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Preface

Introduction

This volume is a collection of protocols to install and run tools for calculation and visualiza-
tion of multiple sequence alignment (MSA) and other analyses related to MSA. Following
the policy of Methods in Molecular Biology, each chapter basically consists of a brief back-
ground and a step-by-step guide for installation and actual analyses. Practical advice is also
given in the Notes section in most chapters. The main target audience is experimental
biologists who want to run MSA tools themselves. By reading a chapter in this volume, a
reader should easily acquire basic usage of the associated tool. Detailed background and
advanced usage are described in papers and/or webpages mentioned in each chapter.

Basic Concepts and Terms

To provide background for these chapters, this section explains some technical terms and
established techniques that are commonly used.

Sequence alignment is an estimation of corresponding sites in a set of biological
sequences. The correspondence is, in many cases, based on homology, i.e., shared ancestry
in evolutionary history of the sequences compared. Alignment of just two sequences is called
“pairwise sequence alignment,” and alignment of three or more sequences is called “multi-
ple sequence alignment,” MSA, the theme of this volume. There is a long history of the
study of sequence alignment methods, starting from the first application of the dynamic
programming (DP) algorithm to pairwise alignment by Needleman and Wunsch [1]. This
method gives the optimum pairwise alignment under a reasonable scoring system. It is
theoretically possible to extend the DP algorithm to three or more sequences, if the score is
derived as the summation of pairwise alignment scores. However, this calculation requires
unpractical computational resources. In addition, for a real MSA, it is also usually necessary
to consider the relationships between sequences in order to reflect their evolutionary
history. Thus, the simple extension of the DP algorithm for MSA is rarely used. Instead,
various heuristics are used. Representative heuristic techniques are outlined below.

Progressive Method A reasonable and widely used heuristic is the progressive method [2–4].
In this strategy, a tentative tree, called a “guide tree,” is built based on an all-to-all approxi-
mate comparison. Then, the sequences are aligned from the leaves to the root on the tree, in
a group-to-group manner. When the calculation reaches the root, the full MSA is obtained.
Many MSA programs use the progressive method as a part of the calculation. Among them,
PRANK (Chapter 2) has a notable point that it rigorously considers insertions and deletions
on the guide tree.

Iterative Refinement The progressive method has a well-known problem that errors can occur
in early steps (i.e., close to a leaf) of the guide tree, and those errors remain in the final step
(the root of the guide tree). One effective solution is to correct this type of mistake is
iterative refinement [5–7]. The procedure is: (i) construct an initial MSA; (ii) divide the
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MSA into two groups; (iii) re-align the two groups; repeat (ii) and (iii). This technique is
used in Prrn5 (Chapter 5), Clustal Omega (Chapter 1), MAFFT (Chapter 11), and MSA-
Probs (Chapter 3).

Consistency Another important idea to overcome the limitations of the progressive method
is consistency [8, 9]. In the tree-based consistency transformation technique, proposed first
in Notredame et al. [10], when aligning two sequences (A and B), other sequences (e.g., C)
in the dataset are also used. That is, in addition to direct alignment between A and B, an
alternative alignment between A and B is synthesized by using alignments AC and BC.
Alignment AB is recalculated by considering such alternative alignments and used in the
progressive alignment step. As a result, alignment errors in early steps are efficiently sup-
pressed. This method was further elaborated to use probabilistic pairwise alignments by a
pair hiddenMarkov model in ProbCons [11]. MSAprobs (Chapter 3) represents this type of
MSA method and gives highly accurate MSAs.

Specific or Newly Emerging Problems

There are a lot of useful tools for computing MSAs that are not covered here. This volume
introduces several characteristic tools that are quite useful in specific situations, as different
types of MSA calculations are becoming necessary.

For example, when aligning genomic sequences of protein-coding regions, both amino
acid sequences and DNA sequences have to be taken into account. Spalm (Chapter 5) and
MACSE (Chapter 4) are useful for this type of problem.

Now we have much more data than before because of advances of sequencing technol-
ogies. The number of sequences in a typical MSA is accordingly becoming larger. To
calculate such largeMSAs, a number of methods have been developed, such as the regressive
option of T-Coffee (Chapter 6) and PASTA/UPP (Chapter 7). Generally, it is difficult to
apply high-cost methods to such data. To optimize the balance between accuracy and
computational cost, these methods combine basic methods mentioned in the previous
section and newly developed techniques. Alignment-free methods have also been studied
as an alternative way to compare a large number of sequences. The SpaM series (Chapter 8)
provides alignment-free comparisons for various purposes, including phylogeny of unas-
sembled reads.

At this point, large-scale sequence data usually has many errors due to limitations in
sequencing quality. Such errors naturally have a negative effect on downstream analyses.
Lamassemble (Chapter 9) aligns and merges long raw reads of low quality to infer a more
accurate sequence. Based on a given model of error patterns, it produces better MSAs and a
consensus sequence for low-quality reads than general purposeMSA tools. Another solution
is to detect and filter out problematic regions; PREQUAL (Chapter 10) takes this strategy,
which is applicable to general datasets with unknown error patterns.

MAFFT-DASH (Chapter 11) and Mustguseal (Chapter 12) utilize protein structural
information. This approach is useful in functional analyses using remote protein homologs,
as protein structure tends to be more conserved over long evolutionary timescales even
when homology at the sequence level is no longer detectable.

Finally, visualization and summarization of data is also becoming important since we
have much more sequence data than before. Four alignment viewers/editors, Jalview
(Chapter 13), Wasabi (Chapter 14), Seaview (Chapter 15), and NCBI genome workbench
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(Chapter 16), are included in this volume. These chapters mainly describe functions related
to MSA, but these tools have many other features for interpreting and utilizing MSAs.

SinceMSA is related to a wide range of biological problems, this volume cannot cover all
important issues. First, this volume mainly covers MSA of a single gene. Analysis of genomic
data is only briefly mentioned in Chapters 5, 9, and 16. Second, since MSA is tightly related
to estimation of evolutionary history as noted earlier, a possible direction for improvement
of MSA is co-estimation of tree and alignment such as BAli-Phy [12] and StatAlign [13].
These types of methods are not included in this volume but have been very recently
described in another volume in this series [14]. There is a controversy about the relationship
between “evolutionarily correct” and “structurally correct” MSAs, as discussed in Chapters
2 and 17. That is, methods strictly based on an evolutionary model do not necessarily
accurately align residues that are thought to be structurally conserved. There are several
different interpretations of this observation, and this is an important issue for further
development of MSA methods.

Osaka, Japan Kazutaka Katoh
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Chapter 1

The Clustal Omega Multiple Alignment Package

Fabian Sievers and Desmond G. Higgins

Abstract

Clustal Omega is a version, completely rewritten and revised in 2011, of the widely used Clustal series of
programs for multiple sequence alignment. It can deal with very large numbers (many tens of thousands) of
DNA/RNA or protein sequences due to its use of the mBed algorithm for calculating guide-trees. This
algorithm allows very large alignment problems to be tackled very quickly, even on personal computers. The
accuracy of the program has been considerably improved over earlier Clustal programs, through the use of
the HHalign method for aligning profile hidden Markov models. The program currently is used from the
command-line or can be run online.

Key words Multiple sequence alignment, Progressive alignment, Protein sequences, Clustal

1 Introduction

Clustal Omega [1] is a package for performing fast and accurate
multiple sequence alignments (MSAs) of potentially large numbers
of protein or DNA/RNA sequences. It is the latest version of the
popular and widely used Clustal MSA package [2, 3]. Clustal
Omega retains the basic progressive alignment MSA approach of
the older ClustalX and ClustalW implementations, where the order
of alignments is determined by a so-called guide-tree [4], which in
turn is constructed from pairwise distances among the sequences.
The main improvements over ClustalW2 are (1) use of the mBed
algorithm for creating guide-trees of any size [5] and (2) a very
accurate profile-profile aligner, based on the HHalign package
[6]. As a first step, a traditional progressive aligner calculates all N
(N-1)/2 pairwise distances among allN input sequences. This may
be computationally too demanding for more than 10,000
sequences. The mBed algorithm, as implemented in Clustal
Omega, reduces the time and memory complexity for guide-tree
calculation from O(N^2) to O(N(log(N))^2). This is achieved by
calculating the pairwise distances of allN sequences with respect to
log(N)^2 randomly chosen seed sequences only. The fast pairwise

Kazutaka Katoh (ed.), Multiple Sequence Alignment: Methods and Protocols, Methods in Molecular Biology, vol. 2231,
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distance calculation routines, based on a k-tuple alignment algo-
rithm, have been retained from the previous Clustal programs. The
pairwise distances are then clustered, using a bisecting k-means
algorithm [7]. Groups of sequences are bisected until a certain
threshold for the cluster size is reached. In the current version,
this threshold is hard-wired to 100 but can be changed to larger or
smaller values. Guide-tree construction within the clusters and
among the clusters makes use of the tree building routines in
Muscle [8]. This dendrogram is referred to as a guide-tree to
emphasize that it is only used to guide the progressive alignment;
it is not a reliable guide to the phylogeny of the sequences. Guide-
tree construction will be skipped if only two sequences are to be
aligned or if an externally constructed guide-tree is inputted.

In the profile-profile alignment phase, sequences are aligned in
larger and larger groups, according to the branching order in the
guide-tree. At each stage of this final step, two alignments are
aligned. Initially these are single sequences, but they grow with
the addition of new sequences as one traverses the guide-tree. The
alignment of residues and the positioning of gaps during each
profile-profile alignment are fixed and cannot be undone at a later
profile-profile alignment higher up in the tree. The main algorith-
mic change over ClustalW2 is a new profile-profile alignment
engine, based on the HHalign software [6]. HHalign is entirely
based on hidden Markov methods (HMMs). Sequences and inter-
mediary profiles are converted into HMMs, which are aligned in
turn. It is also possible to input a HMM in addition to the
unaligned sequences and to use this external HMM to guide the
alignment during the profile-profile alignment stage. This is
referred to as external profile alignment (EPA). There are two
HMM alignment algorithms: the accurate and memory-hungry
maximum accuracy (MAC) algorithm and the faster, less accurate,
and more memory-efficient Viterbi algorithm. TheMAC algorithm
is the default, and Viterbi is activated automatically only if the
system resources are exhausted.

Sequence input to Clustal Omega is handled by the Squid
routines http://eddylab.org/software/squid/squid.tar.gz, and
permissible input formats are a2m (fasta/vienna), clustal, msf, phy-
lip, selex, and stockholm. Output can be in the same formats. The
maximum number of sequences and lengths that can be aligned will
depend on the machine being used. The number of sequences
primarily affects the distance matrix calculation. Storing an mBed
matrix forN¼ 10,000 sequences takes up approximately 14 MB of
memory. A full distance matrix would take up almost 400 MB.
Both alternatives are clearly feasible on a modern desktop com-
puter. For N ¼ 100,000 the mBed matrix will take up 220 MB,
while the full distance matrix will require about 40GB, which may
necessitate a higher-end machine. The length of the individual
input sequences also contributes to the memory consumption of

4 Fabian Sievers and Desmond G. Higgins
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the tree-building phase via the k-tuple alignment distance calcula-
tion among pairs of sequences. The length of the final alignment,
and therefore by extension the lengths of the input sequences,
however, mostly impacts on the profile-profile alignment phase.
For every profile-profile alignment, the MAC algorithm constructs
six L1 � L2 matrices of double variables, where L1 and L2 are the
lengths of the two profiles to be aligned. An alignment of two
profiles, each 100 residues in length, will therefore require
8 � 6 � 100 � 100 ¼ 480,000 bytes. The maximum alignment
length for a machine with 8GB would therefore be two profiles of
√(8 GB/(6 � 8)B) ¼ 13,377 positions in length each, or equiva-
lent (see Note 1). The number of sequences affects the resource
requirements of the profile-profile alignment stage only indirectly,
in that it influences how much the lengths of the intermediate
profiles grow from the lengths of the individual sequences. This
growth is difficult to predict and depends, among other factors, on
the similarity of the sequences. The time required for the profile-
profile alignment stage is a function of the number of sequencesN,
the lengths of the intermediate profiles L, and the shape of the
guide-tree. An MSA of N sequences requires (N-1) profile-profile
alignments; increasing the number of sequences increases the num-
ber of profile-profile alignments linearly, and therefore the align-
ment time will also grow in a linear fashion, at least in simple cases.
Increasing the lengths of the input sequences clearly will increase
the lengths of the intermediate profiles. Building up the HMM
matrices requires a multiple of L1 � 2 operations, so increasing the
lengths of the sequences will increase the matrix construction times
in a quadratic fashion. The guide-tree topology affects the profile-
profile alignment times in a subtle way. Roughly speaking, align-
ments generated using a balanced tree [9] will require less time than
using an imbalanced (chained) tree [10]. For example, on a single
core of a 64 bit 3.0GHz machine with 4GB of RAM, it takes just
over 5 min to construct the tree and align 50,000 zinc-finger
sequences of average length of 23 residues; it takes 25 min for
20,000 and 68 min for 50,000 sdr sequences of average length
163 residues. It takes 106 min for 20,000 p450 sequences of
average length 331 amino acids.

The current implementation of Clustal Omega is command-
line driven. There is as of yet no GUI and no interactive menu. A list
of all permissible command-line arguments is available by typing –
h (--help) on the command-line. There is an exhaustive help file
explaining all command-line arguments and their usage in detail.
The help file also contains many examples, showing the use of all
individual command-line arguments and a range of typical combi-
nations of command-line arguments.
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2 Materials

Clustal Omega is available online for interactive use. Two sites
offering Clustal Omega are http://www.ebi.ac.uk/Tools/msa/
clustalo/ (see Fig. 1 and [11]) and https://galaxy.pasteur.fr/
(search for Clustal Omega).

Clustal Omega source code and executables can be down-
loaded from http://www.clustal.org/omega/.

Executables are provided for Linux (32/64 bit), Mac (64 bit),
Windows (64 bit), and FreeBSD (32/64 bit). To compile Clustal
Omega from source under Linux, one has to un-tar the distribution
and change (cd) into the un-tar-ed directory, configure, and make.
For example, if the tar-ball is called clustal-omega-1.2.4.tar.gz,
then a typical installation might require:

$ tar -xvf clustal-omega-1.2.4.tar.gz

$ cd clustal-omega-1.2.4/

$ ./configure

$ make

$ make install

Do not type the “$”, this is the command-line prompt in a
POSIX compliant shell; different operating systems and/or shells
may have different command-line prompts, like “>” in Windows,
“#” for a root user, or “%” in a C shell.

This should configure, build, and install the Clustal Omega
package under Linux (see Notes 2–4). The last step may require
root/sudo privileges. However, make will still compile a Clustal
Omega executable, which can be moved to any location in the
user’s file tree and can then be invoked by specifying the full path-
name, for example:

$ /home/clustal-user/path/to/where/clustal/is/located/clustalo

For installation under Windows, see Note 5.

3 Methods

3.1 Basic Multiple

Sequence Alignment

Clustal Omega can only be run locally from the command-line. To
obtain a brief list of all available Clustal Omega command-line flags
type:

$ clustalo -h

and hit <return>
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Parts of the Clustal Omega code have been multi-threaded,
using OpenMP. By default, Clustal Omega will attempt to use all
available threads. To limit the number of threads one can specify --
threads. This is recommended if Clustal Omega is not the only
process running on the host machine.

Despite Clustal Omega being very fast for many purposes,
some alignments may take a long time. In this case it may be
reassuring to track the real-time progress of the alignment. This
can be done by specifying the -v flag. This will print to screen what
phase the calculation is in (distance matrix calculation, k-means
clustering, guide-tree construction, progressive alignment).
Repeating the –v flag a second time on the command-line increases

Fig. 1 Screenshot of the Clustal Omega Web page on the EBI Web. Site: http://www.ebi.ac.uk/Tools/msa/
clustalo/
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the level of verbosity, giving a more detailed progress report. Triple
-v is the highest level of verbosity, giving details about distances,
tree building, and intermediate alignments. This level is only useful
for the smallest alignments.

The most basic use of Clustal Omega involves aligning a num-
ber of unaligned sequences that are all contained in a single file. For
example, if the file globin.fa contains two or more unaligned
sequences in fasta format, then:

$ clustalo -i globin.fa

will read in the file, align the sequences, and output the align-
ment to screen (default) in the default (fasta) format.

$ clustalo -i globin.fa -o globin.sto --outfmt=st

If the file globin.sto does not exist, then Clustal Omega reads
the sequence file globin.fa, aligns the sequences, and prints the
result to globin.sto in Stockholm format. If the file globin.sto
does exist already, then Clustal Omega terminates the alignment
process before reading globin.fa.

$ clustalo -i globin.fa -o globin.aln --outfmt=clu --force

Clustal Omega reads the sequence file globin.fa, aligns the
sequences and prints the alignment to globin.aln in Clustal format,
overwriting the file globin.aln, if it already exists.

$ clustalo -i globin.fa --guidetree-out=globin.dnd --force

Clustal Omega reads the sequence file globin.fa, aligns the
sequences, and prints the alignment to screen in fasta/a2m format
(default) and the guide-tree to globin.dnd in Newick format, over-
writing this file, if it already exists (see Notes 6–8).

$ clustalo -i globin.fa --guidetree-in=globin.dnd

Clustal Omega reads the files globin.fa and globin.dnd, skip-
ping distance calculation, and guide-tree creation, using instead the
guide-tree specified in globin.dnd. The inputted guide-tree must
be in Newick format. The program will terminate if there is a
discrepancy in sequence labels in the sequence and the guide-tree
files. The alignment is outputted to screen in fasta format (default).

3.2 External Profile

Alignment (EPA)

As mentioned in Subheading 1, Clustal Omega is a progressive
aligner. This means that residues that are aligned and gaps that
are positioned during an early stage of the alignment process
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remain fixed throughout the rest of the process and cannot be
changed. An alignment of two residues that appears to be advanta-
geous at an early stage could turn out to be suboptimal in the final
alignment. External profile alignment (EPA) is a way to provide the
alignment process with a certain degree of “foresight.” If the final
alignment can be anticipated, then this prior knowledge can be
encoded as a HMM. This may be because the user knows they are
aligning a particular type of sequence, for example, globins. Pre-
computedHMMs for globins are available from repositories such as
Pfam (http://pfam.xfam.org). Alternatively, the user could have
produced a manually curated high-quality alignment of sequences
that are homologous to the input set. This alignment can then be
converted into a HMM using, for example, HMMER [12].

Clustal Omega accepts these external profile-HMMs as input,
accompanying the unaligned sequences. During the alignment
stage, sequences and profiles are first aligned to the external profile,
and pseudo-counts from the HMM are transferred to the internal
HMM used to align the sequences progressively. The desired effect
of this is to “nudge” particular residues and gaps toward the
position where they are expected to end up in the final alignment.

Individual sequences and small profiles are most vulnerable to
misalignment. On the other hand, large profiles have already built
up more information about sequence variability at each position.
Clustal Omega therefore up-weights the pseudo-count transfer for
single sequences and intermediate alignments with small numbers
of sequences and reduces the transfer to larger intermediate align-
ments. Pseudo-count transfer to alignments larger than, say, ten is
negligible. Using EPA increases the profile-profile alignment time
approximately threefold. Firstly, each of the two profiles is aligned
to the external HMM, and finally the pre-aligned profiles have to be
aligned themselves.

The most straightforward EPA scenario is where one back-
ground HMM is assumed to extend over the entire range of the
final alignment. This is dealt with by the --hmm-in flag. To use a
HMM in conjunction with unaligned sequences, first determine
the appropriate HMM. For example, a search of the Pfam Web site
for “globin” finds PF00042 which is the Pfam accession number
for globins. Go to “Curation & model” of the PF00042 page and
download the HMM called PF00042.hmm. Then type:

$ clustalo -i globin.fa --hmm-in=PF00042.hmm

However, if the unaligned sequences extend over multiple
domains, and HMMs are only available for the individual domains,
then one single HMMmay not be capable of anticipating the entire
final alignment. In this case multiple HMMs can be specified for
individual sequences. This is achieved by specifying a HMM batch
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file in conjunction with the --hmm-batch flag. This batch file is a
plain text file of the following format:

seq1 hmm1
seq2 hmm2
seq3 hmm3
... ...
... ...

where sequence label seq1 is associated with HMM file hmm1 and
so on. This option is invoked as:

$ clustalo -i globin.fa --hmm-batch = globin-batch.txt

where globin-batch.txt is the HMM batch file.

3.3 Iteration A useful means of refining an alignment is by “iterating” the
alignment process. The guide-tree used for performing the initial
alignment is based on pairwise distances between unaligned
sequences. This may not be a reliable distance measure, and the
guide-tree derived from these distances may not be ideal. A better
distance measure between sequences is one based on a full multiple
alignment [13]. In Clustal Omega such distances can be calculated
from an initial multiple alignment and can be used to calculate a
new, hopefully better, guide-tree. Any subsequent guide-tree
refinement will again use the alignment distances between
sequences. These distances are expected to become more accurate
as the alignments they are based upon become more accurate,
leading in turn to better guide-trees and by extension to better
alignments. EPA required an externally computed HMM. This can
be used to create a simple iteration scheme. In a first step unaligned
sequences are aligned without any external profile. This produces
an alignment which can be internally converted into a HMM and
used in a second round of aligning in the same way as an EPA. Both
of these steps, the initial unassisted alignment and the second
alignment using a HMM and a new guide-tree derived from the
first alignment, can be performed with one invocation of Clustal
Omega:

$ clustalo -i globin.fa --iter=1

This will perform an initial alignment. It will then derive new
distances between sequences from this alignment and construct a
new guide-tree. It will also convert the initial alignment into a
HMM and use this HMM in a second round of profile-profile
alignment. After this second round, the final alignment is written
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to the screen. Guide-tree iteration and HMM iteration can be
decoupled in the following way:

$ clustalo -i globin.fa --iter=5 --max-guidetree-iterations=1

This performs an initial alignment. In a second round (first
iteration) one reconstruction of the guide-tree is performed in
tandem with one profile-profile alignment using a HMM derived
from the initial alignment. Four subsequent refinement rounds will
use HMMs derived from the previous alignments but will not
recalculate the guide-tree. Conversely, one can restrict the number
of HMM iterations while repeatedly refining the guide-tree, by
setting --max-hmm-iterations to a value less than the one specified
by --iter. However, this variant is probably less useful, as it does not
use any HMM information at the last alignment step (see Note 9).
Good results have been achieved with --iter¼1 and --iter¼2; differ-
ent iteration schemes should be used on a case-by-case basis.

If only the guide-tree and/or the distance matrix but no actual
alignment are desired, then one can set --max-hmm-iterations¼-1;
this will skip the alignment phase.

3.4 Profile Alignment When reading in aligned sequences, Clustal Omega makes use of
the alignment information (full alignment distances for guide-tree
construction and HMM information for EPA) and then “dealigns”
the sequences (removes all gaps) before realigning them. If the --
dealign flag is specified, then the sequences are dealigned without
making use of the alignment information. Sometimes this is not
desirable. For example, one might have a high-quality, hand-
curated alignment to which some unaligned sequences are to be
added while keeping the curated alignment fixed. Alternatively, one
might want to align two profiles. In these cases one has to use the
Clustal Omega --profile1 (and --profile2) flag. To align two profiles
use (see Note 10):

$ clustalo --profile1=globin1.aln --profile2=globin2.aln

If more than one unaligned sequence, for example, in file
moreGlobins.fa, are to be added to an existing profile use:

$ clustalo --profile1=globin1.aln -i moreGlobins.fa

Clustal Omega extracts HMM information from the profile
and uses this HMM as an external profile for the alignment of the
unaligned sequences. Once all the unaligned sequences in more-
Globins.fa have been aligned, this new profile is aligned to the
previously existing profile globin1.aln.
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4 Notes

1. By default, Clustal Omega uses the maximum accuracy (MAC)
algorithm [6] to align profiles. This algorithm is memory
intensive. If this amount of memory is not available, then
Clustal Omega switches to the Viterbi [14] algorithm. How-
ever, it is not straightforward to automatically establish the
amount of RAM available on different machines running dif-
ferent operating systems. Clustal Omega therefore assumes
that it will have 8 GB ¼ 8192 MB of memory available for
the MAC alignment. Should one have more (or less) than 8 GB
of RAM, then this can be communicated by setting the --MAC-
RAM flag to the appropriate size (in MB). For example, on a
machine with 4GB of RAM, one might specify.

$ clustalo -i globin.fa --MAC-RAM=4096

where 4096 corresponds to 4GB (¼4 � 1024 MB). In practice
one might want to reduce the --MAC-RAM value, to allow for
memory usage other than the MAC alignment. If not enough
RAM is available on the local machine but maximum accuracy
is essential, a larger --MAC-RAM value can be specified. Clustal
Omega will then access the machine’s swap space. Swap space is
often of the same size as RAM; however, this should be checked
for the local installation. Accessing swap space is
extremely slow.

2. The “configure” shell script attempts to guess correct values for
various system-dependent variables used during compilation. It
uses those values to create a “Makefile” in each directory of the
package. It may also create one or more “.h” files containing
system-dependent definitions. Finally, it creates a shell script
“config.status” that one can run in the future to recreate the
current configuration and a file config.log’ containing compiler
output (useful mainly for debugging configure).

3. Clustal Omega needs argtable2 (http://argtable.sourceforge.
net/). If argtable2 is installed in a nonstandard directory, one
may have to point configure to its installation directory. For
example, if on a Mac with argtable installed via MacPorts, then
one should use the following command-line:

$ ./configure CFLAGS=’-I/opt/local/include’ LDFLAGS=’-L/

opt/local/lib’

4. Clustal Omega will automatically support multi-threading if
the compiler supports OpenMP. For some reason automake’s
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OpenMP detection for Apple’s gcc is broken. OpenMP detec-
tion can be forced by calling configure as follows:

$ ./configure OPENMP_CFLAGS=’-fopenmp’ CFLAGS=’--

DHAVE_OPENMP’

5. For compiling and installing, Clustal Omega under Windows
MinGW64 and MSYS should be installed. The compilation
steps under MSYS are similar to the ones outlined under Sub-
heading 2 (Materials). For a step-by-step guide, go to http://
www.clustal.org/omega/INSTALL

6. Distance matrix output can be initiated by specifying --distmat-
out. However, this is not possible in default (mBed) mode
because mBed does not calculate a full distance matrix. There-
fore one must specify full distance matrix calculation by setting

--full. For example:

$ clustalo -i globin.fa --distmat-out = globin.mat –full

Distance matrix output in conjunction with iteration requires
the --full-iter flag as well as the --full flag. If this flag is not
specified, then Clustal Omega will write out the first distance
matrix, based on k-tuple distances and will then perform the
preliminary alignment. During the first iteration, it will then
calculate new distances, based on the full multiple alignment,
using the mBed algorithm. Since distance matrix output is not
possible in mBed mode the preliminary matrix, based on
k-tuples, will not be overwritten. Full alignment distances are
used though for constructing an iterated guide-tree.

7. Guide-tree construction is based on pairwise distances. In this
context fragments are particularly problematic. Fragments may
be very short indeed and may therefore align perfectly with all
sequences, leading to zero distances of all sequences with
respect to the fragment. By transitivity, this insinuates that
sequences that are in fact not close to each other can appear
very close by proxy. This in turn will lead to a very bad guide-
tree. This guide-tree will be extremely unbalanced (chained),
which will lead to overly long execution times. It will also
arrange the sequences in a more or less random order in this
chained tree, leading to suboptimal alignments.

8. The guide-tree is built using Unweighted Pair Group Method
with Arithmetic Mean (UPGMA). In UPGMA the nearest two
clusters are combined into a higher-level cluster at each step. If
there are ties, that is, more than one pair of clusters have the
same nearest distance, then these ties are broken by the (ran-
dom) order in which sequences appear in the input file. The
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ordering of sequences in the input thereby may affect the shape
of the guide-tree, which in turn may affect the final
alignment [15].

9. A Clustal Omega iteration can be broken up into two distinct
steps. Performing:

$ clustalo -i globin.fa -o globin-0.out

$ clustalo -i globin-0.out -o globin-1.out

is equivalent to

$ clustalo -i globin.fa --iter=1 -o globin-1.out

The first invocation produces an alignment called globin-0.out.
During the second invocation Clustal Omega reads in globin-
0.out and detects that this is a valid alignment. It does so by
ascertaining that all input sequences have the same length and
that at least one input sequence contains at least one gap. The
alignment information is used to build a guide-tree from the
full alignment distances (rather than from the k-tuple distances
that were used during the first invocation), as well as to pro-
duce a HMM, which is used during the second profile-profile
alignment stage. This approach may be desirable for certain
reasons. Firstly, it retains the intermediate alignment, which is
lost using the --iter flag. Secondly, it allows one to use (and
refine) existing alignments which may have been produced by
aligners other than Clustal Omega. For example, for moderate
numbers of sequences, Kalign [16] is a faster alignment pro-
gram than Clustal Omega while still producing alignments of
reasonable quality.

$ kalign-2.04 -i globin.fa -o globin-0.out -q -f fasta

$ clustalo -i globin-0.out -o globin-1.out

This uses Kalign to create a rough but high-speed initial align-
ment, which is then refined using Clustal Omega. It is always
advisable to ensure whether input sequences are actually
aligned or not. In certain pipelines, unaligned sequences are
arranged in such a way that sequences are padded at the end
with gaps, such that all sequences have the same length. This is
interpreted by Clustal Omega as a valid alignment, while in fact
it is not. While the guide-tree that is derived from such an input
is useless at best, the HMM information that is derived from
this arrangement establishes the present, nonsensical, align-
ment. In this case one could either remove all gaps from the
input by hand or specify the --dealign flag.
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10. To align a single sequence to an existing profile, use the profile-
profile syntax

$ clustalo --profile1=globin1.aln --profile2=singleSe-

quence.fa

When adding multiple sequences to a profile, Clustal Omega
first aligns all the unaligned sequences, taking regard of the
HMM information derived from the profile, and then aligns
the newly formed profile to the already existing profile. If the
profile/sequences mode were to be used for adding a single
sequence, then Clustal Omega would complain because there
is only one sequence during the first round of alignments,
which cannot be aligned against any other sequence. Con-
versely, to add unaligned sequences one-by-one to an existing
profile (rather than first aligning all the unaligned sequences
and then aligning the new and the old profiles), one will have
to distribute the unaligned sequences among multiple files and
align the single sequences to the profile, overwriting the exist-
ing profile with the newly formed profile. One possible (bash)
implementation to do this might be:

while read label; do

read seq;

echo $label > in.vie

echo $seq >> in.vie

clustalo --p1=globin-0.aln --p2=in.vie -o globin-0.aln --

force;

done < unaligned.vie

where unaligned.vie is the file that contains the unaligned
sequences in Vienna format. Vienna format is the same as
Fasta format but where all the residue information is in one
(long) line – in this example Vienna format is mandatory.
Globin-0.aln is the file that originally contains the existing
profile. At every stage it is overwritten with the alignment
comprising of the previous profile and one extra added
sequence. It is advisable to keep a copy of the original align-
ment. When performing this procedure, the order in which
unaligned sequences are added to the profile can impact on the
final alignment.
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Chapter 2

Phylogeny-Aware Alignment with PRANK and PAGAN

Ari Löytynoja

Abstract

Evolutionary analyses require sequence alignments that correctly represent evolutionary homology. Evolu-
tionary homology and proteins’ structural similarity are not the same and sequence alignments generated
with methods designed for structural matching can be seriously misleading in comparative and phylogenetic
analyses. The phylogeny-aware alignment algorithm implemented in the program PRANK has been shown
to produce good alignments for evolutionary inferences. Unlike other alignment programs, PRANKmakes
use of phylogenetic information to distinguish alignment gaps caused by insertions or deletions and,
thereafter, handles the two types of events differently. As a by-product of the correct handling of insertions
and deletions, PRANK can provide the inferred ancestral sequences as a part of the output and mark the
alignment gaps differently depending on their origin in insertion or deletion events. As the algorithm infers
the evolutionary history of the sequences, PRANK can be sensitive to errors in the guide phylogeny and
violations on the underlying assumptions about the origin and patterns of gaps. To mitigate the effects of
such model violations, the phylogeny-aware alignment algorithm has been re-implemented in program
PAGAN. By using sequence graphs, PAGAN can model and accumulate evidence from more complex gap
structures than PRANK does, and incorporate this uncertainty in the inferred ancestral sequences. These
issues are discussed in detail below and practical advice is provided for the use of PRANK and PAGAN in
evolutionary analysis. The two software packages can be downloaded from http://wasabiapp.org/software.

Key words Phylogeny-aware alignment, Evolutionary sequence analysis, Insertions and deletions,
Character homology

1 Introduction

Multiple sequence alignment has a central role in evolutionary
sequence analysis, in some studies so central that the alignment
and evolutionary inferences should be performed simultaneously or
at least in a tightly coupled manner. The connection between
alignment and phylogeny inference was noticed early [1] but the
evolutionary consequences of it are still largely ignored by main-
stream alignment methods. A probable explanation for this over-
sight is the historical focus on protein alignments and extensive use
of structural benchmarks in the development and comparison of
the analysis methods. The use of these benchmarks has produced
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great alignments for structural studies of proteins but, as noticed by
many users of the resulting methods, the very same alignments may
be unsuitable for evolutionary analyses.

This chapter focuses on evolutionary sequence alignment and
the use of a phylogeny-aware alignment algorithm to infer align-
ments for evolutionary studies. The definition of evolutionary
homology is central and we will start by discussing that and its
correct representation in multiple sequence alignments. We will
then introduce—with lots of figures and no equations—the
phylogeny-aware alignment algorithm implemented in programs
PRANK and PAGAN. After detailing the strengths and weaknesses
of these methods, we will see what this means in practice and give
advice for their use. We will finish with a brief discussion on the
future plans for the phylogeny-aware alignment methods.

In the following sections, some methods based on the classical
progressive algorithm are criticized and shown to perform poorly.
This criticism is based on their performance in evolutionary ana-
lyses only and, as demonstrated in Chapter 17 of this book, the
alignments they produce can be suitable for other types of analyses.
Similarly, the phylogeny-aware algorithm may perform poorly in
non-evolutionary alignment tasks and alternative methods should
be used.

2 Evolutionary Homology in Sequence Alignment

A multiple sequence alignment represents site-wise homology or
“identity” among the characters in different sequences. The type of
homology/identity denoted by the alignment depends on the
application and the intended use of the data: in evolutionary ana-
lyses, characters placed in the same alignments columns are believed
to be evolutionarily homologous and share a common ancestor; on
the other hand, many functional and structural analyses of proteins
consider aligned characters positionally identical in proteins’ ter-
tiary structures. Evolutionary homology is not the same as struc-
tural and positional similarity and the difference between the two
measures is most clearly evidenced by the role of insertions. Two
independent insertions at the same position can lead to similar
changes in the structure and the characters inserted independently
may thus be considered structurally identical; in contrast, indepen-
dent insertions—even at exactly the same position—do not share a
common ancestor and can never be evolutionarily homologous. To
correctly indicate the evolutionary homology of insertions, the
characters descending from different insertions events should be
placed in separate alignment columns (Fig. 1).

If one restricts the analysis to relatively short sequence frag-
ments, one can assume that the sequences evolve by substitutions,
insertions, and deletions only. The three processes can be assumed
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to occur at relatively constant (although for different processes
distinct) rates, substitutions typically being at least an order of
magnitude more common than insertions and deletions [3]. The
three processes differ greatly in their effect on the sequences and on
one’s ability infer the events from the data: (1) a character at a
certain site can be substituted several times, subsequent substitu-
tions may turn the character state back to an earlier one and
characters in different evolutionary lineages may independently
obtain the same new character state, all still remaining homologous
to each other; (2) an insertion adds new characters to the sequence
and subsequent insertions may be nested inside a fragment inserted
by a preceding insertion event but, as mentioned above, insertions
in different lineages are never homologous and evolve indepen-
dently; and (3) a deletion removes characters permanently and the
characters once deleted cannot be reverted, a potential insertion at
the same position introducing new characters that are not homolo-
gous with the deleted ones.

By a comparison of two homologous sequences we can detect
sites that have undergone substitutions but, without more infor-
mation, we cannot tell which sequence has changed at which posi-
tion. In contrast to this, length differences between two sequences
can be explained by deletions of existing characters in one sequence
or insertions of new characters in the other. The evolutionary

Fig. 1 The gap patterns in a true alignment reflect the underlying phylogeny of
the sequences. Insertions and deletions create gap patterns (boxes in the
alignment; numbered at the bottom) that reflect the phylogenetic locations of
the events (black and gray bubbles in the tree). If multiple parallel insertions
occur at homologous positions (events 5, 6, and 7), inserted columns can be
placed in any order without effect on the homology statement. In the case of
more than two parallel insertions, some inserted fragments are disconnected
from the rest of the alignment (here, event 6). The type and phylogenetic location
of event 2 are uncertain and it could also be a deletion in the sister branch
(indicated by arrow). Whereas the phylogeny-aware algorithm would re-align the
sequences correctly, the classical progressive algorithm (here ClustalW [2]) fails
to resolve the true insertion and deletion events
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lineage on which the substitution-differences between two
sequences have occurred can be resolved using outgroup sequences
and by inferring the character states for the ancestor of the two.
Similarly to this, the evolutionary lineages—and thus the types—of
insertion/deletion events creating length differences between two
sequences can be inferred using information from phylogenetically
related sequences.

Over time, sequences accumulate changes. Despite some dif-
ferences in genome sizes, we can assume that sequences tend to
retain their approximate length and insertion of new characters is
counterbalanced by deletion of others. After a split from a common
ancestor, the number of substitution-differences at homologous
positions in descendant sequences increases until the sequence
identity drops to the level expected by random sequences. The
effect of insertions and deletions is very different. Assuming that
each new insertion is not immediately followed by the deletion of
the newly inserted characters, the total number of independent
homologous sites within a set of sequence keeps increasing. With
more than few sequences in the set, the increase in the number of
independent homologous sites—and thus the number of columns
in the alignment representing them—is not significantly affected by
deletions as the chances of the same sites being independently
deleted in all evolutionary lineages are small. Thus, the total length
of the sequence alignment correctly representing the evolutionary
homology among the characters is expected to grow roughly line-
arly with the evolutionary time covered by the different sequence
lineages. Over long periods of time, the ancestral characters of a
neutrally evolving sequence (or sequence region) are expected to be
completely replaced by new characters through combinations of
insertions and deletions: as a result, the correct evolutionary align-
ment of highly diverged descendant sequences should not match a
single character. Typically, the more freely evolving sequence
regions are flanked by conserved regions (e.g., loops and
coils vs. core region in protein sequences) and the alignment is
both possible and meaningful.

In practice, the alignment length rarely grows linearly with the
evolutionary divergence. If the alignment is performed with meth-
ods based on the classical progressive algorithm [4, 5], the align-
ment length may grow linearly with the number of substitution
changes for a while but the growth curves of the two then separate
and the alignment length increases only slowly, if at all (Fig. 2). The
reason for this is that the classical algorithm does not distinguish
insertions from deletions and, inherently, considers all length dif-
ferences as deletion events. The use of such biased alignments in
evolutionary analysis is likely to lead to erroneous conclusions.
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3 Phylogeny-Aware Alignment

Independent insertions at the same position are not homologous
and have to be identified to allow for their correct placement in
different alignment columns. This alone demonstrates that an evo-
lutionarily accurate alignment cannot be generated without consid-
ering the phylogeny of the sequences included. In practice, not only
are insertions at the same position problematic but the correct
alignment of sequences with insertions and deletions at near-by
positions requires the identification of distinct evolutionary events
and their subsequent correct handling.

Progressive alignment algorithms exploit the sequence phylog-
eny and align the sequences pairwise in the reverse order, starting
from the most closely related ones and, at each step clustering the
aligned subsets, progressing towards the root of the tree. A major
reason for the use of progressive algorithms is the prohibitive
computational complexity of the exact multiple sequence align-
ment algorithm: with progressive algorithms, the complexity of
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Fig. 2 The length of the alignment is expected to grow linearly with the evolutionary divergence contained
within the sequences. One thousand sequences were simulated under a random tree with the maximum root-
to-tip distance of 0.1 substitutions per site. Subsets of 10, 25, 50, 100, 250, and 500 sequences as well as the
full datasets were re-aligned with ClustalW [2] and PRANK, and the length of the resulting alignments is
plotted as a function of the length of the tree relating the included sequences. As the insertion–deletion
process used for simulation is time-dependent and defined relative to the substitution rate, the correlation
between the two values for the true alignment (black line) is perfect. The two variants of the phylogeny-aware
function (PRANK and PRANK+F) produce alignments with lengths close to the true length whereas a method
based on the classical progressive alignment algorithm (ClustalW) over-aligns the sequences and the length of
the alignment is seriously underestimated. Solid and dashed lines indicate alignments based on the true and
estimated guide trees, respectively. The rectangle in the left plot indicates the area shown on the right

PRANK and PAGAN 21



aligning n sequences of length l is reduced from O(ln) to O((n�1)
l2). The additional beauty of the approach is that the algorithm
starts with alignments that are expected to be easiest and thus
minimizes the chances of early alignment errors in its greedy pro-
cessing of sequences. The classical algorithm does not use the
phylogeny for anything else, however, and the placement of
gaps—that is, the inference of which characters have been inserted
or deleted in the evolutionary past—in the resulting alignments is
often phylogenetically implausible [6].

Assuming that the alignment guide tree is correct and that the
sequences are relatively closely related, the progressive alignment
approach provides the information necessary to identify insertion
and deletion events. The phylogeny-aware progressive algorithm
implemented in programs PRANK [6, 7] and PAGAN [8] uses
outgroup information from the next alignment step to decide if
the length difference observed between the aligned sequences
(representing either true extant sequences or internal nodes repre-
senting an aligned subset) was caused by an insertion or a deletion
(Fig. 3). By identifying the true evolutionary event, the phylogeny-
aware algorithm can handle insertions correctly and avoid penaliz-
ing the single event multiple times in later stages of the alignment.

The two methods are based on the same concept but they differ
significantly on how they represent the uncertainty of the underly-
ing cause of an observed length difference. PRANK is simpler in its
design and flags the sites that contain an alignment gap in the
immediately preceding stage of the progressive alignment, allowing
for free placement of new gaps at flagged positions in the very next
round. For an insertion, a new gap is created at exactly the same
position and the flags indicating the gap are retained; for a gap
caused by a deletion, a better alignment is obtained by matching
the sites and the flags are removed (Fig. 3). PAGAN is a reimple-
mentation of the phylogeny-aware algorithm using sequence
graphs. Whereas alignment of two sequences with PRANK creates
an ancestral sequence, alignment of two graphs creates an ancestral
graph. This graph incorporates the edges of its descendants and, in
the case of an alignment gap, contains two alternative paths across
the sites (Fig. 3): the path through the unmatched sites represent a
deletion in one descendant whereas the path skipping over the sites
represents an insertion in the other descendant. The subsequent
alignments can use either of these paths and thus resolve whether
the length difference was caused by an insertion or a deletion. In
both methods, the algorithm keeps the inserted sites at the later
stages of the progressive alignment and the sequences (or graphs) it
reconstructs for the internal nodes of the alignment tree may not
reflect the true length of the ancestral sequences. Despite that, the
identification and marking of the insertion events avoids penalizing
for the same events multiple times and provides a significant
improvement over the classical algorithm that, in practice, consid-
ers all length differences as deletions.
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Fig. 3 The phylogeny-aware algorithm distinguishes insertions from deletions and treats them differently. The
trees on the left represent the evolutionary histories of four short sequences undergoing two substitutions and
either an insertion (top) or a deletion (bottom). The colored trees indicate how the alignment of sequences is
divided into three pairwise alignments, each creating an ancestral sequence (Z, Y, X) that is placed at the
corresponding internal node and then aligned pairwise with the next sequence. The classical alignment
algorithm penalizes the single insertion three times (indicated with black triangle; diamond and diamond with
dot denote match and mismatch, respectively); in contrast, the phylogeny-aware algorithm implemented in
PRANK flags the gapped site after the first alignment (indicated by black lozenge above the sequence) and can
then open a new gap at the flagged position without a further penalty (indicated by curved right arrow); PAGAN
models sequences with graphs and represents alternative solutions with additional edges, adjusting the edge
weights (shown with different line types) depending on their usage. For a deletion, the gap needs to be created
only once and the phylogeny-aware algorithm either removes the flag indicating the gap after the second
alignment or adjusts the weight of the unused edge. All methods produce the correct alignment
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Penalization of a single event multiple times seems an insignifi-
cant error if the procedure nevertheless reconstructs the correct
alignment. In trivial alignment tasks that may be the case but in
more complex ones the classical algorithm will allow for the match-
ing of insertions with non-homologous characters, the resulting
alignments indicating false homologies (Fig. 4). The heuristics
proposed to correct for insertion events by lowering the gap cost
at sites already containing gaps (e.g., [2, 9]) cannot prevent this; in
contrast, they typically cause further errors by moving gaps caused
by deletion events at near-by sites to the same columns and produce
block-like alignments with alternating gappy and conserved regions
(see Fig. 1). The basic version of the phylogeny-aware algorithm

Fig. 4 The phylogeny-aware algorithm can distinguish and correctly align near-by insertion and deletions. The
tree on the left represents the evolutionary history of five short sequences undergoing two insertion and two
deletion events. The colored tree below indicates how the alignment is divided into pairwise alignments of
sequences (or sequence graphs). The resulting alignments are shown on the bottom. The classical alignment
algorithm considers length differences as deletions and cannot place independent insertions into separate
columns; often it also moves near-by gaps and indicates false homologies, here resulting in substitutions. A
variant of the phylogeny-aware algorithm with greedy calling of insertions, known as PRANK+F, considers the
re-use of a flagged gap as evidence that the gap was created by an insertion. It then changes the flags indicating
a pre-existing gap (black lozenge) to ones indicating a permanent insertion (black square) and does not allow
matching of these sites at later alignments. This forces the correct placement of independent insertions into
separate alignment columns. The same functionality can be obtained with sequence graphs and greedy pruning
of unused graph edges; this is not the default behavior of PAGAN, however. See Fig. 3 for the notation
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greatly reduces the problem but even that cannot completely avoid
the matching of independent insertions, especially in the alignment
of large datasets in which the chances of mutation events at near-by
positions is significant (Fig. 2).

As discussed above, the phylogeny-aware algorithm identifies
the type of insertion–deletion event and then handles the event
accordingly, either creating a new gap or removing the flags indi-
cating the gap. A variant of the algorithm, known as PRANK+F,
uses this information to mark sites at which the flagged gap is
re-used as permanent insertions that cannot be matched at the
later stages of the progressive alignment; to prevent overlapping
deletions from confirming embedded insertions, the re-use of a gap
has to be done for its full length with matching characters at the
flanking sites. This approach can separate multiple insertions at the
same position to independent events without effect on the place-
ment of gaps caused by deletions (Fig. 4). When the order of
aligning the sequences is correct and the sequence sampling is
dense enough to call near-by gaps as separate events, PRANK+F

works very well and can reconstruct alignments with lengths very
close to the true length (Fig. 2). When the underlying assumptions
hold, the method in principle scales up to any number of sequences.

The phylogeny-aware algorithm reconstructs ancestral
sequences with information about sites that are believed to be
insertions. The ancestral sequences are required for the alignment
but they can be useful otherwise, too: PRANK allows for output-
ting inferred ancestral sequences, using gaps to indicate sites that
are believed to have been later inserted and not present in the
ancestors, along with the alignment of the extant sequences. Such
alignments are unique and enable studying the process of change
and timing certain events to specific evolutionary branches. In
addition to ancestral sequences, the algorithm also infers the type
of mutation events that have caused the length differences between
the sequences and can provide this information in the output.
Although an experienced user may distinguish insertions and dele-
tions from the gap patterns they create, the marking of gaps caused
by insertions and deletions with different symbols, as can be done
with PRANK, is helpful.

The explanation and illustration of the flagging approach used
by PRANK is slightly simplified and only considers one level of
flagging. In practice, the algorithm marks the gaps in the immedi-
ately preceding alignments and, for the sites not cleared of flags, for
the one before that. This procedure prevents long deletions in one
branch from masking overlapping insertions in the descendants of
its sister branch. For details, see [6, 7].
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4 Limitations of the Phylogeny-Aware Algorithm in PRANK

Unlike typical progressive alignment algorithms, the phylogeny-
aware algorithm does not align sub-alignments to each other but
reconstructs ancestral sequences to represent the parents of sets of
aligned descendant sequences and then aligns pairwise these ances-
tral sequences. Accurate representation of the ancestral sequences,
including the detection of inserted and deleted sites, is required for
the correct distinction between insertion and deletion events in the
subsequent stages of alignment. Correct reconstruction of
sequences naturally requires that such ancestral sequences really
existed and were true ancestors for the given sets of descendant
sequences.

As the ancestral sequences are reconstructed for the internal
nodes of the alignment phylogeny, it is crucial that the phylogeny
accurately reflects the evolutionary history of the sequences. The
role of alignment phylogeny is especially central in the calling of
permanent insertions (PRANK+F) that considers the re-use of a
flagged gap as a confirmation that the gap has been created by an
insertion. With the wrong order of aligning the sequences, a dele-
tion may appear as an insertion and, by marking sites incorrectly as a
permanent insertion, the algorithm has to place characters truly
homologous to that to separate columns (Fig. 5). Although the
resulting alignment is too long and gappy, small errors in the
alignment order may not be too serious in typical evolutionary
analyses: an incorrect alignment such as that in Fig. 5 does not
indicate all true homologies but neither does it contain false homol-
ogy statements.

In addition to the wrong alignment order, missing data can
cause errors with the PRANK+F variant. The algorithm assumes
that alignment gaps are caused by insertions and deletions and then
chooses the most plausible explanation of the two. One isolated gap
caused by missing data may not be serious but if several sequences
lack data at the same region, the gap pattern created may look like
an insertion in the complete sequences; when this region is falsely
marked as a permanent insertion, the subsequent alignment must
place the affected region in separate columns. As sequences are
often truncated at their ends, the marking of terminal gaps as
permanent insertions is by default disabled by PRANK. Similar
heuristics unfortunately cannot be provided for missing data in
other parts of the sequences.

The phylogeny-aware alignment algorithm assumes that each
alignment gap is caused by one insertion or deletion event and that
the very next alignment provides information to distinguish
between the two types of events. When the sequences are relatively
closely related (and, as stated previously, the alignment order is
correct), these assumptions are typically valid. If the sequences are
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more diverged, the chances of independent insertion and deletions
events at near-by positions in the adjacent evolutionary branches
become significant. As a result of this, either the gap created in the
first alignment may be a combination of two or more separate
events or the subsequent alignment of an outgroup sequence fails
to confirm the event as an insertion or a deletion due to an over-
lapping independent event in the neighboring branch (Fig. 6).

Some of the limitations of the approach and the measures to
overcome them can be contradicting. Accurate calling of insertion
and deletion events requires densely sampled sequence sets but the
inference of alignment phylogeny for a large dataset is prone to
errors [10] and the alignment may therefore suffer. Furthermore,
incomplete lineage sorting is more likely among closely related
sequences and possibly no single phylogeny correctly reflects the
evolutionary history of all sites of a very densely sampled
sequence set.
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Fig. 5 The phylogeny-aware algorithm can be sensitive to errors in the guide phylogeny. The tree on the left
represents the true evolutionary history and the colored trees below indicate the right and a wrong order of
aligning the sequences. The greedy calling of insertions (PRANK+F) marks flagged gaps that are re-used
(curved right arrow) as permanent insertions (black square). When the alignment order is correct (left column),
the algorithm works perfectly. If A and C are incorrectly aligned first (middle column), the subsequent
alignment of B appears to confirm an insertion in C although the true event is a deletion shared by A and
B. As the insertion in column 4 is marked permanent (black square), the site belonging to that column has to
be placed in a column of its own. The resulting alignment is too long and gappy. PRANK (without +F; not
shown) and PAGAN (right column) are not affected by this error in the guide phylogeny and produce the correct
alignment. See Fig. 3 for the notation
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5 Phylogeny-Aware Alignment of Sequence Graphs with PAGAN

The idea of using partial order graphs for sequence alignment is old
[11] but its implementation in PAGAN is novel. In PAGAN, the
graph nodes represent sequence sites, for which the ancestral states
are reconstructed using parsimony, while the graph edges indicate
the possible paths for the alignment. A crucial feature of PAGAN’s
graph edges are the unequal weights that depend on the usage of
the edges in the previous steps of the alignment. If certain edges are
repeatedly not used, the sites (i.e., graph nodes) that they lead
through are likely to be an insertion in one of the descendant
sequences. As enough evidence for this is gathered (represented
by dashed lines in Fig. 3, top), these edges are completely removed
and subsequent matching of the sites is disabled. This behavior is
very similar to permanent insertions of PRANK+F but the imple-
mentation in PAGAN allows for more flexibility: each edge has a
weight and the decision to call something an insertion and remove
the flanking edges can be based, e.g., on the number of alignments
or the phylogenetic distance since the edges were last used. Figure 4
shows greedy pruning of unused edges after only one alignment

Dense vs. sparse sampling:

Dense tree

Sparse tree

PRANK +F Dense PAGAN Dense

s T C A G T C G e

s T C A T C A e

s T C A G T C R e

A

B

Z

s T C A G T C R e

s T C A T C G e

s T C A G T C G e

Z

C

Y

s T C A G T C G e

s C C A C G e

s Y C A G T C G e

Y

D

X

s Y C A G T C G e

s C C A C T C G e

s C C A C G T C G e

X

E

W

s C C A C G e

s Y C A G T C G e

s Y C A G T C G e

s C C A C T C G e

s C C A S T C G e

PAGAN Sparse

s T C A G T C G e

s T C A T C A e

s T C A G T C R e

A

B

Z

s T C A G T C R eZ

C

Y

Y

D

W

PRANK +F Sparse

Dense tree Sparse tree

Fig. 6 Correct identification of independent insertion and deletion events requires closely related sequences.
The tree on the left represents the true evolutionary history and the colored trees below indicate dense and
sparse sampling of sequences. With dense sampling of sequences (middle tree) each insertion and deletion
event can be identified using the information from the next alignment and the correct homology is recovered.
With sparse sampling (bottom tree), the insertion in A cannot be identified because of a deletion at an adjacent
position in D. As a result, the independent insertions in A and E are incorrectly matched. PRANK+F and PAGAN
are similarly affected by the sequence sampling; although the two methods place the insertions in different
order, the resulting alignments are effectively the same
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(similar to option + F in PRANK) while the alignments in Fig. 6
require evidence from two additional sequences.

PAGAN’s more flexible modelling and usage of phylogenetic
information in the calling of insertions and deletions fixes many
shortcomings in PRANK but even it cannot do miracles. PAGAN is
less sensitive to errors in the alignment order and the phylogenetic
inconsistency (e.g., due to incomplete lineage sorting) between
different gaps than PRANK+F (Fig. 5). Similar to PRANK+F (but
not necessarily PRANK), PAGAN can align independent insertions
at the same position into separate columns (cf. Fig. 1). However,
both methods require information from which to call the gap type
and also PAGAN does better with large numbers of densely sam-
pled sequences than with few sparsely sampled ones (Fig. 6).
PAGAN was designed to be faster and, instead of likelihood-
based reconstruction of ancestral sites of PRANK, it uses maximum
parsimony (cf. Fig. 3). Furthermore, PAGAN uses pre-computed
scoring matrices, calculated for each alignment step from an evolu-
tionary substitution model using the phylogenetic distances
between the sequences, and represents each sequence position,
even in the case of ambiguity, with one symbol. In the case of
DNA, the standard ambiguity code is applied but for protein and
codon sequences PAGAN can only represent ambiguity between
two states and, for more complex cases, uses generic wildcards
(X and NNN) that match equally well any other character.
Although faster, this simplification can have serious downsides
and PAGAN is likely to perform poorly in the alignment of a
small number of highly diverged sequences. It can perform very
well, however, when these highly diverged sequences are accom-
panied by many other sequences and the sequence sampling is both
dense and even [12].

Although PAGAN can nowadays do de novo multiple sequence
alignment, it was initially designed—and still best supported—for
phylogeny-aware alignment extension. Here, “alignment exten-
sion” means addition of new sequences into an existing multiple
sequence alignment such that the relative alignment of the original
sequences is not changed. PAGAN does this in the context of the
sequence phylogeny by removing a subtree, aligning sequence(s) to
that and then grafting the extended subtree back to its original
place in the full phylogeny. The new version of the program,
PAGAN2, can do this in genomic scale and can generate and extend
alignments of closely related sequences that are up to millions of
bases long. PAGAN can also model uncertainties in the input data
and has built-in support for the high error rate of homopolymers
tracts in pyrosequencing data and for the high insertion–deletion
error rate of the latest generation long-read sequencing data.
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6 Phylogeny-Aware Alignment in Phylogenetic Analyses

PRANK and PAGAN are more “phylogenetic” than many alterna-
tive sequence aligners and aim to reconstruct the sequence history
with accurate ancestral sequences. However, they are not true
phylogenetic algorithms in the sense of, e.g., BAli-Phy [13], and
are based on a progressive heuristic. The term “phylogeny-aware”
refers to their use of phylogenetic information to distinguish inser-
tions from deletions and ability to make gap patterns that correctly
reflect the guide phylogeny. With all these phylogeny-related
words, it may be surprising that the two programs should be used
with caution in phylogenetic analyses.

As discussed above, PRANK and PAGAN create gap patterns
that reflect the phylogenetic locations of insertion and deletion
events (c. Fig. 1). In order to do that, they need information
about the phylogenetic relationships of the sequences and obtain
that from the alignment guide tree. It is important to understand
the two methods create these phylogenetic gap patterns by the
design of the algorithm and force the patterns to match the guide
tree even when the guide tree is incorrect and does not reflect the
true phylogenetic relationships of the sequences or the true pattern
of gaps. It is unclear how specific errors created by the incorrect
guide tree affect subsequent phylogenetic analyses but the errors
are likely to be less random—and thus possibly more harmful—
than the errors created by “non-phylogeny-aware” methods.

We studied the performance of PRANK and PAGAN in phylo-
genetic analyses and compared them to heuristics that iterate the
alignment and phylogeny inference steps [14]. We found that when
the sequence evolution perfectly matches the guide tree, PRANK-
generated alignments are very accurate and the phylogenetic trees
estimated from them can be more accurate than the trees estimated
from true alignments (Fig. 7, left). The result may sound positive
but is actually slightly alarming and indicates that the PRANK-
made errors are biased towards the alignment guide tree. We also
saw that both PRANK and PAGAN improved with denser sequence
sampling and produced more correct alignments for 400 sequences
than for a subset of 50 sequences; consistent with this, the phylo-
genetic trees estimated from the large alignments were more accu-
rate (Fig. 7, middle). However, we also found that the alignment
accuracy and the phylogenetic accuracy, as measured by the propor-
tion of matching character pairs [15] and topological distance [16],
did not correlate: despite their greater alignment error, the
SATé-generated alignments produced in average more correct phy-
logenetic trees than the PRANK- and PAGAN-generated align-
ments (Fig. 7, bottom).

SATé is an iterative method that repeats the alignment and tree
inference steps, in this case with MAFFT [17] and RAxML [18],
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several times. We developed a similar iterative approach, called
Canopy, for phylogeny-aware algorithms and studied if the itera-
tion reduces their guide tree-related error and thus improves their
alignment and phylogenetic accuracy. This was indeed the case:
Canopy (iterating PRANK and RAxML) produced more accurate
alignments than the three other methods (Fig. 7, top; see also
Fig. 3 in [14]) and more accurate phylogenetic trees than one
round of PRANK and RAxML. However, the Canopy-generated
trees were more accurate than the SATé-generated trees only for
the large datasets and the trees estimated from the small datasets,
despite the datasets being more accurately aligned, were worse than
those generated by SATé. On the other hand, one round of
PAGAN and RAxML produced results comparable to those of
Canopy, suggesting that the new implementation of the
phylogeny-aware algorithm is indeed less affected by small errors
in the alignment guide phylogeny.

The take-home messages from this are somewhat mixed. The
phylogeny-aware alignment methods can be used in phylogenetic
analyses and they can do very well. However, they have large
variance and can do very well, rather poorly or anything between;
the iterative approach using a classical alignment algorithm seemed

Fig. 7 PRANK and PAGAN produce better alignments with dense sampling of
sequences. Simulated data were aligned with PRANK, PAGAN and two iterative
approaches [14], and the accuracy of the alignments (top) and the phylogenetic
trees inferred from them (bottom) were evaluated. Alignment accuracies of all
phylogeny-aware methods improved with denser sampling of sequences while
that of SATé decreased. Although similar improvements were seen in topological
accuracies, the correlation was not perfect and in many cases SATé produced
the most correct trees. For the very largest datasets, Canopy produced both the
most accurate alignment and the most accurate phylogenetic tree, closely
followed by PAGAN. The bottom row indicates the type of guide tree used in
PRANK and PAGAN alignments; all phylogenetic trees were inferred with RAxML
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more robust in its performance. The positive finding is that, per-
fectly consistent with the theoretical background explained above,
PRANK and PAGAN improve their performance with denser sam-
pling of sequences. A concrete consequence of this exercise is that
the latest version of PAGAN picks the best approaches from each
step and first computes an alignment withMAFFT, then estimates a
tree with FastTree [19] and finally performs the phylogeny-aware
alignment based on that tree. A similar iterative approach can, of
course, be done manually with PRANK or using Canopy. Finally,
the analysis demonstrates the poor correlation between the accu-
racy of the alignment and the accuracy of the phylogenetic tree
inferred from that. In line with this, modern alignment method
comparisons are measuring the performance of the alignments in
downstream analyses, not the column-wise accuracy of the align-
ment itself.

7 Practical Advice for the Use of PRANK

Evolutionary sequence analysis is based entirely on multiple
sequence alignment and the accuracy of the downstream analysis
depends on the correctness of the underlying alignment. Align-
ments produced with PRANK have been shown to provide accurate
inferences of selection on protein-coding sequences [20, 21] and of
ancestral sequences [12], and perform well in phylogenetic analyses
[22], although the last finding is somewhat controversial due to the
role of the guide phylogeny in the phylogeny-aware alignment.
Despite its good performance in evolutionary analyses, PRANK is
sensitive to violations of the assumptions made by the algorithm
and the users of the program should understand the requirements
and limitations of the method.

