Excel VBA

Programming

What you need to know and how to do It

Brilliant Excel
VBA Programmin

Curtis Frye

PEARSON

Harlow, England * London * New York * Boston ¢ San Francisco ¢ Toronto * Sydney * Auckland * Singapore * Hong Kong
Tokyo * Seoul * Taipei * New Delhi « Cape Town * Sdo Paulo * Mexico City * Madrid * Amsterdam ¢ Munich ¢ Paris * Milan

PEARSON EDUCATION LIMITED
Edinburgh Gate

Harlow CM20 2JE

United Kingdom

Tel: +44 (0)1279 623623

Web: www.pearson.com/uk

First published 2013 (print and electronic)
© Curtis Frye 2013 (print and electronic)

The right of Curtis Frye to be identified as author of this work has been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

Pearson Education is not responsible for the content of third-party Internet sites.

ISBN: 978-0-273-77197-5 (print)
978-0-273-77290-3 (PDF)
978-0-273-77289-7 (ePub)

British Library Cataloguing-in-Publication Data
A catalogue record for the print edition is available from the British Library

Library of Congress Cataloging-in-Publication Data
Frye, Curtis, 1968-

Brilliant Excel VBA programming / Curtis Frye.

pages cm. -- (Brilliant guides)

ISBN 978-0-273-77197-5 (limp)

1. Microsoft Excel (Computer file) 2. Microsoft Visual Basic for applications. 3. Business--Computer
programs. 4. Electronic spreadsheets spreadsheets. I. Title.

HF5548.4.M523F782 2013

005.54--dc23

2012049451

The print publication is protected by copyright. Prior to any prohibited reproduction, storage in a
retrieval system, distribution or transmission in any form or by any means, electronic, mechanical,
recording or otherwise, permission should be obtained from the publisher or, where applicable, a
licence permitting restricted copying in the United Kingdom should be obtained from the Copyright
Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London EC1N 8TS.

The ePublication is protected by copyright and must not be copied, reproduced, transferred,
distributed, leased, licensed or publicly performed or used in any way except as specifically
permitted in writing by the publishers, as allowed under the terms and conditions under which it
was purchased, or as strictly permitted by applicable copyright law. Any unauthorised distribution
or use of this text may be a direct infringement of the author’s and the publishers’ rights and those
responsible may be liable in law accordingly.

All trademarks used herein are the property of their respective owners. The use of any trademark in
this text does not vest in the author or publisher any trademark ownership rights in such trademarks,
nor does the use of such trademarks imply any affiliation with or endorsement of this book by such
Owners.

The screenshots in this book are reprinted by permission of Microsoft Corporation.

10987654321
17 16 15 14 13

Print edition typeset in 11/14pt Arial MT Std Condensed by 30
Print edition printed and bound by Rotolito Lombarda, Italy

NOTE THAT ANY PAGE CROSS-REFERENCES REFER TO THE PRINT EDITION

Brilliant guides

What you need to know and how to do it

When you’re working on your computer and come up against a problem that you’re
unsure how to solve, or want to accomplish something in an application that you aren’t
sure how to do, where do you look? Manuals and traditional training guides are usually
too big and unwieldy and are intended to be used as end-to-end training resources,
making it hard to get to the info you need right away without having to wade through
pages of background information that you just don’t need at that moment — and helplines
are rarely that helpful!

Brilliant guides have been developed to allow you to find the info you need easily and
without fuss and guide you through the task using a highly visual, step-by-step approach
— providing exactly what you need to know when you need it!

Brilliant guides provide the quick easy-to-access information that you need, using a table
of contents and troubleshooting guide to help you find exactly what you need to know,
and then presenting each task in a visual manner. Numbered steps guide you through
each task or problem, using numerous screenshots to illustrate each step. Added
features include ‘See also...” boxes that point you to related tasks and information in the
book, while ‘Did you know?..." sections alert you to relevant expert tips, tricks and advice
to further expand your skills and knowledge.

In addition to covering all major office PC applications, and related computing subjects,
the Brilliant series also contains titles that will help you in every aspect of your working
life, such as writing the perfect CV, answering the toughest interview questions and
moving on in your career.

Brilliant guides are the light at the end of the tunnel when you are faced with any minor
or major task.

Author’s acknowledgements

No book is a singular effort. I'm grateful to Joli Ballew, a long-time Pearson author, and
my agent Neil Salkind of The Salkind Agency and Studio B for inviting me to take on this
project. I'd also like to thank Robert Cottee and Steve Temblett of Pearson UK for their
help managing the project, Helen Savill for her editorial guidance and all members of the
production team who copy edited, proofread and produced the finished work. | know the
amount of work that goes into producing a book after the writing is done and appreciate
their efforts.

About the author

Curtis Frye is the author of more than two dozen books, including Microsoft Excel 2013
Step by Step for Microsoft Press and the Excel 2007 Pocket Guide for O’Reilly Media. He
has also written and hosted over a dozen online training courses on Excel and other
programs for lynda.com. In addition to his writing, Curt is a popular keynote speaker and
has performed with the ComedySportz Portland improv comedy group since 1996. He
lives in Portland, Oregon, with his wife Virginia, their three cats and many, many books.

Dedication

For Colin and Emily

vi

Contents

Introduction Xiii
1. Recording and running macros 1
Record a macro 2
Run a macro 3

Edit a macro 4
Delete a macro 6
Record a macro using relative references 7
Assign a macro to a keyboard shortcut 9
Run a macro by clicking a shape 11
Add a macro to the Quick Access Toolbar 12
Customise a Quick Access Toolbar button 14
Save a macro-enabled workbook 16
Manage Excel 2010 security settings 17
Change Protected View settings 19
Change message bar settings 21
Change data connection security settings 22
Add a digital signature to a workbook 24

2. Starting with the Visual Basic Editor 27
Introduce object-orientated programming 28
Display the Developer ribbon tab 31
Display the Visual Basic Editor 32

Set project properties 33
Create a code module 34
Create a subroutine 35
Create a function 36
Add a comment to your code 37
Run a VBA routine 38
Rename a code module 39
Delete a code module 40
Export a code module to a text file 41

vii

3. Working with data and variables

Understand data types in Excel VBA
Declare a variable

Require variable declaration before use
Manage variable scope

Perform calculations using mathematical operators
Define a constant

Define a static variable

Define an array

Define a multidimensional array
Redefine an array

Define a dynamic array

Display an object type

Define an object variable

Open a workbook

Open a text file as a workbook

Open a file the user selects

Save a workbook

Save a workbook in a different format
Detect if a workbook is open

Close a workbook

Create a new workbook

Delete a file

5. Managing worksheets

Add a worksheet

Delete a worksheet

Move a worksheet

Copy a worksheet

Hide or unhide a worksheet
Rename a worksheet
Protect a worksheet

Print a worksheet

6. Managing ranges

Activate a cell range
Select a cell range

43

44
45
46
47
48
49
50
51
52
53
54
55
56

58
59
60
61
62
63
65
66
67

69

70
71
72
73
74
75
76
77

79

80
81

Select the active region 82

Refer to cells using Of fset 83
Insert a cell range 84
Delete a cell range 85
Hide worksheet columns or rows 86
Create a named range 88
Resize a selected range 89
Set the column width 90
Set the row height 92
7. Managing cells 93
Cut and paste a cell range 94
Copy and paste a cell range 95
Copy and paste values in cells using PasteSpecial 96
Transpose a column into a row 98
Create a cell comment 99
Display a cell’s comment 100
Hide a cell’s comment 101
Delete one or all cell comments 102
Fill a range of cells automatically 103
Copy a range to multiple sheets 105
Add a cell border 106
Find a cell value 109
Replace a cell value 111
Apply bold, italic and underline formatting 114
Change a cell’s font 116
Change a cell’s font size 118
Change a cell’s font colour 119
Change a cell’s fill colour 121
Change a cell’s alignment 123
Apply a cell style 125
Apply a number format to a cell 127
Clear a cell’s format 128
9. Sorting and filtering data 131
Sort cell data using a single criterion 132
Create a multilevel sort 136

Sort using a customised list of values 140

Turn on filter arrows using VBA code 144

Apply a filter using a single criterion 146
Remove a filter 148
Display a list of unique values 150
Filter data to display two values in a column 152
Filter data to display three or more values in a column 154
Filter data based on values in multiple columns 156
10. Managing charts 159
Create a chart 160
Move a chart to a chart sheet 163
Add a new data series to a chart 166
Format a chart’s legend text 170
Format a chart’s axis text 172
Export a chart as an image 174
Create a Line sparkline 176
Create a Column sparkline 178
Create a Win/Loss sparkline 180
Delete a sparkline 182
11. Using built-in functions and statements 183
Use the built-in Open dialog box 184
Prevent screen flicker when running VBA code 186
Suppress and restore alerts 187
Calculate data using Excel worksheet functions 188
Display a message box 189
Get data from an InputBox 193
Display the current date and time 196
Format a date 197
Remove spaces from a string 199
Locate a portion of a string 201
Concatenate strings 203
Create a For..Next loop 206
Create a For..Each loop 207
Create an Tf..Then..ElseTf statement 208
Create a Case statement 211
Create a Do loop 212
Create a Do..While loop 213

Create a Do..Unti1l loop 214

Call another macro from within your code 215
Refer to objects using a With..End With statement 216
13. Debugging your VBA code 217
Execute code in the Immediate window 218
Set a breakpoint in your VBA code 219
Watch a value in a routine 220
Step through your code one line at a time 222
Skip over a subroutine 223
Step out of a subroutine 225
Manage errors using an On Error GoTo statement 226
Manage errors using an On Error Resume Next statement 228
Manage errors using an On Error GoTo 0 statement 229
14. Using Excel events in your VBA code 231
Display the available events 232
Run a procedure when you open a workbook 233
Run a procedure when you close a workbook 235
Run a procedure when you save a workbook 236
Run a procedure when a cell range changes 237
15. Gathering data with UserForms 239
Create a UserForm 240
Add a TextBox to a UserForm 241
Adda ListBox toaUserForm 242
Add a ComboBox to a UserForm 244
Add an option button to a UserForm 245
Add graphics to a UserForm 247
Add a SpinButtontoaUserForm 249
Create a multipage or multitab UserForm 251
Write UserForm data to a worksheet 252
Display, load and hide a UserForm 254
Jargon buster 255

Troubleshooting guide 259

Introduction

Welcome to Brilliant Excel VBA Programming, a visual quick
reference book that shows you how to use VBA programming
to import data and produce reports more efficiently in Excel.
This book provides complete coverage of basic to advanced
VBA programming skills.

Find what you need to know — when you
need it

You don’t have to read this book in any particular order. We've
designed the book so that you can jump in, get the information
you need and jump out. To find the information that you need,
just look up the task in the table of contents or Troubleshooting
guide, and turn to the page listed. Read the task introduction,
follow the step-by-step instructions along with the illustration,
and you’re done.

How this book works

Each task is presented with step-by-step instructions in one
column and screen illustrations in the other. This arrangement
lets you focus on a single task without having to turn the pages
too often.

Find what you need to know -
when you need it

How this book works
Step-by-step instructions
Troubleshooting guide

Spelling

xiii

Step-by-step instructions

This book provides concise step-by-step instructions
that show you how to accomplish a task. Each set

of instructions includes illustrations that directly
correspond to the easy-to-read steps. Eye-catching
text features provide additional helpful information in
bite-sized chunks to help you work more efficiently
or to teach you more in-depth information. The

‘For your information’ features provide tips and
techniques to help you work smarter, while the ‘See
also’ cross-references lead you to other parts of the
book containing related information about the task.
Essential information is highlighted in ‘Important’
boxes that will ensure you don’t miss any vital
suggestions and advice.

Troubleshooting guide

This book offers quick and easy ways to diagnose
and solve common problems that you might
encounter, using the Troubleshooting guide. The
problems are grouped into categories that are
presented alphabetically.

Spelling

We have used UK spelling conventions throughout
this book. You may therefore notice some
inconsistencies between the text and the software
on your computer, which is likely to have been
developed in the US. We have, however, adopted US
spelling for the words ‘disk’ and ‘program’, as these
are commonly accepted throughout the world.

Xiv

Create a code
module ’

Create a code module

If necessary, press Alt+F11
to display the Visual Basic
Editor.

|EA Click the Insert tab, then the
Module menu item.

When you are done working
with the code module, click
its Close button to close it.

You need to store the VBA code you create within your
workbook. For the tasks described throughout most of this
guide, you will store your VBA instructions in one or more code
modules. As the name implies, a code module is a repository
for a set of routines. It can be tempting to put all of your code
into a single module, but you'll quickly find the convenience

of a single module is overwhelmed by the difficulty of finding
an individual procedure. Like creating multiple workshests
within a workbook, you should organise your code into multiple
modules so it’s easy to find individual routines.

Did you know?

Don't forget to save your work frequently. You can do so
by clicking the Save toolbar button or press Ctri+S.

0

See also

For more information on renaming a code module, see
the Rename a code module task later in this chapter.

Troubleshooting guide

Recording and running macros

To learn how to record a macro, see
Chapter 1, Recording a macro.

To learn how to run a macro, see
Chapter 1, Running a macro.

To learn how to edit a macro, see
Chapter 1, Editing a macro.

To learn how to delete a macro, see
Chapter 1, Deleting a macro.

For information on recording a macro
using relative references, see Chapter 1,
Record a macro using relative references. 7

To learn how to assign macro to a
keyboard shortcut, see Chapter 1,
Assigning a macro to a keyboard
shorteut.

To learn how to run a macro by clicking
a shape, see Chapter 1, Running a macro

by clicking a shape.
To learn how to add a macro to the
Quick Access Toolbar, see Chapter 1,
Adding a macro to the Quick Access
Toolbar.

To learn how to customise a Quick

Access Toolbar button, see Chapter 1,

Customising a Quick Access Toolbar
button.

For information on saving a
macro-enabled workbook, see Chapter 1,
o Saving a macro-enabled workbook. 16

To learn how to manage Managing Excel
3 2010 security settings, see Chapter 1,
Managing Excel 2010 security settings. 17

4 Tolearn how to change Protected
View settings, see Chapter 1, Changing

o Protected View setiings. 19
To learn how to change message bar
settings, see Chapter 1, Changing

Message Bar settings. 21

To learn how to change data

connection security settings, see

Chapter 1, Changing data connection security
22

o settings.

To learn how to add a digital signature
to a workbook, see Chapter 1, Adding a

1 digital signature to a workbook. 24
Starting with the Visual Basic Editor
For background information on
object-orientated programming,

12 see Chapter 2, Introducing
object-orientated programming. 28
If you'd like to display the Developer
ribbon tab, see Chapter 2, Displaying

14 the Developer ribbon tab. 31

Troubleshooting guide 259

Recording and running
macros

Introduction

Macros are sets of recorded instructions you can replay
whenever you wish. If you perform a multi-step task frequently,
such as applying formats to an Excel worksheet, you could
record the steps as a macro. Then, the next time you want to
perform those actions, you can save yourself a lot of time by
running the macro. You can choose from several options for
running your macros, depending on whether you want to use
your keyboard, click a shape, run your macro from the Macros
dialog box or add a button to the Quick Access Toolbar. Finally,
you'll learn how to manage macro security in Excel 2010.

Record a macro
Run a macro
Edit a macro
Delete a macro

Record a macro using relative
references

Assign a macro to a keyboard
shortcut

Run a macro by clicking a shape

Add a macro to the Quick Access
Toolbar

Customise a Quick Access
Toolbar button

Save a macro-enabled workbook

Managing Excel 2010 security
settings

Change Protected View settings
Change message bar settings

Change data connection security
settings

Add a digital signature to a
workbook

Recording and running macros 1

Record a macro >

Record a macro
Click the View tab.

Click the Macros button’s
down arrow.

Click Record Macro.

In the Record Macro dialog
box, type a name for your
macro.

Click OK.

3 Perform the steps you would
like to record and play back
later.

Click View, click the Macros
button’s down arrow and

click Stop Recording.
Did you know? n

Adding a description helps
you remember exactly what
a macro does if it's been a
while since you've used it.

Unless you specify

otherwise, a macro operates
on the cells you clicked
when you recorded it.

Important

Macros are sets of steps that you can replay with the click of
a button or press of a key. Before you can replay those steps,
however, you must record them. When you start recording,
everything you do is stored in the macro. If you make a
mistake, you can stop recording, return your worksheet to
its original configuration and try again. Once your macro is
in place, you can run it any time you wish and have the steps

completed almost

instantly.

To start recording a macro, display the View tab on the ribbon,
then follow the steps.

o @ o= =

Macro name:

Macr01|

Shorkeut key:
Chrl+ |

Skore macro in:
This Warkbaak

Description:

= 2|
Lawe Stk ; ' |
wiorkspace Windows © 4ﬂ
:3 Wiew hacras o
=] Record Macro..
o 7 E Use Relative References :
‘Record Macro - | 1

Lo o [Cancel |

=

Sawe Swwitch
Warkspace Windows =

o B2
o @ o= =

I -
|Macros|
=

Wiewe Macros L

Stop Recarding

=]
]
]

Use Relative References

]

After you record a macro, running it replays those steps in
just a few seconds. For example, suppose you copy customer
orders from one worksheet to another. If doing so takes you a
minute to complete and you do it once a day, you'll save

20 minutes per month on that task alone by creating a macro.

You'll find the controls to run a macro via the Excel user

interface on the View tab.

= =
Lawve Swvitch

Warkspace Windows T

= =] 3
o @ o F =
=5
Macros
hacros

Macro

Macros in: | All Open Workbooks

Description

Step Inko

Edit

Delete

Options, ..

Cancel

See also

= 3 H

If you display multiple worksheets while recording a
macro, your screen might flicker. For information on
how to stop the screen from flickering, see Chapter 11.

4 Run a macro

Run a macro
Click the View tab.

Click Macros, to display the
Macro dialog box.

Click the macro you want to
run.

Click Run.

Important

Click the main body of

the Macros button on the
ribbon to display the Macro
dialog box.

Recording and running macros 3

Edit a macro

>

Edit a macro
Click the View tab.
Click Macros.

In the Macro dialog box,
click the macro you want to
change.

Click Edit.

After you have recorded a macro, you might find that you want
to change one of its steps. For example, instead of changing
the text to red, you might want to display it in blue. Rather than
record a new macro and delete the old, you can save time by
editing your existing macro.

For your information

Don’t worry that you might not be familiar enough
with Visual Basic for Applications to edit your code on

your own yet. You'll learn everything you need to know
in the rest of this guide.

=

= -

Save Swiitch
Warkspace Windows =

o B
o @ o= =

Macros

-

Macras

Macro

Macra narme:

Step Inko

Edit

Delete

Options, ..

Macros in: | All Dpen Workbooks

Description

Zancel

[
I H
?-;: |
- IS

7 Microsoft Visual Basic for Applications - Bookl - [Modulel (Code)] [E=NEo == Edit d macro

il File Edit Wiew Jntet Fgomot Debug Bun ool Adddns Windew Help - A x

EE-E s R 9 P 0 BTy @ Lnig Coll
I're,eu-w..\u'm\gn % |0¢-"='-l1 _'J !h“ﬂm l _-_[(cont.)
g g E Sub FormatSalesInfo() -
x:&m: s ' FormatSalealnfo Macro
| e Bl
I"rupcniei Meauiel E . Selection.Font. Italic = True
[Madule1 Hodls | Seleccion.Fonc.Bold = True
ghatetic | Ctogored | P
Modle!
With the macro open in the
Visual Basic Editor, change
the code in the code module.
= o] | :
I3 Click the Save button on the

toolbar.

o
E Click File...Close and Return

to Microsoft Excel on the
Did you know? menu.
If you're not sure if your edit will make your macro

inoperable, copy the text you're changing to a text file or
e-mail message so you can paste it back in if needed.

Jargon buster

When you record a macro, Excel writes the Visual Basic
for Applications instructions required to duplicate your
steps. Those instructions are stored in a code module,
which you’ll learn more about in Chapter 2.

Recording and running macros 5

Delete a macro If you're done with a macro and don’t anticipate using it again,
you can delete it from your workbook. Deleting unwanted

macros makes the list that appears in the Macro dialog box
less crowded, which, in turn, makes it easier for you to find the
macro you want to run.

= [=] B3
7 =
Delete a macro]
Display the macros in your H E=5)
icki Lave Switch hacros
vvvlorkbotc))k by clicking the e
iew tab. L
Click Macros.
In the Macro dialog box, click
the macro you want to delete. e "
Click Delete. l__ﬂacru name:
Click Yes to confirm you want :FI” B B
to delete the macro. PO
Important “ e

I!

Deleting a macro is final — DpHions. ..
once you do, you can’t bring
it back. Macros in: | All Open Workbooks E

Descripkion

Cancel

Did you know?

If you've had a change of
heart, click No to leave the
macro in your workbook.

When you create a macro, Excel makes a note of the exact cells
you selected when you recorded your macro’s steps. If you
click cell C3 and then C4 (the cell below C3), the macro code
will contain those exact cell references. If you would rather
your macro code indicate that you clicked the cell just below
the active cell, rather than a specific cell address, you can
record your macro using relative references.

Jargon buster

A relative reference is an instruction that tells Excel
to look a number of rows up or down and a number of
columns to the left or right of the active cell.

o =
o @ o= =

Sawe Suwitich IMacros|
Warkspace Windows = i —n

Wiews Macras

)

Use Relative References

i1
E] Record Macro..
=

al@=F =

a1
tH

Sawe Swwitch |Macros!
Woarkspace Windows T "—n

“Wiewe Macros L
R

ecord Macro..,
il

Use Relative References b

Record a macro
using relative
references

Record a macro using relative
references

Indicate you want to do this
by clicking the View tab.

Click the Macros button’s
down arrow.

Click Use Relative References.

Now you can record the
macro normally — click the
Macros button’s down arrow.

Click Record Macro to display
the Macro dialog box.

Recording and running macros 7

Record a macro G B

1 H Macro name:
using relative =
references Shoetctkey:
(cont.) o
Thi§ ;u\-'nr-kbook E[
Qescr_’ip_tion_:

3 In the Record Macro dialog
box, type a name for your
macro.

ancel
I Click OK. (=Wl

B} Perform the steps you want
to record.

. . = =] 2
[} Click the View tab.
o @ o= =
Click the Macros button’s — '
down arrow. - = = 'T|
. . Sawe Swwitch [Macros
Click Stop Recording. Play Waorkspace Windows~ ||~
back later. =] ‘u"lew tacros L
@ Stop Recordin
0 P ; i ; EI
ﬁ Use Relative References |
" []

Important

If your macro doesn’t behave the way you expect, click
View and then click the Macros button’s down arrow to
see if Use Relative References is highlighted.

If you run a macro frequently, you might want to assign it to
a keyboard shortcut. Just as you can press Ctrl+C to copy

a cell’s contents in Excel, you can have Excel run a macro
whenever you press a certain key combination. You must use
a letter, so you should assign rarely used letters such as J, M
or U to your macros.

a1
tH

Save Swritch Macros|
Woarkspace Windows T ‘—E

“Wiewe Macros

=]
.ﬂ Record Macrao...
=

o P Use Relative References j
]

‘Record Macro
Macro narme:

lacrod
Shortcut key:

Chrl+

Skore macroin:

This ‘Workbook |E|
Descripkion:

[oK n | Cancel

4 Assign a macro
to a keyboard
shortcut

Assign a macro to a keyboard
shortcut

Click the View tab to start the
macro recording process.

Click the Macros button’s
down arrow.

Click Record Macro.

In the Macro dialog box, type
a name for your macro.

In the Shortcut key box, type
a letter to be pressed with the
Ctrl key to run the macro.

I3 Click OK.

Recording and running macros 9

Assign a macro
to a keyboard SR
shortcut (cont.) = B

Sawe Swwitch
Woarkspace Windows v

Wiewe Macros

=2
@ Stop Recording
5]

Use Relative References

q
Perform the steps you want |]

to record.

B} On the ribbon, click View,
click the Macros button’s
down arrow, then click Stop
Recording. Play back later. Important

If you assign a macro to a common keyboard shortcut,

such as Ctrl+C (which copies the selected cells’
contents), then pressing that key sequence while editing
the workbook will run the macro instead of performing
the shortcut’s usual function.

Did you know?

You can assign a keyboard shortcut to a macro after
you create it by opening the Macro dialog box, clicking
the macro, clicking the Options button, then typing the
keyboard shortcut into the Shortcut key box.

10

If you create macros for several different workbooks, it can be 4 Run a macro by
difficult to remember which macros are available where. Rather O

than take the time to open the Macro dialog box to discover C|ICklng a Shape
which macros are contained in a workbook, you can make your
macros more visible by assigning them to a shape and editing
the shape’s text to reflect the macro. Then, when you click the
shape, Excel runs the macro.

¥ Hd9-0¢-|= SR
& n— Insert Pagelayout Formulas Data Reviewr e Run a macro by cllcklng a
o] = AWli; L A - i .
M === ﬁ 5 e+ ‘i \»}{ B — “ L Shape
Pﬁ\totvl'able Table Picture Shapes Smarkirt Scrtenshot Column Lme Pie Bfr Arvea Sc; Cllck the Insert tab
Tables Rﬂ:en‘lly Used Shapes - Charts .
- ~e B \NOeoA1LLDEG6 | CIICkShapeS.
2T b Ve e
A B ® 3 | F G :
Wi e |0 o Click the type of shape you
| 2 Mary Carter Hand-knit ¢ n\ l\'ng:'—L—L'I € L want to add.
| 3 |Ronnie O'Leary Embroiden u al = .
Henaa b bas Draw the shape in the body of
_ _ i your worksheet.
Assign Macro

. If desired, click the shape
:_acm name: = : and type text to appear in the
Farmat3alesInfo Efg Shape as a label.
G A Right-click the shape and then
click Assign Macro.

In the Assign Macro dialog
box, click the macro you want
to run when the shape is

= clicked.
Macros in: | Al Open Workbooks E n CIICk OK
Description
[Ok n [Cancel] Did you know?

In addition to shapes, you
can also assign macros to
Did you know?

E pictures and clip art.
To select a shape, picture or clip art image rather than

run a macro assigned to it, hold down the Ctrl key when
you click the object.

Recording and running macros 11

Add a macro to >
the Quick Access
Toolbar

Add a macro to the Quick
Access Toolbar

Right-click any blank spot
on the ribbon and then click
Customize Quick Access
Toolbar....

In the Excel Options dialog
box, click the Choose
commands from down arrow
and then click Macros.

12

If you record a macro that you use frequently, you should
consider assigning the macro to a button you add to the Quick
Access Toolbar. You can find the Quick Access Toolbar above
the ribbon. When you install Excel, the Quick Access Toolbar
contains the Save, Undo and Redo buttons. Assigning a macro
to a Quick Access Tollbar. button lets you run the macro easily

—all you need to do is click the button you created.

When you hover the mouse pointer over a Quick Access
Toolbar button, Excel displays the name of the macro
that will run when the button is clicked.

Did you know?

(x| 2 - |=
Home Insert Page Lavout = 2= S—= ==

. Cusknmize Quirk Arress Tnnlhar...

= Calibri Show Quick Access Toolbar Below the Ribbon Text

Paste = Customize the Ribb

' - ustomize the O -

- J Format Painter B I U = N & Center

Clipboard - Foni Pimiiniice Lhie Ribboor .
D3 ~@ £ 34 _
A B C | D E F G H

1 Customer Item Date Cost

| 7 Mary Carfar Hand-knit srarf 20-May-17 £ 2100
| 3 |Ronnle O'Leary Embroldered bag 20-May-12) £ 34.00

il

Excel Options

General . .
'ﬁﬁ Customize the Quick Access Toalbar.
Formulas
Choose commands from: G
Froofing Popular Cammands EI
Save Popular Commands
Carmmands Mot in the Ribbon
Language Al Commands
Adwanced
Customize Ribbon File Tab
vick &ccess Toolbar || |-
Q Haome Tab
Add-Ins Insert Tab
Page Layout Tab
Trust Center Formulas Tab

n Add a macro to
the Quick Access

Did you know?
Toolbar (cont.)

You can change the order of buttons on the Quick
Access Toolbar by displaying the Quick Access Toolbar
page of the Excel Options dialog box, clicking the name
of the macro you want to reposition and clicking the
Move Up and Move Down buttons at the right edge of

the dialog box. In the left-hand pane, click the

macro you want to add to the
Quick Access Toolbar.

Click the Add button.

 Excel Options |T|" .
[pe—— Click OK. When you do, a
- Customize the Quick Adcess Toolbar. .
Fomuas e i A AR button representing the macro
e e = Pl dumrt et = appears on the Quick Access
Language =Saantor

[swe 3 Toolbar.

1 Undo
4 Reda

Addvariced £3 SOLVERKLAMISOIVERADD

B SOLVERMLAMESOLVER CHANGE
Customize Hibbon

Uitk Aceets Taoihar Adds> |

Add.Ins

Trust Center

) =]
Show Quitk Acgess Toolbar below the Customizations: | Rgaet = |
Ribbon el
'
ok | cancel

Recording and running macros 13

Customise a > When you add a macro to the Quick Access Toolbar, Excel
ick A assigns it a button that looks like a miniature flowchart. It’s
QUIC ccess an appropriate image, but if you have multiple macros on the
Toolbar button Quick Access Toolbar you won't be able to tell them apart at a
glance. You can always hover the mouse pointer over a button
to see which macro it runs, but it’s far easier to change the
button’s image so it stands out on the Quick Access Toolbar.

Customise a Quick Access E
Toolbar button .
. _ Did you know?
Right-click any blank spot _ _
on the ribbon and then click When you hover the mouse pointer over a Quick Access
Customize Quick Access Toolbar button, Excel displays the name of the macro
Toolbar. that will run when the button is clicked. You can change

that text by changing the Display Name value in the
Modify Button dialog box. Click the macro you want to
customise and then click the Modify button.

Hnme Thsert e Lt S -- P
= - Customize Quick Access Toolbar...
& Cut
g3 copy ~
Pasle Custamize the Ribbon... = | &5 -
- J Format Painter o - == :,__.‘IMerge & Center

iz Showe Quick Access [oolbar Below the Hibbon = vrap Text

Minimize the Ribbon

Clipboard gnment

14

.I:mIOpﬁmu

Ganersl

Customize Ribbon
Quick Access Toslbar
AddIng

Trusk Cemter

@ Custarize the Quick Access Toolbar.

Shoose cominands from:

Macros [=]

4Separaton
o Dispimhial
fa SOLVERMLAMISOLVERADD
Jﬁ SOIVERXLAMITOLVER. CHANGE

Show Quick Access Toolbar below the
Ribtron

‘\

.
i

Lustomize Quick Access Toolbar:
For all dacuments [default]

b swve

) unda

ol

=

&
0 Fedo n v

Customizatinns: | L Ja

Import/Expart ¥ |

‘Madify Button
"

Symbal:

=004 ! PIHHIE -
DEEaEaNAdsweH e
Aaver@F@T2.8QT
YRAEDL %L 8 0HYD (=
BDELEOT o IEN
EODEOREEOENEN
B0 EIEmE®@idd s
SDUeMESLRSE %Y
AAX vROUT &&E Fi=
PimShd Bodvan -

Display name:

[Ok n[Cancel J

Did you know?

To delete a Quick Access Toolbar button, display the
Quick Access Toolbar page of the Excel Options dialog
box, click the macro you want to remove, click the
Remove button, then click OK.

Customise a
Quick Access
Toolbar button
(cont.)

In the Customize Quick
Access Toolbar panel of the
Excel Options dialog box, click
the macro you want to assign
a new button image to.

Click Modify.

In the Modify Button dialog
box, click a new button image.

If desired, in the Display
name box, type a new name
to appear when you hover
the mouse pointer over the
button.

B} Click OK.
Click OK.

Recording and running macros 15

Save a macro-
enabled >
workbook

Save a macro-enabled
workbook

Click the File tab on the
ribbon.

Click Save As.

In the Save As dialog box,
type a name for the workbook
in the File name box.

Click the Save as type
control’s down arrow, then
click Excel Macro-Enabled
Workbook and click Save.

Important “

Avoid opening macro-

enabled files you didn’t
expect to receive and always
keep your antivirus software
up to date.

16

For security reasons, Excel 2010 doesn’t let you save a
workbook with macros using the standard .xIsx file type.
Instead, you must save the file as a macro-enabled workbook.
Windows Explorer displays these files with a different icon

so it’s very easy to tell that a file contains code that could run
when you open it.

H Sawe
B
’ Sawe As]
= Open
=B
[Close
(T swers =
61:‘" + Computer + FreeAgent () » Writing » Pearion UK » Drillant Bcel VBA + Chaptertil [y |[Search Ehaprentt :
Organize » New folder —
L] Microsaft Bxcel e Dateimodified Type
0] Sales Infurmation SANLITIPM Micrasalt Excel M 1K
o Fuvorites
B Deskeop X
& Dommloady
i Dropbex
4L Recent Places
& TeyDiive
i Libewrins
* Docurnents
»' Music
i/ Pictares
S .
File narne: Tax Management

Sve b type:

Eacel
Excel §7-2003 Werkbook

ML Data
Singie File Web Page
= Hide Folders Web Pay

Excel Templite

Excel 2003 and earlier versions of Excel had relatively Manage Excel
unsophisticated macro security measures in place, so it was 2010 securi ty

fairly easy for malicious programmers to create macro viruses
(harmful computer code written using VBA) to spread malware settings

via infected files. Starting with Excel 2007 and continuing in

Excel 2010, the Office programming team instituted much

stricter controls over when and how macros may be used.

Disallowing macros in the default file format has gone a long

way towards securing Excel against malicious code. Even so, Change macro security
it is still possible for users to inadvertently open an infected settings

macro-enabled file, so it is best that you acquire reputable virus _ _
protection software and set your macro security settings at the Click the File tab.
highest level that makes sense for your operation. Click Options.

Changing macro security settings

Excel 2010 gives you a lot of control over the program’s security
settings. Macros written by malicious coders can do significant
damage to your computer and its data, so it makes sense to
apply stringent security settings. You have several options from
which to choose — you should select
the one that provides the most security X A *

without compromising your operations. I —
The most restrictive macro security bl save

choice is to disable all macros without S
notification. Selecting this setting 5 Open

means that Excel prohibits all macros, o Close

regardless of any other security

features, such as digital signatures,

applied to the macros. As this is a book

about writing VBA code, you most S
likely won’t be surprised that this is RIE
not the recommended setting for your Important
macro security. That said, if you are not Print
currently working with macro-enabled The macro security settings

i REIE2.2ENd that you apply in Excel
workbooks and do not expect to receive 201gapplsagevery her
any such files, you should strongly Hel ‘ _
consider adopting this security setting, i Microsoft Office 2010
at least temporarily. | 3 options] program as well.

Exit

Recording and running macros 17

Manage Excel
2010 security
settings (cont.)

In the Excel Options dialog
box, click Trust Center.

Click Trust Center Settings.
Click Macro Settings.

) Select the option for the level
of macro security you want
apply. Note that you can:

a. Disable all macros without
notification.

b. Disable all macros with
notification.

c. Disable all macros except
digitally signed macros.

d. Enable all macros.

Click OK twice to finalise your
changes.

18

The next setting, disable all macros with notification, protects
against macros by default, but displays an alert on the message
bar indicating that the file contains macros. If you wish, you
may click the Enable Content button to run macros while you
have the workbook open. If you expect to work with macro-
enabled workbooks frequently, this is a good setting to choose.
You can also choose to disable all macros except digitally
signed ones. Digital signatures (described later in this chapter)
are constructs that provide an extra layer of security to digital
files. If you expect to receive macros from known publishers
that use digital signatures to authenticate their work, you
should choose this setting.

Finally, you could choose to enable all macros. Doing so is not
recommended. Even though malware protection software is
substantially more effective than it used to be, it won’t catch
everything. Your best course of action is to select a setting that
disables at least some macros by default and lets you decide
whether or not to allow them to run.

;;;;;;;

'-g Hielg keep your documents safe and your computer secure and heaithy.

Proleeling your pivecy

bout Excel heipi priacy, pieats

Security & more

Leam more sbout protecting your privegy and security from Office.com.
Migasaft Taubsrtne Comuuting

Mot Feeed Tl Conlet

Thoe Trust Cantes cantaim pecurity and peneacy tettingi. Theie tetting
o prter decure, W recomimn Ehat you di N6t changs tarie seling!

Lo tancel
Toust Crnler ERC

Trusted Publishers Macro Settings
Trusted Locations

Disable 3l macros without notification
Trusted Doouments @ Disable 3l macros with notification n
Adibing q Disable 3ll macros except digitally signed macros

Enable all macros fnot recommended; potentially dangerous code can run)
ArtiveX Seitings

Developer Macro Settngs

Marr q_.-ang.
Protected View Trust access bo the ¥OA project object model
Message Dar

External Conkent

Hile Block »ettings

Frivacy Uptions

ok | | caneal

When you receive a file by e-mail or
download it from the Internet, Office

4 Change

2010 programs can open the file in what Protected View
is called Protected View. As the name b 5 settings

implies, Protected View is a mode that Save A

prevents any sort of active content, such L5 Open

as ActiveX controls or macros, from
running on your computer. You can

select from several options to enhance Change Protected View

your security using Protected View. - settings

[Close

Click the File tab.

Mew
Click Options.
Print :
Click Trust Center.
Save & Send Click Trust Center Settings.
Help
Exit
Bl Options e
i @ Help keep your docsments safe and your computer secure and healthy,
Formulas
Froafing Prodecting your privacy
Save Microsaft cares sbout your privacy. For more information about how Microsoft Excel helps to protect your privacy, please
et the privacy statements,
ng e o thig Migrggof Excal privacy staterment
Avanced Offie.com Brivicy Aatement

Customer Experience Inprovement Frogram

Customize Ribbon

uick Access Tonlnar SLOURY B ot

stcurity cam

Trust center (NS e Tttty SOnpL
Microsoft Excel Trust Center

The Trust Center containg Securty 3na prvacy JeRtings. These Jemings help keep your eI .
COMBULET $Ecurs, Wt recommend Ehat you G0 not change these setbngs. | Irust Center Settngs.. |

[oom | [comens |

Recording and running macros 19

Change i Corte =
Trusted Publishers

Protected View Prtee iew

Trusled Lucati
S — Protected View opens potentially dangerous files, without ary security prompts, in a
restricked mode to help minimize harm to vour computer., By disabling Protected View you

-
Trusted D it
se l l I n gs (cont.) kel SiaRns could be exposing your computer to possible security threats.

