to access them. Any new service provided in the runtime
environment can be accessed by including the corresponding APIs
in this layer. This makes the user interface transparent from the
updates made at runtime environment.

SNEHA–SAMUHAM: GRID COMPUTING MODEL 215

l User Interface

This layer provides user level tools for collecting the computing
resources and submitting tasks to the grid. It contains two sub-
components. One is the Friend Machines Interface (FMI) to collect
the resources and the other is a set of user level commands to
submit applications to the grid. The FMI is an instant messenger
kind of Graphical User Interface (GUI) tool, which interacts with
the local cluster coordinator using the appropriate APIs in the
lower layer. It provides various services to the user to aggregate
the resources over the Internet for grid computing as explained
below:

l The owner of a cluster can request owners of other clusters
over the Internet to become a friend cluster to his/her cluster.
If he/she accepts, then both the clusters become friends to
each other. Each CC includes the name of the other CC in
its Friend Clusters Table (FCT).

l One can accept or reject the request made by others over
the Internet to make his cluster a friend to them. Protocol
similar to that of ‘yahoo messenger’ for discovering chat
friends is used.

l It displays all friend CCs of a CC and highlights the live
friend CCs. Along with the friend CCs, other information
such as number of donors available in each friend cluster,
their GCCFs and communication latencies can also be
displayed on the basis of the user’s preference.

l The user or the application can select any number of donors
from friend clusters for parallel computing.

If two clusters are friends to each other, any node can use the
computing power of any other node in the two clusters. A cluster
can have any number of friend clusters. A CC maintains a list of
all its friend CCs. Whenever a parallel application is started on a
node, it can make use of the machines (which are running donor
daemon) that belong to all of its friend clusters for parallel
processing.

In Sneha–Samuham, it is assumed that each cluster is owned
by a user or a group of users. It is a realistic assumption as each

216 GRID COMPUTING

LAN is owned by a research group or an organization. They
decide whether their cluster will participate in the grid computing
or not. They can designate any node as a CC, an acceptor or a
donor by running the corresponding daemon on it. The owner(s)
can make his cluster a friend to any other cluster by using the
FMI described above. A cluster including all of its friend clusters
forms a ‘computational grid’. A number of such grids can exist
over the Internet.

Apart from FMI, the user interface also contains a set of
application level commands to submit parallel applications to the
grid. The set contains one command for each class of parallel
applications. The functionality of these commands includes the
splitting logic for that particular class of applications and makes
use of the lower level APIs for accessing generic grid computing
services. As the splitting logic varies for different classes of
applications, each class should contain one command in this layer.
A new class of applications can be supported by adding the
corresponding command to the existing set of commands. The
user can see the supported commands and, their description and
can use the appropriate command to submit his application to the
grid. However, implementing these kinds of commands is not
possible for all applications as some class of applications are
inherently not parallelizable.

l Grid Computing Applications

This layer contains the applications, which can benefit from grid
computing. A grid computing application is CPU-intensive and
there should be algorithms to partition the application into
independently running parts. The parts must be executable
remotely without much overhead, and the remote machine must
meet any special hardware, software and/or other resource
requirements imposed by the application. The application is more
scalable, if these sub-tasks (or jobs) do not need to communicate
with each other.

7.2.3 Computation Model

The computation model follows the Master-Worker [13] process
model. Upon receiving the task, the user level command executes

SNEHA–SAMUHAM: GRID COMPUTING MODEL 217

as a master process and contacts the acceptor running on that
node. Then the acceptor contacts its local ccdaemon and gets the
addresses and GCCFs of requested number (or available number,
if requested number of machines are not available) of friend
machines. The master process splits the task into sub-tasks of
appropriate granularity depending upon the number of available
friend machines and their current computing capabilities. Once
the splitting gets over, it migrates each sub-task to the
corresponding node. The donor daemon that receives the sub-
task to be computed, spawns a worker process for that sub-task
and returns the results after the execution is completed. The
division of tasks among the available nodes is done as described
in the following sub-section.

7.2.3.1 Task Splitting

The computational capability of a node over the grid can be
measured from the factor called GCCF,

f =
sm
lt

where s, m and l are processor speed, memory and average load
on a node, respectively and t is the communication latency from
a node, from where it received the job to be executed. The division
of task among the available lightly loaded nodes is done as follows:

If there are n nodes with GCCFs, f1, f2, f3, … fn.

Let, F = f1 + f2 + f3 + . . . fn

And if the total task size is G, then

Grain size assigned to the first node, g1 =
1f

F

Ê ˆ
Á ˜Ë ¯

G

Grain size assigned to the second node, g2 =
2f

F

Ê ˆ
Á ˜Ë ¯

G

Grain size assigned to the nth node, gn =
nf

F

Ê ˆ
Á ˜Ë ¯

G

218 GRID COMPUTING

The above task distribution is applicable only to data parallel
applications. Normally in data parallel applications, a functionality
will be executed on a large chunk of data. This data can be
divided into several parts and can execute the same functionality
on individual chunks. Each chunk could be of different size. This
technique may have to be extended to apply for task parallel
applications.

7.3 Design and Implementation of the Model

The middle three layers, viz. the runtime environment, APIs and
user interface, form the core of the Sneha-Samuham model. The
following sub-sections explain the designs of these three layers
and implementation details of the model. In the following
discussion, local machine with respect to some machine, means
the one which resides in the same cluster. For example local CC
means the CC of that cluster.

7.3.1 Runtime Environment

The collection of acceptors, ccdaemons, donors and their
interactions form the runtime environment of the system. The
interactions among these three daemons as well as their commu-
nication with the upper layer are governed by a well-defined
protocol. The following sub-sections describe the design of each
of these daemons and their interactions with other components of
the system.

7.3.1.1 Cluster Coordinator (CC)

The CC in the Sneha-Samuham model acts as a resource collector.
A cluster can be a friend to other clusters over the Internet. The
CC of each cluster maintains a table called FCT. Each entry in
the FCT contains the address of a friend CC. The FCT of every
cluster is updated whenever a new CC is added to the list or an
existing CC relinquishes the friendship with that cluster. The
interaction between a ccdaemon and FMI will do this. It also

SNEHA–SAMUHAM: GRID COMPUTING MODEL 219

maintains a pending requests list, whose entries are the requests
that came from other CCs for friendship with this cluster and
which are not responded by the user (or owner) of this cluster.

Apart from the friend clusters’ information, a CC also maintains
lists of its local donors and of its local acceptors. Whenever an
acceptor from a friend cluster asks for donors, it returns the
addresses of the nodes stored in the donors’ list along with their
current computational capabilities. The GCCF defined in the
previous section represents a node’s current computational
capability.

A CC interacts with its FMI, local acceptors, local donors, and
with other CCs. In the INIT state, ccdaemon initializes its data
structures. In the LISTEN state, it waits for messages from the
other daemons with which it is allowed to interact. If it receives
any message from the FMI, friend CC, local acceptor or local
donor, then it changes its state to FMI Msg RECVD, Other CC
Msg RECVD, Acceptor Msg RECVD or Donor Msg RECVD,
respectively and services the message. Any error message in these
states causes the state to be changed to ERROR and the appropriate
action will be taken. Various kinds of messages could come from
each of the above-mentioned daemons. For example, from FMI,
the message could be to request a specific CC to become a friend
to it or a response to the request from another CC, forwarded by
it. For each message, the ccdaemon executes a different service
routine to service the request. The description of various messages
exchanged among these daemons and the actions taken on
reception of these messages are out of the scope of this chapter.

7.3.1.2 Acceptor

The acceptor receives tasks submitted by the user interface and
executes them on its friend machines. It gets the global computing
resources from its local ccdaemon. Since users can submit more
than one parallel task to an acceptor, it maintains a table of all
submitted tasks. This table is called a Task Table (TT). Each entry
in the TT contains a task-ID and the corresponding sub-task IDs
after the task is split into sub-tasks. Each entry is updated with the
target CC and donor addresses after the sub-tasks are migrated.

220 GRID COMPUTING

The acceptor interacts with its local CC, local donors (in case it
submitted jobs to them) and with the user interface. In the INIT
state, the acceptor daemon initializes its data structures and registers
with its local CC. In the LISTEN state, it waits for messages from
the other processes. If it receives a message from any of the user
processes, its local CC, or its local donor, then it changes its state
to UP Msg RECVD, CC Msg RECVD or Donor Msg RECVD,
respectively and services the message. If any error occurs in this
process, the state is changed to ERROR and the appropriate action
is taken.

7.3.1.3 Donor

A donor daemon registers with its local ccdaemon and gives replies
to the requests made by its ccdaemon such as current GCCF of
the machine, etc. If the current GCCF is above some threshold, it
receives sub-tasks from the acceptors of its friend machines,
executes them locally, and sends results back to the acceptor if it
is local or through its CC if it is from an outside cluster. In order
to store information of all the sub-tasks that are running on this
node, it maintains a table called Sub-Task Table (STT). Each
entry in the STT contains a sub-taskID, taskID generated by its
parent node,3 source CC and acceptor addresses from where the
sub-task has been migrated. This information is required to send
the results back after the execution of a sub-task is finished. If the
sub-task is from a local acceptor, then its source CC address is
zero and the result of the sub-task can be directly sent to the
acceptor.

A donor daemon interacts with its local CC, local acceptors
and the Worker Processes (WPs) spawned by it for executing sub-
tasks. In the INIT state, it initializes its data structures and registers
with its local ccdaemon.

In the LISTEN state, it waits for the messages from the other
processes with which it could interact. If the donor daemon receives
a message from its ccdaemon, local acceptor or from its worker
process, then it changes its state to CC Msg RECVD, Acceptor Msg
RECVD or WP Msg RECVD, respectively and services the message.
If any error occurs in this process, the state is changed to ERROR
and the appropriate action is taken.

SNEHA–SAMUHAM: GRID COMPUTING MODEL 221

7.4 Performance Studies

The neutron shielding simulation [14] application has been chosen
for studying the performance of the Sneha–Samuham grid
computing model. It is a nuclear physics application, in which a
beam of neutrons is delivered in the experiment. When this
neutron beam strikes a lead sheet of certain thickness perpendi-
cularly, it is important to predict the number of neutrons that can
penetrate from the other side of the lead sheet. This application
predicts that number by using the Monte–Carlo simulation. More
details about this application can be found at [14]. For all simulation
experiments, a lead sheet of 5 units thickness is assumed. The
number of neutrons will be a power of 10 in each experiment. In
practical situations, the number of neutrons depends upon the
type of experiment and the amount of time for which that
experiment has to be conducted. The amount of computing power
required is directly proportional to the number of neutrons. In
the following discussion, homogeneous and heterogeneous
machines (or clusters) are categorized with respect to processor
speed only, that is, in a cluster of homogeneous machines, all the
machines will have the same processor speed.

7.4.1 Power of Sneha�Samuham: Institute-wide

Grid

Table 7.1 shows the power of Sneha–Samuham in executing coarse-
grain parallel applications such as the neutron shielding simulation.
The first column of the table shows the number of neutrons
(problem size) for each experiment. The time taken for this
application by a single machine and the time taken on the grid of
three clusters using Sneha–Samuham has been measured. The
values in the second column are the execution times for the
corresponding problem size given in the first column, using a
single machine of processor speed 367.5 MHz. The values in the
third column are achieved by a grid of 14 machines, distributed
across three clusters with varying processor speeds ranging from
267 MHz to 2400 MHz. The fourth column shows the speed-up
achieved by the grid when compared to the single machine.

222 GRID COMPUTING

Table 7.1 Institute-wide Grid Performance

Prob. size Time taken (sec) Speed-up

Single machine(s) Grid (g) (s/g)

1010 49590.55 148188 33.46
(= 13.77 hrs) (= 0.41 hrs)

109 5056.07 152.14 33.23

108 526.29 20.47 25.71

107 49.32 6.22 7.93

106 4.92 5.24 0.94

The results show the efficiency of the grid computing model
for highly computation-intensive applications. It is clear from the
first row of the table that an application which takes around 14
hours on a single machine can be finished in around 25 minutes
on a small grid of 14 machines. So the applications which take
days and years to execute on a single machine can very efficiently
be executed in a fraction of an hour or in few hours using
sufficiently large grids. Here the Sneha–Samuham model has an
advantage in that it divides the task according to the computation
and communication capabilities of the participating nodes.

However, for less computation-intensive applications, the grid
takes more time than a single machine. This is due to the fixed
overhead of the grid for collecting GCCFs of participating nodes,
splitting the task and sending the sub-tasks to the respective nodes.
The last row (problem size of 106) shows this result, where the
fixed overhead of Sneha–Samuham dominates the execution time
of the application. Hence, to benefit from Sneha–Samuham, the
application must be sufficiently computation-intensive to comp-
ensate the fixed overhead caused by the grid. Normally, the
execution times of grid computing applications are several orders
of magnitude greater than the values shown in the table.

7.4.2 Fixed Overhead caused by Sneha�Samuham

Table 7.2 shows the fixed overhead caused by Sneha–Samuham
when compared to the MPI equivalent of the same application.

SNEHA–SAMUHAM: GRID COMPUTING MODEL 223

This experiment has been conducted on a single cluster of five
homogeneous machines. The first column shows the number of
neutrons (problem size) in that experiment. The values shown in
the second and third columns are execution times in seconds
achieved using Sneha–Samuham and MPI, respectively for the
corresponding problem sizes. The last column is the difference of
these two execution times, which is the overhead caused by Sneha–
Samuham. The major overhead is due to the collection of GCCFs
before starting the application, but the same does not exist in MPI.
However, this overhead is negligible as it is much lesser around 1
second) than the computation times of parallel applications.

Table 7.2 Overhead of Sneha�Samuham

Time taken (sec)

Prob. size Sneha–Samuham(s) MPI (m) Difference (s – m)

1010 10432.11 10430.93 1.18

109 1042.33 1041.18 1.15

108 105.85 104.70 1.15

107 11.85 10.59 1.26

106 1.96 1.24 0.72

7.4.3 Advantages of Sneha�Samuham over MPI

Table 7.3 illustrates the advantage we get to compensate for the
cost of fixed overhead. In this case, the experiment has been
conducted on a single cluster of five nodes with different processor
speeds ranging from 367.5 MHz to 2400 MHz. The second column
shows the single node equivalent running time for that application.
This value is equal to the ratio of summation of the times taken
by individual nodes for that application and the number of nodes.
This is required for measuring the speed-up on a heterogeneous
cluster. The second and third columns show the execution times
in seconds achieved using Sneha–Samuham and MPI, respectively
for the corresponding problem sizes. Please note that these values
are not the same as that of the previous table (Table 7.2) as the
machines in this cluster are heterogeneous. The fifth and sixth
columns show the speed-ups achieved by Sneha–Samuham and
MPI, respectively.

224 GRID COMPUTING

Table 7.3 Advantage of Sneha–Samuham over MPI on Heterogeneous

Cluster

Prob. Time taken (sec) Speed-up Speed-up Difference
size Single node Sneha– MPI (m) of Sneha– of MPI in speed-ups

equivalent Samuhan Samuham sm = a/m (ss – sm)
(a) (s) ss = a/s

1010 20355.36 3072.16 10611.49 6.63 1.92 4.71

109 2085.99 329.52 1067.60 6.33 1.95 4.38

108 206.82 33.48 107.21 6.18 1.93 4.25

107 20.43 4.13 10.74 4.95 1.90 3.05
106 2.04 1.35 1.08 1.51 1.89 –0.38

Since the Sneha–Samuham model splits the task according to
the GCCF of each machine, it achieves better speed-up than its
MPI counterpart, where the task is distributed in equal granularities
among the machines. However, for very low computation times,
Sneha–Samuham cannot perform well due to the fixed overhead.
The last row of Table 7.3 shows such a case.

7.4.4 Results on a Wide Area Grid

The above experiments were conducted on an institute-wide grid.
We have used some nodes from the Indian Institute of Information
Technology, Bangalore, to form a wide area grid. For this particular
experiment, only two machines from the remote cluster (Bangalore)
were used, while eighteen machines from IIT, Madras were used.
The basic idea is to demonstrate the feasibility of using geograph-
ically dispersed nodes for grid computing. Hence, only two remote
nodes were chosen. We are planning to conduct larger experiments
by taking an equal number of remote nodes, after addressing
other issues such as security.

The fourth column of Table 7.3 gives the execution times of
the corresponding application sizes on a single most powerful
node out of all nodes which participated in the grid computation.
The fifth and sixth columns show the speed-ups of the wide-area

SNEHA–SAMUHAM: GRID COMPUTING MODEL 225

grid and the Institute grid with respect to the single powerful
machine. For sufficiently large problem sizes, the wide area grid
(of 20 machines) is around 15 times more efficient than a single
powerful machine.

Table 7.4 Results on a Wide Area Grid

Time taken (sec) Speed-up
Prob. Wide area Institute Single Wide area Institute
size grid (g) grid (l) powerful grid (s/g) grid (s/l)

machine(s)

1011 5800.87 7361.42 87016.75 15.00 11.82

1010 598.11 643.31 8700.17 14.55 13.52

109 58.96 64.66 867.94 14.72 13.42

108 6.24 6.79 86.74 13.90 12.77

107 1.50 1.31 8.73 5.83 6.72

It shows that, even with just two remote machines, it is possible
to achieve improved performance. As the communication delay
increases with the use of geographically dispersed nodes as
compared to the use of nodes from the same cluster, the grain
sizes required to achieve significant speed-ups will also increase.
It would also become difficult to achieve load balancing than
over a single cluster, as the overheads of collecting load information
will increase. These effects may be pronounced for applications
which involve inter-task communication, as the computation to
communication ratio assumes significance.

