
what you need to know and how to do it

brilliant
Curtis FryeIn Full Colour

 Visit us on the web at
www.brilliantseries.com £19.99

SPREADSHEETS

Brilliant Excel VBA Programming guides you
through the essential tasks step-by-step,
showing you how to:

• Record and run macros

• Get started with Visual Basic Editor

• Start working with data and variables

• Manage workbooks, fi les and worksheets

• Format worksheets and worksheet elements

• Sort and fi lter data effectively

• Create, format and manage charts

• Use built-in functions and statements

• Debug your VBA code

• Use Excel events in your VBA code

• Gather data with UserForms

Brilliant books provide quick
and easy-to-access information.
Features include:

Numbered step-by-step tasks

Visual full colour screenshots

Expert tips, tricks & advice

Practical troubleshooting guide

Everything you need to know
to use VBA Programming to
get the most out of Excel.

Excel VBA Program
m

ing
 brilliant

In Full
Colour

Excel VBA
Programming

Microsoft®

Microsoft®

M
icrosoft ®

CVR_FRYE1975_01_SE_CVR.indd 1 27/02/2013 08:55

Brilliant Excel
VBA Programming

Curtis Frye

A01_FRYE1975_01_SE_FM.indd 1 04/02/2013 14:13

PEARSON EDUCATION LIMITED
Edinburgh Gate
Harlow CM20 2JE
United Kingdom
Tel: +44 (0)1279 623623
Web: www.pearson.com/uk

First published 2013 (print and electronic)

© Curtis Frye 2013 (print and electronic)

The right of Curtis Frye to be identified as author of this work has been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

Pearson Education is not responsible for the content of third-party Internet sites.

ISBN: 978-0-273-77197-5 (print)
 978-0-273-77290-3 (PDF)
 978-0-273-77289-7 (ePub)

British Library Cataloguing-in-Publication Data
A catalogue record for the print edition is available from the British Library

Library of Congress Cataloging-in-Publication Data
Frye, Curtis, 1968-
 Brilliant Excel VBA programming / Curtis Frye.
 pages cm. -- (Brilliant guides)
 ISBN 978-0-273-77197-5 (limp)
 1. Microsoft Excel (Computer file) 2. Microsoft Visual Basic for applications. 3. Business--Computer
programs. 4. Electronic spreadsheets spreadsheets. I. Title.
 HF5548.4.M523F782 2013
 005.54--dc23
 2012049451

The print publication is protected by copyright. Prior to any prohibited reproduction, storage in a
retrieval system, distribution or transmission in any form or by any means, electronic, mechanical,
recording or otherwise, permission should be obtained from the publisher or, where applicable, a
licence permitting restricted copying in the United Kingdom should be obtained from the Copyright
Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

The ePublication is protected by copyright and must not be copied, reproduced, transferred,
distributed, leased, licensed or publicly performed or used in any way except as specifically
permitted in writing by the publishers, as allowed under the terms and conditions under which it
was purchased, or as strictly permitted by applicable copyright law. Any unauthorised distribution
or use of this text may be a direct infringement of the author’s and the publishers’ rights and those
responsible may be liable in law accordingly.

All trademarks used herein are the property of their respective owners. The use of any trademark in
this text does not vest in the author or publisher any trademark ownership rights in such trademarks,
nor does the use of such trademarks imply any affiliation with or endorsement of this book by such
owners.

The screenshots in this book are reprinted by permission of Microsoft Corporation.

10 9 8 7 6 5 4 3 2 1
17 16 15 14 13

Print edition typeset in 11/14pt Arial MT Std Condensed by 30
Print edition printed and bound by Rotolito Lombarda, Italy

NOTE THAT ANY PAGE CROSS-REFERENCES REFER TO THE PRINT EDITION

A01_FRYE1975_01_SE_FM.indd 2 04/02/2013 14:13

What you need to know and how to do it
When you’re working on your computer and come up against a problem that you’re
unsure how to solve, or want to accomplish something in an application that you aren’t
sure how to do, where do you look? Manuals and traditional training guides are usually
too big and unwieldy and are intended to be used as end-to-end training resources,
making it hard to get to the info you need right away without having to wade through
pages of background information that you just don’t need at that moment – and helplines
are rarely that helpful!

Brilliant guides have been developed to allow you to find the info you need easily and
without fuss and guide you through the task using a highly visual, step-by-step approach
– providing exactly what you need to know when you need it!

Brilliant guides provide the quick easy-to-access information that you need, using a table
of contents and troubleshooting guide to help you find exactly what you need to know,
and then presenting each task in a visual manner. Numbered steps guide you through
each task or problem, using numerous screenshots to illustrate each step. Added
features include ‘See also...’ boxes that point you to related tasks and information in the
book, while ‘Did you know?...’ sections alert you to relevant expert tips, tricks and advice
to further expand your skills and knowledge.

In addition to covering all major office PC applications, and related computing subjects,
the Brilliant series also contains titles that will help you in every aspect of your working
life, such as writing the perfect CV, answering the toughest interview questions and
moving on in your career.

Brilliant guides are the light at the end of the tunnel when you are faced with any minor
or major task.

 iii

Brilliant guides

A01_FRYE1975_01_SE_FM.indd 3 04/02/2013 14:13

A01_FRYE1975_01_SE_FM.indd 4 04/02/2013 14:13

 v

Author’s acknowledgements
No book is a singular effort. I’m grateful to Joli Ballew, a long-time Pearson author, and
my agent Neil Salkind of The Salkind Agency and Studio B for inviting me to take on this
project. I’d also like to thank Robert Cottee and Steve Temblett of Pearson UK for their
help managing the project, Helen Savill for her editorial guidance and all members of the
production team who copy edited, proofread and produced the finished work. I know the
amount of work that goes into producing a book after the writing is done and appreciate
their efforts.

A01_FRYE1975_01_SE_FM.indd 5 04/02/2013 14:13

vi

About the author
Curtis Frye is the author of more than two dozen books, including Microsoft Excel 2013
Step by Step for Microsoft Press and the Excel 2007 Pocket Guide for O’Reilly Media. He
has also written and hosted over a dozen online training courses on Excel and other
programs for lynda.com. In addition to his writing, Curt is a popular keynote speaker and
has performed with the ComedySportz Portland improv comedy group since 1996. He
lives in Portland, Oregon, with his wife Virginia, their three cats and many, many books.

Dedication
For Colin and Emily

A01_FRYE1975_01_SE_FM.indd 6 04/02/2013 14:13

 vii

Contents

 Introduction xiii

1. Recording and running macros 1
Record a macro 2
Run a macro 3
Edit a macro 4
Delete a macro 6
Record a macro using relative references 7
Assign a macro to a keyboard shortcut 9
Run a macro by clicking a shape 11
Add a macro to the Quick Access Toolbar 12
Customise a Quick Access Toolbar button 14
Save a macro-enabled workbook 16
Manage Excel 2010 security settings 17
Change Protected View settings 19
Change message bar settings 21
Change data connection security settings 22
Add a digital signature to a workbook 24

2. Starting with the Visual Basic Editor 27
Introduce object-orientated programming 28
Display the Developer ribbon tab 31
Display the Visual Basic Editor 32
Set project properties 33
Create a code module 34
Create a subroutine 35
Create a function 36
Add a comment to your code 37
Run a VBA routine 38
Rename a code module 39
Delete a code module 40
Export a code module to a text file 41

A01_FRYE1975_01_SE_FM.indd 7 04/02/2013 14:13

viii

3. Working with data and variables 43
Understand data types in Excel VBA 44
Declare a variable 45
Require variable declaration before use 46
Manage variable scope 47
Perform calculations using mathematical operators 48
Define a constant 49
Define a static variable 50
Define an array 51
Define a multidimensional array 52
Redefine an array 53
Define a dynamic array 54
Display an object type 55
Define an object variable 56

4. Managing workbooks and files 57
Open a workbook 58
Open a text file as a workbook 59
Open a file the user selects 60
Save a workbook 61
Save a workbook in a different format 62
Detect if a workbook is open 63
Close a workbook 65
Create a new workbook 66
Delete a file 67

5. Managing worksheets 69
Add a worksheet 70
Delete a worksheet 71
Move a worksheet 72
Copy a worksheet 73
Hide or unhide a worksheet 74
Rename a worksheet 75
Protect a worksheet 76
Print a worksheet 77

6. Managing ranges 79
Activate a cell range 80
Select a cell range 81

A01_FRYE1975_01_SE_FM.indd 8 04/02/2013 14:13

 ix

Select the active region 82
Refer to cells using Offset 83
Insert a cell range 84
Delete a cell range 85
Hide worksheet columns or rows 86
Create a named range 88
Resize a selected range 89
Set the column width 90
Set the row height 92

7. Managing cells 93
Cut and paste a cell range 94
Copy and paste a cell range 95
Copy and paste values in cells using PasteSpecial 96
Transpose a column into a row 98
Create a cell comment 99
Display a cell’s comment 100
Hide a cell’s comment 101
Delete one or all cell comments 102
Fill a range of cells automatically 103
Copy a range to multiple sheets 105
Add a cell border 106
Find a cell value 109
Replace a cell value 111

8. Formatting worksheets and worksheet elements 113
Apply bold, italic and underline formatting 114
Change a cell’s font 116
Change a cell’s font size 118
Change a cell’s font colour 119
Change a cell’s fill colour 121
Change a cell’s alignment 123
Apply a cell style 125
Apply a number format to a cell 127
Clear a cell’s format 128

9. Sorting and filtering data 131
Sort cell data using a single criterion 132
Create a multilevel sort 136
Sort using a customised list of values 140

A01_FRYE1975_01_SE_FM.indd 9 04/02/2013 14:13

x

Turn on filter arrows using VBA code 144
Apply a filter using a single criterion 146
Remove a filter 148
Display a list of unique values 150
Filter data to display two values in a column 152
Filter data to display three or more values in a column 154
Filter data based on values in multiple columns 156

10. Managing charts 159
Create a chart 160
Move a chart to a chart sheet 163
Add a new data series to a chart 166
Format a chart’s legend text 170
Format a chart’s axis text 172
Export a chart as an image 174
Create a Line sparkline 176
Create a Column sparkline 178
Create a Win/Loss sparkline 180
Delete a sparkline 182

11. Using built-in functions and statements 183
Use the built-in Open dialog box 184
Prevent screen flicker when running VBA code 186
Suppress and restore alerts 187
Calculate data using Excel worksheet functions 188
Display a message box 189
Get data from an InputBox 193
Display the current date and time 196
Format a date 197
Remove spaces from a string 199
Locate a portion of a string 201
Concatenate strings 203

12. Managing code using logical constructs 205
Create a For…Next loop 206
Create a For…Each loop 207
Create an If…Then…ElseIf statement 208
Create a Case statement 211
Create a Do loop 212
Create a Do…While loop 213

A01_FRYE1975_01_SE_FM.indd 10 04/02/2013 14:13

 xi

Create a Do…Until loop 214
Call another macro from within your code 215
Refer to objects using a With…End With statement 216

13. Debugging your VBA code 217
Execute code in the Immediate window 218
Set a breakpoint in your VBA code 219
Watch a value in a routine 220
Step through your code one line at a time 222
Skip over a subroutine 223
Step out of a subroutine 225
Manage errors using an On Error GoTo statement 226
Manage errors using an On Error Resume Next statement 228
Manage errors using an On Error GoTo 0 statement 229

14. Using Excel events in your VBA code 231
Display the available events 232
Run a procedure when you open a workbook 233
Run a procedure when you close a workbook 235
Run a procedure when you save a workbook 236
Run a procedure when a cell range changes 237

15. Gathering data with UserForms 239
Create a UserForm 240
Add a TextBox to a UserForm 241
Add a ListBox to a UserForm 242
Add a ComboBox to a UserForm 244
Add an option button to a UserForm 245
Add graphics to a UserForm 247
Add a SpinButton to a UserForm 249
Create a multipage or multitab UserForm 251
Write UserForm data to a worksheet 252
Display, load and hide a UserForm 254

 Jargon buster 255
 Troubleshooting guide 259

A01_FRYE1975_01_SE_FM.indd 11 04/02/2013 14:13

A01_FRYE1975_01_SE_FM.indd 12 04/02/2013 14:13

 xiii

Introduction

Welcome to Brilliant Excel VBA Programming, a visual quick
reference book that shows you how to use VBA programming
to import data and produce reports more efficiently in Excel.
This book provides complete coverage of basic to advanced
VBA programming skills.

Find what you need to know – when you
need it
You don’t have to read this book in any particular order. We’ve
designed the book so that you can jump in, get the information
you need and jump out. To find the information that you need,
just look up the task in the table of contents or Troubleshooting
guide, and turn to the page listed. Read the task introduction,
follow the step-by-step instructions along with the illustration,
and you’re done.

How this book works
Each task is presented with step-by-step instructions in one
column and screen illustrations in the other. This arrangement
lets you focus on a single task without having to turn the pages
too often.

What you’ll do

i
Find what you need to know –
when you need it

How this book works

Step-by-step instructions

Troubleshooting guide

Spelling

A01_FRYE1975_01_SE_FM.indd 13 04/02/2013 14:13

Step-by-step instructions
This book provides concise step-by-step instructions
that show you how to accomplish a task. Each set
of instructions includes illustrations that directly
correspond to the easy-to-read steps. Eye-catching
text features provide additional helpful information in
bite-sized chunks to help you work more efficiently
or to teach you more in-depth information. The
‘For your information’ features provide tips and
techniques to help you work smarter, while the ‘See
also’ cross-references lead you to other parts of the
book containing related information about the task.
Essential information is highlighted in ‘Important’
boxes that will ensure you don’t miss any vital
suggestions and advice.

Troubleshooting guide
This book offers quick and easy ways to diagnose
and solve common problems that you might
encounter, using the Troubleshooting guide. The
problems are grouped into categories that are
presented alphabetically.

Spelling
We have used UK spelling conventions throughout
this book. You may therefore notice some
inconsistencies between the text and the software
on your computer, which is likely to have been
developed in the US. We have, however, adopted US
spelling for the words ‘disk’ and ‘program’, as these
are commonly accepted throughout the world.

xiv

Create a code module

 1 If necessary, press Alt+F11
to display the Visual Basic
Editor.

 2 Click the Insert tab, then the
Module menu item.

 3 When you are done working
with the code module, click
its Close button to close it.

34

uCreate a code
module

You need to store the VBA code you create within your
workbook. For the tasks described throughout most of this
guide, you will store your VBA instructions in one or more code
modules. As the name implies, a code module is a repository
for a set of routines. It can be tempting to put all of your code
into a single module, but you’ll quickly find the convenience
of a single module is overwhelmed by the difficulty of finding
an individual procedure. Like creating multiple worksheets
within a workbook, you should organise your code into multiple
modules so it’s easy to find individual routines.

Did you know?
Don’t forget to save your work frequently. You can do so
by clicking the Save toolbar button or press Ctrl+S.

?

See also

For more information on renaming a code module, see
the Rename a code module task later in this chapter.

3

2

M02_FRYE1975_01_SE_C02.indd 34 22/01/2013 11:14

 Troubleshooting guide 259 259

Troubleshooting guide

Recording and running macros

To learn how to record a macro, see
Chapter 1, Recording a macro. 2

To learn how to run a macro, see
Chapter 1, Running a macro. 3

To learn how to edit a macro, see
Chapter 1, Editing a macro. 4

To learn how to delete a macro, see
Chapter 1, Deleting a macro. 6

For information on recording a macro
using relative references, see Chapter 1,
Record a macro using relative references. 7

To learn how to assign macro to a
keyboard shortcut, see Chapter 1,
Assigning a macro to a keyboard
shortcut. 9

To learn how to run a macro by clicking
a shape, see Chapter 1, Running a macro
by clicking a shape. 11

To learn how to add a macro to the
Quick Access Toolbar, see Chapter 1,
Adding a macro to the Quick Access
Toolbar. 12

To learn how to customise a Quick
Access Toolbar button, see Chapter 1,
Customising a Quick Access Toolbar
button. 14

For information on saving a
macro-enabled workbook, see Chapter 1,
Saving a macro-enabled workbook. 16

To learn how to manage Managing Excel
2010 security settings, see Chapter 1,
Managing Excel 2010 security settings. 17

To learn how to change Protected
View settings, see Chapter 1, Changing
Protected View settings. 19

To learn how to change message bar
settings, see Chapter 1, Changing
Message Bar settings. 21

To learn how to change data
connection security settings, see
Chapter 1, Changing data connection security
settings. 22

To learn how to add a digital signature
to a workbook, see Chapter 1, Adding a
digital signature to a workbook. 24

Starting with the Visual Basic Editor

For background information on
object-orientated programming,
see Chapter 2, Introducing
object-orientated programming. 28

If you’d like to display the Developer
ribbon tab, see Chapter 2, Displaying
the Developer ribbon tab. 31

M17_FRYE1975_01_SE__TS.indd 259 23/01/2013 09:20

A01_FRYE1975_01_SE_FM.indd 14 04/02/2013 14:13

What you’ll do
Record a macro

Run a macro

Edit a macro

Delete a macro

Record a macro using relative
references

Assign a macro to a keyboard
shortcut

Run a macro by clicking a shape

Add a macro to the Quick Access
Toolbar

Customise a Quick Access
Toolbar button

Save a macro-enabled workbook

Managing Excel 2010 security
settings

Change Protected View settings

Change message bar settings

Change data connection security
settings

Add a digital signature to a
workbook

Recording and running
macros

Introduction

Macros are sets of recorded instructions you can replay
whenever you wish. If you perform a multi-step task frequently,
such as applying formats to an Excel worksheet, you could
record the steps as a macro. Then, the next time you want to
perform those actions, you can save yourself a lot of time by
running the macro. You can choose from several options for
running your macros, depending on whether you want to use
your keyboard, click a shape, run your macro from the Macros
dialog box or add a button to the Quick Access Toolbar. Finally,
you’ll learn how to manage macro security in Excel 2010.

Recording and running macros 1

1

M01_FRYE1975_01_SE_C01.indd 1 04/02/2013 14:13

Record a macro

 1 Click the View tab.

 2 Click the Macros button’s
down arrow.

 3 Click Record Macro.

 4 In the Record Macro dialog
box, type a name for your
macro.

 5 Click OK.

 6 Perform the steps you would
like to record and play back
later.

 7 Click View, click the Macros
button’s down arrow and
click Stop Recording.

2

uRecord a macro Macros are sets of steps that you can replay with the click of
a button or press of a key. Before you can replay those steps,
however, you must record them. When you start recording,
everything you do is stored in the macro. If you make a
mistake, you can stop recording, return your worksheet to
its original configuration and try again. Once your macro is
in place, you can run it any time you wish and have the steps
completed almost instantly.

To start recording a macro, display the View tab on the ribbon,
then follow the steps.

Did you know?
Adding a description helps
you remember exactly what
a macro does if it’s been a
while since you’ve used it.

?

Important

Unless you specify
otherwise, a macro operates
on the cells you clicked
when you recorded it.

!

3

2

4

5

7

M01_FRYE1975_01_SE_C01.indd 2 04/02/2013 14:13

Run a macro

 1 Click the View tab.

 2 Click Macros, to display the
Macro dialog box.

 3 Click the macro you want to
run.

 4 Click Run.

Recording and running macros 3

1

uRun a macroAfter you record a macro, running it replays those steps in
just a few seconds. For example, suppose you copy customer
orders from one worksheet to another. If doing so takes you a
minute to complete and you do it once a day, you’ll save
20 minutes per month on that task alone by creating a macro.

You’ll find the controls to run a macro via the Excel user
interface on the View tab.

Important

Click the main body of
the Macros button on the
ribbon to display the Macro
dialog box.

!

2

4

3

See also

If you display multiple worksheets while recording a
macro, your screen might flicker. For information on
how to stop the screen from flickering, see Chapter 11.

M01_FRYE1975_01_SE_C01.indd 3 04/02/2013 14:13

Edit a macro

 1 Click the View tab.

 2 Click Macros.

 3 In the Macro dialog box,
click the macro you want to
change.

 4 Click Edit.

4

uEdit a macro After you have recorded a macro, you might find that you want
to change one of its steps. For example, instead of changing
the text to red, you might want to display it in blue. Rather than
record a new macro and delete the old, you can save time by
editing your existing macro.

2

Don’t worry that you might not be familiar enough
with Visual Basic for Applications to edit your code on
your own yet. You’ll learn everything you need to know
in the rest of this guide.

For your information
i

4

3

M01_FRYE1975_01_SE_C01.indd 4 04/02/2013 14:13

 5 With the macro open in the
Visual Basic Editor, change
the code in the code module.

 6 Click the Save button on the
toolbar.

 7 Click File…Close and Return
to Microsoft Excel on the
menu.

Recording and running macros 5

1

Edit a macro
(cont.)

Did you know?
If you’re not sure if your edit will make your macro
inoperable, copy the text you’re changing to a text file or
e-mail message so you can paste it back in if needed.

?

Jargon buster
When you record a macro, Excel writes the Visual Basic
for Applications instructions required to duplicate your
steps. Those instructions are stored in a code module,
which you’ll learn more about in Chapter 2.

5

6

M01_FRYE1975_01_SE_C01.indd 5 04/02/2013 14:13

Delete a macro

 1 Display the macros in your
workbook by clicking the
View tab.

 2 Click Macros.

 3 In the Macro dialog box, click
the macro you want to delete.

 4 Click Delete.

 5 Click Yes to confirm you want
to delete the macro.

If you’re done with a macro and don’t anticipate using it again,
you can delete it from your workbook. Deleting unwanted
macros makes the list that appears in the Macro dialog box
less crowded, which, in turn, makes it easier for you to find the
macro you want to run.

6

uDelete a macro

Important

Deleting a macro is final –
once you do, you can’t bring
it back.

!

Did you know?
If you’ve had a change of
heart, click No to leave the
macro in your workbook.

?

2

3

4

M01_FRYE1975_01_SE_C01.indd 6 04/02/2013 14:13

Record a macro using relative
references

 1 Indicate you want to do this
by clicking the View tab.

 2 Click the Macros button’s
down arrow.

 3 Click Use Relative References.

 4 Now you can record the
macro normally – click the
Macros button’s down arrow.

 5 Click Record Macro to display
the Macro dialog box.

Recording and running macros 7

1

uRecord a macro
using relative
references

When you create a macro, Excel makes a note of the exact cells
you selected when you recorded your macro’s steps. If you
click cell C3 and then C4 (the cell below C3), the macro code
will contain those exact cell references. If you would rather
your macro code indicate that you clicked the cell just below
the active cell, rather than a specific cell address, you can
record your macro using relative references.

2

3

4

5

Jargon buster
A relative reference is an instruction that tells Excel
to look a number of rows up or down and a number of
columns to the left or right of the active cell.

M01_FRYE1975_01_SE_C01.indd 7 04/02/2013 14:13

 6 In the Record Macro dialog
box, type a name for your
macro.

 7 Click OK.

 8 Perform the steps you want
to record.

 9 Click the View tab.

 10 Click the Macros button’s
down arrow.

 11 Click Stop Recording. Play
back later.

8

Record a macro
using relative
references
(cont.)

Important

If your macro doesn’t behave the way you expect, click
View and then click the Macros button’s down arrow to
see if Use Relative References is highlighted.

!

10

11

6

7

M01_FRYE1975_01_SE_C01.indd 8 04/02/2013 14:13

Assign a macro to a keyboard
shortcut

 1 Click the View tab to start the
macro recording process.

 2 Click the Macros button’s
down arrow.

 3 Click Record Macro.

 4 In the Macro dialog box, type
a name for your macro.

 5 In the Shortcut key box, type
a letter to be pressed with the
Ctrl key to run the macro.

 6 Click OK.

Recording and running macros 9

1

uAssign a macro
to a keyboard
shortcut

If you run a macro frequently, you might want to assign it to
a keyboard shortcut. Just as you can press Ctrl+C to copy
a cell’s contents in Excel, you can have Excel run a macro
whenever you press a certain key combination. You must use
a letter, so you should assign rarely used letters such as J, M
or U to your macros.

2

3

4

6

5

M01_FRYE1975_01_SE_C01.indd 9 04/02/2013 14:13

 7 Perform the steps you want
to record.

 8 On the ribbon, click View,
click the Macros button’s
down arrow, then click Stop
Recording. Play back later.

10

Assign a macro
to a keyboard
shortcut (cont.)

Important

If you assign a macro to a common keyboard shortcut,
such as Ctrl+C (which copies the selected cells’
contents), then pressing that key sequence while editing
the workbook will run the macro instead of performing
the shortcut’s usual function.

!

Did you know?
You can assign a keyboard shortcut to a macro after
you create it by opening the Macro dialog box, clicking
the macro, clicking the Options button, then typing the
keyboard shortcut into the Shortcut key box.

?

8

M01_FRYE1975_01_SE_C01.indd 10 04/02/2013 14:13

Run a macro by clicking a
shape

 1 Click the Insert tab.

 2 Click Shapes.

 3 Click the type of shape you
want to add.

 4 Draw the shape in the body of
your worksheet.

 5 If desired, click the shape
and type text to appear in the
shape as a label.

 6 Right-click the shape and then
click Assign Macro.

 7 In the Assign Macro dialog
box, click the macro you want
to run when the shape is
clicked.

 8 Click OK.

If you create macros for several different workbooks, it can be
difficult to remember which macros are available where. Rather
than take the time to open the Macro dialog box to discover
which macros are contained in a workbook, you can make your
macros more visible by assigning them to a shape and editing
the shape’s text to reflect the macro. Then, when you click the
shape, Excel runs the macro.

Recording and running macros 11

1

uRun a macro by
clicking a shape

3

2

1

Did you know?
In addition to shapes, you
can also assign macros to
pictures and clip art.

?

Did you know?
To select a shape, picture or clip art image rather than
run a macro assigned to it, hold down the Ctrl key when
you click the object.

?

8

7

M01_FRYE1975_01_SE_C01.indd 11 04/02/2013 14:13

Add a macro to the Quick
Access Toolbar

 1 Right-click any blank spot
on the ribbon and then click
Customize Quick Access
Toolbar….

 2 In the Excel Options dialog
box, click the Choose
commands from down arrow
and then click Macros.

12

uAdd a macro to
the Quick Access
Toolbar

If you record a macro that you use frequently, you should
consider assigning the macro to a button you add to the Quick
Access Toolbar. You can find the Quick Access Toolbar above
the ribbon. When you install Excel, the Quick Access Toolbar
contains the Save, Undo and Redo buttons. Assigning a macro
to a Quick Access Tollbar. button lets you run the macro easily
– all you need to do is click the button you created.

Did you know?
When you hover the mouse pointer over a Quick Access
Toolbar button, Excel displays the name of the macro
that will run when the button is clicked.

?

1

2

M01_FRYE1975_01_SE_C01.indd 12 04/02/2013 14:13

 3 In the left-hand pane, click the
macro you want to add to the
Quick Access Toolbar.

 4 Click the Add button.

 5 Click OK. When you do, a
button representing the macro
appears on the Quick Access
Toolbar.

Recording and running macros 13

1

Add a macro to
the Quick Access
Toolbar (cont.)

Did you know?
You can change the order of buttons on the Quick
Access Toolbar by displaying the Quick Access Toolbar
page of the Excel Options dialog box, clicking the name
of the macro you want to reposition and clicking the
Move Up and Move Down buttons at the right edge of
the dialog box.

?

3

4

M01_FRYE1975_01_SE_C01.indd 13 04/02/2013 14:13

Customise a Quick Access
Toolbar button

 1 Right-click any blank spot
on the ribbon and then click
Customize Quick Access
Toolbar.

14

uCustomise a
Quick Access
Toolbar button

When you add a macro to the Quick Access Toolbar, Excel
assigns it a button that looks like a miniature flowchart. It’s
an appropriate image, but if you have multiple macros on the
Quick Access Toolbar you won’t be able to tell them apart at a
glance. You can always hover the mouse pointer over a button
to see which macro it runs, but it’s far easier to change the
button’s image so it stands out on the Quick Access Toolbar.

Did you know?
When you hover the mouse pointer over a Quick Access
Toolbar button, Excel displays the name of the macro
that will run when the button is clicked. You can change
that text by changing the Display Name value in the
Modify Button dialog box. Click the macro you want to
customise and then click the Modify button.

?

1

M01_FRYE1975_01_SE_C01.indd 14 04/02/2013 14:13

 2 In the Customize Quick
Access Toolbar panel of the
Excel Options dialog box, click
the macro you want to assign
a new button image to.

 3 Click Modify.

 4 In the Modify Button dialog
box, click a new button image.

 5 If desired, in the Display
name box, type a new name
to appear when you hover
the mouse pointer over the
button.

 6 Click OK.

 7 Click OK.

Recording and running macros 15

1

Customise a
Quick Access
Toolbar button
(cont.)

Did you know?
To delete a Quick Access Toolbar button, display the
Quick Access Toolbar page of the Excel Options dialog
box, click the macro you want to remove, click the
Remove button, then click OK.

?

6

4

7

3

2

5

M01_FRYE1975_01_SE_C01.indd 15 04/02/2013 14:13

Save a macro-enabled
workbook

 1 Click the File tab on the
ribbon.

 2 Click Save As.

 3 In the Save As dialog box,
type a name for the workbook
in the File name box.

 4 Click the Save as type
control’s down arrow, then
click Excel Macro-Enabled
Workbook and click Save.

For security reasons, Excel 2010 doesn’t let you save a
workbook with macros using the standard .xlsx file type.
Instead, you must save the file as a macro-enabled workbook.
Windows Explorer displays these files with a different icon
so it’s very easy to tell that a file contains code that could run
when you open it.

16

uSave a macro-
enabled
workbook

Important

Avoid opening macro-
enabled files you didn’t
expect to receive and always
keep your antivirus software
up to date.

!

1

2

3

4

M01_FRYE1975_01_SE_C01.indd 16 04/02/2013 14:13

Change macro security
settings

 1 Click the File tab.

 2 Click Options.

Recording and running macros 17

1

uManage Excel
2010 security
settings

Excel 2003 and earlier versions of Excel had relatively
unsophisticated macro security measures in place, so it was
fairly easy for malicious programmers to create macro viruses
(harmful computer code written using VBA) to spread malware
via infected files. Starting with Excel 2007 and continuing in
Excel 2010, the Office programming team instituted much
stricter controls over when and how macros may be used.
Disallowing macros in the default file format has gone a long
way towards securing Excel against malicious code. Even so,
it is still possible for users to inadvertently open an infected
macro-enabled file, so it is best that you acquire reputable virus
protection software and set your macro security settings at the
highest level that makes sense for your operation.

Changing macro security settings

Excel 2010 gives you a lot of control over the program’s security
settings. Macros written by malicious coders can do significant
damage to your computer and its data, so it makes sense to
apply stringent security settings. You have several options from
which to choose – you should select
the one that provides the most security
without compromising your operations.

The most restrictive macro security
choice is to disable all macros without
notification. Selecting this setting
means that Excel prohibits all macros,
regardless of any other security
features, such as digital signatures,
applied to the macros. As this is a book
about writing VBA code, you most
likely won’t be surprised that this is
not the recommended setting for your
macro security. That said, if you are not
currently working with macro-enabled
workbooks and do not expect to receive
any such files, you should strongly
consider adopting this security setting,
at least temporarily.

Important

The macro security settings
that you apply in Excel
2010 apply to every other
Microsoft Office 2010
program as well.

!

1

2

M01_FRYE1975_01_SE_C01.indd 17 04/02/2013 14:13

 3 In the Excel Options dialog
box, click Trust Center.

 4 Click Trust Center Settings.

 5 Click Macro Settings.

 6 Select the option for the level
of macro security you want
apply. Note that you can:

a. Disable all macros without
notification.

b. Disable all macros with
notification.

c. Disable all macros except
digitally signed macros.

d. Enable all macros.

 7 Click OK twice to finalise your
changes.

18

Manage Excel
2010 security
settings (cont.)

The next setting, disable all macros with notification, protects
against macros by default, but displays an alert on the message
bar indicating that the file contains macros. If you wish, you
may click the Enable Content button to run macros while you
have the workbook open. If you expect to work with macro-
enabled workbooks frequently, this is a good setting to choose.
You can also choose to disable all macros except digitally
signed ones. Digital signatures (described later in this chapter)
are constructs that provide an extra layer of security to digital
files. If you expect to receive macros from known publishers
that use digital signatures to authenticate their work, you
should choose this setting.

Finally, you could choose to enable all macros. Doing so is not
recommended. Even though malware protection software is
substantially more effective than it used to be, it won’t catch
everything. Your best course of action is to select a setting that
disables at least some macros by default and lets you decide
whether or not to allow them to run.

4
3

6

7

5

M01_FRYE1975_01_SE_C01.indd 18 04/02/2013 14:13

Change Protected View
settings

 1 Click the File tab.

 2 Click Options.

 3 Click Trust Center.

 4 Click Trust Center Settings.

Recording and running macros 19

1

uChange
Protected View
settings

When you receive a file by e-mail or
download it from the Internet, Office
2010 programs can open the file in what
is called Protected View. As the name
implies, Protected View is a mode that
prevents any sort of active content, such
as ActiveX controls or macros, from
running on your computer. You can
select from several options to enhance
your security using Protected View.

1

2

3
4

M01_FRYE1975_01_SE_C01.indd 19 04/02/2013 14:13

 5 Click Protected View in the
left-hand panel.

 6 Select the Protected View
options you want to enable.
Note that you can:

a. Enable Protected View for
files originating from the
Internet.

b. Enable Protected View for
files located in potentially
unsafe locations.

c. Enable Protected View for
Outlook attachments.

d. Enable Data Execution
Prevention mode.

 7 Click OK twice to finalise your
changes.

20

Change
Protected View
settings (cont.)

Important

By default, all of the Protected View settings are
switched on when you install Office 2010. Unless there
is a very good reason to do so, you should not alter any
of these settings.

!

7

6

5

M01_FRYE1975_01_SE_C01.indd 20 04/02/2013 14:13

Change message bar settings

 1 To display the Excel Options
dialog box, click the File tab.

 2 Click Options.

 3 Click Trust Center.

 4 Click Trust Center Settings.

 5 Click Message Bar.

 6 Select the option you want
to apply to the Message Bar.
Note that you can:

a. Show the Message Bar
when active content is
blocked.

b. Never show information
about blocked content.

 7 Click OK twice to finalise your
changes.

Recording and running macros 21

1

uChange message
bar settings

Many very useful workbooks contain
macros that extend the functionality of
Excel 2010. Even so, you might find that
your macro security settings prohibit your
code from running when you desire. Even
if your settings disable macros by default,
you can have Excel display a message bar
indicating that it has detected macros in
your workbook and the action it has taken.
Based on your other security settings, you
can then either acknowledge the message
and turn on macros or close the message
bar without allowing macros to run.

Did you know?
You can hide the message
bar by clicking the Close
button, which looks like a
small letter ‘X’, at the far
right edge of the bar.

?

1

2

3 4

5

7

6

M01_FRYE1975_01_SE_C01.indd 21 04/02/2013 14:13

Change data connection
security settings

 1 Open the Excel Options dialog
box by clicking the File tab.

 2 Click Options.

 3 Click Trust Center.

 4 Click Trust Center Settings.

22

uChange data
connection
security settings

If your organisation is large enough that you store data in
several different repositories, you will most likely bring that
data into Excel using a data connection or a workbook link.
Data connections are connections to other data sources, such
as SQL databases, which can introduce their own security
issues. Workbook links are connections to other Excel files.
This latter type of connection has become much more common
now that Excel workbooks can contain over a million rows of
data per worksheet.

As with many of the other security
settings in this section, you can choose
to enable data connections or workbook
links, prompt users to choose whether
to update the connections or links or
else disable connections and links
entirely. The most common setting is
to prompt users to choose whether to
update or not. This setting alerts you
that your workbook contains one of
those two elements. If you’re expecting
a workbook to contain a data connection
or workbook link, you can allow Excel to
make the connection. If, however, you
receive a file that you did not expect to
contain either of those two elements,
you can choose not to enable them and
check with the individual who sent it to
you or your corporate IT professional to
determine the best course of action.

1

2

3
4

M01_FRYE1975_01_SE_C01.indd 22 04/02/2013 14:13

 5 Click External Content.

 6 Select the Security settings
for Data Connections. You
can:

a. Enable all Data
Connections.

b. Prompt user about Data
Connections.

c. Disable all Data
Connections.

 7 Select the Security settings
for Workbook Links. You can:

a. Enable automatic link
updates.

b. Prompt users on automatic
update for Workbook Links.

c. Disable automatic update of
Workbook Links.

 8 Click OK twice to finalise your
changes.

Recording and running macros 23

1

Change data
connection
security settings
(cont.)

5

8

6

7

M01_FRYE1975_01_SE_C01.indd 23 04/02/2013 14:13

Add a digital signature to a
workbook

 1 Click the File tab.

 2 If necessary, click Info.

 3 Click Protect Workbook.

 4 Click Add a Digital Signature.

 5 Click OK.

24

uAdd a digital
signature to a
workbook

As mentioned earlier in this chapter, one of the macro security
settings for Excel 2010 is to allow only those macros that
have a digital signature attached. A digital signature is a file,
generated by a certification authority, that Excel can use to
identify a document as having been created by the certificate
owner. You can purchase several different levels of digital
certificate, based on the extent of the documentation you
provide to the certifying authority.

Did you know?
You can get more
information about digital
certificates by clicking the
Signature Services from the
Office Marketplace button
that appears after you click
the Add a Digital Signature
button.

?

1

2

3

4

5

M01_FRYE1975_01_SE_C01.indd 24 04/02/2013 14:13

 6 Click Change…

 7 Click the digital signature you
want to use.

 8 Click OK.

 9 Click Sign to add the digital
signature to your workbook.

Recording and running macros 25

1

Add a digital
signature to a
workbook (cont.)

Did you know?
For more information on managing publishers with
digital certificates, click the File tab, click Options, click
Trust Center, click Trust Center Settings, then click
Trusted Publishers.

?

6

9

7

8

M01_FRYE1975_01_SE_C01.indd 25 04/02/2013 14:13

M01_FRYE1975_01_SE_C01.indd 26 04/02/2013 14:13

Starting with the Visual Basic Editor 27

Starting with the Visual
Basic Editor

Introduction

Microsoft Excel provides an ideal environment for examining
numerical data, especially that of the financial variety. You
could use Microsoft Word tables to summarise your data and
even to perform some simple calculations, but it is by far the
inferior tool. If you or a colleague develop web pages, you
know that it’s possible to create a page using a simple text
editor such as Notepad. Possible, but certainly much more
difficult than necessary.