Add-ins [¥] Enable Protected View for files originating from the Internet n

= . Cnable Protected Wiew for files located in potentially unsafe locations
Activel Settings s
¥ Enable Protected Wiew for Oubluok allachments

Mavro Selling:
Data Fxecution Prevention
| Protected View
|¥| Cnable Data Cxecution Prevention mode
Messaqe Dar

External Lontent

Click Protected View in the PRtk i
left-hand panel. PR]
IBJ Select the Protected View It [_one

options you want to enable.
Note that you can:

a. Enable Protected View for

files originating from the Important
Internet.
b. Enable Protected View for By default, all of the Protected View settings are
files located in potentially switched on when you install Office 2010. Unless there

unsafe locations. is a very good reason to do so, you should not alter any

c. Enable Protected View for of these settings.

Outlook attachments.

d. Enable Data Execution
Prevention mode.

Click OK twice to finalise your
changes.

20

Many very useful workbooks.cont.aln @9~~~ Change message
macros that extend the functionality of Home Ins bar settin
Excel 2010. Even so, you might find that kil e ar settings
your macro security settings prohibit your —
code from running when you desire. Even & open
if your settings disable macros by default, it
you can have Excel display a message bar
indicating that it has detected macros in
your workbook and the act.lon it has taken. cecent Change message bar settings
Based on your other security settings, you . .
can then either acknowledge the message New -(;9 Idlspt:ay thl‘? ixtfl (F)'?tl’?nbs
and turn on macros or close the message S 1a10g Dox, click the File tab.
bar without allowing macros to run. Click Options.
Save & Send
Click Trust Center.
Help 5 .
Click Trust Center Settings.
2] Optiohs .
IFEZ 2) Click Message Bar.
B9 Exit
_ | Select the option you want
el Optins — B2) to apply to the Message Bar.
'G:::::I” @ FHelp keep your documents safe and your computer secure and healthy. Note that you can.
Proofin, Prabecting Four peiv,
d “uﬁm:n:h:;,,u,mm.n, Y a. Show the Message Bar
e b . .
e : when active content is
T— blocked.
il Aches T kT Security & more) .
e [r————— b. Never show information
Trust Conte 3 Migrgioft TrusSworthy Computing
Wi 25 about blocked content.
N Click OK twice to finalise your
changes.
o] [cmm
. Trust Center @ . n
ToustecPublizners Message Bar Settings for all Office Applications Did you know?
THIRCLORIRON Showing the Message Bar .
Trusted Douments o ;hmu—;(.ht M;s:autdﬁar in all:.pplti)uliu;)ll)\;‘htéladm content, such ax YOU Can hlde the message
Add-ins Mever show information abc;utblnd:ed content n bar by CI|Ck|ng the C|OS€
AdtiveX Settings button, which looks like a
Maer ety small letter ‘X, at the far
Protected Wisa .
—— right edge of the bar.
External Lontent
File Bluck Seltirng:
Privacy Options " | Enable Trust Center logging
[concer |

Recording and running macros 21

Change data
connection
security settings

>

Change data connection
security settings

Open the Excel Options dialog
box by clicking the File tab.

Click Options.
Click Trust Center.
Click Trust Center Settings.

22

If your organisation is large enough that you store data in
several different repositories, you will most likely bring that
data into Excel using a data connection or a workbook link.
Data connections are connections to other data sources, such
as SQL databases, which can introduce their own security
issues. Workbook links are connections to other Excel files.
This latter type of connection has become much more common
now that Excel workbooks can contain over a million rows of

data per worksheet.

As with many of the other security
settings in this section, you can choose
to enable data connections or workbook
links, prompt users to choose whether
to update the connections or links or
else disable connections and links
entirely. The most common setting is

to prompt users to choose whether to
update or not. This setting alerts you
that your workbook contains one of
those two elements. If you're expecting
a workbook to contain a data connection
or workbook link, you can allow Excel to
make the connection. If, however, you
receive a file that you did not expect to
contain either of those two elements,
you can choose not to enable them and
check with the individual who sent it to
you or your corporate IT professional to
determine the best course of action.

In

o Save
Save Az

I__‘:,‘ Cpen

[Close
Recent

Mew

Print

Save & Send

| =] Optians |
—

Exit

Proafing Prodecting your pairacy

Seciuity & more

s Lesm more (] g your privicy snd secur ty com.

tdicrosoft Trshanrthi ©omputing

Miicrosoft Excel Trust Center

COMPLILEr securs. Wie recammend st you 80 not change thess setbing.

The Trust Center containg Securty 3na prvacy JeRtings. These JeMngs help keep your
3.

e
@ Help keep your docsments safe and your computer secure and healthy,

Sawe Migrosaft cares sbout your privacy, For more information abowt how Microsoft Excel halps to protect your privecy, plesse
see the prhvacy statements,

[rust center serongs... |

| Trust Center

Trusted MPublishers
Trusted Locations
Trusted Documents
Add-ins
ActiveH Settings
Macro Settings
Protected View
Message Bar

| Bdernal Content
File Block Settings

Privacy Options

Security settings for Data Connections

(71 Enable all Data Connections (not recommended) n

@ Prompt user about Data Connedions
7 Disahle all Data Cannertinns

Secourity settings for Workbook Links

(71 Enable automatic update for all Workbook Links [not recommended)
@ Prampt user nn astnmatic update forWnrkhonk Links
) Disable automatic update of Workbook Links

T

Change data
connection
security settings
(cont.)

Click External Content.

B} Select the Security settings
for Data Connections. You
can:

a. Enable all Data
Connections.

b. Prompt user about Data
Connections.

c. Disable all Data
Connections.

Select the Security settings
for Workbook Links. You can:

a. Enable automatic link
updates.

b. Prompt users on automatic
update for Workbook Links.

c. Disable automatic update of
Workbook Links.

[E} Click OK twice to finalise your
changes.

Recording and running macros 23

Add a digital
signature to a
workbook

>

Add a digital signature to a
workbook

Click the File tab.

If necessary, click Info.

Click Protect Workbook.
Click Add a Digital Signature.
Click OK.

Did you know?

You can get more
information about digital
certificates by clicking the
Signature Services from the
Office Marketplace button
that appears after you click
the Add a Digital Signature
button.

24

As mentioned earlier in this chapter, one of the macro security
settings for Excel 2010 is to allow only those macros that
have a digital signature attached. A digital signature is a file,
generated by a certification authority, that Excel can use to
identify a document as having been created by the certificate
owner. You can purchase several different levels of digital
certificate, based on the extent of the documentation you
provide to the certifying authority.

X]| i
& Insert Page Layout Formulas Data Rieview Wiew
b Save)
- Information about Tax Management
Sawe As
LiWriting'\Pearson UK\Dacel VDA In Simple StepsAChapterdd 24Tax Managementadsm
_:,; Open 3
J Cluse .
A Permisslons

;-I—'ij Anyone can open, copy, and change any part of this workbook.

nfo =

Protect
Recent Workbook -

= Mark as Hinal
-

Mew 17 Let readers know the workbouk is finel
and make it read-nnly.

Print (1] Enuypl wilh Passwoid tit contains:
.—’i_;'\ Require a password to open this ir's name
R sl mand Wernaok: Jities find difficult to read
7 Protect Current Sheet
! Control what types of changes people can
Help make to the cument sheet,
2 = Protect Workbook Structure
2] Options | e
Prewent umsanted changes to the structure of this file.
B it uf the workbuook, such as adding sheels.
% Restrict Permission by People
|_& Grant people access while removing their *
ability to edit, copy, or print.
5 Add a Digital Signature 4
n Ensure the Integrity of the workbook by
adding an invisible digital signature.
- [==)
ot e ik by
hrwcion, Mt t i
e ——
| St v i the Cffe Mwbetsace.. o 5

Sign
o See additiona information about what vou are signing..

visile within the conbent of this document.
Purpose for signing this document:

Signing as; Excel2D10565

EE =

You are about bo add a digital signature to this document. This signature wil not be

(cneree...) [

s [B [corce]

Windows Security

Select a Certificate

Excel 20105B5
Issuer: Excel20105BS
Valid From: 1/1/2010 to 1/1/2016

Click here to view certificate prope..,

Excel 2010SES
Issuer: Excel2010565
Valid From: 1/1/2010 to 1/1/2016

CIEIEIE

ﬂl

Curtis Frye President of Tec..
Issuer: Curtis Frye President of Tech...
Valid From: 1/1/2010 to 1/1/2016

Excel 2010SBS
Issuer: Excel20105B5
Valid From: 1/1/2010 to 1/1/2016

0K n Cancel

Did you know?

For more information on managing publishers with

digital certificates, click the File tab, click Options, click

Trust Center, click Trust Center Settings, then click
Trusted Publishers.

Add a digital
signature to a
workbook (cont.)

I Click Change. ..

Click the digital signature you
want to use.

[N Click OK.

[Click Sign to add the digital
signature to your workbook.

Recording and running macros 25

Starting with the Visual
Basic Editor

Introduction

Microsoft Excel provides an ideal environment for examining
numerical data, especially that of the financial variety. You
could use Microsoft Word tables to summarise your data and
even to perform some simple calculations, but it is by far the Display the Developer ribbon tab
inferior tool. If you or a colleague develop web pages, you
know that it’s possible to create a page using a simple text
editor such as Notepad. Possible, but certainly much more Set project properties
difficult than necessary.

Introduce object-orientated
programming

Display the Visual Basic Editor

Create a code module

Just as you could create a web page using nothing but a simple
text editor, it's possible to create your VBA code in Notepad.
Possible, but difficult. The best tool for the job, the Visual Basic ~ Create a function
Editor, is built into the Microsoft office application suite. You
can display the Visual Basic Editor using a single key sequence
and use its considerable power to create, edit and manage your Run a VBA routine
VBA code.

Create a subroutine

Add a comment to your code

Rename a code module

In this chapter, you will learn how to work with the Visual Basic Delete a code module
Editor, create simple code constructs, such as subroutines and

functions, and save your work to a text file. Export a code module to a

text file

Starting with the Visual Basic Editor 27

Introduce
object-orientated
programming

28

>

When you write or record a VBA macro in Excel, you define a
set of instructions for the program to follow. Computers take
your instructions absolutely literally, meaning that they will do
exactly what you tell them to do, even if that is not what you
mean for them to do. Every programming language follows a
well-defined set of patterns to reduce ambiguity, but the best
programming languages combine power, flexibility and the
ability for humans to comprehend the instructions.

Early generations of programming languages were called
procedural languages, which allowed programmers to define a
series of steps called an algorithm. The code in the algorithm
manipulated variables, which contain values used in calculations
and other manipulations. The great insight of object-orientated
programming — which is a means of organising knowledge about
a particular domain — was that a programming environment
referred to things. For example, in Excel you have workbooks,
worksheets, cells, charts and a myriad of other objects to
which you can refer.

Procedural programming languages also enabled programmers
to refer to objects by using what were called abstract data types.
You could define an abstract data type, perhaps a product
offered by a company, then create instances of those abstract
data types. For example, you could create an instance of the
product data type to refer to an automobile, a hotel room or

a computer.

Abstract data types offered procedural programming languages
extra capabilities, but they were a bit of a haphazard addition to
the underlying language. So, language designers extended the
concept of the abstract data type and organised their languages
by defining every element of the programming domain as

an object. Each object, in turn, has a number of elements
encapsulated within it. There are three elements you can find
within Microsoft Excel objects in Excel VBA:

M properties
B methods

B gvents.

Objects may also be members of collections, which are groups Introduce
of like objects. For example, the set of all worksheets within a

workbook is called the Worksheets collection. object-orientated
programming
Properties (cont)

As the name implies, properties are some aspect of an

object. For example, a workbook has a name, a collection of
worksheets and information about the date it was created. You
can change most of these values using the file system, such as
by renaming a workbook, or VBA code. Some properties are
set by the system and can’t be manipulated directly, but you
can read them if you need to use the information they contain.
You refer to properties using what is called dot notation. As an
example, you would refer to the name of the first worksheet in
a workbook using the code Worksheet (1). Name.

Methods

Properties describe some aspect of an object — they are the
adjectives that modify the object’s noun. Methods represent
action verbs — specifically, actions that the object knows

how to take. For example, you can save the current state of
your workbook, change worksheets within the workbook, or
delete a worksheet using methods that are built into the Excel
object model. You also refer to an object’s methods using dot
notation. For example, you could change the active worksheet
by using the code Worksheet (Name). Activate.

Events

If methods are the action verbs of the object-orientated
programming world, then events are the passive verbs. An
event is something that happens to an object inside an object-
orientated programming language. Excel 2010 can recognise
many different events, some of which are:

B opening or closing of a workbook

M activating or deactivating a worksheet

B saving a workbook

M clicking a chart

Starting with the Visual Basic Editor 29

Introduce
object-orientated
programming
(cont.)

30

M adding data to a cell
M recalculating a worksheet

B following a hyperlink.

As soon as Excel recognises one of these events has happened,
it triggers an event handler that executes any code you have
written within it. Events are extremely powerful, but it is very
easy to run into trouble by creating a series of event handlers
that could potentially trigger each other. The resulting chain
reaction will render Excel useless until you halt the program’s
execution by pressing Ctrl+C.

If you plan to do a lot of programming work in Excel 2010,
you should take a moment to add the built-in Developer tab
to the ribbon user interface. The Developer tab contains many
tools that you would normally find under separate ribbon tabs
in the standard user interface. For example, you can display
the Visual Basic Editor, record a macro, indicate you want to
use relative references in a macro, or change macro security
settings by clicking a single ribbon control.

B Editor and Developer Tab - Microsoft Excel

Home Insert Page Layout

Information about VB Editor a...

ExWriting\Pearsan LIK\Brilliant Focel WRANWE Fditor a...

.

Formulas Data Reeview Wiew

P Permlsslons
El}l Anyone can open, copy, and
chanye any part of thiz
Protect workbook,
Workbook -
= Prapare for Sharing
71 EBefore sharing this file, be aware
- that it contains:
Check fur Document properties and
Issues - author's name
Content that people with
disabilities find difficult to
read
!_j Options
3 et Verslons
'::_ﬂ B There are no previous
wersions of this file.
Manage
Wersions -
Excel Options -
Sament) custamize the Ribbon
Famnulss —
Shoase commands from Curtomize the Figbon: .
Frocfing Populsr Commands [=] Miin Tabs =
e
e db A cnantype "-}1;:'-
Borders . -
Adewiced 0 calculate Now = :":“"
Ceriter i Fal
Customize Ribbon i Conditionsl Farmatting # Mlignmert
Al Connections - rred
Quick Arcess Tacthar B copy © setes
. - = Cell
Adany f Eummmwt . 1:.«:.-.;
8
g A" Decrease Fost Size + [l insert
) % Dielete Calls... = Pags Layout
' Delete Sheet Columns & B Formulny
=F Delets Sheet Rows # | Dt =
5 it e e
o C
gtk + E—]
Farit I= :: :\:hlr
A Forr Color . = it
Fort izt T ® (/| Background Remowal
5 FormatCells...
f Formak Pairter
L Freese Panes
A Increase Font Taze
S Insert Cemt_
Jfo Ingert Funciion_.
Y Insert Sheet Columng
T Insert Sheet Rows
b Maaos
X Marge mCenter
\'4 Namme Manager -

Display the
Developer
ribbon tab

<

Display the Developer ribbon

tab

Open the Excel Options dialog
box by clicking the File tab,

then Options.

In the Excel Options dialog
box, click Customize Ribbon.

If necessary, click the

Customize the Ribbon down
arrow and click Main Tabs.

Click the Developer box.

Click OK.

Important

If your keyboard doesn’t
have working function

keys or if for some reason
either your Alt or F11 keys

aren’t working properly,
you should display the

Developer tab so you can

click the Visual Basic control

to display the Visual Basic

Editor without using the
keyboard.

Starting with the Visual Basic Editor 31

Display the
Visual Basic >
Editor

Display the Visual Basic Editor
Either:

a. Press Alt+F11.

b. Click the Developer tab,
then Visual Basic.

When you are done working
in the Visual Basic Editor,
Click the File...Close and
Return to Microsoft Excel
menu item.

32

Excel, like the other Microsoft Office programs, includes the
Visual Basic Editor. The Visual Basic Editor is a dedicated tool
you can use to write your VBA routines, edit existing macros
and create functions that let you perform calculations using
customised procedures that you define.

ome Insert Pagelayowt Formulas Db Review View |~ Developer

f T recara Macrs S 20 b MFeropeies [P " Himpar
Tt B & B G W = . o Q)

— [[f use Relstive Beferences ol * Glview code B Expanision Packs i) -
Visusl Matrns Add-Ind COM Insert Design Souree Dacwme 13
Basic iy Macra Security adddns v Moce H AunDialog " Rt Fanel

Add.ins Controls XML Moaify

Did you know?

After you open the Visual Basic Editor, pressing Alt+F11
enables you to switch between Excel and the Visual
Basic Editor without closing either.

See also

For information on displaying the Developer ribbon tab,
see the Displaying the Developer ribbon tab task from
earlier in this chapter.

Each workbook will have its own VBA project associated with Set project
it. In turn, every VBA project has a name. The names Excel

provides are neutral and, frankly, uninformative. You can propertles
change the value of the project’s name property to clarify the
workbook’s purpose.

BPe Kk Une bu Mornrt Dibup Mon Yook hidddos Wiedow ik TN R D

e s AR 90 » pak Y- O

I — Set project properties

Press Alt+F11 to display the
Visual Basic Editor.

In the Project panel, click
VBAProject.

If necessary, click the View...
Properties Window menu
item to activate the Properties
panel.

Click the property you want to
modify.

Type a new value for the
property.

Did you know?

Adding a few characters to a project name can help
identify which file and program it belongs to. For
example, you could name a project Payroll_wbk to
indicate it's an Excel workbook. Useful abbreviations
include _doc for Word documents and _ppt for
PowerPoint presentations.

Starting with the Visual Basic Editor 33

Create a code
module >

Create a code module

If necessary, press Alt+F11
to display the Visual Basic
Editor.

Click the Insert tab, then the
Module menu item.

When you are done working
with the code module, click
its Close button to close it.

34

You need to store the VBA code you create within your
workbook. For the tasks described throughout most of this
guide, you will store your VBA instructions in one or more code
modules. As the name implies, a code module is a repository
for a set of routines. It can be tempting to put all of your code
into a single module, but you’ll quickly find the convenience

of a single module is overwhelmed by the difficulty of finding
an individual procedure. Like creating multiple worksheets
within a workbook, you should organise your code into multiple
modules so it’s easy to find individual routines.

HE-d . -
PR BABIRELS & Lo
mE O R M
& Mt Solver (s0Lvel &0 Glass Module
= B vBProject(r.

55 MR osolt Extw v

B e e

[Sheetl Werksheet
Piphebetc | Categeaed |

Sheetl
Falsa
DicplayPight ToLeft Falcs
Rer False
ErisbleCakculstion Trae
FrisbleFormatCondtionstal Trus
EniableCtling Fase
EnstlePivotTatle Felse
n-
MName: Sheetl
Scrolares |
xandardwidth (X
sl 1 - siShestVisble

Did you know?

Don’t forget to save your work frequently. You can do so
by clicking the Save toolbar button or press Ctrl+S.

See also

©

For more information on renaming a code module, see
the Rename a code module task later in this chapter.

The most common type of VBA routine you will write is called
a subroutine. A subroutine is a series of instructions that can
affect workbooks or their contents but doesn’t return a value
that you can use in a formula. For example, if your subroutine
is named DisplayVAT, you could display the value in a message
box but not create a formula such as =DisplayVAT(A1). Despite
that limitation, subroutines are enormously useful and will
figure prominently in your VBA work.

In the task, the word ‘Sub’ in the code is the keyword
identifying your code as a subroutine, the name is the name of
the subroutine, which must be unique within the module, and
the parentheses () represent the space to pass data to the
subroutine from another procedure. In most cases, you will
leave the parentheses empty.

#Micro 1 Basic for Applications - Tax Managementadsm - [VATSubs (Code)] ===
idf File [Ht View Joset Formot Debug Pun Took Addlns Window Help -8 X
iEE-d s R 9 b a W ERY S © higco g
Project - VBAProject !I |«.. o) IN Ay VAT ;I
o= d | Sub DisplayVAT() =
Shert {Sheet3)
ThisWorkboak Dim eurPrice As Currency
(=59 Modules - Dim cUEVAT &= Currency
A Module2 =
R - curPrice = keciveCell.Value 2
eurVAT = curPriece * 0.25
Properties - VATSubs x| o
|¥ATSubs Moduls | sctrParcl = "/AT due for this sale is £7
Aphabatic ICI iad1 scrParc? = ". "
M\mm HegBox [(strPartl £ curVAT £ strPart)

End 3ub

Important

If the Visual Basic Editor doesn’t allow the name you
use for your subroutine, you might have tried to use a
reserved word, such as TIME or DATE. Try another name.

Create a
subroutine

Create a subroutine

In a code module, type
Sub<name> (), where
<name> is the name for your
subroutine.

Between the Sub line and the
EndsSub line the Visual Basic
Editor inserts for you, type the
code you want to run.

Click the Save toolbar button
or press Ctrl+S to save your
work.

Important

The name of your
subroutine must begin
with a letter and must not
contain any spaces.

Starting with the Visual Basic Editor 35

Create a function >

Create a function

In a code module, type
Function<name>
(argumentl,
argument2..) where
<name> is the name
of your function and
the argument1 (and
subsequent) values are the
names of variables to be used
in the function.

Between the Function line
and EndFunction line the
Visual Basic Editor inserts
for you, type the code that
will perform the function’s
calculations.

Before the EndFunction
line, assign the result of the
function’s calculation to the
function’s name.

For your information

In this function, steps 2 and
3 are combined into a single
line of code.

36

Excel is a powerful data management and analysis tool. You
summarise your data using formulas, finding sums, averages
and so on. If you want to define a customised calculation, such
as CalculateVAT, you can do so by defining a function using
VBA. You just define the calculation, indicate what arguments
(data inputs) it should accept and you’re ready to go. You may
then create a formula such as =CalculateVAT(A2), which finds
the VAT due on the sales amount in cell A2.

In the task, the ‘Function’, keyword indicates you are creating
a function that should return a value. The ‘name’ refers to

the name of the function and the ‘arguments’ are values the
function uses in its calculations. For example, a function to
calculate a 25 per cent VAT charge would generate a result of
£25 on a sale of £100.

A B G D E F G
Sale Price VAT
£ 100.00 | £ 25.00 |=CalculateVAT(AZ)
” . " bt Codel —rr
i File Edr Wiew It Fomst Debug Bun Tooh Addln Whndow Help -8 %
N 92 a Ny @ Lnlcell

CalculataVAT =

unccion CoaloulaceVAT (curPrice ka Currency) =l
| o} ModueZ
B ave s
Preperties - Madule? x| CaleulaceVAT = curPrice * 0.25 2
9| [Foduez Hodde =l
10 Aohabeti | Caregurized | End Funerion
[Fihie2
11
12
13
14 A
15 (=f3 e

N '

- —

' ~
=

Jargon buster

An argument is a value used by a function. For example,
the SUM function accepts one or more values, such as
numbers or cell ranges, as arguments. If you create the

A1:A2 is the argument.

workbook formula =SUM(A1:A2), then the cell range

See also

For much more information on working with variables,
see Chapter 3.

Even the simplest VBA routines can be a mystery to someone
who encounters them for the first time. Equally, if you've used
a workbook for a few years in your home-based business,
you will feel the same if you can’t remember what you had in
mind. You can reduce that confusion by adding notes — called
comments — to your code.

Add a comment
to your code

Did you know?

o
If you want to try your VBA code without running a
specific line, add an apostrophe to the start of the line to

make it a comment.

Did you know? E
The Visual Basic Editor displays comments in green text

so they stand out.

e Py et e R T e
‘o File Edt View nsert Fgrmat Debug Bun JTools Sdd-Ins Window Help -l A
HE-d 1A NFY - @ g Add a comment to your code
"EJ:‘EWI* ‘.5}| |iGenerany | [catewatevar =] .
;Jusm;-‘(sm ..). Function CaleculateVAT(eurPrice A Currency) b Elthel’
= ject (1. e em) * VAT given curcent 254 rate
5 3 mirosot Excel Objeas s Calculareuat = cursesce + 0.5 a. Type an apostrophe at the
FRpAE R ¥ start of a line to make the
Iwm lJ End Function H H
i | carsgorasd | entire line a comment.
[T ooez

or:

b. Add a comment to the
right of a line of code by
typing an apostrophe —
everything to the right of

=/ <] | the apostrophe will be

considered a comment and
ignored when you run the
routine.

Starting with the Visual Basic Editor 37

Run a VBA After you create a VBA routine, it's time to test it out by running
it. Running a VBA routine, as the name implies, causes Excel to

routine implement the steps laid out in your code.
] Microsoft Visual Basic for Applications - Ta Management lsm - [VATSubs (Code)] == ron ==
i Elle Edt View [nset Fgrmat Debug | Bun | Tools Add-Ins Wind -8 %
‘EH&E-d 4 A4 @« » g|» RunSub/UseForm FS 1 H
Project - VEAPmject x| | Ml Break Ctrl+Break = AT j
o= 0 B Bes =
S Modues < | | Design Mode =
A2 Modie?
Run a VBA routine | e R L
Properties - VATSubs | Sub DisplagVaT()
Click in the VBA routine you L < | | R ——
. . Alphabelic | Catagorized | Dim curVAT As Currency
want to run so the insertion [ETvarses
. . . . curPrice = ActiveCell Value 1
point is within that block of CORUAT - curprice * 0.25
COde ::::::_; : :‘_I.:‘i’ due for this =ale iz &7
Either' HsgBox (strPartl £ curVAT & scrParci)
’ End Sub
a. Click the Run tab, then the Al
Run Sub/UserForm menu =i 4] | Ei
item.

or.
b. Press F5.
See also

For more information on executing your code one line at
a time, see Chapter 13.

38

When you create a code module in the Visual Basic Editor, the
program assigns it a descriptive but uninspiring name, such
as Module1 or Module2. It makes sense to group routines
with similar objectives, such as calculating tax, into the same
module, so you should consider changing that module’s name
to reflect the code it contains.

T e e L e (= o =)
'Q Eile Edt Miew [nset Formot [Debug Bun Tools Add-Ins Windew Help - ® X
‘EHE-d & « yonoa NS 7] E
P 'roject 1

; X canaras | o -]
— B Sub DiaplayvaTi() =l
Sheet (Sheet3)
Thisgiharkhack Dim curPrice ks Currency
[55 Modules 1 Dim GurVAT A3 Curcency
% Modue2
4 [ETE curPrice = ActiveCell.Value
i & vBaProject (Tax Managementudsm) ~ CUEVAT = curPrice ~ 0.2§
Propertics =WATSuby =l strPartl = "UAT due for this sale is £%
|vATSUbs Modde | avrPartz = v
|:‘“; | MagBox {(sccPartl £ curVAT & acrcParel)
WATSubs 4
End Sub
ot
-
=5 «)

Important

Your module name must start with a letter and not
contain any spaces.

Rename a code
module

Rename a code module

In the Project panel, click the
module you want to rename.

If necessary, press F4
to display the Properties
Window.

Click the box next to the Name
property.

Type a new name for the code
module and press Enter.

Starting with the Visual Basic Editor 39

Delete a code
module >

Delete a code module

Display the Project window,
then right-click the code
module you want to delete.

Click the Remove Module
menu item.

Decide whether or not to save
the code module’s contents
to a text file:

a. If you want to export the
code module to a text file,
click Yes and follow the
instructions to save the
code in afile.

b. If you want to delete the
code module without
exporting its contents,
click No.

40

As you work with VBA in Excel, you'll likely create some VBA
routines that will, over time, become surplus to requirements.
Just as deleting unneeded worksheets reduces clutter in your
workbooks, so will deleting unneeded code modules reduce the
clutter in your VBA projects.

7 Microsoft Visual Basic for Applications - Tax Managementism » [VATSubs (Code)] 7= ol =
i Ele Edt View [nset Format Debug Bun Teols Add-lns Window Help -8 X
‘HE-d 4 e LY « » pa K NSS O -
Project - VBAProject .!l [1Generan v |oiapiayvar =
=R~ — 1) Sub PLaplayVaAT() vy
Sheet3 (Sheet3)
Thisworkback Dim curPrice ka Currency
55 Modules Dim GuEVAT A3 Currency
<= =
At vaj [View Code curPrice = Aetivefell Value
8% vearrotel | Ject SUEVAT = curPrice " 0.25
Properties - Mody VBAPraject Properies... strPactl = WUAT die for ckis sale is &%
Imzm Insert (3 atrPagez = "7
|:“W ImportFile... MagBox (stcPartl & curVAT & scrParc)
Module ExportFile..,
Bemove Moduled.., ."1 Suwb
& Erint..
¥ Dockable
=~ Hide
2=
-
=& 4] | [ES

Important

Deleting a code module can’t be reversed. Once you
delete it, it's gone for good.

Did you know? E

You can stop the deletion process by clicking the Cancel
button in the dialog box that appears.

As you might have learned from hard experience, it is always Export a code
wise to make backup copies of your files to prevent against

possible loss. VBA code modules are no exception. You can module to a text
export the contents of a code module to a text file and save it file

elsewhere to ensure you have a second copy in case your first

is lost due to disk failure or accidental deletion.

Microsoft Visus! Basic for Applications « Ta Managementsdsm - [VATSubs (Code)] o (&[]
“ Eile Edt View [nsert Format [ebug Bun Jools Sdd-Ins Windew Help - X
WG aBh0e s s K NTY 2 O s Export a code module to a
Project - VBAPmject x| |||;um|n j IWM j t t f'l
5:‘___ éﬁu_ﬁ(&nﬂ) ‘B Sub D::wl:warn ~1 ext1ne
ThisWorkhack D kel ce la_turrency o i i
o e e In the Project window,
e 5| savein] T Crapenrz S e@am right-click the code module
L1} YBAProject (Tax Management.slsm) - & "
Il’rwmiuAModulzl _jﬂ _— No ibems match your mn:‘“ . . you Want to export
Modulez Module x . .
Aot | ctngns | Click the Export File menu
et item.
ronee iz R] Navigate to the folder where
Save as e [Bic Pl b = __twes | you want to store the file in
e | the Save in box.
.y =a In the File name box, type a

name for the file.

“ Click Save.
Important

Be sure to remember where you saved your file!
Consider storing your exported code in the same folder

as your workbook.

Did you know?

You can import a file into a VBA project by clicking the
File tab, then the Import File menu item.

Starting with the Visual Basic Editor 41

Working with data and
variables

Introduction

After you create an Excel workbook, you populate it with data
and formulas to summarise your data. In Excel VBA, you

also use your worksheet data as fuel for your calculations,

but you have much flexibility. Rather than just using the
built-in functions to create worksheet formulas, you can
develop procedures to perform custom calculations and other
processes to meet your needs. Here, you will learn how to
work with data and variables by declaring variables, arrays and
the built-in Excel objects. The tasks are important background
for the rest of the guide.

Understand data types in Excel
VBA

Declare a variable

Require variable declaration
before use

Manage variable scope

Perform calculations using
mathematical operators

Define a constant

Define a static variable

Define an array

Define a multidimensional array
Redefine an array

Define a dynamic array

Display an object type

Define an object variable

Working with data and variables 43

Understand >

data types in
Excel VBA

Did you know?

The Long, Currency, Date
and String data types are
the ones most commonly
used for home and small
business operations.

Did you know?

If you divide one number by
another, be sure to assign
the result to a data type
with a decimal component
such as Currency, Single

or Double.

44

When you add data to an Excel worksheet, the program
examines the data and assigns the most likely data formatting.
Those formats include dates, times, numbers and ‘general’ for
text or mixed entries. In Excel VBA, you assign each variable a
data type. Table 3.1 lists the most common data types you will
use in your calculations.

Table 3.1 Commonly used data types in Excel VBA

Datatype Description

Byte Positive integer numbers from 0 to 255

Boolean 0 (False) or 1 (True)

Integer Whole numbers from —-32,768 to 32,767

Long Whole numbers from —2,147,483,648 to
2,147,483,647

Currency Numbers from —922,337,203,685,477.5808
to 922,337,203,685,477.5807 (note the
maximum of four places to the right of the
decimal point)

Single Values in the range —3.402823E38 to
—1.401298E-45 for negative values,
1.401298E-45 to 3.402823E38 for positive
values

Double Values in the range —1.79769313486232E308
to —4.94065645841247E-324 for negative
values, 4.94065645841247E-324 to
1.79769313486232E308 for positive values

Date Dates and times, which are stored as numbers
within the Excel system

String Character data — numbers are treated as text

Variant A flexible data type that can contain numerical

data, strings, dates or special values, such as
Empty and Null

Variables are containers that store a value. Like worksheet cells, Declare a
which you refer to using references such as A1 or B14, you can iabl
refer to the contents of a variable using its name. If you store variable
price data in a variable named curPrice, for example, you can
calculate a discount for a frequent customer using an expression
such as curExtendedPrice=curPrice*0.9.

Variable declaration statements follow this pattern:
Declare a variable

Type
For example, you could declare a curExtendedPrice variable of Dim<variablename> t0
Currency type in a routine to calculate a discounted price: start defining your variable.
Type a space, then type the
Sub CalculateExtendedPrice () keyword As.
Dim curExtendedPrice As Currency
curExtendedPrice = ActiveCell.Value * 0.9
MsgBox (“Price with discount is £% &

curExtendedPrice)
End Sub

Did you know? E

When you type the name of a data type, the Visual Basic

Editor displays a list of possible types based on the text
you enter. You can select a value from the list and press

Tab to accept it.

Dim variable As type

Type another space, followed
by the data type for the
variable and press Enter.

Did you know?

To define multiple variables on a line, type a
statement such as DimcurPriceasCurrency,
curTaxasCurrency. Be sure to have an
as<type> statement for each variable you create.

Working with data and variables 45

Require variable
declaration >
before use

Require variable declaration
before use

Above the first Sub or
Function declaration in a
code module, type Option
Explicit onits own line.

Did you know?

If you have a mysterious
error, such as a ‘divide

by zero’ error, try using
OptionExplicitto
see if your code contains a
misspelled variable name.

46

Unlike many more rigorous programming languages, VBA
doesn’t require you to declare a variable before you use

it. As a result, one of the most common sources of errors
when writing VBA code is to misspell a variable’s name. It's
good practice to declare a variable before you use it, but it’s
easy to forget or just be lazy. If you want to force yourself
to declare your variables before using them, type the words
OptionExplict on their own line above the first Sub or
Function line in the module.

For example, you could require variable declaration in a
subroutine that calculates a discounted price:

Option Explicit

Sub CalculateExtendedPrice ()
Dim curExtendedPrice As Currency
curkExtendedPrice = ActiveCell.Value *

0.9

MsgBox (“Price with discount is £” &
curExtendedPrice)

End Sub

‘ bre id.it”!jm .l.nn;t .F
iEE-d 4 2n#

o~

9 . &;m. Tools éd.d-lns. Window Help
A ETE S @ o

Project - VBAPrupect
@33

X
[

[tGencran =] |cslcuatctmcndcarrice =1

Option Explicit

EM&(M}
ThiswWorkback
-5 Modues

o} Modude?
oo} Moduied

Propierties - Module]

|Modulel Modue
Alphabatic | Capegortzed |

Ll +

Modulsl

Sub CalculateExtendedPrice ()
Dim curExtendedPrice ka Currency
curExtendedPrice = AcciveCell.Value * 0.9
HagBox (“Price with discount is £" & curExtendedPr

End Sub

|:|*I

== |

Important

The Option Explicit declaration only applies to
the code module where you enter it.

Most Excel VBA routines are self-contained — there will usually Manage variable
be no reason to share variables between your routines. That
scope

said, there may be times when you want a variable to be
available to every routine in a module or every module in that
VBA project. These variables are referred to as global variables
and, even though you might not use them frequently, they can
come in handy when you need routines to share values.

You can define a global variable by writing the variable’s Dim Manage variable scope
statement above the first Sub or Function line in a code

module, as in the following sample: Click above the code for any

functions or subroutines in a

Dim sngVATRate as Single code module.

Sub CalculateVAT () Define your global variable
Dim curVATDue As Currency using a statement such
sngVATRate = 0.25 as DimsngVATRateas
curVATDue = ActiveCell.Value * Single.
sngVATRate .

End Sub If desired, add the keyword

Public before the variable
declaration so it will be

available to every module in
“ the VBA project.

It's easy for a global variable to be updated unexpectedly
in complex workbooks. If your variable contains a value
you didn’t expect, follow your code carefully to find the
problem.

Important

Important

You may not assign a value to a global variable in the
declaration statement, just define it.

Working with data and variables 47

Perform Excel worksheet formulas take the drudgery out of calculations
— the program does the maths for you. You can define

calculations calculations in Excel VBA as well. What's better is that many of

using the operators you use to define these calculations are exactly

mathematical the same as th’ey are in Excel worksheets. Table 3.2 lists the
operators you’ll use most frequently.

operators

Table 3.2 Arithmetic operators in Excel VBA

Data type Description

+ Add two values

- Subtract one value from another

A Raise a value to an exponent (e.g. 243 = 8)

* Multiply two values

/ Divide one value by another

\ Divide one value by another and return the
integer part of the result (e.g. 5\2 = 2)

Mod Divide one value by another and return the

remainder (e.g. 5 Mod 2 = 1)

Did you know?

You can also use parentheses to group operators into
the desired order. For example, 8 * (2 + 4) produces a
different result from 8 * 2 + 4.

Did you know? H

The integer division and Mod operators are useful if you
have a number of items in stock and want to know how
many packs, perhaps of quantity 6, you could create
from that stock.

48

You can create Excel VBA calculations to work out discounts, Define constant
add purchases to find a grand total and so on. For values that

don’t change very often, such as discount rates for frequent
purchasers or post and pack surcharges for a home-based
business, you can define a constant and use it throughout your
code module. If the value does change, you need only update
a single line of code instead of searching for every occurrence
within the module.
Define a constant

Constant definition statements follow this pattern:
In a code module, define a

Const variable = value variable using the Const
keyword and assign it a value.
As an example, you could define a constant named One such statement might be
sngVATRate and use it in a calculation: ConstsngVATRate=0.25.