7.5 Related Work

Javelin [8], ATLAS [9] and Popcorn [10] are Java-based batch
processing grid computing models. These models follow the broker
kind of architecture wherein the user submits a batch of jobs to
the intermediate nodes and these nodes, in turn, schedule the jobs
at the available nodes participating in the grid. These models
expect the user to split the task into sub-tasks and submit them to

226 GRID COMPUTING

the system. Also, since these models are Java-based, performance
may become a cause for concern.

Globus [11] provides low-level services such as resource location,
resource management, communication and security, on which
higher level metacomputing software can be built. Instead of
competing, our model complements the Globus features. As Globus
provides standard protocols for resource location, resource manage-
ment, communication and security at lower layers, the proposed
parallel computing model can be built on top of these layers. Like
Globus, Legion [12] also provides grid computing middleware
services, but it is built on the basis of object-oriented principles.

Condor-G [15] and Nimrod/G [16] are application level sche-
dulers for parameter sweep applications. These two are extensions
of the famous cluster computing models Condor [17] and Nimrod
[18], respectively, and built on top of the Globus middleware
services. Condor-G tries to schedule the tasks near the data
required by a task. Nimrod/G tries to meet the soft real-time
deadlines and at the same time, it tries to keep the cost of compu-
tation as low as possible.

7.6 Conclusions

A scalable architecture for parallel computing over grids has been
discussed. This is the first attempt made to provide an “instant
messenger” kind of friend machines interface to form compu-
tational grids over the Internet. The present user interface is
minimal and supports only a single class of parallel applications.
A number of scientific applications fall into this category of purely
data parallel and coarse grained applications: parallel SA [20],
parallel image rendering, distributed iterative solvers, etc. We are
extending the applicability of the model to a wider range of
applications, especially to support applications involving commu-
nicating tasks.

We have demonstrated the feasibility of using geographically
dispersed nodes and forming a grid for parallel computation.

SNEHA–SAMUHAM: GRID COMPUTING MODEL 227

Further experiments are underway to use a greater number of
remote nodes and to determine the grain size at which linear
speed-ups can be achieved.

The present Sneha–Samuham model lays more emphasis on
the parallel processing of grid applications. It has not addressed
the other issues in grid computing such as fault tolerance,
heterogeneity, security, etc. Many of these functionalities can be
provided by using the toolkits provided by Globus. Work is under
progress to provide these features. Our future directions include
generalizing the model by introducing suitable language level
constructs such as the ones discussed in [4] and [19] for expressing
coarse-grained parallel applications.

References

1. Janakiram, D., A. Vijay Srinivas and P. Manjula Rani, “A
Model for Parallel Programming Over CORBA”, Journal of
Parallel and Distributed Computing, Vol. 64, No. 11, pp. 1256–
1269, November 2004.

2. Sunderam, V.S., “PVM: A Framework for Parallel Distributed
Computing”, Concurrency: Practice and Experience, Vol. 2, No.
4, pp. 315–339, December 1990.

3. M.P.I. Forum, “MPI: A Message Passing Interface Standard”,
http://www.mpi-forum.org.

4. Joshi, R.K. and D. Janakiram, “Anonymous Remote
Computing: A Paradigm for Parallel Programming on
Interconnected Workstations”, IEEE Transactions on Software
Engineering, Vol. 25, No. 1, pp. 75-90, January-February 1999.

5. Binu, K.J., R. Karthikeyan and D. Janakiram, “DP: A
Paradigm for Anonymous Remote Computation and
Communication for Cluster Computing”, IEEE Transactions
on Parallel and Distributed Systems, Vol. 12, No. 10, October
2001.

228 GRID COMPUTING

6. Carriero, N. and D. Gelernter, “The S/Net’s Linda Kernel”,
ACM Transactions on Computer Systems, Vol. 4, No. 2, pp. 110–
129, May 1986.

7. Carriero N., E. Freeman, D. Gelernter and D. Kaminsky,
“Adaptive Parallelism and Piranha”, IEEE Computer, Vol. 28,
No. 1, pp. 40–49, January 1995.

8. Neary, M.O., B.O. Christiansen, P. Capello and K.E.
Schauser, “Javelin: Parallel Computing on the Internet”, Future
Generation Computer Systems, Vol. 15, pp. 659–674, October
1999.

9. Baldeschwieler, J., R. Blumofe and E. Brewer, “ATLAS: An
Infrastructure for Global Computing”, Seventh ACM SIGOPS
EuropeanWorkshop on System Support for Worldwide
Applications, Connemara, Ireland, pp. 165–172, September
1996.

10. Camiel, N., S. London, N. Nisan and O. Regev, “The
POPCORN Project: Distributed Computation over the
Internet in Java”, Sixth International World Wide Web
Conference, April 1997.

11. Foster, I. and C. Kesselman, “Globus: A Metacomputing
Infrastructure Toolkit”, International Journal of Super Computer
Applications and High Performance Computing, Vol. 11, No. 2,
pp. 115–128, Summer 1997.

12. Grimshaw, A. and W. Wulf, “The Legion Vision of a World-
wide Virtual Computer”, Communications of the ACM, Vol.
40, No. 1, pp. 39–45, January 1997.

13. Andrews, Gregory R., “Paradigms for Process Interaction in
Distributed Programs”, ACM Computing Surveys, Vol. 23,
No. 1, pp. 49–90, March 1991.

14. Cheney, Ward and David Kincaid, ‘Numerical Mathematics
and Computing’, Fourth edition, 1999.

15. Frey, J., T. Tannenbaum, I. Foster, M. Livny and S. Tuecke,
“Condor-G: A Computation Management Agent for Multi-
institutional Grids”, Proceedings of the Tenth International

SNEHA–SAMUHAM: GRID COMPUTING MODEL 229

Symposium on High Performance Distributed Computing,
pp. 55–66, 2001.

16. Buyya, Rajkumar, David Abramson and Jonathan Giddy,
“Nimrod/G: An Architecture for a Resource Management
and Scheduling System in a Global Computational Grid”,
Proceedings of the HPC ASIA ‘2000, the Fourth International
Conference on High Performance Computing in Asia-Pacific
Region, Beijing, China, IEEE Computer Society Press, USA,
2000.

17. Litzkow, Michael J., Miron Livny and Matt W. Mutka,
“Condor—A Hunter of Idle Workstations”, Proceedings of
Eigth International Conference on Distributed Computing
Systems, San Jose, California, June 13–17, pp. 104–111, 1988.

18. Abramson, D., Sosic R., Giddy J. and Hall B., “Nimrod: A
Tool for Performing Parametrised Simulations using
Distributed Workstations”, The Fourth IEEE Symposium on
High Performance Distributed Computing, Virginia, August
1995.

19. Binu, K. J. and D. Janakiram, “Integrating Task Parallelism
in Data Parallel Languages for Parallel Programming on
NOWs”, Concurrency: Practice and Experience, Vol. 12, No. 13,
pp. 1291–1315, November 2000.

20. Janakiram, D., T.H. Sreenivas, and G. Subramaniam, “Parallel
Simulated Annealing Algorithms”, Journal of Parallel and
Distributed Computing, Vol. 37, No. 2, pp. 207–212, September
1996.

End Notes

1. In Sanskrit, Sneha–Samuham means ‘a group of friends’.

2. The terms ‘workstation’, ‘computer’ and ‘node’ have been
used interchangeably in this chapter.

3. Parent node of a task is the node, where the task is actually
created.

Chapter 8

Introducing Mobility into
Anonymous Remote Computing
and Communication Model*

8.1 Introduction

Clusters are formed by exploiting the existing computing resources
on the network to work together as a single system. Thus they
eliminate the need for supercomputers by providing better price-
performance ratio and fault tolerance as compared to the tradi-
tional mainframes or supercomputers. The availability of high-
speed networks and high-performance workstations has made
NOWs ideal for parallel computing. A few proposals like the
Condor [1], NOW [2] and Batrun [3] had been proposed earlier
for improving the utility of workstation clusters which are
connected by using a wired network. However, these clusters are
formed only by using homogeneous devices.

Parallel programming on workstation clusters mostly follows
the COP model in which processes communicate via message
passing or shared memory abstractions. This model is not suitable
for loosely coupled open-ended workstations because of the
heterogeneity in architecture and operating systems, dynamic load
fluctuations on machines, variations in machine availability and
the failure susceptibility of networks and workstations. In order to

*M. A. Maluk Mohamed, A. Vijay Srinivas, D. Janakiram

INTRODUCING MOBILITY INTO ARCC MODEL 231

address these issues, two models, namely ARC [4] and DP [5]
were recently proposed.

The rapid advances made in technology recently have made
mobile devices more powerful (in terms of computing) and
ubiquitous (in terms of connectivity). However, it is becoming
essential to support seamless computing and communication for
mobile users, which would offer flexibility and increased
information availability. In addition, it helps in exploiting the
capacities of the distributed information over the global network,
which could be accessed by the user at any time without regard to
the location or mobility. There are many trends that point to the
increasingly widespread use of mobile devices in contrast to the
static nodes. For example, it is estimated that the number of
wireless Internet users is likely to grow from 35.0 per cent to 55.2
per cent by 2007, which indicates that the number of mobile
hosts (MHs) are going to be more than the static nodes that are
connected to the network [6]. These factors imply that in addition
to static nodes, mobile nodes constitute a major part of the cluster.
This results in the emergence of the essential future paradigm,
namely mobile cluster computing (MCC).

In addition, the idea of integrating mobile devices with the
back-end parallel computing cluster will be essential for many
classes of parallel applications such as weather forecasting,
earthquake predictions, etc., wherein the mobile devices can act
as data collectors. In such cases, the collected data might require
some kind of processing before being stored at the back-end
databases. With adequate software support, these classes of
applications can handle geographically independent high-
performance computing requests from mobile clients. There are
many similar applications like image rendering on a battlefield,
surveillance and other military applications that could benefit from
the proposed mobile cluster model.

Technological growth is transforming the regular wired structure
in most of the university campuses to a wireless structure. This
results in a situation wherein there could be a higher number of
powerful mobile devices than the static ones. In such environments,
it is very clear that a significant amount of idle computing power

232 GRID COMPUTING

is available on these devices. Thus when these idle computing
powers are harnessed along with the idle computing powers of
the static nodes, it could provide an immense platform for
executing scientific applications for research purposes, which is
very common in universities. This provides greater need for making
mobile devices to be a part of the cluster computing model.

To the best of our knowledge, only three proposals have come
out on MCC, namely [7], [8] and [9]. However [7] and [9] do not
discuss how parallel programming on the mobile cluster could be
done. The cluster of [7] just defines and analyses the potential
application environment of MCC, and gives the generic
architecture of an MCC. On the other hand, [9] gives the basic
architecture of MCC, which uses IPv6 as a primary protocol,
which relies on network level mechanisms. Reference [8] discusses
the prototype of a mobile cluster model, namely hybrid cluster
computing based on their framework with JAVA mobile objects
and the mobile IP. Reference [8] addresses the mobile cluster by
making the mobile host the coordinator and other participating
static nodes, donors of computing power. However, it neither
addresses mobility of the mobile hosts nor harnesses the idle
computing power of the MHs. Further, [8] also does not consider
the scenario where an MH acting as a cluster coordinator moves
to a different cell.

In this chapter, we present the Moset, an Anonymous Remote
Mobile Cluster Computing (ARMCC) paradigm for parallel
programming on a mobile cluster, that consists of both static and
mobile nodes. The model addresses the research issue of harnessing
the idle computing power of both the mobile and static nodes for
parallel computing. It also helps in providing the resource poor
device with the required computing power to execute any highly
computer-intensive application at any time from anywhere. Moset
is an extension of the ARC model [4] over distributed mobile
systems. The proposed novel paradigm provides transparency to
the mobility of nodes, distribution of computing power and
heterogeneity of network architecture, thus providing better
anonymity to applications. We also present a detailed case study
for the proposed model by using a computation-intense application
of image rendering. Our model was successfully implemented on

INTRODUCING MOBILITY INTO ARCC MODEL 233

top of a reliable multicast protocol for distributed mobile systems
[10].

The rest of the chapter is organized as follows. Section 8.2
gives the key issues involved in parallel computing on mobile
clusters. Section 8.3 briefly discusses the design principles and
gives an overview of the proposed Moset model. Section 8.4
discusses the computational model of Moset. Section 8.5 discusses
the implementation of the Moset. Section 8.6 describes the image
rendering application briefly and gives the performance analysis
of the model, while Section 8.7 concludes the chapter with
summary and future directions.

8.2 Issues in Mobile Clusters and Parallel
Computing on Mobile Clusters

There has been an increasing interest in the use of clusters of
workstations connected together by high speed networks for solving
large computation-intensive problems. The trend is mainly driven
by the cost-effectiveness of such systems as compared to large
multiprocessor systems with tightly-coupled processors and
memories. However, the recent proliferation of mobile devices
and advancement in wireless connectivity has made parallel
computing on mobile clusters a feasible proposal. Mobile devices
can be part of the cluster by playing several unique roles. They
can be used as a front-end to the cluster functionality, such as
submitting a job, managing processes, or viewing statistics. In case
of an MH which has very poor computing power, the device
must be able to utilize the cluster seamlessly to access the
computational power. However, the MH can also be a contributor
of computing power to the cluster, in the case of devices such as
laptops which have a substantial amount of computing power
equal to their static counterparts. Distributing computing power
in a cluster consisting of a network of heterogeneous computing
devices represents a very complex task. However, it becomes
complicated when mobile devices are also a part of it.

234 GRID COMPUTING

There are several key issues that distinguish parallel computing
on mobile clusters from that of the traditional workstation clusters,
namely. These are:

l Asymmetry in connectivity,

l Mobility of nodes,

l Disconnectivity of mobile nodes,

l Timeliness,

l Changing loads on the participating nodes,

l Changing node availability on the network,

l Differences in computing capabilities and memory availability,
and

l Heterogeneity in architecture and operating systems.

8.2.1 Asymmetry in Connectivity

The traditional cluster computing models do not face the problem
of heterogeneity in the network connection as the entire set of
workstations that are participating in the clusters are connected
only by the wired network. Wireless networks deliver much lower
bandwidth than wired networks and have higher error rates. Mobile
devices are characterized by high variation in the network
bandwidth, which can shift from one to four orders of magnitude,
depending on whether it is a static host or a mobile host, and on
the type of connection used at its current cell. Thus the program-
ming model must be able to distinguish among the types of
connectivity and provide flexibility for easy variation of the grain
size of the task to account for the variations in bandwidth.
However, these systems are suitable only for coarse grain level
parallelism due to the communication overhead.

8.2.2 Mobility of Nodes

Due to mobility of nodes, the notion of locality becomes important
as users move from one cell to another. The locality becomes
important as the change in the mobile node’s location means a
change in the route to that node and in the consequent

INTRODUCING MOBILITY INTO ARCC MODEL 235

communication overhead. The ability to change locations while
being connected to the network increases the volatility of some of
the information. Static data could become mobile in the context
of mobile computing. As a node moves, nearby information servers
get farther away and should be replaced by closer ones offering
the same or more relevant contextual information. Traditional
computers do not move, as a result of which information that is
reliant on location can be configured statically, such as the local
DNS (Domain Name Service) server or gateway, the available
printers, and the time zone. A challenge for mobile computing is
to define this information intelligently and to supply the means to
locate configuration data appropriate to the present location.
Mobile computing devices need to access more location-related
information than stationary computers if they are to serve as
ubiquitous guides to a user’s environment. As the mobile device
moves and as the speed of motion changes, the quality of the
network link and of other available resources might change
significantly. Thus, the system should be able to adjust according
to the changing conditions. For example, when an MH which has
taken the task moves from one cell to another, then the system
still needs to track these MHs.

8.2.3 Disconnectivity of Mobile Nodes

The periods of disconnectivity of nodes in static networks are
usually treated as faults. However, in the context of mobile nodes,
the disconnectivity may be due to roaming and hence enter an
out-of-coverage area or voluntary disconnection (doze mode) to
save battery power.

8.2.4 Timeliness Issue

Timeliness refers to the delay that is taken for the mobile device
to regain its full state when it moves from one cell to the other or
after reentering a coverage area after disconnection. Timeliness
issue is an important issue especially in real-time systems.
Whenever a mobile host moves from one cell to the other, it is
associated with a hand-off, to ensure that data structures related to
the mobile host are also moved to the new connecting point, the

236 GRID COMPUTING

Mobile Support Station (MSS). This involves an exchange of
several registration messages. This may cause some delay and it
should be fast enough to avoid loss of message delivery. In addition
to this, there is a possibility that the mobile host could move out
of coverage after accepting the task for execution. These issues
need to be addressed with respect to the mobile cluster model.

8.2.5 Changing Loads on the Participating Nodes

When using workstations for executing parallel applications, the
concept of ownership is frequently present. Workstation owners
do not want their machines to be overloaded by the execution of
parallel applications, or they may want exclusive access to their
machines when they are working. Reconfiguration mechanisms
are thus required to balance the load among the nodes, and to
allow parallel computations to co-exist with other applications. In
order to overcome these problems, some dynamic load balancing
mechanisms are needed. There are differences in loads among
the nodes due to the multi-user environment, and when an
application is run on a heterogeneous cluster. In these cases, it is
important to balance loads among the nodes to achieve sufficient
performance. As static load balancing techniques would be
insufficient, dynamic load balancing techniques based on runtime
load information would be essential. It would be difficult for a
programmer to perform load balancing explicitly for each environ-
ment/application, and automatic adaptation by the underlying
runtime is indispensable. This gets aggravated when mobile devices
are part of the cluster.