Just as you could create a web page using nothing but a simple
text editor, it’s possible to create your VBA code in Notepad.
Possible, but difficult. The best tool for the job, the Visual Basic
Editor, is built into the Microsoft office application suite. You
can display the Visual Basic Editor using a single key sequence
and use its considerable power to create, edit and manage your
VBA code.

In this chapter, you will learn how to work with the Visual Basic
Editor, create simple code constructs, such as subroutines and
functions, and save your work to a text file.

What you’ll do

2
Introduce object-orientated
programming

Display the Developer ribbon tab

Display the Visual Basic Editor

Set project properties

Create a code module

Create a subroutine

Create a function

Add a comment to your code

Run a VBA routine

Rename a code module

Delete a code module

Export a code module to a
text file

M02_FRYE1975_01_SE_C02.indd 27 04/02/2013 14:13

28

uIntroduce
object-orientated
programming

When you write or record a VBA macro in Excel, you define a
set of instructions for the program to follow. Computers take
your instructions absolutely literally, meaning that they will do
exactly what you tell them to do, even if that is not what you
mean for them to do. Every programming language follows a
well-defined set of patterns to reduce ambiguity, but the best
programming languages combine power, flexibility and the
ability for humans to comprehend the instructions.

Early generations of programming languages were called
procedural languages, which allowed programmers to define a
series of steps called an algorithm. The code in the algorithm
manipulated variables, which contain values used in calculations
and other manipulations. The great insight of object-orientated
programming – which is a means of organising knowledge about
a particular domain – was that a programming environment
referred to things. For example, in Excel you have workbooks,
worksheets, cells, charts and a myriad of other objects to
which you can refer.

Procedural programming languages also enabled programmers
to refer to objects by using what were called abstract data types.
You could define an abstract data type, perhaps a product
offered by a company, then create instances of those abstract
data types. For example, you could create an instance of the
product data type to refer to an automobile, a hotel room or
a computer.

Abstract data types offered procedural programming languages
extra capabilities, but they were a bit of a haphazard addition to
the underlying language. So, language designers extended the
concept of the abstract data type and organised their languages
by defining every element of the programming domain as
an object. Each object, in turn, has a number of elements
encapsulated within it. There are three elements you can find
within Microsoft Excel objects in Excel VBA:

�� properties

�� methods

�� events.

M02_FRYE1975_01_SE_C02.indd 28 04/02/2013 14:13

Starting with the Visual Basic Editor 29

Introduce
object-orientated
programming
(cont.)

2

Objects may also be members of collections, which are groups
of like objects. For example, the set of all worksheets within a
workbook is called the Worksheets collection.

Properties

As the name implies, properties are some aspect of an
object. For example, a workbook has a name, a collection of
worksheets and information about the date it was created. You
can change most of these values using the file system, such as
by renaming a workbook, or VBA code. Some properties are
set by the system and can’t be manipulated directly, but you
can read them if you need to use the information they contain.
You refer to properties using what is called dot notation. As an
example, you would refer to the name of the first worksheet in
a workbook using the code Worksheet(1). Name.

Methods

Properties describe some aspect of an object – they are the
adjectives that modify the object’s noun. Methods represent
action verbs – specifically, actions that the object knows
how to take. For example, you can save the current state of
your workbook, change worksheets within the workbook, or
delete a worksheet using methods that are built into the Excel
object model. You also refer to an object’s methods using dot
notation. For example, you could change the active worksheet
by using the code Worksheet(Name). Activate.

Events

If methods are the action verbs of the object-orientated
programming world, then events are the passive verbs. An
event is something that happens to an object inside an object-
orientated programming language. Excel 2010 can recognise
many different events, some of which are:

�� opening or closing of a workbook

�� activating or deactivating a worksheet

�� saving a workbook

�� clicking a chart

M02_FRYE1975_01_SE_C02.indd 29 04/02/2013 14:13

30

Introduce
object-orientated
programming
(cont.)

�� adding data to a cell

�� recalculating a worksheet

�� following a hyperlink.

As soon as Excel recognises one of these events has happened,
it triggers an event handler that executes any code you have
written within it. Events are extremely powerful, but it is very
easy to run into trouble by creating a series of event handlers
that could potentially trigger each other. The resulting chain
reaction will render Excel useless until you halt the program’s
execution by pressing Ctrl+C.

M02_FRYE1975_01_SE_C02.indd 30 04/02/2013 14:13

Display the Developer ribbon
tab

 1 Open the Excel Options dialog
box by clicking the File tab,
then Options.

 2 In the Excel Options dialog
box, click Customize Ribbon.

 3 If necessary, click the
Customize the Ribbon down
arrow and click Main Tabs.

 4 Click the Developer box.

 5 Click OK.

Starting with the Visual Basic Editor 31

uDisplay the
Developer
ribbon tab

2

If you plan to do a lot of programming work in Excel 2010,
you should take a moment to add the built-in Developer tab
to the ribbon user interface. The Developer tab contains many
tools that you would normally find under separate ribbon tabs
in the standard user interface. For example, you can display
the Visual Basic Editor, record a macro, indicate you want to
use relative references in a macro, or change macro security
settings by clicking a single ribbon control.

Important

If your keyboard doesn’t
have working function
keys or if for some reason
either your Alt or F11 keys
aren’t working properly,
you should display the
Developer tab so you can
click the Visual Basic control
to display the Visual Basic
Editor without using the
keyboard.

!

1

5

4

3

2

M02_FRYE1975_01_SE_C02.indd 31 04/02/2013 14:13

Display the Visual Basic Editor

 1 Either:

a. Press Alt+F11.

b. Click the Developer tab,
then Visual Basic.

 2 When you are done working
in the Visual Basic Editor,
Click the File…Close and
Return to Microsoft Excel
menu item.

32

uDisplay the
Visual Basic
Editor

Excel, like the other Microsoft Office programs, includes the
Visual Basic Editor. The Visual Basic Editor is a dedicated tool
you can use to write your VBA routines, edit existing macros
and create functions that let you perform calculations using
customised procedures that you define.

1

Did you know?
After you open the Visual Basic Editor, pressing Alt+F11
enables you to switch between Excel and the Visual
Basic Editor without closing either.

?

See also

For information on displaying the Developer ribbon tab,
see the Displaying the Developer ribbon tab task from
earlier in this chapter.

M02_FRYE1975_01_SE_C02.indd 32 04/02/2013 14:13

Set project properties

 1 Press Alt+F11 to display the
Visual Basic Editor.

 2 In the Project panel, click
VBAProject.

 3 If necessary, click the View...
Properties Window menu
item to activate the Properties
panel.

 4 Click the property you want to
modify.

 5 Type a new value for the
property.

Starting with the Visual Basic Editor 33

uSet project
properties

2

Each workbook will have its own VBA project associated with
it. In turn, every VBA project has a name. The names Excel
provides are neutral and, frankly, uninformative. You can
change the value of the project’s name property to clarify the
workbook’s purpose.

5

2

4

Did you know?
Adding a few characters to a project name can help
identify which file and program it belongs to. For
example, you could name a project Payroll_wbk to
indicate it’s an Excel workbook. Useful abbreviations
include _doc for Word documents and _ppt for
PowerPoint presentations.

?

M02_FRYE1975_01_SE_C02.indd 33 04/02/2013 14:13

Create a code module

 1 If necessary, press Alt+F11
to display the Visual Basic
Editor.

 2 Click the Insert tab, then the
Module menu item.

 3 When you are done working
with the code module, click
its Close button to close it.

34

uCreate a code
module

You need to store the VBA code you create within your
workbook. For the tasks described throughout most of this
guide, you will store your VBA instructions in one or more code
modules. As the name implies, a code module is a repository
for a set of routines. It can be tempting to put all of your code
into a single module, but you’ll quickly find the convenience
of a single module is overwhelmed by the difficulty of finding
an individual procedure. Like creating multiple worksheets
within a workbook, you should organise your code into multiple
modules so it’s easy to find individual routines.

Did you know?
Don’t forget to save your work frequently. You can do so
by clicking the Save toolbar button or press Ctrl+S.

?

See also

For more information on renaming a code module, see
the Rename a code module task later in this chapter.

3

2

M02_FRYE1975_01_SE_C02.indd 34 04/02/2013 14:13

Create a subroutine

 1 In a code module, type
Sub<name>(), where
<name> is the name for your
subroutine.

 2 Between the Sub line and the
EndSub line the Visual Basic
Editor inserts for you, type the
code you want to run.

 3 Click the Save toolbar button
or press Ctrl+S to save your
work.

Starting with the Visual Basic Editor 35

uCreate a
subroutine

2

The most common type of VBA routine you will write is called
a subroutine. A subroutine is a series of instructions that can
affect workbooks or their contents but doesn’t return a value
that you can use in a formula. For example, if your subroutine
is named DisplayVAT, you could display the value in a message
box but not create a formula such as =DisplayVAT(A1). Despite
that limitation, subroutines are enormously useful and will
figure prominently in your VBA work.

In the task, the word ‘Sub’ in the code is the keyword
identifying your code as a subroutine, the name is the name of
the subroutine, which must be unique within the module, and
the parentheses () represent the space to pass data to the
subroutine from another procedure. In most cases, you will
leave the parentheses empty.

Important

If the Visual Basic Editor doesn’t allow the name you
use for your subroutine, you might have tried to use a
reserved word, such as TIME or DATE. Try another name.

! Important

The name of your
subroutine must begin
with a letter and must not
contain any spaces.

!

1

2

3

M02_FRYE1975_01_SE_C02.indd 35 04/02/2013 14:13

Create a function

 1 In a code module, type
Function<name>
(argument1,
argument2…) where
<name> is the name
of your function and
the argument1 (and
subsequent) values are the
names of variables to be used
in the function.

 2 Between the Function line
and EndFunction line the
Visual Basic Editor inserts
for you, type the code that
will perform the function’s
calculations.

 3 Before the EndFunction
line, assign the result of the
function’s calculation to the
function’s name.

36

uCreate a function Excel is a powerful data management and analysis tool. You
summarise your data using formulas, finding sums, averages
and so on. If you want to define a customised calculation, such
as CalculateVAT, you can do so by defining a function using
VBA. You just define the calculation, indicate what arguments
(data inputs) it should accept and you’re ready to go. You may
then create a formula such as =CalculateVAT(A2), which finds
the VAT due on the sales amount in cell A2.

In the task, the ‘Function’, keyword indicates you are creating
a function that should return a value. The ‘name’ refers to
the name of the function and the ‘arguments’ are values the
function uses in its calculations. For example, a function to
calculate a 25 per cent VAT charge would generate a result of
£25 on a sale of £100.

Jargon buster
An argument is a value used by a function. For example,
the SUM function accepts one or more values, such as
numbers or cell ranges, as arguments. If you create the
workbook formula =SUM(A1:A2), then the cell range
A1:A2 is the argument.

In this function, steps 2 and
3 are combined into a single
line of code.

For your information
i

See also

For much more information on working with variables,
see Chapter 3.

1

2

M02_FRYE1975_01_SE_C02.indd 36 04/02/2013 14:13

Add a comment to your code

 1 Either:

a. Type an apostrophe at the
start of a line to make the
entire line a comment.

or:

b. Add a comment to the
right of a line of code by
typing an apostrophe –
everything to the right of
the apostrophe will be
considered a comment and
ignored when you run the
routine.

Starting with the Visual Basic Editor 37

uAdd a comment
to your code

2

Even the simplest VBA routines can be a mystery to someone
who encounters them for the first time. Equally, if you’ve used
a workbook for a few years in your home-based business,
you will feel the same if you can’t remember what you had in
mind. You can reduce that confusion by adding notes – called
comments – to your code.

1

Did you know?
If you want to try your VBA code without running a
specific line, add an apostrophe to the start of the line to
make it a comment.

?

Did you know?
The Visual Basic Editor displays comments in green text
so they stand out.

?

M02_FRYE1975_01_SE_C02.indd 37 04/02/2013 14:13

Run a VBA routine

 1 Click in the VBA routine you
want to run so the insertion
point is within that block of
code.

 2 Either:

a. Click the Run tab, then the
Run Sub/UserForm menu
item.

or:

b. Press F5.

38

uRun a VBA
routine

After you create a VBA routine, it’s time to test it out by running
it. Running a VBA routine, as the name implies, causes Excel to
implement the steps laid out in your code.

See also

For more information on executing your code one line at
a time, see Chapter 13.

2

1

M02_FRYE1975_01_SE_C02.indd 38 04/02/2013 14:13

Rename a code module

 1 In the Project panel, click the
module you want to rename.

 2 If necessary, press F4
to display the Properties
Window.

 3 Click the box next to the Name
property.

 4 Type a new name for the code
module and press Enter.

Starting with the Visual Basic Editor 39

uRename a code
module

2

When you create a code module in the Visual Basic Editor, the
program assigns it a descriptive but uninspiring name, such
as Module1 or Module2. It makes sense to group routines
with similar objectives, such as calculating tax, into the same
module, so you should consider changing that module’s name
to reflect the code it contains.

1

3
4

Important

Your module name must start with a letter and not
contain any spaces.

!

M02_FRYE1975_01_SE_C02.indd 39 04/02/2013 14:13

Delete a code module

 1 Display the Project window,
then right-click the code
module you want to delete.

 2 Click the Remove Module
menu item.

 3 Decide whether or not to save
the code module’s contents
to a text file:

a. If you want to export the
code module to a text file,
click Yes and follow the
instructions to save the
code in a file.

b. If you want to delete the
code module without
exporting its contents,
click No.

40

uDelete a code
module

As you work with VBA in Excel, you’ll likely create some VBA
routines that will, over time, become surplus to requirements.
Just as deleting unneeded worksheets reduces clutter in your
workbooks, so will deleting unneeded code modules reduce the
clutter in your VBA projects.

Important

Deleting a code module can’t be reversed. Once you
delete it, it’s gone for good.

!

Did you know?
You can stop the deletion process by clicking the Cancel
button in the dialog box that appears.

?

2

1

M02_FRYE1975_01_SE_C02.indd 40 04/02/2013 14:13

Export a code module to a
text file

 1 In the Project window,
right-click the code module
you want to export.

 2 Click the Export File menu
item.

 3 Navigate to the folder where
you want to store the file in
the Save in box.

 4 In the File name box, type a
name for the file.

 5 Click Save.

Starting with the Visual Basic Editor 41

uExport a code
module to a text
file

2

As you might have learned from hard experience, it is always
wise to make backup copies of your files to prevent against
possible loss. VBA code modules are no exception. You can
export the contents of a code module to a text file and save it
elsewhere to ensure you have a second copy in case your first
is lost due to disk failure or accidental deletion.

Important

Be sure to remember where you saved your file!
Consider storing your exported code in the same folder
as your workbook.

!

Did you know?
You can import a file into a VBA project by clicking the
File tab, then the Import File menu item.

?

3

54

21

M02_FRYE1975_01_SE_C02.indd 41 04/02/2013 14:13

M02_FRYE1975_01_SE_C02.indd 42 04/02/2013 14:13

Working with data and variables 43

Working with data and
variables

Introduction

After you create an Excel workbook, you populate it with data
and formulas to summarise your data. In Excel VBA, you
also use your worksheet data as fuel for your calculations,
but you have much flexibility. Rather than just using the
built-in functions to create worksheet formulas, you can
develop procedures to perform custom calculations and other
processes to meet your needs. Here, you will learn how to
work with data and variables by declaring variables, arrays and
the built-in Excel objects. The tasks are important background
for the rest of the guide.

What you’ll do

3
Understand data types in Excel
VBA

Declare a variable

Require variable declaration
before use

Manage variable scope

Perform calculations using
mathematical operators

Define a constant

Define a static variable

Define an array

Define a multidimensional array

Redefine an array

Define a dynamic array

Display an object type

Define an object variable

M03_FRYE1975_01_SE_C03.indd 43 04/02/2013 14:13

44

uUnderstand
data types in
Excel VBA

When you add data to an Excel worksheet, the program
examines the data and assigns the most likely data formatting.
Those formats include dates, times, numbers and ‘general’ for
text or mixed entries. In Excel VBA, you assign each variable a
data type. Table 3.1 lists the most common data types you will
use in your calculations.

Table 3.1 Commonly used data types in Excel VBA

Data type Description

Byte Positive integer numbers from 0 to 255

Boolean 0 (False) or 1 (True)

Integer Whole numbers from –32,768 to 32,767

Long Whole numbers from –2,147,483,648 to
2,147,483,647

Currency Numbers from –922,337,203,685,477.5808
to 922,337,203,685,477.5807 (note the
maximum of four places to the right of the
decimal point)

Single Values in the range –3.402823E38 to
–1.401298E–45 for negative values,
1.401298E–45 to 3.402823E38 for positive
values

Double Values in the range –1.79769313486232E308
to –4.94065645841247E–324 for negative
values, 4.94065645841247E–324 to
1.79769313486232E308 for positive values

Date Dates and times, which are stored as numbers
within the Excel system

String Character data – numbers are treated as text

Variant A flexible data type that can contain numerical
data, strings, dates or special values, such as
Empty and Null

Did you know?
The Long, Currency, Date
and String data types are
the ones most commonly
used for home and small
business operations.

?

Did you know?
If you divide one number by
another, be sure to assign
the result to a data type
with a decimal component
such as Currency, Single
or Double.

?

M03_FRYE1975_01_SE_C03.indd 44 04/02/2013 14:13

Declare a variable

 1 Type
Dim<variablename> to
start defining your variable.

 2 Type a space, then type the
keyword As.

 3 Type another space, followed
by the data type for the
variable and press Enter.

Working with data and variables 45

3

uDeclare a
variable

Variables are containers that store a value. Like worksheet cells,
which you refer to using references such as A1 or B14, you can
refer to the contents of a variable using its name. If you store
price data in a variable named curPrice, for example, you can
calculate a discount for a frequent customer using an expression
such as curExtendedPrice=curPrice*0.9.

Variable declaration statements follow this pattern:

Dim variable As type

For example, you could declare a curExtendedPrice variable of
Currency type in a routine to calculate a discounted price:

Sub CalculateExtendedPrice()
Dim curExtendedPrice As Currency
curExtendedPrice = ActiveCell.Value * 0.9
MsgBox (“Price with discount is £“ &
curExtendedPrice)
End Sub

Did you know?
To define multiple variables on a line, type a
statement such as DimcurPriceasCurrency,
curTaxasCurrency. Be sure to have an
as<type> statement for each variable you create.

?

Did you know?
When you type the name of a data type, the Visual Basic
Editor displays a list of possible types based on the text
you enter. You can select a value from the list and press
Tab to accept it.

?

M03_FRYE1975_01_SE_C03.indd 45 04/02/2013 14:13

Require variable declaration
before use

 1 Above the first Sub or
Function declaration in a
code module, type Option
Explicit on its own line.

46

uRequire variable
declaration
before use

Unlike many more rigorous programming languages, VBA
doesn’t require you to declare a variable before you use
it. As a result, one of the most common sources of errors
when writing VBA code is to misspell a variable’s name. It’s
good practice to declare a variable before you use it, but it’s
easy to forget or just be lazy. If you want to force yourself
to declare your variables before using them, type the words
OptionExplict on their own line above the first Sub or
Function line in the module.

For example, you could require variable declaration in a
subroutine that calculates a discounted price:

Option Explicit
Sub CalculateExtendedPrice()
 Dim curExtendedPrice As Currency
 curExtendedPrice = ActiveCell.Value *
0.9

 MsgBox (“Price with discount is £” &
curExtendedPrice)
End Sub

Did you know?
If you have a mysterious
error, such as a ‘divide
by zero’ error, try using
OptionExplicit to
see if your code contains a
misspelled variable name.

?

Important

The Option Explicit declaration only applies to
the code module where you enter it.

!

M03_FRYE1975_01_SE_C03.indd 46 04/02/2013 14:13

Manage variable scope

 1 Click above the code for any
functions or subroutines in a
code module.

 2 Define your global variable
using a statement such
as DimsngVATRateas
Single.

 3 If desired, add the keyword
Public before the variable
declaration so it will be
available to every module in
the VBA project.

Working with data and variables 47

3

uManage variable
scope

Most Excel VBA routines are self-contained – there will usually
be no reason to share variables between your routines. That
said, there may be times when you want a variable to be
available to every routine in a module or every module in that
VBA project. These variables are referred to as global variables
and, even though you might not use them frequently, they can
come in handy when you need routines to share values.

You can define a global variable by writing the variable’s Dim
statement above the first Sub or Function line in a code
module, as in the following sample:

Dim sngVATRate as Single
Sub CalculateVAT()
 Dim curVATDue As Currency
 sngVATRate = 0.25
 curVATDue = ActiveCell.Value *
sngVATRate

End Sub

Important

It’s easy for a global variable to be updated unexpectedly
in complex workbooks. If your variable contains a value
you didn’t expect, follow your code carefully to find the
problem.

!

Important

You may not assign a value to a global variable in the
declaration statement, just define it.

!

M03_FRYE1975_01_SE_C03.indd 47 04/02/2013 14:13

48

uPerform
calculations
using
mathematical
operators

Excel worksheet formulas take the drudgery out of calculations
– the program does the maths for you. You can define
calculations in Excel VBA as well. What’s better is that many of
the operators you use to define these calculations are exactly
the same as they are in Excel worksheets. Table 3.2 lists the
operators you’ll use most frequently.

Table 3.2 Arithmetic operators in Excel VBA

Data type Description

+ Add two values

- Subtract one value from another

^ Raise a value to an exponent (e.g. 2^3 = 8)

* Multiply two values

/ Divide one value by another

\ Divide one value by another and return the
integer part of the result (e.g. 5\2 = 2)

Mod Divide one value by another and return the
remainder (e.g. 5 Mod 2 = 1)

Did you know?
The integer division and Mod operators are useful if you
have a number of items in stock and want to know how
many packs, perhaps of quantity 6, you could create
from that stock.

?

Did you know?
You can also use parentheses to group operators into
the desired order. For example, 8 * (2 + 4) produces a
different result from 8 * 2 + 4.

?

M03_FRYE1975_01_SE_C03.indd 48 04/02/2013 14:13

Define a constant

 1 In a code module, define a
variable using the Const
keyword and assign it a value.

 2 One such statement might be
ConstsngVATRate=0.25.

Working with data and variables 49

3

uDefine constantYou can create Excel VBA calculations to work out discounts,
add purchases to find a grand total and so on. For values that
don’t change very often, such as discount rates for frequent
purchasers or post and pack surcharges for a home-based
business, you can define a constant and use it throughout your
code module. If the value does change, you need only update
a single line of code instead of searching for every occurrence
within the module.

Constant definition statements follow this pattern:

Const variable = value

As an example, you could define a constant named
sngVATRate and use it in a calculation:

Sub CalculateVAT()
 Dim curVATDue As Currency
 Const sngVATRate = 0.25
 curVATDue = ActiveCell.Value *
sngVATRate
End Sub

Did you know?
If you add the keyword Public before the constant
declaration (such as PublicConstsngVATRate
=0.25), any module in the current project will be able
to use the variable.

?

Did you know?
If you define your constant above the first Sub or
Function statement, any routine in the current
module will be able to use the constant’s value.

?

M03_FRYE1975_01_SE_C03.indd 49 04/02/2013 14:13

Define a static variable

 1 In a code module, define a
variable using the Static
keyword instead of the Dim
keyword.

50

uDefine a static
variable

One of the built-in features of Excel VBA is that the Visual
Basic Editor resets every variable’s value to zero when it runs
a routine. The rationale for this action is that of ensuring data
from previous operations doesn’t affect the current one. That
said, there might be times when you want a variable to hold
its value until you close the VBA project. In that case, you can
define a static variable.

For example, you might want to calculate the total of every VAT
calculation made while the workbook is open. You could do
that by defining a static variable to hold the value:

Sub CalculateVAT()
 Static curVATDue As Currency
 Const sngVATRate = 0.25
 curVATDue = ActiveCell.Value *
sngVATRate
End Sub

Did you know?
If you define your static variable above the first Sub
or Function statement, any routine in the current
module can change its value.

?

M03_FRYE1975_01_SE_C03.indd 50 04/02/2013 14:13

Define an array

 1 Define an array using a
statement such as Dim
curShippingRates(3)
asCurrency.

 2 Fill the array from cell values
or user input.

Working with data and variables 51

3

uDefine an arrayWhen you manage a home-based business or track other items
in Excel, you’ll often find they come in sets. For example, you
might have standard shipping rates for four regions – the UK,
Europe, North America and the rest of the world. Rather than
assign those values to four different variables, you can store
them in an array. An array is like a box with several partitions –
each compartment contains an item that is part of the set.

To define an array, you use a statement with the following
structure:

Dim arrayname(items - 1) as type

For example, creating a four-element array to store shipping
rates might use a command from this routine:

Sub SetShippingRates
Dim curShippingRates(3) As Currency
Dim i As Integer

For i = 0 To 3
 curShippingRates(i) = InputBox(“Enter
a Shipping rate, please.”)
Next

End Sub

Important

In Excel VBA, the first array element is number
0, so the array defined by the statement Dim
curShippingRates(3) contains four elements.

!

M03_FRYE1975_01_SE_C03.indd 51 04/02/2013 14:13

Define a multidimensional
array

 1 Define an array using a
statement such as Dim
curShippingRates
(3,3)asCurrency.

 2 Fill the array from cell values
or user input.

52

uDefine a
multidimensional
array

Just as you can define an array to hold a single series of
values, such as shipping rates, you can define an array with
multiple dimensions. For example, you could define a set of
shipping rates by region and by speed of delivery. You could
have separate rates for four regions – the UK, Europe, North
America and the rest of the world. You might also have a
dimension for delivery speed – surface mail, air mail, priority
and overnight. Each rate would correspond to two values:
region and delivery speed.

You’re not limited to two-dimensional arrays. If you want to
store multiple types of information, such as region, shipping
rates, tax rates and customs fees, you could create an array
with the required dimensions. In this case, you could create an
array with four dimensions. The statement to define a multi-
dimensional array follows this pattern:

Dim variable(dim1, dim2, …) as type

The following subroutine contains code that defines a two-
dimensional array, with each dimension holding four values:

Sub SetShippingRates
Dim curShippingRates(3, 3) As Currency
Dim i As Integer
Dim j As Integer

For i = 0 To 3
 For j = 0 to 3
 curShippingRates(i) =
InputBox(“Enter a shipping rate,
please.”)
 Next
Next

End Sub

Important

Be sure you assign the
proper values to each
dimension!

!

M03_FRYE1975_01_SE_C03.indd 52 04/02/2013 14:13

Redefine an array

 1 Type a new definition for
the array using the ReDim
keyword, such as ReDim
curShippingRates(4).

Working with data and variables 53

3

uRedefine an
array

Circumstances change all of the time, even when you’re writing
VBA code. From time to time, you might find that you need to
make an array larger or smaller while running a routine. For
example, you might define an array with ten available colours
for a product, then discover a particular model only has nine
options. In that case, you can redefine an array so it is the
proper size.

The statement to redefine an array is exactly the same as the
statement to define it, except that you precede the line with
ReDim instead of Dim. The following subroutine shows one
case where you might use the ReDim statement:

Sub SetShippingRates
Dim curShippingRates(3) As Currency
Dim i As Integer
For i = 0 To 3
 curShippingRates(i) = InputBox(“Enter
a shipping rate, please.”)
Next
ReDim curShippingRates(4)
End Sub

Did you know?
You can keep Excel from deleting your existing
array data by using the Preserve keyword in your
ReDim statement (such as ReDimPreserve
curShippingRates(4)).

?

M03_FRYE1975_01_SE_C03.indd 53 04/02/2013 14:13

Define a dynamic array

 1 Define the array using a
statement without specifying
the array size, such as Dim
curShippingRates().

 2 Use the ReDim statement
to resize the array after you
know how many items it
should contain.

54

uDefine a
dynamic array

A dynamic array is an array without a specific size. Why would
you create a dynamic array? One reason would be if you use
Option Explicit to require variable declaration. If your array’s
size depends on user input or the size of a data set, defining a
dynamic array puts it in place for you to work with later. After
you know the size of the array, such as by gathering user input
using an InputBox or by counting some group of items in the
workbook, you can define the array’s size using a ReDim
statement.

The statement to declare a dynamic array follows this pattern:

Dim variable() as type

The following subroutine defines a dynamic array and then
redefines it using the ReDim statement as soon as the user
indicates how many values are to go into the array:

Sub SetShippingRates()

Dim curShippingRates() as Currency
Dim intItems As Integer
Dim i As Integer
intItems = InputBox(“How many rates
will you enter?”)
ReDim curShippingRates(intItems)
‘Arrays count from 0, so subtract one
from rates to enter.
For I = 0 to intItems – 1
 curShippingRates(i) =
InputBox(“Enter a shipping rate,
please.”)
Next
End Sub

See also

For information on
redefining an array, see
earlier in this chapter.

Important

Remember that Excel VBA
numbers array items from
zero, so you should subtract
one from the number of
items to get the correct
array size.

!

M03_FRYE1975_01_SE_C03.indd 54 04/02/2013 14:13

Display an object type

 1 Click the View tab, then the
Object Browser menu item.

 2 Click the class you want to
display.

 3 Scroll through the available
members of the class.

 4 Click the Close button to close
the Object Browser.

Working with data and variables 55

3

uDisplay an
object type

So far in this chapter you have encountered variables that refer
to numbers, strings of characters and so on. You can also
use variables to refer to Excel objects, such as workbooks,
worksheets and cell ranges. Excel is a vast program with many
components, so it would be impossible to remember every
object available to you in VBA. You can explore these Excel
objects, as well as the elements they contain, by using the
Object Browser.

To display a type of object, click an item in the Classes panel.
You can view the members of the class in the Members panel
to the right of the Classes list and get more information on the
members by double-clicking any item of interest.

Did you know?
You can also display the Object Browser by pressing F2
within the Visual Basic Editor.

?

M03_FRYE1975_01_SE_C03.indd 55 04/02/2013 14:13

Define an object variable

 1 Define a variable as an object
type, using a statement
such as DimwksAs
Worksheet.

 2 Assign an object of that
type to the variable, using
a statement such as Set
wks=ThisWorkbook.
Worksheets
(“FebruaryTax”).

 3 Write code related to the
object, using a statement
such as wks.Tab.Color
=vbGreen.

 4 At the end of your subroutine,
use a statement such as
Setwks=Nothing to
release the memory assigned
to the object.

56

uDefine an object
variable

If you want to refer to an Excel object such as a workbook,
worksheet or cell range, you can do so by defining an object
variable. As the name implies, an object variable refers to an
object. After you define an object variable and assign a specific
item, such as a worksheet, to it, you can refer to that object
using the variable name.

The following code sample assigns the worksheet named
FebruaryTax to the wks object variable. The wks variable’s
name looks like the word worksheet, which is the object type to
which it refers.

Sub SetMailingRates()
Dim wks As Worksheet
 Set wks = ThisWorkbook.Worksheets
(“FebruaryTax”)
 wks.Tab.Color = vbGreen
 Set wks = Nothing
End Sub

See also

For more information on referring to object variables
and their components (such as a worksheet’s name)
using a minimum of code, see Chapter 12.

M03_FRYE1975_01_SE_C03.indd 56 04/02/2013 14:13

Managing workbooks and files 57

Managing workbooks
and files

Introduction

All of your Microsoft Excel data is contained within one or
more workbooks. Just like Word documents or PowerPoint
presentations, you should divide your data between your
workbooks so similar information is grouped together.
For example, sales data could reside in one workbook and
customer data in another. The more complicated your
enterprise, the more likely it is that you will have multiple files.
Here you’ll find information on manipulating your workbooks
by performing tasks such as opening workbooks, allowing
users to select which workbook to open and closing and
deleting workbooks.

What you’ll do

4
Open a workbook

Open a text file as a workbook

Open a file the user selects

Save a workbook

Save a workbook in a different
format

Detect if a workbook is open

Close a workbook

Create a new workbook

Delete a file

M04_FRYE1975_01_SE_C04.indd 57 04/02/2013 14:13

Open a workbook

 1 Create a subroutine.

 2 In the body of the subroutine,
enter a line of code that
contains these elements::

a. Workbooks.Open
(followed by a space).

b. The FileName, including
the path to the file and the
file’s name.

c. Whether to open the file in
ReadOnly mode or not.

58

uOpen a
workbook

If you’ve worked with Excel for any length of time, it’s likely
that you have created several workbooks you open frequently.
One common task might be to copy information between
workbooks. If you want, you can create a VBA routine to
automate that process. To do so successfully, both the source
workbook and the target workbook must be open.

To open a workbook, you use the Workbooks object’s Open
method. The Open method has numerous arguments you can
set, such as if the file has a password, to update links to external
data sources, save the file using the local language setting and
so on. The arguments you will use most frequently are:

�� FileName, which specifies the folder and name of the file.
For example, the file’s path might be c:\Users\Curt\
Documents and the file name Sales.xlsx, resulting in
a FileName value of c:\Users\Curt\Documents\
Sales.xlsx.

�� ReadOnly, which can be set to True or False. This
argument specifies whether the workbook should open in
read only mode or not.

An example of a well-formed VBA statement using the Open
method would be:

Workbooks.Open Filename:=“c:\Files\
Sales.xlsx”, ReadOnly:=False

Important

When you look through the Open method’s help file,
you’ll see that it’s possible to add a file’s password
to the Open method’s argument list. You shouldn’t
do so. It’s a poor security practice that could permit
unauthorised users to open a restricted file.

!
See also

For information on
determining whether or
not a workbook is already
open, see elsewhere in this
chapter.

M04_FRYE1975_01_SE_C04.indd 58 04/02/2013 14:13

Open a text file as a workbook

 1 Create a subroutine.

 2 Add a line of code that
contains these elements:

a. Workbooks.Open
(followed by a space).

b. The Filename, including
the full path.

c. The Delimiter

Managing workbooks and files 59

uOpen a text file
as a workbook

4

Excel is a very flexible program. One of the ways that it makes
your life easier is to let you open files that aren’t stored in the
native Excel format. For example, if a colleague sends you a
text file that contains data from another program, you can often
open that file in Excel. All you need to do is let Excel know how
to deal with the text file before you open it.

To open a text file in Excel, you use the Workbooks object’s
Open method. In addition to specifying the file’s path and
name, you should indicate two other items: whether or not to
open the file in read only mode and the file’s delimiter. If your
code opens the workbook in read only mode, you can view the
new file’s contents but not edit them.

A delimiter is a character used to separate one cell’s value from
the next. You can use any character as a delimiter, but the
most common delimiter characters are punctuation marks and
tabs as they are unlikely to occur in a data file.

�� FileName specifies the folder and name of the file. For
example, the file’s path might be c:\Users\Curt\
Documents and the filename Sales.txt, resulting in a
FileName value of c:\Users\Curt\Documents\
Sales.txt.

�� ReadOnly can be set to True or False. This argument
specifies whether the workbook should open in read only
mode or not.

�� Delimiter identifies the character used to delimit the
data set.

An example of a well-formed VBA statement that opens a text
file with tab characters as the delimiter is:

Workbooks.Open Filename:=“c:\Files\
Sales.txt”, ReadOnly:=False, _
Delimiter:=Chr(9)

Did you know?

The most common delimiter
is the comma. You might see
files with a .csv extension –
those files are text files with
comma-separated values,
hence the extension.

?

The Chr(9) statement
represents a tab. You can
also enclose the delimiter
character in quotes, such as
“,”, “/”, or “|”.

For your information
i

M04_FRYE1975_01_SE_C04.indd 59 04/02/2013 14:13

Open a file the user selects

 1 Create a subroutine.

 2 In the body of the subroutine,
do the following:

a. Define a variable to store
the filename and path.

b. Assign the output of the
Open dialog box to the
variable.

c. Invoke the Open method
to open the file the user
identified.

60

uOpen a file the
user selects

If you create a VBA routine that always uses the same file that’s
stored in the same directory, you can include the file’s path and
name in the Open method statement. However, if the exact file
will change with time, you can create a VBA routine that lets
you select a workbook using the Open dialog box.

Your VBA routine should consist of three elements: declaring
a variable to hold the name of the file the user selects, a
statement that displays the Open dialog box and assigns its
output to the variable you created, plus a statement that calls
the Workbooks.Open method to open the file.

The Open dialog box lets the user select which file to open and
returns the file’s full path and name, which is precisely the
information the Open method’s FileName argument requires.

Dim varFileName as Variant
varFileName = Application.
GetOpenFilename
Workbooks.Open Filename:=varFileName

Did you know?
You can also use the
ReadOnly argument
to identify whether Excel
should open the file in
read only mode or allow
it to be edited. To add the
ReadOnly argument
to the Open method
statement, type a comma
after the FileName
argument and type
ReadOnly:=True or
ReadOnly:=False.

?

M04_FRYE1975_01_SE_C04.indd 60 04/02/2013 14:13

Save a workbook

 1 Create a subroutine.

 2 In the body of the subroutine,
type code that follows the
pattern reference.Save,
where reference identifies
a workbook.

Managing workbooks and files 61

uSave a workbook

4

There are few things more frustrating than doing good work on
a spreadsheet and then losing it because you forgot to save what
you did. You should save your workbook every time you make
an important change, which you could define as something you
would hate to have to do again. If your routines make significant
changes to your workbooks, you should consider creating VBA
code that saves those changes as you go.

The Workbook object’s Save method requires a reference
to a workbook, followed by a full stop, followed by the word
Save, with no spaces. For example, you could create any of
the following lines of code:

ActiveWorkbook.Save
Workbooks(“Sales.xlsx”).Save
Workbooks(1).Save

Important

It might take a moment for your computer’s hard disk
to spin up, so don’t worry if Excel seems to hesitate for
a brief moment.

!

M04_FRYE1975_01_SE_C04.indd 61 04/02/2013 14:13

Save a workbook in a different
format

 1 Create a subroutine.

 2 In the body of the subroutine,
type the following lines of
code:

a. Define a variable to store
the filename and path.

b. Assign the output of the
Save As dialog box to the
variable.

c. Invoke the SaveAs
method to save the file the
user identified in the folder
and format identified using
the Save As dialog box.

62

uSave a workbook
in a different
format

The Excel desktop program has two different ways to save a
file: Save and SaveAs. Saving a file saves it under the same
name, in the same folder, in the same format. You can change
any of those elements by using the SaveAs method instead.
Just as you can use SaveAs in the main Excel program, you
can use VBA to display the built-in Save As dialog box. You can
use that dialog box’s controls to change the workbook’s name,
folder or format.

The Workbook object’s SaveAs method requires a file name
and path, which you can get by displaying the SaveAs dialog
box. The following code is one way to do it:

Dim varFileName
varFileName = Application.
GetSaveAsFilename
ThisWorkbook.SaveAs
Filename:=varFileName

See also

For more information on
using built-in dialog boxes,
see Chapter 11.