Sub CalculateVAT ()
Dim curVATDue As Currency
Const sngVATRate = 0.25
curVATDue = ActiveCell.Value *

sngVATRate

End Sub

Did you know?

If you define your constant above the first Sub or
Function statement, any routine in the current
module will be able to use the constant’s value.

Did you know?

If you add the keyword Public before the constant
declaration (such as PublicConstsngVATRate
=0.25), any module in the current project will be able
to use the variable.

Working with data and variables 49

Define a static
variable >

Define a static variable

In a code module, define a
variable using the Static
keyword instead of the Dim
keyword.

50

One of the built-in features of Excel VBA is that the Visual
Basic Editor resets every variable’s value to zero when it runs
a routine. The rationale for this action is that of ensuring data
from previous operations doesn’t affect the current one. That
said, there might be times when you want a variable to hold
its value until you close the VBA project. In that case, you can
define a static variable.

For example, you might want to calculate the total of every VAT
calculation made while the workbook is open. You could do
that by defining a static variable to hold the value:

Sub CalculateVAT ()
Static curVATDue As Currency
Const sngVATRate = 0.25
curVATDue = ActiveCell.Value *

sngVATRate

End Sub

Did you know?

If you define your static variable above the first Sub
or Function statement, any routine in the current
module can change its value.

When you manage a home-based business or track other items
in Excel, you'll often find they come in sets. For example, you
might have standard shipping rates for four regions — the UK,
Europe, North America and the rest of the world. Rather than
assign those values to four different variables, you can store
them in an array. An array is like a box with several partitions —
each compartment contains an item that is part of the set.

To define an array, you use a statement with the following
structure:

Dim arrayname (items - 1) as type

For example, creating a four-element array to store shipping
rates might use a command from this routine:

Sub SetShippingRates
Dim curShippingRates (3) As Currency

Dim i As Integer

For 1 = 0 To 3

curShippingRates (i) = InputBox (“Enter
a Shipping rate, please.”)
Next
End Sub

Important

In Excel VBA, the first array element is number
0, so the array defined by the statement Dim
curShippingRates (3) contains four elements.

4 Define an array

Define an array

Define an array using a
statement such as Dim
curShippingRates (3)
asCurrency.

Fill the array from cell values
or user input.

Working with data and variables 51

Define a > Just as you can define an array to hold a single series of

Itidi c | values, such as shipping rates, you can define an array with
multidimensiona multiple dimensions. For example, you could define a set of

array shipping rates by region and by speed of delivery. You could
have separate rates for four regions — the UK, Europe, North
America and the rest of the world. You might also have a
dimension for delivery speed — surface mail, air mail, priority
and overnight. Each rate would correspond to two values:

Define a multidimensional region and delivery speed.

array You're not limited to two-dimensional arrays. If you want to
Define an array using a store multiple types of information, such as region, shipping
statement such as Dim rates, tax rates and customs fees, you could create an array
curShippingRates with the required dimensions. In this case, you could create an
(3,3)asCurrency. array with four dimensions. The statement to define a multi-
Fill the array from cell values dimensional array follows this pattern:

or user input.
Dim variable(diml, dim2, ..) as type

The following subroutine contains code that defines a two-
dimensional array, with each dimension holding four values:

Sub SetShippingRates
Important “ :

Dim curShippingRates (3, 3) As Currency
Dim i As Integer
Dim j As Integer

Be sure you assign the
proper values to each
dimension!

For 1 = 0 To 3
For j = 0 to 3
curShippingRates (1) =
InputBox (“Enter a shipping rate,
please.”)
Next
Next

End Sub

52

Circumstances change all of the time, even when you’re writing
VBA code. From time to time, you might find that you need to
make an array larger or smaller while running a routine. For
example, you might define an array with ten available colours
for a product, then discover a particular model only has nine
options. In that case, you can redefine an array so it is the
proper size.

The statement to redefine an array is exactly the same as the
statement to define it, except that you precede the line with
ReDim instead of Dim. The following subroutine shows one
case where you might use the ReDim statement:

Sub SetShippingRates

Dim curShippingRates (3) As Currency
Dim 1 As Integer

For i = 0 To 3

curShippingRates (i) = InputBox (“Enter
a shipping rate, please.”)
Next
ReDim curShippingRates (4)
End Sub

Did you know?

You can keep Excel from deleting your existing
array data by using the Preserve keyword in your
ReDim statement (such as ReDimPreserve
curShippingRates (4)).

Redefine an
array

Redefine an array

Type a new definition for
the array using the ReDim
keyword, such as ReDim
curShippingRates (4).

Working with data and variables 53

Define a >

dynamic array

Define a dynamic array

Define the array using a
statement without specifying
the array size, such as Dim
curShippingRates ().

Use the ReDim statement
to resize the array after you
know how many items it
should contain.

£
See also

For information on
redefining an array, see
earlier in this chapter.

Important “

Remember that Excel VBA
numbers array items from

zero, so you should subtract
one from the number of
items to get the correct
array size.

54

A dynamic array is an array without a specific size. Why would
you create a dynamic array? One reason would be if you use
Option Explicit to require variable declaration. If your array’s
size depends on user input or the size of a data set, defining a
dynamic array puts it in place for you to work with later. After
you know the size of the array, such as by gathering user input
using an InputBox or by counting some group of items in the
workbook, you can define the array’s size using a ReDim
statement.

The statement to declare a dynamic array follows this pattern:
Dim variable() as type

The following subroutine defines a dynamic array and then
redefines it using the ReDim statement as soon as the user
indicates how many values are to go into the array:

Sub SetShippingRates ()

Dim curShippingRates () as Currency

Dim intItems As Integer

Dim i As Integer

intItems = InputBox (“How many rates

will you enter?”)

ReDim curShippingRates (intItems)

‘Arrays count from 0, so subtract one

from rates to enter.

For I = 0 to intItems - 1
curShippingRates (i) =

InputBox (“Enter a shipping rate,

please.”)

Next

End Sub

So far in this chapter you have encountered variables that refer
to numbers, strings of characters and so on. You can also

use variables to refer to Excel objects, such as workbooks,
worksheets and cell ranges. Excel is a vast program with many
components, so it would be impossible to remember every
object available to you in VBA. You can explore these Excel
objects, as well as the elements they contain, by using the
Object Browser.

To display a type of object, click an item in the Classes panel.

You can view the members of the class in the Members panel

to the right of the Classes list and get more information on the
members by double-clicking any item of interest.

= — ———
£ Microsafe Visual Basic for Applications - CalculateSalesadsm - [Object Browser] == ==
‘ Eile Edit View [nsert Format Debug Run Tools Add-Ins Window Help -8 %
ME-"d sDan 9c » na NFY > @
Project - VBAProject 3} ,—]mm = ﬂJ El:l _U
a4 B SAE
el 3 (St 3) ; :
5 ThisWorkbaok Classes Members of Worksheet
=153 Madules &% workbookConnectio - | F Activate
i} Modulel = &% wonmooks - Attvate 3
o Moduie? &1 WorkflowTask oF Application i
o e - | workiowTasks S AuloFiller
Properties - Module] x| |of WoridlowTemplatle |8 Autof litermode
& wiorkilowTemplales F BetaraDoubieClick
Jrladuer vedde = | T |5 setreRiniciick
Alphabtic | Catagorized | & WorksheetFunclion | Calculabe
Toddal & Workshoots £ Calculate
& winrkahaaniaw o Celis
P HlAboveBelow F Change
P MactionType & CharlObiects
an & Cl
am = C
i ¥ C
40 Mianalic ~lan X
Class Worksheet
Member of Excal

Did you know?

You can also display the Object Browser by pressing F2
within the Visual Basic Editor.

4 Display an
object type
Display an object type

Click the View tab, then the
Object Browser menu item.

Click the class you want to
display.

Scroll through the available
members of the class.

Click the Close button to close
the Object Browser.

Working with data and variables 55

Define an object If you want to refer to an Excel object such as a workbook,
worksheet or cell range, you can do so by defining an object

variable variable. As the name implies, an object variable refers to an
object. After you define an object variable and assign a specific
item, such as a worksheet, to it, you can refer to that object
using the variable name.

The following code sample assigns the worksheet named
FebruaryTax to the wks object variable. The wks variable’s

Define an object variable name looks like the word worksheet, which is the object type to
Define a variable as an object which it refers.
type, using a statement
such as DimwksAs Sub SetMailingRates ()
Worksheet. Dim wks As Worksheet
Assign an object of that Set wks = ThisWorkbook.Worksheets
(“FebruaryTax”)

type to the variable, using
a statement such as Set
wks=ThisWorkbook.
Worksheets
(“FebruaryTax”).

Write code related to the

object, using a statement See also

wks.Tab.Color = vbGreen
Set wks = Nothing
End Sub

such as wks . Tab.Color For more information on referring to object variables
=vbGreen. and their components (such as a worksheet’s name)
At the end of your subroutine, using a minimum of code, see Chapter 12.

use a statement such as
Setwks=Nothing to
release the memory assigned
to the object.

56

Managing workbooks
and files

All of your Microsoft Excel data is contained within one or
more workbooks. Just like Word documents or PowerPoint
presentations, you should divide your data between your
workbooks so similar information is grouped together.

For example, sales data could reside in one workbook and
customer data in another. The more complicated your

enterprise, the more likely it is that you will have multiple files.

Here you'll find information on manipulating your workbooks
by performing tasks such as opening workbooks, allowing
users to select which workbook to open and closing and
deleting workbooks.

Open a workbook

Open a text file as a workbook
Open a file the user selects
Save a workbook

Save a workbook in a different
format

Detect if a workbook is open
Close a workbook
Create a new workbook

Delete a file

Managing workbooks and files 57

Open a
workbook

Open a workbook
Create a subroutine.

In the body of the subroutine,
enter a line of code that
contains these elements:

a. Workbooks .Open
(followed by a space).

b. The FileName, including
the path to the file and the
file’s name.

c¢. Whether to open the file in
ReadOnly mode or not.

For information on
determining whether or
not a workbook is already
open, see elsewhere in this
chapter.

58

If you’ve worked with Excel for any length of time, it’s likely
that you have created several workbooks you open frequently.
One common task might be to copy information between
workbooks. If you want, you can create a VBA routine to
automate that process. To do so successfully, both the source
workbook and the target workbook must be open.

To open a workbook, you use the Workbooks object’s Open
method. The Open method has numerous arguments you can
set, such as if the file has a password, to update links to external
data sources, save the file using the local language setting and
so on. The arguments you will use most frequently are:

FileName, which specifies the folder and name of the file.
For example, the file’s path might be ¢: \Users\Curt\
Documents and the file name Sales.x1sx, resulting in
a FileName value of ¢: \Users\Curt\Documents\
Sales.xlsx.

ReadOnly, which can be set to True or False. This
argument specifies whether the workbook should open in
read only mode or not.

An example of a well-formed VBA statement using the Open
method would be:

Workbooks.Open Filename:=%“c:\Files\
Sales.xlsx”, ReadOnly:=False

Excel is a very flexible program. One of the ways that it makes
your life easier is to let you open files that aren’t stored in the
native Excel format. For example, if a colleague sends you a

text file that contains data from another program, you can often
open that file in Excel. All you need to do is let Excel know how

to deal with the text file before you open it.

To open a text file in Excel, you use the Workbooks object’s
Open method. In addition to specifying the file’s path and
name, you should indicate two other items: whether or not to
open the file in read only mode and the file’s delimiter. If your
code opens the workbook in read only mode, you can view the
new file’s contents but not edit them.

A delimiter is a character used to separate one cell’s value from
the next. You can use any character as a delimiter, but the
most common delimiter characters are punctuation marks and
tabs as they are unlikely to occur in a data file.

FileName specifies the folder and name of the file. For
example, the file’s path might be ¢: \Users\Curt\
Documents and the filename Sales. txt, resulting in a
FileName value of c: \Users\Curt\Documents\
Sales. txt

ReadOnly can be set to True or False. This argument
specifies whether the workbook should open in read only
mode or not.

Delimi ter identifies the character used to delimit the
data set.

An example of a well-formed VBA statement that opens a text
file with tab characters as the delimiter is:

Workbooks.Open Filename:=%“c:\Files\
Sales.txt”, ReadOnly:=False, _
Delimiter:=Chr (9)

Open a text file
as a workbook

Open a text file as a workbook

Create a subroutine.

Add a line of code that
contains these elements:

a. Workbooks .Open
(followed by a space).

b. The Filename, including
the full path.

c. The Delimiter

Did you know?

The most common delimiter
is the comma. You might see
files with a .csv extension —
those files are text files with
comma-separated values,
hence the extension.

The Chr(9) statement
represents a tab. You can
also enclose the delimiter
character in quotes, such as
“I”I “/”,or“lﬂ_

Managing workbooks and files 59

Open a file the
user selects

Open a file the user selects
Create a subroutine.

In the body of the subroutine,
do the following:

a. Define a variable to store
the filename and path.

b. Assign the output of the
Open dialog box to the
variable.

c. Invoke the open method
to open the file the user
identified.

Did you know?

You can also use the
ReadOnly argument

to identify whether Excel
should open the file in
read only mode or allow
it to be edited. To add the
ReadOnly argument

to the Open method
statement, type a comma
after the FileName
argument and type
ReadOnly:=True Or
ReadOnly:=False.

60

If you create a VBA routine that always uses the same file that’s
stored in the same directory, you can include the file’s path and
name in the Open method statement. However, if the exact file
will change with time, you can create a VBA routine that lets
you select a workbook using the Open dialog box.

Your VBA routine should consist of three elements: declaring
a variable to hold the name of the file the user selects, a
statement that displays the Open dialog box and assigns its
output to the variable you created, plus a statement that calls
the Workbooks . Open method to open the file.

The Open dialog box lets the user select which file to open and
returns the file’s full path and name, which is precisely the
information the Open method’s FileName argument requires.

<] Open ==
K3\ [« Frechgent @ » Witng » Pearion UK » Brillant bxcel VA » Chapterdd = [3 | Search Chopterts »
Organize hlew falder =+ (B @

¥ Dropbex £ Name Dinte madified Tyt
2. Recent Places

& 0 (58 Tax Management TLFE002 1240 AM Microsoft Bxcel 16 KR
rive

% Pictures
B videos

wl, Homegroup

& Computer
& 03(c)

Fle garme: v [Al Excel Fikes

Taols = Open 3 Cancel |

Dim varFileName as Variant
varFileName = Application.
GetOpenFilename

Workbooks.Open Filename:=varFileName

There are few things more frustrating than doing good work on

a spreadsheet and then losing it because you forgot to save what
you did. You should save your workbook every time you make
an important change, which you could define as something you
would hate to have to do again. If your routines make significant
changes to your workbooks, you should consider creating VBA
code that saves those changes as you go.

The Workbook object’s Save method requires a reference
to a workbook, followed by a full stop, followed by the word
Save, with no spaces. For example, you could create any of
the following lines of code:

ActiveWorkbook. Save
Workbooks (“"Sales.x1lsx”) .Save
Workbooks (1) .Save

Save a workbook

Save a workbook
Create a subroutine.

In the body of the subroutine,
type code that follows the
pattern reference. Save,
where reference identifies
a workbook.

Managing workbooks and files 61

Save a workbook
in a different
format

Save a workbook in a different
format

Create a subroutine.

In the body of the subroutine,
type the following lines of
code:

a. Define a variable to store
the filename and path.

b. Assign the output of the
Save As dialog box to the
variable.

c. Invoke the saveAs
method to save the file the
user identified in the folder
and format identified using
the Save As dialog box.

For more information on
using built-in dialog boxes,
see Chapter 11.

62

The Excel desktop program has two different ways to save a
file: save and SaveAs. Saving a file saves it under the same
name, in the same folder, in the same format. You can change
any of those elements by using the SaveAs method instead.
Just as you can use SaveAs in the main Excel program, you
can use VBA to display the built-in Save As dialog box. You can
use that dialog box’s controls to change the workbook’s name,
folder or format.

The Workbook object’s SaveAs method requires a file name
and path, which you can get by displaying the SaveAs dialog
box. The following code is one way to do it:

Dim varFileName
varFileName = Application.
GetSaveAsFilename
ThisWorkbook.SaveAs
Filename:=varFileName

s =)
@uo * Conmputer b Freefigent () » Writing » Pedrson UK » Briliant Bael VBA » Chapterdd = | 4y 1 Search Chopters B
................ e =~ B

oo Libraries
* Documents
o' Music
W Picturay e
Videas —
B videss ~
P~
wl Homegroup Y
N I
8 Camputer ' -
& o5 .

{4 DVD RW Drive (D) WH
Ha Fresagent ()
1) Freefigent GoFle Diva
B Flamnanis 104

TaeMaragement

File game: CalculsteSates -
Seoe s type: | Ecel Macrs. Enabled Werkbaok -

= Hide Fobders Toob v [Sw | [Cwcd

Many of your VBA routines will interact with other workbooks.
For example, you might want to cut and paste data between
files on your computer. For those procedures to work properly,
you must ensure that the files are open. However, if you try to
open a workbook that is already open, the routine might result
in an error. To avoid the possibility of that occurrence, you
should check if the file you want to work with is already open.

The following code sample is significantly longer than the
others in this chapter, but that’s because it has more work

to do. The routine’s goal is to check every open workbook to
determine whether or not that workbook’s name matches the
name of the workbook you want to open. If the workbook is
already open, then you can exit the subroutine without trying to
open the already open file.

After the subroutine declaration, the code identifies three
variables: the first is used to refer to workbooks, the second

to indicate whether the workbook is open or not and the third
to store the filename. After that, it sets the bOpen value to
False and then assigns a value to the string strFileName
variable. The code won’t actually work as written, because
there is no filename — the text <€ilename> is simply a
placeholder. You would need to get the target filename from
the user, either by having them type in the name directly or by
selecting the name using the Open dialog box.

The next section of the code uses a For..Each loop to
examine every workbook that is currently open in Excel. If the
name of the workbook matches the strFileName variable’s
value, then the routine displays a message box indicating the
workbook is already open and exits the subroutine. If none

of the filenames matches, the routine displays a message
indicating the workbook is not open.

Detect if a
workbook is
open

Detect if a workbook is open
Create a subroutine.

In the body of the subroutine,
type the code sample from the
next page.

Replace <filename> with

the name of the file, including
directory path and extension,
that you want to open.

For more information on
using object variables, see
Chapter 3.

Managing workbooks and files 63

Detect if a
workbook is
open (cont.)

For more information on
using For..Next loops,
see Chapter 12.

64

When you use this code in your own workbooks, it is unlikely
that you would display a message box indicating if a workbook
is open. Instead, if the workbook you want to use is open, you
can go ahead and use the code in the rest of the routine to cut
and copy your data or perform some other task. If the desired
workbook is not open, then you could use VBA code to open it
before continuing on with the task at hand.

Here is the code sample:
Sub CheckIfOpen ()
Dim w as Workbook
Dim bOpen as Boolean

Dim strFileName as String

bOpen = False

strFileName = “<filename>"
For Each w in Application.Workbooks
If w.Name = strFileName Then

bOpen = True

MsgBox “The named workbook is open.”
Exit Sub

End If

Next

If bOpen = False Then

MsgBox “The named workbook is not
open.”

End If

End Sub

Modern computers have bags of storage and memory, but it

is still a good habit to close any workbooks you aren’t working
with at the moment. Doing so frees up program resources and
makes it easier to locate a specific file you want to work with.
Closing a workbook is straightforward, but you should always
be sure to offer the option of saving your work before doing so.

To use the Workbook object’s Close method, you need to
identify the workbook you want close, type a full stop, then type
Close. There are many ways to refer to workbooks in Excel
VBA — the lines of code below show just a few of those options:

ThisWorkbook.Close
ActiveWorkbook.Close

Workbooks (“"<filename>") .Close
ThisWorkbook.Close SaveChanges:=True

The final example also introduces the SaveChanges
argument. If you set the SaveChanges argument to True,
then Excel saves all of your work before closing the workbook.
If you set the SaveChanges argument to False, then Excel
closes the workbook and discards any changes you made since
last time you saved the file.

Did you know?

You can add the SaveChanges argument to any of
the lines of code shown above.

Did you know?

If you have unsaved changes in a workbook you want to
close, Excel will prompt you to save them.

Close a
workbook

Close a workbook
Create a subroutine.

Enter one of the following

lines of code:

a. ThisWorkbook.Close

b. ActiveWorkbook.
Close

C. Workbooks
(“<filename>").

Close

d. ThisWorkbook.Close
SaveChanges:=True

Managing workbooks and files 65

Create a new
workbook

Create a new workbook

66

Create a subroutine.

Enter the following line of
code in the body of the
subroutine:

Workbooks.Add

As you continue to work in Excel VBA, you will most likely
find the need to create new workbooks. For example, if you
do monthly reporting for your home-based business or send
updates to your accountant, then you might create monthly
summaries of your business activities. You can always keep
those records in a single workbook, but you might find it
easiest to parcel out your information by month or year, with
each new month or year in its own workbook.

Creating a new workbook in Excel VBA is extremely
straightforward. The command to do so is:

Workbooks.Add

You can use an existing workbook as a template for the
Workbooks .Add method. The code would look like this:

Workbooks.Add (“c:\path\filename”)

where ¢: \path\filename is the path and full name
(including its extension, such as .xIsx) of the workbook to be
used as the template.

Some corporate IT environments prohibit users from
creating files using VBA code. If you have trouble using
the Add method, check with your IT department to see if
such a restriction is in place.

There will be times when a file on your computer is surplus
to requirements. The data might be old or perhaps you have
redesigned your workbook and copied your data to a new
file. If that’s the case, then you can use Excel VBA to delete
the workbook when it’s no longer needed. Deleting a file is
sometimes necessary, but should not be undertaken lightly.

To delete an Excel workbook, you need to identify the file

by assigning its name to a variable and then using the Kill
command to delete it. The most common way to select a file to
delete is to use a dialog box such as the Open dialog box or the
Save As dialog box. The following code example uses the Save
As dialog box to identify the file to be deleted:

Dim strName As String

strName = Application.
GetSaveAsFilename (Title:=“File to
Delete”)

Kill (strName)

Did you know?

If you want to delete every file with a specific extension,
such as .txt for text files, you can use the filename

“* _txt”. The * tells Excel to delete every file with the
named extension. Be careful, though!

Delete a file

Delete a file
Create a subroutine.

Enter the following lines
of code in the body of the
subroutine:

a. DimstrNameAs
String

b. strName =
Application.Get
SaveAsFilename
(Title:=“File to
Delete”)

Cc. Kill (strName)

Managing workbooks and files 67

Managing worksheets

Introduction

Excel worksheets can contain data of many different types. In
most cases, each worksheet within a workbook will contain

a specific subset of the overall data you store within the
workbook. When you create programs using Excel VBA, you
will often find reasons to create, manipulate — even delete —
worksheets within your workbooks. The actual commands

for making these changes are reasonably straightforward, but
there are some subtleties that you will need to keep in mind.
So long as you ensure that your worksheet-related commands
reflect the state of your workbook when they are executed, you
should have no problems.

Add a worksheet

Delete a worksheet

Move a worksheet

Copy a worksheet

Hide or unhide a worksheet
Rename a worksheet
Protect a worksheet

Print a worksheet

Managing worksheets 69

Add a worksheet Every Excel workbook must contain at least one worksheet, but
most workbooks will contain multiple worksheets. For example,

if you store a year’s worth of data in a single workbook, you
should consider creating a worksheet for each month. Doing so
divides your data into manageable units and lets you find the
specific data you're looking for more easily.

To add a sheet to a workbook, you use the Sheet collection’s

Add a worksheet Add method. For example, if you wanted to add a worksheet
. to the same workbook that contains your VBA code, you could
Create a subroutine. use the code snippet ThisWorkbook . Sheets .Add. You
In the body of the subroutine, can also use several other parameters to identify the position of
type ThisWorkbook. the sheet you add, the number of sheets to be added and type
Sheets.Add of sheet to be added.
If desired, use any of the S o _
following parameters to B Before identifies the existing sheet before which you place
specify where and what type the new sheets. If you leave this parameter out, Excel adds
of sheets to add: the sheet before the active sheet.
a. Before B After identifies the existing sheet after which you place the
b. After new sheets.
C¢. Count B Count indicates the number of sheets to be added.
d. Type B Type identifies the type of sheet to be added to

x1lWorksheet, x1Chart, x1Exceld4dMacroSheet
and x1Excel4Int1MacroSheet. If you leave this
parameter blank, the Add method inserts a worksheet.

“ your workbook. You can select from the sheet types

Important

You may use either the

Before or After As an example, you could use the following code to add two
argument, but not both. worksheets after the sheet named Sheet2:

ThisWorkbook.Sheets.Add

0 After:=Worksheets (“Sheet2”), Count:=2
For your information

This variation of the code would add a chart sheet at the

You can add any number beginning of the workbook:

of worksheets to your

workbook, but it’s best not ThisWorkbook.Sheets.Add

to add more than you need. Before:=Worksheets (1), Type:=xlChart

70

Excel workbooks are similar to many other projects in the
sense that you are never truly done changing them. Whether
you add new data, change the formulas on a worksheet or
modify worksheet formatting, you will probably find new ways
to work more effectively. If you find that your changes make
one of your worksheets redundant, you can delete that sheet.

The VBA command to delete a worksheet relies on the
Sheets collection’s Delete method. All you need to do is
identify the sheet you want to get rid of, either by the number
of the sheet within the workbook or by entering the sheet’s
name. The following two code snippets provide an example of
each approach:

Sheets (1) .Delete
Sheets (“"Sheetl”) .Delete

When you attempt to delete a worksheet that contains data,
whether by using the user interface or VBA, Excel displays a
confirmation dialog box asking if you're sure you want to delete
the worksheet. You can temporarily disable alert boxes by
adding the command Application.DisplayAlerts =
False on a line before you invoke the Delete method.

Micrasoft Excel

! . Datamay exist in the sheet(s) selected For deletion. Ta perrianently delete the data, press Delete,

Be sure to set the DisplayAlerts property to True
after you delete the worksheet. Not doing so could cause
you to miss other important warnings.

For your information

Delete a
worksheet

Delete a worksheet
Create a subroutine.

In the body of the subroutine,
use one of the following code
patterns:

a. Sheets (1) .Delete

b. Sheets
(“sheetname”) .
Delete

Did you know?

You can also use an
InputBox (see Chapter 11)
to enter the name of the
worksheet to be deleted.

Managing worksheets 71

Move a >

worksheet

Move a worksheet
Create a subroutine.

In the body of the subroutine,
use one of the following code
patterns:

a. Sheets (1) .Move —
which moves the numbered
worksheet to a new
workbook.

b. Sheets (2) .Move,
Before:=Sheets (1)
— moves the numbered
worksheet before the first
worksheet.

C. Sheets (1) .Move,
After:=Sheets (3)
— moves the numbered
worksheet after the third
worksheet.

72

You will often find that the data contained in one workbook
could be useful in another. If that’s the case, you can move a
worksheet to another workbook or, if you find your workflow
isn’t as efficient as it might be, you can relocate a worksheet
within the same workbook. Moving a worksheet doesn’t leave
a copy of the worksheet in its original position — as the name
implies, it cuts the worksheet from its original position and
pastes it in its new position.

You can move a worksheet quickly using Excel VBA by using
the Sheets collection’s Move method. Using the Move
method by itself, without indicating a destination for the sheet
you’re moving, causes Excel VBA to move the sheet to a new
workbook. If you want to move the worksheet within the
current workbook, you can use one of the Move method’s two
optional parameters: Before and After.

B Before identifies the existing sheet before which you place
the moved sheets. If you leave this parameter out, Excel
moves the sheet to before the active sheet.

B After identifies the existing sheet after which you place the
moved sheets.

For your information

If you try to move a worksheet after a worksheet that
doesn’t exist — such as Sheet(4) in a workbook with three
worksheets — the Move method will generate an error.

You can also use worksheet names, enclosed in double
quotes, instead of sheet numbers in these commands.
For example, Sheets (“January”) .Move.

Did you know?

Just as you can move a worksheet to another workbook copy a
or within the same workbook, you can create a copy of

a worksheet and move it. For example, you could use a worksheet

worksheet as a template and copy it within your existing

workbook. You can also use copying to include a data set in

another workbook without deleting the original worksheet.

If you use the Copy method by itself without indicating a

target destination for the sheet you’re copying, Excel VBA Copy a worksheet

copies the sheet to a new workbook. If you want to copy the

worksheet within the current workbook, you can use one of Create a subroutine.

the Copy method’s two optional parameters — Before and In the body of the subroutine,

After. use one of the following code
patterns:

B Before identifies the existing sheet before which you
place the copied sheet. If you leave this parameter out, Excel
copies the sheet and places it before the active sheet.

Sheets (1) .Copy
— copies the numbered
worksheet to a new

B After identifies the existing sheet, after which Excel will workbook.
place the copied sheet. b. Sheets(2).Copy,
Before:=Sheets (1)
E — copies the numbered
worksheet to before the

Did you know?

As with moving worksheets, you can also use
worksheet names, enclosed in double quotes, instead
of sheet numbers in these commands. For example,
Sheets (“January”) .Copy.

For your information o

Trying to copy a worksheet to a position before or after
a worksheet that doesn’t exist will result in an error. Be
sure you create error-handling code to manage these
situations (see Chapter 13).

first worksheet.

C. Sheets(1l) .Copy,
After:=Sheets (3)
— copies the numbered
worksheet to after the
third worksheet.

Managing worksheets 73

Hide or unhide a
worksheet >

Hide or unhide a worksheet
Create a subroutine.

In the body of the subroutine,
type one of the following lines
of code. The first example
hides the worksheet, the
second unhides it:

a. Sheets (1) .Visible
= False

b. Sheets (1) .Vislble
= True

74

Even if you work in a home-based business, your workbooks
might contain data that you don’t want to display to anyone
who might use your computer. You can keep your data

away from casual observers by hiding a worksheet. Hiding a
worksheet doesn’t delete it, so you can still use its contents in
your formulas, but it does make if a little bit more difficult to
find the data unless you know what you’re looking for.

The visible property indicates whether a worksheet appears
in the body of the workbook or not. You can both read the
Visible property to discover if a worksheet is visible or
hidden and change the property’s value to control whether or not
the worksheet appears on the tab bar. The following two code
snippets are valid uses of the Visible property. The first hides
Sheets(1) and the second displays the sheet named Sheet3.

Sheets (1) .Visible = False
Sheets (“Sheet3”) .Visible = True

Users can still unhide a worksheet by clicking the View
tab, then unhide on the ribbon and selecting a hidden
sheet from the dialog box that appears.

Did you know?

When you create an Excel 2010 workbook, it contains three Rename a
sheets named Sheet1, Sheet2 and Sheet3. These names

aren’t very descriptive, so the program lets you rename your worksheet
worksheets. If you rename a worksheet as part of an automated
process, you might use the month the data represents, the
name of a product or the name of a customer. Doing so makes
it easier to recognise each worksheet’s contents when you look
through the workbook.
You can encode the new name for a worksheet in your VBA Rename a worksheet
routine, but it’s more likely that you'll want the flexibility to Create a subroutine.
name the new worksheet by typing in a value. To allow you In the body of the subroutine,
and your colleagues to do that, display an InputBox and use type the following code:
the control’s output for the sheet’s new name. One such code .

. . d. Dim strName
snippet might be:

b. strName =
InputBox (“New name

for the sheet?”)

Dim strName

strName = InputBox (“New name for the
sheet?”) C. ActiveSheet .Name =
ActiveSheet.Name = strName strName

Microsoft Excel
Mew narme for the sheet? K

Cancel

kg

See also

For more information on
You cannot have two worksheets with the same name using InputBoxes, see
within a workbook. Chapter 11.

Important

Managing worksheets 75

Protect a >

worksheet

Protect a worksheet
Create a subroutine.
Either:

a. Enter a line of code such
as Worksheets (1) .
Protect

or:

b. Use an InputBox to get
a password and assign
it using the Password
parameter.

Important

Don’t forget your password!
Excel 2010 uses strong
encryption, so it’s highly
unlikely you would be able
to recover it.

76

As mentioned earlier in this chapter, hiding a worksheet doesn'’t
prevent users from displaying and changing that worksheet

if they know what to do. If you want to require a password to
change a worksheet in this way, you can do so by protecting
the worksheet in this way. As the name implies, protecting a
worksheet is much more secure than not doing so and will
keep your data safe from casual alteration.

The Protect method has many different parameters you

can set, but the most useful one is the Password parameter.
Setting the Password parameter requires users to enter the
pass phrase you define before they can delete the worksheet or
alter its contents. The following code samples show two ways
to protect a sheet. The first snippet doesn’t set a password, the
second one does.

Worksheets (1) .Protect

Dim strPassword As String

strPassword = InputBox (“Enter a password
for this sheet.”)

ActiveSheet.Protect
Password:=strPassword

Microsoft Excel
Enter a password for this sheet, K

Cancel

i

Important

Protecting a worksheet without assigning a password
allows anyone to turn off protection by clicking the
Review tab, then Unprotect Sheet on the ribbon.

Businesses and organisations of all sizes conduct increasing
amounts of business electronically. Even so, it still helps to
print out a copy of an Excel worksheet every now and then.

In Excel VBA, all you need to do is identify the worksheet you
want to print out and whether or not you want to display a
preview of what will be printed. Displaying a preview gives you
the opportunity to cancel the print job if the command results
don’t reflect what you want.

By default, the PrintOut method prints one copy of the
entire named worksheet. If you want print an area of the page,
such as the cell range A1:G4, you need to define a print area.
To do that, you use the PageSetup object’'s PrintArea
method. One such command would be:

ActiveSheet.PageSetup.PrintArea=
“WSAS1:5GS4”.

The Printout method has many useful parameters that
mimic the controls you’ll find on the Print page of Backstage
view. They are:

B From indicates the number of the page from which to start
printing — if omitted, Excel prints starting with the first page.

B To gives the page to be printed — if omitted, Excel prints to
the end of the worksheet

B copies indicates the number of copies to print — if left
blank, one copy is printed

B preview controls whether to display a preview or not. The
Preview parameter may be either True or False and, if
omitted, is assumed to be false

B ActivePrinter lets you define the active printer on your
system

B printToFile can be True or False — this parameter
indicates whether the worksheet should be printed to a file
or to the active printer and, if to a file, you must provide a
value for the PrToFileName parameter

Printa
worksheet

Print a worksheet
Create a subroutine.

Enter a line of code that
identifies the sheet to be
printed and any parameters
to use.

Managing worksheets 77

Print a
worksheet (cont)

78

B Collate can be True or False, telling Excel whether or
not to collate multiple copies of the print job

B pPrToFileName is required if the PrintToFile
parameter is True, for the file to which the sheet should be

printed

B IgnorePrintAreas directs Excel to print the entire
worksheet even if the file has print areas defined for that
sheet.

The following code snippets are valid uses of the PrintOut
method. The first prints the first worksheet in the workbook,
while the second displays a preview.

Worksheets (1) .PrintOut

Did you know?

To clear a print area, use the command
ActiveSheet.PageSetup.PrintArea =
False.

Worksheets (1) .PrintOut, Preview:=True

Managing ranges

Introduction

In the previous two chapters, you learned how to work with
the larger-scale building blocks of Excel files. First, you learned
how to manipulate workbooks, which are the container for
your Excel data. After that, you learned how to manipulate
worksheets, which are the organisational units within a
workbook. This chapter and the next describe how to work with
the final level of Excel workbook organisation — individual cells
and cell ranges. In this chapter, you will learn how to activate
and select cell ranges, refer to other cells, insert and delete cell
ranges, work with named ranges and resize rows and columns
so they present your data in its best light.

Activate a cell range

Select a cell range

Select the active region

Refer to cells using Of£set
Insert a cell range

Delete a cell range

Hide worksheet columns or rows
Create a named range

Resize a selected range

Set the column width

Set the row height

Managing ranges 79

Activate a cell There are two ways to interact with groups of cells in your
worksheet: activating the cells and selecting them. The
range

technical distinctions are a bit subtle, but the main difference
is that the Activate method only operates on a single group
of cells, while the Select method lets you work with multiple
groups of cells.

One other reason to use the Activate method as opposed
to the Select method is speed of processing. Selecting

Activate a cell range e
a cell takes a lot longer than activating a cell does, so any

Create a subroutine. complicated or long-running routines you create should use

In the body of the subroutine, the Activate method whenever possible. The difference in
use the following code speed is not that noticeable when there are only one or two
pattern: actions in your code, but any routine that could make dozens
Range. (“cell or hundreds of individual selections will run noticeably slower
range”) .Activate than similar code using Activate.

The following code snippet shows how to activate cell A13:

Range (“A1l3”) .Activate

£
See also

For more information on using the Of£set property,
see Refer to cells using Of £set, later in this chapter.

Did you know?

If a cell range is highlighted in your worksheet, the
ActiveCell is the cell you first clicked when you
highlighted the cells.

80

Selecting a cell range lets you perform operations such as Select a cell
cutting or copying cells. You select a range by identifying the
cells you want to select and calling the Select method. The range
example code in the task demonstrates that there are several

ways to identify ranges, including non-contiguous ranges.

If you want to select a non-contiguous range of cells, you
separate the individual cell ranges using a comma. For
example, if you wanted to select cells in the range B4:C6

Select a cell range
and in the range F4:G6, you would write the command as g

Range ("B4:C6, F4:G6”) .Select. Create a subroutine.
In the body of the subroutine,
a B C D E F G use one of the following code
1 patterns:
2 Fﬂﬂﬁll
3 January February March April hiay June a. Range (“cell”) .
4 1 43 180 38 175 61 54 Select
5 2 239 1239 199 178 113 103 b. Range (“range”) .
5 3 22 24 54 106 88 155
Select
7 4 170 6 38 124 142 106
B 5 49 166 26 £ 24 52 €. Range (“rangel,
g 6 34 194 99 171 137 48 range2..”) .Select
10 7 k] 120 195 8l 47 £5

Did you know? n
Selecting a cell range is slower than activating a cell

range. If you can use the Activate method instead of

the Select method, your code will run faster.