Alignment Phylogeny: The phylogeny-aware alignment algorithm
uses the alignment guide phylogeny to distinguish insertions from
deletions. The algorithm is therefore sensitive to errors in the guide
phylogeny, the variant with permanent insertions (PRANK+F) being
especially sensitive. Any PRANK alignment should be performed
using an accurate guide phylogeny: if a high-quality phylogeny is
available for the sequence set, it should be used instead of the heuristic
phylogeny inferred by the program. In phylogenetic analyses iterative
approaches similar to Canopy [14] are recommended.

Evolutionary Distances: PRANK uses the branch lengths provided
by the guide phylogeny to re-compute the substitution and gap scoring
for each alignment step. Depending on the expected evolutionary
divergence, a region with several dissimilarities may be considered
homologous and matched (distant sequences), or non-homologous and
placed in separate columns (close sequences). Although the algorithm
is not sensitive to small deviations in the branch lengths provided, a
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guide phylogeny with accurate distance estimates should be used when
available.

Option +F: Given that the alignment guide phylogeny is correct and
the sequence sampling is dense, the variant with permanent insertions
(PRANK+F) has been shown to outperform the basic algorithm [6]. If
the alignment guide phylogeny is likely to contain errors or the input
sequences are incomplete (i.e., contain missing data), the option + F
can be problematic and the resulting alignment should at least be
compared to one produced without it.

Reproducibility:Most pairwise alignments have several equally good
solutions. In progressive alignment, the choice between these alterna-
tive solutions may trigger larger changes in the later stages of the
process and lead to very different multiple alignments. Most align-
ment methods are deterministic and always pick the same solution
and thus guarantee to produce the same final alignment. This prac-
tice hides the uncertainty in the data and has led to post-processing
methods to recover the hidden variation [23]. By default, PRANK
picks randomly one of the alternative solutions and may produce
different results on independent runs of the very same data. This
behavior may be disabled if reproducibility is required. By default
PRANK iterates the alignment and the tree inference steps (using the
neighbor-joining algorithm for the latter) and keeps the solution that
has the best parsimony score. Unlike typical parsimony scores, the
PRANK score considers substitutions as well as insertions and
deletions.

Sequence Alphabet: PRANK represents sites at ancestral sequences
with vectors of conditional likelihoods for the descendant subtree given
different character states at the parent. This requires O(A2) compu-
tations for each cell in the dynamic programming matrix, where A is
the size of the character alphabet, and makes the alignment of
sequences with a large alphabet relatively slow. For protein-coding
sequences, the alignments performed on codon level has been shown to
outperform those done on protein sequences [20, 21]. Despite its slower
computation, the use of codon alignment is recommended whenever
possible. In general, protein-coding DNA sequences should not be
aligned as DNA without good reason. If codon alignment is found
to be too slow, PRANK provides an option to translate protein-coding
DNA sequences to protein, perform the alignment on protein
sequences and back-translate the resulting alignment to DNA.

Sequence Sampling: Given that the alignment guide phylogeny is
correct and the sequence sampling is dense, PRANK is unbiased and
scales up to any number of sequences. Even if the question in hand
would not require an alignment of a large number of sequences, the
quality of the resulting alignment is expected to be better when it is
performed for many closely related sequences than for a small number
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of distantly related ones. Unneeded sequences can be removed after the
alignment without affecting the statement of homology among the
remaining sequences. PRANK is not suitable for the alignment of
highly diverged sequences.

8 Practical Advice for the Use of PAGAN

PAGAN was meant to replace PRANK but this has not really
happened. One reason is that some decisions originally taken to
speed up the alignment have compromised the program’s perfor-
mance and PAGAN currently does poorly in the alignment of very
distant protein sequences. Furthermore, the work on PAGAN has
led to unpredicted but still very interesting directions and the
program has found a niche of its own. As PRANK and PAGAN
are based on the same concept, their requirements and limitations
are very similar.

Alignment Phylogeny: PAGAN is less sensitive to errors in the guide
tree than PRANK. However, the whole concept of phylogeny-aware
alignment is based on the usage of information provided by phylogen-
etically related sequences and as good a guide tree as possible should be
used. By default PAGAN uses FastTree to estimate the guide tree.

Evolutionary Distances: PAGAN recomputes the scoring matrix for
each alignment step from an evolutionary substitution model. The
scoring matrix is based on the branch length provided by the guide tree
and therefore the branch lengths do matter. Similarly to PRANK, the
scoring matrix is rarely critical for the alignment as long as the
distances are of correct magnitude.

Edge Pruning: PAGAN has no option + F but it does a similar trick
by removing unused edges. The rules for adjusting the edge weights or
removing edges are not thoroughly tested and users are advised to
experiment with the parameters if they are unhappy with the result
produced with the default parameters. PAGAN can also be used for
pileup alignment where sequences are simply added in the order of
appearance as if they would be related by a ladder-like tree. With that,
the use of option “keep-all-edges” may be useful as it allows reusing
edges even when related sequences are not consecutive in the input file.

Sequence Alphabet: PAGAN was designed speed in mind and,
although it uses an evolutionary model to compute the scoring matrix,
its representation of ancestral sequences is simplistic, especially for
amino acids and codons. PAGAN represents ambiguous nucleotides
with the standard ambiguity code but, for computational reason it
cannot do the same for amino acids and codons. This is not serious in
the alignment of rather closely related sequences and for those PAGAN
is really fast: there is some overhead from the computation of the
scoring matrices for larger alphabets, but after that the data type
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makes no difference and the alignment of DNA and protein sequences
is equally fast.

Sequence Sampling: As for PRANK, PAGAN requires (and can
efficiently utilize) densely sampled sequence and is not suitable for the
alignment of highly diverged sequences.

9 Future Directions

PRANK has been shown to perform well in benchmarks assessing
the suitability of sequence alignments generated with various meth-
ods to different types of evolutionary analyses [12, 20–22]. Despite
the use of PRANK in many phylogenetic analyses, both PRANK
and PAGAN should be used with caution in analyses where the
guide phylogeny is unknown prior to alignment. On the other
hand, if the problem with the guide phylogeny can be sorted out,
the methods are expected to provide superior alignments for evo-
lutionary analyses, often closely approximating alignments pro-
duced with computationally much heavier statistical methods
[13, 24].

Although an iterative search strategy should help PRANK to
greatly reduce the problems caused by an incorrect start guide
phylogeny, iteration does not decrease the greediness of the algo-
rithm nor can it solve the phylogeny for datasets that have no
unique phylogeny, e.g., due to incomplete lineage sorting. These
were the reasons to start developing PAGAN and to re-implement
the phylogeny-aware algorithm for the alignment sequence graphs
[8]. By using additional edges to indicate unresolved gaps and then
pruning the unused edges after the alignment of related sequences,
one can implement an algorithm very similar to that of PRANK+F

(Fig. 4). The advantages of the graph approach are greater, though,
and instead of greedily pruning the edges, they can be given
weights or probabilities based on the evidence for the different
mutation types. Such a flexible edge-weighting makes PAGAN far
less sensitive to errors in the guide phylogeny or different sites
evolving under slightly different phylogenies while still allowing
for correct separation of independent insertions into columns of
their own.

As discussed above and evidenced by methods for co- and joint-
estimation of alignment and phylogeny, the multiple sequence
alignment should always be seen with the associated phylogeny.
Understanding the alignment and drawing right conclusions from
it is much easier when the relationships between the sequences are
indicated next to the alignment. For methods such as PRANK and
PAGAN, the phylogeny is also needed to indicate the relative
positions of the ancestral sequences and to visualize the changes
happening in different evolutionary branches. For this, we have
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developed Wasabi, a browser-based graphical user interface, that
integrates these ideas and provides an easy-to-use access to
PRANK, PAGAN, and many other evolutionary analysis methods
[25]. The Wasabi server is available at http://wasabiapp.org/ and
the use of PRANK and PAGAN within the Wasabi environment is
described in detail in Chapter 14 of this book. The two software can
be downloaded from the program home pages at http://wasabiapp.
org/software. Pre-compiled packages of PRANK are provided for
Linux, OSX, and Windows while the latest version of PAGAN is
currently available for Linux only. PRANK and PAGAN are also
provided as minimal Docker images that can be run on all plat-
forms. Instructions for installation and usage of different versions
are given on the program home pages.COMP: Please provide cross
link for “Chapter 14” in the sentence “The Wasabi server ...”
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Chapter 3

Fast and Accurate Multiple Sequence Alignment
with MSAProbs-MPI

Jorge González-Domı́nguez

Abstract

Multiple sequence alignment (MSA) is a central step in many bioinformatics and computational biology
analyses. Although there exist many methods to perform MSA, most of them fail when dealing with large
datasets due to their high computational cost. MSAProbs-MPI is a publicly available tool (http://msaprobs.
sourceforge.net) that provides highly accurate results in relatively short runtime thanks to exploiting the
hardware resources of multicore clusters. In this chapter, I explain the statistical and biological concepts
employed in MSAProbs-MPI to complete the alignments, as well as the high-performance computing
techniques used to accelerate it. Moreover, I provide some hints about the configuration parameters that
should be used to guarantee high-performance executions.

Key words Multiple sequence alignment, High-performance computing, MSAProbs-MPI, Parallel
computing, Message passing interface, Multithreading

1 Introduction

The recent advances in next-generation sequencing (NGS) tech-
nologies have led to a scenario where large datasets that are used in
a wide range of bioinformatics analyses. Multiple sequence align-
ment (MSA) is of central importance for many of them. For
instance, it serves as the basis for the detection of homologous
regions, for detecting motifs and conserved regions, for detecting
structural building blocks, for constructing sequence profiles, and
as an important prerequisite for the construction of phylogenetic
trees. The use of exact methods to simultaneously align multiple
sequences is impractical even for medium-size datasets. Instead,
many methods based on different statistical concepts have been
developed. There exist several of these methods to align multiple
sequences. This chapter focuses on MSAProbs [1], which is based
on pair hidden Markov models and partition function posterior
probabilities. Several studies have confirmed the high accuracy of
these tools [2–4] compared to other methods such as Clustal
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Omega [4], MAFFT [5], MUSCLE [6], PRANK [7], BAli-Phy
[8], NCBIBLAST [9], SSEARCH [10], FastSP [11], Probalign
[12], Probcons [13], T-Coffee [14], Kalign [15], FSA [16], Dia-
lign [17], and ClustalW [18].

Although MSAProbs is a statistical tool, its complexity is still
high and its execution can be prohibitive for large datasets [4]. A
parallel version of this tool called MSAProbs-MPI [19] was devel-
oped in order to overcome this problem. It is implemented using
Message Passing Interface (MPI) [20] and OpenMP [21] in order
to exploit the computational capabilities of multicore clusters and
supercomputers. It provides the same accurate results as the origi-
nal tool but in significantly lower time when several nodes are
available.

In this chapter, I will provide and overview about how scientists
can benefit from MSAProbs-MPI in order to obtain fast and accu-
rate MSAs. I will start with a summary of the bioinformatics
method under MSAProbs (see Subheading 2). Subheading 3 will
describe the parallel implementation. I will finish the chapter with
Subheading 4 where I will enumerate the options available to the
users in MSAProbs and MSAProbs-MPI, as well as an execution
example.

2 MSAProbs Method

MSAProbs receives as input one or several FASTA files with many
sequences and provides the most relevant MSAs. It avoids checking
the quality of all possible groups of sequences (which would be
unfeasible for large datasets) thanks to applying a progressive align-
ment strategy with the following steps (more information in [1]):

1. Calculation of the posterior probability matrices for all pairs of
sequences. Concretely, MSAProbs calculates for each pair two
probability matrices. On the one hand, it uses a forward and
backward algorithm [22] to calculate a matrix based on hidden
Markov models (HMM). On the other hand, a second matrix
with suboptimal alignments is generated through dynamic
programming. The values of the posterior probability matrix
for each sequence-pair is the root mean square of the value of
that pair in the two previous matrices.

2. Calculation of a pairwise distance matrix that stores, for each
pair, the optimal global alignment score. This score is calcu-
lated from the posterior matrix of the pair constructed in the
previous step.

3. Construction of a guided tree from the pairwise distance matrix
using the UPGMA clustering method [23].
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4. Calculation of the weight for each sequence according to the
tree topology.

5. Transformation of all the posterior probability matrices by
introducing a third sequence and using the weight of the
three sequences.

6. Computation of a progressive alignment along the guide tree
using the already transformed posterior probability matrices. A
post-processing refinement can also be performed.

Figure 1 illustrates these steps. Remark that phases 1 and 5 are
the most computationally demanding ones, with complexity of O
(N2L2) and O(N2L3), respectively, being N the number or
sequences and L the average sequence length.

3 Parallel Implementation in MSAProbs-MPI

The exploitation of high-performance computing (HPC) facilities
is useful in order to accelerate the MSA procedure. In this section, I
will provide a short overview of the parallel approach followed by
MSAProbs [1] and MSAProbs-MPI [19].

Fig. 1 Workflow of MSAProbs
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3.1 Target Hardware First, it is important to know the type of HPC facilities that can be
used to accelerate MSAProbs and MSAProbs-MPI executions.
Their target are multicore clusters, which contain several nodes,
each one with several cores. An example of a small multicore cluster
with two nodes can be seen in Fig. 2.

A cluster consists of several nodes, each one containing several
cores (in the example of Fig. 2, eight cores per node). All the cores
available in the system can work at the same time, either they are in
the same or different nodes. All the cores within one node share the
memory, i.e., they can directly access data that has been written by
other core within the same node. However, each node has its own
memory, and it is not directly accessible to the cores allocated in
other node. It means that if one core requires data calculated by a
core of a different node, this data must be sent through the inter-
connection network with a message. Therefore, in terms of mem-
ory, multicore clusters are classified as hybrid-memory systems, as
they present both shared memory (within each node) and
distributed memory (between nodes).

3.2 OpenMP OpenMP [21] is a parallel programming interface based on a set of
compiler directives. It follows a fork-join model, where the master/
father thread creates a number of slaves/children threads (as shown
in Fig. 3) that can perform different tasks in parallel and access the
same shared memory. Task assignment to threads can be done
statically (known at the beginning of the execution) or dynamically
(new tasks are assigned once threads finish their previous tasks).

The main advantage of OpenMP is its simplicity, as the pro-
grammer only needs to find the most demanding portions of code
and write the directives before them. These directives directly

Fig. 2 Example of a multicore cluster with two nodes, each one with eight cores
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distribute the workload among the cores. Its main drawback is its
low scalability, as it can only be used on systems with shared
memory. Therefore, only cores within one node of a multicore
cluster can collaborate in an OpenMP-based application.

3.3 Message Passing

Interface (MPI)

MPI [20] is the most common programming model for
distributed-memory systems. In fact, it is established as de facto
standard for message-passing as it is based on the consensus of
more than 40 organizations, including hardware vendors, research-
ers, and software developers. The MPI standard is currently in its
third version. The success of MPI comes from its portability, effi-
ciency, and flexibility to carry out message-passing. Note that MPI
is only an interface definition that has been implemented by several
developers for different architectures. Nowadays you can find a
several implementations whose routines or functions can be directly
called from C, C++, and Fortran codes.

A parallel MPI program consists of several processes with asso-
ciated local memory. In a pure MPI program, each process is linked
to one core, and each core has one piece of the memory available in
the node assigned. In hybrid MPI and multithreaded programs,
each process is usually mapped to one node, the local MPI memory
is associated as the whole shared-memory of the node, and the MPI
processes launch several associated threads (often the same number
of threads as cores within the node). If the tasks of different
processes are completely independent, they do not need to
exchange information. Otherwise, data communication must be
performed through the interconnection network. The traditional
MPI communication style is two-sided, i.e., the source and desti-
nation processes must be synchronized through send and receive

Fig. 3 Abstraction of the fork-join model followed by OpenMP

MSAProbs-MPI 43



routines. MPI also provides collective routines for communication
patterns that involve a group of processes. These collectives are
usually very efficient as there exist optimized versions for specific
architectures [24].

3.4 Parallel

Approach

Both MSAProbs and MSAProbs-MPI have support for parallel
computing. On the one hand, the original tool only includes multi-
threading. Therefore, it can only exploit those resources that share
memory (cores within one node of the cluster). On the other hand,
MSAProbs-MPI extends this approach with MPI routines so that
the workload can also be distributed among different nodes. As
indicated in the previous section, each process is associated to a
group of cores (for instance, all the cores within one node), and it
launches several threads to map its tasks among the cores of the
group. This hybrid approach has provided satisfactory results for
applications related to different research fields such as medical
imaging [25], genetics [26], genomics [27], or machine
learning [28].

As mentioned at the end of Subheading 2, the calculation of the
posterior probability matrices and their transformations (steps 1
and 5) are the most computationally demanding phases, and thus
MSAProbs-MPI focused on applying parallel directives to them to
reduce their runtime. All processes start reading the input matrix
with efficient MPI I/O routines. Although all of them read the
whole input matrix, the calculation of the posterior probability
matrices and the pairwise distances is distributed among them.
Concretely, all processes (and their associated threads) deal with
the same number of sequence-pairs in order to balance the work-
load. At the end of the second stage (see Subheading 2), each
process sends its portion of the distance matrix to Process
0, which gathers all the fragments. Process 0 sequentially constructs
the guided tree (step 3), calculates the sequence weights (step 4),
and broadcasts them to all processes with a collective operation.
Parallelizing these third and fourth steps is not necessary as they are
computationally negligible.

Again, the transformation of the posterior matrices is per-
formed in parallel by several processes and threads. Concretely, a
block-based approach with a ring communication pattern is used
(more information can be found in [19]). Finally, the transformed
matrices are sent to Process 0, which also completes the final
alignment using several threads and writes the output into the
file. Figure 4 shows again the MSAProbs-MPI workload but
including information about which steps are parallelized.
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4 Execution of MSAProbs-MPI

This section will help the future users of MSAProbs and
MSAProbs-MPI to work with them. I focus on the second tool as
it includes all the options of the original one and extends it with
some additional ones. Those users that are able to work with
MSAProbs-MPI have more than the necessary knowledge to
work with MSAProbs.

4.1 Options

for the Bioinformatics

Method

and the Parallel

Implementation

Both MSAProbs and MSAProbs-MPI are configurable in order to
adapt to different kinds of experiments. Here you have a list of the
available parameters:

l -o, -outfile. String to specify the output file name (STDOUT by
default).

l -num_threads. Integer with the number of threads per MPI
process (1 by default). In the case of the original MSAProbs, it
is the total number of threads.

Fig. 4Workflow of MSAProbs-MPI. In white sequential steps. In gray steps with only OpenMP parallelization. In
yellow steps with full MPI/OpenMP parallelization
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l -b, -num_blocks. Integer with the number of blocks used for the
transformation on each process. Less blocks obtain in general
better performance but require more memory. This parameter is
only available in MSAProbs-MPI.

l -clustalw. If specified, use CLUSTALWoutput format instead of
FASTA format.

l -c, -consistency. Integer with the number of passes of consis-
tency transformation (2 by default, 0 minimum, and
5 maximum).

l -ir, -iterative-refinement. Integer with the number of passes of
iterative refinement (10 by default, 0 minimum, and 1000
maximum).

l -v, -verbose. If specified, report progress while alignment.

l -annot. String to specify an annotation file for the multiple
alignment.

l -a, -alignment-order. If specified, print output sequences in
alignment other rather than input order.

l -version. If specified print out version of the program.

4.2 Installation

Instructions

To complete the installation of MSAProbs-MPI follow these steps:

1. Download the source code from http://msaprobs.sourceforge.
net/.

2. Untar the archive and move into the MSAProbs-MPI
directory.

3. Update the file Makefile of the root directory in order to
indicate the correct path and libraries for the MPI compiler
installed in your system.

4. Type make to build MSAProbs-MPI.

Ask administrator of your computer system in case you have
problems with the MPI and/or OpenMP installation.

4.3 Execution

Example

For instance, the following command prints in the file outAlign.
fasta the multiple sequence alignment of dataset1.fasta on 8 cores
using 2 MPI processes with 4 OpenMP threads each, 3 consistency
transformation passes, and 100 iterations for refinement. This
dataset1.fasta is a test example available with the source code at
http://msaprobs.sourceforge.net/; an mpirun is the command
used to run MPI in the system in many implementations (for
instance, OpenMPI).

mpirun -n 2 ./msaprobs-mpi dataset1.fasta -num threads 4 -c
3 -it 100 -o outAlign.fasta.
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Chapter 4

Aligning Protein-Coding Nucleotide Sequences with MACSE

Vincent Ranwez, Nathalie Chantret, and Frédéric Delsuc

Abstract

Most genomic and evolutionary comparative analyses rely on accurate multiple sequence alignments. With
their underlying codon structure, protein-coding nucleotide sequences pose a specific challenge for
multiple sequence alignment. Multiple Alignment of Coding Sequences (MACSE) is a multiple sequence
alignment program that provided the first automatic solution for aligning protein-coding gene datasets
containing both functional and nonfunctional sequences (pseudogenes). Through its unique features,
reliable codon alignments can be built in the presence of frameshifts and stop codons suitable for
subsequent analysis of selection based on the ratio of nonsynonymous to synonymous substitutions.
Here we offer a practical overview and guidelines on the use of MACSE v2. This major update of the
initial algorithm now comes with a graphical interface providing user-friendly access to different subpro-
grams to handle multiple alignments of protein-coding sequences. We also present new pipelines based on
MACSE v2 subprograms to handle large datasets and distributed as Singularity containers. MACSE and
associated pipelines are available at: https://bioweb.supagro.inra.fr/macse/.

Key words Multiple sequence alignment, Molecular evolution, Phylogenomics, Pseudogenes, Meta-
barcoding, Bioinformatics pipelines

1 Introduction

Multiple sequence alignment (MSA) is a crucial step in many
evolutionary analyses. Nonetheless, the most commonly used
alignment tools overlook the underlying codon structure of
protein-coding nucleotide sequences. Accounting for this structure
is useful for improving the proposed alignment, but it is also a
prerequisite for some downstream analyses such as selection pres-
sure analysis based on the nonsynonymous to synonymous substi-
tution ratio (dN/dS).

MACSE [1] was specifically designed to align protein-coding
nucleotide (NT) sequences with respect to their amino acid
(AA) translation while allowing NT sequences to contain multiple
frameshifts and/or stop codons (see Fig. 1). MACSE thus provided
the first automatic solution for aligning protein-coding gene data-
sets containing nonfunctional sequences (pseudogenes) without
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disrupting the underlying codon structure. It has also proved useful
in detecting undocumented frameshifts in public database
sequences and in aligning next-generation sequencing reads/con-
tigs against reference coding sequences [2], especially for metabar-
coding analysis [3].

The first MACSE release contained a single program that took
coding nucleotide sequences as input and aligned themwith respect
to their codon structures [1]. This early command line version
included multiple options that allowed end-users to fine-tune the
alignment options, but its use could be tedious. In order to stream-
line the program application, we built several companion tools that
exploit the core MACSE algorithm to tackle related problems
[4]. The resulting MACSE v2 toolkit was hence much more pow-
erful as it provided the building blocks to construct powerful
alignment pipelines. However, the number of available subpro-
grams and options featured in this version was problematic for
occasional users. We finally proposed a Graphical User Interface
(GUI) to improve the end-user experience. This GUI is useful for
new users who can test MACSE on a few datasets without first
having to deal with the command line option complexity. More-
over, the GUI displays the command line corresponding to selected
options, thus streamlining the transition from the GUI to the
command line version.

When aligning protein-coding nucleotide sequences, it is often
necessary to chain several steps such as sequence prefiltering (e.g.,
to remove unwanted UTR fragments) and then producing and
filtering the nucleotide alignment based on its amino acid transla-
tion. We have successfully used MACSE to design effective pipe-
lines for various tasks, such as aligning thousands of orthologous
sequence datasets from the OrthoMaM database [5] or correcting

Fig. 1 MACSE alignment of a set of nucleotide sequences containing functional genes as well as pseudogenes
(marked by a white star). The nucleotide alignment (NT) and its amino acid (AA) translation are edited with
SeaView (‘codon-colors’ option for the NT alignment). Frameshifts caused by deletions and insertions are
represented by the ‘!’ character. A white frame highlights Frameshifts and stop codons
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tens of thousands of barcoding reads [6]. In this chapter, we
introduce the specificity and key functionalities of MACSE v2. We
outline some standard use cases to illustrate how MACSE subpro-
grams can be chained to produce high-quality protein-coding
sequence alignments in various contexts. All examples mentioned
in this chapter can be downloaded from the MACSE website
https://bioweb.supagro.inra.fr/macse/. The two main pipelines
discussed here are also available as Singularity containers [7] for
easy installation and use on high-performance computing clusters.

2 MACSE Basic Usage and Possible Troubleshooting

2.1 Getting Started MACSE is written in JAVA and hence runs in a straightforward way
on any computer that has a Java Runtime Environment (JRE)
release installed. If needed, JRE is available for free download on
the Java website (www.java.com). The most recent MACSE release
is then available for download on the MACSE website (https://
bioweb.supagro.inra.fr/macse). This website also contains detailed
documentation with several examples for each subprogram, as well
as detailed explanations of possible applications. Each MACSE
release is a single jar file. The latest 2019 release is macse_v2.03.
jar. It can be launched by typing the following command:

java -jar macse_v2.03.jar

⇨ Launches the GUI version of MACSE (see Fig.2).

MACSE may also be launched by double clicking on the mac-
se_v2.03.jar file. In both cases this will launch the graphic user
interface of MACSE. Anything typed after macse_v2.03.jar will
be considered as options passed to MACSE, whereas anything
typed before will be considered as Java virtual machine options.
The command line version and GUI versions of MACSE may be
run via the same MACSE jar file. In the absence of any option, the
GUI version is launched, whereas the command line version is
launched as soon as at least one option is submitted to MACSE.
As MACSE is a set of subprograms, the “-prog” option allows users
to specify the subprogram to be executed. This is a mandatory
option, but if the user does not know the subprogram names, any
name may be submitted, and a help message with a list of possible
subprograms will be displayed:

java -jar macse_v2.03.jar -prog wrongProgram

⇨ Launches the command line version of MACSE, and print a help
message listing all valid subprograms with a one-line descrip-
tion of each of them.

Once the name of the subprogram of interest has been selected,
e.g., alignSequences, a brief help message for this subprogram can
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be displayed by invoking it without further options, and a descrip-
tion of what this subprogram is useful for and a list of mandatory
options will be printed:

java -jar macse_v2.03.jar -prog alignSequences

⇨ Prints a basic help message of the alignSequences subprogram
focusing on its mandatory options.

The “-help” option provides more detailed information and
the complete list of options:

java -jar macse_v2.03.jar -prog alignSequences -help

⇨ Prints a detailed help message of the alignSequences subprogram
presenting all available options.

Documentation may also be accessed when using GUI (see
Fig. 2). Once the subprogram of interest is selected via the “Pro-
grams” menu, a brief description of this subprogram appears at the
top of the GUI. Options are grouped into categories: mandatory

Fig. 2 Presentation of the MACSE Graphical User Interface showing the different parts of the main window: the
“program” menu allowing users to choose the subprograms accompanied by a table listing all of them (with their
mandatory options and the required files) and the location where each element can be found (where a brief
description of the selected subprogram or option can be found, the different menus, the command line, etc.)
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options, output file names, alignment parameters, etc. Once an
option field is selected by clicking on it, the related documentation
is displayed at the top of the GUI. The command line
corresponding to the graphically selected options appears at the
bottom of the GUI. Copying this command line before running
MACSE via the GUI ensures the traceability of the analysis while
also enabling the user to easily run the same analysis via the com-
mand line without having to manually type the command line.

Hereafter we shorten the command line by omitting the
MACSE release version. Note that this can also be done by renam-
ing the downloaded jar file by using a symbolic link, by defining an
environment variable on the system, or through any other technical
solution that suits the user. For enhanced readability, we also
extend the command to several lines, with one option per line,
and indicate the option name in bold font. It follows that a com-
mand such as:

java -jar macse_v2.03.jar -prog alignSequences -help

will hence be written in the rest of this chapter as:

java -jar macse.jar -prog alignSequences

-help

2.2 Obtaining

Suitable Input

Sequences

The most frequent pitfall encountered by new MACSE users arises
when the user provides an input sequence file containing fragments
of nonprotein-coding nucleotide sequences. In case of unexpected
MACSE behavior, the first thing to check is that the input sequence
file contains nucleotide sequences in a valid fasta format. To do so,
users may try to open it with a sequence/alignment viewer such as
SeaView [8] or AliView [9], which are very convenient to visualize
sequences and alignments produced by MACSE. These viewers
accept the ‘!’ character in both nucleotide and amino acid
sequences, and it is also possible to visually highlight the codon
structure of the aligned nucleotide sequences.

A second aspect to verify is that the sequences are all in forward
direction. This could be harder to check depending on how the
sequences have been obtained, but MACSE will not be able to
correctly align sequences in reverse orientation. A solution could
be to blast them against public protein databases using blastx. All
sequences for which the best hit occurs with a negative reading
frame should probably be reverse translated. Alternatively, MAFFT
[10] has convenient functionalities (--adjustdirection or --adjust-
directionaccurately) that can reorient nucleotide sequences in a
multiple sequence alignment.

The last point is to ensure that the input sequences do not
contain nonprotein-coding fragments. Typically, nonprotein-
coding fragments in CDS are found when UTRs (or introns) are
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not trimmed out. This often occurs when dealing with de novo
assembled contigs. Contigs should have their nonprotein-coding
parts removed before alignment with MACSE. This could be done
using dedicated annotation tools such as prot4EST [11], UTRme
[12], or other similar tools. Alternatively, the MACSE trimNon-
HomologousFragments subprogram may be used. This subpro-
gram will not focus specifically on noncoding regions, but it will
mask any long fragment that is nonhomologous (at the amino acid
level) to other sequences.

The trimNonHomologousFragments subprogram was initially
developed to filter long insertions that may be caused, for instance,
by annotation errors such as undetected introns or UTRs. Having
to handle long insertions in one or a few sequences could drastically
slow down the alignment process. Alignment of these nonhomolo-
gous regions is mostly useless, as they would probably be removed
by any alignment filtering tools in subsequent analyses.

The trimNonHomologousFragments subprogram mainly aims
at removing long nonhomologous fragments but keeps smaller
ones to limit the risk of removing fragments that are actually
homologous. Several options are provided to adjust the stringency
of this prefiltering step, but we advise against being too strict at this
early stage of the analysis. At this stage, a sequence that has been
trimmed along almost its entire length is likely not at all homolo-
gous to other sequences, so it might be better to remove it
completely. For a sequence to be kept in the output fasta file, the
percentage of this sequence that should remain after homology
prefiltering can be adjusted (-min_homology_to_keep_seq). Full
details of this prefiltering process can be output in a fasta file
(-out_mask_detail) in which the original sequences are written
using a mix of upper case (for preserved nucleotides) and lower
case (for removed nucleotides) letters. In any case, the trimNon-
HomologousFragment subprogram outputs a CSV file summariz-
ing the impact of this prefiltering process on each sequence. This
file contains the number of nucleotides (including, or not, non-
informative “N” nucleotides) that have been removed from the
whole sequence and from its extremities. Note that the name of
this output file can be specified (-out_trim_info option):

java -jar macse.jar -prog trimNonHomologousFragments

-seq ENSG00000125812_GZF1_raw.fasta

-out_trim_info output_stats.csv

-min_homology_to_keep_seq 0.6

⇨ Prefilters long nonhomologous sequence fragments; if more than
60% of a sequence is filtered then this sequence is entirely
removed.
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2.3 Most Common

Usages

The alignSequences subprogram is the core feature of the MACSE
v2 toolkit. Its single mandatory option is a fasta file containing the
coding nucleotide sequences to align. These nucleotide sequences
need to be in forward direction, as alignSequences ignores their
reverse complements, and they should be protein-coding sequences
all along. Indeed, as alignSequences relies on sequence protein
translations to align sequences, if there are any UTR or intron
fragments, alignSequences would waste a lot of time producing
meaningless alignments.

To align CDSs of the Pg3 gene in the Medicago genus [13]
stored in the fasta file named Pg3_Medicago.fasta, the simplest
command line is:

java -jar macse.jar -prog alignSequences

-seq Pg3_Medicago.fasta

⇨ Aligns sequences contained in the Pg3_Medicago.fasta file with
default parameters (see Fig. 1).

The alignSequences subprogram, like most other MACSE sub-
programs, generates two fasta files, one containing the aligned
protein-coding nucleotide sequences as codons and another con-
taining the corresponding amino acid alignment. By default, the
names of these files are based on the input file name, but the desired
output file names can be specified using the “-out_NT” and
“-out_AA” options.

Since MACSE relies on amino acid translation, it lets you
specify the genetic code adapted to your protein-coding sequences.
The NCBI has assigned a unique number to each genetic code,
which is convenient to easily specify which code should be used. By
default, MACSE uses “the standard code,” but a different default
genetic code may be specified for a dataset using the “-gc_def”
option. For instance, the invertebrate mitochondrial code is the
fifth on the NCBI list. The command line below is hence adapted to
align mitochondrial COX1 sequences of grasshoppers:

java -jar macse.jar -prog alignSequences

-seq grasshoppers_COX1.fasta

-gc_def 5

⇨ Aligns invertebrate mitochondrial sequences with the specified
genetic code “5”.

If the dataset contains sequences that use different genetic
codes, they will have to be specified in a separated text file (“-
-gc_file” option) containing, on each line, the name of a sequence
and the number of the corresponding genetic code. Any sequence
absent from this file will be translated using either the genetic code
specified by the -gc_def option or, in the absence of this option, the
standard genetic code. For example, to align metazoan
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mitochondrial COX1 sequences from different phyla [14], the
following command may be used to specify the five different
genetic codes with the -gc_file option:

java -jar macse.jar -progalignSequences

-seq Singh2009_cox1.fasta

-gc_file Singh2009_cox1_gc_file.txt

-out_NT Singh2009_cox1_NT.fasta

-out_AA Singh2009_cox1_AA.fasta

⇨ Aligns metazoan mitochondrial sequences with their
corresponding genetic codes (see Fig. 3).

The translateNT2AA subprogram could also be used to simply
translate protein-coding sequences using either the default stan-
dard genetic code if not specified or the genetic code specified using
the -gc_def and -gc_file options:

java -jar macse.jar -prog translateNT2AA

-seq Singh2009_cox1.fasta

-gc_file Singh2009_cox1_gc_file.txt

Fig. 3 MACSE alignment of 54 metazoan mitochondrial COX1 sequences from Singh et al. [14] using five
different mitochondrial genetic codes corresponding to the different taxonomic groups. The nucleotide alignment
(NT) and its amino acid (AA) translation are edited with SeaView (‘codon-colors’ option for the NT alignment)
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⇨ Translates metazoan mitochondrial sequences with their
corresponding genetic codes.

The key options described so far are present in most MACSE
subprograms.

Another set of options concerns the costs used to compare
alternative alignments and select the best one. Like most alignment
software, MACSE lets users tune the ratio between gap extension
cost and gap opening cost. Increasing the gap opening cost
(or decreasing the gap extension cost) will tend to favor alignments
where gaps are grouped in long stretches. MACSE also allows
adjustment of the relative cost of gaps appearing at the sequence
extremities (terminal gaps) as opposed to those appearing inside the
sequences (internal gaps). By default, external gaps are less pena-
lized as they often reflect the fact that a sequence was partially
sequenced rather than that a nucleotide insertion/deletion has
occurred. Similarly, one or two missing nucleotides at the sequence
extremities lead to incomplete codons (hence technically frame-
shifts), but such external frameshifts should not be as penalized as
those occurring in the middle of a sequence (internal frameshifts).
When a dataset contains a mix of genes and pseudogenes or of high-
quality sequences (e.g., a CDS from the Swiss-Prot database) and
low-quality sequences (e.g., de novo assembled contigs), it is also
relevant to assign different penalties for the frameshifts and stop
codons appearing in such different types of sequence. To deal with
such cases, MACSE allows users to define two sets of sequences by
providing two fasta files as input instead of a single one. The most
reliable sequences are in the file provided by the “-seq” options,
whereas the least reliable ones are in the file provided by the
“-seq_lr” option. As it allows stop codons and frameshifts and
allows users to assign them different penalty costs based on the
sequence in which they appear and on their position within this
sequence, MACSE features many more cost-related options than
usual alignment software. These different cost options are summar-
ized in Tables 1 and 2.

As frameshifts and stop codons are much less unexpected in
pseudogenes than in nucleotide sequences coding for a functional
protein, users may opt to decrease the cost of such events. For
instance, the following parameters and options may be used to

Table 1
MACSE options to adjust stop codon and frameshift costs in sequences

Internal Terminal

Frameshift Stop Frameshift Stop

Reliable sequences -fs -stop -fs_term --

Less reliable sequences -fs_lr -stop_lr -fs_lr_term --
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align both functional and pseudogenized sequences from the mam-
malian CHIA4 gene [15]:

java -jar macse.jar -prog alignSequences

-seq Emerling2018_CHIA4_functional.fasta

-seq_lr Emerling2018_CHIA4_pseudo.fasta

-fs_lr 10

-stop_lr 10

-out_NT Emerling2018_CHIA4_NT.fasta

-out_AA Emerling2018_CHIA4_AA.fasta

⇨ Aligns a mix of functional CDS and pseudogenes (see Fig. 4).

The default parameters work fine for most cases, but in the
MACSE online documentation, we provide some guidelines to
help adjust parameter costs for some specific types of sequence
datasets. Note that the default values for each parameter appear in
the GUI.

Table 2
MACSE options to adjust gap costs

Internal gap Terminal gap

Sequence\event Opening Extension Opening Extension

Any sequences -gap_op -gap_ext -gap_op_term gap_ext_term

Fig. 4 MACSE alignment of 48 mammalian CHIA4 nucleotide sequences from Emerling et al. [15] containing
18 functional genes and 30 pseudogenes (_pseudo). The nucleotide alignment and its AA translation are
edited with SEAVIEW (“codon-colors” option for the NT alignment). Frameshifts caused by deletions are
represented by the “!” character. A white frame highlights Frameshifts and stop codons
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3 MACSE-Based Pipelines Suitable for Datasets of Various Sizes

3.1 Pipelines Based

on MACSE

as Singularity

Containers

We designed MACSE V2 as a toolkit dedicated to multiple align-
ments of protein-coding sequences that can be leveraged via both
the command line and a Graphical User Interface (GUI). We used
this toolkit to develop some convenient pipelines as described in
this chapter. We share these pipelines as Singularity containers [7]
since they also depend on a few other tools and some environment
setups. A Singularity container contains everything needed to exe-
cute a specific task. The developer building the container has to
handle dependencies and the environment configuration so that
end-users will not need to worry about this. To run a Singularity
container named “container.sif,” that is, in your current directory,
just type the following command in your Linux terminal:

singularity run ./container.sif

3.2 Basic Pipelines

and Batch Facilities

Using the command line version of MACSE, it is quite easy for
bioinformaticians to build an analysis pipeline chaining multiple
MACSE subprograms to conduct tailored-made analyses on several
input datasets. Scripting language or, even better, workflow man-
agers are tools of choice for such tasks, but not everyone masters
such tools. The “multiPrograms” subprogram of MACSE allows
basic scripting for nonbioinformaticians. Its main option
(-MACSE_command_file) allows specifying the file containing a
list of MACSE commands that will be run sequentially. Each line
of this command file must contain a single MACSE command
starting by “-prog” (i.e., omitting “java -jar macse.jar”). The “@”
character can be used before each file path to point towards the
directory containing the command file itself (useful if the command
file is not in the current directory). To prepare this command file,
the end-user can apply the GUI on a single example to generate the
required command line, copy this command line (using copy/paste
or the “copy to clipboard” button) multiple times into a text file,
and then replace the initial dataset name by a different one on each
line. The basic usage of this subprogram is:

java -jar macse.jar -prog multiPrograms

-MACSE_command_file align_multi.macse

⇨ Launches all MACSE commands stored in the align_multi.macse
file; for instance, to align sequences from three loci this file
contains three lines:

-prog alignSequences -seq LOC_19470.fasta

-prog alignSequences -seq LOC_48720.fasta

-prog alignSequences -seq LOC_72220.fasta
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When dealing with amino acid translation of nucleotide coding
sequences, it is necessary to handle a larger alphabet (20 amino
acids versus only 4 possible nucleotides), but then the sequences are
three times shorter. However, because MACSE aligns protein-
coding nucleotide sequences while accounting for their amino
acid translations in the three possible reading frames, it needs to
cope with longer nucleotide sequences and a larger amino acid
alphabet. Moreover, most algorithmic optimizations of amino
acid sequence alignment rely on the fact that their amino acid
sequences are invariable, and gaps can be inserted only between
amino acids. This means that amino acids never change throughout
the alignment process. This is not the case with MACSE because
frameshifts can potentially be introduced anywhere in a sequence,
at any step of the alignment process. Amino acids of a given
nucleotide sequence could therefore vary during the alignment
process depending on the reading frames used at a given stage to
translate the sequence. Optimizations generally used in alignment
software are thus harder to incorporate into MACSE because the
amino acid sequences may vary along the alignment process and
different reading frames can be used to translate a single sequence.
This specificity is a powerful feature of MACSE, but it increases the
memory requirements and computation times. Thus, for datasets
containing numerous long sequences, using the core alignSe-
quences subprogram of MACSE with default options may not be
feasible. In such cases, the alignSequences subprogram could be
run to obtain a draft alignment that will hopefully unravel most
frameshifts. Different strategies are presented in the following sec-
tion to get the most of MACSE when dealing with datasets of
various sizes.

MACSE is run through the Java virtual machine, so for rela-
tively large datasets the memory that Java is allowed to use will have
to be increased via the “-Xmx” option. This is not a MACSE option
per se, but it is definitely essential:

java -jar –Xmx 600m macse.jar -prog alignSequences

⇨Aligns larger datasets by allocating more memory to Java using
the Xmx option.

3.3 Aligning Dozens

of Sequences

If the dataset is not too large, MACSE can be used to perform the
whole alignment itself. We advise using this strategy, when possible,
to get the most accurate frameshift placements. The command line
for such an analysis could be as simple as launching MACSE with
default options and allocating some extra memory for the Java
virtual machine:
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java -jar –Xmx 600m macse.jar -prog alignSequences

-seq Pg3_Medicago.fasta

⇨ The most simple MACSE use case.

However, in most cases, it could be worth prefiltering possible
UTRs or other long nonhomologous fragments contained in the
sequences using the trimNonHomologousFragment MACSE sub-
program. Some analyses, e.g., dN/dS estimation, are highly sensi-
tive to alignment errors, which are favored by the presence of even
short nonhomologous fragments. For such analyses, we strongly
advise [16] also using HMMCleaner [17] to post-filter less reliable
parts of your amino acid alignment and report this masking/filter-
ing at the nucleotide level. The filtered alignment obtained with
HMMCleaner may contain some isolated codons, surrounded only
by gaps or masked codons, as well as sequences with very few
remaining codons. It would make sense to remove such sequences
and filter isolated codons. The reportMaskAA2NT subprogram of
MACSE may be used to report the filtering performed by
HMMCleaner at the nucleotide level and to perform some post-
processing filtering of such isolated codons and patchy sequences.
By using MACSE subprograms for these various filtering steps, the
traceability of the filtering process is achieved by keeping track of
every single nucleotide that has been masked. Finally, it could be
convenient to be able to observe frameshifts and stop codons in the
final alignment, but their presence might be problematic for down-
stream analyses. The alignments obtained with MACSE may be
post-processed to replace stop codon and frameshift symbols by
more standard ones using the exportAlignment subprogram of
MACSE. Producing a reliable alignment of a dataset may hence
require chaining several steps using HMMCleaner together with
multiple MACSE subprograms. We provide a pipeline to automa-
tize this process, while letting end-users turn on or off the various
filtering steps. The script, written in Bash, is encapsulated in a
Singularity container.

We called this pipeline MACSE_ALFIX (see Fig. 5), since it is
mostly based on MACSE and chains the ALigning, Filtering, and
eXporting steps. The script produces several output files that are
stored in a single directory and named using a common prefix. The
three mandatory options of this script are therefore the input file
name, the output directory name, and the prefix of the output file
names.

singularity run ./MACSE_ALFIX_v01.sif

--in_seq_file LOC_48720.fasta

--out_dir RES_LOC_48720

--out_file_prefix LOC_48720

⇨ The most simple use case of the MACSE_ALFIX pipeline.
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Fig. 5 Schematic representation of the MACSE_ALFIX pipeline. Boxes represent input/output sequence data
(blue when unaligned and green when aligned) and are accompanied (on the left) by a small illustrative
diagram. On the arrows it is mentioned which subprogram/tool is used and whether this step is optional or not
(on/off button). On the right side, additional output files generated are represented in order to provide users
with a full traceability picture. The central part of the pipeline, with a colored background, corresponds to the
alignment and filtering of the homologous sequences that could be a bottleneck for large datasets



3.4 Aligning

Hundreds

of Sequences

The computing and memory resources required by MACSE
depend on the number and length of the sequences to align. The
longest sequence plays a key role in the memory and computation
time required by MACSE. When dealing with some long
sequences, it may be necessary to significantly increase the memory
allocated to the Java virtual machine (using the “-Xmx option”),
but the computation time with the default options of the alignSe-
quences subprogram may still be prohibitive. The v2 release of
MACSE introduced several options that help balance the computa-
tion time and alignment accuracy by limiting the number of align-
ment refinement steps (“-max_refine_iter”) or by gradually
narrowing the alignment refinement steps to more local improve-
ments (“-local_realign_init” and “-local_realign_dec” options). As
an illustrative example, to build the tenth release of the OrthoMaM
database, we had to build more than 20,000 alignments containing
up to 116 sequences that could be several Kb long. We designed a
pipeline based on MACSE v2 that is well suited for this task. The
filtering steps are similar to those of the MACSE_ALFIX pipeline,
but the main alignment step here is done by chaining the alignSe-
quences subprogram with MAFFT. The key is to use alignSe-
quences with options that enable MACSE to quite rapidly
generate a draft alignment of the coding nucleotide sequences in
which potential frameshifts are identified. The resulting amino
acids sequences are then aligned using MAFFT, which is much
faster than MACSE for aligning fixed amino acid sequences. The
drawback of this approach is that some frameshifts may not be as
accurately positioned within sequences as they would be with the
MACSE_ALFIX pipeline, which may lead HMMCleaner to remove
some extra residues. For large datasets of sequences expected to
contain few frameshifts, as was the case with the OrthoMaM CDS
database, this strategy seems to work remarkably well. The OMM_-
MACSE pipeline (see Fig. 6) has the same mandatory options as the
MACSE_ALFIX pipeline:

singularity run ./OMM_MACSE_v10.01.sif

--in_seq_file LOC_48720.fasta

--out_dir RES_LOC_4872

--out_file_prefix LOC_48720

⇨ The most simple use case of the OMM_MACSE pipeline for larger
datasets.

Note that, if a dataset contains some pseudogenes or contigs
assembled de novo, it may be worth using the refineAlignment
subprogram of MACSE to polish the alignment obtained by
MAFFT and adjust frameshift positions before applying
HMMCleaner.
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Fig. 6 Schematic representation of the OMM_MACSE pipeline. Boxes represent input/output sequence data
(blue when unaligned and green when aligned) and are accompanied, on the left, by a small illustrative
diagram. On the arrows it is mentioned which subprogram/tool is used and whether this step is optional or not
(on/off button). On the right side, additional output files generated are represented in order to provide users
with a full traceability picture. The central part of the pipeline, with a colored background, corresponds to the
alignment and filtering of the homologous sequences. This part is the only one that differs from the
MACSE_ALFIX pipeline (see Fig. 5) and is better suited for large datasets



3.5 Aligning

Thousands

of Sequences

If you have a very large number of sequences, trying to align them
simultaneously is dubious for several technical reasons [16]. It is
preferable, as advised by R. Edgar, in the MUSCLE 3.8 [18] user
guide (http://www.drive5.com/muscle/muscle_userguide3.8.
html), to tackle this problem by leveraging clustering and align-
ment methods. One possibility is to first build clusters of reasonable
size that pool similar sequences (e.g., using UCLUST [19]) in
order to align them separately. In a second step, these alignments
can be combined to produce the final super-alignment. When there
are only two clusters/alignments (e.g., align1.fasta and align2.
fasta), they can be aligned with the alignTwoProfiles subprogram
of MACSE to produce a single alignment containing all the
sequences. This subprogram has many options (mostly the same
as alignSequences), but only the options allowing users to specify
the two input alignment files (options -p1 and -p2) are mandatory:

java -jar macse.jar -prog alignTwoProfiles

-p1 align1.fasta

-p2 align2.fasta

⇨ Aligns two previously computed alignments.

When dealing with a handful of clusters, several alignTwoPro-
files invocations may be chained to build the global alignment. The
idea here is to take the output of one alignTwoProfiles invocation as
the p1 profile for the next one. For instance, four alignments can be
combined using a MACSE command file as follows:

java -jar macse.jar -prog multiPrograms

-MACSE_command_file align_multi.macse

where align_multi.macse is a text file containing this four lines:

-prog alignTwoProfiles -p1 ali1.fasta -p2 ali2.fasta -out_NT ali12.
fasta

-prog alignTwoProfiles -p1 ali12.fasta -p2 ali3.fasta -out_NT
ali123.fasta

-prog alignTwoProfiles -p1 ali123.fasta -p2 ali4.fasta -out_NT
aliAll.fasta

⇨ Basic strategy to align four previously computed alignments.

Using this basic strategy, the final alignment will depend on the
order in which the profiles are sequentially added. Under the same
rationale as for usual multiple sequence alignment, it would be
better to first align the most similar alignments. More elaborate
strategies can be designed using MACSE, but this is beyond the
scope of this chapter.
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3.6 Metabarcoding

Applications

Metabarcoding analysis often requires handling thousands of
sequences. Such datasets are not directly tractable with the alignSe-
quence subprogram of MACSE, but they can be handled by
sequentially adding the newly obtained sequences to a reference
alignment containing sequences of related taxa for the targeted
barcoding locus (e.g., COX1, matK, rbcL, etc.). We successfully
used this approach in the Moorea BIOCODE project on coral reef
biodiversity [6].

The initial alignment can be either built from scratch or from
an improved version of an existing alignment (using the refineA-
lignment subprogram of MACSE to unravel some potential
sequencing errors/frameshifts). The reference alignment does not
need to be huge. For instance, rather than using all available COX1
sequences available in the BOLD database [20], for a given taxo-
nomic group, it may be better to collect some carefully checked
sequences that reflect the molecular diversity of the taxonomic
groups of interest. Those carefully selected sequences may be
aligned using one of the previously detailed strategies (e.g., using
the MACSE_ALFIX pipeline). Then, using the enrichAlignment
subprogram, problematic reads can be detected while adding the
remaining reads to the reference alignment. By default, enrichA-
lignment adds sequences to an alignment (referred to as the initial
alignment) in sequential mode: each sequence is aligned with the
current alignment, i.e., that contains the sequences of the initial
alignment plus those previously added. Some enrichAlignment
options allow users to set thresholds/conditions for a sequence to
be discarded and/or to specify that all new sequences must be
aligned with the unmodified initial alignment.

The following command line may be used to sequentially
enrich an alignment by adding only reads that do not induce too
many frameshifts (-maxFS_inSeq), stop codons
(-maxSTOP_inSeq) and insertion (maxINS_inSeq) events:

java -jar macse.jar -prog enrichAlignment

-align Moorea_BIOCODE_small_ref.fasta

-seq Moorea_BIOCODE_small_ref.fasta

-seq_lr noctural_diet_sample.fasta

-gc_def 5

-fs_lr 10

-stop_lr 10

-maxFS_inSeq 0

-maxINS_inSeq 0

-maxSTOP_inSeq 1

⇨ Enrich an initial alignment by conditionally adding sequences
to it.
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Alternatively, for large datasets, it could be better to work with
a fixed alignment (option -fixed_alignment_ON). Working with a
fixed alignment is especially convenient when dealing with (meta)-
barcoding data since such analyses usually require handling numer-
ous highly similar sequences that are not expected to contain indels.
When using this option, all sequences to be added are compared
with the same initial alignment. The key advantage is that this
allows task parallelization. For example, if there are 50,000 reads/
sequences to be added to the initial alignment, this large dataset
may be split into 50 sets of 1000 sequences each, and then the tasks
may be run in parallel on 50 computers/CPUs. Moreover, if each
of the 50,000 sequences can be correctly aligned with the original
alignment without inserting gap events in this original alignment,
then the aligned version of the 50,000 sequences (that were inde-
pendently computed) can be merged to the initial alignment to get
a valid global alignment.

The enrichAlignment MACSE subprogram not only produces
the two usual FASTA output files, respectively, containing the
nucleotide and amino acid alignments, but also a tabular text file
providing detailed information for each read, including whether it
has been added or not and how many stop codons, frameshifts, and
insertion events are required to align this read with the reference
alignment. This helps to understand why some reads were dis-
carded, to spot reads that have been added but contain few unex-
pected events (e.g., one internal frameshift) and to compute some
overall statistics regarding the input read quality.

4 Conclusion

This chapter describes typical MACSE use cases along with asso-
ciated command lines and provides two examples of pipelines built
from the different MACSE subprograms. In its latest version,
MACSE is suitable for bioinformaticians who need to create their
own pipelines and for finely controlling the parametering of each
subprogram, but it is also accessible to nonspecialists via its graphi-
cal interface.
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Chapter 5

Cooperation of Spaln and Prrn5 for Construction
of Gene-Structure-Aware Multiple Sequence Alignment

Osamu Gotoh

Abstract

Gene-structure-aware multiple sequence alignment (GSA-MSA) is conventionally used as a tool for
analyzing evolutionary changes in gene structure, i.e., gain and loss of introns during the course of
evolution of homologous eukaryotic genes. Recently, however, it has become apparent that GSA-MSA is
a powerful tool for detecting and remedying gene-prediction errors prevalent in genome annotations
produced by various genome projects. Unfortunately, the construction of GSA-MSAs has so far required
tedious procedures, thereby preventing researchers from enjoying the potential benefits of GSA-MSAs. In
this chapter, we introduce a straightforward way for constructing GSA-MSAs when one or more genomic
sequences and a set of transcript sequences (protein or full-length cDNAs/CDSs) are given. Our method
requires no external tool or extra data, such as annotation files, although a supplementary script can
generate a gene-structure-informed (GSI) transcript sequence file from annotation files.

Key words Spliced alignment, Genome mapping, Gene structure, Gene prediction, Multiple
sequence alignment, Annotation error, Phylogenetic analysis

1 Introduction

Protein and cDNA sequences subjected to multiple sequence align-
ment (MSA) analyses are often obtained from sequence databases,
many entries of which are derived from gene annotation conducted
by various genome projects. However, it has become increasingly
apparent that these sequence data contain an appreciable fraction of
errors [1–3] due to incomplete genome sequencing/assembly,
incorrect gene prediction, mixture of alternatively spliced products,
and contamination of pseudogene-derived transcript sequences.
The existence of error-harboring sequences not only hampers the
construction of MSA itself [4] but also impairs the reliability of
downstream analyses, such as phylogenetic reconstruction, func-
tional implication, and sequence-based higher-order structural pre-
diction. Gene-structure-aware multiple sequence alignment
(GSA-MSA) has been proven to be a powerful tool for visually
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detecting these errors [5–7]. However, the existing tools are not
necessarily easy to use because in most applications, MSA and a set
of gene structural information are prepared and maintained sepa-
rately, and tedious and error-prone operations are involved in the
process. Thus, it is desired to construct GSA-MSAs from genomic
and transcript sequences alone without relying on extra data. Two
key procedures are essential for this purpose (see Fig. 1): (i) a rapid
and accurate method for supplementing each transcript sequence
with parental gene structural information and (ii) a standalone
MSA method that directly utilizes these gene-structure-informed
(GSI) transcript sequences as inputs. For the first task, genome
mapping and spliced alignment tools, such as Gmap [8], Spaln
[9, 10], and Minimap2 [11], can be used, of which Spaln is unique
in that not only cDNAs/CDSs but also protein amino acid
sequences can be used as queries. Spaln performs genome mapping
and spliced alignment seamlessly unlike Scipio [12] and GenBlast
[13], which also accept protein queries but require an external
genome mapping facility. Compared with other mappers, Spaln is
considerably space-efficient, which is beneficial for multi-thread
computation. Moreover, Spaln is the most accurate spliced aligner
among those developed so far [14]. For the second task, very few
programs, such as Malin [15, 16] and Prrn [17], are currently
available. Malin is designed to improve concordant intron positions
along an externally constructedMSA post-supplemented with gene
structural information. In contrast, Prrn is a de novoMSA tool that
accepts a set of GSI sequences as input. In this chapter, we intro-
duce Prrn5, the latest version of ourMSA program Prrn with a long

Fig. 1 Schematic workflow for construction of GSA-MSA from genomic and transcript sequences
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history [18, 19]. Compared with its immediate predecessor [17],
Prrn5 shows considerably good performance with respect to both
speed and accuracy.

2 Methods

2.1 Outline of Spaln

Algorithm

2.1.1 Genome Mapping

For protein queries, Spaln first converts the genomic nucleotide
sequence into 23-letter Tron (translated codon) codes [20] (see
Note 1). Unlike most other genome mappers that rely on the
Blast-like seed and extension strategy [21], Spaln adopts a
top-down strategy with multiple phases [9]. In the first phase,
Spaln looks for one or several genomic segments that contain the
gene(s) homologous to the query. For this purpose, the genomic
sequence is divided into blocks of size B ~ffiffiffiffiffiffiffiffiNG

p
(NG stands for

genome size), and the occurrence of at least one specific k-mer wk

in block b is tabulated and stored in a set of index files. k-mer size
k is chosen so that the probability of occurrence of each k-mer in
b by chance is much less than 1.0. The tiling (nonoverlapping and
contiguous) k-mers on both forward and complementary genomic
strands are compiled to make a block index. Upon searching, every
k-mer on the query is examined from both ends toward the center
for its occurrence in certain blocks, and block score bs(b) of each hit
is incremented by word score s(wk), which depends on the fre-
quency of occurrence of wk within the entire genomic sequence.
For random-sequence queries, bs(b) obeys an extreme value distri-
bution [22]. Using this property, we can identify “significant”
blocks that are likely to contain subsequences similar to the query.
The genomic segments that are individually sandwiched by the
most upstream and most downstream significant blocks within a
specified range (MaxGene) are passed to the subsequent
procedures.

2.1.2 HSP Construction

and Chaining

In the second phase, Spaln finds gapless local alignments, i.e., high
scoring pairs (HSPs), between each genomic segment and the
query based on the local lookup table [23] of spaced seeds
[24]. Like Blast2 [25], this table is made from each query at the
runtime (see Note 2). The HSPs are then chained into collinear
groups (chained HSPs or cHSPs) with a sparse dynamic program-
ming (DP) algorithm [26]. Multiple cHSPs within one or a few
blocks indicate the existence of a tandemly duplicated paralog
cluster in which each cHSP corresponds to a gene. The sparse DP
algorithm assigns a score to each cHSP. At this stage, weak cHSPs
having scores lower than a given threshold are discarded. Spaln
keeps best scored at most N_PARA_CAND (4 by default) cHSPs
that are passed to the subsequent processes. Unlike most other
tools, Spaln uses a nonlinear gap penalty function derived from
the intron length distribution (ILD) of the relevant or related
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genome [27] (see Note 3). This function is useful for sharply
discriminating individual members in a tandemly duplicated gene
cluster.

Depending on --Q option (see Subheading 2.2), the above
procedure is recursively applied with decreasing seed size down to
the specified depth if at least one exon is likely to be missing within
the space between neighboring HSPs or either end of the genomic
segment.

2.1.3 Merging HSPs

to Generate Full Gene

Structure

This phase adopts different heuristics depending on the “distance”
between neighboring HSPs or an end of the genomic segment (see
Fig. 2). Note that this phase is skipped when Spaln is invoked in the
full DP mode (--Q0 or --Q4). If a pair of neighboring HSPs are
contiguous or partially overlap with respect to their query coordi-
nates, the 50 and 30 splicing boundaries on the genomic sequence
are searched for by a simple linear scan (see Fig. 2a). If the space
between a pair of neighboring HSPs is positive but too narrow (<

Fig. 2 Three heuristic procedures to obtain final spliced alignment from chained HSPs (diagonal bars). (a) The
simplest case in which neighboring HSPs contact or overlap with each other along y axis. The 50 and 30 splice
sites are searched for in the gapless alignments encompassing the junctions (thick bars). (b) Skipped spliced
alignment under the assumption that no extra exon is present within the genomic region. The DP matrix is
filled in the hatched areas only, and the blank area is skipped. (c) Standard DP algorithm for spliced alignment
within the hatched area
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MinExon, which can be reset by --yE option) to accommodate an
extra exon, a “skipped” DP alignment is performed (see Fig. 2b).
This is a simplified unidirectional version of the bidirectional “sand-
wich” or “attack by both sides” algorithm adopted by our previous
versions and some other aligners [8, 28]. If neither condition is
satisfied, a DP-based spliced alignment method (Subheading 2.1.4)
is applied to fill in the space (see Fig. 2c).

2.1.4 Spliced Alignment For spliced alignment, Spaln uses a derivative of the “long gap
alignment algorithm” proposed earlier [29] (see Note 4). Given
genomic segment G ¼ g1g2g3. . .gN and query Q ¼ q1q2q3. . .qM,
Spaln tries to optimize the following objective function:

H G,Qð Þ ¼ wAH S,Qð Þ þ wI

X
i∈ If g

γi þ wB

X
i∈ If g

δi

þ wJ

X
j∈ Jf g

θ j þwC

X
c∈ Cf g

φc

2
4

3
5, ð1Þ

where S denotes either the concatenated inferred exons extracted
from the genomic sequence or the inferred amino acid sequence
translated therefrom depending on the query type. H(S,Q) is the
ordinary alignment score between S and Q with affine [30] or
double affine [29] gap penalty, except that frameshifts and imma-
ture termination codons negatively contribute to H(S,Q) for pro-
tein queries. {I}, {J}, and {C} denote the sets of inferred introns,
inferred exon boundaries, and inferred coding exons, respectively.
Intron penalty γi is a function of intron length (seeNote 3), whereas
δi is either 1 or 0 depending on whether the intron position is
conserved or not betweenG andQ if gene structural information of
Q is supplied (see Subheading 2.2). Exon boundary signal θj is
calculated from the position-specific mth-order Markov model
(m ¼ 0, 1, or 2 depending on the number of known exon-intron
boundaries). The so-called coding potential φc is calculated on the
basis of a fifth-order frame-sensitive stationary Markov model
trained on known CDSs. Note that this term is included only for
protein queries. Two other features, “intron potential” (4- or
5-mer nucleotide composition within an intron) and branch point
signal, may be incorporated into the Spaln scoring system [14], but
these features are not used by default as their impacts on intron
recognition are relatively small [31]. Weight wA is fixed to
1, whereas other weights wI, wJ, and wC together with some
other parameter values are empirically determined using a small
training set [10]. The bonus given to a conserved intron position,
wB ¼ 10, is chosen somewhat arbitrarily. All weight values other
than wA can be reassigned at the runtime by command line options.

