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The difference

The entire difference
between you and me
is that you write
and I talk,
and how entirely different they are.
You cover it and I open it.

Bhawani Prasad Mishra
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One’s approach to life and, more specifically, to the choices one
makes in the course of it, the questions one asks and the irritants
one learns to ignore have a cumulative outcome. Life is defined
by beauty, love, taste and the passion that propels one in pursuit
of these lambent aspirations. In this, one’s family and friends,
early and advanced education, the company one keeps and the
approaches one learns from the especially gifted people that one
has the good fortune of befriending all make a difference. So
do people who mentor and support through the vicissitudes of
life. I was lucky to have had a good share of exemplary teachers
in early years, and during my undergraduate education at the
Indian Institute of Technology, Kanpur, as well as particularly
enlightened colleagues during my years at the research laboratory
at the International Business Machines Corporation (IBM). The
latter was a community with a preponderance of exceptional
people. Every encounter had something to learn from it. Science
ruled. Nonsense was unacceptable. All these benefactors have
influenced choices I have made, especially the nature of questions
I became interested in and asked and the multifaceted approaches
of different perspectives I used in answering them. That some
parts of businesses can run with academic ideals for the greater
good and that academe is so much beholden to business norms has
been a surprising observation of mid-life. The loss of the research
institutions, particularly the IBM and Bell laboratories, and the
reduction in the diversity of thoughts and approaches that has
followed, has changed the American story. These institutions were
exemplary for most of their lives in their approach to discovery,
research and development, understood their interconnectedness
and had an intellectual commitment that overrode palace intrigues.
The test of good management is in how an institution responds and
negotiates through hard times. IBM maneuvered remarkably well
for a fair period.

Foremost among the people I wish to acknowledge are the
colleagues I had at Yorktown during Research’s golden
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Price, Bob Dennard, Subu Iyer, Tom Jackson, Supratik Guha, Pat
Mooney, Arvind Kumar, Chuck Black, Jeff Welser, Tom Theis, Doug
Buchanan, Dan DiMaria, Jim Stathis, Emilio Mendez, Leo Easaki,
Jim Misewich, Ravi Nair, Charles Bennett, Hans Rupprecht, Jerry
Woodall, Peter Kirchner, Jeff Kash, Jimmy Tsang, Steve Wright,
Dennis Rogers, Marshall Nathan, Frank Fang, Alan Fowler, Reuben
Collins, Dick Rutz and many others shared technical and life-
enriching wisdom.

One notable aphorism from those
days is as follows:  ̏Beware the PF9s
and PF10s.˝ Before the internet, or
the bitnet before that, there existed
within IBM an internal network
(VNET) for electronic mail, for
accessing repositories of useful
codes and technical documents
that individuals had written, and for
other network-wide computing tasks.
PF9 and PF10 were programmable
function keys for the  ̏Receive˝
and the  ̏Send˝ tasks in the mailing
program.  ̏PF9s and PF10s˝ was the
euphemism for the doorkeepers,
speed breakers and messengers—
folks whose technical careers were
short but who had the wherewithal
to generate pointless work—from
whom one needed to protect
oneself to be a good scientist and
engineer.

This text being about semiconductors, I want to particularly
acknowledge the long discussions with my contemporaries David
Frank, Steve Laux and Max Fischetti, each with their own different
interests but always ready to discuss the numerous interesting
questions that kept unfolding as new technologies made new
artificial creations in semiconductors with their own questions
possible. Arvind Kumar later on joined this illustrious group. Paul
Solomon straddled a sagacious understanding of devices and their
materials’ physics simultaneously. Among the senior colleagues,
Frank Stern, with his Dirac-like devotion to choice of words and
science, influenced all of us. His co-authored Reviews of Modern
Physics book-sized article on two-dimensional systems continues
to influence the community to this day. One had to be very careful
in listening to Peter Price lest a gem of an insight—spoken in a
few choice words—was missed. Soon after I left for academe,
upon reading a letter of mine in the Wall Street Journal about the
importance of bureaucracy in getting things done properly—I was
responding to a published anti-government opinion that used
developing nations as examples by pointing out that it was the
select dedicated folks that partly saved the day when the politicians
royally failed with the Indian partition and the accompanying
migration—Peter wrote,  ̏Sandip, the Op Ed page of WSJ is scarcely
the place to look for rationality.˝

The conflict between a humane society and a living economy
is a broader tension. It has always been. We fail at teaching our
graduating students not to force fit  ̏truth˝ to our biases. We
succeed with too few. Part of the reason for this failure is that a
business style—talking points, elevator pitch, slides to which one
talks, spreadsheets, college bookstores as sweatshirt shops with
little space for books, libraries as cafés with the loss of space and
collection where one was exposed to printed thoughts that one was
not actively searching for, and, underlying all this, finance over
content—has broadly infected the educational institutions of this
country. Science and technology are major social and economic
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forces. By not finding a balance between being the source of
technological and financial success, which is initially limited to
only a few who are educated and have power, and is economic,
and in developing citizenship, which is a broader goal and is social,
academia seeds a future downfall if it is not fixed. The standards
need to be high, and, for this social commitment theme, legal
acceptability or checking boxes of ethics as dictated by accreditation
boards is not that standard. This is particularly important in science
and engineering, where the student usually has a very different
mental focus than the student of humanities.

The early thoughts on how to organize this writing occurred
during a sabbatical leave at Harvard in 2006–2007. I even wrote
some preliminary notes. But work could not begin in earnest until I
managed to relinquish several responsibilities that work life brings.
The first drafts started in Ithaca around 2010, but serious work had
to wait for my next sabbatical leave in 2012–2013, which also gave
a chance to try the material—of the fourth and this third volume—
with different student audience. At the Indian Institute of Science,
my hosts included Professors Navakant Bhat, Rudra Pratap and
S. Shivashankar; at Stanford University, Professor Roger Howe;
and, at Technische Universität München, Professor Paolo Lugli. The
environment at these institutions was ideal for what I had in mind.
And, in addition, it provided an opportunity to be in the company
of several other faculty with a joyful outlook to science and life:
Professor Ambarish Ghosh, Srinivasan Raghavan, Philip Wong,
Yoshio Nishi, Walter Harrison, Christian Jirauschek, Wolfgang
Porod and Peter and Johannes Russer—my immense gratitude to
them for a stimulating year. The students who participated in these
courses around the world have provided invaluable feedback that is
reflected in the writing and rewriting.

When I first arrived at IBM Research
in the beginning of the 80s, APL—
A Programming Language—as an
abstract and compact computational
and graphical language tool was an
eye opener. It had beauty, and it let
you tackle data manipulation, matrix
calculations such as for differential
equations, searches, et cetera, all quite
compactly, together with publishable
graphics. But, as used to be said
about APL programs’ readability,
 ̏It was tough to write. It should
be tough to understand.˝ I found
deciphering even my own codes that
were just a few years old hard going.
Now, when using Python, where,
as with MATLAB, I can see through
where these systems and their syntax
built itself from, I do appreciate the
readability, reusability and clarity
that underlie the evolution. This
goes together with the difficulties I
have certainly faced with undoing
the programming relearning that
came from having been exposed to
FORTRAN first. Those indiscriminate
GO TO statements make a complete
tangle of the ball of string that has an
O(n2) complexity.

Many colleagues have read and commented on parts or the
whole, and this has helped with the exposition. To Tom Theis,
Wolfgang Porod, Max Fischetti, Jerry Tersoff, Supratik Guha, Ed
Yu, Federico Capasso, Siegfried Selberherr, Srikrishnaa Vadivel and
Kunal Tiwari, my thanks for sharing their time and suggestions.
Jack and Mary East—my dear friends—have given crucial support
through their constant interest in the progress of this work. My
wife Mari has kept a careful eye on the goings-on, helped keep my
centrifugal propensities in check and given invaluable advice on the
presentation. The very constructive exchange with Sonke Adlung,
Harriet Konishi and Elizabeth Farrell at Oxford University Press has
been immensely valuable in the creation of the final form.

The LATEX class for Edward Tufte’s style suggestions has been
largely followed in these texts. The authors of such open source
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resources, which here also includes Python for the calculations in
the exercises and figures, perform an immense service to the society.

Over the years, I have been fortunate to have had generous
and understanding mentors and supporters who have made the
research and academic pursuits fulfilling. The research environment
of those early years was a reflection of the focus on research with a
perspective. The management ably fostered this.

In days past, on the board outside Professor Les Eastman’s office,
there used to be a press clipping circa the late 1970s, from the
Universal Press Syndicate, with the following quote:  ̏Our futures
almost certainly depend less on what Ronald Reagan and Walter
Mondale say and do than on what is going on inside the head of
some young Cornell graduate waiting for a plane in Pittsburgh.˝
The routes are now through Philadelphia, but the thought is still
right. To students who have interacted with me through the classes
goes the ultimate tip of the hat.

Science touches us all through its beauty. My colleagues, teachers,
family, students and others who have, through occasional talks,
conversations, writings, the way an argument was framed, a clever
twist of reasoning, or even plowing through when a situation
demands, have enlightened this recognition.

Sandip Tiwari
Ithaca, Orsay, Southport and Bhopal
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Introduction to the series

These books are a labor of love and love of labor. They reflect
a personal philosophy of education and affection for this small
but vital subject area of electroscience, one that has given me
satisfaction. This subdiscipline is also a domain where knowledge
has evolved rapidly, leaving in its wake an unsatisfactory state
in the coherence of content tying mathematical and physical
descriptions to its practice.

Engineering-oriented science education, even though not really
that different from science education itself, is difficult for two
reasons. It aims to provide strong scientific foundations and also A slight aside. Behind this education

is an urge to understand our universe,
the nature in which we exist, and
perhaps through our acts bringing
about small changes around us to
make life and the world a bit better.
When my eldest son came back home
after first semester in college, he
said,  ̏I now get it. Biology is the
emergence of chemistry, chemistry is
the emergence of physics, and physics
of mathematics.˝ This is a modern
take of Galileo Galeilei’s statement in
Sidereus Nuncius,  ̏Nature is written in
that great book which ever lies before
our eyes. · · · . The book is written
in the mathematical language, and
the symbols are triangles, circles and
other geometrical figures without
whose helps it is humanly impossible
to comprehend a single word of it,
and without which one wanders in
vain through a dark labyrinth.˝ The
symbols and this language, especially
via Leibniz’s calculus, have expanded
tremendously. This Cartesian world
view of physical reality, though
powerful, is reductionist and
incomplete in the Gödelian sense.
Mathematics, music, paintings, and
good writing are universal languages
that reach out from the natural world
to our senses. Objectivity is not

to make the student capable of practicing it for society’s benefit.
Adequate knowledge of design and technology to invent and opti-
mize within constraints demands a fundamental understanding of
the natural and physical world we live in. Only then can we create
usefully with these evolving tools and technology. Three hundred
years ago, calculus and Kepler’s and Newton’s laws may have
been adequate. Two hundred years ago, this basic foundation was
expanded to include a broader understanding of thermodynamics;
the Lagrangian approach to classical mechanics; probability; and
the early curiosity about the compositional origins of lightening.
A hundred years ago, the foundational knowledge had expanded
again to include a fair understanding of the periodic table, Hamil-
tonians, electricity, magnetism, and statistical mechanics, and,
yet again, it was incomplete, as the development of new, non-
classical approaches, such as Planck’s introduction of quantum of
action, and relativity, showed. Our understanding still remains very
incomplete today even as evolution is gathering pace via science
and engineering with non-carbon forms of intelligent machines
quite imaginable. Reductive and constructive approaches, as before,
pervade the pursuit of science and engineering. Understanding
singularities, whether in black holes, in phase transitions with their
information mechanics implications, or for solving near-infinite
differential equations with near-infinite variables and constraints
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and the networks they form, is central to science and engineering just the Cartesian physical objectivity
with an in-built bias in the exclusivity
of certain properties but must
also expand to domains of other
experiences for such a coming
together to explain the world. When
science uses objective measures
of information, it is just that, a
measure of that specific information
content. The jump to knowledge—
a phenomenological objective
view—is much more. I would also
add that engineering is very much
a Martin Heidegger’s Being and
Time, where being-in-the-world is
central, and Sartre’s progression
to existentialism with Being and
Nothingness as humanism.

problems—connecting back the two ends of the string.
All this evolving knowledge and its usage would be deficient

were we incapable of adequately using the tools available, which
in their modern forms include software for the implementation
of mathematics and their computational, observational and
experiment-stimulating machinery and their operating software for
designing and optimizing suitable answers to the questions posed.
A physical understanding of the connections between different
interactions, as well as the reasoning that leads one to identify the
most primary of these interactions, is essential to utilizing them
gainfully.

Another conundrum and this is particularly true for three
volumes of this series is that much of this subject area is at the
intersection of science and engineering with both important. A
scientist is both an artist and a craftsman. The former in the sense
of Edgar Degas who says  ̏On voit comme on veut voir; c’est faux;
et cette fausseté constitue l’art,˝ Science in this art sense is a search Translated, Degas is saying  ̏People

see what they want to see; it is false;
and this falseness constitutes art.˝

for truth. Art is subjective. In the art of book writing, the choice of
words and the exposition are our main tools for exploring the truth
or maybe perhaps  ̏what we want to see.˝ The craft, on the other
hand, has much objectivity to it. Objectivity can be tackled through
the tools of mathematics. Both the art and the craft are important.
The books are an attempt at finding that balance so that it appeals
both to the foxes and the hedgehogs.

Engineering education, with these continuing changes in fun-
damental understanding and its practice, raises difficult questions
of content and delivery too under the constraint of a fixed time
period for education. It has also raised serious humanist questions
of affordability, even as engineering education claims to aim at
frugality through less expensive scaled delivery mechanisms.
Engineering, more than science, is beholden to societal needs.
In growing fields, particularly the ones that that have the most
immediate societal relevance, this rapidly brings content and
finances into conflict. As the amount of engineering and science
knowledge required rapidly increases, with the rapidly evolving
technology, training becomes obsolete just as rapidly. In technical
areas, whose educational needs expand suddenly because of their
societal use and consequent professional needs, specialized course
offerings proliferate rapidly. This puts pressure on the teaching
of the foundational knowledge of the disciplines, and the time
available for it. The inclusion of broad skill sets into the core
curriculum is threatened by the need to teach an expanding number
of specialized topics in an ever-shrinking amount of time. The pace
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of and need for change through new offerings or modifications
to courses risk introducing disjointedness and decreasing rigor,
because modifying and harmonizing a curriculum is a difficult and
time-consuming task.

This series of books is an experiment in attempting to answer
today’s needs in my areas of interest while preserving thoroughness
and rigor. It is an attempt at coherent systematic education with
discipline, while maintaining reverence and a healthy disrespect for
received wisdom.

The books aim to be conceptual not mechanical. This series is
aimed ultimately at the electroscience of the nanoscale—the current
interest of the semiconductors and devices stream—but which is
also far more interdisciplinary than the norms suggest. Its objective A hallmark of the present times is

introduction of new words when
older ones lose their apparent luster or
 ̏branding.˝  ̏Multidisciplinary˝
evolved to  ̏interdisciplinary˝
with an expansion of indiscipline.
 ̏Transdisciplinary˝ must be trying
to birth itself. Richard Feynman’s
statement,  ̏In these days of
specialization there are too few people
who have such a deep understanding
of two departments of our knowledge
that they do not make a fools of
themselves in one or the other˝ (from
R. P. Feynman,  ̏The meaning of it
all: Thoughts of a citizen-scientist,˝
Perseus ISBN 0-7382-0166-9 (1989), p.
9), is not inappropriate here.

is to have students understand electronic devices, in the modern
sense of that term, which includes magnetic, optical, mechanical,
and informational devices, as well as the implications of the use of
such devices. It aims, in four semester-scale courses, to introduce
the underlying science, starting with the fundamentals of quantum,
statistical and informational mechanics and connecting these to an
exposition of classical device physics, then dive deeper into the
condensed matter physics of semiconductors, and finally address
advanced themes regarding devices of nanometer scale: so, starting
with the basics and ending with the integration of electronics,
optics, magnetics and mechanics at the nanoscale.

The first book1 of the series explores the quantum, statistical

1 S. Tiwari,  ̏Quantum, statistical
and information mechanics: A unified
introduction,˝ Electroscience 1,
Oxford University Press, ISBN
978-0-198-75985-0 (forthcoming).

and information mechanics foundations for understanding semi-
conductors and the solid state. The second2 discusses microscale

2 S. Tiwari,  ̏Device physics:
Fundamentals of electronics and
optoelectronics,˝ Electroscience
2, Oxford University Press, ISBN
978-0-198-75984-3 (forthcoming).

electronic, optical and optoelectronic devices, for which mostly
classical interpretation and understanding suffice. The third3 builds

3 S. Tiwari,  ̏Semiconductor physics:
Principles, theory and nanoscale,˝
Electroscience 3, Oxford University
Press, ISBN 978-0-198-75986-7 (2020).

advanced foundations utilizing quantum and causal approaches
to explore electrons, phonons and photons and their interaction
in the solid state, particularly in semiconductors, as relevant to
devices and to the properties of matter used in devices. The fourth
book4 is a treatment of the nanoscale-specific physics of electronic,

4 S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017).

optical, magnetic and mechanical devices of engineering interest.
The second and the third volumes are for subjects that can be
taught in parallel but are necessary for the fourth. The value of
this approach is that this sequence can be completed by the first
year of graduate school or even the senior year of undergraduate
studies, for a good student, while leaving room for much else that
the student must learn. For those interested in electrosciences, this
still includes electromagnetics, deeper understanding of lasers,
analog, digital and high frequency circuits, and other directions.
The fourth book was the first to come out because of the urgency
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I felt. The third book puts together the foundational learning for the
modern insights of semiconductors.

I have always admired simplicity of exposition with a thorough
discussion that even if simplified, is devoid of propaganda or the
much too common modern practice of using templates where depth
and nuances are lost and doubts and questions are not addressed.
Also consistency is easily lost when modern tools, instead of a
pencil and paper, are employed. The style of these books follows
these beliefs. Notations, figures, the occasional use of color and
other stylistic choices are consistent across the book series.

From early years, I have been a devotee of marginalia—much of
the learning and independent thought have come from doodling
in the margins and the back pages of notebooks. These books are
organized so that the reader will feel encouraged to do so.

A list of very readable, in-depth sources, with my perspectives
serving as a trigger for different contents within the book, is to be
found at the end of each chapter, in the section titled  ̏Concluding
remarks and bibliographic notes.˝ No attempt has been made to
credit original discoverers or authors. These remarks and notes
ascribe them, or they are to be found by following the references
in these notes to their origins.

The exercises are formulated for use in self-study and in the
class-room. A subject cannot really be learned by simply reading.
Problems requiring application of the information learned and
encouraging further thinking and learning are necessary. When
we discover for ourselves, we learn best. The exercises here are
meant to inform and to be instructive. They are also ranked for
difficulty—those that need only a short time but test fundamental
understanding are marked as (S), for simple; those requiring
considerable effort, bordering on being research problems, are rated
(A), for advanced; and those that are intermediate are rated (M), for
moderate.

Teaching slides are available on the companion website recorded
in the front. The solutions manual may also be requested by pro-
viding information at the second link furnished in the front. Slides,
when in the modern template-based style, can seriously hinder
teaching when they become a tool for filtering key information
and explanation while emphasizing summary points. The available
presentation material is a tool to avoiding mistakes in writing out
equations and to carefully and graphically explain the relationships
that science and engineering unfold. They do not substitute for the
book and the instructor needs to be diligent in making sure that
important themes of teaching—probing, questioning, reasoning,
explaining, exploring evidence—come out credibly. I am also happy

The emphasis on probing, questioning,
reasoning, explaining and exploring
cannot be emphasized enough. I
use paradoxes, puzzles, gedanken
experiments and real world analogies
as common tools. A simple capacitor
switched abruptly connected to
an ideal source lets one explore
dissipation and energy conversion
in its broader sense. Displacement
currents are real currents, a capacitor
as an antenna can radiate, that this
radiation proceeding to infinity has
a real characteristic impedance, that
an infinite L and C transmission line
network ends up as a line with real
impedance even if made of reactive
elements, and that dissipation may
arise in the material too, can all be
followed through from the poor
lowly capacitor. How did the energy
appear throughout the capacitor lets
one probe Maxwell’s equations and
electromagnetic propagation even
when this current is asymptotically
vanishing in a slow charging process.
And farther on a tying in of all these
connections between fundamental
laws and physical behavior entwining
Maxwell’s electromagnetism, the
quantum-mechanical origins of
the materials’ properties and the
diverse meanings of entropy from
statistical mechanics. When I tried to
introduce a question drawing on the
basic understanding of capacitors
in a qualifying examination, a
fellow member—a PF9/PF10 with
administration responsibilities—spoke
up that we teach our students to
never connect ideal voltage sources
to capacitors. Science is not religion.
Looking for contradictions helps one
find the invariants—the physical
principles—that stand tall. It is
through such probings and mental
experiments that one learns and
understands. There is nothing more
satisfying in education than this
peeling of onion from a simple
question to deeper and deeper
insights. This is what education is
about. Curiosity should never be
discouraged.
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to hear and discuss the subtleties and the different viewpoints of
principles, approaches and the deeper meanings of a derived result.

Lots of people can grasp things remarkably quickly. But grasping
is not the same as understanding. Understanding is a much deeper
network in the brain. I hope students will find in this sequence
of books the ballast to propel their own interests through the
understanding.

The books could have been shorter and crisper had there
been more time. But, what time there was has given enormous
pleasure—a time out for integrity in the presence of the incessant
pressure of existence, particularly of life in modern academe. For
this escape, my gratitude to this world. For making possible the
following of my wishes to produce these songs as the shadow
of a life in research, teaching and writing, I thank the Hitkarini
Foundation.
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Semiconductors, as crystalline, polycrystalline or amorphous
inorganic solids, as ordered or disordered organic solids or even
in glassy and liquid forms, form a large set of materials useful in
active and passive devices. The control of their properties arising
in an interaction of particles—atoms, electrons, photons, their
elementary one- and many-body excitations, transport and the
exchange between different energy forms—has been a fruitful
human endeavor since the birth of the transistor, where they found
their first large-scale use. Integrated electronics, through its social
and commercial informational ubiquity; optoelectronics, through
lasers and photovoltaics; and thermoelectronics and magneto-
electronics, with their use in energy transformation and signal
detection, are but a few of these gainful uses. Nanoscale, within this
milieu, opens up a variety of perturbative and significantly more
substantial and sensitive effects. Some are very useful, and some
can be quite a bother.

Dating back to the 1950s, there exist numerous good textbooks
for the solid state. From these early years, J. M. Ziman’s Electrons
and phonons for the details and Principles of the theory of solids for
a thoughtful broad discussion are particularly of note. Another
one is Rudolf Peierls’ Quantum theory of solids. Among solid-state
texts, these remain particularly alive because much of their content
is appropriate to electronics of semiconductors. They certainly
treat several of the semiconductor-specific scattering and transport
topics rather well. As optics—later rebranded as photonics—became
important, the divergence in texts increased. Later solid-state texts,
with their emphasis on metals, ferroelectricity, ferromagnetism,
superconductivity, et cetera, inevitably gave short shrift to
semiconductors. That there is a quite informal completeness,
consistency and unity to the diversity in the foundations is
something that, except for the early books, few capture. Nanoscale
makes matters even more divergent. I have felt that a book that

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001
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brings together this unity and focuses on the foundations toward
understanding why semiconductor matter behaves the way it does
would be useful.

From an engineering perspective, and from that of science,
information as the fountain from which much can be understood
and explored, including the quantum-mechanical notions through Not to belabor the point, but the

Copenhagen interpretation—a
duality—and the emphasis on an
observation and therefore, secondarily,
an observer both are causes of why
folks see a hint of spookiness in
quantum mechanics. Philosophically,
I subscribe to the notion of deep
truths—truths where a statement
and its opposite are both true
such as with wave and particle,
or insistence on one’s privacy yet
wanting governments to give one
strong security in this internet and
information-centric age, or carbon as
both a source of nature’s suffering and
a source of joy by and for humans—
as well as observation as the action
that unveils information. This is
consistent with the earlier Bohrian
notions but also does away with the
trust that it expects, and perhaps the
wonder it raises, when first introduced
in an undergraduate classroom.
Bohr had this inclination toward
the complementarity of truth and
clarity. He is known to have used the
following story often. A young person
was sent to another village to listen
to a great rabbi. Upon his return, he
reported,  ̏The rabbi spoke three times.
The first talk was brilliant, clear and
simple. I understood everything. The
second was even better, deep and
subtle. I didn’t understand much, but
the rabbi understood it all. The third
was just superb and unforgettable.
I understood nothing and the rabbi
himself didn’t understand much
either.˝ Keeping an information-
centric perspective helps do away
with quite a bit of the metaphysics that
developed over the decades around
quantum mechanics.

the Bayesian interpretations, is a major change in our learning of
recent times.

The Fermi surface of a metal, which gets much attention in
a solid-state text, is of enormous import, but it is more of an
anachronistic appendage to semiconductor matters. The Fermi
surface in a semiconductor, while important, is not as complicated.
But there are many static and dynamic interactions, transformations
and fluctuation effects that have enormous import and need
emphasis. Included within this group are the topics of noise
and dissipation as consequences of fluctuations, linear response
and causality appearing in Kramers-Kronig-type relationships in
multitudes of places beyond just the dielectric function, collective
effects and interactions such as those of plasmons or polaritons,
strain, semiconductor alloys, the nature of heterostructures and their
periodic structures, of defects and multiparticle Auger interactions
and of nonlinearities in energy coupling, such as those embodied
in Onsager relationships, and even transport from classical to
mesoscopic in off-equilibrium conditions.

Add to this collection of topics the consequences of nanoscale
from surface to bulk, dimensionality change, collective behavior
and, together, their effect on various interactions and transforma-
tions as additional subjects of modern importance. In teaching
these, with the implicit understanding of nanoscale devices as the
ultimate goal, one has to resort to a fair collection of diverse classic
resources and combine them with one’s own thoughts. This makes
the task of getting across to the student the necessary physics
for understanding devices difficult, with styles, nomenclature,
incompleteness and substantive jumps abounding.

In keeping with the spirit of this textbook series, this volume
is devoted to semiconductor-specific solid-state physics aimed
at students of engineering, particularly electronics and materials
science, but also with utility, because of the exposition, for those
from physics and chemistry.

It is organized to certainly include the classical underpinnings
ranging from bandstructure approaches to phonon behavior,
scattering, approximations, et cetera, but it particularly stresses
topics that are modern and aimed toward nanoscale. All are
presented with principles and theory as areas of emphasis,
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expecting that review papers and other narrower but deeper
treatises will become analyzable, understandable and critiqueable
to those prepared from this approach.

The book reviews the essential basics and the tools of the
trade first, including the quantum methods for ensembles and
their approximations, before moving on to the approaches of
bandstructure calculation as well as their limitations, which help us
describe the behavior of electrons and phonons in a semiconductor.
This serves to then develop the treatment of transport, including
within it semi-classical, quantum and mesoscopic approaches under
scattering and the limit of no scattering under equilibrium and off-
equilibrium conditions. For semiconductors, particularly in newer
applications, spin-orbit coupling manifests itself in several places,
so care is taken to bring the insights from bandstructures to the
interactions for semiconductors at different dimensionality.

This sets the stage for the atypical topics of emphasis of the
text. The first of these is the discussion of electrons and phonon
behavior at surfaces. This is then reformulated for interfaces.
Here, heterostructures—what really happens physically at the
boundaries—also appear as an important subject for analysis and
discussion. Zinc blende, diamond and wurtzite, encompassing
elemental and compound semiconductors, including the nitrides,
are explored together in emphasizing the principles. The text
also discusses the newer and perhaps presently unconventional
semiconductors, such as monolayers, in the final chapter, where
we return to the themes of the initial chapters in light of all the
learning in-between. All this discussion has electrons and phonons
as its center, where defect-catalyzed interactions and their variety of
behavior under compositional changes are also important.

Photons, electron-photon interactions and radiative and non-
radiative phonon-assisted processes are tackled to bring about
the interactions in a broadband of energies, so including Auger
processes.

This sets the stage for discussion of the next order of complexity
in ensemble interactions. We start with a discussion of causality
and response theory, and within it the different places where
fluctuation-dissipation and Kramers-Kronig forms appear. Ensemble
interactions, also in their coupled forms, such as excitons, polaritons
and plasmons, follow next. This discussion of higher order inter-
actions is expanded to the variety of manifestations of dissipative
transport. Particularly important here is noise, which is central
to the use of semiconductor devices at nanoscale. Another of
these next order effects is strain, whose use is now pervasive in
semiconductors. Spin again becomes quite central to this discussion
through bandstructure, as it does for topological reasons.

The spin-topological connections
and their device implications are
tackled separately in S. Tiwari,
 ̏Nanoscale device physics: Science
and engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4 (2017).
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The high permittivity of gate dielectrics often used with
semiconductors appears with soft phonons and is an essential part
of the tool set of semiconductor devices. We look at their behavior
and the local and remote coupling effects arising in them.

Energy couplings and their transfer between various forms—heat
to electric, and stress to electric—their off-equilibrium behavior and
the role of Onsager relationships in these energy transformations is
an essential set of topics in important areas of use of semiconduc-
tors, from thermoelectrics to piezoelectrics. These are discussed in
sufficient detail for the reader to get good insight into the operating
principles and how many of the effects undergo some change—
sometimes small, sometimes large—at nanoscale.

We follow this broad swath of physics discussion by looking
at periodic structures and the nature of the various excitations
of interest in them. So, we discuss superlattices for electrons,
phonons, plasmons and plasmon-polaritons, as well as the role of
dimensionality within them.

The text intends to provide the reader with an in-depth discus-
sion of semiconductors, aiming toward the nanoscale through this
range of development of the subject. Readers who have had an
introductory course in quantum and statistical approaches and have

Quantum and statistical mechanics
treatment at the level of S. Tiwari,
 ̏Quantum, statistical and information
mechanics: A unified introduction,˝
Electroscience 1, Oxford University
Press, ISBN 978-0-198-75985-0
(forthcoming), is expected. The reader
will find the integrated treatment of
information mechanics within this
description quite useful because of
the common themes that tie energy,
entropy and information together,
as well as the dominant usage of
semiconductors in the processing of
information.

a general understanding of the operation of electronic and optical
devices will benefit. An understanding of the operation

of simple devices—p/n junctions,
and unipolar and bipolar transistors—
helps with understanding the
relationship between the operational
physics, such as that of high
permittivity insulators, of noise,
of strain or of heterostructures and
the behavior of devices.

At the very least, readers must have internalized the meaning of
equations at the end of the glossary and the principles of quantum
and statistical mechanics and should be willing to pursue the
appendices that sometimes serve as summary introductions of
important ideas being employed in the main chapters.

The content here is quite comprehensive, as it tries to integrate
a variety of ideas across the significant breadth of phenomena
that one needs to understand in semiconductors. It is likely that,
for some, it is more than can be tackled in a single semester,
especially if the students have diverse educational backgrounds and
disciplines. So, choices may need to be made. Mine have been to
maintain balance between taste and the students’ needs. And these
have changed from year to year. This book, and this series, repre-
sent an attempt at a style where learning is also possible on one’s
own. The classroom is particularly useful in bringing about the
connection of ideas, the emphasizing of principles, the creation of
interesting segues where new thoughts can be explored, using the
learning and the give and take that the classroom provides so well,
and the stimulation of the students’ spirit for adventure. The first
two chapters of this text are an attempt at summarily introducing
and reviewing major ideas, some part of the orthodoxy, but others,
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such as Fisher entropy and information, not. This content is the part My favorites for this returning back
again and again in music is Verdi’s La
forza del destino as a simultaneous
multipath arrival, but many of
Schubert’s and Chopin’s piano—
single instrument—pieces bring the
path to the heart and the mind perhaps
even more convincingly. The Giuseppe
Verdi creation is itself a variation on
a play by the Spanish master Angel
Perz de Saavedra. Verdi endowed his
beautiful home—Casa Verdi—in Milan
as a retirement home for musicians
who need such support late in their
life. Music lives there in love and in
peace. Verdi’s is a life whose variations
continue to live a hundred-plus years
later. Variations are the most powerful,
whether in music or in books and
teaching, when they play out forever
in time and space.

of the book that one does have the freedom of referring back to if
one starts with Chapter 3. Good books and teaching are like music,
where the beauty and joy comes from the constant returning back
to powerful ideas with variations, each with a little different way
of looking at the subject—a different rhythm, a different harmony,
a different timbre. Each class is then a different piece of music. The
first two chapters facilitate this for the rest of the text so that the
learning can be fulfilling to both the student and the teacher. This
comment holds just as well for the appendices, where important
notions are summarily emphasized. The rest of the book can then
be managed in a reasonably demanding course where the students
are expected to stay abreast with their reading and thinking.
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Hamiltonians and solution techniques

Nature is composed of objects—particles, solids or other
assemblages in various representations—whose behavior—
properties, evolution in time, consequences of stimulation and
others—we attempt to explore, understand, design and predict in
science and engineering. A major success of classical mechanics
from the mid-17th century on was the ability to mathematically Post-Copernicus—the importance

of observation and prediction, and
mathematical tools such as calculus—
is the age of modern science. Prior
to that, Euclidean geometry had
been the dogma since about 300 BC.
Likewise, dating from the same time
period, Aristotle’s views that there
are four elements, that heavier objects
fall faster or that Earth is the center
of universe made up the dogma
that was not to be questioned. The
former was overthrown by Nikolai
Lobatchevski, and the latter needed
the Renaissance. This is almost two
millennia of scientific darkness!

describe the evolution in time of the objective values of properties
of interest. For example, if a system—a bounded object—of known
spatial coordinates and velocity (or momentum), that is, one whose
 ̏state˝ was known, was stimulated under the action of a force, one
could predict the future values in Euclidean space. Take this same
mathematical construction—usually a set of differential equations—
and one could build bigger and smaller objects and predict
their evolution by changing the parameters of this differential
construction.
A space—the state space—could be described with the object

at some location in it for each moment of time. The dynamic
system’s change of state could be described through the equations
of motion using either the Lagrangian or the Hamiltonian function
once an initial state had been described through the complete
specification of the initial dynamic variables together with that of
the action on the system. The complete quantitative description
of a set of simultaneously measurable parameters—position and
velocity (or momentum)—is an essential requirement of this
classical determinism. At the quantum scale, simultaneous precise
measurement of parameters such as position and momentum
is not possible. The state of the system is not characterized by a set of
dynamic variables with specific values. Instead, the state is characterized
by a statefunction. The statefunction is composed of a set of chosen
variables—the canonic variables—and the time dependence of this
statefunction describes the dynamics of the system. This function of

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001
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time is our wavefunction of the quantum system. It has properties
similar to those of waves but it also describes the state of the
quantum object. The statistical/probabilistic nature of quantum
is within this statefunction. Even for this quantum scale, one can
write the Hamiltonian and the Lagrange functions by employing
operators that correspond to an observable property—position,
energy, momentum and others—and thus describe the evolution
of the state.
What is extremely powerful in this approach of the Hamiltonian

and Lagrangian functions is that these express the behavior of
physical systems irrespective of whether they need to be treated
classically or—in more depth—quantum-mechanically. They
represent the principle of conservation of energy and the principle
of least action as complementary articulations of nature’s precept.
Between the classical and quantum view, where the quantum view
reduces to the classical in the limits, it is the quantum Heisenberg
uncertainty, the quantum de Broglie wave-particle duality, the
energetics of the interaction and the statistics of quantum to
classical that make the enormous change we see in the real world
happen. Atoms are stable—neutral—and an electric or magnetic
field will have no effect were atoms just to be thought of as classical
particles. Place them together in a solid and they form metals,
semiconductors and insulators with a variety of seemingly magical
properties that are quite different from those of the atom. Conduc-
tion and insulation both arise from the properties of the state. An
electron in a propagating state leads to conduction. An electron
in a bounded state leads to insulation. Largely unoccupied and
largely occupied bands of states can both conduct, and conduction
can be modulated! Tunneling can happen at microscopic scale.
Control can be exercised at small energies—of the order of eVs of
visible and infrared light, and therefore at useful bias voltages of
a V in semiconductors—instead of Rydberg energies. And further
modifications to properties become possible by making structures
the size of an electron’s wavelength. Quantum mechanics predicts
this diverse complexity of solids, and specifically of semiconductors,
and thereby makes it possible to use them judiciously.
For reasons of symmetry, explorations in quantum mechanics

prefer the Hamiltonian methodology. If you can write the Hamil-
tonian, you have described the system and its evolution.

That writing the Hamiltonian suffices
is written facetiously, of course. In
theory, what one has to do is to use this
Hamiltonian function in the classical
approach, and the Hamiltonian
operator in the quantum approach,
to now solve the Hamiltonian
equation describing the problem.
In practice, only the simplest cases
can be solved precisely. The rest need
approximations.

A solid is a collection of particles—atoms and electrons as their
simplest form in ordered or disordered arrangement—undergoing
perturbations due to external stimulus because they exist at a
temperature T connected to the rest of the universe as a reservoir
with which it exchanges energy and particles. To understand
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semiconductors, therefore, one needs to be able to describe the
interactive evolution of the system. An atom is the simplest, a
molecule another level up and then there is the larger ensemble of
the semiconductor solid involving an Avogadro-scale number of
these particles. So. how does one describe an assembly of particles
is an important question to start with.
When making predictions of what a collection of particles will

do, classical analysis will resort to either the Lagrangian or the
Hamiltonian formalism. These approaches employ a space— This nomenclature of configuration

and phase space arose in explorations
of approaches for dynamic systems,
where mechanical systems were
the first ones of interest from the
18th century onwards. In phase
space, every possible state of the
system defined by the values that
the parameters take defines a point
and its evolution a trajectory. The
position and the momentum are the
variables of the phase space. One
could also describe this evolution
through position and velocity. Multiple
particles will have a multidimensional
space. The configuration of the system
is writable in generalized coordinates.
The vector space defined by these
coordinates is the configuration space
of the physical system.

the phase space—whose spatial points each represent a specific
arrangement of the individual particles. The space is built of the
two canonic coordinates over the N dimension of the N particles.
The evolution of this point follows from a mathematical operation
on a single function leading to a description of the dynamic
behavior. This function is the Lagrangian or the Hamiltonian. The
Lagrangian employs a general position coordinate {q}= q1, . . . , qN—
not necessarily a set of Cartesian positions, whose choice is
determined by convenience, and bundles it with a generalized
velocity {q̇}= q̇1, . . . , q̇N—again, not necessarily a Cartesian velocity.
The equation of motion of the system then follows from the Euler-
Lagrange equations:

Throughout this text, in order to limit
the unwieldiness of an equation,
we may employ the prime mark to
indicate a derivative with respect to
spatial coordinates, and a dot above
for a derivative with respect to time.
So, q′ ≡ dq/dz when using a prime, and
q̇ ≡ dq/dt when using a dot.

d
dt

∂L

∂ q̇i
− ∂L

∂qi
= 0 ∀ i = 1, . . . ,N. (1.1)

The Lagrange function L = T − V as a difference of the kinetic
(T) and the potential energy (V) due to all sources—internal and
external—captures the entire behavior of the particle set. The
equations state the principle of least or stationary action. In the
configuration space, the evolution between two fixed end points
occurs when the action, which is the integral of the Lagrange func-
tion along the line connecting the two end points, is a minimum.
This is akin to the more easily visualized picture that a function Lagrangians have been employed

fruitfully in genetics, macroeconomics,
machine learning and various other
places where new formulations of
energy that are not kinetic or potential
but where one can see an intuitive
energy interpretation. Lagrangian’s
beauty includes that it teaches us
symmetries, conservation laws and
other properties in addition to the
equation of motion of the dynamical
system.

f (x) is a minimum, a maximum or a saddle point if df/dx = 0. It is
a stationary point: a minimum, a maximum or a saddle point in
higher dimensions.
What we wrote here is the Lagrangian for classical mechanics.

Lagrangians can be written for all the variety of physical phe-
nomena. As shown in Table 1.1, what they have in common is
a square gradient term, of energy, although there may not be an
explicit energy connection. In the following chapter (Chapter 2),
one sees the informational link to the observation of the physical
phenomena—the data that contains the information and therefore
the entropy and energy connection—that this represents.
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System Lagrangian L Comments

Classical mechanics (1/2)m
(
∂q/∂t

)2 − V Kinetic minus potential energy

Compressible fluid (1/2)ρ
[(

∂q/∂t
)2 − v2∇2q

]
ρ: density, v: flow velocity

Diffusion −∇2
r ψ − O ψ : a concentration, O: other terms

Schrödinger’s equation −(h̄2/2m)∇2
r ψ − O ψ : statefunction

Elastic wave equation (1/2)ρ
(
∂2q/∂t2

)− O ρ: density
Helmholtz equation ∇2

r ψ ψ : a field

Lorentz transformation
(
∂iqn

)2 Integral invariance

Table 1.1: Lagrangians of some common physical situations. These are all energies, and their
integral is the  ̏action.˝

The Hamiltonian picture is more symmetrical, represents an
identical description but, being symmetric, provides a more
convenient method for analysis, particularly in quantum mechanics.
The generalized position coordinate set {q} is taken together with
generalized momentum {p}= p1, . . . , pN. Again, these are not
necessarily the Cartesian positions or linear momenta. pi = ∂L /∂ q̇i.
The symmetry of the Hamiltonian evolution appears in the form

ṗi = dpi

dt
= − ∂H

∂qi
, and q̇i = dqi

dt
= ∂H

∂pi
∀ i = 1, . . . ,N. (1.2)

From this  ̏canonical˝ form, one can also read that

dH

dt
= 0, (1.3)

which is the law of conservation of energy.
The equivalence of the two approaches can be noted through

the ability to determine the canonical conjugates pi or q̇i of the
two approaches equivalently. The Hamiltonian may be found from
the Lagrangian using H = ∑

i q̇i(∂L /∂ q̇i)− L . The Hamiltonian
function H = H ({q}; {p}) describes the total energy of the system.
Its quantum-mechanical operator is Ĥ .

1.1 Hamiltonian

Being the total energy of the system, in classical mechanics,
the Hamiltonian H is the sum of the kinetic energy T and the
potential energy V of all the particles of the system; that is, H = T+
V. In quantum mechanics, Ĥ is an operator, corresponding to the More subtle and therefore more

consequential is that one may define
the Hamiltonian more generally and
hence more powerfully than as just the
sum written here.

observation of energy of the system; operating on the wavefunction
describing the system results in the total energy E = T + V. For
every observable, one can write an operator that, upon operating
on the wavefunction describing the system, leads to the observable.
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Operators may be developed from an observable’s functional form See S. Tiwari,  ̏Quantum, statistical
and information mechanics: A unified
introduction,˝ Electroscience 1,
Oxford University Press, ISBN
978-0-198-75985-0 (forthcoming)
for remarks on finding operators
corresponding to an observable.

but require some subtlety so that symmetry and antisymmetry
consequences are properly accounted for.
The Schrödinger equation,

− h̄
i
∂

∂t
ψ = Ĥ ψ = Eψ , (1.4)

incorporating both the time-dependent and the time-independent
parts, describes the wavefunction of the system. A system is

stationary if 〈ψ
∣
∣
∣Ĥ

∣
∣
∣ψ〉 is invariant in time. Its expected energy and A statistical—probabilistic—

interpretation of stationarity—of
various orders—will appear in our
discussion of noise in Chapter 16. See
Appendix A also if you want to look
ahead.

the probability distribution 〈ψ |ψ〉 are constants of time. For any
expectation value of any observable, say A, the expectation value
(〈A〉) follows:

− h̄
i

d
dt

〈Â〉= 〈[Â, Ĥ ]〉 − h̄
i
〈 ∂

∂t
Â〉
∣∣
∣
∣
H

. (1.5)

For a particle of mass m in a potential V, the Hamiltonian is

Ĥ = − h̄2

2m
∇2 + V̂, (1.6)

where the first term for kinetic energy follows from the operator for
momentum,

p̂ = h̄
i
∇. (1.7)

because kinetic energy T = p2/2m. Table 1.2 summarizes some of the
Hamiltonian operators of interest in common and simple systems.
Since our interest in this text is in understanding the various

ways that interactions occur in semiconductors, and the manifesta-
tions of these interactions in properties, the important underlying
theme is a reasonable understanding of the semiconductor solid
itself and therefore the predictive edifice for the collection of
electrons and atoms therein. Reasonably accurate solutions of the

System Hamiltonian Ĥ Comments

1D harmonic oscillator − h̄2
2m

d2

dx2
+ 1

2 kx2 k: force constant

Rotation in a plane − h̄2
2I

d2

dφ2
I: moment of inertia

Rotation on a sphere − h̄2
2I �2 �: Legendrian operator

�2 = ∂2

∂θ2
+ cos θ

sin θ
+ ∂

∂θ
+ 1

sin2 θ

∂2

∂φ2

Hydrogenic atom − h̄2
2μ ∇2 − 1

4πε0
Ze2

r Z: atomic number

μ: reduced mass

Collection of charged particles −∑
i

h̄2
2mi

∇2
i +∑

i>j
1

4πε0

zizje2

|ri−rj | zie: charge of ith particle

Electric dipole in a field −p · E p = ze〈r〉: electric dipole moment
Magnetic dipole in a field −m · H m: magnetic moment

Table 1.2: Hamiltonians of some often–encountered situations in semiconductor physics.
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Hamiltonian for this collection and its interactions are necessary.
And all this will require approximations, for obvious reasons of
complexity therein.
We will build this understanding by starting with a discussion

of the formulation and then, following some comments on the
approach, proceed to its usage in model problems that are instruc- What we are doing is building models

based upon our understanding
and interpretation of what is most
important. Their test of success
comprises predictions that come about
to be true. Not all of the possibilities
can be tested. There will be a range
of variations of parameters where
our predictions may be trusted
with a good model. But it is still a
model, an approximation and not
the complete reality. So, these are all
just different levels of sophistication
of  ̏toy models.˝ This is how we
should always look at our analytic or
algorithmic interpretations.

tive. For example, we first look at systems with few electrons and
few atoms such as a molecule, or even an atom with its collection
of electrons, and then let the number N of particles of this ensemble
expand to larger numbers. As we explore, what is important is to
understand the reasoning behind the approximations that we make,
so that we also know the limits of their validity.

1.2 Preliminaries

Calculation of the dynamics of a single particle (an electron,
for us) requires us to write the Hamiltonian with the potential
energy of its interaction and solve the single particle Schrödinger
equation We will use the hat symbol, ,̂ to

identify an operator. Any observable—
a physical measurable quantity—is
associated with a self-adjoint linear
operator. Operators yield the physical
value, which is an eigenvalue of the
set of possibilities for the system.
The wavefunction of the system
provides the probability amplitude
of finding the system in that state.
Pure states have unit norm, so they
can be represented by unit-norm
vectors. The operators are Hermitian,
since operators must yield real
eigenvalues, whose probability is in
the wavefunction through the square
of the amplitude of the orthonormal
eigenfunctions. We will be a little
loose in writing. Sometimes, an
operator hat should be there but may
be missing. Sometimes a wavefunction
maybe written without the ket symbol
|〉 denoting its vector nature, and
sometimes it will. It should be clear
from the context.

Ĥ |ψ〉=
(

− h̄2

2m
∇2 + V̂

)

|ψ〉= E|ψ〉, (1.8)

under the constraints of the boundary. In principle, this is straight-
forward. It may be as simple as the wave solution for V = 0,
or it may be computationally demanding when V(r) takes on
odd complexities. When we make this a few particle system,
with V(r1, r2, . . .) (a potential that is a function of the position of
the individual particles), it immediately becomes unwieldy, the
dominant reason being the two-body nature of Coulomb interaction
in a multi-component many-body problem. Only when particles are
non-interacting, that is, when V(r1, r2, . . .)= V(r1) + V(r2) + · · · , does
this problem reduce to a straightforwardly solvable form with

As an analogy, non-interacting
classical gas molecules have very
well-defined macroscopic properties,
but, microscopically, the motion
of each is affected by the collision
interactions, even the elastic ones.

Ĥ (r1, r2, . . .)=H(r1) + H(r2) + · · · =
∑

i

[

− h̄2

2m0
∇2

i + V̂(ri)

]

, (1.9)

a set of independent single particle equations. The wavefunction
solution then is |ψ〉= ∏

i |ψ i〉, where |ψ i〉 is the eigenfunction
solution of the partitioned Hamiltonian. The energy of the system is
just the sum of eigenenergies of these non-interacting particles. But,
this works only if these particles—electrons here—can be treated as being
non-interacting, a very rare situation. If these particles were interacting,
each would influence the other, and this picture is invalid, since
interactions, even if infinitesimally small, will modify properties.
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The semiconductor solid—the item of interest to us—is a collec-
tion of atoms where the atom itself is a collection of particles as a
nucleus surrounded by electrons, with the entire solid being charge
neutral. With Mi, Ze and Ri as the nuclei’s mass, charge (Z being
the atomic number) and position, respectively, and m0, e and ri as
the corresponding electron parameters, this solid’s Hamiltonian is

Ĥxtal =
∑

i

[

− h̄2

2Mi
∇2

i

]

+ 1
2

∑

i�=j

1
4πε0

(Ze)2

Ri − Rj
+
∑

l

[

− h̄2

2m0
∇2

l

]

+ 1
2

∑

i�=j

1
4πε0

e2

ri − rj
−
∑

i�=j

1
4πε0

Ze2

ri − Rj
. (1.10)

This Hamiltonian is made up of energy terms representing the

Of course, even the notions of Ze, Mi
and m0 have much complexity buried
in them. A remark on this  ̏simple
equation˝ is in order. Paul Dirac, in a
1929 paper in the Proceedings of the
Royal Society, says as an introduction,
 ̏The general theory of quantum
mechanics is now almost complete, the
imperfections that still remain being
in connection with the exact fitting of
the theory with relativity ideas. …The
underlying physical laws necessary
for the mathematical theory of a large
part of physics and the whole of
chemistry are thus completely known,
and the difficulty is only that the exact
application of these laws leads to
equations much too complicated to be
soluble. It therefore becomes desirable
that approximate practical methods
should be developed, which can lead
to an explanation of the main features
of complex atomic systems without
too much computation˝ (P. A. M.
Dirac,  ̏Quantum mechanics of many-
electron systems,˝ Proceedings of the
Royal Society of London, 123, 714–733
(1929)). Papers and pencils have now
been replaced by electronic computers
and algorithms. But, nearly a hundred
years after this foresighted publication,
and nearly forty years after high
temperature superconductivity, we
don’t have an acceptable explanation
for the latter crystal phenomena. There
is much subtlety buried away at the low
energy end and spread out at the high
energy end of the universe.

nuclei’s kinetic energy (the first term), the potential energy from
internuclear Coulomb interactions (the second term), electrons’
kinetic energy (the third term), the potential energy from inter-
electron Coulomb interactions (the fourth term) and the potential
energy contribution of electron-nuclear Coulomb interactions (the
fifth term). There are two summations over the kinetic energy, and
three summations over the electrostatic interaction.
Since electrons are fermions, the total electronic wavefunction

must be antisymmetric whenever the coordinates of two electrons
are exchanged (an exchange interaction). The nucleus may be of
different species, in which case, they are distinguishable. If they are
of the same species, then nuclear spin will also matter. To manage

In a molecule, the nuclear spin
consideration can be important. H
and 3He, for example are fermions,
due to their 1/2 nuclear spin, while D,
4He and H2 are bosons. Many different
properties arise from this difference.
This nuclear spin aspect is the least
of our worries in discussing a crystal,
where the electron and the electron-
dressed nucleus considerations will
dominate.

a solution, we have to make judgments on what is important and
how to judiciously incorporate it in a manageable calculation,
and what is irrelevant, peripheral or a perturbation to be tackled
secondarily.
Just a few of the electrons—the valence electrons of the out-

ermost shells—of the semiconductor solid will be important to
specific properties of interest to us. The inner ones stay confined
with the nucleus, and we may treat them as staying rigidly along
with it. We pull these electrons together with the nucleus into an
ion—an ion core—and modify the nuclear charge. These inner

In combining inner atomic electrons
and the nucleus, we have modified the
meaning of Z. It is now the net charge
number of the core, not the atomic
number.

electrons have now been incorporated into an ion. These ions
are massive compared to the electron. This means that the ion
motion, and its Coulomb interaction with each other, may also be
treated as being small and so can be accounted for as a secondary
perturbation if our principle interest is in the electron motion; thus,
these terms are eliminated, although the ion motion’s perturbation
consequence will be included as a later thought. Our problem has
now been reduced to solving the electrons’ Hamiltonian:
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Ĥ =
∑

i

[

− h̄2

2mi
∇2

l

]

+ 1
2

∑

i�=j

1
4πε0

e2

ri − rj
− 1
2

∑

i�=j

1
4πε0

Z∗e2

ri − Rj
. (1.11)

We have now reduced Equation 1.10—a relatively complete
description of atom assembly—to Equation 1.11, still a very accurate
description where the inter-ion Coulomb interaction and the
electron-nucleus Coulombic interaction have been approximated

The ion motion can, of course, be very
important. The ion motion will cause
electrons to scatter—exchange energy
and momentum with them—and thus
affect transport properties. But we may
bring this into our description as a
perturbation.

into the third term. The Z∗—ionic charge number—has a new
An extension of this jellium and
classical discussion is understanding
the consequences of dopants; for
example, in devices. The classical
treatment of dopants in devices is as a
continuum; that is, a jellium treatment.
A uniform distribution of charge is
assumed to arise in them, which in
the quasineutral material is balanced
by the electron charge cloud. If one
makes the device small and have only
a few of these dopants, then many
of the assumptions underlying the
description break down. There are
not enough of them to appear as a
continuum, and since they do have
individual perturbation effects locally,
the consequences show up in a small
device.

meaning. It is the dressed charge of the nuclei with their surround-
ing core electrons. And the slow motion of the ion vis-à-vis the
electron will let us tackle this term as a perturbation.
The extent of the role of the core of the atom here is as a source

of positive charge. If we could further approximate this charge,
instead of being localized at Rj, as being uniformly spread out—
a continuum—then we have the jellium model. This jellium solid,
if one also ignores all the quantum-mechanical constraints on the
electron, is now just a classical electron particle gas in the solid.
Equation 1.11’s second term—a many-body term—is one that

requires much attention. Electrons interact with other electrons
and have a Coulomb energy associated with that interaction. An
electron is also a fermion. And an electron does not interact with
itself. The first reflects an electromagnetic force effect. The second is
a quantum-mechanical constraint. And the third reflects something
much deeper with possibly many interpretations, although it is
certainly tied to the first also. An electron’s response arises through its
interaction with its surroundings.

That an electron does not interact
with itself can be viewed at many
levels. Electric fields are polar vectors.
Fields must terminate. There must
be a surrounding, and that is how
lowering (or even raising, as in
single electron effects at nanoscale)
of energy happens. An electric
field at this level of interpretation
arises as E = limq→0(−∇rUe/q).
With no charge, there is no energy,
and this equation now has a
singularity. An electron needs the
surrounding for it to be observable
through its Coulomb interaction.
Richard Feynman’s discussion of
the singularity and renormalization
conundrum is especially powerful
as enunciated in his Nobel lecture.
It is a question he worried about,
starting in his undergraduate
years. The lecture can be found at
https://www.nobelprize.org/
nobel_prizes/physics/laureates/
1965/feynman-lecture.html.

The three considerations are tackled by breaking this electron-
electron term further. If we only consider classical electrostatic
interaction energy, that is, the form (1/2)(1/4πε0)

∫
ρ(r)[ρ(r′)/|r −

r′|]dr dr′ in charge distribution, then we have used what is called
a Hartree energy term, and a Hartree equation form will solve for
it. The result has significant errors in it, since the second and
third components have not been accounted for. So, we introduce
corrections to the Hartree form.
Two electrons, when exchanged, being indistinguishable particles,

and fermions, must have different wavefunctions, so the wavefunc-
tions must be antisymmetric. We will see that a Slater determinant
antisymmetrizes the many-body wavefunction. This takes care of
this exchange interaction that has local and nonlocal contributions in
it. The Hartree-Fock equation will apply this correction for us.
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But the antisymmetrization process of the Slater determinant
itself also employs one-electron wavefunctions. This requires us to
have separability of Equation 1.11, that is, that an electron at any
spatial coordinate in space is essentially independent of where the
other electrons are. But, a repulsive electron-electron interaction
prevents other electrons from approaching the electron at that
spatial coordinate. An electron in the jellium classical solid repels the
other electrons electrostatically, thus exposing an equal and opposite positive
background so that electric fields vanish far away. The electrons correlate
themselves in a way that screens the electric field. An electron

Figure 1.1: An electron in an ensemble
of positive charge interacting with
other electrons represented by variably
filled areas, with atomic nuclei as
the background. The lighter area
surrounding the electron represents
the exclusion zone of the Coulomb
repulsive correlation. This is the
correlation hole.

here is surrounded by an equal and opposite charged hole in the
electron density. So, there is an  ̏exclusion˝ zone here. This is a
correlation interaction representing the physical principle that an
electron does not interact with itself and only with all else that
surrounds it. The probability of an electron at this position depends
very much on the location of the other electrons. Sometimes, this is
also referred to as a correlation hole, which should not be confused
with electron’s quasiparticle  ̏hole.˝ This correlation hole is the The Church thesis and its Turing

machine form are examples of an
algorithm for solving a problem by
reducing it to a procedure that one
steps through. Gamma functions—
factorials for integer argument—can be
solved for any n since 
(n+1)= n
(n),
and 
(1) = 1. This recursion approach
is commonplace as a procedure for
proof, although sometimes it is applied
inappropriately heuristically. Gamma
functions, as the integral analytic
function, are


(s) =
∫ ∞

0
exp(−x)xs dx

x
,

where s =σ + it is complex, and have
many quite amazing properties. They
will appear for us during the use of
Fermi integrals. Even more magical is
the Riemann zeta function ζ (s), whose
integral analytical form is

ζ (s) = 1

(s)

∫ ∞

0

1
exp(x) − 1

xs dx
x
.

If σ > 1, this reduces to an infinite
series, ζ (s) = ∑∞

i=1 i−s. Riemann
showed a relationship between the
distribution of prime numbers and the
non-trivial zeros of the zeta function.
So, prime numbers are not randomly
distributed, only pseudo-randomly.
Other transcendent characteristics
of this function include implications
for Casimir forces, the cosmological
constant, and the lack of Bose-Einstein
condensation in two dimensions.

Coulomb repulsion of other electrons from this electron’s vicinity.
It is a correlation charge hole. Figure 1.1 is a pictorial representation
of such a correlation hole. In Sections 1.5 and 1.6, we will summa-
rize the gradual increasing of accuracy in our search for the solution
to this description of the solid. Since Equation 1.11 does not lend
itself to easy decoupling, and this starting Equation 1.10 has 3×
the total number of nuclei and electrons as its coupled degrees of
freedom, we will first employ simple atom assemblies—molecules—
to bring out the main physical features of the arguments that we
will deploy.
This outline of the problem of energetics in the solid shows

us the incremental path that we have to take to find satisfactory
solutions. If a solution to a problem that is close enough to a new
problem is known, we employ perturbation techniques to find the
solution to the new problem. This following section summarizes
a few of the common perturbation techniques that will be utilized
throughout this text, including for this semiconductor crystal
outlined so far.

1.3 Perturbation approaches

In outlining some of the approaches to solving Hamiltoni-
ans, our interest here is in dispensing with how one satisfactorily
arrives at the solution to problems that we will encounter in
this text. We have to set the problem up right; only then can we



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

chapter 1: hamiltonians and solution techniques 15

proceed to find the solution. Only under the most circumscribed
of conditions in a many-body system may one find accurate direct
solutions. Usually though, one has to transform a known related
problem that has a known solution to the problem of interest as
a perturbation. The Church and Turing forms provide important
insight into information mechanics, particularly its deterministic
form. The perturbation can be static, that is, time independent and
steady state, or dynamic, where a time-dependent perturbation and
a quantum system response unfold.

The prime number distribution
ties it to the Lambert W function
(W(z) exp[W(z)]= z) and Ramanujan’s
series for ζ (3). Riemann’s
investigations in geometry inspired
Einstein’s relativity. A Riemann
remark, paraphrased, that the
geometry of physical space need not
be a God-given Euclidean space but
should be determined by experiment,
not by hypothesis, stands as one of
the most observant statements from
a remarkable mathematician and a
clergyman’s son who, like Ramanujan,
died too young. To balance these
serious statements, here is a joke
that punches at recursiveness. A
Russian mathematician and a Russian
engineer are visiting a European
research institution. Smoking is still
accepted. On the first day, when the
engineer drops a lighted butt in the
trash can sitting on the floor, the
paper in it catches fire. So he uses
the fire extinguisher to put it out.
An identical sequence is repeated
with the mathematician, who arrives
later after a long night of work.
The next day, upon cleaning, the
janitor leaves the trash cans on their
desks. Events repeat. The engineer
uses the fire extinguisher again. The
mathematician, however, places the
trash can on the floor. He had reduced it
to a known problem.

First, we take up the time-independent steady-state perturbation,
and then we will take up the time-dependent perturbation. Later
on, we will take on the adiabatic time-dependent perturbation,
where a state evolves smoothly and continuously, maintaining its
quantized identity. An example of time-independent perturbation is
when two molecules come close enough, the energy changes. The
properties of cohesion/adhesion and repulsion are also examples
of the nature of this energetics, a quasi-steady state, where a
perturbation causes changes in the energy landscape. Examples of
a time-dependent perturbation are a photon exciting an electron,
or an electron undergoing scattering during transport. An example
of adiabatic perturbation is an electron in a confined quantized
space as the size of the space is slowly changed electrically.

The Hamiltonian equation, even if a
simple equation to write summarily,
can be quite difficult to solve. We
will see this particularly when we
dwell on bandstructure calculations
where enormous-size matrices are
encountered. Sometimes, it is prudent
to solve a problem by writing its
physical basis in its entirety, as in this
equation. Sometimes, it is prudent
to start from a known solution and
find a solution with it perturbed.
The latter is a linear view. The
former is a nonlinear view. Each
has its successes and failures. I have
immense respect for the German
organization of education: enough
resources at every level, and all the
education accessible to everybody.
Early schools are equivalent. One
doesn’t choose a locality to live based
on the local schools. Universities are
essentially free. Technical professions
are respected. Amachinist is a
precision worker—not a  ̏blue collar˝

1.3.1 Time-independent perturbation

Let Ĥ ′ be a perturbation; that is, let Ĥ = Ĥ0 + Ĥ ′ be the
Hamiltonian of a quantum system whose statefunction is known in
the perturbation’s absence. The new statefunction is different. The
new perturbation potential causes transitions between the states of
the unperturbed Hamiltonian. Let |u0i 〉 be the eigenfunctions for the
Hamiltonian Ĥ0 so that Ĥ0|u0i 〉= E0i |u0i 〉. For the perturbation Ĥ ′,
the eigenenergy solutions exist if det|H − EO| = 0. To determine the
changes in energy and the eigenfunctions under perturbation, one
uses the trick of separation of order where various combinations of
terms leading to the same order of effect can be pooled together. Let

Ĥ = Ĥ0 + λĤ ′, (1.12)

so that λ= 0 is the absence of perturbation, and λ= 1 is the com-
plete turning on of perturbation. The eigenenergies and eigenfunc-
tions of the perturbed system have changed and we will determine
these as perturbational changes, by corrections of increasing order,
using this λ. Let the eigenenergies and eigenfunctions for the
Hamiltonian of Equation 1.12 be
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En = |E0n〉 + λ|E1n〉 + λ2|E2n〉 + · · · , and

|un〉 = |u0n〉 + λ|u1n〉 + λ2|u2n〉 + · · · . (1.13)

The problem posed to us is

with all its subtle prejorativeness—
just as the academic is, with the two
following different paths of education,
one for practice, and one for research
and teaching. Both can raise a family
with equal opportunity. This becomes
possible by the system assuring
proper investments across all the
stages of education so that enough
qualified folks appear at the end for
the technical and scientific needs.
University may be free, but the student
must show that he/she belongs,
through effort and examinations.
It is not a surprise that there are
more car manufacturers in Germany
than in the USA. And science in
Germany has revived exactingly well
since the events and tragedy of the
Second World War. This setting up
the problem right and solving it all
together works quite often. But there
are situations where it is a luxury and
the complexity is such that a local
perturbation is desired to get a quick
and good-enough answer.

(Ĥ0 + λĤ ′)
(
|u0n〉 + λ|u1n〉 + λ2|u2n〉 + · · ·

)

=
(

E0n + λE1n + λ2E2n + · · ·
) (

|u0n〉 + λ|u1n〉 + λ2|u2n〉 + · · ·
)
, (1.14)

which can be partitioned in the powers of order λ as

λ0 : Ĥ 0|u0n〉= E0n|u0n〉,
λ1 : Ĥ 0|u1n〉 + Ĥ ′|u0n〉 = E0n|u1n〉 + E1n|u0n〉,
λ2 : Ĥ 0|u2n〉 + Ĥ ′|u1n〉 = E0n|u2n〉 + E1n|u1n〉 + E2n|u0n〉, (1.15)

and so on. With λ= 1, we now have the posed problem but
partitioned into different order corrections. The 0th order equation
defines and describes the unperturbed system. The 1st order
equation, with the lowest-order correction due to perturbation, has
a term due to unperturbed Hamiltonian operating on the 1st order
correction to the eigenfunction, and the perturbation Hamiltonian
operating on the unperturbed eigenfunction. Both of these terms are
of similar order correction. The 2nd order equation has three such In many situations, the different

terms in any order of perturbation are
comparable as a product of a large
and a small entity. If the perturbation
is very small, then one can see it as
an operation of a small energy on the
starting eigenfunction, and of a large
energy operator operating on a small
disturbance in the eigenfunction.

terms pooling the same order of correction. The use of λ has let us
achieve this deconvolving.
To obtain the first order correction, we use orthonormality by

taking the inner product with the bra 〈u0n| in Equation 1.15 of the
λ1 power:

〈u0n|Ĥ0|u1n〉 + 〈u0n|Ĥ ′|u0n〉 = E0n〈u0n|u1n〉 + E1n|〈u0n|u0n〉, (1.16)

where 〈u0n|u0n〉= 1, 〈u0n|u1n〉 is finite and non-zero, and 〈u0n|Ĥ0|u1n〉=
E0n〈u0n|u1n〉, since Ĥ0 is Hermitian. Therefore,

E1n = 〈u0n|Ĥ ′|u0n〉, and

(Ĥ0 − E0n)|u1n〉 = −(Ĥ ′ − E1n)|u0n〉. (1.17)

The 1st order correction in the eigenenergy arose from the pertur-
bation Hamiltonian and the unperturbed eigenstate. The 1st order
correction to the eigenfunction needs a little reworking to write it in
terms of the unperturbed orthonormal basis set of |u0n〉, which is a
complete orthonormal basis set. We may write

|u1n〉=
∑

i�=n

c1i |u0i 〉. (1.18)

It is useful to exclude the i = n term in the expansion. As (Ĥ0 −
E0n)|u0n〉 = 0, the existence of a term based on |u0n〉 in Equation 1.18 is
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dispensable. So, we expand |u1n〉 in the 0th order orthonormal basis
set and, to find the lth term of the correction, we take the inner
product with the bra 〈u0l |:

∑

i�=n

(E0i − E0n)c1i 〈u0l |u0i 〉 = −〈u0l |Ĥ ′|u0n〉 + E1n〈u0l |u0n〉

∴ (E0l − E0n)c1l = −〈u0l |Ĥ ′|u0n〉 for l �= n,

∴ c1i = 〈u0i |Ĥ ′|u0n〉
(E0n − E0i )

with i = l, and

|u1n〉 =
∑

i�=n

〈u0i |Ĥ ′|u0n〉
E0n − E0i

|u0i 〉. (1.19)

Both the eigenenergy correction (Equation 1.17) and the eigenfunc-
tion correction terms (Equation 1.19) are now known for the first
order. The last part of Equation 1.19 is a

quantum-mechanical reflection on our
classical intuition. Any classical state,
under an energy perturbation, that is,
the exercise of a force, changes. Amass
moves. For any function y = f (x)

describing this classical picture, df
is the marginal consequence, and
df/dx the marginal rate. The lowest
order correction for the change
is the marginal efficiency of this
perturbation. Force and acceleration—
the rate change of velocity—are
related, with a marginal efficiency
determined by the inverse mass.
This is an inertial mass. Mass is an
emergent property, which superficially
can be seen in the bundling of
energy. Quantum-mechanically,
how well two eigenstates will couple
due to perturbation is again this
derivative-like ratio of perturbational
coupling energy and separation of
the unperturbed states. And the
statefunction reflects the statistical
consequence of these couplings.

This formal approach is obviously extendable to higher orders
recursively—more and more terms—and the writing of such an
algorithm is quite straightforward. For the λ2 set of terms,

Ĥ0|u2n〉 + Ĥ ′|u1n〉 = E0n|u2n〉 + E1n|u1n〉 + E2n|u0n〉; (1.20)

therefore,

〈u0n|Ĥ0|u2n〉 + 〈u0n|Ĥ ′|u1n〉 = E0n〈u0n|u2n〉 + E1n〈u0n|u1n〉
+ E2n〈u0n|u0n〉. (1.21)

Again, since Ĥ0 is Hermitian, 〈u0n|Ĥ0|u2n〉= E0n〈u0n|u2n〉, we have
E2n = 〈u0n|Ĥ ′|u1n〉 − E1n〈u0n|u1n〉, (1.22)

and because 〈u0n|u1n〉= ∑
i�=n c1i 〈u0n|u0i 〉= 0, the 2nd order energy

correction term is

E2n = 〈u0n|Ĥ ′|u1n〉=
∑

i�=n

c1i 〈u0n|Ĥ ′|u0i 〉

=
∑

i�=n

〈u0i |Ĥ ′|u0n〉〈u0n|Ĥ ′|u0i 〉
(E0n − E0i )

=
∑

i�=n

〈u0i |Ĥ ′|u0n〉2

(E0n − E0i )
. (1.23)

The 1st order energy correction was the expectation of perturbation
on the unperturbed state. The 2nd order energy correction is the
perturbation on the 1st order corrected eigenfunction. One can
proceed from this and now also build the 2nd order corrected
eigenfunction by finding c2i .
A very simple consequence of these perturbational relationships

is worth thinking through. In a semiconductor, one may represent
the states as Bloch states that are propagating states spread out over
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the entire semiconductor, and evanescent states that are localized, as
at surfaces, defects, impurities, et cetera. The following chapters will
expend considerable effort toward this analysis. An E(n,k)≡ En,k

relationship, where n is a quantum number that identifies a band,
and k—another quantum number—which is the wavevector,
describe the energies of the allowed eigenfunctions. Now suppose
we apply a bias voltage Vdc (see Figure 1.2) to this semiconductor;
that is, there is a net spatially invariant potential energy rise in the
system. Do I now have to recalculate the E(n,k)? No. Why not?
Because

Figure 1.2: (a) A semiconductor whose
bandstructure describing electron
states has been determined to be
E(n,k) ≡ En,k with the semiconductor
grounded (thermal equilibrium).
(b) This semiconductor shown
under the static bias voltage Vdc.
Perturbation tells us that this just shifts
the bandstructure—the eigenenergy
solution—by −eVdc.

E1n,k = 〈u0n,k|Ĥ ′|u0n,k〉 = −eVdc〈u0n,k|u0n,k〉 = −eVdc (1.24)

since Ĥ0 and −eV̂dc commute, that is, [Ĥ0,−eV̂dc]= 0, so the
same orthonormal basis set may be employed. What about the
eigenfunction? Again,

|u1n,k〉 =
∑

i�=j

〈u0n,ki
|Ĥ ′|u0n,kj

〉
(E0n,kj

− E0n,ki
)

|u0ki
〉 = 0

∵ 〈u0n,ki
|Ĥ ′|u0n,kj

〉 = −eVdc〈u0n,ki
|u0n,kj

〉= 0 ∀ i �= j. (1.25)

Here, we considered only the interactions within the band n, since
the nearest states provide the strongest contribution, but the result
is more general because of orthogonality. The implication is that
the entire energy bandstructure may be shifted by this potential
change and the eigenfunctions do not change. The device analysis Good thing too. Imagine having to

calculate this bandstructure under all
potentials and their distribution in real
space in a device. There is more to this
that we will see in our discussion in
Chapter 4 of the parameter we call the
effective mass, and its effectiveness.

is also in dynamic conditions where the time scale of electrody-
namic response is much slower—adiabatic, which we discuss a
little later—and hence one may again neglect any bandstructure
consequence of the electrically applied stimuli’s consequences. This
underlies all the drawing of the band diagrams, where the conduc-
tion and valence bandedge lines represent the extrema of the bands.
There is one complication in the previous argument that we

sidestepped but should address. The electron’s state, absent
magnetic interaction, with s = 1/2, and therefore the secondary spin
quantum number of ±1/2, is degenerate in energy. The equation
forms in Equations 1.17 and 1.23 actually blow up if one considers
the interaction between these degenerate states. This, of course, is
unphysical. The series does not converge. The perturbation expan-
sion has this problem with states very close in energy. This can be
effectively and efficiently tackled by treating the nearly degenerate
states in the same way as we treated |un〉 in the perturbation
expansion. This means that the 0th order state is being allowed to
be an arbitrary linear combination of the degenerate states.
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Let there be N nearly degenerate states. We choose an orthonor-
mal set of basis state in N; that is,

〈φj|φi〉= δji ∀ i, j ∈ N. (1.26)

So, these |φi〉’s together with their coefficients αi let us expand the
degenerate states into a non-degenerate basis. Now take the 0th
and 1st order terms of the Schrödinger/Hamiltonian equation of
the problem. Orthonormality lets us write

∑

i∈N

〈φj|Ĥ0 + Ĥ ′|φi〉αi = Eαj. (1.27)

The number of degenerate states determines the number of
solutions to this eigenvalue equation set, writable as

⎡

⎢⎢
⎣

H11 · · · H1N
...

...
...

HN1 · · · HNN

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

α1
...

αN

⎤

⎥⎥
⎦ = E

⎡

⎢⎢
⎣

α1
...

αN

⎤

⎥⎥
⎦ , (1.28)

where Hji = 〈φj|Ĥ0 + Ĥ ′|φi〉 is the matrix element for the complete
Hamiltonian. The solution follows from the condition det|Hji −
EO| = 0. αi are now known, and using this orthonormal set to
replace the degenerate set in the Equation 1.14 tackles the problem
in first order perturbation.

1.3.2 Time-dependent perturbation

In semiconductor problems, non-steady-state interactions—a
shining of light, an electron scattering due to a Coulomb impurity,
interface roughness, phonon excitation or even bandedge fluctu-
ations arising from atomic motion due to thermal energy—are
ubiquitous. Perturbation with time dependence allows us to view

In S. Tiwari,  ̏Quantum, statistical
and information mechanics: A unified
introduction,˝ Electroscience 1,
Oxford University Press, ISBN
978-0-198-75985-0 (forthcoming),
we have tackled these various
perturbation situations: 1st, 2nd,
degenerate and more; for example,
Rabi oscillations and the evolution of
two-level systems when one applies
a static perturbation at an instant in
time. This discussion is very germane
here, and a reading of it is strongly
recommended for insight.

the quantum evolution under these conditions.

Figure 1.3: (a) A two-level quantum
system. (b) This system initially in one
or the other eigenstate is subjected to
a perturbation for a time duration T.
Consequently, it evolves.

We employ a 2-level system (see Figure 1.3), but in a way that is
extendable to the full basis set because the time dependence of the
evolution still conforms to the same picture. The basis eigenfunction
set consists of kets |m〉 and |k〉 with eigenenergies Em and Ek,
respectively. The statefunction solution for the unperturbed state is
|ψ〉= cm|m〉 + ck|k〉, with 〈m|k〉= 0, Ĥ0|m〉= Em|m〉 and Ĥ0〈k〉= Ek|k〉.
With perturbation,

Ĥ = Ĥ0 + Ĥ ′, and

−h̄
i

∂

∂t
|ψ〉 = Ĥ |ψ〉, (1.29)
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describe the evolution of the statefunction. The state function
evolves as

|ψ(t)〉= cm(t)|m〉 + ck(t)|k〉, (1.30)

which is prescribed by our restriction of the two-level orthonor-
mal basis. If Ĥ ′ = 0—an unperturbed stationary state—cl(t)=
cl(0) exp(−iElt/h̄), where l = k,m holds for the stationary state.
If a perturbation is applied, using the condition of orthonormal-

ity one can view the evolution for the coefficients through

− h̄
i

d
dt

[
cm(t)
ck(t)

]

=
[
Hmm H ′

mk
H ′

km Hkk

][
cm(t)
ck(t)

]

, (1.31)

where H ′
mk = H ′

km are real values of the energy observable. The
statefunction |ψ〉 follows from

− h̄
i
∂|ψ〉
∂t

= Ĥ |ψ〉= E|ψ〉, (1.32)

that is,
[

cm(t)
ck(t)

]

= exp
(

−i
Et
h̄

)[
cm(0)
ck(0)

]

, (1.33)

where

E

[
cm(t)
ck(t)

]

=
[
Hmm H ′

mk
H ′

km Hkk

][
cm(0)
ck(0)

]

. (1.34)

Let E = E−,E+ be the perturbed eigenenergies; then, this two-level
system, under this static perturbation turned on at t = 0, has the
eigenfunction solutions

|ψ−(t)〉 = [
c−

m(0)|m〉 + c−
k (0)|k〉] exp

(
−i

E−t
h̄

)

= (cos θ |m〉 + sin θ |k〉) exp
(

−i
E−t

h̄

)
, and

|ψ+(t)〉 = [
c+

m(0)|m〉 + c+
k (0)|k〉] exp

(
−i

E+t
h̄

)

= (− sin θ |m〉 + cos θ |k〉) exp
(

−i
E+t

h̄

)
. (1.35)

Here, the alternative set of equations are written with c−
m(0)= cos θ ,

c−
k (0)= sin θ , c+

m(0)= − sin θ and c+
k (0)= cos θ . This maintains

orthonormality and establishes a starting phase. If θ = 0, then
the system has been prepared in |m〉 before the turning on of the
perturbation. The statefunction solution with perturbation is

|ψ(t)〉 = d−|ψ−(t)〉 + d+|ψ+(t)〉
= d−|ψ−(0)〉 exp

(
−i

E−t
h̄

)
+ d+|ψ+(0)〉 exp

(
−i

E+t
h̄

)
. (1.36)
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Choosing the amplitudes d− = cos θ and d+ = sin θ leads to

|ψ(t)〉 =
[
cos2 θ exp

(
−i

E−t
h̄

)
+ sin2 θ exp

(
+i

E+t
h̄

)]
|m〉

+ sin θ cos θ
[
exp

(
−i

E−t
h̄

)
− exp

(
+i

E+t
h̄

)]
|l〉

= cm(t)|m〉 + cl(t)|l〉. (1.37)

This is an oscillatory, not stationary, solution. If the system were
initialized in |m〉, the probability of the system being found in |k〉 at
time t in the presence of this steady-state perturbation would be

|ck(t)|2 = sin2(2θ) sin2
[

(E+ − E−)t
2h̄

]

= 4
∣
∣H ′

mk

∣
∣2

(Hkk − Hmm)2 + 4
∣∣H ′

mk

∣∣2
sin2

(
�t
2

)
, (1.38)

with

�=
[(

Hkk − Hmm

h̄

)2
+ 4

∣
∣H ′

mk

∣
∣2

h̄2

]1/2

(1.39)

as the oscillation frequency—the Rabi frequency (Figure 1.4). The
two-level system would have stayed in the prepared state absent
perturbation. With static perturbation, it now oscillates at the slower
frequency of �= (E+ − E−)/2h̄ determined by the eigenenergies
of the statefunction under perturbation. The perturbation energy
determines the cycling depending on the magnitude of coupling.

Figure 1.4: Rabi oscillation in a 2-level
system under a perturbation.

What if the perturbation was for a short time duration T—
a scattering event—as in Figure 1.3? We make this a harmonic
perturbation. Our stimulus to this 2-level system is

H ′
mk(t) = 0 for t ≤ 0,

H ′
mk(t) = 2H ′

mk sin(ωt), that is,

= iH ′
mk
[
exp(−iωt) − exp(iωt)

]
for t > 0, (1.40)

where we will make this duration finite while looking at the
solution of the evolution. The time dependence follows from
Equation 1.31.
Take the case of a system starting in the eigenfunction state |m〉.

So, where cm(0) = 1 and ck(0)= 0, Equation 1.31 states (note
H ′

km = H ′
mk because the operator is Hermitian)

− h̄
i

d
dt

ck(t)= H ′
kmcm(0) + Hkkck(0)= H ′

mkcm(0) + Hkkck(0), (1.41)

leading to

− h̄
i
ck(t)=

∫ t

0
H ′

mk(τ ) exp (iωkmτ ) dτ , (1.42)
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with the oscillation time dependence of the perturbation explicitly
included through the time variable τ in the integral spanning
t = 0 to t = t. Also, remember the phase terms in the basis set.
The solution is

ck(t) = H ′
mk

h̄

∫ t

0

{
exp [i(ωkm − ω)τ ]− exp [i(ωkm + ω)τ ]

}
dτ

= H ′
mk

h̄

{
exp [i(ωkm − ω)t]− 1

i(ωkm − ω)

−exp [i(ωkm + ω)t]− 1
i(ωkm + ω)

}
. (1.43)

Here, ωkm = (Ek − Em)/h̄. The largest contribution to amplitude evo-
lution in time comes from where the denominator is the smallest.
The perturbation frequency closest to the interlevel frequency has
the largest effect. If ωkm ≈ ω, the first term will dominate. Since
we started with the lower level filled, the amplitude of the higher
level is

ck(t) = 2H ′
mk

h̄
sin [(ωkm − ω)t/2]

(ωkm − ω)
exp

[
i(ωkm − ω)

t
2

]

∴ |ck(t)|2 = 4
∣
∣H ′

mk

∣
∣2

h̄2
sin2 [(ωkm − ω)t/2]

(ωkm − ω)2
. (1.44)

This is the lowest-order correction for the probability of finding the
system in |k〉 at time t = T, and let us say that we remove the per-
turbation at that point, leaving the system in that stationary state, is

|ck(t)|2 = 4
∣∣H ′

mk

∣∣2

h̄2
sin2 [(ωkm − ω)T/2]

(ωkm − ω)2
for t ≥ T. (1.45) Figure 1.5: A plot of the term

sin2 [(ωkm − ω)(T/2)] /(ωkm − ω)2,
which is proportional to the
probability of finding the 2-level
system in the eigenfunction state
|k〉 following an application of
perturbation for a time duration T.

This response has a form that is the square of a sinc function.
Figure 1.5 shows the normalized response. It has a peak when the
frequencies/energies are precisely matched; that is, ωkm =ω. The
peak of the normalized fraction is of magnitude T2/4. The half
width of the main peak is ∼5.6/T. The transition probability per
unit time |ckm|2/T—a scattering rate—which we denote by S, is

Smk = 4
∣∣H ′

mk(0)
∣∣2

h̄2

sin2
[
(ωkm − ω)T

2

]

(ωkm − ω)2T
. (1.46)

If T is large enough, the sinc function asymptotes to the Dirac delta

Not necessarily because of Matthew’s
principle, this relationship of
Equation 1.47 is often referred to
as Fermi’s golden rule. It appeared in
Fermi’s quantum mechanics lectures.
The compact and to-the-point lecture
notes from his University of Chicago
days—Notes on quantum mechanics
from the University of Chicago
Press is the 1954 version—are very
worthwhile reading. Dirac had gotten
there twenty years earlier. But the first
order and second order perturbations

function, that is, for large-enough T over which the perturbation
appears,

Smk = 2π
h̄

∣
∣H ′

mk(0)
∣
∣2δ(Ek − Em) (1.47)

for t ≥ T. The entire complexity of transitions under time-dependent
finite time perturbation, under certain constraints, can be reduced
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to a time-normalized transition probability; that is, transition prob-
ability per unit time, which has a very simple form. If one knows
the perturbation Hamilitonian, and two states between which
this interaction’s transition rate is to be ascertained, Equation 1.47
ascertains it. This is the Golden rule.

referred to as Golden rule 1 and
Golden rule 2 in Fermi’s notes struck
a cord, and somewhere along the way
his name got associated. We will call
it just the Golden rule. It is of the first
kind. We extracted it in the lowest
order term of change. Enrico Fermi
was an exceptional scientist, equally
adept at experiment and theory. Fermi
had a good sense of humor. In Rome,
his Physics Institute was in the same
compound as other senior government
offices, where nobody worked on
Sundays. Fermi was known to drive in
wearing a hat and declaring himself a
driver of dignitaries so that he could
continue his experiments. His Nobel
prize for discovering transuranic
elements, which he named Ausonium
(Z = 93) and Hesperium (Z = 94), is
one of those for wrong reasons. The
elements resulting from his slow
neutron bombardment experiments
were fission products, not heavier. But,
like Bethe, who worked with him in
Rome, there was plenty of other work
for which the Nobel was deserved.

There are a number of interesting features embedded here. The
peak is proportional to T2/4, and the full width at half maximum
is ∼5.6/T. The area is proportional to T, and the width to time
duration’s inverse (1/T). The uncertainty principle is reflected
in this spread. The central peak contains about 90 % of the area.
When time is large enough, this function narrows further to
the Dirac delta. It has a peak that corresponds to T2/4, so, for
matched conditions, only short times are needed. But, uncertainty
relationships—embedded in our calculation of this relationship—
must still hold and do. In addition, �E�t ≥ h̄/2 or �ω�T ≈ 1
still applies, as reflected in the central peak’s areal argument. So,
very short times, for example as in semiconductor-specific energy
transition problems, will reduce the probability in state |k〉. But, as a
first order term, this transition probability through the Dirac delta
relationship will still be useful. If matching is poor, it may even

See Appendix B where a number of
computationally useful functions
that one encounters in a variety of
forms are summarized. The Dirac
function can be written in a variety of
ways and is often a very convenient
manipulation tool, as is his bra and ket
notation for vectors.

vanish under certain conditions. If ωkm − ω = 2π/T, the transition
vanishes, since a full cycle of interaction brings back the system to
its original state. For all the problems that we are interested in, the
time scales of interactions are large enough that this relationship
written in Dirac delta form suffices. The equation can also be
extended when there are spreads in frequencies of excitation, or
spreads—as in bandstructure—of states of transition. For these,

S = 1
T

∑

k

|ck(t ≥ T)|2 = 1
T

∫
|ck(t ≥ T)|2G (k) dEk, (1.48)

which reduces to

S = 2π
h̄

∣
∣∣H ′

if (0)
∣
∣∣
2
G (Ef )δ(Ef − Ei). (1.49)

From two levels to nearly continuous distribution simply follows
as an extension through density of states. And if it is between two
different distributions of density of states, then joint density of
states will appear.

1.3.3 Scattering by the perturbation

Figure 1.6: Coulomb scattering
causing an electron wave to scatter—
change momentum (magnitude and
direction)—as it travels in a crystal.
Coulomb energy is gained and then
lost as the scattering takes place with a
small net change.

The utility of this Golden rule can be illustrated through
Coulomb scattering, as shown in Figure 1.6. Take the electron as a
plane wave encountering the Coulomb attraction from a positive
charge. This could be in free space, but, for us, this is particularly
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germane due to its correspondence to impurity, which has a charge
in the semiconductor, causing a strong scattering for an electron.
This electron is a nearly free electron traveling around, and the
wavefunction of ψ = (1/

√
�) exp (ik · r) for the spatial component

is an adequate representation. Here, � represents the volume for
normalization of the probability. Due to the charge, the perturbation We will generally use � for volume,

and V for potential, except in rare
situations, to avoid confusion. �0 will
be the volume of a unit cell.

potential is U(r)= (1/4πε)Z∗e2/|r|. Z∗e here is the dressed static
charge of the impurity. The electron’s wavevector changes to k′ as
a result of this scattering. Under this perturbation, we have

H ′
kk′ = 〈k′|Ĥ ′|k〉 = 1

�

∫
U(r) exp

[
i(k − k′) · r

]
d3r

= 1
�

Ukk′ , (1.50)

where this last simple notation tells us that it is the Fourier
component—in reciprocal space—for the continuous electrostatic
potential. Any scattering into a solid angle dθ depends on the
density of states of the available states there. Classically, this is a
continuous distribution, as all positions and momenta are possible.
Quantum-mechanically, it will depend on the availability of states. Later on, in Chapter 10, we will

see anisotropic consequences as a
result of this state argument, since
semiconductors in general are not
isotropic, neither do they necessarily
have a continuous state distribution.

Connecting quantum to classical with isotropicity, we may write
dE = vd(h̄k), so the density of states for scattering is

dG = �

(2π)3
dθ

k2 dk
vd(h̄k)

= k2�
8π3h̄v

dθ . (1.51)

The interaction happens during transit near the impurity, and the
scattering or transition rate, writing it both classically through
scattering cross-section and quantum-mechanically through the
Golden rule, is

Sθ = dσ
�

v = v
�

dσ
dθ

dθ = 2π
h̄

∣
∣
∣∣
1
�

Ukk′

∣
∣
∣∣

2 k2�
8π3h̄v

dθ . (1.52)

Therefore, with dσ/dθ from this relationship and using the momen-
tum correspondence of h̄k = m∗v, where m∗ is an effective mass, we
have

dσ
dθ

= m∗2

4π2h̄4
k2

v2
∣
∣Ukk′

∣
∣2. (1.53)

The Fourier component of the Coulomb perturbation is

∣
∣Ukk′

∣
∣2 =

∫
1

4πε

Z∗e2

|r| exp
[
(k − k′) · r

]
d3r

= 1
4πε

Z∗e2

|k − k′|2
= Z∗e2

4k2 sin2(θ/2)
. (1.54)

This last equation now gives a direct correspondence between the
classical and quantum-mechanical pictures of a nearly free electron
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scattering due to a charge in an isotropic condition. We could use Many of the parameters—nearly
constant—that one often utilizes in
the physical world are the result of
fast and slow at work. The friction
coefficient—static and dynamic—
arises in the electromagnetic and
quantum-constrained interactions
in the interface region between two
objects. The couplings under static and
dynamic conditions are different, but
both are to a broadband of vibrational
losses for the atoms of the objects.
An electron undergoes fast scattering
events, many of which are random, as
it moves through the matter. This too
is a broadband event in the frequency
domain, with energy loss to the
environment. Thermal equilibrium or
steady state comes about because of
the accumulation of the fast-and-slow
events.

the Golden rule to determine what this scattering rate will be in
the angle dθ . A classical scattering cross-section can be fitted to it.
And, by correspondence, the quantum scattering will gracefully
transform into a classical scattering relationship.
This discussion of states and their transformation due to

interactions sets up a reasonable starting point for discussing the
nature of the electrons and the atom systems and their analysis.

1.4 Fast and slow, and the Born-Oppenheimer/adiabatic
approximation

Simultaneous presence of fast and slow interactions is
quite commonplace. A simple example of this is the variety of
circumstances where one introduces a frictional damping. Brownian
motion, conductance, et cetera, are illustrations of fast events—
in these cases, random scattering encounters of a particle or an
electron in a solid—in the presence of a slow external stimulus—
the flow of the liquid and the particles, or of electrons—under an
external cause of potential or kinetic energy change. For semicon-
ductors, an illustration of this complexity is fast-moving electrons
in the midst of the vibration of atoms around their equilibrium
positions. The atomic motion—dressed nuclei, that is, nuclei and
the core electrons vibrating around their equilibrium—is slow, since
the mass is large. An electron transits a few atom distance (∼nm) at
a speed of ∼107 cm/s in ∼10 fs. Atomic vibration—a deformation,
where the frequencies are of the order of a few THz—must lead
to a change in the allowed states of the electron. So, if there is a
scattering interaction between the electron and the perturbation
due to this deformation, there will be the fast scattering event
coupling to a slower deformation. The Golden rule lets us tackle
the fast through the transition/scattering rate. The slow will follow
for us from adiabatic approximation, which has its origins in the
Born-Oppenheimer approximation in quantum mechanics’ earliest Adiabatic, a word of Greek origin,

translates as  ̏not to be passed
through.˝

application to the study of molecules. We will be particularly
interested in this simultaneous presence of fast and slow processes
because of its importance to transport and transitions. And we can
then suitably put the two approaches together to understand fast
and slow.
The adiabatic process, or adiabatic approximation, is an important

analysis tool in quantum conditions. Both of these terms are also
used in classical conditions but with subtle differences in meaning

In electronics, adiabatic circuits, by
suppressing entropy production and
by recovering energy, can consume
vanishingly low energy. But they
are slow, so this quantum-classical
difference can cause plenty of tangle.that need some elaboration. In classical mechanics, the adiabatic
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process is a process in which no heat is exchanged. The system
can be viewed as one that is thermally isolated or in which change
is taking place rapidly enough that transfer of energy as heat is
absent. In the thermodynamic view, this lets one analyze conditions In S. Tiwari,  ̏Quantum, statistical

and information mechanics: A unified
introduction,˝ Electroscience 1,
Oxford University Press, ISBN
978-0-198-75985-0 (forthcoming),
we looked at the reflection and
transmission of an electron plane
wave whose energy is larger than the
barrier energy. An abrupt barrier—
sudden change—causes reflection
and transmission. A gradually
changing barrier, where � � 2π/k,
with � as a length scale of change of
the barrier’s changing energy, and k as
the wave vector of the incident wave,
has the reflection suppressed. The
incident wave of wavevector k will
adiabatically adjust to a wavevector k′
in the barrier region.

of rapid change—such as compression or expansion in a mechanical
engine—and determine limits such as the Carnot efficiency. Absence
of heat exchange means no entropy change. In the quantum view,
adiabatic approximation implies a change that is sufficiently slow so
that the eigenfunction evolves slowly from one to another, slowly
enough that it is a tight coupling between one state to another state;
that is, it remains reversible throughout the process. The state of the
system remains the eigenstate of the instantaneous Hamiltonian. It
is in this sense of reversibility that it corresponds to the classical
use. However, in classical adiabatic conditions, the process needs
to be rapid to eliminate entropy change; in quantum conditions,
it needs to be quasistatic to allow state-to-state coupling. If the
latter were not, a starting state would couple to a band of states—
the final new state being a superposition in the new system—
destroying reversibility.
So, in quantum mechanics, an adiabatic process is a process

where a system undergoing change—with modification to its energy
levels—continues to remain in a single definite state. It maintains,
for example, its quantum numbers. If a square well has a particle in
the ith level, it remains there as the square well shape is changed
adiabatically. The wavefunction adapts to the slowly changing
parameters that define and mold the system.
The Born-Oppenheimer approximation is an example of

resorting to adiabatic process in molecules and solids. When we
reduced Equation 1.10 to Equation 1.11 to describe the atomic
solid by decoupling the ionic motion—the slow process—from
the electrons’—the fast process—Hamiltonian, we employed the
adiabatic approximation. The deformation-induced scattering

An N-particle system has 3N degrees
of motional freedom; 3 will be
translational, leaving 3N − 3 for
assorted other possibilities. If we
look at just what 2 atoms can do, of
the 6 motional degrees of freedom,
3 are for translational movement of
molecules in real space. This leaves
3. A complete and independent set of
these is vibration along the axis, and
2 more for the rotational freedom in
two orthogonal planes that intersect
along the molecular axis. Water with
3 atoms has a larger collection of such
modes. In a kitchen microwave, the
2.45 GHz frequency ≡ 12 cm of free
space wavelength or a 10 μeV energy
photon is absorbed by the water
molecule in this motional freedom.

can now be added on as a perturbation to the solution. Another
example is the simple system that we will take up next for
analysis—a 2-electron and 2-atom system (Section 1.5)—where
both an electronic and a nuclear part appear. Both have motional
components. For any change from the initial state to a final state,
one must consider both the electron and the nuclear part. The
mass of the electron is significantly smaller than that of the nuclei,
so nuclei can be viewed as moving so slowly that the electron
distribution adjusts to them instantaneously responding to the
changing potential. The consequence—a Born-Oppenheimer
approximation—is that a fixed electronic wavefunction is calculable
for any fixed nuclear locale. This is to say that, in the absence of
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degeneracy, one may split the eigenfunction describing both the
electrons and the nuclei as separable products; that is,

The Born-Oppenheimer approximation
is very useful but, nevertheless,
imperfect. There is inevitably some
mixing between states. An electron
falling behind nuclear motion may be
closer to another state—a mixing has
happened—and therefore transitions
that are not allowed may become
possible, small shifts in energies may
come about, or degeneracies may be
removed.

|ψ〉= |φ({r}, {R})〉|χ({R})〉, (1.55)

where {R}= (R1, . . . ,RN) are all the nuclear displacements, and
{r}= r1, . . . , rN all the electron coordinates, which may be gen-
eralized to include spins if appropriate. This separability estab-
lishes that the electronic motion instantaneously responds to
the atomic and nuclear motion—that is, it is a function of these
coordinates—and is separable from the nuclear response, which can
be written as a function of its own coordinates alone. The electron
charge cloud follows rapidly the slow response of the electron
and nuclear particles of the system. The energy of all possible
arrangements is calculable in principle within the constraints of
the accuracy of the method for the Hamiltonian’s solution—Hartree-
Fock—there. We will discuss Hartree and Hartree-Fock approaches
to solving the Hamiltonian shortly. The equilibrium position is
relatively accurate through the distribution of separations, even if
the derivative around this equilibrium is not.
As an example of separation of the nuclear part, the Born-

Oppenheimer approximation’s use and its analysis, take the
example of electromagnetic absorption by a molecule, which can
also be extended to the crystal and is particularly useful for the
nanoscale. Figure 1.7 shows the underlying process of an interaction
of a molecule absorbing a radiation photon. This is an illustration
of the Franck-Condon shift where fast and slow again makes its
appearance. The Franck-Condon principle states that since the
electron mass is much smaller than the nuclear mass, electronic
transitions can be treated with a stationary nuclear framework. This
is pretty much the Born-Oppenheimer approximation. The Franck-
Condon approach is used for molecules, but it is also pertinent to
the electron in the crystal with atoms attached to each other.

Figure 1.7: Franck-Condon shift, an
example of fast-and-slow change,
shown in configuration coordinate
diagram. (a) A sequence of processes.
An optical transition from A to B—
a resonant absorption—is fast and
accompanied by an ionic distortion
since electrons move rapidly but the
nucleus does not. This metastable
excited state slowly relaxes to
the excited state C with a Franck-
Condon shift of �jh̄ωj. (b) A physical
interpretation at the atomic level. In
the state C, the nuclei of the excited
state are farther away. Eventually,
another optical emission takes place,
leaving the nuclei still far apart. And
eventually they slowly come back to
the starting state A. This picture of
configuration coordinates is useful in
understanding some of the deep levels
in semiconductors— vacancies, atoms
displaced, et cetera—where lattice
distortion accompanies the electron
capture or emission process.

A configuration coordinate diagram shows the energetic changes
as multiple coordinates; for example, the geometric spacing of the
center of motion, and the relative spacings of components, together
with the momenta of a system, also undergo a change. Figure 1.7
shows the energetics as a function of nuclear position for a system
undergoing transition by interaction with a photon: the initial and
final state electronic energy as a function of the displacement Rj

of the jth nuclei. The electron energies E(R) as a function of the
atomic/nuclear displacement within the harmonic approximation
for two different nuclear positions of the jth nuclei are shown here
for both the initial state and the final state. The vibrational part,
due to the nuclear motion, occurs slowly. The electron state change
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occurs rapidly. The electronic and vibrational parts of the response
can be separated. The vibration part, in the linear limit, is a simple
harmonic oscillator, whose center will change as time proceeds, and
this process will involve phonon emission in the solid. The different
excitation states of the electron are the different dotted lines in the
figure in the harmonic well.
These energies can be written as

Ei(R) = Ei(Ri) +
3N∑

j=1

1
2

mh̄ω2
j (Rj − Ri

j)
2
, and

Ef
(R) = Ef

(Rf
) +

3N∑

j=1

1
2

mh̄ω2
j (Rj − R

f
j )
2
. (1.56)

The electronic energies differ in energy linearly with the displace-
ment Rj if the coupling between electronic and nuclear motion
is also linear under small displacement. The nuclear contribution

oscillates around mean displacement position (Ri
j and R

f
j ). The

change in mean position, representative of the electron-nuclei
interaction, can be related through a parameter written here without
proof as

�j = m
(

ωj

2h̄

)
|Ri

j − R
f
j |
2
. (1.57)

�j—the Huang-Rhys factor—is a dimensionless factor tying the
strength of the coupling of the electronic states to the nuclear
motional freedom.
The photon absorption induces an electronic transition from

point A, with the system evolving, without nuclear positional

change, to point B. Nuclear position now changes slowly to R
f
j

(point C) via phonon emission, with the system still staying excited.
The net difference between the final and initial state energies is

Ef
(R) − Ei(R) = Ef

(Rf
) − Ei(Ri)

+
3N∑

j=1
�jh̄ωj +

3N∑

j=1

√
2mh̄ω3

j �j|Rj|. (1.58)

Here, the first summation is the Franck-Condon energy correspond-
ing to the net relaxation of the molecule or crystal, and the last term
is the result of electron and nuclei motion interaction, which is the
electron-phonon coupling.
The absorption of the photon—a fast process—causes a change

in energy without a change in nuclear configuration, which thereon
relaxes through the transfer of energy to the vibrations. We could
separate the terms, since the nuclear part of the wavefunction could
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be written as a product term solely in terms of nuclear position in
the wavefunction of Equation 1.55. We could analytically resolve The heating of a water molecule in the

microwave depends on an electronic
transition that then shakes the water
molecules, which is an effective way to
heat food.

this because of the separability of the fast-and-slow process that
adiabatic approximation could be applied to. This example also
introduces us to the use of configuration diagrams when local
positional changes have an effect on energy. We will encounter
this a few times, particularly so in understanding defects, where
the local crystal environment will have a consequence for electronic
energy interactions, just as it did in this molecular example.

1.5 A 2-electron and 2-atom system

We start our exploration of solids with the simplest
of cases of matter assembly: a 2-electron, 2-atom system—the
hydrogen molecule—to understand the energetics and the different
possibilities of the eigenstates as starting points. There is much
here from which we can draw implications for the solid forms of
interest to us. In this 2-electron, 2-atom example, the Hamiltonian
operator, with the electron’s kinetic and Coulomb potential energies
included, is

Ĥ = − h̄2

2m0
∇2
1 − h̄2

2m0
∇2
2 − 1

4πε0

e2

r1A
− 1
4πε0

e2

r2A

− 1
4πε0

e2

r1B
− 1
4πε0

e2

r2B
+ 1
4πε0

e2

r12
+ 1
4πε0

e2

R
, (1.59)

where A and B denote the sites of the two atoms that are R apart
and 1 and 2 represent the two electrons of mass m0, so that r1A In following through by the writing of

Coulomb energy terms in this form,
energy terms will appear as a Coulomb
integral. An electron in an atomic
orbital |u1〉 has a charge density of
−e〈u1|u1〉 or a charge of −e〈u1|u1〉d3r1
in volume d3r1. A second electron
has a charge −e〈u2|u2〉d3r2. For a
separation r12, the potential energy
of the Coulomb interaction—the total
electrostatic interaction between the
two elemental charges—is the integral
over the entire space of each of these
volume elements. This is the Coulomb
integral. It is a net increase in energy
because charges are of the same sign.

means the separation of electron 1 of charge −e from a residual
core of charge +e (Z = 1 in Equation 1.11) and r12 is the separation
between the two electrons. We wish to find the lowest energies. It
stands to reason that these will be reconstituted from the lowest
energy states of the atoms from which the molecule is formed as
the interaction evolves. Let |uA↑〉, |uA↓〉, |uB↑〉 and |uB↓〉 represent
the 1s orbital wavefunction of the two atoms A and B of this
hydrogen molecule, with spin up ↑ ≡ ms = +1/2 and spin down
↓ ≡ ms = −1/2 possibilities. These are the four possible spin orbitals.
Let the two electrons be represented by 1 and 2, respectively. So,

|uA↑(1)uB↑(2)〉 speaks to electron 1 on atom A, and electron 2 on
atom B, where both electrons have ms = + 1/2. We may exchange
the electrons between the two atoms, in which case wavefunction
|uA↑(2)uB↑(1)〉 is also a possibility. There are many more such This is the Pauli exclusion principle

telling us that no two eigenfunction
solutions for the fermions can be the
same.

possibilities—a total of 4C2 = 6—that represent choosing any 2 out
of 4 available spin orbitals. Two of these—|uA↑uA↓〉 and |uB↑uB↓〉—
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represent the 2 electrons on one atom (A or B). The other is bereft.
So, we have a combination where one is now a negative ion, and
the other a positive ion. We exclude these from our discussion.
They are certainly possible under energetic circumstances, but we
are interested in solutions where both centers are still neutral.

A stationary state is one whose
probability density (〈ψ |ψ〉) is invariant
in time. See the probability discussion
of random processes in Appendix C.

So, we need determinental functions that exclude the degenerate
possibilities, for example, under exchange of the two electrons on
the two centers (|uA↑(1)uB↑(2)〉 and |uA↑(2)uB↑(1)〉), and form a non-
degenerate set for a stationary solution.

See Appendix D for a discussion
of variational principle and its
usage. The reader will also find
Appendix E and Appendix F as a
short encapsulation of the important
notions of thermodynamics and
important distribution functions. Spin
is discussed in Appendix G.

The simplest illustration of the
removal of degeneracy in the
presence of interaction is that of
bonding and antibonding states.
Let two systems share identical
Hamiltonians. Independent, they have
identical energy. Let |l〉 and |r〉 be the
eigenfunctions that have this same
energy E as their solution. Bring the
two closer to cause each to perturb the
other. Equation 1.61 gives the solution
for the energy. Absent perturbation,
soOjis vanishing, the energy E is the
solution for the two non-interacting
systems in the |l〉 and |r〉 state. With
perturbation, the energies change, and
we have the solutions

E+ = E + �, with

|+〉 = 1√
2
(|r〉 − |l〉), and

E− = E − �, with

|−〉 = 1√
2
(|r〉 + |l〉),

where � is the energy change
arising due to the perturbation.
This perturbed system does not have
|l〉 or |r〉 as its eigenfunction or E as
its eigenenergy. The energies have
changed to E+ and E−, and the new
eigenfunctions are linear combinations
of unperturbed eigenfunctions. |l〉 and
|r〉 have hybridized. Degeneracy has
been lifted. the higher energy state is
the antibonding state. It is spatially
antisymmetric. The lower energy state
is the bonding state. It is spatially
symmetric. This is a  ̏molecular˝
description. States were localized. Such
a  ̏molecular˝ model is very useful
in understanding many defects in
semiconductors.

Let {|u0i 〉} be the set of orthonormal basis functions. We build
a linear combination |ψ〉= ∑

i ci|u0i 〉. Let Ojk = 〈u0j |u0k〉. This is
an overlap matrix element. If Hjk = 〈u0k |Ĥ |u0j 〉, then stationarity
requires

∑

i

ci(Hjk − EOji) = 0, (1.60)

by variational principle. For a unique stationary solution to exist for
this set of equations, the secular equation

det|Hjk − EOji| = 0 (1.61)

must be satisfied. For N basis functions, there are N roots that are
the eigenvalues. Each of these eigenvalues is associated with a
combination of ci’s of Equation 1.60—a linear combination. For
us, here these are to be built from |uA↑uB↑〉, |uA↑uB↓〉, |uA↓uB↑〉
and |uA↓uB↓〉. We have now discarded the identification of each
electron, as it is implicit in this choice set, where Ms—the sum of
the secondary spin number along the axis of quantization—changes
from 1, to two with 0, and the last one with −1. This middle set of
Ms = 0 leads to the linear combination through sum and difference,
which are distinguishable, but which will also lead to a degenerate
energy. Our four solutions, unnormalized, but explicitly including
the spin and the electron and atom identity, are

|uA↑uB↑〉 = [uA(1)uB(2) − uA(2)uB(1)]| ↑ (1)〉| ↑ (2)〉,
|uA↓uB↓〉 = [uA(1)uB(2) − uA(2)uB(1)]| ↓ (1)〉| ↓ (2)〉,

|uA↑uB↓〉 + |uA↓uB↑〉 = [uA(1)uB(2) − uA(2)uB(1)]

× [| ↑ (1)〉| ↓ (2)〉 + | ↓ (1)〉| ↑ (2)〉], and

|uA↑uB↓〉 − |uA↓uB↑〉 = [uA(1)uB(2) + uA(2)uB(1)]

× [| ↑ (1)〉| ↓ (2)〉 − | ↓ (1)〉| ↑ (2)〉], (1.62)

showing the separation of spatial and spin coordinates with their
changing symmetries that make these combinations different
from each other. The top three of these have antisymmetric
spatial coordinates and spin coordinates are Ms = 1,−1 and 0.
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The eigenvalue of these three is identical, arising in the spatial
dependences. Spatially antisymmetric functions form the triplet. The
last wavefunction, also an eigenfunction and spatially symmetric,
forms a singlet state.
With these functions known, one may calculate the energies

following normalization, since the Hamiltonian of this problem
only involves spatial dependence. This is shown in Figure 1.8 as a
function of changing R. The singlet spatially symmetric solution has
a lower energy, while the triplet spatially antisymmetric solution
has higher energy. The former is our bonding state, and the latter
the anti-bonding state. This approach is an illustration of the tight
binding approach. We built a tight molecular construction using it.
It is also known as linear combination of atomic orbitals (LCAO),
since it built the hybrids, or the evolved eigenfunctions starting
from the original atomic orbitals as the orthonormal set.

Figure 1.8: The energy, as a function
of interatomic spacing, of a model
hydrogen molecule for the four
wavefunction solutions. The
antisymmetric solution has a higher
energy than the symmetric singlet
solution.

Bringing two atoms together here has led to a lowering of energy
in the bonding state and has resulted in a stable molecule with
one bonded spatially symmetric solution. It has illustrated to us
a methodology that will be a stepping stone to more complicated
constructs. For us, a very instructive one is of N electrons together
with the nuclei.

1.6 N non-interacting electrons in the presence of nuclei

If one has N non-interacting electrons, and they are also
independent of each other, that is, no Pauli-exclusion and fermionic
constraints, the Hamiltonian may be written as Ĥ = ∑N

1 Ĥ(zi),
where the Hamiltonian of the ith electron—a sum of the kinetic Spin often will become important

because both Pauli exclusion and
magnetic energetics relate to the spin’s
important role. See Appendix G for
a discussion of the spin and spin
matrices to represent spin coordinates.

((−h̄2/2m0)∇2
i ) and the potential energy (V) form—is a function of

both the position (ri) and the spin ζ i coordinates; that is, zi = ri, ζ i.
These N Hamiltonians are identical, and their solutions degenerate,
that is,

Ĥ(z)|ui(zi)〉= Ei|ui(zi)〉 ∀ i = 1, . . . ,N, (1.63)

so that the net energy of the N electrons is E = ∑N
i=1 Ei and the

wavefunction is also a product of the one-electron states, that
is, |ψ〉= ∏N

i=1 ui(zi). The problem with this solution is that the
wavefunction |ψ〉 is not antisymmetric, and it does not represent Another way of saying this is that

we have found a solution for N one-
electron one-nucleus systems that are
all very far apart from each other so
that they do not interact and are also
independent of each other.

a collective ensemble of N non-interacting electrons that are not
independent.
The wavefunction |ψ〉 for the ensemble Hamiltonian composed

of these one-electron states must be an antisymmetric function for
the fermion electron, since Pauli exclusion applies. This is the Slater
determinant
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|ψ〉= 1√
N!

∣∣
∣
∣∣
∣
∣∣
∣
∣

|u1(z1)〉 · · · |u1(zN)〉
|u2(z1)〉 · · · |u2(zN)〉

...
...

...
|uN(z1)〉 · · · |uN(zN)〉

∣∣
∣
∣∣
∣
∣∣
∣
∣

, (1.64)

with spin and which is orthonormal. The eigenenergy is E = ∑N
i Ei.

A Slater determinant obeys
antisymmetry by construction.
Determinants change sign when
rows or columns are interchanged.
The Slater determinant also keeps the
electrons indistinguishable.

In this form, when two electrons are taken in identical wave-
function form, the determinant vanishes, as expected from Pauli Indistinguishability here means that

each electron is associated with each
electron wavefunction.

exclusion, and the electrons are also indistinguishable. If the energy,
and so also the Hamiltonian H(z), are independent of the spin, then
one may separate the spin part from the spatial dependence; that is,

|uiσ (z)〉 = |ui(r〉|vσ (ζ )〉. (1.65)

Electrons of opposite spin may coexist in the same orbital state, so
the ground state of this N non-interacting electron system is one This multiple electron question shows

up as a problem of lowest energy in
bonding in chemistry. Spin up and
spin down are valid in a bonding state
since the resulting eigenfunction is
antisymmetric.

where the entire gamut of lowest one-electron states is filled with
two electrons, each of opposite spin per state.
An important point of note here is that one could follow through

this way and obtain the wavefunction for the system as a whole
using the Slater determinant, because the electrons were non-
interacting and because the total Hamiltonian could be written
as a sum of each electron’s Hamiltonian. And each electron’s
Hamiltonian was a function of its coordinate interacting only with
nuclei. All other energetics, such as electron-electron interaction
energies, for example, were, by fiat, zero. The independence let us
write the total Hamiltonian as a sum of each electron’s, and hence
the wavefunction solutions found from Equation 1.63 served to
build the system’s wavefunction. The hydrogen molecule model
in Section 1.5 is an example of this approach applied to a 2-electron,
2-nuclei problem.

1.7 N interacting electrons in the presence of nuclei

In an N-interacting-electron system, together with the
atoms from which the electrons arose, the wavefunction of the
system is a function of the coordinates of all electrons and of other
particles, such as the cores, with which they meaningfully interact.
Even with the simplification of these N electrons in a continuum
approximation averaging the positively charged ion background,
because of the interaction between all the electrons, the Hamiltonian
is not separable as it was in previous case. We need to approximate
the effect of interaction of an electron with all others by a potential
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that is only a function of the electron coordinate. Only then is Here, this self-consistent field
approximation implies that, for the
specific electron for which one is
computing, the potential in which
it is present can be calculated by
freezing all the other electrons and
taking their averaged distribution by
a centrosymmetric potential source.
Solving the Schrödinger equation
gives an updated state description.
And this becomes a starting point for
improving the accuracy of description
of other electrons, again using the
frozen representation for the rest. One
cycle of this procedure updates all the
electrons’ orbital descriptions, and
the procedure may be repeated. The
procedure has limitations but is quite
useful. As the number of particles
increases, it becomes increasingly more
accurate. It is therefore quite useful
for the determination of many of the
properties that are of interest to us.

it possible to treat the electrons one at a time separately. This is
an example of a self-consistent field approximation—finding a mean
field in which interaction may be tackled for specific particle with
attention to only its coordinates—in numerous places and is useful
for our N-interacting-electron system. Since the self-consistent
approach requires the interaction potential and a knowledge of the
states, with each dependent on the other, one must compute the
solution self-consistently, iterating until one finds a solution that is
satisfactorily accurate.

1.7.1 Hartree approximation

With N electrons and their nuclei as an ensemble, the
Hamiltonian may be written as

Ĥ =
N∑

i=1
Ĥ(zi) + 1

2

∑

i�=j

1
4πε0

e2

|ri − rj| + V̂NN. (1.66)

The first term is as before (a sum of kinetic energy and the
Coulomb interaction with the nuclei/ion), the second is the
electron-electron Coulomb interaction while compensating for
duplication and only including separate electrons, and the last is
the Coulomb interaction between the nuclei V̂NN = ∑N

i=1 V̂(Ri). It is
the second term that mixes up the electron coordinates because of
the electron-electron Coulomb interaction that makes the solution
not decomposable to the form discussed in Section 1.6, where this
interaction was excluded by making the independent electron
approximation. So, this wavefunction solution is a function in the
coordinates (r1, . . . , rN) has now become non-trivial.
Hartree’s insight is that one may tackle each electron separately

by viewing it as moving in the field of the nuclei (or ions, in the
simplification for solids) and in the average field due to the other
electrons. This self-consistent field approximation—the Hartree
approximation—corresponds to finding the solution of

⎡

⎣Ĥ(zi) +

∑

i�=j

∫
1

4πε0

e2

|ri − rj| 〈uj(zj)|ui(zi)〉〈uj((zj)|uj((zj)〉dzj

⎤

⎦ |ui(zi)〉

= Ei|ui(zi)〉 ∀ i = 1, . . . ,N. (1.67)

The problem has again been reduced to N equations, one for each
electron, where each is in a field due to the other N − 1 electrons.
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On the left-hand side of Equation 1.67, we add and subtract an
unphysical self-interaction Coulomb term for i = j, and one obtains the

This self-interaction term is introduced
only for convenience of calculation.
An electron, of course, does not
interact with itself. But, through this
subterfuge, one can write a Hartree
potential as an integration over the
ensemble.

form
[
Ĥ(z) + V̂H(z) − V̂si(z)

]
|ui(z)〉= Ei|ui(z)〉, (1.68)

an equation that is now identical for all the electrons i = 1, 2, . . . ,N,
where

VH(z) =
∫

1
4πε0

e2

|r − r′|n(z′) dz′,

n(z) =
∑

i

oi〈|ui(z)|ui(z)〉, and

Vsi(z) =
∫

1
4πε0

e2

|r − r′| 〈|ui(z′)|ui(z′)〉 dz′. (1.69)

Here, VH is the Hartree potential—a Coulomb energy term arising
in the electron interactions that includes the unphysical i = j
contribution and written in terms of electron density, which is a
summation over the product of probability density of the ith state
and its occupation factor (oi, where oi is 1 if an electron is present,
and 0 if it is absent). The last term of Vsi is a self-interaction term
that is now being subtracted to compensate for what was artificially
introduced in the Hartree potential.
This Hartree potential approach is quite a good starting point for

describing an atom’s electronic picture, or a many-electron picture
of a solid, since the set of equations represented by Equation 1.67
are now solvable with the Hartree potential calculable through
simple averaging in Equation 1.69. VH represents a mean field
effect, but one that includes the unphysical self-interaction term.
In the Hartree approximation, one starts with a trial wavefunc-

tion |ψ〉 composed of independent electrons; that is,

|ψ〉=
N∏

i=1
|ui(zi)〉, (1.70)

ignoring the antisymmetry. The desired solution is the one that has
the minimum for 〈ψ |Ĥ |ψ〉. This requires the variational expectation See Appendix D, where the approach

of using the variational principle to
minimize energy by varying from a
good guess of a starting trial solution
is discussed.

to vanish; that is,

〈δψ |Ĥ |ψ〉 = 0. (1.71)

So, the variational treatment of |ui〉 leads to the solution of Equa-
tions 1.66 and 1.67, our equations of the Hartree formulation. We
have reduced the problem to solving N single particle equations
with unknown n(z′) − 〈ui(z′)|ui(z′)〉. An iterative approach that
brings about self-consistency between the density’s implication
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for potential (Equations 1.69) and the governing Hamiltonian
(Equation 1.68) with the use of equilibrium statistics leading back
to the density will tackle it.
But there are serious shortcomings. The most important is that

these equations have no constraint that reflects Pauli exclusion
(Equation 1.70 is not antisymmetric); that is, exchange.

1.7.2 Hartree-Fock approximation

The Hartree-Fock approximation antisymmetrizes the
wavefunction. It starts with the Slater determinant, with its

In the Hartree approximation, we
started with the trial |ψ〉 as the
product of independent electron
wavefunctions. The Slater determinant
gives us the coupled solution that
adheres to all the quantum-mechanical
constraints. This antisymmetrization
is the Hartree-Fock approximation.
Both Hartree and Hartree-Fock are,
however, still approximate with
Hartree-Fock, an improvement toward
accuracy. Multiple electron assemblies
such as atoms and molecules—systems
with restricted numbers—show this.

orthonormality for spin orbitals of independent electrons as the
initial trial wavefunction. For the Hamiltonian of the Hartree
equation (Equation 1.66) for this N-interacting-electron system, the
energy solution is

E =
∑

i

oi〈ui|Ĥ|ui〉 + 1
2

∑

i,j

oioj

(

〈uiuj

∣
∣
∣∣
∣

1
4πε0

e2

|ri − rj|

∣
∣
∣∣
∣
uiuj 〉

−〈uiuj

∣
∣∣
∣
∣

1
4πε0

e2

|ri − rj|

∣
∣∣
∣
∣
ujui〉

)

+ VNN. (1.72)

Note the antisymmetrization in the second term. Here, we have
used the generalized notation

〈ukul

∣
∣
∣∣
∣

1
4πε0

e2

|r − r′|

∣
∣
∣∣
∣
uiuj〉

=
∫

u∗
k (z)u∗

l (z
′) 1
4πε0

e2

|r − r′|ui(z)uj(z′) dz dz′ (1.73)

for brevity.
Minimization of E for all |ui〉 under the constraint of their

orthonormality may be accomplished using Lagrangian multipliers; A short summary of the method of
Lagrangian multipliers can be found
in Appendix D. This approach to
finding solutions under constraints is
an essential instrument from the tool
set of mathematics that we employ
throughout.

that is, we require

δE −
∑

i,j

λij

∫
δu∗

j (z)ui(z) dz = 0 ∀ δu∗
j . (1.74)

The one-particle equation set that this corresponds to is
⎡

⎣Ĥ(z) +
∑

j

oj〈uj(z′)
∣
∣∣
∣
∣

1
4πε0

e2

|r − r′|

∣
∣∣
∣
∣
uj(z′)〉

⎤

⎦ |ui(z)〉

−
∑

j

oj〈uj(z′)
∣
∣∣
∣
∣

1
4πε0

e2

|r − r′|

∣
∣∣
∣
∣
ui(z)〉|uj(z)〉

=
∑

j

λij|uj(z)〉. (1.75)
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The first of the summation interaction terms on the left is just
the Hartree potential VH that we encountered before. The second
summation term on the left is an exchange term. Since the Slater
determinant undergoes only a phase factor change under uni-
tary transformation, the equations remain the same structurally
under diagonalization of this equation set. So, one may reform
Equation 1.75 to a diagonal form where λij = Eiδij. We now have the
equation set

[
Ĥ(z) + VH(z)

]
|ui(z)〉

+
∫
⎡

⎣− 1
4πε0

e2

|r − r′|
∑

j

oj〈uj(z′)|uj(z)〉
⎤

⎦ |ui(z′)〉 dz′

= Ei|ui(z)〉 ∀ i = 1, . . . ,N. (1.76)

The last term on the left in this equation is a nonlocal exchange
interaction. The equation form can be written more meaningfully—
and simply—as

[
Ĥ(z) + VH(z) + Vx(z)

]
|ui(z)〉 = Ei|ui(z)〉 ∀ i = 1, . . . ,N, (1.77)

where

Vx(z)= 1
ui(z)

∫
⎡

⎣− 1
4πε0

e2

|r − r′|
∑

j

oj〈uj(z′)|uj(z)〉
⎤

⎦ |ui(z′)〉 dz′ (1.78)

In Equation 1.76, the i = j contribution arising in the last term on
the left is precisely Vsi. But this Hartree-Fock approximation has
reformed it into a correction term Vx arising in exchange for i �= j.
It is more accurate, even if less intuitive, and it has pulled in the
nonlocal exchange’s energetic consequence. This Hartree-Fock equa-
tion set can tackle the spin orbital as factorized by Equation 1.65.
It accomplishes this by transforming the integration over z′ to r′,
while VH gets doubled for spin degeneracy and the exchange term
is unchanged since their contribution to Equation 1.75 vanishes.
In the Hartree approximation (Equation 1.68), we had to explicitly
exclude the i = j term in the summation. In the Hartree-Fock
approximation, we do not have to exclude this, since the exchange
term sums cancel with the i = j term. When N is large, with electron
contributions scaling as 1/N, the distinction between Hartree and
Hartree-Fock rapidly vanishes.
But, at small N, so few electron and few atom systems, such as

nanostructures, these approaches and their judicious correction
for i = j—within the self-consistent field approximation—will have
noticeable consequences. Even though the Hartree-Fock approach
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should be expected to be more accurate by accounting for exchange,
there will still be major shortcomings.
The next major shortcoming to consider is that we have not

accounted for correlation. Correlation here is the notion that the

We will encounter the word
 ̏correlation˝ often. Even Pauli
exclusion is a form of correlation.
Two electrons in a non-quantum
mechanical view move independently
of each other. But there is a low
probability of them being in the
same location, due to the Coulomb
interaction. This is a charge correlation.
The change in localization of
electrons, such as in the hydrogen
molecule, through a wavefunction
that is a superposition of different
configurations is a configurational
correlation. Fermions avoiding each
other for the same spin and clustering
together when in opposite spin is
a spin correlation. Any interaction
between an electron and another
electron that is not due to the Coulomb
interaction is a quantum-mechanical
consequence that is a correlation
effect in this view. It appears in
numerous forms, and we will see these
throughout our discussion.

mere presence of an electron causes a redistribution of the other
electrons, due to electron-electron repulsion creating a  ̏Coulomb
hole.˝ This issue of correlations and exchange-correlation holes is
tackled in the next subsection.

1.7.3 Correlations

Discrepancies arise in a number of considerations neglected
up to this point. In an atom or molecule, a principal one is from
the relativistic effect in the core electrons with their large kinetic
energy. Another one is due to correlation energy, which is important
to atoms, molecules and atomic assemblies where many electrons
will exist. Hartree-Fock ignores any local changes in the distribution
of an electron, since it force fits a mean effect arising in the others.
Take the case of a molecule. When an electron is in the vicinity

of another electron, Hartree-Fock accounts for it for the whole
orbital as an average. This neglects any local electron-electron
effect. This neglecting of electron correlations in its configuration
form due to the mean field formalism makes energy calculation

Figure 1.9: Molecular potential energy
in Hartree-Frock approximation,
where correlation is not accounted for.
The minimum is geometrically close,
but the derivatives are not, and the
dissociation limit of R →∞ inaccurate.

inaccurate at long separations and in the curvature at equilibrium.
So, as seen in Figure 1.9, the poor representation of local distortion
results in accurate representation of local equilibrium geometry but
poor calculation of properties such as force constants, vibration
frequencies, et cetera. Note that subsumed in the Hartree-Fock
approximation also is the Born-Oppenheimer adiabatic approxi-
mation. The molecular potential energy is a function of relative
nuclei locale. And any calculation where electrons follow any
nuclear movement instantaneously will have increasing errors in the
calculation of dynamic parameters. In a solid, this same correlation
will cause similar inaccuracies when the number of interacting
electrons is small and local electron-electron interaction important.
We will modify the Hartree-Fock approach by accounting for this

configuration interaction of correlation.
But, we also note that the Hartree-Fock equation is actually quite

accurate and successful in a number of situations of interest to us. It
is, for example, solvable and accurate for a free electron gas with a
uniform compensating background. With one-electron wavefunction
as a plane wave, the exchange interaction is calculable. The 1/r
dependence then leads to a total energy that is proportional to
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n1/3, where n = N/� is the electron density for N electrons in
volume �. The mean separation between the particles varies as
n−1/3 and the plane wave gives an equal probability everywhere, so
any distortion effects naturally disappear with increasing particle
population. We return to this problem shortly because of this
construct’s peculiarity. Hund’s rule of multiplicity—an

observation—is that when an atom
or molecule has open electronic
shells, then, in any given electronic
configuration, the lowest energy
form corresponds to the largest spin
multiplicity. That is, the state with
the largest total spin (

∑
ms
) is the one

with the most stable configuration.
So, with multiple orbitals of equal
energy, electrons prefer to occupy them
singly before pairing. Pairing reduces
total spin. In silicon, which has 3s23p2

as the outer orbital configuration,
the 3p2 may exist as 1D, 3P and 1S—
multiplicity being 2S + 1 indicated
in the superscript of J = L + S, with
L the orbital quantum number—
3P, with ML = 1 and MS = 1—is the
favored ground state. This is Hund’s
rule 1; rule 2 is an observation on the
consequences of electron repulsion, for
which the silicon triplet state has no
choice. Hund’s rule 2 states that, in as
much as it is possible to be consistent
with rule 1, the configuration that
maximizes orbital angular momentum
is favored. Hund’s rule 3 minimizes
spin-orbit coupling and so appears for
larger atoms with d and f electrons.
The first two rules really are because
of the Coulomb energy implication of
the arrangements. Hund’s rule can be
seen classically in orbital motion. Two
pendulums interacting with each other
lock orbital and spinning motion.

The correlation effects have another important consequence: the
existence of holes and mounds. A simple example is from spin
correlation. Since two electrons of the same spin may not be found
at the same point, if one looked at the probability of finding a
second electron of identical spin, it will vanish at the point of no
separation. The wavefunction of the second electron asymptotically
vanishes in the vicinity of the first electron’s locale. This is a Fermi
hole. Likewise, for opposite spins, the second electron’s probability
is enhanced. Pauli exclusion, or exchange, has resulted in this spin
correlation effect. In a configuration of atoms, the Hund rule’s of
maximum multiplicity is indirectly due to this spin correlation’s
consequence.
Since the Hartree-Fock approximation does not include cor-

relation effects, configuration interaction needs to be computed as
a modification. The eigenstates of the system of N interacting
electrons can be built by expansion of the Slater determinant
constructed off an infinite set of orthonormal one-particle spin
orbitals whose starting point is the Hartree-Fock ground state
determinant. Let |uSn〉 represent the basis of the Slater determinant
from the infinite orthonormal single particle spin orbitals. We have
the wavefunction

|ψ〉=
N∑

n=1
cn|uSn〉. (1.79)

If we think of a free electron gas, with the nuclear charges smeared
as a positive background—a jellium as a continuum—balanced by
an opposite and uniform electron density, then the mean effect is a
zero potential. The one-particle Hartree equation (Equation 1.67) is
then just the free electron wave

uk(r)= 1√
�
exp(ik · r), with Ek = h̄2k2

2m0
, (1.80)

where � is the free space volume, and the time dependence is
implicit. A ground state has two electrons of opposite spin in these
one-particle states. A Fermi level with energy EF and wavevector
kF defines the highest state up to which these are filled at absolute
zero temperature. Since the volume of k-space is (4/3)πk3F, with
2π/�1/3 as the separation between the points of k-space that
electrons with opposite spins may occupy,

See Appendix H for a discussion of
allowed k and the distribution of states
in the reciprocal and real space.
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N = 2
(4/3)πk3F
(2π)3/�

= k3F
3π2� ∴ n = N

�
= k3F
3π2 . (1.81)

An electron has an effective space of a length scale re = (3/4πn)−1/3,
where n is the electron density, and its correspondence with the
Fermi wavevector follows as

kF = 1
αre

, with α =
(
4
9π

)1/3
≈ 0.521, (1.82)

which is an indicator of the high level of filling and which is the
reason why a jellium description becomes quite valid. The plane
waves are eigenstates of the Hartree-Fock operator that had led to
the exchange correction term of Vx (Equation 1.78) operating on the
state |ui(z)〉. This can be viewed as a one-body effective exchange
potential operating on the one-particle eigenstate. For the plane
waves, this energy function for a wavevector k is

Vx,k = − 4πe2

�

∑

k′

1
4πε0

ok′
1

|k − k′| . (1.83)

This term gives the exchange energy by summing over all the
other states that are also occupied by electrons. Normalizing by
the number of electrons N and avoiding double counting of the
interaction by dividing by 2 gives the averaged exchange energy
per electron of

Ex = − 3
4π

1
4πε0

e2

αre
≈ − 1

4πε0

0.458
re

(1.84)

for the free electron gas in a plane wave approximation for a metal.
The calculation that this all represents is that the electron

doesn’t interact with itself but with all others, and we have to self-
consistently determine energy under this situation. The electron at
r feels the field from other electrons, but, due to electron-electron
repulsion, its presence in our calculation at r is also repelling
these other electrons. So, it has a created a hole in the electron
distribution around itself. This is a Coulomb hole due to exchange
correlation—an exchange hole. Its presence is also changing
the screening of the electron-electron interactions. Figure 1.1, in
Section 1.2, is not an unreasonable representation. The exchange
hole lowers the net energy. Charge neutrality also means that the
electron and the Coulomb hole compensate each other locally. So,
in this volume region, net charge still vanished, and the system is
neutral. For free metal conducting systems, it has a fair and well-
formed description.

Vx of Equation 1.78 is a one-body exchange potential on the one-
body eigenstate |ui(z)〉. One may view it as an electrostatic potential
that arose due to the occupation density
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oHF(z, z′)=
∑

j

oj

u∗
j (z

′)uj(z)ui(z′)
ui(z)

. (1.85)

Integrated over z′, this must be unity, since it represents the
existence of this occupied state for which the calculation is being
performed. In any N-electron system, this electron at r is interacting
with N − 1 other electrons. The Hartree potential VH of Equa-
tion 1.69 contains N electrons and one exchange hole. Equation 1.85
says that if oj = 1 ∀ j, then the hole is localized on the electron—
a delta function (δ(z − z′)). But, our previous paragraph argues
that this cannot be the case. So, there exists a broadening. It is this
broadening that is of the order of λF = 2π/kF = 2παre for the free
electron gas. The exchange hole in  ̏free˝ electron metals—alkali
being the closest approximation—spreads out a bit beyond the
nearest neighbor.
The spreading just beyond makes sense and should be general.

Two electrons of same spin cannot be in the same position. The
configuration interaction correction to Hartree-Fock used the Slater
determinant, which takes this exclusion to heart.
This exchange-correlation hole can now be easily interpreted and

understood. The electron density is the probability of finding the
electron per unit volume. It is the number of occupied states, and
if we normalized it to the states, it is the fraction. With ri as the
electron positions,

n(r)= 〈ψ
N∑

i=1
δ(r − ri)|ψ〉, (1.86)

where |ψ〉 is the N-particle wavefunction. Let n(r, r′) be a pair
correlation of the squared probability of finding two electrons, one
at r and another at r′, that is,

n(r, r′)= 〈ψ
∑

i�=j

δ(r − ri)δ(r′ − rj)|ψ〉. (1.87)

The term includes any contributions of correlations between
electrons. The system Coulomb energy is

VCoul = 〈ψ |1
2

∑

i�=j

1
4πε0

e2

|ri − rj| |ψ〉 = e2

2
1

4πε0

∫

�

n(r, r′)
|ri − rj| dr dr′. (1.88)

The Hartree and Hartree-Fock approach didn’t account for
correlation. This means that

n(r, r′)= n(r)n(r′) (1.89)

for the Hartree and Hartree-Fock treatments.
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When configuration interaction—correlation—is included,
one may rewrite the pair correlation function in a first order
expansion as

n(r, r′)= n(r)n(r′)
[
1+ α(r, r′)

]
, (1.90)

where α(r, r′) is a correlation parameter that contains correlation’s
consequences. Since an electron at r interacts with N − 1 other
electrons in the r′-space,

∫
n(r, r′)dr′ = N − 1. Therefore, because of

Equation 1.90,
∫

α(r, r′)n(r′) dr′ = − 1. (1.91)

This is the mathematical expression for stating that the electron at r
has an exchange-correlation hole enveloping it. It arises both due to
exchange and due to correlation, and it gives us an intuitive way of
looking at exchange and correlation.
To distinguish exchange’s and correlation’s consequences in

the creation of the hole, consider spin and we can look at what
happens with aligned and anti-aligned spins. These are both
conditions where Equation 1.91 is still valid. If a system had N
electrons composed of N↑ (spin up) and N↓ (spin down) electrons,
the electron at r with up spin will interact with N↑ − 1 of up-spin
electrons and N↓ of down-spin electrons. Therefore, the integral of
Equation 1.91 split up is

∫
α↑↑(r, r′)n↑(r′) dr′ = −1, as before, and

∫
α↑↓(r, r′)n↑(r′) dr′ = 0. (1.92)

An exchange hole exists (with this integral of −1) for the up-spin
electron at r, even with the correlation effect present. And, for inter-
action with electrons of opposite spin—no correlation—the local
screening hole will have to be compensated for by the charge on
the surface of the system so that the second part of Equation 1.92 is
satisfied. At nanoscale, this effect will be of significance.
This discussion suffices for now to indicate that predictive

description of large-N systems, such as solids, will require care. The
energy state, the transitions under perturbations, will relate to the
Hamiltonian description and its solution under the constraints of
the circumstances. Bandstructure—energy states of the electrons—
calculation will require related care. We will return to this calcu-
lation to summarize the different approaches—their salient points
and applicability and limitations—in Chapter 4. Here, we continue
with our discussion of approximation methods and now look at
screening by the mobile charge.
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1.8 Screening

How do we tackle spatial variation in electronic charge? It
exists, since perturbations exist. The simplest type of perturbation
may be a space charge, where electrons will locally rearrange
themselves to minimize the energy of interaction by attempting
to screen the perturbation. A positive space charge will attract,
and a negative space charge will repel. The simple charge-induced
perturbation may be static, but it could also be dynamic if it
arises in an oscillatory phenomenon interacting with the screening
electrons. If the electron states are filled up to some states up in
energy—the Fermi energy of ∼ EF with a Fermi wavevector of kF—
then it is the electrons around the Fermi energy that are most likely
to respond, since both filled and empty states are available around
it. We have now created not only a dynamic condition—depending
on the frequency scale—but also one where the consequences
will be felt nonlocally, as the electrons at Fermi energy provide
an oscillatory response. All these interactions will be mediated
by permittivity, and which kind—static, intermediate or high
frequency—will depend on the conditions of perturbation. A few
remarks on the screening are therefore in order to understand how
the particles moving around in the crystal respond.

The permittivity reflects the medium’s
ability to withstand the applied
electric field as represented by
displacement, or equivalently,
polarization. In vacuum, this is
quite clear. ε = ε0, which does not
depend on the frequency of the
applied electromagnetic stimulus. In
an atom, isolated in vacuum, when
determining the orbitals, et cetera,
without stimulus, it is again this ε = ε0.
Apply an electric field, and the atom
responds by polarizing—slightly or
significantly—and the response is
concentrated in the outer orbitals,
with electrons in the core orbitals
shielded by the valence. Now, the
permittivity needs some care and
thought. In a semiconductor, the
electrons or their anti-quasiparticle
hole, sample the environment of
the crystal. The binding energy, that
is, the ionization energy of donors
and acceptors (shallow hydrogenic)
now must be the permittivity of the
crystal. And it is the static permittivity,
since this particle’s binding exists
in an unstimulated environment.
Place the donor under very confined
conditions in the semiconductor,
and the permittivity must account
for the change of the environment.
In an unconfined crystal, the
permittivity will change as a function
of frequency, since the medium’s
response is changing. If the nearly
free electron and an electromagnetic
stimulus are interacting in the crystal
environment, then this interaction
will need to account for the frequency
dependences and the time extent
of the interaction, where phonons
may also be important. We tackle
this later. If an electromagnetic signal
causes an electron transition from
within the core, then, due to where it
is from and the rapidity with which
the change takes place up in the atom’s
higher orbitals—still localized—
the permittivity is still free space
permittivity. But, an excited electron
localized at an atom relaxing into
a delocalized state in the crystal
environment will now need a more
complicated permittivity analysis.
So, use permittivity with care. The
solution is generalizable. In electrical
engineering texts, it appears as a
question of how electrons screen a
potential disturbance, that is, a field,
such as when the jellium of

1.8.1 Debye-Hückel and Thomas-Fermi screening

The static screening problem—largely an electronic many-
body problem with electrons interacting with fields arising from
other charges—goes back to Debye and Hückel, who explored it
for the case of electrons interacting with other electrons. Figure 1.1
was an example showing an electron with the exclusion zone due to
correlation around it arising from Coulomb repulsion. This picture
can be seen—within the jellium approximation—as an illustration of
Debye-Hückel screening.
The Poisson equation, with an electron located at r0, a charge

distribution due to electrons of −en(r, r0), and a uniform positive
neutralizing background of concentration en (the ionic jellium), is

∇2V(r) = −1
ε

[
−e2δ(r − r0) − e2n(r − r0) + e2n

]
, (1.93)

where V is the electrostatic potential. To include the correlation
effect, we write the pair correlation function g(r|r0)= n(r|r0)/n0.
This function gives the probability of finding an electron at r, given
that there is another electron at r0. This pair distribution function
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vanishes at r = r0, that is, the probability of an electron vanishes, positive charge is uncovered. Edges of
transition region are an example. So
is the case where suddenly one has a
sudden change in doping.

Appendix E and F have a short
primer on thermodynamics and the
statistical implications reflected in the
distributions functions. A Boltzmann
distribution will be a reasonable
approximation where classical
conditions are a good description.
Electron description in non-degenerate
semiconductor conditions is one
example, even if electrons are quantum
particles, and this quantum aspect is
very necessary in describing the nature
of their states in the semiconductor.
Boltzmann distribution works pretty
well here, since a deep potential also
increases the probability of finding a
particle there. The exponential arrives
from the phase space.

and it asymptotes to 1 at infinity. We now rewrite this equation as

∇2V(r)= − e2

ε

{
δ(r − r0) + n

[
g(r|r0) − 1

]}
. (1.94)

We need to find the pair correlation function that solves this many-
body simplified problem. This is possible at many different levels
of accuracy. The equation as written holds true whether we need to
include quantum constraints or not for physical charged particles.
The quantum character of electrons introduces just additional
non-triviality.

Debye (Petrus Josephys Wilhemlmus
Debije) is being given top billing.
Electrical engineering’s semiconductor
device literature, with atoms as an
afterthought except in reliability or
processing discussions, largely ignores
Hückel. Hückel, of course, finds a
pride of place in chemistry. So does
Debye, whom we first encounter
through the Debye model for the
low-frequency phonon contribution
to specific heat, but which is only one
of many significant contributions.
He was Sommerfeld’s student before
Sommerfeld’s Munich period. As
with many of the European scientists
who came of age in the pre-war years,
there exists considerable tension and
ambivalence in matters of life where
science and society intersect. Debye
became the head of the Kaiser-Wilhelm
Institute in Berlin when Einstein left
for the USA in the 1930s, and Debye
himself moved to the USA just before
the Second World War. He was the
head of the Deutsche Physikalische
Gesellschaft (the German physical
society) from 1937 to 1939 and was
among those who helped Lise Meitner
escape, but one can also find letters
that pay obeisance to powers that be,
which in this case was Adolf Hitler,
and an untenable situation brought
on by his daughter’s decision to
stay back in Germany. Even Fermi
was a member of the Fascist party.

First, consider non-quantum classical conditions. The Boltz-
mann distribution applies. At very small r referenced to r0, this
approximation will fail, but, at far enough distances where one may
linearize the correlation function (a Poisson-Boltzmann function) of

g(r)= gPB(r) = exp
[
−V(r)

kBT

]
, (1.95)

the solution will be quite accurate. Here, the position of pertur-
bation at r0 is implicitly understood. With the linearization, the
Poisson equation reduces to

∇2V(r) = − e2

ε
δ(r) + ne2

εkBT
V(r), (1.96)

whose solution is

V(r)= e2

4πεr
exp

(
− r

λDH

)
, (1.97)

a form similar to that of the Yukawa potential encountered with
massive bosons and is the static and spherically symmetric solution
of the Klein-Gordon equation.

λDH =
(

εkBT
ne2

)1/2
=λD (1.98)

is the Debye-Hückel or just plain Debye screening length. This
approximation is a linear screening approximation from that
Boltzmann expression.
Now assume that the linearization is acceptable, but pair

correlation as employed is not. We should still be able to use the
thermal equilibrium condition, which brings about the equilibration
of electrochemical potential. Electrostatic potential and chemical
potential compensate each other. So, now, we have a screening
length that is

λscr =
[
ε (∂EF/∂n) |T

e2

]1/2
. (1.99)
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If the conditions are degenerate, and a Fermi gas description is To paraphrase the great English
mathematician, George Hardy,
from his essay  ̏Amathematician’s
apology,˝ pure mathematics is the
most beautiful mathematics, since it
has no usefulness. And it is because
of this very uselessness that the
pursuit of pure mathematics cannot be
misused to cause harm.

more appropriate, then we obtain the Thomas-Fermi screening
length of

λTF =
(
2εEF

3ne2

)1/2
, (1.100)

for three-dimensional conditions, since, in degenerate conditions,
EF ∝ n2/3.
Figure 1.10 shows the magnitude of the screening length scale

in Si as a function of the carrier concentration. At small carrier
concentrations, the electrons are tens of nm or even more distant
from the potential disturbance. At 1017 cm−3 carrier concentration,
this screening length is of the order of 10 nm, and it is in the
Debye-Hückel limit. As the semiconductor becomes degenerate (the
effective density of states Nc ≈ 2.8×1019 cm−3 at room temperature),
gradually, with degeneracy, the screening length scale bends over
to the Thomas-Fermi limit. At the highest concentrations possible
in Si, this screening length scale is a fair fraction of a nm, so spread
over several atom spacings.

Figure 1.10: Electron screening length
in Si at 300 K as a function of carrier
concentration. The screening length
scale can span over 100s of nm in the
Debye-Hückel limit to sub-nm in the
Thomas-Fermi limit.

1.8.2 Static versus dynamic screening, and a note on permittivity

Interactions can be slow and fast. How screening will
happen will depend very much on the pace of this interaction. A
spatially fixed charge with electrons around it screening the pertur-
bation is a static perturbation. The permittivity mediates it, and the
electrons screen, present in these surroundings, through the static
dielectric response. The Debye and Thomas-Fermi screening are very
applicable to such static circumstances, and it is the static dielectric constant
that is applicable. There are, however, circumstances where this will
need modification. An electron in a confined condition, that is, with
surrounding potential barriers that keep it in narrow atomic-scale
regions, also feels the barrier and its behavior is not that of the
electron in a crystalline surrounding of long-range periodicity. Its
probability densities have changed, as have the state description
and the energy and the wavevectors. The permittivity will change
and needs to account for the change of the surroundings at such
small dimensions, just as the eigenfuction description changes,
leading to changes in energies and even the applicability of the
mass assigned to the state of the electron.
Interactions can also be fast. Consider the absorption of phonons

representing the quantization of crystal vibrations. A phonon energy
of 50 meV is a 10 THz oscillating quantum. Since the time lengths of
interactions at any energy change of �E also has time interaction
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of h̄/�E, that optical phonon interaction time is 100 fs. These The reader might wish to ponder
why this term is called permittivity,
or, for that matter, the origin of the
word  ̏displacement,˝ in these field
relationships. Permittivity, tied to
the nature of the polar character of
electrical fields, is a negpermittivity.
A higher permittivity, arising with
higher polarization, reduces electric
field.

are dynamic conditions, and the permittivity, which reflects the
medium’s permission to allow electrical changes to take place, will
also have a frequency dependence. It is clear from this argument
that screening’s mediation in the interaction will be influenced
by permittivity, which depends on the polarization response of
the medium and the extent of the medium interacting, and all
these changes occurring simultaneously will need to be reconciled.
Polarization arises in many sources, electrons are moving around
and respond to the fields, and an oscillating field causes the charge
cloud to respond too by oscillating under forced conditions. These
are plasmons affecting the permittivity locally. Under certain
conditions, there will also exist long-range consequences spatially.
Vibrating atoms—ion and charge with their different inertia—also
respond, and this leads to an ionic response. So, the general nature
of the permittivity is to drop with increasing frequency. There
are, however, regions in between where resonances in the forcing
function’s frequency and the polarizing response may cause large-
scale changes of increase or decrease either side of the resonance. In
these situations, we will have to modify substantially the nature of
screening—as in the Debye or Thomas-Fermi static interpretation—
and incorporate the permittivity’s behavior at high frequency, even
as there is a background asymptotic behavior that is incorporated in
the static response.
There is one other aspect of permittivity and electrons that needs

emphasis in a Hamiltonian and perturbation discussion related
to the conditions in time and environment that the mathematical
description must account for. It is related to the time scale of
rapidity of the interaction. An example is the absorption of light in
a semiconductor with an electron moving from the valence band—a
bonding-based quasi-continuum—to the conduction band—an
antibonding quasi-continuum. The electron occupies states of these
quasi-continuums that are defined by the electron’s environment
of being in the midst of this bonded collective of atoms. This
forces its E(k) dispersion, but the electron that transitions has
changed states defined by the crystal because of the interaction
with the photon, by absorbing the energy and the vanishingly
small momentum. The crystal here is only a phase space locale
for the states. The photon-electron interaction happens with the
electron’s free space mass, while the states reflect the effective
mass that reflects the E(k) dispersion. This argument also holds
for the photon processes where phonons—the quantized atomic
vibrations—are also involved as in indirect bandgap materials.
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A different—and yet analogous—circumstance is when an
electron confined very locally in an impurity that is not shallow—
a deep level—has an electron move from one energy state to
another energy state, while still remaining confined. An example
is a Au2+ �→ Au3+ + e− transition. The electron was in a local
state, not spread out over the crystal. It was confined to the atom.
The electron mass relevant in the description here is the free space
mass, and the permittivity is free space permittivity. On the other
hand, if the impurity is a shallow hydrogenic state, that is, a few
meV separated from other conducting states, with properties very
similar to that of the host crystal atoms that gave rise to those
conducting states, then the electron really feels its presence in
the crystal. It is not that localized, and an effective mass of the
crystal, and a permittivity of the crystal, will be a more apt set of
parameters. Now, one can imagine potential impurities and defects,
where the behavior may very well be in between—neither entirely
localized nor entirely delocalized—and one may have to use either
an interpolation or a more rigorous description.
This dynamic behavior of permittivity and of electrons, in a

large-gap material, is more easily deconvolved. If permittivity
changes are arising due to plasmonic response—the response of
the charge cloud—then the plasmons can be incorporated into the
electron-phonon scattering through an effective treatment of the
dynamic screening. In large-gap materials, there is just one of the
bands contributing to the conducting carriers that one needs to
worry about. This treatment will also have to change when one
confines carriers to a plane or to a quantum wire, because carriers
are not free to move in all the directions for screening. Graphene is
a zero bandgap material. Now this dynamic screening for electron-
phonon scattering will become considerably more complicated.

1.9 Summary

This chapter was an introduction to several of the common
principles, techniques and approximations that will be employed
throughout the text, with an emphasis on their implications, context
and physical meaning so that we may employ them with due care
and restraint. In this approach, our quantum view, its emergence
into the classical view under many of the natural world’s sizes—in
dimensions as well as the number of participating entities and their
interactions—and others such as the statistical and informational
views, all have an important role. This last theme—of information—
will be deployed in Chapter 2, where we also bring in thoughts
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from statistical mechanics, which itself is spread throughout the
text, toward understanding two of the most important pervasive
themes in any study of natural phenomena: those of entropy and
energy. The present chapter particularly stressed the quantum
underpinnings toward understanding statics and dynamics at the
quantum scale, with emphasis on many particles coming together in
an ensemble, be it an atom, a molecule or an atomic assembly, and
the methods for solving the Hamiltonians; that is, the energetics.

Understanding the energetics of multiparticle systems is essen-
tial to developing an understanding of the properties during
interactions that define the internal properties and response of a
semiconductor. Much skepticism, care and understanding—not just

Understanding is an internalization—
deeper than knowing, being aware of or
other, similar terms. Approximation
and model usage requires
understanding and skepticism. In
this, it is no different than in the
populated world around us, where
much marketing, manipulation and
myth building abounds. Take history.
The New Testament is so different
from the Old Testament. In India, a
different narration around Rama, a
revered godly king, brings out violence
and McCarthyism. Passage of time
or distant lands is not necessary for
creating mythologies. Take a statistic
from the Second World War of the 20th
century.

Major Innocent
event deaths

Stalin
Russian

6–7× 106famine

Hitler
Death

2.8× 106camps

Tôjô
East

2.4–4.0× 106Indies

Churchill
Bengal

2.5–5.5× 106famine

Truman
Atom

0.13–0.22× 106bomb

Stalin cannot be criticized in Russia,
neither can Churchill in the West.
The Soviet state’s industrial and
poor folks’ transformation, as well
as the war’s transformational fight,
is Stalin’s contribution. Churchill’s is
his steadfastness in the war. Stalin’s
was the brutal killing of innocents in
his home country. Churchill’s was a
tribal and racist view of freedom—
WoodrowWilson-like—as a white
European prerogative. Even de Gaulle
of France marched right back into
Indochina, culminating in the Vietnam
War. Narratives should always be
looked at with caution. Stalin and
Churchill stood up for their lands,
and for that both should be lauded,
but not worshipped. Indians still
remember that, for the false promise
of freedom, nearly 75, 000 young
men fell even in the First World War
and have been forgotten, several
during Churchill’s Gallipoli folly.
No site marks the forced fighters—
the unknown soldiers—of the third
world, even as a famous Western
journalist declares himself and his kin
the greatest generation. It turns out the

grasping the ideas—is important for prudent use, treatment and
reaching a result that holds validity over a range of conditions. As
an introductory chapter integrating partly the material that students
will need to learn and the outlines of the underlying physical
principles and techniques that will be employed throughout this
text, we started with a discussion of Hamiltonians and Lagrangians
as functional tools for unraveling the energetics. We sketched
the broader nature of the Hamiltonian description of electrons
and atoms in an assembly such as a metal, a semiconductor or a
molecule, and then reduced it to the problem of understanding the
electrons’ interactions. Before embarking on the approximate solu-
tion techniques of this problem, we segued into the different per-
turbation approaches that are sprinkled throughout the text, since
problems in general, and certainly the many-body problems, cannot
usually be exactly solved. But the solutions can be approached via
perturbation techniques. We illustrated the first order perturbation
approach and applied it to both a time-dependent and a space-
dependent perturbation. The former was useful in showing the
Golden rule and the limits of its applicability. The latter was useful
in illustrating scattering’s quantum-mechanical origin and its
classical fitting. Another important approximation technique was
the use of the adiabatic or Born-Oppenheimer approximation,
and, through it, the approach to situations where fast and slow
phenomena interact. The adiabatic approximation is very important
to calculating phonon-based; that is, atomic movement-based
interactions with those of electrons. The former are slow, and the
latter are fast. Energies may exist in multiple modalities—atomic
bonding and vibrational and electronic kinetics, for example—and
we outlined how a configuration coordinate diagram lets us see the
slow and fast together in this energy transformation.
At this point, we returned back to solving the multiple electron

problem to bring out the nature of many-body interactions. The
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Hartree approximation is one where only Coulomb interaction is
tackled and the electron as a point particle is a secondary thought
in what is essentially a classical calculation. That the electron is a
quantum particle—a fermion—and therefore requires a different
wavefunction under exchange was brought in through the use
of the Slater determinant and the evolution to a Hartree-Fock
approximation. Exchange interaction is the result of Coulomb inter-
actions between the electrons under the quantum constraints from
spin. The Coulomb interaction becomes spin dependent under the
constraint that the wavefunction of any pair of electrons must be
antisymmetric with respect to any interchange of spatial coordinates
and spins. When spins are parallel, the coordinate part must be
antisymmetric. So, parallel spin pairing reduces the probability of
two electrons of being spatially close, compared to the probability
when possessing antiparallel spin. Parallel spin electrons, when
more separated in space, have less repulsion and this lowers the

man was also a sexual predator. This
is the difference between  ̏getting it˝
and  ̏understanding it,˝ where using
the learning to solving a general—and
not special—problem matters. Use of
approximations and models requires
tremendous care.

energy of electrostatic interaction. Spin and orbit also interact,
and this we will look at carefully in our discussion of valence
bandstructure as well as defect-mediated point perturbations. In
situations where the spin-orbit energetics is important, the velocity,
as well as the structure of the wavefunction solution in a crystal
assembly, which leads to the description of the motion of electrons
on the atomic scale, affects the interaction and the electron g factor. The g factor should be distinguished

from the gyromagnetic ratio, which is
the ratio of the magnetic moment
to the angular momentum. g is
dimensionless. The electron has
charge and spin, but it is not quite
appropriate to view it as an object with
literal rotation about an axis. The g
factor is the dimensionless number
that modifies the gyromagnetic ratio as
determined by the classical definition.

We ignore nuclear spins, since nuclear magnetic moment is small
(∼2000× smaller) than that of an electron, and its consequences
are through perturbations in semiconductors where spin-dependent
transport and other phenomena are important.
The final and very important, particularly so for nanoscale,

interaction is that of correlation. An electron does not interact
with itself. It only interacts with others. So, accounting for an
electron in a Hamiltonian in the middle of other electrons is

Spin-dependent transport is an
important subject area for devices
and is discussed in depth in S. Tiwari,
 ̏Nanoscale device physics: Science
and engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4 (2017).

complex. If we take the electron away, it is a different problem.
If we place the electron in, then it is also a different problem,
since now the other electrons are responding to the presence of
this electron. Mean field, as in the first case, is not representative
completely, since the presence of the electron matters in the
arrangements of others. Neither is the latter, since what the true
energy picture needs is the arrangement of electrons where this
electron takes into account exchange and correlation. Two spin-up
electrons cannot be present simultaneously in identical space, but
electrons with opposite spins can. The spin-up second electron has
vanishing presence, while the spin-down electron’s presence has
been accentuated. The first has a hole, while the second formed a
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mound. This configuration also needs to be accounted for, and we
outlined how one may do this approximately.
Another important analytic theme related to how these electrons

are behaving in the solid is how they self-consistently respond to
the created conditions. Electrons screen because of the Coulomb
interaction, but under all the rest of the constraints that we just
discussed. If the perturbation is static, and the electron population
small—non-degenerate—then the Debye-Hückel, or Debye, for
short, length scale suffices in how the potential perturbation
is screened. If it is large and degeneracy prevails, we observed
Thomas-Fermi screening. These will all be mediated by static
permittivity. And if it is a rapid perturbation, we must also bring
dynamic permittivity: the high-frequency aspects of the electronic
or ionic or other polarization responses. And, into this, one must
also take into account the nature of the behavior of the electron.
Is it feeling this polarization environment or not? So, both the
permittivity and the mass must reflect the realities of the dynamic
perturbation.

1.10 Concluding remarks and bibliographic notes

This chapter was an introduction to several of the common
techniques, principles and approximations that will be employed
throughout the text, with an emphasis on their implications, context
and physical meaning, so that we may employ them with due care
and restraint. Solid state has a longer history and wider context
than the subject of semiconductors, and the objective here was to
introduce a few of the main techniques and the scope of the nature
of the techniques that are particularly important for semiconductors.
Solid state has been the subject of numerous texts. A number

of books have been standard bearers; historically, first and before
all, are the conceptual and analytic discussions by Ziman. The
first1 is a very readable discussion at the senior undergraduate

1 J. M. Ziman,  ̏Electrons and
phonons,˝ Oxford (1960)

level, with an emphasis on scattering and transport as well as a
semiconductor bent. The second2, although it has much in common

2 J. M. Ziman,  ̏Principles of the
theory of solids,˝ Cambridge, ISBN
0-521-29733-8 (1964)

with the first book, has a more diverse treatment toward solid
state, with magnetism, ferroelectricity and superconductivity as the
ending points. This book is now in its second edition, having been
revised in the early 1970s. Both of these books are worth reading so
many decades after their writing. Another text, from the same time
period—well, a little earlier—is the text by Peierls3, which too has 3 R. E. Peierls,  ̏Quantum theory of

solids,˝ Oxford, ISBN 19-850781-X
(1955)

a treatment of phenomena from electrical and thermal conductivity,
working from the behavior of electrons and phonons and ending in
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broader solid-state topics as they were understood during that time
period. A more advanced treatment from this period is the book by
Pines4. This is a mathematically detailed text. One additional book

4 D. Pines,  ̏Elementary excitations in
solids,˝ Perseus, ISBN 0-7382-0115-4
(1999)

very worthy of note, similar to Pines in its advanced treatment, is
by Kittel5. Both Pines’ and Kittel’s first editions appeared in 1963. 5 C. Kittel,  ̏Quantum theory

of solids,˝ John Wiley, ISBN
0-471-62412-8 (1987)

I reference these books since they have stood the test of time and
are worth reading to get a perspective, from quite different ways
of looking, by many of the luminaries of the early days of the
marriage of quantum and the solid state.
A set of solid-state texts that have established themselves as

standard texts in the undergraduate and early graduate curricula
around the world, from this side of the Atlantic, are those of
Kittel6, whose first edition appeared in 1963, and Ashcroft and

6 C. Kittel,  ̏Introduction to solid
state physics ,˝ Wiley, ISBN 13 978-
0471415268 (2004)

Mermin7, whose first edition appeared in 1976. They are different
7 N. Ashcroft and D. Mermin,  ̏Solid
state physics,˝ Saunders, ISBN 13
978-0030839931 (2003)in style from each other, but both have a very carefully and clearly

written exposition.
Quantum mechanics is a subject with an even vaster collection

of texts. Two that have become standards are one at the introduc-
tory level, by Griffiths8, and one that is a little more advanced

8 D. J. Griffiths,  ̏Introduction to
quantum mechanics,˝ Pearson, ISBN
0-13-191175-9 (2005)

(intermediate), by Sakurai9, both of which have gone through 9 J. J. Sakurai,  ̏Modern quantum
mechanics,˝ Addison-Wesley, ISBN
0-201-53929-2 (1967)

several incarnations. These texts are quite lucid in their exposition
of the perturbation theory, the Golden rule, and the Golden rule’s
limitations. A mathematically sophisticated treatment is in the
series of books by Landau and Lifshitz, which all physics students
have since they encompass much of the formalism of physics
through the 1960s. The volume devoted to quantum mechanics10 is

10 L. D. Landau and E. M. Lifshitz,
 ̏Quantum mechanics,˝ Butterworth-
Heinemann, ISBN 13 978-0750635394
(2003)

a translation by J. B. Sykes and J. S. Bell. Any book that Bell spent
time translating has to stand head and shoulders above the rest.
Elsewhere, Bell also likes the text by Gottfried11, whose first edition 11 K. S. Gottfried,  ̏Quantum

mechanics,˝ ISBN 0-387- 95576-3,
Springer (2003)

is from 1966 and whose copy at CERN Bell found very well worn,
and worth discussing in a work entitled Speakables and unspeakables
in quantum mechanics, a subject that Bell had much to contribute to
through his Bell inequalities that are so illuminating.
A book from the early times with an excellent discussion of

the finer points embedded within the formulation of quantum
mechanics and its application to the description of solids is the
book by Slater12. Another book mixing solid-state and quantum 12 J. C. Slater,  ̏Quantum theory of

atomic structure,˝ 1, McGraw-Hill
(1960)

matters and which is a favorite of mine for its lucidity, a stronger
bending toward semiconductors, and restrained and yet thorough
discussions is the one by Harrison13. 13 W. Harrison,  ̏Sold state theory,˝

Dover, ISBN 0-486-63948-7 (1979)There are a few additional books that are quite representative
of the physical intuition necessary in this transition from our
observational classical thinking to the reality of the quantum-
mechanical.



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

chapter 1: hamiltonians and solution techniques 51

Dyakanov14 discusses the different spin-based issues that appear 14 M. I. Dyakanov,  ̏Spin physics
in semiconductors,˝ Springer, ISBN
978-3-540-78819-5 (2008)

in semiconductors. Spin has consequences through the Pauli
principle and through exchange interactions. In semiconductors, the
major manifestations include the spin-orbit interaction and the role
it plays in optical transitions.
Hartree, Hartree-Fock and correlations have occupied consid-

erable space in the discussion of this chapter, since these really
represent the major collection of ways that we treat a multi-electron
assembly, and, as the ensembles get smaller, from nanoscale to a
molecule, the consequences as the quantum nature manifests itself
in different pronounced ways. A good book for this discussion
is the one by Delerue and Lannoo15. It discusses the general 15 C. Delerue and M. Lannoo,

 ̏Nanostructures,˝ Springer, ISBN
3-540-20694-9 (2004)

modeling techniques, their usage in quantum-confined systems
and the variety of properties that result. Its early exposition is
quite close to the several points we have emphasized, but it goes
quite a bit beyond. Another good text for understanding the
Hartree-correlation spectrum of subjects is the text by Kohanoff16. 16 J. J. Kohanoff,  ̏Electronic structure

calculations for solids and molecules,˝
ISBN 13 978-0521815918, Cambridge
(2006)

It develops the subject all the way through to density functional
theory and Car-Parrinello techniques that we did not dwell on.
Density functional theory will appear in a minor form in the
discussion of bandstructures (Chapter 4).

1.11 Exercises

1. The Maxwell’s equations can be transformed into a simpler group
under source-free free space conditions; that is, with J = 0, ρ = 0,
D = ε0E , B =μ0H and 1/c2 =μ0ε0. For this simplified free space
source-free form,

General form �→ Source free and free space form,

∇ · D =ρ �→ ∇ · E = 0,

∇ · B = 0 �→ ∇ · B = 0,

∇ × E = − ∂B
∂t

�→ ∇ × E = − ∂B
∂t
, and

∇ × H = J + ∂D
∂t

�→ ∇ × B = 1
c2

∂E
∂t
.

The Lagrangian function for the free space problem is

L = 1
2
ε0E2 − 1

2
μ0H2 = 1

2
ε0E2 − 1

2μ0
B2.

Show that, in the presence of external sources ρ and J, and a
generalized medium, the Lagrangian function has the form
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L = 1
2
εE2 − 1

2
μH2 + αρφ + βJ · A.

Find α and β so that Euler-Lagrange equations reproduce the
Maxwell’s equations in the presence of sources. [M]

See Appendix D for a broader
discussion of the Lagrangians and
variational methods.

2. Consider a Hamiltonian operator Ĥ that has discrete eigenval-
ues. It is also Hermitian, so

〈ψ |Ĥ |φ〉= 〈φ|Ĥ |ψ〉∗

by definition. Show that
• the eigenvalues for this Hamiltonian are real, and that

• the eigenfunctions of Ĥ that correspond to different eigenval-
ues must be orthogonal to each other. [S]

Figure 1.11: Multiple transmissions
and reflections at a potential barrier,
leading to net transmission and
reflection.

3. This problem is to emphasize the power of the Golden rule,
and a view of scattering that we mentioned but did not discuss
in much detail—one that is particularly apropos of nanoscale
devices with a finite and low number of scattering events, and
also in mesoscopic transport. We will look at transmission and
reflection at a barrier, the working example of which is shown in
Figure 1.11, by two methods. We consider just a one-dimensional
structure where waves transmit or reflect back, here due to an
incident wave, exp(ikiz). One can look at the net effect of the
transmitted wave tB exp(ikiz) and the reflected wave rB exp(ikiz)
as arising from multiple transmissions and reflections as the
wave rattles back and forth between the two non-adiabatic
discontinuities—the net effect being a convergent series, as shown
in the figure. Show that the transmission coefficient TB and the
reflection coefficient RB arising from the barrier can be written as

TB = |tB|2 = T 2

1+ R2 − 2R cos(2k2d)
,

RB = |rB|2 = 2R − 2R cos(2k2d)

1+ R2 − 2R cos(2k2d)
,

which add to unity and where T and R are the transmission and
reflection coefficients for individual step. Now use the Golden
rule to calculate RB and compare with this result, remarking on The barrier is a perturbation!

the conditions under which the two are in accord. [S]

4. For a system of particles of mass m in state ψ , the particle flux
(number per unit time per unit perpendicular-to-motion area) is
given by

S = h̄
2im

(
ψ∗∇ψ − ψ∇ψ∗) .
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• Show the validity of this expression, starting from the momen-
tum operator, and

This is how current (both quantum-
mechanical tunneling and normal)
can be calculated across a potential
barrier. This problem shows that the
correspondence principle holds here
(quantum-mechanical expressions
reducing to classical ones in the
asymptotic limit).

• show that, in the classical limit—a beam of free particles at
velocity v—the one-dimensional expression gives

S = v × particle density. [S]

5. Following Appendix E, show that, for bosons with
Ek = h̄2k2/2m—the classical limit from quantum with h̄ → 1—
that the chemical potential μ is always negative. [S]

6. Again, following Appendix E, find the asymptotic behavior of
the chemical potential as a function of temperature (μ(T)) and
show that the distribution function reduces to the Boltzmann
distribution as T → ∞. [S]

7. If the energy of all configurations is the same, show that the
entropy as arrived at in Appendix E is equal to the logarithm of
the number of configurations. [S]

8. Again, following Appendix E, show that a boson gas with n
particles in state |k〉 will have an entropy of

S = − kB
∑

k

[nk ln nk − (1+ nk) ln(1+ nk)] ,

and that, for fermion gas, it will be

S = − kB
∑

k

[nk ln nk − (1− nk) ln(1− nk)] . [S]

9. The notions of Appendix E can also be applied to photons as
bosons. Does a collection of photons—as a gas—have entropy?
In thermodynamic equilibrium, as in blackbody radiation, what is
the chemical potential of a photon? [M]

10. Let us make some order of magnitude energy estimates based
on quasi-classical-quantum fitting to see the adiabatic approx-
imation’s use. We explore the situation of the applicability of
electrons not undergoing transitions between stationary states.
Take a molecular system. Such a system will have three different
types of motion: electronic, nuclear vibration and rotation.
If a is an interatomic distance, it is a length scale for electron
movement, so Ee ≈ h̄2/2ma2 is an electronic energy scale. Estimate
this for a = 0.1 nm. The nuclear motion, vibrational, has an
energy estimate of Evib = h̄ωq. Amass M, moving a distance a
at a frequency ωq, has an energy of ∼ Mω2

qa2. Such a motion—
of distance a—would remove the atom from the molecule. It is
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bond-breaking energy, since chemical bonding is the binding of
atoms as molecules through shared electrons. So, it is of the same
order as Ee, that is, Ee ≈ Mω2

qa2. Hence, Evib = h̄ωq ≈ √
m/MEe.

Rotation, being related to angular momentum, is quantized by
the action h̄. So, if I is the inertia, and L the angular momentum,
then the rotational energy is Er = L2/I ≈ h̄2/Ma2 = (m/M)Ee. The
energies are related as Er ≈ κ2Ev ≈ κ4Ee. Take the example of
an N2 molecule and estimate these energies, that is, the binding
energy of electron in the atom, the vibrational excitation energy
and the rotational energy separation. [S]

11. This problem is an exploration of the Slater determinant in search
of its hidden secrets. We have seen that an n-electron Schrödinger
equation became separable in position ri if the potential energies
could also be separated in the spatial coordinates, so, with

V(r1, . . . , rn)=
n∑

i=1
V(ri),

the eigenfunction of Equation 1.8 becomes

|ψ(r1, . . . , rn)〉=
n∏

i=1
|ui(ri)〉, and E =

n∑

i=1
Ei,

where |ui〉 satisfies the one-independent-electron Schrödinger
equation

[

− h̄2

2m0
∇ri + V(ri)

]

|ui〉= Ei|ui〉.

The Slater determinant incorporates the antisymmetry dictated
by Pauli exclusion. This Hamiltonian does not operate on the spin
coordinate σ of the electron. So, when we write

|ui(ri,σ i)〉 = |uiσ (τ i)〉= ui(ri)ξ i(σ i),

this Pauli-conditioned form also satisfies the Hamiltonian. This
form, where we now have

|ψσ (τ )〉=
N∏

i=1
|uiσ (τ i)〉,

is this solution, using the same argument of product in the
independent electron approximation. These can be written as
determinants of all possible configurations

|�〉= A

∣∣
∣
∣∣
∣
∣∣
∣
∣

|u1σ (τ 1)〉 · · · |u1σ (τN)〉
|u2σ (τ 1)〉 · · · |u2σ (τN)〉

...
...

...
|uNσ (τ 1)〉 · · · |uNσ (τN)〉

∣∣
∣
∣∣
∣
∣∣
∣
∣

.
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Show that, with |ui〉 orthogonal, a normalized |ψ〉 requires that
A= 1/

√
N!. [M]

12. To understand the implication of spin and Pauli exclusion,
another exercise of interest is reworking our interpretation of
the singlet and triplet construction for the hydrogen molecule.
Let A and B be the atoms, and 1 and 2 the coordinates of the
electrons. Using |uA〉 and |uB〉 as the basis orbital functions for
trial functions,

|ψ s〉 = |uA(1)〉|uB(2)〉 + |uB(1)〉|uA(2)〉, and

|ψa〉 = |uA(1)〉|uB(2)〉 − |uB(1)〉|uA(2)〉,
where the former is symmetric, and the latter, asymmetric. Now
consider new wavefunctions incorporating spin, |uα〉 and |uβ〉,
and show that these may be written in the form

|ψ〉= [uA(1)uB(2) ± uB(1)uA(2)] ξ(1, 2),

with ξ(1, 2) as the spin functions of the two electrons. If ŝz is an
operator for the z component of the spin of the electron, then

ŝz|uα〉= 1
2
|uα〉, and ŝz|uβ〉= − 1

2
|uβ〉;

lets us then construct the two-electron spin function |ξ(1, 2)〉.
Show that this |ξ 〉 is the eigenfunction of the square of the total
spin (|S|2) with the eigenvalues of 0 or 2. These lead to the Heitler-
London functions |ψ s〉 and |ψa〉 corresponding to the singlet and
the triplet states. [M]

13. Consider an assembly of atoms, subscripted as A and B, so of only
two types. The internuclear repulsion is

∑
A<B ZAZBe2/|RB − RA|.

When solving for the eigenenergy E of the electron, we include
this repulsion energy even if it has internuclear spatial param-
eters. It sets the potential energy in the Schrödinger equation
for nuclear motion. Take a center-of-mass form Schrödinger
formulation for a diatomic molecule at rest. The reduced mass
is μ= MAMB/(MA + MB), and the equation is

[

− h̄2

2μ
∇2

r + V(R)

]

|ψ〉= E|ψ〉,

where R = |RB − RA|, and V is the potential ( ̏mechanical˝)
from the interatomic forces. Let V = (1/2)ks(R − R0)

2, where
R0 is the equilibrium value of internuclear distance, and
ks is a force constant. Find the eigenfunctions |ψn〉 and the
eigenenergies E. [M]
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14. The Schrödinger equation for H+
2 , the simplest molecule (a one-

electron, two-nuclei problem) beyond the simplest atom (H) as a
one-electron, one-nuclei problem), can be written as

[

− h̄2

2m0
∇2

r − e2

4πε0

(
− 1

rA
− 1

rB
+ 1

R

)]

|ψ(r)〉= E(R)|ψ(r〉〉.

Here, rA and rB are the distances of the electron from the protons
A and B that are separated by R. Using spherical coordinates,

ξ = rA + rB

R
, with 1 ≤ ξ ≤ ∞,

η = rA − rB

R
, with − 1 ≤ η ≤ 1,

and φ is the azimuthal along about the axis, with

ψ(ξ ,η,φ)= X(ξ )Y(η)�(φ),

showing that the equation becomes separable. Find these
differential equations for X(ξ ), Y(η) and�(φ).

15. An electron is in a one-dimensional system in interaction with
two atoms. An approximation of the interaction between the
atoms and the potential is

V(r − R)= − βδ(r − R),

where R is the position of an atom. Using the adiabatic approxi-
mation, find
• the transcendental equation that relates k and r where the
electronic binding energy is h̄2k2/2m0,

• the potential between the two atoms in and the limit of small r;
that is, when

V(r → 0) ≈ V(r = 0) − αr.

Find V(r = 0), α, and

• show that the potential between the two atoms at large r is of
the form

V(r → ∞)= − γ exp(−2k∞r).

Determine γ . [M]

16. Show that
• in a system of two identical particles, each of which can be
in one of n different quantum states, there are (1/2)n(n + 1)
symmetric and (1/2)n(n − 1) antisymmetric states of the system
and that
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• if particles have a spin of I, then the ratio of symmetric to
antisymmetric spin states is (I + 1) : I. [S]

17. Two non-interacting particles have a mass m and exist in a one-
dimensional potential well of V = 0, a length of 2a, and infinite
barrier regions. Determine
• the four lowest energy levels of the system and

• determine the degeneracies of these energies if the two particles
are
– identical, with spin 1/2,

– not identical, but with spin 1/2, and

– identical, with spin 1. [S]

18. There exist two identical non-interacting particles in an isotropic
harmonic potential. Take the three lowest energy levels, and show
that
• the degeneracies are 1, 12 and 39, if the particles are of spin 1/2,
and that

• the degeneracies are 6, 27 and 99 if the particles are of spin 1.
[S]

19. Radiative transitions from an excited state to the ground state
exists with a probability per unit time of γ in a system of atoms.
Show that the power spectrum of the radiation is Lorentzian and
that the angular frequency width at half amplitude (�ω1/2) is γ .

[S]

20. A short-range potential scatters particles moving along the z axis.
If the wavefunction of the particle at large distances from this
potential perturbation is of the form

ψ = exp(ikz) + 1
r

f (θ ,ϕ) exp(ikr),

then show that the differential scattering cross-section follows as

dσ
d�

= |f (θ ,ϕ)|2. [S]
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2
Entropy, information
and energy

John Wheeler employed the pithy phrase  ̏it from bit˝ to The complement of this phrase  ̏bit
from it˝ also holds as an example of
 ̏deep truth.˝

emphasize the information-theoretic foundation of all things
physical. This text employs these information-centric notions as
the foundation for quantum and statistical description toward the
semiconductor-specific solid state, and this book series emphasizes
it as an important theme on equal footing with energy, entropy and
others that find a central role in the science and engineering peda-
gogy. So, we are employing tools from the information-statistical-
quantum mechanics arsenal to map the objective description.
Entropy as a measure of incompleteness of knowledge ties to
energy dissipation whenever this incompleteness of knowledge—
entropy—changes. This is nonconservative forces at work. Energy,
through the consequence of quantization and statistical distribution
and as a constraint in state changes, can now be tied together with
entropy in an information-centric approach.
Quantum-mechanically, a statefunction—in its various com-

plexities, such as whether it includes or does not include the
spin of an electron—conveys information embedded in it. Use
the Hermitian operator of an observable, and one obtains an
eigenvalue; we interpret that as a collapse of the statefunction of the
system to an eigenfunction of the system. Unperturbed, the system
now stays in this eigenfunction state. But, the spin eigenvalues
cannot be found if the spin is not embedded in the statefunction.
So, a statefunction in this view is a representation from which
information can be extracted—not that different from a statistical
probabilistic distribution containing information, but one that can
only be accessed by making an observation.
Observation—a measurement—is the act of acquiring information

Cause and chance, or determinacy
and random walk, as general guiding
thoughts, are sprinkled throughout
this text. These map to energy, and
entropy, respectively. The former has
clarity, while the latter not as much.and also of triggering the process that produces the information.

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001
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A phenomenon in the physical space has now been transformed
into an informational space, which is a space containing data in
its various forms. Information and observation are fundamentally
linked through this action. Acquisition of information requires
observation, and, reciprocally, the act of observation leads to
information. More than the statefunction, it is the information that

Gerolamo Cardano, a Renaissance-
period credited with intellectual
and gambler, is often credited for
measuring and analyzing random
events to understand  ̏good luck and
fair wager.˝ His book entitled Book on
games of chance was one of many, most
of which were lost to history, since
this was the Church- and Aristotle-
dominated period. Two of his children
were put to death by the church, while
the youngest survived as a freelance
torturer for the Inquisition. Cardono’s
formula calculates correct odds.
Galileo and Kepler—Renaissance-
period scientists—also contributed. In
the mid-1600s, Antoine Gombaud, a
French writer, posed a dice problem
to Blaise Pascal, who, with Pierre
de Fermat, laid the foundations
for exploring randomness. The
Bernoulli family—royalty in the
mathematical world with thirteen
celebrated mathematicians—had the
biggest early impact. The family had
moved to Basel in Switzerland because
of the Spanish Fury—another of the
never-ending religious shenanigans
over the ages—from the Netherlands.
Jacob (a.k.a. Jacques), Jean, Jean’s son,
Daniel, and Daniel’s son, Nicolaus, are
the most known. As with all royalty,
with their power-centric desires, there
was serious rivalry—in this case,
between Jacob and Jean. Jacob, besides
probability, is to be credited for the
law of large numbers, the number e,
which we call Euler’s constant, and the
logarithmic spiral—a beautiful spiral
with increasing radius when followed
clockwise—about which he said
 ̏Eadem mutato resurgo,˝ translated
as  ̏although changed, I rise again
the same.˝ Daniel Bernoulli queried
why people prefer low-risk bets rather
than the more profitable ones and
posited that it is the expected utility
rather than the expected payoff—the
worth of money depends on how
much one has—that drives people.
This is opposite to the traditional
view. Nicolaus is known for the Saint
Petersburg paradox. A player bets on
the number of tosses required before
a coin first turns up heads. The player
starts with a fixed amount and then
receives 2n units if the head appears on
the nth toss. The expectation value of
gains is 12 2 + 1

4 4 + · · · = 1 + 1 + · · ·;

is at the heart of this physical-mathematical action to describe
 ̏reality.˝ Information, or the lack of it, as with our statistical
description of the distribution of the properties of an object, is
interpretable through statistical mechanics.
Traditionally, this information foundation is not how one brings

together the quantum-mechanical and statistical-mechanical
approaches in the study of physical phenomena. But it is intimately
linked, as many—including Wheeler, Brillouin, Shannon, Landauer,
Bennett, Feynman, Solomonoff, Kolmogorov and even Maxwell,
through his demon, and Boltzmann, through his debates with
himself and others, like Mach, Ostwald and Helm, who doubted
him—have posited in various forms over a century.
We emphasize here some of the deeper connections between

probabilities used as the statistical tool when there are unknowns
by discussing the classical notions from an information perspective.
We show that the often-used behavioral relationships have an
information-centric foundation by deploying the less used form of
entropy and information: Fisher entropy and information.
Entropy is the variable introduced for circumstances involving

unknowns. On equal footing—if not higher—is the energy variable,
upon which we place constraints in sum and in exchange. Energy
is much more clearly understood. Free energy is exchanged and
remains a constant over the forms it can be exchanged. Kinetic—the
motional form—and potential forms that arise as electromagnetic
and gravitational in the quantum-constrained matter form—are
allowed to interchange in the low energy conditions where non-
relativistic conditions prevail. This chapter brings forth the intimate
links between these two very powerful ideas through their intimate
links to information.

2.1 Entropy

The conventional introductory discussions of thermo-
dynamics, statistical mechanics, the states of matter, and infor-
mation mechanics can be viewed quite generally from approaches
based on probabilities—the mathematical approach to analyzing
chance in the Bernoulli sense.



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

60 semiconductor physics

Entropy, viewed from a probability perspective, is the amount
of uncertainty of a distribution. Reworded, this uncertainty in the
expected outcome of an observational experiment, when many
outcomes are possible, is an  ̏entropy.˝ In this chapter, you will

that is, infinite in the limit. A short
cryptic answer to this paradox is in
the concluding section. Probability’s
serious development happened in
Russia and Eastern Europe in parallel
with quantum mechanics’ in the west.
Probabilities and their abstractness
entangled with reality attract analytic
minds. Richard Feynman went
through a period with Vegas interests.
Nick the Greek, a successful gambler
there, explained to Feynman how he
would win against unfavorable odds:
 ̏I don’t bet on the table. I bet with
people around the table who have
prejudices: superstitious ideas about
luck numbers.˝

see the view that the entropy of a probability distribution may
be interpreted as a measure of uncertainty and as a measure of
information. The amount of information that one obtains upon an
observation is the amount of uncertainty that existed about the
outcome of the observation before the observation was made.
Entropy is usually introduced in physics studies first through

thermodynamics (dS = δQrev/T, where δQrev is an infinitesimally
small amount of heat exchanged across the system boundary
reversibly), following Claussius. Heat capacities, latent heats, et
cetera all follow through this, as does the famous dU = δW + δQ
in an infinitesimal process in a closed system. Pressure, volume,
temperature, entropy, et cetera are the parameters of interest.
Boltzmann, who introduced the statistical approach, explored

entropy through a microscopic viewpoint by treating the collection
as a statistical ensemble representable through a distribution
function for the large number of particles in it. All different
possibilities for this particle collective—microstates—are postulated
to be equally likely. The energies—or velocities—of the particles,
continuous in the classical description, now enter the description
as constraint, along with the number of particles that are being
described. Boltzmann entropy is written as

S = kB ln�, (2.1)

where � is the number of accessible microstates. Note that 1/� is

kB is a constant chosen to fit with
the temperature definition through
the connection between entropy and
reversible heat exchange. Boltzmann’s
grave in Vienna’s central cemetery—
the Zentralfriedhof is still active—has
S = k lnW as its epitaph. Vienna has
its priorities right. His grave along
the main avenue with other stalwarts
such as Brahms, Beethoven, Schubert,
the Strausses and Schoenberg (Mozart
is a maybe, with a guess for a grave
that was moved), among others. It
is a resounding place, with Mozart
accompanying from Sankt Marxer
Friedhof about four miles away in a
region of diffuse boundaries where
science and music find common
ground in the high human pursuits.
For those who love classical music,
being in Vienna, Salzburg, München,
Berlin, Paris, Bratislava, Budapest
or Prague, almost any major city in
Europe, is heaven. And these cities
also appreciate their philosophers,
scientists and engineers.

the probability of a system being in a specific microstate where all
the microstates are equally likely.
Later on, in the Planck view of radiation and of the quantum,

these became discrete. One could now view the microstates—
possible configurations each particle is in—of the distribution
under the energy constraint and the distribution number. Through
Boltzmann entropy, one can again relate macroscopic properties of
classical particles such as inert gas atoms in thermal equilibrium.
The Boltzmann H-factor, as well as his namesake equation, describe
the propensity through an evolution of the distribution. The entropy
of an assembly is related to the number of microstates of the
assembly that befit the constraint of energy, volume and number
of particles. This description brings together thermodynamics and
statistical mechanics via Boltzmann and Gibbs.
Entropy increase in spontaneous changes is now interpretable

as a tendency toward disorder rather than order, because there
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are more ways to disorder than order. Entropy here is a classical This also implies that higher
temperatures are easier to generate
than lower temperatures.

notional measure and the description of the state of randomness—
lack of information—for a collection of particles. The Bose-Einstein
and Fermi-Dirac distributions, among others, arise in quantum
constraints. The von Neumann entropy,

S = −Tr(ρ lnρ), (2.2)

where ρ is the density matrix of the quantum system, is an
extension of the classical description to quantum mechanics.
For bits in a stream, electrical engineers reach out to Shannon

entropy,

H =
N∑

i=1
pi log2 pi, (2.3)

(where pi is the probability of the occurrence of the ith event),

The axiomatic foundations to
probability (see Appendix B of
S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017)) are due
to Andrey Kolmogorov and were
developed at around the same time
as those of quantum mechanics.
Probability is a measure of uncertainty.
When new information becomes
available, and one takes it into
account, our belief of the possibilities
changes. This is a subjective view, as
seen through Bayes, and with more
rigor, following Laplace, for hidden
variables. In repeating experiments,
one finds frequencies of occurrences,
and one may find distributions,
and measures of confidence, in
them. This is the frequentist view.
Both views have uncertainty in
information embedded in them. But
the subjective approach depends
on incorporating new information
into change expectations, and the
frequentist approach depends on
randomized experiments to probe the
statistics and confidence in outcomes.
Uniform priors and randomization are
the starting points of these viewpoints.
Schism between these two schools
of thought is natural. Harold Jeffreys
and Ronald Fisher spearheaded these
two viewpoints—rather vehemently
(statistics for blood!)—at Cambridge
from the 1930s to the 1950s. While
there will be discrepancies, given the
lack of all information between the two
doctrines, both are useful, and I view
these differences as examples of deep
truth and complementarity.

which can also be written in a continuous form. Shannon entropy
is a measure of order—a negentropy—in the sense that it captures
the separation of the arrangement of bits from randomness. H can
be, but is not always, the equivalent of Boltzmann thermodynamic
entropy.
There are additional informational entropies, particularly

important among which are algorithmic entropy as well as an
entropy related to entanglement in the quantum systems that
are also important in modern science and engineering studies.

An amusing set of restatements of the
laws of thermodynamics from The
American Scientist are as follows:
1st law: You can’t win, you can only
break even.
2nd law: You can only break even at
absolute zero.
3rd law: You cannot reach absolute
zero.

Since absence of information exists in a multitude of ways, there
are plenty of ways that one can partially identify and quantify
measures related to this absence. These are all entropies. And there
are many more of these, and probably more to come.

2.2 Fisher entropy

We will employ the information-centric Fisher entropy
to illustrate it as a powerful tool for analyzing and quantifying
physical phenomena that is on par with the more commonly
employed Boltzmann entropy, which predates Fisher entropy,
and Shannon entropy, which follows Fisher entropy, and their
measures. Fisher entropy helps us emphasize a variety of important
consequences that one traditionally derives in elementary statistical
mechanics and thermodynamics probings.
Let there be N observed values of the parameter y. Vectorially,

y = y1, . . . , yN. Let ϑ be a parameter of unknown but definite
value that parameterizes the data. The variance σ 2 or the standard
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deviation σ are examples of such a parameter for a normal The Fisher view is a frequentist view—
to be distinguished from the Bayesian
view—of statistical observation and
interpretation.

distribution. With this parameter, the data then obeys

y = ϑ + x, (2.4)

where x = x1, . . . , xN is the noise of the data. The observed data
may be used to form an estimate of ϑ . This ϑ is a function that is
optimal for all the data. As an illustration, if one is interested in
a mean over the data, that is, N−1∑N

i yi, then using the optimal
function ϑ(y)—an estimator—leads to a mean that is a superior
estimate of the parameter ϑ—a function such as the mean—than
any of the data of observables. Here, x again is the noise intrinsic to
the parameter ϑ . In the quantum fluctuation problem,

ϑ may be an ideal position, and x
the quantum fluctuation. Quantum
fluctuation is a form of noise—random
chance in action.

This system is closed, y, ϑ and x characterize it and it is closed in

As another illustration, in a Gaussian
distribution, σ is the parameter ϑ , y
is the set of observations, and x is the
canonical variable of the system.

the following sense.
If qn(x), where n = 1, . . . ,N are the canonic variables of N dif-

ferent phenomena, then the Lagrangian L leads to one differential
equation for each phenomenon, and qn(x) contributes to the total
Lagrangian only through one term, which is a function of the two
canonic variables qn(x) and q′

n(x). This solution for phenomenon n is
independent of the amplitudes qm(x) of some other phenomenon
m. Because the total Lagrangian is additive, this same solution
arises for the different amplitudes of different phenomena. This is
isolation in the thermodynamic and statistical sense.
The optimal estimator must be unbiased. So, Requiring that it be unbiased

assures that it applies to all possible
phenomena. No favorite has been
chosen. There is no prejudice, so one
ends with an unbiased estimation. Bias
overfits and will lead to error, so being
unbiased minimizes error.

〈ϑ(y) − ϑ〉 =
∫ [

ϑ(y) − ϑ
]
p(y|ϑ)dy = 0. (2.5)

Here, p(y|ϑ) is the probability of observing y, knowing the param-
eter value ϑ . It describes the fluctuations in y, and the likelihood of
any y. Equation 2.5, differentiated w.r.t. ϑ , leads to

∫
(ϑ − ϑ)

∂p

∂ϑ
dy −

∫
p dy = 0, (2.6)

where (y|ϑ)—the variable upon which the probability depends—
has not been explicitly written. Since ∂p/∂ϑ = p∂ ln p/∂ϑ , and
probability is normalized, we have

∫
p
∂ ln p
∂ϑ

(ϑ − ϑ) dy = 1

∴
∫ [

∂ ln p
∂ϑ

√
p

]
(ϑ − ϑ)

√
p dy = 1. (2.7)

We now apply Schwarz inequality, leading to

Schwarz inequality states that if ψ1(x)

and ψ2(x) are two functions that are
integrable over the interval (a, b), then

|〈ψ1|ψ2〉|2 ≤ 〈ψ1|ψ1〉〈ψ2|ψ2〉.
The norm of the inner product in the
vector space is at most as large as the
product of the norms of the vectors.
The equality happens when the vectors
are linearly dependent on each other.
We first encountered this in S. Tiwari,
 ̏Quantum, statistical and information
mechanics: A unified introduction,˝
Electroscience 1, Oxford University
Press, ISBN 978-0-198-75985-0
(forthcoming) in the discussion of
Heisenberg’s uncertainty principle.

[∫ (
∂ ln p
∂ϑ

)2
p dy

]

×
[∫

(ϑ − ϑ)2p dy
]

≥ 1. (2.8)
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The factor on the left is the Fisher information I ≡ I(ϑ) (this can
also be written in summational form for discrete data) writable in
the form

I =
∫
p

(
∂ ln p
∂ϑ

)2
dy (2.9)

where p ≡ p(y|ϑ). If one writes probabilities in terms of amplitudes,
so p(y) = q2( y), then Fisher information can also be written as

I = 4
∫ (

∂q(y)

∂y

)2
dy = 4

∫
q′2(y) dy, (2.10)

a form that does away with the probability divisor and shows that
I is a measure of the squared gradient content of amplitude. This is
also the reason why Lagrangians appear as squared gradients. The In the form of the relationship of I as

a functional of p, one can see parallels
to the Boltzmann H-factor. For a
collection of independent classical
particles, Boltzmann’s H-factor is

H(t) =
∫ ∞

0
f (E, t)

[
ln

(
f (E, t)
E1/2

)
− 1

]
dE,

where f (E, t) is the particle energy
distribution function in time. In
an isolated collection—inert gas
molecules, for example, as an
approximation—this H-factor is at a
minimum when the particles obey
a Maxwell Boltzmann distribution,
and that of any other distribution
with the same total kinetic energy will
be higher. If collisions are allowed,
any starting particle distribution
will asymptotically approach
the minimum H and a Maxwell-
Boltzmann distribution. Shannon’s
H—the averaged information
content with its negative sign—has
its antecedents in the uncertainty
that is represented in the discrete
counterpart of Boltzmann’s H-factor.
Fisher information, like Shannon
information, is a negentropy, that
is, a measure of how far away
one is from the randomness of the
restricted informational space under
consideration.

Fisher information can be written in terms of expectations:

I = 〈(∂ ln p/∂ϑ)2〉. (2.11)

The second factor in the Equation 2.8 can be seen to be the mean
square error

∫
(ϑ − ϑ)2p dy = 〈(ϑ − ϑ)2〉 = ε2. (2.12)

The probability of likelihood p(y|ϑ) includes all the fluctuations that
arise internally, such as uncertainty, and those that arise externally,
such as those due to particle exchange, heat exchange, et cetera.
And we have now derived, because of Equation 2.8, that the best
possible estimator ϑ(y) has the mean square error ε2 = 1/I. This
estimator is the most efficient estimator so long as all estimators are
unbiased, that is, 〈ϑ(y)〉 = ϑ . In any estimation,

ε2I ≥ 1 (2.13)

is the Cramer-Rao inequality. The relationship expresses the
reciprocity between mean square error and Fisher information in
the observed data.
Fisher information is a measure of the ability to estimate a

parameter that characterizes a statistical distribution such as of
the observations made. It also measures the state of disorder
of a system or a phenomenon. It is in this latter sense that it is
a measure of entropy. Fisher information is thus a measure of
indeterminacy.
Fisher information as an entropy or a measure of disorder can

be understood by considering the implication of the derivative of
the probability distribution function. High disorder implies lack of
predictability. In such a condition, the probability distribution func-
tion is more uniform over a range of the values of the measurement
y of the system. This probability distribution function has a small
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gradient, it is broader and smoother and its Fisher information
is small. When a system has a preference for specific values of a
measurement (y), then around these values the derivative is large.
This is a system of lower disorder, and the Fisher information is
larger. This correspondence to order-disorder is why the Fisher
information measure is also a Fisher entropy measure. It also
follows a variety of properties, such as the monotonic increase in
time of the Boltzmann entropy for a closed system.
Fisher information also provides a deeper understanding of

natural phenomena. We illustrate this through multiple examples
that are central to many of the discussions of semiconductors and
their usage.
A measure of information is needed in the argument normally

forwarded to place a bound on the speed of light as a bound on
energy propagation. Central to the argument is how this Fisher The immutability of the speed of

light comes from special relativity.
Light is a noun that we associate
with electromagnetic waves or
photons, its massless particle. But
the speed of light is not just the speed
of light; it is also the speed of light,
besides other things—for example,
for gravitons, another massless
particle, and gravitational waves.
So, Maxwell’s equations is not the
only place with  ̏speed of light˝’s
implication. Special relativity is about
space and time unified into space-time,
which, together with space and time,
guides nature.

information behaves temporally. Consider a distribution of particles
that are highly localized in position y because of constraints
placed, for example, through no particle-exchange boundaries. The
parameter for mean position (ϑ) will now be closer to the observed
y then when the boundaries are moved farther away in time. With
the movement of the boundary, the error has increased (δε2(t) ≥ 0),
and therefore the Fisher information must follow

δI(t) ≤ 0. (2.14)

The change in Fisher information is negative in time. Increasing
disorder occurs with lowering of the Fisher information. This is in
the same form as the second law, which, written in the Boltzmann
H-form for negentropy also states

δH(t) ≤ 0, with H =
∫
p(y) dy. (2.15)

This H too is another form of smoothness for the probability
p(y). For a Gaussian p(y), this H equals ln(1/σ ) plus a constant
and decreases logarithmically as σ increases. Fisher information, on
the other hand, decreases directly for such a Gaussian probability
distribution. While Shannon entropy is a negentropy that deals with
a stream of 1s and 0s, and their distributions, Fisher information
tackles—because of this relationship to how the probability
changes with the y even for a 1-and-0s stream—the relationships
between them over a distribution. So, Fisher information is not
just for Boltzmann-type conditions or the randomness of each
bit of a bitstream—it has significant relevance for understanding
information content in patterns and so for understanding natural
and artificial neural networks.
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When there exist no physical constraints, I will decrease until
it reaches its asymptotic limit of zero. This is a condition where
p(y|ϑ) is a constant. If there are constraints on the parameter y, then
the Fisher information reaches a finite minimum that arises in this
constraint. So,

I =
∫

(∂p(y)/∂y)2

p(y)
dy = minimum. (2.16)

This is the equilibrium state. It is a stationary state where the
probability distribution is not changing anymore. The time to
stationary state may be finite, as this speaks to how the disorder
appears under the interactions—the fluctuations—causing it.
A similar form for the Boltzmann negentropy is

H =
∫
p(y) ln p(y) dy = minimum, (2.17)

which is a statement of the second law of thermodynamics.
Both H and I have been written to be subject to this mini-

mization in equilibrium. In the Boltzmann H theorem, applicable
to thermodynamic classical situations, the stationary state is reached
through a path under the constraint of the negentropy equation
as time evolves. Only those probabilities that conform to Equa-
tion 2.15 are allowed. This is the statement of the Boltzmann H
theorem. In quantum-mechanical situations, with real potential that
is a constant of time, the equilibrium probability is the same as the
initial condition probability. This is a non-classical situation where
the Boltzmann H theorem does not apply and the minimum Boltz-
mann negentropy does not necessarily apply. Fisher information
minimization leads to an appropriate measure of disorder in these
conditions. Fisher information from independent system parameters
also adds, just as Boltzmann entropy and Shannon entropy do.
This follows directly from the definitions, because of statistical
independence.
Shannon entropy, written without losing generality as

H = − ∫
p(y) ln p(y) dy, is a measure of the probability distribution

p(y)’s smoothness, but it is a global measure. It does give
information, but Fisher entropy, as a functional based on a
derivative, is a local measure. So, when minimization constraints
are applied, while the Shannon measure leads to just exponential
solutions and algebraic equations, the Fisher form leads to second
order differential equations. Most of nature’s equations—Maxwell,
Schrödinger, Fokker-Planck and others that we employ in this text—
are, more often than not, of the second order. We will now show
that the Fisher form’s local emphasis is of more natural importance.
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The separation between two different probability distribution
functions, say p(y) and h(y) (a hypothesis), is measured by the
functional

KL(p, h) =
∫
p( y) ln

p( y)

h( y)
dy, (2.18)

the Kullback-Leibler distance or entropy. This is a cross-entropy or
a relative entropy (of p w.r.t. h). If h is a constant, KL reduces to H,
and if p(y)= h(y), it vanishes. When the distribution is multidimen-
sional, the Kullback-Leibler measure is a mutual information.

2.3 Principle of minimum negentropy or maximum entropy

To estimate an unknown probability p(y) in the presence
of incompleteness of information, one often uses the principle
of maximum entropy or, equivalently, minimum negentropy.
The Kullback-Leibler distance (or entropy) is a measure of the
separation between the unknown probability p(y) and a hypothesis
h( y), which must be minimized under the constraints. So, under
general constraint conditions,

∫
p(y) ln

p(y)

h(y)
dy +

N∑

i=1
λi

[∫
p(y)ki(y) dy − Ki

]
= minimum. (2.19)

Here, Ki represents data, and ki a constraint kernel (velocity,
position, kinetic energy, etc.) that are known through an observation
and the objective representation. The solution of p(y) here is
maximally probable.
Take an example of the kinetic energy T as the one and only

constraint. This forces
∫
p(y) ln

p(y)

h(y)
dy + λ

∫
p(y)T(y) dy = minimum. (2.20)

The Lagrangian is

L = p ln
p(y)

h(y)
+ λp(y)T(y). (2.21)

The Euler-Lagrange equation then implies that either ∂L /∂p = 0 or

1+ ln p − ln h + λT = 0, (2.22)

whose  ̏solution˝ is

p̃(y) = h(y) exp[−1− λT(y)]. (2.23)

While a simple exponential solution can exist in specific circum-
stances, in general, the solution does not have to be this simple
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form. Quantum-mechanical problems, for example, a particle in a
potential well, or the two-slit experiment, will have a complexity.
Constructive and destructive interferences will show up in this
solution form. Even in simpler classical problems, such as of the
statistical distribution of kinetic energy or the velocity of particles,
as in the Maxwell-Boltzmann problem, there will be interesting
complexities related to the class of problem. ϑ , as the maximal
estimation, will then depend on what the distribution is for: a single
particle or a multiparticle unit. So, the simple exponential is the
classic Boltzmann single particle distribution, but multiparticle
constraints will give rise to different and more complex forms, as
we see next, along with other forays that directly follow from the
Fisher information narrative.

2.4 Examples of Fisher information applied to particles

We now consider a few examples of the application of
the Fisher information for particles. To introduce constraint into
Equation 2.16, we employ a linear Lagrangian constraint. For
particles considered in conditions where potential doesn’t vary with
time, the energy constraint arises through kinetic energy. So, the
Lagrangian form for the problem is the general equation

∫
[∂p(y)/∂y]2

p(y)
dy + λ

∫
T(y)p(y) dy = minimum

or
∫
[∂p(y)/∂y]2

p(y)
dy + λ〈T(y)〉 = minimum. (2.24)

If y is velocity, then T(y) = (1/2)my2. If the average kinetic energy
is known, this equation will solve for λ, using the Lagrangian
approach. The normalization of the probability function can also be
explicitly incorporated. If this average kinetic energy is not known,
then λ is a factor (negative) that needs to be properly imposed.
The former is a classical problem; the latter is a uncertainty-
constrained quantum problem. When this minimization equation
is multidimensional, then the solution follows from separation,
using the marginalization of the kinetic energy in the independent
dimensions. So, now let us look at the quantum-constrained
conditions first, and the classical ones second.

2.4.1 One-dimensional Schrödinger equation

Consider a particle of mass m in a time-invariant potential of
V(y), where y is the position. One measurement is made for the
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position y in order to estimate the particle’s mean position ϑ . Let
E(y) be the total energy, and V(y) be the potential energy, so that
T(y) = E(y) − V(y):

〈T(y)〉 =
∫
p(y)[E(y) − V(y)] dy =

∫
p(y)[E − V(y)] dy, (2.25)

where E = ∫
E(y)p(y) dy, together with the normalization constraint

p(y)dy = 1. Equation 2.24 now forces
∫

∂p(y)/∂y
p(y)

dy + λ

∫
[E − V(y)]p(y) dy = minimum. (2.26)

The Euler-Lagrange equation for this variational problem is

d
dy

(
∂L

∂p′

)
= ∂L

∂p
, where p′ = ∂p(y)

∂y
, and

L = [∂p(y)/∂y]2

p
+ λ[E − V(y)]p, (2.27)

leading to

∂2p(y)

∂y2
+ λq(y)[E − V(y)] = 0, (2.28)

where p(y) = q2(y). This equation is of the Schrödinger form. We It is always insightful when one
can arrive at relationships through
multiple paths. Freeman Dyson
described, in an article in The American
Journal of Physics in 1990, his memory
of a proof by Richard Feynman of two
of Maxwell’s equations (∇ · H = 0,
and ∇ × E = − ∂H/∂t), starting from
the use of the quantum commutation
relationship. This can be achieved
through either the Lagrangian
or the Newtonian approach. It is
an illustration of the properties of
acceleration-independent force. What
is interesting, and this tends to be
true and gives insights well beyond
when one encounters such situations,
is that it also speaks to relativistic
issues. These equations happen to
be compatible with both Galilean
and Lorentz invariance—allowing
the existence of vector and scalar
potentials—but the other two do not.
Relativity has raised its head.

do not know the probability density function, so the expectation
for kinetic energy is also not known. The parameter λ—negative—
therefore needs to be imposed externally. If we choose λ = −2m/h̄2,
we have

− h̄2

2m
∂2

dy2
ψ(y) − V(y)ψ(y) = Eψ(y), (2.29)

where we have replaced q(y) = ψ(y), consistent with the
p(y) = q2(y) requirement as probability amplitude and the meaning
we assign to the wavefunction. This is the time-independent, one-
dimensional form of the Schrödinger equation.
A generalization of this using marginals of the kinetic energy

term is the three-dimensional form. q(y) has taken the meaning
of probability amplitude in a purely real form. The complex
form also can be derived using two variables: y and an inter-
nal state variable that takes on one of two possibilities, that is,
p(y, i) = pi(y), where i = 1, 2 denotes the joint probability of y and i
with p(y) = p1(y) + p2(y).

2.4.2 Maxwell-Boltzmann distribution

Our second illustration of Fisher entropy is the Maxwell-
Boltzmann distribution—the distribution function in thermal
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equilibrium of classical non-interacting particles in the absence
of any potential—so, an ensemble of inert particles of a Maxwell-
Boltzmann gas. Let ϑ be the parameter for the unknown. We probe
for the velocity distribution, so ϑ may appear as root mean square
velocity in the form that we teach.
Let vx, vy and vz be the three Cartesian components of the

velocity of a randomly chosen particle’s velocity. Equiparti-
tion of energy says that each degree of motional freedom is of
identical magnitude in an equilibrium state. Each x-, y- and z-
directed motion has the same energy that we choose to be kBT/2. T subscripted or with a parameter

identifies the kinetic energy. T stand-
alone is temperature. This should be
clear from the context.

We have

〈Tz〉 = 〈Ty〉 = 〈Tx〉 =
∫
1
2

mv2xp(vx) dvx = 1
2

kBT. (2.30)

p() identifies the equilibrium state. This is a Lagrangian constraint
of equality. λ needs to be solved for. Since the three independent
motional directions are independent, their marginal constraints
are separable, and one needs to solve only the one-dimensional
version of the problem. The probability distribution is sought; its
expectation is not known and is therefore minimized. We express
this as

∫
[∂p(vx)/∂vx]2

p(vx)
dvx + λ1

[∫
1
2

mv2xp(vx) dvx − 1
2

kBT
]

+ λ2

[∫
p(vx)dvx − 1

]
= minimum. (2.31)

The Lagrangian is

L = [∂p(vx)/∂vx]2

p(vx)
+ λ1

1
2

mv2xp(vx) + λ2p(vx), (2.32)

with the solution

2
d

dvx

{
[∂p(vx)/∂vx]

p(vx)

}
+

{
[∂p(vx)/∂vx]

p(vx)

}2
− 1
2
λ1mv2x − λ2 = 0. (2.33)

For simplicity of writing, h(vx) = [∂p(vx)/∂vx]/p(vx) reduces
Equation 2.33 to the form

2
∂h(vx)

∂vx
+ h2(vx) − 1

2
λ1mv2x − λ2 = 0, (2.34)

with the solution

p(vx) = A exp
[∫

h(vx) dvx

]
, (2.35)

where A is a normalization constant.
Equation 2.34 is a Riccati equation, whose solutions are found

through power series.
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The lowest order solution is h(vx) = a + bvx, with a and b as
constants. The constraints of Equation 2.31 force a = 0, so

p(vx) = A exp(Bv2x), (2.36)

again with A and B as constants. These constants follow from
the probability distribution being constant and the equipartition
constraints as

p(vx) =
(

m
2πkBT

)1/2
exp

[

− (1/2)mv2x
kBT

]

, (2.37)

whose generalization is

p(vx, vy, vz) = p(vx)p(vy)p(vz)

=
(

m
2πkBT

)3/2
exp

[

− (1/2)m(v2x + v2y + v2z)

kBT

]

. (2.38)

To find p(v), since v = (v2x + v2y + v2z)
1/2, we change the coordinates

from Cartesian to polar by (vx, vy, vz) 
→ (v, θ ,φ) and integrate over
the polar angle θ (π ) and over the azimuthal angle φ (2π ), which
results in

p(v) =
√
2
π

(
m

kBT

)3/2
v2 exp

[

− (1/2)mv2

kBT

]

. (2.39)

This is the lowest order solution—the Maxwell-Boltzmann
distribution—for velocity, and it is also rewritable in a kinetic
energy form through the quadratic dependence.
This Fisher information method is much more instructive,

however, than the traditional (see Appendices E and F) approach.
The classical Maxwell-Boltzmann solution is for ϑ of order 1,
having been arrived at from the consideration of the first solution
of the Riccati equation—a single particle being sampled—and the
best estimate solution for that problem. The Riccati equation has
many other solutions (infinite!). Take the trial solution of h(vx) =
bvx + c/vx, which satisfies Equation 2.34 for c = 2, and b as another
normalizable constant. This solution has the form

p(vx) = A exp
(

b
2

v2x + 2 ln vx

)
, (2.40)

which, following substitutions and normalization to extract
constants A and b, gives

p(vx) = 1√
2π

(
3m
kBT

)3/2
v2x exp

(

−3mv2x
2kBT

)

, (2.41)

and its generalized form

p(v) = 54
105

(
27
2π

)1/2( m
kBT

)9/2
v8 exp

(

−3mv2

2kBT

)

. (2.42)
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What gives? The units are one hint. Equation 2.42 is in per third
power in velocity compared to the first. The other is the peak and
shape of the distribution. For Equation 2.39, the peak occurs at√
2kBT/m; for Equation 2.42, it is at

√
8kBT/3m, which is slightly

higher, but not that much different. As Figure 2.1 shows, though,
the spreads and skews of the distribution are considerably different.

Figure 2.1: Two different solutions
of the Riccati equation for the
distribution function. The plot with
the lower peak velocity is the classical
Maxwell-Boltzmann solution for
random selection of single particles in
a sea of classical particles. The second
solution is for a random selection of 3
particles, again from a sea of classical
particles.

For velocity v as a root mean square velocity over n particles, the
probability law is

p(v) = 2
�(3n/2)

n3n/2

(√
2σ

)3n v3n−1 exp
(

− nv2

2σ 2

)

, (2.43)

which follows from the argument that v2 is the sum from 3n
squared terms that are Cartesian independent terms. It arises in the
χ2 probability law and random variable transformation.
Equation 2.39 is the solution to n = 1 law, and Equation 2.42

is the solution to n = 3 law. The first considers a one-particle
distribution (estimator ϑ(1)), and the second considers a three-
particle distribution (estimator ϑ(3)). So, the solutions reflect
the choice of distribution when one particle is selected in each
observation, or three particles are simultaneously selected in each
observation. The Fisher information for the first case is ϑ(1) =
3m/kBT and, for the second case, is ϑ(3) = 27m/kBT, which is larger.
I must increase with n. Information increases in a collection where One particular application of Fisher

information that is dear to me is the
use of the Dirac quantum-mechanical
equation to show—the proof is longer
and not really that related to the
subject of this text—that the rate of
change of the Shannon entropy H is

∂H
∂t

≤ c
√

I. (2.44)

One can assign a number of meanings
to this expression. The most important
of these is that the rate of gain of
Shannon information in b/s acquirable
is limited by the speed of light and
by Fisher information capacity. The
information in a power spectrum is
I = 4 ∫

dω/S(ω). And we have seen the
relationship between information and
error in Equation 2.12. Deeper down,
this relationship is also stating that our
current state of learning determines
an upper limit to how rapidly we
may learn.

additional patterns arise. It reflects a narrower breadth around the
mean as n increases. Figure 2.1 reflects this; so does the information
content, and the decrease in fluctuations around the mean.

2.4.3 Diffusion

Random walk, whose one example is diffusion, is another
ubiquitous problem related to the estimation in the presence of
incompleteness that arises in a distribution representing many
possibilities. So, we tackle this as one final problem to illustrate
Fisher information’s usage to elicit the diffusion equation. We
will tackle this in one dimension, and, similar to the case for the
Maxwell-Boltzmann distribution, its three-dimensional form follows
from coordinate independence.
Let x(t) be the position at any time t, so x(0) is the coordinate at

t = 0. With t time elapsed,

x = x(0) + �x, with �x =
∫ t

0
�v(t′)dt′, (2.45)

with �v(t′) as a velocity with its fluctuation at time t = t′. We
estimate p(η, ζ ), where η is velocity �v at t = t′, and ζ is �v at
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another time, t = t′′. Equilibrium in the velocity distribution exists
axiomatically at t′ and t′′. This means that the averaged kinetic
energies—averaging over the space of (1/2)m(�v)2—must be the
same, and if ergodicity is also true, then this energy for this degree Ergodicity is discussed in Chapter 16.

It implies that, for this ensemble, the
time and spatial averages lead to the
same measure for the function of
interest.

of freedom is (1/2)kBT for classical particles. So, our marginal
constraints are

∫∫
1
2

mη2p(η, ζ ) dη dζ = 1
2

kBT, and
∫∫

1
2

mζ 2p(η, ζ ) dη dζ = 1
2

kBT. (2.46)

We need to now employ the Fisher marginal constraints arising
in η and ζ . 〈Tη〉 = 〈(1/2)mη2〉, and 〈Tζ 〉 = 〈(1/2)mζ 2〉. So, the
constraining is

∫∫
p2η + p2ζ

p2
dη dζ + λ1

∫∫
Tηp(η, ζ ) dη dζ

+ λ2

∫∫
Tζ p(η, ζ ) dη dζ = minimum, with

pη = ∂p

∂η
, and pζ = ∂p

∂ζ
. (2.47)

The principle of minimum negentropy stated in Equation 2.19
implies here a separable solution so that

p(η, ζ ) = p1(η)p2(ζ ). (2.48)

The Euler-Lagrange equation to this two-constraints problem is

∂

∂η

(
∂L

∂pη

)
+ ∂

∂ζ

(
∂L

∂pζ

)
= ∂L

∂p
, (2.49)

where

L = p2η + p2ζ

p2
+ λ1Tη(η)p + λ2Tζ (ζ )p. (2.50)

Equation 2.47 then reduces to

2
p

∂2p

∂η2
+ 2

p

∂2p

∂ζ 2
− 1

p2

(
∂p

∂η

)2
− 1

p2

(
∂p

∂ζ

)2

− λ1Tη(η) − λ2Tζ (ζ ) = 0. (2.51)

Using a probability product trial solution (p(η, ζ ) = p1(η)p2(ζ )), two
separate equations in probabilities follow:

2
pi

∂2p

∂ξ 2i
−

(
∂p

∂ξ i

)2
− λiTξ i = 0, with (2.52)

ξ i = η for i = 1, and ξ i = ζ for i = 2. The separated solutions, under
the marginal constraints, appear as separate equations of
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∫
1
pi

(
∂p

∂ξ i

)2
dξ i + λi

∫
Tξ ipi(ξ i) dξ i = minimum for i = 1, 2. (2.53)

The separation of probability (Equation 2.48), together with the
minimization Equation 2.47, imply, again via separation, that both
η = �v(t′) and ζ = �v(t′′) are independent of each other. This also
states that

〈
�v(t)�v(t′)

〉 = kBT
m

δ(t − t′), and 〈�v(t)〉 = 0. (2.54)

So, from our starting equations of this subsection, we arrive at

〈�x〉 = 0, and 〈�x2〉 = kBT
m

t. (2.55)

�x is, for all times, the sum of the infinite independent variable
�v(t′), with time continuous. �x is therefore Gaussian, from the
central limit theorem, independent of the nature of �v’s probability
law, and therefore also for Equation 2.31. The probability density for
�x therefore follows as

p�x(x) = 1
√
2π(kBT/m)t

exp

(

− x2

2(kBT/m)t

)

. (2.56)

Since the position x depends on �v over (0, t) and is therefore a
random number arising in �x, and x0 is independent of �x, by
convolution,

p(x, t) =
∫
p0(y)

1
√
2π(kBT/m)t

exp

[

− (x − y)2

2(kBT/m)t

]

dy. (2.57)

This equation, following differentiation, gives

∂p(x, t)
∂t

= a
∂2p(x, t)

∂x2
, with a = kBT

2m
. (2.58)

This is the diffusion equation for the distribution of the particle
in position and time coordinates. We have arrived at it through
the independence of velocities at different times that arose in their
constraints being marginals, that is, non-joint, and deploying the
Fisher entropy arsenal.

2.5 Summary

Energy and entropy are two quite intertwined ideas. We need
the concept of energy as the property—arising in potential and
kinetic forms—that undergoes exchange as a system evolves.
These energy forms exist in our description in a variety of ways.
A chemical bond is a configuration that arises under quantum-
mechanical constraint even as the electromagnetic rules apply.
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A mechanical energy description—classical or semi-classical—is the
manifestation of this bond as a storehouse of this energy and, being
in the connected world, because of temperature and because it is
stable, with the harmonic oscillator as the simplest descriptor, leads
to oscillations with periodic potential and kinetic energy exchange.
Different states of matter arise where these energies are being
exchanged, or from which they are even lost in a non-conservative
form, since the losses are to a broad band. Entropy, although
classically through Boltzmann, arose as the description for what
a collection of particles would do, ending up in thermodynamic
equilibrium where a function—the Boltzmann entropy—is a maxi-
mum. In general, entropy is a somewhat dissatisfying state of lack
of precise information of a system. If one doesn’t have complete
information for a system, one doesn’t really know what one doesn’t
know, so it is quite out of bounds for us to completely summarize
it in any objective way. This is the conundrum. But, information The lore is that von Neumann, during

a discussion with Shannon, suggested
that he refer to the informational
content of a bitstream as an entropy.
I would not be surprised if the
suggestion was for negentropy,
which is what it is, but the negative
of the dissatisfying state of a lack of
precise information is too obfuscating.
The von Neumann entropy and,
particularly with entangled quantum
systems, this idea of information turn
out to be not something that can be
thought through in any simple way.
von Neumann knew this, since he calls
the observer and the observed a prime
example of entanglement.

is physical, and therefore entropy and energy are related, whether
one views it from the classical Claussius-to-Boltzmann and Gibbs
view, from the quantum view or for black holes and their event
horizons as they radiate, even if this last description is still a work
in progress.
We focused in this chapter on one particular entropy: Fisher

entropy, which does not receive much attention in the literature
but is among the most meaningful ways to make the connection
between entropy as the fount of information to the description
of the physical world. Fisher entropy embodies beauty and taste.
Being based on a derivative, it is a measure that emphasizes
locality. Application of a minimization constraint to it therefore
leads to second-order equations, and that is what many of nature’s
equations are. And this is unlike the other entropy measures, Fisher entropy may be a good example

of beauty and taste. But it is not a
general guarantee. Statistics, being
quite mathematical, is often used
nefariously. Even Fisher himself was a
fervent eugenicist.

which, being global in nature, when applied across the distribution
function via probability, lead to algebraic and exponential forms.
That the statistical nature of events—cause and chance at play—and
our deterministic analytic models formed as equations can both be
seen together is quite a powerful truth at play.
In adopting this approach in this early chapter, this writing was

a short digression from the norm of the way physical theories are
taught, to illustrate the connections between the mathematical view-
points and the physical viewpoints. Having multiple viewpoints
of what we observe provides deeper insights into the connections
present therein, and this chapter illustrated these connections.
As illustrations, we showed, through the Lagrangian constraint,

Fisher entropy leading to the one-dimensional Schrödinger equa-
tion. We expanded this to show estimation over particle ensembles
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to derive the Maxwell-Boltzmann distribution in order 1 but also
pointed out, through the derivation, that higher order solutions
also occur when the distribution is over a multiple particle collec-
tion instead of a single independent particle collection. And we
concluded these examples by illustrating the process of diffusion.
Seemingly quite different and important equations describing the
particle statics and dynamics can be arrived at through the use of
Fisher entropy.

2.6 Concluding remarks and bibliographic notes

Entropy has occupied science’s attention for many hundreds
of years since the initial thermomechanical forays where energy
also appeared. Entropy, largely as a measure of incompleteness
of information, appears in many forms. This chapter employed
Fisher entropy to illustrate the entropy-energy-information connec-
tions and used it to illustrate its applicability to arrive at equations
that we employ commonly for modeling and predicting physical
phenomena.
An excellent source for understanding entropy from the classical

viewpoint, that is, employing thermodynamic and statistical
meanings, is by Dugdale1. The book discusses the various laws of 1 J. S. Dugdale,  ̏Entropy and its

physical meaning,˝ Taylor and Francis,
ISBN 0-7484-0568-2 (1996)

thermodynamics, together with the distribution functions, and the
implications of low temperature, very meaningfully. Another histor-
ically important work—a classic text—is by Tolman2. Of course, the 2 R. S. Tolman,  ̏The principles of

statistical mechanics,˝ Dover, ISBN 13
978-0486638966 (2010). This book’s first
edition is from Oxford in 1938

reader will find a wide variety of books in this subject area as our
understanding continues to expand, and, of late, information, and
the other twists to entropy, have become important.
Two scientists have very strongly influenced the interplay

of entropy, energy and their use in understanding the physical
phenomenon and have written their coherent thoughts in these past
decades.
The first is E. T. Jaynes3. Jaynes’ exposition of the principles

3 E. T. Jaynes,  ̏Information theory
and statistical mechanics,˝ Physical
Review, 106, 620–630 (1957), and
 ̏Information theory and statistical
mechanics II,˝ Physical Review, 108,
171–190 (1957)

embedded in the meanings of entropy, energy, information and their
implications for any statistical inference are path setting and date
back to the 1950s.
The second is B. Roy Frieden, whose book4, while its aim is to

4 B. R. Frieden,  ̏Science from Fisher
information,˝ Cambridge, ISBN 13
978-0521009119 (2004)

develop tools for measurement theory, does an excellent analysis
and derivation of a variety of classical and modern equations, using
just the tools of the Fisher-based method of estimators. Frieden
has also coedited a book with R. A. Gatenby5 that explores the

5 B. R. Frieden and R. A. Gatenby,
 ̏Exploratory data analysis using
Fisher information,˝ Springer ISBN 13
978-1-84628-506-6 (2007)application of Fisher entropy beyond information and thermal

physics to biology, finance and other domains.
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Finally, an end note to the Saint Petersburg paradox posed in the
sidebar. The resolution is that  ̏infinity˝ is a fair fee for entering the
game. This is theoretically correct but really not that practical.

2.7 Exercises

1. The Shannon information measure H is additive for two mutually
isolated systems. But H is not the only functional of a probability
law obeying additivity. Show that the Fisher information measure
I also obeys additivity. [S]

2. Take the amplitude function q(x), where p(x) = q2(x). Show that
this implies that

I = 4
∫
q′2(x) dx,

and that one can define a quadratic measure for the displacement
between the amplitude function q(x) and its displaced version
q2(x + �x) as

L2 = 1
4
�x2I.

[S]

3. The Boltzmann entropy obeys the second law of thermodynamics,
that is, dH(t)/dt ≥ 0. This is what the Boltzmann H theorem calls
out. Show that the Fisher entropy I follows

dI(t)
dt

≤ 0. [S]

4. The relation dH/dt ≥ 0 sets a lower bound for the closed system.
We are interested in finding if there is an upper bound for the
closed system that obeys the conservation of flow equation
(continuity),

dp(r|t)
dt

+ ∇r · P(r, t) = 0,

where P(r, t) is a measure of the probability flow. Show that
(

dH
dt

)2
≤ I

∫
P · P
p

dr, where

I = I(t) =
∫ ∇rp(r|t) · ∇rp(r|t)

p(r|t) dr.

The entropy change in a small time interval is bounded by the
square root of the Fisher information capacity for the position
measurement. [M]
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5. Hydrogen has an ionization energy of 13.6 eV. Estimate the
temperature where a noticeable fraction of hydrogen is ionized
because of thermal agitation. [S]

6. Lithium—a metal—has a Fermi energy of 4.7 eV away from the
conduction bandedge. What is the fraction of electrons that are
thermally excited at 300 K? [S]
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3
Waves and particles in the crystal

We begin the exploration of semiconductor physics
by taking first a broader look at the nature of the behavior of the
duality of particles and waves in solids, and semiconductors specif-
ically. This will give us a good starting understanding of electrons,
atoms and electromagnetics or photons as their particles under the
quantum constraints when brought together in the solid form. We
are interested in understanding how we may see their behavior in
the solid and how can one simplify, without losing the essentials,
the description of their behavior with each other. We must therefore
be able to sufficiently describe the solid, which we restrict to its
periodic atomic arrangement, and then see within it the state
description of the electrons and of the atoms so that we will be able
to explore their interaction together with those of photons.
Our discussion therefore will start with a look at what it means

to be a wave—as in an electromagnetic or quantum wave—or to
be a particle, and the nature of this duality that must have many
connecting themes so that classical to quantum correspondence
holds. To understand the solid, we then look at the lattice as the
periodic mathematical construct that fills space, with the unit
cells as building blocks that can recreate identical environments
surrounding them through translations. This lets one work with
this smaller point construction space that suffices to describe the
larger assembly. For reasons of symmetry, there are limitations to
the periodic arrangements that completely fill a space. The allowed
space-filling periodic arrangements constitute the Bravais lattices.
If we associate specific atoms as a basis with this lattice construct,
we have a crystalline solid. Three-dimensional crystals have 14 such
Bravais possibilities. The cubic arrangement, for example, can be
simple cubic, body-centered cubic (with a lattice point occupied by
an atom in its center), or face-centered cubic (with lattice points at
the center of faces). In nature, this cubic crystal appears in the three

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
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different Bravais lattice forms for a number of solids. The face-
centered form is a dense form of arrangement; so is the hexagonal-
close-packed form. The difference between the two is the three-
dimensional assembly by the arrangement of the layers across
three layers. Semiconductors of most interest to us are based on
these two packings and will appear, along with two-dimensional
monolayer assemblies. The periodicity of these assemblies allows
one to describe these semiconducting solids through unit cells,
or through other reduced forms of less symmetry. The 14 Bravais
lattices map to 7 crystal forms.
The electron wavefunction lends itself best for description

through the wavevector, and for this it is convenient to view it
through the reciprocal space of the crystal. So, we will translate
our periodic real space lattice to a periodic reciprocal space lattice
and understand its properties. Just as a unit cell in its various
forms with different symmetries serves to describe the entire three-
dimensional arrangement, one can also find equivalent zones
for the reciprocal cell where the allowed wavevectors, one of the
quantized parameters characterizing the state of the electron, can be
pulled in, and herein the allowed energies of the electron described.
This approach lets us discuss the 1st Brillouin zone, the simplest
form for reciprocal space description, and the Jones zone, with
all the valence electrons of the unit cell, which form the states of
interest to us in the solid, since they are now allowed to spread out
over the solid in real space and can be characterized.
Having thus set up the description of the real space and recip-

rocal space, we explore the properties of the electrons in periodic
potentials through toy models that let us thus understand the
various relationships between the real and the reciprocal space,
understand the nature of the behavior of the electron as a wave
spread out across the crystal, and clarify the distinctions between
a free electron and an electron in the midst of periodic potentials
and confined in a solid where it may be nearly free; that is, free-like
by some measures but not by other equally important ones. This
clarifies the notions related to the nearly free electron in the solid.
It has now become possible for an electron that was confined to a
very stable atom to move around in a crystal, but with a multitude
of restrictions that these toy model approaches help clarify.
Atoms in this periodic arrangement also do not stay still. Ther-

mal energy and atoms’ bonding causes motion around equilibrium,
and our periodic arrangement lets us analyze the modes of these
oscillations characterized by a quasiparticle: the phonon. Again, we
employ a toy model of a two-different-atom basis for the crystal.
Motion can be longitudinal and transverse, and, since the particle
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is a boson, the occupation of these modes is via Bose-Einstein
statistics. The use of a two-atom basis, and incorporating into this
description the ionicity of the crystals, permit us to understand
the nature of the oscillating dipole, and the difference between
longitudinal and transverse forms. The dielectric function of the
crystal arises in how the ionic and the electronic polarization—the
two forms that will respond in the displacement—of the system
respond to the fields. So, the atomic/ionic oscillations and the
dielectric response and frequency can be connected to each other.
This is the frame for the objective representation of the crystalline

semiconductor solid. Waves are seen best via the reciprocal space,
the atom placement via the real space, and their interaction through
both. For atoms in a crystal, interacting with each other leads to
their contributing electron states that spread out in the crystal.
Atoms bonded together in a crystal lets them vibrate, and this
is a wave-like phenomena best seen through phonon states. The
reciprocal space gives us a clear way of describing the allowed
energy levels and other quantized properties of the electron and
phonon states. The real space gives us a clear way of describing the
bonding and the physical representation of the solid.

3.1 Waves and particles: Classical and quantum views

The probability of finding a particle—an electron of mass
m0—represented by the wavefunction ψ(r) in any volume d3r
is 〈ψ(r)|ψ(r)〉 d3r = |ψ(r)|2 d3r, subject to the condition that it is
somewhere; that is,

∫ |ψ(r)|2 d3r = 1. The Schrödinger equation of
this quantum wave description in free space, that is, for Ĥ =T̂ =
p̂2/2m0 (T̂ being the kinetic energy operator), is

− h̄
i
∂

∂t
|ψ〉 = − h̄2

2m0
∇2

r |ψ〉 = E|ψ〉, (3.1)

whose solution is

|ψ〉 = A exp[i(k · r − ωt)] , (3.2)

with the eigenenergy

E = h̄2(k · k)

2m0
= h̄2k2

2m0
. (3.3)

The kinetic energy operator T̂ followed from the momentum

Figure 3.1: A free electron’s energy
dispersion in free space.

operator p̂ = (h̄/i)∇r and the energy–momentum relationship.
Figure 3.1 shows this energy-wavevector (E(k) or E-k) behavior
for a free electron. This is the free electron energy dispersion. It
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represents under non-relativistic conditions an inertial mass m0
and a kinetic energy that varies as the square of the wavevector.
This free electron also has a momentum that we can find from the
wavefunction.

p̂|ψ〉 = h̄k|ψ〉, (3.4)

that is, h̄k. The wavevector specifies it.
While an electron has a mass, a photon doesn’t. Since E2 = p2c2 +

m20c
4, and the same wavefunction form still holds for the photon

(no potential), the photon momentum is still h̄k, and therefore its
energy E = pc = h̄c|k|. The photon is the quantum particle of an
electromagnetic wave. The wavefunction (∝ exp[i(k · r − ωt)]) that
we have written just says that the particle can be found with equal
probability anywhere, that is, the electromagnetic wave permeates
the free space. The classical equation for the electromagnetic
wave—consider the simplest case of free space—follows from
Maxwell’s equations as

1
c2

∂2ψ(r, t)
∂t2

= ∇2
rψ(r, t). (3.5)

This classical wave equation too describes how the wave is evolving
in time, as did the Schrödinger equation (Equation 3.1). Seen

It is really the time-dependent
equation that is the wave-equation
formulation of Schrödinger. It teaches
us the dynamic evolution of the
wavefunction. The second part of
Equation 3.1 is only a statement of
Hamilton’s energy formulation, that is,
Ĥ |ψ〉 = E|ψ〉.

through fields, the electromagnetic analog of the wavefunction
E = E0 exp[i(k · r − ωt)]) gives us the analogies of Table 3.1 between
the classical electromagnetic wave and the quantum photon particle
interpretation.

Classical Quantum

EM wave Photon
E ∝ E20 E = nh̄ω
νλ = ω/k = c λ = h/p = 2π/k

Table 3.1: A few notable
associations in the classical
and quantum views of
electromagnetism. E0 is the
amplitude of the electric field, ν is
the frequency (cycles per second),
ω is the radial frequency, and n
is the number of photons. The
amplitude of the electromagnetic
(EM) wave is associated with
the energy content of the wave.
Quantum-mechanically, a photon
has the energy E = h̄ck = h̄ω. n of
these photons will have n times
that energy, which is spread out
in the space that shows up as the
field E0.