You are not limited to selecting two ranges of cells

when you use the select method. Commands such as

Range (“A1l:B3, A6:B9, A9:Bl12”) .Select
work just as well.

Did you know?

Managing ranges 81

Select the active
region

Select the active region
Create a subroutine.

In the body of the subroutine,
use the following code:

ActiveCell.
CurrentRegion.
Select

82

One of the most useful selection procedures in Excel 2010 is
also one of the least well known. Suppose you have a block of
40 or 50 cells and you want to select all of them. Rather than
identify the entire cell range, such as A2:G10, you can click
any cell in the range and then select the active region, which is
also called the current region. The active region doesn’t extend
beyond a blank row or column, but single cells at the edge of
the region can affect how Excel identifies the region.

Selecting the active region is exactly what Excel does when you
create an Excel table from a data list or filter or sort worksheet
data. If you use the ActiveCell.CurrentRegion.
Select method to select worksheet cells, it will identify a
rectangular area with limits defined by the first blank row,
column or worksheet edge that it encounters in each direction.

[& [e | ¢ | o | € | | 6 | H

1

2

3 January February March April hday June
| 4 | 1 43 180 38 173 61 54
| 3 | 2 29 139 199 173 113 103
| 6 | 3 22 24 a4 loe a8 155
| 7 4 170 45 38 124 142 106
| 8 |] 43 166 26 36 34 52
| 9 | 6 34 154 99 171 137 48
ﬂ T 23 130 135 gl 47 65
11

Did you know?

In an Excel worksheet, you can select the current region

by pressing Ctrl+*.

For your information

Be sure to test your VBA code when you select the
active region — you might be surprised at which cells it
includes.

When you create a formula in an Excel worksheet, you can use
either absolute or relative references. Absolute references do
not change when you copy the formula to another cell. Relative
references, however, do change. If you refer to cells in Excel
VBA using the offset property, you tell the program to affect a
cell in a position relative to the active cell.

The Offset property accepts two arguments:

B Rows indicates the number of rows to move above or below
the active cell — positive numbers tell Excel to move down,
while negative numbers have Excel move above the active
cell.

B Columns indicates the number of columns to move to the
left or right of the active cell — positive numbers tell Excel to
move to the right, while negative numbers have Excel move
to the left.

It is the combination of the row and column values that
identifies the new cell your VBA code will affect. For example,
ActiveCell.Offset (1, 2).Select would select the
cell one row below and two columns to the right of the active
cell. If the active cell were B4, the cell referred to would be C6.

A, B C O E F G

1

2

3 January February March April hay June

4 1| 43! 180 38 175 g1 54
5 2 29 123 153 178 113 103
3 3 22 24 54 1loe a3 135
¥ 4 170 46 38 124 142 loe
g] 45 leg 26 36 34 52
k| i] 34 124 EE 171 137 43
10 ¥ EE 130 185 a1 47 65

=
=

Refer to cells
using Offset

Refer to cells using offset
Create a subroutine.

In the body of the subroutine,
use the following code
pattern:

ActiveCell.
Offset (rows,
columns) .Attribute

Did you know?

If you refer to a cell that

isn’t on the worksheet (such
as a cell two rows above cell
A1), the Visual Basic Editor
displays an error message.

Managing ranges 83

Insert a cell >

range

Insert a cell range
Create a subroutine.
Enter code that uses the

following pattern in the body

of the subroutine:

Range (reference) .
Insert Shift :=
direction

For your information

If you insert a range

using VBA, check your
worksheet’s existing
formulas to ensure they still
work as expected.

From time to time, you might want to insert a cell range into
another group of cells. For example, suppose you forgot to
enter a row of data into a list. Rather than cut and paste data
from the list to make a blank row, you can insert a group of
cells to make room for the new data.

You insert a range of cells using the Range object’s
Insert method. The Insert method has the syntax
Range (reference) .Insert (direction).The
reference argument denotes a range of cells, which
could be a single cell or group of cells. The first cell in the
reference should be at the top left corner of the range were
you want to insert the new cells. For example, if you forgot to
enter data into cells D3 to F5, you would use the command
Range (D3:F5) . Insert.

When you insert the cells, you can also specify an
X1shiftDirection parameter to have Excel shift the cells
down (x1ShiftDown) or to the right (x1ShiftToRight).
If you don’t specify a shift direction, Excel shifts the affected
cells down.

As an example, suppose you have a worksheet with data in the
range A2:G10. Using the command Range (*B10:G10") .
Insert Shift:=x1ShiftDown would insert cells in the
range B10:G10, pushing the values in the existing cells down
one row.

A | B | C D E F G H
1
2
8 Janua February March April hMay June
4 1 a3l 180 38 175 31 54
] 2 29 123 133 178 113 103
& 3 22 24 24 106 a8 155
¥ 4 170 46 38 124 142 106
a 3 43 166 26 36 34 52
&) 6 34 134 L] 171 137 43
10 7
11 33 130 135 gl 47 65
12

84

Worksheet data changes frequently. On occasion, you will also Delete a cell
have cause to change your worksheet structure by deleting cell
ranges from your worksheet. You can delete cell ranges in Excel range
VBA by identifying the range and using the proper command.

That command is the Range object’s Delete method.

The Delete method uses two elements: the range of cells
you want to delete and the direction the remaining cells
should move once the cells are deleted. For example, you

Delete a cell range
could delete cells in the range D4:F5 using the command 9

Range (“D4:F5”) .Delete. Create a subroutine.

Enter code that uses the
You can also tell Excel in which direction to shift the following pattern in the body
remaining cells — either to the left (x1ShiftToLeft) or up of the subroutine:
(x1shiftUp). In that case, the syntax of the command looks

_ : Range (reference) .
like this: Delete (direction)

Range (“D4:F5”) .Delete (x1ShiftUp)

If you leave the Shift parameter blank, Excel shifts the
remaining cells up.

& B C [B] E F G H

1

2

& January February March April hay June

4 1 43 180 38 173 61 54
3 2 29 129 159 178 113 103
3 3 22 24 54 106 a4 155
i 4 170 46 38 124 142 106
g 5 49 186 i 36 34 32
g] 34 134 43
12 7 93 130 I 65!

n For your information

Protecting a worksheet
prevents you from adding or
deleting cells.

Did you know?

If you delete cells using the Range object’'s Delete
method, the data in those cells will be lost.

Managing ranges 85

Hide worksheet >
columns or rows

Hide worksheet columns
or rows

Create a subroutine.

Enter code that uses one of
the following patterns in the
body of the subroutine:

a. ActiveSheet.
Columns (number) .
Hidden = True

b. ActiveSheet.
Rows (number) .
Hidden = True

C. ActiveSheet.
Columns (number) .
Hidden = False

d. ActiveSheet.
Rows (number) .
Hidden = False

€. ActiveSheet.
Columns.Hidden =
False ‘Unhides
all columns

f. ActiveSheet.Rows.
Hidden = False
‘Unhides all rows

86

Worksheet columns and rows often contain a single type of
data. Columns, for example, could contain information about

a product’s price. A row in the same worksheet might contain
a full set of information about a product, such as its name,
price and description. If you want to hide a row or column, you
can do so using the code below. Bear in mind that you must
refer to a column using its number, not letter designation (So
column C is column 3).

You can hide a column or row using its Hidden property.
Setting the property to True hides the column or row, while
setting it to False displays it. The following examples of code
snippets hide various columns and rows in a worksheet:

ActiveSheet.Columns (1) .Hidden = True
ActiveSheet.Rows (3) .Hidden = True
Sheets (1) .Columns (3) .Hidden = False
Sheets (2) .Rows (8) .Hidden = False

&, B € E F £

1

2

3 January February April hday June

4 1 43 120 173 61 34
5 2 29 129 178 113 103
3 3 22 24 106 g8 135
T 4 170 46 124. 142 106
g 3 43 1&6 36 34 52
£l i} 34 134 171 137 48
10 7 93 120 a1 47 65
11

Did you know?

A useful mnemonic for determining the number of a
column is to use the initialis EJOTY. Each letter in that
list is five positions after the previous one, so the E is
at position 5, J at position 10, O at position 15, T at
position 20 and Y at position 25.

If you want to hide or unhide every column or row, use the
Columns or Rows object without specifying a column or row
to hide or unhide. For example, the first snippet below unhides
all columns, while the second unhides all rows:

ActiveSheet.Columns.Hidden = False
ActiveSheet.Rows.Hidden = False

Hiding column D using the command ActiveSheet.
Columns (4) .Hidden = True produces the result
Did you know?

shown in the screenshot.
You can always unhide a column or row from the user
interface by selecting the rows or columns on either side

of the hidden elements and clicking the View tab, then
Unhide on the ribbon.

Did you know?

You can use the values in hidden rows or columns in
your worksheet formulas and VBA code.

Hide worksheet
columns or rows
(cont.)

Managing ranges 87

Create a named
range >

Create a named range
Create a subroutine.

Enter code that uses the
following pattern in the body
of the subroutine:

Range (“reference”) .
Name = “name”

Did you know? E
Named ranges also

appear in the Formula
AutoComplete listings when
you create a formula.

Did you know? n
The name of the named

range appears in the Name

box, just above the headers
for columns A and B.

88

If you frequently use a specific cell range in your formulas,
you can define that range as a named range. As the name
implies, a named range is a cell range that you refer to using
a label instead of the cell addresses at the top left and bottom
right of the range. For example, if you had January sales in
cells A2:A32, you could refer to that range using the name
JanuarySales.

To create a named range using Excel VBA, you use the Range
object’s Name property. The syntax for the command is
Range (reference).Name = “range name”.

The reference can be any set of cells, but there are a few
restrictions on how you can name ranges in Excel. First, the
name may not contain any spaces and must begin with a letter.
Second, the name of the range may not duplicate a reserved
word, such as the name of a column, the name of a variable
type, such as Currency, or names of existing Excel objects.

The following bit of sample code demonstrates how to create a
named range called January Sales:

Range (“B4:B10”) .Name = “JanuarySales”

AEREEE
Home Insert Page Layout Formulas Data Fewiew e Developer

’;5 it Calibri 11 v AW Siwirap Text
Iy 53 Copy ™
te - Format Fainter B 7 U~ H~ &H-A- 24 Merge & Center ~
Clipboard Pl Font ‘ Alignment
Jarar y.S;ﬂll-_'s . fr 43
& T € o E F & H
¥
2 0
ES January February March April May June
4 1 43 150 38 18 b1 24
5 | 2 29 129 199 178 113 103
G 3 22 24 54 106G an 155
7 4 170 as 38 124 142 106
F!__ 5 49 1Rk i AR 34 57
_9 1] 34 134 33 171 137 45
10| 7 93 130 195 81 47 63
akL
1z

After you select a range, you might want to make the selection
larger or smaller to fit the data it represents. For example,

you might have a range with shipping rates for packages of
differing weights. If your shipping agent adds or removes
weight categories, you will need to resize the range to reflect
the new information.

Using the Resize method, you can specify the number of
rows and columns in the selected range. You can do that

using the row size and column size arguments. The row size
argument tells you how many rows should be encompassed by
the selection, while the column size argument does the same
for columns. The selection’s definition starts from the existing
top left cell of the range’s definition and extends as far as the
row size and column size parameters indicate. The general
form of this method appears below:

Selection.Resize (rows, columns) .Select

For example, you could have selected a small group of cells
within a shipping rates schedule.

A B C D E F

1

2 7Days SDays 3Days 2Day Overnight
3 |UKandlreland | £ 500 £ 700f£ 1500 £ 2500 £ 4000
4 |Europe £ 10,00 £ 12000 £ 20000 £ 3000 £ 60,00
5 Asiaand Pacific £ 30,00 £ 50,00 £ 60,00 £ 70.00 £ 100.00
& Morth America £ 30,00 £ 50,00 £ 60,00 £ 70.00 £ 100.00
7 South America £ 30,00 £ 50,00 £ 60,00 £ 70,00 £ 100,00

The following snippet demonstrates how to resize the selection
so it is five rows by five columns in size:

Selection. Resize (5, 5)

A B c | o | E F

1

2 7Days SDays 3Days 2Day Overnight
3 |UKandlreland | £ 5.00 £ 700 £ 1500 £ 2500 £ 40.00
4 |Europe £ 10,00 £ 1200 £ 20,00 £ 30.00 £ 60,00
5 |Asiaand Pacific] £ 30.00 £ 50.00 £ 60,00 £ 70.00 £ 100.00
& Morth America | £ 30.00 £ 50.00 £ e0.00 £ 70.00 £ 100.00
7 |South America | £ 30.00 £ 50.00 £ 60.00 £ 70.00 £ 100.00

Resize a selected
range

Resize a selected range
Create a subroutine.

Enter code that uses the
following pattern in the body
of the subroutine:

Range (“name”) .
Resize (RowSize :=
number, ColumnSize
:= number)

For your information

You must use one or both
of the RowSize and
ColumnSize parameters.
If you leave either of them
blank, Excel assumes they
have a value of one.

For your information

The RowSize and
ColumnSize parameters
indicate the number of
rows or columns in the new
version of the range, not
the rows or columns to be
added or subtracted.

Managing ranges 89

Set the column
width >

Set the column width
Create a subroutine.

Enter the following line of
code to display the column’s
width in points:

MsgBox (“The
column’s width is
& Columns (number) .
Width)

Enter one of the following
lines of code in the body of
the subroutine to change the
column’s width:

”

a. Columns (number) .
ColumnWidth =
characters

b. Columns (number) .
AutoFit

90

When you enter data into a worksheet column, Excel lets the
data in a cell extend into empty cells to the right of the active
cell. If the cells to the right of the active cell contain data, Excel
displays those cells’ contents instead. You can use VBA to find
the width of a column or, if desired, change the column’s width
to a specific value. You can also use the AutoFit method to
have Excel size the columns to display the entire contents of
every cell in a column.

If your organisation has design standards you must follow
when designing your worksheets, you can use VBA code

to automate those settings. For example, if the committee
producing your company’s annual report requires that your
worksheets have columns that are a specific width, you can
open an approved version of the worksheet and use some of
the code below to determine the width of a specific column and
use that setting in your commands.

To determine the width of a column, you use the Columns
collection’s width property. That property is read only,

but you can change the width of a column using its
ColumnWidth property. The following VBA code displays a
column’s width in points:

MsgBox (“The column’s width is "7 &
Columns (number) .Width)

r =)

kdicrosoft Excel @

The colurmn's width is 77,25

You can set the column width and characters using the Set the column
following code: .
d width (cont.)

Columns (number) .ColumnWidth = characters

Did you know?

The ColumnWidth property is measured in
characters, while the width property is measured in
points (1/72nds of an inch).

You can also use the AutoFit method to make a column wide
enough to display the widest entry in its entirety. The section

is equivalent to double-clicking on a column border in the
column header bar. If a column contains data that is too long

to fit in your worksheet columns as currently configured, using
AutoFit is areliable way to make your data more readable.

To invoke the AutoFit method, use the command:

Columns (number) .AutoFit

Important “

You refer to a column by number, not letter. For
example, column D is column(4).

Managing ranges 91

Set the row
height >

Set the row height
Create a subroutine.

Enter the following line of
code in the subroutine to
discover the row’s height:

MsgBox (“The row’s
height is ” &
Rows (number) .
Height)

Enter the following line
of code in the body of
the subroutine to set the
row’s height:

Rows (number) .
RowHeight = points

Did you know?

In Excel 2010, rows are 15
points high by default.

92

Just as you can measure and change the width of a column, you
can do the same for your worksheet rows. Excel usually changes
each row’s height so it will display the tallest character it contains,
but you might want to make each row a bit taller so there is some
white space between rows of data. When done properly, adding
white space makes your data much easier to read.

Like the Columns collection, the Rows collection stores a
row’s height in the Height property and lets you change the
row’s height by providing a new value for that property. The
VBA code that displays a message box containing the row’s
height is:

MsgBox (“The row’s height is ” &
Rows (number) .Height)

kAicrasoft Excel @

The row's height is 15

..

and to set the height of row 1 to 24 points, the code is:

Rows (1) .RowHeight = 24

Did you know?

Row height is measured in points, each point being
1/72nd of an inch.

Managing cells

Introduction

Every worksheet is divided into cells, which are boxes formed
by the intersection of a row and column. You can manipulate
the data in your worksheet’s cells in many different ways,
such as by cutting or copying data and pasting it elsewhere,
managing cell comments, filling in sets of data automatically
and finding and replacing values. Many of the techniques you
will learn in this chapter should prove useful time and again.

Cut and paste a cell range
Copy and paste a cell range

Copy and paste values in cells
using PasteSpecial

Transpose a column into a row
Create a cell comment

Display a cell’s comment

Hide a cell’s comment

Delete one or all cell comments
Fill a range of cells automatically
Copy a range to multiple sheets
Add a cell border

Find a cell value

Replace a cell value

Managing cells 93

Cut and paste a >

cell range

Cut and paste a cell range
Create a subroutine.

In the body of the subroutine,

enter code that follows this
pattern:

Range (“address”) .
Cut Destination
:= Range(“topleft
cell”)

Did you know?

If you don’t specify a
Destination cell, this
method cuts the data from
the source cells and saves it
on the Clipboard.

94

One of the more common tasks that you perform while using
Excel is cutting data from one group of cells and pasting it
into another. You can perform this task using Excel VBA,
which speeds up the process considerably. As always, for the
task to be repeatable, your worksheets must have predictable
structures so the data you cut and paste will always end up in
the right places.

The cut method has one required parameter and one optional
parameter. The required parameter is the address of the cell
range to be cut. This range reference must identify a single,
contiguous range of cells. For example, you could enter the
following command to cut the range A2:C6:

Range (“A2:C6"”) .Cut

You can also add a destination cell, which will serve as the top
left cell in the range where Excel pastes the cells you cut. An
example of a command that will do this would be:

Range (“A2:C6”) .Cut Destination :=
Range (“Al12")

& B © D = [F G H
1
2
3 March April hay June
4 | .I 38 173 6l 54
5 133 178 113 103
3 54 106 a8 155
¥ 4 170 A5 38 124 142 106
g 5 49 leg 26 36 34 52
9 6 34 194 99 171 137 43
10 ¥ 93 130 195 a1 47 65
AL,
12
13 January February
14 1 43 130
15 2 29 125
16 3 22 24

Just as you can cut and paste cell data using Excel VBA, you
can copy data and paste it into a destination range, too. The
difference between cutting and copying is that cutting data from
a cell range removes the data from the source cells, but copying
it leaves the data in its original place while allowing you to
paste a second copy into another group of cells.

Copy and paste a
cell ranges

<

Like the cut method, the Copy method has one required

parameter and one optional parameter. The required parameter Copy and paste a cell range

is the address of the cell range to be copied. This range _ 7

reference must identify a single, contiguous range of cells. For Create a subroutine.

example, you could create the following command to copy the In the body of the subroutine,

range A2:C7: enter code that follows this
pattern:

Range (“A2:C7") .Copy

Range (“‘address”) .
Copy Destination
:= Range(“topleft

cell”)

You can also add a destination cell to serve as the top left
cell in the range where Excel pastes the cells you copied. An
example of that command would be:

Range (“A2:C7”) .Copy Destination :=
Range (“Al2")

January February

Iarch

April

Tay

June

43
29
22
170

180
129
24
46

e BN T

49
34
93

166
134
130

38
139
54
38
26
k]
195

173
178
106
124

36
171

g1

61
113
a3
142
34
137
47

54
103
155
108

52

43

65

1
2
3
1

43
29
22
170

lan
129
24
46

12
13 IE January February

Did you know?

If you don’t use the optional
Destination parameter,
Excel copies the contents
of the cell range to the
Clipboard.

Important

This copy and paste
command overwrites data
in the target cells without
alerting you it has done so.

Managing cells 95

Copy and >

paste values
in cells using
PasteSpecial

Copy and paste values in cells
using PasteSpecial

Create a subroutine.

In the body of the subroutine,
enter a command that follows
this pattern:

Range (“range”) .Copy

Range (“topleft
cell”) .PasteSpecial
Paste:=X1PasteType

where:

a. “range” is the range
from which you will copy
the data.

b. “topleftcell” is the
top left cell of the range
into which you will paste
the data.

C. X1PasteType is one of
the variables listed in Table
7.1.

96

Copying and pasting data within Excel is a fairly straightforward
process, both through the user interface and when using Excel
VBA. You can have much more control over the paste operation
by using PasteSpecial. For example, you can paste just
the data and ignore the formatting in the original cell, apply the
formatting of the target cell to the pasted data or use one of
several other options to control how your pasted data appears.

Unlike copying and pasting a cell range, copying cell contents
and using PasteSpecial to move them within a worksheet
is a two-step process. The first step is the familiar one of
copying the cells’ contents to the clipboard. The second step
is to use the Range object’'s PasteSpecial method to
identify where and how the data should be pasted.

You identify which PasteSpecial operation Excel should
use by selecting the appropriate X1PasteType variable. A
list of the appropriate variables, which mirror the selections
available in the Paste Special dialog box, appears in Table 7.1.

The following two lines of code copy the contents of the cell
range A2:C7 and paste the values, without formatting, into the
range starting with cell A9:

Range (“A2:C7"”) .Copy
Range (“A9”) .PasteSpecial
Paste:=x1PasteValues

~ 7

= —

4 ~
—

Jargon buster =

You write X1PasteType with a capital ‘X’ to indicate
that it represents a class of variables. Individual
variables from the class, such as x1PasteFormats,
are written with a lower-case ‘x’.

A B g D E F G H c p d

; opy an

] i
2 ; _ paste values
3 January February, March April May June

' T - -
4] 1 43 180v 38 173 61 54 g
5 2 29 1295 199 178 113 103 In cells us“1
&) 3 22 24 54 106 g8 155 -
7 i_ ______ LA I v 416_5 38 124 142 106 PaSteSpeClal
a 5 49 lek 26 36 34 52
9 6 34 194 99 171 137 48 (cont)
10 ¥ 93 130 195 g1 47 65
il
|12 | Month
| 12 [Day January February
|14 1 43 180 7
| 15 | 2 29 129
| 16 | 3 22 24
17 4 170 46

Table 7.1 Available values for the PasteSpecial method’s
X1PasteType variable

Name Description
x1PasteAllExcept Pastes all cell contents
Borders except borders

x1lPasteAllMerging Pastes all cell contents and

ConditionalFormats merges conditional formats

x1PasteAllUsing Pastes all cell contents and

SourceTheme applies the Office Theme used
to format the source cells

x1PasteColumnWidths Applies the column widths of
the pasted cells

x1PasteComments Pastes comments from the
source cells
x1PasteFormats Pastes the formatting of the
copied cells
x1lPasteFormulas Pastes formulas from the
copied cells Important
x1lPasteFormulasAnd Pastes formulas and number
NumberFormats formats of the copied cells You must use the Copy
x1PasteValidation Pastes validation rules from method to move the target
the copied cells cell range to the clipboard.
x1PasteValues Pastes values from the If you use the cut method,
copied cells the PasteSpecial
x1PasteValuesAnd Pastes values and number method will fail.
NumberFormats formats from the copied cells

Managing cells 97

Transpose
a column into
arow

>

Transpose a column into a row
Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

Range (“range”) .Copy

Range (“topleft
cell”) .PasteSpecial
Transpose := True

where:

a. “range” is the range
from which you will copy
the data.

b. “topleftcell” is the
top left cell of the range
into which you will paste
the data.

For your information

Note that the paste
operation shown in the
figure copied the borders
and formatting from the
original cells. You might
need to reformat the
destination cells.

98

One often overlooked aspect of the Microsoft Excel worksheet
is its primarily columnar nature. An Excel 2010 worksheet
contains more than a million rows, but only several thousand
columns. This design choice reflects the nature of business
data. Columns tend to represent categories of data, such as

a price or a model number, while rows tend to represent a
complete set of data about business objects, such as orders or
products. That said, you will occasionally need to transpose a
column of data into a row or vice versa to fit your data into a
target range.

To transpose a column into a row, you first use the Range
object’s Copy method to get the cell’s contents onto the
clipboard and then use the PasteSpecial method with its
Transpose parameter set to True. So, to copy the values
in cells B3:B10 and transpose those values into a row starting
with cell A12, for example, the code would be:

Range ("B3:B10”) .Copy
Range (“Al2”) .PasteSpecial
Transpose:=True

Iy B © [E F G H
1
2
3 January February March April hay June
4 1 43 180 38 173 61 54
5 2 29 129 1939 178 113 103
[3 22 24 54 106 ag 155
7 4 170 46 38 124 142 106
g 5 49 166 26 36 34 52
g 6 34 194 99 171 137 48
10 ¥ 93 130 195 g1 47 65
11
|12 | January 43 29 2 170 a3 34 93!

Did you know?

You can also transpose data with multiple columns and
rows. In that case, column 1 becomes row 1, column 2
becomes row 2 and so on.

When you design an Excel worksheet, you often have a very
good sense of everything that’s going on within it, even if

you haven’t examined the worksheet for a while. If you have
to share a worksheet with a colleague or revisit a worksheet
after several months, you might need some hints to remind
yourself how everything works. One way that you can add that
information to a worksheet is by creating cell comments.

When you use VBA to add a comment to a cell, you should first
ensure the target cell contains no other comments. You can

do so by invoking the Cells collection’s ClLearComments
method. Once an existing cell’s comments have been removed,
calling the AddComment method followed by the text of the
comment adds your annotation to the worksheet.

Within the ClearComments and AddComment method,
you identify the target cell by its row and column. You use

the row number as you would in any other command, but

you must refer to the column by number instead of a letter. For
example, E column is number 5, J is column 10 and so on. The
following code samples show you how to clear comments from
cell B4 and add a comment to the same cell:

Cells (4,2) .ClearComments
Cells (4,2) .AddComment (“Data changed on
13 July 2012.7)

& B C D E F G H
1
2
3 January "L‘urt: = il hiay June
4 1] 43! Data changed on 13 July | 175 61 54
5 2 29 [|2012. 178 113 103
3 3 22 106 ag 155
7 4 170 e m 124 142 106
g 5 a9 166 26 36 34 52
9 6 34 194 99 171 137 43
10 7 a3 130 195 51 47 65
11
Did you know? E
A cell may contain at most one comment. ‘

Create a cell
comment

Create a cell comment
Create a subroutine. 7

In the body of the subroutine,
enter code that follows this
pattern:

Cells(row, column).
ClearComments

Cells(row, column).
Add Comment (“This
is the comment
text.”)

Important

Comments entered using
VBA do not display an
author’s name, but Excel
assigns the active user’s
name to the comment’s
Author property.

Managing cells 99

Display a cell’s
comment

Display a cell’s comment

Create a subroutine and
do either of the followin

>

then
g.

In the body of the subroutine,
type code in the following

pattern to display the
comment in one cell:

Cells(row, column).

Comment .Visible
True

Alternatively, enter code that

follows this pattern to d

isplay

all comments in a worksheet:

Dim ¢ as Comment

For Each c In
ActiveSheet.
Comments

c.Visible = True

Next

Did you know?

You can discover how
many comments a
worksheet contains by
displaying the contents of
the Comments.Count
property.

100

If you haven’t changed how Excel handles comments, then the
program indicates that a cell contains a comment by displaying
a small red flag at the top right corner of the cell. Those
indicators can be a little difficult to see, especially if you're
moving quickly, so you might want to display every comment
within a worksheet to make it easier to find them.

To display an individual cell’s comment, you identify the cell and
then set the Visible property of its Comment object to True.
The following line of code shows you how to do that for cell B4:

Cells(4,2) .Comment.Visible = True

Setting a cell’s Comment.Visible property to True is
simple enough, but you do have to know that your target

cell actually contains a comment. If you would rather display
all comments within a worksheet, you can do so by moving
through every member of a worksheet’s Comments collection
and setting each member’s Visible property to True. The
following sample code demonstrates the process required to
display every comment in an active worksheet:

Dim ¢ as Comment

For Each ¢ In ActiveSheet.Comments
c.Visible = True

Next

& B i,] E [F G H

1

2

3 January DLurt: = & ril ay June

4 1 43 _|Data changed on 133000ms B 54
EI 2 29] |201=. Best day of the period. 103

53 3 22 155

T 4 170 =TT = 108

8 5 49 16k 26 T —rer 52

El b 34 194 99 171 137 43

10 ¥ 93 130 195 al 47 63

See also .

For more information on using For..Each loops, see
Chapter 12.

Cell comments make it easy to record information about your
worksheets, both for yourself and for your colleagues. The
disadvantage of cell comments is that they can take up a lot of
room in your display and block your view of the data. If you have
multiple comments open, it can take a while to close them all by
hand. If you would like to close all of your comments at one time,
you can do so from the user interface or by using Excel VBA.

To hide an individual cell’s comment, you identify the cell and
then set the Visible property of its Comment object to
False. The following line of code shows you how to do that
for cell C5:

Cells (5,3) .Comment.Visible = False

Setting a cell’'s Comment.Visible property to False

is simple enough, but you do have to know that your target
cell actually contains a comment. If you would rather hide

all comments within a worksheet, you can do so by moving
through every member of a worksheet’s Comments collection
and setting each object’'s Visible property to False. The
following sample code demonstrates the process required to
display every comment in an active worksheet:

Dim ¢ as Comment
For Each ¢ In ActiveSheet.Comments

c.Visible = False
Next
I B © [n] £ 5 G H

1

2

3 January February March April hlay June

4 1 ﬂ3‘ 180 38 173 61 54
5 2 29 129 199‘ 178 113 103
[3 22 24 34 106 a8 155
7 4 170 46 38 124 142 106
g 3 43 166 26 36 34 52
EI 6 34 134 33 1?1I 137"! 43
10 7 33 130 135 a1 47 65

11

Hide a cell’s
comment

Hide a cell’s comment
Create a subroutine. 7

In the body of the subroutine,
type code that follows this
pattern to hide the comment
in one cell:

Cells (row,column) .
Comment .Visible =
False

Type code that follows this
pattern to hide all comments
in the worksheet:

Dim ¢ as Comment

For Each ¢ In
ActiveSheet .Comments

c.Visible = False

Next
Did you know? n

You must refer to a column
by its number, not the

letter that appears in the
worksheet’s column headers.

Did you know?

Even if you hide a comment, the red ‘flag’ indicator still
appears in the top right corner of its cell.

See also

For more information on
For..Each loops, see
Chapter 12.

Managing cells 101

Delete one or all >
cell comments

Delete one or all cell comments
Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern to delete a cell’s
comment:

Cells(row, column).
Comment .Delete
Type code that follows this

pattern to delete all comments
in the worksheet:

Dim ¢ as Comment

For Each c In

ActiveSheet.

Comments
c.Delete

Next

Important “

Deleting a comment using
VBA can’t be undone.
Once it's deleted, it's gone
for good.

See also .:

For more information on
For..Each loops, see
Chapter 12.

102

As you’re developing an Excel worksheet, you might want to
leave notes to yourself about why you took the steps you did to
implement your solution. Cell comments are a wonderful way
to do that. That said, notes to yourself might not be necessary
after you are done editing your worksheet. If you find that you
no longer need a comment, you can delete it.

To delete a comment, you identify the comment’s cell by its
row and column, then use the Comment object’s Delete
method to erase it. The command’s general structure is as
follows:

Cells (row, column).Comment.Delete

To delete the comment in cell B4, you would use the following
line of code:

Cells (4,2) .Comment.Delete

Note that you identify the row and column by number, even
though columns are labelled using letters in the body of the
worksheet.

You could delete every comment in a worksheet by moving
through the Comments collection using a For...Each loop
and using the Delete method for each member of the
collection. The code to do that is:

Dim ¢ as Comment

For Each ¢ In ActiveSheet.Comments
c.Delete

Next

A B © o] E F G

1

2

3 January February March April hay June

4 1 43 180 38 175 61 54
3 2 29 129 193 178 113 103
& 3 22 24 54 106 a8 155
ZI 4 170 a6 38| 12#1! 142 106
& 5 49 166 26 36 34 52
3 [0 34 1594 99 171 137 48
10 7 93 130 195 81 47 £3
Ll

Entering data into an Excel worksheet can be a time-
consuming, repetitive task. If the data you want to enter follows
a specific pattern, such as a sequence of months or numbers
that progress at a known rate, then you can fill a series of cells
with those values using Excel’s built-in data entry capabilities.

The AutoFill method has the following syntax:

Range (“source”) .AutoFill Destination:=
Range (“destination”), _
Type:=X1AutoFillType

The first range identifies the cells that contain the source of the
data series, while the range identified in the Destination
parameter identifies the range that will contain the series.

The source range must be part of the destination range. For
example, the following code snippet would extend the data
series started in cells A10:A11 to cell A14:

Range (“A10:A11"”) .AutoFill
Destination:=Range (“A10:A14")

[=] r
9 | Series | 9 I Series |
10 1 10 1
1L 2 11 2
12 12 3
13 13 4
14 14 5
15 15

18

If cell A10 contained the number 1 and A11 the number 2,

this code would extend the series to include the numbers 3,

4 and 5. Should you prefer another fill type, you can add the
Type parameter to control how Excel extends the series. For
example, the following command would extend the same series
starting with the values 1 and 2 with 4, 8 and 16, due to the
geometric growth trend:

Range ("A10:A11”) .AutoFill
Destination:=Range (“A1l0:A14"),
Type:=x1GrowthTrend

4 Fill a range

of cells
automatically

Fill a range of cells
automatically 7

Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

Range (“source”) .
AutoFill
Destination:=Range
(“destination”)

a. If desired, type a

comma followed by
Type:=X1Auto

FillType

b. X1AutoFillType is a
placeholder. You can select
the fill type you want from
the variables shown in
Table 7.2.

Managing cells 103

Fill a range
of cells
automatically
(cont.)

From the user interface, you
can enter data in a series

of cells by entering a value,
such as a date, in a cell and
dragging the Fill Handle.
The Fill Handle is a small
black square that appears at
the bottom right corner of
the active cell range.

Did you know?

104

You'll find a full enumeration of the available fill types in Table
7.2.

Table 7.2 Available values for the PasteSpecial method’s
X1AutoFil1Type parameter

Name Description
x1Fill Copies values and formats from the selected
Copy cells to the target range, repeating values as
required
x1Fill Extends a series of day names, copying
Days formats and repeating values as required
x1Fill Fills values using Excel’s built-in methodology
Default for determining which values to include
x1Fill Copies formats from the selected cells to the
Formats target range, repeating values as required
x1Fill Extends a series of month names, copying
Months formats and repeating values as required
x1Fill Extends the values in the selected cells into
Series the target range as a series (for example, ‘1,
2’ is extended as ‘3, 4, 5’) and copies formats
from the selected cells, repeating as required
x1Fill Copies values from the selected cells to the
Values target range, repeating values as required
x1Fill Extends a series of work day names, copying
Weekdays formats and repeating values as required
x1Fill Extends a series of years, copying formats
Years and repeating values as required
x1Growth Extends a series of values based on
Trend multiplicative relationships (so ‘1, 2" would
be extended as ‘4, 8, 16’) and formats from
the selected cells are copied and repeated as
required
x1Linear Extends a series of values based on additive
Trend relationships (so “1, 2’ would be extended as

‘3, 4, 5’) and formats from the selected cells
are copied and repeated as required

When you create worksheets within an Excel workbook, it's
possible that you will want to create multiple copies of the
same type of worksheet. For example, you might want to break
out product sales by category for a series of months. If you
have already entered those category labels into a worksheet,
you can copy those values and paste them into multiple
worksheets in one go.

In Excel VBA, you use the Sheets collection’s
FillAcrossSheets method to identify the source of the
cell contents to be copied and the worksheets you want to
copy those contents to. The Fil1AcrossSheets method
is part of the Sheets collection, so you identify the sheets to
which you want to copy the data and then provide the source
range. The basic syntax of the FillAcrossSheets method
follows this pattern:

Sheets (sArray) .FillAcrossSheets
Worksheets (“sheet name”) .Range (“cells to
be copied”)

B sArray is an array of worksheets to which you want to
copy the cell contents named later in the code.

B “sheet name” is the name of the worksheet that
contains the values to be copied.

B copied range is the range of cells to be copied.

An example of a properly constructed FillAcrossSheets
method statement is this:

Dim sArray As Variant

sArray = Array(“Sheetl”, “Sheet2”,
“Sheet3”, “Sheetd”)

Sheets (sArray) .FillAcrossSheets
Worksheets (“"Sheetl”) .Range (“'D2:D8")

Did you know?

The sArray variable lists all of the worksheets you will
use in your command.

4 Copy a range to
multiple sheets

Copy a range to multiple
sheets

E Create a subroutine.

W Enter code that follows this
pattern in the body of the
subroutine:

Dim sArray As
Variant

sArray =

Array (“Sheetl”,
“Sheet2”, “Sheet3”,
“Sheetd”)

Sheets (sArray) .
FillAcrossSheets
Worksheets (“sheet”) .
Range (“copied
range”)

Important “

One common error is to

omit the source worksheet
from the array, but, if

you leave it out, the
FillAcrossSheets
method will fail.

Managing cells 105

Add a cell border >

Add a cell border
Create a subroutine.

Enter code that follows this
pattern in the body of the
subroutine:

Range (“address”) .
BorderAround

a. Add any of the parameters
LineStyle, Weight,
ColorIndex, Color
ThemeColor.

For more information on the
values you can assign to the
BorderAround method’s
parameters, see Tables 7.3,
7.4,7.5and 7.6.

106

Excel worksheets store large amounts of data in a compact,
easy-to-read format. That said, as worksheets get increasingly
crowded, you might want to format some values, or labels, so
they stand out from the remainder of the worksheet’s contents.
One way to do that is to add borders to a cell or cell range. Those
borders make the values in the cell more prominent, which
means they will be noticed more readily within the worksheet.

The command to add a border to a cell range calls the Range
object’'s BorderAround method. In its most basic form, the
command is quite straightforward:

Range (“address”) .BorderAround

This version of the command adds a simple black

border around the named cell range. You can change the
characteristics of the border by specifying its LineStyle,
Weight (thickness), ColorIndex, Color and
ThemeColor parameters.

B LineStyle is the overall appearance of the line, such
as continuous, dashed or dotted. A summary of available
settings appears in Table 7.3.

B weight is the thickness of the line. The four acceptable
values appear in Table 7.4.