8.2.6 Changing Node Availability on the Network

In traditional distributed systems, nodes keep leaving and joining
the system dynamically. The joining and leaving of nodes may be
due to either node failure or link failure. However, the system
must be smart enough to continue with the computation. The
availability of node becomes more fuzzy in a distributed mobile
computing scenario as the availability is also affected by the
movement of the nodes. It is possible that the node may enter an
area which is not under the coverage area of any MSS. It is also
possible that node availability is transient with respect to the

INTRODUCING MOBILITY INTO ARCC MODEL 237

execution of the program. While a mobile node is computing a
sub-task, it can go out of coverage and enter back into the coverage
area before the completion of the execution of the program.

8.2.7 Difference in Computing Capability and

Memory Availability

As each host may have different capabilities (such as memory)
and different processing powers, it is essential to allocate tasks to
the nodes on the basis of their capabilities and processing power.
MHs may especially have lower computing power and memory
in contrast to their static counterparts.

8.2.8 Heterogeneity in Architecture and

Operating Systems

Although it is reasonable to assume that a new and stand-alone
cluster system may be configured with a set of homogeneous
nodes, there is a strong likelihood of upgraded clusters or
networked clusters having nodes with heterogeneous operating
systems and architectures. As discussed in [4], the operating system
heterogeneity could be handled through distributed operating
systems. However, it will be non-trivial to handle architectural
heterogeneity, since the executable files are not compatible among
architectures.

The issues discussed in this section make parallel programming
on mobile clusters difficult. With the issue of mobility and other
constraints associated with mobile devices, the management of
distribution at the programming level further hardens the task.
The existing cluster computing models solve only a subset of
these issues. None of the earlier work in mobile clusters discusses
these except for the timeliness issue which was discussed in
Reference [7].

8.3 Moset Overview

The basic principle with which the Moset model was designed
was to abstract out the heterogeneity of the constituting devices

238 GRID COMPUTING

from the user. The user is made transparent to the hardware,
bandwidth, operating system and other heterogeneity existing
below the kernel. The user is given freedom to avail of any
computing power required for his application, without being
concerned about whether he is working with a constrained device
or not. Moset is designed with clear separation between the
administration functionality and the user functionality. It is the
function of the administration to install and maintain the system.
Once the system is deployed, the user needs only to use the APIs
to interact with the system for performing parallel computing.
Figure 8.1 illustrates the basic architectural overview of the
proposed Moset model.

FIG. 8.1

Moset Architecture

INTRODUCING MOBILITY INTO ARCC MODEL 239

The MSS which is a static node covers a geographical region,
namely the cell. Mobile nodes which are within that cell will be
under the control of that MSS, and all communications from or to
the mobile nodes in the cell can be made only through the
associated MSS. In our model, the MSS aggregates the computing
resources which are within its cell and presents them to the
distributed system as a set of its own resources. The nodes which
are participating in the cluster computing are grouped on the
basis of the memory capability of the nodes. The nodes which are
participating in the Moset kernel spawn their computing entity to
the coordinator of the system, on the basis of their capability. The
entire data which needs to be processed is multi-cast to all the
participating nodes in the particular group on the basis of the size
of the data. The runtime system of the kernel decides on the
anonymous node on which the task is to be executed on the basis
of its capability. The details of the architecture are described in
Section 8.5.

Unlike the nodes in a traditional distributed system, the mobile
nodes cannot maintain high levels of availability or reliability due
to wireless connectivity. Hence, in order to achieve reliable delivery
of the data, considering the constraints of the mobile devices,
Moset is built over an exactly-once reliable multi-cast protocol.

8.4 Moset Computation Model

The Moset computational model is designed in such a way that it
can handle the heterogeneity, fault tolerance, dynamic load
balancing and computing power availability. The dynamic load
on the participating systems and the nodes and link failures make
the traditional cluster computing model unsuitable for parallel
programming on MCC. These issues were effectively handled in
[4]. However, the model does not address the mobile device
participation in computation and the issues related to it. The Moset
model is aimed at integrating the mobile devices with the static
nodes to form a mobile cluster, and at harnessing the idle
computing power of static and mobile nodes to utilize them for
parallel computing.

240 GRID COMPUTING

8.4.1 Cluster Sub-groups

In our model, we use a notion of cluster sub-groups (or sub-
groups), based on the memory capability of the nodes. A cluster
sub-group refers to the characteristics of the task submitted to that
sub-group. Each host (static and mobile) based on its capabilities,
joins the respective sub-groups. For example, sub-group LOW
may refer to those tasks having memory requirements <10 MB.
A MODERATE sub-group may have tasks having memory
requirements <50 MB. A HIGH cluster sub-group may have tasks
having memory requirements <100 MB. Tasks with memory
requirements >100 MB may be in sub-group VERY HIGH.

8.4.2 Horse Power Factor and Dynamic Load

Balancing

As each host may have different capabilities (such as memory)
and different processing power, it is essential to allocate tasks to
the static hosts and MHs on the basis of their capabilities and
processing power. In order to incorporate this, each host is allocated
an integer called HPF [4], which is a measure of the computing
power of a machine, the load on the machine and the network
bandwidth of the communication channel. Machines in the
network are normalized by a benchmark program to obtain a
relative index of the machine, which is a static factor. The dynamic
HPF of a machine is obtained by using this static relative index,
the load on the machine and the communication bandwidth with
which the machine is connected to the network. This dynamic
factor is normalized as a factor that represents the number of
entities that it could compute. When a host has HPF h, then h
computing entities are allocated to the host. For example, if hosts
A and B have h1 and h2 as their respective HPFs, then the time
taken by A to compute h1 amount of a task is approximately equal
to the time taken by B to compute h2 amount of the same task.
Abstracting the heterogeneity in this way makes parallel processing
viable on unevenly loaded heterogeneous machines.

The dynamic communication bandwidth is not taken into
consideration in HPF, as measuring dynamic bandwidth may lead

INTRODUCING MOBILITY INTO ARCC MODEL 241

to overhead. Also, to the best of our knowledge no technique has
come out with a solution which could measure the dynamic
bandwidth exactly without introducing significant overheads. This
is clear from the fact that schemes like PathMon [11] (which is a
relatively better scheme as compared to the other techniques like
pathchirp, pathload, etc.) requires about 0.25 seconds to report
the available bandwidth in a wired network, and it could be even
longer in a wireless channel. This also does not guarantee the
exact measurement and is likely to have a relative error of 12 per
cent. During hand-off, when the MH is in the process of receiving
data, the HPF variations matter. But as with current technology
relating to channel allocation such as the dynamic channel-
allocation techniques [12] this has become a matter of negligence.

Dynamic load balancing [13] is done by maintaining two
thresholds, viz. Upper Threshold (UT) and Lower Threshold (LT)
at the MH. These thresholds are shared by all the computing
entities within an MH. This can be achieved by creating the
computing entities as threads of the MH. When the load on the
MH is greater than UT, a computing entity on that MH leaves
the group and increments UT and LT on that MH. Both UT and
LT are incremented so that all entities do not leave the groups at
the same time. Similarly, when the load on the MH becomes
lesser than LT, a computing entity on that MH joins the group
and decrements both UT and LT. Two thresholds, UT and LT,
are used to avoid oscillations of frequent join and leave.

Further, the load balancing mechanism used is non-pre-emptive
[13] and hence migration of an already executing task is not done.
This is due to the additional communication overhead involved
in process migration.

8.4.3 Parallelism in the Model

The data set which is very large, is multi-cast to the sub-group, on
the basis of the size of the file. Multi-cast provides an efficient
mechanism for transferring the data to the computing entities for
processing. Each computing entity independently splits the task
on the basis of its ID and N. For example, in the case of distributed
image rendering application, frames having frame number ‘f ’ such

242 GRID COMPUTING

that mod (f, N) = ID are rendered by the computing entity with
identifier ID. When an entity completes its share, it sends the
result back to the destination host.

8.4.3.1

A host is assigned as a coordinator to the cluster and it keeps
track of the total number of computing entities (called N) under
each cluster sub-group. Further, each computing entity has a unique
membership identifier (called ID, ranging from 0 to N–1) associated
with each group subscribed by it.

8.4.3.2

Whenever an MH wants to participate in distributed processing,
the daemon at the MH spawns a set of computing entities, on the
basis of its capabilities. The exact number of computing entities
spawned by each daemon will depend upon the capability and
the processing power of each MH (called HPF, discussed in Section
8.4.2).

8.5 Implementation

The system structure of Moset is shown in Fig. 8.2. A distributed
Moset kernel is spread over the nodes that participate in Moset.
A Moset kernel consists of multiple local coordinators (lcs) to
coordinate local activities, multiple co-coordinators (ccs) to
coordinate the global activities within their cell, and one system
coordinator (sc) to coordinate the overall global activity of the
entire cluster. Each node, either static or mobile, that intends to
participate in the Moset kernel runs a local coordinator. MH has
a client process and a daemon. The client process and daemon
run over a reliable multi-cast protocol. The client processes are
used to submit tasks to the MHs (via multi-cast protocol) for
distributed processing. The daemons are the computing entities at
the MHs that execute a part of the submitted task concurrently
with other daemons.

INTRODUCING MOBILITY INTO ARCC MODEL 243

FIG. 8.2

Moset System Structure

8.5.1 Local Coordinator

The lc runs on mobile and static hosts that participate in the
Moset system, either to improve utilization or to share its work
with an anonymous remote node. Any Moset communication to
or from the local processes is achieved through the lc. In case of
image rendering application, the huge data set which is to be
rendered, is multi-cast by the sc to the sub-group lcs, on the basis
of the size of the file. Each lc independently splits the task on the
basis of its ID and N. For example, frames having frame number
‘f ’ such that mod (f, N) = ID are rendered by the computing entity
with identifier ID. When an entity completes its share, the lc
sends the result back directly to the sc if it is executed on a static
host or through the cc if it is executed on a mobile host.

244 GRID COMPUTING

8.5.2 System Coordinator (sc)

The Moset kernel has one sc in the logically grouped mobile
cluster. The functions of the sc are to manage all the nodes that
take part in the cluster process and the spawned computing entities,
to coordinate all the functions related to task distribution and
execution, and to maintain the migration history of the tasks.

Whenever a static machine wants to participate in distributed
processing, thus enhancing the machine utilization, it spawns
computing entities based on its capabilities through its lc. The
static machine also includes the MSS which spawns a set of
computing entities representing the MHs which are within its cell
and which are interested in participating in the computation. As
discussed in the previous section, the sc groups these computing
entities into cluster sub-groups on the basis of the memory capacity
of the machine which has spawned the entities. The sc keeps track
of the total number of computing entities (called N) under each
cluster sub-group. Further, the sc assigns each computing entity a
unique membership identifier (called ID, ranging from 0 to N–1)
associated with each group subscribed by it. The exact number of
computing entities spawned by each daemon will depend upon
the HPF of the node.

The data set which is very large is multi-cast to the sub-groups’
lc s by the sc directly to the static host’s lc, and through the ccs to
the mobile host’s lc, based on the size of the file. Multi-cast provides
an efficient mechanism for transferring the data to the computing
entities for processing. A history of recent migrations is maintained.

The single point failure of the sc is handled by replicating the
state of the sc in another nearby static node so that in case of
failure, the states are not lost and the system can still survive.
When an lc learns that the sc has failed, it initiates the process of
identifying the next sc by using an election algorithm [14].

8.5.3 Co-coordinator (cc)

The Moset has multiple ccs running on MSS which has at least
one MH participating in the Moset kernel. The cc acts as an sc
with respect to the MHs which are within its cell. Any MH within

INTRODUCING MOBILITY INTO ARCC MODEL 245

the coverage area of the MSS, which wants to participate in the
sharing of resources, will spawn a set of computing entities to the
cc running on that MSS. The cc collects the set of computing
entities spawned and registers with the sc. The cc takes care of
multi-casting the data set to be rendered to the participating MHs
and also maintains the history of the execution that takes place in
the MH within its cell.

The cc also takes care of the mobility of the MHs. When an
MH takes the frames for rendering and moves out of the cell and
enters another cell, then the new MSS, through hand-off, will be
able to inform the cc of the old MSS. If the new MSS already has
the cc daemon running, then it continues with the process by
exchanging the information among the ccs. In case the new MSS
does not run the cc daemon, then it gets registered with the sc and
runs the cc.

8.5.4 Time-outs, Mobility and Fault Tolerance

The timeliness issue is an important issue, especially in real-time
systems. However, in cluster computing systems, the system is
mainly meant for computation-intensive problems like environ-
mental modelling wherein the factor of time can be relaxed. But
still the workstation cannot take an infinite amount of time for
executing the sub-task which it has accepted to execute. In order
to handle this, time-out mechanisms are used. The time-outs are
maintained by the sc and the ccs. A timer is a data counter that
ticks at regular intervals. If the workstation does not return within
the stipulated time set in the timer, then the sub-task is re-submitted
to some other idle workstation for getting executed or in the
worst case, it gets executed in the coordinator. In case of sub-
tasks executing in MHs, the cc takes care of the timer. When a
sub-task assigned to an MH does not return before the time-out
then the cc tries to reassign the sub-task to some other MH within
the sub-group, within the cell or as a worst case, it executes the
task itself.

The failure of a remote node is detected by the sc when the lc
fails. However, this will work only with static nodes. Mobile nodes
may move out of the cell after taking the task for execution and
return before the timer time-outs. In this scenario, as the MH was

246 GRID COMPUTING

out of coverage for a while, the cc will be able to detect this and
cannot decide that the MH has failed. Thus the cc needs to wait
until the timer time-outs. This ensures the fault tolerance of the
system.

8.6 Performance

The Moset approach provides parallel programming on a mobile
cluster thus improving the utilization of the computing resources
of the participating nodes. Moset provides for heterogeneity, fault
tolerance and dynamic load balancing to parallel computing. The
performance study of the model was done by implementing the
distributed image rendering application over the FTEORMP [10].
The FTEORMP is an exactly-once reliable multi-cast protocol.
The simulation of FTEORMP was carried out on an object-oriented
discrete event simulator in C++ similar to the that used in [15].
The parameters used for simulation are given in Tables 8.1 and
8.2. The cell permanency time in Table 8.2 refers to the average
time for which an MH will be inside a cell.

Table 8.1 System Parameters

Parameter Value

Number of Groups 4

Number of MSS’ 32

Wired Bandwidth 100 Mbps

Wireless Bandwidth 10 Mbps

Wired Propagation Delay 0.5 msec

Wireless Propagation Delay 0.0 msec

Message Loss Probability 0.001

NACK Loss Probability 0.00

Out-of-range Probability 0.00

NACK Transmission Period 1 second

MCASTREQ Time-out 25 msec

SYNCACK Time-out 500 msec

INTRODUCING MOBILITY INTO ARCC MODEL 247

Table 8.2 Tunable Parameters

Parameter Value

Number of Mobile Hosts 512

Number of Senders 4

Message Rate 250 messages/sec

Message Size 256 bytes

Cell Permanency Time 1 second

Each MH has a client and a daemon. The clients are used to
submit tasks to the MHs for distributed processing. The daemons
are the computing entities at the MHs, that execute a part of the
submitted task concurrently with other daemons. Both client and
daemon run over FTEORMP and use the socket abstractions of
FTEORMP simulator. The daemons run on the SPARC machines
and communicates with the respective MHs of the simulator by
sockets. The image rendering application developed renders an
image obtained by the CT scan. The characteristic of a CT scan
image [16] is that it contains information from a transverse plane
only. CT scanners produce three-dimensional stacks of parallel
plane images each of which consists of an array of X-ray absorption
co-efficients. Due to the availability of stacks of parallel plane
images, the volume data sets can be viewed as a three-dimensional
field rather than individual planes.

The stack of planes is converted into an image by volume
rendering [16, 17] using ray-casting. A ray-casting algorithm casts
parallel rays from the viewer into the volume. At each point
along the ray, the progressive attenuation due to particle fields is
computed. At the same time, the light scattered in the eye direction
from the light source is also computed at each point. This rendering
procedure is used in the volpack library [18]. The volpack library
is an implementation of Reference [17] and it is used in this
application.

The task was submitted to render 360 frames of the CT scan
data (a frame for each 1° of image rotation). An online image
animator written in C, using X11 graphics, [19] was used to animate
the frames as and when they arrive from the entities. Due to an

248 GRID COMPUTING

online animation, the real-time effects (such as fast rendering when
more hosts are involved) were noticed.

The CT scan data of a human head with the skull partially
removed to reveal the brain is taken as the input data. The CT
scan data consists of 84 slices of 128 ¥ 128 samples each. The
final output frame is 256 ¥ 256 pixel image. The daemons were
run on SPARC 333 MHz and SPARC 500 MHz machines having
256 MB RAM. The daemons use FTEORMP simulator [10] for
multi-casting to other MHs. An FTEORMP simulator provides
socket abstraction to the applications on the MHs. Hence, the
daemons run on the SPARC machines and communicate with
the respective MHs of the simulator by sockets.