Important

The most common error in the ThisWorkbook.
SaveAs statement is to forget to type a colon before
the equal sign in Filename:=varFileName.

!

M04_FRYE1975_01_SE_C04.indd 62 04/02/2013 14:13

Detect if a workbook is open

 1 Create a subroutine.

 2 In the body of the subroutine,
type the code sample from the
next page.

 3 Replace <filename> with
the name of the file, including
directory path and extension,
that you want to open.

Managing workbooks and files 63

uDetect if a
workbook is
open

4

Many of your VBA routines will interact with other workbooks.
For example, you might want to cut and paste data between
files on your computer. For those procedures to work properly,
you must ensure that the files are open. However, if you try to
open a workbook that is already open, the routine might result
in an error. To avoid the possibility of that occurrence, you
should check if the file you want to work with is already open.

The following code sample is significantly longer than the
others in this chapter, but that’s because it has more work
to do. The routine’s goal is to check every open workbook to
determine whether or not that workbook’s name matches the
name of the workbook you want to open. If the workbook is
already open, then you can exit the subroutine without trying to
open the already open file.

After the subroutine declaration, the code identifies three
variables: the first is used to refer to workbooks, the second
to indicate whether the workbook is open or not and the third
to store the filename. After that, it sets the bOpen value to
False and then assigns a value to the string strFileName
variable. The code won’t actually work as written, because
there is no filename – the text <filename> is simply a
placeholder. You would need to get the target filename from
the user, either by having them type in the name directly or by
selecting the name using the Open dialog box.

The next section of the code uses a For…Each loop to
examine every workbook that is currently open in Excel. If the
name of the workbook matches the strFileName variable’s
value, then the routine displays a message box indicating the
workbook is already open and exits the subroutine. If none
of the filenames matches, the routine displays a message
indicating the workbook is not open.

See also

For more information on
using object variables, see
Chapter 3.

M04_FRYE1975_01_SE_C04.indd 63 04/02/2013 14:13

64

Detect if a
workbook is
open (cont.)

When you use this code in your own workbooks, it is unlikely
that you would display a message box indicating if a workbook
is open. Instead, if the workbook you want to use is open, you
can go ahead and use the code in the rest of the routine to cut
and copy your data or perform some other task. If the desired
workbook is not open, then you could use VBA code to open it
before continuing on with the task at hand.

Here is the code sample:

Sub CheckIfOpen()
Dim w as Workbook
Dim bOpen as Boolean
Dim strFileName as String

bOpen = False
strFileName = “<filename>”
For Each w in Application.Workbooks
If w.Name = strFileName Then
 bOpen = True
 MsgBox “The named workbook is open.”
 Exit Sub
End If
Next
If bOpen = False Then
 MsgBox “The named workbook is not
open.”
End If

End Sub

See also

For more information on
using For…Next loops,
see Chapter 12.

M04_FRYE1975_01_SE_C04.indd 64 04/02/2013 14:13

Close a workbook

 1 Create a subroutine.

 2 Enter one of the following
lines of code:

a. ThisWorkbook.Close

b. ActiveWorkbook.
Close

c. Workbooks
(“<filename>”).
Close

d. ThisWorkbook.Close
SaveChanges:=True

Managing workbooks and files 65

uClose a
workbook

4

Modern computers have bags of storage and memory, but it
is still a good habit to close any workbooks you aren’t working
with at the moment. Doing so frees up program resources and
makes it easier to locate a specific file you want to work with.
Closing a workbook is straightforward, but you should always
be sure to offer the option of saving your work before doing so.

To use the Workbook object’s Close method, you need to
identify the workbook you want close, type a full stop, then type
Close. There are many ways to refer to workbooks in Excel
VBA – the lines of code below show just a few of those options:

ThisWorkbook.Close
ActiveWorkbook.Close
Workbooks(“<filename>”).Close

ThisWorkbook.Close SaveChanges:=True

The final example also introduces the SaveChanges
argument. If you set the SaveChanges argument to True,
then Excel saves all of your work before closing the workbook.
If you set the SaveChanges argument to False, then Excel
closes the workbook and discards any changes you made since
last time you saved the file.

Did you know?

If you have unsaved changes in a workbook you want to
close, Excel will prompt you to save them.

?

Did you know?

You can add the SaveChanges argument to any of
the lines of code shown above.

?

M04_FRYE1975_01_SE_C04.indd 65 04/02/2013 14:13

Create a new workbook

 1 Create a subroutine.

 2 Enter the following line of
code in the body of the
subroutine:

Workbooks.Add

66

uCreate a new
workbook

As you continue to work in Excel VBA, you will most likely
find the need to create new workbooks. For example, if you
do monthly reporting for your home-based business or send
updates to your accountant, then you might create monthly
summaries of your business activities. You can always keep
those records in a single workbook, but you might find it
easiest to parcel out your information by month or year, with
each new month or year in its own workbook.

Creating a new workbook in Excel VBA is extremely
straightforward. The command to do so is:

Workbooks.Add

You can use an existing workbook as a template for the
Workbooks.Add method. The code would look like this:

Workbooks.Add(“c:\path\filename”)

where c:\path\filename is the path and full name
(including its extension, such as .xlsx) of the workbook to be
used as the template.

Some corporate IT environments prohibit users from
creating files using VBA code. If you have trouble using
the Add method, check with your IT department to see if
such a restriction is in place.

For your information
i

M04_FRYE1975_01_SE_C04.indd 66 04/02/2013 14:13

Delete a file

 1 Create a subroutine.

 2 Enter the following lines
of code in the body of the
subroutine:

a. DimstrNameAs
String

b. strName =
Application.Get
SaveAsFilename
(Title:=“File to
Delete”)

c. Kill(strName)

Managing workbooks and files 67

uDelete a file

4

There will be times when a file on your computer is surplus
to requirements. The data might be old or perhaps you have
redesigned your workbook and copied your data to a new
file. If that’s the case, then you can use Excel VBA to delete
the workbook when it’s no longer needed. Deleting a file is
sometimes necessary, but should not be undertaken lightly.

To delete an Excel workbook, you need to identify the file
by assigning its name to a variable and then using the Kill
command to delete it. The most common way to select a file to
delete is to use a dialog box such as the Open dialog box or the
Save As dialog box. The following code example uses the Save
As dialog box to identify the file to be deleted:

Dim strName As String
strName = Application.
GetSaveAsFilename(Title:=“File to
Delete”)
Kill (strName)

Did you know?
If you want to delete every file with a specific extension,
such as .txt for text files, you can use the filename
“*.txt”. The * tells Excel to delete every file with the
named extension. Be careful, though!

?

Important

You can’t delete an open
workbook.

!

M04_FRYE1975_01_SE_C04.indd 67 04/02/2013 14:13

M04_FRYE1975_01_SE_C04.indd 68 04/02/2013 14:13

Managing worksheets 69

Managing worksheets

Introduction

Excel worksheets can contain data of many different types. In
most cases, each worksheet within a workbook will contain
a specific subset of the overall data you store within the
workbook. When you create programs using Excel VBA, you
will often find reasons to create, manipulate – even delete –
worksheets within your workbooks. The actual commands
for making these changes are reasonably straightforward, but
there are some subtleties that you will need to keep in mind.
So long as you ensure that your worksheet-related commands
reflect the state of your workbook when they are executed, you
should have no problems.

What you’ll do

5
Add a worksheet

Delete a worksheet

Move a worksheet

Copy a worksheet

Hide or unhide a worksheet

Rename a worksheet

Protect a worksheet

Print a worksheet

M05_FRYE1975_01_SE_C05.indd 69 04/02/2013 14:13

Add a worksheet

 1 Create a subroutine.

 2 In the body of the subroutine,
type ThisWorkbook.
Sheets.Add

 3 If desired, use any of the
following parameters to
specify where and what type
of sheets to add:

a. Before

b. After

c. Count

d. Type

70

uAdd a worksheet Every Excel workbook must contain at least one worksheet, but
most workbooks will contain multiple worksheets. For example,
if you store a year’s worth of data in a single workbook, you
should consider creating a worksheet for each month. Doing so
divides your data into manageable units and lets you find the
specific data you’re looking for more easily.

To add a sheet to a workbook, you use the Sheet collection’s
Add method. For example, if you wanted to add a worksheet
to the same workbook that contains your VBA code, you could
use the code snippet ThisWorkbook.Sheets.Add. You
can also use several other parameters to identify the position of
the sheet you add, the number of sheets to be added and type
of sheet to be added.

�� Before identifies the existing sheet before which you place
the new sheets. If you leave this parameter out, Excel adds
the sheet before the active sheet.

�� After identifies the existing sheet after which you place the
new sheets.

�� Count indicates the number of sheets to be added.

�� Type identifies the type of sheet to be added to
your workbook. You can select from the sheet types
xlWorksheet, xlChart, xlExcel4MacroSheet
and xlExcel4IntlMacroSheet. If you leave this
parameter blank, the Add method inserts a worksheet.

As an example, you could use the following code to add two
worksheets after the sheet named Sheet2:

ThisWorkbook.Sheets.Add
After:=Worksheets(“Sheet2”), Count:=2

This variation of the code would add a chart sheet at the
beginning of the workbook:

ThisWorkbook.Sheets.Add
Before:=Worksheets(1), Type:=xlChart

You can add any number
of worksheets to your
workbook, but it’s best not
to add more than you need.

For your information
i

Important

You may use either the
Before or After
argument, but not both.

!

M05_FRYE1975_01_SE_C05.indd 70 04/02/2013 14:13

Delete a worksheet

 1 Create a subroutine.

 2 In the body of the subroutine,
use one of the following code
patterns:

a. Sheets(1).Delete

b. Sheets
(“sheetname”).
Delete

Managing worksheets 71

uDelete a
worksheet

5

Excel workbooks are similar to many other projects in the
sense that you are never truly done changing them. Whether
you add new data, change the formulas on a worksheet or
modify worksheet formatting, you will probably find new ways
to work more effectively. If you find that your changes make
one of your worksheets redundant, you can delete that sheet.

The VBA command to delete a worksheet relies on the
Sheets collection’s Delete method. All you need to do is
identify the sheet you want to get rid of, either by the number
of the sheet within the workbook or by entering the sheet’s
name. The following two code snippets provide an example of
each approach:

Sheets(1).Delete
Sheets(“Sheet1”).Delete

When you attempt to delete a worksheet that contains data,
whether by using the user interface or VBA, Excel displays a
confirmation dialog box asking if you’re sure you want to delete
the worksheet. You can temporarily disable alert boxes by
adding the command Application.DisplayAlerts =
False on a line before you invoke the Delete method.

Did you know?
You can also use an
InputBox (see Chapter 11)
to enter the name of the
worksheet to be deleted.

?

Be sure to set the DisplayAlerts property to True
after you delete the worksheet. Not doing so could cause
you to miss other important warnings.

For your information
i

M05_FRYE1975_01_SE_C05.indd 71 04/02/2013 14:13

Move a worksheet

 1 Create a subroutine.

 2 In the body of the subroutine,
use one of the following code
patterns:

a. Sheets(1).Move –
which moves the numbered
worksheet to a new
workbook.

b. Sheets(2).Move,
Before:=Sheets(1)
– moves the numbered
worksheet before the first
worksheet.

c. Sheets(1).Move,
After:=Sheets(3)
– moves the numbered
worksheet after the third
worksheet.

72

uMove a
worksheet

You will often find that the data contained in one workbook
could be useful in another. If that’s the case, you can move a
worksheet to another workbook or, if you find your workflow
isn’t as efficient as it might be, you can relocate a worksheet
within the same workbook. Moving a worksheet doesn’t leave
a copy of the worksheet in its original position – as the name
implies, it cuts the worksheet from its original position and
pastes it in its new position.

You can move a worksheet quickly using Excel VBA by using
the Sheets collection’s Move method. Using the Move
method by itself, without indicating a destination for the sheet
you’re moving, causes Excel VBA to move the sheet to a new
workbook. If you want to move the worksheet within the
current workbook, you can use one of the Move method’s two
optional parameters: Before and After.

�� Before identifies the existing sheet before which you place
the moved sheets. If you leave this parameter out, Excel
moves the sheet to before the active sheet.

�� After identifies the existing sheet after which you place the
moved sheets.

Did you know?
You can also use worksheet names, enclosed in double
quotes, instead of sheet numbers in these commands.
For example, Sheets(“January”).Move.

?

If you try to move a worksheet after a worksheet that
doesn’t exist – such as Sheet(4) in a workbook with three
worksheets – the Move method will generate an error.

For your information
i

M05_FRYE1975_01_SE_C05.indd 72 04/02/2013 14:13

Copy a worksheet

 1 Create a subroutine.

 2 In the body of the subroutine,
use one of the following code
patterns:

a. Sheets(1).Copy
– copies the numbered
worksheet to a new
workbook.

b. Sheets(2).Copy,

Before:=Sheets(1)
– copies the numbered
worksheet to before the
first worksheet.

c. Sheets(1).Copy,

After:=Sheets(3)
– copies the numbered
worksheet to after the
third worksheet.

Managing worksheets 73

uCopy a
worksheet

5

Just as you can move a worksheet to another workbook
or within the same workbook, you can create a copy of
a worksheet and move it. For example, you could use a
worksheet as a template and copy it within your existing
workbook. You can also use copying to include a data set in
another workbook without deleting the original worksheet.

If you use the Copy method by itself without indicating a
target destination for the sheet you’re copying, Excel VBA
copies the sheet to a new workbook. If you want to copy the
worksheet within the current workbook, you can use one of
the Copy method’s two optional parameters – Before and
After.

�� Before identifies the existing sheet before which you
place the copied sheet. If you leave this parameter out, Excel
copies the sheet and places it before the active sheet.

�� After identifies the existing sheet, after which Excel will
place the copied sheet.

Did you know?
As with moving worksheets, you can also use
worksheet names, enclosed in double quotes, instead
of sheet numbers in these commands. For example,
Sheets(“January”).Copy.

?

Trying to copy a worksheet to a position before or after
a worksheet that doesn’t exist will result in an error. Be
sure you create error-handling code to manage these
situations (see Chapter 13).

For your information
i

M05_FRYE1975_01_SE_C05.indd 73 04/02/2013 14:13

Hide or unhide a worksheet

 1 Create a subroutine.

 2 In the body of the subroutine,
type one of the following lines
of code. The first example
hides the worksheet, the
second unhides it:

a. Sheets(1).Visible
= False

b. Sheets(1).Vislble
= True

74

uHide or unhide a
worksheet

Even if you work in a home-based business, your workbooks
might contain data that you don’t want to display to anyone
who might use your computer. You can keep your data
away from casual observers by hiding a worksheet. Hiding a
worksheet doesn’t delete it, so you can still use its contents in
your formulas, but it does make if a little bit more difficult to
find the data unless you know what you’re looking for.

The Visible property indicates whether a worksheet appears
in the body of the workbook or not. You can both read the
Visible property to discover if a worksheet is visible or
hidden and change the property’s value to control whether or not
the worksheet appears on the tab bar. The following two code
snippets are valid uses of the Visible property. The first hides
Sheets(1) and the second displays the sheet named Sheet3.

Sheets(1).Visible = False
Sheets(“Sheet3”).Visible = True

Did you know?

Users can still unhide a worksheet by clicking the View
tab, then unhide on the ribbon and selecting a hidden
sheet from the dialog box that appears.

?

M05_FRYE1975_01_SE_C05.indd 74 04/02/2013 14:13

Rename a worksheet

 1 Create a subroutine.

 2 In the body of the subroutine,
type the following code:

a. Dim strName

b. strName =
InputBox(“New name
for the sheet?”)

c. ActiveSheet.Name =
strName

Managing worksheets 75

uRename a
worksheet

5

When you create an Excel 2010 workbook, it contains three
sheets named Sheet1, Sheet2 and Sheet3. These names
aren’t very descriptive, so the program lets you rename your
worksheets. If you rename a worksheet as part of an automated
process, you might use the month the data represents, the
name of a product or the name of a customer. Doing so makes
it easier to recognise each worksheet’s contents when you look
through the workbook.

You can encode the new name for a worksheet in your VBA
routine, but it’s more likely that you’ll want the flexibility to
name the new worksheet by typing in a value. To allow you
and your colleagues to do that, display an InputBox and use
the control’s output for the sheet’s new name. One such code
snippet might be:

Dim strName
strName = InputBox(“New name for the
sheet?”)
ActiveSheet.Name = strName

Important

You cannot have two worksheets with the same name
within a workbook.

! See also

For more information on
using InputBoxes, see
Chapter 11.

M05_FRYE1975_01_SE_C05.indd 75 04/02/2013 14:13

Protect a worksheet

 1 Create a subroutine.

 2 Either:

a. Enter a line of code such
as Worksheets(1).
Protect

or:

b. Use an InputBox to get
a password and assign
it using the Password
parameter.

76

uProtect a
worksheet

As mentioned earlier in this chapter, hiding a worksheet doesn’t
prevent users from displaying and changing that worksheet
if they know what to do. If you want to require a password to
change a worksheet in this way, you can do so by protecting
the worksheet in this way. As the name implies, protecting a
worksheet is much more secure than not doing so and will
keep your data safe from casual alteration.

The Protect method has many different parameters you
can set, but the most useful one is the Password parameter.
Setting the Password parameter requires users to enter the
pass phrase you define before they can delete the worksheet or
alter its contents. The following code samples show two ways
to protect a sheet. The first snippet doesn’t set a password, the
second one does.

Worksheets(1).Protect

Dim strPassword As String
strPassword = InputBox(“Enter a password
for this sheet.”)
ActiveSheet.Protect
Password:=strPassword

Important

Don’t forget your password!
Excel 2010 uses strong
encryption, so it’s highly
unlikely you would be able
to recover it.

!

Important

Protecting a worksheet without assigning a password
allows anyone to turn off protection by clicking the
Review tab, then Unprotect Sheet on the ribbon.

!

M05_FRYE1975_01_SE_C05.indd 76 04/02/2013 14:13

Print a worksheet

 1 Create a subroutine.

 2 Enter a line of code that
identifies the sheet to be
printed and any parameters
to use.

Managing worksheets 77

uPrint a
worksheet

5

Businesses and organisations of all sizes conduct increasing
amounts of business electronically. Even so, it still helps to
print out a copy of an Excel worksheet every now and then.
In Excel VBA, all you need to do is identify the worksheet you
want to print out and whether or not you want to display a
preview of what will be printed. Displaying a preview gives you
the opportunity to cancel the print job if the command results
don’t reflect what you want.

By default, the PrintOut method prints one copy of the
entire named worksheet. If you want print an area of the page,
such as the cell range A1:G4, you need to define a print area.
To do that, you use the PageSetup object’s PrintArea
method. One such command would be:

ActiveSheet.PageSetup.PrintArea=
“A1:G4”.

The PrintOut method has many useful parameters that
mimic the controls you’ll find on the Print page of Backstage
view. They are:

�� From indicates the number of the page from which to start
printing – if omitted, Excel prints starting with the first page.

�� To gives the page to be printed – if omitted, Excel prints to
the end of the worksheet

�� Copies indicates the number of copies to print – if left
blank, one copy is printed

�� Preview controls whether to display a preview or not. The
Preview parameter may be either True or False and, if
omitted, is assumed to be false

�� ActivePrinter lets you define the active printer on your
system

�� PrintToFile can be True or False – this parameter
indicates whether the worksheet should be printed to a file
or to the active printer and, if to a file, you must provide a
value for the PrToFileName parameter

M05_FRYE1975_01_SE_C05.indd 77 04/02/2013 14:13

78

Print a
worksheet (cont)

�� Collate can be True or False, telling Excel whether or
not to collate multiple copies of the print job

�� PrToFileName is required if the PrintToFile
parameter is True, for the file to which the sheet should be
printed

�� IgnorePrintAreas directs Excel to print the entire
worksheet even if the file has print areas defined for that
sheet.

The following code snippets are valid uses of the PrintOut
method. The first prints the first worksheet in the workbook,
while the second displays a preview.

Worksheets(1).PrintOut

Worksheets(1).PrintOut, Preview:=True

Did you know?

To clear a print area, use the command
ActiveSheet.PageSetup.PrintArea =
False.

?

M05_FRYE1975_01_SE_C05.indd 78 04/02/2013 14:13

Managing ranges 79

Managing ranges

Introduction

In the previous two chapters, you learned how to work with
the larger-scale building blocks of Excel files. First, you learned
how to manipulate workbooks, which are the container for
your Excel data. After that, you learned how to manipulate
worksheets, which are the organisational units within a
workbook. This chapter and the next describe how to work with
the final level of Excel workbook organisation – individual cells
and cell ranges. In this chapter, you will learn how to activate
and select cell ranges, refer to other cells, insert and delete cell
ranges, work with named ranges and resize rows and columns
so they present your data in its best light.

What you’ll do

6
Activate a cell range

Select a cell range

Select the active region

Refer to cells using Offset

Insert a cell range

Delete a cell range

Hide worksheet columns or rows

Create a named range

Resize a selected range

Set the column width

Set the row height

M06_FRYE1975_01_SE_C06.indd 79 04/02/2013 14:13

Activate a cell range

 1 Create a subroutine.

 2 In the body of the subroutine,
use the following code
pattern:

Range.(“cell_
range”).Activate

80

uActivate a cell
range

There are two ways to interact with groups of cells in your
worksheet: activating the cells and selecting them. The
technical distinctions are a bit subtle, but the main difference
is that the Activate method only operates on a single group
of cells, while the Select method lets you work with multiple
groups of cells.

One other reason to use the Activate method as opposed
to the Select method is speed of processing. Selecting
a cell takes a lot longer than activating a cell does, so any
complicated or long-running routines you create should use
the Activate method whenever possible. The difference in
speed is not that noticeable when there are only one or two
actions in your code, but any routine that could make dozens
or hundreds of individual selections will run noticeably slower
than similar code using Activate.

The following code snippet shows how to activate cell A13:

Range(“A13”).Activate

See also

For more information on using the Offset property,
see Refer to cells using Offset, later in this chapter.

Did you know?
If a cell range is highlighted in your worksheet, the
ActiveCell is the cell you first clicked when you
highlighted the cells.

?

M06_FRYE1975_01_SE_C06.indd 80 04/02/2013 14:13

Select a cell range

 1 Create a subroutine.

 2 In the body of the subroutine,
use one of the following code
patterns:

a. Range(“cell”).
Select

b. Range(“range”).
Select

c. Range(“range1,
range2…”).Select

Managing ranges 81

uSelect a cell
range

6

Selecting a cell range lets you perform operations such as
cutting or copying cells. You select a range by identifying the
cells you want to select and calling the Select method. The
example code in the task demonstrates that there are several
ways to identify ranges, including non-contiguous ranges.

If you want to select a non-contiguous range of cells, you
separate the individual cell ranges using a comma. For
example, if you wanted to select cells in the range B4:C6
and in the range F4:G6, you would write the command as
Range(“B4:C6, F4:G6”).Select.

Did you know?
Selecting a cell range is slower than activating a cell
range. If you can use the Activate method instead of
the Select method, your code will run faster.

?

Did you know?
You are not limited to selecting two ranges of cells
when you use the select method. Commands such as
Range(“A1:B3, A6:B9, A9:B12”).Select
work just as well.

?

M06_FRYE1975_01_SE_C06.indd 81 04/02/2013 14:13

Select the active region

 1 Create a subroutine.

 2 In the body of the subroutine,
use the following code:

ActiveCell.
CurrentRegion.
Select

82

uSelect the active
region

One of the most useful selection procedures in Excel 2010 is
also one of the least well known. Suppose you have a block of
40 or 50 cells and you want to select all of them. Rather than
identify the entire cell range, such as A2:G10, you can click
any cell in the range and then select the active region, which is
also called the current region. The active region doesn’t extend
beyond a blank row or column, but single cells at the edge of
the region can affect how Excel identifies the region.

Selecting the active region is exactly what Excel does when you
create an Excel table from a data list or filter or sort worksheet
data. If you use the ActiveCell.CurrentRegion.
Select method to select worksheet cells, it will identify a
rectangular area with limits defined by the first blank row,
column or worksheet edge that it encounters in each direction.

Did you know?
In an Excel worksheet, you can select the current region
by pressing Ctrl+*.

?

Be sure to test your VBA code when you select the
active region – you might be surprised at which cells it
includes.

For your information
i

M06_FRYE1975_01_SE_C06.indd 82 04/02/2013 14:13

Refer to cells using offset

 1 Create a subroutine.

 2 In the body of the subroutine,
use the following code
pattern:

 ActiveCell.
Offset(rows,
columns).Attribute

Managing ranges 83

uRefer to cells
using Offset

6

When you create a formula in an Excel worksheet, you can use
either absolute or relative references. Absolute references do
not change when you copy the formula to another cell. Relative
references, however, do change. If you refer to cells in Excel
VBA using the offset property, you tell the program to affect a
cell in a position relative to the active cell.

The Offset property accepts two arguments:

�� Rows indicates the number of rows to move above or below
the active cell – positive numbers tell Excel to move down,
while negative numbers have Excel move above the active
cell.

�� Columns indicates the number of columns to move to the
left or right of the active cell – positive numbers tell Excel to
move to the right, while negative numbers have Excel move
to the left.

It is the combination of the row and column values that
identifies the new cell your VBA code will affect. For example,
ActiveCell.Offset(1, 2).Select would select the
cell one row below and two columns to the right of the active
cell. If the active cell were B4, the cell referred to would be C6.

Did you know?
If you refer to a cell that
isn’t on the worksheet (such
as a cell two rows above cell
A1), the Visual Basic Editor
displays an error message.

?

M06_FRYE1975_01_SE_C06.indd 83 04/02/2013 14:13

Insert a cell range

 1 Create a subroutine.

 2 Enter code that uses the
following pattern in the body
of the subroutine:

Range(reference).
Insert Shift :=
direction

84

uInsert a cell
range

From time to time, you might want to insert a cell range into
another group of cells. For example, suppose you forgot to
enter a row of data into a list. Rather than cut and paste data
from the list to make a blank row, you can insert a group of
cells to make room for the new data.

You insert a range of cells using the Range object’s
Insert method. The Insert method has the syntax
Range(reference).Insert (direction). The
reference argument denotes a range of cells, which
could be a single cell or group of cells. The first cell in the
reference should be at the top left corner of the range were
you want to insert the new cells. For example, if you forgot to
enter data into cells D3 to F5, you would use the command
Range(D3:F5).Insert.

When you insert the cells, you can also specify an
XlShiftDirection parameter to have Excel shift the cells
down (xlShiftDown) or to the right (xlShiftToRight).
If you don’t specify a shift direction, Excel shifts the affected
cells down.

As an example, suppose you have a worksheet with data in the
range A2:G10. Using the command Range(“B10:G10”).
Insert Shift:=xlShiftDown would insert cells in the
range B10:G10, pushing the values in the existing cells down
one row.

If you insert a range
using VBA, check your
worksheet’s existing
formulas to ensure they still
work as expected.

For your information
i

M06_FRYE1975_01_SE_C06.indd 84 04/02/2013 14:13

Delete a cell range

 1 Create a subroutine.

 2 Enter code that uses the
following pattern in the body
of the subroutine:

Range(reference).
Delete(direction)

Managing ranges 85

uDelete a cell
range

6

Worksheet data changes frequently. On occasion, you will also
have cause to change your worksheet structure by deleting cell
ranges from your worksheet. You can delete cell ranges in Excel
VBA by identifying the range and using the proper command.
That command is the Range object’s Delete method.

The Delete method uses two elements: the range of cells
you want to delete and the direction the remaining cells
should move once the cells are deleted. For example, you
could delete cells in the range D4:F5 using the command
Range(“D4:F5”).Delete.

You can also tell Excel in which direction to shift the
remaining cells – either to the left (xlShiftToLeft) or up
(xlShiftUp). In that case, the syntax of the command looks
like this:

Range(“D4:F5”).Delete(xlShiftUp)

If you leave the Shift parameter blank, Excel shifts the
remaining cells up.

Protecting a worksheet
prevents you from adding or
deleting cells.

For your information
i

Did you know?
If you delete cells using the Range object’s Delete
method, the data in those cells will be lost.

?

M06_FRYE1975_01_SE_C06.indd 85 04/02/2013 14:13

Hide worksheet columns
or rows

 1 Create a subroutine.

 2 Enter code that uses one of
the following patterns in the
body of the subroutine:

a. ActiveSheet.
Columns(number).
Hidden = True

b. ActiveSheet.
Rows(number).
Hidden = True

c. ActiveSheet.
Columns(number).
Hidden = False

d. ActiveSheet.
Rows(number).
Hidden = False

e. ActiveSheet.
Columns.Hidden =
False ‘Unhides
all columns

f. ActiveSheet.Rows.
Hidden = False
‘Unhides all rows

86

uHide worksheet
columns or rows

Worksheet columns and rows often contain a single type of
data. Columns, for example, could contain information about
a product’s price. A row in the same worksheet might contain
a full set of information about a product, such as its name,
price and description. If you want to hide a row or column, you
can do so using the code below. Bear in mind that you must
refer to a column using its number, not letter designation (So
column C is column 3).

You can hide a column or row using its Hidden property.
Setting the property to True hides the column or row, while
setting it to False displays it. The following examples of code
snippets hide various columns and rows in a worksheet:

ActiveSheet.Columns(1).Hidden = True
ActiveSheet.Rows(3).Hidden = True
Sheets(1).Columns(3).Hidden = False
Sheets(2).Rows(8).Hidden = False

Did you know?
A useful mnemonic for determining the number of a
column is to use the initialis EJOTY. Each letter in that
list is five positions after the previous one, so the E is
at position 5, J at position 10, O at position 15, T at
position 20 and Y at position 25.

?

M06_FRYE1975_01_SE_C06.indd 86 04/02/2013 14:13

Managing ranges 87

Hide worksheet
columns or rows
(cont.)

6

If you want to hide or unhide every column or row, use the
Columns or Rows object without specifying a column or row
to hide or unhide. For example, the first snippet below unhides
all columns, while the second unhides all rows:

ActiveSheet.Columns.Hidden = False
ActiveSheet.Rows.Hidden = False

Hiding column D using the command ActiveSheet.
Columns(4).Hidden = True produces the result
shown in the screenshot.

Did you know?
You can always unhide a column or row from the user
interface by selecting the rows or columns on either side
of the hidden elements and clicking the View tab, then
Unhide on the ribbon.

?

Did you know?
You can use the values in hidden rows or columns in
your worksheet formulas and VBA code.

?

M06_FRYE1975_01_SE_C06.indd 87 04/02/2013 14:13

Create a named range

 1 Create a subroutine.

 2 Enter code that uses the
following pattern in the body
of the subroutine:

Range(“reference”).
Name = “name”

88

uCreate a named
range

If you frequently use a specific cell range in your formulas,
you can define that range as a named range. As the name
implies, a named range is a cell range that you refer to using
a label instead of the cell addresses at the top left and bottom
right of the range. For example, if you had January sales in
cells A2:A32, you could refer to that range using the name
JanuarySales.

To create a named range using Excel VBA, you use the Range
object’s Name property. The syntax for the command is
Range (reference).Name = “range name”.
The reference can be any set of cells, but there are a few
restrictions on how you can name ranges in Excel. First, the
name may not contain any spaces and must begin with a letter.
Second, the name of the range may not duplicate a reserved
word, such as the name of a column, the name of a variable
type, such as Currency, or names of existing Excel objects.

The following bit of sample code demonstrates how to create a
named range called January Sales:

Range(“B4:B10”).Name = “JanuarySales”

Did you know?
Named ranges also
appear in the Formula
AutoComplete listings when
you create a formula.

?

Did you know?
The name of the named
range appears in the Name
box, just above the headers
for columns A and B.

?

M06_FRYE1975_01_SE_C06.indd 88 04/02/2013 14:13

Resize a selected range

 1 Create a subroutine.

 2 Enter code that uses the
following pattern in the body
of the subroutine:

Range(“name”).
Resize (RowSize :=
number, ColumnSize
:= number)

Managing ranges 89

uResize a selected
range

6

After you select a range, you might want to make the selection
larger or smaller to fit the data it represents. For example,
you might have a range with shipping rates for packages of
differing weights. If your shipping agent adds or removes
weight categories, you will need to resize the range to reflect
the new information.

Using the Resize method, you can specify the number of
rows and columns in the selected range. You can do that
using the row size and column size arguments. The row size
argument tells you how many rows should be encompassed by
the selection, while the column size argument does the same
for columns. The selection’s definition starts from the existing
top left cell of the range’s definition and extends as far as the
row size and column size parameters indicate. The general
form of this method appears below:

Selection.Resize(rows, columns).Select

For example, you could have selected a small group of cells
within a shipping rates schedule.

The following snippet demonstrates how to resize the selection
so it is five rows by five columns in size:

Selection. Resize (5, 5)

You must use one or both
of the RowSize and
ColumnSize parameters.
If you leave either of them
blank, Excel assumes they
have a value of one.

For your information
i

The RowSize and
ColumnSize parameters
indicate the number of
rows or columns in the new
version of the range, not
the rows or columns to be
added or subtracted.

For your information
i

M06_FRYE1975_01_SE_C06.indd 89 04/02/2013 14:13

Set the column width

 1 Create a subroutine.

 2 Enter the following line of
code to display the column’s
width in points:

MsgBox(“The
column’s width is ”
& Columns(number).
Width)

 3 Enter one of the following
lines of code in the body of
the subroutine to change the
column’s width:

a. Columns(number).
ColumnWidth =
characters

b. Columns(number).
AutoFit

90

uSet the column
width

When you enter data into a worksheet column, Excel lets the
data in a cell extend into empty cells to the right of the active
cell. If the cells to the right of the active cell contain data, Excel
displays those cells’ contents instead. You can use VBA to find
the width of a column or, if desired, change the column’s width
to a specific value. You can also use the AutoFit method to
have Excel size the columns to display the entire contents of
every cell in a column.

If your organisation has design standards you must follow
when designing your worksheets, you can use VBA code
to automate those settings. For example, if the committee
producing your company’s annual report requires that your
worksheets have columns that are a specific width, you can
open an approved version of the worksheet and use some of
the code below to determine the width of a specific column and
use that setting in your commands.

To determine the width of a column, you use the Columns
collection’s Width property. That property is read only,
but you can change the width of a column using its
ColumnWidth property. The following VBA code displays a
column’s width in points:

MsgBox(“The column’s width is ” &
Columns(number).Width)

M06_FRYE1975_01_SE_C06.indd 90 04/02/2013 14:13

Managing ranges 91

Set the column
width (cont.)

6

You can set the column width and characters using the
following code:

Columns(number).ColumnWidth = characters

You can also use the AutoFit method to make a column wide
enough to display the widest entry in its entirety. The section
is equivalent to double-clicking on a column border in the
column header bar. If a column contains data that is too long
to fit in your worksheet columns as currently configured, using
AutoFit is a reliable way to make your data more readable.

To invoke the AutoFit method, use the command:

Columns(number).AutoFit

Did you know?
The ColumnWidth property is measured in
characters, while the Width property is measured in
points (1/72nds of an inch).

?

Important

You refer to a column by number, not letter. For
example, column D is column(4).

!

M06_FRYE1975_01_SE_C06.indd 91 04/02/2013 14:13

Set the row height

 1 Create a subroutine.

 2 Enter the following line of
code in the subroutine to
discover the row’s height:

MsgBox(“The row’s
height is ” &
Rows(number).
Height)

 3 Enter the following line
of code in the body of
the subroutine to set the
row’s height:

Rows(number).
RowHeight = points

92

uSet the row
height

Just as you can measure and change the width of a column, you
can do the same for your worksheet rows. Excel usually changes
each row’s height so it will display the tallest character it contains,
but you might want to make each row a bit taller so there is some
white space between rows of data. When done properly, adding
white space makes your data much easier to read.

Like the Columns collection, the Rows collection stores a
row’s height in the Height property and lets you change the
row’s height by providing a new value for that property. The
VBA code that displays a message box containing the row’s
height is:

MsgBox(“The row’s height is ” &
Rows(number).Height)

and to set the height of row 1 to 24 points, the code is:

Rows(1).RowHeight = 24

Did you know?
Row height is measured in points, each point being
1/72nd of an inch.

?
Did you know?
In Excel 2010, rows are 15
points high by default.

?

M06_FRYE1975_01_SE_C06.indd 92 04/02/2013 14:13

Managing cells 93

Managing cells

Introduction

Every worksheet is divided into cells, which are boxes formed
by the intersection of a row and column. You can manipulate
the data in your worksheet’s cells in many different ways,
such as by cutting or copying data and pasting it elsewhere,
managing cell comments, filling in sets of data automatically
and finding and replacing values. Many of the techniques you
will learn in this chapter should prove useful time and again.

What you’ll do

7
Cut and paste a cell range

Copy and paste a cell range

Copy and paste values in cells
using PasteSpecial

Transpose a column into a row

Create a cell comment

Display a cell’s comment

Hide a cell’s comment

Delete one or all cell comments

Fill a range of cells automatically

Copy a range to multiple sheets

Add a cell border

Find a cell value

Replace a cell value

M07_FRYE1975_01_SE_C07.indd 93 04/02/2013 14:13

Cut and paste a cell range

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Range(“address”).
Cut Destination
:= Range(“topleft
cell”)

94

uCut and paste a
cell range

One of the more common tasks that you perform while using
Excel is cutting data from one group of cells and pasting it
into another. You can perform this task using Excel VBA,
which speeds up the process considerably. As always, for the
task to be repeatable, your worksheets must have predictable
structures so the data you cut and paste will always end up in
the right places.

The Cut method has one required parameter and one optional
parameter. The required parameter is the address of the cell
range to be cut. This range reference must identify a single,
contiguous range of cells. For example, you could enter the
following command to cut the range A2:C6:

Range (“A2:C6”).Cut

You can also add a destination cell, which will serve as the top
left cell in the range where Excel pastes the cells you cut. An
example of a command that will do this would be:

Range(“A2:C6”).Cut Destination :=
Range(“A12”)

Did you know?
If you don’t specify a
Destination cell, this
method cuts the data from
the source cells and saves it
on the Clipboard.

?

M07_FRYE1975_01_SE_C07.indd 94 04/02/2013 14:13

Copy and paste a cell range

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Range(“address”).
Copy Destination
:= Range(“topleft
cell”)

Managing cells 95

uCopy and paste a
cell ranges

7

Just as you can cut and paste cell data using Excel VBA, you
can copy data and paste it into a destination range, too. The
difference between cutting and copying is that cutting data from
a cell range removes the data from the source cells, but copying
it leaves the data in its original place while allowing you to
paste a second copy into another group of cells.