B ColoriIndex indicates whether Excel should use the
automatic colour (usually black) or no colour. The variables
appear in Table 7.5.

B Color is an RGB value, such as (255, 255, 0) for yellow.

B ThemeColor is a list of the colours in the current theme. The
acceptable variables for this parameter appear in Table 7.6.

You may only specify a value for one of the parameters
ColorIndex, Color or ThemeColor. For example, you
could create this statement:

Range (“F7”) .BorderAround
LineStyle:=x1Dot, Weight:=x1Thick, _
Color:=RGB (255, 0, 0)

A B c D e [F] Add a cell border
1
2 WS Days 3Days 2Day Overnight (Cont.)
3 UKandlIreland £ 500 £ 700 £ 1500 £ 2500 £ 40,00
4 Europe £ 10,00 £ 1200 £ 20,00 £ 30,00 £ &0.00
5 Asiaand Pacific £ 30,00 £ 50,00 £ e0.00 £ 70.00 £ 100.00
£ MNorth America £ 30.00 £ 50.00 £ 60.00 £ 70,00 £ 100.00
7 South America £ 30.00 £ 50.00 £ 60.00 £ 70.00 | £ 100.00 |
Table 7.3 Values for x1LineStyle parameter in the
BorderAround method 7
Did you know?
Name Description
P If you change a workbook’s
x1Continuous Continuous line Office Theme, you could
. alter the colour of borders
x1Dash Dashed line . e
. for which you have specified
x1DashDot Alternating dashes and dots a ThemeColor parameter
x1DashDotDot Dash followed by two dots value.
x1Dot Dotted line
x1Double Double line
x1LineStyleNone No line
x1SlantDashDot Slanted dashes

Table 7.4 Values for x1BorderWeight parameter in the
BorderAround method

Name Description

x1Hairline Hairline (thinnest border)

x1Medium Medium
x1Thick Thick (widest border)
x1Thin Thin

Table 7.5 Values for Xx1ColorIndex parameter in the
BorderAround method

Name Description
x1ColorIndexAutomatic Automatic colour
x1ColorIndexNone No colour

Managing cells 107

Add a ce" border Table 7.6 Values for x1ThemeColor parameter in the
BorderAround method

(Cont-) Name Description
x1ThemeColorAccentl Accent1
x1ThemeColorAccent? Accent?2
x1ThemeColorAccent3 Accent3
x1ThemeColorAccentd Accent4
x1ThemeColorAccent5 Accent5
x1ThemeColorAccent6 Accent6
x1ThemeColorDarkl Dark1
x1ThemeColorDark?2 Dark2
x1ThemeColorFollowed Followed
Hyperlink hyperlink
x1ThemeColorHyperlink Hyperlink
x1ThemeColorLightl Light1
x1ThemeColorLight?2 Light2

108

If you run a business, you might want to look up orders from

a particular customer. For example, you might want to find the
first order that a customer ever placed. You can use the built-in
Find method to locate data of your choosing within your
worksheets.

The Find method looks for the first occurrence of a target
value in a specified cell range and activates the cell that
contains the value. The Find method’s syntax is:

Range (“range”) .Find (What:=“term”) .
Activate

Activating the cell that contains the value you wanted to find
indicates the value’s presence within the body of the worksheet.
You can then assign that cell’s address to a variable using a
command such as strFound = ActiveCell.Address.

If the Find method doesn’t locate an instance of the What
parameter’s term, the method returns an error. You need to
add error-handling code to your routine so your program
doesn’t halt. An example is:

On Error GoTo NoValue

Range (“Al:F7”) .Find (What:=“Overnight”) .
Activate

Exit Sub

NoValue:

MsgBox (“The value doesn’t occur within
the search range.”)

2, B S o E F

MS Days 3 Days 2Day IOverniéht!

P | =

3 UKandlreland £ 500 £ 700 £ 1500 £ 2500 £ 4000
4 Europe £ 10,00 £ 1200 £ 20000 £ 30,00 £ e0.00
5 Asiaand Pacific £ 30,00 £ S0.00 £ &0,00 £ 70,00 £ 100,00
& MorthAmerica £ 30,00 £ 50,00 £ 60,00 £ 70,00 £ 100,00
7 |South America £ 30.00 £ 50,00 £ 60,00 f 70.00 £ 100.00
[u]

4 Find a cell value

Find a cell value
Create a subroutine. 7

Enter code that follows this
pattern in the body of the
subroutine:

On Error GoTo
NoValue

Range (“range”) .

Find (What:=“term”).
Activate

Exit Sub

NoValue:

MsgBox (“The value
doesn’t occur within
the search range.”)

Managing cells 109

Find a cell value
(cont.)

110

The first line tells Excel what to do if it encounters an error. Next,
if the Find method does locate a cell with the target value, it
activates that cell and, on the next line, exits the subroutine.

The next line is a label, Novalue, which provides a target for
the Oon Error statement at the beginning of the code sample.
Finally, the MsgBox line displays a box indicating that the
value didn’t occur within the search range. That line should be
followed by an End Sub statement indicating the end of the
subroutine.

ficrosoft Excel @

The walue doesn't occur within the search range,

See also .

For more information on handling errors in your VBA
code, see Chapter 13.

Did you know?

You can use a variable’s value as the target for the
What parameter. If you do, you don’t need to enclose
the value in double quotes.

As the old saying goes, the only constant in life is change.
If you want to replace a value within a worksheet, perhaps

because a client moved or you have renamed product, you can

do so using Excel’s Range object’s Replace method. The
Replace method is the equivalent of the Replace All

command you access via the user interface.

The Replace method requires three bits of information: the

range to search within, the term to be replaced and the term
with which to replace it. The basic syntax looks like this:

Range (“range”) .Replace What:=“terml”,
Replacement:=“term2”

An example of valid code that calls the Replace method

would be:

Range (Y"Al:F7”) .Replace

What:=“Overnight”,

Replacement:="1 Day”

A

[CE I

B

[

D

B

p——

wﬁ Days 3 Days 2 Day IOuernight_I

3 |UKandlreland £ 500 £ 700 £ 1500 £ 2500 £ 40.00
4 |Europe £ 10,00 £ 1200 £ 20,00 £ 30,00 £ 60,00
5 |Asiaand Pacific £ 30.00 £ 50.00 £ 60.00 £ 70.00 £ 100.00
& |MorthAmerica £ 30.00 £ 50.00 £ 60.00 £ 70.00 £ 100.00
7 |South America £ 30.00 £ 50.00 £ 60.00 £ 70.00 £ 100.00
& B (o D E F

i

2 7 Days 5 Days 3 Days 2 Day 1 Da

3 UKandlIreland £ 500 £ 700 £ 1500 £ 2500 £ 4000
4 Europe f 10,00 £ 1200 £ 20,00 £ 30,00 £ 6000
5 Asiaand Pacific £ 30,00 £ 50.00 £ 60,00 £ 70.00 £ 100.00
& Morth America £ 30,00 £ 350,00 £ e0.00 £ 70.00 £ 100.00
7 South America £ 30,00 £ 5000 £ &0.00 £ 70.00 £ 100.00
o

4 Replace a cell
value

Replace a cell value
Create a subroutine. 7

Enter code that follows this
pattern in the body of the
subroutine:

Range (“range”) .
ReplaceWhat:=
“terml”,
Replacement:=
“term2”

Did you know?

The values for the What
and Replacement
parameters should be
enclosed in double quotes,
unless the values are
passed to the method using

variables.

Did you know? n
Unlike the Find method, if
the value in the Replace

method’s What parameter
doesn’t occur within the

search range, the method
does not generate an error.

Managing cells 111

Formatting worksheets
and worksheet elements

Individuals who create Microsoft Excel worksheets often spend
a lot of time working on the logic of the worksheet, including
formulas and summaries, so they can get the most out of
their data. What they often overlook, unfortunately, is applying Change a cell’s font
formatting that makes the data easier to read. In this chapter,
you will learn how to apply formatting to your worksheets and
individual cells using the facilities built into Excel VBA. Change a cell’s font colour

Apply bold, italic and underline
formatting

Change a cell’s font size

Change a cell’s fill colour
Change a cell’s alignment
Apply a cell style

Apply a number format to a cell

Clear a cell’s format

Formatting worksheets and worksheet elements 113

Apply bold, italic
and underline
formatting

Apply bold, italic and
underline formatting

Create a subroutine.

In the body of the subroutine,
type code that follows this
pattern:

Range (“address”) .
Select

Use any of the following
commands to apply the
desired formatting:

Selection.Font.Bold
= True

Selection.Font.
Italic = True

Selection.Font.
Underline =

XlUnderlineStyle

114

When you create a worksheet, you might want some cells’
contents to stand out from the surrounding values. One of

the most common ways to do that is to add formatting. You
can make a cell’s contents stand out by applying bold, italic or
underline formatting.

The first step in applying any of these formats is to select the
cell or cells using the Range object’'s Select method. This
line of code shows how to select the range A3:B3:

Range (“A3:B3”) .Select

After you select the cell range, you can apply formatting. To
make a cell’s contents bold, you set the selection’s Bold
property to True, as in the following example:

Selection.Font.Bold = True

Similarly, you set the ITtalic property to True to italicise
the selection’s contents:

Selection.Font.Italic = True

The Underline property operates differently than the Bold
and Italic properties. Rather than set the Underline
property’s value to True, you need to assign it a value from
the X1UnderlineStyle constant set. The four allowable
underline styles are x1UnderlineStyleSingle,
xlUnderlineStyleDouble,
xlUnderlineStyleDoubleAccounting and
x1UnderlineStyleNone, which turns underlining off.

The following line of code applies the standard single underline
format to a selection:

Selection.Font.Underline =
x1UnderlineStyleSingle

As an example, suppose your worksheet contains data Apply bold, italic

summarising orders. and underline
A B formatting (cont.)

Orders for June 15

|Item Ioestination
Red Scarf Loughsborough
Blue Scarf ranchester

Fingerless Gloves Chichester
Drop Box Swanses

== (= T) (R O TR R S R

If you apply the code noted above, the same worksheet would
be formatted with bold, italic and a single underline applied to

cells A3:B3.
oy B C
1 Ordersfor June 15
2
3 |Ite_m Destinagtion |
4 Red Scarf Loughshorough
S Blue Scarf hdanchester
& Fingerless Gloves Chichester
7 |Drop Box Swansea
g

Did you know?

Setting either the Bold or Italic property to False
turns off bold and italic text for the selected range.

Formatting worksheets and worksheet elements 115

Change a cell’s
font

Change a cell’s font
Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

Range (“range”) .
Select

Selection.Font.Name
= “font”

116

The team that designed Microsoft Excel put a great deal of
thought into choosing the font that best presents data in your
worksheets. While that font makes your data easy to read, large
or crowded worksheets can be difficult to comprehend because
all of the text tends to look the same after a few moments.

You can make portions of your worksheet, such as headers

or totals, stand out by changing the font used to display those
cells’ contents.

To change a cell’s font using Excel VBA, you first select

the cell range and then change the value assigned to the
Selection.Font.Name property. The procedure uses two
lines of code that follow this pattern:

Range (“range”) .Select
Selection.Font.Name = “font”

For example, suppose you are presented with an order
summary worksheet with a header in cell A1.

1 oOrders for June 15

2

3 |rem Ipestination

4 RedScarf Loughsharaugh
5 Blue Scarf hanchester

& Fingerless Gloves Chichester

7 |Drop Box Swansea

g

If you wanted to change the font of cell A1 to Cambria, you
would use the following code:

Range (“Al”) .Select
Selection.Font.Name = “Cambria”

Applying that code selects cell A1 and changes the font used to Change acell’s
display its contents. font (cont.)

Fingerless Glaves Chichester
Orop Box Swansea

A, B
1 |Ordersfor June 15!
2
3 Hem Destination
4 FRed Scarf Loughsharough
5 Blue Scarf hanchester
3
-
g

Did you know?

If you misspell the name of the font you want to apply,
Excel VBA will not display an error even if there is no
font of that name installed on your computer.

Formatting worksheets and worksheet elements 117

Change a cell’s
font size

Change a cell’s font size
Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

Range (“range”) .
Select

Selection.Font.Size
= number

Did you know?

The default font size in
Excel 2010 is 11 points.

118

The usual font size for an Excel worksheet balances your ability
to read the data on the screen with fitting as much information
as possible into a worksheet. Your worksheet will most likely
contain some values, such as headers, subtotals or grand totals
that you want to stand out from the surrounding text. If that’s the
case, you can display that information in a larger font size. You
can also display notes or supplementary text in smaller text so as
not to pull focus away from the worksheet’s principle contents.

To change the size of the text in a cell range, you first select
the range using the Range object’s Select method. The
following line of code demonstrates the process for cell A1:

Range (“Al”) .Select

A, B
1 |Orders for June 15]
2
3 ftem Destination
4 Red Scarf Loughshorough
S |Blue Scarf Manchester
& Fingerless Gloves Chichester
7 DropBox Swansea
a2

After you have selected the target range, you can change the
Font object’s Size property to display the cell’s contents at
the desired size. Font sizes are measured in points — there are
72 points per inch. For example, changing a range’s font size
to 24 points would make the text;— of an inch in height. The
following code does just that:

Selection.Font.Size = 24
&, B
1 Orders for June 15
2
3 |item |pestination
4 Red Scarf Loughshorough
5 Blue Scarf manchester
£ Fingerless Glowes Chichester
7 DropBox Swansea
g

Excel worksheets are terrific for organising and summarising
data. The basic worksheet, however, is a rather bland mix

of black, white and shades of grey. You can make your
worksheets more visually interesting and make some values
stand out from those around them by displaying a cell’s
contents in a colour other than black.

Changing a cell’s font colour requires two lines of code. In the
first step, you must select the cell range you want to affect. For
example, you might have a worksheet with a header in cell A1.

2 B
Orders for June 15

1

2

3 h&yﬂ |Desﬁnaﬁan

4 Red Scarf Loughsborough
S Blue Scarf
&

.
g

hanchester
Fingerless Gloves Chichester
Drop Box Swansea

To select cell A1, you would use the following line of code:
Range (YAl”) .Select

After you have selected the range, you can use the Font
object’s Color property to assign a colour to the cell’s text.
The Color property defines colours using a mix of red, blue
and green light, hence assigning it an RGB value. Each colour
has an intensity from 0 to 255 and how they mix determines
the final colour. For example, RGB (0, 255, 0) is pure
green, while RGB (255, 0, 0) is pure red. Table 8.1 lists
the RGB combinations for common colours.

Change a cell’s
font colour

Change a cell’s font colour

Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

Range (“range”) .
Select
Selection.Font.Color

= RGB(red, green,
blue)

Formatting worksheets and worksheet elements 119

Change a ce"’s Table 8.1 Sample RGB values

font colour Colour Red value
(cont.) Black 0
Blue 0
Green 0
Cyan 0
Red 255
Magenta 255
Yellow 255
White 255

Green value

0
0
255
255
0
0
255
255

Blue value

0
255
0
255
0
255
0
255

If you wanted to display the contents of cell A1 in blue, you

would use the following code:

Selection.Font.Color = RGB(0, 0, 255)

& B

1 Orders for June 15

2

3 [I!em |pestination

4 Red Scarf Loughsharough

5 Blue Scarf Manchester

6 Fingerless Gloves Chichester

7 Drop Box Swansea

g

Did you know?

You can find the RGB value for a specific colour by
starting to record a macro, changing a cell’s font to
the colour and examining the code to see what value

was recorded.

120

When you read data on the computer screen, the easiest colour Change a cell’s
scheme on the eyes is black text on a white or slightly off-white fill col

background. If you've ever visited a website with white text on Il colour
a black background, you’ll know how difficult it can be to read.
Changing a cell’s background — that is, its fill colour — makes
that cell’s contents stand out from the information around it.

As an example, your worksheet might contain a sample of
orders placed on a given day. If your summary is divided into

o Change a cell’s fill colour
two columns, each column could have a header indicating the 9

data contained within it. Create a subroutine.
In the body of the subroutine,
= = enter code that follows this
1 Orders for June 15 pattern:
2 Range (“range”) .
3|£gn |pestination Select
4 Red Scarf Loughshorough Selection.Interior.
5 Blue Scarf Manchester Color = RGB(red,
& (Fingerless Gloves Chichester green, blue)
7 Drop Box Swansea
a

To change the fill colour of the column header that appears in
cells A3:B3, you could use the following code:

Range (“A3:B3”) .Select

After you have selected the range, you can use the Interior
object’s Color property to assign the cells a background
colour. The Color property defines colours using a mix of
red, blue and green light. As noted in the previous section,
each colour has an intensity from 0 to 255 and how they mix
determines the final colour. For example, RGB (0, 255,

0) is pure green, while RGB (255, 0, 0) is pure red.
Table 8.1, presented in the previous section, lists the RGB
combinations for common colours.

Formatting worksheets and worksheet elements 121

Change a cell’s To fill the cells with a yellow background, you would use the

. command:
fill colour (cont.)
Selection.Font.Color = RGB (255, 255, 0)

fil B
Orders for June 15
flem Destination
Red Scarf Loughsharough
Blue Scarf hanchester

Fingerless Glaves Chichester
Crop Box |Swansea |

L I I T (Y - o W L B)

For RGB values of common colours, see Table 8.1 in the
previous section.

A little colour goes a long way in a worksheet. Use it as a
highlight, not a main feature.

122

When you enter data into an Excel worksheet, the program
selects an alignment for your data. Text tends to start at the left
and run to the right, so we say that data is left-aligned. Centred
alignment works best for labels, while the right alignment is
perfect for numbers. If you want to change a cell’s alignment,
you can use Excel VBA to do so.

As an example, you might have a worksheet that contains sales
data for a single business day. The headers in cells A3:B3,
which you could format using a different-coloured background
and other formatting changes, will start with the same
horizontal alignment as the rest of the text in your worksheet.

&, B
1 Orders for June 15
2
3 fHem Destination
4 Red Scarf Laughsborough
5 Blue Scarf Manchester
£ Fingerless Gloves Chichester
7 |Drop Box ISwanﬁea |
g

To change the alignment of cells A3:B3, you first select the
cells using VBA code:

Select ("A3:B3”) .Select

With the selection in place, you can change the value of the
Selection object’'s HorizontalAlignment property
to reflect the desired alignment. You can assign one of five
constants to the HorizontalAlignment property —
xlCenter, x1Distributed, x1Justify, x1Left
and x1Right.

Change a cell’s
alignment

Change a cell’s alignment
Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

Range (“range”) .
Select

Selection.
HorizontalAlignment
= alignment

where alignment is

one of the following
variables: x1Center,
x1lDistributed,
xlJustify, xlLeft
and x1Right.

Formatting worksheets and worksheet elements 123

Change a cell’s The code to apply centred formatting to the cell would be:

a"gnment (cont') Selection.HorizontalAlignment =
x1lCenter.
A, B
1 Orders for June 15
2
3 item Destinagtion
4 Red Scarf Loughshorough
5 | Blue Scarf Manchester
& Fingerless Gloves Chichester
7 |Drop Box |Swansea |

Did you know?

You can also set the Selection.
VerticalAlignment property’s value.
Acceptable variables are x1Bottom, xlCenter,
x1Distributed, x1Justify and x1Top.

124

Formatting worksheet cells can take a lot of time when you
have to remember the font, colours, size, alignment and other
values applied to the cell. You can save all of those settings
as a cell style and then apply the style with a few clicks on the
user interface or a single command in Excel VBA.

You can display a list of styles available to you in a workbook by
displaying the Home tab of the ribbon and then clicking the Styles
gallery’s More button. Doing so displays the full Styles gallery.

Gond, Bad anid M_-ullil
Normal Bad Good Neutral

Data and Model

| Calculation 1B Explanatory.. [Input nked Ce Mote
Titles and Headings
Headinﬁ 1 Heading 2 Heading 1 Heading 4 Title Intal

Themed Cell Styles
20% - Accentl 20% - Accent? 20% - Accent3 20% - Accentd 20% - AccentS 20% - Accents

40% Accentl 40% Accent2 40% Accentd A0% Accontd 40% AccentS 40% - Accents

Number Format
Comma Comma [0] Currency Currency [0] Percent

] Mews Cell Style..
Sl Merge Styles..

In most, but not all, cases, the style’s name is the same as the
label that appears in the gallery. You can find a style’s proper
name by hovering the mouse pointer over the style and reading
the tool tip that appears.

Applying styles in VBA is a two-step process. The first step
is to select the cell range you want to affect. As an example,
suppose your worksheet has a heading in cell A1.

Apply a cell style

Apply a cell style

Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

Range (“range”) .
Select

Selection.Style =
“stylename”

Formatting worksheets and worksheet elements 125

Apply a cell style
(cont.)

126

A, B
1 Orders for June 15
2
3 ftem Destinagtion
4 Red Scarf Loughshorough
5 Blue Scarf Manchester
& Fingerless Gloves Chichester
7 |Drop Box ISwansea |

You can select A1 using this code:
Range (“Al”) .Select

You can then apply a style to the selection by assigning the

style’s name to the Selection object’s Style property.
For example, the statement to format the selection using the
Title style would look like this:

Selection.Style = “Title”

A B
1 Orders for June 15
2
3 item Destinglion
4 Red Scarf Loughshorough
5 Blue Scarf Manchester
£ Fingerless Gloves Chichester
7 |Drop Box |Swansea |
8

Entering numbers into your worksheet cells lets you view and
summarise your data, but numerical data can be hard to read
unless it’s formatted properly. You can apply several built-in
number formats using the Selection object’s Style
property.

To apply a number format to a cell range, you must first
select the range using the Range object’'s Select method.
For example, your worksheet might contain a list of VAT
percentages in the cell range C4:C7.

A, B C
1 Orders for June 15
2
3 item Destination VAT {%)
4 Red Scarf Loughshorough 0.25
3 |Blue Scarf hanchester 0,23
£ Fingerless Gloves Chichester 0.25
7 |Drop Box Swansea I D.25_|
a

To select that cell range, you would use the following line of
code:

Range (W"C4:C7"”) .Select

With the selection in place, you can assign the name of the
desired style to the Selection object’s Style property. If you
wanted to apply the Percent style, that command would be:

Selection.Style = “Percent”
2, B €

1 |Orders for|June 15
2
3 Hem Destination VAT (%)
4 Red Scarf Loughshaoraugh 5%
5 Blue Scarf hanchester 25%
& Fingerless Gloves Chichester 25%
7 Drop Box Swansea 25%
g

Apply a number
format
to a cell

Apply a number format to a cell
Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

Range (“range”) .
Select
Selection.Style =
“stylename”

where stylename is an
existing style, the most
commonly used ones being
Number, Currency, Comma
and Percent.

Some number formats
have complicated
definitions instead of a
simple name. if you’re not
using one of the named
formats shown above, you
should consider recording
a macro of you applying a
number format and using
the code Excel generates to
change your cells.

Formatting worksheets and worksheet elements 127

Clear a cell’s
format

Clear a cell’s format
Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

Range (“range”) .
Select

Selection.
ClearFormats

128

At times, the best format for a cell is the default format — one
without embellishments, such as bold or italic type — and

with the cell’s contents presented in black text on a white
background. If you have applied other formatting to a cell, you
can remove it all with a straightforward VBA command.

For example, suppose your worksheet has a series of column
labels with several types of formatting applied.

&, B ©
1 [Orders for|June 15
z
3 ftem Destination VAT %)
4 Red Scarf Loughzhorough 25%
3 Blue Scarf mManchester 25%
& Fingerless Glowes Chichester 25%
7 DropBox Swansea 25%
jn]

If you want to remove the formatting piece by piece, you would
need to determine which formats you applied and then use the
appropriate code to get rid of it. Instead, you can remove all
formatting from a cell range by selecting the range and then
using the ClearFormats method.

The VBA command to select a range relies on the Range
object’s Select method. To select cells A3:C3, you would use
the following code:

Range (“A3:C3”) .Select

With that selection in place, you need only invoke the
Selection object’s ClearFormats method to remove all
formatting:

Selection.ClearFormats

’

2 B c Clear a cell’s
1 |Orders for June 15 format (cont.)
2
3 |Item Destination WAT (%)
4 Red Scarf Loughzharough 25%
S |Blue Scarf hanchester 25%
£ Fingerless Gloves Chichester 25%
7 DropBox Swansea 25%.
a

If you want to apply specific formatting to a cell, such as bold
and italic text (with no other changes), you should use the
ClearFormats method first to remove any other formatting
present in the cell.

Did you know?

Clearing a cell’s format leaves the data intact, but will
probably change how it’s presented. This consideration
is particularly true for dates.

Formatting worksheets and worksheet elements 129

Sorting and filtering data

Introduction

At times it can seem that Excel’s ability to handle large data
collections is actually a bad thing. Even small home-based
businesses can generate large amounts of data, making it
difficult to process your worksheets quickly. One of the best
ways to focus on the data that is most important to you at the
moment is to sort and filter the data within a worksheet. The
Sorting feature displays all of your data, arranging it in a more
meaningful order, while filters temporarily limit what data is
displayed in your worksheet.

If you want to create a complex sort or filter, such as one that
uses multiple values and affects multiple columns, you should
strongly consider recording a macro of you creating the filter
via the user interface. Be sure that the code you record affects
the data list you want the macro to work on or else change the
macro so that it does. Doing so will save you a lot of time.

Note: Some of the lines of code in this chapter are too long
for the page to accommodate. In Excel VBA, you can type a
space and then an underscore character (_) to indicate that the
current command continues on the next line. For example:

ActiveWorkbook.Worksheets (“Sheetl”) .
Sort.SortFields.Add _
Key:=Range (“B4”), Order:=x1Descending

Sort cell data using a single
criterion

Create a multilevel sort

Sort using a customised list of
values

Turn on filter arrows using VBA
code

Apply a filter using a single
criterion

Remove a filter
Display a list of unique values

Filter data to display two values
in a column

Filter data to display three or
more values in a column

Filter data based on values in
multiple columns

Sorting and filtering data 131

Sort cell data
using a single
criterion

132

>

The data you enter into your Excel worksheets will most likely
have an inherent order. For home-based businesses, the most
common orders are based on time. When you capture sales
for a month, a week or a day, the data you enter will reflect
that structure. If you want to arrange your worksheet based on
some other information you collect, you can do so by sorting
your data.

To sort your data using VBA, it should be arranged as a list
with column headers and no blank rows in the body of the
list. That is because a blank row indicates the end of a list,
so any data below the blank row would not be included in the
sort operation.

A, B C
1 Sales for January
2
3 |Day Sales
4 1] £141.00 !
5 2 £767.00
3 3 £371.00
7 4 £ 282.00
a a £210.00
9 6 £243.00
10 7 £ 706,00
a1 g2 £296.00
1z 9 £630.00
13 10 £ 592,00
14 11 £428.00
15 12 £150.00
16 13 £165.00
17 14 £721.00

Sorting data using VBA is a multistep process. The first step is
to activate a cell within the data list using the Range object’s
Activate method, replacing the range with the address of a
cell in the data list:

Range (“range”) .Activate

Next, it is usually a good idea to clear any other sort operations
that have been applied to the data list. Even though most
single-criterion sort operations will affect your data in a
predictable way, you can do this by using the following
command, replacing sheet_name with the actual name of
the worksheet:

ActiveWorkbook.Worksheets (“sheet_name”) .
Sort.SortFields.Clear

After clearing all existing sorting operations from a range, you
can initiate a new sort. For example, you can sort the data in a
range in descending order, based on the values in a key cell’s
column. The general syntax for that statement would be:

ActiveWorkbook.Worksheets (Y“sheet name”) .
Sort.SortFields.Add _
Key:=Range (“cell”), Order:=X1lSortOrder

The X1SortOrder constant can be either x1Descending,
to sort in descending order, or x1Ascending, to sort in
ascending order.

With those commands in place, you can initiate the sort
operation. The standard pattern for the next sequence uses the
With..End With construction, which lets you streamline
your references to multiple members of an object. The code’s
pattern is as follows:

With ActiveWorkbook.Worksheets (“sheet
name”) .Sort

.SetRange Range (“range”)

.Header = x1No or xlYes

.Apply
End With

As a concrete example, suppose you want to sort data in
the range A4:B34 based on the values in column B, with the
column B values sorted in descending order. To do so, you
would use the following code:

Sort cell data
using a single
criterion (cont.)

See also .:

For more information on
the With..End With
construction, see Chapter 12.

Sorting and filtering data 133

Sort ce" data Range (“B4”) .Activate
ActiveWorkbook.Worksheets (“"Sheetl”) .

USII'IQ a s'“gle Sort.SortFields.Clear
cr“erk"](cont) ActiveWorkbook.Worksheets(“Sheetl”).
Sort.SortFields.Add _
Key:=Range (“B4”), Order:=xlDescending
With ActiveWorkbook.Worksheets
(“Sheetl”) .Sort
.SetRange Range (“A4:B34")
.Header = x1No
.Apply
End With

After you have run this routine, your data will have changed
order, to reflect its new, sorted order.

pil B C
Sales for January

Day Sales

144 £781.00 .I

£ 767.00
18 £736.00
a1 £723.00
7 £ 706,00
a0 £692.00
16 £681.00
29 £ee0.00
£ 650.00
22 £626.00
10 £33%2.00

LW TS [T o O SO Y S R]
]

sl
Wk = O
o

i
=

134

Sort cell data using a single criterion Sort cell data

Create a subroutine. using a single
Lg:ginpody of the subroutine, type code that follows this criterion (COI'It.)

Range (“'B4”) .Activate

ActiveWorkbook.Worksheets (“Sheetl”).
Sort.SortFields.Clear

ActiveWorkbook.Worksheets (“Sheetl”).
Sort.SortFields.Add Key:=Range(“B4”), _

Order:=xl1lDescending

wWith ActiveWorkbook.
Worksheets (“Sheetl”) .Sort

.SetRange Range(“A4:B34")
.Header = x1No
-Apply

End With

Did you know?

You can streamline creating a sort operation by
recording a macro of you sorting data and then
modifying the VBA code to meet your needs.

Sorting and filtering data 135

Create a
multilevel sort

136

>

Rearranging your data can help you discover important
information about your business. If you offer several types of
products for sale, you might be interested in finding out which
months have the best sales for each of those products. To
discover that information, you could create a multilevel sort
that organises your data first by product and then by month.

Implementing a multilevel sort in Excel VBA is exactly the
same as implementing a single-level sort, with the addition of a
second statement identifying a sort field, the range to which it
applies and the order into which Excel should sort the range’s
values. The code to add a sort field follows this pattern:

ActiveWorkbook.Worksheets (V“sheet_name”) .
Sort.SortFields.Add _
Key:=Range (“range”), Order:=X1SortOrder

The order in which the sort commands appear in your code is
the order in which the sort criteria will be applied to your data.
For example, you could sort sales data by month and then by

value or by value and then by month.

The overall pattern for sorting a data list based on values in two
columns is to clear any existing sorts, define the two sort key
fields, then implement the sort using the With..End With
construction to simplify your code. The first line of code clears
all existing sort operations from a worksheet:

ActiveWorkbook.Worksheets (V“sheet_name”) .
Sort.SortFields.Clear

Next, you define sort operations for each of the columns you
want to sort:

ActiveWorkbook.Worksheets (“sheet_name”)
.Sort.SortFields.Add _
Key:=Range (“col_rangel”),
Order:=x1Ascending
ActiveWorkbook.Worksheets (Y“sheet _name”)
.Sort.SortFields.Add _
Key:=Range (“col_range2”),
Order:=x1Descending

Finally, you use the With..End With construction to apply Create a

th t tion: i
e sort operation multilevel sort

With ActiveWorkbook.Worksheets (“sheet (conto
name’”) .Sort

.SetRange Range (“range”)

.Header = x1lYes or x1No

-Apply
End With

As an example, you might have a set of data in cells A3:C12,
including column headers.

A, B c
1 Sales by Category
2
3 Month Category Sales
4 |lanuary Boxes ! £126.00
5 February Boxes £ 485.00
& March Boxes £188.00
7 January Gloves £ 146.00
8 February Gloves £ 219.00
9 March Gloves £179.00
10 [January Scarves £423.00
11 February Scarves £138.00
12 March Scarves £175.00

To sort the data by product category and then by sales, you
could use the following VBA code:

ActiveWorkbook.Worksheets (“Sheet2”) .
Sort.SortFields.Clear
ActiveWorkbook.Worksheets ("Sheet2”) .
Sort.SortFields.Add _

Key:=Range (“B4:B12"),

Order:=xlAscending
ActiveWorkbook.Worksheets ("Sheet2”) .
Sort.SortFields.Add _

Key:=Range (“C4:C12"),

Order:=x1Descending

Sorting and filtering data 137

Create a With ActiveWorkbook.
Worksheets (“"Sheet2”) .Sort

multilevel sort _SetRange Range (“A3:0127)
(contJ .Header = xlYes
.Apply
End With

After you run the code, your data will be in the following order.

£, B c
1 Sales by Category
2
3 'Month Category Sales
4 |February Boxes ! £ 485,00
5 March Boxes £188.00
B January Boxes £126.00
7 February Gloves £219.00
8 |March Glaves £179.00
9 January Gloves £146.00
10 [January Scarves £423.00
11 |March Scarves £175.00
12 |February Scarves £138.00

Create a multilevel sort
Create a subroutine.

In the body of the subroutine, enter code that follows this
pattern:
ActiveWorkbook.Worksheets
(“sheet_name”) .Sort.SortFields.Clear
Next, you define sort operations for each of the columns you
want to sort.
ActiveWorkbook.Worksheets (“sheet name”)
.Sort.SortFields.Add Key:=Range(“col_
rangel”),

Order:=xlAscending

ActiveWorkbook.Worksheets (“sheet_name”)
.Sort.SortFields.Add Key:=Range(“col_
range2’”),

Order:=x1Descending

138

Finally, you use the With..End With construction to Create a

apply the sort operation: -
With ActiveWorkbook.Worksheets (“sheet_ "“"t“evelsort

name”) . Sort (cont.)

.SetRange Range (“range”)

.Header = xlYes or x1No
.Apply
End With

For your information o

The Sort method affects the unbroken block of cells
that includes the ranges named in the SortFields.
Add lines of code.

Sorting and filtering data 139

Sort using a
customised list
of values

140

>

Microsoft Excel recognises several ways to sort your data.

It can sort by number, alphabetical order, as well as a
customised list of values that you define. Customised lists give
you a great deal of control over how you present your data
within your Excel worksheets, which makes them very useful
when you analyse your data. The program includes a number
of built-in custom lists, such as month and weekday names,
but you can define your own custom lists as part of the VBA
sort code.

As an example, suppose you have a data set summarising
category sales by month, with the original data list sorted by
month and then by category. Note that the categories appear in
alphabetical order.

A, B c

1 Sales by Category

2

3 Month [~|Category |~|Sales |~
4 |lanuary Boxes ! £126.00
5 January Gloves £ 146,00
E | January Scarves £423.00
7 February Boxes £ 485,00
8 February Gloves £219.00
9 February Scarves £138.00
10 |March Boxes £188.00
11 |March Gloves £179.00
12 |March Scarves £175.00

Sorting worksheet data using VBA is a multistep process. Your
first step should be to clear all sort fields that have been applied
to your worksheet. Doing so ensures your data will be sorted
consistently, starting from the data’s original order. You use the
following code to clear all sort operations from a worksheet:

ActiveWorkbook.Worksheets (V“sheet_name”) .
Sort.SortFields.Clear

Next, you can define a sort order for a column of data. You can
create a customised list to sort values in a specific column. For
example, you could sort the list by category based on the order
‘Gloves, Scarves, Boxes’. To define that list as part of a sort
operation, you would use the following code:

ActiveWorkbook.Worksheets (“sheet_name”) .
Sort.SortFields.Add _
Key:=Range (“col_range”),
Order:=X1lSortOrder, _
CustomOrder:=%“iteml, item2, item3..”

The previous statement requires that you enter the name of
the worksheet, the column of cells that contain the values to
be sorted, whether to sort the values in x1Ascending or
x1Descending order and the list of customised values by
which to sort.

After you have defined the sort operation, you apply it using the
Sort object’s methods. As per usual, you can streamline your
code by using the With..End With code construction.

With ActiveWorkbook.Worksheets (“sheet
name’”) .Sort

.SetRange Range (“range”)

.Header = xlYes or x1No

-Apply
End With

In the previous code, you replace sheet_name with the
name of the worksheet that contains the data to be sorted,
range Wwith the full range of data to be affected, use x1Yes
or x1No to indicate whether or not the list has column headers
and call the Apply method to invoke the operation.

The full code to sort data on Sheet2, in the cell range A3:C12,
based on values in B4:B12, would be:

Range ("B4”) .Select
ActiveWorkbook.Worksheets ("Sheet2”) .
Sort.SortFields.Clear
ActiveWorkbook.Worksheets (“Sheet2”) .

Sort using a
customised list
of values (cont.)

Sorting and filtering data 141

Sort using a Sort.SortFields.Add _
. . Key:=Range (“B4:B12"),
CUStomlsed IISt Order:=x1lAscending,
Of values (Cont.) .CustomCl)rder:= Gloves, Scarves, Boxes
With ActiveWorkbook.Worksheets
(“Sheet2”) .Sort
.SetRange Range (“A3:Cl2")
.Header = xlYes

.Apply
End With
A, B Z

1 Sales by Category
2
2 |Month [-|Category [.i|Sales [~
4 |January Gloves ! £146.00
5 February Gloves £219.00
& March Gloves £179.00
7 January Scarves £423.00
8 February Scarves £138.00
9 March Scarves £173.00
10 lanuary Boxes £126.00
11 |February Boxes £ 485,00
12 March Boxes £188.00

As with other sorting operations, you might find it easier to
record a macro of you creating the sort and replay it when
required. If you use an existing customised list in your sort,
Excel records the values in the macro code.

142

Sort using a customised list of values
Create a subroutine.

In the body of the subroutine, enter code that follows this
pattern:

Range (“cell”) .Select

ActiveWorkbook.Worksheets (“'sheet_
name”) .Sort.SortFields.Clear
ActiveWorkbook.Worksheets (“sheet name”)
.Sort.SortFields.Add Key:=Range(“col_
range”), _
Order:=X1SortOrder, CustomOrder:=
“iteml, item2, item3..”
wWith ActiveWorkbook.Worksheets (“sheet
name”) .Sort

.SetRange Range(“full_range”)
.Header = xlYes or x1No
.Apply

End With

For your information

The list items in the CustomOrder parameter are
case-sensitive. If your customised sorting order doesn’t
work properly, ensure the terms are properly capitalised.