In the background to these equations is de Broglie’s hypothesis
that one can associate a wave-like quantum property of wavelength
(λ= h/p) to a classical momentum property of a particle. The

Take an electron moving at about
105 m/s (a velocity magnitude that
we associate with the motion of an
electron in a crystal, ignoring the
peripheral details of the crystal’s
presence buried in its effective
mass there); then, the electron
has a momentum of p = m0v =
9.1× 10−31 × 105 = 9.1× 10−26 kg · m/s.
The de Broglie wavelength λdeB =
h/p = 6.626× 10−34/9.1× 10−26 ≈ 7 nm.
Nanoscale and quantum are intimately
entwined in this magnitude and its
consequences.

relationship ω(k)= h̄k2/2m0 is the dispersion relation of this wave.
This particle ≡ wave is not localized. In the wave picture, its
energy is distributed over the entire free space, and, in the quantum
picture, it has a probability of being everywhere.
Our understanding of the particle is that of an object that can be

described by some range of position and momentum (or velocity),

In the classical description, the
position and momentum (or velocity)
canonic variables can be precisely
determined simultaneously.

with the range vanishing in the classical description. By this,
we mean that, at a time t = t0 in the range �t, we will find it in
some specific range �r in position at r = r0. The localization—
in our quantum view—arises when the wave has a narrower
spread of excitations �k around the wavevector k. This now is a
wavepacket—the electromagnetic analogy will be the formation of
a wavepacket by the superposition of plane waves—that we may
write as

ψ(x, t) = 1√
2π

∫ ∞

−∞
u(k) exp[i(kx − ωt)] dk, (3.6)
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where we have, for convenience, written it for a wavepacket
traveling in one dimension. Let this wavepacket be centered at k0 in
the wavevector, and ω0 in frequency. We Taylor expand, including
only the first term in the expansion to ω(k) ≈ w0 + ω′

o(k − k0), where
ω′

o = dω/dk at k = k0. Using a change of variables, s = k − k0,

ψ(x, t) ≈ 1√
2π

∫ ∞

−∞
u(k0 + s) exp

{
i
[
(k0 + s)x − (ω0 + ω′

0s)t
]}

ds

= 1√
2π
exp

[−i(ω0t − k0ω′
0t)
]

×
∫ ∞

−∞
u(k0 + s) exp

[
i(k0 + s)(x − ω′

0t)
]

ds. (3.7)

This is the evolution of the wavefunction |ψ(x, t)〉 in time from

ψ(x, 0) = 1√
2π

∫ ∞

−∞
u(k0 + s) exp[i(k0 + s)x] ds

= 1√
2π

∫ ∞

−∞
u(k) exp(ikx) dk (3.8)

at t = 0. What this arbitrary time and beginning time wavefunction
says is that, with time, x 
→ x − ω′

0t, and one can write

ψ(x, t) ≈ exp
[
i(−ω0 + k0ω′

0)t
]
ψ(x − ω′

0t, 0). (3.9)

So, the probability |ψ |2 function moves in space at a speed of
ω′
0. This is the velocity of this group of waves centered around
(k0,ω0)—the group velocity vg— of This group of waves also has a phase

velocity for the continuum distribution
of waves constituting it. The phase
velocity is vφ =ω/k. We really don’t
need to resort to this wavepacket
based argument to establish the
relationship of group velocity. We
will revisit this when discussing band
diagrams as a linear response term
where a state evolves to a different
momentum and different energy,
which directly leads to a group
velocity. The next order term of this
description lets us relate the changes
to the effective mass—the mass of
the electron occupying a state in the
crystal—and the f-sum rule, which,
through oscillator treatment, brings
in how the different states couple to
each other via the operation of the
momentum. Oscillator strength is
discussed in Appendix I and will
appear often in the text.

vg = dω
dk
, (3.10)

or, more generally,

vg = ∇kω, or vg = 1
h̄
∇kE. (3.11)

This is the velocity with which the energy associated with this
group of waves constituting the wavefunction |ψ(x, t)〉 travels.
Note that, for the wave description, we found ω = h̄k2/2m0, so
vg = dω/dk = h̄k/m0 and vφ =ω/k = h̄k/2m0. A particle representing
a bundle of excitations with energy travels at vg. The phase
velocity is a velocity representing the speed of phase change of a
stationary state.
So far, we have looked at a free particle and its wave char-

acteristics. In semiconductors, we are interested in how these
particles behave within that environment. The electron of free space
conforms to wave properties. What does its behavior look like
when it is in a crystal, that is, when it arises from the atoms that
constitute a periodic array with all their interactions within? To
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handle this, we first build the edifice to represent the crystal and
then look at how the electron picture, of the electrons that we care
about in structures employing condensed matter, as a particle or
a wave, exist within this arrangement—and, from this, how other
interactions affect it when we subject the crystal to external forces
in the presence of internal forces. So, how the crystal, with the
interacting atoms localized at a lattice of sites, makes the carriers
behave is of interest.
We begin by exploring how one can mathematically and

physically treat the crystalline semiconductor solid with atoms and
electrons in it, as a stepping stone to the exploration of interactions
and other responses of interest.

Figure 3.2: Lattice points in a three-
dimensional lattice. â3 is a unit vector
out of the plane to the next neighbor
lattice site, and â1 and â2 are in the
plane. A lattice site at translated
coordinates of 2â1 + 3â2 + 2â3 is shown
from an origin located inside the
lattice.

3.2 Lattice and crystal

The lattice is a mathematical construct—an infinite array of
points—in which the points have surroundings that are identical to
those of all other similar points. This means that, no matter where
one is at a small set or one of these lattice points, distances and
angles to all other points from that point are the same as from any
other similar point.
A Bravais lattice is generated by a primitive translation operator,

Tm = m1â1 + m2â2 + m3â3, (3.12)

where mi are integers, positive, zero or negative, and â1, â2 and
â3 are three vectors, which are our units of translation. The

These vectors as units of translation
will sometimes have the magnitude
subsumed as here and sometimes will
be normalized. This should be clear
from the context of usage.

infinite number of end points of the translational vector are the
points of the lattice. For a hypothetical three-dimensional lattice,
Figure 3.2 shows example vectors and translations that generate the
infinite array.

Figure 3.3: A honeycomb lattice. The
crystalline form of graphene has this
lattice structure.

Finding the smallest vector set that creates the infinite lattice out
of translational operations can be tricky in many cases. For exam-
ple, in Figure 3.3, a honeycomb structure, do â1 and â2 define the
translation that results in the Bravais lattice? No. While the array of
points has the same appearance from A and C, the view from point
B is rotated π radians. To create the infinite assembly of the array
of points, we will need to define two basis points, and then two
vectors will suffice in creating the lattice. If the nearest neighbor
distance is δ, then â1= δ(

√
3/2, 1/2), and â2= δ(

√
3/2,−1/2), and the

basis of ±δ(1/2
√
3, 0) will suffice.

A parallelepiped formed by â1, â2 and â3, of the volume
â1·(â2 × â3), when continuously translated parallel to itself by
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Tm, fills the infinite lattice. A unit cell is any cell that fills up the
lattice through the translations. It may, however, be primitive or
non-primitive. A primitive unit cell is the smallest part of the lattice
that, if repeated, would reconstruct the entire crystal structure
and consists of one and only one lattice point. Lattice points can
be  ̏shared.˝ In a square lattice, a lattice point at the intersection
of 4 unit cells is considered to be only 1/4th in each cell. In a
simple cubic lattice, a lattice point is shared between 8 unit cells
and contributes 1/8th to each cell for a total of 1. So, if the unit
cell is composed of 8 vertex points, then it is a primitive unit
cell. In Figure 3.2, one could have made multiple choices of the
example vectors forming primitive cells. The figure also shows a
non-primitive example that contains more than 1 lattice site but,
when repeated using the translational operator, will still create the
infinite lattice and fill the volume. For most examples of interest to
us in crystals, the unit cell will contain more than one lattice point.
These are non-primitive unit cells.
The lattice and the size of the atoms occupying the lattice site

define the packing density, that is, the volume that is occupied by
the atoms. Two forms of packing—the face-centered cubic (FCC)
and the hexagonal-closed-packed (HCP)—have the highest density.
The occupying atoms touch nearest neighbors in the densest form.
If they are all the same atom, and therefore all the same size, they
will be points on the surface of a sphere, with the center being
another lattice point. Figure 3.4 shows an illustration of this high
packing and its equivalent by showing a top view of vertical
layering of equal-sized atoms. Figure 3.4(a), which is the FCC
form, shows the face-centered cubic formation across multiple
layers, which maintains the π/3 rotational symmetry that must
exist in a single layer. Note that the third layer, the topmost layer,
is displaced from the first, while still sitting above the interstitial of
the 3-atom equilateral assembly of the second layer. Figure 3.4(b)
shows the same for HCP, but now the third layer is precisely on top
of the first layer.

The FCC and HCP are the densest
forms, for the same reason: a sphere
is the largest volumetric form with
the smallest surface area. Within a
layer, six nearest neighbors exist. The
next layer has occupation above the
interstitial region. This arrangement
has still the highest density if the
second layer consists of another
atomic species.

Figure 3.4: The highest packing
possible in a single-atom-type
assembly is one atom touching six
other atoms on the diameter of the
sphere. The figure shows a top view
across three layers. Part (a) shows FCC
packing, and (b) shows HCP packing.
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Symmetry places restrictions on the unit cell lengths and inter-
axial angles of a lattice. If one applies a rotational symmetry
operation to an arbitrary lattice, the only rotations consistent with
the requirement that the unit cell fill all space are Cn rotations with
n ⊂ {1, 2, 3, 4, 6}. This results in 7 allowed crystal systems. Figure 3.5

We are glossing over the very
interesting complexities of
quasicrystals here.

shows the definitions of some of the notations, and Table 3.2 the 7
crystal systems and 14 Bravais lattices that this corresponds to, with
the combinations of the six parameters â, b̂, ĉ,α,β and γ that fill the
space by translation. Figure 3.5: Definition of the unit cell

vectors and angles of the coordinate
system.In Table 3.2, the group notations are for reference purpose so

that you can interpret the meaning of different symmetries that
they identify when you see different crystallographic point groups

Crystal Schoenflies/ Lattice Bravais lattices
International properties
notation

Triclinic E or i/ a1 = a2 = a3
1 or 1 α = β = γ

Monoclinic C2 or σ/ a1 = a2 = a3
2 or 2 α = β = π/2 = γ 1st setting

α = γ = π/2 = β 2nd setting

Orthorhombic Two C2 or σ/ a1 = a2 = a3
Two 2 or 2 α = β = γ = π/2

Tetragonal C4 or S4/ a1 = a2 = a3
4 or 4 α = β = γ = π/2

Cubic Four 3-fold axes/ a1 = a2 = a3
Four 3-fold axes/ α = β = γ = π/2

Hexagonal C6 or S3/ a1 = a2 = a3
6 or 6 α = β = π/2; γ = 2π/3

Trigonal/ C3 or S6/ Same as hexagonal
Rhombohedral 3 or 3 a1 = a2 = a3

α = β = γ < 2π/3 and = π/2

Table 3.2: Crystal structure and Bravais lattices. The table identifies the 7 crystal systems together with the 14 Bravais
lattices of three-dimensional crystals. Points that are behind a plane are shown in a lighter shade, and the table shows
both the Shoenflies and international notations for identifying their symmetries.
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with different materials of interest. For us, this is quite secondary.
The Bravais lattices that these 7 crystal forms correspond to and
that represent the variety seen in crystalline materials, quasicrystals
excluded, are shown in the last column of the table. The various
symmetries of bonding configuration possible define the various
possibilities that the crystal structure may take.

Figure 3.6: The primitive unit
cell vectors for FCC (a) and BCC
(b) lattices.

The primitive or non-primitive identity of the unit cell now
depends on choices we make. A primitive unit cell containing
one lattice point is the spatial region that, when translated by
all the Bravais lattice vectors, exactly fills the space. To illustrate
this, consider the cubic lattice, which can appear in nature as
simple cubic, face-centered cubic (FCC ) or body-centered cubic
(BCC). The FCC (and wurtzite, arising in the hexagonal) forms
are of particular interest to us since they are the forms many
semiconductors take. It is easy to see the simple cubic as a primitive
form. The smallest cube with 8 lattice points as the corners has
one total lattice point as the net number of lattice points per
cell. It is therefore primitive. The primitive unit cells of the FCC
and BCC Bravais lattice, which will have additional lattice point
contribution from the face centers or the body centers and therefore
are non-primitive, will be different. These are shown in Figure 3.6.
Translated by â1, â2 and â3 integrally, these primitive unit cells too
fill the infinite lattice, as do the non-primitive through another set
of translation vectors.
Most common semiconductors are diamond-like (a basis of two

atoms of the same type), zinc-blende-like (a basis of two different
atoms) or wurtzite-like (again, a two-atom basis). The former two
have the translational symmetry of FCC, so of the cubic form.
Wurtzite has that of the hexagonal form. Figure 3.7 shows these
examples and other semiconductor forms.

Figure 3.7: The non-primitive unit cells of some common semiconductors. Si and Ge, for example, occur in the diamond
form shown in (a), GaAs, InP, InAs, et cetera are in the zinc blende form shown in (b), GaN, AlN, et cetera appear in the
wurtzite form shown in (c), and a number of compounds of the ABO3 form that are semiconducting, ferromagnetic,
ferroelectric, et cetera appear in the perovskite form shown in (d). Two-dimensional semiconductors appear in various
forms. The example here shows two layers of graphene in their natural stacking arrangement in (e).
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We have now noted how the crystal description can be accom-
plished through primitive and non-primitive descriptions. These
forms, unfortunately, don’t quite easily show the symmetries that
are so intimately related to the properties of the solid. A compact
form of the unit cell that is primitive and displays the symmetry of
the crystal is the Wigner-Seitz cell. This symmetry and compactness
makes it very appealing for describing both the crystal and its
analog in the reciprocal space, where it is referred as the first
Brillouin zone, for the states that electron occupy. To construct it,
start at any lattice point as the origin, draw vectors to neighboring
lattice points and construct planes perpendicular to and passing
through the midpoints; that is, the perpendicular plane that bisects
the line connecting the neighboring point. The Wigner-Seitz cell is

It is this bisection that connects this
approach to the reciprocal space, the
Fourier transform of the periodic real
lattice space: a direction connected
to a plane. This is therefore tied to
the wavevector and hence the wave
phenomena of the electron.

the cell with the smallest volume about the origin bounded by the
planes. So, in the two-dimensional lattice example of Figure 3.8, the
cell is the bounded area shown.

Figure 3.8: The Wigner-Seitz cell of
a two-dimensional lattice whose
primitive unit cell is a parallelogram.

Constructing a Wigner-Seitz cell is therefore a straightfor-
ward procedure; it is the visualization in three dimensions that
becomes somewhat trickier. For the BCC, we show this bisecting in
Figure 3.9(a)–(d), by truncating from the body center to the nearest
neighbors. There are two lattice points per BCC (the body-center
lattice point belongs entirely, and the eight corner lattice points each
contribute 1/8th). The nearest neighbors to consider are those for
the 8 corner points and the 6 points—above, below and 4 in the
plane of the neighboring unit cells—in order to form the smallest
repetitive unit. This results in a truncated octahedron that has 8
hexagonal faces in the 8 diagonal directions and 6 squares in the
planes parallel to the cube’s surfaces. This truncated octahedron
fills the entire real space through translation. Figure 3.9(f) shows
the Wigner-Seitz cell for an FCC lattice.

Figure 3.9: Construction of the Wigner-Seitz cell of a BCC lattice. Parts (a) through (d) show the bisection of the
connection to the 8 corner lattice points, and the 6 body-center lattice points of the nearest 6 BCC cells. The resulting
truncated octahedron can be repeated as shown in (e) to form the infinite lattice through translation. Here, a repetition
in the 〈111〉 direction is shown. (f) shows the Wigner-Seitz cell of the FCC lattice, obtained again through the bisection
process.
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3.3 Reciprocal lattice, Brillouin zones and real-reciprocal
relationships

Symmetry constrains the electron wavefunctions in the
crystal to have the periodicity of the crystal structure. The periodic
vibrations of atoms too will have to reflect the periodicity of the
crystal structure.
For waves, the periodicity of position is also suitably

seen through the wavevector, which reflects the spatial
periodicity of the wave. So, in a one-dimensional periodic lattice,
ψ(x, t)∝ exp [i(kx − ωt)], at any instant of time, is a spatial wave
with ψ ∝ exp(ikx). The phase shifts by 2π every 2π/k in inverse
spatial units. The wave properties of the allowed states can be more
easily understood through the nature of k and dependences on
it, since kinetic energies are related to momentum through the de
Broglie relationship on wavelength, and the wavelength is λ= 2π/k.
The wavevector therefore becomes tied to momentum. We saw for the free electron

the momentum as p = h̄k with
k continuous. In a non-free
environment—in any environment
with spatially varying potential—this
will have to change, but we will find
that there is a meaningful momentum,
which is not the actual momentum that
one can usefully attach.

A reciprocal lattice is this mathematical construct in terms of
the wavevector, which is an inverse transform of space lattice.
With space, through the lattice construction, which is periodic, the
reciprocal space too is periodic.
Let b̂1, b̂2 and b̂3 be the basis vectors of the reciprocal lattice,

so that any wavevector k can be written in terms of the basis
vectors of the reciprocal space. These reciprocal lattice basis vectors
in terms of the primitive lattice vectors, â1, â2 and â3 of the 14
Bravais lattices, forming the volume â1 · (â2 × â3), follow the
relationship

b̂1 = 2π
â2 × â3

â1 · (â2 × â3)
,

b̂2 = 2π
â3 × â1

â1 · (â2 × â3)
, and

b̂3 = 2π
â1 × â2

â1 · (â2 × â3)
, that is, cycles, and

âj · b̂l = 2πδjl, (3.13)

with j and l as the indexes for the real space and reciprocal space
unit vectors. The reciprocal lattice vectors are perpendicular to the
two differently indexed vectors of the real space.

This is what the bisecting plane does!

Similar to the translational operator Tm for the real space
lattice (Equation 3.12), the translational operator for the reciprocal
lattice is

Km′ = m′
1b̂1 + m′

2b̂2 + m′
3b̂3. (3.14)
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This results in

Km′ · Tm = 2π(m′
1m1 + m′

2m2 + m′
3m3). (3.15)

The basis vectors of the reciprocal lattice define the primitive unit
cell of the reciprocal cell. It is the Wigner-Seitz cell of the reciprocal
lattice and has a volume in k-space of

δ�k = b̂1 · (b̂2 × b̂3). (3.16)

While exp [ik · Tm] is not unity in general, the specific reciprocal
lattice points represented by k = Km′ follow

exp[iKm′ · Tm] = 1. (3.17)

So, the reciprocal space (k-space), where, in general, exp(ik ·
Tm) = 1, there are specific points, corresponding to the real space
where exp[i(k = Km′) · Tm] = 1, with the basis vectors b̂1, b̂2 and b̂3
integer translated. This is the origin of Equation 3.13. The physical
meaning of this phase-related property is that the periodicity of the
real space causes specific phase matching attributes to appear in
the reciprocal space, which will have consequences. The uniqueness
of the real space lattice points also maps to the uniqueness of the
reciprocal space points. Wave interferences—transmissions and

Since k is a vector, and since Km′
followed from the phase relationship,
it reflects a direction in the real space.
Awave exp i(kx −ωt) is traveling in
the direction x̂, so k here points in the
k̂x direction, which is normal to the
y-z plane. A point in the k-space is a
direction in the real space.

reflections—arise from perturbations and phase changes along the
wave propagation, so the periodic boundaries of the lattice also
cause interference in the wave motion—for electrons and phonons.
The wavevector representation in the reciprocal space will show
such effects more clearly.
The construction of the reciprocal space and Equation 3.13

follows from the use of the exp(iKm′ · Tm)= 1 relationship. In the
simplest of cases—a one-dimensional lattice with a as the spacing
between the lattice points—the reciprocal lattice following this
equation consists of the points that correspond to Km′ · Tm = 2nπ ,
where n is an integer, leading to Km′ = 2m′π/a. The Brillouin zones
are the symmetric zones formed by bisection. The Brillouin zone
construction follows the same approach of bisection that was
employed for the Wigner-Seitz cell construction of the real space.
The first one of these, the 1st Brillouin zone (m′ = 1), where we will
largely explore the electron state behavior, then stretches from −π/a
to π/a. The construction by bisection is illustrated in Figure 3.10(a)
and (b) for a hexagonal and a square lattice, respectively. For
drawing the first Brillouin zones, the vector connecting to the
nearest neighbor collection of sites is bisected, and the region
enclosed is this 1st Brillouin zone. When the next neighbor group
is taken and the procedure repeated, with the region of the 1st
Brillouin zone excluded, this gives the 2nd Brillouin zone. All
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Figure 3.10: Illustration of Brillouin zone construction. Part (a) shows it for a hexagonal lattice, and (b) for a square
lattice. In both, the construction follows by taking nearest neighbor sites, in ascending groups of nearest, next-nearest-
and so on, neighbors and bisecting the vector to them. The 1st Brillouin zone is the region enclosed with the nearest
neighbor group bisection. Then, the second group gives a region out of which the first Brillouin zone is excluded to
form the second Brillouin zone. All Brillouin zones are of equal length (one-dimensional lattice), area (two-dimensional
lattice) or volume (three-dimensional lattice), and this is seen from the first three Brillouin zones for the hexagonal
lattice, and the first four Brillouin zones shown for the square lattice in the figure.

Brillouin zones have the same extent. Here, this is shown for the
first 3 Brillouin zones for the hexagonal lattice, and the first 4 for
the square lattice.
Since the basis vectors in real space are of the order of 0.6 nm,

the reciprocal space basis vectors are of the order of 2π/0.6 nm ≈
1010 m−1. The allowed ks are much closer than this since they
are determined by the extent of the crystal, which is much larger
than the interatomic spacing. We will presently show that the 1st
Brillouin zone will usually suffice to describe the electron behavior
in the crystal.
For the more complex real three-dimensional forms of semi-

conductors, we may construct the symmetric smallest unit cell for
reciprocal cell—this 1st Brillouin zone—in the same way as for the
real space so that much of what happens can be represented within
it for convenience. This Wigner-Seitz cell in the reciprocal space
is the first Brillouin zone. Since the relationship of Equation 3.17
is a relationship that establishes orthogonality and bisection, the
consequence is that the Wigner-Seitz cell of the reciprocal space,
the Brillouin zone and the Wigner-Seitz cell of the real space have
correspondences. In the case of BCC, the real space Wigner-Seitz
cell is a truncated octahedron. For the reciprocal space, for this
cell, the first Brillouin zone is a rhombic dodecahedron. Similarly,
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in the case of FCC, the real space Wigner-Seitz cell is a rhombic
dodecahedron, so, for the reciprocal space, for this symmetric cell,
the first Brillouin zone is a truncated octahedron. Figure 3.11(a)
shows the smallest such unit—the first Brillouin zone for FCC—
which is the unit cell from which the non-primitive zinc blende
or diamond crystal forms appear. Figure 3.11(b) shows it for the
HCP—which is the unit cell from which the non-primitive wurtzite
crystal form appears. If k is restricted to the 1st Brillouin zone, any
vector k′ = k+Km′ allows one to fold it back to the first 1st Brillouin
zone. This 1st Brillouin zone too has symmetry, and one would
employ a number of locales within this to describe the (E,k) states
available in it. In Figure 3.11(a), the center [000] is the � point. The
locales 〈100〉—six of them—are the X points, and the locales 〈111〉
are the L points. The K point is the [110]. The direction from � to X
is the � direction. The one from � to L is the � direction, and the
direction from � to K is the � direction. Table 3.3 summarizes some
the characteristics of these notable points that we will refer to often.
The FCC’s 1st Brillouin zone will be of interest for us for

diamond and zinc blende crystals (Si, GaAs, etc.) and the HCP’s

Figure 3.11: Part (a) shows the 1st
Brillouin zone of the FCC lattice.
The figure also shows the smallest
irreducible region within this
symmetric cell, identifying some
of the significant reciprocal lattice
points and directions.�,� and � are
directions that tag � to L, � to X, and
� to K. The 1st Brillouin zone of the
FCC lattice is identical in shape to the
Wigner-Seitz cell of the BCC lattice.
Part (b) shows the 1st Brillouin zone
of the hexagonal lattice, again together
with the minimum irreducible region
within the symmetric cell, and a few of
the significant reciprocal lattice points.

Table 3.3: Some of the important
symmetry points and their degeneracy
in the 1st Brillouin zone of an FCC
lattice.

Symmetry Wavevector Degeneracy
point k

� 0 1
L ±(π/a)〈111〉, ±(π/a)〈1̄11〉,

±(π/a)〈11̄1〉 and ±(π/a)〈111̄〉 8
X ±(2π/a)〈100〉, ±(2π/a)〈010〉

and ±(2π/a)〈001〉 6
K ±(3π/2a)〈110〉, ±(3π/2a)〈1̄10〉,

±(3π/2a)〈011〉, ±(3π/2a)〈01̄1〉,
±(3π/2a)〈101〉 and ±(3π/2a)〈101̄〉 12

W ±(π/a)〈210〉, ±(π/a)〈021〉, ±(π/a)〈102〉 6
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1st Brillouin zone will be of interest for the wurtzite crystals (GaN,
AlN, etc.).

Figure 3.12: Relating reciprocal lattice
vectors with real space planes and
their orientation relationships.
The third real space dimension is
not shown.

This above points to the important relationship that exists
between the reciprocal lattice vector K = Km′ and the planes of
corresponding direct lattice. A lattice plane is uniquely defined by
three non-collinear sites. Each plane consists of infinite number of
sites. Figure 3.12 shows an example simplified to two dimensions
for ease of viewing using two non-collinear sites. Imagine the
third dimension as being perpendicular to this plane. Each K of
the reciprocal lattice is normal to some set of planes in the direct
lattice, and the length of K is inversely proportional to the spacing
between the planes of this set. For

R = m1â1 + m2â2 + m3â3 where m1,m2,m3 ∈ {0, 1, 2, . . .}, (3.18)

K = m′
1b̂1 + m′

2b̂2 + m′
3b̂3 where m′

1,m
′
2,m

′
3 ∈ {0, 1, 2, . . .}, (3.19)

and the b̂s, follow Equation 3.13. The unit vector b̂1 is normal to
the plane formed by the unit vectors â2 and â3, b̂2 is normal to the
plane of â3 and â1, and b̂3 is normal to the plane of â1 and â2. The
indices (m′

1,m
′
2,m

′
3) are the lowest common integer factors.

The product

K · R = 2π(m1m′
1 + m2m′

2 + m3m′
3) = 2πN, (3.20)

where N is an integer. Therefore, exp(K · R) = 1, which is how we
started our defining discussion of the reciprocal space. Figure 3.12
also shows the relationship of the projections, relating points in
parallel real space planes. The planes through these lines will be
normal to these two dimensions. For a point R1 or point R2 in the
same plane,

|R1| cos θ1 = |R2| cos θ2 = 2πN
|K| . (3.21)

For R2, what this figure implies is that

R2 = (m1 − pm′
3)â1 + (m2 − pm′

3)â2 + [m3 + p(m′
1 + m′

2)]â3, (3.22)

where p is an integer. An infinite set of such points exists on the
same plane for a constant N. The next adjacent plane orthogonal to
K is defined by

|R3| cos θ3 = 2π(N + 1)
|K| . (3.23)

The spacing between the planes (d) is

d = 2π(N + 1)
|K| − 2πN

|K| = 2π
|K| . (3.24)

The use of lattice vectors to designate planes in a direct lattice,
that is, the use of the normal vector to the planes of the direct
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lattice plane, is equivalent to the use of (m′
1m

′
2m

′
3), which we

employed in the reciprocal space to identify reciprocal space lattice
points. These are the Miller indices.

Claim: The reciprocal lattice coordinates correspond to a direction in
real space that is normal to a plane.

Proof: For a given K, choose mis so that one plane of the set with

K · R = 2π(m′
1m1 + m′

2m2 + m′
3m3) = 2πN (3.25)

intersects in the direction of âi at miâi for i = 1, 2, 3, that is,

K · m1â1 = 2πm′
1m1,

K · m2â2 = 2πm′
2m2, and

K · m3â3 = 2πm′
3m3 = 2πN, (3.26)

with

m1 = N
m′
1
, m2 = N

m′
2
, and m3 = N

m′
3
. (3.27)

The intercepts of the planes are inversely proportional to the
integral components of the reciprocal lattice vector.
Miller indices are thus particularly useful for identifying

planes and directions. For example, in the case of a cubic lattice,
Miller indices correspond to the three orthogonal simple cubic
vectors. A direct lattice plane is a point in the reciprocal lattice.
(m′
1m

′
2m

′
3), a point in the reciprocal lattice space, indicates a plane in

the real lattice space that intercepts at m1 units in the â1 direction,
m2 units in the â2 direction, and m3 units in the â3 direction. If
the intercept is at infinity between a plane and a direct lattice
vector, the Miller index, which is proportional to 1/mi, following
Equation 3.27, is 0.
By convention, planes in the direct lattice are denoted by paren-

The Fourier transform techniques
for periodic signals—here periodic
in space—give us a convenient
analogy for tackling this problem.
The reciprocal space is the space of the
Fourier transform, where periodicity of
real space has mapped to periodicity
of reciprocal space (R 
→ K), with
exp [i(Km′ · Tm) = 1 prescribing the
Fourier transformation constraint.
There are multiple ways to interpret
Fourier transformation: frequency-,
wavevector-, time-space varying
positive integration (single sideband),
or integration from negative infinity
to positive infinity (double sideband)
with an apportioning of the round-trip
path to the starting state (a 2π that
is split as

√
2π or not). I subscribe to

maintaining symmetry.

theses (round brackets). For example, (001) is a plane that intercepts
the third direction at the unit vector and does not intercept in the
other two directions. Directions in direct lattices and planes in
reciprocal lattices are denoted by square brackets. For example,
[111] is along the diagonal of the cube and is a point at [111] in the
reciprocal lattice. Families of planes are denoted by curly brackets,
so {100} ≡ (100), (010), (001), (100), (010) and (001), which are the
six faces of the cube with unit intercepts along the orthogonal unit
vectors. Families of directions are denoted by angular brackets, so
〈100〉 ≡ [100], [010], [001], [100], [010] and [001]. These are directions
in real space and points in reciprocal space. Figure 3.13 illustrates
different planes in the real space for a cubic lattice. Normals to
these planes will define a point in the reciprocal space.
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Figure 3.13: Examples of planes and
directions in Miller index notations for
a cubic lattice.

3.4 Electrons in the periodic potential and the reduced zone

In the reciprocal space of wavevector k, Km′ represents lat-
tice points that have periodicity defined by the basis vectors of the
reciprocal space. In the real space, Tm defines lattice points that are
periodic analogs in the real space. We have explored the free elec-
tron through its wavefunction description in the beginning of this
chapter. We noted an energy dispersion of this one electron existing
in free space following an E-k relationship that was sketched in
Figure 3.1. It still holds even if we describe the positions in real
space with a real space lattice description. Note that we have not
introduced any potential perturbations. It is still free space, except
where we have introduced a periodicity in description through the
lattice. How does one represent this behavior of a free electron in
the reciprocal space with this lattice-based gedankenerfahrung?

The lattice is a mathematical construct
that we will use as a stepping stone for
building a crystal, where atoms will
introduce physical interactions as a
periodic potential.

Our solid will come about by the introduction of the atoms at the
lattice sites.
Since exp[iKm′ · Tm] = 1, the single one-electron dispersion of

Figure 3.1, when viewed in the reciprocal lattice, has infinite copies
of itself, as seen in Figure 3.14, because E(k) = E(k − Km′).

Figure 3.14: With the introduction of
the lattice and its reciprocal lattice, the
one-electron dispersion of real space
is replaced by an infinite number of
copies in the reciprocal space. Each
of these is a valid solution, since
exp[iKm′ · Tm] = 1.

The k-space periodicity also implies that all the information is
contained in the primitive unit cell of the reciprocal lattice; that is, in
the first Brillouin zone. The periodicity also brings with it one
additional important property. Let there be Nj primitive unit cells in
the jth direction with the unit vector âj for j = 1, 2, 3. N = N1N2N3 is
the total number of primitive unit cells. Any propagating solution—
not a standing wave—should reflect the translational symmetry of
the lattice, so a solution |φ〉 satisfies

φ(r + Njâj) = φ(r). (3.28)



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

chapter 3: waves and particles in the crystal 95

This boundary condition—the Born-von Karman boundary
condition—then also forces the constraint

A trivial example of this is the plane
wave solution exp[i( k · r − ωt)].

exp(iNjk · âj) = 1 for j = 1, 2, 3. (3.29)

Since exp(iKm′ · Tm) = 1, and âj · b̂l = 2πδjl, the ks allowed are
constrained to

k =
3∑

j=1

mj

Nj
b̂j. (3.30)

For every unit change of the integer mj, a new state is generated.
The volume in the k-space associated with this state is

b̂1
N1

·
(

b̂2
N2

× b̂3
N3

)

= 1
N

b̂1 · (b̂2 × b̂3). (3.31)

Since b̂1 · (b̂2 × b̂3) is the volume of the first Brillouin zone, the
first Brillouin zone contains the same number of k states as the number of
primitive unit cells in the crystal.
The ability to represent all the states of the real space in the

first Brillouin zone of the reciprocal space makes the description
of crystalline solids enormously convenient.

The reader should see in this
description—of real and reciprocal—
the connection to Fourier
transformation. We are performing
periodic sampling, and the Fourier
transformations’ properties are
manifesting. The generalized periodic
function that will be the solution
for periodic potentials—the Bloch
function—is a Fourier function.

So, we can now extend this description to the periodic potential
of the crystal environment.
First, consider a hypothetical empty crystal: a crystal with no

potential perturbation from the basis at the lattice sites. The electron
Hamiltonian accounts for all the kinetic and potential energy
terms arising from forces and interactions with other particles.
If we assume that we have a very dilute gas of electrons, so that
they behave as independent particles—as if other electrons didn’t
exist—then the electron in this crystal is a free electron and the
Hamiltonian operator is

Ĥ = − h̄2

2m0
∇2 + V̂ = − h̄2

2m0
∇2, (3.32)

and

Ĥ ψ = Eψ ∴ − h̄2

2m0
∇2ψ = Eψ (3.33)

is the model problem for this potential-free periodic crystal.
Table 3.4 describes some of the differences in characteristics of the
free electron in free space versus the free electron in perturbation-
free periodic structure.
Figure 3.14 shows a pictorial description of the solutions for

a free electron in free space, and a free electron in potential-free
periodic space. The free electron in free space has a second power
E-k relationship defining the energy and wavevectors allowed.
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Table 3.4: A free electron in free space
and in a periodic structure where no
potential perturbations exist.

Free electron Free electron in a perturbation-free
 ̏Sommerfeld˝-like periodic structure

ψk = A exp(ik · r) ψk = A exp[i(k − Km′ ) · r]
E(k) = h̄2k2/2m0 E(k) = E(k − Km′ ) = h̄2k2/2m0
p = h̄k p(k) = p(k − Km′ ) = h̄k

Figure 3.15: Part (a) shows the E(k) dispersion of a free electron in free space. Parts (b) through (d) show the dispersion
for a potential-free periodic crystal. The electron is still free, although it is in a periodic crystal with no potential. (b)
shows E(k) in the repeated, or periodic or extended, zone view and (c) shows the reduced zone scheme. Part (c) shows
the identity of, via the Km′ notation, the Brillouin zone (BZ) from which the band arose. Since the first Brillouin zone has
complete information, and the number of points in it are the number of primitive unit cells in the real space structure,
Part (d) as a reduced zone picture suffices to describe the energy dispersion. There are now two quantum numbers to
identify states: the wavevector and the band index.

In the hypothetical periodic crystal, there are repeated energy
solutions allowed where, at each k − Km′ , there exist states with
free electron energy whose band is centered at k = Km′ for electrons
with wavefunctions proportional to exp{i[(k − Km′) · r − ωt]}.
Figure 3.15(a) shows the energy-wavevector relationship of the

free electron. There is nothing unusual here. It is the dispersion
relationship of a wave given by a wavefunction proportional to
exp[i(k · r − ωt)]. This is the extended zone dispersion of the free
electron in this one-dimensional zero potential space. Figure 3.15(b)
shows the free electron in a potential-free periodic space. The
allowed k states are separated by 2π/L—a small number for large
L—with the electron bounded over the span L of this solid cavity.
L → ∞ makes k asymptotic to continuity. The π/a markings are
unique reciprocal space points derived from the exp(iKm′ · Tm) = 1
constraint and are useful for drawing the primitive unit cells of the
reciprocal lattice, with the first Brillouin zone being the primitive
version of the Wigner-Seitz type. Figure 3.15(b) is the repeated—
or periodic—zone picture, whose energy dispersion curves we
have established are also a solution because E(k)= E(k − Km′).
Since we have established that the first Brillouin zone contains all
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the information and that the number of states in the first Brillouin
zone reflect the number of primitive unit cells, it is convenient to
view all the states within the first Brillouin zone (Figure 3.15(c)).
The energy of the states for ks lying in the 1st Brillouin zone, but
arising in the bands whose lowest energy reaches the minimum
in the two Brillouin zones adjacent to the first Brillouin zone, are
higher than the energies of the states arising from the band of the
first Brillouin zone. Similarly, further up are bands with energies
from the Brillouin zones of higher Km′ . In Figure 3.15(c), these
are identified by Km′ to identify the Brillouin zone that they arose
from. All the energy states of the repeated zone are still here in
the first zone. The nuance is that as we go higher in energy, we
are now identifying those energies by the different bands. So, in
Figure 3.15(d) we indicate this via an additional quantum number,
n, which is a band index associated with the wavevector being
referenced from a different Brillouin zone. Two quantum numbers, n
and k, suffice to identify the states. The states beyond the first Brillouin
zone have been reduced to the 1st Brillouin zone, so this is the
reduced zone picture, and we now have multiple bands that can
be seen, indexed here as 0, 1 and 2 in the notation Enk to identify
their energy span of the states.
Take now the zinc blende crystal with its FCC Bravais lattice

(in GaAs, this is a Ga FCC interpenetrating along the diagonals
in an As FCC, and the unit cell has 2 basis atoms) and consider
the free electron states in it, so still keep the problem potential-
free. The periodicity is now different, and the calculation a little
more exacting, but one will see the (n,k) dependence of energy
in it too. Figure 3.16 shows this. All these energy changes are still
parabolic in k with the free electron mass. But since the different
wavevector magnitudes are in different directions drawn along a
line, the projections show up as visually different. If there were only
one electron per primitive cell, only the lowest band—parabolic
of course, but looking slightly different toward L, X or K—is
filled. Higher bands are occupied as more electrons—still free,
independent electrons—are contributed per unit cell.
Note that, so far, all these allowed E-k states are still free electron

states in the zero-perturbation periodic structure. What happens if
there is some periodic potential perturbation? The perturbation,
even if very small, is a source of interference, so long as it is not
adiabatic, which would suppress reflections. In a waveguide, the
existence of boundary conditions—metal in microwaves, or an
index change in fibers—places constraints on the wave modes that
can exist within. Modes do not propagate in the directions toward
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Figure 3.16: The free electron E(n,k)

bandstates diagram of a free potential
zinc blende crystal, that is, with an
FCC lattice with the free electron
bands translated into the first Brillouin
zone. The lower bands also identify
the translation vectors for some of
the lower bands.�,�, � and �′
identify points that belong on the line
connecting � to X, � to L, � to X, and
X to K and so are useful as indicators
of the direction. Depending on the
number of electrons arising per unit
primitive cell, the Fermi energy (EF)
will have filled states up to the dotted
lines at absolute zero.

these confining boundaries. The lowest frequency transverse electric
mode for the microwave waveguide, with its highly conductive
wall, arises because the longest wavelength solution is a half wave
whose electric field in the plane of the metal at the boundary
vanishes. This half wave represents a standing wave because
the metal does not support an electric field. The energy cannot
propagate beyond, and therefore conditions must come about
that make the energy propagation disappear throughout in this
direction. The standing wave here can be viewed as two counter-
propagating waves—the half-wave sinusoidal electric field is a sum
of two exponentials with imaginary arguments.
So, as soon as we introduce a periodic perturbation, it will cause

interference. Diffraction of the wave of wavevector k occurs when
(k + Km′)2= k2. In a one-dimensional crystal, this is at k = ±Km′/2 =
±m′π/a, where m′ is an integer. So,

|ψ+〉 ∝ exp
[
i
(πz

a
− ωt

)]
+ exp

[
i
(
−πz

a
− ωt

)]

= 2 cos
(πz

a

)
exp(−iωt) (3.34)

describes a standing wave arising from m′ = 1 with an infinitesi-
mally small perturbation. For a linear plane wave, in this gedanken-
erfahrung crystal, we have a charge modulation with the electron
charge varying as ρ(+) ∝ |ψ+|2 ∝ cos2(πz/a). This specific condition
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of periodicity prohibits energy transmission in this direction at this
specific k. An energy gap exists at this wavevector in an energy
range for the electron as shown in Figure 3.17. The size of the
energy gap is related to the size of the potential perturbation. The
energy gap vanishes as the perturbation vanishes, and we are
back to the description of the free electron in a free crystal with no
potential perturbation of Table 3.4.

Figure 3.17: The appearance of a
bandgap at the zone edge, due to
periodic perturbation with a spatial
periodicity of a.

Figure 3.18: An illustrative view of
charge density and potential in a
semiconducting periodic chain of
atoms. The dressed nuclei exercise
a periodic Coulomb attraction that
leads to a charge density distribution
of the conducting electrons, with
a maximum centered around the
equilibrium position of the atoms.
Farther away, this Coulomb potential
decays exponentially.

A schematic view of this description is as shown in Figure 3.18,
where there exists a perturbation arising from the crystal assem-
bly. The electron states that we are interested in arise from the
interactions of the valence states of the atom, while the bound
states arise from core states of the atoms. Periodicity causes the
charge accumulation and depletion, the accumulation occurs as
cos2(m′πz/a) with maxima at z = 0,±a,±2a, . . ., and depletion occurs
as sin2(m′πz/a) with minima at z = 0,±a/2,±3a/2, . . .. The charge
density is highest in the region proximate to the nuclei, and lowest
in between.
This periodic perturbation gives rise to bands of allowed states of

(E,k) for electrons. To find them, we need to calculate much more
rigorously by incorporating the periodic potential within the crystal.
The different approaches in use draw on ease of use, computational
efficiency and accuracy of the predictions of parameters of interest.
We will explore this in Chapter 4.

3.4.1 Bloch’s theorem

Underlying all these approaches is the use of Bloch’s
theorem, which provides a convenient means of incorporating
periodicity in the quantum-mechanical solution. Bloch’s theorem
draws on the approach of Fourier analysis to bring in the periodic-
ity in the wave solution. Instead of the plane wave that we started
with, we will find that the solution is a function with spatially
periodic modulation. The eigenvalues, that is, (E,k), of this solution
comprise the dispersion relationship we are interested in.
To find the eigenstate ψ of the one-independent-electron

Hamiltonian with a spatial periodicity of R in a Bravais lattice, we
start with the Schrödinger equation for the problem of

Ĥ = − h̄2

2m0
∇2 + V(r), where V(r + R) = V(r). (3.35)

Bloch’s theorem states that the solution is of the form

ψnk(r) = exp(i k · r)unk(r), where unk(r + R) = unk(r) (3.36)
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Figure 3.19: Part (a) shows a periodic
function unk(r). (b) shows a plane
wave (exp(ik · r))modulating the
periodic function resulting in the Bloch
function ψ(x). Part (b) shows only the
real parts of the two functions.

for all R in the Bravais lattice. unk(r) is the modulation function of
the plane wave. Figure 3.19 is a representative pictorial description
that can be viewed together with Figure 3.18 for the charge density
and the potential in the crystal. One could also see this as the
periodic function unk(r) being modulated by a plane wave that has
a much longer period.
The periodicity implies that

ψnk(r + R) = exp(i k · R)ψnk(r). (3.37)

An alternate statement with the same implications is that the
eigenstates of Ĥ can be chosen so that associated with each ψ is
a wavevector such that

ψ(r + R) = exp(i k · R)ψ(r) (3.38)

for all R in the Bravais lattice. Periodicity in the lattice precipitates
the periodicity in the eigenfunction solution. Figure 3.18 reflects
this, since the charge density is proportional to 〈ψ |ψ〉. Absent
periodicity, one would have a solution that decays away in the high
potential region and builds up in the low potential regions.
We can demonstrate the truth of this Bloch theorem statement by

invoking symmetry. Let T̂R be a translational operator that shifts the
argument of any function f (r) by R, that is,

T̂R f (r) = f (r + R). (3.39)

The Hamiltonian is periodic, that is,

Bloch remarked somewhere that once
he saw this as a Fourier problem, the
solution was obvious. Felix Bloch
was another of the illustrious émigré
physicists escaping Hitler in the
1930s and bringing a rigorous and
thoughtful style to these shores,
in this case, Stanford. He was
Heisenberg’s first PhD student. A good
undergraduate friend who was in one
of Bloch’s graduate classes at Stanford
related the following incident. Bloch’s
style of teaching was to face the board
and follow his thoughts, letting them
develop analytically on the board.
Board and chalk replaced paper and
pen, with the students as spectators.
At one point, a student spoke up and
raised a question. No response. A few
minutes later, the student spoke up
again. Bloch turned around, looked
at the student, kept looking for a
while, and then turned around and
continued with his thinking and
writing. Another story that I heard is
from a Nobel winner who spent time
at Stanford as a postdoctoral fellow
and as a young faculty colleague of
Bloch. In this version, Bloch is said
to have remarked to a student that if
that was the student’s question, then
the student should not be in that class.
Bloch had also worked with Pauli,
and there is a bit of Pauliana in these
stories.

T̂RĤ ψ = Ĥ (r + R)ψ(r + R)

= Ĥ (r)ψ(r + R)

= Ĥ (r)T̂Rψ(r)

= Ĥ T̂Rψ . (3.40)
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This is a general result valid for any function ψ , so

T̂RĤ ψ = Ĥ T̂Rψ (3.41)

in general, which says that T̂ and Ĥ commute, that is, [T̂,H ] = 0.
Now,

T̂RT̂R′ψ(r) = ψ(r + R′ + R) = ψ(r + R + R′) = T̂R′ T̂Rψ(r), (3.42)

that is,

T̂RT̂R′ = T̂R′ T̂R = T̂R+R′ . (3.43)

The translational operator T̂R commutes with the Hamiltonian Ĥ

for all Bravais lattice vectors R. Therefore, eigenstates of Ĥ are also
simultaneously eigenstates of T̂R, that is,

Ĥ ψ = Eψ , and

T̂Rψ = t(R)ψ . (3.44)

The translational operator, repeatedly applied, leads to eigenval-
ues t() of

T̂R′ T̂Rψ = t(R)T̂R′ψ = t(R)t(R′)ψ (3.45)

and

T̂R′ T̂Rψ = T̂R+R′ψ = t(R + R′)ψ , (3.46)

implying, for the translational eigenvalues

t(R + R′) = t(R)t(R′). (3.47)

The eigenvalue of a translation operator representing a set of
repeated operations is the product of the individual operations of
translation. Let âj, with j = 1, 2, 3, be the three primitive vectors of
the Bravais lattice; then

t(âj) = exp(i2πxj) (3.48)

satisfies the product condition. xj here can be complex, and this
follows from the boundary condition and the requirement that
the eigenvalue be an observable, that is, a real quantity. Successive
application of Equation 3.47 on a lattice vector R = m1â1 + m2â2 +
m3â3 leads to

t(R) = t(â1)
m1 t(â2)

m2 t(â3)
m3

= exp[i2π(m1x1 + m2x2 + m3x3)]

= exp(i k · R), where

k = x1b̂1 + x2b̂2 + x3b̂3. (3.49)
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We have now shown that

T̂Rψ = ψ(r + R) = t(R)ψ = exp(i k · R)ψ(r). (3.50)

A function of the form exp(i k · R)ψ(r), a Bloch function, is also
an eigenfunction of the translational operator. This Bloch function,
which maintains the translational symmetry, is simultaneously an
eigenfunction of the periodic Hamiltonian where the periodicity is
embedded in the potential V(r + R) = V(r).
Bloch’s theorem states that the eigenstate ψ of the one-electron

Hamiltonian Ĥ = −(h̄2/2m0)∇2 + V(r), where V(r + R) = V(r) for R,
in a Bravais lattice can be chosen to be of the form of a plane wave
times a function with the periodicity of the Bravais lattice:

ψnk(r) = exp(i k · r)unk(r), (3.51)

where

unk(r + R) = unk(r) (3.52)

for all R in the Bravais lattice. unk(r) is an overlap function modu-
lating the plane wave, and it too is periodic. The periodic boundary
condition in R has now led to eigenvalues taking on discrete
values that are being labeled via n. This is the band index that
we had introduced earlier to identify the Brillouin zone centering
and corresponds to the real space periodicity in R. Equivalently,
the eigenstates of Ĥ can be chosen so that associated with each We will use the band index n where

necessary, such as when states in
two different bands have to be dealt
with simultaneously; otherwise, we
will leave it out to keep notational
simplicity, keeping it as something to
be understood from context.

eigenfunction ψ is a wavevector such that

ψ(r + R) = exp(i k · R)ψ(r) (3.53)

for every R in the Bravais lattice.
Bloch’s theorem’s correspondence to Fourier expansion—

an expansion in a plane wave basis—can be seen through the
following argument. The modulating function of the plane wave
in the Bloch function ψk(r) = exp(i k · r) can be Fourier expanded
with the reciprocal space periodicity, so

uk(r) =
∑

Ki

uk(Ki) exp(iKi · r), (3.54)

which leads to

ψk(r) = exp(i k · r)
∑

Ki

uk(Ki) exp(iKi · r)

=
∑

Ki

uk(Ki) exp[i(k + Ki) · r] . (3.55)

The Bloch function is a Fourier series with terms resulting from
the modulation function expanded in a basis set with the lattice
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periodicity. The wavevector k in Bloch’s theorem has a similar role
for motion in periodic potential as the free electron wavevector k
has for the free electron wavefunction. The wavevector k in the
periodic structure is associated with the crystal momentum—it
reflects the properties resulting from the presence of the crystal. It
was the lattice periodicity that resulted in the eigenfunction being a
Bloch function.

3.5 Free electron versus Bloch electron

In the crystal, the potential V(r) is a non-constant position-
dependent potential. The crystal Hamiltonian Ĥ and the electron
momentum p̂ = (h̄/i)∇ do not commute, unlike the case for a free
electron, where V(r) = 0:

V(r) = 0 is a special case of V(r) being
a constant, where the commutation
relationship will hold.

p̂ψnk = h̄
i
∇ψnk = h̄

i
∇ [
exp(i k · r)unk(r)

]

= h̄kψnk + exp(i k · r)
h̄
i
∇unk = h̄kψnk. (3.56)

h̄k is not an eigenvalue of the momentum operator for this Bloch
function when V(r) changes with r. In Equation 3.56, the second
term—a function of the modulation function—reflects the presence
of the crystal’s potential. h̄k is now the crystal momentum of the electron,
and not its momentum p. This crystal momentum h̄k reflects the
crystal’s periodicity and the potential—the effect of the different
interactions between the electron and the periodic internal forces of
the crystal.
So, the meaning is that while the rate of change of momentum

p of the electron is the result of the total force on the electron—any
external forces resulting from electrical or magnetic fields, as well
as internal forces arising from the periodic atomic assembly that
the electron exists in—the change in the crystal momentum h̄k is
determined only by the external forces. If an external electrical field
E and magnetic induction B were present,

∂

∂t
(h̄k) = −e [E(r, t) + vn(k) × B(r, t)] . (3.57)

No periodic crystal fields are involved, and, by deploying the
energy-crystal momentum (E-k) relationships, one can directly
determine the response of electrons or collection of electrons to
external stimulus without the complexity of the local periodic
changes. Bloch’s theorem gives us the means to fold the periodic



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

104 semiconductor physics

effects within the (E-k) relationships, and they are included within
the prescription of Equation 3.57. In the first term of this equation,
h̄k, the crystal momentum, is a quantum number characteristic
of the translational symmetry of the periodic potential. The
electron momentum p, on the other hand, is a quantum number
characteristic of the full translational symmetry of space. In our
analysis of how electrons or their collection behave in the crystal
under applied field, we will care about h̄k or k.
Since a Bloch state consists of a modulation function (unk(r),

which is also periodic) modulating a plane wave exp(i k · r), it is
also a wavepacket. So, the velocity of the state is

v = vg = 1
h̄
∇kE, (3.58)

in agreement with the introductory Equation 3.11. The real space
motion of the electron is being described through the reciprocal
space operation on the E(n,k) relationship that the Bloch states
follow.
Now, let F be a force applied to the band electron. The work

performed over time δt leads to an energy change of

δE = F · vδt. (3.59)

Also,

δE = dE
dk

· δk = h̄v · δk. (3.60)

These two energy change equations, in the limit δt → 0, give

F = dh̄k
dt
. (3.61)

Equation 3.61 tells us that, in the periodic structure, an application
of an external force leads to a momentum change of the electron.
And this momentum is h̄k. It is the momentum of the electron in
the crystal’s periodic environment, and therefore it is called the
crystal momentum.
It is also useful to assign a reciprocal-space-derived meaning of

a mass—an inertial constant—that relates external applied forces.
The rate of change of the velocity of the electron, under an external
force, is

dv
dt

= 1
h̄

d2E
dkdt

= 1
h̄2

d2E

dk2
dh̄k
dt
,

∴ h̄2

d2E/dk2
dv
dt

= dh̄k
dt

= F. (3.62)

This last equation gives a Newtonian meaning of mass to the
electron in the crystal of
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m∗ = h̄2

d2E/dk2
, or

1
m∗ = 1

h̄2
∇2

kE (3.63)

for a generalized isotropic condition. The anisotropic form will
just take the different directions into account in the second order
gradienting of the energy. The effective mass now is a convenient
way to describe the motion of band electrons in an external field. We will dwell on masses—effective

of various forms—as well as where
their usage is suitable, and where
not, in a number of chapters in the
text. Periodicity, Bloch propagational
nature, and the specificity of the force
at play will all matter for the suitability
of the concept of effective mass.

Similar to how we discussed the wavefunction, energy and
momentum of the free electron in the Sommerfeld picture and our
gedanken free electron in a zero-perturbation periodic structure
in Table 3.4, we can write the meaning and constraints of the
Bloch electron in a perturbing periodic potential. This is shown in
Table 3.5.

Free electron Bloch electron in non-zero
( ̏Sommerfeld˝-like) perturbation periodic structure

Quantum number k k,n
(excluding spin) h̄k: momentum h̄k: crystal momentum

n: band index
Range of k over k-space consistent For each (k, n) over wavevectors
quantum number with periodic boundary conditions in a primitive cell of the reciprocal lattice

consistent with periodic conditions
conditions

Energy (E(k)) h̄2k2/2m0 n ∈ 0, 1, 2, . . .
En(k)may not have an explicit simple form
En(k + Km′ ) = En(k)

Velocity v = h̄k/m0 = (1/h̄)∇kE vn(k) = (1/h̄)∇kEn

for any k for any (n,k)

Wavefunction ψk = (1/
√

�) exp(ik · r) ψnk(r) = exp(i k · r)unk(r)
unk(r) has no simple explicit form
unk(r + R) = unk(r)

Table 3.5: Meaning and constraints of a free electron versus that of a Bloch electron in a perturbing periodic potential.

3.6 A toy model of periodic potential perturbation

We now tackle the periodic perturbation problem more
formally to gain physical insights. First, we will look at this in the
free electron basis, by which we mean that the basis states for the
evolution of states in the crystal comprise the orthonormal, infinite
plane wave set. We have found, absent perturbation, that

Ĥ = T̂

(

= p̂2

2m0

)

+ V̂(= 0) (3.64)
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has the solution of free electron basis states

|k〉 = 1
�1/2 exp(ik · r). (3.65)

With perturbation, we may write the eigenfunction solution of the
new Hamiltonian as a linear combination of the plane wave states

|ψ(r)〉 =
∑

k

ck|k〉, (3.66)

with the summation over allowed ks. A solution to (Ĥ − E)

|ψ(r)〉= 0 requires the secular determinant to vanish, that is,

det|〈k′|Ĥ |k〉 − E〈k′|k〉| = det|Hkk′ − EOkk′ | = 0, (3.67)

again with all the allowed waves. This is the consequence of the
collection of algebraic equations whose number is the number
of allowed waves and hence the different |k〉s. If we choose the
dominant ones, that is, the ones with the higher cks, we get an
approximate solution. In this calculation, to get the entire band-

In real calculations, one finds the
plane wave method wanting for this
reason. A large number of the terms
have to be included, which means that
this approach, although certainly not
incorrect, is inefficient. In Chapter 4,
we will see ways around this.

structure, the � is the entire crystal’s volume. Ĥkk′ = 〈k′|Ĥ |k〉 is We fold this collection of states into the
first Brillouin zone for convenience,
and we also normalize the volume for
convenience.

the matrix element. 〈k′|k〉 is the overlap integral. We use the symbol
Okk′ for overlap.
This determinant equation simplifies because the basis set is

an orthogonal basis set. The plane waves here are the specific
embodiment of the Bloch function—a constant modulation—
so they conform to the properties arising from the translation
operation T̂R or its reciprocal space equivalent, T̂K. |k〉 and |k′〉
are orthonormal, and Okk′ = 〈k|k′〉 vanishes, except for k′ = k + Ki,
which satisfies the translational property. So, in Equation 3.68, given
the orthonormality of |k〉 and |k′〉, which is equivalent to saying
that they belong to an irreducible representation of T̂, except when
k′ = k + Ki, one may write Equation 3.68 as

|ψk(r)〉 =
∑

Ki

cKi |k + Ki〉. (3.68)

We now have the secular determinant as

det|HKK′ − EOKK′ | = 0, (3.69)

where

HKK′ = 〈k + K′|Ĥ |k + K〉, and
OKK′ = 〈k + K′|k + K〉. (3.70)

So, only diagonal terms exist, and the problem becomes solvable. In
OKK′ , k and −k will cancel, so
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OKK′ = 〈k + K′|k + K〉 = 〈K′|K〉 = δK,K′ . (3.71)

For the other term,

Throughout the text, in subscripting
in terms such as in δij or Vxy, we
will sometimes use a comma
and sometimes not. The comma
will be used when its absence
has the potential for causing a
misunderstanding.

HKK′ = (k + K′|T̂ + V̂|k + K〉
= (k + K′|T̂|k + K〉 + 〈k + K′|V̂|k + K〉. (3.72)

We may expand the r-dependent potential energy operator in a
Fourier expansion with a |K′′〉 basis over the crystal; that is,

V(r) =
∑

K′′
VK′′ |K′′〉. (3.73)

The term VK′′ here is the Fourier coefficient—a structure factor—
obtained from the crystal real space, that is,

VK′′ =
∑

R

VK′′R exp(−iK′′ · R). (3.74)

In the potential term, arising from substituting Equation 3.73 in the
potential part of Equation 3.72, we have a plane wave |k + K′ + K′′〉
arising from the two exponential factors corresponding to |K′′〉 and
|k + K′〉, respectively. This has a normalization of �−1/2 of volume.
This potential term will be, for us, a reference shift for the kinetic
energy that we are really not interested in.
The kinetic energy term is the part of the total energy corre-

sponding to the movement that we are particularly interested in:

〈k + K′|T̂|k + K〉 = 〈k + K|T̂|k + K′〉 = Ek+K′ |k + K′〉. (3.75)

Ek = Ek+K′—they are different eigenvalues. So,

HKK′ = Ek+K′ 〈k + K′|k + K〉
+ �−1/2∑

K′′
VK′′ 〈k + K′ + K′′|k + K〉

= Ek+K′δK,K′ + �−1/2∑

K′′
VK′′δK,K′+K′′ . (3.76)

Since Equations 3.71 and 3.76 specify the two contributions of the
secular determinant equation of Equation 3.69, in principle we now
have the algorithm for solving the problem.
We can show the efficacy through a toy example. Take a basis set

consisting of only two plane waves. So, in Equation 3.68, consider
only two terms: one corresponding to |k〉 = |0〉, and another
due to a vector of the reciprocal lattice, so |k〉= |K〉. The secular
determinant then has four terms arising in 00, 0K, K0 and KK. The
overlap for the first and the last is unity; the other two vanish. The
different terms are
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O00 = OKK = 1,

O0K = OK0 = 0,

H00 = Ek + �−1/2V0,

H0K = �−1/2∑

K′′
VK′′δ0,K′+K′′

= �−1/2V−K = �−1/2V∗
K,

HK0 = �−1/2VK, and

HKK = Ek+K + �−1/2∑

K′′
VK′′δK,K+K′′

= Ek+K + �−1/2V0. (3.77)

The secular determinant is
∣
∣∣
∣
∣

Ek + �−1/2V0 − E �−1/2V0

�−1/2VK Ek+K + �−1/2V0 − E

∣
∣∣
∣
∣
= 0. (3.78)

Note �−1/2V0 is a constant—a shift—and we have formed a
quadratic equation set of

EkEk+K − (E − �−1/2V0)(Ek + Ek+K)

+ (E − �−1/2V0)
2 − �−1|VK|2 = 0, (3.79)

whose solution is

E± = �−1/2V0 + 1
2

EkEk+K ∓ �−1/2V0

± 1
2

[
(Ek + Ek+K)2 − 4(EkEk+K − 4�−1|VK|2)

]1/2
. (3.80)

Two free electron states of energies Ek and Ek+K arising in the
two-plane-wave basis, because of potential perturbation, have now
evolved to energy states E± with a difference in energy given by

E+ − E− =
[
(Ek + Ek+K)2 − 4(EkEk+K − 4�−1|VK|2)

]1/2

=
[
(Ek − Ek+K)2 + 4�−1|VK|2)

]1/2
. (3.81)

An Ek − Ek+K � 4�−1|VK|2 results in a vanishingly small change
in energy between the waves |k〉 and |k + K〉. This is what would
happen far away from the Brillouin zone edge. So, the energy pic-
ture of the free electron wave doesn’t become too inaccurate when
away from the Brillouin zone boundary. But, near the Brillouin zone
edge Ek −Ek+K � 4�−1|VK|2 is small, and the modification becomes
significant. A bandgap appears. At the Brillouin zone edge itself,
this gap E+ − E− = 2�−1/2|VK| = Eg. Pictorially, this is shown in
Figure 3.20 for the two-wave basis.

Figure 3.20: The appearance of
bandgap at the Brillouin zone (BZ)
edge in the two-zone model. The
figure shows the first and second free
electron bands in the extended zone,
and the folding back by translation.

A few comments are in order. We have arrived at a picture with
two bands—they map to the conduction band and the valence
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band, depending on the occupation of the states by electrons—with
a bandgap intervening between these band of states. What we have
described is a wave-basis solution to determining the bandgap valid
for all ks, but under a two-wave-basis assumption. Equation 3.69
will determine it, and we have the procedure for determining HKK′

and OKK′ precisely. What we have done is—in this 2-wave basis—
picked the dominant term in a two-zone structure and found its
consequence. This is an example of finite basis state expansion.
A real crystal structure will have to include much more than this
simple procedural demonstration in 2-basis states. Many more will
interact; the bands will distort much more. And we have to find
an efficient basis. For example, atomic states are described by the
orbital functions, and they may be a more suitable basis for states
that are more localized.
A brief note on how this toy model maps to a more comprehen-

sive discussion to come (Chapter 4) is in order. A crystal introduces
perturbation. So, we perform a two-basis state expansion for this
perturbed problem as

ψ(r) = c1u
0
1(r) + c2u

0
2(r), (3.82)

which is posited as a solution to the Hamiltonian problem of
Ĥ ψ(r) = Eψ(r), where Ĥ = Ĥ0 + V̂, with the known solution as
Ĥ0u

0
1,2(r)= E01,2u

0
1,2(r). The estimate of the energy then follows from
[

E01 + V11 V12
V21 E02 + V22

][
c1
c2

]

= E

[
c1
c2

]

, (3.83)

which requires
∣
∣
∣∣
∣
E01 + V11 − E V12

V21 E02 + V22 − E

∣
∣
∣∣
∣
= 0 (3.84)

for a solution to exist. This gives

E1,2 = E02 + V22 + E01 + V11
2

±
⎡

⎣

(
E02 + V22 − E01 − V11

2

)2

+ |V12|2
⎤

⎦

1/2

, (3.85)

in conformity with the implications of Equation 3.81. If E02 + V22 −
E01 − V11 � |V12|, then expanding to the second order of |V12|, the
energies are

E1 ≈ E01 + V11 + |V12|2
E01 + V11 − E02 − V22

, and

E2 ≈ E02 + V22 + |V12|2
E02 + V22 − E01 − V11

. (3.86)
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Beyond the E-k relationship that this represents, we now also
have the coefficients for lower and higher energy wavefunctions as

[
c−
1

c−
2

]

=
[

1
V12/(E01 + V11 − E02 − V22)

]

, and

[
c+
1

c+
2

]

=
[

1
V21/(E02 + V22 − E01 − V11)

]

. (3.87)

We can reiterate to get a more accurate description of the band
effect by doing a multi-basis set expansion. If the perturbation is
small, so that E02≈ E01, then this is very necessary to even achieve
a semi-accurate calculated result. A 3-basis set solution will We now have to employ the

degenerate perturbation approach
discussed in Chapter 1.

require
∣∣
∣
∣∣
∣
∣

E01 + V11 − E V12 V13
V21 E02 + V22 − E V23
V31 V32 E03 + V33 − E

∣∣
∣
∣∣
∣
∣
= 0. (3.88)

Increasing the accuracy will require us to go to higher order
terms. But, again, using perturbation methods for non-degenerate
and degenerate calculation will let us determine the energies as
also the coefficients of basis eigenfunctions for determining the
wavefunction.
What we have now seen is how the bands appeared under

potential perturbation, using a toy model approach that employed
the simplest—a two-plane-wave basis set—to explore. It gives us
some intuition as one builds toward real semiconductors.

3.7 Bands and bandgap’s nature from the toy model

This procedure from Section 3.6, by introducing the gener- We will return to one-dimension
arrangements often. They are simpler
and can even be analytically tractable,
yet they are also instructive, because
they are often generalizable.

alization for perturbation, even if simplified, is quite instructive
in telling us consequences of structural and parametric changes.
For example, what happens when we reduce the length scale of
periodicity? Consider again the one-dimensional model. So, we take
a simple one-dimensional lattice, which is reduced from the three-
dimensional form with the potential Fourier term of

Vk = 〈k|V̂(r) = �−1/2
∫

�

exp(−ik · r)V(r) d3r (3.89)

with

Eg = 2�−1
∣∣
∣
∣

∫

�

exp(−ik · r)V(r) d3r
∣∣
∣
∣ , (3.90)
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which reduces to

Eg = 2L−1
∣
∣∣
∣
∣

∫ L

0
exp

(
−i
2πz

a

)
V(z) dz

∣
∣∣
∣
∣

= 2L−1
∫ L

0
cos

(
2πz

a

)
V(z)dz (3.91)

in one dimension. Here, we have one-dimensional crystal of length
L and a period a. The width of the Brillouin zone is 2π/a—the 1st
Brillouin zone stretches from −π/a to +π/a—and the exponential
reduced to a simple form because the cosine function is odd.

Figure 3.21: As a is made smaller,
bands form and the bandgap
between the bands is shown in (a)
at equilibrium spacing of a. The
bands can overlap too, as in (b) at the
equilibrium spacing. They can even
cross over and form a bandgap with
even more state mixing.

Equation 3.91 prescribes the bandgap dependence on lattice
parameters. For a → ∞, the energy states asymptotically approach
the atomic state—all at similar energy since there is no interaction
between them. Figure 3.21 shows this conceptually with a large as
two states |u1〉 and |u2〉 from each of the atoms. As the atoms are
brought together, the energies spread. Bands form, and a bandgap
exists between the collection of the states that have spread. A gap
continues to exist, as in Figure 3.21(a), which is semiconductor-like
if the number of electrons per primitive cell is such that the bottom
band is filled. But, it can also overlap, as in Figure 3.21(b). In this
case, no bandgap exists for equilibrium spacing. So, changing
spacing between atoms, such as by applying strain, will shift
bands and change bandgaps. Also, depending on the natures of the
states—their contributions to H and O—the shifts and the spreads
will be different with respect to the magnitude of the shifts and
their signs.
The efficiency of the calculation will depend, in various ways, We will return to a modification of

this picture when we discuss tight
binding approaches to bandstructure
calculation and see the formation
of these bands—the upper ones are
antibonding states, and the bottom
ones are bonding states—as well as
state mixing and equilibrium unit
cell size.

on how suitable the basis was as a component of the final solution,
as well as the implementational efficiency match between the
algorithm and the hardware.

3.8 Nearly free electron models

When the periodic perturbation is weak, the bandgap
and bandedge energy perturbation, such as those appearing in
Figure 3.20, are small, and the behavior is nearly free-electron-
like for both the conduction band and the valence band. Take the

Until now, our discussion was about
electron’s states in the crystal. They
are being occupied now. Bands can
be partially or fully filled. Depending
on how many electrons are available,
bands might be partially or fully filled.
For semiconductors, it is the bandgap-
sized separation of filled and unfilled
bands at usable energies that makes
them interesting.

example of GaAs, with its two atoms in each cell. There is a total
of eight valence electrons—the electrons in outermost orbit that
constitute the non-core part. Two electrons of opposite spin can
be degenerate in energy, so four valence bands result. The net
width of the valence band, with all ks allowed, is the energy up



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

112 semiconductor physics

to which all electron states are filled; that is, the Fermi energy (EF)
at absolute zero temperature. The valence bandwidth follows this
experimentally, and what this says is that this nearly free electron
model is reasonable for the valence bands. If it is for the valence
band, then it is also for the conduction band. Thus, we will see that
Ek ≈ h̄2k2/2m∗ is an adequate description for most purposes. In
particular since we are dealing mostly with electrons at the band
minimum in the conduction band and at the band maximum in the
valence bands, where perturbation—recall our Fourier argument—
is smallest. It is a relationship that is still parabolic in the k—free-
electron-like—but, the energy dispersion arising as a result of the
periodic potential perturbation is reflected in a mass m∗ that is
not the free electron mass any more. This is now a nearly free electron
description of the electron in the semiconductor crystal.

3.9 Jones zone

The Jones zone is another very useful way to look at the
energy zones of a crystalline solid. The Jones zone is the smallest
reciprocal lattice volume where an energy gap exists at all points on its
surface. It may be the same as the Brillouin zone, but, in general,
it is not and may be composed of partial Brillouin zone boundaries
from several of the Brillouin zones. The volume of a Jones zone can
be expressed in terms of the electronic states per unit cell. For face-
centered cubic crystals, the Jones zone is composed of the first four
Brillouin zones, and it contains eight electrons; that is, the entire
valence bandstructure.
In the reduced zone picture, by writing k̆ = k + K, where k̆ is

the unrestricted wavevector and k is restricted to the first Brillouin
zone, our nearly free electron picture says that

Ek ≈ h̄2k̆
2

2m∗ (3.92)

is the range of energy spread over four bands. Take a hypothetical
three-dimensional crystal of unit cell of size a. K = [000]2π/a
defines the first band, with k̆ = k. The second valence band
arises in the next Brillouin zone; that is, with the smallest non-
zero reciprocal lattice vectors. Along 〈111〉, this is the point
K1= [111]2π/a and its symmetry points. Along 〈100〉, this is the
point K2 = [200]2π/a and its symmetry points.
Take the second band of this model example. At the zone

boundary along 〈111〉, k̆ = K1/2 = √
3π/a, so k = −K1/2 = −√

3π/a.
As k̆ increases, k decreases and vanishes when k̆ = 2

√
3π/a. At the
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zone boundary along 〈100〉, k̆ = K2/2 = 2π/a, so k = −K2/2 =
−2π/a. Again, as k̆ increases, k decreases and vanishes when k̆ =
4π/a. These are parabolic bands, since K1 and K2 are aligned and
subtract from k̆. In the Jones zone (Figure 3.22 shows this for FCC
with eight electrons per unit cell), the bands reach the surface along
the K1 and K2 directions.

Figure 3.22: The Jones zone of an FCC
crystal with eight electrons per cell.
This Jones zone consists of the first
four Brillouin zones. It is the smallest
reciprocal space volume with energy
gaps on the surface.

The third and fourth bands arise in combinations of k, K1 and
K2, where they do not have to be aligned. k̆ now stays near the
zone boundary for all ks. The small change in k̆ can be seen from
the following argument. At the center of a face, |k̆| = |K1 − K2/2| =
2
√
2π/a is the smallest k̆ (also energy). Along the 〈100〉 direction,

|k̆| = |K1 − k| = 2
√
3π/a (at k = 0 , k̆ = K1). So, |k̆| has changed by

(
√
3 − √

2)2π/a, even as k̆ has traversed the zone in this direction.
These two bands are not free-electron-like. The Jones zone picture
lets us see where the interfering effects are such that the nearly free
electron pictures starts to fail. Effective masses can turn negative,
for example, as the band curvature changes sign!

3.10 Symmetries

Symmetries, too, prescribe additional properties. Note,
for example, that the Bloch wavefunction description leads to the Grouping of symmetry operations is

an important mathematical theme that
leads to very important implications
for properties. Group theory is a
major branch of mathematics. Groups
of rotations, reflections and their
combinations are point groups.
Keeping one point fixed is reflected
in these symmetries. The space group
operation is the point group operation,
together with translational symmetry
operations.

following equation for the repeating positional part:
[

p̂2

2m0
+ V(r)

]

ψnk = Enkψnk

∴
[
− 1
2m0

(
p̂2 + 2h̄k · p̂ + h̄2k2

)
+ V(r)

]
unk(r) = Enkunk(r). (3.93)

Periodic translation symmetry is not the only symmetry that
the lattice has. Rotations through specific angles is another one.
Having a cubic lattice, for example, implies a fourfold rotation
symmetry. The energy bands Enk have the same symmetries as
the crystal because of the reciprocal nature. Consider an operator
θ̂ for rotation, so that r′ = θ̂r. Scalar products are invariant under
rotation, so p̂′2 = θ̂ p̂ · p̂ = p̂2. So, k′ = k, and k′.p′ = k · p, which, in
turn, means that, under rotation, Equation 3.93 transforms to
[
− 1
2m0

(
p̂2 + 2h̄k · p̂ + h̄2k2

)
+ V(r)

]
unk′(θ̂r) = Enkunk(θ̂r). (3.94)

unk(θ̂r) and unk(r) are the solutions to the same equations. So,
Enk′ = Enk, with k′ = θ̂k. Since θ̂Enk = Enk, the reciprocal space has
the same rotational symmetries as the real space.
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The symmetry under inversion, k 
→ −k leading to En(k) 
→
En(−k), holds true if the system has inversion symmetry, that
is V(−r)= V(r). Even if inversion symmetry is absent, and the
forces are time-reversal invariant, as they are for Coulomb forces,
but not magnetic, then En↑(k)= En↓(−k). ↑ and ↓ here the spin
configurations, and these are related by time-reversal symmetry. We
discuss this a bit more during our discussion of spin-orbit coupling,
which is important for valence bands, in Chapter 4.
The physical properties of a crystal let us probe symmetry

properties. For example, centrosymmetric materials such as Ge and Neumann’s principle states that
symmetry elements of any physical
property of a crystal must include the
symmetry elements of the point group
of the crystal. So, symmetry elements
of a physical property include those
of the point group. But the properties
may be more extensive.

Si have no piezoelectricity. In contrast, GaAs does, since it is non-
centrosymmetric because it consists of two different elements in an
interpenetrating FCC lattice.

3.11 Atomic motion: Phonons

The nuclei and the core electrons, hitherto neglected, are
also in motion. In Chapter 1, in the discussion of the simplification
of the crystal Hamiltonian (Equation 1.11), we moved the con-
sequences to the last term—a perturbation term for the electron
energy—under the assumption that this is a slow motion because
of the large mass of the nuclei that the electron charge cloud can
largely follow. The ions move around an equilibrium position
R0i that we have ascribed to the lattice point. Equilibrium due to
restorative forces under any disturbance means that we can view
this motion around the equilibrium as a harmonic oscillator. The
Hamiltonian is

Ĥq =
∑

i

[

− h̄2

2Mi
∇2

r

]

+
∑

i, j

Dij(Ri − Rj)ui · uj + Ĥq0(R
0
i ) + Ĥ ′

q . (3.95)

Here, the first term is the kinetic energy of ions, the second term
is the restorative energy—the increase in potential energy arising
in any increase from equilibrium displacement (Dij(Ri − Rj)) is
a restoring force per unit displacement (displacements being ui

and uj) that we usually ascribe as a spring constant ks—the third
term is a constant shift related to equilibrium position separation,
and the last term captures anharmonic effects. Assuming small
disturbance—linearization—we ignore the last term. The second-to-
last term is what brought the crystal together, lowering its energy
from the separated ensemble of ions; it is a constant shift, so it
is not important to our discussion. The displacement of ions is
captured by the first two terms where motion of the ions is around
an equilibrium position.
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How many solutions—modes–of such motion exist? If there Mode is a loose term used to identify
a solution such as that represented
through the eigenfunction and
eigenenergy of the state of a system
described by a governing equation.
The motion of a pendulum composed
of a small weight at the end of a
weightless rigid string � units long
hanging from a point in gravity g has
a mode with the radial oscillation
frequency ωq = (1/2π)

√
g/� for small

amplitude. This is not the only mode.
The weight can also spin back and
forth as it performs the small orbital
motion. The electron states described
in the energy dispersion with the
various n and k are all electron modes.

is one particle, it has 3 spatial degrees of freedom. In Cartesian
coordinates, x̂, ŷ and ẑ describe three independent directions
of motion. One could equivalently choose polar or spherical
independent coordinates. But they are all still 3 independent spatial
coordinates. Two independent atoms will have 2 × 3 = 6 degrees
of freedom. If one couples these—a bonded two-atom molecule—it
still has 6 degrees of freedom. All we have done is introduced an
internal constraint of a bond between the two atoms of this two-
particle system. Of these 6 motional degrees of freedom, 3 are of
translation in the x̂, ŷ and ẑ direction. Two independent motional
freedoms can also be ascribed to rotation: one along the axis of
the bond, and one at an arbitrary orientation normal to this axis,
is one choice. This leaves one additional degree of freedom not yet
ascribed to this two-atom molecule. This is one of oscillation, with
the atoms moving around the equilibrium position.
Now, consider N atoms uncoupled. There are then 3N spatial

motion degrees of freedom. If these are all coupled as in a crystal,
there will be 3 degrees of freedom for the crystal translation, and
3 degrees of freedom for rotation around the 3 independent axes
chosen, so there are 3N − 6 degrees of freedom for oscillations. The
crystal consisting of N atoms has 3N − 6 modes of oscillations, that
is, of phonons as the quasiparticles representing these oscillations. If
N is large, as with the electrons in crystals, one may view these as
nearly continuous. As with electrons (E = h̄ωk), there will be spe-
cific energies (E = h̄ωq) and wavevectors q allowed. For phonons,
these will break in general to longitudinal (displacement parallel)
and transverse (displacement normal) to the chosen directions in
the unit cells. In an assembly of a single atom type, that is, a single
atom basis per unit cell of the crystal, we will have one longitudinal
polarization of motion and two transverse polarizations of motion.
If the consecutive displacement has a small change in phase, the
motion is acoustic, while if they are opposite in displacement, they
are optical. The 3N − 6 total modes are spread out as the allowed
vibrational states across the acoustic and the optical branches of
the phonons. We will now place more substance in this discussion
as the number of basis atoms change, and in following chapters,
when one encounters interfaces and surfaces, as also through what
electron-phonon and electromagnetic-phonon interaction will be like
for transport and light-matter interaction problems.
Consider a unit cell with more than one atom as the basis. We

can write the motion in general as

u(ωq,q) = u0 exp
[
i(q · R − ωqt)

]
. (3.96)
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More specifically, the ith ion responds in motion as

Ri − R0i = ui(ωq,q) = ui0 exp
[
i(q · (Ri − R0i ) − ωqt)

]
. (3.97)

The crystal waves have dispersion, as sketched in Figure 3.23,
which shows, for a general case, six distinct branches along
which are the points of the variety of eigenmodes that satisfy
Equation 3.95. As with energy diagrams, in a large assembly, these
mode points are close enough together to be viewable as a quasi-
continuous function until reduced to an assembly of only a few
unit cells. The nature of longitudinal and transverse, and optical
and acoustic, motion around equilibrium can be seen in Figure 3.24
for a small q for a two-atom basis chain.

Figure 3.23: Crystal wave dispersion
for a crystal with more than one atom
basis set per primitive unit cell; LA,
longitudinal acoustic; LO, longitudinal
optical; TA, transverse acoustic; TO,
transverse optical.

Each mode has an energy, because it is a simple harmonic
oscillator, of

E(ωq,q) =
[
〈n(ωq,q)〉 + 1

2

]
h̄ωq, (3.98)

with 〈n(ωq,q)〉 as the average number of the vibration’s quanta that
have been excited. The quasiparticle that we have associated with
this vibrational mode, with its distinct energy, is the phonon. Each
phonon has an energy h̄ωq for a wavevector q.

Figure 3.24: Part (a) shows the
longitudinal and transverse acoustic
modes of the two-atom one-
dimensional crystal. Part (b) shows
the higher frequency longitudinal
and transverse optical modes of the
crystal; LA, longitudinal acoustic; LO,
longitudinal optical; TA, transverse
acoustic; TO, transverse optical.

Phonons are bosons, and, given that ωq and q are related
through the dispersion relationship,

n(ωq) = 1
exp(h̄ωq/kBT) − 1 . (3.99)

More than one phonon mode at any allowed (ωq,q) is permissible.
Phonon wavevector q itself is periodic, analogous to the electron
wavevector k, with similar limitations and representation in the
Brillouin zone arising in the periodicity. If there are N unit cells
in a chain L long, then q must have a limit of the Brillouin zone
boundary at the longest. The qs in this hypothetical structure are
2π/L apart. Any perturbation in this crystal, for example, a change
in mass or strength of coupling locally, will lead to localized modes
in the vicinity. This localized mode will have an energy different
from that of the crystal modes. Long wavelength acoustic modes
(short q) have linear dispersion, as seen in Figure 3.23: ωq = vsq, vs

being the velocity of sound. Optical modes tend to have an energy

That phonons are bosons is a point
that requires some care and is
delicate. Quantization is a result
of the quantization of the field.
For photons, field oscillation is in
two directions, whether electric or
magnetic, and the two directions of
circular polarization are what we map
this to as the basis and associate a spin
of 1. This also reflects the unification
of electricity and magnetism in
the photon. Phonons, if they are
longitudinal, just provide a scalar
oscillating pressure; there is no angular
momentum and no spin or orbital
quantization. But transverse motion
such as in an isotropic medium,
which is doubly degenerate, may be
interpreted via quantization along the
direction of the propagation, where
a quantum number of 1 will result.
In either case, the phonons are still
bosons.

that is fairly wavevector independent.
We make a few short remarks on the density of states of phonon

modes. Appendix H, which discusses density of states for electrons,
is still pertinent for phonons. The longest wavelength phonon
is determined by the extent of the dimensions, and the shortest
by atomic spacing. The density of states in q-space is similar to
that in the k space, since it is determined by the periodicity of the
lattice. So,



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

chapter 3: waves and particles in the crystal 117

Gq(q) = 4πq2
1

(2π)3
(3.100)

per unit volume. The energy density of states for the phonons—
written usually via the frequency in Eq = h̄ωq—is

Gq(ωq) = 4πq2
1

(2π)3
dq

dωq
, (3.101)

normalized in volume, where we have used the transformation
resulting from Gq(ωq)dωq = Gq(q) dq, since the same phonon modes
are involved.
Take the acoustic mode case. At high phonon wavevectors,

there is also higher nonlinearity and a saturation of energy. So,
the density of states in energy will reflect this. There is also both
a minimum and a maximum phonon wavevector magnitude. For
any reasonable sized volume, the lowest energy will be vanishing—
a long wavevector following the dispersion curve—but there will
be a maximum in the frequency allowed. There are a variety of fits
provided for this conventionally. The Debye model, for example,
is an attempt at modeling thermal properties by approximating
the real dispersion curves. We will just generalize to specifically
the difficulties that arise in real crystals, such as zinc blende or
wurtzite, where different directions are different in characteristics
and what we have are anisotropic oscillators. This is to say that
the constant energy surface is not a sphere but will be warped.
Since

dωq = |∇qωq|dq⊥ ∴ dωq = |vgs|dq⊥, (3.102)

where vgs is the group velocity of phonons. We may write in
general

Gq(ωq) = 1

(2π)3

∫
1

|vgs| n̂ · dS, (3.103)

an integral in area in direction of q⊥. This calculation must be
performed on all dispersion curves and the results summed to get
the net density of states.

Figure 3.25: A two-atom-basis one-
dimensional crystal. The atoms have
massesM and m, respectively. Rn is the
unit cell locale.

3.11.1 Toy model: Two-atom basis chain

Now let us place some more semiconductor-oriented specifics in
this description to elucidate details of expected behavior. Consider
a two-atom basis linear atom chain as a crystal, as shown in
Figure 3.25. First, let it be covalent. In the Born-Oppenheimer
approximation, we are assuming that the electrons can follow
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the nuclear motion. We will see the implications of perturbations We will presently modify the analysis
from the covalency beginnings by
introducing electron transfer, that
is, ionicity, through a dipolar charge
of ±e∗ on the ions. This is the Born
effective charge. During the discussion
of scattering, frequency dependence of
polarization and other consequences, it
will enter in significant ways.

arising in this oscillation-induced deformation, as well as its dipolar
frequency dependence, during our discussion of optical scattering
in Chapter 10, and electromagnetic interaction and dielectric
response function for materials in Chapter 12.
Because of the harmonicity, the two atoms on an average

positioned at na − a/4 for one with mass M and na + a/4 for the one
with mass m move around it with a displacement u1n and u2n. The
unit cell is not primitive; it has a real space basis vector R = aâ so
that Rn = naâ. The springs, of spring constant ks, represent the forces
arising from the change in potential away from equilibrium, which
causes the return (ks = ∂2U/∂z2 are related to the deformation Dij

in Equation 3.95). The underlined superscript in the displacement u
identifies the separate basis of mass M and m. For these two types
of atom in an infinite chain,

u1n = u1n0 exp
{

i
[

qa
(

n − 1
4

)
− ωqt

]}
, and

u2n = u2n0 exp
{

i
[

qa
(

n + 1
4

)
− ωqt

]}
. (3.104)

In the lowest order—no nonlinearity—approximation for stability,
that is, harmonicity,

M
d2u1n
dt2

= ks(u
2
n − u1n) − ks(u

1
n − u2n−1), and

m
d2u2n
dt2

= ks(u
1
n+1 − u2n) − ks(u

2
n − u1n), so that

M
d2u1n
dt2

= ks(u
2
n + u2n−1) − 2ksu

1
n, and

m
d2u2n
dt2

= ks(u
1
n+1 + u1n) − 2ksu

2
n, (3.105)

are the coupled linear differential equations describing the motion.
Substituting for the displacements, the eigenenergy solution
follow as

−Mω2qu1n0 = ksu
2
n0

[
exp

(
i
qa
2

)
+ exp

(
−i

qa
2

)]
− 2ksu

1
n0

= 2ksu
2
n0 cos

(
i
qa
2

)
− 2ksu

1
n0, and

−mω2qu2n0 = ksu
1
n0

[
exp

(
i
qa
2

)
+ exp

(
−i

qa
2

)]
− 2ksu

2
n0

= 2ksu
1
n0 cos

(
i
qa
2

)
− 2ksu

2
n0 (3.106)

so that

ω2± = ks

mM

{
(m + M) ±

[
(m + M)2 − 2mM

(
1− cos qa

2

)]1/2}
(3.107)
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are the radial frequencies. ω−(q) is the acoustic branch, and ω+(q)
the optical branch. A branch with zero gap is an acoustic

branch. This energy going to zero
at the shortest wavevector is a
reflection of Goldstone’s theorem’s
consequence for broken symmetry.
Making a one-dimensional chain is a
breaking of the continuous symmetry
that existed in the atoms as points.
Goldstone’s theorem tells us that
such a broken continuous symmetry
will lead to short-range interactions
that will have no gap. The acoustic
branch extends propagation such as
of sound waves all the way down
to the static limit. By analogy, the
optical branch is the higher frequency
branch. For semiconductors, this is a
frequency in the THz range, which is
far into the infrared frequency range.
Optical phonons will therefore lead to
interactions and plenty of nonlinearity
and absorption in that frequency part
of the spectrum.

We had a two-atom basis in an infinite chain with a single
dimension of motion, so we ended up with two branches reflecting
the two degrees of motional freedom, and an infinite number of
modes spread out along each of these branches for an infinite chain.
The motional degrees of freedom were longitudinal, so the solution
is for longitudinal motion. With transverse motion also allowed,
Figure 3.24 showed both a longitudinal and a transverse mode of
the acoustic and optical branches. The branches are longitudinal
optical (LO) for the positive sign, and longitudinal acoustic (LA) for
the negative sign in Equation 3.107. Being a periodic lattice, many
of the comments based on periodicity made for describing electrons
in the crystal apply. The first Brillouin zone with wavevectors in
−π/a ≤ q ≤ π/a suffices to describe the dispersion. The maximum
frequency for the LO is [2ks(m + M)/mM]1/2. It occurs at the zone
center. The minimum frequency is at the zone edge at (2ks/m)1/2.
The LA branch, which starts at a vanishing frequency, reaches its
maximum at (2ks/M)1/2 at the zone edge. So, there is a phonon
bandgap in this model. We have sidestepped transverse motion in
this analysis.
Now let us make this chain polar by introducing the effective

Born charge of ±e∗ for the dipole to reflect the polarity of the
ionic fraction of the bonding. Let E be the electric field. Our
Equation 3.105 set changes with a force ±e∗E . Let the positive sign
be for the atom indexed 1 (mass M is now a cation), and negative
for the atom indexed 2 (mass m is now an anion). Our modification
to Equation 3.105 is

M
d2u1n
dt2

= ks(u
2
n + u2n−1) − 2ksu

1
n + e∗E ,

∴ −Mω2qu1n = ks
[
1+ exp(iqa)

]
u2n−1 − 2ksu

1
n + e∗E , and

m
d2u2n
dt2

= ks(u
1
n+1 + u1n) − 2ksu

2
n − e∗E ,

∴ −mω2qu2n = ks
[
1+ exp(−iqa)

]
u1n+1 − 2ksu

2
n − e∗E . (3.108)

At long wavelengths (q → 0), one doesn’t need to index for
each basis atom, since they are displaced identically. So, for q → 0,
without indexing the unit cell, we have

−Mω2qu1 = 2ks(u2 − u1) + e∗E , and

−mω2qu2 = 2ks(u1 − u2) − e∗E . (3.109)

These equations physically imply that the sum vanishes, that is,
−Mω2qu1 − mω2qu2 = 0, or that the displacements are inversely
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related to the masses with a sign reversal. This is displacement that
is opposite in sign; that is, out of phase. This is the characteristic of
the optical branch, as was seen in Figure 3.24(b). This condition for
q → 0 leads us to

−Mω2qu1 = 2ks

(
−M

m
u1 − u1

)
+ e∗E

= −2ks

(
M
m

+ 1
)

u1 + e∗E , and

−mω2qu2 = 2ks

(
u1 − u2

)
− e∗E

= −2ks

(m
M

+ 1
)

u2 − e∗E . (3.110)

We define

ω20 = 2ks

(
1
M

+ 1
m

)
, (3.111)

and now the displacements can be related at the long wave-
lengths as

−(ω2 − ω20)u
1 = e∗E

M
, and

−(ω2 − ω20)u
2 = − e∗E

m
. (3.112)

ω0 is a resonant frequency when e∗ → 0. Absent the Coulomb
dipolar consequence when a field is present, which is a covalent
condition in a Born-Oppenheimer approximation condition, the
infinite one-dimensional two-atom crystal resonates at a frequency
determined by the geometric mass. When this crystal is ionic,
there will be a shift in this frequency that we will follow up on in
Chapter 12.
This response tells us one significant physical property. There

exists an electric dipole polarization in this lattice. We generalize
and use this solution for three dimensions so that one can consider
longitudinal and transverse modes with similar underlying
restorative constraints.
At low frequencies, that is, q → 0, the response is with an

effective charge e∗ separated by u1− u2 over the number of diatomic
N pairs that exist per unit volume, that is, Ne∗(u1 − u2). So, the
polarization is Why the∞ frequency for the

permittivity? It is∞ because there
is the contribution arising in the core
and the nucleus response during
this displacement onto which the
effective charge transfer has been
planted to calculate the consequence
in polarization. Far infrared frequency
suffices as a proxy.

P = Ne∗(u1 − u2)
ε(∞)

= 1
ε(∞)

Ne∗2

ω20 − ω2

(
1
M

+ 1
m

)
E , (3.113)

whose frequency dependence shows how the forced oscillator
responds to an electric field.
Our analysis has been for longitudinal conditions, but it is

generalizable to transverse motion. If a transverse field were
present, we will have a similar response, with ω0 being ωTO, the
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transverse resonance frequency in the e∗ = 0 limit. In analogy with
the longitudinal discussion, a transverse acoustic mode is one
where the displacement change between the two adjacent basis
atoms is small, and the transverse optical mode is one where the
displacement change for this adjacent atom will be large—out
of phase—so that the corresponding polarization is large. The
applied field and the phonon oscillations couple strongly around
the resonance, and this coupled condition—a coupled energy
excitation—is described by a polariton, which we will visit later in
this text. For this transverse field coupling, which is absent for the
longitudinal mode that is normal to it, we have

P(ω2TO − ω2) = Ne∗2

ε(∞)

(
1
M

+ 1
m

)
E , (3.114)

with

ω2TO = 2ks

(
1
m

+ 1
M

)
. (3.115)

The important point to note here is that e∗2 = 0, that is, Coulomb
effects absent, corresponds to transverse optical frequency in
the analysis underlying Equation 3.111. The difference between
the LO and TO resonance frequency arises in the e∗2 factor. The
resonance frequency corresponds to the transverse optical res-
onance frequency, and now general electric field effects can be
included.
We incorporate this behavior to determine the dielectric function

that informs us of the electrical interaction response of an electro-
magnetic wave in a material. Starting from Maxwell’s equations,
absent sources, since ∇ × E = −∂B/∂t, we have

∇ × (∇ × E) = − ∂

∂t
∇ × B, (3.116)

Also, with linearity,

∇ × B = μ∇ × H = μ
∂D
∂t
, (3.117)

so

∇ × (∇ × E) = − ∂

∂t
μ

∂D
∂t

∴ ∇(∇ · E) − ∇2E = −μ
∂2D
∂t2

∴ −∇2E = −μ
∂2D
∂t2

= −μ
∂2

∂t2
(ε0E + P). (3.118)

This last equation is a time-independent wave equation—
a Helmholtz equation—where the wave has the oscillatory

The general form of a Helmholtz
equation is ∇2ψ +λψ = 0. A partial
differential equation that can be
separated into a space part and a time
part, such as the wave equation, can
be recast into this form. Our wave
problem is the steady-state part (no
oscillatory factor in the solution).

dependence that exists in the form exp[i(qz − ωt)], with ẑ as the
direction of the chain. Substituting, we have the set of equations
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(ω2με0 − q2)E + μω2P = 0, and

Ne∗2

ε(∞)/ε0

(
1
M

+ 1
m

)
ε − (ω2TO − ω2)P = 0, (3.119)

where the second equation is a recasting of Equation 3.114—the
forced oscillator equation. A solution exists iff

∣∣
∣
∣∣

ω2με0 − q2 μω2

Ne∗2
ε(∞)/ε0

(
1
M + 1

m

)
−(ω2TO − ω2)

∣∣
∣
∣∣
= 0 (3.120)

Consider the q = 0 mode. A trivial solution is ω = 0, and the second
solution is

ω2 = ω2TO + Ne∗2

ε(∞)

(
1
M

+ 1
m

)
= ω2LO. (3.121)

This frequency is ωLO since a propagating solution must exist for a
longitudinal electromagnetic wave to propagate.
The polarization that we have included is the ionic polarization.

In general, in the system, there will also be an electronic contribu-
tion from the free particles. Let that be Pe, and let Pi denote the
computed ionic component. We have

ε(ω) = D(ω)

E(ω)
= ε0 + Pe(ω)

E(ω)
+ Pi(ω)

E(ω)

= ε0 + Pe(ω)

E(ω)
+ Ne∗2

ε(∞)

(
1
M

+ 1
m

)
. (3.122)

The ionic response vanishes at ω → ∞, so

ε(∞) = ε0 + Pe(ω)

E(ω)
.

∴ ε(ω) = ε(∞) + Pi(ω)

E(ω)

= ε(∞) + 1

ω2TO − ω2

Ne∗2

ε(∞)

(
1
M

+ 1
m

)
. (3.123)

This lets us write the static dielectric constant and the frequency-
dependent dielectric function as

ε(0) = ε(∞) + 1

ω2TO

Ne∗2

ε(∞)

(
1
M

+ 1
m

)
, and

ε(ω) = ε(∞) + ε(0) − ε(∞)

1− ω2/ω2TO

. (3.124)

For LO electromagnetic propagation to exist, LO phonon
frequency must be such that ε(ωLO) = 0. So,

ε(ωLO) = ε(0) − ε(∞)

1− ω2LO/ω2TO

= 0

∴ ωLO = ωTO

[
ε(0)
ε(∞)

]1/2
. (3.125)
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With these relationships—they represent a manifestation of the
Kramers-Kronig relationships that we will discuss later—between
the dielectric function, and LO and TO phonon frequencies, it
follows that

ε(ω) = ε(∞) + (ωLO/ωTO)2ε(∞) − ε(∞)

1− ω2/ω2TO

= ε(∞)

[

1+ (ωLO/ωTO)2 − 1
1− ω2/ω2TO

]

= ε(∞)
ω2LO − ω2

ω2TO − ω2
. (3.126)

So,

ε(ω)

ε(∞)
= ω2LO − ω2

ω2TO − ω2
, and

ε(0)
ε(∞)

= ω2LO

ω2TO

, (3.127)

which is the Lyddane-Sachs-Teller relationship. We now have a
direct connection between the dielectric function under static and
high-frequency conditions. When ω = ωLO, the dielectric constant
vanishes.
Since

ω2TO + Ne∗2

ε(∞)/ε0

(
1
M

+ 1
m

)
= ω2LO, (3.128)

with e∗ = 0, that is, covalency, for zone center phonons, ωTO = ωLO.
This is the case for semiconductors such as Si. For GaAs and other
covalent semiconductors, there will be a frequency gap between
ωTO and ωLO due to e∗. We will discuss this in Chapter 12.

3.12 Summary

This chapter lays the groundwork necessary to mathemati-
cally describe the crystalline solid that is to be our semiconductor
and in which we are going to explore the variety of interactions and
cause and chance behaviors that physics builds insights into. Atoms
constitute this solid, and, at the energy scales of the condensed
matter phenomena of interest, it suffices to look at the solid—
crystalline, in our case—as a collection of atoms bonded to each
other in a periodic arrangement where one may view the assembly
and states within it that the electrons can exist in from a quantum-
mechanical view.
We started with a classical-quantum discussion, where, by

looking at an electromagnetic wave and the particle-quantum
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wave duality, we noted the connections between the interpretations
of energy and the flow of energy. The electron wavefunction
lends itself to a variety of corresponding interpretations to the
electromagnetic wave description. The latter has the electron as an
example for particle representation; the former has the photon as a
particle example. We have to resort to the quantum view, since the
description of what is happening in the atom, or in the collection
of atoms together, needs that depth for an adequate description.
Our first step toward describing the solid was to first observe
that there are 14 Bravais lattices—mathematical arrangements of
points—that fill space, and, by bonding, the solid appears as an
arrangement of atoms, where these atoms can be seen as occupying
the lattice sites as their equilibrium positions. There are 7 such
crystal arrangements, and solids appear in all the 14 different lattice We avoided any discussion of

quasicrystals, which are very
interesting in their own right,
since none are known for being
semiconducting. Quasicrystals too
fill space completely and are made
possible by a subtle twist in the
rotational argument.

arrangements. Zinc blende and diamond, which are interpenetrating
FCC crystals, wurtzite, which is hexagonal close packed, perovskite,
which many semiconducting transition element oxides of the
form ABO3 have, and hexagonal sheets, are some of the forms
that we encounter for semiconductors. The smallest volume,
exhibiting the symmetries, that fills the space is the Wigner-Seitz
cell. Since the solid is periodic, the electron wavefunction too is
periodic.
Waves are suitably represented through wavevectors. A periodic

lattice lets us also draw a periodic reciprocal lattice. The waves
are now describable conveniently in this reciprocal space. So, we
looked at how we construct the reciprocal space lattice and its
relationship to the real space lattice. Some of the conclusions from
here were how we will represent planes, directions of planes,
distances between planes and the mapping of these planes to the
reciprocal lattice. So, while both real space and reciprocal space are
equivalent views, for some items of interest, for example, those
related to spatial arrangements, the real space is the convenient
approach, while, for others, such as the properties—dispersion
being an important one of interest—associated with these waves,
the reciprocal space is the more convenient approach.
Having built this mathematical description, we embarked on

understanding the description of electrons—as waves—and of
atomic motion around their equilibrium—as vibrations to be
quantified by phonons—through toy models. The simplest of this
was to have a free potential crystal, that is, a crystal where there
exists periodicity because there are atoms a apart but where
these atoms cause no potential perturbation. This is just free
electron states in a periodic arrangement. It lets us understand the
representation of the allowed E(k) states of the electron in a variety
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of ways as a function of k, whose most convenient form was the
reduced zone. This reduced zone is the 1st Brillouin zone of the
reciprocal lattice. It is the analog of the Wigner-Seitz cell in the
reciprocal representation. A wavevector also tells us the direction
of motion of the wave. The toy model showed us that one finds
specific wavevectors—zone boundaries—as places of degeneracy
where counter-propagating waves cancel; absence of propagation
is absence of propagating states; that is, a bandgap. The reduced
zone picture also showed the bringing in of an index to the band
of states allowed, which, together with the wavevector, identifies
two of the quantum numbers of an electron’s state in the solid. The
third is spin, and, except in unusual circumstances, the energies are
degenerate for spin.
We followed the toy model with the introduction of more rigor

through Bloch’s theorem, which then let us write the Bloch function
as a wavefunction for the electron states. We came to it through
a combination of symmetry of translation arguments, and this
leveraging of the spatial periodicity was discernible through Fourier
expansion. The Bloch function in the form ψnk(r) = unk(r) exp(i k · r)
represents the eigenfunction of an independent electron in a peri-
odic arrangement stretched out over the entire space. Both ψnk(r)
and unk(r) have the periodicity R of the lattice. This is a plane
wave solution if there is no potential perturbation. This was our toy
model case. And, in that case, unk(r)—the modulation function—is
unity. With the potential arising in a variety of causes—periodically,
due to the presence of the atoms periodically—the form of unk(r)
will be non-trivial. This is a modulation function expanded in the
basis set chosen. An electron’s probability density is higher closer
to the atoms, due to the Coulomb attraction, even as the Bloch
function is spread out across the entire crystal. unk(r) may therefore
be very rapidly modulating near the atomic locales.
The meaning of the wavevector k of the Bloch function is

analogous to that of the free electron, except that this k now
represents the consequences of the presence of the electron in the
crystal. The Hamiltonian of the free space is very different from that
of the crystal. h̄k is the crystal momentum, by which we mean the
momentum of the electron in this state when it is present in the
crystal, and E(n,k) is the energy dispersion of the electrons in
the crystal.
We extended our toy model picture by introducing perturbation

of the original potential-free periodic structure, and this allowed
us to show the nature of the connection between the bandgap
that appears and the perturbation. Additional consequences of the
periodicity, the perturbation and the close proximity of the atoms
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are the breaking of degeneracies and the spreading of the energies
of the states. So, we could see now that the bandgap appears
together with bands, and, since states are conserved, we can give
meaning to the states, and the ones that we are interested in will be
from the valence of the atoms. Valence bands and states are those
that are largely filled, and conduction bands and states are those
that are largely empty. An ideal semiconductor is one with this
bandgap, where the bands below the bandgap—the valence band—
are all filled up, and the ones above—the conduction band—are all
empty in an ideal arrangement at absolute zero temperature. We
also introduced the idea of the Jones zone for viewing the energies
as an extension of the Brillouin zone view. Unlike the 1st Brillouin
zone, whose construction is the creation of the smallest reciprocal
space region that completely reproduces through translation the
entire reciprocal space, the Jones zone, also in the reciprocal space,
is the smallest region in which all the states from the atoms in a
unit that went into creating the conduction and the valence bands
also exist uniquely without any folding. So, a bandgap exists on
the entirety of the Jones zone surface. For FCC in a two-atom basis
for our semiconductor, the Jones zone then includes the first four
Brillouin zones and will contain eight electrons.
We also employed periodicity to understand the vibrational

motion of atoms around their equilibrium, exploring the number of
such vibrational modes and their correspondence to the degrees of
freedom of motion in the collective assembly, and their description
through the quasiparticle phonon. Our solution to a toy model
composed of a two-atom basis showed us the appearance of
optical and acoustic branches, with longitudinal and transverse
displacements. The optical branches are modes with high energy
where the displacements change rapidly and are opposite in phase
at the atomic length scale, while the acoustic branches consist of
modes where the phase change is gradual. Acoustic modes exist
to vanishingly low energy, while optical modes have high energy
regardless of the wavevectors of the modes.
The dielectric function is a property that is important to any

analysis of electromagnetic interaction with matter. If one introduces
ionicity e∗ in these vibrating masses, starting from Maxwell’s
equations one could also relate how the polarization will change as
a function of frequency. And it is the polarization that is reflected
in the dielectric response of a medium. We added an electronic
term to account for the polarization from conducting charge to
this response, and by noting that, at high frequencies beyond
the vibrational frequencies, the ionic polarization response will
vanish, we could relate transverse and longitudinal optical mode
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frequencies. The considerations also let us write the dielectric
function as a function of frequency and relate the longitudinal
and transverse optical responses to a transverse electromagnetic
radiation.

3.13 Concluding remarks and bibliographic notes

The foundations of quantum mechanics, and the underlying
particle-wave, reality, local and nonlocal, and other conflicting
notions that appear as one transplants our classical observations
to the quantum, create a number of seemingly  ̏paradoxical˝
conundrums that we have sidestepped in this chapter, where we
used the wave particle description to extract a conceptual prelim-
inary understanding to explore the behavior of semiconductors.
Semiconductors are a subset of solid state, where conductivity and
other properties can be strongly modulated because of the existence
of a bandgap, that is technologically important.
Numerous texts explore this introductory understanding phys-

ically. The three volumes of Feynman’s lectures, ably transformed
by co-writers Leighton and Sands1, is most certainly a genuinely

1 R. P. Feynman, R. B. Leighton, and
M. Sands,  ̏The Feynman lectures on
physics,˝ Addison-Wesley, ISBN 13
978-0201500646 (2005)

intuitive introduction to physics, and its approach to viewing
and understanding the world around us ranges from the classical
approaches of many centuries ago to the modern notions of today.
Its introduction to quantum ideas are among the smoothest, and it
also introduces many other complex connections that physics builds
for us. Also very suitable for an undergraduate-level exploration
of quantum mechanics is the text by Griffiths2. Atkins3 has created

2 D. J. Griffiths,  ̏Introduction to
quantum mechanics,˝ Pearson, ISBN
13 978-0131118928 (2004)

3 P. W. Atkins,  ̏Quanta,˝, Oxford,
ISBN 0-19-855572-5 (1991)

a quite beautifully illustrated handbook with short descriptions
of concepts of quantum mechanics without much recourse to
mathematics. For understanding wave phenomena in the classical
electromagnetic sense, the book by Haus4 is also a favorite. The text

4 H. A. Haus,  ̏Waves in fields in
optoelectronics,˝ Prentice Hall, ISBN
0-13-946053-5 (1984)

by Harrison5 is another excellent source for learning the essentials

5 W. A. Harrison,  ̏Applied quantum
mechanics,˝, World Scientific, ISBN
9810243758 (2000)

of quantum mechanics that are useful in engineering.
McKelvey’s6 and Blakemore’s7 textbooks are two well-written

6 J. P. McKelvey,  ̏Solid state and
semiconductor physics,˝ Krieger, ISBN
0-89874-396-0 (1982)

7 J. S. Blakemore,  ̏Solid state
physics,˝ Cambridge, ISBN 0-521-
30932-8 (1989)

texts with introductions to crystal structure, reciprocal space and
lattice dynamics, that is, atomic vibrations. These subjects, as well
as the free-potential crystal description, can also be seen in the
introductory chapters of a well-written engineering-centric book
by Wolfe, Holonyak and Stillman8. A more in-depth discussion

8 C. M. Wolfe, N. Holoynak, and
G. E. Stillman,  ̏Physical properties of
semiconductors,˝ Prentice Hall, ISBN
0-13-669961-8 (1989)

of the crystalline structure and the group-theoretic foundations
can be found in advanced texts devoted to materials science and
physics. An example of this approach is a standard from times past
by Madelung9. Another book that we will refer to quite often, along

9 O. Madelung,  ̏Introduction to
solid-state theory,˝ Springer, ISBN
3-540-08516-5 (1981)
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with the Wolfe-Holonyak-Stillman one, is by Yu and Cardona10, 10 P. P. Yu and M. Cardona,
 ̏Fundamentals of semiconductors,˝
Springer ISBN 978-3-642-00709-5 (2010)

a book that is now in its fourth edition, with a rich content of
semiconductor-specific information and advanced techniques.
Fischetti and Vandenberghe11 approach the semiconductor theme, 11 M. V. Fischetti, W. G.

Vandenberghe,  ̏Advanced physics of
electron transport in semiconductors
and nanostructures,˝ Springer, ISBN
978-3-319-01100-4 (2016)

again at an advanced level, with specific focus on developing the
understanding of transport. Together with Yu and Cardona, this
book is a very thorough and advanced treatment of semiconductor
physics.
A book devoted to phonons and their behavior in semiconduc-

tors is by Stroscio and Dutta12. Phonon interactions are sprinkled
12 M. A. Stroscio and M. Dutta,
 ̏Phonons in nanostructures,˝
Cambridge, ISBN 0-521-79279-7
(2001)

throughout this text, and the Stroscio-Dutta book is a good source
to refer back to for the various coupling mechanisms between
different energy mechanisms and particularly in confinement.

3.14 Exercises

1. This is a problem to tie electromagnetics and quantum mechanics
together through an exploration of nonlinearity. Beyond what field
strengths of electric field E and magnetic flux B does nonlinearity
appear for Maxwell’s equations? At high-enough fields, quantum-
mechanical vacuum (and virtual particles) must be perturbed.

• Take the classical properties of particles (charge e, mass m
and the speed of light c) and of free space (permittivity and
permeability), and show that there is a unique combination
with the right dimensions to make the field (E or B, which has
the same units in Gaussian units). The lightest particle sets the
minimum field. Evaluate it for the electron.

• This last estimate is wrong because quantum mechanics
matters. So, introduce h̄ to the list of the relevant properties.
Show now that there is no unique combination with the units
of E .

• Now consider the virtual possibilities. Find the field that will
accelerate a virtual particle of momentum ∼ mc to an energy ∼
mc2. This critical field, too, is determined by the lightest particle.
Evaluate it for an electron.

• Show that this last solution is equivalent in form to the one
before. [M]

2. Show that
• an infinite point lattice can only show 2−, 3−, 4−, or 6-fold
rotational symmetry,
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• if [uvw] is an axis of a zone, and (hkl) is a face in the zone, then
hu + kv + lw = 0, and

• in a cubic system, the angle φ in between the normals to the face
(h1k1l1) and (h2k2l2) is given by

φ = cos−1 h1h2 + k1k2 + l1l2[(
h21 + k21 + l21

) (
h22 + k22 + l22

)] . [S]

3. Show that, in a hexagonal-close-packed structure,
• the ratio c/a = 2

√
6/3 ≈ 1.633.

Find also the angles
• α between (0001) and (1011),

• β between (0001) and (1121), and

• γ between (1011) and (0110). [S]

4. What is the fractional space filled by an arrangement of spheres
that is
• primitive cubic,

• body-centered and face-centered cubic, and

• a diamond structure. [S]

5. What fraction of a tetrahedron, with four spheres placed at the
corners, is filled by the spheres? What causes the difficulty in
filling the space densely? [S]

6. Primitive vectors for the lattice construction are not unique. Show
that, for new vectors

â′
i =

∑

j

Sijâj

to also be primitive, the sufficient condition is det|Sij| = ±1. [S]

There is a correspondence here with
orthonormal basis set completeness.
You can find the proof for that in many
quantum mechanics-texts. Slater’s text
Quantum Theory of Atomic Structure, for
example, discusses this.7. One possibility for the primitive translation vectors of the

hexagonal space lattice is

â1 = (31/2a/2)x̂ + (a/2)ŷ,

â2 = −(31/2a/2)x̂ + (a/2)ŷ, and

â3 = cẑ.

• Show that the volume of the primitive cell is (31/2/2)a2c.

• Show that the primitive translations of the reciprocal lattice are

b̂1 = (2π/31/2a)x̂ + (2π/a)ŷ,

b̂2 = −(2π/31/2a)x̂ + (2π/a)ŷ, and

b̂3 = (2π/c)ẑ
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so that the lattice is its own reciprocal, but with a rotation of
axes.

• Describe and sketch the first Brillouin zone of the hexagonal
space lattice. [S]

Figure 3.26: A two-dimensional lattice.

8. Figure 3.26 shows a two-dimensional array of identical atoms.
Using various sections of the drawing, point out the following:
• the primitive translations of the lattice,

• the basis for the periodic structure,

• the Wigner-Seitz unit cell,

• the primitive translations of the reciprocal lattice, and

• the first Brillouin zone. [S]

9. Show that, in a one-dimensional crystal of N atoms, the vibra-
tional energy asymptotes to 〈E〉 → NkBT at high temperatures,
where h̄ωq � kBT. [S]

10. For an ionic crystal, that is, one consisting of positively and
negatively charged atoms that are spherically symmetric, bound
together using Coulomb forces and kept separated by a repulsion
that classical theory introduces ad hoc, the interaction energy
between ions i and j, with the ions charged +e and −e, is

Uij = ± e2

ρ ij
+ b

ρn
ij
.

Here, ρ ij = αijr is a normalized measure of the nearest neighbor
separation of r. The energy Ui of the ith ion, by summing over ions
j = i, in the field of all other ions is

Ui = −Ae2

r
+ B

rn ,

with A = ∑
j=i ±α−1

ij (the reference ion i is assumed negative), and

B = b
∑

j=i α
−n
ij . This factor A is called the Madelung constant. The

total lattice energy U(r)with 2N ions is

U(r) = NUi = −N

(
Ae2

r
− B

rn

)

,

so long as N is large and we ignore surface effects.
Show that the lattice energy U(r0), where r0 is an equilibrium
separation between ions, is given by

U(r0) = −NAe2

r0

(
1− 1

n

)
. [M]
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11. Asymmetric molecules such as NH3 and H2O come about because
of a polarizable central atom in rigid models such as that in
Exercise 10. The energy due to the dipole moment p in a field E
is (1/2)p · E . Let α be the polarizability of the central atom. If E Polarizability is explored in depth in

Chapter 12. Here, we can just view it
as a distortion of charge cloud in the
presence of an electric field that causes
a dipole to appear, since, on average,
the valence electron charge cloud
is now slightly shifted in position
compared to the core.

induces this dipole moment, then p = αE .
• Relate the bond angle β in stable equilibrium to the polariz-
ability α for molecules of composition AB2 and another one of
composition AB3.

• If, for H2O, rOH = 0.096 nm, and, for NH3, rNH = 0.101 nm, then
what is the polarizability for O and N? [M]

12. Draw the reciprocal lattice for a two-dimensional square lattice,
and show Fermi surfaces in the first Brillouin zone when the
atoms have 1-, 2-, 3- and 4-electron atoms. [S]

13. Show that a harmonic oscillator has a total energy of

E = 1
2

h̄ω coth
h̄ω
2kBT

. [M]

14. Show that, under the constraints of Fermi-Dirac statistics, a free
electron ensemble at 0 K has a mean kinetic energy of (3/5)EF.
When the temperature is finite, this average is

〈T〉 = 3
5

EF(0)

[

1+ 5π2

12

(
kBT

EF(0)

)2]

.

Assuming this relation, find the ratio of the specific heat cV for
a Fermi-Dirac constrained condition versus classical conditions
when EF = 7.0 eV. [S]

15. Find the pressure exerted by the gas of electrons obeying Fermi-
Dirac statistics. What is it for copper? Now consider a non-
degenerate semiconductor, say Si, with 1018 cm−3 concentration
at 300 K. How different is it? [S]

16. A cubic lattice has N atoms per unit volume, and each atom has Z
valence electrons. What is the Fermi wavevector radius in the free
electron approximation? [S]

17. What specifically do we mean when we say that the electron’s
crystal momentum is h̄k? In what way is it not the electron’s
momentum? [S]

18. Should the group velocity ((1/h̄)∇kE) of the electron in any band
always go to zero at the Brillouin zone boundary? Give a short pro
or con argument. [S]
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19. Show that, in a cube of volume a3 with periodic boundary
conditions, the wavevector satisfies kx = 2πnx/a, ky = 2πny/a,
and kz = 2πnz/a, where nx, ny and nz are integers. From this,
show that
• the density of states follows

dnx dny dnz

a3
= dkx dky dkz

(2π)3
.

• Also show that, for a spherical cavity,

dkx dky dkz

(2π)3
= 4πν2

c3
dν,

where ν is frequency and we have assumed this problem to be
that for an electromagnetic wave and a photon. [S]

20. Why does the energy spacing between allowed eigenstates vary as
∝ L−2 where L is a linear dimension of the material? [S]

21. For conduction band minima or valence band maxima, does E ∝
k · k have to be the lowest order dependence? Why? [S]

22. A one-dimensional periodic lattice has a period R. Show that the
free electron wavefunctions are degenerate at the Brillouin zone
boundaries. Now, if one introduces a small periodic potential V at
each atom site inhabiting this lattice, show that the wavefunction
solution at the boundary is proportional to sin(nπz/R) and
cos(nπz/R), with n as an integer. [S]

23. Why is the appearance of an energy gap at the Brillouin zone
boundary of a lattice in one dimension the equivalent of a Bragg
reflection for the electron waves? [S]

24. A one-dimensional periodic lattice, of period R, has the following
potential:

V = V0 for − a ≤ z ≤ 0,
V = 0 for 0 ≤ z ≤ R − a, and

V(z + R) = V(z).

What are the energies at the zone boundary when V0 = 0.1, R = 8,
and a = 3 in normalized units, at
• the top of the first band, and

• the bottom of the second band? [S]

25. A one-dimensional crystal has an energy dispersion given by

E(k) = h̄2k2

2m∗
0

− αk4.
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Find α, the effective mass at the zone center and the zone edge
(π/a), the maximum group velocity and the corresponding
energy. [S]

26. A simple cubic crystal with a unit size a has the energy dispersion
given by

E = −E0[cos(kxa) cos(kya) + cos(kza)].

Evaluate the effective mass tensor at the zone center, the face
center and the corners. [S]

27. Consider a linear lattice with a as the translational basis and the
crystal formed from it with the periodic potential

V(z) = V0 + V1 cos
(
2πz

a

)
+ V2 cos

(
4πz

a

)
+ · · · .

• What are the conditions for the free electron approximation to
work?

• Draw the three lowest energy bands in the first Brillouin zone.

• Calculate the first order energy gap at k = π/a and k = 0. Where
do these occur, and why? [S]

28. The conduction band minima appear at all sort of points, par-
ticularly L, near X, and other points in the Brillouin zone across
various group IV and III-V semiconductors. But valence band
maxima—light hole, heavy hole and split off—appear at the zone
center. Can you think of a conceptual reason? [S]

29. Show the equivalence of the two formulations of Bloch’s theorem,

ψ(k, r + Ri) = ψ(k, r) exp(ik · Ri)

and

ψ(k, r) = uk(r) exp(ik · r), where uk(r + Ri) = uk(r). [S]

30. Why does SiH4 exist as a stable molecule while Si2 does not? [S]

31. The periodic Dirac delta potential

V(z) = V0
∞∑

n=−∞
δ(z − na)

is a toy model potential for a linear atomic chain. a is the peri-
odicity of the lattice. Find the form of the Bloch wave. Note
that the spike implies that the first derivative of the wavefunc-
tion will be discontinuous. Show also a graphic procedure for
obtaining E(k). [S]



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

134 semiconductor physics

32. A crystal has a static dielectric constant εr(0) = 5.9, and a dielectric
constant in the near infrared, approximated as εr(∞) = 2.25.
The reflectivity vanishes at 30.6 μm. Calculate the longitudinal
and the transverse phonon frequencies at q = 0, expressing them
in units of eV, K and s−1. [S]

33. Take into account only first order perturbations in the density of a
free electron gas due to an oscillatory applied potential, and show
that the response is described by a dielectric constant of

ε(ω,q) = 1− e2

q2ε0

∑

k

f0 [E(k + q)]− f0 [E(k)]
E(k + q) − E(k) − h̄ω

. [M]

34. If one assumes the result (or derives it), and then takes the static
asymptotic limit ω → 0, show that a static perturbation produces
a dielectric constant which will completely screen the external
field of a long wavelength phonon; that is, of q → 0. This dielectric
constant is

ε(q, 0)/ε0 → 1+ λ2

q2
, where λ2 = e2N(EF).

Here, N(EF) is the density of states on the Fermi surface. This is
precisely the Thomas Fermi approximation. Using this approxima-
tion, show that a point charge of +Ze in an electron gas exhibits a
perturbing potential of

V(r) = 1
4πε0

Ze2

r
exp(−λr).

Note that if we include into this the semiconductor environments’
polarization, we arrive at

V(r) = 1
4πε

Ze2

r
exp(−λr). [M]

35. Give a physical reason why ωq of the acoustic branch asymptotes
to 0 as q → 0? [S]

36. Find an expression for the  ̏mass˝ of a phonon of average thermal
energy at 300 K, and compare this value with that of an electron’s
mass, ignoring dispersion. [S] Note that Planck-de Broglie

relationships give us a way of
connecting energy, momentum and
wavevectors.

37. A one-dimensional crystal consists of identical massesM con-
nected by two different spring constants ks1 and ks2. Plot the
dispersion curves for the acoustic and optical branches, and show
that the characteristics frequencies are related as

ω2q = ks1 + ks2

M

{

1±
[

1− 4ks1ks2 sin2(qa/2)

(ks1 + ks2)
2

]}

. [S]
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38. We will explore the question of damping in phonon oscillations by
removing the linear spring constant approximation and adding
anharmonicity. Consider an infinite linear chain of atoms of
mass m, a apart and connected via spring constants ks. But there
also exists a damping force of F = − �dun/dt, where un is the
displacement of the nth atom from its equilibrium position Rn.
So, the damping is proportional to the velocity. Assume that the
damping �2 � ks/m, and discuss specifically for the zone center
and zone edge modes the following:

• How does this damping affect the energy-wavevector relation-
ship; that is, ω(q)?

• What is the relaxation time of the modes? [M]

39. Another interesting exercise in exploring nonlinearity in harmonic
oscillators is to add a weak anharmonic term to the problem and
understand the consequences as derived from perturbation theory.
Assume a particle of mass m is in a harmonic oscillator potential
with frequency ω, but with a weak anharmonic term:

V(z) = 1
2

mω2z2 + ε
(z

l

)2

with

l =
√

h̄
mω

.

Using perturbation theory, find the first order approximation
for the wavefunction, and both the first and the second order
approximations for the energy levels. [S]

40. Determine and plot in the 〈100〉 directions the three-dimensional
vibration bands for a simple cubic Bravais lattice with a basis
of one atom by considering interactions between nearest
neighbors. [M]

41. The phonon dispersion in a two-atom basis system with one force
constant may work for longitudinal modes but becomes quite
inaccurate for transverse modes. Take the force constants ks1 and
ks2 for the massesM1 andM2 of a chain and show that the phonon
solutions are given by

ω4q − M1 + M2

M1M2
(ks1 + ks2)ω

2
q + 2ks1ks2

M1M2

[
1− cos

(qa
2

)]
= 0

and

u2
u1

=
[
ks1 + ks2 exp(iqa/2)

]
/
√

M1M2

[(ks1 + ks2)/M2]− ω2q
.

[S]
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Figure 3.27: A linear bonded chain of
mmass atoms with one atom of mass
M as a defect, with other parameters
constant.

42. Just as phonon dynamics are affected by the serious disruption
caused by the surface and consequent translation symmetry
breakdown, they are affected by other unintentional or intentional
perturbations in the crystal. We will consider a single atom linear
chain in which we replace one of the atoms by another of larger
massMwhile other parameters, such as the spring constant ks,
remain the same. Figure 3.27 shows this mass at n = 0. Assume
that the displacement is described by the ansatz  ̏Ansatz˝, a German word, means  ̏an

approach˝ or  ̏an attempt.˝ An ansatz
for us is the establishment of a starting
point—of an equation, a theorem, a
function or a value—that describes
a problem or a solution, taking into
account its boundary conditions. The
ansatz is an assumption that will
speak to its validity and constraints
upon completion of the mathematical
manipulation.

un = u0 exp
[−q(ω)|n| − iωt

]

for the displacement of the nth atom. Normally, we would have i

In writing the input to the exponential
as
[−q(ω)|n| − iωt

]
, we have

normalized the wavevector here to
a, which is the translationally invariant
distance.

in front of q here, with q real for oscillating mode. With this redef-
inition of q (i folded in and normalization), all those possibilities
still exist (except that real and imaginary are reversed).

• Calculate the eigenfrequency of this chain.

• Is your solution valid for all masses? If not, it may be because
the ansatz used here is not a fair choice.

• For the solution, how does the amplitude decay with distance?
[M]
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Bandstructures

Electrons and phonons, one the carrier of charge and the
other representing the vibrational excitation of the atoms of the
crystal, are two particles or quasiparticles that we must be able
to describe in the periodic crystal accurately. The wave-particle
duality is reflected in the description of their states, whose most
important characteristic is captured for us through the energy
(E = h̄ω = T + V), a sum of the potential and kinetic forms for the
electrons, which can traverse or stay bounded in the crystal, and the
energy (call it Eq = h̄ωq = Tq + Vq) of the vibrational modes. For
the former, we have also ascribed the wavevector k and a crystal
momentum h̄k, and, for the latter, we have ascribed a wavevector q
and a momentum h̄q. We used toy models in Chapter 3. Semicon-
ductors will be considerably more complex, given the nature of the
atoms, their ionicity, the valence states, the residual core, the nature
of interactions, the nature of bonding and various other factors. So,
the description of real semiconductors requires more substance than
our preliminary discussion of the essential concepts.

For the electrons, the wavefunction is a Bloch function. These
Bloch functions are plane waves if the modulation function
unk(r) = 1, as in the hypothetical zero-potential perturbation
semiconductor crystal of Chapter 3. The two-wave solution was an
example where this perturbation was a delta function in real space,
with the reciprocal space periodicity of K. In the realistic crystal,
the perturbation will be a spread spatially, with the interaction
strong when the position coordinate is close to the core, and less so
farther away. If one were still using a plane wave basis, then many,
many more terms will be needed in a Fourier expansion to capture
the spread of variation in real space. So, the toy model techniques
that we employed to understand the wave-particle description of
a semiconductor bandstructure are quite wanting in describing
the electron bandstructure of a real crystal. This difficulty can be

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001
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attacked through a number of techniques employing choices in the
basis functions from which to build the solution. Each has its merits
and shortfalls.

Tight binding is the approach where one uses atomic orbitals.
It is particularly useful when bonding is strong and where the
final states are more atomic-orbital-like, such as the states in
valence bands. But imagine the challenge of building a nearly free
electron—the spread-out modulation function unk(r) of a conduction
band electron that also modulates rapidly near the core—out of
the orbital basis. Tight binding helps us look at hybrid orbitals
(and the valence band), which will appear often as we attempt
to understand point defects and point perturbations in general
because of the intimate evolution from atomic orbitals to bonding
hybrids. Interestingly, the plane wave method, which, as we just
implied, is more suitable for the nearly free electron representation,
can be modified through an orthogonalization to make it very
suitable around the core region. This leads us to discuss the use of
orthogonalized plane waves as a method. Here, one can build the
wavefunction without having to include a large number of terms in
the construction. This discussion then takes us on to a discussion
of pseudopotential, where we will  ̏concoct˝ a wavefunction in the
core region—make a pseudopotential—that captures the kinetics
accurately. This is a numerically efficient method for electron
bandstructure calculation. Another modern technique is the use of a
functional—the density functional—that is very adept at simplifying
the solving of the crystal Hamiltonian and tackling the erring
ways of the Hartree potential discussed in Chapter 1. Another
method, equally useful, and also more physically meaningful
and with numerous overtones, is the k · p method. We will use
this to understand the meanings of the ideas of effective mass,
of the strength of oscillators (the lowest order stable systems due
to the restorative nature of the second power in canonic shifts
from equilibrium), of anharmonicity at bandedges and of valence
bandstructure, particularly due to the spin-orbit coupling.

The calculation of phonon bandstructure too, likewise, will have
considerable changes, given the limitations of the one dimension
and other simplifications that were adopted in their introduc-
tion. We will largely summarize these results, since many of the
important and foundational thoughts about the longitudinal and
transverse and the optical and acoustic modes have been dealt with
in Chapter 3.

The introduction of these various techniques, their implications
and their pitfalls is the scope of this chapter, where we end up with
a realistic representation of the bandstructures of semiconductors.



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

chapter 4: bandstructures 139

By bandstructure here, we mean the structure of the bands of
electron states as well as of the phonon states.

4.1 Bonding and binding

Chapters 1 and 3 have given us a preliminary understanding
of how one may model when electrons are brought together.
A 2-electron, 2-atom system—the hydrogen molecule—forms a
spatially symmetric singlet state and a spatially antisymmetric
triplet state. The simple 1s1 configuration of a hydrogen atom,
where there are two possible s energy states with up and down
spin, with the electron filling one, when two of the atoms are put
together, now has 2 × 2 = 4 states, and the degeneracy has been
lifted. One state, the singlet, has lowered in energy. Because the
molecule has two electrons, and the singlet state accommodates
two electrons with up and down spin, it forms a stable low
energy bonding state. The triplet state, a higher energy state, is an
antibonding state that the molecule may be excited to but is not
an equilibrium state. Four degenerate states have evolved into a
combination of 1 (singlet) and 3 (triplet). Electrons as fermions are
in states that have different wavefunctions including their spin.
When one assembles many atoms with their electrons together in
a crystalline solid, the problem has evolved to one of a larger scale.
States will evolve, as they did with hydrogen molecule. Periodicity
will place constraints. Chapter 3 set up the preliminary framework
and physical intuition of what may happen and how one may
understand it.

Figure 4.1: Atoms with three energy
levels (for example, 1s, 2s and 2p) as
they are brought together and evolve
in weak coupling. Bands of states
form, and degeneracy has been lifted.

The formation of molecules is a tight binding where the energies
and wavefunctions of the atomic orbitals undergo change, forming
the bonding and antibonding states. At its simplest, if one took
an atom and brought a number of them together, the energies
of the states—valence and core—will evolve, and degeneracies
will be lifted. Figure 4.1 is an illustration of bringing a group of
atoms together. When they are very far apart, in the left part, the
energy description derived from the atomic description is a good
description, and each atom looks the same, as shown on the left,
with energies shown along the ordinate at the origin of the abscissa.
As one brings them together, the degeneracy of these states will be
lifted. The total number of states arising from these three energies is
invariant. In a two-atom system, one may see something akin to the
hydrogen molecule, or maybe not depending on the interactions,
but some general features will hold. Consider the level at energy E3

with an eigenfunction |u3〉. This has the strongest interaction. The
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degeneracy lifting will have the strongest energy spread because the
interaction is the strongest. The antibonding states and the bonding
states will spread, forming a band as many of these atoms interact.
The next energy level down (E2) too will have interaction, but it
is slightly weaker and the spread a little smaller. The level at E1,
meant to represent a core level, will have very weak interaction
and little spread. So, depending on the spreading of these bands,
one may see an overlap with degeneracy still lifted, or one may see
separate bands. As shown in the figure here, at a0 separation the
bands have a separation of Eg, the bandgap. We will see soon that it
is possible for the bonding and antibonding states and their spread,
as they arise from these different orbitals being brought together, to
overlap and separate out again. Now there has been mixing of the
states.

4.2 Tight binding

Tight binding gets its name from the tight coupling between
atoms. It was developed originally for molecules, where the
covalent bonding is particularly tight, and the atomic orbitals of
the atoms are a suitable starting point for the basis. The linear
combination of atomic orbitals provides then a suitable approach to
describing the bonding. In the crystal, this coupling it is not so tight
anymore. If the crystal has a very strong covalent bond, the forming
of these bonds from the atomic orbitals will give quite accurate
solutions, at least for the valence band states, which are strongly
localized at the atom. For the conduction band states, however,
as they are more delocalized, it is generally necessary to employ
other methods because the atomic orbitals are a poor starting basis.
But there are strongly bonded materials, such as diamond and
graphene, where the s and p orbitals of carbon—as orbitals or as
sp2 hybrids—do work accurately, with the out-of-plane pz orbital
feeling fairly weak perturbation. The tight binding method is also
often referred to as the linear combination of atomic orbitals, and
one can see in this discussion the origin of the term.

Tight binding is a good starting point for discussing crystal
bandstructure calculations, for the following reasons. First, we
understand bonding, antibonding and orbitals well. Second, it
is quite important for understanding the valence band states
with their heavy-hole and light-hole bands and split-off bands.
In these latter bands, the magnetic interaction arising in the
coupling between spin and orbital angular momentum leads to
very significant effects. And, third, point perturbations—vacancies,
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interstitials and substitutional impurities—when they are very
localized, are local interactions—molecular-like—and therefore
using molecular energy calculations, that is, tight binding, becomes
a reasonable way to approach the analysis.

Let |m〉 represent atomic orbitals: |3s〉 and |3p〉, for example,
in the case of silicon. These are the eigenfunctions that the Bloch
functions will asymptote to for vanishing interatomic interaction;
that is, large atomic spacing. In this case,

|ψ(r)〉 =
∑

m

cm|m〉 (4.1)

is the posited solution, and this solution follows from Hmm′ and
Omm′ . If we were to form the basis in one orbital per site, with N
lattice sites, this leads to an N × N secular determinant. This can be
simplified. First, |m〉 may be written in terms of linear combinations
of irreducible basis |i〉 of the space group. As an example, p orbitals
may be written in terms of three orthogonal irreducible bases ( px,
py and pz). So, Hmm′ and Omm′ may now be written in terms of Hii′

and Oii′ , where, due to orthogonality, many terms vanish unless |i〉
and |i′〉 are of the same irreducible representation. Bases forming
irreducible representations of translation subgroup (T) suffice to
construct representations of the entire space group (G). They are
irreducible and complete. T̂k is one dimensional. The consequence
of an operation by T̂m is a modification by exp(−ik · Rm). The linear
combinations of these, too, are bases of T̂k. So, they are also bases
of |ψk(r)〉, that is, we now have a Bloch function

|ψk(r)〉 =
∑

m

exp(−ik · Rm)|m〉. (4.2)

We now form linear combinations
∑

k ψk(r), where all different
Bloch functions of different k are orthogonal. With diagonalization,

Ek = Hkk

Okk
= 〈ψk|Ĥ |ψk〉

〈ψk|ψk〉 , (4.3)

assuming one orbital per site. In silicon, where s, px, py and pz will
all contribute, each one will lead to its specific Bloch sum ψk(r).
This will require further symmetrization.

4.2.1 A one-dimensional tight binding toy model

We illustrate tight binding using a one-dimensional toy
model. In Chapter 20, we will discuss a more complete usage of
tight binding in calculating graphene’s bandstructure. In the toy
model, being a one-dimensional crystal, Equations 4.2 and 4.3
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suffice. Rm = mâ, with m = 1, 2, . . . ,N. k = hb̂/N, with h = 1, 2, . . . ,N,
and b̂ the reciprocal space unit wavevector. Take N as even for
convenience and without loss of generality. We may spread h
symmetrically, because h is periodic in N. So,

h = −N
2
,−N

2
+ 1, . . . ,

N
2

− 1,
N
2
, (4.4)

and since â · b̂ = 2π ,

ψk(r) =
∑

m

exp
(

−i
2πhm

N

)
|m〉. (4.5)

Consider only nearest neighbor interactions with This approximation to overlap and
nearest neighbor coupling is the
Hückel approximation.〈m′|m〉 = δmm′ ,

〈m′|Ĥ |m〉 = E0 for m′ = m,

= β for m′ = m ± 1, and, for all else,

= 0. (4.6)

E0 is the eigenvalue of the Hamiltonian for the atomic orbital |m〉.
By nature of atomic spacing being significant, we have also
assumed that overlap vanishes, and that perturbation arises from
nearest neighbor interactions only. 〈ψk|ψk〉 is just the sum of m 1s,
so N. Therefore,

Ek = 1
N

〈ψk|Ĥ |ψk〉

= 1
N

∑

m′m
exp
(

−i
2πhm′

N

)
exp
(

i
2πhm

N

)
〈m′|Ĥ |m〉

= 1
N

NE0 + 1
N

∑

m

β

[
exp
(

−i
2πh(m + 1)

N

)
exp
(

i
2πhm

N

)

+ exp
(

−i
2πh(m − 1)

N

)
exp
(

i
2πhm

N

)]

= E0 + 1
N

2β
∑

m

cos
(
2πh
N

)

= E0 + 2β
1
N

cos
(
2πh
N

)
,

with h = −N
2
,−N

2
+ 1, · · · , N

2
− 1,

N
2
. (4.7)

Figure 4.2: Energy levels, marked by
solid circles, for a chain of N = 6 in
the Hückel approximation for tight
binding.

Take the example of N = 6; h then takes on values of −2,−1, 0, 1, 2
and 3. This is a benzene-like ring structure, since no constraint
was placed for end points. Two of these pairs, (2,−2) and (−1, 1),
are degenerate, and h = − 3, 0, 3 is non-degenerate. So, four terms
need to be calculated, as summarized in Table 4.1 and plotted
in Figure 4.2. With N = 6, this energy picture is a toy model for
a benzene-like example employing carbon’s 2p states, where β

parameterizes the next neighbor coupling.
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A more complete example of a tight binding calculation can be
seen in Section 20.3, where graphene is employed as an example of
a monolayer material.

4.2.2 Reflections on tight binding

This discussion of tight binding reflects the use of atomic
orbitals as the starting point for calculating the bandstructure.
In diamond and zinc blende lattices, this would imply the use
of |s〉, |px〉, |py〉 and |pz〉 as the starting points through the sp3

hybridization. Since localized atomic orbitals comprise the basis
function, one should expect an accurate description of the valence
bandstructure easier to achieve since valence electrons are mostly
localized in the bonds. The corollary to this is that an accurate
description of the delocalized conduction bandstructure would be
harder to achieve using tight binding.

But since tight binding is intuitive to comprehend, it is a
convenient tool for understanding the variety of general features
one sees in semiconductor bandstructures, and one is not left to
wonder or to accept it as  ̏this is what the computation says.˝ Tight

As an aside, the aspect of computation
as an arbiter is something that the
reader will have noticed I abhor.
There should be good arguments—
not necessarily definitive but in
support of plausibility—that appeal
to reason.  ̏Shut up and calculate˝
is often an edict when metaphysical
discussions regarding the Copenhagen
interpretation, the introduction of
an observer, or even the Bayesian
interpretation for quantum mechanics
ensue. This phrase and the philosophy
is amusingly dealt with by David
Mermin in the Reference Frame
column  ̏Could Feynman have said
this?˝ in the May 2004 edition of
Physics Today (57, 10). He cites the
phrase as an example of the Matthew
effect, which I refer to in one of these
marginalia notes in one of the other
texts.

binding is quite instructive in this regard.
Generally, for atoms, the s orbitals are closer to the nucleus

than the p orbitals. s orbitals are not polar while p orbitals are
polar. Semiconductor crystals are either covalent, as with single
element semiconductors, such as those of group IV, or ionic, as
with those that are of group III-V or II-VI. Ionicity implies transfer
of charge—a polarization—with spatial movement of electron
probability densities. Table 4.2 summarizes some of the ionicities

Ionicity is a term of pedagogical
convenience that is bereft of a general
definition, since it is employed for
molecules and the different states
of matter: gases, liquids, and solids
with the electron charge cloud
being considerably fuzzy. Ionicity
to us is a parameterization of charge
distribution such as used by Pauling
and Phillips. We look upon it as a
normalized scale of charge transfer.

of semiconductors of interest.
Consider a hypothetical Si- or Ge-like crystal with inversion

symmetry with the states evolving from the outermost filled
orbitals of s, with its orbital quantization of l = 0, and p, with
l = 1. This latter then has azimuthal quantization of ml = − 1, 0, 1.
Tight binding’s implication for the evolution of states through the
crystal Hamiltonian consists of building states by mixing |s〉 and
|p〉 orbitals. The former is symmetric, and the latter is oriented
along the three principal Cartesian coordinates. In the conduction

Table 4.1: Energy levels in a linear
atomic chain with N = 6. The linear
chain then ties back in a loop. β is the
energy of next neighbor interaction,
and E0 is self-energy.

h Degeneracy cos(2πh/t) Ek

0 Singlet cos(0) E0 + 2β
1 Doublet cos(2π/6) E0 + β

2 Doublet cos(4π/6) E0 − β

3 Singlet cos(6π/6) E0 − 2β
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band, the more delocalized states, when they are near the center
of the zone, will be |s〉-like. This follows from the symmetry
argument. But, away from the center, they will arise from the more
|p〉-like character. Both the ionicity, which represents the charge
redistribution, and the orbital probability densities imply different
features that one observes in semiconductor bandstructures.

Ionicity

Si 0.00
Ge 0.00
SiC 0.18
GaAs 0.31
AlAs 0.42
InAs 0.46
GaSb 0.36
AlP 0.39
InSb 0.32
GaP 0.33
InP 0.42
ZnS 0.62
ZnSe 0.63
CdSe 0.70

Table 4.2: Ionicity of a select set of
semiconductors.

The valence band—states closer to the nucleus—is very
interesting, and shows a lot of complexity arising in the
conservation principles and the localized core electron interactions
close to the atom rather than the overlap of wavefunctions of
electrons from separate atoms. We will discuss these at length. A
number of important consequences can be mentioned here. The first
point relates to the localization and evolution of the new states from
the orbital wavefunctions. The second relates to the consequence of
spin—and its magnetic manifestation—interacting with the nucleus
charge while moving, as in the orbit of an atom or in the localized
conditions of the crystal.

Figure 4.3: (a) A representation of
the tetrahedral bonding in a cubic
semiconductor crystal. (b) The
polarization of the hole states. In
(b), the heavy-hole polarization shows
the consequence of two perpendicular
p orbitals, and the light-hole state
shows the consequence of the third p
orbital, which has increased mixing
with the s orbital.

Regarding the first, the sp3 hybrid is the way the s and p states
evolve to tetrahedrally arranged bonding states with opposite spin
electrons in each bond. These hybrids, |h1〉, . . . , |h4〉, are of the form

|h1〉 = 1
2

[|s〉 + |px〉 + |py〉 + |pz〉
]
, through

|h4〉 = 1
2

[|s〉 − |px〉 − |py〉 + |pz〉
]
, (4.8)

where the negative signs circulate between the different |p〉s to form
a non-degenerate set. These hybrids are oriented tetrahedrally, as
shown in Figure 4.3(a). Since superposition of any p orbitals is also
a p orbital, just oriented differently, we have

|h〉 = 1
2

[|s〉 + |p〉] , (4.9)

oriented in the 〈111〉 directions and orthogonal to each other. s
orbitals are homopolar, while p orbitals are polarized; the hybrid
leans toward the positive. Formally, the tight binding constructed
using the atomic orbitals or through the hybrid are equivalent. So,
a tetrahedral bonding will be based on eight hybrids and result in
eight Bloch basis states. The diagonalization of the Hamiltonian
will therefore lead to eight energy bands—bonding (valence) and
antibonding (conduction), so, four for the valence band, and four
for the conduction band. This construction of Bloch states could as
well have been performed using s and p orbitals. The hybrid is a
convenient view that fits with our chemical bonding picture and
is closer to the physical arrangements of the electron probability
distributions in the real crystal. It will computationally also be
more efficient, due to this nearness. Quantum-mechanically, one
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may as well have stayed with the s and p orbitals. These will still
lead to the eight Bloch basis states for a two-atom basis in the unit
cell. Accurate calculation of the conduction bandstructure in tight
binding will also require the incorporation of higher orbitals, such
as 4s in the case of Si.

In the valence band states, this tight coupling in the hybrid (or
atomic orbital) basis leads to the polarization of the p states, as
shown in Figure 4.3(b). The in-plane p orbitals give rise to two
heavy-hole polarizations, and the out-of-plane polarized p orbitals,
with more mixing with the s, gives a lighter hole polarization.

Figure 4.4 is the pictorial view of this discussion, with reference
to atoms with |2s〉 and |2p〉 orbitals. Part (a) shows our bonding-
antibonding, hybrid orbital and band view in a simple way for
the semiconductors where there is sp3 hybridization and therefore
tetrahedral bonding. The |s〉 and |p〉 orbitals of the atoms hybridize,
forming the sp3 hybrids |h1〉 through |h4〉 that comprise the bonding
framework of the crystal. One could as well have seen the |s〉s’ and
|p〉s’ degeneracy being broken when the atoms are brought together,
forming this quantum assembly leading to the conduction and
the valence bands. Parts (b) and (c) show the probability density
representation of representative antibonding and bonding states
of these bands, such as the bandedge state, for example. Part (d)
shows this evolution in energy of the states—as represented by
the figures in (a) through (c)—as one brings about the formation
of the crystalline assembly. At large as, the orbitals are largely
unperturbed, as one brings them together, bonding and antibonding

Figure 4.4: A representation of the formation of bonds and bands. (a) The creation of hybrids from the atomic orbitals,
as well as bonding and antibonding states and their evolution into conduction and valence bands. (b) and (c) The
representational probability distributions of antibonding and bonding states. (d) The forming of bonding and
antibonding bands and their evolution to conduction and valence bands with a bandgap as atoms are brought together.
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states form and spread out into bands, as we saw earlier in
Figures 4.4 and 4.1. Even shorter interatomic spacing causes overlap
of the bonding and antibonding states that arose from the |s〉 and
|p〉 states. They merge, and, when there is even shorter spacing—
at the equilibrium, where the system has the lowest energy—a
bandgap appears. The valence band states are separated from the
conduction band states. All the states as shown in this figure arose
from the intermixing and evolution from the |s〉 and |p〉 states. In There is one additional notation

that you will encounter in this text.
When s orbitals in a crystal lead to
the formation of a band due to the
breaking of the translation symmetry,
we will sometimes refer to it as the
σ band. For p orbitals, it is the π

band. We are showing deference to
history here. This notation will appear,
for example, in the discussion of
monolayer crystals (Chapter 20) such
as graphene, where the pz orbital leads
cleanly to the antibonding π band.
σ also should not be confused with
conductivity, or σ for spin matrix.

general, both the valence band and the conduction band will have
symmetries that are s-like, p-like or a mix, but there will be a large
bonding-like nature to the valence band states, that is, localization,
and a large antibonding nature to the conduction band; that is,
delocalization. Conduction will take place in both of these bands
so long as filled and empty states exist, due to the Bloch nature
of these states—the pictures in Figure 4.4(b) and (c) are connected
spatially in real space, only the valence bands are more bound than
the conduction band states. In Figure 4.4(b), the antibonding state is
drawn to have spherical symmetry at the corners of the cube. These
states will appear at and near � in reciprocal space with isotropic
symmetry of transport. But they could have orientational features
due to their p-like nature, and then, as in Si or Ge, the conduction
band minimum will not have isotropy.

Figure 4.4(b) and (c) also point to what would happen if an
atom was missing or replaced by another atom with different
valence orbitals of importance, for example Ti with d orbitals, or of
occupation, for example S with two more electrons in the p orbitals,
compared to group IV atoms. There is now a local perturbation. In
these situations, this local molecule-like representation and usage
gives much more insight, since it emphasizes localization. Chapter 7 will deploy this bonding-

antibonding molecular representation
to understanding localized states.

In cubic semiconductors, the s bonding state of the valence
band is much lower in energy, since it is much more localized
and homopolar. So, the edge states of the valence band arise
in the px-, py- and pz-based bonding states. These are Cartesian
oriented. Figure 4.3(b) shows what a hole state polarization would
be like along any 〈001〉 direction. The valence band maximum by
symmetry should be at the zone center. In any such orientation,
since the composing p states are also orthogonal, two in-the-
plane orbitals will contribute to a degenerate state, and one out-
of plane orbital will form another state. So, there will be two
bands for which the spin complexity is not incorporated. The
two perpendicular orbitals from in-plane p orbitals are heavy-
hole bands—heavy since the overlap is small due their original
orthogonality. The third band will be a light-hole band with large
curvature and increased overlap. When moving away from the �
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point, the heavy-hole Bloch function is still very much p-like. But
the light-hole Bloch function has considerable mixing with the s.
This keeps the curvature high. Based on this argument, one will
also see that as one deviates from the axial directions in the plane,
the heavy-hole bands should do so with considerable anisotropy,
but the light-hole bands should remain more isotropic. These
differences are shown in Figure 4.5, which also shows a split-off
band to be discussed shortly and in more detail later in the chapter
after developing the mathematical formalism to look at spin-orbit
interactions. The hole bands bring out the angular-momentum-
dictated features because these states and the electrons in them are
quite localized and under the strong influence of the nucleus and
atom-driven quantum characteristics.

Figure 4.5: Tight binding and its
bandstructure consequences. Si’s
conduction band minimum is a
mix of |s〉 and the different |p〉s Ge’s
is a mix of the different |p〉s, and
GaAs’s is made up of quite symmetric
|s〉s. Valence band states—more
strongly localized to the nucleus—
have different angular momentum
polarization and have the highest
energy at the zone center. A split-off
band also arises due to spin-orbit
coupling energy. Conduction band
states, since they are very delocalized,
have vanishing spin-dependent
energy. Most semiconductors, unless
there are intentionally magnetic,
will only show spin’s effect in the
conduction band through the state
degeneracy.

The conduction band states are highly delocalized even if one
has built them here through the atomic orbitals. Now the ionicity or
covalency and the size of the atoms starts to matter substantially,
even if angular momentum does not. Take Si, as sketched in
Figure 4.5; it has a conduction band minimum along the 	 direction
close to the X point. Si has 3s and 3p partially filled outer orbitals.
It is also covalent. On the other hand, Ge has a conduction band
minimum along the 
 direction at the L point. Ge has 4s and
4p orbitals partially filled, so farther out. Both are covalent, so
charge transfer has little perturbational effect. When an atom is
small, both the s and the p states are mixing and contributing, and
are important, but it is px, py or pz that is dominant, depending
on the orientation. This is reflected in the minimum appearing
along the 	 direction and near the X point, showing the Cartesian
orientations of the minimum. The importance of the s is reflected
in the plane perpendicular to this direction at this point. This
orthogonal direction is affected strongly by the homopolar nature
of the contributing orbital function. The transverse mass is smaller
while the longitudinal mass is larger. Ge being a larger atom, the 4s
orbital’s influence is weaker, px, py and pz contribute equally and
the minimum is now at 〈111〉, that is, the L point. The equienergy
surface is still an ellipsoid arising in the s contribution transverse to
this direction. GaAs has the conduction band minimum at the zone
center. Although GaAs has a Ge-like atomic number average, it is
ionic with a significant charge redistribution. And the consequences
are both an increase in the bandgap, because of the larger Coulomb
perturbation, and a shift in the locale of the conduction minimum.

So, for Si, along the direction 〈100〉, the states are now a mix of
|s〉 and |p〉. And, at the minimum, in the longitudinal direction,
they are quite |p〉-like—or, more precisely, |px〉−, |py〉− and |pz〉-
like—along the six minima of the 〈100〉 direction. Orthogonally,
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they are more |s〉-like. So, there appears a longitudinal mass and a
transverse mass. For Ge, because the Hamiltonian energetics is now
different, the atom is larger, the orbitals are farther away from the
core, and the conduction minimum now arises in the |px〉, |py〉 and
|pz〉 mixing in equal strength. The minimum is at the L point, at the
zone edge, so there are eight half ellipsoids or an equivalent of four
full ellipsoids.

The p orbitals have orbital angular momentum quantization.
Electrons also have spin quantization. And we incorporate the
total angular momentum quantization through J = L + S, where
the total angular momentum J2 and its axial component Jz must
be quantized, as is true for the orbital and the spin angular
momentum. This conservation means that we now end up with
states—valence states that are closer to the core—that have j = 3/2
and j = 1/2, with mjs of 3/2, 1/2,−1/2 and −3/2. The orbital and the
spin angular momenta also lead to an additional energy. The result
is that there are a set of states of | j,mj〉 = |3/2,±3/2〉 that form one
band, a set of states |3/2,±1/2〉 that form another band and, finally,
a set of states |1/2,±1/2〉 that form a third band. The first, with its
specific polarization mj = ±3/2 arising from the angular momentum
quantization, is a heavy-hole band; the second, with mj = ±1/2, is a
light-hole band and the third, where spin-orbit interaction displaces
the energy further, is the split-off band, with j = 1/2 and, therefore,
mj = ±1/2.

This valence picture holds true for the most common diamond
(inversion symmetric) and zinc blende (inversion asymmetric)
semiconductors, as well as for the inversion asymmetric wurtzite
semiconductors. The conduction band picture, however, with the
energy of the states higher and the electrons further away from
the nucleus, is more strongly beholden to the stronger interaction
between the outer states of the different atoms of the assembly.
Conduction bands can differ substantially. The increased ionicity
of GaAs makes it a direct bandgap semiconductor, while AlAs—Al
being smaller than Ga—is an indirect bandgap semiconductor. We
will return to the details of this discussion after having explored
these various methods for bandstructure calculations.

4.3 Orthogonalized plane waves method

The problem with plane wave solution’s numerical
inappropriateness comes about from its strong inadequacy
for short waves; that is, large reciprocal wavevectors. An
electron strongly localized to lattice sites would then be quite
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inadequately described, since a large number of plane wave
states are needed to describe this localization of the wavepacket.
Herring proposed a clever way to circumvent this difficulty,
which is a difficulty of electron oscillations—localization—
in the core region. The electron wavefunction, with the
orthogonalization, now corresponds more closely to that of the
valence electrons, and it works well in most situations where
the core valence states are not very extended out. d and f orbitals
do stretch out, so the approach is more limited in applicability for
transition metals. The basis set integrates the rapid local variations
with slow, nonlocal variations by introducing plane waves that are
orthogonalized to the core states. The method, therefore, is still a
plane wave method, but it reproduces the oscillatory nature well.

Let t represent a core state, and j a specific lattice site, so that

|σ 〉 = |tj〉 = |ψ t(r − rj)〉 (4.10)

represents a core state at locale j with energy Etj ≡ Et. Different
eigenfunctions on the same atom, that is, at specific j but differing
t, are orthogonal. The case with the same t but differing j, too, has a
small overlap, and has vanishingly small overlap for core states, so
it may be treated as orthogonal, that is,

〈t′j′|tj〉 = δt′tδj′j ∴ 〈σ ′|σ 〉 = δσ ′σ . (4.11)

We now introduce the modified wavefunction

|φk〉 ≡ |k〉 −
∑

σ

|σ 〉〈σ |k〉, (4.12)

which has the property

〈σ ′|φk〉 = 〈σ ′|k〉 −
∑

σ

〈σ ′|σ 〉〈σ ||k〉

= 〈σ ′|k〉 −
∑

σ

δσ ′σ 〈σ |k〉

= 0, (4.13)

that is, it is orthogonal. Using a tool of convenience, the projection
operator

P̂ =
∑

σ

|σ 〉〈σ |, (4.14)

we may write

|φk〉 = |k〉 −
∑

σ

|σ 〉〈σ |k〉 = (1 − P̂)|k〉, (4.15)

an artful form, where the meaning of the projection in view of
Equations 4.12 and 4.14 is clear. A generalized Fourier series is an
expansion over any set of orthogonal functions—as it is in Bloch
functions—and we use this projection to create a Fourier expansion
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of |k〉 over orthogonal core states. Figure 4.6 shows a pictorial
description of the procedure, showing the plane-wave-like nonlocal
behavior and the core-like oscillatory local behavior.

Figure 4.6: A pictorial depiction of the
orthogonalized plane wave procedure.
Part (a) shows a plane wave,
(b) shows wavefunctions of the
core, and (c) shows the orthogonalized
plane wavefunction. The ion core is in
the background to show the locale.

We can now expand the crystal Bloch wavefunction in the plane
wave basis, together with this orthogonalization, as

|ψk〉 =
∑

Ki

cKi |φk+Ki〉 =
∑

Ki

cKi(1 − P̂)|k + Ki〉. (4.16)

Since the projection and the orthogonalization removed the core,
now only a few terms of Ki are needed for an effective calculation.

4.4 Pseudopotential method

The orthogonalized plane wave method is a stepping
stone to the pseudopotential approach, a more useful incarnation.
The pseudopotential method attempts to make a judicious separa-
tion of the localized part of the wavefunction description from the
nearly or completely delocalized valence and conducting parts. The
Hamiltonian equation then can be reconstructed in a form that is
easier to tackle, employing a plane wave basis for the bandstruc-
ture. This is to say that one wishes to replace the crystal wavefunc-
tion |ψk〉 of the crystal Hamiltonian equation Ĥ |ψk〉 = Ek|ψk〉 with
a form that is simpler than that of Equation 4.16. The wavefunction
and the Hamiltonian will be  ̏pseudo˝, and we will remove 1−P̂ in
the process. The energies will still be the solution to the problem of
interest, even if the wavefunction is of the pseudo ilk.

Let |ϕk〉 be this pseudo wavefunction, defined as

|ϕk〉 ≡
∑

Ki

cKi |k + Ki〉, (4.17)

which is formulated to reproduce the crystal wavefunction as

|ψk〉 =
∑

Ki

cKi(1 − P̂)|k + Ki〉

= (1 − P̂)
∑

Ki

cKi |k + Ki〉 = (1 − P̂)|ϕk〉. (4.18)

So,

Ĥ |ψk〉 = Ĥ (1 − P̂)|ϕk〉 = Ek(1 − P̂)|ϕk〉
∴ (Ĥ − Ĥ P̂ + EkP̂)|ϕk〉 = Ek|ϕk〉, or

Ĥ|ϕk〉 = Ek|ϕk〉. (4.19)
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The left-hand side has a pseudo-Hamiltonian Ĥ that works with
a pseudopotential and results in the eigenenergy of the crystal
Hamiltonian Ek:

Ĥ = Ĥ − Ĥ P̂ + EkP̂ = Ĥ + (Ek − Ĥ )P̂

= T̂ + V̂ + (Ek − Ĥ )P̂

≡ T̂ + Ŵ, (4.20)

where T̂ is the kinetic energy operator, V̂ is the potential energy
operator and

Ŵ = V̂ + (Ek − Ĥ )P̂ (4.21)

is now a pseudopotential that goes together with the kinetic energy.
The reasoning of why this is significant is the following. V, the

potential, is negative, attractive, spatially large and changing, as
schematically drawn in Figure 4.7. An equation written in a form
where the perturbation is small is quantitatively more tractable. The
considerations applying to the modification arising from putting
these all together in a crystal is captured in

Figure 4.7: A schematic drawing of
potentials and energies in the crystal,
together with probability densities of
states.

(Ek − Ĥ )P̂ =
∑

σ

(Ek − Ĥ )|σ 〉〈σ |. (4.22)

The magnitude of Ek is smaller than that of the core eignenergy Eσ ;
that is, the electron has a larger negative energy when bound to the
atom, and it is freer in the crystal.

Figure 4.8: The reformulation of the
crystal potential problem to that
of pseudopotential. The original
problem had large changes in the
wavefunction |ψk(r)〉 near the core
under the strong ∝ 1/r Coulomb
potential. With a soft core, that is,
with a graded pseudopotential W, the
reformulation of the problem happens
with the wavefunction |ϕk(r)〉 as its
solution. If the wavefunction solution
for the pseudopotential matches in
magnitude and radial derivative
outside the core, the derived results for
valence electrons, bonds and crystal
structure should be accurate.

So, the term in Equation 4.22 is positive and it is large. The
consequence is that the pseudopotential Ŵ is made small by
largely canceling out V̂. By reforming the problem to a smaller
perturbation problem through the introduction of the difference,
we make it easier to tackle. Figure 4.8 shows a schematic view of
what this pseudopotential method achieves by modification of the
Hamiltonian equation to the pseudo form. The equation

Ĥ|ϕk〉 = (T̂ + Ŵ)|ϕk〉 = Ek|ϕk〉 (4.23)

is a nearly free electron equation. V̂(r) is a local potential—electron
exchange interactions are explicitly included in it. Ŵ, however, is
nonlocal and contains the operator P . This is a complication in the
pseudopotential. Another is that, of course, Ek, the quantity desired
through calculation, is a component of the pseudopotential. Because
|Eσ | � |Ek|, this is a not a serious limitation in the iterative process.
An approximate guess of Ek suffices as a starting point. Indeed,
taking it as the Fermi energy EF gives an accurate estimation
around it, and usually that is what we care about most.
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4.5 Density functional method

Density functional theory is the most recent powerful—and
pervasive—tool for determining many of the condensed matter
characteristics—atomic and electronic structure, phonon spectra, et
cetera—involving the trick of using a functional that simplifies the
many-body calculation substantially. We will only summarize here
the enormous simplification that density functional theory provides.

We are usually, at least as a starting point, interested in the
ground state of a system for which we can write the Hamiltonian.
Equation 1.10 was our full Hamiltonian of the crystal, and we
have now spent a hundred-plus pages working out some of the
enormous store of consequences from it, all still in a reasonable but
still approximate way. Density functional theory leads to a good
approximation that is efficient computationally because of how it
can tackle Equation 1.10. In the Born-Oppenheimer approximation,
we simplified the equation to Equation 1.11, which consists of
terms representing electrons’ kinetic energy, electrons’ potential
energy arising through the Coulomb interaction with screened
ions, and the interelectron Coulomb repulsive potential energy.
Chapter 1 expended considerable energy evaluating this last term
by approximating it as a Hartree term, then added exchange to it in
the Hartree-Fock approach, and finally brought in the correlation
correction. We could tackle some of these for the atomic and
molecular systems, but an inhomogeneous electron gas makes
the problem a very difficult one. One of the Hohenberg-Kohn Hohenberg-Kohn theorems state that,

for any system consisting of electrons
moving under the influence of an
external potential, the potential and
the total energy can be expressed via
a unique functional of the electron
density. The ground state energy can
then be obtained variationally, and the
density that minimizes the total energy
is the exact ground state density.

theorems’ consequences is that the exchange and correlation effects
depend only on the electron charge density of a system. This is an
enormous simplification—yet rigorous—since the sum of the two
potentials—interelectron and electron-screened ions—can now be
expressed as a Hartree term, which is a Poisson equation problem,
together with an additional term for exchange correlation that is a
functional of electron density.

This functional, and the use of the electron-density-based
functional, now reduce the problem to a single particle Schrödinger
equation, also known as the Kohn-Sham equation. A number of
excellent texts discuss the rigors of the density functional method,
and we leave the reader interested in pursuing them to follow these
sources mentioned at the end of the chapter.

There are many additional methods in use for calculation of
bandstructure. These include the cellular, the augmented plane
wave and the k · p method. The augmented plane wave approach
uses plane waves outside core regions, and a superposition of
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atomic orbitals close to Rms, so near the core region. The k · p
method uses superposition of bandedge wavefunctions. This is
particularly useful for valence band states, so for light-hole and
heavy-hole bands, and this is the one we stress the most, since it
is very instructive for understanding the nature of states in different
bands and their interactions.

4.6 k ·p method

Like the pseudopotential approach, another numeri-
cally efficient and particularly useful method for understanding
bandstructure-based parameters and what happens in the valence
band, especially through its perturbation approach, is the k · p
method. For bandstructure, its utility is in using the zone center
energy gap and optical matrix elements, or, equivalently, oscillator
strength, toward a good extrapolation over the Brillouin zone. And
this is particularly powerful for the valence band.

We start by showing its usefulness in understanding parameters,
group velocity in our example, before turning to bandstructure
implications such as state interactions represented in effective mass
or changes in energy of states.

The Bloch function is the solution to the crystal Hamiltonian. The
k · p method focuses on unk(r), which is the periodic modulation
function of the plane wave that, together with it, constitute the
Bloch function. Let k′ = k +	k be the wavevector of a state in band
n, separated from a neighboring state at k. The Bloch function is a
solution to the equation Ĥψnk′ = Enk′ψnk′ . The k · p method views
and employs the utility of looking at this same problem through
the implications for the periodic modulation part of the Bloch
function; that is, unk′ . The crystal Hamiltonian can be deconstructed
as follows:

Ĥ ψnk′(r) = Enψnk(r′),
[

p̂2

2m0
+ V̂(r)

]

exp(ik′ · r)unk′(r) = Enk′ψnk′(r),

[

− h̄2

2m0
∇2

r + V̂(r)

]

exp(ik′ · r)unk′(r) = Enk′ exp(ik′ · r)unk′(r),

− h̄2

2m0
∇r
[
ik′ exp(ik′ · r)unk′(r) + exp(ik′ · r)∇runk′(r)

]

+ V̂(r) exp(ik′ · r)unk′(r)

= Enk′ exp(ik′ · r)unk′(r),

∴ − h̄2

2m0

[
(ik′)2 + 2ik′ · ∇r + ∇2

r + V̂(r)
]

unk′(r) = Enk′unk′(r),
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[

− h̄2

2m0
∇2

r + h̄2k′2

2m0
+ h̄k′

m0
· h̄

i
∇r + V̂(r)

]

unk′(r) = Enk′unk′(r),

that is,

[
(p̂ + h̄k′)2

2m0
+ V̂(r)

]

unk′(r) = Enk′unk′(r),

or

[
(p̂ + h̄k)

2

2m0
+ (p̂ + h̄k) · h̄	k

m0
+ h̄2	k2

2m0
+ V̂(r)

]

unk′(r) = Enk′unk′(r).

(4.24)

We now have perturbation terms arising in 	k. The second order
term in 	k2 can be ignored in the limit of small deviations. All
the eigenfunctions are orthonormal, since they are solutions to the
unperturbed Hamiltonian Ĥ .

The energy of the state can also be written through Taylor series
expansion as

Enk′ = Enk +
3∑

i=1

∂Enk

∂ki
	ki + 1

2

3∑

i, j=1

∂2Enk

∂ki∂kj
	ki	kj + · · · , (4.25)

where i, j are the chosen spatial coordinates. The first order term
implies (we will see the implication of the second term in what
follows)

∂Enk

∂ki
= h̄

m0
〈unk|h̄	k · (pi + h̄k)

2m0
|unk〉 = h̄

m0
〈ψnk|p̂i|ψnk〉. (4.26)

Therefore, the group velocity of the electron in the (n,k) state is

vgnk = 1
h̄

∂Enk

∂ki
in the ith direction, and

= 1
h̄
∇kEnk in general. (4.27)

As a state changes in wavevector or crystal momentum, it changes
its energy, and the change in energy as the electron propagates is
given by this group velocity.

Our argument here is employing
non-degenerate energy levels. It also
holds for degenerate energy levels
but is mathematically unwieldy in
that case. We are skipping it as an
unnecessary distraction. We have now
seen this same result of group velocity
through multiple approaches. And
recall also its connections from the
Fisher information discussion.

The consequences of interaction between states can also be seen
through another reformulation of the k · p formalism, and here
we will see the significance of the second term. Using the Bloch
function ψnk(r) = exp(ik · r)unk(r), the Schrödinger equation may
be reduced to another k · p form:

Ĥ ψnk(r) = Enψnk(r)

∴
(

− h̄2

2m0
∇2 + V̂

)

exp(ik · r)unk(r) = Enk exp(ik · r)unk(r)

∴ − h̄2

2m0
∇ · [∇ exp(ik · r)unk(r)

]

+ V̂ exp(ik · r)unk(r) = Enk exp(ik · r)unk(r)
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∴ − h̄2

2m0
∇ · [ik exp(ik · r)unk(r) + exp(ik · r)∇unk(r)

]

+ V̂ exp(ik · r)unk(r) = Enk exp(ik · r)unk(r)

∴ − h̄2

2m0

[
−k2unk(r) + 2ik · ∇unk(r) + ∇2unk(r)

]

+ V̂unk(r) = Enkunk(r)

∴
(

−h̄2∇2

2m0
+ h̄

m0
k · h̄

i
∇ + h̄2k2

2m0
+ V

)

unk(r) = Enkunk(r)

∴
(

p̂2

2m0
+ h̄

m0
k · p + h̄2k2

2m0
+ V̂

)

unk(r) = Enkunk(r). (4.28)

At the zone center k = 0, Equation 4.28 is the simple form

(
p̂2

2m0
+ V̂

)

un0(r) = Enkun0(r), (4.29)

which, for the Bloch solution, is a wave of zero wavevector. This
equation, with un0(r) periodic under the translational operator
T̂R, and its similar form for any other specific point k, are easier
to solve than the original form that we started with. En0 and
un0 are now known, so the two middle terms of Equation 4.28
are perturbation terms. For small changes in k from the known
symmetric solution points, band dispersion can be accurately
determined. Since it works well at k = 0, it is particularly useful for
hole bands.

The k · p method is also a convenient tool for showing how
effective mass is an important parameter that allows us to exclude
the crystal potential consequences in determining the response
to external electrochemical forces on a system and for showing
its underpinnings in the inter-state interactions through the k · p
perturbation. Know that k here represents the crystal wavevector
(a proxy for the crystal momentum operator) and the consequences
of periodic potential, while p is the momentum operator. We
expand the eigenfunction and the eigenenergy in the vicinity of the
known locale. Equation 4.29 is of the form

(Ĥ0 + Ĥ1 + Ĥ2)unk(r) = Enkunk(r), (4.30)

where Ĥ1 = (h̄/m0)k · p, and Ĥ2 = h̄2k2/2m0. In the lowest order,

unk(r) = un0(r), and Enk = En0. (4.31)

In the first order,

unk = un0 + h̄
m0

∑

l�=n

〈ul0(r)|k · p|un0(r)〉
En0 − El0

ul0(r), and
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Enk = En0 + h̄
m0

〈un0|k · p|un0〉

= En0 + h̄
m0

k · 〈un0|p|un0〉. (4.32)

Inversion symmetry implies symmetrical Bloch functions. p is
antisymmetric. So, this first order energy correction must be absent
in materials such as Ge and Si. The energy correction will be
present in compound semiconductors such as GaAs as well as in
wurtzite structures such as GaN. Here, a term proportional to the k
will appear. This has consequences for the valence band maximum
and at the X point in the conduction band. The Bloch function
correction will then be present irrespective of the presence or
absence of this inversion symmetry. The momentum matrix element
will connect |s〉- and |p〉-like states.

The second order correction is more important for energy than
for the Bloch function and is

Enk = En0 + h̄2k2

2m0
+ h̄2

m2
0

∑

l�=n

〈ul0|k · p|un0〉2
En0 − El0

= En0 + h̄2k2

2m0
+ h̄2

m2
0

∑

l�=n

|k · 〈ul0|p|un0〉|2
En0 − El0

. (4.33)

In writing an effective mass as

Enk = En0 +
∑

i,j

h̄2

2m∗
ij

kikj, (4.34)

the effective mass m∗
ij is

1
m∗

ij
= 1

m0
δij + 2

m0

∑

l�=n

〈un0(r)|pi|ul0(r)〉〈ul0(r)|pj|un0(r)〉
En0 − El0

. (4.35)

For energy, this states

Enk = En0 + h̄2

2

∑

i,j

kim∗
ijkj = En0 + h̄2

2
k · 1

M∗ · k, (4.36)

where 1/M∗ is a second order effective mass tensor of the form

1
M∗ =

⎡

⎢
⎣

1/m∗
1 0 0

0 1/m∗
2 0

0 0 1/m∗
3

⎤

⎥
⎦ . (4.37)

This equation describes to us, conditional on the symmetries, the
general form that k · p tells us, for the band minimum or maximum,
the energy-crystal momentum form. Interactions between states
within the same band and states in different bands cause the mass
to change. 〈un0|k · p|ul0〉 is significant only if p causes a significant
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coupling matrix element. Energy separation between states within
the band and in the other bands affect it through the denominator
in Equation 4.35. The higher the energy difference is, the smaller is
the consequence for effective mass. Effective mass decreases if the
lth band has energies lower than the nth, because a positive term
results. Bands with energy higher than En0 will increase, and this
can be to an extent where the effective mass becomes negative.
Other bands, where states are closer in energy, will have a strong
effect. Hole bands illustrate a multitude of these consequences for
magnitude and sign.

To see the implications of the couplings arising in k · p, take
Si’s conduction band first. There are six minima along 〈100〉 axes
(the 	 direction) about 15 % in from the X point. The lowest
conduction minimum in the 	1 band is separated from the next by
0.53 eV. Non-degenerate perturbation therefore suffices. Tackling
close to conduction band minimum with the i, j indices, with i as
longitudinal and j as transverse, Equation 4.37 maps to

1
m∗

l
= 1

m0
+ 2

m2
0

∑

l�=	1

〈u	1k0 |pz|ulk0〉2
E	1k0 − Elk0

, and

1
m∗

t
= 1

m0
+ 2

m2
0

∑

l�=	1

〈u	1k0 |px|ulk0〉2
E	1k0 − Elk0

. (4.38)

This reflects energy dispersion as

E(k) = h̄2(kz − kmin)2

2m∗
l

+ h̄2(k2x + k2y)

2m∗
t

. (4.39)

As one proceeds higher in energy, non-parabolicity appears through
the k · p interaction. Bands also show band warping, which we
will discuss for valence bands. These are distortions as one changes
directions. To see the band warping, one must include the second
conduction band interactions. In the valence bands, the consequence
of secondary band interactions is very significant.

The valence band consequences are richer since there are three
bands—light hole, heavy hole and split off—which we will index
as n = 1, 2, 3 and which need to be accounted for. We discuss spin-
orbit—a magnetic energetic interaction—consequence reflected
particularly in the split-off band in Section 4.7. For now, consider
the three bands as degenerate at the � point. Degenerate perturba-
tion theory needs to be applied with Bloch functions at k built out
of linear combinations from those at the k = 0 point. So,

unk(r) = exp(ik · r)
3∑

n=1

c 0
nun0(r), (4.40)
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and the Ĥ1 perturbation leads to the secular equations

3∑

j=1

[Dαβ

nj kαkβ − E2
kδnj]c

0
j = 0 for n = 1, 2, 3, (4.41)

where α and β are the coordinate directions (x, y and z), and

Dαβ

nj = h̄2

m2
0

∑

l�=n

〈un0(r)|pα|ul0(r)〉〈ul0(r)|pβ |un0(r)〉
En0 − El0

. (4.42)

Summation now needs to be over all the remote bands l �= n. The
cubic system’s symmetry results can be parameterized via

L = h̄2

2m0
+ h̄2

m2
0

∑

l

〈u10(r)|px|ul0(r)〉〈ul0(r)|px|u10(r)〉
En0 − El0

,

M = h̄2

2m0
+ h̄2

m2
0

∑

l

〈u10(r)|py|ul0(r)〉〈ul0(r)|py|u10(r)〉
En0 − El0

, and

N = h̄2

2m0
+ h̄2

m2
0

∑

l

[ 〈u10(r)|px|ul0(r)〉〈ul0(r)|px|u20(r)〉
En0 − El0

+〈u10(r)|py|ul0(r)〉〈ul0(r)|px|u20(r)〉
En0 − El0

]
(4.43)

to the Hamiltonian matrix with the k · p perturbation as
⎡

⎢
⎣

Lk2x + M(k2y + k2z) Nkxky Nkxkz

Nkxky Lk2y + M(k2x + k2z) Nkykz

Nkxkz Nkykz Lk2z + M(k2x + k2y)

⎤

⎥
⎦, (4.44)

where valence bandedge energy has been chosen to be zero. This
Hamiltonian is the Luttinger Hamiltonian without spin-orbit

Joaquin Mazdkak Luttinger is from
the postwar period, when science in
the United States came into its own on
a par with engineering. This period
was a happy gathering of European
expatriate discipline and the free spirit
of the America born. Rabi, although
born in Poland, grew up in the USA.
Fermi, Bethe, Onsager, Franck, Debye,
even Pauli for a while, and many
others comprised the expatriates,
while Schwinger, Feynman, Gell-
Mann and many others comprised the
natives. In condensed matter, with its
many-body intricacies, there was a
particular happy coming together of
subjects and spirit at the confluence
of science and engineering. Bell Labs,
with Bardeen, Anderson, Herring
and others, IBM, with Landauer,
Gutzwiller and Hubbard, and
universities, with Kohn, Luttinger
and very concentrated interaction
over summers between industry
and academia, were seminal in
generating the marketing-free major
successes of postwar science and
engineering.

coupling. For diamond and zinc blende structures, the Bloch
amplitudes un0 here are of the p orbital type. The valence band
wavefunctions at the � symmetry point (|e1(r)〉, |e2(r)〉 and |e3(r)〉)
are composed of p atomic orbitals with eigenvalue 1 for the orbital
angular momentum L.

As was seen in Figure 4.3, take any direction of 〈100〉, and
one sees the heavy-hole band arising in the parameterized M,
and the light-hole band arising in the parameterization L. If one
looked along the 〈111〉 direction, the heavy-hole band will have an
energy varying as (L + 2M − N)k2/3, and the light-hole band as
(L + 2M + 2N)k2/3. Along 〈110〉, these three valence bands are non-
degenerate, and the energies are (L + M ± N)k2/2 and Mk2. This
shows anisotropy and band warping and is a behavior that we had
expected from the tight binding discussion.

So far, we have stressed here the importance of viewing these
valence band states through the tight binding or the p orbital
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basis. The conduction band states, on the other hand, are more
delocalized. In this same viewpoint, they will have more of an
s and p mixed characteristic. We have now also introduced the
angular momentum as an important contributor for determining
the nature of these states. Spin angular momentum will also matter
and this will soon be discussed. Even if we ignore the energy
consequences of spin’s interaction, one direct consequence is the
doubling of all the states (a degeneracy, or a degeneracy that will be
broken) in the conduction band and the valence band. The energy
interaction will also be significant, and this will be part of the spin-
orbit discussion.

Before tackling spin’s consequence, we should spend some effort
on understanding the effective mass, its differences from the real
mass and, through this, an understanding of the local-nonlocal
spatial interactions’ consequences. We therefore now introduce
another twist of Fourier transformation and of Wannier functions
that emphasize locality versus Bloch functions’ spread over the
crystal.

4.7 Effective mass theorem and Wannier functions

We have introduced effective mass in the k · p approach as a
way of incorporating the interaction of states through the oscillator
strengths and representing the net response in an E(k) picture.

Oscillator strength is a very powerful
idea. Interaction between states
is strongest, and any change due
to perturbation of a system is
strongest, when the coupling is
most efficient. The perturbation should
match well in real and imaginary
coordinates for system consequence
to be strongest, or, looked at in a
complementary way, the real and
imaginary responses reflect two faces
of the input’s consequence. This is
the Kramers-Kronig relationship
that will occupy us in Chapter 14.
Response is also a manifestation of
canonic matching. A stable system’s
lowest order response is that of a
harmonic oscillator. This is the first
term in the Taylor expansion—a
square dependence—where the
energetic change leads to a restorative
force independent of the sign of
perturbation. Any oscillator, at
its resonance, shows a peak in the
coupling and a change of phase. The
response matches at the oscillation
frequency. Oscillator strengths
therefore show up, or one can place
the system response in its terms, for
physical systems. For semiconductors,
some of the main analytic notions are
discussed in Appendix I.

This effective mass in this E(k) picture encapsulates the effect of
interaction between states, and these states that are interacting are
the Bloch states that are spread out over the entire crystal. These
are extended states and feel the periodicity of the crystal potential.
The effective mass arose in the behavior of the electron in the
crystal; that is, its periodicity and therefore the consequences that
the Hamiltonian represented for the presence of the electrons in
its crystalline surroundings. This capturing of the presence of the
crystal in the allowed behavior of the electron of the E(k) picture
means that the effective mass should also only be used under conditions
where the electron feels those surroundings during its response. A core
electron, for example, does not feel the surroundings. And one can
also immediately visualize conditions, such as confinement where
the localization of the nearly free electron is small enough, say, well
below the de Broglie wavelength scale, that the use of an effective
mass of the bulk crystal would be quite wrong. A similar comment

A localized electron doesn’t sample
the semiconductor environment.
Excitations too may be localized.
So, clearly, effective mass would
be inappropriate. A similarly
important issue arises in what
the permittivity should be. Recall
our discussion of Chapter 1. For
core electrons, it is the free space
permittivity. A nearly free electron
in the bulk sees the consequences of
polarization of the crystal, and it will
be the permittivity of the material
subject to the frequency that will
determine what the polarization is.
There will also be questions related
to this permittivity depending on
which electrons are responding
and what their environment is.
Again, core electrons will behave
quite differently from valence band
electrons or conduction band electrons.
So, care is needed in several of
these circumstances.

will apply for the time domain. When changes are very rapid, a
change of state may happen entirely through local change of the
modulation function.
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The introduction of effective mass makes the analysis of a large
set of conditions that we are interested in for semiconductors and
their devices very convenient, since it helps reduce the problem
of the description of the electron under the crystal’s influence and
the influence from external stimulus, and often other extended—
that is, over several unit cells—crystal perturbations to a simpler
equation where the crystal’s consequence has been subsumed into
the effective mass employed in a simpler equation. This is the
effective mass equation. We discuss the effective mass theorem, and
relate to it the Bloch function’s Fourier complement, the Wannier
function, to elucidate the behavior of the electron in the periodic
potential of the crystal and the interaction of states.

The question we are faced with is that if we have an external
perturbation (Ĥ ′), how will a Bloch electron’s response evolve
in a crystal? We approach the problem by exploring the crystal
description using the Fourier transform of the Bloch function. This
function, the Wannier function, is

|wn(r − Rj)〉 = 1√
N

∑

k

exp
(−ik · Rj

) |ψnk(r)〉. (4.45)

Because of the symmetry of this mathematical transformation, the
Bloch function, written in terms of the Wannier function, is

|ψnk(r)〉 = 1√
N

∑

j

exp
(
ik · Rj

) |wn(r − Rj)〉. (4.46)

A Bloch function is spread out over the entire crystal, and we have
identified it through the quantum number assignment of the band
(n) and the wavevector (k). This Fourier transformation means that
the Wannier function as a Fourier amplitude is localized on the
atom, and now the quantum assignments for it are the band (n) and
the lattice coordinate (Rj). Because it has now been written in terms
of the position coordinate, it becomes very useful in dealing with
processes that involve states that are localized.

With Ĥ ′ as the perturbation, our problem is to solve

[
Ĥ0 + Ĥ ′(r)

]
|ψ〉 = E|ψ〉, with Ĥ0 = − h̄2

2m0
∇2 + V̂(r). (4.47)

Our approach will be to show that this problem description will
become the equivalent of

[

− h̄2

2m∗ ∇2 + Ĥ ′(r)
]

|ϕ(r)〉 = E|ϕ(r)〉, (4.48)

where |ϕ(r)〉 is a wavefunction. Note that V(r) has disappeared,
and, simultaneously, the mass has transformed: m0 �→ m∗. The
description of Equation 4.47, with an electron mass m0 interacting
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in the potential of the crystal with added perturbations, will
become equivalent to, that is will have the same eigenenergy
solution as, the solution of Equation 4.48, where an effective mass
m∗ is employed together with the perturbation Ĥ ′. |ϕ(r)〉 is a
wavefunction that is the solution to this problem with the same
eigenenergy E as that of the original Bloch description.

In this relationship of Equation 4.48,
we now see the starting point of most,
but not all, of the semiconductor
quantum-mechanical response
calculations when the electron senses
the crystalline environment.

The Wannier function of Equation 4.46, as a Fourier transform, is
also orthonormal, just as Bloch functions are. This orthonormality
holds true for all the states, so also for different bands:

〈wn′, j′ |wn,j〉 =
∫

w∗
n′(r − Rj′)wn(r − Rj) d3r

= 1
N

∑

k,k′

∫
exp

[
i(k′ · Rj′ − k · Rj)

]
ψn′k′(r)ψnk(r) d3r

= 1
N

∑

k

exp
[
i(k′ · Rj′ − k · Rj)

]
δn,n′

= δj,j′δn,n′ . (4.49)

We start with a bandedge Bloch function, as we did in the
k · p approach. The Bloch function ψnk = un0 exp(ik · r), transformed,
leads to the Wannier function in the form

|wn(r − Rj)〉 = 1√
N

un0
∑

k

exp
[
ik · (r − Rj)

]
. (4.50)

Since
∑

k

exp
[
ik · (r − Rj)

] = L3δ(r − Rj), (4.51)

written in terms of the Dirac δ, and

1
L3

∫
exp

[
i(k − k′) · r

]
d3r = δk,k′ , (4.52)

written in terms of Kronecker δ, it follows that

|wn(r − Rj)〉 = 1√
N

un0L3δ(r − Rj). (4.53)

The Bloch function is spread out over the crystal. The Wannier
function is localized on the atom. This localization of the Wannier

function leads to its particularly
suitability in understanding many
defects such as deep donors and
acceptors, et cetera, where the electron
becomes localized, and the Bloch
functions are not a very suitable
starting set for the perturbation
problem.

Since Wannier functions are an orthonormal set, we may expand
the Bloch function in the Wannier basis, that is,

∴ ψ(r) =
∑

n

∑

j

ϕn(Rj)wn(r − Rj). (4.54)

ϕn(Rj) is to be viewed as the coefficient in the Wannier-basis
expansion of the Bloch function. Now take a specific band. Absent
perturbation, we have Ĥ0ψk(r)= E0(k)ψk(r). For the perturbed
problem, we need to solve
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[Ĥ0 + Ĥ ′(r)]ψ = Eψ . (4.55)

We know that

ψ(r) =
∑

j′
ϕ(Rj′)w(r − Rj′), (4.56)

so we may simplify by multiplying with the conjugate of w(r − Rj′)

and integrate over the real space. We have
∫ ∑

j′
w∗(r − Rj)Ĥ0ϕ(Rj′)w(r − Rj′) d3r

+
∫ ∑

j′
w∗(r − Rj)Ĥ

′ϕ(Rj′)w(r − Rj′) d3r

=
∫

E(k)
∑

j′
w∗(r − Rj)ϕ(Rj′)w(r − Rj′) d3r,

or
∑

j′
H0jj′ϕ(Rj′) +

∑

j′
H ′

jj′ϕ(Rj′) = E(k)ϕ(Rj), (4.57)

since 〈wn′,j′ |wn,j〉= δj,j′δn,n′ . Since the perturbation varies slowly
spatially and Wannier functions are very localized, the overlap
contribution to H ′

jj′ is significant only in the neighborhood of Rj.

The unperturbed Hamiltonian Ĥ0 is translationally invariant in
R. To simplify, we change the coordinate origin by translating
r − Rj �→ r, so that

H0jj′ =
∫

w∗(r)H0w(r − Rj′ + Rj) d3r = h0(Rj − Rj′), (4.58)

where h0 is introduced to characterize a scalar energy contribution
in spatially normalized units. This reduces Equation 4.57 to
the form

∑

j′
h0(Rj − Rj′)ϕ(Rj′) + H ′(Rj)ϕ(Rj) = E(k)ϕ(Rj). (4.59)

Translational invariance also lets (Rj − Rj′) �→ Rj′ , so that we can
rewrite Equation 4.59 in the translated form as

∑

j′
h0(Rj′)ϕ(Rj − Rj′) + H ′(Rj)ϕ(Rj) = E(k)ϕ(Rj). (4.60)

This is now our energy equation using the Wannier basis. Note
that, with the change in the basis, the first term—a term that maps
to the electron Hamiltonian of the crystal in Bloch basis—has
become a localized energy contribution due to the deployment of
the Wannier form.

We may now expand on this connection of the energy relation-
ship in Wannier form to that from the Bloch form:
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E0(k) = 〈ψ∗
k(r)|Ĥ0|ψk(r)〉

= 1
N

∑

j

∑

j′
exp

[−ik · (Rj − Rj′)
]
H0jj′

= 1
N

∑

j

∑

j′
exp

[−ik · (Rj − Rj′)
]

h0(Rj − Rj′). (4.61)

Since j and j′ here are just different indices for the same lattice, they
have the same equivalent contribution to the summation; that is,

E0(k) = 1
N

∑

j

N exp(−ik · Rj)h0(Rj)

=
∑

j

exp(−ik · Rj)h0(Rj). (4.62)

This is the electron state’s unperturbed energy relationship, with
the wavevector describing the energy band. The energy band is
a periodic function in the reciprocal space that we reduced to the
first Brillouin zone for the sake of representational convenience.
Since the spatial period R is related to the Rjs in reciprocal space,
this energy band can be expanded in the lattice vectors. Equa-
tion 4.62 is showing us this Fourier expansion in terms of the lattice
coordinates Rj. The equivalent of this for real space is

h0(Rj) = 1
N

∑

k

E0(k) exp(ik · Rj). (4.63)

We have made these correspondences exploiting periodicities and
reciprocities. Equation 4.63 is assigning a meaning to h0 as an
energy contribution extracted because the lattice and its reciprocal
are periodic, and the Wannier function, through its locality, allowed
us to pull it out.

If we now Taylor expand the Wannier expansion coefficients
ϕ(r − Rj),

ϕ(r − Rj) = ϕ(r) − Rj · d
dr

ϕ(r) + 1
2

R2
j · d2

dr2
ϕ(r) − · · · , (4.64)

which, written more generally in three-dimensional notation, is

ϕ(r − Rj) = ϕ(r) − Rj · ∇ϕ(r) + 1
2
(Rj · ∇)[(Rj · ∇)ϕ(r)] − · · ·

= exp(−Rj · ∇)ϕ(r). (4.65)

This is a relationship for translation of the Wannier coefficient term.
Employing this, we can write

∑

j′
h0(Rj′)ϕ(r − Rj′) =

∑

j′
h0(Rj′) exp(−Rj′ · ∇)ϕ(r). (4.66)
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Equation 4.63 also leads to

E0(k)ϕ(r) =
∑

j′
h0(Rj) exp(−ik · Rj′)ϕ(r). (4.67)

The implication of Equations 4.66 and 4.67 through the right-hand
side is an equivalence of k and −i∇, that is,

∑

j′
h0(Rj′)ϕ(r − Rj′) = E0(−i∇)ϕ(r). (4.68)

Summations over the energetic contributions over the crystal are
related to the energy and a gradient operation on the Wannier
coefficients.

We had started this analysis using Equation 4.59 to describe the
energy. The derived equivalence can now be employed there. Take
Rj as r, so that

∑

j′
h0(Rj′)ϕ(r − Rj′) + H ′(Rj)ϕ(r) = E(k)ϕ(r),

or E0(−i∇)ϕ(r) + H ′(r)ϕ(r) = E(k)ϕ(r)

∴
[
E0(−i∇) + H ′(r)

]
ϕ(r) = E(k)ϕ(r). (4.69)

This is the effective mass equation. ϕ(r)—the Wannier coefficient—
can be viewed as an envelope function. The envelope function has The envelope function here is

formally identical to that used for
electromagnetic waves’ propagation.

removed the high-frequency positional oscillation that existed in the
Bloch function, and it continues to capture the locality or spread
of the electron wavefunction. This makes the envelope function
extremely useful in situations—a large variety of them, particularly
when confinement without atomic-scale localization is important—
where one must resort to a bandstructure-based analysis.

Equation 4.69 has connected a known bandstructure with its
electron state description as a function of the wavevector and
described to us how the presence of a perturbation changes the
energy. If the perturbation is absent, E0(−i∇) as an operator
operating on the envelope function tells us the unperturbed energy
state description of the electrons. E0(k) is the electron energy as a
function of the wavevector in the absence of perturbation. And if
we wish to find it in the presence of perturbation, it follows as E(k),
using this Equation 4.69.

We arrived at this description by starting with the state function
ψ(r), Fourier transforming to Wannier function, which has ϕ(Rj) as
the coefficients, that is, with r �→ Rj. Since ϕ(r) is slowly varying in
r, the coefficients ϕ(Rj) are also slowly varying in spacing Rj+1 − Rj.
This slowly varying argument is directly related to the electron
behavior being nonlocalized, and therefore Equation 4.69 must only
be employed where the electron probability is spread out.
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Equation 4.69 is the general form for the effective mass equation.
It can be further simplified and used in conditions where the depar-
ture from equilibrium is not very pronounced. If the semiconductor
is isotropic, that is if one can write E0(k) = h̄2k2/2m∗, then

[

− h̄2

2m∗ ∇2 + H ′(r)
]

ϕ(r) = E(k)ϕ(r), (4.70)

an equation which in appearance is very Schrödinger-equation-like.

In literature, and in this text too
from time to time, we may call this
simplified form of the effective mass
equation the independent electron
Schrödinger equation in the crystal.

But it is not the same. V(r), the crystal potential, has disappeared.
The wavefunction here is an envelope function that is spread out
over many lattice sites. And the energy bandstructure E0(k) has
been transformed into the first term form because of the use of
this envelope function through the k → − i∇ equivalence under
these constraints. The true electron mass m0 of the Schrödinger
equation has been replaced by an effective mass. For the general
case of anisotropic mass, that is 1/M = (1/h̄2)∇kE0(k), this equation
will take an equivalent form, with 1/m� �→ 1/M. The equation in
this form then also gives the kinetic energy of the electron through
the first term as it exists in the crystal. So, it will include the
crystal’s effect. This then corresponds to the crystal momentum.
Effective mass should be understood and interpreted drawing on
this electron-in-a-crystal discussion, which in turn drew on k · p and
the effective mass theorem discussion.

An important note regarding the
prolific use of different masses is that
these are instruments of convenience.
A density of states mass is an inertial
term with units of mass that allows
one to write the density of states as
it actually exists into a simpler form.
The same is true for conductivity mass
(or others). Electrons are in different
locales in the energy-wavevector
space, and the response to stimuli
will be different depending on those
locales. A conductivity mass then
becomes a forced function that lets us
write a simple equation of the response
to a stimulus such as an applied field.
The effective mass here is specifically
the mass that captures the behavior
of the E(k) states in the crystal and
applies to it. Density or conductivity
mass can be written in terms of it but
needs to account for the variety of
degeneracies or anisotropies that will
exist in the crystal.

4.8 Valence bands

The valence band states are states that evolved in the
semiconductor crystal dominantly from the filled valence
states. The filled valence states were from the outer orbital
of the atoms that are interacting across the assembly. These
and the core states are states where the electrons are closest
to the nucleus of the atoms. This is also the reason why the
tight binding method discussed in Section 4.2 has superior
accuracy and calculational convergence for the valence band
description. And this is also the reason why pseudopotentials
are more suitable for the conduction band description, where
plane wave and bound state descriptions can both be simultane-
ously incorporated. Another point worth noting here is that these
separations between the valence and the conduction bands by a
bandgap in-between corresponds to the bonding and antibonding
that we have mentioned in the discussion of waves and particles
in Chapter 3 for the molecule. The valence states are the bonded
collection, and conduction states are the antibonded collection.
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4.8.1 Valence bands without spin-orbit coupling

First, consider an introductory description of the valence
band without considering the interaction between the valence
electron’s spin and its orbit. The |p〉 states are a good basis to The conduction electron’s is an

antibonded state, nearly free, and the
spin and orbit coupling is vanishingly
absent. It can become important
in magnetic semiconductors—
semiconductors such as Ga1−xMnxAs
or Zn1−xCrxTe—but it cannot be
ignored for the valence band, where
the bonded states have considerable
local interaction.

start from, following our tight binding discussion. We have the
three states |px〉, |py〉 and |pz〉 to build from. At the degenerate
point, let us write the resulting state just as |X〉, |Y〉 and |Z〉. This
is the traditional atomic physics notation to describe the px, py

and pz origins. These states have the same parity—they transform
identically—as the |p〉 states, and it is odd. We need to use second
order degenerate perturbation, and the energy is of the form

Enk = Ev + h̄2k2

2m0
+ Onk(k · p), n = 1, 2, 3, (4.71)

where Ev is a reference. The last term is to denote the second order
perturbation to be calculated employing the k·p methodology. Three
bases lead to a 3 × 3 Hamiltonian with the elements

Hij =
(

Ev + h̄2k2

2m0

)

δij + h̄2

m2
0

∑

α>3

(k · piα)(k · pαj)

Ev − Eα

, (4.72)

where i, j ≡ x, y, z, and α represents the other orientations.
Symmetry leads to

H11 = 〈X|H |X〉

= Ev +
∑

j=x,y,z

(
h̄2

2m0
+ h̄2

2m0

∑

α>3

|〈X|pj|α〉|2
Ev − Eα

)

k2j

= E1 + Lk2x + M(k2y + k2z), with

L = h̄2

2m0
+ h̄2

2m0

∑

α>3

|〈X|px|α〉|2
Ev − Eα

,

M = h̄2

2m0
+ h̄2

2m0

∑

α>3

|〈X|py|α〉|2
Ev − Eα

and

H12 = 〈X|H |Y〉 = Nkxky, with

N = h̄2

2m0

∑

α>3

〈X|px|α〉〈α|px|Y〉 + 〈X|py|α〉〈α|py|Y〉
Ev − Eα

, (4.73)

where the symmetry of |〈X|py|α〉|2 = |〈X|pz|α〉|2 has been used.
This form is the 3 × 3 Luttinger Hamiltonian, arrived at through

the use of symmetry in the cubic crystal, and written in terms of the
coefficients L, M and N as
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⎡

⎢
⎣

Ev + Lk2x + M(k2y + k2z) Nkxky Nkxkz

Nkykx Ev + Lk2y + M(k2z + k2x) Nkykz

Nkzkx Nkzky Ev + Lk2z + M(k2x + k2y)

⎤

⎥
⎦.

(4.74)

These coefficients that do need to be evaluated give the valence
band dispersion in an analytic parabolic form. At the zone center,
the three solution bands that follow from the diagonalization of this
Hamiltonian are degenerate.

The expression in Equation 4.74 is identical to that of Equation
4.44, with the Ev bandedge energy as reference. We arrived at it
through k · p and have ascribed meaning to the coefficients L, M
and N.

Along the 〈100〉 orientations, the light-hole band follows the
Elh = Lk2z form. The heavy-hole band is a degenerate two-band set
in the form Ehh = Mk2z .

Along the 〈110〉 orientations, the bands are not degenerate and
have the forms E(k) = Mk2, and E(k) = (L + M ± N)k2/2.

Along the 〈111〉 orientations, the light-hole band energy is given
by Elh(k) = (L + 2M + 2N)k2/3, and the heavy-hole bands are again
degenerate, with an energy Ehh(k) = (L + 2M − N)k2/2.

Note in the form of these solutions that—in the absence of a
spin-orbit term—the light-hole band follows from the basis state
that is parallel to the quantization axis of interest. The heavy-hole
band, on the other hand, is composed of the other orthogonal basis.
The heavy hole has a projection of its orbital angular momentum
on the direction of k, derived from its |p〉 starting basis, equal to
±1. This gives it helicity. The light hole, on the other hand, has a
vanishing projection.

4.8.2 Valence bands with spin-orbit coupling

Electrodynamics teaches us the importance of frames
of reference when viewing electric and magnetic fields. A charge
that is at rest with respect to a collection of other charges that are
also at rest sees an electric field and no magnetic field. If the charge
was moving, in this charge’s reference frame, the collection of
other charges would now be observed as moving charges, that is,
a current, and therefore it would feel a magnetic field. In general, in
any movement with respect to any other charge or sets of charges,
a current and hence a magnetic field will be experienced. What
was electric in a stationary reference frame became magnetic in a
moving frame.
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Classically, a moving observer of velocity v in an external electric The Thomas factor has an interesting
story. In the early days of quantum
mechanics, each unexpected
occurrence (first a speculation, then a
discovery) turned into a Nobel Prize.
But the spin 1/2 of an electron did
not. It is credited to Uhlenbeck and
Goudsmit, who noted it to explain
the multiplet splitting of the excited
state of hydrogen arising in a fourth
degree of freedom: the spin. But,
apparently, Kronig too had dwelt
on this quantization. Goudsmit was
invited to Copenhagen by Bohr and
met Thomas, who could explain the
factor of 2 on relativistic grounds. In
a note to Goudsmit, Thomas writes,
 ̏I think you and Uhlenbeck have
been very lucky to get your spinning
electron published and talked about
before Pauli heard of it. It appears that
more than a year ago Kronig believed
in the spinning electron and worked
out something; the first person he
showed it to was Pauli. Pauli ridiculed
the whole thing so much that the first
person became also the last and no
one else heard anything of it which
all goes to show that the infallibility
of the Deity does not extend to his
self-styled vicar on earth˝ (see the
handwritten letter in S. S. Goudsmit,
 ̏The discovery of the electron spin,˝
http://lorentz.leidenuniv.nl/history/
spin/goudsmit.html, accessed 22 July
2019). To balance, Wolfgang Pauli,
besides the eponymous exclusion
principle, has his spin matrices.
Heisenberg wrote that while he could
think on only one problem at a time,
Pauli had to have two. Max Born
thought of Pauli as second only to
Einstein. Pauli’s list (and training)
of postdoctoral fellows is legendary.
Pauli’s comment after listening to a
talk,  ̏It was not even wrong,˝ is quite
acerbic but to the point. Projects for
which the path is clear do not count
as research. Research entails questions
whose resolution requires parting of
the fog. Everybody has something to
be sorry about because of the fog of all
kinds. Einstein’s was urging the build-
ing of the atomic bomb. And Einstein
was a pacifist! Goudsmit’s recounting
of this spin is a very thoughtful and
calm discussion of the meaning of
doing science, and the satisfaction one
derives from it. It doesn’t have to be
the most important problem. Minor
contributions and having fun matters,
and chance and luck are pervasive.

field E experiences a magnetic field of B = (1/c)E × v under non-
relativistic conditions. This is B = (1/m0c)E × p, with the relativistic
factors arising in terms of order (v/c)2 being neglected. The moving
electron in its rest frame feels the magnetic field arising in the
Lorentz transformation of the static electric field. Orbital motion is
quantized through orbital angular momentum. Orbital motion
with its axial magnetic field arising in the angular orbital motion
will couple to spin angular momentum—and therefore its field—
through an L ·S-dependent form. For now, consider the consequence
of this classical magnetic field. It will interact with the magnetic
moment of the spin. An order of magnitude ignoring relativistic
and acceleration consequences is the energy

− μ · B = − e
m0c

S · B = − e

m2
0c2

S · (E × p), (4.75)

where μ is the magnetic moment, and S is the spin angular
momentum (S = (h̄/2)σ ). This energy—a spin-orbit energy—is
only approximately right, since it doesn’t account for the changing
frame of reference resulting in a time transformation and hence a
precession frequency of the electron spin in the changing magnetic
field. This is a factor of 2—the Thomas factor. In the situation
of the states of the atom or its assembly, the orbital electron or
its perturbed collection in the crystal, we have the nucleus with
an unscreened charge of Ze. An electron in an orbit around the
nucleus—or even further away—is moving in an electric field
arising from the nucleus and its surroundings. Effectively, this is a
screened charge (Z∗e, or sometimes simply e∗), where the screening
is by electrons of the core electrons and other localized electronic
charge that is further out in the Coulomb field. Conduction band
electrons see much less of this screened charge—they are nearly
free and the shielding by valence electrons fairly complete—but the
valence electrons feel this screened charge.

The electron has a magnetic moment arising from its spin and
hence the magnetic field seen by the electron under motion in
this very nearly stationary screened charge results in a spin-orbit
interaction.

Electrons closer to the nucleus have a much higher velocity
in their orbits. So, valence band electrons see pronounced spin-
orbit interaction. The magnetic field B is perpendicular to the
plane of the orbit in which v resides, so it is parallel to the orbital
angular momentum L. So, the energy corresponding to the magnetic
moment interaction corresponds to ±μBB, where μB is the Bohr
magneton. This implies an energy that is λL · S, where λ is a
constant related to the electron-atom interaction and the field’s
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relationship to the angular momentum. The heavier the atom—the
larger the Z∗e—the larger the spin-orbit interaction. In atoms, this is
directly seen in the fine structure where magnetic field dependence
is observed and in the electron g factor.

The nuclei can be considered
stationary, given the vast difference in
the motion of mobile carriers versus
the nuclei. So, we treat nuclei as being
immobile. Spin-orbit interaction
will occur even if the particle is not
quantum-mechanical, so long as it
spins. If the moving particle has a
magnetic moment, this interaction
arising in magnetic moment
interacting with a magnetic field,
which itself is a manifestation arising
in a moving frame, will happen. The
electron accelerates in the electric field
of the nucleus—has orbital motion—
and the reference frame is non-inertial,
so there is another complexity of
acceleration. This acceleration reduces
the interaction energy by a half. This
explains the fine structure splitting in
atoms precisely and is also the origin
of spin being 1/2, which is an unusual
fractional quantum number.

This argument is not unreasonable for non-relativistic conditions.
For relativistic conditions, one must employ the Dirac equation—the
linearized relativistic generalization of the Schrödinger equation—
which will show up only sporadically as a theme in the low energy
conditions of the semiconductor. At the atomic level, and hence for
the electron states strongly affected by nucleus, this change will
be consequential. The relativistic expression for kinetic energy is
T̂ = p̂2c2 + m2

0c4. p̂ is the canonical momentum, so, with electrical
and magnetic potentials to be included, one makes the change
T̂ �→ T̂ − eφ, where φ is the electric potential, and p̂ �→ p̂ − (e/c)Â, so
that

(T̂ − eφ)
2 = (p̂c − eÂ)

2 + m2
0c4. (4.76)

With T̂ and p̂ in the operator form as time and space derivatives
of the wavefunction, a relativistic wave equation follows where
external electric and magnetic fields are both present.

The force-free form of the wave equation is
(

T̂2 − c2
∑

μ

p̂2
μ − m2

0c4
)

|ψ〉 = 0, where μ = x, y, z. (4.77)

A rewritten form of this Equation 4.77 is
(

T̂ − c
∑

μ

αμp̂μ − βm0c2
)(

T̂ + c
∑

μ

αμp̂μ − βm0c2
)

|ψ〉 = 0, (4.78)

subject to

αμαμ′ + αμ′αμ = 2δμμ′ ,

αμβ + βαμ = 0, and

β2 = 1. (4.79)

The lowest order term of Equation 4.78—so, first order in the time
derivative, as with the Schrödinger equation—arises in the first part
and is

(

T̂ − c
∑

μ

αμp̂μ − βm0c2
)

|ψ〉 = 0, (4.80)

the Dirac equation. This equation generalizes the Schrödinger
equation to the relativistic covariant form

− h̄
i
∂

∂t
|ψ〉 = (cα · p̂ + βm0c2)|ψ〉 = Ĥ |ψ〉. (4.81)
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Now, for an electron, the wavevector |ψ〉 is the four-component
form for a spin-1/2 particle. The nonlinear form of the starting
equation, written using the kinetic and momentum transformations
for electromagnetic conditions, is

[
T̂ − eφ − cα · (p̂ − e

c
Â) − βm0c2

]

×
[
T̂ − eφ + cα · (p̂ − e

c
Â) − βm0c2

]
|ψ〉 = 0. (4.82)

If both kinetic (T) and potential (V) energies are small compared to
m0c2, then Equation 4.82 reduces to

[
1

2m0
(p̂ − e

c
Â)

2 + eφ − eh̄
2m0c

σ · B + eh̄

4m2
0c2

σ · E × p̂

]

|ψ〉

= Ŵ |ψ〉. (4.83)

The total energy is W + m0c2. In this equation, the first two terms
are what will appear in the Schrödinger equation when external
fields are present. The third term is the result of the energy change
−μ̂ · B of the magnetic dipole. This dipole has a moment operator of
μ̂ = (eh̄/2m0c)σ = (e/m0c)S related to spin. The fourth term of the
equation is a relativistic correction. The last term is the spin-orbit
term of interest to us.

In the orbital motion of an electron in the electric field of the
nucleus, E = −(1/e)r̂ dV/dr. Using S = (h̄/2)σ , we get

− eh̄

4m2
0c2

σ · E × p̂ = e

2m2
0c2

S ·
(

−1
e

dV
dr

r̂
dV
dr

× p
)

= 1

2m2
0c2

1
r

dV
dr

(L · S), (4.84)

with L as the orbital angular momentum. This is the spin-orbit
interaction energy, and one can see that it is in the form λL · S.

So, our perturbational expansion of the Dirac equation for
exploring the spin-orbit energy and effect is

Ĥ = p̂2

2m0
+ V + p̂4

8m3
0c2

+ h̄2

8m2
0c2

∇2V + h̄

4m2
0c2

σ · (∇V × p̂). (4.85)

The first two terms are the non-relativistic Hamiltonian terms. The
third is a kinetic energy correction for relativistic conditions as an

approximation to
√

p2c2 + m2
0c4 − m0c2. The fourth is the correction

term arising in the potential. And the final term is the spin-orbit
interaction term, where σ is the spin matrix. The components of σ

are the Pauli spin matrices See Appendix G for a discussion of
spin coordinates and spin matrices.

σ x =
[
0 1
1 0

]

, σ y =
[
0 −i
i 0

]

, and σ z =
[
1 0
0 −1

]

. (4.86)
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The symmetry of the spin matrices is reflected in the spin-orbit
perturbation Hamiltonian.

These three correction terms are of about the same order of
magnitude in an atom. Consider an atom with Z atomic

number. The spin-orbit term
	so ≈ (h̄/m2

0c2)pV/r. This is about
	so ≈ h̄2V/m2

0c2r2. With the potential
V ≈ Ze2/r, r ≈ aB/Z = h̄2Zm0e2, so that
	so ≈ Z4(e2/h̄c)

2
m0e4/h̄2. The electron

probability density is proportional
to 1/Z2, so the energy of spin-orbit
interaction with changing Z is

	s0/Z2 ≈ (Ze2/h̄c)
2
(m0e4/h̄2). The last

term is ∼ 10 eV, and e2/h̄c is the fine
structure constant. So, in atoms,
10 × Z2/1372 is the order of magnitude
of spin-orbit energy correction. For Si,
Z2/1372 is about 0.01; for Ga, it is 0.05
and, for As, about 0.058.

Equation 4.76 implies that spin-orbit coupling will break the spin
degeneracy. For atoms, the degeneracy of opposite spin is lifted
for the same spatial orbital wavefunction due to this. But this is
not necessarily so for semiconductors and solids in general, due to
crystal’s symmetries.

A wavefunction ψ(r, s) and its conjugate ψ∗(r, s) differ through
simultaneous conjugation of the wavevector and the spin coordinate
because time-reversal symmetry preserves Kramer degeneracy.

Kramer’s degeneracy theorem states
that each energy eigenstate of a time-
reversal symmetric system of 1/2 spin
has at least one more eigenstate of the
same energy. If t̂ is an operator that
transforms t �→ − t, and if it commutes
with the Hamiltonian, so [Ĥ , t̂]= 0,
then, for any eigenstate |un〉, t̂|un〉
is also an eigenstate with the same
energy. This eigenstate t̂|un〉 cannot
be identical to |un〉 for a 1/2 integer
system, since time reversal reverses
angular momentum.

This forces Ek,↑ = E−k,↓, where k, −k, ↑ and ↓ correspond to
the quantum numbers for the Bloch eigenstate. When a crystal
has inversion symmetry, that is, symmetry is maintained under
r �→ −r (also called centrosymmetric; Ge and Si are examples of
two interpenetrating FCC crystals that are centrosymmetric), then it
follows that, for such crystals with inversion symmetry,

Ek↑ = E−k↑,

Ek↓ = E−k↓, and

∴ Ek↑ = Ek↓. (4.87)

Spin degeneracy is maintained by crystals that have inversion sym-
metry, such as FCC and HCP crystals. But, even for these crystals,

Note, Si or Ge are diamond, and GaAs
and many of the other compound
semiconductors are zinc blende. These
are two interpenetrating FCC lattices.

on the surface, this degeneracy will break, that is, Ek‖↑ �= Ek‖↓.
A few other properties also follow from this and symmetry. Take

a one-dimensional arrangement:

∇rE(k) = lim
δk→0

E(δk) − E(−δk)

|2δk| = 0, (4.88)

so E(k) is either a maximum or a minimum at k = 0. Furthermore,
translation symmetry implies that

E
(
−π

a
+ δk

)
= E

(
−π

a
+ δk + 2π

a

)

= E
(π

a
+ δk

)
, (4.89)

and, in the presence of time-reversal symmetry (so, excluding the
spin-orbit consequences),

E
(
−π

a
+ δk

)
= E

(
−π

a
− δk

)
, (4.90)

which implies that

∇rE(k)|k=±π/a = lim
δk→0

E (±(π/a) + δk) − E (±(π/a) − δk)
2δk

= 0, (4.91)
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that is, that E(k) is a maximum or a minimum at k = ±π/a. E(k),
therefore is a maximum or a minimum at the zone center and the
zone edge for inversion and time inversion symmetry.

For semiconductors, in general, the spin-orbit interaction will
depend on the velocity, the presence or absence of inversion
symmetry, and hence the nature of the Bloch function. Due to the
large difference in the locales of the valence and the conduction
electron states, a significant difference should be expected. Conduc-
tion band electrons will have spin-degenerate states, but valence
band electrons, which are quite localized and under the stronger
influence of the nucleus, will have spin-orbit consequences.

The basis orbital wavefunctions are spherical harmonics for
l = 1; these states, in quantum number notation, are written as |lml〉,
where ml = −1, 0, 1, and the orbital vectors are representable as

|11〉 = −(x + iy)/

√
2(x2 + y2 + z2),

|10〉 = z/
√
2(x2 + y2 + z2), and

|1 −1〉 = (x − iy)/

√
2(x2 + y2 + z2). (4.92)

In the following, we ignore the normalizing factor, to keep expres-
sions simpler. The spin-orbit interaction expression can be recast to
the form

Ĥso = λL · S, (4.93)

with λ as the spin-orbit coupling. The crystal Hamiltonian modified
from the k · p version of Equation 4.28 is now

Ĥ = p̂2

2m0
+ V(r) + h̄2k2

2m0
+ h̄

m0
k · p + λL · S, (4.94)

where the last term is the magnetic energy perturbation. We have
now six basis states: heavy hole with spin up, heavy hole with spin
down, light hole with spin up, light hole with spin down, a split-off
state with spin up and a split-off state with spin down.

We need to build eigenfunctions for L · S. The spin states are
|s,ms〉, where s = 1/2 and ms = ± 1/2, often written as |↑〉 and |↓〉,
and

L · S = 1
2
(J2 − L2 − S2), (4.95)

where J = L + S is the total angular momentum. This means that
the eigenstates of the total angular momentum and Jz are also the
eigenstates of L · S and therefore the spin-orbit Hamiltonian. The
eigenvalue of L · S, following Equation 4.95, is (h̄/2)[j(j + 1) − l
(l + 1) − s(s + 1)]. The eigenfunctions of J and Jz follow from the
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following argument. j can take on the values l + s and l − s; that
is, 3/2 and 1/2 for l = 1 and s = 1/2. The quantization of Jz leads to
mj taking on 2j + 1 values (similar to ml for Lz of 2l + 1, and ms

for Sz of 2s + 1 = 2). So, j = 3/2 leads to 4 eigenvalues (mjh̄/2s
for Jz, where mj = + 3/2,+1/2,−1/2,−3/2), and j = 1/2 leads to 2
eigenvalues, with mj = 1/2,−1/2. These eigenfunctions of J and
Jz are linear combinations of orbital and spin angular momenta.
For the j = 3/2 and j = 1/2 sets—writing the expanded vectors as
| jmj〉 ≡ |lmlms〉—we have

| jmj〉 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|3/2, 3/2〉 = |11 ↑〉,
|3/2, 1/2〉 = 1√

3
|11 ↓〉 +

√
2√
3
|10 ↑〉,

|3/2,−1/2〉 = 1√
3
|1 −1 ↑〉 +

√
2√
3
|10 ↓〉, and

|3/2,−3/2〉 = |1 −1 ↓〉

=
⎧
⎨

⎩

|1/2, 1/2〉 = 1√
3
|10 ↑〉 −

√
2√
3
|11 ↓〉, and

|1/2,−1/2〉 = 1√
3
|10 ↓〉 −

√
2√
3
|1 −1 ↑〉. (4.96)

Note that j = 3/2 states will be split from j = 1/2 states through
the spin-orbit perturbation: a splitting of 	so = 3/2λh̄2/2. Valence
band states now have an energy-momentum description tied to
their localization and therefore through the magnetic energy in
the orbital motion with spin. We now have six valence bands, with
doubling caused by the up and down spins from the p orbital basis.
Writing these states as |X ↑〉, |X ↓〉, |Y ↑〉, |Y ↓〉, |Z ↑〉 and |Z ↓〉,
expanded, two of these states—with the others following the same
logic—are

|X ↑〉 = 1√
2

[

−|3
2
3
2
〉 + 1√

3
|3
2

−1
2
〉 −

√
2√
3
|1
2

−1
2
〉
]

, and

|X ↓〉 = 1√
2

[

−|3
2

−3
2
〉 − 1√

3
|3
2
1
2
〉 −

√
2√
3
|1
2
1
2
〉
]

, (4.97)

which are all orthonormal. The non-vanishing matrix elements are

〈X ↑ |Ĥso|Y ↑〉 = −i
	s0

3
, 〈X ↑ |Ĥso|Z ↓〉 = 	s0

3
,

〈Y ↑ |Ĥso|Z ↑〉 = −i
	s0

3
, 〈X ↓ |Ĥso|Y ↓〉 = i

	s0

3
,

〈X ↓ |Ĥso|Z ↑〉 = 	s0

3
, and〈Y ↓ |Ĥso|Z ↑〉 = −i

	s0

3
. (4.98)

The spin-orbit splitting does not change significantly from those
of atoms. In zinc blende structures with their two-atom basis, the
splitting is weighted by the electron probability distribution, with
anions, where the electron charge cloud has a higher probability
density, dominating. In general, it is a parameter for the k · p
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calculation from Equation 4.94, where the spin-orbit term operates
on the orbital degree of freedom. Matrix elements between opposite
spins vanish. The six eigenstates of the angular momentum basis
lead to the Luttinger Hamiltonian relationship with spin-orbit
coupling that prescribes the energies:
⎡

⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎢
⎣

−P − Q S −R 0 1√
2

S −√
2R

S† −P + Q 0 −R
√
2Q −

√
3√
2

S

−R† 0 −P + Q −S −
√
3√
2

S† −√
2Q

0 −R† −S† −P − Q
√
2R† 1√

2
S†

1√
2

S†
√
2Q† −

√
3√
2

S
√
2R −P − 	so 0

−√
2R† −

√
3√
2

S† −√Q
† 1√

2
S 0 −P − 	so

⎤

⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎥
⎦

⎡

⎢⎢
⎢⎢⎢
⎢
⎣

|HH ↑〉
|LH ↑〉
|LH ↓〉
|HH ↓〉
|SO ↑〉
|SO ↓〉

⎤

⎥⎥
⎥⎥⎥
⎥
⎦

= E

⎡

⎢⎢
⎢⎢⎢
⎢
⎣

|HH ↑〉
|LH ↑〉
|LH ↓〉
|HH ↓〉
|SO ↑〉
|SO ↓〉

⎤

⎥⎥
⎥⎥⎥
⎥
⎦

.

(4.99)

Note that, at the zone center, the six bases are eigenfunctions
with the eigenenergies of 0, 0, 0, 0, −	so and −	so, respectively.
Corresponding to the states description of Equation 4.96, these are
the different heavy-hole, light-hole and split-off states of up and
down spins, as the state vector summarizes. Here, the modification
to the earlier spin-less Luttinger calculation (Equations 4.44 and
4.74) consists of the parameters

P = h̄2

2m0
γ 1(k2x + k2y + k2z),

Q = h̄2

2m0
γ 2(k2x + k2y − 2k2z),

S = h̄2

m0

√
3γ 3(kx − iky)k2z , and

R = h̄2

2m0

√
3
[
γ 2(k2x − k2y) − 2iγ 3kxky

]
, (4.100)

with the γ parameters related to the earlier calculation as

− h̄2

2m0
γ 1 = 1

3
(L + 2M), − h̄2

2m0
γ 2 = 1

6
(L − M), and − h̄2

2m0
γ 3 = N

6
.

(4.101)
Figure 4.9 shows an example of this six-parameter Luttinger k · p

calculation for Si. A split-off band is formed about 44 meV below
the heavy-hole j = 3/2 and the light-hole j = 1/2 bands, with the
heavy hole and the light hole degenerate at the zone center. At the
zone center, the heavy-hole mass is 0.29m0 along 〈100〉, and 0.61m0

along the 〈110〉 direction; that is, it is highly anisotropic. The light-
hole mass is 0.15m0 along 〈100〉, and 0.20m0 along 〈110〉. And as one
goes higher in energy, these bands warp. The heavy-hole band is

Semiconductor devices on these cubic
crystals are generally oriented with
transport in the [110] direction. So,
transport of heavy holes is particularly
handicapped by this choice, but light
holes compensate.

highly anisotropic, with the highest mass along the 〈110〉 directions.
The light-hole band is less anisotropic.

	so γ 1 γ 2 γ 3

eV

Si 0.044 4.22 0.39 1.44
Ge 0.29 13.4 4.24 5.69

GaAs 0.34 6.98 2.06 2.93
InAs 0.38 20.0 8.5 9.2
InSb 0.85 34.8 15.5 16.5

Table 4.3: Selected band parameters for
some of the important semiconductors.

Some of the parameters, relevant to these valence band calcu-
lations are summarized in Table 4.3. Note the similarity of the
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Figure 4.9: (a) Silicon’s valence
bandstructure near the zone center and
at low energies. The heavy-hole band
arises in |3/2,±3/2〉 states, the light-
hole band arises in |3/2,±1/2〉 states
and the split-off band in |1/2,±1/2〉
states. The split-off band is about 40
meV separated from the other bands
at the zone center. (b) The constant
energy contour in plane on a (001)
surface at the low energy E = E′ shown
in (a). The heavy-hole band is highly
anisotropic, and the light-hole band
less so.

	s0 for Ge and GaAs, since the anion is about the same size. Si
being a smaller atomic number atom, the split-off energy is quite
small, while Sb, which is a row down in the periodic table from
As, makes the split-off band energy much larger—larger than even
its bandgap.

4.9 Bandgaps

Group IV , IIIV and IIVI compounds are the natural combinations
for achieving a bandgap where one of the bands will be filled
at absolute zero. These will have a variety of distribution in the
bandgaps—very small (∼ 0.2 eV) as in InSb or very large (∼ 5.5 eV)
in diamond or even ∼ 6 eV in AlN—depending on the perturbation
interactions, which are guided by the ionicity and covalency
resulting from the valence structure and the crystalline symmetries
and parameters. Note here that we usually think of diamond as
an insulator, even if it has a smaller bandgap than AlN. Both of
these can be made conducting through donors; it is just that, at
moderate temperatures, the thermal direct transitions will have
a very low probability for transfer from the valence state to the
conduction state.

It is useful to keep a perspective of this range of eVs and
whether the semiconductor is direct or indirect, since this
has a lowest order implication for the possible uses that the
semiconductor can be put to.

Figure 4.10 shows the bandgap and the direct and indirect nature
of the bandgap of common semiconductors—the elemental, binary
and ternary forms—as a function of the lattice constant. These
are bandgaps for the most common form when the crystal exists
without any crystal distortion from its natural normal pressure and
temperature conditions. Nitrides are generally in the wurtzite form,
and the others in zinc blende or diamond. In nanowire form, as
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Figure 4.10: The bandgap as a function
of the lattice constant for prominent
semiconductors—the elemental,
binary and compositionally mixed
ternary forms—in their common
bulk form. Nitrides—wurtzites—
are shown on the left. Zinc blende
and diamond crystal structure
semiconductors are shown on the
right. Note the direct and indirect
conduction minima represent a direct
and indirect bandgap, respectively.

grown, some nitrides can be zinc blende, and the others wurtzite,
and normally zinc blende crystals can become wurtzite too. This
has, of course, implications for bandstructure.

Nitrides have a large span in bandgap, and because they are
composed of at least one small atom (N), many have the large
bandgap and small lattice constant. The nitrides are shown on
the left. Note also the direct and indirect conduction minimum
dependence as a function of lattice constant for several of the exam-
ples. Direct bandgap semiconductors tend to be optically efficient.
So, if the bandgap is in a desired range, it becomes possible to
employ them gainfully for optoelectronic structures—light emission
and light capture, as in photovoltaics, lasers, et cetera—and if they
are indirect bandgap, they can still have utility for light capture if
photoelectric conversion can be made efficient and the capturing
happens in the desired blackbody radiation spectrum range of the
sun. If the material is indirect, it is likely to have a higher lifetime,
which makes bipolar electronic processes more conducive. The
ability to vary the bandgap through compositional mixing means
that one can employ the alloy composition changes as an additional
crystal-potential-dependent force on mobile carriers in the
structure. If one makes junctions between different semiconductor
combinations abrupt, without stress, so at the same lattice constant,
or with stress, while keeping the energy in this elastic deformation
limited to keep the material stable, it gives one the means to
preferentially control one carrier over the other. We will discuss
this variety of semiconductor physics aspects in later chapters.

4.10 Gapless semiconductors

Based on our starting definition of what constitutes being
a semiconductor—when ideal, at absolute zero, filled bands are
separated from unfilled bands—a gapless semiconductor is an
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oxymoron. However, given that one can open up a gap due to
the nature of the states of the bandstructure and the ability to use
quantum confinement in de Broglie length scale thin layers, this
naming is not without merit.

In the presence of very strong spin-orbit coupling, as in HgTe,
which is composed of large atomic number elements, it is possible
for the light-hole band to invert, that is, for the light-hole mass to Chapter 3 of S. Tiwari,  ̏Nanoscale

device physics: Science and
engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4 (2017),
has a discussion of the topological
uses of such materials. Traditionally,
materials based on HgTe and CdTe
compositional mixes have been used
in infrared detectors, where their
small bandgap is very useful for light
detection. Infrared detectors, and
their arrays, look farther out in the
wavelength, so even in the dark, and
are important tools of defense and
astronomy.

become negative. This is a bulk band inversion. The light-hole band
is now above the lowest conduction band. The heavy-hole band
is still the valence band. And both these bands are degenerate at
k = 0. We now have a semiconductor that has no energy gap, or a
negative bandgap! When one quantum confines HgTe, for example
using CdTe-mixed cladding regions, it is possible to move the bands
out higher in energy—conduction band up and valence band down
on the electron energy plot—and a normal band insulation can
be opened up. Small bandgaps, with adequate control of dark
and leakage currents and noise, have several uses related to the
detection of long wavelength electromagnetic waves.

4.11 Example electron bandstructures

We can now relate the wave-particle discussion of Chapter 3,
and the discussion of some of these methods of bandstructure
calculations and their implications in how the conduction and
valence states change, to the specific semiconductor bandstructures
of interest throughout this text. These exemplars and the discussion
related to them lets us draw implications for some of the important
characteristics that will appear throughout this text and in uses of
semiconductors.

Figure 4.5 let us comment on the general nature of the
conduction and valence band states near the bandedge. Semicon-
ductors can be direct bandgap and indirect bandgap. Direct means
that the conduction band minimum and the valence band maxi-
mum are both at the zone center. Indirect semiconductors have the
conduction band minimum away from the zone center. The
conduction bandedge at the zone center arises from the |s〉-
like states. The lowest indirect bandgap states in conduction
band arise from a mix of the |s〉 and |p〉 states. These may be
minimum at L as in Ge, or near X as in Si. The valence band
states arise predominantly from the mixing of |p〉 states and |s〉
states. The heavy-hole states and the light-hole states have different

The reader will find a Python 3.5
code pseudo.silconPyTh35.py, for
calculating silicon bandstructure,
on the book’s companion website
mentioned on page iv. This code
employs pseudopotentials.

contributions from the orbital and the spin angular momentum and
these angular momenta feature will determine the transition rules



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

178 semiconductor physics

when interactions occur with other particles such as photons. Also
note here that the spin-orbit coupling caused a split-off band. So,
the spin itself can have a major effect in the bandstructure.

Figure 4.11 shows, on a larger energy scale and along the major
axes and points of the first Brillouin zone, the bandstructure
of three sets of instructive semiconductors. Figure 4.11(a) and
(b) are for Ge and Si, two elemental semiconductors that are

Figure 4.11: Bandstructures over
comparative energy ranges
for a number of illustrative
semiconductors. Parts (a) and (b)
show the bandstructure for Ge and Si,
respectively. These are indirect. Parts
(c) and (d) show bandstructure for
GaAs and AlAs, respectively, with a
change in cation and a simultaneous
change from direct to indirect
bandgap. Parts (e) and (f) show the
bandstructure for a different anion
(GaN and AlN) as also a different
crystal structure (wurtzite instead of
zinc blende). It is instructive to see the
differences that have appeared in the
zinc blende bandstructures here in the
crystal compared to the free potential
bandstructure of Figure 3.16.
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centrosymmetric, covalent and indirect bandgap. Figure 4.11(c)
and (d) are for GaAs and AlAs, where GaAs is direct bandgap while
AlAs, with the change in the cation to a smaller atom and increased
ionicity with the bond lengths very closely the same, is indirect
bandgap. Figure 4.11(e) and (f) take these two same cations but
change the anion to look at the bandstructure of GaP and AlP, both
of which are indirect bandgap.

Split-off bands exist in all of them. Si, being the lightest atom,
has the smallest splitting. One can also see the strong anisotropy
of heavy- and light-hole bands. The heavy-hole band has the
largest anisotropy, as seen through the difference between the 


direction and the 	 and � directions. The light-hole anisotropy
is particularly acute along the � direction. The symmetries
in the reciprocal space are also quite interesting to see, as the
perturbations cause the bands to change. Ge is in-between Ga and
As with respect to atomic number. Many of the features of the
different minima at L, � and X in Ge are present in GaAs, except
for where the lowest conduction band minimum is in the Brillouin
zone. Si, on the other hand, is quite different. The conduction band
minimum in Si is slightly in from the X point in the 	 direction—
the direction between the � and X points. At the zone center, Si has
a fairly large bandgap, while Ge, with an L minimum, does show
a valley at the center. All these bandstructures show that, at a zone
edge, either a maximum or a minimum and group velocity exist, as
expected from symmetry arguments. Hot electron lasers have been

heroically demonstrated in Ge because
of the possibility of inversion through
this central valley.

A number of compound semiconductors are direct bandgap,
and, in the eV range, InP is an important one, as are ternary and
quarternary compounds, where the bandgap of much smaller
bandgap semiconductors such as InAs can be stretched out by
growing them on other compound substrates. Note that larger
bandgap compounds such as GaP and AlP are indirect. The size of
anion and the ionicity matters. P, much smaller than As, makes the
semiconductor indirect. With AlAs as indirect, AlP’s indirectness is
not a surprise. But one sees that GaAs became indirect GaP when
the smaller anion was employed. This conclusion is quite general
with zinc blende’s symmetry.

Take GaN and AlN in Figure 4.11(e) and (f). These are wurtzite
crystals. The bandgap is large, and they are also direct bandgap.
They also have the split-off band. Complexing them as ternaries
with InN gives considerable freedom in changing a variety of
properties, including those of heterostructures, and exploiting
piezoelectricity. This set of properties together permits high
breakdown fields, high carrier concentrations at interfaces and good
mobility. These properties are conducive to high power operation
at high frequency. The direct bandgap transitions likewise make it
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Figure 4.12: The conduction and valence bands of silicon and germanium on a comparative energy scale.

possible to achieve visible and ultraviolet emission. And because
of the stronger bond, the higher energy light does not cause defect
generation.