Like the Cut method, the Copy method has one required
parameter and one optional parameter. The required parameter
is the address of the cell range to be copied. This range
reference must identify a single, contiguous range of cells. For
example, you could create the following command to copy the
range A2:C7:

Range (“A2:C7”).Copy

You can also add a destination cell to serve as the top left
cell in the range where Excel pastes the cells you copied. An
example of that command would be:

Range(“A2:C7”).Copy Destination :=
Range(“A12”)

Did you know?
If you don’t use the optional
Destination parameter,
Excel copies the contents
of the cell range to the
Clipboard.

?

Important

This copy and paste
command overwrites data
in the target cells without
alerting you it has done so.

!

M07_FRYE1975_01_SE_C07.indd 95 04/02/2013 14:13

Copy and paste values in cells
using PasteSpecial

 1 Create a subroutine.

 2 In the body of the subroutine,
enter a command that follows
this pattern:

Range(“range”).Copy

Range(“topleft
cell”).PasteSpecial
Paste:=XlPasteType

where:

a. “range” is the range
from which you will copy
the data.

b. “topleftcell” is the
top left cell of the range
into which you will paste
the data.

c. XlPasteType is one of
the variables listed in Table
7.1.

96

uCopy and
paste values
in cells using
PasteSpecial

Copying and pasting data within Excel is a fairly straightforward
process, both through the user interface and when using Excel
VBA. You can have much more control over the paste operation
by using PasteSpecial. For example, you can paste just
the data and ignore the formatting in the original cell, apply the
formatting of the target cell to the pasted data or use one of
several other options to control how your pasted data appears.

Unlike copying and pasting a cell range, copying cell contents
and using PasteSpecial to move them within a worksheet
is a two-step process. The first step is the familiar one of
copying the cells’ contents to the clipboard. The second step
is to use the Range object’s PasteSpecial method to
identify where and how the data should be pasted.

You identify which PasteSpecial operation Excel should
use by selecting the appropriate XlPasteType variable. A
list of the appropriate variables, which mirror the selections
available in the Paste Special dialog box, appears in Table 7.1.

The following two lines of code copy the contents of the cell
range A2:C7 and paste the values, without formatting, into the
range starting with cell A9:

Range(“A2:C7”).Copy
Range(“A9”).PasteSpecial
Paste:=xlPasteValues

Jargon buster

You write XlPasteType with a capital ‘X’ to indicate
that it represents a class of variables. Individual
variables from the class, such as xlPasteFormats,
are written with a lower-case ‘x’.

M07_FRYE1975_01_SE_C07.indd 96 04/02/2013 14:13

Managing cells 97

Copy and
paste values
in cells using
PasteSpecial
(cont)

7

Table 7.1 Available values for the PasteSpecial method’s
XlPasteType variable

Name Description

xlPasteAllExcept

Borders
Pastes all cell contents
except borders

xlPasteAllMerging

ConditionalFormats
Pastes all cell contents and
merges conditional formats

xlPasteAllUsing

SourceTheme
Pastes all cell contents and
applies the Office Theme used
to format the source cells

xlPasteColumnWidths Applies the column widths of
the pasted cells

xlPasteComments Pastes comments from the
source cells

xlPasteFormats Pastes the formatting of the
copied cells

xlPasteFormulas Pastes formulas from the
copied cells

xlPasteFormulasAnd

NumberFormats
Pastes formulas and number
formats of the copied cells

xlPasteValidation Pastes validation rules from
the copied cells

xlPasteValues Pastes values from the
copied cells

xlPasteValuesAnd

NumberFormats
Pastes values and number
formats from the copied cells

Important

You must use the Copy
method to move the target
cell range to the clipboard.
If you use the Cut method,
the PasteSpecial
method will fail.

!

M07_FRYE1975_01_SE_C07.indd 97 05/02/2013 10:44

Transpose a column into a row

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Range(“range”).Copy

Range(“topleft
cell”).PasteSpecial
Transpose := True

where:

a. “range” is the range
from which you will copy
the data.

b. “topleftcell” is the
top left cell of the range
into which you will paste
the data.

98

uTranspose
a column into
a row

One often overlooked aspect of the Microsoft Excel worksheet
is its primarily columnar nature. An Excel 2010 worksheet
contains more than a million rows, but only several thousand
columns. This design choice reflects the nature of business
data. Columns tend to represent categories of data, such as
a price or a model number, while rows tend to represent a
complete set of data about business objects, such as orders or
products. That said, you will occasionally need to transpose a
column of data into a row or vice versa to fit your data into a
target range.

To transpose a column into a row, you first use the Range
object’s Copy method to get the cell’s contents onto the
clipboard and then use the PasteSpecial method with its
Transpose parameter set to True. So, to copy the values
in cells B3:B10 and transpose those values into a row starting
with cell A12, for example, the code would be:

Range(“B3:B10”).Copy

Range(“A12”).PasteSpecial

Transpose:=True

Did you know?

You can also transpose data with multiple columns and
rows. In that case, column 1 becomes row 1, column 2
becomes row 2 and so on.

?
Note that the paste
operation shown in the
figure copied the borders
and formatting from the
original cells. You might
need to reformat the
destination cells.

For your information
i

M07_FRYE1975_01_SE_C07.indd 98 04/02/2013 14:13

Create a cell comment

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Cells(row, column).
ClearComments

Cells(row, column).
Add Comment (“This
is the comment
text.”)

Managing cells 99

uCreate a cell
comment

7

When you design an Excel worksheet, you often have a very
good sense of everything that’s going on within it, even if
you haven’t examined the worksheet for a while. If you have
to share a worksheet with a colleague or revisit a worksheet
after several months, you might need some hints to remind
yourself how everything works. One way that you can add that
information to a worksheet is by creating cell comments.

When you use VBA to add a comment to a cell, you should first
ensure the target cell contains no other comments. You can
do so by invoking the Cells collection’s ClearComments
method. Once an existing cell’s comments have been removed,
calling the AddComment method followed by the text of the
comment adds your annotation to the worksheet.

Within the ClearComments and AddComment method,
you identify the target cell by its row and column. You use
the row number as you would in any other command, but
you must refer to the column by number instead of a letter. For
example, E column is number 5, J is column 10 and so on. The
following code samples show you how to clear comments from
cell B4 and add a comment to the same cell:

Cells(4,2).ClearComments
Cells(4,2).AddComment (“Data changed on
13 July 2012.”)

Did you know?
A cell may contain at most one comment.

?

Important

Comments entered using
VBA do not display an
author’s name, but Excel
assigns the active user’s
name to the comment’s
Author property.

!

M07_FRYE1975_01_SE_C07.indd 99 04/02/2013 14:13

Display a cell’s comment

 1 Create a subroutine and then
do either of the following.

 2 In the body of the subroutine,
type code in the following
pattern to display the
comment in one cell:
Cells(row, column).
Comment.Visible =
True

 3 Alternatively, enter code that
follows this pattern to display
all comments in a worksheet:

Dim c as Comment

For Each c In
ActiveSheet.
Comments

 c.Visible = True

Next

100

uDisplay a cell’s
comment

If you haven’t changed how Excel handles comments, then the
program indicates that a cell contains a comment by displaying
a small red flag at the top right corner of the cell. Those
indicators can be a little difficult to see, especially if you’re
moving quickly, so you might want to display every comment
within a worksheet to make it easier to find them.

To display an individual cell’s comment, you identify the cell and
then set the Visible property of its Comment object to True.
The following line of code shows you how to do that for cell B4:

Cells(4,2).Comment.Visible = True

Setting a cell’s Comment.Visible property to True is
simple enough, but you do have to know that your target
cell actually contains a comment. If you would rather display
all comments within a worksheet, you can do so by moving
through every member of a worksheet’s Comments collection
and setting each member’s Visible property to True. The
following sample code demonstrates the process required to
display every comment in an active worksheet:

Dim c as Comment
For Each c In ActiveSheet.Comments
 c.Visible = True
Next

See also

For more information on using For…Each loops, see
Chapter 12.

Did you know?
You can discover how
many comments a
worksheet contains by
displaying the contents of
the Comments.Count
property.

?

M07_FRYE1975_01_SE_C07.indd 100 04/02/2013 14:13

Hide a cell’s comment

 1 Create a subroutine.

 2 In the body of the subroutine,
type code that follows this
pattern to hide the comment
in one cell:
Cells(row,column).
Comment.Visible =
False

 3 Type code that follows this
pattern to hide all comments
in the worksheet:
Dim c as Comment

For Each c In
ActiveSheet.Comments

 c.Visible = False

Next

Managing cells 101

uHide a cell’s
comment

7

Cell comments make it easy to record information about your
worksheets, both for yourself and for your colleagues. The
disadvantage of cell comments is that they can take up a lot of
room in your display and block your view of the data. If you have
multiple comments open, it can take a while to close them all by
hand. If you would like to close all of your comments at one time,
you can do so from the user interface or by using Excel VBA.

To hide an individual cell’s comment, you identify the cell and
then set the Visible property of its Comment object to
False. The following line of code shows you how to do that
for cell C5:

Cells(5,3).Comment.Visible = False

Setting a cell’s Comment.Visible property to False
is simple enough, but you do have to know that your target
cell actually contains a comment. If you would rather hide
all comments within a worksheet, you can do so by moving
through every member of a worksheet’s Comments collection
and setting each object’s Visible property to False. The
following sample code demonstrates the process required to
display every comment in an active worksheet:

Dim c as Comment
For Each c In ActiveSheet.Comments
 c.Visible = False
Next

Did you know?
Even if you hide a comment, the red ‘flag’ indicator still
appears in the top right corner of its cell.

?

Did you know?
You must refer to a column
by its number, not the
letter that appears in the
worksheet’s column headers.

?

See also

For more information on
For…Each loops, see
Chapter 12.

M07_FRYE1975_01_SE_C07.indd 101 04/02/2013 14:13

Delete one or all cell comments

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern to delete a cell’s
comment:
Cells(row, column).
Comment.Delete

 3 Type code that follows this
pattern to delete all comments
in the worksheet:
Dim c as Comment
For Each c In
ActiveSheet.
Comments
 c.Delete
Next

102

uDelete one or all
cell comments

As you’re developing an Excel worksheet, you might want to
leave notes to yourself about why you took the steps you did to
implement your solution. Cell comments are a wonderful way
to do that. That said, notes to yourself might not be necessary
after you are done editing your worksheet. If you find that you
no longer need a comment, you can delete it.

To delete a comment, you identify the comment’s cell by its
row and column, then use the Comment object’s Delete
method to erase it. The command’s general structure is as
follows:

Cells(row, column).Comment.Delete

To delete the comment in cell B4, you would use the following
line of code:

Cells(4,2).Comment.Delete

Note that you identify the row and column by number, even
though columns are labelled using letters in the body of the
worksheet.

You could delete every comment in a worksheet by moving
through the Comments collection using a For…Each loop
and using the Delete method for each member of the
collection. The code to do that is:

Dim c as Comment
For Each c In ActiveSheet.Comments
 c.Delete

Next

Important

Deleting a comment using
VBA can’t be undone.
Once it’s deleted, it’s gone
for good.

!

See also

For more information on
For…Each loops, see
Chapter 12.

M07_FRYE1975_01_SE_C07.indd 102 04/02/2013 14:13

Fill a range of cells
automatically

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

 3 Range(“source”).
AutoFill
Destination:=Range
(“destination”)

a. If desired, type a
comma followed by
Type:=XlAuto

FillType

b. XlAutoFillType is a
placeholder. You can select
the fill type you want from
the variables shown in
Table 7.2.

Managing cells 103

uFill a range
of cells
automatically

7

Entering data into an Excel worksheet can be a time-
consuming, repetitive task. If the data you want to enter follows
a specific pattern, such as a sequence of months or numbers
that progress at a known rate, then you can fill a series of cells
with those values using Excel’s built-in data entry capabilities.

The AutoFill method has the following syntax:

Range(“source”).AutoFill Destination:=
Range(“destination”), _
Type:=XlAutoFillType

The first range identifies the cells that contain the source of the
data series, while the range identified in the Destination
parameter identifies the range that will contain the series.
The source range must be part of the destination range. For
example, the following code snippet would extend the data
series started in cells A10:A11 to cell A14:

Range(“A10:A11”).AutoFill
Destination:=Range(“A10:A14”)

If cell A10 contained the number 1 and A11 the number 2,
this code would extend the series to include the numbers 3,
4 and 5. Should you prefer another fill type, you can add the
Type parameter to control how Excel extends the series. For
example, the following command would extend the same series
starting with the values 1 and 2 with 4, 8 and 16, due to the
geometric growth trend:

Range(“A10:A11”).AutoFill
Destination:=Range(“A10:A14”),
Type:=xlGrowthTrend

M07_FRYE1975_01_SE_C07.indd 103 04/02/2013 14:13

104

Fill a range
of cells
automatically
(cont.)

You’ll find a full enumeration of the available fill types in Table
7.2.

Table 7.2 Available values for the PasteSpecial method’s
XlAutoFillType parameter

Name Description

xlFill

Copy
Copies values and formats from the selected
cells to the target range, repeating values as
required

xlFill

Days
Extends a series of day names, copying
formats and repeating values as required

xlFill

Default
Fills values using Excel’s built-in methodology
for determining which values to include

xlFill

Formats
Copies formats from the selected cells to the
target range, repeating values as required

xlFill

Months
Extends a series of month names, copying
formats and repeating values as required

xlFill

Series
Extends the values in the selected cells into
the target range as a series (for example, ‘1,
2’ is extended as ‘3, 4, 5’) and copies formats
from the selected cells, repeating as required

xlFill

Values
Copies values from the selected cells to the
target range, repeating values as required

xlFill

Weekdays
Extends a series of work day names, copying
formats and repeating values as required

xlFill

Years
Extends a series of years, copying formats
and repeating values as required

xlGrowth

Trend
Extends a series of values based on
multiplicative relationships (so ‘1, 2’ would
be extended as ‘4, 8, 16’) and formats from
the selected cells are copied and repeated as
required

xlLinear

Trend
Extends a series of values based on additive
relationships (so ‘1, 2’ would be extended as
‘3, 4, 5’) and formats from the selected cells
are copied and repeated as required

Did you know?

From the user interface, you
can enter data in a series
of cells by entering a value,
such as a date, in a cell and
dragging the Fill Handle.
The Fill Handle is a small
black square that appears at
the bottom right corner of
the active cell range.

?

M07_FRYE1975_01_SE_C07.indd 104 04/02/2013 14:13

Copy a range to multiple
sheets

 1 Create a subroutine.

 2 Enter code that follows this
pattern in the body of the
subroutine:

Dim sArray As
Variant
sArray =
Array(“Sheet1”,
“Sheet2”, “Sheet3”,
“Sheet4”)
Sheets(sArray).
FillAcrossSheets
Worksheets(“sheet”).
Range(“copied
range”)

Managing cells 105

uCopy a range to
multiple sheets

7

When you create worksheets within an Excel workbook, it’s
possible that you will want to create multiple copies of the
same type of worksheet. For example, you might want to break
out product sales by category for a series of months. If you
have already entered those category labels into a worksheet,
you can copy those values and paste them into multiple
worksheets in one go.

In Excel VBA, you use the Sheets collection’s
FillAcrossSheets method to identify the source of the
cell contents to be copied and the worksheets you want to
copy those contents to. The FillAcrossSheets method
is part of the Sheets collection, so you identify the sheets to
which you want to copy the data and then provide the source
range. The basic syntax of the FillAcrossSheets method
follows this pattern:

Sheets(sArray).FillAcrossSheets
Worksheets(“sheet name”).Range(“cells to
be copied”)

�� sArray is an array of worksheets to which you want to
copy the cell contents named later in the code.

�� “sheet name” is the name of the worksheet that
contains the values to be copied.

�� copied range is the range of cells to be copied.

An example of a properly constructed FillAcrossSheets
method statement is this:

Dim sArray As Variant
sArray = Array(“Sheet1”, “Sheet2”,
“Sheet3”, “Sheet4”)
Sheets(sArray).FillAcrossSheets
Worksheets(“Sheet1”).Range(“D2:D8”)

Did you know?

The sArray variable lists all of the worksheets you will
use in your command.

?

Important

One common error is to
omit the source worksheet
from the array, but, if
you leave it out, the
FillAcrossSheets
method will fail.

!

M07_FRYE1975_01_SE_C07.indd 105 04/02/2013 14:13

Add a cell border

 1 Create a subroutine.

 2 Enter code that follows this
pattern in the body of the
subroutine:

Range(“address”).
BorderAround

a. Add any of the parameters
LineStyle, Weight,
ColorIndex, Color,
ThemeColor.

 3 For more information on the
values you can assign to the
BorderAround method’s
parameters, see Tables 7.3,
7.4, 7.5 and 7.6.

106

uAdd a cell border Excel worksheets store large amounts of data in a compact,
easy-to-read format. That said, as worksheets get increasingly
crowded, you might want to format some values, or labels, so
they stand out from the remainder of the worksheet’s contents.
One way to do that is to add borders to a cell or cell range. Those
borders make the values in the cell more prominent, which
means they will be noticed more readily within the worksheet.

The command to add a border to a cell range calls the Range
object’s BorderAround method. In its most basic form, the
command is quite straightforward:

Range(“address”).BorderAround

This version of the command adds a simple black
border around the named cell range. You can change the
characteristics of the border by specifying its LineStyle,
Weight (thickness), ColorIndex, Color and
ThemeColor parameters.

�� LineStyle is the overall appearance of the line, such
as continuous, dashed or dotted. A summary of available
settings appears in Table 7.3.

�� Weight is the thickness of the line. The four acceptable
values appear in Table 7.4.

�� ColorIndex indicates whether Excel should use the
automatic colour (usually black) or no colour. The variables
appear in Table 7.5.

�� Color is an RGB value, such as (255, 255, 0) for yellow.

�� ThemeColor is a list of the colours in the current theme. The
acceptable variables for this parameter appear in Table 7.6.

You may only specify a value for one of the parameters
ColorIndex, Color or ThemeColor. For example, you
could create this statement:

Range(“F7”).BorderAround
LineStyle:=xlDot, Weight:=xlThick, _
Color:=RGB(255, 0, 0)

M07_FRYE1975_01_SE_C07.indd 106 04/02/2013 14:13

Managing cells 107

Add a cell border
(cont.)

7
Table 7.3 Values for XlLineStyle parameter in the
BorderAround method

Name Description

xlContinuous Continuous line
xlDash Dashed line
xlDashDot Alternating dashes and dots
xlDashDotDot Dash followed by two dots
xlDot Dotted line
xlDouble Double line
xlLineStyleNone No line
xlSlantDashDot Slanted dashes

Table 7.4 Values for XlBorderWeight parameter in the
BorderAround method

Name Description

xlHairline Hairline (thinnest border)
xlMedium Medium
xlThick Thick (widest border)
xlThin Thin

Table 7.5 Values for XlColorIndex parameter in the
BorderAround method

Name Description
xlColorIndexAutomatic Automatic colour
xlColorIndexNone No colour

Did you know?
If you change a workbook’s
Office Theme, you could
alter the colour of borders
for which you have specified
a ThemeColor parameter
value.

?

M07_FRYE1975_01_SE_C07.indd 107 04/02/2013 14:13

108

Add a cell border
(cont.)

Table 7.6 Values for XlThemeColor parameter in the
BorderAround method

Name Description

xlThemeColorAccent1 Accent1
xlThemeColorAccent2 Accent2
xlThemeColorAccent3 Accent3
xlThemeColorAccent4 Accent4
xlThemeColorAccent5 Accent5
xlThemeColorAccent6 Accent6
xlThemeColorDark1 Dark1
xlThemeColorDark2 Dark2
xlThemeColorFollowed

Hyperlink
Followed
hyperlink

xlThemeColorHyperlink Hyperlink
xlThemeColorLight1 Light1
xlThemeColorLight2 Light2

M07_FRYE1975_01_SE_C07.indd 108 04/02/2013 14:13

Find a cell value

 1 Create a subroutine.

 2 Enter code that follows this
pattern in the body of the
subroutine:
On Error GoTo
NoValue
Range(“range”).
Find(What:=“term”).
Activate
Exit Sub
NoValue:
MsgBox (“The value
doesn’t occur within
the search range.”)

Managing cells 109

uFind a cell value

7

If you run a business, you might want to look up orders from
a particular customer. For example, you might want to find the
first order that a customer ever placed. You can use the built-in
Find method to locate data of your choosing within your
worksheets.

The Find method looks for the first occurrence of a target
value in a specified cell range and activates the cell that
contains the value. The Find method’s syntax is:

Range(“range”).Find(What:=“term”).
Activate

Activating the cell that contains the value you wanted to find
indicates the value’s presence within the body of the worksheet.
You can then assign that cell’s address to a variable using a
command such as strFound = ActiveCell.Address.

If the Find method doesn’t locate an instance of the What
parameter’s term, the method returns an error. You need to
add error-handling code to your routine so your program
doesn’t halt. An example is:

On Error GoTo NoValue
Range(“A1:F7”).Find(What:=“Overnight”).
Activate
Exit Sub
NoValue:
MsgBox (“The value doesn’t occur within
the search range.”)

M07_FRYE1975_01_SE_C07.indd 109 04/02/2013 14:13

110

Find a cell value
(cont.)

The first line tells Excel what to do if it encounters an error. Next,
if the Find method does locate a cell with the target value, it
activates that cell and, on the next line, exits the subroutine.

The next line is a label, NoValue, which provides a target for
the On Error statement at the beginning of the code sample.
Finally, the MsgBox line displays a box indicating that the
value didn’t occur within the search range. That line should be
followed by an End Sub statement indicating the end of the
subroutine.

See also

For more information on handling errors in your VBA
code, see Chapter 13.

Did you know?

You can use a variable’s value as the target for the
What parameter. If you do, you don’t need to enclose
the value in double quotes.

?

M07_FRYE1975_01_SE_C07.indd 110 04/02/2013 14:13

Replace a cell value

 1 Create a subroutine.

 2 Enter code that follows this
pattern in the body of the
subroutine:
Range(“range”).
ReplaceWhat:=
“term1”,
Replacement:=
“term2”

Managing cells 111

uReplace a cell
value

7

As the old saying goes, the only constant in life is change.
If you want to replace a value within a worksheet, perhaps
because a client moved or you have renamed product, you can
do so using Excel’s Range object’s Replace method. The
Replace method is the equivalent of the Replace All
command you access via the user interface.

The Replace method requires three bits of information: the
range to search within, the term to be replaced and the term
with which to replace it. The basic syntax looks like this:

Range(“range”).Replace What:=“term1”,
Replacement:=“term2”

An example of valid code that calls the Replace method
would be:

Range(“A1:F7”).Replace
What:=“Overnight”, Replacement:=“1 Day”

Did you know?
The values for the What
and Replacement
parameters should be
enclosed in double quotes,
unless the values are
passed to the method using
variables.

?

Did you know?

Unlike the Find method, if
the value in the Replace
method’s What parameter
doesn’t occur within the
search range, the method
does not generate an error.

?

M07_FRYE1975_01_SE_C07.indd 111 04/02/2013 14:13

M07_FRYE1975_01_SE_C07.indd 112 04/02/2013 14:13

Formatting worksheets and worksheet elements 113

Formatting worksheets
and worksheet elements

Introduction

Individuals who create Microsoft Excel worksheets often spend
a lot of time working on the logic of the worksheet, including
formulas and summaries, so they can get the most out of
their data. What they often overlook, unfortunately, is applying
formatting that makes the data easier to read. In this chapter,
you will learn how to apply formatting to your worksheets and
individual cells using the facilities built into Excel VBA.

What you’ll do

8
Apply bold, italic and underline
formatting

Change a cell’s font

Change a cell’s font size

Change a cell’s font colour

Change a cell’s fill colour

Change a cell’s alignment

Apply a cell style

Apply a number format to a cell

Clear a cell’s format

M08_FRYE1975_01_SE_C08.indd 113 04/02/2013 14:13

Apply bold, italic and
underline formatting

 1 Create a subroutine.

 2 In the body of the subroutine,
type code that follows this
pattern:

Range(“address”).
Select

 3 Use any of the following
commands to apply the
desired formatting:

Selection.Font.Bold
= True

Selection.Font.
Italic = True

Selection.Font.
Underline =
XlUnderlineStyle

114

uApply bold, italic
and underline
formatting

When you create a worksheet, you might want some cells’
contents to stand out from the surrounding values. One of
the most common ways to do that is to add formatting. You
can make a cell’s contents stand out by applying bold, italic or
underline formatting.

The first step in applying any of these formats is to select the
cell or cells using the Range object’s Select method. This
line of code shows how to select the range A3:B3:

Range(“A3:B3”).Select

After you select the cell range, you can apply formatting. To
make a cell’s contents bold, you set the selection’s Bold
property to True, as in the following example:

Selection.Font.Bold = True

Similarly, you set the Italic property to True to italicise
the selection’s contents:

Selection.Font.Italic = True

The Underline property operates differently than the Bold
and Italic properties. Rather than set the Underline
property’s value to True, you need to assign it a value from
the XlUnderlineStyle constant set. The four allowable
underline styles are xlUnderlineStyleSingle,
xlUnderlineStyleDouble,
xlUnderlineStyleDoubleAccounting and
xlUnderlineStyleNone, which turns underlining off.

The following line of code applies the standard single underline
format to a selection:

Selection.Font.Underline =
xlUnderlineStyleSingle

M08_FRYE1975_01_SE_C08.indd 114 04/02/2013 14:13

Formatting worksheets and worksheet elements 115

8

Apply bold, italic
and underline
formatting (cont.)

As an example, suppose your worksheet contains data
summarising orders.

If you apply the code noted above, the same worksheet would
be formatted with bold, italic and a single underline applied to
cells A3:B3.

Did you know?
Setting either the Bold or Italic property to False
turns off bold and italic text for the selected range.

?

M08_FRYE1975_01_SE_C08.indd 115 04/02/2013 14:13

Change a cell’s font

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Range(“range”).
Select

Selection.Font.Name
= “font”

116

uChange a cell’s
font

The team that designed Microsoft Excel put a great deal of
thought into choosing the font that best presents data in your
worksheets. While that font makes your data easy to read, large
or crowded worksheets can be difficult to comprehend because
all of the text tends to look the same after a few moments.
You can make portions of your worksheet, such as headers
or totals, stand out by changing the font used to display those
cells’ contents.

To change a cell’s font using Excel VBA, you first select
the cell range and then change the value assigned to the
Selection.Font.Name property. The procedure uses two
lines of code that follow this pattern:

Range(“range”).Select
Selection.Font.Name = “font”

For example, suppose you are presented with an order
summary worksheet with a header in cell A1.

If you wanted to change the font of cell A1 to Cambria, you
would use the following code:

Range(“A1”).Select
Selection.Font.Name = “Cambria”

M08_FRYE1975_01_SE_C08.indd 116 04/02/2013 14:13

Formatting worksheets and worksheet elements 117

8

Change a cell’s
font (cont.)

Applying that code selects cell A1 and changes the font used to
display its contents.

Important

The name of the font must be enclosed in double
quotes.

!

Did you know?
If you misspell the name of the font you want to apply,
Excel VBA will not display an error even if there is no
font of that name installed on your computer.

?

M08_FRYE1975_01_SE_C08.indd 117 04/02/2013 14:13

Change a cell’s font size

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Range(“range”).
Select

Selection.Font.Size
= number

118

uChange a cell’s
font size

The usual font size for an Excel worksheet balances your ability
to read the data on the screen with fitting as much information
as possible into a worksheet. Your worksheet will most likely
contain some values, such as headers, subtotals or grand totals
that you want to stand out from the surrounding text. If that’s the
case, you can display that information in a larger font size. You
can also display notes or supplementary text in smaller text so as
not to pull focus away from the worksheet’s principle contents.

To change the size of the text in a cell range, you first select
the range using the Range object’s Select method. The
following line of code demonstrates the process for cell A1:

Range(“A1”).Select

After you have selected the target range, you can change the
Font object’s Size property to display the cell’s contents at
the desired size. Font sizes are measured in points – there are
72 points per inch. For example, changing a range’s font size
to 24 points would make the text 1–

3
 of an inch in height. The

following code does just that:

Selection.Font.Size = 24

Did you know?
The default font size in
Excel 2010 is 11 points.

?

M08_FRYE1975_01_SE_C08.indd 118 04/02/2013 14:13

Change a cell’s font colour

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Range(“range”).
Select

Selection.Font.Color
= RGB(red, green,
blue)

Formatting worksheets and worksheet elements 119

8

uChange a cell’s
font colour

Excel worksheets are terrific for organising and summarising
data. The basic worksheet, however, is a rather bland mix
of black, white and shades of grey. You can make your
worksheets more visually interesting and make some values
stand out from those around them by displaying a cell’s
contents in a colour other than black.

Changing a cell’s font colour requires two lines of code. In the
first step, you must select the cell range you want to affect. For
example, you might have a worksheet with a header in cell A1.

To select cell A1, you would use the following line of code:

Range(“A1”).Select

After you have selected the range, you can use the Font
object’s Color property to assign a colour to the cell’s text.
The Color property defines colours using a mix of red, blue
and green light, hence assigning it an RGB value. Each colour
has an intensity from 0 to 255 and how they mix determines
the final colour. For example, RGB(0, 255, 0) is pure
green, while RGB(255, 0, 0) is pure red. Table 8.1 lists
the RGB combinations for common colours.

M08_FRYE1975_01_SE_C08.indd 119 04/02/2013 14:13

120

Change a cell’s
font colour
(cont.)

Table 8.1 Sample RGB values

Colour Red value Green value Blue value

Black 0 0 0

Blue 0 0 255

Green 0 255 0

Cyan 0 255 255

Red 255 0 0

Magenta 255 0 255

Yellow 255 255 0

White 255 255 255

If you wanted to display the contents of cell A1 in blue, you
would use the following code:

Selection.Font.Color = RGB(0, 0, 255)

Did you know?
You can find the RGB value for a specific colour by
starting to record a macro, changing a cell’s font to
the colour and examining the code to see what value
was recorded.

?

M08_FRYE1975_01_SE_C08.indd 120 04/02/2013 14:13

Change a cell’s fill colour

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Range(“range”).
Select

Selection.Interior.
Color = RGB(red,
green, blue)

Formatting worksheets and worksheet elements 121

8

uChange a cell’s
fill colour

When you read data on the computer screen, the easiest colour
scheme on the eyes is black text on a white or slightly off-white
background. If you’ve ever visited a website with white text on
a black background, you’ll know how difficult it can be to read.
Changing a cell’s background – that is, its fill colour – makes
that cell’s contents stand out from the information around it.

As an example, your worksheet might contain a sample of
orders placed on a given day. If your summary is divided into
two columns, each column could have a header indicating the
data contained within it.

To change the fill colour of the column header that appears in
cells A3:B3, you could use the following code:

Range(“A3:B3”).Select

After you have selected the range, you can use the Interior
object’s Color property to assign the cells a background
colour. The Color property defines colours using a mix of
red, blue and green light. As noted in the previous section,
each colour has an intensity from 0 to 255 and how they mix
determines the final colour. For example, RGB(0, 255,
0) is pure green, while RGB(255, 0, 0) is pure red.
Table 8.1, presented in the previous section, lists the RGB
combinations for common colours.

M08_FRYE1975_01_SE_C08.indd 121 04/02/2013 14:13

122

Change a cell’s
fill colour (cont.)

To fill the cells with a yellow background, you would use the
command:

Selection.Font.Color = RGB(255, 255, 0)

See also

For RGB values of common colours, see Table 8.1 in the
previous section.

A little colour goes a long way in a worksheet. Use it as a
highlight, not a main feature.

For your information
i

M08_FRYE1975_01_SE_C08.indd 122 04/02/2013 14:13

Change a cell’s alignment

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Range(“range”).
Select

Selection.
HorizontalAlignment
= alignment

where alignment is
one of the following
variables: xlCenter,
xlDistributed,
xlJustify, xlLeft
and xlRight.

Formatting worksheets and worksheet elements 123

8

uChange a cell’s
alignment

When you enter data into an Excel worksheet, the program
selects an alignment for your data. Text tends to start at the left
and run to the right, so we say that data is left-aligned. Centred
alignment works best for labels, while the right alignment is
perfect for numbers. If you want to change a cell’s alignment,
you can use Excel VBA to do so.

As an example, you might have a worksheet that contains sales
data for a single business day. The headers in cells A3:B3,
which you could format using a different-coloured background
and other formatting changes, will start with the same
horizontal alignment as the rest of the text in your worksheet.

To change the alignment of cells A3:B3, you first select the
cells using VBA code:

Select(“A3:B3”).Select

With the selection in place, you can change the value of the
Selection object’s HorizontalAlignment property
to reflect the desired alignment. You can assign one of five
constants to the HorizontalAlignment property –
xlCenter, xlDistributed, xlJustify, xlLeft
and xlRight.

M08_FRYE1975_01_SE_C08.indd 123 04/02/2013 14:13

124

Change a cell’s
alignment (cont.)

The code to apply centred formatting to the cell would be:

Selection.HorizontalAlignment =
xlCenter.

Did you know?
You can also set the Selection.
VerticalAlignment property’s value.
Acceptable variables are xlBottom, xlCenter,
xlDistributed, xlJustify and xlTop.

?

M08_FRYE1975_01_SE_C08.indd 124 04/02/2013 14:13

Apply a cell style

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Range(“range”).
Select

Selection.Style =
“stylename”

Formatting worksheets and worksheet elements 125

8

uApply a cell styleFormatting worksheet cells can take a lot of time when you
have to remember the font, colours, size, alignment and other
values applied to the cell. You can save all of those settings
as a cell style and then apply the style with a few clicks on the
user interface or a single command in Excel VBA.

You can display a list of styles available to you in a workbook by
displaying the Home tab of the ribbon and then clicking the Styles
gallery’s More button. Doing so displays the full Styles gallery.

In most, but not all, cases, the style’s name is the same as the
label that appears in the gallery. You can find a style’s proper
name by hovering the mouse pointer over the style and reading
the tool tip that appears.

Applying styles in VBA is a two-step process. The first step
is to select the cell range you want to affect. As an example,
suppose your worksheet has a heading in cell A1.

Important

Cell styles could change if you apply an Office Theme
other than the one active when you applied the style.

!

M08_FRYE1975_01_SE_C08.indd 125 04/02/2013 14:13

126

Apply a cell style
(cont.)

You can select A1 using this code:

Range(“A1”).Select

You can then apply a style to the selection by assigning the
style’s name to the Selection object’s Style property.
For example, the statement to format the selection using the
Title style would look like this:

Selection.Style = “Title”

M08_FRYE1975_01_SE_C08.indd 126 04/02/2013 14:13

Apply a number format to a cell

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Range(“range”).
Select

Selection.Style =
“stylename”

where stylename is an
existing style, the most
commonly used ones being
Number, Currency, Comma
and Percent.

Formatting worksheets and worksheet elements 127

8

uApply a number
format
to a cell

Entering numbers into your worksheet cells lets you view and
summarise your data, but numerical data can be hard to read
unless it’s formatted properly. You can apply several built-in
number formats using the Selection object’s Style
property.

To apply a number format to a cell range, you must first
select the range using the Range object’s Select method.
For example, your worksheet might contain a list of VAT
percentages in the cell range C4:C7.

To select that cell range, you would use the following line of
code:

Range(“C4:C7”).Select

With the selection in place, you can assign the name of the
desired style to the Selection object’s Style property. If you
wanted to apply the Percent style, that command would be:

Selection.Style = “Percent”

Some number formats
have complicated
definitions instead of a
simple name. if you’re not
using one of the named
formats shown above, you
should consider recording
a macro of you applying a
number format and using
the code Excel generates to
change your cells.

For your information
i

M08_FRYE1975_01_SE_C08.indd 127 04/02/2013 14:13

Clear a cell’s format

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Range(“range”).
Select

Selection.
ClearFormats

128

uClear a cell’s
format

At times, the best format for a cell is the default format – one
without embellishments, such as bold or italic type – and
with the cell’s contents presented in black text on a white
background. If you have applied other formatting to a cell, you
can remove it all with a straightforward VBA command.

For example, suppose your worksheet has a series of column
labels with several types of formatting applied.

If you want to remove the formatting piece by piece, you would
need to determine which formats you applied and then use the
appropriate code to get rid of it. Instead, you can remove all
formatting from a cell range by selecting the range and then
using the ClearFormats method.

The VBA command to select a range relies on the Range
object’s Select method. To select cells A3:C3, you would use
the following code:

Range(“A3:C3”).Select

With that selection in place, you need only invoke the
Selection object’s ClearFormats method to remove all
formatting:

Selection.ClearFormats

M08_FRYE1975_01_SE_C08.indd 128 04/02/2013 14:13

Formatting worksheets and worksheet elements 129

8

Clear a cell’s
format (cont.)

If you want to apply specific formatting to a cell, such as bold
and italic text (with no other changes), you should use the
ClearFormats method first to remove any other formatting
present in the cell.

Did you know?
Clearing a cell’s format leaves the data intact, but will
probably change how it’s presented. This consideration
is particularly true for dates.

?

M08_FRYE1975_01_SE_C08.indd 129 04/02/2013 14:13

M08_FRYE1975_01_SE_C08.indd 130 04/02/2013 14:13

Sorting and filtering data 131

Sorting and filtering data

Introduction

At times it can seem that Excel’s ability to handle large data
collections is actually a bad thing. Even small home-based
businesses can generate large amounts of data, making it
difficult to process your worksheets quickly. One of the best
ways to focus on the data that is most important to you at the
moment is to sort and filter the data within a worksheet. The
Sorting feature displays all of your data, arranging it in a more
meaningful order, while filters temporarily limit what data is
displayed in your worksheet.

If you want to create a complex sort or filter, such as one that
uses multiple values and affects multiple columns, you should
strongly consider recording a macro of you creating the filter
via the user interface. Be sure that the code you record affects
the data list you want the macro to work on or else change the
macro so that it does. Doing so will save you a lot of time.

Note: Some of the lines of code in this chapter are too long
for the page to accommodate. In Excel VBA, you can type a
space and then an underscore character (_) to indicate that the
current command continues on the next line. For example:

ActiveWorkbook.Worksheets(“Sheet1”).
Sort.SortFields.Add _
 Key:=Range(“B4”), Order:=xlDescending

What you’ll do

9
Sort cell data using a single
criterion

Create a multilevel sort

Sort using a customised list of
values

Turn on filter arrows using VBA
code

Apply a filter using a single
criterion

Remove a filter

Display a list of unique values

Filter data to display two values
in a column

Filter data to display three or
more values in a column

Filter data based on values in
multiple columns

M09_FRYE1975_01_SE_C09.indd 131 04/02/2013 14:13

132

uSort cell data
using a single
criterion

The data you enter into your Excel worksheets will most likely
have an inherent order. For home-based businesses, the most
common orders are based on time. When you capture sales
for a month, a week or a day, the data you enter will reflect
that structure. If you want to arrange your worksheet based on
some other information you collect, you can do so by sorting
your data.