The explicit formula for calculating H(G,Q) by induction for a
protein query is presented in [20]. The algorithm for a DNA query
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is simpler than the protein version because we do not need to take
care of reading frames. Although it looks quite complicated, the
computational cost of the DP algorithm is O(MN). Actually, this
cost is reduced by a cutting corners (banded) approximation. With
an ordinary traceback procedure, the same order of memory is
required. If the expected memory exceeds a certain threshold,
previous versions of Spaln are turned into the linear space traceback
algorithm [32, 33]. Instead of this bidirectional approach, the latest
version of Spaln adopts a unidirectional variant [34] that consider-
ably reduces the code complexity.

2.2 Installation

and Execution of Spaln

2.2.1 Installation

The source code of Spaln is available at: http://www.genome.ist.i.
kyoto-u.ac.jp/~aln_user/spaln/ or https://github.com/ogotoh/
spaln. The binary code executable on a 64-bit Linux system is also
available from the former site. Make sure that the three directories,
“bin,” “table,” and “seqdb,” are properly installed and accessible. If
necessary, set env variables ALN_TAB and ALN_DBS to indicate
the locations of “table” and “seqdb” directories, respectively.

2.2.2 Format of Genomic

or Database Sequence

Spaln can be run in different modes (see Subheading 2.2.3). To run
Spaln in the genome mapping mode, the genomic sequence must
be formatted beforehand. This is easily done if the FASTA-format
genomic sequence is stored in the “seqdb” directory. Note that the
extension of the sequence file must be “.mfa” or “.gf” (seeNote 5).
Repeat mask is unnecessary or even harmful if hard-masked.
Provided that the file name of the genomic sequence is genome.
gf, either of the following commands (the second form is valid for
version 2.4.0 or later) in the “seqdb” directory will generate a set of
necessary index files:

$ makeidx.pl –i[n|p|np] [–XGMaxGene] [other options] genome.gf

$ spaln –W –K[D|P] [–XGMaxGene] [other options] genome.gf

The arguments n (D), p (P), and np to --i (--K) option
indicate that genome.gf is formatted for query types of DNA,
protein, and both of them, respectively, which generates block-
index files genome.bkn, genome.bkp and both of them.

By default, parameter MaxGene (see Note 6) is estimated from
the file size of genome.gf. This, however, can lead to serious
underestimation of MaxGene if genome.gf contains only a part of
the genomic sequence, e.g., a single chromosome or a supercontig.
Although it is possible to define MaxGene at each runtime, prior
definition at the format time is beneficial to prevent careless mis-
takes at runtime.

To run Spaln in mode 3 or 4 (Subheading 2.2.3), amino acid
sequence database aa_db.faa should be formatted beforehand
with either of the following commands (see Note 7):
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$ makeidx.pl –ia [other options] aa_db.faa

$ spaln –W –KA [other options] aa_db.faa

To improve sensitivity, four (one contiguous and three patterns
of spaced) k-mer seeds are used for indexing unless explicitly speci-
fied by --XC and --XB options.

2.2.3 Four Running

Modes of Spaln

Spaln can be run in one of the following four modes (see Note 8):

1. $ spaln --Q[0-3] [other options] genomic_segment
queries

2. $ spaln --Q[4-7] --d genome [other options] queries

3. $ spaln --Q[4-7] --a aa_db [other options]
genomic_segment

4. $ spaln --Q[4-7] --a aa_db [other options]
aa_queries

We assume that genomic_segment is a FASTA-format
sequence file containing only one or a few genes for mode
1, whereas a larger file is feasible for mode 3. There is no particular
limit in the size of a queries file also in multi-FASTA or extended
FASTA format (see below). The molecular type of queries is
automatically inferred from the residue composition of its first
entry. Potential ambiguity can be eliminated by adding the charac-
ter “D” or “P” to the last argument, e.g., “nt_queries.fnaD” or
“aa_queries.faa P” (the quotations are necessary). The argu-
ments genome in mode 2 and aa_db in modes 3 and 4 are identi-
fiers of the indexed genomic or database sequences as explained in
Subheading 2.2.2. Mode 4 performs rapid homology search and
(semi-)global alignment of protein sequences (see Note 7) in a
similar manner to that of CD-HIT [35] or Usearch [36].

As for various options, consult with the document attached to
the distribution or the Web page mentioned above. Here, only a
few that are most relevant to this chapter are discussed.

The argument to --Q option, q, determines the running mode
of Spaln. If q ∈ [0, 3], Spaln performs only spliced alignment,
whereas q ∈ [4, 7] invokes a map-and-align mode. Meanwhile,
q mod 4 specifies the depth of recursive HSP search, where
q mod 4 ¼ 0 conducts the full DP algorithm without HSP
heuristics.

In order to supplement each query with its gene structural
information, we should prepare the genomic sequence of the
same species as that of the query and run Spaln with --O6
(cDNA/CDS) or --O7 (protein) option. The outputs of this run
are GSI sequences in the extended FASTA format (see Fig. 3)
appropriate for subsequent processes. It is very important to note
that these outputs are derived from the genomic sequence and are not
necessarily identical to the query sequence due to polymorphisms,
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paralog hits, or other causes even though the genomic and query
sequences are derived from the same species. By contrast, the
output with --O15 option has the copy of the protein or cDNA
query sequence supplemented with inferred gene structural infor-
mation. This option is useful for obtaining GSI transcript sequences
when the genomic sequence of not the cognate but only its closely
related species, strain, or individual is available.

Under the default setting for a cDNA/CDS query (--S3),
Spaln examines both positive and negative (reverse complemen-
tary) orientations of the query, and the alignment that gives a better
score is adopted. However, if the query possesses a tailing polyA or
leading polyT sequence longer than NA (12 by default) nucleo-
tides, polyA or polyT is trimmed off, and the orientation is fixed
accordingly. TheNA value is adjustable with --paNA option, where
--pa0 disables the abovementioned convention. If the orientation
of all the queries is known to be identical, --S1 or --S2 option,
respectively, fixes the orientation to positive or negative, which can
nearly halve the computational time. Although --S1 or --S2
option surpasses the polyA- or polyT-based inference, the polyA
or polyT sequence is still trimmed off if present. In this connec-
tion,--LS (local similarity) option is sometimes useful for trimming
off weakly matched terminal regions in the alignment.

Fig. 3 An example of extended multi-FASTA sequence file. The genomic coordinates of exon boundaries are
presented in one or more “;C” lines. The format of the rest of such lines is identical to that in the FEATURE
table of the GenBank format. The boundary coordinates are 1-based and inclusive. Besides “;C,” any lines
starting with “;” as well as blank lines are ignored. A slash “/” at the beginning of a line stops the input of the
sequence until the next header line starting with “>.” The sequence identifiers after each “>” must be unique
within a file
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Although Spaln is not highly sensitive to small changes in
parameter values, the proper selection of the species-specific param-
eter set with --T option is essential for accurate gene structure
prediction; excessively fragmented exon prediction is a sign of
improper choice of parameter set. Currently, the “gnm2tab” file in
the “table’ directory lists 105 parameter sets useful for approxi-
mately 700 species. These numbers will be at least doubled in near
future. Even though the exact same species is not found in the list,
the choice of the evolutionarily closest species in the list may work
fine. For example, �T Magnolio may be useful for most grass
genomes.

If both cognate pairs of genomic and transcript sequences are
of high quality, i.e., there are only very few mismatches and indels
are expected in their alignments, �yX0 (intra species) option may
be helpful, which adopts severer mismatch and gap penalties and is
more aggressive in finding missing exons, such as mini, micro, or
terminal exons, than the default setting.

Finally, with --Mm.n option, we can specify the number of
outputs per query (m, default ¼ 1) and the N_PARA_CAND
value (n, default ¼ 4) described in Subheading 2.1.2. In the earlier
versions of Spaln, the m-best outputs were chosen on the basis of
the cHSP scores (see Subheading 2.1.2). After version 2.4.0, how-
ever, the final alignment scores are used to sort N_PARA_CAND
candidate genes. This change in the algorithm has considerably
increased the chance of finding the cognate gene rather than its
paralogs including processed (pseudo-)genes.

2.2.4 Examples To acquire some ideas about the performance of Spaln, we ran the
following commands to format the human genomic sequence,
homosapi_g.gf (GRCh38.p11, 3.233Gb):

$ spaln –W –KD –t5 homosapi_g.gf

$ spaln –W –KP –t5 homosapi_g.gf

The formatting took 3.95 and 5.93 min, respectively, on our
machine (CentOS 6.2 equipped with 64 GB memory, 2 CPUs of
Xeon E5-2687W (16 cores) 3.10 GHz, and 2.0 TB storage).
Increasing the thread number specified by --t option did not
further shorten the formatting time. (The multi-thread option at
the format time is supported from version 2.4.0).

Then, we mapped and aligned the whole human RefSeq
sequences (ftp://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/
mRNA_Prot/) with the following commands:

$ spaln –Q7 –O6 –S1 –pa3 –d homosapi_g –T Tetrapod –t16 –pq

refseq_n.fna

$ spaln –Q7 –O7 –d homosapi_g –T Tetrapod –t16 –yX0 –pq

refseq_a.faa
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--pq (quiet) option suppressed the warning messages output
to stderr. The results are summarized in Table 1. Almost all the
unmapped sequences were shorter than the lower limits (72 bp for
DNA and 36 aa for protein) predefined by Spaln. Most alignment
errors for protein queries originated from the incorrect identifica-
tion of the first or the last coding exon shorter than the word size
used in the first phase. This issue will be addressed in future
updates.

2.3 Outline of Prrn5

Algorithm

The strategy by which Prrn [18, 19] constructs an MSA is now a
standard one consisting of (1) calculation of a distance matrix,
(2) calculation of a guide tree, (3) progressive alignment, (4) calcu-
lation of pair weights, (5) iterative refinement, and, (6) if necessary,
iteration of 1–5 until convergence or by a pre-specified number of
times. Since version 4, Prrn can incorporate genome structural
information associated with each member. The outline of the
Prrn5 algorithm is illustrated in Fig. 4. Here, only some features
new to Prrn5 are briefly discussed.

2.3.1 Guide Tree or

Guide Forest

Unlike previous versions of Prrn as well as most other MSA meth-
ods, Prrn5 does not try to calculate all elements of the distance
matrix but fills in only limited matrix elements close to the diagonal
(see Fig. 4a). Let M be the number of input sequences and Prox
(M)<M be a user-defined number (by default Prox Mð Þ ¼ ffiffiffiffiffi

M
p

+ a
small constant). Then, for each member i ∈ [1,M], (semi-)global
alignments between i and J� Prox(M) other members ( j) presum-
ably most similar to i are calculated in much the same way as that of
mode 4 discussed in Subheading 2.2.4. The block scores of these
selected members must exceed a certain threshold so that J can be
smaller than Prox(M). It should also be noted that these Jmembers

Table 1
Summary of results of Spaln for mapping human RefSeq sequences on human genome

Query # Seq.
Total
residues Mappeda)

Exact
matchb)

<1%
mismatchc)

Run timed)

(min)
Max memorye)

(GB)

DNA
%

159104
100

572Mbp 158463
99.597

154944
97.38

158375
99.54

3.48 7.90

Protein
%

112481
100

6017kaa 112474
99.993

10651
94.69

111352
99.00

16.05 23.33

aThis number includes queries mapped to potentially noncognate (paralogous) sites
bNumber of sequences for each of which output GSI sequence is identical to original query sequence. PolyA tails are

removed upon sequence comparison
cNumber of sequences for each of which output GSI sequence matches original query sequence with less than 1%

mismatch or indels. PolyA tails are removed upon sequence comparison
dElapsed time measured with /usr/bin/time –v command
eMaximum resident set size measured with /usr/bin/time –v command (due to a bug in the version of /usr/bin/time
we used, the listed values are approximately four times larger than the real memory consumption)
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are selected on the basis of the block score rather than the final
alignment score. Alignments between members i � j are skipped to
fill only the upper right part of the distance matrix. The total
number of E � MJ =2 (J denotes the average of Js) filled elements
in the resulting sparse distance matrix represents the edges that
connect similar members (nodes), i and j, in an undirected graph.
The edge weight (distance) between a pair of connected members is
calculated from the corresponding pairwise alignment.

A single-linkage guide tree is obtained by Kruskal’s algorithm
[37], and an MSA is constructed in a standard way. However, when
the generated graph is not connected due to the sparsity of the
distance matrix, a forest consisting of several subtrees is obtained
(see Fig. 4b). In such a case, sub-alignments corresponding to
individual subtrees are constructed in the standard way. These
sub-alignments are finally joined into a large MSA by a multiple
MSA (or profile) alignment method (see Fig. 4c). The worst-case
computational cost of Kruskal’s algorithm is O(E log (E)) [37],
which is considerably smaller than that of the more popular
UPGMA and neighbor-joining methods of O(M2)~O(M3). More-
over, several research groups have reported that the single-linkage
tree consistently outperforms UPGMA or neighbor-joining tree
when used as a guide tree [38, 39].

2.3.2 Objective Function

and Group-to-Group

Alignment

The objective function of Prrn is the weighted sum-of-pairs (WSP)
score [40]. At each step of a progressive or an iterative procedure,
Prrn attempts to obtain the optimal pairwise alignment between
input sequences or pre-aligned groups of sequences. Considering
the balance between speed and accuracy, Prrn5 adopts
Algorithm C, which is less rigorous but faster than previously
used Algorithm D [41, 42]. Optionally, simpler Algorithm B,
which is nearly equivalent to those used in Mafft [43] and Muscle
[44], can be used. Although Algorithm C is more costly than

Fig. 4 Outline of Prrn5 algorithm. (a) Sparse distance matrix where only shaded
squares have distance values. (b) Guide subtrees and sub-alignments calculated
therefrom. (c) Multiple MSA alignment that merges sub-alignments
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Algorithm B, Algorithm C generally requires a smaller number of
iterations until convergence than Algorithm B.

Let wi, j be the pair weight for members i and j. An intron
position conserved between i and j is given bonus wi, jwB, where wB

is equivalent to that defined in Eq. (1). “Position” is measured on
the basis of the coding nucleotide sequence, so that the phase of the
intron within a codon (phase ¼ 1 or 2) or between codons
(phase ¼ 0) is significant. No penalty is assigned to nonconserved
intron positions. The intrinsically fuzzy nature of phase-0 intron
position within a gapped region [15] may be unresolvable at the
progressive alignment phase but resolvable at the iterative refine-
ment phase. Intron positions shared by plural members are stored
in profile form, which enables fast calculation of the bonus value in
sequence-to-group or group-to-group alignment procedures.

2.4 Installation

and Execution of Prrn5

The source codes of Prrn5 together with some associated pro-
grams, such as Aln, Utn, Utp, and Anno2gsiseq.pl, are available at
http://www.genome.ist.i.kyoto-u.ac.jp/~aln_user/prrn/ or
https://github.com/ogotoh/prrn_aln. If necessary, set env vari-
ables ALN_TAB to indicate the locations of the “table” directory,
which is shared by Spaln. All programs including Spaln are likely to
run on any Unix/Linux system including WSL (Windows Subsys-
tem for Linux) and MacOS. As compilation and installation are
straightforward, no further explanation is given here.

It is also very easy to run Prrn5. Let Input.mfa be a sequence
file in the extended FASTA format (see Fig. 3). Input.mfa may be
obtained as an output from Spaln with --O6, --O7, or --O15
option. Alternatively, desired GSI sequences may be generated by
using Anno2gsiseq.pl script (see Note 9). Several multiple- (.mfa)
and single-sequence (.fa) files may be combined by simply enumer-
ating them as the command line arguments such that.

$ prrn5 [options] Input1.mfa Input2.mfa Seq1.fa Seq2.fa

The input order is not significant except that prrn5 is invoked
with --U option (update mode, Note 10), in which the first
argument must be the MSA file to be updated. The output of the
above command goes to stdout. To explicitly specify the output file,
�o output.prrn5 option is usable. If an input file contains
pre-aligned MSA as judged from the existence of at least one
internal gap, that alignment is internally frozen unless --U option
is specified. This is the simplest way to perform multiple MSA
alignment.

To visualize the distribution of intron positions along MSA,
use --pi option (see Fig. 5). Alternatively, �ph option produces a
simple html file that may be visualized by any favorite html
viewer. To review the intron position profile of an existing Prrn5
output, use
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$ prrn5 –I0 –p[i|h] output.prrn5

The same results are obtained by Utn (DNA) or Utp (protein)
command (see Note 11) such that

$ utn (or utp) –l –p[i|h] output.prrn5

--Im.n option to Prrn5 specifies the maximum numbers of
outer (m) and inner (n) iteration loops, respectively, corresponding
to stage 6 and stage 5 in the algorithm shown at the top of this
section. When m ¼ 0, only progressive alignment is performed,
although no alignment action is taken if the input is pre-aligned and
--U option is not specified. If n is unspecified, the inner loop is
continued until convergence. The default values are m ¼ 1 and
n ¼ 1.

Fig. 5 Screen dump of an output from Utp with –pi option. Intron positions and phases are indicated by colors.
Red: phase 0 intron immediately before the colored residue. Green and blue: phases 1 and 2 introns within
colored residues, respectively
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Our primary motivation for developing a GSA-MSA method
was to use it as a component of tools Refgs.pl and Refgs3.pl [17]
for detecting and correcting gene-prediction errors prevalent in
various genome projects. We are now developing another tool in
this line for trans-species-wide prediction of protein-coding genes
belonging to a specific family without relying on existing annota-
tions. Undoubtedly, Spaln and Prrn5 discussed in this chapter play
the most important roles in that attempt.

3 Notes

1. A Tron sequence simultaneously represents the original geno-
mic nucleotide sequence and the conceptual amino acid
sequence translated therefrom in three frames [20]. The
23-letter Tron code is compatible with nearly all standard and
nonstandard nuclear genetic codes, although a nonstandard
genetic code must be specified by --CN option, where
N stands for the “transl_table” number defined by NCBI
(https://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.
html/index.cgi?chapter¼cgencodes).

2. A local lookup table can also be made from the genomic
sequence at the format time if --E option is specified. How-
ever, this table requires large disk space and memory. Hence,
�E option would be useful only when your system is equipped
with large storage and memory.

3. Each species-specific ILD is compactly and accurately modelled
by a superposition of 1–3 Frechet distributions [27]. Currently
available ILDs are listed in IldModel.txt in the “table”
directory.

4. Early spliced alignment algorithms such as Procrustes [45]
relied on the combinatory optimization of predefined exon
candidates. This approach is not efficient because the sparse
DP algorithm does not naturally take advantage of the collinear
nature of the alignment between genomic and transcript
sequences, apart from the difficulty in enumerating a necessary
and sufficient number of plausible exon candidates. Hence, a
majority of spliced alignment methods developed so far,
namely, Nap [46], EST_Genome [47], GeneSeqer [48], Aln
[20], Exalin [49], and many others, have the same basic struc-
ture in which ordinary pairwise alignment is extended to incor-
porate long gaps, the ends of which should conform to known
splice site consensuses.
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5. This restriction comes from the requirement of using the
“make” command. As the latest version of Spaln can bypass
the use of make command, this restriction is no longer obliga-
tory. For example, the next command is equivalent to
makeidx.pl --in genome.gf if genome.fna is an alias of
genome.gf:

$ spaln --W --KD genome.fna
However, consistent use of extensions is beneficial to

reduce accidental errors.

6. MaxGene is defined in bp unit, whereas postfix K or M may be
used to indicate kilo or mega bp. For example, --XG2400K is
appropriate for most mammals, whereas --XG2.4 M is legiti-
mate or not depending on the version of Spaln.

7. Actually, this step can be bypassed if Spaln is executed in the
following way in place of mode 4 in Subheading 2.2.3:

$ spaln –Q[4-7] [other options] aa_db.faa aa_queries

The first argument represents the database that is internally
formatted in the same way as that described in Subheading
2.2.2. This onetime index information is discarded at the end
of each run.

8. When --d (or --a) option is replaced with --D (or --A)
option, the entire genomic (or database) sequence is read into
the memory. This option demands larger internal memory than
usual but somewhat accelerates overall computational time,
especially when the genomic (or database) sequence file is
stored in the gzipped form in the disk.

9. Anno2gsiseq.pl takes two arguments, gff/gtf file and transcript
sequence file, in addition to --f option (e.g., �f NCBI or --f
EMBL) that specifies the dialect of the gff/gtf file.

10. --U option is primarily used in the iterative refinement of
predicted gene structures [17]. With this option, the pertinent
members in the old MSA specified as the first argument are
replaced by newly supplied GSI sequences of the same identi-
fiers specified by the following arguments. The modified MSA
is then iteratively refined as stage 5 described near the begin-
ning of Subheading 2.3. New sequences without pertinent
members in the old MSA are added to the old MSA, whose
internal alignment is unfrozen, and then iterative refinement is
performed. Thus, --U option is also used as the command to
unfrozen existing MSA(s).

11. Utn (or Utp) can also be used to display intron position
information in several ways, such as presence or absence binary
matrix (--B0), list of column positions alongMSA (--B1), and
so on. Use --h option for more information.
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Chapter 6

Multiple Sequence Alignment Computation Using
the T-Coffee Regressive Algorithm Implementation

Edgar Garriga, Paolo Di Tommaso, Cedrik Magis, Ionas Erb,
Leila Mansouri, Athanasios Baltzis, Evan Floden, and Cedric Notredame

Abstract

Many fields of biology rely on the inference of accurate multiple sequence alignments (MSA) of biological
sequences. Unfortunately, the problem of assembling anMSA is NP-complete thus limiting computation to
approximate solutions using heuristics solutions. The progressive algorithm is one of the most popular
frameworks for the computation of MSAs. It involves pre-clustering the sequences and aligning them
starting with the most similar ones. The scalability of this framework is limited, especially with respect to
accuracy. We present here an alternative approach named regressive algorithm. In this framework, sequences
are first clustered and then aligned starting with the most distantly related ones. This approach has been
shown to greatly improve accuracy during scale-up, especially on datasets featuring 10,000 sequences or
more. Another benefit is the possibility to integrate third-party clustering methods and third-party MSA
aligners. The regressive algorithm has been tested on up to 1.5 million sequences, its implementation is
available in the T-Coffee package.

Key words Sequence alignment, MSA, Guide tree, Progressive alignment

1 Introduction

Multiple sequence alignment (MSA) is an NP-complete problem
whose computation relies on approximate heuristic solutions. The
most common solution is the progressive method [1]. This method
starts by aligning the most similar sequences following a
pre-computed guide tree, but the accuracy drops when dealing
with a large number of sequences.

The regressive method [2] works the other way around and
starts by aligning the most diverse sequences going from the root of
the guide tree to the leaves. MSAs are constructed through a divide
and conquer process during which smaller MSAs – named
sub-MSAs – encompassing the more diverse sequences are gradu-
ally expanded until all sequences have been incorporated within the
final model. Extensive benchmark analyses carried out on Homfam
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[3] and Pfam [4] have shown that the regressive algorithm is both
more scalable than regular methods – it was shown to align 1.5
million sequences – and also more accurate, especially when dealing
with datasets larger than 10,000 sequences.

An important characteristic of the T-Coffee implementation of
this algorithm is its modularity. It allows several third-party meth-
ods to be used in order to both estimate the guide tree and to apply
the most commonly used alignment algorithms – including the
consistency-based version of T-Coffee [5] – to perform the
sub-MSAs during the divide and conquer stage.

2 Materials

2.1 Equipment Setup l Computer: Any computer running Linux or Mac OSX with
access to the internet.

l Software: T-Coffee can be downloaded from http://tcoffee.
org/Packages/Stable/Latest. It is distributed as a set of pre-
compiled binaries for Linux and Mac OSX platforms (32-bit or
64-bit) with a guided install procedure. This is the smoothest
and quickest way to install T-Coffee on a local machine, as it
comes with all the required components and does not require
any special user privileges. It is also possible to download the
source code from GitHub or use it from Conda or Docker
containers.

l Sequence to align: www.tcoffee.org/Projects/regressive/
datasets/protocols.tar.gz.

2.2 Procedure T-Coffee: obtaining and installing t-coffee
Install T-Coffee by following one of the following options,

some of them are possible to run on both Linux and MacOSX
operating systems (OS), and others are specific to each OS.

2.2.1 Binary Linux

1. Download the installer package from http://tcoffee.org/
Packages/Stable/Latest/linux/

2. Grant execution permission to the downloaded file with the
following command:
chmod +x T-COFFEE_installer_<version_xxx>.bin

3. Launch the installation wizard with
./T-COFFEE_installer_<version_xxx>.bin

4. Follow the wizard instructions and complete the installation.

5. Open a new terminal session to be sure that your environment
is updated.
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6. Type the following command to verify that the installation was
successful:
t_coffee -version

MacOSX
1. Download the T-COFFEE_distribution_Version <version>.

tar.gz package from http://tcoffee.org/Packages/Stable/Lat
est/.

2. tar -cvf T-COFFEE_distribution_Version_<version>.tar.gz.

3. cd T-COFFEE_distribution_Version_<version>_.

4. type ./install all.

5. Follow the instructions of the installer to update your
environement.

6. Type the following command to verify that the installation is
successful:
t_coffee –version.

2.2.2 Compilation from

Source

1. Follow the instructions from the T-Coffee GitHub page: www.
github.com/cbcrg/tcoffee

2. Go inside the source folder
cd t_coffee/src

3. Compile the package with
make t_coffee

4. Add the compile folder in your path.
mv t_coffee /bin/

2.2.3 Docker From the command line, you can download the docker container
with the following command:

docker pull cbcrg/tcoffee_protocols

You can use the container with any of the workflow managers,
or run it in an iterative mode using the command:

docker run -ti --mount type¼bind,source¼/<path_to_data>/,
target¼/<container_data_folder>/cbcrg/tcoffee_protocols

2.2.4 Conda To install the conda package, you should download from bioconda
channel with the following command:

conda create --name tcoffee_protocols -c bioconda t-coffee
conda activate tcoffee_protocols.

This package includes all the third-party software needed for
this protocol, but we can always generate an environment combin-
ing T-Coffee with other software.
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3 Methods

The T-Coffee regressive algorithm has been developed to allow the
computation of ultra-largeMSAs. The algorithm’s main steps are as
follows:

– 1: Computation of a rooted guide tree using any relevant
method, including mBed [6] and PartTree [7] (see Note 1).

– 2: Label each node with the label of the longest sequence among
its progeny (see Fig. 1), (i.e., the root will be labeled with the
longest sequence), Fig. 1.

– 3: Starting from the root node (parent node), and going one
generation at a time, collect N nodes—N is a free parameter. In
Fig. 2,N is set to 3 but in practice,N is set to 1000. Its value can
be changed via the parameter -reg_nseq

� � � � �� � � � � � � �� � �

� �

� ��

��

�

Fig. 1 From the naked guide tree, the algorithm starts from the leaf until the root labeling the internal nodes
with the longest sequence of the children

� � � � �� � �

� � �

� ��

��

Fig. 2 From the root of the guide tree, N sequences are collected, (N ¼ 3 in this example.) This is repeated
recursively on the remaining nodes until all the leaf nodes are included in one of the subMSAs
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– 4: Carry out an MSA of the N Sequences that label theN nodes.
For instance, in Fig. 2, with N ¼ 3 this will involve sequences
5, 9, and 12 (blue envelope). This MSA is named a parent
subMSA, and it can be computed using any third-party aligner.

– 5: Run steps 3–4 on every node selected in #3 that is not a leaf,
the resulting subMSAs will be the children MSAs of the parent
subMSA computed one step earlier. For instance, in Fig. 3, the
children subMSAs will be made of sequences (1,5), (9,3), and
(12,2,8). The procedure stops once every leaf node has been
incorporated in an MSA.

– 6: Since every MSA shares the sequence of its parent node with
its parent MSA, the children and their parent subMSAs can be
combined through these common sequences without the need
of an extra alignment step, as shown in Fig. 4. Combining the
subMSAs merely involves stacking the columns linked by their
common sequence (see Notes 2 and 3).

The regressive algorithm has been shown to have exceptional
scalability [2]. One of the reasons for this is the reliance on a strict
divide and conquer procedure that never involves aligning more
than N sequences. As a consequence, for M input sequences, the

5
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Any Multipler Aligner

Fig. 3 Once all the small groups are defined, it is possible to generate the subMSAs in a parallel way using any
third-party alignment software
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Fig. 4 Parent and children subMSAs are merged using the common sequence (12) projecting indels from
parent to child and from child to parent
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deployment of any third-party method – regardless of its original
complexity – becomes linear in time and memory as it merely
involves carrying out M/N individual MSAs. Moreover, the inde-
pendence of these MSAs makes their computation an embarrass-
ingly parallel problem.

Aside from its algorithmic properties, the regressive implemen-
tation of the T-Coffee algorithm also brings many added benefits
through the seamless integration of a large number of third-party
clustering and alignment methods. Overall, five clustering methods
are supported along with five multiple sequence aligners. The
package comes along with an extensive documentation allowing
non-supported alignment methods to be incorporated via simple
configuration files.

In the next section we explore various combinations of cluster-
ing methods and alignment algorithms that allow users to explore
different trade-offs between accuracy and efficiency. For instance, it
is possible to very rapidly estimate ultra-large models by combining
the fastest clustering method (PartTree) with the fastest MSA
method (MAFFT default). The same framework makes it possible
to combine a slower but more accurate tree method (like mBed)
with a very accurate MSA method (like MAFFT-ginsi) that only
allows aligning a few hundred sequences but can be massively
scaled-up by the regressive framework.

3.1 Validated Method

Combinations

The following combinations of pre-clustering and alignment meth-
ods were validated in the original paper for their relative speed and
accuracy. They are recommended for large scale analysis.

3.1.1 Fast and Accurate This mode offers the best trade-off between speed and accuracy. It
relies on the Clustal Omega (ClustalO; Chapter 1) [3] mBed trees
that were found to yield the highest accuracy on large datasets,
while the combination of these guide trees with the ClustalO
aligner results in alignments of reasonable accuracy.

t_coffee -reg -seq gluts.fasta -reg_nseq 1000 -reg_tree mbed
-reg_method clustalo_msa -outfile gluts.aln -outtree gluts.mbed

3.1.2 Slower and More

Accurate

As discussed earlier, the regressive algorithm framework can be
used to deploy methods that would be prohibitive on any dataset
larger than 1000 sequences. In the example below, we show how
the MAFFT-ginsi method can be deployed on large datasets. On
the HomFam dataset, this protocol required about 4.7 times more
CPU time (as compared with the fast approximate mode using
fftns1), but resulted in a 21% improvement in the number of
correctly aligned columns.

t_coffee -reg -seq gluts.fasta -reg_nseq 1000 -reg_tree mbed
-reg_method mafftginsi_msa -outfile gluts.aln -outtree gluts.
mbed

94 Edgar Garriga et al.



3.1.3 Very Fast

and Approximate

On the other end of the spectrum, the combination of the fastest
aligner with the fastest clustering method provides the most effi-
cient alignment method currently available. This combination is
about 3 times faster than the fast and accurate ClustalO
combination.

t_coffee -reg -seq gluts.fasta -reg_nseq 1000 -reg_tree parttree
-reg_method mafftfftnsi_msa -outfile gluts.aln -outtree gluts.
parttree

3.1.4 Further Method

Combinations

A major strength of the regressive algorithm is its capacity to
support any method combination of interest to the user. All these
combos have not been validated so far, but they are nonetheless
supported and available for exploration.

One of the main limitations of both the progressive and the
regressive procedures is the generation of the guide tree because
not all the clustering methods are able to handle a large number of
sequences.

The Regressive method has the advantage that it allows to use
any clustering method from which a tree can be obtained, making it
possible to use algorithms that work well with big data.

T-Coffee offers some built-in options for building trees from a
range of clustering algorithms, and they can be used with the -
reg_tree flag.

- mbed: use mBed mode of ClustalO – Default

- cwdnd: use the quicktree mode of ClustalW

- parttree: parttree method of MAFFT—fastest option. Does not support
sequences less than 6 AA long

- dpparttree: MAFFT fast clustering method

- fastparttree: MAFFT fast clustering method

- mafftdnd: default MAFFT tree—slower than the parttree modes

- fftns1dnd: Tree produced after the first iteration MAFFT fftns mode

- fftns2dnd: Tree produced after the second iteration MAFFT fftns mode

- upgma: upgma tree—warning cubic time computation

- nj: Neighbour Joining tree

- #<command>: Runs command <seq> > <tree>.

- filename: Any file in newick format. The seq file and the tree file must
match

Thanks to the possibility to freely combine guide trees and
alignment methods, the regressive algorithm allows the usage of
highly accurate methods (limited to a small set of sequences) or less
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accurate but faster methods. Users can create and explore their own
combinations via the flag -reg_method that makes T-Coffee use a
set of built-in aligners.

ktup_msa

blastp_msa

clustalo_msa

clustaloNF_msa

clustalw2_msa

clustalw_msa

uppNF_msa

upp_msa

msa_msa

dca_msa

mafftsparsecore_msa

maffttest_msa

mafft_msa

...

The -reg_nseq flag is the only free parameter. This parameter
defines the maximum number of sequences in the subMSAs. It
allows to use more accurate methods that can only handle a limited
number of sequences. There is also a tradeoff between the size of
the subMSAs and the CPU time. Based on results in [3], we have
defined this size to 1.000 sequences as a default value.

The optimal value may change somewhat depending on the
guide tree and the alignment methods as well as the type of
sequences to be aligned.

4 Notes

1. One of the possible issues of this method occurs in step #1,
where the guide tree computation is required. Some of the
classic methods are not able to handle large amounts of
sequences and they may fail at delivering a guide tree. Yet,
provided a guide tree is available, most methods can be
deployed using the regressive mode of T-Coffee.

2. An important contribution to scalability results from the way
the final MSA is assembled. Because it results from the combi-
nation of sub-MSAs containing a common sequence, the gaps
do not need to be stored in memory, and they can be kept as
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counts and eventually written on disc once the computation is
finished. This allows the computation of models larger than the
available RAM without any disk swapping_.

3. It is worth mentioning that the regressive implementation of
T-Coffee explicitly avoids aligning non-homologous indels
(i.e., indels having occurred independently according to the
guide tree). These indels are concatenated rather than aligned.
This process has two consequences: it can result in rather large
MSAs (i.e. large number of columns), and it means that given
two alternative guide trees (i.e., mBed and PartTree), the one
producing the MSA containing the smallest number of gaps is
probably the most accurate.
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Chapter 7

Multiple Sequence Alignment for Large Heterogeneous
Datasets Using SATé, PASTA, and UPP

Tandy Warnow and Siavash Mirarab

Abstract

The estimation of very large multiple sequence alignments is a challenging problem that requires special
techniques in order to achieve high accuracy. Here we describe two software packages—PASTA and UPP—
for constructing alignments on large and ultra-large datasets. Both methods have been able to produce
highly accurate alignments on 1,000,000 sequences, and trees computed on these alignments are also
highly accurate. PASTA provides the best tree accuracy when the input sequences are all full-length, but
UPP provides improved accuracy compared to PASTA and other methods when the input contains a large
number of fragmentary sequences. Both methods are available in open source form on GitHub.

Key words Multiple sequence alignment, PASTA, SATé, UPP, Ensembles of Hidden Markov Models

1 Introduction

Multiple sequence alignment (MSA) is one of the more complex
bioinformatics tasks, and a precursor to many downstream analyses,
including protein structure and function prediction, phylogeny
estimation, orthology prediction, and even genome assembly.
This chapter focuses mainly on the use of multiple sequence align-
ment for phylogeny estimation, and in particular on the challenge
of computing alignments on large, heterogeneous datasets, where
standard off-the-shelf methods have low accuracy. Of particular
relevance is the challenge of computing multiple sequence align-
ments of datasets that exhibit sequence length heterogeneity, where
all standard methods have particularly poor accuracy.

In 2009, SATé (Simultaneous Alignment and Tree Estimation)
was developed to enable the co-estimation of alignments and trees
on large challenging datasets [1]. SATé used a combination of
divide-and-conquer (where alignments are computed on subsets
using standard MSA methods and then merged into an alignment
on the full dataset; see Fig. 1a) and iteration (where each iteration
computes a new alignment based on the tree from the prior

Kazutaka Katoh (ed.), Multiple Sequence Alignment: Methods and Protocols, Methods in Molecular Biology, vol. 2231,
https://doi.org/10.1007/978-1-0716-1036-7_7, © Springer Science+Business Media, LLC, part of Springer Nature 2021

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-1036-7_7&domain=pdf
https://doi.org/10.1007/978-1-0716-1036-7_7#DOI


iteration, and then a new tree is computed on the new alignment)
in order to obtain highly accurate alignments on large datasets.
SATé-II was developed in 2012 [2] to improve on the accuracy and
scalability of SATé; it used a modified decomposition strategy but
otherwise had the same structure as SATé. SATé-II was able to run
on much larger datasets than SATé, but was still limited to approxi-
mately 50,000 sequences. Finally, in 2014, the algorithmic design
was changed again to produce PASTA [3, 4]. The objective in the
design modification was to enable analyses of even larger datasets,
but these changes also improved accuracy. Thus, PASTA, which
mainly differs from SATé-II in its merging step (Fig. 1b), has the
best accuracy and scalability of these three methods.

In 2015, we discovered that PASTA was unable to produce
highly accurate alignments when the input dataset has many frag-
mentary sequences. To address this challenge, we developed UPP
(Ultra-large alignments using Phylogeny-aware Profiles [5]), a new
technique for alignment estimation that is based on a machine
learning technique we developed, called an Ensemble of Profile
Hidden Markov Models [6–8]. UPP uses PASTA to compute a
“backbone alignment” of a subset of the input sequences
(restricted to just the full-length sequences) and then adds the
remaining sequences to the backbone alignment using a computed
Ensemble of Profile Hidden Markov Models. UPP provides advan-
tages over PASTA for datasets with fragmentary sequences, but
PASTA has advantages over UPP when all the sequences are full-
length. Like PASTA, UPP is able to compute highly accurate
alignments on ultra-large datasets, including those with
1,000,000 sequences.

This chapter describes, at a very high level, how the PASTA and
UPP algorithms operate, and provides some guidance on how to
use these methods to obtain the best accuracy.1 More information
on how to run these methods can be obtained from the tutorials for
PASTA and UPP available at the GitHub sites for these methods
[10, 11].

2 SATé and PASTA

SATé [1], SATé-II [2], and PASTA [4] are methods for computing
multiple sequence alignments and trees from unaligned sequences
(see Note 20). They all have the same basic algorithmic strategy
(Fig. 1), and so can be considered to be members of the same basic
paradigm; however, SATé-II was designed to improve on SATé
(now called SATé-I) and PASTA was designed to improve on

1This chapter is an update of [9], a previous article for Methods in Molecular Biology, which focused on using
SATé [1, 2] for co-estimation of alignments and trees.
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SATé-II, with the result that PASTA dominates the other methods
with respect to accuracy, running time, memory usage, and scal-
ability to large datasets. For example, PASTA has been able to
compute alignments and trees on up to 1,000,000 sequences, but
SATé-I and SATé-II have not been able to analyze datasets of this
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Fig. 1 (a) The general divide-and-conquer strategy used in SATé-I, SATé-II, and PASTA. In each iteration, using
the current tree, sequences are divided into smaller subsets, each subset is aligned, alignments of subsets are
merged, a new tree is inferred, and a new iteration starts. (b) SATé and PASTA differ mainly in how they merge
sub-alignments. SATé uses a hierarchical approach, where the hierarchy reflects the tree, and uses external
methods like Opal or Muscle to merge alignments. PASTA, on the other hand, uses a spanning tree, computed
from the phylogeny, to compute a set of pairwise alignment mergers, which are then combined using
transitivity
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size. Furthermore, PASTA, which is the method of choice in this
family of methods, has an active user community (e.g., Google
group pasta-users@googlegroups.com) (see Notes 1–3).

2.1 Iterative Divide-

and-Conquer Strategy

Each of these methods has the same basic structure. They begin by
computing a quick alignment and tree, for example, using the fast
maximum likelihood (ML) heuristic FastTree-2 [12] on a fast align-
ment, such as Clustal-Omega [13], and then they iterate between
computing a new alignment using the current tree and computing an
ML tree on the new alignment. The number of iterations (see Note
10) can be selected by the user or the user can simply run the
method until some stopping criterion is met (e.g., the ML score
stops improving). The final alignment/tree pair is then returned.

As noted, each iteration uses the tree from the previous itera-
tion to compute a new alignment, and then a new ML tree is
computed on the new alignment. The key to computing the new
alignment is divide-and-conquer: the current tree is used to decom-
pose the sequences into disjoint subsets, new alignments are com-
puted on the subsets using a selected “subset aligner,” and then the
subset alignments are merged together into an alignment on the
full dataset (Fig. 1a).

The only difference between SATé-I and SATé-II is that
SATé-II enables the user to specify how large the subsets can be,
and it modified the decomposition strategy so that the subsets do
not exceed the specified maximum size; this change enables SAT-
é-II to analyze larger datasets and results in improved accuracy
compared to SATé-I. The major difference between SATé-II and
PASTA is how the subset alignments are merged into a single
alignment on the full dataset (Fig. 1b). The change in the
sub-alignment merging strategy (in addition to other smaller
changes, such as using a new method to obtain initial alignments)
enables PASTA to analyze larger datasets than SATé-II and also
improves its accuracy. In fact, PASTA can compute alignments on
up to 1,000,000 sequences, and neither SATé-I nor SATé-II can
analyze datasets of this size. Thus, PASTA strictly dominates SATé-I
and SATé-II in terms of accuracy, scalability, and speed.

By design, PASTA is fundamentally a method for enabling a
selected MSA method to be run only on subsets of bounded size
(where the bound is selected by the user). Furthermore, PASTA
provides many choices for the subset aligner, including MAFFT
[14], Clustal-Omega, Opal [15], Prank [16], and Muscle [17],
and additional subset aligner methods for protein sequences (see
Note 8).

The rest of this section is described in terms of how to use the
PASTA GUI (which is similar to the SATé GUI). However, the
command line version of PASTA enables other options than the
GUI, and so the advanced users should not restrict themselves to
the GUI (see Notes 1–3).
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2.2 PASTA

Parameters

The PASTA GUI, shown in Fig. 2, shows the choices that the user
has in running PASTA.

l Aligner: This option specifies the method used to compute
alignments on subsets; the default is MAFFT, but other align-
ment methods are available. See Notes 6–8.

l Merger: This option allows the user to choose the method to
merge pairs of alignments during its approach for combining

Fig. 2 PASTA graphical user interface (GUI). The GUI shows the major algorithmic choices in running PASTA;
see Subheading 2.2. The EXTERNAL TOOLS determine how subsets are aligned, how these subset alignments are
merged, and how trees are computed on the merged alignment in each iteration (which is determined both by
the tree estimator method and the sequence evolution model). SEQUENCES AND TREE indicate the type of data, and
also allow the user to provide an initial alignment and tree. The PASTA SETTINGS specify the maximum size for the
subsets, the type of decomposition used in decomposing the dataset into subsets, how many iterations to
perform, and whether to return the tree from the last iteration or the tree (from among all the iterations) with
the best maximum likelihood score. Finally, WORKFLOW SETTINGS allow the user to just perform a two-phase
analysis (first compute an alignment and then a tree) instead of using PASTA, or to run RAxML [18] on the final
alignment returned by PASTA
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subset alignments into an alignment on the full dataset; the
choice is between Opal and Muscle. The merger technique in
PASTA is only used on pairs of alignments, and the final align-
ment is then constructed from these merged pairs using transi-
tivity. See Note 9.

l Tree Estimator: This option allows the user to choose between
RAxML and FastTree-2, two heuristics for maximum likelihood,
for computing trees in each iteration. The default is FastTree-2;
see Note 11.

l Model: This option specifies the sequence evolution model, but
this depends on the data type (RNA, DNA, or protein) as well as
the tree estimator (RAxML or FastTree-2); see Notes 12–14.

l Data Type: This section allows the user to specify the data type
(DNA, RNA, or protein). The default for the data type is DNA,
and unless the user specifies otherwise, the analysis will be per-
formed as though the data are DNA. See Note 6.

l Initial alignment: This is an optional command that allows the
user to provide a pre-computed alignment to PASTA, for use in
computing the first tree. See Note 4.

l Tree file: This is an optional command that allows the user to
provide a pre-computed tree to PASTA, for use in computing
the first decomposition and subsequent alignment. See Note 4.

l Max. Subproblem: The options here let the user specify the
maximum subset size, either as a percentage of the full set of
sequences or as a fixed number (i.e., “size”). See Notes 5, 7,
and 15.

l Decomposition: This option specifies both which edges to
remove (MinCluster, centroid edge or longest edge) in comput-
ing the decomposition of the sequences into subsets (the default
is MinCluster) and how many iterations to perform (either a
specific number of iterations or a maximum amount of time).
The MinCluster decomposition, which minimizes the number
of subsets with a bounded size [19], began with version 1.8.0,
and it further improves alignment accuracy.

l Return: This option allows the user to decide whether to return
the tree from the last iteration or the tree with the best maxi-
mum likelihood score of all the trees from all the iterations. See
Note 16.

The most important considerations in running PASTA are
(1) what alignment method to use to compute alignments on
subsets, (2) how small to make the subsets, and (3) how many
iterations to run. A good default for the subset aligner is MAFFT
[14]. When MAFFT is used to align subsets, then limiting the
subsets to 200 sequences makes it feasible to run the more compu-
tationally intensive variants of MAFFT (such as MAFFT L-INS-i
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and MAFFT G-INS-i), which improves accuracy; reducing the
maximum subset size will tend to reduce the running time while
increasing the maximum subset size will tend to increase the run-
ning time (see Note 7 for a discussion about the impact on accu-
racy). Other methods, such as BAli-Phy [20, 21], can also be used
to align subsets, as shown in [22].

The number of iterations is also important, and previous stud-
ies have shown that accuracy improves substantially in the first few
iterations, and then alignment and tree accuracy seem to stabilize.
While three iterations seem to be sufficient for high accuracy in
most conditions, it seems possible that more iterations could
improve accuracy for challenging datasets. However, increasing
the number of iterations also increases the running time. Hence,
this is an issue that involves a potential tradeoff between time and
accuracy; see Note 4.

The tree estimation method used in PASTA within each itera-
tion also impacts accuracy, and the default is FastTree-2. Most users
will prefer to use other methods than FastTree-2 for the final tree,
and PASTA enables the user to perform a final RAxML analysis on
the final tree. This is advisable whenever the dataset is not so large
that RAxML is infeasible. See Notes 11 and 14.

2.3 PASTA Output PASTA produces both an alignment and a tree. In addition to the
final alignment and tree, PASTA outputs alignments and trees
generated in each iteration as temporary files. It also outputs a
config file recording all the settings used.

For large datasets (many thousands of sequences), PASTA
tends to produce very long and gappy alignments because it is
conservative in inferring homologies. The gappy alignments (par-
tially a natural consequence of large datasets and partially a conse-
quence of the algorithmic design of PASTA) seem to not hurt
PASTA’s ability to produce very accurate trees, but the alignments
will certainly look strange to some users (see discussion in [23]
about the preference among some users for less gappy alignments).
Furthermore, whether accurate or not, these gappy alignments can
also cause difficulties in some subsequent analyses. For example,
phylogenetic inference can become slow given long alignments,
and the inclusion of gappy sites may not result in improved phylo-
genetic accuracy. To speed up the tree estimation stage within each
iteration, PASTA alignments are first masked to remove all sites that
are at least 99.9% gapped, before trees are computed. This default
setting for masking sites inside PASTA can be modified using the
--mask-gappy-sites option. Removing gappy sites from the
final alignment generated by PASTA can be done using the run_-
seqtools.py script, which is packaged with and installed together
with PASTA. More aggressive filtering would further reduce the
running time for phylogenetic inference, but could also have nega-
tive consequences for accuracy; see discussion in [24].
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2.4 Websites for

PASTA

l PASTA is available in open source form on GitHub at [10] and a
protein version is available at [25]. The software is developed
under the GNU Public License (GPL).

l A version of PASTA for use with BAli-Phy is available at [26].

l All questions and inquires should be addressed to our user email
group: https://pasta-users@googlegroups.com, with posts avail-
able at https://groups.google.com/forum/#!forum/pasta-
users.

l A PASTA tutorial is available at https://github.com/smirarab/
pasta/blob/master/pasta-doc/pasta-tutorial.md.

3 UPP

As we have found, PASTA produces highly accurate alignments and
trees, and improves on the accuracy of other methods for ultra-
large datasets with high rates of heterogeneity. However, when the
input dataset has many fragmentary sequences, then PASTA does
not have good accuracy. Furthermore, no standard alignment
method has good accuracy when fragments are included. However,
UPP [5] is an alternative approach that has good accuracy, and is
the focus of this section.

3.1 Ensembles of

Profile Hidden Markov

Models (HMMs)

UPP builds on PASTA to improve its ability to align datasets with
fragmentary sequences using the “ensembles of HMMs” tech-
nique, which we now describe in the context of working with
multiple sequence alignments.

A profile HiddenMarkovModel (HMM) [27] is a probabilistic
graphical model that has vertices and directed edges, with a single
vertex for the start state, a single vertex for the end state, and
additional vertices corresponding to match states, insertion states,
and deletion states. With the exception of the insertion states
(which can have self-loops), there are no directed cycles in a profile
HMM. Each directed edge e¼ v!w in the profile HMM is anno-
tated with a real number pe where pe is the probability of moving
from v tow. Finally, the insertion states andmatch states emit letters
(e.g., nucleotides or amino acids) from a probability distribution.
Thus, when tracing a path through a profile HMM, and selecting
the letters to be emitted by the visited match and insertion states, a
sequence is produced.

Profile HMMs are a major part of many bioinformatics ana-
lyses, and one of the interesting uses is to add sequences into
multiple sequence alignments. In what follows, we describe how
profile Hidden Markov Models can be used specifically for multiple
sequence alignment; see [28] for additional details and discussion.
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To add a sequence s into a multiple sequence alignment A, a
profile HMM is built for A, and then an optimal path (e.g., a
maximum likelihood path) through the model is found for s.
Once the path is found, it defines a way of adding s into the
alignment A. Note that this addition does not define an alignment
between A and those letters in s that are mapped to insertion states.
Thus, when using HMMs to extend A to include s, some parts of
s may remain unaligned. Besides finding the best alignment, given
the sequence s and a profile HMM, the fit between the profile
HMM and s can be calculated in various ways, including finding
the overall probability that the profile HMMwould generate s. The
HMMER3 [29] suite of tools provides a particular implementation
of the general profile HMM concept and includes many further
optimizations, both for accuracy and speed. HMMER3 includes
tools for all these analyses (i.e., building profile HMMs from align-
ments, scoring the fit between a profile HMM and a sequence, and
finding the best path through the model for the sequence)
[29, 30].

An ensemble of profile HMMs is a collection of profile HMMs
that are built using a multiple sequence alignment A, with each
profile HMM in the set based on just a subset of the sequences in
the set. Thus, the match states in each of the profile HMMs in the
set correspond to sites in A. Now, given a sequence s, the profile
HMM in the collection that has the best fit to s can be found, the
best path through the model can be computed, and thus the
sequence s can be added to the alignment A. Thus, an ensemble
of profile HMMs can also be used to represent the alignmentA and
then used to add new sequences to A. Here we will show how UPP
uses an ensemble of profile HMMs to compute multiple sequence
alignments, noting also that ensembles of HMMs have been used
for phylogenetic placement [6], taxonomic identification of meta-
genomic data [7], and classification of protein sequences into
families and superfamilies [8].

3.2 UPP’s

Algorithmic Protocol

In essence, UPP is a combination of PASTA (which it uses to
construct a multiple sequence alignment on a subset of the input
sequences) with a way of computing an ensemble of profile HMMs,
which it then uses to add the remaining sequences into the PASTA
alignment. Here we describe this process as operating in four steps.
The first two steps can be omitted if the user wishes to provide UPP
with a pre-computed backbone alignment and tree; see Note 17.

1. Given a set S of unaligned sequences, UPP begins by identify-
ing those sequences to be part of “backbone alignment.” This
is performed first by restricting S to just those sequences with
length within 25% of the median sequence length, and then
randomly selecting a set of sequences from that set. The num-
ber of sequences in the backbone and restrictions on what
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sequences can be included in the backbone can be modified by
using a configuration file or input options (-B, -M, -T, and -l).

2. UPP uses PASTA to compute a multiple sequence alignmentA0

and tree T on S0, which are then referred to as the backbone
alignment and backbone tree.

3. UPP builds an ensemble of profile HMMs to represent the
multiple sequence alignment A0 on S0: it uses the tree T to
break the set of sequences into disjoint subsets of bounded
size (using the same centroid edge decomposition as in
SATé-II), and then computes a profile HMM for each of the
subsets (i.e., for the rows of the alignment A0 defined by the
sequences in the subset). The set of profile HMMs it creates is
the ensemble of profile HMMs used in the next step.

4. The remaining sequences (i.e., the ones that are not in the
backbone alignment) are added to A0 using the ensemble of
profile Hidden Markov Models computed in Step 3, thus
producing a multiple sequence alignment A on S.

As shown in [5], UPP produces more accurate alignments than
PASTA and other multiple sequence alignment methods when the
input set S has many fragmentary sequences, and trees computed
on the alignment are more accurate than trees computed on the
other alignments in the presence of fragmentation.

3.3 UPP’s

Parameters

The most important algorithmic options in using UPP are
(a) which sequences to put in the backbone subset S0, (b) which
method to use to compute an alignment on S0, and (c) which
algorithmic parameters to use for building the ensemble of profile
Hidden Markov Models.

For which sequences to put in S0, there are two decisions that
need to be made: first, which sequences are close enough to full-
length to be considered, and second, how many of these sequences
to use for the backbone alignment. The default UPP operates as
follows: it computes the median sequence length of the input
sequences and considers any sequence within 25% of this length
to be “full-length.” Then, UPP selects a random subset of the “full-
length” sequences to include in the backbone alignment, with the
default setting for the size of this set being the minimum of {1000,
N}, where N is the number of “full-length” sequences. Changing
the number of sequences to put in the backbone set can affect
accuracy and running time, and is discussed in see Note 18.

For how to compute the backbone alignment, the default is to
use PASTA, and this is certainly appropriate when S0 is large.
However, when S0 is small enough, then other methods can poten-
tially provide improved accuracy compared to PASTA. For example,
BAli-Phy [20, 21] and other statistical methods could be used to
compute an alignment A0 on S0. Once the backbone alignment is
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built, a backbone tree is also needed, which can be estimated using
fast ML heuristics, such as FastTree-2 (e.g., as outputted by
PASTA).

There are several algorithmic options for building the ensemble
of profile HMMs onA0, which we briefly discuss here. Recall that an
ensemble of profile HMMs is a collection of profile HMMs, where
each of the profile HMMs is constructed on a subset of the
sequences in the backbone alignment. To add a sequence s into
the backbone alignment, s is scored with respect to each profile
HMM in the collection, and the profile HMMwith the best score is
selected. Thus, every sequence s that is not in the backbone align-
ment must be scored against every profile HMM in the collection.
Although we observe that typically accuracy is increased by having a
large number of profile HMMs, this also increases the running
time. Thus, there is a potential tradeoff between accuracy and
running time. The default in UPP produces 10 profile HMMs,
which provides an improvement over a single profile HMM and
(obviously) also increases the running time. See Note 19 for addi-
tional considerations for this algorithmic setting.

Although modifications to the default settings can result in
improved accuracy or speed, the default settings for UPP are suffi-
cient to improve on PASTA if the proportion of fragmentary
sequences is large enough. Detailed information on how to adjust
the settings of UPP are given in its README file at https://github.
com/smirarab/sepp/blob/master/README.UPP.md.

3.4 Websites for UPP l The UPP software is available in open source form on GitHub at
[11], and is part of the SEPP [6] distribution (which has code
for various methods that use ensembles of profile HMMs). UPP
is available as Python code.

l A tutorial on UPP is available at https://github.com/smirarab/
sepp/blob/master/tutorial/upp-tutorial.md

l The UPP users group forum is available at https://groups.
google.com/forum/#!forum/ensemble-of-hmms.

4 Discussion and Summary

UPP and PASTA are two methods for large-scale multiple sequence
alignment that provide improved accuracy over standard methods
when datasets are large and heterogeneous. UPP provides a specific
advantage over PASTA when the dataset has fragmentary sequences
and PASTA provides advantages when all the sequences are full-
length. UPP and PASTA are available in open source form in order
to encourage further development by the research community.
Furthermore, each method is designed to improve scalability of
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MSAmethods, which are run only on subsets of the input sequence
set. Therefore, as new MSA methods are developed, PASTA and
UPP can be extended to use these new methods.

PASTA is described here as a method for co-estimating align-
ments and trees, but it is not a statistical co-estimation method in
the sense that BAli-Phy [20, 21] and StatAlign [31] are. However,
PASTA can run on very large datasets while truly statistical
co-estimation methods are limited to fairly small datasets (perhaps
100 sequences). Furthermore, PASTA and UPP have been used
with BAli-Phy to compute subset alignments [22], thus enabling
BAli-Phy to scale (in some sense) to very large datasets (e.g., up to
10,000 sequences!).

Although the discussion here was largely based on using
PASTA within the GUI, the command line version enables addi-
tional settings that can provide improved accuracy. This was inten-
tional, as the GUI is the easiest way to become familiar with
PASTA, and the GUI version provides the same advantages as the
command line version over other methods on large datasets. How-
ever, advanced users should use the command line version, which
allows the algorithmic settings to be modified in additional ways.

We set out to discuss multiple sequence alignment for the
purpose of tree estimation. PASTA is specifically designed to
co-estimate alignments and trees (in an iterative fashion), so that
the final tree is produced by running a maximum likelihood heuris-
tic (either RAxML or FastTree-2) on the final alignment. Some
consideration, therefore, should be made for how to compute trees
from these improved alignments. While we focused on maximum
likelihood under standard sequence evolution models, other
approaches could be used, including Bayesian estimation (e.g.,
MrBayes [32] and BEAST [33, 34]), distance-based estimation
(e.g., FastME [35]), and parsimony analyses (e.g., TNT [36] and
PAUP* [37]). Bayesian or maximum likelihood analyses under
non-standard sequence evolution models may also be necessary,
especially for datasets that span large evolutionary distances where
violations of the usual model assumptions (stationarity, time revers-
ibility, and homogeneity) are likely to occur [38–40]. Divide-and-
conquer phylogeny estimation, where the set of species is divided
into smaller, more homogeneous subsets, and then trees on the
subsets are computed and combined into a tree on the full dataset
(e.g., DACTAL [41], constrained-INC [42, 43], NJMerge [44],
and TreeMerge [45]), may provide an improvement in tree accu-
racy for those datasets that violate the standard model assumptions
but are too large for methods that are based on more complex
models.

Finally, although UPP was able to produce better alignments
than PASTA for datasets with a high number of fragmentary
sequences, the construction of trees from such datasets presents
additional challenges, even given error-free alignments [46]. One
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possible direction is to use phylogenetic placement, where an initial
tree is built using the full-length sequences and then the fragmen-
tary sequences are added to the tree [6], but other approaches may
provide better accuracy. Thus, tree estimation on large heteroge-
neous datasets will need to be revisited, in order to achieve the goal
of accurate inference of large phylogenies.

5 Notes

We now give some high-level advice on using PASTA andUPP. The
first 16 notes are for PASTA, the next three notes are for UPP, and
the final note is common to both methods. The reader will benefit
from consulting the GitHub sites for these methods (and in partic-
ular the tutorials and READMEs at those sites). PASTA users
should also read the Notes section in [9] for advice about using
PASTA (which is built on the SATé codebase, so that much of the
advice for SATé is relevant to PASTA).

1. If you have a MAC, then installing PASTA by downloading the
MAC application .dmg from the GitHub site is easy, but it only
allows you to use the GUI (which is not always the most up-to-
date version of PASTA). If you prefer to use the command line
or do not have a MAC, you will need to install PASTA using
some other process. The PASTA GitHub site provides details
on how to do these installations, and the PASTA users group
can help with installation issues.

2. PASTA has been mainly developed and tested for Linux and
MAC; as a result, Windows users will generally have more
difficulty and will need to rely on virtualization (through virtual
images or docker images provided on the website).

3. PASTA utilizes FASTA-formatted sequence files and Newick-
formatted tree files. See the PASTA README for details about
allowed characters in the input data.

4. PASTA uses iteration as well as divide-and-conquer to improve
alignment accuracy compared to standard MSA methods. The
main algorithmic parameters (i.e., how small to make the sub-
sets, how to compute subset alignments, how to compute trees
on the alignments and which sequence evolution models to
use) impact the accuracy that can be obtained in each iteration,
but also impact running time. In general, our recommendation
is to use the best method you can afford to run that still allows
PASTA to perform at least three iterations (and more itera-
tions, when time permits). This will allow the alignment pro-
duced by PASTA to have very good accuracy, and a final tree
can then be computed on the PASTA alignment using more
computationally intensive tree estimation methods. Much of
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the discussion below about how to set the algorithmic para-
meters reflects this point. Similarly, if desired, the final align-
ment/tree pair produced by PASTA can be given as input to
PASTA (see Sequences and Tree in the PASTA GUI, in Fig. 2),
if additional PASTA iterations using more computationally
intensive approaches are desired.

5. PASTA and SATé were designed to enable improved accuracy
on large datasets, but they have also been used to compute
alignments on small datasets (e.g., the avian datasets in [47]
with fewer than 50 taxa). The PASTA default setting automati-
cally adjusts the subset size appropriately for small datasets. For
example, on sufficiently small datasets, PASTA may set the
maximum subset size to as much as 50% of the number of
sequences in the input.

6. PASTA (in command line mode) does not automatically detect
the data type (DNA, RNA, or proteins), and the default setting
is DNA. Therefore, if your data are not DNA sequences, you
should make sure to specify the type explicitly, as otherwise the
behavior of PASTA can be unpredictable (and the resultant
alignment and tree may have poor accuracy).