Table 8.3 shows the results when daemons were executed on
SPARC 333 MHz and SPARC 500 MHz under no load condition.
On a SPARC 333 MHz, super-linear speed-up is noticed when
the number of hosts is two. On a SPARC 500 MHz, super-linear
speed-up is noticed when the number of hosts are 2, 3 and 4. The
reason for super-linear speed-up is because during the entire
computation of 360 frames, the full volume data (which is
reasonably large—1.37 MB) needs to be in memory. During this
time, page faults occur and the computation time increases. The
context switch time is very negligible as the experiment was
conducted in no load conditions (when the load on the machines
was only due to the daemons). When the task is split into two
hosts, the computation time is only for half the task. Hence, the
data needs to be in the memory for a much lesser time. As the
memory residence time reduces, the page fault overhead also
decreases. Due to reduction in these overheads (such as page
faults and context switches, if any) and by overlapping computation
and communication across hosts, the communication delay seems
to be nullified. Thus, super-linear speed-up is achieved. But, as
the number of hosts increases to 8 and 16, the communication
delay seems to dominate. This is partly because, multi-cast
simulator runs on a single host and is not distributed. So, a multi-
cast is simulated by multiple unicasts. If multi-cast is done
physically (or a distributed simulator is used), then the commu-
nication overheads can be reduced further. Scalability limitation
is also due to the problem size. If problem size is increased, better
speed-up could be attained with more nodes.

INTRODUCING MOBILITY INTO ARCC MODEL 249

Table 8.3 No Load Performance Analysis for Ultra SPARC 333 MHz

and SPARC 500 MHz

SPARC 333 MHz SPARC 500 MHz
Number Time Speed-up Time Speed-up
of hosts taken (sec) taken (sec)

1 434 303
2 211 2.056 149 2.033
3 149 2.912 102 2.971
4 113 3.841 77 3.935
8 61 7.232 42 7.214
16 47 9.234 33 9.181

Figure 8.3 shows the effect of load on total execution time and
speed-up, respectively for rendering 360 frames. The figure shows
the execution time and speed-up in the presence of multiple half
load processes in the processor run queue. The half load on the
processor is achieved by using a program called cpuhog [20]. As
the cpuhog loads the processor only half the time, it creates a
half-loaded environment. The first graph in Fig. 8.3 shows that
the execution time increases as the number of half-loaded processes
increases. This is due to the increased context switch time, caused
by an increase in the number of processes. The second graph in
Fig. 8.3 shows that speed-up is almost constant irrespective of the
load. If the number of hosts involved in computation increases,
then speed-up seems to increase very marginally with the load on
the host. The effects of load on the execution time and the speed-
up were taken by using cpuhog with memory of 1 MB.

Apart from loading the processor, cpuhog also hogs the memory
resource. The image rendering application needs 10 MB of
memory space and if cpuhog occupies more memory, then a
lesser amount of memory is left for the image rendering application.
By varying the memory used by the cpuhog, the effects on
execution time and speed-up of the image rendering application
can be seen in Fig. 8.4. These figures show an interesting behaviour,
which is explained below.

250 GRID COMPUTING

FIG. 8.3

Effect of Load on Execution Time and Speed-up

The first graph in Fig. 8.4 shows that as the memory of cpuhog
increases from 1 MB to 200 MB, the execution time for the image
rendering application is almost constant with only a very marginal
increase. This is because there are not many page faults until the
memory occupied by cpuhog increases to threshold. The reason
for this behaviour is that due to the availability of large memory
space (256 MB), most of the pages are free. But, when the memory
occupied by cpuhog increases above a threshold (200 MB), cpuhog
encounters frequent page faults. The main reason is that as cpuhog
occupies a large number of pages, the oldest page in memory is
very likely to be the page belonging to cpuhog. Hence, the oldest
page of cpuhog in memory is swapped out and a new page for
cpuhog is paged in. As a result, cpuhog sleeps for more time
waiting for the required pages to be brought into memory. During
the time when cpuhog sleeps, the image rendering application
runs. Hence, the total execution time of the application drops
sharply as the application gets more time to run.

INTRODUCING MOBILITY INTO ARCC MODEL 251

FIG. 8.4

Effect of Process Memory Size on Execution
Time and Speed-up

The second graph in Fig. 8.4 shows the effect of memory used
by cpuhog, on the speed-up of the image rendering application.
The speed-up is almost constant as the memory of cpuhog increases
till 200 MB. Upon further increase in the memory usage, the
speed-up shows a marginal increase. Moreover, when the appli-
cation is executed on four hosts, a super-linear speed-up of 4.21 is
noticed. Thus, the effect of load on the processor and the memory
usage by cpuhog has only a marginal effect on the execution time
and on the speed-up of the image rendering application.

8.7 Conclusions and Future Work

This chapter has presented Moset, an ARMCC model based on
the integration of mobile and static nodes as clusters interconnected
by wireless and wired networks. The model handles the hetero-
geneity in architecture, operating system, network connectivities

252 GRID COMPUTING

and other constraints related to the mobile device. Moset provides
one of the first comprehensive efforts at integrating mobile devices
into the cluster and effectively harnesses the computing power of
mobile devices. Further, mobile devices can also utilize large
computing power available in the cluster seamlessly. The perform-
ance studies of an image rendering application also demonstrate
the feasibility of the idea.

As a future work, the model could be extended to provide
inter-sub-task communications. Problems which exhibit a high
communication to computation ratio may not be suitable for this
model. If, however, the computation time can be overlapped with
communication delays, significant speed-ups can be achieved, even
in mobile clusters. However, this overlapping is a non-trivial task.
Considerable work needs to be done to evolve a generic model
for cluster computing and communication for mobile systems.
Another interesting direction we are currently pursuing is to extend
Moset to a mobile grid, a global collection of resources.

References

1. Litzknow, M., Miron Livny, and Mutka, “Condor—A Hunter
of Idle Workstations”, Proceedings of the Eighth International
Conference on Distributed Computer Systems, pp. 104–111,
June 1988.

2. Anderson, T.E., D.E. Culler, D.A. Patterson and the NOW
Team, “A Case for Networks of Workstations (NOW)”, IEEE
Micro, Vol. 15, No. 1, pp. 54–64, February 1995.

3. Tandiary, F., S.C. Kothari, A. Dixit and W. Anderson,
“Batrun: Utilizing Idle Workstations for Large-scale
Computing”, IEEE Parallel and Distributed Technology, Vol. 4,
No. 2, pp. 41–49, Summer 1996.

4. Joshi, Rushikesh K. and D. Janakiram, “Anonymous Remote
Computing: A Paradigm for Parallel Programming on
Interconnected Workstations”, IEEE Transactions on Software
Engineering, Vol. 25, No. 1, pp. 75–90, January 1999.

INTRODUCING MOBILITY INTO ARCC MODEL 253

5. Johnson, Binu K., R. Karthikeyan and D. Janakiram, “DP: A
Paradigm for Anonymous Remote Computation and
Communication for Cluster Computing”, IEEE Transactions
on Parallel and Distributed Systems, Vol. 12, No. 10, pp. 1052–
1065, October 2001.

6. Puder, Arno and Kay Romer, “Internet Users Forecast by
Country”, eTForecasts, www.Etforecasts.com, 2003.

7. Zheng, Haihong, Rajkumar Buyya and Sourav Bhattacharya,
“Mobile Cluster Computing and Timeliness Issues”,
Informatica: An International Journal of Computing and Informatics,
Vol. 23, No. 1, 1999.

8. Cheng, Liang, Ajay Wanchoo, and Ivan Marsic, “Hybrid
Cluster Computing with Mobile Objects”, Proceedings of
the Fourth International Conference on High-performance
Computing in the Asia-Pacific Region (HPC-Asia 2000),
Beijing, China, pp. 909–914, May 2000.

9. Baist, Abdul and Chin-Chih Chang, “Mobile Cluster
Computing Using IPv6”, Linux 2002 Symposium, Ottawa,
Canada, June 2002.

10. Maluk Mohammad, M.A. and D. Janakiram, “A Fault-tolerant
Exactly–once Reliable Multi-cast Protocol for Distributed
Mobile Systems”, Proceedings of the IASTED International
Conference on Communication Systems and Networks (CSN
2003), Malaga, Spain, September 2003.

11. Kiwior, D., J. Kingston and A. Spratt, “PATHMON, A
Methodology for Determining Available Bandwidth over an
Unknown Network”, The MITRE Corporation, Available at
http://www.mitre.org/, March 2004.

12. Yang, Jianchang, D. Manivannan and Mukesh Singhal, “A
Fault-tolerant Dynamic Channel Allocation Scheme for
Enhancing QoS in Cellular Networks”, Proceedings of the
36th Annual Hawaii International Conference on System
Sciences (HICSS’03)—Track 9, pp. 306–315, Big Island,
Hawaii, 2003.

13. Singhal, Mukesh and Niranjan. G. Shivaratri, Advanced
Concepts in Operating Systems, McGraw-Hill Inc., 1994.

254 GRID COMPUTING

14 Garcia-Molina, H. “Elections in Distributed Computing
System”, IEEE Transactions on Computers, Vol. 31, No. 1, pp.
48–59, 1982.

15. Anastasi, Giuseppe, Alberto Bartoli and Francesco Spadoni,
“A Reliable Multi-cast Protocol for Distributed Mobile
Systems: Design and Evaluation”, IEEE Transactions on Parallel
and Distributed Systems, Vol. 12. No. 10, pp. 1009–1022,
October 2001.

16. Watt, Alan and Mark Watt, Advanced Animation and Rendering
Techniques: Theory and Practice, Addison-Wesley Publishing
Company, 1992.

17. Lacroute, Philippe and Mare Levoy, “Fast Volume Rendering
Using a Shear-Warp Factorization of the Viewing
Transformation”, Computer Graphics, 28 Annual Conference
Series, pp. 451–458, 1994.

18. Volpack, “Volpack—A Volume Rendering Library”,
www.graphics.standford.edu/software/volpack/, 1995.

19. Devanathan, V.R. “EMOP: An Exactly-once Multi-cast
Protocol for Distributed Mobile Systems, Master’s Thesis,
Dept. of C.S.E., IIT Madras, Chennai, India, 2002.

20. Libenzi, Davide CPUHOG—A Kernel Scheduler Latency Tester,
Free Software Foundation, Inc., Boston, MA, USA, 2001.

Chapter 9

Distributed Simulated
Annealing Algorithms
for Job Shop Scheduling*

9.1 Introduction

Job Shop Scheduling (JSS) belongs to the class of NP–hard
optimization prob1em. Even in the NP-hard class of problems,
JSS appears to belong to the more difficult ones [1]. The JSS
problem can be described as follows. A set of jobs whose operations
are to be processed on a set of machines is given. Each job
consists of a sequence of operations. Each of these operations has
to be processed uninterrupted on a given machine for a specified
length of time. There is an additional constraint that each machine
can process at most one operation at a time. A schedule is an
allocation of the operations to time intervals on the machines.
The problem is to find the schedule of minimum time. Solving
the JSS problem requires a high computational effort and
considerable sophistication. A much simpler task is to find a
reasonably good schedule, though not necessarily the optimum
one. A number of algorithms have been developed to address this
simpler task. They include the Giffler and Thompson algorithm
[2], the shifting bottleneck algorithm [3], the simulated annealing
(SA) algorithm [1], [4] etc. Computational results show that SA
can find shorter makespans than the other recent approximation

*K. Krishna, K. Ganeshan, D. Janakiram

256 GRID COMPUTING

algorithms [1]. This is, however, at the cost of large execution
times.

Attempts to reduce the execution time taken by the SA
algorithm required that it be distributed. One approach to
distribution is to divide the problem space and then distribute the
problem space to various nodes in a distributed network. The
other approach is to change the temperature modifier parameter.
In this approach, the algorithm is run on various nodes of the
network on the entire problem space. However, the size of the
steps at which the temperature is decreased is raised so that the
time taken by the algorithm on each node is less. The effect of
raising the temperature modifier is that the probability of the
algorithm getting struck at a local minimum is high. However, the
probability that two nodes will get struck at the same local
minimum is less. Hence the minimum obtained among all the
nodes will likely to be the global minimum.

In this chapter, we discuss both these approaches. We also
show that depending upon the problem size, one of these
approaches can be selected.

9.2 Overview

In this section, a brief overview of the problem, SA and Distributed
Algorithms has been provided.

9.2.1 The Problem

The problem can be stated mathematically in the following fashion.
Given a set A of n jobs, a set B of m machines and a set C of N

operations, maxv Œ CAsv + tv is minimized subject to

Sv ≥ 0 for all v Œ C (equation 1)

Sw – Sv ≥ tv if v precedes w; v, w Œ C (equation 2)

Sw – Sv ≥ tvVSv – Sw ≥ tw if mv = mw, if v, w Œ C (equation 3)

where v, w are any operations belonging to the set C

DISTRIBUTED SIMULATED ANNEALING ALGORITHMS 257

Sv = start, time of the operation v

tv = processing time of the operation v

mv = machine on which the operation v is performed.

The following assumptions are made for the problem:

1. All the jobs are available at time zero.

2. There are no machine breakdowns.

3. Operation times of the jobs on the machines are known
beforehand.

Table 9.1 4-Job, 4-Machine (4 ¥¥¥¥¥ 4): Example Problem (EXP1)

Operation Mach- Opera- Mach- Opera- Mach- Opera- Mach- Opera-
number ine ting ine ting ine ting ine ting

number time number time number time number time
(sec) (sec) (sec) (sec)

Job 1 Job 2 Job 3 Job 4

1 2 38 2 54 2 37 3 29

2 3 26 3 26 1 24 4 33

3 1 31 4 45 4 23 2 55

4 4 39 1 28 3 34 1 39

A disjunctive graph model (G) with a set of vertices (V), a set
of arcs (A) and a set of edges (E) can be used for representing the
problem [1]. The disjunctive graph G = (V, A, E) is defined as
follows:

The set of vertices V consists of all the vertices in C and two
vertices numbered 0 and N + 1, representing the fictitious start
and end operations respectively. The processing time of the
operation is denoted as the weight of the vertex. The two fictitious
operations 0 and N +1 have operation times of zero.

The set A contains arcs connecting consecutive operations of
the same job, as well as arcs from 0 to the first operation of each
job and from the last operation of each job to N + 1.

258 GRID COMPUTING

The edges in the set E connect operations to be processed by
the same machine.

This is illustrated by taking example 1 (refer to Table 9.1). The
example problem can be represented as a disjunctive digraph
(refer to Fig. 9.l(a)). The set of vertices, arcs and edges in this case
are {0, 1, 2, 3, 4...17}, {(0, 1), (0, 5), (0, 9)(0, 13), (1, 2)...} and
{(5, 1), (6, 2), (15, 5),…}, respectively.

The directed arcs in Fig. 9.1 denote that the operations are to
be processed in that order. The edges in the graph have two
possible orientations. For example, if (v, w) Œ E, then the edge
can be directed from either (v, w) or (w, v). The assignment of
orientations to these edges forms a schedule. This schedule will
indicate the complete sequence of operations to be carried out on
each machine. The longest path in this digraph called the
‘makespan’ gives the total time for completion of the operations
of all the jobs. The objective will be to assign orientations to the
edges such that the makespan is minimum. The orientations of
the edges decide the sequence of operations performed on one
machine. This is equivalent to finding the permutations of the
operations on each machine to minimize the makespan. This
problem is one of the hardest combinatorial optimization problems.
In order to solve this problem, a heuristic method called SA is
employed.

9.2.2 Simulated Annealing (SA)

SA belongs to the type of local search algorithms [5]. The algorithm
chooses an initial solution at random. A neighbour of this solution
is then generated by a suitable mechanism and the change in the
cost function of the neighbour is calculated. If a reduction in the
cost function is obtained, the current solution is replaced by the
generated neighbour. On the other hand, if the cost function f of
the neighbour is more, the generated neighbour replaces the
current solution with an acceptance probability function given
by: EXP(–{ f [j] – f [i]}/T }) where f [j] and f [i] are the cost functions
of the generated state and the present state, respectively. T is a
control parameter which corresponds to the temperature in the
physical annealing process. The above acceptance function implies

DISTRIBUTED SIMULATED ANNEALING ALGORITHMS 259

FIG. 9.1

(a) Sub-task 1: Initial Schedule Obtained for EXPI
after Locking Edge 15-5, (b) Sub-task 2: Schedule

Obtained after Reversing Edge 15-5 from the Initial
Schedule (c) Sub-task 3: Schedule Obtained after
Removing edge 15-5 from the Initial Schedule

260 GRID COMPUTING

that small increases in f are more likely to be accepted than large
increases, and also that when T is high, most of the generated
neighbours are accepted. However, as T approaches zero, most of
the cost increasing transitions are rejected. The initial temperature
in the SA algorithm is kept high such that the algorithm does not
get trapped in a local minimum. The algorithm proceeds by
generating a certain number of neighbours at each temperature,
while the temperature parameter is gradually dropped. This
algorithm leads to a near optimal solution.