Since a few of the semiconductors will appear often and it is the
states within a few eVs from the bandedge that are important in
most uses of the structures, we particularly focus on these—Ge, Si,
GaAs and InAs—through Figure 4.12 on identical energy scales and
the L–�–X cuts, so along the 
 direction and the 	 direction where
the minima appear.

The nature of different indirect bandgap between Ge and Si
is now visible in the (a) and (b) parts, and the change to direct
bandgap in GaAs and InAs, which have a larger and smaller
bandgap, respectively, is now visible in these. Ge’s conduction
minimum order is L-X-�, Si’s is X(a fraction, thereof)-L, while
GaAs’s is �-L-X. In AlAs it is the X valley that will drop to the
lowest, similar to that of Si.

Note also how dissimilar InAs is to GaAs, even if the ordering
of valleys is similar. It has a small bandgap, and a low conduc-
tion mass at the bandedge, which is at the zone center, and the
secondary valley at L is nearly an eV away. Carriers can be accel-
erated up in the same valley before the density of states suddenly
jumps due to the states of L, and those even further up of the X
valley.

GaAs is shown with its zone center direct bandgap. The next
highest conduction valley in GaAs is L, followed by X. So, one may
view GaAs, a direct bandgap material, as one whose higher conduc-
tion band states are more Ge-like before becoming Si-like. When one
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forms a crystal by introducing AlAs with GaAs, as the molefraction
of AlAs is increased, the L state become lowest in energy before X
takes over. Mixing of these states and their interaction with donors
causes numerous effects—effects such as shallow donors such as
silicon becoming deeper, and configurational effects due to the
nature of local bonding. In direct transitions between states in the
conduction band and the valence band, the polarization of the
valence band states will matter in determining the transitions that
are allowed without polarization change; that is, maintaining the
conservation of angular momentum arising from electron spin and
photon polarization.

Silicon has a bandgap of 1.1 eV at room temperature. The
minimum in the conduction band is a fraction (∼15 %) in from the
X point. So, the constant energy surfaces are ellipsoids, and there
can be six of these along the two directions of the major Cartesian
axes. Germanium has a minimum at the L point in reciprocal space.
So, the constant energy surface of germanium consists of half
ellipsoids—eight of them. Direct bandgap semiconductors tend to
have quite isotropic conduction constant energy surfaces at low
conduction band energies.

4.12 Density of states and van Hove singularities

These bandstructures also show that while using and
sometimes force-fitting isotropic mass, such as for the density of
states at the minimum, may be acceptable, in general, the higher in
energy one goes, the worse is this assumption. The density of states in multi-

dimensions in the isotropic
approximation, so useful at low
energies, is discussed in Appendix H
and is usually the form employed
in introductory courses. See, for
example, S. Tiwari,  ̏Quantum,
statistical and information mechanics:
A unified introduction,˝ Electroscience
1, Oxford University Press, ISBN
978-0-198-75985-0 (forthcoming).

Figure 4.13 shows the band dispersion and the density of states
in silicon as a function of energy. Note that, starting as a square-
root like dependence, which is a Taylor series manifestation of the
vanishing of states at the bandedge, the density of states fluctuates
considerably once it gets up into the range of a few eVs. This
anisotropy effect is quite pronounced and visible when a dimension
is quantized, such as in inversion regions. Another implication of
this is that as one goes up in energy—as carriers get hot—there are
plenty of states for scattering to take place to. Semiconductors start
to look alike—InAs excepting up to about an eV—and therefore
higher energy properties that are dominated by scattering should
not be too dissimilar.

Another feature of these density of states of import is the
existence of divergences that are the van Hove singularities.

See Appendix H for a discussion of
density of states.
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Figure 4.13: An expanded energy view
of the conduction and valence bands of
Si, together with density of states.

Take a one-dimensional structure and one specific band,

G (E) =
∫

2
2π

δ(E − E0) dk = 2
π

∫
δ(E − E0)

|dE(k)/dk| dE

= 2
π

1
|dE(k)/dk| . (4.102)

Since E(k) is a periodic function of k, dE/dk must vanish at the
Brillouin zone edge for each band. The density of states diverges
here. If the denominator dE(k)/dk approaches the zone edge linearly
in k, then the divergence approaches as

G (E) ≈ 1
k − k|edge

≈ 1
Eedge − E

, (4.103)

where we have used the second power dependence approach in
k. For dE/dk to vanish in one dimension, the energy must be a
maximum or minimum. The van Hove singularity in one dimension
conditions is at energy bands’ limits.

Van Hove singularities, however, can appear in a variety of
places in two and three dimensions. Figure 4.13 shows plenty of
instances of this. The general equation of density of states following
Appendix H is

G (E) =
∫

2
(2π)ν

δ(E − E0) dk, (4.104)



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

chapter 4: bandstructures 183

where ν is the dimensionality. This integral can be expressed over
the energy surface at a specific Ek, with E representing the free
ranging energy. Let

δ(E − Ek) = �(E − Ek) − �(E − Ek − dE)

dE
. (4.105)

The normal to the energy surface is n̂ = ∇kE/|∇kE|. Since dEk+dk =
Ek + dE, the separation between the Ek surface and Ek+dk is dk · n̂.
Taylor expanding Ek+dk,

Ek+dk = Ek + dk · ∇kE,

∴ dE = dk · ∇kE,

∴ dk · ∇kE = dE
|∇kEk| . (4.106)

Let dSE be an elemental area on the energy surface; then, Equa-
tion 4.104 can be rewritten as

G = 2
(2π)ν

∫
dSE

|∇kE| , (4.107)

with the integral being a (ν−1)-dimensional integral over the energy
surface.

Equation 4.107 says that a singularity exists, with the one-
dimensional situation excluded, for all points in the reciprocal space
where the group velocity vg vanishes. It happens at maxima and
minima, as with one-dimensional situations, but also at saddle
points. Examples of saddle points are specific points where the
energy may be maximum along one direction but a minimum
along some other direction. For two-dimensional situations, the
density of states varies as G ∝ ln |(E/Es) − 1|, where Es is the
specific energy point of divergence and, for three-dimensional
situations, it varies as the square root, that is, G ∝ √

E, whose trivial
cases are the conduction band minimum and the valence band
maximum.

Van Hove singularities, because these are regions of changes
in slope marked by sharp corners, are a very convenient tool
for connecting experimental measurements to bandstructure
calculations.

4.13 Example phonon bandstructures

We can now extend the general discussion of the phonon
bandstructure calculation of Chapter 3 to detail what happens in
semiconductors. Let us pick the same semiconductors as the ones
whose electron bandstructure was sketched in Figure 4.11: so, Si
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and Ge, to compare two indirect single element diamond structure
semiconductors; GaAs and AlAs, to compare zinc blende structure
semiconductors where now GaAs is direct and AlAs is indrect; and
GaN and AlN from the wurtzite structure family. Figure 4.14 shows
these.

The ordinate is in units of meV (100 meV ≡ 24.2 THz). Si’s is a
stronger bond than Ge’s and this is reflected in the optical phonon
energies. Ge has softer phonon modes. The LO modes are relatively
flat with an energy of the order of 54 meV at X and which rises to
>60 meV at the zone center. Ge’s optical phonons are nearly 40 %
lower in energy. The longitudinal acoustic modes also have a larger
energy than the transverse acoustic mode. There exists no phonon
bandgap for the crystal.

Figure 4.14: Phonon bandstructures
over comparative energy ranges for a
number of illustrative semiconductors.
Parts (a) and (b) show the phonon
bands for Ge and Si, respectively. These
are covalent materials, with Si being
one with a strong bond. Parts (c) and
(d) show phonon bands for GaAs and
AlAs with a change in cation. Parts
(e) and (f) show the bandstructure for
a different anion (GaN and AlN), as
well as a different crystal structure
(wurtzite instead of zinc blende).
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GaAs and AlAs too have similar phonon behavior. AlAs’s are the
stronger bonds, with Al a smaller atom. GaAs’s phonon dispersion
looks quite a bit like that of Ge, which the two elements straddle in
the periodic table.

The bonds of GaN and AlN are much stronger. The LO energy
at the zone center is about 93 meV, while the TO energy is about
68 meV and they stay rather flat. AlN’s energies are a bit larger
for the optical modes and considerably larger at their highest for
the acoustic modes. Closer mass alignment makes the acoustic
propagation much easier. What is particularly noteworthy is that
GaN has a significant phonon gap between about 40 and 60 meV. I find it interesting that I am not aware

of any attempt at taking advantage
of the GaN phonon gap. Suppressed
thermal conductivity is of interest in a
variety of circumstances, including in
thermoelectric conversion.

4.14 Summary

This chapter was a discussion of methods of bandstructure
calculations, what these E(n,k) states are like for common
semiconductors, the physical behavior they represent and our
parametric characterization, as well as the variety that becomes
possible in the conduction and valence bands. We also ended with
a summary of the phonon bandstructure. A number of important
points are noteworthy from the discussion.

The tight binding approach is a technique that was developed
for molecular bonding, where the basis functions are the atomic
orbitals of constituting atoms. Many crystals, although not as tightly
bound anymore, can also be described well using the tight binding
approach. Graphene and nanotubes, which are crystals but also
molecules, if one looks at them as finite-sized collections, of which
fullerene would be the clearest example, are most apt places for its
usage, and we will also employ this approach in Chapter 20. Here,
we used tight binding to show the development of states under
interaction in a one-dimensional chain under only nearest neighbor
interaction. We obtained bonding states as singlets and doublets
and, by extrapolation, multiples reflecting the degeneracies of the
system. Crystals are translationally invariant structures with atoms
bonded. Since the bases are atomic orbitals, tight binding has much
more accuracy and numerical efficiency in tackling the valence
band—bonding—states. So, these atomic orbitals let us see the
origin of hybrid states such as the sp3 hybridization that is common
in diamond, zinc blende and wurtzite semiconductors. This hybrid
construction will appear again in a discussion of defects when
one of the atoms goes missing or gets misplaced, but, here, we Amissing or misplaced atom within

the crystal starts to look like an
antimolecule, or a defect in the region
of order.

used it to look at its connections to the valence band states and, in
particular, to get from it a perspective of light and heavy holes. We
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extended this discussion to also view the conduction bandstructure
and how the symmetries of the |s〉 and |p〉 states show up in the
reciprocal space for the bandedge states, with the direct bandgap
� point being highly symmetric and |s〉-like, while points near X
and L being a combination of |s〉 and |p〉. This discussion of orbital
origin also let us introduce thoughts related to the interaction
between spin and orbital angular momentum, which appears in a
significant way in the valence band and leads to a third band near
the valence band maximum.

We followed this with a twist on the plane wave discussion
of Chapter 3, where we reworked the need to have short waves
to adequately describe the wavefunction near the core, to an
orthogonalized representation. Since this rapid change—long
wavevector—is the difficulty of describing localization, the orthog-
onalization is close to the response to be expected from the core
states. By using plane waves that are orthogonalized to the core
states, one could reproduce the oscillatory nature, and yet keep the
plane wave representation. In order to achieve this, we introduced a
projection operator, and then only a few plane waves are needed to
adequately build the Bloch function.

The projection operator was a convenient means to build the
most common of bandstructure methods, that of pseudopotentials.
Pseudoptentials cleverly separate the localized region of the
wavefunction from the delocalized part. The projection operator
served to show how, by using such an approach, the Hamiltonian
can be mapped to a pseudo-Hamiltonian with a pseudopotential.
This pseudopotential is much more slowly varying than the crystal
potential in the core region, and the equation that needs to be
solved has a smaller perturbation term. Pseudopotential techniques
are now ubiquitous in solid state and for quite a bit of molecular
chemistry. Another technique of similar importance is that of using
density functionals, where a functional makes it possible to perform
a Hartree calculation—appended with correlation—accurately.

We spent considerable effort on understanding and using the k ·p
method. It is very instructional and very conducive to gaining phys-
ical understanding. The k · p method works with unk(r), the periodic
modulation function of the plane wave of the Bloch function.
Starting from the crystal Hamiltonian and its solution—the Bloch
function—we recast the description in a form where new states
|k′〉 can be written using perturbation on a known solution. We
could demonstrate that the first order term on the changes in the
energy with the wavevector, that is, group velocity, was precisely
as expected. This Hamiltonian expansion operating on the periodic
modulation function is in a form that now lets us reconstruct the
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energy and the modulation function through perturbation theory.
Energies could now be written in a form with reference and a k
dependence. So, we could assign  ̏mass˝ that relates the energy to
the crystal momentum through it. This is the effective mass. The
free electron mass has now been modified through a perturbation
correction arising in the k · p interaction. The mass, in general,
is anisotropic, different in different directions, and an effective
mass tensor is a convenient way to describe it. We gave meaning
to the longitudinal and the transverse perturbation correction terms
through this approach.

The interactions that one has to worry about are of all the
states that can have a contribution through the k · p perturbation.
In the conduction band of large gap materials, it will be the
interaction from states within a band. In small bandgap mate-
rials, the interactions will also have to invoke conduction band
and valence band state interaction. With valence bands being
considerably more complex, generally with three bands—light,
heavy and split off—interacting, the k · p method is particularly
useful. We parameterized the k · p perturbation terms and showed
how anisotropy appears, as well as how non-degeneracy plays out
along the important directions, and showed the simpler form of the
Luttinger Hamiltonian. Many of these aspects are a consequence of
the angular momentum that the |p〉 states have. This discussion had
still not included spin-orbit interaction, which we tackled later.

We moved from bandstructure calculation techniques to a
discussion of the effective mass theorem and of Wannier func-
tions, both of which are important to understanding and judi-
ciously applying this notion of effective mass that takes into
account the crystal potential. The Wannier function is the spa-
tial Fourier transform of the Bloch function. While Bloch func-
tions are spread out over the crystal, the Wannier function is
localized and it characterizes the state in band n spatially while
centered at the equilibrium position of the atoms. Wannier func-
tions and Bloch functions, being Fourier transforms of each
other, have all the associated properties of correspondence that
exist in Fourier transforms. Wannier functions, for example, are
also orthonormal. Using this Wannier function and expansion
coefficients—an envelope function—we could derive the effec-
tive mass theorem. The effective mass theorem is a transform
from the Schrödinger equation describing the energetics of the
crystal but without the crystal potential in it. The effective mass and
the  ̏effective mass Hamiltonian˝ operating on the Wannier enve-
lope function solves for eigenenergy. For the effective mass theorem
to be valid, it must be applied to a perturbation phenomenon where
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the effective mass description—an electron wavefunction spread out
and feeling the periodicity of the crystal potential—must be valid.
So, as we will see later, if one had a shallow hydrogenic donor as a
perturbing donor state donating an electron to the conduction band
where it is spread out over the crystal through the Bloch state it is,
it is valid. But, using it for a deep donor, where the interactions
are very localized near the core, is not valid. It is also not valid if
a transition from the valence band to the conduction band occurs
by absorbing a photon since, during this transition, the electron
really did not move spatially as such and only shifted energy at a
specific k.

We returned back to the description of valence bands at this
point to re-emphasize the richness of what happens as a result of
their closer localization near the core. We described the origins and
the mathematical formulation of the spin-orbit interaction, and,
using this, reformulated the Luttinger Hamiltonian. The solution of
this—again, with parameterization—let us now describe the nature
of the behavior of the light-hole, the heavy-hole, the split-off bands,
their anisotropy and their changes in different directions. This will
become important and particularly interesting when we discuss
strain in Chapter 17.

As an aside, and a consequence of the spin-orbit coupling, we
had a short discussion of bandstructures where the energy place-
ment of specific conduction and valence bands can be reversed. The
|p〉-like valence band is higher than the |s〉-like conduction band.
HgTe is an example of this. Of course, such semiconductors can be
converted to normal semiconductors with bandgap when they are
confined and, as a result, energies are shifted by the confinement
momentum.

Finally, we ended this chapter with a few exemplary bandstruc-
tures: electronic direct and indirect bandgap; diamond, zinc blende
and wurtzite crystals; and the phonon bandstructure of these same
semiconductor examples. This information let us make a number of
comments about the origins of many of the features we observe in
these characteristics.

4.15 Concluding remarks and bibliographic notes

Understanding the allowed states and the behavior of
electrons and phonons in these states under the wide variety
of perturbations, and how the electrons, phonons and photons
interact with each other, provides the foundation for mathematically



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

chapter 4: bandstructures 189

describing a semiconductor’s behavior. This chapter was devoted
to bandstructures. There is a wide collection of books, each with
different qualifications, that are very appropriate as references for
further reading and dwelling on details. In the order of the topics of
this chapter, here are a few select examples.

The  ̏Handbook on Semiconductors˝ series of books is an
extensive and comprehensive source for an understanding and
the state of semiconductors up until the early 1980s. Many new
developments have taken place since then, particularly as nanoscale
and new calculation techniques and practical technologies, and
new materials and new uses, became of interest, but the underlying
knowledge of the understanding, especially of the bulk semiconduc-
tors, has not changed significantly. The first volume in this series,
which is edited by Paul1, is one of my favorites, with a number

1 W. Paul (ed.),  ̏Band theory and
transport properties,˝ 1, North-
Holland, ISBN 0-444-85346-4 (1982)

of contributions by luminaries of that period. The energy band
theory discussion, for example, is by Kane, and the discussion of
pseudopotentials is by Cohen and Chelikowsky.

A book with a good discussion of bandstructure calculations
using various techniques based on plane waves is by Marder2.

2 M. P. Marder,  ̏Condensed matter
physics,˝ Wiley, ISBN 978-0-470-61798-
4 (2010)

Two additional books—both of recent years—are by Balkanski
and Wallis3 and by Cohen and Louie4. Cohen and Louie have a

3 M. Balkanski and R. F. Wallis,
 ̏Semiconductor physics and
applications,˝ Oxford, ISBN 978-0-
19-851740-5 (2007)

4 M. L. Cohen and S. G. Louie,
 ̏Fundamentals of condensed matter
physics,˝ Cambridge, ISBN 978-0-521-
51331-9 (2016)

dedicated extended chapter on density functional theory—an
approach we shortchanged in an attempt to maintain focus
on k · p’s instructiveness—and its use in calculations beyond
bandstructures.

Yu and Cardona’s text5 has been referenced before. Chapter 2

5 P. Y. Yu and M. Cardona,
 ̏Fundamentals of semiconductors,˝
Springer, ISBN 978-3-642-00709-5
(2010)

of Yu and Cardona’s text is a fairly complete description of how
group theory, nearly free electron models, pseudopotentials, the
k · p method and tight binding are to be employed in obtaining
semiconductor bandstructures. This book is now in its fourth
edition, which speaks to its completeness, with a lot of specific
information useful in semiconductor calculations.

An advanced source for pursuing tight binding methods is by
Kohanoff6. Kohanoff also discusses pseudopotentials, and molecular

6 J. Kohanoff,  ̏Electronic structure
calculations for solids and molecules,˝
Cambridge, ISBN 13-978-0521815918
(2006)

dynamics techniques that we did not discuss.
For understanding pseudopotential techniques, see the book

by Cohen and Chelikowsky7. Be it known that many of the

7 M. L. Cohen and J. R. Chelikowsky,
 ̏Electronic structure and optical
properties of semiconductors,˝
Springer, ISBN 13-978-3-642-97082-5
(1988)

semiconductor bandstructures that one sees in texts originated in
Professor Cohen’s and Professor Chelikowsky’s work.

A very thorough and modern text—also very advanced—
discussing electronic structure techniques is the book by Martin8.

8 R. M. Martin,  ̏Electronic structure,˝
ISBN 0-521-78285-6 (2004)

This book also discusses the Kohn-Sham density functional
approach. The text by Pisani9 uses tight binding/linear combi-

9 C. Pisani,  ̏Quantum-mechanical
ab-initio calculation of the properties
of crystalline materials,˝ Springer,
ISBN 13 978-3-540-61645-0 (1996)

nations of atomic orbitals to approaching the density functional
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calculation. The original papers related to the density functional
approach10,11 provide a comprehensive treatment and justification 10 P. Hohenberg and W. Kohn,

 ̏Inhomogeneous electron gas,˝
Physical Review, 136, B864 (1964)

11 W. Kohn and L. J. Sham,  ̏Self-
consistent equations including
exchange and correlation effects,˝
Physical Review, 140, A1133 (1965)

underlying the density functional theory. A comprehensive text
for density functional theory is by Engel and Dreizler12. A more

12 E. Engel and R. M. Dreizler,
 ̏Density functional theory: An
advanced course,˝ Springer, ISBN 13
978-3642140891 (2011)

recent book that spans the applications to materials properties is
by Feliciano Giustino13.

13 Giustino, F.,  ̏Materials modeling
using density functional theory,˝
Oxford, ISBN 978-0-19-966243-2 (2014)

Hamaguchi14 is particularly good in his discussion of the

14 C. Hamaguchi,  ̏Basic
semiconductor physics,˝ Springer,
ISBN 978-3-642-03302-5 (2010)

Wannier function and the effective mass theorem.
An excellent source for a discussion of spin-orbit interactions and

k · p methods, including a discussion of effective mass and oscillator
strength, is the compact writing of Ridley15. A more advanced

15 B. K. Ridley,  ̏Quantum processes
in semiconductors,˝ Oxford, ISBN
0-19-851170-1 (1988)

text, again with a quantum emphasis, is the work by Fischetti and
Vandenberghe16 that we have referenced before.

16 M. V. Fischetti and W. G.
Vandenberghe,  ̏Advanced physics of
electron transport in semiconductors
and nanostructures,˝ Springer, ISBN
978-3-319-01101-1 (2016)

4.16 Exercises

1. Show that the Schrödinger equation for the periodic crystal may
be written in the form

[
(p + h̄k)2

2m0
+ V(r)

]

unk(r) = En(k)unk(r).

Using this form, with the energy En(k) near k = 0 written in
terms of the momentum matrix elements, find the components
of the reciprocal mass tensor terms using the momentum matrix
elements to demonstrate that the
• interaction between two bands leads to a lower band with a

hole-like effective mass and a higher band that has an electron-
like effective mass, and

• that the two masses are equal. [M]

2. Take a body-centered cubic lattice with |s〉-like functions for the
atom orbitals. Using tight binding,
• demonstrate that, at k = 0, the energy surfaces are spherically

symmetric, and

• find the effective mass at k = 0. [S]

3. As a precursor to understanding surfaces, consider a linear chain
with one end free. This end represents a surface. Using tight
binding, show that now one can have allowed energies in the
range between the normal bands. [S]

4. What do you think will happen if the end atom of Exercise 3 was
an impurity, that is, different from the rest of the one-dimensional
crystal? [S]
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5. A one-dimensional crystal has the potential

V(z) = −3 − 2 cos 2z.

Assume that wavefunctions are the solutions of the simple
harmonic oscillator problem, that is,

ψ(z) = exp(−αz2),

with α an adjustable parameter that is used variationally to
minimize energy. Find the eigenvalues for the lowest energy
band. [S]

6. Prove that the Wannier functions and momentum eigenfunctions
are Fourier transforms of each other. [S]

7. Show that the Wannier functions centered at different atomic sites
are orthogonal. [S]

8. When a magnetic field H is applied to a metal, the k changes and
follows an orbit in k-space. This orbit is at the intersection of a
plane perpendicular to H and the energy surface on which the k
lies. Show that an effective mass that describes this motion is Magnetic field, by itself, cannot

impart energy since it causes motional
change—in velocity’s direction—
orthogonally.

1
m∗

cycl
= 2π

h̄2
dE

dAk
,

where Ak is the area of the orbit in k-space. [S]

9. Show that the conductivity tensor diagonal is unchanged under
the application of a magnetic field. This implies that there is no
transverse magnetoresistance in metals. [S]

10. The bottom of the conduction band of a semiconductor has a
reciprocal mass tensor of the form Bismuth, a metal, has this form

of conduction band. It has one of the
lowest thermal conductivities and
one of the highest Hall coefficients
among metals. When thin, it becomes
semiconducting.

1
M∗ =

⎡

⎢
⎣

1/m∗
xx 0 0

0 1/m∗
yy 1/m∗

yz

0 1/m∗
zy 1/m∗

zz

⎤

⎥
⎦ ,

where m∗
yz = m∗

zy. What is the constant energy surface at the
bottom of the band like? [S]

11. In a direct-gap semiconductor, as one moves away from the zone
center, the energy dispersion becomes increasingly non-parabolic.
This is often represented through a non-parabolicity parameter
α in

E(k) ≈ γ (k)[1 + αγ (k)], where γ (k) = h̄2k2

2m∗ .
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• The heavy- and the light-hole bands, warped, have an approxi-
mate dispersion near k = 0 of

E(k) = − h̄2

2m0

{
Ak2 ±

[
B2k4 + C2(k2xk2y + k2yk2z + k2zk2x)

]1/2}
,

where the averaged A, B and C parameters and the resultant
masses for Si and Ge are listed in Table 4.4. Calculate the
effective masses for heavy- and light-hole bands along [100],
[110] and [111] directions, based on the parameters and the
nonparabolicity.

• Again, using this approximate k · p correction, derive an
expression for the electron group velocity vg = (1/h̄)∇kE(k).

[M]

Si Ge

A 4.0 13.1
B 1.1 8.3
C 4.1 12.5
m∗

lh 0.49m0 0.28m0

m∗
hh 0.16m0 0.944m0

Table 4.4: Averaged A, B and C
parameters and the resulting averaged
effective masses for heavy and light
holes for Si and Ge.

12. Germanium’s valence band states are degenerate at k = 0. Near
this k = 0, the secular determinant is of the form
∣
∣∣
∣∣
∣∣

Ak2x + B(k2y + k2z) − E Ckxky Ckxkz

Ckykx Ak2y + B(k2z + k2x) − E Ckykz

Ckzkx Ckzky Ak2z + B(k2x + k2y) − E

∣∣
∣∣
∣∣
∣
= 0.

A, B and C relate to the reciprocal mass tensor.
• What is the form of the energy bands near k = 0, along [100]

and [111] directions?

• Show the surfaces of constant energy near k = 0 are not
spherical. [S]

13. A two-dimensional lattice of lattice constant a, absent any
perturbation in the crystal, has degeneracy at (−π/a,π/a) of the
Brillouin zone. If there is periodic potential,
• show that the degeneracy is removed, and

• find the symmetry of the new states. [S]
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Semiconductor surfaces

Surfaces and interfaces break symmetry. Important changes
in properties must therefore result. For us, so far, we have derived In S. Tiwari,  ̏Nanoscale device

physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017), we dwell
on the thermodynamic link between
the breaking of symmetry and the
appearance of new phases with
property changes. In bulk, the most
important of these is thermodynamic
phase transition. Peierls instability,
also a transition, has major
consequences for molecules and for
solids. A Peierls transition can lead to
metal-insulator transition in partially
filled valence materials. Noether’s first
theorem, that differentiable symmetry
of action leads to a conservation law, is
another monumental observation that
ties in to broken symmetry.

the energy-momentum relationships as ones that are of importance
to us in describing electrons and phonons in the semiconductors.
The bulk behavior must undergo change at the surface, since
translational symmetry was central to our building of Bloch
functions as well as correspondingly describing the oscillation, so
of atoms around an equilibrium position.
Devices require surfaces and interfaces for particle and energy

exchange for the transformations they perform and for return of the
signals to the world that is their environment. In addition to the
symmetry change, there will also exist local changes spread out in a
region at the interface that is also under the influence of different
perturbations. Nature abhors discontinuous changes. With an

Any absolute discontinuous change
will require infinite energy—more than
there may exist in the universe.

order of �10 eV of energy magnitudes in systems of interest to us,
there will be a spread of a region of few atoms or more where the
arrangements realign in the atomic positions as well as in how the
interactions take place between them. Electron and phonon states
will be affected, atoms will rearrange themselves to lower energy
and there will be interfacial transmission and reflection effects. Each
of these, and others, will be of importance to the properties of the
material and the functioning of devices. This chapter discusses this
electronic, phononic and atomic behavior at surfaces.
We will develop first a physical understanding of the surface and

interface. We will follow this with a semi-classical view using a one-
dimensional toy model to explore how bulk electron states defer
from surface states. This will let us see how atom orbital states
evolve to bulk states in the translationally symmetric region to the
nature of the states at the surface where the symmetry is broken.
As with bulk states, we are interested in the energy, symmetry
and distribution of these states. Such an approach also lets us note

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

194 semiconductor physics

useful comments regarding the common notions of workfunction,
for example, that we use to characterize materials and when
materials are put together with others. We also look at the surface
from a free energy perspective to see how surface rearrangements
take place, and see the evolution of the bonding states as a surface
reconstructs. We will continue to use toy models to see the nature
of vibrational modes—of phonons—that exist at the surface.
Electron and phonon surface modes bring up very interesting
questions of localization, that is, discreteness, versus delocalization,
that is, propagation. With this background, we will have sufficient
understanding to discuss semiconductor interfaces and the junctions
that are formed by materials, many with crystalline continuity, in
Chapter 6.

5.1 Implications of surface and interface

Our traditional treatment of an infinite crystal in order to
describe the propagating modes of electrons and phonons is a con-
venient starting point for understanding crystalline semiconductors.
The approach gives us a means for describing the propagating
three-, two- and one-dimensional modes. But the making of a
small device—any device—breaks this symmetry. Devices have
plenty of boundaries with changing symmetries. In quantum-
confined nanoscale structure too, this symmetry is broken. What
happens under these conditions? Intuitively, one would expect
there to be both propagating and confining modes in the region
where this symmetry is broken. For example, in a three-dimensional
structure, with a surface, propagation of electrons must end as
they encounter the surface traveling from within the bulk. Our
traditional view is to say that there is a large energy barrier at the
surface because an electron outside the crystal—say, in an infinite
vacuum and at rest with no other electrons around—has an energy
referenced as the vacuum energy level Evac. Inside the crystal, the
electron energy is significantly lowered. Indeed, the electron at
the electrochemical potential—the Fermi energy—needs an energy
called the workfunction to extract it as the difference in the two
energies.

Recourse to workfunction requires
caution. It is a property assigned to the
bulk. Surface doesn’t enter into this
description, yet the electron needs to
go through a surface to get to vacuum.

We will see that this picture is approximately correct but also
misses several important details that we will deal with.
But this picture does say that, quantum-mechanically, we will

find that the electron wavefunction decays rapidly perpendicular
to the surface into the vacuum region. So, we might ask, what
about along the surface? In this idealized picture of a surface cut
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out of the bulk, the translational symmetry still exists in the plane.
Propagating modes, then, must continue to exist along the surface.
We will see that, yes, this is true, but one will see a variety of
unexpected behavior. Bulk propagating states may continue along
the surface. Surface states may exist within the bulk’s bandgap
region—states that will be confined to the surface region but which
follow our intuitive description to be available for propagation
in the plane. If one has translational symmetry breaking or a
potential symmetry breaking between crystalline semiconductors,
such as at a heterostructure, one may see no surface states in
the bandgap but see a discontinuity in the conduction bandedge
and valence bandedge. If the materials were two dimensional
or one dimensional, the dimensionality may also have its own
consequences.
In general, because of the presence of propagating and confining

states at the surface, numerous important property changes will
result. Confined states will cause recombination and generation
of carriers—coupling, and causing transitions that link valence
and conduction band states. If one places a metal, one will see
energy barriers—modeled through the barrier height—between
the semiconductor and the metal that certainly will break the bulk-
based vacuum level picture described above. Metal-semiconductor
rectification or ohmic conduction will depend specifically on what
happens at this interface and the region around it. States at surfaces
will have their own unusual scattering characteristics. Atomic
vibration modes—phonons—too will have their own interface and
surface-constrained characteristics that will affect the scattering
behavior arising in the perturbation of the electron characteristics
by the phonons.
This behavior at surface is very important because devices, once

made small, are a collection of interfaces and surfaces. Carrier
transport, heat transport and other interactions will all arise
from them.

5.2 A semi-classical view

Figure 5.1 shows a semi-classical description of the surface
and a few of the energies that we employ to describe. ϕw is
the workfunction. This is the energy needed to take an electron
from the hypothetical state at the electrochemical energy to
vacuum energy. The electron affinity (χ ) can refer to either
the conduction bandedge—this is the usual way—or the valence
bandedge. In general, when we employ the notation χ for electron
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affinity, we mean the energy from the lowest energy in the
conduction band.

Figure 5.1: The semi-classical view
of some of the reference energies
in bulk and vacuum. Evac is the
vacuum energy, with ϕw being the
workfunction—energy needed to take
an electron from the electrochemical
energy (Fermi energy of EF, which
is often also represented by the
chemical potential μ in physics texts).
Electronegativity is the energy to do
the same from an electron at rest at
the conduction bandedge (χ c) or the
valence bandedge (χv). Removing
an electron implies taking it out from
the surface, which is a complication
for this semi-classical view and is not
represented in this picture except as
the textured surface region.

The states that exist in the crystalline assembly, including with
its surfaces, evolve from states that existed in the contributive
collection. One way to look at this is that states that arise on the
surface emerged from conduction and valence band states of the
bulk, due to the perturbation arising from surface. The states of
the conduction and valence band, as we saw earlier, arose from the
states that existed in the atoms due to the perturbation arising in
the collective crystalline ensemble. The important point that this
argument makes is that no additional states have been created.
States of changed properties appeared as modifications when a
perturbation was introduced due to the physical modification
exercised. The number of electronic states in the crystal is just the
number of states in all the atoms that are there in the crystal. This
number of states are conserved.

5.3 A one-dimensional surface toy model

We will use a one-dimensional toy model to draw the
implications that arise in broken symmetry and the perturbation
introduced by the surface. The surface for a one-dimensional
chain is a point. The surface of a three-dimensional chain with a
broken symmetry in the z-direction is a plane whose orthonormal
vector is ẑ. Three-dimensional situations are a bit more complex;
in-plane propagating states are potentially possible, while they
are not for the point of the one-dimensional example. But, we
will see that many of the important essentials will be captured by
the one-dimensional model. We will be able to see from these, in
analogy with bulk propagating states, surface states and surface
bands. Some of these may be partly filled. This means the existence
of the chemical potential (and electrochemical potential) in the
surface band—or a discrete collection, if of limited numbers—
inside the bandgap of the bulk and aligning with that of the bulk
in thermal equilibrium. In turn, this leads to band bending and
Fermi level pinning, which many semiconductors suffer from and
sometimes gainfully utilize. We will be able to generalize this
picture to interfaces, where charge realignment occurs as the two
electrochemical potentials realign. When dissimilar materials form
the interface, different interface states—different from that with
vacuum—arise, leading to the interesting Schottky barriers and
ohmic contacts that one gets with metals, and the conduction,
valence and bandgap discontinuities that one sees in many of the
heterostructures.
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Figure 5.2: A collective chain of
atoms leading to a formation of the
propagating band states, together with
a simplified representation of a surface
where the translational symmetry
breaks.

Consider the slightly more detailed view of the energy picture
in Figure 5.2. This figure shows the crystal potential and energy of
states along one of the coordinate axes—the z-axis—of a crystalline
hypothetical semiconductor atomic assembly. In particular, it
shows the periodic potential, whose E(k) states represented in the
conduction and valence bands we discussed in previous chapters.
The bandedge of these bands are Ec for the conduction band, Ev for
the valence band and a bandgap Eg in between. There is also our
view of the vacuum energy Evac, akin to the classical view. But, here
we have also included a possible consequence of what happens as
one approaches the surface. Energy equilibrium, with the change
in symmetry conditions at the surface, must mean that the surface
cannot be similar to the bulk. The potentials are different—there
exists a quite different edge potential—and surface states too
may come about because one has terminated the surface with a
large potential change. This latter is a condition that must in turn
cause confinement effects arising in continuity of probabilities
and probability currents (momentum) for finite potential and
energies. Intuitively, it says that states arising from valence band
state interactions will rise in energy due to the confinement. But
the situation will be more complicated. It is the conduction and
valence states, or the more basic atomic tightly bound states, that
will give rise to a spread of states within the band, as well as into
the conduction band and the valence bands.
Bloch’s theorem tells us that there are Fourier eigenfunctions of

the form

ψnk(r) = unk(r) exp(i k · r) (5.1)

that satisfy the symmetry within the crystal and from which one
may construct the solution for the constrained problem in space.
Evanescent waves are unphysical in an infinite crystal. So, when

this Bloch function is employed for bulk crystal analysis, one
obtains real wavevector solutions. But, if we break symmetry, at
the surface it is certainly possible to match two exponentials, one



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

198 semiconductor physics

of which may be a decaying function—an evanescent wave—into
the vacuum. This will still have a real energy solution. In general,
it may be a localized state at the surface—localized away from
vacuum as well as from the crystal—that is, confined to the surface,
but it may also be a state at the surface that is localized away from
vacuum and propagating in the crystal. Figure 5.2 attempts to
represent this.
Let us consider a one-dimensional chain of N atoms spaced

a apart with states of interest arising in, say, s orbitals. The s orbitals in a crystal will lead to the
formation of a σ band by breaking
degeneracy, and p orbitals to π bands.
We will see some of these implications
in a slightly more complicated  ̏toy˝
model that mimics graphene—a
two-dimensional hexagon sheet.

Hamiltonian equation is

Ĥ |ψ(z)〉 =
[

− h̄2

2m0
∇2 + V̂(z)

]

|ψ(z)〉 = E|ψ(z)〉,

or

{
h̄2

2m0
∇2 +

[
E − V̂(z)

]
}

|ψ(z)〉 = 0, (5.2)

where V(z) is the periodic crystal potential. Our basis states are
assumed to be the s states that arise from the solution to the
individual atoms, which is

{
h̄2

2m0
∇2 + [E0 − U(z − zn)]

}

|φ(z − zn)〉 = 0. (5.3)

Here, |φ(z− zn)〉 is the eigenfunction for the atom whose expectation
locale is zn, and U(z − zn) is the potential for the non-interacting
atom at z = zn. The wavefunction solution of the ensemble is
composed of the atomic solutions that form the orthonormal basis
states, that is,

|ψ(z)〉 =
∑

n

cn|φ(z − zn)〉, (5.4)

where cn are coefficients whose magnitude determines the proba-
bilistic contribution. Basis states are known, perturbation is known
and the Hamiltonian is known, so we should be able to write
the algorithm to solve this. We will simplify in the spirit of the
 ̏toyness.˝ The near end atoms of the chain are unique in their
interactions, and the rest of chain has its own unique symmetry.
So, the overlap and the perturbation contributions of these will be
different. For overlap, we write

〈φm|φn〉 = δmn + βδm,n±1, (5.5)

that is, the overlap is unity if the atoms are the same, and β if they
are displaced by unity. This takes care of self and nearest neighbor

Note here the correspondence between
this toy model and the linear chain that
was tied back as a tight binding toy
example in Subsection 4.2.1. The
ends had been removed there by
 ̏wrapping˝ it back.

normalization. Now, consider the consequence of the perturbation
V − U, the difference in the potential assembly of atoms and the
atoms. We write this as
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〈φm|V − U|φn〉 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−α ∀ n = m /∈ {1,N},
−α′ ∀ n = m ∈ {1,N},
−γ ∀ m = n ± 1, and
0 otherwise.

(5.6)

The two equations—Equation 5.2 for the assembly and Equation 5.3
for the individual atoms—pose constraints on solutions and how
we may proceed, since they directly affect the expansion coefficients
of the basis states. We will constrain ourselves to problems where
E − E0 and β are small. Essentially, this is to say that the atomic
energies and the ensemble energies are not too different—the bands
form but do not displace too much—and that nearest neighbor
overlap is small enough. This is to some extent a toy model
convenience in order to explore the implications. We parameterize
the energies by setting

(E − E0) + α = ε, and

α − α′ = ε0. (5.7)

What these state is that the perturbation in energy due to a self-
contribution E − E0 and the assembling contribution of α for the
non-edge entities is a change ε and that the self-contributions from
the end terms of the perturbations differ from that of the bulk
by ε0. So, the first is a parameterization for the changes due to
assembling, and the second is to distinguish self-effects between
edges, which we are specifically interested in, and the bulk. With
this toy manipulation, we may determine the secular determinant,
which must be zero for the solution to exist. This leads, in turn, to
three equations representing the conditions at two edges, and the
rest as a symmetric region of

(ε − ε0)c1 + γ c2 = 0,

γ cN−1 + (ε − ε0)cN = 0, and

γ cn−1 + εcn + γ cn+1 = 0 ∀ n ∈ {2, . . . ,N − 1}. (5.8)

We take the Fourier function form for the coefficients as

cn = A exp(ikna) + B exp(−ikna). (5.9)

In Equation 5.8, the last of the equations connecting these different
coefficients in the  ̏infinite˝-limit form—an average that is the first
term of the Fourier transform—gives

ε = 2γ cos(ka). (5.10)

This, coupled with α—the crystal perturbation’s averaged conse-
quence in the 0th order term, which will lower it in energy—is the
change in energy E − E0.
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The first two equations of Equation 5.8 describe the lowest order
consequences of broken symmetry. From these matrix element
relationships, we obtain the constraint

y = −ε0

γ
= − sin(Nka) ± sin(ka)

sin[(N − 1)ka]
, (5.11)

which describes the form of solution that connects y to ka and N—
the number of contributing sites with single states, so the number
of states.
Figure 5.3 shows the form of the solution. This equation form

follows the same approach as that used to find the energies of a
quantum well with a finite barrier—a form where one may not
be able to write an implicit solution but can find the solution by
parameterizing and using intersections representing equality. The
region −1 < y < 1 represents an energy normalized to the energy
perturbation contribution from the next neighbor. The next neighbor
contribution averages to a constant over much of the chain but
deviates at the edges.
From the N = 10 electronic states, N = 10 electronic states appear

in the assembly. The s states, from which these arise, are isotropic
and have a γ = − 〈φm|V − U|φn〉 for m = n ± 1 that is negative.
This means that it is the positive y that is of interest to us. For
0 < y < 1, the solution lies in 0< ka <π , that is, propagative waves
with positive energy. When y > 1, there continue to be several of
these propagating solutions—N − 2 real solutions—but, as Figure 5.3
indicates, there are also solutions with ka imaginary. This is the
region shown here as κa extending orthogonally at ka =π . So, for
y > 1, there are still N solutions, but, at energy y = 1+, one is non-
propagating, and, a little beyond that, two of the modes are non-
propagating.

Figure 5.3: Normalized energy y as a
function of ka for a linear of chain of 10
isotropic entities contributing a single
state each.
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k = iκ implies a solution of the form

cn = A exp(−κna) + B exp(κna), (5.12)

for specific n of the mode for which this constraint arose, and
corresponding to this is a change in the wavefunction solution of
|ψ(z)〉 = ∑

n cn|φ(z − zn)〉. In the Bloch solution, this imaginary
wavenumber leads to an attenuation away from z = zn. The mode
is confined near the locale—at the boundary where translational
symmetry was broken, and it is a non-propagating confined mode.
It is a localized surface state.
One may look at this argument mathematically. For y > 1, for the

confined solution outside the propagating s band,

k = π

a
+ iκ , (5.13)

with

y = − sinh(Nκa) ± sinh(κa)
sinh[(N − 1)κa]

,

∴ lim
N→∞

y ≈ exp(κa). (5.14)

This leads to the energy

E = E0 − α + 2γ cosh(κa) ≈ E0 − α + 2γ cosh(ln y). (5.15)

Since y > 1, these evanescent states have an energy that is larger
than those of the bulk propagation states. They are also localized at
the surface of this one-dimensional crystal, that is, to a point.
Since we have solved for these modes, we have now found all

the coefficients that appear in our secular determinant equation set,
since we now know their relationships and can normalize. In short,
for an N-long array,

c2 = −c1 exp(−κa),

cN−1 = −cN exp(−κa),

cn+1 = c1(−1)n [exp(−nκa) + (−1)n exp(−(N − n)κa)
]

for 2 ≤ n ≤ N − 1, and
c1 = cN by symmetry. (5.16)

To go together with the picture of Figure 5.2, we now have the
wavefunction solution in the form shown in Figure 5.4. Here, the
form φn = exp[−4(z − na)2] is assumed with the solution drawn for
κa = 0.5. This corresponds to y ≈ 1.65.

Figure 5.4: The wavefunction solution
ψ(z)= ∑

n cnφ(z − zn) for the one-
dimensional assembly of N = 10 of
s-type states of Figure 5.3.

This picture can now be seen to lead to many of the observations
that we generally see in semiconductors. But we need to make the
situation a little more realistic, even for the one-dimensional toy
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model. Consider that each of these atoms has three energy states
contributing. This is still a toy model, but now we have tried to
include the possibility of different principal quantum numbers.
When the basis states employed are very far apart, there is no
degeneracy to worry about, since the states may be treated as
asymptotically non-interacting. We have 3N states as the basis
functions. As we bring them together, that is, decrease a—the lattice
constant—degeneracy removal causes bands to form. Some of
these modified states may eventually become non-propagating and
confined to the surface. This is the picture, as shown in Figure 5.5
for N = 8. As lattice spacing is brought close together, three bands This figure is fromWilliam Shockley’s

treatment of this problem in the year
1939. See W. Shockley,  ̏On the surface
states associated with a periodic
potential,˝ Physical Review, 56, 317
(1939).

form, and we see non-propagating states at the bandedge. Upon
continuing the decrease in lattice spacing, one begins to see mid-
gap states, identified here as ss, which appear at a critical spacing.
Also note that 2 states appeared, as in the previous example.

Figure 5.5: Energy of states as function
of lattice spacing in a hypothetical
one-dimensional crystal consisting of
8 atoms, each of which contributes 3
states. Electron states on the surface
can be modeled through the basis
functions, but we have freedom in the
choice. Shockley modeled them using
atomic functions. Tammmodeled
them using the conducting band states.
Either way, the end result is the same,
although one sees them referred to as
Shockley or Tamm states from time to
time. Tamm states are those where the
surface potential is modified. Shockley
states are those where the periodic
potential is interrupted.

These mid-gap surface states arose through the interaction
between two orthogonal states. The conducting bands were also
formed from these orthogonal states. This is essentially what we
saw in the 10-atom example using s-states. There, we see these
confined surface states appearing within the conducting band
energy, but at y > 1. So, unusual mid-gap surface states—in the
bandgap—appear now because of the mixing of bands.
Having looked at the nature of these surface states from the

atomic function basis, and seeing the nature of band formation
with surface states near the bandedge energies, it is apropos to also
look at this picture from a nearly free electron perspective. This
will make a correspondence to Chapter 3 and Chapter 4, where we
made connections between a plane wave basis and a tight binding
basis toward understanding bandstructure. The plane wave nearly
free electron view instantly implies that the periodic potential is
much less than the kinetic energy; that is, V(z) � T. We assume

V(z) = V0 + VK exp(iKz), (5.17)

where K is the reciprocal lattice basis vector. V(z) is small and,
as such, is treated as a perturbation. This is the form of periodic
perturbation of the bulk state description reviewed earlier. The
states at zone boundaries are nearly degenerate. One can therefore
employ degenerate perturbation theory and, as for the Bragg
reflection argument in the bandgap discussion, one can find the
electron energy relationship to the wavevector with these raising
and lowering square root terms of perturbation’s contribution. We
write the energy relationship in terms of the wavevector q, which is
the deviation from the zone edge:



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

chapter 5: semiconductor surfaces 203

E(q) = V0 + επ/a + εq ±
(
4επ/aεq + |VK|2

)1/2

for q = π

a
− k � π

a
. (5.18)

Here, the subscripted ε is the harmonic energy form, that is,
εs = h̄2s2/2m, where s = π/a or q. This shows that the bandedge
gap, the bandgap, appears at q = 0, that is, k = π/a.
There is a clear meaning embedded in this mathematical

form. Any wavefunction with an imaginary wavevector decays
exponentially spatially. In a crystal with perfect periodicity, this
is unphysical; the wavefunction itself must be periodic. This
means that the periodicity forces a zero imaginary component.
No evanescent states shall exist in the bandgap. The periodic zone
bandedge bandgap argument from Bragg reflection was but just one
manifestation of it.

Figure 5.6: Energy of confined—
evanescent—states with q = − iκc in
the free electron model.

At the surface, periodicity is broken, and it is permissible to have
a decaying state. This E(q), where q is the small deviation from the
first Brillouin zone edge, is still the eigenenergy solution in this
same mathematical form, but now with an imaginary q = −iκc

allowed. The energy E(q) can exist as a continuous function in the
complex plane where real and imaginary wavevectors are permitted
to change. This energy, with q = −iκc, is

E(κc) = V0 + επ/a + εκc ±
(
|VK|2 − 4επ/aεκc

)1/2
, (5.19)

where the real energy solution exists for imaginary q for
eigenenergy in the range επ/a − |VK|< E <επ/a + |VK|. This
implies the maximum imaginary excursion allowed is κc|max =
(m|VK|2/2h̄2επ/a)

1/2
. There exists a constant shift given by

V0 + επ/a, and the κc-dependent confined states vary in energy

as εκc ±
(
|VK|2 − 4επ/aεκc

)1/2
. Figure 5.6 shows this surface state

energy solution for VK = 1 and εK/2 = 10 at the zone edge.
This attenuation wavevector takes the form shown in Figure 5.6

in this idealized free electron description. States in the center
of the gap have the shortest extinction length. States near the
bandedges are the longest. Mixing of the states—with similar
wavefunction forms in the two bands—will emphasize the nearest
band contribution more.

Figure 5.7: Surface state energies
observed by surface tunneling
measurements in InAs. The solid
line is the free electron description of
the energy of the states. The dotted line
is the approximation to the tunneling-
based experimental surface state
energy.

Small bandgap semiconductors, such as InAs or InSb, come
closest to a nearly free electron description. Figure 5.7 shows the
observed surface state energy with this evanescent wavevector
dependence in InAs. InAs is a small bandgap (∼ 0.3 eV) semicon-
ductor where the secondary valleys are far away. It also has a small
effective mass and high mobility—characteristics of a nearly free
electron behavior. The figure shows a very similar κ2c dependence
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that the equation points to. A plane wave toy model comes pretty
close to a realistic description!

Figure 5.8: The toy free electron model
with periodic potential and finite
extent showing the probability per
unit distance of finding an electron
(∝ |ψ |2).

This model leads us to the description of Figure 5.8, where a one-
dimensional assembly of 10 atoms is shown. Propagating modes
in the bulk, which reach out to the surface, given the boundary
conditions from which the solution is built, are reflected in the
low but equal probability across the large space of the sample—
a wavefunction that is small and periodically changing. But
|ψ |2 peaks at the surface. There is a high probability of finding
electrons at the surface—they are confined in the surface region.
The wavefunction solution decays beyond the abrupt boundary
exponentially. And there can be phase shifts in ψ(z) w.r.t. the zns
because of the finiteness. Here, we have ad hoc shown the exponen-
tial decay outside the chain while fixing the atomic positions and
the boundary conditions. This deficiency can be addressed with
more care. This correction here is related to the incorporation of We will continue on this path

of making small corrections to
approximations that we find wanting,
to understand implications and
necessary corrections.

boundary conditions at the surface from the nearly free electron
model. This will bring the decay extent, the imaginary wavevector
and the phase shifts together.
Now, in this nearly free electron model, we will try to probe

the surface states as a result of the mixing of states built from the
conduction and valence bands. This incorporates phase, wavevector
and decay together a bit more self-consistently. The toy model
picture of the potential perturbation is as in Figure 5.9.

Figure 5.9: A nearly free harmonic
potential perturbation picture at
the surface in an approximation of
the semiconductor where phase,
wavevector and decay are all included
together.

Let ψ s(z) be the wavefunction. At the interface (z = 0), ψ s(z) and
∇ψ s(z) are continuous because of the continuity of probability and
probability current in finite energy conditions. This wavefunction
must satisfy

ψ s(z) =
{

φv(z) ∝ exp(κvz) for z ≤ 0, and
φc(z) ∝ exp(−κcz) cos[2(π/a)z + δ] for z > 0.

The rationale for writing this is as follows. When z > 0, inside
the semiconductor, the wavefunction is evanescent and we wish
to include a phase in this. The phase represents the consequence of
matching and interference from forward and backward propagating
Bloch functions. Together, this is represented in the exponential
decay and the modulating cosine term. For z ≤ 0, outside the
semiconductor, this is an evanescent decay without any periodic
propagation characteristics. Using the two boundary matching
conditions, the phase follows as

cos−2 δ = V0 + VK

επ/a
. (5.20)

If a solution for real energy exists, that is, for Ess = −h̄2κ2v/2m, it
exists with
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κv = π

a
tan δ − κc, and

κc = mVKa

πh̄2 sin2 δ
. (5.21)

This approach too gives a range of surface states of energy Ess that
will come about at the surface.
What we have discussed gives us a prescription for handling

three dimensions. It will be more demanding since there are sym-
metry considerations to be included and the surface doesn’t need to
maintain an order that is identical to what it had within the crystal.
By abruptly terminating, a surface would reconstruct to minimize
its energy. The unsaturated dangling bonds will reconfigure, the
atoms will move around and these changes will occur even deeper
into the bulk, depending on the conditions. So, the electronic We will remark on these

reconstructions but also discuss
the surface and bulk modes of the
movement of the atoms—phonons—
presently.

structure in general will be quite different from that of the bulk. But
a surface will be periodic in its two-dimensional plane. The number
of states contributing will determine the total number of states,
and there will be two-dimensional bands that will form, since
periodicity still exists in the plane. So, an advanced calculation of
energetics will be needed where spatial order constraints will need
to be relaxed. We will not do this. Our toy model has given us tools
to speak to what kind of effects we might see, and that will suffice.

Figure 5.10: Potential V(z) in a toy
harmonic potential model extending to
the surface.

5.4 States at surfaces

We now extrapolate the idealized behavior beyond the simple
one-dimensional potential model, while still keeping it simple. Our
interest is also in expanding our understanding of one dimension
to three dimensions where the surface still has periodicity and
therefore allows for propagation. We will use a sinusoidal potential
in the crystal—the first Fourier term, for example, of a Kronig-
Penney square potential. Figure 5.10 represents our approxima-
tion in the crystal extending onto the surface with the potential
function as

V(z) = V0

[
exp

(
i
2πz

a

)
+ exp

(
−i
2πz

a

)]
for z < 0

= 2V0 cos
(
2πz

a

)
for z < 0, and

Evac = V for z > 0 (5.22)

is the vacuum energy.
In bulk, the translational symmetry is

V(z) = V(z + na) ∀ n = 0,±1,±2, . . . . (5.23)
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With a Brillouin zone width of K = 2π/a, it is this periodicity
that causes the perturbation-induced bandgap to appear at k⊥ =
± π/a = K/2. Since the potential perturbation in the bulk is periodic
harmonic, and the electrons are not too far from nearly free at the
band minima, plane waves provide a good and efficient basis for
the computation of the perturbation effect. The potential is a stand-
ing wave resulting from two counterpropagating electron crystal
waves. Solving the Schrödinger equation, since the potential is a
term that consists only of the first Fourier term of an expansion—
the Bloch function, which is a Fourier function—now is relatively
straightforward.

ψ(z) = A exp(ik⊥z) + B exp
[

i
(

k⊥ − 2π
a

)
|z|
]

(5.24)

is the ansatz composed of the two-basis eigenfunctions for the
bulk problem of Ĥ |ψ(z)〉 = E|ψ(z)〉, which can be written more
specifically as

{

− h̄2

2m0

d2

dz2
+ V0

[
exp

(
i
2πz

a

)
+ exp

(
−i
2πz

a

)]}

×
{

A exp(ik⊥z) + B exp
[

i
(

k⊥ − 2π
a

)
|z|
]}

= E
{

A exp(ik⊥z) + B exp
[

i
(

k⊥ − 2π
a

)
|z|
]}
. (5.25)

For a solution to exist, the secular determinant—using multiplica-
tion by the complex conjugate of the two-basis eigenfunctions and
integration over real space—must vanish, that is,

⎡

⎣
h̄2k2⊥
2m0

− E(k⊥) V0

V0 h̄2
2m0

(
k⊥ − 2π

a

)2 − E(k⊥)

⎤

⎦
[

A
B

]

= 0. (5.26)

The perturbation-induced bandgap that appears at the zone edge,
that is, k⊥ = ± K/2= ± π/a, where the two-basis states become
asymptotically degenerate in energy, can be viewed through small
changes around this point of symmetry, so we write

k⊥ = π

a
+ �k, (5.27)

and the solution is

E ≈ h̄2

2m

(π

a
+ �k

)2

± |V0|

⎧
⎪⎨

⎪⎩
− h̄2π�k

ma|V0| +
⎡

⎣

(
h̄2π�k
ma|V0|

)2
+ 1
⎤

⎦

1/2
⎫
⎪⎬

⎪⎭
, (5.28)
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which shows the ±V0 splitting and the bandgap of 2V0 at the zone
edge. So, we know the energy and the coefficients A(�k) and B(�k);
therefore we know the eigenfunction

ψ(z) = C

⎡

⎢
⎣exp

(
i
πz
a

)

+|V0|
V0

⎧
⎪⎨

⎪⎩
− h̄2π�k

ma|V0| ±
⎡

⎣

(
h̄2π�k
ma|V0|

)2
+ 1
⎤

⎦

1/2
⎫
⎪⎬

⎪⎭
exp

(
−i

πz
a

)
⎤

⎥
⎦

for z < 0. (5.29)

Let us call this ψ i(z), to represent the wavefunction for z < 0.
What happens at the surface and beyond? The beyond is easy

to answer. If E < V0, this is a region where the wavefunction
exponentially decays; that is,

ψ(z) �→ D exp

[

−
√
2m
h̄2

(V0 − E)z

]

for z ≥ 0. (5.30)

Let us call this wavefunction ψo(z) for z > 0. As with our other
discussions, the boundary conditions are continuity of ψ and ∂ψ/∂z
at the interface. The former reflects the continuity of probability,
and the latter of probability current (momentum)—both arising
from finiteness of energy and the potential change at the interface.
This form has no �k-dependence even though inside the crystal it
does. This is only possible if, for all the energies E < V0, the Bloch
function continuity prevails; that is,

ψo(z = 0+) = αψ i(z = 0−,�k) + βψ i(z = 0−,−�k). (5.31)

Here, the two internal eigenfunctions are the two eigenfunctions
from which the wavefunction comes about. The possible solution
is a standing wave arising from the Bloch waves that match the
exponentially decaying function across the boundary. And the
standing wave that this represents arises from the �k and −�k
components. This matching condition must hold for all energies.
As with the earlier electron discussion, the bulk electron band-

structure exists up to the very surface with only some change. But
we also obtain additional possible surface solutions that we can
determine given the boundary constraints. Let

�k = iκ , (5.32)

that is, be imaginary, and, to simplify the writing,

γ = i sin 2δ = −i
h̄2πκ

maV0
. (5.33)
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For the imaginary �k, that is, confined modes, Equation 5.28 can
remain real for a range. These have an energy of

E = h̄2

2m

[(
±π

a

)2 − κ2
]

± |V0|
⎡

⎣1−
(

h̄2πκ

ma|V0|

)2⎤

⎦

1/2

(5.34)

with a wavefunction

ψ ′
i(z) = F exp(qz)

{
exp

[
i
(π

a
z ± δ

)]
∓ exp

[
−i
(π

a
z ± δ

)]}

× exp(∓iδ) for z ≤ 0, (5.35)

and the evanescent exponential function of Equation 5.30 for z ≥ 0.
These are energy states within the bandgap. Figure 5.11 shows a
conceptual view of the real part of conducting bulk states extending
up to the surface, and the real part of localized surface states
corresponding to �k = iκ .
A commentary on workfunction is in order here. The precise

definition of workfunction, as stated before, is the energy needed
to remove the electron resident at the electrochemical potential
energy to vacuum away from any interactions of any type with its
surroundings. When we draw an energy diagram with a vacuum
energy and the potentials and the bands, et cetera, simultaneously
in a figure, it misses an important point, since this picture is
very bulk-centric. All the description reflected in it is with the
symmetries of the bulk. But an electron can only be extracted by
taking out through a surface. The workfunction contains both a bulk
part and a surface part. Effects at surfaces may not be ignored. And,
here too, the traditional picture of field and image charges will
have to be modified, given the importance of quantum-mechanical
conditions as an electron passes through the surface.
As an electron passes through the surface, the picture one has to

draw is not static. The concept of image charge must break down at
quantum distance scales. This is reflected in the sequence shown in
Figure 5.12 of the expectation of the electron charge density q|ψ |2.
An electron far away causes a minor perturbation in charge density

Figure 5.11: (a) A propagating state
from the bulk extending up to the
surface and decaying beyond. (b) A
localized surface state that is in the
bandgap. (c) Surface resonance is
also possible as a superposition of
confinement and propagation. (d)
The E-k picture of the propagating
bulk and the surface-confined states
corresponding to (a) and (b).
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Figure 5.12: (a) An electron far
away from the surface with minor
perturbation of the surface. (b) An
electron in the surface evanescence
region pushing the resident charge into
the material. (c) The electron within
the bulk.

at the surface of the metal over the wavefunction evanescence scale.
This is shown in Figure 5.12(a). This is the repulsion classically
treated as a positive charge termination and modeled through
the image charge due its identity in static solution in the vacuum
region of interest. To us, this distributed repulsion is a distributed
quasiparticle  ̏hole˝ charge. As an electron enters this surface
region, as in Figure 5.12(b), more of the charge in the region of
the electron is repelled. But there is asymmetry here. There is less
electron charge density toward the vacuum than in the metal. So,
more of the electron charge is repelled in the metal, or, equivalently,
a  ̏hole˝ charge exists whose center is shifted toward the metal. In this  ̏hole˝ one can see the

equivalence between electric
polarization and the  ̏Coulomb hole˝
discussed in Chapter 1 together with
the statement that an electron does not
interact with itself.

The net Coulomb energy has decreased. Effectively, the existence of the
electron in the surface region decreases the energy needed to pull it
in, and, by reciprocity, in pushing it out.

Such modifications of surface are
quite important. Adsorbates change
workfunction. Cesiated sources—Cs
being a very common workfunction-
lowering alkali metal—are commonly
employed in electron beam emission.

The bulk bandedge picture that we draw differs. It is a picture
of the long-range effect. Locally, there are changes taking place—
the potential is rapidly changing—but the smooth lines describe the
behavior as if all singular perturbations are smoothed out. This is
as if a jellium smoothed out the high frequency or rapidly changing
short-range perturbations.

In a nanoscale transistor—a small
device—the number of dopants,
for example, those that determine
the threshold voltage, are limited in
number. A continuum approximation
of this that is executed classically will
not capture the details of behavior,
or the variation in device-to-device
threshold voltage. Different dopant
numbers and their distributions
affect the local environment, and the
bandedge picture does not capture
it. So, nearly all properties of the
transistor are affected by limited
dopants in a small dimension, and the
classical model ignores it. The classical
model is a jellium approximation
for the dopants. Effects are averaged
out and drawn smoothly for their
long-range behavior.

In the interior, the charge density approaches the bulk density. If
we have a metal or a very heavily doped semiconductor, this is a
degenerate material, so we know the length scale that is of import
here. It is the Thomas Fermi wavelength of

λTF = 2π
kF

= 1
2

(
N

a3B

)−1/6
, (5.36)

where N is the carrier density, and aB the Bohr radius. For Cu, with
an N ≈ 8.5 × 1022 cm−3, λTF ≈ 0.055 nm. This is miniscule—of
the order of the atomic length scale—the screening is effective over
an interatomic spacing as shown in Figure 5.12(c). But then, what
might be a length scale of import at the surface? This is the length
scale of evanescence with a workfunction barrier step of ϕw. So, the
surface decay length can be characterized as

� =
(

h̄2

2mϕw

)1/2
, (5.37)
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which is a WKB length scale approximation for the exponential
decay. The Coulomb image charge lowering approximation for
energy is

ϕimg = − 1
4πε0

e2

d
= − 0.36

d in nm
eV, (5.38)

where d is an effective distance. This image charge and the image
force that it characterizes is an interaction between the electron
and the surface. It is an excitation of a surface plasmon. While
all this approximation through scales is limited by the quantum-
mechanical-to-continuum span that it draws on, it does provide
some insight into the magnitudes. The image lowering can be very
significant, as Equation 5.38 indicates.

Figure 5.13: Normalized electron
density distribution near the surface
as the electron density changes. rs is
the Wigner-Seitz radius defined as
the radius of the spherical volume
per electron. Lower rs therefore
corresponds to higher electron density.

The charge density of the material will significantly affect this
argument. Figure 5.13 shows this screening effect at two relative dif-
ferent densities. The lower density reflects a doped semiconductor,
while the higher density is for a metal like Cu. Note that the low
electron density leads to a larger amplitude perturbation within the
material, and it extends deeper in.
Because the screening is so short in metals—of atomic

dimension—when two metals are brought together and shorted,
the consequence is as described in Figure 5.14. When they are
separated, we may draw them as shown in Figure 5.14, which
reflects that an electron in a vacuum, independently of where it
arose from, has the same reference energy. As one brings these
very close and bring about thermal equilibrium by allowing the
movement of particles, for example, by an electron-conducting
contact separate from the interface shown, a dipolar layer appears
between the two with an equilibration of the electrochemical
potential. And when the two metals are in intimate contact, this
dipole persists, with a contact potential given by the workfunction
difference of the two materials. This is the built-in voltage such as
that reflected in the conduction bandedge of Figure 5.14(c).
This rationalizes the use of workfunction differences in metal-to-

metal contacts. But we will show that this picture bres down quite

Figure 5.14: Part (a) shows two metals
far apart, (b) shows them close
together within atomic scales and
(c) shows an intimate contact.
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significantly when a general insulator and a semiconductor are in
contact. The reason is that this workfunction description depended
on this very dipolar—near subatomic scale—disturbance of charge
at the high electron densities of metal. This is no longer true in
semiconductors and insulators, and the induced states and their
quantum-mechanical description will be essential. Before doing this,
some comments on the energetics and order on a semiconductor
surface are in order, to establish additional caveats for the idealized
picture.

5.5 Surface reconstruction

What happens to the atomic arrangements at the surface
as a result of the breaking of the symmetry of the bulk? We
have expended some effort at understanding the electron states.
The atomic arrangements—with the bonds and the states of the
electrons, and the evolution that goes together with them—will also
have an influence. We probe a little bit of this material perspective
in this section.
As seen in Figure 5.15 in the unit cell of a zinc blende crystal,

if one were to look at planes of different cuts, one would see a
different ordering and a different set of bonds crossing the plane.
If the symmetry is broken here, a lowest order inference one could
draw from this bond breaking means that, first, a significant surface
state contribution will arise from this perturbation, that is, the
electron charge cloud realigning, and, second, that the energetics
also demands that we relax the constancy constraint of the spatial
ordering as one approaches the surface from inside the crystal. The
electronic states are only a result of the equilibrium energetics of the

Figure 5.15: A pictorial view of the
bonds across some of the cut surfaces
in the two common semiconductor
forms. Part (a) shows the zinc blende
structure with two important cut
planes: (110) and (001) and (b) shows
the wurtzite form.
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Figure 5.16: Planar cuts along the
different planes of an FCC lattice.
(100) is a face-centered square
arrangement, (110) is a rectangular
arrangement and (111) a hexagonal-
packed arrangement—the one with the
highest atomic density.

entire system of the atomic assembly, included within which are the
electrons. Regarding the first consequence, we have already seen
a toy approximation of the surface states. Regarding the second
consequence, one reflection in our toy model was the raising of
the potential at the surface, as illustrated in Figure 5.2, but a more
accurate quantum  ̏toy˝ calculation should also have included the
energetics in a way where spatial variations were incorporated
self-consistently.
The atomic arrangement across these planes for the FCC lattice

is shown in Figure 5.16. One may see a different density of atoms,
so each plane, in addition to the bonding, also exhibits different
atomic density. The final arrangement of these different surfaces,
depending on the conditions under that they are formed, will
reorder themselves with atomic movement in plane and out of
plane. (111), (110) and (100) is the order of the highest to lowest
atomic densities, and on average, by symmetry in this three-
dimensional arrangement, one must expect a similar order in the
surface state densities due to unsatisfied bonds unless a specific
reordering that satisfies bonding leads to an unexpected energy
minimization. It doesn’t seem to. But the surface reconstruction
does make a difference in this density-of-atoms argument as
well as in energetics through the surface state positioning and
characteristics.
We explore the surface behavior and reconstruction through some

classical and quantum thoughts.
Surface stress, which is the tension of the surface, is a conse-

quence of the lowering of energy when the surface or interface
is created. The macroscopic nature of the problem defines this
surface/interface optimization in the continuum description of
classical mechanics. One can mathematically follow through on
this using thermodynamic arguments based on Gibbs free energy.
In this description, which should work well for macroscopic
conditions such as those in a water droplet on a surface, one
needs to introduce some correction to account for the orientation
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dependences—anisotropy—that arise in the nature of a crystalline
atomic structure. This surface energy, the surface tension and
the details of the response of the interface will connect to this
orientation dependence.
In the continuum description of elasticity, we may analyze

through the stress and strain tensors. Let σ ij = ∂Fi/∂aj be the ijth
stress tensor element arising in a differential force dFi in the ith
direction acting on an area element daj that is oriented in the jth
direction. Likewise, let εij = ∂ui/∂xj be the ijth strain element with
a dui change in length in the ith direction for the volume element,
and dxj the position change in the jth direction that caused this
length change to happen. In each of these cases, the other variables
causing a change are kept constant. In the atomic arrangement
at the surface, the electrons respond to the absence or change
of arrangement by a change in distribution, bonding, et cetera,
together with the repositioning of the atoms in the presence of
forces that come about in this process of energy reduction at the
surface or interface. The top layer—and the ones below, too—
change, so the stress tensor will vary with position.
We account for this positional dependence of the stress σ , as

reflected in the Figure 5.17 between the surface and the bulk, for
the surface stress as a cumulative consequence from the bulk to the
surface:

Figure 5.17: Building up of stress at a
surface as a result of broken symmetry.
Compressive stress that prevents
the stretching out of the surface is
shown here.

σ s
ij = −

∫ ∞

−∞

[
σ ij(z) − σ b

ij

]
dz. (5.39)

Note that surface stress is different in units from the bulk—it has an
additional length arising in this accumulation. So, it has a different
dimensionality, as is the case with other parameters that we think
of when comparing volume versus surface. This picture reflects
the following thinking. The surface-induced stress—a force per
unit length—arises as an accumulation of stress—force per unit
area—from the bulk. It exists in a thin region near the surface
and disappears in the bulk. Figure 5.17 shows a negative stress
condition. The surface wants to pull apart, and the stress exists to
limit this expansion. This compressive stress is needed to regain a
dimension similar to that of the bulk. A surface that contracts under
its own stress has a positive stress. To stretch it, one needs to apply
a tensile stress. The order of magnitude of these surface stresses are
an N/m stretching out over a length scale of a nm, so 2 to 3 unit
cells—a significant inversion-layer scale number.

Figure 5.18: A classical representation
of a thin plate under planar shear
stress.

The energy argument can now be drawn from this formulation.
To place a plate, such as that shown in Figure 5.18, with an area A
and thickness t, in a strained condition of εij, the work needed to be
performed is
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δW = A
∫ t/2

−t/2

⎡

⎣
∑

ij

σ ij(z)δεij

⎤

⎦ dz. (5.40)

This can be broken up into the bulk and the surface parts of energy
change:

δW = δWs + δWb

= 2A
∑

ij

σ s
ijδεij + At

∑

ij

σ b
ijδεij

= δGs + δGb. (5.41)

If we define the areal surface energy in terms of a specific free
energy γ—a free energy per unit area—one can write the surface
Gibbs free energy term as

δGs = δ(γ A) = γ δA + Aδγ . (5.42)

The surface energy change arises in these two causes. One part of This equation is the simplest form
describing the energetics for
the purposes of this discussion.
Take bubble formation in drinks.
One immediately notices that bubbles
do get seeded on the walls when
beer is poured. But, this is not the
complete story. Bubbles also appear in
the liquid. How and where depends
on the specifics, including those of
the dissolved gases. Take a liquid
oversaturated with gas (usually CO2).
Any asperity of surface lowers the
energy at the gas-liquid interface,
nucleating bubbles. A bubble-liquid
interface, due to the surface tension,
also gives rise to a pressure (the
Laplace pressure) in the bubble. When
bottled, the overpressure leads to
the dissolution of the bubble. There
exists a critical bubble radius and
overpressure relationship. Uncorking,
or pouring to create an interface,
creates the bubble. Diffusion of CO2
changes the bubble’s size. Different
sparkling wines—champagne,
prosecco or cava—can have different
enough bubble sizes that one notices
them in the mouth. The growth of
crystalline semiconductors proceeds
via edges for this same energetics
reason. If the growth occurs without
the surface or edge templating, it
loses crystallinity. The crystallization
and amorphization used in optical
disks also depend on this nucleation,
which can be surface mediated or
self-nucleated. These equations lead to
taste and usefulness.

the change is due to the surface area’s energetic change effect. This
is a part where, while the average area per atom is fixed with a
specific free energy constant, the effective surface atom’s numbers
have changed. The second is due to the change in the surface
atomic interactions causing change in their energy interaction
contribution. This is the part due to surface reconstruction. So,
both the change in surface atom numbers and their interatomic
realignment lead to surface energy change and are included in δGs.
From Equation 5.41, where the first term is due to the surface

and the second due to the bulk,

δWs = 2A
∑

ij

σ s
ijδεij = γ δA + Aδγ , with dA = A

∑

i

dεii,

∴ σ s
ij = γ + ∂γ

∂εij
. (5.43)

This is the Shuttleworth equation. In a liquid, because there is little
resistance to atom flow at the surface or in the bulk, the second
term vanishes. In a solid, how the atoms may move on the surface
will depend on the specifics of the surface energy and surface stress
in the proximity. What drives this movement is how this second
term relates the stress tensor of the surface with the specific free
energy and the strain. The driving force is

∂γ

∂εij
= σ s

ij − γ (5.44)

for the atom movement between the surface and the bulk. If
σ s

ij − γ > 0, atoms are driven to accumulate at a higher density
at the surface. For the opposite sign, that is, σ s

ij − γ < 0, atoms are
less dense at the surface. γ—the specific surface free energy—is like
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an excess free energy per unit area. It is the reversible work per unit
area with other thermodynamic variables constant. The surface exists
in thermodynamic equilibrium because the work performed in creating the
surface leads to an energy exchange between the surface component and the
bulk component.
In a liquid-solid interface, hydrophobicity, hydrophilicity or the

specific shapes that appear are a consequence of the differences
in this specific surface energy of the liquid and that of the liquid
where it is in contact with a solid. Atoms are free to move around
both at the surface and in the bulk, leading to the specifics of the
shape. The specific surface free energy arises in the energy cost
of creating additional surface while keeping the volume and the
number of atoms constant. Bonds must be broken to expose new
atoms at the surface. Surface defects, steps, et cetera all involve
new surface areas and have energies associated with them. So,
growth, defect generation during growth and three-dimensional,
two-dimensional or one-dimensional growth will all relate to these
considerations. And since atomic arrangements matter, orientations
will matter. This is a simple description and will be subject to
numerous complications. Polar surfaces with their electroenergy
contributions, charge compensations therein, et cetera all will have a
noticeable effect.
A direct small-dimensional manifestation of this surface-bulk

tension is the nature of shapes of objects such as quantum dots. The
equilibrium shape of a crystal is not necessarily a minimum surface
area. It may be a complex shape. It is a shape where

∫
S γ (n̂) d2r

is a minimum. Compound semiconductor growth often shows
pyramidal forms because the (111) surface has the highest atomic
density, as noted in Figure 5.16, and bonding linkages. Figure 5.19: A scanning tunnel

microscope observation showing
the quantum corral when a closed
circle was created by placement of
Fe atoms on a (111) Cu surface. This
figure is after M. F. Cromme, C. P.
Lutz and D. M. Eigler,  ̏Confinement
of electrons to quantum corrals on a
metal surface,˝ Science, 262, 218–220
(1993).

All the potential interactions will matter, and in complexity
with wave mechanics central to it, this classical picture will break
down. For example, the quantum corral (see Figure 5.19), created
by placing Fe atoms on a (111) Cu surface, leads to a lowest mode
wave pattern observation arising in the potential interaction of this
electron-ion assembly on the surface. These are off-plane confined
electron states on the surface that also form a standing wave
pattern. So, they are confined states in the plane too, because of the
bounding by Fe.
Reconstruction takes rather complicated forms. Even a simple

cubic form—such as the salts—will show a number of features.
Figure 5.20 shows a set of simple possibilities looking in a plane
perpendicular to the surface through the unit cell surface crystal
plane of a simple cubic arrangement. Atoms on the surface
may relax to a position closer to the next plane of atoms, as in
Figure 5.20(a). Or they may achieve a  ̏Peierls˝-like instability by
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Figure 5.20: Example toy
reconstructions of a cubic
arrangement. Part (a) shows
displacement where the top layer
is pulled closer to the next plane, (b)
shows where atoms shift forming pairs
closer together with the pairs farther
apart and (c) shows a reconstruction
with alternating shifts of closer and
farther for the atoms.

Figure 5.21: Surface reconstruction
of (110) GaAs. The non-reconstructed
view is on the left, and the relaxed (1 ×
1) reconstruction is shown on the right.
Part (a) shows the cut, (b) shows
the top and side views and
the side perspective and (c)
shows the changes due to the
(1× 1) reconstruction.

forming closer pairs that are farther apart, as in Figure 5.20(b). Or
they may reconstruct by moving atoms out of the plane and so
have missing rows, as in Figure 5.20(c). It will depend on energetic
conditions such as those of the quantum-mechanical boundary
constraints at temperature T, thus reflecting thermal implications
too. Adsorbates, if any, will also modify surface energies, so
ambient conditions have an effect.
Much of what we discuss to emphasize the importance of the

surface is based on observations in reproducible conditions of
ultra high vacuum. So, we must keep this mind in drawing any
conclusions regarding practical conditions.
Zinc blende and diamond crystals, such as many of the com-

pound semiconductors, are considerably more complicated, with a
variety of reconstructions under different conditions of temperature,
ambient and surface preparation. GaAs cleaves quite easily in the
(110) plane. So, historically, it has been among the easier surfaces
to analyze. Figure 5.21 shows the surface reconstruction of (110)
GaAs. The (1 × 1) mesh of the top view is identified by the dashed
rectangle. Here, Figure 5.21(a) shows one of the (110) plane cuts of
a zinc blende crystal so that one may visualize the atoms in the
plane and those below the plane. This ideal cut view is shown for
a normal view to it, a side view to it and a perspective view to it.
Bond angles are easier to change than lengths. The reconstruction

This angle-spacing argument is
reflected in the exchange and repulsion
argument. Carbon has both an sp2 and
an sp3 hybridization in its crystalline
form. Angular changes are easier. It
is one of the reasons SiO2 is a very
low interface state density non-
crystalline insulator in SiO2/Si-grown
arrangements.

that follows is shown in the views of (c).
The relaxed top view shows a pair of Ga and As atoms coming

closer together. The averages must remain constant, so the next set
is an another closer pair that is the same, with the next view set
moving to a similar average distance. The real space periodicity
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on the surface is now twice as long in this direction, and so the
Brillouin zone half as long. This is a broken symmetry of the same
variety that causes  ̏Peierls instability˝ leading to metal-insulator
transitions. This is the (1× 1) reconstruction of GaAs.
Silicon’s (100) surface is the nearly ubiquitous form in use. As

the surface undergoes quite a variety of reactions and treatments
in the process of being put to use, a good understanding of it is
very desirable. Figure 5.22 emphasizes the dimerization that is the
principal effect. A (100) surface in the diamond and zinc blende
system consists of parallel rows of atoms, where the two bonds
reaching out of the surface are broken. Adjacent row atoms are
close. So, the broken bonds from each adjacent atom dimerize
together with a distortion which costs a deformation energy. The
minimum energy surface is reflected in Figure 5.22(d).
The Si (111) surface is another surface of interest to empha-

size the variety as well as complexity. When cleaved at room
temperature, it reconstructs with a (2 × 1) pattern. The accepted
reconstruction is shown in Figure 5.23. This is an example of
deformation reaching down to at least the fourth atom layer.
Figure 5.23(a) shows the top view where we see the π/3 rotational
symmetry with different atoms in different planes. The (2 × 1)
pattern on the surface reconstructs with a π -bonded chain, as
shown in Figure 5.24. Atom pairs pull together on the surface
within the (2 × 1) pattern; an sp2 hybridization occurs in plane
forming one bonded pair, and the pz forms the second bonded

Figure 5.22: Surface reconstruction at
room temperature in vacuum of the
Si (100) surface. The unreconstructed
views for the top and the side are
shown in (a) and (b), respectively. Part
(c) shows the planar side perspective
of the unreconstructed view and (d)
shows how the dimerization of the top
layer atoms leads to changes in the
bond lengths and angles. Note that this
is a relaxed (2× 1) surface unit.

Figure 5.23: Surface reconstruction at
room temperature in vacuum of the Si
(111) surface. The atomic arrangement
in the planes orthogonal to the 〈111〉
is shown in (a). The size of the atoms
is shown smaller deeper in from the
surface. Part (b) shows a π -bonded
chain causing the distortion on the
surface, and (c) is the side view as
atoms shift both in plane and out of
plane.
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pair. The distortion of the other sp2 hybridized orbitals reach

Figure 5.24: Surface reconstruction at
room temperature in vacuum of the Si
(111) surface through the change of
extreme surface atom pairs to sp2

hybridization with a pz orbital. One of
the sp2 orbitals and one of pz orbitals
form the double bond between the
surface atom pair.

down into the plane below, with a change from the previous sp3

hybridization. The distortion propagates multiple layers, as is
shown in Figure 5.23 through the changes in size of atoms.
If Si is annealed at an elevated temperature—650 K suffices—

one observes a gold standard of reconstructions. It is a 7 × 7 recon-
struction, which was tour de force in calculations in surface sciences
since it involves movement as deep as four atom layers down and a
large surface area. The primitive cell shown in Figure 5.25 now has

It also was one of the first clear
demonstrations of the power of
the then new technique of surface
tunneling microscopy, showing the
mapping of surface tunnel current
distribution that aligns with the charge
distribution.

98 atoms. It consists of two triangular units, with a stacking fault in
one of them. Figure 5.25(a) shows the placement of surface atoms,
(b) shows view orthogonal to the surface plane a number of atomic
layers down and (c) shows a scanning tunneling probe picture of
the surface reconstruction.
This discussion, classically of the surface forces, and of surface

reconstruction as a manifestation of the energetics when symmetries
are broken and the environmental conditions changed quite well,
points out all the complexities and difficulties that the toy model
sidesteps. But, they also point to us that we will see a rich set of
behavioral outcomes in real situations.
Surface reconstruction is a place where we have now encoun-

tered a movement of the atoms and nuclei in a newer set of
equilibrium positions.
But existence of finite temperature means that the nuclei, in the

bulk and at the surface, also move around an equilibrium position.
Electrons too move around, although the electron movement is
a faster response compared to that of the nuclei. The electron
movement will be more rapid since electrons are lighter and more
responsive. Movement of the nuclei and the bound electrons—
the core—creates an electron probability distribution that has a
higher energy. The assembly forms a collection where there is a
constant exchange of energy, whose lowest order approximation
is that of a harmonic oscillator, where energy is being exchanged.
The higher energy of the electron distribution is returned to that

Figure 5.25: Surface reconstruction
of (111) Si. Part (a) shows a top view
of the placement of atoms of the
smallest surface unit cell. It has a
(7× 7) arrangement of these ordered
geometries with large and small
rearrangements over a large number
of lattice sites. Part (b) shows that the
arrangement arises with the movement
of many atoms perpendicular to
the surface plane. Part (c) shows a
scanning tunneling microscopic view
where the diamond corresponds to the
diamond drawn in (a).
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of the nuclei/core when they return to their previous state—the
equilibrium state. Neither the electron nor the nuclei core remain
in their excited conditions. They shuffle back and forth.
In this description, the total electron energy is the potential for

the movement of the nuclei/core.
A fast electronic movement compared to that of the nuclei can be

interpreted as electron dynamics based on a static lattice where the
nuclei/core, that is, a static nuclei/core, determines the potential for
the electrons, and one may treat electron dynamics and nuclei/core
dynamics as being separate and non-interacting.
This was our adiabatic approximation introduced in Chapter 1. Adiabatic approximation is also the

Born-Oppenheimer approximation
which is employed in molecular
description, where both the atomic
nuclei and the electron charge cloud
have to be tackled simultaneously.
Adiabatic approximation can break
in the solid state and needs to be
corrected for as the description
gets deeper. An example is electron
scattering by the crystal—phonons, et
cetera—where movement of the atoms
causes perturbation that is the cause of
scattering—a significant change in k, E
or both for the electron.

To draw parallels with the electron picture at the surface, we will
look at the behavior of this atomic movement. Crystal vibrations
near the surface will be different than in the bulk. Surface phonons
modes will be different from bulk phonon modes, in analogy with
those of the electrons.

5.6 Surface phonons

As with electron modes, crystal vibration modes will be dif-
ferent near the surface than in the bulk. Surface phonons will have
specific properties distinguishable from their bulk brethren, and we
are curious about these distinguishing, interesting characteristics.
One reason is that electron transport is affected by energy loss
through scattering via these modes; that is, the scattering from it.
Another reason is that phonons are an important mechanism for
heat transfer. Heat transfer is significantly affected by interfaces,
just as electron current is significantly affected—and gainfully
employed—in electron transport at interfaces. We will use a one-
dimensional model to start with, to extract the essentials arising in
breaking of the translational symmetry.
We take the three-dimensional picture of the surface with crystal

vibrations allowed in three directions in Figure 5.26(a) and first

Figure 5.26: A surface of a two-basis
crystal idealized to have coupling
restricted to the orthogonal direction
from the surface plane.
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idealize it to the one-dimensional form of Figure 5.26(b). We have
assumed that there is no coupling in plane, but we are interested in
a two-atom basis. The infinite two-atom linear chain problem was
solved in Equation 3.107 to show the physical basis for bulk infinite
structures.
To solve for this surface instance, we employ an ansatz based on

the bulk mode solution. With

u1n = √
Mc1 exp

{
i
[

qa
(

n − 1
4

)
− ωt

]}
, and

u2n = √
mc2 exp

{
i
[

qa
(

n + 1
4

)
− ωt

]}
(5.45)

as the atomic displacements, the solution of the underlying
prescription of motion—harmonic and with only next neighbor
interaction, as in Equation 3.105—is a solution form

−ω2
√

Mc1 = −ksc1M−1/2 + 2ksc2m−1/2 cos(qa/2), and

−ω2
√

mc2 = −ksc2m−1/2 + 2ksc1M−1/2 cos(qa/2). (5.46)

This also holds for the bulk solution, where we found that
the continuous eigenenergy solution for the infinite chain
(Equation 3.107) was

ω2± = ks

mM

{
(m + M) ±

[
(m + M)2 − 2mM(1− cos qa)

]1/2}
. (5.47)

We are using this formulation and its solution now as the ansatz for
the condition when the chain is terminated at a point—the surface.
We recognize that, far away from the terminated end, the

solution must approach this infinite chain solution. If there is
anharmonicity of interactions, they will have finite correlation
lengths. This is a reason why at the surface we should expect
solutions to be localized with amplitudes decaying away. This is
to say that the wavevector q of the surface mode is complex. So, we
start with the form

q = qr + iqi (5.48)

in our energy or frequency solution Equation 5.47 to find the
implications. We find that the constraint for wavevectors is

cos qa = cos(qra) cosh(qia) − i sin(qra) sinh(qia). (5.49)

The energy and frequency must be real. So, the imaginary part must
vanish, that is,

sin(qra) sinh(qia) = 0 (5.50)

must hold.
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The constraint of Equation 5.50 forces two possibilities. One
is that qi = 0. This is the bulk dispersion solution. Bulk modes
exist all the way to the surface, just as they did for the electrons. The
second possibility is that qra = nπ for n = 0,±1,±2, . . . . This can be
introduced into the solution of the form

cos qa = cos(nπ) cosh(qia) = (−1)n cosh(qia) for n = 0, 1. (5.51)

For this condition, the eigenfrequency solution takes the form

ω2± = ks

mM

{
(m + M)

±
[
(m + M)2 − 2mM[1− (−1)n cosh qia]

]1/2}

for n = 0, 1. (5.52)

For n = 0 here, qr = 0. This is the � point of Brillouin zone. Under
this condition, the frequency solution within the inside brackets
within the root term can be simplified. The hyperbolic term that
appears with 2mM simplifies to (1− cosh qia), which is always
negative (cosh() ≥ 1), so, for real frequency, one can take only
positive roots. At qr = 0, this reduces to the bulk optical branch.
Now, if qi is allowed to vary, one obtains an energy above. This
is the zone center additional high energy branch with qi varying
shown in Figure 5.27. Note that there is no restriction on what qi

may be for this branch.

Figure 5.27: Phonon mode solutions
for a two-atom basis linear chain. The
bulk solutions are all real wavevectors
shown in the acoustic and optical
branch. Surface modes exist at
qr = 0,π/a, as shown.

For n = 1 in Equation 5.52, that is, qr = ±π/a—the first Brillouin
zone boundary—the condition for obtaining a real square root
consistent with a real eigenfrequency is

|qi| <
1
a
arccosh

(
m2 + M2

2mM

)

≡ qi,max. (5.53)

This is an evanescent solution that exits at the zone boundaries, as
shown in Figure 5.27, and the eigenfrequencies are

ω2±
(

qr = π

a
, qi

)
= ks

mM

{
(m + M)

±
[
(m + M)2 − 2mM(1− (−1)n cosh qia

]1/2}

for |qi| < qi,max. (5.54)

At |qi| = qi,max,

ω2±
(

qr = π

a
, qi,max

)
=
[

ks

(
1
m

+ 1
M

)]1/2
. (5.55)
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All these solutions are drawn in Figure 5.27. At the zone edge, there
exist evanescent—confined to the surface—modes with a specific
qi,max that is determined by the masses and the periodicity of the
chain. At the zone center, there exist high energy modes—higher
than the bulk optical frequency, where the qi is unconstrained.
Recall, though, that, the higher the qi, the more rapidly it decays
away from the surface. So, these are all confined modes. The only
difference is that, at the zone edge, one has modes across the gap—
akin to the surface states for electrons in the gap, and, at the zone
center, there are surface modes that are unrestricted in energy above
that of the bulk optical mode. So, to reemphasize, at the � point,
surface modes exist above the maximum bulk phonon frequencies.
And, at the zone edge, surface phonon modes exist within |qi| ≤
qi,max = (1/a)arccosh[(m2 + M2)/2mM]. The surface modes are
quite rich!
Having solved for eigenenergies, we may also write the displace-

ment eigenfunctions. The displacements are

ui
n = Ci exp

[
i(qRi

n − ωt)
]
, where

Ri
n =

{
= a(n − 1/4) for i = 1 (atom 1), and
= a(n + 1/4) for i = 2 (atom 2).

(5.56)

These are all vibrations of the form

ui
n ∝ exp

(
−qiR

i
n

)
exp(−iωt) (5.57)

that decay away from the surface.
We can now outline how to generalize this by using what we

learned from the electron problem. If surface bonds are weak, and,
for most anisotropic materials, this weak parallel array description
is a good approximation, we may look upon the behavior as a
correlated response with vibrations in plane and out of plane. Since
symmetry is not broken in plane, these vibration modes may be
propagating. The different propagation modes, due to correlations,
will be related through a phase difference. So, q‖ and q⊥ may be
connected to each other, and one may write the displacements as

uq(r) = Aq̂ exp
[
i
(

q‖ · r‖ + q⊥z − ωt
)]
. (5.58)

Here, now parallel surface plane modes with real q‖ are possible.
Also, perpendicular modes may be propagating (real q⊥) or
evanescent (imaginary q⊥). This is captured in the displacement
function

uq‖,q⊥(r) = Aq̂ exp(iq⊥,rz) exp(−q⊥,iz) exp
[
i
(

q‖ · r‖ − ωt
)]

(5.59)
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in a correlated response in primitive unit cells with both propagat-
ing and evanescent solutions included.
In the three-dimension picture, on the surface, one will have

to describe these surface phonons in a two-dimensional Brillouin
zone. This is the orthogonal cut of the plane. When we draw the
bulk phonon modes, we show bands akin to the energy band across
which electron energies are allowed in different bands, and we fol-
low a path in directions represented by the symmetry points. Since
surface phonon modes exist both in the gap and in the band, we
will, in general, see a picture of allowed modes corresponding to
this. The energies, the frequencies ωq, the propagating wavevector
q‖ and the evanescent wavevector perpendicular to the surface q⊥,i
are all related to each other. The solution is a consistent set from
the  ̏continuous˝ spectrum of possibilities between the surface and
the bulk. Both the optical and acoustic modes and the evanescent
modes exist in this midst. And, within this, the surface phonon—
evanescent—modes have a two-dimensional spectrum.

Figure 5.28: Bulk and surface phonon
dispersion for an FCC crystal on the
(111) surface.

Figure 5.28 shows an example of the nature of this mode
dispersion for a (111) FCC bulk and surface. The surface modes
exist, and so do bulk modes. If one took a line at any symmetry
point, this shows the range of energies that are possible for all
possible q‖ and q⊥,i on that symmetry line. The phonon dispersion
is drawn here as one follows the symmetry path �s → Ms →
Ks → �s. The two-dimensional surface Brillouin zone symmetry
points can be identified through the s superscript and by viewing
the appropriate cut of the three-dimensional 1st Brillouin zone.
Figure 5.29 shows this picture as examples of different Brillouin
zone forms for different surfaces of the FCC crystal.

Figure 5.29: The first surface Brillouin
zones for (100), (110) and (111) in an
FCC crystal.

Real crystal dispersion curves are, of course, considerably
complicated. This combination of surface and bulk projected to
the surface phonon dispersion for (110) InP and GaAs is shown
in Figure 5.30. The lines are the surface modes, while the hatched

Figure 5.30: Surface phonon dispersion
(with bulk phonons as shaded
background) for (110) InP and GaAs.
Modes with energies appear in the
gap and in the optical bands. Adapted
from J. Fritsch, P. Pavone and U.
Schröder,  ̏Ab initio calculation of the
phonon dispersion in bulk InP and in
the InP (110) surface,˝ Physical Review
B, 52 11326-11334 (1995).
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region shows the projections of the bulk mode. One can see the
surface acoustic and optical branches around approximately the
same region as the bulk modes. But, one can also see that there
are a number of limitations to them. The surface acoustic branches
certainly exist quite close to the bulk branches. There are also
optical branches higher up in energy, but also restricted branches
at lower energy.
As discussed in Chapter 3, we end up with 3N − 6 modes for

N atoms coupled in diatomic basis. These are the phonon modes
that are represented in the dispersion relations. Longitudinal
modes correspond to ones when the displacement is aligned with
the axis, and transverse when the displacement is perpendicular.
When the displacement phase is slowly varying, that is, successive
displacements are relatively in phase, these are acoustic modes.
When the displacement phase changes rapidly, such as when there
are successive displacements opposite in sign, for example, then
these are optical modes.
Having discussed, in a rather simple way, phonons at surfaces,

we now return to understand the behavior at interfaces in Chap-
ter 6, and in particular, the behavior of electrons at surfaces, given
what we have observed in our  ̏toy˝ models and the complexity of
the real world.

5.7 Summary

Surfaces are very different, and much happens in the surface
region that evolves from and yet represents what happens in
the bulk. Surfaces are essential to any coherent description of Surfaces tell us much about black

holes. Look up discussions of
information, entropy and black holes,
including controversies therein.

the nanoscale. Surfaces and interfaces are how we connect any
microsystem to its surrounding—the environment—of the real
world. This has been the focus of this chapter, where many essential
points come across as a consequence of breaking of the symmetry
of the bulk.
Workfunction and electron affinities are common measures

employed in describing a material’s electrochemical or limit
energies of the conduction or valence bands. In conductors, the
workfunction is the measure that one will see employed to remark
on the built-in potential between materials, which is balanced by
the opposite balancing term during a measurement of the potential
difference. When the balancing junction and the measured junction
are different in temperature, a voltage is measured that reflects
the difference in temperature. This is the basis of the operation of
thermocouples. It works, because minor errors arising in surfaces
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and interfaces balance out. Workfunction or electron affinities are,
however, strictly the properties of bulk. And any such property defined
by the energy required to remove an electron from a level in the
material to vacuum also involves a removal through the surface.
Surfaces matter. A good example of this error’s consequence is the Even in the photoelectric effect—

Einstein’s Nobel—the photon
dislodging the electron from the crystal
is removing an electron from within a
region that is adjacent to the surface
and constrained by the photon’s
spatial extent of interaction and the
electron achieving enough energy to
be able to get to the surface, so with
scattering and other interactions,
and out.

use and misuse of the metal-semiconductor workfunction differ-
ence in plain metal-semiconductors, metal-oxide-semiconductor
systems or polysilicon-oxide-semiconductor systems, where it is
a tool to add the correction term beyond the flatband voltage.

For a more extended discussion
of this problem of bulk/surface
dichotomies, see S. Tiwari,  ̏Device
physics: Fundamentals of electronics
and optoelectronics,˝ Electroscience
2, Oxford University Press, ISBN
978-0-198-75984-3 (forthcoming).
Barriers heights correlate, but are not
directly related to bulk property
differences. Silicon in different
orientations has different barrier
heights to SiO2, and so metals to SiO2.

Different surfaces will give rise to different threshold voltages
because of this surface dependence, which a workfunction model
will err at.
The one-dimensional chain toy example showed how surface

energies will be different from those within the chain—how Bloch
states of an  ̏infinite˝ crystal evolve as localized states on the
surface. This one-dimensional model then gave us a means to
expand the argument to show how assembly of such a crystal led to
propagating states of the semiconductor—the bulk states—and the
confined evanescent states at the surface. We could even show how
the toy example comes quite close to showing the evanescent states’
imaginary wavevector component in InAs, which comes quite close
to the idealized free electron description of the model because the
secondary valleys are far away.
Bulk electrons states extend to the surface, and the surface

states can be seen as those arising from the mixing of bulk states
due to the perturbation at the surface. So, we have propagating
states extending all the way to the surface, as well as surface
states that are localized orthogonally to the surface, with the total
number of states arising from the valence of the constitutive atoms
being conserved. Bulk electron bandstructure exists all the way
to the surface with minor change, and localized states appear at
the surface. Electrons in these surface states will have their own
characteristic properties, such as of screening, as well as how they
will cause the electron-hole interactions that we will discuss in
Chapter 11.
The symmetry breaking of the surface also causes atomic

bonding changes—at least, distortions and some breaking at the
surface itself—and movement. Surface and bulk differences of
stresses and strains interact in a few atom-thick regions. We took
an energy-based approach to look at surface reconstruction and
instabilities, to view some common and interesting examples.
The surface also has a pronounced effect on phonons. Phonon

behavior is in many ways different from that of electrons. A two-
atom model showed us that surface phonons have both localized
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and non-localized responses; that is, that there are allowed real
(propagating) and imaginary (evanescent) wavevector solutions.
Surface phonon modes at the zone center can be propagating. At
the zone edge, one notes evanescent solutions. The surface modes
at the zone center are above the bulk modes that exist all the way
to the surface. So, surface phonons have a rich behavior, and, in
nanoscale geometries, the way that these phonons cause local and
nonlocal perturbation, especially when coupled to the electron
cloud response, has important consequences.

5.8 Concluding remarks and bibliographic notes

Surface science is a very important discipline with many
interesting experimental tools of analysis that help understand
the material and also verify a theory or tell us its incomplete-
ness. Much of the literature on surfaces is experimental. The
first major success of scanning tunneling microscopy was the
observation of the atomic features at the surface, and the obser-
vation of many quantum-centric and reconstruction phenomena
have made for major successes in the verification of theories, as
well as pictures that spark imagination. A good introduction to

A caution needs to be stressed
regarding pictures and imagination.
There is much Photoshop subterfuge,
dropping of data points, smoothing
and introduction of imagination that
cannot be condoned, especially when
observations don’t state it. This is the
Millikan-ish dropping of data points
in the oil drop experiment to get the
electron charge consistent.

semiconductor surface phenomena can be found in Balkanski
and Wallis1. A very thorough study of surfaces is the book by

1 M. Balkanski and R. F. Wallis,
 ̏Semiconductor physics and
applications,˝ Oxford, ISBN 978-0-
19-851740-5 (2007)

Lannoo and Friedel2. This text, as implied by the title, covers

2 M. Lannoo and P. Friedel,  ̏Atomic
and electronic structure of surfaces,˝
Springer-Verlag, ISBN 978-3-642-08094-
4 (1991)the methods for modeling the electronic and phononic struc-

tures of surfaces; looks at the interesting aspects of transition
metals and single element and compound semiconductors; and
relates many of the observations to the metal-semiconductor
system.
A reference—very semiconductor-specific—rich in parametric

detail is the text by Mönch3. The book is particularly good at

3 W. Mönch,  ̏Semiconductor surfaces
and interfaces,˝ Springer, ISBN 978-3-
642-08748-6 (2001)

connecting the physics-based surface discussion to the practicalities
of semiconductor consequences of interest to those utilizing
semiconductors in devices.
For those interested in the materials science perspective—surface

reconstruction, defects, steps, et cetera—there exist a number of
good books that should be looked into to see the different insights
of different authors. One good book is by Bechstedt4, which

4 F. Bechstedt,  ̏Principles of surface
physics,˝ Springer, ISBN 3-540-00635-4
(2003)

discusses thermodynamics, diffusion, growth, reconstruction and
defects. Another book, with a greater emphasis on experimental
techniques, is that by Lüth5. A work complementary to this last

5 H. Lüth,  ̏Solid surfaces, interfaces
and thin films,˝ Springer, ISBN 978-3-
642-13591-0 (2010)

example is the book by Ibach6. This book has an interesting chapter
6 H. Ibach,  ̏Physics of surfaces
and interfaces,˝ Springer, ISBN 13
978-3-540-34709-5 (2006)on surface magnetism in it.
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We did not discuss electromagnetic phenomena at the surface— Adiscussion of Casimir interactions
and their implications for nanoscale
devices can be found in S. Tiwari,
 ̏Nanoscale device physics: Science
and engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4 (2017).

some of it appears for us through the plasmonic discussion in later
chapters—but there is a considerable amount of Casimir force,
dielectric function, tunneling and emission absorption phenomena
that is very surface dependent. Sernelius7 discusses modes, forces

7 B. E. Sernelius,  ̏Surface modes in
physics,˝Wiley-VCH, ISBN 3-527-
40313-2 (2001)

and interactions at the surface in considerable detail bearing on
these aspects.

5.9 Exercises

1. Calculate the thermionic current from a wire that is made of
tungsten and is 3 cm long, has a radius of 0.1 cm and is at 2300 K.
Tungsten has a workfunction of 4.5 eV. [S]

2. Surface state density tends to be highest near the bulk bandedges.
Why? [S]

3. Surface states appear both within the bandgap and in the bands.
We discussed at length that the states in the bandgap are evanes-
cent modes that are localized at the surface. What about the surface
states that appear in the band? Are they evanescent or can they be
both evanescent and non-evanescent? [S]

4. Are surface phonons acoustic or optical? Or both? Argue your
answer in short. [S]
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Semiconductor interfaces and junctions

An understanding of the free-space-terminated semicon-
ductor surface gives us some physical intuition for the changes
wrought in electron states and phonon states at the surface. The
physical underpinnings will help us understand the behavior when
two different materials are brought together to form an interface.
These are not two independent surfaces brought together, that
is, material 1 to vacuum, and vacuum to material 2, with the
vacuum removed in the transitive sense, since the two materials
will interact in the interface region. Interactions don’t necessarily
lead to linear transformations. We have seen this with the Golden
rule, when a perturbation that is not adiabatic is encountered. What
we learned in Chapter 5 about the appearance of states in response
to symmetry breaking and perturbation will be pertinent to our
discussion. We will see in this chapter the role of the gap states, the
differences between crystalline continuity versus its absence, and
the nature of the materials—semiconductors or metals—that show
up in the interface region where there may also be a junction. The By junction here, we mean the broader

context of an interface together with
surrounding regions where changes
in composition of the materials,
changes in the polarities or doping
of the semiconductors, and others—
inhomogeneities of various kinds—
may exist. Together with the specifics
of what happens at the interface,
the details of what happens in the
surrounding region will also matter.
Both a metal-semiconductor junction
and a semiconductor-semiconductor
junction will behave differently,
depending on the doping and the
interface, and show a variety of
different properties.

changes will happen for electron states and phonon states.
Such interfaces are of import in the metal-semiconductor

junctions that are so often used for rectification and for ohmic
transport; in insulator-semiconductor junctions, where one is either
just isolating the surface or using the interface as a barrier for the
creation of confined mobile charge layers; and in semiconductor-
semiconductor junctions, where one often wishes to introduce
changes in transport or electromagnetic interaction. So, this chapter
will start with a brief introduction to interfaces and junctions and
then proceed to the metal-semiconductor junction. This discussion
builds the arguments toward understanding induced gap states—
the states that appear in the bandgap (and above and below
the bandedges)—when an interface exists with vacuum, as in
Chapter 5, or with metal or with insulators. An understanding

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001
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of the nature of these states under the different circumstances in
different materials lets us then look at the important crystalline
interfaces between two semiconductors. This is the assembly that
we call heterostructures. We will see how bands align due to the
Bloch function changes that appear at the atomic scale in two
semiconductors with crystalline continuity at an abrupt interface
between the two. And we will then extend this discussion to where
compositional mixing allows one to grade that interface. Both of
these forms are ubiquitous in nanoscale devices.

6.1 Interfaces and junctions

An important illustration of what happens due to the nature
of bonding at material interfaces is the SiO2/Si interface. Grown
SiO2 is an amorphous material that, in the process of the growth
on Si from which it is formed, can reconfigure so that very few
interface states are observed. This is illustrated in Figure 6.1(a) There was a saying in times past that

silicon’s success (in microelectronics)
is not because of silicon, but because of
SiO2. Like many sayings, it has some
truth to it.

and (b), where the first shows the breaking of translation order
and bond-driven termination of the silicon surface, and the second
shows the interface trap density that is observed in different orien-
tations. The (111) Si surface has the highest interface density. This In Chapter 7, we will talk a bit about

point perturbations. Defects are one
example of point perturbations. They
matter in insulators too, where leakage
current and reliability issues arise in
them. SiO2 is very robust because of
a strong bond. SiO2 bonds can flex,
that is, they can change angles within
limits. The (100) surface’s spacing is
quite right for being accommodative
to this spacing leading to the low
interface state density.

is the orientation where each Si atom has either one or three bonds
projecting out of the plane. It is also the orientation where multiple
closely spaced Si planes are encountered as one goes from the
corner of the cube, the atom along the diagonal, the atoms in the
plane through the three adjacent corners of the cube and further on
a mirror image. Accommodating this large and small bond number
condition is not conducive to low interface state density. It is the
angles of the bonds that are more flexible, but there are still energy
consequences as angles distort. On the other hand, (100) Si has a

Figure 6.1: (a) A sketch of SiO2/Si
interface and (b) shows interface trap
density in cm−2 · eV−1.
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low interface density. The atomic density is low, it is an ordered
surface of face-center and oxygen-bond termination that is more
conducive. Adding to these thoughts, one would also have to see
how the induced states arising from silicon and those arising from
SiO2 at the interface match. All in all, this is quite complicated.
But, as Figure 6.1(a) indicates, this amorphous growth provides
conditions for a large fraction of the atoms to bond, similar to
the continuing crystalline growth by epitaxy of many compound
semiconductors.

But, this is still not as simple as it sounds.
We are asking questions related to the electron state behavior

as a function of position at the interface. We know that we can
uniquely describe the E(k) behavior in the bulk of silicon. We have
also quantified under idealized conditions what this behavior is
at the surface, but we have assumed that the spatial periodicity
is still the same, and a very specific crystal potential V(z) holds
all the way to the surface. It is instructive to see how core shell
energies probe the energy variation—observing them can show
the nature of energy shifts at the interface. Figure 6.2 shows in an
α-Si/SiO2/Si structure the oxygen K-edge intensity spectra with
the step where the K-edge loss occurs for oxygen. In silicon, when

Figure 6.2: Energy loss spectra for an
oxygen K-edge in an α-Si/SiO2/Si
structure. From D. A. Muller, T.
Sorsch, S. Moccio, F. H. Baumann, K.
Evans-Lutterodt and G. Timp,  ̏The
electronic structure of the atomic scale
of ultrathin gate oxides,˝ Nature, 399,
758–761 (1999).

Figure 6.3: The barrier height of a
metal-semiconductor junction with
(111) Si of a 2 × 1 reconstructed surface
versus the metal’s workfunction.

deep enough, the step is absent, as it is in the amorphous silicon.
In SiO2, this step comes about, but note in this figure that it takes
between 2 and 3 atomic distances before it comes about. In short,
SiO2 does not look like a bulk SiO2 until ∼0.5 nm into the oxide.
The interface region is different. It has different atomic behavior.
The orbital behavior is changing. The materials’ characteristics are
changing. If one were calculating tunneling through it, one would
have to include these characteristics in it if we wished to be faithful.
Fortunately, since the bandgap is very large, for the purposes
of interface state discussion, this particular aspect of electronic
structure turns out to be secondary. The highest density of induced
states is close to the bandedges, and those regions are not usually
accessed by electrons in device structures of interest.

6.2 Metal-semiconductor interface and junctions

The first topic we look at is the metal-semiconductor junction
and what is observed as the interface manifestation. We remarked
earlier that the workfunction difference type description should
naturally be questioned. Figure 6.3 shows the barrier height of a
metal to n-type (111) Si with (2 × 1) reconstruction. If the interface

Surface reconstruction is the form that
the surface region takes as it minimizes
energy—a new short-range order
appears because of broken symmetry.
Atoms realign and move up and
down, and a lower energy comes
about at the surface. We made some
reconstruction-related observations
in Chapter 5. We will discuss more
shortly.
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density was immense in numbers, one would see no correlation
with the metal workfunction, since the interface locale in energy
will define where the Fermi energy is at the surface pinned by the
interfaces. And the metal electrochemical potential will align to
this potential in the semiconductor. As the interface state density
reduces, one would find increasing workfunction dependence. What
one finds, as seen in Figure 6.3, is that there is weak correlation
with the workfunction and the actual behavior is somewhere
in-between. Schottky barrier height is a weak function of the
metal workfunction. A 2 eV change in the metal workfunction
causes about a 0.4 eV change in the Schottky barrier height. With
Cs, the barrier height is low—a reflection of the lowering of the
workfunction that we discussed in Chapter 5. For Pt, it is very high.
Pt causes a large band bending in n-Si and, one finds, consistent
with this workfunction, a much smaller band bending in p-Si. Pt is,
at least from the electron transport viewpoint, more conducive for
electron exchange with the valence band, that is, it is potentially a
good p-type low resistance contact material.

Figure 6.4: The change in band
bending resulting from partial and
complete coverage of (110) GaAs by Sn
in n-type and p-type semiconductors.
Only a very partial coverage is needed
for band-bending changes for either.
After M. Mattern-Klossen and H.
Lüth,  ̏The Schottky barrier of Sn
on GaAs(110),˝ Surface Science, 162
610–616 (1985).

Sn on GaAs provides another contrast in Figure 6.4. A very frac-
tional monolayer coverage, so only a partial coverage, is sufficient
for metal-induced gap states resulting from Sn’s appearance to
show their effect. The sum of the two bendings is about 1.3 eV and
about 0.5–0.8 eV comes about for either of the two polarities. The
figure also shows that a cleaved (110) surface of GaAs is relatively
free of surface states in ultra high vacuum. For n-type material,
the bands are relatively flat. For p-type, it is about 0.3 eV. This
band bending corresponds to about 1012 cm−2 charges in surface
states. Note that the surface atom density in crystals is of the order
of 1022×2/3 ≈ 1015 cm−2. So, for both Si with the oxide and this
cleaved-in-vacuum example, the surface states form only a very
small fraction of the atomic concentration of the surface.

Figure 6.5: Energy of states—of
intrinsic defects in the bulk, and of
extrinsic chemisorbed species at the
surface—in GaAs, InP and GaSb with
a (110) surface. VV is a vacancy of the
group V element. VIII is the group
V element on a group III site. After
W. E. Spicer, I. Linday, P. Skeath and
C. Y. Su,  ̏Unified defect model and
beyond,˝ Journal of Vacuum Science
and Technology, 17, 1019–1027 (1980)
and W. E. Spicer, R. Cao, K. Miyano,
T. Kendelewicz, I. Lindau, E. Weber,
Z. Liliental-Weber and N. Newman,
 ̏From synchrotron radiation to I-
V measurements of GaAs Schottky
barrier formation,˝ Applied Surface
Science, 41/42, 1–16 (1989).

Figure 6.5 shows the energy states of intrinsic defects in a few
of the compound semiconductors (GaAs, GaSb and InP), together
with those for extrinsic chemisorbed species. In GaAs, these are
all near mid-gap in about a 0.20 eV range, as is the surface Fermi
level pinning that one observes. For GaSb, many of these are closer
to valence bandedge, as is the surface pinning. And, in InP, these
are closer to the conduction band, as is the surface pinning. This
indicates some correlation—not causation—between energy levels
of the induced states and the energies of intrinsic defects—missing
bonding—in these structures. Indeed, for most Schottky barriers in
compound semiconductors, it is the induced states—not the defect
states—that are believed to be the predominant source of the barrier
height observed.
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This collection of observations—from toy models that indicate
the existence of confined interface states both in and outside the
bandgap, with penetration of the electron Bloch state outside the
crystal, to the nature of intrinsic defects where one will expect
to have characteristics similar to those arising in bond breaking,
to the way the band bending changes for cleaved surfaces when
adsorbates are introduced—points to several lessons. First, the
nature of interface is complex, can be very specific to the conditions
and has a variety of origins with respect to how the phenomena
will manifest when two materials are together. Second, the idealized
wavefunction of one material will tail into the other and, no matter
how complicated this wavefunction is, it must follow the continuity
of probability and probability current.

Figure 6.6: A representational view
of the bands and waves at a metal-
semiconductor interface. The
wavefunctions of the propagating
states of one penetrate into the other.
Evanescent states are interface states
and they are being induced by both
the metal states and the semiconductor
states.

If one placed a metal and a semiconductor together (see
Figure 6.6), metal waves would penetrate the semiconductor and
induce states in the forbidden gap. Metals also have a large number
of states, since they are eVs up in the energy. The semiconductor
itself, too, has an effect in this bandgap, due to confined states
arising from the Bloch states within it. The nature of these states
will not be identical to what they would have been with vacuum
at the interface, even if we assume no atomic displacements near
the interface. The states with imaginary wavevectors that we
have introduced (k = kr + iki) will exist in all these instances.
The only caveat is that when one places two semiconductors with
similar translational symmetry together, so that there is a crystalline
interface, the nature of the bonding that exists at the interface,
which is an interfacial constraint on the Bloch states allowed, may
provide a continuity of both the probability and the probability
current density to be naturally obeyed without the large-scale
appearance of ki. We will see that this is the case for many
heterointerfaces. In these situations, one will observe bandedge
and bandgap discontinuities. Electrons in most situations don’t For some heterointerfaces, GaSb/InAs

for example, with crystalline
continuity, there will still be states
up in the conduction band and down
in the valence band, but not in the
bandgap.

see interface states. What they see is a change in the eigenenergies
allowed. And the change in the lowest of those allowed appears
as just a step in the conduction and valence bandedges, with
the continuity conditions maintained. This sounds like a very
difficult problem. It is. We have difficulty even reproducing E(k)

specifications without some input from experimental data that
allows us to fix some of the parameters. Bandgap is a common parameter

one fixes, but it could be effective
mass, or others using data determined
from precise optical measurements
that couple states whose nature
we understand in conduction and
valence bands at various symmetry
points. This is where the van Hove
singularities are very useful markers.

We now consider what happens at the interface of two materials.
An insulator/semiconductor interface such as SiO2/Si is of partic-
ular interest, but so are metal-to-semiconductor interfaces and the
heterostructures formed when two crystalline semiconductors form
a continuous junction. Electromagnetic connectivity—such as in
Poisson’s relationship—and quantum-mechanical connectivity will
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have to be integrated in general. Our discussion with electrons in
materials tells us that, for any perturbation, such as that of potential
and of change in periodicity, will have consequences for states. The
change in wavefunctions and probabilities that they correspond
to will have charge consequences that will be represented in the
energy. And this similar vein of discussion will apply to phonons,
too, due to the change in translational symmetry, periodicity
and the forces that keep the atoms around an averaged position
during vibrations.

6.3 Induced gap states and Fermi level pinning

The metal-semiconductor junction in an idealized textbook
model would have the following perspective.

The metal Bloch wavefunction tails into the semiconductor,
overlapping with the forbidden states gap region of the
semiconductor. Imaginary wavevector ki states due to broken
symmetry exist. In a three-dimensional model, it fills this forbidden
region with a distribution of states that are confined orthogonal to
the plane and propagating parallel to the plane. These are metal-
induced gap states (MIGS) described by an E(ki) relationship. They
extend up and down in energy in the gap, above it and below it
since the states arose from the metal’s conduction band. The states
that are of interest to us are around the Fermi energy. These are in
the bandgap region—usually forbidden—arising from the states
that are spread out in the conduction band of the metal around the
Fermi energy.

The semiconductor too induces states arising in the mixing of
bulk states such as at heterostructures. These too can be higher
up, lower down and spread in the forbidden gap. These are virtual
induced gap states (VIGS), the details of which will depend on the
complexity of the interface.

We will call these states, irrespective of their origin, induced gap
states (IGS)—it is understood that, in general, these states arise from
the perturbation at the interface. They represent the consequences
of this perturbation and, in principle, one can outline a procedure to
calculate them from the basis states of the two materials interfacing.

When a metal and a semiconductor are placed together, there are
these interface modes due to both MIGS and VIGS. Bloch states of
the metal—including the MIGS that arise from them—that match
into the VIGS, that is, have energy and momentum matching (E and
k‖, with k⊥ matching), will be filled. The states arising from the
semiconductor, from the conduction band and the valence band,
can be acceptor-like, that is, be neutral when empty, and negatively
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charged when filled, or donor-like:, that is, be charged when empty
and neutral when filled. States close to the propagating conduction
band energies are acceptor-like. The conduction band is the band
which is largely empty and in which, when an electron is placed
in it, the electron becomes propagating. It has a large number of
such states that are empty and capable of receiving an electron. And
the state is neutral in charge if not occupied. This is acceptor-like.
The complement to this is that states closer to the valence band are
donor-like.

Figure 6.7: Band bending and Fermi
level pinning on the surface of n-type
GaAs. The figure shows a schematic of
the density of states (Gss distribution
of the donor- and acceptor-like surface
states). A similar figure—a mirror of
this—may be drawn for p-type GaAs.

Take, for example, the case of a surface such as of GaAs, as
shown in Figure 6.7. This illustrates the density of state distribution
of the donor- and acceptor-like surface states. Donor states are
largely filled, and acceptor states are largely empty. These are
neutral. But, with the Fermi energy slightly enhancing the filling
acceptor state numbers so that they are in excess of the donor state
numbers, a small negative charge exists at the surface. The Fermi
energy at the surface is in thermal equilibrium with that of the
bulk by the filling of acceptor-like states in excess of the donor-like
states. As GaAs is direct gap semiconductor with similar symmetry
for the � point of the Brillouin zone for both the conduction and
the valence states, the density of states for the surface is fairly
symmetric. Mid-gap—a little closer to the valence band, which
has a larger concentration of propagating states—is where the
Fermi level pins and the electron-filled surface state density of few
1012 cm−2 is balanced by about a similar charge in the depletion
region in the bulk. Away from thermal equilibrium, one may not
make a larger excursion in this Fermi level pinning at the surface,
since the density of the interface states rises rapidly in energy.
Typically, one sees <200 meV of positional change in this surface
pinning for GaAs.

So, the argument for free surfaces and interfaces is that there
exists an approximate energy which separates donor-like and
acceptor-like states. This is a neutrality level. In a symmetric
system, it exists in the middle as shown in the toy model picture
of Figure 6.8, but, in general, it doesn’t have to be. Any deviation
of Fermi energy from this energy causes charge build-up. If the
excursion is toward donor-like states, it is positive, and if it is
toward acceptor-like states, it is negative. Such an excursion cannot
be very pronounced because of the high density of interface states.
And this is what will prescribe the properties of the interface, such
as the Schottky barrier height with a semiconductor, as well as
other extrapolations, such as bandedge discontinuities.

Figure 6.8(a) shows the origin of the neutral level where the
donor-like and acceptor-like states below and above are equal
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Figure 6.8: A conceptual outline of
the neutral level EN . (a) shows the
toy model picture of breaking of
degeneracy that causes the bandgap to
appear with EN as the energy where
the evanescent states have maximum
evanescent wavevectors. This is in
the middle because of the symmetry
of the toy model, and the density of
surface states rapidly rises around
it, as shown in (b). When a metal-
semiconductor contact is formed, in
thermal equilibrium, the neutral level
of the composite system’s states aligns
to the Fermi energy in the metal.

in number. It is symmetric in this toy model. And one can see
its origin in the introduction of the perturbation that causes the
bandgap to appear. Figure 6.8(b) shows the density of these surface
states, which is in the middle of the bandgap due to the symmetry
of the model. When a metal and this semiconductor are brought
in contact, as in Figure 6.8(c), and thermal equilibrium established,
a neutrality level that arises in the confined states at the interface
will determine where the Fermi energy in the metal will align.
If these states are identical or dominated by what existed at the
semiconductor surface alone, then it is undisturbed and the Fermi
energy of the metal aligns to it. However, if the semiconductor did
not have a large Gss to begin with, more Si-like than GaAs-like, for
example, then the neutral level will shift, since both the metal and
the semiconductor are giving rise to confined modes of the surface.

Figure 6.9: Barrier height of the
metal Au for various semiconductors
as a function of their neutral level
referenced to the valence bandedge.

This description of the neutral level arising in the virtual and
metal-induced gap states works pretty well with Schottky barrier
models. Figure 6.9 shows the barrier height for Au contacts for
a variety of semiconductors, from small to large bandgap, as a
function of the neutral level energy, with all energies referenced
to the valence bandedge. This level does not have to be in the
forbidden gap. InAs, for example, is a small bandgap (∼0.36 eV)
semiconductor. The neutral level energy is higher than this. It is
well into the conduction band. Metals make rather good ohmic
contacts with n-type InAs for this reason. Our prior discussion of
GaAs, InP and Si is also aligned with what is shown here. Si, for
example, will have different neutral level with different metals—
a workfunction dependence—since VIGS states and MIGS states
both matter, unlike the GaAs case. Another interesting observation
here is the very low height for the Sb-based systems InSb and
GaSb. The former has quite a small bandgap, but the latter’s is
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quite reasonable (∼0.7 eV). Here, forming ohmic contacts to p-type
material is easier.

Figure 6.10: Barrier height of the metal
Au for various semiconductors as a
function of their indirect bandgap
energy.

Semiconductors can have both direct and indirect bandgaps. The
indirect conduction band minimum arises, as we have discussed,
through mixing of |s〉 and |p〉 states. These have high density.
An example of this is the nearly factor-of-10-lower effective
conduction bandedge density of states of GaAs compared to Si.
Since induced states arise from mixing these basis states, one would
expect a dependence on indirect bandgap energy. This is shown in
Figure 6.10. The reason InAs, a direct gap material, has the large
barrier height plotted here w.r.t. the valence bandedge and, we
claim, has a neutral level far up in the conduction band, is that its
direct conduction band’s density of states is small—this material
has a very large electron mobility because its effective mass is so
small—and it is the indirect conduction band minimum—about
an eV up in the valence band—that determines where the neutral
level lies. The pinning and barrier height arising in the occupation
of these surface states force it into the conduction band. None of the
semiconductors have a neutral level in the valence band, since its
maximum is always at the zone center, and the mixing will pull the
level toward the conduction band energy.

This argument of induced states describes the behavior of a
semiconductor-semiconductor crystalline system too, and one may
describe it with the same rationale. Our argument is summarized
in Figure 6.11(a) and (b). The first panel shows our summary
of the metal-semiconductor junction. Fermi energy in the metal
aligns with the neutral level that shows the balancing within the
interface at the junction. These states—here described as induced
gap states (IGS) due to both the metal and the semiconductor—
result in the alignment. Figure 6.11(b) shows the semiconductor-
semiconductor situation. The mutually induced states arise from

Figure 6.11: Interpretation of the metal-
semiconductor and semiconductor-
semiconductor heterostructure picture
of energy levels alignment based on
virtual induced gap states (VIGS). We
denote these interface gaps states—
regardless of their origin—as IGS here.
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both semiconductors. If the symmetry of these states is similar,
so that the interface is a continuation of bonding with the change
in translations, then the matching of probability and probability
current is quite conducive and induced states exist where Bloch
states of one evanescences into the forbidden band of the other. In
the forbidden gap region at the interface, where no propagating
states exist on either side, there exist no induced states. So, the
neutrality level of both semiconductors, to the lowest order, match.

6.4 Heterostructure

In material combinations that are crystallinally continuous but
electronically quite different—InAs/GaSb being one example—there
may well be states extending in the energy region forbidden on
either side. Figure 6.11(b) shows a situation where the wavefunction
matching is quite exact at the interface. Where there are propagat-
ing states on both sides, propagation may proceed, although one
may see quantum-mechanical reflections in the propagation, due
to changes in the kinetic energy of the particles. In Figure 6.11(b),
with the ease of probability and probability current matching,
one sees a very localized filling and emptying of the induced
states in the overlap region, with the neutral level of the two
semiconductors i and ii aligning. There is now a balancing charge in
the conduction state and the valence state, but it is entirely localized
at the interface—an effect arising in q|ψ |2 perturbation. This entire
effect due to the interface dipole, highly localized as it is, appears in
the conduction band and the valence band as the discontinuity. And
charge neutrality in the IGS, with matching of the neutral levels,
defines it.

6.5 Abrupt heterostructures

Let us start first with the physical meaning of the band
alignment at the interfaces. The effective mass theorem gives us the
interpretation for what is happening to the bandedge. The use of
the effective mass theorem argument also implies, in turn, that we
have a sufficiently wide region of multiple unit cells on each side of
the interface so that the bandstructure picture applies. A bandedge
energy as a function of position certainly is in contradiction with
the uncertainty notion that states at bandedge are dependent on
momentum. The resolution here is that we are really working with
position-dependent potential as one crosses from one material to
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another. In this, there is no contradiction, and the effective mass
theorem lets us write a Schrödinger equation form (the effective
mass equation) that applies. Band discontinuities now become a set
of parameters that may be applied as an interface condition.

Semiconductor heterostructures between two dissimilar materials
are possible for a variety of semiconductors. GaAs, for example,
forms heterojunctions with Ge and even ZnSe, with which it can
be closely lattice matched. But there are technical issues with such
junctions. First, depending on the nature of the chemical bonding
and the Bloch function change from one semiconductor to the other,
there may very well be a large number of localized interface states.
InAs/GaSb is a classic example of this, where the lattice matching is
quite good but interface states and discontinuity both exist. Another
problem, particularly acute for the GaAs examples mentioned, is
that atoms of the semiconductor on either side are also dopants on
the other side. Any interdiffusion of atoms then makes electrical
control tenuous. Most heterostructure deployment therefore has
been in systems that are chemically matched.

In general, in semiconductors, heterostructures appear with the
three different types of alignment that are shown in Figure 6.12.
Type I—also called straddling gap alignment—is the most common,
where a large bandgap semiconductor and a small bandgap semi-
conductor interface, with a barrier to bandedge electrons, and
holes for transit from the small gap to the large gap. Type II—
also called staggered gap alignment—places barriers for opposite
polarity carriers, with the semiconductors exchanged. Type III—
broken gap alignment—accentuates Type II to a point where one
of the discontinuities is even larger than the bandgap of one of
the semiconductors. Type I appears in GaxAl1−xAs/GaAs, in InAs
containing multimolar composites and in numerous others. Strained We discuss strain effects separately in

Chapter 17.SiGe grown on Si, too, has this Type I alignment, where the strain
has an essential role to play in how this alignment appears. Type II
alignment is seen at the AlSb/InSb interface. Type III alignment is
encountered in the InAs/Ga1−xAlxSb combination.

In molar composites of compound semiconductors, for example,
GaxAl1−xAs, which is a mix of an x molar fraction of GaAs and

Figure 6.12: Three common bandedge
alignments in heterostructures. Part
(a) is Type I alignment, which is also
called straddling gap alignment, (b) is
Type II alignment, which is also called
staggered gap alignment and (c) is
Type III alignment, which is also called
broken gap alignment.
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1 − x of AlAs, we will see changes in which band becomes a
minimum as a function of the molefraction. GaAs is direct, with
a �-L-X sequence for next conduction minima in increasing energy.
AlAs has X as its lowest conduction energy. As the molefraction of
AlAs is changed in the mix, many changes will come about, since
the chemical potential is changing. The direct-to-indirect bandgap
transition in this mixed system occurs at x ≈ 0.43, as shown in
Figure 6.13, where the valley minima are shown using the Au
Schottky diode in these materials as a reference for the neutral level.
The rationale in drawing this is that, in our metal-semiconductor
picture, EF in the metal aligns to the neutral level. So, a lowest
order description of changes in the semiconductor is to use this Au
barrier as a reference. In fact, in this system, at this crossover, all the
different valleys are quite close in energy. This is a situation given
to numerous interaction effects as a consequence of the mixing
of states.

Another very consequential one is
that of the behavior of dopants. Si in
GaAs is a shallow donor—one that
fits well to the hydrogenic model—or
is it? Which conduction states does
it couple to, and is there any local
deformation? This will show up in the
AlAs compositional mix. It forms deep
donors—DX centers—and these are
most cleanly observed in the behavior
of the material at molefractions near
and above this x ≈ 0.43 molefraction. In
fact, it shows multiple donor energy

Figure 6.13: The change in conduction
band minimum at �, L and X, and
the valence band maximum in the
GaxAl1−xAs compound semiconductor
system.

This approach of using an Au reference can be generalized, and
Figure 6.14 draws the conduction and valence bandedges for many
of the semiconductors of interest by using Au as the neutral level
reference. If strain is absent, this figure gives quite an accurate
representation of the conduction and valence band discontinuities
that one would obtain in abrupt heterostructures and for various

Figure 6.14: A  ̏neutrality˝-referenced alignment of conduction and valence bandedges. On the left is the alignment
under unstrained conditions for IIIV nitrides in their wurtzite form. On the right is the Au-referenced alignment for
many of the zinc blende and diamond systems.
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compositions. One can directly observe here the changed alignment
of GaSb/AlSb as being of the Type I type, but of GaSb/InAs, which
too is quite reasonably lattice matched as being of the Type III
type. AlSb/InAs, on the other hand, should be expected to be
in-between—Type II, the staggered alignment. When strain is
present, a variety of effects (strain energy, degeneracy splitting,
etc.) will be present, and this figure becomes more inaccurate, but is
still useful as a guide.

levels that are related to the
environment that this Si sees. The
group III atoms that it will see in next-
nearest-neighbor surroundings may be
all Ga, one Al and the rest Ga, or two Al
and the rest Ga, and so on. The energy
of this donor state will have to be
different. There will be more on this in
the discussion of point perturbations
in Chapter 7.

6.6 Abrupt heterojunctions in equilibrium

With dissimilar materials on either side of the heterojunctions,
with the discontinuities of �Ec and �Ev, the equilibration of the
electrochemical potential requires us to account for the different
chemical environment of either side of the junctions (the chemical
potential), together with the electrical potential. The energy
bandedge profile and the Fermi energy give us the tools to visualize
this equilibrium and the disturbance to it when we apply external
potentials. The electrostatic potential ψ(z) depends on the net
charge ρ(z). In thermal equilibrium, the electrostatic potential
change is more straightforward to calculate since the charges—
mobile and immobile—can be accounted from the materials’
description and the statistical constraints. When off equilibrium,
this is more complicated, since it depends on the dynamics of
the transport of the mobile carriers. The thermal equilibrium
description of the junction will follow from the boundary and
interface conditions coupled with that of the charge description
in the semiconductors. Heterostructures often form degenerate
regions. So, we outline here a simple procedure, with degeneracy,
to see how one would draw the band profile of heterojunctions in
equilibrium.

The Fermi energy, the electrostatic potential and the bandedge
energies are related through the state distribution in the bands,
and, for our simplified example, the carrier density in degenerate
conditions can be written as

Here, we are building on the
discussion of devices in S. Tiwari,
 ̏Device physics: Fundamentals of
electronics and optoelectronics,˝
Electroscience 2, Oxford University
Press, ISBN 978-0-198-75984-3
(forthcoming). The reader should
refer to any microelectronics text and
find the origins of these relationships
and their assumptions.

n(z) = Nc
2√
π
F1/2

(
−Ec(z) − EF(z)

kBT

)
, and

p(z) = Nv
2√
π
F1/2

(
−EF(z) − Ev(z)

kBT

)
, (6.1)

where Nc = 2[2πm∗
c (z)kBT/h2]3/2 and Nv = 2[2πm∗

v(z)kBT/h2]3/2,
are the effective densities of states for the conduction and valence
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bands, respectively, EF is the Fermi energy and F1/2 are the Fermi
integrals of order 1/2. Since the materials on the two sides are A Fermi integral of order ν is

Fν (ηc) =
∫ ∞

0

ην

1 + exp(η − ηc)
dη.

η here is a normalized energy.

different, writing the equations referenced to the Fermi energy
is more convenient than writing those referenced to the intrinsic
energy Ei which will be changing as the material changes. The
ionized charges on either side also follow from the impurities’
degeneracies ( gD and gA) as

N+
D(z) = ND

(
1 + gD exp{− [ED(z) − EF(z)] /kBT})−1, and

N−
A (z) = NA

(
1 + gA exp{− [EF(z) − EA(z)] /kBT})−1. (6.2)

With the total charge as

ρ(z) = e[p(z) − n(z) + N+
D(z) − N−

A (z)], (6.3)

and Poisson’s equation of

d
dz

ε(z)
dψ
dz

= ρ(z), (6.4)

we have a description of continuity of displacement. In thermal
equilibrium, since electrochemical potential equilibrates, EF(z) is
a constant. If the junction is long enough so that electric fields
disappear farther away from junctions, that is, the charges balance,
a set of boundary conditions will be set for either side. At the
interface, the band discontinuity prescribes the change in the
bandedges. This is a complete description and gives the behavior
of the heterojunction whether the polarities are the same (an isotype
junction) or are opposite (an anisotype junction). Exercise 1 in this
chapter shows examples of such junctions.

Off equilibrium, with current flow, the nature of dynamics of
transport will matter. If the transport process is such that transport
to and away from the interface is not a rate-limiting step, then it is
the interface that will limit the transport. S. Tiwari,  ̏Device physics: Fundamen-

tals of electronics and optoelectronics,˝
Electroscience 2, Oxford University
Press, ISBN 978-0-198-75984-3 (forth-
coming), at an introductory level, and
S. Tiwari,  ̏Nanoscale device physics:
Science and engineering fundamen-
tals,˝ Electroscience 4, Oxford Uni-
versity Press, ISBN 978-0-198-75987-4
(2017), at an advanced level, tackle the
behavior of such junctions depending
on the rate-limiting behavior.

This algorithm for the electronic description of a heterojunction
has been in a generalized, position-dependent form, so even if the
interface is not abrupt, the approach applies, with the parameters of
the materials positionally changing.

6.7 Graded heterostructures

When a heterojunction is constructed out of two mate-
rials that can be continually varied as a solid solution—GaAs
and AlAs being classic examples, but also InAs, InP and other
mixes, where strain may limit the range—then the chemical
transition can be gradual. This is a graded junction. In Ga1−xAlxAs,
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0 < x < 1 is this continuum, where the changing x is changing
the local electrochemical description of the semiconductor. One can
incorporate these changes as an alloy potential whose consequences
are reflected in the total potential change in the semiconductor.
Such heterojunctions will have tunability of properties that are
determined by the distance over which grading occurs: from an
abrupt to a near-adiabatic change.

This grading, and thus changes in the semiconductor’s elec-
trochemistry, are included in semiconductor parameters such as
the effective density of states—Nc and Nv—since, together, they
describe the nature of the material. Thus, the equations outlined in
Section 6.6 suffice to describe graded junctions too.

6.8 Polarized heterojunctions

Nitride semiconductors—GaN, AlN and InN, for example, in
their wurtzite form—exhibit both spontaneous polarization and a
piezoelectric effect. Spontaneous polarization (Psp) is the existence of See S. Tiwari,  ̏Nanoscale device

physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017) for a
detailed discussion of spontaneous
polarization, piezoelectricity and
their uses. Piezoelectricity will
appear in crystals that lack inversion
symmetry. Zinc blende semiconductors
have a piezoelectric effect, while
diamond structure semiconductors
do not. Piezoelectricity’s most
pronounced effects appear there
either in mobility due to scattering,
when other scattering considerations
are eliminated, or in the charge fields
that will exist in the strained regions
of fabricated structures. Zinc blende
and diamond forms will not have
spontaneous polarization. When
spontaneous polarization exists, the
electrostatic charge densities that
are produced in the material will
be compensated by charges that
the surface will accumulate from
the environment as well as surface
reconstructions. If one were to place
two metal plates and shorted them,
the charge displacement between
the metals will compensate the
polarization charge that arose from
the medium in-between.

a stable dipole in the unit cell due to phase transition, which itself
is a thermodynamic equilibrium consequence arising in a lowering
of the free energy by a small displacement of the constituent atoms
w.r.t. each other, with this displacement leading to an electric
dipole. This is a stable state, and a stacking of such dipoles means
that a charge density ρ = ∇ · D = ∇ · (ε0E + P) will arise from it on
the faces, while, within the crystal, the dipole charge neutralizes at
the unit cell interfaces. Because of the lack of symmetry and ionicity
a strain-induced polarization (Ppz) will also exist. In periodic
atomic vibrations, it is this strain-induced polarization that causes a
piezoelectric scattering through its dynamic interaction. In crystals,
if it exists, due to the presence of mechanical deformation, it will
also cause a static charge/polarization-induced field.

For the wurtzite form, Figure 6.15 shows such a spontaneous
polarization. Group IIIV nitrides are semiconductors that show
spontaneous polarization, with an increase as one proceeds from
GaN, to InN, to AlN. It happens because the c-directed bond
increases in length. Simultaneously, the in-plane distances decrease.
So, the wurtzite cell becomes longer in the c direction. This sponta-
neous polarization also has a negative sign due to the asymmetry of
the wurtzite bonding. The polarization vector points between the N
atom and the group III atom along the [0001] direction. Therefore,
crystals with the group III face have their polarization directed
away from the face into the crystal. If the face is of N, it is directed
toward the face.
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Figure 6.15: Polarization in wurtzite
crystals of group IIIV nitrides. Part (a)
shows that the {0001} is polar, while
there also exists faces that are apolar
(M and A plane) and (b) shows the
origin of spontaneous polarization
due to the relative displacement of a
group III atom from the group V atom
in the HCP assembly. The c-directed
bond should be 3c/8 in length, and
c/a ≈ 1.633 for HCP. In the presence
of spontaneous polarization, the c-
directed bond increases in length,
pushing the group III atom here
further down. There now exists a net
dipole in the assembly, as shown in
(c), depending on the face. Note the
negative sign of the polarization due to
the asymmetry of the crystal.

This spontaneous polarization of the crystal happens together
with any strain-induced polarization (Ppz); that is, piezoelectric
polarization. Therefore,

P = Psp + Ppz. (6.5)

Here, the piezoelectric polarization is

Ppz = e33εzz + e31(εxx + εyy), (6.6)

where the es are piezoelectric constants with units of C/m2, and the
εs are the strain tensor elements. When combinations of films of Note σ ij =

∑
cijklεkl. Stress and

strain are symmetric, so the nature
of the elastic constants, which are
fourth-order tensors, depends on
the symmetry of the crystal. c1111 is
customarily written in contracted
notation as c11, c2323 relating σ 23 and
ε23—a shear term—as c44. Strain
will be dealt with in more detail in
Chapter 17. The piezoelectric effect
exists in zinc blende crystals too but
occurs from off-diagonal components.
For wurtzite nitrides, because the
e33εzz term is in line, the piezoelectric
polarization is strongly in line. e33 is
1.46 C/m2 for AlN, 0.73 C/m2 for GaN
and 0.97 C/m2 for InN.

different materials are grown, the lattice constant differences that
one can see in Figure 6.15 will also cause this additional strain-
induced polarization, and it will be different in different directions.
This makes for rather interesting consequences in polarization, the
changes in the conduction bandedge at interfaces, and because
of ρ =∇ · D, interesting carrier polarity manipulation at group
IIIV nitride semiconductor interfaces. As an example, consider a
Ga1−xAlxN layer grown on a relaxed GaN, that is in its natural
wurtzite dimensions, in the polar [0001] direction. This Ga1−xAlxN
layer will be tensile strained. The spontaneous polarization at
the interface can be found from, in the lowest order, the linear
extrapolation for that composition between its two limits of GaN
and AlN. Simultaneously, one will also have to find the piezoelectric
polarization, since the Ga1−xAlxN has been deformed, and this will
depend on the elastic deformation properties. The net effect will be We will tackle strain-induced con-

sequences in Chapter 17. Since the
deformation is elastic, the anisotropic
stress-strain relationships will
determine the deformation, and these
can be calculated in principle. It is sec-
ondary to our discussion here, where
we are stressing the unusuality of
polarization-induced interface effects.

the actual polarization at the interface. Now, if, instead, a compo-
sitional mixing of GaN and InN was employed for the elastic film,
the film will be compressive, and the piezoelectric consequence
opposite. But this will have to be considered together with the
spontaneous polarization that will also exist in these nitrides.

We illustrate this combination of different polarizations on the
bandedge diagram in Figure 6.16, for a superlattice (quantization-
sized wells and barriers) of crystalline GaN and AlN grown on
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a [0001]-oriented AlN surface. The electric fields at the interfaces
reverse! Also note that, in this structure, the discontinuities are
quite significant, since it is a nitride system.

Figure 6.16: The bandedge diagram
of GaN(2 nm)/AlN(3 nm) crystalline
quantization-sized films grown
on an AlN substrate in the [0001]
direction. Note the unusual electric
field reversal at the interface due
to the combination of spontaneous
polarization and strain-induced
piezoelectric polarization without
violating Gauss’s law.

6.9 Summary

Interfaces and junctions are inevitable in any system con-
nected to the environment for exchange of energy and particles.
These are regions of broken symmetry and of a variety of per-
turbations. The nanoscale utilizes small dimensions, and various
properties that appear at the interface matter even more so because
of the comparable dimensions of the interface region and the
device region. This chapter built on Chapter 5, so that one could
understand what happens at interfaces and junctions for a variety
of materials—non-crystalline and crystalline, conducting, insulating
or semiconducting—that one encounters with semiconductors.

Some of the salient points are the following.
When one looks at the correspondence between the work-

functions of metals and semiconductors (e.g., Si and GaAs) and
barrier heights, the change in Fermi energy at the interface in Si
is significant, while GaAs appears largely pinned, independent
of the workfunctions. When the metal and the semiconductor
surfaces come together, the assembly has interface states—similar
to the states for a symmetry-breaking surface—and induced
gap states exist. In GaAs, a direct gap semiconductor, these are
large, even as their density decreases toward the middle of the
gap, because of the nature of their creation from the propagating
states of the bulk to confined states at the surface. In Si, this state
density is small, with a prominent reason for this being the indirect
bandgap and asymmetry of the Bloch conducting states. These
states on the surface are virtual induced gap states. When a metal
is placed, bringing its own states interacting in the surface region,
the metal also induces states. These are the metal-induced gap
states. Together with the low interface state density observed with
the giant bandgap material SiO2, this postulates a neutral level
as a consequence of the various virtual induced gap states that
correspond to the metal-semiconductor barrier height.

This idea of the neutral level also suggests the realignment of
bandedges at the interface of crystalline semiconductors, where
the Bloch functions conforming to two different semiconductors
transition over a very short atomic-scale length scale. These
structures—heterostructures—have abrupt discontinuity, with most
forms where anion or cation species are common on the two sides
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existing without an interface state density in the gap. But it does
not preclude low interface state density in the gaps—farther up in
energy—due to Bloch state mixing of the induced variety. Different
heterostructures are observed with different types of staggering
in the conduction and the valence bandedges. When the molar
composition of compound mixtures is varied, the bandstructure
changes, and one observes consequences of the changes in the
bandedges reflected in the alignment.

Composition at the crystalline interface region can be gradually
varied instead of abruptly changed. In such a case, the disconti-
nuities can be made to vanish, but the changes in the conduction
bandedge and the valence bandedge must still conform to the elec-
trochemical equilibration constraints. The nature of the bandedge
variations therefore arise in electrostatic and chemical (electrical
charge and alloy species) energies that must be reconciled.

6.10 Concluding remarks and bibliographic notes

As for Chapter 5, understanding surfaces through the surface
techniques and how they relate to the important window through
which one connects to the semiconductor of interest for particle
and energy exchange, that is, interfaces, was the focus of this
chapter. This connection is how we use devices. So, the literature
and publications stretch very far back. For example, Schottky’s
theory of metal-semiconductor junctions goes back to the 1950s.
With Si’s technological importance, interface state densities received
much attention early on. With the relative immunity of the barrier
height of GaAs, and related surface effects in it, there was also early
attention to the Fermi level pinning of compound semiconductors.

Much of this early work related to interfaces such as SiO2/Si or
metals with compound semiconductors focused on characterization
through electrical, optical and energy measurements, in high
vacuum, of the interface states, as in the former, or of the role
of defect states, as metals were introduced. Metal-induced gap
states—a continuum of states within the semiconductor bandgap
permeating into a few layers of the semiconductor—lead to Fermi
level pinning, which gives local charge neutrality. A small number
of such states suffices. The barrier height arises in a short-range part
related to the surface dipole, electronegativity differences and any
bonding changes, and an additional part due to metallic screening
by the metal-induced gap states. The nearest band in energy tends
to determine which gap states prevail. This is why valence band
tends to have a stronger weight in determining charge neutrality.
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Mönch’s book1 discusses the induced gap states view of inter- 1 W. Mönch,  ̏Semiconductor surfaces
and interfaces,˝ Springer, ISBN 978-3-
642-08748-6 (2001)

faces of metal-semiconductor systems. Another early book, with
an electrical engineering perspective, is that by Rhoderick and
Williams2.

2 E. H. Rhoderick and R. H. Williams,
 ̏Metal-semiconductor contacts,˝
Oxford, ISBN 019 859335 (1998)

A comprehensive text from the surface physics perspective
is by Lüth3. This book too takes a surface science view to the

3 H.H. Lüth,  ̏Solid surfaces,
interfaces and thin films,˝ Springer,
ISBN 1868-4513 (2010)

experimental probing techniques and combines it with a principles-
based discussion.

A more general understanding of the interfaces came into its
own only after heterostructures became ubiquitous and the surface
studies advanced enough to probe surface phenomena minutely.

Some of the earliest work exploring heterostructures was by
Frensley and Kroemer4 as the methods of heterostructure growth

4 W. R. Frensley and H. Kroemer,
 ̏Theory of the energy-band
lineup at an abrupt semiconductor
heterojunction,˝ Physical Review B, 16,
2642–2652 (1977)

came into their own and layering of a variety of semiconductors
pseudomorphically became possible.

The completeness of the understanding of the relationship
between metal-semiconductor barrier heights, the positing of a
neutrality level, and the transformation of this to an understanding
of band lineups is due to Tersoff. Three publications are worth
reading through. The first5 discusses Schottky barriers and band

5 J. Tersoff,  ̏Schottky barriers and
semiconductor bandstructures,˝
Physical Review B, 32, 6968–6971
(1985)

structures. This paper highlights the importance of pinning
strength and barrier heights in what one observes in the range
of semiconductors. The second6 emphasizes Au’s behavior on

6 J. Tersoff,  ̏Reference levels for
heterojunctions and Schottky barriers,˝
Physical Review Letters, 56, 675 (1986)

semiconductor surfaces and shows the correlation of defect levels
with barrier heights. The third7 integrates this learning. The band

7 J. Tersoff,  ̏Transition-metal
impurities in semiconductors: Their
connection with band lineups and
Schottky barriers,˝ Physical Review
Letters, 58, 2367–2370 (1987)

lineup of Figure 6.148 shows the resulting variations based on a

8 S. Tiwari and D. Frank,  ̏An
empirical fit to band discontinuities
and barrier heights in III–V alloy
systems,˝ Applied Physics Letters, 60,
630–632 (1992)

semi-empirical interpretation that is consistent with the bands of
the semiconductors.

A good review of spontaneous and piezoelectric polarization in
the nitride systems is from Yu et al.9.

9 E. T. Yu, X. Z. Dang, P. M.
Asbeck, S. S. Lau and G. J. Sullivan,
 ̏Spontaneous and piezoelectric
polarization effects in IIIV nitride
heterostructures,˝ Journal of Vacuum
Science and Technology B, 17, 1742–
1749 (1999)

6.11 Exercises

1. Figure 6.17 shows Ga1−xAlxAs/GaAs heterojunctions for three
cases—the n-p junction, the n-n junction and the p-p junction for
thermal equilibrium ((a), (b) and (c)) and forward bias ((d), (e) and
(f), respectively). Here, forward bias is defined as the case with
higher current flow. While the Fermi energy in thermal equilibrium
is quite straightforward, given its definition, the quasi-Fermi levels
in forward bias reflect the transport dynamics as discussed in w.r.t.
the metal-semiconductor case. Are Figure 6.17(d), (e) and (f) drawn
correctly? Also, indicate what the quasi-Fermi levels will look like
throughout the structure, and why. [S]
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Figure 6.17: Different abrupt junctions
formed in the Ga1−xAlxAs/GaAs
combination.

2. In crystalline heterostructures, the conduction band and valence
band extrema are drawn as changing discontinuously at the
interface. Can you argue a physical reason for this? [S]

3. InAs has surface Fermi level pinning in the conduction band. This
certainly means that ohmic contacts are easy to make to n-tyoe
InAs. How could one then make an ohmic contact to p-type InAs
in order to make any device using it? [S]

Figure 6.18: A broken-gap Type III
lineup together with a change in
doping from p to n.

4. Figure 6.18 shows a Type III heterostructure (also called a broken
gap) in thermal equilibrium. The left side is p-type, and the right
side is n-type. When we disturb the equilibrium, will it conduct
by tunneling and be non-rectifying or will it behave more like a
normal p/n junction that is rectifying? [S]
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Point perturbations

A good-sized crystal can never be perfect. It is built at
a finite temperature, so there is a thermodynamic propensity for
defects: bonds that did not form, misplaced atoms and, of course,
a variety of phenomena at the surface, where the crystal interfaces
with its environment, as we have discussed. A missing atom is a
defect. This is a vacancy. A substitution of a shallow hydrogenic
impurity—P or B in Si—in the atomic site allows one to provide an
excess electron or take it away (a hole) from the crystal. A vacancy
may or may not be useful; an impurity may or may not. Vacancies
have broken the symmetries that existed in the crystal by breaking
the bond and may even cause a little shifting in the surrounding
atoms. States different from the bandstructure picture will appear
that may be shallow, or deep, or maybe even in the bands, just
as what happened at the surface and interface. Both are examples Take graphene, a two-dimensional

material. If one plucks a C atom out
of the crystal matrix, there will be a
rearranging to optimize the energetics.
In Si, it is the tetrahedral bonding that
disappeared. The two will have quite
different behaviors. In fact, much of
the discussion of stresses at surfaces in
Chapter 5 doesn’t apply to monolayer
materials. Continuum approximation
and the stress-strain equations will be
quite inappropriate.

of a point perturbation. P or B in Si, properly substituted in the
crystal, are useful. But if it is a transition element such as Ti, Cu or
Au that had been substituted, most likely, its consequences will be
quite deleterious. The energy states arising in the presence of these
elements are often a distraction, unless one is interested in killing
the carrier lifetime of the semiconductor. A perfect crystal gains its
usefulness by the introduction of imperfections. Functional devices
are created through the controlled introduction of point defects and
interfaces.

Adding a dopant to a crystal to make it of one polarity or
another is also an  ̏imperfection,˝ a desired imperfection that
will be somewhat randomly distributed in the crystal. A shallow
donor—a dopant that easily contributes, for example by thermal
excitation, an excess electron to the conduction band—and a
shallow acceptor—a dopant that picks up an electron from the
valence band—are energetically shallow states. Their wavefunctions
are spatially extended and are composed of basis states over a small

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001
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spread in k. So, they can couple efficiently to either the conduction
band or the valence band for the two cases. States can also come
about—from dopants such as many of the transition elements—
that are highly spatially localized. Such states then are composed of
basis states from the entire Brillouin zone. We have developed the
tools that let us analyze both of these situations. But such a distinc-
tion can be too simple for other point defects. For example, crystals
may distort locally because of a defect, and then there can be strong
dependence of the bonding structure on the state. In compound
semiconductors, the departure from covalent bonding can lead to
a strong dependence of the bonding structure on the charge state,
so that both shallow and deep electronic states may be associated
with the same impurity. We will also discuss such defects.

Composition, even if quite precise on the macroscale, can be
randomly fluctuating at the nanoscale. If one makes a ternary
crystal, Ga1−xAlxAs, for example, then even the distribution of
Ga and Al species in this crystal will have some randomness. In
materials such as Ga1−xInxAs, which are of useful bandgap, the
mobility improvements are limited by the scattering of electrons
that arises from the compositional randomness, a process that is
called alloy scattering.

There are a number of different types of such deviation from
perfection that exist in the crystal, some useful and some not, that
we discuss in this chapter. Often, these are called defects. Defect
is perhaps a poor moniker for these deviations, since they would
then be always deleterious. A crack (a dislocation, in materials
science) or a hole (a vacancy, in materials science) is both a reason
for concern and yet may be useful for certain situations. So, the

Reading any of the classic texts on
solids will give a perspective on
intrinsic defects such as point defects,
antisite defects, their combinations or
extended defects such as dislocations,
edge, screw and mixed dislocations,
their extension to grain boundaries,
their consequences for diffusion and
conductivity, et cetera. Our interest is
in those deviations from perfections
that have unusual properties—
largely with electrical or optical
activity—that need to be looked at
carefully. Accumulation of impurities
at grain boundaries can give hardness.
The strength of Damascus steel
draws on the careful introduction of
carbon—fullerenes can be seen here—
randomly in the iron matrix. The same
comment holds true for substitutions
at vacancies. Alloys are a scaled form
of these.

appearance of impurities can either be a defect or have a desired
consequence. Intrinsic phenomena, that is, those that arise from
within, such as the appearance of a vacancy, are defects. But, as
an extrinsic phenomenon, the appearance of Si as a substitutional
dopant may be desirable for doping. On the other hand, such a
substitution also comes together with complexity that is important
for ionization, metastability and dependences on temperature and
light. So, there is much ambiguity here. The surfaces and interfaces
of the crystal have even many more varieties of these deviations,
some inevitable because of the breaking of translation symmetry.

We will only focus on point sources of perturbation. They are
quite important in the behavior of semiconductors and the transport
that takes within them. We will also focus on only a select few of
the deviations that are important for understanding the behavior of
semiconductors. The presence of carriers, their variety of properties,
including those of transport, and the dependence of the properties
on temperature, and even leakage, such as occurs in  ̏insulating˝
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dielectrics, depend on them. Ours will be a relatively simpler
physical view in order to reflect on the semiconductor physics and
draw on the discussion up to this point. But our discussion will
include such deviations that exist even in amorphous materials that
are of technical importance. So, we will include in this discussion
SiO2 and other dielectrics, such as high permittivity materials, that
are of interest.

7.1 Defects and perturbations

Vacancies and impurities appearing as substitutions are
point perturbations where one has created a disturbance around
the locale. The creation of a vacancy leaves broken bonds. An
impurity changes the nature of bonding in this locale. In either
case, it is an energetic perturbation. A shallow substitutional
impurity, which we can model in the hydrogenic and effective mass
approximation, leads to an electron being donated to the crystal or
an electron being plucked out of it. This is related to the nature of
the interaction. Figure 7.1 shows an illustrative picture of what a
vacancy versus what a hydrogenic shallow substitutional impurity
potential picture may look like.

In our Hamiltonian description, the perturbation is a Coulomb
interaction. In general, it may consist of a short-range part and a
long-range part. In Figure 7.1(a), the vacancy is shown as having
a localized perturbation, and the shallow hydrogenic impurity as
having a spread. These two will have quite different consequences
for how the perturbation and the energy state or states related to
them will appear.

Figure 7.1: A sketch of the change in potential in a crystal as a result of a point
perturbation (vacancy and hydrogenic substitutional impurity). Part (a) shows
the periodic potential V(r) consisting of potential contributions from core,
Hartree and exchange correlation. Parts (b) and (c) show the potential when a
vacancy and a hydrogenic impurity substitute for the atom. π is superscript
to identify that this potential is perturbed from that of the ideal crystal. Parts
(d) and (e) show the corresponding change between the potential in the
presence of the point perturbation and the ideal crystal: (d) is a short-range
perturbation and (f) is a long-range perturbation.
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Our Wannier function-based analysis for effective mass
(Section 4.7), and its use in understanding the ionization energy
(Ei) of a shallow impurity, drew on the description of core levels.
Effective mass description is useful if the variation of this core
level description is slowly changing and therefore happens over a
sufficient number of unit cells in the assembly for the description to
become applicable. A case where there is a hydrogenic impurity in
a semiconductor that is many unit cells long—so even in quantum-
confined semiconductor structures—is an appropriate situation
for using it. If the semiconductor is only a unit cell in width, this

In Chapter 20, we will discuss the
usefulness of effective mass a little
more to see how it is applicable in
superlattices, where quite artificial
bandstructure can be created through
periodic layers. The electron needs to
be spread out for this to work so that it
feels the materials in its environment.

approximation will break. Since the electron now is spatially spread
out, it couples to states closest in energy, which is why ionization
energy becomes such a useful parameter. The short-range potential
must have a minimum strength to be able to bind the electron to
the state. If the kinetic energy is high enough, on average ∼(3/2)kBT
in non-degenerate doping conditions, then if this ionization energy
is smaller, the kinetic energy T > Ei, the electron will be unbound.

Take the quantum particle in a
potential box problem. A confining
potential of V0 > h̄2/8m∗a2 for a box
of radius a leads to a bound state.
Localization arising in this potential
causes a non-vanishing momentum
and kinetic energy through the
Heisenberg uncertainty. So, the
confinement must also exceed this
expectation to prevent the electron
from escaping. This argument is
a 3-dimensional one. If the box is
of 1 dimension, the bound states
remain for all V0. This arises from the
simultaneous decrease of localization
and leads to a fast-enough kinetic
energy decrease. So, always be careful
with models in 1 dimension. It will
cause problems with deeper levels.
1 dimension also leads to interesting
properties for the Ising model for
spin that are grounded in this energy
argument. And there are plenty of
other similar examples that you can
think up.

On the other hand, take the example of vacancy in Figure 7.1(b)
and (d). This is spatially local, and therefore it will be spread out in
reciprocal space and allow interactions to occur with a broad range
of states. We look at these cases individually to build a physical
understanding.

A vacancy is an unoccupied site of a crystal. In Si, a vacancy

Vacancies are unavoidable. Even
nanotubes have them limiting
their strength, and space elevators
using nanotubes are a non-starter.
The total energy for forming n
vacancies in an assembly of N atoms
is �G − nHv − T�S. Considering only
the entropy from atomic arrangements,
�S = kB ln(N!/n!(N − n)!), whereH
is the enthalpy for formation of a
vacancy. Minimizing the total energy
using Stirling’s formula gives

n = N exp
(

− Hv

kBT

)
.

Bond breaking is a few eV process,
and substrates are made from boules
grown near the melting point, so
n will not be insignificant. For Si,
Hv = 3.0 eV, and T = 1687 K for the
melting point; with concentration
frozen during cooling, n ≈
5 × 1012 cm−3.

is quite straightforward: a missing Si atom site in the periodic
arrangement. In the compound semiconductor GaAs, it may be at
a Ga site (VGa) or it may be at an As site (VAs). If one has a foreign
atom X at one of these sites, then we have XGa and XAs as the
substitutional atoms. SiGa is a donor, and SiAs is an acceptor. Si
in GaAs and other IIIV compounds is an amphoteric impurity: it
can dope it either way, depending on which site it occupies. S in
these same sites will become rather complicated. SGa will need a
lot of thought, and since most of the semiconductors and dopants
are group III or group V in a group IV crystal, or group IV in
a group IIIV crystal, we will avoid this complexity, except for
impurities such as the transition elements. In III–V crystals, there
is one additional complexity: that of an antisite defects, where the
opposite atom appears substitutionally. AsGa is an As antisite defect.
GaAs is a Ga antisite defect.

If an impurity atom is not at a lattice site, then it is an interstitial
atom. If an atom of the crystal goes interstitial, it is a self-interstitial.
Crystals with reduced packing often exhibit such interstitials.
Extrinsic impurities also quite often arise interstitially, since they
cannot quite fit into the lattice site.
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Vacancies, interstitials, antisite defects and substitutional impuri-
ties are all point defects. Some arise structurally and some are due
to extrinsic impurities. An interstitial impurity is a compositional
point perturbation, and these point perturbations arise in a variety
of forms that are important for the semiconductor’s behavior.

Point perturbations can also form complexes. A donor-acceptor
pair can lower energy because of their opposite charges, so their
appearance in several possible lattice spacings does occur stably.
Multiple vacancies, particularly divacancies, are also possible, for
thermodynamic reasons. A Frenkel defect is the movement of an
atom from a lattice site to an interstitial site. In Si, one particular
complex of importance is H bonding to an acceptor by giving it an
electron. So, p-type Si has strong propensity for this. GaAs, being Indeed, one of the major reasons for

instabilities and long term degradation
is this H and B interaction. H is
ubiquitous through the processes and,
because of its small size, in SiO2 and
even in Si. A B acceptor bound to H
becomes neutral. Doping has changed.

a compound and more weakly bonded, has plenty of examples of
complexes. DX is one of these complexes. An As antisite defect is

The name DX is a misnomer. It
was initially believed to be a SiGa
donor that was complexed with an
unknown point perturbation. Evidence
shows that it is a donor atom that is
interstitial.

another example, leading to the EL2 center.
In the formation of any of these point perturbations, the atomic

interactions are changing, so there will be new equilibrium posi-
tions, even if in some cases ever so slightly displaced in the vicinity
of this perturbed region. This is lattice relaxation, which is not as
easily observable. Only consequences such as changes in symmetry,

A symmetry breaking removes
degeneracy. The average of an energy
must remain the same, so levels must
move up and down.

or the appearance of a phenomenon, can be experimentally
observed.

7.2 Energetics of point perturbations

To tackle the energetics of point perturbations, we need to
tackle the bonding by valence electrons as well as the behavioral
relationships arising in the core electrons. The high binding energy
of non-shallow impurities can only arise in potential perturbation
in which the core can have a meaningful role. This point goes back
to our discussions of Chapter 1, and the treatment of independent
and not-so-independent electrons in a periodic arrangement in
the presence of the valence electrons. The perturbation arising
from the point source is going to be the difference. The ideal
potential of the crystal will include all those arising in atomic
cores (Vπ

c (r)), so the Hartree or Hartree-Fock potential (Vπ

H(r)) with
its antisymmetrization and the exchange correlation of the core
electrons (Vπ

x (r)). In Figure 7.1(b) and (c), then,

Vπ (r)= Vπ
c (r) + Vπ

H(r) + Vπ
x (r) (7.1)
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looks as shown and is the potential of the perturbed crystal (the
fact that the crystal is perturbed is shown through the use of the
superscript π ). And this potential is the input to the Hamiltonian
equation of the crystal. In Figure 7.1, V′(r) is the difference between
the potential of the perturbed crystal (Vπ (r)) and the potential of
the ideal crystal (V(r)).

Take the electron-core interaction term in the presence of
perturbation:

Vπ
c (r)= Vc(r) + V′

c(r) (7.2)

is the sum of the core term of the ideal crystal and the change
arising in the point perturbation. We consider only one point
perturbation, and it is far away from others. The change V′

c(r) then
must asymptotically vanish far away, irrespective of whether it is a
short-range or a long-range perturbation.

A substitutional impurity can have a variety of shell structures.
These will have different consequences for how V′

c(r) behaves over
the short range and the long range. If a substitutional impurity has
a core similar to that of the crystal, for Si, say, P, so that 1s22s22p6

is the core, then the charge of the core Ze, subscripted by i for
the impurity, and h for the host, differ by the number of valence
electrons. For P, or other such core impurities placed in place of the
host, the largest change for potential energy of the valence electrons
arises as

V′
c(r) ≈ − 1

4πε(0)
e2(Zi − Zh)

|r| , (7.3)

an expression that loses accuracy the closer one gets to the impurity
atom. This inaccuracy arises in that as one comes closer to the

In many of these problems, there is a
need for some care w.r.t. the dielectric
function. When a charge is spread
out over a polarizable medium, this
polarization must be accounted for in
the screening. And care must be taken
to identify static or high-frequency
limits. The potential term for a valence
electron—spread out—in a static
environment then reflects a dielectric
function of ε(0)= εr(0)ε0. When an
electron is confined to the core or
very near it, then it doesn’t feel the
polarization. The behavior is that of
vacuum (a permittivity of ε0).

core, it will be necessary to account for non-point and additional
quantum-mechanical constraints, including those of exchange and
correlation. This argument also implies that if the cores of the host
and the impurity are different, there will be additional energetic
corrections that will be needed. In situations where Equation 7.3
is applicable, since it varies slowly over unit cell size scales, it is a
long-range potential. So, impurities with identical cores—isocoric
impurities—have a smooth and long-range potential. And because
of its smoothness and long range, the effective mass approximation
applies. This is the case for Figure 7.1(e).

If impurities do not have identical cores but have the same
number of valence electrons, for example, C in an Si host, or similar
substitutions for compound semiconductors, then the perturbation
V′

c(r) will reflect the consequences of differences in core electron
charge distributions together with exchange and correlations. These
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decay rapidly; that is, are short range. This short-range consequence
also arises for interstitials as well as for vacancies, as shown in
Figure 7.1(d). For this latter case, the perturbation is approxi-
mately the negative of the potential of the missing host atom, that
is, V′

c(r).
Now, suppose the substituting atom has a different core charge

and valence charge; for example, Cd : [Kr]5s24d10 in Si : [Ne]3s23p2.
Cd has two electrons in the valence (a 2-fold charge in the core)
and Si has four. For a compound semiconductor, a similar situation
occurs with Sn : [Kr]4d105s25p2 at a Ga : [Ar]3d104s24p1 site. The
core charges are different. Now, the perturbation potential must also
include the screened Coulomb potential of Equation 7.3 to account
for this change in core charge together with the other short-range
potential encompassing any other differences of core such as the
extent and screening’s spatial dispersion, neither of which are in
this equation. A stronger Coulomb potential is more effective in
pulling electrons closer to the core. So, for a similar short-range
potential, the perturbation consequence of a stronger Coulomb
potential is larger.

To this, one must now add any changes to the Hartree Vπ

H(r) and
the exchange Vπ

x (r) potentials due to the point perturbation. For
the Hartree potential, this means a modification of Equation 1.69,
which was written for the ith electron interacting with all the other
electrons in the N-electron system. o(z′) represented the summation
over the occupation of states oi for the ith electron. This point-
perturbed crystal has states that include those in the bands which
were the eigenenergies of the allowed unperturbed ideal crystal,
and states whose eigenenergies are different as they arise from the
perturbation source. These states may very well, and often are, in
the gap. For an ideal crystal, the states would have been pure Bloch
states. For the perturbed crystal, the former states are still Bloch
states in the 0th order, or, more accurately, superpositions of Bloch
states due to the perturbation. The latter states, for example, those These superposition Bloch states also

extend spatially over the entire infinite
crystal for most of the energies.

arising from P introduced into the Si crystal, in the  ̏forbidden˝
energy region, are spatially localized to the region of the point
perturbation. The former are extended states, and the latter are
localized. Let superscripting xtd identify extended states, and loc
identify the local states, and let these states be denoted by the
quantum number ν.

The perturbed crystal’s Hartree potential arises in the extended
and local contribution, so, for the ith electron,
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Vπ

H(ri) = Vxtd
H (ri) + Vloc

H (ri), with

Vxtd
H (ri) =

xtd∑

k

∫
1

4πε0

e2

ri − r′
〈
uνk(z′)|uνk(z′)

〉
dz′

for extended states ν
xtd
k , and

Vloc
H (ri) =

loc∑

k �=i

∫
1

4πε0

e2

ri − r′
〈
uνk(z′)|uνk(z′)

〉
dz′, (7.4)

where we have subsumed o(z) and oi of Equation 1.69. The
electrons at the perturbing center affect the localized Hartree
part Vloc

H (ri) via their numbers, which will make the Hartree
contribution repulsive, and via the wavefunction in the summation.
The wavefunction is more localized for fewer electrons at the center
and spreads out more if more electrons are added. So, depending
on the number of electrons localized at the center, the wavefunction
relaxes spatially. The extended part Vxtd

H (ri) is also affected because
the number of extended electrons is changed by the number of
electrons that localize at the center as well as by the relaxation
of the wavefunction. The first part has an inverse dependence
on the extended electron count and so is small. The second part,
however, can be significant, since all the occupied extended
states are affected. Spatially, close to the localized electron, the
probability amplitude is suppressed by Coulomb repulsion. This
positive excess charge around the localized electrons is screening
the Coulomb potential of the localized electron. So, the localized
Hartree perturbation potential part may be replaced by a screened
potential V′

H(ri) while simultaneously changing the extended-

Hartree-perturbation-potential-screened potential Vxtd
H (ri) by the

Hartree potential of the unperturbed crystal. So,

Vπ

H(ri) = Vloc
H (ri) + Vxtd

H (ri) = VH(ri) + V′
H(ri), with

V′
H(ri) =

loc∑

k �=i

∫
1

4πε0

e2

ξ(ri, r′)
〈
uνk(z′)|uνk(z′)

〉
dz′, (7.5)

where ξ(ri, r′) is a screening function.
We also need to account for exchange potential. Following

Chapter 1, exchange potential encapsulates the Coulomb interaction
with the exchange hole that arises in the exclusion of two electrons
of the same spin in the same space. The spatial uncertainty is
smaller for localized electrons than for extended ones. So, following
an approach identical to that of the Hartree argument, we split the
exchange potential Vπ

x (ri) that the ith electron at the center feels to
a localized part (Vloc

x ), where there is a fraction of the electrons, and
an extended part (Vxtd

x ), where the rest of the electrons centered on
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the center are. The extended part then can be substituted by the
exchange potential of the unperturbed crystal Vx(ri) together with
an effective exchange potential V′

x(ri). So,

Vπ
x (ri) = Vloc

x (ri) + Vxtd
H (ri) = Vx(ri) + V′

x(ri), with

V′
x(ri)uν(ri) = −

loc∑

k �=i,σ k=σ i

∫
1

4πε0

e2

|ri − r′|
〈
uνk(z′)|uνk(z′)

〉
unuk(ri)dz′,

(7.6)

with the summation for particles of identical spin; that is, σ k =σ i.
We have now determined the three terms that constitute the

entire perturbation due to the center in Equation 7.1, so that the
governing equation for the ith electron reads

[

− h̄2

2m0
∇2

i + V(ri) + Vπ (ri)

]

|un〉= En|un〉, (7.7)

with Vπ (ri) composed of Coulomb, Hartree and exchange parts. In
the lowest order, the Coulomb term dominates, and the index i can
be eliminated because all the electrons feel the core perturbation
potential, so

[
Ĥ0 + V(r) + Vπ

c (r)
]
|un〉= En|un〉. (7.8)

For a center that has only one electron localized, the Hartree and exchange
perturbations vanish and this equation is precise.

For the Hartree potential of the electron i in the localized
state, Vloc

H is the perturbation. We can use the position-dependent
screening to evaluate the correction following the argument leading
to Equation 7.5:

〈uni|V′
H|uni〉=

loc∑

k �=i

∫
1

4πε0

∫
dr

∫
e2

ξ(r, r′)
|uνi(z)|2|uνk(z′)|2

ξ(ri − r′)
dr′. (7.9)

The integration in r′ can be simplified by replacing the slowly
varying 1/ξ(ri − r′)|ri − r′| to its value at a mean position z. With
this, since the integration over r′ of the normalized wavefunction
uνk(z′) is unity, this Hartree energy reduces to

Uνi = e2

4πε0

∫
1

ξ(r, r)|r − r| dr. (7.10)

Uνi is the Hubbard energy.

Where the electron is localized can
have a variety of strong consequences.
In S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017), we will
encounter examples of metal-insulator
transition due to this localization
because of the Coulomb energy and
kinetic energy changes that arise in
the localization. It is really not that
far from the truth to say that much of
what we have been analyzing through
these energetics-focused equations
is the play between potential energy
and kinetic energy. One leads to more
localization, while the other leads to
spreading out and moving around.

The correction due to the third term, the exchange energy
arising in V′

x(r), is grounded in spin. In the Bloch states, there is
a balance of spin-up and spin-down electrons under equilibrium.
But, for electrons localized at the center, this need not be true. Let
n = n↑ + n↓ be the localized electron number at the center of the two
spin orientations. So, the total spin projection is Ms = (1/2)(n↑ − n↓).
Therefore,
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n↑ = 1
2
(n + 2Ms), and n↓ = 1

2
(n − 2Ms). (7.11)

Let σ i denote the spin quantum number of the state ν i. The
exchange contribution is then

〈uνi|V′
x|uνi〉 = −(nσ i − 1)

e2

4πε0

∫
dr′

∫ u∗
ν′(r′)u∗

ν(r)uν(r′)u′
ν(r)

r − r′ dr

= −(nσ i − 1)Jνi in general, with

Jν = e2

4πε0

∫
dr′

∫ u∗
ν′(r′)u∗

ν(r)uν(r′)uν′(r)
r − r′ dr (7.12)

as an exchange integral. In writing Equation 7.12, the orbital
identity of the quantum state ν ′ has been left out.

This procedure outlines how, given a certain number of electrons
at a center, one may determine the Coulombic, Hartree and
exchange contributions of the perturbation that it causes.

7.3 Electrons at the point perturbation center

We now have a mathematical description that self-
consistently describes the energetics of the point source, as well
as the number of electrons in the localized state, because the
Hamiltonian and the thermodynamic equilibrium constraint
complete the constraining conditions. At T = 0 K, all the states with
eigenenergies that are below the Fermi energy EF are occupied,
and this tells us the number of electrons that are localized. If you
change the temperature, the Fermi energy changes, and therefore, in
general, the number of electrons at the center will also change. So,
depending on the conditions of the semiconductor system, there can
be a change, and this change is not only due to temperature, that is,
in thermal equilibrium conditions, but is also due to other external
electrochemical stimuli when away from equilibrium. This latter
does become important for some of the point perturbation centers
that have eigenenergies deeper in the bandgap.

One can make some estimates of the number of electrons to
consider in this point perturbation energetics based on physical
arguments.

As a starting point assume that the process of creating the
center did not change the charge state of the crystal. It is still
neutral. An interstitial impurity, for example, a transition element
in Si, was introduced in its entirety as an atom. The same, when
a substitutional impurity, say, P in Si, is introduced. If the point
perturbation center is a vacancy in Si, it is there because a neutral
Si atom was plucked from the crystal.
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Now consider the case of substitutional P in Si, so it is an atom
with chemical bonding not unlike those of other Si atoms bonding
to their surrounding Si atoms. P’s valence shell is 3s23p3. The s and
p states are involved in the formation of the valence band states
of the crystal as well as the states that appear in the bandgap.
Four of the P electrons occupy the valence band states, leaving one
electron to occupy the localized state. For a neutral P-substitutional
impurity, there is 1 electron localized. Had this been a substitutional
B ([He]2s22p1) atom, the count would be −1. A hole can occupy
a state localized at the center. For any such impurity atom, the
electrons bonding have energies in the valence band. The rest of the The bonding electrons determine

the oxidation state of the atom. An
oxidation state or number is the degree
of oxidation; that is, loss or gain of
electrons during the bonding.

electrons, a number that may be positive or negative, are the active
electrons.

Many transition atoms appear in crystals such as of Si both sub-
stitutionally and interstitially. The oxidation state is now different.
For a substitutional atom, the oxidation state still comprises the
electrons of the atom that are involved in the bonding. But the
interstitial form needs additional considerations. Such atoms are
weakly bonded, so the number of electrons from the atom in the
valence band is vanishingly small. All the electrons are available
for occupying the states in the bandgap. Fe: [Ar]4s23d6 in Si is a
good example. Substitutional Fe has an oxidation state of 4+, while
interstitial Fe is in an oxidation state of 0+. So, with 8 valence
shell electrons, there are 4 electrons that can be at the center for
substitutional conditions and 8 for interstitial conditions.

If the short-range potential dominates, then the solution to the
Hamilton/Schrödinger equation (Equation 7.7) for the problem,
under the enormous simplification that translational symmetry
provides, is quite direct using perturbation theory. If the long-
range potential is important, then this equation may be partitioned
into two. One is for the periodic potential of the crystal, whose
solution is our E(k) description. And the other equation is for this
perturbation potential, and this is precisely what we did in deriving
the effective mass equation of Equation 4.69. Our caveat is that
Vπ

c (r) in Equation 7.1 arises in the core, and this was excluded
in the derivation of the effective mass equation. Coulomb point
perturbations arising from the net charge imbalance of the core are
fine, but those arising from within it due to the short range within
the core are not. A useful way to distinguish this is to look back at
the derivation of Equation 4.69 and note that the envelop functions
are slowly varying over the atomic scale. Any perturbation that is
more rapidly varying than that conflicts with the assumption of this
slow change of this derivation.

We may now apply this learning to explore the behavior of point
perturbations.
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7.3.1 Shallow dopants

Shallow donor and acceptor impurities, such as P or B in
Si—substitutional impurities—have a long-range perturbation V′(r).
These are all examples of atoms that are near the row or column of
the periodic table of the atom being replaced. Let �Z = Zi − Zh be
the difference in the impurity and host core charge numbers. This
point perturbation can be either positive or negative. Then,

V′
c = − e2

4πε|r|�Z, (7.13)

and to this one must add the Hartree potential V′
H(r) and exchange

potential V′
x(r) due to other localized electrons of the center. If the

impurity atom is only one valence electron different from the host, then
the Hartree and exchange perturbations vanish. There is no electron-to-
electron interaction to be included. So, V′

c is the entire perturbation.
If, however, the magnitude of the valence charge difference exceeds
this, S for example in Si, then the Hartree and exchange potentials
will need to be included.

The effective mass equation suffices for this �Z = ± 1 case. If
�Z = 1, the states where the excess electron may dwell will appear
close to the conduction band in the bandgap. The electrons involved
in bonding all go to the valence band. Likewise, if �Z = − 1, the
states will be in the bandgap near the valence bandedge.

First, consider the simplest case where there is one conduction
band minimum and one valence band maximum at the Brillouin
zone center, and �Z = ± 1. This implies

Ec(k) = Eg + h̄2

2m∗
c

k2, and

Ev(k) = − h̄2

2m∗
v

k2. (7.14)

The effective mass equations with H ′ = V′
c, for the states near the

conduction and valence bands are
[

Eg − h̄2

2m∗
c
∇2

r ∓ e2

4πε|r|�Z

]

ϕc(r) = Eϕc(r) or

[

− h̄2

2m∗
c
∇2

r ∓ e2

4πε|r|�Z

]

ϕc(r) = (E − Eg)ϕc(r), and

[
h̄2

2m∗
v
∇2

r ∓ e2

4πε|r|�Z

]

ϕv(r) = Eϕv(r) or

[

− h̄2

2m∗
v
∇2

r ± e2

4πε|r|�Z

]

ϕv(r) = (−E)ϕv(r). (7.15)
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These are equations that appear similar to the Schrödinger equation
for hydrogen with differences in the parameters, signs and refer-
ences. An attractive potential will lead to discrete eigenenergies that
are lower than the reference, and a continuum of them above it. For
repulsive potentials, there exist positive eigenenergies. So, discrete
energies appear below the conduction band and above the valence
band within the bandgap.

For the conduction band, utilizing the hydrogen model solution,
the eigenenergies are

En = Eg − EB

n2 , with

EB = m∗
c e4|�Z|2

2(4πε)2h̄2
= m∗

c /m0

(ε/ε0)
2 |�Z|2ER, with

ER = m0e4

2(4πε0)
2h̄2

(7.16)

as the Rydberg energy—the binding energy of the principal
quantum number of 1—of the hydrogen atom. The solution
wavefunction, again using the hydrogen analogy, is ϕcnlml , where c
identifies the conduction band association, n the principal quantum
number, l the orbital quantum number and ml the azimuthal orbital
quantum number. For n = 1, l = 0 and ml = 0, the wavefunction
solution is

ϕc100(r) = 1
√

πa∗3
B

exp
(

−|r|
a∗

B

)
, with

a∗
B = 4πh̄2ε

m∗
c e2

= 1
|�Z|

ε/ε0

m∗
c /m0

aB, where

aB = 4πh̄2ε0
m0e2

. (7.17)

aB is the Bohr radius and a∗
B is the effective Bohr radius for this

effective mass hydrogenic model of the point perturbation. For
hydrogen, the lowest orbit’s binding energy is the Rydberg energy
of ER ≈ 13.6 eV, and the maximum Bohr radius is aB = 0.05 nm.
In the semiconductor, this hydrogenic point perturbation, with
m∗

c /m0 ≈ 0.26, ε/ε0 ≈ 11.9, and |�Z| = 1, a∗
B ≈ 2.42 nm and

EB ≈ 25 meV. The electron cloud has spread out over nearly
5 unit cells and therefore is extended. This binding energy for
n = 1 is a very small fraction of the bandgap, of the order of room
temperature thermal energy, and the states with higher n will
be even closer. The wavefunction decays with the effective Bohr
radius length scale. It is a localized state, with a weak attraction
between the impurity atom and the electron but spread out enough
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to satisfy the constraints that we placed in our analysis following
Figure 7.1(c) and (e).

Only a small spread in k contributes, and this can be seen
through the following argument. For ϕc100(r), the Fourier transform
varies inversely as [1 + (2a∗

Bk)2]. At the edge of the first Brillouin
zone, a∗

Bk ≈ a∗
Bπ/a, which is of the order of 10. So, the Fourier

transform factor falls by nearly 104 between the center and the
edge.

So, this extended state is a shallow state. Since Zi = Zh + 1, the
impurity has one excess electron over the host atom. It formed
bound states in the bandgap. But it also leads to eigenvalues in
the continuum of energy eigenvalues. The number of states has
not changed; only, an excess electron has appeared, and potential
perturbation has been introduced. But since bounded states appear
in the bandgap, the density of states in the nearly continuous
part of the energy has changed, while the net number of states
has remained constant. The number of states in the valence band
remains the same and, except for the additional electron of the
impurity, all the rest of the valence electrons dwell in the valence
band. So, all the host states and the states of the impurity, except
for this one, appear in the valence band. At T = 0 K, this excess
electron will go into the lowest energy bound state; that is, the
n = 1 level below the conduction band. Raising the temperature
excites the electron from this shallow level into the conduction
band, and now it is not localized anymore. It has become a nearly
free electron that is mobile. This level is therefore a donor level, and
the impurity is a donor impurity.

This discussion of states tied closer to the conduction band also
holds true for a valence band with a negative point perturbation.
The binding energy and the effective Bohr radius now are

En = EB

n2 = m∗
ve4|�Z|2

2(4πε)2h̄2
= m∗

v/m0

(ε/ε0)
2 |�Z|2ER, and

a∗
B = 4πh̄2ε

m∗
ve2

= 1
|�Z|

ε/ε0

m∗
v/m0

aB. (7.18)

At T = 0 K, the n = 1 level will be empty. With an increase in
temperature, an electron from the valence band can be excited to
this impurity level, leaving a hole behind. Since the level accepts an
electron, it is an acceptor level, and the impurity is an acceptor.

This entire discussion was based on an isotropic single con-
duction and a single valence band at the zone center. Bands can
be anisotropic, band minima can be away from the zone center,
and even if they are located at zone center, there can be band
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degeneracy, as in the case of a valence band with light- and heavy-
hole bands.

A shifting of the band extremum does not affect binding
energies. But anisotropy and valley degeneracy will. This requires
a multiband effective mass equation, whose discussion we will skip,
but whose conclusions we will comment on. Our k · p discussion
(Section 4.6) and its subsequent use for valence bands (Section 4.8)
showed the use of the diagonalization of the Hamiltonian matrix
employing a basis set. These matrix elements are linear or quadratic
functions of projections of k. For degenerate bands, this implies
a multi-component effective mass equation. The one-component
envelope function now becomes a multi-component envelope
function. And recall that these envelope functions were developed
from the Bloch functions, which now have the complexities of
interaction arising in the degeneracy or the off-center multiple
valleys. For multiple valley minima, intervalley matrix elements
become important. In the case of anisotropy, unlike the hydrogen-
like model, now one needs to account for the anisotropy in the
reciprocal space. A simple approximation is to replace the mass,
for example 1/m∗

c of Si, by (1/m∗
l + 2/m∗

t ) as a direction-averaged
reciprocal effective mass. For P in Si, Figure 7.2 shows the results
of the hydrogen model and the changes due to the inclusion of
effective mass anisotropy. The intervalley matrix element leads to
a 3-fold splitting of the P donor ground state that we have simply
described as a single energy level. It is 3-fold, because of the 6
minima along the three orthogonal coordinate axes.

Figure 7.2: Ground and higher energy
states of a substitutional P donor
impurity in Si. (a) The results using
the hydrogenic model. (b) The changes
arising in anisotropy.

Although our description of these ionization or binding energies
has been somewhat detailed, it is still incomplete. Fortunately, since
most of these binding energies are small, the consequences of any
inaccuracies are minor. Table 7.1 show an example of one additional
factor: that of chemical shift. The table lists the binding energies
of different shallow donors and acceptors. Si’s show a fair spread,
but Ge’s do not, nor do those of GaAs. In the case of GaAs, the large
difference between the donor and acceptor binding energies arises
in the effective masses and the degeneracy of the valence band. In
Si, the donors and acceptors have large binding energies, with In as
quite an outlier. The table also shows that the binding energy has
a dependence on the chemical nature of the impurity atom; that is,
there are chemical shifts also beyond the perturbation V′(r) of our
model.

When a substitutional impurity has a |�Z| > 1 while having
an identical core, then these excess electrons or holes that are only
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Table 7.1: Experimentally measured
binding energies of different shallow
donors and acceptors in Si, Ge and
GaAs.

Donor EB Acceptor EB

(meV) (meV)

Si P 45 B 45
As 54 Al 68
Sb 43 Ga 74
Bi 71 In 153

Ge P 13 B 11
As 14 Al 11
Sb 10 Ga 11
Bi 13 In 12

GaAs CGa 5.9 BeGa 28
SiGa 5.8 MgGa 29
GeGa 5.9 ZnGa 31
SGa 5.9 CAs 27
SeGa 5.8 SiGa 35

weakly bound to the impurity atom can be thermally excited to
the nearby band, as with the singly ionizable impurity, and they
leave behind an ionized impurity that could be singly or multiply
ionized. These carriers bound on the center are describable through
the Hubbard energy of Equation 7.10. This Hubbard correction
shifts the energy higher. The magnitude of this shift depends on
the number of carriers bound on the center. For S substitutional in
Si, the 2 excess electrons of S can appear with up and down spin at
the level, and the Hubbard correction term will be given by

U = e2

4πε0

∫

	

dr
∫

	

|ϕc100(r)|2|ϕc100(r′)|2
ξ(r, r)|r − r| dr′. (7.19)

This is the energy by which the S level (a 1s level, in hydrogenic
notation) is shifted up. When a neutral S, that is, S0 ionizes and
becomes S+, this S+’s level (again, a 1s level, in hydrogenic
notation) does not have this Hubbard energy shift, since it has
only one electron. So, this level of S+ is shifted down by U from
the level of S0. S0 is a donor at 0.31 eV. S+ is a donor at 0.59 eV.
These are both very large energies compared to an estimate of
4 × 30 = 120 meV for a hydrogenic model.

S in Si is now not a shallow donor but a deep donor and a deep
center.

7.4 Deep centers

Short-range and long-range potential perturbations have a
major difference in their implication for binding. Shallow levels

We have stressed that a three-
dimensional confinement a barrier
V0 >π2h̄2/2m0a2, where V0 is the
confining potential and a is the size
of the confinement box, is necessary
for a bound state. There will be
more on this in Chapter 20. So, a
narrow quantum well may have no
allowed confined state subject to the
narrowness-to-confining potential
constraints. Minimum potential
confinement—strength—is necessary
for any magnitude of the short range.
But this confinement argument is
dimensionality dependent. A one-
dimensional potential well will always
have bound states. The confining
potential depth must exceed the
expectation value of kinetic energy to
keep the particle confined. The average
kinetic energy ∝ 〈p2〉/2m0 decreases
faster than the localization due
to potential under Heisenberg
uncertainty, which relates the
uncertainty in momentum and
position as a linear product. Kinetic
energy is in the second order of
momentum. So, these binding
behaviors of shallow or deep centers
should be expected to be dependent on
dimensionality.

have long-range perturbation—a confining long-range Coulomb
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potential—and their short-range potential is inadequate for strong
binding. Spatially, the eigenfunctions stretch out at length scales
of a∗

B.
A deep center has a strong-enough confining short-range

potential to create strongly bound states. So long as this binding
energy is larger than that due to the long-range Coulomb potential,
the short-range potential will dominate, and the behavior of such
a center will be significantly different from that of the Coulomb-
potential-limited shallow center. This is what characterizes deep
centers or deep levels. Comparing the energy difference between It is a mischaracterization to think of

deep in the sense of energy, that is, of
an eigenenergy quite separated from
the bandedge energies. This separation
deeper into the bandgap is often true,
but there are also these  ̏deep˝ centers
that may be very close to bandedge or
even in the bands. It is the dominance
of short-range potential and the spatial
confinement of electrons to the atomic size
scale that characterizes them as  ̏deep.˝

the valence s level energies of impurities with those of host atoms
for donors, and of the valence p level energies for acceptors, serves
as a reasonable indicator of whether an impurity is likely to be
shallow or deep, due to the stronger perturbation potential when
the impurity is incorporated in the crystal. Given the centrality
of the short-range potential confinement, one may not employ
the effective mass approach. Bloch functions in a short spread
in k are insufficient for constructing the wavefunction solution.
Using atomic orbitals, that is, tight binding, is more suitable for
understanding the deep levels.

Deep levels can be donors and acceptors or both. While shallow Deep levels are poor at providing free
carriers, but effective at removing
them, precisely the opposite of what
shallow levels do. Also, while shallow
levels reach a steady state when
equilibrium is disturbed through the
transitions coupling the levels to the
bands, and the thermal transitions for
this process are entirely dominated
by the nearest band, deep levels
will have long dwell and empty
times, even if the transition itself—
as with shallow levels—happens
rapidly. So, by coupling to both bands,
they are effective generation and
recombination centers affecting the
lifetime of the material at moderate
carrier concentrations. Shallow levels
couple preferentially to one or the
other band and hence do not directly
affect lifetime at moderate carrier
concentrations.

levels in our discussion have been singly ionized (S doubly ionized
became deeper due to the Hubbard energy), the deep levels can
be multiply ionized. Neutral and these multiply ionized states can
continue to capture carriers from the bands.

7.4.1 Tight binding as a defect-molecule model

We will employ s2p2, our favorite semiconductor valence
structure, as a toy model for understanding deep levels. But, in
doing so, we will only outline the tight binding and use of atomic
orbitals in understanding deep levels to complement the Hartree-
exchange-correlation discussion of Section 7.2. There are other
methods for treating highly localized states, for example, scattering
theory with expansion via Wannier functions, that provide greater
accuracy but with much greater computational effort. Tight binding
is more intuitive. Employing it also elucidates for us the differences
with the other methods for calculations in the semiconductors
discussed in this text. The existence of a defect in the midst of
order is the complement of the existence of a molecular order in
the midst of ordered emptiness. So, a defect in a crystal is like a
molecule in reverse, and this gives us quite interesting insights into
understanding defects that the analytic formulation of Section 7.2
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does not. So, ours will be simple toy models again, where we will
ignore the formation of bands because of the interactions within the
crystal. This is dealing with local atomic orbital interaction as if in
a molecule. For this reason, this simple model is a defect-molecule
model.

Take Si with its [Ne]3s23p2 electron structure. Tight binding takes
the eigenfunctions of this valence as the basis set for the solid.
There are one s orbital (|s〉) and three p orbitals (|px〉, |py〉 and |pz〉)
on each atom that exists at the fixed lattice site. So, starting from
the problem that each electron obeys Ĥ |ψk〉= Ek|ψk〉 for the kth
energy level, with |ψk〉 as the corresponding eigenvector, we build a
wavefunction from the free atom basis, and here identifying by i the
specific atom from which the basis arises, and α its state,

|ψk〉=
∑

i,α

ck
iα|uiα〉. (7.20)

This is now a linear combination of the atomic orbitals. If we bring
two atoms, i and j, together, the solution can be described in terms
of the matrix elements Hiα,jβ = 〈uiα|H |ujβ〉. α and β are, in general,
the two different states. Since the atomic orbitals on different atoms
do not have to be orthogonal, we must include the interatomic
overlap Siα,jβ = 〈uiα|ujβ〉 in this two-center approximation. The
solution then follows from the secular determinant vanishing, that
is, det|Hiα,jβ − ESiα,jβ | = 0. Chapter 1 used precisely this approach
for the 2-electron, 2-atom system in Section 1.5. In the LCAO
method, if the overlap is large and varies slowly spatially, the
matrix elements may not converge rapidly. In tight binding, if
one ignores overlap integrals, this makes it useful as a tool for
understanding rather than a detailed analysis.

Now it should be more
understandable that these methods
may be useful for molecules. We
applied this approach to the 6-carbon-
atom ring—a molecule—and then
discussed it for semiconductor
bandstructures, emphasizing the
valence band. For crystals, with their
multitudes of interactions, they are
good toy tools, and just that.

We build the wavefuncton for this sp basis so that we can
employ it to build a covalently bonded solid. The expansion of
Equation 7.20 for a one-atom |s〉 and |p〉 orbital basis problem is

|ψk〉=
∑

i

ck
is|uis〉 + ck

ipx
|uipx〉 + ck

ipy
|uipy〉 + ck

ipz
|uipz〉. (7.21)

Diagonalization gives us the coefficient cs. A more useful basis that
gives better insight is one where the interactions can be ordered in
strength, with a leading term being true covalency. Hybrids are this
basis.

Hybrids are an important tool for
analysis in chemistry and very useful
for covalent systems. See any good
introductory chemistry text to
understand them. They represent a
convenient change in basis, with direct
intuition for bonding. A p orbital has
equal probability along its principle
axis in mirror symmetry. s is radially
symmetric. Amixing of these states
in the bonding of a three-dimensional
solid is conveniently seen through
the hybrid for the sp3. This creates
basis sets where now the probabilities
change in two opposite directions
along the major axis. Of course, to
form the bond or, equivalently, the
change to these hybrids, basis, requires
the energy exchanging of the reaction.
Si crystal formation requires going to
high temperatures for the chemical
reaction that lets Si atoms attach
themselves in the ordered way of the
crystal.

sp hybrid construction employs the angular properties of the p
orbitals: so, x̂ · r/r, together with the ŷ and ẑ dot products supplying
us with the angular part. Since any orthonormal combination of the
p orbitals gives another equivalent combination set in |upα〉, where
α is a set of axes, this new set too has an angular part defined
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by α̂ · r/r. Figure 7.3 is a representational view of one of these
orthonormal |upα〉 orbitals centered on the atom i. Let the atom at
position i have n equivalent bonds with neighbors j. Figure 7.3 is
a representational view of one of these orthonormal |upα〉 orbitals
centered on the atom i. Figure 7.3: The angular dependence of

a p orbital. Here it is identified as |uipij 〉,
centered on the indexed location of an
atom i and along a direction αij that
passes through i and j.

When s and p orbitals are used to build a new orthonormal set, it
is the form of bonding that will decide for us the new hybrid set of
convenience. It may be sp, sp2 or sp3. The first exists in ethyne (also
called acetylene (C2H2)) and in its polymer chains, the second exists
in graphite, graphene and fullerenes, and the third is the stable
state for group IV Si and Ge crystals. These n equivalent spn hybrids
(|uij〉) have the form

|uij〉= 1
√
1 + λ2

[
|uis〉 + λ|uipij〉

]
. (7.22)

The prefactor here is assuring normalization. For different |uij〉s to
be orthogonal, the λ is constrained by

1 + λ2 cos θ = 0, (7.23)

where θ is the angle between the principal axes. Since the n bonds
are spatially equivalent,

∑
j α̂ij = 0. So, this identity projected on

any of the α̂ijs forces 1 + (n − 1) cos θ = 0. cos θ = − 1/(n − 1), and
λ= √

n − 1. For the hybrids of interest to us here, λ= 1,
√
2, and

√
3.

The first is an sp hybridization, the second is an sp2 hybridization
and the third is an sp3 hybridization. For the sp3,

|ui111〉 = 1
2

(
|uis〉 + |uipx〉 + |uipy〉 + |uipz〉

)
, for α̂ij = [111]/

√
3,

|ui111〉 = 1
2

(
|uis〉 + |uipx〉 − |uipy〉 − |uipz〉

)
, for α̂ij = [111]/

√
3,

|ui111〉 = 1
2

(
|uis〉 − |uipx〉 + |uipy〉 − |uipz〉

)
, for α̂ij = [111]/

√
3, and

|ui111〉 = 1
2

(
|uis〉 − |uipx〉 − |uipy〉 + |uipz〉

)
, for α̂ij = [111]/

√
3. (7.24)

Figure 7.4 is a representational view of one of these orthonormal
|upα〉 orbitals centered on the atom i. This set represents four
different possibilities for the angles of α; these are the tetrahedral
geometric angles. Note now how one gets an easier view to the
ordering in the bonding through the larger probability.

Figure 7.4: The angular dependence
of an sp hybrid orbital. Here it is
identified as |uiα〉, centered on
indexed location of an atom i and
along a direction α that satisfies
the hybridization condition λ= √

3,√
2 or 1.

Using the original orbitals,

〈uis|Ĥ |uis〉= Es, and 〈uip|Ĥ |uip〉= Ep, (7.25)

for the three different |p〉 orientations. These are the s orbital and p
orbital energies in the solid, and these are not too far from that of
the free atom. This accuracy is particularly true for the separation
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Figure 7.5: An illustration of the
interactions of the hybrid orbitals.
Part (a) shows an interaction with the
same atom, (b) shows the interaction
with first neighbors and (c) shows the
interaction with second neighbors. The
figure also notes the different angles
that these project at.

Ep − Es of the free atom. This Ep − Es is the energy to move an
electron from an s state (a ground state) to a p state (here to be
thought of as an excited state). An atom was originally in an s2p2

ground state. The valence sp3 state that favors covalent bonding
requires the movement of an s state to a p state, and this is an
excited state. In semiconductors of interest to us, this energy is
6–8 eV. In the covalent bonding favoring the sp3 basis, now the
matrix elements are

〈uiα|Ĥ |uiβ〉 = 1
4

(
Es + 3Ep

) = 〈E〉, when α =β, and

〈uiα|Ĥ |uiβ〉 = 1
4

(
Es − Ep

) =�, when α �= β . (7.26)

β here is the angle of another allowed direction for the four possi-
bilities of α. The energy 〈E〉 is the sp3 bond’s average energy. The
energy � is negative. What really matters to us are the differences,
given that we are going to ignore all other interactions beyond
those between two atoms, as also the breaking of degeneracies and
the formation of bands. 〈E〉 is therefore just a reference for us. The
rank ordering of interactions between the hybrid orbitals within the
semiconductor will arise in the same atom, the nearest neighbor, the
next (second) neighbors, and so on. Figure 7.5 shows the 0th, 1st
and 2nd neighbor possibilities. One will have to consider more than
the nearest neighbor in an analysis, no matter how approximate, to
at least be able to analyze the nature of a vacancy.

Figure 7.5(a) shows a self-interaction that is the energy cost of the
hybridization. The top illustration of Figure 7.5(b) is for covalent
bonding, and the rest is for other angles of the adjacent neighbor,
with Figure 7.5(c) for the 2nd neighbor. The energies associated
with the two-center approximation for the case of Si are listed
in Table 7.2. If a vacancy exists, it is the (b) part that vanishes,
and one does need to account (even in the lowest order) the next
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neighbor beyond that, as is represented here in (c). Estimates of the
magnitudes of the energies for the interactions—identified through
the angle—are in Table 7.2. Note that the highest energy decrease—
through the bonding—arises as β, the direct link in the top part of
Figure 7.5(b). Note also that anti-alignment (the net from the bottom
of Figure 7.5(b)), when the wavefunctions point opposite, leads to a
positive energy (βp) and that Figure 7.5(c) lowers the energy γ .

〈uiα |Ĥ |ujβ 〉
(eV)

� (self) −1.12
β (1st neighbor) −3.75
β ′ (1st neighbor) −0.51
β

p (1st neighbor) +0.22
β

q (1st neighbor) −0.33
γ (2nd neighbor) −0.25

Table 7.2: Tight binding energy
parameters for self, nearest and
2nd nearest neighbor for Si.

Although inaccurate, one should see the band formation through
the lifting of degeneracy in the simple tight binding calculation that
we explored in Chapter 4. Consider here only the nearest neighbor
bonding interactions (characterized by β), where only the orbital
interactions pointed toward each other matter. The diagonal matrix
elements vanish, and the off-diagonal elements are 〈uij|Ĥ |uji〉=β .
This problem has the eigenvalue solution of

EA = − β, and EB =β, and

|uAij〉= 1√
2

[|uij〉 − |uji〉
]
, and |ubij〉= 1√

2

[|uij〉 + |uji〉
]
. (7.27)

A identifies the antibonding state. B is the bonding state. So far,
this is similar to the 2-electron, 2-atom problem (hydrogen!) in
Chapter 1. Our picture with only this interaction is of a solid
of diatomic molecules. There are N atoms, 2N bonds between
nearest neighbors and two energies, EA (antibonding) and EB

(bonding), that are 2N degenerate. At T = 0 K, EA can have 4N
electrons once one accounts for the spin degeneracy (gs = 2). More than our inorganic

semiconductors, the organic
semiconductors that usually consist
of polymer chains come close to this
bonding-dominated energy picture.
EA are the highest occupied molecular
orbitals (HOMO), and EB are the
lowest unoccupied molecular orbitals
(LUMO).

This was our molecular description. We can introduce broaden-
ing to this by starting to include the interactions that were ignored.
Let us include only � arising in the |s〉 �→ |p〉 excitation. With �

This one additional interaction is not
so bad at describing to the lowest
order what happens in amorphous
semiconductors.

included, we rebuild the wavefunction as

|ψ〉=
∑

ij

cij|uij〉. (7.28)

The solution, with the usual use of projection (multiplying by the
conjugate (bra) and spatial integration),

Ecij = �
∑

j′ �=j

cij′ + βcji,

∴ (E + �)cij = �Si + βcji, and

Ecji = �
∑

i′ �=j

cji′ + βcij,

∴ (E + �)cji = �Sj + βcij. (7.29)

Here, Si is the sum over all the cijs connecting the ith atom with the
other four nearest j neighbors. Writing

∑
j Sj = δSi, where
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δ = 1
β�

[
(E − �)2 − (β2 + 4�2)

]
, (7.30)

we have now reduced the problem to that of one band. δ is the
normalized averaging of interaction energy to nearest neighbor
interaction, being treated as unity. −4 < δ < 4 because of the 4
nearest neighbors, following Equation 7.25. This neighbor energy
should not change because a basis has been changed. The solution
to Equation 7.30 is the formation of two bands given by

E =� ± (β2 + 4�2 + β�δ)
1/2

. (7.31)

If Si = 0, the solution is E = − � ± β; that is, two flat bands of
discrete energy showing the assumed non-degeneracy because of
the absence of any interaction. Otherwise, we now have a spread
of states in two energy bands. The Hamiltonian form and the
presence of interaction (crystalline, amorphous, etc.) caused the
formation of the band. Figure 7.6 shows a sketch of the states’
energy change—the broadening—resulting from the normalized
averaged interaction δ as a solution of Equation 7.30. The larger the
δ interaction parameter is, the larger is the broadening.

Figure 7.6: Bandstructure formation
as a result of broadening due to
neighborly interaction in the tight
binding-based molecular model.

The width of the band is 4|�|. So long as the bands do not
cross each other—bands can cross if β < 4|�|—one sees the
semiconductor-like band formation. This is the situation of cova-
lency. Note also that energies shift down. Interaction between
the bonding and antibonding states lowers the minimum energy
to below β. One could incorporate all the other interactions of
Figure 7.5(b) and (c), and this will change the bandstructure
quantitatively, but it will not change the qualitative description.
They cause further broadening. So, now we have a picture of
the molecule and an extended picture of the formation of bands
through tight binding. And the picture of the molecule will give us
an ability to look at the complement as defect molecule in a crystal.

7.4.2 Vacancy

This molecular model gives us a tool to qualitatively view the
behavior of a vacancy, again through a toy model. Take a linear
chain in the three-dimensional system, and first consider only one
s and one p hybrid forming a bond along the chain, so two valence
electrons per atom. There also exist p orbitals perpendicular to
the chain, and they are not of interest in the bonding. The hybrid Graphite and graphene have a pz

orbital out of the plane, and sp2 bonds
in the plane. Ours here is an even more
simple model, with polyethyne as a
linear chain analog.

bases are

|ui,i±1〉= 1√
2
(|uis〉 + |uipx〉), (7.32)
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with β as the nearest neighbor interaction energy. �= (Es − Ep)/2,
corresponding to the |s〉 �→ |p〉 excitation. |δ| ≤ 2, since there
are two neighbor interactions, and it doesn’t matter which basis
we consider. This linear chain will, using the same procedure to
incorporate interactions, exhibit a formation of bands. Figure 7.7
shows the evolution of density from the limit �/β = 0, that is, a
coupled set of sp orbitals leading to a bonding state at energy β and
an antibonding state at −β in (a) (a set of delta functions as density
of states) to the formation of bands due to the interactions �.

Figure 7.7: A linear covalent bonded
chain with sp hybrid orbitals. Part
(a) shows covalent bonding between
successive atoms, (b) shows the
density of states (a Dirac delta
function) without the self-interaction
� and (c) shows the broadening due to
interactions within the approximations
of the molecular model.

Now introduce a vacancy at the site i = 0 in the chain, as
shown in Figure 7.8(a). In our molecular model, we have kept
interactions very limited. This picture that we have drawn is now
really two identical semi-infinite chains interacting through the
site, indexed as i = 0. Given the restricted interactions being
considered, we can look at only one chain, terminated, and assign
the level a degeneracy of 2. This is a  ̏surface state˝ for this linear
chain in this approximation. Figure 7.8(b) shows the bonding and
antibonding energies in the molecular limit (�= 0), and (c) shows
when broadening happens due to �= (Es − Ep)/2. (Es + Ep)/2 is the
origin of the ordinate in the energy figures. The level at E = 0 is the
localized state at the vacancy. It has two-fold degeneracy, with the
eigenvectors |u10〉 and |u−10〉. These are dangling orbitals forming a
mid-gap deep-level state. For finite �, the bonding and antibonding
degenerate levels broaden. At E = 0, the dangling orbital |u10〉
interacts with the neighboring bonding and antibonding states. So
does |u−10〉. Both interaction energies, following Equation 7.32, are
�/

√
2. So, the situation is still symmetric, and E = 0 remains the

solution for this state.

Figure 7.8: An sp-hybridized linear
co-valent bonded chain with a vacancy.
Part (a) shows a vacancy at i = 0, (b)
shows the density of states, including
the states arising in the vacancy and
(c) shows the same under broadening.
This figure can be compared to Figure
7.7, where there was no vacancy. A
doubly degenerate surface state has
appeared.

We can now write the wavefunction for this state too. Since

Ec10 = �c12 and

Ec12 = �c10 + βc21 for i < 2, and

Eci,i−1 = �ci,i+1 + βci−1,i and

Eci,i+1 = �ci,i−1 + βci+1,i for i ≥ 2, (7.33)

for E = 0,

ci,i+1 = 0 ∀ i and

ci+1,i = −�

β
ci,i−1 =

(
−�

β

)i

c10. (7.34)

The wavefunction of the vacancy deep state, therefore, is

|ψvac〉=
(

1 − �2

β2

)1/2 ∞∑

i=0

(
−�

β

)i

|ui+1,i〉. (7.35)
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The amplitude of the wavefunction decreases rapidly so long as
�/β < 1. The dangling orbital has a contribution of |u10|ψvac〉|2 =
1 − �2/β2. At perfect covalence, this will be the entire contribution
since �/β → 0.

This procedure, with a lot more complexity, can be applied
to the sp3-hybridized covalent crystal in the molecular model
approximation. Figure 7.9 formulates a description of our problem
and the meaning of these equations. Four dangling orbitals will
exist at energy E = 0. The origin of energy, which was (Es +
Ep)/2 in the sp hybrid, will now be (Es + 3Ep)/4, and the other
bonding happens at an energy of ±β. There is now a 4-fold
degenerate bound state localized on the four dangling bonds
pointing at the vacancy. Now, to this we add the interaction �.
This arrangement is a Bethe lattice, that is, a cycle-free graph with a
4-fold connection here, and because of this, E = 0 still holds true for
the vacancy state. The reason that splitting of the localized level is
not adequately described in this description is that important direct
interactions such as in γ between pairs of dangling orbitals such as
of Figure 7.5(c) have not been incorporated.

We will only summarize the results with γ incorporated. Includ-
ing the γ—which is an off-diagonal term in the interaction matrix,
since the interaction arises between different atoms’ dangling
orbitals—one may build the new basis states. These eigenfunctions, Note that these are just like the singlet

(bonding) and triplet (antibonding)
states that we have encountered
before.

|v〉, which is symmetric, and |tx〉, |ty〉 and |tz〉, which are |p〉-like,
are identified by their irreducible representations: A1 for the first,
and T2 for the latter three. For the |s〉 and |p〉 states, a lower non-
degenerate energy level at 3γ and a 3-fold degenerate energy level
at −γ result, interactions connecting the bonding and antibonding
orbitals to the valence and the conduction bands. A third interaction The A and T symmetry, and we

will see another one (E), notations
are related to group theory and are
Mullicken symbols for a point group,
indicating its symmetry operations
and irreducible representations. A
indicates symmetry w.r.t. the rotation
of the principle axis. T indicates that
the group is triply degenerate. E is
doubly degenerate. These group-
theoretic notations arose in the
description of molecular symmetry
and are tertiary to our interests.

here is the coupling of the eigenstate of the defect molecule that
results from the dangling orbitals and the rest of the crystal. It is
this interaction that leads to the delocalization of the bound-state
wavefunction.

The molecular description of this problem—in parallel with the
linear chain approach—is to write a localized state description of
the molecular defect—any defect, not just the vacancy—in the form

|ψ〉= cd|ud〉 +
∑

η

cη|uη〉, (7.36)

an equation that, on the right side, consists of of |ud〉 as an eigen-
function of the defect molecule, and |uη〉s as the eigenfunction of
the remaining crystal; that is, |uη〉s have captured all the trans-
formations that we had to make to go from |s〉 and |p〉 orbitals to
the eigenfunctions with the atoms in the crystal. This leads to the
coefficients being related through
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(E − Ed)cd =
∑

η

Vdηcη, and

(E − Eη)cη = Vηdcd,

∴ E = Ed +
∑

η

|Vdη|2
E − Eη

. (7.37)

with Ed and Eη as the eigenenergies of the composing basis, and V
being the matrix element of the coupling of the defect  ̏molecule˝
to the environment. Eη is either the collection of valence band states
or the collection of conduction band states. Equation 7.37 can have
solutions within the bandgap. These will be the localized solutions If the interaction energy Vdη is small,

the defect energy is close to Ed, and
it looks like a localized defect state
that has not been very perturbed from
the |ud〉 eigenfunction of the defect
molecule.

and, for these, the defect-molecule eigenfunction provides a sound
basis to start from. These are the T2 states shown Figure 7.9.
However, the A1 states are generally in the valence band and can
be propagating. One can see here an analogous picture—because
of this molecular atomic orbital localization emphasis—a behavior
of propagating and non-propagating states that we found on the
surface of a three-dimensional solid in Chapter 5. How much is
the localization or delocalization of this defect state? This can be
extracted from the coefficient part of Equation 7.37. Following
normalization, one gets

|cd|2 =
(

1 +
∑

η

|Vdη|2
|E − Eη|2

)−1

. (7.38)

The bound defect state does have delocalization, since |cd|2 < 1.
The higher the strength of the coupling perturbation Vdη is, the
more delocalization there is. Note also that it increases with
decreasing E − Eη also. So, this defect-molecule approach needs to
be approached cautiously. If there is significant delocalization, that
is, a large perturbation or a smaller gap, then the use of localization
as the foundation of the defect molecule is in contradiction.

Figure 7.9: (a) The covalent bonding in the Si tetrahedral arrangement. Part (b) shows the appearance of vacancy in
the molecular model picture, (c) shows the vacancy energy level splitting due to the interaction energy γ arising in the
dangling orbitals of different atoms, (d) shows the wavefunction arising in the interaction and (e) is a representational
view of the appearance of the states due to the vacancy defect within the distribution in energy of the propagating states
that are bonding (valence) and antibonding (conduction) states of the crystal.
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However, what we have now seen is that our one-dimensional
picture does extend to the three-dimensional form, also under
constraints, and shows that T2-type states appear within the
bandgap.

7.4.3 Interstitials

This molecular model, with a bit more of a reduction in
accuracy, is also instructive for seeing what happens when one has
an interstitial. And this lets us see the differences from the vacancy
case. Take the example of the interstitial atom identified as I and
inserted into the diamond unit cell of a semiconductor such as Si,
as shown in Figure 7.10. Again, we will only summarize results,
since the calculation will require the inclusion of the interstitial’s
interaction with four other atoms, and each of those atoms has the
four sp3 hybrids. For the vacancy, we had to handle just four hybrid
orbitals, for which we built a defect eigenstate and then calculated
the interaction with the rest of the crystal. The approach remains
quite similar.

Figure 7.10: An interstitial marked
as I in a diamond unit cell, and the
neighbors with which the interactions
must be considered. Numbers
1 through 4 are the first-nearest
neighbors. These are the atoms along
the diagonals within the unit cell, with
1 and 2 twisted perpendicular to 3 and
4, with the interstitial I in-between
them. 1′ through 4′ are the next-nearest
neighbors, and these are either on the
face center or in the corner.

Start with the interstitial I, and its hybrid |uIi〉 coupled to another
sp3 hybrid |uiI〉, where these hybrids need to be created from the sp3

hybrids of the perfect crystal, viz. |uij〉, and these are not orthogonal
to them either. The four |uIi〉 of the interstitials couple to the normal
sp3 hybrids of the neighbors |uij〉. Take the coupling of |uI1〉 with
the set |u1j〉 for the different js. Just as with Equation 7.36, we work
through the coupling of the defect |ud〉 with the eigenstates of the
crystal, which are the bonding and antibonding states built from
|uij〉s. For example, we get

|ψB1j〉 = 1√
2
(|u1j + |uj1〉), and

|ψA1j〉 = 1√
2
(|u1j − |uj1〉), j = 1′, . . . , 4′, (7.39)

and these bonding and antibonding states have energies ±β. The
energy perturbation term

∑

η

|Vdη|2
E − Eη

=
∑

j

( |〈ψB1j|uI1〉|2
E − β

+ |〈ψA1j|uI1〉|2
E + β

)

= E
E2 − β2 〈uI1|

∑

j

|u1j〉〈u1j|u1I〉. (7.40)

|u1j〉〈u1j| doesn’t change under any basis change of atom 1. So, an
sp3 hybrid |u1I〉 is chosen toward the interstitial from atom 1, and
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three independent combinations are extracted from |u11′ 〉, |u12′ 〉,
|u13′ 〉 and |u14′ 〉. 〈u01|u10〉 = β, so

∑

η

|Vdη|2
E − Eη

= Eβ2

E2 − β2 . (7.41)

Equation 7.37 says that, with Ed = 0, the eigenvalues are solutions of

E

(

1 − β2

E2 − β2

)

= 0, (7.42)

with E = 0, and E = ± β
√
2, as the two solutions. Since the same

solution holds for |uI2〉, as well as for atoms 3 and 4’s pointed
hybrids, these energy levels are 4-fold degenerate.

A 4-fold degenerate state has arisen at E = 0. This is not different
from that for the vacancy. Four orbitals of the interstitial led to this
4-fold degeneracy. The new feature is the 4-fold degenerate state
at E = β

√
2. Since the valence band level is at β in this molecular

model, this new feature has appeared below the valence band.
Similarly, another 4-fold degenerate state appeared at E = − β

√
2,

above the conduction level of E = β .
As with vacancy, we determine |cd|2 to determine the degree of

localization:

|cd|2 =
{

1 + β2

2

[
1

(E + β)2 + (E − β)2

]}−1

, (7.43)

which is different from what we found in Equation 7.38 for the
vacancy. When E = 0, |cd|2 = 1/2. The wavefunction is only half
localized on the interstitial. For a vacancy, the defect wavefunction
is entirely localized. A similar calculation shows that the other
states below the valence and above the conduction level are
a quarter localized. Of course, now, if we include additional
interactions, the degeneracies will break for all these three solutions.
A lower non-degenerate A1 and a higher three-fold-degenerate T2

component will arise. The energy � for the |s〉 �→ |p〉 excitation also
needs to be included. And once we do that, for the E = 0 localized
state, the A1 component falls into the valence band, and T2 falls into
the conduction band. For the E = √

2β states, the A1 component
a appears as a localized state under the valence band, and T2 is
raised to being in the valence band. Complementary behavior arises
for the E = −√

2β states.
This discussion shows us that, although only a rough approxi-

Ti has the electronic structure
[Ar]3d24s2. Cu is [Ar]3d104s1. d mixing
will be considerably more complicated.
These electronic structures and their
great difference from the ss and ps
of the normal semiconductor will
mean that these impurities will not
be hydrogenic, and since they mostly
appear as interstitial, with some being
substitutional, quite a rich deep-level
behavior should be expected. They
both kill lifetime, and Si particularly
worries about Cu since it is a very
common interconnect metal in
electronics and a fast diffuser, as most
interstitials will be. With other orbitals
from the introduced species, there will
be a rich diversity in behavior. Both
localized and conducting states should
be expected, together with the ability
of the atom to be in multiple ionization
states.

mation, the molecular model also shows us the features of states
appearing across the energies, including potentially in the bandgap
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depending on the energies of interaction. While we considered an
interstitial that had the host-atom’s valence structure, its presence
in the crystal did bring in states that are quite illustrative. Other
impurities, transition elements, et cetera, will provide even richer
behavior.

7.4.4 Substitutional impurities

Based on this learning from the molecular model, a few
interesting implications are useful for understanding the nature of
substitutional impurities: whether they are shallow hydrogenic or
deep. In our simple tight binding approach, the impurity can be
described again by Hamiltonian matrix elements that are different
from that of the crystal in the impurity atom’s neighborhood. The
s and p energies of the impurity are different. For the formation
of the sp3 hybrid, there will be an energy needed that is different
from that of the host. This is equal to the shift of an average energy
(U), and a �′ for the s to p excitation. The impurity atom and its
nearest neighbors will have an interaction parameter β ′ different
from that of the host. The unperturbed bonding and antibonding
states are β and −β, and these become different for the bonds that
exist between the substitutional impurity and its 4 neighbors. If we
build |usi〉 and |uis〉, with i = 1, . . . , 4 indexing the host atoms as the
basis, then the matrix elements are

[
U β ′

β ′ 0

]

, (7.44)

with the eigenenergy solution as

E = U
2

±
[(

U
2

)2

+ β ′2
]1/2

(7.45)

for the antibonding and the bonding states. Now, β ′ is quite close
to β, based as they are on similar hybrids. This equation therefore
shows how the energies will change from the U = 0 and β ′ =β limit
of the host and the impurity to the effect of the energy U arising
in the average shift. And this should be seen through a normalized
ratio such as E/β that characterizes how the impurity introduction
changes the bonding and antibonding eigenenergies. Figure 7.11
shows this parameter versus U.

Figure 7.11: Change in the bonding
and antibonding energy of a
substitutional sp3-hybridized impurity
in an sp3 host normalized to the
bonding energy parameter β. For Si,
β = − 3.75 eV. The abscissa is
the average shift in the sp3 energy
arising in the impurity vis-à-vis
the host. The figure also shows the
changes in the T2 and A1 splitting and
its variation.

The energy U—the difference in the sp3 energies of the host and
impurity atom—are close to the energies of the free atom. Table 7.3
gives some relevant numbers across columns in order to compare
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Table 7.3: sp3 energies of some atoms
of interest across columns and rows of
the periodic table around Si and Ge.

sp3 energy
(eV) (eV) (eV) (eV) (eV)

B : 9.7 C : 12.9 N : 16 O : 20.3
Al : 7.3 Si : 9.5 P : 11.9 Se : 13.4

Zn : 6.0 Ga : 7.6 Ge : 9.5 As : 11.3 Te : 12.0
Cd : 5.8 In : 7.3 Sn : 8.3 Sb : 10.8 S : 14.0

them to that of Si or Ge. A negative U, as with a group V or group
VI impurity—impurities with extra electrons in outer shell—will
donate single or multiple electrons. Here, the antibonding molecular
state will be lowered. So, a donor state will form. Four antibonding
molecular states are lowered into the average gap. Eight electrons
occupy. And if U is positive, four bonding states will be raised up.
Again, 8 electrons can occupy, but since there are fewer electrons in
the molecule, there will be missing electron(s) or hole(s).

When energy differences are small, and this holds true for B, P or
As in Si, which has a β = −3.75 eV, the energy perturbation is small,
and a shallow level arises in practice. Al, In or N do not work out
well. Move one more column over, and none of these impurities are
reasonable shallow dopants. We referred to the example of S in the
discussion of energetics (Section 7.2) and in our discussion of the
energies of shallow hydrogenic dopants (Subsection 7.2) with the
implications of the multi-electron Hubbard energy consequences.
We have arrived at a similar conclusion from the molecular defect
perspective. This table also points out a few other interesting
attributes. N is so vastly different in energy that this hybridization
is quite discouraged. Si3N4 is the preferred compound, and if it
is crystalline, it is normally trigonal or hexagonal. If we look at
the zinc blende crystals from the III-V combination, one can now
see that Se and Te will be a good n-type dopants, S marginally
so, and the group II atoms Zn and Cd are reasonable, although
technologically their fast diffusion makes them difficult to use.
Group IV impurities in the group III or group V site work best.
Also note from this table why it is so difficult to dope N- or O-
containing compounds such as GaN or ZnO.

When the energy U is strongly attractive or repulsive, the
impurity levels are pinned to energies that are close in energy and
correspond to those of the vacancy levels. In Si, this is the T2 level
in the bandgap. For zinc blende structures, similar implications
hold, except that one will now have two sets of A1 and T2 levels.

With this background, we can now summarize some illustrative
and important perturbation defects. First, we will discuss behavior
of transition atoms.
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7.5 Transition metal impurities

What happens when d orbitals are also involved? Ti :
[Ar]3d24s2, Cr : [Ar]4s13d5, Fe : [Ar]4s23d6 and Cu : [Ar]3d104s1 are
transition elements that are not uncommon as impurities in semi-
conductors. They all have occupied d orbital states, and they appear
as deep levels with various ionization states. As we have remarked,
they affect lifetime and reduce carrier concentration. Indeed, this
can be useful in getting semi-insulating semiconductors with a bit
more than an eV bandgap. These metals are transition elements In the early days of the use of GaAs in

high-frequency transistors, Cr served
to strip out the electrons contributed
by residual shallow donors. Another
way was to use intrinsic defects within
GaAs—the various EL centers being
the common ones—through technical
skullduggery during crystal growth.

from the 3d row and, being small in size, they predominantly
appear interstitially in Si. 5d transition metals prefer substitutional
sites and, in the case of III-V, the cation sites. 4d metals show both
interstitial and substitutional behaviors. Most show energy states
deep in the bandgap in common semiconductors.

Incidentally, transition elements
also form compounds with II-VI
semiconductors; (Zn,Mn)Te and
(Cd,Mn)Te are semiconductors. And
because Mn : [Ar]4s23d5 is magnetic,
unusual useful properties can be
found below the Curie point. S. Tiwari,
 ̏Nanoscale device physics: Science
and engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4 (2017)
discusses phase-transition-based
device-oriented usage of transition
metal compounds in a variety of their
forms.

Since the transition element can have several states of ionization,
that is, with different number of electrons centered on them, have
both excess electrons and room for more, they can appear both
donor-like and acceptor-like. If an electron localized at the center
can transition, from it to the conduction band, this is a donor
transition and the complement of this—hole transfer to the valence
band (or, equivalently, electron capture from the valence band)—is
an acceptor transition. It is the ability to do both that makes these
centers generation-recombination centers. A neutral donor may
undergo a transition D0 �→ D+ + e−. This D+ state may still be a
deep-level state, and D+ �→ D+++e− may also be allowed. The same
can happen with acceptor states. An acceptor state A− may appear
by capturing an electron from the valence band (or, equivalently,
emitting a hole). If this A− ≡ D−, it can undergo a D− �→ D0 + e−

transition. Through this two-step process, an electron from the
valence band has been bumped up to the conduction band. An
electron-hole pair has been generated. Also, in such multistate
possibilities, because there are different numbers of electrons that
are possible at the center, there will also be configuration interaction
contributions.

Figure 7.12: A defect-molecule toy
model for a transition atom impurity
in a tetrahedral semiconductor with Cr
in GaAs as a prototypical example, Cr
being substituted on the Ga site.

Figure 7.12 shows a toy defect model picture of a transition
metal impurity on a substitutional site. The transition element
has a 4s13d5 configuration—Cr substituted on the Ga cation site
being our prototype—and the four sp3 orbitals of the surrounding
cation atoms point toward the transition metal atom, which, as we
have seen, results in states with A1 symmetry and T2 symmetry.
The s orbital of the transition atom deforms into an orbital of A1
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symmetry. The d states—5 of them—break into three states with T2

symmetry, and two with an E symmetry. These E symmetry centers

We have avoided a discussion of
symmetry and its role. For our
intuitive understanding in the simple
molecule picture, they are distractions.
Suffice to say that symmetries are very
important, as we see here, where s and
d ended up creating states where the
original symmetries were crucial. The
same happened for the s and p orbital
decomposition.

are highly localized. They are just linear combinations of d orbitals.
The bonding T2 symmetry states mainly arise in the d states. The
antibonding state is dominantly from the sp3 hybrids of the host.
This becomes a deep center. This deep center has a wavefunction
that spreads out to the surrounding host. It is quite host-like and
not transition-atom-like anymore.

7.6 Complexes

Besides the point defects that we have considered up to this
point—vacancy, interstitial and substitutional—perturbations can
also arise in slightly more elaborate form while still being a point
perturbation. A common cause for this lies in the energy that can
be stored in lattice distortion. This makes it possible for metastable
states to arise where distortion and accompanying energetics keep
the system stable against small perturbations. An early example
was the EL2 double donor in GaAs. This center is possibly AsGa,
or close to it, that is, is a mispositioning of the As on a Ga site.
Another interesting example is that of the DX center. This arises in
a group IV impurity, which, while in the normal course it would be
expected to be a shallow center, becomes deep and the donor atom
is singly negatively charged with a positioning on an interstitial
site. We discuss these next because of their technical and usage
importance.

7.6.1 The As antisite defect in GaAs (AsGa)

There exists a center, most likely a complex, called EL2, which
appears as a double donor. A judicious use of it turns p-type GaAs
semi-insulating, just as Cr incorporation turns n-type GaAs semi-
insulating. However, it also affects lifetime and thus affects light
emitting usage. The EL2 story is not quite completely understood.
The As antisite defect (AsGa), however, is believed to be either a
part of the EL2 complex or its entirety. We focus here on AsGa as This is a complex in the sense that it

exists together with some other set of
distortions and perturbations.

a devilish play on our substitutional intrinsic defect twist in the
molecular model.

Consider first this case being that of an sp3 bonding in a
tetrahedral geometry as a defective substitution of As. We should
expect A1 bonding and antibonding levels. We have noted that the
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bonding level usually is in the valence band. The A1 antibonding
level here is in the bandgap. Likewise, the antibonding T2 level
is shifted and in the conduction band. The defect molecule has
10 electrons (2 in excess, since As appeared at a Ga site). Eight of
these belong in the bonding states of the valence band. The rest
(2 electrons) can populate the A1 level, which is the next higher
energy state available. So, this level is a double donor, because these
electrons can now transition to the antibonding conduction states.
But there is an energy cost to this level populating.

Figure 7.13 shows in (a) the spatial configuration that we just
considered and in (b) a small displacement of the substitutional
As along the [111] direction—a displacement away from one of the
As neighbors—that is metastable. There is a local energy minimum
that is about 0.24 eV above the minimum of the substitutional As.
This As is now in an interstitial position about 0.02 nm displaced
from the plane of the other 3 As atoms. The stable state is separated
from the metastable state by a 0.6 eV energy barrier. And, in the
reverse direction, this barrier is 0.36 eV. If one excites out one
or both of the donor electrons from the substitutional center, the
barrier decreases, and this makes the transition to the metastable
state easier. This is high-enough energy that an optical excitation
is needed. With this change, the center cannot capture back the
optically excited electron that now exists in the conduction band.
As a result, persistent photoconductivity happens. To recover to the
substitutional state from the metastable state, one has to warm up
the semiconductor so that enough energy exists for the As to return
to the substitutional state.

We see here a 0.6 eV, 0.36 eV barrier to transition, and a
metastable level that is about 0.24 eV above the double donor. These
energies are about 10× that of kBT at room temperature. That is a
confinement energy large enough for observation of persistence
in the photoconductivity and the difficulty of recovery of the
substitutional state. Yet, it is a small energy on the scale of bond
energies, and it is the bonding that is being distorted when As is
displaced. The reason for this small energy difference between the

Figure 7.13: (a) An As atom
substituting for a Ga site in the
tetrahedral arrangement. (b) An
energetically favorable interstitial
displacement of this substitute As. (c)
The configuration coordinate diagram
of this stable-metastable system due to
lattice distortion.
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substitutional and the interstitial locations is that the interstitial As
forms quite strong sp2 bonds, which are akin to those in graphene,
to the As atoms. The leftover p orbital of the As atom, which is
high energetically, however, does not increase the energy of the
interstitial state, since it remains largely unoccupied. The 2 leftover
electrons largely reside with the 4th As atom from which this sp2

assembly parted ways.
This energetics can be seen best through configuration diagrams

that we first encountered in the discussion related to Figure 1.7 for
the Franck–Condon shift. Figure 7.13(c) is a similar picture, where
the metastable state lies above the stable state, but the transitions
between the two require surmounting of a barrier whose energy is
different in different directions. And this energy may be supplied
by thermal or optical means. Optical processes will require higher
energy for the stable-to-metastable transition, since the excitation
will be higher up in energy, with little momentum available from
the photon. Optical phonons, on the other hand, have a broad
distribution, and the thermal excitation back from the metastable
state requires a raising of temperature, although not on the same
scale of energy, with the transitions determined by a Boltzmann
transition rate.

7.6.2 DX centers

The DX center is another example of an unusual point per- The name DX, for deep unknown X
donor, is a misnomer. It took quite
some time and persistence to unravel
its origins. All that one knew at the
beginning was that it arose because
of the presence of substitutional
donor impurities that are normally
shallow hydrogenic donors. The far-
infrared optical transitions between
shallow donor levels in GaAs provided
beautiful evidence for the validity
of the hydrogenic model consistent
with Figure 7.2 and Table 7.1. There
was little evidence to suspect that
the same center could give rise to a
lattice-relaxed highly localized state.

turbation center—AsGa-like—that arises in the incorporation
of impurity atoms in GaAs and Ga1−xAlxAs, and a few other
compound semiconductors. A group IV impurity in a cation site,
and a group VI impurity in an anion site, both forming shallow
donors, exhibit metastable behavior and under certain conditions—
a 0.22–0.35 molefraction of AlAs in the Ga1−xAlxAs case—even
makes these centers appear deep. They also exhibit the persistent
photoconductivity that arises in the behavior of the AsGa/EL2 center.