7. As mentioned above, MAFFT is the default technique for
aligning subsets, and works well for both proteins and nucleo-
tides. However, when aligning proteins, other
subset alignment methods can also have good accuracy, and
are enabled in [25]. As mentioned earlier, whenMAFFT is used
to align subsets, limiting the subsets to 200 sequences makes it
feasible to run the most accurate (but also most computation-
ally intensive) variants of MAFFT, such as MAFFT L-INS-i and
MAFFT G-INS-i. Changing the subset size will change the
final alignment. Our studies (published and unpublished)
have revealed inconsistent trends regarding the impact of the
subset size parameter. However, at this time, based on the
preponderance of the evidence, we suggest using the default
settings, which puts the alignment subset size at 200, when
using MAFFT as the subset aligner. The interested user may
wish to explore the impact of changing alignment subset size,
for those datasets that are small enough to allow such explor-
atory data analysis.

8. For protein alignment, PASTA enables the use of additional
subset aligners MAFFT-G-INS-i, MAFFT-homologs, CON-
TRAlign (version 1) [48], and PROBCONS [49, 50]. To use
MAFFT-homologs and CONTRAlign (available only in com-
mand line), the user must take additional steps during installa-
tion, as detailed in the most up to data README file. If you
wish to use MAFFT-Homologs as the subset aligner, you
should use the version of PASTA available at [25].
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9. PASTA allows two methods for merging pairs of alignments—
Opal and Muscle. The choice between the two methods does
not have a large impact on accuracy, provided that the subsets
are not too small (because when the subsets are very small, then
the returned alignment is largely based on the technique used
to merge pairs of alignments).

10. Although the default setting for PASTA sets the number of
iterations to three, additional iterations could lead to improved
accuracy under some conditions. In general, using additional
iterations has shown some improvement in tree and alignment
accuracy, but the optimal number of iterations is an under-
explored topic. We therefore recommend that the user con-
sider enabling additional iterations, when time permits, and
explore the set of alignment/tree pairs that are returned in
these iterations.

11. PASTA has two methods for tree estimation that are used in
each iteration. The default is FastTree-2, but RAxML is also
allowed. In our experience, RAxML is much more computa-
tionally intensive than FastTree-2, making FastTree-2 a better
choice on large datasets, since many iterations can be run if
FastTree-2 is used instead of RAxML (see previous Note).
When the number of sequences is small enough, then adding
a final RAxML run (with the post-processing command in the
GUI) is recommended, since RAxML generally produces bet-
ter ML scores and can, in some conditions, improve the tree
accuracy (although there are many conditions where the
improvement in ML score does not correspond to an improve-
ment in tree topology accuracy [51]). However, when the
number of sequences is large then we do not recommend
having PASTA automatically perform a RAxML analysis on
the final alignment, as this can be too computationally inten-
sive. Instead, for very large datasets, we recommend the fol-
lowing approach: let PASTA perform its iterations using
FastTree-2, save the final PASTA alignment, and then sepa-
rately compute a tree on the final PASTA alignment using the
preferred software (e.g., RAxML, or potentially some other
method) and selected sequence evolution model. In this way,
PASTA can be used to produce a highly accurate alignment,
and then the best tree accuracy (and associated numeric para-
meters) can be obtained using a separate tree estimation phase.

12. The set of possible sequence evolution models depends on the
tree estimation method (RAxML or FastTree-2) and the type
of data (nucleotides or proteins). When PASTA is used with
FastTree-2, only a very limited number of models are available
(described in the notes below). If the user wishes to select a
model for PASTA, then they should obtain a preliminary align-
ment and then use external software (e.g., ProtTest [52] for
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protein datasets and ModelTest [53] or PLTB [54] for nucle-
otide datasets). However, an alternative approach can also be
used: the user can run PASTA using the default model, then
use the resultant alignment with the external software to select
a substitution model for a final round of tree inference or
potentially another iteration of PASTA (using the new
model). See discussion in [28] about selecting models for
phylogeny estimation.

13. To select a nucleotide sequence evolution model within
PASTA, FastTree-2 and RAxML both enable the Generalized
Time Reversible (GTR, [55]) model, and each can be used
with a selected model for rate variation across sites (with differ-
ent models depending on what tree estimation method is
selected). In addition, FastTree-2 enables the use of the
Jukes–Cantor (JC, [56]) model (with two models for rate
variation across sites); however, we do not recommend using
the JC model unless the data seem to fit the JC model well.
FastTree-2 only enables two types of rate variation across sites
(CAT and G20, which is an approximation of gamma
distributed rates with 20 categories), but RAxML enables rate
variation models that include invariable sites. The choice of rate
variation model can also impact accuracy, but the more com-
plex models are also more computationally intensive. However,
our studies suggest that using simple sequence evolution mod-
els within the iterative process may not reduce the alignment
accuracy substantially, and a new tree can be estimated on the
final alignment using more complex models.

14. For protein alignment, the two tree estimation methods,
RAxML and FastTree-2, offer very different sequence evolu-
tion models. Specifically, FastTree-2 only offers two protein
substitution models (JTT and WAG), each with two site varia-
tion models, and RAxML offers 11 protein substitution mod-
els, each with four site variation models. Thus, RAxML allows a
larger set of protein sequence evolution models than FastTree-
2, making RAxML a better method for computing trees than
FastTree-2 for proteins. However, here too the benefit from
using RAxML within the iterative process may be offset by the
extra time used to compute trees with RAxML. Hence, we
would suggest instead that FastTree-2 be used as the tree
estimation method within the iterative procedure, even for
protein sequences. Then, after the PASTA alignment is com-
puted, the user can compute a new tree on the alignment using
RAxML or some other software, under the best fitting model.

15. If you wish to use BAli-Phy to align subsets within PASTA, the
maximum subset size and the running time for each
subset alignment need to be set so that BAli-Phy is able to
converge on each subset. This is discussed in [57], and the
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software for PASTA using BAli-Phy is available at [26]. How-
ever, see [58] for a study comparing BAli-Phy and other align-
ment methods on protein benchmark datasets, which showed
differences between performance on simulated and biological
datasets.

16. The choice of which alignment/tree pair to return (i.e.,
whether to return the pair produced in the final iteration or
the pair that has the best maximum likelihood score) is an
interesting one. In general, we expect little difference in accu-
racy between the two options, and so the choice may not make
much difference in practice. In addition, there is no theoretical
basis on which to select the pair that has the best maximum
likelihood score [2], since the alignment is allowed to change.
For these reasons, and also because the ML score is calculated
within PASTA on masked versions of the computed align-
ments, the default in PASTA is the final alignment/tree pair.

17. The user can provide UPP with a pre-computed backbone
alignment and tree (referred to in the UPP tutorial as a “cus-
tom seed alignment and tree”); this is a natural approach when
using alignments and trees obtained from external sources
(such as PFAM [59]) or when alignments and trees have
been estimated using additional information (such as second-
ary or tertiary structure) or by specialized methods not avail-
able within UPP.

18. UPP uses PASTA to compute its backbone alignment and tree,
but the selection of which sequences are put into the backbone
set can be controlled by the user. In the default mode, UPP
operates as follows: it computes the median sequence length of
the input sequences and considers any sequence within 25% of
this length to be “full-length”; the user can modify this
approach as needed using options -M and -T. Once that set
of full-length sequences is determined, the user can specify
how many of the sequences to include in the backbone align-
ment using the -B option. The default is to take the minimum
of {1000, N}, where N is the number of “full-length”
sequences. However, another option is to include all of the
full-length sequences (even when this is more than 1000); in
our experience, this improves accuracy but may also increase
the running time. Furthermore, reducing the number of
sequences, even to as low as just 100 (the UPP-fast version),
produces a reduction in accuracy (but sometimes only a small
reduction, which depends on the heterogeneity in the input
dataset) and a dramatic reduction in running time. Hence,
there is a potential tradeoff between accuracy and running
time that needs to be considered in building the ensemble.
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19. The default mode for UPP is to create an ensemble of HMMs
that has ten (10) profile HMMs. However, changes to this
number can be considered with a potential for improved accu-
racy. In particular, when the input set is highly heterogeneous
(as represented by low average sequence similarity), then using
a larger number of profile HMMs can improve accuracy; how-
ever, the benefit in increasing the number of profile HMMs is
reduced when the dataset has high average sequence similarity.
Furthermore, increasing the number of profile HMMs auto-
matically increases the running time (as it scales linearly with
this number).

20. Errors in the input unaligned sequence data have the potential
to reduce the accuracy of the alignment. One way to detect
such errors is to use automated methods such as TreeShrink
[60]. TreeShrink looks for extremely long branches in the
phylogeny to detect potential errors in the data. Thus, TreeSh-
rink can be combined with PASTA in a natural way: remove
sequences on long branches from the PASTA alignment and
tree (implemented in the --treeshrink-filter option),
recompute the PASTA alignment, and add back those poten-
tially problematic sequences using UPP. In addition, UPP
allows for sequences that are on very long branches to be
removed from the backbone set (see -l).
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SATé. In: Multiple sequence alignment meth-
ods. Springer, Berlin, pp 219–244

10. Mirarab S (2019) Github site for PASTA soft-
ware. https://github.com/smirarab/pasta.
Accessed 13 July 2019

11. Mirarab S (2019) Github site for Ensemble of
HMM methods (SEPP, TIPP, UPP) software.
https://github.com/smirarab/sepp. Accessed
13 July 2019

12. Price MN, Dehal PS, Arkin AP (2010) Fas-
tTree 2 – approximately maximum-likelihood
trees for large alignments. PLoS ONE 5(3),
e9490. https://doi.org/10.1371/journal.
pone.0009490

13. Sievers F, Wilm A, Dineen D, Gibson TJ,
Karplus K, Li W, Lopez R, McWilliam H,
Remmert M, Soding J, Thompson JD, Higgins
DG (2011) Fast, scalable generation of high-
quality protein multiple sequence alignments
using Clustal Omega. Mol Syst Biol 7:539

14. Katoh K, Toh H (2008) Recent developments
in the MAFFT multiple sequence alignment
program. Brief Bioinf 9(4):286–298

15. Wheeler T, Kececioglu J (2007) Multiple align-
ment by aligning alignments. In: Proceedings
of the 15th ISCB conference on intelligent
systems for molecular biology, pp 559–568
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Chapter 8

Sequence Comparison Without Alignment: The SpaM
Approaches

Burkhard Morgenstern

Abstract

Sequence alignment is at the heart of DNA and protein sequence analysis. For the data volumes that are
nowadays produced by massively parallel sequencing technologies, however, pairwise and multiple align-
ment methods are often too slow. Therefore, fast alignment-free approaches to sequence comparison have
become popular in recent years. Most of these approaches are based on word frequencies, for words of a fixed
length, or on word-matching statistics. Other approaches are using the length of maximal word matches.
While these methods are very fast, most of them rely on ad hoc measures of sequences similarity or
dissimilarity that are hard to interpret. In this chapter, I describe a number of alignment-free methods
that we developed in recent years. Our approaches are based on spaced-word matches (“SpaM”), i.e. on
inexact word matches, that are allowed to contain mismatches at certain pre-defined positions. Unlike most
previous alignment-free approaches, our approaches are able to accurately estimate phylogenetic distances
between DNA or protein sequences using a stochastic model of molecular evolution.

Key words Genome comparison, Alignment free, Phylogeny, SpaM, Phylogenomics, Spaced words,
FSWM

1 Introduction

Alignment-free sequence comparison has a long tradition in bioin-
formatics. The first approaches to compare sequences without
alignments were proposed in the Nineteen-eighties by E. Blaisdell
[1, 2]. The interest in alignment-free methods increased when
more and more partially or completely sequenced genomes became
available through novel sequencing technologies, leading to an
urgent need for faster methods of sequence comparison. Most
existing alignment-free methods represent sequences as word-fre-
quency vectors for words of a fixed length k—so-called k-mers—and
by comparing k-mer frequencies instead of comparing sequences
position-by-position, based on alignments [3–7]. This approach
has been further elaborated by taking background probabilities of
word matches into account [8–11]; a review of these latter methods
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is given in [12]. Other approaches to alignment-free sequence
comparison use the length of maximal common sub-words of the
compared sequences, to define alternative measures of sequence
similarity or dissimilarity [13–17].

The main advantage of these word-based methods is their high
speed, compared to alignment-based methods. While—under most
scoring schemes—finding an optimal alignment of two sequences
takes time proportional to the product of their lengths [18–20],
word-based or alignment-free methods are much more efficient,
since word-frequency vectors can be calculated in time proportional
to the length of the analyzed sequences. Similarly, the length of
longest common sub-words can be efficiently found using data
structures such as generalized suffix trees or suffix arrays [21]. A
review of earlier alignment-free methods is given in [22]; more
recent review papers are [23–27]. A first systematic benchmark
study of alignment-free methods has been published in 2019, as a
collaboration of several groups working in the field [28].

From the beginning, phylogenetic tree reconstruction has been a
main application of alignment-free sequence comparison. Choi and
Kim, for example, were able to calculate a phylogenetic tree of
>4000 whole-proteome sequences [29], using the alignment-free
tool FFP that has been developed by the same group [5]. The
fastest tree-reconstruction methods are distance-based approaches:
to calculate a tree representing the phylogeny of a set of taxa, these
methods use pairwise distances as input, so for each pair of com-
pared taxa, their distance or dissimilarity needs to be measured in
some way. A matrix with these distance values can then be used as
input for standard distance methods such asNeighbor-Joining (NJ)
[30] or BIONJ [31].

If DNA sequences are compared, a common way of defining
the distance between two evolutionarily related sequences is to use
the (estimated) number of substitutions per position that have
occurred since the two sequences have evolved from their last
common ancestor. The simplest substitution model for nucleic-
acid sequences is the Jukes–Cantor model where all nucleotide
substitutions are assumed to occur with the same probability.
Under this model, the number of substitutions per position can be
estimated from the number of mismatches per position in an align-
ment of the compared sequences, using the well-known Jukes–
Cantor formula [32]. More elaborate substitution models are
available for DNA or protein sequences, that consider different
substitution probabilities for different pairs of nucleotide or
amino-acid residues.

A draw-back of most earlier alignment-free methods is that
they are not based on probabilistic models of evolution. Instead,
they use heuristic measures of sequence similarity or dissimilarity. If
sequences are represented by word-frequency vectors, for example,
standard distance measures on vector spaces can be applied to these
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frequency vectors, in order to calculate a “distance” between two
compared sequences, such as the Euclidean distance or the Man-
hattan distance. Such distances, however, are hard to interpret from
a phylogenetic point-of-view. Clearly, a pair of closely related
sequences will have more words in common, compared to a pair
of distantly related sequences—so the Euclidean distance between
their word-frequency vectors will be smaller than for sequences that
are further apart in the tree of life. But distance values calculated in
this way do not represent real distances in terms of events that have
happened since two sequences evolved from their last common
ancestor. They only indicate if one pair of sequences is more or
less similar to each other than another pair of sequences. Such
heuristic distance measures can be used for clustering, but not for
more accurate phylogenetic analyses.

Since the distances calculated by standard word-based methods
have no direct phylogenetic interpretation, it would make no sense
to “evaluate” the accuracy of these distance values directly. The
developers of earlier alignment-free methods therefore took an
indirect approach to evaluate their methods. They applied cluster-
ing algorithms or distance-based tree-reconstruction methods to
the distances produced by the various alignment-free methods, and
evaluated the quality of the resulting trees. Again, since the com-
puted distances between the sequences have no direct meaning, the
branch-lengths of these trees were usually ignored, and only the
resulting tree topologies were evaluated, i.e. the order in which the
taxa branched from each other in their history. The standard
approach to evaluate tree topologies is to compare them to trusted
reference topologies under theRobinson–Fouldsmetric [33]. Clearly,
this is only a very rough way of evaluating the performance of
sequence comparison methods.

Only in the last 10 years or so, alignment-free methods have
been proposed that are able to estimate phylogenetic distances in
the sense of an underlying probabilistic model of sequence evolu-
tion. The first such approach has been published in 2009 by
Haubold et al. [34]. These authors developed kr, an alignment-
free method that can accurately estimate phylogenetic distances
between DNA sequences in the sense of the Jukes–Cantor model.
That is, kr estimates the number of nucleotide substitutions per
sequence position since the compared sequences have evolved from
their last common ancestor. To this end, the program used the
average length of common substrings between the compared
sequences. Later, we proposed an approach to estimate phyloge-
netic distances based on the length distribution of k-mismatch
common substrings [35].

In the last few years, other alignment-free methods have been
proposed to estimate phylogenetic distances in a rigorous way [36–
39]. Some of these methods are based on the so-called micro-
alignments, short gap-free pairwise alignments with a simplistic
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structure, that can be rapidly calculated. So, strictly spoken, these
methods are not quite alignment-free. They are referred to as
“alignment-free” anyway, since they avoid the time-consuming
process of calculating optimal alignments over the entire length of
the input sequences. Other approaches to estimate distances in a
stochastically rigorous way are based on the number of word
matches [40]. More recently, extremely fast programs have become
popular that can accurately estimate phylogenetic distances
between DNA sequences from the number of word matches,
using the Jaccard Index [41] and min-hash algorithms [42]. A
widely used implementation of these ideas is Mash [43]; further
improvements to this approach have been proposed and are imple-
mented in the programs Skmer [44], Dashings [45], and Mash
Screen [46].

2 Spaced Words

In 2013, we proposed to use the so-called spaced words for
alignment-free DNA and protein sequence comparison [47–
49]. A spaced word is a word that contains not only nucleotide or
amino-acid symbols, but also wildcard characters at certain posi-
tions. A spaced word is based on a pre-defined binary pattern
P representing match positions (“1”) and don’t-care positions
(“0”). Given such a pattern P, we defined a spaced word w with
respect to P as a word that has the same length as the pattern P and
that has symbols representing nucleotide or amino-acid residues at
thematch positions of P and the wildcard symbol (“∗”) at the don’t-
care positions, see Fig. 1 for an example. Spaced words—or spaced
seeds—have been previously introduced in database searching, to
improve the sensitivity of the standard seed-and-extend search strat-
egy [50]. Efficient algorithms have been proposed to optimize the
underlying patterns [51], and for spaced-seed hashing [52].

In a first study, we simply replaced standard word frequencies by
spaced-word frequencies, to calculate distances between DNA and
protein sequences [47]. As in earlier word-based methods, we used
the Euclidean distance or, alternatively, the Jensen-Shannon dis-
tance between spaced-word frequency vectors to define the

w : C T * * A * C

S : T G A C T T G A C C A C T
P: 1 1 0 0 1 0 1

Fig. 1 Spaced word w with respect to a pattern P¼ 1100101 of length ℓ¼ 7.
w consists of nucleotide symbols at the match positions (“1”) of P and of
wildcard symbols, represented as “∗” at the don’t-care positions (“0”).
w occurs at position 4 in the DNA sequence S
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distance between two DNA or protein sequences. This way, we
could improve the quality the resulting phylogenetic trees, com-
pared to standard word-frequency methods—in particular when we
used multiple binary patterns and the corresponding spaced-word
frequencies, instead of one single pattern [48]. The resulting soft-
ware program is called Spaced Words, or Spaced, for short.

Our spaced-words approach was motivated by the spaced seeds
[53] that have been introduced in database searching, to improve
the sensitivity of hit-and-extend approaches such as BLAST
[54]. The main advantage of spaced-word matches—or “spaced
seeds”—compared to contiguous word matches is that neighbor-
ing spaced-word matches are statistically less dependent, so they are
distributed more evenly over the sequences. In database searching,
this increases the sensitivity, i.e. the probability of finding sequence
similarities. For alignment-free sequence comparison, we have
shown that results obtained with spaced words are statistically
more stable than results based on contiguous words [40].

Note, however, that, like earlier alignment-free approaches, this
first version of the program Spaced was still based on a heuristic
measure of sequence dissimilarity; it did not estimate evolutionary
distances in the sense of some probabilistic model. Later, we intro-
duced a new distance measure in Spaced based on the number of
spaced-word matches [40] that actually estimates phylogenetic
distances between DNA sequences in the sense of the Jukes–Cantor
model [32]. More precisely, a spaced-word match at positions (i, j)
between two input sequences is the occurrence of the same spaced
word w at position i in the first sequence and at position j in the
second sequences, see Fig. 2. Our program calculates the number of
pairs (i, j) for which there is a spaced-word match at (i, j). This is
now the default distance measure used in the program Spaced. To
find good patterns—or sets of patterns in the multiple-pattern
approach—we developed a program called rasbhari [55].

3 Filtered Spaced-Word Matches and Prot-SpaM

In a subsequent project, we introduced a different approach to use
spaced words for alignment-free sequence comparison. Instead of
comparing spaced-word frequencies, we used spaced-word matches

P : 1 1 0 0 1 0 1
S1 : T G C T T G A C C A C T C
S2 : A C G C T C G A T C G A
P : 1 1 0 0 1 0 1

Fig. 2 Spaced-word match (SpaM) between two DNA sequences S1 and S2 with
respect to the same pattern P as in Fig. 1. The two segments have matching
nucleotides at all match positions of P but may mismatch at the don’t-care
positions
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(SpaM) as a special type of micro-alignments. For a binary pattern
P as above, a SpaM between two sequences is simply the occurrence
of the same spaced word in both sequences with respect to P, see
Fig. 2 for an example. In other words, a SpaM is a local, gap-free
alignment that has the same length as the pattern P and that has
matching nucleotides or amino acids at the match positions and
possible mismatches at the don’t-care positions of P. The idea is to
consider a large number of SpaMs, and to estimate phylogenetic
distances between two sequences by looking at the residues that are
aligned to each other at the don’t-care positions of these SpaMs.
Obviously, this is only possible if the considered SpaMs represent
true homologies, so one has to filter out spurious background
SpaMs. To do so, our program first considers all possible SpaMs
between two input sequences and calculate a score for each SpaM
based on the aligned residues at the don’t-care positions. The
program then discards all SpaMs with scores below some threshold.
We could show that, with this sort of “SpaM filter,” one can reliably
separate true homologies (“signal”) from random SpaM (“noise”).

An implementation of this approach for DNA sequences is
called Filtered Spaced-WordMatches (FSWM). To estimate distances
between DNA sequences, FSWM calculates the proportion of mis-
matches at the don’t-care positions of the selected SpaMs, as an
estimate of the proportion of mismatches in the (unknown) full
alignment of the two sequences. It then applies the usual Jukes–
Cantor correction, to calculate the estimated number of substitu-
tions per position since the two sequences have evolved from their
last common ancestor. By default, the program uses a pattern P of
length ℓ¼112 with 12 match positions and 100 don’t-care posi-
tions, but the user can adjust these parameters. The length of the
pattern P seems to be a certain limitation, as it means that, by
default, the program is restricted to using gap-free homologies of
length � ℓ¼112. A sufficient number of don’t-care positions is
necessary, though, to reliably distinguish SpaMs representing true
homologies from random background SpaMs. To speed-up the
program, it can be run with multiple threads; by default 10 threads
are used. More recently, we evaluated different sampling strategies,
to reduce the number of SpaMs that need to be evaluated during a
program run [56].

An implementation of the same algorithm for protein
sequences is called Prot-SpaM [57]. This program uses, by default,
a set of 5 patterns with 6match positions and 40 don’t-care positions
each, i.e. with a length of ℓ¼46. For protein sequences, we are
using the BLOSUM 64 substitution matrix [58] to score SpaMs,
and to filter out low-scoring random SpaMs. To estimate the evo-
lutionary distance between two protein sequences, pairs of amino
acids aligned to each other at the don’t-care positions of the
selected spaced-word matches are considered, and the Kimura
model [59] is used to approximate the PAM distance [60] between
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sequences based on the number of mismatches per position. If
desired, the user can use different values for the number of match
positions in the underlying patterns P, and a different length for the
patterns. The threshold for the score of the spaced-word matches is
set to 0 by default, but can also be adapted and, similarly, the
number of patterns can be modified.

4 Read-SpaM: Estimating Phylogenetic Distances Based on Unassembled
Sequencing Reads

Several authors have pointed out that alignment-free approaches
can be applied, in principle, not only to full genome sequences, but
also to unassembled reads. Some approaches have been designed
for this particular purpose [36, 44]. The ability to estimate phylo-
genetic distances based on unassembled reads is not only useful in
phylogeny studies, but also in biodiversity research [44] or in
clinical studies [61, 62]. Here, species or strains of bacteria can
often be identified by genome skimming, i.e. by low-coverage
sequencing [44, 63–67].

We adapted FSWM to estimate phylogenetic distances between
different taxa using unassembled reads; we called this approach
Read-SpaM [68]. This software can estimate distances between an
assembled genome from one taxon and a set of unassembled reads
from another taxon or between sets of unassembled reads from two
different taxa. Using simulated sequence data, we could show that
Read-SpaM can accurately estimate distances between genomes up
to 0.8 substitutions per position, for a sequence coverage as low as
2�9X, if an assembled genome is compared to a set of unassembled
reads from a second genome. If sets of unassembled reads from two
different taxa are compared to each other, distances estimates by
Read-SpaM are still accurately for up to 0.7 substitutions per
position, for a sequencing coverage down to 2�4X.

5 The Most Recent Approaches: Multi-SpaM and Slope-SpaM

For nucleic-acid sequences, we extended Filtered Spaced Words
Matches from pairwise to multiple sequence comparison [69]. For
a set of N�4 input sequences, our software Multi-SpaM is based
on spaced-word matches between four input sequences each. Such
a multiple spaced-word match is, thus, a local gap-free four-way
alignment with columns of identical nucleotides at the match posi-
tions of the underlying binary pattern P, while mismatches are,
again, allowed at the don’t-care positions of P. An example is given
in Fig. 3, such local four-way alignments are also called P-blocks.
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Multi-SpaM samples P-blocks from the set of input sequences;
by default up to 106 P-blocks are sampled. To ensure that these P-
blocks represent true homologies, only those P-blocks are consid-
ered that have a score above a certain threshold. For each of the
sampled P-blocks, the program then uses RAxML [70] to calculate
an optimal unrooted quartet tree topology. Finally, the program
Quartet MaxCut [71] is used to calculate a super tree topology
from these quartet topologies. By default, Multi-SpaM uses a pat-
tern Pwith a length of 110 nucleotides and with 10match positions,
i.e. with 100 don’t-care positions. These parameters can be adjusted
by the user. Also, the number of 106 P-blocks that are sampled is a
parameter that can be adjusted by the user.

As another approach to alignment-free phylogeny reconstruc-
tion, we developed a program called Slope-SpaM [72]. This pro-
gram considers the number Nk of k-mer matches—or spaced-word
matches for a pattern Pk with k match positions, respectively—
between two nucleic-acid sequences, for different values of k. As
we have shown theoretically, one can define a function F where F(k)
depends on Nk, such that F is affine-linear in a certain range of k.
The Jukes–Cantor distances between the two sequences—i.e. the
average number of substitutions per sequence position since the
sequences diverged from their most recent common ancestor—can
then be estimated from the slope of Fwithin this range. In addition,
we showed in [72], how one can calculate two values kmin and kmax

within the relevant affine-linear range. The slope of F in this
range—and therefore the distance between the two sequences—
can, thus, be estimated from the values Nkmin

and Nkmax
alone, the

program is therefore extremely fast. This way, evolutionary

S1 : C C C A A G G A C
S2 : A A C T A C G T A C C T
S3 : A A C T A C G T A C C
S4 : C C A C G T C C G C G
S5 : A G A C T C C C A A G G A
S6 : T C C C A T G G A C C
S7 : A A C T A C G T A C C A

1 2 3 4 5 6 7 8 9 10 11 12 13

S1 : C C A A G
S4 : C C A C G
S5 : C C A A G
S6 : C C A T G

Fig. 3 P-block for a pattern P¼ 11001: a spaced word W¼ CC∗∗G with
respect to P occurs in sequences S1, S4, S5, and S6 at positions 2, 1, 7, and
3, respectively (top). Such a P-block defines a gap-free local four-way alignment
with matching nucleotides at the match positions of the underlying pattern P and
possible mismatches at the don’t-care positions (bottom)
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distances can be calculated accurately for up to around 0.5 sub-
stitutions per sequence position.

Several other methods have been proposed in recent years that
estimate evolutionary distances from the number of k-mer or
spaced-word matches [40, 44, 73]. A limitation of these methods
is that they assume that the compared sequences are homologous
over their entire length; they under-estimate distances if sequences
share only local homologies. In contrast, Slope-SpaM can estimate
phylogenetic distances even if sequences share only local regions of
homology.

By default, Slope-SpaM uses exact word matches and calculates
the values Nkmin

and Nkmax
based on the length of the input

sequences. The user can also specify a binary pattern P with a
sufficiently large number kM of match positions (“1”). Patterns Pk

with smaller numbers of match positions are then generated by
shortening PkM . Instead of calculating Nkmin

and Nkmax
automati-

cally, Slope-SpaM can also take a set of values of k as input. It will
then calculate the function F(k) for each specified value of k and find
the slope of the affine-linear region by linear regression.

6 Back to Multiple Sequence Alignment

There is no strict separation between sequence alignment on one
side and word-based, alignment-free methods on the other side. As
mentioned above, a whole class of the so-called alignment-free
methods are based on “micro-alignments,” local pairwise align-
ments of a simple structure, that can be rapidly calculated. In
Multi-SpaM, we extended this approach to local multiple
alignments.

Ironically, one of the first major applications of fast alignment-
free methods was multiple sequence alignment (MSA). The pro-
grams MUSCLE [74] or Clustal Omega [75], for example, use
word-frequency vectors to rapidly calculate guide trees for the
“progressive” approach to MSA [74]. Similarly, fast alignment-
free methods are used to find anchor points [76, 77] to make
alignments of large genomic sequences possible [78–84]. In a
recent study [85], we used FSWM to generate anchor points for
multiple genome alignment. We could show that, if distantly
related genomes are compared, spaced-word matches are more
sensitive and lead to better output alignments than anchor points
that are based on exact word matches.

7 Software Availability

We made Filtered Spaced-Word Matches (FSWM) available through
a web interface at Göttingen Bioinformatics Compute Server
(GOBICS), http://fswm.gobics.de/ see Fig. 4. There are certain
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limitations at this web server for the size of the input data: (a) the
upper limit for the total size of the input sequences is 512 mb, (b)
the number of input sequences must be between 2 and 100, and (c)
the minimum length of each input sequence is 1000 bp. At our web
server, the underlying pattern P has by default 12 match positions
and 100 don’t care positions. The number of match positions can be
adapted by the user. To calculate a score for each spaced-word
match, a nucleotide substitution matrix published by Chiaromonte
et al. [86] is used. By default, the cut-off value to distinguish
“homologous” from background spaced-word matches is set to
0. This value, too, can be adjusted by the user.

In addition, the above described software tools FSWM, Prot-
SpaM, Multi-SpaM, Read-SpaM, and Slope-SpaM are freely avail-
able as source code through github or through our home page,
details are given in Table 1.

Fig. 4 Homepage of Filtered Spaced-Word Matches (FSWM) at Göttingen Bioinformatics Compute Server
(GOBICS)
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Chapter 9

lamassemble: Multiple Alignment and Consensus Sequence
of Long Reads

Martin C. Frith, Satomi Mitsuhashi, and Kazutaka Katoh

Abstract

Long DNA and RNA reads from nanopore and PacBio technologies have many applications, but the raw
reads have a substantial error rate. More accurate sequences can be obtained by merging multiple reads
from overlapping parts of the same sequence. lamassemble aligns up to �1000 reads to each other, and
makes a consensus sequence, which is often much more accurate than the raw reads. It is useful for studying
a region of interest such as an expanded tandem repeat or other disease-causing mutation.

Key words MAFFT, LAST, last-train, Nanopore, PacBio, Paralogy, Dotplot, Genomic variations,
Repeat expansion disease, Strand-asymmetric error pattern

1 Introduction

Long read single molecule sequencing technologies (nanopore and
PacBio) are increasingly becoming used in medical research areas in
the past few years. Major applications in human research are:
sequencing genomes of pathogens in infectious diseases, detecting
pathogenic genomic variants in cancer genomes or rare human
Mendelian diseases [1–3], or resolving structural variations in
human genomes [4]. For example, several new diseases caused by
tandem repeat expansion were discovered in 2019. Most of these
studies used long read sequencers to completely characterize the
structure of the expanded repeat [5–8], which was difficult by
conventional methods. One pathogenic expansion was identified
by long read whole genome sequencing alone [9]. Long read
sequencing has clear advantages in assessing tandem and inter-
spersed repeats, because long enough reads can extend beyond
the repeat into unique sequence, and has advantages in detecting
changes in repeat regions, which are mutation-prone and may cause
sequence rearrangements. Structural variations are usually
described as deletion, duplication or insertion. However, there are
more types of structural variations, e.g. chromothripsis. Annotation
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of further complex rearrangements is still challenging but long read
sequencing may help decipher them [10].

The raw DNA (or RNA) reads from these technologies have
substantial error rates. The error rates vary with the precise version
of sequencing technology and base-calling algorithm. Typically,
different kinds of errors have different rates, e.g. nanopore reads
often have a high rate of a$g errors (Fig. 1). Note that these error
rates are not strand-symmetric, e.g. the c$t rates are much lower
than the a$g rates in Fig. 1. This makes it both tricky and useful to
combine DNA reads from both strands of a DNA molecule: the
high rate of a$g errors can be compensated by the low rate of c$t
errors on the opposite strand. Finally, long reads tend to have
relatively high rates of insertion and deletion errors, which are
trickier to deal with than substitution errors.

In some scenarios, it is useful to obtain an accurate sequence,
more accurate than the raw reads. For example, the precise
sequence of an expanded tandem repeat correlates with the symp-
toms of neuronal intranuclear inclusion disease [9]: this could not
be seen from the raw reads, but only from a more-accurate consen-
sus sequence (Fig. 2, see Note 1).

lamassemble merges overlapping reads into a consensus
sequence. Its method has two key ingredients. Firstly, it uses the
mature multiple alignment tool MAFFT to align the reads to each
other. Secondly, it uses the rate/probability of each error type (base
deletions, base insertions, and each kind of substitution) to find the
most probable alignments, and also to infer the most probable
consensus sequence.

A similar software tool is pbdagcon (https://github.com/
PacificBiosciences/pbdagcon). The main difference is that pbdag-
con corrects errors in one read by comparing it to other reads, so it
outputs a sequence that only covers one input read. In contrast,
lamassemble can merge multiple overlapping reads into a consensus
that covers all the input reads.

a c g t
a 0.28 0.0011 0.013 0.0011
c 0.0015 0.20 0.00045 0.0027
g 0.027 0.00051 0.18 0.00086
t 0.0013 0.0033 0.00055 0.29

Base deletion probability: existence=0.037, extension=0.44
Base insertion probability: existence=0.034, extension=0.40

Fig. 1 Example of probabilities (i.e. rates) of substitution, deletion, and insertion
between human DNA reads and a reference human genome. This is from human
DNA sequenced with PromethION R9.4, base-called with Guppy 1.4.0, dataset
ERR2631604 [11]. Read bases correspond to matrix columns and reference
genome bases correspond to matrix rows. The 16 substitution probabilities sum
to 1
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Fig. 2 Example of ggc repeat expansions in neuronal intranuclear inclusion disease [9]. (a) Example of ggc and
gga repeat expansion. The consensus sequence was obtained from 61 nanopore raw reads that cover the
whole expanded repeat. Raw reads have many errors. (b) Example of pure ggc repeat expansion. The
consensus sequence was obtained from 448 nanopore reads that cover the whole expanded repeat. These
consensus sequences are probably not 100% correct, e.g. their tandem repeats are disrupted by occasional
base insertions or deletions which we suspect to be errors



2 Access/Installation

lamassemble can be used either via a web-server or by installing it
on your own computer. The web-server is located at: https://mafft.
cbrc.jp/alignment/server/index-rawreads.html.

Using it on your own computer requires using the “command
line.” It has been tested on Linux and Mac. If the Conda package
manager is set up on your computer, lamassemble can be installed
from the Bioconda channel, with this command:

conda install -c bioconda lamassemble

This automatically installs other software that lamassemble
depends on (LAST and MAFFT). Alternatively, lamassemble can
be obtained directly from its website: https://gitlab.com/mcfrith/
lamassemble. In that case, as explained there, the dependencies
must be installed manually.

3 Usage

3.1 Required Inputs

for lamassemble

lamassemble requires two input files: a last-train file [12] (see Notes
2 and 3), and the sequences that we wish to merge (see Notes 4–
7). The sequences may be in either fastq or fasta format: it makes no
difference to the result, because lamassemble ignores the extra infor-
mation present in fastq.

The last-train file indicates the error pattern of the reads, i.e. the
rates of base deletion, base insertion, and each kind of substitution
(e.g. a!g). last-train files for a few types of data are supplied with
lamassemble: these are likely good enough for many datasets, espe-
cially for a quick first try.

Alternatively, a last-train file can be obtained by comparing the
reads to a reference genome of the same (or very closely related)
species, as described at: https://github.com/mcfrith/last-rna/
blob/master/last-long-reads.md.

In our typical workflow, we first align a large set of reads to a
reference genome, using last-train. We then pick out reads covering
a region of interest, perhaps using tandem-genotypes for tandem
repeat changes [13] or dnarrange for rearrangements [10]. Thus,
by the time we wish to use lamassemble, we already have a last-train
file for our data.

3.2 Command Line

Usage

Typical command line usage is like this:

lamassemble last-train.mat sequences.fastq > consensus.fasta

This aligns the sequences in the file sequences.fastq to each
other, and prints a consensus sequence, which we have sent to an
output file named consensus.fasta.
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3.3 Going Faster by

Multi-Threading

The -P option makes it faster by running several threads of calcula-
tion concurrently. For example, -P8 uses 8 threads:

lamassemble -P8 last-train.mat sequences.fastq > consensus.

fasta

The best number of threads depends on how many your com-
puter can efficiently run concurrently. As a special case, -P0 uses as
many threads as your computer claims it can run concurrently.

3.4 Multiple

Sequence Alignment

The -a option makes lamassemble output an alignment of the reads
to each other:

lamassemble -a last-train.mat sequences.fastq > alignment.

fasta

4 How It Works

The detailed steps within lamassemble are described elsewhere
[10]. It is not necessary for a user to understand this, but a rough
understanding is useful for troubleshooting.

In a nutshell, lamassemble first runs the pairwise aligner LAST
to find alignments between pairs of reads, then runs the multiple
aligner MAFFT to align all the reads to each other, guided and
constrained by the LAST alignments. Finally, it makes a consensus
sequence from the multiple alignment.

The LAST step does not try to find alignments between every
read and every other read: such a thorough approach would be
feasible for a small number of reads, but the run time and memory
use would explode quadratically as the number of reads increases.
Instead, LAST aligns each position in each read to a few most-
similar reads. The aim is to align every read to every other read
either directly or indirectly.

lamassemble sorts the LAST alignments in descending order of
score (indicating strength of similarity), and uses this order to
define a guide tree for merging the sequences by MAFFT.

The LAST step also calculates an error probability for each pair
of aligned bases in its alignments. There is more than one possible
way to align a pair of sequences, and sometimes alternative align-
ments are nearly equally plausible (Fig. 3). Because LAST’s align-
ments are based on probabilities of substitutions, deletions, and
insertions, it is possible to calculate the probability that each pair of
aligned bases is wrong [14]. lamassemble assumes that positions
with error probability �0.002 are reliable, and passes them as
“anchors” to MAFFT. (This 0.002 threshold can be adjusted by
the user, but this seems to be rarely, if ever, necessary.)
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These error probabilities have an important limitation: they
indicate homology, including paralogy. For example, if a DNA
molecule contains a recent tandem duplication, a DNA read from
one copy of the duplication may align with low error probabilities
to a DNA read from the other copy. These two copies are true
homologs, because they are descended from a common ancestor.
But they are paralogs (duplicates within a genome), and lamassem-
ble should not merge them in order to accurately reconstruct the
DNA molecule. It can be arbitrarily difficult to avoid conflating
paralogs that are both large and recent (thus highly similar).

Pairwise alignment information calculated by LAST is passed to
MAFFT. MAFFT aligns input sequences progressively, i.e., repeat-
ing group-to-group alignment calculation from the terminal nodes
to the root on the guide tree. In a group-to-group alignment step,
each of two groups of sequences is split into short subsequences
using anchors found by LAST, where different pairs across the two
groups are considered. There can be positionally inconsistent
anchors for a pair of groups. To avoid this inconsistency, anchors
from higher-scoring LAST alignments are selected with higher
priority, while those with lower scores are excluded if inconsistent
with any anchors with higher scores. Optimum combination of
anchors is not searched for. Using this set of anchors, sequences
in a pair of groups are consistently split into short subsequences.
Each pair of groups of subsequences is aligned assuming the error
rate estimated by last-train. Then, all aligned subsequences are
concatenated to generate an aligned pair of groups of sequences.
This group-to-group alignment calculation is performed at every
node on the guide tree to generate a full alignment of all sequences.

Finally, a consensus sequence is derived from the multiple
alignment. Alignment columns with more than 50% gaps are dis-
carded, then the most likely base per column is determined, based
on the substitution probabilities from last-train. The 50% gap
threshold can be changed by the -g option.

gtatatgaattccaattcttaaccccccta
|||| | || | | | || ||||
gtat--ggttttgagtagt----cctccta

gtatatgaattccaattcttaaccccccta
|||| | || | || || ||||
gtat--ggttttgag----tagtcctccta

Fig. 3 Example of ambiguous alignment. Two different alignments of the same
sequences are shown. tagt in the bottom sequence can be aligned to two
different parts of the top sequence
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5 Missing Sequences

lamassemble may show a warning message like this:

lamassemble: using 29 out of 32 sequences (linked by pairwise

alignments)

This means that 3 out of 32 input sequences were discarded,
because no alignments were found between them and the other
reads. This is either because those 3 reads are genuinely unrelated
to the others or because lamassemble (more specifically, LAST)
failed to find some good alignments. As mentioned above under
“How it works,” the LAST step saves time by not finding all
pairwise alignments between all reads: the aim is to link all reads
indirectly, but this may fail. Such failure is not very common in our
experience, and may not matter anyway. If it is a concern, the LAST
step can be made more thorough-but-slow by increasing the m
parameter:

lamassemble -m100 last-train.mat sequences.fastq > consensus.

fasta

This sets the LAST rareness parameter m to 100 (presumably
higher than the default), so it aligns each position in each read to a
larger number of most-similar reads.

The default parameter settings are not catalogued in this chap-
ter, because they may change in future, but they are shown by this
command:

lamassemble --help

6 Bad Alignments

In our experience, lamassemble usually works well, but sometimes
it produces bad alignments and consensus sequences. A bad result
tends to occur when the sequence has a near-exact tandem dupli-
cation that is large (comparable to the read length). In such cases,
lamassemble may align wrong (paralogous) parts of reads.

One way to recognize a bad result is to align the consensus
sequence to a reference genome, and visualize this alignment as a
dotplot (see Note 8). A good result tends to have 45-degree lines
(indicating straight alignment), and resembles the alignments of
the raw reads: a bad result looks oddly different (Fig. 4).

There is no simple solution. Occasionally, the result improves
upon increasing the z parameter:
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lamassemble -z999 last-train.mat sequences.fastq > consensus.

fasta

This parameter is the maximum gap length permitted in the
LAST alignments: higher values increase run time. Actually, LAST
imposes a hard upper bound on this parameter, which will be less
than 999, so this setting really means “the maximum.” Higher z
may allow LAST to find a longer alignment spanning a large gap,
which may change the guide tree and anchor priorities supplied to
MAFFT.

re
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reference reference reference reference

co
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s

A B

reverse-oriented transposable element
forward-oriented transposable element
tandem repeat
exon (non-coding)
exon (coding)

Fig. 4 Examples of good (a) and bad (b) lamassemble results. The “good” example shows alignments of
16 DNA reads (vertical) to the reference genome (horizontal), and alignment of the lamassemble consensus
sequence to the genome. The horizontal black lines are boundaries between the 16 reads. The vertical stripes
show annotations of the genome: green¼exon, pink¼forward-oriented transposable element, blue¼reverse-
oriented transposable element, purple¼tandem repeat. The “bad” example shows 28 reads, and their
lamassemble consensus sequence
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7 Notes

1. It is harder to make accurate consensus sequences of short-
period tandem repeats (STRs) than of non-repetitive sequence
(e.g. Fig. 2). STR consensus sequences are less robust to small
changes in the lamassemble parameters. So it may be worth
maximizing z and increasing m. In Fig. 2, -m100 and -z100
options were used. We previously cut out the repetitive parts of
reads with �50bp flanks for global alignment [9], however,
with lamassemble we recommend using either whole reads or
longer flanks.

2. Sequences with highly unusual base composition require
specialized last-train files. For example, genomes of Plasmo-
dium falciparum or Dictyostelium discoideum are �80% a+t,
so it is important to use a last-train file that reflects this very-
different composition.

3. last-train finds the rates of differences between reads and
genome, which is a combination of sequencing errors and real
differences between reads and genome. lamassemble assumes,
however, that these are error rates, which is reasonable only if
the rates of real differences are small relative to the error rates in
the training reads. In order to apply lamassemble to reads with
a high rate of real differences from a reference genome, it may
be best to run last-train on a different set of reads, with few real
differences, from the same sequencing technology.

4. Because the substitution error rates may not be strand-
symmetric, it is best to be careful about which read strands
are used. It is best to consistently use the original reads from
the sequencer, not a mixture of original reads and reverse-
complemented reads, for both last-train and lamassemble.
(Consistently using reverse-complemented reads would work
equally well.) lamassemble automatically flips strands if neces-
sary to align the reads.

5. lamassemble assumes that the proportions of a:c:g:t in the
molecules, before sequencing errors are introduced, are the
same in each strand. In other words, it assumes that %a ¼ %
t and %c ¼ %g in each strand (before sequencing errors). This
assumption is violated by some kinds of data, e.g. bisulfite-
converted DNA.

6. lamassemble converts u (uracil) to t (thymine), thus treats it
just like t.

7. lamassemble allows ambiguous bases: m, r, w, s, y, k, v, h, d, b,
n. For the most part, it treats them as unknown: it makes
MAFFT use score 0 for aligning them to any base, and ignores
them when determining a consensus base. (The LAST step
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actually treats them non-neutrally, e.g. considering that w is a
or t, as does MAFFT when run separately from lamassemble.)

8. Dotplots were drawn using last-dotplot (http://last.cbrc.jp/
doc/last-dotplot.html) like this:

last-dotplot --sort2=0 --strands2=1 --rot1=v --rot2=h --

labels1=3

--rmsk1 rmsk.txt --genePred1 refFlat.txt aln.maf aln.png

The above command uses many options; the minimal com-
mand is

last-dotplot aln.maf aln.png

The main input is an alignment file aln.maf, and the
output is an image file aln.png. The RepeatMasker annota-
tion file rmsk.txt was obtained from the UCSC genome
database (https://genome.ucsc.edu); it is also possible to use
a .out file from http://www.repeatmasker.org. The gene
annotation file refFlat.txt was obtained from the UCSC
genome database.
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Chapter 10

Automated Removal of Non-homologous Sequence
Stretches with PREQUAL

Iker Irisarri, Fabien Burki, and Simon Whelan

Abstract

Large-scale multigene datasets used in phylogenomics and comparative genomics often contain sequence
errors inherited from source genomes and transcriptomes. These errors typically manifest as stretches of
non-homologous characters and derive from sequencing, assembly, and/or annotation errors. The lack of
automatic tools to detect and remove sequence errors leads to the propagation of these errors in large-scale
datasets. PREQUAL is a command line tool that identifies and masks regions with non-homologous
adjacent characters in sets of unaligned homologous sequences. PREQUAL uses a full probabilistic
approach based on pair hidden Markov models. On the front end, PREQUAL is user-friendly and simple
to use while also allowing full customization to adjust filtering sensitivity. It is primarily aimed at amino
acid sequences but can handle protein-coding nucleotide sequences. PREQUAL is computationally effi-
cient and shows high sensitivity and accuracy. In this chapter, we briefly introduce the motivation for
PREQUAL and its underlying methodology, followed by a description of basic and advanced usage, and
conclude with some notes and recommendations. PREQUAL fills an important gap in the current
bioinformatics tool kit for phylogenomics, contributing toward increased accuracy and reproducibility in
future studies.

Key words Filtering, Genomics, HMM, Homology, Phylogenomics, Sequence analysis

1 Introduction

The assembly of large datasets used in phylogenomic and compara-
tive genomic analyses heavily relies on automatic tools, typically run
sequentially into a pipeline. There are, however, few automatic
tools for quality control, resulting in these important controls
being performed (semi-) manually or worse, ignored. One such
control is the removal of primary sequence errors inherited from
source genomes and transcriptomes. These errors typically arise
from sequencing or assembly errors that insert (or delete) a nucle-
otide, leading to the disruption of the reading frame in translated
protein-coding genes. With poor sequence quality, it is not uncom-
mon that the reading frame is re-established by a second down-
stream deletion (or insertion), producing stretches of
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non-homologous amino acids within an otherwise legitimate
sequence. Another common situation is represented by poorly
annotated eukaryotic genes where intron-exon boundaries are
incorrectly predicted, resulting in translated intronic regions
being forced into multiple sequence alignments (MSAs).

The impact of these sequence errors in downstream analyses is
not yet fully understood, but it is reasonable to assume that they
will adversely affect phylogenetic analyses. Persistence of
non-homologous sequence stretches will negatively affect the qual-
ity of MSA, which is known to impact phylogenetic accuracy
[1]. The non-homologous sequence itself might also cause pro-
blems. If the phylogenetic signal in the source data is weak, then
errors induced by the primary sequence error or its effect on the
MSA might lead to false groupings in the tree, akin to the system-
atic errors caused by model misspecifications [2, 3]. Furthermore,
primary sequence errors can bias the estimation of natural selection
coefficients (dN/dS) in a similar manner to errors in MSA, because
they lead to an artificially inflated number of non-synonymous
substitutions [4]. Di Franco et al. [5] have found that segment
filtering leads to improved branch length estimation and a lower
false-positive rate in detecting positive selection.

When we look at MSAs, primary sequence errors are typically
evident as stretches of residues that share no sitewise homology
with other sequences in otherwise evolutionarily conserved regions
(see Fig. 1a). These stretches might be identified in a labor-intensive
and qualitative way through looking at MSAs with homologous
sequences from other species, but fixing this problem is at best
painstaking for a phylogenomic study with hundreds of genes
and species. For this reason, this step has been ignored by most
phylogenomic studies so far. Even after that hard work, the result is
based on individual opinion, making it subjective and not
reproducible.

To address this problem we developed PREQUAL
(PRE-alignment QUALity filter; [6]): a command line tool that,
given a set of unaligned homologous sequences as input, can iden-
tify and mask regions with non-homologous adjacent characters.
Our approach (see Fig. 1b) is different from the standard trimming
of MSAs to remove poorly aligned columns (see Fig. 1c), for which
several tools exist, including BMGE [7], trimAl [8], Gblocks [9],
and Divvier [10]. We deal with non-homologous residues in indi-
vidual sequences that are not necessarily associated with regions of
poor alignment. In fact, PREQUAL uses unaligned sets of
sequences and thus does not assume any fixed sequence alignment.
Instead of simply removing these errors, PREQUALmasks them in
order to maintain the original distance between residues, thereby
facilitating the inference of positional homology in the MSA step.
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Moreover, masking likely non-homologous stretches should facili-
tate the inference of MSAs, thereby improving MSA quality and
reducing the known biases in downstream phylogenomic and com-
parative genomic analyses.

2 Methods

2.1 Methodological

Intuition

Before discussing the technical details of what PREQUAL does, we
will give a broad overview of what it is trying to achieve and how it
works. We can formulate the problem of non-homologous residues
as a hypothesis for each individual residue in every sequence stating
“is there evidence that this residue shares sitewise homology with
another residue in my data set?” In other words, if I were to
consider all the probable ways by which a residue could have
evolved, is there support that this residue shares ancestry with any
other residue in my data? If the answer is yes, then that residue
should be carried forward to future steps (although we note it
could be removed later for other reasons, such as poor alignment
quality). If the answer is no, then that residue should be excluded

Fig. 1 Primary sequence errors and performance of stretch-masking vs. block filtering. (a) Alignment of
Hedgehog-interacted protein (HHIP) orthologs from vertebrate genomes (OrthoDB acc. EOG090702V5; http://
www.orthodb.org/; accessed 07/11/2017). (b) PREQUAL masks non-homologous residue stretches in individ-
ual sequences with X (light blue). Note that PREQUAL works on unaligned sequences but here aligned for easy
identification of masked residues. (c) Alignment block filtering with BMGE on PREQUAL-treated and aligned
sequences. Images produced with AliView [20]
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from future steps, either through masking to maintain the relative
positions of the residues or through simple removal.

With this hypothesis in mind, the next question is how to
quantify the support for homology and pick a threshold that spe-
cifies yes or no. Our quantification works by comparing a sequence
with every other sequence in our data, and for each residue in that
sequence, we calculate the maximal probability of that residue
sharing sitewise homology with any other residue in the data
using an explicit probability model. This gives a score for every
residue in every sequence, which is compared to an a priori chosen
threshold to decide whether to keep or remove the residue. In
order to derive an efficient threshold, we took both a simulation
approach—where we introduced errors to error-free simulated
sequences and found the best score to identify those errors—and
an empirical approach looking at real data and assessing whether
the removed residues showed signs of errors. Our results showed
that both approaches yielded very similar thresholds, giving us
confidence that PREQUAL works as intended [6].

This intuition is also helpful for explaining why PREQUAL is
designed to work for amino acid sequences (or translated to amino
acids from protein-coding DNA), but not straight on DNA
sequences. In order to test our hypothesis of sitewise homology,
we need sequences to be relatively complex, so that we can reliably
distinguish true homologies from errors. Amino acid sequences
have 20 possible characters and are therefore much more complex
than DNA sequences that have only four. To put this in numbers,
consider a sequence of length 10: there are around one million
possible DNA sequences (410 ¼ 1,048,576) but around 10 trillion
possible amino acid sequences (2010 ¼ 10.24 � 10�12). The vastly
greater space of possible amino acid sequences makes identifying
similarities—and therefore errors—much easier.

2.2 Statistical

Approach

PREQUAL uses a full probabilistic approach based on pair hidden
Markov models (pairHMM) to describe the relationship between
sequence pairs. Given a parameterized pairHMM, it calculates the
posterior probability (PP) of a character being related to a character
from another sequence and filters out (masks) characters with
insufficient evidence of homology. PairHMMs consist of three
hidden states defining the relationship between two sequences X
and Y: a match state that describes shared ancestry between X and Y
through a process of substitution and insert and delete states that
describe gain and loss in sequence X, respectively. Given a parame-
terized pairHMM, it is possible to calculate the PP of a character
from X being related to a character from Y using the forward-
backward algorithm [11]. In PREQUAL, a slightly different PP is
calculated to capture the PP of a character in sequence X ¼ {xi}
sharing a common ancestor with any character in the set of
n sequences being considered A ¼ {Y1, . . ., Yn}, where X ∈ A; the
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set of sequences without X is A
0 ¼ A � X, and a pairHMM can be

run on the pair (X, Y) to obtain the posterior probability of Pr(xi, yj)
using forward-backward. First, we can calculate the maximal PP of
xi sharing a common ancestor with any character in Y as

Pr xi, Y∗ð Þ ¼ max y j ϵY Pr xi, y j

� �n o
. Then we want to find the

maximal PP of xi sharing a common ancestor with any of the
other sequences: Pr xijAncestorð Þ ¼ max YϵA0 Pr xi, Y∗ð Þf g . The
value of Pr(xi| Ancestor) can be computed for every character of
every sequence inA, and an appropriate threshold τ can be used as a
cutoff to discriminate between characters with enough evidence for
shared ancestry that should be carried through to the alignment
phase and those that should be discarded (masked).

In practice, PREQUAL calculates PPs using a bounded
pairHMM with a substantially modified version of Zorro [12]. It
uses a heuristic approach for calculating Pr(xi| Ancestor) by choos-
ing a set of sequences from S

0
based on evolutionary divergence

[13] and sequence coverage to reduce the number of pairHMM
calculations that need to be performed. This heuristic samples only
a subset of sequences to find the max(p(xi| Ancestor)) ensuring that
the closest sequences are included and they have adequate similarity
over enough of the characters. The default is to examine the ten
closest sequences ensuring that at least three of them are equal to or
longer than themedian length of all the sequences. PREQUAL also
avoids computing the entire dynamic programming matrix for the
pairHMM where possible, by bounding the distance any path can
take through that matrix from the diagonal.

The residue-specific PP is the main filter in PREQUAL. The
default threshold is PP ¼ 0.994, which has been derived from a
ROC curve so that �95% of correct amino acids are retained while
removing >90% of the errors (see Fig. 4). The performance of the
default threshold has also been validated on various real phyloge-
nomic datasets (see Subheading 4).

3 Program Usage

PREQUAL is designed to be as simple and lightweight to use as
possible. The default values should work well for most phyloge-
nomic datasets. Nevertheless, PREQUAL provides the user with
many options for customizing its behavior and comes with a
detailed manual.

3.1 Download

and Installation

The program PREQUAL is written in C/C++, and it is available
through a GNUGPL v3.0 from SimonWhelan’s GitHub (https://
github.com/simonwhelan/prequal).
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PREQUAL can be built from source with a simple “make”
command in Linux and OS X. After installation, add it to your
path if you want PREQUAL to be accessible from anywhere in your
system.

3.2 Basic Usage PREQUAL runs on the command line. The majority of users will
find the basic usage sufficient (obtained by typing the program
name without any argument). Given an input file containing a set
of homologous sequences (in FASTA format) and assuming that
PREQUAL is in the current directory, type:

./prequal my_seq.fasta

This command will run PREQUAL on the input file. The input
file should be a set of homologous sequences in FASTA format and
must not contain stop codons (*).

The default output of PREQUAL consists of at least two files:

my_seq.fasta.filtered: main output containing the
sequences after filtering.

my_seq.fasta.PP: internal file containing the calculated PP. The
interest of saving the PPs is to rerun PREQUAL with different
settings on the same data without the need of recalculating PPs,
the most computationally intensive step (see Note 1).

my_seq.fasta.warning: this file might be also generated, con-
taining warnings when too much of a sequence (or all of it) has
been filtered out.

Figure 2 shows a typical output printed to the screen. It can be
separated into the following sections:

A Summary of input data.

B Information about the computation of PPs. By default, PREQ-
UAL’s heuristic will compare each sequence to the ten most
similar sequences given adequate coverage (B1). Progress spin-
ners provide an indication of the progress (B2). A confirmation
will be printed when PPs are calculated (B3).

C This section refers to the actual filtering step. It provides infor-
mation on the applied PP threshold and the number of residues
that fall below it and thus will be removed or masked (C1).
Often, residues with low PP form stretches, and these might be
joined by PREQUAL and this information is also printed (C2).
By default, PREQUAL fully removes low PP residues in the N-
and C-termini, whereas residues in the “core” region are
masked with a “X” character (C3).

D Name of main output file.
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E Summary of the analysis showing the number of sequences and
residues in the input (“Original”) and output (“Filtered”).
Note that individual sequences might be entirely removed, in
which case a message will be printed to “.warning.”

F Sometimes, PREQUAL will generate an additional warning file.
This information is important and should be inspected. Exam-
ples of possible warnings might be “WARNING: 86.94% of
sequence removed/missing for [5] Seq1” or “WARNING:
Fully removed sequence [5] Seq2.”

3.3 Using PREQUAL

with DNA Sequences

When the input data are nucleotide sequences of protein-coding
genes, these are first translated in silico upon automatic selection of
the appropriate genetic code (this can also be provided by the user),
sequences are then filtered at the amino acid level as described
before, and the corresponding filtered DNA sequences are printed
to the output.

A simple run in PREQUAL with DNA sequences might look
like this:

./prequal my_seq_DNA.fasta

Fig. 2 Typical screen output of PREQUAL, showing basic information of input dataset, analysis, and results.
See main text for detailed description
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The program will first confirm that the input consists of DNA
sequences by writing to the screen: “Found only DNA sequences.
Doing translations.”

In this case, the default consists of at least four files:

my_seq_DNA.fasta.dna.filtered: main output containing
the masked nucleotide sequences.

my_seq_DNA.fasta.filtered: corresponding masked amino
acid sequences.

my_seq_DNA.fasta.translation: information regarding the
translation. From nucleotide to amino acid sequences and the
applied genetic code.

my_seq_DNA.fasta.PP: internal file containing the
calculated PP.

my_seq_DNA.fasta.warning: an additional warning file will
most likely be generated, containing important information
about the sequences.

While using PREQUAL with nucleotide sequences of protein-
coding genes is possible (and highly recommended), some restric-
tions apply. All sequences must be in the first reading frame and
must have all its codons complete, and sequences must not contain
stop codons (*). In case of any ambiguous nucleotide (not A, C, G,
or T), the entire codon will be ignored and treated as gaps in the
output. If PREQUAL detects that the input file contains DNA
sequences, it will try to automatically select the right genetic code
to translate the DNA sequences. This automatic code selection is
heavily guided by stop codons, therefore the need to ensure that no
internal stop codons are present in the input. Small differences in
the genetic code when doing the translations should not strongly
affect the filtering step, but it is highly recommended that the user
checks the automatically selected genetic code, specified in the
translation file. It is also possible to enforce the use of the universal
genetic code using the option “-forceuniversal” (see below).
When using PREQUAL with DNA data, it is highly recommended
to check the warning and translation files to ensure that the filtering
has been performed adequately.

3.4 Advanced Usage In the following, we describe all available settings for fine-tuning
the behavior of PREQUAL and adapt it to the user’s preferences. A
short description of all available options can be obtained in the
command line by typing “--h all.” (see also Notes 1 and 2).

3.4.1 Options Affecting

the Definition of Core

Regions and Filtering

To account for the different evolutionary patterns observed across
most proteins, PREQUAL defines core and flanking regions. A
core region is defined as the central part of the protein that is
evolutionarily relatively well conserved, and its flanking regions,
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attributable to N- and C-termini, are allowed to be less conserved.
In practice, core regions are defined by the presence of at least three
contiguous residues with high PP. By default, residues with low PP
within the core region are masked with an “X” whereas those in the
flanking (noncore) regions are simply removed.

The default behavior regarding the definition of core regions
and filtering can be controlled with the following options:

-corerun X: Defines the number (X) of contiguous residues with
high PP that are used to define a core region. Low values of X
will make the program more generous at defining the core,
whereas high values will make the program more conservative.
Default is 3.

-nocore: No core region is defined. Default is to define a core
region, which is defined by the presence of at least three con-
secutive high-PP residues.

-removeall: Removes all low PP residues rather than only those
in the flanking regions. This option should be used with cau-
tion. The masking of residues within the core region maintains
the original distance between residues, thereby facilitating the
inference of the original positional homologies. The complete
removal of residues can negatively affect MSA.