Did you know?

If the column you sort using a custom values contains
entries that aren’t in the list, those rows will appear at
the bottom of the sorted list.

Sort using a
customised list
of values (cont.)

Sorting and filtering data 143

Turn on filter
arrows using >
VBA code

Turn on filter arrows using
VBA code

Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

Range (“cell”).
Activate

Selection.
AutoFilter

144

One of Excel’s greatest strengths is its ability to handle large
amounts of data quickly and efficiently. Of course, that is also
a bit of a disadvantage. Worksheets that contain large data
collections can be hard to analyse. Fortunately, you can limit
the data that appears in your worksheet by applying filters. The
first step is to turn on filter arrows.

To turn on filter arrows for a data list, you activate any

cell in the list and then use the Selection object’s
AutoFilter method to display the filter arrows. The code
pattern looks like this:

Range (“cell”) .Activate
Selection.AutoFilter

To give a specific example, let’s assume your data list
summarises monthly sales by category.

&, B [
1 Sales by Category
2
3 'Month Category Sales
4 |February Gloves ! £219.00
5 March Glaves £179.00
B | January Gloves £ 146,00
7 February Boxes £ 485.00
B |March Boxes £188.00
9 |January Boxes £126.00
10 [January Scarves £ 423.00
11 March Scarves £175.00
12 February Scarves £138.00

If you know cell B4 will always be in the data list you want
to filter, you could use the following code to display the filter
arrows:

Range (“B4"”) .Activate
Selection.AutoFilter

When run, the filter arrows then appear at the top of the data Turn on filter
list that includes cell B4. .
arrows using

& B C VBA code (cont.)

1 Sales by Category

2

3 Month [+|Category |-|Sales [~
4 February Gloves ! £2159.00
5 March Glawves £179.00
B January Gloves £ 146,00
T February Boxes £ 485.00
& March Boxes £188.00
9 lanuary Boxes f£126.00
10 January Scarves £ 423,00
11 March Scarves £175.00
12 Fehruary Scarves £138.00

If filter arrows have already been applied to a data range,
running the Selection.AutoFilter code statement will

turn them off.
Did you know? n
Excel applies filter arrows to the top row of the current

region, so it’s best to have column headers atop your
lists.

Sorting and filtering data 145

Apply a filter
using a single >
criterion

Apply a filter using as single
criterion

Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

ActiveSheet .Range
("A3:8C$12”7) .
AutoFilter
Field:=2,
Criterial:=“"Gloves”

146

Excel filters limit the data that appears in a worksheet. In VBA,
the process of applying a filter consists of two steps: turning
on filter arrows if they are off and then identifying the range,
field and criterion used to limit the data displayed in your
worksheet.

To apply a filter to a range, you call the Range object’s
AutoFilter method. The AutoFilter method has two
parameters:

B Field - the number of the column by which you want to
filter the list.

B Ccriterial - the term that must appear in the target field
for the row to appear in the filtered list.

The syntax of an AutoFilter method follows this pattern:

ActiveSheet.Range (“range”) .AutoFilter
Field:=field_no,Criterial:=“term”

As an example, suppose you have a data list summarising
monthly sales for different categories of products. The three
fields are named ‘Month’, ‘Category’ and ‘Sales’.

A, B c

1 Sales by Category

2

32 Month [~|Category |-|Sales |~
4 |February Gloves ! £219.00
5 |March Glaves £179.00
& January Gloves £146.00
7 February Boxes £ 485,00
& March Boxes £188.00
9 January Boxes £126.00
10 [lanuary Scarves £423.00
11 March Scarves £175.00
12 |February Scarves £138.00

The AutoFilter method statement to display only those Apply a filter
rows that contain the term ‘Gloves’ in the second field is: . .
using a single

ActiveSheet.Range ("SAS$3:5CS$127) . criterion (cont_)
AutoFilter Field:=2, _

Criterial:=“Gloves”

Running a subroutine with that statement would display only
those rows that contain the word ‘Gloves’ in the ‘Category’

column.
g B &
1 Sales by Category
2
3 |Month [+|Category [x|Sales [~
EFebruary Gloves ! £ 219.00
5 March Gloves £179.00
B January Gloves £ 146,00

Did you know? E

Filter arrows must be turned on for the code listed above
to work.

NI
/N

Jargon buster

If your data is laid out so that each column represents
a fact, such as a product name or sales amount, then a
field is the same as a column. In this case, Field:=2
represents the second column in the data list.

Sorting and filtering data 147

Remove a filter >

Remove a filter
Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

ActiveSheet.
Range (“range”) .
AutoFilter
Field:=field no

148

Filters are extremely useful things, but you will certainly want to
remove them from time to time. When you’re ready to remove
a filter, all you need to do is identify the range of cells to which
the filter is applied — that is, the column within the data list —
and then leave the filter argument blank. Doing so sets the filter
to blank and so allows all values to be displayed.

As an example, suppose you start with a data list that has been
filtered based on values in the second column.

£, B i
1 Sales by Category
2
3 |Month [+|Category |[x|Sales [~
4 |February Gloves | £219.00
5 Mlarch Gloves | £179.00
& January Gloves £ 146,00

To remove a filter from a range, you call the Range object’s
AutoFilter method and use the Field parameter to
identify the column, or field, from which to remove the filter.
The syntax of the statement is:

ActiveSheet.Range (“range”) .AutoFilter
Field:=field_no

The AutoFilter statement to remove the filter from the
second field in a list spanning cells A3:C12 in the active
worksheet is:

ActiveSheet.Range (“SAS$3:5CS12”) .
AutoFilter Field:=2

Running a subroutine with that statement would remove the
filter from the ‘Category’ column and restore the data list to its
original display.

A B e Remove a filter

1 Sales by Category (cont.)
2

3 Month [+|Category |-|Sales [~
EIFEbruary Gloves ! £ 219.00

3 March Gloves £179.00

B January Gloves £ 146,00

7 February Boxes £ 485,00

& March Boxes f1&8.00

9 January Boxes £126.00

10 January Scarves £423.00

11 March Scarves £175.00

12 February Scarves £138.00

Important

Removing a filter using VBA is a one-way action,
meaning you can’t click the Undo toolbar button and
reapply the filter.

Sorting and filtering data 149

Display a list of
unique values

150

>

Some of the more interesting information you can discover
about your data comes from identifying unique values in a
list. For example, you might be interested in seeing how many
different customers ordered from you in the past month, but
not be that concerned about the total amount ordered by any
one customer.

For example, you might have a data list summarising orders by
month and category.

&, B [

1 Sales by Category

2

3 Month |[.i|Category [.i|Sales |~
4 |January Boxes !EIEE.DD
5 | January Glaves £146.00
B January Scarves £ 423.00
7 February Boxes £ 485.00
B February Gloves £219.00
9 February Scarves £138.00
10 March Boxes £188.00
11 March Glaves £179.00
12 March Scarves £175.00

You use the Range object’s AdvancedFilter
method to display a list of unique values in a data list. The
AdvancedFilter method requires three pieces of
information to display unique values only:

B Range - the column of cells you want to inspect for unique
values.

B Action — whether a filter of the list is in place or to copy
the cells to a destination range.

B Unique - controls whether or not the filter should display
rows that contain the first occurrence of each unique value
in the range.

The basic syntax of the AdvancedFilter method, when D|sp|ay a list of
used to identify unique values in a column, is: -
unique values

Range (“range”) .AdvancedFilter (cont_)
Action:=x1FilterInPlace, Unique:=True

Because you want to display unique values, the Action and
Unique parameter values won’t change. The only information
you need to provide is the range of cells representing the
column by which you want to filter the list. If you want to

filter the ‘Category’ column, that range is B3:B12, so the full
AdvancedFilter statement would be:

Range (“B3:B12"”) .AdvancedFilter
Action:=x1FilterInPlace, Unique:=True

When you run a subroutine that contains this
AdvancedFilter statement the result would contain three
rows, representing the first occurrence of the differing values

in cells B3:B12.
A, B C
1 Sales by Category
2
3 |Month Category Sales
4 January Boxes ! £126.00
5 January Gloves £ 146.00
& January Scarves £ 423,00 H
Did you know?
Display a list of unique values When you filter a list so it
Create a subroutine. only displa)(/js unique \;]alule&
copying and pasting the list
In the pody of the subroutine, enter code that follows this pu?syjugst . F\)/isiblegvalues
pattern: in the destination cells.

Range (“‘range”) .AdvancedFilter Action:=
x1lFilterInPlace, Unique:=True

Sorting and filtering data 151

Filter data to

display two >
values in a

column

Did you know?

The Criterial and
Criteria2 arguments
are a holdover from when
you could only filter a list
using two values.

152

So far, you've learned how to create simple filters for your
Excel data, but Excel is capable of applying complex and
powerful filters. As you might expect, the next step up is to
display results corresponding with two values in your list. For
example, you might want to see sales results for the months of
January and February or two classes of products.

For example, suppose you want to filter a data list to display
all rows that contain either the word ‘Boxes’ or ‘Gloves’ in the
second column.

A, B C

1 Sales by Category

2

2 Month |+|Category |[~|S5ales [~
4 |January Boxes ! f£1Z6.00
5 lanuary Gloves £ 146,00
E | January Scarves £ 423.00
7 February Boxes £ 485,00
8 February Gloves £219.00
9 February Scarves £138.00
10 March Boxes £188.00
11 March Gloves £179.00
12 March Scarves £175.00

The command to filter a column so it displays rows that contain
either of two values follows this pattern:

ActiveSheet.Range (“range”) .AutoFilter

Field:=field_no, _
Criterial:=%“=terml”, Operator:=x10r,

Criteria2:=%“=term2”

where:

B Range is the entire cell range to be filtered

B Fieldis the column in the data list to be searched for the
named values

M Criterial is the first term to look for, with the term
enclosed in quotes and preceded within the quotes by an
equals sign

B Operator is the logical operator used to indicate either
Criterial or Criteria2 may occur, so it will always
be x10r

M Ccriteria2 is the second term to look for, with the term
enclosed in quotes and preceded within the quotes by an
equals sign.

So:

ActiveSheet.Range (“SA3:5C$12”7) .

AutoFilter Field:=2, _
Criterial:=“=Boxes”, Operator:=x10r,

Criteria2:=%"=Gloves”

Running a subroutine containing this code would filter a data
list so it displays just those rows containing either the value
‘Boxes’ or ‘Gloves’ in the second column.

1 Sales by Category

2

3 |Month [+]|Category [x|Sales [+
4 | January Boxes ! f£126.00
5 January Gloves £ 146.00
T February Boxes £ 485.00
8 February Gloves £2159.00
10 March Boxes £ 188.00
11 March Gloves £179.00

Filter data to
display two
values in a
column (cont.)

Filter data to display two
values in a column

Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

ActiveSheet.
Range (“range”) .
AutoFilter
Field:=field
no,Criterial:=
“=terml”,

Operator:=x10r,
Criteria2:=“"=term2”

See also

For more information on
filtering a list using more
than two values, see the

next task.

Sorting and filtering data 153

Filter data to >
display three or

more values in

a column

Filter data to display three or
more values in a column

Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

ActiveSheet.

Range (“range”) .
AutoFilter
Field:=field no,
Criterial:=Array(_
“terml”, “term2”..)
Operator:
=x1FilterValues

154

If you've created Excel filters via the user interface, you have
probably created filters where you select a series of three

or more values from those present in the column. Two-

value filters use the rather archaic method of identifying
Criterial and Criteria2 in the body of the VBA code.
If you want to create a filter for three or more values, you can
identify the values you want to display in an array.

For example, suppose you have a data list summarising
product sales by month.

A, B C

1 Sales by Category

2

3 Month [+|Category |~|Sales |~
4 January Boxes ! £126.00
5 January Gloves £ 146,00
B January Scarves £423.00
7 February Boxes £ 485,00
8 February Gloves £219.00
9 February Scarves £138.00
10 March Boxes £188.00
11 March Gloves £179.00
12 March Scarves £173.00
13 March Flats £ 204.00
14 |harch Aprons £301.00

If you want to display just those rows that contain sales figures
for ‘Boxes’, ‘Flats’, ‘Gloves’ and ‘Scarves’, you could create a
filter using the Range object’s AutoFilter method. These
statements have the following syntax:

ActiveSheet.Range (“range”) .AutoFilter
Field:=field_no,
Criterial:=Array(“terml”, “term2”,
“term3”.), _

Operator:=xlFilterValues

where:

B Range is the entire cell range to be filtered

B rield is the column in the data list to be searched for the
named values

B criterial contains an array with a list of values to
be displayed when the filter is applied, each term being
enclosed in quotation marks

B Operator is the logical operator used to indicate that
Excel should filter the list based on an array of values — as
such, it’s value will always be x1FilterValues for this
type of operation.

The code to filter a list to display rows that contain the values
‘Boxes’, ‘Flats’, ‘Gloves’ and ‘Scarves’ would be:

ActiveSheet.Range ("SAS$3:5C$14") .

AutoFilter Field:=2, Criterial:=Array(_

“Boxes”, “Flats”, “Gloves”, “Scarves”),
Operator:=xlFilterValues

Applying this filter would modify the data list so it would not
display the row containing data about ‘Aprons’ sales.

2 | B | ¢

1 Sales by Category

2

3 Month [+|Category |[x|Sales |~
Eljanuary Boxes ! £126.00
5 January Gloves £ 146,00
£ January Scarves £423.00
7 February Boxes £ 485,00
8 February Gloves £219.00
9 February Scarves £138.00
10 March Boxes £188.00
11 March Gloves £179.00
12 March Scarves £173.00
13 March Flats £ 204.00
15

Filter data to
display three or
more values in a
column (cont.)

Important

Excel treats all values

in filter criteria, even
numbers, as strings of
characters, so you must
enclose each of the array
entries in double quotes.

Sorting and filtering data 155

Filter data based
on values in
multiple columns

Filter data based on values in
multiple columns

Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

ActiveSheet.

Range (“range”) .
AutoFilter
Field:=column 1,
Criterial:=“terml”
ActiveSheet.

Range (“range”) .
AutoFilter
Field:=column 2,
Criterial:=“term2”

156

Previously, all of the filters you've learned have been based on
the values in a single column. If you want, you can create a
filter rule for any or all of the columns in your data list. All you
need to do is determine which values and rules you want to use
and apply them.

To apply multiple filters to a range, you call the Range object’s
AutoFilter method for each column by which you want to
filter the list. The AutoFilter method has two parameters:

B Field - the number of the column by which you want to
filter the list.

B Criterial - the term that must appear in the target field
for the row to appear in the filtered list.

The syntax of an AutoFilter method follows this pattern:

ActiveSheet.Range (“range”) .AutoFilter
Field:=field_no, Criterial:=“term”

You need to create separate statements for each column by
which you want to filter your data. As an example, suppose

you have a data list summarising monthly sales for different
categories of products. The three fields are named ‘Month’,

‘Category’ and ‘Sales’.

A, B c

1 Sales by Category

2

3 Month [~|Category |~|Sales |~
4 |lanuary Boxes ! f£126.00
5 January Gloves £ 146,00
B January Scarves £423.00
7 February Boxes £ 485,00
8 February Gloves £219.00
9 February Scarves £138.00
10 |March Boxes £188.00
11 March Glaves £179.00
12 |March Scarves £175.00

If you want the list to display just those results for ‘Gloves’ Filter data based
sales in January, you would run a subroutine containing the c
on values in

following code:
multiple columns
ActiveSheet.Range ("SAS$3:$C$127) .
AutoFilter Field:=2, Criterial:=“Gloves” (contJ
ActiveSheet.Range ("SAS3:CS127) .
AutoFilter Field:=1,Criterial:=“January”
The filters combine to reduce the list to the only row that
contains the term ‘January’ in the first column and ‘Gloves’ in

the second.
a0 B e
1 Sales by Category
2
iMnnth x| Category [x|Sales [~
5 January Gloves £ 146.00
13

Did you know?

Applying consecutive filters to the same field, such
as filtering Field 1 for January and then for February,
displays the results of the last filter you apply.

Sorting and filtering data 157

Managing charts

Introduction

One of the real strengths of Excel 2010 is its ability to summarise
large amounts of data. You can create formulas, tables and even
pivot tables to manipulate your data set to discover important Move a chart to a chart sheet
facts about your organisation and its operations.

Create a chart

Add a new data series to a chart

As with all things, a strength can also turn out to be, if not

a weakness, a challenge. Humans have a hard time keeping
track of large data sets in their heads. It’s all well and good to Format a chart’s axis text
look at the summary, but if you create a pivot table that spans
multiple screens, even the best summary operations will only
help so much. Create a Line sparkline

Format a chart’s legend text

Export a chart as an image

You can make your data easy to comprehend by summarising it R

visually using charts. In Excel 2010, you can use VBA to define Create a Win/Loss sparkline
and format your charts, which include the new sparkline chart
type. Sparklines are designed for use in dashboards and other
compact reporting applications, which fit well with Excel 2010’s
positioning as a reporting tool for all levels of an organisation.

Delete a sparkline

Note: Some of the lines of code in this chapter are too long

for the page to accommodate. In Excel VBA, you can type a
space and then an underscore character (_) to indicate that the
current command continues on to the next line.

Managing charts 159

Create a chart

160

>

When you are ready to summarise your Excel data visually, you
can create a chart. To do this, you need just three lines of code.
The first line of code calls the Charts collection’s Add method:

ActiveSheet.Shapes.AddChart.Select

With the chart in place, you can now define the chart’s type.
To do that, you set a value for the ActiveChart object’s
ChartType property. The line of code you use follows this
pattern:

ActiveChart.ChartType = X1ChartType

The X1ChartType constant refers to one of many available
chart types, identified by constants within the X1ChartType

collection. Table 10.1 lists the X1ChartType constants for
common chart types.

Table 10.1 X1 ChartType values for commonly used chart

types
Type X1ChartType Description
value
Area x1Area Area chart
Column x1Column Clustered column chart
(clustered) Clustered (the default chart type)
Stacked x1Column A stacked column chart
column Stacked
Line x1Line A'line chart
Line with x1Line A line chart with markers
markers Markers for each data point
Pie x1Pie A pie chart
XY scatter ~ x1XYScatter A scatter chart (also

called an XY chart)

Finally, you need to identify the range that provides the data Create a chart
for your chart. You can do that by calling the ActiveChart

object’'s SetSourceData method, which includes the (COI'It.)
Source parameter. You set the parameter’s value to the range

that contains the data you want to appear in your chart. The

general syntax for the SetSourceData method is this:

ActiveChart.SetSourceData
Source:=Range (“range”)

Here’s an example to show you the code in use. Suppose you
want to create a clustered column chart to summarise monthly
sales for your company. Your worksheet might contain two
columns of data.

A, B
1 Sales for the Year
2
3 Month Sales
4 |lanuary £ 1,000.00
5 |Februar £ 1,275.00
& [harch ! £ 1,400,00
T April f 942,00
g |May £ 1,135.00
9 lune £ 1,468.00
10 July f 1,955.00
11 |August £ 702.00
12 September £ 1,503.00
13 |October f 1,474.00
14 Movermber f 2,590.00
15 December £ 4,025.00

You can create a clustered column chart based on this data
using the following three lines of code:

ActiveSheet.Shapes.AddChart.Select
ActiveChart.ChartType = X1ChartType
ActiveChart.SetSourceData Source:=Range
“Sheetl!AS3:$BS15”)

Managing charts 161

Create a chart Running this code against the data set creates a clustered
column chart.

(cont.)
- =]
Sales
£4,500.00
£4,000.00
£3,500.00
£3,000.00
£2,500.00
£2,000.00
Create a chart £1,500.00 msales
5 £1,000.00
Create a subroutine. 200,00 -
[In the body of the subroutine, e e e s s s
. L) & 2
type code that follows this R A @“’;@*“’oa‘p;é““z@‘p
pattern: | £ v °)

ActiveSheet. Shapes.
AddChart.Select

ActiveChart.
chartlype = Important
X1ChartType
ActiveChart. The range definition in the SetSourceData method’s
SetSourceData .
_ Source parameter must include the name of the
Source:=Range ksheet that contains the data
(\\rangell) Wor S .

Did you know?

If you change the ActiveSheet.Shapes.
AddChart.Select statement to Charts.Add
Excel VBA puts the chart on its own chart sheet.

162

When you create a chart using VBA code, Excel creates the
chart on the sheet that contains the data. The chart your code
creates is large enough to display all of the data, but it is still
relatively small in comparison to the size of the worksheet.
Moving a chart to its own chart sheet ensures the chart will
take up the entire sheet, making it more legible and easier to
comprehend. This consideration is especially true for users
viewing your content on a mobile device.

Suppose you create a chart that resides on the same worksheet
as the data used create it.

2, B g D E F G

1 Sales for the Year
12
3 | Month Sales VAT
iJanuary £1,023.00 £ 250.00
| 5 |February £1,275.00 £ 318,75
| 6 [March £1,400.00 £ 350,00
| 7 &pril £ 942,00 £ 23550
| B |May £1,185.00 £ 296,25
| 9 June £1,468.00 £ 367.00
| 10 | July £1,995.00 £ 498,75
| 11 |August £ 70200 £ 17550
|12 |September £1,503.00 £ 375.75
| 13 |Octaber £1,474.00 £ 36850
ﬁl\lovember £2,590.00 £ g£47.50
|15 December | £4,025.00 £1,006.25
16
Lp Sales
18
19 | £4,500.00
oo | 24000.00

£3,500.00
2L g3 000,00
22 | go500.00
23 | £2000.00
24 | £1,500.00 W sales
25 | £1,000.00
76 £500.00 -
27 £ -
28 ’b{\\)@d 99(':50(&‘ \;90 1:‘@“ \0(‘ S vs@g}q’&-oé‘} aoc"éo'oe}%&-oﬂ
29 P (_PQ“ T
30

Move a chartto a
chart sheet

Managing charts 163

Move a chart to
a chart sheet
(cont.)

164

The first step to moving a chart to a chart sheet is it to select
the chart. The VBA code to do that is:

ActiveChart.ChartArea.Select

After you select the chart, you need to exit Excel’s cut and copy
mode. You’re probably familiar with cut and copy mode from
when you cut and paste worksheet contents from one range to
another. When you select the cells and then press either Ctrl+X
or Ctrl+C, Excel surrounds your selected cells with a marquee.
The marquee indicates that cut and copy mode is on. To exit
cut and copy mode from the keyboard, you press the Esc key.
In VBA, the command to exit cut and copy mode is:

Application.CutCopyMode = False

With the chart selected and cut and copy mode off, you can
move it to a new sheet. You do that using the ActiveChart
object’s Location property, by means of which you assign
a value to the Where parameter. To move your chart to a new
sheet, you use the following VBA command:

ActiveChart.Location
Where:=x1lLocationAsNewSheet

Running these three lines of code as part of the subroutine
moves the chart from a worksheet to its own chart sheet.

~ 7

- —

' ~
—

Jargon buster =

The Application.CutCopyMode = False
statement changes the workbook from cut and copy
mode to edit mode. The program does the same thing
when you cut or copy workbook cells and paste them

in your workbook. Cut and copy mode is on (*True”)
when your cells are surrounded by a dotted line; cut and
copy mode is off (“"False”) when the dotted line is
replaced by a solid outline.

Move a chart to

(]| d = - » Eacel VBARSS ChID Code - Microzolt Excel |
- Home Insert Page Layout Fometas Duta Review Wiew Dewveioper Design Layout. Format
- I. i l. I.; - a chart sheet
[(cont.)
Sales

Move a chart to a chart sheet
Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

0000 |
£3.500.00 |
£3,000.00 |

£2,500.00

wiales
£2.000.00

ActiveChart.
ChartArea.Select

i Application.
CutCopyMode = False

- ActiveChart.Location
Where:=x1lLocation

Junuary Februany March Apnil Aupast September October November December
AsNewSheet

[HAF W] Sheetl Shest? | Chartl Sheetd 23 e [S TR | |
neacy | 3 | MO e (= b Gl

Important

This routine assumes you have just one chart on the
active sheet.

Managing charts 165

Add a new data
series to
a chart

166

>

Charts summarise data you collect, whether about your
business, organisation or leisure activities. If you create a chart
and want to add more data to the summary, you can do so
using Excel VBA.

For example, suppose your worksheet contains data
summarising a monthly sales and VAT for a given year, but
your chart only displays the sales data.

& = 9 - v
Home Insert Fage Layout Formulas Data Review View g
L Calitsri [Buty) uw - A= =
{2 Copy - _
B £ U~ - A- =i | G
Clipboard) Font = Alignment
Chart 2 - I~
A B C D E F (53
1 Sales for the Year
2
3 | Month Sales VAT
A January £1,022.00 £ 250.00
5 February £1,275.00 £ 318.75
& March £l 40000 E 35000
7 | April £ 942,00 £ 23550
& May £1,185.00 £ 296,23
9 June £1,468.00 £ 36400
10 July £1,995.00 £ 498,75
11 August £ 70z.00 £ 17550
12 September E£1,503.00 E 37575
12 October £1,A74.00 £ 268,50
14 Movember £2,390.00 £ 647.50
15 December E4,025.00 E1,006.25
16
17 Sales
18
10| £450000
£4,000.00
20 gag00.00
1 £2,000.00
22| r£2,500.00
23| £2,000.00
24 | £1.500.00 ® 5ales
a5 || £1,000.00 -
2% ESOUOU -
= fe -
27 g
29 @oﬁé‘-‘g-‘t@ “ﬂ\&\ °~o°¢~0é
i '@ o¢ -\ &
23 § Yl &
3

You can add the data for the VAT collected to your chart quickly
using Excel VBA. A sequence of related data that is plotted
within a chart is called a data series. For example, sales data for
the months January to December might appear in cells B4:B15,
with the series title, ‘Sales’, appearing in B3. The data series

for VAT collected has its title in cell C3 and the data in cells
C4:C15.

The VBA code required to add a data series to a chart starts by
selecting the active chart’s chart area:

ActiveChart.ChartArea.Select

After you select the chart you want to work with, you create
a new series by calling the Series collection object’s
NewSeries method. The code for that action is quite
straightforward:

ActiveChart.SeriesCollection.NewSeries

Now that you have added a new series to the chart’s Series
collection, you need to give the series a name. In most cases,
you will want to use the column label from the worksheet data
list as the series name. You assign a data series a name using
the following code:

ActiveChart.SeriesCollection (series_no) .
Name = “=formula”

The series_no value represents the new data series’ position
in the SeriesCollection object. You determine that value
by counting the number of existing data series in your chart and
add one. The =formula value is a formula that identifies a cell
from which to draw the value or the value itself.

Finally, you must identify the cell range that contains the series
values. The VBA statement to make that assignment uses the
SeriesCollection object’'s Values property and is very
similar to the code used to identify the series’ name.

ActiveChart.SeriesCollection (series_no) .
Values = “=range”

In the VBA code used to assign the range for the Values
property, the =range variable is an equal sign followed by a
range reference of the form sheet_name! range, such as
=Sheetl!BS2:$B5.

Add a new data
series to a chart
(cont.)

Managing charts 167

Add a new data
series to a chart
(cont.)

168

The sequence of statements used to add a series with its name
in cell C3 of Sheet2 and its values in the range C4:C15 of the

same sheet would be:

ActiveChart.ChartArea.Select
ActiveChart.SeriesCollection.NewSeries
ActiveChart.SeriesCollection(2) .Name =
“=Sheet2!5CS3”
ActiveChart.SeriesCollection (2) .Values
“=Sheet2!C4:5CS$15”

Cr=I <RS- R, B SR T R S

L B e e e e e
=R I B o e T e S T =

2 B © [u] E F G
Sales for the Year
Month Sales VAT
January £1,023.00 £ 250.00
February £1,275.00 £ 318,75
harch £1,400.00 £ 3250.00
April £ 942,00 £ 235,50
hay £1,18500 £ 296,25
lune £1,468.00 £ 367.00
July £1,995.00 £ 498,75
August £ 70200 £ 175.50
September £1,503.00 £ 375.75
October £1,474.00 £ 368.50
Movernber £2,530.00 £ £47.50
December £4,025.00 £1,006,25
£4,500.00
£4,000.00
£3,500.00
£3,000.00
£2,500.00
£2,000.00 WSales
£1,500.00 AT
£1,000.00
£500.00
£- -
@Q\)@d‘oc)rﬁ\pé i ,z@‘l o ‘si-‘)é}b ééﬁo“é&c’}e&oé
W c,e-Q" o7 & Q‘?f'

Add a new data series to a chart Add a new data

Create a subroutine. series to a chart
Lr;:ginpody of the subroutine, enter code that follows this (cont.)

ActiveChart.ChartArea.Select
ActiveChart.SeriesCollection.NewSeries

ActiveChart.SeriesCollection
(series_no) .Name = “=formula”

ActiveChart.SeriesCollection
(series_no) .Values = “=range”

Did you know? E

You can discover the number of data series in your chart
by displaying the chart’s legend and counting the number
of entries it lists.

Managing charts 169

Format a chart’
legend text

170

il 4

When you create a chart in Excel 2010, the program formats
your chart legend’s text in a default font.

Sales

£4,500.00
£4,000.00
£3,500.00
£3,000.00
£2,500.00
£2,000.00
£1,500.00 B 5ales
£1,000.00
£500.00

£

&g W & & e @
SEE S NG IS
B e v & &"ﬁ‘g

of ECHR

If your company’s style sheet or your personal aesthetic calls
for a different font, you can change the legend’s font easily. To
change the font of a chart’s legend text, you must first select
the chart and then the legend using these commands:

ActiveChart.ChartArea.Select
ActiveChart.Legend.Select

You then select the text frame that contains the legend’s text,
identify the text range and reference the Font property. You
should use aWwith..End With code construct to streamline
your code significantly.

With Selection.Format.TextFrame?2.
TextRange.Font
.NameComplexScript = “font”
.NameFarEast = “font”
.Name = “font”
End With

You set the NameComplexScript, NameFarEast and
Name properties to reflect the new font so your chart will
display properly for all users, regardless of their local language
settings. This level of detail might seem excessive, but it is
helpful in an international business environment.

The code to change the font of the chart legend’s text to Arial is Format a chart’s

as follows:
legend text
ActiveChart.ChartArea.Select (cont)
ActiveChart.Legend.SelectWith Selection.
Format.TextFrame2.TextRange.Font
.NameComplexScript = “Arial”
.NameFarEast = “Arial”
.Name = “Arial”
End With
Sales
£4,500.00
£4,000.00
£3,500.00
£3,000.00
£2,500.00
£2,000.00 . .
£1,500.00 uSales For your information
£1,000.00 -
£500.00 1 The code in this task
£ 4 .
assumes the chart is
P S N WOR SRS & & :
& oW “’vﬁ’@&"i éﬂéﬁ“@&@é selected in the worksheet
¢ B before you run the macro.

Format a chart’s legend text

Create a subroutine. For your information ﬂ

In the body of the subroutine, enter code that follows this Some chart types might
pattern: not store their legend text
ActiveChart.ChartArea.Select in the TextFrame2
ActiveChart.Legend. Select object. If the specific

macro code listed above
doesn’t work for a specific
chart, record a macro of
you changing that chart’s

With Selection.Format.TextFrame2.
TextRange.Font

.NameComplexScript = “font”

-NameFarEast = “font” legend text formatting and
.Name = “font” use it as the base for your
End With procedure.

Managing charts 171

Format a chart’
axis text

172

il 4

When you create a chart in Excel 2010, the program formats
your chart’s axis labels using a default font.

Sales

£4,500.00
£4,000.00
£3,500.00
£3,000.00
£2,500.00
£2,000.00
£1,500.00 B sales
£1,000.00
£500.00

E_ -

& éﬁ,ﬁ}§3¢f §'ﬁ$§§'$s§¢~@\@
Nl w Q@ o~ da.“' &
of g

If you would prefer a different font, you can change it easily. To
change the font of a chart’s axis label text, you must first select
the legend using these commands:

ActiveChart.ChartArea.Select
ActiveChart.Axes (X1Ax1is) .Select

The first command selects the chart, while the second
command uses the Axes property and looks at the X1Axis
variable to determine which axis to select. You refer to the
vertical axis using the x1Value variable and the horizontal
axis using the x1Category variable.

You then select the text frame that contains the axis label’s text,
identify the text range and reference the Font property. You
should use aWwith..End With code construct to streamline
your code significantly.

With Selection.Format.TextFrame?2.
TextRange.Font
.NameComplexScript = “font”
.NameFarEast = “font”
.Name = “font”
End With

You set the NameComplexScript, NameFarEast and Format a chart’s
Name properties to reflect the new font so your chart will -

display properly for all users, regardless of their local language axis text (cont.)
settings. Making these changes ensures your chart will appear

as desired in an international business environment.

The code to change the font of the chart’s horizontal axis text
to Tahoma would be as follows:

ActiveChart.ChartArea.Select
ActiveChart.Axes (x1Category) .Select
With Selection.Format.TextFrame?.
TextRange.Font
.NameComplexScript = “Tahoma”
.NameFarEast = “Tahoma”
.Name = “Tahoma”
End With

Sales

£4,500.00
£4,000.00
£3,500.00
£3,000.00
£2,500.00
£2,000.00
£1,500.00
£1,000.00

£500.00

M Sales

AR S PRI TS SF S
F é?é‘xb W T FS
0
For your information

Format a chart’s axis text ;

_ Some chart types might
Create a subroutine. not store their axis label
In the body of the subroutine, enter code that follows this textin the TextFrame2

object. If the specific
macro code listed above
doesn’t work for a specific
chart, record a macro of

pattern:
ActiveChart.ChartArea.Select
ActiveChart.Axes (X1Axis) .Select
With Selection.Format.TextFrame2.

TextRange.Font you changing that cha!rt’s
)) axis label text formatting
-NameComplexScript = “font” and use it as the base for
.NameFarEast = “font” your procedure.
.Name = “font”
End With

Managing charts 173

Export a chart as
an image

174

>

When you create a chart in Excel 2010, the program establishes

a link between the chart and its data source. Any time the data
source changes, Excel updates the chart to reflect the change.
This feature is extremely useful for dashboards and other data
summaries that should be updated whenever the data changes,
but it is less useful for charts that draw data from files stored on a
network that might be temporarily unavailable.

Sales

£4,500.00
£4,000.00
£3,500.00
£3,000.00
£2,500.00
£2,000.00
£1,500.00 M Sales
£1,000.00 -
£500.00
£

If you want to export an image of a chart’s current appearance,
you can do so by copying the chart’s chart area and then
pasting it into a destination cell range as an image. Copying the
chart area requires this single line of code, which assumes the
chart you want to copy has already been clicked:

ActiveChart.ChartArea.Copy

You then select the cell range where you want to paste the
chart image and implement the paste operation. Pasting the
image on the same worksheet takes these two lines of code:

Range (“range”) .Select
ActiveSheet.Pictures.Paste.Select

If you want to paste the image on to another worksheet, you
must activate that worksheet using the Sheets.Activate
method. For example, the command to activate a worksheet
named Sheet2 would be:

Sheets (“Sheet2”) .Activate

The range variable is a reference to a cell range. If you paste Export a chart as
the image on to the same worksheet, you do not need to -

specify the sheet’s name. If you want to paste the image on an Image (COI'It.)
another worksheet, or even another workbook, though, you

need to provide that information as well.

For example, the following code would paste a chart as an
image on Sheet2 in cell A1:

ActiveChart.ChartArea.Copy

Sheets (“Sheet2”) .Activate

Range (“Sheet2!SAS$1”) .Select
ActiveSheet.Pictures.Paste.Select

G H il k L Tl I
| !
Sales
£4,500.00
£4,000.00
£3,500.00 -
£3,000.00
£2,500.00
o £2,00000 - -]
£1,500.00 m Sales
£1,000.00 I I I I I I
£500.00 -
x| I i
Q8D ENFE PSS
SP @& W TV ST L
5’6 y q?,@’ oeg\ dé‘
Export a chart as an image
Create a subroutine.
In the body of the subroutine, enter code that follows this
pattern:

ActiveChart.ChartArea.Copy
Range (“range”) .Select

ActiveSheet.Pictures.Paste.Select

Did you know?

Running the ActiveChart.ChartArea.Copy
code copies the chart’s image to the clipboard. You can
then paste the image into any other file, not just the
active Excel workbook.

Managing charts 175

Create a Line
sparkline >

Did you know?

Sparklines expand or

contract to fill their cell, so
you can make a sparkline
larger by resizing the cell
it’s in.

176

One of the more useful aspects of Excel 2010 has been the
introduction of sparklines. Sparklines, invented by Edward
Tufte, are word-sized graphics that convey information
normally communicated using a full-sized chart.

Several different types of sparklines are available to you

in Excel 2010. For example, suppose you have a data set
summarising monthly sales, VAT, your sales targets for each
month and how the results compare with that target.

2 B C D E
1 Sales for the Year

2

3 | Month Sales VAT Target Result
4 January £1,023.00 £ 250.00 £ 750.00 £ 273.00
5 February £1,275.00 £ 31875 £1,200.00 £ 75.00
£ MWarch £1,400.00 £ 350.00 £1,400.00 £ -
7 April £ 94200 £ 23550 £1,000.00 -f 58.00
8 May £1,185.00 £ 29625 £1,000.00 £ 185.00
3 June £1,468.00 £ 367.00 £1,200.00 £ 268.00
10 July £1,995.00 £ 498.75 £1,750.00 £ 245.00
11 august £ 70200 £ 17550 £1,000.00 -f 298.00
12 September £1,503.00 £ 375.75 £1,500.00 £ 3.00
13 October £1,47400 £ 368.50 £1,500.00 -f 26.00
14 Movember £2,590.00 £ 647.50 £2,500.00 £ 90.00
15 Decermber £4,025.00 £1,006.25 £4,000.00 £ 25.00

One way to summarise this data is to create a Line sparkline,
which is an extremely compact line chart. To create a

Line sparkline using VBA, you first identify the target cell
where you want the sparkline to appear. Next, you call the
SparklineGroups object’s Add method and specify both
the type of sparkline and the source of the sparkline’s data.