A DX center is a singly negatively charged—again, metastable, as
with EL2, but not a double donor—state that appears pronouncedly
as an interstitial under particular conditions in the compound
semiconductors. If it does not, then the system continues to have
a shallow substitutional donor as its stable state for the impurity.
The relative shift of the energy minimum of the DX center is
of the order of 0.2 eV above the shallow donor in Ga1−xAlxAs,
which is the only case we discuss. This energy difference is the
net energy cost of populating the antibonding A1 level of the
shallow donor. When Ga1−xAlxAs is heavily doped, electron
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occupation causes it to become singly negatively charged. And as
with EL2, it can happen by optical excitation and subsequent loss
of excess energy to the crystal to appear in this metastable state.
Figure 7.13(a) and (b) are still representative for this system, with
the substitutional donor binding to the host atoms—Si in a cation
site—in (a) and distorting in (b), where it is now sp2 bonded to
As atoms. When in the metastable state, this Si atom now has 2
electrons. This raises the energy cost even more. The non-bonding
p orbital of Si remains largely unoccupied, while the dangling
hybrid orbital of the fourth As atom becomes occupied. This is a
deeper-lying state.

The energies involved will depend on the surroundings—
nearest, next nearest, et cetera—and these energies will depend
on the host. For any change in the molefraction of AlAs, there is
a change in the next nearest neighbors, and this means that this
center will have a molefraction dependence. Figure 7.14 shows
this molefraction dependence of the energy of the DX center as the
conduction bandedge energy changes in this Ga1−xAlxAs system.
A corresponding configuration coordinate diagram sketching the
details in Ga1−xAlxAs is shown in Figure 7.15 for a molefraction
of 0.32.

Figure 7.14: The variations in energy of
the conduction band minima, shallow
hydrogenic Si and the metastable DX
state as a function of the molefraction
of AlAs in Ga1−xAlxAs.

When the electron is at the DX center (qDX state), one may
optically excite the electron into the conduction band, making the
center neutral. This requires Eopt of energy. This transfer changes
the DX center into a shallow donor ground state (qD). The electron,
following the loss of excess energy to the crystal, is mobile and
remains so persistently. It can stay in this mobile state, with the
substitutional shallow donor stable, since there exists a barrier of
energy Eϕ if the electron is L-like, and now it cannot easily return to
the qDX configuration with electron binding in the DX center form.
To get to this DX metastable state, thermal excitation by raising the
temperature is needed.

Figure 7.15: The configuration diagram
of Ga1−xAlxAs at a molefraction of
0.32 for Si as the donor. The electronic
and mechanical energy (U) is shown
together with the energies of the
bandedge minima and the Si center
state (shallow and deep). qD identifies
the shallow donor form with the
electron in the conduction band (in
either the � or the L valley, which both
become quite accessible at x − 0.32.
qDX identifies configuration when the
electron is bound to the DX metastable
form.

So, this DX center exhibits a deep-level character but is quite
different from the other point perturbations we have discussed. It
couples to the conduction band, not the valence band, so it is not
like the transition-metal-based deep levels. It has metastability,
where this lattice energy exchange is very central. It makes the
deployment of doping in compound semiconductor structures
difficult with photoconductive and thermal instabilities, particularly
when ionization is employed to transfer charge to smaller bandgap
regions from selectively doped large bandgap regions.

Structural metastability, similar to these DX and EL2 forms, since
they arise in two different hybridizations (sp3 and sp2), when there
is multiple electron storage, and when the crystal’s elastic energy
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Figure 7.16: The configuration view of
Si as a donor in GaAs is shown in (a).
Part (b) shows a similar configuration
view for S in GaAs. The deep-
donor-like behavior of Si becomes
pronounced and quite observable
in many measurements only when
the crystal is compositionally mixed
and the configuration picture looks
more like that in (b). In defect physics,
negative U refers to a center that can
lower its total energy by capturing an
additional electron even as Coulomb
energy increases due to repulsion.
The net energy, however, reduces
when lattice relaxation more than
compensates the Coulomb repulsion.
This is the case with (b).

causes lower total energy to be bound in a configuration, appears
in many other point perturbations. The stability of such a state, of
course, depends on the specifics of the semiconductor itself.

We can now draw intuitive connections between substitutional
impurities such as S, which has a deep state due to the Hubbard
contribution, versus the DX center with, say, Si as the substitutional
impurity. Both can be incorporated into GaAs, and Figure 7.16
shows the configuration picture difference between the two—the
lattice distortion in the case of S is exaggerated here for illustrative
convenience—with the free energy changes when the electron is
localized on the donor versus when it is not. In Figure 7.16(a), of
the DX center, in GaAs, an ionized donor has lower energy, and
if an electron is trapped, that is, with the Si and the electron in a
DX− state, then thermal energy is needed to detrap it. The Si has
distorted away from its normal position in the crystal structure. If
the donor is S, then it is the electron at the donor (the D− state) that
is the lower energy state of the system, due to the Hubbard energy.
On the other hand, for Si in a crystal with AlAs compositional
mixing into GaAs, a similar configuration picture (similar to that
of Figure 7.15) can also appear for the DX center at higher alloy
concentrations.

Following this discussion, we turn to a few other interesting
defects of importance with implications for semiconductors.

7.7 Interface and bulk defects in dielectrics

Defects in dielectrics and insulators, and their interface
with semiconductors, are also important. Thin dielectrics abound
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in devices, and defects provide the means for electrons and atoms
to move around, in turn causing instabilities. Defects can be
electrically active or optically active and, even if inactive, they could
be a conduit for diffusion and other problems that appear in the
reliability of devices under use with the energy flows in them. We
look summarily at some of the important ones to bring about some
completeness to the discussion up to this point. Some of these are
point perturbations, and some are more elaborate complexes.

7.7.1 Pb and other centers in SiO2 and Si

Defects are hard to observe since they are rare and largely
sub-nanoscale. The tools for observations tend to be measurements
of their effects in response to stimulation. Pass a current, and
electrically active defects may become visible. Optically excite, and
optically active defects may become observable. A very useful and
common method is electron spin resonance, also called electron
paramagnetic resonance, a technique of high sensitivity, which can
show properties of paramagnetically active centers. So, mostly one

Electron spin resonance exploits
the excitation of spin of unpaired
electrons. It is similar to nuclear
magnetic resonance where the
nuclear spin is excited. A broken
bond—a defect—will exhibit such
a paramagnetic signature if an
unbounded electron exists in it. In
response to an oscillating magnetic
flux B, the electron, because of its
spin s = 1/2 with the secondary spin
quantum number ms =± 1/2 can
move between two energies, up and
down, that are separated in energy
by E = gμBB, where g = 2.00231 is the
g factor of the electron, and μB is the
Bohr magneton. When a spin flips, that
is, ms = 1/2 �→ −1/2, then a photon of
this energy is radiated.

can observe their consequences and find the most consistent and
complete description that fits with the observations.

SiO2, being amorphous in this example of our interest, has plenty
of distortions of bonds. If SiO2 were an isolated molecule, that
is, molecular SiO2 similar to CO2, it would be a linear structure.
In its solid-state form, when produced by reacting Si, it is mostly
amorphous except when very close to the interface (a sub-nm
region). Two basic forming units exist under normal conditions.
The SiO4 unit has tetrahedral coordination, and the Si2O unit exists
with a bond angle that varies from 4π/3 to π . The Si-O spacing
in the tetrahedral configuration varies (0.15 to 0.17 nm; the angle
doesn’t change much). The varying angles indicate the diversity

In CF4 the interatomic distance is
0.136nm, while the sum of atomic
radii per Pauling’s self-consistent
radii definition is 0.141nm, so it is not
that far off. But, in SiF4, the measured
bond length is 0.154nm, while the
radii add up to 0.181nm. The bonding
reduces the separation, but there
can be much variation. In SiO2, the
separation is about 0.162nm, even if
the sum is 0.183 nm. Si has occupiable
3d orbitals available for bonding with
O’s p orbitals. And these orbitals reach
further out.

of bonding. For sp3 hybrids of Si bonding with p orbitals of O, the
energetically favored angle is π/2, which is quite different from the
normal tetrahedral sp3 angles we are used to in zinc blende and
diamond structures.

Figure 7.17 shows some example defects—a few of which are
particularly important—that are paramagnetically active in the
SiO2/Si system. Several of these defects are electrically active. It
is the paramagnetic point defect—the Pb center—at the interface
that is of the most import for us. It is the dominant defect of the
interface. The Pb center is an Si atom bonded to three other atoms
with a dangling bond. So, different surfaces and roughness of
surfaces will reflect this orientation of the orbital away from the
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Figure 7.17: Some of the defects that
are observed in SiO2 and Si and their
interfaces.

bonding. The random fluctuations in the periodic potential at the
surface arising in the Pb center, and the other centers near the
interface, comprise a major factor affecting the mobility of carriers
along the surface.

In addition to the Pb, a few other centers of import are the fol-
lowing. The E′ center arises in a broken Si bond in the amorphous
region, and it occurs in a variety of forms with other neighboring
arrangements. These are centers that arise with a deficiency of
O and an excess of Si. The figure shows two of these: E′

γ , with
a positively charged unit near, and the more common E′

s center,
which is an isolated center. Non-stoichiometry enhances the
appearance of these centers.

Thin thermal oxide, on the other hand, show centers arising in
excess oxygen. One of these, the A center, shown in Figure 7.17,
is the excess oxygen center. It is a non-bridging-oxygen hole
center in the form. Another is the center marked B, which is the
peroxyl radical center. Thin thermal oxides are susceptible to
these defects. Within the crystalline Si, near the interface, one
observes an increased number of defects arising in the processes
used to build the SiO2, which often involve diffusing the O in the
variety of ways. Two, similar to the oxide defects, are the D and
the Pbs center. If nitrogen-oxygen based gases are employed, or
enhancement employs H or H containing compounds, other defects
will also appear. Si device processing also employs implantation
and incorporation of dopants at high densities. These too will create
additional defect generation mechanisms because high-energy
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processes break bonds that may not entirely recover and increased
incorporation of foreign atoms will also create defects. Our earlier
point perturbation discussion pointed to some examples of these
defects. Vacancies, for example, exist in implanted and annealed
semiconductors.

7.7.2 F centers

Defects can be optically active, and one implication of
this is the color that one often observes in what are normally
transparent dielectrics. This is particularly an important feature of
crystalline ionic solids. Ionic solids—high permittivity dielectrics,
for example—have point defects—a missing atom leaving broken
bonds—that become optically active via electrons or holes. A
low energy ground state can then get excited to a higher energy
state. This lost frequency in the broadband of light means that
the light leaving will be depleted of this color. On the other hand,
when the charged carrier drops back from the excited state to the
ground state, it will emit photons at this frequency with some
linewidth. These are color centers. An example is the F center,
where an electron is trapped at an anion vacancy. This is a system
akin to the hydrogen system in that there is a negatively charged
electron together with a positive charge as a quantum system.
There will exist a distribution of excited energy states in the system
between which and the ground state transitions will take place
when we deviate from thermal equilibrium. Al2O3 is a dielectric
often used. Rubies are crystals of Al2O3. Cr3+ occupying Al3+,
so a CrAl defect, gives ruby its red color. The energy degeneracy
of the three 3d electrons of Cr’s outer shell interacting with the
surrounding O2− ions is broken into two groups in the crystal field.
Three new energy levels appear above the ground state, as shown
in Figure 7.18, and none of these were present before. Figure 7.18: Absorption and emission

of light in ruby (Cr-doped) Al2O3.
The absorption spectrum is broad,
with excitation from the ground state
( 4A2) to 4T1 (violet) and 4T2 (green
to yellow). This means that red (with
a undercurrent of blue-purple) is
selectively transmitted. Electrons
in the 2E state arise more from the
other excited state, with excess energy
lost to the crystal through phonons.
The emission of this light at red also
enhances the color.

Upon shining light, the 4T1 (violet) 4T2 (green to yellow)
are preferentially occupied by electrons. The transition to 2E is
relatively weak. All these transitions have a reverse process too,
but the first two levels have a dominant transition to the 2E level,
with the excess energy lost to the crystal. So, in absorption, it is
the shorter wavelengths that are absorbed, with much less at red,
giving ruby its color. In good-quality rubies, one will also see the
color enhanced by the red optical emission from the 2E energy.
The earliest solid-state lasers employed this capability to fill the 2E
energy level indirectly to achieve the laser breakthrough.
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7.7.3 Poole-Frenkel conduction

The Poole-Frenkel effect is the lowering of barrier energy at
a defect in a dielectric, for example, at a positively charged defect
that can capture an electron, and has related Coulomb effects. See
Figure 7.19 for an illustrative schematic of the essentials of the
process and those under leakage mechanisms at work at the defect
site. The effect has parallels with image force lowering, with the
major difference being the absence of the conducting plane.

Figure 7.19: Schematic of the Poole-
Frenkel process. Three tunneling
processes are shown. Direct tunneling
and phonon-assisted indirect
tunneling are the two additional
processes via which electrons pass
through. Poole-Frenkel emission is
barrier lowering without the image
charge.

The Poole-Frenkel effect is a lowering of the Coulomb potential
energy barrier in the presence of an electric field. A trap that is
uncharged when filled and positively charged when empty, for
example, will have this type of barrier lowering. Since it arises
from the Coulomb interaction between charge on the defect and
the electron emitted, it can exist for multiply charged states too. It
is important in materials with defects, since the lowering of barrier
enhances the current that can flow. The Poole-Frenkel process takes
place, for example, in a dielectric such as the gate oxide, leading to
enhanced current. It also occurs in semiconductors that are highly
defected under high fields.

Consider the simple case of a singly charged defect and an
electron in the presence of an electric field E . At any position z, the
change in energy is

�U = eEz + 1
4πε

e2

z
. (7.46)

The maximum occurs at

eE = 1
4πε

e2

z2m
∴ zm =

(
1
4π

e
εE

)1/2

. (7.47)

Therefore, the barrier height lowering is

�ϕ = �U|max = 2eEzm = 2eE
(

1
4π

e
εE

)1/2

=
(

e3E
πε

)1/2

. (7.48)

Such a barrier lowering will cause excess conduction as electrons
hop from defect to defect.

7.8 Summary

Atoms are long-lived stable entities conforming to quantum
mechanics and relativity as nature’s principles, with electrons’
wavefunctions quite cleanly definable. Our crystals are stable,
bonded arrangements of these atoms. We have seen the states of the
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valence electrons of the atom evolve to bonding and antibonding
states, and, with a large collection of them together, formation of
valence bands and conduction bands. The valence bands have
their origin in bonding, and the conduction bands in antibonding.
Thermodynamics, however, also teaches us the likelihood of appear-
ance of defects and other possible arrangements that are different
from the primary one, depending on statics (and dynamics) and
related to the energy of their formation. Take the example of Si.
The 3s23p2 atomic configuration evolves to the sp3 hybrid in the
formation of the diamond crystalline form of Si. This crystalline
structure will have sites where the Si atom may be missing, or a
Si atom is replaced by another atom, say, P, which has one excess
electron, and can still form the sp3 hybrid. It may be that there
exists a different impurity, say, Ti, and this atom exists in the crystal
substitutionally, as did the P, or interstitially, and, in each of these
cases, there may be some bonding to the other surrounding Si
atoms, as well as broken bonds. For that matter, there may even
be lattice distortion. A compound semiconductor Ga1−xAlxAs, for
example, may have all these complexities, and even more, since it is
a compound. These are all point perturbations arising from a locale
of the crystal, where the expected symmetries of the crystalline
structure run amok.

Some of these perturbations will have a short-range effect, and
some will have a long-range effect. This chapter developed the
formalism for understanding several important examples of such
perturbations. The case of P substitutional at a Si site was the exam-
ple of a hydrogenic impurity that has a long-range perturbation.
States arising in the valence of P, even though spatially localized
to the equilibrium position of P, so a Wannier function approach
could be applied, have a long reach, and therefore effective mass
can become a suitable tool for determining the binding energy.
On the other hand, if there exists a vacancy at a Si site, this is a
localized perturbation. Bonds to the surrounding Si are absent, and
the up and down electron spin filling of the bonding now has the
contributions of the missing Si missing. The local arrangements
will change, even though farther away from this arrangement the
Bloch function picture is still valid. This defect has many of the
attributes of what we saw when symmetry broke at the surface. An
Si vacancy will give rise to states that are deep in energy, that is, we
now have a deep level. Ti substitutional, or interstitial too, will have
consequences similar to this, where now we need to think about the
evolution of the states contributed by the Ti.

We developed a number of techniques to understand the variety
of point perturbations and, in doing so, drew on the learning of the
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earlier chapters related to Hartree potential, exchange correlation
and mixing of states in perturbation. We could analyze shallow
dopants as long-range perturbations with Hartree and exchange
potentials absent due to the one-electron difference. The result is a
Schrödinger-like equation where multiple binding energy levels, all
quite small—of the order of room temperature thermal energy—are
obtained. This was the case with one excess or deficient electron.
If it is more than one, then one needs to include the Hubbard
correction term—a Hartree energy—which we found through
position-dependent screening. S, for example, is a deep center.

Deep centers—strongly bound states arising from strong
confining short-range potential—appear from a variety of causes,
extended defects, transition metal impurities and so on. We
approached these through tight binding thinking, where one viewed
it as a defect molecule and employed the orbitals as the basis. Recall that tight binding works

particularly well with covalent
molecules, and that is where it was
developed first. It also happens
to be useful in many situations of
semiconductors.

This approach let us analyze vacancies, where the simplest toy
instance is the appearance of a defect in the center of the gap due
to the termination of a chain. The defect-molecule approach is very
useful in showing how the bonding and antibonding approach
to molecules can be seen to lead to states in the bands and in the
bandgap in semiconductors. One could apply this to both interstitial
and substitutional defects.

We also looked at defects that we called complexes, since they
arise in more than one simultaneous important change. AsGa was
our prototypical example. As has 5 electrons in the outermost
orbit, and it forms the bond by sharing it with Ga, which has
3 electrons in the outermost orbit. As AsGa, a metastable state
is displacement of As along the cube’s main diagonal bonded
to three other As (an sp2 hybridization), and the excess electron
with the fifth As of the cube available for conduction. There is
also a stable state with As tetrahedrally arranged. But, since the
lattice distorts, there exists a barrier for change from each of this
configurations to the other, and one can illustrate this behavior
through the configuration coordinate, where both the electron and
the lattice energy can be brought in together by using a generalized
coordinate.

Another example of a very interesting complex is the DX center
in compound semiconductors, an sp3 hybrid of a substitutional
donor such as Si with metastable behavior akin to that of AsGa

where it distorts out and is now sp2 hybridized. The stable-
metastable state transitions are barrier modulated but are now
also related to the electron population and the barrier itself, which
depends on the composition of the mixed compound such as
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Ga1−xAlxAs, so one observes this deep character, but it also has
unusual persistence photoconductivity and thermal dependence.

A few other defects that we touched on are the Pb center of
SiO2, which appears at the interface with Si, and others that appear
in the bulk of SiO2. These, and excess oxygen defects, do have
a significant role in the noise and reliability behavior of small
Si structures. An optically active center, the F center, was also
discussed, since it has relevance to high permittivity oxides that we
discuss in Chapter 18. And we concluded with a short discussion
of the energetics of conduction around point defects through the
Poole-Frenkel mechanism.

7.9 Concluding remarks and bibliographic notes

Defects viewed from a mechanical perspective, where strength
and other interface-centric properties assume importance, determine
strength and a variety of other properties of materials. For us, the
perspective was from physics with a focus on electronic and optical
implications. So, our discussion has been the limited to these and
their origins in the quantum nature of defects.

For understanding hybrids, and a chemistry-centric view of the
deployment of quantum mechanics, I have regularly found Atkin’s
book1 to be a very convenient, compact and readable source.

1 P. W. Atkins,  ̏Quanta,˝ Oxford,
ISBN 0-19-855572-2 (1991)

The Hartree, exchange and correlation view of the electron states
help us understand the nature of the electron state, whether it is
spread out like a Bloch function—long-range–or as a localized
deep defect with short-range perturbation. An early and detailed
discussion is by Lannoo2. The techniques are developed compre-

2 M. Lannoo and J. Bourgoin,  ̏Point
defects in semiconductors I,˝ Springer-
Verlag, ISBN 13 978-3-642-81576-8
(1981)

hensively for deep levels in many of the important semiconductors,
with particular attention to transition elements in them, by Kikoin
and Fleurov3. The book by Enderlein4 is a very readable source for

3 K. A. Kikoin and V. N. Fleurov,
 ̏Transition metal impurities in
semiconductors,˝ World Scientific,
ISBN 981-02-1883-4 (1994)

4 R. Enderlein and N. J. M. Horing,
 ̏Fundamentals of semiconductor
physics and devices,˝ World Scientific,
ISBN 981-02-2387-0 (1997)

understanding the detailed analytic analysis of shallow and deep
intrinsic and extrinsic defects of semiconductors.

A material and thermodynamic view of defects is the subject of a
book by Pichler5. This book tackles the subject in silicon and, being 5 P. Pichler,  ̏Intrinsic point defects,

impurities and their diffusion in
silicon,˝ Springer-Verlag, ISBN 978-3-
7091-7204-9 (2004)

materials-focused, also handles diffusion, which is quite affected by
defects, comprehensively. A broadening of this approach to more
semiconductors is by Seebauer and Kratzer6.

6 E. G. Seebauer and M. C. Kratzer,
 ̏Charged semiconductor defects,˝
Springer, ISBN 978-1-84882-058-6
(2009)

The experimental techniques of studying defects use a variety of
interaction and signaling phenomena that allow one to measure low
energy signals. It is an art in itself, utilizing a variety of resonance
phenomena and signal modalities. Readers interested in exploring
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this range of techniques will find the book edited by Stavola
stimulating7.

7 M. Stavola (ed.),  ̏Identification
of defects in semiconductors,˝ 51A,
Semiconductors and Semimetals,
Academic, ISBN 0-12-752159-3 (1998)

SiO2/Si being a major semiconductor assembly of industrial
technical interest, there are numerous books that summarize the
latest understanding. The ability of SiO2 to contort—it forms a
solid but doesn’t really exist the way CO2 does as a molecule and
a gas—as a solid is essential to the success of this SiO2/Si system.
A beautiful paper8 discussing the bulk electronic structure of SiO2

8 R. B. Laughlin, J. D. Joannopoulos
and D. J. Chadi,  ̏Bulk electronic
structure of SiO2,˝ Physical Review B,
20, 5228–5237 (1979)

by Laughlin, Joannopuoulus and Chadi, three folks who made
a variety of other major contributions to condensed matter, is
very worthwhile reading. Equally of significance is an early paper
by Helms and Poindexter9. This paper—well before its time—

9 C. R. Helms and E. H. Poindexter,
 ̏The silicon-silicon-dioxide system:
Its microstructure and imperfections,˝
Report on Progress in Physics, 57,
791–852 (1994)

points out numerous reliability and other issues that will arise
due to defects, as oxides were made thin well before they acquired
significance in technology.

A comprehensive introduction to the subject of defects in the
SiO2 systems is in the edited volume of Pacchioni, Skua and
Griscom10. The book discusses measurement techniques, defects

10 G. Pacchioni, L. Skuja and D.
L. Griscom (eds),  ̏Defects in SiO2
and related dielectrics: Science and
technology,˝ Springer, ISBN 978-0-
7923-6686-7 (2000)

connected to different technologies and processing procedures, and
defects in bulk and at interfaces.

For understanding the DX center, a few papers are suggested. A
thorough review of the center is by Pat Mooney11. She and Tom 11 P. M. Mooney,  ̏Deep donor levels

(DX centers) in III-V semiconductors,˝
Journal of Applied Physics, 67, R1–R26
(1990)

Theis undertook the early comprehensive experimental studies
when Ga1−xAlxAs unveiled a variety of its interesting electronic
signatures. A recent review of such defects is by Alkauskas et al.12 12 A. Alkauskas, M. D. McCluskey

and C. G. Van de Walle,  ̏Tutorial:
Defects in semiconductors—
Combining experiment and theory,˝
Journal of Applied Physics, 119, 181101
(2016)

A very stimulating set of reading, including on the process to
scientific clarity arrived through debate, are the papers by Chadi,
who was referred to earlier, including one of the author’s responses.
These papers are excellent examples of how to write, debate and
elucidate, and how experiments drive theory, and theory drives
experiments, in search of clarity.13,14,15 13 D. J. Chadi and K. J. Chang,

 ̏Theory of the atomic and electronic
structure of DX centers in GaAs and
AlxGa1−xAs alloys,˝ Physical Review
Letters, 61, 873–876 (1988)

14 D. J. Chadi and K. J. Chang,
 ̏Energetics of DX-center formation in
GaAs and Al1−xGaxAs alloys,˝ Physical
Review B, 39, 10063–10074 (1989)

15 D. J. Chadi, K. J. Chang and W.
Walukiewicz,  ̏Reply to Maude, Eaves,
Foster and Portal,˝ Physical Review
Letters, 62, 1923 (1989)

7.10 Exercises

1. Let us try to use the δ function as an approximation for defect
potential. The point imperfection is a potential of −V0 of a square
well of radius a.
• Find the normalized ground state wavefunction.

• Let the bound state have an energy of 0.5 eV, let the effective
mass be free electron mass, that is, m∗ = m0, and let a = 0.01 nm.
What is V0?
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• What is the extent of the bound electron in the ground state?

• Estimate the number of Si atoms and valence electrons that will
be enclosed in the sphere of the extent of the previous bound
electron. [M]

2. As+ and In− form a complex defect pair in Si. Si has a lattice
constant of 0.543 nm, a static dielectric constant of 11.8 and a
bandgap of 1.1 eV. Calculate and plot as a function of spacing the
ionization energies of the nearest, second-nearest and third-nearest
pairs. The levels can be assumed to shift by the same amount. Are
any of these energy states in the bandgap? [M]

3. A donor-acceptor complex exists in a one-dimensional crystal that
has a force constant of 10 N/m. It has a Franck-Condon shift of
0.1 eV. Estimate the spacing shift in the complex for an electron in
the ground state versus the excited state. [S]



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

8
Transport and evolution of classical
and quantum ensembles

Understanding the behavior of ensembles with or without
perturbation, that is, with or without an external stimulus, is
essential to predicting macroscopic observable properties of any
semiconductor or, more generally, condensed matter devices.
Particles—treated classically or quantum-mechanically—maintain
equilibrium and respond to a stimulus under constraints placed
by the environment. We have stressed that, in any of the analysis,
it is critical to determine what part of the behavior should be
treated quantum-mechanically, since that is the level of detail that
is necessary to capture the essence, but that any such quantum-
mechanically constrained part is surrounded by a classical envi-
ronment to which it connects and through which one observes.
And any such predictions of observable properties based on
quantum-mechanical properties should gracefully asymptote to
the classical observations upon which most of our intuition is built.
This correspondence property must come about when one views a
collection:, that is, an ensemble, evolving as a classical or quantum-
mechanical collection of particles.
An electron, a photon or a phonon is both a particle and a

wave. And as such, how their response evolves under stimulus
is of immense interest. Particles interact with each other. These
interactions lead to the appearance of thermal equilibrium in the
absence of any stimulus except that of an energy and particle-
exchanging contact with an environment at temperature T. When
the equilibrium is disturbed, the collection evolves. Classically,
the response that one observes from a system—in equilibrium or
away—is one of statistical expectations of various moments. Noise,
for example, is an observation of fluctuations and is a direct descen-
dant of one of the moments. As a system response to stimulus, the

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001
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expectation and the noise in expectations are connected to each
other through this ensemble’s evolution. Diffusion is a spreading For example, a resistor has its

resistance representing the expectation
of the impeding that takes place to
the momentum, that is the current,
of the charge carriers of an ensemble.
The Johnson–Nyquist noise represents
a fluctuation that is related to the
resistance.

out of a distribution of an ensemble grounded in random walk.
Drift is the expectation of the net motion of this distribution caused
by the stimulus. These must be related to each other.
In semiconductors, we have particularly stressed the behavior of

electrons. Many semiconductor properties are an ensemble response
of these carriers. For electrons, movement of charge, that is current,
movement of energy, that is amplification based on conversion
in desired energy forms or heat flow, et cetera, are all of interest
with semiconductors. But, an electron can be viewed as both a We are writing the energy dispersion

relationship as E(r, k) since there are
going to be positional dependences
in a general problem. Electrostatic
potential changes cause bandedge
energy— usually our reference when
we write E(k) to change at any r.

particle and a wave. The E(r,k) of this electron—and its ensemble
with a distribution of the different E(r,k) states it occupies within
even an independent electron picture—is a quantum-mechanical
consequence. Properties arising in the response of this electron
charge cloud will have plenty of subtleties arising in the classical
and quantum-mechanical considerations.
We will see in this discussion the correspondences and differ-

ences between the classical behavior and the quantum-mechanical
behavior. The ensemble response may be represented in an expec-
tation of a parameter of interest, but the response also reflects
the interactions that occur within the ensemble as a collection
of the particles or waves. Indeed, the ensemble is a probability
distribution that is evolving in time, whose consequences are
reflected in the numerous parameters of interest. There are numer-
ous ways to describe these. The Liouville equation, the Langevin
equation, the Fokker Planck equation, Kolmogorov’s forward and
backward equations, and Markov chains relate to such statistical
evolution and are relevant to a wide variety of observed natural
phenomena. We will make connections from the classical to the
quantum through the Liouville equation and density matrices,
and also remark on the others’ relevance to quantum-mechanical
nonequilibrium, but concentrate on Liouville’s Boltzmann transport
equation reformulation. The Liouville equation describes particle
flow in phase space, and its quantum-mechanical formulation
describes the evolution of mixed states through the density matrix.
The Boltzmann transport equation becomes a particularly powerful
tool for describing semiconductor behavior, where quantum
considerations can be suitably brought in. In Chapter 13, we will
concentrate on a Green’s function approach to look at the evolution
through a quite different formulation—an integrated functional
response rather than a differential form—to remark on classical-
quantum subtleties.
We start with a simpler problem first.
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What happens when particles are treated as independent and
move with little or no interaction with each other, that is, with
minimal scattering?

8.1 Transport with vanishing scattering

Figure 8.1: A conceptual view of
the energy-position diagram at a
semiconductor heterostructure or
metal-semiconductor interface. For
metal, the energy edge on left reflects
the electrochemical potential or Fermi
energy. For the semiconductor, it is
a representation of the conduction
bandedge.

Take the example of thermionic emission. Consider a
heterostructure interface between two crystalline semiconductors
or a metal/semiconductor interface, as shown in Figure 8.1. A
conduction bandedge discontinuity (�Ec) or a barrier height (�ϕB)
describes a region at the interface where states and electrons
may exist on the left, but states do not exist on the right. Let the
rate-limiting step be transport at the interface, that is, arising in
electrons moving to the right or the left, restricted by the consid-
erations at the interface. Copious supply and extraction capability
exists for the electron transport away from the interface. In the
band of energy of E(r,k) states shown there will exist populated
extended states that propagate toward the left as well as toward
right. At thermal equilibrium, each and every transition, including
propagation, is balanced in detail. In the presence of a stimulus, a
net effect arises as one disturbs this equilibrium. For simplicity of

Copious supply to the interface
means that the rate-limiting step
is determined by the constraints
from the interface, and therefore that
is the only region that we need to
rigorously analyze. The more general
considerations of this important
problem of transport in devices
is in S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017). Here, we are
only interested in extracting a salient
feature of this transport at the interface
when no other consideration of
interaction except for the propagation
of a state applies.

discussion, we assume isotropic simple bandstructure, an abrupt
barrier and no scattering or perturbational interaction such as
quantum-mechanical tunneling at the interface.
Conservation of energy—the total energy consisting of potential

and kinetic—and momentum must hold, since scattering through
other sources in the environment has been discounted. Only
carriers—occupied states—that can surmount the barrier and have
the properly directed momentum in motion may transmit. For
motion from left to right, the possibly lowest energy electron is one
that has momentum toward the right (positive z or ⊥ direction),
and all this energy is associated with this h̄k⊥, to overcome the bar-
rier and be in a propagating step on the right. The lowest k⊥ state
on the right is for k⊥ = 0. But only an electron with h̄2k∗2⊥ /2m∗ =ϕB

or �Ec, where k∗⊥ is the wavevector at z = 0−, has the minimum
total energy with the proper direction for this transport. If the

For semiconductor/
semiconductor systems, this
momentum matching will be quite
a bit more complicated. Resonant
tunneling, conduction currents across
heterostructure barriers where the
symmetry of the barrier states is in
contrast to that of injecting, and their
dependence reflected in tunneling
and barrier widths and presence
of sequential tunneling, that is,
tunneling with scattering and changes
in momentum and energy, show this.

momentum is less than h̄k∗⊥, no matter how much momentum
exists parallel to the interface (h̄k‖, and energy corresponding to
that motion E‖ = h̄2k2‖/2m∗), it shall not pass. It must also have the
matching momentum, but, for a metal, with its nearly free electrons,
and a fairly filled Brillouin zone, this should not be an issue. For a
semiconductor in the z > 0 region, this may very well be an issue,
but we will ignore it, since it doesn’t distract from the central result
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we want to derive. So, we assume that energy and occupation of
injecting states, and properly directed momentum, are the major
considerations. What we have just said is captured in Figure 8.2 as
a region that is blocked, and a region beyond where energy and
sufficient momentum exist for injection from left to right.

Figure 8.2: Energy and momentum,
reflecting regions where transport is
allowed or blocked for injection from
left to right of the interface shown in
Figure 8.1.

For electrons that can transit left to right in the sliver of energy
δE at E, there exists a current that can be written as a product of
charge, velocity and the number of electrons, that is, the number of
states that are occupied. This current, a thermionic injection current
in this sliver, is

dJ = e
h̄k⊥
m∗ 2

d3k

(2π)3
F

(
E‖ + E⊥

kBT

)

∴ dJ
dE⊥

= 2e
h

d2k‖
(2π)2

F

(
E‖ + E⊥

kBT

)
, (8.1)

where h̄k⊥/m∗ is the velocity, with a spin degeneracy of gs = 2 for
states that are occupied given by the product of the density of states
and the Fermi-Dirac occupation function. The result, rewritten, is a
product of 2e/h, a conductance, and the density of occupied states.
For each state available for this ballistic conduction, there exists a
conductance 2e/h or −2q/h (q = −e) for change in current per change
in energy.
Each conductance channel provides, in bias voltage dependence,

a 2e2/h or 2q2/h of conductance in current/voltage units. We have
arrived at a significant result. For ballistic conduction of an electron—a
quantum wavefunction motion—the quantum conductance associated with
each channel is a nature’s constant, 2e2/h. The factor 2 here arose in
each channel being occupied by two electrons, each with a separate
secondary spin quantum number.
We can now integrate Equation 8.1, knowing that E⊥ can vary ϕB

and higher and that d2k‖ = 2πk‖dk‖ = (2πm∗/h̄2)dE‖. This complete
expression is

J = 2e
h

m∗

(2π)h̄2

∫ ∞

ϕB

dE⊥
∫

E‖
dE‖F

(
E‖ + E⊥ − EF

kBT

)

= 2em∗kBT

(2π)2h̄3

∫ ∞

ϕB

dE⊥ ln
[
1+ exp

(
−E⊥ − EF

kBT

)]
, (8.2)

which, in the Boltzmann limit, reduces to a thermionic current of

Jte = 2em∗k2B
(2π)2h̄3

T2 exp
(

−ϕB − EF

kBT

)
= A ∗T2 exp

(
−ϕB − EF

kBT

)
. (8.3)

This equation is the Richardson equation, with A ∗ = 2em∗k2B/(2π)2h̄3

as the Richardson constant. An exponential energy factor—bias
voltage dependence—arose in the Boltzmann occupation probability.
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The prefactor is related to the motion in the occupied channels:,
that is, a quantum conductance and a temperature dependence
that arose as a prefactor from the integration of the occupation
probability of the channels. This is thermionic emission.
Thermionic emission is a direct reflection of quantum con-

ductance arising in ballistic—unscattered—conduction. This was
current from left to right. There is current flowing from right to
left. Thermal equilibrium forces one of these conditions, and one
gets from this the exp(qV/kBT) − 1 dependence. In a metal/n-type
semiconductor junction, it is the electron transport from the right to
the left that will dominate. And the assumption that we made that
there are states available for filled states to couple to empty states is
certainly very valid. The left side has many unoccupied states.
The emphasis in this discussion is to bring out the importance of

the 2e2/h factor. It arises through that intimacy of the momentum-

This e2/h, usually written in the
inverse form, h/e2, appears as nature’s
parameter often in conduction.
Superconductivity, single electron
tunneling, quantum Hall effect and
others all have an invariant parameter
that is related to h/e2.

velocity relationship in this quantum wave-particle correspondence.
If scattering events are absent, or limited in numbers, one sees it in
transport.

Mesoscopic transport literature is
surfeit with h/e2s, including in noise,
since the occupation of channels is
quantized, thus affecting fluctuations.
Supremely high mobility materials, for
which a mobility of 106 cm2/V · s
is quite common at low temperatures
in many high quality compound
semiconductor heterostructure
interfaces, can show ballistic transport
for dimensions of many μm. So,
ballistic conduction—mesoscopic
transport—where the electron is both
a charge particle that can be bent by
electric and magnetic fields, and a
wave that shows interference and
other effects, is quite observable at
relatively large dimensions. There is
nothing necessarily nanoscale about
it. See S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017) for many
such device implications.

This wave-particle (charged) interlink can be seen through a
calculation of conduction in channels (see Figure 8.3). Consider
current arising from electrons in an energy interval dE of the nth
band with propagation in the y direction. The x and z direction
are confined and have no propagation. As a particle, one can
view the current subscripted by this band as arising from dNn

electrons in that energy spread of dE. Let the channel be of length
L. Then dJn = edNn/(L/v), which is looking at the current density
passing through any cross-section at velocity v with a density
of dNn of such electrons in the L-long channel. The velocity is
vnk = (1/h̄)∇kEnk. Or, for this problem, v = (1/h̄)∂Enk/∂ky. The ky

direction has an equidistant spacing of states given by 2π/L. So, up
to an energy E, the number of filled electron states is

Nn = gs
L
2π

k(E)= 2
L
2π

k(E). (8.4)

Hence,

dNn

dE
= 2

L
2π

(
∂E(n, k)

∂k

)−1
= 2

L
2π

1
h̄v
. (8.5)

It follows therefore that

dJn = 2e
h

dE = 2e2

h
dV, or gq = dJn

dV
= 2e2

h
. (8.6)

The conductance per open channel populated with an up spin and
Figure 8.3: Quantum conductance
arising from electron transport as a
particle or propagation as a wave
through a conducting channel in the y
direction.

a down spin electron is gq = 2e2/h ≈ 80μS. This is the ballistic
conductance due to the motion of the charged particle as a wave.
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Figure 8.4: Quantum conductance
arising from electron transport as a
particle or propagation as a wave
through a conducting channel in the y
direction.

If channels are filled up to the quasi-Fermi energy EqF1, and if
it is a low temperature so that we do not worry about the tail of
occupation, and transport takes place to a region where the quasi-
Fermi energy is EqF2, the current will be

Ij = 2e
h

(EqF1 − EqF2)= 2e
h

�EqF. (8.7)

This is shown in Figure 8.4(a). If there is some scattering, and
multiple contacts to the environment, as in Figure 8.4(b), the
generalization of this is

Imn = 2e
h

Tmn(EqF1 − EqF2), (8.8)

where m and n identify two of these injector/receiver regions,
and Tmn is the transmission coefficient. This is a direct use of
electromagnetic scattering approach to this semiconductor con-
duction problem, with the electron as a charge-carrying wave.
The multi-port scattering theory directly translates to this limited-
scattering problem.
We now turn to a discussion of ensembles where interactions will

be allowed to take place. First, take classical particles. Liouville’s
theorem describes for us this evolution.

8.2 Classical Liouville’s theorem

Hamiltonian mechanics conveniently describes the behav-
ior of particles through two canonical coordinates (q,p), where
q is a generalized position coordinate and p is the momentum
coordinate. Let us identify the ith particle by subscripting with i.

Canonical, as an English word, means
connected or by law, so something
that follows a rule or is orthodox. It
comes from the Latin word canonicalis,
which means of an ecclesiastical edict.
Add to it the interpretation that,
as a result, a standard behavior or
attribute can be tied. q as position—
Cartesian or polar—can be connected
to p—linear momentum or angular
momentum—through the rule
that the time-dependent change is
related to the partial derivative of
the Hamiltonian of the conjugate
coordinate. It doesn’t matter which
coordinate description one chooses.

Hamiltonian dynamics is convenient since it allows us to write first
order equations via

q̇i = ∂H /∂pi, and ṗi = − ∂H /∂qi. (8.9)

Each particle’s state is represented by the two coordinates (q,p).
The continuous space of these coordinates is the phase space. Each
particle at any instant of time can be described by the (q,p) point.
For one particle, it is a two-dimensional vector space. n particles

The vector is represented by three
projections.
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can be represented by a 2n-dimensional phase space of coordinates,
and one can write 2n first order equations to describe the trajectory
of all the particles. At any point in this phase space, only one
trajectory passes through for a given Hamiltonian.
Figure 8.5 specifically identifies trajectories of three particles as

they evolve in time from t to t′ in phase space.
Liouville’s theorem asserts that, in classical motion, with the

Hamiltonian complete, and no other energy input or output into
the system, the phase space of any particle or their collection will
be conserved. The classical phase space is incompressible. This is to say
that, for the three particles shown, the volumes �=�′. Consider a
displacement of δt in time. We have transformed coordinates

Figure 8.5: An example of the
evolution of trajectories of classical
particles in the phase space. The phase
volume (�) of three particles at time t
is shown here to evolve to �′ at time t′.
This volume will be conserved for
classical particles.

q′
i = q′

i(qi, pi)= qi(t + δt)= qi(t) + q̇iδt = qi(t) + ∂H

∂pi
δt

p′
i = p′

i(qi, pi)= pi(t + δt)= pi(t) + ṗiδt = pi(t) − ∂H

∂qi
δt. (8.10)

To determine the transformation for the volume, we need to
determine the Jacobian, which is

J(q′
i, p

′
i; qi, pi)= ∂(q′

i, p
′
i)

∂(qi, pi)
. (8.11)

This is
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(8.12)

Since the primary term in δt comes from the diagonal, look at the
product of the diagonal term

∏

D

[ J(q′
i, p

′
i; qi, pi)]=

(
1+ ∂

∂q1

∂H

∂p1
δt

) (
1+ ∂

∂q2

∂H

∂p2
δt

)
· · ·

×
(
1− ∂

∂p1

∂H

∂q1
δt

) (
1− ∂

∂p2

∂H

∂q2
δt

)
· · · (8.13)

It is a product of 1s and terms in δt2. Of the latter, terms of opposite
pairs cancel, since the order of partial derivatives is immaterial. The
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off-diagonal terms are also in the 2nd power of δt. No term exists
in linear dependence. So, the derivative of this Jacobian vanishes.
Hence, phase-space volume is an invariant.

In Maxwell’s equations of
thermodynamics, ∂(T,S)/∂( p,V)= 1,
which embodies the various
thermodynamic interrelationships
between temperature T, entropy S,
pressure p and volume V and makes
the statement that, in any cyclic
process, work performed—the area
enclosed in the relational curve
of T and S, or p and V—is equal
to the heat exchanged, has a very
direct underlying connection to this
incompressibility argument. q and
p as canonic variables tie in to the
thermodynamic variables.

Stated in the form of particle density (ρ) in phase space,

dρ
dt

=
∑

i

(
∂ρ

∂qi
q̇i + ∂ρ

∂pi
ṗi

)
+ ∂ρ

∂t
= [H ,ρ]q,p + ∂ρ

∂t
= 0, (8.14)

where we have also explicitly incorporated other time dependences
(∂ρ/∂t) that are not part of the Hamiltonian and the classical
particle evolution that we employed in the Jacobian argument.
This ∂ρ/∂t may arise from many causes. It is an energetic inter-
action that leads to loss of particle energy to the environment
that is not accounted for in the Hamiltonian, such as friction of
the environment. Sugar dropped into water dissolves, with the

In Galileo’s experiment of dropping
a stone and a feather in the air from
the leaning tower of Pisa, with the
Hamiltonian determined by the
gravitational attraction, this phase-
space volume changed, with the
feather losing much of its potential
momentum to the friction with the air.

particle  ̏annihilated.˝ Multiple particles, if they were charged, as
they are in atmospheric phenomena, will be subject to motional
discrepancies, since there are other explicit time dependences not
accounted for. In a semiconductor, in the drift-diffusion equation—
fluid flow equations—electrons and holes annihilate each other.
All of these are explicit and separate ∂ρ/∂t dependences. With this
incorporation,

dρ
dt

= 0

∴ ∂ρ

∂t
= − [H ,ρ]q,p

= −
∑

i

(
∂ρ

∂qi
q̇i + ∂ρ

∂pi
ṗi

)

= −
∑

i

(
∂ρ

∂H

∂H

∂qi

∂H

∂pi
− ∂ρ

∂H

∂H

∂pi

∂H

∂qi

)
. (8.15)

Here [, ] is the Poisson bracket. When may ∂ρ/∂t = 0 hold true?

See S. Tiwari,  ̏Quantum, statistical
and information mechanics: A unified
introduction,˝ Electroscience 1,
Oxford University Press, ISBN
978-0-198-75985-0 (forthcoming),
where we use the Poisson bracket
to describe and extract a variety of
quantum-mechanical relationships.
The Poisson bracket is a convenient
notion that, of course, dates back to
the classical science period. Poisson’s
name appears, like that of many other
French scientists from the classical
science development period, in
various places, the Poisson equation
being the most common. Poisson is
also associated with discoveries in
probability. His name, Siméon Denis
Poisson, is inscribed on the Eiffel
tower in the company of 71 other great
French scientists, mathematicians
and engineers, including Pierre-
Simon Laplace, whose equation and
probability thoughts too show up so
often in our explorations.

When ρ is only a function of energy and all energetics are included
is one such instance. This is the equivalent of being a stationary
state in phase space. The phase-space density now remains a
constant at each locale in phase space. Thermal equilibrium also
implies an independence from time. So, in thermal equilibrium
too, this holds. Disturb the thermal equilibrium, and ρ can have

One should interpret a system in
equilibrium as one whose extensive
and intensive variables are time
independent. When this system is
isolated, all these variables must still
not change. Thermal equilibrium is
the condition of such a system in an
environment at temperature T. Balance
must hold in all transactions occurring
in the system in every detail for
equilibrium to hold. Off-equilibrium

an explicit time dependence. This disturbance from thermal
equilibrium was a change of the energetics where the cause of the
disturbance has not been included in the Hamiltonian. Include it
in the Hamiltonian, and let us say that it doesn’t have time depen-
dence, and one will find a steady-state solution, so long as there is
no other explicit ∂ρ/∂t dependence that is not accounted for.
This classical form of Liouville equation describes the complete

evolution of each and every classical particle, given complete
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specification of the (q,p) space, and it describes a collection of them
through its rewriting in a phase-space density form. This is a total
of 2n vector equations for n particles. Trajectories do not cross, that

or nonequilibrium is any condition
where the system is not in
thermodynamic equilibrium.
Nonequilibrium makes exchanges
of energy leading to work—energy
exchanged to some desired form—
possible.

is, any point in phase space can only be associated with one and
only one particle. Many of the real problems of interest to us, such
as describing electron transport, arise in a very large number—
closer to Avogadro than thousands—of such electrons moving
around. And these are also quantum conditions.
So, one can see two particular concerns. Particles may have a

distribution form that comes close to the statistical distribution of
the ensemble, but not every particle can be specified via its position
qi or momentum pi. The second is that an electron may be describ- It is a master equation in the sense that

a general form can, with a suitable
choice of parameters, which may be
fitting parameters, suffice to describe
the relationships that the equation
captures.

able at one level—depending on the size, properties of interest and,
therefore, the depth of the details of the description—as a classical
particle, but it is also a quantum particle—electrons very near other
electrons will have to be viewed quantum-mechanically, and we
know that the Poisson bracket must be subjected to uncertainty
constraints through the i/h̄ factor and that there are also quantum-
scale interactions, such as scattering, that will occur during the
course of the electrons’ travel. So, probability distribution and the
probabilistic nature of quantum mechanics both enter. Classical
equations will have analogs or can be transformed into quantum-
mechanical forms where the action quantum and quantum nature
can be incorporated, and one can have these evolution equations
as equations in statistical probability distributions forms both
classically and quantum-mechanically. The quantum Liouville
equation is the form that the classical Liouville equation takes. The
probabilistic evolution classically and quantum-mechanically can
both be written, through the Fokker Planck and the Kolmogorov
master equation forms.

8.3 Quantum Liouville equation

Evolution of a collection of particles—classical or
quantum-mechanical—is conveniently describable through prob-
ability distributions without a significant loss of accuracy for
determination of most macroscopic parameters of interest. The
classical form of the Liouville equation, with its incompressibility
of volume, describes such an evolution in the phase-space density
form where the classical aspect is embedded in the non-crossing
of paths and the uniqueness of each point in the phase space as a
characteristic of one particle only at any instant of time. The prob-
ability distribution in phase space gives us the underlying measure
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for the classical statistical ensemble. A quantum particle is described
as a superposition state built from the different eigenstates that
it may be found in. This possibility of finding the particle, upon
observation, in one of the eigenstates is a probability—a quantum
version different from the statistical one—at one level. Probability as a statistical notion for

the quantum superposition should
be clearly distinguished from the
classical statistical probability. Often,
they coincide. But as Bell showed,
which was discussed in some depth
in S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017), one can
show conditions where they will not
be the same, and experiments confirm
this thesis. This idea—as an ensemble
with multiple particles—appears in
entropy and other places. If there is
not an explicitly captured connection
between particles, that is, the two
together are not really independent,
then the classical independence-
based randomness has to break down
when compared to the quantum
situation. Entangled photons, two
simultaneously generated photons
of connected polarization, are two
photons physically, but have this
link still there through the property
of polarization. Tackle one’s and the
other’s is revealed immediately. No
independence here in polarization.
Entropy in the Boltzmann sense is not
the only form in which incompleteness
of knowledge exists. π or Euler’s
constants may be transcendental,
whose ever-longer writing shows
equidistribution with seemingly
random appearance of the digits
in equal 1/10th measure in digital
form, but they are also intimately
connected through Euler’s equation
exp(iπ) + 1= 0. There exists an internal
link that this equation specifies. And
there is an entropy related to this: the
algorithmic or Kolmogorov entropy,
which is measured through the
smallest program that can determine
that quantity, even if the complete
specification of that quantity is not
possible because infinity is only a
notion, not something precise.

How we tackle many particles quantum-mechanically brings
out a number of these quandaries and notions of imprecision in
quantitatively formulatable form from which one can learn a bit
about how to interpret the classical observations. At the simplest
level, we may write the statefunction of a single particle as |	(q, p)〉.
For a multiple (N) particle ensemble, one may write this state
function as |	(q1, · · · , qN)≡ |	(Q)〉. For classical systems, such
as, in classical thermodynamics, the argument for building the
Boltzmann measure of entropy (S = kB ln�, where S is entropy,
and � the number of possible microstates) or its equivalent Gibb’s
formulation (S = − kB

∑
i pi ln pi, where pi is the probability of the

ith microstate), which are formally equivalent, since in random
distribution all microstates are equally likely, one finds that the
most likely possibility is the distribution with the largest number
of microstates and thereon rapidly decreasing in large ensembles.
Equivalent configurations arise in different assemblies of the
random particles in their classical states. The collection is a mixed
state arising from different particles, that is, particles identifiable
with different (qi, pi), or a collective mixed state (q,p). A Gaus-
sian distribution is a distribution of a large number of classical
particles at thermal equilibrium with decreasing distribution
density of arrangements—the numbers contributing to the mixed
states—around the central maximum with the highest number of
such arrangements. The quantum ensemble has its analog to this in
the form |	(Q)〉, which is our short version for |	(Q,P)〉.
There is an additional complexity. Because of the uncertainty

principle, states are not points in phase space. There exists a spread.
And, for a single particle, which is therefore an independent-
particle quantum system, the constituting particle has a statefunc-
tion 	(q, p), which itself is built from eigenfunctions that comprise
the solution to the Hamiltonian. A mix of particles will have two
direct consequences. The probability density that now exists in
the quantum ensemble is spread over various configurations.
A definite state 	(Q) has a probability spread among its various
configurations of |	(Q)|2. This probability in itself is different
from the quantum probability arising in the various eigenfunction
possibilities of a quantum particle. We now have a hierarchy of
probabilities.
An example of a two-particle system should illustrate this. Take

two photons. This two-photon collection can be in a variety of
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mixed states. |	1〉= 1√
2

[(
↔
↔

)

+
(

�
�

)]

is an entangled state where

the polarization of one is tied to the polarization of the second. An
observation of the system will find either one of these constituting
particles, where the property of one will be tied to the other, in
the form of horizontal or vertical polarization. On the other hand,

|	2〉=
(

↔
↔

)

is a horizontally polarized pair. |	3〉=
(

�
�

)

is a

vertically polarized pair. And we could have built a fourth, |	4〉,
where the two particles are entirely decoupled, each observable
independently in their composing states of horizontal or vertical
polarization. These are all various mixed states. The ensemble
expectation of any observable A for the quantum assembly then is

〈A 〉 =
∑

n

pn〈	n(Q)| ˆA |	n(Q)〉. (8.16)

These 	ns are not orthonormal in general, as the two-photon
example illustrates. We can rework this in an orthonormal basis. Let The technique for achieving orthonor-

mality is discussed in S. Tiwari,
 ̏Quantum, statistical and information
mechanics: A unified introduction,˝
Electroscience 1, Oxford University
Press, ISBN 978-0-198-75985-0
(forthcoming) and encompasses taking
inner products of the vector functions,
which gives the degenerate part, and
then subtracting and normalizing.
With vectors, the equivalent is finding
a dot product, and working out
from it.

|
α〉 be an orthonormal basis, so that I= ∑
α〈
α〉〈
α|. So, working

through the expectation for the observable,

〈A 〉 =
∑

n

pn〈	n|
(

∑

α

|
α〉〈
α|
)

ˆA |	n〉

=
∑

n

pn
∑

α

〈
α| ˆA 	n〉〈	n|
α〉

=
∑

α

〈
α
ˆA |

(
∑

n

pn|	n〉〈	n|
)

|
α〉

= Tr( ˆA ρ),

where ρ =
∑

n

pn|	n〉〈	n| (8.17)

is the density matrix. The trace of the density matrix (the sum of
the terms along the diagonal of the density matrix) is

Tr(ρ)=Tr

(
∑

n

pn|	n〉〈	n|
)

=
∑

n

pnTr(|	n〉〈	n|)=
∑

n

pn = 1. (8.18)

So, all possibilities of mixed states are included, and the density
matrix suffices to know everything about an observable using its
operator.
We can now work from the density matrix. The evolution in it

due to changes in time maps for us the evolution of expectations of
observables. We know, from the time evolution of the statefunction
arising in the Hamiltonian, −(h̄/i)∂|	n〉/∂t = Ĥ |	n〉. Therefore,
the Hamiltonian dynamics gives a time dependence to the density
matrix of
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∂ρ

∂t
=

∑

n

pn

(
∂|	n〉

∂t
〈	n| + |	n〉∂〈	n|

∂t

)

= − i
h̄
[Ĥ ,ρ]. (8.19)

Add to this the time dependences not included in this dynamics,
extrinsic to the Hamiltonian, and we have, in general, with energy
flowing in and out of the system,

dρ
dt

= − i
h̄
[Ĥ ,ρ]+ ∂ρ

∂t
. (8.20)

This is the quantum Liouville equation. The quantum uncertainty is
reflected in the i/h̄ factor that we have seen before when quantum See S. Tiwari,  ̏Quantum, statistical

and information mechanics: A unified
introduction,˝ Electroscience 1,
Oxford University Press, ISBN
978-0-198-75985-0 (forthcoming)
for the Poisson bracket’s action-
based Heisenberg reformulation of
the quantum-mechanics equation
to complement the wave-based
Schrödinger formulation.

action was incorporated in the Poisson formulation of Hamiltonian
dynamics. This equation form in other ways looks very much like
the classical Liouville equation.
The uncertainty and the quantum have deeper implications

reflected in this Liouville equation. We illustrate this through the
unraveling of the difference between the interpretation of the
wave-packet as a localized representation in wave dynamics for
a particle and a classical particle. For this, we use the Heisenberg
picture, where operators are time dependent and the state vector
is time independent. For any operator ˆA (t) for an observable,
we have

d
dt

ˆA (t)= i
h̄
[Ĥ , ˆA (t)]+ ∂ ˆA

∂t

∣
∣∣
∣
∣
H

. (8.21)

In the Heisenberg notation, the equations of motion, following the
above, are

d
dt

q̂ = p̂
m
, and

d
dt

p̂ = i
h̄
[Ĥ , p̂(t)]= − dV(q̂)

dq̂
. (8.22)

Here, V(q) is the potential, with the corresponding operator as V̂(q)
in the Hamiltonian Ĥ = (p̂2/2m) + V̂(q). Let the potential change
slowly—an adiabatic change—so that

〈
dV(q̂)

dq̂

〉
≈ dV(q)

dq
. (8.23)

The wavepacket movement corresponds quite well to the particle
movement, since adiabaticity removes quantum reflection consider-
ations. This is also another example of the correspondence principle
at work. Now, let us deconvolve the consequences of this potential
and its change in position through series expansion so that higher
moment effects on the wavepacket motion can be explored. So, we
remove the adiabaticity constraint and write
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V(q̂) = V(q) + (q̂ − q)
dV(q)

dq
+ 1
2
(q̂ − q)2

d2V(q)
dq2

+ · · ·

∴ dV(q̂)
dq̂

= dV(q)
dq

+ (q̂ − q)
d2V(q)

dq2
+ 1
2
(q̂ − q)2

d3V(q)
dq3

+ · · · . (8.24)

Looking at the moments,

〈q̂ − q〉= 0, (8.25)

which states that the expectation of position on the wavepacket
and the particle are identical—no surprise here. For the next higher
moment,

〈(q̂ − q)2〉= (�q̂)2. (8.26)

The wavepacket disperses. Its width changes and it spreads out.
A particle doesn’t do that. What we are seeing is the uncertainty-induced
fuzziness. The expectation, in detail, now is

− 〈dV(q̂)
dq̂

〉 = −dV(q)
dq

− 1
2

d3V(q)
dq3

(�q̂)2 − · · · . (8.27)

The wavepacket is being distorted via these higher-order terms, a
domino of perturbations on perturbations. This wavepacket-particle difference

is one facet of uncertainty, and the
other facet is the Fisher information
propagation limit that we noted in
Chapter 2. Wavefunction, particle,
uncertainty and information complete
their cycle through this simple
analysis.

Now, to see the incompressibility of the Liouville equation and
the fuzziness of the quantum-Liouville equation, consider the three
wavepackets ψ , ψ ′ and ψ ′′. These form a triangle enclosing an
area as shown in Figure 8.5; consider the motion under only a
single degree of freedom. The equations of motion for one of these
wavepackets (ψ ′) are

d
dt

(q′ − q) = ( p′ − p), and

d
dt

( p′ − p) = 〈ψ ′, dV̂(q̂)
dq̂

ψ ′〉 + 〈ψ ,
dV̂(q̂)

dq̂
ψ〉

= −
[

d2V(q)
dq2

+ 1
2

d4V(q)
dq4

(�q̂)2
]

(q′ − q)

− 1
2

d3V(q)
dq3

[
(�′q̂)2 − (�q̂)2

]
. (8.28)

The second term—a negative term—in this last expression causes
quantum distortion. Area is not preserved anymore. And this
change in phase-space area can be seen through its rate of change,

d
dt

(q′ − q)(p′′ − p) − (q′′ − q)(p′′ − p)

2

= d3V(q)
dq3

× (q′′ − q)[(�′q̂)2 − (�q̂)2]− (q′ − q)[(�′′q̂)2 − (�q̂)2]
4

. (8.29)
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It is a non-vanishing term if the size of the wavepacket and that of
the triangle constituting the means of these three wavepackets are
of the same order of magnitude.
In the classical picture, the points that form the boundary of the

domain in phase space of Figure 8.5 move according to Hamilton’s
formulation, with the enclosed volume invariant. Quantum action
(h̄) constraint distorts the domain. It causes a projection of longer
and thinner filaments with a volume of h̄−N, where N is the number
of the quantum particles. Localized particles may be viewed more
conveniently through Wannier functions, and the smoothening Recall our resorting to Wannier

functions for the understanding of
effective mass, and other situations
where localization flourishes, such as
shallow hydrogenic dopants.

of them in a statefunction of the collective ensemble leads to a
quantum dynamical evolution that appears to be fuzzier.

8.4 Fokker-Planck equation

This picture of the classical-to-quantum correspon-
dence and their dynamic evolution is a very multi-faceted story
with elements related to quantum action and elements related to
probabilities, as well as our description of mixed states in this soup.
The convenient edifice of describing probabilities in ensembles
through distributions, and the description of distributions and their
evolutions through moments, appear in many different forms in the
classical and quantum domains. The Fokker-Planck equation is one See the first part of Appendix F

in S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017) for
an exploration of probabilities,
distribution functions and moments
and their interrelationships.

such form that goes back a hundred plus years, and recourse to it
and to the Langevin equation is common when describing ensemble
dynamics. We will return to the Fokker-Planck and Langevin
equations later (Section 8.10) but make some remarks here on the
Fokker-Planck equation, since it stresses probability evolution and
the various places it shows up quite beautifully.
An ensemble responds to the forces through an evolution as

a collective ensemble undergoing particle-particle and particle-
environment interactions. The 0th—lowest—order measure of the
response is the mean of the evolution. This is a system response
that appears as a net response, such as current, for example, if
a voltage is applied to which an electron charge responds as in-
between two biased conducting plates. But the particle-particle
dynamics is also present as this mean response unfolds. Take
any plane of many-electron charge, and it spreads out evolving
in time and space. This is diffusion. If one measures the current,
one will see fluctuations in the current of what may be otherwise
a constant mean electron density in between the plates. This is
noise. Noise is also the response of the charge ensemble. So, on
the one hand, drift of the charge cloud and the diffusion in the
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charge cloud are connected. On the other hand, the resistance of
the charge cloud and the Johnson-Nyquist noise of the charge cloud
are also connected. They reflect an underlying physical interaction
in the ensemble and the response of the particles and the ensemble
through its interactions with the external environment. Under
perturbations and interactions, the flow of the distribution, which is
a representation of a random matrix with overarching higher-order
constraints, as a function shows macroscopic characteristics like
those of the ensemble. The distribution functions take on a dynamic
evolution that reflects the statistical consequences for the ensemble
under constraints (such as interactions with the environment—
canonical, microcanonical and macrocanonical ensembles—and
energy and particle exchange). The Fokker-Planck equation captures
this, and it will appear in many forms as a master equation.
One form of the Fokker-Planck equation, applicable to our

interests, is the one-dimensional form, with D1(z) and D2(z) as
functions representing the ensemble dynamics in play,

∂f
∂t

=
[

− ∂

∂z
D1(z) + ∂2

∂z2
D2(z)

]

f , (8.30)

where f ≡ f (r,p or k) is the phase-space distribution—a Liouville
density—and, in its simplest form for us for semiconductors, the
Boltzmann distribution function, which holds for classical-like
non-degenerate conditions of a semiconductor. The first term
in Equation 8.30 is a drift term proportional to the positional
derivative, and the second is a diffusion term that is proportional
to a second derivative. This operator relationship with first and
second order derivatives operating on a function product with a
distribution density is the lowest order linearized off-equilibrium
response in the presence of interactions within the ensemble. This
equation is just as useful for describing the  ̏not-so-free financial˝
market response as it is for the Brownian motion phenomenon
observed classically in fluid flow, and as it is for describing electron
motion in the drift-diffusion conditions in a semiconductor.
The Fokker-Planck description is particularly useful for describ-

ing continuous macroscopic variables in conditions that are not too
far from equilibrium.

8.5 Boltzmann transport equation

We now return to the problem of central interest to us: the
description of an ensemble of various particles—electrons and
phonons—responding to stimulus in the semiconductor. The
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Boltzmann transport equation is a simplification of the Liouville
equation, where one suitably mixes classical and quantum, so a
semi-classical version, to arrive at a form that is very convenient
for exploring transport dynamics with careful accounting for the
quantum-defined nature of scattering, as well as the quantum-
mechanical constraints reflecting in the state distributions, statistics
of occupation, and much else where the quantum nature of electron,
photon and phonon behavior will matter. This becomes possible
if one can ignore particle-particle interaction and uncertainty
implications—the fuzziness aspect of quantum Liouville—and it
is in this sense that the particles are being treated as independent
classical particles.
The Hamiltonian of the electrons in the crystal reflects a variety

of energetic interactions, as discussed in different contexts in
Chapters 1 through 7. A simple interpretation is that this Hamil-
tonian has a form H = He + Hc + H ′, where the first term is the
Hamiltonian of electrons in a perfect crystal, the second represents
the rest of the crystal, and the third term is a perturbation that is
to be tackled separately to explore and quantitatively evaluate the
consequences of an interaction. These first two terms represent the
consequences of the presence of electrons in the  ̏perfect˝ crystal
and the periodic potential of the crystal. But then what we do is
partition—atoms are made fixed in position—and their movement,
for example, is included through a perturbation. This is equivalent
to saying that we have split the eigenstates into a product repre-
senting the electron and the crystal, that is |k, c〉 = |k〉|c〉. This is the
Born-Oppenheimer or adiabatic approximation.

Figure 8.6: Continuity of a distribution
function in phase space.

Consider now a system of particles—electrons—described by a
distribution function f (r,k; t) evolving in time under the influence
of external forces and internal particle interactions. So the forces
cause a change in time, and eventually, at some point in time, the
system reaches a steady state. The Liouville equation tells us that

dρ
dt

=
∑

i

(
∂ρ

∂qi
q̇i + ∂ρ

∂pi
ṗi

)
+ ∂ρ

∂t
, (8.31)

where ρ represents a particle density in phase space.
The transformation of this equation into the Boltzmann transport

form—a form in terms of the distribution function—can be under-
stood through Figure 8.6. The charged particle—electron or hole
(also phonon)—system can be given a quasi-classical interpretation.

This Liouville and Boltzmann
transport equation form can also
be written for phonons. We usually
do not, and only introduce it in
our discussion of remote and off-
equilibrium processes (Chapter 19)
to see the interesting electron-
phonon interaction consequences
in thermoelectric transport. For now,
our lowest-order approximation is that
the phonon distribution doesn’t stray
far enough from equilibrium.

The E-k description provides each mobile particle properties from
their assignment to the band—a Bloch band, with implications
beyond just the assignment of energy—and a wavevector k, which
represents the particle’s momentum in the crystal of h̄k. We also
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have a position of the particle. The state of the system is specified
by the distribution function of these variables.
Since the crystal momentum is h̄k, (p,q) ≡ (k, r), and, from now

on, we will mostly discuss in terms of the wavevector and position
coordinate. The continuity equation that the Liouville equation is
(classically and quantum-mechanically) can now be seen as the
evolution of the distribution function f (r,k; t), in the form

df
dt

= − ∂f
∂k

· k̇ − ∂f
∂r

· ṙ + ∂f
∂t

= −k̇ · ∇k f − ṙ · ∇rf + ∂f
∂t
, which is

= 0 in steady state. (8.32)

Slowing down in momentum or real space increases the distribution
function. The distribution f (r,k; t) at time t arises in changes in
momentum (or wavevector) and changes in position. The changes
in momentum due to external forces are from the distribution func-
tion f (r,k − k̇�t). These were the carriers from �t time earlier that
drifted into the distribution function of interest. Similarly, it is the
carriers that were at (r − ṙ�t,k) that diffused into the distribution
function of interest. We need to add to this time-dependent changes
arising in the perturbations that are not explicitly included in the
dynamics of evolution. In Figure 8.6, this ∂f/∂t dependence of

It is important to stress here that
position and momentum are canonical
coordinates. Forces cause change in
momentum. Classically, velocity, the
time-dependent position evolution in
real space, is related to the momentum
through the inertial mass. Quantum-
mechanically, velocity (ṙ) is a function
of momentum. For semiconductors,
this velocity is ṙ = (1/h̄)∇kEnk, where
Enk is the E – k description in the
bandstructure. Quantum-mechanically,
there also happens to be the useful
concept of effective mass related
through (1/h̄2)∇2

kEnk, which allows
quite a bit of the inertial motion to
be understood in the crystal. But,
it is the former relationship that is
the explicit functional connection of
velocity to momentum for an electron
that happens to have an energy E
and the quantum number k for the
wavevector and the band index n in
the crystal. Momentum-dependent
changes are what we classically call
drift. Position-dependent changes are
what we classically call diffusion.

change is shown as arising in the perturbation Hamiltonian Ĥ , and
occurring due to interactions in states—S(k′,k) represents scattering
into the (r,k)-state from all others, that is, (r,k′), and S(k,k′) is the
complementary process. This is the Boltzmann transport equation.

df/dt is the net rate of change of distribution function. In
evolving conditions, it will be non-zero. In steady state, it vanishes.
The first two terms of the equation’s right-hand side are the
consequence of changes arising in momentum space and in real
space. And the last term is due to interactions with time-dependent
consequences that are not included in the Hamiltonian. This is
the rate of change in phase space. The real space consequence is
through the real space motion (velocity of the particle and any real
space particle density changes, that is, those that are due to real
space diffusion). The momentum-space consequence is through
the momentum change, which arises from forces at work, and any
phase-space particle density changes, that is, those that are due to
momentum space diffusion.
Since f represents particle density, that is, a probability density,

this Boltzmann transport equation represents a continuity equation
of probability density. In steady state, it is a constant. In conditions
where time dependence exists, such as in a transient, it gives us
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the probability change in time. The probability change in time is
happening because of real space motion, because of momentum-
space motion, and because of phase-space changes arising due
to other time-dependent phenomena whose consequences have
not been included in the first two terms. This last term arises in
the interaction of this distribution with the surroundings, or even
within itself, if that was not explicitly included in the first two
terms, which came from the Poisson bracket with the Hamiltonian.

Figure 8.7: (a) An isotropic distribution
function in momentum space at
thermal equilibrium. This is the
distribution function f0(r′,k)

at r = r′ at a specific position.
(b) Nonequilibrium distribution
under a force, for example, an electric
field whose direction is opposite to
that of the force for electrons. The
distribution function now is f (r′,k) at
the same position in space of r = r′.

An illustration of how these distribution functions relate to our
description of semiconductor dynamics is in Figure 8.7. Consider
an isotropic distribution. In thermal equilibrium, at any position
r = r′, this distribution function in the momentum space ( f0(r′,k))
has a zero mean. There is no net momentum for the distribution
even if there is a spread. When a force is applied, such as a field in

This spread is the thermal spread.
Electrons have momentum and energy.
It is thermally distributed. And it
balances antipodally.

the opposite direction for electrons, this distribution function, still at
r = r′, is shifted. Being centered at a different wavevector, here at
a k‖ �= 0, there is a net momentum. We will see this as a net drift
velocity of electrons arising from the force. Note, though, that we
still have a distribution function with a momentum spread, only
that the expectation of this momentum spread has shifted from the
origin, where it was at thermal equilibrium.

8.5.1 Scattering

Scattering is the most important form through which
∂f/∂t’s consequence appears for us. For steady state, whose
quantum-mechanical analog can be thought of as a stationary state,
we have

∂f
∂t

∣
∣
∣∣
scat

= k̇ · ∇k f + ṙ · ∇rf . (8.33)

In the semiconductor, the scattering, which occurs at some real
space position with its associated quantum uncertainty, arises from
interactions that are in momentum space. Electrons at momentum
k (an occupied state at wavevector k, which is associated with a
crystal momentum h̄k) may scatter to an empty state at wavevector
k′. We show this as the perturbation-dependent time-dependent
change in Figure 8.6, separate from the known Hamiltonian-
induced phase-space trajectory. Electrons from an occupied state at
a wavevector k′ may also scatter to an unoccupied state at k. If we
are interested in what happens at k, then we need to include all the
possible k′ states with which this interaction is possible. This is

∂f
∂t

∣
∣
∣∣
scat

=
∫ {

S(k′,k)f (k′)
[
1− f (k)

] − S(k,k′)f (k)
[
1− f (k′)

]}
dk′,

(8.34)
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where S(k,k′) is the scattering rate—a probability per unit time
of a transition from initial state k to a final state k′ in a unity
volume of the k-space. A similar definition holds for S(k′,k). In
Equation 8.34, the net partial time dependence of the distribution
function is due to scattering into k and scattering out from k.
Scattering in is proportion to S(k′,k), which is probability per unit
time of the transition, the supply function, which is proportional
to the occupation of the k′ state, and the receiving function,
which indicates whether a state at k is unoccupied, and therefore
available. This supply function is just the distribution function
f (k′). The unoccupied state density defines the receiving function
as (1 − f (k)). The integral accounts for all possible f (k′) states that
interact with the f (k) state. The second term is for the opposite
process. In thermal equilibrium, these two terms balance. And this
balance must be in detail for all k,k′ pairs.
Equation 8.34 is the scattering or collision integral. To gain more

insight, consider what it reflects. From an initial occupied state |k′〉
an electron may scatter to unoccupied |k〉 states. Likewise, from
an initial occupied |k〉 state, an electron may scatter to unoccupied
|k′〉 states. There is a total of N states in the system. fN reflects the
occupied states, and (1 − f )N the unoccupied states. If there are Ns

scattering centers, our interpretation is that

∂f
∂t

∣∣
∣
∣
scat

= Ns
∑

k′,N−1

{
S(k′,k)f (k′)

[
1− f (k)

]

−S(k,k′)f (k)
[
1− f (k′)

]}
. (8.35)

The integral represents scattering from one center, while the above
equation reflects the consequence from many. If the system has
many states, that is, N � 1, then N − 1 ≈ N, and the summation
can be reduced over all the states. The volume associated with each
|k′〉 state is �k′ = (2π)3/�, where � is the total volume. Therefore,

∂f
∂t

∣
∣∣
∣
scat

= Ns�

(2π)3

∫

�k′

{
S(k′,k)f (k′)

[
1− f (k)

]

−S(k,k′)f (k)
[
1− f (k′)

]}
dk′. (8.36)

In thermal equilibrium, the distribution function is a constant;
therefore, ∂f/∂t = 0 in thermal equilibrium. This implies

S(k′,k)= S(k,k′)
f0(k)

[
1− f0(k)

]

f0(k′)
[
1− f0(k′)

] . (8.37)

If conditions are non-degenerate, then the occupation probability is
very small, that is, f (k), f (k′) � 1. This, in turn, means that

S(k′,k) ≈ S(k,k′) exp
[

E(k′) − E(k)

kBT

]
. (8.38)
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Under non-degeneracy, we may also write This scattering rate relationship
implies that, for S(k′,k) = S(k,k′),
E(k′) = E(k). The scattering rate
from state |k〉 to |k′〉 and its inverse
are equal only for elastic collisions.
The energy of carriers before and
after must remain the same. If the
scattering is restricted to a parabolic
approximation region, this in turn
means that |k′| = |k|.

∂f
∂t

∣
∣∣
∣
scat

=
∫ [

f (k′)S(k′,k) − f (k)S(k,k′)
]

dk′. (8.39)

Equation 8.39, or the more general form (Equation 8.34), suffices to
describe the dynamics in Boltzmann transport equation. So long
as one can describe the scattering rate, and we saw an example
of its calculation for Coulomb potential in Chapter 1, one can
calculate the distribution function’s evolution and therefore various
properties of interest.
For many macroscopic conditions such as those in larger

dimension devices, this equation can be considerably simplified
through a master-equation-like parameter of a time constant.

8.6 Relaxation time approximation

We claim that changes in the distribution function due
to perturbations, under certain conditions, may be written as

∂f
∂t

∣
∣
∣∣
scat

= − f (k) − f0(k)

τ (k)
= − �f

τk
. (8.40)

This is the relaxation time approximation. And if this time-constant

It is useful to note here that
Equation 8.40 is not one of general
validity. Equation 8.39 has broader
validity and Equation 8.36 even more
so. But being able to write a relaxation
time that connects the perturbation in
the distribution to its rate of change
as a time constant that only depends
on the change makes equations
convenient and intuition easier.
Solving using scattering rates between
states through Equation 8.39 or
Equation 8.36 will need computation
and is usually pursued through a
Monte Carlo simulation.

approximation is valid, then the Boltzmann transport equation
can be explored conveniently analytically for a variety of dynam-
ics of transport. And it is also quite applicable for a variety of
semiconductor situations. This time constant τ (k)—a momentum
relaxation time—will variously be written as τk and, when applied
to expectations, as 〈τ (k)〉 = 〈τk〉. This relaxation time is a function
of k; its expectation too is a function of k, but it does not have a
dependence on the form that f (k) takes. So, it does not depend on
the distribution function as it appears under various perturbation
and real space geometries and other conditions under which a real
use of a semiconductor in a device appears. This is what makes
it powerful. If the relaxation time approximation is not valid, one

The drift-diffusion equation, and its
even more extreme form of just plain
drift (as in conductors) or diffusion
(as in injection in materials with
low carrier densities), or the Drude
near-classical approximation, are
examples of the use of relaxation time
approximation to its extremes.

cannot find the distribution function in an explicit analytic form
using this semi-classical equation of motion that is the Boltzmann
transport equation.
Now let us explore when this relaxation time approximation may

be applicable. In thermal equilibrium,

∂f
∂t

∣∣
∣
∣
scat,0

=
∫ [

f0(k′)S(k′,k) − f0(k)S(k,k′)
]

dk′ = 0. (8.41)
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Off-equilibrium, that is, with perturbation, f (k)= f0(k) + �f (k), and,
using the thermal equilibrium equality,

∂f
∂t

∣
∣
∣∣
scat

=
∫

�f (k′)S(k′,k) dk′ − �f (k)

∫
S(k,k′) dk′. (8.42)

Perturbation changes the distribution function. A change in distri-
bution function in phase space (real and momentum) is directly
related to the flow of carriers, which relates to current, that is,
momentum flow; energy flow, that is, how carriers transport energy
from one place to another; and any other parameters we may be
interested in. This form of equation also tells us when the relaxation
time approximation might hold. If the first term of Equation 8.42
vanishes, one will be able to write

∂f
∂t

∣∣
∣
∣
scat

= −�f (k)

∫
S(k,k′) dk′

= −�f (k)

τ (k)
= − f (k) − f0(k)

τ (k)
, where

τ (k) = 1
∫

S(k,k′) dk′ . (8.43)

�f is an odd function of k. It is a perturbation that caused the
disturbance from thermal equilibrium. In thermal equilibrium, f0(k)

axiomatically is an even function. Perturbation, in order to have a
net effect, has to have an odd power dependence on k. Current, for
example, is a result of �f in real space and momentum space. At
any position, the current arises in the momentum of the particles.
It is proportional to it. So, current, which is proportional to �f ,
being an odd function of momentum, also implies that �f is an
odd function of k. The first term of Equation 8.42 therefore vanishes
when S(k′,k) is an even function.
So, a sufficient condition for the validity of relaxation time

approximation is that the first term of the integral—the scattering
or collision integral—the term related to the change in distribution
function due to scattering to k, vanishes. �f (k′) is odd, so S(k,k′)
must be even.
There are many conditions of scattering in semiconductors under

which S(k,k′) is an even function.

Figure 8.8: Scattering in the anisotropic
conditions of ellipsoidal equienergy
surfaces at energy E and E′ when a
perturbational field E is present.

One example is if all combinations of ks and their antipodes lead
to the same scattering rates (see Figure 8.8), that is, if

S(k,k′)= S(k,k′�)= S(k�,k′)= S(k�,k′�). (8.44)

In the presence of the electric field E or, equivalently, the force F,
the electron charge cloud responds with an increase in population
at k′�, and a decrease in population at k′. That is, �f (k′�)> 0,
and �f (k′)< 0. So, on the equienergy surface of energy E′,
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�f (k′)= − �f (k′�). If the k′� states have more carriers, that
increases the transition rate from k′� to k. But there is an equal
decrease in transition rate from k′ to k. However, S(k′,k)= S(k′�,k)

from this equienergy surface. Therefore, the sum of the transition
rates from k′� and k′ remains unchanged for small fields. All
the states can be paired. Therefore, the transition rate into k
is unchanged from the thermal equilibrium conditions. The
only change in the distribution function at k therefore arises in
transitions from k; that is, scattering out of k. So, for random
scattering processes, that is, processes subject to conditions of
Equation 8.44, the relaxation time approximation is valid, and the
relaxation time will be given by Equation 8.43.
There are other non-random scattering processes too, where

relaxation time approximation holds. A particularly common exam-
ple for relaxation time approximation is elastic scattering, that is,
processes in which the loss of kinetic energy vanishes. By extension,
in the lowest order, this also applies to quasielastic scattering,
that is scattering processes where the change in the electron energy
is quite small compared to thermal energy (�E � kBT). Another
one is when the scattering probability is dependent on the angle
between the incoming and outgoing momentum.
Consider elastic scattering. The scattering probability normalized

to unit area of the constant energy surface, from k′ to k or its
reverse, must balance so that there is no net power flow in an
elastic process. This implies that

Sn̂(k′,k)= Sn̂(k,k′), (8.45)

where Sn̂ is a real scattering rate that is normalized to account for
energy flow, that is, through a normalization to n̂d2r. At thermal
equilibrium,

∂f
∂t

∣
∣
∣∣
scatt,0

=
∫

A

[
f0(k′)Sn̂(k′,k) − f0(k)Sn̂(k,k′)

]
d2k′ = 0. (8.46)

If Equations 8.45 and 8.46 are true, then f0(k′)= f0(k). Therefore, off-
equilibrium,

∂f
∂t

∣∣
∣
∣
scat

=
∫

A

{[
f0(k′) + �f (k′)

]
Sn̂(k′,k)

− [
f0(k) + �f (k)

]
Sn̂(k,k′)

}
d2k′

= −�f (k)

∫

A
Sn̂(k,k′)

[
1− �f (k′)

�f (k)

]
d2k′

= −�f (k)

τk
,

with
1
τk

=
∫

A
Sn̂(k,k′)

[
1− �f (k′)

�f (k)

]
d2k′, (8.47)
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which is the momentum-dependent time constant for elastic and,
approximately by extension, quasielastic scattering.

Figure 8.9: Quasielastic angle-
dependent scattering such as with
acoustic phonons in valleys with
spherical constant energy surfaces or
by impurity ions.

Now consider scattering processes where the scattering rate
depends on the deflection θ of the outgoing wave k′. The Coulomb
scattering of Figure 1.6 is one example that we have already seen
quite early on. Another is acoustic phonon scattering in isotropic
valleys (see Figure 8.9). Let there be a small electric field E and let
the scattering be quasielastic; then, the distribution function in this
small field can be written as f = f0 + gE · k:

∂f
∂t

∣
∣∣
∣
scat

=
∫

A

(
gE · k′ − gE · k

)
Sn̂(θ) d2k′. (8.48)

Let ẑ be the incident direction; then,

d2k′ = (k′ dθ) · (k′ sin θ dφ)= k′2 sin θ dθ dφ. (8.49)

The consequences of azimuthal dependence will vanish, since they
are harmonic in the azimuthal angle, and the integral is over 2π .
So, The semi-classical analog of this

equation is

1
τk

= Nsv
∫ π

−π

σ (θ)(1− cos θ)dθ ,

where Ns is the number of scattering
centers, v is the velocity of carriers,
and σ(θ) is a cross section of the
scattering through angle θ . Note the
equivalence with velocity, capture
cross section and the deviation angle
corresponding to the scattering rate
through a momentum area as it
sweeps through momentum space.
It is a statement of the reduced effect
on the current flow when carriers
scatter through a small angle. Ionized
impurities and acoustic phonons both
cause small-angle scattering.

∂f
∂t

∣∣
∣
∣
scat

= gE · k
∫

A
(1− cos θ) Sn̂(θ) d2k′ = − �f

τk
, where

1
τk

=
∫

A
(1− cos θ) Sn̂(θ) d2k′. (8.50)

Since the scattering rate defines meantime between the scattering
events as

1
τ c

=
∫

A
Sn̂(θ) d2k′, (8.51)

the relaxation time varies as

τk = τ c

〈1− cos θ〉 . (8.52)

This scattering angle dependence of the relaxation time says that
if all angle deflections are equally likely, then 〈cos θ〉= 0, and
τk = τ c is the average time between scattering events. However, if
small changes in directions are favored, that is, 〈cos θ〉→ 1, then
τk � τ c. When this happens, then the relaxation time is the same
over the entirety of the constant energy surface. So, τk is now only
a function of energy, a case that is quite distinct from when the
scattering randomizes momenta.
We will discuss scattering for various crystalline semiconductor-

specific important processes in Chapter 10 but here make a few
remarks on the efficacy of the relaxation time approximation. It
is convenient in that it allows one to make analytic calculations.
But one could just as well have employed the transport equation
directly by keeping track of scattering events, incorporating
them as they occur in a computation randomly at the expected
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Table 8.1: Some of the significant
scattering mechanisms in a
semiconductor.

Broad category Perturbation Scattering

Lattice
Optical phonon

Polar
Non-polar

Acoustic phonon
Piezoelectric
Deformation potential

Inter-carrier scattering Coulomb
Electron-electron (majority)
Electron-hole (minority)

Defect

Crystal
Impurity
Alloy
Interface

probabilities, such as via Monte Carlo techniques. The analytic
approximations give us insights, and, as we will presently see,
and the undergraduate device courses employ, a pretty acceptable
description of semiconductor device behavior.
In a semiconductor, one will encounter numerous perturbations

that disturb particle flow. Table 8.1 breaks these into three cate-
gories: (a) those arising in electrons interacting with the solid’s
motion termed lattice and encompassing the phonon interactions;
(b) carrier-carrier scattering and other coupled scattering mech-
anisms, where electrons interact with other coupled excitations;
and (c) scattering arising in interactions with randomness of
unintentional and intentional imperfectness of the crystal, such as
impurities or alloys. Some of these will be dealt with in Chapter 10
because of their importance or their interesting nature.
The perturbation, being a finite-duration perturbation, the

scattering rate in the presence of energy gain or loss in scattering
can be written using Golden rule as

S(k,k′)= 2π
h̄

∫

�

ψ∗
k′Ĥ ′ψkδ

[
E(k) − E(k′) − Escat

]
dr. (8.53)

When the departure of the distribution function from thermal
equilibrium due to the perturbation is small, that is, �f � f0,
one may rework the scattering-related perturbation term in
Equation 8.34 as

∂f
∂t

∣
∣
∣∣
scat

=
∫

S(k′,k)f0(E)
[
1− f0(E′)

] [
φ(k′) − φ(k)

]
dk′. (8.54)

�f = −φ(k, r)∂f0/∂E represents the linear term of the small perturba-
tion, and, because the perturbation is small, we have assumed that
∂f/∂E = ∂f/∂E|0. The interpretation of Figure 8.7 now should be
clear. For an electric field E pointed in the −k̂‖ direction, the shift in
distribution is ∂f/∂k‖ ≈ ∂f/∂k‖|0. The drift of the distribution due to
the force arises in h̄k̇ = − eE , and, in steady state, the consequence is
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eE
h̄

· ∇k f = �f
τk

, (8.55)

so that

�f = eτkE
h̄

∂f
∂k‖

∣
∣∣
∣
0
. (8.56)

This is equivalent to saying that the distribution function is

f = f0 + eτkE
h̄

∂f
∂k‖

∣
∣∣
∣
0

= f0

(
k⊥, k‖ − eτkE

h̄
, r; t

)
. (8.57)

A rigid shift took place in the distribution. This new distribution is
the distribution arising from (k⊥, k‖ − eτkE/h̄, r; t). Recall Figure 8.7;
this shows the rigid shift and the meaning reflected in it. The
momentum shift can also be written in terms of the effective mass
m∗ and the drift velocity, which is the expectation velocity—the net
velocity—of this distribution. vd = h̄〈�k〉/m∗, so

vd = e〈τk〉
m∗ E ∴ μ= ∂v

∂E
= e〈τk〉

m∗ , (8.58)

where μ is the mobility. This also implies that the expectation
of the momentum and its shift from thermal equilibrium is
〈h̄k〉= 〈h̄�k〉= eE〈τk〉, and the expectation of the carrier energy
change is 〈�E〉= eEvd〈τk〉.
For now, we remain focused on the relaxation time approx-

imation and relate it to overall features of transport as well as
relationships within. The approximation is quite valid, as we just
saw for spherical energy surfaces and low-loss energy processes.
So, in direct gap compound semiconductors, it works well for
acoustic phonon and impurity scattering. It works well for random-
izing scattering. So, it is an effective approximation in non-polar
semiconductors—the ones where conduction minima are generally
not at the zone center, and constant energy surfaces not spherical—
for optical phonon scattering. This is so since optical phonons have
a near-constant distribution over all wavevectors. So, the total
momentum and energy conservation constraints can be satisfied
in all orientations. However, in non-polar semiconductors, it now
does not work for low energy or elastic scattering processes, so it
does not work for ionized impurity scattering or acoustic scattering.
Likewise, in polar semiconductors—many of the compound
semiconductors—it does not work for optical phonon scattering.
If the probability of occurrence of different scattering events is

independent, and they cause only a moderate change in energy of
the carrier, then the scattering rates of the different mechanisms add

If the energy of the carrier falls
below the optical phonon energy
threshold, optical phonon emission
is suppressed, so one can see here
one scattering process affecting the
possibility of another, thus breaking
the independence criterion.

up. As an extension of this reasoning, if the  ̏average˝ scattering
rates add up, and these scattering events are also subject to the
relaxation time approximation, then one can see that
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1
〈τk〉 ≈

∑

i

1
〈τk〉i

∴ 1
μ

≈
∑

i

1
μi
. (8.59)

Equation 8.59 is known as Matthiessen’s rule. It is a semi-empirical
relationship useful in understanding the mobilities of semicon-
ductors as parameters such as temperature, doping, et cetera, are
changed and one is interested in finding general trends.

8.7 Conservation equations from Boltzmann transport

The distribution function, by describing the particle density
in canonical coordinates, gives us a semi-classical description from
which properties we desire may be obtained. Among the properties
that we are usually interested in—both at and away from thermal
equilibrium—are the particle densities, which in thermal equilib-
rium we generally understand well but away from thermal equilib-
rium can be quite beholden to the spatial and time dependences
in transport; the current, which is the charge flux and therefore
proportional to momentum; the energy that is carried around by
these particles as they flow; and others that we may be interested
in, for example, spin currents if transport can be made spin depen-
dent, or the exchange between the energy being carried by different
particles, for example, electrons and phonons. All the information
related to these is contained in the f (r,k) of the particles and the
state description of the particles contained in the E-k description.
The Boltzmann transport equation allows us to derive a set of

conservation equations that determine these parameters. If we know
the distribution function, we can multiply it by the relationship
for the property associated with the particle, so turning it into the
moment, and from this determine the equation for expectation. We
now have the moment equation associated with that property while
accounting for the distribution function. These moment equations—
statistically defined—are similar to moments of functions. We will For a probability distribution

function, a mean is the first moment,
a variance is the second moment,
and so on. Moment is like a lever.
The consequence of a parameter
is bootstrapped by the lever. In a
transistor, the gate voltage is levering
through the oxide capacitance.
A carrier higher up in energy is
carrying more energy and has that
lever in energy transport. Amoment
characterizes this leverage.

see that there is a correspondence here. Moments now mean the
accumulated magnitude of the variable whose expectation is being
determined from the equation of distribution function evolution.
Of these moment equations, the 0th of which will be the continuity
equation for the particle density, the 1st, which will be the continu-
ity equation for current density, and the 2nd, which will give the
continuity equation for energy density, are particularly important.
Take a generalized variable ϕ(k) that characterizes a property,

and we would like to find its continuity relationship in real space.
So, ϕf gives the distribution function of the property ϕf in phase
space. We integrate over the k-space, and obtain the continuity
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relationship of 〈ϕ〉, the expectation value of ϕf in real space at any
position r, where 〈〉 reflects the ensemble averaging over all of the
k-space. So,

d
dt

〈ϕf 〉 = −〈k̇ · ∇kϕf 〉 − 〈ṙ · ∇rϕf 〉 + 〈 ∂ϕf
∂t

∣∣
∣
∣
scat

〉

= −〈k̇ · ∇kϕf 〉 − ∇r · 〈ṙϕf 〉 + 〈 ∂ϕf
∂t

∣
∣
∣∣
scat

〉

∵ ∇r · (ṙϕf ) = ϕf∇r · ṙ + ṙ · ∇rϕf , where

ϕf∇r · ṙ = 0, (8.60)

since ṙ is only a function of k. 〈ϕf 〉 is now only a function of
position r and time t.
Recall our comment that ∂f/∂t are all the time dependences of

interactions whose energies are not accounted for in the Hamil-
tonian. Generally, in semiconductors, we work with electrons
and holes, where holes are the quasiantiparticles of electrons,
representing vacant electron states in an otherwise filled valence
band. When one includes interactions within bands within our
description, and include electrons and holes, the most significant
one for particle continuity is of the generation and recombination of
electrons and holes. The most common of these is the generation of In Chapter 11, we will look at particle

generation and recombination
processes in some detail.

electron and hole pairs, if the population is depleted to below that
of thermal equilibrium (np < n2i , where ni is the intrinsic carrier
concentration), and recombination of electron and hole pairs when
it exceeds that of thermal equilibrium (np > n2i ).
Some caution is needed here, since there can certainly be

multiparticle interactions processes, and they are processes that can
span both short and long time scales. Defect-assisted processes are
slow, while direct band-to-band processes can be fast. We can take
care of this by bringing in a net recombination term

U =R − G, (8.61)

where R is the recombination rate, and G is the generation rate in
units of per unit volume and time. We can even give these Us, Rs
and Gs generalized meanings for the generalized variable ϕ(k). It
could be for particle recombination and generation, current recom-
bination and generation, and even kinetic energy recombination and
generation and so on. For all these too, the flows will have to arise
in these separate particles in different bands for them to interact in
this way. Include this in the time-based dependence, and in steady
state we have

d
dt

〈ϕf 〉= − 〈k̇ · ∇kϕf 〉 − ∇r · 〈ṙϕf 〉 − 〈ϕf 〉 − 〈ϕf 〉0
τϕ

. (8.62)
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The term (〈ϕf 〉 − 〈ϕf 〉0)/τϕ =U is a generalization of the
recombination-generation of various moments, and τϕ is a time
constant characterizing the rate. Note that if only one type of band
is considered, only one particle type interacting—an example being
just looking at particle density by making ϕ = 1—then τϕ → ∞,
since there can be no loss of carriers in a single band. If there
are particle and antiparticle bands to be considered, then τϕ is a
relaxation time connecting that interaction. A lifetime is a relaxation time.

It happens to be a time constant
associated with the entropic drive of
relaxation toward equilibrium via the
annihilation or generation of particles
that have been disturbed from their
equilibrium statistical distribution.

For ϕ(k)= 1, the implication is that the expectation value is

〈ϕf (r,k; t)〉=
∫

f (r,k; t) dk = n(r, t), (8.63)

the carrier concentration. This is the mean of the distribution
function—the expectation value of particle density per unit volume.
For ϕ(k)= (h̄k/m∗)(−e), a velocity times the charge, that is, an
electron charge flux,

〈ϕf (r,k; t)〉=
∫ −eh̄k

m∗ f (r,k; t) dk = J(r, t), (8.64)

the current density. For ϕ(k)= h̄2k2/2m∗, the kinetic energy of the
particle,

〈ϕf (r,k; t)〉=
∫

h̄2k2

2m∗ f (r,k; t) dk = W(r, t), (8.65)

the kinetic energy density of the carrier ensemble. W/n = w is the
kinetic energy per carrier.
The continuity equations of the various moments now follow.
For the 0th moment, with ϕ(k)= 1, that is, 〈ϕf 〉= n:

〈k̇ · ∇kϕf 〉 = 0,

∇r · 〈ṙϕf 〉 = −1
e
∇r · J,

∴ dn
dt

= −1
e
∇r · J + G − R,

or
dn
dt

= 1
q
∇r · J − �n(= n − n0)

τ n
, (8.66)

the particle continuity equation, or the particle conservation equa-
tion. The first term on the right describes the real space divergence
in current, that is, the accumulation or depletion of carriers due
to the current flow, and the second term is the particle density
change arising in particle creation and annihilation processes due
to interactions between bands. The quantum analog of this equation
is the probability current equation.
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For the 1st moment with ϕ(k)= − eh̄k/m∗, that is, 〈ϕf 〉= J:

〈k̇ · ∇kϕf 〉 = − en
m∗ h̄k̇ = − en

m∗ F,

∇r · 〈ṙϕf 〉 = −e∇r ·
(

h̄k
m∗

h̄k
m∗ f

)
= − 2e

m∗ ∇rW

∴ dJ
dt

= en
m∗ F + 2e

m∗ ∇rW − J
τk

,

or
dJ
dt

= − qn
m∗ F − 2q

m∗ ∇rW − J
τk

, (8.67)

the current continuity equation, or the current conservation equa-
tion. Here, in its last form, we substituted q = − e, to make it more
general and work for electrons and holes. The first term on the right
arises in momentum change. It is what we think of classically as
drift. The second term on the right is the diffusive flow. A gradient
in energy density is due to particle density and their energy content
in the distribution in momentum space. Integrated over k, this
represents the energy density. The last term is the perturbation—
scattering—precipitated momentum changes. The term has been
simplified through a momentum relaxation time.
For the 2nd moment, with ϕ(k)= h̄2k2/2m∗, that is, 〈ϕf 〉= W:

〈k̇ · ∇kϕf 〉 = 〈F
h̄

·
(

2
h̄2k
2m∗ + h̄2k2

2m∗ ∇k f

)

〉= − 〈F
e

· (eh̄k f )〉

= −F
e

· J

∇r · 〈ṙϕf 〉 = ∇r · 〈ṙh̄2k2

2m∗ 〉

∴ dW
dt

= 1
e

F · J − ∇r · 〈ṙh̄2k2

2m∗ 〉 − W − W0

τw

or
dW
dt

= −1
q

F · J − ∇r · 〈ṙh̄2k2

2m∗ 〉 − W − W0

τw
, (8.68)

which is the energy continuity equation, or the energy conservation
equation. The first term is the flow of energy in momentum space—
a force pushing the electrons along in energy in momentum
space; the second is the real space flow of energy, that is,
carriers with energy moving with a velocity; and the third is the
scattering-related loss of energy. The third term is the entropic drive
toward equilibrium. Note that it has a time constant τw, different
from τk, since this is related to the changes in f × h̄2k2/2m∗. τw is
the energy relaxation time. We will have different relaxation time
constants for each one of these different moment equations, but
because they arise in the relaxation of the distribution (and the
variable ϕ(k)), they will be dependent on the momentum relaxation
time τk.
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One can see the commonalities in the equations. The conserva-
tion or continuity of the different parameters is related to changes
taking place due to the time-dependent motion of the parameter
in momentum space, its time-dependent motion in real space,
and its entropic propensity toward thermal equilibrium captured
in a relaxation time. For particle density, if only one band exists,
then the relaxation time is infinity. If multiple bands exist, we will
have to calculate it, and it will be different. This parameter is the
lifetime of the particle. We will see several unusual features related
to this in Chapter 11. If this interaction happens radiatively between
electrons and holes, it is the radiative lifetime. If it happens due
to defects in the material—a phonon-assisted process—it is the
Hall-Shockley-Ridley non-radiative lifetime. If it happens due to
multiple charge particles interacting with each other, for example,
an electron at high energy losing some of its energy to the creation
of an electron-hole pair and the rest possibly in phonons, then
it is an Auger generation process. An impact ionization process
is such a process. A recombination event, which often occurs
when the bandgap is small or when doping is high is when an
electron and a hole recombine and give their energy to another
particle in the band. So, Auger processes come in a large variety,
often occur at high doping and are common to small bandgap
materials and high fields.
These moment equations describe the continuity of various

moments of the distribution function. For semiconductor electronics,
the correspondence of these is to particle, current and energy
continuity. In fairly large-sized devices, it is common to use the
drift-diffusion equation—a Fokker-Planck-like equation—consisting
of an explicit drift and diffusion terms. It is of quite limited
validity; Equations 8.66–8.68 are more precise, although they are The drift-diffusion equation (which

works pretty reasonably for large
devices), however, is better than the
Drude equation, which is cruder and,
at best, is a good example of finding
a relationship through matching of
units and the good luck of matching of
errors.

restricted to relaxation time approximation if ∂f/∂t is not explicitly
managed.
It is useful to see drift diffusion as a limit case from these

more precise equations. Take the 1st moment equation of current
continuity (Equation 8.67). First, assume non-degenerate conditions,
so Maxwell-Boltzmann distribution conditions, where particles may
be treated classically with kBT/2 of energy per motional degree
of freedom. So, W = (3/2)nkBT at temperature T for the electron
distribution and, in this case, the crystal too. Let the electric field
be E . We can write

τk
dJ
dt

= e2τk

m∗ En − J + e2τk

m∗ ∇rnkBT. (8.69)
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The time scales of interest in the use of these equations, as in
devices, are much larger than τk. So, Momentum relaxation times are of

the order of sub-ps, while device
times of greater than ps are common.
The relaxation times are, of course,
dependent on the scattering process
and are temperature dependent, but
an accumulation of these will tend
to be such that the drift-diffusion
equation should be applicable in large
geometries where plenty of scattering
events occur.

0 = e
eτk

m∗ nE − J + eτk

m∗ kBT∇rn, or

J = eμnnE + eDn∇rn, where

μn = eτk

m∗ , and

Dn = kBTτk

m∗ = kBT
e

μn. (8.70)

The second equation in this set is the drift-diffusion equation, a
consequence of current continuity in relaxation time approximation,
and the assumptions that a classical Maxwell-Boltzmann distribu-
tion is valid for the transport, that the carriers and the crystal are
at the same temperature T, that there are a large number of these
randomizing scattering events over the time scales it is employed
and that the length scales of spatial variations (fields and any other
parameters that will affect transport) are much larger than the
length scale between scattering, that is, the momentum mean free The Einstein description, circa 1905,

shows that both fast (the random
scatterings) and slow (the system
response to an external stimulus) are
at play in Brownian motion and that
these are connected to each other.

path (λk). Note also that a direct connection exists between the
mobility μn and the diffusion coefficient Dn through the thermal
voltage kBT/e. This is the Einstein relationship, written here in
classical Boltzmann conditions as Dn/μn = kBT/e. Einstein first
derived a relationship between the system response and random
events in the analysis for Brownian motion. In general, for electrons
and holes, under these assumptions, the drift-diffusion relationship
may be written as

Jn = enμnE + eDn∇rn, and

Jp = epμpE − eDp∇rp. (8.71)

The drift-diffusion equation describes Brownian motion, under a It should now be clear why this
path in phase space, from Liouville,
quantum-Liouville, to Boltzmann
transport is so powerful. One equation
sufficed in projecting a variety of flux
parameters that are of interest in flow.
Configuration space would have been
messier. You will see in Chapter 9, as
we discuss the interactions arising
in axial and polar fields, that this
phase-space formulation gives a
direct route to all kinds of calculations
where the inter-field interactions, the
electric causing an in-line force and the
magnetic causing a transverse cross
term, can be subsumed gracefully.

potential field, of a classical particle movement—a fluid movement.
As written, particularly with this assumption that the temperature
of the particles is the same as that of the lattice, that is, Te = Tl = T,
one could write an equivalent classical continuity equation for
energy, in the form

W = 1
e
τwF · J − τw∇r · 〈ṙh̄2k2

2m∗ 〉 + W0, (8.72)

where W0 is the energy in the particles at thermal equilibrium, that
is, W0 = (3/2)nkBT.
Electrons, as the particles in motion in the field, are losing their

energy to the crystal, for example, through phonon emission. So,
using a little more general form, we can write the relationship
with the electron particle temperature and the phonon particle
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temperature separate. With this separation of energy form—
electrons and phonons, where the phonon form is really a heat in
a broadband—Equation 8.68 can be recast as

dW
dt

= 1
e

F · J − ∇r · 〈ṙh̄2k2

2m∗ 〉 − ∇r · Q − W − W0

τw
,

or
dW
dt

= −1
q

F · J − ∇r · 〈ṙh̄2k2

2m∗ 〉 − ∇r · Q − W − W0

τw
, (8.73)

where Q is the heat energy flux density.

Figure 8.10: Ratio of the diffusivity to
mobility and logarithm of the Fermi
1/2 integral as Fermi energy is swept
from non-degenerate to degenerate
conditions.

In this drift (momentum space), diffusion (real space) and
perturbational loss reduced to a drift-diffusion relationship for
current, mobility is a parameter reflective of friction to move-
ment. Diffusivity is movement based on real space differences in
concentration of species. Both arise in the fast scattering that τk

characterizes. And it is this fast scattering, and its power spectrum,
that is, its ability to exchange energy with the environment in
which the particle is flowing, that determine the friction and the
diffusivity of the particles. It can also be generalized to degenerate
conditions, where Fermi-Dirac occupation statistics must be
employed. It still holds that connection between drift and diffusion
(or slow and fast or systemic response and fluctuation noise) as a
variation on this relationship there. The occupation of states, or,
equivalently, the carrier densities, are now up in the band. The
occupation probability rapidly rises to approximately unity ∼ kBT/e
below the quasi-Fermi energy. The carrier populations are related to
energies (Fermi and bandedge or some other bandstructure energy
standard) through the Fermi 1/2 integral—the same integral that
we encountered in transport equation at the interface in Section 8.1.
Figure 8.10 shows the change as the Fermi energy is swept and the
carrier density changes.
Under non-degenerate conditions, the ratio is the thermal voltage

(thermal energy divided by the electron charge magnitude), but,
under degenerate conditions, it increases. That is, diffusivity
becomes stronger with Fermi energy in the conduction band. Filled
states surrounded in proximity in the (E,k) are also filled, and
very little interaction may occur between the states. There are no
empty states to scatter into. Near the Fermi energy, this occupation
and emptiness changes and interaction between a particle and its
surrounding states becomes possible, although a particle losing
energy has only states near the Fermi energy but not too far below
it, for transitions. The scattering happens on the surface of this
filled (E,k) region. The non-degenerate condition behaves more like
a classical particle interaction condition; the degenerate Fermi gas
does not.
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This Einstein relationship has within it deeper meanings related One significance of this fast-and-slow,
fluctuation-and-systemic connection
is that, even in the conceptual limit of
absolute zero temperature (T = 0 K),
the zero point motion—a quantum-
mechanical randomness in uncertainty
of the canonic variables—shows up as
a diffusion.

to the short-range and long-range interactions—interactions over
short range and scattering resulting in a wave on a liquid surface
with long range—leading to scattering as its consequence embed-
ded in it. It is a general relationship that is seen in a variety of
processes where fast interactions happen together with slower long
scale interactions. So, fast and slow together lead to a collective
movement. It also has implications for fundamental measurements,
fluctuation-dissipation and other places, some of which we will
come to in due course.
An understanding of the elementary real space view of particle

In semiconductor devices, when
carriers are moving with a saturated
velocity in steady state in a region
with the velocity saturation arising
in the energy gain (from field) and
losing (from scattering) balancing, we
sometimes write J = qnv. Here, it is
more true, since ∇rn is a vanishing
number. But when we use this relation
in, say, the transport region of the
inversion layer of a MOSFET, we must
recognize that there is a ∇rn that is not
of vanishing significance. In gradual
channel approximation, it is the
diffusive ∇rn term that is maintaining
current continuity as one approaches
the pinched-off region of the channel.
Such equations are of limited utility
and should be used with care lest some
phase-space interaction of significance
is lost in this translation.

motion and this phase-space statistical view is illuminating. If
one viewed these particles as just moving independently, one
would write the current as J = − e

∑
k nkvk = − e

∑
k nkṙk for

the electrons. Here, nk is the number of electrons in the state |k〉,
and vk their velocity. Concentration gradients didn’t appear. The
consequence of the force was velocity that moved the particles. An
equation for energy flux—equivalent to that for the charge flux—
is W = ∑

k wknkvk = ∑
k wknkṙk, where wk now is viewable as the

energy carried by each electron in the state |k〉, and a summation
over all the occupied states. The velocity in these equations has sub-
sumed momentum space, real space and particle interactions—all of
them—in this one velocity parameter. If one knows it, this is useful,
but mostly it is not useful or rigorous, since it lumps far too many
of the underlying canonic connections. This formulation is useful in
order to get some intuition. An example is in understanding the
nature of the hole as the semiconductor electron’s quasiparticle.
Valence band or bands are all nearly filled. Empty states in this
electron-filled band now appear in the opposite direction of the
k-space filling by electrons in the presence of a field. So, the
response of this band can be viewed as movement of the emptying
states with a positive charge—opposite to that of the filling of states
by the electrons’ charge—in response to the force. The (E,k) of
the valence band still determines the mass of these electrons of
the band. So, it does for the collective response, represented by the
empty states. The hole is a quasiparticle—an excitation response—of
electrons that fill the valence band.

8.8 Brownian motion

Since Brownian motion as a fundamental constraint
is so important, and connects to power, energy, memory of events,
ensembles, probabilities and other ideas, it is worthwhile discussing
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it for the underlying fundamental ideas. Brownian motion is the
irregular motion of macroscopic objects that one can observe in an
optical microscope, such as in liquids, but also in gases.

An ink blob dropped into water
spreads out. The edge regions of
this spreading are quite irregular
if observed at a resolution slightly
better than that of the human eye,
and, over time, the ink spreads
out and fills out uniformly, at least
as observable through the color.
This macroscopic uniformity is its
equilibrium arising in uniformity of
chemical potential with the density
of  ̏ink particles˝ becoming uniform
and its most random form of assembly.
But, even then, if one were to observe
at sufficient resolution, one would
see these particles showing abrupt
irregularity in motion. The spreading
of the ink is a slow process in the
chemical disequilibrium, but, even
when in equilibrium, there is still
thermal motion at work, with the
particles interacting with the molecules
of their surroundings. There is this
scattering taking place between
the molecules of the liquid—the
environment—and the particle. The
spreading out of the ink—a diffusion—
occurs and is related to the scattering
occurring within this system. A
thermal equilibrium exists because
of the scattering. And a steady state
arises under stimulus because of the
scattering.

When an external force is applied, the Brownian particle
responds, in the presence of this scattering—fast—interaction with
the surrounding medium. The motion therefore suffers friction,
arising in these random encounters of redirection. The response
to the force has two parts. One is a systematic part of friction.
The force and this friction define the net response under external
force. But there is also a random part of the response due to the
scattering-based fluctuations. This is noise in electric circuits, the
bouncing around of the colloidal particles, or others in different
systems, but with this common slow-and-fast characteristic. Since

Human thinking too, as Daniel
Kahneman and Amos Tversky point
out well, has a slow-and-fast part. The
slow part is the analytic response—
system 2 thinking—worked through
in the brain, and the fast part is the
heuristics-based response—system
1 thinking—drawing on parallel
experiences. In Ithaca, in September,
when new students arrive on the
campus with their large vehicles and
suburban driving experiences, it is
prudent to resort to system 2 thinking
when in a hurry and crossing streets.
The Kahneman book, Thinking, Fast
and Slow, is really interesting reading
and speaks much to human foibles
arising in our hardware-programmed
thinking. Fluctuation-dissipation is
quite relevant to societal behavior.
See S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017) for the
application of fluctuation-dissipation
in scanning probe measurements.
Johnson-Nyquist noise is related to the
resistance R—a systemic response—as

the friction and the random fast scattering are related, the net
motion under force and the diffusive flow must be related. This is
what the Boltzmann transport equation leads to and the Einstein
relationship shows.
This internal relationship between the systematic and the random

parts of microscopic forces is a general feature. And we connect
these two through the fluctuation-dissipation theorem, which relates
the dissipation of a system with a correlation power spectrum.
The fluctuation-dissipation theorem is founded on Nyquist’s
theoretical work backing Johnson’s thermal noise observations.
Nyquist showed that the power spectrum of thermal noise in a
resistive circuit is proportional to the absolute temperature with
a proportionality constant that is a function of the resistance at
each frequency. Resistance is quite recognizable as a dissipation
element. But, this systemic-power spectrum relationship is more
general and is the fluctuation dissipation theorem. We will look at
it in this general context (Chapter 14) when discussing the Kramers-
Kronig relations that quantify how the imaginary and real parts
of a general conductivity response—and many other more general
linear system responses, such as susceptibility for example—are
related. For now, suffice it to say that the theorem provides us with
a general relationship between the response of a system to external
stimulus and the internal fluctuations that exist in the absence
of that disturbance. It also therefore provides us with a means
of ascertaining the fluctuations-bounded limit to observational
measurements. The internal fluctuations here are characterized
by a correlation function or a fluctuation spectrum of physical
observables that are fluctuating. In an electrical measurement, the
impedance or admittance is the systemic response, and noise is a
fluctuation correlation function. A scanning probe’s measurement
capability, for example, is limited by the fluctuations from the
environment and from within.



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

326 semiconductor physics

Brownian motion is the observation of sudden bursts in the 4kBTRB, where B is the bandwidth
over which the power spectrum is
spread. An equivalent expression
holds for mechanical movement.

motion of particles in different directions while they are undergoing
a net flow in an environment where other particles are also in
motion.

Brownian motion is so named after
Robert Brown, a Scottish botanist,
who observed the rapid fluctuating
movement of pollen in liquids under
an optical microscope. The first
observation of this phenomenon
seems to have been made by the Dutch
physicist Jan Ingenhousz nearly forty
years earlier. This is not surprising:
lenses and optical instrumentation are
major Dutch creations and, through
Galileo, and other astronomers, their
creation is one of the major catalyzing
events in the birth of modern science.

Figure 8.11: Brownian motion of
a classical particle as it undergoes
random scattering while under the
influence of a force, that is, a potential
gradient.

Consider the Brownian motion example of Figure 8.11: a particle
in a field, moving while also undergoing scattering. The particle
acquires a constant drift velocity vd, acquiring energy in the
potential field, and losing energy via the random scattering. Let γ

be a friction coefficient relating these together with m–the mass’s
inertial characteristic in this response—to build

vd = − 1
mγ

dV
dz

. (8.74)

For a concentration n(z) of these particles, the net particle flux is

J(z)= vdn(z) − D ∂n(z)
∂z

. (8.75)

For current to vanish in thermal equilibrium, D= kBT/mγ . Since
classical particles satisfy the Maxwell-Boltzmann distribution,
with an exponentially decreasing probability of occupation, the
carrier density has the form n(z) ∝ exp(−V/kBT), reflecting the
consequence of the potential in an environment of temperature T,
which, by itself, separately, also has a residual thermal equilibrium
kinetic energy (3/2)kBT, or, more precisely—in a semiconductor,
where the number of states vanish at bandedge—as

√
8kBT/πm.

Drift in this equation is the systemic part arising from forces on the
system; diffusion here is the part arising in the fluctuations caused
by the energy- and momentum-exchanging scattering events. This

The exponential probability is the
consequence of entropy S = kB ln�,
and perturbation of the distribution
from the equilibrium as derived in
S. Tiwari,  ̏Quantum, statistical and
information mechanics: A unified
introduction,˝ Electroscience 1,
Oxford University Press, ISBN
978-0-198-75985-0 (forthcoming).

diffusion reflects the changes in particles’ position over time. So, we
take an ensemble average,

D = lim
t→∞

1
2t

〈[z(t) − z(0)]2〉, where

z(t) − z(0) =
∫ t

0
vd(τ ) dτ. (8.76)

So, using the tricks of rereferencing variables in time for the double
integration,

D = lim
t→∞

1
2t

∫ t

0
dt1

∫ t

0
〈vd(t1)vd(t2)〉 dt2

= lim
t→∞

1
t

∫ t

0
dt1

∫ t−t1

0
d〈vd(t1)vd(t1 + τ )〉τ

=
∫ ∞

0
〈vd(t0)vd(t0 + t)〉 dt, (8.77)

where we assumed that the correlation is lost in infinite time, that
is, limt→∞〈vd(t0)vd(t0+t)〉= 0. Since we started off from D= kBT/mγ,
this leads to
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μ= 1
mγ

= D
kBT

= 1
kBT

∫ ∞

0
〈vd(t0)vd(t0 + t)〉 dt. (8.78)

There exists a direct relationship between the systemic response—
the mobility—to external stimulus, and the fluctuations represented
through the diffusion coefficient, which is an ensemble average of Diffusion is a random walk—a

wandering. In a regular walk, distance
traveled is proportional to time t. Take
N steps, and the object is N steps away,
building up toward infinity as t → ∞.
The reason velocity—drift velocity—
is so much of interest is that it is an
invariant quantity that describes this
regular walk. The ratio N/t, or z/t for
continuous variables, is a fixed number
characterizing the behavior of the
system of interest. In a random walk,
this invariant is 〈z2〉/t—wandering
in equally likely opposite directions.
The expectation for distance traveled
in N steps is

√
N. So, the interesting

quantity—the invariant—is 〈z2〉/t,
which characterizes the diffusion.
This is precisely what Equation 8.77 is
calculating.

expectations of squares of separations—a parameter proportional
to variance of a distribution—per time. This is the Einstein
relationship in a more general form. The drift-diffusion equation
describes the Brownian approximation of the motion of electrons as
semi-classical particles in a semiconductor. The diffusion is the real
space consequence in motion due to the fluctuations. Repeated
scattering events with surroundings—similar and dissimilar
particles—act as if there were a fluctuating force—arising in fast
scattering events. The mobility of the electron is a friction coefficient
representing the momentum space consequence of the stimulus
causing the net motion.

8.9 Randomness and stochasticity

Randomness is quite fundamentally pervasive in nature.
By this, we mean that determinism—a form of absoluteness—is
a unique notion of axiomatic constructs such as Boolean logic, or
natural numbers. Uncertainty principle is a quantum-

mechanical randomness—a
fluctuation. It is also a noise. This
quantum noise can be viewed as an
internal noise. It is intrinsic to the
system. An example of an external or
extrinsic noise is the thermal noise.
It arises from the system being in an
environment. It is the interaction with
the environment that brings about the
temperature T.

Classical randomness, such as in a fair coin or fair dice toss, is
a pseudo-randomness based on incompleteness of the description
of the problem. All one needs to know are the initial conditions
and the equation of the dynamics, and, classically, one should be
able to predict. It may take a lot of calculating, by which time the
toss may have reached its steady state. The toss problem is not
even chaotic, but a classical calculation requires the observation
of a lot of variables of the starting conditions and the interactions
as the motion of the coin or dice evolves classically. So, only in the
mathematically constrained problems do we arrive at determinism.
The natural world’s classical observation arises in their statistical

limits—an ensemble expectation—of the underlying quantum-
mechanical reality. To tackle randomness in physical phenomena,
the use of stochastic approaches abound. We have mentioned the
Fokker-Planck equation, Markov chains and the Langevin equation
and taken a first look at Brownian motion. These are all pertinent to
what we call stochastic processes.
Physically, stochasticity is the appearance of the underlying

randomness in the observed behavior. Mathematically, by a
stochastic process, we mean a family of random variables, say, {xi},
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that are defined on a probability space. Scattering events happen,
but the occurrence of different types of them (phonon, ionized
impurity, electron-electron or, for that matter, within-phonon-based,
acoustic, optical, emission, absorption, longitudinal and transverse
are just a few of these), even if they may be quantifiable by an
average, as in the results of a dice toss, are random in time. There
is a chain of such scattering events. Some are really random. Some
maintain characteristics with buried mutual information. Take, for
example, absorption of acoustic phonons during the scattering of
electrons in silicon. Lowest valleys, near the X point, are sixfold
degenerate and ellipsoidal. Acoustic phonons have an occupation
probability that decreases with energy following Bose-Einstein
occupation probability. So, absorption of low energy phonons,
which exist in larger numbers, is preferred. But conservation of
energy and momentum must hold for the phonon-electron system.
The wavevector is stretched out along the [100] direction but
shrunk along the transverse directions, on the equienergy surface.
Preferred directions have to exist, since different directions are
not equivalent in momentum. The scattering is not random for an
(ri,ki) �→ (r′

i,k
′
i) sequence in scattering. The chain of events will

matter. This is a Markov chain.
A Markov process is one where all history is lost during the

change of the state. The past does not matter anymore. Markov-
chain-based methods let us explore these sequential links. In the

Markov-chain-based techniques are
used in communications, stock market
or disease or weather forecasting, in
artificial learning and in nearly every
other place. If it is not being used
now in any problem with an analysis
and prediction theme, someday it is
likely to be, since incompleteness and
connections in sequence of events
are tackled through this branch of
probability theory that A. A. Markov,
a Russian mathematician, founded.
A fan of Pushkin, while reading Eugene
Onegin, a novel in verse, Markov
developed the approach to analyze
patterns of vowels and consonants
in Pushkin’s writings in 1913. The
proof showed that a Markov chain
must asymptotically settle to a stable
configuration that corresponds to the
long term average behavior of the
system. The appreciation of Pushkin
didn’t change because of this, but
one now had a new technique by
which one could make qualitative
predictions of whether a writing
was Pushkin’s. The methodology of
tackling chains of linked events—
the future state’s dependence on the
current state—makes probability go far
beyond dice tossing. Together with the
Bayesian approach and the frequentist
probability confidence measures,
these are three of the most powerful
mathematical techniques for the real
world.

quantum Liouville equation, the changes that occur to the set of r,k
are stochastic, arising in scattering events defined by probability
functions and a superset of many such probability functions. We
will only probe this underlying stochasticity for its most important
themes relevant to semiconductors. It is a very rich field. We
connect this probabilistic stream through related equations with
semiconductor bearings. Paul Langevin is an early 20th

century French physicist who, along
being known for the development
of stochastic dynamics, is also
known for tying electron spin to
para- and diamagnetism, so for the
early developments of quantum
mechanics. Langevin was a strong
anti-fascist who lost his teaching
position in Nazi-occupied France.
The story also goes that the Nobel
organizers asked Marie Curie to
delay her receipt of the second Nobel
Prize till a duel between Langevin,
apparently Curie’s beau post Pierre,
and the press was fought and taken
care of. Marie refused this as an
irrelevant sideshow. Marie stood tall,
and society has still not caught up
nearly hundred years later.

8.10 The Langevin and Fokker-Planck equations redux

The Langevin equation, like the Fokker-Planck equation
mentioned earlier, is a way to view the dynamics through the
stochastic theme and the probability evolution. The Langevin
equation is a master equation form pulling together fluctuations
and dissipation in a stochastic rendering:

m
dv
dt

+ mγ v =F(t) + F(t), (8.79)

a first-order differential equation, where the net force F has been
split into a macroscopic force F = − ∇H , which is a slow force, and
F, which is a fast and randomly fluctuating force, both of which
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act on the particles. γ is the same Einsteinian phenomenological
friction coefficient. F arises as a force in fluctuations of a Gaussian
variable of zero mean and short-range correlations. Let F(t)≡Fi(t)
represent this fluctuation variable. This fast force appears sporad-
ically indexed as instants i. 〈Fi(t)〉= 0. The variance arises in the
correlations of these fast scattering events, where

〈
Fi(t)Fi′(t′)

〉 =αδii′(t − t′), (8.80)

with α > 0. α is the strength of the fluctuation. For simplicity,
assume that it is also a constant. Referring back to the Brownian
discussion, γ and α are related to each other. Any position solution
of Equation 8.79 can only be expressed in a nondeterministic form
in terms of probability distribution.
The fluctuation-dissipation connection can now be seen in the

unperturbed situation when there exists no external macroscopic
force F = 0. This force is the potential field −∂V/∂z in Figure 8.11.
The Fourier transform of the velocity is

v(ω) =
∫
exp(−iωt)v(t) dt

∴ = 1
m(−iω + γ)

F(ω). (8.81)

The velocity v(t) is now also a random variable as a result of these
fast random scattering events arising in Fi(t). The first moment
〈vi(t)〉 = 0. The second moment is

〈v2i (t)〉= α

m2
1
2π

∫ ∞

−∞
1

ω2 + γ 2 dω = α

2m2γ
. (8.82)

But since m〈v2i 〉/2= (1/2)kBT, α = 2mγkBT, which is an Einstein
relation. This relates the variance of fluctuating fast forces to the
slow dissipative frictional forces and the temperature. Note also
the use of Fourier transformation in this extraction. We will see this
connection appear in response functions later.
In thermal equilibrium, the dynamics of individual particles is

diffusive. Upon application of an external force, there is a drift
motion, which, instead of being ballistic, that is, unimpeded
acceleration, is still subject to the scattering hindrance. Scattering
brings about a diffusive term that is dependent on the density
gradient ∇f—this is Fick’s or Fourier’s law—and the application
of the external force creates a drift (dv/dt = 0 in Equation 8.79); the
two are related.
It should now be clear that fluctuations, dissipation, drift

and diffusion have neighborly connections. The Fokker-Planck
equation that we first encountered in Section 8.4 looks at these same
connections, which exist in the evolution of v arising in stochasticity
in the Langevin equation, through probability. Let p(v, t) be the
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probability distribution for particle velocity at any time t at any
position r. p(v, t|v0, t0) is the conditional probability of observing
velocity v at time t, when starting with velocity v0 at some time
t0 < t. For any change from some intermediate configuration (v′, t′)
subject to this slow fluctuating force, so long as this evolution
process does not depend on how the configuration (v′, t′) itself
was arrived at, that is, there is no dependence on prehistory, one
can write

p(v, t|v0, t0)=
∫
p(v, t|v′, t′)p(v′, t′|v0, t0) dv′ for t′ ∈ [t0, t]. (8.83)

We will see equations of evolution similar to this in our discussion
of Green’s functions. It represents chaining of events. When there One might even argue that drift-

diffusion-fluctuation-dissipation is
such a chain too. Drift is connected
to diffusion, diffusion to fluctuations,
and fluctuations to dissipation, and
dissipation and drift are interlinked
too. It is now a circular chain.

exists independence from prehistory, we call it a Markov process.

In society, a lot of problems arise
that have this Markovian process
character. When one forgets history,
the sum of histories and how one
arrives at a certain societal point in
time, it becomes much easier to assign
blame and commit terrible acts. Grays
become black and white.

Only one-step probabilities matter. All the rest of the past does not.
And this is because the events (of scattering) are random.
We simplify notation at this point. First, the initial condition of

(v0, t0) is understood without being written every time. Second, we
also choose to write arguments reflecting increments so that series
expansion is easier to see.
The incremental probability of configuration evolution to

(v + �v, t + �t) from (v, t)—a scattering—is

S(v, t;�v,�t)= p(v + �v, t + �t|v, t). (8.84)

The equation of probability evolution (Equation 8.83) then becomes

p(v, t + δt)=
∫

S(v − δv, t; δv, δt)p(v − δv, t) dδv, (8.85)

with the final time, previously t, now as t + δt, and intermediate
time, previously t′, as t. When these fluctuation processes are
significant, small time increments δt also correspond to small
velocity changes δv. One may then expand in δv. This expansion
is only valid when this short-range correspondence with one-step
transitions in short distances is valid. The expansion is Small velocity change with small time

increments will not be the case for
the mesoscopic conduction discussed
earlier. Scattering is important here in
limiting these incremental changes.

p(v, t + δt) = [I 0p](v, t) − ∂

∂vi
[I 1

i p](v, t)

+ 1
2

∂2

∂vi∂vj
[I 2

ij p](v, t) + · · · . (8.86)

Here, the marginals of the perturbations are

I 0(v, t) =
∫

S(v, t; δv, δt) dδv,

I
1
i (v, t) =

∫
δviS(v, t; δv, δt) dδv,

I
2
ij (v, t) =

∫
δviδvjS(v, t; δv, δt) dδv, and so on. (8.87)
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If δt is small enough, Equation 8.79 can be reduced to a simpler
form—the consequences of slow forces disappearing and linear
expansion terms prevailing—to

m
v(t + δt) − v

δt
+ mγ v ≈ F(t)

∴ v(t + δt) ≈ (1− γ δt)v + F(t)
m

δt. (8.88)

If v(t)= v, then, for the random variable v(t + δt), the effects of F(t)
are in the other terms of this equation. They represent the effect of
transition probabilities via

S(v, t; δv, δt) = p(v + δv, t + δt|v, t)
= 〈δ[v + δv − v(t + δt)]〉F
= 〈δ[δv + γ vδt − δt

F(t)
m

]〉F. (8.89)

Equation 8.80 leads to the distribution of the fluctuating fast force
in the form

p(|F|) = A
∫

DF exp
(

− 1
2α

∫
|F(τ )|2dτ

)
dt′

≡ A
∫

DF exp

(

− δt′

2α

∑

τ

|F(τ )|2
)

dt′, (8.90)

where A is a normalization constant, and the second expression
is discretized in time. The fluctuating force, therefore, has a
distribution function that appears Gaussian:

p[F(t)]= A exp

[

−|F(t)|2
2α

δt

]

. (8.91)

This implies that, for the scattering process,

S(v, t; δv, δt) =
∫
p(F) δ[δv + γ v δt − F(t)

m
]〉F dF

= A
m
δt
exp

(

− m2

2αδt
|δv + γ v δt|2

)

. (8.92)

This gives the marginals

I 0(v, t) = 1,

I
1
i (v, t) = −γ vi δt, and

I
2
ij (v, t) = 2α

m
δt δij + vivj(γ δt)2. (8.93)

With δt → 0, we ignore the higher marginals of I >2, which are in
O(δt2), with the expansion in first order becoming

(
∂

∂t
− ∂

∂vi
γ vi − ∂2

∂vi∂vj
Dv

)

p(v, t)= 0. (8.94)
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Here, Dv =α/2m2 is the diffusivity of velocity. In equilibrium,
Dv =γ T/m. D, our macroscopic diffusion constant for particle
movement, is D=Dv/γ

2. Equation 8.94 is the formal form of the
Fokker-Planck equation.
The Fokker-Planck equation is a partial second-order differential

equation of probability distribution that can be solved given
any initial distribution p(v, t0). It describes the evolution of the
probability distribution. The first term is the linear change in time.
The second term is the drift term. The slow force F , if included
in our analysis, leads to an F/m shift in the I

1
i (v, t) contribution

of probability. If one includes and finds the expectation of v by
multiplying the modified Fokker-Planck equation with vi and
integrating, it will result in the equation

d
dt

〈v〉 + γ 〈v〉 − F
m

= 0, (8.95)

which is the drift-diffusion equation. It is also what one would
get from the Langevin equation by integrating out the noise.
〈v〉= F/mγ is drift.
The third term in the Fokker-Planck equation is the diffusion

term. A drift cloud characterized by the probability function
p(v)∝ exp[−(γ /2Dv)|v− F/mγ |2] travels centered at a drift trajec-
tory. One also sees in this relationship, at thermal equilibrium, the
familiar Maxwell-Boltzmann relationship of p(v) ∝ exp(−mv2/2kBT).
The second term and the third term are related to each other. The
equation represents the Markovian chain of connections arising
in the scattering events. At long time spans, the second and third
terms prevail, that is, drift and diffusion prevail. In any evolution
trajectory, the second term shows the consequence as a net motion,
while the third term shows the consequences of the fluctuations that
are observable through noise. When no stimulus exists, that is, there
is thermal equilibrium, they work together, balancing each other so
that the system asymptotically ends in thermal equilibrium.

8.11 Markov process and Kolmogorov equation

We now explore the chain of probabilistic interactions:
the Markov chain. A Markov process has no memory of history.
This randomness gives tremendous analytic power, as we have seen
in the relaxation time approximation. Is there a way to optimize
the descriptive accuracy by accounting for memory and analytic
tractability? This is what a Markov process approach attempts to
do, and this is what makes it useful across disciplines. Random
events may be analytically much more tractable, but they also will
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not display interesting dynamics through correlations. So, first,
let us look at how the notion of stochastic process and a chain of
events can be connected to each other through probabilities.
Let {si, ti} be a sequence where i = 1, . . . ,n tags discrete observa-

tions of the state. When the sequence of observations, i followed
by i + 1, has some randomness to it, the process is a stochastic
process. A joint probability p(sn, tn; . . . ; s1, t1) identifies each of the
collection of all such possible sequences. This stochastic process is
stationary if the probability does not change under simultaneous
time translation for each i. This is translational invariance. Since

p(sn, tn; . . . ; s1, t1) = p(sn, tn|sn−1, tn−1; . . . ; s1, t1)
× p(sn−1, tn−1|sn−2, tn−2; . . . ; s1, t1)
× · · · × p(s2, t2|s1, t1), (8.96)

is a completely random process—absent correlations and all these
probability terms independent of each other—we have

p(sn, tn; . . . ; s1, t1)=
n∏

i

p(si, ti). (8.97)

If the probability terms are dependent only on the previous state,
but not on how the previous state was arrived at, then

p(sn, tn; . . . ; s1, t1)= p(sn, tn|sn−1, tn−1). (8.98)

This is an example of a Markov process. There exists no memory, If one chooses equal time steps,
when position coordinate separation
|qj − qj−1| is large, then |qj+1 − qj| is also
likely to be large since the first arose
in a large velocity. The premise that
p(qj, tj|qj−1, tj−1; · · · ; q1, t1) =
p(qj, tj|qj−1, tj−1) has been broken.
Velocity has less memory since
changes in it arise in the interaction
event itself immediately. One could
have made this argument in phase
space instead of configuration space.

since there is no dependence on the history of how (sn−1, tn−1)
came to be. This one-step connection is a powerful interregnum
between pure randomness and detailed tracking. By choosing the
time step of updating such that short term memory is lost even as
the important characteristics of the dynamics are kept, one finds
an effective compromise that becomes tractable. For Brownian
motion, this is achieved by making the time step larger than the
fast scattering force’s interaction time duration. The process has
now been made an effective Markovian process, which will be
approximate, but very useful. The right choice of the coordinate
is important to succeed at achieving the Markovian form for a
process. In Brownian motion, the velocity evolves in a Markovian
process, but the position as the integral of velocity over time does
not. Position has long-term memory and is not Markovian.
The Markov process can be transplanted into a useful alternative

relationship in continuous form. A state (s, t), starting from an initial
condition of (s0, t0), comes about through an intermediate event at
(s′, t′). The transition arises as an integrative consequence over all
possibilities of the intermediate event, that is,
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p(s, t; s0, t0) =
∫
p(s, t; s′, t′; s0, t0) ds′

=
∫
p(s, t|s′, t′; s0, t0) × p(s′, t′|s0, t0) ds′. (8.99)

If the process is Markovian, p(s, t|s′, t′; s0, t0)= p(s, t|s′, t′), and we
have

p(s, t; s0, t0)=
∫
p(s, t|s′, t′) × p(s′, t′|s0, t0) ds′, (8.100)

where the terms are only starting and ending state dependent, that
is, maintain locality. This equation is the Kolmogorov equation.
Like other integrative relationships, this can also be written in a
summation through matrix form for discrete processes. It factorizes
the description. In the probability of ending up at (s, t) starting at
(s0, t0), consider the role of the intermediate (s′, t′), with |t−t′ = δt| �
|t − t0|; that is, a very short duration final hop. For small δt,
p(s, t|s′, t)= δt ≈ δ(s − s′) + O(δt), the process is stationary. O(δt)
is due to transitions out of s′ except those to s, and the transitions
into s. Let si �→ sj in time δt be written as a scattering term S(sj|si)δt;
then,

p(s, t|s′, t − δt)=
[
1− δt

∫
S(s′′|s′) ds′′

]
δ(s′′|s′) + S(s|s′) δt. (8.101)

Substituting Equation 8.101 into Equation 8.100, with δt → 0, we
have

∂

∂t
p(s, t)=

∫ [
S(s|s′)p(s′, t) − S(s′|s)p(s, t)] ds′, (8.102)

a master equation that is very similar, together with related
correspondences, to the scattering equation forms of Equations 8.34
and 8.39. This master equation—as did the

scattering equations—has embedded
in it the principle of detailed balance.
At large time scales, time-independent
equilibrium p0(s) arises as a ratio
of the transition rates, that is,
S(s|s′)/S(s′) =p0(s)/p0(s′).

8.12 Drude equation

A discussion of carrier transport in matter will not be complete
without some remarks on the Drude equation—an equation circa
1900—that is a projection of the classical Newtonian form of
kinetics in the solid as a bouncing motion among impediments, so
the form

d
dt

〈p〉= − eE − 〈p〉
τ
, (8.103)

with a current J = (ne2τ/m)E . This current expresses semi-
heuristically Ohm’s law. Paul Drude wrote this equation for
metals—where there are lots of electrons that could be free to move
between the impediments in the medium—and it is a form that
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precedes the quantum formulations. It worked for metals and
gained traction, with Sommerfeld later on deploying it in his hybrid
formulations. But it is an equation that seems to work only because
a number of errors largely balance out for some of the problems Albert Einstein, before the fame and

while still a student transitioning to
patent examiner and looking for a
faculty position, strongly disliked
Drude’s cut-and-paste formulation.
One can see in this subject his interest
in exploring Brownian motion as well
as thermoelectricity, that is, the notion
that particles also carried along energy
with them, which was his first attempt
at a doctorate degree with H. F. Weber
at ETH Zürich. Einstein wrote to Paul
Drude his criticism, the reply came,
and Einstein wrote to his friend Jost
Winteler,  ̏To two pertinent objections
which I raised about one of his theories
and which demonstrate a direct defect
in his conclusions, he responds by
pointing out that another (infallible)
colleague of his shares his opinion˝.
Einstein to Jost Winteler, July 8, 1901;
quoted in A. Douglas Stone,  ̏Einstein
and the quantum: The quest of the
valiant Swabian,˝ Princeton, ISBN
978-0-691-16856-2 (2013), 44. By the
way, Einstein’s photoelectric effect
equation too ignores much that
happens by way of scattering and
interactions in the surface region,
where the photon is interacting and
dislodging an electron out of the
crystal. The electron has to make its
way to the surface and out.

of interest. Metals are not describable as a gas of classical particles.
A large number of states in the conduction band are filled, and
transport-related interactions and scattering are largely localized to
the Fermi surface. What happens around the Fermi energy prevails.
These are but two of its serious problems. That electrons carry
along energy became a source of serious discrepancy laid bare in
the thermal capacity of metals. These shortcomings are very stark.
It is often amusing to see the Drude thinking still being applied
in modern problems where quantum-mechanical interactions are
crucial; examples are graphene and optoelectronics. One has to be
really careful when resorting to it lest some imbalance in errors
crops up and is lost in the quantitative details.
This completes our description of the evolution of states. We are

now left with understanding the physical properties of the transport
under stimulus simultaneously present from different forms and the
details of the transitions in the semiconductors. This we tackle in
the next set of chapters.

8.13 Summary

This chapter is one where we make our first foray into
describing time evolution—dynamic changes—under perturbation
in a solid as one burrows in from a classical description to a
quantum description due to the change in the length scale of the
problem, with the correspondence principle expectation intact.
Quantum-mechanical and statistical-mechanical constraints all enter,
so the chapter spanned a vanishing scattering view in quantum
form, which is the analog of a projectile ballistic motion, the
classical Liouville description of particles and their ensembles, the
evolution of the classical to the quantum Liouville description, the
Fokker-Planck equation and on through a Boltzmann transport
semi-classical description to the nature of scattering and its
modeling. This latter part let us take a broader view of Brownian
motion, randomness, stochasticity and how these are dealt with
in Markov processes and through the Kolmogorov equation.
Between these ends, we made our first explorations of scattering
processes and their quantum and semi-classical descriptions. So,
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it is a chapter tackling cause and chance in the classical-quantum
interregnum.
Our discussion of quantum transport, absent scattering, showed

a quantum conductance of 2e2/h, with two electrons (up and down)
occupying a channel. Open and close such channels with a change
in the energy slit controlling the transport, and the conductance will
change proportional to the number of channels opened or closed.
This is the equivalent of modes of electromagnetics that give rise
to a corresponding wave impedance. This led us to a view for
the mesoscale—a scale where the quantum manifests itself under
limited scattering, and through the other quantum properties of the
electron particle—from the one end of the spectrum of no scattering
and quantum behavior.
In the classical description of a particle or ensembles, two

canonical coordinates—position and momentum in the Hamiltonian
description—suffice to describe the evolution. The phase space
in this multi-dimensional space composed of the two canonic
coordinates for each of the particles is incompressible. The Liouville
equation describes the evolution of this ensemble, and if one
knows the Hamiltonian, all the time dependences of interaction
that are not in the Hamiltonian, such as when more than one set
of particles are involved, and the state at some initial condition,
then the evolution is completely describable in forward time and
backward time. Quantum mechanics through uncertainty prescribes
a spread, so the evolution of states has spreads. The quantum
version of the Liouville equation describes this spread, and it brings
in probabilities in our description because quantum mechanics is
a statistical theory. The quantum Liouville equation did away with
incompressibility in phase space.
Writing the evolution in terms of probabilities is a natural

progression when incorporating cause and chance into the evo-
lutionary discussion. The quantum Liouville equation in terms of
the expectations on an observable 〈A〉 is one form. The Fokker-
Planck equation summarizing drift and diffusion over a distribution
is one such form. The Langevin equation is another such master
equation, where fast and slow forces are assimilated together in
a particle response so that one can see the connection between
drift and diffusion in response to forces, and their connections to
correlations, which too are connected to the variety of moments,
one of which is thermal noise. Probabilities, memory and history
are pulled together in the discussion of Markov process and the
Kolmogorov equation, where the evolution of the state under
scattering—with randomization and without randomization—can
be brought together.
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The Boltzmann transport equation is the form of this evolution
of state—captured through the distribution function—that we
concentrated on. We could interpret changes in real space (position
canonic coordinate) and momentum space (wavevector k repre-
senting the crystal momentum h̄k canonic coordinate). Scattering
representing changes in the momentum of particles constituting
the distribution could be incorporated, with the scattering specific
to the various interactions that are simultaneously present in
the crystal. This is the general form that can be implemented
computationally. But we found it very meaningful, particularly to
gain intuition, to employ a relaxation time approximation where
a single momentum—the canonic coordinate—relaxation time
constant could be used. We noted conditions under which this
approximation would be quite valid—elastic scattering, angular
scattering and others—where the linear evolution of the distribution
function acquired very specific meanings, such as mobility and
diffusion. These mobilities and diffusions are precisely what
Einstein postulated for Brownian motion, which is observed
for small particles in fluids. These are connected to fluctuation-
dissipation, noise and other points of discussion of the chapter. The
Boltzmann transport equation also showed us how the moments
of the equation give rise to an understanding of particle continuity,
current continuity, energy continuity and other higher moments, all
of which are representative of the evolution of probabilities and the
consequences of correlations.
The Boltzmann transport equation applies to single particles as

well as their collection, such as in the distribution function. So,
the equation also works to show how transport happens without
scattering, so with a quantum conductance of 2e2/h, since the
bandstructure characteristics can be embedded in it, as it does
in the presence of scattering. This Boltzmann transport equation
therefore will be one of our basic tools for describing the behavior
of semiconductors under stimulus in the following chapters.

8.14 Concluding remarks and bibliographic notes

This chapter was our way of setting up the equations
of evolution as collections of particles undergo change under
stimulus with interactions within and with the environment.
Brownian motion, as an example of fluctuation-dissipation, is a
classic example of this evolution, where mobility and diffusivity
are related and with the fast process of scattering providing the
fluctuation and dissipation in the force field. Ensembles treated as
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statistical distributions undergoing interactions subject to different
probabilities can be viewed through probabilistic equations.
And this is what the Fokker-Planck, Langevin, Markov chain,
Kolmogorov, Liouville, quantum Liouville and Boltzmann forms
that we concentrated on represent.
To get an appreciation for this subject and its history, Brownian

motion provides a very important starting point. A paper by
Kramers1 is a very rich and generous starting point. Essential 1 H. A. Kramers,  ̏Brownian motion in

a field of force and the diffusion model
of chemical reactions,˝ Physica, VII,
284–304 (1940)

concepts of particle distribution dynamics come together here with
chemical reactions, where the interaction is represented through two
potential wells between which there is the barrier energy related to
the chemical reaction. This is very different from the evolution of
the distributions that we are interested in, but one can immediately
see the fundamental similarities. At the other end, a comprehensive
development of mesoscopic transport using quantum Landauer
approaches is provided in the book by Nazarov and Blanter2. 2 Y. N. Nazarov and Y. M. Blanter,

 ̏Quantum transport,˝ Cambridge,
ISBN 13 978-0-521-83246-5 (2009)

Another good text is by Datta3.

3 S. Datta,  ̏Electronic transport in
mesoscopic systems,˝ Cambridge,
ISBN 0-521-41604-3 (1999)

The Fokker-Planck, Langevin, Markov chain and Kolmagorov
equations, as ways to view stochastic processes, are also applied in
many branches of sciences. One either studies individual trajectories
or studies the evolution of the probability in position and time. As
such, there are a large number of books on the subject. Two books,
both by Friedman4,5, provide an advanced quantitative introduction 4 A. Friedman,  ̏Stochastic differential

equations,˝ 1, Academic, ISBN
9781483217871 (1975)

5 A. Friedman,  ̏Stochastic differential
equations,˝ 2, Academic, ISBN
9781483217888 (1975)

to the subject. These books are very mathematical. An advanced
approach, and a standard for physics-centric books, is the text
by Altland and Simons6. Its chapter on classical nonequilibrium

6 A. Altland and B. Simons,
 ̏Condensed matter field theory,˝
Cambridge, ISBN 13 978-0-521-76975-4
(2010)

builds the thread from Fokker-Planck/Langevin through Boltzmann
and Einstein to Markov and Kolomogorov majestically with
completeness.
The Liouville equations and the Boltzmann transport equations

appear in nearly all the semiconductor physics texts, with slightly
different twists. Jacoboni’s7 is one of the most modern forms, 7 C. Jacoboni,  ̏Theory of electron

transport in semiconductors,˝
Springer, ISBN 978-3-642-10585-2
(2010)

and it integrates the development of these equations physically
and analytically in a very appealing way. A comprehensive text8

8 P. A. Markowich, C. A., Ringhofer
and C. Schmeiser,  ̏Semiconductor
equations,˝ Springer-Verlag, ISBN
0-387-82157-0 (1990)

by Markowich et al. discusses the kinetic theories of transport,
including Boltzmann, quantum Liouville and other transport
phenomena such as tunneling, that we did not discuss.

8.15 Exercises

1. Quantum conductance—2e2/h in units of S for Siemens, or 2e/h
in units of S per electron charge—appeared when there was
unscattered transport in an occupiable channel with a spin up
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and a spin down electron. Can you give a simple explanation of
why this conductance is a constant irrespective of the length of
the channel? [S]

2. What is a mixed state? Are there classical mixed states? If yes,
what does that physically mean? [S]

3. In thermal equilibrium, detailed balance holds. For a conductor,
one implication is that the current that one will measure in
the shorting wire that assures that there exists no external
electromagnetic interaction is also zero—no net flow of particles
or energy. How can one tell that there is motion of electrons in the
conductor then? Or are they standing still? [S]

4. Away from equilibrium, why is the change in distribution
function an odd function of momentum? Is there an argument
more general than our argument using current? [S]

5. Should a perfect crystal (i.e., one with no defects, identical
atoms at the lattice sites, etc.) have perfect thermal conductivity?
Phonons don’t disappear and the wavepacket consists of the
linear combination of eigenstates, so it seems phonon modes in q-
space persist and would give thermal superconductivity. Provide
a short argument for or against, please. [S]

6. Fick’s first and second laws for diffusion, written for a one-
dimensional system, are

J = − D ∂c
∂z
, and

∂c
∂t

= ∂

∂z

(
D ∂c

∂z

)
.

J here is a flux, D= (1/2)λ2ν, where D is a diffusion coefficient, λ
is a  ̏jump˝ length scale, ν a frequency of the jumps, and t is time.
If diffusion is a random walk, write down an equation for this
jump frequency and suggest a meaning. [S]

7. In many ways, the Boltzmann transport equation is a remarkable
result. It predicts irreversibility. The Liouville equation from
which it came, however, is reversible. Speculate on what may be
going on for this to come about. [S]

8. Assuming Boltzmann and relaxation time approximations, and
a small departure from thermal equilibrium, show, using the
Boltzmann transport approach, that a gradient of carrier density
leads to diffusion whose diffusion coefficient is λvθ /3, where λ is
the mean free path. [S]

9. The third moment equation from the Boltzmann transport
equation, the energy conservation equation, has as its last term
∇r · 〈ṙ · h̄2k2/2m∗〉. What exactly is this saying? [S]
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10. Why is the relaxation time τ (k), which we have also written as τk,
a function of k? [S]

11. Suppose the thermal equilibrium distribution, f0, is approximated
by a Boltzmann distribution function, that is,

f 0k = C exp
(

− Ek

kBT

)
.

For free carriers located in a spherical band with effective mass
m∗, the electron energy is given by E = (1/2)m∗v2k. The resultant
carrier distribution is the Maxwell-Boltzmann distribution.
Show that, in the presence of a weak external electric field E , the
distribution function is approximated by

fk = C exp
(

−m∗|vk + vd|2
2kBT

)

,

where vd is the drift velocity. What is its magnitude in terms of
parameters that characterize the semiconductor? The interpreta-
tion of this result is that the external field causes the carrier veloc-
ities to increase uniformly by an amount equal to vd while leaving
the distribution function unchanged. The resulting distribution
function is therefore known as a drifted (or displaced) Maxwell-
Boltzmann distribution function. [S]

12. Using the Maxwell-Boltzmann distribution function at equilib-
rium, show that the average kinetic energy of an electron is given
by 3kBT/2. Show that, for the displaced Maxwell-Boltzmann
distribution, the average kinetic energy is given by

1
2

m∗v2d + 3
2

kBT.
[S]

13. Apply the Boltzmann transport equation in a relaxation time
approximation for a semiconductor where both electrons and
holes are present, and show that, in homogeneous conditions, the
Boltzmann gas of electrons and holes can be viewed as a charge
gas with a conductivity of σ = e(nμn + pμp), where the μn and μp

are drift mobilities given as

μn = e
m∗

n

〈v2nτ n(vn)〉
〈v2n〉 .

Here, subscripting with n identifies the characteristic with that
of an electron. An analogous expression holds for holes. τ n(vn)

and τ p(vp) are the relaxation times for electrons and holes,
respectively. [S]
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14. Prove that

d
dt

〈ψ |A |ψ〉= i
h̄
〈ψ |[H ,A ]|ψ〉 + 〈ψ |∂A

∂t
|ψ〉,

where |ψ〉 satisfies

−h̄
i
∂|ψ〉
∂t

= H |ψ〉.
If A has no explicit dependence on time, then ∂A /∂t = 0.
Employing

H = p2

2m
+ V(z, t),

show that

d〈z〉
dt

= 〈p〉
m
, and

d〈p〉
dt

= 〈−∂V
∂z

〉,
using 〈A 〉 ≡ 〈ψ |A |ψ〉. The expectation values follow classical
equations of motion. This is Ehrenfest’s theorem. [S]
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9
Scattering-constrained dynamics

The utility of semiconductors comes from their ability to
efficiently transform energy forms. This effectiveness is particularly
suited to the information enterprise through the processing,
communicating and sensing that these transformations enable.
Optoelectronic conversion such as in solar cells, digital cameras,
lasers, transistor-based computing and communication, environment
and health care sensors, including those that perform ultrasensitive
magnetic probing of the brain, et cetera, are all based on the
transformations of energy, which itself is based on the flow of par-
ticles, electromagnetic interactions, with robustness, reliability and
sensitivity, while being perturbed by the environment. An example
of a perturbation to the particles’ evolution is scattering. By this,
when considering electrons and holes, we mean all interactions
that change the charge carriers’ states, be they transitions between
bands, within bands, with photons or with phonons. Understanding
the flow and the processes under these different perturbations with
the specifics of semiconductors taken into account is important and
physically quite rich.
In this chapter, we will develop the analytic description of this

particle dynamics, while the particles undergo scattering, that is,
interact with the surroundings under various influences of the
electrical, magnetic, optical and thermal variety. This will influence
the transport and energy conversion of various forms that can be
viewed through the distribution function that describes particle
ensemble in the canonical coordinates developed in Chapter 8.
We will use the Boltzmann transport description of this dynamics
where multiple influences may be simultaneously at work.

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001
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9.1 Thermal equilibrium

Thermal equilibrium is much easier to describe physi-
cally. A closed system where energy exchange is allowed with
its surroundings, with no external energy stimulus except thermal
through the existence at temperature T, achieves this state, a steady
state, where the entropy is maximum and detailed balance—
in detail, for every process, an equal and opposite rate—holds,
and if one were to disconnect the system from its surroundings,
there the system would remain. The system is in the universe’s
cavity, immersed in a blackbody radiation bath at temperature
T, with no other stimulus. The particle distribution function
remains the same, and if one were to make a measurement for any
physical observable, it would remain the same. This is to say that
an operator operating on this distribution function gives us the
observable, physically and mathematically.
Boltzmann, through the phase-space description, provided a Boltzmann had considerable difficulty

in convincing others of his statistical
views, even though Maxwell and
Gibbs too were also questioning the
pervasive dogma of determinism.
This period was the end of the 19th
century. While Euler’s collected works
may be the largest, Boltzmann’s two-
volume Vorlesungen über Gastheorie is
the sharpest small collection.

statistical foundation. Interactions within the system increase the
entropy. Boltzmann’s H-theorem sets the analytic prescription for
how this happens. For a collection of independent classical particles,
Boltzmann’s H-factor, which gives the name to Boltzmann’s
H-theorem, is given by

H(t)=
∫ ∞

0
f (E, t)

[
ln

(
f (E, t)
E1/2

)
− 1

]
dE, (9.1)

where f (E, t) is the particle energy distribution in time. In an
isolated system, this H-factor is at a minimum, when the particles
obey the Maxwell-Boltzmann distribution. For any other distri-
bution, for the same total kinetic energy E, this H-factor will be
higher. When scattering is allowed, any starting distribution of
classical particles approaches the minimum of H and the Maxwell-
Boltzmann distribution. This H-theorem is a statement of the

inevitability of irreversibility. It is a
theorem that exemplifies the 2nd law
of thermodynamics, which itself is
really a postulate.

From reversible processes comes the irreversibility.
A small change from this thermal equilibrium, consequently,

the changes in the distribution, can be managed and understood
as a perturbation from this thermal equilibrium. So, we may apply
electric fields or magnetic fields, shine light or impose temperature
gradients, and, in principle, the change can be found, and one may
determine the characteristics of the system arising in the transport
and the interactions.
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9.2 Transport in generalized form

A small change from thermal equilibrium, under electric,
magnetic, optical or thermal stimulation, can be viewed through
the first order terms of linear change. Where important, one may
include even higher order terms selectively. The macroscopic
properties that these distribution functions change correspond to
what can be viewed directly through macroscopic expectations in
Onsager’s approach. This we will tackle separately in Chapter 15.
If, on the other hand, the changes are significant, we will tackle
these too later through Onsager’s approach. Thermal equilibrium
means for us no net change in macroscopic observables in time.
There must be no net change in the observable’s expectation, even
if there may be fluctuations in measurements due to fluctuations
such as noise. This must require, in detail, a balance so that the
variety of specific interactions do not become a conduit to a net
transformation. The net rate of any detailed state-to-state transition
must vanish in thermal equilibrium. If there is a transition rate
from a state |i〉 to state | f 〉, then there must be an equal rate for
transition from state | f 〉 to state |i〉. In situations of interest to us
in the Boltzmann transport picture, for the particles in |k〉, with
an occupation given by f (k), and in |k′〉, with an occupation given
by f (k′), f (k)Skk′ [1 − f (k′)] must balance with f (k′)Sk′k[1 − f (k)]
in thermal equilibrium. Only then can no net transport in charge
or energy, et cetera, can be ensured in thermal equilibrium. If we
now stimulate this system, from many sources simultaneously,
we will need to find the nonequilibrium distribution function in
order to determine the characteristics arising from the transport
and interactions of carriers engendered by the stimulations. In the
linearized form, in principle, this determination will follow a quite
simple algorithm based on the rate of change, even if the nature of
excitation by polar and axial vector forces has divergence and curls
as the operating mechanism, which will complicate the forms of the
results.
In writing the Boltzmann transport equation as

df
dt

= −k̇ · ∇k f − ṙ · ∇rf + ∂f
∂t

∣∣
∣
∣
scat

= −k̇ · ∇k f − v · ∇rf + ∂f
∂t

∣
∣
∣∣
scat

, (9.2)

the first term arises in momentum-space changes, and the second
in those of real space. If there exists a force F, due to the stimulus
applied, we can rewrite the evolution of the distribution function as
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df
dt

= − 1
h̄

F · ∇k f − v · ∇rf + ∂f
∂t

∣∣
∣
∣
scat

. (9.3)

While we will employ quantum-mechanical arguments in the
quantum-specific subsystem, where it is critical to deploy them,
for example, in the scattering itself, we will keep in mind that
the observations are in a classical environment. Following our argu-
ments, therefore, for us, here df/dt = 0, as a direct consequence of
Liouville’s equation and phase-space incompressibility. We also
adopt relaxation time approximation to make solutions analytic;
to some limited level, tractable; and, to a larger extent, useful for
gaining intuition. df/dt = 0, in Equation 9.3, with relaxation time
approximation, leads to

df
dt

= − 1
h̄

F · ∇k f − v · ∇rf − f − f0
τk

= 0, (9.4)

whose solution, away from the equilibrium, has the form

f = f0 − τk

h̄
F · ∇k f − τkv · ∇r f

= f0 − τk

h̄
F · ∂f

∂E
∇kE − τk

1
h̄
∇kE · ∇rf

= f0 − τk

h̄
∇kE ·

(
∂f
∂E

F + ∇rf
)

= f0 − τkv ·
(

∂f
∂E

F + ∇rf
)
. (9.5)

These last two equation forms are meaningful. A nonequilibrium
in the distribution occurs because of the stimulation and is also
mediated by the scattering process, a flow in through the group
velocity, and changes arising in two terms contributing to a
flux: the force that is modulated through an energy dependence
(the k-space effect with energy marginality), and the real space
effect of the concentration gradient. The quantum-mechanical
connection of states through the bandstructure is built in. The τk as
a prefactor shows the relaxation effect of scattering, and the velocity
v shows the linear dependence on the flow of carriers under the
bandstructure constraints. And this relaxing and moving in works
with the consequences of forces in k-space that cause changes in
energy and the consequences of real space concentration changes.
But Equation 9.5 is a nonlinear equation. The simplest example of

a force of interest is in the form of an electric field. Let there be no
other force, and let the material be homogeneous with a vanishing
concentration gradient that may be ignored. Then, the distribution
function, in the presence of the electric field E , is

f = f0 + qτk
∂f
∂E

v · E . (9.6)
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For electrons, q = −e here. For holes, q = +e. We can linearize it.
Changes in distribution function are small. So, write ∂f/∂E ≈
∂f0/∂E, which says that while the occupation at any state E did
change, it was a small change (a redrawn Figure 8.7 with E ∝ k2

is a small change for any k2 contour), and it pretty much looks
similar in shape—its marginal propensity is maintained—even if
the magnitude of the distribution function is different. So, now

f = f0 + qτk
∂f0
∂E

v · E

or the form f = f0 + ∂f0
∂E

v · qτkE , (9.7)

which is explicitly linear in an electric field. It also tells us that
marginal energy causing a change in the distribution function is
the product term v · qτkE . qE is a force, and qτkE is the impulse
over the relevant time scale of τk between scattering events. The
distribution function evolves in the field under the influence of
these impulses appearing on the τk time scales. The spatial extent
of this force acting in time is determined by the velocity v with
which the flow occurs. Equivalently, the force qE is acting over the
distance vτk and imparting the energy that results in the change in
the distribution function.
So, we have found a linearized solution, under these  ̏fast˝

impulse events, with the assumption of relaxation time and the
distribution function not distorting excessively as it changes.
Now, we generalize by using our learning from this. Let there be

all the three stimuli of interest to us—an electric field, a magnetic
field and thermal gradients—present simultaneously. The starting
form of Equation 9.5 implies

f = f0 − τk

h̄

[
q(E + v × B)

] · ∇k f − τkv · ∇rf . (9.8)

With Equation 9.8, the force has changed from just qE , and we
are also interested in incorporating the effects of the concentration
changes from the ∇rf term. Thermal effects too will appear in here
since we are going to employ a general formalism. Our ansatz is
that the linearized form of the solution remains as the lowest-order
effect; that is, that the solution is of the form

f = f0 + ∂f0
∂E

v · G, (9.9)

where G is a generalized impulse that we need to determine. Take
the dot product term of the square-bracketed force and gradient of
the distribution in Equation 9.8, and substitute this ansatz:
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q (E + v × B) · ∇k f = q
[
E · ∇k f0 + (v × B) · ∇k f0

+ E · ∇k

(
∂f0
∂E

v · G
)

+ (v × B) · ∇k

(
∂f0
∂E

v · G
)]

. (9.10)

In the first term, ∇k f0 = (∂f0/∂E)∇kE = (∂f0/∂E)h̄v. The second term
too contains this same gradient. The impulse G in the third term
is also a function of the electric field, so the dot product is second
order in the electric field. With the system in small perturbation, we
neglect the second order term. For the fourth term,

(v × B) · ∇k

(
∂f0
∂E

v · G
)

= ∂f0
∂E

(v × B) · ∇k (v · G) + (v · G) (v × B) · ∇k
∂f0
∂E

= ∂f0
∂E

(v × B) · ∇k (v · G) (9.11)

because ∇k(∂f0/∂E) = (∂2f0/∂E2)∇kE = (∂2f0/∂E2)h̄v, which results in
the second term of this expansion vanishing, since v × B with which
it has a dot product is orthogonal to it. So, we have

q (E + v × B) · ∇k f ≈ qh̄
∂f0
∂E

v · E

+ q
h̄

∂f0
∂E

v · [B × (G · ∇k)∇kE] . (9.12)

Now, we tackle the last term of Equation 9.8,

v · ∇r f = v · ∇r f0 + v · ∇r

(
∂f0
∂E

v · G
)
, (9.13)

where the second term is a spatial dependence in the impulse
effect, while the first one is the primary spatial dependence of the
distribution function. The second term is a spatial dependence of
the perturbation, is of higher order and can be neglected. So,

v · ∇rf ≈ v · ∇rf0

= ∂f0
∂ [(E − μ)/kBT]

v · ∇r

(
E − μ

kBT

)

= kBT
∂f0
∂E

v · ∇r

(
E − μ

kBT

)
, (9.14)

where μ is the chemical potential, that is, the non-electrical
part of electrochemical potential (EqF =μ− qψ , where ψ is the
electrostatic potential). We pool these approximations together,
and compare them to the impulse-based ansatz to look for further
simplifications:
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1
τk

∂f0
∂E

v · G = q
∂f0
∂E

v · E + q
h̄2

∂f0
∂E

v · [B × (G · ∇k)∇kE]

− kBT
∂f0
∂E

v · ∇r

(
E − μ

kBT

)
(9.15)

has the ∂f0/∂E multiplier in common; therefore,

G
τk

= qE + q
h̄2

[B × (G · ∇k)∇kE]− kBT∇r

(
E − μ

kBT

)

= qF + q
h̄2

[B × (G · ∇k)∇kE] ,

where qF = qE − kBT∇r

(
E − μ

kBT

)
(9.16)

is what we will call a force (F is an electrothermal field), where the
electrical force and the concentration and thermal gradient forces
can be lumped. These forces arise in causes that are polar in nature.
In the laboratory frame of reference, one can view the electric field
as tying electric charges, the entropic concentration forces tie the
chemical-centric concentration of species, and the thermal forces
tie differences in temperature. All these can be added vectorially.
The magnetic field, on the other hand, causes a rather convoluted
effect through the cross-product of an axial vector. It also brings
in the complication of the need to determine the impulse G self-
consistently, since it is in an implicit equation.
So, our solution for the general Boltzmann transport problem is

through a generalized impulse function.

G = qτkF + qτk

h̄2
[B × (G · ∇k)∇kE] , (9.17)

which represents electrical, magnetic and thermal stimuli, leading
to a linearized small-perturbation change in the distribution
function of

f = f0 + ∂f0
∂E

v · G. (9.18)

Calculating the entire impulse G from the implicit Equation 9.17
is the challenge to us. Through ∇kE as well as (G · ∇k) operating
on it, so through the bandstructure-defined allowed states, the
propagational properties of these states and then the interaction of
the generalized impulse of this propagational response, one must
find it. The flux of energy is v · G, and it has the primary effect on
the change in the distribution function.
Although it is not quite explicit, we now have the algorithm for

finding the response. One can apply it to the various circumstances
one finds in a semiconductor. Many of these circumstances are
interesting. In electronics, one may only have electric fields.
This is the simplest problem, and Chapter 8 had examples of it
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together, simultaneously, with concentration gradients. The k̇ and
the ṙ resolved those. But, even in electric devices, there may be
temperature changes across it, since devices dissipate. This is an
additional complication, which, again, the electrothermal force qF
will tackle through the linearized Boltzmann-distribution function
representation.
Our first simplification toward analyticity comes from band-

structure. Carriers are largely at bandedges when the disturbance
is limited from thermal equilibrium. They may be in isotropic,
anisotropic or even multiple bands, as in the case of holes. The E(k)

approximation for this is subsumed, here written for the electron
case, in

E = Ec + h̄2

2
k · 1

M∗ · k, where
1
M∗ =

⎡

⎢⎢
⎣

1/m∗
1 0 0

0 1/m∗
2 0

0 0 1/m∗
3

⎤

⎥⎥
⎦ (9.19)

is the effective mass tensor. This implies See Appendix J for an expanded
discussion of the effective mass tensor.

(G · ∇k)∇kE = h̄2
1
M∗ · G ∴ G = qτkF + qτkB × 1

M∗ · G. (9.20)

The solution for the impulse is

G = qτk
F − qτk(1/M∗) · (F × B) + (qτk)2det[1/M∗]F · B[(1/M∗)−1 · B]

1+ (qτk)2det[1/M∗][(1/M∗)−1 · B] · B
.

(9.21)

In the case of spherical constant energy surfaces, the distribution
function is

f = f0 + ∂f0
∂E

qτkv ·
[
F − (qτk/m∗)(F × B) + (

qτk/m∗)2(F · B)B

1+ (
qτk/m∗)2B · B

]

.

(9.22)

This solution is instructive by showing the entangled relationships
arising in the different fields—polar and axial—and their divergence
and curl operation on the independent electron or hole. The
denominator shows that while undergoing scattering during the
duration of each impulse, the particles are also being forced into
circular orbits by the magnetic flux. This is a cyclotron resonance
term, where the carrier exhibits an angular frequency consequence
of ωc = q|B|/m∗ while undergoing scattering at the rate 1/τk. The
impulse’s energetic consequences are being degraded by this path
increase, and scattering, even as a field—B—does not provide
energy, since the motion is perpendicular to the field. The first
term in the numerator shows the direct polar electrothermal conse-
quences. An electric field, a thermal field or a concentration field all
behave similarly and co-act through exchanges between the energy
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forms. Electrical conductivity, thermal conductivity and electrother-
mal effects (Seebeck, Peltier and Thomson) are consequences that
can be analyzed through the distribution function in the linearized
lowest order approximation of the polar field’s consequences. The
second term in the numerator is the first order consequence of the
interaction between the axial and the polar fields. Deviation from
axial paths will lead to voltage, temperature and concentration
consequences arising in the magnetic field. The Hall effect is one
consequence showing the magnetic-electric interaction, but there
are others, with thermal involvement (Ettinghausen, Nernst and
Righi-Leduc). The third term in the numerator is the next order
consequence in an electrothermal-magnetic field interaction that is
a magnetoresistive effect. The distribution function, while explicitly
showing the momentum relaxation time τk representing interaction
of states, also has a complexity that arises in the energy flow
and impulse consequences that the second term represents. The
time constants—relaxation times—for any parameter of interest
under the different excitations will have to be evaluated under
those circumstances. So, the various effects just mentioned will

Following on an earlier margin note,
J = qn〈v〉, with v subsuming the phase-
space momentum and real space
components, will have to be evaluated
using this nonequilibrium f , and
similarly for the energy flow density,
W = n〈wv〉. One can see in the product
wv a verity of energy dependences in a
relaxation time.

have complicated expectation relationships of the various flow
consequences involved and, through that, dependences on τk

and energy.
Consequences of light stimulation are incorporated into the

Equation 9.22 relationship implicitly. Electromagnetic fields affect
carrier transport through interaction. Lasers, because they are coher-
ent, will bunch particles through electromagnetic interaction at the
wavelength scale of the light in the medium. Light’s interaction also
creates particles, which is a change in the distribution function. The
former will have to be modeled through the electrical and magnetic
terms, which will not be an easy task. The latter—the creation of
particles under small intensity and so small field consequences in
the medium—directly affects the chemical potential. And because
both carrier types may be created, one would have to resort to
two distribution functions, and therefore two Boltzmann transport
equations will have to be solved.

9.2.1 Expectations and time constants off-equilibrium

We start by resolving the expectations of parameters of
interest—how to calculate them—and with the development of
some general relationships of use when energy forms, exchange and
the relaxation expectation relationships get enmeshed. First, take
the velocity 〈v〉 in our formulation. Let us look at the simplest of
situations, B = 0, T a constant, and the material homogeneous:



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

chapter 9: scattering-constrained dynamics 351

〈v〉 =
∫ ∞
−∞ vf0 dv + q

∫ ∞
−∞ τk(∂f0/∂E)v(v · E) dv

∫ ∞
−∞ f0 dv + q

∫ ∞
−∞ τk(∂f0/∂E)(v · E) dv

≈ q
∫ ∞
−∞ τk(∂f0/∂E)v(v · E) dv

∫ ∞
−∞ f0 dv

, (9.23)

since the expectation of velocity on the thermal equilibrium
distribution vanishes, and the second term in the denominator is
small under the small-perturbation assumption under which we
have executed these derivations. The principle in determining any
expectation is to employ the distribution function as the weighting
function. The distribution function is the statistical model of the probability
for the various possibilities of (r,k) of the particles. Again, take the
simplest example of isotropic single band with effective mass m∗.
Since E − Ec = (1/2)m∗v2, the elemental velocity space volume is
|dv| = 4πv2dv, and, in an energy basis,

〈v〉= q
∫ ∞

Ec
τk(∂f0/∂E)v(v · E)(E − Ec)

1/2 dE
∫ ∞

Ec
f0(E − Ec)

1/2 dE
. (9.24)

The three real space directions are equivalent. In thermal equilib-
rium, 〈v〉0 = 0. But carriers still move, since the system is in an
environment at temperature T and there is a distribution function
that varies with the energy that is related to the velocity. The
mean may vanish in the thermal equilibrium, but the 〈v2〉 will
not. So, one can speak to net velocity—which vanished—but also
the most probable speed, which will be the speed without regard
to the direction with highest probability, to the root mean square
velocity, or even to the mean of the speed. The thermal velocity
in this collection of velocities is a measure of the thermal motion,
so a velocity associated with the form the distribution takes with
temperature. Thermal velocity (〈v〉θ = vθ , with v a

scalar), being a measure of a velocity
associated with the distribution at
the temperature T, takes a variety
of definitions. It is the root mean
square of the velocity, but also the
most probable speed, or the mean of
the magnitude of the velocity. The
root mean square of the total velocity,
and the mean of the magnitude of
the velocity, are the most common
accepted forms.

The disturbance from equilibrium is small, with a net noticeable
effect 〈v〉 in response to the electric field. For this isotropic case, we
can handle this easily by choosing the direction of the field as one
of the directions. Let this be the y direction. So, E = E ŷ. A small

disequilibrium, that is 〈v〉 	 〈v2〉1/2, implies that |v|2 ≈ 3v2y. We
calculate this using Equation 9.24:

〈vy〉= 2
3

qEy

m∗
q
∫ ∞

Ec
τk(∂f0/∂E)(E − Ec)

3/2 dE
∫ ∞

Ec
f0(E − Ec)

1/2 dE
. (9.25)

In our discussion of the meaning of the distribution function
and its drifted form, with the model example in Equation 8.58,
we encountered qτk/m∗ as a proportionality constant that we
interpreted as a mobility. We can now give this parameter much
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more specificity given that the distribution function provides a
clear phase-space dependence of where the particles are. So, if we
write by equivalence vd|y = (qEy/m∗)〈τk〉 as the response, then the
momentum relaxation time to be used must be the expectation
value over all the energies possible, that is,

〈τk〉= 2
3

∫ ∞
0 τk

(−∂f0/∂E
)
η3/2 dη

∫ ∞
0 f0η1/2 dη

, where η = E − Ec

kBT
. (9.26)

η is a normalized kinetic energy parameter that we have employed
before. The form of averaging of relaxation time for tackling the Particularly of note here is that the

drifted distribution’s flow effect has
appeared within the averaging, and
one must incorporate the state density
and marginality in it. It involves an
energy dependence prescribed by
the distribution function change. If
the mass is anisotropic, this will get
relatively complicated.

drift velocity of a distribution function is prescribed by this form
and arose in the linearized Boltzmann transport equation solution.
The mobility associated with this drift is the conductivity mobility.
In general, then,

v =μcE ; (9.27)

not accounting for the sign of the charge of the particle, the
current is

J = q2n〈τk〉
m∗ E =σE , (9.28)

where σ = q2n〈τk〉/m∗ = qnμc is the conductivity.
The expectation 〈τk〉 appeared in a very specific form for the

purposes of determining the drift velocity in Equation 9.26. In
general, we will expect the averaging to be considerably more
complex; after all, there is a ∂f0/∂Ev · G in the perturbation of
the distribution function, with G a prescribed mix of interaction
between electrothermal and magnetic fields coupled through an
energy-dependent momentum relaxation time τk. And then there
are energy dependences in the quantity whose expectation value
may be desired.
Let the momentum relaxation be in the form τk(η)= τ 0η

r, where
τ 0 is energy independent. For a general expectation, consider 〈τ s

kηt〉,
a power s of the specific energy-dependent relaxation time value,
and an additional power t in normalized energy arising in the
observable of interest. For drift velocity, we had s = 1 and t = 0,
but, for others, say, 〈wv〉, which is of particular interest, it will
not. So, we have three different powers: r arising in the energy
dependence of the momentum relaxation time, s for the power
dependence on the momentum relaxation time and t in the explicit
energy dependence from arising in the quantity whose expectation
is sought. For this general case,
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〈τ s
kηt〉 = 2

3
τ s
0

∫ ∞
0 (−∂f0/∂E)ηsr+t+3/2 dη

∫ ∞
0 f0η1/2 dη

= 4
3
√

π
×

(
sr + t + 3

2

)
!τ s
0
Fsr+t+1/2(ζ )

F1/2(ζ )
,

for τk = τ 0η
r, (9.29)

where Fj(ζ ) are Fermi integrals of order j, and ζ is a specific
parameter, such as the normalized Fermi energy (ηF = (E−EF)/kBT),
that may be a part of the conditions that the distribution function
describes.

This Fermi integral representation,
analytically expressed, is

Fj(ζ ) = 1
j!

∫ ∞

0
f0(ζ )ηjdη.

ζ represents a parameter that
expresses the natural constraints
on the distribution function. For
example, in thermal equilibrium, there
exists an electrochemical equilibrium.
And EF, the Fermi energy, together
with the state distribution, tells us
about carrier concentration as a
macroscopic parameter. If we define
ηF = (E − EF)/kBT as a normalized
electrochemical energy parameter, then
ζ = ηF gives us the energy-connected
dependences of the various parameters
through the Fermi integral. The carrier
concentration n, and, equivalently,
p, are expressible through the F1/2
integral in terms of the effective
density of states from non-degenerate
to degenerate conditions, that is,
with a broader validity than just the
exponential, under the constraint of
the validity of effective density of
states assumptions:

n =Nc
2√
π
F1/2(ηF),

where ηF = (EF − Ec)/kBT, andNc is
the effective density of states. Note
(1/2)! = √

π/2, which follows from
gamma functions. The 1/2 is the
power of the energy dependence of the
density of states in three-dimensional
conditions.

The expectation of the momentum relaxation time, appropriate to
determining the drift velocity, then is

〈τk〉= 4
3
√

π
×

(
r + 3

2

)
!τ 0Fr+1/2(ζ )

F1/2(ζ )
. (9.30)

Now, complicate this problem by adding a magnetic field as
a perturbation in addition to the electric field, while still in the
spherical conduction minimum approximation, with homogeneity
and no thermal field. From Equation 9.21, we have

G = qτk
E − (qτk/m∗)(E × B) + (qτk/m∗)2B (E · B)

1+ (qτk/m∗)2B · B
. (9.31)

If we are interested in the drift velocity and current in the presence
of both these fields,

J = qnvd = qn〈v〉= qn
2

3m∗

∫ ∞
0 G(−∂f0/∂E)η3/2 dη

∫ ∞
0 f0η1/2 dη

= q2n
m∗ 〈 τk

1+ (ωcτk)2
〉E − q3n

m∗2 〈 τ 2k

1+ (ωcτk)2
〉(E × B)

+ q4n

m∗3 〈 τ 3k

1+ (ωcτk)2
〉B(E · B). (9.32)

In this latter form, the first term is the ohmic term, now in the
presence of both these fields. It is a variation on the conductivity
term we obtained in the presence of E alone. Conductivity has been
degraded by the presence of larger path lengths arising due to mag-
netic field, and this magnetic field coupling—a magnetoresistance
contribution—has a square power dependence on the momentum
relaxation time. The averaging needed is of 〈τk/(1 + ω2

cτ
2
k)〉. The

second term is the Hall effect, a cross-coupling of the electric and
magnetic fields, so an introduction of orthogonality, and it too
has a magnetoresistance in it. The numerator now has a second
power dependence on the momentum relaxation time. The third
term is another magnetoresistance that is now in the direction of
the magnetic field, but with a second order dependence in the
magnitude. If the magnetic field is small, this last term, as in its
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complementary appearance in Equation 9.22, will be excluded as
a small irritant.
The simultaneous use of electric and magnetic fields is one of the

simplest tools used to probe semiconductor properties. Resonance-
relaxation interaction is probable through the magnetic field when
looking at the conduction response. But the most convenient tool
this approach provides is the Hall measurement for mobility, carrier
type and carrier concentration. At low magnetic fields, (ωcτk)2 	 1,
and the third term of the equation is immaterial. This sets up a
relationship between the current density, the electric field and the
magnetic field—a vector relationship—and is therefore a tool to
use orientational measurement for extracting the properties of the
material in which the flow happens:

J = q2n
m∗ 〈τk〉E − q3n

m∗2 〈τ 2k〉(E × B). (9.33)

First, set the magnetic field direction as the z orientation in
Cartesian coordinate. So, with B = Bzẑ, the currents and the fields
are related as

Jx = q2n
m∗ 〈τk〉Ex − q3n

m∗2 〈τ 2k〉EyBz,

Jy = q2n
m∗ 〈τk〉Ey + q3n

m∗2 〈τ 2k〉ExBz, and

Jz = q2n
m∗ 〈τk〉Ez. (9.34)

Now, we force conditions as shown in Figure 9.1. Current is
forced to flow in the y direction, and, in steady, state there is no
current flow in the x direction or the z direction. We will set up a
measurement of voltage in the x direction so that the electric field’s
consequences are ascertained, but this is through a high impedance
contact. Under these constraints,

Figure 9.1: Excitation conditions for
standard Hall measurement.

Figure 9.2: The orientation of the
electric field and the build-up of Hall
voltage when a magnetic field is out of
the plane of the sample, and current
flows along the plane. In (a), the
Lorentz force q(v × B) causes electrons
to bend as shown, with the excess
charge building the transverse electric
field that balances the two different
field-induced currents, with a net
current Jx = 0. Part (b) shows the same
for holes, with the electric field in the
opposite orientation.

Jz = q2n
m∗ 〈τk〉Ez = 0 ∴ Ez = 0, and

Jx = q2n
m∗ 〈τk〉Ex − q3n

m∗2 〈τ 2k〉EyBz = 0

∴ Ex = qBz

m∗
〈τ 2k〉
〈τk〉Ey. (9.35)

In all these relationships, the charge q has a sign, and these field
magnitudes are magnitudes for the orientation in which they are
specified. Electrons and holes will cause a sign dependence, as in
the last field relationship, since the sign of q reverses, as reflected
in Figure 9.2. If the flowing charge is a hole, a field develops in
the x̂ direction. A positive voltage—a Hall voltage VH—will be
measured in the opposite direction to the field (VH = − ∫

Ex dx).
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For electrons, it will be the opposite, so measuring the voltage in
the plane, orthogonal to the flow of current and the magnetic field,
provides the polarity of the charge.
The appearance of this field in a direction orthogonal to the

imposed electric and magnetic field, under the constraint of no cur-
rent flow in the other directions, is the Hall effect. The measurement
also gives us a tool for understanding the relationship between the
time constants of energy coupling. Here, 〈τk〉 arose in the flow of
current, and the 〈τ 2k〉 arose in the magnetic field interaction with
this electric field-induced flow. Since the longitudinal electric field
Ey is related to the transverse field Ex, the relationship between the
current flow, the magnetic field and the Hall-voltage-associated field
follows as

Jy = q2n
m∗

m∗

qBz

〈τk〉
〈τ 2k〉Ex + q3n

m∗2 〈τ 2k〉ExBz

= qn
Bz

(
〈τ 2k〉
〈τk〉2 + q2

m∗ 〈τ 2k〉B2z
)

Ex. (9.36)

We define two parameters, a Hall constant RH and a Hall factor rH,
as follows:

RH ≡ Ex

JyBz
= 1

qn

(
〈τ 2k〉
〈τk〉2 + q2

m∗ 〈τ 2k〉B2z
)

≈ 1
qn

〈τ 2k〉
〈τk〉2 , and

rH ≡ 〈τ 2k〉
〈τk〉2 , so RH

1
qn

rH. (9.37)

In the Hall constant equation, we have ignored, again, the second
order term in magnetic flux in our useful approximation. The
Hall factor is a property of the material for each polarity type,
and the Hall constant is specifically related to the charge polarity,
the doping and the Hall factor. The expectation values for the
time constants follow from the procedures we have described.
For different doped semiconductors, these are known. Recall that
τk = τ 0η

r is a good approximation, with r determined by the
dominant scattering mechanism. The prefactor τ 0 cancels out, and
a good estimate for the Hall factor is

rH = 3
√

π

4

(
2r + 3

2

)
!

[(
r + 3

2

)
!
]2 . (9.38)

One can find these Hall factor in tables of classic texts. Since
polarity is known from the sign of the Hall voltage, the Hall
constant measurement gives the carrier concentration as
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n or p = 1
q

rH

RH
. (9.39)

One can associate a mobility with the motional characteristics
that the Hall measurement provides. We have found the conductiv-
ity σ = q2n〈τk〉/m∗ = qnμc. In correspondence to this, one can define
a Hall mobility, that is, a mobility measured when the electric field
and the magnetic field are simultaneously present and the setting
up of the Hall field by the transverse force induced by the magnetic
field lets us evaluate motional characteristics as

μH = RHσ =μc
〈τ 2k〉
〈τk〉2 = rHμc. (9.40)

During drift, it is for the motion of the carriers themselves in
the applied electric field that one is measuring this drift mobility
characteristic—the frictional response while scattering. It is not
the same as finding the mobility from a transverse field that arose
because a magnetic field bends the path of charge carriers. This
transverse field builds up since no net current is flowing in the
transverse direction. So, the transverse flux from magnetic causes is
balanced by the transverse flux from the field, which itself arose as
charge accumulated and depleted in the transverse direction. Hall
measurement therefore gives a mobility that is somewhat different
from the conductivity or drift mobility. The two are related to each
other through the Hall factor.
Mobilities are an important parameter reflective of the friction

arising in scattering under the external stimulation in transport.
The movement of carriers that it reflects will be a function of
how the motion takes place and what scattering it undergoes.
Drift or conduction mobility—under only an electric field—will
be different from Hall mobility—under electric and magnetic
fields—and it is not necessarily obvious whether one will be higher
than the other, in general, because of the additional path length
arising in magnetic field. After all, the relaxation rate under such
motion may change, since the states being occupied in the two

Figure 9.3: The Hall and drift
(conduction) mobilities in n-type
GaAs.

different circumstances are slightly different. The net rate is a
product of occupation of a state, availability of the state to which
transition happens, the scattering matrix element that couples and
an integration of all the possibilities. Magnetic field changes this.
The energy and momentum matching may change under these
constraints. Figure 9.3 shows an example of the difference between
Hall and drift (conduction) mobility in GaAs. While they come very
close at moderate to high dopings, the Hall mobility is higher in
less-doped material. Suppression of ionized impurity scattering
leads to 〈τ 2k〉� 〈τk〉2. The higher the mobility, therefore, the higher
is the velocity due to acceleration in the impressed electric field
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and the less is the change in angle in the scattering, although the
higher is the angle due to the Lorentz force: a higher build-up in
the transverse field, and a higher effective Hall factor. GaAs, with
its isotropic bottom of the conduction band, ends up with a higher
Hall mobility when ionized impurity is concentration is low.

Figure 9.4: Mobility of electrons and
holes as majority and minority carriers
in Si.

An interesting contrast to this is the behavior of the electron as
a minority carrier. Compare electron conduction in similarly doped
n-type and p-type conditions. Most of the holes are heavy and so
not too far off from their Coulomb energy perturbation. Should the
mobility of an electron as a majority carrier be very similar to that
of an electron as a minority carrier? As with Hall mobility versus This question of minority carrier

transport is somewhat complicated
by the fact that, to maintain quasi-
neutrality, there exists a built-in field,
since ∇rnp =∇rpp under low level
injection, which aids electron motion
in conditions such as in an npn bipolar
transistor’s base. A discussion of this
can be found in S. Tiwari,  ̏Device
physics: Fundamentals of electronics
and optoelectronics,˝ Electroscience
2, Oxford University Press, ISBN
978-0-198-75984-3 (forthcoming).

conduction, one now encounters a variety of dependencies where
these expectations of various powers of energy and, indirectly,
directionalities enter. Figure 9.4 shows this important example.
Now, the consequences are larger at the higher doping end, where
the Coulomb scattering due to the type of species causing it
matters.
The Einstein relationship discussed in Chapter 8—in drift

diffusion and Brownian motion—can now be revisited in light of
this discussion of mobility. Our electrothermal field—in the absence
of a magnetic field—arises in the polar electric field, together with
a polar concentration field and a polar thermal field. Concentration
changes are reflected in the chemical potential μ change, and the
net is our electrothermal field (Equation 9.16)

F =E − kBT
q

∇r

(
E − μ

kBT

)
. (9.41)

E =∇rEc/q, with q = − e, so

F = − kBT
q

∇r

(
E − Ec − μ

kBT

)
= kBT

q
∇rξ . (9.42)

ξ is a generalized and normalized electrothermochemical potential.

Recall, EqFn =μ+ qψ , with q = − e,
is the electrochemical potential. ψ is
related to the conduction bandedge
that determines the lowest potential
energy, implying ∇rEc = − e∇rψ for
the electrons as the particle. And there
is a corresponding relationship in the
case of holes.

Let there be no temperature gradient, just the electrical and
concentration effects. Then,

G = qτkE + τk∇rμ= τk∇rξ ; (9.43)

therefore, current density is

J = qn
m∗ 〈G〉 = q2n

m∗ 〈τk〉E + qn
m∗ 〈τk〉∇rμ

= qnμnE + nμn∇rμ, where

∇rμ = ∂ζ

∂n
∂μ

∂ζ
∇rn

=
[

∂

∂ζ
Nc

2√
π
F1/2(ζ )

]−1
kBT∇rn
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=
[
Nc

2√
π
F−1/2(ζ )

]−1
kBT∇rn,

∴ J = qnμnE + kBTμn
F−1/2(ηF)

F−1/2(ηF)
∇rn, (9.44)

a form that extends the non-degenerate form to the degenerate
form. So, we again obtain, under constant temperature, but with
electrical- and concentration-driven conditions,

Dn

μn
= kBT

|q|
F1/2(ηF)

F−1/2(ηF)
, (9.45)

a relationship now valid for both electrons and holes. This is the
Einstein relationship when one writes current in the simplest
of Fokker-Planck forms of drift diffusion, and writable for both
electrons, as here, and holes.

Figure 9.5: Carrier transport in two
common situations in semiconductor
problems. In (a), which shows a long
sample, an electric field causes the
majority carriers’ electrons to drift
under an applied bias, with carrier
concentrations only marginally
changed. In (b), in an n-p junction,
electrons flow in a forward-biased
junction. The electric field in (b)
is opposite to that in (a). In (a),
momentum-space change dominates.
In (b), real space change dominates.
But this is the case when the two fields
oppose. Is the mobility the same in the
two cases when the field is identical in
magnitude?

But, this equation reflects a linear small disturbance in distribu-
tion function from thermal equilibrium. In its use in Figure 9.5(a),
it implies that the distribution functions—shown here for forward
and reverse momenta in a central region—are quite close to each
other and have an expectation in energy of (3/2)kBT, with the
forward flux slightly in excess. The forward and reverse flows are
close in balance in the midst of the randomizing scattering and the
field’s propensity to increase the forward flux of electrons. If there
is no scattering, the motion will be ballistic. If there is scattering,
it diffuses the motion. The near balance of forward and reverse
flux, if existent, indicates both sufficient scattering and a small-
enough stimulation. So, a back flux and a forward flux come in near
balance as the field causes limited change in the momentum for the
forward flux. State occupation is exponentially tailing, and kBT of
energy change during the impulse is a representational energy for
this. In Figure 9.5(a), this argument means that the mobility and In S. Tiwari,  ̏Nanoscale device

physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017), we discuss
the kBT argument as a Bethe condition
while exploring thermionic emission
and ballistic motion. Here, energy
gain and loss during motion between
scattering events should be limited for
the near-equilibrium description to be
applicable.

diffusivity found in low field or thermal-equilibrium conditions
should be used. If the field becomes high, or changes suddenly, the
argument is violated—an example is in the drain end of channel of
a MOSFET—where the channel-drain junction is reverse biased and
potential change happens rapidly over a short distance. So, carriers
acquire kinetic energy over a short distance, with scattering events
insufficient in number during the transit. Another place where this
argument will break is during a rapid time transient upon a sudden
application of bias, even if the asymptotic steady state itself is in
accord with the constraints placed by the argument. When time
periods are in pss, there are changes happening at relaxation time
scales, and these change regions are propagating in the structure,
sending a rapid field change front with a flow that is considerably
off-equilibrium.
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The more significant consequence of this discussion is the
situation in Figure 9.5(b) of a forward biased n-p junction, where
the field now opposes the net flux of the particles. Even if high,
this field does not raise the kinetic energy of the distribution, that
is, make it hotter. Carriers still conform to thermal equilibrium
distribution and have (3/2)kBT of energy. What it has is a large
concentration gradient. One can then look at the distribution
function, again split between a forward flux and a reverse flux.
Carrier concentration is decreasing proportional to exp(−q�ψ/kBT),
where �ψ is the electrostatic potential change with position. In any
small infinitesimally thin cross-sectional region of this junction,
as the scattering takes place during the transit, there is also a
change in concentration, a change that did not exist in the case of
Figure 9.5(a). The velocity of electrons as carriers moving backward
is higher as they see an accelerating field. The velocity of carriers
moving forward is not. They are largely diffusing up the barrier.
The velocity that the carriers can have, with scattering and with
our assumption that we have not strayed too far from thermal
equilibrium still intact, is limited to 〈v〉 ≈ vθ , the thermal velocity.
So, the mobility is not the low field mobility, but a high field
mobility that is constrained by the field to

μn(E)= μn(0)
1+ μn(0)E/vθ

. (9.46)

Diffusivity and this high field mobility are still related through
the Einstein relationship—this follows directly from the thermal
equilibrium and near-thermal equilibrium argument—its just that
their magnitudes are different in case (b) versus case (a). We will
tackle steady-state scattering-constrained high field transport in
Chapter 10.
Our argument for discussing Equation 9.29, which helps one

determine the expectation of general energy-modified and energy-
dependent power of time constants, was that the powers of r, s and
t arise in the relaxation times’ energy dependence, the power of the
relaxation time, and the energy dependence of the parameter of
interest. In looking at energy flux, a relationship we are interested
in is

〈wv〉 =
∫ ∞
−∞ wvfdv
∫ ∞
−∞ fdv

, (9.47)

which, in the example of Figure 9.5(b), provides us with how the
See S. Tiwari,  ̏Quantum, statistical
and information mechanics: A unified
introduction,˝ Electroscience 1,
Oxford University Press, ISBN
978-0-198-75985-0 (forthcoming)
for a discussion of the different

energy flow takes place at each and every cross-section, so at a spe-
cific r. In thermal equilibrium, it will vanish. w has some form that
depends on what the excitation conditions are and in what form is
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energy is being carried. In thermal equilibrium, w = w0 = (3/2)kBT.
But, off-equilibrium, one would have to determine w specifically.
When the field is general, we may define energy flux as

W = − n
m∗ 〈wG〉, (9.48)

where, again, one has a 〈wG〉 expectation as a product of energy
and impulse averaged over the distribution function. This expres-
sion is the generalization of the current density expression—now for
energy—and for electrons, for energy and with current flow in the
opposite direction.
So, what precisely is w, the energy carried by each carrier, and

what does a temperature T represent? To resolve this, one has to
go back to our understanding of free energies, and the form that

conditions that expose to us the
exchangeable parts of free energy.
Energies represent the thermodynamic
potential of a system. Work performed
and heat generated are forms of
energy, so the energies of interest,
free energies, occur in a variety of
forms that can be converted into
each other. The internal energy of
the system, U, can be thought of
as the energy required to create a
system in the absence of temperature
or volume changes. So, it includes
the various forms that may undergo
change, for example, electrostatic
or electromagnetic energies, except
those due to temperature, that is,
thermal energy and the occupation
of a volume, that is, mechanical
movement. If the environment has a
temperature T, then some energy is
spontaneously transferred from the
environment to the system, with a
concomitant change in the entropy
of the system. The system, which is
now in a state of higher disorder than
before, has less energy to lose. This is
the Helmholtz free energy F = U − TS.
The system occupies a volume V in
the environment at temperature T
by requiring the additional work of
PV. This energy now is the Gibbs
free energy G = U − TS + PV. The
mechanical energy form PV is of
important concern to chemistry, but
not as much to us where pressures
and volume changes are quite small.
It is of importance in semiconductor
problems only when there is phase
change and deformation (strain),
because volume may change
significantly. Enthalpy, the fourth
thermodynamic potential, is an
energy measure that is useful when
systems release energy, such as in
an exothermic reaction. Enthalpy,
H= U + PV, is the energy change
associated with internal energy and
the work done by the system. So, we
limit ourselves to only those changes
in Helmholtz energy that occur as a
result of changes in internal energy,
temperature and entropy.

we need to worry about is Helmholtz energy. It is the temperature
and entropy that is changing in the exchange of energy in all
their forms in our problem. Let there be n charge particles in the
distribution; then,

w = ∂(TS)

∂n

∣
∣∣
∣
T,V

= ∂U
∂n

∣
∣∣
∣
T,V

− ∂F
∂n

∣
∣∣
∣
T,V

= E − μ, (9.49)

where the derivative is meant to extract the change arising through
a change of one particle to the system of free energy U and
Helmholtz energy F , with the temperature as T and entropy as
S. In the derivatives, the first term in this relationship tells us free
energy per electron; that is, electrochemical potential per electron.
The second term tells us the chemical potential per electron.
Chemical potential per electron is reflected in the concentrations.
Free energy is reflected in the electrical and chemical potentials, so
the charged kinetics and the concentration. If concentration is not
changing, then, in the single particle nearly free electron picture,
this energy has been reduced to the classical equipartition energy of
(3/2)kBT. But this is, not so in general.
As for the second question we asked, what is the temperature T

here? The temperature of any system is defined thermodynamically

Charles Kittel’s opinion column
titled  ̏Temperature fluctuation:
An oxymoron,˝ in the May 1988
edition of Physics Today (41, 93), is
highly recommended reading for
understanding temperature and asking
yourself,  ̏What is the temperature of
an atom?˝

as equal to the temperature of a large reservoir with which it is
in contact and in equilibrium. Temperature can then be defined
thermodynamically (1/T = dS/dU), since the reservoir is large,
with a large number of particles and a large volume. Temperature,
according to this interpretation, is an invariant result of an equili-
bration with the reservoir. When one has a very small system, say, a
two-state system such as that in Rabi oscillations, if the perturbation
is taken away, the system will be found in either the higher energy
state or the lower energy state. This does not mean that it has a
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higher temperature or a lower temperature. Tying it to the reservoir
is a necessity in the definition of the temperature. Absent perturbation,
the two-state system can have fluctuations, but not fluctuations of
temperature. This argument leads to the observation

that nanoscale and quantum systems
have temperature, but one need not
prescribe temperature fluctuations
to them. A single isolated system
has no temperature. If one knew
its state, the entropy vanishes. If its
energy is known, the fluctuation
vanishes. Temperature is the invariant
of an equilibration with a large
reservoir. Our use of temperature
assignment to particle distribution
(Te) or to lattice (Tl) then is merely
a numerical expedient of fitting. A
classical harmonic oscillator, with
the virial implication, has a (1/2)kBT
internal energy assignment for every
quadratic term in momenta (more
generally, 〈Ei〉 = kBT/m for every term
of Hi in mth powers of position and
momentum). But this is not true for
quantum oscillators.

We can now tackle the energy form exchange through the general
impulse approach. Again, let the disturbance from thermal equi-
librium be small. And let there be excitation through E ,B,∇rT and
∇rn. The current density and energy flux density are, respectively,

J = qn
m∗ 〈G〉= q2n

m∗
[
〈τkF〉 − q

m∗ 〈τ 2k(F × B)〉
]
, and

W = − n
m∗ 〈wG〉= − qn

m∗
[
〈τkwF〉 − q

m∗ 〈τ 2kw(F × B)〉
]
, (9.50)

where

F =E − 1
q
∇rw + w

qT
∇rT. (9.51)

We have now rewritten the electrochemothermal field in a broader
form. The first term is the electric field. The second arises in the
energy content of the particle sans the chemical component. The
third term is due to thermal fields toward equilibration. This is a
complete representation of the near-equilibrium transport, including
scattering and the exchanges taking place during transit.
We now discuss several of the consequences that this general

relationship form of Equation 9.50 leads to.

9.2.2 Thermal conductivity due to carriers

The thermal conductivity contribution from carriers
(κc, a parameter to relate heat flux—energy transported—to tem-
perature change through W = − κc∇rT, when no other stimulations
except temperature change exists) can now be calculated. Take J = 0
and W = 0; then, the current density from Equation 9.50 gives

J = q2n
m∗

[
〈τkF〉 − q

m∗ 〈τ 2k(F × B)〉
]

∴ 0 = 〈τk〉
(
E + 1

q
∇rμ

)
+ 1

qT
〈τkw〉∇rT, and

W = − qn
m∗

[
〈τkw〉

(
E + 1

q
∇rμ

)
+ 1

qT
〈τkw2〉∇rT

]
. (9.52)

The null equation relates E + (1/q)∇rμ= − (1/qT)〈τkw〉∇rT, so that

W = − n
m∗T

[

〈τkw2〉 + 〈τkw〉2
〈τk〉

]

∇rT, and

∴ κc = n
m∗T

[

〈τkw2〉 + 〈τkw〉2
〈τk〉

]

. (9.53)
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The particle-transport-mediated thermal conductivity is directly
proportional to particle density, the energy content per particle
and momentum relaxation time and inversely proportional to
effective mass and temperature. More particles carry more energy,
more energy content per particle is an increase in energy flow, and
more relaxation time is less motional loss in the direction of flow.
If effective mass increases, the particles drag, and if temperature is
lower, the carriers stay closest to the lowest energy states allowed
and so carry less energy along.

κ

W/cm · K

Al 2.37
Cu 4.01
Au 3.17
Si (pure) 1.48
Si (1019 cm−3) 1.11

Table 9.1: Thermal conductivity
of example solids at room
temperature. Note the decrease
in thermal conductivity of Si when
doped due to scattering.

Table 9.1 summarizes some of the room temperature thermal
conductivities in materials of interest. Some are dominated by
carrier conduction, and some by phonons. Take, for example, the
difference between pure Si and doped Si. Figure 9.6 draws out the
temperature dependence of some of these thermal conductivities in
example semiconductors and contrasts them with those of diamond
and Cu. Thermal conductivity in semiconductors tends to peak at
low temperature. The peaking is due to the increase in Umklapp
processes at higher temperature.
So, absent current flow and no external stimulation, except due

to temperature, one finds the particle flow contribution to thermal
conductivity as a function of several randomizing relaxation
times. This calculation does not include phonon contribution. It
is not unreasonable for metals with a near-Avogadro’s number
of carriers, thermal conduction through carriers dominating.
For semiconductors, it may or may not. In many large devices,
although not in all, phonons may dominate in taking away heat.
In power devices, or devices with scales and geometries where
heat spreading is an important consideration, if different regions
have different levels of dissipation, and temperature differences
affect the carrier dynamics, then both the carrier and the phonon
heat conduction become important. Silicon, if it isotopically pure,
has much improved thermal conductivity due to improved phonon
transport.
This discussion shows the importance of the constraints under

which an energy exchange is being studied. We take this thought
further by looking at thermal-electric energy exchange under a
variety of circumstances next.

Figure 9.6: Thermal conductivity
of Si, Ge and GaAs semiconductors
and a metal (Cu) as a function of
temperature. κc = κe is the thermal
conductivity due to electrons. κq
is the thermal conductivity due to
phonons. Lattice, that is phonon-
limited, thermal conductivity, which
dominates for semiconductors, is
shown here. Cu’s is dominated
by electrical thermal conductivity.
A high thermal conductivity insulator
(diamond) is also shown. In this
case, the thermal conductivity will
be entirely due to the phonons. With
temperature change, the initial rise
arises in the increase in increased
energy content of the phonons and
the electron population. The drop
immediately after the peak is due to
Umklapp processes. Isotropically pure
semiconductors can have very large
improvements in the peak thermal
conductivity.

9.2.3 Thermoelectric effects

If no current flows, and a thermal gradient exists,
thermal and electric current must balance everywhere. This is part
of the origin of the electric field in Equation 9.52. The other part
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is due to the concentration gradient. An electric field results in a
potential change over distance. So, when one writes

0= 〈τk〉
(
E + 1

q
∇rμ

)
+ 1

qT
〈τkw〉∇rT, (9.54)

the diffusion of electrons down the temperature gradient is being
opposed by the electric field that comes about from the carrier
population change that arises when the thermal equilibrium was
disturbed. This electric field establishes its direction from the net
positive change to the net negative charge. For electrons, it causes
a force to balance the thermally induced diffusive flow. This is the
Seebeck effect or the thermoelectric effect. Our derivation says that an
electric field arises in the presence of a temperature gradient, and it
is given as

E = − 1
q
∇rμ − 1

q〈τk〉T 〈τkw〉∇rT. (9.55)

The first term in this equation—the chemical potential term—is
due to concentration inhomogeneity, and the second term is due
to temperature inhomogeneity. Since ∇rμ= ∂μ/∂T∇rT, the electric
field can be written as

E = − 1
qT

(
T

∂μ

∂T
+ 〈τkw〉

〈τk〉
)

∇rT

≈ T
d

dT

( 〈τkw〉
qT〈τk〉

)
∇rT =ϒ∇rT,

where ϒ = T
d

dT

( 〈τkw〉
qT〈τk〉

)
= − T

dP
dT

,

with P = 〈τkw〉
qT〈τk〉 . (9.56)

Here, ϒ is the Thompson coefficient and P is thermoelectric power.
A common measure of thermoelectricity is the ratio of the electric
potential differential produced when no current is flowing and the
temperature differential. This is the Seebeck coefficient.
The Thompson coefficient can be quite vanishing, and can

be positive or negative depending on the scattering mechanism
through which the temperature dependence arises in the ratio
〈τkw〉/qT〈τk〉. For n-type semiconductors, the electric field and
the temperature gradient oppose each other. So, electrons have
a negative Thompson coefficient. For holes, the electric field and
the temperature gradient reinforce each other, and the Thompson
coefficient is positive. The thermoelectric power is in the opposite
direction for electrons and holes.

The Seebeck effect is the appearance of
a thermoelectric voltage under open
circuit conditions. If two materials
A and B are connected in a loop,
and the loop is broken to measure
the voltage �V with the two A-B
junctions separated in temperatures
�T, then SAB = lim�T→0 �V/�T
gives the thermoelectric power of
the couple. �V = ∫ T2

T1
(SB − SA) dT,

with SAB = SB − SA. S is, in general,
a tensor, but, for cubic crystals, one
can look upon it as a scalar. This is the
Seebeck coefficient. In any material,
the thermoelectric power flow in the
opposite direction means that if one
created a temperature gradient and
looked at the direction of current
through the polarity, one could tell
whether the semiconductor was n
type or p type. This is the basis for
a traditional simple technique—the
hot-cold probe technique—to identify
the polarity of a material.

Consider an n-type semiconductor under a temperature gradient,
as shown in Figure 9.7. T2 > T1, and two contacts are used to
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measure—under high impedance conditions, so vanishing current—
the induced bias voltage that establishes itself across the semicon-
ductor. This measuring point where the meter is connected to the
wire is at temperature T0:

Figure 9.7: An n-type semiconductor
under thermal gradient with an
induced voltage being measured for
J = and T0 < T1 < T2.

V = −
∮

E · dr =
∮

ϒ∇rT · dr

=
∫ T1

T0
ϒm dT +

∫ T2

T1
ϒ s dT +

∫ T0

T2
ϒm dT

=
∫ T2

T1
(ϒ s − ϒm) dT. (9.57)

Here, ϒm is the Thompson coefficient of the metal wire connecting
to the semiconductor, and ϒ s is the Thompson coefficient of
the semiconductor. The result is that the induced voltage is an
integrated difference of the coefficients over the temperature.
Now, if the metal is chosen to have a Thompson coefficient close
to vanishing, the induced voltage is directly proportional to the
difference of temperature. Thermocouples use this approach to

measure temperature using contacts
using two different metals of known
coefficients.

When one lets the current flow—so allowing thermoelectric
power transmission—one gets numerous components to the energy
of heat flow. Take a situation with electrical, concentration and
thermal fields but no magnetic field (B = 0). We then have no
F × B, so

J = q2n
m∗

[
〈τkF〉 − q

m∗ 〈τ 2k(F × B)〉
]

∴ E + 1
q
∇rμ = m∗

q2n〈τk〉 J − 1
qT

〈τkw〉
〈τk〉 ∇rT, and

W = −〈τkw〉
q〈τk〉 J − n

m∗T

(

〈τkw2〉 − 〈τkw〉2
〈τk〉

)

∇rT

= TPJ − κe∇rT =�J − κe∇rT, (9.58)

where �, a product of temperature and thermoelectric power,

�= TP = − 〈τkw〉
q〈τk〉 , (9.59)

is the Peltier coefficient. Equation 9.58 now describes energy
density flux, with the current present, as the consequence of the
additional component of energy arising in the externally induced
flow of current and that due to the movement of energy by thermal
conductivity. This is the Peltier effect, where current carriers heat,
which reinforces or, depending on the sign of the carrier charge,
opposes the heat flow arising in the temperature gradient. The
temperature gradient had induced a real space diffusive flow.
Current has now provided an additional contribution arising in
momentum space.
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The flow current also generates heat through dissipation. The
heat generated is

Pθ = J · E − ∇r · W, (9.60)

which is the dissipation term subtracted by the flux of heat taken
away by the carriers. This is the heat generated per unit volume
that is being moved to the environment. Since

E = 1
σ

J + ϒ∇r, and

W = �J − κe∇rT,

Pθ = J · J
σ

+ ϒJ · ∇rT − �∇r · J + κe∇2
r T. (9.61)

In Equation 9.61, an equation for the heat generated per unit
volume in the presence of electric, concentration and thermal fields,
the first term is the Joule heat—Brownian dissipation—the second
term is the Thompson heat term—the thermal-electric interaction—
the third term is the divergence arising in heat carried away by
current, and the fourth term is the current due to the diffusive flow
of heat. The heat generated per unit volume is not simply the result
of a product of current and voltage drop. If there are gradients in
temperature, if current divergence is significant and if temperature
divergence is significant, then numerous consequences will arise in
temperature differentials and thermal generation across a device.

Figure 9.8: An n-type semiconductor
under thermoelectric stimulated
conditions, where the temperature
gradient and current are in the same
direction in (a) and opposite in (b).

While terms such as the ohmic dissipation of J · J/σ are largely
an irritant, except when heating is a desired result, this thermal-
electrical exchange can be used gainfully. One of these is through
the deployment of the Thompson heat (ϒJ · ∇rT) Peltier term
to cooling and heating. In Figure 9.8(a) and (b), two conditions
are shown for the flow of current in the presence of a gradient
in temperature in an n-type semiconductor. In (a), The flow of
electrons, due to the current, is from the hot temperature to lower
temperature, with the current in the same direction as the temper-
ature gradient. Hotter carriers arrive at the lower temperature T1.
Electrons arriving from higher temperature to lower temperature
give this heat energy to the lattice. This happens to be also true
for the last term of the equation, except that both the diffusive
carrier flow and the electrically stimulated carrier flow—largely a
drift flow, since the material is n-type and so not far from thermal
equilibrium—are bringing heat to the crystal at the cold end. This
statement of identical polarity thermal and current-driven energy
flow is the same as saying that ϒ is negative. It causes the net heat
generated per unit volume at the cold end to increase, which is
what Equation 9.61 tells us. The opposite is true for Figure 9.8(b).
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For an n-type semiconductor, when the temperature gradient
and the current oppose, the cold end is cooled further by the
Thompson heat term—the electrons are now taking heat from the
crystal as they go from the lower temperature region to the higher
temperature region—even as the thermal conduction—arising in
thermal diffusion—heats it. This picture is exactly the reverse when
ϒ is positive, as for holes and p-type semiconductors.

Figure 9.9: A thermoelectric cooler
employing n-type and p-type
semiconductors to cool a stage by
extracting heat to a heat sink, using
Thompson heat flow and the opposite
polarity of the Thompson coefficient
for electrons and holes.

The n- and p-materials’ current-direction- and temperature-
gradient-direction-induced heat flow interaction can be employed
for cooling and heating. Figure 9.9 shows the biasing under
which current flows in opposite directions in n-type and p-type
semiconductors, with the current in the n-type semiconductor
flowing toward-a surface that is being cooled as a result of the
current flow. Here, both the n and the p arms of what is generally

Thermoelectric cooling is also called
Peltier cooling. It is an inexpensive
way to use small-sized container
cooling as a substitute for a large,
expensive refrigerator. These coolers
are also employed to maintain the
stage temperatures of precision single-
mode lasers. There, the objective is to
stabilize the wavelength to the desired
magnitude by using the temperature
upon which it depends through
the delicate lasing energy states
undergoing stimulated recombination.

a stack of such fins carry heat away from the stage to the heat sink.
This arrangement, without the battery but with the gradients of
the temperature, is now also a thermoelectric generator. Although
quite inefficient, it is a useful low electric power source where heat
is available and otherwise being wasted.

The thermoelectric power source
has no moving mechanical parts or
moving ions, unlike most common
sources of electric power.

Since electric fields also arise in concentration gradients when
quasineutrality is broken, an equivalent thermoelectric effect may
be obtained for electrons and holes through chemical potential
change. Assume ∇rT = 0 for n material, so Equation 9.60 describes
the dissipation under heat flow. The electric field follows from the
degeneracy-generalized drift-diffusion Equation 9.44, where current

Note that the drift-diffusion
equation has built into it the ∇rT = 0
assumption. It only considers
near-equilibrium behavior under
randomized scattering.

and the concentration gradient lead to an electric field of

E = J
σ

− kBT
qNcF−1/2(ηF)

∇rn, (9.62)

and therefore a heat per unit volume of

Pθ = J · J
σ

− kBT
qNcF−1/2(ηF)

J · ∇rn − �∇r · J. (9.63)

If the current density J and the concentration gradient ∇rn are in
the same direction, electrons will take heat away from the crystal as
they diffuse from a high concentration region to a low concentration
region. Note that, for electrons, both the gradient of concentration
and the current have the same sign. In this situation, cooling will
happen.
Since thermoelectric power is of scientific and engineering

interest, a figure of merit that accounts for the ability to generate
electric power under temperature differential is useful in making
comparisons. A larger thermal gradient is possible with lower
thermal conductivity, so this figure of merit zT is

zT = σS2T
κ

. (9.64)
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Note that, in our calculations, we have not determined the phonon
component of thermal conductivity κ . S is the Seebeck coefficient. κ
is in the denominator, since a lower thermal conductivity allows
much of the energy flow to appear in electrical form. A higher
temperature for this ability is desirable, so the temperature T is in
the numerator.

9.2.4 Thermoelectromagnetic effects

The Hall effect, with which we started the discussion
of energy exchanges, is an electromagnetic effect, and, with this
previous discussion of thermoelectric effect, it should be quite
straightforward to see the thermal—diffusive—consequences as a
variation on the classical Hall effect. An integrative illustration of

Figure 9.10: The Hall effect (electrical-
magnetic interaction) and the
Ettinghausen effect (thermal-electrical-
magnetic interaction) in n-type and
p-type semiconductors. Note that
the conditions for Hall measurement
(current and magnetic field) are
identical to those of Figure 9.2.

this is in Figure 9.10, where, in addition to the bias-stimulated elec-
tric current, there also exists a thermal gradient—in this case, in the
x direction. So, compare this illustration to that of Figure 9.2. The
Hall effect is shown in Figure 9.10, in accord with the earlier exam-
ple for identical conditions. Hall measurement is under isothermal
conditions, with the Hall voltage measured in the orthogonal
direction under condition of no current flow. The force from the
Hall field formed balances the Lorentz force, due to the absence of
current in that orthogonal direction. Slower charge carriers deflect
less, faster charge carriers deflect more, and an averaging over
the velocities determines the Hall field. But we have seen that
momentum relaxation time increases with energy, that is, r > 0 in
τk = τ 0η

r. The faster electrons deflect even more, since they do not
undergo as much relaxation. This deflected direction accumulates
more of the hotter carriers and gets hotter. A temperature gradient
arises. But then there is the thermal diffusive flow from hot regions
to the cooler regions. Since there is no current allowed in this
direction, an electric field must arise that balances the thermal
diffusive flow. This appearance of an electric field due to thermal
causes, in the presence of a magnetic field and a current flow, is the
Ettinghausen effect.
The precise conditions for Ettinghausen effect measurement are

thermal isolation in addition to the current isolation of the sample
in the orthogonal direction, and no temperature gradient in the
current flow direction. In Figure 9.10’s coordinate choices, this is
Jx = 0, ∂T/∂x = 0, as is Wy = 0. The Ettinghausen coefficient is

CE ≡ −∂T/∂x
JyBz

= μc

qκe

(
〈τ 2kE〉
〈τk〉2 − 〈τ 2k〉〈τkE〉

〈τk〉3
)

. (9.65)
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Note that the energy dependence of the momentum relaxation time
matters, as well as the sign of charge. Figure 9.10 illustrates the
case for electrons and holes for r ≥ 0. Since there are scattering
mechanisms where r < 0, for example, with deformation potential
scattering by acoustic or optical phonons, the behavior of electrons
and phonons can reverse where these effects are dominant. We
will see that this is possible at low temperature and high purity
in non-polar semiconductors, so under conditions of low impurity
scattering.

9.2.5 Thermomagnetic effects

Thermal stimulation causes carrier flow via diffusive
transport. It causes flow analogous to the flow arising in electrical
stimulation, except that the details of the mechanism are different.
So, just as Hall and Ettinghausen effects appeared under electrical
and magnetic stimulation, respectively, and thermal changes were a
consequence in Ettinghausen effect, if one has thermal and magnetic
stimulation, one will see complementary consequences. The Nernst
effect is the analog of the Hall effect for thermomagnetic conditions.
The Righi-Leduc effect is the analog of the Ettinghausen effect for
thermomagnetic conditions. These are illustrated in Figure 9.11 for n
and p semiconductors.

Figure 9.11: The Nernst effect and the
Righi-Leduc effect in semiconductors.
Part (a) shows the effect in an n-type
semiconductor and (b) shows the effect
in a p-type semiconductor.

In the Nernst condition, temperature different at the contacts
provides the thermal excitation; instead of the electrical bias, no
current flows (so, Jy = Jx = 0) and the orthogonal measurement
conditions are isothermal (so ∂T/∂x = 0 at the contacts but not
in the sample). A transverse electric field is produced because
thermally driven carriers—cold and hot—deflect differently under
Lorentz force, making one surface hotter than the other, and no
current is allowed to flow in that direction. The Nernst coefficient
(cm2/s · K) is

CN ≡ Ex

Bz∂T/∂y
= μc

qT

(
〈τ 2kE〉
〈τk〉2 − 〈τ 2k〉〈τkE〉

〈τk〉3
)

= κe

T
CE, (9.66)

where the kinetic energy E of the carrier appears together with the
relaxation time dependences of conductivity.
In the Righi-Leduc measurement, conditions are of no current

flow, as in this last example, that is, Jy = 0 and Jx = 0, but also that
the boundary conditions are isothermal transversally, that is, Wx = 0.
Energy was allowed to flow in the Nernst measurement—those
conditions were adiabatic. Now, the Righi-Leduc coefficient (again
cm2/s · K) is
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Table 9.2: Some of the major
electromagnetothermal effects and
their measurement conditions with the
resulting characterization.

Effect Definition Conditions Form

Hall Ey/Jx Jy =∇Tx =∇Ty = 0 −ρxy

Ettinghausen (∇Ty)/Jx Jy =∇Tx = Wy = 0 −�xy/κexx

Transverse

Magnetoresistance Ex/Jx Jy =∇Tx =∇Ty = 0 ρxx

Nernst (∇Tx)/Jx Jy = Wx =∇Ty = 0 �xx/κexx

Longitudinal

Magnetoresistance Ez/Jz ∇Tz = 0 ρzz

Righi-Leduc (∇Ty)/(∇Tx) Jx = Jy = Wy = 0 κexy/κexx

Nernst Ey/∇Ty Jx = Jy =∇Ty = 0 −Qxy

Transverse

thermal conductivity −Wx/∇Tx Jx = Jy =∇Ty = 0 κexx

Ettinghausen-

Nernst Ex/∇Tx Jx = Jy =∇Ty = 0 Qxx

Longitudinal
thermal conductivity −Wz/∇Tz Jz = 0 κezz

Seebeck Ez/∇Tz Jz = 0 Qzz

Peltier Wz/Jz ∇Tz = 0 �zz

CRL ≡ ∂T/∂x
Bz∂T/∂y

= nμ2
c

qκeT

(
〈τ 2kE2〉
〈τ 2k〉 + 〈τ 2k〉〈τkE〉2

〈τk〉4 − 〈τ 2kE〉〈τkE〉
〈τk〉3

)

. (9.67)

So, there are numerous effects in these electrical-magnetic-
thermal exchanges of energy. The Ettinghausen effect has its
coefficient (CE, in units of cm3K/W · s) given by (∂T/∂x)/JyBx. The
conditions of observations of these effects—adiabatic, that is, no
exchange, and isothermal, that is, temperature gradient absent—
matter. We did not stress these in the discussion, nor did we discuss
the wider numbers of them, but the Table 9.2 summarizes these
together with the main consequences of interest.

9.3 Frequency dependence

Our derivation of Boltzmann transport in the relax-
ation time approximation is predicated on the validity of the
deployment of τk as a valid parameter for relaxation time. From
this, we have extracted valuable averaged properties of interest that
also let us evaluate current and energy flow. One consequence of
the underlying assumption is that there are time scales of validity.
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It stands to reason to consider this to be of the order of several τk

for the purposes of the averaged calculations. Since momentum It should be noted that the foundation
is rigorous. If the relaxation time is
made large, the Boltzmann transport
equation, while including the E(k)

description of what is happening in
the semiconductor, is just as valid for
mesoscopic transport. What it does
not account for is the partitioning
that arises in the state occupation
of the channels and the associated
correlation. The k term tells us the
flow and the group velocity argument
that we employed to find gq = 2e2/h
must follow from it. It is just not a
useful way to approach mesoscopic
problem. Boltzmann transport is much
more useful where scattering is taking
place, and there are all the spatial and
momentum effects that need to be
accounted for.

relaxation times are a few 10s of fs to sub-ps, the frequencies up to
which we may employ the derivative equations from Boltzmann
transport is certainly in the 100s of GHz, so long as the right
properties of the material at that frequency are employed.
Our interest is still in a steady-state solution, so df/dt = 0. Let

the electric field E =E0 exp(−iωt) be the only stimulus. Then, our
impulse-based form of solution is

f = f0 + qτk
∂f0
∂E

v · E0 exp(−iωt), (9.68)

which lets us find the time dependence:

df
dt

= qτk
∂f0
∂E

(
−iωv + dv

dt

)
· E0 exp(−ωt)

≈ −iqτk
∂f0
∂E

ωv · E0 exp(−ωt)

= −iωqτk
∂f0
∂E

v · E0 exp(−iωt)

= −iω( f − f0), (9.69)

where the approximation is one of neglecting higher order terms.
Since the velocity follows from

dv
dt

= − q
1
M

· E0 exp(−iωt),

we should expect a solution that exhibits consequences of non-
linearity: second order terms in the electric field amplitude, and
at twice the frequency. As before, we maintain fields small for
linear approximation to be valid. Since the distribution satisfies
Equation 9.4,

df
dt

= − v ·
(

∂f
∂E

F + ∇rf
)

− f − f0
τk

, (9.70)

it follows that

−iω(f − f0) = −v ·
(

∂f
∂E

F + ∇rf
)

− f − f0
τk

( f − f0)
(
1
τk

− iω
)

= −v ·
(

∂f
∂E

F + ∇rf
)

or

f − f0 = − τk

1− iωτk
v ·

(
∂f
∂E

F + ∇rf
)
. (9.71)

This solution is similar in form to Equation 9.5, except that the form
of the relaxation time has changed from a real term to a complex
term. We now have τk �→ τk/(1− iωτk). Define a complex relaxation
time τ

c
k,
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τ
c
k = τk

1− iωτk
, (9.72)

and all of our derivations are applicable. The complex relaxation
time will mean that one will observe lag effects. The distribution
function itself becomes a complex function. While at low frequen-
cies the time dependence can be followed, higher frequencies
will have lag—a phase delay—reflected in the imaginary parts.
In will precipitate attenuation and dissipation, but this frequency
dependence—as it does with cyclotron resonance where magnetic
field causes a radial response that then makes material charac-
teristics and properties characterizable—will also let us extract
properties of materials.

9.4 Summary

The response of the statistical ensemble of electrons in the
semiconductor under various stimuli—single or multiple present
simultaneously—is at the heart of the usage of semiconductors.
This response is the confluence of these particles being perturbed
by each other and by the environment they are in, as well as
responding to the external stimuli. The Boltzmann transport
equation, with scattering captured through a momentum relaxation
time τk under the assumption that the scattering is randomizing,
was our semi-classical tool—the quantum nature is embedded
in the description of the particle motion and their interaction—
to predicting the response. In order to make the tool general,
we derived a generalized impulse G through which one could
see the response under electric, magnetic and thermal linearized
perturbation from the stimuli. The distribution function varies as a
product of ∂f0/∂E, which is the linear variation of the distribution
function under energy changes in the crystal, and v · G, which
is the amount of work done—the energy change—through this
interaction with the stimuli. The reason why the Fermi surface is
key to understanding transport properties is that ∂f0/∂E has its
largest changes at the Fermi energy.
We considered only the Boltzmann transport equation for

electrons. We could have written one for phonons too. We did not,
assuming that phonons are pretty much in equilibrium for the
conditions of interest to us. At the mesoscale, this may very well
not be a good assumption.
The chemical potential changes, the electrical potential changes

and the vagaries of the bandstructure that are reflected in the
response behavior of the electron to forces in the presence of the
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crystal energetics are all thus included in this response under the
assumption of randomization, scattering dominated transport and
linearization.
We found how the effective mass tensor appears in this gen-

eralized response, even though, to simplify the description, we
subsequently replaced it by an effective mass.
If only electrical forces are in play, one sees the classical electrical

response. If one has electrical and magnetic forces present, one sees
the Hall response. If electrical and thermal forces are present, one
sees an electrothermal response. If magnetic and thermal forces
are present, then one sees a magnetothermal response, which has
correspondences to the electrothermal response.
But underlying all this was the incorporation of the randomizing

momentum relaxation time τk that is a function of energy. Slow,
low energy electrons will respond quite differently than fast,
higher energy electrons. One can see that for a magnetic field,
where Lorentz forces will have different angular consequences.
Thermally, too, this will be different, since population characteristics
are different. This will be through the way the chemical potential
changed. And scattering time should change with energy, since
scattering processes themselves have those energy dependences
as transitions take place between states with different momentum.
And so will the response through expectations on the powers of the
relaxation times and energy.
For electrical force alone, we could show how mobilities change,

how majority and minority carriers can behave differently, how
diffusivity and mobility can be related to each other and how these
responses change as the field increases and therefore the energy of
the carriers increases.
Including magnetic field in this description showed us the

development of Hall voltage and how this allows us to determine
Hall mobility and carrier concentrations and carrier types of the
material.
When thermal gradients exist, there is now the flow of par-

ticles, with their charge and their energy in the system. Like
magnetic forces, where, although energy is not imparted but the
motion is bent orthogonally, there are going to be equivalent
electrothermal interactions. So, we found Thompson, Seebeck and
Peltier coefficients with corresponding phenomena that reflect
external conditions forced on the system, which are of relevance to
thermoelectric conversion.
When thermal and magnetic stimuli are present, we noted the

equivalents of the thermoelectric effects—somewhat complicated
in their equations because of the way magnetic field interacts with
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particle motion—and could again see the appearance of fields. If
one were to have electrical, thermal and magnetic stimuli present,
this becomes a little more complicated, but, in all these cases, our
impulse-based approach could make reasonable predictions so long
as the underlying assumptions of the derivation held.
When the stimulus is time dependent, this approach can be

extended through the introduction of a complex relaxation time
where the static relaxation time and the signal’s time constant
couple. The frequency dependence appears in the response through
a phase lag, assuming that the applied signal is slower than the
relaxation time of the system.

9.5 Concluding remarks and bibliographic notes

Semiconductors, metals and insulators have many
similarities and many differences. And since particle distribution,
the number of electrons or the nature of dominance of electrons
or phonons in the stimuli response can be different, one will see
quite a bit of difference between their properties and their response
to stimuli. Our focus in this chapter has been on semiconductor
specifics. Here, electrons (or their antiparticle hole) are certainly
important for many of the observed stimulation responses. But
when thermal considerations are important, phonons will enter too.
A starting point—good for the fundamentals and intuition—is

provided by two old books, one by Ehrenberg1 and the other by

1 W. Ehrenberg,  ̏Electric conduction
in semiconductors and metals,˝
Oxford (1958)

Ziman2. Both books are excellent sources for understanding how

2 J. M. Ziman,  ̏Electrons and
phonons,˝ Oxford (1960)

interactions affect the transport of a charge cloud as the variety
of interactions happen. From the same time period is the book by
Smith3, which brings out the flow interdependences due to multiple

3 R. A. Smith,  ̏Wave mechanics of
crystalline solids,˝ Wiley, (1961)

stimuli.
A to-the-point treatment of this transport under multiple

interactions is the text by Wolfe et al.4. This book is a wonderful

4 C. M. Wolfe, N. Holonyak
and G. E. Stillman,  ̏Physical
properties of semicon-
ductors,˝ Prentice Hall,
ISBN 0-13-669961-8 (1989)

balance between brevity and analytic completeness of an argument.
Another treatment, at a similar level, is by Balkanski and Wallis5.

5 M. Balkanski and R. F. Wallis,
 ̏Semiconductor physics
and applications,˝ Oxford,
ISBN 978-0-19-851740-5 (2007)

A more advanced discussion is by Ridley6.

6 B. K. Ridley,  ̏Quantum processes
in semiconductors,˝ Oxford, ISBN
0-19-850-580-9 (1999)

The Boltzmann transport equation, written with ∂f/∂t to
account for all events—scattering specifically—not included in the
explicit time dependence in spatial and momentum dependence,
is an accurate semi-classical description, even if scattering is not
randomizing, and even if only a few scattering events take place,
or even if there are only a few carriers. One just has to follow the
entire ensemble with all particles accounted for individually and
the scattering events accounted for. This is an important approach
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to understanding the response where neither no scattering nor a lot
of scattering suffices, and quantum consequences are significant. It
requires Monte Carlo techniques where various random events—
even if not randomizing—are accounted for properly. Peter Price’s
seminal paper7 is the classic reference for this. A proper quantum

7 P. J. Price,  ̏Monte Carlo calculation
of electron transport in solids,˝
Semiconductors and Semimetals, 14,
Academic, ISBN 0-12-752114-3 (1979)transport formalism starting from the semi-classical is in the book

by Fischetti and Vandenberghe8. The discussion in this text of 8 M. V. Fischetti and W. G.
Vandenberghe,  ̏Advanced physics of
electron transport in semiconductors
and nanostructures,˝ Springer, ISBN
978-3-319-01100-4 (2016)

open boundary conditions, which is important for understanding
nanoscale devices, along with the other discussions, is highly
recommended reading.
Marder9 discusses the transport phenomena, particularly with 9 M. P. Marder,  ̏Condensed matter

physics,˝ Wiley, ISBN 978-0-470-61798-
4 (2010)

attention to Fermi liquids, so high carrier concentration systems.
The discussion includes electric, magnetic and thermal effects. A
good text for understanding the nature of thermoelectric power in
metals—which have very filled conduction bands but considerably
different scattering than semiconductors—is by Blatt et al.10. This 10 F. J. Blatt, P. A. Schroeder, C. L.

Foiles and D. Greig,  ̏Thermoelectric
power of metals,˝ Plenum, ISBN 13
978-1-4613-4268-7 (1976)

book is a good source for understanding the nature of scattering in
metals as well as the consequences of magnetic impurities and other
scattering for thermoelectric power at low temperatures, where
metals are the most efficient.

9.6 Exercises

1. We will work on understanding the conductivity tensor for
silicon in this problem. For electrons, there are 6 constant energy We tackled, through superposition

arguments, the isotropicity of response
of the electron conductivity in the
class. Now, we do this by direct
manipulation.

surfaces just above the conduction bandedge. These surfaces are
ellipsoidal and are described by two effective masses: mt for the
transverse mass, and ml for the longitudinal mass. For example,
for the ellipsoid along the z axis, the surface of constant energy is
described by

E(k)= Ec + h̄2

2

[
(kx − kx0)

2

mt
+ (ky − ky0)

2

mt
+ (kz − kz0)

2

ml

]

.

• The acceleration a = r̈ response to an external driving force
F is given in terms of the inverse of the effective mass tensor
(1/M)F. Show that the total acceleration responds isotropically
to the force, that is, atotal = M−1F, where M is a scalar. Calculate
the contributions from all six ellipsoids and find M explicitly.

• What is the numerical value of this effective mass ratio M/m0

for silicon?
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• Refer to the first part of this question and write out the total
effective mass tensor for the conductivity of electrons in Si
explicitly.

• Do the same for the holes, assuming that there are two hole
bands with different effective masses. Also give a numerical
value for the effective (conductivity) mass ratio for the
holes in Si. [S]

2. What should determine the shortest time scale (or highest fre-
quency scale) for determining the applicability of the Boltzmann
transport equation? [S]

3. When a metal is subjected to a magnetic field B = Bzẑ, the
wavevector k of an electron state traces an orbit in the k-space,
with kz and energy E constant. We now include φ as the angle
swept by the wavevector,

dφ = 1
m∗v⊥

h̄dk‖,

where ⊥ and ‖ indicate respectively components in directions
perpendicular to B and parallel to the path. Set up the Boltzmann
transport equation in terms of E, kz and φ for a small electric field.
Keeping only first order terms of the electric field, find the current
density and the conductivity tensor. From this, show that when
the orbits are closed in the kx-ky plane, the magnetoresistance
saturates at high fields. Hence, the orbits are open. Show that it
grows as the second power in a magnetic field. [M]

Figure 9.12: Hall measurement in a
semiconductor with the conditions for
measurement.