-corefilterX: Defines the character used to mask residues in the
core region. Default is “X” and alternatives can only be a single
character. Alternative characters might help in the visualization.

-noremoverepeat: By default, PREQUALwill attempt to remove
long identical repeats that can occur within individual sequences,
most often due to sequencing or assembly errors. By selecting
this option, repeats will not be removed (see also Note 3).

3.4.2 Options Related

to DNA Sequences

The following options affect how PREQUAL deals with protein-
coding DNA sequences:

-nodna: By default, PREQUAL will try to guess whether the input
data are amino acids or nucleotides. Using this option forces
PREQUAL to read input as amino acid sequences. This might
be useful for proteins extremely enriched in alanine (A), cyste-
ine (C), glycine (G), and/ or threonine (T).

-forceuniversal: This option forces PREQUAL to always use
the universal code. By default PREQUAL will attempt to
choose the right genetic code for translating the DNA
sequences by detecting codons that differ from the
standard code.
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3.4.3 Options Affecting

Output Formats

The output files and naming conventions can be modified using the
following settings:

-outsuffix X: By default PREQUAL prints out filtered data to
the file “.filtered” using the input file as a base name. This
option will change the suffix of the file containing the filtered
sequences.

-dosummary: This will generate a new output file “.summary”
containing a summary of the analyses, including information
on the proportion of residues removed per sequence (in total
and within core regions) and some helpful cutoffs of the pro-
portion of removed data with their associated PP thresholds,
which can be informative to select a custom cutoff.

-dodetail: This will generate a new output file “.detail” where,
for each sequence and residue, the following information will
be printed out: estimated PP (maxPP; range 0,1), whether the
residue has been filtered out (toRemove; 0 ¼ FALSE;
1 ¼ TRUE), and whether it is within the core region (Inside;
0 ¼ FALSE; 1 ¼ TRUE) (see Fig. 3). This file can be used to
inspect the PP values of specific residues to personalize the
filtering options.

-noPP: Do not output the posterior probability file (“.PP”). Note
that this will require to recalculate PPs at every run of PREQ-
UAL (see also Note 1).

3.4.4 Options Affecting

Posterior Probabilities

and Filtering

The following options might be used to modify the residue filtering
as well as the heuristics used for the calculation of PPs:

-filterthresh X: Modifies the PP threshold. This is the main
filter in PREQUAL, and any residue with a PP below this

Fig. 3 Example of a detailed output file generated with “-dodetail” option. See main text for detailed
description
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threshold will be filtered out. The default value (X¼ 0.994) has
been defined based on analyses of simulated data and validated
on a wide range of real sequence datasets (see Subheading 4). In
principle, filterthresh can take any value between 0 and
1, corresponding to situations where all residues would be
kept or filtered out, respectively.

-filterprop X: An alternative way of filtering the data is by
defining the proportion of the original data (X%) that the user
is willing to loose. When using this option, PREQUAL will
automatically adjust the PP threshold accordingly. In practice,
PREQUAL will often filter out a slightly higher proportion of
data than specified because of the way regions of low confi-
dence are joined together and how N- and C-termini are dealt
with. This option will also print out to screen several cutoffs of
the proportion of removed data with their associated PP
thresholds, which might be informative to select the desired
cutoff. The options “-filterprop” and “-filterthresh”
may not be used together.

-pptype closest/longest/all [Y]: This setting modifies the
algorithm that chooses the subset of sequences that will be used
to calculate PPs for each individual sequence. The default is to
compare the ten closest sequences defined by Kmer distances
(“--pptype closest”). The number of closest relatives con-
sidered might be raised to improve the accuracy of the PPs by
specifying Y (e.g., “--pptypeclosest20”). It is also possible
to specify that PPs are calculated with the ten longest sequences
(“-pptype longest”; the number of longest sequences may
also be changed with Y). We recommend to use the latter
option with caution because the longest sequences might con-
tain the most errors. A last possibility is to consider all
sequences (“-pptype all”). The last option might be very
slow, particularly for datasets with many sequences.

-filterjoinX: The default behavior of PREQUAL is to join low
PP residues into masked stretches if these are separated by
fewer than ten residues. This option allows modifying the
number of residues required between two low PP residues
(X) so that the entire sequence stretch is filtered out. Low
values of X are more generous and will keep more data, whereas
high values of X are more stringent and will filter out more data.

-nofilterlist X: This option allows to provide a file “X” con-
taining a list of full sequence names (i.e., corresponding to the
FASTA headers) to be ignored by PREQUAL during the
masking step. This option might be useful if some sequences
in the input file are expected to be highly divergent a priori,
which might lead to incorrectly filtering out too much legiti-
mate data (see Note 4).
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-nofilterword X: Similar to the above option, it is possible to
define a file “X” that contains a list of key words that might
appear within sequence names (i.e., within the FASTA headers)
and these will not be masked by PREQUAL.

4 Benchmarking

The accuracy and efficiency of PREQUAL in detecting true errors
were tested using simulated error-free sequences, which were cor-
rupted by including two types of errors at known—but random—
positions, and tracking the number of errors (true and false) that
were detected by PREQUAL [6]. Briefly, sets of 100 gene align-
ments were simulated in INDELible v.1.03 [14] using the WAG+Γ
model (α ¼ 0.5 or 1.8) on a published tree containing both long
and short terminal branches [15]. Simulated alignments were
500 amino acids long and contained a core region (450 amino
acids) flanked by more gappy regions (25 amino acids each) aiming
to mimic typical exon alignments. Three sets of 100 alignments
were simulated, each differing on the level of gappyness: low (0.01
gap rate for the core and 0.02 for flanking regions), medium (0.02
and 0.05), and high (0.1 and 0.2). Individual alignment files were
then corrupted by randomly inserting errors in sequences (propor-
tional to sequence length) and locations. The errors corresponded
to random amino acids drawn proportionally from the residue
frequencies of the WAG model. Errors were either inserted at
random positions, mimicking misannotation errors derived from
wrong gene models, or replaced parts of the original sequences,
mimicking frameshifts produced by indels at the nucleotide level.
Three error rates were tested: low (0.001 errors per amino acid,
~22 errors per file), medium (0.002: ~44 errors), and high (0.003:
~66 errors). In addition, different lengths of individual errors were
also tested: 10, 20, and 30 amino acids for their final expected
lengths (the actual lengths were drawn from a geometric distribu-
tion). Overall, a total of 108 experimental conditions were
simulated including three sets of alignments of varying gappyness,
three error rates, three error lengths, and two types of errors (mis-
annotations and frameshifts). Simulated gene files were analyzed
with PREQUAL v.1.0 and the results are summarized in Table 1.

Overall, PREQUAL performed well under all tested conditions
but was particularly efficient at detecting errors inserted at random
positions mimicking misannotations (>98% were captured). Accu-
racy (proportion of correctly identified true and erroneous resi-
dues) was in most cases >90%, although it lowered up to 73%
when very gappy alignments were considered. Regarding frameshift
errors that replaced parts of the original sequences, PREQUAL
generally detected >93% of erroneous residues, except for short
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error stretches of ~10 residues where 69% of errors were captured.
The accuracy of frameshift detection followed the same trend as for
misannotations. The proportion of legitimate residues removed by
PREQUAL on error-free sequences was ~7% for most tested
conditions.

Using a ROC curve, we derived the default PP threshold of
0.994 so that �95% of correct amino acids were retained while
removing>90% of frameshift and misannotation errors (see Fig. 4).
The area under the curve (AUC), representing the performance of
PREQUAL as classifier, was 0.965 and 0.992 for frameshifts and

Table 1
Performance of PREQUAL on simulated data

Misannotations Frameshifts

No. of
characters

Accuracy
(%)

Errors
captured
(%)

No. of
characters

Accuracy
(%)

Errors
captured
(%)

Gappyness Low 2.339.354 95.47 99.67 2.250.400 95.60 93.21
Mid 2.345.437 91.84 99.68 2.255.919 91.89 94.60
High 2.362.243 73.10 99.76 2.272.380 73.14 96.61

Number of errors Low 2.300.164 92.26 99.81 2.255.919 92.36 94.24
Mid 2.390.366 91.47 99.78 2.255.919 91.49 94.62
High 2.390.366 91.47 99.78 2.255.919 91.49 94.62

Expected error
length

10 AA 2.296.403 91.77 99.16 2.255.919 91.90 68.97
20 AA 2.390.366 91.47 99.78 2.255.919 91.49 94.62
30 AA 2.389.967 91.99 99.87 2.255.919 91.98 98.15

Frameshift

FPR

T
P
R

0.
0

0.
5

1.
0

0.0 0.5 1.0

Misannotation

FPR

T
P
R

0.
0

0.
5

1.
0

0.0 0.5 1.0

Fig. 4 ROC curve showing the relationship between true-positive rates (TPR) and
false-positive rates (FPR) for frameshift and misannotation errors based on
simulated data. Dots on curves mark the critical point where �95% of correct
amino acids are retained and>90% of the errors are removed, corresponding to
the default PP threshold of 0.994
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misannotations, respectively. The default threshold derived from
simulated data was further evaluated on various real phylogenomic
datasets [3, 16, 17]. A careful inspection of the results suggested
that the overwhelming majority of errors identifiable by eye were
removed using the default PP threshold, showing its appropriate-
ness for a wide range of datasets characterized by very different
levels of sequence divergence, from ca. 20 to 2000 million years
ago.

PREQUAL can handle typical datasets on a common laptop
computer. For example, the analysis of 107 sequences with a maxi-
mal length of 675 amino acids took 42 s on a computer equipped
with a 2.7 Ghz i7 processor, whereas a larger set of 272 sequences
with a maximal length of 1149 amino acids took 139 s (see also
Note 5).

5 Notes

1. Although the default settings should work well for most appli-
cations, it is possible to fine-tune PREQUAL’s behavior to
specific datasets and user needs. To facilitate this process, PP
values (the computationally most expensive part) are stored
into an output file (“.PP”) by default. When a PP file with
the same root name as the input file is present in the same
directory, PREQUAL will get the PP values from that file and
only perform the filtering step, which is almost immediate. This
functionality allows to experiment with different filtering
options without additional computational cost.

2. PREQUAL is not designed to detect highly divergent paralogs.
If a single divergent paralog exists per input file, PREQUAL
might be able to filter it out if the evidence for homology
(PP) is low. However, this will be almost impossible if two or
more paralogs are present because the evidence of homology
between themmight be high and thus paralogs will be retained.
Similarly, PREQUAL will have problems to remove primary
sequence errors if these happen at similar relative locations in
two or more sequences. Even though most errors are expected
to not have this distribution, it can happen if, e.g., sequences
contain primer sequences or they mistakenly incorporate the
same intron due to a propagated annotation error. These situa-
tions violate the underlying assumptions of PREQUAL. In the
presence of multiple divergent paralogs or errors at similar
locations, PREQUAL will assume that the observed high simi-
larity can only arise due to shared ancestry and therefore the
affected residues will most likely be kept. Therefore, it is recom-
mended to check the filtered data and to deal with paralogs
with more appropriate methods.
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3. The use of PREQUAL on repetitive sequences is not recom-
mended. PREQUAL was designed to work with simple
protein-coding homologous sequences. If input sequences
contain homologous regions within the sequence itself, such
as repeated domains or other tandem repeats, establishing the
homology between the repeats becomes challenging. If dealing
with such cases, it is recommended to carefully check the results
and decide whether PREQUAL adequately dealt with the data
at hand. Sometimes, repeated regions might occur within indi-
vidual sequences by error (e.g., erroneous gene models). By
default, PREQUAL will assume that long identical repeats are
due to errors and it will try to remove them (printing a note to
the warning file). This can be avoided using the “-noremo-
verepeat” option.

4. PREQUAL will have trouble to handle highly divergent
sequences in a set of otherwise conserved proteins. This can
be the case for sequences from parasites or prokaryotic homo-
logs analyzed together with eukaryote sequences. In these
cases, PREQUAL will likely mask many error-free—but diver-
gent—residues. In order to overcome this problem, it is possi-
ble to provide a list of taxa that should be ignored during
homology inference (see Subheading 3.4.4).

5. PREQUAL is computationally light and runs on a single CPU.
With genome-scale data, it is routine to analyze hundreds or
thousands of input files. Depending on the number and size of
the input files, this might be done with a “for” loop in Bash. It
is also possible to take advantage of parallelization on multicore
systems, e.g., using GNU parallel [18] or incorporate PREQ-
UAL into pipelines or workflow managers such as
Snakemake [19].
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Chapter 11

Analysis of Protein Intermolecular Interactions
with MAFFT-DASH

John Rozewicki, Songling Li, Kazutaka Katoh, and Daron M. Standley

Abstract

The Database of Aligned Structural Homologs (DASH) is a tool for efficiently navigating the Protein Data
Bank (PDB) by means of pre-computed pairwise structural alignments. We recently showed that, by
integrating DASH structural alignments with the multiple sequence alignment (MSA) software MAFFT,
we were able to significantly improve MSA accuracy without dramatically increasing manual or computa-
tional complexity. In the latest DASH update, such queries are not limited to PDB entries but can also be
launched from user-provided protein coordinates. Here, we describe a further extension of DASH that
retrieves intermolecular interactions of all structurally similar domains in the PDB to a query domain of
interest. We illustrate these new features using a model of the NYN domain of the ribonuclease N4BP1 as
an example. We show that the protein-nucleotide interactions returned are distributed on the surface of the
NYN domain in an asymmetric manner, roughly centered on the known nuclease active site.

Key words Protein-nucleotide interaction, Protein-protein interaction, Protein structural alignment,
RNA structure, Ribonuclease, Binding site prediction, Database query, Structural domain

1 Introduction

It is well-known that protein domains sharing a similar overall fold
can exhibit very low similarity in their primary sequences. Less is
known about the conservation of intermolecular binding sites.
Because experimentally determined protein structures often
include other bound molecules, the conservation of intermolecular
interactions can be observed through use of structural alignments.
Since more andmore structural assemblies are being solved recently
(e.g., by cryo-EM), it is expected that the number of “structurally
conserved interactions” that can be extracted from the Protein
Data Bank (PDB) will increase in the near future. Here, we propose
a method for automatically identifying such interactions and
mapping them back on a protein of interest.
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There are potentially many steps, involving multiple parameters
and decisions, that are required when searching for structurally
conserved interactions: proteins must be decomposed into
domains, domains must be aligned, intermolecular interfaces
must be identified, etc. DASH itself is a rather simple tool: given
a query structural domain, DASH returns a ranked list of structur-
ally similar domains in the PDB along with their alignments and
structural superpositions to the query. Thus, in order to automate
the retrieval of structurally conserved interactions, DASH features
have been expanded, and new workflow scripts have been devel-
oped in an effort to simplify these complex tasks.

In DASH, the computationally expensive structural alignments
have been pre-computed for every representative domain in the
PDB, allowing chain-level and domain-level alignments to be
accessed with minimal overhead. The MAFFT-DASH server con-
verts structurally conserved residues into constraints for MSA cal-
culation [1]. The positive effect of structural information on MSA
accuracy has been conclusively demonstrated [2–4]. Here, we use
this approach to retrieve both structural alignments and intermo-
lecular interactions, which we map back onto the query domain.
This is accomplished, in part, by leveraging two new DASH fea-
tures: (i) the option to Search by Structure, which allows non-PDB
entries to be used as input, and (ii) export of the transformation
matrix, which allows any molecule in the reference frame of a
structural hit to be rotated into the reference frame of the query.
To illustrate the use of these methods on the command line, we
provide a Python script, get_interactions.py, which accepts a
user-provided domain structure, queries DASH to find structural
hits and their transformation matrices, and then applies the trans-
formations to all molecules interacting with the hits. We prepared a
second script, calculate_conservation.py, which computes
conservation of the query domain and formats the output
for visualization. We illustrate the use of these new tools by analyz-
ing a model of the NYN domain-containing protein, Nedd4
binding protein 1 (N4BP1). Supplemental materials for this chap-
ter are available at https://sysimm.org/dash/mimb2020. This
includes Python scripts, example inputs/outputs, and system
requirements.

2 NYN Domain-Containing RNases

A practical example of how structural similarity can be used for
functional inference is the NYN domain. This domain was origi-
nally identified by phylogenetic analysis of several mammalian
proteins [5]. One of these proteins, ZC3H12A (also known as
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MCPIP-1), was originally proposed to act as a transcription factor
[6]. However, by combining experimental and structural model-
ing data, ZC3H12A was subsequently shown to be a ribonuclease
acting preferentially on a set of pro-inflammatory cytokine mes-
senger RNAs [7]. We note that the structural model in this case
was built on a template in the “twilight zone” (13% sequence
identity) which itself was a structural genomics target with no
known function (PDB ID 2QIP), highlighting the importance of
structural alignment in remote-homology function prediction.
ZC3H12A has since been shown to function in a variety of cell
types as an essential posttranscriptional regulator and has thus
been renamed “Regnase-1” [8]. Recently, suppression of
Regnase-1 expression in T cells was found to be critical for
controlling tumor growth [9].

Despite these findings, very little is known about how Regnase-
1 recognizes its target RNA. A crystal structure of nucleotide-free
Regnase-1 has been solved [10], and residues essential for RNase
activity and RNA binding have been identified [11]. However,
there is yet to be a report of Regnase-1 bound to RNA. Since
there are many other proteins which contain NYN-like domains
in the PDB, some of which contain bound nucleotides, we
hypothesized that a general picture of how NYN domains interact
with nucleotides could be realized through a combination of struc-
tural alignment and mapping of structurally conserved interactions.

A second NYN-containing RNase is N4BP1, which was origi-
nally reported to interact with the E3 ubiquitin ligase Nedd4
[12]. The presence of an NYN domain suggested that N4BP1
might also play a role in regulating RNA levels. Indeed, it was
recently shown that the catalytic residues are conserved between
N4BP1 and Regnase-1; furthermore, N4BP1 was demonstrated to
degrade HIV RNA in CD4+ T cells [13]. To date, an experimen-
tally determined structure of N4BP1 has not been reported. To
illustrate the use of DASH in visualizing putative protein-
nucleotide interactions, we work through the steps needed to
build a 3D model of the N4BP1 NYN domain, collect the top
structural homologs to this model, and examine structurally con-
served protein-protein and protein-nucleotide interactions.

3 Construction of N4BP1 NYN Domain Homology Model

We prepared a 3D model of the N4BP1 NYN domain (residues
615–775, red font) based on the Regnase-1 NYN domain (PDB
ID 3V32).
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MAARAVLDEFTAPAEKAELLEQSRGRIEGLFGVSLAVLGALGAEEPLPARIWLQLCGAQEAVH

SAKEYIKGICEPELEERECYPKDMHCIFVGAESLFLKSLIQDTCADLCILDIGLLGIRGSAEA

VVMARSHIQQFVKLFENKENLPSSQKESEVKREFKQFVEAHADNYTMDLLILPTSLKKELLTL

TQGEENLFETGDDEVIEMRDSQQTEFTQNAATGLNISRDETVLQEEARNKAGTPVSELTKQMD

TVLSSSPDVLFDPINGLTPDEEALSNERICQKRRFSDSEERHTKKQFSLENVQEGEILHDAKT

LAGNVIADLSDSSADSENLSPDIKETTEEMEYNILVNFFKTMGYSQEIVEKVIKVYGPSTEPL

LLLEEIEKENKRFQEDREFSAGTVYPETNKTKNKGVYSSTNELTTDSTPKKTQAHTQQNMVEK

FSQLPFKVEAKPCTSNCRINTFRTVPIEQKHEVWGSNQNYICNTDPETDGLSPSVASPSPKEV

NFVSRGASSHQPRVPLFPENGLHQQPEPLLPNNMKSACEKRLGCCSSPHSKPNCSTLSPPMPL

PQLLPSVTDARSAGPSDHIDSSVTGVQRFRDTLKIPYKLELKNEPGRTDLKHIVIDGSNVAIT

HGLKKFFSCRGIAIAVEYFWKLGNRNITVFVPQWRTRRDPNVTEQHFLTQLQELGILSLTPAR

MVFGERIASHDDRFLLHLADKTGGIIVTNDNFREFVNESVSWREIITKRLLQYTFVGDIFMVP

DDPLGRSGPRLEEFLQKEVCLRDMQPLLSALPNVGMFDPSFRVPGTQAASTSHQPPTRIQGAP

SSHWLPQQPHFPLLPALPSLQ 

QNLPMPAQRSSAETNELREALLKIFPDSEQRLKIDQILVAHPYMKDLNALSAMVLD

We then used the Spanner [14] server (https://sysimm.org/
spanner/) to build a 3D model based on a pairwise sequence
alignment to a structural template (see Fig. 1).

4 Preparation of a Ranked List of NYN-Like Domains Using DASH

We next used the new Search by Structure feature in DASH that
allows user-provided structures to be efficiently aligned to DASH
domains. On the web interface, Search by Structure can be invoked
by uploading a PDB or mmCIF file. The input and results page are
illustrated using the model of the N4BP1 NYN domain (see Fig. 2).
All of the output can be downloaded as an easily parsable zip archive
of JSON data. The superimposed structures can be downloaded as
a 7zip archive. A table giving an overview of the results can also be
downloaded as a TSV file.
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5 Extracting Putative Nucleotide Interactions from DASH Hits

In order to collect the intermolecular and interdomain interactions
of the DASH hits and map them onto the query domain, we must
carry out a number of steps as follows:

1. Read the DASH hits in descending order.

Fig. 1 N4BP1 model. A, Sequence alignment between N4BP1 and Regnase-1 NYN domains; B, 3D model of
N4BP1 NYN domain with sphere showing approximate location of catalytic Mg2+ in red

Fig. 2 DASH web server. The input (a) and results (b) pages on the DASH web server
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2. Extract the PDB ID and domain ID of the hit, along with the
transformation matrix needed to superimpose the hit-domain
onto the query-domain.

3. Download the associated mmCIF file from the PDB. We use
mmCIF files for this step because they contain cleaner and
more complete data and can be parsed easily by standard
tools, such as BioPython (https://biopython.org/) [15].

4. Extract “environment” coordinates: interactions between the
hit-domain and other domains, nucleotides, heteroatoms, etc.
from the entire PDB entry.

5. Superimpose the environment onto the query-domain using
the transformation matrix.

6. Filter and output the superimposed environment according to
the user’s specifications.

Because the steps above would be tedious to performmanually,
we have prepared a Python script (get_interactions.py) that auto-
mates them. In its simplest form, the script takes a DASH domain
ID (or Search by Structure job ID) as input:

get_interactions.py -qd dash503929320

Job IDs currently expire after 2 weeks. The current set of
options for this script are as follows:

usage: get_interactions.py [-h] [-rest REST] [-verbose] -qd

QUERY_ID

[-td TEMPLATE_ID] [-cores CORES] [-limit

LIMIT]

[-filter-score FILTER_SCORE] [-o

OUTFILE] [-prot]

[-nuc] [-het] [-water] [-prot-close

PROT_CLOSE]

[-prot-clash PROT_CLASH] [-het-close

HET_CLOSE]

[-het-clash HET_CLASH] [-nuc-close

NUC_CLOSE]

[-nuc-clash NUC_CLASH] [-water-close

WATER_CLOSE]

[-water-clash WATER_CLASH] [-ftp FTP]

[-cache CACHE] [-display-template-

chain]

optional arguments:

-h, --help Show this help message and exit

-rest REST Base URL to use for querying the DASH
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REST interface.

-verbose Output many more status messages.

-qd QUERY_ID Query DASH domain ID or Search by

Structure job ID.

-td TEMPLATE_ID Template DASH domain ID. Ignored when

-qd is a Search

by Structure job ID.

-cores CORES Number of CPU cores to use.

-limit LIMIT At most, this many superimposed entries

will be

output. 0 means no limit.

-filter-score FILTER_SCORE

Alignments with scores below this cutoff

will be not

be used.

-o OUTFILE Output mmCIF file.

-prot Show protein residues in output.

-nuc Show nucleotides in output.

-het Show HETATM in output.

-water Show water HETATM in output.

-prot-close PROT_CLOSE

Protein atoms less than this cutoff will be

considered

close.

-prot-clash PROT_CLASH

Protein atoms less than this cutoff will be

considered

clashing.

-het-close HET_CLOSE HETATM less than this cutoff will be

considered close.

-het-clash HET_CLASH HETATM less than this cutoff will be

considered

clashing.

-nuc-close NUC_CLOSE Nucleotides less than this cutoff will

be considered

close.

-nuc-clash NUC_CLASH Nucleotides less than this cutoff will

be considered

clashing.

-water-close WATER_CLOSE

Water less than this cutoff will be

considered close.

-water-clash WATER_CLASH

Water less than this cutoff will be

considered

clashing.

-ftp FTP PDB FTP mirror to use for downloading

mmCIF files.
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-cache CACHE Temporary folder to use for mmCIF file

cache.

-display-template-chain

Display template chain from alignment.

DASH hits include not only alignments and top-line score
information but also the transformation matrix that can be used
to superimpose the hits onto the query structure. This means that
not only the specific protein residues in the alignment, but coordi-
nates for other chains or molecules in the PDB entry can also be
overlaid on the query. This is particularly useful for visualization of
the potential interactions between N4BP1 and nucleotides or other
protein chains/domains.

In order to search exclusively for protein-nucleotide interac-
tions for the NYN domain in N4BP1, we executed the following
command:

get_interactions.py -qd dash503929320 -filter-score 20 -nuc -o

out-nuc.cif.gz

We then visualized the output in PyMOL. Inside PyMOL,
nucleotide chains were selected by the following command in the
console window:

select nucleic, (byres polymer & name P)

Then, using the pull-down menu, these nucleotide chains were
displayed as orange ribbons with gray mesh, while the query pro-
tein was displayed as a cartoon. The Mg2+ from the Regnase-1
crystal structure (PDB ID 3 V33) was also incorporated as a red
sphere. The result shows very dramatically that the distribution of
nucleotides surrounding the NYN domains is highly asymmetric
(see Fig. 3). Moreover, we can see the active site Mg2+ appears
roughly in the center of the cloud of nucleotides.

It is worth looking at the biochemical function of the DASH
hits (see Table 1). They can be divided roughly evenly into RNA-
and DNA-binding proteins. Most are annotated as nucleases, but
two are annotated as ribosomal GTPases, one as a glutaminyl-tRNA
synthetase and one as an isopentenyl-tRNA transferase. Of particu-
lar interest is the endoribonuclease UTP24, which cleaves
pre-rRNA at a conserved pseudoknot [16]. Interestingly, in a
recently solved cryo-EM structure, the cleavage site is located far
from the active site of UTP24, suggesting that a yet-unknown
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helicase may be required for unwinding or remodeling the RNA
secondary structure [17]. This result is reminiscent of the helicase
UPF1, which “licenses” Regnase-1 by unwinding target stem-loop
structures [18].

6 Visualizing NYN-Nucleotide Interactions Along with Sequence Conservation or
RNA-Binding Propensity

A MAFFT alignment of N4BP1 homologs can be computed by a
combination of BLAST and MAFFT. First, we selected the top
1000 nonredundant sequence homologs to the N4BP1 NYN

Fig. 3 Distribution of nucleotides. The distribution of nucleotides around the N4BP1 NYN domains is highly
asymmetric

Table 1
NYN-nucleotide hits

Score PDB ID Nucleotide Function

38 3ZDB_A DNA Exonuclease IX

37 5OQL_P RNA Endonuclease UTP24

32 5WLC_SL RNA Endonuclease UTP24

27 5T9J_A DNA Endonuclease GEN1

27 5CO8_A DNA Endonuclease GEN1

25 6GRC_A DNA Endonuclease GEN1

23 4A2I_V RNA Ribosomal GTPase RSGA

21 5V07_Z DNA Exonuclease Exo1

21 1QTQ_A RNA tRNA synthetase

20 3FOZ_A RNA tRNA transferase

20 2YKR_W RNA Ribosomal GTPase RSGA
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domain using BLAST+. Then, we computed an MSA of these
sequences using MAFFT. The residue conservation was next calcu-
lated as a percentage of the BLOSUM62 substitution matrix for
each residue in the MSA relative to the maximum BLOSUM62
score of each column. This percentage was then inverted and
written into the b-factor column of the query protein mmCIF
file. These steps have been automated as a Python script, calcula-
te_conservation.py. The usage of the script is as follows:

usage: calculate_conservation.py [-h] [-verbose] -i PDB_PATH

[-temp TEMP_FOLDER] [-top

BLAST_TOP_N]

[-o OUT_PATH]

optional arguments:

-h, --help show this help message and exit

-verbose Output many more status messages.

-i PDB_PATH Path to PDB file.

-temp TEMP_FOLDER Path to folder to use for temporary data.

-top BLAST_TOP_N Use at most the top n hits from BLAST

search of nr

database.

-o OUT_PATH Output mmCIF file

In our N4BP1 example, we used the following command:

calculate_conservation.py -i n4bp1-spanner-model.pdb -top 1000

-o n4bp1_conc.cif.gz

The resulting file, n4bp1_conc.cif.gz,when viewed in PyMOL,
shows that there is no obvious correlation between residue conser-
vation and nucleotide contact (see Fig. 4). However, when we
instead predict RNA-binding sites using the aaRNA [19] web
server (https://sysimm.org/aarna/), we found that the
nucleotide-contacting residues had much higher RNA-binding
propensities than the non-contacting regions (see Fig. 5).

Taken together, the nucleotide density and RNA-binding pro-
pensity suggest that the DASH hits are not arbitrary, but appear to
cluster around RNA-binding residues near the active site. On the
other hand, we can observe many conserved residues that appear
not to make contact with nucleotides. One possibility here would
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be that such conserved surface residues are involved in protein-
protein interactions. To investigate this idea further, we next
assessed the density of proteins in the environments of other
NYN domain-containing proteins (see Table 2).

Fig. 4 N4BP1 NYN domain residue conservation. Residues near the active site and hydrophobic core are
conserved, as expected. However, the residue conservation did not appear to correlate with the density of
nucleotides around the N4BP1 NYN domain

Fig. 5 RNA-binding propensity of N4BP1. Residues in the N4BP1 NYN domain that are predicted to have high
RNA-binding propensity appear buried in high nucleotide density regions
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7 Extracting Putative Protein Interactions from DASH Hits

The extraction of protein-protein interactions is analogous to that
of protein-nucleotide interactions and can be accomplished with
the same script by using the -prot command-line option. In the
case of N4BP1, simply giving the -prot option will lead to a large
number of unrelated hits due to the fact that NYN-like domains
occur in a wide range of proteins unrelated to nucleotide binding
(such as protein synthesis or hydrolysis). If we want to see only the
protein interactions for those proteins also involved in interactions
with nucleotides, we can give both the -nuc and the -prot options.

The command we used is as follows:

get_interactions.py -qd dash503929320 -filter-score 20 -nuc

-prot -o out-prot.cif.gz

The resulting hits are shown in Fig. 6. As we can see, the
environment surrounding the NYN domains not populated with
nucleotides is highly populated with proteins. These results suggest
that NYN domains involved in nucleotide interactions often func-
tion as part of larger complexes.

A quick look at the domains obtained in this exercise suggests
that they are all proteins that directly interact with ribosomal RNA.
In Fig. 7, the individual ribosomal protein complexes associated
with nucleotide-binding NYN domains are shown. The proteins
appear to be rather evenly distributed around the NYN domain.
Moreover, these are close contacts between the surrounding pro-
teins and RNA. Given these observations, the asymmetry of the
nucleotides that interact with the NYN domain is likely due to the
spatial requirements for NYN nuclease activity.

Table 2
NYN-interacting proteins

Score PDB ID Protein chains Protein names

37 5OQL_P C,R,T,Z,a,d,r,w,0 Utp3 (something about silencing protein 10), Nop1
(rRNA methyltransferase), nucleolar protein
56, S28-like, Imp3, Sof1, S9-like,S22-like,Faf1

32 5WLC_SL L9,LE,LU,NB,NC,
NE, SA, SC, SF, SI

S9, S22, Sof1, Sas10, Lcp5, Faf1,Nop56,Nop1,Snu13,
Bms1

23 4A2I_V L S12

20 2YKR_W K,L S11, S12
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Fig. 6 Distribution of proteins. The distribution of proteins contacting NYN domains with bound nucleotides is
shown. In contrast to the case of nucleotides, the NYN domain is completely obscured by protein-protein
interactions

Fig. 7 Ribosomal proteins bound to top NYN DASH hits. The top four DASH hits are shown as cartoons. In a–d
the NYN domain is shown in the orientation that matches that of the left side of Figs. 3–6, while in e–h, the
orientation matches that of the right-hand side of Figs. 3–6
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8 Conclusions

The tools described in this chapter illustrate the use of DASH and
MAFFT for analyzing structurally conserved interactions. Changes
in the parameters may be needed for specific problems. In particu-
lar, the optimal -filter-scorewill depend on the domain of interest.
The ability of DASH to quickly search all representative PDB
entries will be particularly powerful as the number of intermolecu-
lar assemblies (i.e., determined by cryo-EM) increases.
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Chapter 12

Mustguseal and Sister Web-Methods: A Practical Guide
to Bioinformatic Analysis of Protein Superfamilies

Dmitry Suplatov, Yana Sharapova, and Vytas Švedas

Abstract

Bioinformatic analysis of functionally diverse superfamilies can help to study the structure-function rela-
tionship in proteins, but represents a methodological challenge. The Mustguseal web-server can build large
structure-guided sequence alignments of thousands of homologs that cover all currently available sequence
variants within a common structural fold. The input to the method is a PDB code of the query protein,
which represents the protein superfamily of interest. The collection and subsequent alignment of protein
sequences and structures is fully automated and driven by the particular choice of parameters. Four
integrated sister web-methods—the Zebra, pocketZebra, visualCMAT, and Yosshi—are available to further
analyze the resulting superimposition and identify conserved, subfamily-specific, and co-evolving residues,
as well as to classify and study disulfide bonds in protein superfamilies. The integration of these web-based
bioinformatic tools provides an out-of-the-box easy-to-use solution, first of its kind, to study protein
function and regulation and design improved enzyme variants for practical applications and selective ligands
to modulate their functional properties. In this chapter, we provide a step-by-step protocol for a compre-
hensive bioinformatic analysis of a protein superfamily using a web-browser as the main tool and notes on
selecting the appropriate values for the key algorithm parameters depending on your research objective.
The web-servers are freely available to all users at https://biokinet.belozersky.msu.ru/m-platform with no
login requirement.

Key words Bioinformatic analysis, Protein superfamilies, Multiple alignment, Conserved positions,
Specific positions, Co-evolving positions, Disulfide bonds

1 Introduction

Understanding the relationship between protein sequence/struc-
ture and its biological function is one of the most complex pro-
blems in modern biology. During evolution of proteins from a
common ancestor, one functional property may be preserved,
while others may vary as a result of mutations introduced into the
protein structure, leading to functional diversity. Comparative anal-
ysis of homologs implementing different properties within a com-
mon structure of the superfamily can help to understand the
relationship between the protein structure, function, and
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regulation [1], but represent a methodological and computational
challenge, as both sequences and structures have to be taken into
account to accurately superimpose evolutionarily distantly related
proteins [2–4]. Only a handful of tools are available to address this
issue, MAFFT-DASH [2] and Mustguseal [3] being the most
recent ones. The MAFFT-DASH alignment tool supports a situa-
tion where there is no prior information about 3D-structures of
homologs. Mustguseal is useful when the analysis of a specific query
protein in the context of the corresponding superfamily is of inter-
est (e.g., for the purpose of protein engineering or annotation of
novel drug-binding sites).

Mustguseal and integrated sister web-servers feature a collec-
tion of open-access methods available at https://biokinet.
belozersky.msu.ru/m-platform. The aim of this online platform is
to provide an easy-to-use comprehensive solution for the systematic
bioinformatic analysis of protein superfamilies. The key web-server
Mustguseal can automatically collect and align thousands of
sequences and structures of proteins within a superfamily to pro-
duce a large structure-guided sequence alignment. Four types of
bioinformatic algorithms—i.e., for the database search and multi-
ple alignment by sequence and 3D-structure comparison—are
implemented to take into account the vast variability of proteins
within a superfamily: superimposition of the protein 3D-structures,
known to be more conserved among homologs throughout the
evolution, is used to match distant relatives, whereas alignment of
amino acid sequences is carried out to match close homologs. The
Mustguseal protocol is initiated by a query protein 3D-structure
(i.e., a member of the corresponding superfamily) and consists of
four major steps (Fig. 1). First, the structure similarity search by the
SSM algorithm [5] is implemented to collect evolutionarily dis-
tantly related proteins that lost sequence similarity during natural
selection and specialization from a common ancestor. These repre-
sentative proteins are expected to introduce different protein
families into the alignment. Then, a 3D-superimposition of the
collected structures is performed by the MATT algorithm [4, 6]
to create the core 3D-structural alignment. Each representative
protein is used as a query to run a sequence similarity search by
the BLAST and collect evolutionarily close relatives—members of
the corresponding families. Protein sequences within these collec-
tions are further aligned using the MAFFT [7]. Finally, the
structure-guided superimposition of all the collected sequences is
performed using the core 3D-structural alignment as a guide. The
characteristics of the alignment—its diversity and scope, redun-
dancy (i.e., presence of similar sequences), size/thickness (number
of proteins), length (number of columns), etc.—are driven by
various parameters selected by the user when running the Mustgu-
seal algorithm. Generally speaking, no particular choice of thresh-
olds for these parameters can be recommended in advance as they
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Fig. 1 The outline of the Mustguseal protocol. Reprinted from [3] with permission of the Oxford University
Press
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should be selected based on the research objective and properties of
the particular protein superfamily of interest. In other words, there
is no one way to build a multiple alignment, and it has to be
specifically constructed taking into account the aim of the bioinfor-
matic analysis.

Collection and subsequent superimposition of proteins is the
first step in a pipeline of methods for comparative analysis of homo-
logs. Four sister web-servers are available to further study the
alignment created by the Mustguseal and identify patterns of con-
servation and variability in protein structures that can have implica-
tion to their function (Fig. 2). The Zebra web-server can identify
conserved and specific amino acid residues [8, 9]. Highly conserved
positions seem to appear during the evolution as a result of the
selective pressure and therefore are very useful to indicate proper-
ties common for the entire superfamily. The specific positions that
are conserved only within families/subfamilies, but are different
between them, seem to play an important role in functional diver-
sity observed among homologs. Information about both conserved
and specific positions can help to understand how the enzyme
performs its natural function, while the latter can also be selected
as hotspots for directed evolution or rational design experiments in
an attempt to improve the wild-type protein variant for a particular
purpose [10]. It was also shown that presence of specific positions
on the protein surface is a very powerful factor to annotate alloste-
ric sites, which are known to be less conserved and more variable
than the catalytic sites [11]. The respective pocketZebra web-server
is available to explore the opportunities of the bioinformatic

Fig. 2 Patterns of conservation and variability in protein structures that can have implication to their function
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analysis to identify novel regulatory centers in protein structures
and study selective accommodation of substrates/inhibitors/effec-
tors. The visualCMAT web-server provides a graphical interface to
interpret the role of correlated mutations/co-evolving residues in
protein structures, select compensatory mutations for rational
design, and study the allosteric communication pathways
[12]. Finally, the Yosshi web-server can be used to systematically
classify disulfide bonds within the common structural fold of a
superfamily and assist to select the most promising hotspots to
improve stability of proteins/enzymes or modulate their functions
by introducing naturally occurring crosslinks [13]. The bioinfor-
matic and statistical analysis procedures behind these sister
web-methods are highly automated within the online implementa-
tions, and therefore discussion of the corresponding algorithms is
out of the scope of this chapter.

We further provide a step-by-step practical guide to a compre-
hensive bioinformatic analysis of a protein superfamily using a
web-browser as the main tool and notes on selecting the appropri-
ate values for the key algorithm parameters.

2 Materials

Mustguseal and sister web-methods can be operated entirely online
via the web-interface. The results are web-based and can be studied
on the website using the integrated interactive analysis tools imple-
mented in HTML5. As an option, the results of each web-server
can also be downloaded and assessed locally on your computer,
what requires some additional software (i.e., a plain text editor, a
3D-structure viewer, etc.). Installation of these supplementary pro-
grams does not require significant investment of time from the user.

2.1 Web-Browser The key software required on the user side to perform the protocol
explained in this chapter is an HTML5-compatible web-browser.
Current versions of all major browsers (e.g., Google Chrome,
Mozilla Firefox, Opera) support HTML5 as the default standard.

2.2 Plain Text Editor To study the output text files on a local desktop station, you can use
a plain text editor, e.g., ConTEXT in MS Windows (http://www.
contexteditor.org/) or Kate in OS Linux (the latter usually comes
preinstalled).

2.3 3D-Structure

Viewer

You can use the PyMol Molecular Graphics System to view the
protein PDB structures and the content-rich all-in-one PyMol
session files prepared by the Mustguseal and sister web-servers. In
OS Linux, PyMol can be installed automatically from a repository
(e.g., in openSuSE run the “zypper in pymol” command as user
with the root privileges) or compiled from sources available at
https://github.com/schrodinger/pymol-open-source
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(recommended for advanced users only). For MS Windows, the
unofficial precompiled binaries (i.e., wheel files for the Python
installer) are available (find the currently available solution at
https://pymolwiki.org/index.php/Windows_Install). The latest
PyMol build for your OS can also be purchased from the Schrö-
dinger LLC (http://pymol.org/).

2.4 Sequence

Alignment Editor

You may need to use a sequence alignment viewer to manually
refine the alignment. We recommend the cross-platform Jalview
software [14] (see also Chap. 13).

2.5 Perl Interpreter Optionally, you may want to use Perl to prepare and compile the
PyMol session file with a 3D-annotation of the basic alignment
statistics on a local desktop station. Most OS Linux distributions
have Perl preinstalled. Perl interpreters are also available for OS
Windows (e.g., ActiveState Perl). The Perl script used by the
Mustguseal to prepare the 3D-annotation PyMol session files can
be downloaded from https://mustguseal.belozersky.msu.ru/
downloads/annotation_script_latest.tar.gz. This script also
requires the MAFFT sequence alignment software [7], which has
to be installed separately by the user.

3 Methods

Choose a query protein to represent the protein superfamily of
interest based on your particular task and primary interest. It can
be the target protein selected for further experimental design, the
most studied member of a superfamily, or a protein which you are
the most familiar with. You should be able to provide a PDB code
of the selected query protein as input to the web-server. The
collection and subsequent alignment of protein sequences and
structures, starting from this query, is fully automated. However,
to improve the accuracy of the alignment and its fidelity to the
research objectives, we recommend that you use manual curation at
certain steps of the protocol (see below).

In this section, we construct an alignment of a protein super-
family using the Mustguseal for further bioinformatic analysis by
the sister web-methods. The aspartate aminotransferase superfam-
ily (i.e., the fold-type I PLP-dependent enzymes), which imple-
ments versatile catalytic activities (aldolase, transaminase,
decarboxylase, etc.) within a common structural framework, will
be used as an example to discuss in details the advanced methodo-
logical steps of a recently conducted bioinformatic analysis of this
large group of proteins [15]. The PLP-dependent L-allo-threonine
aldolase from A. jandaei (PDB 3WGB, a homotetramer consisting
of four equivalent chains) was selected as the query protein in that
study because it was available for the experimental site-directed
mutagenesis.
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3.1 Define

the Diversity

and Scope of Your

Alignment

The scope of the final alignment constructed by the Mustguseal is
defined by the diversity of proteins in the core 3D-structural align-
ment that represent different families within the superfamily (steps
1 and 2 on Fig. 1). These representative proteins should be carefully
selected by implementing the appropriate structure similarity
search parameters, as well as exercising manual curation, as
explained below.

1. Go to the submission page of theMustguseal web-server (avail-
able at https://biokinet.belozersky.msu.ru/mustguseal).

2. In the “Choose input mode” panel, select the “Mode 1: Sub-
mit a query protein.”

3. In the “Choose a scenario” panel, select the “Scenario 1: The
default.” This will set the structure similarity search threshold
so that at least 70% of the target from PDB has to make at least
70% of the query protein to be selected for further consider-
ation (see Note 1).

4. In the “Query protein” panel, enter the PDB code “3WGB”
and the chain ID “A.”

5. Press the “Submit” button and wait for your task to complete.
Then, press the “Results” button to view the results. The
“Analysis” page can be used to assess the quality of the pro-
duced superimposition online (see Note 2).

6. Based on the results of the structure similarity search, select
representative proteins to define the scope and diversity of your
alignment. This step can be performed automatically (see
below); however, we recommend manual curation. Download
the “Structure similarity search results” package to your local
desktop station. Study the file entitled “superimpose.list”
with the detailed list of all PDB entries selected as being struc-
turally similar to the query protein. For each match, its title, the
source organism and the degree of resemblance with the query
(i.e., RMSD, sequence identity, number of matching secondary
structure elements) are provided. Entries marked by the “*”
sign indicate the nonredundant set of proteins characterized by
sequence similarity of not more than 95%. Equipped with this
information, you should choose at most 32–64 representative
proteins based on your particular research objective. Generally
speaking, each selected protein should correspond to a family/
group with a specific property (e.g., type of the main catalytic
reaction/pathway) which is different in other families/groups.
It is not recommended to select too many representative pro-
teins (see Note 3). If, nevertheless, you would need to select
more than 32–64 structures for the core alignment, seeNote 4.
See Note 5 for other nuances of this step and the automatic
selection of the representative proteins by the Mustguseal.
See Note 6 for an example.
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7. Construct a 3D-structural alignment of the selected represen-
tative proteins. This step can be performed automatically (see
Note 5); however, we recommend manual curation. You can
construct the respective 3D-superimposition online using one
of these web-servers: MATT (http://matt.cs.tufts.edu/) [6],
mTM-align (http://yanglab.nankai.edu.cn/mTM-align/)
[16], PROMALS3D (http://prodata.swmed.edu/pro
mals3d/) [17], or MAFFT-DASH (https://mafft.cbrc.jp/
alignment/server/) [2]. The input to these web-methods is
either a text string of PDB codes with chain identifiers, or a
pack of PDB files which have to be uploaded to the server from
a local computer, or a text file with the corresponding protein
sequences. The respective data can be found in the package
downloaded fromMustguseal at step 6 (seeNote 5). Advanced
users can run the 3D-alignment on their own resources to
speed up the calculations [4]. See Note 7 for an example.

8. Save the file with the core 3D-structural alignment of the
representative proteins in the FASTA format (i.e., the sequence
representation of the three-dimensional superimposition of
homologs) on your local desktop station. Change the file
extension to “.fasta_aln” if different.

3.2 Enrich the Core

3D-Alignment

with Data by Adding

Sequences

This section describes further steps to enrich the core 3D-structural
alignment of the distant relatives (i.e., that are expected to repre-
sent different protein families, steps 1 and 2 in Fig. 1) by adding
sequences of their close homologies (i.e., members of these
families, steps 3 and 4 in Fig. 1). We suggest two scenarios to set
up the parameters depending on your research objectives: to collect
a representative set of homologs or a redundant set of homologs. If
your intention is to use the final alignment to study the sequence
statistics (e.g., identify conserved, specific, or co-evolving positions
in protein structures), very similar sequences should be removed
from the alignment. Such a nonredundant (i.e., representative) set
of proteins is usually much smaller in size, which facilitates further
processing and analysis. On the other hand, even subtle changes in
a protein sequence may alter its function. By implementing the
redundancy filter, you get a set of proteins that evenly represent
the sequence diversity among homologs but may lose these small
potentially important differences. Consequently, if you are
prepared to study the features of each collected entry individually
(e.g., the presence of cysteines potentially capable to form a cova-
lent cross-link in each protein sequence), all sequences currently
available in the database should be considered (i.e., the redundant
collection). The step-by-step guide is provided below.

1. Go to the submission page of theMustguseal web-server (avail-
able at https://biokinet.belozersky.msu.ru/mustguseal).
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2. In the “Choose input mode” panel, select the “Mode 2: Sub-
mit a core structural alignment.”

3. In the “Core structural alignment” panel, upload the FASTA
file corresponding to the core 3D-structural alignment created
after applying all steps of Subsection 3.1.

4. Set the sequence similarity search database to the “Uni-
ProtKB/Swiss-Prot+TrEMBL” (see Note 8).

5. Set the sequence length filter threshold to 9999 (%) (see
Note 9).

6. Set the “Dissimilarity filter threshold” to 0.5 bit score per
column (see Note 10).

7. Set the “Use MAPU to build large alignments” to “Yes”
(see Note 11).

8. Set the “Redundancy filter threshold” and “Maximum number
of sequences to collect in each subsearch” depending on your
research objectives. To construct the representative set, define
these two parameters as equal to 90% and 500; to construct the
redundant set—to 100% and 1000, respectively. Instead of
manually performing steps 4–8 of this subsection, you can
select “Scenario 2” or “Scenario 3” in the “Choose a scenario”
panel, respectively.

9. Press the “Submit” button and wait for your task to complete.
Then, press the “Results” button to view the results. See Note
12 for an example of the finally created Mustguseal alignment.
The “Analysis” page can be used to assess the quality of the
produced superimposition (see Note 2).

3.3 Further Analysis

by the Sister

Web-Methods

The finally created multiple alignment incorporates the currently
known sequence variability within a common structure of the query
protein and can be submitted for further bioinformatic analysis to
sister web-servers of the Mustguseal. A new task can be started at
the Mustguseal “Results” page (scroll down for section “Advanced
Tools to Study the Mustguseal Alignment”). Choose a server
depending on your research objectives (i.e., Zebra, pocketZebra,
visualCMAT, or Yosshi), and press the respective “Submit to . . .”
button. The multiple alignment will be automatically uploaded
from the Mustguseal to the selected web-server, and you will be
redirected to a corresponding submission page. Upload the query
protein 3D-structure manually (if needed) and press the “Submit”
button on that page. This will start the analysis with the default
settings suitable in most cases. The results are primarily web-based
and viewable online. The web-interface is intuitive and easy to use.
We would like to add just a few details.

1. Use the Zebra web-server to identify common and specific
features in functionally diverse homologs (i.e., the conserved
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and specific positions); use the pocketZebra web-server to
annotate novel binding sites in protein structures; use the
visualCMAT web-server to identify the correlated mutations/
co-evolving residues; use the Yosshi web-server to classify disul-
fide bonds within a common fold of the superfamily.

2. The bioinformatic analysis provided by the Yosshi web-server
can benefit from the alignment of the redundant set of homo-
logs, since each protein sequence is individually evaluated by
the algorithm to select potential disulfide bonds. Alignment of
the representative set of homologs should be used for the
analysis by other web-methods.

3. When using the Zebra/pocketZebra, you should start two
independent tasks. The first time submit your data with the
default settings (i.e., the “Min. size of a subfamily” set to 5% of
the alignment size). The second time set the “Min. size of a
subfamily” to three proteins (see Note 13). Study both results.

4. When using the visualCMAT, you can try raising the “Mini-
mum Z-score” parameters (e.g., to 4) to facilitate the study of
the most statistically significant co-evolving residue pairs
(see Note 14).

5. When using the Yosshi, you should start two independent
tasks. The first time submit your data with the default settings
(i.e., the “3D-motif analysis” set to the “Flexible” mode). The
second time set the “3D-motif analysis” to the “Rigid” mode
(see Note 15). Study both results.

6. When using the Yosshi to refine the selection of hotspots for
protein disulfide engineering in a particular region of the query
structure, you can set the “Alignment window” parameter to a
nonzero value (e.g., 1 or 3) to consider positions adjacent to
those identified by the bioinformatic analysis (see Note 16).

4 Notes

1. The percentage of secondary structure equivalences between
the query and target PDB records is probably the most impor-
tant parameter in the Mustguseal pipeline, as it defines the
selection of representative proteins and, therefore, the scope
and diversity of the final alignment. The “70–70%” is a general-
purpose pair of thresholds that can be used to collect evolu-
tionarily remote and functionally diverse proteins of compara-
ble dimensions sharing a sufficient enough structure similarity
to produce a meaningful superimposition [5]. To include evo-
lutionarily more distant proteins in the alignment for a partic-
ular purpose, the user can set the thresholds to lower values,
e.g., “50–50%.” While doing so, you should keep in mind that
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at least some level of similarity may be found in almost any pair
of protein structures picked at random from the PDB database.
Therefore, decreasing the two thresholds to very low values
(e.g., “30–30%”) may help to identify all available members of a
superfamily, but increases the probability to collect unrelated
(i.e., not homologous) proteins which cannot be reasonably
compared by global alignment of either sequences or struc-
tures. Finally, nonsymmetrical thresholds should be used for
superfamilies that contain proteins with significantly different
dimensions, domain organization, and/or topology. For exam-
ple, neuraminidases A (NanA) and B (NanB) from
S. pneumoniae, sialidase from T. rangeli, and sialidase from
V. cholerae all contain structurally similar catalytic and lectin
domains assigned to the GH33 and CBM40 families of the
CAZy classification (Fig. 3). However, the number of lectin
domains, their sequence content and topology (C- or
N-terminal), as well as structural organization regarding the

Fig. 3 Modular organization of GH33 catalytic and CBM40 lectin domains in homologous sialidases: (a) NanA
from S. pneumoniae, (b) NanB from S. pneumoniae, (c) sialidase from T. rangeli, (d) sialidase from V. cholerae
[18]. Domain color legend: lectin domain (blue), interdomain linker (yellow, where available), catalytic domain
(green) with the insertion domain (wheat, where available). The topology of lectin domain is C-terminal in
sialidase from T. rangeli and N-terminal in other homologs; sialidase from V. cholerae additionally features an
insertional lectin domain
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catalytic domain is significantly different among homologs
[18]. To collect all these proteins at once, we suggest using
the structure of NanA catalytic domain (available in PDB as a
separate entry 2YA8) as a query, setting the structure similarity
search thresholds to “60–30%” and then manually reviewing
the output [18].

2. At the “Results” page, press the “Analysis” button. The Analy-
sis page offers the basic alignment statistics: the total number of
proteins and columns in the alignment; protein length statistics
(i.e., the longest, smallest, average); alignment coverage statis-
tics quantified by the amount of columns containing 0%, 5%,
30%, or 50% of gaps compared to the average protein length;
and column conservation statistics quantified by the amount of
columns containing 100%, 95%, 75%, or 50% of the most
frequent amino acid residue. A graphical annotation of the
representative protein 3D-structure according to the basic
alignment statistics is provided by the interactive 3D-viewer
[19] (Fig. 4). Amino acid residues that are at least 95% con-
served in the alignment are colored in yellow and shown as
sticks. The gradient paint of the protein backbone indicates the
degree of sequence conservation in a corresponding position of
the multiple alignment, quantified by the Shannon entropy
(yellow—highly conserved, gray—variable). Red paint high-
lights positions in protein structures which are aligned to col-
umns with more than 5% of gaps. These features can help to

Fig. 4 Examples of the Mustguseal 3D-annotation of the basic alignment statistics: (a) annotation of
PLP-dependent L-allo-threonine aldolase from A. jandaei (fold-type I, PDB 3WGB) according to the alignment
statistics calculated from a representative set of 4309 superimposed homologs (qualitatively similar to what
was previously discussed in [15]); (b) annotation of aminotransferase from T. uzoniensis (fold-type IV, PDB
5 CE8) according to the alignment statistics calculated from a representative set of 4143 superimposed
homologs. Three catalytically important cofactor-binding amino acid residues are at least 95% conserved in
both superfamilies and shown as sticks colored in yellow. The PLP cofactor is colored in chartreuse
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assess the quality of your alignment online. Generally speaking,
the core structural framework, which usually includes the cata-
lytic sites in enzymes, should have structural equivalences in the
majority of homologs (i.e., the key functionally important parts
of the structure for the most part should not be colored in red).
Loops that are flexible in a protein structure can be colored in
red even if they are shared by all homologs due to limitations of
the current methods for 3D-structure alignment. In such cases,
we recommend to exercise manual curation (i.e., edit the
corresponding region in the FASTA file of the core
3D-structural alignment using Jalview). At least 1–3 amino
acid residues should be conserved in sequence (i.e., 95% or
more) even in a large superfamily. The appropriate coverage
depends on the variability of the structural organization and
domain composition in the superfamily of interest, but the
amount of gapless columns (i.e., with at most 5% of gaps)
should be as high as possible for an alignment to be considered
informative (we would say, at least 30–50% from the average
protein length even in a huge superfamily [20]). If these quality
indicators in your alignment are inconsistent with the guide-
lines explained above, this would either be a special case or
(which seems more likely) would indicate a poor quality of the
produced superimposition. We recommend checking the core
structural alignment and, if necessary, reviewing the choice of
the representative protein 3D-structures, followed by a manual
curation to improve the corresponding 3D-superimposition.
Please note that in the Modes 2 and 3, the graphical annotation
of the representative protein 3D-structures according to the
alignment statistics is not available online (i.e., only the text
version is provided). Instead, a link to the Perl script is available
that can be used to create the corresponding 3D-annotation
locally on your computer using PyMol. The Analysis page also
contains HTML5 plugin that provides a comprehensive tool-
box for online analysis of the sequence alignment [21]. In
practice, this feature is useful to study only relatively small
superimpositions (e.g., up to 1000 proteins) and may become
very slow and inconvenient when operating a significantly
larger dataset.

3. Why not just select all PDB structures that were found to be
similar to the query and construct one very large 3D-structure
alignment? In short, because by doing so, you are likely to lose
potentially important information. The alignment coverage is a
key marker of its value and corresponds to the amount of
structural equivalences which are shared by the majority of
proteins from the input set. Proteins within large superfamilies
are characterized by a significant structural diversity. The more
structures are included into the alignment, the smaller are the
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conserved regions among all these proteins [4, 22]. The align-
ment columns outside the common core usually contain a large
amount of gaps, as they correspond to regions of the structure
that are specific only to some proteins and are absent from the
majority of others. These columns overpopulated by gaps are
typically dismissed by the bioinformatic software for protein
alignment analysis as low-informative and due to limitations of
statistical models that assess the significance of amino acid
substitutions in homologs. Therefore, the more protein struc-
tures you align, the less becomes the alignment itself, quanti-
fied by the length of the regions that are shared by all proteins
and thus can actually be assessed by the subsequent bioinfor-
matic analysis. Large 3D-structural alignments of protein
superfamilies can be of high significance and importance for
specific tasks, e.g., to study the mechanisms common among
these homologs and promote the development of novel
computational techniques to extrapolate functional relation-
ships by a systematic analysis of all available structural data
[4]. The “focused” alignments that contain only the selected
families portrayed by 3D-structures of the representative pro-
teins (that can still include thousands of protein sequences, i.e.,
see Subsection 3.2 of this chapter) seem more likely to help in
the general case [3, 22].

4. Mustguseal limits the number of representative proteins to at
most 16–64 3D-structures in the automatic “Mode 1” and
“Mode 2” depending on the particular setup, and to at most
150 3D-structures in the manual “Mode 3,” to increase the
overall performance of the service and provide it to as many
people as possible (see the online documentation for details at
https://biokinet.belozersky.msu.ru/mustguseal_limitations).
If you follow the protocol as outlined in this chapter (i.e., first
construct the core 3D-structural alignment in the “Mode 1”
and then submit it for further processing in the “Mode 2”) and
would like to select more than 64 but at most 150 representa-
tive proteins, you would need to use a combination of the
“Mode 2” and “Mode 3” to construct your alignment. First,
create the core 3D-structural alignment as explained in Subsec-
tion 3.1 of this chapter. Then divide this alignment (i.e., the
FASTA file) into parts of at most 64 proteins per file. Open the
corresponding FASTA file in a text editor, copy the first 64 pro-
tein entries (i.e., names and sequences including gaps), and
paste them into a separate text file. Then copy the next 64 pro-
tein entries into a second file and so on. You may remove the
gap-only columns within these sub-alignment files, but other-
wise the superimposition of proteins (i.e., the amino acid cor-
respondence by columns and rows) should remain intact.
Then, individually process each sub-alignment file in the
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“Mode 2” as explained in Subsection 3.2 of this chapter. After
each run, download the “Sequence similarity search results”
package and save all files of the type <ID > _ < PDB_code > .
final.fasta (i.e., files with the results of the sequence simi-
larity search using the respective PDB file as a query) to a local
folder. Change the extension of the collected files to “.fas-
ta_aln” and compress them using TAR and GZIP into a “.
tgz” archive. Finally, submit the original (full) core
3D-structural alignment and the “.tgz” file with sequence
alignments in the “Mode 3” to merge them together. The
technical troubleshooting guide to follow-up on this Note is
available at https://biokinet.belozersky.msu.ru/mustguseal-
input.

5. For your reference, the content of the “Structure similarity
search results” package is explained in details in the online
manual available at https://biokinet.belozersky.msu.ru/
mustguseal-results. In particular, the PDB files for the 95%-
nonredundant set of proteins discovered by the structure simi-
larity search are provided in the results_nr95_ordered/
folder. It might be helpful to actually examine these structures
using a 3D-viewer (e.g., to check for the missing loops or
distorted regions in some PDB entries that may be clearly
visible in other PDB entries of the same protein or its closely
related homolog) to refine you selection of the representative
proteins. Alternatively (i.e., instead of steps 6 and 7 in Subsec-
tion 3.1), you can review the representative proteins which
were automatically selected by the Mustguseal. The
web-server attempts to select at most 32 protein
3D-structures for the core alignment by implementing the
redundancy filter at 95, 90%, . . ., 40% sequence similarity
thresholds (or further below 40% down to 15%, if the
corresponding flag was checked on the submission page)
[3]. The automatically selected collection of the representative
proteins can be downloaded at the “Results” page as the “Core
structural alignment” package containing the superimposed
PDB structures (in the aligned_pdbs/ folder) and the
sequence version of the 3D-structural alignment (as a FASTA
file). If the automatically selected representative proteins com-
ply with your research objective, then steps 6 and 7 in Subsec-
tion 3.1 can be skipped.

6. The aim of a recent study of the fold-type I PLP-dependent
enzymes was to identify the amino acid residues that determine
the reaction specificity in members of the superfamily
[15]. Driven by this challenge, 16 proteins structurally similar
to the query 3WGB (i.e., L-allo-threonine aldolase from
A. jandaei which was available for the experimental
site-directed mutagenesis) were selected to represent families
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of the aspartate aminotransferase superfamily with different
reaction and substrate specificities (i.e., annotated in the PDB
as L-allo-threonine aldolase, threonine-phosphate decarboxyl-
ase, alanine-glyoxylate aminotransferase, tyrosine aminotrans-
ferase, acetylornithine aminotransferase, L-tyrosine
decarboxylase, etc.): 3WGB, 2W7E, 3A2B, 1IBJ, 1LKC,
1 V72, 2BKW, 2EZ2, 4IX8, 1QZ9, 4BA5, 4ADE, 3F9T,
4DBC, and 1D2F (chain A in all cases). The missing loop
regions in these PDB structures were reconstructed using the
MODELLER software [23].