9.2.3 Distributed Algorithms

Distributed algorithms represent the algorithmic formulation of
Distributed Problem Solving (DPS) [6]–[9]. DPS can be termed as
co-operative problem solving by a loosely coupled network of
problem solvers. The main purpose of distributed algorithms is to
exploit the processing power of a number of nodes on a network.
Since the SA technique for JSS is inherently sequential and highly
compute-intensive, distributed algorithms for the SA technique
for JSS can make the technique applicable for large-scale problems.
Two different approaches to the development of distributed
algorithms for SA technique for JSS have been contemplated.
One approach is to divide the problem space into independent
sub-tasks. The algorithm based on this approach is termed as the
Locking Edge algorithm. This algorithm is modified for large
problem sizes. The other approach involves distributing the
reduction rate of the temperature among various nodes of the
network. The algorithm based on this approach is called the
Temperature Modifier algorithm. These algorithms have been
explained in the subsequent sections.

9.3 Distributed Algorithms for Job Shop
Scheduling

This section describes the development of distributed algorithms
for JSS, using the SA technique. Initially a sequential algorithm
[1], [5] is presented which will be modified subsequently to develop
distributed algorithms.

DISTRIBUTED SIMULATED ANNEALING ALGORITHMS 261

9.3.1 Sequential Algorithm

The sequential algorithm involves the following major steps:

1. Finding all initial schedules,

2. Evaluating cost of the schedule,

3. Finding the critical path,

4. Generating a neighbour. These are discussed in detail below.

9.3.1.1 Initial Schedule

Given a disjunctive graph G = (V, A, E) for solving the problem,
an initial schedule is generated. The Giffler and Thompson
algorithm [2] is employed for this purpose. The algorithm attempts
to construct the schedule by considering all the operations (n) on
all the machine (m), with the criteria employed being the earliest
starting time and the processing time of each of the operations. At
each stage an operation not yet included in the schedule and
requiring a minimum time is chosen and included in the partial
schedule. The partial schedule becomes a complete schedule when
all the operations of the jobs are included in the schedule. The
generated schedule can be represented as a digraph.

9.3.1.2 Cost Function

After obtaining the digraph representing all initial schedules, the
earliest and the latest start times of each of the operations in the
graph are calculated. The Critical Path Method (CPM) is used for
this purpose. The makespan is the earliest start time or the latest
start time of the last operation. This forms the cost of the schedule.

9.3.1.3 Critical Path

After evaluating the cost function, the critical path in the digraph
is identified. The critical path can be defined as a set of edges
from the first vertex to the last vertex which satisfy the following
properties:

(a) The latest start time and the earliest start time of each vertex
on the edge must be the same.

262 GRID COMPUTING

(b) For the same edge u Æ v, the sum of the start time and the
operation time of u must be equal to the start time of v.

An edge in the critical path is reversed to generate a neighbour
and this is discussed in the next section.

9.3.1.4 Generating a Neighbour

The neighbourhood of a schedule can be defined as a set of
schedules that can be obtained by applying the transition function
on the given schedule. Neighbourhoods are usually considered
by first choosing a simple transition function. A transition in the
case of a JSS problem is generated by choosing the vertices v and
w (as given in [1]). The following facts need to be considered.

(a) v and w are any two successive operations performed on the
same machine k;

(b) (v, w) Œ Ei is a critical edge, i.e (v, w) is on the longest path
of the digraph.

A neighbour is generated by reversing the order in which v and
w are processed on the machine k. It has been shown that by
using this transition function, it will be possible to eliminate
infeasible solutions and also keep non-decreasing paths out of the
search space [1].

Thus, in the digraph such a transition results in reversing the
edge connecting v and w and replacing the edges (u, v) and (w, x)
by (u, w) and (v, x) respectively, wherein u is the previous operation
to v on the same machine, and x is the next operation to w on the
same machine.

9.3.2 Distributed Algorithms

We have developed three distributed algorithms for JSS by
modifying the sequential algorithm. They can be termed as:

1. Temperature Modifier Algorithm,

2. Locking Edges Algorithm, and

3. Modified Locking Edges Algorithm.

DISTRIBUTED SIMULATED ANNEALING ALGORITHMS 263

They are explained in detail below.

9.3.2.1 Temperature Modifier Algorithm (TMA)

The choice of the temperature modifier in the sequential algorithm
affects the probability of the algorithm getting struck at a local
minimum. A low value for the modifier makes the algorithm fast
but the probability of the algorithm getting struck at a local
minimum is high. In order to reduce this probability, the sequential
algorithm can be simultaneously executed on different nodes. The
Temperature Modifier Algorithm is briefly stated in Table 9.2.

9.3.2.2 Locking Edges Algorithm (LEA)

It can be observed that the TMA does not result in much
improvement with respect to the execution time on the computer.
The LEA has been developed to improve this. This algorithm
generates sub-tasks by ‘locking’ edges in the digraph. The term
‘locking’ can be defined as marking an edge of the digraph such
that its orientation cannot be changed. If the number of edges
locked in the digraph is m then we can generate 3m equal sub-
tasks. This is equivalent to dividing the entire search space into 3m

divisions. For example, if the number of locked edges in the
digraph is one, then we can generate three sub-tasks. These sub-
tasks can be obtained as follows:

(a) In the first sub-task, the search space consists of all possible
orientations of the edge except that of the locked edge. The
orientation of the locked edge remains intact.

(b) In the second sub-task, the orientation of the locked edge is
reversed.

(c) In the third sub-task, the locked edge is removed.

The generation of three sub-tasks is illustrated by taking example
1 (please refer to Table 9.1). The initial schedule generated for the
example problem is represented in Fig. 9.1(a). In this schedule,
the edge 15–5 is locked to generate the sub-tasks. Hence the
initial schedule in Fig. 9.1(a) with edge 15–5 locked forms the
starting schedule for sub-task 1. The starting schedule for the

264 GRID COMPUTING

Table 9.2 Temperature Modifier Algorithm

1. Select appropriate temperature modifiers for different nodes.
2. Run the following sequential algorithm with the chosen

temperature modifier on each node.
(a) Generate the initial schedule, given the processing times or

all operations and the machine order for each job.
(b) Repeat

Counter = 0.
Compute the cost of the initial schedule [t[i]];
Repeat
Calculate the critical path;
Generate the neighbourhood;
Compute the cost of the Generated schedule [t[j]];
Accept or reject the generated schedule with the probability
min(1.exp (–{t[j] – t[i]}/T));
until (counter = number_of_rune_at_a_temperature);
T = T + t_modifier;
until (T = 0 V Minimum schedule not changed for a long
time);

3. Send the result back to the central node.

second sub-task is generated by reversing the locked edge 15–5 in
the initial schedule and the schedule thus obtained is given in
Fig. 9.1(b). The starting schedule for the sub-task 3 is generated
by removing the locked edge 15–5 from the initial schedule and
this is shown in Fig. 9.1(c).

The above concept can be further extended to a case in which
there can be m locked edges. Figure 9.2(a)–(c) explains the method
of generation of the sub-tasks. The generated sub-tasks are assigned
to the cooperating nodes in the Distributed Problem Solving (DPS)
network. The detailed algorithm is presented in Table 9.3.

The edges to be selected for locking are chosen at random. The
edge chosen affects the division of the search space and influences
the quality of the solution in some cases. This is discussed in the
next section.

DISTRIBUTED SIMULATED ANNEALING ALGORITHMS 265

FIG. 9.2

Sub-task Generation: (a) EDGE ÆÆÆÆÆ Intact
(b) EDGE ÆÆÆÆÆ Reversed (c) EDGE ÆÆÆÆÆ Removed

Table 9.3 Locking Edges Algorithm

1. Generate the initial schedule with the input given.

2. Choose the number of edges to be locked, say m.

3. Generate the sub-tasks depending upon the number of locked
edges i.e. for m locked edges 3 power m sub-tasks are generated.

4. Assign each of the sub-tasks to the cooperating nodes, pass
information about the locked edges.

5. Wait for the results from the cooperating nodes.

6. Choose the optimal cost solution.

266 GRID COMPUTING

9.3.2.3 Modified Locking Edges Algorithm (MLEA)

It is observed that as more and more edges are locked, it results
in a decrease in the performance with respect to the optimal
scheduling cost in some cases. This is explained theoretically in
the subsequent paragraphs.

A new term called ‘collision’ is defined in the case of the locking
edges version of the distributed algorithm. In the locking edges
version, the search space is divided equally among all the co-
operating nodes. For a three-node distribution, the search space
can be represented as in Fig. 9.3(a) and for a nine-node version, it
can be represented as in Fig. 9.3(b). One of the edges on the
critical path is chosen at random for generating a neighbour. If
this selected edge (say e1) affects the locked edge (say e2), then
such a situation is termed as ‘collision of edge e1 with locked edge
e2’. In such cases, the edge e1 is rejected and a new edge is
selected at random to generate a neighbour. It can be interpreted
as a node trying to ‘penetrate’ into the search space belonging to
another node. It can be observed from the figures that these
collisions will be more in the nine-node case compared to that in
the three-node case. This results in a marginal increase in the
schedule cost as compared to the previous case. In cases where
the solution corresponding to the minimum exists on the boundary
or in the search spaces of two nodes, there is less likelihood of it
being reached in the nine-node case because of collisions.

FIG. 9.3

Search Space Division: (a) Three-node Distribution
(b) Nine-node Distribution

DISTRIBUTED SIMULATED ANNEALING ALGORITHMS 267

In order to minimize the affect of collisions, a modification to
the ‘locking edges’ version is attempted. This can be explained as
follows. Consider a case wherein a single edge is locked. Here
there are two sets of nodes. The first set of nodes consists of three
nodes and will be assigned the same tasks as in the ‘locking edges’
case. The second set of nodes, also consisting of three nodes, are
assigned tasks in such a way that the boundary points of the
previous set of search spaces become the active search spaces for
these nodes. As pointed out previously, this is done mainly to
reduce the effect of collisions. This can be extended to any number
of locked edges. The detailed algorithm is given in Table 9.4.

Table 9.4 Modified Locking Edges Algorithm

1. Generate the initial schedule with the input given.

2. Choose the number of edges to be locked, say m.

3. Generate the first set of sub-tasks (3 power m).

4. Assign the sub-tasks to the cooperating nodes. Pass information

about the locked edges also.

5. Generate the second set of sub-tasks (3 power m).

6. Assign the sub-tasks to the cooperating nodes. Pass information

about the locked edges also.

7. Wait for the results from the cooperating nodes.

8. Choose the optimal cost solution.

The edges to be locked are selected at random and the selected
edges may be the cause for collisions. However, it is not easy to
predict beforehand this effect of a particular edge on collisions.
Hence, in the absence of such knowledge, the modified locking
edge version guarantees that the search space is divided to avoid
excessive collisions at least in one set of the search space division.

268 GRID COMPUTING

9.4 Implementation

These algorithms have been implemented on the Distributed Task
Sharing System (DTSS) [7] running on a network of Sun
Workstations having three servers of Sun 3/60 and 15 clients or
Sun 3/50 connected together by a thin Ethernet. The DTSS has
been developed around a message kernel. The message kernel is
implemented by using datagram sockets. Messages across nodes
are transferred by these datagrams. The message kernel provides
support for reconfiguring the nodes on the network, and for sending
and receiving the task award and the result messages. The nodes
on the network are initially configured such that one of the nodes
is identified as a central node. During the initial configuration,
many other required client nodes are also identified. The central
node has the responsibility of dividing the search space and of
communicating the tasks to the client nodes through task award
messages. After receiving the task award messages, the client nodes
execute the required task and send back the results through the
result messages. The network is highly flexible and can be
reconfigured with any number of client nodes.

The messages are retransmitted in the case of loss of message
packets in transmission. This is detected by the non-receipt of an
acknowledgement for the packets sent within a specified time-out
period. The node failures are also detected in a similar fashion. In
case of node failures, the corresponding sub-tasks are assigned to
other client nodes available on the network.

Before proceeding further on the implementation details, two
terms are defined:

l Central Node: This node holds the responsibility of task
division, task award to client nodes, receiving result messages
and synthesis of the final solution from the results obtained
from the client nodes.

l Client Node: This node solves the sub-task assigned to it
and returns the result.

DISTRIBUTED SIMULATED ANNEALING ALGORITHMS 269

9.4.1 Temperature Modifier Algorithm (TMA)

The implementation of the algorithms has been carried out by a
central node and a set of client nodes. The central node generates
the initial schedule, given the processing times of all the operations
and the machine order for each job. This node then sends the
initial schedule and also different temperature modifier parameters
to each of the client nodes on the network. The client nodes
execute the sequential algorithm (Table 9.2) with their correspon-
ding temperature modifiers and send back the result to the central
node.

After receiving the results from the client nodes, the central
node chooses the solution that has the minimal cost.

The quality of the solution generated is influenced by the cooling
rate. We employ a three parameter cooling schedule, as seen in
[1]. The parameter delta controls the rate of cooling. A lower
value of delta reflects a slower cooling rate and consequently the
algorithm takes more time. The value of delta employed is in the
range of 10–1–10–4. Hence, it is important to choose an appropriate
value of delta for each node in the network. A marginally high
value for delta than that employed in the sequential algorithm
can be chosen for TMA. For example, if a delta value of 10–2 is
employed for a sequential algorithm, for a TMA case, a delta of
0.5 ¥ 10–1 may be chosen. As a higher cooling rate affects the
quality of the solution, it may be appropriate to employ TMA
only in small size problems, where LEA or MLEA doesn’t give
better results.

9.4.2 Locking Edges Algorithm (LEA)

As in the above implementation, here too a central node and a
set of client nodes participate in the execution of the problem. In
this case, the number of client nodes is equal to the number of
generated sub-tasks. The generated sub-tasks are based on the
number of locked edges.

Initially, the central node generates the initial schedule and
depending upon the number of locked edges, it generates the sub-
tasks and assigns each of the latter to one of the client nodes. The

270 GRID COMPUTING

client nodes execute the sub-task and return the result to the
central node. The central node synthesizes all the results and
chooses the minimum cost solution as the best one.

9.4.3 Modified Locking Edges Algorithm (MLEA)

In order to implement this algorithm, a central node and sets of
client nodes are identified. The central node divides the search
space into sub-tasks and assigns them to one set of client node.
This process is same as the one described in Locking Edges
algorithm. However, in the case of the MLEA, the search space is
again divided by the central node such that the boundaries of the
search space in the earlier set become the active search spaces in
this case. The sub-tasks generated in this process are assigned by
the central node to the next set of client nodes. Thus many sets of
client nodes participate in problem solving in this case.

9.5 Results and Observation

9.5.1 Comparison of Results of Sequential

Implementation

We attempted a comparison of the results of our implementation
of the sequential algorithm with that of the Lar Vaanhoven, Aarts,
and Lenstra (VAL) [1] implementation. We have considered the
same three problem instances, FIS1, FIS2 and FIS3 from Fischer
and Thompson [10]. FIS2 is one of the difficult test cases and it is
stated that it defied solution to optimality for more than twenty
years [1]. It has been shown that Sequential Simulated Annealing
(SSA) produces better results compared to the Adams, Balas and
Zawack (ABZ) method [3] and the Matsuo, Suh and Sullivan
(MSS) method [4] but this is at the cost of large running times [1].

Table 9.5 compares the results of our implementation with that
of the VAL implementation. We have considered the three
parameter cooling schedule as in the VAL implementation. The
parameter delta controls the cooling rate. A lower value for delta
means a lower cooling rate. The results of our sequential imple-

DISTRIBUTED SIMULATED ANNEALING ALGORITHMS 271

mentation are marginally better than the VAL implementation.
Our observations regarding sequential implementation of the
algorithm are as follows:

1. The initial and final temperatures for different problem sizes
cannot be the same. We found that for higher problem sizes,
it may be advantageous to keep the initial temperature high
as the search space is higher in this case.

2. The number of neighbours generated at any temperature
also varies depending upon the problem size. However, the
bound m ¥ n – m. (m is the number of machines and n is the
number of jobs) on the neighbours generated at a temperature
appears inappropriate for small size problems. This bound is
not able to generate a markov chain of sufficient length at a
given temperature for convergence to the global optimum.

Table 9.5 Comparison of the Results of Sequential Implementation

Problem size Delta Results of the sequential Results of val
implementation implementation

cost (ave) cost (ave)

6 + 6 0.1 55 56
(FIS1) 0.01 55 55

10 + 10 0.1 1027 1039.6
(FIS2) 0.01 985 985.8

20 + 5 0.1 1267.5 1354.2
(FIS3) 0.01 1227 1229.0

9.5.2 Discussion of Implementation Results of the

Distributed Algorithms

As stated earlier, one of the major drawbacks of the sequential SA
algorithm is the large execution times taken by it. The main
purpose of developing the distributed algorithms is to reduce the
execution times.

272 GRID COMPUTING

We compare the distributed algorithms with the sequential
algorithms based on the improvement in the execution times and
the quality of the solution obtained.

We have taken several instances of the JSS problem by varying
the size of number of jobs and the number of machines. These
instances of the problem are generated by using an algorithm
which assigns operation times from 1–90 to the operations at
random.

The performance of the various distributed algorithms for these
problem instances is tabulated in Table 9.6. The three problem
instances from Fischer and Thompson have also been implemented
and the performance of these problem instances has been tabulated
in Table 9.7. Graph 1 (Fig. 9.4) shows the plot of problem size
versus execution time and Graph 2 (Fig. 9.5) shows the plot
between the problem size and the percentage deviation from the
optimal solution cost.

Following is a summary of the results of the distributed
algorithms:

1. Distributed algorithms generally performed well from the
viewpoint of execution time. LEA performed extremely well
and gave a near linear speed-up.