To sort your data using VBA, it should be arranged as a list
with column headers and no blank rows in the body of the
list. That is because a blank row indicates the end of a list,
so any data below the blank row would not be included in the
sort operation.

Sorting data using VBA is a multistep process. The first step is
to activate a cell within the data list using the Range object’s
Activate method, replacing the range with the address of a
cell in the data list:

Range(“range”).Activate

M09_FRYE1975_01_SE_C09.indd 132 04/02/2013 14:13

Sorting and filtering data 133

Sort cell data
using a single
criterion (cont.)

9

Next, it is usually a good idea to clear any other sort operations
that have been applied to the data list. Even though most
single-criterion sort operations will affect your data in a
predictable way, you can do this by using the following
command, replacing sheet_name with the actual name of
the worksheet:

ActiveWorkbook.Worksheets(“sheet_name”).
Sort.SortFields.Clear

After clearing all existing sorting operations from a range, you
can initiate a new sort. For example, you can sort the data in a
range in descending order, based on the values in a key cell’s
column. The general syntax for that statement would be:

ActiveWorkbook.Worksheets(“sheet_name”).
Sort.SortFields.Add _
 Key:=Range(“cell”), Order:=XlSortOrder

The XlSortOrder constant can be either xlDescending,
to sort in descending order, or xlAscending, to sort in
ascending order.

With those commands in place, you can initiate the sort
operation. The standard pattern for the next sequence uses the
With…End With construction, which lets you streamline
your references to multiple members of an object. The code’s
pattern is as follows:

With ActiveWorkbook.Worksheets(“sheet_
name”).Sort
 .SetRange Range(“range”)
 .Header = xlNo or xlYes
 .Apply
End With

As a concrete example, suppose you want to sort data in
the range A4:B34 based on the values in column B, with the
column B values sorted in descending order. To do so, you
would use the following code:

See also

For more information on
the With…End With
construction, see Chapter 12.

M09_FRYE1975_01_SE_C09.indd 133 04/02/2013 14:13

134

Sort cell data
using a single
criterion (cont.)

Range(“B4”).Activate
ActiveWorkbook.Worksheets(“Sheet1”).
Sort.SortFields.Clear
ActiveWorkbook.Worksheets(“Sheet1”).
Sort.SortFields.Add _
 Key:=Range(“B4”), Order:=xlDescending
With ActiveWorkbook.Worksheets
(“Sheet1”).Sort
 .SetRange Range(“A4:B34”)
 .Header = xlNo
 .Apply
End With

After you have run this routine, your data will have changed
order, to reflect its new, sorted order.

M09_FRYE1975_01_SE_C09.indd 134 04/02/2013 14:13

Sort cell data using a single criterion

 1 Create a subroutine.

 2 In the body of the subroutine, type code that follows this
pattern:

Range(“B4”).Activate

ActiveWorkbook.Worksheets(“Sheet1”).
Sort.SortFields.Clear

ActiveWorkbook.Worksheets(“Sheet1”).
Sort.SortFields.Add Key:=Range(“B4”), _

 Order:=xlDescending

With ActiveWorkbook.
Worksheets(“Sheet1”).Sort

 .SetRange Range(“A4:B34”)

 .Header = xlNo

 .Apply

End With

Sorting and filtering data 135

Sort cell data
using a single
criterion (cont.)

9

Did you know?
You can streamline creating a sort operation by
recording a macro of you sorting data and then
modifying the VBA code to meet your needs.

?

M09_FRYE1975_01_SE_C09.indd 135 04/02/2013 14:13

136

uCreate a
multilevel sort

Rearranging your data can help you discover important
information about your business. If you offer several types of
products for sale, you might be interested in finding out which
months have the best sales for each of those products. To
discover that information, you could create a multilevel sort
that organises your data first by product and then by month.

Implementing a multilevel sort in Excel VBA is exactly the
same as implementing a single-level sort, with the addition of a
second statement identifying a sort field, the range to which it
applies and the order into which Excel should sort the range’s
values. The code to add a sort field follows this pattern:

ActiveWorkbook.Worksheets(“sheet_name”).
Sort.SortFields.Add _
Key:=Range(“range”), Order:=XlSortOrder

The order in which the sort commands appear in your code is
the order in which the sort criteria will be applied to your data.
For example, you could sort sales data by month and then by
value or by value and then by month.

The overall pattern for sorting a data list based on values in two
columns is to clear any existing sorts, define the two sort key
fields, then implement the sort using the With…End With
construction to simplify your code. The first line of code clears
all existing sort operations from a worksheet:

ActiveWorkbook.Worksheets(“sheet_name”).
Sort.SortFields.Clear

Next, you define sort operations for each of the columns you
want to sort:

ActiveWorkbook.Worksheets(“sheet_name”)
.Sort.SortFields.Add _
 Key:=Range(“col_range1”),
Order:=xlAscending

ActiveWorkbook.Worksheets(“sheet_name”)
.Sort.SortFields.Add _
 Key:=Range(“col_range2”),
Order:=xlDescending

M09_FRYE1975_01_SE_C09.indd 136 04/02/2013 14:13

Sorting and filtering data 137

Create a
multilevel sort
(cont.)

9

Finally, you use the With…End With construction to apply
the sort operation:

With ActiveWorkbook.Worksheets(“sheet_
name”).Sort
 .SetRange Range(“range”)
 .Header = xlYes or xlNo
 .Apply
End With

As an example, you might have a set of data in cells A3:C12,
including column headers.

To sort the data by product category and then by sales, you
could use the following VBA code:

ActiveWorkbook.Worksheets(“Sheet2”).
Sort.SortFields.Clear
ActiveWorkbook.Worksheets(“Sheet2”).
Sort.SortFields.Add _
 Key:=Range(“B4:B12”),
Order:=xlAscending

ActiveWorkbook.Worksheets(“Sheet2”).
Sort.SortFields.Add _
 Key:=Range(“C4:C12”),
Order:=xlDescending

M09_FRYE1975_01_SE_C09.indd 137 04/02/2013 14:13

138

Create a
multilevel sort
(cont.)

With ActiveWorkbook.
Worksheets(“Sheet2”).Sort
 .SetRange Range(“A3:C12”)
 .Header = xlYes
 .Apply
End With

After you run the code, your data will be in the following order.

Create a multilevel sort

 1 Create a subroutine.

 2 In the body of the subroutine, enter code that follows this
pattern:
ActiveWorkbook.Worksheets
(“sheet_name”).Sort.SortFields.Clear

Next, you define sort operations for each of the columns you
want to sort.
ActiveWorkbook.Worksheets(“sheet_name”)
.Sort.SortFields.Add Key:=Range(“col_
range1”), _

 Order:=xlAscending

ActiveWorkbook.Worksheets(“sheet_name”)
.Sort.SortFields.Add Key:=Range(“col_
range2”), _

 Order:=xlDescending

M09_FRYE1975_01_SE_C09.indd 138 04/02/2013 14:13

Sorting and filtering data 139

Create a
multilevel sort
(cont.)

9

Finally, you use the With…End With construction to
apply the sort operation:
With ActiveWorkbook.Worksheets(“sheet_
name”).Sort

 .SetRange Range(“range”)

 .Header = xlYes or xlNo

 .Apply

End With

The Sort method affects the unbroken block of cells
that includes the ranges named in the SortFields.
Add lines of code.

For your information
i

M09_FRYE1975_01_SE_C09.indd 139 04/02/2013 14:13

140

uSort using a
customised list
of values

Microsoft Excel recognises several ways to sort your data.
It can sort by number, alphabetical order, as well as a
customised list of values that you define. Customised lists give
you a great deal of control over how you present your data
within your Excel worksheets, which makes them very useful
when you analyse your data. The program includes a number
of built-in custom lists, such as month and weekday names,
but you can define your own custom lists as part of the VBA
sort code.

As an example, suppose you have a data set summarising
category sales by month, with the original data list sorted by
month and then by category. Note that the categories appear in
alphabetical order.

Sorting worksheet data using VBA is a multistep process. Your
first step should be to clear all sort fields that have been applied
to your worksheet. Doing so ensures your data will be sorted
consistently, starting from the data’s original order. You use the
following code to clear all sort operations from a worksheet:

ActiveWorkbook.Worksheets(“sheet_name”).
Sort.SortFields.Clear

M09_FRYE1975_01_SE_C09.indd 140 04/02/2013 14:13

Sorting and filtering data 141

Sort using a
customised list
of values (cont.)

9

Next, you can define a sort order for a column of data. You can
create a customised list to sort values in a specific column. For
example, you could sort the list by category based on the order
‘Gloves, Scarves, Boxes’. To define that list as part of a sort
operation, you would use the following code:

ActiveWorkbook.Worksheets(“sheet_name”).
Sort.SortFields.Add _
 Key:=Range(“col_range”),
Order:=XlSortOrder, _

 CustomOrder:=“item1, item2, item3…”

The previous statement requires that you enter the name of
the worksheet, the column of cells that contain the values to
be sorted, whether to sort the values in xlAscending or
xlDescending order and the list of customised values by
which to sort.

After you have defined the sort operation, you apply it using the
Sort object’s methods. As per usual, you can streamline your
code by using the With…End With code construction.

With ActiveWorkbook.Worksheets(“sheet_
name”).Sort
 .SetRange Range(“range”)
 .Header = xlYes or xlNo
 .Apply
End With

In the previous code, you replace sheet_name with the
name of the worksheet that contains the data to be sorted,
range with the full range of data to be affected, use xlYes
or xlNo to indicate whether or not the list has column headers
and call the Apply method to invoke the operation.

The full code to sort data on Sheet2, in the cell range A3:C12,
based on values in B4:B12, would be:

Range(“B4”).Select
ActiveWorkbook.Worksheets(“Sheet2”).
Sort.SortFields.Clear
ActiveWorkbook.Worksheets(“Sheet2”).

M09_FRYE1975_01_SE_C09.indd 141 04/02/2013 14:13

142

Sort using a
customised list
of values (cont.)

Sort.SortFields.Add _
 Key:=Range(“B4:B12”),
Order:=xlAscending, _

 CustomOrder:=“Gloves, Scarves, Boxes”
With ActiveWorkbook.Worksheets
(“Sheet2”).Sort
 .SetRange Range(“A3:C12”)
 .Header = xlYes
 .Apply
End With

As with other sorting operations, you might find it easier to
record a macro of you creating the sort and replay it when
required. If you use an existing customised list in your sort,
Excel records the values in the macro code.

M09_FRYE1975_01_SE_C09.indd 142 04/02/2013 14:13

Sorting and filtering data 143

Sort using a
customised list
of values (cont.)

9

Sort using a customised list of values

 1 Create a subroutine.

 2 In the body of the subroutine, enter code that follows this
pattern:

Range(“cell”).Select

ActiveWorkbook.Worksheets(“sheet_
name”).Sort.SortFields.Clear

ActiveWorkbook.Worksheets(“sheet_name”)
.Sort.SortFields.Add Key:=Range(“col_
range”), _

 Order:=XlSortOrder, CustomOrder:=
“item1, item2, item3…”

With ActiveWorkbook.Worksheets(“sheet_
name”).Sort

 .SetRange Range(“full_range”)

 .Header = xlYes or xlNo

 .Apply

End With

The list items in the CustomOrder parameter are
case-sensitive. If your customised sorting order doesn’t
work properly, ensure the terms are properly capitalised.

For your information
i

Did you know?
If the column you sort using a custom values contains
entries that aren’t in the list, those rows will appear at
the bottom of the sorted list.

?

M09_FRYE1975_01_SE_C09.indd 143 04/02/2013 14:13

Turn on filter arrows using
VBA code

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Range(“cell”).
Activate

Selection.
AutoFilter

144

uTurn on filter
arrows using
VBA code

One of Excel’s greatest strengths is its ability to handle large
amounts of data quickly and efficiently. Of course, that is also
a bit of a disadvantage. Worksheets that contain large data
collections can be hard to analyse. Fortunately, you can limit
the data that appears in your worksheet by applying filters. The
first step is to turn on filter arrows.

To turn on filter arrows for a data list, you activate any
cell in the list and then use the Selection object’s
AutoFilter method to display the filter arrows. The code
pattern looks like this:

Range(“cell”).Activate
Selection.AutoFilter

To give a specific example, let’s assume your data list
summarises monthly sales by category.

If you know cell B4 will always be in the data list you want
to filter, you could use the following code to display the filter
arrows:

Range(“B4”).Activate
Selection.AutoFilter

M09_FRYE1975_01_SE_C09.indd 144 04/02/2013 14:13

Sorting and filtering data 145

Turn on filter
arrows using
VBA code (cont.)

9

When run, the filter arrows then appear at the top of the data
list that includes cell B4.

If filter arrows have already been applied to a data range,
running the Selection.AutoFilter code statement will
turn them off.

Did you know?
Excel applies filter arrows to the top row of the current
region, so it’s best to have column headers atop your
lists.

?

M09_FRYE1975_01_SE_C09.indd 145 04/02/2013 14:13

Apply a filter using as single
criterion

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

ActiveSheet.Range
(“A3:C12”).
AutoFilter
Field:=2,
Criteria1:=“Gloves”

146

uApply a filter
using a single
criterion

Excel filters limit the data that appears in a worksheet. In VBA,
the process of applying a filter consists of two steps: turning
on filter arrows if they are off and then identifying the range,
field and criterion used to limit the data displayed in your
worksheet.

To apply a filter to a range, you call the Range object’s
AutoFilter method. The AutoFilter method has two
parameters:

�� Field – the number of the column by which you want to
filter the list.

�� Criteria1 – the term that must appear in the target field
for the row to appear in the filtered list.

The syntax of an AutoFilter method follows this pattern:

ActiveSheet.Range(“range”).AutoFilter
Field:=field_no,Criteria1:=“term”

As an example, suppose you have a data list summarising
monthly sales for different categories of products. The three
fields are named ‘Month’, ‘Category’ and ‘Sales’.

M09_FRYE1975_01_SE_C09.indd 146 04/02/2013 14:13

Sorting and filtering data 147

Apply a filter
using a single
criterion (cont.)

9

The AutoFilter method statement to display only those
rows that contain the term ‘Gloves’ in the second field is:

ActiveSheet.Range(“A3:C12”).
AutoFilter Field:=2, _
 Criteria1:=“Gloves”

Running a subroutine with that statement would display only
those rows that contain the word ‘Gloves’ in the ‘Category’
column.

Did you know?
Filter arrows must be turned on for the code listed above
to work.

?

Jargon buster
If your data is laid out so that each column represents
a fact, such as a product name or sales amount, then a
field is the same as a column. In this case, Field:=2
represents the second column in the data list.

M09_FRYE1975_01_SE_C09.indd 147 04/02/2013 14:13

Remove a filter

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

ActiveSheet.
Range(“range”).
AutoFilter
Field:=field_no

148

uRemove a filter Filters are extremely useful things, but you will certainly want to
remove them from time to time. When you’re ready to remove
a filter, all you need to do is identify the range of cells to which
the filter is applied – that is, the column within the data list –
and then leave the filter argument blank. Doing so sets the filter
to blank and so allows all values to be displayed.

As an example, suppose you start with a data list that has been
filtered based on values in the second column.

To remove a filter from a range, you call the Range object’s
AutoFilter method and use the Field parameter to
identify the column, or field, from which to remove the filter.
The syntax of the statement is:

ActiveSheet.Range(“range”).AutoFilter
Field:=field_no

The AutoFilter statement to remove the filter from the
second field in a list spanning cells A3:C12 in the active
worksheet is:

ActiveSheet.Range(“A3:C12”).
AutoFilter Field:=2

Running a subroutine with that statement would remove the
filter from the ‘Category’ column and restore the data list to its
original display.

M09_FRYE1975_01_SE_C09.indd 148 04/02/2013 14:13

Sorting and filtering data 149

Remove a filter
(cont.)

9

Important

Removing a filter using VBA is a one-way action,
meaning you can’t click the Undo toolbar button and
reapply the filter.

!

M09_FRYE1975_01_SE_C09.indd 149 04/02/2013 14:13

150

uDisplay a list of
unique values

Some of the more interesting information you can discover
about your data comes from identifying unique values in a
list. For example, you might be interested in seeing how many
different customers ordered from you in the past month, but
not be that concerned about the total amount ordered by any
one customer.

For example, you might have a data list summarising orders by
month and category.

You use the Range object’s AdvancedFilter
method to display a list of unique values in a data list. The
AdvancedFilter method requires three pieces of
information to display unique values only:

�� Range – the column of cells you want to inspect for unique
values.

�� Action – whether a filter of the list is in place or to copy
the cells to a destination range.

�� Unique – controls whether or not the filter should display
rows that contain the first occurrence of each unique value
in the range.

M09_FRYE1975_01_SE_C09.indd 150 04/02/2013 14:13

Sorting and filtering data 151

Display a list of
unique values
(cont.)

9

The basic syntax of the AdvancedFilter method, when
used to identify unique values in a column, is:

Range(“range”).AdvancedFilter
Action:=xlFilterInPlace, Unique:=True

Because you want to display unique values, the Action and
Unique parameter values won’t change. The only information
you need to provide is the range of cells representing the
column by which you want to filter the list. If you want to
filter the ‘Category’ column, that range is B3:B12, so the full
AdvancedFilter statement would be:

Range(“B3:B12”).AdvancedFilter
Action:=xlFilterInPlace, Unique:=True

When you run a subroutine that contains this
AdvancedFilter statement the result would contain three
rows, representing the first occurrence of the differing values
in cells B3:B12.

Display a list of unique values

 1 Create a subroutine.

 2 In the body of the subroutine, enter code that follows this
pattern:

Range(“range”).AdvancedFilter Action:=
xlFilterInPlace, Unique:=True

Did you know?
When you filter a list so it
only displays unique values,
copying and pasting the list
puts just the visible values
in the destination cells.

?

M09_FRYE1975_01_SE_C09.indd 151 04/02/2013 14:13

152

uFilter data to
display two
values in a
column

So far, you’ve learned how to create simple filters for your
Excel data, but Excel is capable of applying complex and
powerful filters. As you might expect, the next step up is to
display results corresponding with two values in your list. For
example, you might want to see sales results for the months of
January and February or two classes of products.

For example, suppose you want to filter a data list to display
all rows that contain either the word ‘Boxes’ or ‘Gloves’ in the
second column.

The command to filter a column so it displays rows that contain
either of two values follows this pattern:

ActiveSheet.Range(“range”).AutoFilter
Field:=field_no, _
 Criteria1:=“=term1”, Operator:=xlOr,
Criteria2:=“=term2”

where:

�� Range is the entire cell range to be filtered

�� Field is the column in the data list to be searched for the
named values

Did you know?

The Criteria1 and
Criteria2 arguments
are a holdover from when
you could only filter a list
using two values.

?

M09_FRYE1975_01_SE_C09.indd 152 04/02/2013 14:13

Filter data to display two
values in a column

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

ActiveSheet.
Range(“range”).
AutoFilter
Field:=field_
no,Criteria1:=
“=term1”, _

Operator:=xlOr,
Criteria2:=“=term2”

Sorting and filtering data 153

Filter data to
display two
values in a
column (cont.)

9

�� Criteria1 is the first term to look for, with the term
enclosed in quotes and preceded within the quotes by an
equals sign

�� Operator is the logical operator used to indicate either
Criteria1 or Criteria2 may occur, so it will always
be xlOr

�� Criteria2 is the second term to look for, with the term
enclosed in quotes and preceded within the quotes by an
equals sign.

So:

ActiveSheet.Range(“A3:C12”).
AutoFilter Field:=2, _
 Criteria1:=“=Boxes”, Operator:=xlOr,
Criteria2:=“=Gloves”

Running a subroutine containing this code would filter a data
list so it displays just those rows containing either the value
‘Boxes’ or ‘Gloves’ in the second column.

See also

For more information on
filtering a list using more
than two values, see the
next task.

M09_FRYE1975_01_SE_C09.indd 153 04/02/2013 14:13

Filter data to display three or
more values in a column

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

ActiveSheet.
Range(“range”).
AutoFilter
Field:=field_no,
Criteria1:=Array(_

“term1”, “term2”…)
Operator:
=xlFilterValues

154

uFilter data to
display three or
more values in
a column

If you’ve created Excel filters via the user interface, you have
probably created filters where you select a series of three
or more values from those present in the column. Two-
value filters use the rather archaic method of identifying
Criteria1 and Criteria2 in the body of the VBA code.
If you want to create a filter for three or more values, you can
identify the values you want to display in an array.

For example, suppose you have a data list summarising
product sales by month.

If you want to display just those rows that contain sales figures
for ‘Boxes’, ‘Flats’, ‘Gloves’ and ‘Scarves’, you could create a
filter using the Range object’s AutoFilter method. These
statements have the following syntax:

ActiveSheet.Range(“range”).AutoFilter
Field:=field_no, _
Criteria1:=Array(“term1”, “term2”,
“term3”…), _
Operator:=xlFilterValues

M09_FRYE1975_01_SE_C09.indd 154 04/02/2013 14:13

Sorting and filtering data 155

Filter data to
display three or
more values in a
column (cont.)

9

where:

�� Range is the entire cell range to be filtered

�� Field is the column in the data list to be searched for the
named values

�� Criteria1 contains an array with a list of values to
be displayed when the filter is applied, each term being
enclosed in quotation marks

�� Operator is the logical operator used to indicate that
Excel should filter the list based on an array of values – as
such, it’s value will always be xlFilterValues for this
type of operation.

The code to filter a list to display rows that contain the values
‘Boxes’, ‘Flats’, ‘Gloves’ and ‘Scarves’ would be:

ActiveSheet.Range(“A3:C14”).
AutoFilter Field:=2, Criteria1:=Array(_
“Boxes”, “Flats”, “Gloves”, “Scarves”),
Operator:=xlFilterValues

Applying this filter would modify the data list so it would not
display the row containing data about ‘Aprons’ sales.

Important

Excel treats all values
in filter criteria, even
numbers, as strings of
characters, so you must
enclose each of the array
entries in double quotes.

!

M09_FRYE1975_01_SE_C09.indd 155 04/02/2013 14:13

Filter data based on values in
multiple columns

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

ActiveSheet.
Range(“range”).
AutoFilter
Field:=column_1,
Criterial:=“term1”

ActiveSheet.
Range(“range”).
AutoFilter
Field:=column_2,
Criterial:=“term2”

156

uFilter data based
on values in
multiple columns

Previously, all of the filters you’ve learned have been based on
the values in a single column. If you want, you can create a
filter rule for any or all of the columns in your data list. All you
need to do is determine which values and rules you want to use
and apply them.

To apply multiple filters to a range, you call the Range object’s
AutoFilter method for each column by which you want to
filter the list. The AutoFilter method has two parameters:

�� Field – the number of the column by which you want to
filter the list.

�� Criteria1 – the term that must appear in the target field
for the row to appear in the filtered list.

The syntax of an AutoFilter method follows this pattern:

ActiveSheet.Range(“range”).AutoFilter
Field:=field_no, Criteria1:=“term”

You need to create separate statements for each column by
which you want to filter your data. As an example, suppose
you have a data list summarising monthly sales for different
categories of products. The three fields are named ‘Month’,
‘Category’ and ‘Sales’.

M09_FRYE1975_01_SE_C09.indd 156 04/02/2013 14:13

Sorting and filtering data 157

Filter data based
on values in
multiple columns
(cont.)

9

If you want the list to display just those results for ‘Gloves’
sales in January, you would run a subroutine containing the
following code:

ActiveSheet.Range(“A3:C12”).
AutoFilter Field:=2, Criteria1:=“Gloves”
ActiveSheet.Range(“A3:C12”).
AutoFilter Field:=1,Criteria1:=“January”

The filters combine to reduce the list to the only row that
contains the term ‘January’ in the first column and ‘Gloves’ in
the second.

Did you know?
Applying consecutive filters to the same field, such
as filtering Field 1 for January and then for February,
displays the results of the last filter you apply.

?

M09_FRYE1975_01_SE_C09.indd 157 04/02/2013 14:13

M09_FRYE1975_01_SE_C09.indd 158 04/02/2013 14:13

Managing charts 159

Managing charts

Introduction

One of the real strengths of Excel 2010 is its ability to summarise
large amounts of data. You can create formulas, tables and even
pivot tables to manipulate your data set to discover important
facts about your organisation and its operations.

As with all things, a strength can also turn out to be, if not
a weakness, a challenge. Humans have a hard time keeping
track of large data sets in their heads. It’s all well and good to
look at the summary, but if you create a pivot table that spans
multiple screens, even the best summary operations will only
help so much.

You can make your data easy to comprehend by summarising it
visually using charts. In Excel 2010, you can use VBA to define
and format your charts, which include the new sparkline chart
type. Sparklines are designed for use in dashboards and other
compact reporting applications, which fit well with Excel 2010’s
positioning as a reporting tool for all levels of an organisation.

Note: Some of the lines of code in this chapter are too long
for the page to accommodate. In Excel VBA, you can type a
space and then an underscore character (_) to indicate that the
current command continues on to the next line.

What you’ll do

10
Create a chart

Move a chart to a chart sheet

Add a new data series to a chart

Format a chart’s legend text

Format a chart’s axis text

Export a chart as an image

Create a Line sparkline

Create a Column sparkline

Create a Win/Loss sparkline

Delete a sparkline

M10_FRYE1975_01_SE_C10.indd 159 04/02/2013 14:13

160

uCreate a chart When you are ready to summarise your Excel data visually, you
can create a chart. To do this, you need just three lines of code.
The first line of code calls the Charts collection’s Add method:

ActiveSheet.Shapes.AddChart.Select

With the chart in place, you can now define the chart’s type.
To do that, you set a value for the ActiveChart object’s
ChartType property. The line of code you use follows this
pattern:

ActiveChart.ChartType = XlChartType

The XlChartType constant refers to one of many available
chart types, identified by constants within the XlChartType
collection. Table 10.1 lists the XlChartType constants for
common chart types.

Table 10.1 XlChartType values for commonly used chart
types

Type XlChartType

value
Description

Area xlArea Area chart

Column
(clustered)

xlColumn

Clustered
Clustered column chart
(the default chart type)

Stacked
column

xlColumn

Stacked
A stacked column chart

Line xlLine A line chart

Line with
markers

xlLine

Markers
A line chart with markers
for each data point

Pie xlPie A pie chart

XY scatter xlXYScatter A scatter chart (also
called an XY chart)

M10_FRYE1975_01_SE_C10.indd 160 04/02/2013 14:13

Managing charts 161

Create a chart
(cont.)

10

Finally, you need to identify the range that provides the data
for your chart. You can do that by calling the ActiveChart
object’s SetSourceData method, which includes the
Source parameter. You set the parameter’s value to the range
that contains the data you want to appear in your chart. The
general syntax for the SetSourceData method is this:

ActiveChart.SetSourceData
Source:=Range(“range”)

Here’s an example to show you the code in use. Suppose you
want to create a clustered column chart to summarise monthly
sales for your company. Your worksheet might contain two
columns of data.

You can create a clustered column chart based on this data
using the following three lines of code:

ActiveSheet.Shapes.AddChart.Select
ActiveChart.ChartType = XlChartType
ActiveChart.SetSourceData Source:=Range
“Sheet1!A3:B15”)

M10_FRYE1975_01_SE_C10.indd 161 04/02/2013 14:13

Create a chart

 1 Create a subroutine.

 2 In the body of the subroutine,
type code that follows this
pattern:

ActiveSheet.Shapes.
AddChart.Select

ActiveChart.
ChartType =
XlChartType

ActiveChart.
SetSourceData
Source:=Range
(“range”)

Running this code against the data set creates a clustered
column chart.

162

Create a chart
(cont.)

Important

The range definition in the SetSourceData method’s
Source parameter must include the name of the
worksheet that contains the data.

!

Did you know?
If you change the ActiveSheet.Shapes.
AddChart.Select statement to Charts.Add,
Excel VBA puts the chart on its own chart sheet.

?

M10_FRYE1975_01_SE_C10.indd 162 04/02/2013 14:13

When you create a chart using VBA code, Excel creates the
chart on the sheet that contains the data. The chart your code
creates is large enough to display all of the data, but it is still
relatively small in comparison to the size of the worksheet.
Moving a chart to its own chart sheet ensures the chart will
take up the entire sheet, making it more legible and easier to
comprehend. This consideration is especially true for users
viewing your content on a mobile device.

Suppose you create a chart that resides on the same worksheet
as the data used create it.

Managing charts 163

uMove a chart to a
chart sheet

10

M10_FRYE1975_01_SE_C10.indd 163 04/02/2013 14:13

164

Move a chart to
a chart sheet
(cont.)

The first step to moving a chart to a chart sheet is it to select
the chart. The VBA code to do that is:

ActiveChart.ChartArea.Select

After you select the chart, you need to exit Excel’s cut and copy
mode. You’re probably familiar with cut and copy mode from
when you cut and paste worksheet contents from one range to
another. When you select the cells and then press either Ctrl+X
or Ctrl+C, Excel surrounds your selected cells with a marquee.
The marquee indicates that cut and copy mode is on. To exit
cut and copy mode from the keyboard, you press the Esc key.
In VBA, the command to exit cut and copy mode is:

Application.CutCopyMode = False

With the chart selected and cut and copy mode off, you can
move it to a new sheet. You do that using the ActiveChart
object’s Location property, by means of which you assign
a value to the Where parameter. To move your chart to a new
sheet, you use the following VBA command:

ActiveChart.Location
Where:=xlLocationAsNewSheet

Running these three lines of code as part of the subroutine
moves the chart from a worksheet to its own chart sheet.

Jargon buster
The Application.CutCopyMode = False
statement changes the workbook from cut and copy
mode to edit mode. The program does the same thing
when you cut or copy workbook cells and paste them
in your workbook. Cut and copy mode is on (“True”)
when your cells are surrounded by a dotted line; cut and
copy mode is off (“False”) when the dotted line is
replaced by a solid outline.

M10_FRYE1975_01_SE_C10.indd 164 04/02/2013 14:13

Move a chart to a chart sheet

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

ActiveChart.
ChartArea.Select

Application.
CutCopyMode = False

ActiveChart.Location
Where:=xlLocation
AsNewSheet

Managing charts 165

Move a chart to
a chart sheet
(cont.)

10

Important

This routine assumes you have just one chart on the
active sheet.

!

M10_FRYE1975_01_SE_C10.indd 165 04/02/2013 14:13

166

Add a new data
series to
a chart

Charts summarise data you collect, whether about your
business, organisation or leisure activities. If you create a chart
and want to add more data to the summary, you can do so
using Excel VBA.

For example, suppose your worksheet contains data
summarising a monthly sales and VAT for a given year, but
your chart only displays the sales data.

You can add the data for the VAT collected to your chart quickly
using Excel VBA. A sequence of related data that is plotted
within a chart is called a data series. For example, sales data for
the months January to December might appear in cells B4:B15,
with the series title, ‘Sales’, appearing in B3. The data series
for VAT collected has its title in cell C3 and the data in cells
C4:C15.

u

M10_FRYE1975_01_SE_C10.indd 166 04/02/2013 14:13

Managing charts 167

Add a new data
series to a chart
(cont.)

10

The VBA code required to add a data series to a chart starts by
selecting the active chart’s chart area:

ActiveChart.ChartArea.Select

After you select the chart you want to work with, you create
a new series by calling the Series collection object’s
NewSeries method. The code for that action is quite
straightforward:

ActiveChart.SeriesCollection.NewSeries

Now that you have added a new series to the chart’s Series
collection, you need to give the series a name. In most cases,
you will want to use the column label from the worksheet data
list as the series name. You assign a data series a name using
the following code:

ActiveChart.SeriesCollection(series_no).
Name = “=formula”

The series_no value represents the new data series’ position
in the SeriesCollection object. You determine that value
by counting the number of existing data series in your chart and
add one. The =formula value is a formula that identifies a cell
from which to draw the value or the value itself.

Finally, you must identify the cell range that contains the series
values. The VBA statement to make that assignment uses the
SeriesCollection object’s Values property and is very
similar to the code used to identify the series’ name.

ActiveChart.SeriesCollection(series_no).
Values = “=range”

In the VBA code used to assign the range for the Values
property, the =range variable is an equal sign followed by a
range reference of the form sheet_name!range, such as
=Sheet1!B2:$B5.

M10_FRYE1975_01_SE_C10.indd 167 04/02/2013 14:13

168

Add a new data
series to a chart
(cont.)

The sequence of statements used to add a series with its name
in cell C3 of Sheet2 and its values in the range C4:C15 of the
same sheet would be:

ActiveChart.ChartArea.Select
ActiveChart.SeriesCollection.NewSeries
ActiveChart.SeriesCollection(2).Name =
“=Sheet2!C3”
ActiveChart.SeriesCollection(2).Values =
“=Sheet2!C4:C15”

M10_FRYE1975_01_SE_C10.indd 168 04/02/2013 14:13

Managing charts 169

Add a new data
series to a chart
(cont.)

10

Add a new data series to a chart

 1 Create a subroutine.

 2 In the body of the subroutine, enter code that follows this
pattern:

ActiveChart.ChartArea.Select

ActiveChart.SeriesCollection.NewSeries

ActiveChart.SeriesCollection
(series_no).Name = “=formula”

ActiveChart.SeriesCollection
(series_no).Values = “=range”

Did you know?
You can discover the number of data series in your chart
by displaying the chart’s legend and counting the number
of entries it lists.

?

M10_FRYE1975_01_SE_C10.indd 169 04/02/2013 14:13

170

uFormat a chart’s
legend text

When you create a chart in Excel 2010, the program formats
your chart legend’s text in a default font.

If your company’s style sheet or your personal aesthetic calls
for a different font, you can change the legend’s font easily. To
change the font of a chart’s legend text, you must first select
the chart and then the legend using these commands:

ActiveChart.ChartArea.Select
ActiveChart.Legend.Select

You then select the text frame that contains the legend’s text,
identify the text range and reference the Font property. You
should use a With…End With code construct to streamline
your code significantly.

With Selection.Format.TextFrame2.
TextRange.Font
 .NameComplexScript = “font”
 .NameFarEast = “font”
 .Name = “font”
End With

You set the NameComplexScript, NameFarEast and
Name properties to reflect the new font so your chart will
display properly for all users, regardless of their local language
settings. This level of detail might seem excessive, but it is
helpful in an international business environment.

M10_FRYE1975_01_SE_C10.indd 170 04/02/2013 14:13

Managing charts 171

Format a chart’s
legend text
(cont.)

10

The code to change the font of the chart legend’s text to Arial is
as follows:

ActiveChart.ChartArea.Select
ActiveChart.Legend.SelectWith Selection.
Format.TextFrame2.TextRange.Font
 .NameComplexScript = “Arial”
 .NameFarEast = “Arial”
 .Name = “Arial”
End With

Format a chart’s legend text

 1 Create a subroutine.

 2 In the body of the subroutine, enter code that follows this
pattern:

ActiveChart.ChartArea.Select

ActiveChart.Legend.Select

With Selection.Format.TextFrame2.
TextRange.Font

 .NameComplexScript = “font”

 .NameFarEast = “font”

 .Name = “font”

End With

The code in this task
assumes the chart is
selected in the worksheet
before you run the macro.

For your information
i

Some chart types might
not store their legend text
in the TextFrame2
object. If the specific
macro code listed above
doesn’t work for a specific
chart, record a macro of
you changing that chart’s
legend text formatting and
use it as the base for your
procedure.

For your information
i

M10_FRYE1975_01_SE_C10.indd 171 04/02/2013 14:13

172

uFormat a chart’s
axis text

When you create a chart in Excel 2010, the program formats
your chart’s axis labels using a default font.

If you would prefer a different font, you can change it easily. To
change the font of a chart’s axis label text, you must first select
the legend using these commands:

ActiveChart.ChartArea.Select
ActiveChart.Axes(XlAxis).Select

The first command selects the chart, while the second
command uses the Axes property and looks at the XlAxis
variable to determine which axis to select. You refer to the
vertical axis using the xlValue variable and the horizontal
axis using the xlCategory variable.

You then select the text frame that contains the axis label’s text,
identify the text range and reference the Font property. You
should use a With…End With code construct to streamline
your code significantly.

With Selection.Format.TextFrame2.
TextRange.Font
 .NameComplexScript = “font”
 .NameFarEast = “font”
 .Name = “font”
End With

M10_FRYE1975_01_SE_C10.indd 172 04/02/2013 14:13

Managing charts 173

Format a chart’s
axis text (cont.)

10

You set the NameComplexScript, NameFarEast and
Name properties to reflect the new font so your chart will
display properly for all users, regardless of their local language
settings. Making these changes ensures your chart will appear
as desired in an international business environment.

The code to change the font of the chart’s horizontal axis text
to Tahoma would be as follows:

ActiveChart.ChartArea.Select
ActiveChart.Axes(xlCategory).Select
With Selection.Format.TextFrame2.
TextRange.Font
 .NameComplexScript = “Tahoma”
 .NameFarEast = “Tahoma”
 .Name = “Tahoma”
End With

Format a chart’s axis text

 1 Create a subroutine.

 2 In the body of the subroutine, enter code that follows this
pattern:
ActiveChart.ChartArea.Select

ActiveChart.Axes(XlAxis).Select

With Selection.Format.TextFrame2.
TextRange.Font

 .NameComplexScript = “font”

 .NameFarEast = “font”

 .Name = “font”
End With

Some chart types might
not store their axis label
text in the TextFrame2
object. If the specific
macro code listed above
doesn’t work for a specific
chart, record a macro of
you changing that chart’s
axis label text formatting
and use it as the base for
your procedure.

For your information
i

M10_FRYE1975_01_SE_C10.indd 173 04/02/2013 14:13

174

uExport a chart as
an image

When you create a chart in Excel 2010, the program establishes
a link between the chart and its data source. Any time the data
source changes, Excel updates the chart to reflect the change.
This feature is extremely useful for dashboards and other data
summaries that should be updated whenever the data changes,
but it is less useful for charts that draw data from files stored on a
network that might be temporarily unavailable.

If you want to export an image of a chart’s current appearance,
you can do so by copying the chart’s chart area and then
pasting it into a destination cell range as an image. Copying the
chart area requires this single line of code, which assumes the
chart you want to copy has already been clicked:

ActiveChart.ChartArea.Copy

You then select the cell range where you want to paste the
chart image and implement the paste operation. Pasting the
image on the same worksheet takes these two lines of code:

Range(“range”).Select
ActiveSheet.Pictures.Paste.Select

If you want to paste the image on to another worksheet, you
must activate that worksheet using the Sheets.Activate
method. For example, the command to activate a worksheet
named Sheet2 would be:

Sheets(“Sheet2”).Activate

M10_FRYE1975_01_SE_C10.indd 174 04/02/2013 14:13

Managing charts 175

Export a chart as
an image (cont.)