7. In a recent study of the fold-type I PLP-dependent enzymes,
the MATT algorithm was used to prepare the initial
3D-structure superimposition of the selected representative
proteins (see Note 6) [15]. This automatically constructed
alignment was manually assessed using the Jalview editor and
the PyMol to review the pairwise 3D-structural superimposi-
tions of the input proteins. This expert refinement was focused
on improving the alignment quality of the flexible loop regions
and verifying that the alignment software correctly treated the
key catalytic lysine in structures that featured this residue cova-
lently modified by the PLP cofactor.

8. The user can choose between “UniProtKB/Swiss-Prot” and
“UniProtKB/Swiss-Prot+TrEMBL” to run the sequence simi-
larity search step within the Mustguseal pipeline (Fig. 1). The
Swiss-Prot database contains a relatively small set of ~560
thousand experimentally annotated proteins, while the
TrEMBL database features a huge collection of ~182 million
mostly unstudied entries. The problem with choosing only the
Swiss-Prot for the sequence similarity search is that this collec-
tion is biased toward the well-known highly researched pro-
teins. It may not contain homologs of your query (or some of
the selected representative proteins), potentially leading to
underrepresentation of some families and overrepresentation
of the others in the final alignment. On the other hand, the
search versus the TrEMBL database is computationally harder
and takes a significantly larger amount of time. We recommend
choosing the “UniProtKB/Swiss-Prot” option for a quick test
run of the Mustguseal pipeline, or when only the structure
similarity search and subsequent 3D-structure alignment are
of interest. For the “production run,” always select the “Uni-
ProtKB/Swiss-Prot+TrEMBL” databases.

9. Each set of sequences collected by the sequence similarity
search as a close homolog of the query/representative protein
is further filtered by the length to exclude too small and too
large sequences (i.e., the “Sequence length filter”). By default,
entries that deviate more than 20% from the respective query/
representative protein are excluded from further consideration.
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Such outliers usually correspond to incomplete or incorrect
database entries, which do not contribute to the alignment
value, but significantly increase the number of
low-information columns with a high content of gaps. This
strategy usually helps to improve the quality of the alignment,
optimize the computational efficiency of further processing,
and make it more human-readable. However, sometimes it
can lead to loss of data. This happens if the protein entry in
the PDB database (i.e., a particular protein chain selected as the
query) is significantly different in length compared to the
corresponding record in the sequence database. For example,
the NanA from S. pneumoniae contains lectin, catalytic, and
membrane-bound domains connected by flexible linkers within
a single polypeptide chain of 1035 amino acid residues available
in UniProtKB as, e.g., P62575 (Fig. 3a). The same protein is
represented in the PDB by two separate entries of only the
lectin domain (e.g., 4ZXK containing 188 amino acid residues)
and the catalytic domain (e.g., 2YA8 containing 470 amino
acid residues) [18]. In a similar example, penicillin acylase from
E. coli is a heterodimer featuring chains A (209 amino acid
residues) and B (557 amino acid residues) within a single
globule (e.g., PDB 1GM9). The respective UniProtKB entry
P06875 contains both chains covalently connected by a spacer
peptide within a single sequence of 846 amino acid residues
corresponding to the precursor protein [24]. To include these
sequences into the alignment, the sequence length filter should
be released. For example, set the threshold to 121% (or to any
larger value) to fulfill the case of neuraminidases, as the com-
plete length of the NanA’s polypeptide chain is ~221% of the
length of the catalytic domain in the PDB 2YA8. For the
general case scenario, we recommend to effectively disable the
“Sequence length filter” by setting it to 9999%. If nothing
interesting is found among the collected sequences with a
longer length, you can rebuild the alignment in a separate
task with a lower threshold.

10. Each set of sequences collected by the sequence similarity
search as a close homolog of the query/representative protein
is further filtered to exclude proteins that are too distant (i.e.,
too different) from this query (i.e., the “Dissimilarity filter”).
Such outliers can cause major errors during the sequence align-
ment, and their elimination is a crucial step of the pipeline
[25, 26]. By default, sequences sharing <0.5 bit score per
column with the query/representative protein are dismissed
from further consideration. It can be considered “safe” to drop
this threshold down to 0.25 to collect more sequences, if
necessary for a particular purpose [26]. Setting the threshold
below 0.25 can help to incorporate more diverse proteins into
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the sequence alignment. This may become necessary when the
protein superfamily of interest has a limited representation in
the PDB database, and therefore, the desired diversity cannot
be achieved by the structure similarity search alone. This also
may lead to errors in the sequence superimposition and should
be carried out with caution and by manual curation.

11. The finally created Mustguseal alignment can feature a large
number of low-information columns with a high content of
gaps as a result of sequence and structural variability among
homologs in a functionally diverse superfamily. Columns over-
populated by gaps are usually discarded by bioinformatic soft-
ware for the subsequent protein alignment analysis, but can
increase the demand for computational resources (including
the CPU time and the RAM consumption). The Mustguseal
Alignment Postprocess Utility (MAPU) was developed to
address this issue. The software is used within the Mustguseal
pipeline to automatically remove the least information-rich
columns, thereby reducing the overall file size and computa-
tional complexity of the subsequent analysis. By default, col-
umns that contain gaps in all representative proteins are
removed (Fig. 5). In general, such trimming of the multiple
alignment by the structures of representative proteins does not
lead to loss of information. Further analysis of the final align-
ment by the sister web-methods (i.e., Zebra, pocketZebra,
visualCMAT, and Yosshi) is focused only on the columns that
contain amino acid residues of the representative proteins (i.e.,
the alignment is mapped onto the 3D-structure of the selected
query protein), and this information is identical in the original
and trimmed versions of the alignment. The trimming can
decrease the file size by up to ~99% and optimize the use of
computing resources. We suggest that you always set the “Use
MAPU to build large alignments” feature to “Yes,” unless the
complete sequences of all homologs are needed for a particular
purpose. If MAPU is enabled, some limitations of the web-
server-based implementation of the Mustguseal protocol are
lifted, e.g., you can now set the “Maximum number of
sequences to collect in each subsearch” parameter to at most
5000 proteins (instead of 1000 proteins when MAPU is
disabled). This provides an opportunity to construct multiple
alignments of tens of thousands of proteins for a particular
purpose. The MAPU software is also available for download
at https://biokinet.belozersky.msu.ru/mustguseal-
postprocess.

12. Alignments of the fold-type I PLP-dependent enzymes with a
particular focus on L-threonine aldolases were created by the
Mustguseal, as described in this chapter, using the August
2019 releases of all databases. The finally created
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superimpositions contained 4309 proteins (the representative
set) and 22,672 proteins (the redundant set). Generally
speaking, a larger alignment does contain more information,
but it is only useful if you know how to extract
it. Computationally, larger alignments are harder to study.
You should avoid including redundant (i.e., very similar) pro-
teins in the alignment unless there is a reason. For most tasks,
you should build an alignment from the representative (i.e.,
smaller) set of proteins.

13. To identify the specific positions in a multiple alignment
(Fig. 2), the input set of proteins has to be classified into
subfamilies. The advantage of Zebra is that the algorithm can
propose these classifications automatically by graph-based clus-
tering at different fragmentation levels [9]. Each classification
is further used to predict the specific positions and estimate
their statistical significance. The Zebra algorithm for the pre-
diction of functional subfamilies is, in general, robust to the

Fig. 5 Alignment (a) before and (b) after postprocessing by the MAPU. The sequences of representative
proteins (i.e., “REP_A1” and “REP_B1”) are shown in color. The alignment columns which contain a gap in
both representative proteins are colored in red
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selection of parameters. However, we recommend running the
utility twice. The first time submit your data with the “Min.
size of a subfamily” set to 5% of the alignment size (i.e., the
default). This setup tends to classify the dataset into several
larger groups. The second time set the “Min. size of a subfam-
ily” to three proteins (i.e., the minimum value). This setup
tends to classify the dataset into many smaller groups. Both
outputs can help to study the diversity of protein families at
different levels of functional hierarchy (see [8] for an example).

14. If too many statistically significant co-evolving pairs of posi-
tions were identified by the visualCMAT, you can start new
tasks gradually raising the thresholds for both “Minimum Zp”
and “Minimum Zc” from the default value of 3.5 up to 4, 4.5,
etc. This will eliminate less significant co-evolving pairs to
facilitate the study of the most significant ones.

15. The hallmark of the Yosshi method is implementation of the
3D-motif analysis with the “Flexible” statistical model to con-
sider the backbone flexibility for protein disulfide engineering
[13]. This approach was shown to outperform the existing
tools that select candidate positions for disulfide engineering
using strict geometric models trained on covalently connected
cysteines and static crystallographic structures of the protein of
interest (e.g., Disulfide by Design [27] and MODIP [28]).
Nevertheless, we suggest that you also run a second Yosshi
task this time selecting the “Rigid” mode for the 3D-motif
analysis. This run will identify only those positions in the query
protein structure as promising sites for S-S bond engineering,
whose geometry is highly similar to the geometry of the known
covalently connected cysteine residues. It was shown that the
“Rigid” mode is more specific and less sensitive compared to
the “Flexible” mode, i.e., it is more likely to identify only the
“true” disulfides at a cost of failing to identify some hotspots
which may, in fact, form a correct disulfide bond in the query
protein assuming both residues are mutated to cysteines
[13]. Expert analysis of both outputs can help to improve the
selection of the most promising hotspots for further experi-
mental evaluation.

16. The bioinformatic analysis of disulfide connectivity in homo-
logs can help to select the most promising hotspots to intro-
duce an S-S bond into the query protein of interest in attempt
to improve its properties. However, sometimes the selected
residues already form crucial interactions with the surrounding
residues (e.g., hydrogen bonds and salt bridges), and their
mutation to cysteines can actually reduce structural stability.
In such a case, positions adjacent to those identified by Yosshi
can be selected as promising sites for disulfide engineering
assuming they do not participate in structurally important
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interactions. To evaluate whether an S-S bond could fit into
such adjacent positions, the user can set the “Alignment win-
dow” parameter to a nonzero value (e.g., 1 or 3). Then, the
adjacent positions within the defined window will also be
assessed by the 3D-motif analysis.
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Chapter 13

Alignment of Biological Sequences with Jalview

James B. Procter, G. Mungo Carstairs, Ben Soares, Kira Mourão,
T. Charles Ofoegbu, Daniel Barton, Lauren Lui, Anne Menard,
Natasha Sherstnev, David Roldan-Martinez, Suzanne Duce,
David M. A. Martin, and Geoffrey J. Barton

Abstract

In this chapter, we introduce core functionality of the Jalview interactive platform for the creation, analysis,
and publication of multiple sequence alignments. A workflow is described based on Jalview’s core functions:
from data import to figure generation, including import of alignment reliability scores from T-Coffee and
use of Jalview from the command line. The accompanying notes provide background information on the
underlying methods and discuss additional options for working with Jalview to perform multiple sequence
alignment, functional site analysis, and publication of alignments on the web.

Key words Multiple sequence alignment visualization, Interactive analysis, Web application, Desktop
application, Functional site inference, Web services

1 Introduction

The Jalview [1] platform has many features for sequence analysis
and visualization and is freely available both as a native “app” and
single-page web application [2] from its web site [3]. A core func-
tion is to make it easy to run state-of-the-art methods for multiple
sequence alignment (MSA). The resulting alignments can be visua-
lized and integrated with other information to further interpret
them and create figures for publication. In this chapter, we describe
the steps involved in a typical Jalview sequence alignment workflow,
as depicted in Fig. 1. Sequences for alignment may be retrieved
from public databases or loaded via a variety of common file for-
mats. Access to a range of alignment programs is achieved directly
within Jalview through web services [4, 5], but Jalview also allows
alignments generated by external programs to be imported. Built-
in analysis routines calculate the consensus for each alignment
column and for proteins, the amino acid physicochemical
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properties. These create column Annotations that are shown as
histograms under the alignment. The alignment may be filtered
to remove redundant sequences and to hide columns with low
numbers of aligned residues. Aligned sequences may also be
grouped either manually or by partitioning an associated tree
which can be imported in a variety of formats or calculated using
Jalview’s own tree algorithms. A range of shading and coloring
schemes allow common patterns to be highlighted according to
standard properties for amino acids (such as hydrophobicity), or
whether nucleotides are purine or pyrimidine derivatives. Uniquely,
coloring may be combined with conservation and consensus calcu-
lations to emphasize patterns of variation among conserved regions
and to highlight different patterns of conservation among sub-
groups of sequences in the alignment.

2 Materials

Availability, download, and installation. The latest version of the
Jalview Desktop application can be obtained from http://www.
jalview.org/download. Installers are provided for �86-based Win-
dows, Linux, and OSX operating systems, and the minimum
recommended physical memory is 1 GB. The installers provide

Creating and Publishing 
Alignment Figures

Import or retrieve sequence data

3.2. Import Coding Sequences
(CDS) or Protein Products

3.13. Interactive Figure
Generation as HTML Web

Pages

3.14. Automatic Figure
Generation using Jalview from

the Command Line

3.1.1 Import from Flat File

3.1.2 Import from Supported
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3.5. Evaluate Alignment Quality
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Fig. 1 Workflow for creating, analyzing, and generating figures for a multiple sequence alignment in Jalview.
Numbers for each stage correspond to stages described in Sect. 3. An interactive version of this workflow can
be viewed online at https://tess.elixir-europe.org/workflows/multiple-sequence-alignment-analysis-and-fig
ure-generation-with-jalview
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the “Jalview Native Application”—which offers enhanced usability
through features such as file-type associations, automatically man-
aged Java installation, and “Over the Air Update” to ensure the
latest and most secure version of Jalview is launched. An “execut-
able Jar” file is also provided for users wishing to launch a specific
version of Jalview or execute it on a platform for which a Jalview
Native Application is not yet available. Jalview packages may also be
obtained in Homebrew [6] and BioConda [7] and are primarily
designed for users integrating Jalview into a command-line work-
flow rather than performing interactive analyses as described here.

Memory settings and working with larger datasets. The Jalview
Native Application and Jalview Executable Jar will automatically
request up to 90% of physical memory to be allocated to a Jalview
session. The percentage of memory allocated can be modified via a
command-line argument. Currently, no support is provided for
working with alignments too big to load into memory.

The JalviewJS Web Application. An alternative to installing the
Jalview Desktop is to access the JavaScript version of Jalview at
https://www.jalview.org/jalview-js/JalviewJS.shtml. It is designed
to work with modern web browsers such as Google Chrome or
Mozilla Firefox, and provides the majority of functionality
described below, except for access to public web services provided
by JABAWS.

3 Methods

3.1 Import or

Retrieve

Sequence Data

1. A range of common bioinformatics sequence file formats
(seeNote 1) can be imported by “drag and drop” or via options
provided on the “File” menu. Data from the system clipboard
may also be pasted by right-clicking on the desktop back-
ground and selecting the “Paste to New Window” menu
option that appears.

2. In addition, Jalview provides a “Sequence Fetcher” which
allows import of sequences, alignments, and 3D structures
from databases hosted by EMBL-EBI [8, 9] (see Note 2).

Once the import has completed, an alignment window con-
taining the sequence data is displayed. More sequences may be
added by the same methods (via the alignment window’s own
“File” menu, by pasting from the clipboard, or by dragging files
onto the window).

3.2 Importing Coding

Sequences (CDS) or

Protein Products

for CDS

CDS for proteins shown in an alignment view can be added simply
by dragging and dropping the file containing CDS onto the protein
alignment. Protein products for CDS are loaded in the same way.
Providing each CDS has the same name as its corresponding pro-
tein product, and codons from the CDS exactly match the amino
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acid sequence (under one of Jalview’s supported translation tables),
Jalview will offer the option of opening a “Linked Protein and CDS
View” (see Note 3). This configuration allows proteins to be
multiply-aligned according to their amino acid sequence, but ana-
lyzed at both the nucleotide and amino acid sequence levels.

3.3 Saving

and Loading

Project Files

A Jalview Project File (JVP) can be created via the Desktop’s File-
> Save Project menu entry or an alignment window’s File- > Save
As. . . menu entry. JVP files store data and visualization settings for
alignment windows, including any associated views such as trees
and 3D structures (e.g., the example file that is automatically
loaded by default on startup—see Note 4). It is recommended
that work is saved after each stage below to avoid data loss, and if
the same filename is used, then Jalview will create versioned back-
ups (see Note 5).

3.4 Align Sequences A range of alignment programs is offered via the Alignment sub-
menu of the Alignment Window’s “Web Services” menu. Jalview
provides access to public services provided by the University of
Dundee which are suitable for aligning up to 1000 sequences of
at most 1000 residues each, and jobs are allowed to run for up to
1 h. Note 6 discusses how to perform alignments of larger
sequence sets with Jalview.

1. For some alignment programs, Jalview provides a “Realign-
ment” option. This allows sequences to be added to an existing
alignment. See Note 7 for a discussion of its effective use.

2. If a selected region is defined in the alignment window
(see Note 8), then only data in that region will be submitted
for alignment. Similarly, hidden sequences will not be included
in the alignment and hidden columns will force a series of local
multiple alignments to be performed on just the visible regions
(see Note 9).

Jalview must be left running for the duration of the alignment
procedure. For current versions of Jalview (2.11), there is no way to
“reconnect” to an alignment or analysis procedure performed via
the “Web Services” menu, and Jalview projects do not preserve any
information about Web Service jobs that have completed or are
currently in progress.

3.5 Evaluating

Alignment Quality

Jalview provides visual analytics that help judge the degree of simi-
larity among sequences in an aligned region, but it does not on its
own compute measures that indicate how reliable all or part of an
alignment may be. Such calculations are provided by the T-Coffee
suite via M-COFFEE [10] or Transitive Consistency Score (TCS)
analysis [11] (http://www.tcoffee.org/Projects/tcs/) (seeNote 10
and Chapter 6). Below we briefly outline a protocol for manually
performing an alignment reliability calculation in T-Coffee.
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1. Export the alignment to be assessed as a FASTA file via the
File- > Save As. . . menu entry from the alignment window.

2. Submit the FASTA file for assessment with T-Coffee.
Either via the command line

t_coffee -infile prot.aln -evaluate -output score_ascii.

or, alternatively, via the T-Coffee web server’s TCS submis-
sion form at http://tcoffee.crg.cat/apps/tcoffee/do:core

3. T-Coffee’s TCS analysis produces a “score_ascii” file which can
be read by Jalview. If the web service was employed, then this
file should first be downloaded. To view the results, simply drag
and drop the file onto the alignment window, or load it via the
File- > Load Annotations option.

4. Jalview provides a “T-Coffee Score” color scheme in its Colour
menu for viewing the reliability scores produced by TCS. This
is enabled by default when the score_ascii file is loaded and
mimics T-Coffee’s standard TCS coloring: where red indicates
the most reliably aligned regions, transitioning to green, yel-
low, and blue for poor quality regions.

3.6 Employing

Multiple Views

to Explore Different

Aspects of an

Alignment

Alignment Views allow different regions of the alignment to be
shown or hidden and sequences to be independently grouped and
colored. Operations on the alignment, sequence, and annotation
data affect all Views. When preparing an alignment figure for
inclusion in a publication, it is often useful to create a series of
Views corresponding to each panel of the figure.

1. A new View for the alignment is created with the New View
option in the View menu. Its presence is indicated by a new tab
appearing above the alignment ruler.

2. Views may be displayed simultaneously via the Expand option
in the View menu. The Gather option returns all Views to the
tab bar on the current View’s alignment window.

3. The current View is removed by pressing “Control” or
“CMD” and “W” (or if the Views are expanded to their own
window, by simply closing that View’s window).

Multiple Views allow specific features of an alignment to be
highlighted. Accordingly, a View may be given a unique name via
the dialog box opened by right-clicking the View’s tab.

3.7 Identification or

Exclusion of Regions

with Low Occupancy

or Poor Reliability

Occupancy measures the number of sequences aligned at each
position and is one of the dynamic Annotation rows automatically
computed for an alignment (see Note 11).

1. Select the Select/Hide Columns dialog from the Alignment
Window’s “Select” menu.
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2. Choose “Occupancy” from the first drop-down menu as the
annotation row to be queried.

3. Choose “Below” from the “Threshold Type” drop-down
menu, and check the “Percentage” checkbox. Enter “10” to
select columns in the alignment where less than 10% of
sequences are aligned.

4. To hide the columns selected by the filter, then select the
“Hide” option in the dialog rather than the “Select” option.

5. Press OK to close the dialog, or cancel to reset column
visibility.

To exclude unreliable regions according to T-Coffee TCS
scores, select “T-COFFEE” from the list of annotation rows in
Sect. 3.5, step 2.

3.8 Shading

the Alignment

to Reveal Conserved

and Divergent Regions

Jalview has a range of protein and nucleotide color schemes
(see Note 12) which can be applied in combination with values
from the Consensus (and for proteins, Conservation and Quality)
dynamic Annotation rows (see Note 11) to highlight variation in
columns that exhibit a high degree of amino acid or nucleotide
conservation.

1. Revealing conservation patterns with Colour by Conservation
(Proteins only).

(a) Select “Blosum 62” from the Colour menu, which colors
each residue on a scale fromwhite to blue according to the
likelihood of mutation from the reference or consensus
sequence for the alignment view.

(b) Enable “Colour by Conservation.” Columns that exhibit
a high physicochemical property conservation score
(see Note 11) will appear more strongly colored than
those with fewer conserved properties.

2. Revealing regions with high percentage identity.

(a) Select “Percent Identity.” This scheme shades nucleotides
and amino acids according to their abundance at each
column in the alignment.

(b) To shade the alignment according to some other property
(e.g., Purines and Pyrimidines, or Taylor’s physicochemi-
cal property-based color scheme), first apply this scheme,
and then select “Above Identity Threshold” from the
“Colour” menu to only color symbols present in more
than the specified minimum percentage of
aligned sequences at each column in the alignment.
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3.9 Shading

the Alignment

According

to Conservation Scores

from the AACon Web

Service

1. Select the “Change AAcon settings. . .” option from the Con-
servation submenu of the Web Services drop-down menu in
the alignment window.

2. Choose which scores to calculate from the dialog and press
“Submit” to enable the calculation and display of AACon
annotations. After a short delay, the additional scores will
appear as histograms below the alignment.

3. Open the “Colour by Annotation” dialog from the Color
menu. Choose one of the annotation rows from the drop-
down menu in the dialog. By default, a linear shading will be
applied to columns of the alignment according to values in the
chosen row. To apply a threshold (similar to the “Percent
Identity” threshold above), select the “Use Original Colours”
option and select a threshold type from the drop-down menu.

3.10 Group-Based

Conservation Analysis

with Phylogenetic

Trees

Shading and filtering according to column statistics do not always
reveal regions of similarity or divergence not shared by all sequences
in the alignment (see Note 13). Once sequences have been
grouped, however, the shading schemes introduced in Sect. 3.8
will reveal the patterns of conservation and divergence unique to
each group. Jalview is able to create groups interactively from
selections and also to subdivide a selection to group sequences
according to their identity. However, the most powerful sources
of groups are phylogenetic trees (see Note 14). Jalview can import
existing trees or calculate one for aligned sequences. The built-in
tree viewer then offers a way to subdivide aligned sequences into
groups according to their relatedness as defined by the tree.

1. A tree for all sequences or a selected region of a view can be
calculated and displayed via the “Calculate” dialog (accessed via
the Calculations menu). For best results when computing sub-
groups, particularly for a selected region of an alignment, we
recommend selecting the UPGMA Average Distance Tree.

2. Use the “Sort alignment by tree” option in the Tree viewer’s
submenu to reorder sequences in the alignment view according
to the tree (Jalview’s preferences allow this action to be con-
figured to be performed automatically).

3. Select a position between the root and leaves of the displayed
tree to define a set of groups on the alignment. (Warning:
previously defined groups will be removed.) In the alignment
view, the names of sequences in the same group will have a
similar background color. For each group, coloring based on
Conservation and Percent Identity will employ values com-
puted for just the grouped sequences: locally conserved regions
will therefore be more strongly colored in comparison to
regions of local divergence.
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4. For alignments too large to fit on screen, the Alignment Over-
view (opened via the option in the View menu) allows differ-
ences between groups to be compared more easily.

5. When the overview is open, “Colour by Sequence ID” can be
applied in combination with “Colour by Conservation” or
“Above Identity Threshold” to more easily distinguish
sequences in different groups.

3.11 Visualizing

Group Conservation

and Consensus

The “Autocalculated annotation” submenu in the Annotations
menu provides options controlling the display of conservation
and consensus rows for the currently selected group. To modify
settings for all groups, enable the “Apply to all groups” option.

1. The consensus (and for proteins—conservation) annotation for
groups on the alignment can be shown by enabling the “Group
Consensus” and “Group Conservation” options under the
Annotations menu’s Autocalculated Annotation submenu.

2. Clicking the label of a group’s annotation row will highlight
the sequences in that group. Double clicking the label will
select the whole group.

3. Display of sequence logos.
Amino acid and nucleotide distributions may be visualized

for an alignment or sequence group as sequence logos [12]—
where for each column, letters are stacked in order of increased
frequency of observation, and their height also scaled
accordingly.
(a) Select the Annotation menu’s Show Logo option to dis-

play sequence logos on group or alignment consensus
annotation rows.

(b) Distributions across different sites of the alignment can be
more easily compared by enabling the “Normalise Logo”
option. In this case, disabling the “Show Histogram”
option allows the logo to be more clearly viewed.

3.12 Alignment

Figure Generation

for Presentations

and Papers

Alignment views can be exported in a range of ways via the File
menu’s “Export” submenu. Views can be exported as shown,
rendered as a Portable Network Graphic (PNG) raster image—
suitable for onscreen display and Scalable Vector Graphic (SVG)
or Encapsulated PostScript (EPS) format vector graphic drawings
which are recommended when preparing figures for publication.
HTML pages can also be generated via the options in the menu—
these interactive export options are discussed in the next step.

3.12.1 Preparing

for Figure Export

When preparing to export views as static figures, it is recommended
that a new View is created to allow layout, font size, colors, and data
visibility to be configured, since no “Undo” functionality is
provided to revert changes.
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3.12.2 “Wrap mode”:

Formatting Alignments

to Fit Within the Margins

of a Page

Enable the Wrap Mode option in the “Layout” menu to format the
MSA as a series of fixed width blocks. The number of columns
shown in each block is defined by the width of the alignment view.
These are reflected by the numberings shown in the alignment
ruler. The number of columns may be changed by:

(a) Adjusting the width of the alignment view window. How this
is done depends on which operating system (OS) is used: On
MacOSX, move the mouse pointer to the bottom right corner
of the window and click-drag to adjust the size. Other OSes
allow resizing by click-dragging any edge of the window.

(b) Adjusting font size and column width. Either via the Layout’s
Font dialog, or with a three-button mouse by clicking the
middle button in the alignment view and moving it left or
right to adjust width, and up or down to decrease or increase
font size (respectively).

(c) Adjusting the sequence IDmargin. When the mouse pointer is
moved to the right-hand side of the sequence ID panel, it will
change to indicate that the margin can be adjusted by click-
dragging to the left and right.

3.12.3 EPS Export

as “Characters” or Line Art

When EPS export is selected, Jalview can either represent each
sequence symbol as a character or render the shape of each symbol
in the EPS file. The former allows EPS files that can be easily edited
in a vector graphics program such as Illustrator—e.g., to modify
sequence ID labels, but can result in EPS files that appear different
to Jalview’s alignment view. The latter results in larger files but
ensures all aspects of the MSA visualization (e.g., sequence logos,
character alignment) are faithfully reproduced.

3.13 Interactive

Figure Export in HTML

Web Pages

Other options in the Export submenu of the Alignment View’s File
menu allow HTML pages to be generated containing either an
embedded SVG rendering of the view or a JavaScript visualization
such as the BioJS Multiple Sequence Alignment Viewer (BioJS-
msaviewer) [13]. In general, interactive figure export results in web
pages that will look and behave differently to visualizations
provided by the Jalview Desktop app or the JalviewJS web compo-
nent (see Note 15).

3.13.1 Export as an

Interactive HTML Figure

The “HTML” export option produces a web page containing two
SVG figures—one for the ID panel and one for the columns of the
MSA and Annotation rows. Buttons are provided to open the
exported view in the Jalview application, and view the embedded
data (stored as BioJSON [14]).
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3.13.2 Export Alignment

for Visualization

with BioJS-msaviewer

(a) The “BioJS” export option generates an HTML page contain-
ing embedded BioJSON and the JavaScript code necessary to
display the alignment with BioJS-msaviewer.

HTML files generated by Jalview that contain BioJSON can be
imported like any other alignment file (see step 3.1). However,
Jalview Project files are recommended for long-term archiving of
data and visualizations generated during multiple sequence align-
ment and analysis.

3.14 Automated

Alignment

Figure Generation

in Batch Mode

Jalview’s command line allows figures to be generated without user
intervention.

3.14.1 Prepare a Custom

Jalview Properties File

When running in batch mode, a custom preferences file allows
alignment layout parameters to be specified. To do this:

(a) Make a backup of your existing “.jalview_properties” file.

(b) Adjust the various Jalview User preferences provided in the
Visual, Colour, Output, and Editing panels so that when an
alignment is imported, it has the desired appearance.

(c) Make a copy of your customized “.jalview_properties” file
using a unique name such as “jalview_batch.properties.”

3.14.2 Running Jalview

as a Command-Line

Program

The precise way that Jalview is called from the command line
depends on how it was installed. The procedure below assumes
you have downloaded the Jalview executable JAR and that your
system has an existing Java 8 installation.

(a) Execute the following command to generate a figure from the
command line:

Java -jar jalview-2.11.0.jar -headless -props jalview_batch.
properties -open “http://www.jalview.org/examples/
uniref50.fa” -png example_fig.png

(b) Verify that the generated PNG file: “example_fig.png” exists
and has the desired appearance.

4 Notes

1. Table 1 lists the file types currently supported by Jalview, the
type of data provided, and whether Jalview can export as well as
import in that format, along with any caveats regarding their
use. For completeness, we also include here formats for anno-
tation, 3D structure, phylogenetic trees, and the Jalview spe-
cific formats: Jalview Features Format, Jalview Annotations
Format, Jalview Project, and BioJSON.
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When importing sequence data, Jalview employs a series of
rules to determine the format. If no format is found to match
based on these rules or an error is encountered while parsing
the data according to the determined format, then Jalview will
default to the “Pfam” format reader. The Pfam format is also
used by default when sequence data are copied directly from an
alignment window to the system clipboard for other
applications.

2. Table 2 details the databases that Jalview 2.11 is able to access
and the kinds of data they provide. Jalview will present an
interactive query dialog for databases that support free text
search or a simple “Fetch IDs” dialog for databases for which
no query client is available. The specific search capabilities
provided when performing a free text search depend on the
particular database being queried: all provide a range of fields
that can be used to restrict a query (via a drop-down menu to
the left of the search box) and also allow structured queries to
be entered directly (please see Jalview documentation for details
of these).

3. Jalview allows alignments of proteins and their CDS to be
visualized and interactively analyzed as a pair of linked align-
ment views shown docked bottom to top (see Fig. 2). Opera-
tions on protein sequences are mirrored on the CDS, allowing
proteins to be aligned using their amino acid sequence and the
resultant CDS multiple sequence alignment analyzed to inves-
tigate the presence of bias that might indicate selection. All
analysis steps described above can be performed on a linked
CDS/Protein view, with the added benefits that (1) codon bias
and diversity can also be visualized and used for filtering the
alignment, (2) genome- and transcript-level sequence features
can be visualized via the CDS alignment view, and (3) phyloge-
netic trees computed using the CDS alignment using either
Jalview’s built-in score models or via an external program and
loaded back onto the alignment can provide additional evolu-
tionary insight when used to partition the protein alignment.

4. When first launched, Jalview will automatically import and
display an example alignment, tree, and 3D structure retrieved
from the Jalview web site. The display of these examples is
disabled by opening Jalview’s user preferences dialog (via the
Preferences option of the “Tools” drop-down menu),
un-ticking the “Open File” checkbox, and selecting “OK” to
save the updated preferences. Jalview user preferences are
stored in a “.jalview_properties” located in the user’s home
directory. These are read every time Jalview is launched, and a
customized properties file can also be provided when Jalview is
run in batch mode from the command line to specify alignment
and annotation layout for automatic generation of figures.
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5. When saving alignment data, annotations, and projects, Jalview
may not always ask you to confirm if you are about to overwrite
an existing file—particularly if you employ the “Save File”
shortcut key (either CTRL-S or CMD-S on Macs). In these
situations, Jalview will by default automatically create a backup
file (called, e.g., myfile.fa.bak001). Backup behavior can be
changed in the “Backups” section of Jalview’s preferences
panel: by default only the three most recent backups will be
retained.

6. Alignment of large sets of sequences is CPU intensive and can
therefore take considerable time. Jalview’s public alignment
services provided by the University of Dundee in Scotland,

Fig. 2 Jalview’s linked CDS and Protein views. Screenshot of the Jalview 2.11 Desktop showing a
reconstructed coding sequence alignment for a Clustal Omega alignment of influenza (H5N1) neuraminidase
protein sequences. Protein sequences were retrieved from UniProt via Jalview’s Sequence Fetcher and
aligned with the Clustal Omega Web Service with default parameters. The coding sequence alignment was
reconstructed by selecting “EMBLCDS” from the “Show Cross References” submenu of the “Calculate” menu,
which triggered a retrieval of coding sequences from the European Nucleotide Archive. Two views have been
created for the Linked CDS and Protein view (View 1 and View 2); the highlighted positions in CDS and Protein
views are shown when the mouse is moved across the alignment area. Display of Sequence Logos have been
enabled via the Consensus Annotation row’s pop-up menu in order to display logos for amino acid and cDNA
codon frequencies
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UK, do not permit execution of alignments of greater than
1000 sequences with up to 1000 amino acids each. To perform
larger alignments, it is necessary to either (a) download and
configure a local instance of a compatible Jalview web services
system or (b) align sequences using an external program and
then import the result.

(a) Downloading and configuring a local instance of Jalview
Web Services. Jalview versions prior to 2.12 are able to
access web services provided by the JABAWS system
(http://www.compbio.dundee.ac.uk/jabaws), and
instructions for local installation either as a virtual appli-
ance or tomcat web application are provided (http://
www.compbio.dundee.ac.uk/jabaws/docs/getting_
started.html). It may then be necessary to compile bin-
aries for your platform and modify the JABAWS execution
limits to permit alignments to be performed of the size
that you require (http://www.compbio.dundee.ac.uk/
jabaws/docs/advanced.html#limiting-the-size-of-the-
job-accepted-by-jabaws). Once configured, Jalview can be
connected to your new JABAWS server by entering its
URL in Jalview’s “Web Services” Preferences pane, and
once validated, services will be accessible from the Web
Services menu in the alignment view.

A new web services system is currently being devel-
oped, and instructions will be made available via Jalview’s
built-in help on how to download and deploy these new
services once they are put into production.

(b) Exporting sequences for alignment and reimporting the
result. Sequences may be exported via the File menu’s
“Save as” option in the alignment window or for the
current selection via the pop-up menu (opened by right-
clicking the selected area). Once the alignment has been
performed, it is straightforward to import the aligned
result to a new alignment view, but there are potential
problems:

l Alignment programs may have constraints on sequence
name length, the range of characters permitted, and
reject inputs containing duplicate sequence names.

l Import of the aligned sequences as a new alignment
will not retain sequence metadata from the original
Jalview alignment view such as CDS relationships,
database cross-references, sequence features, and sec-
ondary structure annotation rows.

l Hidden columns in the original view will not be
accounted for or included in the result of the alignment
(see Note 9).
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Problems with sequence names can be worked around
through the use of custom scripts, but are outside the
scope of this chapter. Assuming sequence identifiers have
been preserved, then there are two ways to work around
the loss of sequence metadata. Metadata originally
retrieved by Jalview from an external database can be
retrieved once again. The “Fetch DB Refs” option in the
Web services menu provides options to retrieve records
from either all standard databases or a specific one
(e.g. UniProt for protein sequences), but this should be
used with care since both options may take some time for
large alignments. A second workaround is to manually
export features and annotation from the original view
and import the resultant Jalview features file (or GFF3
file) and Jalview annotations file to the newly imported
aligned sequence set.

7. Jalview provides a Realignment option when performing align-
ments via the Clustal W and Clustal Omega web service pro-
grams. Normally, Jalview removes all gap characters from
sequences passed to an alignment program, but for Realign-
ment, gap characters will be preserved. The precise behavior
depends upon which Clustal alignment program is used:

l Clustal W identifies aligned regions of the input as a range of
sequences of equal length (including any gap characters) at
the beginning of the input data. All other sequences in the
input data are then aligned to that first block (with inserts
into the block created as necessary). This process is quick,
and preserves the original aligned region, provided that
region was reordered to appear at the top of the alignment
view when the alignment was submitted.

l Clustal Omega realigns sequences by performing a
sequence-profile alignment. A profile is first constructed
from the input sequences (including any gap characters
present). Gaps are then removed from all sequences, and
they are each aligned to the profile to generate the final
multiple sequence alignment result. This method is more
computationally expensive than ClustalW, and it is unlikely
that relationships between aligned sequences will be pre-
served in regions of poor alignment reliability in the result.

8. Many of Jalview’s operations apply either to the whole align-
ment or, when present, just the selected region. Selected
regions in Jalview are highlighted with a red box. Columns
are annotated with a red mark, and selected sequences high-
lighted in dark gray. Rows and columns on alignment view can
be selected by clicking and dragging with the mouse on the
sequence ID panel and on the alignment ruler. An area of the
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view can also be selected simply by clicking and dragging.
These are summarized in the Jalview online video (http://
www.jalview.org/videos/selectinginjalview) and FAQ “How
Do I edit Sequences in Jalview” (http://www.jalview.org/
faq#sequences). Functions in the Alignment window’s select
menu allow columns to be selected on the basis of alignment
annotation (with the Select/Hide By Annotation dialog) and
when regions of the alignment are highlighted as the result of a
find operation. Columns can also be selected according to the
presence of sequence features.

9. Selected regions in a view can be hidden or shown simply by
pressing “H” or one of the other key combinations shown
under the View menu’s Hide and Show submenus. Columns
containing gaps can also be hidden via the “Hide Inserts”
function in the Selection and Sequence ID pop-up menu,
opened by right-clicking in the sequence ID area. Hidden
sequences and columns are excluded from alignment analysis
(e.g., the conservation and consensus rows), tree calculation,
principal component analysis, and secondary structure
predictions (accessed via the submenu in the Web Services
drop-down menu). Conversely, when multiple alignments are
performed, hidden columns are “preserved” and not submit-
ted to the server. Instead, the chosen program is executed
several times, once for each contiguous region of the input
set. Once all jobs are complete, Jalview concatenates the results
and intervening hidden regions in order to construct the final
alignment view.

10. Identification of reliably aligned regions in a multiple align-
ment is important for many applications. T-Coffee’s Transitive
Consistency Score (TCS) provides one approach: it measures
the average shift error between the sets of positions aligned in a
multiple alignment and a library of pairwise alignments involv-
ing the same sequences. Optimally aligned regions will always
be aligned in the same way, and an increasing shift error is more
indicative of low reliability. T-Coffee also offers a consensus
alignment tool, M-COFFEE, which computes multiple align-
ments for the input sequences with several different multiple
alignment programs and then generates a final alignment from
these different results. Here, TCS scores reflect shifts between
the different multiple alignment results used to generate the
consensus.
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11. A range of MSA column statistics are automatically computed
and can be displayed as alignment annotation rows below the
alignment. These rows update automatically as sequences are
added or removed from the view, or the MSA is otherwise
adjusted via Jalview’s interactive MSA editing capabilities.

The “Visual” tab in Jalview’s user preferences dialog pro-
vides options for enabling or disabling Consensus, Occupancy,
Conservation, and Alignment Quality Scores. The Consensus
annotation row shows themodal residue in each column (or + if
more than one residue is observed) and the proportion of
sequences that contain that residue. Right-clicking on the
Consensus row’s annotation label (on the left-hand side)
opens a pop-up menu that allows the consensus sequence for
the view to be copied to the clipboard (and so pasted to a new
alignment). Options in the menu also allow gapped sites to be
ignored when computing the height of the consensus histo-
gram and a Sequence Logo to be overlaid or shown in place of
the histogram. Occupancy simply reflects the number of
sequences that are aligned at each column of the MSA. Align-
ment Quality and Conservation are only available for Protein
MSAs. The Alignment Quality score reflects the total likeli-
hood of observing mutations between amino acids aligned at
the given column, based on the BLOSUM62 [15] substitution
matrix. The Conservation score for a column is computed
according to Zvelebil et al. [16] as implemented in the
AMAS method [17] and reflects the number of physicochemi-
cal properties shared by all amino acids in a column. The
tooltip for each column lists conserved properties with proper-
ties prefixed with an exclamation mark (!) to indicate the
absence of that property among the aligned residues. Jalview
also provides access to AACon [18] through the Alignment
Conservation submenu of the Web Services menu, which per-
mits a further 17 conservation scores to be computed.

12. Jalview’s built-in help provides a key and description for each of
the color schemes available in the “Colour” menu. There are
two classes of color scheme, symbol-based, such as Hydropho-
bic, or Taylor, and dynamic, such as ClustalX and Blosum62.
When working with nucleotide alignments, the only dynamic
scheme available is PID—which reflects abundance. The
Purine and Pyrimidine color scheme, however, can be used to
identify variation that may suggest differences in RNA second-
ary structure.

13. MSAs involving sequences that have diverse functions or com-
plex evolutionary relationships such as duplications and
domain expansions can be difficult to interpret for a number
of reasons. The central problem is that while some columns are
conserved, others are divergent as a result of evolutionary
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pressure; and at each site, the degree of divergence between any
two sequences may not always be the same as for others. For
instance, orthologous sequences will exhibit conservation
across functionally relevant regions, but those same functional
regions may not be conserved in paralogs. As a consequence,
global statistics such as consensus and conservation are not
always sufficient to identify regions of alignments that are
important for the structure and function of a sequence family.
A fully automated method for the identification of such regions
solely on the basis of sequence remains a research problem, but
hierarchical alignment analysis methods such as AMAS [17]
(and when a 3D structure is available, Evolutionary Trace [19])
can be effective. These approaches reveal local patterns of
conservation and divergence by subdividing aligned sequences
into clusters according to their percentage identity, ideally with
a tree computed from the alignment (see Note 14 below).
Jalview enables alignments to be partitioned into groups in a
similar manner, and its per-group conservation and consensus
shading allow patterns of conservation to be revealed within
each group. This approach does not on its own provide a way of
quantifying the functional importance of a conserved region,
but for proteins, Multi-Harmony [20] (via the Web Services’
Analysis submenu) can be applied to an MSA with subgroups
defined in order to infer columns that exhibit functional
variation.

14. Jalview includes the algorithms “UPGMA” and Neighbor-
Joining for the generation of dendrograms from distance
matrices computed over a range of columns in an MSA.
These functions are accessed from the “Calculate Tree or
PCA. . .” dialog in the Calculations menu. A variety of score
functions are provided [21] including protein substitution
matrices such as BLOSUM62 and a Percent Identity score
suitable for DNA. Trees calculated by external programs may
also be imported as New Hampshire (Newick) and New
Hampshire “Extended” format flat files—Jalview will attempt
to automatically match leaves to sequences based on the dis-
played sequence IDs.

15. In addition to the Jalview Desktop application, Jalview is also
available as a web-based application: JalviewJS. Launched in
late 2019, JalviewJS is the Jalview application compiled to
JavaScript [2] and adapted to run in-page either as the full-
featured “Desktop” application or as interactive MSA visuali-
zation components designed for embedding in web pages. For
more details, please see http://www.jalview.org/jalview-js/.
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Chapter 14

Evolutionary Sequence Analysis and Visualization
with Wasabi

Andres Veidenberg and Ari Löytynoja

Abstract

Wasabi is an open-source, web-based graphical environment for evolutionary sequence analysis and visuali-
zation, designed to work with multiple sequence alignments within their phylogenetic context. Its interac-
tive user interface provides convenient access to external data sources and computational tools and is easily
extendable with custom tools and pipelines using a plugin system. Wasabi stores intermediate editing and
analysis steps as workflow histories and provides direct-access web links to datasets, allowing for reproduc-
ible, collaborative research, and easy dissemination of the results. In addition to shared analyses and
installation-free usage, the web-based design allows Wasabi to be run as a cross-platform, stand-alone
application and makes its integration to other web services straightforward.
This chapter gives a detailed description and guidelines for the use of Wasabi’s analysis environment.

Example use cases will give step-by-step instructions for practical application of the public Wasabi, from
quick data visualization to branched analysis pipelines and publishing of results. We end with a brief
discussion of advanced usage of Wasabi, including command-line communication, interface extension,
offline usage, and integration to local and public web services. The public Wasabi application, its source
code, documentation, and other materials are available at http://wasabiapp.org

Key words Evolutionary sequence analysis, Reproducible research, Data visualization, Web
application

1 Introduction

In evolutionary sequence analysis, phylogenetic trees and multiple
sequence alignments are tightly linked. Many analyses use one in
the inference of the other, e.g., a guidetree to infer an alignment, or
an alignment to infer a phylogenetic tree. Some sequence aligners
(e.g., PRANK [1] and PAGAN [2]) and many downstream evolu-
tionary analysis tools and pipelines (e.g., CodeML [3], EPO [4])
combine phylogenetic and sequence data to infer parameters
attached to specific nodes of input trees. Some parameters relate
only to the tree while others, like ancestral sequences, are associated
both on the tree and the input alignment. To get the necessary
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context for drawing conclusions, such parameters should be dis-
played together with both input datasets.

Wasabi [5] was designed to work with complex phylogenetic
datasets, displaying each sequence next to the corresponding tree
node and maintaining the link through tree edits and downstream
analysis steps. In addition to data visualization, Wasabi integrates
external programs, editing tools, data management, and related
functions into a user-friendly graphical interface, providing a com-
prehensive environment for phylogenetic sequence analysis. While
there are other software packages with a more versatile tools selec-
tion (e.g., Mega [6], ETE [7]), Wasabi is characterized by its
web-based implementation. Use of modern web technologies
allows Wasabi to provide, among other features, installation-free
access, fine-grained customizations, secure linking to datasets, and
a plugin system for extending its functionality.

The first two sections below provide an overview of Wasabi and
an example workflow of aWasabi analysis. They describeWasabi in a
public web service configuration (as used in http://wasabiapp.org),
where a central analyses database is accessed via user accounts and
sharing URLs. After that, we briefly discuss alternative setups of
Wasabi, its modifications with plugins, and other advanced topics.
Throughout the chapter, italics is used to mark the terms found in
the Wasabi interface, and underline for typed text, filenames, and
web addresses. Consecutive actions (typically mouse clicks) are
linked with arrows (!). Some paragraphs are supplemented with
a note section to add details to the main text.

2 Overview of the User Interface

Wasabi’s graphical user interface is arranged to a horizontal toolbar
placed on top of the visualization area that include sections for
rendering phylogeny, taxa names, and multiple sequence alignment
(see Fig. 1). This layout is adjustable: the top toolbar can be con-
tracted or collapsed to maximize the visualization space (use Tools
! Settings) and the vertical divider lines between the visualization
sections are draggable to change their relative width. Most of the
interface elements (e.g., buttons, icons, or text with dotted under-
line) reveal a tooltip describing the associated function when
pointed with a mouse cursor for a few seconds. Colored text
indicates links that open sections (blue links) or windows (red
links) within the Wasabi interface.

The top toolbar includes buttons for drop-down menus, visu-
alization zoom level, undo/redo, and notifications. Most of the
tasks in Wasabi are done via dialog windows listed in the toolbar
menus. To reduce interface clutter, only the applicable tasks are
visible. For example, the Datamenu initially shows just the Import
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tool. After a dataset is imported, the menu is expanded with Export
and Info tools. Logging to a user account (see the example workflow
below) adds Analysis library, Save, and Share options.

The Import tool accepts tree and/or sequence data input from
local or remote sources. It auto-detects common file standards
(FASTA, ClustalW [8], Phylip [9], Newick [10], NHX [11],
NEXUS [12], HSAML [13], PhyloXML [14]) but can also handle
unknown data formats. The input sequence type (DNA/RNA/
protein) is set automatically but, if needed, it can be manually
corrected in the Info tool. The Import window includes a file
drop area and selector button for local files, a dedicated section
for importing phylogenomic datasets from the Ensembl database
[15] and a multisource text field accepting data files from a web
address, Wasabi dataset ID, or raw text data. The right side of the
text field is accompanied by a clickable triangle to expand the text
field and a “plus”-marked button for importing multiple files. Once
a dataset has been imported, it can be converted to another format
in the Export tool (supports FASTA, Phylip, Newick, NHX,
HSAML, and NEXUS).

Fig. 1 Wasabi with an imported analysis library dataset. Here, some ancestral sequences have been revealed,
the Tools menu is open, and the Analysis library shows the imported analysis step together with its workflow
path, annotation text and the file list
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The Toolsmenu lists the integrated command-line analysis pro-
grams, built-in data editing tools, and system settings. The selec-
tion of available tools depends on the installed plugins and the type
of input data imported to Wasabi. At the time of writing and using
the default plugins, the following tools appear when the currently
open dataset includes:

l Sequences: PRANK [1], PAGAN [2] and MAFFT [16]
sequence aligners, FastTree [17] tree inference method, and
Hide gaps tool.

l A tree: Edit tree tool.

l Both sequences and a tree: CodeML [3] selection model tester.

Adding custom programs to Wasabi is described in the plugins
section. The built-in Hide gaps tool allows masking, collapsing, or
removing gap-rich or conserved sequence alignment columns. Edit
tree tool is useful for fine-grained tree modifications, including
collapsing/removing specific taxa, adding annotations (e.g.,
branch colors) or preparing the tree for running CodeML
branch-site models [18]. The Settings window contains (depending
on the Wasabi configuration) up to 30 adjustable preferences,
including autosave, color schemes for visualization, and the user
account management. Many of the options are concealed in col-
lapsed sections that, like elsewhere in Wasabi interface, are marked
with triangle-shaped text bullets. The hidden content can be
revealed (or rehidden) with a mouse click on the bulleted text line.

Each time the user saves an imported dataset (Data! Save) or
runs an analysis program (Tools menu), a data snapshot is stored to
the user account. Together with other snapshots this forms a work-
flow track in the Analysis library. If the input dataset was imported
from an external source, the snapshot is stored as the first step of a
new workflow; otherwise the save location can be set either to
continue or to branch off from the input analysis step. The stored
analysis histories are listed in the Analysis library window. The
analysis step currently open is marked with a white background
while read-only shared analyses have dashed borders (see step 8 in
the tutorial). A click on the arrowhead button of any analysis step
reveals the subsequent step on the analysis path, while a click on the
breadcrumb path bar or the back button takes a step toward the
root. The Ladderized and Compact layout modes in the library
window, found under the gear button or Tools! Settings, are useful
when the list of stored analyses grows. Each analysis step includes
info fields that can be revealed by clicking the black triangle. Some
info fields can only be read by hovering its icon or title text (e.g.,
the date stamp from the clock icon, or the launch parameters from
the program name), while others can be clicked and edited (e.g.,
the descriptive name) or open further options (a click on the dataset
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ID allows accessing the stored files). One can remove an analysis
step with its Modify button or import the default output file by
clicking Open (one can switch the default file by opening it in the
file list). In addition, the info icon allows displaying and editing a
free-text annotation and the link icon shows the dedicated sharing
link. While Wasabi automatically creates a workflow of subsequent
analysis steps, root level analysis steps can be collected into larger
analysis collections by dragging them by their left side and
dropping onto other analyses.

When the imported dataset includes both a phylogenetic tree
and sequences with matching taxon names, sequences in the align-
ment area are displayed next to their position in the phylogenetic
tree. Ancestral sequences are hidden by default but can be revealed
via drop-down menu by clicking any tree node. The menu also
gives access to the node metadata and allows modifying the
connected subtree (show/hide/remove/recraft/reroot). Ancestral
nodes can also be dragged to relocate them or to remove specific
clades. Individual annotation labels and coloring displayed on the
tree can be defined in the Settings window or modified with the
Edit tree tool. Specific sequence alignment columns can be masked,
collapsed or removed by dragging a selection box spanning the
chosen sites, followed by the selected task in the right-click menu.
Collapsed sequence sites are indicated with red markers on the ruler
bar running along the top edge of the alignment box. The ruler also
serves as a dragging handle for panning around the alignment (as an
alternative to using arrow keys, mouse scroll wheel, or the
scrollbars).

In addition to the visualization and built-in tools, the user
interface wraps complex functionality like the analysis database
and background processes that are perhaps best described with a
practical analysis workflow.

3 Example Workflow

3.1 Introduction This tutorial is significantly updated and expanded version of the
workflow published in the original Wasabi article [5] that verified
the findings of a study [19] linking snow leopard’s high-altitude
adaptation to amino acid changes in the hypoxia-related gene
EGLN1. In short, multiple sequence alignment of EGLN1 is cre-
ated by merging homologous sequences from Ensembl database
with the study data, then realigned with two alternative methods,
cleaned, and finally tested for signals of positive selection. Every
analysis step with intermediate results is automatically visualized,
stored to analysis history, and accessible through the web via
sharing URLs.
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Although the tutorial includes a detailed list of steps to cover
most of the tools and functionality available in Wasabi, in practice
the workflow is fairly simple and straightforward: the introduction
video featured on the Wasabi homepage summarizes most of the
process in under 2 minutes (see Fig. 2 for overview). Also, you can
pick and choose individual tutorial steps to form shorter tasks. For
example, Wasabi is often used for quickly visualizing a sequence
alignment file by dropping it to the importer (see step 1), as an
interactive tree editor (step 5), versatile file converter (step 2), or
to make a dataset available across the web (step 8).

3.2 Setup Open the Wasabi application by clicking the launch button on
http://wasabiapp.org (or go directly to http://was.bi). When
visiting Wasabi for the first time (or using the web browser in
incognito mode), the Create account notification will show up on
the top toolbar. Wasabi user accounts allocate a 100 MB server
space for storing datasets and running background jobs. You can
dismiss the notification when using Wasabi for just visualizing,
editing, and exporting datasets. For enabling full functionality
(used in the tutorial from step 2 onward), click the notification
button and fill in your email address. Wasabi sends a message to this
address when the account is created, about to expire (after 30 days
of the last visit), or when a background job has finished (optional).
Alternatively, you can opt for a temporary account (valid for 1 day)
without entering an email address.

Note that, after clicking Create account, Wasabi’s web address
has changed (to the form was.bi/yourUserID). This address is a
direct link to your Wasabi user account and allows you to open your
analysis library on any internet-connected device. Please keep the
address for future reference, as otherwise you will lose the access to
your stored datasets after the Wasabi window has been closed. Here
are some suggestions for storing and retrieving your account URL:

l Write the address down or bookmark it in the web browser.

l Enable “Remember me on this computer” in the confirmation
window. The web browser will automatically redirect to the
account address on subsequent Wasabi launches.

l Locate the link in the email message that Wasabi sent you when
the account was created.

In addition to the user account, the tutorial assumes that you
have a query file ready to be used in step 4. Download it from
http://wasabiapp.org/download/wasabi/other/EGLN1_bigcats.
fas.
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Fig. 2 Overview of the example workflow, represented by Wasabi interface cutouts. Circled numbers indicate
corresponding tutorial steps
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3.3 Instructions Step 1: Import EGLN1 Gene Sequences: First, open the import
tool (Data ! Import) to download a GeneTree [20] dataset with
EGLN1 homologs (see Note 1). In the Ensembl section, choose
“Gene tree” from the left-hand selection, click Import options, type
human and EGLN1 to the species and gene name fields, choose
cDNA, and click Get ID. When the GeneTree ID appears to the
top input field, click Import. After a brief moment, the tree and
sequences are rendered to the visualization area and the import
window disappears.

Step 2: Reduce the Dataset: In this step, the set of included
EGLN1 sequences is reduced to mammalian species. Locate the
most recent common ancestor of the mammals clade by hovering
the mouse cursor over the tree inner nodes until the label displays
Mammals (see Note 2). Click the node to reveal a pop-up menu.
Select Remove nodes ! Keep only subtree.

3.3.1 Optional: Store a

Data Snapshot

At any point during the tutorial, the currently open dataset can be
browsed, modified, downloaded in a desired file format (Data !
Export), or stored to theAnalysis Library (Data! Save). Although
optional (the next step stores the current data as input), a snapshot
of the current dataset is handy for a couple of reasons: it serves as
the root step for the following analysis pipeline, and gets a dedi-
cated URL for sharing it in the web and to other Wasabi accounts
(see step 8). When a background job is run (tutorial steps 3, 4, and
7), an analysis snapshot (including input, output, and metadata) is
automatically added to the analysis history in the library. Whenever
the dataset state is not stored to the database, it’s indicated on the
toolbar (unsaved). The undo button allows reversing data edits up
to the last snapshot.

Step 3: Realign with PRANK: Since the end goal of the workflow
is to study positive selection, it’s recommended to realign the
mammalian EGLN1 sequences with an aligner designed for evolu-
tionary analyses. Click Tools! PRANK aligner and type a descrip-
tive name for this analysis step (e.g., “Prank realignment”). Next,
open theAlignment options! Fine tuning section and tick align as
codons. Click Start alignment. Click the notification button on the
toolbar to check the status of the running background jobs. When
the PRANK alignment has finished, click Open to import the
results.

3.3.2 Optional: Realign

with MAFFT

The EGLN1 sequences could also be aligned with another aligner
to create an alternative starting point for the rest of the workflow
(see Note 3). This would be useful to, e.g., estimate the sensitivity
of the positive selection tests to the choice of the alignment
method. Start the MAFFT realignment (Tools!MAFFT aligner)
with default settings and let it run in the background. This will
create two independent realignments (PRANK and MAFFT
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version) from the same input dataset, creating a branching point in
the analysis path. Go straight to step 4 to complete the rest of the
tutorial, then return here to continue with the alternative analysis
branch. Wasabi will take care of recording both workflows.

Unlike PRANK, MAFFT does not output a guide tree with
taxa names matching the output alignment. Since the next tutorial
step needs a reference phylogeny, a new tree needs to be built for
the MAFFT alignment. Make a new tree with Tools!FastTree, open
the resulting dataset and continue with the next tutorial step.

Step 4: Add More Sequences: Next, the EGLN1 alignment is
extended with homologs from the species studied in the snow
leopard paper (tiger, lion, and snow leopard). Click Tools!PAGAN
aligner and drag the EGLN1_bigcats.fas file (from the setup step)
to the query file drop area. Edit the name field for a better descrip-
tion. This setup will use PAGAN to extend the currently open
alignment with the sequences from the query file. After clicking
Start alignment, the notification button and Status overview win-
dow will show the progress of the PAGAN execution (see Note 4).

Step 5: Cleanup: After the PAGAN alignment has finished, open
the results and then browse the imported alignment. Remove
low-quality sequences (showing long stretches of missing data)
and paralogs (species duplicates) by dragging the taxa name out
of the tree and release it to the trash bin-marked alignment area
(or click taxa name ! Remove leaf). The placement of the added
sequences depends on the reference alignment quality and
sequence similarity. Check the location of the big cats and recraft
if needed: drag and drop to the leopard/lion ancestral node to the
cat branch. Next, trim out gappy alignment columns (uninforma-
tive for the following selection tests): click Tools!Hide gaps, adjust
the sequence rows threshold to a low value (e.g., 4%) and click
Apply. Then, right-click the alignment area ! Remove hidden col-
umns to delete the collapsed gap sites. If you rearranged the tree,
the alignment does not match it anymore and needs to be updated.
Click the Realign notification on the toolbar, tick use codon model,
and click Update alignment. After the realignment, the imported
dataset will update itself and a data snapshot is added to the analysis
library workflow path.

Step 6: Browse: Click Tools ! Translate and select codons. Browse
the sequence alignment and locate the AAG ! ATG substitution
(Lys ! Met, at around site 40 on the alignment ruler) in the snow
leopard (see Note 5). EGLN1 has been annotated as a hypoxia-
related gene and the source study linked this amino acid change to
snow leopard’s adaptation to high-altitude environment.The conclu-
sion is supported by the identical substitution at the same alignment
position in the alpaca. (Alpaca was not part of the original study but
was included here from the GeneTree.) A quantitative confidence
score can be added to this finding with a positive selection test.
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Step 7: Test for Positive Selection: The site-wise positive selection
test implemented in CodeML calculates (among other metrics) an
estimate of selection (dN/dS ratio) and its confidence score
(p-value) for each site in the input multiple sequence alignment.
The results file, however, is excessively detailed and makes eyebal-
ling for relevant info a time-consuming task (especially when pro-
cessing multiple genes). In addition, the validity of the column
scores needs to be confirmed by comparing the overall fit of the
positive selection model to an alternative model. Therefore, Wasa-
bi’s toolset includes a script that parses CodeML result files, per-
forms likelihood ratio tests [21] for the compared model pairs and
extracts statistically significant column scores. The script (like the
rest of integrated programs) can be chained to a pipeline to feed the
results from one analysis step (model testing) to the next one
(results parsing).

Click Tools ! CodeML. Type a new analysis step name. Select
Multiple site ratios. Click Edit options, select single ratio for the
branch model (see Note 6). Expand Site model and tick models
1 (nearly neutral) and 2 (positive selection). Now, without closing
the CodeML window, open Tools ! CodeML tester (or Add a step
! CodeML tester). Note that the CodeML section is collapsed and
the parser program is added as a second step, forming a pipeline.
Optionally, tick send an email when the pipeline finishes. This setup
will run CodeML to test the two selected models against the input
alignment data and to calculate the site scores, followed by the
CodeML results parser. Click Run pipeline.

Step 8: Review and Publish: Follow the pipeline progress in the
Status overview window and click the Open button once it appears.
This time, the results are not in the imported tree and alignment
(that originate from step 5), but in the CodeML parser report file.
To access it, open Analysis library and locate the active analysis step
(marked with white background and labeled with the name from
step 7). Click the analysis ID to see the list of files, hover mod-
el_tests.csv, and click the revealed View button. The file content is
opened in a separate window. If everything went as planned, the
report is expected to indicate that the data support the presence of
positive selection (model M2 passed the hypothesis test) at the
previously noted substitution site (dn/ds ratio > 1 with p-value
<5%).