2. In the case of LEA, with an increase in the number of edges
locked, the quality of the solution comes down considerably.
This is explained by an increase in the number of collisions
with more edges locked. When a collision occurs, that part
of the search space is ignored by the node. Hence, the
probability of searching some part of the solution space is
reduced.

3. The MLEA performs better as compared to the pure locking
edge algorithm from the viewpoint of the quality of solution.
This is mainly due to the creation of overlapping search
spaces and allocating those search spaces more nodes on the
network. This makes the probability of searching the various
solution spaces equally high.

DISTRIBUTED SIMULATED ANNEALING ALGORITHMS 273

Table 9.6 Implementation Results

SSA TMA LEA MLEA

Problem size C T C T C T n C T

(10 + 5) 837 224 812 270 826 63 4 826 87
812 58 10

(5 + 10) 890 102 890 102 890 33 4 890 33

(15 + 5) 1084 522 1084 516 1084 419 4 1084 456
1111 99 10

(10 + 10) 966 577 896 1146 915 703 4 915 791
950 149 10

(10 + 10) 964 1788 954 1845 959 692 4 959 693
1029 258 10

(20 + 5) 1352 1160 1338 1152 1338 468 4 1338 587
1338 316 10

(25 + 10) 1603 1402 1548 2070 1601 877 4 1601 869
1639 293 10

(10 + 17) 1540 2864 1535 2840 1589 661 4 1554 1330
1595 647 10

(20 + 10) 3309 7439 3309 7340 3309 2961 4 3309 2916
3449 1133 10

(10 + 20) 2000 2200 2000 2544 2000 1526 4 2000 2379
2052 686 10

(15 + 20) 3391 6701 3391 6666 3391 2221 4 3391 2227
3391 1018 10

Legend:
SSA: Sequential Algorithm
TMA: Temperature Modifier Algorithm
LEA: Locking Edges Algorithm
MLEA: Modified Locking Edges Algorithm
C: Cost of best solution obtained
T: Execution time (secs)
n: number of co-operating nodes
Problem size: Number of jobs + Number of machines

274 GRID COMPUTING

Table 9.7 Comparison of Implementation Results

SSA TMA LEA MLEA OC

P D C T C T C T C T

6 + 6 1 55 117.0 55 122.56 56 72.06 56 86.81
(FIS1) 2 55 506.3 — — 56 85.18 55 123.2 55

10 + 10 1 1027 1400 1027 2000 1006 487 1002 802.1
(FIS2) 2 903 16200 903 18000 983.3 2069 983.3 4325 930

20 + 5 2 1267.5 1950 1247 1290.7 1256.6 254.6 1234 1345.7
(FIS3) 2 1227 18600 1227 18200 1217.5 7711.6 1214 5698 1165

Legend:

SSA: Sequential Algorithm
TMA: Temperature Modifier Algorithm
LEA: Locking Edges Algorithm
MLEA: Modifier Locking Edges Algorithm
P: Problem size (Number of jobs + Number of machines)
D1: Value of delta: 0.1
D2: Value of delta: 0.01
C: Average cost of the solution obtained
T: Execution time (secs)
OC: Optimal cost of the solution

FIG. 9.4

Graph 1—Plot Showing Execution Performance

DISTRIBUTED SIMULATED ANNEALING ALGORITHMS 275

FIG. 9.5

Graph 2—Plot Showing the Solution Cost Performance

4. The performance of the MLEA with respect to the execution
time is comparable with that of the LEA. However, twice the
number of nodes are employed in the MLEA as compared
to the LEA.

5. The TMA is the simplest of the three algorithms and does
not involve any problem division overhead. Hence it is better
suited to small size problems wherein the search space is
small. If the search space is small and if it is further sub-
divided, it may lead to nodes getting into the search space or
neighbouring nodes often. This may lead to excessive
collisions. Hence, the TMA is ideal in cases when the search
space is small.

In conclusion, we observe that the TMA is the best suited for
problem in case of sizes less than 10 ¥ 10, the MLEA in case of
problem sizes between 10 ¥ 10 and 20 ¥ 20, and the LEA in case
of sizes above 20 ¥ 20.

276 GRID COMPUTING

9.6 Conclusions

Different distributed algorithms have been implemented and their
performance measured. The study shows that in case of very
large problem sizes, the LEA give better performance. For medium
sized problems, the TMA and MLEA give better performance.
Tests also show that the distributed algorithms perform better as
compared to the sequential algorithm with respect to the optimal
solution cost and the execution time.

References

1. Van Laarhoven, P.J.M., E.H.L. Aarts and J.K. Lenstra, “Job
Shop Scheduling by Simulated Annealing”, Operation Research,
Vol. 40, pp. 113–125, 1992.

2. French, S., Sequencing and Scheduling: An Introduction to the
Mathematics of Job Shop, Chichester, UK Horwood, 1982.

3. Adams, J., E. Balas and D. Zawack, “The Shifting Bottleneck
Procedure for Job Shop Scheduling”, Mgmt. Science, Vol. 34,
pp. 391–401,1988.

4. Matsuo, H., C.J. Suh, and R.S. Sullivan, “A Controlled Search
Simulated Annealing Method for the General Job Shop
Scheduling Problem,” Working Paper 03–04-88, Department
of Management, University of Texas, Anstin, 1988.

5. Eglese, R.W., “Simulated Annealing: A Tool for Operation
Research”, Euro. J. Operation Res., Vol. 46, pp. 271–281, 1990.

6. Durfee, E.H., V.R. Lesser and D.D. Corkjll, “Trends in Co-
operative Distributed Problem Solving,” IEEE Trans. Knowl.
Data Eng., Vol. 1, No. 1, pp. 63–82, March 1989.

7. Janaki, R.D. and K. Ganeshan, “DTSS: A System for
Implementing and Analysing Distributed Algorithms”, Indian
Institute of Technology, Madras, Tech. Rep. IITM-CSE-93-
00l, January 1993.

DISTRIBUTED SIMULATED ANNEALING ALGORITHMS 277

8. Allwright, J.R.A. and D.B. Carpenter, “A Distributed
Implementation of Simulated Annealing for the Travelling
Salesman Prob1em”, Parallel Computing, Vol. 10, pp. 335–
338, 1989.

9. Decker, K.S., “Distributed Problem Solving Techniques: A
Survey”, IEEE Trans. Syst. Man Cyber., Vol. 17, No. 1, pp.
729–739, 1987.

10. Fisher, H. and G.L. Thompson, “Probabilistic Learning
Combinations of Local Job Shop Scheduling Rules,” Industrial
Scheduling, J.F. Muth and G.L. Thompson, (eds), Englewood
Cliffs, Prentice Hall, New Jersey, pp. 225–251, 1963.

Chapter 10

Parallel Simulated Annealing
Algorithms*

10.1 Introduction

Simulated Annealing (SA) has been considered a good tool for
complex non-linear optimization problems [5, 2]. This technique
has been widely applied to a variety of problems. One of the
major drawbacks of the technique is its very slow convergence.

There have been many attempts to develop parallel versions of
the algorithm. Some parallel systems exist for achieving close to
ideal speed-up on small processor arrays [6]. There are also special
purpose architectures for implementing the annealing algorithm
[9]. Two different approaches to parallelization of SA exist in
literature—single-trial parallelism and multiple-trial parallelism [5].
Very often these approaches are highly problem-dependent and
the achievable speed-up depends upon the problem characteris-
tics. In all these cases, there is a need to divide the problem into
sub-problems and to subsequently distribute these problems among
the nodes or processors.

In this chapter, we present two distributed algorithms for
simulated annealing. The first algorithm is named the Clustering
Algorithm (CA) and the second algorithm, the Genetic Clustering
Algorithm (GCA). In CA, a cluster of nodes works on the search
space of the SA algorithm. The nodes in the cluster assist each

*D. Janakiram, T.H. Sreenivas, K. Ganapathy Subramaniam

PARALLEL SIMULATED ANNEALING ALGORITHMS 279

other by exchanging their partial results and this helps the nodes
to converge to a good initial solution to start with. In the second
algorithm, the genetic algorithm is applied to find the initial n
good solutions required as the starting point for the SA algorithm
on the n different nodes of the network. The two algorithms have
been applied to the JSS and the TSP. Both algorithms showed
very good performance in terms of solution time and solution
quality.

The rest of the chapter is organized in the following fashion.
Section 10.2 describes the SA technique. Section 10.3 presents
the CA. Section 10.4 presents the GCA. Section 10.5 gives
implementations of both the algorithms on a network of Sun
workstations. Section 10.6 deals with the application and perfor-
mance studies of the algorithms with respect to the cases of JSS
and TSP.

10.2 Simulated Annealing (SA) Technique

Often the solution space of an optimization problem has many
local minima. A simple local search algorithm proceeds by
choosing a random initial solution and generating a neighbour
from that solution. The neighbouring solution is accepted if it is a
cost-decreasing transition. Such a simple algorithm has the draw-
back of often converging to a local minimum. The SA algorithm,
though by itself a local search algorithm, avoids getting trapped
in a local minimum by also accepting cost-increasing neighbours
with some probability. In SA, first an initial solution is randomly
generated, and a neighbour is found and accepted with a
probability of min (1, exp (2d/T)), where d is the cost difference
and T is the control parameter corresponding to the temperature
of the physical analogy and will be called temperature. On slow
reduction of temperature, the algorithm converges to the global
minimum, but the time taken increases drastically.

SA is inherently sequential and hence very slow for problems
with large search spaces. Several attempts have been made to
speed up this process, such as development of parallel SA
techniques and special purpose computer architectures.

280 GRID COMPUTING

10.2.1 Parallel Versions of SA

Parallelism in SA can be broadly classified into two approaches—
single-trial parallelism and multiple-trial parallelism [5]. But these
methods are highly problem-dependent and the speed-up achieved
depends wholly on the problem at hand. Another taxonomy
divides parallel annealing techniques into the following three major
classes:

1. serial-like algorithms,

2. altered generated algorithms, and

3. asynchronous algorithms [1].

Each class of the algorithm makes some trade-off among cost
function accuracy, state generation, parallelism, and communi-
cation overhead. High-performance special purpose architectures
show the promise of solving computationally expensive appli-
cations without expensive supercomputers and include specially
designed computer architectures to suit the annealing algorithm
[11].

10.3 Clustering Algorithm for Simulated
Annealing (SA)

Experiments on the SA technique have shown that a good initial
solution results in faster convergence. Similar observations have
been made in [13]. The proposed distributed algorithms take
advantage of this observation. Initially, the n nodes of the network
run the SA algorithm by using different initial solutions. After a
fixed number of iterations, they exchange their partial results to
get the best one. All the nodes accept the best partial solution and
start applying the SA technique for that best partial result. They
again exchange their partial results after some fixed number of
iterations. After repeating this process for a pre-defined number
of times, each node works independently on its partial result. The
complete algorithm is given in Table 10.1.

PARALLEL SIMULATED ANNEALING ALGORITHMS 281

Table 10.1 Cluster Algorithm (CA) for Simulated Annealing (SA)

Input to the algorithm:
n = Number of the nodes in the network.
p = Exchange parameter for partial results.
r = Reduction parameter for the number of iterations

before exchange of partial results.
i = Input graph for scheduling.

Coordinator node algorithm:
1. Distribute the n random initial solutions to the n nodes and wait.
2. Upon receiving the first converged result from any of the nodes,

stop SA on other nodes.
Worker node algorithm:
1. Accept initial solutions from the coordinator.
2. repeat

2.1. Execute SA for p iterations. Exchange partial results among
the worker nodes. Accept the best partial result.

2.2. p = p – r* (loop iteration number).
until (p = 0).

3. Execute SA by using the best solution found as the initial solution.
4. Send the converged value to the coordinator.

10.4 Combination of Genetic Algorithm and
Simulated Annealing (SA) Algorithm

Experiments have shown that a good initial solution for SA
improves both the quality of the solution as also the execution
time. Genetic algorithms try to improve a set of 208 Ram,
Sreenivas, and Subramaniam solutions rather than a single solution.
Since we require n initial solutions for distributing among n nodes,
we choose to combine SA with GA.

10.4.1 Genetic Algorithm

In GA [11], an initial population consisting of a set of solutions is
chosen and then the solutions are evaluated. Relatively more
effective solutions are selected to have more offsprings, which are,

282 GRID COMPUTING

in some way, related to the original solutions. If the genetic operator
is chosen properly, the final population will have better solutions.
GA improves the whole population. SA aims at producing one
best solution. For the distributed SA implementation, we require
several good initial solutions to ensure the fast convergence of
SA. We chose GA for obtaining the required number of good
initial solutions. The operator used for generating offsprings in
JSS is related to the processing order of jobs on the different
machines of the two parent solutions. Let PO11, PO12, ..., PO1m
be the processing orders of jobs on machines 1, 2, ..., m in parent1
and PO21, PO22, …, PO2m be the processing order on machines
1, 2, ..., m in parent2. If random (1, m) = i, then processing orders
in child1 and child2 are PO11, ..., PO1i, PO2i 1 1, ..., PO2m and
PO21, ..., PO2i, PO1i 1 1, ..., PO1m respectively. After getting the
offspring, a check is made to see if there are any cycles in the
offsprings and if there is one, the operation is performed once
again by generating another random number. A cycle in a state
indicates an invalid schedule. The pseudo-code for the GCA is
given in Table 10.2.

Table 10.2 Genetic Clustering Algorithm (GCA)

1. Central node generates n initial solutions using GA. It runs GA
for fixed number of iterations, t.

1.1 Choose initial population of fixed size and set i = 1.
1.2 while (i <= t)

begin
1.2.1 Apply the operator on the two parent schedules

chosen randomly to produce two offspring and
replace the parents by the best two out of the four
schedules.

1.2.2 i = i + 1
end

2. Central node sends n best solutions chosen to the n remote
worker nodes.

3. Each worker node runs the SA algorithm by using the initial
state received.

4. Upon receiving a converged result from one of the worker nodes,
the central node stops execution.

PARALLEL SIMULATED ANNEALING ALGORITHMS 283

10.5 Implementation of the Algorithms

Both the above algorithms have been implemented by using a
platform called DiPS (Distributed Problem Solver) [3] running on
a network of 18 Sun workstations. It is built on a communication
kernel. Using the kernel, it is possible to send task award messages,
task result messages, configure messages, and partial result
messages, among the various nodes of the DiPS network. The full
implementation details of both algorithms are given in the
subsequent sections.

10.5.1 Implementation of the Clustering

Algorithm (CA)

In the CA, the central node executes the code in Table 10.3 and
the worker nodes the code in Table 10.4. The algorithm for SA is
given in Table 10.5.

Table 10.3 Clustering Algorithm for the Central Node

1. Initialize ().
2. Generate n random initial states and assign to the n nodes of the

network.
3. Wait for results.
4. Output_Results.

Table 10.4 Clustering Algorithm (CA) for the Worker Node

1. Get the sub-task from the central node and p, the exchange
parameter.

2. while (p > 0)
begin

2.1 Simulated_annealing (n).
2.2 Send the best solution obtained to the central node.
2.3 p = p – (loop_iteration_value)8 r.

end
3. Run SA.
4. Send the converged value to the central node.

284 GRID COMPUTING

Table 10.5 Simulated Annealing

Simulated annealing (n)
begin

1. Set t = Initial_temperature
2. repeat

2.1 Counter = 0.
2.2 repeat

2.2.1 Compute the cost of the schedule (f [i]).
2.2.2 Find the critical path schedule.
2.2.3 Generate a neighbour and compute the cost of the

neigbour (f [j]).
2.2.4 Accept or reject the neighbour with a probability

of min(1, e–(f [i] – f (l)/t).
2.2.5 Increment counter.

until (Counter = Number of iterations at t).
3. t = t * temp_modifier.
4. After every n iterations exchnage results and accept the best

schedule found.
until (shopping criteria)
end.

10.5.2 Implementation of Genetic Clustering

Algorithm (GCA)

In the case of GCA, first the genetic algorithm is run on the
central node to get the required n initial solutions. These initial
solutions are used by the n client nodes of the distributed systems
as a starting solution for the SA algorithm. The code that is
executed on the central node is the same as the code in Table
10.3 except that in step 3, the n schedules are the best n solutions
chosen from the population after applying GA. The genetic
algorithm starts with an initial population. It then performs the
crossover operation and the population is updated. This is repeated
a number of times.

PARALLEL SIMULATED ANNEALING ALGORITHMS 285

10.6 Case Studies

The algorithms have been applied to the JSS problem and the
TSP.

10.6.1 Job Shop Scheduling (JSS)

JSS involves scheduling of various operations relating to a number
of jobs on a number of machines [2, 8, 4]. Different techniques
exist in the literature for solving JSS [15]. Since the main focus of
this chapter is parallel SA, we consider the SA algorithm for
solving JSS. Each machine can process only one operation at a
time. Each job consists of a sequence of operations in a pre-
defined precedence order. The problem is to find a schedule
having a minimum total time (cost), often called the ‘makespan’
of the schedule. An initial schedule is obtained for a given set of n
jobs to be scheduled on m machines. The SA algorithm is applied
to the initial schedule. The algorithm improves on the initial
schedule by generating neighbourhood schedules and evaluating
them. As the temperature is gradually reduced, the algorithm
converges to a near optimal solution.