10

The range variable is a reference to a cell range. If you paste
the image on to the same worksheet, you do not need to
specify the sheet’s name. If you want to paste the image on
another worksheet, or even another workbook, though, you
need to provide that information as well.

For example, the following code would paste a chart as an
image on Sheet2 in cell A1:

ActiveChart.ChartArea.Copy
Sheets(“Sheet2”).Activate
Range(“Sheet2!A1”).Select
ActiveSheet.Pictures.Paste.Select

Export a chart as an image

 1 Create a subroutine.

 2 In the body of the subroutine, enter code that follows this
pattern:

ActiveChart.ChartArea.Copy

Range(“range”).Select

ActiveSheet.Pictures.Paste.Select

Did you know?
Running the ActiveChart.ChartArea.Copy
code copies the chart’s image to the clipboard. You can
then paste the image into any other file, not just the
active Excel workbook.

?

M10_FRYE1975_01_SE_C10.indd 175 04/02/2013 14:13

176

uCreate a Line
sparkline

One of the more useful aspects of Excel 2010 has been the
introduction of sparklines. Sparklines, invented by Edward
Tufte, are word-sized graphics that convey information
normally communicated using a full-sized chart.

Several different types of sparklines are available to you
in Excel 2010. For example, suppose you have a data set
summarising monthly sales, VAT, your sales targets for each
month and how the results compare with that target.

One way to summarise this data is to create a Line sparkline,
which is an extremely compact line chart. To create a
Line sparkline using VBA, you first identify the target cell
where you want the sparkline to appear. Next, you call the
SparklineGroups object’s Add method and specify both
the type of sparkline and the source of the sparkline’s data.

The syntax of the statement to create a Line sparkline is:

Range(“targetrange”).SparklineGroups.Add
Type:=xlSparkLine, SourceData:=“source”

Did you know?
Sparklines expand or
contract to fill their cell, so
you can make a sparkline
larger by resizing the cell
it’s in.

?

M10_FRYE1975_01_SE_C10.indd 176 04/02/2013 14:13

Managing charts 177

Create a Line
sparkline (cont.)

10

The Type parameter takes the value xlSparkLine to
signify a Line sparkline, while the SourceData parameter
specifies the cell range supplying the sparkline’s data. For
example, you might create a Line sparkline in cell E1 using data
from cells B4:B15:

Range(“E1”).SparklineGroups.Add
Type:=xlSparkLine, SourceData:=“B4:B15”

Create a Line sparkline

 1 Create a subroutine.

 2 In the body of the subroutine, enter code that follows this
pattern:

Range(“targetrange”).SparklineGroups.
Add Type:=xlSparkLine, _
SourceData:=“source”

M10_FRYE1975_01_SE_C10.indd 177 04/02/2013 14:13

178

uCreate a Column
sparkline

Excel 2010 is an exceptionally useful reporting tool. You
can create dashboards that provide overviews of your
organisation’s data at a glance. Sparklines, which are compact
charts that fit within a single worksheet cell, help convey that
information effectively.

Several different types of sparklines are available to you. For
example, suppose you wanted to summarise monthly sales
using a Column sparkline.

To create a Column sparkline using VBA, you first identify
the target cell where you want the sparkline to appear. Next,
you call the SparklineGroups object’s Add method
and specify both the type of sparkline and the source of the
sparkline’s data. The syntax of the statement to create a
Column sparkline is:

Range(“targetrange”).SparklineGroups.Add
Type:=xlSparkColumn, _
 SourceData:=“source”

M10_FRYE1975_01_SE_C10.indd 178 04/02/2013 14:13

Managing charts 179

Create a Column
sparkline (cont.)

10

The Type parameter takes the value xlSparkColumn to
signify a Column sparkline, while the SourceData parameter
specifies the cell range supplying the sparkline’s data. For
example, you might create a Line sparkline in cell E1 using data
from cells B4:B15.

Range(“E1”).SparklineGroups.Add
Type:=xlSparkColumn, _
 SourceData:=“B4:B15”

Create a Column sparkline

 1 Create a subroutine.

 2 In the body of the subroutine, enter code that follows this
pattern:

Range(“targetrange”).SparklineGroups.
Add Type:=xlSparkColumn, _
SourceData:=“source”

Column sparklines work
best in cells that are about
twice the height of normal
Excel cells.

For your information
i

M10_FRYE1975_01_SE_C10.indd 179 04/02/2013 14:13

180

uCreate a Win/
Loss sparkline

Excel provides numerous ways for you to evaluate your
organisation’s performance in relation to targets you set. You
can use a Win/Loss sparkline to summarise your monthly
sales in relation to your goals, such as in a worksheet with
comparison results in cells E4:E15.

A Win/Loss sparkline has three possible indicators: above
target (positive), below target (negative) and equal to the
target (zero). Values above the target (also called a comparison
value) are indicated by a marker extending above the middle
of the cell, values below the target are indicated by a marker
extending below the middle of the cell, while a value equal to
the target is indicated by the lack of a marker.

To create a Win/Loss sparkline using VBA, you first identify
the target cell where you want the sparkline to appear. Next,
you call the SparklineGroups object’s Add method
and specify both the type of sparkline and the source of the
sparkline’s data. The syntax of the statement to create a Win/
Loss sparkline is:

Range(“targetrange”).SparklineGroups.Add
Type:= xlSparkColumnStacked100,
SourceData:=“source”

M10_FRYE1975_01_SE_C10.indd 180 04/02/2013 14:13

Managing charts 181

Create a Win/
Loss sparkline
(cont.)

10

The Type parameter takes the value xlSparkColumn
Stacked100 to signify a Win/Loss sparkline, while the
SourceData parameter specifies the cell range supplying
the sparkline’s data. For example, you might create a Win/Loss
sparkline in cell E1 using data from cells E4:E15.

Range(“E1”).SparklineGroups.Add _
Type:= xlSparkColumnStacked100,
SourceData:=“E4:E15”

Create a Win/Loss sparkline

 1 Create a subroutine.

 2 In the body of the subroutine, enter code that follows this
pattern:

Range(“targetrange”).SparklineGroups.
Add _

Type:= xlSparkColumnStacked100,
SourceData:=“source”

Did you know?
Win/Loss sparklines got
their name because they
are useful for tracking the
performance of sports
teams’ wins, losses and
draws.

?

M10_FRYE1975_01_SE_C10.indd 181 04/02/2013 14:13

182

uDelete a
sparkline

Sparklines are exceptionally useful tools, but you might
find that one or more of them are surplus to your reporting
requirements. In that case, you can use VBA to delete them.

The code to delete a sparkline is straightforward. The first step
is to select the cell that contains the sparkline and the second
is to use the SparklineGroups object’s Clear method to
delete them:

Range(“cell”).Select
Selection.SparklineGroups.Clear

The code to delete a sparkline from cell E1 would be:

Range(“E1”).Select
Selection.SparklineGroups.Clear

Delete a sparkline

 1 Create a subroutine.

 2 In the body of the subroutine, enter code that follows this
pattern:

Range(“cell”).Select

Selection.SparklineGroups.Clear

Important

Deleting a sparkline using Excel VBA is irreversible –
once you delete a sparkline, you can’t bring it back by
pressing Ctrl+Z.

!

M10_FRYE1975_01_SE_C10.indd 182 04/02/2013 14:13

Using built-in functions and statements 183

Using built-in functions
and statements

Introduction

Excel VBA is a powerful language that interacts well with the
Excel desktop program. As VBA matured, its designers built
in a series of capabilities that make it easier to manage exactly
how that interaction takes place. For example, rather than force
users to type in the full directory path of a file, you can let them
select the file using the Open dialog box and save the box’s
output to a variable. Other built-in functions and statements
let you prevent the screen from flickering when you switch
between workbooks or worksheets, prevent alert boxes from
interrupting your routines and calling worksheet functions so
you don’t have to recreate their calculations.

What you’ll do

11
Use the built-in Open dialog box

Prevent screen flicker when
running VBA code

Suppress and restore alerts

Calculate data using Excel
worksheet functions

Display a message box

Get data from an InputBox

Display the current date and time

Format a date

Remove spaces from a string

Locate a portion of a string

Concatenate strings

M11_FRYE1975_01_SE_C11.indd 183 04/02/2013 14:13

Use the built-in Open dialog
box

 1 Create a subroutine.

 1 In the body of the subroutine,
do the following:

a. Define a variable to store
the filename and path.

b. Assign the output of the
Open dialog box to the
variable.

c. Display the variable’s value
in a message box or use its
output in your VBA code.

184

uUse the built-in
Open dialog box

Most of the Excel VBA routines that new programmers create
operate within the workbook that contains their code. For
example, you could transfer data between worksheets, but
you might not transfer the data to another workbook. As you
become a more advanced Excel VBA programmer, you will
likely create routines that let users specify how to proceed. For
example, you might wish to allow your colleagues to select
which of several files to open from within a VBA routine.

Excel 2010 lets you use the built-in Open dialog box to identify
files via the user interface. The Open dialog box is the very
familiar item that appears whenever you press Ctrl+O or click
the File tab, then Open.

To display the Open dialog box, you use the Application
object’s GetOpenFilename method. Because the path and
the name of your file might contain odd characters, it’s best
to store the value in a variable of the Variant type. As a
simple example, you could create the following code to create
a variable, assign the output of the Open dialog box to that
variable, then display the value in a message box.

M11_FRYE1975_01_SE_C11.indd 184 04/02/2013 14:13

Using built-in functions and statements 185

Use the built-in
Open dialog box
(cont.)

11

The code to implement those three steps is:

Dim varFileName as Variant
varFileName = Application.
GetOpenFilename
MsgBox (“The file’s name and path are
”&varFileName)

Running the subroutine and selecting a file displays a message
box similar to the one shown.

Did you know?
You could have trouble working with a file if it’s stored
on a network computer and the connection is down.
If you have trouble finding a file, check the Network
section of Windows Explorer to ensure you can see the
other computer on your network.

?

M11_FRYE1975_01_SE_C11.indd 185 04/02/2013 14:13

Prevent screen flicker when
running VBA code

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Application.
ScreenUpdating =
True or False

186

uPrevent screen
flicker when
running VBA
code

Whenever you activate a worksheet or a workbook using Excel
VBA, the program displays that worksheet or workbook. Usually
this means the program has to switch from whichever element
is displayed on screen to a new element. A single switch
between two worksheets or workbooks doesn’t create much of
problem, but if you create complicated routines that switch back
and forth several times, the screen can appear to flicker.

Even though this flickering doesn’t slow the execution of your
code, it can be very distracting, especially if you have created
a long-running routine and you want to do other work. You
can prevent screen flicker by turning off screen updating using
the Application.ScreenUpdating property. When
the property is set to False, the screen will not update to
reflect any changes made to the active worksheet or workbook,
or to indicate that the program focus has changed to another
worksheet or workbook.

The Excel VBA command used to prevent screen flicker is:

Application.ScreenUpdating = False

When your code is done switching between worksheets or
workbooks and you want to display the results, you can turn
screen updating back on by using this code:

Application.ScreenUpdating = True

Even though Excel turns screen updating back on when
it completes running a VBA routine, it’s good practice to
include the Application.ScreenUpdating =
True command in your code just in case you need to
interact with the program before it’s finished executing.

For your information
i

M11_FRYE1975_01_SE_C11.indd 186 04/02/2013 14:13

Suppress and restore alerts

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Application.
ScreenUpdating =
True or False

Using built-in functions and statements 187

uSuppress and
restore alerts

11

Many operations, such as deleting a worksheet, cause Excel to
display an alert box indicating that the action you are about to
take is irreversible or could have some other, possibly harmful
effect. These warnings are helpful in that they prevent users
from inadvertently removing important parts of the workbook,
but they prevent the smooth operation of the VBA routines that
generate those messages.

For example, suppose you create a VBA routine that includes
instructions to delete a worksheet. When you run the routine,
Excel will reach that line of code and attempt to delete the
worksheet but, rather than just deleting the worksheet, the
program will display the alert box asking if you’re certain that
you want to go ahead with the deletion. Getting past the alert
box requires human intervention, which can prevent the full
execution of your program.

If you are certain that the action you program into a VBA
routine should be executed regardless of these warnings, you
can suppress alerts. The code to do so is:

Application.DisplayAlerts = False

After your code has executed the instructions that could generate
an alert, you should turn alert and warning messages back on.
Doing so lets you avoid damaging your workbook by having your
VBA code make an unintended change you can’t reverse.

The statement to have Excel display alert and warning boxes
again is:

Application.ScreenUpdating = True

Important

You should not turn off
alerts while you are testing
a program. Only after you
are certain that your VBA
code operates exactly as
you expect should you
suppress alerts.

!

M11_FRYE1975_01_SE_C11.indd 187 04/02/2013 14:13

Calculate data using Excel
worksheet functions

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Application.
WorksheetFunction.
function(arguments)

188

uCalculate data
using Excel
worksheet
functions

Microsoft Excel 2010 is an exceptionally powerful and versatile
program, with many built-in functions you can use to transform
data into useful information. You are not limited to using those
formula functions in a worksheet. Rather than create your own
calculations and risk introducing errors into the process, you can
call on a wide array of worksheet functions from within VBA.

To use a worksheet function in your VBA code, you start by
typing this fragment of VBA code:

Application.WorksheetFunction.

The final full stop in the above fragment indicates you need to add
another element to the statement to make it functional. In this
case, that element is the name of the function you want to use.
There are hundreds of functions at your disposal, which appear in
the AutoComplete list when you type the code fragment above.

You can select the function you want by typing in its name,
selecting it from the AutoComplete list or a combination of both
actions. After you add the function name to the code fragment
and type a left parenthesis, the Visual Basic Editor displays a list
of arguments you can use in the formula. Required arguments are
listed in bold italic type, optional arguments in normal italic type.

You can then supply values for the arguments by typing their
values, such as cell ranges, directly into the Visual Basic Editor
or by using values assigned to variables.

Did you know?
Not every worksheet
function is available via
Excel VBA, but the majority
of them are.

?

Important

Try creating the formula in
your worksheet as well as
in your VBA code to be sure
that the VBA version gives
you the same result.

!

M11_FRYE1975_01_SE_C11.indd 188 04/02/2013 14:13

Display a message box

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows one of
these patterns:

MsgBox(prompt)

MsgBox
Prompt:=string,
Buttons:=constant,
Title:=string

Using built-in functions and statements 189

Display a
message box

11

When you create or edit an Excel worksheet via the user
interface, you get immediate feedback on what you’ve done
because the worksheet changes. Most users will take a moment
to survey what they have done to ensure their actions had the
intended outcome. When you run a VBA routine, you don’t have
that luxury. The speed of execution prevents any meaningful
feedback from a user before the code finishes running.

One a terrific way to provide user feedback as part of a VBA
routine is to display the result of an action or information
about an action using a message box. As the name implies, a
message box is a dialog box that displays information of your
choosing. You can set the message box’s title, message and
the buttons that appear within it. A simple message box might
look like this:

Message boxes have many attributes that you can control
using VBA, but the first three are the most useful. The syntax to
display a message box using those three arguments is:

MsgBox(prompt, buttons, title)

where:

�� prompt is the text that appears in the body of the message
box (required)

�� buttons are clickable buttons, such as ‘OK’ or ‘Cancel’,
that appear in the body of the message box (optional)

�� title is the text that appears on the message box’s title
bar (optional).

u

M11_FRYE1975_01_SE_C11.indd 189 04/02/2013 14:13

190

Display a
message box
(cont.)

The prompt argument usually takes the form of a string
assigned to a variable. You can create a simple message box by
typing the string into the command, such as:

MsgBox(“Click OK to continue.”)

That said, many times you will want to combine several values
in the message. For example, you might have a routine that
calculates sales commissions. If the sales amount were in
the active cell, you could assign the first part of the prompt to
one variable and then add the value to the string using the ‘&’
concatenation operator.

Sub CalculateCommission()
Dim curSale As Currency
Dim curCommission As Currency
Dim strPrompt1 As String
Dim strPromptAll As String

curSale = ActiveCell.Value
curCommission = curSale * 0.15
strPrompt1 = “The commission due for
this sale is: £”
strPromptAll = strPrompt1 &
curCommission & “.”

MsgBox (strPromptAll)
End Sub

You can also control which buttons appear in your message
box. If you leave the argument blank, the message box will
contain an ‘OK’ button the user can click to dismiss the
message box. Table 11.1 shows the other button patterns
available to you and the values to which they correspond.

M11_FRYE1975_01_SE_C11.indd 190 04/02/2013 14:13

Using built-in functions and statements 191

Display a
message box
(cont.)

11

Table 11.1 Constants used to specify message box buttons

Constant Value Description

vbOKOnly 0 Display the ‘OK’ button
only

vbOKCancel 1 Display the ‘OK’ and
‘Cancel’ buttons

vbAbortRetry

Ignore
2 Display the ‘Abort’, ‘Retry’,

and ‘Ignore’ buttons
vbYesNoCancel 3 Display the ‘Yes’, ‘No’, and

‘Cancel’ buttons
vbYesNo 4 Display the ‘Yes’ and ‘No’

buttons
vbRetryCancel 5 Display the ‘Retry’ and

‘Cancel’ buttons

When a user clicks a button in a message box, their action
returns a value you can use to affect your code. For example,
a manager might get to decide whether a transaction earns a
bonus in addition to the usual commission. The button values
are shown in Table 11.2.

Table 11.2 Return values of message box buttons

Constant Value Description

vbOK 1 OK
vbCancel 2 Cancel
vbAbort 3 Abort
vbRetry 4 Retry
vbIgnore 5 Ignore
vbYes 6 Yes
vbNo 7 No

The code to create a message box with ‘Yes’ and ‘No’ buttons
and then to calculate commission plus bonus (if any) due on a
sale would be:

Sub CommissionPlusBonus()
Dim curSale As Currency

M11_FRYE1975_01_SE_C11.indd 191 04/02/2013 14:13

192

Display a
message box
(cont.)

Dim curCommission As Currency
Dim curBonus as Currency
Dim strPrompt1 As String
Dim strPromptAll As String
Dim intBonus as Integer

curSale = ActiveCell.Value
intBonus = MsgBox(“Bonus due?”, vbYesNo)
If intBonus = 6 Then
 curCommission = curSale * 0.2
 Else: curCommission = curSale * 0.15
End IfstrPrompt1 = “The commission due
for this sale is: £”
strPromptAll = strPrompt1 &
curCommission & “.”

MsgBox (strPromptAll)
End Sub

Finally, you can set the title to appear on the message box’s
title bar. That value won’t usually change, but you could still
assign its value to a variable to make the MsgBox statement
shorter. You should also use parameters, rather than
arguments, to specify the MsgBox statement’s attributes. As
an example, you could use the following statement:

MsgBox Prompt:=strPromptAll,
Buttons:=vbYesNo, Title:=“Commission”

Running the previous code would generate a message box with
the title ‘Commission’, ‘Yes’ and ‘No’ buttons and a prompt that
reflects the value of variable strPromptAll.

See also

For more information on
If…Then…ElseIf
statements, see Chapter 12.

Did you know?
To create a message box
with just an ‘OK’ button, set
the buttons argument to ‘0’
or leave it blank.

?

M11_FRYE1975_01_SE_C11.indd 192 04/02/2013 14:13

Using built-in functions and statements 193

Get data from an
InputBox

11

One of the difficulties of programming in Excel VBA is
incorporating user input into a routine that is underway. If you
create a worksheet that contains several cells clearly marked as
requiring user input, you can have the user enter their information
into worksheet cells and then run your code. Alternatively, if your
code is currently running, you will either need to direct the user to
enter data into specific cells and then click another button before
proceeding or capture that same data using an InputBox.

Like a message box, discussed in the previous section, an
InputBox displays a message you specify. The difference is that
there are controls within the box that can accept user input,
such as typed words or a cell range the user selects from the
active worksheet.

The Application.InputBox method can take several
parameters, but the three you will use most often are:

1 Prompt the text to display within the InputBox (required)

2 Title the text that appears on the title bar of the InputBox
(optional)

3 Type the type of InputBox to display (optional – InputBox
types are summarised in Table 11.3).

Table 11.3 Values for the InputBox method’s Type parameter

Value Meaning

0 A formula

1 A number

2 Text (a string)

4 A logical value (‘True’ or ‘False’)

8 A cell reference, as a Range object

16 An error value, such as #N/A

64 An array of values

u

M11_FRYE1975_01_SE_C11.indd 193 04/02/2013 14:13

Get data from an InputBox

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

curOffer =
Application.
InputBox
(Prompt:string,
Title:=string,
Type:=number)

194

Get data from an
InputBox (cont.)

As an example, suppose you require information about a
percentage discount to be applied it to a customer’s order. You
can gather that information using an InputBox and assign it to
a variable, as in the following code:

curOffer = Application.InputBox(“Please
enter your offer for the item.”)

If you wanted to add a title to the InputBox, you could do so as
follows:

curOffer = Application.InputBox (Prompt:=
“Enter an offer”, Title:= “Offer”)

The two code examples shown earlier assume you want a value
such as a number or text string. If you want the user to identify
a range of cells using the InputBox, you need to assign the
proper value to the Type parameter. As shown in Table 11.3,
setting the Type parameter to 8 lets the user select a range of
cells. That code might look like this:

Dim rngValueRange as Range
Set rngValueRange = Application.
InputBox(“Select a range.”, Type:=8)
MsgBox(rngValueRange.Address)

Running this code displays an InputBox that accepts a selected
range as its input.

M11_FRYE1975_01_SE_C11.indd 194 04/02/2013 14:13

Using built-in functions and statements 195

Get data from an
InputBox (cont.)

11

Did you know?
The values you can assign to the Type parameter are
additive, meaning that if you want to allow a number (1)
or a text string (2), you can add them together to create
an assignment statement such as Type:=3.

?

Important

If you set the Type parameter to 64, you must define
the variable to which you assign the InputBox’s value as
an array.

!

M11_FRYE1975_01_SE_C11.indd 195 04/02/2013 14:13

Display the current date
and time

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows one of
these patterns:

Date()

Time()

196

Display the
current date
and time

Any data you gather could provide valuable information about
your organisation’s performance, but you need to ensure you
know when the information was gathered. Updating a database
daily with last year’s information is not a sound business
practice.

To display the current date, use the statement Date(). If you
want to display the current date in a message box, you can use
the following statement:

MsgBox(Date())

Similarly, the code to display the current time is:

MsgBox(Time())

You can treat the date and time values as strings and combine
them into a single message box using the code:

MsgBox(Date & “ “ & Time())

u

Did you know?
The specific format
displayed by the date and
time functions depends on
your computer’s regional
settings.

?

M11_FRYE1975_01_SE_C11.indd 196 04/02/2013 14:13

Format a date

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

FormatDateTime
(Cells(row, column),
format)

Using built-in functions and statements 197

uFormat a date

11

Dates are important, regardless of whether they refer to
the start of a project, the anniversary of an event or the
completion date of a future project. It’s absolutely vital that you
communicate dates clearly, whether in your worksheet or any
your Excel VBA programs. The format you select for your dates
depends on your audience and industry standards, but you can
display dates in several formats using Excel VBA.

To display a date or time value in a specific format, use the
FormatDateTime method, which has the following syntax:

FormatDateTime(Cells(row, column),

format)

You must use the Cells property, not the Range property,
to identify the cell that contains the date you want to display.
Note that the row comes first, followed by the column. You
must refer to the column by number, not letter. For example,
you refer to cell C1 (row 1, column 3) as:

Cells(1, 3)

The Format argument can take on one of five values, as
shown in Table 11.4.

Table 11.4 Constants used to specify date and time formats

Constant Description

vbGeneral

Date
Display a date and/or time. If there is a date
part, display it as a short date. If there is a
time part, display it as a long time. If present,
both parts are displayed

vbLong

Date
Display a date using the long date format
specified in your computer’s regional settings

vbShort

Date
Display a date using the short date format
specified in your computer’s regional settings

vbLong

Time
Display a time using the time format specified in
your computer’s regional settings

vbShort

Time
Display a time using the 24-hour format
(hh:mm)

M11_FRYE1975_01_SE_C11.indd 197 04/02/2013 14:13

If cell C1 contains a time, you can assign that time, written in
the 24-hour format, to a string variable using this statement:

strTimeValue =
FormatDateTime(Cells(1,3), vbShortTime)

To display the time, create a message box that uses the
strTimeValue variable as its prompt:

MsgBox(strTimeValue)

Did you know?
You can determine the number of a column by
remembering the mnemonic EJOTY. E is the fifth letter
of the alphabet, J is the tenth, O the fifteenth, T the
twentieth and Y the twenty-fifth. Just find a letter close
to the column’s letter and count up or down as required.

?

198

Format a date
(cont.)

M11_FRYE1975_01_SE_C11.indd 198 04/02/2013 14:13

Using built-in functions and statements 199

Remove spaces
from a string

11

Excel 2010 is ideally suited to handling numbers, but it is also
extremely effective at managing textual data. Whether your
worksheets contain information such as product names or
descriptions, customer names and addresses or salutations
to be used as part of a mail merge program, you will find
surprising amounts of text in your worksheets.

To get the best results from Excel’s text-handling capabilities,
you should ensure that the text strings in your workbook
contain as few errors as possible. One of the most common
errors is for Excel string data to have excess spaces, whether
entered by people pressing the spacebar when they shouldn’t
or by transferring a file from another database format that
happens to include blank spaces with the data so that every
field contains values of the same length.

You can use three different VBA functions to remove spaces
from a string: Trim, LTrim and RTrim.

1 Trim removes excess blank spaces from the beginning and
end of a string

2 LTrim removes excess blank spaces from the beginning
(that is, the left end) of a string

3 RTrim removes excess blank spaces from the end (that is,
the right end) of a string.

The syntax of each function is quite straightforward and follows
this pattern:

Trim(string)

You can also use a cell reference, such as:

Trim(Range(“cell”))

If the string is assigned to a variable, you can use the variable’s
name in place of the string or cell reference. If you specify the
string, you must enclose it within double quotes:

Trim(“ commission due. ”)

u

M11_FRYE1975_01_SE_C11.indd 199 04/02/2013 14:13

One peculiarity of the Trim, LTrim and RTrim functions
is that they return a result of type Variant, rather than type
String. If you want to force these functions to return a
string, you can add a dollar sign ($) to the end of the function
name. Combining this code with a message box statement,
such as:

MsgBox(Trim$(“ Thank you for your
order. ”))

would return the following result shown in the figure.

Did you know?
None of the functions removes excess spaces from the
interior of a string. If there are multiple spaces within a
string’s text, these functions assume they are supposed
to be there.

?

Remove spaces from a string

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Trim$(string)

200

Remove spaces
from a string
(cont.)

M11_FRYE1975_01_SE_C11.indd 200 04/02/2013 14:13

Locate a portion of a string

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Left(string, length)

Right(strProductID,4)

Mid(strProductID,7,2)

Using built-in functions and statements 201

Locate a portion
of a string

11

Text strings, such as product names or stockkeeping units
(SKUs), often have quite a bit of information built into them.
For example, a vehicle identification number might contain
information about the make, year and model of that vehicle. If
you want to extract a specific part of that information from the
string, you can do so using VBA, as long as the data follows an
identifiable pattern.

You can use three functions to return portions of a text string:
Left, Right and Mid. The Left and Right functions
return a given number of characters from a string, starting
from either the left or right end. The basic syntax of the Left
function is:

Left(string, length)

The syntax for Right is exactly the same, except it counts
from the right end of the string. As an example, suppose
you have a value CA042908BU assigned to the variable
strProductID. If the first two characters represent the
product’s department, you can display them using this code:

MsgBox(Left(strProductID, 2))

Similarly, if the last four characters of the ProductID (those at
the right end of the string) represent the model and colour of the
product, you could assign them to a variable using this code:

MsgBox(Right(strProductID, 4))

u

M11_FRYE1975_01_SE_C11.indd 201 04/02/2013 14:13

202

Locate a portion
of a string (cont.)

You can find a value from the middle of a string using the Mid
function, the syntax for which is different from, but similar to,
that for Left and Right:

Mid(string, start, count)

where:

�� string is the string (a literal string, a variable or a range
reference)

�� start is the character at which to start returning the value

�� count is the number of characters to return, including the
first.

For example, if the value of strProductID were
CA042908BU, the following code would display the seventh
and eighth characters – 08:

MsgBox(Mid(strProductID, 7, 2))

The Left, Right and Mid functions return Variant
values by default. If you want to force them to return strings,
add a dollar sign ($) to the end of the function name (such as,
Left$).

M11_FRYE1975_01_SE_C11.indd 202 04/02/2013 14:13

Concatenate strings

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

strFullString
= strString1 &
strString2 & …

Using built-in functions and statements 203

Concatenate
strings

11

Many of the actions you will take in Excel workbook involve
data from several different sources. For example, a customer
order could contain information such as the customer’s first
name, last name and address, as well as the order amount and
any tax or postage due. If you want to create a confirmation
message, such as by using a message box, you will need to
combine those a several bits of information into a single string
to be displayed in the message box.

Combining bits of text into a single string is called
concatenation. Concatenation is handled in Excel VBA by using
the ampersand character (&). For example, you could assign
text to a string variable, a currency value to another variable
and combine those variables with other values into a single
message box prompt. For example:

Dim strPrompt1 as String
Dim strPromptAll as String
Dim curBuyerCom as Currency
curBuyerCom = ActiveCell.Value * 0.07
strPrompt1 = “Your buyer’s commission
for this item is: £”
strPromptAll = strPrompt1 & curBuyerCom
& “.”
MsgBox (strPromptAll)

u

Did you know?
You can also use the ‘&’
character to concatenate
values in worksheet
formulas, such as =C2 & C3.

?

M11_FRYE1975_01_SE_C11.indd 203 04/02/2013 14:13

M11_FRYE1975_01_SE_C11.indd 204 04/02/2013 14:13

Managing code using logical constructs 205

Managing code using
logical constructs

Introduction

Many Excel VBA routines are straightforward – when you run
them from the Macros dialog box or by clicking a worksheet
object, they execute their code and the result appears in your
workbook. As your workbooks become more complex, you will
no doubt find that you must decide when a macro should run
and, in some cases, which of several paths it should take. In
this chapter, you will learn how to control your VBA code using
logical constructs such as the For…Next and For…Each
loops, If…Then statements, Case statements and other
techniques.

What you’ll do

Create a For…Next loop

Create a For…Each loop

Create an If…Then…ElseIf
statement

Create using a Case statement

Create a Do loop

Create a Do…While loop

Create a Do…Until loop

Call another macro from within
your code

Refer to objects using a With…
End With statement

12

M12_FRYE1975_01_SE_C12 .indd 205 04/02/2013 14:13

Create a For…Next loop

 1 Create a subroutine.

 2 In the body of the subroutine.

a. create a For…Next loop

b. create a For…Next loop
with a Step parameter.

206

uCreate a For…
Next loop

Much of the code you write in Excel VBA will be executed once in
a subroutine. For example, you could display a message box with
the name of a customer, find the date a delivery is due or look up
the wholesale price of an item from a distributor. If you do need to
repeat a segment of your code, perhaps looking up multiple prices
or customer names, you can do so using a For…Next loop:

For counter = start To finish
Code
Next counter

The loop structure begins at the start value, executes the code
in the body of the loop, increases the counter value by one, then
returns to the For statement, where the counter value increases.
The process repeats until the counter exceeds the finish value.

For example, you might have a series of five prices in cells
A2:A6. If you want to read those values into a VBA array, you
could do so using this code:

Dim curPrices(4) as Currency
Dim intCounter as Integer
Range(“A2”).Activate
For intCounter = 0 To 4
curPrices(intCounter) = ActiveCell.
Offset(intCounter, 0).Value
Next intCounter

By default, each step in a For…Next loop increases the
counter value by one. You can move through a For…Next
loop in different increments by specifying a Step value. For
example, you could display every other element in an array by
using a Step value of two:

For intCounter = 0 To 4 Step 2
MsgBox(curPrices(intCounter))
Next intCounter

If you’d like to work backwards through an array, you can make
the start value larger than the finish value and specify a negative
Step increment:

For intCounter = 4 To 0 Step –1
MsgBox(curPrices(intCounter))

Next intCounter

Did you know?

If you have trouble moving
through every element in an
array using a For…Next
loop, remember that arrays
are numbered from zero in
Excel VBA.

?

M12_FRYE1975_01_SE_C12 .indd 206 04/02/2013 14:13

Create a For…Each loop

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Dim var as Variant
For Each var in
Collection
 <action>
Next var

Managing code using logical constructs 207

Create a For…
Each loop

12

For…Next loops are useful, straightforward code constructs
that let you repeat your code a set number of times. The
difficulty arises when you don’t know (or don’t want to take the
time to discover) how many times you want to repeat the code.

As an example, suppose you want to add the string ‘2012’
to every sheet name in a workbook. It’s certainly possible to
use the Sheets collection’s Count property to discover
the number of sheets in a workbook, but you then have to
assign that value to the For…Next loop’s counter variable.
Fortunately, there is a way to step through a collection of objects
without using a counter. That technique is the For…Each loop.

The basic structure of the For…Each loop is as follows:

For Each element In collection
 Code
Next element

As a simple example, suppose you have an array named
curPrices and want to display each value in a message
box. Rather than count the number of elements in the array
and use that result in a For…Next loop, you can use a For…
Each loop to display each value:

Dim var as Variant
For Each var in Collection
MsgBox(var)
Next var

When you use a For…Each loop to refer to objects, such as
workbooks or worksheets, you must define object variables to
represent them in the loop. To return to our example, to use VBA
code to add the string ‘2012’ to the end of every worksheet’s
name in the active workbook, you could use this subroutine:

Sub WorksheetNames()
Dim wbk As Workbook
Dim wks As Worksheet

Set wbk = ThisWorkbook
For Each wks In wbk.Worksheets
 wks.Name = wks.Name & “2012”
Next wks
Set wbk = Nothing

End Sub

Did you know?
Using a variable of type
Variant as your For…
Each loop counter lets you
refer to any type of data,
including objects such as
workbooks or worksheets.

?

u

M12_FRYE1975_01_SE_C12 .indd 207 05/02/2013 10:44

Create an If…Then…
ElseIf statement:

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows one of
these patterns:

a. If…Then on a single line.

b. If…Then…Else, where
Else appears on its own
line.

c. If…Then…ElseIf…
Else, where ElseIf and
Else appear on their own
lines.

208

uCreate an If…
Then statement

Life is rarely simple, especially when your affairs have
progressed to the point where you require VBA to customise
the workbooks you use to track them. If the procedure you
want your workbook to follow varies according to the data
it contains, you can use If…Then statements to determine
which path to follow.

Excel VBA includes several types of If…Then statements. The
first variation is the IIf function, which is an implementation
of the workbook function IF. The syntax for the IIf function is
exactly the same as that of the workbook function:

IIf(test, value_if_true, value_if_false)

As an example, you might want to grant 6 per cent commission
for any sale greater than £500 and 4 per cent otherwise. To
calculate that commission based on the value in the active cell,
you could create a subroutine using the IIf function:

Sub CalculateCommission()
Dim curSaleValue as Currency
Dim curCommission as Currency
curSaleValue = ActiveCell.Value
curCommission = IIf(curSaleValue>
500,curSaleValue * 0.06, _
 curSaleValue * 0.04)
MsgBox (“£” & curCommission)
End Sub

The best time to use the IIf function is when you have a
working IF formula in a worksheet and want to copy it over
directly – with the caveat that any cell references from the
formula must be updated so they work in VBA. That said,
complex or nested IF formulas can be hard for humans to
read. If you have a complex IF formula or if you want to create
a new conditional statement in VBA, it’s much easier to use the
If…Then construction.

M12_FRYE1975_01_SE_C12 .indd 208 04/02/2013 14:13

Managing code using logical constructs 209

Create an If…
Then statement
(cont.)

12

The basic form of the If…Then construct asks if a condition
is true. If it is, the routine runs the code within the construct;
otherwise, it does nothing.

If test Then action

For example, you could examine the value of a sale and, if it
exceeds a threshold level, display a message indicating that the
sale qualifies for a bonus.

Sub OneLineIfThen()
If ActiveCell.Value >= 1000 Then MsgBox
(“Sale qualifies for bonus.”)
End Sub

If you require a bit more flexibility, such as executing separate
sets of instructions based on whether the condition is true or
not, you can use an If…Then…Else statement to manage
your program’s logic:

If test Then
 Code if the condition is true
 Else
 Code if the condition is false
End If

Sub OneElse()
Dim curCommission as Currency
If ActiveCell.Value >= 1000 Then
 curCommission = ActiveCell.Value *

0.06
 Else
 curCommission = ActiveCell.Value

* 0.05
End If

MsgBox (“£” & curCommission)
End Sub

In the same way that you can manage true or false conditions
using an If…Then…Else construction, you can manage
three or more conditions using an If…ElseIf construction.
The ElseIf keyword, which can be repeated, lets you
establish multiple conditions:

Important

Note that the Else
keyword appears on its own
line in the code listing. If it
doesn’t, the VBA interpreter
will flag it as an error.

!

M12_FRYE1975_01_SE_C12 .indd 209 04/02/2013 14:13

210

Create an If…
Then statement
(cont.)

If condition1 Then
Code1
ElseIf condition2 Then
Code2
ElseIf condition3 Then
Code3

Else
Code
End If

The canonical example for If…ElseIf constructions is that
of calculating sales commissions based on sales amounts. For
instance, you could set differing commission rates for sales of
the £10,000, £5,000, £1,000 and below £1,000 levels.

Sub ElseIfExample()
Dim curCommission as Currency

If ActiveCell.Value >= 10000 Then
 curCommission = ActiveCell.Value *
0.08
 ElseIf ActiveCell.Value >= 5000 Then
 curCommission = ActiveCell.
Value * 0.07
 ElseIf ActiveCell.Value >= 1000 Then
 curCommission = ActiveCell.Value
* 0.06
 Else
 curCommission = ActiveCell.Value *
0.05
End If

MsgBox (“£” & curCommission)
End Sub

Note that the ElseIf…Then lines are constructed in exactly the
same manner as If…Then lines. Also, as with If…Then…Else
statements, the Else keyword must appear on its own line.

Important

Excel exits an If…Then
construction of any variety
when it encounters the
first True condition.
You should therefore
list your most restrictive
condition first.