4. Hall measurements are performed on a sample in the config-
uration shown in Figure 9.12 with Ix = 5 mA, Bz = 0.1 T and
T = 77 K. Measured values are Vx = 10 V, Vy = −5 V. Assuming
that m∗

e = 0.1m0, m∗
h = 0.5m0 and τk = τ 0η

3/2 due to impurities,
determine the following:

Note the coordinate orientations.• the polarity type of the material

• the Hall constant

• the carrier concentration

• the conductivity

• the conductivity mobility

• the Hall mobility [M]

5. Determine an expression for the Hall factor rH, assuming Fermi
statistics and τk = τηr. Plot rH versus η (η = (E − Ec)/kBT) for
−4 ≤ η ≤ 10, with r = − 1/2 and r = 3/2. [S]
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6. We wrote an expression for 〈τ (k)〉 in terms of the distribution
function and τ (k) by working through the expectation of velocity

〈v〉= q
∫ ∞
−∞ τk(∂f0/∂E)v(v · E) dv

∫ ∞
−∞ f0 dv

,

which ended up as

〈τk〉= 4
3
√

π

(
r + 3

2

)
!τ 0Fr+1/2(ζ )

F1/2(ζ )

for τk = τ 0η
r. Write a form for 〈τw(k)〉—an expectation for the

time constant for energy—in terms of τ (k) and the distribution
function. Or at least point to how you might derive it with a
starting point for an expression. [S]

7. Should energy relax faster or slower than momentum? [S]

8. Plot the distribution function in energy for electrons in GaAs,
f (E), when a field of 0.5, 1.0 or 2.0 kV/cm is applied. Assume
that the relaxation time is 10−12 s and that the electron gas is non-
degenerate. [S]

9. An acoustic wave of the form A exp [i(q · r − ωt)] propagates
through an n-type semiconductor with a parabolic band, where
it produces a variation in energy of the electrons

E = E1 exp[i(q · r − ωt)] .

Since the force on an electron is F = − ∇rE, show that, in the
relaxation time approximation, a good relationship for the
electron distribution is

f = f0 + ∂f0
∂E

iτkv · qE
1+ iτkv · q

.

Does this distribution provide conduction? [M]

10. Magnetic breakdown is a phenomenon that can occur when an
electron can transition across a bandgap under the application
of a magnetic field. Metals with small energy gaps at zone
boundaries exhibit this. Show that the condition for this magnetic
breakdown is

h̄ωcEF > E2g,

where the symbols have their usual meaning. [S]

11. A semiconductor has both electrons and holes in reasonable
concentration. Such a condition is called ambipolar. Find an
expression for the Hall constant under ω2

cτ
2 	 1. What does the

Hall constant expression reduce to when the mean free paths are
independent of velocity? [S]
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12. Show that, in the presence of a concentration gradient in an
isotropic semiconductor, a diffusion flux −〈λk〉〈v〉θ /3 times the
concentration gradient comes about. The 〈v〉θ is the expectation
of the thermal velocity magnitude. If the fractional variation of
concentration over the mean free path of 〈λk〉 is small, and the
mean free path is independent of velocity, then the distribution
function can be written in the form n(r)f (v), with n(r) as a
concentration at any position, and f (v) a the velocity distribution
which is not dependent on the position r. [S]

13. Find a differential equation that can describe the ambipolar drift
and diffusion of a distribution of excess electron and hole pairs in
a semiconductor whose thermal equilibrium concentrations are
n0 and p0 and comparable to the excess populations and where
approximate electric neutrality prevails across the crystal. [M]

14. Interestingly, following Exercise 13, a distribution of excess
electron-hole collection drifts in the direction of the field, despite
electrons of the n-type semiconductor moving the other way.
Consider a one-dimensional semiconductor. Take the motion
of an excess carrier density pulse, where�n =�p within the
pulse and vanishing outside, and explain physically why such
a behavior is observed. [M]

15. Could one make a thermoelectric cooler using the Peltier effect,
using metals only, that is, no semiconductors? The complement
of this phenomenon—the Seebeck effect—is employed in
thermocouples without resorting to semiconductors. Provide a
short reason, please. [S]

Figure 9.13: The Haynes-Shockley
experiment to determine drift mobility.
An excess carrier pulse is injected into
a background electric field of E0 at the
emitter, and its response appears at the
collector following drift of the excess
carrier pulse.

16. A classic experiment for measuring the drift mobility of minority
carriers is the Haynes-Shockley experiment of Figure 9.13. It mea-
sures the time needed for a distribution of excess carriers injected
at an emitter point contact to drift to a collector point contact
in the presence of an electric field E0. A simple interpretation
would be that carriers drift with a velocity μ∗E0, so the time T

A superscript of ∗ is meant to denote
that this is a measurement based on an
excitation and therefore a small local
perturbation. μ andD are mobility
and diffusivity, respectively, in thermal
equilibrium.

to move a distance d will be T = d/μ∗E0, and hence the mobility.
Consider a one-dimensional diffusion with a delta function pulse
of excess carriers injected at z = 0 and t = 0. Include diffusion
and recombination, and show that the maximum collector signal
appears at z = d at a time T0 of

T0 = [1+ (4αd2/D∗)]1/2 − 1
4α

, where

α = μ∗2E20
4D∗ + 1

τ

= eμpE20
4kBT

b(n − p)2

(n + p)(bn + p)
+ 1

τ
.
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The mobility is related as

μ∗ = d
E0T0

[
(1+ x2)

2 − x
]
, where

x = 2kBT
eE0d

(
T0
t

+ 1
2

) (
n + p
n − p

)
. [M]

17. The Ettinghausen, Nernst and Righi-Leduc effects are effects of
magnetic induction that are equivalent to what happens with
electric field. It is appropriate to explore these a little more, so
that they are not forgotten, even if one usually doesn’t encounter
them. Identify and show which one of the following list of effects We might have to study them carefully

if magnetic fields and spin-related
phenomena become important in
electronic devices

can be canceled in a Hall experiment by making four measure-
ments with reversal in B and J during a Hall measurement
experiment: (a) the Etinghausen effect, (b) the Nernst effect,
(c) the Righi-Leduc effect, (d) the thermoelectric effect and (e) the
ohmic (IR) voltage drop, such as that due to contacts. [S]
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Major scattering processes

How scattering—as a quantum-mechanical or classical
transition—arises in perturbation interactions—in thermal
equilibrium or off it—was one of the starting thoughts in Chapter 1,
where an ionized impurity’s Coulomb potential perturbation
was tied to the scattering that the carrier undergoes through the
interaction. The Golden rule was the tool that let us calculate the
scattering matrix element, given the from and to states’ quantum
descriptions. In the case of an ionized impurity interacting with
a nearly free electron, the electron as a charge wave undergoes
a change of momentum during a short interaction—short, but
not so short as to break the Golden rule’s assumptions—whose
perturbation Hamiltonian is now known, and hence the scattering
matrix element can be calculated. We noted the correspondence
between scattering and momentum quantum-mechanically and
captured cross-section and velocity classically in Chapter 8. For
use in Boltzmann transport, by taking all the from states, which
the distribution function represents, and all the available states
where the electrons can potentially change to, and integrating,
one has a way to determine the time-exclusive dependence due
to this interaction. If it fits into a relaxation time approximation,
and we have found that this interaction has an energy dependence
since the fast electrons deviate less from their path, the Boltzmann
transport equation is more analytically tractable. Classically, this
same interaction can be evaluated. It is a problem with an electron
of an initial momentum undergoing a change in momentum
due to a Coulomb attractive or repulsive force. So, there also
exists a quantum and classical correspondence here, with the
correspondence principle connecting.

Ionized impurity, however, is not the only form of scattering
that charge particles will undergo in the variety of semiconductor
constructs one employs. There are interfaces; temperature causes an

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001
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atomic motion of a multiple phonon-abstracted variety, which is a
form of deformation as well as a charge effect dependent on ionicity
viewable through the Born-Oppenheimer approximation lens; two-
dimensional materials will have exposed surfaces with physisorbed
species, and so on.

Any occurrence that is not periodic, or not accounted for in
the (E,k) description of the electron, is a perturbation with an
interaction effect that is a scattering.

Table 10.1 is a limited summary of the major semiconductor
scattering processes broken across three categories that identify a
broader categorization of the source mechanism: crystal vibrations,
the crystal medium origins and those arising from mobile particle
interactions with each other. Crystal vibrations, modeled through
the phonons, lead to interactions with acoustic and optical branches.
The longitudinal and transverse branches may even have different
interactions, since momentum must also be conserved.

Deformation is the movement of atoms—a form of tensile and
compressive straining of the crystal—whose primary effect can be
seen as a small perturbation in the E(k) itself. If the atoms have
an effective charge, then one must account for the piezoelectric
consequence. Non-polar and polar semiconductors will also show
different optical phonon interactions, where presence and absence

Scattering Cause Interaction Form Where

Crystal
vibrations

Phonon
Carrier-acoustic

Deformation
Piezoelectric

Carrier-optical
Non-polar
Polar

Charged
impurity

Carrier-impurity Coulomb

Neutral
impurity

Carrier-impurity Perturbation Low temperature

Crystal medium Surface/interface Carrier-boundary Phonons, roughness
and fluctuations

Alloy Carrier-alloy Fluctuations
Defects Carrier-defect Crystal defect
Dislocations Carrier-dislocation Crystal defect

Mobile
particles

Carrier-carrier
Electron-electron Coulomb High concentration

and inversion

Hole-hole Coulomb High concentration
and inversion

Electron-hole Coulomb Minority transport
Coupled
particles

Polariton-surrounding Various Surfaces and
coupled situations

Table 10.1: Scattering mechanisms, interactions and their formal origins and locales.
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of charge matters. The crystal itself has random distribution of
various causes. Impurities and ternary and higher-order compo-
sitions are non-periodically distributed. Interfaces have potential
steps, material adjacent to even an ideal interface with non-periodic
potential perturbations. SiO2 is amorphous, and the ternaries and
crystalline materials will also have doping. Defects—charged and
neutral—will exist both in bulk and at surfaces. Mobile carriers
also interact with other moving particles: electrons with electrons,
electrons with holes if conditions are bipolar, and if photons or
other quasiparticles such as excitons, or other polaritons, are

A polariton, as noted earlier, is our
quasiparticle representation when two
energy excitations interact because
of energy and momentum matching,
and the degeneracy is lifted. The
resulting state representation is
through polaritons. Electron-photon,
electron-phonon and other interactions
can create such coupled-particle
assemblies, where the coupling of
one a form of  ̏dressing˝ by the other.
An exciton is not usually called a
polariton but is another one of these
coupled-particle assemblies.

present, then there are interactions associated with these. Each
one of these can be quite complex. Take, for example, an ionized
impurity. A charge is screened. So, even an ionized impurity will
have screening effects that need to be incorporated.

Our focus of this chapter is to show that our generalized
algorithm can be applied to all these circumstances to various
levels of detail—it is only a matter of detailed exercising. So, we
will discuss the salient points, and summarize conclusions for a
select set.

10.1 General comments on scattering

Scattering is a response that is a transition of the state of
a particle undergoing scattering as a result of a perturbation-
induced interaction. Electrons deflecting due to interaction with

The study of scattering has a long
history. Rutherford’s fame by opening
up our understanding of atoms is from
scattering experiments by beams of
He2+ through a gold foil, thus showing
the existence of the nucleus. Nuclear
fission is an extreme consequence of
such a scattering event. In all this, the
energies and species involved matter.
U235 or Pu239 are extreme examples for
fission via neutrons: 4 kg of Pu239

suffices to create >300 TJ of
energy. And a thin Be foil suffices via
scattering of the neutrons to suppress
the criticality. Oppenheimer, following
his graduation from Harvard, and
having been declined at Cambridge
by Rutherford, became a student of
J. J. Thompson. He was put to the
task of making proper Be films—a
highly toxic material. Oppenheimer
detested this to the extent that he
put some of the material in the
apple of his tutor, Patrick Blackett.
Unlike today’s absolutism and
zero tolerance that doesn’t seem
to recognize the development of a
mind and body’s chemistry with age,
Cambridge was foresighted enough
to send him off to Gottingen to do
theory with Max Born. Be remains
important in much of the nuclear
saga. A number of science workers
died in the Manhattan Project due to
radioactivity and especially in one
particular accident where criticality
did happen. The federal apparatus had
to work hard to suppress reports and
compensation. Even Fermi, who was
aware of radioactivity’s consequences,
Marie Curie, having preceded in 1934
from her work, and Oppenheimer
himself were victims of cancer. Science
and engineering has quite a bit of this
element of foolishness precipitated by
an exciting sandbox. Richard Feynman

atomic motion is a scattering, but so is an electron and a hole
recombining—an electron changing its state from the conduction
band to the valence band—producing a photon and scattering. We
just tend to visualize these a little differently, but the approaches
one uses to calculate the rates of these interactions are quite the
same. When in thermal equilibrium, all the transition rates state
to state must balance for each connecting process. No energy form
and no individual interaction then may transfer energy to another
form in net. There will be fluctuations that one may measure—as in
noise—but, on average, the system remains in a macrostate where
observables maintain their average properties. Entropy then is the
maximum. So, when one disturbs the system from equilibrium,
these scattering process rates that connect states will change. Equi-
librium is disturbed. There is an excess of one process over another.
In a p-n junction, in forward bias, there is excess recombination
in net and in the individual state couplings (electrons and holes
recombining both in the transition regions and in the quasineutral
regions), and, in reverse bias, there is excess generation in net and
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in the individual state couplings. A near-ideal p-n diode has only a is the only scientist involved with
the Manhattan Project who seems to
have stayed away from defending his
involvement in it.

small amount of this, and it makes for quite a nonlinear and useful
device. But, so is a light-emitting diode—a more complex imple-
mentation of the p-n form—where the forward-biased excess recom-
bination becomes useful as a source of light because it is dominated
by a direct photon-emitting process in a suitable material.

Scattering is also the means by which any disturbance from
thermal equilibrium is being pushed back toward equilibrium. This
is an entropic force, an attempt toward maximization of  ̏lack of
knowledge,˝ which writing ∂f/∂t = − (f − f0)/τk in the relaxation
time approximation of the Boltzmann transport equation states.
So, in this process of attempting to restore equilibrium, different
scattering processes will have different levels of effectiveness.

We have explored ionized impurity scattering as an example of
the use of the Golden rule in Chapter 1. A carrier moving with
high momentum deviates less from its path than a slower carrier
does. The interaction time and the impulse of the interaction in
the former is smaller. There is now an angular dependence that
is a function of the magnitude of momentum in the quantum
picture and of velocity in the classical picture. If scattering is a
small-angle scattering, it lets the carriers keep their momentum
longer, so it is not as effective at randomization. This is what our
writing of Equation 8.52 implied. Scattering by phonons, impurities,
other electrons, defects such as dislocations, surface states and
other randomness there—each will have some form of angular
dependence. Some will have a strong dependence, and some will
have none at all. And which of these forms should be of most
concern to us will depend on the conditions. High doping will
make impurities important. Operation at room temperature will
keep phonon interactions strong. If one has low impurities but high
carrier densities, such as in inversion regions, interparticle scattering
will be important.

Figure 10.1: The Fermi surface of
copper, together with first Brillouin
zone boundaries.

Metals have their conduction bands quite filled. Nearly half of
the Brillouin zone is filled. Figure 10.1 shows the Fermi surface of
copper. Since filled and empty states are simultaneously present
within a few kBT of the Fermi energy, and energy conservation
and momentum conservation must happen during the scattering
event, a large change in k is likely. Optical phonons are spread
out nearly evenly in momentum across the entire Brillouin zone.
This implies that 〈θ〉≈π/2 in metals. In semiconductors, with very
few carriers compared to the number of states, the Brillouin zone
is barely occupied, whether at the center � point in direct gap
materials or off it, as in indirect materials, and 〈θ〉�π/2. So, semi-

This argument regarding
semiconductors requires some care.
Electrons will scatter between the
different non-zone-center valleys;
however, the probability of staying
within the valley is large, that of
scattering to nearest set of symmetric
valleys is less, and that of scattering
farther out to the mirror valley is
even less.conductors maintain closer alignment for the momentum during

scattering, while metals orthoganalize it. Scattering in metal is more
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randomizing, and therefore, a time constant τk ≈ τ c independent of
energy seems to work out. This time τ c can be viewed, classically,
as a consequence of N scattering centers with a scattering cross-
section σ interacting with electrons moving at a speed v. If an
electron exists within a volume σv, it interacts with the scattering
center, so there are N such elemental interaction volumes under-
going scattering. Therefore, τ c ≈ 1/Nσv in this classical picture of But this is true only for matters related

to conductivity, and this is a Drudeian
thought.

scattering. Nσv is the rate at which this scattering interaction is
taking place anywhere. We now place this scattering cross-section
on a firmer quantum-mechanical footing.

10.1.1 Scattering cross-section

The scattering cross-section, which we have now encoun-
tered numerous times, represents an areal parameter—momentum-
and energy dependent—that represents the areal projection
of the region of influence affecting an incident particle wave
and causing it to scatter. It can be viewed both classically and
quantum-mechanically. Classically, it is an area of obstruction. The
obstruction’s shape affects how particles incident will get deflected.
Quantum-mechanically, it is a parameter with areal units reflecting
the matrix element of the interaction, the matrix element being the
coupling term between an incident and a scattered state due to a
potential perturbation.

Figure 10.2: An electron traveling
along the kz direction, undergoing
scattering due to a center at the origin
in the presence of an impulse G.

We illustrate this cross-section notion through elastic scattering.
Assume an arbitrary field—our generalized impulse arose in such a
collection of fields that affected motion divergently or curly—and
we wish to relate the matrix element and momentum relaxation
time to this perturbation. There exists a scattering center at the
origin of Figure 10.2 that causes a carrier of wavevector k to scatter
to wavevector k′ in the presence of this impulse G. We have chosen
a coordinate system so that the initial state is pointed in ẑ and G is
in the kxkz plane. Off-equilibrium, the distribution function, because
v = h̄k/m∗, is

f (k) = f0(k) + ∂f (k)

∂E

∣∣
∣
∣
0

h̄
m∗ k · G, (10.1)

with k ·G = kG cosα, k′ ·G = k′G cosβ and k = k′. Note that we have
again assumed that the marginal distribution function change with
energy is small, and the thermal equilibrium marginal suffices:

f (k′)
[
1 − f (k)

] − f (k)
[
1 − f (k′)

]

= ∂f (k)

∂E

∣∣
∣
∣
0

h̄
m∗ kG [cosβ(1 − cosα) − cosα(1 − cosβ)]

= ∂f (k)

∂E

∣
∣∣
∣
0

h̄
m∗ kG [sinα sin θ cosφ − cosα(1 − cos θ)] . (10.2)
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Therefore,

∂f
∂t

∣∣
∣
∣
scat

= − ∂f (k)

∂E

∣∣
∣
∣
0

h̄
m∗ G

Ns�

(2π)3

∫

�k′
S(k′,k) [cosα(1 − cos θ)

− sinα sin θ cosφ] k dk′. (10.3)

Here, |dk| = k2 sin θdθdφ dk, and the azimuthal angle φ spans 0 to
2π . From the choice of the coordinate system and the impulse,

∂f0(k)

∂E
h̄

m∗ kG cosα = − [
f (k) − f0(k)

]
. (10.4)

So, if Ns are the number of scattering centers, occupying a vol-

Here, recall our first pass at discussing
scattering with relation to the
Boltzmann transport equation
(Subsection 8.5.1).

ume �, then, with elastic scattering, the relaxation time can be
written as

1
τk

= Ns�

(2π)2k

∫

k

∫ π

0
S(k,k′) sin θ(1 − cos θ) dθk3 dk. (10.5)

Details of what S(k,k′) looks like will depend on the scattering
process that is causing this elastic scattering,

S(k,k′) = 2π
h̄

|Hkk′ |2δ(Ek − Ek′), (10.6)

and the matrix element Hk,k′ will depend on the real space
perturbation potential U(r) causing the scattering. For parabolic
bands, this relaxation time—under elastic scattering conditions—
reduces to

1
τk

= Ns�m∗2v
2πh̄4

∫ π

0
|Hkk′ |2 sin θ(1 − cos θ) dθ . (10.7)

One can give this form a classical interpretation. We have Ns/�

of scattering centers per unit volume. Let σ k be the scattering
cross-section that is momentum dependent. Classically, this
means that

1
τk

= Nsv
�

σ k. (10.8)

Any carrier found within a cross-section area of (Ns/�)σ k

surrounding the scattering centers in a distance vτk is scattered.
And this determines the time constant for the scattering. In
Equation 10.7, one can see that an electron that is scattered with the
solid angle of (θ ,φ) loses (1 − cos θ) of its initial momentum. The
cosine factor determines the loss from the initial direction. To find a
classical cross-section, one must account for all these dependencies
of angles, so

σ k =
∫ 2π

φ=0

∫ π

θ=0
σ(θ) sin(θ)(1 − cos θ) dθ dφ, where

σ(θ) =
(

�m∗

πh̄2
|Hkk′ |

)2

(10.9)



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

chapter 10: major scattering processes 385

is a differential cross-section describing the consequence of the
matrix element of the perturbation. With this, one gets

1
τk

= 2πNsv
�

∫ π

0
σ(θ) sin θ(1 − cos θ) dθ . (10.10)

This is the classical form of the scattering integral. In elastic The scattering integral is also often
called the collision integral. Classically,
this is collision.

scattering, there exist these angular relationships of the change
in direction of the particle undergoing the elastic scattering; the
differential cross-section captures the perturbation’s momentum-
dependent consequence, and the momentum’s relaxation time is
an angle-modified integral, where all the angular dependences—of
the differential cross-section and the change in direction—must be
accounted for.

10.1.2 Matrix element calculation

All these scattering calculations require the calculation
of the matrix element from the perturbation. In practice, this is a
laborious process, which quite often requires approximations and
assumptions to obtain analytic forms. We will mostly summarize
these later but describe here the Fourier-based rationale of the
calculation. Let U(r) be a potential perturbation. Ĥ ′ =Û(r) for
each of the N centers is Hermitian, and the matrix element is

Hkk′ =
∫

�

ψ∗
kĤ ′ψk d3r = 1

N

∫

�

ψ∗
kUψk′ dr. (10.11)

To calculate it, we first expand the scattering potential in a Fourier
series:

U(r) =
∑

g

Ag exp(ig · r), where

Ag = 1
�

∫

�

U(r) exp(−ig · r) d3r. (10.12)

For Bloch wavefunctions, ψk(r) = exp(ik · r)uk(r), this gives

Hkk′ = 1
N

∑

g

∫

�

exp(−ik · r)u∗
kAg exp(ik′ · r)uk′(r) d3r, (10.13)

an integral that vanishes for all wavevectors, except when g = k −
k′. So, the matrix element is

Hkk′ = 1
N
Ak−k′

∫

�

u∗
k(r)uk′(r) d3r. (10.14)

Ak−k′ are the Fourier coefficients of U(r), and the u(r)s are the
modulation functions of the propagating particle wavepackets. This
is a general result.

Now consider parabolic bands, uk(r) = uk′(r) and

Hkk′ = Ak−k′ = 1
�

∫

�

U(r) exp
[−i(k′ − k) · r

]
d3r. (10.15)
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The matrix element is the Fourier coefficient of the perturbation potential
itself. The scattering is most efficient when the periodicity between
the potential perturbation’s Fourier expansion and the incident and
the scattered wavefunctions matches. The scattered wavefunction
emphasizes the interaction of these components, which We saw bandgaps arising for this same

reason.makes sense.

10.1.3 Matrix element for ionized impurity scattering

Screened and unscreened ionized impurity scattering
provide a convenient example for illustrating the use of this matrix
element calculation approach. The screening here is the dressing
of a charge perturbation, such as of an ionized scattering, by the
mobile carriers. In non-degenerate semiconductors, as we have
discussed before, this is the Debye screening, with a length scale of
λD. For degenerate materials, it is Thomas-Fermi screening, with a We discussed Debye and Thomas-

Fermi screening in Chapter 1, and it
finds its usage extensively in S. Tiwari,
 ̏Device physics: Fundamentals of
electronics and optoelectronics,˝
Electroscience 2, Oxford University
Press, ISBN 978-0-198-75984-3
(forthcoming). Carriers, being mobile,
respond to local fields and cause local
charge density changes that reduce
the perturbation. Carriers of opposite
polarity pull in.

length scale of λTF. First, consider an unscreened potential scatterer:
U(r) = ±Ze2/4πε(0)|r|, where Ze is the charge of the scatterer. The
Fourier coefficients for this potential perturbation are

Ag = ± Ze2

4πε(0)�

∫

�

exp(−ig · r)
1
|r| d3r

= ± Ze2

ε(0)�

∫ ∞

0
r exp(−igr) dr

= ± Ze2

ε(0)�
1

|g|2 = ± Ze2

ε(0)�
1

|k − k′|2
, (10.16)

where we have used the volume element d3r = r2 sin θ dθ dφ dr. This
means that the unscreened ionized impurity matrix element is

Hkk′ = ± Ze2

ε(0)�
1

|g|2 = ± Ze2

ε(0)�
1

|k − k′|2
, (10.17)

which decays by the square of the separation in wavevectors of the
incident and scattered waves.

Now consider the case with screening where the potential
varies as

U(r) = Ze2

4πε(0)
exp

(
−|r|

λ

)
, (10.18)

so the Fourier coefficients are

Ag = Ze2

4πε(0)�

∫

�

exp
(
− r

λ

)
exp(−ig · r)

1
|r| d3r

= Ze2

ε(0)�
1

|g|2 + 1/λ2
, (10.19)
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and therefore the matrix element is

H ′
kk′ = Ze2

ε(0)�
1

|k − k′|2 + 1/λ2
. (10.20)

Comparing the unscreened (Equation 10.17) and the screened
potentials (Equation 10.20), we see that there is a factor

� = |k − k′|2
|k − k′|2 + 1/λ2

(10.21)

that relates screened and unscreened potentials. So, we now have In induced two-dimensional electron
gases, this screening, without
introducing new impurities, allows
one to improve mobility.

here, starting from the potential perturbation, the scattering element
for ionized impurity scattering.

10.2 Scattering by phonons

Phonons exist as acoustic—long-range phase correlation
in atomic displacement—and optical—anti-correlated atomic
displacement—and a scattering process may generate them or
absorb them. For these phonons of energy h̄ωq and momentum h̄q,
conservation with a state change indexed as i for initial, and f for
final (see Figure 10.3), requires conservation of energy,

Ei − Ef = ±h̄ωq = ± h̄2

2m∗
(

k2i − k2f
)
, (10.22)

and momentum,

ki − kf = ±q. (10.23)

The rate of a transition depends on the existence of the particle—
an electron here—in the initial state, which is characterized by the
distribution function f (r,k). The state it is transitioning to must be
empty; availability of the final state is described by a distribution
1 − f (r,k). And the probability of a transition taking place is the
scattering rate Skikf = S(ki,kf ). This transition probability is tied
to the strength of the interaction that is embodied in the matrix
element.

Figure 10.3: An electron undergoing
scattering while emitting a phonon.
The f in Ef indexes and identifies the
final state, not a state at Fermi energy,
where we use the capital form F.

The density of available final states—most of which are empty
under degenerate and near-degenerate conditions—is just the
density of states at Ef . This is

G (Ef ) =
(2m∗)3/2E1/2

f

2π2h̄3
= (2m∗)3/2

(
Ei ± h̄ωq

)1/2

2π2h̄3
(10.24)

in the isotropic, or force-fitted anisotropic, band at the bandedge
density of state approximation. Let Skikf ≡ G(q) be the electron-
phonon coupling. The probability of a phonon at wavevector q—its
occupation density—is
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n(q) = 1
exp

(
h̄ωq/kBT

) − 1
. (10.25)

Absorption of the phonon is proportional to this source function
n(q). This is spontaneous absorption.

The probability of emission, however, can be both spontaneous
and stimulated. The net rate contributing to the change in the

Emission can be both spontaneous and
stimulated. Stimulated here means
that the existence of another phonon
at q leads to a sympathetic emission.
So, emission has a proportionality to
1+ n(q). This is the second term in
the bracket in Equation 10.26. This
stimulated term can be thought of as
a driven oscillation of the phonon.
The phonon at q is interacting
with the electron with a specific
energy difference, associated with the
oscillation frequency of the phonon. If
a phonon exists at this frequency,
energy coincides, as does the
momentum, a tight coupling exists and
it causes an emission—a stimulated
emission—of an identical phonon.
This is a unique and, at first glance,
surprising result. But the Einstein A
and B coefficients that are discussed
in Appendix K and are grounded
in the detailed balanced argument
at thermal equilibrium underly this
stimulation. And lasers—a very useful
invention (perhaps not a precisely
correct use of the noun  ̏invention,˝
since galaxies have shown lasing at
microwave wavelengths)—are an
important byproduct.

distribution function—a product of the number of initial states
occupied (it exists and is occupied, so 1), the density of final
states that are available for occupation (G (Ef ), since nearly all
are empty), and the probability of the phonon absorption process
and the phonon emission process—can now be written, where the
coupling G(q) that connects the electron-to-phonon perturbation
enters. We have not yet discussed the details of allowed, weak,
strong and disallowed electrical interaction with the acoustic or
optical phonons that have their own short-range, long-range and
polarization characteristics. The general form of this rate is

1
τ c

≈ (2m∗)3/2

4π2h̄3
∑

q

G(q)

⎡

⎢⎢
⎣

(
Ei + h̄ωq

)1/2

exp
(

h̄ωq

kBT

)
− 1

+
(
Ei − h̄ωq

)1/2

1 − exp
(

−h̄ωq

kBT

)

⎤

⎥⎥
⎦

= G (Ef )

[
n(q)

1 + n(q)

]

G(q),

∴ 1
τk

= 〈1 − cos θ

τ c
〉

= 〈(1 − cos θ)G (Ef )

[
n(q)

1 + n(q)

]

G(q)〉, (10.26)

a notation form where the top term of the column is for absorption
of a phonon, and the bottom is for emission of a phonon. In the
first set of terms, 1/τ c is the rate associated with a state at energy
Ei interacting with phonons at wavevector q. Different momenta
and energies will have different angular dependence determined
by the conservation equations. So, the net rate—the difference of
scattering out and in—involving absorption or emission of phonons
is to be averaged over all possibilities of states coupling to the
specific k. This averaging will involve θ , the density of states at Ef ,
the occupation probability of phonons of a q wavevector, and the
electron-phonon coupling term.

Figure 10.4: Acoustic phonon emission
during a scattering event between
states of a parabolic band. Both
a spread of phonon energy and
phonon momentum exist, where the
transition takes place with energy
and momentum conservation.
But, with a limit to the maximum
wavevector change in the band, there
will exist a limit to the highest phonon
wavevector. Energy changes are small.
Acoustic scattering is quasielastic.

With acoustic phonons, the momentum spread of the allowed
states of carriers limits events to low energy. This is illustrated
in Figure 10.4 for a parabolic band. Carriers are spread out over
a few kBT of energy. Two emission events illustrated here show
that ranging from zone center phonons to a maximum phonon
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Figure 10.5: Optical phonon emission
in a direct gap semiconductor in
(a) and an indirect semiconductor
(Si) in (b). Optical phonons have
nearly a constant occupancy across
wavevectors and nearly a constant
energy. So, a spread of qs up to a
maximum of qmax exists within the
same valley. This is true for the case
in (b) too, where the illustration is in
the form of constant energy surfaces.
Part (b) shows that scattering may also
occur with the four degenerate valleys
in the orthogonal plane (f scattering)
and with the mirror symmetric valley
(g scattering). Both emission and
absorption will occur, the latter if a
sufficient number of phonons are
available for the absorption process.

wavevector qmax exists, limited by the energy bandstructure of the
semiconductor. The energy loss is limited by this maximum phonon
wavevector.

Optical phonons have larger energies—10s of meV and higher.
Figure 10.5 shows two examples: one in a direct semiconductor,
for example, GaAs in (a), and one in an indirect material, in this
case Si in (b). For scattering within the band, a spread of qs—
again limited by the states h̄ωq away in energy—and limited in
momentum matching to qmax is allowed. Only a small region at the
zone center of the Brillouin zone is active in scattering. In indirect
materials, Si here, the large phonon wavevectors matter. In the
emission process illustrated in Figure 10.5(b), scattering may now
take place with states in the four valleys in the orthogonal plane
and one valley that is mirror symmetric. The former is f scattering,
here an f emission. The latter is g scattering, here a g emission.

Figure 10.6: A limiting case for optical
phonon emission for a transition from
a parabolic band state. With all optical
phonons in the energy range of h̄ωq,
ranging from a few 10s to almost
100 meV of energy, the lowest energy
of an initial state Ei = h̄ωq for an
optical phonon emission to a state at
the band’s edge.

The limits of energy change of the carrier and its correspondence
to the range of momenta of phonons and their availability can now
be understood. Acoustic phonons allow energy exchange to their
vanishing energy at the zone center. The maximum is defined by
h̄ωqmax

. This will correspond to the largest displacement possible for
the atoms. So, in principle, the maximum E will correspond to the
largest acoustic phonon energy defined by the momentum change
allowed by the E(k) description. Optical phonons have a fairly
small spread around the h̄ωq for all the branches. That is the energy
exchangeable so long as the momentum exchange is allowed. But if
Ei < h̄ωq—optical phonons are typically kBT (room temperature T)
in energy—then, emission will not occur but absorption is still
allowed. This is illustrated in Figure 10.6. If no state exists in the
bandstructure h̄ωq below the emitting state, then the process is
not allowed. This energy-based consideration places restrictions on
phonon processes both as a function of energy and as a function of
temperatures. Ei � h̄ωq is very easy to achieve at low temperatures.
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Table 10.2 shows the occupation factor for phonon states at three
different temperatures for GaAs, which has a longitudinal (and
not too far from transverse) optical phonon energy of h̄ωq ≈
36 meV. Optical phonons get fewer as temperature is lowered,
nearly vanishing near liquid He temperatures. At low temperatures,
acoustic phonons, which are available even at low temperatures,
will dominate. And if the charge particles acquire high enough
energy due to external stimulus, optical phonon emission too will
become important. So, in high fields, carrier transport can still
saturate in static conditions in semiconductors that are more than
a few scattering lengths long, because optical phonon emission will
release the energy acquired during the acceleration.

T (K) n (q)

300 0.3
77 0.004
4 10−45

Table 10.2: Phonon occupation—
probability of of occupation of a
phonon state E(q) = h̄ωq as
a function of temperature for
optical phonons of GaAs, with
h̄ωq = 36 meV.Now consider the nature of the behavior of phonons, lon-

gitudinal and transverse, as well as acoustic and optical, and
their mechanisms of causing a perturbation. Figure 10.7 shows a
representative view of longitudinal and transverse acoustic phonons
in (a) and (b) for zone center and zone edge phonons, and a similar
view for optical phonons in (c) and (d).

The acoustic phonons have long-range, neighboring atoms that
have a gradual change in displacement, that is, the phase of the
displacement u = ŭ exp[i(q · r − ωt)] shifts gradually. Since these

We have used the breve symbol
to identify the parameter as the
amplitude of the time and space
harmonic.

displacements are only gradually changing, whether longitudinally
or transversely, they appear as a wave of compression and rarefac-
tion traveling in space. So, the function ∇u(r) is phase shifted by
π/2 from the displacement u(r).

Optical phonons have a very rapid change—out of phase from
one unit cell to next—as shown in Figure 10.7(c) and (d). The
zone center phonons in (c) are shown here with the maximum
displacement for both longitudinal and transverse modes. These
are π/2 out of phase from one unit cell to the net. The zone edge
phonons too have large displacement. But now, as in Figure 10.7(d),
one atom of the basis may be used as the reference, and the other
atom—the light one here in (d)—undergoes maximum displacement
for both longitudinal and acoustic modes. This figure could also
equivalently be seen with the smaller atom as the reference, and
then the larger one undergoes maximum displacement.

How an electrical (also called polar) or electromagnetic inter-
action will happen with these phonons will depend on how
well a coupling of the two excitations takes place. In this, the
orientation of the polarizations and their magnitude, or the crystal’s
bandstructure consequences from the deformation waves, will
all matter. So, the perturbation Hamiltonian can take a multitude
of forms depending on the circumstances. Acoustic and optical
branches will behave differently. So can transverse and longitudinal
modes.
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Figure 10.7: A pictorial view of
the nature of acoustic and optical,
longitudinal and transverse, phonons
in a two-atom basis crystal. u(r) is a
positional sketch of the displacement
for both the longitudinal and the
transverse branches. The heavier atom
is shown as the larger of the two.
Parts (a) and (b) show the acoustic
mode displacements at the zone center
and the zone edge, (c) and (d) show
the optical mode displacements at
the zone center and the zone edge.
Part (a) also shows the gradient of
displacement for the acoustic branch—
most clearly viewable in the atoms’
displacement in the LA mode. In (b),
which is the zone edge condition
for acoustic phonons, the choice of
reference phase is such that only the
bigger atoms are displaced, and the
smaller atoms not at all. In (d), which
is the zone edge condition for optical
phonons, the choice of reference phase
is such that only the smaller atoms are
displaced, and the bigger atoms not
at all.

10.2.1 Acoustic phonon interactions

In determining the E(k) state view of independent electrons
in the crystal, we employed the adiabatic/Born-Oppenheimer
approximation in eliminating the interaction term in the crystal
Hamiltonian. We have observed two properties for the acoustic
phonons in Figure 10.7(a) and (b). The first is that, over a long
distance scale, there is a deformation—at its simplest, a slow
change in the unit cell size—that is propagating. The LA phonon
causes longitudinal deformation while the TA phonon causes lateral
deformation. Both perturbations to periodicity will modulate the
bandstructure. Deformation can be viewed as a slow change of
the energy of the state that an electron is occupying as an acoustic
phonon passes by. This is an energy perturbation, and we largely
concern ourselves with the changes in the bandedge energies of
Ec and Ev, where the carriers are. This is the deformation coupling
arising in the perturbation of the bands. In the coupling and
consequent scattering of carriers, symmetries will matter through
momentum matching. In n-type semiconductors, with electrons
at the zone center, the LA phonons, with their more pronounced
in-line deformation, will be stronger. But, in non-zone center
semiconductors such as Si and Ge, the transverse acoustic phonons
will couple strongest deformationally, even if the effect is still weak.

We will discuss the dipole again with
optical phonons, where, instead of
this compression-rarefaction acoustic
deformation, we will have oscillating
dipoles of neighboring atoms. This will
be a strong electromagnetic interaction,
but one that is fundamentally very
different from the piezoelectric
interaction of the acoustic phonon
example. Acoustic frequencies are in
kHz, and optical phonon frequencies
are decades of THz. One is slow and
spatially long range, while the other is
fast and spatially short range.

This discussion ignored any charge consequences. Charge
distribution was assumed to be following the atomic motion. And
only the bandstructure effect on the electron state due to the atomic
motion was evaluated. But if the crystal is polar—partially ionic
with charge transfer from one constituent atom onto another—even
with the charge distribution assumed following the atomic motion,
as in group III-V and group II-VI semiconductors—there will exist
a dipole arising in some effective charge e∗ spaced 〈z〉 apart, so
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a dipole moment of p = e∗〈z〉 in neighboring bonds. Over a unit
cell, this integrates to zero. Under acoustic motion, this dipole is
being perturbed by the mechanical motion, and the perturbation
is changing over the neighboring atom distance scale. If the crystal
lacks inversion symmetry, this perturbation of the dipole will be
accumulative over λ/2 of displacement, and depletive over the next
half cycle. So, mechanical motion causes a polarization; that is, a
piezoelectric polarization comes about due to the acoustic wave.
The acoustic oscillation has caused a slow piezoelectric perturbation
that the carriers Coulomb couple to, resulting in piezoelectric
coupling. So, acoustic phonons in ionic and non-centrosymmetric
crystals will give rise to piezoelectric interaction.

Si is both centrosymmetric and non-
ionic. It will have acoustic-induced
deformation scattering, but not
piezoelectric scattering. GaAs is
non-centrosymmetric and partially
ionic. It will have deformation and
piezoelectric scattering due to acoustic
phonons.

10.2.2 Optical phonon interactions

The displacement of individual atoms in the optical
phonon branch is very rapid; Figure 10.7 parts (c) and (d) show,
for the zone center and the zone edge, these rapid changes, with
consecutive phases of opposite sign. This is a high frequency.
Optical phonons have high energy. They are spread out at about
this constant energy over the whole zone but are of the order
of a few 10s of meV. Atomic motion again will cause deforma- In GaAs, the optical phonons are about

36meV in energy; in Si they are about
54 eV; and in SiO2, a strong mode
exists at 112meV. 50meV is a frequency
in far infrared, about 10PHz. Only the
zone edge acoustic phonon reaches
this energy and frequency.

tion interaction in the same spirit as for acoustic phonons. But
if there is dipolar polarization, oscillating dipole moments, so
oscillating fields, will couple electromagnetically to the charged
carriers. This is electromagnetic coupling arising in the polar nature
of the optical phonons that are interacting with the charged
particle. Since dipole moments are coupling, longitudinal dipole
moments will be more pronounced in causing scattering. In
III-V and II-VI compound semiconductors, the effect will be
pronounced and, since it is electromagnetic in nature, if large
carrier populations are present, interactions will also arise through
collective excitations of the carrier ensemble; that is, with plasmons.
In devices where one has large carrier populations at interfaces,
and field termination is usually employed using dielectrics or high
permittivity materials that are quite ionic, strong electromagnetic
coupling via optical phonons will arise.

We have now distinguished electromagnetic coupling from
piezoelectric coupling. The latter arises in mechanical deformation.
The electrical coupling is piezoelectricity based. Electromagnetic
coupling, on the other hand, should be viewed as coupling arising
in an oscillating field arising from oscillating dipoles, a forte of
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Table 10.3: Acoustic and optical
phonons, the coupling and
perturbation mechanism and its
scattering consequence.

Phonon Mechanism Constraint Example

LA
Deformation Si, GaAs

Piezoelectric
Non-centrosymmetry

GaAs
Ionicity

LO
Deformation Si, GaAs
Polar Ionicity GaAs

TO Deformation Si, GaAs

optical phonons of a polar semiconductor. Table 10.3 is a summary
view of this short discussion of the nature of the phonon-carrier
interaction and its relevance to different semiconductors.

We now set up the perturbation problem so that we may
describe the approach to calculating the scattering rate, or its impli-
cation for us, a time constant that will have energy dependence and
other dependences on the parameters of the problem.

10.2.3 Deformation interaction (LA, LO and TO)

To set up the incorporation of deformation, we start with
the displacement of the atoms around their mean position. Let n̂
be a unit vector in the direction of displacement, which will be
longitudinal or transverse for our calculations. This displacement is

u = ŭ exp[i(q · r − ωqt)] = ŭn̂ exp[i(q · r − ωqt)]. (10.27)

Here, r is a spatial coordinate around the mean position. For
acoustic phonons, the strain arises in the graded accumulation of
the displacements. It is maximum at the node of the wave and
it should also be harmonic in the linear limit. Since the relative
volume change �/� = ∇ · u, the strain follows a dependence In detail, deformations in different

directions will be different and so will
the shear effect. Symmetry makes it
possible to express what would be
six different deformation potential
constants in terms of two. We will
not dwell on the details of this since
our interest is in understanding the
physical nature.

in the gradient ∇ · u(r, t):

∇ · u(r, t) = in̂ · qŭ exp[i(q · r − ωqt)]. (10.28)

Strain vanishes for transverse modes; so, acoustic transverse modes
do not cause deformation scattering. To describe the potential
perturbation arising in the strain, we introduce a parameter
�a—a deformation potential constant—relating the bandedge
energy deformation arising in the dilation. For the longitudinal
acoustic mode,

U = ∂E
∂�

� = �
∂E
∂�

�

�
= �a∇ · u(r, t). (10.29)
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�a is a deformation potential constant for acoustic phonons. It is
in units of energy. Since this is a dot product of the displacement,
only longitudinal acoustic phonons cause deformation interaction.
But shear strain that arises in the longitudinal deformation will
also affect the energy states. It quantifies the susceptibility of the
conduction band minimum, or valence band maximum, to the dila-
tion of the crystal. An LA phonon causes a rise and then a fall in
the band extrema, which in turn cause the deformation scattering.
When the carrier randomly perturbs due to an encounter with such
a series of compressions and rarefactions, if the angle between its
travel and the normal to the acoustic phonon’s plane (its direction
of travel) is θ , the angle π − 2θ is the scattered particle wave’s angle
with highest probability. In such a scattering, the minimum phonon
momentum is ki = q (with kf = 0 in Equation 10.23); therefore, if
the electron has an energy of the order of kBT, then the momentum
change must be large. So, this scattering involves a large change The propagation velocity of acoustic

phonons is approximately the speed
of sound—strictly true at q = 0,
and vanishing at zone edge due
to interference. Since this sound
velocity is much smaller than electron
velocity (E(q)= h̄vsq), the energy is
then much smaller than the electron
energy for nominal energy electrons.
Momentum matching means that
the acoustic phonon’s low energy
will be reflected in the energy change
even as the momentum change
is large. Take a minimum energy
electron undergoing an LA phonon
deformation scattering, where it
loses the energy: Ei ≈ kBT; therefore,
ki =

√
kBT2m∗/h̄2. Momentum

matching says that, for this minimum
condition, q = ki. So, the energy of the

phonon is E(q) = h̄vsq = √
kBT

√
m∗v2s .

The speed of electrons—thermal
velocity is a good measure—is of the
order of 105 m/s. kBT ≈ m∗v2θ . Silicon
has a sound velocity vs ≈ 5800m/s.
This is about 0.058× kBT. So, the
phonon energy is only 5.8 % of the kBT
energy. The electron doesn’t lose much
energy.

in momentum at modest temperatures and is isotropic, being
quasielastic. Only at the lowest temperatures does it favor forward
directions.

Since h̄ωq � kBT and h̄ωq � E for acoustic phonons, only the low
q part of acoustic branch is active. Since G(q) ∝ q and ωq ∝ q, the
acoustic phonon statistics have a contribution of

1
exp

(
h̄ωq/kBT

) − 1
≈ 1

1 + (h̄ωq/kBT) − 1

≈ kBT
h̄ωq

∝ kBT
|q| for absorption, and

1
1 − exp

(
h̄ωq/kBT

) ≈ 1
1 − [

1 − (h̄ωq/kBT)
]

≈ kBT
h̄ωq

∝ kBT
|q| for emission. (10.30)

This implies that the product of G(q) and the statistical factor is
independent of q. The resulting scattering will then have only an
energy dependence:

1
〈τk〉

∣∣
∣
∣
acoustic deformation

≈ m∗3/2E1/2kBT. (10.31)

Lower mass, lower energy of the carrier and lower temperature
will increase the relaxation time arising in acoustic deformation
scattering.

LO phonons too have this compression-rarefaction effect, except
it is at a much shorter wavelength. The relative displacement The longitudinal mode has the larger

effect compared to transverse mode.
So, we only consider LO phonons.

between atoms is

δu(r, t) = u1(r, t) − u2(r, t) = n̂δu(r, t), (10.32)



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

chapter 10: major scattering processes 395

where u1 = ŭ1 exp
[
i
(
q · r − ωqt

)]
, with u2 expressed similarly. The

potential perturbation arises from the relative displacement, so

U(r, t) = �dδu(r, t), (10.33)

where the deformation parameter �d is the direct relationship
between bandedge perturbation and dilation; that is, units of energy
per length scale. Note the difference in units and

proportionality for acoustic phonons
(to strain, which is unitless) and for
optical phonons (to displacement,
which has units of length).

10.2.4 Piezoelectric interaction (LA)

The strain propagating with LA phonons, in crystals lacking
inversion symmetry (non-centrosymmetry), polarizes and the polar-
ization accumulates over unit cells across half wavelengths. This
results in internal electric fields varying in space and time, which
will Coulomb interact with charge carriers. This is piezoelectric
scattering. The local scattering potential, if U(r, t)= − qψ(r, t),
where ψ(r, t) is the internal-field-induced electrostatic potential, is

U(r, t) = −qψ(r, t) = q
∫

E(r, t) · dr, (10.34)

expressed in terms of the local field. The semiconductor here has—
absent mechanical strain, such as at absolute zero—no piezoelec-
tricity. It acquires a position- and time-varying piezoelectricity, due
to the weak propagating  ̏piezoelectric˝ wave arising from the LA
phonon in presence of non-centrosymmetry:

D(ω) = ε(ω)E = ε0E + P(ω). (10.35)

For static conditions, the convention has been to write

D(0) = ε(0)E = ε0E + P(0), (10.36)

where P(0) is the polarization consequence of charges that are
associated with the atomic core and the ionic dipole, that is,
the presence of the crystal. If a spontaneous polarization exists,
examples of which are in several of the perovskites, then that Perovskites, discussed in Chapter 3,

are the ABO3 class of materials, where
A and B are transition elements.
Such materials have a variety of
interesting properties, including
ferroelectricity that arises from
spontaneous polarization. PbTiO3 is a
particularly popular example. These
materials can also be piezoelectric.
LiNbO3 is a particularly popular
example. They can also have moderate
bandgaps, which makes them
semiconducting, albeit, with quite
different characteristics than those
discussed here. SrTiO3 is one example
of this, where electrons and holes
transport not unreasonably.

too must be included. For most semiconductors of the group IV,
group III-V and group II-VI semiconductors, we can write the
displacement as

D(0) = ε(0)E + epz∇u(r, t) = ε0E + P(0) + epz∇u(r, t), (10.37)

with epz as a piezoelectric constant (C/m2), where we have again
ignored the anisotropic; that is, tensor, nature of strain effects.
Since the sources of the fields are the atomic polarization, the ionic
polarization and the piezoelectricity, the static displacement leads to

E(r, t) = − epz

ε(0)
∇u(r, t), (10.38)
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and hence, using Equation 10.34, there exists a scattering poten-
tial of

U(r, t) = − qepz

ε(0)
u(r, t) = i

qepz

ε(0)qs
∇ · u(r, t), (10.39)

where qs is the phonon wavevector. q being also the symbol for charge, we
write the s subscript for phonons from
time to time.

Note from Equation 10.29 for deformation perturbation, and
Equation 10.39 for piezoelectric perturbation (both for acoustic
phonons and for LO phonons), there exists a π/2 phase difference.
The strain maximum and the piezoelectricity maximum are π/2 apart of the
acoustic wave at any instant in time. They operate independently.

10.2.5 Polar mode interaction (LO)

The ionic polarization and the short length range
of the optical phonons lead to internal electric field perturba-
tions within the unit cell. The interaction between polar optical For acoustic phonons, the ionic

consequence was piezoelectric—long
length range—and only in non-
centrosymmetric crystal. For optical
phonons, the ionic charge consequence
is at the unit cell length scale and exists
whether there is inversion symmetry
or not.

phonons and electrons is the Fröhlich interaction. Again, as with
piezoelectricity, and the use of Equation 10.34, we need to find
the internal field. The ionic contribution can be found by looking
at the difference in dielectric response function at low frequency
and very high frequency. The low-frequency response includes
both the atomic and the ionic responses. And we are going to
include the free electron response separately. The high-frequency
(asymptotically infinite) response includes only the atomic response.
So, atomic and ionic polarization is reflected in the ω = 0 response,
and the atomic in the ω → ∞ response. Let Pi be the ionic Some of these comments and

reflections are also buried in the
discussion of Section 3.11, where we
introduced phonons, and longitudinal,
transverse, acoustic and optic phonon
notions through the toy model.

polarization contribution. We can conclude from

D(∞) = ε(∞)E = ε0E + P(∞) that

D(0) = ε(0)E = ε0E + P(0),

= ε0E + P(∞) + Pi

= ε(∞)E + Pi. (10.40)

The polarization of a unit cell depends on the relative displacement
of ions (δu(r, t)) within it and an effective charge e∗—a Born
effective charge—that we have encountered before. The effective
internal polarization, over the unit cell volume, is

Pi = e∗

�′
0

δu(r, t), (10.41)

where �′
0 is the basis normalized volume, that is, �′

0 = �0/ν, where
ν is the number of bases of the primitive unit cell.

The ionizability is embedded in the difference between ε(∞)

and ε(0). The Born effective charge reflecting this ionizability, and
appearing in the LO mode, follows as
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TA LA TO LO

Si
Conduction Deformation Deformation — —
Valence Deformation Deformation Deformation Deformation
GaAs
Conduction Piezoelectric Deformation and

piezoelectric
— Fröhlich

Valence Deformation and
piezoelectric

Deformation and
piezoelectric

Deformation Deformation and
Fröhlich

Table 10.4: Electron-phonon interactions in Si and GaAs.

e∗ = �′
0ωLOε(∞)ρ1/2

[
1

ε(∞)
− 1

ε(0)

]1/2
. (10.42)

ρ here is the density of the semiconductor. We have written this
equation without proof here. We will find this charge equation in
terms of ε(∞) and ε(0) during the discussion of electromagnetic-
semiconductor interaction (Chapter 12). The internal field due
to the ionicity arises entirely from internal polarization (external
consequences for Equation 10.40 vanish and displacement is
absent); therefore,

E(r, t) = − e∗

�′
0ε(∞)

δu(r, t), (10.43)

and hence the perturbation potential is

U(r, t) = − qe∗

�′
0ε(∞)

∫
δu(r, t) · r = i

qe∗

�′
0ε(∞)qs

δu(r, t). (10.44)

Note again that the polar perturbation of Equation 10.44 is π/2 One can now see correspondences
between scattering caused by acoustic
(long length range) and optical (short
length range) phonons. Both cause
deformation perturbation interaction
and scattering, and the electromagnetic
form of scattering. For acoustic ones,
it appears through the strain in a
piezoelectric form that builds over
a longer length scale. For optical
ones, it appears in a polar form that
appears at the unit length scale.
Piezoelectric perturbation needs a
non-centrosymmetric crystal. Polar
perturbation only appears in polar
semiconductors.

out of phase from the optical deformation perturbation of Equa-
tion 10.33. Optical deformation and polar perturbation—just
like acoustic deformation and piezoelectric perturbation—act
independently of each other.

We have now discussed a number of electron-phonon interac-
tions based on the transverse and longitudinal modes. A summary
in a tabular form (Table 10.4) for the centrosymmetric Si and non-
centrosymmetric GaAs helps to integrate and deconvolve them in
context.

10.3 Umklapp processes

Phonon processes that we have discussed so far are all examples
of a normal process, normal in the sense that all the initial and
final states are being considered within the Brillouin zone. It is,
however, possible to have interactions where a new state is in the
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next Brillouin zone while satisfying the energy and momentum
conservation. We illustrate these processes, called Umklapp processes,

Umklappen in German means  ̏flip
over.˝ Umklapprozesse, coined by
Rudolf Peierls, is an insightful
observation by Peierls, who also
predicted the Peierls instability,
which we discuss in S. Tiwari,
 ̏Nanoscale device physics: Science
and engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4 (2017)
and which has a similar fundamental
observational flavor. The Umklapp
process, along with what happens
at defects and interfaces, is a major
mechanism affecting thermal
conductivity in near-ideal crystals
at high temperatures. It is also a
reason why thermal superconductivity
cannot exist.

through the example of phonon annihilation. So, instead of a carrier
and a phonon, as we have discussed so far, we now have two
phonons interacting with each other. The interaction ends with one
phonon resulting through a merger. The conservation equations in
their normal form state

h̄ωq1 + h̄ωq2 = h̄ωq3, and

h̄q1 + h̄q2 = h̄q3. (10.45)

Here, the direction of the energy flow is determined by the direc-
tion of q3, which is a vector sum of the incident phonons. Since
normally energy flows in the same direction, and has the same
total magnitude, phonons interacting with each other do not cause
any change in thermal resistance in this normal process. In fact, if
thermal resistance arose only through such normal process phonon
interaction, the material would be thermally superconducting. But,
with K as the reciprocal lattice vector, the momentum conservation
also holds for

q1 + q2 = q3 + K. (10.46)

Phonons of wavevector q3 and of q3 + K are indistinguishable
in the periodic crystal. This was the basis for our building up the
reduced zone representation and was one of the properties that
directly followed from translational symmetry operations in the
Bloch function discussion. This folding back into the first zone is
the Umklapp process, and an illustration of this is in Figure 10.8.

Figure 10.8: Two phonons, of
wavevector q1 and q2, interacting
and collapsing into one phonon of
wavevector q3 through the Umklapp
process, while still conserving crystal
momentum. K is the reciprocal lattice
vector. The figure also shows the
first Brillouin zone (BZ) boundary,
where, while q1 + q2 are outside the
Brillouin zone, the reciprocal lattice
vector incorporation leads to a final
wavevector q3 that is in a direction
away from the direction of q1 + q2.

The Umklapp process has changed the direction of the energy
flow. It has also destroyed the conservation of crystal momentum.
The meaning of the incorporation of K here is that the vibration has
jumped the mode by one unit cell. This is possible since the mode
states are arising across the entire periodicity of the structure (see
Figure 3.15 for a related electron state discussion).

Through the Umklapp process, both a thermal resistance to
phonon flow and a mechanism for thermalization of phonon
distribution have appeared. While we discussed this w.r.t. phonon-
phonon processes, this change of wavevector through interaction
to outside the first Brillouin zone, and its appearance through the
reciprocal space wavevector incorporation inside the first Brillouin
zone, but with very significant property changes, will also appear in
phonon-electron processes. Extending beyond the zone boundaries
is a necessity for this process, so the interacting states need to be
significantly farther away from zone center, and closer to the zone
boundaries.

An electron traveling and accelerating
in a vanishing scattering material
under a field will also be subject
to this folding over. This is Bloch
oscillation. It is easier to imagine
this Bloch oscillation in superlattices
with their artificial bandstructure of
long unit cells and short Brillouin
zones. As of 2018, I have not yet seen
an incontrovertible proof of Bloch
oscillation. Leo Esaki, who received the
Nobel Prize for tunneling in the tunnel
diode, and Leroy Chang invented
superlattices, with the aim of finding
Bloch oscillations. It is an invention
that has been very useful in many
other places, as inventions are wont
to do.
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This Umklapp process is also possible in carrier-phonon scatter-
ing, since Equation 10.46—momentum conservation—and energy
conservation may have different contributing terms but still exist in
similar forms. One now has for the wavevector

ki + q = kf + K, (10.47)

which can be represented in a similar form as shown in Figure 10.8.

By this point, it should be clear that
the only reason we have accorded the
Umklapp process a distinguishable
mention is its use of the reduced zone
picture of reciprocal space. Had we
used the repeated zone picture, this
process would be a normal process.

We can view the Umklapp process as one where a phonon is
either created or destroyed with a simultaneous Bragg reflection.
The Bragg reflection—the change through K—involves transfer of
momentum and energy to the crystal.

10.4 Scattering potentials, matrix elements and
scattering time constants

Clearly, the calculation of the contributions to trans-
port arising in the various mechanisms is of enormous importance,
since that is where many of a device’s limitations, for example, in
speed, lie. We are going to summarize here the characteristics of the
breadth of these scattering mechanisms.

The scattering potential and matrix elements of the major
scattering processes that we have mentioned, and some that we

We are limiting the scope of our
analysis here. This is a subject with
much published literature and books,
some of which are pointed out in
Section 10.10. We have even confined
our discussion to three-dimensional
conditions, although two-dimensional
considerations appear because of the
ubiquitous presence of interfaces.
Atomically thin semiconductors will
bring out even more complexity than
that discussed as would nanowires.
Use of parameter fitting behooves
a strong caution. As von Neumann
remarked,  ̏With four parameters
I can fit an elephant, and with five
I can make him wiggle his trunk˝.
(F. Dyson,  ̏Ameeting with Enrico
Fermi,˝ Nature, 427, 297 (2004).
Vladimir Vapnik, who did much of
the foundational work of statistical
learning theory, ascribes a similar
quote to Lev Landau (V. Vapnik,
 ̏Estimation of dependences based
on empirical data,˝ Springer, ISBN
10 0-287-30865-2 (2006) 476) in the
midst of a discussion of non-inductive
methods of inference. Landau did not
trust physical theories that combined
more than a few factors.

have discussed in detail, are in Table 10.5.
Knowing the scattering potential and the matrix elements—both

with approximations—one can calculate the momentum relaxation
time that we determined in Equation 10.7. Table 10.6 summarizes
some of the important—and often quite approximate—analytic
relationships.

Table 10.5: Scattering mechanisms,
their scattering potential and the
matrix element.

Scattering Potential Matrix element
mechanism (U) (Hkk′ )

Impurity

Ionized Ze2
4πε(0)r

Ze2
ε(0)�

1
|k−k′ |2

Screened Ze2
4πε(0) exp

(
− |r|

λ

)
Ze2

ε(0)�
1

|k−k′ |21/λ2
Neutral h̄2

m∗
(

a∗
B

r5

)1/2 2πh̄2
m∗�0

(
Z0aB

k

)1/2

Acoustic phonons

Deformation �a∇ · u �a

(
h̄

2�0ρωs

)1/2
â · qs

(
nq + 1

2 ± 1
2

)1/2

Piezoelectric i
eepz

ε(0)qs
∇ · u

eepz
ε(0)

(
h̄

2�0ρωs

)1/2(
nq + 1

2 ± 1
2

)1/2

Optical phonons

Deformation �dδu(r, t) �d

(
h̄

2�0ρωLO

)1/2(
nq + 1

2 ± 1
2

)1/2

Piezoelectric i qe∗
�0ε(∞)qs

ee∗
�ε(∞)qs

(
h̄

2�0ρωLO

)1/2(
nq + 1

2 ± 1
2

)1/2

e∗ = �′
0ωLOε(∞)ρ1/2[1/ε(∞) − 1/ε(0)]1/2



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

400 semiconductor physics

Figure 10.9: The use of relaxation time
approximation for polar scattering is
of limited validity. This variational
calculation by H. Ehrenreich shows
energy power r’s dependence for
variational solution when applied to
mobility, thermoelectric power and the
Hall constant.

That relaxation time approximation should be used with caution
is illustrated in Figure 10.9, which shows the dependence of the
parameter r (the power of normalized energy in the relaxation time
relationship) fitted for mobility, thermoelectric power and Hall
constant calculation. Near the region where h̄ωq is of the order of
1–10kBT , the factor diverges and changes sign for the dependence
in mobility, while reversing sign for the thermoelectric power.
When these energies are about equal, the nature of optical phonon
interaction changes, from a positive energy dependence for the
inverse relaxation time to a negative one. A higher temperature
rapidly lowers the relaxation time, since polar phonon scattering
becomes quite efficient. At low temperatures, it gradually becomes
independent of temperature.

10.5 Different scattering mechanisms simultaneously

We have assumed—an assumption that is violated only
under a limited number of circumstances—that the
different scattering mechanisms are both random and
independent. Under this assumption, the net scattering probability
is a sum arising from the different mechanisms, that is,

1
τk(η)

=
∑

i

1
τ i,k(η)

, and
1

〈τk(η)〉 =
∑

i

1
〈τ i,k(η)〉 . (10.48)

Scattering Relationship Comment
mechanism 1/〈τk〉

Impurity

Ionized 2.41Z2NI
ε2r (0)T3/2 g(n∗,T, η)

( m0
m∗

)1/2
η−3/2 r ≈ 3/2, isotropic bands

Neutral 1.22 × 10−7εr(0)NN
( m0

m∗
)2 r = 0

Acoustic

Deformation 4.17×1019�2
a T3/2

cl

(
m∗
m0

)3/2
η1/2 r = −1/2, cl = 1

5 (3c11 + 2c12 + 4c44)

Piezoelectric 1.05 × 107h214
(

3
cl

+ 4
ct

)
T1/2

(
m∗
m

)1/2
η−1/2 r = 1/2

Optical

Deformation
2.07×1019�2

dT1/2θ

cl[exp(θq/T)−1]

(
m∗
m

)3/2
r = −1/2, θ q = h̄ωLO/kB

×
[(

η + θq
T

)1/2 − exp
(

θq
T

) (
η − θq

T

)1/2]

Polar
1.04×1014[εr(0)−εr(∞)]θ1/2q (θq/T)

r

εr(0)εr(∞)
[
exp

(
θ
T

)
−1

]
(

m∗
m0

)1/2
η−r Limited validity, r(θ q/T) variational

T � h̄ωLO/kB and T  h̄ωLO/kB

g(ζ ) = ln(1 + ζ ) − ζ
1+ζ

, where ζ = b = 4.31 × 1013 εr(0)T2

n∗
(

m∗
m0

)
η

n∗ = n + [(n + NA)(ND − NA − n)]/N in the Brooks-Herring approximation.

Table 10.6: Scattering mechanisms, their scattering potential and the matrix element.
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For different transport relaxation times of interest, that is, 〈τ s
kηt〉,

which is an integral relationship (Equation 9.29), one may perform
this task numerically. As an aside, in the Monte Carlo solution The Monte Carlo technique has its

origins in the need to calculate nuclear
fission rates (the scattering of the high
energy variety of fission) with a bound
necessary for the correctness of the
estimate. It is a powerful approach
for statistical inferences. It is an
invention of Stanislaw Ulam, who is
also credited with the invention of the
detonation technique for hydrogen
bomb. Lwov (now Lviv) was and is a
major center of mathematics, with the
famous Stefan Banach as the leader.
Banach, like Sartre and de Beauvoir
in Paris, did much of his work and
inspiring others in cafes. The Poland-
Prussia-Russia-Ukraine borders have
moved around with each war. Lwov
used to be in Poland and is now in
Ukraine.

of the Boltzmann transport equation, since each of the relaxation
times are known by evaluation, one has an expected probability
of each scattering type; therefore, in simulating many particles to
get a statistically meaningful result, one may use an adequately
small time step and then have each of the particles, whose position
and momentum are known, undergo scattering conforming to the
probabilistic expectation by using random number generation to
simulate the possibility of the different scattering events or the
absence of them. If, in the calculation of these times, there are
slow functions involved, for example, the g(n∗,T,η) in ionized
impurity scattering, one may use its mean at a constant energy,
and evaluate the integrals. This inverse relaxation summation also
leads to Matthiessen’s rule—again, under independent random
approximation—that the mobility will follow

1
μ

=
∑

i

1
μi

, (10.49)

where i indexes the different scattering processes.

Figure 10.10: Mobility of Si and GaAs
as a function of temperature for
various doping conditions.

10.6 Mobilities of semiconductors

Our analytic description of scattering is now adequate to
discuss observed mobilities—therefore, the momentum relaxation
defined property—of semiconductors. In these, we can see the
various attributes and limits placed by the scattering mechanisms.
The behavior of the electron, as through the E–k description, where
effective mass appears as a very key parameter, also enters in this
description.

First, let us look at the mobility as a function of temperature
under common doping conditions. Figure 10.10 shows the mobility
in Si and GaAs, two classical and widely used semiconductors.
Silicon is non-polar, so optical phonon scattering is non-polar,
arising in deformation and electromagnetic interaction that is not
piezoelectric. GaAs, however, is polar, and one sees the signature
of polar phonon scattering at the high temperatures. We will see
this GaAs behavior shortly; this figure is a general description
under varying doping to show the effect of impurities with tem-
peratures while the other scattering mechanisms are also present.
At room temperatures, in both these materials, phonon scattering
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is important, but one also sees the contribution arising in ionized
impurity scattering. The temperature signature of ionized impurity
scattering is positive higher power; that is, higher temperature and
higher velocity leads to reduced ionized impurity influence on
mobility. And increased temperature causes more phonon scattering
and reduction in the net velocity, hence the mobility.

Figure 10.11: A detailed view of the
different mechanisms affecting the
mobility of a moderately doped GaAs.

GaAs and several other compound semiconductors are interesting
because of the larger mobility arising in lower effective mass,
even as the scattering mechanisms are largely similar in their
characteristics and relative effect. GaAs lets us see the consequences
of the various mechanisms. Figure 10.11 shows the different
mechanisms’ mobility limits, together with an observed and
combined Matthiessen-relationship-dictated mobility behavior.
Consider lower temperature first. Neutral impurity scattering is
the weakest. Neutral impurities cause a very small perturbation.
Piezoelectric scattering is next, and this arises in acoustic phonons
that can be active at low temperatures since their h̄ωq extends
down to nothing. At temperatures still below room temperature,
first deformation potential and then polar scattering take over.
The polar scattering is dominated by optical phonons, but the
deformation potential scattering is due to acoustic phonons, with
an increasing contribution from optical phonons as the temperature
rises. At lowest temperatures, therefore, it is the ionized impurity
that dominates, and, at the highest temperatures, it is the polar
scattering that dominates.

Figure 10.12: Piezoelectric scattering
probability as a function of the
electron’s energy.

Figure 10.13: A detailed view of the
different mechanisms affecting the
mobility of a high mobility two-
dimensional electron gas in GaAs at the
interface with Ga0.7Al0.3As.

The piezoelectric scattering’s carrier energy dependence—
and the carrier energy in the small off-equilibrium is tied to the
temperature—is that of a rapid rise followed by a slow decay, as
shown in Figure 10.12. Piezoelectric scattering, which arises in
acoustic phonons and therefore couples to vanishing wavevector
phonons, rises rapidly as more electron states become available for
scattering, reaching a maximum before slowly decreasing again. At
the larger energy range, the coupling and the state-statistics product
leads to this relative energy independence.

One may reduce this ionized impurity scattering even as the
carriers remain in heterojunctions, by using remotely doped
heterostructures where the ionized dopants remain in the higher
conduction bandedge material while electrons remain in the
lower conduction bandedge semiconductor at the heterostructure
interface. The mobility behavior is shown in Figure 10.13. Now the
local ionized impurity has been removed, and remote ionized impu-
rity cause the scattering limitation at low temperatures. Phonon
scattering at the interface will be mildly affected by the presence of
the interface and the coupling of modes of Ga0.7Al0.3As—the higher
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bandgap and conduction discontinuity barrier used here—with
those of GaAs. But note that mobilities at the low temperatures,
where the removal of the ionized impurity had its effect, now
exceeds 106 cm2 · V/s. At low temperatures, in such structures,
the screening by mobile carriers suppresses scattering by ionized
impurities, whether they are local or remote. Once past about 100 K,
there is not that much difference between the mobility in bulk GaAs
with moderate doping and this heterostructure with no intentional
doping. It is all dominated by phonon scattering. Figure 10.14: Scattering rate of

electrons, for example, compound
semiconductors (GaAs, InP,
Ga0.47In0.53As and InP), at room
temperature. The first jump in
scattering rate occurs when a
significant electron population reaches
the optical phonon emission threshold.
Higher up, the thresholds for onset
that occur with an increase in density
of states when additional band minima
are encountered is marked for GaAs.
Where these secondary minimum
exist is important for scattering rate,
as carriers pick energy. InAs has a
secondary valley nearly an eV up from
the band minimum.

The scattering rates are a function of the matrix element, the
occupation of states to scatter from and the states to scatter to. The
number of states at the bandedge vanishes. Scattering of a low
energy carrier therefore must vanish. A carrier that is high up in
energy—either as part of the distribution function by chance in the
Boltzmann tail or because one is considerably off-equilibrium by
applying a large electric field (the mobility plots drawn up to now
are for vanishingly small electric fields)—will usually see a larger
number of states, and because bands are complex—not just the
simplistic parabolic—there will be unusual sudden rises and falls
in the density of states (see, e.g., Figure 4.13 for Si in Chapter 4),
and therefore of scattering. This is illustrated in Figure 10.14 for a
few different compound semiconductors in the form of scattering
rates and the threshold for increase in density of states for GaAs.
Where these thresholds are matters when carriers pick up energy
off-equilibrium. InAs, even though a small bandgap material, has
a very high mobility because of the lower effective mass, also
has a lower scattering rate because of it (lower density of states)
but, additionally, no secondary minimum is encountered up to
1 eV up in energy. That is much larger than the bandgap of InAs
itself. These carriers can go quite up in energy; that is, get  ̏hot.˝
Whenever the lattice temperature, so, the temperature associated
with phonon distribution, is different from that of the electron,
we have these hot electrons. We can also have a localized region
of the semiconductor at a higher temperature than elsewhere for
the phonon distribution. So, phonon distribution can also get
hot. Our discussion will be restricted to conditions where the
phonon distribution has a temperature that is the same as that of
the reservoir surrounding the semiconductor. It is uniform and
characterized by a temperature Tl = T. On the other hand, electron
distribution may be associated with a temperature Te or Tl that is
not equal to T.

Recall the f and g scattering between the different X valleys
of Si as sketched in Figure 10.5(b). The involvement of these
long wavevector—short wavelength—phonons, mostly optical, is
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important for transport in silicon. Relaxation time, or scattering
rate as a function of energy, again is useful and important for how
the hot carriers exist in silicon in samples where distance and time
scales allow these transfers to take place. Figure 10.15 shows the
emission and scattering rates for these. Note that g emission is the
most efficient. It is easy to launch a longitudinal phonon oscillation.
Compared to f absorption, the g absorption too is more efficient.
But f emission has a higher scattering rate. This is not surprising.
Energetic electrons find it easier to emit phonons and lose energy
rather than the fortuitous encountering of an existing phonon
for absorption. Note also in this figure the very high rate of total
scattering. A few 1013 s−1 rate is about a relaxation time constant of
fractions of ps.

Figure 10.15: f and g emission and
capture rates in Si at 300 K. g scattering
is scattering to the antipodal X valley. f
scattering is to orthogonal valleys.

Figure 10.16: Relaxation times in
GaAs as a function of energy. Acoustic
phonon relaxation time decreases
(scattering rate increases) with energy.
Polar optical phonon scattering by
zone edge phonons is needed for
intervalley scattering.

Figure 10.17: Velocity-electric field
behavior for electrons in long sections
of uniform field of GaAs and Si at a
few different temperatures at moderate
doping. GaAs has a secondary valley
in which scattering may occur at high
electric fields. Si does not. GaAs goes
from having a relatively low scattering
rate, compared to that of Si to having
comparable rates at high electric fields.

We can also see in the relaxation times the scattering origins
of the processes that lead to negative differential velocity. In
Figure 10.16, in the low energy region, one can see the importance
of both the acoustic phonons and the optical phonons. The energies
here are larger than the optical phonon emission threshold. The
order of magnitudes of these time constants are sub-ps and up.
When the ∼ 0.3 eV threshold of the secondary valley (X calculated
here) is reached, this scattering to large crystal wavevector electrons
occurs via zone-edge phonons; that is, our Fröhlich process. This
relaxation time is much smaller, so this scattering is very efficient so
long as enough electric field exists that can push these electrons up
to these energies despite the acoustic and polar phonon losses.

This scattering behavior changes with acquiring of energy, due to
changes as one goes further off-equilibrium. The higher the energy
is the higher the scattering rate (usually) of losing this energy. But
so is the acquisition of the energy from the field. This has a direct
consequence in the velocity-field behavior. There are two aspects of
this. When the region over which this energy is acquired is short—
of the order of few mean free paths over which there are a limited
number of scattering events, and these are often non-randomizing—
one sees carriers going further up in the E(k) states, and velocity
overshoot will happen. When the region is long—many mean free
paths and a sufficient number of randomizing scattering events—
then one sees a local balancing in the acquisition and loss of energy.

This imbalance is what leads to the nonlinearities of the velocity-
field curves, whose examples are shown in Figure 10.17 for GaAs
and Si, which show two prototypically different forms. GaAs shows
a peak in velocity and then a decrease for doping conditions where
ionized impurity doesn’t dominate, so with not excessively high
doping concentrations (less than mid-1018 cm−3). There exists a
region where applying a higher field leads to a lower velocity as
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carriers transfer over to the secondary valley. This is a negative
differential velocity, and when properly employed at the right size
scales, the negative differential characteristic will even show up as a
negative differential resistance in current-voltage characteristics that
can be employed gainfully. Silicon doesn’t show such a negative

Gunn diodes are example of this
negative differential resistance
appearing at the output terminals
of a device. This can be employed
for generating high frequencies in
GHz range. Other design—doping
and length dependent—may create
a region of accelerating and piling
carriers, that is, charge domains, that
may stay pinned or that may also
travel. These too can be used for high-
frequency generation. Some of these
uses are low power, but some can be
used for quite high power generation.

differential velocity. Many compound semiconductors do. But,
again, because of the gently increasing scattering rate, InAs does
not. Its secondary valleys are too high.

10.7 Frequency effects

The off-equilibrium distribution function of Equation 9.21
becomes approximate when the relaxation time approximation
becomes quite invalid. We have seen this to be the case under
certain scattering circumstances. It is also invalid when forces are
changing suddenly over regions of length of the order of the mean
free path, that is, where insufficient scattering occurs, or even in
time durations of the order of the relaxation time.

The secondary valley in InAs may
be high and not allow negative
differential velocity. But it has a
profound effect. As we discussed,
the Fermi level pinning on the InAs
surface arises in this very high, but
high mass, secondary valley. It pulls
the surface states up.

What happens in frequency if the rest of the constraints of
validity are met? The description is certainly quite adequate
under quasistatic conditions. What about at frequencies higher
than 1/τk? The answer is yes, so long as the approximations in
our response discussion—polarization, ionicity, et cetera—are
adequately accounted for. In a semiconductor, if an oscillating
electric field is applied with a vanishing average, all the carriers
have a force one way and then the other, and the average position
of the distribution must remain the same in a linear response
system. The movement stays centered, even if the shape of the
distribution function changes. For electric field, carriers move one
way in one half of the cycle, and then equally the other way in the
other half of the cycle. And it samples accumulatively the space
many times over, and scattering as it does so.

It is the response at higher magnetic field that is quite interesting
in this response because of the denominator of Equation 9.21. Write
a frequency

ω2
c ≡ q2(det|1/M|)[(1/M)−1 · B] · B; (10.50)

ωc here is a cyclotron frequency indicating that the charged
particle likes to cycle around the axis of the magnetic field. The
denominator now, with the frequency response included (following
Section 9.3), is

1 + (
ωcτ

∗
k
)2 = 1 + (ωcτk)2

(1 − iωτk)2
=

(
ω2

c − ω2) τ 2
k − 2iωτk + 1

(1 − iωτk)2
. (10.51)
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For ωτk  1, this denominator has a sharp minimum at
ω = ωc. The distribution function shows a damped resonance.
All properties, including current, thermal response, et cetera,
will show a resonant peak when the applied frequency is this
cyclotron frequency. And since it does, it is a means of sampling
the mass tensor, because of the cyclotron frequency’s dependence
on it through Equation 10.50. This is now another parameterized
mass, called the cyclotron mass, to join the list of density of states,
conductivity, et cetera.

10.8 Carrier response in high electric fields

As one increases the electric field across a long sample,
carriers do acquire more energy. The expectation value of the
energy over the ensemble rises, and the distribution function
initially just shifts—this was our shifted distribution function of
Figure 8.7. We derived a mobility—a constant mobility—in this
linear response condition. However, as fields increase, scattering
rates change—usually increasing at a faster rate than the electric
field’s increase—this mobility is now a less meaningful parameter.
It is a fit to how the distribution function is evolving, where the
scattering rates and the τ k under the relaxation time approximation
are also changing. After all, these are functions of the energy (E) or
its normalized form (η = E/kBT). In detail, the tail of the distribution
will change, and the expectation of energy will change as a balance
between the acquisition and the loss of energy that exists in the
steady state.

Figure 10.18: Velocity-field
characteristics for exemplar
semiconductor systems at 300K
under moderate doping. Note the
decrease in velocity and the low field
mobility in the SiO2/Si system.

Mobility is now a fitting parameter—variational, and with
internal parameter dependences such as η on E and T and doping,
et cetera. Such an approach is still useful—and, in limits, quite
insightful. Figure 10.18 shows a few example velocity-field char-
acteristics of electrons under low doping conditions, so, in the limit
of low ionized impurity scattering, which we have seen becomes
important at moderate to high doping levels and even more so at
low temperatures as the thermal velocities decrease.

This figure also shows the drop in mobility at the SiO2/Si
interface. We have not discussed the origins of this. Its origin is in
the mechanisms that arise at interfaces. SiO2 is amorphous, and
the interface oxide is not a crystalline bulk oxide as we discussed
previously, so there is a random potential fluctuation coupling

In semiconductor structures, the SiO2
will never be crystalline. That is only
possible if quartz is bonded onto Si,
but then the interface will have plenty
of other technical issues.

to the electrons of the inversion layer, even if the interface is
atomically smooth. The roughness of this interface—with step
heights in it—also adds to the scattering. The randomness leads to a
random redirection of momentum away from the SiO2, but confined
within the inversion layer in its two-dimensional conditions, and
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leads to near halving of the mobility from that of bulk Si. We have

We employ these gas- and plasma-
centric terms, such as electron
cloud, here and there, since early
investigations of many of these
behaviors of field, scattering and
interaction effect was in plasmas
of electrons in vacuum. Vacuum
tubes and much of the high density
technology of accelerators, as well
as plasma etching technology, have
these same phenomena at work. In
an etching apparatus, glowing under
these plasma conditions, it does look a
bit like a cloud.

looked at the E → 0 limit in quite some detail in this discussion of
scattering and consequences of multiple stimulations at work. Now
consider the E → ∞ limit, but under conditions where the carrier
population is being conserved and there are no conduction-valence
band interactions such as generation and recombination.

To separate the distribution function’s  ̏temperature˝ of the elec-
tron from that of its environment—the crystal lattice—we ascribe
a temperature Te to the first, and Tl to the second, as discussed in
the margin of Section 9.2 on transport under generalized forces.
The distribution drifts, and we had concluded that the expectation
velocity of this is 〈v〉=μ(= q〈τk〉/m∗)E . The velocity is now
lower than the linear change with increases in scattering rate, or,
equivalently, its inverse in the relaxation time. The electron charge
distribution is higher up in the E-k space, even as there are cold
electrons. Since exponentials still relate the probabilities in the
scattering rate, and these are a function of energy of electrons, one
may model the distribution function, which is now drifted and
distorted, by introducing this temperature Te; that is, the Fermi-
Dirac occupation function at any spatial position is

f = 1
1 + exp[(E − EqF)/kBTe]

. (10.52)

Concurrent with this, application of the electric field E leads to a
drift velocity

vd = 〈v〉 = μ(Te)E . (10.53)

The mobility parameter is now being modeled as changing, and it
is a function of the electron cloud temperature Te. To find μ(Te), we
determine 〈τk(Te)〉:

〈τk(Te)〉 =
∫ ∞
−∞ τk(Te)f dv

∫ ∞
−∞ f dv

= τ 0(Te)

∫ ∞
0 fηr+1/2

e dηe
∫ ∞
0 fη1/2

e dηe

= 2√
π

×
(

r + 1
2

)
!τ 0(Te)

Fr+1/2(ηFe)

F1/2(ηFe)
, (10.54)

where ηe = (E − Ec)/kBTe, and ηFe = (EqF − Ec)/kBTe. We have
noted that, at low fields, the momentum relaxation time has a
dependence on energy. The proportionality factor changes with
temperature depending on increasing or lowering the strength of
the mechanism, even as the energy dependence remains the same.

With an increase in temperature,
phonon scattering must increase,
even if the energy dependence
is the same, since the phonon
population is changing. Similarly,
with ionized impurity scattering,
lower temperatures cause more
scattering, since the velocity of carriers,
on average, is reduced.

So, we extend from a low field τk = τ 0η
r = KTu

e η
r dependence. The

relationship at higher fields is
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τk(Te) = τ 0(Te)η
r = KTu

e η
r

= τ 0

(
Te

T0

)u

ηr
e (10.55)

and hence

μ(Te) = qτ 0

m∗

(
Te

T

)u 2√
π

×
(

r + 1
2

)
!Fr+1/2(ηFe)

F1/2(ηFe)

= μ0

(
Te

T

)u

. (10.56)

We have now related the asymptotic low field mobility to a
mobility parameter at higher fields through the temperature Te. All
we need to do is relate this temperature to the electric field, and we
have a velocity-field relationship that is nonlinear and a function of
energy. Steady state means all balances must hold. So, we invoke
the conservation of energy in the Boltzmann transport equation.
Starting with the Boltzmann transport equation describing the time-
dependent response to the application of an electric field,

df
dt

= e
h̄
E · ∇k f − v · ∇rf − f − f0

τk
, (10.57)

we multiply by energy and average over the distribution, so
∫ ∞
−∞ E(df/dt) dv

∫ ∞
−∞ f dv

= (e/h̄)E · ∫ ∞
−∞ E∇k f dv

∫ ∞
−∞ f dv

−
∫ ∞
−∞ Ev · ∇rf dv

∫ ∞
−∞ f dv

−
∫ ∞
−∞ E[( f − f0)/τk] dv

∫ ∞
−∞ f dv

. (10.58)

The left side of the equation the expectation of the time dependence
of energy, that is, the evolution of the change in it. The first term
on the right is the first order term in field dependence. This is
one of the gains in energy as a result of the field performing
work resulting in a change in the momentum. The second term
we neglect. This is the real space diffusive flow. Concentration
gradients cannot be large when the field flow has been enhanced
by the high fields. The third term is the loss term from scattering.
So, we have a gain in energy from the field in the first term, and
a loss of this gained energy to scattering in the last term. We can
write this form spatially integrated as

d
dt

〈W〉 = envd · E − 〈W − W0〉
τw

. (10.59)

The left side of the equation the net power to the electron
distribution as a difference, shown on the right, of the power
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supplied by the electric field and the power lost in scattering. We
found this equation by looking at the energy flow in the Boltzmann
transport equation. Now, this τw is the energy relaxation time that
characterizes the relaxation of the hot electron distribution. This
is the time constant one will see when the E is turned off and the
electron distribution relaxes toward thermal equilibrium:

〈W − W0〉
τw

= 〈W〉 − 〈W0〉
τw

=
∫ ∞
−∞ E[( f − f0)/τk] dv dr

∫ ∞
−∞ f dv dr

(10.60)

relates this energy relaxation time. The equivalent relationship for
the momentum relaxation time is

〈τk〉 = 2
3

∫ ∞
0 τk(− ∂f/∂E

∣∣
0)η

3/2 dη
∫ ∞
0 f0η1/2 dη

, (10.61)

which we had already found. The energy dependences in these
relationships come from the scattering process, but the two are not
the same in general, that is, τk �= τw.

In steady state, the left side vanishes, and we have

〈W − W0〉
τw

= 〈W〉 − 〈W0〉
τw

= envd · E . (10.62)

Here, normalized by n,

〈w〉 =
〈

W
n

〉
= kBTe〈ηe〉 = 3

2
kBTe

F3/2(ηe)

F1/2(ηe)
, and

〈w0〉 = nkBT〈ηe|0〉 = 3
2

kBT
F3/2(η)

F1/2(η)
. (10.63)

Figure 10.19 shows these relaxation times in thermal equilibrium for
GaAs in (a). Figure 10.19(b) shows how the application of an electric
fields leads to changes in the expectation energy and expectation
velocity and its asymptote toward steady state in a few ps when
an electric field is applied. Note how the energy relaxation time is
larger than the momentum relaxation time across the energy span,
with both higher at 77K due to lower scattering. Also note how, as

Figure 10.19: The momentum and
energy relaxation times of GaAs as
a function of energy at 300 and 77 K
is shown in (a). The solution of the
Boltzmann transport equation for
energy response and velocity response
when an electric field is applied is
shown in (b).
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a result, the velocity relaxes faster than the energy, with a few ps
needed for the time transient to subside. Also note that the velocity
reaches as high as ∼4 × 107 cm/s before settling to the ∼107 cm/s.
So, the application of the field causes the thermal distribution
to first be disturbed farther up the E(k)—in small time periods
where enough scattering has not taken place due to times being of
the order of the relaxation times—and then it subsides to an off-
equilibrium distribution, which, in our approximate description, has
a temperature of Te.

The relationship

〈w〉 − 〈w0〉
τw

=
∫ ∞
−∞ E[( f − f0)/τk] dv

∫ ∞
−∞ f dv

(10.64)

leads to
〈w〉
τw

= 〈 w
τk

〉 = kBTe〈 ηe

τk
〉

= 2√
π

×
(
3
2

− r
)

!kBTe

τ 0

(
T
Te

)u F3/2−r(ηe)

F1/2(ηe)
, and

Te = 3
√

π

4
τ 0

[(3/2) − r]!
(

Te

T

)u F3/2(ηe)

F3/2−r(ηe)
. (10.65)

For non-degenerate conditions, so with simplification of the Fermi
integrals, this also becomes a direct analytic relationship between Te

and energy E of
(
3
2

− r
)

! kB

τ 0

(
T
Te

)u

(Te − T) =
(

r + 1
2

)
!q2τ 0

m∗

(
Te

T

)u

E2, or

(
Te

T
− 1

) (
T
Te

)2u

= q2τ 2
0

m∗kBT
[r + (1/2)]!
[(3/2) − r]!E2

= (βE)2, (10.66)

where we have introduced β as a parameter. When electrons
become quite hot, that is, Te  T, we can simplify all these different
parameter relationships to

Te

T
= (βE)−2/(2u−1),

μ(Te) = μ0

(
Te

T

)u

, or

μ(E) = μ0(βE)−2/(2u−1). (10.67)

We have now connected the high field mobility to energy through
the scattering process modeled in the relaxation time approxima-
tion. The high field mobility decreases from the low field mobility

When a charge cloud accelerates as
the result of an applied electric field,
the cloud and the crystal may be out
of equilibrium. If the field-induced
energy rise is high enough, this leads
to Te �= Tl. But if in an electric field
it does not accelerate, for example,
the drift-diffusion in the p-n junction,
then it maintains Te = Tl. So, electric
fields can exist without this energy-
associated consequence. The field
must be providing the energy to
the electrons for the temperature to
change. This underlay the discussion
of which mobility to use in our
discussion of p-n junctions in the
marginalia of Section 9.2.

value and asymptotically vanishes. This latter implies that the
velocity saturates. Our model has many limitations. A gradual
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decrease in mobility, while staying positive, means that the differ-
ential negative behavior discussed earlier is not captured. One can
see the reason for this in the fact that our relaxation time relations
are all monotonic functions, so that the onset of new scattering
processes, such as to the secondary valleys, will produce changes
in the energy dependence parameter r, which our formalism did not
include.

The electron accelerates between
scattering. The average is lower
than the peak. Amore accurate
development of this argument is
the following. At the velocity of
interest vd, the energy balance is
evdE = (3h̄ωq/2)[exp(h̄ωq/kBT) − 1],
where optical phonons dominate. The
exponential accounts for emission and
absorption. When velocity doesn’t rise
any further (peak or saturated), Te is
large, the momentum balance leads
to eE = 2m∗vd[exp(h̄ωq/kBT) + 1] for
non-polar optical phonons. So,

vsat, vpk =
[
2h̄ωop

4m∗ tanh
(

h̄ωop

2kBT

)]1/2

= g(m∗,ωop,T).

This equation, or others with different
mechanisms dominating at velocity
peaking, are largely within a few
percent of each other.

The velocity saturation lends itself to a reasonably simple expla-
nation. If carriers have higher energy, emission of optical phonons—
the longitudinal variety—becomes the dominant mechanism. Each
of these emissions takes out a fair amount of energy. Longitudinal
variety is preferred because it is the direction most conducive to
momentum matching in the scattering process. Steady state implies
that carriers gain energy and lose energy at an equal rate, so

〈w〉 − 〈w0〉
τw

≈ h̄ωLO

τw
≈ evd · E . (10.68)

With energy relaxation time a good approximation for how the
steady state is being achieved, on average the picked-up energy in
time τw is all lost, as h̄ωq on average in each scattering event, so

τw = (h̄ωLOm∗)1/2

eE
. (10.69)

Also, the excess energy on average is (1/2)m∗〈v2〉, so

vd = vsat, vpk ≈
√

〈v2〉 =
(

h̄ωLO

m∗

)1/2

= f (m∗,ωop,T). (10.70)

So, the saturated velocity of semiconductors is quite closely related
to the effective mass and the longitudinal optical phonon energy.
Figure 10.20 illustrates this by showing a normalized parameter for
several semiconductors.

Figure 10.20: The correlation between
high field velocity and the ratio of the
longitudinal optical phonon energy
and effective mass, shown through a
plot across several semiconductors.
Two different estimations based on
the simple optical phonon emission
argument ( f (m∗,ωop,T)) and the
non-polar emission and absorption
mechanism dominating (g(m∗,ωop,T))

are shown.

Figure 10.21 illustrates the build-up temperature tails. It illus-
trates the carrier distribution function in a small cross-section of
the drain depletion high field region of a transistor at drain biases
in the current saturation region. The Si semiconductor is at 300 K.
At the onset of saturation, the field are gradual across the entire
inversion channel, and the distribution function is quite Maxwell-
Boltzmann-like and can be fitted with a Te = 300 K. Raise the drain
bias further, with most of this bias increase appearing in a small
region at the drain end to which the inversion region couples, and
one sees a long tail forming and the peak shifting slightly. Note that
there are electrons, albeit in very small numbers—the plot is on a
logarithmic scale—and one sees temperatures in a tail region up
to 2880 K here. This is a hot electron tail. A major fraction of the
electrons are not too far from Te = 300 K. These are the electrons
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spread in the region of 0.0–0.6 eV. These electrons remained cold
since they underwent sufficient scattering. But a fraction of the
electrons injected from the inversion region did not scatter—after
all, it is a probabilistic process, the region is narrow and the time it
takes to cross this region small—and it is these electrons that appear
in this second high energy tail.

Figure 10.21: Electron distribution
along the channel of a MOSFET. The
300 K distribution is in a region with
low electrostatic potential change. The
others are for increasing electrostatic
potential change. The electrostatic
potential change, after saturation
of the current, occurs at the drain
end. Adapted from S. E. Laux and
M. V. Fischetti,  ̏Issues in modeling
small devices,˝ International Electron
Devices Meeting 1999. Technical Digest
(Cat. No. 99CH36318), IEEE, 523–526
(1999).

We can also see in Figure 10.22 how the energy changes when
electrons show negative differential velocity as they undergo
transfer to the secondary valleys—first L and then X—when
sufficient electric field is applied in GaAs. At low fields, the average
energy remains close to the (3/2)kBT that one expects close to
thermal distribution. Beyond a kV/cm, the field is high enough for
carriers to start acquiring enough energy while the scattering is
still moderate. The average energy rises. But, once it reaches that
∼0.3 eV threshold for the transfer to the L valley, the rise saturates
to quite below 1 eV, even as the field reaches 105 V/cm. The valley
population in the central � valley drops as first the L valley and
then the X valley start being scattered into. These have a large
density of states, polar optical scattering is efficient, and carriers
now move slower in the high mass higher valleys. One goes from
high mobility and high velocity to a lower mobility and lower
velocity.

Figure 10.22: Average energy and
valley occupation in steady state for
an electron in (100) GaAs under a
constant electric field. The electric field
ranges from low to high magnitudes
and passes through the negative
differential velocity region. Also
shown is the fraction of electrons
at an energy of 0.7 eV. Adapted
from S. E. Laux and M. V. Fischetti,
 ̏Issues in modeling small devices,˝
International Electron Devices Meeting
1999. Technical Digest (Cat. No.
99CH36318), 523–526 (1999).

10.9 Summary

We stressed the variety of scattering mechanisms of
import in common semiconductors of interest and related their
properties: scattering rates, relaxation times, cross-sections and
perturbation potentials and, through this, derived some of the
field-mediated transport properties. Many points flow through our
arguments, since there are many possible sources of perturbation
in a semiconductor, and, depending on the choice of conditions, a

In a metal, the Fermi energy is very
high into the conduction bands, so
much of the electron state change
is on the Fermi surface with large
wavevector phonons

group of these need to be considered simultaneously.
The scattering cross-section has a clear classical meaning. Semi-

classically, one can also assign a meaning that corresponds to an
effective area that the moving electrons feel and get scattered from
or to. This reflects a parameter with areal units reflecting the matrix
element, and a relaxation time tied to the scattering rate can be
related quite straightforwardly for elastic processes. The matrix
element for scattering between |k〉 and |k′〉 can be written in terms
of the perturbation potential of the scattering process. We derived
this for ionized impurity scattering while including screening.
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Scattering by phonons is a dominant theme in semiconductors. dominating. Semiconductor bands are
largely empty for typical carrier
concentrations, and numerous
scattering processes can cause a
change.

Acoustic phonons are atomic oscillation modes with correlated dis-
placement, and optical phonons are atomic oscillation modes with
anti-correlation. Both oscillations can be longitudinal and transverse.
Acoustic mode energies reach zero at vanishing wavevector. Optical
mode energies remain finite. So, these modes have quite different
temperature signatures. Absorption requires occupation of these
modes. So, as temperature decreases, optical absorption vanishes,
and if measurements involve only low kinetic energy, then optical
phonon emission too gets suppressed.

Longitudinal and transverse acoustic modes will modulate
the bandstructure through this dilation and compression of the
crystal. This shows up as perturbation in the potential energy—the
bandedge energy—and causes deformation coupling and scattering.
LA phonons cause pronounced in-line deformation in direct gap
semiconductors. For indirect bandgap semiconductors, it is the TA
phonons that cause the strongest deformation coupling. Charge also
matters. Semiconductors where the inversion symmetry is absent
accumulate the dipole charge over half a wavelength, and this leads
to piezoelectric scattering due to acoustic phonons.

Optical phonons—both LO and TO—too cause deformation
interaction. But if charge is present, then there will be a dipolar
coupling effect. This we call electromagnetic coupling, and it
matters for LO phonons. Electrons undergo scattering by optical
phonons dominated by the polar optical scattering in crystals with
ionicity, such as GaAs. This electromagnetic coupling will also
become important in photon interactions.

Because the dipolar effect arises in ionic polarization of the
crystal, there also exists frequency dependence. The polarization
part of the response is reflected in the difference in the inverse
dielectric function at static conditions and at high frequency,
between which the polarization freezes out. So, the polarization
effect can be extracted from this. Also, one notes from this that
when one is considering the dipole interaction with electromagnetic
waves—photon processes—then the frequency dependence will
appear. So, it will appear in plasmonic responses where electron
charge clouds’ frequency response couples. All these will appear in
our consideration in discussions of optical response (Chapter 12)
and of high permittivity materials (Chapter 18) and of remote
processes (Chapter 19).

Phonon processes can involve large wavevectors, since Brillouin-
zone-size phonons exist. It is possible for two phonons to coa-
lesce, leading to a wavevector in the next Brillouin zone. This is
equivalent in this periodic structure to a phonon wavevector in



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

414 semiconductor physics

the opposite direction. The energy carried by the phonons is now
moving in the opposite direction. This is an Umklapp process.
Thermal properties have become poorer, and phonons become
thermalized in this way. This same behavior can happen with
electron-photon interaction and for electron-electron interaction,
albeit with much smaller likelihood.

When different scattering mechanisms exist, are important
simultaneously and are independent of each other, then the net
scattering is a sum of the contributing scattering mechanisms, and
one can therefore reduce the net effect geometrically in the mobility.
This is Matthiessen’s rule.

The practicalities of these different scattering mechanisms were
observed through their temperature and energy dependences,
where we noted how semiconductors such as GaAs achieve very
high mobilities and improve further by improved screening and
reduced ionized impurity scattering in two-dimensional electron
gases. We also noted how the multiple valleys of Si near the X
point lead to idiosyncratic effects there. As one raises the energy of
electrons, scattering to secondary valleys may enter. So, GaAs shows
a negative differential velocity in its velocity-electric field behavior
as � → L scattering prevails. On the other hand, the extremely high
secondary valley in the small effective mass and small bandgap
semiconductor InAs leads to high mobilities and velocities further
up in energy. By employing the Boltzmann transport formalism
here, one observed the behavior by which these off-equilibrium
electrons relax and how this relaxation in momentum and energy
is reflected in the relevant relaxation time constants that can all be
written in terms of the momentum relaxation time and the various
scattering processes’ energy dependences. We also noted here
that multiple mechanisms and multiple constraints can lead to a
distribution function that may have multiple exponential tails—our
example was of two—corresponding to two electron temperatures
present in the distribution function when a high field existed over
a short length scale. One of the temperature tails corresponded
to the crystal temperature, and the other corresponded to the hot
electrons that acquired higher energy because they were lucky to
not undergo scattering at the high fields.

10.10 Concluding remarks and bibliographic notes

Scattering in semiconductors, with the multiple mechanisms,
different semiconductors with different mechanisms of importance,
the dependence on temperature of all these, and the suppression
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of scattering in two-dimensional electron gases with their own
unusual properties, has meant a tremendous amount of research
interest spanning many decades. There is a vast literature, and we
point out only a few of the many significant publications that have
the flavor of a review, of intuition or of a comprehensive summary.

The early books by Ziman1 and Peierls2 are still just as lucid and 1 J. M. Ziman,  ̏Electrons and
phonons,˝ Oxford (1960)

2 R. E. Peierls,  ̏Quantum theory of
solids,˝ Oxford, ISBN 0-19-850781
(1960)

fundamentally clear in the discussion of scattering and interactions
in matter as any writing since then. Ziman, in particular, tackles
electron-phonon interaction, screening effects and lattice scattering
through a number of chapters.

Hamaguchi3 specifically analytically explores electron-electron, 3 C. Hamaguchi,  ̏Basic semicon-
ductor physics,˝ Springer, ISBN
978-3-642-03302-5 (2010)

electron-phonon and plasmon scattering comprehensively. Another
intermediate text is by Wolfe, Holonyak and Stillman4.

4 C. M. Wolfe, N. Holonyak and
G. E. Stillman,  ̏Physical properties of
semiconductors,˝ Prentice Hall, ISBN
0-13-669961-8 (1989)

Jacoboni’s text5 discusses scattering at a more advanced level,

5 C. Jacoboni,  ̏Theory of electron
transport in semiconductors,˝
Springer, ISBN 978-3-642-10585-2
(2010)

is also more complete, and also discusses alloy scattering in mixed
ternary and quaternary semiconductors as well as holes. Readers
of this chapter should be able to follow the arguments of this text.
Another set of comparable discussions is in the text by Fischetti
and Vandenberghe6, and that by Ridley7. Finally, as mentioned in

6 M. Fischeti and W. G. Vandenberghe,
 ̏Advanced physics of electron
transport in semiconductors and
nanostructures,˝ Springer, ISBN
978-3-319-01100-4 (2016)

7 B. K. Ridley,  ̏Quantum processes
in semiconductors,˝ Oxford, ISBN
0-19-850-5809 (1999)

Chapter 4, the book series  ̏Handbook on Semiconductors˝ is a very
thoughtful source8 that gives insights into the thinking process that

8 W. Paul (ed.),  ̏Band theory
and transport properties,˝
1, North-Holland, ISBN
0-444-85346-4 (1982)

led to the consensus.
High field, the modeling of optical phonon scattering in high

field conditions, and the concept of electron temperature are treated
by Conwell in her classic review published in the  ̏Semiconductors
and Semimetals˝ series from Academic Press9.

9 E. M. Conwell,  ̏High field transport
in semiconductors,˝ Academic (1967)

10.11 Exercises

1. In a semiconductor at a low temperature, how likely is the optical
phonon absorption process compared to the acoustic phonon
absorption process? [S]

2. How important is the screening in ionized impurity screening at
low doping concentrations compared to high? [S]

3. Why would a neutral impurity cause scattering? [S]

4. Is piezoelectric scattering a significant scattering mechanism
due to phonons in silicon? Note silicon has inversion symmetry.
Which kind of phonons—acoustic or optical—may be relevant?

[S]

5. Why does momentum appear in determining the coupling arising
in oscillator strength? [S]
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6. Why are transverse optical phonons unaffected by electric fields
while longitudinal ones are? [S]

7. Take Si with a conduction effective mass m∗ = 0.26m0. What is
the energy, momentum, wavevector and de Broglie wavelength
of a conduction electron at thermal velocity at 300 K? Si also has
a sound velocity of ∼5800 m/s. Using conservation of energy and
crystal momentum, calculate the highest percent change in energy
of an electron undergoing an LA phonon deformation scattering.

[S]

8. During scattering by an acoustic phonon, an electron with an
initial velocity vi will either lose or gain energy. Show that, for a
sound velocity of c, this loss of gain in energy is bound, with

E ≤ 4c
vi

− 4
(

c
vi

)2

.
[S]

9. Does electron-electron scattering randomize the energy distri-
bution of hot electrons in 3-dimensional, 2-dimensional and 1-
dimensional systems? Please explain concisely. [S]

10. At high fields, electrons emit optical phonons at a very high
rate, causing  ̏hot phonon˝ effects. Estimate the optical phonon
generation rate in GaAs at electron energies of 200 meV. If
optical phonons cannot dissipate rapidly, the phonon occupancy
(n(ωq)) becomes large. What effect will this have on hot carrier
relaxation? [S]
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Particle generation and recombination

The 0th moment of the Boltzmann transport equation
leads to the continuity equation for particles. In this equation,
the time dependence not included in the particle Hamiltonian—
∂f/∂t—also contributes to the evolution of the distribution. In
single particle situations, a large population of electrons in quite
filled conduction bands of metals, for example, where one doesn’t
need to consider any appearance or disappearance of them, the Looking for a hole in metals would

be like looking for aliens arriving in
UFOs. It is highly unlikely that they
would be found, since filled bands are
far up and away—as are inhabitable
planets far away in space and time.

term vanishes if the distribution function lumps occupation across
all the conduction bands. In semiconductors, with very partial
occupation of bands, electrons interact across bands of different
indexes and, in this, the interaction between the conduction and
valence bands, and others, can be quite significant. These two
distributions cannot really be lumped together. Their charges are
different: one is a mostly empty band, and one is mostly filled.
And the interaction between them will take a multitude of forms.
Even at the simplest, this 0th moment equation needs to be written
separately for particles in the conduction band and particles in the
valence band. The interaction between them leads to a ∂f/∂t term
in each of the equations. The simplest approximation to this change
term, upon disturbance from thermal equilibrium, follows as

∂f
∂t

= − f − f0
τ

∴ ∂〈 fϕ〉
∂t

= −〈 fϕ〉 − 〈 f0ϕ〉
τϕ

, (11.1)

where ϕ = 1 for particle density calculation. This time constant
τϕ=1 has the meaning of a particle lifetime—τ n for electrons, or
τ p for holes—that characterizes the generation or recombination
of particles, since Equation 11.1 is a particle continuity equation.
One could look upon these time constants as the equivalents
of relaxation times, with the randomizing part of the approxi-
mation where the relaxation is of the particle density disturbed
from thermal equilibrium. These time constants of approxi-
mations of the various moment equations—particle relaxation,

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001
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momentum relaxation, energy relaxation—all reflect the entropic
urge toward thermal equilibrium.
For particles, when a single band picture is employed, for

example, in many conditions of transport with high majority carrier
concentration and limited minority carrier concentration change,
using a constant single time constant is quite a reasonable model,
because the number of carriers is only limitedly perturbed. Many
circumstances, however, involve multiple bands and this time-
constant fitting can become quite complex, just as it did for the
momentum relaxation time. The high field drain-channel region
of a MOSFET is also a region of short extent. Carriers are well
out of equilibrium and acquire high kinetic energy, and such a
high energy carrier, say, an electron in an n-channel MOSFET,
may dislodge an electron from an occupied state in the valence
band into the conduction band while losing sufficient energy to
make that process happen. This is impact ionization. In a highly
doped small bandgap material, this high initial energy triggered
process may even occur without any significant field, because
energy states at a bandgap order of magnitude become more likely
to be occupied. This is Auger generation. At least two bands are
involved, particle count is not conserved and the time constant
now has an energy dependence. In regions of bipolar transport, as
in a p-n junction or the bipolar transistor, the electrons and holes
recombine (and generate) by again an interaction either directly
across the bandgap or through intermediate states in the band.
So, there are numerous circumstances where this τϕ for the 0th
moment equation is finite and has significant implications. And
one would have to employ a Boltzmann transport equation for each
one of these particles, with their different distribution functions, to
describe the physics. The electron or hole lifetime is this relaxation There is also nothing stopping us,

except for the complexity, of even
writing a Boltzmann transport
equation for phonons. It is just
immensely hard, since degenerate
bands, Bose-Einstein statistics and
a broadband distribution of optical
phonons exist. We will attempt this in
Chapter 19 to explore thermoelectric
phenomenon at nanoscale.

time. And it arises in many different processes. For some, a simple
classical reasoning suffices, but some require quantum-mechanical
rigor to get reasonable accuracy and honorable insight. Lasers, for
example, arising in radiative recombination, would not exist were it
not for quantum mechanics at work.
In this chapter, we will explore classical and quantum-mechanical

approaches to understanding these lifetimes for non-radiative
and radiative processes—some only classically, but some in both
ways to see the correspondence and the details. The non-radiative
processes are emphasized through the Hall-Shockley-Read process
discussion for a single charged state and through one specific Auger
process that is quite suitable for quantum-mechanical discussion,
and which in turn gives us a means of understanding impact
ionization process. The radiative recombination process is employed
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to understand the basics that let us demystify the general approach
to these calculations.

11.1 Radiative recombination and generation

Radiative processes are, of course, quantum-mechanical
processes. Particles are an emergent view to compact energy
excitations. Two different particles—electrons and holes—combining
to produce a third—a photon—with very different properties is
certainly not trivially expected in a classical view. But, quantum-
mechanically, from the energy and the wave-particle view, it
is all quite rational. Lasing depends on stimulated emission—
the creation of another photon identical to an existing photon—
which too is only possible to visualize quantum-mechanically. This
stimulation is at the heart of the A and B coefficients, and this basic
notion of spontaneous and stimulated emission is summarized in
Appendix K, together with the implications for electromagnetic-
matter interactions where photons are generated or annihilated.
Our discussion here is semi-classical and parameterized, taking
recourse to detailed balance as the initial matching condition. The
parameterization buries in it the quantum-mechanical origins. A
more substantive treatment based on scattering involving phonons
is a task for us in Chapter 12.

Figure 11.1: A classical view of the
annihilation of an electron-hole pair
generating a photon in a direct
transition. An electron occupying
a state in the conduction band
transitions to occupying a state
in the valence band. This valence
band state must be empty prior to
the transition and is the state of the
quasiantiparticle hole.

In Figure 11.1, an electron-hole pair recombination leads to the
generation of a photon of energy h̄ω. The electron, in transitioning
from a state in the conduction band to a state in the valence band,
loses its energy in the form of the photon. Photons have a very high
velocity c modified by the index of refraction, so the energy of a
photon E = h̄(c/n)k, where n is an averaged index of refraction and
k the wavevector of a photon, involves a very small k. Photons have
a very small momentum compared to that of the electron.

Take GaAs with a bandgap of 1.4 eV.
A photon of this energy
will have a momentum
h̄k = En/c ≈ 1.4× 3/3× 108 eV · s/m,
which is about 2.24× 10−27 kg · m/s.
An electron at the thermal energy of
kBT—about the energy of the peak
in the distribution—has, because of
E = h̄2k2/2m∗, a momentum in the
crystal of h̄k = √

E2m∗, which is about
2.2× 10−26 kg · m/s. The momentum
at the first Brillouin zone edge is
h̄k = h̄π/a, about 6.3× 10−25 kg · m/s.
The electrons occupy about 3 % of the
length expanse of the reciprocal space
in GaAs. Photons are in an another
factor-of-10-shrunk region of the
order of 0.3 %. This span difference
has a variety of implications, which
differentiate the photon from the
phonon—the other boson—even if
they are both  ̏charge neutral.˝ Both
have electromagnetic effects: a photon
is an electromagnetic bundle of energy,
while a phonon has charge effects
through deformation, piezoelectricity
and polar behavior. For photons, the
small momentum makes classical
direct calculations not unreasonable
for several problems. In this, the
approach is similar to that of the use
of capture cross section in ionized
impurity scattering analysis.

The approach to such semi-classical conditions that we have seen
before and will see again is to use thermal equilibrium—detailed
balance—to relate parameters that then lead to a parameterized
equation dependent on the carrier population, and preferably in
useful limits, directly on the excess carrier population.
We may write the recombination rate Rr as

Rr = crnp, (11.2)

where cr is a rate constant for capture in units of cm3/s. One
electron and one hole recombine, so the proportionality is to the
product of electron density—the number of electrons available—
and hole density—the number of holes available, which is the
number of empty states in the valence band—through some
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proportionality that determines the time-dependent rate. This is the
cr here. And normalizing to working with unit volumes being the
norm, Equation 11.2 is the proper form, based on dimensionality
considerations. In thermal equilibrium, using the 0 subscript to
identify this condition, as we have done throughout the text, we
have

Rr0 = crn0p0 = crn2i ; (11.3)

therefore, off-equilibrium,

Rr = Rr0
np

n2i
, (11.4)

where n = n0 + �n, and p = p0 + �p, with �n and �p as the excess
population from equilibrium. In general, these can be positive or
negative. The change in the recombination rate is As before, our analysis will include the

lowest order perturbation terms.

�Rr = Rr − Rr0 = (n0 + �n)
(

p0 + �p
)

n0p0
Rr0 − Rr0

=
(

�n
n0

+ �p
p0

)
Rr0. (11.5)

In thermal equilibrium, the change in the recombination rate
vanishes. Indeed, in thermal equilibrium, recombination and
generation balance. They balance in detail for each individual pair
of state interactions, and therefore for the collective ensemble too.
It is the recombination process that leads to the radiative emission
and therefore is of interest to us.
The time constant for the 0th moment equation—the particle

conservation time constant—is what we call lifetime. It is a measure
of the relaxation time in the entropic drive toward maximum
entropy of thermal equilibrium. For radiative processes, this time
constant is the radiative lifetime

τ r = �n
�Rr

= �n
�n × p0 + �p × n0

n2i
Rr0

. (11.6)

Since one electron and one hole recombine, or get generated from
B (cm3/s)

AlAs 7.5× 10−11

GaAs 1.0× 10−10

GaN 1.1× 10−8

GaP 3.0× 10−15

InAs 2.1× 10−11

InP 6.0× 10−11

4H SiC 1.5× 10−12

Si 1.1× 10−14

Table 11.1: Bimolecular recombination
coefficients for some semiconductors.
The numbers are for room
temperature.

photon absorption, in the radiative process, �n = �p, and we have

τ r = �n
�R

= n2i
n0 + p0

1
Rr0

= 1
n0 + p0

1
B
. (11.7)

B = Rr0/n2i is a radiative constant. The constant B is directly drawn

B is called the bimolecular radiative
constant. It was in molecules that the
radiative rate was first calculated and
employed. It is related to the matrix
element of radiative processes and is
related to the Einstein B coefficient.
They are both related to the matrix
element for radiative processes.

from the matrix element coupling the states and is therefore related
to how well matched the electron and hole states are coupled
through the transition dipole matrix (see Appendix K, and we
follow through in detail in Chapter 12). Table 11.1 summarizes
bimolecular recombination coefficients for some of the semicon-
ductors. Note how, for direct bandgap semiconductors (GaN, GaAs,
InP, InAs), it is much larger, compared to the values for indirect
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gap semiconductors, where the matrix element will be small from We are calling the defect-mediated
recombination process the Hall-
Shockley-Read process. Much
literature refers to this as the Shockley-
Read-Hall process. I suspect that
there is a curious story behind the
experiments and theory leading
to this point here. Hall’s papers,
 ̏Germanium rectifier characteristics,˝
Physical Review, 83, 228 (1951) and
 ̏Electron-hole recombination in
germanium,˝ Physical Review, 87, 387
(1952), describe the equations close to
the form we see. Shockley and Read
have a more generalized theory in
 ̏Statistics of the recombinations of
holes and electrons,˝ Physical Review,
87, 835–842 (1952). There are curious
footnotes in these publications. What
should the defect-mediated process
be called? It depends on who knew
what when, when it was published
and under what constraints. These
credit ideas are pervasive in science,
especially since, as Koestler in The Act
of Creation has argued, outbreaks of
creativity happen as many bring the
relevant thoughts together from many
perspectives, and the moment is ripe.
The modern scientific process arose as
Copernicus, Kepler, Brahe, Lippershey,
Bruno, Galileo and so many others
stirred the broth in the midst of the
Renaissance. Exclusive credit is an
oxymoron.

symmetry arguments.
The radiative lifetime in Equation 11.7 also has implications.

If the semiconductor is n-type or p-type, the thermal equilibrium
carrier density of the opposite polarity is low. So, in the denomina-
tor, the larger carrier density dominates. The proportionality then
is also to the inverse of this density. It is the excess lower carrier
density that is being radiatively removed in a noticeable way by the
radiative process and constitutes the rate-limiting step. For example,
if n0 � p0 (an n-type material), then τ r ∝ 1/n0.

11.2 Non-radiative processes: Hall-Shockley-Read

Defects in semiconductors arise in many forms, and we
tackled their quantum-mechanical origins in our discussion of point
perturbations (Chapter 7). Intrinsic defects, such as vacancies, dis-
locations, surface states and other crystal imperfection complexes,
arise in the thermodynamic nature of the material preparation and
existence. Extrinsic defects, unintentional and intentional, exist
because of impurities incorporated during the process of preparing
the material or devices. Our discussion of shallow donors and
acceptors—as hydrogenic impurities—as sources of additional
electrons or holes in the semiconductor was predicated on their
forms being similar to a semiconductor species, but for an excess
or deficiency of electrons. Such an impurity then can be seen as
hydrogenic impurity, mildly perturbative in the crystal’s periodic
potential, leading to an electron that was localized over a much
larger space (many unit cells and ×100 or more than the orbital
localization). Since the confining energy is very small comparable to
thermal energy at room temperature, and because of the statistics of
occupation when there are few dopant states and a large number of
states in the band, it occupies states in the conduction band. These
conduction band states are propagating states. Spreading in real
space is localization in reciprocal space. So, hydrogenic donors or
acceptors are to viewed as being closely coupled in the momentum
space of the E-k picture and as a long-range perturbation spatially.
At low temperatures, the electron may stay quite localized, which
is what we call freeze-out. This description is simplistic; of course,
higher doping means degeneracy as dopants are closer together—a
Mott description—and the E-k description needs modification.

See S. Tiwari,  ̏Quantum, statistical
and information mechanics: A unified
introduction,˝ Electroscience 1,
Oxford University Press, ISBN
978-0-198-75985-0 (forthcoming)
for the elementary description
of localization and transitions,
and S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017), for an
advanced discussion with application
to devices.

In contrast to the hydrogenic impurities, with their low ion-
ization energy of carriers to band extrema, defects—intrinsic and
extrinsic—also arise as a short-range spatial perturbation in the
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potential, both in the bulk and at the surfaces. These are deep
levels—which can be quite complex in their behavior—that are
sometimes also called traps. Instead of a hydrogenic substitutional
impurity such as P or As as a donor for an n-type semiconductor,
consider a transition metal atom—atoms with d or f orbitals with
electrons—substituting in the Si crystal. P and As had an excess
electron in the p orbital, which has a symmetry similar to that of
the p orbital of the s2p2 of Si that hybridized to sp3. So, P and As
can also undergo such a wavefunction restructuring easily, except
that there exists an excess electron. Transition elements such as Cu, The complementary argument is that B

will have one less electron, which leads
to the hole.

Ti and Au have many more states in the d outer orbital, a number
of electrons partially filled in them and a symmetry that is very
different from that of the atoms from which the crystal assembly
is formed. The consequence is that many states will appear for
different levels of ionization of the impurity; many of these are
in the bandgap, but many could be in the band. So, states exist in
many states of ionization (Au could be Au0, i.e., neutral, as well as
several states of ionization, Au+, Au2+, Au+3, etc., with different
energies in the bandgap and possibly in the bands). Since the outer
orbital involved in the interaction is highly localized, it is spread
out in k. Electrons of all different types of envelope symmetry will
interact with them, albeit much, much more slowly, that is, emission
and capture of electrons (or holes, i.e., coupling to the valence
band) will happen much more slowly. Hydrogenic donors interact
with the conduction band; we only consider their valence band
interactions under very specific conditions, such as when a photon
has an energy that can cause an electromagnetic coupling. Deep
impurities can couple with both bands. So, they are mediators for
electron-hole interactions, even with thermal energy as the catalyst.
Thermal energy is not such a catalyst for hydrogenic impurities,
since the barrier energy is the entire bandgap for the opposite band.
Deep levels have a much lower energy barrier to such a interaction.
Deep levels can be both donor-like and acceptor-like. Such deep Adeep donor, that is, a donor of

electrons, is one where, when the
electrons exist with the impurity, it is
charge neutral and, when the electrons
detach, the deep impurity is charge
positive. An acceptor-like deep trap is
one that accepts an electron, turning
charge negative.

levels will also arise in intrinsic defects, which too have short
spatial ranges.
Many common traps are singly ionized with an energy in the

bandgap. Oxygen is an example of a donor-like trap. Chromium is
an example of acceptor-like trap. The intrinsic deep levels come in a
complex variety, and often we may be able to measure the presence
and characteristics of the trap by thermally activated measurements,
although we can only give verisimilitude to its origin. GaAs, for
example, has a deep acceptor EL3 at 0.58 eV, an electron trap EB3

at 0.91 eV, and another electron trap EB6 at 0.41 eV, where the
energies are referenced to the conduction bandedge.
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This hydrogenic and deep-level behavior was looked at in detail
in Chapter 7 from the energetics viewpoint. We are now interested
in the dynamic effect of the deep levels in the semiconductor.
We will take a simple example—a deep donor with one

ionization state—to understand the capture and emission
mechanics and its consequences. The model is the Hall-Shockley-
Read model, and a simple illustration of it is in Figure 11.2.
Figure 11.2(a) here illustrates the emission of an electron from a
neutral trap to the conduction band, which leaves the trap in a
positively charged state. This emission process is characterized by
ee as the volume-normalized emission time constant, so units of
cm−3 · s−1. In the inverse of this process (Figure 11.2(b)), an electron
is captured by a charged trap with the capture time constant ce.
A similar set of parameters exists for hole capture. We write in
terms of the holes to be unambiguous about the interaction being
between the trap state and the valence band states. It could have
been viewed as an electron transition process to the valence band,
which is mostly filled with electrons. All these four processes are
possible, so if an electron is captured by a trap (Figure 11.2(b)),
and subsequently a hole is captured by a trap (Figure 11.2(c)), an
electron and a hole have disappeared. This is a recombination. If
an electron emission ((Figure 11.2(a)) and a hole emission happen
(Figure 11.2(d)), we now have a generation process. In thermal
equilibrium, detailed balance holds, so (a) and (b) balance, and (c)
and (d) balance separately—not just to the band, but for each and
every trap state to each and every band state.
Figure 11.2 is the simplest singly charged trap example of the

Hall-Shockley-Read (HSR) generation-recombination process. The
HSR process is non-radiative. The excess energy is being supplied
to the crystal (recombination) or extracted from the crystal (gen-
eration). So, phonons must also be a part of this interaction. Our
semi-classical parameterized treatment sidesteps the conservation
requirements by taking recourse to parameters and the balancing at
thermal equilibrium.

Figure 11.2: Part (a) shows the
emission of an electron from a deep
level (N0

T → N+
T + e−), (b) shows the

capture of an electron to the deep level
(N+

T + e− → N0
T), (c) shows the same

for a hole capture (N0
T + h+ → N+

T )
and (d) shows the emission of a hole
from the deep level (N+

T → N0
T + h+).

Note that the hole process could be
equivalently viewed as an electron
process coupling to the valence band.
Part (c) would then be an electron
emission to an empty state in the
valence band, and (d) an electron
capture from a filled state in the
valence band.
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Let NT be the trap density of the donor-like trap. It exists either
as a positively charged trap of density of N+

T , that is, donor-like
and singly ionized, or as a neutral trap of density N0

T. In thermal
equilibrium,

NT = N+
T0 + N0

T0, (11.8)

and, away from thermal equilibrium,

NT = N+
T + N0

T. (11.9)

The rate of capture of electrons from the conduction band is

Rce = cenN+
T . (11.10)

As with the radiative recombination discussion, this relationship
can be seen as the proportionality, and therefrom equality, in the
recombination process being proportional to the number of carriers
available for capture (n) and the available sites for capture (N+

T ).
Similarly, the rate of emission of electrons to the conduction band—
the generation rate of electrons in the conduction band—is

Gce = eeN0
T(Nc − n). (11.11)

Note (Nc−n), because the effective density of states is the density of
electron states parameterized to the edge of the band and n of these
are occupied. At thermal equilibrium, detailed balance forces

Gce0 = Rce0,

or eeN
0
T(Nc − n0) = cen0N+

T0

∴ ee = ce
n0

Nc − n0

N+
T0

N0
T0

, (11.12)

where we have now related the emission proportionality constant
to the capture proportionality constant. This is precisely the
same approach for determining parameter relationships as in the
radiative recombination discussion. Electron emission and capture
constants are related, and the same is true for the other transitions
between states, that of hole capture and emission. For holes, for
capture,

Rvh = chpN0
T, (11.13)

and, for emission,

Gvh = ehN+
T (Nv − p). (11.14)

And the thermal equilibrium constraint translates to

Gvh0 = Rvh0,

or ehN+
T0(Nv − p0) = chp0N0

T0

∴ eh = ch
p0

Nv − p0

N0
T0

N+
T0
. (11.15)
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The hole emission constant (eh) has now been related to the hole
capture constant (ch).

Figure 11.3: An illustration of a density
of N+

T charged traps of cross-section
areas σ in a sea of n electron density
moving with thermal velocity vθ .

These constants are related to the ability of a trap to capture or to
emit. We tackled a similar problem for ionized impurity scattering
when the cos θ dependence and the interpretation of scattering
cross-section was provided a quantum-classical interpretation
(Subsection 10.1.1). Figure 11.3 shows a few ionized traps of trap
density N+

T , with their capture range viewed through cross-section
σ , in the presence of a density of n electrons moving around
thermally at a velocity vθ . As this is a positively charged trap,
electron capture is possible. The fractional extent of the capturing
volume that the electron is likely to see per unit time is σvθ N+

T .
This is the capture rate, so

ce = σvθ N+
T . (11.16)

With n0 
 Nc, using the Boltzmann approximation,

ee = ce
n0

Nc − n0

N+
T0

N0
T0

∴ = ce
n0
Nc

N+
T0

N0
T0

, with n0 = Nc exp
(

EF − Ec

kBT

)
. (11.17)

Similarly,

eh = ch
p0

Nv − p0

N0
T0

N+
T0

∴ = ch
p0
Nv

N0
T0

N+
T0
, with p0 = Nv exp

(
Ev − EF

kBT

)
. (11.18)

An additional constraint, from thermal equilibrium, is n0p0 = n2i by
the law of mass action. A remark is in order regarding the

law of mass action. Its antecedents
are equilibrium in chemical reaction.
Equilibrium demands forward and
reverse processes to balance and also
relate to the reactants and products
in dilute conditions. n0p0 = n2i is
true in dilute conditions when only
n (electrons) and p (holes) are the
reacting species. Electrons in the
conduction band arise from electrons
jumping from a valence band, leaving
a hole behind. All are dilute. If we
have non-degenerate doping, this
still holds. But if degeneracy exists,
conditions are not dilute; additional
states have been introduced by the
dopants. Now, n0p0 �= n2i .

Let �n and �p be the density of excess electrons and holes,
respectively. Their change in time arises in the recombination and
generation rate. So,

−d�n
dt

= Rce − Gce = cenN+
T − ce

n0
Nc

N+
T0

N0
T0

N0
TNc

= ce

(

nN+
T − n0N0

T
N+

T0

N0
T0

)

= ce

[
nN+

T − Nc exp
(

−Ec − ET

kT

)
N0

T

]
, (11.19)

and, similarly,

−d�p
dt

= Rvh − Gvh = ch

(

pN0
T − p0N+

T
N0

T0

N+
T0

)

= ch

[
nN0

T − Nv exp
(

−ET − Ev

kT

)
N+

T

]
. (11.20)
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In thermal equilibrium,

�n = �p = 0, (11.21)

and, in steady state,

d�n
dt

= d�p
dt

, (11.22)

since the carriers are allowed to only interact with each other via
the HSR process. Therefore,

N+
T =

NT

[
ceNc exp

(
−Ec−ET

kBT

)
+ chp

]

[
n + Nc exp

(
−Ec−ET

kBT

)]
ce +

[
p + Nv exp

(
−ET−Ev

kBT

)]
ch

(11.23)

and

N0
T =

NT

[
cen + chNv exp

(
−ET−Ev

kBT

)]

[
n + Nc exp

(
−Ec−ET

kBT

)]
ce +

[
p + Nv exp

(
−ET−Ev

kBT

)]
ch

. (11.24)

For known emission and capture characteristics—these are a
function of the HSR centers in play—one can determine precisely
the ionized and the neutral trap densities. The expressions look
somewhat complex, but one can see quite clear sense in them. If the In Exercise 6 of this chapter, we tackle

Au with its multiply charged states;
this same statistical treatment will lead
to further complexity.

electron and hole capture rate was vanishingly small, the density
is only determined by the background doping, and therefore the
position of Fermi energy. Say, the material is n-type and the left side
of the denominator dominates as ce, ch → 0. If NT 
 n, then

N+
T ≈ NT

Nc

n
exp

(
−Ec − ET

kBT

)
= NT exp

(
−EF − ET

kBT

)
, (11.25)

the expectation based on Fermi energy, trap energy position and the
Maxwell-Boltzmann statistics of occupation.
The net rate of decrease of excess carrier density can be writ-

ten as

U = −d�n
dt

= −d�p
dt

= R − G

= np − n2i[
n + Nc exp

(
− Ec−ET

kBT

)]
1

chNT
+

[
p + Nv exp

(
− ET−Ev

kBT

)]
1

ceNT

.

(11.26)

This equation too has a direct meaning. When np > n2i , that is, there
are excess carriers, then there is net recombination. If it is less, there
is net generation. Both are entropically driven. This equation can be
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written in a simpler and more meaningful form by parameterizing
with trap-determined time constants for capture of holes (τ p0) and
electrons (τ n0) as

τ p0 = 1
chNT

, and τ n0 = 1
ceNT

. (11.27)

These two constants are related to the properties of the deep levels
and how many of them there are. We can now write

U = −d�n
dt

= −d�p
dt

= np − n2i
(n + nT) τ p0 + (

p + pT
)
τ n0

, (11.28)

where we have used the additional interpretation of

nT = Nc exp
(

−Ec − ET

kBT

)
and

pT = Nv exp
(

−ET − Ev

kBT

)
, (11.29)

as a density of carriers—connected to traps—so, as if the Fermi
energy is at the trap level.
Equation 11.28 is an equation from which much can be explored

in many of the common conditions in devices off-equilibrium, and
the carrier interactions therein. This includes p-n junction regions,
transport in quasineutral regions such as in bipolar transport, and
a variety of phenomena in silicon-on-insulator transistors, and the
back-depletion regions of MOSFETs. τ p0 and τ n0 were lifetime
parameters associated with the trap’s capturing characteristics
and the trap concentration. Equation 11.28 also tells us that if a
material is n-type, the first term of the denominator will usually
be large n � p,nT, pT, and if this were the case, what we will
mostly be concerned with is the parameter τ p0. In other words, in
a quasineutral n-type material, hole concentration is small and the
amounts of excess electrons and holes are of the same magnitude,
so what matters is what happens to the excess holes, which are
the minority carriers. The rate-limiting step is these excess holes.
In general, though, such as in p-n junction transition regions, both
will matter, since carrier concentrations are low for both, and even
switch as one traverses the region.
For an n-type semiconductor, the lifetime we are particularly

concerned with is the hole lifetime,
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τ p = − �p
d�p/dt

= �p

np − n2i

{[
n + Nc exp

(
−Ec − ET

kBT

)]
τ p0

+
[

p + Nv exp
(

−ET − Ev

kBT

)]
τ n0

}

= �p

np − n2i

[
(n + nT) τ p0 + (

p + pT
)
τ n0

]
. (11.30)

For a p-type semiconductor, the lifetime we are particularly
concerned with is the electron lifetime,

τ n = − �n
d�n/dt

= �n

np − n2i

{[
n + Nc exp

(
−Ec − ET

kBT

)]
τ p0

+
[

p + Nv exp
(

−ET − Ev

kBT

)]
τ n0

}

= �n

np − n2i

[
(n + nT) τ p0 + (

p + pT
)
τ n0

]
. (11.31)

In quasineutral regions, the excess population is the same, so
these lifetimes are the same if all the rest of the parameters are. In
quasineutral regions, the rate-limiting step is via the excess minority
carriers, so it is the minority carrier lifetime that we mostly concern
ourselves with in quasineutral conditions. But, in general, both
matter.

Figure 11.4: A sketch of lifetime as the
Fermi energy is swept from p-type to
n-type for a singly charged deep level.

Figure 11.4 shows how the lifetime changes as the Fermi energy
is swept in a quasineutral material. If it is quite p-type, the minority
carrier is n-type, and it is τ n0 that matters. This is what matters in
the quasineutral base region of n-p-n bipolar transistors and the
p-type region of long p-n diodes. The complement of this is what
happens in an n-type material when the Fermi energy is closer
to the conduction bandedge. When the Fermi energy is close to
the middle of the gap, both carrier populations are small, and the
lifetime actually peaks. The carrier and the trap terms in each of
the denominator terms of Equation 11.28 are comparable and small,
peaking the lifetime. A trap close to the middle of the gap tends
to be most efficient at generation and recombination. Such a trap
can communicate effectively with both the conduction band and the
valence band, and the energy impediment to the transition balances
to about half the bandgap for both carriers. Of course, in stating
this we have assumed that capture or emission rate constants (the
cs and the es) for electrons and holes are quite similar, in which case
the exponential term of the transition will dominate.
From Equation 11.4, one can also extract some limiting values for

low, moderate and high levels of excess carriers. For small values of
�n and �p,
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τ = τ low = τ p0
n0 + nT

n0 + p0
+ τ n0

p0 + pT

n0 + p0
. (11.32)

For large values of �n and �p,

τ = τ high = τ p0 + τ n0, (11.33)

and, for intermediate values of �n and �p,

τ = τ 0
1+ [(τ p0 + τ n0)�p]/[(n0 + nT)τ p0 + (p0 + pT)τ n0]

1+ �p/(n0 + p0)
. (11.34)

This discussion stressed the consequences of intentional or
unintentional interaction centers that allow efficient capture and
emission with both the conduction band and the valence band
and thus limit the lifetime—the relaxation time for the 0th moment
equation—for electrons and holes. It is a  ̏defect˝-induced process.
It is a non-radiative process where energy and momentum match-
ing will involve interaction of the crystal, and hence phonons. We
did not tackle this problem quantum-mechanically, sweeping those
details into a cross-section, the constants cs and es or the lifetime
parameters τ p0 and τ n0. It is not that instructive, except to show
the power of quantum mechanics. The radiative recombination I hope that, by this time, this enormous

power of quantum mechanics is
front and center in your imagination.
Classical observations can always be
reached through the correspondence
principle from quantum mechanics.
But there is so much richness
and detail that this approach is
enlightening.

and generation discussion before this, again without recourse to
quantum mechanics, which we will address in Chapter 12, was a
discussion of direct interaction between bands.
There is an additional extremely significant way by which

carriers interact between bands, and through other states, which
becomes important under a variety of conditions, particularly high
carrier concentration, low bandgap, et cetera. This is the phenomena
of Auger recombination and generation. Auger interactions in Pierre Auger was among the first,

together with Lise Meitner, who
had a major part in the discovery
of uranium fission, to show how, in
atomic systems, electrons changing
state from a higher energy orbit
to a lower energy orbit can give
up this energy and kick another
electron up in energy. Auger electron
spectroscopy at this atomic level is
a useful approach in the analysis of
materials.

semiconductors and their states—not the atomic states—is the
subject of this upcoming section.
We will pursue this discussion both classically and quantum-

mechanically, to stress the fundamentals.

11.3 Non-radiative processes: Auger

When the excess energy of a generation or recombination
process is coupled through another particle—usually one additional
particle—the process is called an Auger process. The origin of If you look at the literature, you will

find a particularly intriguingly titled
paper  ̏The first 70 Auger processes˝
(P. T. Landsberg and D. J. Robbins.
 ̏The first 70 semiconductor Auger
processes,˝ Solid-State Electronics, 21,
1289–1294 (1978)). It is a pretty good
analytic paper.

this name is its initial observation in atomic systems. It is of
considerable importance in semiconductors, since high doping
conditions, high injection conditions, such as of bipolar lasers, and
small bandgap materials are quite susceptible to it. Indeed, impact
ionization, where an electron gaining energy in an electric field
parts with it by generating an electron-hole pair is an electric-field-
activated Auger generation process. Figure 11.5 shows the simplest
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description—akin to the radiative recombination description—for
an example Auger process. This one is an idealized example of a
simple, isotropic, parabolic, band-to-band recombination. In general,
Auger processes may happen between band-to-shallow levels and
involve excitons, multiple bands, combinations of carriers and
phonons, and so on.
We tackle the process of Figure 11.5 first, using our semi-classical

picture. Two electrons and one hole are involved, and all need to
exist for this recombination process to take place, so

Figure 11.5: An illustration of a
2-electron and 1-hole Auger process.
Electron 1 combines with hole 2, and
imparts excess energy to electron 3,
which gets excited to a higher energy
state, 3∗.

RAe ∝ n2p (11.35)

is a compact description of the Auger recombination rate. We could
have placed a constant in the relationship to make it an equality. In
thermal equilibrium,

RAe0 ∝ n20p0. (11.36)

For Auger generation, all one needs is a sufficiently hot electron
that can lose its energy to bounce an electron from the filled valence
band to the nearly empty conduction band. The rate-limiting
condition here is the presence of this high energy electron. So,

GAe ∝ n, (11.37)

off-equilibrium, and

GAe0 ∝ n0 (11.38)

at thermal equilibrium. In thermal equilibrium, the recombination
and the generation match, that is, RAe0 = GAe0, and therefore

RAe = RAe0
n2p

n20p0
, and

GAe = GAe0
n
n0
. (11.39)

So, the net recombination—decrease—rate is

RAe − GAe = GAe0

(
n2p

n20p0
− n

n0

)

= γ nn(np − n2i ), (11.40)

where γ n =GAe0/n20p0 is a material- and Auger-coupling-related
parameter, similar to our deployment of ce and ch or their equiva-
lent ee and eh for the HSR process. These are parameters that can
be characterized through measurements. An equation similar to
Equation 11.40 for a hole-initiated Auger process is

RAh − GAh = γ pp(np − n2i ). (11.41)
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And the net Auger recombination rate due to electron-initiated and
hole-initiated processes is

UA = RAe − GAe + RAh − GAh

= (γ nn + γ pp)(np − n2i ). (11.42)

Now consider a heavily doped p-type material such as the
quasineutral base of a n-p-n bipolar transistor. We have �n and
�p, as the excess carriers, about equal. Here

UA ≈ [
γ n(n0 + �n) + γ p(NA + �p)

] [
(n0 + �n)(NA + �p) − n2i

]
.

(11.43)

The first part of the first term of the product on the right-hand side
is small, since electrons are the minority carrier, and the size of the
excess population is limited. In the second part of the first term of
the product, γ pNA is much larger than γ p�p. So, we get

UA ≈ γ pNA(n0NA + �n × NA + n0�p + �n�p − n2i ), (11.44)

where the dominant term arises from NA, and since �n � n0, we
can reduce this to

UA ≈ γ pNA(�nNA) = γ pN2
A�n. (11.45)

The net Auger rate is a product of the hole-initiated process, so
a term that will be second power in hole concentration (∼ NA),
and the recombination of electrons, so a term that is first power
in excess electron concentration. Hence, the Auger lifetime has the
form

τA = 1

γ pN2
A

(11.46)

to fit UA = �n/τA. The Auger lifetime has a second power dependence on
background doping.

Figure 11.6: Lifetime as a function
of background concentration in
Si and GaAs. Both n- and p-type
concentrations are shown. The lifetime
follows an approximate inverse-
doping and inverse-doping-squared
dependence as the doping is increased.
The concentration spans a large
range, and the lifetime therefore
has dependence arising in non-
radiative/radiative recombination
at low concentrations, and Auger
recombination at high concentrations.
Note, the significantly smaller lifetime
of GaAs compared to that of Si.

Figure 11.6 shows the lifetime of Si and GaAs. Note that, at
moderate doping, it has a first inverse power dependence and, for
both, at higher power, it has a second power dependence. In both
cases, 1019 cm−3 is a doping threshold where this slope change takes
place. Note also how the lifetime in silicon is actually larger than
that of GaAs, even though the latter is a larger bandgap material. At
low doping levels, the HSR-dominated lifetime is superior in Si. It
is purer, more ideal, compared to a compound semiconductor with
a lower melting point but whose stoichiometry as well as residual
deep-level content is worse. GaAs is also a direct, bandgap material,
with a more efficient radiative process also contributing to lifetime
reduction.
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11.3.1 Quantum treatment of the Auger process

The Auger process in a semiconductor, at its simplest involving
only three charge particles and phonons, is quantum-mechanical in
its very nature of coupling at this scale, and as such, an ideal means
for introducing how such complex calculations that then become
relevant classically, as in the earlier discussion, can be performed. This progression from quantum-

mechanical to classical was also
reflected in the discussions of capture
cross section. These are all scattering
processes that are inherently quantum-
mechanical in this condensed matter.

Figure 11.7 shows the variety of Auger generation processes—these
are electron activated—that can be seen. The complements to these
are the reverse processes of recombination, and another ten of such
processes that are hole activated.
Quantum-mechanical treatment of all these processes is By the way, there is no reason why

there cannot be even more particle
interactions, such as, for example, in
Figure 11.7(a), two electrons gaining
energy. It is just that their likelihood
gets very rapidly smaller. Note that
the proportionality of inverse-square
dependence on doping in lifetime
behavior is only approximate.

non-trivial, particularly since phonons have to be accounted for.
But we will explore the processes of Figure 11.7(a) and (b)—direct
and indirect bandgap multiparticle interaction—to bring out the
salient underpinnings.
In the direct gap Auger process (Figure 11.7(a)), no phonon

energy or momentum is involved. An electron-electron scattering
ends up with one of them recombining with a hole in the valence
band, and the other electron rising in energy. We view this process
as two electrons interacting in the conduction band, with one transi-
tioning to an empty state in the valence band and providing its lost
energy to the other electron in conduction band, which rises up in
energy and stays in the conduction band. Only the same index band
is considered here. But, in practice, there can be complexities, since
conduction bandstructure is really an E(n,k) description, and the
valence band has a heavy-hole band, a light-hole band and a split-
off band. Restricting ourselves to the simplest case of 2 electrons, 2
spins and the energy and momentum conservation in the processes,
one can see four possibilities in Figure 11.8, with the particle before
and after an interaction being identified with the two quantum
numbers of relevance: momentum k and spin (↑ or ↓). Note that
the change of band index (conduction band to valence band) is
being kept implicitly. The electron-electron scattering is taken into
account through the Golden rule, so Figure 11.7: Five electron-initiated

Auger processes. Parts (a) and
(b) show the electron-electron-
hole process in direct and indirect
semiconductors, respectively. The
latter necessarily requires phonon
involvement. Part (c) is a localized
electron-electron-trap Auger process,
(d) is an electron-trap-hole-phonon-
based localized Auger process and (e)
involves an electron at a donor state,
with an empty acceptor state and a free
electron.
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Figure 11.8: Two electrons interacting,
leading to a change in their states
during the direct gap Auger process.
Part (a) shows identical spins
remaining with the two particles.
(b) shows identical spins remaining
with particle exchange, (c) shows
no spin exchange of opposite spins
between particles and (d) shows the
interaction with spin exchange. Parts
(a) and (b) are indistinguishable, (c)
and (d) are distinguishable and (a) and
(b) cause interference.

Skk′ =
∫

2π
h̄

|H ′
kk′ |2δ(Ef − Ei) dk′ (11.47)

The two processes of Figure 11.7(a) and (b) are indistinguishable:
spin and momentum (even with the change of band) leave two
particles that have identical quantum numbers. These will interfere;
that is, the degeneracy is removed via a reconstruction of the
wavefunctions under interaction. The interaction being screened This is the Slater determinant again!

Coulomb,

H ′
12 = 1

�2

∫
u∗

vk′
1
(r1) exp(−ik′

1 · r1)u∗
ck′

2
(r2) exp(−ik′

2 · r2)

× e2 exp(−|r1 − r2|/λ)

4πε|r1 − r2|
× uck1(r1) exp(ik1 · r1)uck2(r2) exp(ik2 · r2) d3r1 d3r2. (11.48)

To simplify—as in other multibody calculations, to remove the static
term—we use a center-of-mass frame. Conservation of momentum
specifies

k1 + k2 − k′
1 − k′

2 = 0

∴ 1
2
(k′

1 − k′
2) − 1

2
(k1 − k2) = k′

1 − k1. (11.49)

For normal scattering, that is, for Figure 11.7(c) and (d), this integral
can be simplified to

H ′
12 = e2

4πε�

O(k1,k′
1)O(k2,k′

2)

|k′
1 − k1|2 + 1/λ2

, where

O(k1,k′
1) =

∫

�0

u∗
vk′

1
(r1)uck1(r1) d3r1, and

O(k2,k′
2) =

∫

�0

u∗
ck′

2
(r2)uck2(r2) d3r2. (11.50)

What do we do about the indistinguishable processes of
Figure 11.7(a) and (b), where spins are identical, and interference
follows? The rates here must depend on H ′

12 − H ′
21 to make the

This Hamiltonian function is
asymmetric. See Chapter 1 for
a discussion of wavefunction
construction for manybody conditions
through the Slater determinant, and
the underlying notions.

wavefunction asymmetric under the exchange of electrons. The
distinguishable processes depend on H ′

12 and H ′
21, respectively. So,

we have

|H ′|2 = |H ′
12 − H ′

21|2 + |H ′
12|2 + |H ′

21|2. (11.51)
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To calculate, we also need to know the state occupation
probabilities and the state vacancy probabilities for the heating
electron and the energy losing electron transitions. These are

f (k2) = n
Nc

exp
(

−Eck2
kBT

)
, and

1− f (k′
1) = p

Nv
exp

(

−
Evk′

1

kBT

)

, (11.52)

where the energies are referenced to the respective bandedges. The
joint probabilities of events can be viewed through a weighting
factor,

p(k2,k′
1) = np

NcNv
exp

(

−
Eck2 + Evk′

1

kBT

)

= exp

(

−
Eg + Eck2 + Evk′

1

kBT

)

. (11.53)

The source function and the sink function that define the existence
of conditions for the events to have a probability of occurrence are
captured through a source-sink factor ss(k1,k2,k′

1) that accounts
for the probability of having an electron state |k1〉, an electron state
|k2〉 and an empty electron state (a hole state) |k′

1〉. These are all
describable through the distribution function.
We now have the wherewithal to calculate the integral. For a

direct gap and parabolic band semiconductor, with conservation
of energy and momentum, one finds the solution to be

Eck1 = Eck2 = μEvk′
1

= μ2

1+ 3μ + 2μ2 Eg with μ = m∗
c

m∗
v
. (11.54)

The source-sink factor is

ss(k1,k2,k′
1) = n

Nc
exp

(
−1+ 2μ
1+ μ

Eg

kBT

)
, (11.55)

which implies that when the mismatch in effective mass is larger,
that is, the band states have different energetic dependences of
different modulation functions, and when the bandgap is larger, the
factor decreases exponentially. Simultaneously, the energy of the
electron kicked up in energy is

Eck′
2

= 1+ 2μ
1+ μ

Eg. (11.56)

When μ = 1, that is, there are identical band states,

Eck1 = Eck2 = μEvk′
1

= 1
6

Eg,

and Eck′
2

= 3
2

Eg. (11.57)
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So, for an idealized symmetric direct bandgap semiconductor,
where electrons and holes look very similar, the energy that the hot
electron ends up with during recombination is (3/2)Eg, of which
Eg/6 comes from the initial electron’s conduction band energy,
together with the kicked electron’s conduction band energy, the
state that the first electron jumps to and the bandgap energy.
This (3/2)Eg energy is the threshold energy for the reverse of this

process—the Auger generation process—and so will correspond to
the impact ionization process, which arises in the electron acquiring
this energy from the electric field. This is an idealized calculation
for one of the Auger processes in direct gap semiconductors when
μ= 1 and the parabolic bands are entirely symmetric.
In GaAs, μ ≈ 0.1, and so

Eck1 = Eck2 = μEvk′
1

≈ 0.01Eg,

and Eck′
2

≈ 1.1Eg, (11.58)

that is, in recombination, the hot electron achieves an energy of
about the bandgap, and this is the threshold for the hot electron to
create an electron-hole pair. It is not a very large energy; at room
temperature, it is of the order of 40kBT. In devices, application of
an electrostatic potential of this order of magnitude will increase
the likelihood of such electrons, and so long as this energy is very
rapidly acquired during transit in times of the order of relaxation
time, impact ionization will become quite important. Likewise, in
lasers, where one creates an inversion condition by creating a large
carrier population, by necessity, they occupy higher states (if they
exist) and Auger recombination becomes significant. The same is Auger recombination is certainly an

important efficiency and performance
issue for bipolar lasers. The optical
efficiency drops at high injection in
the larger bandgap materials such
as GaxIn1−xN and other GaN-based
visible diodes, and, for smaller
bandgap materials, it is important
throughout the span of operation.

true at high dopings (higher carrier concentrations), for the same
reason.
Consider now what properties of interaction of states affects

the direct Auger transitions. Transitions involve matching of states
through the overlap functions (O(k1,k′

2) and O(k2,k′
1)) and the

weighting factor reflecting the existence of the occupied state for
coupling of energy to and the unoccupied state for transition to and
coupling from ( p(k2,k′

1)). Recall that states within the same band
have very slowly changing modulation functions, that is, ucks and
uvks are each slowly varying as k changes. Overlap integrals vary This slow change was the basis for the

k · p method for calculating bandstates.slowly:

O(k1,k′
1) = O(k2,k′

1), and

O(k2,k′
2) = O(k1,k′

2). (11.59)

This leads to the conclusion that k1 ≈ k2, and H ′
12 ≈ H ′

21. So, we can
ignore the spin-indistinguishable processes under the perturbation
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Hamiltonian. H ′
12 − H ′

21 ≈ 0. The interaction Hamiltonian for the
direct Auger process then is |H ′|2 ≈ 2|H ′

12|2. The electron is close
to the bandedge—relatively speaking, compared to the bandgap
energy Eg—under these conditions. Therefore, the Auger scattering
rate can be written as

SAr = 4π
h̄

[
e2

(2π)3ε

]2
np

NcNv

∫
∣
∣∣Ok1k′

1
Ok2k′

2

∣
∣∣
2
exp

[
−Eck2 + Evk′

1
kBT

]

(|k′
1 − k1|2 + 1/λ2)

2

× δ(Eck′
2
− Eg − Evk′

1
− Eck1 − Eck2) dk2 dk′

1,

integrated over the spins.
The overlap integrals also depend on whether the overlap being

calculated is in the same band or a different band. In different
bands, the modulation functions changes: uck(r) and uvk(r) are
orthogonal for the same k. This just states that the electron—as a
fermion—has a different quantum number of the band index. This
sameness in the same band and separateness in different bands
implies

O(k2,k′
2) ≈ 1, and

O(k1,k′
1) ≈ h̄

mEg
(k1 · 〈v|p̂|c〉 − k′

1 · 〈v|p̂∗|c〉) ≈ 0, (11.60)

where we again have the momentum matrix element. Heavy
holes—anisotropic and quite different with respect to E-k char-
acteristics than the conduction electrons—are hard to tackle. We
will just use the f sum rule to calculate this second function of Because of interactions, again, we are

returning here to oscillator strength
and the coupling of energy through it.
Called out before, Appendix I is highly
recommended reading.

Equation 11.60. Although small, the overlap can be calculated to be

|O(k1,k′
1)|2 ≈ h̄2〈v|p̂|c〉2

m2
0Eg

|k1 − k′
1|2

= h̄2

2Eg

(
1

m0
+ 1

m∗
v

)
|k1 − k′

1|2. (11.61)

If we ignore screening, that is, λ → 0, the Auger scattering rate is

SAr = 2π
h̄

(
e2

8π3ε

)2
h̄2

Eg

(
1

m0
+ 1

m∗
v

)

× np
NcNv

∫ exp[−(Eck2 + Evk′
1
)/kBT]

|k1 − k′
1|2

× δ(Eck′
2
− Eg − Evk′

1
− Eck1 − Eck2) dk2 dk′

1. (11.62)

We need to find when the delta function peaks. If we assume that

Figure 11.9: Momentum matching
during the direct Auger interaction.

m∗
c 
 m∗

v and k′
1 � k1, then, following Figure 11.9 for momentum

matching, the delta function energy matching condition can be
written as
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δ(· · · ) = h̄2|k1 − k′
1|2

2m∗
c

− Eg − h̄2k′
1
2

2m∗
v

− h̄2k12

2m∗
c

+ h̄2k2 · (k′
1 − k1)

m∗
c

cos θ2. (11.63)

Integrating over k2 reduces the recombination integral to

SAr = 2πm∗2
c kBT

h̄4

∫
1

|k′
1 − k1|3

exp

{

−
[

Evk′
1
+ m∗

c

2h̄2
1

|k′
1 − k1|2

×
(

Eg + h̄2k′2
1

2m∗
v

+ h̄2k21
2m∗

c
− h̄2

2m∗
c
|k′
1 − k1|2

)]

/kBT

}

dk′
1. (11.64)

Since k′
1 � k1,

SAr = 8π2m∗2
c kBT

h̄4
exp

[
(1− μ)Eg

2kBT

]

× K0

[
(1+ 2μ + 4μ2)

1/2
Eg

2kBT

]

, (11.65)

where K0 is a zero order modified Bessel function. This can be
simplified in limits to

SAr = 8π5/2m∗
c (kBT)3/2

h̄4(1+ μ)1/2E1/2g

exp
(

−μEg

kBT

)
for

Eg

kBT
� 1. (11.66)

And we end up with a direct Auger scattering rate of

SAr = e4m∗
c (kBT)3/2(m∗

c /m0 + μ)

4π5/2ε2h̄3(1+ μ)1/2E3/2g

exp
[
− (1+ μ)Eg

kBT

]
. (11.67)

For GaAs, which has a bandgap of 1.43 eV, the Auger recom-
bination rate is SAr = 5 × 10−17 s−1. For InSb with a bandgap of
0.18 eV, a little less than a factor of 10 smaller, it is 8 × 106 s−1.
InSb is dominated by this direct Auger recombination along with
the other Auger processes that we have mentioned, while, for GaAs,
while mostly HSR recombination will prevail, Auger recombination
will become important at carrier densities exceeding 1019cm−3.
Phonon-assisted processes become important in indirect gap

materials—electrons and holes have larger momentum differences—
so, Si and even more so Ge have high recombination rates.
Regardless of the carrier concentrations, Auger processes need to
be considered carefully in bipolar conditions in semiconductors at
bandgaps of 0.75 eV and lower. But, as remarked, in devices, lasers
and base and emitter regions of bipolar transistors, the high carrier
concentration will make Auger processes’ consequence significant
even in materials of bandgap as large as 3 eV.
It is useful after this to see what happens to recombination

lifetime in some of the useful materials when dopings are changed.
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Figure 11.6 showed the lifetime dependence for Si and GaAs. At
doping concentrations of 1019 cm−3 or more both show the change
in slope of lifetime from an inverse first power to an inverse second
power dependence. This is precisely what our recombination
discussion indicates when rising in HSR processes at lower doping
and Auger processes at higher doping.
We should also note the significance of the Auger generation

process. For a direct gap generation, this is when an electron high
up in energy (identified by occupation of the state |k1〉) couples to a
hole state (or an empty electron state) |k2〉; the final states |k′

1〉 and
|k′
2〉 are in a largely empty band. Occupation factors therefore drop

out of the calculations. We have

O(k1,k′
1) = O(k2,k′

1), and

O(k2,k′
2) = O(k1,k′

2). (11.68)

Again, ignoring the spin-indistinguishable processes because of
the vanishing perturbation Hamiltonian, k1 ≈ k2, H ′

12 ≈ H ′
21, and

|H ′|2 ≈ 2|H ′
12|2. If electrons not too far off-equilibrium, that is, if

this is generation due to electric-field-stimulated hot electrons, then

SAg = 4π
h̄

[
e2

(2π)3ε

]2 ∫∫ O(k1,k′
1)O(k2,k′

2)

|k′
1 − k1|4

δ(Ef − Ei) dk2 dk′
1.

(11.69)

Now consider the threshold that we have discussed for recombi-
nation, but now in impact ionization generation conditions. Carriers
accelerate and generate, and, in a direct isotropic material, this will
happen with directions aligned. So, the conservation conditions for
energy and momentum are, respectively,

E1 = EAiiT = E2 + E′
1 + E′

2 + Eg, and

k1 = −k2 + k′
1 + k′

2. (11.70)

EAiiT is a threshold energy for Auger impact ionization. The matrix
element is nearly a constant at threshold. With bands isotropic and
parabolic, using Oc = O(k1,k′

1) and Ov = O(k2,k′
2),

SAii = 2
h̄

(
e2

ε

)2
1

(2π)5
h̄4

(2m∗
c )
2
O2

cO2
v

EAiiT

(
1+ 2μ
1+ μ

)4 ∫∫
δ(Ef − Ei) dk2 dk′

1

= 2
h̄

(
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ε

)2
1

(2π)5
h̄4

(2m∗
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2
O2

cO2
v

EAiiT

(
1+ 2μ
1+ μ

)4

×
(
2m∗

c

h̄2

)3π3

2
(1+ μ)2

(1+ 2μ)7/2
(E1 − EAiiT)2

= S0
(ε0

ε

)2 m∗
c
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O2
cO2

v

(1+ 2μ)3/2

(
E1 − EAiiT

Eg

)2

, (11.71)
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where

S0 =
(

e2

4πε0

)2
m0

h̄3
≈ 4.14× 1016 s−1. (11.72)

This is the Auger generation rate at impact ionization threshold.
For GaAs, electrons have an Oc ≈ 1. Heavy holes, although high

in density, have a poor momentum match, and therefore the matrix
element is small and, for heavy holes, Ov ≈ 0. For light holes,
Ov ≈ 0.91, using a k · p calculation with the f sum rule. This leads
to, after accounting for the density of states of the light holes (Glh),
O2

v ≈ 0.06. GaAs therefore has

SAii ≈ 5× 1011
(

E1 − EiiT

Eg

)2

s−1, (11.73)

where E1 = E2 + E′
1 + E′

2 + Eg. This relationship shows the rate
increasing in second power with energy. It is a hard threshold,
since the relationship only holds for E1 ≥ EiiT. If phonon processes
(emission) are important, the threshold will be soft, since phonons
provide a soft means for increasing or decreasing the initiating
electron’s energy.

Figure 11.10: Impact ionization
coefficient as a function of the
inverse of electric field for a few
semiconductors. Both electron-initiated
and hole-initiated impact ionization
processes are shown.

Figure 11.10 shows electron- and hole-initiated impact ionization
rates (probability of generation per unit length of travel) for a few
semiconductors. Note the slope change at about 3 × 106 cm/V
(inverse electric field). This reflects changes in the leading cause
of the generation process, among the different processes we have
mentioned.

11.4 Surface recombination

Early in the text, we started with an extensive discussion of
surface states and their significant role in Fermi level pinning and
other interactions arising when interfaces and surfaces have to be
passed through or exist as boundaries of regions of interest. Surface
states are surface-confined states—donor-like or acceptor-like, which
can be both in the bandgap and outside the bandgap—so they
can have the wherewithal to be intermediaries for communication
between the valence band and the conduction band, as well as
cause carrier degeneracy in the surface region. The major difference
is that these states are localized at the surface—per unit area
instead of unit volume is the relevant measure—and that, unlike
the transport in three dimensions, where carriers are moving every
which way, here the  ̏classical˝ capture cross-section will need an
interpretation that looks different in an orthogonal direction to the
surface than in a lateral direction. Also, since the local condition
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is different from that in the bulk, for example, Fermi level pinning
forces changes to the Fermi energy position at surface compared
to the bulk, these changes and their consequences to transport
must be accounted for. The result is that we also think more in
terms of surface recombination velocity, which characterizes the When we assign velocities to transport

across interfaces and junctions—
through forward momentum
or the Richardson velocity—we
are describing something quite
complementary: a particle flux, which
can be thought through with velocity
or current density. The reader may
wish to ponder why there is no surface
generation velocity being discussed.

velocity of carrier arriving and annihilating at the surface, so,
an electron-hole mating process. If this is the rate-limiting step,
it is easier to analyze, if it is not, one needs to look at this a bit
more rigorously. We will address select important considerations
of these phenomena, and leave some for self-reading through the
bibliographic notes.

11.4.1 Neumann boundary conditions

Besides ohmic and rectifying interfaces, another significant
boundary for semiconductors is in-between the semiconductor and
an insulator. No or negligible current flows through the insulators.
Gauss’ law requires that, for the electric fields normal to the
interface n̂ · E in the semiconductor and in the insulator,

εsemn̂ · E∣∣
sem − εinsn̂ · E∣∣

ins = Qsurf , (11.74)

where Qsurf is the interface charge density. If the insulator can be
assumed to be infinitely thick, the field in the insulator can be
ignored, and one has

εsemn̂ · E∣∣
sem = Qsurf . (11.75)

If one further assumes that the surface is charge-free, then

εn̂ · E∣∣
sem = 0, (11.76)

which is often referred to as the Neumann boundary condition.
In compound semiconductors, there is significant surface state
density and hence quite often a significant surface charge. The
Neumann boundary condition is rarely valid. Fermi level pinning
at the surface, which results from this surface charge, may be
incorporated in two ways. We may make the ad hoc assumption that
the surface potential is pinned due to this Fermi level pinning; this
is akin to an electrostatic potential Dirichlet boundary condition.
Alternately, we may consider a large surface state density of donor
and acceptor traps that do not allow any significant Fermi level
excursion because of charge imbalance. In this case, we may use
charge neutrality, including these interface charges as well as
Gauss’s law at the interface.
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11.4.2 Surface recombination

In the discussion of particle interaction and at various
boundaries, particularly important is the non-conservation arising in
the recombination and generation of excess carriers. In this discus-
sion of the behavior of excess carriers, a particularly important one
both at surfaces and in treatments of certain boundary conditions
is that of recombination at surfaces and also, by extension, at
interfaces. Compound semiconductor surfaces usually occur with
considerable numbers of states in the forbidden gap. Generally,
there is a distribution of states, and the surface is quite often pinned
because of the large number of states. Sometimes this pinning may
occur in the bands; for example, in InAs it occurs in conduction
band while in GaSb it occurs in the valence band. When these states
occur in the forbidden gap, recombination transitions occur through
the non-radiative HSR process at the surface. Carriers within a few
diffusion lengths can readily recombine by drift diffusion to the
surface, leading to a net flow of current to the surface that we will
call surface recombination current.
The treatment of surface recombination should be actually quite

complex if in detail and without parameterization. Simple relations,
however, can be derived for low level injection conditions. When
excess carriers exist in the bulk, we can derive the diffusive current
toward the surface for a uniformly doped sample. It is this diffusive
flux that supplies the surface recombination current under low
level injection conditions. We will treat this first in a simple way,
to show the simplified equations that are used in the Dirichlet
boundary conditions and that readily lead to the concept of surface
recombination velocity. Following that, we will discuss where this
simplified treatment will break down.
Let �s be the reflection coefficient at the surface representing the

probability that a particle returns to the bulk without recombining
at the surface. Similarly, let �b be the reflection coefficient repre-
senting the probability that a carrier headed toward the bulk will
show up at the surface. We assume, for the simple analysis, that
these are independent of current density and carrier concentrations.
Following Figure 11.11, the total flux Fs to the surface from the
bulk is given by

Fs = Fi + �bFb, (11.77)

Figure 11.11: Fluxes of carriers
representing transport processes
taking place in the surface region
of semiconductors during surface
recombination.where Fi is the incident flux, and Fb is the total reverse flux.



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

442 semiconductor physics

Likewise, we may write the total flux from the surface to the
bulk as

Fb = Gs + �sFs, (11.78)

where Gs is the generation rate at the surface. The total fluxes, in
terms of the reflection parameters, generation rate and incident
flux, are

Fs = Fi + �bGs

1− �s�b
, and

Fb = Gs + �sFi

1− �s�b
. (11.79)

For a classical gas distribution, that is, for non-degenerate materials,
the fluxes Fs and Fb are related to the thermal velocity and the
free carrier concentration as ∼nvθ /4, which reduces to ∼n0vθ /4 in
thermal equilibrium. This follows from the argument that, at any
given instant of time, half of the carriers are directed toward the
surface, and since their direction is random, they have an average
velocity of ∼ vθ /2 in the orthogonal direction. This allows us to
write the generation rate and the incident flux Fi0, at thermal
equilibrium, at the surface, as

Gs0 = n0vθ

4
(1− �s) , and

Fi0 = n0vθ

4
(1− �b) . (11.80)

Note that the generation rate remains constant; this follows using
similar arguments as for the bulk HSR recombination mechanism.
Departure from equilibrium results in a disparity between the
net flux to and from the surface, the difference of which is the
recombination flux. The method applied here is similar to the one
sometimes used in the discussion of metal-semiconductor junctions.
The flux directed toward the surface originates from a distance that
is, on average, equal to the mean free path. Thus, the fluxes to and
from the surface at any position are

Fs = vθ

4

(
n − γ

dn
dz

)
, and

Fb = vθ

4

(
n + γ

dn
dz

)
, (11.81)

where γ is a proportionality constant. The sum of the surface and
bulk fluxes is nsvθ /4 at the surface. Our equations may now be
used to determine the incident flux as

Fi = nsvθ

2
1− �s�b

1+ �s
− n0vθ

4
(1+ �b)

1− �s

1+ �s
, (11.82)
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and hence the net flux of carriers, assuming only diffusive transport
of carriers, is

F |surf = Fs − Fb = ns − n0
2

vθ

1− �s

1+ �s
= −Dn

d�n
dz

∣
∣∣
∣
surf

. (11.83)

This is simply written as

− Dn
d�n
dz

∣
∣
∣∣
s
= S �n|s , (11.84)

with S, the surface recombination velocity, as

S = vθ

2
1− �s

1+ �s
. (11.85)

Note that if all carriers incident at the surface recombine, then the
surface recombination velocity is vθ /2, its largest value.

Assuming an infinite surface recombination velocity, as is common
for many boundaries encountered in device modeling, is tantamount to
assuming that the excess carrier concentration at the surface is zero. For
many practical cases, this assumption is justified. The function �s

represents the statistics of recombination at the surface, because it
represents the probability that a carrier will return. Thus, 1 − �s is
proportional to the recombination rate at the surface.
We have discussed the statistics of HSR recombination; these

also hold for most surfaces, because the recombination occurs
through deep traps. The recombination rate at the surface can
be represented by similar expressions to those used for a single
level. Assuming that there exists a single dominating trap level, the
surface recombination rate is

Rs = σ nσ pvθ NTs
nsps − n2i

(ns + nTs) σ n + (
ps + pTs

)
σ p

, (11.86)

where ns and ps are the surface carrier concentrations, and nTs and
pTs are the surface carrier concentrations if the Fermi level were at
the trap level.
Consider an example that is a simplification of Equation 11.86.

For a trap with equal hole and electron capture cross-sections, if the
electron is a minority carrier, hence if hole concentrations are large,
then the recombination rate is

Rs ≈ σvθ NTsns. (11.87)

The rate of recombination of electrons, per unit time, per unit area,
is given by this expression. The reflection coefficient is related to
this rate since it expresses the probability of not recombining. The
recombination rate is proportional to the carrier concentration; it is
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provided by the difference of incident and reflected flux, and the
constant of proportionality σvθ NTs is the surface recombination
velocity in the absence of any surface space charge, with identical
conditions at the surface as in the bulk. For low interface state
density oxide-silicon interfaces, σ ≈ 10−16 cm2, and NTs ≈ 1010 cm−2,
resulting in a surface recombination velocity on the order of
∼ 10 cm · s−1. In compound semiconductors such as GaAs, even if
we ignore the effect of surface space charge and other effects which
we will soon discuss, NTs ≈ 1014 cm−2, σ ≈ 10−15 cm−2 and, hence,
surface recombination velocity is of the order of 106 cm · s−1. Strictly
speaking, the recombination rate characterizes the surface effectively
for most purposes. Surface recombination velocity is a concept
introduced because it characterizes a meaningful constant in some
situations. If, in an ad hoc manner, we defined it as a parameter that
related the recombination rate to the excess carrier concentration,
then it would vary as a function of biasing condition, et cetera,
because this is only a simple derivation from the more complicated
HSR expression.

11.4.3 Surface recombination with Fermi level pinning

When a charge region is present at the surface, the
surface recombination velocity takes an even more complicated
form. It now depends on the surface state density, the characteristics
of the surface states, surface charge, et cetera—parameters that
determine the surface carrier concentrations. We can see from
Equation 11.86 that the surface recombination will actually go
through a maximum when σ n (ns + nTs) + σ p

(
ps + pTs

)
goes through

a minimum. This will occur when both electron capture and hole
capture processes are equally active, that is, when the quasi-Fermi
levels straddle the trap level.
Since the surface space charge situation is important to most

compound semiconductors, we will look at it in more detail. We
consider variations introduced on our simple model due to the
presence of band bending from Fermi level pinning. For low level
injection (see Figure 11.12), we may again derive a relationship that
relates surface carrier concentrations to the bulk.

Figure 11.12: Band diagram for
estimating surface recombination
at a trap, in the presence of Fermi level
pinning, at (a) thermal equilibrium and
(b) low level injection conditions.

The presence of surface depletion changes the thermal equi-
librium concentration at the surface. In the case of Figure 11.12,
this would mean changing from the bulk thermal equilibrium
magnitude by the Boltzmann exponential related to the total band
bending at the surface. The total recombination rate is a more
general case of the above, where we again ignore the nTs and pTs

terms and the intrinsic carrier density terms, so
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Rs = σ nσ pvθn vθp NTs
nsps

nsσ nvθn + psσ pvθp

. (11.88)

Let the bulk value of carrier concentrations be n0 and p0 under
thermal equilibrium, and let n and p be the bulk values under
the low level injection condition. If the recombination is the rate-
limiting step, then the low level injection condition implies flat
quasi-Fermi levels between the bulk and the surface. If the total
band bending is ψ s from the bulk, the carrier concentration at the
surface is

ns = n exp
(

−qψ s

kBT

)
, and

ps = p exp
(

qψ s

kBT

)
, (11.89)

with

np = n2i exp
(

EqFn − EqFp

kBT

)
, (11.90)

at both the surface and in the bulk. The surface recombination rate
can then be written as

Rs = (σ nσ pvθn vθp)
1/2NTs(nsps)

1/2

(nsσ nvθn/psσ pvθp)
1/2 + (psσ pvθp/nsσ nvθn)

1/2 . (11.91)

The occupation probability f of the trap NTs at the surface is
given by

f = σ nvθn ns + σ pvθp pTs

σ nvθn (ns + nTs) + σ pvθp

(
p + pTs

) . (11.92)

Since, at thermal equilibrium, the Fermi level is pinned at the trap
level ET, the occupation probability is very close to 1/2. Away from
thermal equilibrium, the resultant surface charge density is given by

Qs = qNTs

(
f − 1

2

)
= qNTs

2

σ nvθn ns − σ pvθp ps

σ nvθn ns + σ pvθp ps
, (11.93)

where we again ignore the insignificant terms away from thermal
equilibrium. For large trap densities that lead to Fermi level
pinning, this charge is insignificant compared to the charge qNTs

if all the traps were ionized or, equivalently, only a very small
deviation from the 1/2 occupation probability occurs. This, however,
implies that

ns

ps
= σ pvθp

σ nvθn

. (11.94)

The ratio of carrier concentrations at the surface is a constant,
and, in a large trap density, and low level injection limit, the
recombination rate is

Rs = (σ nσ pvθn vθp)
1/2NTs

2

(
nsps

)1/2. (11.95)
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The recombination rate is not proportional to the minority carrier
concentration anymore; it is proportional to the square root of the
electron and hole concentration at the surface, and since the quasi-
Fermi levels are flat, it is also proportional to the square root of the
electron and hole concentration in the bulk. A consequence of this
is an exp(eV/2kBT) dependence of surface recombination current
for low level injection bias conditions where this analysis applies.
This square root dependence also appears for recombination in a
p–n junction space charge region and is responsible for a similar
exp(eV/2kBT) dependence there.
Surface recombination velocity, defined as a prefactor to excess

minority concentration during recombination calculations, is no
longer a constant but a function of bias conditions. Arguments
have been forwarded that we should define surface recombination
velocity in an alternate form that preserves a constancy. In the
above, one may introduce S0 as an intrinsic surface recombination
velocity that follows the recombination relation

Rs = S0
√

nsps. (11.96)

This intrinsic recombination velocity is related to the conventional
definition of surface recombination velocity in terms of excess
carrier concentration (e.g., one useful in Dirichlet boundary
conditions) via

S = S0

√
ns

ps
. (11.97)

The intrinsic surface recombination velocity is the surface
recombination velocity that occurs when the electron and hole
densities at the surface are equal. Rigorous calculations of these
parameters show that significant deviations occur at high level
injection conditions, where our theory is not valid. Differences also
occur when the surface recombination rate is the rate-limiting step.
Under these conditions, the band diagram and the quasi-Fermi
levels look as in Figure 11.13, indicating that the carrier flux needed
for recombination occurs via both drift and diffusion to the surface.

Figure 11.13: The quasi-Fermi levels
and conduction and valence band
edges in the presence of a high surface
recombination rate.

11.5 Summary

The 0th moment of the Boltzmann transport equation
describes particle conservation. Electrons (or holes) exist as the
particles in the semiconductors while undergoing interactions. If
these particles can appear or disappear, then this time dependence,
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which is not accounted for in the momentum change and positional
change terms, must be accounted for. This is the time dependence
in the distribution function that needs to appear separately to
take care of the totality. Electrons and holes can be generated and
can recombine. So, in principle, and especially when this rate is
significant, such as when both populations exist in meaningful
numbers or when other processes change them—rapid potential
changes that lend kinetic energy sufficient to cause band-to-
band processes, or sufficient carriers in high energy tails even at
low fields, or radiation-induced change—then these need to be
accounted for. We looked at a few of such situations for the bulk
and surface.
Radiative recombination is a process we will return to later since

it is an important part of understanding electromagnetic-dipole
interaction in materials. But we employed it here to introduce
the basic notions of how to incorporate a time constant akin to
the scattering time for the direct electron-hole interaction, which
is the changing of an electron’s state from one band to another.
We could view this through capture and emission rates that are
a classical description of transition probability between occupied
and unoccupied states. Since in thermal equilibrium, all processes
must balance with a reverse process in detail, one could use
linearization from this condition to write a lifetime—the radiative
lifetime—for the process. This time constant characterizes the
time dependence of change from equilibrium, and it is related to
the thermal equilibrium concentration of carriers, since they are
involved in capture and emission through the occupation of states
and a material parameter B, which is the radiative constant that
follows from the matrix element coupling these states. Appendix K
discusses this parameter and A, the spontaneous parameter, both of
which are tied to the matrix element connecting the states through
the electromagnetic potential and the dipole interaction.
The Hall-Shockley-Read process is a non-radiative process of

electron-hole interactions through states in the bandgap that both
electrons and holes can interact with. These are interactions requir-
ing phonon mediation. Again, starting with thermal equilibrium
and disturbing it, one could write net equations for recombination
and generation processes through these states and tie them to
classical emission and capture constants that connect occupied
and unoccupied states through particle emission and capture. The
capture, for example here, can be viewed semi-classically as a
carrier encountering such a state arising in an intrinsic or extrinsic
defect of a certain cross-section where the defect state has an
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influence, and when moving carriers encounter such a region, they
are captured. And from this captured state they may be re-emitted
or they may capture another carrier of opposite polarity. The
existence of this in the bandgap, with its smaller energy separation,
as compared to that of the bandgap, makes such Hall-Shockley-
Read centers efficient as mediating sites for electron-hole generation
and recombination. The net rates will depend very much on the
properties of such centers as well as the presence of carriers of both
types for the process to proceed.
As an example of another important non-radiative process,

we considered the Auger process, a process involving multiple
carriers. Impact ionization, with an energetic electron or hole
losing its kinetic energy in creating an electron-hole pair, is an
Auger generation process. But this process also has significance
as a recombination process, since small bandgaps or high carrier
concentration conditions such as in lasers are very conducive
to this recombination. Because of multiple carrier involvement,
the lifetimes arising in this process have a strong background
doping dependence. We used the Auger process to explore the
quantum basis, and how it also can be mapped to the classical
interpretations. So, our discussion of scattering, where multiple
electrons—in both the conduction band and the valence band—
interact, with the involvement of phonons, conserving energy
and momentum and accounting for their fermion nature, led us
to writing the perturbation Hamiltonian. One could calculate this
under constrained conditions and, as a result, note the appearance
of the minimum energy dependences, and the dependence on the
nature of the electron and hole bands. From this, one could see how
even large gap materials such as Si and GaAs show an Auger non-
radiative lifetime dependence at high doping conditions. Impact
ionization as an Auger generation process under conditions of
high fields could also be seen through the quantum-mechanical
relationships that we derived.
At the nanoscale, and even larger scales in bipolarity conditions

in many IIIV semiconductors, surface recombination can be seen,
since the surface states are deep levels where electrons and holes
can be active with each other. It is an important aspect where
the recombination is now tied to the flux of carriers that need to
come to the surface, a region where Fermi level pinning and other
constraints may exist. One could look at this variety of behavior
through arguments based on charge conservation, flux and the rates
of interaction in the surface states, to come up with a measure—the
surface recombination velocity—that quantifies the net effect.
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11.6 Concluding remarks and bibliographic notes

This chapter put together aspects of point perturbations, surface
states, Boltzmann transport, bandstructure and electromagnetic
interactions in matter to explore how electrons and holes generate
and recombine in a semiconductor. An initial introduction to
radiative processes, Hall-Shockley-Read processes, Auger processes
and processes at the surfaces was the range for our discussion.
Casey and Panish1 discuss the A and B coefficients, their 1 H. C. Casey and M. B. Panish,

 ̏Heterostructure lasers,˝ 1, Academic,
ISBN 978-0323157698 (1978)

spontaneous and stimulated origins and the radiative generation
and recombination processes over a number of direct bandgap
semiconductor materials. Many other books on optical processes
are also useful for understanding these concepts, whose origins go
back to Einstein and his exploration of Planck’s quantum postulate
and the nature of radiation process and related statistics.
Blakemore’s text2 comprehensively and semi-classically explores 2 J. S. Blakemore,  ̏Semiconductor

statistics,˝ Pergamon, Library of
Congress 61-12443 (1962)

recombination processes in semiconductors, although it does not
dwell on surface effects. For surface phenomena, a good intro-
duction is in Tiwari’s text3 devoted to compound semiconductor 3 S. Tiwari,  ̏Compound

semiconductor device physics,˝
Academic, ISBN 13 978-0126917406
(1992)

devices. Surface recombination is a particularly strong detri-
ment in bipolar structures because of the vagaries of compound
semiconductor surfaces. Surface recombination also makes an
appearance in McKelvey’s text4, as does a classical treatment of 4 J. P. McKelvey,  ̏Solid state and

semiconductor physics,˝ Krieger ISBN
13 978-0898743968 (1982)

the Hall-Shockely-Read recombination. For surface recombination
velocity, a discussion worth following is the argument by Rees for
a velocity in an alternative form that preserves an invariance5, and 5 G. J. Rees,  ̏Surface recombination

velocity—a useful concept?,˝ Solid-
State Electronics, 28, 517–519(1985)

the comment by De Visschere6.

6 P. De Visschere,  ̏Comment on
G. J. Rees’ ‘Surface recombination
velocity—a useful concept?’,˝ Solid-
State Electronics, 29, 1161–1165(1986)

Ridley7 is quite comprehensive in his discussion of Auger

7 B. K. Ridley,  ̏Quantum processes
in semiconductors,˝ Oxford, ISBN
0-19-850-580-9 (1999)

processes, including impact ionization. The great Soviet physicist
Keldysh has much to say about many things semiconductor, and
his name is synonymous with many effects. Keldysh’s treatment
of impact ionization (also Auger processes)8 are very worthwhile

8 L. V. Keldysh,  ̏Kinetic theory of
impact ionization in semiconductors,˝
Soviet Physics JETP, 10, 509–524 (1960)

following through.

11.7 Exercises

1. Let ED and gD be the donor energies in a semiconductor sample
that is n-type but compensated. Show that the carrier concentra-
tion is related as

n

(

n + NA − n2i
n

)

= Nc

gd

(

ND − NA − n + n2i
n

)

exp
(

−Ec − ED

kBT

)
.
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How does the activation energy behave in a plot of carrier
concentration with temperature in different temperature ranges?

[A]

2. In this problem, we will evaluate statistics of deep trap energy
levels arising from independent defects. Consider a semiconduc-
tor with two defects associated with energy levels E1 and E2.
• What is the occupation probability of the two levels?

• If the Fermi energy is between the two levels, with
E2 − EF � kBT, what do the occupation probabilities
reduce to? [S]

3. Consider a semi-infinite n-type sample of GaAs doped to
1016 cm−3 and with a mid-gap trap that has identical electron and
hole capture cross-sections of 10−15 cm−2. Derive, using justifiable
simplifications, the expression for decay of excess carriers in both
the low injection limit and the high injection limit. What are the
short time and long time limits if 1015 cm−3 carriers were created?
What are the short and long time limits if 1017 cm−3 carriers were
created? [S]

4. If τ n0 = τ p0 = τ 0, show that the maximum lifetime occurs when
the intrinsic and Fermi energy coincide. Show that this lifetime is

τ = τ 0

[
1+ cosh

(
ET − Ei

kBT

)]
. ([S])

5. We now extend the previous problem to an analysis of recombi-
nation in a semiconductor when the energy levels arise from the
same impurity. A technologically relevant example of this is gold, Such traps are discussed as deep levels

in Chapter 7.a transition element, as a substitutional impurity in silicon. In
GaAs, multiple levels occur due to chromium. For gold, a closed
d shell is inert. A positively charged state can accept an electron,
while a negatively charged state can donate an electron. The
higher negatively charged states occur in the valence band. So,
the substitutional impurity in Si causes a lower energy level ED, a
donor level, and a higher energy level EA, an acceptor level.
• Calculate the equilibrium density of Au atoms in the positively
charged state (N+

T ), the density of Au atoms in the neutral
charge state (N0

T), the density of Au atoms in the negatively
charged state (N−

T ), and the total charge density on Au.
Consider the degeneracies as gA, and gD.

• What are the rate equations? Let σ+
n represent the capture

cross-section for the electron capture process on the donor site,
leading to a capture rate of c+

n . Let σ
0
n represent the capture

cross-section for the capture of an electron on an acceptor,
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leading to the capture rate of c0n. Let σ
0
p represent the capture

cross-section for the hole capture process on the donor site,
leading to a capture rate of c0p. Let σ

−
p represent the capture

cross-section for the capture of a hole on an acceptor, leading to
the capture rate of c−

p . Let e0n, e−
n , e+

p and e0p identify the electron
and hole emission rates from donor and acceptor sites.

• Invoke the principle of detailed balance to evaluate the emis-
sion rates in terms of the capture rates at thermal equilibrium.

• What is the low level neutral region recombination rate?

• Calculate the low level neutral region minority carrier lifetime
for trap concentrations significantly smaller than the shallow
donor concentration.

• In high-level injection conditions, what is the limiting form of
the lifetime?

• Capture cross-sections for Au in Si, at 300 K, are as follows:
– σ+

n = 3.5× 10−15 cm2

– σ 0
n = 5.0× 10−16 cm2

– σ−
p = 1.0× 10−15 cm2

– σ 0
p = 3.0× 10−16 cm2.

Assuming that recombination occurs only due to Au in Si, what
are the low level and majority carrier lifetimes for 1016 cm−3 Au
doped Si at 300 K for
– intrinsic material,

– 1016 cm−3 n-type material and

– 1016 cm−3 p-type material? [A]

6. We will develop the recombination statistics for a 2-
level system. An accepted picture of Au in Si is that of a
monovalent impurity (closed d shell that can be considered
inert). If gold is substitutional, gold can be conjectured
to be in the following bonded charge states: (a) Au+,
(b) Au0, (c) Au−, (d) Au2− and (e) Au3−. The bonded state is
shown in Figure 11.14. The Au2− and Au3− presumably occur
outside the bandgap. Adding an electron to the Au+ state occurs
at the energy ED. The second electron in gold goes on at energy
EA. The degeneracy factors of these levels are gD and gA. Also,
ED < EA.

Figure 11.14: The different bonded
states of gold.

• Using the grand partition function, calculate for the equilibrium
case:
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– N+
T : the average density of gold atoms in the +-charged state

– N0
T: the average density of gold atoms in the neutral state

– N−
T : the average density of gold atoms in the −-charged state

– ρ: the total charge density on the gold atoms.
Express your answer in terms of NT, ED, EA, EF, gD, gA and kBT.

• Suppose we really had two independent levels at EA and ED,
with equal concentrations. Consider these to be independent
and arriving from different particles. Calculate the above fac-
tors in this case. Comment on the feasibility of distinguishing
these two cases experimentally.

• Write the rate equation for case (a) using the following
notation:
– electron capture on the donor: σ+

n vθ = c+
n

– electron capture on the acceptor: σ 0
nvθ = c0n

– hole capture on the donor: σ 0
pvθ = c0p

– hole capture on the acceptor: σ−
p vθ = c−

n

– electron emission from the donor: e0n

– electron emission from the acceptor: e−
p

– hole emission from the donor: e+
p

– hole emission from the acceptor: e0p.
The signs here refer to the charge state prior to the correspond-
ing process.

• Invoke detailed balance to find es in terms of cs.

• Calculate the low level (�n ≈�p ≈ 0) neutral region recombina-
tion rate.

• Calculate the low level neutral region minority carrier lifetime
for the case when NT is much less than the shallow dopant
density.

• What is the limiting life time in high level injection conditions,
that is, when�n,�p � n0, p0,nTA, pTD?

• Measured values of capture cross-sections of gold in silicon at
T = 300 K are σ+

n = 3.5 × 10−15 cm2, σ 0
n = 5 × 10−16 cm2,

σ−
p = 1.0×10−15 cm2 and σ 0

p = 3.0×10−16 cm2. A sample of Si has
1016 cm−3 gold atoms. Assume recombination solely through
the gold atoms. Find the low level minority and majority carrier
lifetime when
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– n0 = 1.0× 1016 cm−3, and p0 = 2.2× 104 cm−3,

– n0 = 1.0× 1015 cm−3, and p0 = 2.2× 105 cm−3,

– n0 = 1.5× 1010 cm−3, and p0 = 1.5× 1010 cm−3,

– n0 = 2.2× 105 cm−3, and p0 = 1.0× 1015 cm−3, and

– n0 = 2.2× 104 cm−3, and p0 = 1.0× 1016 cm−3. [A]

7. Why is there a threshold in energy for a carrier to trigger an
Auger generation process? And why is it close to that of the
bandgap usually? [S]

8. Show that, under low-level injection, the expression for the Auger
recombination rate reduces to a direct proportionality to the
excess carrier concentration, with the proportionality constant
dependent on the square of the dopant concentration. [S]

9. Argue how the recombination rate at the surface is related to
the reflection coefficient at the surface. Cast the relationship in a
mathematical form. [S]

10. Show that if the Fermi level is pinned at the surface, that is, if
the sheet density of traps substantially exceeds the sheet charge
density in the surface depletion region, then the occupation
probability of a trap level is close to 1/2. Under what conditions
may this break down? [S]

11. If the flux of carriers in any direction is given as nvθ /4, how can
the surface recombination velocity exceed vθ /4? [S]

12. An n-type semiconductor crystal is cut to form a thin plate of
thickness 2t. The length and width are large enough that we
ignore edge effects. Let S be the surface recombination velocity
at the two surfaces. When this crystal is illuminated with light
near the absorption edge, electron-hole pairs are generated. Since
the wavelength is long enough, carriers are generated without
significant absorption of the light. Find the steady-state excess
carrier concentration at all points in the crystal, and describe its
photoconductive response in steady state. [M]

13. Using the conditions given in Exercise 12, show that the result
when S attains its maximum of vθ /2 and the result when S is
taken to infinity are essentially the same when Lp � λk. [S]
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Light interactions with semiconductors

Light is an electromagnetic wave in the Maxwell view of
electromagnetic unification and also a particle of energy excitation
in the Planck and Einstein views, from where this led to the
quantum mechanics wave-particle unification. If we go hundreds of
years further back, it is also representable as a ray in the direction
of energy flow for geometric optics, which does not tell us anything
about phase, but which Huygens’ approach of wavefront does.
These last two notions are very limited but quite useful. The
first two represent to us the wave-particle duality that pervades
throughout this text. Convenience will decide our use of either
the wave view or the particle view of light-matter interactions
in this chapter. For example, the electromagnetic view tells us that
there will be electrically and magnetically induced interactions of
many varieties with charged particles, oscillating nuclei with charge
clouds around them and charged donors, acceptors or traps, with
all the coupled excitations represented by newer quasiparticles.
Employing the photon exclusively as a neutrally charged particle
for such a discussion leads to too difficult a road.

Figure 12.1: An illustration of some
of the major phenomena of light’s
behavior in matter. It is reflected,
some of it can be channeled along the
surface by plasmonic interactions,
and some of it is transmitted into the
medium. This transmitted light can
be absorbed but may re-emit, with the
photon possibly breaking into two.
Some of the light is scattered, and
some of it leads to luminescence
of various varieties, including
fluorescence. Strictly, though,
luminescence must be considered
to be a cold body radiation arising in a
spontaneous process.

Concerning light incident on matter, we consider only the
moderate energy light (few μeV to several eVs) incident on a
semiconductor (see Figure 12.1). Some of it gets reflected; if there
exist mobile electrons, some of it even interacts with the plasmon
excitation of these electrons and get channeled along the surface,
and some gets transmitted into the material. The transmitted light
can undergo absorption through a variety of processes that we will
discuss; in some quite restricted conditions, the photon may even
split, forming an entangled pair of photons; some of the photons
will scatter off, and some may be absorbed, only to be re-emitted
later through a reconversion into light of the absorbed energy.
Scattering is usually the weakest of these effects in a semiconductor
because of its quality and will appear only under artificially created

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001
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circumstances. Scattering occurs because the wavelength of the
photon and the size of a discernible object within the material
(e.g., nanocrystal, with different light propagation properties) are
of similar dimensions. Surface channeling through coupled plasmon
interactions is of interest since it can be significant in conducting
materials and makes many useful applications possible. Absorption

Our treatment of plasmons is rather
limited. S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017), discusses
it in much more detail for nanoscale
applications.

is of interest and employed very gainfully in such device structures
as solar cells. We will also remark on luminescence and emission,
but not much on reflection.

As a preliminary, consider just the consequence of the boundary
condition and a very narrow region around it, without details of
what may happen at the interface in view of several of the surface
consequences we have talked about and their implications through
interaction with the material. Figure 12.2 shows a uniform semi-
infinite semiconductor on the right and a vacuum on the left, with
a transverse electromagnetic (TEM) wave incident. The electric Recall that only TEM modes are

allowed in free space. This follows
from the Maxwell relationships that
are summarized in the glossary.

fields and magnetic fields have a relationship with each other
through the divergence and curl connection of polar and axial
fields—the consequence of which is the propagating wave—so,
presence of sources, and the nature of the permittivity (ε) and
permeability (μ), enter here. We have no sources. But permittivity
and permeability are the consequences of the nature of the material
itself and the field responses from what constitutes the matter.
Electric polarization in all its forms from various causes affects the
permittivity. And the spin—an angular momentum attribute—and
currents affect the permeability. These can be complex in general.
Since c = 1/

√
εμ, the Maxwell relations will have various complex

consequences floating around in the behavior of the model.
In Figure 12.2, this is shown through the index of refraction

(nc = nr + ini) as the sum of a real part and an imaginary part arising
in the complex dielectric function ε. We will ignore permeability,
assuming that the semiconductor is non-magnetic. Figure 12.2 also
shows at the interface, with x being the axis along the interface, the

Figure 12.2: An illustration of transmission and reflection at a vacuum/semiconductor boundary.
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form for the fields, with subscripts i, r and t for incident, reflected Maxwell’s relations are a beautiful
creation. A divergence-based equation
speaks of a decline of a parameter. As
one moves away from a charge, the
potential effect of that charge decreases
inversely with distance, vanishing
asymptotically. A curl-based equation
speaks to an attraction that keeps
something going round and round—
forever, if there is no dissipation term
in the equation. A free space solution
to the coupling of divergence and
curl with no dissipation then is a
propagating wave. The divergence
is being curled to keep propagating.
Another significant result within this
is that even if light does not dissipate
in idealized free space, there is still
a propagation impedance because
the fields must be related to each
other, and even if the modes are
continuous in free space, the nature
of propagation, planar or spherical,
will change the relationship and
change the impedance. Impedance
here does not mean dissipation, just
as it does not mean dissipation for the
quantum conductance. The interesting
properties of divergence and curls are
brought out in Appendix L,

and transmitted, respectively. If no charge exists at the surface, the
boundary conditions are

Et = Ei + Er, and

Ht = Hi − Hr, which is equivalent to

ncEt = Ei − Er, (12.1)

when the relative permeability of the medium is unity. As an
example of the dependence on this complex index of refraction, the
reflectivity is

� =
(
1 − nc

1 + nc

)2

= (nr − 1)2 + (ni)
2

(nr + 1)2 + (ni)
2 . (12.2)

Metals have high reflectivity, since the conductivity and the
boundary conditions force the transverse electric field to vanish.
Skin depth arises as the electromagnetic wave evanesces in
the interaction with the electron cloud. And the index of
refraction is large and imaginary. So, reflectivity is close to unity.
Semiconductors, on the other hand, tend to be all gray if thick,
as nearly 66 % of light passes and gets absorbed during passage
through the medium.

Figure 12.3: A sketch of photon
absorption coefficients in a
semiconductor as a function of
energy due to some of the major
mechanisms. Curve A shows band-
to-band absorption, curve B is free
carrier absorption, curve C is exciton
absorption, curve D is valence-
band-to-donor absorption, curve
E is acceptor-to-conduction band
absorption, curve G is optical phonon
absorption, curve H is valence-band-
to-acceptor absorption, and curve I is
donor-to-conduction-band absorption.
Also shown here is a curve F, where
efficient photon absorption happens
between deep levels. This happens
in some rare examples. Zn and O
form such a center in the indirect
bandgap GaP.

So, reflection and transmission happen at the boundary because
the two materials have different propagation properties, and
because the electric field is polar, the magnetic field is axial and
they are constrained through the relationships of Maxwell. This
places constraints on the transverse and normal fields’ continuity at
the interface affecting both. If charge exists at the interface, it places
constraints on the polar electric field, some of which terminates
on these charges. If the charge is mobile, it suppresses the lateral
electric field at the interface, since it can move. If electric fields
are changing, the magnetic fields need to also, bound as they are
through Maxwell’s equations. In metals, reflection is significant
because of the mobile charge. So is the decay of the electric field
away from the interface in the metal. But, along with this reflection,
there is some transmission of energy along the metal interface. The
propagating wave will interact with the material—its charges, its
phonons and its other mechanisms for energy exchange—which
will lead to loss of the photons, which we call absorption.

As an introduction to the subject of this chapter, Figure 12.3
illustrates a rough view of absorption, measured as an absorption
coefficient (α) in units of per unit length—the percentage fraction
of photons, for example, or its equivalent in decay in intensity
or energy flow per unit cross-section—in a semiconductor from
a meV to an eV, so from very low energies—smaller than those
of ionization or of optical phonons—to bandgap energies. Two



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

chapter 12: light interactions with semiconductors 457

major effects one sees are the band-to-band absorption close to the where the Helmholtz theorem and
vector splitting are discussed. A
discussion of the modes and their
coupling, including enhancements
to the coupling such as through the
Purcell effect, is in Appendix M.

bandgap when electrons can transition from the valence band to the
conduction band, and the smaller, gently rising toward low energy
free carrier absorption of the photon. Smaller energy photons are
more efficiently absorbed by the free carriers in a semiconductor.
Between these two prominent features, one additional major
recombination arises at optical phonon frequencies, but this is in
the narrow bandwidth of energy of these phonons. And then, in
addition, one has recombination processes where donors, acceptors
and bands have transitions. Additionally, excitons (electron-hole
pair) have absorption just below the bandedge, and acoustic
phonons too couple to photons.

We are mostly concerned with what happens inside the
semiconductor. So, the variety of transitions arising in photon
interactions with phonons, directly, through impurities, the
longitudinal and transverse constraints in this, and the coupling
of a variety of particles, including their coupled incarnations,
so oscillator strengths, since the coupling of excitations requires
prudent matching of these oscillators, will be the focus of this
chapter. We will understand recombination and the nature of the

Oscillation, as the smallest stable
representation with potential and
kinetic energy exchange, constitutes
a fundamental process. Harmonic
oscillators are fundamental and
ubiquitous. Bound electrons on atoms
oscillate since the core and the electron
are dipolar. These are at optical
frequencies. Atoms in an assembly
vibrate with the accompanying charge.
These are vibrational oscillators at
infrared frequencies. Free electrons
oscillate, although these are primarily
important at very high concentrations
in highly doped semiconductors,
inversion layers and, of course,
metals. As the frequency of stimulus
is raised, these dipoles progressively
become inactive, and therefore the
electromagnetic interaction with
the semiconductor changes, with
the dielectric function as a principal
outcome of interest to us.

dielectric function, which captures the polarization induced by
fields from this, leading us to the linear regions of the theory. The
real and imaginary parts of response functions are related through
the Kramers-Kronig relationship, which we will particularly
concentrate on in a more general way in Chapter 14.

12.1 Electron-photon interactions across the bandgap

We start by developing the interaction Hamiltonian for
an electron-photon system. To distinguish an electron of wavevector
k from that of a photon, which too has a wavevector, we will
employ q—the same notation as for phonons—as the notation for
the wavevector of a photon. Let A be the vector potential of the
photon,

A is the magnetic vector potential.
Since a magnetic field is an axial
vector, its potential must be a vector
too. The electric field has, as we have
employed throughout, an electric
scalar potential. The electrostatic
potential acquires its meaning through
the electrical field via the derivative.
The vector potential does the same
for the magnetic field through the
curl. Adding a constant to the scalar
or the vector potential—a change
of reference—does not change the
fields. For the photon, A plays the
same role as the wavefunction ψ . See
Appendix N for a discussion of vector
and scalar potentials.

A = 1
2

Aâ exp[i(q · r − ωt)] + 1
2

Aâ exp[−i(q · r − ωt)] , (12.3)

which is a photon of a transverse electromagnetic wave, whose
vector potential is in the orientation â and of energy E = h̄ω, and, of
course, because it is transverse electromagnetic, â · q = 0. The wave
also satisfies

|q| = ωn
c
, (12.4)

where n is the index of refraction.



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

458 semiconductor physics

The Hamiltonian for this electron-photon assembly is

Ĥ = 1
2m0

(
h̄k − qA

)2 = 1
2m0

(
h̄2k2 − h̄qk · A − h̄qA · k + q2A2

)
. (12.5)

k = (h̄/i)∇r, and ∇r · A = 0; therefore, k · A = 0, so A · k = 0, and

Ĥ = 1
2m0

(
−h̄2∇2

r + iqh̄A · ∇r + q2A
)

≈ − h̄2

2m0
∇2

r + iqh̄
m0

A · ∇r

= Ĥ0 + Ĥ ′, (12.6)

the rationale for which is that a q2A term can be neglected at
small light intensity compared to the term right before it. In
Equation 12.6, the first term is our unperturbed electron
Hamiltonian Ĥ0, and the second (Ĥ ′) is the perturbation term
for the electron-photon interaction. In Section 1.2, we derived
Equation 1.41 for the time dependence under perturbation for a
two-level system started in one state. Our analysis is quite the
same for a multilevel system appropriate to the case of an electron-
photon interaction. Our governing equation is

− h̄
i
∂ψ

∂t
= Ĥ ψ =

(
Ĥ0 + Ĥ ′)ψ , (12.7)

and the solution is composed of a new wavefunction built from the
eigenfunctions of the unperturbed system as

ψ(r, t)=
∑

n

cn(t)ψn(r) exp
(

− iEnt
h̄

)
, (12.8)

leading to the time dependence of coefficients through

ih̄ċm(t) =
N∑

n=1

cn(t)H ′
mn(t) exp

[
i (Em − En) t

h̄

]
, where

∫
ψ∗

m(r)ψn(r) dr = δnm. (12.9)

The problem is of photon interaction in a crystal, where there are
N primitive unit cells. We also write the vector potential, which
is a real harmonic quantity, through Equation 12.3, where the first
term gives rise to stimulated absorption, and the second leads to
stimulated emission. The matrix element for electron transition from
state |k〉 at energy Ek to state |k′〉 at energy Ek′—a two-level-like
problem—can be written as

H ′
kk′(t)= 1

N

∫
ψ∗

k′(r)Ĥ ′ψk′(r) dr, (12.10)

with the perturbation, as in Section 1.2, containing a time
dependence through exp(iωt).
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If the system started in a state |k〉 at energy Ek, its transition
probability to state |k′〉 is ∣∣ck′(t)

∣∣2, found via

ck′(t) ≈ 1
ih̄

∫ t

0
H ′

kk′(t′) exp
[

i
(
Ek′ − Ek

)
t′

h̄

]

dt′, with

H ′
kk′(t) = iqh̄

2m0N

∫

	

ψ∗
k′ (A · ∇r)ψk dr

= iqh̄A
2m0N

exp(−iωt)
∫

	

ψ∗
k′ exp

(
iq · r

)(
â · ∇r

)
ψk dr. (12.11)

The time-independent part of this matrix element (H ′
kk′ ) is

the prefactor and the integral, and the time dependence is in the
exp(iωt), so that H ′

kk′(t)= H ′
kk′ exp(−iωt), where H ′

kk′ is a
magnitude, and we may write the probability of transition in time
duration of t as

∣
∣ck′(t)

∣
∣2 = 2π |H ′

kk′ |2t
h̄

δ
(
Ek′ − Ek − h̄ω

)
, (12.12)

which associates the transition energy conservation condition of
Ek′ − Ek = h̄ω as a selection condition and states that the probability
of transition increases with time t. Note that this is the transition for
the electron—in the crystal—undergoing a change to another state,
again in the crystal. The interaction is with the electron—local—and
the transition is for the electron to move to a state defined by the
crystal. The first condition is reflected in the mass being the free
electron mass m0 in the prefactor in Equation 12.11. The second—of
the states—is reflected in the Bloch function, whose one emergent
property is the effective mass. So, this equation reflects transitions
such as that shown in Figure 12.4, where the electron changes
its state, which means a change in the wavefunction through its
modulation function via the electron-photon interaction. No crystal
momentum change took place. Figure 12.4: An electron-photon-

interaction-induced transition from the
valence band to the conduction band,
as reflected through a direct band-to-
band absorption. Part (a) shows this
for a direct bandgap semiconductor,
and (b) for an indirect semiconductor.
The matrix coupling elements can
be very different, since the Bloch
functions in the two situations will be
very different.

The |k〉 is the Bloch function (ψk = uk(r) exp(i k · r)), so
Equation 12.11 may now be recast as

H ′
kk′ = iqh̄A

2m0N

∫

	

exp
[
i
(
k − k′ + q

) · r
]

× u∗
k′

[
â · ∇ruk + i

(
â · k

)
uk

]
dr

= iqh̄A
2m0N

∑

Rmn

exp
[
i
(
k − k′ + q

) · Rmn
]

×
∫

	0

u∗
k′

[
â · ∇ruk + i

(
â · k

)
uk

]
dr

= iqh̄A
2m0

∫

	0

u∗
k′

[
â · ∇ruk + i

(
â · k

)
uk

]
dr. (12.13)

In the rewritten form of Equation 12.13, we have used two
properties. The first step was to employ the periodicity of the Bloch
functions to reduce the integral from the entire volume to a
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unit cell. The second was the use of wavevector (momentum)
conservation, that is, k − k′ + q = 0, with N unit cells each
contributing through the exponential result of 1.

This last form of Equation 12.13 has two terms, both dependent
on the modulation function, inherent within which is the symmetry
of the state. The first term leads to what we call allowed transitions,
and the second leads to what we call forbidden transitions. The
allowed transitions reflect the fact that it is a term which does have
a finite meaningful value, since uk does have a spatial variation
in all directions, including that of the vector potential of light. The
 ̏forbidden˝ transitions are weaker electron-photon momentum
conserving transitions without any other involvement such as that of
phonons. Bloch functions between two different bands, that is different index
quantum numbers, are orthogonal. So, for k = k′, terms of this integral
contribution vanish. Photons, as we have discussed, have small
wavevectors. Overall, the term contributes, even if it is small.

The forbidden transition is really not
absent; it just has a small magnitude
compared to the allowed transitions.
The origin of the use of the word is
from spectral transitions, where certain
lines are forbidden by selection
rule but become allowed when
the approximation leading to that
rule is not made. I have not been
able to find who introduced this
nomenclature. It has stuck. Many
people like a deterministic coda.
Quantum mechanics allows much
through its uncertainty. The Forbidden
City is also not forbidden, and very
worthy of a visit. These are words used
by a system to specify a rule that is
then meant to be broken. It is kind of
like Chekhov’s rifle, which is on the
wall in the first chapter and then, as
the book is finishing, must be taken
down in the last chapter. Forbidden
transitions should not be confused
with transitions where conservation
of momentum involves phonons.
This latter is an important source
of transitions—light absorption—
in silicon, which is so useful in
photovoltaics, and is an indirect
transition.

12.1.1 Allowed transitions

The matrix element for allowed transitions is

H ′
kk′

∣
∣
allowed = iqh̄A

2m0

∫

	0

u∗
k′

(
â · ∇ruk

)
dr. (12.14)

Since p = (h̄/i)∇r, we define a momentum matrix element,

pkk′ = h̄
i

∫

	0

u∗
k′∇ruk dr, (12.15)

leading to

H ′
kk′

∣
∣
allowed = − qA

2m0

(
â · pkk′

)
. (12.16)

We have now again related a transition of the change of state of
the electron from one index to another—|k〉 �→ |k′〉, valence
to conduction—in terms of the momentum, and therefore a
momentum matrix element. Why is this so? The interaction with
light, a source of energy with a very small momentum, causes a
Bloch state spread out in real space to change to another Bloch
state spread out in space upon the photon’s absorption. Its crystal
momentum remained quite unchanged, but its modulation function
changed, which is reflected in the E-k relationship of the band, and
whose immediate view to us is through the effective mass. A less

Note that the matrix element involves
m0, which is the free electron mass
representing this local interaction. But
the change of state from the valence to
the conduction now makes the electron
move in the crystal under different
E-k constraints represented in the
effective mass.

mobile electron in the valence band—a sea of electrons—became a
more mobile electron, so it is now being viewed as an independent,
nearly free electron. This is a transition from a liquid to a gas. It is
the modulation function that represents the wavepacket-like extent
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of the propagating electron’s reach and its responsiveness to forces.
Momentum change is the response. And therefore it stands to
reason that one sees the momentum matrix element as a reflection
of allowed absorption.

The probability of a k �→ k′ transition in the crystal is

∣∣ck′(t)
∣∣2 = 2π t

h̄

(
qA
2m0

)2(
â · pkk′

)2
δ

(
Ek′ − Ek − h̄ω

)
, (12.17)

with the transition rate
∣
∣ck′(t)

∣
∣2

t
= 2π

h̄

(
qA
2m0

)2(
â · pkk′

)2
δ

(
Ek′ − Ek − h̄ω

)
. (12.18)

To calculate the probability of band-to-band transitions, we We will return to the implications of
selection rules for the transitions in
Chapter 20. These become significant
in confined conditions, affecting
particularly the polarization of light
from lasers. In bulk, for now, the
specific heavy-hole, light-hole, split-
off-hole and electron conduction band
interactions will be left more general,
which is good enough. In Section 20.7,
you will find reference back to the
selection rules for bulk conditions
too. The section should be readable
without the intervening fertile fields.

need to know this transition rate of Equation 12.18, the probability
of occupation of the valence state transitioning (the Fermi-Dirac
distribution function f = fFD(E,EF,T)= 1/{1 + exp[(E − EF)/kBT]},
the probability that the state being transitioned to is unoccupied
in the conduction band (1 − fFD), the volume in reciprocal space
occupied for each wavevector quantum number ((2π)3/	), and the
spin degeneracy gs = 2, so the joint probability is

pkk′ = 2	

(2π)3

∫

	k

∣∣ck′(t)
∣∣2f0(1 − f0) dk, (12.19)

which is an integration over the whole reciprocal space.
The transition per unit volume—the recombination rate (here, for

the allowed band-to-band transitions)—is the transition probability
per unit volume per unit time and so, assuming little disturbance
from thermal equilibrium, and an incident wave of energy h̄ω per
photon, is

r|allowed = 2

(2π)3

∫

	k

∣∣ck′(t)
∣∣2

t
f0(1 − f0) dk

= 2
4π2h̄

(
qA
2m0

)2 ∫

	k

(
â · pkk′

)2
δ

(
Ek′ − Ek − h̄ω

)

× f0(1 − f0) dk. (12.20)

The energy difference of the states transitioning is

Ek′ − Ek = Eg + h̄2k′2

2m∗
e

+ h̄2k2

2m∗
h

= Eg + h̄2k2

2m∗
r
, (12.21)

where we again use the reduced mass approach of two-body
problems with



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

462 semiconductor physics

m∗
r = m∗

e m∗
h

m∗
e + m∗

h
. (12.22)

m∗
r is the reduced effective mass for this electron-hole pair that is

recombining. Since the Dirac delta is the rapidly changing function
in the transition rate equation, we can write

r|allowed = q2A2ωfosc

16π2m0
f0(1 − f0)

∫

	k

δ

(

Eg + h̄2k2

2m∗
r

− h̄ω

)

4πk2 dk. (12.23)

fosc here is the oscillator strength

fosc = 2
(
â · pkk′

)2

h̄m0ω
≈ 1 + m∗

m∗
h
, (12.24)

a dimensionless parameter that captures the strength of the See Appendix I for a discussion of
oscillator strength. Matrix elements for
calculating transition rates involve pkk
and so are called momentum matrix
elements. Through â · pkk′ , they are
also dipole matrix elements. Here, with
light, it arose in the proportionality
A · p. In the k · p discussion, it arose
again through the matrix term 〈k′|p|k〉
in the coupling between the states. It is
convenient to describe this strength of
coupling between two states through
this oscillator strength. Multiple state
coupling follows through the oscillator
sum rule, which is usually valid.

interaction through the momentum matrix element connecting the
two states between which the transition is taking place.

In Equation 12.23, the integral is quite simplifiable:
∫

	k

δ

(

Eg + h̄2k2

2m∗
r

− h̄ω

)

4πk2dk

= 4π
3

(
2m∗

r

h̄2

)3/2 d
d(h̄ω)

(
h̄ω − Eg

)3/2

= 2π
h̄3

(
2m∗

r
)3/2(h̄ω − Eg

)1/2, (12.25)

which leads to the dependence

r|allowed = q2A2ωfosc(2m∗
r )

3/2

8πh̄3m0
f0(1 − f0)(h̄ω − Eg)

1/2, (12.26)

a square root of energy dependence on energy for the allowed
transitions.

The parameter that one is usually interested in is the absorption
per unit length (α(E)),

α = r
�
, (12.27)

where r is the transition probability per unit volume per unit time,
and � is the quantum flux, that is, the number of photons per unit
area per unit time:

�= 〈S〉
h̄ω

, (12.28)

where S is the Poynting vector (S =E × H, which is energy
incident per unit area per unit time). With the vector potential
as A of Equation 12.3, the fields are E = Aωâ sin

(
q · r − ωt

)
, and

H = − (A/μ)(q × â) sin
(
q · r − ωt

)
, so that

〈S〉= 1
2

ωA2

μ
= 1

2
nε0cω2A2, (12.29)
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from which the absorption coefficient for allowed band-to-band
transitions follows as

α|allowed = q2A2(2m∗
r )

3/2fosc

4πε0ncm0h̄2
f0(1 − f0)(h̄ω − Eg)

1/2. (12.30)

In the idealized condition of a filled valence band and an entirely
empty conduction band,

α|allowed = 2.7 × 105
(
2m∗

r

m0

)3/2 fosc

n
(h̄ω − Eg)

1/2, (12.31)

where n is the index of refraction. The smaller the reduced effective
mass—usually controlled by the conduction band—the higher is the
absorption.

12.1.2 Forbidden transitions

The matrix element for the forbidden transitions is

H ′
kk′ = − qh̄A

2m0

(
â · k

) ∫

	

u∗
k′uk dr, (12.32)

which we arrived at through the second part of Equation 12.13, and
is dependent on the overlap of the modulation functions of the two
bands. This is going to be small, because of the orthonormality of
the Hermitian solutions. We also have

∣∣ck′
∣∣2

t
= 2π

h̄

(
qh̄A
2m0

)2∣
∣â · k

∣
∣2Ocvδ

(
Ek′ − Ek − h̄ω

)
, (12.33)

where Ocv is the overlap integral. With different bands and a finite
but small photon wavevector, 0 < Ocv 
 1. The term

∣∣â · k
∣∣2

has a dependence on k. This is an average arising in the volume
of the source transition state that couples under the conservation
constraints. We approximate this by the reciprocal volume of k2/3.
So, the transition rate follows as

r|forbidden = q2A2Ocv(2m∗
r )

5/2

12πm2
0h̄

4
f0(1 − f0)(h̄ω − Eg)

3/2, (12.34)

and the forbidden absorption coefficient follows as

α|forbidden = q2(2m∗
r )

5/2Ocv

6πε0ncm2
0h̄

2
f0(1 − f0)

(h̄ω − Eg)
3/2

h̄ω
, (12.35)

and, under the idealized simplification of a filled valence band and
an empty conduction band, as

α|forbidden = 1.8 × 105
(
2m∗

r

m0

)5/2Ocv

n
(h̄ω − Eg)

3/2

h̄ω
. (12.36)
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Figure 12.5: Absorption coefficients
at bandedge for direct and indirect
semiconductors illustrating the
allowed and forbidden transition
consequences.

There exists now an inverse frequency tail in the expansion for the
forbidden transition compared to the allowed transition. And since
Ocv is small, the forbidden transition is significantly weaker.

Figure 12.5 show some of these characteristics for example direct
and indirect bandgap semiconductors. In such characteristics, when
plotted near the bandedge, where the change is most pronounced,
the region of rapid change is known as the absorption edge. It is
close to the bandgap. In direct bandgap materials, this edge is very
pronounced. In indirect materials, where phonon-assisted processes
are very important, it is not so pronounced, as Figure 12.5 shows.

12.1.3 Phonon-assisted indirect transitions

Photon absorption with electron transition from one band
to another will also occur through the participation of a phonon.
Although their population density or available state density is
temperature and phonon energy dependent, the phonons provide
a means for momentum conservation. At room temperature, the
density is high, whether of acoustic or optical phonons. Phonon
involvement makes transitions involving wavevector changes
possible, and while it is a second-order process, since another
particle is involved, there are many more states that are coupled,
making this process not inefficient.

 ̏Not inefficient˝ is stated with
caution. Solar cells based on Si are
ubiquitous, even if its bandgap is
indirect, with the zone center energy
spread between conduction and the
valence bandedge nearly 3.0 eV in a
1.1 eV bandgap material. But, then,
silicon does not make lasers, while
the direct gap materials with strong
allowed transitions do.

In Figure 12.6, one can see how a spread of the phonon
energy and the wavevector allows a band of valence electrons
to transition to a band of conduction band states in an indirect
bandgap material. Panel (a) shows the state at the valence
band maximum coupling to a number of bandgap states in the
conduction band by virtue of the spread of phonon energies
as a function of the wavevectors available. We have employed
the s subscript to distinguish the phonon parameters from the
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Figure 12.6: Phonon-absorption-
initiated absorption, where significant
momentum and energy are supplied
by the phonon. Part (a) shows the
absorption from the valence bandedge
to several conduction bandstates and
(b) shows that many states from the
valence band also participate, and
here the processes to the conduction
bandedge state are shown.

photon parameters. Panel (b) shows the same number of states
in the valence band coupling to the conduction bandedge state.
In these instances, the transition from state 0 in Figure 12.6(a) to
1 or 2 requires a phonon of wavevector qs1 and energy h̄ωs1, for
coupling to the state identified by 1, or a phonon of wavevector
qs2 and energy h̄ωs2, for coupling to the state identified by 2.
In both of these, the energy of the photon involved is still the
same h̄ω. Both of the phonons are absorbed here. Processes
involving the emission of phonons should also be possible. In
all these cases, conservation of energy and momentum holds
through the participation of the phonon. An important energy
consequence is that the indirect band-to-band absorption has
a minimum at an energy lower than the bandgap energy.
h̄ω ≥ Eg − h̄ωs.

Analysis of such indirect transitions requires 2nd order
perturbation theory. One can view the electron transition from
the valence band to conduction band as arising in a direct transition
to a virtual state in the conduction band with the simultaneous
emission of a phonon. Likewise, one could also have a virtual
transition to a valence band state with the emission of a phonon
and a direct transition. The virtual state is a very short-lived state
describable through the uncertainty relationship. And there will
be allowed transitions and forbidden transitions for this too. All
we have done is incorporated a new particle in the dynamics. The
electromagnetic wave still leads to a perturbation term with two
components.

We will not dwell on the derivations but just state the main
results.

12.1.3.1 Allowed phonon-assisted indirect transitions
The allowed transitions in an indirect semiconductor—
phonon-assisted and through the conduction band—as depicted in
Figure 12.7, have an absorption coefficient of
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αc(±ωs)|ai = gcq2m∗3/2
h ωs fcoscE0

(
h̄ω ± h̄ωs − Eg

)2

32πε0ncm0m∗
e
1/2h̄ωλckBT(E0 − h̄ω)2

±1

exp
(
± h̄ωs

kBT

)
− 1

,

(12.37)

where the + sign is for the phonon absorption process, and the −
sign is for phonon emission.

For the allowed process through the valence band, the absorption
coefficient is

αv(±ωs)|ai = gcq2m∗3/2
e ωs fvoscE1

(
h̄ω ± h̄ωs − Eg

)2

32πε0ncm0m∗
h
1/2h̄ωλvkBT(E1 − h̄ω)2

±1

exp
(
± h̄ωs

kBT

)
− 1

,

(12.38)

with the total absorption given by the sum of all such processes
(allowed and indirect), that is,

α|ai = αc(+ωs) + αc(−ωs) + αv(+ωs) + αv(−ωs). (12.39)

In these sets of equations, gc and gv are the degeneracies of the
minima, for example, for the X valley of the Si conduction band,
gc = 6. fcosc and fvosc are the oscillator strengths for the conduction
band and the valence band, respectively, and λc and λv are the
mean free paths for electron scattering.

12.1.3.2 Forbidden phonon-assisted indirect transitions
For the  ̏forbidden˝ transitions, again phonon assisted and
in indirect materials, treated similarly through virtual states, the
absorption coefficient is given by

αc(±ωs)|fi = gcq2m∗
h
5/2ωsO′

c
(
h̄ω ± h̄ωs − Eg

)3

48πε0ncm0m∗1/2
e h̄ωλckBT(E0 − h̄ω)2

±1

exp
(
± h̄ωs

kBT

)
− 1
(12.40)

for processes through the conduction band and

αv(±ωs)|fi = gvq2m∗
e
5/2ωsO′

c
(
h̄ω ± h̄ωs − Eg

)3

48πε0ncm0m∗1/2
h h̄ωλvkBT(E1 − h̄ω)2

±1

exp
(
± h̄ωs

kBT

)
− 1
(12.41)

for processes through the valence band. E0 and E1 here are the
direct gaps in the indirect semiconductor at the valence band
maximum and the conduction band minimum, respectively, as seen
in Figure 12.7.

Figure 12.7: Band-to-band transitions
in indirect bandgap and phonon
assistance, modeled through virtual
states either in the conduction band or
in the valence band.

Type Dependence

Direct
 ̏allowed˝ ∝ (h̄ω − Eg)

1/2

 ̏forbidden˝ ∝ (h̄ω − Eg)
3/2

Indirect

 ̏allowed˝ ∝ (
h̄ω ± h̄ωs − Eg

)2

 ̏forbidden˝ ∝ (
h̄ω ± h̄ωs − Eg

)3

Table 12.1: Energy dependence of
various conduction-valence absorption
processes in direct and indirect
semiconductors.

The conclusion of this discussion is that there are a large
number of recombination processes for photons, phonon-free and
phonon-assisted for direct and indirect semiconductors. Each then
shows a different absorption edge shape. And the significant change
in the photon energy dependence is as summarized in Table 12.1.
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Since both phonon emission and absorption are possible when
the photon energy exceeds the bandgap by the phonon energy
magnitude, α =αa + αe for h̄ω > Eg + h̄ωq. If the temperature is low,
the phonon density is low, so αa will become small. This provides
us with a tool for understanding the semiconductor’s optical
interaction through its behavior near the bandgap. Figure 12.8
shows the absorption coefficient in phonon-dominated conditions
at the bandedge. At moderate and high temperatures, one will see
a tail in the absorption curve with a

√
αa linear dependence on

the photon energy. And this will have a fairly noticeable cut-off
at a phonon energy below the bandgap. When the temperature is
lowered, this phonon absorption will be reduced, and because the
bandgap is increased, the absorption characteristics will shift to
higher energy.

Figure 12.8: The square roots of
absorption coefficients in phonon-
dominated absorption conditions
such as in an indirect semiconductor
of low doping. As temperature is
lowered, bandgap increases and
phonon absorption disappears.

12.1.3.3 Doping consequences in band-to-band transitions
Doping matters in band-to-band transitions through the
availability of states to transition from and to. If a material is
heavily doped, say, n-type, then the conduction bandedge states
are filled, so a band-to-band absorption cannot take place to these
states, and absorption must shift to higher energy, where the
states are available. This is near the Fermi energy, where filled
states and unfilled states are both available. From the Fermi-Dirac
distribution, one also sees that the exponential in the denominator
implies that, at energies a few (∼ 4kBT) below the Fermi energy,
unoccupied states become available for transitions. These conditions
are sketched in Figure 12.9. At an energy identified here as
EF′ ≈ EF − 4kBT, where the wavevector is kF′ , about 2% of states are
unoccupied, and a band-to-band absorption to these states becomes
noticeable. This condition corresponds to a photon energy of

h̄ω ≈ Eg + h̄2k2F′
2

(
1

m∗
e

+ 1
m∗

h

)
. (12.42)

The absorption edge has shifted, a shift known as a Burstein-Moss
shift. There is also a significant temperature effect in high doping
conditions with low impurity density. The phonon population is
decreasing, so, for phonon-assisted processes, emission dominates.
If one had a pure semiconductor, as we have seen, this will
mean an Eg + h̄ωq intercept edge in the

√
αe for the absorption

coefficient plot, such as in Figure 12.8. When the doping is higher,
but bandgap shrinkage and other effects are negligible, then the
absorption intercept will shift to a higher photon energy.

Figure 12.9: Occupation of states in
n-type high doping conditions. In the
conduction band, noticeable empty
states only appear at energies close to
EF′ ≈ EF − 4kBT, where the Fermi-Dirac
distribution is f0(EF′ ) = 0.982; that is,
about 2 % of states unoccupied.

Doping effects manifest themselves in multitudinous ways.
Heavy doping causes band tails, an effective bandgap shrinkage
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and a change in state behavior, including distortion of the Bloch
function from the idealized representation in the parabolic
relationship of Equation 12.42. In indirect semiconductors, with
heavy doping, momentum conservation due to electron-electron
scattering will also become significant. We will visit the carrier
absorption in more detail in the discussion of free carrier absorption
(Section 12.2). But, in heavy doping, at these near-bandgap energy
conditions, the absorption process can be aided by the momentum
change for conservation provided by the density of carriers, so
proportionally. This absorption coefficient is proportional to the
square of energy and the population, so α ∝ n(h̄ω − Eg − EF)2.
A plot of

√
α is linear with the incident photon energy, and the

plot shifts proportional to the square root of doping, being a plot of√
α(E) with E. See, for example, the doping-dependent behavior of

Figure 12.10 for the absorption coefficient for As-doped Ge.

Figure 12.10: Pure, low and high
doping absorption edges in a few
semiconductors.

12.1.3.4 Field dependence of absorption
Fields too cause a change in absorption behavior. An
electric field causes change, since it is a positional band change due
to change in the electrostatic potential, and this will affect overlap
functions. Magnetic field changes it because the Lorentz-force-
induced cyclotron motion is a spatial confinement—a dimensional
reduction—and it will cause subbands to form and allow energies
of states to change.

Figure 12.11: Illustration of the Franz-
Keldysh effect. In the presence of an
electric field, the overlap between the
evanescing valence and conduction
bands is over a distance that decreases
approximately by the electric field and
the bandgap. With the participation
of a photon, the overlap can be
with a spatially closer but higher
energy evanescing conduction
band wavefunction enhancing the
absorption; that is, the transitioning
of a valence electron to a conduction
band state.

First, consider the electric field effect, as shown in Figure 12.11.
Since there is an electric field, the Bloch functions that are
evanescent in the bandgap increasingly overlap with the field,
and this leads to the tunneling between the valence band and the
conduction band. Such tunneling occurs through an approximate
triangular energy barrier that the electron tunneling from the
valence band to the conduction band sees, as depicted by the
dashed lines in the structure. Such tunneling becomes important

For tunneling, triangular barriers and
their various manifestations, including
in quantization in the inversion layer
of a MOSFET, see S. Tiwari,  ̏Device
physics: Fundamentals of electronics
and optoelectronics,˝ Electroscience
2, Oxford University Press, ISBN
978-0-198-75984-3 (forthcoming).

when the ∼ 1 eV barrier region becomes many nms thick, that is,
when there is an electric field of the order of a MV/cm. In SiO2,
with its larger barrier energy, it is larger than this. But there is
an interesting overlap consequence shown through the upper
representation of a conduction band propagating Bloch function.
Tunneling with only field involved depends on the overlap shown
along the lower representation of the Bloch functions. Now, if a
photon can participate, it can provide an excess of h̄ω of energy, and
the barrier energy that is involved in such a tunneling process is
∼(Eg − h̄ω). In the spatial illustration of Figure 12.11, it is a larger
overlap with the conduction band Bloch function(s) shown in the
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top region of this figure. From a width of l ≈ Eg/eE for electric-
field-based tunneling, over which the evanescing wavefunctions
overlap, the region has now been reduced to t ≈ (Eg − h̄ω)/eE in
the presence of this field. This can now be much larger.

Tunneling of an electron from the valence band to the conduction
band is a transition, and we normally think of it spatially. But
it is a transition from one band to another, and therefore also
equivalent to an absorption process. An electron from the valence
band transitioned to the conduction band. What we have seen with
the photon is that this transition was made more efficient. This is
the Franz-Keldysh effect. It is a photon-assisted tunneling through the
energy gap and an enhancement of the absorption process. Higher
fields will increase it. Figure 12.12 shows the absorption coefficient
in GaAs under an electric field, illustrating this Franz-Keldysh effect.

Figure 12.12: The dependence of
absorption coefficient on photon
energy as a function of the electric field
in GaAs.

Since the tunneling still occurs across an approximately
triangular barrier, the solutions follow from the use of Airy
functions. The electroabsorption coefficient is approximately

α(E)|E ≈ 1.0 × 104
fosc

n

(
2m∗

r

m0

)1/3 ∫ ∞

β

|Ai(z)|2 dz, where

β = 1.1 × 104
(
2m∗

r

m0

)1/3 Eg − h̄ω

E2/3 . (12.43)

Note that, in an indirect semiconductor, the symmetry of the wave-
functions will be different, and, just by the photon participation, the
overlap will remain quite small. After all, the momentum matching
will be quite poor. Just as for indirect gap absorption, a phonon
process will need to be involved, and now this has become a three-
carrier process, involving the photon, the phonon and the electron
from the valence band. This will have to be inefficient. So, indirect
bandgap materials show quite weak electric field dependence.

There may be weak field dependence
for the Franz-Keldysh effect in indirect
gap materials, but normal photon-free
tunneling is quite similar for indirect
and direct gap materials. This is
because the distances over which
this interaction takes place in
tunneling is large (l of Figure 12.11),
and phonons may participate in the
time scales involved. The tunneling is
incoherent tunneling.

Now consider the consequence of magnetic field. If scattering
were absent, the electron, still a free particle in a nearly free electron
gas, has a time response dictated by the Lorentz force of

m∗ dv
dt

= qv × B, (12.44)

where we have assumed an isotropic mass in parabolic approxi-
mation. So, the electron orbits around the field with the cyclotron
frequency of ωc = eBz/m∗ in a radius of rc = v/ωc. We encountered
this frequency in our Boltzmann transport equation discussion (e.g.,
see, Equation 9.22). It can be written more generally in terms of
the mass tensor. Classically, no limits have been placed on what
velocity, momentum or position this electron may have. However,
quantum-mechanically, these are prescribed through coherence—
integral wavelengths of circumference of cyclotron orbit—that is,
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2πrc = nh
p

= nh
m∗v

∀ n = 1, 2, . . . . (12.45)

This relates the velocity and the radius via v = rcωc = nh̄ωc/m∗v
for the electron’s motion characteristics. The kinetic energy, by
extension, is dictated to have discrete possibilities of

m∗v2

2
= n

h̄ωc

2
. (12.46)

So, the presence of magnetic field then changes the energies of the
allowed states under this quantum-mechanical prescription with its
zero point uncertainty to

En − E0 =
(

n + 1
2

)
h̄ωc =

(
n + 1

2

)
h̄

eBz

m∗ . (12.47)

This says that the energy bands now form a ladder of subbands.
Figure 12.13 shows these Landau levels in the presence of a
magnetic field, with all the allowed energies of states shifting
according to this equation.

This Landau subband consequence
is the first of a series of hierarchy of
consequences, including entirely new
collective responses, that are discussed
in S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017).

The new energy subbands can be written as

E = Ec0 + h̄2k2

2m∗
e

+ h̄ωce

(
n + 1

2

)
for electrons, and

E = Ev0 − h̄2k2

2m∗
h

+ h̄ωvh

(
n + 1

2

)
for holes, (12.48)

where n = 0, 1, . . . . The effective bandgap has now changed to

Eg,eff (B)= Eg(0) + eh̄B
2m∗

cr
, (12.49)

where the reduced cyclotron effective mass m∗
cr is the geometric

mean of the cyclotron conduction and hole masses that sample
the reciprocal space during motion and may be different from the
parabolic mass under the more general semiconductor conditions.
The absorption edge will shift higher in energy as a result of the
application of magnetic field. Figure 12.13: Formation of Landau

subbands in the presence of a magnetic
field. Part (a) shows the E-k (parabolic
bands) without field, and (b) shows the
Landau subbands. The Landau level
energy is the bandedge energy of these
subbands.

12.1.3.5 Temperature dependence of absorption
Bandgap changes with temperature. When the heavy doping
effects, which we have remarked on before, are absent, so the
semiconductor has moderate to low doping, a primary effect is the
shrinkage of the lattice when the temperature is lowered. Usually,
the consequence of this is an increase in the bandgap, since the state
interactions have increased. This is certainly so in group IV and IIIV
compounds. The lower the temperature is, the larger the bandgap

Some of the more important
semiconductor properties that we
often employ, including some of the
temperature dependences, can be
found at the end of the glossary.

will be and hence, again, the absorption edge will shift higher in
energy. However, this is not necessarily a universal behavior, In
several other semiconductor forms, for example, those consisting
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of the significantly more ionic group VI elements, the bandgap can
actually shrink with lowering of temperature.

12.2 Free carrier absorption

Absorption does not entirely disappear past the absorption
edge at low energies. There are numerous additional absorption
mechanisms that will still occur, as noted in Figure 12.3, many due
to the lower energy of the interacting mechanism, such as from
optically active traps, deep levels, the electron-hole pair that we call
an exciton, and so on. But there is one particularly significant one
arising in just the conducting nearly free electron still interacting
with the photon—an electromagnetic coupling—and a free electron
undergoing a kinetic energy change across the energy swath. In
the process, the photon energy is absorbed by the electron and the
phonon. This is illustrated in Figure 12.14, which shows the electron

Skin depth, the region over which an
electromagnetic signal extinguishes, is
precisely because of this absorption,
as well as the electromagnetic
rearranging at the interface due
to the interaction between the
electromagnetic wave and the
conducting electron cloud under
the boundary constraint.

being accelerated or raised in energy through photon absorption in
a phonon-coupled process.