One of the major drawbacks of the SA algorithm is that it is
very slow, especially when the search space is large. The algorithm’s
behaviour is also greatly influenced by the choice of the initial
schedule. Attempts to parallelize the SA algorithm for JSS resulted
in three different algorithms, namely the TMA, the LEA, and the
MLEA [10, 12]. Although the TMA is problem-independent, it
has not shown much improvement in speed-up. However, the
quality of results produced is better. In the other two algorithms,
the search space is divided by using a special technique called the
‘locking edge technique’. These algorithms are highly problem-
dependent and hence are applicable only to the JSS problem. It is
for the above reasons that a problem-independent true distributed
SA algorithm is attempted for development. One of the basic
problems concerning distributed SA algorithms is that SA is
inherently sequential. Hence, the option is to distribute the search
space and let the algorithm run on a reduced search space on
each node of the network. Since the division of the problem into
sub-problems depends largely upon the characteristics of the

286 GRID COMPUTING

problem, such an algorithm cannot be general in nature. Also, it
is likely that one node gets into other nodes’ search space, which
is termed as collision. Such intrusions have to be treated separately.
For these reasons, a static division of the search space among the
nodes is not ideal.

10.6.1.1 Performance Study of the Algorithms

The performance of the CA and GCA are compared with that of
sequential simulated annealing (SSA) for different sizes of the JSS
problem (from 10 jobs on 10 machines to 20 jobs on 15 machines).
The annealing algorithm used an initial temperature of 2000, and
a temperature modifier of 0.95. Annealing was frozen when the
best solution found did not change for the last 25 temperature
changes or the temperature was reduced to zero. Table 10.6 shows
the performance of SSA. The performance of the algorithms has
been compared on the basis of two factors, namely, the execution
time of the algorithm and the cost of the solution. It can be
observed from Table 10.7 that CA performed very well in terms
of both execution time and the quality of the solution as compared
to the SSA algorithm. CA sometimes showed super-linear speed-
ups. It can also be observed from Table 10.7 that at low problem
sizes, GCA performed better than CA. This can be explained
from the fact that at low problem sizes, GCA is able to give good
initial solutions with a small overhead, whereas in the case of
large problem sizes, the quality of the population is not appreciably
improved by running GA for a fixed time period. In case of
GCA, the time spent on GA can be increased to select good
initial solutions. But the overhead of GA increases correspondingly.
Hence, the optimal time to be spent on GA in the case of GCA
can be found by conducting experiments by varying this time.

Table 10.6 Effect of Initial Solution on Simulated Annealing

Initial makespan Final makespan Time taken(s)

1076 896 498
1120 896 510
1284 905 610
1328 905 815

PARALLEL SIMULATED ANNEALING ALGORITHMS 287

Table 10.7 Comparison of SSA, CA and GCA Performance (with Three

Client Nodes)

Problem size SSA CA GCA

(jobs ¥ m/cs) Time(s) Cost Time(s) Cost Time(s) Cost

10 ¥ 10 577 968 307 931 199 971
10 ¥ 15 1402 1603 803 1565 551 1683
10 ¥ 17 2864 1548 128 1542 890 1538
20 ¥ 10 7439 3309 3137 3309 3266 3434
20 ¥ 15 6701 3391 2862 3391 1907 3391

Table 10.8 shows the relative performance of CA and GCA for
a fixed problem size as the number of nodes is varied. As the
number of nodes is increased, CA performed better than compared
to GCA. This can be explained from the fact that GCA requires n
good initial solutions generated by GA. As n increases, the quality
of the initial solution decreases as GA is run only for a fixed
initial time.

Table 10.8 Performance of CA and GSA for a Specific Problem Instance

(Size = 10 ¥¥¥¥¥ 15)

CA GCA

No. of nodes Time(s) Speed-up Time(s) Speed-up

3 835 2.44 695 2.93
4 656 3.10 551 3.70
5 593 3.75 494 4.12
6 419 4.86 502 4.05
7 445 4.57 321 6.31
8 317 6.42 296 6.88
9 226 9.01 288 7.07

Table 10.7 shows the relative performance of CA and GCA as
the problem size is increased keeping the number of nodes fixed.
At low problem sizes, GCA performed better than CA. This can
be explained by the fact that as the problem size increases, the
quality of the initial solutions generated by GA by running it for a
fixed amount of time is not good.

288 GRID COMPUTING

10.6.2 Traveling Salesman Problem (TSP)

The TSP is that of finding the minimum weight Hamiltonian
cycle in a given undirected graph. The quality of solutions obtained
for TSP by using SA is good, though obtaining them is time-
consuming. It is in this context that parallel algorithms for SA for
solving TSP are of practical interest. We have applied the GCA
for the TSP and compared its performance with that of the
sequential algorithm. The graph is represented as an adjacency
matrix of inter-city distances. A valid initial solution for SA and
the initial population for GA are obtained by a depth-first search.

The neighbouring solution for SA is generated by the method
suggested in [6], wherein a section of the path chosen is traversed
in the opposite direction. The genetic operator cross-over called
edge re-combination [14] is applied to a pair of parent solutions
to generate two offsprings and the best two out of the four solutions
replace original ones. The required n initial solutions for the parallel
SA are obtained by the genetic algorithm as explained earlier.

10.6.2.1 Performance Study of the Algorithms

Three sizes of the TSP, namely 50, 100, and 150, have been
considered for the performance analysis of the GCA algorithm.
The cooling schedule for SA employed an initial temperature of
1000 and a temperature modifier value of 0.99, and that for GCA,
an initial temperature of 1 and a temperature modifier value of
0.99. GA was stopped when the solutions did not change over a
fixed number of iterations. SA was also stopped when there was
no improvement in the quality of the solution over a fixed number
of iterations.

The relative performance between GCA and SA for TSP are
given in Table 10.9. Three trials were taken on three problem
instances and the average value of the cost and time are tabulated
in each case. It is evident from Table 10.9 that GCA performed
very well as the problem size increased and showed super-linear
speed-ups at higher problem sizes. At lower problem sizes, the
algorithm did not perform well, as the overhead of the genetic
algorithm is high on a smaller search space. We also experimented

PARALLEL SIMULATED ANNEALING ALGORITHMS 289

with the dynamic switching from GA to SA. Instead of running
the GA for a fixed amount of time depending upon the search
space size, the improvement in the quality of the n best solutions
in the population has been used as the criterion for switching
from GA to SA. When the n best solutions in the population do
not change for a fixed number of iterations, GA is stopped. These
n initial solutions are taken and fed to the parallel SA algorithms
on n nodes of the network. It has been observed that there is an
optimum time up to which GA can be run before switching to
SA. If GA is run for less than this optimum time, n good initial
solutions are not found for SA. If it is run for more time, time is
wasted in finding more than n good initial solutions. Thus switching
based on the improvement of the n initial solutions can be seen to
perform best (refer to Table 10.10).

Table 10.9 Comparison of GCA and SA Performance for the TSP

Problem size GCA SA

(No. of cities) Time(s) Cost Time(s) Cost Nodes

50 107 717 112 767 3
100 139 1136 308 1134 3
150 497 1336 1568 1218 3

Table 10.10 Comparison of Dynamic and Static Switching Performance

for the TSP (with Three Nodes)

Dynamic switching Static switching

Problem size Time(s) Cost Time(s) Cost

50 55 707 57 725
100 80 1286 95 1276
150 100 1802 128 1862

10.7 Conclusions

Two distributed algorithms for SA have been developed and have
been applied to the JSS and TSP. The algorithms showed very

290 GRID COMPUTING

good results as the problem space and the number of nodes
employed increased.

References

1. Greening, Daniel R., “Parallel Simulated Annealing Tech-
niques”, Physica D, Vol. 42, pp. 293–306, 1990.

2. Van Laarhoven, P.J.M., E. H. L., Aarts, and Jan Karel Lenstra,
“Job Shop Scheduling by Simulated Annealing”, Operation
Research, Vol. 40, pp. 113–125, 1992.

3. Janakiram, D. and K. Ganeshan, “DiPS: A System for
Implementing and Analysing Distributed Algorithms”, Tech.
Rep. IITM-CSE-93-001, Indian Institute of Technology,
Madras.

4. French, Simon, Sequencing and Scheduling: An Introduction to
the Mathematics of Job Shop, Wiley, New York.

5. Eglese, R.W., “Simulated Annealing: A Tool for Operation
Research” Eur. J. Oper. Res., Vol. 46, pp. 271–281, 1990.

6. Allwright, James R.A. and D.B. Carpenter, “A Distributed
Implementation of Simulated Annealing for the Travelling
Salesman Problem”, Parallel Comput., Vol. 10, pp. 335–338,
1989.

7. Decker, Keith S., “Distributed Problem Solving Techniques:
A Survey”, IEEE Trans. Systems Man Cybernet, Vol. 17, pp.
729–739, 1987.

8. Adams, J., E. Balas, and D. Zawack, “The Shifting Bottleneck
Procedure for Job Shop Scheduling”, Mgmt. Sci., Vol. 34, pp.
391–401, 1988.

9. Abramson, David, “A Very High-speed Architecture for
Simulated Annealing”, IEEE Comput, pp. 27–36, May 1992.

10. Ganeshan, K., “Designing and Implementing Flexible Distri-
buted Problem Solving Systems”, M.S. Thesis, Department

PARALLEL SIMULATED ANNEALING ALGORITHMS 291

of Computer Science and Engineering, Indian Institute of
Technology, Madras, 1993.

11. Syswerda, Gilbert, “Schedule Optimization Using Genetic
Algorithms”, L. Davis (ed.), Handbook of Genetic Algorithms,
pp. 332–349, 1991.

12. Krishan, K. Ganeshan, and D. Janakiram Ram, “Distributed
Simulated Annealing Algorithms for Job Shop Scheduling”,
IEEE Trans. Systems Man Cybernet, Vol. 25, No. 7, pp. 1102–
1109, July 1995.

13. Gu and X. Huang, “Efficient Local Search with Search Space
Smoothing”, IEEE Trans. Systems Man Cybernet, Vol. 24, No.
5, pp. 728–735, May 1994.

14. Whitley, Darrel, Timothy, Starkweather and Daniel, Shaner,
“Schedule Optimization Using Genetic Algorithms”,
Lawrence Davis, (ed.), pp. 351–357.

15. Nowicki, E. and C. Smutnicki, “A Fast Tabu Search Algorithm
for the Job Shop Problem”, Report 8/93, Institute of
Engineering Cybernetics, Technical University of Wroclaw,
1993 (To appear in ORSA J Comput.).

Chapter 11

Epilogue
DOS Grid: Vision of Mobile
Grids*

11.1 Introduction

Mobile computing brings about a new paradigm of distributed
computing in which communication may be achieved through
wireless networks and users can compute seamlessly even as they
move from one environment to another. It is apparent that mobility
affects the computational, data and transactional model, and the
communication paradigm of the distributed mobile systems. The
impact of the huge growth of the resource-constrained device
goes beyond networking issues such as bandwidth and connectivity,
and directly effects computing, data, and service management.
The recent technological advancements in computing, wireless
communications, networking and electronics have embedded pro-
cessing power, storage space and communication capabilities in
electronic devices of day-to-day use, leading to the era of ubiquitous
computing. This trend has led to the pervasiveness, invisibility
and mobility of computing nodes [1]. These factors have made
the researchers look at mobile devices as both providers of services
and consumers of services.

The advancement in technology has enabled mobile devices to
become information and service providers by complementing or

*D. Janakiram, M.A. Maluk Mohamed, A. Vijay Srinivas, P. Kovendhan, M.
Venkateswara Reddy

EPILOGUE 293

replacing static hosts. Such mobile resources are highly essential
for on-field applications that require advanced collaboration and
computing. This creates the need for the merging of mobile and
grid technologies, leading to a mobile grid paradigm. The key
idea in building the mobile grid is to integrate the computational,
data and service grids. Thus, a mobile device from anywhere and
any time can utilize large computing power, required resources
and services seamlessly. Simultaneously, the device could also be
providing location-sensitive data to the grid. This has made us
look at building the middleware for a mobile grid that transparently
manages and bridges the requirement of the mobile users and the
actual providers.

We are currently working towards our vision of integrating
data grids with the mobile grid, thus seamlessly integrating data,
computing and service grids. In addition to the data from regular
sources in the data grid, we are looking at integrating data from
wireless sensors into the mobile grid. Such an enhanced mobile
grid will be useful for a large class of applications. Consider a
scenario wherein inspection field engineers collect bridge
maintenance data through various modes like sensors and visual
data. The data may be huge so that it would have to be stored in
data repositories. Further, the data collected by each engineer has
to be compared and correlated with the data collected by other
engineers as well as with the data collected from previous
inspections. Thus, non-trivial computation is required to decide
whether further data needs to be collected.

A key feature of the mobile grid is the monitoring system. The
mobile grid monitoring system is used to maintain information
about resources. It also enables task scheduling and data
management, and handles various kinds of failures. To the best of
our knowledge, there is no monitoring system for mobile grids.
Further, existing grid monitoring systems have difficulty in scaling
due to centralized components. We use a peer-to-peer architecture
that avoids such centralized components. The placement of replicas
that corresponds to file instances in the data grid is also handled
by the mobile grid monitoring system. We enable files to be read-
write (RW), unlike existing data grids which assume read-only
(RO) files. In order to handle the consistency of replicas (and to

294 GRID COMPUTING

provide other middleware-related services), we have built the
mobile grid system over a wide-area shared object space called
Virat [2].

The rest of the chapter is organized as follows: Section 11.2
explains the overview of the mobile grid and discusses how
scalability and consistency are ensured in the proposed paradigm.
Section 11.3 describes the Mobile Grid Monitoring system
in detail, including the components of the monitoring system.
Section 11.4 gives a sample health care application scenario.
Section 11.5 compares the proposed model with the already
existing similar work. Section 11.6 concludes the chapter.

11.2 DOS Grid

11.2.1 Overview of the Mobile Grid

The mobile grid is visualized as a cluster of clusters. In the proposed
model, the nodes are encapsulated as objects called ‘Surrogate
Object’ (SO). The SO encapsulates all the characteristics and
properties of a device fully, such as the computing power, memory
availability, bandwidth, and all other resources and services
associated with the device. The representation of the characteristics
of the devices in the SO is made as attributes, methods and sub-
objects. The attributes of the SO include the computing capability
of the node, the memory capability and the bandwidth of the
medium by which the node is connected. The methods and the
sub-objects of the SO represent the services and other resources
that are offered by the node. In addition, each SO encapsulates
the security policy and agreement for each of the services that is
associated with that node, which will specify how and by whom
the service may be used. By encapsulating the participating nodes,
in distributed objects, the grid is transformed from a collection of
nodes, offering and consuming services, into Distributed Shared
Object (DSO) space.

Each cluster is coordinated with a designated node acting as a
Cluster Head (CH). The CH maintains all the repositories related

EPILOGUE 295

to the trading and naming services of the DSO, and handles the
service discovery [3]. The CHs coordinate among the other
neighbouring CHs in a peer-to-peer fashion. The mobile grid as
DSO space is shown in Fig. 11.1. In order to have a unified
design, the static nodes are also represented as objects in the
DSO. As the MSS are already loaded with maintaining the
information related to the MH which are within its cell, the
neighbouring static node is designated as the CH of the cluster. In
some cases the MSS and CH may be the same.

FIG. 11.1

Mobile Grid Architecture with Surrogate Objects

296 GRID COMPUTING

The proposed SO model of the grid enhances the availability
and helps in providing the current location of the mobile devices.
When the mobile device acts as an information service provider,
depending upon the nature of the service requested, the monitoring
system of the mobile grid decides whether to contact the SO of
the corresponding device or the device itself. Contacting the device
directly will lead to consumption of the constrained resources like
battery and bandwidth. In the case of the services offered by the
SO, it would suffice if the corresponding SO is contacted to get
the information. In addition, the SO can be replicated to prevent
congestion in the network and to improve scalability of the system.
The major advantage of the paradigm is that the network
connectivity need not be continuous because connections are
required only to inject SO from mobile nodes into the wired
network. With the SO being fully autonomous, users can access
services even if the node disconnects because the SO delivers the
results upon re-connection. The proposed model virtualizes all
the resources and services offered by the participating nodes as
services.

The proposed approach significantly helps in realizing a
distributed and decentralized infrastructure of SOs that work on
behalf of the participating devices and are hosted by the wired
network. With the SO, the MH movements do not affect service
provisioning as the entire state of the device is stored and
maintained. The model helps in achieving the properties of
dynamicity, asynchronicity, autonomy and security.

Some memory-constrained devices such as mobile phones could
also be participating in the mobile grid. In such a case, the user of
the mobile device should be able to store the data in some other
databases located elsewhere in addition to the data stored locally.
Thus, the proposed mobile grid can also efficiently handle storage
and data access from federated databases. The meta-data contains
information about file instances, the contents of file instances, and
the various storage systems contained in the data grid. These
meta-data usually refer to application meta-data. These meta-data
are wrapped with wrappers and made as objects in the DSO. The
meta-data objects are registered by using trading services.

EPILOGUE 297

11.2.2 Scalability and Consistency Issues

Middleware services such as naming and trading as well as replica
object management in the grid are handled through a wide-area
shared object space that we have built named as Virat [2]. Virat
uses an independent checkpointing and lazy reconstruction
mechanism to handle failures of object repositories. The object
repositories (one per cluster) are responsible for the cluster level
management of replicas. Communication between the object
repositories themselves is through a peer-to-peer protocol. This is
useful for locating objects or services across clusters. Virat also
uses a data-centric concurrency control mechanism to realize
various consistency schemes such as serializability and causal
consistency. Virat has been extended to a shared event space
wherein events can be created, published and subscribed. Events
can be delivered in causal or serializable orderings on the basis of
application requirements.