At this point, you have verified the Lys ! Met change in
EGLN1 gene from the snow leopard study and improved the
confidence of the finding by including more sequence data and
running a statistical test. You have also collected a detailed record
of the analysis process. You can go back and examine each step in
the Analysis library, visualize the intermediate results, check the
analysis program parameters and input files, or split the analysis
path to alternative branches (see step 3 for an example branching
point).
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To share your findings with the academic community, click on
the blue link icon on any workflow step in the library. The resulting
Share data window gives you the option to either share only the
output dataset of the selected step, or together with the subsequent
workflow. You can then distribute the displayed sharing URL, e.g.,
via email or social media (see Note 7). The link will launch Wasabi
on any internet-connected device, open the shared dataset and
(if enabled) will add the included workflow as a read-only copy to
the recipient’sAnalysis library. This allows the recipient to view and
work with the received datasets without affecting the source, store
the modifications and send back the updated version via another
sharing URL.

In addition to online communication, the sharing links can be
used in scientific publishing. For example, the Wasabi article [5]
includes an image of the EGLN1 alignment with the snow-leopard
specific substitution, accompanied by a sharing URL (http://was.
bi?id¼usecases). When the reader clicks the link, Wasabi is
launched, visualizing the EGLN1 alignment at the same position
as depicted in the figure. The reader can then browse the rest of the
alignment and all of the steps in the analysis workflow. A neat
attribute of the shared workflow is that when we modify it (perhaps
to fix an error), the distributed copies are also automatically
updated in the recipient libraries. Similar sharing link, together
with representative dataset and annotations, can also be created
for our tutorial workflow. Start with an empty analysis collection
(Analysis library! gear button!New collection). Drag the work-
flow (e.g., its root step) into the new collection. Click the collec-
tion’s sharing icon and set the data snapshot from step 6 as the
default dataset in the “Upon import. . .” selection menu. Update
the annotation (click the collection’s info icon) with a free-text
description and links to reference articles [19]. Your tutorial work-
flow is now ready and wrapped and should look quite similar to our
version: http://was.bi?id¼tutorial.

4 Advanced Topics

4.1 Under the Hood Wasabi is built upon modern web technologies, consisting of the
main application (written in JavaScript), a server component (writ-
ten in Python), and third-party programs (plugins). The modular
design allows for cross-platform support (including mobile
devices), different setup configurations, and extensibility. For
example, Wasabi can be launched on a local computer as a desktop
application, run on a server computer to provide a web service, or
integrated into an existing web page.

Wasabi is installed by downloading its files from http://
wasabiapp.org/downloads. The application can be used without
the server module by opening the index.html file: this allows for
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import, visualization, editing, and export of datasets. The full
functionality with external tools and the analysis library is enabled
by launching the server script (wasabi_server.py). Wasabi is then
available from the server’s local address (by default http://local-
host:8000). WhenWasabi is running on a computer reachable from
the internet, it can be provided as a web service, allowing for quick
access, data sharing and central updates. Wasabi’s server module
uses job scheduling and user accounts for managing system
resources and randomized IDs for data security. Wasabi running
modes, user account quotas and other application parameters can
be edited in the server module settings file (wasabi_settings.cfg).

The analysis library uses a file-based database, where the folder
structure represents analysis paths with metadata stored in meta.txt
files. This allows direct reading or writing to the analysis library in a
file browser or on the command line. An existing data folder can be
defined as an analysis library in the settings file. The Wasabi inter-
face only shows folders with a meta.txt file (that, at the minimum,
should include the ID and name fields).

The Wasabi application communicates with its server compo-
nent and the outside world with URL commands and be used to
integrate Wasabi with other tools and websites. For example, a
command-line pipeline can use wget [22] to retrieve or write files
to a remote Wasabi analysis library, or open a web browser to
visualize a dataset with locally installed Wasabi. Also, Wasabi links
are an easy way to add a visualizer to a web-based alignment
database. The URL parameters in the links can be used to provide
a customized visualizer, e.g., to disable specific functions, display
bootstrap values, or hide the toolbar. See http://wasabiapp.org/
rest for documentation and examples.

Since Wasabi is a web application, it can be added to an existing
web service like any other web page: by including Wasabi’s HTML,
CSS and JavaScript files, and linking to the Wasabi’s URL where
needed. In addition, Wasabi’s appearance and functionality can be
extensively customized by editing the style.css and script.js files.
Examples of web services with integrated and customized Wasabi
include the Silva rRNA database (http://www.arb-silva.de), the
ConSurf conservation profile database (http://consurfdb.tau.
ac.il), and the Ensembl genome browser (http://ensembl.org).

In comparison to a native compiled application, a downside of a
web-based implementation is the performance cost arising from the
web browser overhead. Wasabi uses several optimization strategies
to scale well even with large input datasets. For example, the
sequence data is rendered to static but graphics card accelerated
canvas elements that are expanded piece-by-piece as new alignment
regions are scrolled into the viewport. Since the imported dataset is
loaded to memory, the maximum dataset size is limited mainly by
the RAM available in the computer. We have tested Wasabi on a
regular laptop with up to 1-gigabyte data files, showing
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performance on par with native visualization programs [5]. A favor-
able side effect of the web browser environment is that, with the
continuous development of JavaScript engines, the performance of
Wasabi improves over time even without contributions from the
future code optimizations.

4.2 Plugins Wasabi utilizes a plugin system to integrate external tools to its
graphical interface. A plugin is a JSON-formatted [23] description
of a command-line program that Wasabi uses to communicate with
the program and to construct a graphical user interface for launch-
ing the tool. Figure 3 depicts a JSON specification for a python
script with two input parameters. The script is integrated to Wasabi
by dropping it together with the JSON file to the plugins folder (see

Fig. 3 A minimal example of a plugin JSON file (top) and the resulting Wasabi interface window (bottom)
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Note 8). The command-line program now appears in the Tools
menu and has gained a graphical interface. The interface also allows
chaining the plugins to form analysis pipeline that can be stored
together with the filled parameters for later reuse. As demonstrated
by the CodeML interface, the plugin API [24] allows building
complex interfaces with embedded instructions, alternative param-
eter sets, user input-dependent default values, etc. The JSON files
for current Wasabi tools are found in the plugins folder and the full
API documentation is available at http://wasabiapp.org/plugins.

5 Future Directions

Wasabi has grown from its beginnings as a capable cross-platform
sequence alignment visualizer to an extendable analysis platform for
evolutionary sequence analyses, with a distinctive user-friendly
interface and easy access across the web. While there is no shortage
of directions for improvement, some features planned for the
upcoming Wasabi updates include a substring search, image file
export, reference sequence support, and a visualization track for
plotting site-wise graphs or annotations. Other improvements
under consideration aim to reduce Wasabi’s memory footprint
and simplify integration to web content.

Wasabi’s plugin system allows using standardized program
descriptions for adding command-line tools to the graphical inter-
face, significantly reducing the workload and know-how required
for implementing the integration. Although the plugin system was
built for Wasabi, it could be useful for many other programs and
provide them with a dynamic graphical interface. To help in that,
Wasabi’s plugin system is now provided as a separate JavaScript
library, the universal interface generator Pline. With that, one can
quickly build graphical interfaces to command-line tools and use
them on any web page or as a stand-alone desktop application. Each
plugin file should only be written once, and then updated together
with the target program. To that end, an online repository for
sharing and reusing JSON files is available on the Wasabi
homepage.

6 Notes

1. This procedure imports a dataset from Ensembl database. The
same input dataset could have been fetched in the import tool
via other routes, e.g., by dragging a prepared data file (perhaps
from a previous run of this tutorial) to the file drop area, typing
http://rest.ensembl.org/genetree/member/id/
ENSG00000135766 to the bottom section input field (this
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address uses Ensembl REST API [25]), or by filling the same
input with the dataset ID g7TDxl to import a copy from our
Wasabi account.

2. Dragging the tree/alignment divider to the right and using the
vertical scrollbar will help to browse big trees.

3. An analysis path can be split at any time from a selected step in
the Analysis library. For example, if you stored the input data-
set in step 2 (you can also do it now since the dataset is still
open), you can skip the branching option for now and return to
this step later. For that, open the data snapshot (from step 2) in
the library window and continue the tutorial with the MAFFT
alignment step. Likewise, you don’t have to finish the tutorial
in one go. You can close and later relaunch Wasabi, open a
stored analysis step and resume from there, or even switch
between the alternative analysis paths while completing the
remaining steps.

4. You can terminate a running background process with the Kill
button. A terminated (or failed) process will show a Delete
button: clicking that removes the generated files. You can also
skip the Open button and move the files directly to the Analysis
library for inspection (click the gear icon ! Move to library).
Also, hovering the program name will show its launch para-
meters and clicking the blue feedback text line reveals the full
output log.

5. After you have located the substitution site, it’s a good idea to
save a data snapshot with the zoom level and alignment position
enabled in the Store visualization settings section. Next time
you (or a colleague using the sharing URL from step 8) opens
the stored dataset, the alignment will automatically move to the
correct position without having to spend time to relocate the
substitution.

6. Hover the mouse over an input field to see the associated
command-line parameter. The adjacent info icon or dotted
text reveals the relevant documentation.

7. If you are usingWasabi datasets in a scientific publication, make
sure that the sharing links will stay permanently accessible. The
public Wasabi (http://wasabiapp.org) is an academically
funded, free-of-charge service. At the time of writing, we pro-
vide free user accounts and keep user data for a minimum of
30 days but we cannot guarantee long-term storage of external
datasets. However, you can easily install Wasabi locally (in a
server configuration) to share your datasets permanently.

8. It’s recommended to add a copy of the target program to the
plugins folder instead of using a system-wide command, since
future program updates may break the plugin compatibility.
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Chapter 15

Seaview Version 5: A Multiplatform Software for Multiple
Sequence Alignment, Molecular Phylogenetic Analyses,
and Tree Reconciliation

Manolo Gouy, Eric Tannier, Nicolas Comte, and David P. Parsons

Abstract

We present Seaview version 5, a multiplatform program to perform multiple alignment and phylogenetic
tree building from molecular sequence data. Seaview provides network access to sequence databases,
alignment with arbitrary algorithm, parsimony, distance and maximum likelihood tree building with
PhyML, and display, printing, and copy-to-clipboard or to SVG files of rooted or unrooted, binary or
multifurcating phylogenetic trees. While Seaview is primarily a program providing a graphical user interface
to guide the user into performing desired analyses, Seaview possesses also a command-line mode adequate
for user-provided scripts. Seaview version 5 introduces the ability to reconcile a gene tree with a reference
species tree and use this reconciliation to root and rearrange the gene tree. Seaview is freely available at
http://doua.prabi.fr/software/seaview.

Key words Multiple sequence alignment, Molecular phylogeny, Phylogenetic tree building, Graphical
user interface, Tree reconciliation

1 Seaview and Its Context

Many molecular evolution analyses depend on two key tasks to be
performed in succession, multiple sequence alignment, and phylo-
genetic tree reconstruction. Both tasks represent vast, mature
research areas which have led to the development of a large number
of algorithms, each with one or several implementations [1]. Sea-
view [2] was designed to facilitate performing these tasks by
providing a graphical user interface and by taking care of all the
data handling steps necessary before, between and after these tasks.
Furthermore, Seaview is a multiplatform program that can run on
all computers in wide use today. Overall, a nonspecialist user of
Seaview can read a dataset of DNA or protein sequences, extend it
with homologous sequences from the international nucleotide
sequence database collaboration [3], align them, estimate the phy-
logenetic tree that describes the evolutionary history of the
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https://doi.org/10.1007/978-1-0716-1036-7_15, © Springer Science+Business Media, LLC, part of Springer Nature 2021
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divergence of these sequences, print the resulting tree, and paste it
to a drawing software to prepare it for publication, all this without
leaving the Seaview program. Additionally, and this is new in Sea-
view version 5, the program performs gene tree/species tree recon-
ciliations, that is, annotating duplications, speciations, and losses in
a gene tree, and can automatically rearrange branches with low
statistical support when this can remove dubious duplications.
Graphical visualization of gene trees inside a species tree is included.

Seaview is organized around three major windows: the align-
ment window, the tree window, and the help window. The latest
version of Seaview, adequate to most currently used computers, can
be downloaded visiting its dedicated web page [4]. Seaview is also
available as a package for several major Linux distributions, includ-
ing Debian which currently provides Seaview version 4.7 [5].

2 The Alignment Window

2.1 Visualization

of Multiple Sequence

Alignments

The alignment window (Fig. 1) provides a view into the set of DNA
or protein sequences under analysis: it shows w residues (nucleo-
tides or amino acids) of h sequences alongside the sequence names.
The number of residues and sequences displayed is determined,
respectively, by the width and height of the window. A horizontal
and a vertical slider are allowed to scroll through the sequences.

File Edit Align Props Sites Species Footers Trees Search: Goto: Help

)(><−+_

sel=1
Homo
Mus
Xenopus
Drosophila
Caenorhabditis
Oryza
Lycopersicon
Citrus
Saccharomyces
Prorocentrum
Tetrahymena
Dictyostelium
Physarum
Crithidia
Methanococcus
Methanobacterium
Desulfurococcus
Sulfolobus
Thermoproteus
Thermoplasma
Halococcus
HalobacteriumH
HalobacteriumM
Escherichia
Pseudomonas
Rhodobacter
BacillusSubt
BacillusStea
Micrococcus
Streptomyces
Pirellula
Anacystis
EuglenaCP
Ruminobacter
Leptospira
Thermus

AAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTC−CCT−CAGGATAGCTGGCGCTCTCGCAGACCCGACGCACCCCCGCCACGCAGTT
AAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTC−CCT−CAGGATAGCTGGCGCTCTCGCT−−CCCGACGTA−−−−−−−−−CGCAGTT
AAGACGAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTC−CCT−CAGGATAGCTGGCGCTXGTCCGT−−−−−−−−−−−−−−−−−−−CGCAGTT
AAGACCAATCGAACCATCTAGTAGCTGGTTCCTTCCGAAGTTTC−CCT−CAGGATAGCTGGTGCATTTTAATATTATAT−−−−−−−−−−AAAATAATC
AAGACTAATCGAACCATCTAGTAGCTGGTTCCTTCCGAAGTTTC−CCT−CAGGATAGCTGGATCTC−−−−−−−−−−−−−−−−−−−−−−−−AGGCAGTT
AAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTC−CCT−CAGGATAGCTGGAGCCCATT−−−−−−−−−−−−−−−−−−−−−−ACGAGTT
AAGACTAATCGAACCGTCTAGTAGCTGGTTCCCTCCGAAGTTTC−CCT−CAGGATAGCTGGAGCTCGCG−−−−−−−−−−−−−−−−−−−−−TGCGAGTT
AAGACTAATCGAACCGTCTAGTAGCTGGTTCCCTCCGAAGTTTC−CCT−CAGGATAGCTGGAGCCCGGA−−−−−−−−−−−−−−−−−−−−−AACGAGTT
AAGACTAATCGAACCATCTAGTAGCTGGTTCCTGCCGAAGTTTC−CCT−CAGGATAGCAGAAGCTCGT−−−−−−−−−−−−−−−−−−−−−−−ATCAGTT
AAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTC−CCT−CAGGATAGCTGGAGTTGAA−−−−−−−−−−−−−−−−−−−−−−−−−CAGTT
AAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTC−TCT−CAGGATAGCAAGAGCAAGT−−−−−−−−−−−−−−−−−−−−−−ACGCAGTT
AAGACTAATCGAACAACCTAGTAGCTGGTTCCTTCCGAAGTTTC−CCT−CAGGATAGCTGGAGC−−−−−−−−−−−−−−−−−−−−−−AGTATTCTAGTT
AAGACCAATCGAGTCGTTTAGTAGCTGGTTTCCACCGAAGTTTC−CCT−CAGGATAGCAAAGGA−−−−−−−−−−−−−−−−−−−−AAAAGTGTCGAGTA
AAGACTCATCGAACCACCTAGTAGCTGGTTCACATCGAAGTTTC−CCT−CAGGATAGCTGGTGC−−−−−−−−−−−−−−−−−−−−−−−TAGTAGAAGTA
AAGGCCAATCGAGCCCGGAGATAGCTGGTTCCCCTCGAAGTGAC−TCT−CAGGTCAGCCAGAGTTC−−−−−−−−−−−−−−−−−−−−−−−−−AGGTAGT
AAGGCCAATCAAGGCCGGTGACAGCTGGTTCCACCCGAAATGGC−TCG−TAGGCCAGCCTGACTGG−−−−−−−−−−−−−−−−−−−−−−−−−AGATAGG
AAGACCAATCTAGCCCGGTGATAGCTGGTTCCCGCCGAAGTGGG−TCT−CAGCCCAGCCCCGCCGG−−−−−−−−−−−−−−−−−−−−−−−−−AGGTGGG
AAGACCAATCTAGCCCGGTGATAGCTAGTTCCCCCCGAAATGCG−TCC−TAGCGCAGCCTCCCTAA−−−−−−−−−−−−−−−−−−−−−−−−−AGGCAGC
AAGACCAACCAAGCCCGGTGATAGCTGGTTCCCCCCGAAGCGGG−TCC−CAGCCCGGCCTCCCTGG−−−−−−−−−−−−−−−−−−−−−−−−−AGGTCTC
AAGGCCAATCTAGGCCGGCAATAGCGGGTTCCCCCCGATACTAC−CCG−CAGGTAGACCTCGATGG−−−−−−−−−−−−−−−−−−−−−−−−−AGATTCT
AAGGCCCATCGAGTCCGGCAACAGCTGGTTCCGACCGAAACATG−TCG−AAGCATGACCTCCGCCG−−−−−−−−−−−−−−−−−−−−−−−−−AGGTAGT
AAGGCCCATCGAACCGGGCAACAGCTGGTTCCAACCGAAACATG−TCG−AAGCATGACCTCTGCCG−−−−−−−−−−−−−−−−−−−−−−−−−AGGTAGT
AAGGCCCATCGAGTCCGGCAACAGCTGGTTCCAATCGAAACATG−TCG−AAGCATGACCTCCGCCG−−−−−−−−−−−−−−−−−−−−−−−−−AGGTAGT
AAGGCCAATCAAACCGGGAGATAGCTGGTTCTCCCCGAAAGCTA−TTT−AGGTAGCGCCTCGTGAA−−−−−−−−−−−−−−−−−−−−−−−−−−TTCATC
AAGGCTAATCAAGCTCGGAGATAGCTGGTTCTCCTCGAAAGCTA−TTT−AGGTAGCGCCTCATGTA−−−−−−−−−−−−−−−−−−−−−−−−−−−TCACT
AAGGCCAATCAAATCTGGAGATAGCTGGTTCTCCGCGAAAGCTA−TTT−AGGTAGCGCCTCGGACG−−−−−−−−−−−−−−−−−−−−−−−−−−AATACC
AATGCCAATCGAACCTGGAGATAGCTGGTTCTCTCCGAAATAGC−TTT−AGGGCTAGCCTCAAGGT−−−−−−−−−−−−−−−−−−−−−−−−−−AAGAGT
AATGCCAATCGAACTTGGAGATAGCTGGTTCTCCCCGAAATAGC−TTT−AGGGCTAGCCTCGGGAT−−−−−−−−−−−−−−−−−−−−−−−−−GGAGAGT
AAGGCCAATCAAACTCCGTGATAGCTGGTTCTCCCCGAAATGCA−TTT−AGGTGCAGCGTCACGTG−−−−−−−−−−−−−−−−−−−−−−−−−−TTTCTT
AAGGCCAATCAAACTCCGTGATAGCTGGTTCTCCCCGAAATGCA−TTT−AGGTGCAGCGTCGTGTG−−−−−−−−−−−−−−−−−−−−−−−−−−TTTCTT
AAGTCTAATCAAACTTGGAGATATCTCGTTCTCTCCGAAATAGC−TTT−AGGGCTAGCCTTGAGCC−−−−−−−−−−−−−−−−−−−−−−−−−ACTACGC
AATGCCAATCGAACCCGGAGCTAGCTGGTTCTCCCCGAAATACG−TTG−AGGCGTAGCGGTATGGA−−−−−−−−−−−−−−−−−−−−−−−−−−TTATAG
AATTCCA−TCGAACTTGGAGCTAGCTGGATCTCTTCGAAATGCGGTTGGAGGCGCAGCGTTTAATT−−−−−−−−−−−−−−−−−−−−−−−ATGGTAAAC
AAGGCCAATCAAATCAGGTGATATCTGGTTCTCCCCGAAAGCTA−TTT−AGGTAGCGCCTCAAATG−−−−−−−−−−−−−−−−−−−−−−−−−−AAAGTT
AAGGCCTATCAAGGCAGGCGATAGCTGGTTCTCTCCGAAATAGG−TTT−AGGCCTAGCGTCAGTTG−−−−−−−−−−−−−−−−−−−−−−−−−−TTTAGT
AAAGCTAACCGAGCCCGGAGATAGCTGGTTCTCCCCGAAATGAC−TTT−AGGGTCAGCCTCAGGCG−−−−−−−−−−−−−−−−−−−−−−−−−−CTGACT

942    1039sel=1

Saccharomyces −

Seq:9 Pos:1022|919 [Saccharomyces]

Fig. 1 Example of an alignment window
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There is no a priori limit to the number and length of sequences
Seaview can handle, nor to the length of sequence names. They are
limited by the memory capacity of the host computer. Thus, a
Seaview user running an average PC can visualize alignments of
several thousand sequences without difficulty. Seaview is practical
to handle sequence alignments of the scale of one to a few tens of
genes but will not be convenient to work at the scale of full
eukaryotic chromosomes. As shown below, Seaview uses external
programs to perform multiple alignment which determine the scale
of the number of sequences that can be aligned in reasonable time
(seeChapter 1 for ClustalΩ). Tree building by distance methods are
very rapid, so that phylogenetic trees for several hundreds of
sequences can be easily computed. Tree building by the maximum
likelihood approach is much more computer intensive, so that
Seaview is convenient for datasets containing less than hundred
sequences. Larger problems are more conveniently handled by
running program PhyML in command-line mode, and having Sea-
view graphically display the resulting tree at the end of the compu-
tation. Several alignment windows can be opened simultaneously,
and sequences can be copy/pasted between them. Seaview handles
six formats able to contain sequence data: Fasta, MSF, Mase, Phy-
lip, Clustal, and NEXUS. MSF and Mase have a historical origin
and are no longer in common use. Fasta is useful because it’s a
sequence file format that many programs read and write and that
can be easily produced manually. Formats Phylip and Clustal allow
to read the output of two widely used pieces of software: PHYLIP
[6] for phylogenetic analysis and Clustal Ω for multiple sequence
alignment [7]. The NEXUS format [8] originates from the PAUP
software [9] and is used now by many other bioinformatics pro-
grams. It is especially useful because it can store all the data handled
by Seaview in a single file: sequences, sequence descriptions,
sequence subsets, site subsets, and trees. The “File” menu allows
to open a data file and to save all or part of the window content to
the same or another file in any of the six known formats.

2.2 Selecting

Sequences and Sites

Seaview allows the user to select sequences and/or sites to restrict
further operations to the selected sites/sequences alone.

Sequences are selected by clicking on their names (click and
drag to select several sequences at once). A selected subset of
sequences can be memorized and given a name using the “Species”
menu, they will then be saved in the data file.

Sites of interest upon the sequences can be defined using the
“Sites” menu. These sites can be defined by various criteria (Fig. 2).

Site selection criteria are

– Selected sites can be manually defined by clicking and dragging
on a dedicated pseudo sequence appearing at the bottom of the
alignment window.
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– Evolutionarily conserved sites can be identified using the
Gblocks algorithm [10].

– Seaview can select all first, second, third, or first + second codon
positions of the current dataset.

– Seaview can select variable sites, or, in other words, omit con-
served sites.

Any operation (e.g., alignment and tree building) performed
while a selection of sequences and/or sites is active will be restricted
to the selection rather than being performed on the whole dataset.

2.3 The

“Align” Menu

The “Align” menu of Seaview alignment windows contains all
alignment-related features: the user chooses what alignment algo-
rithm to use, sets options for that algorithm, and runs it on all
sequences or on the selected part of the selected sequences. The
“Alignment options” submenu lists the alignment algorithms Sea-
view can perform and allows to set options for them. It also allows
to add external alignment methods to Seaview (Fig. 3).

Seaview is distributed bundled with two multiple sequence
alignment methods: Clustal Ω [7] (see Chapter 1) and muscle
[11]. Both can be used to align either nucleotide or protein
sequences. Besides these two alignment methods, Seaview contains
a mechanism that allows to have it pilot other sequence alignment
programs. The only requirements for a program to be added to
Seaview’s list of alignment methods are that it can read a Fasta-
formatted input file, it can write the resulting aligned sequences to a
Fasta-formatted file, and it can be run by a command line contain-
ing the names of those two Fasta files. The “Add external method”
menu item visible in Fig. 3 adds one multiple sequence alignment
algorithm to the list of algorithms Seaview can pilot. When this
operation is performed, two pieces of data are required: (1) the path
to the desired alignment program on the local computer; (2) the
series of arguments this program expects to read a Fasta file, align its

all sitesName of custom site set?

Gblocks
First codon pos.
Second codon pos.
Third codon pos.
1st+2nd codon pos.
Variable sites

Ok Cancel

Fig. 2 Site set creation dialog window
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content, and output the alignment to a Fasta file. In these argu-
ments, the input file is to be denoted by %f.pir and the output file by
%f.out. For the MAFFT algorithm [12], for example, these argu-
ments are.

“--auto %f.pir > %f.out”.

For the T_Coffee method [13] (see Chapter 6), these argu-
ments are.

“%f.pir -outfile=%f.out -output=fasta_aln”.

For the Probcons program [14], the argument string becomes.

“%f.pir > %f.out”.

The “Add external method” procedure is to be done once by
the user for Seaview to be able to use the added method in all
further runs.

2.4 Protein-Coding

DNA Sequences

Protein-coding DNA sequences need to be aligned taking their
codon structure into account to obtain a correct alignment. Sea-
view performs this through the “View as proteins” item of the
“Props” menu of the alignment window. When the window con-
tains protein-coding sequences and “View as proteins” is turned
on, DNA sequences are replaced by their corresponding protein

Fig. 3 The “Align” menu and its “Alignment options” submenu. “-maxiters 2” is
an option to the MUSCLE method, which can be turned on or off using the
associated check box. “Edit options” allows to set or change what options
appear in the menu. The “MAFFT” algorithm has been added as an extra
alignment tool for Seaview to pilot
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sequences in the window. These can be aligned with the “Align”
menu. Finally, “View as proteins” can be turned off. DNA
sequences reappear in the window aligned in such a way that each
length-1 gap in the protein-level alignment is replaced by a length-
3 gap at the DNA level.

Seaview proposes an alternative way to display protein-coding
DNA sequences that highlights their codon structure. It’s obtained
with item “Colors/Codon colors” of the “Props” menu and dis-
plays synonymous codons of the same amino acid with the same
color (Fig. 4).

Seaview can display, for instance using its “Codon colors”
mode, multiple sequence alignments output by program MACSE
[15] (see Chapter 4) able to align frameshift-containing sequences
because of pseudogenes or sequencing errors: the extra “!” char-
acters added by MACSE are accepted by Seaview.

File Edit Align Props Sites Species Footers Trees Search: Goto: Help

)(><−+_

sel=0
D82069.PE1
AB019540.AIF−1
AB000818.PE1
AB012309.PE1
AB013745.AIF−1
AB035322
AB036423.IBA1
AB036423.PE2
AB094629.IBA2
AB128049.AIF1
AF074959.PE1
AF109719.PE7
AF129756.PE18
AF348450.PE1
AJ506968.AIF1
AK006184.PE1
AK006562.PE1
AK022845.PE1
AK028955.PE1
AK045539.PE1
AK091912.PE1
AL136566.PE1
AL157938.PE2
AL157938.PE3
AL662801.PE45
AL662847.AIF1
AL805934.AIF1
AL833896.PE1
AL928893.PE3
AY359067.PE1
BA000025.AIF1
BC009474.AIF1
BC021539.PE1
BC024599.PE1
BC073304.MGC8069
BC074259.MGC8401

AATGGAGATATCGATATTATGTCCTTGAAGCGAATGCTGGAGAAACTTGGGGTTCCCAAGACCCATCTA
AAAGGAGAAATAGATATTATGGGTTTGAAACGGATGCTGGAAAAACTCGGATTGGCCAAGACTCACTTG
AATGGAGATATCGATATTATGTCCTTGAAGCGAATGCTGGAGAAACTTGGGGTTCCCAAGACCCATCTA
CAGGGGGATATCGACATGATGGGCTTGAAGCGAATGATGGAGAAGTTGGGTGTGCCAAAGACTCACCTG
AATGGAGATATCGATATTATGTCCTTGAAGCGAATGCTGGAGAAACTTGGGGTTCCCAAGACCCACCTA
GAAGGCGAGATTGATCTGATGTCTTTAAAGAGGATGATGGAGAAGCTGGGGGTCCCCAAGACCCACCTG
AATGGAGATATCGATATTATGTCCTTGAAGCGAATGCTGGAGAAACTTGGGGTTCCCAAGACCCACCTA
AATGGAGATATCGATATTATGTCCTTGAAGCGAATGCTGGAGAAACTTGGGGTTCCCAAGACCCACCTA
GAAGGCGAGATTGATCTGATGTCTTTAAAGAGGATGATGGAGAAGCTGGGGGTCCCCAAGACCCACCTG
AACGGCGATATTGATATCATGTCCCTGAAGCGAATGCTGGAGAAACTTGGGGTCCCCAAGACTCACCTA
AATGGAGATATCGATATTATGTCCTTGAAGCGAATGCTGGAGAAACTTGGGGTTCCCAAGACCCACCTA
AATGGAGATATCGATATTATGTCCTTGAAGCGAATGCTGGAGAAACTTGGGGTTCCCAAGACCCACCTA
AATGGCGATATTGATATCATGTCCCTGAAACGAATGCTGGAGAAACTTGGAGTCCCCAAGACTCACCTA
GATGGAGGTATCGATATCATGTCCCTGAAGCGAATGATGGAGAAACTTGGGGTTCCCAAGACCCACCTG
CAAGGAGACATAGACATAATGGGGTTAAAACGGATGCTTGAAAAACTTGGAGTGGCCAAGACTCACCTA
AATGGAGATATCGATATTATGTCCTTGAAGCGAATGCTGGAGAAACTTGGGGTTCCCAAGACCCACCTA
AATGGAGATATCGATATTATGTCCTTGAAGCGAATGCTGGAGAAACTTGGGGTTCCCAAGACCCACCTA
GAAGGCGAGATTGACCTGATGTCTTTAAAGAGGATGATGGAGAAGCTTGGTGTCCCCAAGACCCACCTG
GAAGGCGAGATTGATCTGATGTCTTTAAAGAGGATGATGGAGAAGCTGGGGGTCCCCAAGACCCACCTG
GAAGGCGAGATTGATCTGATGTCTTTAAAGAGGATGATGGAGAAGCTGGGGGTCCCCAAGACCCACCTG
−−−−−−−−−−−−GACCTGATGTCTTTAAAGAGGATGATGGAGAAGCTTGGTGTCCCCAAGACCCACCTG
GAAGGCGAGATTGACCTGATGTCTTTAAAGAGGATGATGGAGAAGCTTGGTGTCCCCAAGACCCACCTG
GAAGGCGAGATTGACCTGATGTCTTTAAAGAGGATGATGGAGAAGCTTGGTGTCCCCAAGACCCACCTG
−−−−−−−−−−−−GACCTGATGTCTTTAAAGAGGATGATGGAGAAGCTTGGTGTCCCCAAGACCCACCTG
AATGGCGATATTGATATCATGTCCCTGAAACGAATGCTGGAGAAACTTGGAGTCCCCAAGACTCACCTA
AATGGCGATATTGATATCATGTCCCTGAAACGAATGCTGGAGAAACTTGGAGTCCCCAAGACTCACCTA
AATGGCGATATTGATATCATGTCCCTGAAACGAATGCTGGAGAAACTTGGAGTCCCCAAGACTCACCTA
GAAGGCGAGATTGACCTGATGTCTTTAAAGAGGATGATGGAGAAGCTTGGTGTCCCCAAGACCCACCTG
GAAGGCGAGATTGATCTGATGTCTTTAAAGAGGATGATGGAGAAGCTGGGGGTCCCCAAGACCCACCTG
GAAGGCGAGATTGACCTGATGTCTTTAAAGAGGATGATGGAGAAGCTTGGTGTCCCCAAGACCCACCTG
AATGGCGATATTGATATCATGTCCCTGAAACGAATGCTGGAGAAACTTGGAGTCCCCAAGACTCACCTA
AATGGCGATATTGATATCATGTCCCTGAAACGAATGCTGGAGAAACTTGGAGTCCCCAAGACTCACCTA
AATGGAGATATCGATATTATGTCCTTGAAGCGAATGCTGGAGAAACTTGGGGTTCCCAAGACCCACCTA
GAAGGCGAGATTGATCTGATGTCTTTAAAGAGGATGATGGAGAAGCTGGGGGTCCCCAAGACCCACCTG
CAAGGAGAGCTGGATATGATGGGCCTCAAGAAAATGTTGGAGAATCTGGGAGCCGCTAAGACCCATTTA
CAAGGAGAGCTGGATATGATGGGCCTGAAGAAAATGATGGAGAACCTGGGAGCTGCTAAAACCCATTTA

190sel=0
D82069.PE1 A

Seq:1 Ile Pos:205|196 [D82069.PE1]

Fig. 4 The “Codon colors” display mode of protein-coding DNA sequences. The column containing the black
cursor displays with the same red color synonymous Isoleucine codons (ATC, ATT, ATA) and uses other colors
for non-synonymous ones (e.g., ATG for Methionine)
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2.5 Genetic Code

Variants

Seaview can associate the adequate genetic code variant with the
sequences it processes: item “Set genetic code” of the “Edit” menu.
The user selects the relevant genetic code among all known variants
(Fig. 5). Seaview uses all genetic codes defined by the International
Nucleotide Sequence Database Collaboration (INSDC) [3] which
are primarily based on two review articles [16, 17]. All protein-
translation operations performed by Seaview use the genetic code
associated to each sequence.

2.6 Closely Related

Sequences

When dealing with closely related sequences, it may be difficult to
visualize rare differences within long stretches of identical nucleo-
tides. The item “by Reference” of the “Props” menu, active when
exactly one sequence is selected, modifies the sequence display to
help detect sequence variants: the selected sequence is moved to the
top and other sequences display a residue where they differ from
that at the same position in the reference sequence and a dot where
it’s identical.

2.7 The “Trees”

Menu of Alignment

Windows

Phylogenetic tree building is performed under Seaview via items of
the “Trees” menu of an alignment window (Fig. 6).

The first three items of the “Trees” menu give access to three
families of tree-building methods: parsimony, methods based on
pairwise phylogenetic distances, and PhyML, a maximum
likelihood-based method. The tree may be built from a subset of
the data using site and/or sequence selections. At the end of a tree-

                                                         Standard| 1| Standard genetic code
                                              Yeast Mitochondrial| 3| CUN=T  AUA=M  UGA=W
                                         Vertebrate Mitochondrial| 2| AGR=*  AUA=M  UGA=W
Mold Mitochondrial; Protozoan Mitochondrial; Coelenterate Mitocho| 4| UGA=W
                                       Invertebrate Mitochondrial| 5| AUA=M  UGA=W  AGR=S
                                        Alternative Yeast Nuclear|12| CUG=S
         Ciliate Nuclear; Dasycladacean Nuclear; Hexamita Nuclear| 6| UAR=Q
                                                 Euplotid Nuclear|10| UGA=C
                 Echinoderm Mitochondrial; Flatworm Mitochondrial| 9| UGA=W  AGR=S  AAA=N
                                           Ascidian Mitochondrial|13| UGA=W  AGR=G  AUA=M
                               Alternative Flatworm Mitochondrial|14| UGA=W  AGR=S  UAA=Y AAA=N
                                         Blepharisma Macronuclear|15| UAG=Q
                            Bacterial, Archaeal and Plant Plastid|11| NUG=AUN=M when initiation codon
                                      Chlorophycean Mitochondrial|16| UAG=Leu
                                          Trematode Mitochondrial|21| AUA=M  UGA=W  AGR=S AAA=N
                               Scenedesmus obliquus mitochondrial|22| UAG=L UCA=*
                                   Thraustochytrium mitochondrial|23| UUA=*
                                      Pterobranchia Mitochondrial|24| UGA=W  AGA=S  AGG=K
                       Candidate Division SR1 and Gracilibacteria|25| UGA=G
                                   Pachysolen tannophilus Nuclear|26| CUG=A
                                              Karyorelict Nuclear|27| UAR=Q, UGA=W, CUG=A
                                             Condylostoma Nuclear|28| UAR=Q, UGA=W, CUG=A
                                               Mesodinium Nuclear|29| UAR=Y, CUG=A
                                                Peritrich Nuclear|30| UAR=E, CUG=A
                                          Blastocrithidia Nuclear|31| UAR=E, UGA=W
                                          Balanophoraceae Plastid|32| UAG=W
                                    Cephalodiscidae Mitochondrial|33| UAA=Y, UGA=W, AGA=S, AGG=K

Set genetic code for Xenopus

OK Cancel

Fig. 5 List of variant genetic codes. The first item of the list is the standard, universal genetic code. Each
variant genetic code has a name (at left) as given by INSDC. The right part of each item details how the variant
code differs from the standard code listing all sets of codons which are translated differently (* indicates stop
codons)
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building operation, Seaview displays a new window containing the
resulting phylogenetic tree (see Subheading 3, below).

The next item of the “Trees” menu allows to import an external
tree in the form of a Newick-formatted [18] file. Such imported
tree can be used, for example, to evaluate its likelihood and com-
pare it to that of the most likely one. The “New tree window” item
opens an empty tree window where it’s possible to paste a Newick-
formatted tree from the computer’s clipboard.

The rest of the “Trees” menu gets dynamically populated with
italicized names of trees handled by Seaview: both trees that were
computed by Seaview and imported trees can be stored in that
menu and later saved together with the aligned sequence data,
provided the NEXUS or Mase formats are used. When Seaview
reads in that saved file later, the trees it contains reappear at the
end of the “Trees” menu. Selection of one of those menu items
draws the corresponding tree in a tree window.

2.8

Parsimony-Based Tree

Building

Seaview implements tree building by parsimony using, with autho-
rization from the author, the dnapars and protpars programs from
the PHYLIP package [6] which deal with DNA and protein
sequences, respectively. The dnapars algorithm applied to DNA
sequences produces a tree with branch lengths. These lengths are
estimated according to the method of Hochbaum and Pathria [19]
which “averages the number of reconstructed changes of state over
all sites over all possible most parsimonious placements of the
changes of state among branches” [6]. The protpars algorithm
produces a tree without branch lengths displayed by Seaview such
that all root-to-leave distances are equal. In both cases, the result-
ing tree is unrooted in essence. Seaview displays these trees in a
rooted form; the Subheading 3 below describes how unrooted trees
are drawn in a rooted form.

Figure 7 shows the dialog presented to the user to define the
parsimony analysis to be performed on DNA sequences. The two
boxes at the top, labeled “Randomize seq. order” and “times,”
control whether the heuristic search within the space of alternative

Fig. 6 The “Trees” menu of an alignment window, expanded with two previously
computed trees
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tree topologies is repeated several times after randomly changing
the input order of data sequences.

The boxes labeled “Ignore all gap sites” and “Gaps as unknown
states” control how gap-containing sites will be handled. When the
first box is checked, any gap-containing site is completely ignored.
Consequently, the parsimony operation only handles nucleotide
substitutions or amino acid replacements. The difficulty to weigh
the cost of an insertion/deletion event relatively to that of a substi-
tution vanishes. Any phylogenetic information associated to shared
insertions or deletions between sequences is ignored. When both
boxes are unchecked, gaps are treated as an extra character state.
Consequently, shared insertions or deletions between sequences
bring information taken into consideration by the parsimony algo-
rithm. But an insertion or deletion event of length n is given the
cost of n independent substitution events, which may not be bio-
logically realistic. When only “Gaps as unknown states” is checked,
sequence gaps are treated as absence of sequence data. Consider a
sequence site containing a gap in some sequences and regular
nucleotides or amino acids for other sequences. That site does
contribute to the parsimony score when gap-free sequences are
compared, but the same site does not contribute to the parsimony
score if at least one gap-containing sequence is involved.

The next three radio buttons control the search space consid-
ered while looking for the most parsimonious tree. More precisely,
they define how to consider equally parsimonious candidate trees
and branches of these trees without evidence that there is any
change on them: the default option labeled “More thorough tree

Randomize seq. order 5 times

Ignore all gap sites

Gaps as unknown states

More thorough tree search

Less thorough tree search

Rearrange on best tree

10000Equally best trees retained

100

% level for consensus tree building

Bootstrap with 100 replicates

Show bootstrap trees

User tree: universal−PhyML_

Cancel OK

Fig. 7 The Parsimony dialog window
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search” is to be preferred. However, a large dataset may render this
option computationally intractable. One may then use one of the
other two options, which increasingly reduce the computation time
by producing less thorough searches of the space of candidate trees.
The protpars algorithm used with protein datasets doesn’t offer a
comparable option.

“% level for consensus tree building” labels a slider set by
default at 100%. This option is related to the frequent situation
where several distinct trees are equally parsimonious. The dnapars
and protpars methods, and thus Seaview, complete their analysis
computing the consensus of all equally parsimonious trees found
and present as result a single tree, the consensus, instead of a
collection of equally optimal trees. Seaview computes by default
the 100% consensus meaning that only internal branches present in
100% of most parsimonious trees are retained in the consensus. The
frequency threshold required for an internal branch to appear in the
consensus can be changed between 100% and the minimum value
of 50%. Keeping the threshold above 50% ensures the existence of a
single consensus tree without contradiction between alternative
internal branch choices. Consensus trees are expected to be only
partially resolved, that is, to contain multifurcations where individ-
ual most parsimonious trees propose distinct resolutions.

The parsimony algorithm can be applied under a bootstrap
approach, which repeats the full search for the most parsimonious
tree topology with the chosen number of bootstrap replicates. In
that case, Seaview computes the bootstrap support of each branch
of the tree computed from native sequences, which is the frequency
at which that branch appears among trees computed from the
bootstrap replicates.

For all bootstrap analyses, Seaview implements both the stan-
dard bootstrap introduced by Felsenstein [20], and a recently
proposed modification of that approach called “Transfer Boot-
strap” intended to behave better for datasets containing hundreds
of sequences [21].

2.9 Distance-Based

Tree Building

The distance-based approach to phylogenetic tree building pro-
ceeds by computing first pairwise phylogenetic distances between
sequences, and then estimating the topology and the branch
lengths of the tree that best represents these distances [22]. The
phylogenetic distance between two homologous sequences is
defined as the average number per sequence site of substitution or
replacement events that occurred between these two sequences
since divergence from their last common ancestor. The phyloge-
netic distance between two sequences is necessarily larger than the
observed distance between them (number of observed differences
/ number of sites). If the evolutionary process is assumed to have
followed a given probabilistic model at all sequence sites and all
evolutionary dates, it can be possible to estimate phylogenetic
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distances from sequence data. Various probabilistic models of the
evolutionary process have been proposed. Some of them are imple-
mented in Seaview (Fig. 8).

The neighbor-joining method (NJ) is a widely used algorithm
that constructs a tree topology and its branch lengths from the
matrix of pairwise sequence distances [23]. This algorithm has been
improved under the name BioNJ to take into account the fact that
large evolutionary distances are less accurately estimated than short
ones [24]. Both methods are implemented in Seaview (Fig. 8).

When applied to DNA sequences, Seaview can compute pair-
wise distances according to 7 approaches. (1) Observed distances
defined above can be used when a very rough summary of sequence
dissimilarity is sought. (2) The Jukes and Cantor (JC), (3) Kimura
two-parameter (K2P), and (4) HKY models are standard probabi-
listic models of molecular evolution of increasing realism and have
been summarized by Rzhetsky and Nei [25]. (5) LogDet was
proposed by Lake [26] and Lockhart et al. [27]. The (6) Ka and
(7) Ks methods aim at better dealing with the evolution of protein-
coding DNA sequences. Therein, two distinct evolutionary pro-
cesses are mixed, one producing synonymous substitutions, which
don’t change the encoded amino acid, and one producing
non-synonymous substitutions that change the encoded amino
acid. Synonymous substitutions typically occur at a higher rate in
protein-coding sequences than non-synonymous ones because
non-synonymous substitutions can be eliminated by natural selec-
tion if the resulting encoded protein has an adverse effect on the
organism’s phenotype. Li has proposed to compute two evolution-
ary distances for a pair of protein-coding DNA sequences, one
called Ks quantifying the number of synonymous substitutions
per synonymous sites, another called Ka quantifying the number
of non-synonymous substitutions per non-synonymous sites

NJ BioNJ Save to File

J−CDistance

Ignore all gap sites

Bootstrap 100
# of replicates

Transfer Bootstrap Expectation method

Show bootstrap trees

User tree: universal−PhyML_tree
Optimize branch lengths

Cancel Go

Observed
J−C
K2P
HKY
LogDet
Ka
Ks

Fig. 8 The distance methods dialog window
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[28]. The Ks analysis provides more phylogenetic resolution for
small evolutionary divergences. The Ka analysis allows to consider
more divergent sequences for tree building.

When applied to protein sequences, Seaview can compute three
kinds of pairwise distances: (1) observed, (2) Poisson, and
(3) Kimura. Poisson distances assume all amino acid replacements
occur at the same rate at all sequence sites. Kimura distances are
based on an empirical approximation of the evolutionary distances
proposed by Kimura (reviewed in [22]).

Altogether, all pairwise evolutionary distances computed by
Seaview assume all sequence sites (separately for synonymous and
non-synonymous sites) evolve at the same rate. Such assumption
tends to underestimate evolutionary distances for large divergences
[29], potentially biasing subsequent tree reconstructions. For this
reason, it is recommended to prefer tree building by maximum
likelihood and to use distance-based phylogenetic trees only as a
rough estimation of sequence relationships.

Both NJ and BioNJ methods are very fast, so they can be
combined with the bootstrap approach, which requires to apply
the method to several hundred replicates of the sequence dataset.

2.10 Tree Building by

Maximum Likelihood

The maximum likelihood criterion is a statistical concept of
extremely wide applicability. It has been introduced by Felsenstein
in the field of molecular phylogenetic reconstruction [30], and has
become one of the most successful tree-building procedure. Tree
building by maximum likelihood benefits of several key properties
of the statistical theory which guarantee, for a wide set of scenarios,
that the maximum likelihood tree converges to the true tree if the
evolutionary process did follow the probabilistic model assumed by
this method and if the length of the sequence dataset grows to
infinity. The maximum likelihood approach to molecular phylogeny
can be applied both to DNA and to protein sequences. Several
implementations of that method have been developed during the
last decade, such as PhyML [31], RaxML [32], and IQ-TREE
[33]. Seaview allows to compute phylogenetic trees using the max-
imum likelihood approach with the PhyML version 3.1 program
[34]. Other implementations may perform faster with large data-
sets, but all implement the same probabilistic model of molecular
evolution and therefore are expected to converge to the same
phylogenetic tree, supposing that the optimal tree is found.

Figure 9 shows the dialogs Seaview presents to pilot a PhyML
run (left, DNA sequences; right, protein sequences). The “Model”
pop-up menu allows to choose among various models, that is,
relative probabilities of base substitutions or of amino acid replace-
ments. For DNA sequences, the “general time reversible” (GTR)
model is the most general of all models that can be used. It can
accommodate unequal base compositions and biased transition
over transversion rates and is the recommended model to choose
for phylogenetic tree building by maximum likelihood [35].
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For protein sequences, maximum likelihood algorithms use a
precomputed matrix of relative rates of replacement between pairs
of amino acids. Various authors have proposed such rate matrices
since Dayhoff’s pioneer computation starting from a few tens of
families of homologous, closely related protein sequences [36]. Le
and Gascuel have produced the most recent estimate of these
relative replacement rates based on about 50,000 protein sequences
from 3900 families spanning small and large divergence levels and
accounting for the variability of replacement rates along proteins
[37]. The LG matrix is therefore the recommended choice for the
model parameter.

The branch support part of the dialog allows to enrich the
resulting tree with estimates of the statistical support of each of its
internal branches. That can be done quickly, with an approximation
called aLRT, or in a much more time-consuming way, through
bootstrap. Bootstrap results can be interpreted in the classical way

GTRModel:

aLRT (SH−like) None

Bootstrap with 100 replicates
Transfer Bootstrap Expectation method
Show bootstrap trees

Branch Support

Empirical Optimized

Nucleotide equilibrium frequencies

Optimized Fixed 4.0

Ts/Tv ratio

None Optimized Fixed 0.10

Invariable sites

None 4# of rate categories

Optimized Fixed 2.0

Across site rate variation

NNI SPR Best of NNI & SPR

Tree searching operations

BioNJ Optimize tree topology

User given: universal−Ph

Add: 5 random starts

Starting tree

Cancel RunQuiet

LGModel:

aLRT (SH−like) None

Bootstrap with 100 replicates
Transfer Bootstrap Expectation method
Show bootstrap trees

Branch Support

Empirical Model−given

Amino acid equilibrium frequencies

None Optimized Fixed 0.10

Invariable sites

None 4# of rate categories

Optimized Fixed 2.0

Across site rate variation

NNI SPR Best of NNI & SPR

Tree searching operations

BioNJ Optimize tree topology

User given: universal−Ph

Add: 5 random starts

Starting tree

Cancel RunQuiet

Fig. 9 Dialog windows to run PhyML. Left, with a DNA alignment; right, with a protein sequence alignment
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[20], or in a recently proposed alternative fashion called “Transfer
bootstrap expectation” intended to be more efficient for large
trees [21].

PhyML dialog parts labeled “Nucleotide equilibrium frequen-
cies,” “Ts/Tv ratio,” and “Amino acid equilibrium frequen-
cies” correspond to parameter values that are either set to
observed values in the dataset, set to user-given values, or set to
an optimal value estimated by the program. The “Invariable sites”
part determines whether the model assumes there exists a fraction
of invariable sites in the dataset, and if so, if that fraction is set a
priori by the user or optimized by the program. The “Across site
rate variation” part determines whether the model assumes all sites
evolved with the same rate (None) or if sites are supposed to have a
gamma-distributed evolutionary rate. That distribution itself is
discretized in a number of rate categories (4 by default). The
alpha parameter value of that distribution is either optimized by
the program or set a priori by the user.

Three choices are possible in the “Tree searching operations”
part which both increase computation time and decrease the prob-
ability for the algorithm to remain trapped in local optima
[34]. The “Starting tree” part makes sense in that PhyML is an
algorithm that begins with a starting tree, computes its likelihood,
and keeps modifying branch lengths and topology of the current
tree until no modification that improves the tree likelihood is
found. The default starting tree is obtained by computing pairwise
sequence distances and applying the BioNJ method to them. If the
bottom of the “Trees” menu contains trees, any such tree can be
used as starting point after selecting the “User given”: option
instead of “BioNJ.” When” SPR” or “Best of NNI and SPR” is
selected, a third way of defining the starting tree becomes possible:
use a number (5 by default) of random starting trees, repeat the
complete algorithm starting from each of those, and finally retain
the tree with the highest likelihood found. Option “Optimize tree
topology” can be turned off to ask PhyML to evaluate the likeli-
hood of a user-given tree topology.

3 The Tree Window

When the computation of a phylogenetic tree by any of the meth-
ods mentioned above completes, Seaview presents the resulting
tree in a tree window (Fig. 10). A tree window can also be created
by opening a local file containing a tree in Newick format
[18]. Once a tree window has been created, the user can select
the “Save to Trees menu” item of the “File” menu to add that tree
to the “Trees” menu of the corresponding alignment window.
Consequently, that tree gets saved whenever the alignment data is
written to a file. That is the recommended way to preserve the
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result of a phylogenetic analysis performed with Seaview. The
NEXUS and Mase file formats both allow to store a multiple
sequence alignment and several corresponding trees in a single file.

Any tree window displays the tree with or without showing
branch lengths or statistical levels of branch support. Buttons
“Swap” and “Reroot” perform operations that change the graphi-
cal display of the tree but keep its topology unaltered. The “Select”
button allows to select one or a cluster of sequences in the tree
window and have the corresponding sequences selected in the
alignment window. The menu item “Edit/Edit tree shape” allows
to manipulate the tree topology itself performing subtree prune-
and-regraft operations in a copy of a starting tree.

A pop-up menu with three items, “squared,” “circular,” and
“cladogram,” allows to display the underlying phylogenetic tree in
one of three different fashions: (1) “squared” shows it rooted and
with branches proportional to branch lengths when these data are
present in the underlying tree (Fig. 10, left); (2) “circular” draws
the tree in a circular plot that aims at representing the abstract
concept of an unrooted tree; and (3) “cladogram” draws the tree
in a rooted form but with all root-to-leave distances equal with the
aim to represent the abstract concept of a tree without branch
length information.

Phylogenetic trees can be rooted or unrooted, binary or multi-
furcated, with or without branch lengths, with or without indica-
tion of statistical support of their internal branches. The Newick
format [18] can represent all these sorts of trees, and Seaview can
draw all of them. Phylogenetic trees computed with Seaview, except
reconciled trees (see below), have these properties: they are
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unrooted, without multifurcation, and all but parsimony trees on
protein data have branch lengths. All can optionally be computed
under a bootstrap analysis, which provides statistical support values
of all internal branches expressed as percent values. The PhyML
method additionally offers the option to estimate the statistical
support of internal branches by the aLRT method expressed as a
number in the [0–1] range. When Seaview draws a rooted tree
using the “squared” type of tree display, it uses the root location
indicated by the tree. When it draws an unrooted tree, Seaview
tentatively places the root in the tree with the midpoint method,
that is, at the center of the longest path between two tree leaves, as
measured by adding the lengths of branches connecting these
leaves. When Seaview draws an unrooted tree without branch
length, it roots it arbitrarily on one of its terminal branches. Seaview
users are strongly advised to use the “Reroot” button of tree
windows and reconsider under the light of their biological knowl-
edge the tentative rooting of any unrooted tree proposed by Sea-
view. Alternatively, they can attempt a gene tree/species tree
reconciliation if the tree under consideration is a gene tree and if a
species tree is available, which can root the gene tree (see the
“Reconcile” menu described below). An unrooted tree can be
saved to a rooted form and in Newick format with item “Save
rooted tree” of the “File” menu of any tree window. It can also
be saved to an unrooted form through item “Save unrooted tree.”

Items “Print,” “Save as PDF,” and “Save as SVG” of the “File”
menu of tree windows allow to store the current tree in its graphical
form. Noticeably, the output of the first two items for “squared”
trees can be made to cover a user-chosen number of pages, which
support the display of trees containing hundreds of leaves.

The “Edit/Copy” menu item of tree windows copies the cur-
rent tree in its current shape (rooted, circular, cladogram) to the
clipboard. That graphics can then be pasted to any adequate draw-
ing application, for example, to prepare a figure for publication.
Under Linux/Unix, it may be more convenient to save the tree in
SVG form using the “File/Save as SVG” menu item and to process
the resulting SVG file, for example, with the Inkscape application.

The “Reconcile” menu is new in Seaview version 5. It allows to
compare a gene tree (possibly unrooted and multifurcated) with a
species tree (which currently has to be rooted and fully resolved) to
perform three tasks: (1) reconcile them, that is, annotate the gene
tree nodes with speciation, duplication, and loss events, and com-
pute the reconciliation score, which is the number of duplications
and losses, multiplied by their respective costs, set by the user in a
parameter window; (2) root the gene tree with a root that mini-
mizes the reconciliation score (when roots with equal scores exist, a
randomly chosen one is used); (3) and rearrange the gene tree
branches with low statistical support (what is “low” is a user-
defined parameter, often set to 80% for bootstrap supports). The
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latter option means that a new gene tree is constructed, which
contains all the branches of the initial gene tree when they have a
high support, and the other branches are constructed to minimize
the reconciliation score. This can be performed simultaneously
with the rooting or with a specified root. Multifurcated gene trees
can also be resolved as binary trees following their reconciliation
with the species tree. All these operations are performed with the
Treerecs method [38], which runs a dynamic programming algo-
rithm along the nodes of the gene and species trees, in order to map
and resolve gene tree nodes with a parsimony objective (minimiz-
ing the reconciliation score).

Reconciliations imply that each gene (gene tree leaf) is mapped
onto the species (species tree leaf) it belongs to. Treerecs automati-
cally detects this mapping if the species name is a part of the gene
name. Otherwise, a mapping file, containing lines with gene-species
correspondences, is required.

Reconciliations can be visualized in an additional window, as
shown in Fig. 11.

4 The Help Window

Help information detailing the purpose of all Seaview features and
how to trigger them is available while running the program in the
form of a window containing an HTML document. This
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Fig. 11 A gene tree/species tree reconciliation. Left: a gene tree taken from Ensembl [39] showing the
statistical support of each branch expressed in per cent. Right: this gene tree has been reconciled with the
species tree, also taken from Ensembl, using the Treerecs method, and the reconciled gene tree is drawn,
using Seaview, inside the species tree. The threshold for branch support has been set to 99%: some branches
of the gene tree with support<99% have been rearranged in the reconciled tree to minimize the reconciliation
score. The reconciled tree predicts four gene duplication events (solid squares) and one gene loss (cross). The
star denotes the root of the species tree
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information is divided in 18 sections that cover all program func-
tions (Fig. 12). That document is also readable with any web
browser.

5 Command-Line Mode

Seaview can also be used in command-line mode, that is, as a
command line composed of the path to the Seaview executable on
the system and a series of arguments defining an operation to be
performed by Seaview. In that mode, no graphical user interface
appears, which allows Seaview to be usable in user-written scripts
where the same task is repeated a number of times. Most of the
functions described above can also be performed in command-line
mode. Tree building by PhyML and reconciliation by Treerecs,
though, are not covered by Seaview’s command-line mode because
the PhyML and Treerecs programs themselves natively run as a
command line. One command line to perform a multiple sequence
alignment could be, for example:

/path/to/seaview -align -align_algo 1 -align_at_protein_level

-output_format phylip -o outfile.phy infile.nxs

The arguments in that command line successively indicate to
perform a multiple sequence alignment using algorithm #1, which
is muscle, to translate input sequences to protein, align them, and
then transfer the protein-level alignment to the DNA-level, to
output the resulting alignment as a PHYLIP-formatted file and
name the output (outfile.phy) and input (infile.nxs) files. The
seven groups of operations Seaview can perform in command-line
mode are summarized in Table 1.

The “Program arguments” section of the Seaview help window
(Fig. 12) details all program arguments usable in command-
line mode.

F F

Help items

File Menu Edit Menu Align Menu Props Menu Sites Menu Species Menu

Footers Menu Search Goto Trees Menu Alignment panel Tree windows

Dot plot Mase file format Program arguments Sequence coloring Miscellaneous options Customization

Fig. 12 The top of the Help window lists 18 sections covering all Seaview uses
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Chapter 16

NCBI Genome Workbench: Desktop Software
for Comparative Genomics, Visualization,
and GenBank Data Submission

Anatoliy Kuznetsov and Colleen J. Bollin

Abstract

The book chapter introduces the National Center for Biotechnology Information (NCBI) Genome
Workbench, a desktop GUI software package to manipulate and visualize complex molecular biology
models provided in many data formats. Genome Workbench integrates graphical views and computational
tools in a single package to facilitate discoveries. In this chapter we provide a step-by-step protocol guidance
on how to do comparative analysis of sequences using NCBI BLAST and multiple sequence alignment
algorithms, build phylogenetic trees, and use graphical views for sequences, alignments, and trees to
validate the findings. The software package can be used to prepare high-quality whole genome submissions
to NCBI. The software package is user-friendly and includes validation and editing tools to fix errors as part
of preparing the submission.

Key words Phylogenetic, Alignment, MUSCLE , MAFFT , Clustal, Analysis, GenBank, Genome,
PubMed, BLAST, Visualization, Bioinformatics

1 NCBI Genome Workbench: Capabilities Overview

1.1 Introduction NCBI Genome Workbench is a set of desktop GUI tools for
studying genetic data. It can connect to NCBI data sources or
load local, private data files. The software uses a set of graphical
displays called Views to display genomic data. Genome Workbench
offers seamless integration with NCBI and non-NCBI algorithmic
tools to run analysis. The process of scientific discovery involves
making connections between unobvious observations coming from
comparisons between public and private datasets. Genome Work-
bench offers integrated tools to quickly run algorithms, experiment
with parameters, and evaluate results using graphical views without
engaging with heavy duty bioinformatics pipelines or program-
ming. Genome Workbench also offers tools to prepare full genome
submissions to NCBI.

Kazutaka Katoh (ed.), Multiple Sequence Alignment: Methods and Protocols, Methods in Molecular Biology, vol. 2231,
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1.2 Download

and Install Genome

Workbench

The main URL for software and documentation is https://www.
ncbi.nlm.nih.gov/tools/gbench/

The software suite is open source and multiplatform. NCBI
supports Microsoft Windows, MacOS, and variants of Linux. The
user must pick the right distribution package, download it, and
install it on their PC, Mac or Linux. Some Linux users may find it
best to use source code distribution to build their own for Linux
distributions not supported by NCBI.

1.3 Data Import

Capabilities

Genome Workbench can load data from several bioinformatics
formats and data sources, such as FASTA, NCBI ASN.1 (text or
binary), BAM/cSRA (local databases or remote http hosted data
sources), BED, GFF, VCF, NEWICK, NEXUS, RepeatMasker,
FASTA alignments, Wiggle, and 5-column feature table.

Genome Workbench provides the ability to search and load
data from NCBI in several ways:

1. Load genome collections (detailed description of sequence
molecules which constitute a genome).

2. Load individual molecules using their NCBI accessions.

3. Discover annotations for molecules.

4. Load results of BLAST alignment algorithms by their RID
(special token issued when a BLAST request is submitted).

1.4 Data Privacy Genome Workbench is a desktop tool working on the user’s com-
puter with the user’s own data. Sequence and annotation data are
processed locally on the user’s computer. It is not sent over the
network, unless the user explicitly requests this. This offers greater
privacy control than using web genomics tools.

For quality monitoring, GenomeWorkbench sends some infor-
mation about usage statistics back to NCBI. This information is
limited to names of the tools and views without any data association
to reveal the potentially sensitive context of the user’s research. It is
possible to opt out and completely silence usage reporting.