Figure 12.14: Part (a) illustrates
the energy-wavevector relative
relationship for a photon, with its high
group velocity, interacting with an
electron in the conducting gas in the
conduction band. Part (b) expands this
to emphasize the importance of the
need for a phonon to make momentum
matching possible together with the
energy matching.

We have explored the frequency-dependent behavior of electrons
(Section 10.7) and observed that there is both a real part and an
imaginary part in the response. The imaginary part reflects the
phase consequences. With electromagnetic waves, we will see
similar consequences, because both an electric field and a magnetic
field exist simultaneously. Here, one has a static conductivity of
σ = e2n〈τk〉/m∗, and its dynamic counterpart σ ∗ = e2n〈τ ∗

k〉/m∗, with

τ ∗
k = τk

1 − iωτk
. (12.50)

The expectation over all the variations is then

〈
τ ∗

k
〉 = 〈 τ ∗

k

1 + ω2τ ∗
k
2 〉 + i〈 ωτ ∗

k
2

1 + ω2τ ∗
k
2 〉. (12.51)

The electromagnetic frequencies that we normally are interested in
are in the terahertz-to-petahertz range, that is, the far infrared-to-
visible range—extremely high compared to the electronic device
frequencies that we were interested in there—so, ωτk � 1 is a good
assumption, and this leads to

〈τ ∗
k〉= 〈 1

ω2τ ∗
k
〉 + i

1
ω
. (12.52)

The conductivity then is

In this analysis, this relaxation
process has subsumed in it the
phonon involvement necessary for
the scattering of the electron to the
higher energy when a photon gets
absorbed. So, phonons in energy and
momentum matching do not appear
explicitly.

σ ∗ = e2n
m∗ω2 〈 1

τ ∗
k
〉 + i

e2n
m∗ω

= σ r + iσ i. (12.53)
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If we eliminate H in Maxwell’s equations under conducting
conditions, but with no source, we obtain a propagating solution
through the electric field equation

∇2E = εμ0
∂2E
∂t2

+ σ ∗μ0
∂E
∂t

, (12.54)

with the traveling wave solution E = âE0 exp
[
i
(
q · r − ωt

)]
. Note that we are using q as the

wavevector for electromagnetic
waves (as also for phonons, where we
sometimes use s subscript selectively
to identify phonons, separate from
other interfering symbols, k being the
preferred usage for electrons).

Here,

q = ω

c

(
εr + i

σ ∗

ε0ω

)1/2

, (12.55)

with c = 1/
√

ε0μ0 as the free space speed of light. In free space, the
wavevector q =ω/c = 2π/λ, with λ as the wavelength in free space.
But, as Equation 12.55 says, it propagates at a different wavevector
and simultaneously extinguishes. This change arises in the square
root term. Let us write this as a complex index of refraction,

nc =
(
εr + i

σ ∗

ε0ω

)1/2

= nr + ini. (12.56)

The complex index of refraction leads to the following connections
between the real and the imaginary parts:

nr2 − ni2 = εr − σ i

ε0ω
, and

2nrni = εr − σ r

ε0ω
. (12.57)

For a TEM wave, propagating in the z direction with the electric
field oriented in the x direction, the solution is

E = x̂E0 exp
(

−ωniz
c

)

exp
[

i
(

ωnrz
c

− ωt
)]

, (12.58)

where one can explicitly see the attenuation of the amplitude and
the change in the wavevector or, equivalently, the wavelength. The
free space wavelength has been scaled to λ/nr. The conductivity
and the attenuation factor are related through

ωni

c
= σ r

2nrcε0
(12.59)

and therefore the absorption coefficient, the per unit length measure
of loss of energy/flux/number of photons (quantities proportional
to the square of the amplitude), is

α = σ r

nrcε0
. (12.60)

In terms of the momentum relaxation, which is related to the
conductivity, we can write the absorption coefficient as
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α = e2nλ2

4π2nrc3ε0m∗ 〈 1
τk

〉. (12.61)

The longer the wavelength is, the more absorption there is. It
is easier to absorb a low energy photon through the free carrier
absorption.

So, with conducting electrons, we have found that the index of
refraction is a complex number nc, and the real and the imaginary
parts are related through the equation

nr2 = εr − e2n
ε0m∗ ω2 + ni2, (12.62)

and herein is the electron cloud that causes the dissipation, and as
we had seen before, provides the oscillatory response as a collective
ensemble that we called the plasma frequency,

ω2
p ≡ e2n/εm∗. (12.63)

The electron charge cloud has a dipolar oscillatory response that
has appeared for us in absorption because of the scattering that
takes place. And the charge cloud will show up in responses
in any situation where there is any electromagnetic interaction
involved, including, as we have mentioned, in the electromagnetic
propagation at the surface through the surface plasmon polariton.

Indeed, what we see here is that
semiconductors have this unusual
characteristic: the optical properties
will have a metal-like behavior at
low frequencies and an insulator-like
behavior at high frequencies.

We can also write these index relationships through the plasma and
the relaxation time properties as

nr2 = εr

[
1 −

(ωp

ω

)2]
+ ε2r

4nr2

(ωp

ω

)4
〈 1
ωτk

〉
2
. (12.64)

When ωτk � 1,

nr2 ≈ εr

[
1 −

(ωp

ω

)2]

= εr − e2nλ2

4π2ε0m∗c2
. (12.65)

The real part of the index of refraction is lowered with doping, and
hence heavily doped regions do guide light weakly, even as they attenuate
due to the free carrier absorption.

Figure 12.15: Reflectivity in InSb for
various dopings. InSb is a very small
bandgap material. Lower energy
photons interact strongly with the
electron plasma, causing a large
change in the index of refraction and
increasing reflectivity well beyond the
∼30 % of most semiconductors.

We had started this chapter with a discussion of the index of
refraction as a complex parameter, among others, reflective of the
electromagnetic interactions with matter, where electron plasma is
one of the causes of the interaction. Our expression of reflectivity
(see Equation 12.2) subsumed this. Figure 12.15 shows how this
reflectivity appears at the absorption edge, here in InSb due to the
interaction with the electron plasma. At higher doping shifts, the
edge and the longer wavelength photons, that is, the ones with
lower energy, interact much more strongly with the electron plasma.
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Figure 12.16: Four distinctly different
regimes in electromagnetic-electron
interaction in the skin layer. Scattering
of electrons is shown through sudden
changes in the path directions. For a
mean free path 〈λk〉, a skin depth δ and
an electron distance travel in a fraction
of an electromagnetic cycle � = 〈v〉/ω,
(a) shows the classical skin effect, such
as at infrared and longer wavelengths,
including at the low microwave
frequencies (〈λk〉
 δ, and 〈λk〉 
 �),
(b) shows the conditions where an
electron can relax within the skin
depth, but, being at higher frequencies,
the inertial effects of electrons become
important (� 
 〈λk〉
 δ), (c) shows
an anomalous skin depth effect when
the mean free paths are very large
(δ 
 〈λk〉, and δ 
 �) and (d) shows an
extreme anomalous skin effect when
� 
 δ 
 〈λk〉.

The phenomenon of skin depth needs a few additional remarks
in light of what we have learned about electron dynamics and the
interaction of light with the electrons.

Figure 12.16 shows four different situations for metals or even
high doped or inversion layers where electrons and not crystal
oscillations dominate. The description is based on the scaling
dimensions of the mean free path 〈λk〉, the skin depth δ and the
distance traveled by the electron in a 1/2π fraction of the cycle
(�= 〈v〉/ω).

Figure 12.16(a) reflects what one observes in metals at infrared
and longer wavelengths, such as the short frequencies of
microwaves in GHzs. This is when 〈λk〉
 δ and 〈λk〉
 �, the
electron is largely moving around with scattering-dominated
motion, and many scattering events happen within one cycle of
light in the skin depth region. It is a local and a near instantaneous
response between the fields and the currents. As the frequency
is increased further, as in Figure 12.16(b), the electron’s inertia
becomes important. The electron is undergoing collisions, but
the light wave is also rapidly oscillating, causing damping. It
is a classic case of fluctuation-dissipation in the electromagnetic
response. The electron response lags behind that of the light, with
the phase lag approaching π/2 in the case of extreme relaxation.
Electron scattering is not as important, and the electron responds
to the oscillating field, undergoing occasional collisions. Electrons
now screen the field. This is why the reflection coefficient becomes
high. Absorption drops because of the phase lag. Figure 12.16(c) is
an anomalous region where the mean free path is high. Examples
in metals are the use of low temperature and in semiconductors
the high mobility inversion layers. Figure 12.16(d) is a region of
anomalous reflection. This is a bit like the case in Figure 12.16(b),
but the scattering is less. Now the surface scattering dominates.

12.3 Excitons, and absorption by excitons

The nearly free electron picture is an excellent model for
many purposes. But there is a large variety of conditions where
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one observes consequences of two seemingly different particles as
carrier of energies, coupling with energies and momentum quite
close, and so behaving together in a form that is much easier to
think of as a new quasiparticle. An electromagnetic field coupled to
an electron has just been treated as two different forms of particles
as carriers of energies. But, on an interface, such as a dielectric
with a high density of electrons, the boundary, the boundary’s
compulsions reflected in the constraints on Maxwell’s equations,
and the consequences of a conductive electron cloud make it
possible for a surface channel to form that can also propagate, with
the electromagnetic wave/photon and the electron cloud acting
together in unison. This is an example of a plasmon polariton. All
the different forms in which energy is carried by particles, when
looked at in sufficient detail, will show conditions where the energy
carried by the particle couples to other energy forms to make a new
quasiparticle, which is a good way of representing the response. We
will see some of these later.

When, in band-to-band absorption, an electron state in the
valence band is emptied and one in the conduction band is filled,
one now has made a transition in energy, a change of state, while
the localization of the particles is still determined by uncertainty.
An electron left behind a hole. How does this electron interact with
this hole or the sea of electrons that has settled in the valence band?
We had made remarks regarding correlation holes in Section 1.2,
and Coulomb holes in Section 1.7, during our discussion of Hartree
and Hartree-Fock methods. These are very important in high carrier
concentration systems, since exchange, with electrons as fermions,
is very central to the filled states of a Fermi liquid or in atomic
orbitals. In a Fermi gas, to the first order, just considering Coulomb
interaction between an electron and a hole suffices. The electron
now appears as one electron in a sea, where the sea’s effect is a
periodic perturbation. And this Coulomb interaction will depend
on the permittivity. For semiconductors, εr ≈ 10, but, for organic
semiconductors, εr ≈ 4 and, for high permittivity materials, εr � 10;
each material has a different attractive force between electrons and
holes. The hole, in this view, is a valence band particle. Only when
both holes and electrons were in large numbers did we have to
worry about it, but, given the extent of the spatial distances and
these attractions, one does need to treat it as a higher-order effect.

How shall we treat many-body effects, such as an electron and
its local environment, when the electron is generated by the photon
absorption process? The electron has a zone surrounding it in this
interacting system that reduces the probability of finding other
electrons within the vicinity and thus has created this hole that is
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attracted to it. So, Coulomb interactions and exchange both matter.
For the Fermi gas picture, just considering the electron-hole pair as
a correlated quasiparticle is sufficient for our interests. This is the
exciton.

Attraction between the electron and the hole make their motion
correlated, as is represented in this combined assembly of the
exciton. We have seen that the effective Bohr radius is of the order
of a few nms to 10 nm in inorganic semiconductors. When confined
in a quantum well, we increase the attraction, through pushing the
particles together, of the interacting pair—the exciton. This picture
is somewhat similar to that of an electron and a donor, where
the ionization energy will change due to the confining, except that
the exciton is free to move.

An exciton itself is uncharged. It diffuses; it does not drift. It is a
quasiparticle with a center-of-mass motion and relative motion
within it. The exciton as an electron-hole pair has an energy
lower than that of the bandgap by the Coulomb attraction energy.
And a photon can cause it to recombine, so one sees an excitonic
recombination, as was illustrated in Figure 12.3. It can also be
broken apart by perturbation. A measure of the strength of the
exciton is the comparison between the lowering of energy in its
formation compared to thermal energy. If kBT < Exn, the exciton
energy then will be important. If strong forced confinement of
electrons and holes exists, then it too will be important.

Figure 12.17: An exciton being created
as a result of recombination.

Similar to the donor-electron hydrogenic calculation, one may
view the ionization energy of such a pair scaled from the Rydberg
energy as

Exn0 = − 13.6
(

1
nεr

)2 m∗
r

m0
eV (12.66)

arising in an effective radius of electron-hole separation of
rxn = 0.053n2εrm0/m∗

r nm. Here, the relative effective mass of
the two-body system (m∗

r ) is the geometric mean of the effective
electron mass and the hole mass. Figure 12.17 illustrates its nature
within this electron-hole framework. This exciton is free to move in
the crystal, with a dispersion relationship of

See S. Tiwari,  ̏Quantum, statistical
and information mechanics: A unified
introduction,˝ Electroscience 1,
Oxford University Press, ISBN
978-0-198-75985-0 (forthcoming),
for detailed remarks on hydrogenic
donor or acceptor energies, as well as
our discussion of shallow hydrogenic
dopants and Wannier functions in
Chapters 4 and 7.

Exn(k)= Exn = h̄2k2

2M∗ , (12.67)

where the energy reference is the conduction bandedge, and
M∗ = m∗

e + m∗
h.

This picture suffices for understanding the two-particle picture of
a photon interacting with excitons, but now we need to introduce
the collective behavior aspect of the photon-exciton coupled state,
because the transformation resulting in a photon interacting in
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the semiconductor creating an exciton needs to be described with
energy and momentum being conserved. Conservation of energy
means that the creation of an exciton from a photon must occur
where the dispersion curves of the photon and the exciton intersect.
The two are uncharged—but not quite, since, in perturbation,
it is the higher-order interaction arising in the photon as an
electromagnetic particle, and the exciton as an electric particle that
is polarizable that leads to a weak interaction. And we have seen
how degeneracy is lifted in weak interaction. This new creation
is the exciton polariton, and Figure 12.18 shows this degeneracy
lifting. Recall that the photon has a high velocity, so the dispersion
curve is linear and sharply rising (E = h̄cq), and the exciton is much
broader.

Figure 12.18: The dispersion curves
for a photon and an exciton, that is, as
bare particles, and the creation of the
two branches of the exciton polariton
through the bare particles’ interaction.

Polaritons are made up of an electromagnetic wave coupled
to some form of polarization (excitons, here) to form a new
quasiparticle, and the dispersion curve shows how this new
quasiparticle’s energies E+

xp and E−
xp change with the wavevector.

The degeneracy of the photon and the exciton has now been
broken. We also see this electromagnetic wave coupling to other
polarizations, for example, those with mechanical oscillations of the
phonons.

Figure 12.19 shows the absorption edge of GaAs as the
temperature is lowered. Note the shift to higher bandgap, as
expected from the discussion in Subsection 12.1.3, and the
appearance of the exciton absorption peak modifying the absorption
edge. The absorption coefficient for allowed transitions is modified
in the presence of exciton absorption to

α ≈ 2.7 × 105
(
2m∗∗

r

m0

)3/2 fosc

nr

(
h̄ω − Eg − Exn

)1/2 cm−1, (12.68)

where m∗∗
r is now the geometric mean of the exciton effective

mass and the hole effective mass. In detail, one will observe in the
absorption behavior consequences due to phonon participation also.
These usually appear with thresholds.

Figure 12.19: The absorption
coefficient of GaAs as temperature
is lowered. This increases the bandgap,
shifting the absorption edge but also
showing the peaking due to excitonic
absorption.

12.4 Absorption by crystal vibrations

Photons can also directly couple to the crystal’s
vibrations—phonons—because atoms are both ionic and polarizable.
Such a coupling clearly will be stronger with increasing ionicity.
Also, since the electromagnetic waves are TEM, they will strongly couple
to transverse optical phonons, not longitudinal optical phonons, even
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though both these forms have polarization. The consequence of this
is that the dielectric function, or other forms of electromagnetic
characteristics, will show interesting features between the transverse
and the longitudinal optical phonon frequencies, in particular, a
high reflectivity. Equation 12.55 is the wavevector of the solution
of the transmitting wave in a medium characterized by a complex
dielectric function, a complex index of refraction or other, similar,
interdependent functions.

We consider a two-atom basis primitive cell. Let the displacement
around a mean position be of the form

δu = b̂δŭ1,2 exp
[
i(qs · r − ωst)

]
(12.69)

for the vibrations. Conservation of energy implies ωs =ω; We are using δu to emphasize the
movement around the mean with the
amplitude magnitude δŭ1,2. We have
brought in the s subscript again to
distinguish charge from phonons. The
photons are subscript-less.

conservation of energy means qs = k ≈ 0, since photons have a
very sharp dispersion curve. This means that zone center phonons
are of interest. Let ks be the  ̏spring˝ coupling coefficient between
the ions. The relative displacement equation of motion (recall our
phonon dispersion solution in Section 3.11) can be written as

− ω2δu = − ks

2Mr
δu + e∗

Mr
E ′. (12.70)

Here, Mr is the geometric mean of the two atomic masses, and
e∗ is the effective ionic charge. E ′ is a local electric field in the
crystal when the incident photon electric field is E . This local field
must be different, since the crystal is ionic and has a polarizing
environment. The solution for displacement is

δu = e∗/Mr

ω2
0 − ω2

E ′, with ω2
0 ≡ ks

2Mr
. (12.71)

The photon-free phonon response, which was harmonic, in the
presence of an electromagnetic field now appears as a forced
response oscillating at the photon frequency but with an amplitude
that has a Lorentzian lineshape. The more the difference between
ω, the electromagnetic frequency, and ω0, which is related to the

From the Maxwellian electromagnetic
viewpoint, the difference between
vacuum and matter is that
matter contributes electric and
magnetic polarization because
of its composition. As electrons,
nuclei, charge and spin respond to the
electromagnetic field in the material,
the material has a different dielectric
function or permeability function than
that of vacuum. Ionic polarization
is because of the ionic dipole due to
interatomic charge transfer. Electronic
polarization is because of the nearly
free electron charge cloud. Atomic
polarization is because of the atomic
distortion arising in the dressed
nuclear dipole.

phonon frequency, the less is the displacement perturbation from
the electromagnetic field. ω =ω0 = √

ks/2Mr defines a resonance con-
dition where the coupling is the strongest and the electromagnetic
field causes the largest changes in displacement. The dipolar field
arising in the polarization of the crystal will interact with the
electromagnetic field around this resonance condition. So, what this
simple relational analysis shows is that when electromagnetic fields
have frequencies in the range of the crystal vibrational frequency
(30 meV/h̄, i.e., fractions of a PHz, which is far infrared), strong
interaction should be expected.
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Now consider the polarization contribution from the ions,

Pi = Ne∗

	
δu = Ne∗/Mr	

ω2
0 − ω2

E ′. (12.72)

N here is the number of unit cells in the volume 	. The ionic polar-
ization arises in the transfer of charge from one atom to another
as part of chemical bonding, leading to an oscillating dipole as the
ions oscillate. The ion itself is composed of the nucleus and the
surrounding core electrons, what we call atomic cores. The dielectric
function, that is, the connection between the displacement and
the electric field, arises in this and other polarization interactions
arising in the material. The displacement is

D(ω)= ε(ω)E = ε0E + P(ω). (12.73)

At low frequencies, ε(0)= εr(0)ε0, where both atomic motion and
ionic motion respond in inorganic semiconductors (as do electrons,
which we ignore for now). At high frequencies, ε(∞)= εr(∞)ε0,
and the ionic response will vanish, since the displacement response
to the electromagnetic field vanishes. But the atomic polarization,
the part arising in the displacement of the dressed nuclear dipole—
the atomic polarizability—still remains. We refer to this remnant
polarization at high frequencies P(∞) as the background. We can

So, even at the highest frequencies, the
material does not appear as vacuum;
it still has atomic polarization. Light
will still move at a lower speed than
it does in vacuum, as it interacts with
this polarization as it propagates.

write polarization at any frequency as

P(ω)= Pi(ω) + P(∞), (12.74)

and the polarization at the very high frequencies as

P(∞)= [ε(∞) − ε0]E . (12.75)

Figure 12.20: The estimation of field
at any locale due to the surrounding
dipoles. One may draw a sphere large
enough to calculate the consequence
of nearby dipoles treated as those
inside the sphere, and farther dipoles
outside the sphere. This outside
region is treated as being of uniform
polarization.

Now, we may write the local field Elocal, which is being modified
by the polarization of the crystal. This electric field is the sum of
the external field together with the field contribution arising in the
material’s dipoles. This calculation is not trivial, but we can make
a suitable approximation with justification that the dipoles are all
parallel and arranged on a cubic lattice. As shown in Figure 12.20,
we treat a small region around the locale as being local, and the
region outside as the rest consisting of uniform polarization. The
sphere needs to be large enough to allow the averaging. The sum
of the dipole field inside the sphere can now be treated as being at
its center, and one can calculate the effect of the outside. Since the
volume varies as (4/3)πr3 and the surface area as 4πr2, the local
field is

Elocal =E + 1
3ε0

P. (12.76)

If we write each atom as contributing χ a of susceptibility, that is,
each atom’s polarization is related as p = ε0χ aElocal, with N atoms
per unit volume, then
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P = Nε0χ aElocal = Nε0χ a

(
E + 1

3ε0
P
)

= (εr − 1)ε0E . (12.77)

Rearranged, the relationship between the relative dielectric constant
and the atomic polarizability is

εr − 1
εr + 2

= 1
3

Nχ a. (12.78)

This is the Claussius-Mossotti relationship.
From Equation 12.74, it follows that

ε(ω)E = Ne∗/Mr	

ω2
0 − ω2

E + ε(∞)E , (12.79)

with

εr(ω) = εr(∞)

(

1 + ω2
1

ω2
0 − ω2

)

, and

εr(0) = εr(∞)

(
ω2
0 + ω2

1

ω2
0

)

, (12.80)

where

ω2
1 = Ne∗2

Mr	ε(∞)
(12.81)

and ω2
0 = ks/2Mr, as derived earlier.

The interaction between the electromagnetic field and the
crystal’s vibrations leads to a dielectric response function that has
a resonance part arising from frequency matching between the
crystal’s natural oscillations and a frequency that is connected to
the ionicity, the masses and the atomic polarizability.

Now consider transverse optical phonons, the ones that couple
efficiently for TEM waves,

ω2
TOδuTO =ω2

0δuTO − e∗

Mr
E . (12.82)

The curl of a transverse displacement ∇ × δuTO = iq × uTO �= 0, since
the transverse displacement is perpendicular to the propagation
direction. But ∇ × E = 0. Therefore, ω2

TO =ω2
0. The transverse phonons

are not affected by the electric field.
Let us now calculate the electromagnetic coupling to the

longitudinal oscillations. We have

ω2
LOδuLO = ω2

0δuLO − e∗

Mr
E

∴ ω2
LO∇ · δuLO = ω2

0∇ · δuLO − e∗

Mr
∇ · E

= ω2
0∇ · δuLO − e∗

Mr
×

[

− Ne∗2

	ε(∞)

]

∇ · δE , (12.83)

and since the divergence ∇ ·δuLO = iq·uLO �= 0, because displacement
and propagation are dimensionally aligned, and ∇ · D = 0, since
there is no spontaneous polarization or external charge, we can
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simplify. We derived the displacement in Equation 12.71, which we
employ for

D = Ne∗

	
δuLO + ε(∞)E

∴ ∇ · E = ∇ ·
[

D
ε(∞)

− Ne∗

	ε(∞)
δuLO

]

= − Ne∗

	ε(∞)
∇ · δuLO. (12.84)

Equation 12.83 has now been reduced to

ω2
LO =ω2

0 + ω2
1. (12.85)

While the TO oscillation frequency is unchanged at ω2
0, the LO

oscillation frequency is higher. This gap between the two is related
to the effective ionic charge, which is related to ionic polarizability,
and residual atomic polarization. The dielectric functions are now
relatable as

εr(0)
εr(∞)

=
(

ωLO

ωTO

)2

, and

εr(ω) = εr(∞)

(
ω2

LO − ω2

ω2
TO − ω2

)

. (12.86)

Figure 12.21: Electromagnetic fre-
quency dependence of the relative
dielectric constant (red lines)
and the reflectivity (blue line) of
semiconductors around the optical
phonon frequencies.

Figure 12.21 shows the dielectric and reflectivity responses as a
function of electromagnetic frequency around the optical phonon
frequencies. Note that, around the ωTO, the permittivity diverges
and changes sign. This is the natural response of resonance where
the phase changes sign, and it reflects Equation 12.86’s frequency
dependence. The permittivity is negative for ωTO <ω <ωLO, and
this is a region of high reflectivity, following Equation 12.2. Beyond

By the way, in a metal, at low
frequencies, the dielectric constant
is complex, with a high imaginary part
due to the plasmon resonance. At high
frequencies, the dielectric constant
usually becomes negative. When
negative, just as in the ωTO <ω <ωLO
range of semiconductors, the
reflectivity becomes very high. At
even higher frequencies, the dielectric
constant becomes positive, and metals
look like a  ̏dielectric.˝

ωLO frequencies, phonon interaction vanishes and only atomic
polarization effects remain. This region is known as restrahlen, or
more properly, reststrahlen, that is, residual radiation in German.

These analytic relationships were derived without any damping.
One would expect some—nothing is lossless—and there are plenty
of anharmonicities and other couplings involve. If included, a
useful phenomenological relationship is

ε(ω)= ε(∞) + ε(0) − ε(∞)

1 − (ω2/ω2
TO) − i(γω/ω2

TO)
, (12.87)

where γ is a damping factor and, again, ωTO =ω0.
Silicon is covalent, therefore bereft of ionicity, and hence e∗ = 0.

So, Si does not show a similar restrahlen and high reflectivity
window behavior, unlike compound semiconductors, which have
varying degrees of ionicity. A practical example of this behavior,
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Figure 12.22: Reflectivity of Si,
together with that of two compound
semiconductors (InAs and GaAs).

comparing Si and two compound semiconductors, is shown in
Figure 12.22.

Figure 12.23: Absorption coefficients
due to crystal vibrations in pure Si at
low energies.

Light that is not reflected is transmitted into the semiconductor
and undergoes absorption. This will now have coupling to the
various atomic modes. We will not dwell on it; suffice to say that
absorption will show signatures of efficient or poor coupling to
these modes and will therefore be dependent on the wavevector.
Figure 12.23 shows the absorption coefficient of pure Si at low
energies.

We conclude this section with an important parameter extraction.
How do we determine the effective ionic charge e∗? The reflectivity
measurement accurately determines ωTO and ωLO, at least for the
compound semiconductors, and the difference of the squares of
these frequencies is proportional to the effective ion charge squared,
that is,

ω2
1 = Ne∗2

Mr	ε(∞)
=ω2

LO − ω2
TO, (12.88)

and since ω2
LO/ω2

TO = εr(0)/ε(∞), it follows that

Unusual situations also arise in
semiconductors through defect
complexes. GaP is an indirect bandgap
material. But when doped with
oxygen for n-type doping, and zinc
for p-type doping, Zn-O forms next
site complexes that are decently
luminescent centers. Some of the
earliest light-emitting diodes were
based on such luminescence—an
indirect material luminescing! Of
course, they had poor lifetime, since
light of large-enough energy also has
the propensity to create defects. This is
an important degradation phenomena
in lasers at surfaces, where defects are
easier to generate and light of high
intensity is undergoing interactions.
Getting light from indirect material is
almost—but not quite—like an attempt
at making perpetual machines. There
are plenty of interesting stories of hope
regarding luminescence from porous
silicon and of hot electron germanium
lasers.

e∗2 = Mr	

N
ω2

LOε2(∞)

[
1

ε(∞)
− 1

ε(0)

]
. (12.89)

Mr	/N = (Mr/	0)(	/N)	0 =ρ(	/N)	0, and therefore

e∗ = 	0ε(∞)ωLOρ1/2
[

1
ε(∞)

− 1
ε(0)

]1/2

= 	0ωTOρ1/2[ε(0) − ε(∞)]1/2. (12.90)

Knowing the low-frequency and high-frequency permittivity,
density and one of the optical phonon frequencies, it is possi-
ble to derive the effective ionic charge for any semiconductor
whose primitive cell volume is known. We have encountered this
relationship before (although without proof), in Equation 10.42, and
we will encounter this relationship again, since this effective charge
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has important implications for charge transport at interfaces and
other places in nanoscale devices.

12.5 Absorption by impurity states

Transitions between impurity states and propagating
states via photon-mediated electromagnetic coupling are also
sources of absorption, albeit with weak and low energies. They
are weak since the states have a small matrix element with quite
strong dissimilarities in the wavefunctions and the localization of
the impurity states. Nevertheless, particularly at low temperatures,
and with careful observations, donor states, acceptor states and
propagating conduction band and valence band states can be
seen to be present. For impurity transitions, occupation of states,
availability of empty states and the matrix element coupling
the two, integrated over all possibilities is again the measure of
absorption coefficient. It has the form

αif ∝ NIfi(1 − ff )
(h̄ω − Efi)

1/2

h̄ω
, (12.91)

where NI is the state density that is occupied, fi is the occupation
factor from which the transition happens, and ff is the occupation
factor of the states being transitioned to. One is assuming in writing
this relationship that one of the two—occupied or unoccupied—is
the rate-limiting step of the transition, together with the coupling
matrix element. The transition is proportional, in a way similar
to that for allowed direct transitions, to the square root power in
energy, with Eif replacing the bandgap Eg. Consider the valence
band transition to the empty donor state—a large energy change
transition—in an n-type semiconductor, following Equation 12.91.
The valence band is largely filled, so fi ≈ 1, and the donor states are
largely empty, so NI(1−ff )= N+

D ; therefore, the absorption coefficient
for this situation is

αvd ∝ ND

1 + gD exp[(EF − ED)/kBT]
[h̄ω − (ED − Ev)]1/2

h̄ω
. (12.92) Figure 12.24: Absorption between

conduction band and phosphorous
donor states in Si that is doped low.
Note that one observes not one state
but several states of the donor.

Figure 12.24 shows, at low temperatures, several of these
transitions in phosphorous-doped Si.

12.6 Luminescence

Luminescence is the radiative emission from solids. For
semiconductors, there are two particular forms: electroluminescence,
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which is the emission due to electrical injection of carriers, and
photoluminescence, which is the re-emission of light following
absorption of light at higher energy. Since emission is an energy
relaxation mechanism, it is more complicated than absorption,
because many relaxation mechanisms are possible simultaneously.
The spectrum of emission will be affected by the source function,
how the carriers are distributed in energy—thermal or otherwise—
the emission rates, et cetera. We have already discussed numerous
non-radiative recombination processes in Chapter 11. These will
decrease the fraction of recombination that is radiative. Our
discussion in Appendix K also shows that the Einstein A coefficient,
which will be related to the radiative lifetime, is also proportional
to the Einstein B coefficient. This means that absorption and
emission probabilities are related. Transitions that efficiently absorb
also efficiently emit, except the source and sink functions determine
which of these is preponderant off-equilibrium.

In photoluminescence, the injected carriers generated by above-
bandgap light spread in energy and recombine through the various
energy relaxation pathways via direct band-to-band emission, but
also through some of the complements of the other absorption
processes we have discussed. As such, photoluminescence is a good
tool for understanding the quality of a material, and the radiative
and non-radiative processes that exist in it.

In electroluminescence, efficient introduction of carriers that
can then efficiently radiatively recombine is of immense interest.
So, all these luminescence discussions naturally gravitate toward
population densities, carrier distribution, competing non-radiative
processes and efficient ways to make luminescence happen in
devices. This is a subject by itself, so we will not dwell further on
luminescence. But it should be clear by this point that luminescence
in all its forms will be more efficient in direct gap materials, where
electrons and holes can couple efficiently, compared to indirect gap
materials, where phonons become necessary.

12.7 Summary

Light’s interaction with matter is through the
electromagnetic interaction with the oscillating ionic dipole or
other free charge (electronic). The verity of this is in the dielectric
function, which, as a function of frequency, shows the consequences
of polarization and plasmonic interaction in the electromagnetic
interaction response.
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In the interaction with and between bands, the transfer of an
electron from one state to another, the perturbation Hamiltonian
is a term proportional to (iqh̄/m0)A · ∇r. Conservation of energy
and momentum must still hold, and since the photon has a very
low wavevector, the crystal momentum of the initial and final
states are pretty identical. Note here the mass is m0, for obvious
reasons. An electron just morphs from one state to another, due
to a rapid, photon-coupling-induced transition and a change in
the modulation function. It is the |k〉 of the electron that reflects
its presence in the crystal. And when changing to its new state, it
doesn’t move around in the crystal. No crystal momentum change
takes place. This form, due to the A · ∇r term, when coupling
a state |k〉 to another |k′〉, leads to a term that is aligned with
the vector potential and the gradient of the periodic modulation
function of the Bloch state, and another term that is out of phase
and aligns with the electron wavevector. Even though both
these terms will cause transitions, the first term is, for historic
reasons, called an  ̏allowed˝ transition, and the second is called a
 ̏forbidden˝ transition. The allowed transition is a dipole-vector
potential coupling and is caused by a momentum matrix element
dependent on the gradient of the periodic modulation function. The
forbidden transition element arises in the overlap of the periodic
modulation functions. In direct bandgap semiconductors, the
first term is large and has a recombination rate that varies as the
square root of the photon energy separation from the bandgap,
and a number of other parameters, including oscillator strength.
The forbidden transition has a 3/2 power dependence, together
with the overlap integral, and no oscillator strength, since this
transition is not mediated by the momentum matrix element. The
nature of transitions can be surmised from the bandedge absorption
characteristics.

Transitions also happen with phonon assistance, and these too
have allowed and forbidden behaviors. Phonon assistance is an
additional energy and momentum conservation constraint in a
process where virtual states in the conduction band or the valence
band participate in enhancing the rate. For indirect semiconductors
such as Si, this is a significant mechanism. Doping affects band-to-
band transitions, since it affects filled and unfilled state distribution.
Now, Fermi energy rather than just the bandedge matters for the
energies around which transitions can couple. The electric field also
influences absorption, since tunneling between bands is influenced
by the field-determined barrier between the conduction bandedge
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and the valence bandedge. Absorption now is a photon-assisted
tunneling process. The magnetic field, through the formation of
Landau subbands, also affects absorption. The effect of temperature
is largely through the change in bandstructure, particularly the
bandedge energies.

An important absorption mechanism is through the free carriers.
Electrons respond to the electromagnetic field through Coulomb
interaction and Lorentz interaction. Metals reflect light because
of the mediation by large electron density, and it is reflected in
both the real and the imaginary responses of the conductivity
and the dielectric function. The imaginary part of the dielectric
function reflects a non-propagating effect; that is, absorption.
For electromagnetic waves, the coupling response, together with
the presence of the electron charge cloud, results in absorption
connected to conductivity that is proportional to charge carrier
density and the momentum relaxation time of the electrons τk.
Free carrier absorption will show up along the entire energy
spectrum but is particularly noteworthy throughout the bandgap,
where other mechanisms may be suppressed, even as lower energy
photons make the process of free carrier absorption more efficient.
This absorption also shows up pronouncedly in smaller bandgap
semiconductors.

Excitons—electron-hole quasistable coupling—lowers the energy
below the bandgap. So, near the bandedges, in the bandgap energy
region, one also observes absorption peaks related to excitonic
processes. In quantum wells, where electrons and holes can be
pushed closer together, such an absorption acquires additional
significance. Another, similar, coupling is through impurity
states, where again the energy of shallow impurities will be
reflected in selective absorption in the bandgap region of the
semiconductors.

Phonons also mediate absorption, as in the indirect materials,
but it is the electromagnetic-phonon coupling that is a rich source
of information regarding the material, because of the specifics of
the phonon-photon coupling. An electromagnetic wave, when it is
transverse, couples selectively with phonons, where the interaction
is grounded in the polarization of the crystal. Optical modes, with
their out-of-phase motion, have a significant enough dipole. So,
the photon frequency, the longitudinal and transverse phonon
responses, and semiconductor properties can all be related to each
other through the dielectric function. This is again another means of
characterizing semiconductor parameters.
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We ended with a short set of comments on luminescence—
radiative emission from the solids—which happens through
electrical injection of carriers (electroluminescence) but also as
re-emission due to photons at another higher energy (photolumi-
nescence).

12.8 Concluding remarks and bibliographic notes

Electron-photon interactions in a solid, particularly a
semiconductor, lie at the heart of many important technologies, but
two, those of lasers and of solar cells, clearly stand out. The first
has exacting needs for an understanding of the interaction, and,
for the second, a good general description and physical intuition
is necessary. There is considerable literature for both these subjects.
Here, we refer to a few works through which the reader may gain
additional understanding.

A classic source in the study of the optical properties of semi-
conductors is by Pankove1. Add to this the two volumes of

1 J. I. Pankove,  ̏Optical processes
in semiconductors,˝ Dover, ISBN
978-0486602752 (1971)

semiconductor laser-specific texts from their early era by Casey and
Panish2.

2 H. C. Casey and M. B. Panish,
 ̏Heterostructure lasers, Part A
and Part B˝ Academic, ISBN
13 978-0124334571 and ISBN-13
978-0121631024 (1978)

One modern book, an advanced text, that develops the quantum
theory of the optical and electronic properties of semiconductors is
by Haug and Koch3. This text covers many of the subjects, including

3 H. Haug and S. W. Koch,  ̏Quantum
theory of the optical and electronic
properties of semiconductors,˝ World
Scientific, ISBN 981-2238-609-2 (2004)

electromagnetic interactions in confined structures, and others from
an optical view, thoroughly. Frank Wooten’s book4 is also a good

4 F. Wooten,  ̏Optical properties of
solids,˝ Academic, Library of Congress
Catalog 72-187257 (1972)

source. The Wolfe, Holonyak and Stillman book5 is a very trusted

5 C. Wolfe, N. Holonyak and G. E.
Stillman,  ̏Physical properties of
semiconductors,˝ Prentice Hall, ISBN
0-13-669961-8 (1989)

source for the analytic foundations of the absorption processes.
At a similar level is the discussion in the text by Balkanski and
Wallis6.

6 M. Balkanski and R. F. Wallis,
 ̏Semiconductor physics and
applications,˝ Oxford, ISBN 978-0-
19-851740-5 (2007)

Rosencher and Vinter7 discuss electron-photon dipolar interaction

7 E. Rosencher and B. Vinter,
 ̏Optoelectronics,˝ Cambridge, ISBN
0-521-77129-3 (2004)

and the optical properties of semiconductors quite comprehensively.
Excitons appear in all kind of materials, including semiconductors—

after all, electrons and holes have a Coulomb attraction. Weak and
strong binding, and the nature of the state description—based on
the Bloch states of the crystalline description—all enter in, making
it quite a difficult undertaking. For a broader view of excitons,
see the book by Knox8. It tackles them in weak and tight binding

8 R. S. Knox,  ̏Theory of
electrons,˝ Academic, Library
of Congress Catalog LC
63-22334 (1963)

and relates their properties to their optical absorption effects.
For semiconductors, one of the places where their technological
implications is the strongest is in confined structures of small
bandgap semiconductors. There are claims of their usefulness in
photovoltaics, where multicarrier generation becomes possible
from light. A book for looking over these implications of
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excitons is by Kilina and Habenicht9, concentrating particularly 9 S. V. Kilina and B. F. Habenicht,
 ̏Excitonic and vibrational dynamics in
nanotechnology,˝ Pan Stanford, ISBN
13 978-981-4241-20-4 (2009)

on quantum dots of II-VI compounds and carbon monolayer
structures.

A very readable text on optical properties is by Fox10. Interband
10 M. Fox,  ̏Optical properties of
solids,˝ Oxford, 978-0-19-957336-3
(2010)

absorption, excitons, free electrons and luminescence quantum
confinement are all treated at an intermediate level in this text.
For the Franz-Keldysh effect, see the original publications11,12.

11 W. Franz,  ̏Einfluß eines
elektrischen feldes auf eine optische
absorptionskante,˝ Zeitschrift für
Naturforschung, 13a, 484–489 (1958)

12 L. V. Keldysh,  ̏The effect of a
strong electric field on the optical
properties of insulating crystal,˝ Soviet
Physics JETP, 7, 788–790 (1958)

Tharmalingham’s paper13 provides an integrated picture with the

13 K. Tharmalingham,  ̏Optical
absorption in the presence of a
uniform field,˝ Physical Review,
130, 2204–2206 (1963)

analytic formulation of the Franz-Keldysh relations.

12.9 Exercises

1. Take a polar dielectric that has a single relaxation time. An
alternating voltage of constant amplitude is applied to a capacitor
made using this dielectric. Find an expression for the heat
dissipation as a function of frequency. Show that the maximum
in εi occurs at a frequency where the heat dissipation is half of its
maximum value. Does this make this approach straightforward
for determining relaxation frequency? [S]

2. Would it be possible for thermal equilibrium to be achieved
between an absorber and thermal radiation if emission did not
depend on the radiation density embodied in Planck’s radiation
law? Why or why not, and what does this mean for stimulated
emission? [S]

3. What is this oscillator strength parameter? Why is it important,
and why does one use free electron mass to determine the
momentum-based coupling of the states being connected in the
transition? [S]

4. Consider a semiconductor in a uniform electric field, with atoms
on a cubic lattice and dipoles all pointing along the direction of
the external field (E).
• Referencing Figure 12.20, show, using the dipole field
relationship, that the electric field generated at the center of
the sphere is

Esph = 1
4πε0

pi
∑

i

3z2i − r2i
r5i

,

where pi is the ith site’s dipole moment, and zi is its position in
the field’s direction.

• Show that, when all pis are aligned and the semiconductor is
homogeneous, Esph = 0.
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• Now, assume that, outside the sphere, the environment is of
uniform polarization P and parallel to the electric field. Show
that the surface charge density on the sphere at any angle θ

from the z axis is −P cos θ .

• Next, show that it therefore follows that the polarization
outside the spherical surface generates a field of −P/3ε0 at its
center. [S]

5. Calculate the frequency of the longitudinal plasma oscillations of
an electron gas with a jellium, positively charged background.
How does this result change when one includes quantum-
mechanical constraints? [S]

6. Ametal’s conductivity is independent of the thickness t unless
the electron mean free path becomes comparable to t. Assume
random surface scattering, a bulk conductivity of σ 0 and
mean free path of λ0. Show that this scattering terminating the
scattering-free path—the mean free path—at the surface will
change the conductivity and the mean free path as

σ

σ 0
= λk

λ0
= 3t

4λ0
+ t

2λ0
ln

(
λ0

t

)
[M]

7. Take a metal-vacuum interface at z = 0, with the metal in the
z ≥ 0 half space and the vacuum in z < 0. At long wavelengths,
in the metal, the dielectric function is

εM(ω)= ε0

(

1 − ω2
p

ω2

)

.

For potential ψ , in the metal where ∇2ψ = 0, a solution is

ψM(x, z)= A cos(kx) exp(−kz),

with the electric field components being EMz = kA cos(kx) exp(−ikz)
and EMx = kA sin(kx) exp(−ikz).
• Show that, at z < 0, in vacuum, the potential

ψ0(x, z)= A cos(kx) exp(ikz)

satisfies the boundary condition of the tangential electric field
continuity. What then is E0x?

• The displacements are DM = εM(ω)EM, and D0 = ε0E0. The
normal component of displacement is continuous at the
boundary; so, show that this implies that

εM(ω)= − ε0
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and that the interface plasma oscillates at a frequency of

ωs = 1√
2
ωp.

[S]

8. An n-type InSb crystal has an electron concentration of 1018 cm−3.
Assume that the semiconductor is nearly isotropic, with an
electron effective mass of 0.015m0. Calculate the plasma frequency
and the wavelength at which there is a minimum in reflectivity
by considering electrons to be lossless. The crystal has a dielectric
constant of 16. [S]

9. Consider a direct gap cubic zinc blende semiconductor, and use
the k · p approach in a two-band model (conduction, which is
s-like, and valence, which is triply degenerate—no spin-orbit—
and p-like) to obtain the power series expansion in k around k = 0
for the conduction band to determine the effective mass that
will contribute to the free carrier term of the dielectric constant
(εr = − Ne2/ω2m∗). This is an  ̏optical˝ effective mass. In
which semiconductor(s) should this neglecting of spin-orbit be
a reasonable assumption? [M]

10. Take a hypothetical semiconductor whose relevant parameters
are shown in Figure 12.25. We show here the process of photon
absorption and a density of states for the conduction band and
the valence band. There are no restrictions from the k selection
rules for generation or recombination transitions.
• At low temperature, we pump a thin sample of this material
and measure its transmission in order to determine the
absorption coefficient α =α(E)=α(h̄ω). The magnitude of
the absorption depends on filling probabilities, a coupling
constant linking valence and conduction band states and the
joint density of the upper and lower states separated by h̄ω.
What is the variation of α with E like?

• If the pump intensity I0 is increased to very high levels, how
does the absorption of the thin sample change with increasing
I0 and fixed E? Justify your answer. [M]

Figure 12.25: Photon absorption in a
hypothetical semiconductor.

11. We will now find the energy states and eigenfunctions of an
exciton within the effective mass approximation. This exciton is
the bound electron-hole quasiparticle due to Coulomb interaction.
Within this effective mass approximation, the time-independent
Schrödinger equation for the exciton wavepacket ψx is written as

(
p2

2m∗
n

+ p2

2m∗
p

− e2

4πε|rn − rp|

)

ψx = Eψx.
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By introducing the new coordinates

r = rn − rp

and

ρ = m∗
nrn + m∗

prp

m∗
n + m∗

p
,

we can separate the variables as ψx(rn, rp)= X(r)Y(ρ).
• Rewrite the time-independent Schrödinger equation in separate
forms in terms of r and ρ and a reduced effective mass of

m∗
x = m∗

nm∗
p

m∗
n + m∗

p
.

• Find the eigenvalues of the center-of-mass equation. What kind
of eigenstates do they correspond to?

• Find the eigenvalues of the difference equation. What kind of
eigenstates do these correspond to?

• Using these results, find the exciton’s effective Bohr radius
in bulk GaAs. Assume m∗

n = 0.063m0 and that the static
permittivity is ε = 12.9ε0. How does the estimate of the effective
Bohr radius compare to the unit cell dimension of GaAs? Is the
use of the effective mass approximation justified?

12. A Ge-like semiconductor has a bandgap Eg at the Brillouin zone
boundary that is isotropic and optically allowed. It leads to the
strongest optical absorption. The dielectric constant is in the near
infrared, so εr(∞) ≈ 12, and the cubic lattice constant is 0.542 nm.
Calculate Eg. [S]

13. Using the k · p method, determine the variation in the optical
effective mass of InSb electrons as a function of concentration.
Ignore the spin-orbit splitting since it is far away. Also calculate,
at 1018 cm−3, the plasma edge λp, where the reflectivity changes to
unity, and the wavelength of the reflectivity minimum, assuming
lossless electrons. The conduction band minimum effective mass
is m∗ = 0.15m0, the relative dielectric constant εr = 16 and the
bandgap Eg = 0.24 eV. How does this result compare with that
of Exercise 8? [S]

14. Find the dependence of the matrix element of p for direct
interband transitions near k = 0 using the two-band model given
in Exercise 9. [S]
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15. Let M0 be the minimum critical point for direct interband
transitions. Take a parabolic expansion of the density of states
around M0, and assume validity for all energies. Calculate the
shape of the corresponding real part of the dielectric constant (εr

r),
assuming constant matrix elements of p. What is the shape of εr

r

for other types of van Hove critical point? [M]
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Causality and Green’s functions

Cause and chance both appear to play meaningful roles in our

Powerful words mellow and
are melded by time, tipping the
balance toward a preferred point
of view. Causality is interpreted by
philosophers and scientists in different
ways. Sciences prefer precision and
unambiguity: symbolic manipulation
and objective precision with a
reductive style. Philosophers are
integrative. Science and engineering
methods—except for the rare
revolutionary jumps—work as
band-aid applications—tackling a
known problem or inconsistency—
and losing sight of the long term
symptom. Society, for example, doesn’t
know how to rapidly respond and
create mechanisms for mitigating
generational consequences of
sciences—nuclear, plastics, global
warming from energy transformations,
and population via agriculture and
medicine—while philosophy helps
with understanding our being via
probing questions and dialog, with
the meaning of being human in nature
front and center. This is the central
conundrum that phenomenology deals
with a little more to my satisfaction.
A reflection on this incompleteness
comes in the form of the following
joke: what is the difference between
a mathematician and a philosopher?
Philosophers use pencil and paper;
mathematicians use pencil, paper and
a wastepaper basket. Heisenberg’s
uncertainty principle led to nearly two
decades of philosophical writings on
 ̏free will.˝ Cause and chance have
much to say on this.

daily experiences, as well as in the behavior of the materials we
are studying in this text. Stimulus is a cause. The movement of
the electron interacting with its surroundings—scattering—is often
a matter of chance. But even if these terms are employed across
science and humanities, they are dissatisfyingly vague, have quite
different meanings and are used for different implications.

A common notion/understanding is that cause implies a
necessity of connection and relation between a sequence of events,
while chance is a randomness. Necessity and accident both appear
to guide events. An accident is not really entirely arbitrary. Bayes’
theorem is a powerful example of a law for probabilities. It is our
quantitative means of tackling chance. Having a cause also doesn’t
make predicting the future with certainty possible, since complete
knowledge of both the present and the past is not quite available,
except in the circumscribed and idealized textbook problems. We
remove contradictions and arbitrariness through observation and
development of a predictive theory. It is in this sense that science
and humanities, particularly philosophy or theology, are very
different.

We tackle the concepts of chance—probabilities—and the
probabilities’ relationships elsewhere and focus on the cause-

Probabilities’ implications in
information mechanics are the
subject of the last volume of this
series. The first volume does the
same for the development of our
understanding of ensembles, such
as the implications of statistical
mechanics for condensed matter, and
thermostatics and thermodynamics in
general. In quantum mechanics, it is
the stochastic nature of the quantum-
mechanical measurement process.

effect connection as represented in the concept of causality, the
mathematical tool to practice it in the form of Green’s functions,
and their use in orthogonal space for properties of materials in this
chapter. In the following chapter (Chapter 14), we will employ the
implications of these ideas to develop the dispersion relationships
in properties of materials, and, more broadly, the Kramers-Kronig
relationships for linear systems.

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001
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13.1 Causality, determinism and correlations

Causality is weakly related to determinism—the unique

If all degrees of freedom were followed
in the sense of expectations, then the
system will be entirely deterministic.
Chance appears in classical treatments
via incompleteness of information.
Even the outcome of a fair dice,
given all the information and time to
calculate, can be determined.

evolution of states—and even more weakly to correlation—a
quantitative evaluation of a degree of correspondence (pairwise
and higher order) between the simultaneity of two events in space
and time—but is quite distinguishably different. What relates
these terms is the idea of dependence. If two concepts are being
connected, and the concepts can be symbolically represented, then
a function allows us to express it. A logical dependence is such a
function.

When the connection is being probed between two different

Applied mathematicians view
causality in the general form that
physical laws—expressible as
mathematical equations—connecting
continuous variables are such that,
for any finite number of parameters,
some variable or set of variables that
appears in the equations is uniquely
determined in terms of the others.

sets, the verifiable observational and predictability criterion has a
Take connecting constellations to
human fate—two very different
spaces of nature—as astrology claims.
Verifiable repeatable observations and
experimentable predictions are the sine
qua non of science. Astrology fails this
test. Physical nature and living nature
are too different to be considered
identical space.

larger hill to climb. This caution is also necessary for inference by
induction. Induction—a powerful tool of philosophy—allows one
to generalize a number of observations. Inference by induction is
useful in daily life (the sun rises in the morning, winter follows
summer, leaves turn green in spring, etc.), although there is no clear
criterion for the validity of induction—it is largely intuition—but it
is not an inference by causality. Another similar inferential approach
is that of using correlations—direct and higher order—but these too
are not inference by causality. So, drawing absolute conclusions is

There is one other approach that I have
sometimes seen being practiced in the
task of providing proofs, which I call
 ̏proof by intimidation.˝ It may get a
teacher out of a tough spot in the short
term but is sure to be a failure in the
long term.

quite non-trivial.

Even if absolute ideals may be
unreachable, approaching ideals is
worthy. To reject experience in the
absence of logical proof is foolish.
Being anti-vaccination, applauding
boxing or American football—a violent
university business—as worthy sports
and believing in astrology are also
foolish.

Consider another example. When it is raining or the path I take
to work is not cleared of snow, I take Bus No. 30. According to
the timetable, the bus will arrive at my stop at 10 minutes past
the hour, and 40 minutes past the hour. This law of the timetable
is deterministic. I can predict future events from it. Asking the

A key question is  ̏How does one
know that no other parameter than
the ones stated are needed, that is, are
there any hidden variables?˝ Another
hidden variable aside is as follows:
an  ̏entity˝ judging everybody’s
actions as right or wrong is ethically
unacceptable. Let each action of ours
have 3 possibilities: good, indifferent
and bad. And let us keep s as the
smallest unit of time, so that a 75-
year life has I ≈ 4× 107 actions. For
an individual, this is 3I instances
over life. If one keeps track of N = 107

question  ̏Why?˝ is not appropriate. However, the law of the
timetable is not immutable: the bus operating authority may
change the schedule, a bus may break down or a driver may call
in sick. Determinism should be viewed as the ability, through
rules, to predict the occurrence of event B (bus timing) from the
knowledge of A (the timetable) but without a physical, timeless
and spaceless link between all things in set A and all things in set
B. Causality, that B is caused by A, is to claim that the phenomenon B can
be entirely traced to A for all variations of conditions in time and space.
If you take away B, then A must also be absent. This definition is
easier to understand in time—a detailed discussion follows—but
the spatial invariance is a little more challenging. When the state
of one particle of an entangled pair is observed, the state of the
other is also simultaneously fixed, no matter how far apart they
may be. Neither the immutability of the speed of light as a limit
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speed prescribed by relativity nor the independence from space is
violated.

individuals, we have N3I actions kept
in memory. Each action connects to
other people—is affected by them
or affects them, and, because this
happens in time, is thus a sum of
history—which then corresponds to
another N

∑I
i=1

∑i
i=1 i(N − 1) instances

to track. This is

M = N3I + 1
6

N(N − 1)I(I + 1)(I + 2)

To clarify and distinguish causality from other engineering
inferential thoughts, consider the following event spaces:

• if A then B (in English)

• A ⇒ B (in logic),

• B ∨Ā (Boolean).

These are all limit statements. But they are not statements of A
causes B.

Statistically, cocks crow (event A) at dawn (event B). So, the
probability p(B|A) � 1, but we can be quite sure that cocks do not
cause dawn.

A statement of implication (cock crowing ⇒ dawn) is statistically
fine. If one makes more observations from this sample space, one
will continue to see B ∨Ā. Causation is a far, far stronger statement.
If A causes B, then even if an intervention changes the distribution
of the observations, B ∨Ā will still be true in the new distribution.
In a direct cause-and-effect relationship, that is, a relationship of a single
cause and a direct effect arising from it, removing the effect also removes
the cause.

Another important point is that absolute independence does

of memory. The first term—the
individual’s self-action—dominates
and is ∼ 103×107. The estimate of
the total number of particles in the
universe is 1078. And we have not
even accounted for the action’s
consequences in time, where a
judgment may need be modified
later after seeing consequences, as
with the creation of the atomic bomb.
The universe, and by recursion, any
external entity, does not have the
resources for such a task—an np-
impossible Maxwell’s demon–like
task. The really bright side of this
conclusion is that we can always look
forward to the beauty of creative
insights in science and literature, and
new Bruchs, Schuberts and Kumar
Gandharvas.

Muffling the cock will not stop the
dawn.

not follow from pairwise independence. Let p(x1, x2)= p(x1)p(x2),
and p(x2, x3)= p(x2)p(x3). But this does not imply the independence
of x1 and x3, that is, p(x1, x3) �= p(x1)p(x3) in general. This is an
example where events have correlation but not causality. Most
relationships, however, involve multiple factors. And, as we noted
in the example discussed here, p(x1, x3) �= p(x1)p(x3), with pairwise
interactions, generally. This makes the non-direct case hard. In
more complex situations, each statement about causation cannot be
proved, only disproved. When repeatedly tested and not disproved,
we raise our estimate of the reliability of the hypothesis, using the
Bayesian rule. Having multiple low probability factors in a series or
high probability factors in parallel makes causal inference very, very
tricky.

Here are a few examples to illustrate the difficulty in determining
causation.

First, take the following vernacular statement:  ̏I know Joseph
Fourier was born in 1768 since Louis XVI was executed in 1793.˝

Joseph Fourier, a man of humble
birth, was orphaned at the age of 10.
Progressive education in the hands of
Benedictine monks, an early discovery
and passion for mathematics, and
hard work led to his graduation at
the age of 14. Legendre seems to have
been his mentor. College graduates
at that time could either go into the
army or go into the Church. His
progress was obstructed —in a sign
of the times—by the minister of war,
who said  ̏Fourier étant pas noble ne
pourrait entrer dans l’artillerie, quand
même il serait un second Newton,˝ that
is,  ̏Were he even a second Newton,
Fourier could not enter artillery since
he is not noble˝ (F. Arago,  ̏Joseph
Fourier˝ (French edn), CreateSpace
Independent Publishing Platform,
ISBN 1533677298 (2016), p. 9). Fourier
had to choose the Church, when,
just three days before he would have
had to take the vow, in 1789, the
National Assembly suspended the
requirement—a Poissonian stroke
of luck that was of immense benefit

 ̏Since˝ is attached to knowing the execution year, not Fourier’s
birth year. The execution did not cause the birth of Fourier, nor
does it explain the birth year. It does, however, allow one to guess
the birth year.
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Second, take the mechanical statement F = ma, that is, F(t) = to mankind, since he did so much
afterwards, including his studies
and teaching at École Normale and
École Polytechnique. The Fourier heat
equation is from this period. Fourier
was an ardent believer in liberté, égalité,
fraternitè. The entanglement of states
is reflected in his appearance in Victor
Hugo’s Les Misérables, which will
not be quoted here, to be charitable.
It is best not to derive any causality
inferences here. Life and French
history, both of the revolution and of
science, is surfeit with interactions
among states.

ma(t), which says that a force at any instant of time is proportional
to the acceleration at that time. The two vectors—F and ma—are
equal. But this does not necessarily mean that F(−t) = ma(−t).
Thermodynamic laws are not equalities. Time-reversal symmetry
is not invariant for many situations, the expansion of the universe
being the most prominent example. This F = ma relationship is a
statement of equality, not causality. Forces can lead to situations
where acceleration exists, but not the other way around. But
determining this requires other observations on the system. There
are situations where acceleration can lead to a force too (and not
the other way around). This too requires other observations on the
system. F and ma coexist. They are an equality, and you cannot
have one without the other.

Third, examine the RS(Reset-Set) flip-flop in Figure 13.1, which
can be viewed as a network. It has a bit of memory built in, since
the past and the present matter in its operation. When one applies a
0 pulse to S, it sets A = 1 and B = 0, following the 1 �→ 0 transition.
When S is brought back to S = 1 by the 0 �→ 1 part of the S
pulse, no change occurs. (A,B) = (1, 0) is remembered. To make
(A,B) = (0, 1), one must do the complement operation: apply a
0 to R. Again, the change happens at the 1 �→ 0 transition and is
remembered in the 0 �→ 1 part. Observe the changes over a period
of time, or through a pencil-and-paper experiment on changes, and
one can identify causative factors—but not the cause. This flip-flop
cannot look back in the past uniquely and therefore, for even this
constrained problem, fails in causality.

Figure 13.1: The reset-set flip-flop.

Fourth, in a feedback loop, all elements become causes and have
effect as the signal propagates through and continues to do so, with
consequences locally and delayed. Cause cannot be distinguished
from effect here.

13.2 Causality, and time and space immutability

Our statement on the causality of time and space
immutability requires more serious thinking. Space immutability,
in particular, is a more challenging idea and harder to grasp. In
classical mechanics, gravitational and electromagnetic forces act
across space, that is, are not contiguous, and relativity establishes
the constraint of the speed of light. In quantum mechanics,
chance—as in randomness—appears through fluctuations, that
is, the canonical variables, that cannot both be precisely known
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simultaneously. So, how does causality play out? We illustrate our
conclusion through the Aharonov-Rohrlich paradox.

Figure 13.2: A particle in a cylinder
with a frictionless piston attached to an
open box through which a particle can
enter and bounce out.

Figure 13.2 shows a long cylinder containing a particle and
a frictionless piston to which a box with two open end faces is
connected. This allows a ball, which is external to the cylinder,
to pass through the box while bouncing off one or two walls that
are parallel to the plunger wall. The particle is far away from
the plunger in the cylinder, where the wall and the piston are a
distance L apart. When the ball, arriving at this assembly, strikes
the box wall as shown, it moves the plunger in. The ball bounces
elastically twice, leaves the box and moves the piston a distance �L
at the completion of this process.

The question we ask is, does the particle in the cylinder affect the
ball’s trajectory?

Viewed classically, the first bounce of the ball on the wall causes
the piston to move in. Upon bouncing the second time, without
the particle and the piston coming in contact, the ball recovers its
energy and momentum. The piston is back to its original position of
rest. If the particle and piston had made contact during the transit
time period between the two wall collisions of the ball, then the
ball would not be able to recover all the energy and momentum,
because the piston-particle interaction has its own energy and
momentum exchange.

Viewed quantum-mechanically, consider the two limits of
time duration (long and short) for the inter-wall transit time of
the ball. Long here means that the particle has many of its own
collisions with the piston and the opposite cylinder wall during
this time period. We can employ adiabatic approximation here.

The particle is in a superposition
of eigen states |un〉, with energies
En = n2π2h̄2/2mL2, where m is mass
of the particle. With L decreasing,
En increases. Decrease in L is slow,
so the probability amplitude of the
eigenstates remains unchanged, and
the expectation value of the energy of
the particle increases.

The particle’s energy increases at the expense of the ball. The
ball has been affected by the particle. So far, so good. This is
quite understandable and not really that far from what classical
mechanics will tell us for a moving particle undergoing collisions
with the piston during the ball’s transit.

Consider now the slow limit indeed, one so slow that the particle
doesn’t reach the piston during this transit period. Let the particle
be in the state |ψ(0)〉 at t = 0. This is a wavepacket of low �p in
momentum and large �z in position. Let L 
 �z 
 �L. If the
particle’s expectation for velocity is 〈v〉, then, in the absence of a
ball, this particle makes one round trip in a time of T = 2L/|〈v〉|.
The wavepacket keeps its shape but will spread out ever so slightly.

This latter point of detail we will not
dwell on since it is not relevant to the
present argument. One example to
see this is that the barriers confining
the particle are not infinite barriers, so
leakage and some shape change must
follow.

If 〈v〉 is large, we will have

For a Gaussian wavepacket of spread
�z ≈ a/

√
2,

∣∣∣∣

∫ ∞

−∞
ψ∗(z, t)ψ(z − h̄kt

m
, 0) dz

∣∣∣∣

2

=
(

1 + h̄2t2

4m2a4

)−1/2

.

Equation 13.1 then follows.

(
�p
p

)2

�
(

�z
z

)2

. (13.1)
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For the matrix element 〈ψ(0)| exp(−iĤ T/h̄)|ψ(0)〉, the expecta-
tion value at t = 0 is exp(−iĤ T/h̄) (its real and imaginary parts are
the observables); yet, the state of the particle at t = T is

|ψ(T)〉 = exp(−iĤ T/h̄)|ψ(0)〉. (13.2)

With wavepacket spreading absent, we may choose L so that the
phase factor is unity, that is, |ψ(T)〉 = |ψ(0)〉, so that the expectation
value is unity. This, our first case, is for when the ball has not
struck the box wall anytime before t = T.

Now, consider a second case where the ball strikes the box
wall, and therefore the piston, at a reference time chosen to be
t = 0, causing the piston to move inwards, and then again at time
t � T/2. |ψ(0)〉 is vanishingly small in the piston. But the move-
ment of the piston is reflected in the Hamiltonian Ĥ . The operator
exp(−iĤ T/h̄) evolves |ψ(0)〉, with the expectation of |ψ(T)〉 now
peaking a little further inside in the cylinder (a displacement of
about 2|�L| from |ψ(0)〉). This is a translation under the operation
exp(ip̂2|�L|/h̄). So,

|ψ(T)〉 = exp(ip̂2|�L|/h̄)|ψ(0)〉. (13.3)

If �z 
 |�L|, then while the overlap 〈|ψ(T)|ψ(0)〉 is still ∼1, the
phase has changed by about exp(2i〈p〉T/h̄), with 〈p〉 = 〈ψ(0)|p̂|ψ(0)〉.
The ball has changed the expectation value of exp(−iĤ T/h̄) at
time t = 0 without any apparent regard for T. The change in the
expectation value of the particle is about −2〈p〉|�L|/T. A particle
far away from the piston has had its energy changed due to the
ball hitting the box wall/piston. If its energy changed, the ball’s
energy too has changed. Measuring the change in the ball’s energy
tells us the change in the particle’s energy—this, despite any large
spatial separation. And we know that there is a particle in the
cylinder if the ball’s energy changed. This is an example of action
at a distance, and a spatial immutability—a nonlocality—that
complements the time immutability of causality.

To summarize this discussion, both causality and chance
play a role in both the classical and the quantum-mechanical—
Copenhagan—view of the world. Correlations and determinism

Aparticularly appealing theory of
life on earth is that the ferment of
billions of years led to creation of
the simple and complex molecules
a billion years ago—by chance that
was enhanced by the prevailing
conditions—and these molecules
were qualitatively different. It was at
this point that the matter produced
began to reproduce at the expense
of the surroundings. The process was
now less susceptible to chance and more
dependent on causal transformations.
Think of chance and causality as two
complementary—perhaps opposite—
sides leading to a transformation. If
motion is observed for a particle in the
process of diffusion—chance—one sees
�p�z = constant, since (z − 〈z〉)2 = a�t,
where a is acceleration. Under
conditions where quantum mechanics
must be employed, this is replaced
by the Heisenberg uncertainty of
�p�z ≥ h̄/2.

are weak offshoots with relaxed conditions and are more eas-
ily digestible for the human. A systematic use of both of these
approaches is necessary in understanding what we observe. In
the subject area of this text—the interaction and response in
semiconductors during an interaction—chance, through scattering
during transport, and causality, through orthogonal linkages in
properties of materials such as the frequency dependence of the
susceptibility arising in wave-matter interactions, appear. Both
need to be employed. Using of Green’s functions is one of the
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most useful techniques for tackling causal problems. Solutions of
polynomial equations with initial value (time) or boundary value
(space) can be powerfully found through it.

13.3 Green’s functions

Since we are interested in analyzing and predicting
what happens to systems under some form of stimulation—such as
by an electromagnetic wave—-or an interaction within a system—
disorder, defects, doping, et cetera—a general way of analysis is of
interest. More generally, what this says is that we are interested in
understanding what happens to a system as an interaction strength
is dialed up or turned on from zero to some magnitude. An
external perturbation—a photon/electromagnetic wave interaction,
for example—may appear, and one wants to know the system’s
response. Using Green’s functions is one of the ways to examine
the change of the system for which a causal relationship exists, that
is, one where if you take away the source, the effect disappears. In pharmaceuticals, double blind

studies allow one to determine a
correlative measure of the chances of
usefulness of the medicine. But this
does not imply any causality. Diseases
are complex, with many interlinkages.
And an experiment in reverse, where
even the notion of what any disease
is in a precisely definable way is, is a
nonstarter.

Consider the functional relationship of electrostatic interaction.
A point charge e at r0 causes an electrostatic potential ψ at r of

ψ(r) = 1
4πε

e
|r − r0| . (13.4)

This followed from the function—the Poisson function—written as

∇2ψ(r) = −ρ(r)
ε

, (13.5)

where, in general, there is a charge distribution of ρ(r) in space. The
solution for this distribution is also known to us as

ψ(r) = 1
4πε

ρ(r′)
|r − r′| dr′. (13.6)

This was a simple boundary value problem, where we have
specified the boundary conditions of charge. The charge was our
stimulus. The system responds to an external stimulus in its own
characteristic way causally. The response of the system is our
response function, which we will probe more thoroughly in a
subsequent chapter (Chapter 14).

This discussion and the discussion
of Chapter 14 are limited to linear
response. But the approach is just
as useful, even if more complex, for
nonlinear response.

For any function f of the spatial (r) and time (t) coordinates of
interest to us, one may write the response as

Z(r, t|r′, t′) =
∫ ∞

−∞

∫ ∞

−∞
G(r, t|r′, t′)f (r′, t‘) dr‘ dt′. (13.7)
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The function G(r, t|r′, t′) is the Green’s function here, a response A remark on the notation using  ̏ |.˝
We have used this with probability
to indicate a prior. The probability of
event B knowing that A has occurred
is p(A|B). We use this same notation
to indicate the causal prior for the
Green’s function. The response
operator for determining what
happens at r, t, given that there is
a cause at r′, t′, is G(r, t|r′, t′). If this
operator relationship is a function of
the spatial separation r − r′ and the
time separation t − t′, then one can also
write it as G(r, t|r′, t′) = G(r − r′, t − t′).

function that describes the response Z(r, t|r′, t′) at (r, t) due to
the stimulus f (r′, t′), with the boundary and initial value (r′, t′)
spanning space and time. This stimulus may be of any kind—
the most common being an electromagnetic wave—but it could
as well be a force applied to a mass, an excitation to a string, an
electron’s scattering or fluid flow at a turn. Using a Green’s function
is an alternative powerful technique to evaluate the response that
the function f has embedded in it that just as well applies to the
quantum-mechanical domain.

Comparing Equations 13.6 and 13.7, it will follow that, for the
time-independent Laplace problem, the Green’s function is

G(r|r′) = 1
4πε

1
|r − r′| . (13.8)

For this problem, this Green’s function—a response function—
acts on the function f = ρ (ρ being the stimulus) to generate the
potential response consequence.

This simple problem will illustrate for us a number of points
and the methodology for Green’s functions. The Green’s function
in this problem is the Coulomb potential due to a unit point charge
at r = r′. For any r �= r′, this charge is zero. Over the entire space,∫

ρ(r) dr = 1. This implies that

ρ(r) dr = δ(r − r′) (13.9)

is the Dirac delta function as our stimulus, with a boundary value
at r = r′. We wrote this relationship because we know this The Dirac delta function is of

incredible utility and is in widespread
use, not just in these Green’s function
calculations. It should be very clearly
distinguished from the Kronecker
delta. We have used them both in the
text. See Appendix B for the Dirac
delta function and other functions that
appear in our mathematical practices
in this text.

solution from our past using other procedures. Now, let us view
this through Green’s function methods. For the Green’s function to
satisfy this problem,

∇2G(r − r′) = −δ(r − r′)
ε

(13.10)

must hold, and the boundary conditions need to be satisfied. The
potential vanishes as r → ∞. Let R = r − r′, so we are in search of
G(r − r′) = G(R). We use a Fourier transform and write

G(k) = 1

(2π)3/2

∫
exp(−ik · R)G(R) d3R (13.11)

under the transform constraint of
∫
exp(−ik · R)G(R)δ(R) d3R = 1. (13.12)

Equation 13.10 therefore leads to

− k2G(k) = 1

(2π)3/2ε
. (13.13)
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G(k) = 1/εk2 transformed back gives

G(R) = 1

(2π)3/2

∫
exp(ik · R)

[
1

(2π)3/2εk2

]
d3k = 1

4πεR
. (13.14)

G(R)= G(r−r′) satisfies the Poisson equation for a point unit charge.
Having found the Green’s function, we can use it to determine

the potential for ρ(r′) as a general problem. The response func-
tion equation (Equation 13.7) tells us to write this electrostatic
potential as

ψ(r) =
∫

G(r − r′)ρ(r′) d3r′. (13.15)

Therefore, employing Equation 13.10, we get

∇2ψ(r) =
∫

∇2G(r − r′)ρ(r′) d3r′

= −
∫

δ(r − r′)
ε

ρ(r′) d3r′

= −ρ(r)
ε

. (13.16)

Our method was to employ a unit point stimulus/source, hence the
delta function, to determine the Green’s function as a solution to
the Poisson equation through Fourier transformation techniques.
It is a unique solution, where the boundary condition of potential
vanishing has been incorporated in the Fourier transform (Equa-
tion 13.12) employed. This Green’s function now becomes our tool
to solve a more general problem.

Now, let us tackle the dynamic cousin of this problem: elec-
tromagnetic propagation, where the causal evolution and bound- This will also become the basis of

tackling scattering, a problem where
Green’s function techniques are
indispensable.

ary/initial conditions of space and time must be considered. The
vector potential A and the scalar potential ψ satisfy

(

∇2 − 1
c2

∂2

∂t2

)

A(r, t) = −μJ(r, t), and

(

∇2 − 1
c2

∂2

∂t2

)

ψ(r, t) = −ρ(r, t)
ε

. (13.17)

The equations are very similar—the only difference is that one
is a scalar relationship while the other is a vector relationship—
so our point function approach to developing Green’s function is
applicable in the same way as before. For this Dirac δ function—
now as independent functions in two coordinates—we can write

(

∇2 − 1
c2

∂2

∂t2

)

G(r − r′, t − t′) = −δ(r − r′, t − t′)

= −δ(R)δ(s), (13.18)
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where we have used s = t − t′ for the time translation, in
analogy with our spatial translation variable R. The spatial Fourier
transform satisfies

1
c2

∂2G(k, s)
∂s2

+ k2G(k, s) = δ(s). (13.19)

This is a second-order harmonic equation. The right-hand side
can be interpreted to mean an impulse excitation (at s = 0), with
k2 a restoring force constant, for example, a spring constant, and
1/c2 = με an inertia term, for example, a mass, for a displacement
G or a velocity ∂G/∂s. So, this is a general equation that appears
in a variety of problems. The boundary condition of the problem

The harmonic oscillator equation is
a truly basic equation of nature. It is
the lowest-order equation defining
stability. Restoring force appears for
any change: positive or negative,
stretching or straining, tensile or
compressive, et cetera. In quantum
mechanics, we start with the harmonic
oscillator as the basic constituent
of the edifice. It applies to photons,
phonons, blackbody radiation, field
quantization, and so on, and this
lowest form for stability is at the heart
of it.

and the nature of the problem tell us which Green’s function out of
many choices must be used. So, this choice of Green’s function for
the homogeneous part relates to both the nature of the problem and
the boundary condition. G is a causal function—a response to a unit
impulse—as a finite response to a finite stimulus. It is continuous

This is the area under the curve. This
is where one can sympathize for
arguments against calling the Dirac δ a
good function.

for all ss and Rs, as is ∂G/∂s. To see this mathematically, integrate
under the curve in the intervals s = 0 − ε and s = 0 + ε and take the
limit,

1
c2

∂G
∂s

∣∣
∣
∣

ε

−ε

+ k2
∫ ε

−ε

G(k, s) ds = 1

∴ lim
ε→0

∂G
∂s

= c2 (13.20)

with the integral contribution vanishing

This argument is identical
to the quantum-mechanical
argument we made in S. Tiwari,
 ̏Quantum, statistical and information
mechanics: A unified introduction,˝
Electroscience 1, Oxford University
Press, ISBN 978-0-198-75985-0
(forthcoming), for continuity of
∂ψ/m∂z and of the wavefunction
at a potential boundary. There, the
equation is the linear Schrödinger
equation. A discontinuous change
means infinite energy perturbation,
which doesn’t exist. This same
reasoning is true here. Here, too,
it is the probability density and
the probability density current
(a momentum)—of different
characteristics of the system—that
must be continuous.

Equation 13.19 under the initial value conditions of ∂G/∂s = c2 at
s = 0 and G = 0 for s ≤ 0 is

G(k, s) = c
k
sin(kcs)	(s), (13.21)

where 	(s) is the Heaviside function. Inverse spatial transformation
The Heaviside function (see
Appendix B), which is also called
the unit step function, appears
in nearly all problems where one
turns on a stimulus at some instant
and looks at the response in time.
Teaching of transformations—and,
in electrosciences, transformations
are critical to solving physical or
signal problems—cannot be complete
without it. The Heaviside function is
defined by

	(s) =
{
1 for s ≤ 0, and
0 for s = 0.

Note that d	(s)/ds = δ(s).

of this equation gives

G(R, s) = c	(s)

(2π)3

∫
exp(ik · R)

sin(kcs)
k

d3k

= c	(s)
2π2R

∫ ∞

0
sin(kR) sin(kcs) dk

= c	(s)
8π2R

∫ ∞

0

{
exp[ik(R − cs)] − exp[ik(R + cs)]

}
dk

= c	(s)
4πR

[δ(R − cs) − δ(R + cs)]. (13.22)

δ(R + cs) = 0 for positive R and s, so

G(R, s) = c
4πR

δ(R − cs), (13.23)
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that is, a change at r′ causes a change at r, a time c/s later. This is a
retarded interaction. So, we can now find the solution for the general
dynamic problem of electrical potential arising in ρ(r′, t′) as

ψ(r, t) = 1
ε

∫
G(r − r′)ρ(r′, t′) d3r′ dt′

= c
4πε

∫
d3r′

∫
δ(R − cs)

R
ρ(r′, t′) d3r′

= c
4πε

∫
1
R

ρ

(
r′, t − R

c

)
d3r′. (13.24)

This is the general spatial- and time-dependent form of the retarded
potential. It satisfies Equation 13.17. One could find a similar
solution for the vector potential arising in the current.

A few comments are in order from this exposition. In linear
systems, the response to the perturbation can be expressed using
Green’s functions. These Green’s functions, developed using unit
impulse perturbation, hold true independent of the form the
actual perturbation takes. Many Green’s functions can satisfy
the requirement. The Green’s function becomes unique when the
boundary and initial value conditions are specified. So, the Green’s
function developed in this algorithm is unique and specific to the
boundary value and initial value under the mathematical functional
relationship prescribing the physical problem. The solution itself is
then found as an integral, with the Green’s function operating on
the stimulus. Since an integral superposes for a linear system, the
solution holds generally for linear systems. Two separate causes
will give an effect that is the sum of the effects from the causes
separately. A caution is warranted. We ensured here that, spatially,
the Green’s function vanishes as r → ∞ by using its spatial Fourier
transform. For a temporal initial value condition, we have to walk
more gingerly.

We have seen now this approach applied in classical static (a
static Poisson’s equation problem) and dynamic conditions (a wave
propagation problem). When an electron travels and undergoes
scattering, it is a situation where transport is undergoing scattering.
It may very well be that transport may be well described by a near-
classical description, such as a Drude model with τk capturing an
expectation of scattering 〈τk〉, which must be dealt with quantum-
mechanically to be accurate. The Green’s function approach is
useful in both these conditions. And transport is one of the very
essential properties of semiconductors that is of interest to us. The
evolution of the dynamics takes place in both time and space. So,
let us look at its deployment in these conditions.
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13.4 Green’s functions in classical and quantum evolution
under scattering

Take the motion of nearly free electrons of effective mass m∗

in the presence of scattering with an expectation of a momentum
relaxation time of 〈τk〉 and an electric field E . The perturbation is
the force −eE arising in this field. Let us determine the Green’s
function by just viewing this problem as a response problem. In a
time dt′, this electron—absent scattering and starting from rest—
acquires a momentum −eEdt′ and a velocity Edt′/m∗. Should this
field be present only for this time duration of dt′, with scattering
absent, the electron maintains this acquired velocity and momentum
for all the later times. Now let us introduce scattering at the rate
of 1/τk. In time interval dt, the scattering probability is dt/τk. For
a cloud of electrons, the number of electrons that will not undergo
scattering between t = 0 at a population of n(0) and time t = t, with
the electron population that did not undergo scattering written as
n(t), is

n(t) = n(0) exp
(

− t
〈τk〉

)
(13.25)

The expectation of the velocity at time t follows from all the
contributions to the velocity over all the increments dt′ during the
course of the time evolution from t = 0 to t = t. This is

〈v〉 = −
∫ t

−∞

[
− exp

(
− t − t′

〈τk〉
)]

e
m∗ E dt′ = − eE〈τk〉

m∗ . (13.26)

This is as expected. The change in velocity can be viewed as a
response to an electric field acting for time dt′ at time t′ with a
response function G(t − t′). This Green’s function is

G(t − t′) = − e
m∗ exp

(
− t − t′

〈τk〉
)
. (13.27)

We have captured the response of the past through the Green’s
function, and we may now integrate this entire past history to
get the expected velocity at time t. Both the effect of the field
causing energy and momentum gain, and the randomization due
to scattering, have been incorporated. This interpretation casts the
Green’s function acting on the source function under the boundary
and initial constraints leading to the evolution of the response.
Our source function is the force arising in the field and causing a
change in velocity. The Green’s function as the response function
incorporated into it the scattering in the environment that is always
present.

The sum of history as incorporated in
the Feynman diagrams is another way
of incorporating this history. Julian
Schwinger and Richard Feynman both
showed quantum electrodynamics at
work through their part. One of their
earliest successes was the correction
terms of the Lamb shift, which is a
consequence of the interaction between
vacuum energy fluctuations and
the hydrogen electron. Schwinger
brought a relativistically covariant
form to quantum electrodynamics,
and the idea of renormalization,
which removes self-energy infinities.
He was successful at using Green’s
functions in a relativistic invariant
way, drawing on his use of Green’s
functions in solving electromagnetic
problems for radar development
at the MIT Radiation Laboratory
during the Second World War. Sin-Itiro
Tomanaga had developed Schwinger-
like space-time ideas in imperial
Japan earlier. Feynman used his
namesake diagrams. Freeman Dyson
showed how these two seemingly
very different approaches map to each
other, using the S-matrix.
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We now explore this for the quantum-mechanical problem.
Causality here again is a reflection of looking into the evolution due
to a cause in space (in a place) and time (in the past). The time-
dependent Schrödinger equation tells us that, for a Hamiltonian
Ĥ = Ĥ0 + Ĥ ′, where Ĥ0 is the steady state, and Ĥ ′ is the
perturbation, the time evolution is given by

− h̄
i
∂ψ(z, t)

∂t
= Ĥ ψ(z, t) =

[
Ĥ0 + Ĥ ′(z, t)

]
ψ(z, t). (13.28)

For the simplest of problems—no potential energy—Ĥ0 =
− (h̄2/2m)∇2. The wavefunction of the particle of mass m evolves
as a result of a perturbation Ĥ ′ governed by this equation. If the
system has more than one particle—say, 2—this equation will still
function through the use of a reduced mass.

The differential Equation 13.28 is of first order in time and pre-
scribes how the evolution of the wavefunction takes place in time.
This evolution solution is a phase change given by exp(−i〈Ĥ ′〉t/h̄).
In the presence of perturbation, the state of the system evolves in a
more complex way. If the wavefunction is known at time t0, that is
at t = t0 ∀ z, then the wavefunction can be determined for all times
before and after, that is, for t ≤ t0 and for t ≥ t0. The observation for this Quantum mechanics is a non-

deterministic theory. The adverb
 ̏deterministic˝ here implies that
we know how ψ evolves. When an
observation is performed at a future
moment, the eigenstate observed may
be different if the wavefunction is
not an eigenfunction. Only when the
wavefunction is an eigenfunction will
we observe just the change in phase,
which is equivalent to finding the
system at the same eigenenergy.

deterministic wavefunction evolution will still be nondeterministic.
Equation 13.28 is also linear in ψ . Superposition holds. Since

solutions are superposable linearly, the relationship between the
wavefunction ψ(z, t) at time t and ψ(z, t0) at time t = t0 must be lin-
ear. So, the wavefunction evolution satisfies a linear homogeneous
form:

ψ(z, t) = i
∫

�→∞
G(z, t|z′, t′)ψ(z′, t′) d3z′, (13.29)

which prescribes the Green function G(z, t|z′, t′) for the
Hamiltonian Ĥ .

What is different here is the agnosticism to the arrow of time.
Quantum mechanics is linear and reversible.

We will be able to distinguish forward and reverse time by
how we define the Green’s functions. The retarded Green’s function
(G+(z, t|z′, t′)) operates forward in time, and the advancing Green’s
function (G−(z, t|z′, t′)) operates backward in time. We also call these
functions propagators—an operator that performs propagation. The
Green’s function, or propagator, is a sum of these two, and our
definition of these—consistent with the above comments—is

G+(z, t|z′, t′) =
{

G(z, t|z′, t′) for t > t′,
0 for t < t′,

and

G−(z, t|z′, t′) =
{

−G(z, t|z′, t′) for t < t′,
0 for t > t′.

(13.30)
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Take the Heaviside function 	(τ); then,

	(t − t′)ψ(z, t) = i
∫

�→∞
G+(z, t|z′, t′)ψ(z′, t′) d3z′, for t > t′. (13.31)

This equation is still valid for t < t′. It reduces to an identity of
t − t′ = 0. So, the Heaviside operator operating on the
wavefunction—here, the wavefunction at forward time—is given
by the retarded propagator operating on the prior—a wavefunction
known to us. This is precisely causal evolution. Now take the
advancing Green’s function, which lets us determine the past
wavefunction ψ(z, t) from the prior ψ(z′, t′), where t < t′. Now,
we operate with the Heaviside function, and get

	(t′ −t)ψ(z, t) = −i
∫

�→∞
G−(z, t|z′, t′)ψ(z′, t′) d3z′ for t < t′. (13.32)

Again, for t > t′, we get an identity relationship, and this
description remains valid.

What this has accomplished is that the Green’s function for
the time-reversible, linear, quantum-mechanical description has
been broken up into a part that describes forward time (the
retarded propagator) and reverse time (the advancing propagator).
The sum of the two is still the complete Green’s function. The
Heaviside function gives us the means to separate forward time
from backward time.

Green’s function’s linear response properties can now be
explored, and, having satisfied ourselves of them, one should
be able to see the evolution as the system responds, even as it
undergoes different interactions. We will take scattering as one of
the important examples that is of special significance for us. But
first consider a few properties.

Consider an instant of time t1 such that t > t1 > t′. So, we choose
an instant somewhere in the forward time and look beyond.
Claim:

G+(r, t|r′, t′) = i
∫

�→∞
G+(r, t|r1, t1)G+(r1, t1; r′, t′) d3r1 (13.33)

for t > t1 > t′. This says that we can choose arbitrary intervening
times in the future and that the Green’s function operator cumu-
lates. The end result is independent of the intervening interval’s
partitioning choice for a linear system.
Proof: Since t > t′,

ψ(r, t) = i
∫

�→∞
G+(r, t|r′, t′)ψ(r′, t′) d3r′. (13.34)

This is propagation into the future. So long as t > t′, one may start
with ψ(r′, t′) at any time t′:
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ψ(r, t) = i
∫

�→∞
G+(r, t|r1, t1)ψ(r1, t1) d3r1

= i
∫

�→∞
G+(r, t|x1, t1) d3r1

× i
∫

�→∞
G+(x1, t1|r′, t′)ψ(r′, t′) d3r′

= i
∫

�→∞
d3r′i

∫

�→∞
G+(r, t|x1, t1)

× G+(r1, t1|r′, t′)ψ(r′, t′) d3r1. (13.35)

The retarding operator operating on ψ(r′, t′) is therefore
G+(r, t|r′, t′).

By symmetry, it also follows that

G−(r, t|r′, t′) = −i
∫

�→∞
G−(r, t|x1, t1)G−(x1, t1|r′, t′) d3r1,

for t < t1 < t, (13.36)

for going backward in time. So, the independence of the result on
the choice of any intervening time also holds for going backward in
time.
Claim: If we choose t1 as some instant of time for the reference,
then, in three-dimensional space,

δ(r′ − r) =
∫

�→∞
G+(r, t′|r1, t1)G−(r1, t1|r′, t′) d3r1,

for t′ > t1. (13.37)

Proof:
ψ(r, t′) = i

∫

�→∞
G+(r, t′|r1, t1)ψ(x1, t1) d3r1

= i
∫

�→∞
G+(r, t′|r1, t1) d3r1

× (−i)
∫

�→∞
G−(r1, t1; r′, t′)ψ(r′, t′) d3r′

=
∫

�→∞
d3r′

∫

�→∞
G+(r, t′; x1, t1)

× G−(r1, t1; r′, t′)ψ(r′, t′) d3r1. (13.38)

But if t′ > t1, then

ψ(r, t′) =
∫

�→∞
δ(r′ − r)ψ(r′, t′) d3r′; (13.39)

therefore, our claim stands proven.
This also implies by symmetry that

δ(r′ − r) =
∫

�→∞
G−(r, t′|r1, t1)G+(r1, t1|r′, t′) d3r1, for t′ < t1. (13.40)
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This proof shows that the linear response just means that the
propagation is a continuation of events. In Green’s function form,
the operators multiply and cumulate through the integration. One
may even go back in time and come back, and, so long as the
Green’s functions hold—that is, the causal effect is the same—one
gets an identical result.

So, whether one goes forward in time, backward in time, chooses
other instances of time in-between as intermediate steps—for that
matter, instants of time in the past or future as intermediate steps—
for the linear response and for quantum-mechanical determination,
with its in-built reversibility, one arrives at the same effect by
using the properly chosen Green’s function representing the causal
response. It reflects the sum of histories and causality in this
reversible environment. This propagator method allows one to pro-
ceed  ̏physically˝ and  ̏intuitively,˝ and write Equation 13.29 with
the proper choice of G(z, t|z′, t′) commensurate with the physics
of the stimulus and with the boundary and the initial conditions.
We now proceed from this so that we can tackle scattering.

Let {|u(z)〉} be the orthonormal eigensolution set from which
we compose the wavefunction |ψ(z)〉. First, consider a time-
independent perturbation for a zero-potential problem. The solution
to the zero potential Hamiltonian is a wave, that is, free flight.
For an eigenfunction that has eigenenergy E, the Schrödinger
equation is

[
Ĥ0 + Ĥ ′(z)

]
|uE(z)〉 =

[

− h̄2

2m
∇2 + Ĥ ′(z)

]

|uE(z)〉

= E|uE(z)〉. (13.41)

If the solution is known for any time t′, the time-dependent
Schrödinger equation

− h̄
i

∂

∂t
|ψ(z, t)〉 =

[

− h̄2

2m
∇2 + Ĥ ′(z)

]

|ψ(z, t)〉 (13.42)

gives formally the solution for any time t when one knows the
solution at t = t′. In general, the wavefunction solution is

|ψ(z, t)〉 =
∑

E

cE(t)|uE(z)〉, (13.43)

where the coefficients

cE(t) =
∫

�→∞
u∗

E(z)ψ(z, t) d3z (13.44)

are time dependent. Substituting this into Equation 13.42, we obtain

− h̄
i

∑

E

dcE(t)
dt

|uE(z)〉 =
∑

E

cE(t)E|uE(z)〉, (13.45)
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where we are subscripting by E the different eigenfunctions with
different eigenenergies. Because of orthonormality, we may multiply

Recall that, in this procedure,
which was often used in S. Tiwari,
 ̏Quantum, statistical and information
mechanics: A unified introduction,˝
Electroscience 1, Oxford University
Press, ISBN 978-0-198-75985-0
(forthcoming), orthonormality
allows one to extract coefficients
by multiplying with the transpose,
resulting in only one term on the
left and one term on the right. This
is the way to get the diagonal terms
of the matrix representing the set of
equations that these relationships
represent. This procedure also appears
in the extraction of the Golden rule
for transitions. These cEs represent the
probability of finding the system in
that eigenfunction state of |uE〉 if an
observation is made.

by the bra 〈uE(z)| and get

−h̄
i

dcE(t)
dt

= EcE(t)

∴ cE(t) = cE(t′) exp
[
− iE(t − t′))

h̄

]
. (13.46)

The probability of finding the state to be |uE(z)〉 with an energy E is
unchanged, with |cE(t)|2 = |cE(t′)|2. We have now found

ψ(z, t) =
∑

E

cE(t)|uE(z)〉

=
∑

E

cE(t′) exp
[
− iE(t − t′)

h̄

]
|uE(z)〉

=
∫

�→∞

[
∑

E

〈uE(z)|uE(z)〉
]

× exp
[
− iE(t − t′)

h̄

]
|ψ(x, t)〉 d3z′. (13.47)

So, we now have our Green’s function:

G(z, t|z, t) = −i

[
∑

E

〈uE(z)|uE(z)〉
]

exp
[
− iE(t − t′)

h̄

]
. (13.48)

If t = t′, the right-hand side of this equation reduces to −iδ(z − z′),
as it should. This Green’s function is complete.

We derived this Green’s function in the presence of a perturba-
tion Ĥ ′(z), which was independent of time. It is also valid when
there exists no perturbation (Ĥ ′(z)= 0 ∀ t). Absent any perturbation,
this Green’s function is called the free Green’s function. This free
Green’s function then leads to

uE(z) = 1

(2π/h̄)3/2
exp(−ik · z) , (13.49)

where k = p/h̄, and E = p2/2m, a solution for a free wave.
Let us look at some of the properties of this free wave arising

under the condition that V̂ = 0 and Ĥ ′(z) = 0 for all t:

G0(z, t|z′, t′) = −i
1

(2π/h̄)3/2

×
∫
exp

[
ik · (z − z′)

]
exp

[
− iE(t − t′)

h̄

]
d3p

= −i
1

(2π/h̄)3/2
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×
∫
exp

{
i
h̄

[
px(x − x′) + py(y − y′) + pz(z − z′)

]

− i
h̄
(t − t′)

}
dpx dpy dpz. (13.50)

Subscript 0 identifies it as a Green’s function for a free wave. This
is an explicitly solvable analytic problem. We show this through one Note that the term inside the integral

has a  ̏Gaussian˝ form where one may
employ

∫ ∞

−∞
exp(−iαz2) dz =

(π

ia

)1/2
.

of the three symmetric Cartesian-directed components:

i
h̄

px(x − x′) − i
h̄

p2x(t − t′)
2m

= − i
h̄

[
px

√
t − t′√
2m

−
√
2m(x − x′)
2
√

t − t′

]2

+ i
h̄

m(x − x′)2

2(t − t′)

= − i
h̄

t − t′

2m
 2 + i

h̄
m(x − x′)2

2(t − t′)
, (13.51)

where

 = px − m(x − x′)
t − t′

, (13.52)

which lets us manipulate using Gaussian integration employing
α = t − t′/2mh̄. For this one-of-three symmetric term,

∫ ∞

−∞
dpx exp

{
i
h̄

[

px(x − x′) − p2x(t − t′)
2m

]}

= exp

[
i
h̄

m(x − x′)2

2(t − t′)

] ∫ ∞

−∞
exp

[
− i

h̄
t − td
2m

 2
]

d

= exp

[
i
h̄

m(x − x′)2

2(t − t′)

] √
2πmh̄

i(t − t′)
, (13.53)

and therefore the Green’s function solution can be written as

G0(x, t|x′, t′) = − i

(2πh̄)3

[
2πmh̄

i(t − t′)

]3/2
exp

[

i
|x − x′|22mh̄
4h̄2(t − t′)

]

= −i
[

m
2π ih̄(t − t′)

]3/2
exp

[
im|x − x′|2
2h̄(t − t′)

]

. (13.54)

We can split this Green’s function to forms for forward propagation
(retarded function) and backward propagation (advancing function)
by using the Heaviside approach:

G+
0 (z, t|z, t) = G0(z, t|z′, t′)	(t − t′)

= −i
[

m
2π ih̄(t − t′)

]3/2
exp

[
im|z − z′|2
2h̄(t − t′)

]

	(t − t′), and

G−
0 (z, t|z′, t′) = −G0(z, t|z′, t′)	(t′ − t)

= +i
[

m
2π ih̄(t − t′)

]3/2
exp

[
im|z − z′|2
2h̄(t − t′)

]

	(t′ − t). (13.55)
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Note that

G+
0 (z, t|z′, t′) = G−∗

0 (z′, t′|z, t), (13.56)

that is, they are complex conjugates.
When a perturbation Ĥ ′(z, t) is present, we need to modify the

free Green’s function. This perturbation may be a scattering event
arising in an energetic interaction that turns on at t1 for a short time Now you can see why we looked

at Green’s function through an
intermediate time. If no perturbation
exists at that intermediate time,
the Green’s function’s operation
accumulates.

�t1. Let Ĥ ′(z1, t1) be the perturbation during this time �t1. For
t < t1, the wavefunction is that of a free particle (a free wave), and
its propagation is guided by G0(z, t|z′, t′). At t = t1, Ĥ ′(z1, t1) turns
on and causes this free wave to scatter. Writing φ as the free wave
solution, and rewriting the time-dependent Schrödinger equation as

[
−h̄

i
∂

∂t1
− Ĥ0

]
ψ(z1, t1) = Ĥ ′(z1, t1)ψ(z1, t1), (13.57)

where Ĥ ′(z1, t1) is active for t1 < t < t1 + �t1, the result of the
interaction is

ψ(z1, t1) = φ(z1, t1) + �ψ(z1, t1). (13.58)

Here, we have written in a form to indicate that �ψ(z1, t1) is a
change in the wavefunction resulting from the interaction, with

[
−h̄

i
∂

∂t1
− Ĥ0

]
φ(z1, t1) = 0, (13.59)

and �ψ(z1, t1) = 0, for t < t1. So,
[
−h̄

i
∂

∂t1
− Ĥ0

]
�ψ(z1, t1) = Ĥ ′(z1, t1) [φ(z1, t1) + �ψ(z1, t1)] , (13.60)

where, after discounting Ĥ ′(z1, t1)�ψ as a second order perturba-
tion term, we write

[
−h̄

i
∂

∂t1
− Ĥ0

]
�ψ(z1, t1) = Ĥ ′(z1, t1)φ(z1, t1), (13.61)

whose solution with a limited time of interaction is the integral

�ψ(z1, t1 + �t1) = − i
h̄

∫ t1+�t1

t1

[
Ĥ0�ψ(z1, t′) + Ĥ ′(z1, t′)φ(z1, t′)

]
dt′.

(13.62)
The first term here is small, a second-order energy change in the
perturbation that arose. The second term is the primary contribution
of the perturbation on the incident free wave. This is

�ψ(z1, t1 + �t1) = − i
h̄
Ĥ ′(z1, t1)φ(z1, t1)�t1. (13.63)
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When the perturbation disappears after time �t1, the scattered
wave again propagates freely. For this scattered wave,

�ψ(z, t) = i
∫

G0(z, t|z′, t′)�ψ(z1, t1) d3z1

=
∫

G0(z′, t′|z, t)1
h̄

Ĥ ′(z1, t1)φ(z1, t1)�t1 d3z1. (13.64)

The free wave Green’s function operator operating on the pertur-
bation term of the wavefunction, which is the cumulative response
over the interval �t1 during which the perturbation operates, gives
the change in wavefunction of the scattered free wave.

We have now developed an analytic description, and a figurative
picture as shown in Figure 13.3, of the evolution and interaction
in space-time through the Green’s function technique. For the
free wave, the Green’s function describes, in space-time, how
the description at a time (z, t) can be connected to a time (z′, t′),
as shown in panel (a) of Figure 13.3. In the presence of a single
interaction at time t1, the interaction leads to a scattered wave.
This figure describes the wavefunction evolution as

ψ(z, t) = φ(z, t) + �ψ(z, t)

= φ(z, t) +
∫

G0(z, t|z1, t1)1h̄ Ĥ ′(z1, t1)φ(z1, t1)�t1 d3z1

= i
∫ [

G0(z, t|z′, t′)

+
∫

G0(z, t|z1, t1)1h̄ Ĥ ′(z1, t1)�t1G0(z1, t1|z′, t′) d3z1

]

× φ(z′, t′) d3z′. (13.65)

Figure 13.3 maps to the last of these analytic forms. The first term
is the Green’s function propagator evolving the incident free wave
over the interval (z′, t′) �→ (z, t). The second term is the net effect
of the free wave propagation (the last term captured through
G0(z1, t1|z′, t′)), its perturbation captured through the interaction
with the perturbation Hamiltonian and, finally, the free wave

Figure 13.3: Part (a) shows the
propagation of a free wave with
the associated propagator G0(z, t|z′, t′)
acting on the prior. Part (b) shows a
free wave undergoing scattering at
t1 due to a perturbation Ĥ ′(z1, t1).
G0(z, t|z′, t′) is still the propagator
during the free flight.



OUP CORRECTED PROOF – FINAL, 17/8/2020, SPi

chapter 13: causality and green’s functions 513

propagation of this perturbation (captured through
∫

G0(z, t|z1, t1)).
So, the causal sequence of events have been partitioned into a free
wave evolution over (z′, t′) �→ (z, t), and a part related to the
perturbation, which is built through evolution over (z′, t′) �→ (z, t),
at (z1, t1), and then (z1, t1) �→ (z, t).

So, the Green’s function for this example of single scattering can
be summarized as

G(z, t|z′, t′)=
G0(z, t; z

′, t′) +
∫

G0(z, t|z1, t1)1h̄ Ĥ ′(z1, t1)G0(z1, t1|z′, t′)�t1 d3z1. (13.66)

This propagator is the simplest of examples involving a perturba-
tion: a free propagation together with a short perturbation in time
spread out in space. It sets up our description of a single scattering
event.

Figure 13.4: Space-time depiction of
two interactions of a free wave in free
flight.

The evolution description for multiple scattering events can now
be written as a recursive iteration algorithm. What we need to do
is incorporate any of the events through the perturbation effect
(1/h̄)Ĥ ′(zi, ti)�ti for the ith event occurring over the time duration
�ti by integrating over space before the next free propagation. If
two scattering events take place, their perturbations, which are
represented by viewing Figure 13.4 as showing a sequence of causal
events, lets us write

�ψ(z) = G0(z|z2)1h̄ Ĥ ′(z2)ψ(z2)�t2

∫
d3z2

= i
∫

d3z′ d3z2 �t2G0(z|z2)1h̄ Ĥ ′(z2)

×
[

G0(z2|z) +
∫

d3z1 �t1G0(z2|z1)

×1
h̄

Ĥ ′(z1)G0(z1|z′)
]
φ(z′, t′), (13.67)

where the time parameter has not been shown within the Green’s
function, for brevity. It can be seen from the context as correspond-
ing to the subscript of the spatial parameter. In Equation 13.67,
the first equation shows the evolution following the scattering
event at (z2, t2). The longer second equation breaks this up into
the propagation from the initial reference (z′, t′) through both of
the scatterings while still undergoing free flight. This second form
shows that the sequence of the two events leads to a term that has
as its propagation and perturbation consequence the integration of

G(z, z2, z1, z′) = G0(z|z2)1h̄ Ĥ ′(z2)G0(z2|z1)1h̄ Ĥ ′(z1)G0(z|z1)φ(z′).
(13.68)
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The propagator is just an accumulation of the free propagation and
a short perturbation in time over the entire space through the sum
of their histories. The wavefunction change that arose is

�ψ(z) = φ(z) +
∫

d3z1 �t1G0(z|x1)1h̄ Ĥ ′(z1)φ(z1)

+
∫

d3z2�t2G0(z|z2)1h̄ Ĥ ′(z2)φ(z2)

+
∫

d3z1�t1

∫
d3z2�t2G0(z|z2)1h̄ Ĥ ′(z2)G0(z2|z1)

× 1
h̄

Ĥ ′(z1)φ(z1). (13.69)

Note how this change arose due to the perturbation first at (z1, t1),
then free propagation, then the perturbation (z2, t2) followed by the
free propagation onto (z, t). The pattern is clear. One is integrating
over the spatial coordinates and summing over the time of events;
that is, ending up with calculations in four dimensions. The order
of time is strict in this expansion. It also matches the retarded
Green’s function G+

0 (x, t|x′, t′) in that it only acts forward. So, with
multiple scattering events, one can write this retarded Green’s
function as

G+(z|z′) = G+
0 (z|z′)

+
∫

d4z1 G+
0 (z|z1)1h̄ Ĥ ′(z1)G+

0 (z1|z′)

+
∫

d4z1 d4z2 G+
0 (z|z1)1h̄ Ĥ ′(z1)G+

0 (z1|z2)

× 1
h̄

Ĥ ′(z2)G+
0 (z2|z′) + · · · , (13.70)

with d4zi ≡ d3zi dti. Setting up the equation in this way with the
sequencing of the order starting at the initial/boundary value at
z′, t′ lets us write in a recursive algorithmic form and thus solve
with the initial and boundary values employed consistently.

For a finite time-period interaction, that is, limt→−∞ H ′(z, t)= 0,
and also limt→∞ H ′(z, t) = 0, which perturbs an incoming wave,
that is, limt→−∞ ψ(z, t) = φ(z, t), using the procedure developed,
one can immediately write

ψ(+)(z, t) = lim
t→−∞ i

∫
d3z′ G+(z, t|z′, t′)φ(z′, t′)

= φ(z) +
∫

d4z1 G+
0 (z|z1)1h̄ H ′(z1)ψ(+)(z1). (13.71)

The second integral term is the scattered wave propagating into the
future, as shown in Figure 13.5.

Figure 13.5: Awave undergoing an
interaction that leads to a scattered
wave propagating into the future.

If the scattering is adiabatic, that is, the interaction turns on
much more slowly than do the kinetic excitation energies of the
system, then the state change evolves slowly. The wavefunction
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continues to satisfy the time-independent Schrödinger equation in
time. A classic example is the one-dimensional problem of a wave
encountering a planar barrier. If the potential change is sharp—
the length scale of the potential change is much shorter than that of
the wavelength λ = 2π/k of the wave (where the kinetic energy is
h̄2k2/2m)—then reflections happen and transmitting and reflecting
waves appear. The wave breaks up into two. If the interaction
is adiabatic, that is, there is a slow change in the barrier, then
reflection asymptotically disappears. The time counterpart to this
spatial example is a perturbation H ′(x, t) �→ H ′(x, t) exp(−α|t|),
where α > 0, with α suitably chosen to preserve the essentials
of the interaction. So, in this adiabatic perturbation, the plane
wave in the past history evolves to a plane wave in the future
history. And scattering has occurred, and one has the quantitative
form for it. This Green’s function usage in quantum-mechanical
conditions is formally the equivalent of the Green’s function usage
in classical conditions. They are both examples of usage in linear
response theory.

The Green’s function solving the Schrödinger equation,
G(r, t|r′, t′), gives the conditional probability—the Bayesian notion—
of finding the particle at (r, t) as

∣
∣G(r, t|r′, t′)

∣
∣2 d3r, given that it was

at (r′, t′). This quantum-mechanical mapping of the earlier classical
discussion can also be interpreted to tell us that we can find the
Green’s function—as we did for classical conditions—by solving the
time-dependent Schrödinger equation

− h̄
i
∂G
∂t

− Ĥ G = δ(t − t′)δ(r − r′). (13.72)

Starting precisely at (r′, t′) within the Dirac delta view, the Green’s
function evolves in time and space under the conservation dynam-
ics dictated by the Schrödinger equation. This equation form also
tells us how the Green’s function evolves at t = t′. As in the earlier
flux analogy, we choose a time interval (t′ −�t, t′ +�t) strapping the
Dirac delta function and shrink it:

lim
�t→0

∫ t′+�t

t′−�t

[
−h̄

i
∂G
∂t

− Ĥ G = δ(t − t′)δ(r − r′)
]

dt (13.73)

then gives

G(t = t′+) − G(t = t′−) = − i
h̄
δ(r − r′). (13.74)

The Green’s function discontinuously changes at t = t′. The
propagator-retarding Green’s function is the first term here. It
vanishes in the past and prescribes evolution in time. The advanced
Green’s function is the second term. It vanishes for the future and
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prescribes going back in time. Building on plane wave eigenfunc-
tions, the solution is

G+(r, t|r′, t′) =
∑

n

lim
ε→0

∫ ∞

−∞
dω
2π

exp
[−iω(t − t′)

] ψn(r)ψ∗
n(r′)

h̄ω − En + iε

= − i
h̄

∑

n

exp
[
− iEn(t − t′)

h̄

]
ψn(r)ψ∗

n(r′)	(t − t′) (13.75)

for the retarding Green’s function, and

G−(r, t; r′, t′) =
∑

n

lim
ε→0

∫ ∞

−∞
dω
2π

exp
[−iω(t − t′)

] ψn(r)ψ∗
n(r′)

h̄ω − En − iε
(13.76)

for the propagator-advancing Green’s function. The ε → 0 is the
mathematical subterfuge for tackling infinities in working through
the Dirac delta function under the integral. When a system can
be described by a finite number of quantum states |n〉, these
equations are a conducive way to tackle the interaction problem.
Semiconductor scattering problems are in this class of problems.
The Green’s function can then be viewed as a vector matrix in
space-time, analogous to the Dirac vector formulation versus the
Schrödinger wavefunction formulation. The Dirac delta function
then is a unit matrix (I) function.

We define the inverse of the Green’s operator describing this
evolution as follows:

K±G± = 1

∴ K± = lim
ε→0

(
−h̄

i
∂

∂t
− Ĥ ± iε

)
, and

K(r, t; r′, t′) = K(r, t)δ(r − r′)δ(t − t′). (13.77)

The matrix product here can be viewed as an integration over all
intermediate coordinates in space-time.

When the perturbation is weak, that is, Ĥ = Ĥ0 + Ĥ ′, with
Ĥ ′ � Ĥ0, the retarding Green’s function is

G+ = [K+]−1

= [K+
0 [1− [K+

0 ]
−1

H ′]]
−1

= (1− [K+
0 ]

−1
H ′)

−1
[K+

0 ]
−1

= [1+ G+
0 H ′ + G+

0 H ′G+
0 H ′ + · · · ]G+

0

= G+
0 + G+

0 H ′G+
0 + G+

0 H ′G+
0 H ′G+

0 + · · · . (13.78)

So,

K+
0 = lim

ε→0

(
−h̄

i
∂

∂t
− Ĥ0 + iε

)
(13.79)
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and

G0 = K0
−1. (13.80)

We discussed Green’s functions here in real space and time and
formed a reciprocal Green’s function. One could also just as well
have written these two functions in terms of the reciprocals of real
space and time; that is, wavevector and frequency. So, one can map
the (r, t) ↔ (k,ω) equivalence to a G(r, t) ↔ G(k,ω) equivalence. In
characterizing materials, our recourse is observation of the spectral
response rather than the time response, which largely works only
for device and transport response. This spectral response in linear
systems and the use of the Kramers-Kronig relationship that ties in
the real and the imaginary parts of susceptibility will be discussed
in Chapter 14. For now, we make a few remarks on the time-
domain response by generalizing the scattering response discussed.
If sequential scattering events on one wave, which can be viewed
as arriving from one port and being redirected elsewhere, that is,
other ports, can be calculated, so can multiple wave streams and
a generalized scattering matrix. The equivalence here is that if a One can view this as the

quantum mechanical equivalent
of the scattering matrix formalism
useful in electromagnetic; that is,
wave, and specifically microwave,
theory.

wavefunction limt→∞ |ψ+
i (r, t)〉 arises and, absent scattering, it

would have been limt→∞ |φf (x, t)〉, then
Sif = lim

t→∞〈φf (r, t)|ψ+
i (r, t)〉 (13.81)

is the scattering matrix element—the Heisenberg scattering matrix,
or the S-matrix. This S-matrix will have symmetries that reflect the
symmetries of the corresponding Hamiltonian.

Figure 13.6: Amultiport representation
of the Heisenberg S-matrix for
wavefunction interactions.

It now becomes possible to look upon the device spatial and tem-
poral response in a way similar to the port theory of microwaves,
as shown in Figure 13.6. One can have contacts, in which case
their Green’s functions must be prescribed. Or one can have open
boundary conditions. An open boundary condition is one where an
incident wave must be directly specified and an exiting wave is one
that exits never to return.

This description up to this point is for thermal equilibrium con-
ditions, that is, conditions where, while the system is at temperature
T, no other external stimulus is present. When external stimuli are
present (bias voltages, light, magnetic field, etc.), then, to evaluate
the causal consequences, one has to resort to nonequilibrium
Green’s functions. These are useful in both closed and open
systems. Non-equilibrium Green’s functions also work with strong
external fields and can work with them nonperturbatively. In
such a situation, electron-electron interactions can be treated as
an infinite summation in a series. And these calculations can be
performed while keeping the system approximately constrained
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to conservation of the number of particles in it, linear momentum,
angular momentum, et cetera. Dissipation, that is, loss of energy
from the particles, their wavefunctions of interest, memory, that is,
a signature of the past in the present behavior, et cetera, all appear
naturally and can be analyzed.

13.5 Summary

The Green’s functions approach is a powerful technique for
modeling a system’s response while accounting for both a stimulus
causation and a stochastic environmental interaction. Development
of a Green’s function, with known initial or boundary conditions,
then gives a powerful way of determining the system’s evolution.
This has been the focus of this chapter, where we employed this
alternative approach to analyze a range of semiconductor response
behaviors, using classical, semi-classical and quantum-mechanical
approaches. Green’s function works with all these. But the necessity
of connection in causal behavior, and chance in random behavior,
makes it incumbent on us to understand the strict differences
between causality, determinism and correlations. Causality is the This obfuscation between causality,

determinism and correlation underlies
much of polity, economics, business
and health-related undertakings.
Sometimes it is because of foolishness,
and sometimes because of ignorance,
but the worst is when it is due to
perfidy.

tracing of the observed phenomena entirely to the identified cause.
In Kramers-Kronig relations, which will be subject of Chapter 14,
the tie in between the real and imaginary parts of a linear response
is causal, since they are orthogonal faces of the same response.
Probabilities, and correlations, let us tackle chance objectively—
although not completely—and this underlies much of the Bayesian
view of assigning probabilities to hypothesis and their refinement
with observations. Using the quantum paradox due to Aharonov
and Rohrlich, we could illustrate the space and time nature of the
immutability embedded in causality of the quantum view versus
the classical view.

With this background, we noted how the response can be written
as a Green’s function—an impulse response—acting on a function
in accumulation over space and time. We could illustrate this with
known and previously encountered problems of perturbation.
Coulomb interaction with a point charge (a delta function) gives
us a way to develop the Green’s function, and this in turn lets us
solve the spatial problem of distributed charge. The same approach,
in space and time, led us to the Green’s function for electromagnetic
propagation.

George Green was a miller and a
mathematician. His work, besides
this Green’s function and theorem,
included early work on electricity and
magnetism. He was largely self-taught
and was quite a reluctant miller since
the constant trimming of the sails of
the mill interfered with other passions.

Julian Schwinger used Green’s
function in much of his work on
radar and the early fundamental
work on quantum electrodynamics.
A common objection to Green’s
function is the elaborate mathematical
edifice in which intuition can be lost.
Not so with Feynman diagrams, which
this Schwinger-Feynman simultaneous
exploration reemphasized.

Using this foundation, one could explore the classical and
quantum-mechanical evolution of the response of a system as
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it undergoes scattering while being under stimulus. Classically,
this was very much a Drude-like response, but, for the quantum-
mechanical time-dependent evolution of the state function, it gave
a powerful way of analyzing the evolution—with linearity and
reversibility of quantum mechanics—using advancing and retarding
Green’s functions. Different perturbations, spatially and temporally
distributed, can be accounted for. This is the way one would be
able to capture the consequences of single and multiple scattering
events and, through them, the evolution of the wavefunction. The
scattering matrix is a representation of the scattering response.

13.6 Concluding remarks and bibliographic notes

The Green’s functions technique goes back to the year 1828
and influenced Maxwell, and many others, even though the work
was not quite recognized during Green’s lifetime. Using Green’s
functions is now a standard technique for solving inhomogeneous
linear differential equations.

The Aharonov-Rohrlich paradox discussed here is from their
book1 on paradoxes. For seriously imbibing quantum mechanics,

1 Y. Aharonov and D. Rohrlich,
 ̏Quantum paradoxes,˝ Wiley-VCH,
ISBN 13 978-3-527-40391-2 (2005)

resolving paradoxes is one of the most powerful and convincing
ways. This book is very instructional in this way. Also, its cover is
itself another reason for finding it in the library or getting a copy of
one’s own.

A general physics-oriented introduction to Green’s functions
is in the book by Duffy2. This book tackles wave equations, heat

2 D. G. Duffy,  ̏Green’s functions with
applications,˝ Chapman & Hall, ISBN
1-58488-110-0 (2001)

equation, Helmholtz equation, et cetera, and is a good introduction
to the application of the techniques. A particular favorite is the
book by Melnikov3.

3 Y. A. Melnikov,  ̏Green’s functions
and infinite products,˝ Birkhäuser,
ISBN 978-0-8176-8279-8 (2011)

For the quantum-oriented usage of Green’s functions, a very
readable and lucid starting source is by Datta4. The book develops

4 S. Datta,  ̏Quantum transport,˝
Cambridge, ISBN 13 978-0-521-63145-7
(2005)

the use of equilibrium and nonequilibrium Green’s functions
techniques in nanoscale semiconductors. Walter Greiner has written
a number of books on a range of physics subjects, all very thorough
and complete. In his book on quantum electrodynamics5, he tackles

5 W. Greiner,  ̏Quantum
electrodynamics,˝ ISBN 13 978-
3540875604 (2009)

the techniques of using propagators. For a more advanced under-
standing of Green’s functions in quantum mechanics, a number
of books are good references. The first is the book6 by Economou.

6 E. N. Economou,  ̏Green’s
functions in quantum physics,˝
Springer, ISBN 10-3-540-28838-4
(2006)

Another advanced treatment is by Haug and Jauho7. For those

7 H. J. W. Haug and A.-P. Jauho,
 ̏Quantum kinetics in transport and
optics of semiconductors,˝ Springer,
ISBN 978-3-540-73561-8 (2008)

interested in farther forays in solid state, such as correlated systems,
the book by Doniach and Sondheimer8 is a good source.

8 S. Doniach and E. H. Sondeheimer,
 ̏Green’s functions for solid state
physicists,˝ Imperial, ISBN 1-86094-
078-1 (1998)
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13.7 Exercises

1. Consider random fluctuations in classical conditions. An example
is a smoke particle undergoing rapid collisions in still conditions;
that is, zero mean velocity. Show that

〈�z2

�t
〉
1/2

= a1/2(�t)1/2,

where a is acceleration and therefore �p�z = ma = constant. [S]

2. Show that
∫ b

a
τδ(t − τ ) dτ = t[	(t − a) − 	(t − b)],

where 	() is the Heaviside step function. [S]

3. Find the transfer and Green’s functions for the system obeying

d2y
dt2

− 3
dy
dt

+ 2y = f (t),

with y(0) = 0, and dy/dt = 0, at t = 0. [S]

4. Show that electromagnetic propagation specified by the Maxwell’s
equations (as captured in Equation 13.17) is satisfied by the Green’s
function generated in Equation 13.23. [S]

5. Since damped harmonic oscillators are encountered so often,
find the Green’s function for it. So, find Green’s function for the
differential equation

m
d2y
dt2

+ �
dy
dt

+ ky = f (t),

where m is a mass, � is a damping coefficient, k is a restoring
constant, and f (t) is a forcing function. [S]

6. We encountered the Fokker-Planck equation in Chapter 8. Find its
Green’s function. This requires one to solve the boundary value
problem

d
dz

(
z2

dg
dz

)
− a

d
dz

(zg) − bg + λg = −δ(z − ζ ), for 0 < x, ζ < ∞. [S]
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Quantum to macroscale and linear
response

Schrödinger’s and Maxwell’s equations, upon which much
of our discussion up to now has been built, are linear equations.
Reversibility holds in linear transformations. The world, however, is
irreversible to the extent that time always seems to march forward. There is no clearer indicator, but not

proof, of irreversibility than that
we get older and nobody has been
observed to live forever. But caution
is needed. Time is not an observable.
It is a parameter that can be treated
relatively. There is a sense of before,
present and future—but no now. Now
is gone no sooner than the mind’s
inkling for it. Relativity throws its
own wrenches into this cauldron.
An interpretation regarding time
in which I find very good food for
thought is that these  ̏nows˝ are
being continuously generated. It is
a dimension with some very special
characteristics. Past in this view is
 ̏classical˝ that we know. The future
is  ̏quantum-mechanical˝ with many
different possibilities that may unfold.

This irreversibility is something we have remarked on earlier in the
discussion of probabilities, probability sequences, the Golden rule,
uncertainty as chance, et cetera, which arises as ensembles build
complexity and new emergent properties, and rules appear as a
more suitable form for representing the underlying physical laws.
Maxwell’s equations are reversible, except when one brings into
them consequences from materials, that is, of ensembles, in forms
that break the electrical-magnetic field and energy exchange—
by storing away or providing additional sources—which do not
respond linearly.

When matter undergoes spontaneous polarization, the energy
gets stored in the polarization associated with the minute rear-
rangement of the lattice. Ferroelectrics, materials that result from
spontaneous polarization, are nonlinear, even if there are conditions
where they may appear as linear.

In the electromagnetic analysis of linear systems, we learn about
reciprocity, which simply says that a medium is reciprocal if when
it is stimulated a certain way at a multitude of places, and its
responses is observed, impressing the response will lead to the
appearance of a signal identical to that of the earlier stimulation.
In other words, a medium as a bounded system is reciprocal if is
stimulated at some input ports, and an output response signal is
observed at output ports, reversing the experiment by applying a
signal identical to the response signal to the output ports will bring
about a signal identical to that of the original at the input ports.

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001
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Microwave networks, if they don’t contain nonlinear elements
including the source, are reciprocal. Resistors, capacitors and
inductors are linear elements that we introduce as low A source is a non-reciprocal element.

It stores and supplies energy, by
transforming the energy form.
Batteries are electrochemical elements.
A nuclear battery is a radioactivity-
based source.

frequency—small, compared to the wavelength of the signals
being used—elements, and any network built out of these is
reciprocal because these are linear elements. This is precisely
what we mean when vectors of current, voltage and their
derived parameters for various ports are used to build a
matrix connecting them—impedance, admittance, hybrid, S,
et cetera—which can all be inverted and transformed into
each other, with the vector on the left meaning the stimulus,
and the vector on the right meaning response. Reversibility
leads to reciprocity between the stimulus and the response.

This argument of reversibility breaks as soon as one has a gain
element; that is, the introduction of a separate energy source akin to
the spontaneous polarization as a latent stored energy source that
can be sprung. It is this introduction or removal of energy forms
from the form that the equation is modeling—the electromagnetic
from—that makes the network non-reciprocal. And it is a good
thing too, since we use such gain elements—transistors, lasers, et
cetera—very gainfully.

Spontaneous polarization is a property that arises in phase tran-
sitions when complexity is built into the matter, but underlying it
is still the linear Schrödinger’s equation or the Hamiltonian form in
all its complexity. For understanding the scale-induced complexity
of matter, we do have to then resort to statistical mechanics
and thermodynamics, which take us toward irreversibility. Phase
transitions and the Navier-Stokes equation are nonlinear, and yet
they both are the culmination of quantum and microscale processes.

Nonlinearity may also arise when a system is pushed into
extremes where nonlinear transformations may occur. A high
magnetic field in a very pure high mobility material brings new
forms of Hall effects, including a fractional quantum Hall effect See S. Tiwari,  ̏Nanoscale device

physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017), for related
discussion.

that is entirely a collective response of the system. The change is
nonlinear and collective, and, in many of these instances, renormal-
izations are essential to conquer singularities. So, much of what we
observe and model linearly can be pushed to nonlinearity. Much
that is reversible becomes irreversible in the transformation toward
the classical world from the quantum foundations. Reciprocity and
reversibility, in a certain sense, can hold true at the macroscale
when grounded in linearity, but they also may not. This brief sum-
mary of the range of topics in this area (see Figure 14.1), many of
which we have mentioned in passing in previous discussions, is to
reinforce the importance of linearity and nonlinearity, reversibility
and irreversibility, and reciprocity and non-reciprocity, which we
see all around us and which make studying this area so interesting.
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Figure 14.1: The evolution of the
classical world and its observations
from the quantum and the microscale,
with attributes transforming under
the complexity of interactions
that the assemblage undergoes.
Most of these we have now
discussed in one form or other in
understanding the properties of
semiconductors.

Even noise, as a measure of fluctuations in an ensemble, can be
visualized through some of these ideas, where measures of the
spread of fluctuations are connected to the expectation of the
system’s response, with dissipation appearing as a parameter in
linear response. This is a broader subject by itself, and we will
tackle it in its entirety in Chapter 16.

In this chapter, we will focus in particular on the properties
associated with linear response in light of this discussion. A
primary property of linearity is the existence of the Kramers-Kronig
relationship as a general behavior of linear response, even as we
will employ the dielectric function to illustrate it primarily here.
This will also let us relate some attributes of the dielectric response
of semiconductors that we noted were so essential in Chapter 12.
Another important topic we will touch on are the Onsager rela-
tionships (Chapter 15), going beyond the laws of thermodynamics,
which give us a convenient means for transforming energy forms
through the development of canonical conjugate fluxes and forces
and which show us how some of the properties we have discussed
can be arrived at far more simply.

14.1 Causality’s implication in linear response

In Chapter 13, we dwelled at length on the notion of
causality—that a claim that an effect B is caused by the occurrence
of A is to say that B in entirety is due to A, for all variations in
space and time—remove B, then A must be absent—and introduced
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the approach of Green’s functions. As an example, we showed
the application of Green’s functions in solving a problem of
broader interest to us: how do the nearly free electrons move
in the presence of a field and what are the chance events of
scattering. We found 〈v〉 = −eE〈τk〉/m∗ and a Green’s function
G(t−t′) = −(e/m∗) exp[−(t − t′)/〈τk〉] to describe the build-up of this
response. The present gets connected to the past through a function
that defines the response evolution. And all one does is integrate
this entire past history.

We have discussed the dielectric function and the various
contributions to it from the interactions between an electromagnetic
wave and matter. It turned out to be complex, taking quite a few
forms, all complex, even if the real term dominated at select fre-
quencies, and there was a lot of difference between pure insulators,
semiconductors and metals across the frequency range. Are the real
and the imaginary parts of this dielectric function independent or
tied to each other? Or, reframing the question, are the real and the
imaginary parts of the index of refraction nc = nr + ini independent? This index of refraction is the ratio√

εμ/ε0μ0, the scaling of the speed of
light in the medium. Further to this,
we have assumed that the material
is non-magnetic, that is, μ=μ0.
So, nc = √

εr and is related quite
explicitly, such as in Equation 12.57,
for conductivity arising in free carriers
through this.

They cannot be independent, since they arose in the same cause.
This is the essence of what the Kramers-Kronig relationship, the
interrelationship of the imaginary and the real parts of a response
of a causal process in a linear system, says. Light propagation
as a linear system—transmitting with absorption—serves as our
case study.

Light is absorbed, with the extinction arising in the imaginary
part of the response, and the propagation behavior arising in the
real part. The solution for the transmitted portion may be written as

E = x̂E0 exp
(

−ωniz
c

)

exp
[

i
(

ωnrz
c

− ωt
)]

= x̂E0 exp
(
−αz

2

)
exp

[
i
(

ωnrz
c

− ωt
)]

(14.1)

for a TEM incident wave transmitting in the z direction with an x-
directed electric field and a suitable choice of phase. α = 2ωni/c is
the absorption coefficient.

Figure 14.2: Light passing orthogonally
through a slab of thickness δ.

That the real part and the imaginary part are related in such a
propagation, with causality underlying it, can be illustrated through
a gendanken experiment. If the real and the imaginary parts, or
the extinction and the propagation, are unrelated to each other,
then it should be possible to have a medium with ε or nc such that
one may have a notch in the transmission at ω0; that is, that light
transmits across all frequencies except at ω0. Take the case of light
passing through a δ thick material, as shown in Figure 14.2. The
TEM electromagnetic wave, normally incident, is
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Ein(z, t) = Ein(0) exp
[
−iω

(
t − z

c

)]
, (14.2)

and the transmitted wave, following passage through the δ thick
slab, is Relativistic considerations of causality,

although not important in this exam-
ple, are profound. Time, like entropy,
is an emergent notion. There is no
precise time, only relative time, and
a human interpretation of before and
after, which relativity plays wonders
with as the first introduction to a deep
idea of science when we are young.
I have always thought that, instead
of using BC or AD for specifying
time, or the modern archaeologist
notation of CE or BCE, where CE, by
the way, stands for  ̏common era˝ or
 ̏current era˝ and, in the process, only
compounds the polarizing questions it
raises, should be replaced by  ̏before
Heisenberg˝ and  ̏after Heisenberg.˝
This usage captures the notion of
time and its ambiguity and honors
a revolutionary scientist without
entering religious wars.

Eout(δ, t) = Eout(δ) exp(−iωt)

= exp
(

i
ncω

c

)
Ein(0, t)

= Ein(0) exp
[
−iω

(
t − ncδ

c

)]
, (14.3)

which, with time dependence ignored, is Eout(δ)= Ein(0) exp(iωncδ/c).
By making δ arbitrarily small, we can ignore transmission
attenuation. Reflection is ignored, since that is just a normalization
of the amplitude. We use the Green’s function

G(δ, τ ) = 1
2π

∫ ∞

−∞
exp

(
i
ωnc

c
δ

)
exp(−iωτ) dω (14.4)

so that

Eout(δ, t) =
∫ ∞

−∞
G(δ, t − t′)Ein(0, t′) dt′. (14.5)

Since the fields are real, the Green’s function must be a real
function too. So, the conjugation property is nc(−ω) = [nc(ω)]∗;
nr(−ω) = nr(ω); and α(−ω) = α(ω).

Causality enters for us through the speed of light constraint,
which determines how much time it takes for light to pass through
the slab. Eout(δ, t) depends on Ein(0, t′) for t′ < t − δ/c. So, G(δ, τ ) = 0
for τ < δ/c, and

exp
(

i
ωnc

c
δ

)
=

∫ ∞

δ/c
G(δ, τ ) exp(iωτ)dτ

∴ exp
{

i
ω

c

[
nc(ω) − 1

]
δ
}

=
∫ ∞

δ/c
G

(
δ, t + δ

c

)
exp(iωt)dt. (14.6)

The function must have analytic continuation, with δ being
arbitrary, even if small. Figure 14.3: Part (a) shows an incident

light front consisting of a continuous
distribution of frequencies onto an
arbitrarily thin slab. Since it vanishes
for t < 0, but is built from a continuous
distribution in frequencies, it includes
the wave (b) at ω0, which is the only
component the slab is supposed to
absorb in this gedanken experiment.
But, to have destructive interference
for t < 0, the output will need to be as
shown in (c) where the ω0 component
must cancel out for all pre-time (t < 0).
That is, the output exists at ω0 for
t < 0. Causality is violated.

We may now apply these results. Let light arrive at the slab
at t = 0, with a sharp front. This is the wave from which the
ω0 frequency component will be sharply removed. Let the slab
of thickness δ be arbitrarily thin. Figure 14.3(a) shows the light
consisting of a continuous distribution of frequency components
that arrived. Figure 14.3(b) shows the component at frequency
ω0, which is removed upon passage. And what this means, with
this component arbitrarily removed in the frequency space, is that
the real space output wave will be spread out across all times,
including for t < 0. This breaks causality. The output exists in pre-
time or, to have it not exist in pre-time, the canceling signal must
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exist in pre-time. Both break causality, and therefore an arbitrarily
sharp notch may not exist at ω0.

If the real and the imaginary parts of a dielectric function or an
index of refraction were arbitrary, it would be possible to build
a system where the absorption explodes and the transmission
vanishes at only ω0 and nowhere else. This gedanken experiment
has refuted this possibility.

The absorption of a frequency, that is, the term dependent on
the imaginary part of the index, needs to be accompanied by a
compensating phase shift at all other frequencies, which depends
on the real part of the index in order for the causality not to be
violated. This phase shift then destructively interferes for all t < 0,
and the output signal does not show up before the input has
arrived, including the speed of light limitation. This also means that
the real part of the index and the imaginary part of the index are
related. A frequency-dependent relationship, that is, a dispersion
relationship, relates the real and the imaginary components in the
linear response analysis. This is the Kramers-Kronig relationship.
This is a general result of linear systems and not restricted just to
dielectric function.

Since inductors, capacitors and
resistors form linear networks,
Kramers-Kronig holds for the linear
system. This is what Bode plots are.
It also applies to mechanical systems.
You should think of other places that
this holds for, once you have read
Section 14.2.

14.2 Linear response theory and dielectric function

What does a system do when perturbed from its equilibrium?
The first term in any response’s expansion is linear. And, for a
range of interactions, since the starting equations are linear, there
is a significant range of input and output where the response
remains linear. Two cases where we have already seen in some

We should precisely state what
linear response means. For a single
input function x, if the response
is some function f (x), then, in a
linear response, for two independent
inputs of x and y, the response will be
f (x + y). This is easily seen to be true
for capacitors, inductors, resistors,
Schrödinger’s equation, Maxwell’s
equation in free space and dielectrics,
the drift-diffusion equation and many
others, but not for the Navier-Stokes
equation or the Boltzmann transport
equation, in the more generalized
way when both an electric field and
a magnetic field, as two independent
inputs, are included.

detail this linear response are fluctuation-dissipation and Brownian
motion (see Sections 8.7 and 8.8). We will see in the following
section, in our toy model view of the damped oscillator response
(Section 14.3), again these parametric connection between real and
imaginary (as opposed to expectation and fluctuation spread in
noise). Fundamental to much of this entanglement in the response This intimacy of state connection is

essential for efficiency; otherwise,
another damping activity leaks away
the energy, leading to inefficiency.
Transformers and power generators
need this very intimate electric and
magnetic energy stream coupling to
be efficient. The largest hydroelectric
turbine, as of 2017, made by Voith
for the Three Gorges Dam, generates
784MW. It had better be efficient,
pretty close to 100 %, or it will get
really hot.

is the intimate connection between the transformations taking place
between the interacting states and their close relationships. This
gives rise to reversibility. Chance and the possibility of states being
transformed to being many lead down the path to irreversibility.
But when states are tightly coupled at the level of the original
interactions, key transformation physical rules must hold: there
is conservation of energy and momentum across the transition’s
participating entities, and the energy transformations are connected,
even if they move from one form to another. The thermoelectric
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effect, for example, is the connection of one energy flux type to
another. This holds true for hurricanes, too. And even if these
conditions are non-equilibrium, this intimate connection results
in Onsager relationships, which reflect another form of linear
transformation.

We will employ causality and the Green’s function approach to
develop our ideas. The induced response to an external stimulus in
space and time can be written as

Z(r, t) =
∫ ∞

−∞
G(r, t|r′, t′)f (r′, t′) dr′ dt′, (14.7)

where Z is the response at the position (r, t), and G is the response
function at (r, t) to the stimulus f (r′, t′) at (r′, t′). This is a causal
function, whereby the response to stimulus only depends on
the past. We will also embed linearity in it; that is, employ it in
situations where linearity holds. In general, the Green’s function
will be complex and will be deterministic, with chance—therefore,

We have already seen one example,
the response of electrons undergoing
causal motion under the stimulus
of an electric field and chance of
scattering, which was real. In general,
though, functions and relationships
will be complex. It is an unfortunate
matter that we call functions with
imaginary components complex.
Imaginary is certainly an incorrect
term. It represents orthogonality,
not something magically brought
out of thin air. When two parts are
manifestations due to causations
from two separate parameter spaces
that both need to be described
for completeness, they are not
independent but orthogonal. Using
the imaginary axis is just a way to
represent this notion mathematically.
I have always wished that this simple
notion were taught properly in early
schooling. We unnecessarily turn
off bright minds by rules, edicts and
obtuse nomenclature. It is somewhat
similar to telling people in an early
class where power supplies, inductors,
capacitors, resistors, that is, some
of our electric elements first appear,
that you may not suddenly short
a power supply to a capacitor. Of
course you can. It is the same as why
should we not take the square root of
negative numbers. New ideas arise
and thinking develops by asking such
questions. The battery-to-capacitor
example leads to an understanding
of the displacement current as a real
current, and dissipation in capacitors
through radiation and other forms.
Imagine mathematics and all our
engineering learning without the
idea of i to represent an orthogonal
variable’s axis.

fluctuation and its consequence, dissipation—embedded in it. It is
just a function that sums the histories.

Now consider the general connection between the electric
displacement and the electric field. In the Green’s function form,
it can be written convolutionally as

D(r, t) = g0E(r, t) +
∫ ∞

−∞

∫ t

−∞
g(r − ξ , t − τ )E(ξ , τ ) dτ dξ , (14.8)

that is, that the displacement response in a linear medium, such
as a dielectric, is a function of some linear transformation of the
local field in time, and the sum of its history and nonlocal conse-
quences. There is an instantaneous part ( g0 is a constant, which
turns out to be the vacuum dielectric constant), and the nonlocal
space and time part g, which, in general, may be a tensor for
anisotropic media.

What Equation 14.8 says is that displacement, in general,
depends on the fields at that position at that time, and also on
neighboring positions and previous instants of time, through the
Green’s function g.

We will limit ourselves to just temporal dependence, with no
spatial, so that the displacement is spatially local. The Green’s
function then is

g(r − ξ , t − τ ) = δ(r − ξ )g(t − τ ), (14.9)

and the displacement may be written as

D(t) = g0E(t) +
∫ ∞

0
g(τ )E(t − τ ) dτ . (14.10)
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In the spatial reciprocal space, this local formulation, following Light’s speed, the movement of
electromagnetic energy, is an
immutable constant. We resorted
to this causality limitation in our first
pass at a discussion of causality for
the passage of light through a slab in
Section 14.1. It is important for several
problems, such as radiation from a
high speed accelerating beam, even if
it is only through bending, but not for
our semiconductor problems, where
the time and speed scales of interest
are much lower.

Fourier transformation, is

D(k, t) = g0E(k, t) +
∫ t

−∞
g(k, t − τ )E(k, τ ) dτ . (14.11)

Here, the time history is reflected in the integration limits, and the

Since the consequences of stimulus
from past times are included in the
Green’s function, it is also called  ̏the
propagator.˝ This propagational
approach of the Green’s function
is also called the Keldysh approach,
after the person who first described
and employed it. Mstislav Keldysh
is a name we have now encountered
often. He was another exceptional
Soviet mathematician and scientist.
He was also a moving force in the
space program, with interests in
mechanics, and was often called the
 ̏chief theoretician˝ in the Soviet
circles, somewhat akin to what Hans
Bethe was called in the Manhattan
Project.

propagation may be viewed both in time and in space, although
usually we don’t have to worry about nonlocal propagational
considerations. For simple media, we may ignore spatial consider-
ations.

In general, again Fourier transforming Equation 14.11 from the
time domain to the frequency domain,

D(k,ω) = g0E(k,ω) + E(k,ω)

∫ ∞

0
g(k, τ ) exp(−iωτ) dτ

= E(k,ω)

[
g0 +

∫ ∞

0
g(k, τ ) exp(−iωτ) dτ

]
. (14.12)

This we write as

D(k,ω) = E(k,ω)ε = E(k,ω)ε0εr

= E(k,ω)ε0 [1 + χ(k,ω)] . (14.13)

Equation 14.13 shows the few different ways we have employed the
symbols for dielectric function or permittivity (ε), dielectric function
or permittivity of free space (ε0), the relative dielectric constant or
relative permittivity (εr, also sometimes referred to as k or κ in the
high permittivity engineering literature), and the susceptibility (χ )
that is the consequence of the material beyond that of vacuum. In
general, with the exception of ε0, all are complex;

χ(k,ω) =
∫ ∞

0
g(k, τ ) exp(−iωτ) dτ (14.14)

is susceptibility, and

εr = 1 + χ(k,ω) (14.15)

is the relative dielectric function.
What does ε0 mean? It is the linear response function of vacuum.

It is the dielectric constant or permittivity that underlies the
relationship of the electric field to the magnetic field, through
the immutability of the speed of light. D = ε0E in vacuum. When
looking at the response of a material, when ω → ∞, we expect
and require that the material’s susceptibility to the field vanishes,
that is, that the material, although still there, is not responsive—
that is to say, that χ(k,ω) should be reflective of the material’s
extreme frequency response. The material still has atoms (electrons
surrounding the nuclei in a stable but slightly deformable form),
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and these will have consequences for how the ultra-high frequency
electromagnetic wave will behave. We brought in atomic polarization

in the high frequency discussion of
Chapter 12, but this is still not infinite
frequency. We need to go deeper
than X-rays, into a regime where
these particle models that we have
employed fail.

Equation 14.8, from which we started, has now been recast in a
form that, for varying causes in space and time, leads to a complex
function—the dielectric function ε(k,ω)—that gives us the response.
For many situations, this can be simplified, but, for all, one may use
a causal Green’s function and propagator relationship to arrive at
the response.

Whether we write the dielectric function,

ε(k,ω) = εr(k,ω) + iεi(k,ω), (14.16)

or the susceptibility function,

χ(k,ω) = χ r(k,ω) + iχ i(k,ω), (14.17)

these are causal relationships, and therefore the real and the
imaginary parts are related. They have arisen conjoined from the
propagator, accumulating in history through a causal relationship.
And while we may have employed this causal approach to this
specific problem, the approach is generalizable to all linear systems
problems. The propagational relationship will hold true for a wide
range of physical phenomena.

The propagator must be a physical function. This means it is
a real function. This means that the real part of the functions of
Equations 14.16 and 14.17 must be an even, that is, symmetric
function, as a consequence of the Fourier transformation argument.
Also, by complementarity, the imaginary part must be an odd, or
asymmetric, function.

We write the Green’s function as a sum of even and odd
functions in time dependence, that is, g(k, t) = ge(k, t) + go(k, t):

g(k, t) = 2ge(k, t) = 2go(k, t) ∀ t > 0, (14.18)

that is, the Green’s function takes an even form for all times
past the reference time. This means |ge(k, t)| = |go(k, t)|. It also
means that

g(k, t) = 0 ∀ t < 0. (14.19)

We can write these relationships in one equation as

g(k, t) = 2ge(k, t)
(t) = 2go(k, t)
(t), (14.20)

where 
(t) is the Heaviside function, defined as

The principal part of an integral,
written here using P as the notation,
is the value of the integral excluding
the divergence. So, if the divergence is
at b, then

P
∫ c

a
f (x) dx

= lim
δ→0

[∫ b−δ

a
f (x) dx +

∫ c

b+δ

f (x) dx

]

.
(t) =
{
0 ∀ t < 0,
1 ∀ t > 0

≡ lim
α→0

{
0 ∀ t < 0,
exp(−αt) ∀ t > 0.

(14.21)
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Now, we may perform the Fourier transform integrations over the
−∞ and ∞ limits of time to obtain χ(k,ω) ≡ χ r(k,ω) + iχ i(k,ω)

from Equation 14.14.
The Fourier transform of the function exp(−αt) is (α − iω)/

(α2+ω2), and, taking its limits (α → 0), it is πδ(ω)−(i/ω)P . P here

In the integrals we are working with,
the divergence is at ω =ω1 on the real
axis. With damping contributing to the
oscillator, it will be in the lower half of
the complex plane. For understanding
the meaning of principal value, its
importance to complex system analysis
and its relationship to where the poles
and zeros appear, see Appendix O.

is to indicate that the principal value should be chosen when inte-
grating. We write the transform of ge(k, t) as χ i(k,ω), and the trans-
form of go(k, t) as iχ i(k,ω), so that the result for the susceptibility is

χ(k,ω) = χ r(k,ω) − i
π

P

∫ ∞

−∞
χ r(k,ω1)

ω − ω1
dω1, or

= iχ i(k,ω) + 1
π

P

∫ ∞

−∞
χ i(k,ω1)

ω − ω1
dω1. (14.22)

The implication of this final relationship and our even-odd Green’s
function approach is that

χ i(k,ω) = − 1
π

P

∫ ∞

−∞
χ r(k,ω1)

ω − ω1
dω1, and

χ r(k,ω) = 1
π

P

∫ ∞

−∞
χ i(k,ω1)

ω − ω1
dω1, (14.23)

which are the Kramers-Kronig relationships for susceptibility in a
dielectric medium. One also sees these relationships written in the

The reason to approach this Kramers-
Kronig dielectric response through
susceptibility is that the susceptibility
falls off rapidly for large frequency,
and this makes integrals of the form

χ(ω) = 1
2π

∫ ∞

−∞
χ(ω1)
(ω − ω1) dω1,

the susceptibility function in the
Fourier transform space of time, with

(ω −ω1) as the Fourier transform
of the Heaviside step function, to
converge fast. ε(ω), on the other hand,
will converge to ε0.

formally equivalent alternative forms

χ i(k,ω) = − 2
π

∫ ∞

0

∫ ∞

0
χ r(k,ω1) sin(ωt) cos(ω1t) dω1 dt, and

χ r(k,ω) = − 2
π

∫ ∞

0

∫ ∞

0
χ i(k,ω1) cos(ωt) sin(ω1t) dω1 dt, (14.24)

as well as

χ i(k,ω) = − 2
π

P

∫ ∞

0

ωχ r(k,ω1)

ω2
1 − ω2

dω1, and

χ r(k,ω) = 2
π

P

∫ ∞

0

ω1χ
i(k,ω1)

ω2
1 − ω2

dω1. (14.25)

The real and the imaginary parts of complex functions that have no
poles in the lower plane or the upper plane are related through
Hilbert transformations. These Hilbert transforms provide the

The Kramers-Kronig-to-Hilbert
transform connection is discussed in
Appendix O, together with analyticity.

The Kramers-Kronig relationship
applies to susceptibility in
paramagnetic systems, which are
linear, but not to permeability, since
the permeability does not vanish in
the absence of stimulus, that is, it is a
nonlinear, spontaneous-polarization-
based energetic consequence. In
mechanics, the attenuation and
dispersion in ultrasonics too follow the
Kramers-Kronig relationship.

formal mathematical underpinning of the connection between the
real part and the imaginary part, since we are articulating this for
linear systems undergoing linear transformations. Any physically
acceptable causal function follows this relationship between the
in-phase response and the out-of-phase response in their linear
limits. In linear networks, the amplitude and phase relationships
that we call Bode relations are instances of Kramers-Kronig rela-
tionships. In communications, the variety of linear system responses
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subscribe to the Kramers-Kronig relationship. In paramagnetic
systems, Kramers-Kronig relationships apply to the susceptibility.

Figure 14.4: The real and imaginary
parts of the dielectric function for GaAs
and Si. Note that GaAs is partially ionic
and Si is covalent. Adapted from D. E.
Aspnes and A. A. Studna,  ̏Dielectric
functions and optical parameters of
Si, Ge, GaP, GaAs, GaSb, InP, InAs,
and InSb from 1.5 to 6.0 eV,˝ Physical
Review B, 27, 985–1009 (1983).

The consequences of these Kramers-Kronig relationships can
now be seen in the dielectric function behavior of semiconductors
(see Figure 14.4). GaAs being ionic, our prior comments from
Section 12.4 apply. ωTO is unchanged, while the ωLO oscillation
mode responds to the applied signal’s frequency. In Si, this effect is
absent. The important point to note here is that if we know one of
the two—the real or the imaginary—response curves in its entirety,
then the other one can be calculated. This is quite useful, since
sometimes one or the other of the responses is easier to measure.
Phase changes, for example, are much easier to measure through
lock-in techniques, while absolute response amplitudes are prone to
higher error.

If χ r = 0, then so should χ i = 0 for all frequencies, and
ε = εrε0 = (1 + χ)ε0 = ε0. A dispersionless medium, for example,
vacuum, cannot be dissipative. As a corollary to this, a dissipative
medium cannot be dispersionless. On the other hand, for the example
of Section 14.1, a notch precisely at ω0, that is, χ i = −δ(ω − ω0),
will lead to χ r = (1/π)(ω0 − ω)−1. This implies that if there exists a
resonance at this frequency ω0, then the propagation characteristics
change across a broader band. The phase shift changes sign at
ω0. At ω <ω0, the response the phase is ahead, and, for ω > ω0,
it is opposite and lags. It is this precise change in propagation The lead-lag response change at

resonance comes directly from
Equation 14.25. Take the linear system
analogy to an inductor of inductance
L and a capacitor of capacitance C.
The current-voltage response follows
Ĩ = −iωṼ/(ω2 − ω2

0), where ω2
0 = 1/LC.

Current is ahead in phase for ω <ω0
and lags for ω > ω0.

characteristics that made removing a frequency without affecting
anything else a physical impossibility.

If a medium is anisotropic, the Kramers-Kronig relation still
hold for D(k,ω) = ε(k,ω)E(k,ω). There has been nothing in our
derivation, except the condition of linear response, that prevents
different propagational features in different orientations. Now,
ε(k,ω) is a 3 × 3 tensor with 9 components (εjl(k,ω), in general),
which symmetry will reduce. For example, for cubic anisotropic
systems, there are 6 components, and, for highly symmetric
systems, there is only 1.

14.3 Linear response of a damped oscillator

The Kramers-Kronig representation has shown us that when
two characteristics, for example, the real and the imaginary parts
of a dielectric function, are equivalent when considered across
the entire frequency range that is their overlapping domain, then
they are really different views of the same function. This is analytic
continuity, which has been extended to the broader domain of the
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complex plane, employing causality for a situation with stimulus,
that is, perturbation. Refraction and absorption got connected. The
analyticity of the dielectric function in the upper half plane made
this Kramers-Kronig relationship possible, and we took care of the
poles through the use of the principal value.

The existence of poles in a response is a manifestation of
resonances in the linear system. In the dielectric function, we have
seen resonances in phonon behavior and in the electron charge
cloud behavior, and the Lorentz model was an integral part of this
resonance behavior—with and without damping. We look at this
next to link to the response we have noted.

14.3.1 Lorentz model

We use the Lorentz oscillator model for the atom to
show some of the general features. And we will follow this with
a more causal discussion of linear response through electrons. The
Lorentz model is the simplest of models, and, in Chapter 12, in The Lorentz model for physicists is the

Cauchy model for the mathematicians.our marginalia on oscillators, this was the first among many that
we mentioned. The electron-nucleus assembly consists of a large At the highest of frequencies, the

atomic polarization is the last man
standing!

mass and a small mass bound together as quantum strings under
Coulomb interaction. Consider a one-electron, one-proton nucleus
system. The general equation of motion—classical—for this is

m0r̈ + m0�ṙ + m0ω
2
0r = −eElocal, (14.26)

where Elocal = Ĕlocalê exp(−iωt), with the unit vector ê pointed
in the local field’s direction. We have assumed that the nucleus
is extremely heavy so that the reduced mass is quite close to the
electron mass. The local field Elocal is the field acting on the electron.
The damping � incorporates energy losses, such as through
radiation, scattering when the atom is in a solid, et cetera. The last
term on the left is the restoring force. With fields varying time- Why only the electric field as the

external field? Only because ev × B,
where B is due to the electromagnetic
field is very small and so is v in the
outermost orbits.

harmonically through an exp(−iωt) form, the solution is

r = − eElocal/m0

(ω2
0 − ω2) − i�ω

, (14.27)

which has an induced dipole moment of

p = −er = e2Elocal

m0

1

(ω2
0 − ω2) − i�ω

. (14.28)

The atomic polarizability α is

α = p
Elocal

= e2

m0

1

(ω2
0 − ω2) − i�ω

. (14.29)
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The macroscopic atomic polarizability with N atoms per unit
volume is

P = N〈p〉 = Nα〈Elocal〉 = χ aE , (14.30)

consistent with the symbols we have used up to this point. So, the
complex dielectric function arising in atomic polarizability is

εr = 1 + Ne2

m0

1

(ω2
0 − ω2) − i�ω

, (14.31)

so that, with the index of refraction nc = nr + ini = √
εr for unity

relative permeability,

nr2 − ni2 = 1 + Ne2

m0

ω2
0 − ω2

(ω2
0 − ω2)

2 + �2ω2
, and

2nrni = 1 + Ne2

m0

�ω

(ω2
0 − ω2)

2 + �2ω2
, (14.32)

a set of equations that may be compared to the equivalent expres-
sions in Equation 12.57, which showed the consequences of electron
conductivity. Figure 14.5: The Lorentzian lineshape

and relative dielectric response in the
Lorentz model. The real and imaginary
parts of the relative dielectric function
are shown.

The Lorentzian response behavior is shown in Figure 14.5.
εr increases with increasing frequency except in a narrow region
defined by the damping near the resonance frequency. This decrease
is an anomalous dispersion defined by the solution of

(ω2
0 − ω2±)

2 = ±�2ω2
0. (14.33)

The maximum in ε
i
r is given by

ε
i
r = Ne2m0

�ω0
, (14.34)

so long as the damping is not excessive. εi
r’s full width at half

maximum gives us the damping factor �.
Now if there are several states, the jth of which has Nj electrons

per unit volume with a resonance frequency ωj, then

εr = 1 + e2

m0

∑

j

Nj

(ω2
j − ω2) − i�jω

, (14.35)

with
∑

j Nj = N. The corresponding quantum-mechanical form is

εr = 1 + e2

m0

∑

j

Njfj
(ω2

j − ω2) − i�jω
, (14.36)

with ωj being the transition frequency between two states of the
atom, and fj being the oscillator strength.

For free atoms,
∑

j fj = 1, in equivalence to the classical
∑

j Nj = N.
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At low frequencies, with ω � ωj,

�[εr(ω)] ≈ 1 + N
e2

m0

∑

j

fj
ω2

j

(

1 + ω2

ω2
j

)

≈ 1 + a + bω2, and

�[εr(ω)] ≈ N
e2

m0

∑

j

fj�j

ω4
j

≈ cω, (14.37)

where a, b and c are specific constants. At the other extreme,

lim
ω→∞ εr(ω) ≈ 1 − N

e2

m0ω2

∑

j

fj

(
1 − i

�

ω

)
, with

�[εr(ω)] ≈ 1 − Ne2

m0ω2

∑

j

fj, and

�[εr(ω)] ≈ �
Ne2

m0ω3

∑

j

fj, with � = 1
∑

j fj

∑

j

fj�j (14.38)

as a mean oscillator strength. So, we have succeeded in making
connections between oscillator strengths, damping and collection of
atomic assemblies to the dielectric function in a toy model. We can
extend this by now including the electron charge cloud’s resonance
response too.

14.3.2 Oscillating electron model

The Lorentz model’s approach works reasonably well for
many of the contributions to electronic polarizability. We illustrate
this via the response of an electron as a particle in a charge plasma.
Scattering in the plasma implies a change. Equation 14.26 still
holds, although where damping comes from has changed, and the
local field could as well just be called a field, so Elocal = E . N is
now the number of electrons. Since these electrons are in the semi-
conductor, we will use the effective mass m∗. The relative dielectric
function can now be rewritten in a form that is slightly different,

εr = 1 + Nα = 1 + χ = 1 + ω2
p

ω2
0 − i�ω − ω2

, where

ω2
p = ne2

m∗ (14.39)

is the plasma frequency, with n as the electron density.
The model says that the dielectric function is an analytic function

with two poles in the lower half plane located at

ω± = −i
�

2
± ω0

[

1 −
(

�

2ω0

)2
]1/2

. (14.40)
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With a weak damping, � �ω0; ω± ≈ − i(�/2) ±ω0; and the residues
are ±ω2

p/2ω0. Damping also means � > 0, so the poles are in
the lower half plane. For a weak damping, there is a narrow peak These poles in the lower half of

the plane are direct consequences
of causality. You should convince
yourself of this through analytic
argument. That only certain analytic
functional forms will be allowed is
a consequence of causality—and the
reason why we emphasize it. I wish we
stressed causality just as much in the
real world of intra-earth matters.

around the resonant peak where the absorption will be. This is
reflected in the imaginary part of the relative dielectric function of
Figure 14.5. Spontaneously growing solutions are disallowed. The
index of refraction slowly increases over much of the frequency
range (a normal dispersion, with ∂nr/∂ω > 0) but, around the
resonance, an anomalous dispersion comes about (∂nr/∂ω < 0).

Figure 14.6: Green’s function contour
for the weakly damped single mode
oscillator.

We can now connect this causality discussion through the
Green’s function analysis with which we started. To evaluate the
Green’s function, we need to integrate along the contour shown in
Figure 14.6,

G(t, 0) = 1
2π

∮

C
[εr(ω) − 1] exp(−iωt) dω

= −i(r+ exp(−iω+t) + r− exp(−iω−t) ∀ t > 0

= ω2
p exp

(
−�

2
t
)
sinω0t

ω0

(t), (14.41)

which follows from −2π i times the sum of residues, and where
causality exists.

The Green’s function of Equation 13.7 lets us determine the
response to a stimulus by integrating up to any time via the
generalized Equation 13.7. The forced oscillator will have an initial
period of change followed by settling down to some steady-state
response. The upper limit of integration is time t; thus, only the
stimuli at earlier times enters. This is causality. The effect cannot
precede the cause. On the other hand, the Heaviside function
lets us close the path of integration. This shows that analyticity
and causality are connected, that the lower half plane allowed
integration and that both are satisfied. The response vanishes at

The curious student reader is
encouraged to pursue Appendix O,
where a few different strands of
the connections from causality are
emphasized.

t ≤ 0, initial growth is ω0 guided and a decay exists with a 2/� time
constant. When the applied signal is close to the natural frequency,
and the damping small, many of the earlier periods reinforce the
response at any t > 0, and this is through the sinc term, as it was
for the Golden rule.

Figure 14.7: Polarization as a function
of frequency, showing changes as one
sweeps past and beyond ultraviolet
(UV) frequencies.

We have now seen a number of oscillators that collectively affect
the dielectric function through the polarization response. Figure 14.7

Note that this is not the spontaneous
polarization of phase transitions,
which is, by its very nature of energy
transformation and statistical changes,
nonlinear.

sketches some of the major ones that we see in semiconductors
and which we have looked at in some detail in this text, all of
which still leave the assembly in the linear response regime so
long as the stimulation is small. First, there is some change from
static conditions at near microwave frequencies, due to permanent
dipoles. In infrared frequencies, one sees the ionic vibrations,
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that is, phonon contributions, and then, in visible and ultraviolet
frequencies, is the electron cloud response; farther on, one would
see the consequences of atomic polarization.

14.4 Quantum-statistical view of response

In Chapter 8, we explored the quantum-statistical view to
evolution through density matrices. In this chapter, we have
stressed the linear foundations of the foundational equations such
as that of Schrödinger. In Chapter 8, we also looked at the density Schrödinger’s is an equation of waves,

describing how the music must be
played. In Chapter 8, we also looked
at the density matrix equation is the
equation of realism, when, as in real
life, the notes get a bit off, attention
drifts, a string breaks or the cell phone
of somebody in the audience goes off.

matrix ρ, where ρnm = c∗
ncm, with cn,ms being the amplitudes in the

state representation. |ψ〉= ∑
n cn|φn〉 lets us know the average of an

expectation, given the state of knowledge. For an observable A, this
is A = ∑

n,m ρmnAnm. A = Tr(ρA). We also wrote, using the density
matrix, that a system perturbed from equilibrium responds as

[H ′,ρ] = −h̄
i

{
∂

∂t
ρ(t) + i

h̄
[H0,�ρ(t)]

}
, (14.42)

which is the quantum version of the Boltzmann transport equation.
This all represents, both in the state function and in this evolu-
tion, the statistical nature of the theory. Since ρ̂|n〉= pn|n〉, with
pn = 〈n|ρ̂|n〉= (1/N)

∑n
i=1 |〈i|n〉|2, ρ̂ is an operator for quantum-

mechanical probability distribution.
Response function is the parameter through which we tie the

energetics of the interaction to the observables. Table 14.1 shows
some examples of the response functions and their corresponding
observables in linear systems examples of relevance for an under-
standing of the semiconductors.

So, the dielectric function, the magnetic susceptibility and
the conductivities can all be viewed through the density matrix
evolution equation (Equation 14.42). This equation leads to

− h̄
i
∂

∂t
�ρ(t) = exp

(
i
h̄
H0t

)
[H ′(t),ρ0] exp

(
− i

h̄
H0t

)
(14.43)

Response function H ′ Stimulus Observable

ε Dielectric function −p · E Electric field Dielectric polarization
μ Magnetic susceptibility −m · H Magnetic field Magnetic polarization
κ Heat conductivity v · ∇T Temperature gradient Heat current density
σ Electrical conductivity −J · A Electric field Electric current density

Table 14.1: Response function, stimulus and the observable, for a few examples of linear responses.
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for evolution, and therefore the expectation for any observable A is

〈A〉t = Tr[(ρ0 + �ρ(t)A] = Tr(ρ0A) + Tr[�ρ(t)A], (14.44)

where the first term is the thermal equilibrium solution, and the
second term gives the evolution in time. This equation is reducible
in time using Fourier transformation. Also, one can see in this
equation that the response function is determined by the thermal
equilibrium through which the changes are connected when
disturbed by an excitation.

14.5 Summary

The perplexing question of how nonlinearities and irreversibil-
ity appear from linear equations such as those of Schrödinger and
Maxwell has appeared again and again in this text, and so has a
generous deployment of linear equations to describe numerous
physical phenomena. The former we have quasi-resolved through
the coupling from one to many states, wavefunction collapse,
entropy and free energy exchanges such as in-phase transitions that
bring spontaneous new properties to a system. The latter is for us
an example of small changes around stability, in systems under
stimulus. The electromagnetics of free space, and in a variety of
material conditions, has a linear response. Only under high energy
conditions, with material properties entering the nonlinear regime,
or in many phase transitions, and others, do we start seeing the
nonlinear response. Linear response is very much present in many
of the physical phenomena. In electrical forays, the use of resistors,
capacitors and inductors is evidence of their ubiquity. Only when
external energy is somehow transplanted into this medium—
as in gain that transforms static power to dynamic power—
or when the free energy in the medium is removed by being
changed into another form while still resident in the medium—as
in polarization—do we see breakdown of linearity.

Causality has implications for the linear response. A simple
example showed us, under the constraint of the speed of light’s
immutability, how phase shifts appear at all frequencies if absorp-
tion is concentrated at a specific frequency. The former is a real
part response while the latter happens due to the imaginary part
of the index of refraction. So, a linear response to a stimulus has
a complex response, with the real and the imaginary parts of the
response both due to the same causal stimulus, so embedded in
them is information that is tied between them. The information
may be spread out over a broad range such as of frequency. The



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

538 semiconductor physics

Kramers-Kronig relationship for the dielectric function tying the
real and the imaginary parts of susceptibility (or of its equivalent,
the index of refraction in this paragraph’s illustration) in a linear
response system is a statement of this embedded information. We
used the Green’s function approach to derive the Kramers-Kronig
relationship for the susceptibility. The significance of this is that if
one can make a measurement of one of these, one can predict what
the other would be like. Absorption measurement can tell us about
transmission measurement.

An oscillator is our unit of stability underlying the physical
medium. It was therefore useful to look at the linear response of
oscillators, with damping as a linear term in the response equation,
to explore how atoms and electrons will respond in the medium.
We noted a response that is an analog of the electrical system,
phase changes being ahead or lagging depending on stimuli
being slower or faster than the oscillator. Since a damping was
introduced, one obtained both a real component and an imaginary
component of the response in the dielectric function composed
of such oscillators. And the real part and the imaginary part are
related to each other. We found a similar behavior in the electron
charge cloud in a material responding to an oscillating field. Both
of these are examples of how the ionic and electronic contributors
to polarization respond in a material, and this underlies the
Kramers-Kronig response observed there. We then extended this
linear response view to the quantum-statistical viewpoint through
the density matrix and observables under stimulus, that is, a
perturbation.

14.6 Concluding remarks and bibliographic notes

Causality is a very rich word with multifarious meanings
based on one’s inclinations. The advent of quantum mechanisms
with the non-determinism and statistical nature embedded in them
made it a rich ground for debates between philosophers and scien-
tists. I particularly recommend Max Born’s Waynflete lectures1 for

Just the question of  ̏Is there free
will?˝ or  ̏Nature versus nurture?˝
will bring forth debates based on one’s
upbringing and all the baggage
(biases?) we accumulate in the
course of one’s life. Philosophers
and scientists are human too.

1 M. Born,  ̏Natural philosophy of
cause and chance,˝ Oxford (1949)

how he explores with a scientist’s tools physical phenomena while
showing how to avoid common contradictions of the everyday
approach to looking at these. To this, I will also add David Bohm’s
book2 as another writing requiring careful reading. The subject of

2 D. Bohm,  ̏Causality and chance in
modern physics,˝ Routledge, ISBN
0-415-17440-6 (2005)

correlation and its relationship to causality is dealt with by Kenny3.

3 D. A. Kenny,  ̏Correlation and
causality,˝ Wiley, ISBN 978-0471024392
(1979)

For understanding Kramers-Kronig relationships in depth, that
is, the nature of dispersion with the subsumed information in it, see
Nussenzveig4. Another, stretching out to the quantum-mechanical

4 H. M. Nussenzveig,  ̏Causality
and dispersion relations,˝ Academic,
Library of Congress 72-7685 (1972)
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view to response, is by Sethna5, with a number of interesting 5 J. P. Sethna,  ̏Statistical mechanics:
Entropy, order parameters, and
complexity,˝ Oxford, ISBN 13 978-
0198566779 (2011)

exercises sprinkled throughout for computation-based exploration.
The linear response, as we will see in Chapter 16, also shows

up in the connection between system response and the system’s
fluctuation response. Pécseli6 explores noise, but also the Kramers- 6 H. A. Pécseli,  ̏Fluctuations in

physical systems,˝ Cambridge, ISBN
13 978-0521655927 (2000)

Kronig relationships from an electrical engineering perspective.
We had also remarked on the analytic function connection of

these relationships. A good text for exploring analytic functions
and these consequential relationships is by Kelly7. Cauchy principal

7 J. J. Kelly,  ̏Graduate
mathematical physics,˝ Wiley-
VCH, ISBN 13 978-3-527-40637-1
(2006)

value, the dispersion relations and other rich mathematical tools are
spread out throughout this text.

For those interested in the broader implications of Kramers-
Kronig relationships, Bode plots are another way of looking
at them. Bode plots are in terms of magnitude and phase. The
mechanical response of systems also shows Kramers-Kronig
features, since they are linear responses. A good paper worth
reading is by Bechoefer8.

8 J. Becchoefer,  ̏Kramers-Kronig,
Bode, and the meaning of zero,˝
arXiv:1107.0071v1 (2011)

14.7 Exercises

1. Why are the real and the imaginary parts of the susceptibility—in
all these linear response functions—related to each other? Please
give a physically intuitive short reason. [S]

2. Our argument related to linear response theory, that is, the linear
response to perturbations of the equilibrium state, has been that
there are fluctuations—fast processes, and the system responds to
external parameters in the presence of these fluctuations, leading
to fluctuation-dissipation. A rapid change causes irreversibility
in the presence of these fluctuations and hence the dissipation.
The Kramers-Kronig relationship, fluctuation-dissipation, the
second law of thermodynamics and Onsager relations are all
manifestation of this dynamics. Is this true irrespective of the
particular Hamiltonian describing the process of interest? Please
provide a short argument. [S]

Figure 14.8: Integration path for
the Kramers-Kronig relationship
demonstration, with R →∞ and r → 0.

3. Prove the Kramers-Kronig relation by integrating the susceptibility
χ(k,ω)/(ω1 − ω) along the path shown in Figure 14.8 and parsing
the real and the imaginary parts of the result. [S]

4. If one measures the absorption spectrum, can the refractive index
be computed? [S]
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5. The Kramers-Kronig relationship must hold also for all functions
built out of εr and εi. Find the relationship between dεr/dω and
dεi/dω. [S]

6. Derive the Kramers-Kronig relationship for the real and the
imaginary parts of the complex index of refraction nc. [S]

7. A solid exhibits an absorption band at frequency ω0 of width �,
with an extinction coefficient of

ni =
{

ni
0 ∀ ω0 − �/2 ≤ ω ≤ ω0 + �/2,

0 otherwise.

What is the refractive index at low frequencies if ω0 � �? [S]

8. Fourier integrals let us write the general equation

E(r, t) =
∫ ∞

−∞
E(r,ω) exp(iωt) dω,

where the fields are complex transforms in frequency or time of
each other. Show that
• E(r,−ω) = E∗(r,ω),

• in a linear isotropic medium, one may write σ(r,ω) and ε(r,ω)

such that

J(r, t) + ∂

∂t
D(r, t) =

∫ ∞

−∞
[σ(r,ω) + iωε(r,ω)]E(r,ω) exp(iωt) dω,

and

• σ(r,−ω) = σ(r,ω), and ε(r,−ω) = ε(r,ω), which implies that the
real part of (σ + iωε) is an even function of frequency, and the
imaginary part is an odd function of frequency. [S]
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Onsager relationships

Thermal equilibrium arises in the accumulation of
all the interactions taking place in a system in the absence
of any external stimulus, except thermal and particle exchange in
contact with its large reservoir environment. The equilibrium state
then is one where the macrostate with larger number of different
configurational possibilities has a higher chance of existence than
the more unique macrostates with only a few possibilities. In In the classroom, the possibility of

all the molecules being confined to
one corner instead of being evenly
dispersed with some fluctuations
around that distribution is infinitely
smaller. It is possible to characterize
the pressure or temperature of
the room.

thermal equilibrium, in detail then, less is known about the precise
configuration of the system, since the number of possibilities is
higher, and although its macrostate provides expectations for
observables, these observables will also fluctuate.

Entropy in this sense is a lack of information in detail about the
system and, in thermal equilibrium, it is a maximum. But as we
saw in the fluctuation-dissipation discussion through Brownian
motion in Section 8.8, an important notion is that when macroscopic
quantities deviate from equilibrium, the linear response, that is,
the first-order response, can be reformed to connect the response
through the random interactions taking place. Fluctuations are
noise, fluctuations are drag and fluctuations are tied to the lack
of pinning down of the precise description of the system, and
therefore there is entropy. An important notion here is that since
fluctuations are these random interactions, and the response to
external forces are also beholden to them, response to any change in
an external stimulus, taking place under these random interactions,
will also show these characteristics. The fluctuations follow the same
decay rules as the macroscopic response and decay to the external forces.

It is the microstates-to-microstates interaction where reversibility,
including time reversibility, is applicable and where one may say
that, in some sense, a local equilibrium exists, even though local
equilibrium is absent at the macroscale through the exponential
rise in one direction, the one corresponding to the response. So,

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001
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linear response in a way connects off-equilibrium to equilibrium,
and fluctuation-dissipation is an outcome of it.

15.1 Flux-flow and Onsager relationships as linear responses

Another very important consequence is the existence of
Onsager relationships, which express the equality of certain ratios
between pairs of canonical flows and forces when thermodynamic
systems are out of equilibrium. Onsager relationships are fundamental

and significant enough that many
call their statement as the 4th law
of thermodynamics. Nernst, who
formulated the 3rd law, and called
that law  ̏my law,˝ would have been
unhappy about the appearance of a
4th one. His claim would be that there
were three people (Rudolf Claussius,
William Rankine and Germain Hess)
associated with the first law, two
people (Sadi Carnot and Rudolf
Claussius) with the second, and only
one—him, Walther Hermann Nernst—
with the third. Ipso facto, there could
be no more thermodynamic laws.

A few examples will illustrate this canonical flux-flow equality of
ratios. It is quite palatable that heat flows from hot to cold, that is,
from higher temperature to lower. Just some more thinking along
the same lines, of numbers and of the rapidity of interactions, also
leads us to the idea that, in the presence of pressure difference,
particle flow will take place from higher to lower pressure, with
concentration as the physical reason. But now consider what hap-
pens when temperature and pressure vary. Temperature difference
at constant pressure causes particle flow. This is convective flow,
as in water boiling on a stove. Pressure difference at constant
temperature causes heat flow. We saw this in the concentration
dependence of heat flow in semiconductors. What Onsager tells
us is that heat flow per pressure difference, and density flow per
temperature difference, are equal. This is not obvious but follows
from the argument of local microscopic reversibility when deviating
slightly from equilibrium. Tornadoes and hurricanes are an example
of these connections and relationships. In the thermoelectric effect,
this same connection holds true for these flows and forces, that is,
conjugate variables. The relationships that connect the transport
coefficients relating fluxes, which tend to restore a system to
thermodynamic equilibrium so long as the system is not too far
from this equilibrium, and the forces inducing such fluxes are
symmetric and these are the Onsager relationships.

There exist a number of empirical laws that relate fluxes in These are empirical in their origin
but placed on a firmer footing,
where they may be seen as a good
approximation in a restricted domain
from fundamentals. Newton’s, for
example, is Ehrenfest’s expectations
from quantum at macroscale, or Ohm’s
from quantum Liouville through a
string of approximations including
that of Boltzmann transport to a
Brownian situation.

terms of forces instantaneously. Table 15.1 illustrates a salient
few. All these  ̏laws˝ can be written in terms of the gradient of
a canonical force (∇r�). Their distillation, as well as their origin,
is that one finds a parameter of response and a parameter of the
forcing function that are empirically observed to be related linearly
to the gradient, while maintaining all other conditions invariant. For
example, for all the laws of Table 15.1, except Fourier’s, temperature
is kept constant. In all of these examples, energy in one form is
converting to energy in another form, with potential and kinetic
front and center.
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The energy lost that is not accounted for—heat—is entropy Frictional loss is loss to modes of
vibrations, within atoms, of atoms,
of electrons, and so on. Heat is, as
we have seen, an energy form quite
intimately tied to kinetic energy.

increase in the off-equilibrium conditions. So, take the example
of Figure 15.1, where passage of current in a conducting medium
causes heat generation, as a restricted example of our thermoelectric
discussion of Subsection 9.2.3. This is the Ohm’s law situation,
where the current density is

Figure 15.1: Heat generation and
temperature and potential gradients
when current is flowing in a
conductive medium, and the only
source of heat generation is in the
friction of the particle flow.

Jφ = − 1
ρ

∂φ

∂y
= −σ

∂φ

∂y
, (15.1)

where ρ is the resistivity, and σ is the conductivity. The heat
generation may be viewed in entropic terms. Entropy is
being generated due the equilibrium being disturbed. This entropy
generation density (s)—a flux—is

s = Jφ

[
− 1

T
∂φ

∂y

]
= 1

T
ρJ2φ . (15.2)

One can see meaning behind this equation. Heat is �Q = T�S,
so an inverse temperature must appear in the denominator of an
equation relating s. One can even assign meaning to the bracketed
term of Equation 15.2. It is an electric force. In Equation 15.1, a
flux—the current density—was caused by the forces applied, which
can be viewed as a flux-force relationship. In Equation 15.2, we
have a specific new instance of a canonical flux (of entropy) being
generated by a canonical force (the electric force as defined here).
This equation satisfies

ρJ2φ = sT, (15.3)

where the left-hand side is Joule heating flux, which is the heat
energy density flow per unit time. And it is in balance with the
entropy density per unit time times temperature. Joule heating
develops a temperature gradient and is caused by charge flow,
and one gets a coupled transport of heat and charge that satisfies
Equation 15.3. If a temperature gradient exists, there is also a flux
arising in the thermal nonequilibrium. The entropy relations taking
into account the consequence of external biasing causing current,

Table 15.1: Flow and flux relationships
for some classical empirical laws.Law Relationship Definitions

Ohm’s Jφ = − 1
ρ

∂φ
∂y = −σ ∂φ

∂y Jφ : Current density

ρ: Resistivity
σ : Conductivity

Fourier’s JT = −κ ∂T
∂y κ : Thermal coefficient

Fick’s J1μ = −D ∂c1
∂y D: Diffusion coefficient

c1: Concentration of the 1st phase

Darcy’s JQ = −KA ∂h
∂y

JQ: Discharge flux
KA: Conductivity times area
h: Head of the porous column
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which causes temperature changes, which cause a thermal flux, then
says, in these linear conditions, that

s = JT
∂

∂y

(
1
T

)
+ Jφ

[
− 1

T
∂φ

∂y

]
. (15.4)

Here, s is still the entropy production rate ( J/m3 · s · K), with the first
term—the new term—being a product of a thermal flux (JT) and its
canonical conjugate—a thermal force—given by ∂/∂y(1/T). Entropy
generation is the energy in heat form ( ̏the not-useful form˝), so
we can associate it with a thermal flux JT. We have created two
equations—one of electrical flux and one of thermal flux—in terms
of two canonical forces—one electrical and one thermal—for which
we now have a relational form.

This thermal dissipation under charge flow discussion for the
example can be folded in as

Jφ = Lφφ

[
− 1

T
∂φ

∂y

]
+ LφT

∂

∂y

(
1
T

)
,

JT = LTφ

[
− 1

T
∂φ

∂y

]
+ LTT

∂

∂y

(
1
T

)
. (15.5)

The first equation is for electric current flux. The second equation
is for thermal current flux. They are writable through a linear
combination of conjugate electric force and thermal force. Fluxes
and forces are in a tensorial order. This was an example rooted in The proof of Onsager relations stretch

over 22 and 15 pages of Physical
Review. We will not repeat them here
and will keep our argument grounded
in physical underpinnings.

an electrical stimulation, exploring the energy exchange between
the electrical from (a potential form) and the thermal form, together
with the entropy.

Onsager tells us that each flux can be written as a linear
combination of fluxes and forces as a linear perturbation from
equilibrium. Energy exchanges take place in many forms, and
these exchanges in different forms can be put together as a linear
addition because of the linear response, while the equality of ratio
holds between pairwise forms due to their microscopic origins.
In the variety of situations we have considered, heat, electrostatic
energy, concentration and free energy are the forms of energy that
we have encountered most often. So, consider thermal (heat), charge
(electrostatic energy), chemical energy (particle concentration) and
free energy (Gibbs), which is exchanged between all these forms in This is generalizable. One could have

used other forms in which energy
resides, for example, a magnetic form.

the conditions we are interested in.
The entropy production is a sum of all conjugate flux-force pairs,

such as in the example discussed. Taking the major forms, the
entropy production is

s = JT
∂

∂y

(
1
T

)
+ Jφ

[
− 1

T
∂φ

∂y

]
+

∑

i

Ji
μ

[

− 1
T

∂μi
T

∂y

]

+ r
(

−�G

T

)
. (15.6)
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The first two terms are the same as the ones we discussed in our
starting example. The third term describes the consequences of
concentration changes—chemical potential changes—and has been
generalized to multiple phases, for example, species (electrons
and holes!). The last term is the Gibbs free energy force. It is the
Gibbs free energy in these conditions that is being exchanged in
different forms. Entropy, heat, electrical energy, chemical energy and
Gibbs free energy are all the terms exchanging, and this equation
balances them.

Next, the linear system formulation and the flux-force argument
assert that the fluxes are linear homogeneous functions of all the
forces of the same tensorial order:

JT = LTT

∂

∂y

(
1
T

)
+ LTμ

[
− 1

T
∂μ1,T

∂y

]
+ LTφ

(
− 1

T
∂φ

∂y

)
,

Jφ = LφT

∂

∂y

(
1
T

)
+ Lφμ

[
− 1

T
∂μ1,T

∂y

]
+ Lφφ

[
− 1

T
∂φ

∂y

]
,

Jμ = LμT

∂

∂y

(
1
T

)
+ Lμμ

[
− 1

T
∂μ1,T

∂y

]
+ Lμφ

[
− 1

T
∂φ

∂y

]
, and

r = l
(

−�G

T

)
, (15.7)

where the first equation is for heat (thermal), the second is for
electric, the third is for mass (chemical composition) and the last
is for Gibbs free energy exchange. One phase is assumed here. The
diagonal elements in these relationships are related to the various
parameters of the classical laws: κ for the thermal coefficient, ρ for
resistivity, D for diffusivity, et cetera.

Finally, Onsager relations connect the independent fluxes and
forces:

LTμ = LμT, Lqφ = Lφq, and Lφμ = Lμφ . (15.8)

The physical argument to justify these forms is the following.
The Boltzmann entropy describes for this thermodynamic off-
equilibrium situation the fluctuations that exist at equilibrium.
Microscopic reversibility also holds, and when the system is
disturbed, the macroscopic laws describe the relaxation of fluc-
tuations to equilibrium through the slow and fast forces at work
in the midst of all the scattering processes. If one looks at time
scales where sufficient number of the microscopic events take
place leading to a proper expectation of the macroscopic picture,
then, given independent forcing functions—our variables—the
responsiveness of the system for any specific canonical force i is

αi(t + τ ) = αi(t) + τ
∑

j

LijXj, (15.9)



OUP CORRECTED PROOF – FINAL, 17/8/2020, SPi

546 semiconductor physics

where the sum term describes the fluctuation events, such as
scattering, that are connected microscopically and that change the
state of the system from what it was at time t to what it will be
at time t + τ , the microscopic events having taken place under
microscopic reversibility for the time duration of τ . This is the
basis for the linearity connecting the macroscale with its long time
response to the microscale and its small time response.

The fluxes are linear and homogeneous functions of the forces.
The coefficients are functions of the state variables (the macroscopic
parameters). In a practical situation, one may make observations
and connect empirical transport coefficients to the Onsager coeffi-
cients, which are symmetric.

In Equation 15.7, which is, of course, writable in a matrix form,
the coefficients along the diagonal are the dissipative elements.
They are self-interaction terms, not energy exchange interaction
terms. The off-diagonal terms represent work through reversible
processes. If off-diagonal terms are large, that is, the exchange
coupling is efficient, the dissipation is small and the entropy
production is low. These connections make practical measurements
useful in the design and prediction off-equilibrium of complex
situations, because the observations are a manifestation of Onsager
off-equilibrium linearity.

15.2 Examples of Onsager consequences

We can now illustrate some of the implications of Onsager’s
linear response relationships.

Fick’s law, in Onsager terms, is

J1μ = −D
∂c1
∂y

= −Lμμ

1
T

∂μ1,T

∂y
= −Lμμ

R
c1

∂μ1,T

∂c1

∂c1
∂y

, (15.10)

where R is the molar gas constant, and the canonical chemical
force is (1/T)∂μ1,T/∂y, with T subscripting indicating a constant
temperature condition. Fourier’s law, in Onsager terms, is

JT = −κ
∂T
∂y

= LTT

∂

∂y

(
1
T

)
= −LTT

T2
∂T
∂y

. (15.11)

So, Lμμ and LTT are the Onsager coefficients for chemical force
and thermal force, respectively. And LμT = LTμ, because of the
connection between independent fluxes and forces.

These connections between independent fluxes and forces can be
seen through a set of examples that one doesn’t normally discuss
but which involve chemical and thermal forces. The Soret effect is
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the phenomenon of thermal diffusion in hydrodynamics whereby
thermal gradients can be employed to separate small species from
large species. The Dufour effect is the complement of the Soret effect.
Diffusion now causes the thermal gradient. These can be seen
through the following:

JT = LTT

∂

∂y

(
1
T

)
+ LTμ

(
− 1

T
∂μ

∂y

)
, and

Jμ = LμT

∂

∂y

(
1
T

)
+ Lμμ

(
− 1

T
∂μ

∂y

)

∴ JT = −
(

LTT − LμTLTμ

Lμμ

)
1

T2
∂T
∂y

+ LTμ

Lμμ

Jμ. (15.12)

This equation shows the power of this Onsager approach. The
presence of a chemical gradient force reduces the thermal conduc-
tivity, as the first term’s bracketed coefficient shows. In addition,
as a result of the coupling, the second term says that there is a
convective heat current arising from the coupling. This is not quite relevant to solid state,

but, in a cell membrane, with the salty
watery environment and temperature
differentials, the mass flow and
heat flow are beholden to these
linear response interrelationships.
Neuronal response too is subject to the
Onsager relationships together with
the other intricacies of the dynamics
there.

We complete this discussion by returning to thermoelectrics,
for which we derived a number of energy exchange effects. For
this example, we now also include possibilities as a source of
energy through energy exchange (see Figure 15.2). The relevant
relationships are

Figure 15.2: A thermoelectric
arrangement for cooling and voltage
generations.

s = JT
∂

∂y

(
1
T

)
+ Jφ

[
− 1

T
∂φ

∂y

]
,

JT = LTT

∂

∂y

(
1
T

)
− LTφ

(
1
T

∂φ

∂y

)
, and

Jφ = LφT

∂

∂y

(
1
T

)
− Lφφ

(
1
T

∂φ

∂y

)
. (15.13)

Conduction and charge transfer superpose, and we can rewrite
this as

JT = − 1
T2

(
LTT − LTφLφT

Lφφ

)
∂T
∂y

+ LTφ

Lφφ

Jφ . (15.14)

This equation describes the reversible heat transport in the con-
ductor. In this equation, the prefactor of the second term shows
that coupling leads to heat transport via electric current, which is
a convection. This is the Peltier heating term. The first bracketed
term now says that the thermal conductivity of this stationary state
is lower than that of a homogeneous conductor. This equation also
tells us what the Peltier coefficient is. By definition,

� = JT
Jφ

∣
∣
∣∣
dT=0

= LTφ

Lφφ

. (15.15)
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To calculate the voltage generation from the temperature gradient
when there is a particle current,

�φ =
∫

L

∂φ

∂y
dy =

∫

L

[
�

T
∂T
∂y

− T
Lφφ

Jφ

]
dy. (15.16)

Here, the first term in the integrand is work arising in the tem-
perature gradient, and the second term gives the ohmic loss in the
presence of the temperature gradient. The Onsager equations gave
us quite straightforwardly the positional accumulation of potential
in the presence of transport.

To find out the maximum thermoelectric potential, we employ

�φ

�T

∣∣
∣
∣
Jφ=0

= − �

T

∣∣
∣
∣
dT=0

. (15.17)

The Seebeck coefficient and the Peltier coefficient can be related
through the Onsager relationships. The Seebeck coefficient is easier
to measure, since it is measurement of a voltage with no current
flowing. And, from that, the Peltier coefficient can be determined.

We now show the entropic connection in this example:

JT
Jφ

∣
∣
∣∣
dT=0

= LTφ

Lφφ

= �

F
= 1

F
TS∗. (15.18)

The entropy is being transported by electrons and holes, and if we
deconvolve the potential contributions,

�φ =
∫ L

0

∂φp

∂y
dy +

∫ 0

L

∂φn

∂y
dy =

∫ L

0

∂φp

∂y
dy −

∫ L

0

∂φn

∂y
dy

= −
∫ L

0

(
S∗

p
1
F

∂T
∂y

− rpj
)

dy −
∫ L

0

(
S∗

n
1
F

∂T
∂y

− rnj
)

dy

= − 1
F

(S∗
p − S∗

n)�T + (rp + rn)j�y, (15.19)

which says that the entropic contribution generates and that there is
a potential drop across the resistances.

If used at the idealization of no current, this thermoelectric
generator has

�φ

�T

∣∣
∣
∣
j=0

= − 1
F

(S∗
p − S∗

n). (15.20)

So, while the thermoelectric discussion of Chapter 9 was very
instructive in understanding the implications of fluctuation-
dissipation in the midst of multimodal stimulation, it generated
equations that became increasingly harder to interpret unless
followed through carefully. Here, Onsager’s linear off-equilibrium
flux-force argument leads to the same conclusion in a more general
and intuitive way.
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15.3 Summary

The Onsager reciprocity relations encapsulate the most
basic description of how out-of-equilibrium systems increase in
entropy due to the fluxes of matter and energy that the thermo-
dynamic forces—the affinities—generate. They are statements of
linear relationships in the off-equilibrium response of the ensemble.
Onsager’s reciprocity relations relate linear response coefficients
between flux densities and thermodynamic forces to one another.
And these also correspond to fluctuations and dissipation, as we
noted the connections in our discussion of Brownian motion and
other types of fluctuation-dissipation.

The relationships let us make calculations at a system-scale quite
conveniently, and we saw examples of this in the thermoelectric
response. So far, in this text, we have found numerous such
correspondence relationships. These various relationships—
Kramers-Kronig, Brownian motion, fluctuation-dissipation and
Onsager—are tied to each other in a deep way. In the next chapter,
we will see one more connection, that of noise, which is due to the
fluctuation-dissipation correspondence.

One power of Onsager relationships that we did not discuss is
that they allow one to tackle surfaces, edges and other dimension-
ality and scale changes within a common framework, unlike the
detailed scattering-based formulations, where one had to tackle the
problem in detail for the scattering-dominated flow and calculate
the parameters accordingly.

15.4 Concluding remarks and bibliographic notes

Onsager relations provide another example of linear response
and the adequacy of the thermodynamic description for irreversible
phenomena.

A good starting point for seeing the connections between
classical thermodynamics, equilibrium and the Onsager description
in off-equilibrium with conjugate forces is the paper by Miller1 that

1 D. G. Miller,  ̏Thermodynamics
of irreversible processes,˝ Chemical
Reviews, 60, 15–37 (1960)

explores electrokinetics, thermoelectricity, isothermal diffusion, ther-
momagnetism and galvanomagnetism. A more complete discussion
of linear response theory, straddling its various manifestations,
including Onsager relations, is the open internet archive lecture
resource2 from Hertel.

2 P. Hertel,  ̏Linear
response theory,˝ available
at https://archive.org/
details/Peter_ Her-
tel___Linear_Response_Theory
(2001)

Kubo’s contribution3 is a complete and advanced thesis on

3 R. Kubo,  ̏Some aspects of the
statistical-mechanical theory of
irreversible processes,˝ in Lectures in
theoretical physics, Interscience, Library
of Congress 59-13034, 120–203 (1959)

irreversible processes and the centrality of Onsager relationships
in them.
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A text-based source4 for a more chemistry-centric discussion is by 4 S. Kjelstrup and D. Bedeaux,  ̏Non-
equilbrium thermodynamics of
heterogeneous systems,˝ World
Scientific, ISBN 13 978-981-277-913-7
(2008)

Kjelstrup and Bedeaux. For heat transfer, with a special focus on the
nanoscale, is the book5 edited by Volz.

5 S. Volz (ed.),  ̏Microscale and
nanoscale heat transfer,˝ Springer,
ISBN 13 978-3-540-36056-8 (2007)

15.5 Exercises

1. Why should off-equilibrium conditions of energy exchange have
linear relationships? [S]

2. We will probe the thermoelectric effect for its Onsager reciprocity
manifestation. The thermal current and the electric current are the
two manifestations under temperature and potential, respectively,
as the stimuli. Using entropy change as the basis, explore and
show that the correspondence between fluctuations in kinetic
energy and macroscopic currents leads to the current relationships
that Onsager relationships show. [M]
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Noise

This chapter is about causality and chance coming
together as noise and also of integrating the various facets of
fluctuation-dissipation into noise. Our approach will be physical
and conceptual, with an interest in attributes and consequences of
interest for devices where this approach is quite relevant.

For those interested in more general,
fundamental and mathematical
probing from a statistical viewpoint,
the appendix on noise in S. Tiwari,
 ̏Nanoscale device physics: Science
and engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4 (2017), is
recommended as a complement to this
discussion.

Noise has appeared again and again as a fluctuation, that is, a
form of randomness, in the characteristics observed. It may be a
seemingly random spread that exists over multiple measurements,
even as there is a predictable expectation of a system’s response.
Or it may be a seemingly random fluctuation that is observed
in a sequence of time. So, this noise to us is a random deviation

We must make a clear distinction
between classical statistical
randomness and quantum
randomness. This difference between
classical and quantum randomness
is very important (see S. Tiwari,
 ̏Nanoscale device physics: Science
and engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4
(2017), in the discussion of Bell’s
inequalities). Zero point fluctuations
are also random, and therefore a
noise, but a quantum noise. We
will stick here with the noise that
appears in a system consisting of
classical or quantum objects that
are assembled in numbers but are
not entangled and therefore have a
distribution, when observations are
made, that is bereft of entanglement
consequences. An electron moving in
a semiconductor acquires noisiness
through its movement in the midst
of random interactions. A quantum
harmonic oscillator has the noise as
a natural outlet of uncertainty in the
precise determination of the canonical
coordinates. Engineers do tend to
have a tendency to play loose. This
is a characteristic that is quite useful
sometimes but is also irritating and

from expectation in any measurement. If we measure a voltage
across a resistor by passing a certain current through it, V = IR
would be valid in classical limits as really 〈V〉 = 〈IR〉, where one
may perform the statistical averaging in time or over resistors of
identical R. Within the resistor, there exist numerous scattering
events—fluctuations—that lead to the dissipation represented by
R but which are also manifested in one measurement from another
in that the precise voltage measured will not be the same, even if,
after many measurements in time, that 〈V〉 asymptotes to a precise
value for a precise current I impressed on this system. Sometimes it
is larger, some it is smaller, and the first statistical measure of this
difference would be that 〈V2〉 �= 〈V〉2; that is, the voltage signal has
a variance. We employ this or equivalent measures of the random
deviation over a collection of such measurements that we will call
noise.

In this chapter, we start with the understanding of a few
important concepts—important here and elsewhere too where
we have used related ideas and terms—and follow it with the
development of an understanding of noise through a treatment of

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001
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electrons in a solid structure. This approach will directly draw on a source of failure sometimes. Cross-
talk is often lumped in with noise.
And there are books with such titles.
Cross-talk is deterministic, knowing
enough about the pulses coupling and
the system, particularly the system’s
capacitances, cross-talk’s effect can be
undone. True randomness cannot be
undone.

our semiconductor discussions.

16.1 Characterization of signals and their randomness

Noise is a stochastic process representing a random variation
in a function in time and space. Most of our concern will be with A stochastic process is the collection of

random variables that take on values
from a common set in a common
probability space. We encountered
this state set and its evolution in the
Markov discussion of Section 8.9.

time. As a random process, it needs a statistical characterization.
For any system, the averaging may be accomplished over a time (or
space) interval, or it could be done over many identical systems, as
sketched in Figure 16.1. The former is time averaging, and the latter
is ensemble averaging.

For time averaging, and ensemble averaging, one can define
some of the important characteristics of this stochastic function z(t),
as summarized in Table 16.1.

When time averages and ensemble averages are equal, the ensemble is an
ergodic ensemble. Not all ensembles are ergodic. The autocorrelation

A number of these characteristics
are related to the Markovian and
Kalmogorovian probabilistic
discussions of sequence of events.
The functions we are discussing are
a sequence of events in the game of
causality and chance. The chance
part we still have to define more
clearly. Ergodic’s etymological origin
is the Greek word εργ oν (work) and
óδóς (way). Ergodic processes, with
time evolution, lose memory of the
initial state. In thermodynamics, the
ergodicity hypothesis is the matching
of the behavior of a system in time
with that over the phase space. It
implies that, given enough time, all the
points of the probability space will be
reached. If Liouville’s theorem applies,
then the starting states in phase space
of the system determine its trajectory,
and the phase-space volume is a
constant. And not all the phase space
can be sampled in finite time. Phase
transitions—symmetry breakdown—
are examples of nonergodicity. If one
moved through a Curie temperature,
the average order parameter should
have remained unchanged.

is a measure of how the nature of the signal changes with time
delays, and its equivalent measure—covariance—is a measure of
the difference of the nature of two different signals. If signals are
discrete, one may look at these measures discretely through sum-
mations, and if they are continuous, one resorts to the equivalent
integration approach. We have p2 as a second-order probability
distribution function; that is, it looks at how two different signal
streams appear under the time-shifting operation that lead to the
integrated covariance measure of the two streams. In general, one
may write a kth order probability density function as

pk(z(t0), z(t1), . . . , z(tk); t0, t1, . . . , tk)

= pk(z(t0), z(t1), . . . , z(tk); t0 + δt, t1 + δt, . . . , tk + δt). (16.1)

If this kth order probability density function is invariant with this
time shifting, and k + 1 is as well, then this process is stationary in
the order, k. If a stochastic process remains stationary in any order,
then it is strictly stationary. When the mean and the mean square

Recall that  ̏stationary,˝ in quantum-
mechanical terms, is that the
probability density remains invariant
in time, so this usage is equivalent.

Figure 16.1: Part (a) shows a random
signal z(t) over time t and (b) shows
the random signal zi(t) over instances
of n identical systems. Time averaging
is over the time of one system.
Ensemble averaging is over multiple
systems at an identical instance of
time, which is shown here as t = t0.
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Table 16.1: A few useful parameters
to characterize time- and ensemble-
averaged signals. z(t) is the signal
in time. 〈〉 is being used for time
and ensemble averaging and can
be understood from context. i is a
subscript to identify the ith event.

Parameter Relationship

Time averages

Mean 〈z(t)〉 = limT→∞ 1
T

∫ T/2
−T/2 z(t) dt

Mean square 〈z2(t)〉 = limT→∞ 1
T

∫ T/2
−T/2 z2(t) dt

Variance σ 2
z = 〈z2(t)〉 − 〈z(t)〉2

Autocorrelation
φz(t) = 〈z(t)z(t + t′)〉
= limT→∞ 1

T

∫ T/2
−T/2 z(t)z(t + t′) dt′

Ensemble averages
Mean 〈z(t0)〉 = limN→∞

∑N
i=1 zi(t0)

= ∫∞
−∞ z(t0)p1(z(t0), t0) dz(t0)

Mean square 〈z(t0)〉 = limN→∞
∑N

i=1 z2i (t0)
= ∫∞

−∞ z2(t0)p1(z(t0), t0) dz(t0)
Variance σ 2

z = 〈z2(t0)〉 − 〈z(t0)〉2

Covariance
〈z(t0)z(t1)〉 = limN→∞

∑N
i=1 zi(t0)zi(t2)

= ∫∞
−∞ z(t0)z(t1)p2(z(t0), z(t1); t0, t1) dz(t0) dz(t1)

p1(z0, t0), . . . are first-order probability density functions; that is, the probability of
finding z(t) in the range of z0 and z0 + dz0 at time t0.

p2(z(t0), z(t1); t0, t1), . . . are second-order probability density functions; that is, the joint

probability of finding z(t) in the range of z0 and z0 + dz0 at time t0, as well as in the

range z1 and z1 + dz1 at time t1.

are independent of time t0, that is, are constants, and 〈z(t0)z(t1)〉 is
independent of the choice of t0 and t1 but depends on the difference
τ = t1 − t0 then it is weakly stationary, sometimes called wide-sense
stationary.

The power spectral density (Sz(ω) = limT→∞ 2〈|Z(ω)|〉2/T), where
Z(ω) is the Fourier transform of z(t), is a powerful way to analyze
and understand signals; spectral density is quite measurable and
also often easier to analyze. As an example, take a statistically
stationary noisy waveform such as the one in Figure 16.1(a), with
the autocorrelation

The Wiener-Khintchin theorem tells us
that the autocorrelation function of a
wide-sense stationary process can be
spectrally decomposed via the power
spectrum of the process. Appendix A
discusses a number of attributes that
can be observed between the direct
and reciprocal domains through
Fourier transformations. It spans a
discussion of Perseval’s theorem,
convolution, correlation, the Wiener-
Khintchin theorem and Carson’s
theorem. In noise, we will see this view
of the frequency spread of a energetic
fluctuation phenomena and its
memory persistence as an important
reciprocal space manifestation.

φz(t′) = φz(0) exp
(

−|t′|
τ 0

)
, (16.2)

where φz(0) = 〈z2〉, and τ 0 is some relaxation constant. The power

The Hall-Shockley-Read
process (Chapter 11), with its longer
capture and emission times, is one
pathway for such a relaxation time
constant to appear as noise atop the
signal from the semiconductor.

spectral density is

Sz(ω) = 4φz(0)
τ 0

1 + ω2τ 2
0

, (16.3)

that is, a Lorentzian spectrum has appeared with a cut-off
frequency defined by the relaxation time, and a low-frequency
spectral power density in noise of Sz(0) = 4φz(0)τ 0. Autocorrelation
in this noisy signal can now be seen, as also the power spectral response, and
one can see that the memory of the past is lost on a time scale of the order
of τ 0.
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Figure 16.2 shows the autocorrelation and spectral density for
this statistically stationary process. In a time shift of the order
of t′/τ 0, the correlation is down to 1/e of its peak. The power
spectrum shows that, at radial frequencies above τ 0, the spectrum
rolls off at 6 dB/octave.

Figure 16.2: Part (a) shows
autocorrelation and (b) shows the
spectral power density function
for a stationary process with
φz(t′)=φz(0) exp(−|t′|/τ 0), which
has a Lorentzian spectrum.

To get a peek at ergodicity, consider the signal z(t) = cos(ωt + θ),
where θ is a phase noise in an oscillator. If θ is uniform, that is,
p(θ) = 1/2π , then its time average is 0, and an ensemble average
at any time for zi(t) also vanishes. The process is ergodic in the
mean. It is also ergodic in the autocorrelation (φz(t′)= 〈z(t)z(t + t′)〉).
But, for any other non-uniform choice of p(θ), this process is not
stationary and not ergodic.

The signals that one observes are of finite time duration, either
because of the signal’s time duration or because of the finiteness
of the observation time. Strictly, we must approach these situations
through a gated function that is finite and generally non-zero over
an interval, and vanishes otherwise. Such a gate function will
be identified with a subscript T. A time-integrated function of a
statistically stationary process is statistically non-stationary. It has
a deterministic evolution of expectation. An example is the random
walk diffusion of z(t′). Consider

ζ T(t) =
{∫ t

0 z(t′) dt′ ∀ 0 ≤ t ≤ T, and
0 otherwise,

(16.4)

which is a ramping signal with noise atop it. It is a Wiener-Levy
process, which is statistically non-stationary. To evaluate the
memory of the process, we determine the covariance—a power
spectrum form—using the Wiener-Khintchin theorem, and since the See Appendix A for a discussion of the

Wiener-Khintchin theorem.process is assumed ergodic, employing autocorrelation (T → ∞),
this covariance is

〈ζ (t)ζ (t + t′)〉 =
∫ t

0

∫ t+t′

0
〈z(t′)z(t′′)〉 dt′ dt′′

=
∫ t

0

∫ t+t′

0
dt′ dt′′ 1

2π

∫ ∞

0
Sz(ω) cos(ωt′) dω

= 1
2π

∫ ∞

0
Sz(ω)

∫ t

0

∫ t+t′

0
cos[ω(t′ − t′′)] dt′ dt′′

= 1
2π

∫ ∞

0
Sz(ω)

1
ω2

× {1 + cos(ωt′) − cos(ωt) − cos[ω(t + t′)]
}

dω

∴ 〈ζ 2(t)〉 = 1
π

∫ ∞

0
Sz(ω)

1
ω2 (1 − cosωt) dω. (16.5)

If memory is vanishingly short, the power spectral density stretches
out in frequency, that is, this noise is white noise, and the mean
square 〈ζ 2(t)〉 reduces to
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〈ζ 2(t)〉 = Sz(0)
2

t. (16.6)

One may define a diffusion coefficient Dζ ,

Dζ = 1
4

Sz(0), (16.7)

which is related to the zero frequency value of the power spectral
density of the signal z(t). The corresponding autocorrelation
function is

φz(t′,T) = 1
T

∫ T−|t′|

0
〈ζ (t + t′)ζ (t)〉 dt

= T
(
1 − |t′|

T

)2

Dζ . (16.8)

ζ (t) is a cumulative process. And if it is memoryless, then

〈ζ (t + t′)ζ (t)〉 = 〈[ζ (t) + �ζ(t′)]ζ (t)〉
∴ 〈ζ 2(t)〉 = 2Dzt, (16.9)

where 〈ζ (t)�ζ (t′)〉 → 0 since correlation time has been assumed to
vanish. In Equation 16.9, one now sees the length scale features that
arise in a random process—such as of diffusion arising in random
walk—that we have seen reflected in diffusion lengths with its finite
correlation times. We have again seen the fluctuation-dissipation at
work in this application of the Wiener-Khintchin theorem.

In this discussion of the signal- and randomness-based prop-
erties, which are independent of the origin, we have sidestepped
a number of important mathematical notions, particularly those
of moments, characteristic functions and the behavior of various
probabilistic distribution functions. But one notion we do need to

For those interested in at least an
introduction to these connections
between measures of randomness
and signals, the moments, the
probabilistic distributions and the
generative characteristic functions, the
appendices, particularly Appendix F,
of S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017), provide a
good starting point.

emphasize, since it has been used with abandon throughout this
text, is that of randomness.

16.2 Randomness

Noise and randomness are quite interlinked. And we have also
used the noun  ̏fluctuations˝ often. In the discussion of diffusion in
the Wiener-Levy process, we have seen how the same conclusion
arises through the different perspectives. Randomness, however,
needs some emphasis to discourage its abuse.

Randomness is often projected to unpredictability. But this notion
of unpredictability—from a human perspective—is subjective.
What one observer cannot predict in a sequence of events—a
representation of observations (data) on a signal—does not mean
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that it is also unobvious and unpredictable to another observer who
has more a priori information.

A signal varying in time is deterministic, that is, is predictable,
so long as it is differentiable infinite times and known a priori to
infinitesimally narrow time intervals in instants of time. Taylor
expression, in principle, permits arbitrary accuracy at arbitrary
times later or in the past. This corresponds to our statements on
analytic functions in Appendix O. Unpredictability is related to
discontinuities in functional values or in time derivatives at some
order. It is this discontinuity-induced unpredictability that results in
failure of the expansion approach.

In semiconductors, we often encounter physical events that
do not have a precise mathematical description because of their
random evolution, and this random development may be because
of a single variable or from many. Scattering, as we saw, arises
in a multitude of different causes. We have also noted that these
random phenomena are coupled into systemic responses. Diffusivity
in this recent example ending Section 16.1 was a systemic response
from noise. For semiconductors, this noise would have arisen in
fluctuations due to scattering with a finite non-zero memory time. In electrical engineering, anything that

is not an information-bearing signal of
the information sought is sometimes
called noise. Interference effects arising
in couplings et cetera are not noise.
They can be deterministically tackled,
just as chaos-caused interferences.
See S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017).

Classical electrical noise arises from fluctuations in the motion
of particles and in the number of particles traversing volumes and
boundaries. To this, one must add uncertainty-related quantum
fluctuations such as those of spontaneous processes.

This range of random processes may have memory, that is, the

Regarding this memory it is interesting
that we are all born with some
hardwiring but also memory that
has to be short term—a TV memory.
And then as time progresses, and
we get older, we all acquire different
extents of the Markov chain!

occurrence of a random event in the past may be remembered for
finite time, or such a memory may be entirely lacking. In this latter
case, the knowledge of the actual state of the system suffices to
describe the distribution of the future states.

This separation of the future from the past by the present, the
description of an average future independent of the past and solely
from the present, is the Markovian process discussed in Section 8.11
that makes tackling of this subject easier.

For a large class of problems, information is available only to a
certain—and limited—extent, even in classical conditions. Quantum
mechanics, by its nature, makes behavior nondeterministic. There
are quantum-mechanical statistical probabilities of the measurement
of eigenvalues even in a solvable stationary state.

Even if we assume that the forces at the smallest scale of interest
are exactly known, there may be so many degrees of freedom that it
is impossible to obtain the entire initial condition required to solve
the dynamics.
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For systems with few degrees of freedom, the initial conditions
are known only within a certain accuracy. Predicted temporal
changes may get modified by minute changes of initial conditions
because of nonlinearity. This is the case for chaos, which is a
deterministic nonlinear response.

So, dynamic evolution needs to be described in statistical terms.
In statistical mechanics, we employ statistical probabilities of all
states as equal for equal energies irrespective of the microstate sim-
ply because we do not, and cannot, have information on all microstates.
This is the  ̏insufficient knowledge hypothesis.˝ The insufficient
knowledge hypothesis expresses the absence of a priori information
as an equality in a priori probability. But mathematical techniques
can only derive the probabilities of outcomes of experiments on
trials from a priori probability densities or distributions.

Probability densities and distributions comprise an important
aspect, but only one aspect, of what we have to deal with in ana-
lyzing what we cannot predict. Many times, symmetry arguments
can give us probability distributions.

The fellowship of probability, clearly
a very important one, like religions,
has multiple schisms. The main one
is subjective versus objective that we
referred to in Chapter 2. This has taken
on a very important modern context
since machine learning techniques are
very much a play on finding most-
probable solutions fast. And a priori
guesses, or not making a guess and
being agnostic, is important to speed
and correctness. Matters of belief begin
to enter in this discussion and schism.
And beliefs are biases. Sometimes they
help to a solution quickly. Sometimes
they are a path to tragedies.Symmetry arguments can give us probability distributions as

for the roll of a die. We assign equal probabilities for all the face
eigenvalues of a die, and call it fair. But, can any real-world die
be truly fair? If it were, as a classical object, given all the initial
conditions and interactions at work, one would be able to predict
the outcome. Both the intractability of such a calculation and the
minute imbalances in an object, of Avogadro number scale, make
the die unfair, although fair enough. Symmetry arguments often
have this problem of being convoluted and non-intuitive. We will
tackle this using one example. But, before that, here is a short set of
remarks on probabilities. Classical probabilities are positive definite.

For a more definitive discussion
of probabilities, see the appendix
on probabilities and the Bayesian
approach in S. Tiwari,  ̏Nanoscale
device physics: Science and
engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4 (2017).
Kolmogorov placed the theory of
probability on its firm axiomatic
foundations and developed a rigorous
objective view.

Quantum probabilities, such as when entanglement exists, are
complex, and, like classical probabilities, analog. Probabilities are
normalizable, although this condition is not axiomatically necessary.
Probabilities do not necessarily have a mathematical requirement
that averages should exist, unless axiomatically demanded. It is,
however, hard to see the absence of averages in physical processes,
except through mathematical counters.

Here is an example of a mathematical
counter regarding averages. Take the
probability density

pn(z) = n
exp(−z)

z
In(z),

where In(z) is the modified Bessel
function. This probability density
satisfies

∫ ∞

0
pn(z) dz = 1 ∀ n = 1, 2, . . . .

However,
∫∞
0 zpn(z) dz diverges. An

average doesn’t exist, but there is
no good reason to argue that such a
physical process cannot exist.

16.2.1 Bertrand’s paradox

To explore the conundrum of symmetry and its resolution in
establishing a probability distribution, we look at a classic paradox
problem: Bertrand’s paradox. The question posed is:  ̏Consider
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an equilateral triangle inscribed in a circle. Suppose a chord of
the circle, as in Figure 16.3, is chosen at random. What is that
probability that the chord is longer than a side of the triangle?˝
So, we are being asked what the probability is that a chord on this
circle is longer than

√
3R.

Symmetry arguments lead to at least three ways of determining
the probability:

Figure 16.3: A graphical view of
Bertrand’s paradox with a chord of
length � randomly chosen in a circle of
radius R. What is the probability that
� >

√
3R?

Random end point: On any fixed point on the circle, for all the lines
passing through the point with an angle θ to the tangent, consider
a θ that is uniformly distributed over (0,π). All the lines pass
through the circle except those that are tangent. Chords longer than√
3R require the angular constraint π/3 < θ < 2π/3; therefore, the

probability is (π/3)/π = 1/3.

Random diameter: Take a line through the diameter and consider
all the lines orthogonal to it. The chord is longer than

√
3R when

the point of intersection on the line lies in the middle half of the
diameter. Assuming that these points are uniformly distributed, the
probability is 1/2.

Random midpoint: For any chord to be longer than
√
3R, the center

must lie at a distance less than R/2 from the center. This area
is 1/4th of the circle’s area. The chord centers are uniformly
distributed over the circle; therefore, the probability is 1/4.

In these three cases, all have an a priori assumption of uniform
distribution. But the answers are 1/3, 1/2 and 1/4, respectively.
We employed statistical reasoning, employed assumptions at a
lower level of description—end-point angles, orthogonality to a
line through the center, and centers of line—and arrived at the
consequence of these assumptions leading to certain statistical
properties.

One way to test the validity of the result is to test the hypothesis
against measurement.

The other way to test and convince one’s correctness is to
state and formulate the problem unambiguously. Is the uniform
distribution assumption in the three different cases unambiguous,
and truly a random distribution that is uniform? Did we employ
information that is not part of the statement of the problem? We
have not been told anything about the position or the size of the
circle. The solution must not depend on this choice. The solution
must be both translation and scale invariant. Since the distribution
of chords should be independent of the size and the position of
the circle, so should the probability. So, if we choose a smaller
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circle, as in Figure 16.4, and move it around in the bigger circle, the
distribution of the chords and the probability must not change.

Figure 16.4: Bertrand’ paradox as
a problem with chords randomly
dropped, and the criteria of invariance
with size and position being tested
through circles of different sizes and
placements.

The last case—random midpoint—fails because it is not
translationally invariant. The first case—random end points—fails
on both the translation and the scale invariance count. A point on
the diameter and its angle are being chosen, not chords dropped
on the circle.

The no-overt-or-covert-information procedure is the use of
the random diameter. By choosing all possible angles through
the center, and then all lines orthogonal to it, all possibilities of
all chords are covered randomly and uniformly, and the choice
subscribes to the invariants of the system. Therefore, 1/2 is the
probability for a random chord being longer than the side of an
inscribed equilateral triangle.

So, maximum ignorance must be exercised in being random, and
for symmetry arguments to not fail us.

Figure 16.5: A semiconductor-based
capacitor with stationary ions and
mobile charge. Part (a) shows
the geometry and (b) shows time-
dependent current flowing in a loop.

16.3 Fluctuations and noise

Fluctuation-dissipation and Brownian motion have been
important themes in understanding transport in semiconductors.
We will set up our noise discussion drawing on these themes and
expanding them to placing associated noise on a quantitative and
analytic footing that connects causal transport, fluctuations, dissi-
pation and the lumped elements of inductor, capacitor and resistor
in perspective. In an earlier discussion, the Einstein relationship as
a systemic feature connecting the slow response—inherent in the
Wiener-Levy process as we have now seen—connects to the fast
fluctuation and dissipation.

Figure 16.5 show an idealized capacitor, shorted through ideal-

Induces charge here is to say that
theelectric field—a polar field—
terminates on these conducting plates.
To show that the static solution of
field is identical if an image charge is
considered, and the solution restricted
to one half, one is introduced to image
charge and image force approach
in undergraduate years. There are a
number of subtleties in this image
charge picture that come out when the
charge is moving. There are symmetry
considerations that need to be thought
through. See Appendix K in S. Tiwari,
 ̏Nanoscale device physics: Science
and engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4 (2017).

ized ohmic plates, with a conducting (n-type here and quasineutral,
with immobile donors and mobile electrons) semiconductor
medium in-between. The electron and the shallow donor ion that
contributes excess electrons will respond in the environment, subject
to the constraints, such as temperature T and the short, placed by it.
Numerous different scattering processes—energy and momentum
exchange processes—will exist, contributing to the response.
Thermal motion—a consequence of kinetic energy, temperature as
a consequence of the exchange of energy connecting particles to
the environment, and the spread of the motional properties of the
particles—will exist for all the particles. We will consider only the
motion of electrons and treat the dopants as largely fluctuating
around their mean position. So, we will look at the dopants as a
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jellium maintaining quasineutrality. The electrons move around. A
charged particle induces charge on the conducting plates. The plates
are shorted, and this moving charge induces fluctuating current
through this field termination through the shorted electrodes.

We assume that the separation of plates ts �λk, so the electrons
undergo plenty of scattering. The scattering event takes a van-
ishingly small time, while the free flight in-between takes place
over a longer time scale. Scattering is the fast event, and the flight
is the slow event. The current in the circuit reflects the electron
motion in-between the plates. Continuity of current means that,
in any cross-section in-between the plates, the same current (the
particle motion current and the displacement current arising in
the changing of the displacement) exists. Scattering causes the
current to change as the carrier gets redirected. So, the current—
inside or outside—has discontinuities at these scattering moments
and remains constant in-between. Figure 16.5(b) shows this step-
changing current in time in the outside short. Its average is zero,
but it has a variance. Another assumption in this description is that
the number of electrons reaching the plate is a rare event and will
be ignored. This is, and we will find it to be important, shot noise.
It will be discussed separately.

The simultaneity of particle flow current and displacement
current, both of which are real currents, can be handled through
Maxwell’s equations, which carry them together. The consequences
on signal delays are important in high-frequency devices, where
these coexisting forms affect the speed. We will think through this See S. Tiwari,  ̏Device physics:

Fundamentals of electronics and
optoelectronics,˝ Electroscience
2, Oxford University Press, ISBN
978-0-198-75984-3 (forthcoming) for
a discussion of Ramo’s theorem and
signal delay in the base-collector
region of a bipolar transistor.
A carrier does not need to arrive at
a quasineutral region before its
presence is felt because of the field
termination of moving charges.

conceptually.
If the circuit were open, the work W performed to induce a

charge q on the plates with a potential difference of Vc must equal
the energy U of a charge particle moving through the potential
difference that it sees. An electron moving a distance z has an
energy change U = eV = eVc(z/ts). As seen externally, the work
W = qVc. The electron—localized charge—as it moves this distance
z between the plates that are ts apart induces a proportional charge
when shifting from one plate to the other. An electron close to one
plate, for example, where it starts, has a nearly equal and opposite
polarization charge distributed over the near plate where the field
terminates. A small field also extends out to the distant plate, where
there is a minute, opposite terminating polarization charge. As
the electron moves between the plates, this terminating charge of
opposite polarity shifts from one plate to the other, and when the
electron passes into the plate, all the polarization charge associated
with this electron disappears. While the charge was moving, the
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polarization charge on the plates was changing and there was
current in between the plates, but there was also current in the
outside short circuit, and current continuity was being maintained.
Ramo’s theorem helps analyze this, or its frequency-dependent
form, self-consistently. Consider the polarization charge on the
distant plate as the electron travels a distance z in one-dimensional
form. The induced charge is q = ez/ts. The current in the plate is Stating that this is in one-dimensional

form is just to say that current flows
only one-dimensionally. There is a
current density and a sheet charge
flows between the plates.

i = dq/dt = evz/ts. If electrons travel at a constant velocity, such as in
a linear region, then the current due to the electron’s travel appears
as a ramp in time. If this situation were open circuit, there would
be no outside current, and, everywhere, the particle flow current
and the displacement current would balance each other. In a short
circuit, the current flows in the connecting wire.

So, the effect of the flow of the electron is gradually building
and present at the plate through the field termination, or what we
have called the induced polarization charge. When it reaches the
plate, real charge and induced charge neutralize and the current
disappears. The ramp of current exists for the duration of the
electron flight. Ramo’s theorem is a more rigorous way of tackling
this, and there is a bit of unusuality there that this discussion has
skirted.

In Figure 16.5(b), we didn’t show any ramps, since the picture
represents an accumulated consequence of many electrons traveling,
some in the +z direction, and some in the −z direction, with the
steps happening when any one of these electrons changes direction.
Let T be a time duration such that electron removal through the
plates is ignorable, even as the steps in current i(t) of Figure 16.5(b)
arise from the scattering events taking place for bouncing electrons.

We expand the current in a Fourier series:

i(t) = I0�
[ ∞∑

n=0

√
2In exp

(
2πnt
T

)]

= 1
T

N∑

l=1

il, where

I0 = lim
T→∞

1
T

∫ T

0
i(t)dt, and

In = lim
T →∞

√
2

T

∫ T

0
i(t) exp

(
−i

2πnt
T

)
dt (16.10)

are the amplitudes of the Fourier components. il is an individual
step in the current waveform, l is the index for the steps in current
in time and n is the index for the Fourier expansion.

The Fourier component In in terms of the individual event
steps is
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In =
√
2

T

[∫ t1

0
i1 exp

(
−i

2πnt
T

)
dt + · · · +

∫ tl

tl−1

il exp
(

−i
2πnt
T

)
dt

+ · · · +
∫ T

tN−1

iN exp
(

−i
2πnt
T

)
dt

]

=
√
2

T

N∑

l=1

il fl exp
(

−i
2πntl

T

)
, where

fl = 1 − exp[−i2πn(tl−1 − tl)/T ]
i2πn/T

. (16.11)

fl represents the modulation function of the Fourier expansion
arising in the different steps of the current.

For an ensemble of such systems, the average of all the Fourier
indices must vanish, since they occur randomly, and detailed
balance and thermodynamics’ second law apply in thermal
equilibrium. So, 〈In〉 = 0 ∀ n. We can also write the square of the
Fourier amplitude,

|I2n| = 2
T 2

N∑

l=1

N∑

m=1

ilim fl f ∗
m exp

[
−2πn(tl − tm)

T

]
, (16.12)

which captures the collective effect of statistically varying quantities
that are tied together. What this says is that the number of collisions
N in the time T varies, as do the time instant tl of the lth scattering
instance, and the current il. These independent random events can
be put together in the form of this autocorrelation, with t′ → 0.

We pick an ensemble out of the observed set, where N is a
constant. The plate-directed velocity vz, after scattering, is assumed
to have no memory, that is, it is truly random. More important This independent randomness

assumption is only approximately true.
We have seen examples of correlations
in our scattering discussion of
Chapter 10.

in the way we have developed this analysis is that the angle of
motion, post scattering, varies randomly. This assures that the
plate-directed component has randomness. The current im—the
mth step—is independent of the number of scattering events before.
Therefore,

〈|I2n|〉 = 2
T 2

N∑

l=1

N∑

m=1

〈ilim〉〈 flf ∗
m exp

[
−2πn(tl − tm)

T

]
〉. (16.13)

The currents in these different intervals of scattering events are
independent, so 〈ilim〉 = 〈i2m〉δl,m. Equation 16.13 then reduces to

〈|I2n|〉 = 2
T 2

N∑

l=1

〈i2l 〉
〈
flf ∗

l
〉
. (16.14)

Note that the modulation function fl is complex, while the current il
is real.
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We are now ready to put our statistical implications in here. We
know the velocity distribution in thermal equilibrium. For non-
degenerate conditions, the Maxwell-Boltzmann distribution tells us
the z-directed velocity has a probability related through

p(vz)d(vz) =
(

m∗v2z
2πkBT

)1/2

exp

(

−m∗v2z
2kBT

)

dvz. (16.15)

Current i = evz/ts therefore follows

〈i2l 〉 = 〈i2〉 =
∫ ∞

−∞
i2
(

m∗

2πkBT

)1/2 ts

e
exp

(

− m∗t2s i2

2e2kBT

)

di

= e2

m∗t2s
kBT,

with 〈i〉 = 0. (16.16)

This says that the process is stationary. The system is statistically
time stationary.

For calculating the scattering implications, we need a model of
scattering. Classically, scattering time is related to the velocity, so
scattering cross-section is inversely related to velocity, as we saw
in Chapters 10 and 11. This is a fairly applicable assumption for
many processes with neutral species. We assume that there is no
persistence of velocity. The scattered velocity is independent of
history, that is, this motion with scattering is a Markov process, and
at worst we make a Markov approximation, where we ignore any
statistical bearings.

We use a simple independent randomizing scattering model.
The probability of scattering in any time interval �t is

p(�t) = ν�t where ν is a scattering rate independent of velocity.
This says that the scattering cross-section is inversely proportional
to the velocity. In a Markov process, in the time up to t + �t,
splitting the time period to one of duration t followed by another
of �t, and using q(t + �t) to write the no-scattering probability, We employed a similar approach in

finding Green’s function for carrier
velocity expectation in Section 13.3.q(t + �t) = q(t)q(�t) and

q(�t) = 1 − ν�t;

∴ 1
�t

[q(t + �t) − q(t)] = −νq(�t)

∴ dq(t)
dt

= −νq(t), and

q(t) = exp(−νt), (16.17)

as the probability of no scattering during the duration of time
t. Scattering events are occasional events. There are durations
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of flights with moments of scattering. So, this a low average
probability for an event, and we use Poisson statistics to describe
the probability. For K scattering events in time duration t,

p(K, t) = (νt)K

K! exp(−νt), and

〈K〉 =
∞∑

K=0

K
(νt)K

K! exp(−νT) = νT , with

∫ ∞

0
t exp(−νt)ν dt = 1

ν
(16.18)

for the average time between scattering. Equation 16.11 tells us the
modulation factor, whose expectation value once we choose the
random approximation and T � 0 is

〈|fl|2〉 =
∫ T

0

2[1 − cos(2πnt/T )]
4π2n2/T

ν exp(−νt) dt

= 2

ν2 + (2πn/T )2
, (16.19)

an expression independent of l—any specific instant of scattering.
This simplifies the expression for 〈|In|2〉 (the Fourier amplitudes of
Equation 16.14) into a simple summation, with

〈|In|2〉 = 4
N
T 2 kBT

e2

m∗t2s

1

ν2 + (2πn/T)2
. (16.20)

Since scattering follows Poisson statistics, we know the average
number of scattering events in time interval T is 〈N〉 = νT . Since
ω = 2πn/T ,

〈|In|2〉 = 4kBT
e2

m∗t2s

ν/T
ν2 + ω2 . (16.21)

This expression was found using transformations with ω > 0, since
0< n < ∞. Mathematically, we could have employed −∞< n < ∞,
in which case an additional factor of 2 would appear in Equa-
tion 16.21 because of the opposite polarity rotation in the complex
plane.

We have extracted mean square Fourier coefficients of current.
These are inversely related to the length of the time series. Equiva-
lently, the frequency resolution—its density—is proportional to the
time interval T , consistent with our expectations.

We now define an effective current using Parseval’s theorem, Parseval’s theorem is another
mathematical consequence of integral
transforms such as Fourier. See
Appendix A.I2eff = 1

T

∫ T

0
i2(t) dt =

∑

n

|In|2T . (16.22)

Now, to find the state density dependence, consider the radial
frequency span �ω = (ω;ω + �ω). There are �ωT /2π states:
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I2eff (ω;ω + �ω) =
n=T (ω+�ω)/2π∑

n=T ω/2π

〈|Ieff |2〉

≈ 2
π

kBT
e2

m∗t2s

ν

ν2 + ω2�ω, or

I2eff (f ; f + �f ) = 4kBT
e2

m∗t2s

ν

ν2 + (2π f )2
�f . (16.23)

The system response and the fluctuations are now relatable through
these extractions. We distinguish the two frequencies:

ν for scattering, where the scattering
events are measurable as steps, and
f for the real frequency as an analog
signal measure here. In the rest of the
text, ν is the cyclic frequency.

An ideal capacitor—an insulating dielectric clad with two
perfectly conducting plates—has an admittance of Y = iωC. We
have a semiconductor with mobile electrons in it. The admittance
must change. To determine the admittance for our structure—
a nonideal capacitor for which we have determined a current
response in the presence of fluctuations under reasonable
approximations—we apply a time-dependent bias voltage of
V(t)= �[V exp(iωt)] and remove the short. The system is now
off-equilibrium. There exists an electric field, with homogeneity
assumed, of E(t)= �[(V/ts) exp(iωt)]. Scattering modulates the
electron’s velocity. If a scattering event happened at t = t1, then,
following the scattering (t > t1) but before the next scattering,

vz(t) = vz(t1) − �
{

eV
im∗tsω

[
exp(iωt) − exp(iωt1)

]}
. (16.24)

The current due to particle flow and the displacement is

i(t) = evz(t1)
ts

− �
{

e2V
iωm∗t2sω

[
1 − exp(−iω(t − t1)

]
exp(iωt)

}

(16.25)

until the next scattering event. Both of these are statistically
varying. This statistical distribution in time is Poissonian for all
scattering events, that is, for the lth event,

�t = t − tl = exp(−ν�t)ν d�t

∴ 〈i(t)〉 = �
[

e2V
ωmt2s

exp(iωt)
ν + iω

]

. (16.26)

The integral
∫ ∞

0

[
1 − exp(−iωt)

]
exp(−νt)ν dτ = iω

ν + iω
, (16.27)

so the impedance—including both the particle flow and the
displacement contribution—is

Z′(ω) = ν
m∗t2s

e2
+ iω

m∗t2s
e2

, (16.28)
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composed of a dissipative and a storing component (fluctua-
tions(!) in flow together with integrated displacement as the fields
change due to flow). To this we add the dielectric displacement
component—a linear contribution—arising from the field change
due to voltage change at the plates, which exists even in the
absence of electron flow (so, Z = Z′ ‖ 1/iωC). Figure 16.6 shows
the system response model of the capacitor that we have now
arrived at.

Figure 16.6: Impedance model
of the capacitor with randomly
scattering electron flow. εr is the
relative dielectric constant of the
semiconductor.

From the admittance

Y(ω) = ν

ν2 + ω2
e2

m∗t2s
+ i

(

ωC − ω

ν2 + ω2
e2

m∗t2s

)

, (16.29)

one can now rewrite the effective current in a band (Equa-
tion 16.23) as

I2eff (ω;ω + �ω) = 2
π

kBT
e2

m∗t2s

ν

ν2 + ω2�ω

= 2
π

kBT�[Y(ω)]�ω,

or I2eff (f ; f + �f ) = 4kBT�[Y(ω)]�f . (16.30)

Equation 16.30 is a special case of Nyquist’s theorem relating the
resistance—fluctuations—to the noisiness of current, and an exam-
ple of the fluctuation-dissipation theme at play. More importantly,

An important note is that, while
in thermal equilibrium, Nyquist
relationship in the form here or its
other versions, are independent of
the material or how the structure
came to be, whether in Silicon Valley
or in Tikamgarh or Hong Kong,
but that once the equilibrium is
disturbed and current passed, the
noise characteristics may change quite
substantially. We will see examples of
this through the Hooge’s parameter
later.

this equation says that, for the circuit drawn in Figure 16.6, the
noisy current source goes in parallel with the noise-free circuit
elements. The fluctuations in current originating in the microscopic
scattering processes lead to a macroscopic response that is a directly
measurable average response property of the system. There is a
dissipative element—the resistor—that appears as a circuit element
tied to the associated thermal fluctuations. The electrons also hold
kinetic energy, and this shows up as the inductance. And the
capacitor arises in the potential energy directly related to the bias
voltage applied. One could have equivalently made a Thévenin
noise voltage source equivalent with

V2
eff ( f ; f + �f ) = 4kBT�

[
1

Y(ω)

]
�f . (16.31)

The two equivalent representations with ideal noiseless lumped
elements for the semiconductor with cladding plates is shown in
Figure 16.7. Figure 16.7: Norton and Thévenin

equivalent models with current (in
(a)) and voltage (in (b)) noise sources
together with noiseless lumped
elements.

Our derivation employed following the response of one electron
in time and accumulating an ensemble of identical systems. But
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we have also stated that the electrons are independent and that
the processes are random. The generalization for many electrons
then follows rather straightforwardly, with most relations changing
to scale for the change in numbers. The current, assuming N
electrons, is

i(t) = i1(t) + i2(t) + · · · + iN(t), (16.32)

with the current expectation due to uncorrelated and statistically
independent electrons being

〈ii(t)ij(t)〉 = 〈ii(t)〉〈ij(t)〉 = 0 ∀ i �= j

∴ 〈i2(t)〉 = 〈i21(t)〉 + 〈i22(t)〉 + · · · + 〈i2N(t)〉
= N〈i2k(t)〉. (16.33)

The electron density is n = N/Ats, where A is the cross-section
area, so

I2eff (ω;ω + �ω) = 2
π

kBT
A
ts

ne2

m∗
ν

ν2 + ω2�ω

∴ I2eff (ω;ω + �ω) = 2
π

kBTC
ne2

εm∗
ν

ν2 + ω2�ω, (16.34)

where we have introduced the capacitance C of the structure as a
parameter.

So far in this analysis, we have used ν as the scattering rate
parameter arising in the various scattering mechanisms that may be
present and which are all assumed to be independent and random.
We also have a cloud of electrons which are interacting with each
other and moving around thermally or with stimulation if a bias
voltage is applied. This electron charge cloud responds to the sig-
nal. Naturally, our earlier description of such a plasma is relevant to
this description. The recapitulation and specific application of that
description, in short, is as follows. In the presence of the electric
field E , the movement of electrons under scattering—fluctuations—
is damped, and this displacement kinetics can be written in our
one-dimensional description as

¨〈z〉 + ν〈ż〉 = e
m∗ � [E exp(iωt)

]
, (16.35)

whose solution is

〈z〉 = e
m∗ �

[ E
iω

exp(iωt)
ν + iω

]
; (16.36)

therefore, polarization is

P = en〈z〉 = ne2

iωm∗ E
exp(iωt)
ν + iω

≡ ε0εrE exp(iωt). (16.37)
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We have made a simple Newtonian connection through one
scattering rate parameter to the plasmonic response, and it has
appeared as the relative dielectric constant. Since

P
ε0E

= εr − 1,

it follows that

εr(ω) ≡ ε
r
r(ω) + iεi

r(ω) = 1 − iω2
p

ω(ν + iω)
, with

ε
r
r(ω) = 1 − ω2

p

ν2 + iω2 , and

ε
i
r(ω) = − νω2

p

ω(ν2 + iω2)
, (16.38)

where ω2
p = ne2/m∗. These relationships must subscribe to the

Kramers-Kronig relationship, due to causality and the linearity of
Equation 16.35.

Returning now to the fluctuation response, when the structure
is shorted, it is more useful to look at the fluctuations in current,
that is,

I2eff (ω;ω + �ω) = 2
π

kBTC
νω2

p

ν2 + ω2�ω, (16.39)

and if it is open, the voltage fluctuations, that is,

V2
eff (ω;ω + �ω) = 2

π
kBT

1
C

νω2
p

(ω2
p − ω2)

2 + ν2ω2
�ω, (16.40)

where we have deployed the electron cloud’s frequency characteris-
tics through ωp. With this parameterization, our noise model for the
structure is illustrated in Figure 16.8.