!

M12_FRYE1975_01_SE_C12 .indd 210 04/02/2013 14:13

Create a Case statement

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Select Case

Case Is condition

(this line is repeatable for
different conditions)

Case Else

Managing code using logical constructs 211

Create a Case
statement

12

Excel VBA offers two main ways to conditionally execute code:
If…Then constructions and Case constructions. The two
constructions have similar effects on your code, so which one
you use is largely a matter of taste. Some programmers find
that the Case Is syntax is easier to read for more than two
or three conditions, so they tend to use them when their code
must distinguish four or more cases.

The Case statement has the following general syntax:

Select Case variable
Case Is condition1
Action1
Case Is condition2
Action2

Case Else
Action else
End Select

You may have as many Case Is statements as you like but
only one Case Else statement, which must also be the last
statement in the Select Case structure. Code to calculate
sales commissions using a Case statement could take on the
following form:

Sub SelectRate()

Dim curTotal As Currency
curTotal = ActiveCell.Value

Select Case curTotal
Case Is >= 10000
 curCommission = curTotal * 0.08
Case Is >= 1000
 curCommission = curTotal * 0.06
Case Is >= 500
 curCommission = curTotal * 0.05
Case Else
 curCommission = curTotal * 0.04
End Select

MsgBox (“Your commission is £” &
curCommission)
End Sub

u

Important

If the comparison value
doesn’t fit any of the Case
Is criteria, the Select
Case statement returns a
value of zero.

!

Did you know?

As with If…Then
statements, Excel VBA stops
checking Case statement
as soon as it encounters a
true condition.

?

M12_FRYE1975_01_SE_C12 .indd 211 04/02/2013 14:13

Create a Do loop

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Do

 Code

 Test Then Exit Do

 Code

Loop

212

uCreate a Do loop For…Next and For…Each constructions, described earlier
in this chapter, let you repeat code as long as a counter variable
stays within a given range or until every member of a collection
has been touched by the code. If your conditions are more
variable, such as when you’re examining inventory or loading a
truck up to but not over a known capacity, you can use a Do loop.

A Do loop repeats a section of code until it encounters the
Exit Do statement, which causes the program to jump out
of the loop and execute the next instruction below the Loop
statement in the code module.

The Do loop has the following general syntax:

Do
 Code
 Test Then Exit Do
 Code
Loop

Programmers can use an If…Then or other conditional
statement to determine if the condition to exit the loop has been
met. For example, you could create a Do loop that locates the
first blank cell in column B of the worksheet named ‘Orders’.

Sub FindFirstEmptyDL()
Worksheets(“Orders”).Activate
Range(“B1”).Activate
Do
 If ActiveCell.Value = “” Then Exit Do
 ActiveCell.Offset(1, 0).Activate
Loop
End Sub

See also

For more information
on If…Then and other
conditional statements, see
elsewhere in this chapter.

Important

Be sure to test your code to ensure the condition you set
can be met. If it can’t, your code will run indefinitely until
you press Ctrl+C to end it.

!

M12_FRYE1975_01_SE_C12 .indd 212 04/02/2013 14:13

Create a Do…While loop

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Do

 Code

Loop While condition

Managing code using logical constructs 213

u

Create a Do…
While loop

12

The basic Do loop uses an internal construction, such as an
If…Then statement, to determine when to exit the loop by
invoking an Exit Do statement. That construction is easy
to understand, but it’s not as compact as it might be. One
alternative is to use a Do…While loop, which executes the code
within the loop once and checks whether or not a condition is
still True. If the condition is met, Excel executes the code within
the loop and repeats its check, either returning to the top of the
loop or continuing with the next line in the subroutine.

The Do…While loop has the following basic syntax:

Do
 Code
Loop While condition

For example, you could find the total weight of packages to be
loaded on to a truck and keep adding to the list while the total
weight is less than or equal to 1000 kg.

Sub LoadWeight()
Dim sngTotalWeight as Single
Worksheets(“Loading”).Activate
Range(“A2”).Activate
sngTotalWeight = 0

Do
 sngTotalWeight = sngTotalWeight +

ActiveCell.Value
 ActiveCell.Offset(1, 0).Activate
Loop While sngTotalWeight + ActiveCell.
Value <= 1000
MsgBox (“Total weight is ” &
sngTotalWeight & “ kg.”)

End Sub

Did you know?

You could add an If…Then
statement inside the Do…
While loop to alert you if a
package has a listed weight
of more than 1000 kg.

?

M12_FRYE1975_01_SE_C12 .indd 213 04/02/2013 14:13

Create a Do…Until loop

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

Do

 Code

Loop Until
condition

214

uCreate a Do…
Until loop

Loops that follow the Do…While pattern execute a block of
code once before checking whether or not a condition is still
True. If it is, the loop repeats, checks again and either exits the
loop or goes back to the top. The Do…Until loop is similar,
but it phrases the condition differently. If the condition, such as
a minimum value of items in a gift pack, has not been met, the
loop repeats. If it has, Excel steps out of the loop and executes
the next instruction in the subroutine.

The Do…Until loop has the following general syntax:

Do
 Code
Loop Until condition

To return the example mentioned earlier, you could create a
routine that adds items to a gift basket until a minimum value
has been reached. The loop would track the value of each item
and exit when the minimum was reached.

Sub MakeBasket()
Dim curTotalValue as Currency
Worksheets(“Items”).Activate
Range(“A2”).Activate
curTotalValue = 0

Do
 curTotalValue = curTotalValue +

ActiveCell.Value
 ActiveCell.Offset(1, 0).Activate
Loop Until curTotalValue >= 50
MsgBox (“Total value is £” &
curTotalValue & “.”)

End SubDid you know?

The Do…While and Do…
Until loops can have
equivalent behaviours, so
use the construction that
best fits how you want to
phrase the condition that
controls their function.

?

M12_FRYE1975_01_SE_C12 .indd 214 04/02/2013 14:13

Call another macro from within
your code

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

RoutineName
(arguments)

Managing code using logical constructs 215

uCall another
macro from
within your code

12

One terrific feature of object-oriented programming is the
ability to write your code in a modular fashion. What modular
means in this context is that you can create a small, discrete
unit of code to which you can refer from other blocks of code
instead of recreating it every time you need its functionality.

For example, suppose you create a subroutine to display a
message box that contains the commission due for a sale.

Sub CalculateCommission(curTotal as
Currency)

Select Case curTotal
Case Is >= 10000
 curCommission = curTotal * 0.08
Case Is >= 1000
 curCommission = curTotal * 0.06
Case Is >= 500
 curCommission = curTotal * 0.05
Case Else
 curCommission = curTotal * 0.04
End Select

MsgBox (“Your commission is £” &
curCommission)
End Sub

Rather than write and rewrite this somewhat lengthy Case
statement whenever you need to calculate a commission,
you can call it from another routine by name. The following
subroutine takes the value from the active cell, displays it as the
sales amount, and then calls the CalculateCommission
subroutine listed above to display the commission due:

Sub DisplaySale()
Dim curSale As Currency

curSale = ActiveCell.Value
MsgBox (“Sale value is £” & curSale)
CalculateCommission (curSale)

End Sub

Did you know?
In older versions of Excel
VBA, you had to use the
Call keyword to execute
another macro.

?

M12_FRYE1975_01_SE_C12 .indd 215 04/02/2013 14:13

Refer to objects using a
With…End With statement

 1 Create a subroutine.

 2 In the body of the subroutine,
enter code that follows this
pattern:

With object
 .Property1
 .Property2…
End With

216

uRefer to objects
using a With…
End With
statement

Excel is a vast and occasionally complicated program. Even
the most innocuous of objects can have numerous properties
associated with it. For example, a single worksheet cell has
numerous formatting options – one of which is the font used to
display the cell’s contents. The Font object, in turn, has numerous
properties of its own that you can affect, such as the name of the
font, its size, colour and whether to have outline or shadow.

To apply a series of formatting options using standard notation,
you would use a series of statements such as:

Selection.Font.Name = “Arial”
Selection.Font.Size = 11
Selection.Font.Strikethrough = False
Selection.Font.Superscript = False

Typing the Selection.Font leader for each line is time-
consuming and, thankfully, unnecessary due to the With…End
With construction:

With object.property
.property1 = value
.property2 = value

End With

For example, if you wanted to format a cell’s text, you could do
so using the following code:

Sub FormatCell()
 Range(“A2”).Select
 With Selection.Font
 .Name = “Arial”
 .Size = 11
 .Strikethrough = False
 .Superscript = False
 .Subscript = False
 .OutlineFont = False
 .Shadow = False
 .Underline = xlUnderlineStyleNone
 .ThemeColor = xlThemeColorLight1
 .TintAndShade = 0
 .ThemeFont = xlThemeFontNone
 End With
End Sub

Important

Be sure to include the End
With statement so the
VBA interpreter knows to
stop looking for properties
of the object in the With
statement.

!

Did you know?
Recording a macro that
affects the workbook object
you want to control often
produces a With…End
With construct you can use
as a template for your code.

?

M12_FRYE1975_01_SE_C12 .indd 216 04/02/2013 14:13

Debugging your VBA code 217

Debugging your VBA code

Introduction

Writing VBA code is a tricky business. VBA is a well-defined
language, but it’s easy for human beings to make mistakes,
whether in code syntax, logic or the occasional spelling error.
Here, you’ll learn various techniques to track your variables
throughout a subroutine’s execution, examine your code’s
behaviour step by step and handle errors that occur.

What you’ll do

Execute code in the Immediate
window

Set a breakpoint in your VBA code

Watch a value in a routine

Step through your code one line
at a time

Skip over a subroutine

Step out of a subroutine

Manage errors using an On
Error GoTo statement

Manage errors using an On
Error Resume Next
statement

Manage errors using an
On Error GoTo 0 statement

13

M13_FRYE1975_01_SE_C13.indd 217 04/02/2013 14:13

Execute code in the Immediate
window

 1 If necessary, in the Visual
Basic Editor, click View, then
Immediate Window to display
the Immediate Window.

 2 Type the line of code you
want to execute and then
press Enter.

218

uExecute code in
the Immediate
window

Several of the techniques you will learn in this chapter involve
stepping through a VBA procedure one instruction at a time.
If you are moving through a VBA procedure in this way, you
might want to check on the value of a variable or the address
of the active cell as you go. You can certainly create a MsgBox
statement to display the value of a variable at a given point,
but you will either have to add a message box every time you
want the value to be displayed or edit your code to change the
position of the statement.

Rather than add an instruction to your subroutine, you can type
it in the Immediate window. The Immediate window appears at
the bottom of the Visual Basic Editor; if it doesn’t appear, you can
display it by clicking View, then Immediate Window in the menu.

To use the Immediate window, type a single line of code in
the window, then press Enter. When you do, Excel executes
that code and displays the result. For example, you could type
the command MsgBox(ActiveCell.Address) in the
Immediate window. When you press Enter, the Visual Basic
Editor will display a message box that contains the address of
the active cell in the immediate window.

Did you know?
Alternatively, you can
press Ctrl+G to display the
Immediate window.

?

M13_FRYE1975_01_SE_C13.indd 218 04/02/2013 14:13

Set a breakpoint in your
VBA code

 1 In the vertical bar that runs
along the left edge of the code
window, click to display a
brick red circle that represents
the breakpoint.

 2 Click a breakpoint circle to
remove it from the Visual
Basic Editor.

Debugging your VBA code 219

13

uSet a breakpoint
in your VBA code

When you test a VBA routine, you might want to stop your
code executing without exiting the subroutine entirely. You
could display a message box containing a value of interest,
which is a very common and extremely useful technique, but
you could also define a breakpoint in your VBA code so you
can investigate the values assigned to any of your variables
without creating a message box for each one.

To add a breakpoint your code, display the module that
contains your subroutine then, in the vertical bar at the left
side of the code window, click next to the line where you want
to pause. Doing so displays a brick red circle in the bar and
highlights the line in your subroutine to indicate where your
code will stop executing.

While your code is stopped, you can hover your mouse pointer
over any variable in your code to display a tool tip that contains
the variable assigned to the value.

When you’ve finished investigating your code, pressing the F5
key resumes the execution of the code. You can remove the
breakpoint by clicking its circle in the vertical bar.

Did you know?
To halt your code’s
execution instead of
completing the run, click
Run…Break on the menu
bar or press Ctrl+Break.

?

Important

If your breakpoint occurs
inside a loop, it’s possible
your code will stop more
than once.

!

M13_FRYE1975_01_SE_C13.indd 219 04/02/2013 14:13

Watch a value in a routine

 1 Click Debug…Add Watch.

 2 Type the name of the variable
you want to monitor in the
Expression box.

 3 Click OK.

 4 To manage a watch, do one
the following:

a. Right-click the watch and
click Edit Watch to display
the Edit Watch dialog box.

b. Right-click the watch
and click Delete Watch to
delete it.

220

uWatch a value in
a routine

When you create a complicated subroutine, it will often be
difficult for you to follow the values of specific variables as they
change during the code’s execution. You can use breakpoints
to halt your code and display the values you’re interested
in. What’s more, breakpoints are particularly effective in
combination with watches.

In the Visual Basic Editor, a watch displays the value of
variables you identify. To create a watch, click Debug… Add
Watch on the menu bar. When you do, the Add Watch dialog
box appears.

Type the name of the variable you want to monitor in the
Expression box at the top and click OK. Doing so causes
the Watches window to appear at the bottom of the Visual
Basic Editor.

You can create as many watches as you want. Then, when you
run your code, the Watches window displays the value of any
variable for which you have set a watch. Because subroutines
run very quickly, it’s best to set breakpoints in your code so
you can observe the values you’re interested in at specific
points in the routine.

M13_FRYE1975_01_SE_C13.indd 220 04/02/2013 14:13

Debugging your VBA code 221

13

Watch a value in
a routine (cont.)

To edit a watch, right-click it in the Watches window and click
Edit Watch from the shortcut menu that appears to display the
Edit Watch dialog box. The Edit Watch dialog box
is identical, bar the name, to the Add Watch dialog box. To
delete a watch, right-click it in the Watches window and click
Delete Watch.

Did you know?
You can resize the Watches window by dragging its
edges, just like other dialog boxes and panes in the
Visual Basic Editor.

?

M13_FRYE1975_01_SE_C13.indd 221 04/02/2013 14:13

Step through your code one
line at a time

 1 Display a subroutine.

 2 Press F8 to execute the next
line of code.

222

uStep through
your code one
line at a time

Programming in VBA is an exacting process. The VBA
interpreter does exactly what you tell it to, even if that’s not
what you meant for it to do. If your VBA code generates
unexpected results and you are unable to discover the source
of the error, you might need to step through your code one line
at a time to identify the problem.

To execute one instruction at a time, press the F8 key. Doing
so highlights the Sub statement at the top of the subroutine.
When you press F8 again, the Visual Basic Editor executes the
highlighted instruction and highlights the code on the next line.

You can continue to execute your code in this way by pressing
the F8 key. If you want to run your code to the end, press the
F5 key.

Did you know?
The Visual Basic Editor doesn’t pause to highlight Dim
statements.

?

Did you know?

Click Run…Break or press Ctrl+Break to stop
executing the subroutine.

?

M13_FRYE1975_01_SE_C13.indd 222 04/02/2013 14:13

Skip over a subroutine

 1 Press Shift+F8.

Debugging your VBA code 223

13

uSkip over
a subroutine

Moving through your code one line at a time by pressing the
F8 key is an extremely useful technique to help you identify
problems in your code. Unfortunately, the process can be
extremely slow for complicated routines or ones that contain
loops which repeat numerous times.

If your VBA code calls a subroutine that you are certain returns
a correct result, you can run the subroutine in its entirety and
stop before executing the next line in the main subroutine. For
example, suppose you want to call a subroutine that calculates
commissions from another subroutine. The code for those two
subroutines might look like this:

Sub CalculateCommission()

Dim curTotal As Currency

curTotal = ActiveCell.Value

MsgBox (“Sale value is £” & curTotal)

Select Case curTotal
Case Is >= 10000
 curCommission = curTotal * 0.08
Case Is >= 1000
 curCommission = curTotal * 0.06
Case Is >= 500
 curCommission = curTotal * 0.05
Case Else
 curCommission = curTotal * 0.04
End Select

MsgBox (“Your commission is £” &
curCommission)
End Sub

M13_FRYE1975_01_SE_C13.indd 223 04/02/2013 14:13

224

Skip over a
subroutine
(cont.)

The subroutine to call the commission calculator might look
like this:

Sub DisplaySale()
Dim curSale As Currency

curSale = ActiveCell.Value
MsgBox (“Sale value is £” & curSale)
CalculateCommission
MsgBox (“Both routines completed.”)
End Sub

If you place the cursor in the DisplaySale subroutine,
pressing F8 will move you through its code one step at a
time. When the line to call the CalculateCommission
subroutine is highlighted, pressing Shift+F8 executes the entire
called subroutine but halts before executing the line below it, in
the DisplaySale subroutine.

Did you know?
Pressing Shift+F8 when the highlighted line of code
doesn’t call another subroutine has the same effect as
pressing F8 – the Visual Basic Editor simply executes
the next line of code.

?

M13_FRYE1975_01_SE_C13.indd 224 04/02/2013 14:13

Step out of a subroutine

 1 Press Control+Shift+F8.

Debugging your VBA code 225

13

uStep out of a
subroutine

As you become a more experienced VBA programmer, you
will create code that calls one or more subroutines. When you
debug your code, you’ll often find it useful to move through
the instructions step-by-step by pressing F8. For example, you
could create code that uses a called subroutine to calculate
sales commissions.

Sub DisplaySale()
Dim curSale As Currency

curSale = ActiveCell.Value
MsgBox (“Sale value is £” & curSale)
CalculateCommission (curSale)
End Sub

As you move through your code, you might find that, instead
of skipping over a subroutine, you have pressed F8 and
entered into the subroutine. If the highlighted instruction is
within the subroutine and you would like to execute the rest of
the subroutine without stopping, you can do so by pressing
Control+Shift+ F8. When you do, the Visual Basic Editor will
run the rest of the subroutine, halting only when it returns to
the body of code that called subroutine.

Did you know?
Pressing Control+Shift+F8 when the highlighted line of
code isn’t within a called subroutine has the same effect
as pressing F8 – the Visual Basic Editor simply executes
the next line of code.

?

M13_FRYE1975_01_SE_C13.indd 225 04/02/2013 14:13

Create an On Error GoTo
statement

 1 Create a subroutine.

 2 In the body of the subroutine,
do the following:

a. Write a line of code such
as On Error GoTo
label:

b. Write Exit Sub on the
line above the line label.

c. Write the line label,
followed by a colon.

d. Complete the error-
handling code.

226

uManage errors
using an
On Error
GoTo statement

Writing Excel VBA routines can be a complicated process.
As you become more familiar with the language and gain
experience as a programmer, you will write increasingly
complex code. This complexity all but guarantees you’ll make
some mistakes. There is also the very real possibility (even
certainty) that your colleagues will make mistakes when
interacting with your code. For example, you might ask them
for a number representing a currency amount and they include
the currency symbol or a comma when they shouldn’t.

If someone enters a text string when your code expects a
number, the Visual Basic Editor will exit the subroutine and
display an error message.

Rather than allow your macro to come to a crashing halt, you
can add code to a subroutine to handle these errors more
gracefully. One way to do that is to include an On Error
GoTo statement. This statement has two components. The
first is the On Error GoTo statement itself, which identifies
the line of code the subroutine should jump to when an error
occurs. The second part is a line label, followed by a colon,
that corresponds to the label in the On Error GoTo. For
example, you could have the line label Handler: identify your
error-handling code:

M13_FRYE1975_01_SE_C13.indd 226 04/02/2013 14:13

Debugging your VBA code 227

13

Manage errors
using an
On Error
GoTo statement
(cont.)

Sub CheckError()
Dim lngNumber As Long
On Error GoTo Handler:
lngNumber = InputBox(“Enter a number.”)
MsgBox (lngNumber)
Exit Sub
Handler:
MsgBox (“Enter the number without
currency symbols or commas.”)
End Sub

In most cases, error-handling code appears at the end of the
subroutine with an Exit Sub line just above the line label. If
you missed out the Exit Sub statement, which causes the
Visual Basic Editor to stop executing subroutine’s code, the
subroutine would run the error-handling code even though it’s
not needed.

If the user enters a text string into the input box created in
the subroutine, Excel would display the message box defined
within the error-handling code.

M13_FRYE1975_01_SE_C13.indd 227 04/02/2013 14:13

Manage errors using an On
Error Resume Next
statement

 1 Create a subroutine.

 2 In the body of the subroutine,
type On Error Resume
Next on its own line.

228

uManage errors
using an
On Error
Resume Next
statement

Handling errors in your VBA code can be difficult, especially
early on in the programming process when you’re not certain
everything is working correctly and it’s hard to identify their
causes. If you want the Visual Basic Editor to continue to
execute your code even though it has encountered an error,
you can use the On Error Resume Next statement. If
you put the statement at the top of a subroutine, the editor will
ignore any errors and continue to run your code, starting with
the line after the line that caused the error.

Sub CheckError()
Dim lngNumber As Long
On Error Resume Next
lngNumber = InputBox(“Enter a number.”)
MsgBox (lngNumber)
End Sub

Using the On Error Resume Next statement might seem
like an easy way to ensure that all of the code after the error
is running correctly, but you should be aware that errors tend
to cascade. If the offending instruction provides a value that’s
used later on in your code, you won’t get a true test of your
code’s accuracy.

Running the above subroutine and typing the letter ‘a’ into the
input box causes Excel to display a message box that contains
the number zero. The message box contains a zero because the
letter ‘a’ is not an acceptable value for variables of type Long,
but the On Error Resume Next statement has turned off
error messages. Therefore, Excel displays the value zero, which
represents no value or, as in this case, a non-numerical value.

Important

If you type the On Error
Resume Next statement
below the code to be
executed, the Visual Basic
Editor uses the default
error-handling mode
(showing dialog boxes
describing the error) until it
encounters the On Error
Resume Next statement.

!

M13_FRYE1975_01_SE_C13.indd 228 04/02/2013 14:13

Manage errors using an On
Error GoTo 0 statement

 1 Create a subroutine.

 2 In the body of the subroutine,
type On Error GoTo 0
on its own line.

Debugging your VBA code 229

13

uManage errors
using an
On Error GoTo
0 statement

You can change the default Visual Basic editor error-handling
behaviour using one of two statements: On Error GoTo or
On Error Resume Next. If you have implemented either
of those methods at the start of your code module, but want to
change back to the Visual Basic Editor’s default error-handling
mode, you can do so using the statement On Error GoTo 0.

The benefit of switching back to the default error-handling
mode, which halts code execution and displays an error
message, is that you can start by implementing error handling
for a portion of your code where potential errors are reasonably
well-defined. Then, when you get to a portion of your code
in which you have less confidence, you can switch back to
the default error-handling mode and have Excel display error
messages and highlight the offending line of code so you have
a better chance of discovering and fixing the error.

Did you know?
If you want to use Excel’s default error-handling mode,
you don’t need to add the On Error GoTo 0 line to
your subroutine – the Visual Basic Editor will use that
mode automatically.

?

M13_FRYE1975_01_SE_C13.indd 229 04/02/2013 14:13

M13_FRYE1975_01_SE_C13.indd 230 04/02/2013 14:13

Using Excel events in your VBA code 231

Using Excel events in
your VBA code

Introduction

Excel VBA gives you a great deal of control over your
workbook. You can also use events to determine what
actions, if any, Excel takes when your colleagues undertake
specific actions. For example, you might want to verify that
your colleague really wants to close a workbook if certain
information has been entered into it.

The subroutines described in this chapter all use the private
keyword at the beginning of the Sub declaration. Doing so
limits the event handler’s scope to the current workbook, which
has the benefit of preventing any other open workbooks from
running the code when you don’t want them to.

What you’ll do

14
Display the available events

Run a procedure when you open
a workbook

Run a procedure when you close
a workbook

Run a procedure when you save a
workbook

Run a procedure when a cell
range changes

M14_FRYE1975_01_SE_C14.indd 231 04/02/2013 14:13

Display the available events

 1 If necessary, in the Visual
Basic Editor, click View, then
Object Browser on the menu
bar to display the Object
Browser.

 2 To limit the classes displayed,
click the Project/Library
control’s down arrow and
click Excel.

 3 Click the object for which you
want to view available events
in the Classes panel to display
the properties, methods and
events for that class.

232

uDisplay the
available events

In the Excel 2010 object-oriented programming model, Excel
objects have three different types of attributes: properties,
methods and events. A property is some aspect of an object,
such as the object’s name. A method is something the object
can do, such as print or export its values to a text file. An event
is an action the object recognises, such as changing the value
in a cell or a user clicking a hyperlink. Almost every Excel
object has one or more events associated with it.

In the Object Browser, events are indicated by a yellow
lightning bolt. When you click an event, its description appears
at the bottom of the Object Browser.

Did you know?
To display the Help file associated with an event, click
the event and then click the Help button, which has a
question mark on its face.

?

Did you know?
Alternatively, you can press F2 to display the Object
Browser.

?

M14_FRYE1975_01_SE_C14.indd 232 04/02/2013 14:13

Run a procedure when you
open a workbook

 1 In the project window, double-
click the ThisWorkbook item.

 2 Create a subroutine that starts
with the statement Private
Sub Workbook_Open ().

 3 Type the code to be run when
the workbook opens between
the Sub and End Sub
statements.

Using Excel events in your VBA code 233

uRun a procedure
when you open a
workbook

14

Previously, when you created a VBA subroutine or function,
you did so by inserting a code module into your workbook’s
VBA project. These code modules are available from anywhere
within your workbook or any other open workbook if the
routines are public. Events, on the other hand, are tied directly
to specific workbook objects, such as worksheets or even the
workbook itself.

If you want to run a specific subroutine when your workbook
is opened, you need to open the code module that is tied
directly to the workbook. To do that, you double-click the
ThisWorkbook item in the Project Explorer. If the Project
Explorer isn’t currently open, you can display it by clicking
View, then Project Explorer on the menu bar.

When you double-click the ThisWorkbook item, the Visual
Basic Editor opens the code module associated with the
workbook. You can then create subroutines that run whenever
a given event occurs. For example, if you want to run a routine
whenever the workbook is opened, you would use the following
code structure:

M14_FRYE1975_01_SE_C14.indd 233 04/02/2013 14:13

234

Run a procedure
when you open a
workbook (cont.)

Private Sub Workbook_Open()
MsgBox (“This workbook contains
commission data.”)
End Sub

Note that the Sub declaration at the top of the subroutine has
the word Sub followed by the object named Workbook, then
an underscore, then the name of the event that triggers the
code. The example above displays a message box whenever the
workbook is opened.

Did you know?
To display the Project Explorer by using a keyboard
shortcut, press Ctrl+R .

?

Important

You may only have one subroutine triggered by a
specific event per workbook, but you may have multiple
actions within the event code.

!

M14_FRYE1975_01_SE_C14.indd 234 04/02/2013 14:13

Run a procedure when you
close a workbook

 1 In the Project Explorer
window, double-click the
ThisWorkbook item.

 2 Create a subroutine that starts
with the statement Private
Sub Workbook_
BeforeClose (Cancel
as Boolean).

 3 Type the code to be run
before the workbook closes
between the Sub and End
Sub statements.

Using Excel events in your VBA code 235

uRun a procedure
when you close a
workbook

14

If you work in a business, you probably manage confidential
data, such as salary or sales information. If your corporate
compliance practices require that you remind your employees
of data sensitivity whenever they close a workbook, you
can do so by attaching code to the Workbook object’s
BeforeClose event.

To do that, you double-click the ThisWorkbook item in the
Project Explorer. If the Project Explorer isn’t currently open,
you can display it by clicking View, then Project Explorer on the
menu bar. Then, in the code space that appears, type a routine
that follows this pattern:

Private Sub Workbook_BeforeClose(Cancel
As Boolean)
MsgBox (“Remember the data is
confidential.”)
Answer = MsgBox(“Do you really want to
close the workbook?”, vbYesNo)
If Answer = vbNo Then Cancel = True
End Sub

Note that the Sub declaration statement is a bit different than
that used for the Open event. The Private Sub keywords
lead off the line, followed by the name of the object, in this case
Workbook, then an underscore character and the name of
the event. That information is followed by the words Cancel
As Boolean in parentheses. The phrase Cancel as
Boolean appears at the end of the event code Sub declaration
so the routine can detect whether the close operation has been
cancelled or not. If it has, then the code either won’t run at all
or won’t run again as a result of the triggering action that just
occurred. This code displays a message box asking if the user
truly wishes to close the workbook. If not, they can click No to
cancel the operation. Did you know?

If your BeforeClose
event code changes the
contents of your workbook,
you won’t be able to review
the changes before the
workbook closes.

?

M14_FRYE1975_01_SE_C14.indd 235 04/02/2013 14:13

Run a procedure when you
save a workbook

 1 In the project window,
double-click the
ThisWorkbook item.

 2 Create a subroutine that
starts with the statement
Private Sub
Workbook_BeforeSave
(ByVal SaveAsUI as
Boolean, Cancel as
Boolean).

 3 Type the code to be run
before the workbook closes
between the Sub and End
Sub statements.

236

uRun a procedure
when you save a
workbook

Saving a workbook is rarely a controversial act. In most cases,
you should encourage your colleagues to save their data as
frequently as is practical. Even so, there might be occasions
where you want to verify if a user really wants to save their data.
For example, an accountant might keep a strict log of every
change made to every workbook. If that’s the case, then saving
the workbook commits those changes to the archive. Again, it’s
not an unexpected result, but it might be something that you, as
a programmer, wish to bring to your colleagues’ attention.

To create code using the Workbook_BeforeSave event,
use the following template:

Private Sub Workbook_BeforeSave(ByVal
SaveAsUI as Boolean,Cancel as Boolean)
Answer = MsgBox(“Are you sure you want
to save your data?”, vbYesNo)
If Answer = vbNo Then Cancel = True
End Sub

The Sub declaration accepts two parameters, passed by
value. The first is SaveAsUI, which indicates whether or
not Excel should display the SaveAs dialog box. This action
might occur if the user is saving the workbook for the first
time. The Cancel argument has the same role as in the
BeforeClose event. You can ask if the user truly wishes
to save the workbook. If so, they can click the Yes button to
complete the operation.

M14_FRYE1975_01_SE_C14.indd 236 04/02/2013 14:13

Run a procedure when a cell
range changes

 1 In the Project Window,
double-click the item
representing the worksheet to
which you want to assign the
event.

 2 Type the first line of the event
code as Private Sub
Worksheet_Change
(ByVal Target As
Excel.Range).

 3 Between the Sub and End
Sub lines of code, enter
the instructions you want
executed when a cell range
changes on that worksheet.

Using Excel events in your VBA code 237

uRun a procedure
when a cell
range changes

14

The event procedures described earlier in this chapter are all
triggered by events at the workbook level. You can also create
procedures that are triggered by events at the worksheet level.
To create an event procedure triggered by a change in the
worksheet, you open the Project Explorer and then double-click
the worksheet you want to use to open a code module for that
worksheet. As an example, you could create event-handling
routines for the worksheet named Sheet1.

One of the most common events you will use at the worksheet
level is the Change event. This triggers whenever a substantive
change is made to a worksheet. For example, you might wish
to keep a record of all edits made to a worksheet. You create a
Change event using code that follows this structure:

Private Sub Worksheet_Change (ByVal
Target As Excel.Range)
 MsgBox(“The cell range ” & Target.
Address & “ was updated.”)
End Sub

M14_FRYE1975_01_SE_C14.indd 237 04/02/2013 14:13

238

Run a procedure
when a cell
range changes
(cont.)

The code within the body of the subroutine could be anything.
In this case, the code simply shows the address of the cell
range that was changed.

Excel is somewhat inconsistent in which actions do or
don’t trigger the Change event. Some of the quirks
are that changing a cell’s format doesn’t trigger the
Change event, but clicking the Clear Format button on
the Home tab of the ribbon does. Inserting, editing or
deleting comments don’t trigger the Change event, but
making changes using the Excel spellchecker will. You
need to learn from experience and research how Excel
handles the specific events you want to use.

For your information
i

M14_FRYE1975_01_SE_C14.indd 238 04/02/2013 14:13

Gathering data with UserForms 239

Gathering data with
UserForms

Introduction

Many Excel users take pride in the worksheets and workbooks
they develop, and rightfully so. The most effective solutions
combine data entry and presentation seamlessly, letting users
do their work in the shortest time possible so they can get on
with other tasks. Even solutions that fail to reach this status
can be exceptionally useful for the designer and his or her
colleagues.

From a data entry standpoint, though, very little compares to
the effectiveness of UserForms. A UserForm, which you
create in the Visual Basic Editor, provides a simple interface
for data entry. Among the many possibilities open to you
are that you can allow users to enter any data they wish into
a TextBox, restrict their entries to those presented in a
ListBox or combine the two approaches in a ComboBox.
You can select the best approach for an application and
implement it quickly.

Here, you will learn how to create a UserForm, add controls
to it, write UserForm data to a worksheet and manage the
UserForm.

What you’ll do

15
Create a UserForm

Add a TextBox to a UserForm

Add a ListBox to a UserForm

Add a ComboBox to a
UserForm

Add an option button to a
UserForm

Add graphics to a UserForm

Add a SpinButton to a
UserForm

Create a multipage or multitab
UserForm

Write UserForm data to a
worksheet

Display, load and hide a
UserForm

M15_FRYE1975_01_SE_C15.indd 239 04/02/2013 14:13

Create a UserForm

 1 In the Visual Basic Editor,
click Insert, then UserForm
on the menu bar.

 2 If desired, edit the
UserForm’s Name
property to change the name
you use to refer to it in your
code.

 3 If desired, edit the
UserForm’s Caption
property to change the
caption that appears on the
UserForm’s title bar.

240

uCreate a
UserForm

So far in this guide, you have created code modules to store
your VBA code. When you create a UserForm, you also
create an underlying code module that contains the subroutines
that define the UserForm objects’ behaviours.

To create a UserForm, press Alt+F11 to display the Visual
Basic Editor, then click Insert, then UserForm on the menu bar
to create a blank UserForm.

A UserForm is like any other Excel object, so you can
change its size by dragging any of the handles on its sides or
corners. Dragging a handle in the middle of a side changes the
UserForm’s height or width, while dragging a handle at a
UserForm’s corner changes both height and width.

By default, your UserForm has a name such as UserForm1,
representing the UserForm’s place in the UserForms
collection. You can change a UserForm’s name by editing
its Name property. The Name property is the internal
representation of the UserForm (that is, how you will refer to
it in your code), so you should consider putting the letters ‘frm’
at the start of the name to indicate that it represents ‘a form’.

The word or words that appear on a UserForm’s title bar
are controlled by the Caption property. To change the
UserForm’s caption, click the UserForm and then, in the
Properties panel, click the box next to the Caption property
and edit its value.

Important

A UserForm’s name
must start with a letter
and may only contain
letters, numbers and the
underscore character.

!

M15_FRYE1975_01_SE_C15.indd 240 04/02/2013 14:13

Add a TextBox to a
UserForm

 1 Open a UserForm and
then, in the Toolbox, click the
TextBox button.

 2 Drag on to the body of the
UserForm to define the
TextBox.

 3 If desired, change the
TextBox’s Name property
to change the name by which
you refer to the TextBox in
your code.

 4 If desired, create a label, edit
the label’s Caption property
to change the text it displays
and position the label next to
the TextBox.

Gathering data with UserForms 241

u

Add a TextBox
to a UserForm

15

With the UserForm in place, you can now add controls and
the code to power them within your Excel workbook.

One of the most useful capabilities you can offer on a
UserForm is that of being able to type their name, address
or other information into a control. In Excel VBA, that control is
the TextBox. To add a TextBox to a UserForm, display
the Toolbox, click the TextBox button, then, in the body of
the UserForm, drag to define the textbox. After you create the
TextBox, a list of its properties appears in the Properties panel.

There are a number of properties you might want to edit. The
first is the Name property, which appears at the top of the list as
(Name). You should change the control’s name to reflect the data
it will contain. For example, you could assign the name Cust_
First_Name to a TextBox meant to accept a customer’s
first name. The control’s name must start with a letter and may
contain only letters, numbers and underscore characters.

You can also add a label to identify the control and indicate the
data to be entered. To add a label, display the Toolbox, click
the Label button and drag to define the label in the body of the
form. Position the label so it’s in line with the TextBox and
then change the label’s Caption property so it contains the
text required to identify its related control.

Important

A control’s name may not
be a reserved word, such
as ‘Variant’ or ‘Sub’.

!

M15_FRYE1975_01_SE_C15.indd 241 04/02/2013 14:13

Add a ListBox to a
UserForm

 1 Open a UserForm and
then, in the Toolbox, click the
ListBox button.

 2 Drag on to the body of the
UserForm to define the
ListBox.

 3 Define an Excel table and type
=tablename in the ListBox’s
RowSource property box.

 4 If desired, change the
Listbox’s Name property
to change the name by which
you refer to the ListBox in
your code.

 5 If desired, create a label,
edit the label’s Caption
property to change the text
it displays, then position the
label next to the ListBox.

242

uAdd a ListBox
to a UserForm

A TextBox, described elsewhere in this chapter, lets a user
enter text into the control without restriction. Entering text
with no guidelines is useful, but it also opens up the possibility
of multiple spellings or misspellings for the same term. By
contrast, a ListBox requires a user to select a value from a
predetermined list. ListBoxes increase data entry accuracy
at the expense of user flexibility.

To create a ListBox, display a UserForm in the Visual
Basic Editor, display the Toolbox, click the ListBox button,
then drag to within the body of the UserForm to define
the ListBox. When you do, the ListBox appears on the
UserForm and its properties appear in the Properties panel
on the left side of the Visual Basic Editor window.

A ListBox control draws its values from a range of
worksheet cells. To assign a cell range to a ListBox, you
enter the range’s definition into the ListBox’s RowSource
property. In Excel 2010, the easiest way to define the row
source for a ListBox is to create a one-column Excel table.
To create an Excel table, create a data list with a header in a
worksheet and then, on the Home tab of the ribbon, click the
Format as Table button and click the desired table style. Doing
so displays the Format As Table dialog box.

Verify that the My table has headers box is selected and then
click ‘OK’ to create the table. With the table still selected, on the
Design contextual tab of the ribbon, type a new name for your
table in the Table Name box. For example, if your ListBox
presents a list of countries in the world, you could simply name
your table ‘Countries’.

M15_FRYE1975_01_SE_C15.indd 242 04/02/2013 14:13

Gathering data with UserForms 243

Add a ListBox
to a UserForm
(cont.)