Scalability is a key issue in distributed systems, especially in
mobile grids as the number of devices can be quite high. One of
our key observations is that scalability, consistency and availability
need to addressed together, not in isolation from each other. It is
well-known that in the presence of network partitions, both
consistency and availability cannot be completely attained in purely
asynchronous systems [4]. Availability has been quantified in [5]
and its trade-off with consistency has been studied. However,
both [4] and [5] do not address the scalability issue.

One dimension of consistency is the d value, the number of
updates that can be buffered by a replica before updating other
replicas. This has been related to availability in [6]. However,
another dimension of consistency, namely update ordering, has
not been considered. Various consistency criteria can be realized
on the basis of update ordering. These include serializability, causal
consistency and Pipelined Random Access Memory (PRAM)
consistency. The idea is that given these two dimensions of
consistency, there is a trade-off between scalability and availability.
We have come up with an upper bound on scalability (in terms of
productivity) for a given availability and the two dimensions of

298 GRID COMPUTING

consistency, for specific workload and faultload combination. This
theoretical upper bound is difficult, if not impossible, to achieve
in practice. We are currently conducting performance
measurements to evaluate the practical scalability of Virat. We
are also optimizing Virat to make the scalability closer to the
theoretical upper bound.

11.3 Mobile Grid Monitoring System

Monitoring is the act of collecting information concerning the
characteristics and status of resources of interest. Grid resources
may dynamically join and leave, resulting in varying membership
over time. Even in fairly static conditions, resource availability is
subject to failures. Due to such a transient nature of the grid, the
system must support the finding and keeping track of the required
resources dynamically. This is the main purpose of Grid Inform-
ation Services (GIS). This requires a process called monitoring,
which systematically collects the information regarding the current
and past status of the grid resources to satisfy the users’ need.

Several groups are developing grid monitoring systems [7]. In
most of these monitoring systems, the monitoring system is a part
of the discovery system. However, in our proposed approach, the
publishing, discovery and handling of resources are done by the
DSO structure which is considered as a platform to build the
mobile grid infrastructure. The monitoring system resides over
the shared space in the peer-to-peer layer.

In order to incorporate intelligence into the mobile grid, we
require a monitoring system that manages the vast heterogeneous
resources including those offered by the mobile devices across
administrative domains. The mobile grid monitoring system
essentially helps in scheduling and task allocation for parallel
computing, in enforcing Quality of Service (QoS) and Service
Level Agreements (SLA), in identifying the cause of performance
problems, optimized resource usage and fault detection, in addition
to building prediction models of mobile device movement.

EPILOGUE 299

Different kinds of data are collected from the different components
that make up the mobile grid.

The monitoring information traffic can be huge and with only
one monitoring manager, it becomes a bottleneck for the entire
system. Hence, the hierarchical monitoring structure was consi-
dered by most of the existing monitoring systems. However it is
proved in [8] that the scalability of peer-to-peer structure is better
than a hierarchical structure. Hence the CHs associated with each
cluster, which forms the peer-to-peer overlay, share the monitoring
activities among themselves.

The proposed Mobile Grid Monitoring System provides the
following features:

1. Mobile Host (MH) monitoring: Data regarding the location of
the device, connectivity, mobility, signal strength, etc. at
different times of the day can be monitored and used for
predicting the future values of these parameters. This could
help in characterizing the movement pattern of the devices.
This information can be used in scheduling to provide
guaranteed QoS and SLA. In addition, information regarding
load, battery life, available memory, etc. is also collected.
When these parameters cross the threshold value, the MH
sends the associated information asynchronously to the
monitoring system. The mobile node parameters are also
sent on the basis of the request from the monitoring system.
Mobile device monitoring can be done by monitoring the
SO associated with the mobile device.

2. Providing dynamic space allocation and file management on shared
storage components on the grid: They provide storage reservation
and dynamic information on storage availability for data
movement, and for the planning and execution of grid jobs.
This is designed to facilitate the effective sharing of files, by
monitoring the activity of shared files, and making dynamic
decisions on which files to replace when space is needed.

3. Data store monitoring: The access patterns of the data can be
observed to assist in replica management. Data regarding
data movement overhead and data lifetime can also be

300 GRID COMPUTING

collected. This can be used to decide whether the task must
be scheduled near the data store or data moved near the
task. It is also possible to maintain the meta-data of the
different data stores and their elements in order to assist in
storage management, handling requests, etc. The meta-data
could also contain information about the locks on the different
data elements.

4. Static Host (SH) monitoring: We collect the CPU load, available
memory, bandwidth details, etc. from the host. The hosts
can either be monitored continuously or on being triggered
by detecting network activity on a particular port. This
information can be used by the scheduler to choose the
donor.

5. Process monitoring: Changes in the process state can be
monitored.

6. Application monitoring: Checkpoints can be inserted into the
application to capture the intermediate state of the application
and the data required for performance analysis.

Any query to a mobile device is routed through its associated
SO. The object reference of the SO is obtained from the naming
service of the DSO by querying for the IP of device as name [3].
The query is forwarded to the MH, with the help of the current
location information available at the SO. In case the MH is not
reachable due to reasons like out-of-coverage, the query is handled
at the SO level. The monitoring system stores the historical data
related to the MH movement pattern in the repository for
characterizing the movement pattern. This helps in scheduling
tasks and storing data.

In our proposed model, the monitoring system will observe the
requests and try to find out from which place and for which file
the requests have come. Based on the observations, the lifetime of
the file, data transfer time and the available space in the data
store, the system chooses the optimal location. This is done by
maintaining the history in the monitoring system about the
requested queries and the lifetime of the data which they are
accessing to predict the location as well as to initiate the replica

EPILOGUE 301

dynamically. Although the probability of prediction is high, still
even if it fails, it affects only the performance of the system, not
its correctness.

The monitoring daemon, which collects the monitoring data,
runs on the static nodes of the mobile grid. Mobile nodes run the
exporter daemon, which exports the monitoring data of the mobile
nodes to the mobile support station. The monitoring system resides
on the CH of the cluster and maintains a monitoring data
repository to store the data observed within the cluster. As the
CHs interact among themselves over a peer-to-peer overlay, the
monitoring system is scalable, fault-tolerant and ensures automatic
reconfiguration.

11.4 Health Care Application Scenario

One of the possible scenarios wherein we can envision the
integration of sensors, mobile nodes and data grids is the following
health monitoring and treatment example. Patients could have
sensors embedded inside their bodies to keep checking for specific
data such as blood pressure, cholesterol level, etc. When local
sensor data exceeds certain pre-defined thresholds, the sensor
passes the data to a nearby mobile device, possibly the patient’s
hand-held device. The device is part of our mobile grid and can
utilize and provide services. It uses the grid to aggregate data
from multiple sensors from the same patient, uses historical
information and some computation to decide if this pattern
(combination of data values from various sensors on a patient) is
abnormal and requires emergency handling. If this is the case, the
details of the patient are collected from the grid and forwarded to
a health care centre. Based on the location of the mobile device
which sent the data to the grid, the location of the patient is
tracked.

A computer system at the health care centre (it is also part of
the grid) locates a nearby ambulance by querying the grid. The
ambulance carries some mobile devices and can be directed to
the patient’s location as soon as possible. This computer system

302 GRID COMPUTING

also sends the patient’s details to the closest available physician.
The physician could then pull out the medical history of the
patient from the data grid (which contains historical data of all
patients treated at various medical centres) and, based on the
history and the current problem, come up with a strategy for
immediate treatment. This treatment strategy could then be passed
on to the paramedics who are on the ambulance approaching the
patient. This could help the paramedics to be totally prepared
and to start treating the patient immediately on reaching him.
Further, the mobile grid would also help in assembling the required
medicines and injections to be administered to the patient when
they arrive on the scene.

11.5 Related Work

Our work is unique in that no major mobile grid systems exist, to
the best of our knowledge. Consequently, existing grid systems
do not address the issue of mobile devices integration. Further,
grid monitoring systems do not address what to monitor and how
to monitor in mobile environments. Thirdly, our idea of integrating
data grids as well as data from sensors into the mobile grid is a
further distinguishing feature of our work.

Very few works (such as [9,10,11]) are done in mobile grids.
But none of these chapters addresses the issues related to mobility,
which leads to an availability problem. They had also specifically
looked only at the computing nature of the mobile grid. [9]
discusses the challenges that arise due to the integration of mobile
devices into a grid. [10] provides a proxy-based approach for the
sharing of computing power among the participating mobile
devices. The model considers only the mobile ad hoc networks.
[11] comes out with an architecture using Mobile Agent (MA)
technology, wherein the mobile agents are used as a communi-
cation primitive. The chapter focuses on mobile devices using the
grid and not as members of the grid.

Some of the major projects involved in the integration of
computational and data grids worldwide are CERN’s Openlab

EPILOGUE 303

[12], NASA’s Information Power Grid [13], European Union’s
DataGrid [14], Particle Physics Data Grid (PPDG) Collaboratory
Pilot [15] and Queens University’s DataCentric Grid project [16].

The CERN Openlab is a collaborative project between CERN,
the European Organization for Nuclear Research and industrial
partners, and aims to develop data-intensive grid technology to
be used by several scientists worldwide working at the next-
generation Large Hadron Collider. The Large Hadron Collider
(LHC), being constructed by CERN, will be the most powerful
particle accelerator ever built. It will commence operations in
2007 and will run for up to two decades. Detectors placed around
the 27 km LHC tunnel will produce about 15 Petabytes of data
per year. These huge amounts of data must be stored in a
distributed fashion and made accessible to thousands of scientists.
This requires a lot of resources. CERN has therefore launched the
LHC Computing Grid (LCG), whose mission is to integrate tens
of thousands of computers at dozens of participating locations
worldwide into a global computing resource.

DataGrid, a project funded by European Union, is working
towards building the next generation computing infrastructure
providing intensive computation and analysis of shared large-scale
databases, from hundreds of TeraBytes to PetaBytes, across widely
distributed scientific communities. The grid middleware provided
by the Globus Toolkit is enhanced to work better with large data
sets, many files and many users distributed over several sites and
organizations. Some of the research areas being addressed by this
project are work scheduling, data/replica management, monitoring
services, fabric management, storage management, integration
testbed and support.

NASA’s Information Power Grid (IPG) is a high-performance
computation and data grid that integrates geographically distributed
computers, databases and instruments. On top of the basic grid
services, the IPG middleware shall build both generic and
discipline-specific workflow management systems that will carry
out the human defined protocols, such as multi-disciplinary
simulations and data analysis, and global data cataloguing and
replica management systems needed to manage the data for these
scenarios.

304 GRID COMPUTING

The Datacentric Grid Project aims to design and implement
grids for data-intensive operations in which data is moved as little
as possible. The volume of data quadruples every 18 months,
while the available performance per processor doubles in the
same time period. Thus, moving data to the program would not
scale in the long run. It is much more effective to divide programs
into separate pieces and send them to the data. This requires a
data-centric view of computation, rather than the conventional
processor-centric view. This would require the data repositories to
be fronted by large computer servers to process their data. The
data-centric grid would also require a new programming model,
possibly embodied in a kind of query language.

The Particle Physics Data Grid Collaboratory Pilot (PPDG) is
developing and deploying production grid systems with effective
end-to-end capabilities by integrating experiment-specific appli-
cations, grid computation technologies and storage resources.
Sustained production data movement over the grid has resulted
in better data transfer throughput, reduced operational effort, and
a paradigm shift for distributed data processing from manual to
automated bulk file transfers.

In Data Grids [17], normally the scheduler schedules the tasks
on to computational elements which are in the near proximity of
the storage elements. If no computational element is available,
then they try to replicate the data store towards the computational
task. They do not optimize replica location.

11.6 Conclusions

We are envisioning a mobile grid in which any device (including
wireless sensors or other mobile devices) can seamlessly provide
or access data, computation and other services anywhere anytime.
This is enabled by integrating data grids and sensor data into our
existing mobile grid. We have also come up with a mobile grid
monitoring system that enables the grid to optimize resource
utilization and scale, in addition to handling mobile device
constraints.

EPILOGUE 305

We have currently simulated the mobile grid. We are currently
building the hardware interfaces and the software required to
realize the grand vision. An interesting direction for future research
is to focus on specific aspects of the mobile grid such as scheduling
and to come up with efficient algorithms for the same. We are
also looking at providing the right abstraction for programming
the mobile grid.

References

1. Satyanarayanan, M., “Pervasive computing: Vision and
challenges”, IEEE Personal Communications, pp. 10–17, August
2001.

2. Srinivas, A. Vijay, D. Janakiram and Raghevendra Koti,
“Virat: An Internet Scale Distributed Shared Memory
System”, Technical Report IITM-CSE-DOS-2004-03,
Distributed and Object Systems Lab, Indian Institute of
Technology, Madras, January 2004.

3. Janakiram, D., M.A. Maluk Mohammed, A. Vijay Srinivas
and Mohit Chakraborty, “SOM: A Paradigm for Location
and Availability Management in Distributed Mobile Systems”,
Technical Report IITM-CSE-DOS-2005-01, Distributed and
Object Systems Lab, Indian Institute of Technology, Madras,
January 2005.

4. Gibert, Seth and Nancy Lynch, “Brewer’s Conjecture and
the Feasibility of Consistent, Available, Partition-Tolerant Web
Services”, ACM SIGACT News, Vol. 33, No. 2, pp. 51–59,
June 2002.

5. Yu, Haifeng and Amin Vahdat, “The Costs and Limits of
Availability of Replicated Services”, Proceedings of the ACM
Symposium on Operating System Principles (SOSP), Banff,
Canada, October 2001.

6. Zhang, Chi and Zheng Zhang, “Trading Replication
Consistency for Performance and Availability: An Adaptive

306 GRID COMPUTING

Approach”, Proceedings of the 23rd International Conference
on Distributed Computing Systems, Providence, Rhode
Island, USA, May 2003.

7. Zanikolas, Serafeim and Rizos Sakellariou, “A Taxonomy of
Grid Monitoring Systems”, Elsevier Journal on Future Generation
Computer Systems, Vol. 21, pp. 163–188, 2005.

8. Foster, Ian and Adriana Iamnitchi, “On Death, Taxes, and
the Convergence of Peer-to-peer and Grid Computing”,
Proceedings of the Second International Workshop on Peer-
to-peer Systems (IPTPS 2003), Springer-Verlag, February
2003.

9. Phan, Thomas, Lloyd Huang, and Chris Dulan, “Challenge:
Integrating Mobile Wireless Devices into the Computational
Grid”, Proceedings of the Eighth Annual International
Conference on Mobile Computing and Networking, ACM
SIGMOBILE, September 2002.

10. Hwang, Junseok and Praveen Aravamudham, “Middleware
Services for P2P Computing in Wireless Grid Network”, IEEE
Internet Computing, pp. 40–46, July-August 2004.

11. Bruneo Dario, Marco Scarpa, Angelo Zaia and Antonio
Puliafito, “Communication Paradigms for Mobile Grid Users”,
Proceedings of the Third IEEE/ACM International
Symposium on Cluster Computing and the Grid
(CCGRID’03). IEEE Computer Society, 2003.

12. Grey, Francois “The CERN Openlab: A Novel Testbed for
the Grid”, CERN Courier, Vol. 43, No. 8, pp. 51–59,
September 2003.

13. Johnston, W.E., D. Gannon and B. Nitzberg, “Grids as
Production Computing Environments: The Engineering
Aspects of NASA’s Information Power Grid”, Proceedings of
the Eighth IEEE International Symposium on High
Performance Distributed Computing, Redondo Beach,
California, August 1999.

EPILOGUE 307

14. Segal, B. “Grid Computing: The European Data Grid Project”,
Proceedings of the IEEE Nuclear Science Symposium and
Medical Imaging Conference. Lyon, France, October 2000.

15. Skow, Daniel, “Particle Physics Data Grid Collaborative
Science (White Paper)”, http://www.ppdg.net/docs/SciDAC/
20050118_PPDG_WP.pdf.

16. Skillicorn, D.B., “The Case for Data-centric Grids”,
Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS 02); Fort Lauderdale, Florida,
April 2002.

17. Chervenak, A., I. Foster, C. Kesselman, C. Salisbury and S.
Tuecke, “The Data Grid: Towards an Architecture for the
Distributed Management and Analysis of Large Scientific
Data sets”, Journal of Network and Computer Applications,
Vol. 23, pp. 187–200, 2001.

	Cover
	Preface
	Acknowledgements
	Contents
	Abbreviations
	Chapter 1: Introduction: Cluster to Grid Computing
	Chpater 2: Parset: System-independent Parallel Programming on Distributed Systems*
	Chapter 3: Anonymous Remote Computing Model*
	Chapter 4: Integrating Task Parallelism with Data Parallelism*
	Chapter 5: Anonymous Remote Computing and Communication Model*
	Chapter 6: Parallel Programming Model on CORBA*
	Chpater 7: Sneha-Samuham: Grid Computing Model*
	Chapter 8: Introducing Mobility into Anonymous Remote Computing and Communication Model*
	Chapter 9: Distributed Simulated Annealing Algorithms for Job Shop Scheduling*
	Chapter 10: Parallel Simulated Annealing Algorithms*
	Chapter 11: Epilogue DOS Grid: Vision of Mobile Grids*
	References