Figure 16.8: Norton and Thévenin
equivalent models with current (in
(a)) and voltage (in (b)) noise sources
together with noiseless lumped
elements, written in terms of plasma
frequency to reflect the electron
scattering modulated response to
applied stimulus.

This electron transport system acts a generator of noise, with an
internal frequency-dependent impedance that is subsumed in these
equations.

At small scattering rate, the limits are

lim
ν→0

I2eff (ω;ω + �ω) = 2kBTCω2
pδ(ω)�ω, (16.41)

which is like a shot noise arising in shot pulses at low frequencies.
Note that R = ν/Cω2

p, and we have seen a similar oscillator strength
response for atomic vibrations, and others. The open circuit voltage
noise is

lim
ν→0

V2
eff (ω;ω + �ω) = 2

kBT
C

(ωp

ω

)2
δ

[
1 −

(ωp

ω

)2]
�ω

= 2
kBT
C

δ

[
1 −

(ωp

ω

)2]
�ω. (16.42)
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These equations represent the thermal fluctuations around the
plasma frequency where resonance will have the strongest effect.

When the scattering rate is large, the equivalent expressions for
noise sources are

lim
ν�ω

I2eff (ω;ω + �ω) = 2
π

kBTC
ω2

p

ν
�ω, and

lim
ν�ω

V2
eff (ω;ω + �ω) = 2

kBT
C

1
ν

(ωp

ω

)2
�ω. (16.43)

As an aside, we should remark on the admittance that would be
present, even if the particle flow were absent, for example, in a non-
conducting dielectric. The applied voltage and current follow the
relationships

v = �[tsE exp(iωt)], and

i = A�[Ḋ] = �[iωε0(ε
r
r + iεi

r)E exp(iωt)], (16.44)

so the admittance is

Y(ω) = i
v

= −A
ts

ε0ε
i
rω + i

A
ts

ε0ε
r
rω. (16.45)

The admittance still has a real dissipative part arising in all the
contributors to the polarization response through the different
dipolar or other oscillator interactions. The imaginary part will
cause a dissipative conductance term. Vacuum may not have this
dissipation form, but all materials will, even if it is vanishingly
small. The dissipation is dependent on the imaginary part of the
dielectric function, and the average dissipated power is

�[vi]
Ats

= 1
4
(Vi∗ + V∗i) = −1

2
ωε0ε

i
r|E|2. (16.46)

The presence of the flow of electrons increases this dissipation
through the electron cloud’s conductive response.

16.3.1 Quantum and thermodynamic connection to resonance

We have now built a model consisting of an RLC (R for
resistor, L for inductor, and C for capacitor) network to capture
the essence of fluctuation-dissipation in a system response of a
linear system. The resistor here is our dissipative element that
introduces randomization, and the inductor and the capacitor are
storage elements, the first for the kinetic form of energy, and the
second for the potential. And it is RLC, since this combination—
an electrical engineering basic lumped element model (so a
long-wavelength graphical tool is used for representing energy
interactions)—is sufficient to describe a linear system response. It
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is also very pertinent, since a simple combination of it represents
for us resonance (a parallel LC), and the resonator represents to us
a fundamental building block—classical and quantum-mechanical—
of stability and change such as through the damped polarization
interaction response of the dielectric function or the undamped
electrical-magnetic resonance of an electromagnetic field. To see
the noise aspect of the quantum and the thermodynamic—that
is, the quantum-statistical link—we take a diversion to probe the
resonance from a quantum-mechanical view.

Figure 16.9: An RLC network as a
dissipative resonator. R here represents
the loss of energy to the environment
in untracked and untrackable degrees
of freedom represented as a thermal
reservoir. An ideal dissipationless
reservoir is R → ∞, but where the
environment thermodynamically still
leads to fluctuations in the capacitor
and the inductor.

Figure 16.9 shows a parallel RLC network that one can obtain as
a graphical representation of any linear differential equation. Here,

The networks that we draw are
really graphs of information flow
showing the linkages (connectors)
between nodes (vertexes), the
connectors representing the
prescription for information flow
along that path. See the chapter on
information mechanics of S. Tiwari,
 ̏Nanoscale device physics: Science
and engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4 (2017).

the resistor represents the connection to the environment—also the
large number of unaccounted degrees of freedom where energy is
lost—as a representation of the environment of the thermodynamic
system. The inductor and capacitor form our resonance and
have energy in the second power of a canonic variable. They are
quantizable.

With charge on the plates as ±q, voltage as v, and current i
flowing through it in the limit of R → ∞, one may write

i = q̇, q = Cv, v = −Li̇, and H = 1
2

Cv2 + 1
2

Li2. (16.47)

In the limit, with no dissipative elements, the energy is conserved,
and we may determine a set of canonical conjugate coordinates. We
will choose charge q as one, satisfying

dq
dt

= ∂H

∂p
, and

dp
dt

= −∂H

∂q
,

∴ p = Li, with

H = q2

2C
+ p2

2L
(16.48)

satisfying the equation of motion

q̈ + 1
LC

q = 0. (16.49)

This resonant circuit is in thermal equilibrium, with the reservoir at
temperature T. R → ∞ implies that no particles are exchanged, but
energy is exchanged with the reservoir. We use Boltzmann statistics
(see Appendix F) to determine the probability of finding the system
in the volume (q, q + dq; p, p + dp),

p(q, p) dq dp = exp
[−H (q, p)/kBT

]
dq dp

∫∫∞
−∞ exp

[−H (q, p)/kBT
]

dq dp
. (16.50)

This distribution is a statement that all the microstates are equally
probable when H (q, p) is the same. The denominator integrates to
2πkBT

√
LC. This is classical. Had we assumed that the energy is not
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continuously divisible, that is, is quantized, we would have ended
up with a Bose-Einstein distribution. Here, we have just picked up
the classical limit of the distribution and cast the system description
in canonical coordinates.

Using this probability, we have

〈v2〉 =
∫∫ ∞

−∞
v2p(v, i) di dv = kBT

C
,

〈i2〉 =
∫∫ ∞

−∞
i2p(v, i) di dv = kBT

L
, and

〈H 〉 = kBT. (16.51)

These equations represent the equipartition of energy in classical
ensemble systems and are a fundamental result for classical systems
under the harmonic dependence. (1/2)kBT of energy is distributed
in each of the harmonic variables (q, p), and therefore associated
with their  ̏particle˝—the circuit elements here—the capacitor and
the inductor. A thermal equilibrium leads to this energy distribution
consequences. The reservoir deployed here as a resistor R → ∞
resistance at temperature T has a very weak-vanishing interaction
with the inductor-capacitor circuit that retains its identity. R �√

L/C
suffices as a condition, since it means that the damping time (RC,
L/R) is much larger than the time associated with the inverse
resonance frequency

√
LC. The heat reservoir has many times

larger degrees of freedom than the circuit. The circuit here has only
two degrees of freedom. The capacitor is noisy, and the inductor
is noisy, and this noise is associated with the necessity that any
observation of the resonator requires one to connect it to the
reservoir with which it exchanges energy.

16.3.2 Thermal noise in linear systems

We can now see the statistical properties of the system. It
has a fluctuating current given by

i(t) = I0 + �
[ ∞∑

n=1

√
2In exp

(
2πnt
T

)]

, (16.52)

and a fluctuating voltage given by

v(t) = V0 + �
[ ∞∑

n=1

√
2Vn exp

(
2πnt
T

)]

. (16.53)

Since it is a linear circuit, Ins and Vns are related through

Vn = iωn/�

1 − (ωn/�)2 + i(ωn/�)D
Z0In, (16.54)
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where Z0 = √
L/C is the characteristic impedance, D = Z0/R ≡ Q

relate the dissipation and quality factors, � = 1/
√

LC is the natural
frequency, and ωn = 2πn/T is the Fourier frequency component.

Parseval’s theorem lets us write the Fourier amplitude
relationship

〈v2〉 =
∞∑

n=1

〈V2
n〉,

∴ kBT
C

=
∞∑

n=1

(ωn/�)2

[
1 − (ωn/�)2

]2 + (ωn/�)2D2
Z2
0〈|In|2〉. (16.55)

The number of each of the components in the summation in the
frequency interval �ω is �ω/(2π/T ), which increases linearly with
time. For a sufficiently large density of these frequency components,
we replace the summation by integration:

kBT
C

=
∫ ∞

0

(ω/�)2Z2
0〈|In|2〉

[
1 − (ω/�)2

]2 + (ω/�)2D2

T
2π

dω. (16.56)

When the capacitor’s dissipation factor is small, that is, the quality
factor is large, because this integrand peaks sharply at the resonant
frequency �, and the current component factors vary slowly,
the current can be pulled outside the integral. The use of the LC
network resonance has allowed us to pick up the noise Fourier
component. With this extraction,

kBT
C

= T
2π

Z2
0〈|In|2〉�

∫ ∞

0

η2

(1 − η2)
2 + η2D2

dη

= T
2π

Z2
0〈|In|2〉� π

2D

= T
4

〈|In|2〉R
C
,

∴ 〈|In|2〉 = 4kBT
1
R

1
T
. (16.57)

From this relationship, Nyquist’s theorem follows. Nyquist’s theorem
states that the thermal noise of a fluctuating resistor is viewable as
a noise-free resistor of resistance R in parallel with a fluctuating
current source I2eff ( f , f + df ) or in series with a fluctuating voltage

source V2
eff ( f , f + df ), given by

For now, we are using f for frequency
and ν has been employed for
scattering rate.

I2eff ( f , f + df ) = 4kBT(1/R)df , and

V2
eff ( f , f + df ) = 4kBTRdf . (16.58)

The noise is a thermal noise, since it exists in thermal equilibrium
when the statistical observations are made on the system by
connecting it to a reservoir at temperature T and placing it in
thermal equilibrium.
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We have derived this under assumptions that the classical rules
apply. If quantization is included, so energies/frequencies are
quantized in the resonator analysis, and employing Bose-Einstein
statistics to account for the thermal modes,

〈H 〉 =
∑∞

n=0 nhω exp(−nh̄ω/kBT)
∑∞

n=0 exp(−nh̄ω/kBT)
= h̄ω

exp(h̄ω/kBT) − 1
, (16.59)

with zero point energy ignored. With this, we get the voltage
fluctuations as

V2
eff (f , f + df ) = 4R

hf
exp

(
hf/kBT

)− 1
df . (16.60)

In the limit h̄ → 0, this relationship reduces to the classical equa-
tions of Equation 16.58. If kBT � h̄ω, so quantization becomes
important since the energy separation of the states is larger than
thermal energy, then Equation 16.60 becomes the defining Nyquist
relationship. We worry about such quantum noise for photons in
the semiconductor systems.

Thermal noise is the noise associated with the relaxation time of
the thermal fluctuations in a statistical system. For resistors, one
may view it as the voltage fluctuations induced by the thermal
motion of electrons, which then relax back due the  ̏resistance˝ that
is reflective of energy loss through the scattering. For capacitors
and inductors, it arises in the fluctuations that will exist when the
normally storing element is attached to the environment for energy
and particle exchange at temperature T. For a resistor, this noise is

〈V2
noise〉 = 4kBTR�f (16.61)

in the frequency band of �f . As written here, it is a white noise—
also Gaussian, an aspect we did not cover—with the tailing

See S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017) Appendix F
for the distribution-centered analysis
of noise.

occurring at frequencies of the order of 1/〈τk〉. Thermal noise is
also referred to as Johnson noise and Nyquist noise in the literature.
We can write the thermal noise in terms of its power spectral
distribution. For voltage, this is

Sv = 〈V2
noise〉
�f

= 4kBTR. (16.62)

We can now also relate this back to the mathematical discussion of
randomness-measuring statistical parameters with which we started
this chapter.

We have stayed with the acronym of
the noise as thermal noise to identify
its physical origin. John Bertrand
Johnson’s publication dates to 1928
with a conference talk in 1926. Harry
Nyquist’s theory is from 1928. Both
were at Bell Laboratories where
electrical systems were the focus.
There are many connections here
between Brownian, fluctuation-
dissipation, linear system themes
that several equivalent relationships
exist in a variety of literature in
various disciplines. So, the Nyquist
relationship is general in nature and
not just restricted to thermal noise.

Figure 16.10 shows the thermal distribution of the velocity (or,
equivalently, momentum), which represents the flux of charge
and thus the current in (a), its autocorrelation for current in (b)
and the consequent spectral power distribution of current in (c).
These all conform to Equations 16.2 and 16.3, with τ 0 = τk. Note
that, in thermal equilibrium, we start with a Gaussian distribution
for the Maxwell-Boltzmann function, but it is skewed when
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Figure 16.10: Part (a) shows velocity
distribution in thermal equilibrium,
and off-equilibrium under the
influence of a field Part. (b) shows
the autocorrelation in current, which
is proportional to the velocity or
momentum distribution. Part (c)
shows the power spectral density in
current.

off-equilibrium. We have seen electron temperature changes and
multiple distributions superposing off-equilibrium. So, the thermal
noise relationship is quite accurate in the thermal equilibrium and
up to the roll-off point at 1/〈τk〉 or ν.

The current is the sum of all the currents from each particle
I = ∑

i Ii, and the fluctuation correlation with a one-dimensional
calculation in the z direction for a quasineutral n-type region is

〈δI2〉 = q2n〈v2〉dx dy
dz

∴ Si = 〈δI2〉 4τk

1 + ω2τ 2
k

= 4q2n
kBT
m∗ τk

= 4kBTqμn
A
L

= 4q2Dn
A
L

= 4kBT
1
R

(16.63)

and is the current power spectral density (≡ Sv = 4kBTR), where the
autocorrelation conforms, with z representing current, to

φz(t′) = lim
T →∞

1
T

∫ T /2

−T /2

〈
z(t)z(t + t′)

〉
dt

= φz(0) exp
(

−|t′|
τ 0

)
= 〈z2〉 exp

(
−|t′|

τ 0

)
. (16.64)

This correlation has a Lorentzian lineshape; that is,

Sz(ω) = 4
∫ ∞

0
φz cos(ωt′)dt′ = 4φz(0)τ 0

1 + ω2τ 2
0

. (16.65)

When τ 0 ≡ 〈τk〉 → 0, that is, absent memory, this spectrum is white.
With τk ≤ 10−12 s, it is white for most electronic device purposes,
since 2π/τk is in hundreds of GHz.

Though with confinement and
quantization consequences, there
will be the implications of the
relative magnitude of kBT and h̄ω = E
considerations to know when to worry
about thermal noise and when to
worry about quantum noise.

16.3.3 Partition thermal noise

How does this thermal noise change when the number
of channels is limited, and non-classical correlated quantum-
occupation fermionic constraints become important? In the spirit of
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Figure 8.4 from the quantum conductance discussion of Chapter 8,
we probe this through the current that flows between two ports
(see Figure 16.11). As discussed in Section 8.1, the current in these
conditions is

i = 2e
h

(EqF2 − EqF1) = gq

e
(EqF2 − EqF1). (16.66)

With finite scattering events, the conductance is

g = 2e2

h

J∑

j=1

Tj = gq

J∑

j=1

Tj, (16.67)

the sum of transmission coefficients over all the channels, with
signals potentially traveling in both directions and undergoing
some scattering.

Figure 16.11: Current flow under
bias in between two ports connected
with limited number of channels and
limited scattering.

Take near-static conditions of ω ≈ 0. The electron injection is
stochastic, the occupation of channels is under fermionic con-
straints, and the events are independent. The emission probability
is definable through the occupation probability arising in the Fermi-
Dirac distribution function. And uncertainty is manifested through
time intervals between wave packets. The uncertainty-constrained
time interval is of the order of

�t ≈ h
EqF2 − EqF1

. (16.68)

The number of channels occupiable is in the range defined by the
quasi-Fermi energies. If EqF1 > EqF2, then more electrons travel
from the first port to the second, even though there are electrons
with directed momenta in both directions. This totality defines the
current. The current from the reservoir j, using an overbar to denote
averaging, is

ij(E) dE = gq

e
fj(E) dE. (16.69)

The filled states couple to empty states for the conduction to take
place. So, the current is proportional to f (1 − f ). This dependence
on both a fill factor and an empty factor is partitioning, so the
stochasticity of state occupation and its reflection in the noise is
now modified, with a choice being made between two paths. The
fluctuations of this are a type of noise. This choice—stochasticity—
is one of the important noises in lasers, where it is called mode
partition noise. The current’s noise power from the reservoir is

Sj(E) dE = 2eij(E) dE(1 − fj(E)) dE

= 4e2

h
fj(E)[1 − fj(E)] dE for j = 1, 2. (16.70)
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The total current noise power from a reservoir is

Sj(ω ≈ 0) = 4e2

h

∫ ∞

0
fj(E)[1 − fj(E)] dE

= 2gqkBT
∫ ∞

ζ(0)

1
ζ 2 dζ ,

where ζ (E) = exp
[
(E − EqFj)/kBT) + 1

]
,

= 2gqkBT
1

exp(−EqFj/kBT) + 1
≈ 2gqkBT,

for EqFj � kBT. (16.71)

Both of the reservoirs in this example are independent sources of
noise, so noise adds. The current noise in these quantized channels Both are Gaussian, so variances add.

therefore can be written as

S(ω ≈ 0) = 4gqkBT, (16.72)

which is a form very similar to what we found for thermal noise in
classical conditions.

Thermal noise under classical is therefore quite similar to that
under mesoscopic quantum-constrained conditions. The other
important point of note is that with the passage of current off-
equilibrium, the carrier population and the channel occupancy
change, and the change in the occupation is reflected in a change
in the temperature. We have not discussed the off-equilibrium
conditions. If the changes are not too far from equilibrium, the clas-
sical behavior is largely unchanged, but the quantum-constrained
systems do show changes arising in the constraints placed by the
correlation properties of occupation—any channel of a specific
energy can only have an up- and down-spin electron, so if one is
present, the choice of the other is of opposite spin, and nothing
else. So, there is now a suppression of noise. These differences can
be seen in Table 16.2, which shows thermal noise in equilibrium

Table 16.2: Equilibrium and
nonequilibrium thermal noise in
mesoscale and classical macroscale
semiconductors.

Thermal noise Spectral density
equilibrium off-equilibrium
eV � kBT eV � kBT

Mesoscopic
Ballistic 4kBTgq 4kBTgq

Elastic scattering 4kBTgqT 2qi(1 − T )

Distributed elastic scattering 4kBTG 1
3 (2qi)

Macroscopic
Distributed inelastic scattering 4kBTG 4kBTG
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and nonequilibrium systems under mesoscopic and macroscopic
classical conditions, both in equilibrium and off it.

16.4 Shot noise in linear systems

Electrons are discrete particles—or a localized wavepacket,
in the quantum description—traversing the semiconductor. Current
exists in the circuit during the motion of the electron. When the
number of electrons traversing is small, the current is small, but
so is the number of electrons, and therefore the fluctuations in
them are more noticeable. Since, for the electron, passing the
boundary to the environment for measuring the current takes it
out of the measurement, the passage across the boundary suddenly
removes the current contribution of that electron. It is like a shot—
an impulse. And the fluctuations arising in the discreteness of the
electrons contributing to the current is the shot noise.

Figure 16.12: Part (a) shows the
transit of one electron between two
high conductivity regions. Case
(i) is when the carrier moves with
constant velocity, and case (ii) is for
constant field motion. Part (b) shows
the position of the movement of the
electron as it traverses for case (i) and
(ii). Part (c) shows the current at any
cross-section including the current
during the electron’s motion for case
(i) and case (ii). On a longer time scale
with an ensemble of electrons, (d)
shows the presence and movement
of multiple electrons and (e) the
corresponding observed current
as the discrete number of electrons
traverse the region in between the
highly conducting contacts. Electrons
are injected and collected into the
external environment at these highly
conducting boundaries.

Figure 16.12 shows a few sketches to describe the basics of the
shot noise phenomenon. Electron emission into the rate-limiting
conduction region is a Poisson point process. The emission and the
transport are independent in the sense that the injection phenomena
at the highly conducting boundary—a contact plate or a highly
conducting region—and the scattering phenomena in the transport
region are mutually independent. As the carriers travel from one
boundary to the other under scattering mediation, as shown in
Figure 16.12(a) and (b), it is observable through the current in (c) in
the external circuit. Current continuity and our earlier discussion
of displacement and field termination at the highly conducting
boundary apply. When many such electrons are flowing across the
rate-limiting region, on a longer time scale one sees shots of such
pulses of time widths bounded by electron entry and exit at the
boundaries. The stream is of independent pulse; again, one may
view the variance consequences through correlations of 〈I(t)I(t + t′)〉,
with the transit time Tt = ts/v, where ts is the length, and v is the
velocity, as the time constant for the relevant pole for spectral noise
power density. For thermal noise, this was 〈τk〉, which represented
the averaged time constant of motion between scattering events.
What we have here is a  ̏scattering˝ at the boundaries for detection. We will return to this theme of

different manifestations in noise—
fluctuations—a little later. Literature
treats thermal noise and shot noise as
two entirely independent phenomena.
They are not. They are manifestation
of the fluctuation in any observation
where the  ̏scattering˝ in transport
regions and at the boundaries

Since the process is Poissonian, the spectral density will have the
Lorentzian signature, and one will see a noise power spectral
density in current Si ∝ I/(1 + ω2T2

t ). It will be proportional to
the current, since that is proportional to how many electrons are
transiting, and it will be white with a pole high up in frequency—
as it was with thermal noise—determined by the amount of time it
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takes to transit. As with thermal noise, if mesoscopic transport—
correlated transport—is present, the independence condition is
broken, Poisson approximation breaks and this shot noise will
change.

16.4.1 Transit, surface charge and shot noise analysis

Consider an electron injected at one electrode and transiting

determines the observation. In
this sense, the random telegraph
phenomena and the other 1/f
noise manifestations of fast-
and-slow interactions, too, are
such manifestations. These noise
manifestations are quite physically
interlinked.

to the other electrode through the rate-limiting transport region of
Figure 16.12(a). The injection is a Poisson process—small numbers
injected from a large density—and, during the scattering, the
transport happens with a multitude of scattering, whose systemic
response is the net velocity v as a Wiener-Levy process. The current
is i(t) = qv/ts. Assume a short circuit (thermal equilibrium). The
energy gained per unit time by an electron in in-between scattering
events is qEv. The energy supplied by the electrodes is Vi(t). These
balance. This is one statement of Ramo’s theorem.

If there is an external circuit with a series resistance of Rs and the
electron transit time Tt = ts/v � RsC, where C is the capacitance
of the semiconductor transit region, then our argument for what
happens during the electron transit is the following. Let the power
supply apply a bias voltage of V. Transit is being approximated
as being instantaneous, and the circuit’s response time RsC is the
dominant time for the circuit dynamic response. As soon as the
electron shoots into the collecting electrode (positive; the anode),
the voltage of the anode electrode is Vael = V−q/C w.r.t. the cathode
electrode, since an electron has been removed. Current continuity
implies

1
Rs

[V − Vael(t)] = d
dt

[CVael] (16.73)

with the solution

Vael = V − q
C
exp

(
− t

RsC

)
, and

i(t) = 1
Rs

(V − Vael) = q
RsC

exp
(

− t
RsC

)
. (16.74)

Each electron, following its removal, leaves behind its signature as
an exponential decay.

For thermal noise, in our discussion
related to Figure 16.5, the steps
were due to the scattering taking
place within the semiconductor, and
electrons changing directions. We
ignored the shot process, when an
electron reaches and transits into
the electrode. The two processes—
different scatterings—are being
assumed to be independent.

Now consider the surface charge on the electrode regions as one
electron traverses, and we will take three situations: from very long
transit time to impulsive.

First, let us look at the consequence of the transit of the electron
on the polarization charge on the electrodes in the following three
cases:
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(i) Constant velocity with RsC � Tt, Rs → 0:
This is the example with which we started this section in
Figure 16.12. Before the injection of the electron into the semi-
conductor, the surface charge is CV. An electron of −e charge, when
injected, induces a +e charge when it is infinitesimally close to the
cathode—the injecting electrode. During the transit, this charge
movement and the field termination on the electrodes is being
compensated externally from the circuit. The cathode charge is

Qcel = −CV − e −
∫ t

0
i(t′) dt′, with the solution

=
{

−CV − e(1 − vt/ts), for 0 < t < ts/v,
−CV otherwise.

(16.75)

So, the surface charge on the anode, CV pre-injection, changes by
+e during electron flight as a result of the electron current. The
transiting electron is initially dominantly field connected to the
cathode and finally—toward the end of the flight—to the anode. So,
the anode charge is

Qael = CV +
∫ t

0
i(t′) dt′, with the solution

=
{

CV − evt/ts, for 0 < t < ts/v,
CV otherwise.

(16.76)

Current from the supply is instantaneous, in accord with the
electron transit, and the voltage between the electrodes has
remained V, even as the surface charge of the electrode changes
during the transit.

(ii) Zero velocity start with RsC � Tt, Rs → 0:
We assume that the electron starts from rest and accelerates due
to the applied field, yet the region is short enough that scattering
is vanishingly small. The velocity, under these conditions, as we
have seen in Equation 13.26, is of the form 〈v = dz/dt〉 = −eEt/m∗.
This means that Tt =

√
2m∗t2s /eV, and the current i(t) = ev/ts =

(e2V/m∗t2s )t. The cathode charge is

Qcel = −CV − e −
∫ t

0
i(t′) dt′, with the solution

=

⎧
⎪⎨

⎪⎩

−CV − e[1 + (eV/2m∗t2s )t
2]

= −CV − e[1 − v(t)t/2ts], for 0 < t < ts/v,
−CV otherwise.

(16.77)

Again, the surface charge increases to CV + e over Tt via the bias
current from CV. And it is compensated by the change at the
anode of
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Qael = CV +
∫ t

0
i(t′) dt′, with the solution

=

⎧
⎪⎨

⎪⎩

CV + (e2V/2m∗t2s )t
2

= CV + ev(t)t/2ts for 0 < t < ts/v,
CV otherwise.

(16.78)

Again, the voltage change across the semiconductor is V and a
constant.

(iii) Impulsive transit with RsC � Tt:
Since the electron spends vanishing time in the semiconductor, the
current response is related only to the decay following the electron
transit following on our starting discussion of this section. The
anode charge is

Qael = CVael =
{

CV + e exp
(
− t

RsC

)
, for t > 0,

CV, for t < 0,
(16.79)

and the cathode charge is

Qcel = −CVael =
{

−CV − e exp
(
− t

RsC

)
, for t > 0,

−CV, for t < 0,
(16.80)

all with the RsC charging time constant in the response.
Having understood the charge and the voltage response, we can

now look at the noise power spectrum for the three different cases
under Poisson emission as an independent process:

(i) Shot noise with constant velocity, RsC � Tt, and Rs → 0:
Let all electrons have the identical pulse shape, f (t). The current
with K electrons in the semiconductor is i(t) = ∑K

k=1 ck f (t − tk).
Let ν be the rate of arrival; then, the spectral density is

S(ω) = 2νa2kF2(ω) + 4π
[
νak

∫ ∞

−∞
f (t) dt

]2
δ(ω), with

f (t) =
{

−ev/ts, for 0 < t < ts/v,
0 otherwise, and

F(ω) =
∫ ∞

−∞
f (t) exp(−iωt) dt =

∫ ts/v

0

ev
ts

exp(−iωt) dt

= ev
ts

1 − exp(iωts/v)

iω

= e exp
(

−iω
ts

2v

)
sin(ωts/2v)

ωts/2v
. (16.81)

If ν is the average rate of electron arrival, I = qν, therefore
substituting it into the spectral expression, we obtain
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Si(ω) = 2νe2
sin2(ωts/v)

(ωts/v)2
+ 4πv2e2δ(ω)

= 2eI[sinc(ωts/v)]2 + 4π I2δ(ω)

= 2eI for ω � 2v/ts. (16.82)

The shot noise spectral noise density is Si = 2eI up to frequencies
that are a fraction of the inverse of transit times.

(ii) Shot noise with zero velocity start with RsC � Tt, Rs → 0:
Now we have a = dv/dt = e2V/t2s m∗, and f (t) = t, for 0 < t < Tt, and
vanishing elsewhere. So,

I = 〈i(t)〉 = a
1
Tt

∫ Tt

0
f (t′) dt′

= aν
T2

t
2

= eν, and

F(ω) =
∫ ∞

−∞
f (t) exp(−iωt) dt =

∫ Tt

0
t exp(−iωt) dt

= iTt
exp(−iωTt)

ω
− 1 − exp(−iωTt)

ω2 ,

∴ F2(ω) = 2 + ω2T2
t − 2ωTt sin(ωTt) − 2 cos(ωTt)

ω4 . (16.83)

The noise spectral density, which is

Si(ω) = 2ν

(
e2V
t2s m∗

)2

F2(ω) + 4πν2e2δ(ω), (16.84)

can be simplified with approximations to the harmonic functions
in F(ω),

sin(ωTt) = ωTt − 1
3! (ωTt)

3 + O(ω5), and

cos(ωTt) = 1 + 1
2! (ωTt)

2 + 1
4! (ωTt)

4 + O(ω6), (16.85)

to

Si(ω) = 2ν

(
e2V
t2s m∗

)2 [
2
3!T4

t − 2
4!T4

t + O(ω5)

]
+ 4πν2e2δ(ω)

= 2eI + 4π I2δ(ω), neglecting O(ω5). (16.86)

For 0 < ω < 1/Tt, the current noise power spectral density is

Si = 2eI. (16.87)

(iii) Shot noise for impulsive transit with RsC � Tt:
Now we have f (t) = (e/RsC) exp(−t/RsC), for t ≥ 0, and f (t) = 0, for
t < 0. The Fourier transform is

F(ω) =
∫ ∞

−∞
f (t) exp(−iωt) dt = e

1 + iωRsC
, (16.88)
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so the noise power spectral density is

Si(ω) = 2ν
e2

1 + iω2R2
s C2 + 4πν2e2δ(ω)

= 2eI
1

1 + iω2R2
s C2 + 4π I2δ(ω)

= 2eI, for ω � 1/RsC, (16.89)

using Carson’s theorem.
So, we have found that the shot noise spectral density under a

variety of different conditions has the same magnitude, 2eI, just as
we found the thermal noise spectral density 4kBT(1/R).

Shot noise is also suppressed by correlations. Our derivation
depended on electron emission being independent of the transport
process. If Tt � RsC, and the velocity is constant, so Tt = ts/v—
the first situation analyzed—if channels occupation is limited due
to correlation such as in mesoscopic conditions, then an electron
emission of identical spin is suppressed into a channel where an
electron already exists and is transmitting in the channel. This is
also over time scales for which electrode voltages are at their initial
values. So, the electron mission rate ν must be less than 1/Tt. If,
on the other hand, RsC � Tt, then the electrode voltages are
different, in which case electron emission will be dependent on
this inter-electrode voltage. Significant time (�RsC) must elapse
before statistical independence reappears. So, independence will
only happen if ν � RsC. So, there are constraints to the shot noise
relationship of Si = 2eI related to limited scattering, electrode
potentials and time scales. Besides mesoscopic conditions, if a space
charge effect exists in the transport region, then presence of charge
affects potentials and thus transport. If there are situations where

Space-charge-limited current exists
in many situations. Semi-insulating
or poorly conducting regions are
common to devices. Silicon-on-
insulator or even bulk MOSFET
needs non-conducting regions under
the inversion layer; III-V transistors
employ such regions along with
heterostructures. All low doped
regions will show consequences from
the ideal expectation in minor or major
ways.

a memory effect exists in external circuits, there too the emission
will be regulated by the electrode voltages, and the independence
approximation will be invalidated.

16.5 Low-frequency noise

The Poissonian characteristic of emission or capture at an
electrode appears in multiple ways in materials. Take for example,
the behavior of traps or deep levels. They capture or emit carriers
as a fast process, but the captured or emitted state persists for
long periods of times. Such a trapping effect—Hall-Shockley-Read
or others—appears in many places from a variety of intrinsic or
extrinsic sources. An SiO2/Si interface will have some interface
states, and some of these will act as traps, including those in
regions near the silicon interface, where their local effect will
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be present. Even in any region that is substantially conducting,
trapping and detrapping has local consequences—in screening and
scattering—whose effects will be present in the conduction. So, fast
capture or emission with a long persistence is a random fluctuation
whose signature will appear at very low frequencies. This is often
called flicker noise, 1/f , although the signatures can have a variety
of power of 1/f noise, generation-recombination noise, random
telegraph noise, noise due to imperfect contacts or other types of
noise, based on their source or history. So, noise with a noise power We are calling it  ̏low-frequency

noise˝ to identify the symptom,
and not the cause. This is somewhat
dissatisfying, but even as the causes
are different, one also often finds that
there are situations where there are
multiple causes, and one cannot be
confident of the attribution of the
source of noise. So, use the term low-
frequency noise with the ambiguity
and disdain that it deserves.

signature of the form

Sz(ω) ∝ ω−α , 0.5 � α � 2, (16.90)

is low frequency noise.

16.5.1 Noise from trapping-detrapping

If the carrier population fluctuates due to trapping and
detrapping, such as with largely empty or largely filled bands,
with both, as in the generation-recombination process or with other
circumstances, the trapping and detrapping events are fast and
the persistence of the trapped or detrapped state is long. These
persistent times are Poissonian—with low averages—just as we
found the electrode emission process to be usually approximable
by Poisson statistics. Let the trapped state have a time of τ 1 and the
detrapped state a time of τ 2, both of which obey Poisson statistics;
these then become important. In S. Tiwari,  ̏Nanoscale device

physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017), you will see
a more detailed discussion of random
telegraph signal arising in trapping
and detrapping. Even if rare, Poisson
processes and this random fluctuation
will have a strong effect—strong
because if the geometry has a small
signal but a fluctuation exists due to
a single electron, it has a relatively
higher signal and consequence. Small
transistors, unless made carefully, have
a stronger random telegraph signal
from carrier trapping and detrapping
near interface regions.

We first tackle the physical basis of single band or bipolar
band interaction. Single band interaction, that is, a single carrier
interacting with a single band, leads to random telegraph noise or
signal. The approach to tackling bipolarity of bands and carriers
is quite similar. Figure 16.13 shows an isolated defect capturing
and then later reemitting a carrier. A capture process eliminates
a carrier available for conduction or, equivalently, screens the
region in its neighborhood, so that the total charge available for
conduction is reduced. The current is now smaller. An emission
process, in contrast, raises the current. A random telegraph signal,
as in Figure 16.13(b), shows discreteness because the times in the
captured or the emitted states are significant—larger than scattering
or transit times.

A single defect can provide plenty of complexity. The defect
can be in a multitude of charged states. It may couple to other
physically proximate states. The behavior of this multitude of
charge states may be influenced by the state of the spatially local
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Figure 16.13: Capture and emission
of electrons during semiconductor
traversal, and a random telegraph
signal-like effect in current
resulting from it. This process can
happen in bulk, but particularly
so at interfaces such as those of
insulator/semiconductors. Generation-
recombination is a more complex form
of this effect arising in both bands—so,
electrons and holes—interacting.

defect states. We will keep the problem simple, to extract basic
physical features. We will consider an isolated, singly charged state,
random and independent, to understand the physical character.
Defects, being small in number, have a Poisson distribution, and
they capture and emit, playing a role not unlike that of electrodes
in the appearance of shot noise in this respect. This slow process
of capturing and emitting, in this respect, is a shot noise that now
shows up as low frequency 1/f noise in small structures. This marriage of fast and slow is why

I have often mused that we really
have two-and-a-half noises in the
macroscale electronic conditions:
thermal noise and one-and-a-
half shot noise, which arise either
from the reservoir boundaries or
from the nature of fast-and-slow
interaction inside the material itself.
The low-frequency noise is another
consequence of fast and slow, for
example, slow trapping and fast
emission in the random telegraph
noise.

This emission or capture in time is a discrete event of low
probability, while the mean is finite. In a symmetric system, the
system is, on average, in each of these states half of the time.
Poisson statistics describes the event distribution of this process.
The event probability is

p(k,νT) = (νT)k

k! exp(−νT), (16.91)

where ν is the mean rate of transitions per second, T is the time
interval and νT is the net average time in the state. If τ+ and τ−
are the average times spent in the emitted and captured states,
respectively, the probability distribution of the dwell time in the
emitted state (t+) or the captured state (t−) is

p(t±) = 1
τ± exp

(
− t±

τ±

)
. (16.92)

We will call the high current state—the  ̏emitted˝ state—e, and
the low current state—the  ̏captured˝ state—c. The probability per
unit time of transition from state e to state c through the process of
capture is given by 1/τ e, and, for the reverse process of emission,
the probability is given by 1/τ c. The transitions are assumed to
be instantaneous; pe(t) dt is the probability that the state does not
transition from e to c during the time interval (0, t) but does so in
(t, t + dt). This implies that

pe(t) = A(t)
τ e

, (16.93)

where A(t) is the probability that the state has not made a transition
during (0, t), and 1/τ e is the probability of the transition per unit
time at time t:
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A(t + dt) = A(t)
(
1 − dt

τ e

)
, (16.94)

which states that the product of not making a transition during
(0, t) and (t, t + dt) is the probability of not making a transition
during the time interval (0, t + dt). This equation can be rewritten
in the simple form

d
dt

A(t) = −A(t)
τ e

, (16.95)

whose solution is

A(t) = exp
(

− 1
τ e

)
, (16.96)

with A(0) = 1. Then,

pe(t) = 1
τ e

exp
(

− t
τ e

)
, (16.97)

with
∫ ∞

0
pe(t) dt = 1. (16.98)

The equivalent expression for the captured state c is

pc(t) = 1
τ c

exp
(

− t
τ c

)
. (16.99)

When the emission and capture transitions happen at a single
characteristic attempt rate, the times should be exponentially
distributed. As a result, the mean time in state e is

∫ ∞

0
tpe(t) dt = τ e, (16.100)

and the standard deviation is
[∫ ∞

0
t2pe(t) dt − τ 2

e

]1/2
= τ e. (16.101)

A similar expression applies for the captured state.
The standard deviation of the mean time spent in any state

is the same as the mean time spent in the state for this simple
capture-emission model. But trapping and energetics can be quite
complicated and, experimentally, a variety of random telegraph
signals are observed. Multiple pathways may open or close. If
trapping at a defect causes local deformation, the energy is in
an elastic and Coulomb form. This configuration allows multiple
metastable states that may be reflected in different time constants
and signal intensities during different periods. Coupled charge
states of defects may be active, resulting in the turning on and off
of different behaviors. Grain boundary defects, interface defects and
others will have their own idiosyncrasies.
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The power spectral density—the spectral correlations—measures
the randomness and the net energy reflected in the phenomena
behind the measured parameter. The power spectral density is An increase in the spectral density,

the noise energy arising from
the fluctuations, causes a higher
probability of errors in digital devices,
and a higher noise floor in analog and
high-frequency-use devices. So, these
are very important for the nanoscale.

S(ω) =
∫ ∞

−∞
exp(−ωτ)

〈
z(t + t′)z(t)

〉
dt′. (16.102)

A random process with the characteristic time τ , such as the one
discussed, has a Lorentz spectrum:

S(ω) = τ

1 + ω2τ 2 . (16.103)

This approach can be extended, for example, when there is a
distribution of characteristic times, or when the time arises from
thermally activated defects:

S(ω) =
∫

τ

1 + ω2τ 2 C (τ ) dτ , (16.104)

for example, extends this behavior to a distribution of traps. If this
distribution function C (τ ) ∝ 1/τ , for τ 1 ≤ τ ≤ τ 2, then S(ω) ∝ ω−1,
for τ−1

2 ≤ τ ≤ τ−1
1 .

This power spectral dependence reduces to a 1/f dependence
only for specific conditions of the distribution being constant for
kBT ln(τ 1/τ 0) ≤ ET ln(τ 2/τ 0), where E is the activation energy. For a
distribution of traps with a spread of the characteristic time τ ,

S(ω) =
∫ ∞

0

2τ
1 + ω2τ 2 p(τ ) dτ . (16.105)

It the distribution is flat, that is, p(τ ) = 1/τ , this Lorentzian
behavior of distribution of sites will lead to S(ω) ∝ 1/ω. What
this implies is that a variety of frequency dependences may
be observed in the spectrum, all increasing as the frequency is
lowered, depending on the nature of the trapping processes that
are active. If the characteristic time is thermally activated, that is,
τ = τ 0 exp(E/kBT), then the frequency dependence of the spectrum
is more complex than that for a simple single defect with a constant
characteristic time. For example, an exponential dependence in the
characteristic time leads to a 1/ωα dependence, with α varying as
mentioned at the beginning of this section.

16.5.2 Hooge parameters and mélange

Conductors—resistors, metals with grain boundaries,
amorphous materials, or structures with different electrodes,
whether quite conductive or resistive, also show a pronounced
increase in the spectral power of noise with lowering of frequency.
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This is not necessarily a large fluctuation, but it is nevertheless
important, and it arises from a variety of sources. The observed
behavior tends to follow

〈�R2〉
R2 = α

1
f

N df , (16.106)

where α is a parameter called the Hooge parameter, N is the
number of electrons, and α = 10−3–10−6 for most materials. One
mechanism responsible for this is conductivity fluctuation, that is,
�σ = qμ�n + qn�μ, where both �n and �μ—effects in carrier con-
centration and mobility, respectively—arise in charge fluctuations.
Poorer quality materials have poorer Hooge parameters. It is lower
when the mobility of the material is lower.

16.6 Summary

This chapter discussed at length the interconnections between
chance and causality coming together as noise and as a mani-
festation of fluctuation-dissipation. It is the randomness of the
fluctuations that appears as noise, but this noise also has a systemic
connection through the features of dissipation that fluctuations
cause. The statistical nature of randomness in classical conditions Much of this physical behavior and

manifestation can be observed in our
natural world too. In our society, on an
individual scale, what we do—random
or deliberate—has a local spatial
and temporal consequence whose
correlative effect is lost at higher size
scales. But, where society heads and
the dissipative way it heads toward
any direction are affected through this
fluctuation-dissipation from each one
of us. What we do matters, even if it
may be only in an ever-so-small way.

does not have to be identical to that of quantum conditions. The
classical randomness represents the distribution in canonic variables
that an ensemble of particle has. When the quantum nature is very
central, this is considerably different. Uncertainty is noise. If there
is entanglement in the system, it forms a nonlocal link, and Bell’s
inequalities tell us the differences one will see in the statistics of
the observations. Randomness, however, does underly noise, and,
in this sense, any deterministic phenomena that is too hard to
calculate is not to be thought of as noise.

Our approach to understanding noise took a more conceptual
and physical approach, although we started with an introduction
of how mathematically one may statistically characterize a signal
in time, or signals from many different similar systems in time.
This let us introduce mean, mean square, variance, autocorrelation
and covariance as some of the measures that are important for
understanding noise, as well as stationarity and its order as a
means of characterizing signals. We used this to establish power
spectral density as a means of characterizing the correlations
in a system response and, through this, noise and the systemic
dissipative response.

Our exploration of thermal noise was through understanding
the response of a semiconductor-based capacitor through which
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electrons flowed while undergoing scattering. This allowed us to
connect a physical understanding of the scattering-constrained
transport to the appearance of thermal noise in both slow (free
flight) and fast (scattering) processes, relate this charge movement
to particle and displacement current and the appearance of
inductors and capacitors as kinetic and potential storage elements,
respectively, and of the resistor as a dissipation element. A suitable
model for our example was the storage and dissipation elements
together with a noise source. This noise source could be written
either in the Norton form with a current source or in the Thévenin
form with a voltage source. Inductors are noisy, and so are capacitors.
This point was emphasized via highlighting the quantum and ther-
modynamic connections extracted through the inductor-capacitor
resonance. The act of observation requires connecting the system to
the environment at temperature, T. Inductors and capacitors then
will show fluctuations, following thermodynamic and statistical
arguments. We also tied this to the quantum implications, when
energy is not continuously distributed and where the distribution
function may be different, such as in photon systems, or where
quantum-exclusion applies, such as in quantized channels. Partition
thermal noise is an example of this.

Shot noise arises in the fast disappearance of moving particles
across a system’s boundary. An electron moving between two
plates is observable through the current in the external circuit. And
when this electron passes through the reservoir boundaries, the
associated current disappears like a shot. Since the flow of current
here is the source, the noise is proportional to the current, with a
dependence not unlike that of thermal noise. Shot noise will also
exist for photons.

The last example of noise was low-frequency noise arising
in a variety of causes, with all of them showing an increase in
the power spectrum at lower frequencies. We chose trapping-
detrapping as an example to show that this noise has a
 ̏Lorentzian˝ spectrum. Surfaces give rise to a pronounced increase
in this noise, since surfaces have higher number of states with a
propensity to trap carriers for a pronounced period of time. But it
also happens in the bulk, where Hall-Shockley-Read trap states will
also capture and emit carriers. The time that a carrier stays captured
or emitted is long, whether it is through a process involving a
single band or one involving both the conduction and the valence
bands, and it is this slow process that leads to the inverse frequency
dependences. Local environment changes in this process also lead
to conductivity changes where both carrier densities and carrier
mobilities are affected. Particularly appropriate for poor transport
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materials—amorphous and polycrystalline semiconductors—is the
Hooge parameter, through which one can characterize resistance
fluctuations.

16.7 Concluding remarks and bibliographic notes

Noise is pervasive once one brings together an ensemble of
particles at a temperature T. The system will have a statistical
distribution, so a measurement that gives a snapshot of a certain
property of the system at a certain time will not be identical
to the thermodynamically averaged property or the property
measured at another instant. This is noise, with its origin in the
random phenomena that occur in the system, whether viewed
classically or quantum-mechanically. The beauty is that this
random phenomena—fluctuations—also manifests as a dissipative
response of the system. So, in linear systems, one sees a very direct
link between fluctuation and dissipation, and fluctuation’s noise
incarnation.

When semiconductors are used, this noise is important, as it
places a variety of constraints. A signal needs to be ascertained
with sufficient accuracy and fidelity. Noise places a floor, and the
signal-to-noise ratio is a common parameter important in analog
and high-frequency usage and precision measurements. Noise in
threshold voltage fluctuations arising in fluctuations such as those
of dopants in a device is an important constraint for transistors.
Noise places constraints on the energy and voltages that one may
use to operate a deterministic logic gate in order to maintain logical
validity. This chapter brought together several of the considerations
specifically important for semiconductors as well as for their usage
in devices. But noise is an esoteric domain at the intersection of
statistics and mechanics in matter, and often an afterthought for the
engineer. As energy and precision continues to become increasingly
important, the understanding of noise does too, even though there
is not enough of a literature exploring the subject at the scale it
deserves.

An important source for seeing the transit of understanding
through the Brownian, probability, stochastic, random walk, Fokker-
Planck and Langevin path is the mongraph by Mazo1. It is a very 1 R. M. Mazo,  ̏Brownian motion:

Fluctuations, dynamics, and
applications,˝ Clarendon Press,
ISBN 0-19-851567-7 (2002)

well-written source that makes an easy transfer between history,
mechanics, physics, mathematics and the applications. Electrical
connections exist in harmony with hydrodynamics, colloidal motion
and other systems where random processes lead to noise. A similar
book, but with a more engineering bent, is by Pécseli2. The text

2 H. L. Péscseli,  ̏Fluctuations in
physical systems,˝ Cambridge, ISBN
978-0521655927 (2000)
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also draws the connections between fluctuation-dissipation and the
Kramers-Kronig relations of a linear system.

An important comprehensive discussion is by Kogan3. It tackles 3 S. Kogan,  ̏Electronic noise and
fluctuations in solids,˝ Cambridge,
ISBN 0-521-46034-4 (1996)

in depth correlation functions, ergodicity and Markov processes. It
also explores fluctuation-dissipation in both equilibrium and off-
equilibrium conditions, ballistic systems, disordered systems and
other conditions for the general domain of solids, with a number of
chapters devoted to semiconductors.

MacDonald’s book4 is one of the older books, but it is still a 4 D. K. MacDonald,  ̏Noise and
fluctuations˝, John Wiley, Library of
Congress 62-16153 (1962)

gem. It discusses the various aspects of fluctuations in electrical
circuits as seen through the vacuum tube view very well. The ideas
discussed are quite relevant to the semiconductor environment too.

For understanding the power spectrum, convolutions, reciprocal
domains, the Wiener-Khintchin theorem and the treatment of elec-
trical systems and linear systems, Champeney’s text5 is particularly 5 D. C. Champeney,  ̏Fourier

transforms and their applications,˝
Academic, ISBN 0-12-167450-9 (1973)

noteworthy.
For those interested in shot noise and mesoscopic systems, a

particularly interesting reference is by de Jong6. It explores shot 6 M. J. M. de Jong,  ̏Shot noise and
electrical conduction in mesoscopic
systems,˝ Copynomie Veldhoven,
ISBN 90-74445-19-5 (1995). This is a
Ph.D. thesis from Leiden University

noise, as well as its suppression due to quantum constraints, when
one employs mesoscopic systems with ballistic transport across
channels.

Mode partition noise in semiconductor lasers, together with
its underlying analysis using a Master equation written in the
Langevin fluctuation form, is treated by Pao-Lo Liu for steady-state
and dynamic conditions in the book edited by Y. Yamamoto7. 7 Y. Yamamoto,  ̏Coherence,

amplification, and quantum
effects in semiconductor
lasers,˝ John Wiley, ISBN
0-471-51249-4 (1991)

Electrical engineering has its own style—drawn from the
implications for the operation of circuits—that the reader may want
to also peek at. We studied here the underlying phenomena, but
what an engineer who puts a device or circuit to use is interested
in are measures such as the signal-to-noise ratio, the noise figure,
effects in a multiport environment when circuits are chained, and
noise as it exists due to various causes in different devices. A good
source for such an understanding is the book by Gabriel Vasilescu8. 8 G. Vasilescu,  ̏Electronic noise

and interfering signals: Principles
and applications,˝ Springer, ISBN
3-540-40741-3 (2005)

It discusses how noise is treated in device modeling and how it is
incorporated in the design of circuits, and it takes a side diversion
to cross-talk interference modeling in circuits.

Low-frequency noise is of particular importance in field-effect
devices such as the MOSFET. A book that dwells entirely on this
1/f noise is by von Haartman and Mikael Östling9. The book 9 M. von Haartman and M. Östling,

 ̏Low-frequency noise in advanced
MOS devices,˝ Springer, ISBN 978-1-
4020-5909-4 (2007)

integrates the engineering operation of these devices with the noise
phenomena as observed and understood in practical structures. So,
it incorporates the variety of mobility and field effects that occur
over generations of bulk and silicon-on-insulator devices.
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16.8 Exercises

1. What is the theoretical maximum thermal noise power that
can be delivered to an ideal noiseless load from a resistor R at
temperature T? [S]

2. Will photons exhibit thermal noise? Please provide a reason. [S] As an aside, think too about photon
entropy.

3. Do processes that cause noise have to be random? Yes or no,
and a short argument, please. [S]

4. We brought out the thermal noise and shot noise by considering an
electron’s transport in-between electrodes. Thermal noise depends
on temperature. Does shot noise too? If not, can you suggest
why not? [S]

5. Could one use the Boltzmann transport picture for analyzing
scattering, noise and other phenomena in mesoscopic conditions
where quantized conductance is important and few channels
available for transport? Why or why not? [S]

6. We typically do not write Maxwell’s equations using a fluctuation
term, although all statistical effects are within its instantaneous
validity. When we form noise models showing fluctuations, we
write ideal capacitors, resistors and inductors together with noise
sources to show the fluctuation effect—the fluctuation of charge
and its consequences—and this is useful. We also typically do not
write Maxwell’s equations in reciprocal space and time. Show that,
by using a tilde (˜) as an overscript in the conventional notation to
represent the inclusion of fluctuations, one may write Maxwell’s
equations as follows:
In the space and time domain:

∇ × H(r, t) = J̃(r, t) + ∂D(r, t)
∂t

,

∇ × E(r, t) = −∂B(r, t)
∂t

,

∇ · D(r, t) = ρ̃(r, t) and

∇ · B(r, t) = 0,

with

∂ρ̃(r, t)
∂t

+ ∇ · J̃ = 0.

In the reciprocal space and time domain:

ik × H(k,ω) = J̃(k,ω) − iωD(k,ω),

ik × E(k,ω) = iωB(k,ω),
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ik · D(k,ω) = ρ̃(k,ω), and

ik · B(k,ω) = 0,

with

iωρ̃(k,ω) − ik · J̃(k,ω) = 0.

Using the complex dielectric function (ε(k,ω) = εr(k,ω)+iεi(k,ω)),
this latter set can be rewritten as

k × H(k,ω) = −iJ̃(k,ω) − ωε0ε(k,ω)E(k,ω),

k × E(k,ω) = ωB(k,ω),

k · E(k,ω)ε(k,ω) = i
ωε0

k · J̃, and

k · B(k,ω) = 0,

with the direct connection shown. This representation is formally
the equivalent of separating a generator to account for the
fluctuations. Now we have a deterministic dielectric function and
fluctuating charges and currents. [S]

7. The integrated value of an energy spectrum over all frequencies is
proportional to the total energy transfer of a signal, that is, if we
define the energy spectrum Sf (y) of a function f (x) as

Sf ( y) = F( y)F∗( y),

where

F( y) =
∫ ∞

−∞
f (x) exp(−ixy) dx,

which is consistent with
∫ ∞

−∞
Sf ( y) dy =

∫ ∞

−∞
F( y)F∗( y) dy = 2π

∫ ∞

−∞
f (x)f ∗(x) dx.

Show that the integrated value of the power spectrum should
match the mean rate of energy transfer in the signal, that is,

〈| f (x)|2〉 = 1
2π

∫ ∞

−∞
Pf ( y) dy,

where

Pf ( y) = lim
X→∞

1
2X

FX( y)F∗
X( y).

[S]

8. Two resistors—R1 at temperature T1, and R2 at temperature T2—
are connected either in series or in parallel. What is the root mean
square noise voltage at the output? [S]

Figure 16.14: A random telegraph
signal fluctuating between ±V.
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9. Derive an expression for the autocorrelation function of the
random telegraph signal shown in Figure 16.14, assuming that
the time instants of zero crossings follow a Poisson distribution.
In the process of deriving, show that the product z(t)z(t − τ ) with
values of ±V2 depends on the number of changes k. Thus, the
spectral power density can be found. Sketch it, and comment on
the implications of the magnitude of τ vis-à-vis T. [S]

The result should be clear from the
text’s discussion. Here, just consider
the kth transition probability as
p(k, νT) = [(νT)k/ν!] exp(−νT) and
derive the result through the series
of the probability of events.
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Stress and strain effects

How may one change a semiconductor’s transport or other
properties arising in interfacial and bulk changes? For devices
at nanoscale, with their poor scaling of parasitics’ consequences
for desired operational scaling, this is an important question.
Can one reduce scattering, emphasize one characteristic over
another or change the potential constraints of an interface so
that the operational characteristics—frequency limits or gain, for
example—still continue to improve? In the case of optoelectronics,
there may be other operational characteristics where device size
may not be as central as it is for electronic devices. For lasers, for
example, these may be efficiency, temperature span of operation
or reliability. Introducing strain is one way of changing electronic
and optoelectronic interactions. Strain is easier to accomplish in thin
layers where boundaries—a planar boundary such as a substrate
defining a grown layer’s periodicity, or an edge boundary that
pushes in or pulls out a small region—can be introduced. These
modifications introduce changes in bandstructures and interfacial
bandedges and can also change scattering through changing the
states’ characteristics and their occupation. The use of the nanoscale
also provides additional strain-related possibilities that do not
exist at larger scales. In this chapter, we extend our discussion
of bandstructure, band discontinuities and transport—much of
the text up to this point—to a manipulation of them through
strain. The use of nanoscale in this also brings a few additional
physical phenomena, because of their increased importance, into
the discussion. These are matters related to long-range interactions
and their fluctuation consequences, the increasing importance of
plasmons, and the phonon interactions at interfaces. We will extend
some of these discussions in the next chapter (Chapter 18) to high
relative dielectric constant materials—used as gate insulators and
elsewhere—to tie many of the consequential scattering effects in

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001
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the presence of the stronger Coulomb coupling that high dielectric
constants permittivity brings.

17.1 Strained layers

Gallium arsenide, aluminum arsenide and their com-
positional mixes, as we discussed in Chapter 6, form a pristine
interface when two compositions are changed from one to the other,
with a precisely predictable conduction band and valence band dis-
continuity, and a reproducible undisturbed bulk-like bandstructure
nearly up to the interface. This is because the lattice constant of the

The strain at the GaAs/AlAs interface
is very, very slightly tensile and
observable in a red shift in the optical
response. AlAs has a slightly larger
lattice constant (0.56605nm) compared
to GaAs, whose lattice constant is
0.56533nm. Al is smaller but AlAs is
also more ionic. The thermal expansion
coefficients are 6.86× 10−6 K−1 for
GaAs, and 5.2× 10−6 K−1 for AlAs.

two materials is quite close—≤ 0.13% at room temperature—and
their thermal expansion coefficients are also insignificant, leading
to a nearly bulk-to-bulk unstrained interface. Si, on the other hand,
has a lattice constant of 0.543095nm, and Ge has a lattice constant
of 0.564613 nm at room temperature, which is an in-plane strain of
3.81%, which is considerably larger. The discontinuity will depend
on the strain, and the bulk bandstructure will also change in the
strained region near the interface. If one can accommodate the
elastic strain energy without the crystal coming apart by creating
defects of various types, through the temperatures employed and
thickness of material grown, even minutely thin layers—on the

Lower temperature implies lower
energy for disturbing the stability
through the thermodynamic processes,
and lower thickness means that the
accumulated elastic energy contained
in the strain is kept limited.

order of a few nms thick—can be grown. This thickness is too small
for any effective device usage, but a compositional mix of Si1−xGex,
with 0< x < 0.4, can be achieved in thick-enough layer form
(∼30nm) to be useful for many interesting device applications. So,
strain allows a multitude of semiconductors to be grown on others.
The strain also changes the properties of these materials at the
interface, as well as away from it. In the GaAs/Ga1−xAlxAs system,
the strain does not play much of a role, but the interface does in a
significant way. And creating unorthodox strain patterns through
stress at chosen boundaries provides a way to manipulate the local
bandstructure artificially.

Figure 17.1: Nomenclature for forces
and stresses. Forces distributed on
a surface are stress. The normal
component and shear components of
the stress can be noted through the
subscript. Shear has two components
parallel to the plane of shear. The
figure shows the direction of normal
and shear stresses, with solid lines for
the visible faces and dotted lines for
the opposite. Normal stress causing
tension is positive by convention.
For shear, the positive component is
aligned in the direction that causes
tensile stress if it aligns along that
coordinate direction.

First, consider what happens in a continuum media in elastic
theory. The convention and nomenclature for stresses is shown in
Figure 17.1. Stress is force distributed over a surface. Pressure on a
surface exercises stress. The force per unit area can be resolved into
three spatial degrees of freedom, so three coordinate components.
The normal component of stress uses the symbol σ with a double
subscript (or because it is duplicated, a single subscript) identifying
the direction normal to the plane. It is positive if it is tensile;
that is, stretches the body in that direction. The in-plane stress,
also denoted by σ , can be identified through the subscripts as a
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shear stress. It is subscripted by the two coordinate components
of its plane. The positive direction of shear stress is the positive
direction where tensile stress on the same side would have a
positive direction on the corresponding axis. The stresses on the six
faces of a cubic element can be described by three normal stresses
(σ xx, σ yy and σ zz) and six shear stresses (σ xy, σ yx, σ xz, σ zx, σ yz

and σ zy). Considering an infinitesimally small element, the shear
forces on any face and equilibrium will lead to a balance between
complementary stresses. For example, σ xy dx dy dz = σ yx dx dy dz on
the x-y face implies equality of σ xy and σ yx. Therefore, there exist
three independent normal stresses and three independent shear
stresses.

Treated as a continuum, Hooke’s law experimentally establishes Robert Hooke was one of the early
great English scientists. He was a
contemporary of van Leeuwenhoek,
who is credited with the microscope
and a decade older than Newton.
Hooke was a curator of experiments
for the Royal Society, and the story
is—or the claim goes—that it
was Hooke who suggested that
Newton look at gravity and Kepler’s
observations. Hooke’s law does
have correspondences to Newton’s.
Note that all this analysis is in a
continuum picture. It will break
for two-dimensional material. The
treatment of sharing of an atom
has to be a quantum-mechanical
undertaking.

the relationship between strains and stresses. A generalization of
Hooke’s law, that is, under elastic and linear deformation condi-
tions, σ ij = Cijklεkl, connecting all directions of stress to all directions
of strain. Cijkl is the elastic stiffness tensor. It is of the fourth order,
since two different directions in three-dimensional space are being
connected. The symmetry of cubic semiconductors forces the
stiffness tensor to have only four independent components relating
stress and strain through

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

σ xx

σ yy

σ zz

σ yz

σ xz

σ xy

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

=

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

εxx

εyy

εzz

2εyz

2εxz

2εxy

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

. (17.1)

The stress and strain relationship in Si and Ge, for example, can
be characterized by the stiffness constants given in Table 17.1.
Note that when the subscript terms are identical, so xx, yy and
zz, then the stress is normal, and if they are different, then it is a
shear stress.

c11 c12 c44
GPa GPa GPa

Si 166.0 64.0 79.6
Ge 126.0 44.0 67.7

Table 17.1: Stiffness constants at room
temperature for Si and Ge.

The implication of these independent components can be illus-
trated through the consequence of strain in different directions. Take
a hypothetical Si pseudomorphic film; that is, one that is laterally
lattice aligned to a larger Si1−xGex substrate. If the substrate
surface is (001), then shear strains (εxy, εyz and εxz, which are all
of identical magnitude) must vanish. So, as shown in Figure 17.2,
there are different normal strains for Ge and Si under uniaxial stress
in the [001] direction, but shear components vanish. However, if
one had uniaxial stress in the [110] and [111] directions of Si and Ge,
then the shear components are non-zero.
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Figure 17.2: Strain response on (001)
Ge and Si. These figures are a function
of applied stress in GPa. Part (a) shows
the strain response for [100] uniaxial
stress, so along the conventional choice
of a non-primitive cell’s directions.
Shear strain components are absent.
Part (b) shows the strain response
when a uniaxial stress is applied along
the [110] direction. Both normal and
shear strains exist.

For an isotropic material, a normal stress will not produce any
distortion in the angles of the element, and ε =σ/Y, where Y is
the modulus of elasticity (Young’s modulus), defines the linear
elastic relationship. Extension of an element is accompanied
by lateral contraction, so while εxx =σ xx/Y for a normal stress
applied in the x direction, εyy = −νσ xx/Y, and εzz = −νσ xc/Y, also
result for the isotropic elastic material. ν here is Poisson’s ratio. If
there exist three normal stresses (σ x, σ y and σ z), then the strains
will have both the normal extension and the lateral contraction
components, so

εx = 1
Y

[
σ x − ν(σ y + σ z)

]
,

εy = 1
Y

[
σ y − ν(σ x + σ z)

]
, and

εz = 1
Y

[
σ z − ν(σ x + σ y)

]
(17.2)

will result in the linear limit by superposition.
For us, for our cubic lattices, the in-plane strain of ε‖ and the

out-of-plane strain (ε⊥) can be related as

ε⊥
ε‖

= − 2ν
1 − ν

. (17.3)

The strain distorts the cubic cell to a tetragonal cell. Table 17.2 gives
the measured Poisson’s ratio of some semiconductors of interest.

Semiconductor Poisson’s
ratio (ν)

GaAs 0.312
GaP 0.305
Si 0.279
Ge 0.270

Table 17.2: Room temperature
Poisson’s ratio for some of the
semiconductors.

If one were to form a strained layer on top of a substrate, as in
Figure 17.3, for example, by growth, and the strained layer takes on
the in-plane lattice periodicity of the substrate by being elastically
strained—known as pseudomorphic approximation—then the
strained crystal has an elastic energy of

E = 2μ
1 + ν

1 − ν
ε2‖, (17.4)

where μ is the shear modulus μ = Y/2(1 + ν).
Any strain tensor can be decomposed into the sum of three

separate tensors:
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Figure 17.3: Part (a) shows a toy
model of a large lattice constant
crystal and (b) shows a smaller lattice
constant substrate on which the
semiconductor of (a) is formed as a
continuing—morphic—layer that takes
the substrate’s in-plane periodicity, as
shown in (c).

⎡

⎢
⎣

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤

⎥
⎦

= 1
3

⎡

⎢
⎣

εxx + εyy + εzz 0 0
0 εxx + εyy + εzz 0
0 0 εxx + εyy + εzz

⎤

⎥
⎦

+ 1
3

⎡

⎢
⎣
2εxx − (εyy + εzz) 0 0

0 2εyy − (εxx + εzz) 0
0 0 2εzz − (εxx + εyy)

⎤

⎥
⎦

+
⎡

⎢
⎣

0 εxy εxz

εyx 0 εyz

εzx εzy 0

⎤

⎥
⎦. (17.5)

The first term has the diagonal terms identical—it is a constant
tensor where the terms are one third of the trace—and it reflects a
volume change. It is a hydrostatic response. The other two terms The response is hydrostatic—a

constant stress applied from all
directions on the cube—as if it was
placed in oil and pressure was applied
with a plunger for compressive stress.
This is also how many hydrostatic
experiments are performed.

arise in shear strain and involve a shape change. These represent
the effect of a shear stress. The first of these—the second term in
this strain tensor expansion—is due to changes in lengths along
the three axes, and the second—the last term with no diagonal
elements—is a rotational distortion term. This second term with
diagonal elements represents a uniaxial stress along one of the
cube’s coordinate axes; that is, along the 〈100〉 direction.

Uniaxial stress has caused the three dimensions of the cubic
crystal to change. The last term contributes when stress exists along
the [110] or [111] directions; that is, directions other than along the
cube’s axes. When a cube is under hydrostatic strain, its shape is
unchanged. When stress is applied along the [100] axes, the cube
distorts to an orthorhombus. And when the stress is along the [110]
or [111] directions, the shape becomes triclinic, which is the least
symmetric of the 14 Bravais lattices. The axes are now of unequal
lengths and are now non-orthogonally inclined w.r.t. each other.
This is the general response for cubic materials. Note the fractional
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factors in front, though. The response to a compressive uniaxial
stress along [001] is not identical to the response when a biaxial
tensile stress of identical magnitude is applied along [100] and
[010]. Decompose this stress tensor, and one sees that the last two
terms are identical. But the first term—the hydrostatic strain—will
differ by a factor of 2.

Figure 17.4: When pseudomorphic
Si is grown on a relaxed crystal of
(001)Si1−xGex, it is stretched in the
plane and shrunk out of the plane.
The strain is shown here for a (001)
surface for a silicon thickness that
can accommodate the elastic strain.
Because the crystal is cubic, note that
εxy = εyz = εzx = 0. The net strain is the
sum of the hydrostatic compression
and a uniaxial strain in the out-of-
plane direction.

What we are interested in is the specific strain response to stress
that can be practically obtained during semiconductor usage.

Figure 17.5: The pseudomorphic
thickness, that is, the limit thickness
up to which elastic strain can be
accommodated by the film taking
the in-plane lattice periodicity of the
substrate, for Si1−xGex grown on Si,
and Ga1−xInxAs grown on a GaAs
substrate.

The example of Figure 17.3—a grown crystalline layer on a
thicker substrate where the substrate has the stronger influence on
defining the in-plane periodicity—is an example of biaxial stress
that arose in the layer being compressed to close to the substrate’s
dimensions. Strain will exist at the interface and its adjacent region
on both sides of the interface. But the layer will show most of the
consequence, since the substrate is thick and the film will have to
store the elastic energy arising in the deformation. In Figure 17.3,

The Si1−xGex film—thin—is of
enormous interest in the development
of very high-frequency bipolar
transistors for mobile communications.
Bipolar transistors have an additional
beneficial attribute of low noise,
since much of the operation happens
without the involvement of surfaces—
a frequent source of defect interaction
with 1/f features—and the base
region is, by necessity, desired to
be very thin. See S. Tiwari,  ̏Device
physics: Fundamentals of electronics
and optoelectronics,˝ Electroscience
2, Oxford University Press, ISBN
978-0-198-75984-3 (forthcoming) for

the layer has become tetragonal by expanding in the out-of-plane
direction. This new shape can be seen as a sum of hydrostatic
compression and a uniaxial tension, as can also be seen from
Equation 17.5. The reverse of this case is when the substrate has
a larger lattice constant than the grown film does. An example
of this is growing a sufficiently thick Si1−xGex film so that it has
relaxed to its natural periodicity and then growing a Si film on
it. The Si periodic spacing will now be stretched in the plane and
will shrink out of the plane. Figure 17.4 shows the resulting strain
in the Si layer on a (001) surface. So, the [001] direction is shrunk
while the [100] and [010] directions are stretched. Note, following
Equation 17.1, the shear components vanish.

The strained configuration of important technological use is
that of Si1−xGex grown on Si. For small strains, a grown film can
accommodate the strain energy elastically through the tetragonal
distortion. As the film is made thicker, misfit dislocations arise
in the interface region. Our discussion of surfaces in Chapter 5
explored some of these stress issues and was used as the argument
for the reconstitution of the surface region. A discussion of where
misfit dislocations will come about in order to accommodate
the stress energy—how much of it is accommodated by strain
and how much by the dislocations—is beyond our interests
here and certainly will require plenty of assumptions given, the
nonequilibrium nature of a growth process. Suffice it to say that
properties of materials and the conditions and nature of the growth
will define thicknesses that can accommodate the strain without
the creation of dislocations. Figure 17.5 shows, for Si/Si1−xGex and
GaAs/Ga1−xInxAs systems, an approximate thickness for films where
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Figure 17.6: When the aspect ratio is
large, processing can be employed to
cause predominantly one direction
of strain in small geometries. Films
on the gate can be used to stretch the
semiconductor underneath. Regions
cladding the channel, such as the
doped source and drain regions, may
be used to cause compressive strain.

strain can be accommodated as a compressive film containing Ge
and grown on a silicon substrate.

more discussion of the importance of
strain and the resulting band changes
in transistors that enable the frequency
limits to be extended.The other possibility for introducing strain in semiconductors

is to take regions of a device—for a transistor, the gate or even
the confined transistor or channel area, which have a relatively
distorted aspect ratio—and apply a strain along the narrower
direction via processing trickery. A tensile film, as shown in
Figure 17.6(a), can cause a stretching laterally by pulling the
gate out along its length, or a compression laterally, from the
doped contacting region—an example is the incorporation of Ge as
Si1−xGex in this region—or from the isolation region, while keeping
the channel still in Si.

In these uniaxial stress situations—uniaxial because the stress is
in one dimension (usually width, which is much larger than length
in this scenario)—Equation 17.1 can again be simplified. Figure 17.2
shows the strain response of Ge and Si under uniaxial strain in the
[001] and [110] directions.

In semiconductors, the transistors are usually made in the [110]
direction. The top view of the deformation looks as shown in

Historically, the reason was that wafers
cleaved along this edge, so square
dies resulted. The choice of the (001)
surface is due to its lower density of
interface states, which led to better
control in the early years. The [110]
orientation for gates is also partly from
the higher electron mobility that one
observes in this direction. The [100]
direction band curvature leads to the
higher longitudinal mass.

Figure 17.7 and has two dominant independent components in the
stress-strain relationship of the type that we have already discussed.
This is also what Figure 17.2(b) indicates.

Both the biaxial and the uniaxial strains are of technological
interest. We have seen that biaxial stresses can be decomposed into
hydrostatic and uniaxial forms. And the application of uniaxial
stress will result in an in-plane strain without the out-of-plane effect
that biaxial stress has.

Figure 17.7: Uniaxial strain in Si, here
compressive, in the [110] direction.
The (110) plane of Si is usually aligned
along the width direction of the field-
effect transistor’s gate.

The consequences of the different strains for electrons and for
holes is the next subject of interest to us.

17.2 Band alignment and bandstructure consequences

A change in lattice periodicity will lead to bandstructure
change and will also have consequences at the interface, as dis-
cussed in Chapters 4 and 5 on band alignment. So, both the  ̏bulk˝
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environment within a thin film and the  ̏interface˝ environment are
going to change. And these consequences will be for both electron
states and hole states, a change in the anharmonicity as well as
their shifting in energy, and for the transport properties arising in
the bandstructure deformation as well as due to scattering.

Since a general stress can be decomposed into a hydrostatic
component and a shear component, we need to look at what forms
these take for biaxial stress, as occurs when a layer is grown,
and uniaxial strain, as occurs when pattern-based techniques are
employed. We approach this by first looking at the more general
trends of the changes.

17.2.1 Effect of hydrostatic stress

Figure 17.8: The room temperature
change in the bandgap of Si under
hydrostatic strain.

Since, in cubic structures, a hydrostatic strain causes
identical deformation in all directions, the primary consequence
then is a change in the bandgap. Symmetries do not change, so the
degeneracies of the band minima should not change. But since the
separation between atoms is changing, the interatomic interactions
will change. If atoms are closer together—a compressive hydrostatic
strain—the bandgap should increase, since the interaction pertur-
bation has become larger. Figure 17.8 shows the bandgap change
in Si under hydrostatic conditions. Separation of the bands is a
function of the hydrostatic strain. Ge has a unit cell of ∼0.566 nm,
and Si one of ∼0.543 nm, so if one could manage to obtain a sub-
pseudomorphic thickness film of Si on a Ge surface, it will have an
in-plane strain of the order of 0.04. An extension of this graph says Bipolar transistors employing strain

will also compositionally change the
strained layer. The strained base layer
of Si1−xGex on an Si collector will be
compressive, and the molefraction
x will change so that one may
preferentially introduce an electric
field through the bandgap changes to
sweep injected electrons faster toward
the collector.

that a nearly −0.2 eV decrease in the bandgap would arise due to
hydrostatic tension. In reality, this is a very high strain, but strains
of the order of 0.02 are quite feasible for useful layers under elastic
strain without defect generation during all processing and usage.

17.2.2 Effect of shear stress

Shear stresses break crystal symmetry. In the last two tensors
of Equation 17.5 arising in shear, the first—the diagonal form—
is a change in length along the three directions of 〈100〉. We
remarked that a uniaxial strain along these directions will result
in this term, while the second—a rotational tensor—will vanish.
Figure 17.7 showed this rotation and distortion consequence for
a uniaxial stress along 〈110〉 directions. So, uniaxial stress along
〈100〉 and along 〈110〉 have different effects because of the change in
symmetry. The biaxial strain in our example illustrates the uniaxial
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consequence in the growth direction of [001] with a change in
periodicity. It made the crystal tetragonal. The pattern approach
illustrates the uniaxial consequence from the [110] direction, and
here the in-plane structure distorted from a square to a rhombus.
The cubic symmetry is now changed to a tetragonal symmetry.

The real space symmetry change has consequences for the
reciprocal space. Consider first the valence band. Recall that the
light-hole, heavy-hole and split-off bands have their origins in the
spin-orbit interaction. The states at the top of the valence band,
following our discussion in Chapter 4, are |3/2, 3/2〉, |3/2,−3/2〉,
|3/2, 1/2〉 and |3/2,−1/2〉, and |1/2, 1/2〉 and |1/2,−1/2〉, due to the
spin-orbit interaction. The former, degenerate set of 4 zone center
states are at the top of the valence band, and the second set in
the split-off valence band. When the Hamiltonian has inversion
symmetry, these fourfold states split into a set of twofold degen-
erate bands corresponding to the direction of the wavevector. The
|3/2,±3/2〉 states are the higher states of the heavy-hole band, and
the |3/2,±1/2〉 states are those of the light-hole bands. Deformation
of the crystal breaks the zone center degeneracy and causes further
change. Figure 17.9 shows the consequences for Si under biaxial
tensile and uniaxial compressive stress. This behavior for valence
band distortion and splitting is quite similar for most of the zinc
blende and the diamond lattice semiconductors.

For conduction bands, unlike valence bands, where the bandedge
behavior is quite similar for the zinc blende and diamond lattice
semiconductors, the bandedge behavior is quite different. As
elaborated in Chapter 4, the differences in covalent and polar
interactions lead to conduction band minima at different points
of the Brillouin zone. GaAs has a minimum at the zone center,
Si has it near the X point along the � direction, and Ge has it at
the L point. Strain effects will vary for these different types. The
GaAs minimum being non-degenerate, there is no splitting. Si has
sixfold degeneracy due to the sixfold symmetry of this minimum
point near X and along the 〈100〉 directions. The Ge minimum,
being at the zone edge L point, should be seen as having fourfold
degeneracy.

Figure 17.9: Light-hole (lh) and
heavy-hole (hh) band deformation
of Si under only shear stress. Part (a)
shows the near valence bandedge
unstressed (E,k) behavior, (b) shows
the consequence of shear under
biaxial tensile stress, so compression
in the [001] direction, and (c) shows
the consequence of [110] uniaxial
compressive stress. The split-off band
is also shown in these figures.
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Symmetry arguments tell us how these degeneracies for Si and
Ge should be expected to change.

For Si, the biaxial and [110] uniaxial stresses distort the [100] and
the [010] directions—the in-plane directions—similarly and the [001]
direction—the out-of-plane direction—differently. So, one gets a
splitting into fourfold and twofold degeneracy of the conduction
band. Therefore, we will call the former �4, and the latter �2, since
� is the direction we have associated with [001].

For Ge, for biaxial stress, with its identical [100] and [010] conse-
quences, all the L valleys respond similarly—they are in the 〈111〉
orientation—leading to no degeneracy lifting. But the projection of
these 〈111〉 valleys for the [110] uniaxial stress is different—two of
the projections are along [110], and two are along [110]—with the
valley degeneracy splitting into two twofold degenerate groups.

Uniaxial stress, on the other hand, being an applied force in only
one direction in real space, affects bandstructure very differently.
Now, the interaction of states contributing to the bands in that
specific orientation changes in a significant way. There is now
asymmetry, and degeneracies that existed in the cubic arrangement
are lifted. Dimensions have changed. So, the conduction band and
the valence band will reflect this change in symmetry and hence
degeneracy. Consider [110] uniaxial stress. Band degeneracy will
split. In Si, where the conduction band minima are in from the X
point (〈100〉), the out-of-plane direction will show one behavior,
and the in-plane directions will show another behavior. In the
valence band, the light-hole states and the heavy-hole states, with
their different characters, will also separate differently, and the
degeneracy at the zone minimum will be broken.

This change in band behavior—particularly the splitting in the
conduction and valence states—is shown in Figure 17.10 for Si,
GaAs and Ge, with their three different electron bandedge state
symmetries.

Now consider what happens to the occupied states. The con-
duction bandedge states are easier to think through, and we will
discuss Si here. Equienergy surfaces are ellipsoidal, and there
are six different directions along which they are centered with a
longitudinal mass along that direction. For biaxial tensile strain, the
result of the degeneracy splitting and the change in the bandedge
energy in the state occupation is as shown in Figure 17.11(a), which
shows the description important to in-plane motion of these thin
films, and Figure 17.11(b) shows the occupation. The transverse
mass is smaller, and the twofold degenerate valley along the 〈001〉
axes are now the lower bandedge energy valley. It has a smaller
mass, so it stretches more broadly in the transverse direction of
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Figure 17.10: Changes in the bandedge
state energies for Si, GaAs and Ge
under biaxial tensile stress in a (100)
plane in (a) through (c), and [110]
uniaxial compressive stress, also in
a (100) plane, in (d) through (f). The
splittings have been decomposed
into the hydrostatic and the shear
contributions. The valence band
heavy-hole (hh) and light-hole (lh)
behavior is quite similar at the zone
center—a splitting of heavy- and
light-hole band degeneracy—although
considerable differences will arise as
one looks at higher hole energies and
different wavevectors. The conduction
bandedge state response is quite
different for the different symmetries
of those states.

Figure 17.11: Part (a) shows the
constant energy contour of conduction
band states on a (001) surface under
biaxial tensile stress. Dashed lines
are for unstrained conditions. The six
ellipsoids with fourfold and twofold
degeneracy are shown in (b) for
the biaxial tensile stress conditions.
The lower transverse mass and the
lowering of the energy makes the
twofold ellipsoids larger. Part (c)
shows the degeneracy breaking and
bandedge alignment changes under a
polarity change of this biaxial stress;
hh, heavy hole; lh, light hole.

motion in the (001) plane. It should also be understandable that
tensile stress and compressive stress will have the opposite effect,
as sketched in 17.11(c). Note that the energies of the states in the
twofold and fourfold valleys are moving in opposite directions.
The twofold valley minima also shift at about twice the rate of the
fourfold valley minima.

Figure 17.12: The symmetry
consequence in band warping arising
from the [110] uniaxial stress for (001)
silicon. The two out-of-plane valleys
will have constant energy contour
distort from the circle, as shown in (b).

17.2.3 Band warping

The other important change due to stress is that of band
warping. The equienergy surfaces in the conduction band were
ellipsoidal for the following reason. The X-point directed axis—a �

axis—connects to a square face of the FCC crystal. The conduction
valleys must follow this symmetry, since they are along this same
direction. The symmetry forces the transverse contours to be circles.
Along the axis, it is elongated, since there was little perturbation
from states of any bands nearby. In the presence of stress, if this
square symmetry in the perpendicular plane is reduced, the energy
symmetry in this plane will also be lost. So, the 〈110〉 uniaxial stress,
which leads to the in-plane rhombus distortion of a square, will
distort the circle to an ellipse, as shown in Figure 17.12, with major
and minor axes along the 〈110〉 directions.
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Figure 17.13: Very low constant energy
valence surface in GaAs. Part (a) shows
unstrained conditions with its cubic
symmetries, (b) shows the case under
biaxial tensile stress and (c) shows
the case under [110] uniaxial stress.
Note that these symmetries reflect
the real space symmetries because of
the � center maximum, and very low
energy with small state interactions
between light and heavy holes, due
to degeneracy lifting and because the
split-off band is farther away. The
stress in the (b) and (c) cases is 1GPa.
Adapted from Y. Sun, S. E. Thompson
and T. Nishida,  ̏Strain effects in
semiconductors,˝ Springer, ISBN
978-1-4419-0551-2 (2010).

Band warping is the distortion of the wavevector for the same
constant energy in different directions. Warping is much more
significant in the valence band because of the interaction of states,
spin and the symmetry consequences. The valence bandedge is
at the � point. Because of this central locale, the reciprocal space
energy surfaces will follow all the changes in symmetry of the
real space under stress. Si valence band warping is going to be
relatively complicated because the split-off band is so close to the
light-hole and heavy-hole bands. The split-off band is separated by
only 0.044 eV for Si at the zone center.

So, first consider the valence band in GaAs where the split-off
band is nearly 0.34 eV below, so at least state interactions with split-
off are small and degeneracy lifting under strain makes matters
easier. Figure 17.13 shows the unstressed condition and the two
stressed conditions that we have been interested in. The unstressed
GaAs valence band has the symmetry of a cube. A biaxial tensile
stress keeps the in-plane directions symmetric—elongated—and
the out-of-plane direction symmetry is broken and that direction
shrunk. So, the equienergy surface near the top of the valence band
distorts the cube to a square cuboid. Uniaxial stress along [110]
causes the cubic symmetry to distort to a tetragonal symmetry.
Since this is a much more significant symmetry change, the
warping is much more significant. The rhombus in-plane real space
symmetry is reflected, at very low energies, in the axis of revolution
turning to the [110] direction. The symmetry of the rhombus is
maintained in the plane of the equienergy surface in the plane. If
one looks at equienergy surfaces at higher energy, the heavy-hole,
particularly, and the split-off states’ interactions become important.
Note that, at low energies, with the splitting of the bands, and
being at the center of the zone, the interband coupling will be
weaker. Indeed, the bands become more parabolic.

Now consider the consequence of the interaction of the states
or of band mixing. The heavy-hole states are characterized by
|3/2,±3/2〉, and the light-hole states by |3/2,±1/2〉. The angular
momenta are related to rotational invariance. In a cubic crystal, it is
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the fourfold rotational symmetry that leads to the angular momen-
tum L being 1. Include spin S = 1/2, and this led to the eigenstate
description of the light hole and the heavy hole. Even though
these bands are degenerate at the � point, the heavy- and light-
hole states do not mix with each other, due to symmetry. Under
biaxial stress, stretching or straining in plane, and its complement
orthogonally, symmetry change occurs only in two orthogonal
directions. The out-of-plane mixing between heavy-hole and light-
hole states is relatively unchanged. So, the bands and states may
rise or fall, depending on the polarity of the stress; degeneracy
will lift, but band warping will be small along 〈001〉. In the case In quantum wells, this warping, by its

consequences for confined quantum-
well bandedge shifts, can lead to
interesting instances of anti-crossing:
two energy levels that cross near
the � point curve away when they
approach each other. This is a case of
wave mixing resulting from symmetry
reduction as in the [110] uniaxial stress
instance.

of [110] uniaxial stress, the out-of-plane rotational symmetry is
now 2 and not 4. Angular momentum differing by 2 units of action
cannot be distinguished. So, states such as |3/2,−1/2〉 and |3/2, 3/2〉
can couple. Light-hole and heavy-hole states can interact. So, with
uniaxial 〈110〉 stress, degeneracy will lift, state mixing will be
significant and band warping will be pronounced.

These consequences arising in valence band state mixing will
be much stronger in Si, where the split-off band is only few meVs
away in energy at the zone center. Figure 17.14—to be compared
with the GaAs result of Figure 17.13—shows the significant conse-
quences for the uniaxial condition. Note also the tremendous warp-
ing that exists due to the split-off state interaction in the unstressed
condition. Si’s valence bandstructure has quite consequential spin-
orbit effects that show up particularly strongly under strain. Note
also the correspondence of these equienergy surfaces with the E-k
diagrams for unstressed and stressed conditions in Figure 17.9. It is
the light-hole band that couples most strongly to the split-off band
in the unstressed condition. When stress is introduced, degeneracy
lifts, but the heavy-hole band still remains relatively unaffected by
the split-off band. But the coupling between the light-hole band
and the split-off band causes the two to shift in opposite directions.
Under biaxial tensile strain, the light-hole mass increases with an
inverse dependence on the stress through the mixing with the split-
off band, with the heavy hole remaining immune.

Figure 17.14: The constant energy
valence band surface at very
low energies in Si. Part (a) shows
unstrained conditions with its cubic
symmetries, (b) shows the case under
biaxial tensile stress and (c) shows
the case under [110] uniaxial stress.
The stress in the (b) and (c) cases is
1GPa. Adapted from Y. Sun, S. E.
Thompson and T. Nishida,  ̏Strain
effects in semiconductors,˝ Springer,
ISBN 978-1-4419-0551-2 (2010).
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The tight binding picture also gives us a perspective on this
valence band shifting. This is illustrated in Figure 17.15.

Reduced distances between atoms increases interatomic
interaction via increased wavefunction overlap, which is why the
bandgap widens between bonding states and antibonding states.
This was our reasoning for hydrostatic stress’s effect. With shear
stress, the consequence on bands will be related to symmetries. s
states have little effect arising in warping from shear. The more
pronounced effect arises in the hydrostatic stress through the
wavefunction overlap. Warping arises in interband coupling.
And, for s states rotated by shear w.r.t. one another, if it leaves
the separation the same, no energetic difference should be expected.
However, if angles change—as with oriented states, shown as the
hybridized tetrahedral symmetry bonds of Figure 17.15—then
overlap parameters are modified. This is a strong effect for p states.
In the case of biaxial strain (Figure 17.15(a)), the four bonds rotate
either toward or away from the plane of strain. In-plane orbital
coupling increases, and out-of-plane coupling decreases. The weight
of px and py in the bond increases, and that of pz decreases. So, the
[001] direction has an increased overlap of in-plane orbitals. The
heavy-hole band is lowered. A decreased out-of-plane overlap of
the pzs leads to the light-hole band being raised. In the in-plane
directions, the light-hole band is lowered (less overlap of px and py),
leaving the heavy-hole band higher. The conduction band along the Note that the bands are not pure

heavy-hole or light hole-bands. In
biaxial tension, in the out-of-plane
direction, the top valence band states
are light-hole-like. In the in-plane
directions, these states are heavy-hole-
like. See the curvatures in Figure 17.15.

X direction is primarily composed of antibonding p states. So, the
two valleys along the out-of-plane direction drop in energy under
biaxial tension, from decreased overlap. The four valleys in the
in-plane direction rise.

Under [110] compressive uniaxial stress, the in-plane shear
changes symmetry, as seen in Figure 17.15(b), where two of the
bonds are pulling in and two are separating out. With change in
bond length and angles, the symmetry in the plane has changed.
The atoms along the [110] direction are pulling in, and those

Figure 17.15: Parts (a) and (b) show the core effect under biaxial strain, and (c) and (d) show the core effects under [110]
uniaxial strain. Parts (a) and (c) show the corresponding bond rotation, while (b) and (d) show the consequence in
valence band shifting and its warping.
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along [110] are separating. So, two quite opposite interactions are
happening for the atoms in the lower and the upper planes. A bond
length change also happens with the angular change. Rotation
has the more significant consequence. The weight of the out-of-
plane orbitals is increased, and that of the parallel ones decreases.
Along the [110] direction, the heavy-hole states are lowered, and
the light-hole states are raised. A complementary situation exists
for the other two atoms and their bonding. Pulling apart increases
the parallel projection and decreases the perpendicular projection.
Band splitting is a result of the two types of shear in Equation 17.5.
The states along the [100] and [110] directions are heavy-hole band
states, and those along [110] are light-hole states for the lowest
energy states of the valence band.

The conduction band too will have a similar descending of the
two out-of-plane valleys and a rising of the four in-plane valleys.

We may now relate these states-related consequences to the
changes in bandgap, that is, the consequences for the lowest
energies in the conduction band and the valence band.

17.2.4 Bandgap changes

The changes in bandedge states in the conduction band and
the valence band, as we have now seen, arise from a multitude of
interactions. In Si, the valence bandedge states are changing, with
split-off band interactions, and behaving as light or heavy holes
in different directions. Likewise, the conduction band states, being
off the X point along the � axis, also show different consequences
arising in the changes in changes in symmetry taking place under
different stresses.

The two stress situations, because of their practical importance,
are the biaxial tensile and the [110] uniaxial compressive. It is useful
to keep their consequences for the bandgap in mind, given the
differences in the symmetry of the three semiconductors—Si, GaAs
and Ge—of interest to us with their different band picture.

Figure 17.16: Bandgap as a function of
biaxial and uniaxial strain for Si, Ge
and GaAs. The surface is (001), and the
uniaxial stress is in the [110] direction.

First, the consequence of strain in the three cases is shown
in Figure 17.16 for both biaxial and uniaxial conditions under
compressive and uniaxial stress, respectively. Compression results
in less of a bandgap change than tension does. And the degenerate
conduction valleys of Si and Ge result in a reduction in the bandgap
unlike that for GaAs, where the conduction minimum is at the zone
center. More than holes, it is the electron states that have a larger
consequence for the bandgap.
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This is illustrated in Figure 17.17, which shows the nature of the
case of biaxial strain for Si and GaAs. For Si, the twofold degenerate
conduction valleys move faster as a function of the stress, while the
fourfold valleys are relatively unperturbed. And the valence band
states—light-hole states—have a significant shift arising in the split-
off band interaction. This picture, to a lesser extent, also holds true
for GaAs.

Figure 17.17: Bandedge change as a
function of biaxial strain, for Si and
GaAs; hh, heavy hole; lh, light hole.

17.3 Transport and confinement

We can now integrate this discussion of the changes in the
nature of the occupiable E(k) states in the conduction and valence
bands and relate that to the consequences for transport. Figure 17.10
showed the changes that take place in the biaxial tensile and the
[110] uniaxial compressive conditions. Transport as characterized
through mobility will be affected by the changes in effective mass
and by the scattering. Our scattering discussion in Chapter 10 has
already addressed occupation, the perturbation matrix element
and the states available for occupation into the scattering rates
and, for some of the processes, the relaxation time approximation.
So, without dwelling on the details of the changes in scattering
parameters, we will now discuss some of the salient consequences
of strain on transport. In addition, we will discuss the consequences
of confinement, which often appears in strain-utilizing field-effect
transistors.

If confinement is present, as in field-effect transistors, where
it is due to the inversion along the plane, it will be reflected in a
quantization of energy for out of plane momentum. So, the first
effect of this in devices is reflected in the out-of-plane direction con-
finement in the interface inversion layer. Table 17.3 is a summary of
the relevant parametric characteristics of the valleys. The �2 valleys
that are oriented out of plane have a heavy mass (ml = 0.916m0)
normal to the interface, and a lower mass (mt = 0.19m0) in the plane.
The heavier mass makes the subband confinement ladder of these
valleys lower, with lower separation. The other four valleys have
the lower mass affecting the raising of the lowest subband energy
and the subband separations. Electron states in these subbands will
have a higher conductivity mass parallel to the interface.

See S. Tiwari,  ̏Device physics:
Fundamentals of electronics and
optoelectronics,˝ Electroscience
2, Oxford University Press, ISBN
978-0-198-75984-3 (forthcoming),
for the role of inversion ladders in
field-effect transistors, and a more
advanced discussion in S. Tiwari,
 ̏Nanoscale device physics: Science
and engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4 (2017).

Degeneracy m‖ m⊥ Ladder

2 mt ml Unprimed
4 ml mt Primed

Table 17.3: Bandedge effective masses
for subband ladders of a (001) Si
surface.

Figure 17.18: Part (a) shows the
subband ladders of the �2 and �4
conduction valleys in unstrained Si
and (b) shows the shifts in them as a
result of biaxial tensile strain.

The ladder representation (unprimed letters correspond to
�2 valleys, while primed ones correspond to �4 valleys) of this
confinement in unstrained conditions is shown in Figure 17.18
for the unstrained and tensile biaxial strained conditions in Si.
The twofold out-of-plane valleys have higher occupancy in the
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tensile biaxial stress condition. These are the states that will be
first occupied in an n-type material or where electrons are brought
in through a field. The conductivity mass is 0.19m0 for electrons
in the �2 valleys, and the charge envelope is also closer to the
interface. The conductivity mass for the �4 valleys is 0.315m0, and
the charge envelope is relatively farther away as the confinement
energies are higher. Biaxial tensile strain lowers �2 valleys even
more (see Figure 17.10), so the lower conductivity mass subband
is lowered, and the higher conductivity mass subband is raised.
For Si, for biaxial tensile strain on Si0.75Ge0.25, the separation of
the unprimed and primed lowest subband energies is of the order
of 0.28 eV, compared to ∼ 0.10 eV for relaxed conditions at sheet
carrier concentrations of 1013 cm−2. This difference in energy is
nearly a change of exp(0.18/0.026) ≈ 1000 in occupancy. The mass
consequence therefore has a very significant effect, and the mobility
enhancements are significant—reaching as much as a factor of 2—
at high electric fields and sheet charge concentrations. The electron
mobilities can improve by nearly a factor of 2 with this lowering of
inter- and intraband scattering and preferred occupation of lower
conductivity mass states.

We now look at the valence band with its complexity of warp-
ing and the three different bands close together by looking at
equienergy surfaces in the plane of motion. Figure 17.19 shows
the heavy-hole, light-hole and split-off bands under unstrained
conditions, a 1 % compressive strain and a 1 % tensile strain in the
presence of a field of 106 V/cm in the insulator (about 2 × 1011 cm−2

Figure 17.19: Equienergy surfaces for valence bands on a (001) surface 25meV below the subband edge under unstrained (a),
biaxial 1% compressive and 1% tensile stress at an electric field of 106 V/cm in the oxide at the surface. This corresponds to a
charge density of 2× 1012 cm−2; hh, heavy hole; lh, light hole. Adapted from M. V. Fischetti, Z. Ren, P. M. Solomon, M. Yang and K.
Rim,  ̏Six-band k · p calculation of hole mobility in silicon inversion layers: Dependence on surface orientation, strain and silicon
thickness,˝ Journal of Applied Physics, 94, 1079–1095 (2003).
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of charge) in the inversion region at the surface at an energy 25 meV
below the lowest subband energy.

As in Figure 17.14, one can see the high anisotropy and the 〈110〉-
directed large mass of the heavy-hole band in Figure 17.19(a). This
figure also shows that, with the lowest subband 25 meV below this
energy, light-hole states and split-off states are also occupied. The
light hole also shows the coupling consequence that exists in the
〈100〉-directed momentum states. Under compressive conditions,
the technologically preferred condition for improvement of electron
mobility, much of the symmetry is still maintained, the split-off
band has become wider and the light and heavy holes have shrunk
as their energy got raised. In the biaxial tensile conditions shown in
Figure 17.14(c), all these three bands stretch out to about a similar
length, with the split-off a bit smaller, and the effective mass is
reduced. Biaxial tensile conditions are therefore preferable for hole
mobility. Hole mobility improves for compressive conditions too,
but, for tensile conditions, this improvement is considerably more
significant. It can be as much as a factor of 2 to 3 times higher than
for unstrained conditions.

Now consider the [110]-oriented uniaxial strain. If it is compres-
sive, the �2 valleys respond in a manner opposite to that for biaxial
tensile stress, since the separation of the out-of plane direction
responds in an opposite manner. This is not too conducive to
mobility improvement, but the breaking of degeneracy and splitting
is helpful. The improvement is not significant. Uniaxial compressive
stress does improve characteristics significantly. This is seen in
Figure 17.20, where panel (a) shows the unstrained equienergy
valence surface on (001) silicon—heavy hole, light hole and split-off
included—while panel (b) shows the changes when a uniaxial stress
of 2 GPa is applied. The four-corner star pattern has now been
foreshortened in the direction of carrier travel. The conductivity
mass is also lower. The mobility will increase, especially with the

Figure 17.20: Part (a) shows the
unstrained constant valence energy
contours in the (001) plane. Part (b)
shows changes arising as a result of a
1 GPa uniaxial compressive stress.
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decreased scattering due to degeneracy lifting. A strain of 0.01
is sufficient to enhance hole mobility by nearly a factor of 3 over
unstrained conditions.

Figure 17.21: The fractional increase
and decrease in mobility for holes
under biaxial and [110] uniaxial stress
for (001) Si as a function of strain.

We now put all this discussion together for electrons and
holes for the two stress conditions that we have emphasized.
An approximate description with the correct trends of mobility
is shown in Figure 17.21 for Si. It is approximate, since mobility
calculations are subject to all the deformation and other parameters
assumed in any calculation of scattering and for experimental data
being subject to technological artifacts. One can see in this that hole
mobility improvement—the characteristic most desired, since holes
are slow—is quite significantly affected by compressive uniaxial
stress.

17.4 Strain with compositional consequences

High-frequency bipolar transistors employ vertical trans-
port and, to achieve high frequency, employ quasifields selectively
affecting the transport of electrons. This is achieved through
compositional change, particularly in the short base region, where
high p-base doping and fast electron transport is desired. We

The reader should follow the
discussion of heterostructure bipolar
transistors—SiGe being of interest
here—in S. Tiwari,  ̏Device physics:
Fundamentals of electronics and
optoelectronics,˝ Electroscience
2, Oxford University Press, ISBN
978-0-198-75984-3 (forthcoming), for
an in-depth understanding of the
dependence of the behavior of the
device on the transport in the film
as also that of the junction when
heterostructures are employed. These
are intimately connected.

therefore discuss the [001]-directed transport in the presence of
strain and compositional change. It is the transport of a minority
carrier (electron) in a sea made up of a heavily doped base with
opposite polarity.

Figure 17.22: Band discontinuities
in the presence of strain at the Si/Ge
interface. This is a theoretical picture
showing the result of changes in
symmetries of the reciprocal space,
the spin-orbit splitting and the
consequences of immense strain in
a system with a nearly 4 % strain at the
interface.

First, consider the consequences when an abrupt junction is made
between Si and Ge. Strain will exist, so the description given in
Chapters 4 and 6 (see Figures 6.5 and 6.13) must change to account
for the strain. Si and Ge have quite different forms spin-orbit split-
ting, which affects the valence bandstructure, and their conduction
valley minima are of quite different symmetries. The nearly ideal
description of the Ga1−xAlxAs/GaAs junction where strain is nearly
non-existent does not hold. Figure 17.22 shows the discontinuities
for (001) surfaces when one or the other material is strained. It is
a very contrasting picture. When Ge is strained and on unstrained
Si, its �4 minima nearly coincide with the L minimum. We have
already discussed why this L valley degeneracy is not broken. Also,
since Ge is now compressive strained, the �4 valleys are lowered,
and the �2 valleys raised—quite like what happens with Si when
it is compressed. This follows from the overlap and symmetry
arguments already considered. The bandgap of Ge has shrunk well
beyond its unstrained value. The valence bandedge discontinuity is
much larger than the conduction bandedge discontinuity. Of course,
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the structure has extreme strain and, looking at Figure 17.5, one
sees that it is quite beyond the limits of applicability of the theory
of metastability. So, consider the discussion as a gedanken exercise
for understanding the consequences of strain on bandstructure in
materials with very different symmetries in reciprocal space. When
strained Si exists on Ge, now the conduction band valley shifts are
reversed. Both the conduction bandedge and the valence bandedge
in Si are lower than in Ge, and the bandgap of strained Si is
actually lower than that of Ge. These abrupt changes at the interface
when the composition changes are sufficient to create a variety of
interface confinement effects in the Si1−xGex/Si or Si1−xGex/Ge
system. However, these properties are not significantly improved
over that of insulator structures, since sub-eV discontinuities are too
small to limit transverse conductivity in field-effect transistors. The
strain in a film, on the other hand, provides much more significant
improvements.

This change in the location and character of different valleys
is shown in Figure 17.23 across the range of molefractions of
the compositional mix on unstrained Si and unstrained Ge. The
bandgap of Si1−xGex may be varied all the way from the ∼1.1 eV
bandgap of Si to ∼0.5 eV, again in Si. The first is unstrained. The
second is extremely tensile biaxial strained on Ge.

For the pseudomorphic thicknesses shown in Figure 17.5, for
Si1−xGex, which can handle the elastic strain, these two figures—
Figure 17.22, which shows the discontinuity, and Figure 17.23,
which shows the change in the bandgap—demonstrate what
becomes possible in a bipolar transistor employing heterostructures,
a.k.a. compositional changes. In bipolar transistors, the need for

For a detailed discussion of the
design, attributes and relationships
of various changes that one can
achieve in a bipolar transistor using
strain, see S. Tiwari,  ̏Device physics:
Fundamentals of electronics and
optoelectronics,˝ Electroscience
2, Oxford University Press, ISBN
978-0-198-75984-3 (forthcoming).

a high base doping in a thin base for low base resistance and
short charging times while also maintaining gain by suppressing
the carrier injection from the base into the emitter as well as

Figure 17.23: The bandedge changes
for the conduction band and valence
bands in the (Si, Ge) system for a (001)
surface. In (a), a strained Si1−xGex
is located on unstrained Si. In (b),
strained Si1−xGex is located on
unstrained Ge. After C. G. Van de
Walle and R. M. Martin,  ̏Theoretical
calculations of heterojunction
discontinuities in the Si/Ge system,˝
Physical Review B, 34, 5621–5634
(1986).
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maintaining gradual changes that avoid carrier pile-up anywhere,
as well as having useful breakdown voltages, requires a judicious
use of compositional changes and choices of compositions in the
transition regions of the emitter-base junction and the base-collector
junction, as well as across the base. The practical constraints of
thickness, doping and the compositional changes of Si1−xGex allow
considerable improvements in the bipolar device behavior because
of the properties that we have discussed.

17.5 Summary

The nanoscale, with its dominance of surfaces and
interfaces—in the case of devices, hordes of them—will have
strain built in. It will also be non-uniform if caused by heterogene-
ity of materials. Even with very close matching of lattice constants
in the AlAs/GaAs interface (or a mixed composition of Ga1−xAlxAs
instead of AlAs as is usual), there will be a very minute stress and
strain. AlAs has a minutely larger lattice constant at 300 K. If the
materials are very different, with even amorphous or polycrystalline
interfaces to a single crystal, then there will be stress resulting from
the propensity toward pseudomorphism for deposited material, the
different energetics for deposition and growth, and the expansion
coefficients as temperatures are changed. Changes in the unit cell
dimensions of a crystalline structure will lead to bandstructure
changes. Bandstructure changes lead to the changes in inherent
velocities associated with the Bloch states in different directions,
and also to changes in scattering, since occupied states, unoccupied
states and the coupling between them will change. Particularly
in Si, intentional introduction of strain has been an important
transistor design tool. So it has been for many varieties of compact
lasers where desired wavelengths become possible, and the non-
radiative Auger recombination mechanisms suppressed.

We established—in the continuum assumption—the stress-strain
description of semiconductors, where four parameters suffice.
In general, the strain tensor can be split into three components.
The first of these is a diagonal response, so it is uniform in the
three directions and is hydrostatic. The second and the third are
due to shear stress; the second has diagonal terms—is uniaxial—
and is a dilation for positive stress, while the third term has no
diagonal elements and is a rotational distortion. Biaxial strain, as
occurs when a film is grown in lattice conformity on a substrate,
can be split into a hydrostatic strain and a uniaxial strain. The
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third term of our expansion is absent. When a uniaxial stress is
present—which is possible in transistors through a change in the
gate length direction, which is usually much shorter than the gate
width direction—it distorts the crystal with an in-plane strain
whose behavior will depend on the orientation of the stress. Using
Si1−xGex, pattern-induced stress and growth of pseudomorphic
films for both the compound and the single element semiconductors
are common ways of introducing strain.

Hydrostatic strain, by changing the lattice uniformly in all direc-
tions, has a direct effect on modulating the bandgap. Compressive
strain will reduce the lattice parameter and increase the bandgap.
Shear stress changes symmetry. In general, by splitting it into
the two tensor forms (diagonal and off-diagonal), depending on
the form of the stress, one will observe different consequences.
A uniaxial stress along the cube’s axes doesn’t cause the rotation,
but one along 〈110〉 does.

The conduction band effects can be seen through the changes
in the bandgap and the changes in the band minimum. It is of
considerable importance in Si, where there are six equivalent
conduction band minima (along �), two of which (�2)—orthogonal
to the surface—will have one type of symmetry, with the other
four (�4) having another symmetry. If a biaxial stress exists—in a
grown film—between the shift in the bandgap, with the valence
bandedge as the reference, due to the hydrostatic component, and
the shear consequence, the bandedges of the valleys will shift in
opposite directions, due to the symmetries. For zone-centered GaAs,
this complication is absent, as it is for Ge on a (001) surface, since
the L valleys are equivalent. On top of this, if there is confinement,
further shifting will take place in the conduction band energies. If a
uniaxial stress exists, again there is a consequence in the distortion
that reflects hydrostatic stress and shear stress, with a change in the
bandgap and a splitting of the conduction bandedges for Si, but this
time also for Ge if the stress is on the (001) plane.

The valence band too shows consequences, in many ways
more pronounced, because the different valence bands have very
different symmetries arising in their |s〉 and |p〉 constitution. Valence
bands are very anisotropic, and the light- and heavy-hole bands
are degenerate at the zone center in unstressed conditions. With
stress, the band warping changes and the degeneracy is lifted.
These changes, the response in the different directions, and the
interactions between the bands need to account for the spin-orbit
interaction together with the unit cell changes. Lighter holes appear
at the bandedge without a simultaneous presence of heavy holes. In
addition, confinement effects and the occupation of different band
minima can change significantly from the unstressed conditions.
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A further twist on these conduction and valence band energy
changes is the introduction of compositional changes where the
bandstructure itself is being changed by the atoms populating the
distorted lattice. The conduction band minimum will also change
from a � minimum to a Ł minimum in unstrained conditions. Now
one has to account for compositional consequences. But if a strained
Si1−xGex is grown on Si and is still a single crystal, the L valley
never appears as a minimum. If Ge is introduced into a Si crystal,
�2 valleys rise, and so do �4 valleys but only after dropping
initially up to about half mixing under the strained conditions.

Finally, the consequence of these electronic state changes, a next-
order effect in the state changes due to confinement in inversion
layers, as well as to the scattering interactions and the masses
of relevance for conduction and state occupation, is the effect on
the transport behavior of the electrons and holes. Strain generally
improves transport, principally by suppressing scattering and
improving the conduction mass. Compressive stress for in-plane
hole transport is most conducive for improvement.

17.6 Concluding remarks and bibliographic notes

Understanding strain assumed technological importance
with the arrival of nanoscale geometries and as transistor current
drive capabilities’ improvements became marginal with reduced
dimensions due to scattering.

For those who have a preliminary understanding of group
theory, an excellent early book, discussing strain starting from a
discussion of symmetries, is by Bir and Pikus1. This book is an

1 G. L. Bir and G. E. Pikus,  ̏Symmetry
and strain-induced effects in
semiconductors,˝ John Wiley, ISBN
0-7065-1367-3 (1974) (English
translation from the Russian original
published by Izdatel’stvo  ̏Nauka˝)excellent source for approaching solid-state theory from a group

theory perspective, group theory having been one of Wigner’s
and Weyl’s important contributions. The book also is a good
introduction to the theory of invariants, one of Luttinger’s major
contributions, and showing the consequences of strain is an
excellent place to show the consequences of changes in symmetry
and, from them, the invariances.

For strain discussion in compound semiconductors, an early
reference is by Pearsall2. The chapter by Kasper and Schäffler is a

2 T. P. Pearsall (ed.),  ̏Strained-layer
superlattices: Materials science and
technology,˝ and semimetals, 33,
Academic, ISBN 0-12-752133-X (1991)

good summary of the continuum mechanics relationship for deter-
mining strain in nanoscale and thicker films. A standard reference
for the theory of elasticity is by Timoshenko and Goodier3.

3 S. Timoshenko and J. N. Goodier,
 ̏Theory of elasticity,˝ McGraw-Hill
(1951)

A set of good discussions related to Si and its implications for
transistors is by Sverdlov4 and by Sun, Thompson and Nishida5.

4 V. Sverdlov,  ̏Strain-induced effects
in advanced MOSFETs,˝ Springer-
Verlag, ISBN 978-3-7091-0381-4 (2011)

5 Y. Sun, S. E. Thompson and
T. Nishida,  ̏Strain effects in
semiconductors,˝ Springer, ISBN
978-1-4419-0551-2 (2010)
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The former concentrates more on devices; the latter has a more
robust discussion of bandstructure techniques.

An advanced book discussing the details of the bandstructure
changes is by Fischetti and Vandenberghe6. It is particularly 6 M. Fischetti and W. G.

Vandenberghe,  ̏Advanced physics of
electron transport in semiconductors
and nanostructure,˝ Springer, ISBN
978-3-319-01100-4 (2017)

complete in its spin-orbit and strain the valence bandstructure, and
the implications under confinement.

17.7 Exercise

1. The split-off hole band in Si is only 0.044 eV below the valence
band maximum, while that in GaAs is 0.34 eV below, a factor of
∼ 10 different. Can you think of any intuitive reason of why this
may happen? [S]



OUP CORRECTED PROOF – FINAL, 20/8/2020, SPi

18
High permittivity dielectrics

High permittivity dielectrics are of immense importance Permittivity is the proportionality
relating electric field to electric
displacement. It characterizes
the tendency of the charge in the
material, in the presence of an
electric field, to distort; that is, for
polarization to happen. A larger
charge distortion—polarization—
leads to higher permittivity. It is a
measure of permitting less of the
electrical field—so, not permittivity
but negpermittivity, just as with
entropy and negentropy à la
Shannon. Permittivity ε = εrε0.
ε0 = 8.854× 10−14 F/m is the
permittivity of free space, where there
exists no polarization. εr is the relative
permittivity. It is a constant if the field
is static, so a dielectric constant. A
time-varying field causes ε to change
with frequency or wavevector. So,
in electrodynamics, permittivity
and relative permittivity are now
functions—hence the term  ̏dielectric
function˝ as a general description.
Engineering literature also employs
the symbol κ for εr.  ̏Metamaterials˝
are physically sculpted—engineered—
materials where interactions due
to periodicity and at interfaces
create unusual properties. Negative
index of refraction, for example,
in a frequency band, or bandgap
for electromagnetic waves are two
examples. A simple example is
of quarter-wave stacks as mirrors
through the destructive interference
of normal incident electromagnetic
waves. Other examples include those
arising from charge-electromagnetic
wave interaction. Semiconductors have
a dielectric constant that is larger than
that of SiO2 and so, in quite a

for many semiconductor devices: as a dielectric for field effect,
as a capacitor in dynamic random access memories, in the
 ̏metamaterials,˝ and even as semiconductors themselves.
Permittivity is a characteristic reflective of the polarization of
the material. We started a discussion of the dielectric function—
permittivity—in Chapter 10, particularly in the sections on phonon
interactions when the atomic motion is in a polar crystal. Fröhlich
interaction—electron and polar optical phonon interaction—was a
major consequence. Bound and free charges both respond to the
electric field, and therefore the material has a polarization response
that is characteristic of how this charge—the dipole—responds.
Outer electrons and the ion—bound electrons with the nuclear
core—respond differently. This has to be a function of frequency,
since ions are slow in response, quasi-bound electrons faster and
free electrons even faster. So, nearly free electrons, as in metals
or, under conductive conditions, semiconductors—particularly in
the high electron density inversion layer—exhibit the free electron
response, as well as the electronic ionic dipole response embedded
in the dielectric response modeled in Section 3.11 for phonon-field
interaction. An insulator has an electronic response (the quasi-
bound electrons of the valence band from the outer shell of the
atoms) and an ionic response. The response can be quite complex,
since interactions exist between multiple energy-storing excitations.
Polarization arising in mechanical strain leads to interesting

consequences seen in piezoelectric materials, and the effect of
spontaneous polarization is seen in ferroelectrics. Superconductivity
is another feature in this multibody interaction. In organic materials,
such as those composed of short or long molecules, the permittivity
has additional frequency-dependent features that follow from the
short- and long-range interactions of dipoles and radiation. We will

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001
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restrict ourselves to inorganic high permittivity dielectrics as well as
to semiconductors that too have a higher permittivity.
Use of high permittivity dielectrics with semiconductors became

technologically of interest when the scaling of field-effect transistors
reached a point where nitrided SiO2 as a gate dielectric became
thin enough that tunneling, as well as the variety of reliability
consequences due to high electric fields and tunneling-induced
defect generation, became strongly limiting. High permittivity
dielectrics in such circumstances, even if their conduction and
valence barriers may be lower compared to those of the SiO2/Si
interface, can be useful so long as carrier transport properties in the
channel remain reasonable because they allow a thicker dielectric
that restricts current while allowing for comparable mobile charge
control.

few respects, are high permittivity
dielectrics. Materials where phase
transitions due to some impressed
energy changes properties such
as of permittivity enormously—
for example, the metal-insulator
transition—are also of engineering
significance. Ferroelectrics are
another example where there is
both high permittivity and hysteresis.
See S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017). Here, we
stick with just a plain vanilla use
and understanding of the higher
permittivity with semiconductors.

A nitrided SiO2 is a dominantly SiO2
film grown from an Si substrate,
but where a fraction of a percent of
nitrogen is incorporated through the
different processes that are employed
to grow the oxide. It is a robust film
that strongly barricades the diffusion
of various species through the thin
film. Among these diffusing species of
interest are the B, H, variety of metals
that are used in slicides, contacts, et
cetera.

The suppression of tunneling current while maintaining similar
channel charge control follows from the relationship between
displacement and charge as seen in Maxwell’s first equation, and
because currents by tunneling are exponentially related to the
negative of the thickness through the accumulated wavevector of
evanescing wavefunction. A higher permittivity dielectric permits
a higher thickness and suppresses tunneling current, and yet the
displacement can be maintained, so the mobile charge can be
effectively controlled. These arguments have numerous caveats,
since technologies and nature place constraints. One constraint,
for example, is that SiO2 is a very  ̏chosen˝ oxide—stable, and
preferred in equilibrium and kinetically when oxygen is present,
due to favorable free energy—so there exists, along with high
permittivity dielectrics, a small, interfacial, SiO2-like film a film
that is not quite bulk-like SiO2 but which affects the charge control.
Fortunately, one useful result of this natural preference is that the
interface state density is lower than what it may have been had
a high permittivity dielectric been atomically adjacent. Another
is that it suppresses the interaction between the high permittivity
dielectric’s optical phonons with the electrons of the channel.
A similar issue of compounding with favorable phase formation
also arises between the gate, which is often replaced by a metal
or its silicide to decrease resistance, and the high permittivity
dielectric. We will ignore the technological complexity of these
material combinations, which has a way of evolving over time, and
focus on the fundamentals of the interactions in this chapter and
the next.
In this chapter, this prelude specifically leads us to a discussion

of the nature of these permittivities, and since they are the conse-
quence of polarization, how the phonons of such materials and of
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Si interact. In the following chapter (Chapter 19), we will continue
on this theme by looking specifically at remote scattering processes
and how they affect interface charge dynamics. We will also largely
limit our discussion to electron transport, although, certainly, holes
are just as important in usage. Holes have poorer mobility, and
the scale of the effects that we discuss will be usually lower due
to the large scattering already pre-existing and the heavier masses
involved.

18.1 Permittivity and the material’s related characteristics

We start with a look at the relative permittivity, that is,
the dielectric constant, of a variety of dielectrics that are potentially
compatible with semiconductors or are themselves semiconductors.

We have noted the higher permittivity
of the common semiconductors tackled
in this text. SrTiO3, LaMnO3, their
variety of mixed compounds, such as
SrRuxTi1−xO3 and LaCuxMn1−xO3,
and several others such as VO2 exhibit
both high permittivity and interesting
electron correlation consequences.
An insulator can become conducting
through bandstructure change due
to mechanical or electrical stress.
These materials have a small-enough
bandgap—semiconductor-like—
and have a very unsemiconductor-
like transport. See S. Tiwari,
 ̏Nanoscale device physics: Science
and engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4 (2017),
for such phase transition examples.

Our discussion is first to draw out the consequences of the ionicity
arising in the quantum-mechanical nature of the bond, the polar-
ization changes that result from the nature of the bonding, and,
from these, how the electronic bandstructure changes and how all
these different properties are correlated with each other. The broad
outline of these connections is shown in Table 18.1, which includes
some oxides and silicates, so Si- and O-containing, relatively stable
compounds that have an inclination toward  ̏silicon compatibility.˝
We have also chosen dielectrics up to a relative permittivity that is
useful in field-effect transistors.

To explore the device argument
as to why only a certain limited
increase in permittivity is useful—
this draws on scaling and on the
electrical and physical dimensionality
argument—see Section 2.3 in S. Tiwari,
 ̏Nanoscale device physics: Science
and engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4 (2017).

Table 18.1 shows the cation electronegativity, the low-frequency
relative permittivity, the bandgap and the low wavevector energy
of the two optical phonon energies that are relevant. We have
included the dioxide and nitride of Si—quite common dielectrics
formed using Si—for comparison. The oxides, and another oxygen-
containing set of compounds, the silicate and multi-element oxide,
are included. The list is long, and could be longer, but, in practice,
the high permittivity material that has practically worked the best—
w.r.t. defects, sensitivity to processing, long-term interactions and
general reliability—combining process technology and practical
device needs, is HfO2, and that is the one that our discussion will
largely encircle. Table 18.1 is instructive, since it shows a number of
correlations that are grounded in reasonable cause.
The electronegativity of an element—there are various measures

of it—quantifies the element’s ability to attract a shared electron,
compared to other elements with which it forms a compound. The
Gibbs free energy of formation listed here is an estimated value
at 1000 K—typical high temperatures encountered during device
fabrication—for a reaction toward SiO2’s formation when in contact
with Si. The phonon energies are for the optical branch of the
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Table 18.1: Pauling electronegativity
of the cation, Gibbs free energy (per
mole) at 1000 K for reduction to
SiO2 when in contact with Si, relative
permittivity/dielectric constant of
oxide, bandgap, and optical phonon
energy of a select set of dielectrics.

Electro- �Gf Relative Bandgap Phonon
negativity at permittivity energy
of the cation 1000 K εr(0) εr(∞) Eg h̄ωq

(eV) (eV) (eV) (meV)

SiO2 1.91 3.9 1.5 9.1
55.60
138.10

Si3N4 1.91 7.4 5.1

Al2O3 2.75 1.61 ∼9 3.4 8.8
48.81
71.41

HfSiO4 Hf : 1.3 ∼11 6.5
Y2O3 1.22 5.06 ∼15 6?

HfO2 1.3 2.06 ∼25 4.0 5.8
12.40
48.35

ZrO2 1.22 1.83 ∼25 4.8 5.8
16.67
57.70

BaZrO3 Ba: 0.89 ∼26
Ta2O5 1.5 −2.27 ∼30 4.8 3.8–5.3

transverse component and interact electromagnetically, as discussed
in Subsection 10.2.2 for polar mode optical scattering.
Since electronegativity is the measure of an atom’s propensity

to attract electrons that are being shared, it is a measure of the
tendency to move the electron density toward itself. It is affected
by both the atomic number and how far the electrons are from the
nucleus, as well as by the nature of the bond that arose—whether it
is sharing among equals, as in a covalent bond, or due to a bond
between atoms with unfilled or filled orbitals, which is tied to
which column they are in the periodic table. Si, being from group
IV, has a larger covalent tendency, Al, being from group III, will
be more ionic, and Ba, being from group II, even more so. Hf , Y,
Zr and Ta are all transition elements with an s2di ground-state
configuration with varying integer i for the number of outermost
electrons in the d orbital, which is only partially filled.

Transition elements, because of d occu-
pancy, and lanthanides and actinides,
with f subshells—all of which spread
out farther away from the nucleus—
lead to many unusual properties
as elements and compounds. There
is a variety of phase transitions:
ferroelectricity, piezoelectricity, fer-
romagnetism, superconductivity and
others, including, quite likely, those
not yet discovered, that arise in the
subtle interplay of different energetic
interactions at play in the condensed
matter many-body state. Some of
these are discussed in S. Tiwari,
 ̏Nanoscale device physics: Science
and engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4 (2017).

Electronegativity has many measures, Pauling’s being the
most common. Pauling’s is a modification to the deviation of
bond energy of a compound XY from a theoretical average of XX
and YY, using 4 as the reference value for fluorine, which is the
most electronegative element. Based on the difference between
the electronegativity of the two atoms forming a bond, if the
difference is below 0.5, the bond is usually treated by the chemistry
community as non-polar covalent. If it is 0.5–2.0, it is polar covalent,
and if it exceeds 2.0, it is ionic. This last case characterizes a large-
scale transfer of the electronic charge from one atom to the other. O
has an electronegativity of 3.44, and N has an electronegativity of
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3.04. So, SiO2 and Si3N4 are both polar covalent. But the transition
element oxides and compounds are ionic. The pull of O, a highly
electronegative element, is strong, making dipolar polarization
significant. This is reflected in the change in the dielectric constant
of these materials.
Another set of major consequences arise in the strength of the

bonds. The bonds of SiO2 and Si3N4, being more covalent, are
stronger and have less polarization, but, also because of this bond
strength, these materials have a larger bandgap, and their optical
phonon energies are larger. Al2O3—a group III-VI compound—also
has properties quite similar to their group IV-VI and IV-V counter-
parts in SiO2 and Si3N4. In the transition element compounds, the
ionic consequences become quite substantial.
The question of silicon compatibility is somewhat laden and

charged. These high permittivity materials are deployed with
an Si substrate and, because of their use with gates, often abut
higher conductivity metal compounds (silicides, nitrides or perhaps
even pure metals, with a discontinuity magnitude control through
interface chemistry) that replace a very heavily doped polysilicon
gate. This is achieved in the form of structures that undergo high
temperature processes in a variety of ambients. In addition to
changes within these films, there are reactions that become possible
at the gate-side interface and the substrate-side interface. So,
because of the presence of oxygen, there exists competition between
the formation of SiO2 and the stability of an oxygen-containing
dielectric, as well as in the competition between the gate material—
nitrides, silicides or others—and the gate dielectric, all involving
interfaces with their enhanced propensity to a variety of reaction
kinetics and changes in properties with implications for electronic
control and electronic transport. The free energy in Table 18.1, if
positive, indicates instability at the Si-side interface, that is, that
the oxygen would prefer to bond with Si, and an interfacial oxide
film is likely. The table implies that Ta2O5 is the only compound
that has stability when in contact with Si. A similar free reaction
energy evaluation is needed for the gate-side interface. It turns out,
as mentioned earlier, that the substrate-side instability allows one
to improve on interface states, and we will see in the discussion of
remote scattering in Chapter 19, improvement in mobility, albeit at
the cost of effective insulator thickness.
The relative permittivity listed here is the low-frequency value.

In our discussion of atomic motion and Born-Oppenheimer
approximation in Chapter 1, we had employed the adiabatic limit
where the electron charge cloud could follow the residual atomic
charge. But at high frequency, the mismatch in this motion leads
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to a change. This change in the polarizability at low frequency and
high frequency was encountered in Chapter 10. We will return later
to the connections between this frequency-dependent permittivity
behavior, the phonon characteristics and its consequences for
transport processes later in the chapter.
The next complexity of interest to us is the conduction

and valence bandedge discontinuity, since it directly affects—
exponentially, through the cumulative consequence of the tunneling
electron’s wavevector and the thickness—the current through these
dielectric films. This detail of electronic bandstructure consequence

See S. Tiwari,  ̏Device physics:
Fundamentals of electronics and
optoelectronics,˝ Electroscience
2, Oxford University Press, ISBN
978-0-198-75984-3 (forthcoming),
and S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017), for a
discussion of quantum-mechanical
tunneling and the nature of interfaces
and of the electronic structure of the
films.

can be seen in Figure 18.1, which shows the approximate
conduction and valence bandedge discontinuities between these
example materials and Si. These values should be treated as
approximate for the following reason. The dielectrics are not in
their crystalline stable phase, where much of the theory that we

Silicon, as we know, has a diamond
lattice. The high permittivity oxides
and oxide-containing compounds may
be amorphous or polycrystalline. If
crystalline, HfO2 and ZrO2, which
form similar structures, appear
in cubic, tetragonal, monoclinic
or orthorhombic forms. Ta2O5 is
orthorhombic. HfSiO4 is tetragonal.

developed in Chapter 6 applies. And even if they were, they would
be in a strained condition on the substrate. Materials deposited
by various techniques will be amorphous or polycrystalline, with
a variety of orientations. They will have plenty of defects, and,
as they are thin, bulk-interface differences of what the electrons
and holes see as their environment will also apply. Having said
this, the predictive capability for what happens between these
dielectrics and SiO2 will be a bit more accurate because of the
limited mixing of the conduction state and the valence band state
at the interface at large bandgaps and large discontinuities. So, one
may apply a transitivity relationship using this Si reference with
some confidence. The magnitude of this discontinuity is best left as

Figure 18.1: Example dielectrics
of varying permittivity and their
approximate conduction and valence
bandedge discontinuities as a function
of increasing permittivity. SiO2 and
Si3N4 are reference dielectrics. Al2O3 is
the only other dielectric here that is s-p
bonded.
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an experimental parameter, given the shortcomings of the theory
and the theory’s ability to mimic a variable experimental condition.
For electrons, what is of interest is the variation one sees in the

conduction band discontinuity that one sees as a function of permit-
tivity. As the permittivity increases, the conduction discontinuity of
the dielectric to Si decreases. For HfO2/Si, it exceeds the bandgap Often, one will find a fair contribution

from defect-mediated current in thin
dielectrics, which tends to worsen
during usage because of electrical
stress.

of Si. For SiO2/Si, it is about 3 times the bandgap. Discontinuity
changed by about a factor of 3 and so did the permittivity. The
tunneling current approximately relates exponentially through the
integrated wavevector with position. Wavevector is also related as
a square root of the tunneling electron’s energy separation from
the conduction band potential. So, thickness matters linearly, while
energy separation is the square root in the exponential’s input.
The permittivity change allows a direct equivalent change in the
dielectric’s thickness without loss of charge control. So, if tunneling
current is the property at stake—is excessive—then permittivity
change is helpful. For gate insulator tunneling, this increase in
thickness becomes useful. Via an increase in physical thickness
through higher permittivity, it is possible to suppress tunneling
current at equivalent displacement in the structures.

Figure 18.2: Band diagram at a
metal/high permittivity/interface
oxide/Si interface in thermal
equilibrium that approximately
mimics an HfO2 high permittivity
dielectric and a p-type substrate. The
dotted line shows an approximate
electrically equivalently thick SiO2.

Figure 18.2 shows a cartoon of a metal/high permittiv-
ity/interface oxide/p-type Si band picture where HfO2 is the
representative dielectric and an interface SiO2 is present. Also
plotted is an equivalent oxide thickness for similar charge
control electrostatics; that is, displacement. The oxide equivalent
thickness is significantly smaller following the thickness-tunneling-
displacement argument, and the higher permittivity is helpful in
suppressing tunneling current for similar mobile charge control so
long as the various circuit and usage-related needs of a device can
be achieved.

Figure 18.3: Bandstructure of HfO2.

We illustrate the bandstructure of these dielectrics, whichs have
to have an acceptably large bandgap for usefulness through that of
HfO2, which is the most common high permittivity dielectric. This
is shown in Figure 18.3. ZrO2 is a dielectric with quite similar per-
mittivity and band discontinuity characteristics. Its bandstructure is
also quite similar to that of HfO2. Both have a bandgap a bit larger
than 5 eV. The conduction band minimum is at the zone center—
the � point—but, for the first time, we now encounter a valence
band maximum at the X point. Recall our discussion in Chapter 4,
where we used |s〉-state- and |p〉

-state-mixing-based arguments to
emphasize the ubiquity of the valence band maximum being at
the zone center, albeit with a variety of light-hole, heavy-hole and
split-off hole band consequences arising in their localization near
the core.
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The transition metal oxides are different because they are not
s-p bonded; they have s and d orbitals as the outermost orbitals in
the metal, and they are strongly ionic, with a large transfer of the
electron charge density from the transition metal to the oxygen. In So, valence band maxima do not have

to be at the zone center. They are at
the zone center in the group III-V and
group IV compounds that we have
discussed, due to the symmetries,
including those of the basis states.

an ionic crystal, with a large-scale transfer of charge, and missing
symmetric balancing over the volume, the valence band maximum
can be away from the Brillouin zone center. BaZrO3, on the other
hand, does have a valence band maximum at the zone center with a
very large mass. The valence band maximum doesn’t really change
much across the entire Brillouin zone, except for a small region
around the X point.

BaZrO3 has a perovskite structure.
Perovskites are extremely interesting
as a result of the combination of
an element with electrons farther
away from the nucleus (as with
Zr) placed together group II and
group VI elements that have strong
electronegativity. Perovskites show a
variety of interesting phase transition
properties that are discussed in
S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017).

We should make a few remarks regarding the high permittivity-
gate interface to contrast that with the considerations of the high
permittivity Si interface. Short length gates also place a large
premium on the conductivity of the gate. Degenerately doped
polysilicon, the common form of gate, when the gate length is
many decades of nm, even at the highest dopings, will have a
depletion region length of the order of a unit cell—half a nm—when
the channel is inverted. So, the controlling potential is now further
separated from the mobile charge. This depletion can be largely
eliminated if one can employ much more conductive metals or their
stable compounds for gates. Metals, for example, have typically an
electron concentration of 1022 cm−3. This is to be compared to the
mid-1020 cm−3 that one may achieve with doped polysilicon. The
difficulty is that such a gate must be able to achieve the threshold
voltages desired, and it also must be immune to reactions with the
high permittivity dielectric that one may employ. Practically, several
nitrides—those of Ti and Ta being the most common—provide quite
a stable metallic compound. But these metal gates are largely mid-
gap materials, that is, that they have a Fermi energy that aligns to
the middle of the Si bandgap. So, the interface of these materials
needs to be tailored to permit the threshold voltage control through
a suitable change in the barrier that the high permittivity dielectric
has at the interface. We will not dwell on this subject; suffice it to
say that technology at these dimensions and suitable harnessing of
the reactions in the making and long-term usage of such structures
is a difficult challenge.

18.2 Soft phonons

Insulators are  ̏semiconductors˝ with a large bandgap.
Permittivity arises from the polarization of the material (D = ε0E +
P = ε0εrE). For inorganic insulators, this relative permittivity arose
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from the ionic and electronic polarization. The electronic interaction
is also reflected in the bandgap. This common origin shows up in
the electronic polarization, averaged over the Brillouin zone, being
inversely proportional to the bandgap squared.
Since a useful high permittivity dielectric is desired to be an

insulator, there is a minimum requirement for the bandgap, so this
electronic polarization needs to be small and is really not available
as a tool to achieving high permittivity. Ionic polarizability is. So,
this increase in permittivity is related to the effective charge on the
ions. In our discussion of polar mode interaction (Section 10.2.5),
we evaluated the Born effective charge e∗ reflecting ionizability’s
consequence on the perturbation term for the interaction. This
ionization polarizability is present under static electromagnetic
conditions and absent at the high frequency, and it varied as a

High frequency—written as∞—is
meant to reflect a frequency beyond
the optical phonon frequencies, so
PHz.square root of [1/εr(∞) − 1/εr(0)] (Equation 10.42). The ionic

polarizability’s frequency-dependent consequence is reflected in the
net polarization at high frequencies as

P(∞) =
[
1− ε(0)

ε(∞)

]
D = ε(0)

[
1

ε(0)
− 1

ε(∞)

]
D. (18.1)

Ionic polarization arises in the longitudinal optical phonons, and
if it is the only cause for change in polarization—if nearly free
electrons were present, they too will have an effect, but we are
assuming a perfect insulator—then the perturbation potential
is caused by the ionic polarization. We initially explored ionic
polarization in Section 3.11 with the expression of Equation 3.113
summarizing the dependence on Born effective charge. In our
discussion of absorption by crystal vibrations (Section 12.4), in
Equations 12.89 and 12.90, we directly expressed this charge in
terms of the dielectric function in the form of a square-root depen-
dence together with the radial frequency of phonons. Polarization
is dependent through the Born effective charge in the square-root
relationship of the difference in inverse of high-frequency and low-
frequency permittivity. We know the density of these modes, and
we may regard the expectation energy of the phonon modes as
the zero point energy of those modes (h̄ωLO/2). This led us to the
perturbation energy of Equation 10.44. In these bulk conditions, for
the phonon field, the unscreened Fröhlich field is

Eq =
{

h̄ωLO

2q2

[
1

ε(∞)
− 1

ε(0)

]}1/2
. (18.2)

The LO phonon in the bulk Fröhlich interaction has a scattering
strength proportional to h̄ωLO{[1/ε(∞)] − [1/ε(0)]}. This bulk
expression says that the bracket term is proportional to the square
of the dipole field amplitude that arose in the ionic polarization.
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In our high permittivity material, increasing the dielectric
constant at the below-optical frequencies of electronics, it is the
ionic polarization that is our tool. Larger ionic polarization requires
more polarizability of the bond from the transition metal to oxygen.
Such bonds are soft, and if the bonds are soft, then so are the

Extreme examples of ionic bonding
are the group I-VII salts—NaCl, KCl, et
cetera, which are all very polarizable
and are soft enough that the bonds
can be broken easily by dissolution in
water

optical phonons. This is to be contrasted with the case for SiO2
and Si3N4, which are more covalent and have a stiffer bond. This
difference in the nature of these bonds is reflected in the optical
phonon energies shown in Table 18.1.
Mobility, as we have seen with semiconductors, is dominated

by optical phonons at room temperature. The occupation of the
phonon states at these energies is high enough so that absorption
and emission are both relevant. For high permittivity materials,
such as L a1−xSrxTiO3 or SrTiO3, where phase transitions are For devices based on metal-

insulator phase transitions, see
S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience
4, Oxford University Press, ISBN
978-0-198-75987-4 (2017).

employed in using carrier transport, this mobility consequence will
be of immediate relevance.
The question of interest to us is, what happens to the scattering

as a result of this perturbation interaction when a dielectric is next
to a semiconductor?
When a semiconductor, and we take Si as our prototype—with

permittivity εSi—is adjacent to a dielectric with permittivity εins,
the coupling of the phonon modes in the two media via polar
mediation involves surface optical modes. These surface optical
modes, coupled transversely, have the frequency

ωSO = ωTO

[
εins(0) + εSi(∞)

εins(∞) + εSi(∞)

]1/2
. (18.3)

This shows why TO modes become important. The scale length of
the penetration of the coupling is related to permittivity through
the charge-displacement relationship, and it has a square-root
dependence through the relationship of the charge to the gradient
of displacement. Surface optical modes (SO) have a coupling
strength that is proportional to

h̄ωSO

[
1

εSi(∞) + εins(∞)
+ 1

εSi(∞) + εins(0)

]
, (18.4)

a modification to the bulk Fröhlich expression. Equation 18.4 is
applicable to the inversion layer of Si adjacent to SiO2. It expresses
a modification that arises in  ̏image effect˝: that is, how the dipole
field arising in the dielectric decays as it penetrates the inversion
region at the interface.
Since the dielectric’s properties are affecting the semiconductor’s

properties by being nearby, this is a nonlocal effect arising through
coupling across the dipolar decay length scale. It is a  ̏remote
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phonon scattering.˝ In the SiO2/Si system, this remote phonon
scattering is vanishingly small for low energy carriers because of
two reasons. The first reason is that ionic polarizability and the
resulting coupling are quite small in SiO2—its relative permit-
tivity changes from 3.9 under static conditions to 1.5 at optical
frequencies—since the bonds are hard. The second reason is related
to the two optical phonons listed in Table 18.1. For phonons that are
at 138 meV energy, the energy of the thermal electron is insufficient
for phonon emission, and there are too few of these phonons to be
absorbed by electrons. For phonons that have ∼56 meV energy, it Si has an optical phonon energy of

about 55 meV also, but it has a higher
permittivity because of stronger
oscillator strength.

turns out that the oscillator strength is small. This latter is for the
same reason that the permittivity of SiO2 is low.
For high permittivity insulators, the high-frequency dielectric

response is via electronic polarization. At low frequencies, the
dielectric response is largely via ionic polarization. So, while the
high-frequency response of high permittivity insulators is not unlike
that of SiO2, the low-frequency response is very different. Since
ionic strength prevails at low frequency, and a large permittivity
exists, there is a large difference between low- and high-frequency
magnitudes, and therefore a large scattering perturbation and a
smaller SO phonon frequency. The high permittivity goes together with
a stronger ionic interaction, and it will have a stronger remote phonon
scattering effect.
We will discuss this consequence of high permittivity arising

in ionic polarization, the soft phonons associated with them, and
their resultant penetration farther away into the semiconductor in
Chapter 19.

18.3 Summary

High permittivity dielectrics of interest to semiconductors
utilize ionic polarizability to achieve high permittivity. This ionic
polarizability becomes possible mostly through the use of transition
elements—elements with partially filled d orbitals—in the form of
oxides. HfO2 is a very common example. The d electrons stretch
out farther from the nucleus, so the electron transfer to O is much
greater, and the compound is much more ionic. It has a reasonable
bandgap, so it works well as a insulating dielectric for field-effect
control. The bandedge discontinuities for the conduction band and
the valence band at an interface with Si also have magnitudes that
are large enough to be useful. The high permittivity, combined with
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the presence of an interface oxide film, permits strong electrical
control of the channel while managing tunneling current through
the controlling film. We explored the variety of relevant properties,
their origin and their implications for such dielectrics.
Since it is ionic polarization that is being employed, the bonds

are soft. This means that the bandgaps are not large and the energy
of the phonon modes is low: several 10s of meV; that is, of the
order of thermal energy. So, these phonon modes can couple
quite effectively. This coupling strength is related through the
difference in the inverse of permittivity at high frequency versus
that at lower frequency because of the dependence on polarizability
or, equivalently, the Born effective charge characterizing the
ionizability. The strength of the interaction is proportional to the
LO phonon frequency and this inverse permittivity separation
of low and optical frequencies. It is a strong interaction in high
permittivity materials because of the large inverse permittivity
separation. In covalent compounds, such as SiO2, this interaction
is very weak, because the permittivity doesn’t change drastically
and because either the phonon mode is very high in energy or it
has low oscillator strength, as in the case of the second phonon
mode. The high permittivity dielectric’s strong ionic interaction
connects perturbations over a longer length scale, that is, remotely,
thus affecting carrier transport in Si that may be adjacent to the
high permittivity material. With the presence of an interface oxide
of Si, this remote effect is partially suppressed, and this allows
a judicious use of the high permittivity dielectrics for scaling the
thickness of the gate insulators in the transistors while limiting the
rise in tunneling current flowing through the insulator.
In the following chapter, we will explore further the conse-

quences of these perturbations and this and other local and remote
interactions affecting electron transport.

18.4 Concluding remarks and bibliographic notes

The preponderance of the literature related to high
permittivity dielectrics, and its use with Si is related to the practice
and attributes of technology, and it becomes very subject to the
techniques employed and their level of development. However,
there are a number of references that the reader will find of
relevance to explore the subject further.
A good primary reference is the book edited by Houssa1.

1 M. Houssa,  ̏High–κ gate
dielectrics,˝ Institute of Physics,
ISBN 0-7503-0906-7 (2004)A number of chapters in the text are of interest. J. Roberson and
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P. W. Peacock discuss the electronic structure and band offset.
M. V. Fischetti, D. A. Neumayer and E. Cartier discuss the nature
of electron mobility in high permittivity field-effect transistor
systems. In addition, there are other articles that are related to the
practical technology and device behavior, such as the issues related
to reliability. These, however, I suspect are now dated because of
their technological nature.
Another book is an edited collection by Howard Huff2. One 2 H. Huff,  ̏Into the nano era,˝

Springer, ISBN 978-3-540-74558-7
(2009)reason for suggesting this reference is that there are a number

of other perceptive peaks and predictions about the future from
known people. It is always interesting to read what people thought
in the past about the future, and especially why they thought that,
and then compare it to what really happened.
Since this chapter has particularly stressed HfO2 as a high

permittivity dielectric, the review by Choi, Mao and Chang3 is 3 J. H. Choi, Y. Mao and J. P. Chang,
 ̏Development of hafnium based
high-kmaterials—A review,˝Materials
Science and Engineering, R 72, 97–136
(2011)

also suggested to those would like to obtain a practical materials-
science-based discussion of the nature of the material, its interfaces
and its compounding.
We did not discuss conduction through the high permittivity

insulators, although conduction through insulators was introduced
summarily as a subject in Chapter 7. A good reference to explore it
in metal oxide insulators is by Tsuda et al.4, who discuss a broad 4 N. Tsuda, K. Nasu, A. Fujimori and

K. Siratori,  ̏Electronic conduction in
oxides,˝ Springer, ISBN 3-540-66956-6
(2000)

range, from simple oxides to perovskites, and their variety of
interesting properties, including that of conduction.

18.5 Exercises

1. In high permittivity insulators with Si, such as HfO2, why are
surface optical phonons and their interaction with electron
inversion layer so strong across the entire electron density range
of interest in field-effect devices? [S]

2. It has been the LO polarization and not the TO polarization that
we have stressed in exploring the high permittivity material’s
interaction with semiconductors. Why? [S]

3. An n-type semiconductor with an electron concentration n is
terminated on a surface (z = 0) by an insulator spanning z > 0
of permittivity εins. Take the long wavelength limit (q → 0) so that
the dielectric function of the semiconductor can be written in terms
of the static value as

εsem(q,ω)

εr(0)ε0
= 1− ω2p

ω2
.
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At the interface, there will discontinuity in the orthogonal electric
field, with

εsem(q,ω)Ez(z = 0−) = εinsEz(z = 0+).

With the electric filed as E = E0 exp[i(q · r + ωt)], show that there is
interface plasma oscillation with a frequency of

ωSP = ωp

(1+ εins/εr(0)ε0)1/2
. [M]
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Remote processes

We separate the discussion of remote processes from that
of high permittivity in order to emphasize the importance of
interactions such as those arising in Coulomb, that is, charge-based,
origins, and those arising in phonons, that is, coupling to modes
of atomic vibrations, at the nano-dimensional device length scale.
We recognize that fields penetrate and that there is a continuous
exchange in the potential and kinetic energy forms of energy
or of electrochemical energy across a system in thermodynamic
equilibrium or off it, but, by and large, our relational description
takes a local form. We also recognize that phonons—vibrations—
also spread out. Optical phonons have a minimum energy, and
electromagnetic modes couple to them through dipole interaction,
and therefore field and dipole orientations matter. Acoustic phonons
are essential to sound’s propagation. Local fields, local carrier con-
centrations and local potentials define the nature of the excitation
response—of electrons or phonons—in our quantitative description
up to this point in this text, except in the short digressions on
screening, correlations and plasmons. At the nanoscale, the spatial
spread of these interactions, including that of phonons, becomes an
issue that needs to be tackled separately and in itself. It is a major
source of energy and momentum loss through interactions that arise
remotely even as the local interactions remain present.
If phonons are not in equilibrium, they will strongly modify the

electron distribution and be modified by the electron distribution.
So, if distributions are off the equilibrium and in the limit where
scattering events are also limited, the classical description of
Chapter 9 will fail, and this phonon-electron coupling will very
well play an important role. This is a drag on electron motion by

Another set of places where this
distribution change due to the
limits on scattering has serious
consequences is in quantum wells,
including in solar cells of small
bandgap materials (we discuss this as
a multi-exciton problem in S. Tiwari,
 ̏Nanoscale device physics: Science
and engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4 (2017))
because narrow confined regions
with interfaces for electrons and holes
and phonons will have interfacial
consequences in propagation. Such
a description requires much more
quantitative detail. Perhaps one even
needs to resort to a Monte Carlo type
of calculation since the calculation
is not amenable to accurate-enough
analytic solutions.

phonons. With high permittivity dielectrics and their soft phonons
of low energies that couple across from one region to another, this
phonon drag will be of enormous consequence, since the mobility

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001
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of the electrons in an inversion region is of primary interest. This is
now a remote phonon drag process.
As another example, consider the transport in the inversion

layer of a transistor. An electron entering a channel from the
source reservoir or exiting a channel from the drain reservoir is a
perturbation. It is introducing or removing energy from a region
of interest. A long-range Coulomb interaction both during an
electron’s transit away from the reservoirs and during its entry and
exit can then cause a plasma wave excitation in the degenerately
doped reservoir regions. This collective excitation will eventually Landau insightfully described the

time decay of longitudinal space
charge waves in a plasma. The
electromagnetic pulse interacts: it
accelerates the particles that have
a velocity slower than the phase
velocity and slows those that are faster.
More particles gain energy from the
wave than lose from the wave in the
typical particle distribution function
with velocity. So, the electromagnetic
wave, in net, loses energy, no matter
how low its amplitude. This is a
reason why oscillatory instabilities get
suppressed. It is applicable in many
situations: from galactic dynamics—
the electron gas of stars interacting
with gravitation—to the channel
electrons interacting with the electron
sea of reservoirs. A surfer riding just
a little slower than an ocean wave
will gain energy from the wave. A
stationary buoy just bobs up and
down. A surfer moving faster than
a wave will be pushing on the wave
and lose his energy. This is when the
surfer needs to do an aerial to avoid a
wipeout.

break into single particle excitation because of Landau damping.
Through this electron-plasma coupling, an exchange has hap-

pened between the momentum of the electron in the channel with
that of the reservoir, even though they are separated from each
other by longer than screening lengths. This is again a remote
Coulombic process.
So, local and remote processes arising in charge excitations and

phonon excitations are pervasive in nanoscale structures, and this
is the focus of this chapter, with a particular emphasis on remote
processes.
We will tackle three examples of remote effects that are all quite

consequential. The first is of remote phonon scattering, as a contin-
uation of the previous chapter’s ionic polarization discussion. The
second is of plasmonic scattering, where Coulomb interaction over
a distance has a strong effect. The third is of phonon drag, where
local phonons and the phonons of another region drag electrons. All
these examples are of relevance to a miniature device, particularly
those employing the field effect. In a field-effect transistor, here the
first example is due to the use of high permittivity material. The
second is due to the use of high carrier concentrations that exist in
the source and the drain. And the remote part of the third is due
to the coupling between the gate region and the channel region. All
of these will affect the transport of electrons in the inversion region
and other places where the electron cloud interacts with spatially
remote (and local) perturbations that are energetically proximate.

19.1 Remote phonon scattering

Our description of the soft phonon’s implication in
electron-phonon interaction (Chapter 18) pursued the following
argument. A dielectric’s polarization field is proportional to the
optical phonon amplitude. The interaction between two electrons
in a medium is Coulomb mediated by an inverse proportionality
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to the permittivity. The polarizability of the medium is a function
of frequency, since at the very least—for the two primary effects in
an insulator—the electron cloud motion and the dressed nuclear
motion have a mismatched response. The former is faster than the
latter. Ionic response was the primary cause of high permittivity
in the transition metal compounds of interest to us. ε(0) included
both the electronic and the ionic polarizabilities. ε(∞) included only
electronic polarizability. The inverse difference of these (1/ε(∞) −
1/ε(0)) is proportional to the changes arising from the removal of
the ionic polarizability. It is directly related to the square of the
amplitude of the dipole field, so to phonons and their frequency,
which characterizes the ionic mass motion. So, we end up with an
electron-longitudinal optical phonon scattering strength that varies
as h̄ωLO[1/ε(∞) − 1/ε(0)]. The magnitude of h̄ωLO matters. The soft
phonons of the high permittivity materials of interest to us have
energies of the order of thermal energy (at room temperature),
which is also an energy that characterizes the large population
of electrons that is not too far from equilibrium. Phonons and
electrons therefore have significant interaction. Traveling electrons
transfer momentum to the crystal; that is, the traveling electrons
are dragging the phonons along. Likewise, phonons are providing
friction to the electron flow in this description. We will tackle
this latter effect through the modifications to be discussed in
Section 19.3.
When the high permittivity material is placed together with

the semiconductor, as in use for field effect, these soft oscillations
arising in soft bonds and the soft optical phonons will couple.
This coupling takes place transversely. The coupling strength is
now a modification of the inverse permittivity relationship where
the permittivity of both the dielectric and the semiconductor
matter, and this strength has a proportionality to the energy of
the surface optical mode (h̄ωso) that arises. These are phonon
modes perpendicular to the interface, so they are related to ωTO

through the relationship of Equation 18.3 and a strength given by
Equation 18.4. The insulator dipole fields, which are modified by
image charge effects, decay in the semiconductor channel where
electrons exist. But, what has happened is that soft phonons of
the dielectric have a spatial reach into the semiconductor, where
they are now causing additional scattering. This will reduce the
mobility. The effect due to high permittivity is being felt in the
semiconductor, which is spatially separated. This is remote phonon
scattering. The surface optical modes are mediating remotely.
This remote phonon scattering effect is vanishingly absent

in SiO2 because of the large phonon energy, the poor oscillator
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Table 19.1: Permittivity, transverse
optical phonon frequencies and the
bandgap of selected dielectrics. HfO2 is
of monoclinic crystalline structure.

εr(0) εr(∞) h̄ωTO1 h̄ωTO2 Eg

(meV) (meV) (eV)

SiO2 3.90 2.5 55.60 138.10 ∼9.0
Al2O3 12.53 3.20 48.18 71.41 8.8
AlN 9.14 4.80 81.40 88.55
ZrO2 24.0 4.00 16.67 57.70 5.8
HfO2 22.00 5.03 12.40 48.35 5.8
ZrSiO4 11.75 4.20 38.62 116.00 6.5*

* Bandgaps are experimental. ZrSiO4’s is an estimate.

strength of the weaker phonon collection that exists in SiO2, and a
poor coupling constant of the hard phonons arising in the stronger
bonds, as discussed toward the end of Section 18.2.
Table 19.1 summarizes a few of the parameters for our discussion

of phonon behavior for materials of interest here.
For both HfO2 and ZrO2—comparable dielectrics—which are

useful high permittivity dielectrics for Si, there exists a giant
change in their relative dielectric constant arising in the ionicity.
Also, note that they both have transverse mode phonon energies
that are lower than the room temperature thermal energy. Our
arguments now need to be modified by at least two additional
considerations. First, the coupling is between these surface phonon
modes and what is usually an inversion region—an electron plasma
of high electron density—and the equivalent of this situation
at the gate/dielectric interface, where the gate too has a high
electron density, although now three dimensionally. Second,
the presence of an interface oxide, which although sub-nm and
therefore not quite of the same characteristics as a good gate
insulator oxide, will suppress the remote phonon effect. If the
inversion region has a Thomas-Fermi wavelength of λTF ∝ 1/kTF,
which varies as 1/

√
ns, that is, the square root of the sheet carrier

concentration in the inversion region, then the remote scattering
potential will decay through this screening. The presence of a large
carrier concentration in the gate has the effect of increasing the
screening of electron-interface optical modes so long as the physical
thicknesses are small enough. So, the mobility will decrease, but
the consequences will be mitigated by the presence of increased
screening and phonon coupling suppression by an interfacial
oxide film.
We will not dwell on the details of the analysis, since it is not of

central interest to us. The physical nature of the problem is.

The reader should follow M. Fischetti’s
detailed analysis—referred to in
the bibliographic notes—to explore
how one may include interface films,
two dimensionality and this remote
phonon issue together in an analysis
in the presence of multiple oscillation
modes.



OUP CORRECTED PROOF – FINAL, 17/8/2020, SPi

636 semiconductor physics

Figure 19.1 shows an approximate mobility consequence due to
remote phonon scattering for HfO2 compared to SiO2. The caveat
here is that the tunneling currents in the SiO2 systems will be
unbearable in any practice. The presence of the interface layer
reduces the scattering strength of the SO modes by ∼exp(−2kTFti),
where ti is the interface oxide thickness, and kTF is the wavevector
under this Thomas-Fermi screening condition. The interface oxide,

Chapter 1 discussed the many-body
based arguments regarding the
Thomas-Fermi limit of the screening.

while being of low permittivity, has an enormous effect through the
suppression of the high permittivity dielectric’s coupling mode. To
this, one must also note as an addendum that this is the screening
consequence in a structure of small dimensions. Thin films will also
let the gate screen. So, this too will be an addition to the screening
that arises in the large electron density in the inversion layer. The
result is that, at high carrier concentrations, the mobilities in the
different postulated examples are quite similar. Only in the thick
SiO2/Si case does this effect disappear and a high mobility come
about at high carrier concentration.

Figure 19.1: Calculated electron
mobility in a silicon inversion layer for
two equivalent oxide thicknesses: a
small one of 0.7 nm, and a large one of
7.0nm, together with mobilities when
these same equivalent thicknesses are
achieved using HfO2. The mobilities
in the latter are less than those in the
former. But the presence of interface
oxide—a monolayer—improves the
mobility substantially.

This remote phonon scattering discussion was meant to illustrate
the consequences of high permittivity arising in ionic polarization
and how important a role it has at nanoscale. This discussion has
included in it the changes that arose from high electron concen-
trations, and their electromagnetic coupling as seen in plasmons.
The Coulomb interaction with large electron density is pervasive in
inversion layers because of their reduced dimensionality. Electron
transport in the channel will be subject to these plasmonic conse-
quences. Our next section discusses the effects in small geometries
arising in the interaction between the electrons of the inversion
layer and the highly doped source and drain reservoirs of a field-
effect transistor.

19.2 Short- and long-range electron Coulomb effects

In our discussion of mobility (Section 10.6), we explored the
improvement in mobility that arose in a two-dimensional electron
gas at the Ga1−xAlxAs/GaAs interface when the dopants were
separated from the electron gas. This was an example of improving
mobility by reducing the scattering from ionized impurities by
spacing them away. It is an example of a scattering directly arising
in Coulomb interaction. In this section, we will be concerned with

Strictly, Coulomb interaction—
electromagnetic interaction is a more
general and accurate term, since
Coulomb is usually meant to imply
 ̏static˝ conditions—underlies all
scattering. The bandstructure describes
the electron’s allowed state, and
the Hamiltonian includes Coulomb
interaction terms. So, this loose use
of Coulomb interaction is meant to
make a direct link to charge, which
deformation, for example, does
not. In this section, we are further
restricting ourselves to the electron,
and its collective response through
the plasmon as its quasiparticle. The
plasmon, to make this more tricky, is
a boson. A plasmon is a hybridization
of photons and the excess-depleted
electron collective. Electrons are
fermions, but the excitation is a
paired excitation of two fermions,
which is then a boson. A plasmon,
as hybridization of two bosons, is a
boson.

the remote electron’s and the electron cloud’s collective response.
At nanoscale, similar to the case of the two-dimensional electron
gas with separation of dopants, there are other high carrier density
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regions around. And these will have interactions, because the
Coulomb interaction is a spatially remote interaction.
These electron interactions, for semiconductor conditions, can be

broadly separated into two categories.
The first form of interaction is where we may treat the electron

as a single particle interacting with its surroundings. This is under
conditions where the electron may be treated as an individual
particle, since the Coulomb potential energy arising in its inter-
action is small enough that the kinetic and potential effects can
be considered separately. This single electron behavior—even
in the presence of a large number of electrons—showed up in
Equation 5.38, which quantified the image force interaction on a
conducting surface. The energetics here leads to screening of the One can look upon the screening

expressions as representing the
following characteristic. In thermal
equilibrium, the screening is
associated with a spread caused by
the concentration N over kBT of energy,
for non-degenerate conditions. For
degenerate conditions, this spread
is constrained by the allowed states’
energy spread, where there are both
occupied and unoccupied states in
close proximity. So, this is related to
the density of states.

perturbation—a dopant ion being a common form—by the mobile
charge. For electrons treated as independent (and far and few),
the Coulomb energy varies proportional to 1/ε|r − r′|, where the
rs are the locales of the two independent charge particles. When
the electron density is higher—so degeneracy prevails—it is the
electrons around the Fermi energy that can respond. So, at low
doping conditions, it is the Debye length scale (λD = √

εkBT/e2N,
where N is the concentration of dopants), and at higher densities,
the first-order correction is the Thomas-Fermi wavelength (λTF =√

ε/e2G (EF), where G (EF) is the density of states at the Fermi
energy) that applies to the short length scale response.
The second form of interaction is when this electron density is

large enough that this collection’s interaction within itself cannot be
ignored. Electrons are correlated—repulsively interacting—and this
keeps them apart. This is the cause of skin depth and the reflection

A simple way to view why there is
this collective interaction is to imagine
a high electron density, into which
ensemble one places a hole. The
hole’s presence causes a perturbation.
Electrons rush in, that is, the whole
ensemble, because of its high density
and strong coupling, pulls in. It
overshoots because of the acquired
kinetic energy. So, it then pushes out to
compensate. And this process repeats.
A small change has caused a long
wavelength oscillation. This is the
plasmon, whose primary equation we
found in our discussion of free carrier
absorption (Section 12.2).

at metal surfaces and has numerous other implications. The
plasmon represents an excitation of an interacting electron gas in
a form where the plasmon frequency ω2

p = e2n/εm∗ (Equation 12.63)
is a long wavelength oscillation. The plasmon is the quantum of
this oscillation with a low momentum and an energy of h̄ωp. It is
a boson. At electron densities of the Si inversion layer, 1019 cm−3,

S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017), discusses
at length the use of plasmons—in
non-propagating and propagating
conditions—for interesting nanoscale
structures.

ωp/2π = 2 × 1013 Hz and, at those of the source and drain regions
or the gate, >1020cm−3, ωp/2π = 0.6 × 1014 Hz. These are energies
in the 75–250 meV range for the various high electron densities in
devices. The wavelength is of the order of 1000 nm, so the plasma
frequency has a wavelength at the device length scale. The close
proximity of high concentration regions will have long range, that
is, remote Coulomb interactions: between the channel and the
source and drain reservoirs, and between the channel and the gate.
The collective oscillations will also have a limit at low wavelengths
(smaller n) where they cut off, which will be determined by the
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single electron perturbation equation’s length scale in the presence
of the n-electron concentration.
In the following, we will use Si as an example for the specifics,

even though the conceptual description applies generally to all
semiconductors.
We have observed that there is a continuum of Coulomb

interactions that are mediated by quantum-mechanical constraints.
We have discussed a variety of approximations of the Hamiltonian
of the multitude of electrons in the crystal—Hartree, Hartree-
Fock, Pauli exclusion, correlation, et cetera—in Chapter 1, and
they will all be relevant here. The plasmon length scale will apply
to longer range interaction at the high density. But, even for
conditions of high density, there are short-range interactions that
are simultaneously present. The size scale of nanoscale devices is
in the 100 nm and below range, with insulators of a few nm, and
source–drain distances of 10–100 nm as some of the other measures.
The plasmon length scale at THz is 1000 nm in the semiconductor.
The Thomas-Fermi length scale at 1019 cm3 is of the order of 5.5 nm.
And we are interested in evaluating how the transport of electrons
in an inversion region gets affected under these conditions.
Take the example of inversion-to-gate region interaction as an

example of short-range interaction. Electrons in the gate are around
the depletion region of the gate. These are nearly at rest, so the
gate will apply a drag on the momentum of the electrons in the
inversion region. This is a Coulomb drag.
Another example of short-range interaction is what happens

due to electron-electron scattering when an electron distribution
encounters a rapid change in the electric field, such as at the
channel-drain junction. The hot electrons, that is, electrons that
are off-equilibrium with an excess distribution in the high energy
tail, have a higher scattering rate in this high energy part through
energy-losing processes such as phonon or ionized impurity, Auger
generation, randomizing interface-induced scattering, et cetera.
They lose this energy rapidly. Even though the high electron density
in the drain does not by itself cause this momentum change, how

The high electron density will cause
momentum change through the
plasmon oscillation process, but that
is a separate long-range interaction
process.these electrons came about to be there does.

Now that we have a reasonable feel for the variety of interactions
and their quantitative estimation in the semiconductor, we expand
here the discussion of Chapter 1 to emphasize the Coulomb-
kinetic energetic interaction. The Hartree potential of Equation 1.69
included the 1/|r − r′| interactions terms as well as a term of the
electron interacting with itself. The spatial distribution of electrons
and of the positive charge was considered uniformly homogeneous.
If donors are considered discrete points and immobile, and the
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electron density low enough that donor-electron short-irange inter-
action is significant, then the screening has a [1/4πε(∞)r] exp(−r/λ)

dependence, where 1/λ = √
[e2/ε(∞)]∂n/∂EF. This is the Debye-

Hückle result. For Si, this is quite a reasonable description at just
below the degenerate conditions. If the electron density is low
enough—at an electron concentration of 1018 cm−3, electrons are, on
average, 10−6 cm ≡ 10 nm apart, so that the miscounting arising
in uniformity and screening—two conflicting assumptions—can
be ignored, then the total kinetic energy is through an integration
over all the occupied states from the bandstructure calculation of an
undoped crystal. This is

t = T
n
, with

n = g
∫

fFD[E0(k)]
1

(2π)3
dk. (19.1)

E0 is the electron energy, with a g-fold degeneracy. At near-
degenerate conditions, uniform concentration begins to
prevail. Each donor is screened in a volume with length scale
r0 = (3/4πn)1/3. The energy associated with each dopant through
the Coulomb interaction with the electron charge is reduced as

δUde ≈ −
∫ r0

0

1
ε(∞)

e2

(4/3)πr30
r dr = −3

2

(
4π
3

)1/3 e2

4πε(∞)
n1/3. (19.2)

The energy of each electron is raised by the Coulomb attraction as

δUee ≈
∫ r0

0

e2

[(4/3)πr30]
2

1
4πε(∞)r

4
3
πr34πr2 dr

= −3
5

(
4π
3

)1/3 e2

4πε(∞)
n1/3. (19.3)

Since screening in the elemental volume makes donor-donor
repulsion vanish, the net Coulomb attraction is

δUC = δUde + δUee = − 9
10

(
4π
3

)1/3 e2

4πε(∞)
n1/3. (19.4)

The magnitudes of the screening length λ of the Debye-Hückle
result, the Thomas-Fermi screening length λTF and even the donor
separation r0 are quite similar at the degenerate conditions of
interest to us. The electron-phonon interactions and the random motion
of electrons under these conditions leads to fluctuating potential in the
thermally agitated environment.

Solid-state textbooks introduce the
Madelung constant as a dimensionless
parameter that characterizes the
energy per cell of point charges in
a lattice in terms of the translation
distance while including the
neutralizing background. Ours is
an equivalent calculation here while
incorporating into it self-interactions.

This change in energy δUC is composed of a potential part δVC

and a kinetic part δTC. The expectation for kinetic energy is

〈TC〉 = 1
2

∑

i�=j

∇iV(ri − rj) · ri = −1
2
〈VC〉 (19.5)
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by applying the Virial theorem to this Coulomb condition. Using
ergodicity,

TC = 9
10

(
4π
3

)1/3 e2

4πε(∞)
n1/3. (19.6)

Since the electrons are interacting particles with Coulomb energy
consequences, there is a shift in chemical potential that is not
identical to the shift in electrochemical potential—Fermi energy—
with the chemical potential still defined as μ= 1/�∂F/∂n, following
our discussion in Chapter 9. So,

δμ = 1
�

∂δNDUC

∂n
= − 3

10

(
4π
3

)1/3 e2

4πε(∞)
n1/3. (19.7)

In calculating energies, the reference conduction band minimum
has now shifted down by this magnitude in the presence of these
electrons. A bandgap narrowing has occurred.
So far in this calculation, we have not accounted for the exchange

energy that we noted in the Hartree-Fock approximation. The
exchange energy is a reduction in the Coulomb repulsion energy
because identical spin electrons cannot be spatially proximate due
to Pauli exclusion. This exchange energy, in our notation from
Chapter 1, for Si, is

δVx = −3
4

e2

4π2ε(∞)

(
m∗

l
m∗

t

)1/3 tan−1 η

η
, where η =

(
m∗

l
m∗

t
− 1

)1/2

.

(19.8)
This is the lowering of energy with the electrons non-uniformly
distributed when the correlation minimizes Coulomb repulsion. The
correlation correction, without proof, for Si is

δVcorr = −3.08+ 0.20 ln
(

r0
a∗

B

)
in meV. (19.9)

The exchange is substantially larger than correlation in the modifi-
cation of the Coulomb energy.
This discussion establishes the importance of the Coulomb

energy and its lowering of the bandedge energy. The Coulomb
interaction has changed the total electron gas energy and increased
the kinetic energy. This is one contribution to the bandgap narrow-
ing. This discussion was also all in three-dimensional conditions.
The arguments for two-dimensional situations are considerably
more complicated. In Chapter 3, in our analysis in a periodic
potential, we had employed Fourier components to extract allowed
energies. The spatial Fourier component here, in a similar way, is
represented by the plasmon quasiparticle. The increased kinetic
energy will be dampened by the electron-phonon interaction. This

So the electron-phonon interaction
is doing pretty much what we
described was happening to the
electron screening cloud when we
dropped a hole into the assembly.

is collisional damping, which too will affect the kinetic energy.
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Suffice it to say that our discussion has established a change
in kinetic energy due to increased carrier density, which will lead
to increased scattering. This is plasmon-induced scattering that
is a long-range effect. It must be considered together with the
short-range effects in order to understand the consequences for
transport in nanoscale devices. Figure 19.2 shows the marginal
scattering rate for an electron at 1 eV energy in the channel due to
Coulomb exchange with a 1020 cm−3 doped drain region. The figure
shows the short-range rate, and the sum of the short- and long-
range scattering rates. The sum plot employs dynamic wavelength-
dependent screening. Note the increased scattering when resonating
with plasmons occurs. Also note that the scattering rate of low
energy carriers increases dramatically.

Figure 19.2: Marginal scattering rate
for a 1 eV electron in the channel due
to a 1020cm−3 electron concentration in
the drain of a Si field-effect transistor.
The short-range scattering calculation
is based on dynamic screening. The
second curve shows scattering where
both long and short-range interactions
with dynamic screening are included.
Scattering is highest at plasmon
frequency, but note that it is nearly a
decade higher at up to several 100meV.
The figure has been adapted from M.
V. Fischetti and S. E. Laux,  ̏Long-
range Coulomb interactions in small
Si devices. Part 1: Performance and
reliability,˝ Journal of Applied Physics,
89, 1205–1231 (2001).

19.3 Phonon drag

For both a particle and a quasiparticle, one can picture
their movement with a simultaneous movement of other particles.
A particle, as it moves, could be pushing others out of the way, or
dragging others along with it.
Take the case of a temperature gradient along a semiconductor.

The system is not in equilibrium. There will be transport of heat via
phonons. There are more phonon excitations at the hot end than at
the cold end. These phonons will transfer momentum to electrons
and drag the electrons along too. This coupling of electrons to the
off-equilibrium phonons is again a phonon drag. In this temperature
excitation at the boundaries, the accumulation of electrons at the
cold end sets up a field if one were forcing a condition of no charge
current.
In Chapter 9, in our calculations involving thermoelectric

effect, as embedded in the Seebeck and Thompson coefficients,
our assumption was that phonons were in equilibrium. This is
the Bloch condition—Bloch was among the first to perform this
electron-phonon interaction calculation—and this assumption is
built on the large phonon-phonon scattering that arises in Umklapp
processes. This is not an unreasonable assumption at room and
higher temperatures for semiconductors where optical phonon
energies are of the order of the thermal energy. Our result was
the calculation of the normal Seebeck or Thompson coefficient,
where the electron momentum relaxation time τk and how energy
and momentum flowed were determined through Boltzmann’s
statistical transport equation for electrons alone, and all the inputs
were local.
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Phonon drag is the result of phonons being off-equilibrium,
and this, in turn, causes phonons to change the electron transport
behavior because the phonon-electron interaction in the higher
energy tail is now substantially different. The off-equilibrium
phonons deliver excessive momentum to the electrons, and
Seebeck coefficients, and other measures where electron-phonon
coupling plays a role, such as Fröhlich conductivity, which is the
consequence of drag due to phonons in conductivity, will now
show a substantially different behavior than expected from the
use of Bloch condition. Semiconductors, for example, show a peak
in Seebeck coefficient at low temperatures because of the excess
electron current from the increased momentum. Low temperatures,
and any artificially created or reduced dimensionality structures
where interfaces play a role in the phonon modes, will all show
increased phonon drag. And this phonon drag can be both local
and remote because of the artificial structures that one practices and
certainly use as devices.
An engineering interest in phonon drag is because of the interest

in thermoelectric power, which is the conversion of heat through its
gradient into a useful form of energy. A figure of merit, zT, where

zT = σS2T
κ

, (19.10)

with the symbols here having their usual meaning (S is the Seebeck
coefficient, and σ and κ are conduction and thermal conductivity,
respectively), is often used to characterize this thermoelectric
capability of a material. Compared to room temperature, as the
temperature is lowered for bulk semiconductors, the Seebeck
coefficient drops while the thermal conductivity increases. Effective
thermoelectricity generation requires letting the Seebeck coefficient
increase while suppressing large thermal conductivity increases. The
increased Seebeck coefficient—its peaking—due to phonon drag
must happen together with a simultaneous increase in thermal
conductivity. At the lower temperatures, where these effects are
seen, the heat transport is dominated by lower energy phonons,
while the phonon drag effect is due to phonons that have reduced
scattering and hence a longer mean free path. So, the phonon drag
phenomenon is potentially a means of improving thermoelectric
properties. But this is predicated on an effective decoupling of the
contribution of phonons toward heat transport and energy flow to
electrons.
In our earlier transport discussion, we wrote the Boltzmann

transport equation for electrons while leaving the phonons in
equilibrium. So, only one equation—that for electrons, with no
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equivalent equation for phonons—was written. To incorporate
both electron and phonon transport effects, we will now have to
extend the earlier discussion so that the distribution function for
electrons and phonons can be written with a coupling between the
two. Solving such coupled equations is non-trivial. The variational
method may be used for concurrent solution. To be more accurate
in resolving the high energy and low energy phonon effects,
and specifically for relevance at high doping, where many of
the parameters—of which there are too many—are estimates,
one possibility is to employ only a partial coupling, keeping the
electron-phonon part explicitly separate so that the mode effects are
separately quantified. Our equations, in one form, then are

vα(k) · ∂fα(k)

∂T
∇rT − evα(k) · ∂fα(k)

∂E
∇rEqF

= − fα(k) − f0α(k)

τ ∗
α(k)

+ ∂fα(k)

∂t

∣
∣
∣∣
e−ph

, and

vγ (q) · ∂gγ (q)

∂T
∇rT

= −gγ (q) − g0γ (q)

τ ∗
γ (q)

+ ∂gγ (q)

∂t

∣∣
∣
∣
e−ph

, (19.11)

where the first equation is a Boltzmann transport equation written
for electrons, and the second is the same equation written for
phonons. Here, f and g are the distribution functions for electrons
and phonons, respectively, the former subject to Fermi-Dirac statis-
tics, and the latter to Bose-Einstein statistics. k is the wavevector
for electrons, and q for the phonons, the former occupying a band
of states identified by the α parameter, and the latter occupying a
band of states identified by the γ parameter. The scattering terms
on the right are written as two separated parts, where electron-
phonon coupling is separated from all the other scattering mech-
anisms. When the doping is high, the electron-phonon scattering
is explicitly enhanced. This tackles not only the thermoelectric
situation but also the situation when hot electrons are interacting
with the heavily doped reservoirs of a device. The off-equilibrium
phonons’ effects are now assembled together. The nonlocality of
such interactions is even more complicated. But computational
solution of these equations over an extended space takes care of
that complexity.

Figure 19.3: Seebeck coefficient in Si at
200 and 300 K, showing the diffusion
and the phonon drag contributions.
Adapted from J. Zhou, B. Liao, B.
Qiu, S. Huberman, K. Esfarjanii, M. S.
Dresselhaus and G. Chen,  ̏Ab initio
optimization of phonon drag effect
for lower-temperature thermoelectric
energy conversion,˝ Proceedings of
the National Academy of Sciences
of the United States of America, 112,
14777–14782 (2015).

Figure 19.3 shows a doping-dependent result of the Seebeck
coefficient, including the phonon drag for a local calculation. At low
dopings, the momentum transfer to electrons depends on the num-
ber of electron states coupling to the phonons; that is, the electron
concentration. So, at low concentrations, the momentum gain per
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electron embedded in the Seebeck coefficient is independent of the
electron concentration. At high doping, it is dependent.
A disturbance from equilibrium was necessary for the change

from detailed balance. Such a disturbance can be introduced spa-
tially in a number of ways. For example, electron transport in one
layer that is separated from another layer—say, with an insulating
oxide in-between—will also drag. This is a Coulomb drag. One may
make other artificial multilayered structures, where dynamics or
statics of the regions get connected. And here, depending on the
screening, scales of perturbation and their connecting, we will have
local and remote Coulomb and phonon effects. Now we have a
remote Coulomb drag. We mentioned earlier the consequence of
gate with a thin dielectric as one instance of such a drag.
Another change is one arising in dimensionality. Screening

lengths are dependent on dimensionality. So are the modes allowed
for phonons, just as they are for the charge particles, albeit they are
considerably weaker. The coupling of electron-phonon modes in
one-dimensional structures and its consequences for conductivity in
macroscale structures—a Fröhlich conductivity—can be significant.
This is an example of phonon drag. One can therefore see that it
may be possible to build more efficient thermoelectric converters
where phonon drag exists efficiently and provides more thermo-
electric conversion because of the different totality of scattering
considerations for electrons and phonons.

19.4 Summary

This chapter has focused specifically on remote processes that
influence electron transport and manifest themselves in a variety
of properties of interest. There is a continuum of these interactions,
from local to remote, and therefore we have kept this local aspect as
a reference. This continuum and its consequence is particularly of
importance at nanoscale, where both will appear simultaneously.
A few important points of our discussion follow. Coulomb

perturbation is screened, and the local consequence of this screened
perturbation has been across multiple scattering-related and other
discussions throughout this text. But Coulomb consequences also
arise due to coupling across space from the electron, from the
electron as an ensemble when degenerate, from the ionicity of
dielectrics that is reflected in the frequency-dependent permittivity,
and in the phonon modes representing these oscillating ions.
High permittivity dielectrics make this last instance quite acute.

When high permittivity dielectrics are employed, even though
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the electron transport in the high permittivity dielectric is not of
direct interest, the transport in adjacent semiconductor regions—
the channel of a transistor being an example—can have substantial
behavioral changes. The phonon modes of the high permittivity
dielectric couple to the semiconductor. Since they are of low
energy, compared to a low permittivity dielectric such as SiO2, they
enhance scattering and lower the mobility in Si upon which they
have been placed.
Direct Coulomb effects—short and long range—can be via

single particle interactions and via collective interactions. An
example of the former—a remote scattering—was the illustration
of separation of donors from a two-dimensional electron gas at an
Ga1−xAlxAs/GaAs interface. The mobility in the two-dimensional
electron gas improves, and a high electron density, through
enhanced screening, even helps with this improvement of electron
density. On the other hand, consider a high permittivity dielectric
between the gate and the two-dimensional electron channel that is
the inversion layer. The gate dopants and electrons are essentially
immobile. The moving charge is coupled to the static charge of the
gate, and the Coulomb attraction is a drag on the electron transport.
In the Ga1−xAlxAs/GaAs example, this effect was weak compared
to the screening effect, so the two-dimensional improvement in the
GaAs example is precisely the opposite to the high permittivity Si
example because of the nature of this remote coupling.
The electron in the channel region, as it enters or exits the

channel, is also causing an excitation in the source or the drain
region, which is degenerately doped. This degenerately doped
region responds collectively, and we have represented it via plasma
oscillations, with the plasmon as the quasiparticle of this collective
mode. Energy and momentum were coupled between the electron
of the channel and the reservoir. The plasmon will eventually come
apart by damping—a Landau damping—and this energy has been
lost in the reservoir. So, the transport of the electron in the channel
is being influenced by plasmon scattering through this interaction.
A direct phonon effect was illustrated through a discussion of

phonon drag. Up to this chapter in this text, it was the electron
that was treated as being off-equilibrium whenever electrochemical
changes were introduced externally. Phonons were assumed to
remain in equilibrium so that only one transport equation, such
as the Boltzmann transport equation, needed to be tackled for the
electron. The discussion of thermoelectric transport in Chapter 9
looked at both thermal conductivity and electron-phonon coupling
in the various coefficients—Thompson, Seebeck, et cetera—under
conditions where the phonons were still in equilibrium. In the
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Chapter 9 discussion, we really only considered the thermal
conductivity arising in transport by electrons.
When phonons are out of equilibrium, they too drag the elec-

trons. Phonons that are higher up in energy interact with electrons
more strongly. When electron concentration is low, this interaction
will have a smaller effect, but when electron concentration is
high—as at high doping—this effect will be larger. This enhanced
interaction will not only show up in the thermoelectric effect, where
phonon flow is dragging along electron flow, resulting in thermo-
electric voltage that may or may not be enhanced, depending on
this interaction, which will depend on phonon occupation and
interaction, but it will also have a consequence, albeit a minor
one, in electronic device structures through the heavily doped
contact reservoirs. Although not a drag, a hot phonon population,
in structures where interfaces suppress phonon flow through
propagation mismatch, such as in quantum wells, will change the
characteristics of scattering substantially. Multi-exciton solar cells
based on small bandgap semiconductor quantum wells are claimed
to exhibit inefficiency consequences due to this phonon bottleneck.

19.5 Concluding remarks and bibliographic notes

We have discussed this remote processes theme because
of its importance in nanostructures, which is beyond the esoteric
interests that have existed since Ziman’s classical discussion1 of 1 J. M. Ziman,  ̏Electrons and

phonons: The theory of transport
phenomena in solids,˝ Oxford (1960)

phonon drag as well as the multitude of scattering processes and
their coupled effects that take place in solids.
C. Hamaguchi’s textbook on semiconductor physics2 is a good 2 C. Hamaguchi,  ̏Basic

semiconductor physics,˝ Springer,
ISBN 978-3-642-03302-5 (2010)

and advanced reading for understanding the dielectric response
function and its tie-in to the scattering behavior that arises through
phonons and plasmons. It is a text that thoroughly works through
the quantitative details of local processes.
For remote phonons, and particularly the consequences arising

in the use of ionic dielectrics with high permittivity to electron
inversion layer, the paper by Fischetti et al.3 is a comprehensive 3 M. V. Fischetti, D. A. Neumayer

and E. A. Cartier,  ̏Effective electron
mobility in Si inversion layers in
metal-oxide-semiconductor systems
with a high -κ insulator: The role of
remote phonon scattering.˝ Journal of
Applied Physics, 90, 4587–4608 (2001)

source and provides a list of to references from the past.
To understand plasmons as multibody excitations, and the

variety of places that they show up in a solid response, the reader
should look up the text by Pines4. Pines undertook his graduate

4 D. Pines,  ̏Elementary excitations in
solids,˝ Perseus, ISBN 0-7382-0115-4
(1999)

thesis under Bohm, a scientific stalwart, and his thesis was quite
devoted to this problem of multibody excitation.
The modern interest in the unusual aspects of electron-phonon

drag and their role in semiconductors can be traced to work by
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Yu G. Gurevich. Gurevich and Mashikevich’s paper5 in Physics 5 Yu G. Gurevich and O. L.
Mashikevich,  ̏The electron-phonon
drag and transport phenomena in
semiconductors,˝ Physics Reports, 181,
327–394 (1989)

Reports. It is a comprehensive discussion built from the off-
equilibrium kinetics of electrons and phonons through the
Boltzmann transport equation.
A more modern discussion of phonon drag—this with the

thermoelectric effect as a focus—is the paper by Zhou and co-
authors6. There are a number of references to earlier works on 6 J. Zhou, B. Liao, B. Qiu, S.

Huberman, K. Esfarjani, M. S.
Dresselhaus and G. Chen,  ̏Ab initio
optimization of phonon drag effect
for lower-temperature thermoelectric
conversion,˝ Proceedings of the
National Academy of Sciences of
the United States of America, 112
14777–14782 (2015)

phonon drag, particularly those employing the Bloch condition, that
the interested reader may find useful from here.
In two papers, Fischetti and Laux7 explore at length the incor-

7 M. V. Fischetti and S. E. Laux,
 ̏Long-range Coulomb interactions in
small Si devices. Part I: Performance
and reliability,˝ Journal of Applied
Physics, 89, 1205–1231 (2001), and M.
V. Fischetti,  ̏Long-range Coulomb
interactions in small Si devices. Part
II: Effective electron mobility in thin-
oxide structures,˝ Journal of Applied
Physics, 89, 1232–1250 (2001)

poration and the consequences of Coulomb interaction in silicon
structures. These are long papers, but detailed and comprehensive
in exploring the underlying quantitative description. In our
discussion here, we have largely ignored the consequences or
dimensionality in these interactions, the nature of dispersion one
will find in interface plasmons, and other issues. These papers are
an excellent source for such a comprehensive discussion.
For those interested in going beyond the nature of these scatter-

ings to consequences for devices—and there is much in it through
how the reservoir interacts—there are two papers that are a good
launching ground. For understanding the interaction close to the
quantum limits, the paper by Laux et al.8 makes for comprehensive 8 S. E. Laux, A. Kumar and M. V.

Fischetti,  ̏Analysis of quantum
ballistic electron transport in
ultrasmall silicon devies including
space-charge and geometric effects,˝
Journal of Applied Physics, 95, 5545–
5582 (2004)

reading. To understand how the reservoir electron capacity, these
interactions, and, through the variety of rate-limiting processes,
the behavior of device gets affected, see the paper by Fischetti and
co-authors9.

9 M. V. Fischetti, S. Jin, T.-W. Tang,
P. Asbeck, Y. Taur, S. E. Laux and
N. Sano,  ̏Scaling MOSFETs to 10nm:
Coulomb effects, source starvation,
and virtual source,” 2009 13th
starvation, and virtual source,˝
2009 13th International Workshop on
Computational Electronics, 1–4 (2009)

19.6 Exercises

1. We derived the plasmon frequency as ωp = √
ne2/εε0m∗. Why

should we worry about plasmons in semiconductors? What causes
the coupling between the electrons in the channel and electrons
elsewhere to take place? [S]

2. The frequency of plasma oscillations of a two-dimensional electron
gas can be written in analogy with bulk plasmons, except that the
charge carriers are now confined in two dimensions. Letting Q
represent the wavevector,

ω2
p2D(Q) ≈ e2n0

2[(εsem + εins)/2]m∗ Q,

where the averaging is achieved by ignoring the very thin two-
dimensional layer, that is, with the overlap function ς0(z) ≈ δ(z).
This vanishes as the wavelength grows large and the wavevector
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is small. But, in a three-dimensional electron gas, the plasma
frequency is finite and non-zero. Argue in physical terms why
this is so. [S]

3. In high permittivity (κ or εr) insulators with Si, such as HfO2, why
are surface optical phonons and their interactions with the electron
inversion layer so strong across the entire electron density range of
interest in field-effect devices? [S]

4. What is phonon drag? Should it be more pronounced with acoustic
or optical phonons, transverse or longitudinal, for electrons in an
inversion layer, and why? [S]
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Quantum confinement and monolayer
semiconductors

Up to this point, in our discussion of semiconductor
phenomena—of electrons, holes, phonons, impurities, others, their
static and dynamic behavior under thermal equilibrium and off
it, and their particle- and wave-based analysis—the nanoscale has
appeared, through their propensity for large surfaces and interfaces,
and the behavioral changes—such as via strain—or interactions—
such as remote—that arise from short spacings, even if called long-
range interactions. Localization, when it appeared, was through the
atom-size scale, such as with the core-versus-valence foundations of
point perturbations. Delocalization appeared when the interactions
were between multiple excitations launching Goldstone modes or
when interaction-scattering phenomena had one of these cause-
and-effect localized through the nature of the occupation of states.
Semiconductors are often used with confinement at size scales
below the de Broglie wavelength in one or more dimensions. This

In confinement, or otherwise, we
are concerned with the extent of the
consequence of the quantization of k.
When restricted in space, the kinetic
energies proportional to h̄2k2/2m∗
allowed are also being separated
further out, due to a confinement-
caused inflation in the spacing of k
of that direction, than other energy
parameters of interest. If kBT is larger
than this quantized separation of
energy, then it is a quasi-continuum, as
it has been generally in the text. When
kBT is smaller, it affects the occupation
of states, and this quantization has
significant consequences. There can be
conditions when confinement has little
consequence at room temperature but
can be significant at low temperatures.
The MOSFET is a good example of
this for the lowest order analysis.
Under non-degenerate conditions, a
reasonable measure of the momentum
of the electron is m∗vθ , while, under
degenerated conditions, h̄kF would be
the appropriate measure, due to the
occupation of states.

brings out another set of attributes whose appearance is again
at nanoscale.

When a semiconductor is non-degenerately doped, reduced
dimensionality may be introduced as a single, multiple or periodic
confined region or even a barrier. And these structures, singly
or multidimensionally confined, have very interesting and use-
ful changes in properties. This problem is not as simple as the
introductory quantum posers that look at a free electron and a
potential well in free space. The environment is the semiconductor
with its collection of atoms and their electrons and, often, due to
the high electron density in the environment, the single nearly
free electron picture by itself may be insufficient. A limit of this
size changing is the generation of entirely new forms of semi-
conductors that are stable monoatomic crystals. One of these, if a

That confinement is important can
be seen through the most common
form of transistors—MOSFET—which
achieves one-dimensional localization
in the inversion layer via the oxide
on the gate side, and an electrostatic
barrier in the semiconductor on the
other side. Scattering, states available
for occupation and how interactions
happen between states will all change.

Semiconductor Physics: Principles, Theory and Nanoscale. Sandip Tiwari.
© Sandip Tiwari 2020. Published 2020 by Oxford University Press. DOI: 10.1093/oso/9780198759867.001.0001
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sheet, is really a two-dimensional semiconductor itself, rather than
a two-dimensional electron charge cloud in a three-dimensional
semiconductor ensemble.

Bipolar semiconductor lasers achieve
their remarkable optical efficiency and
low currents because the quantum
wells make the electron-hole direct
recombination for stimulated
radiation extremely efficient and of
very small linewidth. Monolayer
semiconductors such as graphene
and carbon nanotubes or other
dichalcogenides, et cetera, do not
show confinement’s effect in a similar
sense. These are different crystalline
forms of the atoms, constituting them
with their own emergent properties in
the crystalline assembly.

Spatial confinement—the assembling of semiconductors at the
wavelength scale—and an exploration of the properties that arise
in monolayer semiconductors, together with their consequences for
transport and electromagnetic interaction—subjects that have been
dealt with extensively in this text—are the focus of this chapter.
These themes allow us to integrate the range of different ways
we have analyzed throughout the text and unravel quite new,
designed-in physical properties at the nanoscale that draw on both
the wave description and the atomic description.

20.1 Heterostructure interfaces and quantum wells

We start by considering the state description of electrons at
heterostructure interfaces. And we choose a common form, useful Since heterostructures—their interface

region and transport across them—
comprise a very important element of
devices, the junction and its behavior
is a major theme in S. Tiwari,  ̏Device
physics: Fundamentals of electronics
and optoelectronics,˝ Electroscience
2, Oxford University Press, ISBN
978-0-198-75984-3 (forthcoming). Two
important points worth emphasizing
are as follows. First, the discontinuities
in abrupt structures are independent
of bias because they have arisen
in the dipole arising in the Bloch
function distortion at the interface—at
atomic size scale—with continuity
in the bonding. It is unaffected by
the small screening-constrained
electrostatic potential changes across
the interface. In a graded junction,
the electrostatic and the chemical
compositions (we also called this the
alloy potential) need to be included
together. The second point is that
the bulk-like electronic structure
extends all the way to the interface,
with the minor caveat that, for some
heterostructures, where the Bloch
functions are very different on either
side—the In As/GaSb interface is one—
there may very well be interface states
that need to be accounted for.

in electronics, where a confined two-dimensional electron layer is
obtained at a heterostructure, such as of Ga1−xAlxAs/GaAs, or an
ideal insulator-semiconductor, such as of an SiO2/Si interface, by
providing a band-discontinuity barrier on one side and an electro-
static barrier on the other side. The drawing of the bandstructure
at the interfaces—irrespective of whether the interface region is
abrupt or graded via composition—follows from the constraints
that Maxwell’s equations, especially Gauss law through its Poisson
relationship, and must be maintained together with the constraints
placed by the semiconductors and their state distribution as well as
the state occupation. For graded junctions, where both composition
and doping change, this requires self-consistent inclusion of the
available states, which will shift in energy and density due to
composition changes and doping. We have discussed a bit of this in
Chapter 4 and do not dwell on it, as it is not central to the physics
of semiconductors.

Confinement is the constraining of the electron to a region that
is few unit cells thick, so quantum-scale thick, rather than being
a propagating solution across a large region. If confined in one
direction, it may still have the propagating solution in the other
directions. Figure 20.1 is a pictorial representation akin to what
employed in the Bloch description development of Chapter 3
for one dimension of confinement. One now needs to employ
an additional envelope function ς(r) to describe the electron’s
confinement.
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Figure 20.1: Potential and the
wavefunction ψk(r) in a confined
condition. The figure shows the
periodic crystal potential V(r)
with periodicity R and shows that
the wavefunction solution is now
confined. ς is now an envelope
function modulating a Bloch function.

20.1.1 Electron inversion layer in SiO2/Si

An example of an abrupt interface is shown in Figure 20.2,
with only one of the regions that has lower conduction energy
(region II) shown. The absence of the states in I, on the left, and of
an electrostatic barrier on the right in II means that, in the direction
normal to the interface (the z direction), carriers are confined in a
narrow potential well. In this direction, the carriers can only have
specific kzs that are quite separated (corresponding to energies of
kBT or higher, so not quasi-continuous) due to confinement. In
the other two directions, in the plane of the interface, the carriers
can continue to have motion with the kx and ky states still very Figure 20.2: A quantum well

exemplifying the confinement at
the SiO2/(100)-Si interface, showing
the quantization of the energy and
momentum in the z direction normal
to the interface. I identifies a confining
barrier. II shows confinement arising
from the electrostatic potential on
the back side. The well is close
to triangular, since the region of
confinement is short, and there
is therefore a nearly planar charge
at the interface. Subband minima and
the corresponding envelope function
shape are shown.

close together, allowing propagation in response to forces that lead
to motion in that plane. The solution of Schrödinger’s equation
reformed to the modulation function-envelope form—the effective
mass equation—for the specific potential well and carrier mass
provides us with the reformation of the states for the nearly free
electrons that are not to move perpendicular to the interface. So,
perpendicular to the interface, only certain eigenfunctions are
the solutions; energies associated with them are quantized. These
discrete energies will represent the minimum in energy in a band
of allowed energies. Each continuum of states attached to one of
the discrete energies is called a subband. The behavior of carriers
under conditions of confinement in one direction is called two-
dimensional behavior. Here, we tackle the triangular-well one

The density of states under constraints
of confinement is tackled in
Appendix H, where we look at
a three-dimensional large box, a
two-dimensional layer and a one-
dimensional wire to calculate the
evolution of density of states as
an isotropic semiconductor gets
increasingly confined dimensionally.

dimension of confinement and two dimensions of propagation
problem that appears in many interesting structures. Confine-
ment exists in the z direction, with allowed kzs farther apart,
and propagation exists in the x-y plane, where the allowed kxs
and kys are closely spaced. For any specific kz allowed, there is
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now a displaced bottom of the band defined by the quantized
kz, and a two-dimensional subband where kx and ky may vary
quasi-continuously.

Consider the case of the Si inversion region or accumulation
region, shown in Figure 20.2, of a (100) interface bounded by SiO2 The case for holes in semiconductors

will be considerably more complex
because light holes, heavy holes and
even split-off-band holes, as well as
their anisotropy, will all enter in the
allowed state description.

and an electrostatic barrier in the presence of band anisotropy.
Recall that the constant energy surfaces near the bottom of the
conduction band are ellipsoids with a large longitudinal mass
and a low transverse mass. Since allowed kinetic energies vary
inversely with the effective mass, the longitudinal mass being
larger than the transverse mass leads to a smaller energy Ei of the
bottom of the corresponding two-dimensional subband. Figure 20.2
shows the quantization of the two sets of subbands—one with m∗

l
confined (lower) and the other with m∗

t confined (higher)—and their
envelope functions. Because of the anisotropy, different surfaces of The envelope function together with

the Bloch function factor yields the
wavefunction of the electron.

silicon behave differently.

Note that this situation is
complementary to the tunneling
problem of field injection that occurs
via tunneling at the top of the metal-
semiconductor junction. There is
a quasi-continuous distribution of
states on either side of the barrier
and exclusion in the barrier region.
Again, the field enters, this time as a
parameter for the envelope function
decay in the barrier.

The energy levels in the quantized two-dimensional channels
must be derived by solving Poisson’s equation and the envelope
equation for the quantum well simultaneously, and by taking
into account in this solution all carrier-energy-related effects.
Poisson’s equation here identifies the relationship between the
potential energy and the charge distribution, the envelope equation
identifies the relationship between the allowed total energy and
the momentum, and the energy effects include the consequences
of many-body effects such as exchange and correlation on carriers.
These latter effects usually result in lowering of the energy. The
effective potential energy V(z) in the envelope equation can be
written as

V(z)= − qψ(z) +
∑

Vi. (20.1)

Here, ψ(z) is the electrostatic potential, and the Vis are the potential
energy terms associated with exchange correlation, image, grading,
et cetera. The Schrödinger’s equation for the envelope function
ς i(z)—the envelope equation—in subband i is

{

−h̄2

2
d
dz

[
1

m∗(z)
d
dz

]
+ V(z)

}

ς i(z)= Eiς i(z), (20.2)

where m∗(z) is the position-dependent effective mass, which can
depend on i and Ei in general cases, and Ei is the energy at the
bottom of the ith subband. Unlike the SiO2/Si system, which has
a large discontinuity, in compound semiconductor heterojunction
systems, �Ec is much smaller (fractions of eV) and the electron
wavefunction can penetrate a significant distance into the barrier,
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just as it does in the other direction. Compound semiconductors,
with their small effective masses for electrons, exhibit strong
quantization effects; the reduced confinement by the barrier layer
and significant wavefunction penetration into the confining region
add to the complexity of the problem.

This second-order differential equation requires two boundary
conditions at each boundary in the confined region. The two points
on either side are turning points denoting the positions at that
energy where particles are being turned back. Probability densities There is quite some complexity

buried in turning points, barriers and
confinement. There are time delays
involved in turning back. And turning
back itself is the notion of the idea of
a  ̏particle˝ being applied in a wave
solution. Compound semiconductors
can have central � valleys, but also
valleys at L or X, which may be the
lowest valley in the confining barrier.
Which mass should be used then?
This requires one to understand
how far this penetration is and if the
confining environment being felt by
the electron arises in the �, L or X
forbidden gap barrier. A hint of this
can be seen in tunneling through a
barrier—the complementary problem
to this confinement problem—where
a thick barrier shows consequences
from the lowest barrier, irrespective of
the valleys, and a thin barrier shows
consequences arising from the barrier
from the identical valley. The crystal
momentum changed in the former,
but not in the latter. The former had
momentum-changing scattering
involved, while the latter did not. The
former is indirect tunneling. The latter
is direct tunneling.

and probability current must be continuous, so ς(z) as well as
dς/m∗dz are continuous at both of the turning points. The abrupt
barrier, if large, as with SiO2, will suppress both ς(z) and dς/m∗dz
to vanishing values. Finite barriers tend to require a variational
calculation or a numerical solution. In addition to this envelope
equation, one needs to also satisfy Poisson’s equation relating fields
and electrostatic potentials to the charge. Here, it is in the form

d
dz

[
ε(z)

dψ(z)
dz

]
= q

∑
Nsiς

2(z) − ρI(z), (20.3)

where

Nsi =
m∗

dkBT

πh̄2
ln
[
1 + exp

(
EF − Ei

kBT

)]
, (20.4)

where ε(z) is the position-dependent permittivity, Nsi is the number
of electrons per unit area in subband i, Ei is the minimum of the
ith subband energy, m∗

d is the density of states effective mass of
the inversion layer material for that subband, and ρI is the ionized
impurity charge density, where ρI = − qNA for an acceptor doping
of NA.

Care needs to be exercised with the use
of the masses. Here, we have written
this equation using the density of
states effective mass m∗

d . For GaAs
electrons, with one central valley,
m∗

d = m∗ close to the conduction band
minimum. For Si, this is not so; m∗

d will
be depend on the valley degeneracy
and anisotropy, and each of these
will depend on the surface being
employed. With Si, it is best to revert
to the longitudinal and transverse
effective masses characterizing the
ellipsoidal surfaces of constant energy
and include the degeneracy explicitly.

Since the carrier charge is confined in a short distance at the
interface, and the ionized impurity charge density is usually
smaller by a significant amount, the potential well is sometimes
approximated as an infinite triangular well. This is to say that
the carrier charge is assumed to be a sheet charge giving rise
to a constant electric field that is not significantly disturbed by
the weak acceptor charge density or the distribution of electron
charge in a narrow extent of the inversion layer. For this approx-
imation, which is not an unreasonable description of moderate
and strong inversion conditions, an approximate solution to the
problem is

ς i =Aii

[(
2m∗

dqEs

h̄2

)1/3 (
y − Ei

qEs

)]

, (20.5)

where Ai is the Airy function

Ai(z)= c1f (z) − c2g(z). (20.6)
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The functions f (z) and g(z) are given by

f (z) =
∞∑

n=0

3n
(
1
3

)

n

z3n

(3n)! , and

g(z) =
∞∑

n=0

3n
(
2
3

)

n

z3n+1

(3n + 1)! . (20.7)

The subband minima energies are given by

Ei =
(

h̄2

2m∗
d

)1/3[
3
2
πqEs

(
i + 3

4

)]2/3
(20.8)

for large values of i. Amore exact solution suggests
replacement of the bracketed index
terms of (i + 3/4) by 0.7587, 1.7540 and
2.7525 for i = 0, 1 and 2, respectively.

In the limit of large inversion charge, or negligible acceptor
charge density, Gauss’ law gives Es = qNs/ε for the electric field at
the heterostructure interface. Here, Ns is the carrier sheet charge.
Thus, in the limit of moderate to strong inversion and low acceptor
charge and ignoring barrier penetration effects, the subband energy
levels can be related to either the electric field at the interface or the
sheet carrier charge at the interface. For Ga1−xAl As/GaAs junctions,
this results in the minimum subband energies

E0 = 1.83 × 10−6E2/3
s , and

E1 = 3.23 × 10−6E2/3
s , (20.9)

where the energies are given in units of eV, and electric fields are in
units of V/m.

We should also consider, in addition to these, the changes in
density of states in two-dimensional systems as a result of the
formation of the subbands. Again, recall that density of states in a
ν-dimensional k-space is (2π)−ν . So, for two-dimensional systems,
the density of states is

G (E)= 2gv

(2π)2
2πk

dk
dE

, (20.10)

where gv is the valley degeneracy, and the factor 2 accounts for spin
degeneracy (gs = 2). If we assume isotropic parabolic bands,

E = E0 + h̄2k2‖
2m∗

d
, (20.11)

with

G (E) = gvm∗

πh̄2
for E > E0, and

= 0 for E < E0. (20.12)

For constant effective mass independent of energy, the density
of states is constant in any subband, and zero below the subband
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edge. As energy increases, more subbands become populated,
and there is a piecewise discontinuous increase in the density of
states. For an n-type inversion layer in GaAs, gv = 1 because there
is only one equivalent � valley band, and the density of state
distribution for the two-dimensional system is straightforward
(see Figure 20.3(a)).

Figure 20.3: The density of states
distribution in an electron inversion
layer on a GaAs surface as a function
of energy is shown in (a). Part (b)
shows the density of states distribution
function as a function of energy for an
electron inversion layer on a (100) Si
surface.

For (100) silicon, gv = 2 for the two ellipsoids whose longitudinal
momentum is confined (�2 valleys) and gv = 4 (�4 valleys) for
the ones whose transverse momentum is confined. The density
of state distribution is slightly more complicated and is shown in
Figure 20.3(b). The mass to be used in Equation 20.12 is the density
of state effective mass for the two orientations. The effective masses
for motions allowed in the E(k) states are

m∗ = m∗
t (20.13)

for the twofold degenerate subbands, and

m∗ = (m∗
t m∗

l )
1/2 (20.14)

for the fourfold degenerate subbands.
At T = 0 K, the sheet carrier density and the Fermi level energy

(if only the 0th band is occupied) are related by

Ns = G (E)(EF − E0), (20.15)

and, following the calculations for Fermi velocity from Appendix P,

kF =
(
2πNs

gv

)1/2

, and

vF = h̄
m∗

(
2πNs

gv

)1/2

. (20.16)

In GaAs, with Ns = 6 × 1011 cm−2 for the electron density, a common
sheet density in high mobility samples at Ga1−xAlxAs/GaAs
interfaces, the Fermi velocity is 3.2 × 107 cm/s at absolute zero. This
is larger than thermal velocity in non-degenerate GaAs at 300 K. The reader is encouraged to explore

this same question for silicon. It is
a bit more complicated calculation
(see S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017), for the
confinement calculations), but very
instructive.

The treatment leading to these equations ignores several second-
order effects related to bandstructures. The parabolic band approx-
imation is accurate only for small energies, and higher order
subbands are influenced strongly by the wavefunction penetration
into the larger bandgap material at the discontinuity. Hole bands
are highly anisotropic, as are bands in smaller bandgap materials
such as Ga1−xInxAs. p-type inversion also has complications due
to multiple bands, warped surfaces and low barriers with larger
wavefunction penetration even for the lowest energy subbands. The
parabolic infinite barrier picture is too simplistic for these, and we
have to rely almost exclusively on numerical techniques to obtain
parameters of interest.
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20.1.2 Confinement by infinite and finite potential

Figure 20.4: Part (a) shows quantum
confinement in one dimension in
an infinite potential well and (b)
shows this for two dimensions of
confinement; that is, a quantum wire.

Having discussed the example of inversion, and that
of density of states in crystals dealt with in Appendix H, we
will summarily deal with the preliminaries of the particle in a
box problem. Figure 20.4 shows two cases: Figure 20.4(a) shows
quantum confinement in one dimension, while Figure 20.4(b) shows
it in two dimensions. The confinement is via an infinitely high and
sharp potential wall, with the potential in the well as our V = 0

Here, sharp wall is meant in the
mathematical sense. Quantum
mechanics and nature, of course,
don’t permit it, but it is a good
approximation in view of the other
lengths in the system.

reference.
This second box has confinement in two dimensions, as seen in

Figure 20.4(b). Propagation is allowed in the third (z) direction. It
too has an infinitely high and sharp potential wall in the x and y
directions, where the confined lengths are a and b. Let m∗

x, m∗
y and

m∗
z be the effective masses in the three orientations, so we assume

that a many-unit-cell description holds. This in turn lets us use, for
most purposes, the envelope function, since its usage depends on
slow variation on the atomic scale. The wavefunction solution takes
its form from the Bloch functions near the bandedges as a product,
and their usage—not the Bloch function’s—will be necessary with
optical transitions. Let l and m be the quantum numbers associated
with the x and y confinement. The envelope function is

ς i, j,kz(x, y, z) =
√

4
ab

sin
(

π lx
a

)
sin
(πmy

b

)
exp(ikzz)

= for l,m = 1, 2, 3, . . . . (20.17)

There is continuity along the z direction—no confinement, and
nearly free electron motion—so, there is a quasi-continuum of
states—the subbands—whose energies are

El,m(kz)= l2π2h̄2

2m∗
xa2

+ m2π2h̄2

2m∗
yb2

+ h̄2k2z
2m∗

z
. (20.18)

In general, not including spin, these energies of subbands are
nondegenerate. But, in general, degeneracy exists whenever
l2/m∗

xa2 = m2/m∗
yb2, the most egregious case for which is when a = b

with m∗
x = m∗

y for quantum number combinations (l,m) and (m, l) if
l �= m. For a wire of length L, the density of states per unit energy
for the one-dimensional (l,m) subband is

Gl,m(E)= 2 × gs
L
2π

dkz

dE
= L

π

(
2m∗

z

h̄2

)1/2

(E − El,m)−1/2 (20.19)

for a single valley and is a form that decreases in density the
higher up in energy one goes. This is because the kz states are
evenly spaced, while the energy rises as the square of kz. If there
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exists confinement in the z direction also, a quantum box results,
and Equation 20.17 will have a straightforward change in the z-
dependent term to a corresponding x- and y-like term. So will there
be a change in density of states. Now, the levels will be entirely
discrete. This is a quantum box.

Take another form of these two dimensions of confinement: a
quantum wire of radius R and with similar potential constraints.
Now, the envelope function equation is

{

−h̄2

2

[
1
r

∂

∂r

(
R

m∗
∂

∂r

)
+ 1

r2
∂2

∂φ2

]

+ V(r,φ)

}

ς(r,φ)= Eς(r,φ),

(20.20)
where m∗ is assumed isotropic and constant for simplicity, φ is
the azimuthal angle around the z axis, and r2 = x2 + y2. k appears
as a quantum number, with h̄k as the linear momentum for the
Cartesian example. Now, we have quantization of the angular
momentum. The solution function is

ς l,m,kz(r,φ, z) = 1

R
√

πL

[
1

Jl+1( jl,m)
Jl

(
jl,m
R

r
)]

exp(ilφ) exp(ikzz)

for l,m = 0, 1, 2, . . . . (20.21)

Here, Jls are Bessel functions of order l whose mth root is jl,m.
Angular momentum is now quantized by the orbital quan-
tum number l and is lh̄. l = 0 is a non-degenerate state, and
l �= 0 integers lead to doubly degenerate solutions. The energy
levels are

El,n(kz)= h̄2j2l,m
2m∗R2 + h̄2k2z

2m∗
z
. (20.22)

A circular wire will have fewer states over a span of energy

Figure 20.5: Confinement in a
finite barrier of potential V0 in a
quantum well.

than a square wire of similar area would. Confinement’s effect is
stronger by a 1/

√
π reduction of the length scale. However, at large

energies, the density of states will approach a square cross-section
density at the same area, since it depends on the area. At small
energies, the densities differ, and the boundary conditions—how
far the envelope function can penetrate the forbidden regions—
will have a noticeable effect. So, SiO2-confined versus compound-
semiconductor-confined structures exhibit a variety of consequences
arising in the nature of the density and the energy separation of
these states.

For finite barriers, explicit analytic solutions do not exist for
rectangular cross-sections but do for circular cross-sections, through
Bessel and Neumann functions. We tackle the finite barrier now.
Following Figure 20.5, which is a two-dimensional example with
one dimension of confinement by a potential V0, with effective
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masses m∗
a in the well of width a and m∗

b in the barrier, the envelope
Equation 20.2 will have a solution for a symmetric ladder in the
constrained form of

ς i(z) = A cos kz for |z| < a/2,

= B exp[−κ(z − a/2)] for z > a/2, and

= B exp[−κ(z + a/2)] for z < a/2, or

= A sin kz for |z| < a/2,

= B exp[−κ(z − a/2)] for z > a/2, and

= B exp[−κ(z + a/2)] for z < a/2, with

Ei = h̄2k2

2m∗
a
, and

Ei − V0 = h̄2κ2

2m∗
b
. (20.23)

There is a bounded solution in the well. For the lowest energy We have discussed this bounding
as a standing wave arising from
two counter-propagating waves in
Appendix H for the state density
calculation in a semiconductor.

solution it is written as cosine based for convenience since, by
symmetry, it peaks in the middle of the well and since the E = Ei

of the solutions is greater than the potential V = 0. Second-order
equations have an exponentials-based solution that is in this form
here because of symmetry. But the next solution, if it exists, will be
asymmetric, and now can be written in terms of the sine function.
In the barrier region of mass m∗

b , the exponential solution is a
decaying solution, since Ei < V0. The boundary conditions of the
continuity of envelope function and the probability current forces
the constraints for the symmetric and asymmetric cases as

A cos
(

ka
2

)
= B, and

kA
m∗

a
sin
(

ka
2

)
= κB

m∗
b

∴ k
m∗

a
tan
(

ka
2

)
= κ

m∗
B
, and

−A sin
(

ka
2

)
= B, and

kA
m∗

a
cos
(

ka
2

)
= κB

m∗
b

∴ k
m∗

a
cot
(

ka
2

)
= − κ

m∗
B
, (20.24)

respectively. The two transcendental expressions of Equation 20.24
will require numerical solutions. For the simplification of
m∗

a = m∗
b = m∗, these expressions reduce to

cos
(

ka
2

)
= k

k0
, for tan

(
ka
2

)
> 0, and

sin
(

ka
2

)
= k

k0
, for tan

(
ka
2

)
< 0, (20.25)

with k0 =√2m∗V0/h̄2. Figure 20.6 shows a normalized solution for
this finite well problem.
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Figure 20.6: An illustration of a finite-
potential well solution for the m∗

a = m∗
b

case. For the choices made, four
bound solutions exist, identified at
the intersection of the cos(ka/2) and
sin(ka/2) curves with k/k0.

Figure 20.7: Part (a) shows
propagation, with transmission and
reflection, at E > V0 through the finite
barrier potential well in an infinite
one dimension. Part (b) shows the
solution of the transmission coefficient
(amplitude square). There are specific
energies at which an incident wave
can entirely transmit through. Off this
resonance, reflections happen.

A number of features are evident. The spacing between energies
reduces faster than for the case of an infinite well. An infinite
potential well has only bound states. A finite potential well has a
finite number of bounded states. The total number of these is

N = Int

⎡

⎣

(
2m∗V0a2

π2h̄2

)1/2
⎤

⎦ , (20.26)

where only the integer part of the square root should be taken. But
this does not mean that there are not other allowed states.

For E > V0, there exist an unlimited number of unbounded states.
Each eigenvalue will be twice degenerate because both directions of
carrier momentum are allowed. Now, we may look at this problem
in terms of transmission and reflection because of the potential
discontinuity encountered. Figure 20.7(a) shows the construction
of this problem as an extension of the finite barrier discussion.

An electron of momentum +h̄kb incident at the well (z = −a/2)
can transmit or reflect. Let the reflected wave have an amplitude of
r, with the incident as unity. In the well, there are also propagating
states of ±h̄ka momentum. The transmission at z = +a/2 occurs with
a transmission amplitude t, and this wave propagates away from
the barrier. We can write the position part of the envelope function

In this wave problem, the envelope
function—the non-time-dependent
part—is spread out over the entire z
space by definition. The electron(s) are
not constrained to a region.across the three regions to reflect this physical picture:
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ψ(z) = exp
[
ikb

(
z + a

2

)]
+ r exp

[
−ikb

(
z + a

2

)]
, for z ≤ a/2,

= A exp(ikaz) + B exp(−ikaz), for − a/2 ≤ z ≤ a/2, and

= t exp
[
ikb

(
z − a

2

)]
. (20.27)

The boundary conditions of continuity of the envelope function and
the probability current imply

t(E − V0) =
[
cos(kaa) − i

2

(
ka

kb
+ kb

ka

)
sin(kaa)

]−1

, and

r(E − V0) = i
2

(
ka

kb
− kb

ka

)
sin(kaa)

×
[
cos(kaa) − i

2

(
ka

kb
+ kb

ka

)
sin(kaa)

]−1

. (20.28)

The transmission coefficient is T = |t|2, and the reflection coefficient
is R = |r|2. The solution satisfies T (E − V0) + R(E − V0)= 1—energy
conservation—and transmission, explicitly, is

T (E − V0)=
[

1 + 1
4

(
ka

kb
− kb

ka

)2

sin2(kaa)

]−1

. (20.29)

Figure 20.7(b) shows this solution for a range of 70 meV above the
barrier, with V0 = 0.15 eV, and m∗ = 0.48m0.

At an energy E = V0, the carrier is entirely reflected back; it
does not get trapped into the well. This is because of the wave
nature. It is entirely consistent with principle of correspondence. As discussed in S. Tiwari,  ̏Quantum,

statistical and information mechanics:
A unified introduction,˝ Electroscience
1, Oxford University Press, ISBN
978-0-198-75985-0 (forthcoming),
if a barrier boundary appears
adiabatic, that is, the thickness
over which the barrier changes is
longer than the wavelength of the
propagating electron 2π/k, then these
quantum-mechanical reflections will
disappear. All these solutions can also
be equivalently viewed through the
approach of perturbation, which we
applied there.

Also, the transmission coefficient varies with changing period in
energy and in magnitude. But it reaches T = 1 whenever kaa = nπ ,
where n = 1, 2, . . . . The wave can resonate across the barrier when
constructive interference conditions exist.

An important comment regarding dimensionality reduction
and the existence of these bound and continuum states is in
order. We have only looked at the problem here of confinement
in one dimension. If one had two dimensions of confinement, it
will stand to reason that the energy levels will rise much more
rapidly since, in this other direction of k, stronger quantization
has separated those states out. The density of states in a wire
dropped with energy for this reason, forcing states to be dense
at the lowest energies allowed. If one confined the final spatial
dimension, then only non-propagating states will exist. An atom
is one example of this. For a quantum well with two dimensions
of freedom, as Equation 20.26 stated, there is an integer number
of countable states, and V0 > π2h̄2/2m∗a2 is necessary for one to
exist. States can all be unbounded. When the confinement is in two
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dimensions—a one-dimensional quantum wire—the system will
always have bound states with the unbounded propagation in the
third dimension. We noted this constraint in Chapter 7

when exploring localization in deep
centers.

20.1.3 Potential in confinement conditions

What precisely is the potential V in the confined semicon- This V should not be confused with
the crystal potential used in obtaining
the Bloch solution.

ductor environment? We can relate it to a number of factors that
have been considered in the text. Consider only one dimension of
confinement for simplicity. The potential for the envelope function
arises in—and this can be seen back to our Wannier function and
other discussions—as

V(z)= − eψ(z) + Vcb(z) + Vim(z) + Vxc(z), (20.30)

where ψ is the electrostatic potential, Vcb is the conduction band-
edge, Vim is the image potential, and Vxc is the exchange correla-
tion. The electrostatic potential rises from the Poisson equation, the
conduction bandedge—including discontinuities—arises from the
bandstructure, the image potential reflects the consequences of the
charges’ polarization of surfaces due to dielectric discontinuities,
and exchange correlation, which is the Coulomb consequence of
the quantum antisymmetric requirement for the electrons as we
park them together in the high-carrier-density surface region. The
first two and the last are quite clear in light of the discussions
throughout this text. Image potential needs a short discussion. For
Ze of charge in material of permittivity εa, a distance d away from a
material of permittivity εb, the image potential is

Vim(z)= εa − εb

εa + εb

Z2e2

16πεad
. (20.31)

If εa < εb, that is, the charge is in the material of low permittivity,
then its image potential is attractive. The effect is not negligible
in SiO2/Si, where permittivities are vastly different, but can be
usually ignored in semiconductor heterostructures with εr ≈ 10, give
or take.

20.2 Confinement of holes

Holes, with the complexity of bandstructure, and the
interactions between the various valence band states, should be
expected to be considerably more complex. Our remarks here are
meant to give a perspective on how one tackles this complexity,
drawing on techniques learned in this text, and summarizes some
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of the important consequences. We are also particularly interested in
tackling this problem since electron-hole-photon interactions will
specifically depend on the allowed and non-allowed transitions
based on conservation of energy, momentum and the nature of the
perturbations.

We explored the three-dimensional hole bandstructure through
the Luttinger Hamiltonian of Equation 4.99 and found the interre-
lated parameters of Equations 4.100–4.101. These describe for us
the light-hole, heavy-hole and split-off-hole E(k) states. The split-
off band is quite near (�so ≈ 44 meV) the other two bands in Si at
the zone center, but, in GaAs (�so ≈ 0.34 eV) and other compound
semiconductors of interest, it is far off. Since the interest in valence
band states is particularly for optical interactions in confinement
conditions, with this large split-off spacing, we can largely ignore
the coupling of light-hole and heavy-hole band states with the split-
off band states due to any interaction of interest. With this, use of
the top left 4 × 4 block of the Luttinger Hamiltonian suffices. The
eigenenergies of this Hamiltonian are

E(k) = −P ±
(
|Q|2 + |S|2 + |R|2

)1/2

= − h̄2

2m0

{
γ 1k2

±
[
4γ 2

2k4 + 12(γ 2
3 − γ 2

2)(k
2
xk2y + k2yk2z + k2zk2x)

]1/2}
. (20.32)

Following the discussion of the Luttinger Hamiltonian, with z as
the angular momentum direction of the holes and propagation,
the heavy-hole and light-hole energy bandstructure near the zone
center is

E = h̄2k2z
2m0

(γ 1 − 2γ 2) for heavy holes (±3
2
), and

= h̄2k2z
2m0

(γ 1 + 2γ 2) for light holes (±1
2
). (20.33)

This describes the masses for the 〈001〉 direction as

m∗
hh

m0
= 1

γ 1 − 2γ 2
, and

m∗
lh

m0
= 1

γ 1 + 2γ 2
, (20.34)

and, for the 〈110〉 direction,
m∗

hh
m0

= 1

γ 1 − (γ 2
2 + 3γ 2

3)
1/2 , and

m∗
lh

m0
= 1

γ 1 + (γ 2
2 + 2γ 2

3)
1/2 . (20.35)

These γ factors are determining the interband coupling. The γ 2 rep-
resents the heavy-hole coupling to the light hole along 〈100〉. Along
〈110〉, this coupling is via γ 3. For GaAs and several other compound
semiconductors in use, γ 2 < γ 3. γ 3 causes the band repulsion to be
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quite significant along 〈110〉, making the heavy hole heavier and the
light hole lighter compared to what they are along 〈100〉.

The momentum quantization due to confinement can now
be approached by starting with k = 0 unperturbed states and
introducing the net perturbation due to the confinement, that is, the
confining potential as a perturbation, and due to the k·p interaction.
The lowest-order solution, if confinement is absent, arises from
the k = 0 valence band description, such in Equation 20.33. Since
the basis set that diagonalizes the k · p perturbation H ′

k·p is not
a basis set for the confinement perturbation H ′

conf , strong mixing
occurs. Masses are different, the heavy-hole (±3/2) and light-hole
(±1/2) band degeneracy is lifted, and increased warping—beyond
the three-dimensional situation—occurs.

As with electrons, the infinite-potential-square-well problem
can be approximated analytically, but a finite well problem does
not have an explicit solution. Consider the infinite potential well;
neglect warping, so this is a spherical approximation, where
the Luttinger parameters γ 2 and γ 3 are now the same (γ ). For
wavevectors in the plane normal to the direction of the quanti-
zation of the angular momentum, the Luttinger matrix decou-
ples into two, with the light hole and heavy hole both with the
eigenvalue of

Elh = h̄2k2

2m0
(γ 1 + 2γ )k2, and Ehh = h̄2k2

2m0
(γ 1 − 2γ )k2. (20.36)

With a quantum well of size a, along z, the lowest confinement
energies—various energy levels with the quantum number n at
k = 0—are

En,lh = n2π2h̄2

2m0a2
(γ 1 + 2γ ), and

En,hh = n2π2h̄2

2m0a2
(γ 1 − 2γ ), with

kz = nπ

a
, for n = 1, 2, . . . . (20.37)

Now, for ky �= 0, that is, for motion in the plane of the quantum
well, there is considerable mixing of states. The energy E(ky) of the
subband conforms to

[4k2lhzk2hhz + k2y(k
2
hhz + k2lhz) + 4k4y] sin(klhza) sin(khhza)

+ 6k2y klhzkhhz[1 − cos(klhza) cos(khhza)]= 0. (20.38)

With E < 0 for holes,

Elhz =
[
− 2E

γ 1 + 2γ
− k2y

]1/2
, and

Ehhz =
[
− 2E

γ 12γ
− k2y

]1/2
. (20.39)
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Equation 20.37 also tells us the changes in effective masses because
of this quantum well and k · p mediated coupling:

1
m∗

n,lh
= − 1

γ 1 + 2γ

[

1 + 3
cos θn + (−1)n+1

θn sin θn

]

, with

θn = nπ

(
γ 1 + 2γ
γ 1 − 2γ

)1/2

, and

1
m∗

n,hh
= − 1

γ 1 − 2γ

[

1 + 3
cos θn + (−1)n+1

θn sin θn

]

, with

θn = nπ

(
γ 1 − 2γ
γ 1 + 2γ

)1/2

. (20.40)

These infinite-well results hold true as a general trend for finite
potential wells, where numerical approaches become necessary.
With warping, and the quantum well perturbation interacting,
much complexity can arise with anti-crossing behavior as the
energies evolve with increasing wavevector. However, in all these,
non-parabolicity, the positive hole mass feature, continues to be
retained.

20.3 Monolayer semiconductors

Stable states of matter also exist in a monolayer form, by
which we mean they are a single-atom thick or multi-atom thick
(a single-atom planar crystalline arrangement with terminating
atoms out of plane) but where the continuity exists in a plane.
Graphene, which has zero bandgap, and its tubes, which can
achieve a bandgap, are examples of the former. Dichalcogenides
such as MoS2, WS2, equivalent diselenides or ditellurides and others
are examples of the latter. Unusual properties arise in these latter
compounds due to spin-orbit coupling and due to the interactions
that only occur at large atomic numbers, where the higher orbitals
are occupied, leading to spin-dependent effects appearing in various
forms, such as magnetoresistance.

20.3.1 Graphene

We will use graphene, and the carbon nanotube, to explore
these naturally confined materials’ semiconductor-specific
properties.

Carbon is quite a unique atom. The
organic world—the living world of
the earth—exists because of it. In
the creation of the universe, helium
was birthed from the α particle in
the first generation of stars through
the proton-proton reaction. But the
atomic numbers to that arrive from
protons and α particles happen to be
unstable isotopes. Atomic number 12,
carbon, has a nucleus whose energy
level resonates with the energy of
three α particles. Triple fusion becomes
possible. This overcomes the mass
gap with a nucleosynthesis cascade
that generates all the elements up
to atomic number 56 (Fe). It is the
later-generation star processes—
supernovas, et cetera—that make
the other heavier elements that we
know. Carbon has given rise to life and
nature, and now we have figured out
ways to make this magical element the
executioner in an Anthropocene era.

Figure 20.8 shows the two-dimensional structure, with the unit
cell and the Brillouin zone. The in-plane three bonds are hybridized
sp2, and the residual pz orbital makes the fourth π z bond (and
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Figure 20.8: Part (a) shows the
hexagonal two-dimensional structure
of graphene together with its unit cell
(a filled rhombus) and â1 and â2 as the
two unit vectors of the real space. A
and B are the two bases of the unit cell.
Part (b) shows the reciprocal lattice,
together with the first Brillouin zone.
The shaded region is the first Brillouin
zone with unit reciprocal lattice vectors
of b̂1 and b̂2. The major symmetry
points of the reciprocal space are
identified.

antibond). C–C spacing is a = 0.142 nm. We will employ tight
binding to model our electronic description.

We start with the unit cell, with its two unit vectors (â1 and â2)
that specify coordinates of the basis atoms. This leads to the
Brillouin zone with its reciprocal lattice vectors (b̂1 and b̂2). We
choose |s〉 and |p〉 atomic orbitals to build the basis states in sp2

hybrid. To solve our secular Equation 1.61, and to keep matters
simple, and yet reasonably accurate in this instance, we will only
consider next neighbor interactions. We need to calculate Hij

(the transfer elements) and Oij (the overlap elements) to solve
the equation, where the solution exists only if the determinant of
Hij − EOij vanishes. Symmetry tells us a bit about the nature of
the solution. We will just parameterize the transfer and the overlap
matrix elements to keep the exercise simple. We have

â1 =
√
3
2

ax̂ + 1
2

aŷ, and

â2 =
√
3
2

ax̂ − 1
2

aŷ, leading to

b̂1 = 2π√
3a

k̂x + 2π
a

k̂y, and

b̂2 = 2π√
3a

k̂x − 2π
a

k̂y, (20.41)

as shown in Figure 20.8. Let a be the carbon-to-carbon nearest
neighbor distance. The length of the unit vectors in real space is√
3a = √

3 × 0.142= 0.246 nm. The reciprocal lattice constant is
4π/

√
3a. The reciprocal lattice vectors, by definition again, are

normal to the real space lattice vectors. In the Brillouin zone �,
M, K and K′ serve as important symmetry points, with K and K′

having several equivalences, but also differences, since this is a
lattice with a basis of 2.

For A and B, we construct two Bloch functions from the atomic
orbitals, with hybridization of |s〉 and |p〉 into the sp2 configuration,
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with a residual pz orbital out of the plane. Bonding states arise in
the σ bonds—covalent—from sp2. The antibonding states arise from
π bonds—also covalent—of the pz orbital. It is the π energy bands
that provide the conduction. This, together with the consideration
of only nearest neighbor (A-B) interaction make matters easy for us.
The Bloch function for a jth atom in general can be written as

ψ j(k, r)= 1√
N

∑

R,N

uj(r − R) exp(ik · R), for j = 1, 2, . . . ,n. (20.42)

For our example, these ujs are the s and p orbitals of the atom
A (or of atom B). N is the number of such atoms in the assembly.
ψ j(k, r + âi)=ψ j(k, r) for each i, say, 1 for A, and 2 for B, from
translational symmetry:

HAA = 1
N

∑

R,R′
〈uA(r − R′)|H |uA(r − R)〉 exp[ik · (R − R′)]

= 1
N

∑

R−R′
E2p + 1

N

∑

R = R′±â1

〈uA(r − R′)|H |uA(r − R)〉

× exp(±ik
√
3a) + O(|R − R′| > 2a1)

= E2p + 1
N

∑

R = R′±â1

O(|R − R′| ≥ a1),

and, by symmetry,

HBB = E2p + O(|R − R′| ≥ a2). (20.43)

With only nearest neighbor interactions, this reduces to the simple
expression

HAA = HBB = E2p. (20.44)

The off-diagonal term results from the interaction between each
atom and its three neighbors, which are a apart and oriented at
0, 2π/3 and 4π/3 radians, respectively. Let these positions be
called R1, R2 and R3, as referenced to the R0 origin, as shown in
Figure 20.8(a) for A, which is the reference R:

HAB = 1
N

∑

i=1,2,3

〈uA(r − R0)|H |uB(r − Ri)〉 exp(ik · Ri)

= t
[
exp(ik · R1) + exp(ik · R2) + exp(ik · R3)

]

= tf (k), where

t = 〈uA(r − R0)|H |uB(r − Ri)〉, and

f (k) = [exp(ik · R1) + exp(ik · R2) + exp(ik · R3)
]
. (20.45)

t is the overlap energy term and is negative due to repulsive-
ness, and f is a Fourier phase factor. It is a complex function.
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By symmetry, HAB = H ∗
BA. In the coordinate system of Figure 20.8,

f (k)= exp
(

ikx
a√
3

)
+ 2a exp

(
−ikx

a

2
√
3

)
cos
(

kya
2

)
. (20.46)

The overlap integral has a similar Fourier phase factor, and an
overlap term, similar to that of t, of

t = −3.033 eV, and o = 0.129. These
are calculated parameters assuming
a = 0.142 nm for graphene.

o = 〈uA(r − R0)|uB(r − Ri)〉 (20.47)

so that

OAB =OBA = of (k). (20.48)

So, we have the matrix elements as

H =
[

E2p tf (k)
tf ∗(k) E2p

]

, and O=
[

1 of (k)
of ∗(k) 1

]

. (20.49)

The solution to the secular equation is

E(k) = E2p ± tw(k)

1 ± ow(k)
, where

w(k) = |f (k)|2

=
[

1 + 4 cos

(√
3
2

kxa

)

cos
(
1
2

kya
)

+ 4 cos2
(
1
2

kya
)]1/2

. (20.50)

The + sign gives the bonding π energy band, the − sign gives
the antibonding π∗ energy band, and the symmetry properties
arise through the weighting function w(k), a Fourier contribu-
tion that maps the symmetry properties from real space to the
reciprocal space.

With the overlap integral o vanishing, Equation 20.50 implies
that the π and π∗ bands will be symmetrical at energy E2p. In this
approximation limit, the energy dispersion of this two-dimensional
crystal is

E = ± t

[

1 + 4 cos

(√
3
2

kxa

)

cos
(
1
2

kya
)

+ 4 cos2
(
1
2

kya
)]1/2

. (20.51)

Figure 20.9: The E(k) dispersion for
graphene in the first Brillouin zone
using tight binding and considering
only nearest neighbor interactions.
There is no bandgap. Part (b) shows
the behavior at major symmetry points
and directions. The zero bandgap
appears at the K and K′ points. These
also reflect the symmetry of the pz-
based bonding in the nearest neighbors
and that the lattice has a two-atom
basis.
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This simple and approximate bandstructure is shown in
Figure 20.9. The pz orbitals of A and B contribute one electron each,
so there are two π electrons per unit cell. At T = 0 K, these occupy
the bonding states—the lower π band is the valence band—and the
antibonding states—the upper π∗ band, which is the conduction
band—are empty. The density of states vanishes—our derivation
doesn’t speak to this directly—at these bandedges; this is a zero-gap
semiconductor. This zero gap arises because the A and B sites in

Is a zero-gap semiconductor an
oxymoron? Not really. Note also, we
also found a semiconductor where the
valence band maximum was not at the
zone center. Bandgaps become possible
by confinement.

this hexagonal lattice are equivalent. In the reciprocal space, this
vanishing bandgap is at K and K′. As there is a two-atom basis,
while there are symmmetries between A and B in the hexagonal
lattice, or between the K and K′ in the reciprocal lattice, they are not
formally the same. The crystal has a basis of 2.

Figure 20.10: The E(k) dispersion for
graphene in the first Brillouin zone
using tight binding, including both the
σ and the π states. Note the stronger
bonding and antibonding energies,
compared to that of Figure 20.9.
Also, note that the symmetry of σ is
reflected in the zone center minimum
and maximum.

How do the σ band states appear? Recall that these are arising
from the sp2 hybrids from the in-plane atomic orbitals |s〉, |px〉 and
|py〉. These are strong bonds, so they will be farther away from
the energy reference of the zero bandgap point. The complete
calculation including both the σ and the π bands in a more
complex extension is a 6 × 6 Hamiltonian, where one will need not
only the matrix element Hπ = t, which we have already utilized,
but also Hss, Hsp, Hσ and the corresponding overlap terms, and the
self-energy Es. Figure 20.10 shows the energy dispersion with both
the π and the σ states. Near the Fermi energy—low energy states in
conduction and valence bands—not much has changed.

Figure 20.11: The phonon dispersion
for graphene. Note the high energies.
ZO and ZA refer to the out-of-plane
modes.

With two carbon atoms as the basis, graphene has 6 phonon
branches similar to the zinc blende and diamond structures; that
is, 3 acoustic and 3 transverse (see Figure 20.11). Acoustic branches
originate at the � point, and we identify these via longitudinal
(LA), transverse (TA) and out-of-plane (ZA), which is the second
transverse direction, modes. This ZA mode has a q2 dependence,
not the normally observed linear dependence for acoustic modes.
Three optical branches also exist as LO, TO and ZO. The symmetry
of graphene also leads to the linear crossing of the ZA/ZO and
LA/LO modes at the K point.