15

With your data source defined, you can now type in equals sign
followed by the name of the table in the RowSource property
for your ListBox. Now when you run the UserForm and
click the down arrow at the right edge of the ListBox, you
will be able to select a country from the list.

Did you know?
Excel tables were introduced in Excel 2007.

?

Did you know?
When you add or delete an Excel table row, the program
updates its internal reference to the data, so you don’t
have to update the RowSource property’s contents to
reflect the change.

?

M15_FRYE1975_01_SE_C15.indd 243 04/02/2013 14:13

Add a ComboBox to a
UserForm

 1 Open a UserForm and
then, in the Toolbox, click the
ComboBox button.

 2 Drag it onto the body of the
UserForm to define the
ComboBox.

 3 Define an Excel table and
type =tablename in the
ComboBox’s RowSource
property box.

 4 If desired, change the
ComboBox’s Name property
to change the name by which
you refer to the ComboBox
in your code.

 5 If desired, create a label,
edit the label’s Caption
property to change the text
it displays and position the
label next to the ComboBox.

244

uAdd a
ComboBox to a
UserForm

A ListBox, described earlier in this chapter, lets a user select
a value from a predetermined list of values. A ComboBox
is similar, with one significant difference: the user can also
type their own value into the control. A ComboBox offers
more flexibility than a ListBox, but it also introduces the
possibility that misspellings might cause the same value to be
entered in several different ways.

To add a ComboBox to a UserForm, display a UserForm
in the Visual Basic Editor and then, in the Toolbox, click the
ComboBox button. Draw the outline of the ComboBox on the
body of the UserForm and, when you release the left mouse
button, the ComboBox control appears and its properties
appear in the Properties panel on the left side of the Visual
Basic Editor.

As with a ListBox, the most flexible way to provide values
for a ComboBox in Excel 2010 is to define an Excel table.
For example, you might create a form for user feedback and
allow the user to select from four different categories to enter
their own. To assign an Excel table named ‘Categories’ to
a ComboBox, click the ComboBox and then set its Row
Source property to the value =Categories. Now when
the user clicks the ComboBox’s down arrow those values will
appear, but the user will also have the option of typing their
own value into the box.

See also

For more information on creating and renaming in Excel
table, see the Add a ListBox to a UserForm task
earlier in this chapter.

M15_FRYE1975_01_SE_C15.indd 244 04/02/2013 14:13

Add an option button to a
UserForm

 1 Open a UserForm in the
Visual Basic Editor and then,
in the Toolbox, click the
OptionButton button.

 2 Click in the body of the
UserForm where you want
the button to appear to create
it and display its properties in
the Properties panel.

 3 If desired, change the
ComboBox’s Name
property to change the name
by which you refer to the
option button in your code.

 4 If desired, edit the option
button’s Caption property
to change the text it displays.

 5 If desired, assign a value to
the GroupName property.
Only one option button among
those that share the same
GroupName property value
can be selected at one time.

Gathering data with UserForms 245

uAdd an option
button to a
UserForm

15

ListBoxes, ComboBoxes and TextBoxes are terrific
tools that let users enter or select numerous values. If the
users’ choice is more constrained, you can let them indicate
their choice by selecting or clearing option buttons. Option
buttons let users indicate whether an option, such as to gift
wrap a purchase or not, is turned on or turned off. You can
also create groups of option buttons that let a users select, at
most, one option from the group at a time.

You can change the option button’s appearance and behaviour
using the properties available to you, but the most common
properties you’ll change are the button’s Name and Caption
properties.

The Name property controls how the option button is
referenced within the UserForm and your VBA code.
Changing it makes your references more readable but doesn’t
change the text displayed next to the option button in the
UserForm. To change that text, you need to change the value
of the Caption property. For example, you could change the
Caption property to read ‘Gift wrapped’.

You can also create groups of option buttons where only one
of the buttons can be selected at a time. For example, you
might want a user to select a shipping method from among the
options of ground, two day and overnight. To allow only one
option button of those three to be selected at a time, you must
assign the same value to each button’s GroupName property.
For example, you could create the Shipping group to allow only
one selection from several shipping alternatives.

M15_FRYE1975_01_SE_C15.indd 245 04/02/2013 14:13

246

Add an option
button to a
UserForm
(cont.)

Important

You must ensure that every control you intend to
make part of a group has the exact same value for the
GroupName property.

!

M15_FRYE1975_01_SE_C15.indd 246 04/02/2013 14:13

Add graphics to a UserForm

 1 Open a UserForm in the
Visual Basic Editor, then, in
the Toolbox, click the Image
button.

 2 Drag within the body of the
UserForm to create the
image frame. When you
release the left mouse button,
the image frame will appear.

 3 In the Properties panel, the
image control’s properties will
appear. Click in the box next
to the Picture property
name.

 4 Click the Browse button that
appears, select the desired
image, then click Open.
The image appears on the
UserForm.

 5 Change the value of the
PictureSizeMode
property so your image
displays correctly.

Gathering data with UserForms 247

uAdd graphics to
a UserForm

15

UserForms are powerful objects, but you have relatively little
control over their appearance, especially compared to the wide
variety of formatting options you have for a worksheet and the
objects within it. One way to add some visual interest or useful
information to a VBA UserForm is by adding images.

Unless the image you select fits entirely within the frame, you
will likely see just a portion of it on the UserForm. You can
control the way the image fits within the frame by changing
the PictureSizeMode property. That property has three
possible values:

1 0 – fmPictureSizeModeClip displays as much of
the image as possible within the frame.

2 1 – fmPictureSizeModeStretch displays the
entire image within the frame, but stretches the image so it
fills the entire frame.

3 3 – fmPictureSizeModeZoom displays the entire
image within the frame, but keeps the vertical and horizontal
dimensions in their original ratio.

M15_FRYE1975_01_SE_C15.indd 247 04/02/2013 14:13

248

Add graphics to
a UserForm
(cont)

Did you know?
You can change the name of the image control, which
is the label by which you refer to the image in your VBA
code, by editing the control’s Name property.

?

Did you know?
If you set the PictureSizeMode property
to fmPictureSizeModeStretch or
fmPictureSizeModeZoom, changing the size of
the image frame also changes the size of the image
displayed within it.

?

M15_FRYE1975_01_SE_C15.indd 248 04/02/2013 14:13

Add a SpinButton to a
UserForm

 1 Open a UserForm and
then, in the Toolbox, click the
SpinButton control.

 2 Drag the SpinButton onto
the UserForm.

 3 Create a TextBox.

 4 Right-click the SpinButton
and click View Code from the
shortcut menu.

 5 Create an event handler
that assigns the value of
the SpinButton to the
TextBox.

Gathering data with UserForms 249

uAdd a
SpinButton
to a UserForm

15

Excel VBA UserForms let you and your colleagues enter data
into your spreadsheets efficiently. TextBoxes provide the
most flexibility, but they also allow users to make mistakes. If
you want more control over the numbers a user enters, you
can attach a SpinButton control to a TextBox or label.
Clicking the SpinButton’s up or down arrow changes the
value in the attached control by an increment you define.

There are three steps to implementing a SpinButton in your
UserForm. The first of these is to create the SpinButton
itself, which you can do by clicking the UserForm and
then, in the Toolbox, clicking the SpinButton control and
dragging the SpinButton on to the body of the UserForm.
You can now define the value range and increment that each
click of an up or down arrow will change the value of the
SpinButton by. To do that, click the SpinButton and
then, in the Properties panel, change the values of the Max,
Min and SmallChange properties. Min is the smallest
value that can be assigned to the SpinButton, Max is the
largest value and SmallChange is the increment that each
click will change the value by. For example, if you set a Min of
20, a Max of 200 and SmallChange of 10, you could select
the values 20, 30, 40, 50 and so on in increments of 10 all the
way up to 200.

With the SpinButton in place, you should use techniques
shown earlier in this chapter to create a TextBox that
displays the value assigned to the SpinButton control.
Make a note of the name of the TextBox, which you can
discover by clicking it and observing the value of the Name
property in the Properties panel. You will need to know the
name to create the code used to link the SpinButton with
that TextBox.

Right-click the SpinButton and, from the shortcut
menu that appears, click View Code. Doing so displays the
outline of the event code that will run when the value of the
SpinButton changes. To link the SpinButton with the
TextBox, you set the text control’s Value property so it is
equal to the same property of the SpinButton.

M15_FRYE1975_01_SE_C15.indd 249 04/02/2013 14:13

250

Add a
SpinButton
to a UserForm
(cont)

If the TextBox were named SpinValue and the
SpinButton were named SpinButton1, your code would
look like this:

Private Sub SpinButton1_Change()
 SpinValue.Value = SpinButton1.Value
End Sub

Did you know?
Changing the Name property for the SpinButton
and TextBox can make it easier for you and your
colleagues to understand the code you create to link the
two controls.

?

M15_FRYE1975_01_SE_C15.indd 250 04/02/2013 14:13

Create a multipage or multitab
UserForm

 1 Open a UserForm and
then, in the Toolbox, click the
MultiPage button to create a
multipage UserForm.

a. Drag it on to the
UserForm to define the
MultiPage control.

b. Add controls to the page
using techniques shown
elsewhere in this chapter.

c. Use the shortcut menu,
accessed by right-clicking
a tab, to add, rename, move
and delete pages as desired.

 2 Open a UserForm and
then, in the Toolbox, click the
TabStrip button to create a
multitab UserForm.

a. Drag it on to the
UserForm to define the
TabStrip control.

b. Add controls to the page
using techniques shown
elsewhere in this chapter.

c. Use the shortcut menu,
accessed by right-clicking
a tab, to add, rename, move
and delete pages as desired.

Gathering data with UserForms 251

uCreate a
multipage
or multitab
UserForm

15

Before you create a UserForm, you should take the time to
sketch out its design using pencil and paper. The more you
think about the data you want to capture with it and how you
can facilitate that process, the more time you save when you
create it in Excel.

If you find that you can’t fit all of the controls you need on a
single UserForm page, you have options. You can create a
multipage UserForm or multitab one.

By default, a multipage UserForm has two pages. You can
add, delete, rename and move pages within it by right-clicking
any tab at the top of the page. Doing so displays a shortcut
menu with the available options.

You can add, delete, rename and move tabs in a multitab
UserForm in exactly the same manner as you would pages in
a multipage UserForm.

Did you know?
The contents of the Properties panel reflect the active
page in the multipage UserForm.

?

Did you know?
Some designers create prototypes of their user
interfaces in PowerPoint, using the shapes and lines
available in that program.

?

M15_FRYE1975_01_SE_C15.indd 251 04/02/2013 14:13

252

uWrite
UserForm data
to a worksheet

After you’ve created your UserForm, you need to create code
that will write the values from the UserForm to a worksheet.
You do that by adding a command button to your form and
adding code to the button’s On_Click event that will read
the value of every control on the form and write them to the
appropriate worksheet cells.

The process for reading and writing these values involves two
major steps. The first step is to find the first empty row in the
target worksheet. For example, if your data list already contains
three rows, you don’t want the current input to overwrite any of
the existing data. To avoid that problem, the code starts at the
bottom of the worksheet and searches for the first completed
cell in a column where you want to write your data. The routine
then targets the row below that cell.

After the routine finds the first empty row, it uses the Cells
object’s Value property to write the data into the target cells.
As an example, suppose you have a UserForm that collects
four pieces of data: the customer’s first name, last name,
country and status as a new customer.

You now should create a command button to which you can
attach code that writes the values to the worksheet. To create
the command button, display a UserForm and then, in the
Toolbox, click the CommandButton control. Drag the button

M15_FRYE1975_01_SE_C15.indd 252 04/02/2013 14:13

Write UserForm data to a
worksheet

 1 On the UserForm, create a
command button.

 2 Right-click the command
button and click View Code.

 3 Write code that finds the first
empty cell below the target
data list.

 4 Write code that writes
each control’s value to the
appropriate cell in the row.

Gathering data with UserForms 253

Write
UserForm data
to a worksheet
(cont.)

15

on to the UserForm and, if desired, change the button’s
Caption property so the text that appears on the button is
easier for you and your colleagues to understand.

Right-click the button and, from the shortcut menu that appears,
click View Code to display the button’s On_Click event-
handling code. You could use the following routine to find the
first empty cell in column A of your worksheet, read the values in
the four controls, then write values into the worksheet:

Private Sub CommandButton1_Click()
Dim lngEntryRow As Long

Worksheets(“Sheet1”).Activate
lngEntryRow = Worksheets(“Sheet1”).
Range(“A1048576”).End(xlUp).Row + 1

Cells(lngEntryRow, 1) = Cust_FirstName.
Value
Cells(lngEntryRow, 2) = Cust_LastName.
Value
Cells(lngEntryRow, 3) = Cust_Country.
Value
Cells(lngEntryRow, 4) = opt_NewStatus.
Value
Cells(lngEntryRow, 4).Activate
End Sub

If there were already three records in the target worksheet,
entering data from the UserForm would result in the
following list.

Did you know?
Excel 2007 and Excel
2010 worksheets contain
1,048,576 rows.

?

M15_FRYE1975_01_SE_C15.indd 253 04/02/2013 14:13

Display, load and hide a
UserForm

 1 Invoke the UserForm.
Show method.

 2 Invoke the UserForm.
Load method.

 3 Invoke the UserForm.
Hide method.

254

uDisplay, load
and hide a
UserForm

Once you define a UserForm in your VBA code, you need to
display it so the user can interact with it. The Excel VBA code to
display a UserForm is quite straightforward. As an example,
suppose you have a form named frmCustomerEntry. All
you need to do is type the name of the form followed by a full
stop and the Show method. For example, the code to display
frmCustomerEntry would be:

frmCustomerEntry.Show

You can test a UserForm from within the Visual Basic Editor
by displaying the UserForm and then either clicking Run,
then Run Sub/UserForm on the menu system or by pressing
the F5 key.

You can also enter a UserForm into the application’s memory
without displaying it. To do that, you use the Load method.
The command to load the same form into the Excel program’s
memory would be:

frmCustomerEntry.Load

When you later want to display the UserForm in Excel, you
can call the Show method in the way noted earlier.

Hiding a UserForm, as you might expect, relies on the Hide
method. The syntax looks exactly the same as it does for the
Show and Load methods:

frmCustomerEntry.Hide

The most common way to invoke the Hide method is to create
a command button with the label ‘Cancel’ and run the Hide
method when a user clicks that button. Users can also hide a
UserForm by clicking the ‘Close’ box at the top right corner
of the UserForm.

See also

For more information on
running a macro by clicking
a worksheet shape, see
Chapter 1.

Did you know?
Loading a UserForm
decreases the time it takes it
to appear when you invoke
the Show method.

?

M15_FRYE1975_01_SE_C15.indd 254 04/02/2013 14:13

Absolute reference An instruction that
identifies a specific cell range and doesn’t
change when the reference is copied to another
cell.

Active cell The cell that is highlighted in a
worksheet.

Active region A rectangle of cells that extends
from the active cell to the top and bottom rows
and left- and right-most columns of cells that
are connected to the active cell.

Alert A message box indicating the
consequences of an action.

Argument A value used by a function.

Array A construct that can contain multiple
examples of a data type.

Breakpoint A user-defined line in a code
module where the Visual Basic Editor halts code
execution.

Bug A programming error.

Chart sheet A sheet designed to hold a single
chart (as opposed to a worksheet, which can
contain charts, data and other objects).

Code A generic term for instructions in a
programming language.

Collection A set of all objects of a type (e.g.,
the Worksheets collection).

Comment In Visual Basic for Applications,
a non-executable line of code used to provide
information about a procedure.

Condition A test used to determine whether
subsequent code should be executed.

Constant A variable that doesn’t change value
during code execution.

Custom list A user-defined set of values used
in sorting operations.

Data series A set of related data depicted in a
chart.

Data type The characteristic of a variable that
determines what data it can contain.

Debugging The art of identifying and fixing
programming errors.

Default The value or behaviour a program
component takes on if you don’t change it.

 Jargon buster 255 255

Jargon buster

M16_FRYE1975_01_SE_GLOS.indd 255 04/02/2013 14:13

Delimiter A character that identifies the end
of one value and the beginning of the next in a
text file.

Digital signature A file, generated by a
certification authority, that Excel can use to
identify a document as having been created by
the certificate owner.

Dot notation A method for identifying
components of objects, such as properties,
methods, and events.

Event An object attribute that lets the object
respond when it is acted upon in a specific way.

Export To send data from one construct (such
as a code module) to another (such as a text
file).

Field A column in a data list or database table.

Filter A construct that limits the data shown in
a worksheet.

Function A block of code that returns the
result of a calculation.

Hide To remove a workbook element, such
as a worksheet or column, from active display
within the workbook without deleting the
element.

Keyboard shortcut (also shortcut key) A
sequence of keys that trigger a specific action,
such as running a macro.

Loop A section of Visual Basic for Applications
code that can be repeated.

Macro A named block of Visual Basic for
Applications code.

Method An object attribute that takes an action
affecting the object.

Module A collection of Visual Basic for
Applications code routines.

Named range A cell range to which the user
has assigned a name for easy reference.

Object variable A data container that
represents an Excel object such as a workbook
or worksheet.

Object-orientated programming A method
of organising computer instructions where the
things manipulated by the code are represented
as objects with attributes.

Operator A mathematical symbol representing
an action or comparison (e.g., + or >=)

Parameter A value used by a command.

Path A string representing the physical location
of a file.

Point 1/72 of an inch (used to identify font sizes)

Print area The cell range (or ranges) that will
be printed when a user prints the worksheet.

Procedure A named sequence of statements.

Project A set of code modules.

Property An object attribute that describes one
aspect of the object.

256

M16_FRYE1975_01_SE_GLOS.indd 256 04/02/2013 14:13

Range A group of one or more cells.

Relative reference An instruction that tells
Excel to look a number of rows up or down
and a number of columns to the left or right of
another cell.

Reserved word A term, such as Date or
Integer, that may not be used as a variable or
procedure name.

RGB A colour value system used to describe
colours as a mixture of red (R), green (G),
and blue (B). Each colour is represented with
an integer in the range from 0 (colour is not
present) to 255 (full intensity).

Run To execute a block of code.

Scope The degree to which other procedures
and code modules can interact with a variable
or procedure.

Sort To rearrange data according to one or
more criteria.

Sparkline A word-sized graphic summarising
data (invented by Edward Tufte).

Static variable A variable that does not lose
its value when its procedure terminates.

Subroutine A block of code that affects a
workbook but does not return a value that can
be used in a formula.

Syntax The grammar of a programming
language.

Transpose To reorder data by making rows
into columns and columns into rows.

UserForm A custom interface for data entry
and viewing.

Variable A named container that can store
data.

Visual Basic Editor The environment in which
you can create and modify Visual Basic for
Applications code.

 Jargon buster 257

M16_FRYE1975_01_SE_GLOS.indd 257 04/02/2013 14:13

M16_FRYE1975_01_SE_GLOS.indd 258 04/02/2013 14:13

 Troubleshooting guide 259 259

Troubleshooting guide

Recording and running macros

To learn how to record a macro, see
Chapter 1, Recording a macro. 2

To learn how to run a macro, see
Chapter 1, Running a macro. 3

To learn how to edit a macro, see
Chapter 1, Editing a macro. 4

To learn how to delete a macro, see
Chapter 1, Deleting a macro. 6

For information on recording a macro
using relative references, see Chapter 1,
Record a macro using relative references. 7

To learn how to assign macro to a
keyboard shortcut, see Chapter 1,
Assigning a macro to a keyboard
shortcut. 9

To learn how to run a macro by clicking
a shape, see Chapter 1, Running a macro
by clicking a shape. 11

To learn how to add a macro to the
Quick Access Toolbar, see Chapter 1,
Adding a macro to the Quick Access
Toolbar. 12

To learn how to customise a Quick
Access Toolbar button, see Chapter 1,
Customising a Quick Access Toolbar
button. 14

For information on saving a
macro-enabled workbook, see Chapter 1,
Saving a macro-enabled workbook. 16

To learn how to manage Managing Excel
2010 security settings, see Chapter 1,
Managing Excel 2010 security settings. 17

To learn how to change Protected
View settings, see Chapter 1, Changing
Protected View settings. 19

To learn how to change message bar
settings, see Chapter 1, Changing
Message Bar settings. 21

To learn how to change data connection
security settings, see Chapter 1, Changing
data connection security settings. 22

To learn how to add a digital signature
to a workbook, see Chapter 1, Adding a
digital signature to a workbook. 24

Starting with the Visual Basic Editor

For background information on
object-orientated programming,
see Chapter 2, Introducing
object-orientated programming. 28

If you’d like to display the Developer
ribbon tab, see Chapter 2, Displaying
the Developer ribbon tab. 31

M17_FRYE1975_01_SE__TS.indd 259 04/02/2013 14:13

260

If you’d like to display the Visual
Basic Editor, see Chapter 2, Displaying
the Visual Basic Editor. 32

If you’d like to set project properties,
see Chapter 2, Setting project properties. 33

If you’d like to create a code module,
see Chapter 2, Creating a code module. 34

If you’d like to create a subroutine, see
Chapter 2, Creating a subroutine. 35

If you’d like to create a function, see
Chapter 2, Creating a function. 36

For information on adding a comment
to your code, see Chapter 2, Adding a
comment to your code. 37

If you’d like to run a VBA routine, see
Chapter 2, Running a VBA routine. 38

If you’d like to rename a code module,
see Chapter 2, Renaming a code module. 39

If you’d like to delete a code module,
see Chapter 2, Deleting a code module. 40

If you’d like to export a code module
to a text file, see Chapter 2, Exporting
a code module to a text file. 41

Working with data and variables

For more information on data types
in Excel VBA, see chapter 3,
Understanding data types in Excel VBA. 44

To declare a variable, see Chapter 3,
Declaring a variable. 45

To require variable declaration before
use, see Chapter 3, Requiring
variable declaration before use. 46

To manage variable scope, see
Chapter 3, Managing variable scope. 47

To perform calculations using
mathematical operators, see Chapter 3,
Performing calculations using
mathematical operators. 48

To define a constant, see Chapter 3,
Defining a constant. 49

To define a static variable, see
Chapter 3, Defining a static variable. 50

To define an array, see Chapter 3,
Defining an array. 51

To define a multidimensional array,
see Chapter 3, Defining a
multidimensional array. 52

To redefine an array, see Chapter 3,
Redefining an array. 53

To define a dynamic array, see
Chapter 3, Defining a dynamic array. 54

To display an object type, see
Chapter 3, Displaying an object type. 55

To define an object variable, see
Chapter 3, Defining an object variable. 56

Managing workbooks and files

If you want to open a workbook, see
Chapter 4, Opening a workbook. 58

If you want to open a text file as a
workbook, see Chapter 4, Opening a
text file as a workbook. 59

If you want to open a file the user
selects, see Chapter 4, Opening a file
the user selects. 60

260

M17_FRYE1975_01_SE__TS.indd 260 04/02/2013 14:13

 Troubleshooting guide 261

If you want to save a workbook, see
Chapter 4, Saving a workbook. 61

If you want to save a workbook in a
different format, see Chapter 4, Saving
a workbook in a different format. 62

If you want to detect if a workbook is
open, see Chapter 4, Detecting if a
workbook is open. 63

If you want to close a workbook, see
Chapter 4, Closing a workbook. 65

If you want to create a new workbook,
see Chapter 4, Creating a new workbook. 66

If you want to delete a file, see
Chapter 4, Deleting a file. 67

Managing worksheets

To add a worksheet, see Chapter 5,
Adding a worksheet. 70

To delete a worksheet, see Chapter
5,Deleting a worksheet. 71

To move a worksheet, see Chapter 5,
Moving a worksheet. 72

To copy a worksheet, see Chapter 5,
Copying a worksheet. 73

To hide or unhide a worksheet,
see Chapter 5, Hiding or unhiding
a worksheet. 74

To rename a worksheet, see Chapter 5,
Renaming a worksheet. 75

To protect a worksheet, see Chapter 5,
Protecting a worksheet. 76

To print a worksheet, see Chapter 5,
Printing a worksheet. 77

Managing ranges

If you’d like to activate a cell range, see
Chapter 6, Activating a cell range. 80

If you’d like to select a cell range, see
Chapter 6, Selecting a cell range. 81

If you’d like to select the active
region, see Chapter 6, Selecting the
active region. 82

If you’d like to refer to cells using
Offset, see Chapter 6, Refering to
cells using Offset. 83

If you’d like to insert a cell range, see
Chapter 6, Inserting a cell range. 84

If you’d like to delete a cell range, see
Chapter 6, Deleting a cell range. 85

If you’d like to hide worksheet columns
or rows, see Chapter 6, Hiding
worksheet columns or rows. 86

If you’d like to create a named range,
see Chapter 6, Creating a named range. 88

If you’d like to resize a selected range,
see Chapter 6, Resizing a selected range. 89

If you’d like to set the column width,
see Chapter 6, Setting the column width. 90

If you’d like to set the row height,
see Chapter 6, Setting the row height. 92

Managing cells

To cut and paste a cell range,
see Chapter 7, Cutting and paste
a cell range. 94

To copy and paste a cell range,
see Chapter 7, Copying and paste a
cell range. 95

 261

M17_FRYE1975_01_SE__TS.indd 261 04/02/2013 14:13

262

To copy and paste values in cells
using PasteSpecial, see Chapter 7,
Copying and pasting values in cells
using PasteSpecial. 96

To transpose a column into a row,
see Chapter 7, Transposing a column
into a row. 98

To create a cell comment, see
Chapter 7, Creating a cell comment. 99

To display a cell’s comment, see
Chapter 7, Displaying a cell’s comment. 100

To hide a cell’s comment, see
Chapter 7, Hiding a cell’s comment. 101

To delete one or all cell comments,
see Chapter 7, Deleting one or all cell
comments. 102

To fill a range of cells automatically,
see Chapter 7, Filling a range of cells
automatically. 103

To copy a range to multiple sheets,
see Chapter 7, Copying a range to
multiple sheets. 105

To add a cell border, see Chapter 7,
Adding a cell border. 106

To find a cell value, see Chapter 7,
Finding a cell value. 109

To replace a cell value, see Chapter 7,
Replacing a cell value. 111

Formatting worksheets and worksheet
elements

If you want to apply bold, italic and
underline formatting, see Chapter 8,
Applying bold, italic and underline
formatting. 114

If you want to change a cell’s font,
see Chapter 8, Changing a cell’s font. 116

If you want to change a cell’s font
size, see Chapter 8, Changing a cell’s
font size. 118

If you want to change a cell’s font
colour, see Chapter 8, Changing a
cell’s font colour. 119

If you want to change a cell’s fill
colour, see Chapter 8, Changing a
cell’s fill colour. 121

If you want to change a cell’s
alignment, see Chapter 8, Changing
a cell’s alignment. 123

If you want to apply a cell style,
see Chapter 8, Applying a cell style. 125

If you want to apply a number format
to a cell, see Chapter 8, Applying a
number format to a cell. 127

If you want to clear a cell’s format,
see Chapter 8, Clearing a cell’s format. 128

Sorting and filtering data

To sort cell data using a single
criterion, see Chapter 9, Sorting cell
data using a single criterion. 132

To create a multilevel sort, see
Chapter 9, Creating a multilevel sort. 136

To sort using a customised list of
values, see Chapter 9, Sorting using a
customised list of values. 140

To turn on filter arrows using VBA
code, see Chapter 9, Turning on filter
arrows using VBA code. 144

M17_FRYE1975_01_SE__TS.indd 262 04/02/2013 14:13

 Troubleshooting guide 263

To apply a filter using a single criterion,
see Chapter 9, Applying a filter using a
single criterion. 146

To remove a filter, see Chapter 9,
Removing a filter. 148

To display a list of unique values,
see Chapter 9, Displaying a list of
unique values. 150

For information on filtering data to
display two values in a column, see
Chapter 9, Filtering data to display two
values in a column. 152

To filter data to display three or more
values in a column, see Chapter 9,
Filtering data to display three or more
values in a column. 154

To filter data based on values in
multiple columns, see Chapter 9,
Filtering data based on values in
multiple columns. 156

Managing charts

If you’d like to Create a chart, see
Chapter 10, Creating a chart. 160

If you’d like to Move a chart to a
chart sheet, see Chapter 10, Moving
a chart to a chart sheet. 163

If you’d like to Add a new data series
to a chart, see Chapter 10, Adding
a new data series to a chart. 166

If you’d like to Format a chart’s
legend text, see Chapter 10,
Formatting a chart’s legend text. 170

If you’d like to Format chart axis
text, see Chapter 10, Formatting
chart axis text. 172

If you’d like to Export a chart as an
image, see Chapter 10, Exporting a
chart as an image. 174

If you’d like to Create a Line
sparkline, see Chapter 10, Creating a
Line sparkline. 176

If you’d like to Create a Column
sparkline, see Chapter 10, Creating
a Column sparkline. 178

If you’d like to Create a Win/Loss
sparkline, see Chapter 10, Creating a
Win/Loss sparkline. 180

If you’d like to Delete a sparkline,
see Chapter 10, Deleting a sparkline. 182

Using built-in functions and statements

If you want to Use the built-in Open
dialog box, see Chapter 11, Using the
built-in Open dialog box. 184

If you want to Prevent screen flicker
when running VBA code, see
Chapter 11, Preventing screen flicker
when running VBA code. 186

If you want to Suppress and restore
alerts, see Chapter 11, Suppressing
and restoring alerts. 187

If you want to Calculate data using
Excel worksheet functions, see
Chapter 11, Calculating data using
Excel worksheet functions. 188

M17_FRYE1975_01_SE__TS.indd 263 04/02/2013 14:13

264

If you want to Display a message
box, see Chapter 11, Displaying a
message box. 189

If you want to Get data from an
InputBox, see Chapter 11, Getting
data from an InputBox. 193

If you want to Display the current
date and time, see Chapter 11,
Displaying the current date and time. 196

If you want to Format a date, see
Chapter 11, Formatting a date. 197

If you want to Remove spaces from
a string, see Chapter 11, Removing
spaces from a string. 199

If you want to Locate a portion of a
string, see Chapter 11, Locating a
portion of a string. 201

If you want to Concatenate strings,
see Chapter 11, Concatenating strings. 203

Managing code using logical constructs

To create a For…Next loop, see
Chapter 12, Creating a For…Next loop. 206

To create a For…Each loop, see
Chapter 12, Creating a For…Each loop. 207

To create an If…Then…ElseIf
statement, see Chapter 12, Creating
an If…Then…ElseIf. 208

To create a Case statement, see
Chapter 12, Creating a Case statement. 211

To create a Do loop, see Chapter 12,
Creating a Do loop. 212

To create a Do…While loop, see Chapter
12, Creating a Do…While loop. 213

To create a Do…Until loop, see
Chapter 12, Creating a Do…Until loop. 214

To call another macro from within
your code, see Chapter 12, Calling
another macro from within your code. 215

To refer to objects using a With…End
With statement, see Chapter 12,
Refering to objects using a
With…End With statement. 216

Debugging your VBA code

If you’d like to execute code in the
Immediate window, see Chapter 13,
Executing code in the Immediate
window. 218

If you’d like to set a breakpoint in
your VBA code, see Chapter 13,
Setting a breakpoint in your VBA code. 219

If you’d like to watch a value in a
routine, see Chapter 13, Watching a
value in a routine. 220

If you’d like to step through your
code one line at a time, see
Chapter 13, Stepping through your
code one line at a time. 222

If you’d like to skip over a subroutine,
see Chapter 13, Skipping over a
subroutine. 223

If you’d like to step out of a subroutine,
see Chapter 13, Stepping out of a
subroutine. 225

If you’d like to create an On Error
GoTo statement, see Chapter 13,
Creating an On Error GoTo statement. 226

M17_FRYE1975_01_SE__TS.indd 264 04/02/2013 14:13

 Troubleshooting guide 265

If you’d like to manage errors using an
On Error Resume Next statement,
see Chapter 13, Managing errors using
an On Error Resume Next statement. 228

If you’d like to manage errors using
an On Error GoTo 0 statement, see
Chapter 13, Managing errors using
an On Error GoTo 0 statement. 229

Using Excel events in your VBA code

If you want to display the available
events, see Chapter 14, Displaying the
available events. 232

If you want to run a procedure when
you open a workbook, see Chapter 14,
Running a procedure when you open
a workbook. 233

If you want to run a procedure when
you close a workbook, see Chapter 14,
Running a procedure when you close a
workbook. 235

If you want to run a procedure when
you save a workbook, see Chapter 14,
Running a procedure when you save a
workbook. 236

If you want to run a procedure when
a cell range changes, see Chapter 14,
Running a procedure when a cell range
changes. 237

Gathering data with UserForms

To Create a UserForm, see Chapter 15,
Creating a UserForm. 240

To add a TextBox to a UserForm, see
Chapter 15, Adding a TextBox to a
UserForm. 241

To add a ListBox to a UserForm,
see Chapter 15, Adding a ListBox
to a UserForm. 242

To add a ComboBox to a UserForm,
see Chapter 15, Adding a ComboBox
to a UserForm. 244

To add an option button to a UserForm,
see Chapter 15, Adding an option
button to a UserForm. 245

To add graphics to a UserForm, see
Chapter 15, Adding graphics to a
UserForm. 247

To add a SpinButton to a UserForm,
see Chapter 15, Adding a SpinButton
to a UserForm. 249

To create a multipage or multitab
UserForm, see Chapter 15, Creating a
multipage or multitab UserForm. 251

To write UserForm data to a
worksheet, see Chapter 15, Writing
UserForm data to a worksheet. 252

To display, load and hide a UserForm,
see Chapter 15, Displaying, loading
and hiding a UserForm. 254

M17_FRYE1975_01_SE__TS.indd 265 04/02/2013 14:13

M17_FRYE1975_01_SE__TS.indd 266 04/02/2013 14:13

	Cover
	Brilliant Guides - What you need to know and how to do it
	Author’s acknowledgements
	About the author
	Contents
	Introduction
	1 Recording and running macros
	Record a macro
	Run a macro
	Edit a macro
	Delete a macro
	Record a macro using relative references
	Record a macro using relative references
	Assign a macro to a keyboard shortcut
	Run a macro by clicking a shape
	Add a macro to the Quick Access Toolbar
	Customise a Quick Access Toolbar button
	Save a macro-enabled workbook
	Manage Excel 2010 security settings
	Change Protected View settings
	Change message bar settings
	Change data connection security settings
	Add a digital signature to a workbook

	2 Starting with the Visual Basic Editor
	Introduce object-orientated programming
	Display the Developer ribbon tab
	Display the Visual Basic Editor
	Set project properties
	Create a code module
	Create a subroutine
	Create a function
	Add a comment to your code
	Run a VBA routine
	Rename a code module
	Delete a code module
	Export a code module to a text file

	3 Working with data and variables
	Understand data types in Excel VBA
	Declare a variable
	Require variable declaration before use
	Manage variable scope
	Perform calculations using mathematical operators
	Define constant
	Define a static variable
	Define an array
	Define a multidimensional array
	Redefine an array
	Define a dynamic array
	Display an object type
	Define an object variable

	4 Managing workbooks and files
	Open a workbook
	Open a text file as a workbook
	Open a file the user selects
	Save a workbook
	Save a workbook in a different format
	Detect if a workbook is open
	Close a workbook
	Create a new workbook
	Delete a file

	5 Managing worksheets
	Add a worksheet
	Delete a worksheet
	Move a worksheet
	Copy a worksheet
	Hide or unhide a worksheet
	Rename a worksheet
	Protect a worksheet
	Print a worksheet

	6 Managing ranges
	Activate a cell range
	Select a cell range
	Select the active region
	Refer to cells using Offset
	Insert a cell range
	Delete a cell range
	Hide a worksheet columns or rows
	Create a named range
	Resize a selected range
	Set the column width
	Set the row height

	7 Managing cells
	Cut and paste a cell range
	Copy and paste a cell ranges
	Copy and paste a cell ranges using PasteSpecial
	Transpose a column into a row
	Create a cell comment
	Display a cell’s comment
	Hide a cell’s comment
	Delete one or all cell comments
	Fill a range of cells automatically
	Copy a range to multiple sheets
	Add a cell border
	Find a cell value
	Replace a cell value

	8 Formatting worksheets and worksheet elements
	Apply bold, italic and underline formatting
	Change a cell’s font
	Change a cell’s font size
	Change a cell’s font colour
	Change a cell’s fill colour
	Change a cell’s alignment
	Apply a cell style
	Apply a number format to a cell
	Clear a cell’s format

	9 Sorting and filtering
	Sort cell data using a single criterion
	Create a multilevel sort
	Sort using a customised list of values
	Turn on filter arrows using VBA code
	Apply a filter using a single criterion
	Remove a filter
	Display a list of unique values
	Filter data to display two values in a column
	Filter data to display three or more values in a column
	Filter data based on vlues in multiple columns

	10 Managing charts
	Create a chart
	Move chart to chart sheet
	Add a new data series to a chart
	Format a chart’s legend text
	Format a chart’s axis text
	Export a chart as an image
	Create a Line sparkline
	Create a Column sparkline
	Create a Win/Loss sparkline
	Delete a sparkline

	11 Using built-in functions and statements
	Use the built-in Open dialog box
	Prevent screen flicker when running VBA code
	Suppress and rerstore alerts
	Calculate data using Excel worksheet functions
	Display a message box
	Get data from an InputBox
	Display the current date and time
	Format a date
	Remove spaces from the string
	Locate a portion of a string
	Concatenate strings

	12 Managing code using logical constructs
	Create a For... Next loop
	Create a For... Each loop
	Create an If... Then statement
	Create a Case statement
	Create a Do loop
	Create a Do... While loop
	Create a Do... Until loop
	Call another macro from within your code
	Refer to objects using a With... End With statement

	13 Debugging your VBA code
	Execute code in the Immediate window
	Set a breakpoint in your VBA code
	Watch a value in a routine
	Step through your code one line at a time
	Skip over a subroutine
	Step out of a subroutine
	Manage errors using an On Error GoTo statement
	Manage errors using an On Error Resume Next statement
	Manage errors using an On Error GoTo 0 statement

	14 Using Excel events in your VBA code
	Display the available events
	Run a procedure when you open a workbook
	Run a procedure when you close a workbook
	Run a procedure when you save a workbook
	Run a procedure when a cell range changes

	15 Gathering data with UserForms
	Create a UserForm
	Add a TextBox to a UserForm
	Adda ListBox to a UserForm
	Add a ComboBox to a UserForm
	Add an option button to a UserForm
	Add graphics to a UserForm
	Add a SpinButton to a UserForm
	Create a multipage or multitab UserForm
	Write UserForm data to a worksheet
	Display, load and hide a UserForm

	Jargon buster
	Troubleshooting guide