The syntax of the statement to create a Line sparkline is:

Range (“targetrange”) .SparklineGroups.Add
Type:=x1SparkLine, SourceData:=%“source”

The Type parameter takes the value x1SparkLine to Create a Line
signify a Line sparkline, while the SourceData parameter -

specifies the cell range supplying the sparkline’s data. For sparklme (COI‘It.)
example, you might create a Line sparkline in cell E1 using data

from cells B4:B15:

Range (“E1”) .SparklineGroups.Add
Type:=x1SparkLine, SourceData:=%“B4:B15”

A B E D E
1 Sales for the Year —
Z
3 Month Sales VAT Target Result
4 January £1,023.00 £ 250,00 £ 750.00 £273.00
S February £1,275.00 £ 31875 £1,200.00 £ 75.00
6 March £1,400.00 £ 350.00 £1,400.00 £ -
7 April £ 94200 £ 23550 £1,000.00 -£ 58.00
8 May £1,185.00 £ 29625 £1,000.00 £ 185.00
3 lune £1,468.00 £ 367.00 £1,200.00 £ 268.00
10 July £1,995.00 £ 498.75 £1,750.00 £ 245.00
11 August £ 70200 £ 17550 £1,000.00 -£298.00
17 September £1,503.00 £ 37575 £1,500.00 £ 3.00
13 October £1,47400 £ 368,50 £1,500.00 -£ 26.00
14 Movember £2,590.00 £ £47.50 £2,500.00 £ 90.00
15 December £4,025.00 £1,006.25 £4,000.00 £ 25.00

Create a Line sparkline
Create a subroutine.

In the body of the subroutine, enter code that follows this
pattern:

Range (“targetrange”) . SparklineGroups.
Add Type:=xl1lSparkLine,

SourceData:="“source”

Managing charts 177

Create a Column
sparkline

178

>

Excel 2010 is an exceptionally useful reporting tool. You

can create dashboards that provide overviews of your
organisation’s data at a glance. Sparklines, which are compact
charts that fit within a single worksheet cell, help convey that
information effectively.

Several different types of sparklines are available to you. For
example, suppose you wanted to summarise monthly sales
using a Column sparkline.

2, B E D E
1 Sales for the Year

2

3| Month Sales VAT Target Result
4 |January £1,023.00 | £ 250,00 £ 75000 £ 273.00
5 |February | £1,275.00 | £ 318.75 £1,200,00 £ 75.00
6 |March £1,400.00 | £ 350,00 £1,400.00 £ -
7 |spril £ 942,00 | £ 23550 £1,000,00 -£ 5800
g |May £1,185.00 | £ 296.25 £1,000.00 £185.00
3 |June £1,968.00 | £ 367.00 £1,200,00 £ 268.00
10 | July £1,995.00 | £ 498,75 £1,750.00 £ 245.00
11 | August £ 70200 | £ 17550 £1,000.00 -£ 29800
12 September | £1,503.00 | £ 375.75 £1,50000 £ 3.00
13 | October £1,474.00 | £ 368.50 £1,500.00 -£ 26.00
14 Movember | £2,590.00 | £ €47.50 £3,500,00 £ 90.00
15 December | £4,035.00) £1,006.25 £4,000,00 £ 2500

b

To create a Column sparkline using VBA, you first identify
the target cell where you want the sparkline to appear. Next,
you call the SparklineGroups object’s Add method
and specify both the type of sparkline and the source of the
sparkline’s data. The syntax of the statement to create a
Column sparkline is:

Range (“targetrange”) .SparklineGroups.Add
Type:=x1SparkColumn,
SourceData:="“source”

The Type parameter takes the value x1SparkColumn to
signify a Column sparkline, while the SourceData parameter
specifies the cell range supplying the sparkline’s data. For
example, you might create a Line sparkline in cell E1 using data
from cells B4:B15.

Range (“E1”) .SparklineGroups.Add
Type:=x1SparkColumn,
SourceData:="B4:B15”

& B c I ——
1 Sales for the Year i
g
32 Month Sales VAT Target Result
4 January £1,023.00 £ 250,00 £ 750,00 £ 327300
5 February £1,275.00 £ 318,75 £1,200.00 £ 75.00
& March £1,400.00 £ 350,00 £1,400,00 £
7 april £ 94200 £ 23550 £1,000.00 - 5800
8 |May F1,185.00 £ 29625 £1,000.00 £ 18500
3 lune F1,468.00 £ 367.00 £1,200.00 £ 268,00
10 July £1,995.00 £ 498,75 £1,750.00 F 245.00
11 August f 70200 £ 17550 £1,000,00 -£ 29800
17 September £1,503.00 £ 37575 £1,500.00 £ 300
13 Octoher £1,470.00 £ 368,50 £1,500.00 -£ 26.00
14 Movember £2,590.00 £ 647,50 £2,500.00 £ 90,00
15 December £4,025.00 £1,006,25 £4,000.00 £ 2500

Create a Column sparkline
Create a subroutine.

In the body of the subroutine, enter code that follows this
pattern:

Range (“targetrange”) .SparklineGroups.
Add Type:=xlSparkColumn,

SourceData:="“source”

Create a Golumn
sparkline (cont.)

For your informatio

Column sparklines work
best in cells that are about
twice the height of normal
Excel cells.

Managing charts 179

Create a Win/
Loss sparkline

180

>

Excel provides numerous ways for you to evaluate your
organisation’s performance in relation to targets you set. You
can use a Win/Loss sparkline to summarise your monthly
sales in relation to your goals, such as in a worksheet with
comparison results in cells E4:E15.

2 B C D E
1 | Sales for the Year

7

3 | Month Sales VAT Target Result
4 | January £1,023.00 £ 250,00 £ 750,00 | £273.00
5 February £1,275.00 £ 318,75 £1,200.00 | £ 75.00
& |March £1,400,00 £ 350,00 £1,400.00 | £

7 april £ 942,00 £ 23550 £1,000.00 |-£ 58.00
8 | May £1,185.00 £ 296,25 £1,000.00 | £ 185.00
3 | June £1,468.00 £ 367.00 £1,200.00 | £ 268.00
10 | July £1,995.00 £ 498,75 £1,750.00 | £ 245.00
11 | August £ 70200 £ 17550 £1,000.00 |-£ 298,00
12 |September £1,503.00 £ 37575 £1,500.00 [£ 3.00
13 Octaber £1,47400 £ 368,50 £1,500.00 |-£ 26.00
14 Movember £2,590.00 £ 647.50 £2,500.00 | £ 90.00
15 December £4,025.00 £1,006.25 £4,000.00 | £ 25.00

A Win/Loss sparkline has three possible indicators: above
target (positive), below target (negative) and equal to the

target (zero). Values above the target (also called a comparison
value) are indicated by a marker extending above the middle
of the cell, values below the target are indicated by a marker
extending below the middle of the cell, while a value equal to
the target is indicated by the lack of a marker.

To create a Win/Loss sparkline using VBA, you first identify
the target cell where you want the sparkline to appear. Next,
you call the SparklineGroups object’'s Add method
and specify both the type of sparkline and the source of the
sparkline’s data. The syntax of the statement to create a Win/
Loss sparkline is:

Range (“targetrange”) .SparklineGroups.Add
Type:= xlSparkColumnStackedl00,
SourceData:=%source”

The Type parameter takes the value x1SparkColumn
Stacked100 to signify a Win/Loss sparkline, while the
SourceData parameter specifies the cell range supplying
the sparkline’s data. For example, you might create a Win/Loss
sparkline in cell E1 using data from cells E4:E15.

Range (“E1”) .SparklineGroups.Add _
Type:= x1lSparkColumnStackedl00,
SourceData:="E4:E15"”

2 B C D E
1 Sales for the Year "
.
2 Month Sales VAT Target Result
4 January £1,023.00 £ 250,00 £ 750,00 £ 273,00
5 February £1,275.00 £ 31875 £1,200.00 £ 75.00
& March £1,400.00 £ 350,00 £1,400.00 £
7 april f 94200 £ 23550 £1,000.00 - 5800
8 May F1,185.00 £ 29625 £1,000.00 £ 18500
3 June F1,468.00 £ 36700 £1,200,00 F 26800
10 July £1,995.00 £ 498,75 £1,750.00 £ 245.00
11 Angust £ 70200 £ 17550 £1,000.00 -£ 29800
12 September £1,503.00 £ 37575 £1,500.00 £ 300
13 October £1,478.00 £ 368,50 £1,500,00 -£ 26,00
14 Movember £2,590.00 £ 647,50 £2,500,00 £ 90,00
15 December £4,025.00 £1,006,25 £4,000,00 £ 2500

Create a Win/Loss sparkline
Create a subroutine.

In the body of the subroutine, enter code that follows this
pattern:

Range (“targetrange”) . SparklineGroups.
Add

Type:= xlSparkColumnStackedl00,
SourceData:="“source”

Create a Win/
Loss sparkline
(cont.)

Did you know?

Win/Loss sparklines got

their name because they

are useful for tracking the
performance of sports
teams’ wins, losses and
draws.

Managing charts 181

Delete a
sparkline

182

>

Sparklines are exceptionally useful tools, but you might
find that one or more of them are surplus to your reporting
requirements. In that case, you can use VBA to delete them.

The code to delete a sparkline is straightforward. The first step
is to select the cell that contains the sparkline and the second
is to use the SparklineGroups object’'s Clear method to
delete them:

Range (“cell”) .Select
Selection.SparklineGroups.Clear

The code to delete a sparkline from cell E1 would be:

Range (YE1”) .Select
Selection.SparklineGroups.Clear

Delete a sparkline
Create a subroutine.

In the body of the subroutine, enter code that follows this
pattern:

Range (“cell”) .Select

Selection.SparklineGroups.Clear

Important n

Deleting a sparkline using Excel VBA is irreversible —
once you delete a sparkline, you can’t bring it back by
pressing Ctrl+Z.

Using built-in functions
and statements

Introduction

Excel VBA is a powerful language that interacts well with the
Excel desktop program. As VBA matured, its designers built

in a series of capabilities that make it easier to manage exactly
how that interaction takes place. For example, rather than force
users to type in the full directory path of a file, you can let them
select the file using the Open dialog box and save the box’s
output to a variable. Other built-in functions and statements

let you prevent the screen from flickering when you switch
between workbooks or worksheets, prevent alert boxes from
interrupting your routines and calling worksheet functions so
you don’t have to recreate their calculations.

Use the built-in Open dialog box

Prevent screen flicker when
running VBA code

Suppress and restore alerts

Calculate data using Excel
worksheet functions

Display a message box

Get data from an InputBox
Display the current date and time
Format a date

Remove spaces from a string
Locate a portion of a string

Concatenate strings

Using built-in functions and statements 183

Use the built-in >
Open dialog box

Use the built-in Open dialog
box

Create a subroutine.

In the body of the subroutine,
do the following:

a. Define a variable to store
the filename and path.

b. Assign the output of the
Open dialog box to the
variable.

c. Display the variable’s value
in a message box or use its
output in your VBA code.

184

Most of the Excel VBA routines that new programmers create
operate within the workbook that contains their code. For
example, you could transfer data between worksheets, but

you might not transfer the data to another workbook. As you
become a more advanced Excel VBA programmer, you will
likely create routines that let users specify how to proceed. For
example, you might wish to allow your colleagues to select
which of several files to open from within a VBA routine.

Excel 2010 lets you use the built-in Open dialog box to identify
files via the user interface. The Open dialog box is the very
familiar item that appears whenever you press Ctrl+0 or click
the File tab, then Open.

] Open e
@\:_,.-I « Witing b Peartan LK » Brilliant Fxcel VBA & Chapterd? ™ [2|
Organize.» New lolder
4 Libraries
+ Docurments
w' husic
o Pictures
B videos — Sy
oy —
- “" i
#d Homenraup 4
& Camputer i
& o5y 7
4 VD RW Drive (D) WHISPEF
i Freefgent () OrderTracking Tax Managernent
) Freehagent GoFlex Drive ()
File pame: - [mnEce Files -
Took v [open o] [concel |

To display the Open dialog box, you use the Application
object’s GetOpenFilename method. Because the path and
the name of your file might contain odd characters, it’s best
to store the value in a variable of the Variant type. As a
simple example, you could create the following code to create
a variable, assign the output of the Open dialog box to that
variable, then display the value in a message box.

The code to implement those three steps is: Use the built-in

Dim varFileName as Variant Open dlalog box
varFileName = Application. (conto
GetOpenFilename

MsgBox (“The file’s name and path are

"&varFileName)

Running the subroutine and selecting a file displays a message
box similar to the one shown.

hlicrosoft Excel @

The file's name and path are INWritingtPearson UKABrilliant Excel
WBANChapterlIhComrnissions.xlsm

Did you know?

You could have trouble working with a file if it's stored
on a network computer and the connection is down.

If you have trouble finding a file, check the Network
section of Windows Explorer to ensure you can see the
other computer on your network.

Using built-in functions and statements 185

Prevent screen

flicker when >
running VBA

code

Prevent screen flicker when
running VBA code

Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

Application.
ScreenUpdating =
True or False

186

Whenever you activate a worksheet or a workbook using Excel
VBA, the program displays that worksheet or workbook. Usually
this means the program has to switch from whichever element
is displayed on screen to a new element. A single switch
between two worksheets or workbooks doesn’t create much of
problem, but if you create complicated routines that switch back
and forth several times, the screen can appear to flicker.

Even though this flickering doesn’t slow the execution of your
code, it can be very distracting, especially if you have created

a long-running routine and you want to do other work. You
can prevent screen flicker by turning off screen updating using
the Application.ScreenUpdating property. When
the property is set to False, the screen will not update to
reflect any changes made to the active worksheet or workbook,
or to indicate that the program focus has changed to another
worksheet or workbook.

The Excel VBA command used to prevent screen flicker is:
Application.ScreenUpdating = False

When your code is done switching between worksheets or
workbooks and you want to display the results, you can turn
screen updating back on by using this code:

Application.ScreenUpdating = True

For your information 0

Even though Excel turns screen updating back on when
it completes running a VBA routine, it's good practice to
include the Application.ScreenUpdating =
True command in your code just in case you need to
interact with the program before it’s finished executing.

Many operations, such as deleting a worksheet, cause Excel to
display an alert box indicating that the action you are about to
take is irreversible or could have some other, possibly harmful
effect. These warnings are helpful in that they prevent users
from inadvertently removing important parts of the workbook,
but they prevent the smooth operation of the VBA routines that
generate those messages.

For example, suppose you create a VBA routine that includes
instructions to delete a worksheet. When you run the routine,
Excel will reach that line of code and attempt to delete the
worksheet but, rather than just deleting the worksheet, the
program will display the alert box asking if you're certain that
you want to go ahead with the deletion. Getting past the alert
box requires human intervention, which can prevent the full
execution of your program.

l5 Data may exist in the sheet(s) selected for deletion. To permanently delete the data, press Delete,

If you are certain that the action you program into a VBA
routine should be executed regardless of these warnings, you
can suppress alerts. The code to do so is:

Application.DisplayAlerts = False

After your code has executed the instructions that could generate
an alert, you should turn alert and warning messages back on.
Doing so lets you avoid damaging your workbook by having your
VBA code make an unintended change you can’t reverse.

The statement to have Excel display alert and warning boxes
again is:

Application.ScreenUpdating = True

4 Suppress and
restore alerts

Suppress and restore alerts
Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

Application.
ScreenUpdating =
True or False

Important

You should not turn off
alerts while you are testing
a program. Only after you
are certain that your VBA
code operates exactly as
you expect should you
suppress alerts.

Using built-in functions and statements 187

Calculate data

using Excel >
worksheet

functions

Calculate data using Excel
worksheet functions

Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

Application.
WorksheetFunction.
function (arguments)

Did you know?

Not every worksheet
function is available via
Excel VBA, but the majority
of them are.

Important “

Try creating the formula in

your worksheet as well as
in your VBA code to be sure
that the VBA version gives
you the same result.

188

Microsoft Excel 2010 is an exceptionally powerful and versatile
program, with many built-in functions you can use to transform
data into useful information. You are not limited to using those
formula functions in a worksheet. Rather than create your own
calculations and risk introducing errors into the process, you can
call on a wide array of worksheet functions from within VBA.

To use a worksheet function in your VBA code, you start by
typing this fragment of VBA code:

Application.WorksheetFunction.

The final full stop in the above fragment indicates you need to add
another element to the statement to make it functional. In this
case, that element is the name of the function you want to use.
There are hundreds of functions at your disposal, which appear in
the AutoComplete list when you type the code fragment above.

[»

Application.WorksheetFunction.
=@iAcctnt

=@ Accrinthl [
=B ACOS

=@ Acosh

=& Aggregate

=& AmorDegre

=& Amorlinc 2

=
4| 2

You can select the function you want by typing in its name,
selecting it from the AutoComplete list or a combination of both
actions. After you add the function name to the code fragment
and type a left parenthesis, the Visual Basic Editor displays a list
of arguments you can use in the formula. Required arguments are
listed in bold italic type, optional arguments in normal italic type.

You can then supply values for the arguments by typing their
values, such as cell ranges, directly into the Visual Basic Editor
or by using values assigned to variables.
. H

Application.WorksheetFunction. Count If (l (=)
CountifiArg? As Range, Axg2) As Double |

When you create or edit an Excel worksheet via the user
interface, you get immediate feedback on what you've done
because the worksheet changes. Most users will take a moment
to survey what they have done to ensure their actions had the
intended outcome. When you run a VBA routine, you don’t have
that luxury. The speed of execution prevents any meaningful
feedback from a user before the code finishes running.

One a terrific way to provide user feedback as part of a VBA
routine is to display the result of an action or information
about an action using a message box. As the name implies, a
message box is a dialog box that displays information of your
choosing. You can set the message box’s title, message and
the buttons that appear within it. A simple message box might
look like this:

hicrosoft Excel @

YWour buyer's cormrnission for this iterm is: £70,

Message boxes have many attributes that you can control
using VBA, but the first three are the most useful. The syntax to
display a message box using those three arguments is:

MsgBox (prompt, buttons, title)
where:
B prompt is the text that appears in the body of the message

box (required)

B buttons are clickable buttons, such as ‘OK’ or ‘Cancel’,
that appear in the body of the message box (optional)

B title is the text that appears on the message box’s title
bar (optional).

4 Display a

message box

Display a message box
Create a subroutine.

In the body of the subroutine,
enter code that follows one of
these patterns:

MsgBox (prompt)
MsgBox
Prompt:=string,
Buttons:=constant,
Title:=string

Using built-in functions and statements 189

Display a The prompt argument usually takes the form of a string
assigned to a variable. You can create a simple message box by

message box typing the string into the command, such as:

(cont.)

MsgBox (“Click OK to continue.”)

That said, many times you will want to combine several values
in the message. For example, you might have a routine that
calculates sales commissions. If the sales amount were in

the active cell, you could assign the first part of the prompt to
one variable and then add the value to the string using the ‘&’
concatenation operator.

Sub CalculateCommission ()

Dim curSale As Currency

Dim curCommission As Currency
Dim strPromptl As String

Dim strPromptAll As String

curSale = ActiveCell.Value
curCommission = curSale * 0.15
strPromptl = “The commission due for
this sale is: £”

strPromptAll = strPromptl &
curCommission & “.”

MsgBox (strPromptAll)
End Sub

You can also control which buttons appear in your message
box. If you leave the argument blank, the message box will
contain an ‘OK’ button the user can click to dismiss the
message box. Table 11.1 shows the other button patterns
available to you and the values to which they correspond.

190

Table 11.1 Constants used to specify message box buttons D|sp|ay a

Constant Value Description message box
vbOKOn1y 0 Display the ‘OK’ button (cont.)
only
vbOKCancel 1 Display the ‘OK’ and
‘Cancel’ buttons
vbAbortRetry 2 Display the ‘Abort’, ‘Retry’,
Ignore and ‘Ignore’ buttons
vbYesNoCancel 3 Display the ‘Yes’, ‘No’, and
‘Cancel’ buttons
vbYesNo 4 Display the ‘Yes’ and ‘No’
buttons
vbRetryCancel 5 Display the ‘Retry’ and

‘Cancel’ buttons

When a user clicks a button in a message box, their action
returns a value you can use to affect your code. For example,
a manager might get to decide whether a transaction earns a
bonus in addition to the usual commission. The button values
are shown in Table 11.2.

Table 11.2 Return values of message box buttons

Constant Value Description
vbOK 1 OK
vbCancel 2 Cancel
vbAbort 3 Abort
vbRetry 4 Retry
vbIgnore 5 Ignore
vbYes 6 Yes

vbNo 7 No

The code to create a message box with ‘Yes’ and ‘No’ buttons
and then to calculate commission plus bonus (if any) due on a
sale would be:

Sub CommissionPlusBonus ()
Dim curSale As Currency

Using built-in functions and statements 191

Display a
message box
(cont.)

£
See also

For more information on
If. . Then.ElselIf
statements, see Chapter 12.

Did you know?

To create a message box

with just an ‘OK’ button, set
the buttons argument to ‘0’
or leave it blank.

192

Dim curCommission As Currency
Dim curBonus as Currency

Dim strPromptl As String

Dim strPromptAll As String
Dim intBonus as Integer

curSale = ActiveCell.Value
intBonus = MsgBox (“Bonus due?”, vbYesNo)
If intBonus = 6 Then

curCommission = curSale * 0.2
Else: curCommission = curSale * 0.15
End IfstrPromptl = “The commission due

for this sale is: £”
strPromptAll = strPromptl &
curCommission & “.”

MsgBox (strPromptAll)
End Sub

Finally, you can set the title to appear on the message box’s
title bar. That value won’t usually change, but you could still
assign its value to a variable to make the MsgBox statement
shorter. You should also use parameters, rather than
arguments, to specify the MsgBox statement’s attributes. As
an example, you could use the following statement:

MsgBox Prompt:=strPromptAll,
Buttons:=vbYesNo, Title:=“Commission”

Running the previous code would generate a message box with
the title ‘Commission’, ‘Yes’ and ‘No’ buttons and a prompt that
reflects the value of variable strPromptAll.

F =)

Cammission 23

Your buyer's cormrmission for this itern iz £70,

One of the difficulties of programming in Excel VBA is Get data from an
incorporating user input into a routine that is underway. If you
create a worksheet that contains several cells clearly marked as InPUtBox
requiring user input, you can have the user enter their information

into worksheet cells and then run your code. Alternatively, if your

code is currently running, you will either need to direct the user to

enter data into specific cells and then click another button before

proceeding or capture that same data using an InputBox.

Like a message box, discussed in the previous section, an
InputBox displays a message you specify. The difference is that
there are controls within the box that can accept user input,
such as typed words or a cell range the user selects from the
active worksheet.

The Application. InputBox method can take several
parameters, but the three you will use most often are:
1 Prompt the text to display within the InputBox (required)

2 Title the text that appears on the title bar of the InputBox
(optional)

3 Type the type of InputBox to display (optional — InputBox
types are summarised in Table 11.3).

Table 11.3 Values for the TnputBox method’s Type parameter

Value Meaning

0 A formula

1 A number

2 Text (a string)

4 A'logical value (‘True’ or ‘False’)

8 A cell reference, as a Range object
16 An error value, such as #N/A

64 An array of values

Using built-in functions and statements 193

Get data from an
InputBox (cont.)

Get data from an InputBox
Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

curOffer =
Application.
InputBox
(Prompt:string,
Title:=string,
Type : =number)

194

As an example, suppose you require information about a
percentage discount to be applied it to a customer’s order. You
can gather that information using an InputBox and assign it to
a variable, as in the following code:

curOffer = Application.InputBox (“Please
enter your offer for the item.”)

If you wanted to add a title to the InputBox, you could do so as
follows:

curOffer = Application.InputBox (Prompt:=
“Enter an offer”, Title:= “Offer”)

E R

Enter an affer

l (8]4] | Cancel I

The two code examples shown earlier assume you want a value
such as a number or text string. If you want the user to identify
a range of cells using the InputBox, you need to assign the
proper value to the Type parameter. As shown in Table 11.3,
setting the Type parameter to 8 lets the user select a range of
cells. That code might look like this:

Dim rngValueRange as Range

Set rngValueRange = Application.
InputBox (“Select a range.”, Type:=8)
MsgBox (rngValueRange.Address)

Running this code displays an InputBox that accepts a selected
range as its input.

Get data from an
InputBox (cont.)

Page Layout Formu

L L O Z
& - A

Clipboard T | Fant

3

4

5

TI Select a range.

7 | |$astigcsal |
_g_i I (a4 I [Cancel]

Did you know?

The values you can assign to the Type parameter are
additive, meaning that if you want to allow a number (1)
or a text string (2), you can add them together to create
an assignment statement such as Type : =3.

Important “

If you set the Type parameter to 64, you must define
the variable to which you assign the InputBox’s value as
an array.

Using built-in functions and statements 195

Disp|ay the Any data you gather could provide valuable information about
your organisation’s performance, but you need to ensure you

current date know when the information was gathered. Updating a database
and time daily with last year’s information is not a sound business
practice.

To display the current date, use the statement Date (). If you
want to display the current date in a message box, you can use

Display the current date the following statement:

and time
Create a subroutine.

In the body of the subroutine,
enter code that follows one of
these patterns:

Date ()
Time ()

MsgBox (Date ())

hicrosoft Excel @

8/14/2012

Similarly, the code to display the current time is:

MsgBox (Time ())

Mlicrosoft Excel @

12:01:43 Prd

You can treat the date and time values as strings and combine
them into a single message box using the code:

H MsgBox (Date & ™ ™ & Time())
Did you know?

Microsoft Excel
The specific format =
displayed by the date and 8/14/2012 12:02:43 PM
time functions depends on
your computer’s regional
settings.

196

Dates are important, regardless of whether they refer to

the start of a project, the anniversary of an event or the
completion date of a future project. It's absolutely vital that you
communicate dates clearly, whether in your worksheet or any
your Excel VBA programs. The format you select for your dates
depends on your audience and industry standards, but you can
display dates in several formats using Excel VBA.

To display a date or time value in a specific format, use the
FormatDateTime method, which has the following syntax:

FormatDateTime (Cells (row, column),
format)

You must use the Cel1ls property, not the Range property,
to identify the cell that contains the date you want to display.
Note that the row comes first, followed by the column. You
must refer to the column by number, not letter. For example,
you refer to cell C1 (row 1, column 3) as:

Cells (1, 3)

The Format argument can take on one of five values, as
shown in Table 11.4.

Table 11.4 Constants used to specify date and time formats

Constant Description

vbGeneral Display a date and/or time. If there is a date

Date part, display it as a short date. If there is a
time part, display it as a long time. If present,
both parts are displayed

vbLong Display a date using the long date format
Date specified in your computer’s regional settings
vbShort Display a date using the short date format
Date specified in your computer’s regional settings
vbLong Display a time using the time format specified in
Time your computer’s regional settings

vbShort Display a time using the 24-hour format
Time (hh:mm)

4 Format a date

Format a date
Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

FormatDateTime
(Cells (row, column),
format)

Using built-in functions and statements 197

Format a date If cell C1 contains a time, you can assign that time, written in
the 24-hour format, to a string variable using this statement:
(cont.)

strTimeValue =
FormatDateTime (Cells (1,3), vbShortTime)

To display the time, create a message box that uses the
strTimeValue variable as its prompt:

MsgBox (strTimeValue)

kdicrosoft Excel @

14:15

Did you know?

You can determine the number of a column by

remembering the mnemonic EJOTY. E is the fifth letter
of the alphabet, J is the tenth, O the fifteenth, T the
twentieth and Y the twenty-fifth. Just find a letter close
to the column’s letter and count up or down as required.

198

Excel 2010 is ideally suited to handling numbers, but it is also Remove spaces
extremely effective at managing textual data. Whether your from a string

worksheets contain information such as product names or
descriptions, customer names and addresses or salutations
to be used as part of a mail merge program, you will find
surprising amounts of text in your worksheets.

To get the best results from Excel’s text-handling capabilities,
you should ensure that the text strings in your workbook
contain as few errors as possible. One of the most common
errors is for Excel string data to have excess spaces, whether
entered by people pressing the spacebar when they shouldn’t
or by transferring a file from another database format that
happens to include blank spaces with the data so that every
field contains values of the same length.

You can use three different VBA functions to remove spaces
from a string: Trim, LTrim and RTrim.

1 Trimremoves excess blank spaces from the beginning and
end of a string

2 LTrimremoves excess blank spaces from the beginning
(that is, the left end) of a string

3 RTrimremoves excess blank spaces from the end (that is,
the right end) of a string.

The syntax of each function is quite straightforward and follows
this pattern:

Trim(string)
You can also use a cell reference, such as:
Trim (Range (“cell”))

If the string is assigned to a variable, you can use the variable’s
name in place of the string or cell reference. If you specify the
string, you must enclose it within double quotes:

Trim (% commission due. ”)

Using built-in functions and statements 199

Remove spaces
from a string
(cont.)

Remove spaces from a string
Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

Trim$ (string)

200

One peculiarity of the Trim, LTrim and RTrim functions
is that they return a result of type Variant, rather than type
String. If you want to force these functions to return a
string, you can add a dollar sign ($) to the end of the function
name. Combining this code with a message box statement,
such as:

MsgBox (Trim$ (% Thank you for your
order. 7))

would return the following result shown in the figure.

hdicrosoft Excel @

Thank you for your order,

Did you know? n

None of the functions removes excess spaces from the
interior of a string. If there are multiple spaces within a
string’s text, these functions assume they are supposed
to be there.

Text strings, such as product names or stockkeeping units
(SKUs), often have quite a bit of information built into them.
For example, a vehicle identification number might contain
information about the make, year and model of that vehicle. If
you want to extract a specific part of that information from the
string, you can do so using VBA, as long as the data follows an
identifiable pattern.

You can use three functions to return portions of a text string:
Left, Right and Mid. The Left and Right functions
return a given number of characters from a string, starting
from either the left or right end. The basic syntax of the Left
function is:

Left(string, length)

The syntax for Right is exactly the same, except it counts
from the right end of the string. As an example, suppose

you have a value CA042908BU assigned to the variable
strProductID. If the first two characters represent the
product’s department, you can display them using this code:

MsgBox (Left (strProductID, 2))

hicrosoft Excel @

CA

Similarly, if the last four characters of the ProductID (those at
the right end of the string) represent the model and colour of the
product, you could assign them to a variable using this code:

MsgBox (Right (strProductID, 4))

4 Locate a portion
of a string

Locate a portion of a string
Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

Left(string, length)
Right (strProductID, 4)
Mid (strProductID,7,2)

Using built-in functions and statements 201

Locate a portion
of a string (cont.)

202

hdicrosoft Excel @

naeu

You can find a value from the middle of a string using the Mid
function, the syntax for which is different from, but similar to,
that for Left and Right:

Mid(string, start, count)
where:

B string is the string (a literal string, a variable or a range
reference)

B start is the character at which to start returning the value

B count is the number of characters to return, including the
first.

For example, if the value of strProductID were
CA042908BU, the following code would display the seventh
and eighth characters — 08:

MsgBox (Mid (strProductID, 7, 2))

hlicrosoft Excel @

ng

The Left, Right and Mid functions return Variant
values by default. If you want to force them to return strings,
add a dollar sign ($) to the end of the function name (such as,
Left$).

Many of the actions you will take in Excel workbook involve
data from several different sources. For example, a customer
order could contain information such as the customer’s first
name, last name and address, as well as the order amount and
any tax or postage due. If you want to create a confirmation
message, such as by using a message box, you will need to
combine those a several bits of information into a single string
to be displayed in the message box.

Combining bits of text into a single string is called
concatenation. Concatenation is handled in Excel VBA by using
the ampersand character (&). For example, you could assign
text to a string variable, a currency value to another variable
and combine those variables with other values into a single
message box prompt. For example:

Dim strPromptl as String

Dim strPromptAll as String

Dim curBuyerCom as Currency

curBuyerCom = ActiveCell.Value * 0.07
strPromptl = “Your buyer’s commission
for this item is: £”

strPromptAll = strPromptl & curBuyerCom
& N7

MsgBox (strPromptAll)

r =

hAicrasaft Excel @

YWour buyer's cornrmission for this itern is £70,

Concatenate
strings

Concatenate strings
Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

strFullString
= strStringl &
strString2 & ..

Did you know?

You can also use the ‘&’
character to concatenate
values in worksheet
formulas, such as =C2 & C3.

Using built-in functions and statements 203

Managing code using
logical constructs

Many Excel VBA routines are straightforward — when you run
them from the Macros dialog box or by clicking a worksheet
object, they execute their code and the result appears in your
workbook. As your workbooks become more complex, you will
no doubt find that you must decide when a macro should run
and, in some cases, which of several paths it should take. In
this chapter, you will learn how to control your VBA code using
logical constructs such as the For..Next and For..Each
loops, I£..Then statements, Case statements and other
techniques.

Create a For..Next loop
Create a For...Each loop

Create an If..Then..ElseIf
statement

Create using a Case statement
Create aDo loop

Create a Do..While loop
Create a Do..Until loop

Call another macro from within
your code

Refer to objects using awith...
End Wi th statement

Managing code using logical constructs 205

Create a For...
Next loop

Create a For..Next loop

Create a subroutine.

In the body of the subroutine.

a. create a For..Next loop

b. create a For..Next loop
with a Step parameter.

Did you know?

If you have trouble moving
through every element in an
array using a For..Next
loop, remember that arrays
are numbered from zero in
Excel VBA.

206

Much of the code you write in Excel VBA will be executed once in
a subroutine. For example, you could display a message box with
the name of a customer, find the date a delivery is due or look up
the wholesale price of an item from a distributor. If you do need to
repeat a segment of your code, perhaps looking up multiple prices
or customer names, you can do so using a For..Next loop:

For counter = start To finish
Code
Next counter

The loop structure begins at the start value, executes the code
in the body of the loop, increases the counter value by one, then
returns to the For statement, where the counter value increases.
The process repeats until the counter exceeds the finish value.

For example, you might have a series of five prices in cells
A2:A6. If you want to read those values into a VBA array, you
could do so using this code:

Dim curPrices(4) as Currency

Dim intCounter as Integer

Range (“A2”) .Activate

For intCounter = 0 To 4

curPrices (intCounter) = ActiveCell.
Offset (intCounter, 0) .Value

Next intCounter

By default, each step in a For..Next loop increases the
counter value by one. You can move through a For..Next
loop in different increments by specifying a Step value. For
example, you could display every other element in an array by
using a Step value of two:

For intCounter = 0 To 4 Step 2
MsgBox (curPrices (intCounter))
Next intCounter

If you'd like to work backwards through an array, you can make
the start value larger than the finish value and specify a negative
Step increment:

For intCounter = 4 To 0 Step -1
MsgBox (curPrices (intCounter))
Next intCounter

For..Next loops are useful, straightforward code constructs
that let you repeat your code a set number of times. The
difficulty arises when you don’t know (or don’t want to take the
time to discover) how many times you want to repeat the code.

As an example, suppose you want to add the string ‘2012’

to every sheet name in a workbook. It’s certainly possible to

use the Sheets collection’s Count property to discover

the number of sheets in a workbook, but you then have to
assign that value to the For..Next loop’s counter variable.
Fortunately, there is a way to step through a collection of objects
without using a counter. That technique is the For...Each loop.

The basic structure of the For...Each loop is as follows:

For Each element In collection
Code
Next element

As a simple example, suppose you have an array named
curPrices and want to display each value in a message
box. Rather than count the number of elements in the array
and use that result in a For..Next loop, you can use a For...
Each loop to display each value:

Dim var as Variant

For Each var in Collection
MsgBox (var)

Next var

When you use a For..Each loop to refer to objects, such as
workbooks or worksheets, you must define object variables to
represent them in the loop. To return to our example, to use VBA
code to add the string ‘20712’ to the end of every worksheet’s
name in the active workbook, you could use this subroutine:

Sub WorksheetNames ()
Dim wbk As Workbook
Dim wks As Worksheet

Set wbk = ThisWorkbook

For Each wks In wbk.Worksheets
wks.Name = wks.Name & “2012”

Next wks

Set wbk = Nothing

End Sub

Managing code using logical constructs 207

Create a For...
Each loop

Create a For..Each loop

Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

Dim var as Variant

For Each var in

Collection
<action>

Next wvar

Did you know?

Using a variable of type
Variant as your For...
Each loop counter lets you
refer to any type of data,
including objects such as
workbooks or worksheets.

Createan If..
Then statement

Create an If..Then..
ElseIf statement:

Create a subroutine.

In the body of the subroutine,
enter code that follows one of
these patterns:

a. If..Then on a single line.

b. If..Then..Else, where
Else appears on its own
line.

Cc. If..Then.ElseIf..
Else, where ElseIf and
Else appear on their own
lines.

208

Life is rarely simple, especially when your affairs have
progressed to the point where you require VBA to customise
the workbooks you use to track them. If the procedure you
want your workbook to follow varies according to the data

it contains, you can use I£..Then statements to determine
which path to follow.

Excel VBA includes several types of I£..Then statements. The
first variation is the II£ function, which is an implementation
of the workbook function IF. The syntax for the II£ function is
exactly the same as that of the workbook function:

IIf(test, value_if true, value_if false)

As an example, you might want to grant 6 per cent commission
for any sale greater than £500 and 4 per cent otherwise. To
calculate that commission based on the value in the active cell,
you could create a subroutine using the II£ function:

Sub CalculateCommission ()

Dim curSaleValue as Currency

Dim curCommission as Currency

curSaleValue = ActiveCell.Value

curCommission = IIf(curSaleValue>

500, curSalevValue * 0.06, _
curSaleValue * 0.04)

MsgBox (“£” & curCommission)

End Sub

hdicrosoft Excel @

£60.06

The best time to use the II £ function is when you have a
working IF formula in a worksheet and want to copy it over
directly — with the caveat that any cell references from the
formula must be updated so they work in VBA. That said,
complex or nested IF formulas can be hard for humans to
read. If you have a complex IF formula or if you want to create
a new conditional statement in VBA, it's much easier to use the
If..Then construction.

The basic form of the I£...Then construct asks if a condition Createan If..

is true. If it is, the routine runs the code within the construct;

otherwise, it does nothing. Then statement
(cont.)

If test Then action

For example, you could examine the value of a sale and, if it
exceeds a threshold level, display a message indicating that the
sale qualifies for a bonus.