20.3.2 Nanotubes

Semiconductor bandgaps appear in this sp2-hybridized form of
carbon when it appears in a tubular form, that is, a rolled graphene
sheet called a nanotube. Some configurations appear metallic,
and these are related again to the symmetries that we noted for
graphene. Such tubes can also be formed out of materials such as
BN, which can also be formed as a single-atom-thick layer with a
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hexagonal lattice. BN, unlike C, now has two different atoms as the
A and B basis. This particular symmetry having been broken, it has
a bandgap—unlike graphene—in this monolayer form of the order
of 4.5–6.0 eV. Our discussion will be restricted to single-wall carbon
nanotubes to elucidate the consequences of tubularity.

Chirality—a vector measure of how the graphene sheet is rolled
with an axial symmetry into the cylindrical form—is a key new fea-
ture attribute of the spiral confirmation of a tube. With the length
long compared to the diameter, this tube is now a one-dimensional
structure. The additional dimensional constraint will also determine Growth also places caps on the end of

nanotubes. These are six pentagons
and more hexagons that then fit
with the nanotube’s arrangement of
hexagons defined by the chirality.

several of the attributes of interest to us. Figure 20.12(a) summarizes
one way to define the tube’s lattice. When a tube is rolled along
(m, 0) and then (m, 0) is joined back with (0, 0), we get a zigzag
pattern for the bonds; this nanotube is a zigzag nanotube, and
(m, 0) indexes it. When a tube is rolled along (n,n) and then (n,n) is
joined back to (0, 0), then it has an armchair pattern, and it is often
referred to as an armchair nanotube. In general, it is possible to roll
along more than these two directions, for example, the end points
of the arrow identified with the angle θ , and one is able to identify
any (m,n) with which to identify the tube. This is the chirality of
the nanotube. In Figure 20.12(a), if, in the forming of the tube, O
and P are connected, as is Q with R, then OP defines a chiral vector
Ch, and OQ a translation vector T. In this figure, R is a symmetry
vector.

Figure 20.12: Part (a) shows the hexagonal lattice together with the reference systems for the discussion of its rolling
into a tube. A unit cell of the nanotube constructed out of the hexagon lattice with a Ch chiral vector and a T translation
vector is shown together with the construction of zigzag and armchair tubes by rolling. R is a symmetry vector. Parts
(b) and (c) show the real space and reciprocal space, respectively, for armchair nanotubes. Parts (d) and (e) show the
real space and reciprocal space, respectively, for zigzag nanotubes. In (b)–(e), when T is the translation vector, K is the
reciprocal lattice vector of those nanotubes.
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From a symmetry perspective, nanotubes are either chiral, that is,
have spiral symmetry, and a mirror image cannot be superposed on
the original, or they are achiral, where they can be superposed. The
armchair and zigzag nanotubes are achiral. The chiral vector is

Ch = mâ1 + nâ2, (20.52)

whose simpler notation is just (m,n). 0 ≤ |n| ≤ m because
of hexagonal symmetry. Armchair nanotubes have m = n or
Ch = (m,m). Zigzags are Ch = (m, 0). The circumference of the
nanotube then is |Ch|. The diameter D then follows

D = 1
π

|Ch| = a′

2
(m2 + n2 + mb)

1/2
, (20.53)

where a′ = |â1| = |â2| ≈ 0.249 nm. The chiral angle θ—the angle The C–C distance (a) is 0.142 nm. For
graphene, the lattice constant (a′) is
0.249 nm. For nanotubes, this unit cell
dimension will depend on the chirality.

between Ch and â1—is related through

cos θ = Ch · â1
|Ch||â1| = 2m + n

2(m2 + n2 + mn)
1/2 , or, more simply, as

θ = arctan

( √
3m

m + 2n

)

. (20.54)

A zigzag tube has θ = 0, and an armchair has θ =π/6. The transla-
tion vector T, perpendicular to the Ch, is along the tube axis and
can be written as

T = t1â1 + t2â2, (20.55)

again more simply written as (t1, t2), and it is parallel to the axis
of the tube, so normal to Ch, with T · Ch = 0. OQ is where the
first intersection happens with a lattice point. The unit cell of the
nanotube is defined by OPRQ, with the vectors Ch and T. The
relationship of the chiral and the translation vectors in terms of the
unit vectors leads to t1 = (2n+m)/D, and t2 = −(2m+n)/c, where c is
the largest divisor of these numerators. Since n and m are integers,
a cycle of 3 in the numerator causes a repetition, and hence if d is
the greatest common divisor of m and n, c follows as either c′, if c′ is the greatest common divisor of m

and n.m − n is not a multiple of 3c′, or 3c′, if it is. The translation vector’s
length is |T| = √

3D/c.
It is instructive to see how many of the hexagon areas appear in

the unit cell of a nanotube. This is the ratio of the two areas,

N = |Ch × T|
â1 × â2

= 2D2

a2c
. (20.56)

Since there is a two-atom basis per hexagon, there are 2N atoms,
and therefore 2N × 2 electron states have been introduced from the
2pz orbitals per unit cell of the nanotube. It also implies that there
are 2N × 3 phonon states arising in the 2N carbon atoms.
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The zigzag and armchair nanotubes are easier to visualize, but,
in general, these tubes with large unit cells are twisting as Ch chiral
rotates through 2π to end up at another lattice point that is the
equivalent of the starting lattice point. The hexagons are being
displaced translationally as this happens. R of Figure 20.12 is a
vector that is useful in generating the lattice points of the tube in
these general conditions. It is the smallest component of Ch (or, for
that matter, of T) that generates the points:

R = pâ1 + qâ2, or (p, q), (20.57)

where p and q are integers with only unity as a common divisor. R
has the meaning that when one goes around the nanotube by 2π/N,
then one also translates by MT/N, where M = np − mq. The twisting
as one rotates means that Ch and T are tied to each other in coming
back to an equivalent lattice point through these relationships,
and R is a vector that reflects the underlying hexagonal symmetry
connections, and thus generates the lattice points through iR, where
i is an integer. A number of relationships can be derived between
the chiral vector, the translation vector and the symmetry vector,
including

T × R = (t1q − t2p)(â1 × qâ2),

1
Ch

Ch · R = 1
T

|R × T|, and

1
Ch

|Ch × R| = 1
T

R · T. (20.58)

Here, the second equation says that R’s projections and products
provide a proportional effect that is identical on both chiral and
translational vectors. This is inherent to these vectors being unit
vectors for the nanotube, and R being the vector generating the
lattice points.

When p and q are chosen so that R lies within the hexagon, that
is, i = 1, then t1q − t2p = 1, with 0 < np − mq ≤ N. With t1 and
t2 having no common divisor, this expression quantifies p and q
uniquely. If p and q are chosen so that R lies within the tube’s unit
cell, then a limiting relationship is 0 < t1q − t2p ≤ N. The vector
iR confined within a hexagon leads to vectors iR as the N different
sites of the nanotube unit cell.

Now consider the independent electron E(k) energy dispersion
of the tube. It conveniently follows from the graphene discussion,
since this folding by rolling has only introduced periodic bound-
aries. Ch is the periodicity along the circumference, and T is that
along the length. Along the length of the tube, we will have quasi-
continuity in the wavevector, while, along the circumference, it is
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quantized. Thus, it is the circumference that provides the second There is a difference with the quantum
wire, even though both the tube and
the wire are one-dimensional objects.
Quantum wires have potential barriers
confining. Here, it is the folding back
along the circumference. Zone folding—
as with atomic orbitals—has an orbital
constructive interference. There is no
decaying of the wavefunction since
there is no forbidden region.

bounding of this one-dimensional system. This second bounding
establishes the wavevector constraint in the direction of repetition
of the eigenfunction solution—what we will get as one-dimensional
energy dispersion—with multiple subbands that arise as cross-
sectional cuts of the two-dimensional dispersion of Figure 20.9 (or
the more rigorous calculation of Figure 20.10). And where these
cuts will be will depend on the chiral vector that determines the
periodic boundary. If the cuts pass through the K or K′ points of the
originating graphene’s Brillouin zone, at different angles, because
of the (m,n) specifics of the chiral vector, the nanotube will be zero
bandgap. We call this a metallic nanotube, and it is of the armchair
type (m = n). If the cuts don’t pass through the K or K′ points, then
bandgaps will appear. In the length T direction, the states are quasi-
continuous, and these become propagating states so long as the
energy separation is small enough for applied fields to be able to
change the electron’s momentum.

The first Brillouin zone of the reciprocal lattice for the nanotube
follows from the real space unit cell bounded by Ch and T through
the relations

Ch · K1 = 2π , Ch · K2 = 0, T · K1 = 0, and T · K2 = 2π . (20.59)

Here,

K1 = 1
N

(−t2b̂1 + t1b̂2), and

K2 = 1
N

(nb̂1 − mb̂2), (20.60)

where N given by Equation 20.56 is the number of unit cells of

Figure 20.13: The Brillouin zones of
nanotubes. They form a line segment
parallel to the reciprocal lattice vector
K2. The zones are separated by K1, and
these reciprocal lattice wavevectors
follow from the real space unit cell
of the nanotube bounded by Ch
and T. The example shown is for
Ch = 4â1 + 2â2, and T = 4t1b̂1 − 5b̂2. N
for this case is 28, hence the enormous
shrinking of the reciprocal lattice.

graphene, whose reciprocal lattice unit vectors are b̂1 and b̂2.
This Brillouin zone is a line. Figure 20.13 shows an example of
the construction of this Brillouin zone through Equation 20.60;
the graphene sheet from which the tube was folded is shown as
the background. For the example given in the figure, with a chiral
vector of (4, 2) and the translation vector (4,−5), N = 28, leading
to a shrunk reciprocal vectors of K1 = (1/28)(5b̂1 + 4b̂2), and
K2 = (1/28)(4b̂1 − 2b̂2). As the real space lattice is a one-dimensional
object, the reciprocal lattice is also of one dimension. K2 is the
reciprocal lattice vector with the quasi-continuum of states. K1 gives
the discretization around the circumference.

In Figure 20.13, the first Brillouin zone is the leftmost line
oriented along K2. This extends from −π/T to π/T along the
direction K2, where the quasi-continuum extends for the allowed
wavevectors of the tube’s longitudinal length direction. The K1

direction shows the 28 subband quantizations of this N = 28
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problem arising in the zone folding. The vector NK1 = t2b̂1 + t1b̂2

is the reciprocal lattice vector of the graphene origin. The two
wavevectors, separated by NK1, are equivalent. And there are N − 1
parallel line segments that are νK1 apart, where ν = 0, . . . ,N − 1,
and give rise to the N one-dimensional subband energy dispersions.
These are

Eν(k)= E2D

(
k

K2

|K2| + νK1

)
,

for ν = 0, . . . ,N − 1, and − π

T
< k <

π

T
. (20.61)

These are the cuts being made along the plane defined by the
parentheses.

Figure 20.14: A relational view through
the Brillouin zones of what makes a
nanotube metallic. The hexagon shows
the symmetries of the nanotube. The
rectangle inside shows the region
of extent K1 and K2, where νK2
translation builds the first Brillouin
zone of the nanotube.

When a cut passes through the symmetry point K or K′, the
tube is conductive, since this is the zero gap point, with π and π∗

bands degenerate. If the cutting line does not pass through these
symmetry points, one has a bandgap.

This cutting condition for the conductive state can be physi-
cally seen in Figure 20.14, where sections of the reciprocal space
graphene and of an arbitrary nanotube are sketched. If the ratio of
the length JK—passing through the K point of graphene—to that
of the K1 reciprocal lattice vector of the nanotube, both parallel to
each other, is an integer ratio, then the cut must pass through the
degenerate point:

JK = (2m + n)K1/3; (20.62)

recall the picture in Figure 20.12(a). So, this condition is equivalent
to the conclusion that the nanotubes are metallic when (2m + n)

or m − n are multiples of 3. So, tubes with m = n—the armchair
variety—are metallic, as is any (m, 0) of the zigzag family when m is
divisible by 3. Figure 20.12(a) depicts this conclusion. Looking at Figure 20.12(a), one can

also conclude that approximately
two-thirds of the tubes that can be
constructed will have a bandgap. The
bandgap will, of course, depend on the
magnitude of the chiral vector.

In Figure 20.12(b)–(e), we see parts of the unit cells of armchair
and zigzag carbon tubes. For (m,m) armchair tubes, shown in
Figure 20.12(b)–(c), the periodic boundary condition is

mkx, j
√
3a = 2π j, j = 1, . . . , 2m. (20.63)

So, from Equation 20.51, it follows that the chiral vector Ch = (m,m)

leads to the energy dispersion

Ej = ±t
[
1 + 4 cos

(
jπ
m

)
cos
(
1
2

ka
)

+ 4 cos2
(
1
2

ka
)]1/2

for armchair tubes, Ch = (m,m),

− π < ka < π , and j = 1, . . . , 2m. (20.64)

k is in the quasi-continuum direction of K2 = (b1 − b2)/2, so, along
the K and K′ of graphene.
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Figure 20.15: Energy dispersion in
tubes of a (5, 5) armchair (always
metallic), a (9, 0) zigzag (metallic) and
a (10, 0) zigzag (non-metallic) armchair
nanotube.

The energy bands for zigzag tubes, where Ch = (m, 0), likewise
follow under the constraint

mky,ja = 2π j, j = 1, . . . , 2m, (20.65)

in Equation 20.51 as

Ej = ±t

[

1 + 4 cos
(

jπ
m

)
cos

(√
3
2

ka

)

+ 4 cos2
(

j
m

π

)]1/2

for zigzag tubes, Ch = (m, 0),

− π√
3

< ka <
π√
3
, and j = 1, . . . , 2m. (20.66)

Example tube energy dispersions for different possibilities for
zigzag and armchair tubes—at small diameters—are shown in
Figure 20.15, using the relationships that we have developed. In Note that we are looking at the

dispersion through a simple tight
binding approximation. We have
also not included any spin-orbit
interactions. So, consider this as a toy
model, but a pretty good toy model
that captures much of the interesting
implications of interest to us.

armchair tubes (Figure 20.15(a)), which are always metallic, there
is a band crossing between the conduction band and the valence
band about 2/3rd of the way to the X point. Since the Fermi energy
in an ideal condition is centered through this energy, any excitation
will cause conduction. In Figure 20.15(b), the armchair tube is
again metallic, but now this crossing occurs at the zone center. This
example of an (m,m) tube will have 2m subbands for conduction
and valence each. Of these subbands, there is a double degeneracy
for (m − 1) bands, leaving 2 bands non-degenerate. The bands will
also have even and odd inversion symmetry. In Figure 20.15(c), the
semiconducting nanotube, at the energy E/t, one can observe a k-
independent behavior; that is, a non-dispersive behavior across
the zone. This independence from dispersion occurs whenever
m/j = 2—whenever m is even—as can be seen in Equation 20.66.

Now consider chiral tubes in general. The degeneracy in zigzag
or armchair tubes under the factor-of-3 constraint occurred either
at k = ±2π/3Ch or at k = 0. Zigzag tubes show the bandgap at
this same � locale when they are not metallic. Equation 20.61 is
a general equation that captures all these different attributes for
the three different varieties of dispersion that arise with tubes. It
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follows from the behavior of �J in Figure 20.14 of the reciprocal
space behavioral change from the hexagonal sheets to the tubes:

�J = (n/c)|K2|, (20.67)

where c is the greatest common divisor of 2m + n and 2n + m, where
c either is c′, the greatest common divisor of m and n, when m − n is
not a multiple of 3c′, or is 3c′, when it is a multiple of 3c′. Folding
is related to this �J span through the geometric implications of
Figure 20.14. The metallic condition follows from Equation 20.67, so
the ratio of JK to �J determines when the point K will fold over to
the point J in a nanotube. This is when K2 also becomes a reciprocal
lattice vector. What the degeneracy will be is determined by the
nature of the folding, which is reflected in the divisors c and c′.
When the tube is semiconducting,

Eg = a
D

t, (20.68)

where t is the overlap energy integral; o ≈ 2.5–2.7 eV provides
a reasonable fit. Small nanotubes provide bandgaps that are of
the order of the several decades of kBT that are needed at room
temperature.

We now reflect on the density of states. Since energy dispersion
is known, as is the periodicity of the wavevectors, these follow
quite straightforwardly. The density of states at any energy E is the
sum of the contributions from all the subbands that have states at
that energy, that is,

G (E)=
i=max∑

j,i=1

G (E, i, j), (20.69)

with the density of states for a one-dimensional system being
1/π∇k(E)= (1/π)(∂E/∂k)−1. Our armchair bandstructure rela- 1/π because gs(2π)−1 with gs = 2 for

the spin degeneracy.tionship (Equation 20.64) then gives the following nth subband
relationships:

G (E, i, j) = 8
π

|E|
(E2 − E2

1)
1/2
[
−α1 + (E2 − E2

2)
1/2
]1/2[−α2 + (E2 − E2

1)
1/2
]1/2 ,

with

E1(j) = ±t
∣
∣∣
∣sin

(
jπ
m

)∣∣∣
∣ , and

E2(j) = ±t
[
5 − 4 cos

(
jπ
m

)]1/2
,

α1(j) = t
[
−2 + cos

(
jπ
m

)]
, and

α2(j) = t
[
2 + cos

(
jπ
m

)]
. (20.70)
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Figure 20.16: Part (a) shows the density
of states for a (9, 0) metallic zigzag
nanotube, and (b) shows the density
of states in a semiconducting (10, 0)
zigzag nanotube.

The number of subbands that need to be counted arises from
the energy for the calculation, and the extents that exist for the
subbands. The � point energy just comes from k = 0, and the X
from k =π/a, so,

E�(j)= ± t
[
5 + 4 cos

(
jπ
m

)]1/2
, and EX( j)= ± t. (20.71)

In armchair tubes, it is the density of states at the degenerate point
that is important. This density is

G (E)= 8√
3πat

≈ 2 × 105 cm−1eV−1. (20.72)

For zigzag nanotubes, the energy dispersion relation of Equa-
tion 20.66, using this same methodology, is

G (E)= 4g√
3aπ

|E|
(E2 − E2

1)
1/2

(E2
2 − E2)

1/2 , (20.73)

and, again, one must count the number of subbands that are
allowed.

Figure 20.16 shows two examples of such a calculation. We
should compare how the circumferential quantization shows up
here to how it does for conventional semiconductors. Figure 20.16
shows the density of states for a metallic and a semiconducting
zigzag example. These tubes have the chiral vectors (9, 0) and
(10, 0). The figure also includes in it, for reference, the density of
states in a two-dimensional graphene sheet. One can see in this
behavior a change that is similar to what one sees in semiconduct-
ing wires, as shown in Figure H.3—a maximum at the subband
edge, and a decrease beyond—because energy varies approximately
as the square of the wavevector, and the propagating wavevectors
are evenly spaced. Note the inversion at high energy. The density
of states changes. This follows from how the bandstructure is
changing at the higher energies, as seen in Figure 20.15.

Figure 20.17: Bandstructure for
semiconducting nanotubes.

A secondary comment is related to the curving of the tube.
In the simple picture shown in Figure 20.17, the folding-based
reinforcement, even for metallic geometries, has opened up a
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bandgap, as our equations have shown for armchair nanotubes. The
linear dispersion in graphene has an approximate velocity of vF,
which is (1/h̄)∇kE and, due to the folding, subbands form that have
an effective mass of

1
m∗ = 1

h̄2
∇2

kE = 3vF

2h̄
D. (20.74)

Having discussed the manifestations of confinement as one
uses the potential to limit where carriers can be within matter
and stable monolayer materials, it is pertinent to ask,  ̏What
are the major physical differences between the two?˝ As a two-
dimensional material, graphene will have all the consequences
that arise in the mobile charge cloud that exists in the pz orbital’s
states, interacting with the surroundings. Carbon’s is a strong bond,
and scattering, as an interaction with phonons and randomness
in the surroundings, can be limited substantially. So, with ideal
transport conditions, numerous interesting consequences can be
observed. This includes effects such as the quantum conductance of
channels, due to mesoscopic properties. And one doesn’t necessarily
need very low temperatures! Also, since graphene is a zero-gap
material, with linear energy dispersion at low energies, it provides
for numerous analogies with the linear energy dispersion of
photons. Many properties that are reflective of the speed of light
c as an invariant can now be projected at lower speed onto the
electron as a charged particle. Graphene ribbons, that is, structures
where the lateral dimension is confined by cutting it, will have
bandgaps, since additional confinement has been introduced. One
can introduce one-dimensional potential barriers and wells in such
arrangements. Tunneling across junctions will depend on bandgaps
and also shows interesting new effects such as Kline tunneling. Klein tunneling does not involve

quantum tunneling through a
classically forbidden region. It
arises in two-dimensional massless
Dirac electrons with conservation of
pseudo-spin.

One point, remarked on in the margins, is that nanotubes have
constructive interferences, while the interference for a traditional
semiconducting quantum wire involves wavefunction leakage. In
addition to the electron-related implications, there are now phonon
implications. Acoustic phonons are now twistons based on the
strong carbon-carbon bonds, and large mean free paths (〈λk �
300 nm) become possible in the acoustic phonon-dominated limit.

20.4 Quantum superlattices

Superlattices are heterostructure assemblies, an extension
of the quantum well, that make it possible to substantially modify
 ̏bandstructure˝ by making it possible to have transport through
assemblies of quantum wells through the introduction of close
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Figure 20.18: Part (a) shows a weakly
confined quantum well formed from
a heterostructure on the left with two
bound states for electrons from the
conduction band, and three for holes
from the valence band. When this
structure is assembled with periodic,
narrow barriers in energy, as in the
heterostructure superlattice on the
right, extended states are formed
because of the weak confinement
and breakdown of degeneracy. Two
electron states at a single energy
are now twelve electron states in
six energetically close energies—
a miniband. This is a superlattice,
where the electron, or the hole, can
extend over the entire structure
in the miniband. Part (b) shows a
Kronig-Penney periodic potential
with V0 =�Ec, a period of a + b as the
sum of well and barrier widths and
the energy of allowed solutions for a
barrier with V0 = 0.4 eV, with the free
electron mass as a = b is varied. At
large barriers and well widths, only
discrete levels—4 of them—exist. As
the size is reduced, minibands form,
allowing a broadband of propagating
states in energy. The single well of
width a and b →∞ discrete level
solution up to E = V0 = 0.4 eV is
shown, together with the superlattice
solution.

coupling between them and the consequent modification of the
E(k) characteristics. These modifications are particularly useful for
exploiting optical transitions between the reformed collection of
states.

When the collections of quantum wells
couple, they form minibands through
which transmission continues—
periodic confinement allows this
transmission—and it also becomes
possible to introduce more confined
regions in-between, where desired
interactions are programmed in. The
superlattice now allows injection and
extraction to this rate-limiting confined
region. Cascade lasers are one example
of this and are discussed in S. Tiwari,
 ̏Nanoscale device physics: Science
and engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4 (2017).

Superlattices, as a coupled extension of heterostructure quantum
wells, derive their interesting characteristics through the overlap
of wavefunctions. When short, leaky quantum wells, that is, a
quasi-bound structure made using a heterostructure with a small
discontinuity in the conduction band, the valence band or both, are
assembled together, superlattice behavior arises in the longitudinal
direction, where the Bloch states now also have the periodicity
of the superlattice constructed using multiple quantum wells.
The quasi-bound states now become extended states due to the
small discontinuity, small widths and consequent leakiness that
leads to wavefunction overlap. This makes conduction possible
across the periodic discontinuities. A schematic of this in the
longitudinal transport direction (z or ⊥ in our notation) is shown in
Figure 20.18(a). Bloch states in the transverse direction are still  ̏free
electron˝–like but, in the longitudinal direction, form minibands.

The example shown in Figure 20.18(a) illustrates the following
physical behavior. When the discontinuities are small, the smaller
confinement potential results in deeper penetration of the wave-
function of confined particles in classically disallowed regions. On
the left, two electron wavefunctions and energies, each allowing
±1/2 spin, are shown. The holes have been chosen to have three
allowed energies, out of deference to the larger hole mass. Both the
electron and the hole wavefunction penetrate in the larger bandgap
material over a size scale of the order of the quantum well width,
as shown. On the right, six of these wells are brought together
with a small barrier region. The degeneracy of the six separate
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wells is removed due to the interactions, and the new states also
represent the periodicity of the structure. There are six energy
levels, instead of one, quite close to each other and extending
out across the periodic structure. A miniband of six energy levels
capable of holding twelve carriers has been formed. The carriers
can travel across this periodic structure, and, depending on the
boundary conditions on either side, out. This is a superlattice, with
an effective new bandstructure consisting of these minibands—a
bandstructure—with their own unique properties.

The superlattice described here as a
layered periodic structure through
which electrons and holes can travel
is an artificial construct. But one
could just as well view compound
semiconductors as layered periodic
structures. Ga planes and As planes
stacked in specific forms form the
GaAs crystal. It is a superlattice
of sorts. The distinction is only in
the energies that bind. And GaAs
conducts!

The Kronig-Penney model used as a toy example in introductory
texts is an example of a superlattice model. Since it illustrates
the importance of and the relationship between the energy of the
barrier, the width of the barrier and the quantum well, and their
magnitudes, which are comparable to that of the Bohr radius
in the periodic arrangement, we employ it here. Figure 20.18(b)
shows a spatially periodic structure with a barrier V0 = �Ec,
where the wells are of width a for region A, and of width b for
region B. The structure has a periodicity of a + b, so a Brillouin
zone width of 2π/(a + b). We assume that both the well and the
barrier are isotropic with identical mass, to simplify this calculation.
The Schrödinger equation in the two regions with plane-wave-
propagating modes in the xy plane is

− h̄2

2m∗
A

(

k2x + k2y + d2

dz2

)

ψA(z) = EψA(z), for z ∈ A, and

− h̄2

2m∗
B

(

k2x + k2y + d2

dz2
+ V0

)

ψB(z) = EψB(z) for z ∈ B. (20.75)

We are looking for the propagation properties in the longitudinal,
that is, perpendicular z direction. The boundary condition is the
continuity of the wavefunction and of ∂ψA/m∗

A∂z = ∂ψB/m∗
B∂z

at the A/B boundary, where we will take m∗
A ≈ m∗

B to simplify.
These two boundary conditions are that of continuity of probability
and that of probability current at the interface. Referencing the
energy to the bottom of the conduction band in the smaller band
material, E = h̄2k21/2m∗

A, and E − V0 = h̄2k22/2m∗
A, for E > V0, and

V0 − E = h̄2κ2/2m∗
A, for E < V0, when k = iκ is imaginary. The

traditional solution techniques for this lead to the following implicit
equation using the boundary conditions:

cos kd = cos(k1a) cos(k2b) − k21 + k22
2k1k2

sin(k1a) sin(k2b),

for E > V0, and

cos kd = cos(k1a) cosh(κb) − k21 − κ2

2k1κ
sin(k1a) sinh(κb),

for E < V0. (20.76)
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Here, k1 is the wavevector in region A, and k2 and κ are the
wavevector and extinction coefficients, respectively, in region B for
energies that are higher or lower than the bandedge potential. What
these equations imply is that energies lower than V0 may have a
transmitting solution when potential and width conditions exist
that allow sufficient coupling between the wells. It is when this
happens that minibands form and the degeneracy of coupled wells
is removed.

Figure 20.18(b) shows the result of this calculation for
V0 = 0.4 eV, where m∗ = m0, and a symmetric structure where
the well and barrier regions have identical width that is varied.
The electron mass is assumed to be the free electron mass. The
discrete levels, 4 of them in this example, exist for the isolated
well of width a. When the periodic structure is formed, the
minibands—a broadband of allowed transmissive energy states—
appears. These appear at higher width in the highest quasi-bound
states first. Compound semiconductor heterostructure systems
such as (Al, In)As/(Ga, In)As, (Al,Ga)As/GaAs, et cetera, all have
discontinuities in this 0.4 eV range. What this figure shows is that,
with wells and barriers of the order of a few nms, minibands form,
and transmission occurs through these miniband states. This is a
resonant and elastic transport exemplifying coherent tunneling. It
is no different than what one observes in periodic film gratings for
light. Optical transmission and reflection bands form. The Kronig-
Penney model is a toy model, quite simplified, but it is instructive.
The conclusions drawn are quite useful with electrons. For holes,
things are quite a bit more complicated because of anisotropy and
the various idiosyncratic hole bands. The Kronig-Penney model,
for example, assumes carrier interaction extending over several
unit cells so that the semiconductor picture of an effective mass,
a discontinuity, et cetera, are all applicable. At the smallest well
and barrier width sizes, this is inappropriate. In more complex and
real situations, in the presence of this periodicity, we must resort
to various bandstructure calculation techniques in the presence of
this periodicity. These techniques adopt a supercell approach for
superlattices, and we will not dwell on this here.

20.4.1 Shallow dopants in confined conditions

We have now seen the variety of changes that come about
in the electron’s and the hole’s allowed energy states due to
confinement. Changes will also appear for the binding energy state
of shallow hydrogenic dopants. The binding energy is a function
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of the confining potential. In the hydrogenic model, it was the
Coulomb attraction, for example, between the ionized donor and
the electron. But the extent of this attraction is of the length scale
of the order of the effective Bohr radius. A confining length scale of
this similar order of magnitude arises from the confinement. And
this confinement has an energy magnitude that will often be much
larger than the binding energy, which is a few meVs. Simply stated,
a toy Hamiltonian in the effective mass form that characterizes the
electron states,

Ĥ = − h̄2

2m∗ ∇2
r + V(z) − e2

4πε|r − R| , (20.77)

where R is the coordinate of an isolated dopant, now has this
additional term V(z). Recall that the effective mass allowed

us to remove the crystal potential,
leaving only other perturbations to
be accounted for. Of course, this still
requires the effective mass to be a valid
tool. And that depends on the validity
of the Bloch electron’s extended
nature.

The solution now will even depend on the position of the dopant
R vis-à-vis the confinement boundaries. Where a donor is affects the
states. And the energies for such a calculation will be specific to this
solution. Variational methods will usually be a good tool for solving
such specific situations with a wavefunction ψ(z) ∝ exp(−|r − R|/λ),
where λ is a variational parameter, a suitable starting choice since
the hydrogenic wavefunction is radially symmetric. There is not
that much of interest here. The dopants are intentionally not in
quantum-confined regions, where the properties of interest are
lower scattering or improved optical processes. Donors in the
barrier region such as of Ga1−xAlxAs/GaAs and other high mobility
aimed systems are ionized, and small changes in their energies are
a lower order effect than the others. What we should, though, stress
is that if a donor is present in the confined region, its consequences
in changing energies will be a lowering for the dopant-electron
system. And as the well width decreases, the lowest energies
will rise. The same is true for the binding energy for the electron
localized on the dopant.

20.5 Screening in confined conditions

We now discuss some of the salient aspects of the changes
in screening and of the perturbation interactions in transport as
dimensionality is reduced in our confined systems. We have noted
that the response of a system to a weak perturbation potential
can be seen through the dielectric function and is space and
time dependent. We will not consider the nonlocal aspects of the
dielectric response and, unless stated, illustrate the behavior of a
two-dimensional system.
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The polarizability arising in a static perturbation of wavevector q
arising from a longitudinal electric field E0 exp[i(q · r−ωt)], with one In this field expression, we have used

q to denote the wavevector of the
electromagnetic wave in order to
distinguish it from k as the wavevector
of the electron.

subband occupied, is characterized by

χ(q)= m∗e2

πh̄2q2

⎧
⎨

⎩
1 −

[

1 −
(
2kF

q

)2
]1/2⎫⎬

⎭
, (20.78)

for q > 2kF, and just the prefactor for q < 2kF, an equation we write
without proof. Since the carriers are spread over a width orthogonal
to the interface,

∫
ς2(z) dz = 1 describe this spread. In the presence

of a weak potential perturbation V′(q, z) that is sinusoidal in q,
we can use a charge average of the perturbation to determine the
charge perturbation:

〈V′〉 =
∫

V′(z, q)ς2 dz ∴ δρ(q, z)= − 1
2
εqs〈V′〉ς2. (20.79)

qs is a screening parameter, which, with one subband occupied, is

qs = q2

2ε
χ(q). (20.80)

The polarizability of interest is the long wavelength polarizability
limit. Here, the screening parameter is

qs = e2

2ε
dNs

dEF
= e2

2ε
Ns

kBT
(20.81)

at higher temperature non-degenerate conditions. If Ze is the charge
located at z0, the perturbing potential follows through the Poisson
equation as

∇r · [ε(z)∇rV′(r, z)] − 2εqs〈V′(r)〉ς2 = − Zeδ(x)δ(y)δ(z − z0), (20.82)

where r is the lateral radial extent in this three-dimensional
situation. In Si, the Fang-Howard function is a good approximation
for the envelope function:

ς(z)=
(

b3

2

)1/2

z exp
(

−bz
2

)
. (20.83)

For Si, qs ∼ 2 × 107 cm−1 for (100) inversion, and, for GaAs,
qs ∼ 2 × 106 cm−1.

Screening in two-dimensional conditions is weaker than in three-
dimensional conditions, since any perturbing charge can only
be surrounded by screening electrons in the two dimensions
allowed. Perturbation, instead of falling exponentially as in three-
dimensional systems, now has a weaker, third-power dependence.
The screening is weakened further as one goes to one-dimensional
and zero-dimensional systems. Now the static polarizability
varies as
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χ(q)= 2m∗e2

πh̄2q
ln

q − 2kF

q − 2kF
, (20.84)

which again leads to a further weakening of the screening.

20.6 Scattering in confined conditions

For transport, there are two physical lengths that are
of particular import. We have often cited the mean free path 〈λk〉
as one. This is the average distance between scattering events.
The other that we have not discussed as much is the 〈λφ〉, the The length scale where phase

coherence is maintained as λφ is an
important element in the discussion
of many mesoscopic phenomena
and their devices. We turn to it often
in S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017).

length scale for phase coherence. When temperatures are near room
temperature, phonon scattering being dominant, phase coherence
disappears over the span between the phonon scattering events. At
low temperatures, the phonon scattering rate shrinks, as do other
inelastic scattering events such as carrier-carrier scattering. Elastic
scattering may dominate. Phase incoherence arising in inelastic
scattering is λk ∼ (2dDτk)1/2, where λk and τk, as well as d
the distance traveled between scattering events, are the measures
for the inelastic events. D, on the other hand, is controlled by
elastic scattering and is largely independent of temperature, so τk’s
increase leads to an increase in the phase-coherence length, with
1–10 μm quite achievable in compound semiconductor systems.

Because the density of states has changed, the scattering rate
must change too. If scattering is random and isotropic, then the
scattering time expectation Equation 9.26 for three-dimensional
conditions must account for it. Therefore,

〈τk〉= 2
3

∫
τk
(−∂f0/∂E

)
η1/2 dη

∫∞
0 f0η1/2 dη

, with η = E − En

kBT
, (20.85)

where the integral is over the range of the bands, will have the f0
dependences for two-dimensional confinement or one-dimensional
confinement as well as a change in τk, where various various
scattering mechanisms have different energy dependences. The
effective scattering rate 1/τk(E) will reflect these changes. There
is one direct and important consequence of this for scattering.
Matthiessen’s rule, given in Equation 8.59—the net scattering rate
(or inverse mobility) being the sum of scattering rates arising
in individual events (individual inverse mobilities), that is, a
geometric mean mobility—is generally quite invalid. Explicit energy
dependences become important. For low temperatures, temperature-
independent scattering and with τk = τ 0η

r for a specific process, the
mobility arising in that process will follow
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μ(T)=μ(0)

[

1 + π2

6
r
(

r + 3
2

)(
kBT
EF

)2
]

. (20.86)

As before, mobility can increase with increasing temperature in
conditions where impurity scattering dominates.

There are numerous interesting deviations that will occur due
to the confinement. First, recall the scattering through the angle θ

noted in Equation 8.50. The scattering cross-section varies as the
square of the Fourier component of the scattering potential, with
|k − k′| = 2k sin(θ/2). Motion in plane is therefore favored. Second,
in heterostructures of compound semiconductors, often the two-
dimensional carrier regions are obtained in a lower or undoped
semiconductor by separating the dopants away into the second
semiconductor; for example, in Ga1−xAlxAs adjacent to GaAs. For
n-type dopants, the field of these donors is terminated on electrons
in the two-dimensional channel in thermal equilibrium. The
dopants are separated from the carriers, the carriers are still
available to screen other local perturbations of residual impurities,
and the result is that Coulomb scattering decreases even as carrier
concentration is usefully significant. This charge transfer using
undoped spacing at the interface of the dopants from the carriers
increases the mobility up to an optimal spacer layer thickness,
where the weakening of Coulomb scattering continues to prevail
despite increasing electron-scatterer separation. Third, at high
carrier concentrations, carriers are in several subbands. and the
screening must account for this occupation. The kF being different
in different subbands, the different bands will have different intensi-
ties of the effect on scattering. Occupation of more bands, with their
smaller Fermi wavevector, increases scattering rate. Fourth, given
the nature of correlations and its influence on Coulomb scattering,
correlation makes the occupation of charged sites non-random. The
lowest energy occupation will usually lead to the weakening of
potential fluctuations. This increases mobility over the random case.
Fifth, when one goes to even lower temperatures, strong localiza-
tion, hopping conduction and, finally, for good high mobility and
large phase-coherence length conditions, various mesoscopic effects
such as quantum Hall in its various forms also become possible.

Phonon scattering’s temperature dependence dominantly arises
in the occupation of the phonon modes, so by lattice temperature, if
the phonons are in equilibrium, or by the dynamics of generation or
recombination, if far from equilibrium. At quite low temperatures,
the energy and momentum conservation conditions place additional
constraints, thus affecting the temperature dependence of mobility.

Finally, one important scattering mechanism that we have not
dwelled on in this text is that due to the interface roughness.

Interface roughness arises in both
the stochastic fluctuations due to the
amorphous nature of SiO2 and any
of the randomly distributed physical
atomic steps at the interface.
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Both in the SiO2/Si system, where it is large due to interface
potential fluctuations arising in the amorphousness of SiO2, and
in the single crystal compound semiconductor system, where it is
due to deviations from planarity, it is of import. For the SiO2/Si
system, it is so large that treating it as a diffuse scattering event that
limits the mobility by as much as the other mechanisms suffices,
with interface potential fluctuations dominating. For compound
semiconductors, since the mobility is extremely large, even if small,
it is of importance in the pursuit of novel nanostructures. The non-
planarity can be characterized by the autocorrelation of the interface
boundary, that is, by

〈δz(r′)δz(r′
r)〉=�2 exp

(

− r2

�2

)

. (20.87)

Here, � characterizes the root mean square roughness of the
interface, and � the lateral correlation length. This interface roughness has a major

implication for semiconductor lasers.
The quantum well bipolar laser, where
both electron and holes are confined,
have their energy states varying
simultaneously—correlated—as the
quantum well size fluctuates. The
linewidth of emission is therefore
tremendously lower than that of
unipolar lasers, such as quantum
cascade lasers, where transitions
between electron subbands are utilized
for stimulated light emission. This
roughness also has implications
for tunneling and the variations in
tunneling current when quantum
barriers are employed.

20.7 Optical transitions in confined conditions

Optical transitions in confined conditions change pro-
nouncedly from the bulk unconfined conditions discussed in
Chapter 12. Monolayers can be even more different. Two important
aspects that cause this change are emphasized in this section. The
first, quite clear from the discussion of this chapter, is the changes
in the nature of the states and their occupation, as represented in
the carriers that can interact. The second is that of selection rules.
Our treatment of electron and hole states in the crystal showed
many significant differences. Symmetries and degeneracies could
be different, but we found, in particular, the consequences of spin-
orbit interaction on hole states—of light-, heavy- and split-off
holes—to be of enormous importance due to their localization.
In confined structures, the characteristics of the Bloch states will
play a very significant role. To the lowest order, the consequence
of confinement on the occupation of states is through the changes
that cause the density of states to reduce with energy. Occupation
of states closer to the subband edge becomes more important.
So, with quantum wells and with quantum wires, a high or a
maximum in state density at the subband minimum, where the
charge will exist maximally, the intersubband recombination will
have a narrower linewidth than a less confined condition. The
consequence of the interaction of the electrons with holes as a result
of electromagnetic perturbation is that the conservation rules—of
energy and momentum, which are both quantized—and the specific
quantum attributes—of spin and orbital angular momentum of the
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different type of hole states—become important and ties in with
photon polarization.

In all of the following discussion for absorption, the light is inci-
dent on the plane of semiconductor normally, and, by convention, it
is in the z direction.

20.7.1 Selection rules; interband and intraband transitions

We first stress what transitions are between the states that are
allowed and those that are not allowed for a direct optical process.
These are selection rules. Selection rules for transitions can be
visualized and understood by looking at the symmetries of the
states of the system and the symmetry of the perturbation causing
the interaction. How the perturbation Hamiltonian behaves under
the symmetry operations of the crystal will determine whether any
possible transitions couple initial and final states and their matrix
elements. Some of these states may even be degenerate in energy,
such as at k = 0 for holes. All of this determines whether the
matrix element vanishes or is finite, or even if it gets suppressed
or inflated when confinement exists.

Figure 20.19: Nomenclature of electron
transitions under photon absorption
in confined conditions. A photon
absorption that occurs within the
same (conduction or valence bands) is
an intersubband transition and may
more loosely be called an intraband
transition. A transition between the
bands themselves is an interband
process. The former is between states
that have similar symmetry and
which are shifted in energies and so
have similar energies for a variety of
ks. The latter, here between heavy-
hole and conduction subbands, has
confinement-caused changes in state
distribution with energy and so
reflect the step changes of the density
of states. Hole band confinement
and related transitions are more
complicated than illustrated here.

Optical transitions can occur within conduction or valence bands
and in-between them. In confined conditions, we will have to tackle
these via subbands, as Figure 20.19 illustrates for nomenclature. If
the transition occurs within the same type of band, we will refer
to this as an intersubband or intraband transition. If it is between a
conduction band state and a valence band state, it will be called an
interband transition. Calling it intersubband would be an error, since
then the term doesn’t distinguish between the conduction or the
valence band and that affect the symmetries of the states. The term
 ̏band˝ here encompasses the subbands that confinement brings out
from either the conduction states or the valence states. Intersubband
transitions, being between subbands that are reasonably parallel if
anisotropy is small, occur over a breadth of states whose energy
separation doesn’t change much. Interband transitions, however,
will be reflective of the different subband energy changes of
electron of electron and hole bands and will have the  ̏staircase˝
energy spread in the absorption. Figure 20.19 only shows a heavy-
hole band. Real structures will have to include light holes and
split-off holes, anisotropies and symmetries to reflect the additional
constraints and the various processes that may occur.

Which transitions are allowed and which are forbidden were first
tackled for electromagnetic interaction in Chapter 12. We discussed
interband transitions for bulk semiconductors (zinc blende) and

Note that wurtzite crystals have
different symmetries, Since the dipole
matrix element will be different,
optical transitions in direct gap
wurtzite crystals should be expected to
behave differently subject to selection
rules embedded in the matrix element.
Another important wrinkle is the
reduced spin-orbit interaction, since
the constituent atoms are of low
atomic numbers. The general form of
Equation 12.16 still holds true for bulk
conditions.
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wrote the matrix element of transition involving the field and the
dipole in Equation 12.14.

Figure 20.20: The nature of symmetries
in an interband transition between
conduction band and valence band
states. Light is incident normally, and
there exists confinement in this z and
k⊥ direction. The conduction band’s
|s〉-like states are spatially symmetric.
The valence band’s |p〉-like states
are spatially asymmetric. Envelope
functions asymptotically vanishing
at the potential boundary conditions
are also shown, with both conduction
and valence band states in their lowest
quantized kz subband.

More comments about the state and the matrix element’s nature
and implications for light are in order here, and we do this with
reference to Figure 20.20 where confinement exists. Let r be a
measure of the dipole orientation and the displacement of the
charge. The dipole moment then is p = −e〈r〉, so the allowed
transition perturbation is H ′ = p · E . The transition rate is

Sif = 2π
h̄

∑

i,f

|〈f |H ′|i〉|2δ(Ef − Ei + h̄ω) (20.88)

by the Golden rule. Equation 12.14 picked on the matrix element
part of this through the vector potential. Let us just write the matrix
element that the perturbation couples without the constants and
the normalizations terms. The light is incident perpendicular to the
interface in the z direction. |〈f |H ′|i〉| ∝ |〈f |r · η|i〉, where η is the
light’s polarization vector;

|〈f |r · η|i〉| =
∫

ς∗
e (z) exp(−ike⊥ · r⊥)

× u∗
c,ke

(r)η · rςh(z) exp(ikh⊥ · r⊥)uv,kh(r) d3r (20.89)

for interband transition coupling conduction and valence bands,
which is the case of Figure 20.20. Here, the ςs are envelope
functions, and us are the modulation terms of the Bloch function. us
vary rapidly over the unit cell. ςs are slowly varying functions. So,
the matrix element can be simplified by taking the slowly varying
function out of the integration over the space:

|〈f |r · η|i〉| ≈
∑

Ri

ς∗
e (Ri)ςh(Ri) exp[i(kh⊥ − ke⊥) · Ri]

×
∫

�0

u∗
c,ke

(r)η · ruv,kh(r) d3r. (20.90)

The integral here determines the selection rules and is only
dependent on the light polarization interacting with the symmetries
of the band. The exponential vanishes unless kh⊥ − ke⊥ = 0. This
is the vertical transition rule that matches momentum. In a three-
dimensional transition, the z-directed summation is absent. Here,
the confinement has introduced a summation over confined lattice
cells through the overlaps at the lattice positions.

In Figure 20.20, which shows an interband transition, electron
and hole states that have the same subband quantum number will
have identical overlap, so the integral of overlap functions norma-
lizes to unity. This means that the interband transition optical
matrix element for identical subband numbers to the lowest order

Excitons, because this is a confined
condition, become more important and
will have a first-order effect.

is identical with or without this confinement. The absorption then
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shows the change in density of states, that is, will have the stepping
behavior characteristics of subband formation. Another feature
is that the electron and hole wavefunctions have a closer match
due to confining; these carriers in the same quantized subband
with the same kz then reinforce the oscillator strength. And so the
optical processes strengthen a bit for this reason. The selection rule
here has arisen in how the |s〉-like and |p〉-like states could connect
because of the odd parity of η · r, specifically because r is an odd
function.

Figure 20.21: The nature of symmetries
in intersubband/intraband transition
within the conduction band of a
confined structure with light incident
normally.

In intrasubband/intraband transitions, as shown in Figure 20.21,
with transitions between states of the same carrier type, the matrix
element in Equation 20.88 will change because the fast-varying
integrals have a similar part of the wavefunction (ucke of electrons,
in this case). Now the matrix element reduces to

|〈f |r · η|i〉| ≈
∫

ς e1(z)η · rς e2(z) dr
∫

�0

ucke1(r)u
∗
cke2

(r) d3r. (20.91)

The second integral is approximately unity, and the first term gives
a large contribution over the length of the confined region. So, intersubband transitions can be

particularly strong because of the
similarity of the states interacting,
and the dipole that now arises over
the confined region like a macroatom.
This dipole has a magnitude of
|e〈r〉| ≈ 16ea/9π2, where a is the width
of the confined region.

We can place more details into this treatment. Since the quantum
numbers are not changing for the direct bandgap semiconductors,
one need only concern oneself with the dipole matrix element. Let
ê denote the orientation of the vector potential as in the allowed
matrix element in Equation 12.16. Writing in terms of final (f ) and
initial (i) states of the transition, and using Hermiticity,

H ′
if = 1

S

∫
ς∗

i (z) exp(−ik⊥ · r⊥)[expx + eypy + ezpz]

× ς f (z) exp(ik′⊥ · r⊥) d3r

= (exh̄kx + eyh̄ky)δi, f δk⊥,k′⊥

+ ezδk⊥,k′⊥

∫
ς∗

i (z)pzς f (z) dz, (20.92)

where the normalization is by area S. If polarization is along
the plane of confinement (ex and or ey), then the only allowed
transitions are those where the initial and final states are the
same. This is ω = 0 for the radiation. This static limit requires
inclusion of other scattering mechanisms such as free carrier Much like the involvement of phonons

for the  ̏forbidden˝ processes for the
three-dimensional conditions, or of
free carrier absorption.

absorption. In perfect confined systems, the free carrier absorption
is forbidden, since energy and momentum cannot be conserved
during a photon-electron interaction. An additional perturbation,
such as impurity or photon, is necessary. The polarization ez is of
an electromagnetic wave that is propagating in the plane of the
layer, with this field vector normal to the plane, and in the same
direction as the confinement direction. Since the heterostructure
Hamiltonian has a parity, and the dipole perturbation an odd parity,
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the initial and final subbands should be of opposite parity to allow
optical transitions between subbands. In confinement, instead of
the participation of a defect perturbation, the z dependence of the
potential suffices to allow such a transition. So, without recourse
to other momentum- and energy-carrying species, intersubband
transitions with ez polarization become possible where the potential
makes up for the momentum necessary for intraband absorption.
The details of the amplitude of different transitions will depend on
the details of the confinement, including the changes arising when
going from two- to one- to zero-dimensional systems, so we will
leave this subject at this point. Suffice it to state that the approach
of including the entire wavefunction, as in Equation 20.92, together
with the perturbing potential is necessary to evaluate the various
interaband transitions.

Figure 20.22: The pattern of light
emission when a dipole interaction
with suitable filled conditions of band
states leads to emission. The intensity
is highest orthogonally. Here, this
emission arising in dipole-mediated
coupling of |py〉 and |s〉 states is shown.

The electric dipole—polarization—as it oscillates in all these
cases has a radiation emission and absorption pattern. As shown in
Figure 20.22, the maximum emission or most efficient absrorption
will be in the plane orthogonal to the dipole. The figure here
illustrates this pattern, a sin2 θ dependence, where θ is the angle
from the polarization axis, for the case of interband transition
involving states with even symmetry (|s〉) and odd symmetry (|py〉)
due to the odd parity of the dipole.

The electric dipole term is odd powered spatially through the
dipole moment term; it will appear as a change in parity in the
matrix element. The potentials in quantum wells or in superlattices
have space reflection symmetry, so parity is a good quantum
number. For intraband transitions, the transitions involve dipole
matrix elements between envelope functions of subbands arising
from the same band, unlike the case for interband transitions,
which occur between subbands of different bands. The first, at
least for electrons in direct gap materials, is straightforward, since
the band quantum number doesn’t change, and one need concern
oneself with only the matrix element between envelope functions.
The interband transitions, however, will involve selection rules
originating in the quantum numbers of the two bands and the
atomic-like dipole matrix element.

The envelope functions are characterized by this odd and
even character under space reflections. So, the orientation of the
electromagnetic radiation, together with this envelope function
symmetry, will guide the  ̏allowed˝ and  ̏forbidden˝ transitions.

In direct gap semiconductors—
optically active materials—the
conduction band state is spherically
symmetric and the bandstructure is
quite isotropic, at the bandedge. The
valence band, as discussed at length,
is not so. In bulk, too, this matters,
but not as much, since the valence
band states of heavy hole and light
hole type are degenerate at k = 0, and
the interaction is strong and nearly
independent of light’s polarization.

This implies that transitions are allowed for confined states that
have the same envelope function symmetry under space reflection.

In quantum wells, the hole state degeneracy is lifted, so the
interaction matrix element will strongly depend on the polarization
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of light, with heavy-hole and light-hole states subject to different
selection rules for allowed transitions arising in the matrix element.
In tight binding, the wavefunction is built out of the atomic orbital
states |s〉, |px〉, |py〉 and |pz〉, and the bandstructure analysis leads to,
in direct bandgap semiconductors, conduction band states for the
conduction electrons,

|uc0〉 = |s〉, (20.93)

which are spherically symmetric. The valence band states we
have found to be a bit more complicated. The heavy-hole states
arising from

∣
∣
∣∣
3
2
,
3
2

〉
= − 1√

2

(|px〉 + i|py〉
) | ↑〉, and

∣
∣∣
∣
3
2
,−3

2

〉
= 1√

2

(|px〉 − i|py〉
) | ↓〉, (20.94)

and the light-hole states arising from

|3
2
,
1
2
〉 = − 1√

6

(|px〉 + i|py〉
) | ↓〉 − 2|pz〉| ↑〉, and

|3
2
,−1

2
〉 = − 1√

2

(|px〉 − i|px〉
) | ↑〉 + 2|pz〉| ↓〉, (20.95)

have other spatial symmetries. The matrix element symmetry
argument—dependent on the dipole interaction and spatial
envelope function symmetries—allows only some of the tran-
sitions, because of the symmetries of these wavefunctions. The
non-vanishing matrix elements are 〈px|x̂ · p|s〉, 〈py|ŷ · p|s〉 and
〈pz|ẑ · p|s〉. Let these terms, which have identical values, be
denoted by pcv.

For heavy holes, the transitions with finite matrix elements have

〈HH|x̂ · p|s〉 = 〈HH|ŷ · p|s〉= 1√
2
〈px|x̂ · p|s〉= 1√

2
pcv. (20.96)

The matrix element 〈HH|ẑ · p|s〉 = 0, and this transition is forbidden.
For light holes, the transitions with finite matrix elements have

〈LH|x̂ · p|s〉 = 〈LH|ŷ · p|s〉= 1√
6
〈px|x̂ · p|s〉= 1√

6
pcv, and

〈LH|ẑ · p|s〉 = 2√
6
〈pz|ẑ · p|s〉= 2√

6
pcv. (20.97)

The polarization of light enters through the projection of p in the
different orientations, and this determines the selection rules. We

Caution is needed here. Keep the
dipole p and the p orbital distinction
in mind since the same is being used
for both. By now, you should be able
to distinguish these through your
understanding.have, for our interband coupling, the following implications:

for electromagnetic waves with x̂ polarization:

• HH to the conduction band: |pf i|2 = 1
2 |〈px|x̂ · p|s〉|2,

• LH to the conduction band: |pf i|2 = 1
6 |〈px|x̂ · p|s〉|2;
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for electromagnetic waves with ŷ polarization:

• HH to the conduction band: |pf i|2 = 1
2 |〈px|x̂ · p|s〉|2,

• LH to the conduction band: |pf i|2 = 1
6 |〈px|x̂ · p|s〉|2;

for electromagnetic waves with ẑ polarization:

• HH to the conduction band: no coupling,

• LH to the conduction band: |pf i|2 = 2
3 |〈px|x̂ · p|s〉|2.

k = 0 states have the pure form. Stimulated emission, with occupa-
tion of the states in their vicinity, means that emitted light strongly
shows the implications of selection rules. This is particularly
noticeable in confined questions. Away from k = 0, the states are
increasingly mixed, but, even here still, in the bulk, light polarized
in the xy plane couples a factor 3 times more strongly to the heavy-
hole states than to the light-hole states.

An important emission implication of connection between
circular polarization and the heavy-hole transition is that the
circular polarization occurs between the confining planes. The
magnetic field of the light is therefore orthogonal to the confining
planes. So, heavy holes only emit TE polarized light in the plane of
the confinement.

A good illustration of the differences in transitions between
three-dimensional and confined conditions is to look at prefer-
ential spin generation arising in the generation of electrons from
optically induced valence-to-conduction transition. Conduction
electrons, as noted earlier, have no spin preference in a normal
semiconductor, that is, G (n, k⊥,↑)= G (n, k⊥,↓), in the nearly free
electron approximation. Only the introduction of magnetic species,
or magnetic field, causes changes. This means that there exists no
net electron spin in the electron gas. Photons have a spin of 1 and
so an angular momentum; a circularly polarized light will have an
angular momentum of ±h̄ along the direction of propagation, with
the sign depending on whether it is counterclockwise or clockwise. Light’s circularity is defined w.r.t. the

source. Positive circular light σ+ is
therefore left circular when seen by an
observer.

Photons impart this angular momentum to the semiconductor upon
absorption. In an electron-hole transition, this can end up in a net
spin. The semiconductor now has a net spin, and the semiconductor
has undergone an optical spin injection.

In a bulk direct bandgap semiconductor, consider the interband
transitions at k = 0. Light-hole and heavy-hole bands are degenerate
here. The conduction band states are s-like with orbital angular
momentum L = 0. This corresponds to a single total angular
momentum of J = 1/2, and therefore MJ = ± 1/2 for the states.
Valence states have J = 3/2 states and J = 1/2 states for the total
angular momentum, with MJ = ± 3/2 corresponding to heavy-hole
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Figure 20.23: Selection rules for
transitions in zinc blende direct gap
semiconductors under circularly
polarized light. Part (a) shows
transitions in bulk semiconductors
at k = 0 with the circularly polarized
light of bandgap energy incident.
Note, only circular polarization is
shown. Split-off states are ignored
as they are further away in energy.
The degenerate heavy- and light-
hole states couple to the conduction
band states, and angular momentum
conservation must apply. Momentum-
and energy-conserving transitions
for left (σ+) and right (σ−) circularly
polarized light are shown. Part (b)
shows the changes due to confinement.
Subband energy edges shift, and
the k = 0 degeneracy is broken. This
panel shows the additional transitions
that become possible under linear
polarization, which is marked with the
symbol π ; hh, heavy-hole states; lh,
light-hole states; so, split-off states.

states, and MJ = ± 1/2 corresponding to light-hole states. These are
degenerate at k = 0. The J = 1/2 states, where, again, MJ = ± 1/2
is possible, are pushed down by the interaction with the split-
off states. The split-off states too drop down. In bulk zinc blende
semiconductors, with circularly polarized light, the positive circular
polarization (σ+) leads to a �MJ = + 1 transition. The negative

A little more consideration is needed
in an explicit justification. For the filled
valence band as a whole,

∑
Jz = 0.

When an electron is removed from
the valence band, this electron has a
Je
z = MJh̄. A hole of Jh

z = MJh̄ has now
been left behind. A σ+ light-induced
heavy-hole transition leads to the
creation of an electron with MJ = −1/2,
and a hole with MJ = 3/2 that occupies
that heavy-hole state, and the total
electron-hole pair generation has
a sum of −1/2+ 3/2= 1 change in
MJ . Angular momentum has been
conserved. This same argument for a
light-hole-band-to-electron transition
involves an electron of MJ = 1/2 and
a hole of MJ = 1/2 being created as a
result of the transition arising in the
σ+ photon.

polarization leads to the complementary �MJ = − 1 transition. We
show this in Figure 20.23(a) as being only possible for a selective
set of transitions between the heavy-hole and electron states, and
the light-hole and electron states. Only 4 unique combinations, out
of a possible 8, have the requisite angular momentum and energy
conservation for the circularly polarized light. Since the square of
the matrix element of the heavy-hole transition is 3 times larger
than that for a light-hole transition, the σ+ light will result in there
being 3 times more MJ = − 1/2 electrons than MJ = + 1/2 electrons.
A maximum of 50 % spin polarization is possible in bulk structures
with circular polarization. Also, since the degeneracy means mixed
states, the holes relax rapidly.

Now consider what happens in confined conditions. The
k = 0 degeneracy breaks, and the subband edge energies shift, as
illustrated in Figure 20.23(b). When there is no degeneracy, with
the light that only couples electron states to the heavy-hole states,
so below the light-hole absorption edge, only MJ = − 1/2 electrons
will be generated if the light is σ+ polarized, or the opposite with
the opposite polarization. This spin polarization is complete. The
broken degeneracy also means that the heavy-hole state is closer to
being an eigenstate. The relaxation time of the MJ = ±3/2 holes
will be larger.

With the matrix element determined, for these confined condi-
tions, the net interband absorption rate can be determined using the
same procedure as outlined in the derivation of Section 12.1.

This discussion demonstrates the importance of selection rules
in optical transitions and how they change under material and
structural constraints. The monolayer materials will bring out
additional such attributes of their own.
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20.8 Summary

This chapter, as the last one of this text, has brought together
several of the different themes and the different perspectives
together by exploring them in quantum-confined conditions or in
monolayer crystals. Electrons, holes, phonons, impurities, static
and dynamic responses, particle or wave perspectives, short range
versus long range and localization versus spreading out over the
entire space of the crystal were part of this mix, and this helps
reinforce several of the physics and mathematical approaches that
help us get an insight into the behavior of semiconductors.

We started with the ubiquitous SiO2/Si system’s inversion
layer and developed the approach, including an understanding
of the effective potential energy V that the particle encounters.
The effective mass equation, a Schrödinger-like equation, that we
have often just called the Schrödinger equation for the envelope
function, is an essential tool in the analysis. The envelope function
removes the Bloch function’s rapidly oscillatory part but leaves
for us a proper description of the probability density of the charge
from the collection of electrons. So, both the E(k) state description
imposed by the crystal, and the charge consequences imposed by
electromagnetics, are incorporated. This let us understand how the
states change; for example, confinement forces separation of the
k⊥ in the confined direction. The easy motion is possible in the
other two directions if there is only one direction of confinement.
But the confinement causes sufficient separation, so that a change
in this k⊥ is now really a transition. The analysis of Si inversion
also gave us a look at techniques for approximations, such as
looking upon the well as a triangular well whose solutions are Airy
functions.

Confinement in square wells, which are also ubiquitous, par-
ticularly in optical devices, was our next step. We looked at
infinite potential wells and finite potential wells to understand the
evolution of the solutions from the infinite to the finite, and we
developed an understanding of the existence of confined states.
Among a few of the interesting observations here was not only
that the finite potential well will have finite bound states and that
there will be an unlimited number of unbound states, which in
itself is not surprising, but also that there are conditions in this
unbounded region span where a potential well allows for complete
transmission, that is, quantum reflection vanishes despite there
being a sharp barrier. This is an example of a resonant transmission.
Another surprising conclusion was that while a finite potential well
can have no confined state, a doubly confined system, such as a
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wire, will always have confined states along with the propagating
states. If the system is triply confined, all of the states will be
confined. It is like a macroatom.

This confinement discussion did let us look back at the meaning
of the different potentials—image, exchange, et cetera—to see how
they should be modified. And they need to be modified as a first
order correction. Even the binding energy of shallow dopants will
change because of the changes in the potential constraints of the
confined system.

Holes, with their anisotropy, multiplicity of types, and the
degeneracy at k = 0, undergo an even more significant change than
the electron does. Energy degeneracies are broken. Strong mixing
happens due to perturbation, and the Luttinger-Hamiltonian-
based k · p approach needs to be viewed simultaneously with the
potential well perturbation to extract the evolution of the states in
confinement.

We did not look at quantum wire and quantum boxes in any
detail, but the approaches adopted could be extended to them. We
did remark on salient implications for the multi-confined structures
where it was considered significant.

We followed the confinement discussion with a jump to mono-
layer systems—crystals that are stable in two-dimensional form—
with no need of a confining barrier. Graphene is the classic example
of this. And now we have to go back to our bandstructure descrip-
tion to derive the E(k) behavior. Propagating states exist only in the
plane, and these arise out of the π z bond and antibond. Graphene
has a hexagonal lattice with a basis of 2. The reciprocal space
symmetry points K and K′ exhibit zero gap and a photon-like E-k
behavior. So, here is a group IV material that, in sp3 hybridization,
gives one of the most insulating material, with an incredibly large
bandgap, and, in sp2 hybridization, gives a material where the
gap vanishes. This is the difference between confinement, where
the extended Bloch states are restricted in space, and the localized
interaction that is dominant in the new crystal form.

Graphene can be converted into tubes by rolling them up. Some
of these remain conducting—metallic—and some can become
semiconducting. Again, the structuring of nanotubes allowed
us to revisit bandstructure techniques, and we employed the
periodicities—and chirality, since sheets can be rolled with a twist—
to explore the origins of the behavior of zigzag, armchair and chiral
nanotubes and their densities of states.

We returned back to the confined structures at this point to
explore the states of quantum superlattices, which are artificially
created periodic (or chirped) structures with small-enough barrier
regions so that the superlattice-like confinement creates extended
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states in the k⊥ direction. What used to be bound states can now
propagate.

Among the consequences of confinement, that is, the existence
of the potential barrier nearby, we discussed some of the properties
that change from their bulk behavior. These included the binding
energy, but also the screening, since charge clouds and therefore
the polarizability is being disturbed. Scattering too changes in
confinement. It will have different characteristics due to the changes
in the states, as also possibly the perturbations, and the changes
will depend on the different scattering mechanisms. This discussion
also gave us the chance to emphasize the importance of what
happens at interfaces due to their deviations from planarity. These
changes in well widths will, in the first order, have an effect on
linewidths, such as those of optical emission.

Confined structures are ubiquitous in optical uses of semicon-
ductors. So, we looked at optical transitions in confined structures
and developed an understanding of these transitions for processes
that take place between subbands in different bands (interband)
and different subbands within a band (intraband or intersubband).
Symmetry arguments and the interaction between the dipole
and the optical field let us draw out the selection rules for the
transitions and connect these to linear polarization and circular
polarization. The circular polarization instance was interesting in
that it showed us how selection rules in confined conditions allow
us to selectively create spin polarization in electrons. Finally, we
ended all this discussion by looking at how the behavior changes
when one uses monolayer semiconductors, with their entirely
different way of achieving dimensionality.

20.9 Concluding remarks and bibliographic notes

There is a vast literature encompassing confinement and
now monolayer structures. Confinement has been the foundation
of devices for electronics and optics, and it has provided some very
intriguing understanding of new states of matter.

For the electronic properties, the reader would find the review
by Ando, Fowler and Stern1 to be a very thorough and useful 1 T. Ando, A. B. Fowler and F. Stern,

 ̏Electronic properties of two-
dimensional systems,˝ Reviews of
Modern Physics, 54, 437 (1982)

reading for understanding lower-dimensional systems. Even though
this long article, suggested as a general reading, concentrates
on inversion layers in silicon, the basic concepts are general. In
the calculations of confinement, it is useful to sometimes refer to
the variety of Bessel functions. A good source for understanding
a variety of mathematical functions is the classic collection by
Abramowitz and Stegun2. F. Stern examines variety of interesting

2 M. Abramowitz and I. A. Stegun,
 ̏Handbook of mathematical
functions with formulas, graphs,
and mathematical tables˝, U.S.
Government Printing Office (1964)
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transport and quantization features in low-dimensional systems in
the monograph edited by Davies and Long3. For hole quantization,

3 J. H. Davies and A. R. Long (eds),
 ̏Physics of nanostructures,˝ Institute
of Physics, ISBN 0-7503-0170-8 (1992)

see Fasolino and Altarelli4. 4 A. Fasolino and M. Altarelli,
 ̏Subband structure and Landau
levels in heterostructures,˝ in G. Bauer,
F. Kuchar and H. Heinrich (eds), Two-
dimensional systems, heterostructures
and superlattices, Springer-Verlag
ISBN 13: 978-3-642-82313-8 (1984)

In their book entirely devoted to carbon5, Saito, et al. discuss

5 R. Saito, G. Dresselhaus and M. S.
Dresselhaus,  ̏Physical properties of
carbon nanotubes,˝ Imperial, ISBN
1-86094-093-5 (1998)

at length the electronic and elastic properties of graphene and
nanotubes, including more esoteric topics such as Peierls instability.
Quite a bit of understanding of these small structures employs
optical tools interacting with the vibration modes in these struc-
tures. The Raman spectra discussion of this book, along with its
discussion of bandstructure calculations, is particularly useful.

An advanced discussion of nanotubes is in Fischetti and Van-
denberghe’s text on transport6. This text is an ideal source for 6 M. Fischetti and W. G.

Vandenberghe,  ̏Advanced physics of
electron transport in semiconductors
and nanostructures,˝ Springer, ISBN
978-3-319-01100-4 (2016)

understanding advanced approaches to bandstructures and to
transport in semiconductors down to their nanoscale. We have
kept our discussion simpler in this text, for example, avoiding
supercell approaches or group theoretic approaches. Fischetti and
Vandenberghe, while employing them, keep the content quite
understandable and yet very rigorous.

Gerald Bastard’s text7 is a very detailed treatise analyzing 7 G. Bastard,  ̏Wave mechanics
applied to semiconductor
heterostructures,˝ Les éditions de
physique

the behavior of states, excitons, interactions and transport in
heterostructures. A simpler treatment can be found in the book by
Weisbuch and Vinter.8 A very readable exposition is from Jasprit 8 C. Weisbuch and Borge Vinter,

 ̏Quantum semiconductor structures,˝
Academic ISBN 0-12-742680-9 (1991)

Singh9. This book is a very readable source for understanding the

9 J. Singh,  ̏Electronic and
optoelectronic properties of
semiconductor structures,˝
Cambridge, ISBN 13-978-0-521-82379-1
(2003)

various connections that exist between quantum- and engineering-
focused observations in semiconductors.

Ridley’s classic text10 is a thorough exposition of the under-

10 B. K. Ridley,  ̏Quantum processes
in semiconductors,˝ Oxford, ISBN
0-19-851170-1 (1988)

lying physical processes and mathematical treatments in bulk
semiconductors. But much of this is extendable to confined
structures.

20.10 Exercises

1. This exercise works through the lowest-order analysis of electron
states and their properties of a two-dimensional electron gas
in the conduction band in Si arising in a confining potential.
The electrons in the conduction band of Si are subjected to a
slowly varying potential caused by band bending. Model this
potential as

V(r)= 1
2

m3ω
2
0z2 for z ≤ 0,

where ω0 is a positive constant of s−1 dimension. Assume that
the effect of this potential can be treated within the effective mass
approximation.
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• Use the effective mass theorem to find the total energy of the
electron wavepacket near the bottom of the conduction band for
the ellipsoidal surface along the positive z direction.

• Find and sketch the areal density of states G (E) for these
electrons in the conduction band when their energy is given as
in previous part. Note here that G (E) has dimensions of per unit
area per unit energy.

• Write down both the total time-dependent envelope function
and the total time-dependent wavefunction for the wavepacket
for electrons with kz =π/2L but with arbitrary kx and ky. These
electrons are said to be in the first subband and form a two-
dimensional electron gas.

• All 6 ellipsoidal energy pockets for electrons in the conduction
band of Si are subjected to this confining potential. Let all
the electrons be in the first subband so that they form a two-
dimensional electron gas. For motion due to an electric field in
the x-y plane, find the corresponding conductivity tensor.

• What is the numerical value for this conductivity effective mass
for Si? How does it compare with the full three-dimensional
conductivity effective mass and for the effective masses for
three-dimensional and two-dimensional densities of states? [M]

2. Show that the electron density in an inversion layer with multiple
subbands occupied can be written as

n(z)= m∗
dkBT

πh̄2
∑

i

ln
[
1 + exp

(
EF − Ei

kBT

)]
|ς i(z)|2,

where i indexes each subband. For Si, show that when m∗
t is the

density of the states effective mass, then m∗
z = m∗

l , while, on the
other hand, when m∗

z = m∗
t , then m∗

d = (m∗
l m∗

t )
1/2. [S]

3. A quantum well of GaAs has AlxGa1−xAs (x = 0.3) cladding
regions. Calculate the bandgap if the width a of the well is 16 nm.
Is infinite barrier a good approximation here? What about if
a = 2 nm? [S]

4. What is the Fermi wavelength (2π/kF) for an electron concentra-
tion of 1012 cm−3 in a quantum well such as the thicker well in
Exercise 3? Compare it to that in a metal such as Cu or Au. [S]

5. Take again a superlattice employing GaAs and AlxGa1−xAs
(x = 0.3). The well width is 10 nm, the barrier width is 2.2 nm, and
the potential height is 0.25 eV.
• Find the widths of the minibands and the minigaps, and
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• keeping fixed well width at 10 nm, plot the energy of the first
conduction and heavy-hole minibands as a function of barrier
width between 2 and 5 nm. [M]

6. Design the period of a Si/SiGe superlattice so that the band
minimum of Si can be pulled in from near the zone edge (about
k ≈ 0.8π/a) to k = 0. This is zone folding. [M]
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Integral transform theorems

Transformations, particularly of the integral form, are
an important way to understand the nature and connections in the
time evolution of a signal stream and even more so between signal
streams, whether connected, stochastic or somewhere in-between.
This appendix stresses a few of the important theorems and features
evident in Fourier transformations.

A.1 Parseval’s theorem

The integrated product of two functions and their
integrated Fourier transforms are related as
∫ ∞

−∞
f (t)g∗(t) dt

=
∫ ∞

−∞
dt

1√
2π

∫ ∞

−∞
F(ω) exp(−iωt) dω

1√
2π

∫ ∞

−∞
G∗(ω′) exp(iω′t) dω′

=
∫ ∞

−∞
dω√
2π

1√
2π

∫ ∞

−∞
δ(ω − ω′)F(ω)G∗(ω′) dω′

= 1
2π

∫ ∞

−∞
F(ω)G∗(ω) dω. (A.1)

Parseval’s theorem relates this equivalence of the time domain and
frequency domain of functions.

If f (t) (and g(t)) are real functions, then

f ∗(t) = f (t) ∴ F ∗(ω) = F(−ω), and if

g∗(t) = −g(t) ∴ G∗(ω) = −G(−ω), (A.2)

that is, the Fourier transform of a real function is even, and the
Fourier transform of an imaginary function is odd. This follows
directly from the Fourier transformation.
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So, Parseval’s theorem also states that if f (t) and g(t) are real-
valued, then

∫ ∞

−∞
f (t)g(t) dt = 1

2π

∫ ∞

−∞
F(ω)G(−ω) dω. (A.3)

As a corollary, for real f (t),
∫ ∞

−∞
f 2(t) dt = 1

2π

∫ ∞

−∞
F2(ω) dω = 2

1
2π

∫ ∞

0
F2(ω) dω. (A.4)

A.2 Convolution theorem

Convolution—how one function modifies another function
through the past—has appeared most prominently for us through
Green’s functions. Let f = g ⊗ h be a convolution where source h(t) is
being modified by g(t − t′), that is,

f (t) = g ⊗ h =
∫ ∞

−∞
g(t − t′)h(t′) dt′. (A.5)

Fourier transformation makes the evaluation easier for many
circumstances:

F(ω) = 1√
2π

∫ ∞

−∞
exp(iωt) dt

∫ ∞

−∞
g(t − t′)h(t′) dt′

= 1√
2π

∫ ∞

−∞
dt

∫ ∞

−∞
exp[iω(t − t′)]g(t − t′) exp(iωt′)h(t′) dt′

= √
2π

[
1√
2π

∫ ∞

−∞
g(s) exp(iωs) ds

] [
1√
2π

∫ ∞

−∞
exp(iωt′)h(t′) dt′

]

= √
2πG(ω)H(ω). (A.6)

Note here that there are these factors of
√
2π that appear in convolu-

tions (or Parseval’s theorem), based on the conventions adopted in
the Fourier transform integration. Fourier transform of a convolution
is writable as a product of the transforms in the Fourier space.

The correlation operator satisfies commutation, association and
distribution; that is,

a ⊗ b = a ⊗ b,

a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c, and

a ⊗ (b + c) = (a ⊗ b) + (a ⊗ c). (A.7)

This follows straightforwardly from Equation A.6 and, in a more
convoluted way, from the time domain.
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A.3 Correlation theorem

Correlation—an often-misapplied measure of how connected two
functions may be—probes, by parameter (usually time) shifting, the
shape matching of two functions; for example,

Corr( g, h; t) =
∫ ∞

−∞
g(t + t′)h∗(t′) dt′ (A.8)

is a cross correlation. Complex functions are properly dealt with due
to the conjugation of one of the functions. Autocorrelation is this
relationship measuring self-correlation, that is, how much does the
form of the signal itself change with time. A delta function will result
in a sharp peak only at coincidence and vanishes elsewhere, while a
constant value will be completely autocorrelated. If g(t) = exp(−iω1t),
and h(t) = exp[−iω2(t + �t)], then

Corr(g, h; t) = 2πδ(ω2 − ω1) exp [−iω1(t − �t)] . (A.9)

If the two frequencies coincide, the cross correlation has a phase
proportional to the time shift in the delta function output. From the
Fourier transform of Equation A.8,

Corr(ω) =
= 1√

2π

∫ ∞

−∞
exp(iωt) dt

∫ ∞

−∞
g(t + t′)h∗(t′) dt′

= 1√
2π

∫ ∞

−∞
dt

∫ ∞

−∞
exp[iω(t + t′)]g∗(t + t′) exp(−iωt′)h∗(t′) dt′

= √
2π

[
1√
2π

∫ ∞

−∞
g(s) exp(iωs) ds

] [
1√
2π

∫ ∞

−∞
exp(iωt′)h(t′) dt′

]∗

= √
2πG(ω)H∗(ω). (A.10)

The significance of complex conjugation cannot be stressed enough.
Convolution, which has a transform form similar to this (except
for the conjugation), has the commutation property. Correlation
does not commute. Corr(g, h; t)= Corr∗(h, g;−t), and therefore It is easy to ponder many real

life experiences where this non-
commutativity is evident. And
forgetting it leads to real problems
in life.

Corr(g, h)= Corr∗(h, g). The self-correlation—autocorrelation function
Corr(g, g; t)—because of this time-shifting shape matching inherent
in the function, is sensitive and a good indicator of periodic and
quasiperiodic behavior. It will show strength at coincidences in
time and in the periodicity. Closer periodicity sharpens peaks, with
Corr(g, g) = √

2πG2(ω).
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A.4 Wiener-Khintchin theorem

Cross and autocorrelations are second power in amplitudes,
and so proportional to the power. This property—a view of these
as power spectral density—is brought out by the Wiener-Khintchin
theorem, whose one conclusion was the autocorrelation with which
we concluded the last section.

Let z(t) be the signal. One may define the average power via
limT→∞

∫ ∞
−∞ z(t)z∗(t) dt, which is also, by Fourier transformation,

limT→∞
∫ ∞
−∞(Z(ω)Z∗(ω)/T) dω. Taking frequency as positive real as

a convention, this average power is limT→∞
∫ ∞
0 (2Z(ω)Z∗(ω)/T) dω.

For a z(t) non-stationary process, the average depends on the interval
T. T → ∞ has no meaning. If the process is stationary—strict or
weak—one may employ the limits of T → ∞. In this case, one can
also now employ the frequency domain, since the entire bandwidth
is accounted for. Take the case of ensemble averaging over identical
systems; exchanging the time and frequency limits leads to the
parameter

Sz(ω) = lim
T→∞

2〈Z(ω)Z∗(ω)〉
T

= lim
T→∞

2〈|Z(ω)|2〉
T

, (A.11)

which is the power spectral density. Power spectral density is an
ensemble average. So, different processes will have different forms.

In time shifting and averaging over time, using Fourier transforms,

φz(t′) = lim
T→∞

1
T

∫ ∞

−∞
〈z(t + t′)z(t)〉 dt

= 1
2π

∫ ∞

0

2〈|Z(ω)|2〉
T

cos(ωt′) dω

= 1
2π

∫ ∞

0
Sz(ω) cos(ωt′) dω. (A.12)

The reciprocal relationship is
Note

∫ ∞

0
cos(ωt′) cos(ω′t) dt′

= π

2
[δ(ω + ω′) + δ(ω − ω′)].

4
∫ ∞

0
φz(t′) cos(ωt′) dt′ = 2

π

∫ ∞

0
Sz(ω

′) dω′
∫ ∞

0
cos(ωt′) cos(ω′t) dt′

=
∫ ∞

0
Sz(ω

′)
[
δ(ω + ω′) + δ(ω − ω′)

]
dω′

= Sz(ω) (A.13)

Equations A.12 and A.13 are statements of the Wiener-Khintchin
theorem, whose succinct statement is that 2φz(t′) and Sz(ω) are the
Fourier transform pairs, so long as the process is a strong or weak
stationary process.
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If a process is non-stationary, and T → ∞ is disallowed, the
Wiener-Khintchin theorem states that

φz(t′,T) = 1
2π

∫ ∞

0
Sz(ω,T) cos(ωt′) dω, and

Sz(ω,T) = 4
∫ T

0
φz(t′,T) cos(ωt′) dt′. (A.14)

The Wiener-Khintchin theorem is important for analyzing noise,
as well as fluctuation-dissipation and limits of measurement in the

The limits of measurement in
the presence of fluctuations is an
important nanoscale theme, so these
relationships appear in significant
ways in S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017).presence of noise.

A.5 Carson’s theorem

The Fourier transform of random pulse trains is also
of interest in semiconductor problems. Electrons—as localized
wavepackets or classical electrons—are a pulse train. For the random
discrete pulse train,

z(t) =
K∑

k=1

ck f (t − tk), (A.15)

where both ck and tk are random, while f () is a fixed shape that arises
in the property of the system, such as the decay time of the transit
time. The Fourier transform and therefore the spectral power density
are

Z(ω) = F(ω)

K∑

k=1

ck exp(−iωtk),

∴ Sz(ω) = lim
T→∞

2〈|Z(ω)|〉2
T

= lim
T→∞

2〈|F(ω)|〉2
T

K∑

k,l=1

〈ckcl exp[−iω(tk − tl)]〉

= lim
T→∞

2〈|F(ω)|〉2
T

×
⎧
⎨

⎩

K∑

k=1

〈c2k〉 +
∑

k 
=l

〈ckcl exp[−iω(tk − tl)]〉
⎫
⎬

⎭
. (A.16)

If ν = limT→∞ K/T, then the mean pulse amplitude is

〈c2〉 = lim
T→∞

1
K

K∑

k=1

〈c2k〉. (A.17)
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The first term in the expansion of Equation A.16 is

K∑

k=1

〈c2k〉 = 2ν〈c2〉〈|F(ω)|〉2. (A.18)

The rest of the terms—the second part—of Equation A.16, with
independent pulsing, are

lim
T→∞

2〈|F(ω)|〉2
T

∑

k 
=l

〈ck〉〈cl〉〈exp(−iωtk)〉〈exp(−iωtl)〉

= lim
T→∞

2〈|F(ω)|〉2
T

∑

k 
=l

〈c2〉4 sin
2(ωT/2)

ω2T2

= 4πz(t)
2
δ(ω), (A.19)

where Z(ω = 0) = ∫ ∞
−∞ z(t) dt and the sinc2 function’s limit, and

z(t) =
[

lim
T→∞

1
K

K∑

k=1

ck

]

ν

∫ ∞

−∞
z(t) dt = ν〈c〉

∫ ∞

−∞
z(t) dt (A.20)

has been used. This latter is a statement of Campbell’s theorem,
which is summarized in Section A.6. When cks are symmetric, 〈c〉= 0
and therefore z(t) = 0, and power spectral density has no static term.

In general, though,

Sz(ω) = 2ν〈c2〉〈|F(ω)|〉2 + 4πz(t)
2
δ(ω), (A.21)

which is the statement of Carson’s theorem.

A.6 Campbell’s theorem

Campbell’s theorem relates the mean of a signal to Fourier
transformations.

The autocorrelation, following the Wiener-Khintchin theorem, can
be written as

φz(t′) = 1
2π

∫ ∞

0
Sz(ω) cos(ωt′) dω

= 〈c2〉
π

ν

∫ ∞

0
〈|F(ω)|〉2 cos(ωt′) dω

+ 2z(t)
2
∫ ∞

0
δ(ω) cos(ωt′) dω

= ν〈c2〉
∫ ∞

−∞
z(t)z(t + t′) dt + z(t)

2
,

∵
∫ ∞

0
δ(ω) cos(ωt′) dω = 1

2
, (A.22)
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and Parseval’s theorem. φz(0) = z2(t); therefore,

z2(t) − z(t)
2 = ν〈c2〉

∫ ∞

−∞
z2(t) dt

= ν
〈c2〉
π

∫ ∞

0
〈|F(ω)|〉2 dω. (A.23)

Similarly, for the mean,

z(t) = ν〈c〉
∫ ∞

−∞
z(t) dt

= ν〈c〉Z(0). (A.24)

Equation A.23 is a statement of Campbell’s theorem for the mean
square, and Equation A.24 is a statement of the theorem for the mean.
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B
Various useful functions

We employ a variety of functions in our mathematical manip-
ulations in this text. A few of the important ones are summarized
here, together with a note on functions.

A function f (x) is an acceptable function or a good function if it is
differentiable any number of times and if all its derivatives are
O

(|x|−N)
for |x| → ∞ for all integers N. For example, exp(−x2) is

an acceptable/good function, but polynomials are not.
A sequence fn(x) of acceptable functions is a regular sequence if, for

any regular function F(x), limn→∞
∫ ∞
−∞ fn(x)F(x) dx exists. Two regular

sequences are equivalent if, for all F(x)s, the limit is the same. For
example, exp(−x2/n2) and exp(−x4/n4) are equivalent. Here,

lim
n→∞

∫ ∞

−∞
fn(x)F(x) dx =

∫ ∞

−∞
F(x) dx. (B.1)

A generalized function f (x) is a regular sequence fn(x) of acceptable
functions. Two generalized functions are equal when the correspond-
ing regular sequences are equivalent. So, a generalized function is a
class of all the regular sequences that are equivalent to a given regular
sequence. The generalized function f (x) is odd or even depending on
the oddity or evenness of F(x) for which

∫ ∞
−∞ f (x)F(x) dx = 0.

These properties are useful in understanding functions of interest
to us.

Dirac δ function:
The Dirac δ function’s defining characteristics is that its integral over
the entire space takes a unit value, that is,

∫
δ(r − r0) d3r = 1. (B.2)

Because it allows us to have a point, line or plane, that is, a collapsed
dimensional placement of a physical variable of interest, it is one of
the more commonly useful functions. However, whether it is really a
function, since it is only explicitly writable in asymptotic limits and
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Table B.1: The Dirac δ function δ(r− r0)
form in different coordinate systems.Coordinate 3D 2D 1D

Cartesian δ(x − x0)δ(y − y0)δ(z − z0) δ(x − x0)δ(y − y0) δ(x − x0)

Cylindrical δ(r−r0)δ(ϕ−ϕ0)δ(z−z0)
r

δ(r−r0)δ(z−z0)
2πr

δ(r−r0)
2πr

Spherical δ(r−r0)δ(θ−θ0)δ(ϕ−ϕ0)

r2 sin θ

δ(r−r0)δ(θ−θ0)

2πr2 sin θ

δ(r−r0)
4πr2 sin θ

acquires its meaning and defining characteristic through its use inside
an integral, certainly is worth bearing in mind, as is that while one
largely uses it with integration, one quite fails with its derivative.
The δ function makes sense as an integrand, either by itself or in
multiplication with other functions. Table B.1 summarizes this in 3-,
2- and 1-dimensional space.

The Dirac δ may be defined by the sequence

fn(x) = (n/π)2 exp(−nx2) (B.3)

or its equivalent sequences. In all these,

lim
n→∞

∫ ∞

−∞
fn(x)F(x) dx = lim

n→∞

∫ ∞

−∞
δ(x)F(x) dx = F(0). (B.4)

This says that the Dirac δ function is even.
The equivalent sequences for the Dirac δ include

δ(x − x0) = lim
L→∞

sin[(x − x0)L]
πx

,

= lim
a→0

1
π

α

α2 + (x − x0)2
,

= lim
α→0

1
α
√

π
exp

[

−
(

x − x0
α

)2]

,

and so on.
Any complete set of orthonormal functions can be used to define

the Dirac δ. For example, for the set composed of ψn(x),

δ(x − x0) =
∞∑

n=1

ψn(x0)ψ∗
n(x) (B.5)

for a discrete set and

δ(x − x0) =
∫

ψ s(x0)ψ∗
s (x) ds (B.6)

for a continuous set.

Kronecker δ function:
The Kronecker delta δi, j is defined as

δi, j =
{
1 i = j,
0 i �= j.

(B.7)
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It is a function of two arguments, and if the arguments have the same
value, then it is unity; else, it vanishes. It is useful in picking elements
in arrays and matrices.

But it must be distinguished from the Dirac delta, which has an
integral of unity over its space and thus allows one to determine the
value of a continuous function, as well as achieve other usages, since
it is defined over an integral.

Many interesting functions follow from these functions.

Heaviside’s step function:
Heaviside’s step function is �(z) = 1 for z > 0, and �(z) = 0 for z < 0.
In terms of the Dirac δ function,

�(z) =
∫ z

−∞
δ(ζ ) dζ . (B.8)

Or, in the reverse operation, we get

δ(z) = d�(z)
dz

. (B.9)

The Heaviside function, in its general form, is

�(z − z0) =
{
0 ∀ z < z0,
1 ∀ z > z0.

(B.10)

A common useful form then follows as

�(z − z0) = lim
α→0

{
0 ∀ z < z0,
exp[−α(z − z0)] ∀ z > z0.

(B.11)
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C
Random processes

Classical randomness appears in multitudes of flavors. In
natural processes, it is because of the nature of the underlying
basis. In engineered processes, it is because of forcing that one may
introduce. Randomness is therefore encountered in many varieties.
A few of these appear quite often in semiconductors in their static
and dynamic conditions. Examples include point perturbations
and extended defects; in addition, compositional components, as
in ternaries and quaterneries, can be random (and non-random).
A collective motion of a planar charge will spread out, have a
Gaussian spread as an outcome of random processes and will also
show shot noise due to the individual particles crossing collection or
injection boundaries randomly.

A random walk leads to Gaussian distributions, which is a
distribution that also arises due to the central limit theorem; that is,
it is a consequence of a collection of independent random variables
in an ensemble. Nature exhibits Gaussian distribution for many
observables for this reason. It also exhibits Poisson distribution
in many phenomena. Poisson distribution arises when mutually
uncorrelated events happen with low individual probability.
Semiconductors exhibit both, and others when looked at in detail.
The distribution of dopants, when uncorrelated due to the nature
of techniques leading to their appearance, such as in semiconductor
boule growth, will show a Gaussian distribution if the doping is
significant. The threshold spread due to dopants in a transistor can
be skewed. On the other hand, defects, which have vanishingly low
probability, may have a Poisson distribution. Single electron effects,
where spin will become important when the number of states is
limited, show bimodal distributions.

 ̏Randomness and independence˝
is important for understanding
distributions. Force-fitting
distributions, without an underlying
understanding, causes serious,
dreadful consequences when applied
to social circumstances. A poor
educational and poorly nurturing
environment severely hurts the
chances of the poor and folks from the
wrong side of the train track appearing
on the successful side of the bell
curve. Under forcing, distributions
will skew. In many professions,
even in educational institutions,
there is a tendency to evaluate on
a curve. Certainly, in very selective
enterprises—research or advanced
technology, for example—this makes
no sense. Too small a sample size, and
the sample consists of very carefully
selected non-random folks, not to
mention its contradictions to the
importance of collective effort and
relationships.

This appendix is a summary of a few streams of the underlying
random process analytics that one should be aware of in the study
of materials and of devices, and we look at it through the lens of
stochastic processes.



OUP CORRECTED PROOF – FINAL, 17/8/2020, SPi

712 semiconductor physics

A stochastic process, such as noise or any unpredictability, as in
a fluctuation, is a random variation in time and space that needs
statistical characterization. We do this using statistical functions.
A signal x(t) may be discrete or continuous, and one can find a mean,
a mean square, a variance, an autocorrelation or something else as a
measure, as we did in Chapter 16. One can define various probability
functions, the simplest being of the occurrence of x in an interval,
but also joint probabilities (two different probabilities appearing in
consort at different instants), marginal probabilities (a probability
given the occurrence of a prior), et cetera. The probabilities may
be measured at instants of time on a stream of a signal or may be
measured at a time over a collection of signals; that is, an ensemble. If
the averages in time, or at any time over an ensemble, are equal, this
is an ergodic ensemble. Since one may have access only to one sample
function, if there is ergodicity, there is usefulness to prediction over
ensembles. Chapter 16 also made remarks regarding the stationarity
and non-stationarity of processes, based on the order in shifts of
time up to which the probability density function remains invariant.
A process stationary in any order is strictly stationary. Ergodicity
too can be viewed through complementary measures. If the mean
over time and the mean over the ensemble are equal, the stochastic
process is stationary in the mean. If the autocorrelations match, then
it is ergodic in autocorrelation. A stationary process, however, is not
necessarily ergodic.

A probability mass function p(z) is defined for discrete random
variables, and the probability density function over continuous
variables.

The z transform, a discrete transform, is defined as

PT
x (z) =

∑

x

zxp(x). (C.1)

The z transform function provide expectations for moments of any
order, since

dn

dzn P
T
x (z)

∣
∣∣
∣
z=1

=
∑

x

x(x − 1) · · · (x − n + 1)p(x), with

〈x〉 = d
dz

pT
x (z)

∣
∣
∣∣
z=1

,

〈x2〉 = d2

dz2
pT

x (z)

∣∣
∣
∣∣
z=1

+ d
dz

pT
x (z)

∣
∣∣
∣
z=1

, and so on. (C.2)

For a continuous variable function, say f (x), a useful transform is the
continuous transform, where one can define the  ̏first˝ characteristic
function
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f T
x (s) = −

∫ ∞

−∞
exp(−sx)f (x) dx = 〈exp(−sx)〉,

with the properties

dn

dsn f T
x (s)

∣
∣∣
∣
s=0

=
∫ ∞

−∞
(−x)nf (x) dx = (−1)n〈xn〉,

〈x〉 = − d
ds

f T
x (s)

∣
∣
∣∣
s=0

,

〈x2〉 = − d2

ds2
f T
x (s)

∣∣
∣
∣∣
s=0

, and so on. (C.3)

These expectations in power 〈xn〉 for discrete and continuous
variables are the moments. When the moments are determined
around the mean, so μn = 〈(x − 〈x〉)n, they are central moments. The
first-order central moment μ1 = 0. The second-order central moment,

μ2 = 〈x2〉 − 〈x〉2 = σ 2, (C.4)

is the variance. The square root of the variance is the standard
deviation σ . Higher-order moments,

μ3 = 〈x3〉 − 3〈x2〉〈x〉 + 2〈x〉3,
μ4 = 〈x4〉 − 4〈x〉3〈x〉 + 6〈x2〉〈x〉2 − 3〈x〉4, and so on, (C.5)

are also important, since they show long-range connections.
For continuous variables, using the continuous transform, there

also exist similar and powerful ways for analysis. Following on from
the first characteristic function, we define a second characteristic
function,

g(s) = log f T
x (s), with cumulants λn

dn

dsn g(s)
∣
∣
∣∣
s=0

. (C.6)

This leads to the relationships

g(s) = λas + 1
2!λ2s2 + · · · + 1

n! sn + · · · , with

λ1 = 〈x〉,
λ2 = 〈x2〉 − 〈x〉2,
λ3 = 〈x3〉 − 3〈x2〉〈x〉 + 2〈x〉3,
λ4 = 〈x4〉 − 4〈x〉3〈x〉 + 6〈x2〉〈x〉2 − 3〈x〉4, and so on. (C.7)

These moments, characteristic functions, et cetera, let us analyze and
build a suitable algorithm for higher order analysis.

We can now look at random process and some of the functions of
interest to us.
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C.1 Bernoulli process

Let there be a discrete variable x ∈ 0, 1, with the probability mass
function

Px(x0) =
{
1 − p for x0 = 0,
p for x0 = 1.

(C.8)

The z transform is

PT
x (z) =

∑

x0

zx0Px(x0) = z0(1 − p) + z1p = (1 − p) + zp

∴ 〈x〉 = d
dz

PT
x (z)

∣
∣∣
∣
z=1

= p, and

σ 2
x = 〈x2〉 − 〈x〉2 = d2

dz2
PT

x (z)

∣∣
∣
∣∣
z=1

+ d
dz

PT
x (z)

∣
∣∣
∣
z=1

−
[

d
dz

PT
x (z)

]2∣∣∣
∣
∣
z=1

= p(1 − p). (C.9)

This leads us into the Binomial distribution with multiple Bernoulli
(process) trials.

C.2 Binomial distribution

Let the process consist of n independent Bernoulli trials. These n trials
produce x1, x2, . . . , xn independent variables, each with 0, 1 as possible The two outcomes are 0 and 1. These

are just symbols. We can as well call
them false and true, or failure and
success. And we will.

outcomes. Let k = x1 + x2 + · · · + xn be the sum of the n independent
variables. The z transform is

PT
k (z) =

∑

x1,...,xn

zx1+···+xnp(x1)p(x2) · · · p(xn)

= PT
x1(z)P

T
x2(z) · · ·Pxn

T(z)

= (1 − p + zp)n

= Pk(0) + Pk(1)z + Pk(2)z2 + · · · + Pn
k zn

=
n∑

k0

zk0Pk(k0). (C.10)

In the summing series, the first term is of finding only 0s as the
outcomes (k0 = 0), the second term is for finding one 1 as the outcome
(k0 = 1), and so on. k0 is the number of possible 1s in the collection
of the independent variables. Each term corresponding to zk0Pk(k0)
is the probability of obtaining k0 1s in this collection. This probability
mass function is
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Pk(k0) =
(

n
k0

)

pk0(1 − p)n−k0 , where

(
n
k0

)

= n!
k0!(n − k0)! . (C.11)

The binomial distribution representing the distribution of possibilities
of independent Bernoulli trials has the probability mass function
Pk(k0) given by Equation C.11. The mean k for the independent
variables is

〈k〉 = np, (C.12)

and the variance is
σ 2

k = np(1 − p). (C.13)

The former is the sum of the mean values over the independent
variables. The latter, similarly, is the sum of the variances over the
independent variables.

The z transform helps with determining the expectations,
variances, et cetera, for all the different possibilities that one
might encounter in conducting the Bernoulli trials in this binomial
collection.

Take, for example, the question,  ̏What is the probability mass
function for obtaining the first 1 in the lth Bernoulli trial after l − 1
0s and some of the related properties?˝ Since (1 − p) is the probability
for a 0 in the independent events, and p the probability of a 1, once
we determine the probability mass function, the rest follow. The
probability mass function for these constraints—the geometric
distribution—is

Pl1(z) = (1 − p)l−1p. (C.14)

The z transform then leads us to

PT
l1
(z) =

∑

l

zl(1 − p)l−1p = zp
1 − z(1 − p)

∴ 〈l1〉 =
[

d
dz

PT
l1
(z)

]∣
∣
∣∣
z=1

= 1
p
,

and σ 2
l1

=
{

d2

dz2
PT

l1
(z) + d

dz
PT

l1
(z) −

[
d
dz

PT
l1
(z)

]2}∣∣
∣
∣∣
z=1

= 1 − p

p2
. (C.15)

C.3 Poisson random process

Let there be a series of independent and identical Bernoulli
trials along a continuous line in variable t. t can be time, but doesn’t
have to be. It could be a one-dimensional chain of one type of atoms
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and vacancies. A Bernoulli trial is conducted every �t, and the
probability of a 1 is p = λ�t, again a normalized number. Let k ∈ 0, 1
be our Bernoulli outcomes; then,

P(k,�t) =
{
1 − λ�t for k = 0,

λ�t for k = 1.
(C.16)

As �t becomes smaller, λ approaches the average rate for an
outcome of 1.

After an interval [0, t], the probability measurement being a k
(the net number of successes or 1) over the interval t + �t can be
decomposed into two terms. The first is that k is the measurement
through the interval t and then 0, measured during the sampling at
�t, and the second is that k−1 is measured over t, and a 1 is measured
over the next sampling at �t. So,

P(k, t + �t) = P(k, t)P(0,�t) + P(k − 1,�t)P(1,�t)

= P(k, t)(1 − λ�t) + P(k − 1,�tλ�t. (C.17)

Now let �t → 0, making the functions continuous with λ being a true
average rate of 1s. The differential form is

d
dt
P(k, t) + λP(k, t) = λP(k − 1, t). (C.18)

This equation sets up the algorithm for an iterative solution starting
from k = 0. This initial condition is

P(k, 0) =
{
1 for k = 0,
0 for k �= 0,

∑

k

p(k, t) = 1. (C.19)

The solution is

P(k, t) = (λt)k

k! exp(−λt), (C.20)

where λt = μ is the average number of successes (1s).
As a probability mass function, we may write this as

P(k, t) = (μ)k

k! exp(−μ); (C.21)

the z transformation teaches us then that

PT
k (z) =

∑

k0

zk0Pk(k0) = exp(−μ)
∑

k0

(μz)k0

k0! = exp[μ(z − 1)]

∴ 〈k〉 =
[

d
dz

PT
k (z)

]∣
∣
∣∣
z=1

= μ, and

σ 2
k =

{
d2

dz2
PT

k (z) + d
dz

PT
k (z) +

[
d
dz

PT
k (z)

]2}∣∣
∣
∣∣
z=1

= μ. (C.22)



OUP CORRECTED PROOF – FINAL, 17/8/2020, SPi

appendix c 717

The variance and the mean of the Poisson distribution are the same.
As Figure C.1 shows, as k increases, and the mean increases, the
function also spreads out. k = 0 is an exponential decay, and
then, beyond, with increasing k, the Poisson distribution rises and
then falls. With increasing k, the distribution stretches out while
maintaining the mean and the variance.

Figure C.1: Probability mass function
as a function of k expected in the
Poisson distribution.

The binomial distribution leads to the Poisson distribution in the
limit of very small probabilities. A sequence of single Bernoulli trials

See Appendix E in S. Tiwari,
 ̏Nanoscale device physics: Science
and engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4 (2017),
for the limit derivation of Poisson
distribution from the binomial
distribution. This is why the Poisson
distribution is often called  ̏the law of
small numbers.˝ The appendix also
shows a derivation of the Gaussian
distribution from the binomial
distribution, as an equivalent law
of large numbers.

with a very small but finite probability of success produces a Poisson
distribution. Defects and defect-mediated processes—the existence of
rare intrinsic or extrinsic impurities, and the capture and emission
of carriers from them—are often Poisson processes. They are rare
enough that they are independent of each other.

C.4 Gaussian random process

Gaussian random processes are of a lot of interest because they
represent a number of natural phenomena, as a law of large numbers,
and because of the consequences of the central limit theorem.

The binomial distribution in the limit of large numbers takes us to
the Gaussian distribution. Take, in Equation C.11, n very large, and
both p and 1 − p finite and not vanishingly small. With a large n, this
implies that 〈k0〉 = pn, and dropping off quite rapidly, that is,

|Pk(k0 + 1) − Pk(k0)| � Pk(k0). (C.23)

Treating Pk(k0) as a continuous function in the variable k0, one can
Taylor expand, k0 = 〈k0〉 + η, so that

lnPk(k0) = lnPk(〈k0〉) + C1η + 1
2
η2 + · · · , where

Cl = dl

dηl [lnPk(〈k0〉 + η)]

∣∣
∣
∣∣
η=0

. (C.24)

This also means that the lnPk(k0) converges more rapidly in the
higher order terms of expansion.

For the probability mass function,

lnPk(k0) = ln n! − ln k0! − ln(n − k0)! + k0 ln p

+ (n − k0) ln(1 − p),

d
dk0

ln k0! = ln(k0 + 1)! − ln k0!
(k0 + 1) − k0

≈ ln k0, for k0 
 1,

∴ d
dk0

lnPk(k0) = −lnk0 + ln(n − k0 + ln p − ln(1 − p). (C.25)
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A number of conditions hold:
d

dk0
lnPk(k0)

∣
∣
∣∣
k0=〈k0〉

= 0 ∵ 〈k0〉 = np is the maximum,

C1 = 0 ∵ of the maximum, and

d2

dk20
lnPk(k0)

∣
∣
∣∣
∣
k0

= 1
np(1 − p)

= C2. (C.26)

In the limit, with η → 0, and higher order terms vanishing,

Pk(k0) = 1
√
2πσ 2

k0

exp

[

− (k0 − 〈k0〉)2
2σ 2

k0

]

, and σ 2
k0

= np(1 − p). (C.27)

The s transform of the Gaussian distribution function is

f T
k0

(s) =
∫ ∞

−∞
Pk)(k0) exp(−sk0) dk0

= exp
(

−s〈k0〉 + 1
2

s2σ 2
k0

)
. (C.28)

The Gaussian random distribution is very common because
of the central limit feature laid out in the central limit theorem.
The theorem asserts that, irrespective of the nature of individual
random variable probability density functions, the sum of many
independent identically distributed random variables will converge
to a Gaussian probability distribution function as the number of these
variables gets large. So, take the distribution of a set of n independent
measurements from a sample set with finite variance, and one will
have a variance of σ 2/n. The central limit theorem asserts that, with
increasing n, the distribution will acquire the normalcy of a Gaussian
distribution. Finite variance and finite σ 2/n suffice for this assertion.

If one looks at the variances of the Poisson and the Gaussian
distribution functions as with the probability p varied, one would
note the similarities in them. The spreading away from the mean,
characterized by the variance in the two distributions, is quite similar,
as seen in Figure C.2.

Figure C.2: Normalized function
of variance and sample size as
a function of probability for
Gaussian and Poisson distributions.

The Gaussian distribution function can also be extended in form to
multi-dimensional space. If z1, z2, . . . , zN are N random variables with
a non-zero mean, then an N-dimensional Gaussian process is one
whose probability density function for all N has the N-dimensional
form

PN(z1, z2, · · · , zN) =
1

(2π)N/2
√

|Aij|
exp

⎡

⎣− 1
2|A|

N∑

i, j=1

Aij(zi − μi)(zj − μj)

⎤

⎦ , (C.29)
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where μi = 〈zi〉, and μj =
〈
zj

〉
. Here, Aij is a cofactor for the second

moment

dij = 〈
(zi − 〈zi〉)

(
zj − 〈

zj
〉)〉

(C.30)

of the matrix whose determinant is |A|,

|A| =

∣
∣
∣∣
∣
∣∣
∣
∣∣

d11 d12 · · · d1N

d21 d22 · · · d2N
...

...
...

...
dN1 dN2 · · · dNN

∣
∣
∣∣
∣
∣∣
∣
∣∣

. (C.31)

An N-dimensional Gaussian probability density is completely
described by its average value and its second moment dij.

For N = 1, that is, one variable,

P1(z1) = 1

(2π |A|)1/2 exp
(

− A11

2|A|z21

)
, (C.32)

to which correspondences can be made with our earlier derivation.

C.5 Cauchy or Lorentz distribution

Cauchy distribution to non-
mathematicians is usually the Lorentz
distribution (also the Breit-Wigner
distribution) to the scientist, since
it appears so often in resonance
situations.

The Cauchy or Lorentz distribution often encountered in
resonance conditions, so a response of a second-order differential
equation relating energy exchange, such as in the linewidths under
homogeneous broadening, or plasmon resonance, is a special
probability density function of the form

p(x) = 1
π

λ

λ2 + (x − μ)2
, with λ > 0. (C.33)

The characteristic function associated with this distribution is

f (t) = exp(μit − λ|t|). (C.34)

The function has no defined mean or moments, so no variance, and
one usually characterizes it through linewidth.

The Cauchy-Lorentz distribution arises as an observation of the
phenomena in nature, as do the other random distributions. They all
certainly have sound mathematical underpinnings, and one can also
argue why they have the form they take without recourse to Bernoulli
trials and the binomial distribution. But they do have substantial
differences.

The scale parameter λ of the Cauchy-Lorentz distribution
(linewidth), and the σ parameter (standard deviation) of the Gaussian
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distribution, are such that they contain the same probability within
the same quantile interval. However, a calculation of the Cauchy
distribution’s mean and variance with changing n will lead to larger
and larger sampling of the tail of the Cauchy distribution. So, the
variance will stretch faster than the inverse n dependence of σ 2/n,
unlike the Gaussian’s parameter.
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D
Calculus of variation, and the Lagrangian method

The calculus of variations deals with determining extreme
values of functionals. Functionals are rules—including objective
mathematical functions such as integrals—that map a real number
to a function in some class. In general, then, a functional J defines on Derivatives are a measure of variation.

Partial derivatives—slightly simpler
mathematically—are also a measure
of variations under constraints.
Functionals are a major step up
from these. Why do we tend to
prefer walking in a straight line
so instinctively? It is an extremum
problem, where the path of least
resistance seems to be desired. Even
light rays want to do this, as Snell’s
law illustrates. All are examples of the
principle of least action. Principle of
least action should really be seen as a
principle of trajectory in which slight
changes have the least effect on the
total action.

a set of functions, say A, the mapping of A �→ R so that all x, y, . . . in
A map to a real number J(x). The functional of most interest to us is
action—an integral relationship—and the function, the Lagrangian
L , which we may define for a variety of physical situations. Mini-
mization of action draws out lawful relationships that guide deter-
ministic behavior, and this approach to treating variations becomes
quite fundamental to classical, quantum-mechanical and relativistic
problems. The first two are of interest to us in this text, and this
appendix summarizes some significant ideas related to the approach.

Let K = K[q(x)] be such a functional that depends on the function
q(x) continuously over x:

K =
∫ f

i
L (q, q′, x) dx, where

x = (x1, . . . , xM), and dx = dx1 · · · dxM,

q = (q1, . . . , qN), and qi = qi(x), and

q′(x) =
(

∂q1

∂x1
, . . . ,

∂q1

∂xM

)
. (D.1)

We have written this relationship quite generally. q and x are real.
They are observables. x may be the time coordinate that is discrete
(M instances) or continuous, q may be the position of one or more
(N) particles and q′(x) is then the partial time dependence of that
position.

The reason for writing in this way is to view this problem as an
informational problem that is, of course, also tied to the physical
problems that are of general interest in the observation of a physical
system’s characteristics. In this, we are taking a more general view
than the conventional mechanical or physical science exposition.
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K[q(x)] is a functional that is a single number whose value
depends on one or more functions q(x) over x’s domain. K is physical
information that arose through an observation of an observable, so
the putting together of an observing environment with the system of
interest.

We now simplify this to only the domain for x and only one q, such
as position. We wish to find q(x) that fulfills

K =
∫ f

i
L (x, q(x), q′(x)) dx = extreme. (D.2)

q′ = dq(x)/dx. An example is the path taken by a particle of mass m
with displacement q, and x the time. The Lagrangian for this problem
is L (q, q′)= (1/2)mq′2 − V(q). For any departure qε(x, ε)= q(x) + εη(x),
from the solution path q(x), with η(x) as a perturbing function and
ε a finite, tunable parameter scale attached to it, the possible paths
must still satisfy the end-point constraint of η(xi)=η(xf ), as shown in
Figure D.1. We rewrite Equation D.3 for this path,

Figure D.1: q(x)—the solution—and a
perturbation connecting an initial and
final point of a path taken by q.

K(ε)=
∫ f

i
L (x, qε(x, ε), q′

ε(x, ε)) dx = extreme (D.3)

under the tunable parameter ε. For K(ε) to be extremized, and this
must occur for the smallest ε, so for ε = 0,

∂K
∂ε

∣
∣∣
∣
ε=0

= 0. (D.4)

We can now expand this differentiated form:

∂K
∂ε

=
∫ f

i

(
∂L

∂qε

∂qε

∂ε
+ ∂L

∂q′
ε

∂q′
ε

∂ε

)
dx. (D.5)

The second term here, using integration by parts (u = ∂L /∂q′
ε , and

dv = ∂2qε/∂x∂ε, in the conventional notation), is
∫ f

i

∂L

∂q′
ε

∂qε′

∂ε
dx =

∫ f

i

∂L

∂q′
ε

∂2qε

∂x∂ε
dx

= ∂L

∂q′
ε

∂qε

∂ε

∣∣
∣
∣

f

i
−

∫ f

i

∂qε

∂ε

d
dx

(
∂L

∂q′
ε

)
dx. (D.6)

Since ∂qε/∂ε =η(x), which vanishes in the limit points, the first term
vanishes. So, Equation D.5 reduces to

∂K
∂ε

=
∫ f

i

[
∂L

∂qε

∂qε

∂ε
− ∂qε

∂ε

d
dx

(
∂L

∂q′
ε

)]
dx

=
∫ f

i

∂qε

∂ε

[
∂L

∂qε

− d
dx

(
∂L

∂q′
ε

)]
dx

=
∫ f

i
η

[
∂L

∂qε

− d
dx

(
∂L

∂q′
ε

)]
dx. (D.7)
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η(x) is arbitrary, only forced to vanish at end limits, and ∂K/∂ε

vanishes at ε = 0, where this holds. Therefore,

∂L

∂q
− d

dx

(
∂L

∂q′

)
= 0 (D.8)

This is the Euler-Lagrange equation. The solution here depends on
the Lagrangian. Lagrangians are usually chosen with some thought,
being part of the action functional. The approach by which we The Lagrangian is magical! It

represents the evolution of a
system that may consist of many
particles in the configuration space.
As time evolves, this point in the
configuration space representing
the system moves about. A single
function—the Lagrangian—suffices
to describe it. The equivalent of this
is the Hamiltonian—the symmetrized
picture—where one interprets it
as phase space. The coordinate q
is a generalized coordinate, and q′
another independent generalized
coordinate (a  ̏velocity˝). One
interpretation for the Lagrangian
is of the difference between kinetic and
potential energy for most problems of
classical mechanical interest. Along
the path, it is these energy forms that
are being exchanged. The magic is
that if a Lagrangian process contains
continuous symmetry, then there is a
conservation law for that symmetry.
This is the remarkable Noether’s
theorem. If the Lagrangian is invariant
under time translation, then energy
is conserved. If invariance exists
in angular rotation, then angular
momentum is conserved about that
axis.

arrived at it is by using ε as a tunable perturbation parameter that
introduced a variation. In general, this approach of introducing a
variational parameter is an example of the calculus of variation.
Perturbation theory uses this variational approach to find the
corrections of different order.

Newton’s second law is a trivial example of the use of the
Lagrangian. L = (1/2)mq′2 − V(q). So,

∂L

∂q′ = mq′, and
∂L

∂q
= − ∂V

∂q
. (D.9)

So, from Equation D.8,

mq′′ = − ∂V
∂q

, (D.10)

our desired result.
We take now an information-centric example to demonstrate the

efficacy of the use of the Lagrangian. This is an entropy maximization
problem. So, we are interested in

∫
L dx = maximum, with

L = − p(x) ln p(x) + λ1p(x) + λ2p(x)f (x), (D.11)

where p(x) is a probability density of function of a distribution whose
entropy is the first term in this equation. f (x) is a  ̏kernel˝ function.
The derivatives with respect to the generalized coordinates p and p′

are
∂L

∂p
= −1 − ln p + λ1 + λ2f (x), and

∂L

∂p′ = 0. (D.12)

The Euler-Lagrange equation then leads to

−1 − ln p(x) + λ1 + λ2 f (x) = 0

∴ p(x) = A exp[λ2 f (x)], (D.13)

where A is a normalization constant. In maximum entropy problems, the
probability density function (and also the probability mass function) will
always have an exponential form.
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E
A thermodynamics primer

The classical thermodynamic view has its foundations in Energy changes in chemical reactions,
for example, are changes arising
from changes in bonding, which
are quantum-mechanical in nature.
We did not yet know at the time of
the introduction of thermodynamic
notions about the electromagnetic
interactions at work, which have
their own energy consequences. All
this new learning can be introduced
as modifications. Electrochemical
potential instead of chemical potential
is one example of this. And so is
Shannon, algorithmic, entanglement
and other forms of entropies.

attempts at understanding the thermomechanical energy conversion.
In these conditions, a classical view suffices, with the quantum-
mechanical consequences appearing hidden away in the mechanical
energies, and motion appearing as correspondence emergence of the
quantum-mechanical basis.

E.1 Classical thermodynamic view

The basic classical thermodynamic identity, which ignores
the electromagnetic energy form as well as quantum-mechanical
interactions, so starting with classical notions, is

dU = T dS − P dV + μ dN. (E.1)

Changes in the internal energy U arise from independent changes
in the entropy S, the volume V and the number of particles N.
Infinitesimal changes lead to macroscopic extensive properties of the
temperature T, pressure P and chemical potential μ as

T = ∂U
∂S

∣∣
∣
∣
V,N

, −P = ∂U
∂V

∣∣
∣
∣
S,N

, and μ= ∂U
∂N

∣∣
∣
∣
S,V

. (E.2)

If, in a particular thermodynamic analysis environment, the
temperature T is fixed, then it is useful to change from the (S,V,N)

independent variables to (T,V,N) or (T,P,N). For the former,
Legendre transformation lets us write

dU = d(TS) − S dT − P dV + μ dN

∴ d(U − TS) = dF = − S dT − P dV + μ dN. (E.3)

F = U − TS is the Helmholtz free energy. If T, V and N are fixed,
Helmholtz free energy is an invariant.

If, in a particular thermodynamic analysis environment, the
pressure P is fixed, then Legendre transformation lets us write
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d(U − TS) = −d(PV) − S dT + V dP + μ dN

∴ d(U − TS + PV) = dG = − S dT + V dP + μ dN. (E.4)

G = U − TS + PV is the Gibbs free energy. If T, P and N are fixed, the
Gibbs free energy is an invariant.

S and V are extensive variables. They depend on the size of the
system. T and P are intensive variables. They are independent
of size. If the number of particles N is kept fixed, then Legendre
transformation lets us write

d(U − TS) = d(μN) − S dT − P dV − N dμ

∴ d(U − TS − μN) = d�= − S dT − P dV − N dμ. (E.5)

�= U − TS − μN =F − μN is the thermodynamic potential of
the system. If T, V and μ are constants, thermodynamic potential is
an invariant. � is a measure of the variety of possibilities by which,
characterized by T, V and μ can be rearranged without any change in
it. This lets us write the definition of entropy as

S = − ∂�

∂T

∣
∣∣
∣
V,μ

, (E.6)

together with

P = − ∂�

∂V

∣∣
∣
∣
T,μ

, and N = − ∂�

∂μ

∣∣
∣
∣
T,V

. (E.7)

If one changes the scale of a system by λ, all extensive quantities
(U, F , G and �) will change proportionally. This requires the scaled
free energy to follow

λU = U(λS,λV,λN)

∴ U = lim
λ→1

dλU = lim
λ→1

[

λS
∂U
∂S

∣∣
∣
∣
V,N

+ λV
∂U
∂V

∣∣
∣
∣
S,N

+ λN
∂U
∂N

∣∣
∣
∣
S,V

]

= TS − PV + μN, (E.8)

and the other thermodynamic functions as

F = −PV + μN,

G = μN,

� = −PV, and

H= U + PV. (E.9)

In this list, we have added another energy function, the enthalpy, H,
which is often useful in exothermic conditions.

From Equation E.9, one important conclusion useful in analysis of
semiconductors is

μ= G
N
. (E.10)
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The chemical potential, as defined here, is the energy ( ̏mechanical˝)
per particle for these classical particle conditions. These relationships
also define

cV = ∂U
∂T

∣
∣∣
∣
V,N

= ∂U
∂S

∣
∣∣
∣
V,N

∂S
∂T

∣
∣∣
∣
V

= T
∂S
∂T

∣
∣∣
∣
V,N

, and

cP = ∂(U − PV)

∂T

∣∣
∣
∣
P,N

= ∂(U − PV)

∂S

∣∣
∣
∣
P

∂S
∂T

∣∣
∣
∣
P,N

= T
∂S
∂T

∣∣
∣
∣
P,N

. (E.11)

cV is the specific heat at fixed volume and particles, and cP is the
specific heat at fixed pressure and particles.

The macroscopic thermodynamics can now be related to the
statistical properties of microscopic particles. In Appendix F, there is
a more definitive view of the probability of a state |n〉 of an ensemble
being occupied by the particle. If the energy of the state is En, then
this occupation probability is

pn = p(|n〉)= A exp
(

− En

kBT

)
= A exp(−βEn), (E.12)

where β = 1/kBT is another measure of inverse temperature. kB

is Boltzmann’s constant (1.38 × 10−23 J/K). Normalization of
probabilities over the entire system forces

∑

n

pn = 1 ∴ 1
A

=
∑

n

exp(−βEn)= Z, and

pn = exp(−βEn)

Z
, (E.13)

where Z is the partition function.
Any macroscopic quantity Q will have a macroscopic thermody-

namic expectation of 〈Q〉= ∑
n Qnpn, with Qn being the measure of

the quantity when the system exists in the state |n〉. For example, the
expectation for the free energy U is

〈U〉=
∑

n

Unpn. (E.14)

Entropy’s definition is through the expectation for − ln p(|n〉),
which is the only function that satisfies the requirements on the
additiveness of entropy function and of the normativeness of
probabilities. So, entropy is

S = −〈ln p(|n〉)〉= − 〈pn ln pn〉= − 1
Z

∑

n

exp(−βEn) ln pn

= β〈U〉 + lnZ

∴ F = U − TS = − T lnZ. (E.15)

When N varieties of particles exist—different chemical species, for
example—then one may write a grand partition function
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ZG =
∑

N

∑

n

exp
[−β(EN,n − μN)

]
, (E.16)

with the thermodynamic potential being

�(T,V,μ)= − T lnZG. (E.17)

E.2 Implications for bosons and fermions

With quantum-mechanical constraints, this thermodynamic-
statistical view needs revision. Quantum-mechanical particles or
quasiparticles are subject to a variety of constraints. For bosons and
fermions, this is |ψ(1, 2)〉 = ±|ψ(2, 1)〉, that is that the wavefunction
changes sign under particle exchange if it is a fermion, such as
an electron. This is equivalent to the Pauli exclusion that no two
fermions can have identical quantum numbers. Fermions and bosons are two special

cases of the more general relationship
|ψ(1, 2)〉= exp(iθ)|ψ(2, 1)〉 for anyons.
Fermions and bosons are two special
cases of the general quasiparticle
description.

In any quantum state |k〉, there can be nk particles, and this
collection in this state characterized by k and nk has an energy of
Ek,nk = Eknk. The partition function of the state |k〉 is

Zk =
∑

nk

exp[−β (Eknk − μnk)] =
∑

nk

{exp[−β (Ek − μ)]}nk ,

with the grand partition function

ZG =
∏

k

Zk. (E.18)

nk is not restricted for bosons. Any state |k〉 can be occupied by
any number of bosons, since the particle wavefunction is allowed to
remain the same under particle exchange. The sum therefore has an
asymptotic upper limit of infinity. So,

Zk = 1
1 − exp[−β (Ek − μ)]

,

with exp[−β (Ek − μ)] < 1 for bosons. (E.19)

The expectation for the number of particles in state |k〉 is the Bose-
Einstein distribution function of

〈nk〉= − ∂�k

∂μ
= T

∂Zk

∂μ
= 1

exp[β(Ek − μ)] − 1
. (E.20)

nk ∈ (0, 1) for fermions. So,

Zk = 1 + exp[−β (Ek − μ)] ,

�k = −T ln
{
1 + exp[−β (Ek − μ)]

}
, and

∴ 〈nk〉 = −∂�k

∂μ
= T

∂Zk

∂μ
= 1

exp[β (Ek − μ)] + 1

for fermions. (E.21)

This is the Fermi-Dirac distribution function.
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When applying the Fermi-Dirac distribution and this thermo-
statistic view to electrons or holes, one must account for the electro-
magnetic energy. This is brought in through the electrostatic potential
ψ . The potential now transforms from the chemical potential to the
electrochemical potential, which incorporates through the chemical
and electrical potentials. Generally, EF for this electrochemical energy
is the preferred symbol for this engineering-centric view, although
sometimes one sees μ also being deployed with a generalization of
the definition. Electrons have charge, and this must be accounted for,
together with their numbers, N.
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F
Maxwell-Boltzmann distribution
function

States in thermodynamic equilibrium conditions can
be described more easily, since there exist extensive and intensive
variables that do not change with time. Isolate a system that was in To a limited extent, small deviations

with their linear response—the near-
equilibrium conditions—too can be
analyzed relatively easily because of
insubstantial changes in the states
and their occupation as described
by the distribution function. Strong
nonequilibrium has much more
richness in its dynamics—various
facets of local interaction—than the
near-equilibrium linear response.

equilibrium from its environment—stop the particles and energy
exchange—and the variables shall remain unchanged. If they do, then
it was in a stationary condition, not a thermal equilibrium condition.

The time-independent equilibrium distribution f (r,k) is inde-
pendent of the state of the system in the past. This equilibrium
distribution f (r,k) is a measure of the complete description of
q,p ≡ r,k through f (r,k; t) dr dk, where dr dk = ∑

i dri dki. So, if N
is the total number of particles,

N =
∫

�

f (r,k) dr dk. (F.1)

Expectations of any observable A then are given by

〈A 〉=
∫

�

f (r,k)A (r,k) dr dk. (F.2)

The energy in the system, whose operator is the Hamiltonian
H (r,k), is

E = 〈H 〉=
∫

�

f (r,k)H (r,k) dr dk (F.3)

For convenience, one may use a normalized phase-space volume
consisting of a unit volume of real space, and the entire momentum
space/wavevector space. Then, the observable for particle count is

N = n =
∫

k,m3
f (r,k) dr dk. (F.4)

n is now the per unit volume in SI units.
In thermal equilibrium, this distribution comes about independent

of its past.
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This is where the connection between thermodynamics and
statistical mechanics becomes clearer. f is probabilistic in the sense
that it exists averaged over all of these past independent conditions.
Take two particles 1 and 2. The independence from the past says that
the joint probability N2p(r1,k1; r2,k2) = Np(r1,k1)Np(r2,k2), which
is f (r1,k1)f (r2,k2). If there exist correlations, because of interactions
between particles, then there are still relationships in probabilities
that will translate into the mutual information contained within the
correlations. The joint probability, as a product of independent prob-
abilities, reflects the particles’ independence; they are classical and
not tethered to each other in any way. When energy and momentum
exchange take place during a scattering event between the particles,
that is, that two different coordinate configurations—pre- and post-
scattering—result in the thermal distribution, it is a consequence of
the conservation of probability. This states

f (r1,k1; r2,k2; · · · ) = f (r1,k1)f (r2,k2) . . .

= f (r′
1,k

′
1; r

′
2,k

′
2; . . .) = f (r′

1,k
′
1)f (r

′
2,k

′
2) · · · . (F.5)

For joint probabilities to add, when the function f as the statistical
distribution of individual arrangements multiplies, probabilities and
f must have a logarithmic/exponential relationship. For energy, this
distribution function f (H (r,k))= f (ε) for the specific arrangement.
Conservation of energy implies that ε1 + ε2 = ε′

1 + ε′
2 pre- and post-

scattering. So, f (ε)= exp(βε + b), which satisfies this constraint:

In information mechanics (see
S. Tiwari,  ̏Quantum, statistical
and information mechanics: A unified
introduction,˝ Electroscience 1,
Oxford University Press, ISBN
978-0-198-75985-0 (forthcoming),
and S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017)), you see this
same argument in play in the Shannon
entropy—the average entropy—of a
bitstream.

f (ε1)f (ε2) = b2 exp [β(ε1 + bε2)]

= exp(2b) exp
[
β(ε′

1 + bε′
2)

] = f (ε′
1)f (ε

′
2). (F.6)

This equation is a representation of the partitioning of the various
configurations possible in thermal equilibrium. The constants must
follow from the constraints of the thermodynamic equilibrium,
which, for classical distributions, is that there is an expectation value
of kBT/2 of energy for each of the N × 2×ν degrees of freedom for
the N particles, with two canonical vector coordinates representable
in ν dimensions. Equation F.2 provides these constraints through the
number of particles in the ensemble and the total energy constraint.
These are

N = exp(b) +
∫

exp(βε) dr dk, and

NνkBT =
∫
�

H (r,k) exp[βH (r,k)] dr dk
∫
�
exp[βH (r,k)] dr dk

νN = − Nν

β
. (F.7)

Recall that the equipartition of energy holds for a quadratic

For a classical equipartition of energy,
see S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017), and the
appendix devoted to it. In equilibrium,
each harmonic degree of freedom
has an average energy of kBT/2.
Equipartition of energy, together
with this quadratic connection, is also
discussed in S. Tiwari,  ̏Quantum,
statistical and information mechanics:
A unified introduction,˝ Electroscience
1, Oxford University Press, ISBN
978-0-198-75985-0 (forthcoming).

dependence on the canonical coordinates in the Hamiltonian. The
second of these equations leads to β = − 1/kBT, and the first gives a
constant prefactor. Both are related to the normalization.
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The Maxwell-Boltzmann distribution then follows as

f (r,k)= N
exp[−H (r,k)]

∫
�
exp[−H (r,k)] dr dk

. (F.8)

The prefactor is the equivalent of probability normalization over the
various partitions of the system, and the temperature dependence
arises in the occupation of states that must appear in both the
numerator and the denominator, determining the probabilities as
a function of temperature and therefore the expectation for energy.
This is the end point of thermal equilibrium but does not speak to
the dynamics of how it is approached. Its assumptions include, in
particular, the complete independence of probabilities of states, so
absolutely no correlations and hidden connections. And, through this
viewpoint, and a different approach using probabilistic and classical
statistical notions, we arrived at some of the same results as those in
Appendix E.



OUP CORRECTED PROOF – FINAL, 17/8/2020, SPi

G
Spin and spin matrices

Spin, representing spin angular momentum’s quantization,
is as fundamental a property of a quantum particle as is its charge or
mass. For electrons, the spin quantum number is s = 1/2, representing
an angular momentum of (1/2)h̄, and z is the chosen direction for spin
angular momentum for which [S2, S] = 0, [Sx, Sy] = − (h̄/i)Sz, and
S2 = S2

x + S2
y + S2

z is a positive self-adjoint operator with S2 ≥ 0 and
where S2 ≥ S2

z holds. It is useful to introduce here, as in many other
quantum-mechanic operations where one moves up and down a
ladder, S± = Sx ± iSy as two non-Hermitian operators that also satisfy
[S±, S2] = 0.

Since s = 1/2, its z component has a secondary spin quantum
number ms = 1/2, −1/2. Two eigenvalues are possible, and we have
corresponding eigenfunctions |ζ±〉—spinors—that satisfy

S2|ζ±〉 = (S2
x + S2

y + S2
z)|ζ±〉= 1

2

(
1
2

+ 1
)

h̄2|ζ±〉,

Sz|ζ±〉 = ±1
2

h̄|ζ±〉,
S+|ζ+〉 = 0,

S−|ζ−〉 = 0,

S+|ζ−〉 =
√

1
2

(
1
2

+ 1
)

+ 1
2

(
−1

2
+ 1

)
h̄|ζ+〉 = h̄|ζ+〉, and

S−|ζ+〉 =
√

1
2

(
1
2

+ 1
)

− 1
2

(
−1

2
− 1

)
h̄|ζ−〉 = h̄|ζ−〉. (G.1)

The matrix elements of Sz and S± are over the |ζ±〉 two-
dimensional subspace. So, they are 2 × 2 spin matrix operators,
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Sz = h̄
2

[
1 0
0 −1

]

,

S+ = h̄
2

[
0 1
0 0

]

,

S− = h̄
2

[
0 0
1 0

]

, where

|ζ+〉 =
[

1
0

]

, and |ζ−〉=
[

0
1

]

. (G.2)

Since

Sx = 1
2
(S+ + S−)= h̄

2

[
0 1
1 0

]

, and

Sy = i
2
(S+ + S−)= h̄

2

[
0 −i
i 0

]

, it follows that

S2 = S2
x + S2

y + S2
z = 3

4
h̄2

[
1 0
0 1

]

, (G.3)

which is diagonal, as expected. We have created here the matrix
representation of the spin 1/2 operators and their eigenfunctions.

Pauli matrices, written as

σ x(= X) =
[

0 1
1 0

]

,

σ y(= Y) =
[

0 −i
i 0

]

, and

σ z(= Z) =
[

1 0
0 −1

]

, (G.4)

allows one to express the spin operator as S = (h̄/2)σ . Pauli spin
matrices are also often referred to by X, Y and Z, and often in their
collection we include the identity matrix

I=
[

1 0
0 1

]

(G.5)

Pauli matrices anticommute, that is,

σ xσ y + σ yσ x =σ xσ z + σ zσ x =σ yσ z + σ zσ y = 0; (G.6)

the commutation relations are

[σ x,σ y] = 2iσ z, [σ y, σ z] = 2iσ x, and [σ z,σ x] = 2iσ y, (G.7)
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so that
σ xσ y = iσ z, σ yσ z = iσ x, and σ zσ x = iσ y. (G.8)

One can interpret these to cause a spin effect that is 4-fold degen-
erate for a free electron. The eigenfunction solutions for a one-
dimensional Hamiltonian problem are

|ψk↑(z)〉 = 1

(2π)3/2 exp(ik · z)|ζ+〉,

|ψk↓(z)〉 = 1

(2π)3/2 exp(ik · z)|ζ−〉,

|ψ−k↑(z)〉 = 1

(2π)3/2 exp(−ik · z)|ζ+〉, and

|ψ−k↓(z)〉 = 1

(2π)3/2 exp(−ik · z)|ζ−〉. (G.9)
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H
Density of states

To understand the density of states, that is, the normalized
number of states in E(k) available for occupation, in units of per
unit energy and unit space, we need to look at the constraints on the
electron—as a particle—in a box. The box may be large, consisting of
a large number of unit cells as at microscale, or it may be confined
in one or more dimensions of nanoscale. We will still assume that
the effective mass description is valid. This implies that the particle
feels an environment across many unit cells and therefore the Bloch
description is valid over the box.

Consider such a particle in a box. The particle is confined in it. Its
wavefunction is a standing wave with nodes at the boundaries of the
box, with an infinite potential barrier:

(

− h̄2

2m∗ ∇2 + V

)

ψ = Eψ , (H.1)

where ψ is the wavefunction, V is the potential and E is the energy;
it describes the quantum mechanics of the system, that is, its solution
provides us with the particle wavefunction useful for determining the
observables of the system, including the energy that the particle states
can have. Since this is a second-order differential equation, one can
write a solution in the form

Figure H.1: When confined, here
in the z direction, with infinite
energy barriers, the states available
for occupation are quantized in
momentum and are separated
in energy. This figure shows the
wavefunction formed as a standing
wave confined between the barriers
and composed of two counter-
propagating waves of wavevector
kz in the confinement direction z.

ψ(r, t)=A exp [+i(k · r − ωt)] , (H.2)

with the ks quantized appropriately to the boundary conditions.
The solutions are standing waves—confined states—formed from
opposite and equal k wavevector solutions.

For each confined direction, k = ± nπ/L, where n = 1, 2, 3, . . . .
Figure H.1 shows this confinement in the z direction. The standing
wave is formed by two counter-propagating waves of quantized
opposite wavevectors. These wavevectors are uniformly distributed.
This relationship implies that the larger the confined space is, the
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smaller the wavevector spacing and the energy spacing of the state,
since energy (kinetic) is E = h̄2k2/2m∗. At large dimensions, such
as for a wafer, or a classical dimension, such as source-to-drain
spacing, this L dimension is large—the states are close together,
much closer than thermal energy (kBT), except at near absolute zero
temperatures—and one may view the distribution of the states as
being quasi-continuous. The particle is confined to this large crystal
box, and the electrons easily propagate in directions where the states
are relatively unconfined. In the example shown in Figure H.1, this
freedom exists in the x and y directions. In the confined direction,
that is, in a dimension where the L is now quite small—of the de
Broglie wavelength scale of the electron—the movement is restricted
in the direction of this confinement. In Figure H.1, the electron’s
probability distribution’s peak is displaced only marginally when
moving from the ground to the first state—within the small, confined
well dimension, with kx and ky remaining constant. The electron
remains confined in the z direction, but it just spreads out a little more
within the well. This simple picture for the allowed states for a single
effective mass m∗ holds true whether L is large or small. If it is large,
the states are close together, and an electron may travel around in the
real and reciprocal space under the influence of energetic interactions.
If it is small, it is restricted from moving in that direction. It is a
standing wave.

Density of states is a measure of the number of states per unit
wavevector or energy, in unit spatial coordinates. It is three-
dimensional (G3D(E) or G3D(k)) if unconfined, two-dimensional
(G2D(E) or G2D(k)) if confined in one dimension and one-dimensional
(G1D(E) or G1D(k)) if confined in two dimensions. It is the number of
freedom of movement directions that are employed for the subscript.
If all directions are confined, it cannot move, the expectation of the
spatial coordinate is a constant and it is confined with no states
nearby for motion at dimensions larger than the wavelength of the
particle.

When one of the dimensions is confined, z in our example, the
wavevector of this confined mode is kz = ± nzπ/Lz. These states
are π/Lz apart. For confinement at a small L, these may be quite
separated, but, with a larger L, they come closer together. The state
density in k-space is

dnz

dkz
= gs

1
2

Lz

π
, (H.3)

which represents a continuum approximation to the discrete
�nz/�kz. Here, gs = 2 is the spin degeneracy (s = 1/2; ms = ± 1/2),
which accounts for electrons of opposite secondary spins—a different
quantum number—occupying the specific nz quantum number states.
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The factor 2 in the denominator indicates that both a positively and
a negatively directed k state are required to make the standing wave
shown in Figure H.1. By normalizing to unit dimensions, we obtain

dnz/L
dkz

= gs
1

2π
, (H.4)

which states that the per unit length number of states per unit
reciprocal wavevector varies as gs/2π . No effective mass enters
here. This expression just speaks to the fitting of waves in a space.
This simple relationship states that, for each confinement direction,
the density of states has a 1/2π factor arising from a standing
wave in k-space. In determining the density of states for different
dimensionalities of confinement, the spin degeneracy is common, and
this 1/2π factor arises from each confining dimension. The density of
states in ν-dimensional wavevector space is simply written as

Gν = 1
(2π)ν

. (H.5)

The unconfined states, or states where the separation in energy
is small compared to kBT, provide for electron movement through
a viscous or free flow of electrons in response to an energy input to
the system. We can also express the density of state relationship in
energy. The density, in general, normalized to unit spatial extent and
energy, is

G (E)= dn
dE

= dn
dk

dk
dE

. (H.6)

The density of states in k-space and E-space can be related, since
dE/dk is known through the Schrödinger equation’s dispersion solu-
tion of E = h̄2k2/2m∗ in the isotropic constant mass approximation
used here.

Figure H.2: The constant energy
surfaces in the reciprocal space. The
figure shows only a quadrant of the
three-dimensional space. For three
dimensions, the region of allowed k
is in the spherical shell for a spread
dE in energy at E. When confined in
the x direction to kx = k0

x, the states are
in a circular, two-dimensional, areal
slice. When additional confinement
is introduced to z, so kz = k0

z , the
states allowed are along the extended
line shown, with one particular

state,
(

k0
x, ky, k0

z

)
, identified within

the dE span at energy E. At this
energy, there is an additional reverse
momentum state at k0

x, −ky, k0
z , which is

the reflection point of the (kx, kz) plane
running through the origin.

We now extend this simple description to different degrees of
freedom, as shown in Figure H.2. In the wavevector coordinate space
shown in Figure H.2, the 3D unconfined description corresponds to
finding the number of states within a shell of sphere, at energy E, in
the band dE for the density of states. In the 2D description, with one
confinement direction, it is the number of states within a slice of this
spherical shell where kx, ky or kz is discretized. A section of the shell—
a planar ring—is shown in the plane intersection, assuming that the x
direction is the confinement direction. In the 1D description, with two
confined directions, it is the number of states along the intersection
line of these quantization planes. This is the line along which the
one-dimensional freedom of movement exists. In Figure H.2, the
state k0

x, −ky, k0
z is shown in the band dE at energy E, where k0

x and

k0
z are quantized by the strong dimensional confinement in those

orientations.
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The densities of states that relate to the volume of the shell in a 3D
distribution, to the area of a cross-section in a 2D distribution and
along a line in a 1D distribution, within this single mass description,
are as follows:

No confinement, 3 dimensions of freedom:

G3D(E)= 2
1

(2π)3
4πk2dk

dE
= 1

π2h̄3

√
2m∗3E; (H.7)

1-dimension confined, 2 dimensions of freedom:

G2D(E)= 2
1

(2π)2

2πk‖dk‖
dE

= m∗

πh̄2 ; and (H.8)

2-dimensions confined, 1 dimension of freedom:

G1D(E)= 2
1

2π
2dky

dE
= 1

πh̄

√
2m∗

E
. (H.9)

These relations establish the densities of states for electrons that
have some freedom of movement while being circumscribed due to
confinement in some of the degrees of freedom. When these states
are occupied by electrons, the permitted freedom of movement
leads to current when an external force is applied on the system. It
is because of this density of states that electrons are available with
freedom of movement when the energy separation—a kinetic energy
separation—of the states is small. The channels of conduction arise in
the free directions of movement. The density of states determines the
channels available to give rise to current.

Figure H.3 shows this density of states in terms of energy. In the
3D distribution, assuming isotropic constant mass, a constant spatial
distance exists between all the k states. In G3D, since the volume of the
spherical shell of width dE at energy E has this equispaced density,
the number of states increases as the surface area per radius in the
k-space, that is, with k, or the square root of energy. In G2D, which
is a planar section of the shell, perpendicular to the direction of the
confinement, the number of states increases at the same rate as the
allowed ks, so the density of states in energy is a constant. Along a
line, in the G1D(E) distribution, the number of states per unit length
is a constant, the k spacing varies as

√
E and, therefore, in energy

distribution, at higher energies, the density of states varies inversely
as

√
E.

In the two-dimensional system, the freedom of movement is in two
directions. One direction is confined and forms a ladder consisting
of subbands of constant G2D density. The argument associated with
Figure H.1, originating in Schrödinger equation, applies to both the
confined (L small; of the order of the de Broglie wavelength) and
the unconfined (L large) limits. For the small-length case, what is
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Figure H.3: The 3D, 2D and 1D density
of states, that is, the normalized to
the unit spatial dimension density
of the states with ±1/2 secondary
spin states available for conduction.
Part (a) is for 3D, (b) for 2D and (c)
for 1D. In the G2D(E) distribution,
the confinement arises from one
dimension of confinement, resulting in
a ladder from the related discretized
ks shown here as step function in
(b). If the confinement dimension
expands, the steps merge closer, and
their distribution approaches that
seen in a 3D distribution of states. The
1D density of states, G1D(E), arises
from two dimensions of confinement
and approaches 2D when one of the
confinement dimensions is relaxed,
and 3D when both are relaxed.required is that the effective mass approximation hold, and that

means that the box is at least a few unit cells long for the electron
to be aware of the crystalline environment it is in, as reflected in the
effective mass. The integrated number of states in these subbands
over the energy range of interest provides the number of states
available for conduction in the two dimensions. The ladder of
multiple subbands has as its minimum the quantized wavevectors
of the confined direction. If the confinement dimension is relaxed, the
subbands come closer, and, in the limit, the distribution approaches
a three-dimensional density of states. Confine one more dimension,
and it is now a one-dimensional system. The freedom of movement
now is in the one remaining unconfined direction. The density of
states available for the transport in this unconfined direction varies
as G1D, and integrating it, for all the subbands over the energy range
of relevance, provides the total number of states available for one-
dimensional conduction.
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Oscillator strength

Coupling of states, and specifically transitions between them, are
characterized through the matrix element that relates the state from
which the transition takes place, the state to which the transition is
taking place, and the perturbation under which this transition occurs.
In any optical measurement, one measures the energy sweep as well
as the strength of the optical coupling of the transition, which is then
useful for any transition- or coupling-based calculation. Oscillator
strength, which is normalized, is such a measure. As with much
of quantum mechanics, these were first explored in atoms, where
spectral lines show the transitions, whether in an electromagnetic
absorption process or in an emission process. The spectral width
of a line is not just a function of the frequency or energy of the line
but also a function of a response wherein damping will exist, since
an oscillating dipole radiates, and there may very well be other
loss mechanisms. Damping, in general across systems, will arise in
multitude of forms. An electron has a leakage rate out of a quantum
well. Atomic oscillation in the crystal—phonon—has anharmonicity
in a multitude of causes. The spectral linewidths depend on the
losses, for absorption, or on gain, for the emission process. The
idealization of absorption as in a harmonic oscillator model with
this spectral measure versus the reality of actual absorption, again
via the observed spectral linewidth, in thermodynamic equilibrium
with occupation statistics accounted for, is an oscillator strength
for absorption. Likewise, one may define an oscillator strength for
emission. These measures are certainly important in understand-
ing the luminescence properties of atoms and molecules, where
degeneracies of states also appear as an additional wrinkle. So,
this is certainly relevant for organic semiconductors. For inorganic
semiconductors, the degeneracies of levels are the same, but changes
in oscillator strengths will arise as the dimensionality of systems
changes, changing in turn the coupling of states.
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We discuss the bulk semiconductor case, as well as the deeper
meaning and implications of oscillator strength and oscillators.

We must relate to how the perturbation evolves the state from
which the transition is taking place and its matching to the state that
one is calculating the transition to. Symmetries will matter; how
strongly the perturbation affects and changes the symmetry and form
of that state will also matter. So, state coupling within a band where
the envelope function changes ever so slightly with the wavevector
will be strong. State coupling between differently indexed bands is
much weaker because of orthogonality. k · p theory (see Chapter 4)
illustrates many of these characteristics. When states couple due
to light-initiated perturbation, it is the vector potential of the light,
which maps to the field strength of the light, that enters via the form
A · p (see Chapter 12). These two examples show the importance of
the matrix element.

For k · p, we found the matrix element consequence for the
envelope function as 〈un0(r)|k · p|ul0(r)〉, as derived in Equation 4.33,
which, if written using Bloch functions for the proper description of
the state, is 〈k′|p|k〉. For light, A · p, if you will, the matrix element
was derived as

H ′
k′k = − q

m0
A · p, (I.1)

as can be seen through Equation 12.6. Both are momentum based.
Why? One way to look at this is by probing matching. Energy and

Another important question here is
why all this emphasis on the oscillator,
and particularly the quantum oscillator
notion. An isolated harmonic oscillator
can be viewed as the simplest form
of a stable entity that conserves a
state and its energy. It is a stationary
state of constant probability, but one
where kinetic and potential forms
of energy are still being exchanged.
Any canonical coordinate change
from its expectation value brings
about restorative force, and it is
conservative. Classically, the second
power of displacement via F = −∇rU
is restorative, with the force pointed
in the proper direction. A first
power, or any odd power, will not
do. So, harmonic oscillators are
very fundamental units of stability.
Photons, phonons, et cetera, therefore
draw their description from the
harmonic oscillator basis. See S. Tiwari,
 ̏Quantum, statistical and information
mechanics: A unified introduction,˝
Electroscience 1, Oxford University
Press, ISBN 978-0-198-75985-0
(forthcoming), for a broader discussion
of this and related segues.

momentum matching both must exist during interaction. Energy,
we take care of naturally, often through the Dirac delta function in
the calculation. Momentum matching, however, has an additional
characteristic that is first order, and therefore of phase or position
during motion. An oscillator has the highest kinetic energy and
momentum at its expectation position, and this vanishes as one
moves further away. If two oscillators couple, the coupling will
be most efficient if it maintains itself well coupled throughout the
excursion, not just at the mean or, at the farthest, through an impulse.
So, the momentum operator and its matrix element pk′k are the
proper descriptors of this strength of oscillator coupling.

Think of the following classical
analogy here. On the playground
swing, one swings best when we
use configuration change—bending
at the knee to input the force and
momentum change on the way down
of the swinging motion—and breaking
symmetry on the way up. And we
better change the timing of this motion
over this half of the cycle to get the
swing to go higher and higher until
disaster strikes at least once in the
childhood, due to nonlinearities that
one was not aware of. The chain has no
compressive strength.

The oscillator strength is

fk′k = 2|pk′k|2
m0Ek′k

, (I.2)

which led to the relationship for effective mass in Equation 4.35,
which can be rewritten as

Enk = En0 +
∑

ij

h̄2

m∗
ij

kikj (I.3)
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for multiple bands, and where

1
m∗

ij
= 1

m0
δij + 2

m0

∑

m �=n

〈n0|pi|m0〉〈n0|pj|m0〉
En0 − Em0

. (I.4)

One can now see the tensorial properties of the effective mass due
to coupling of bands. Holes have significant such coupling and
repulsion of bands, and anisotropy follows. This equation also shows
that a narrow bandgap—the difference between conduction and
valence band energies—will lead to a lower effective mass.

Equation I.4 also leads to

fosc =
∑

m �=n

fmn = 1 − m0

m∗
e

(I.5)

as the sum rule for spherical conduction bands. This is the oscillator
strength for transitions within the conduction band.

Since direct transitions of interest are often in the center of the
Brillouin zone, we can estimate. The largest effect in Equation I.4
arises from bands that are close by. Direct transitions arise from light-
hole-band, heavy-hole-band and split-off band states. For valence
bands, the k · p approach again has three terms of interactions;
however, only the one from within the same band will dominate.
So, it is fairly accurate to employ only the major terms. This means
that the oscillator strength for a direct valence-to-conduction band
transition is

fosc ≈ 1 + m0

m∗
h

. (I.6)

The positive sign is the result of the electron mass being the negative
of the hole mass. Using Equation I.2, this states that

|pcv|2
m0

= Eg0

4

(
1 + m0

m∗
h

)
, (I.7)

where Eg0 is the zone center energy gap.
The harmonic oscillator connection, and the transition due to a

perturbation, which may arise in many causes—not just electromag-
netic through light, but also Coulomb, as in the band formation in the
crystal—causes the oscillator strength to appear in many places in
solid-state phenomena.

An example is electronic polarizability. The dipole moment in the
presence of a local electric field of Elocal follows from the equation of
motion as

p0 = − ez0 = e2Elocal

m0(ω
2
0 − ω2)

, (I.8)

written here as an undamped response, and where we can again see
the lineshape of the idealized harmonic oscillator. In the quantum
approach, the electronic polarizability appears as
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αelectronic = e2

m0

∑

j

fij
ω2

ij − ω2
, (I.9)

where ωij are the various transition energies of the various oscillators
composing the system.

When damping is present, in any quantum system consisting of
excited states indexed by i with ωi0 = (Ei −E0)/h̄, the total polarization
will be

P =E e2N
m0�

∑

i

fi
ω2

i0 − ω2 − iγ iω
, (I.10)

and therefore the relative dielectric constant arising in this electronic
polarizability follows as

εr = 1 + e2N
m0ε0�

∑

i

fi
ω2

i0 − ω2 − iγ iω
, (I.11)

with oscillator strength as

fi = 2m0ωi0

e2h̄
|〈ψ i|ez|ψ0〉|2, (I.12)

with ez defining the direction of the field. In all these expressions, the
strength of the resonance is tied to the oscillator strength, and the
resonance occurs at the allowed transitions with a suitable linewidth.
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J
Effective mass tensor

The net carrier motion is due to carriers that are mostly
close to the Fermi energy, where filled and empty states coexist,
and therefore the net effect can be characterized via a small energy
band along the constant energy surfaces. For semiconductors, with
carriers mostly near band minima, as in conduction bands, or band
maxima, as in valence bands, this reciprocal space locality and
constancy of energy makes the use of effective mass convenient.
Semiconductors, however, certainly have anisotropy in bands at the
extrema, and there may also exist multiple bands. So, care is required
in the use of effective mass approaches in mathematical treatments
of semiconductor problems. In direct bandgap semiconductors,
GaAs, for example, a low isotropic effective mass precisely at the
conduction bandedge appears with a nonlinear dependence in k,
which sometimes is of importance if the carriers of interest occupy
states a few 100 meV up in the band. In Si, for this same situation,
there is the complication of a difference between longitudinal
and transverse directions (see Figure J.1). In the valence band, this

When two axes of an ellipsoid are
equivalent, the ellipsoid is called a
spheroid.

problem is acute. One has a light-hole band, which may be relatively
isotropic, but also a heavy-hole band, which is fairly anisotropic,
and often a split-off band quite nearby. Such nonlinearities and
orientation dependences, for small changes from thermal equilibrium,
can be treated through incorporation of the nonlinearity and a mass
tensor for the directional dependence.

Figure J.1: Two examples of near-
bandedge effective mass complexities.
Part (a) shows the six equivalent
constant energy surface ellipsoids
for conduction band minima in Si
that are a little in from the X points.
Part (b) shows the same for valence
bands where low and high effective
mass maxima exist, as in GaAs, and
quite often a split-off band lurks
nearby.

The effective mass, in its most general form, must describe the
local wavepacket group velocity response as derived from the energy-
crystal momentum relationship as a tensor. A general force may
cause a momentum response in other directions, as it does with
magnetic field, and constraints may be present simultaneously in
different directions, as they are for quantum-confined and nanoscale
structures. So, a general form of this effective mass tensor is
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1
M

= 1
h̄2

⎡

⎢
⎢⎢
⎣
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⎤
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1
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m∗

yz

1
m∗
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1
m∗

zy

1
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⎤
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⎥⎥
⎦

(J.1)

The mass tensor has elements 1/m∗
ij = (1/h̄2)∂2E/∂ki ∂kj. In the vicinity Effective mass, initially introduced

as a parameter of convenience
to describe the curvature of E(k),
acquires much greater significance—
of inertial mass—under conditions
where external forces are much
slower—adiabatic—compared to
those arising in the periodic crystal
potential, when carrier energy is small
compared to the bandgap Eg and
where the electron feels this extended
environment. This is where much of
the interest in devices tends to be, so
electrons and holes as free particles
moving in external fields can easily
be analyzed via the effective mass,
not the free electron mass, and also
without worrying about the crystal
potential. When valid, this greatly
simplifies physical understanding in
semiconductors.

of the bandedge, these forms represent the inclusion of the 2nd order
term in the Taylor series expansion of the E(k) description, that is,

E(k)= E0 +
∑

i

∂E
∂ki

ki + 1
2

∑

ij

∂2E
∂ki ∂kj

kikj, (J.2)

where higher-order terms will show the complexities arising in
anisotropy. The second term of Equation J.2 reflects the effective mass.

Consider its implications, first for conduction bands. In direct
bandgap semiconductors, the � valley at low energies is isotropic and
symmetric. So, all the elements in the mass tensor of Equation J.1 are
1/m∗, that is, around the � minimum,

1
M

=
⎡

⎢
⎣

1
m∗ 1

m∗ 1
m∗

1
m∗ 1

m∗ 1
m∗

1
m∗ 1

m∗ 1
m∗

⎤

⎥
⎦. (J.3)

Now, take an indirect semiconductor, Si, whose low energy constant
energy surfaces are spheroids, as shown in Figure J.1(a) just in from
the X point. There are six ellipsoids, with the anisotropy represented For Ge, the minima being precisely

at the L points means that only a half
spheroid along the diagonal belongs
in the first Brillouin zone. This has
implications for density of states, but
not for the effective mass tensor.

in two mass terms: m∗
l , the longitudinal effective mass—a larger

mass—along the longitudinal axis, and m∗
t , the transverse effective

mass—a smaller mass—for the transverse off-diagonal response. So,
the mass tensor for Si, around and inside the X point, but called the X
minimum, is

1
M

=

⎡

⎢⎢
⎣

1
m∗

l

1
m∗

t

1
m∗

t
1

m∗
t

1
m∗

l

1
m∗

t
1

m∗
t

1
m∗

t

1
m∗

l

⎤

⎥⎥
⎦. (J.4)

All states, such as any state on the surface of these spheroids—all of
them—respond with an effective mass m∗

l to the longitudinal compo-
nent of the field, and m∗

t to the transverse components of the field.
And any field can be represented in the Cartesian form. A simple
interpretation is that all the three orientations are equivalent, so,
consider a field aligned in the k̂x direction. Electrons in states in two
of these valleys respond with a longitudinal mass, and those in four
of these valleys—those in the plane orthogonal to the field—respond
with a transverse mass. The two effective masses, occupation in six
valleys, suffice to describe the acceleration ((1/h̄)dk/dt) to the external
stimuli. For each state, this acceleration is (1/M)F.
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Now, consider the situation for holes, and let it be complicated
by the existence of two bands: a light-hole band and a heavy-hole
band. Equation J.1 is still a complete description for the behavior of
each state. If, for a given energy, there are two holes, one in a light-
hole band and one in a heavy-hole band, they both respond through
the mass tensor that represents the response behavior of the state as
dictated by the E(k) description.

Effective mass represents the bandstructure-defined response
of the electron in the periodic matter. Once this can be taken as a
given, one can extract derivative quantities that encapsulate the
matter’s behavior.

The conductivity effective mass is therefore a derived mass
parameter whose utility is strictly only for the convenience of a
Drude-like conduction calculation as in J = q2n〈τk〉E/m∗

c with an
electric field applied. Since the Drude calculation is a very sym- A more generalized form of

this conduction current is
J = q2n〈τk〉(1/M)E . It also suggests
J =σE , where σ is now a conductivity
tensor. If a spheroidal constant energy
surface existed at the � point, then a
look at 1/M should convince one that
conduction will be anisotropic. Heavy-
hole bands in semiconductors are at
the zone center and are anisotropic at
low energies.

metrized, integrated and scattering-randomized representation,
for Si’s structure, this has the consequence that one can force-fit a
response that has two valleys responding with a longitudinal mass,
and four valleys responding with a transverse mass, in providing
a mass associated with conductivity. Since all possibilities must be

We have remarked on the serious
limitations of the Drude model before.
Suffice it to say that one uses it at one’s
own peril. It is somewhat acceptable
for understanding conduction in
metal in the Newtonian spirit of early
undergraduate education. After that, it
should be strictly banished from all the
nooks and crannies of the brain.

covered for the randomization to be valid, this Drude calculation
expects all the spheroids to be occupied in calculating the response.
Because of the symmetry, the response from the mass tensor is a

In a block of Si, any arbitrary electric
field can be split into its Cartesian
components, each of which has a
response from two valleys where the
response is with a longitudinal mass,
and four transverse valleys, states of
which respond with a transverse mass.

scalar conductivity mass. Normalizing to one electron with a 1/6
possibility of occupation in states of each of the spheroids,

1
m∗

c
= 1

6

(
2

m∗
xx

+ 2
m∗

xy
+ 2

m∗
xz

)

= 1
3

(
1

m∗
l

+ 2
m∗

t

)
. (J.5)

Each Cartesian component sees this same final expression for
its Drude conductivity mass response. But this conduction mass
calculation will not work for other forcing circumstances or where
Drude limitations are unacceptable, which is pretty much all of the
problems of nanoscale interest. One should just use the effective mass
tensor for the advanced problems of interest. Another example of a
force circumstance is the use of magnetic field, where an extracted
cyclotron effective mass that samples all the orientations will be
needed because of the Lorentz interaction. This cyclotron mass is then
[det|Mij|/m∗

zz]1/2, where ẑ is the direction of the magnetic field.
Another derived mass parameter is that of density of states. For Si,

now one must account for occupation in multiple valleys, multiple
bands, et cetera. The density of states effective mass is therefore an
extracted parameter whose utility is strictly only for the convenience
of the calculation of density of states such as in the three-dimensional
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G3D = (
√

2/π2h̄3)m∗
d

3/2√E − Ec. m∗
d now must account for multiple

valleys of occupation and the distribution of states in energy, which
are related to the effective mass tensor.

Likewise, for the specific heat arising in these conducting particles,
for a large three-dimensional object, the mass parameter will be
[det|Mij|]1/3.

This discussion is to stress that all these rest of the masses are
masses of convenience. The one that really reflects the essentials of
semiconductor particle behavior is the effective mass that follows
from bandstructure as an effective mass tensor.
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K
A and B coefficients, and spontaneous
and stimulated emission

An essential element of matter-light interaction is the statistics
and behavior of photons in matter. Bose-Einstein statistics for
photons, and the interaction and presence of other photons, are both
material to this matter-light interaction. What is true for photons
is equally relevant to phonons. Phonons interact strongly, while
photons do not, but they are both bosons. This appendix summarizes
this essential construct in order to emphasize the photon and phonon
basics involved in this. This emission and absorption is a result of
transition, where energy has been exchanged and momentum has
been conserved, while annihilating a particle or generating a particle.

Does a molecule suffer an impulse
when it emits or absorbs a photon
and its energy? Yes, of course.
Conservation of momentum and
energy must still hold. By the
way, radiometers—the rotating
weathervanes in a bulb of vacuum—
are not simply based on momentum
transfer from photons. The vacuum is
not perfect: one side is less reflective
(darker) than the other. Shining
light makes the more absorbent side
warmer than the other. The mean free
paths of molecules are large. Molecules
bouncing off the darker warm side
get hotter. The process also kicks the
vane away more than on the reflective
side. If the vacuum is too high, the
vanes don’t move. More subtly, it is
the edges of the vanes that are most
important. So, don’t buy an argument
that it is a momentum transfer in
the vacuum weathervane. There is
much controversy here, with Maxwell,
Reynolds, Lebedev and even Einstein
involved. This is over decades, with a
sprinkling of what we would now call
out as an ethical problem on the part of
Maxwell, who refereed for Philosophical
Transactions. It is something not too
far from, but of less import than,
what transpired between Darwin and
Wallace for evolution, and Newton
and Leibniz for calculus. It is a good
lesson in how ethics too are malleable
and not an invariant of time. Visit a
national museum in London or Paris
and you see words trying to hide the
robbery and pillage of the lands that
the artifacts came from. Hiding behind

Light is emitted or absorbed when a quantum system undergoes
transitions between two levels. In the two-level quantum system
in Figure K.1(a) shows an emission, and (b) an absorption process.
Conservation of energy implies E2 − E1 = h̄ω21. Einstein A and
B coefficients are a phenomenological means to understand the
transitions.

Figure K.1(a) shows a spontaneous emission process. An excited
state is returning to its ground state by losing excess energy. And
this process is spontaneous with a frequency spectrum constrained
to the conservation of energy. Einstein’s A coefficient, A21 here, is
the probability per unit time of this electron transition and photon
emission process. If n2 were the number of these excited states, then
the 2 → 1 transition follows

dn2

dt
= − A21n2. (K.1)

The spontaneous radiation, precisely as the name implies, is
grounded in quantum-mechanical uncertainty—nature’s random-
ness. Blackbody radiation, coupled to the statistics, can be traced to
these phenomena. What it says is that two states, different in energy,
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with the higher energy one occupied, will spontaneously radiate, euphemistic words— ̏imperial˝
and  ̏colonial˝—is a sign of moral
bankruptcy in the past and in the
political culture of these days where
words acquire entirely new meanings.

subject to conservation constraints. An electron in a higher orbital
may drop to a lower orbital while radiating a photon.

This radiation is truly random if the photon emission is
unrestricted—randomness here means independence of this
characteristic on angle, for example, à la our discussion of the
Bertrand paradox. The reverse of this process is spontaneous photon
absorption. Now, if a photon happens to be present, resonant in
energy with the emission transition of h̄ω21, and the higher energy
state is occupied, and the lower empty, then this photon’s presence
and its resonant coupling—two oscillators in complete sympathy
with each other—will cause the stimulated emission of a photon.
So, two spontaneous processes of absorption and emission, and
one stimulated process of emission, become possible. This is a
property that all bosons will have, so it applies to phonons, Bose-
Einstein condensates and all other bosonic particles. The relationship
of Equation K.1 also tells us that there is a lifetime—a radiative
lifetime—of τ = 1/A21.

This constraint on photons having
infinite access to states is important,
since conservation equation of energy
and momentum will involve it. The
Purcell factor, discussed in S. Tiwari,
 ̏Quantum, statistical and information
mechanics: A unified introduction,˝
Electroscience 1, Oxford University
Press, ISBN 978-0-198-75985-0
(forthcoming), and summarized in
Appendix M, is connected to this.
And if one can eliminate some modes,
and restrict emission to only certain
momenta (angles), one can suppress it.
This may help light emission threshold
currents.

Figure K.1: Emission and absorption.

Figure K.1(b) shows an absorption process. By absorbing a photon,
an electron was promoted to a higher energy level. This excited state
was formed by absorbing a photon. It is not a spontaneous process. The
photon was necessary. Now

dn1

dt
= − B12n1u(ω), (K.2)

where u(ω) is the photon energy density—the spectral energy
density of the electromagnetic field—with the unit of J/m3 · (rad/s).
Conservation of energy must still hold.

Einstein’s insight was that this description is still incomplete.
A photon field can stimulate an emission as well as the absorption
transition. So, Equation K.1, in alignment with Equation K.2, must
also include

dn2

dt
= − B21n2u(ω). (K.3)

This stimulated emission is a quantum-mechanical and coherent
effect with a photon emission in phase with the photons stimulating
the transition.

So, there are three coefficients: A21 in units of 1/s for spontaneous
emission, B12 for stimulated absorption and B21 for stimulated
emission in units of J/m3 · (rad/s). These are not independent, since
thermal equilibrium at the temperature T prescribes a balance of
details. Let the quantum system be in a cavity of blackbody radiation
with which it is interacting. So,

B12n1u(ω)= A21n2 + B21n2u(ω), (K.4)
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and if the degeneracies are g2 and g1 for the two energies, then

n2

n1
= g2

g1
exp

(
− h̄ω

kBT

)
(K.5)

under Boltzmann constraints of occupation.
The blackbody energy spectrum has a modal occupation depen-

dence given by See S. Tiwari,  ̏Quantum, statistical
and information mechanics: A unified
introduction,˝ Electroscience 1,
Oxford University Press, ISBN
978-0-198-75985-0 (forthcoming),
and S. Tiwari,  ̏Nanoscale device
physics: Science and engineering
fundamentals,˝ Electroscience 4,
Oxford University Press, ISBN
978-0-198-75987-4 (2017), for a
development of this relationship,
its physical significance and its
implications for photovoltaics, where
we employ the absorption process for
photoelectric conversion.

u(ω)= h̄ω3

π2c3
1

exp(h̄ω/kBT) − 1
. (K.6)

Equation K.4 through Equation K.6 lead to the following two
constraints on the coefficients:

g1B12 = g2B21, and

A21 = h̄ω3

π2c3 B21. (K.7)

Knowing one coefficient suffices. High absorption probability
also implies high emission probabilities for both spontaneous and
stimulated processes.

We also know from the Golden rule that the transition rates can be
written as

S12 = 2π
h̄

|H ′
12|2G (h̄ω), (K.8)

where G (h̄ω)dE is the final states within dE of E = h̄ω. If the states
are discrete, then this G (h̄ω) is the photon state density. The matrix
element in the Golden rule is

H ′
12 = 〈2|H ′|1〉=

∫
ψ∗

2(r)Ĥ
′ψ1(r) d3r. (K.9)

Since it is the photon causing the perturbation through the interaction
with an electric dipole, whether the interaction is with an atom or
atoms of semiconductors, the dipole-field interaction perturbation is

Ĥ ′ = − p · E . (K.10)

Equation K.8 together with the dipole-field perturbation—the matrix
element—gives us the selection rules of the allowed and forbidden
transitions.

Now consider the situation in semiconductors. We now have a
distribution of states interacting as shown in Figure K.2.

Figure K.1 described the absorption and emission processes
involving two states. In semiconductors, where we tackle mostly a
distribution of states that are close together, it is more convenient
to analyze in terms of a compact representation of the distribution
of states. For example, we represent the carrier population via the
use of quasi-Fermi energy (EqFn and EqFp for electrons and holes),
bandedge energy (Ec and Ev for conduction and valence bands) and
an effective density of states (N c and Nv). Quasi-Fermi energy is a
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Figure K.2: Illustration of the
spontaneous emission of a photon
of energy h̄ω through a transition
between two states, where the higher
energy is occupied and the lower
unoccupied, in (a). Part (b) shows
its reverse process of spontaneous
absorption and (c) shows the
stimulated process where the presence
of a photon whose energy is matched
to the transition causes a stimulated
emission process.

fit here for electrochemical energy that describes the off-equilibrium
population and state occupation correctly. EqFn = EqFp = EF in
thermal equilibrium. Take Figure K.3, which shows the emission
and recombination between two states in the bands. B12 and B21

are the probability of a transition triggered by the presence of a
photon, A21 is the probability of a spontaneous emission, f1 and f2
the occupation probabilities ( f1 = 1/{1 + exp[(E1 − EqF1)/kBT]}) and
f2 = 1/{1 + exp[(E2 − EqF2)/kBT]}) so that 1 − f2 is the probability
that the state with energy E2 is unoccupied. Let also P(E21) be the
density of photons at energy E21 = h̄ω21. We are also assuming that
the degeneracies of levels 1 and 2 are the same, since this is in a
semiconductor, where the degeneracy arises in spin. Figure K.3: Absorption and emission

transitions between the two states
E1 and E2. EqF1 is associated
with the quasi-Fermi energy for
occupation of the occupied state. For
semiconductors, this is the conduction
band, and the quasi-Fermi energy
EqFn is the usual notation. Similar
nomenclature applies to state 2 in
the valence band. The A-B coefficient
description is more general, and we are
keeping that in mind in describing this
in this way.

In an absorption process, there is an upward transition rate
(electrons transitioning per second, �12) from an occupied state 1 to
an unoccupied state 2 as

�12 = B12 f1(1 − f2)P(E21). (K.11)

For an emission process, the transition rate �21 consists of a stimu-
lated term dependent on the presence of a photon, and a spontaneous
part. The stimulated transition rate is

�21
∣
∣
simulated = B21f2(1 − f1)P(E21), (K.12)

and the spontaneous transition rate is

�21
∣
∣
spontaneous = A21f2(1 − f1). (K.13)

In thermal equilibrium, EqF1 = EqF2 = EF, and the stimulated upward
transition rate must balance the stimulated and spontaneous
downward transition rate, that is,

�12 = �21
∣∣
spontaneous + �21

∣∣
simulated

∴ B12f1(1 − f2)P(E21) = A21f2(1 − f1) + B21f2(1 − f1)P(E21),

P(E21) = A21f2(1 − f1)
B12f1(1 − f2) − B21f2(1 − f1)

= A21

B12{[f1(1 − f2)]/[f2(1 − f1)]} − B21
, (K.14)
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where

f1(1 − f2)
f2(1 − f1)

=
1/

[
1 + exp

(
E1−EF

kBT

)]

1/
[
1 + exp

(
E2−EF

kBT

)] ×
1 − 1/

[
1 + exp

(
E2−EF

kBT

)]

1 − 1/
[
1 + exp

(
E1−EF

kBT

)]

= exp[(E2 − EF)/kBT]
exp [(E1 − EF)kBT]

= exp
(

E21

kBT

)
. (K.15)

Therefore, the A and B coefficients are related through the density of
photons as

P(E21) = A21/B21

(B12/B21) exp(E21/kBT) − 1

= A21/B21

exp(E21/kBT) − 1
(K.16)

since B21 = B12.

B12 �= B21 in general, because the
degeneracies of the two levels is
not the same. For semiconductors,
B21 �= B12 follows from the fact that
the spin degeneracy is the same, and
that these are the probabilities of the
transition coupling states 1 and 2 and
are therefore proportional to the matrix
element coupling the two together
with the degeneracy. The matrix
element is symmetric in the transition.Now, we may connect this foundation to the spontaneous and

stimulated interaction in matter. Figure K.4 illustrates this in example
systems—semiconductor in (a) and the 4-level solid state in (b)—with
two levels interacting showing spontaneous and stimulated emission
in (c), all with some of the main features. The spontaneous emission is
random and isotropic. The stimulated emission is coherent—in close
phase alignment, so in both frequency and time and any additional
phase constants—and is anisotropic.

The net stimulated emission is

r21|stim ≡ �21 − �12

= B21f2(1 − f1)P(E21) − B12f1(1 − f2)P(E21)

= B21P(E21)( f2 − f1) (K.17)

where we have employed B21 = B12. Using Equation K.16, this gives

The B coefficients for absorption and
emission will be related to through
the degeneracies of levels 1 and 2. For
our case of semiconductors, they are
identical and due to spin degeneracy.

r21|stim = A21( f2 − f1)
exp(E21/kBT) − 1

= rstim(E21)

exp(E21/kBT) − 1
, (K.18)

Figure K.4: Part (a) shows a bipolar
semiconductor radiative system
with stimulated emission, (b) shows
a 4-level solid-state system with
stimulated emission and (c) is an
illustration of the spontaneous and
stimulated emission arising with
a transition between a collective
assembly of filled and empty states in
the system.
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where
rstim(E21) ≡ A21( f2 − f1). (K.19)

So, what this says for stimulation is, that a photon causes a stimula-
tion emission with a certain rate that must be modified by the photon
occupation statistical factor arising in the Bose-Einstein statistics.
The coefficient A21 determines a rate similar to the constant B21 for
spontaneous emission. The quantum-mechanical constraint here is
that this stimulated emission becomes possible and that the principle
of detailed balance—the balance between each and every process in
detail in thermal equilibrium—has forced a relationship between the
A and the B coefficients. The net absorption rate is

r12|absorb ≡ �12 − �21(stim)

= B12f1(1 − f2)P(E21) − B21f2(1 − f1)P(E21)

= B21P(E21)( f2 − f1)= − r21(stim), (K.20)

therefore

r12|absorb = A21( f1 − f2)
exp(E21/kBT) − 1

= f1 − f2
f2 − f1

r21(stim). (K.21)

r12|absorb is the net absorption rate. Since it depends on the occupied
and unoccupied state distribution, and As and Bs, which, although
related to each other, are also a measure of the coupling between the
states through the matrix element for this coupling, the absorption
rate is a function of the relevant properties of the material. We can
make summary comments on this dependence. The details arise in
the processes in the material itself.

The presence of a photon can cause absorption (a stimulated
exchange of energy to the electron transfer between states), but it can
also stimulate emission. This is what Equation K.20 or its derivative
relationship Equation K.21 signifies. One measures this dependence
of the net absorption rate that is connected through the macroscopic
properties and interaction in the material via the parameter of
absorption coefficient. Absorption coefficient α(E) is the probability
of the absorption of a photon per unit length of travel through the
material. So,

r12|absorb = α(E)P(E)vg. (K.22)

Here, the product of the photon density and the photon’s velocity
is the photon flux, which is the photon count per unit area per unit
time. The velocity—the group velocity since it is the energy move-
ment that is of interest—is related through the index of refraction,
which we will denote by n:
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vg = dω
dk

= 2π
h

dE
dk

= c/n
1 + (E/n)(dn/dE)

in dispersive, and

= c
n

in non-dispersive (K.23)

medium. So,

α(E21) = r12(abs)
P(E21) (c/n)

= B21P(E21)( f1 − f2)
P(E21) (c/n)

= B21
n
c
(f1 − f2)

= − r21(stim)

P(E21) (c/n)
. (K.24)

From Einstein’s A-B relationship

A21

B21
= 8πn3E2

h3c3 , (K.25)

the absorption coefficient follows as

α(E21) = A21
h3c3

8πn3E2
21

n
c
(f1 − f2)

= h3c2

8πn3E2
21

A21(f1 − f2)

= h3c2

8πn3E2
21

−r21(stim)
[
exp(E21/kBT) − 1

]

or = −h3c2rstim(E21)

8πn2E2
21

. (K.26)

From the spontaneous emission discussion,

�21(spont) = r21(spont)

or A21f2(1 − f1) = 8πn3E2
21

h3c3 B21f2(1 − f1), (K.27)

with

α(E21)= B21n
c

( f1 − f2). (K.28)

Therefore,

r21(spont) = 8πn3E2
21

h3c3 α(E21)
f2(1 − f1)

f1 − f2

= 8πn3E2
21α(E21)

h3c3
{

exp
[

E21−(EqF2−EqF1)

kBT

]
− 1

} . (K.29)

In thermal equilibrium, EqF2 − EqF1 = 0, the spontaneous emission
(and absorption) rate is small compared to those in off-equilibrium,
where the carrier densities have been increased deliberately. At the
other extreme, when EqF2 − EqF1 → E21, r21(spont) → ∞. So,
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r21(spont) = − rstim(E21){
exp

[
E21−(EqF2−EqF1)

kBT

]
− 1

} = rspont(E21), and

rstim(E21) = rspont(E21)

{
1 − exp

[
E21 − (EqF2 − EqF1)

kBT

]
− 1

}
. (K.30)

We have now related A and B coefficients that integrate detailed
balance with the presence of spontaneous and stimulated processes in
bosonic interactions. And we have connected these to the properties
of materials by developing various relationships between the absorp-
tion coefficient α(E), the spontaneous rate rspont(E) and the stimulated
rate rstim(E), in all of which the photon-material interactions will play
a role. These are all interconnected, and, knowing one, one can find
others.

This interconnection of one with the
other—that one contains information
identical to the other—is an important
property of linear systems that we
discuss at length in the discussion of
the Kramers-Kronig relationship. It
also appears in a linear form in the
fluctuation-dissipation discussion,
where linearity again appears as a
frictional drag.

We end with an example to show these connections. Consider a
direct bandgap semiconductor with density of states

Gc(E) = 1
2π2

(
2m∗

e

h̄2

)3/2√
E − Ec, and

Gv(E) = 1
2π2

(
2m∗

h

h̄2

)3/2√
Ev − E. (K.31)

For absorption calculation, consider the number of filled states in the
valence band of f1Gv(E) and the empty states in the conduction band
of (1 − f2)Gc(E). To calculate the absorption coefficient, we need to
integrate absorption over all possible energy states, so

α(E)=
∫ ∞

−∞
B12

c/n
Gv(Ev − E)Gc(E − Ec) dE. (K.32)

The B coefficient, as we remarked, integrates the microscopic process
of transition, so we calculate that through the matrix element using
the Golden rule, where the photon provides the electromagnetic
perturbation. We have

B12 = π

2h̄

∣∣
∣
〈
ψ1(r, t)|Ĥ ′|ψ2(r, t)

〉∣∣
∣
2
, (K.33)

where the perturbation has the form

Ĥ ′(r, t) = Ĥ ′(r) cos(ωt). (K.34)

The photon electromagnetic interaction will involve the momen-
tum matrix element. In detail, then,

Momentum has appeared in the k · p
approach and in the electromagnetic
approach. The Hamiltonian of the
electron-photon system is

H = 1
2m∗

(
h̄k − qA

)2

≈ − h̄2

2m∗ ∇2
r + iqh̄

m∗ A · ∇r

= − h̄2

2m∗ ∇2
r − q

m∗ A · p,

where the first term is the unperturbed
Hamiltonian (H0), and the second
term is the perturbation (H ′). The
form of the second term is just like
the k · p form, where electron states
are interacting with electron states.
So, the momentum matrix element
appears as quite a central element in
many semiconductor calculations. This
interaction is tackled with more rigor
in Chapter 8.

B12 = πq2h̄

m∗2ε0n2h̄ω

∣
∣〈ψ2(r, t)|p|ψ2(r, t)

〉∣∣2

= B21 = πq2h̄

m∗2ε0n2h̄ω

∣∣〈ψ1(r, t)|p|ψ2(r, t)
〉∣∣2. (K.35)

Using a similar approach,

A21 = 4πnq2E21

m∗2ε0h2c3

∣∣〈ψ∗
1(r, t)|p|ψ2(r, t)

〉∣∣2. (K.36)
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B and A coefficients are now known in detail, and one can calculate
the absorption coefficient through Equation K.32 for the idealized
semiconductor. Instead, if we have a measurement, from the mea-
sured absorption or spontaneous emission spectrum, we can calculate
the absorption coefficient and net spontaneous and stimulated
emission spectrum.

There is one measure that is useful to characterize these absorption
and emission transitions. This is the oscillator strength. It is a
dimensionless number useful in comparing transition strengths
and is defined as the ratio of the strength of the transition and the
theoretical transition strength derived from a harmonic oscillator
model. We discuss this in Appendix I. If degeneracies were different,
as with B’s relationships, and important to organic semiconductor
systems, the emission and absorption oscillator strengths will be
related through

g2f21 = g1f12, (K.37)

so would the B coefficients:

g2B21 = g1B12. (K.38)

Oscillator strength is usually normalized, with a strong transition
approaching unity. If there exists degeneracy in the system, then it
can exceed unity.
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L
Helmholtz theorem and vector splitting

Useful vector relationships are summarized in the glossary.
One particular splitting of vectors, such as those of the field’s
longitudinal and transverse components, is particularly useful in
semiconductors due to the variety of field-mediated interactions
involved. A suitable example is that of the electromagnetic field with
the crystal vibration fields.

Let A satisfy
∇2A = − B; (L.1)

then,

A = 1
4π

∫
B

|r − r′| dr′. (L.2)

Since
∇2A =∇(∇ · A) − ∇ × (∇ × A), (L.3)

the use of

∇ · A = −U, and

∇ × A = C, (L.4)

leads to
B =∇U + ∇ × C. (L.5)

A vector field has now been written in terms of a gradient and a
curl. This is Helmholtz’s theorem. It lets us split the vector field into
longitudinal and transverse components, since divergences are
longitudinal, and curls are transverse.

We are back to the beauty of
divergences and curls that, conjoined,
make certain characteristics come
alive forever, as in an electromagnetic
wave. As John von Neumann is said
to have remarked,  ̏It is just as foolish
to complain that people are selfish and
treacherous as it is to complain that the
magnetic field does not increase unless
the electric field has a curl. Both are
laws of nature.˝ (as quoted by Eugene
Wigner; see E. P. Wigner,  ̏Symmetries
and reflections: Scientific essays,˝
Greenwood Press ISBN 0313201072
(1967), p. 261).

Define

Bl = ∇U, and

Bt = ∇ × C, with

B = Bl + Bt. (L.6)
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In view of the vector identities (see the glossary),

∇ × Bl = 0,

∇ · Bl = ∇ · B,

∇ × Bt = ∇ × B, and

∇ · Bt = 0, (L.7)

which say that the longitudinal field has no curl—is oriented
normal—and that the transverse field has no divergence, that is, is
oriented orthogonal. U, A, B and C have now been related to each
other.
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M
Mode coupling and Purcell effect

Mode coupling appears in all energy exchanges and has
appeared in a variety of ways—between the variety of forms that
the free energy of interest to us resides in and therefore through the
oscillators and the modes of these oscillators that couple—throughout
this text. These exchanges can be coupled with a variety of interesting
properties through matching. Even spontaneous emission requires
this coupling, and it too can be modified, which is the Purcell effect.

Figure M.1: An infinite ladder
of repeating impedances as a
transmission line. Part (a) shows
the network as an infinitely repeating
unit. Part (b) shows that, at any cross-
section through the network, the
following network on the right is still
the same infinite network. Let this
have a characteristic impedance Z0, as
shown in (c). Adding a repeating
Z1-Z2 element to the left of it leaves
the ladder unchanged.

But we start with the electromagnetic propagation of the simple
ladder network and ask the question as to why a network of non-
dissipating components—inductors and capacitors—can have a real
characteristic impedance. The real impedance reflects dissipation—
loss to the world—from a source. And this is precisely what real
space impedance is. Take the infinite transmission line ladder
network of Figure M.1, and let it have a characteristic impedance
of Z0, so that the different topologies drawn are equivalent. Since
the transmission line drawn is infinitely long, impedance seen at
any cut must be the same. With Z1 and Z2 as the two elements of
which this distributed network—lumped or continuous—consists
of, and Z0 as the impedance at any cross-section, adding one more
repeating element to the left—going from Figure M.1(a) to (b), the
network remains the same infinite network. Therefore, the impedance
in Figure M.1(b), viewed from the left, is

Z = Z1 + 1
(1/Z2) + (1/Z0)

= Z0, (M.1)

and therefore
Z0 = Z1 + Z2Z0

Z2 + Z0
, (M.2)

whose solution is

Z0 = Z1

2
+

(
Z2

1
4

+ Z1Z2

)1/2

. (M.3)

Z0 is the characteristic impedance of the infinite arrangement.
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Figure M.2: An inductor-capacitor
ladder with its two equivalent
configurations, (a) and (b). Part (a) is
similar to the infinite ladder in Figure
M.1, with Z1 arising in an inductor
L, and Z2 in a capacitor C. These two
elements—lumped or distributed—are
lossless.

Now consider lossless Z1 and Z2 arising in an inductive element
L and a capacitive element C. Z1 = iωL, and Z2 = 1/iωC, as shown in
Figure M.2(a). The inductor-capacitor network is more conveniently
seen as a T network that has symmetry, as shown in Figure M.2(b). It
also separates out the Z1/2 element of Equation M.3.

Following Equation M.3, removing the Z1/2 arising in the leftmost
L/2, and a repeating network following, we have

Z0 =
(

L
C

− ω2L2

4

)1/2

. (M.4)

If ω2 < 4/LC, this characteristic impedance is real. A lossless inductor-
capacitance ladder has a real impedance!

If ω2 > 4/LC, the impedance is the imaginary number

Z0 = i

(
ω2L2

4
− L

C

)1/2

. (M.5)

There is no paradox here. In the lossless element ladder network,
below the radial frequency of 2/

√
LC, the source can continue to

supply the energy, and the propagation can continue to proceed
farther and farther along the infinite network. This is precisely what
an antenna does. The radiation from the antenna, below a certain Huygens principle makes a lot more

sense when seen through this infinite
propagational view.

frequency where the impedance is real, will continue to propagate
out. This is the useful frequency range for the antenna.

Light’s free space impedance also follows this argument, except
now the speed of light c determines the constraint of the system and
the relationship between the electric field and the magnetic field. The
electric field corresponds to and represents the potential energy of
the system, which is being exchanged with the kinetic energy of the
system that the magnetic field corresponds to. Maxwell’s equations,
with the speed c as the invariant, places constraints on the fields, and
the impedance of the infinitely propagating solution is the ratio of
these fields and, for free space,

√
μ0/ε0.

The lumped distributed network and light propagation in infinite
space are examples of efficient coupling of modes that can continue
ad infinitum. One repeating element could couple all its energy
entirely to the following repeating element. The elements’ properties
determine the modes that can be coupled: which ones will propagate
and which ones will dissipate.

Now consider a variation on mode coupling for electromagnetics
by coupling a system to a cavity. Consider the two-level system of
Appendix K in a resonant cavity of volume V0. So, we have reformed
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the problem from blackbody coupling to one where we are modifying
the mode distribution. Only modes of the cavity that are close to the
frequency of the two-level system—are resonant—interact. Consider
a small cavity so that only one single mode at radial frequency ωc

couples, and let the half-linewidth be �ωc. The density of states of
the photon, with the one resonant mode, are subject to

∫ ∞

0
g(ω) dω = 1. (M.6)

This is the normal Lorentzian distribution function given by

g(ω)= 2
π�ωc

�ω2
c

4(ω − ωc)
2 + �ω2

c
. (M.7)

For a two-level system with E2 − E1 = h̄ω0, the resonance implies that

g(ω0)= 2
π�ωc

�ω2
c

4(ω0 − ωc)
2 + �ω2

c
. (M.8)

When the frequencies are exactly aligned,

g(ω0)= 2
π�ωc

= 2Q
πω0

, (M.9)

where Q is the quality factor of the cavity (Q=ωc/�ωc). Using the
dipole-field perturbation p · E ,

H 2
12 = ξ 2μ2

12
h̄ω

2εV0
, (M.10)

where the dipole moment in general is μ12 = − e(〈2|x|1〉x̂ + 〈2|y|1〉ŷ +
〈2|z|1〉ẑ). ξ = |p · E|/pE is a normalized dipole-field orientation factor.
ξ 2 = 1/3 for random dipole orientation. If this weak-perturbation
mode coupling, where we can use this perturbation approach, is in
vacuum, ε = ε0 and E =E0.

The transition rate in this cavity coupling is We found in Appendix K the
spontaneous emission rate that is
given by the Einstein A coefficient as

S = A21 = h̄ω3

π2c3 B21.

Scav = 2Qμ2
12

h̄ωV0
ξ 2 �ω2

c

4(ω0 − ωc)
2 + �ω2

c
. (M.11)

The ratio between the two cases—in the absence and presence of
cavity—is

FP = Scav

Snocav
= τRnocav

τRcav
= 3Q

4π2V0

(
λ

n

)3

ξ 2 �ω2
c

4(ω0 − ωc)
2 + �ω2

c
. (M.12)

This is the Purcell factor, and n is the index of refraction.
With the dipole oriented in the direction of the field, and precise

resonance,

FP = 3Q
4π2V0

(
λ

n

)3

. (M.13)
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Spontaneous emission can be suppressed or enhanced through the
coupling of modes to the cavity. If the dipole is aligned with the
field, where cavity volume is small and cavity quality is high, then,
with close matching of the transition to the cavity mode, a large
enhancement becomes possible in the emission by exploiting the large
density of state function by resonating the cavity with the transition.
By bringing it off-resonance, one can suppress it. By removing the
cavity, one returns back to the spontaneous emission of blackbody
mode distribution.
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N
Vector and scalar potentials

The outflow of energy per unit volume in an electromag-
netic wave is E × H—the Poynting vector. The Poynting theorem is
the law of conservation of electromagnetic fields, and the divergence
of the Poynting vector, by Gauss’ law, gives us the outflow per unit
volume through the surface that encloses the volume. The energy
density in the electric field is 1

2ε0E · E .
Working with electric field and magnetic field vectors, which are

connected to each other within Maxwell’s relationship through time
dependence and curls, can get cumbersome. Resorting to potentials A correspondence from classical

mechanics would be that complex
problems are lot easier to solve by
working directly with energy, a scalar,
and then deriving the forces from it
through the gradients. The fields are
what we measure and are unique. But
the potentials are more fundamental
and simpler to work with.

makes resolution easier. Since H is divergence-free, we introduce a
vector potential A that satisfies

μH =∇ × A. (N.1)

A unique vector field requires both the curl and the divergence to be
specified. This is satisfied, with the electric field relationship

E = − ∂A
∂t

− ∇ψ , (N.2)

where ψ is the electrostatic potential, and the divergence constraint

∇ · A + με
∂ψ

∂t
= 0. (N.3)

This latter choice of A is that of the Lorentz gauge. By this, we mean
a reference and transformation of these potentials that are such that
the vector fields derived from them remain unchanged under gauge
transformation.

Consider the analogy to gravitational
potential. The amount of potential
recoverable from mass in an otherwise
lossless gravitational system is mgh,
where h is the height difference and
m is mass. We could have used a
reference point at some other position
h0 for the potential. Changing this
reference position doesn’t change the
potential available for the height h in
the direction of the gravitational field.
The fields here then are unchanged in
the gauge transform with the change
in the position reference. This is gauge
freedom. The power of the approach
is that it simplifies by exploiting the
symmetries of the system.

Claim: For the Lorentz gauge of Equation N.3, a change of the vector
and scalar potentials by

A �→ A′ = A + ∇�, and

ψ �→ ψ ′ = ψ − ∂�

∂t
, (N.4)
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where � is a scalar function, subject to several constraints, including
continuity and differentiability, leaves the vector fields unchanged.

Proof:
μH′ =∇ × A′ =∇ × (A + ∇�) = ∇ × A =μH, (N.5)

and

E ′ = −∂A′

∂t
− ∇ψ ′

= − ∂

∂t
(A + ∇�) − ∇

(
ψ − ∂�

∂t

)

= −∂A
∂t

− ∇ψ − ∂∇�

∂t
+ ∇ ∂�

∂t

= −∂A
∂t

− ∇ψ =E .

This Lorentz gauge and gauge transformation is not the only
choice we have, but it works for the electromagnetic case and others
encountered in semiconductor physics in the presence of the fields
consistent with the immutable speed of light.

Now, we can look at Maxwell’s equations again. This time, we will
include the sources. Using Equations N.1 and N.2,

∇ × H = ε
∂E
∂t

+ J ∴ ∇ × (∇ × A)= − με
∂2A
∂t2 − με

∂

∂t
∇ψ + μJ,

and

∇ · εE =ρ ∴ ∇ ·
(
ε
∂A
∂t

+ ε∇ψ

)
= − ρ. (N.6)

Since
∇ × (∇ × A)=∇(∇ · A) − ∇2A, (N.7)

Equations N.6 are now reducible to Complementing the classical
mechanics comment on Lagrangian,
here is an example whose solution,
when attempted via the field form—as
we do in most microwave engineering
texts—becomes replete with long,
complicated equations. This form, on
the other hand, remains simple.

∇2A − με
∂2A
∂t2 = −μJ − μ∇ε

∂ψ

∂t
,

1
ε
∇ · (ε∇ψ) − με

∂2ψ

∂t2 = −ρ

ε
− 1

ε
∇ε · ∂A

∂t
. (N.8)

The right-hand sides of these equations represent, respectively, the
source and the coupling that exists between the scalar and vector
potential. This coupling is what manifests as the coupling between
electric and magnetic fields through curls and the rate of time change.
If no source exists and the material is homogeneous, this is the same
form as that for the wave equation derived earlier for the potentials.
If the source terms exists, it is the non-homogeneous equation
describing the rise or fall of the wave.
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O
Analyticity, Kramers-Kronig and
Hilbert transforms

The Kramers-Kronig relationship, in this text, appears in
order to relate the real and imaginary parts of the susceptibility and
dielectric function response in linear systems due to causality. We
have remarked on the generality of such a relationship in causal
linear systems. The dielectric and susceptibility functions are complex
functions. An arbitrary complex function, in general, will have poles
and zeros anywhere in the complex plane. But real response functions
of linear systems, with causal evolution that the propagator approach
develops, place restrictions that arise in their linear foundations. This
appendix clarifies the meaning and implications of the mathematical
and real world connections.

O.1 Analytic function

A function is analytic if it is smooth, that is, infinitely differ-
entiable, and if its Taylor series converges to the function. Complex
functions are said to be analytic on a region—its domain—if it is Mathematicians prefer the term

 ̏holomorphic function.˝ In S. Tiwari,
 ̏Nanoscale device physics: Science
and engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4 (2017),
you will see the use of Schwarz-
Christoffel mapping, which is
particularly powerful in the device
analysis of a particular subset of such
functions: conjugate functions.

infinitely complex differentiable at every point in it.
Take the function f (z)= 1/(1 − z). It is expandable about any finite

zn, using the Taylor series

f (z)=
∞∑

l=0

(z − zn)l

(1 − zn)l+1 , (O.1)

which converges in the domain defined by |z − zn| < |1 − zn|. A
series g(z)= ∑∞

k=0 zk converges to f (z)= 1/(1 − z) within the domain
of |z| < 1. Now, take the region around z0 = i:

h(z)=
∞∑

l=0

(z − i)l

(1 − i)l+1 . (O.2)
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This one converges to the same f (z), but in the domain |z − i| <
√
2.

The series look quite different, but they have an overlapping domain.
h(z) is a continuation of g(z), and both are elements of the analytic
function f (z). The reason for approaching through domains is so that
one may work with singularities and branch points.

Singularities are where the function
blows up. Branches are where
a multivalued function has a
discontinuity. Such functions can
be made single-valued through branch
cuts.

O.2 Cauchy integration and residue

Take the example illustrated in Figure O.1, where the function
f (z) is analytic in region R1 but not in region R2, and one wants
to integrate along a contour that surrounds both. We deform the
contour, marked here as C and consisting of part 1, which surrounds
the analytic domain R1, and the part 2, which is around R2, but
excludes the contour from enclosing R2. Then,

∮
f (z) dz remains

unchanged. A single localized nonanalytic region has been wrapped
by this deformed contour consisting of 1 and 2 and their connecting
paths.

Figure O.1: A contour constructed
so that it surrounds an analytic
region and encloses but excludes a
nonanalytic region. R1 is analytic,
while R2 is not.

Take the example of a singularity at z0. In the integral
∮
[ f (s)/(s −

z)] ds, if we choose this deformed contour, f (s) is analytic throughout
inside the deformed contour. If the integrand is singular at s = z and z
is outside C, then this integral vanishes since it forms a complete loop
and the integrand is analytic within the enclosed region. If z were to
be within a contour S, we reduce S to a minute circle surrounding z
such that s − z = r exp iθ in circular coordinates. ds = ir exp(iθ) dθ . With
this, the surrounding contour takes on the value of

lim
r→0

∮

S

f (s)
s − z

ds ≈ lim
r→0

f (z)
∮

S

ir exp iθ
r exp iθ

dθ

= 2π if (z). (O.3)

The direction of the contour determines whether value is positive or
negative. This relationship is for a counterclockwise contour, with θ

increasing along the path of the integral.
The residue of the function f (z) around a point z0 is defined by

Resz0 f (z)= 1
2π i

∮

S
f (z) dz, (O.4)

where S is a counterclockwise, simple closed contour that is small
enough to avoid any other poles of f (z). A counterclockwise path
that winds once suffices—absent the poles—by Equation O.3. This
derivation gives us the Cauchy integral formula.

Cauchy integral formula: If f (z) is analytic at all points z on a simple
contour and within it, then
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f (z)= 1
2π i

∮

C

f (s)
s − z

ds (O.5)

for any point z in the interior.
An analytic function’s value at any point in the interior of a

contour is determined by its values on this surrounding contour. The

What a remarkable result! A value of
an analytic function can be determined
by integrating over a surrounding
contour written with this choice of the
integrand. This is a two-dimensional
form of Gauss’ theorem.

analytic function can now be seen to have a constraint on it that the
Cauchy integral formula prescribes.

Since analytic functions are differentiable, the nth derivative of an
analytic function is

dn

dzn f (z)= n!
2π i

∮

C

f (s)

(s − z)n+1 ds. (O.6)

O.3 Cauchy principal value

When a singularity exists by itself in a range of integration, then
approaching the singularity symmetrically allows one to calculate
what is designated as the Cauchy principal value of the integral.
Thus, if the function f (z) has a singularity at b inside the end point
of the integral between the limits a and c , then

P

∫ c

a
f (x) dx = lim

ε→0

[∫ b−ε

a
f (x) dx +

∫ c

b+ε

f (x) dx

]

(O.7)

is the principal value.
As an example, P

∫ +a
−a dz/z = 0. If there exist more than one

singularity, one can treat each one of them symmetrically as an
extension of the single singularity. The method works for a single
singularity, such as a pole, since the divergent contributions on either
side of the precise singularity point cancel out.

The function f (x)= cos(kx)/(a2 − x2) has two poles: one at x = −a
and one at x = +a. We wish to find the principal value of the integral
P

∫ ∞
−∞ f (x) dx:

Figure O.2: Poles exist at x = − a
and x = + a, which the contour as
drawn avoids in order to calculate an
integral’s principal value while having
the integral path asymptotically pass
through them.

P

∫ ∞

−∞
cos(kx)

a2 − x2
dx = �

[
P

∫ ∞

−∞
exp(ikx)

a2 − x2
dx

]
. (O.8)

We choose a contour as shown in Figure O.2—a great semicircle
and two asymptotically reducing small semicircles skirting the
poles. These small semicircles contribute −iπ times the sum of the
two residues. The negative sign is there because the semicircles are
traversed in the −θ direction. For the contour integral,
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0 =
∮

C

exp(ikz)
a2 − z2

dz

= P

∫ ∞

−∞
exp(ikx)

a2 − x2
dx

− iπ
[
exp(ika)

−2a
+ exp(−ika)

−2a

]

∴ P

∫ ∞

−∞
exp(ikx)

a2 − x2
dx = π

a
sin ka

∴ P

∫ ∞

−∞
cos(kx)

a2 − x2
dx = π

a
sin ka. (O.9)

O.4 Kramers-Kronig relations as Hilbert transforms

Transforms provide a critical tool to problem-solving
and understanding, since transformations in a  ̏reciprocal˝ space
often give a new transformed perspective, and therefore insight.
Understanding semiconductors without Fourier transform—in
bandstructure, transitions or other places—would be an immensely
difficult task. While one can have infinite different transforms,
among integral transforms that we employ so often, including
in Green’s functions techniques, a few have a very special place
in the sciences. The important select few are listed in the glos-
sary. Here, we establish the Kramers-Kronig relationship as an
example of the Hilbert transform for analytic functions, using the
dielectric response function—a physical and real observable—as
the model.

Apply the Cauchy integral to εr − 1. This is susceptibility, which
vanishes at ω → ∞:

εr(ω)= 1
2π i

∮

C

εr(ω1) − 1
ω1 − ω

dω1 (O.10)

The integrand is singular at a point on the real axis. To evaluate, we
employ the subterfuge of ω = limδ→0+ ω + iδ. So, in the complex ω1

plane, C is a contour in the upper half that encloses ω in it by making
a minute single-pole-enclosing excursion out of it. This is shown in
Figure O.3.

Figure O.3: A contour constructed
so that the ω1 space surrounds ω

singularity on the real axis.

The integrand decreases with large ω1, so the contribution of
the major circle vanishes in the limits, and what remains is the
contribution along the real axis, with the small excursion in the
negative half of the complex plane around the singularity. So,
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∮

C

εr(ω1) − 1
ω1 − ω

dω1 = lim
δ→0+

[∫ ω−δ

−∞
εr(ω1) − 1
ω1 − ω

dω1

+
∫ π

−π

εr(ω + δ exp iθ) − 1
δ exp iθ

iδ exp(iθ) dθ

+
∫ ∞

ω+δ

εr(ω1) − 1)
ω1 − ω

dω1

]

= P

∫ ∞

∞
εr(ω1) − 1)

ω1 − ω
dω1 + iπ [εr(ω) − 1] ,

∴ εr(ω) = 1 + 1
iπ

P

∫ ∞

−∞
εr(ω1) − 1
ω1 − ω

dω1. (O.11)

We have arrived at one form of the Kramers-Kronig relationship
via Cauchy integration of an analytic function. A useful corollary to
Equation O.11 is the limit operator formula

lim
δ→0+

1
ω1 − ω − iδ

= P̂

ω1 − ω
+ iπδ(ω1 − ω), (O.12)

where P̂ is the principal operator. As an operator on an integral
along the real axis, it determines its real value. The second term
determines the pole’s contribution, which is half of that of a full
enclosing of the pole. From Equation O.11, the real and imaginary This last term is as if that pole were

half in and half out.relationships follow. Since it is real, as are displacement and electric
field, a real Green’s function can be written, as we do in Chapter 14.
The real nature of Green’s function, being equal to its conjugate,
means that εr(−ω)= ε∗

r (ω
∗), from which �[εr(ω)] and �[εr(ω)] follow.

This is an alternate proof of the Kramers-Kronig relationships

�[εr(ω)] = 1 + 2
π

P

∫ ∞

0

ω1�[εr(ω)]

ω2
1 − ω2

dω1, and

�[εr(ω)] = −2ω
π

P

∫ ∞

0

�[εr(ω)] − 1

ω2
1 − ω2

dω1. (O.13)

Hilbert transforms are a clever way of taking an analytic function
that decays rapidly at z → ∞ and decomposing it into real and
imaginary components on the real axis. And these will be connected
to each other. Cosine and sine functions comprise a Hilbert transform
pair. So, a complex function of a complex variable, and the complex
function for real variables, can be integrated together through the
properties of the Hilbert transforms. To see that the Kramers-Kronig
relations are also examples of Hilbert transform, we illustrate this
more generally for a complex function f (z) that is analytic in the
upper half plane and on real axis (x, �[z] = 0). We choose the contour
as the major semicircle and along the real axis. The Cauchy integral
formula gives
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f (z) = 1
2π i

∮

C

f (s)
s − z

ds

= 1
2π i

∫ ∞

−∞
f (s)

s − z
ds + lim

R→∞
R
2π

∫ π

0

f (R exp iθ)

R exp(iθ) − x
dθ

= 1
2π i

∫ ∞

−∞
f (s)

s − z
ds. (O.14)

The second term, along the greater circle’s perimeter, vanishes
because of the choice of vanishing f (z) at large R. We have also
employed x to indicate that this specific integral is along the real axis.
f (z)= �[ f (z)] + �[ f (z)], so

�[ f (z)] = 1
2π

∫ ∞

−∞
�[ f (s)]
s − x

ds, and

�[ f (z)] = − 1
2π

∫ ∞

−∞
�[ f (s)]

s − x
ds. (O.15)

Now, we tackle the function on real axis, this time by deforming
the contour as an infinitesimally small semicircular detour along the
great circle:

f (x) = 1
2π i

∮

C

f (s)
s − x

ds

= 1
2π i

P

∫ ∞

−∞
f (s)

s − x
ds + lim

ε→0

1
2π

∫ 0

−π

f (x + ε exp iθ) dθ

+ lim
R→∞

R
2π

∫ π

0

f (R exp iθ)

R exp(iθ) − x
dθ

= 1
2π i

P

∫ ∞

−∞
f (s)

s − x
ds + 1

2
f (x)

= 1
π i

P

∫ ∞

−∞
f (s)

s − x
ds. (O.16)

Again, as before

�[ f (x)] = 1
π

∫ ∞

−∞
�[ f (s)]
s − x

ds, and

�[ f (x)] = − 1
π

∫ ∞

−∞
�[ f (s)]

s − x
ds. (O.17)

The difference between Equations O.15 and O.17 is that the former
has its pole inside the contour, while the latter—for z real, that is, x—
the singularity is on the contour—either half in or half out.

If one considers the real and imaginary components on the real
axis to be two real functions of a real variable, one obtains the Hilbert
transform pair—like other transforms, summarized in the glossary—
and these are of the form

ψ(x)= 1
π

P

∫ ∞

−∞
�(s)
s − x

ds, and �(s)= 1
π

P

∫ ∞

−∞
ψ(x)

x − s
dx. (O.18)
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If an analytic function decays rapidly as z → ∞, decomposing it
into real and imaginary components on the real axis lets us employ
the Hilbert transformation. The cos x and sin x functions are Hilbert
transform pairs arising out of the exp iz complex analytic function. Note that exp iz satisfies the

convergence criterion in the upper
half of the complex plane.

Hilbert transforms become useful for analysis of observables,
where causality forces analyticity and convergences. Kramers-Kronig
relationships can then be viewed as special examples of Hilbert
transforms.
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P
Particle velocities

Dimensionality, state occupation, Fermi energies and
wavevectors and their implications for the velocity of the particle
are all related. Appendix H discussed dimensionality’s consequence
for density of states in the limits where the carriers sample an envi-
ronment of many unit cells. In this appendix, we gauge the implica-
tions of this in particle velocities when the state occupation in thermal
equilibrium is known through the Fermi energy and associated Fermi
wavevector.

Changes in the dimensionality of the system affect the available
state distributions and the processes that influence the changing
of the states. States, through the E-k relationship, also determine
the velocity associated with the carrier in that state. So, the dimen-
sionality, the scattering processes, and the properties of the state
determine the velocity of an individual carrier as well as of an
ensemble of carriers. Appendix H discussed the density of states,
with Equations H.7 through H.9 summarizing them for the simplest
cases of a parabolic central valley, that is, with E = h̄2k2/2m∗—a single
isotropic and parabolic well minimum with an effective mass m∗.

What effective mass to use is not so
straightforward. The relationships
here are for the simplest of textbook
examples—quite good for useful
compound semiconductors with low
effective masses—with their 3D, 2D
and 1D extensions. But when multiple
valleys exist, bands are anisotropic and
additional symmetries are broken, then
both density of states and conduction
are subject to different constraints, and
the masses differ. So, the problem gets
more complex when dimensionality
is reduced. The states of the six silicon
ellipsoids and the electrons occupying
them will behave quite differently
both for occupation and for transport
in response to forces and constraints
of different directions. See S. Tiwari,
 ̏Nanoscale device physics: Science
and engineering fundamentals,˝
Electroscience 4, Oxford University
Press, ISBN 978-0-198-75987-4 (2017),
for a detailed discussion.

If degenerate conditions exist, at absolute zero temperature, one
can relate the carrier density by integrating the occupied state density
to the Fermi energy EF. With ν representing dimensionality in a
general notation, since nνD = ∫ EF

0 GνD dE, we have

3D : n3D = 1
3π2

(
2m∗EF

h̄2

)3/2

∴ EF = h̄2

2m∗ (3π2n3D)
2/3

,

2D : n2D = m∗EF

πh̄2
∴ EF = πh̄2

m∗ n2D, and

1D : n1D =
(
8m∗EF

π2h̄2

)1/2

∴ EF = π2h̄2

8m∗ n2
1D, (P.1)

where n3D, n2D and n1D are, respectively, the 3D, 2D and 1D densities
of the carriers; that is, the electrons that occupy the states. These are



OUP CORRECTED PROOF – FINAL, 17/8/2020, SPi

780 semiconductor physics

in normalized volume, area and length densities. These equations
also connect the Fermi wavevector and the Fermi velocity associated
with the Fermi energy. Under degenerate absolute zero temperature
conditions,

3D : kF = (3π2n3D)
1/3 ∴ vF = h̄

m∗ (3π2n3D)
1/3

,

2D : kF = √
2πn2D ∴ vF = h̄

m∗
√
2πn2D, and

1D : kF = 1
2
πn1D ∴ vF = h̄

m∗
1
2
πn1D. (P.2)

This relationship is also a direct statement of the uniform spacing of
wavevectors in the reciprocal space that the electrons may occupy
in this constant mass isotropic approximation. The velocity of
electrons at Fermi energy then is directly related to these energies or
wavevectors.

It is instructive to understand how this dimensionality, the carrier
population, the velocities and the energies relate for semiconductors.
Table P.1 attempts to provide a feel for this through examples and
relationships. The group velocity represents the constraint that
the bandstructure—the behavior of the electron in the crystal—
speaks to. In semiconductors, group velocities are all of the order

Characteristic Relationship Dimensionality Magnitude with conditions

Group velocity, vg (1/h̄)∇kE 3D, 2D, 1D Si maximum: ∼8 × 107 cm/s

GaAs maximum: ∼8 × 107 cm/s

Ga0.47In0.53As maximum: ∼8 × 107 cm/s

InAs maximum: ∼108 cm/s

Graphene: ∼108 cm/s

Kinetic energy, vKE (2E/m∗)1/2 3D Si: 8 × 107 cm/s, for E = 0.5 eV and m∗ = 0.26m0

Optical phonon, 〈v〉op (2h̄ωop/m∗)1/2 3D, 2D, 1D Si: 2.8 × 107 cm/s, with h̄ωop ≈ 60 meV and m∗ = 0.26m0

GaAs: 4.3 × 107 cm/s, with h̄ωop = 35.4 meV and m∗ = 0.067m0

Ga0.47In0.53As: 5.4 × 107 cm/s, with h̄ωop = 34 meV and m∗ = 0.041m0

InAs: 6.7 × 107 cm/s, with h̄ωop = 29.6 meV and m∗ = 0.023m0

Thermal velocity, 〈v〉θ (8kBT/πm∗)1/2 3D Si: 1.96 × 107 cm/s, at T = 300 K and m∗ = 0.36m0

GaAs: 4.16 × 107 cm/s, at T = 300 K and m∗ = 0.067m0

(πkBT/2m∗)1/2 2D Si: 1.54 × 107 cm/s, at T = 300 K and m∗ = 0.26m0

GaAs: 3.27 × 107 cm/s, at T = 300 K and m∗ = 0.067m0

(2kBT/πm∗)1/2 1D Si: 0.98 × 107 cm/s, at T = 300 K and m∗ = 0.26m0

GaAs: 2.08 × 107 cm/s, at T = 300 K and m∗ = 0.067m0

Table P.1: A table of some approximate velocity magnitudes of relevance to carrier transport. Group velocity is the bandstructure-
defined constraint for any state of the particle. Kinetic-energy-defined velocity is the velocity at any given kinetic energy of a
particle. Optical-phonon-limited velocity is the ensemble average velocity that the particles would have if they were continuously
losing all the excess energy by optical phonon emission. Thermal velocity is the ensemble root mean square average in non-
degenerate conditions. For degenerate conditions, the velocity of carriers at Fermi energy, that is the Fermi velocity vF, will matter.
Dimensionality restricts the degrees of freedom of movement, and hence some of these velocities change through the constraints
from the states available allowing movement. Note, for example, the decrease in thermal velocity with dimensionality.
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of 108 cm/s or less. The kinetic-energy-limited velocity is meant
to represent a velocity that the carrier would have should it reach
that kinetic energy. This table indicates that, assuming that effective
mass for conductivity in silicon doesn’t change significantly—a major
assumption—it will be of the order of magnitude of maximum group
velocity. Carriers have to be this far up in the band for this maximum
velocity to be possible. Well before that, with transport undergoing
scattering, carriers will lose energy through phonon emission—a
significant process—among many others. This places a constraint
on how much kinetic energy the electron can realistically pick up.

Structures where the carriers are
injected such as by tunneling into
the semiconductor, at this energy,
make it possible to effectively achieve
a nonequilibrium distribution that
dominantly occupies higher energies
and streams velocities over the
scattering length scales. The carriers
here don’t have to pick up this energy
through transport in a field.

For the motion of the electrons arising in their thermal energy under
non-degenerate conditions, with carriers occupying mostly states
at the bottom of the band, since the carriers only sample the space
to which they are restricted, this root mean square velocity changes
with dimensionality. Fewer degrees of freedom result in a reduced
ability to move around. When going from 3D to 2D there are fewer
higher energy states to be occupied under the Maxwell-Boltzmann
distribution constraints. This argument of reduced access of space,
due to dimensionality constraints, is also largely true for the other
examples in this table.
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A symbol generated by using a tilde sign above a symbol,
for example, ã from a, is used to signify, explicitly, a complex
time-varying quantity. The real part of this has a sinusoidal time
variation. The phasor, or the amplitude of this time-varying
component, is denoted by using the hat sign on the symbol, for
example, â for a. This notation is used in the context of small-
signal variation. An exception to this nomenclature is the use of
the hat symbol to denote a unit normal vector, for example, n̂, to
denote the unit normal vector perpendicular to a surface. A hat is
also employed, together with calligraphic, mathematics-specific or
normal font, to denote a quantum-mechanical operator. A lowercase
subscript to an uppercase letter denotes a quantity which may
have both a static and a time-varying component. An uppercase
subscript or an overline represents quasistatic quantities. Any other
exceptions have been pointed out in context. This list defines the
most frequently used symbols. Système international d’unités—SI—
units are employed in the text. Any exceptions either are pointed
out in context or follow from dimensionality.

Symbol Symbol definition Unit

↑ Spin/polarization up —
↓ Spin/polarization down —
1/4πε0 Prefactor of SI units 8.99 × 109 V · m/A · s
α Absorption coefficient 1/m
αn Electron initiated impact ionization rate 1/m
αp Hole initiated impact ionization rate 1/m
α(r, r′) Correlation parameter —
aB Bohr radius (4πh̄2/m0e2) 0.529 × 10−10 m
A Vector potential V · s · m−1

A Absorption —
β 1/kBT 1/eV
B, B Magnetic induction (μrμ0H, μH) V · s/m2, that is, T
B Bimolecular recombination coefficient m3/s
c Speed of light in free space (1/(μ0ε0)

1/2) 2.998 × 108 m/s
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CE Ettinghausen coefficient K · m/T · A
Ch Chiral vector m
CN Nernst coefficient V/T · K
CRL Righi-Leduc coefficient 1/K
�j Huang-Rhys factor —
�so Split-off energy J, eV
D, D Displacement (εε0ε) A · s/m2

D Diffusion coefficient m2/s
ε Permittivity of material A · s/V · m
ε0 Permittivity of free space (1/μ0c2) 8.854 × 10−12 A · s/V · m
εr Dielectric (relative) constant —
ε Strain —
e Absolute electron charge 1.602 × 10−19 A · s (≡ Coulomb)
e∗ Effective Born charge C
e/m0 Electron charge to mass (ω/B) 1.759 × 1011 rad/s · T
E , E Electric field V/m
E Energy eV
Ec Conduction bandedge eV
Ev Valence bandedge eV
Eg Bandgap eV
EF Fermi energy eV
EqF Quasi-Fermi energy eV
ER Rydberg energy (m0e4/2h̄2(4πε0)

2) eV
Ex Averaged exchange energy eV
Exn Exciton energy eV
ε Error Various
ε Strain m/m
f , ν Frequency s−1, Hz
fosc Oscillator strength —
F Force N
F Helmholtz free energy J, eV
F Electrothermal field V/m
Fν Fermi integral of order ν —
F Slowly varying force N
F Rapidly varying force N

 Photon flux 1/m2 · s
ϕB Barrier height eV
ϕw Workfunction eV
γ Free energy per unit area J/m2, eV/m2

g Correlation function —
g g factor —
gPB Poisson-Boltzmann correlation function —
gq Quantum conductance (2e2/h) ∼80 μS
gs Spin degeneracy 2
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G Gibbs free energy J, eV
G Generation rate m−3 · s−1

G3D(E) Three-dimensional density of states m−3eV−1

G2D(E) Two-dimensional density of states m−2eV−1

G1D(E) One-dimensional density of states m−1eV−1

 Electron leakage rate from dot 1/s
η Normalized energy —
h Planck’s constant 6.626 × 10−34 kg · m2/s or 4.136 × 10−15 eV · s
h̄ Reduced Planck’s constant 1.055 × 10−34 kg · m2/s or 6.582 × 10−16 eV · s
ˆ Pseudo Hamiltonian J, eV
H Average information content ≡ uncertainty b
H Boltzmann H-factor —
H, H Magnetic field (m/V) A/m
H Enthalpy J, eV
Ĥ Hamiltonian operator J, eV
Ĥ Pseudo-Hamiltonian operator J, eV
I Information content b
I Fisher information b
J, J Current density A/m2

κ Anisotropy constant J/m3, eV/m3

κ Dielectric constant —
κ Thermal conductivity W/m · K
k Wavevector m−1

K Reciprocal space translation operator m−1

kB Boltzmann constant 1.38 × 10−23 J/K
ks Spring constant N/m
kF Wavevector at Fermi energy cm−1

K Reciprocal space translation operator m
KL Kullback-Leibler distance/entropy Various
χ Susceptibility —
λdeB de Broglie wavelength m
λDH, λD Debye-Hückle or Debye screening length m
λk Mean free path m
λscr Screening length m
λTF Thomas-Fermi screening length m
λw Energy relaxation length m
L Diffusion length m
L̂ Lagrange function —
m Magnetic moment V · s · m
M Magnetization (m/V) A/m
m0 Free electron mass 9.1 × 10−31 kg
m0c2 Electron rest energy 0.819 × 10−13 V · A/s = 0.5111 MeV
m∗ Effective mass kg
m∗

l Longitudinal effective mass kg
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m∗
t Transverse effective mass kg

M Mass (usually atom) kg
μ Mobility m2/V · s
μ Permeability V · s/A · m
μ Chemical potential J, eV
μ0 Permeability of free space (1/ε0c2) 4π × 10−7 V · s/A · m
μr Relative permeability of material —
μB Bohr magneton (eh̄μ0/2m0) 1.165 × 10−29 V · m · s
ν Frequency 1/s
ν Dimensionality —
ν Poisson’s ratio —
n Electron concentration m−3

n̄ Index of refraction —
nc Index of refraction (complex) —
nr Index of refraction (real part) —
ni Index of refraction (imaginary part) —
Nc Effective density of states m−3

Ojk Overlap matrix element —
� Peltier coefficient V
p Hole concentration m−3

p, p Momentum kg · m/s
p Generalized momentum coordinate —
p Electric dipole moment A · s · m
Pθ Heat generated W/m3

P Polarization C/m2

p Probability —
P Probability distribution —
P̂ Projection operator —
P Thermoelectric power V/K
q Fundamental charge (−e) −1.602 × 10−19 A · s
q Generalized position coordinate —
Q Heat energy J
Q Heat energy flux J/cm · s
Q Heat energy flux density J/m2 · s
Q Quality factor —
r, R Position coordinate m
re Electron’s effective space scale m
rH Hall factor —
RH Hall constant m3/C
ρ Resistivity � · cm
ρ Volume charge density C/m3

ρ Density matrix —
� Reflectivity —
R Recombination rate m−3 · s−1
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σ Variance —
σ Conductivity S/cm
σ Stress N/m2

s Spin quantum number ±1/2
S Entropy J/K
S Scattering rate 1/s
S Signal energy J
S Seebeck coefficient V/K
S Surface recombination velocity m/s
S Poynting vector J/m2 · s, eV/m2 · s
S(ω) Power spectral density unit square/s
SAr Auger scattering rate 1/s
SAr Impact ionization scattering rate 1/s
τ Scattering time s
τk Momentum relaxation time s
τ n Electron lifetime s
τ p Hole lifetime s
τ r Radiative lifetime s
τw Energy relaxation time s
t Time parameter s
T Temperature K
T Specific time s
T Torque N · m
T Kinetic energy J
T Real space translation operator m
T Transmission coefficient —
Tc Critical temperature K
TC Curie temperature K
ϑ , ϑ Data parameter —
ϒ Thompson coefficient V/K
u displacement m
U Internal energy J, eV
Ukk′ Coulomb perturbation Fourier component J, eV
u, u displacement m
U Net recombination rate m−3 · s−1

v Velocity m/s
vd Drift velocity m/s
vsat Saturation velocity m/s
vF Fermi velocity m/s
vg Group velocity m/s
vθ Thermal velocity m/s
V Potential eV
VH Hartree potential eV
Vsi Self-interaction potential eV
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Vx Exchange correction term eV
w Kinetic energy of a particle J
W Kinetic energy density J/m3

W Pseudopotential J, eV
ω Radial frequency rad/s
ωc Cyclotron resonance frequency rad/s
ωq Phonon radial frequency rad/s
ωLO Longitudinal optical radial frequency rad/s
ωop Optical radial frequency rad/s
ωp Plasma radial frequency rad/s
ωTO Transverse optical radial frequency rad/s
ωso Surface optical radial frequency rad/s
� Thermodynamic potential J
� Volume m3

� Frequency s−1

�0 Volume of unit cell m3

�k Volume of reciprocal unit cell m−3

� Possible configurations —
ξ Generalized electrothermochemical potential —
�a Acoustic deformation constant J, eV
χ c Electron affinity (Ec reference) J, eV
�d Deformation parameter J/m, eV/m
χv Electron affinity (Ev reference) J, eV
zT Thermoelectric figure of merit —
Z Atomic number —
Z∗e Dressed ionic charge C

Other units, in popular usage because of history, as well
as because of the insight they give, can be understood through the
following relationships provided here for reference.

Unit Conversion

Oersted (Oe) = 103/4π A/m = 79.59 A/m
Tesla (T) = N/A · m = V · s/m2 = kg/s2A = 104 Gauss
Ohm (�) = V/A
Coulomb (C) = A · s
Newton (N) = V · A · s/m = kg · m/s2

Kilogram (kg) = V · A · s3/m2

Farad (F) = A · s/V
Henry (H) = kg · m2/s2A2

Joule ( J) = N · m = V · A · s = 107 erg
Watt (W) = V · A = J/s
eV = 1.602 × 10−19 V · A · s
eV/kB = 1.1605 × 104 K
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eV/h = 2.418 × 1014 Hz
eV/hc = 8066 cm−1 = 8066 Kayser
hν(eV) = 1249.852/λ in nm
μB/μ0 = 0.578 × 10−4 eV/T
barn (b) = 1 × 10−28 m2

deg(◦) = π/180 rad = 17.45 mrad
arcmin = 1/60◦ = 290.0 μrad

Some of the symbols employed, as well as their context, are
listed here.

Symbol Meaning
∮

Contour integral
⊗ Convolution f (t) = ∫ ∞

−∞ g(t − t′)h(t′) dt′

Acronyms have been employed sparingly in the text, but a few do
slip in for compactness. These are listed here.

Acronym Full form

BCC Body-centered cubic
CMOS Complementary metal oxide semiconductor
FCC Face-centered cubic
HCP Hexagonal close packed
HOMO Highest occupied molecular orbital
HSR Hall-Shockley-Read
IBM International Business Machines Corporation
LO Longitudinal optical
LUMO Lowest unoccupied molecular orbital
pdf Probability distribution function
SI Système international d’unités
so Surface optical
TE Transverse electric
TEM Transverse electromagnetic
TM Transverse magnetic
TO Transverse optical
USA United States of America
WSJ Wall Street Journal

Scales, as a parameter that approximately guides the validity of a
formalism, have been employed throughout the book. Particularly
crucial in this have been those associated with length scales of an
important phenomenon. This table is a representative list of those
emphasized.
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Scale parameter Meaning

aB Bohr radius
a∗

B Effective Bohr radius
λ Wavelength
λ Coulombic screening length
λdeB de Broglie wavelength
λDH, λD Debye-Hückel or Debye screening length
λφ Phase coherence length
λk Momentum relaxation length
λmfp Mean free path ≡ momentum relaxation length
λscat Scattering length
λscr Screening length
λTF Thomas-Fermi screening length
L Diffusion length
τk Momentum relaxation time
τw Energy relaxation time

Vector identity relationships used in the text are provided
here for reference.

Identities:

A × B · C = A · B × C,

A × (B × C) = B(A · C) − C(A · B),

∇( f + g) = ∇f + ∇g,

∇ · (A + B) = ∇ · A + ∇ · B,

∇ × (A + B) = ∇ × A + ∇ × B,

∇(fg) = f∇g + g∇f ,

∇ · (f A) = A · ∇f + f∇ · A,

∇ · (A × B) = B · ∇ × A − A · ∇ × B,

∇ · ∇f = ∇2f ,

∇ · ∇ × A = 0,

∇ × ∇f = 0,

∇ × (∇ × A) = ∇(∇ · A) − ∇2A,

(∇ × A) × A = (A · ∇)A − 1
2
∇(A · A),

∇(A · B) = (A · ∇)B + (B · ∇)A + A × (∇ × B) + B × (∇ × A),

∇ × (f A) = ∇f × A + f∇ × A,

∇ × (A × B) = A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B.
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Common integral transforms, some of which have been used
in the text, are provided here for reference. The asymmetric form
of the Fourier transform, when employed, should be clear from the
context.

Integral transforms

Forward transform Inverse transform

Fourier F(ω) = 1√
2π

∫ ∞
−∞ exp(iωt)f (t) dt f (t) = 1√

2π

∫ ∞
−∞ exp(−iωt)F(ω) dω

Bessel Fn(k) = ∫ ∞
0 xJn(kx)f (x) dx f (x) = ∫ ∞

0 kJn(kx)Fn(k) dk

Laplace F(s) = ∫ ∞
0 exp(−st)f (t) dt f (t) = 1

2π i

∫ γ+i∞
γ−i∞ exp(st)F(s) ds

Mellin F(z) = ∫ ∞
0 tz−tf (t) dt f (t) = 1

2π i

∫ i∞
−i∞ t−zF(z) dz

Hilbert F(z) = 1
π

P
∫ ∞
−∞

f (t)
t−z dt f (t) = 1

π
P

∫ ∞
−∞

F(z)
z−t dz

Major equational relationships in SI units employed in
the text are provided here for reference.

Maxwell’s equations:

∇ · D = ρ,

∇ · B = 0,

∇ × E = −∂B
∂t

, and

∇ × H = J + ∂D
∂t

.

Constitutive relationships of Maxwell equations:

D = ε0E + P = ε0E + χε0E = εrε0E = εE , and

B = μ0(H + M) = μ0H + χμ0H = μrμ0H = μH.

Gauss’s theorem:

lim
�→0

1
�

∫

S
B · n̂ d2r = ∇ · B, or

∫

S
B · n̂ d2r =

∫

�

∇ · B d�.

Stokes’ theorem:

lim
S→0

1
S

∮

r
H · dr = n̂ · (∇ × H), or

∮

r
H · dr =

∫

S
n̂ · (∇ × H) d2r.
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Semi-classical conservation equations for electronics:

∇ · D = ρ,

−1
q
∇ · Jn = U = G − R, and

1
q
∇ · Jp = U = G − R.

Semi-classical constitutive equations for electronics:

D = εrε0E = −εrε0∇ψ ,

ρ = e
(
p − n + N+

D − N−
A

)
,

Jn = enμnE + eDn∇n,

Jp = epμpE − eDn∇p,

G = G(n, p, . . .), and

R = R(n, p, . . .).
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The following summarizes some of the salient properties of semiconductors that are often needed in
their usage.

Some crystal structure and band-related parameters for select semiconductors.

Common a, c ρ Ec Eg χ e Eg’s T (K) �so Expansion
crystal dependence coefficient
form (nm) (g/cm3) (eV) (eV) (eV) (eV) (K−1)

Si Dia 0.54311 2.329 0.85 of X 1.12 4.01 1.17 − 4.37 × 10−4T2/(T + 636) 0.044 2.33 × 10−6

Ge Dia 0.56579 5.323 L 0.66 4.13 0.74 − 4.77 × 10−4T2/(T + 235) 0.295 5.75 × 10−6

BN ZB 0.36157 6−8

AlN WZ
0.3110

3.255  6.28
0.498

GaN WZ
0.319

6.095  3.39
0.5189

0.017
InN WZ

0.3544
6.81  1.89*

0.5718
GaSb ZB 0.6095 5.63  0.70 4.06 0.810 − 3.78 × 10−4T2/(T + 94) 0.75 6.9 × 10−6

GaAs ZB 0.5653 5.318  1.43 4.07 1.519 − 5.405 × 10−4T2/(T + 204) 0.341 5.8 × 10−6

GaP ZB 0.5450 4.129 X 2.27 4.3 2.338 − 5.771 × 10−4T2/(T + 372) 0.08 5.3 × 10−6

AlSb ZB 0.6135 4.29 X 1.62 3.65 3.7 × 10−6

AlAs ZB 0.566 3.717 X 2.15 2.239 − 6.9 × 10−4T2/(T + 408) 5.2 × 10−6

AlP ZB 0.5462 X 2.41
InSb ZB 0.64787 5.80  0.18 4.59 0.236 − 2.99 × 10−4T2/(T + 140) 0.81 4.9 × 10−6

InAs ZB 0.6058 5.69  0.36 4.9 0.420 − 2.50 × 10−4T2/(T + 75) 0.38 4.5 × 10−6

InP ZB 0.58687 4.81  1.34 4.38 1.421 − 3.63 × 10−4T2/(T + 162) 0.11 4.5 × 10−6

CdS WZ
0.41367

 2.3 4.5
5.0 × 10−6

0.67161 3.5 × 10−6

CdSe WZ
0.4299

 1.8 4.95
4.13 × 10−6

0.70109 2.76 × 10−6

CdTe ZB 0.6477  1.45 4.28
HgTe ZB 0.64602  –0.14
PbS 0.5936 L 0.41
PbSe 0.6124 L 0.29
PbTe 0.6460 L 0.32

Note: all parameters are at 300 K. Ec is the band minimum point in the k-space. Some temperature dependences are also listed.
Dia: diamond, ZB: zinc blende and WZ: wurtzite.
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Some selected electron and hole parameters at the bandedges at room temperature.

m∗
e /m0 m∗

l /m0 m∗
t /m0 m∗

lh/m0 m∗
hh/m0 m∗

so/m0 m∗
de/m0 m∗

dh/m0

Si 0.98 0.19 0.15 0.49 0.39 1.18 0.81
Ge 1.57 0.082 0.042 0.34 0.1 0.26 0.34
GaN 0.20 0.13 0.5 0.2 0.60
AlN
InN
GaSb 0.042 0.045 0.8 0.15 0.40
GaAs 0.067 0.08 0.53 0.15 0.067 0.53
GaP 0.13 0.18 0.57 0.25 0.60
AlSb 0.11 0.11 0.4 0.98
AlAs 0.5 0.5 0.15 0.5
AlP 0.13
InSb 0.013 0.016 0.42 0.12 0.40
InAs 0.023 0.026 0.40 0.14 0.40
InP 0.073 0.12 0.6 0.12 0.64
CdS 0.2
CdSe 0.13
CdTe 0.11
HgTe 0.029
PbS 0.22
PbSe 0.07 0.039
PbTe 0.17 0.24 0.02

Note: in direct gap semiconductors, that is,  conduction band minimum, the zone center conduction
band being quite isotropic, the conduction band state effective mass is to be found in the first column
of m∗

e /m0. m∗
de and m∗

dh are the three-dimensional density-of-states effective mass for electrons and holes.
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Some selected semiconductor parameters at room temperature.

∼h̄ωop κ εr(0) εr(∞) Nc Nv ni B
(eV) (W/cm · K) (cm−3) (cm−3) (cm−3) (cm3/s)

Si 0.064 1.48 11.9 2.86 × 1019 3.10 × 1019 1.075 × 1010 1.1 × 10−14

Ge 0.037 0.6 16.2 1.0 × 1019 6.0 × 1018 2.4 × 1013 3.4 × 10−14

BN 7.1 4.5
GaN 0.092 2.20 8.9 5.35 2.3 × 1018 1.8 × 1019 1.9 × 10−10 1.1 × 10−8

AlN 0.113 3.0+ 9.14 4.76
InN 0.089 0.80 15.3 8.4
GaSb 0.029 0.33 15.69 14.44 4.3 × 1012 1.3 × 10−11

GaAs 0.036 0.54 13.1 11.1 4.4 × 1017 7.7 × 1018 ∼2 × 106 1.01 × 10−10

GaP 0.051 0.50 11.1 9.11 3.0 × 10−5

AlSb 0.042 12.04 10.24
AlAs 0.050 10.06 8.16 7.5 × 10−11

AlP 0.9 9.8 7.5
InSb 0.024 0.18 16.8 15.7 2 × 1016 4 × 10−11

InAs 0.030 0.26 15.15 12.31 1.6 × 1015 2.1 × 10−11

InP 0.043 0.7 12.6 9.61 1.6 × 1015 6.0 × 10−11

CdS (ZB)
CdS (WZ) 0.035 0.20 8.53 5.26
CdSe (ZB) 8.41
CdSe (WZ) 0.0248 0.09 9.73 5.26
CdTe 0.019 0.07 10.2 7.25
HgTe 0.017 0.02 21 10
PbS 17.0 7.1 × 1014 4.8 × 10−11

PbTe 30.0 4 × 1015 5.2 × 10−11

PbSe 6.2 × 1015 4 × 10−11

h̄ωop: approximate optical phonon energy.
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