1.5 Data

Visualization

Genome Workbench implements a set of graphical displays called
views to make data exploration easier.

The most important and useful Views of NCBI GenomeWork-
bench are:

1. Text View—this is a generic, non-graphical view which allows
the user to see DNA, RNA, or protein molecule information
and annotations. Text View supports various formats of data
presentation, where the most important is the GenBank Flat
File Format, which displays molecule meta-information, anno-
tated features, and sequence data.
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2. Graphical Sequence View—this view uses a graphical model of
the molecule, with zoom and scroll to see various types of
annotations as tracks (feature tracks, graphs, SNPs, alignments,
etc.). All track data are displayed by default in the molecular
biology directionality system of 50-to-30, and can be reversed.
Graphical Sequence View is designed to be fully interactive and
display translation details, single nucleotide polymorphism
mutations, and fine gene structure of exons and introns,
making it easier to visually correlate various sources of scientific
evidence and compare reference data with the details of a
particular experiment.

3. Multiple Sequence Alignment Viewer—this graphical view
is for comparative analysis of molecules. Multiple Sequence
Alignments prepared by algorithmic tools can be displayed in
a common system of coordinates, helping to better understand
the relationships between sequences. MSA View is fully inter-
active and can project some annotations as displayed in Graph-
ical Sequence View into alignment coordinates. This unique
feature helps to make exploratory connections between the
mathematical model of alignment and functional genomics,
known from experiments.

4. Sequence Text View—this is a graphical view to see sequences
and translation details.

5. Tree View—this is a graphical view to explore phylogenetic
trees prepared by tree reconstruction algorithms or multiple
alignment tools.

1.6 Data

Presentation

and High-Quality

Printing

Conventional screenshots, even on high DPI resolution, do not
provide the printing quality of scalable vector graphics.

NCBI Genome Workbench allows the user to export graphical
data into vector format (PDF) for printing. Generated PDFs are
made of vector graphics. Output vector formats are scalable and can
be edited using third-party graphical software packages to produce
graphics for high-quality poster printing (menu File/Save As PDF).

1.7 Tools Genome Workbench offers integration with an array of tools to
help researchers.

1. BLAST Family of Tools [1, 2]—using Genome Workbench,
the user is able to submit a BLAST search to NCBI and load
results or run BLAST locally as pairwise or run against a local
BLAST database.

2. Alignment Clean Up Tools—complementary to BLAST to
reduce noise in the original alignment to see the big picture
using graphical views.

3. Splign and Protein Splign—tools for calculating spliced align-
ments for fine gene structure.
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4. Phylogenetic Tree Builder.

5. Multiple Alignment Tools—Genome Workbench integrates a
number of external tools to help build multiple alignments.
External, non-NCBI tools do not come with Genome Work-
bench; the user must download and install them separately.
Supported tools for multiple alignments: MUSCLE [3],
MAFFT, Kalign, and Clustal [4 (Chapter 10)].

1.8 Genomic Data

Editing Package

Genome Workbench is modular software; it comes with extended
functionality packages which can be enabled. The Editing Package
extends the functionality of Genome Workbench to help the user
prepare NCBI data submissions. When enabled, the Editing Pack-
age changes the GenomeWorkbench system of menus and available
dialogs to allow data editing. With Genome Workbench, the user
can import sequence data and annotations, run validations, and fix
logical errors.

2 Getting Started with Genome Workbench

2.1 Main Window

Look and Feel: Loading

Data into the Project

When Genome Workbench starts up, the Main Window appears
with several different panes.

The Project Tree View is on the left and is empty upon startup.
This is where loaded data, analysis results, and the views created will
be stored.

The concept of a Project is important to understand when
using Genome Workbench. A Project is defined as the sequence
data, annotations, and alignments relevant to the user’s work. By
placing data in a single project, the user defines a coherent dataset,
which can be displayed by the Views. A Project can be persistently
saved to disk, to be restored later or shared with colleagues.

The Views (as referred to in this and other tutorials) are differ-
ent windows within the Genome Workbench application providing
the user with the information on various aspects of the work of the
application and data. Views provided by the application are avail-
able through the View drop-down menu. Data views are opened by
the user.

There are several ways to add data to a project.
To start with an NCBI GenBank [5] or RefSeq [6] accession,

one can use Open Dialog to load the molecule (Fig. 1).
Accessions are special unique identifiers of molecules. There are

a few patterns of accession assignment that may be useful to keep in
mind:

l AC_complete genomic molecule, usually alternate assembly.

l NC_are reference sequence chromosomes, usually reference
assembly.
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l NT_are reference sequence contigs or scaffolds, clone based,
or WGS.

l NW_contig or scaffold, primarily WGS.

l NG_reference sequences that have had some degree of human
curation, incomplete genomic region.

l NZ_complete genomes and unfinished WGS data.

l NM_reference sequence mRNAs.

l NR_non-protein-coding RNAs.

l NP_reference sequence proteins, associated with NM_ or NC_
accessions.

l XM_predicted model protein-coding mRNA.

l XR_predicted model non-protein-coding RNA.

l XP_predicted protein, associated with an XM_ accession.

l YP_protein annotated on genomic molecules without an
instantiated

transcript record.
l WP_protein, nonredundant across multiple strains and species.

Read more in the NCBI Hand Book, Chapter 18, The Refer-
ence Sequence (RefSeq) Database.

https://www.ncbi.nlm.nih.gov/books/NBK21091/

Fig. 1 Main Genome Workbench Windows with Open Dialog (GenBank data)
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2.2 Loading External

(Non-NCBI)

Annotations

External annotations can be loaded using the Open Dialog (File/
Open menu Fig. 2). Genome Workbench recognizes multiple bio-
informatics formats. When using Open Dialog, one can allow
Genome Workbench to auto-detect format or override the detec-
tion mechanism by explicit choice. Usually formats can be identi-
fied unambiguously, but there are a few cases when the detection
algorithm may actually be incapable of choosing the format.

One of these cases is loading FASTA alignments, where the
format is sometimes indistinguishable from FASTA sequence data,
so manual format selection may be necessary.

Note that the Project View panel shows a list of various data
items loaded into a project (Fig. 3).

Important! When loading data for the same genome, for exam-
ple, FASTA of an organism and its GFF3 annotation—load it into
the same project. If the annotation refers to the same sequence ids
as listed in FASTA file—Genome Workbench will be able to associ-
ate features and sequence and display it graphically within the same
coordinates on the genome.

2.3 Graphical

Sequence View

To open a View, first select an object, in this case, a sequence, then
launch the View dialog (Fig. 4).

Fig. 2 Open Dialog for file import. It supports number of popular bioinformatics formats
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The View dialog has an option to set the default view associated
with a particular data type (Fig. 5). Once a default view has been
set, the user can use double-click in the Project View to launch it.

The visual language of the graphical view may seem complex.
More information and legend information are available at:

https://www.ncbi.nlm.nih.gov/tools/sviewer/legends/
Please note, that this graphical notation is common between

desktop graphical views of Genome Workbench and NCBI Web
Genome Data Viewers.

Data of different types from different sources can be displayed
graphically as “Tracks.” (Fig. 6) The Graphical Sequence View
supports different types of tracks for displaying sequence, 6-frame
translation, genes (from different data sources), SNPs (all or cate-
gorized by clinical significance), structural variations, genome
graphs (expression, epigenomic data, RNA-seq, ChIP-seq data,
etc.), and alignments (from BAM files or after alignment programs
like BLAST).

All Tracks support the concept of variable level of detail,
depending on the zoom factor (Fig. 7).

As the user zooms in, more details will become visible. In
Fig. 7, the view is zoomed all the way in to the actual sequence.
The easiest and the most convenient way to zoom in and out is to

Fig. 3 Project View panel shows data loaded into a project
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use the mouse: position the mouse pointer at the zoom focus point
on the sequence, press the mouse scroll wheel down and hold, and
use the mouse to zoom in and out. The alternative is to hold “Z”
button on the keyboard and hold the mouse button to zoom.

When zoomed in to the sequence level, the gray sequence bars
across the top are now duplicated, showing both the forward and
reverse (complemented) strand of the chromosomal sequence. In
addition, inside the protein-coding region the letters of the protein
are inscribed and spaced out to account for the codon boundaries
and reading frame.

If the user selects a coding region feature, the letters of the
codon responsible for the amino acid will be displayed beneath that
amino acid.

When hovering over annotation or over the blue sequence bars,
a tool tip will be displayed providing additional information. The
images below show two tool tips: one over a feature, showing
information about the feature as well as the GenBank display for

Fig. 4 Context menu (right mouse click) to open a View
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this feature, and one for the sequence, providing details both about
the organism involved and the location over which the mouse is
positioned.

Graphical view also supports selections, which is a convenient
way of specifying a molecule region for running a tool.

Selections can be tracked using the Active Object Inspector
(Fig. 8). The Inspector can be configured to show a list of selected
objects and molecule regions in the current View, or in all open
Views. The screenshot shows objects selected in the Project and
Graphical Sequence Viewer. Please note, that the Active Object
Inspector shows both the selected region and the main molecule.

Fig. 5 Open View dialog, Graphical Sequence View is chosen as a default
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The Active Object Inspector can be used to specify targets for
running tools (Fig. 9). Many tools, like NCBI BLAST, can use the
selected area to specify the search (query or subject in BLAST
terminology).

Fig. 6 Graphical Sequence View—Track Configuration Dialog to choose tracks to display

Fig. 7 Graphical Sequence View—zooming into details using zoom ruler (green)
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2.4 Running Tools Here are a few basic ways to run tools in Genome Workbench.
One approach is to select molecules of interest and use the

Tools menu to pass selected objects there (see Figs. 9 and 10).
Genome Workbench will attempt to extract the appropriate

content from any selection for use in a selected tool. For example,
if the user selects not sequence data but annotations, alignments, or
any other data type which refers to sequences or locations on a
genome, the tool will try to extract those sequences or genomic
locations and offer all compatible data as a tool argument
candidate.

In the example here, the NCBI BLAST Tool is selected
(Fig. 11). Each tool guides the user through a step-by-step wizard
interface to help to establish the run options and parameters
(Figs. 12 and 13).

Fig. 8 Active Object Inspector (All Views mode)—shows all selected molecules and locations on the genome

Fig. 9 Active Object Inspector used to run a tool on two selected molecules
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Some tools will run for an extended period of time. The run-
time status will be reported in the Task View display. A BLAST run
produces an alignment(s) which is automatically loaded into the
project and displayed in Graphical Sequence View (Fig. 14).

3 Phylogenetic Analysis Using BLAST Search, Multiple Alignments,
and Phylogenetic Tree View

This use case analyzes the phylogenetic relationship between two
clades: Xerula/Oudemansiella and Rubescent Amanita spp. The
user selected sequence KJ620018 as a query.

1. Load query sequence into project from GenBank.

2. Run BLAST alignment tool using BLASTn, or preferable blast
program.

3. Run Multiple Alignment tool on results found by BLAST.

4. Run tool to create phylogenetic tree.

NOTE: KJ620018.1 is sequence from Oudemansiella canarii.
It includes a partial internal transcribed spacer 1 (ITS1), a 5.8S
rRNA gene, and a partial internal transcribed spacer 2 (ITS2)
(https://www.ncbi.nlm.nih.gov/nuccore/KJ620018.1). It is
known that in Opisthokonts ITS1 is located between 18S and
5.8S, and ITS2 is located between 5.8S and 28S rRNA genes in a
ribosomal cluster.

Fig. 10 Project View context menu to Run Tool
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Click on the Tool icon to open the Run Tool dialog (shortcut:
Ctrl+T, Fig. 15). In the Run Tool Dialog/Alignment Creation
section, select BLAST and click the Next button to open the Run
Tool BLAST dialog (Fig. 16). In this dialog, select Nucleotide as
the query sequence type (if not already selected), select the
BLASTn program to run (from drop-down list), and select NCBI
Database/nt Nucleotide collection as the Subject. Please note, that
in this case, user does not run pairwise alignment but uses BLAST
to run a search against a database hosted at the NCBI.

Click Next to see general parameters and more options to
restrict BLAST search (Fig. 17). Make sure that option “Link
related hits together” is NOT checked. The current example will
use default parameters.

Fig. 11 Run Tool dialog. BLAST is selected

NCBI Genome Workbench 273



The Task View window shows the BLAST search status. When
the search is completed, the result will be automatically loaded in
the Project View. The result can be open in different Views, includ-
ing Alignment Summary View and Multiple Alignment View
(Fig. 18). These Views allow the user to see accessions/organisms
found by BLAST search.

Select the BLAST result in the Project View and use the context
menu to run Tools. In the Tools dialog, find the Multiple
Sequence Aligners section, select alignment program, pickClustal
Omega, and click the Next button. The Clustal Omega Tool
dialog will open with all unique accessions returned by the BLASTn
search, which in this example will be 501 sequences, but the num-
ber will depend on word size and other parameters (Fig. 19). For

Fig. 12 Run Tool—use Next button to define tool specific parameters
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every accession, the total range of the part of sequence that has hits
to the query sequence (KJ620018) is shown. Only this part will be
used for the multiple alignment creation. To run multiple aligner,
provide the path to the program (note: to use the external pro-
grams user needs to download, install, and provide the path to the
executable) and click the Finish button (Fig. 19). It is possible to
unselect some sequences and not include them in the multiple
alignments.

BLAST in this case used as an initial search stage, returning
results as pairwise alignments between the query and the BLAST
database sequences, but does not provide alignments between
database sequences. Multiple aligners are capable of building a
global comparative alignment model on sequences returned by

Fig. 13 Run Tool. Sequence BLAST parameters
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Fig. 14 Project View with loaded BLAST alignment, alignment is also displayed as a track in Graphical
Sequence View

Fig. 15 KJ620018.1 accession loaded Genome Workbench project, ready to Run
Blast
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BLAST and selected by the user as topics of interest. BLAST stage
and interactive preselection and pruning greatly improve chances
that multiple aligners will be able to produce a quality model.

Some multiple aligners have the option to return the guide tree
used for alignment (CLUSTAL) or generate a reconstructed tree
from the alignment (MUSCLE). These trees are used for alignment
creation, thus they are not truly phylogenetic trees although they
are mathematically related. In these trees, sequence IDs are used for
labels on leaf nodes (but not organism names, or sequence title).
Other tree builders may decorate tree nodes with different attri-
butes. The Tree View allows the user to configure custom node
labels to use non-default attributes.

Fig. 16 Tool Blast dialog is used to run search against NT database at NCBI
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Wait for multiple alignment creation. The result will load and
appear in the Project View. Multiple Sequence Alignment Viewer
can be opened to inspect the alignment (Fig. 20).

Now the user can run another tool: Phylogenetic Tree Builder
Tool, click Next and select DistanceMethod: Jukes-Cantor (DNA),
Tree Construct method: Neighbor Joining, and Labels for Leaf
Nodes: Taxonomic Name (Fig. 21).

Note: it is also possible to create tree with “Labels for Leaf
Nodes: Sequence ID” (default option). Phylogenetic Tree Builder
tool in Genome Workbench is based on phylogeny reconstruction
algorithms described in [7, 8].

Visualization of phylogenetic tree can be done using Tree View
(see Fig. 22).

Fig. 17 Specify BLAST parameters like word size
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Initial raw topology and navigation can be improved with right
click context menu, use Zoom behavior- > Vertical and select
Re-Root- > Set Midpoint Root (Fig. 23).

Tree View supports fully interactive zoom in and out so that the
user can see labels. If the user prefers to see topology only (without
distances), use right click menu/Layout and remove the check-
mark from the Use Distances option, or use Layout/Slanted
Cladogram.

If a user has obtained genome sequence data using a sequenc-
ing technology that produces results very quickly, but with low
quality, the user might want to create an alignment with sequences
from GenBank for the same or very similar organisms and identify
regions with very low identity as candidates for resequencing as part
of the finishing process.

As illustrated previously, the BLAST Tool can be used to com-
pare a sequence with the NT database to assist in identifying the
organism from which the sequence was created to ensure accurate
taxonomic assignment [9]. Multiple sequence alignments could
also be used to align pathogen sequences with non-toxic forms of
the same pathogen to identify genes that are responsible for patho-
genicity and virulence, or to identify variations in extremophile
organisms that might be responsible for their ability to exist in
those environments.

When these analyses are complete, the user may decide that the
sequence has scientific value and should be submitted to GenBank.
Genome Workbench v.3.0.0 offers the Editing Package as a suite of
tools for submission preparation.

Fig. 18 Genome Workbench Multiple Alignment View shows BLAST search results
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4 Genome Workbench Submission Preparation

Genome Workbench v.3.0.0 replaces NCBI Sequin as a new gener-
ation of tools for GenBank [5] submission preparation and editing.4.1 Getting Started:

Enable Editing

Package

In order to use Genome Workbench to prepare a submission for
GenBank, the Editing Package needs to be enabled. To do this, use
the Tools menu and select Packages (Fig. 24).

Then locate and select the Editing Package (Fig. 25). The
Package has already been enabled if the dialog shows it as
“Loaded.” Otherwise check the Enable box, click OK, and restart
Genome Workbench.

Fig. 19 Run Tool—Clustal Omega on BLAST found sequences
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Once Genome Workbench has restarted, a new menu item will
appear called “Submission” (Fig. 26).

4.2 Submission

Preparation Workflow

Once the Genome Workbench Editing Package is activated, one
can use a workflow procedure to load, validate, edit, and submit
your data to NCBI. The editing workflow diagram describes the
steps to prepare a submission (Fig. 27).

4.3 Submission

Process Explained

1. Use Genome SubmissionWizard to prepare for submission
to GenBank
The Genome Submission Wizard is the first item in the Sub-
mission menu. It is used to provide information about the
sequence data that is needed for submission to GenBank.
This information includes:
l Contact information to be used by GenBank indexers while

the submission is being processed.

l The identity of the author of the sequences so that other
scientists can acknowledge the author in publications that
reference the data or contact the author with questions.

l Publications that refer to the sequence data. GenBank and
PubMed provide reciprocal links between publications and
supporting data where possible, to help drive new discov-
eries. Sequence data can be held until publications are pub-
lished but must be released after that.

l The biological source of the material that was sequenced.
Genome Workbench provides mechanisms to fill in com-
monly known information about organisms (such as lineage,
genetic code, etc.) given taxonomic names. Genome Work-
bench also allows the user to provide links to other databases

Fig. 20 Multiple Alignment View shows results from Clustal Omega
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that may contain information about the source, such as
BioProject, BioSample, etc.

l How the sequence data was constructed—what technolo-
gies were used, how deep was the coverage, etc.

l Which molecules are being represented—was the item that
was sequenced a portion of a chromosome? An organelle?
An RNA transcript? A protein?

l Annotation of the sequence—which nucleotide positions
are transcribed to form RNA? Which positions in the tran-
scription are translated to produce proteins? Which posi-
tions in the transcription represent the final mature peptide?
Which positions represent regulatory elements?

Fig. 21 Run Tool: Phylogenetic Tree Builder
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The user may open an existing FASTA or ASN.1 file with
the File Open dialog and then start the Genome Submission
Wizard, or simply start with the Genome Submission Wizard.
The Genome Submission Wizard will prompt the user to open
a FASTA or ASN.1 file if no file has been opened. The Genome
Submission Wizard will import information from the existing
data and guide the user to provide any missing information.

Note that some of the information entered into the
Genome Submission Wizard can be exported and imported
as a template file. Template files can also be generated using
this webpage: https://submit.ncbi.nlm.nih.gov/genbank/
template/submission/

Fig. 22 Genome Workbench Tree View can show results of computational tools or experiments or trees loaded
from external data like Newick

Fig. 23 Tree View shows topology with new tree root (midpoint)
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Fig. 24 Selecting Packages from the Tools menu

Fig. 25 Enabling the Sequence Editing package

Fig. 26 Submission menu is now available
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Fig. 27 Genome Workbench Submission Editing Workflow Process
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2. Review Data with Text View
Use the Text View as a first look at the sequence data. The

Text View will show how the sequence data will be displayed on
the NCBI website. If a Text View is not already open, one will
be launched automatically by the Genome Submission Wizard
after an ASN.1 or FASTA file has been opened. To launch a
new Text View, invoke the Open New View item in the View
menu. Choose Text View (Fig. 28).

More information about the Text View can be found here:
https://www.ncbi.nlm.nih.gov/tools/gbench/

tutorial25/

3. Text Errors?
Are the author names spelled correctly and in the correct

order? Is source information complete and correct? (Fig. 29)

4. Make Changes Based on Visual Inspection
When the Text View is showing the Flat File format and the

Sequence Editing Package is enabled, the user can edit the data
represented by the Flat File. The pen icon in the left margin

Fig. 28 Creating a Text View

Fig. 29 Flat File showing misspelled organism name and author name
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allows the user to launch a dialog to edit the portion of the data
that generates that portion of the Flat File. Note that some text
cannot be edited directly because the wording is calculated
based on the content of the sequence, for example, “BASE
COUNT” line shows the number of A, T, G, C, and ambiguity
characters present, and cannot be edited directly, although the
user can edit the sequence itself and change the content by
double-clicking on the lines of sequence after “ORIGIN.” The
X icon in the left margin allows the user to delete the portion of
the data that generates that portion of the Flat File. Note that
some portions of the Flat File have default values for when data
is not present, so deleting the item will not necessarily remove
the section from the Flat File completely.

By default, the Flat File shows all the nucleotide sequences,
but the user can also choose to view the Flat File for a specific
sequence or for all nucleotide and protein sequences by using
the Sequence(s) control next to the configuration icon. Users
can also select a sequence to view using the Submission->Edit-
ing Tools- > Select Specific Sequence by Sequence ID menu
item. When using Submission menu items that act on a specific
sequence, the action will apply to either the single sequence
being viewed or the only nucleotide sequence in the record.

5. Review Data with Graphical Sequence Viewer
Launch the Graphical Sequence Viewer to inspect the fea-

tures that have been annotated on the sequence. In the View
menu, choose Open New View and select the Graphical
Sequence View (Fig. 30).

More information about the Graphical Sequence Viewer
can be found here:

https://www.ncbi.nlm.nih.gov/tools/gbench/
tutorial23/

6. Feature Placement Problems?
Are the placements correct? Do features overlap that

should not? For example, transfer RNA (tRNA) features and
ribosomal RNA (rRNA) features should not overlap (Fig. 31).

7. Make Changes Based on Visual Inspection
Selecting an item in the Graphical Sequence View will also

select it in the Text View. From the Text View, click on the pen
icon next to the selected feature to launch an editor in order to
change the location of the feature, or correct other information
about the feature—perhaps this feature was mistakenly created
as the wrong type.

8. Validate
To validate the record, invoke the Submission- > Reports-

> Validation Report menu item.
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Genome Workbench provides two tools to help users look
for problems with a file that is being prepared for submission to
GenBank, the Validator and the Submitter Report. The Vali-
dator is focused on individual items that have problems, while
the Submitter Report provides information about patterns in
the submission. Not all items reported by the Submitter Report
are necessarily a sign of a problem. For example, the Submitter
Report will list the number of coding regions that are present,
which can be compared to the user’s expectations.

Fig. 30 Creating a Graphical Sequence View

Fig. 31 Graphical Sequence View showing overlapping tRNA and rRNA features
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More information about the Validator can be found here:
https://www.ncbi.nlm.nih.gov/tools/gbench/manual8/

#validator

9. Validator Errors Reported?
Validator error messages will have a severity, associated

sequence, title, and specific message (Fig. 32). Validator mes-
sages are flagged with a severity level (REJECT, ERROR,
WARNING, INFO). Prior to submission, all REJECT and
ERROR level validator messages should be resolved. WARN-
ING and INFO level messages report issues that may, in some
instances, be valid so it is not necessary to resolve these before
submission.

10. Make Changes Based on Validation
The user can click on any of these items to navigate to the

object the message is describing or click on the pen icon in the
leftmost column to launch an editor for the offending object or
a tool for fixing the error. For example, if a sequence does not
have any biological source information, the validator will
report error code “NoSourceDescriptor.” Clicking on the
pen icon for this error will launch a dialog to allow the user
to add the biological source information for that sequence. If a
sequence has ambiguity (N) characters at either end, the vali-
dator will report the error code “TerminalNs.” Clicking on the
pen icon for this error will launch a dialog to trim the ambigu-
ous characters from the ends of all sequences in the file. Note
that this action could resolve multiple error messages, as it

Fig. 32 Validator dialog showing errors and warnings
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would affect all sequences with this problem. Also note that
when trimming these ambiguity characters, the features that
have already been annotated on the sequence will be adjusted
so that they still cover the same relative nucleotide positions.
The validator reports semantic and syntactic errors and are
generally indicative of problems with the data in the submis-
sion. For example, a coding region that contains stop codons in
the open reading frame and cannot produce a valid protein or a
source qualifier value does not conform to INSDC syntax.

The validator will not automatically update after the user
has edited the data. The user can hit the “Refresh” to see the
remaining problems.

11. Submitter Report
To launch the Submitter Report, invoke the Submission-

> Reports- > Submitter Report menu item.
The Submitter Report is a tool to help users look for

patterns and potential problems with a file. It performs a set
of tests and lists the items flagged by each test.

The Submitter Report dialog consists of two panels at the
top, a text search box, and some additional buttons at the
bottom (Fig. 33). The panel on the left lists the tests for
which there are results.

The Search control below the two panels can be used to
find text in the left panel.

Fig. 33 Submitter Report showing test results
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More information about the Submitter Report can be
found here:

https://www.ncbi.nlm.nih.gov/tools/gbench/manual8/
#submitter_report

12. Tests Reveal Problems?
For example, the Submitter Report will list product names

that may be uninformative, misspelled, contain text that would
be more appropriate in a different field, or have other problems
using the “SUSPECT_PRODUCT_NAMES” test. Not all
items reported by the Submitter Report are necessarily a sign
of a problem. For example, the “FEATURE_COUNT” test
will list the number of each type of features that are present,
which can be compared to the user’s expectations. Information
about how to interpret individual tests and how to fix problems
(when appropriate) can be found here: https://www.ncbi.nlm.
nih.gov/genbank/asndisc.examples/

13. Make Changes Based on Submitter Report
Clicking on an item in the left panel will cause the results

for the test to be displayed in the panel on the right. For tests
that refer to coding regions, RNA features, genes, or biological
source information, double-clicking on the panel on the left
will launch a Bulk Editor to help the user edit the affected
items. The user may also click on individual items in the panel
on the right to navigate to the item, or double-click on the item
to launch an editor for the item.

Note that the Submitter Report does not automatically
refresh after editing, so the user must click on Refresh to see
the updated results.

14. FlatFile Summary
To launch the FlatFile Summary, invoke the Submission-

> Reports- > FlatFile Summary menu item.
The FlatFile Summary dialog provides a summary of the

nucleotide sequences in the file (Fig. 34). The content is pro-
duced by sorting the lines of the FlatFile representations for
each nucleotide sequence in the file by section and counting
the number of times each line appears identically. For UNIX
users, this is similar to applying sort | uniq -c to the FlatFile
sections.

The sorted text appears in the top panel of the dialog,
grouped into the appropriate sections. These sections can be
expanded to show the actual lines of text and the number of
times that particular line appears.

More information about the FlatFile Summary can be
found here:

https://www.ncbi.nlm.nih.gov/tools/gbench/manual8/
#flat_file_summary
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15. Text Consistent with Expectations?
The FlatFile Summary tool is designed to help users

quickly look for consistency and find unexpected duplicates.
For example, a user might want to confirm that all sequences in
a genome submission have the same organism name, but each
sequence has a different chromosome value (Fig. 35).

16. Make Changes Based on Discoveries in FlatFile Summary
Clicking on a line of text will cause a list of the items that

contain this text to appear in the bottom panel. Clicking on the
item in the list will navigate to that item in the Text View, and
double-clicking on the item will launch an editing dialog for
the item.

The tool can also be a convenient mechanism for navigat-
ing a large record. For example, if the user wants to examine all
of the features for which an Enzyme Commission Number
(EC number) has been assigned, the user could expand the
FEATURE section and look at the /EC_number section to see
the list of features, and click on them one at a time (Fig. 36).

Fig. 34 FlatFile Summary dialog
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Note that the FlatFile Summary is not automatically
updated after changing the data, so the user should be sure to
use the Refresh button to incorporate the most recent changes.

17. Validate
This is a final check for errors, the same as step 8.

18. Validator Errors Reported?
If validator errors were reported, return to step 10 to

correct them.

Fig. 35 FlatFile Summary showing chromosome values
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19. Save File and Submit
Use the Submission- > Save Submission File menu item to

save your file and submit the file via the NCBI Submission
Portal (https://submit.ncbi.nlm.nih.gov/subs/genome/).
Choose “Single” or “Batch/multiple” genomes. Answer the
questions and upload the necessary files. Review the summary
page and click the “Submit” button. The submission will be
given a “SUB” temporary identifier which can be used in
correspondence before an accession number is assigned to the
genome submission.
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Part IV

Open Problems



Chapter 17

Revisiting Evaluation of Multiple Sequence Alignment
Methods

Tandy Warnow

Abstract

Multiple sequence alignment is a core first step in many bioinformatics analyses, and errors in these
alignments can have negative consequences for scientific studies. In this article, we review some of the
recent literature evaluating multiple sequence alignment methods and identify specific challenges that arise
when performing these evaluations. In particular, we discuss the different trends observed in simulation
studies and when using biological benchmarks. Overall, we find that multiple sequence alignment, far from
being a “solved problem,” would benefit from new attention.

Key words Multiple sequence alignment, Phylogeny estimation, Model misspecification, Structural
alignment, Statistical alignment

1 Introduction

Multiple sequence alignment (MSA) is a preliminary step in much
biological research, including phylogeny estimation, protein struc-
ture and function prediction, sequence classification into gene
families, and even genome assembly. Yet MSA estimation is
known to be difficult under many conditions, and errors in esti-
mated MSAs can lead to errors in downstream analyses, such as
phylogeny estimation [1–5]. Because of the impact of MSA estima-
tion, the development of new MSA methods and their evaluation is
of interest to a large number of practitioners.

The focus of this chapter is on multiple sequence alignment
accuracy, and specifically assumes that the “correct” alignment is
one where all columns represent true positional homology (i.e.,
descent from a common ancestor). Since alignments are used in
many applications, we also address the degree to which alignment
accuracy correlates with accuracy for the downstream application
(e.g., phylogeny estimation, protein structure, etc.). One of the
specific issues we confront is the difficulty in obtaining meaningful
benchmarks with which to evaluate estimated alignments: reference
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alignments based on simulated datasets are accurate but potentially
insufficiently realistic, and biological datasets are by definition real-
istic but the reference alignments may not be completely accurate.
This is an issue we will address several times during the chapter.

Another issue we will address is the difficulty in quantifying
accuracy (or error, the complementary view) in an estimated align-
ment so that it is predictive of accuracy for downstream analyses.
For example, many standard criteria do not correlate with each
other (e.g., some alignments can be good for one criterion and
poor for another), and none of them are that well correlated with
phylogenetic accuracy, one of the major downstream analyses. Our
overall findings are that the evaluation of MSA methods is substan-
tially complex, and that current approaches to evaluating methods
are too simplistic to adequately characterize methods. Our study
also suggests directions for future research in multiple sequence
alignment as well as other statistical estimation problems in biology.

The rest of the chapter is organized as follows. We begin with
terminology in Subheading 2. We discuss results from the literature
on multiple sequence alignment evaluation in Subheading 3. We
conclude with a discussion of the trends revealed in these studies
and directions for future work in Subheading 4.

2 Overview

Throughout this section, we will assume that the input contains the
estimated alignment ô and the true (or reference) alignment A, and
we are comparing the two alignments to each other.

2.1 Terminology Every multiple sequence alignment can be seen as a matrix where
the rows correspond to the sequences and the columns represent
homology, which is the same as saying that the letters (i.e., nucleo-
tides or amino acids) in the column are all derived from a common
ancestor [6]. This definition applies to both nucleotide and protein
alignments, even though some researchers have used “homology”
to refer to structural or functional similarity [7]. As a result, every
alignment can be described by its set of “homology pairs,” which
are the pairs of letters that appear in any column. This representa-
tion requires that we distinguish between nucleotides or amino
acids (residues) based on their position. There are many criteria
that have been proposed for evaluating alignment accuracy [6, 8,
9], but here we focus on a subset of these possible criteria that are in
common use.

2.2 Standard

Alignment Criteria

We can evaluate the accuracy (or error) of an estimated alignment ô
by comparing its set of homology pairs to the set of homology pairs
for the true alignment A. Note that every homology pair in an
estimated alignment is either a true positive (if it appears also in the
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true alignment) or a false positive (if it does not appear in the true
alignment). Similarly, the homology pairs in the true alignment that
do not appear in the estimated alignment are called false negatives.
Furthermore, the false negative rate is the fraction of the homology
pairs in the true alignment that are false negatives (i.e., missing
from the estimated alignment), and the false positive rate is the
fraction of the homology pairs in the estimated alignment that are
false positives. Note that these are error rates, and so are values in
the range [0, 1]. We refer to these as SPFN (sum-of-pairs false
negatives) and SPFP (sum-of-pairs false positives).

In the protein alignment world, the standard criteria for eval-
uating alignments are phrased in terms of accuracy rather than
error, and are as follows:

l SP-score¼ 1-SPFN, which is a measure of recall; the best score is
1.0.

l Modeler score ¼ 1-SPFP, which is a measure of precision; the
best score is 1.0.

l Total Column (TC) score: the number of columns in the esti-
mated alignment that appear in the same exact form in the true
alignment; the best score is the number of columns in the true
alignment.

l Expansion ratio: the ratio between the length of the estimated
alignment and the length of the true or reference alignment, and
so the best score is 1.0.

2.3 Evolutionary

Criteria

When phylogeny estimation is the focus of the study, then criteria
that evaluate phylogeny estimation accuracy are commonly consid-
ered. When sequences are simulated down a model tree, then the
accuracy of a tree computed on the estimated alignment can be
used to evaluate the alignment accuracy. Similarly, other evolution-
ary parameters, such as the insertion and deletion rates, the relative
frequency of insertions to deletions, and the gap length distribution
(of the indel process), or reconstructed ancestral sequences, can
also be used to evaluate alignments [10, 11].

2.4 MSA Methods There are many different MSA methods, each typically based on a
combination of techniques, and focused (in some cases) on differ-
ent objectives. Most methods can be used for both protein and
nucleotide alignment, but some can only be used for protein
sequence alignment (e.g., SATCHMO [12, 13] and PROMALS
[14]). Many methods use progressive alignment techniques and
build alignments using a guide tree (which they may also compute
from the input).

One class of methods assumes an explicit parametric model of
sequence evolution that includes insertions and deletions, as well as
substitutions. Examples of such methods include BAli-Phy [15, 16]
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and StatAlign [17], which are methods that try to co-estimate the
alignment and tree under the assumed evolutionary model. Prank
[10, 18], PAGAN [19], and Historian [11] are similar in spirit to
these methods in that they are based on statistical models, but do
not make a full effort to search tree space; instead, they use a given
guide tree and compute the alignment on the guide tree, under the
assumed evolutionary model.

A complementary approach to MSA estimation uses divide-
and-conquer: a large dataset of unaligned sequences is divided
into subsets, alignments are computed on subsets, and then merged
into an alignment on the full dataset. If desired, a tree can be
computed on the dataset, and then used to produce another
decomposition of the sequences into subsets and the divide-and-
conquer re-alignment strategy can be repeated. These approaches,
which include SATé-I [4], SATé-2 [20], and PASTA [21], are best
seen as “meta-methods” since they can be used with any selected
MSA method. These methods also improve the accuracy of many
MSA methods on large challenging datasets (as evaluated on
simulated datasets), and enable some methods to run on large
datasets where they are unable to otherwise [22].

3 Results from the Literature

In this section, we discuss some of the trends that have been
observed in the literature, focusing on the challenges in evaluating
alignment methods with respect to accuracy and impact on down-
stream analyses. As we will show, the relative performance of meth-
ods depends very much on the specific details, including the choice
of data, the criterion used to compare methods, and even the
specific command and version number for the methods.

3.1 Method

Performance Depends

on Specific Commands

and Version Numbers

One of the basic observations about evaluating alignment methods
is that the accuracy and running time depends on the specific
version and command used. This is particularly true of methods
that are under rapid development, so that different versions have
different performance. For this reason, it is important to avoid
drawing broad conclusions about methods based on older studies,
as the methods may have improved since the study was performed.

However, even for a specific version, the accuracy of a method
can depend on the specific command. For example, MAFFT [23–
26], which is generally considered one of the leading methods, can
be run in many ways, and the accuracy depends on the specific
commands and dataset properties [25]. In addition, performance
studies evaluating MAFFT are often performed using it in -auto
mode, which allows the program to select the command, with less
computationally expensive variants used for large datasets. How-
ever, on large datasets, the -auto setting for MAFFT is less accurate
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than some of the more computationally intensive commands, such
as MAFFT -L-INS-i or MAFFT -G-INS-i [27].

Similarly, many methods require guide trees to compute their
alignments, and will use their own technique if no guide tree is
provided. Yet, studies have shown that alignments (and especially
trees based on these alignments) can be improved if a carefully
selected guide tree is used, instead of the method’s default guide
tree [28, 29]. Related to this, some studies (e.g., [11, 18]) evaluat-
ing alignment methods have been performed using the true tree
(either the model tree used to simulate sequences or an established
species tree) as the guide tree, which has the potential consequence
of improving accuracy in the resultant alignments.

3.2 Impact of

Dataset Properties

The relative accuracy between MSA methods may depend on
empirical properties of the data, and in particular the average pair-
wise PID (percent identical across the sites), which is a way of
measuring dataset homogeneity, within the dataset can impact the
relative performance of methods. For example, Sievers et al. [27]
compared a collection of MSA methods on the Prefab [30] bench-
mark collection, and observed thatMSAprobs [31] had the best TC
scores of all tested methods when PID was very low (less than 20%)
but the worst when PID was very high (at least 70%) (Table II in
[27]). They also saw that Clustal-Omega [27] had the best TC
scores of all methods when PID was very high (at least 70%) but was
only in the top half when PID was very low (at most 20%).

More recent studies on biological benchmarks have also found
similar inversions in relative performance as a function of PID. For
example, Nute et al. [32] evaluated protein alignment methods on
four structural benchmark collections, and found that T-Coffee
[33] dominated nearly all other methods for Modeler score and
SP-score whenever PID <50%, but had the poorest scores other-
wise. Nute et al. also saw that Clustal-Omega tied for the best
Modeler score and SP-score when PID was at least 50% and then
tied for worst scores when PID was at most 15%.

The impact of substitution rate on alignment methods has also
been evaluated using simulation studies, and confirms these general
observations. For example, [32] evaluated alignment methods on
simulated protein sequences and found that Prank [10] was the
least accurate of the tested methods when mutation rates were high
but performed well-coming close to the top performing methods–
when mutation rates were low. Similarly, Liu et al. [4] compared
alignment methods on large (1000-taxon) simulated nucleotide
datasets and found that the relative alignment accuracy of
MAFFT and Muscle [30, 34] (both in default mode) changed
with the rate of evolution, with Muscle less accurate than MAFFT
for low rates of evolution and then more accurate than MAFFT for
high rates of evolution.
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Compared to the impact of PID (and substitution rate in
general), less is known about the impact of other empirical proper-
ties on the relative performance of MSA methods. However,
Nguyen et al. [35] found that most MSA methods had very poor
accuracy on datasets with fragmentary sequences, and that the
relative accuracy of PASTA and UPP [35], a method for alignment
estimation that uses ensembles of profile Hidden Markov Models,
depended on the degree of fragmentation in the dataset (with
PASTA generally more accurate than UPP when there was no
fragmentation, and UPP consistently more accurate than PASTA
when there was a lot of fragmentation).

The number of sequences also impacts the relative performance
of methods, in part because some methods do not run on large
datasets due to computational or memory requirements, but other
factors may also be at play (e.g., it is possible that the guide tree
used in progressive alignment methods has a larger impact when
the number of sequences is very large, or when the dataset exhibits
substantial heterogeneity). It also seems likely that other empirical
properties, such as the relative rates of insertions to deletions, gap
lengths, and degree of violation of the molecular clock, may also
impact the relative performance of methods.

Unfortunately, most studies have inadvertently failed to
explore performance under a sufficiently wide range of model con-
ditions for robust inferences to be made about the relative perfor-
mance of methods. Most studies, for example, simulate sequences
where the probabilities of insertion and deletion events are identical
(e.g., [4]) or under the strict molecular clock (e.g., [36]); these are
conditions that are likely to improve accuracy for most (perhaps all)
multiple sequence alignment methods, but may benefit somemeth-
ods more than others.

3.3 Alignment

Criteria Rankings

Differ

One of the not infrequent observations in studies evaluating align-
ment methods is that different criteria rank methods differently.
For example, Nute et al. [32] compared different protein alignment
methods on various protein structural alignment benchmarks. For
the BAliBASE [37] benchmark, BAli-Phy [15, 38, 39] had by far
the best Modeler score of all the methods that were examined, but
it was in the bottom third for SP-score [32]. The difference
between Modeler and SP-score is easily understood, given that
one measures precision and the other measures recall, and many
statistical tests tend to focus on one but not the other criterion.
However, this distinction between criteria indicates there is likely
no single criterion that can be used to rank methods.

3.4 Alignment vs.

Tree Accuracy

Nearly all phylogenies are based on estimated multiple sequence
alignments, so that multiple sequence alignment error has the
potential to lead to reduced accuracy in the estimated phylogenies.
Many early studies [3, 40–45] examined the impact on both
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biological and simulated datasets, and observed that alignment
error sometimes but not always leads to reduced accuracy, and
similarly that the choice of alignment method sometimes but not
always has an impact on the final tree.

To reconcile the differences in impact, Wang et al. [5] per-
formed a study evaluating the conditions where alignment accuracy
has an impact on phylogenetic accuracy, focusing on protein multi-
ple sequence alignment, mainly using simulations using model trees
based on BAliBASE datasets and also birth-death model trees
(up to 120 sequences). They varied alignment methods and tree
estimation methods, and observed the following trends. First, trees
based on maximum likelihood tended to be more accurate than
trees based on maximum parsimony (both weighted and
unweighted) and neighbor joining (under two ways of calculating
distances). Second, the correlation between alignment accuracy and
tree accuracy depended on the method for computing trees, with a
higher correlation for maximum likelihood (ML) than for maxi-
mum parsimony (MP) or neighbor joining (NJ) [46], and also on
the model condition (see [47] for background on phylogeny esti-
mation). Most significantly, they found that while alignment accu-
racy and tree accuracy was positively correlated for all model
conditions they examined, the correlation was weak when rates of
evolution (substitutions and indels) were low, but increased with
the rates of evolution. Since alignment error also increased with
rates of evolution, they observed that only when alignments were
difficult was alignment and tree accuracy strongly correlated. To
quote from [5]:

It seems that only when the estimated alignments are sufficiently poor
(perhaps with alignment SP-error rates above 20 or 30 percent) will differ-
ences in alignment error reliably produce an appreciable impact on the
resultant phylogeny... In summary, there is a generally positive correlation
between alignment and tree error when model conditions produce data sets
with relatively high average alignment errors. The positive correlation
between alignment error and ML tree accuracy is much weaker when align-
ment errors are low and evaporates for MP and NJ analyses of data sets with
low average alignment error. This suggests that except for model conditions
that produce data sets that are quite difficult to align, there will only be small
consequences to choosing between a very good alignment and a somewhat
poorer alignment. Furthermore, data sets with higher evolutionary rates
(larger diameters) and more indels tend to show bigger differences in the
accuracy of phylogenies estimated on different alignments... For now, we
hypothesize that when alignments are relatively easy, there is enough phylo-
genetic signal in any “reasonable” alignment (even one with perhaps 20 per-
cent of the homologous pairs missing) to reproduce much of the tree one
would get if one had the true alignment... These observations may help
resolve the seeming contradictory findings of earlier studies, in which align-
ments have sometimes been shown to have a big impact on phylogenetic
estimation, but not always.

These observations have been found in many subsequent studies,
including studies evaluating nucleotide alignment on large datasets.
For example, Liu et al. [4] examined nucleotide alignment methods
on datasets with up to 1000 sequences, and observed that when the

MSA for Large Heterogeneous Datasets 305



rates of evolution were low enough, then most alignment methods
had relatively low error (i.e., at most 20%), and trees computed on
these estimated alignments were as accurate as trees computed on
the true alignment.

Based on these studies, one might assume that if improving
alignment accuracy would either be beneficial or at worst neutral
for phylogeny estimation. However, other studies have shown
surprising inversions, where one method outperformed another
with respect to standard alignment accuracy criteria but was worse
with respect to phylogenetic accuracy. For example, Liu et al. [4]
observed that Prank [10] had higher alignment error than Opal
[48] on ribosomal RNA structural alignments from [49] (i.e.,
Prank had SPFN error of 40.5% compared to 29.3% for Opal) but
much lower tree error (14.5% compared to 18.9%). Similarly, a
comparison between Opal and SATé-I on the simulated data in
[20] showed OPAL had much lower alignment SPFN error than
SATé-I, but ML trees on SATé-I alignments had much lower tree
error than Opal.

A study by Nelesen et al. [28], which examined the impact of
the guide tree in alignment methods, provides additional evidence
that alignment accuracy and tree accuracy have a complex relation-
ship (see Fig. 1). The natural assumption is that alignments using
the true tree as the guide tree should be more accurate than align-
ments using other guide trees, and furthermore if the guide tree is
more accurate (i.e., topologically more similar to the true tree),
then alignment accuracy should improve and trees computed on
these alignments should also improve. Yet, the study by Nelesen
et al. found that this assumption did not hold for many alignment
methods. For example, they saw that alignments computed using
both ClustalW [51] and Muscle [30, 34] had higher SPFN error
when given the true tree as a guide tree than when given a tree
computed using UPGMA (a simple distance-based method for
computing trees), but trees on these poorer alignments were
more accurate. Nelesen et al. also observed the disturbing trend
maximum likelihood trees computed on the true alignment were
less accurate than trees computed on POY [50], when POY was
given the true tree as the guide tree. What made this particularly
disturbing is that the alignment error produced by POYon the true
tree was fairly high (above 20% for the 100-taxon datasets), yet
ProbCons [52] on all the tested guide trees had lower alignment
error but produced less accurate trees. Thus, POY alignments may
not be very accurate butML trees on POY alignments can be highly
accurate.

In general, these studies suggest the possibility that algorithm
designs that improve accuracy with respect to standard alignment
criteria do not always result in improved trees, and vice versa. It may
also be that some methods (perhaps POY, SATé, and PASTA) may
exhibit guide tree imprinting, so that they produce alignments that
tend to reinforce the guide trees they are given.
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3.5 Simulated vs.

Biological Datasets

One of the challenges in evaluating alignment methods is that
relative performance is not always consistent between simulation
studies and biological datasets. A striking example of this phenom-
enon is reported in Nute et al. [32], where BAli-Phy had the best
Modeler and SP-scores of all methods on the simulated datasets for
all the tested model conditions, with varying rates of indels and
substitutions (Fig. 2), but was generally only in the middle (or in
the bottom third, in some cases) of the methods on the protein
structural benchmark datasets (Fig. 3).

There are at least three possible explanations for this difference
on biological and simulated datasets. One explanation is that the
biological benchmarks are incorrect, so that relative performance
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Fig. 1 [Figures 3 and 4 from [28], Copyright 2008, published by World Scientific, reprinted with permission
from the publisher] These results are based on a DNA sequence simulation study, using methods for
alignments that take guide trees, and then compute RAxML maximum likelihood trees. The top subfigure
shows alignment error of different methods using different guide trees, with (a, c) 25 sequences or (b, d)
100 sequences, and the bottom subfigure shows the tree error of RAxML trees computed on these alignments.
“Default” refers to the guide tree used by the specified alignment method, and “probtree” refers to a
maximum likelihood tree computed on the ProbCons alignment. Note that in many cases, changing the
guide tree does not impact the alignment error, and that in some cases using the true tree as the guide tree
produces higher error than using some other guide tree (e.g., Clustal on the UPGMA guide trees has lower error
than Clustal using the true tree). Note also that alignments with essentially the same SP-error can produce
trees with very different levels of error (e.g., all ProbCons alignments have nearly the same SP-error, but differ
substantially in terms of tree error). Finally, note that FTA (which is POY [50] used to compute an alignment on
the specified guide tree) produces a more accurate tree when given the true tree as the guide tree than RAxML
on the true alignment; put differently, RAxML on an FTA alignment can be more accurate than RAxML on the
true alignment!
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on these datasets is not reflective of actual accuracy. Another expla-
nation is that the biological benchmarks are correct as structural
alignments, but having two residues in the same column does not
necessarily reflect common evolutionary history (i.e., the structural
alignment is not a reflection of shared descent, and so is not a
statement of true “homology”). Finally, a third explanation is that
the biological benchmarks are correct, even as evolutionary align-
ments, but that biological evolution is not well described by the
model assumed in BAli-Phy. This last explanation would have the
possible consequence that accuracy on data simulated under the
BAli-Phy model (or similar models) would not reflect likely accu-
racy on biological data. Most likely all three explanations are valid,
but the relative contributions are unknown.

Fig. 2 [Figure 6 from [32], reprinted under the Creative Commons Attribution License (http://creativecommons.
org/licenses/by-nc/4.0/)] This figure shows SP-score and Modeler score for BAli-Phy (using the posterior
decoding to produce a single alignment) and several other multiple sequence alignment methods on simulated
datasets with 27 sequences under six model conditions, varying in terms of indel rates and substitution rates.
Note that BAli-Phy, shown in red, has the best Modeler score (precision) and SP-score (recall) on all of the
model conditions
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Fig. 3 [Figure 2 from [32], reprinted under the Creative Commons Attribution License (http://creativecommons.
org/licenses/by-nc/4.0/)] This figure shows SP-score and Modeler score for BAli-Phy (using the posterior
decoding to produce a single alignment) and several other multiple sequence alignment methods on four
protein alignment benchmarks, restricted to datasets with at most 27 sequences. Each BAli-Phy analysis for
each of the datasets was allowed 48 h on 32 processors to run on the Blue Waters supercomputer at the
National Center for Supercomputing Applications. Note that BAli-Phy, shown in red, has excellent Modeler
score (precision) for the BAliBASE collection, and average to very good Modeler scores on the other bench-
marks. However, BAli-Phy is only middling (and in some cases in the bottom third) with respect to SP-score
(recall) on these benchmark datasets
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3.6 Challenges in

Using Simulations

Simulation studies, where sequences evolve down model trees with
evolutionary processes that include substitutions and indels (and
perhaps other events) provide a rigorous test of accuracy, since the
true alignment and true tree are known. Yet, as we have seen,
relative accuracy between methods on simulated and biological
datasets can be different, and one possible explanation is that the
simulation models are sufficiently unrealistic that relative perfor-
mance on simulated datasets is not reflective of performance on
biological data. Here we examine the kinds of differences that
might be in play.

The simulation models used to evaluate alignment methods,
for example, in the simulation tools ROSE [53] and INDELible
[54], are generally enhancements of models used in phylogeny
estimation so that they also have indels. The most complex
sequence evolution commonly used for phylogeny estimation on
nucleotides is the GTR+GAMMA model, which is a rooted binary
tree equipped with numeric parameters that define the stochastic
process; furthermore, the numeric parameters assume that there is
one 4�4 substitution rate matrix that governs the entire tree
[47, 55, 56]. Yet this is an unrealistic assumption, as compositional
heterogeneity (indicative of changed substitution rate matrices)
across the tree has been observed in many biological datasets
(e.g., see discussion in [57]), which has led to the introduction of
parameter-rich models, such as the Generalized Markov Model
[58]. More generally, deviations from the standard model assump-
tions are observed to increase with evolutionary distance between
the taxa. The appreciation of the impact of these violations of the
model assumptions on phylogeny estimation has increased in recent
years [57, 59–62]. For example, Naser-Khdour et al. [60] noted:

“In phylogenetic inference we commonly use models of substitution which
assume that sequence evolution is stationary, reversible and homogeneous
(SRH). Although the use of such models is often criticized, the extent of
SRH violations and their effects on phylogenetic inference of tree topologies
and edge lengths are not well understood. Here, we introduce and apply the
maximal matched-pairs tests of homogeneity to assess the scale and impact of
SRH model violations on 3,572 partitions from 35 published phylogenetic
datasets. We show that roughly one quarter of all the partitions we analysed
(23.5%) reject the SRH assumptions, and that for 25% of datasets, the
topologies of trees inferred from all partitions differ significantly from
those inferred using the subset of partitions that do not reject the SRH
assumptions. This proportion of significantly different topologies is actually
even greater when evaluating trees inferred using the subset of partitions
that rejects the SRH assumptions, as compared to trees inferred from all
partitions. These results suggest that the extent and effects of model viola-
tion in phylogenetics may be substantial. They highlight the importance of
testing for model violations and possibly excluding partitions that violate
models prior to tree reconstruction. Our results also suggest that further
effort in developing models that do not require SRH assumptions could lead
to large improvements in the accuracy of phylogenomic inference.”
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Naser-Khdour et al. also observed that the degree and impact of
model violations depends in part on the evolutionary distance, and
is less for closely related taxa than for distantly related taxa. This
would be consistent with the hypothesis that the GTR substitution
rate matrix should change slowly across the tree, with large changes
resulting from the accumulation of smaller changes. Thus, large-
scale phylogeny estimation will most likely present larger challenges
than small-scale phylogeny estimation. Unfortunately, many of the
interesting questions in biology require phylogenies that span large
evolutionary distances, going to the origins of birds, of plants, etc.

It seems likely that model violations have an impact on multiple
sequence alignment. Recall that [32] showed that BAli-Phy had the
highest accuracy of all tested methods on simulated datasets but
had low to middling accuracy on biological datasets. While it is not
yet known why there is this discordance between results on
biological and simulated datasets, one obvious hypothesis is that
biological data evolve differently from the model assumed in BAli-
Phy. This is consistent with current research as described above,
which provided evidence that biological sequence evolution is dif-
ferent from the assumed models used in phylogeny estimation, and
that these differences can lead to mistakes in phylogenetic
inference.

The take-home lesson from these studies is troubling: the
simplifying assumptions in current models of sequence evolution
may have negative consequences for accuracy in both alignments
and trees. The obvious approach is to allow for increased model
complexity, through the use of additional numeric parameters;
however, maximum likelihood estimation under such models
would be extremely computationally intensive, and there is a dan-
ger of over-fitting.

3.7 Challenges in

Protein Benchmarks

Several studies have pointed out challenges in using structural
benchmarks [63, 64]. For example, Chatzou et al. [64] pointed
out that evaluating multiple sequence alignment methods
(“MSAMs”) using structural benchmarks has some challenges:

A major milestone in the development of MSAMs has been the introduction
of structure-based reference alignments that can be used to compare the
relative capacities of various methods to reconstruct structurally correct
alignments from sequence only. The choice of structure seems rather natural
because 3D features are known to be more evolutionary resilient than the
underlying sequences. On the other hand, this approach relies on the
unproven rationale that structurally and evolutionary correct alignments
are identical. No proof exists that this assumption may be correct, and a
simple reasoning suggests it may not be the case. While there can be only one
correct way of matching homologous residues–the one that perfectly reflects
the unique evolutionary history of the considered sequences and matches–
there can be as many structurally correct alignments as there are ways to
superpose the sequences with equivalent 3D compactness. Another major
potential discrepancy between structural and evolutionary alignments results
from convergent evolution. Whenever such a process has shaped some

MSA for Large Heterogeneous Datasets 311



portions of a sequence data set, the resulting alignment matching conver-
gent regions will be structurally correct and evolutionary false–and
reciprocally.

To the extent that correct structural alignments are not unique,
this offers one explanation for the observation made by Edgar [63]
that the SABmark [65] collection of pairwise alignments is not self-
consistent (the other explanation is that there are errors in the
pairwise alignments). However, if there are multiple correct struc-
tural alignments, then it is difficult to use structural alignments as
benchmarks, since designating one of the “correct” alignments as
the reference automatically means that the other correct alignments
will all be considered wrong (a point also made by Chatzou et al.
[64]). Another consequence is that to the extent that structural
alignments do not reflect evolutionary history, trees constructed on
these structural alignments may not be accurate. However, it may
be that the frequency with which structurally correct alignments
disagree with the true phylogenetic alignment is sufficiently low
(or, even if it occurs, the differences between the two alignments
may be small enough) that this issue will not be a significant one in
practice.

Some of the literature (e.g., [63]) goes so far as to suggest that
the biological benchmarks may not be completely accurate, even as
structurally defined alignments. One explanation offered for why
the multiple sequence alignments in the structural benchmarks are
not perfectly accurate is that they are often inferred rather than
confirmed experimentally, and there can be two or more equally
feasible structural alignments between two proteins. As an example,
Edgar [63] noted that BAliBASE contains sequences without
known structure, so that by definition any multiple sequence align-
ment can only be computationally rather than experimentally
inferred.

These findings raise some significant concerns about the use of
structural benchmarks in evaluating alignment methods. It may
well be that large differences between methods with respect to
alignment criteria on these benchmarks represent real differences
in accuracy, but a small improvement in alignment accuracy on a
benchmark may not represent an actual improvement (i.e., to the
extent that the benchmark is flawed, the predicted alignment might
in fact be more accurate, even if it has a worse accuracy score on the
benchmark).

The reason this is concerning is that many of the studies that
have been used to evaluate protein MSA methods have concluded
that one method is better than another based on rather small
differences in alignment criteria on these benchmarks. For example,
Sievers et al. [27] introduced Clustal-Omega, a fast multiple
sequence alignment method capable of analyzing very large data-
sets, and evaluated it (using column score) on several protein
structural benchmark collections. They found that Clustal-Omega
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was fast but not among the most accurate, on these benchmarks. As
an example, in describing the results on the Prefab benchmark
collection, they note:

The consistency-based programs MSAprobs, MAFFT L-INS-i, Probalign,
Probcons and T-Coffee, are again the most accurate but with long run times.
Clustal Omega is close to the consistency programs in accuracy but is much
faster. There is then a gap to the faster progressive based programs of
MUSCLE, MAFFT, Kalign, and Clustal W.

Yet, the differences between TC scores for Clustal-Omega and the
best performing method (here, MSAprobs) on Prefab were small
(71% TC score for Clustal-Omega and 73.7% for MSAprobs), and
there was an even smaller difference (only 2.3%) between Clustal-
Omega and MAFFT run in default mode. Are these differences
important? Perhaps. But to the extent that Prefab is not perfectly
reliable, it may well be that these differences in column score do not
reflect real differences in accuracy with respect to the true multiple
sequence alignment.

4 Conclusion

Multiple sequence alignment is a fundamental step in many
biological studies, with ramifications for many downstream ana-
lyses. Thus, errors in an estimated multiple sequence alignment
have the potential to lead to faulty inferences in downstream ana-
lyses, whether these are for phylogeny estimation, protein structure
prediction, the inference of positive selection, etc. Hence, accurate
estimation of multiple sequence alignment is important.

The last few decades have seen a large number of new methods
developed, and a continued refinement and elaboration on existing
methods, many of which have performed well on both biological
and simulated datasets. We also have divide-and-conquer strategies
that enable alignment methods to scale to large datasets, statistical
models of sequence evolution that include insertions and deletions
and so enable statistical co-estimation of alignments and trees, as
well as statistical alignment methods that are phylogeny-aware.
Based on these advances, one might be tempted to conclude that
multiple sequence alignment is solved. Yet, there are many reasons
to argue against this conclusion.

First, standard alignment estimation methods, by design, do
not address the full degree of heterogeneity present in real
biological datasets, resulting (for example) from duplications of
genomic regions (including tandem repeats), rearrangements, etc.
Therefore, alignment methods do not enable the full discovery of
homology in such circumstances.
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Second, statistical estimation methods that are based on para-
metric models of sequence evolution may not provide good accu-
racy, if the biological data evolve sufficiently differently than the
model predicts. Furthermore, the recent literature does suggest
that many biological datasets violate these model assumptions,
and that inferences under these models may be flawed. These
findings also suggest that the simulations performed under these
standard models may not be as relevant to understanding alignment
methods as we had hoped.

Third, studies suggest that even biological benchmarks are
imperfect; hence, it may be that only large differences in accuracy
on these benchmarks are indicative of important differences.
Unfortunately, many of the differences in methods on biological
datasets have been small, meaning that the relative ranking of
methods may not be as clear as we have thought.

Fourth, despite all these difficulties in evaluating methods,
studies show that many methods are highly accurate under condi-
tions with low rates of evolution, but accuracy degrades with
increases in heterogeneity. Thus, alignment estimation remains
difficult for large, heterogeneous datasets.

Overall, we have come to the troubling conclusion that align-
ment methods are essential to biological discovery, but evaluating
alignment methods is itself challenging, due to the difficulties in
relying on either simulations (as currently performed) or current
biological benchmarks (due to identified flaws). Furthermore, it
may well be that none of the current methods have sufficient
accuracy for alignment of large, heterogeneous datasets. In addi-
tion, although there have been many studies evaluating alignment
methods with respect to standard criteria (e.g., TC score), much
less is understood about the impact of alignment on downstream
analyses, such as the inference of ancestral sequences [36], predic-
tion of protein structure and function [66, 67], the estimation of
the numeric parameters in sequence evolution models, dates at
internal nodes, etc.

Thus, new research is needed to develop better benchmarks,
including improved simulations that are under more realistic
sequence evolution models that better reflect biological evolution,
and more reliable biological benchmarks. New research is also
needed to evaluate how alignment estimation impacts downstream
analyses, since standard alignment criteria may not reflect accuracy
for these questions. Indeed, it may also be that new alignment
methods are needed, especially for cases where molecules evolve
with rearrangements, duplications, etc. Indeed, multiple sequence
alignment, far from being solved, is one of the most important and
yet most challenging problems in bioinformatics.
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Sjölander K (2010) SATCHMO-JS: a webser-
ver for simultaneous protein multiple sequence
alignment and phylogenetic tree construction
Nucl Acids Res 38 (Web Server Issue):
W29–W34. PMCID: PMC2896197

14. Pei J, Grishin N (2014) Promals3D: multiple
protein sequence alignment enhanced with
evolutionary and three-dimensional structural
information. In Russell D (ed) Multiple
sequence alignment methods. Springer, Berlin

15. Redelings B, Suchard M (2005) Joint Bayesian
estimation of alignment and phylogeny. Syst
Biol 54(3):401–418

16. Suchard, M. A. and Redelings, B. D. (2006)
BAli-Phy: simultaneous Bayesian inference of
alignment and phylogeny. Bioinformatics 22
(16):2047–2048
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