Sub OnelLineIfThen ()

If ActiveCell.Value >= 1000 Then MsgBox
(“Sale qualifies for bonus.”)

End Sub

If you require a bit more flexibility, such as executing separate
sets of instructions based on whether the condition is true or
not, you can use an If..Then..Else statement to manage
your program’s logic:

If test Then
Code if the condition is true
Else
Code if the condition is false
End If

Sub OneElse ()
Dim curCommission as Currency
If ActiveCell.Value >= 1000 Then
curCommission = ActiveCell.Value *
0.06
Else
curCommission = ActiveCell.Value
* 0.05
End If

MsgBox (“£” & curCommission)
End Sub

In the same way that you can manage true or false conditions
using an If..Then..Else construction, you can manage
three or more conditions using an I£..E1lseIf construction.
The E1seIf keyword, which can be repeated, lets you
establish multiple conditions:

Managing code using logical constructs 209

Create an If..
Then statement
(cont.)

210

If conditionl Then
Codel

ElseIf condition2 Then
Code?2

ElseIf condition3 Then
Code3

Else
Code
End If

The canonical example for I£..ElseIf constructions is that
of calculating sales commissions based on sales amounts. For
instance, you could set differing commission rates for sales of
the £10,000, £5,000, £1,000 and below £1,000 levels.

Sub ElseIfExample ()
Dim curCommission as Currency

If ActiveCell.Value >= 10000 Then
curCommission = ActiveCell.Value *
0.08
ElselIf ActiveCell.Value >= 5000 Then
curCommission = ActiveCell.
Value * 0.07
ElselIf ActiveCell.Value >= 1000 Then

curCommission = ActiveCell.Value
* 0.06
Else
curCommission = ActiveCell.Value *
0.05
End If

MsgBox (“£” & curCommission)
End Sub

rlicrosoft Excel @

£800.08

Note that the E1seI£..Then lines are constructed in exactly the
same manner as If..Then lines. Also, as with I£..Then..Else
statements, the E1se keyword must appear on its own line.

Excel VBA offers two main ways to conditionally execute code:

If. Then constructions and Case constructions. The two
constructions have similar effects on your code, so which one
you use is largely a matter of taste. Some programmers find
that the Case Is syntax is easier to read for more than two
or three conditions, so they tend to use them when their code
must distinguish four or more cases.

The Case statement has the following general syntax:

Select Case variable
Case Is conditionl
Actionl

Case Is condition?2
Action?2

Case Else
Action else
End Select

You may have as many Case Is statements as you like but
only one Case Else statement, which must also be the last
statement in the Select Case structure. Code to calculate
sales commissions using a Case statement could take on the
following form:

Sub SelectRate ()

Dim curTotal As Currency
curTotal = ActiveCell.Value

Select Case curTotal
Case Is >= 10000

curCommission = curTotal * 0.08
Case Is >= 1000

curCommission = curTotal * 0.06
Case Is >= 500

curCommission = curTotal * 0.05

Case Else
curCommission = curTotal * 0.04
End Select

MsgBox (“Your commission is £” &
curCommission)
End Sub

Create a case
statement

Create a case statement
Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

Select Case

Case Is condition
(this line is repeatable for
different conditions)

Case Else

Did you know?

As with I£..Then
statements, Excel VBA stops
checking Case statement
as soon as it encounters a
true condition.

Managing code using logical constructs 211

Create a Do loop

Create a Do loop
Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

Do
Code
Test Then Exit Do
Code

Loop

For more information

on If..Then and other
conditional statements, see
elsewhere in this chapter.

212

For..Next and For..Each constructions, described earlier

in this chapter, let you repeat code as long as a counter variable
stays within a given range or until every member of a collection
has been touched by the code. If your conditions are more
variable, such as when you’re examining inventory or loading a
truck up to but not over a known capacity, you can use a Do loop.

A Do loop repeats a section of code until it encounters the
Exit Do statement, which causes the program to jump out
of the loop and execute the next instruction below the Loop
statement in the code module.

The Do loop has the following general syntax:

Do
Code
Test Then Exit Do
Code

Loop

Programmers can use an I£..Then or other conditional
statement to determine if the condition to exit the loop has been
met. For example, you could create a Do loop that locates the
first blank cell in column B of the worksheet named ‘Orders’.

Sub FindFirstEmptyDL ()

Worksheets (“"Orders”) .Activate

Range (“B1”) .Activate

Do
If ActiveCell.Value = “ Then Exit Do
ActiveCell.Offset (1, 0) .Activate

Loop

End Sub

The basic Do loop uses an internal construction, such as an Create a Do...
If..Then statement, to determine when to exit the loop by .

invoking an Exit Do statement. That construction is easy While IOOp
to understand, but it’s not as compact as it might be. One

alternative is to use a Do..While loop, which executes the code

within the loop once and checks whether or not a condition is

still True. If the condition is met, Excel executes the code within

the loop and repeats its check, either returning to the top of the

loop or continuing with the next line in the subroutine. Create a Do..While loop

The Do..While loop has the following basic syntax: Create a subroutine.
In the body of the subroutine,
Do enter code that follows this
Code pattern:
Loop While condition
Do
For example, you could find the total weight of packages to be Code

loaded on to a truck and keep adding to the list while the total . ey

. . Loop While condition
weight is less than or equal to 1000kg.

Sub LoadWeight ()

Dim sngTotalWeight as Single

Worksheets (“Loading”) .Activate

Range (“A2”) .Activate

sngTotalWeight = 0

Do
sngTotalWeight = sngTotalWeight +
ActiveCell.Value
ActiveCell.Offset (1, 0).Activate
Loop While sngTotalWeight + ActiveCell.
Value <= 1000
MsgBox (“Total weight is ” &
sngTotalWeight & “ kg.”)

End Sub
[kicrosaft Excel @-‘ Dld you kHOW?
You could add an I£..Then
Total weight is 600 kg. statement inside the Do...

While loop to alert you ifa
package has a listed weight
................ SR of more than 1000kg.

Managing code using logical constructs 213

Create a Do...
Until loop

Create a Do..Until loop
Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

Do
Code

Loop Until
condition

Did you know?

The Do..While and Do...
Until loops can have
equivalent behaviours, so
use the construction that
best fits how you want to
phrase the condition that
controls their function.

214

Loops that follow the Do..While pattern execute a block of
code once before checking whether or not a condition is still
True. If it is, the loop repeats, checks again and either exits the
loop or goes back to the top. The Do..Until loop is similar,
but it phrases the condition differently. If the condition, such as
a minimum value of items in a gift pack, has not been met, the
loop repeats. If it has, Excel steps out of the loop and executes
the next instruction in the subroutine.

The Do..Until loop has the following general syntax:

Do
Code
Loop Until condition

To return the example mentioned earlier, you could create a
routine that adds items to a gift basket until a minimum value
has been reached. The loop would track the value of each item
and exit when the minimum was reached.

Sub MakeBasket ()

Dim curTotalValue as Currency
Worksheets (“"Items”) .Activate
Range (“A2”) .Activate
curTotalValue = 0

Do
curTotalValue = curTotalValue +
ActiveCell.Value
ActiveCell.Offset (1, 0).Activate
Loop Until curTotalValue >= 50
MsgBox (“Total value is £” &
curTotalValue & “.”)
End Sub

hicrosoft Excel @

Total walue is £55,

One terrific feature of object-oriented programming is the
ability to write your code in a modular fashion. What modular
means in this context is that you can create a small, discrete
unit of code to which you can refer from other blocks of code
instead of recreating it every time you need its functionality.

For example, suppose you create a subroutine to display a
message box that contains the commission due for a sale.

Sub CalculateCommission (curTotal as
Currency)

Select Case curTotal
Case Is >= 10000

curCommission = curTotal * 0.08
Case Is >= 1000

curCommission = curTotal * 0.06
Case Is >= 500

curCommission = curTotal * 0.05

Case Else
curCommission = curTotal * 0.04
End Select

MsgBox (“Your commission is £” &
curCommission)
End Sub

Rather than write and rewrite this somewhat lengthy Case
statement whenever you need to calculate a commission,
you can call it from another routine by name. The following

subroutine takes the value from the active cell, displays it as the

sales amount, and then calls the CalculateCommission
subroutine listed above to display the commission due:

Sub DisplaySale ()
Dim curSale As Currency

curSale = ActiveCell.Value
MsgBox (“Sale value is £” & curSale)

CalculateCommission (curSale)

End Sub

Call another
macro from
within your code

Call another macro from within
your code

Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

RoutineName
(arguments)

Did you know?
In older versions of Excel
VBA, you had to use the

Call keyword to execute
another macro.

Managing code using logical constructs 215

Refer to objects
usingawith...
End With
statement

Refer to objects using a
With..End with statement

Create a subroutine.

In the body of the subroutine,
enter code that follows this
pattern:

With object
.Propertyl
.Property2..

End wWith

Did you know?

Recording a macro that
affects the workbook object
you want to control often
produces a With..End
With construct you can use
as a template for your code.

216

Excel is a vast and occasionally complicated program. Even

the most innocuous of objects can have numerous properties
associated with it. For example, a single worksheet cell has
numerous formatting options — one of which is the font used to
display the cell’s contents. The Font object, in turn, has numerous
properties of its own that you can affect, such as the name of the
font, its size, colour and whether to have outline or shadow.

To apply a series of formatting options using standard notation,
you would use a series of statements such as:

Selection.Font.Name = “Arial”
Selection.Font.Size = 11
Selection.Font.Strikethrough = False
Selection.Font.Superscript = False

Typing the Selection . Font leader for each line is time-
consuming and, thankfully, unnecessary due to the With..End
With construction:

With object.property
.propertyl = value
.property2 = value

End With

For example, if you wanted to format a cell’s text, you could do
so using the following code:

Sub FormatCell ()
Range (“A2”) .Select
With Selection.Font
.Name = “Arial”
.Size = 11
.Strikethrough = False
.Superscript = False
.Subscript = False
.OutlineFont = False
.Shadow = False
.Underline = xlUnderlineStyleNone
.ThemeColor = x1ThemeColorLightl
.TintAndShade = 0
.ThemeFont = x1ThemeFontNone
End With
End Sub

Debugging your VBA code

Introduction

Writing VBA code is a tricky business. VBA is a well-defined
language, but it's easy for human beings to make mistakes,
whether in code syntax, logic or the occasional spelling error.
Here, you'll learn various techniques to track your variables
throughout a subroutine’s execution, examine your code’s
behaviour step by step and handle errors that occur.

Execute code in the Inmediate
window

Set a breakpoint in your VBA code
Watch a value in a routine

Step through your code one line
at a time

Skip over a subroutine
Step out of a subroutine

Manage errors using an On
Error GoTo statement

Manage errors using an On
Error Resume Next
statement

Manage errors using an
On Error GoTo 0 statement

Debugging your VBA code 217

Execute code in
the Immediate
window

>

Execute code in the Inmediate
window

If necessary, in the Visual
Basic Editor, click View, then
Immediate Window to display
the Immediate Window.

Type the line of code you
want to execute and then
press Enter.

Did you know?

Alternatively, you can
press Ctrl+G to display the
Immediate window.

218

Several of the techniques you will learn in this chapter involve
stepping through a VBA procedure one instruction at a time.

If you are moving through a VBA procedure in this way, you
might want to check on the value of a variable or the address
of the active cell as you go. You can certainly create a MsgBox
statement to display the value of a variable at a given point,

but you will either have to add a message box every time you
want the value to be displayed or edit your code to change the
position of the statement.

Rather than add an instruction to your subroutine, you can type
it in the Immediate window. The Immediate window appears at
the bottom of the Visual Basic Editor; if it doesn’t appear, you can
display it by clicking View, then Immediate Window in the menu.

To use the Immediate window, type a single line of code in
the window, then press Enter. When you do, Excel executes
that code and displays the result. For example, you could type
the command MsgBox (ActiveCell.Address) inthe
Immediate window. When you press Enter, the Visual Basic
Editor will display a message box that contains the address of
the active cell in the immediate window.

) Microsoft Visual Basic for Applications - Commissions alsm - [Modulel (Code)] (B0 e =
il Eile fdit View Jnsem Format [ebug Bun Toals Sdddne Windew Help Type s question for hel r-8x

HER= Rl B

bo0o@ R 3R

@

Project - VEAProject
a3 a3

Bl [tceneraty

| [Totatsales

) Sheet (sheetl)

Properties - Sheetl

Sub Displayse
Dim curJale A

cur3ale = ket
MsgBox ("Salel
CalculateCann

M=gBox ("Botl
End Sub

|Sheet1 workshaet
Alchabetic | Categortzed |
a Sheet]
DiplayPogebresks False
esplayPRighkToleft Fakss
nablaAutoriter Faks
EnableC soulstion True
(EnableFormatConditionsC True:
EnsbleOutining False
EnsblePtvotTable Fals
e -

ledpe o

Hame Shestl
isaolarea
harclar AL nan

Micrasaft Becel [o]

083

{ale)

K.

=zl |
|| immediste

|| MsuBox thetivetell. Addeess)|

When you test a VBA routine, you might want to stop your
code executing without exiting the subroutine entirely. You
could display a message box containing a value of interest,
which is a very common and extremely useful technique, but
you could also define a breakpoint in your VBA code so you
can investigate the values assigned to any of your variables
without creating a message box for each one.

To add a breakpoint your code, display the module that
contains your subroutine then, in the vertical bar at the left
side of the code window, click next to the line where you want
to pause. Doing so displays a brick red circle in the bar and
highlights the line in your subroutine to indicate where your
code will stop executing.

| & Microsoft Visusl Basie for Applications - Commissions slsm [break] « [Module1 (Code)]

& Eile Edie \iew Jnsem Farmat Debug Bun Toolt fdddns Windew Help Type s question fork
@A BFH - @ Lnscol -

[tGanora =] [Tototseles =

Sub TotalSales() -

. A x
iME- - s LR e
Praject - VEAPraject x|
] L3)

e

E’I Shaet (Shastz)
Sheetd (Sheet3)

-8 ViAPToject (Commissions.xlsm)
Propertes - Modulel

lelpe « o

Dim curTotal Az Curcency
Sheeta(l) . Range (TAZ¥) .Activate
curTotal = 0O

Do

cusToval = cucToval + Aotivelell.Value
- 1.OEEseE (1, 0)

[Module1 Modula
ghebetk; | Catagortzed |

Modue]

Loop While AscivecCell.Value <> "7
HegBox (cucToval)

End Sub

Sub CalculateCommission()
Dim curTotal As Curcency
curTotal = ActiveCell.Value

RAsgBox ("Sale valus 18 £ & curTotal)

=] |

5

While your code is stopped, you can hover your mouse pointer

over any variable in your code to display a tool tip that contains

the variable assigned to the value.

When you've finished investigating your code, pressing the F5
key resumes the execution of the code. You can remove the
breakpoint by clicking its circle in the vertical bar.

Set a breakpoint
in your VBA code

<

Set a breakpoint in your
VBA code

In the vertical bar that runs
along the left edge of the code
window, click to display a
brick red circle that represents
the breakpoint.

Click a breakpoint circle to
remove it from the Visual
Basic Editor.

Did you know?

To halt your code’s
execution instead of
completing the run, click
Run..Break on the menu

bar or press Ctrl+Break.

Important

If your breakpoint occurs

inside a loop, it's possible
your code will stop more

than once.

Debugging your VBA code 219

Watch a value in
a routine >

Watch a value in a routine
Click Debug...Add Watch.

Type the name of the variable
you want to monitor in the
Expression box.

Click OK.

To manage a watch, do one
the following:

a. Right-click the watch and
click Edit Watch to display
the Edit Watch dialog box.

b. Right-click the watch
and click Delete Watch to
delete it.

220

When you create a complicated subroutine, it will often be
difficult for you to follow the values of specific variables as they
change during the code’s execution. You can use breakpoints
to halt your code and display the values you're interested

in. What’s more, breakpoints are particularly effective in
combination with watches.

In the Visual Basic Editor, a watch displays the value of
variables you identify. To create a watch, click Debug... Add
Watch on the menu bar. When you do, the Add Watch dialog
box appears.

Add Watch @
Expression:
Zancel
Contexk
Pracedure: |TotalSales -l e |
Moddle: |Modulel -]

Project: VBAProject

\Watch Tvpe

{* Wakch Expression

(" Break When Yalue Is True
(" Break When Yalue Changes

Type the name of the variable you want to monitor in the
Expression box at the top and click OK. Doing so causes
the Watches window to appear at the bottom of the Visual
Basic Editor.

You can create as many watches as you want. Then, when you
run your code, the Watches window displays the value of any
variable for which you have set a watch. Because subroutines
run very quickly, it’s best to set breakpoints in your code so
you can observe the values you're interested in at specific
points in the routine.

To edit a watch, right-click it in the Watches window and click Watch a value in
Edit Watch from the shortcut menu that appears to display the -

Edit Watch dialog box. The Edit Watch dialog box a routine (cont.)
is identical, bar the name, to the Add Watch dialog box. To

delete a watch, right-click it in the Watches window and click

Delete Watch.
] Microsoft Visual Basic for Applications « Commussions xsm « [Modulel (Code)] = e |
* Eilt Edie View [nser Fgrat [ebug Bun Jaoli fdddns Windaw Help Type 3 question for help -8 %
HET = R~ e e M o0 Ak NEE (7] g
Froject - VEAProject x| [Genorat) =] [Totatseles =]
3 - : E Sub TotalSales() =
) shestt (Sheatl) -
) Sheet2 (Shwet2) Dim cucToval As Curcency
Sheetd (Sheets) Sheets (1) .Range ("AZ") . Activate
i | ThisWor kbook, curTotal = 0O
-5 Moduler E Do
A Modie1
-8 VBAProject (Commissions.lsm) = curToral = curToval + Activelell.Value
Activecell.Offset(1, 0).Activate
Propertics - Modulel x|
[Faduler o = Loop While Activecell.Value <> "7
Aphabtic | Calegorized | MsaBor (oucTovall
Maduiel

e

Did you know?

You can resize the Watches window by dragging its
edges, just like other dialog boxes and panes in the
Visual Basic Editor.

Debugging your VBA code 221

Step through
your code one >

line at a time

Step through your code one
line at a time

Display a subroutine.

Press F8 to execute the next
line of code.

222

Programming in VBA is an exacting process. The VBA
interpreter does exactly what you tell it to, even if that’s not
what you meant for it to do. If your VBA code generates
unexpected results and you are unable to discover the source
of the error, you might need to step through your code one line
at a time to identify the problem.

To execute one instruction at a time, press the F8 key. Doing
so highlights the Sub statement at the top of the subroutine.
When you press F8 again, the Visual Basic Editor executes the
highlighted instruction and highlights the code on the next line.

] Microsoft Visual Basic for Applications « C n [break] - [Modulel (Code)] ===
il it fdit View Jnsem Format Debug Bun Toals Sddne Windew Help Type s question for hel - A x
HE =Rl s 9 oo HTFY - @ wicen =
Project - VBAProject x| [General] [Totaisal |
‘J. - - = Sub TotalSales() -
@ Sobver (SOLVER.XLAM) -
= ¥ VBAPruject {Commissions.sdsm) Dim curTotal s Currency
=423 Microsoft Excel Objects | Sheecs(1).Range("AZ") .Activace
W] sheety (Shast1) curTotal = 0
) Sheet2 (Sheet2) * b
Properties - Modulel -’-‘J curTotal = curTotal + hetivelell.Value
|Module1 Mode = Acvivecell.Oftser (1, O),Activate
Achabetc | catsgorzed | . .
T wop While ActiveCell . Value <>
A=gBox (CurTotsl)
End Sub
=] | _'JJ

You can continue to execute your code in this way by pressing
the F8 key. If you want to run your code to the end, press the

F5 key.

Did you know?

Click Run..Break or press Ctrl+Break to stop
executing the subroutine.

Did you know? E

The Visual Basic Editor doesn’t pause to highlight Dim
statements.

Moving through your code one line at a time by pressing the
F8 key is an extremely useful technique to help you identify
problems in your code. Unfortunately, the process can be
extremely slow for complicated routines or ones that contain
loops which repeat numerous times.

If your VBA code calls a subroutine that you are certain returns
a correct result, you can run the subroutine in its entirety and
stop before executing the next line in the main subroutine. For
example, suppose you want to call a subroutine that calculates
commissions from another subroutine. The code for those two
subroutines might look like this:

Sub CalculateCommission ()

Dim curTotal As Currency

curTotal = ActiveCell.Value

MsgBox (“Sale value is £” & curTotal)

Select Case curTotal
Case Is >= 10000

curCommission = curTotal * 0.08
Case Is >= 1000

curCommission = curTotal * 0.06
Case Is >= 500

curCommission = curTotal * 0.05
Case Else

curCommission = curTotal * 0.04
End Select

MsgBox (“Your commission is £” &
curCommission)
End Sub

4 Skip over

a subroutine

Skip over a subroutine
Press Shift+F8.

Debugging your VBA code 223

Skip over a

subroutine
(cont.)

224

The subroutine to call the commission calculator might look
like this:

Sub DisplaySale ()
Dim curSale As Currency

curSale = ActiveCell.Value

MsgBox (“Sale value is £” & curSale)
CalculateCommission

MsgBox (“Both routines completed.”)
End Sub

If you place the cursor in the DisplaySale subroutine,
pressing F8 will move you through its code one step at a

time. When the line to call the CalculateCommission
subroutine is highlighted, pressing Shift+F8 executes the entire
called subroutine but halts before executing the line below it, in

the DisplaySale subroutine.

Did you know?

Pressing Shift+F8 when the highlighted line of code
doesn’t call another subroutine has the same effect as
pressing F8 — the Visual Basic Editor simply executes
the next line of code.

As you become a more experienced VBA programmer, you Step out of a
will create code that calls one or more subroutines. When you -
subroutine

debug your code, you'll often find it useful to move through
the instructions step-by-step by pressing F8. For example, you
could create code that uses a called subroutine to calculate
sales commissions.

Sub DisplaySale ()

bim curSale As Currency Step out of a subroutine

curSale = ActiveCell.Value Press Control+Shift+F8.
MsgBox (“Sale value is £” & curSale)

CalculateCommission (curSale)

End Sub

As you move through your code, you might find that, instead
of skipping over a subroutine, you have pressed F8 and
entered info the subroutine. If the highlighted instruction is
within the subroutine and you would like to execute the rest of
the subroutine without stopping, you can do so by pressing
Control+Shift+ F8. When you do, the Visual Basic Editor will
run the rest of the subroutine, halting only when it returns to

the body of code that called subroutine.
Did you know? E

Pressing Control+Shift+F8 when the highlighted line of
code isn’t within a called subroutine has the same effect
as pressing F8 — the Visual Basic Editor simply executes
the next line of code.

Debugging your VBA code 225

Manage errors >
using an

On Error

GoTo statement

Create an On Error GoTo
statement

Create a subroutine.

In the body of the subroutine,
do the following:

a. Write a line of code such
aSs On Error GoTo
label:

b. Write Exit Sub on the
line above the line label.

c. Write the line label,
followed by a colon.

d. Complete the error-
handling code.

226

Writing Excel VBA routines can be a complicated process.

As you become more familiar with the language and gain
experience as a programmer, you will write increasingly
complex code. This complexity all but guarantees you’ll make
some mistakes. There is also the very real possibility (even
certainty) that your colleagues will make mistakes when
interacting with your code. For example, you might ask them
for a number representing a currency amount and they include
the currency symbol or a comma when they shouldn’t.

If someone enters a text string when your code expects a
number, the Visual Basic Editor will exit the subroutine and
display an error message.

hicrosoft YWisual Basic

Run-time error '13"

Type mismatch

End Help

Rather than allow your macro to come to a crashing halt, you
can add code to a subroutine to handle these errors more
gracefully. One way to do that is to include an On Error
GoTo statement. This statement has two components. The
firstis the On Error GoTo statement itself, which identifies
the line of code the subroutine should jump to when an error
occurs. The second part is a line label, followed by a colon,
that corresponds to the label in the On Error GoTo. For
example, you could have the line label Handler: identify your
error-handling code:

Sub CheckError () Manage errors
Dim lngNumber As Long

On Error GoTo Handler: using an
IngNumber = InputBox (“Enter a number.”) On Error
MsgBox (lngNumber)

Exit Sub GoTo statement
Handler: (contJ

MsgBox (“Enter the number without
currency symbols or commas.”)
End Sub

In most cases, error-handling code appears at the end of the
subroutine with an Exit Sub line just above the line label. If
you missed out the Exit Sub statement, which causes the
Visual Basic Editor to stop executing subroutine’s code, the
subroutine would run the error-handling code even though it’s
not needed.

If the user enters a text string into the input box created in
the subroutine, Excel would display the message box defined
within the error-handling code.

'lMicrosuft Exccel n

Enter the numberwithout currency spnbaols or commas,

Debugging your VBA code 227

Manage errors >
using an

On Error

Resume Next
statement

Manage errors using an On
Error Resume Next
statement

Create a subroutine.

In the body of the subroutine,
type On Error Resume
Next on its own line.

Important

If you type the On Error
Resume Next statement
below the code to be
executed, the Visual Basic
Editor uses the default
error-handling mode
(showing dialog boxes
describing the error) until it
encounters the On Error
Resume Next statement.

228

Handling errors in your VBA code can be difficult, especially
early on in the programming process when you’re not certain
everything is working correctly and it’s hard to identify their
causes. If you want the Visual Basic Editor to continue to
execute your code even though it has encountered an error,
you can use the On Error Resume Next statement. If
you put the statement at the top of a subroutine, the editor will
ignore any errors and continue to run your code, starting with
the line after the line that caused the error.

Sub CheckError ()
Dim lngNumber As Long
On Error Resume Next

IngNumber = InputBox (“Enter a number.”)
MsgBox (lngNumber)
End Sub

Using the On Error Resume Next statement might seem
like an easy way to ensure that all of the code after the error

is running correctly, but you should be aware that errors tend
to cascade. If the offending instruction provides a value that’s
used later on in your code, you won'’t get a true test of your
code’s accuracy.

Running the above subroutine and typing the letter ‘a’ into the
input box causes Excel to display a message box that contains
the number zero. The message box contains a zero because the
letter ‘a’ is not an acceptable value for variables of type Long,
butthe On Error Resume Next statement has turned off
error messages. Therefore, Excel displays the value zero, which
represents no value or, as in this case, a non-numerical value.

kicrosoft Excel @

o

You can change the default Visual Basic editor error-handling
behaviour using one of two statements: On Error GoTo or
On Error Resume Next. If you have implemented either
of those methods at the start of your code module, but want to
change back to the Visual Basic Editor’s default error-handling
mode, you can do so using the statement On Error GoTo 0.

The benefit of switching back to the default error-handling
mode, which halts code execution and displays an error
message, is that you can start by implementing error handling
for a portion of your code where potential errors are reasonably
well-defined. Then, when you get to a portion of your code

in which you have less confidence, you can switch back to

the default error-handling mode and have Excel display error
messages and highlight the offending line of code so you have

a better chance of discovering and fixing the error.
Did you know? E

If you want to use Excel’s default error-handling mode,
you don’t need to add the On Error GoTo O line to
your subroutine — the Visual Basic Editor will use that
mode automatically.

4 Manage errors
using an
On Error GoTo
0 statement

Manage errors using an On
Error GoTo 0 statement

Create a subroutine.

In the body of the subroutine,
type On Error GoTo 0
on its own line.

Debugging your VBA code 229

Using Excel events in
your VBA code

Introduction

Excel VBA gives you a great deal of control over your
workbook. You can also use events to determine what
actions, if any, Excel takes when your colleagues undertake Run a procedure when you open
specific actions. For example, you might want to verify that a workbook

your colleague really wants to close a workbook if certain
information has been entered into it.

Display the available events

Run a procedure when you close

a workbook
The subroutines described in this chapter all use the private Run a procedure when you save a
keyword at the beginning of the Sub declaration. Doing so workbook

limits the event handler’s scope to the current workbook, which
has the benefit of preventing any other open workbooks from
running the code when you don’t want them to.

Run a procedure when a cell
range changes

Using Excel events in your VBA code 231

Display the
available events

>

Display the available events

If necessary, in the Visual
Basic Editor, click View, then
Object Browser on the menu
bar to display the Object
Browser.

To limit the classes displayed,
click the Project/Library
control’s down arrow and
click Excel.

Click the object for which you
want to view available events
in the Classes panel to display
the properties, methods and
events for that class.

232

In the Excel 2010 object-oriented programming model, Excel
objects have three different types of attributes: properties,
methods and events. A property is some aspect of an object,
such as the object’s name. A method is something the object
can do, such as print or export its values to a text file. An event
is an action the object recognises, such as changing the value
in a cell or a user clicking a hyperlink. AlImost every Excel
object has one or more events associated with it.

In the Object Browser, events are indicated by a yellow
lightning bolt. When you click an event, its description appears
at the bottom of the Object Browser.

1 Micro Basic for e o]
‘ File Edit \iew Jniet Fgomak Debug Bun Tools Adddns Window Help Tywe o question for helg L R
‘HE-d « 4 pouom A NS 7] E
TR = | [anteier] o] | W]] ®]
@3 3 -] [< Al
Classes Mearnbers of Workbook!
1 | veageBaks s | B MBS
T walls F AdermiExpart
& wateh F mdnrdmiimport
& watchas [eF Application
o WinbOpbions & ApplyThome
. 0 e Autol quancy
X & h i hanges
=] |85 window # BefareClosn
&F Windows: # BifarPrint
@ornoo] |7
413 ¥ il
&% workbooks # Bofarnimiimport
& WarkfowTank # Broaklink
= || |48 warknaowTask [EF BullinDocurneniPropamins
& P o
&5 WorkilowTemplates & CanChaokin
& Workshont # Changeflipdccnss
F . ge
of Workshonts # Changelink
a8 wiorkshanfiow e Chans
: = o B Chiche
Ervvelopamiable Fakn W uetinnTne " | Chrrkin
Finsd Fake Event BeforeSavel Saved sl As Bookean, Cancel As Boolear)
FoneFulCakulstion Fak Member of Excal Workiook
mevm- ak

Did you know?

Alternatively, you can press F2 to display the Object
Browser.

Did you know?

To display the Help file associated with an event, click
the event and then click the Help button, which has a
question mark on its face.

Previously, when you created a VBA subroutine or function, 4 Run a procedure
you did so by inserting a code module into your workbook’s

VBA project. These code modules are available from anywhere when you open a
within your workbook or any other open workbook if the workbook
routines are public. Events, on the other hand, are tied directly

to specific workbook objects, such as worksheets or even the

workbook itself.

If you want to run a specific subroutine when your workbook Run a procedure when you
is opened, you need to open the code module that is tied open a workbook
directly to the workbook. To do that, you double-click the
ThisWorkbook item in the Project Explorer. If the Project In the project window, double-
Explorer isn’t currently open, you can display it by clicking click the ThisWorkbook item.
View, then Project Explorer on the menu bar. Create a subroutine that starts
with the statement Private
& Microsoft isual Basic for Applicaions - Commis - [ThsWarkbook (Cadel] =5 e Sub Workbook Open ().
il File Edit Miew [aser Farmat Debug Bun ool Adddns Window Help Type s question for hely .- 8 x

4 LAN 9 sy A SEY 5 @ o " [} Type the code to be run when
e 3 s =) = the workbook opens between

T the Sub and End Sub
statements.

] felpe o

4104 - Al0kplay S
OusplayirkCoevmants True

DoNCtPromptForConvert, False
EnsblanutcRecover True

ReCrypRiorPTOder

ErmelopeVisbis Faks
Final False
[ForceFulCalodation False.

mmmmﬁauff - |=m el B

When you double-click the ThisWorkbook item, the Visual
Basic Editor opens the code module associated with the
workbook. You can then create subroutines that run whenever
a given event occurs. For example, if you want to run a routine
whenever the workbook is opened, you would use the following
code structure:

Using Excel events in your VBA code 233

Run a procedure
when you open a
workbook (cont.)

234

Private Sub Workbook_ Open ()
MsgBox (“This workbook contains
commission data.”)

End Sub

Note that the Sub declaration at the top of the subroutine has
the word Sub followed by the object named Workbook, then
an underscore, then the name of the event that triggers the
code. The example above displays a message box whenever the

workbook is opened.

Did you know?

To display the Project Explorer by using a keyboard
shortcut, press Ctrl+R .

Important “

You may only have one subroutine triggered by a
specific event per workbook, but you may have multiple
actions within the event code.

If you work in a business, you probably manage confidential
data, such as salary or sales information. If your corporate
compliance practices require that you remind your employees
of data sensitivity whenever they close a workbook, you

can do so by attaching code to the Workbook object’s
BeforeClose event.

To do that, you double-click the ThisWorkbook item in the
Project Explorer. If the Project Explorer isn’t currently open,
you can display it by clicking View, then Project Explorer on the
menu bar. Then, in the code space that appears, type a routine
that follows this pattern:

Private Sub Workbook BeforeClose (Cancel
As Boolean)

MsgBox (“Remember the data is
confidential.”)

Answer = MsgBox (“Do you really want to
close the workbook?”, vbYesNo)

If Answer = vbNo Then Cancel = True
End Sub

Note that the Sub declaration statement is a bit different than
that used for the Open event. The Private Sub keywords
lead off the line, followed by the name of the object, in this case
Workbook, then an underscore character and the name of
the event. That information is followed by the words Cancel
As Boolean in parentheses. The phrase Cancel as
Boolean appears at the end of the event code Sub declaration
so the routine can detect whether the close operation has been
cancelled or not. If it has, then the code either won’t run at all
or won’t run again as a result of the triggering action that just
occurred. This code displays a message box asking if the user
truly wishes to close the workbook. If not, they can click No to
cancel the operation.

kicrosoft Excel E3

Do you really want to close the warkbook?

4 Run a procedure
when you close a
workbook

Run a procedure when you
close a workbook

In the Project Explorer
window, double-click the
ThisWorkbook item.

Create a subroutine that starts
with the statement Private
Sub Workbook__
BeforeClose (Cancel
as Boolean).

Type the code to be run
before the workbook closes
between the Sub and End
Sub statements.

Did you know?
If your BeforeClose

event code changes the

contents of your workbook,
you won'’t be able to review
the changes before the
workbook closes.

Using Excel events in your VBA code 235

Run a procedure
when you save a
workbook

Run a procedure when you
save a workbook

In the project window,
double-click the
ThisWorkbook item.

Create a subroutine that
starts with the statement
Private Sub
Workbook BeforeSave
(ByVal SaveAsUI as
Boolean, Cancel as
Boolean).

Type the code to be run
before the workbook closes
between the Sub and End
Sub statements.

236

Saving a workbook is rarely a controversial act. In most cases,
you should encourage your colleagues to save their data as
frequently as is practical. Even so, there might be occasions
where you want to verify if a user really wants to save their data.
For example, an accountant might keep a strict log of every
change made to every workbook. If that’s the case, then saving
the workbook commits those changes to the archive. Again, it's
not an unexpected result, but it might be something that you, as
a programmer, wish to bring to your colleagues’ attention.

To create code using the Workbook_BeforeSave event,
use the following template:

Private Sub Workbook BeforeSave (ByVal
SaveAsUI as Boolean,Cancel as Boolean)
Answer = MsgBox (“Are you sure you want
to save your data?”, vbYesNo)

If Answer = vbNo Then Cancel = True
End Sub

The Sub declaration accepts two parameters, passed by
value. The first is SaveAsUI, which indicates whether or
not Excel should display the SaveAs dialog box. This action
might occur if the user is saving the workbook for the first
time. The Cancel argument has the same role as in the
BeforeClose event. You can ask if the user truly wishes
to save the workbook. If so, they can click the Yes button to
complete the operation.

hicrosoft Excel £3

Are you sure you want to save your data?

The event procedures described earlier in this chapter are all
triggered by events at the workbook level. You can also create
procedures that are triggered by events at the worksheet level.
To create an event procedure triggered by a change in the
worksheet, you open the Project Explorer and then double-click
the worksheet you want to use to open a code module for that
worksheet. As an example, you could create event-handling
routines for the worksheet named Sheet1.

1 Microsaft Vizual Basic for Appli = Gy jons.dsm « [Sheetd (Code)]
il File [dit Miew [nset Fomeat Oebug Bun Toaks AddTns Window Help Tysea question for help S
HE=R" . # 9 P NFW - @ Wil

x|

Project - VAProject [Generah 7| |meciarstions) 2|
oE £ 1 .

B3 Mirosolt Excel Objects
] Sheet (Shoet1)
U] Shast2 (Sheet2)

Froperties « Sheetl x|
|Sheet1 workshest |
Aohabetic | catagorzed |
[e |
ClgplayPayeBresks False
Désplayfight Toleft Falsa
Ensbistutorier False
EnsbleCalculation Trus

j=ja] | 15 g

One of the most common events you will use at the worksheet
level is the Change event. This triggers whenever a substantive
change is made to a worksheet. For example, you might wish

to keep a record of all edits made to a worksheet. You create a
Change event using code that follows this structure:

Private Sub Worksheet_Change (ByVal
Target As Excel.Range)

MsgBox (“"The cell range ” & Target.
Address & “ was updated.”)
End Sub

Run a procedure
when a cell
range changes

<

Run a procedure when a cell
range changes

In the Project Window,
double-click the item
representing the worksheet to
which you want to assign the
event.

Type the first line of the event
code as Private Sub
Worksheet Change
(ByVal Target As
Excel.Range).

Between the Sub and End
Sub lines of code, enter
the instructions you want
executed when a cell range
changes on that worksheet.

Using Excel events in your VBA code 237

Run a procedure The code within the body of the subroutine could be anything.
In this case, the code simply shows the address of the cell

when a cell range that was changed.
range changes
(cont.) Microsoft Excel @

The cell range $C82 was updated,

For your information o

Excel is somewhat inconsistent in which actions do or
don’t trigger the Change event. Some of the quirks

are that changing a cell’s format doesn’t trigger the
Change event, but clicking the Clear Format button on
the Home tab of the ribbon does. Inserting, editing or
deleting comments don’t trigger the Change event, but
making changes using the Excel spellchecker will. You
need to learn from experience and research how Excel
handles the specific events you want to use.

238

Gathering data with
UserForms

Introduction

Many Excel users take pride in the worksheets and workbooks
they develop, and rightfully so. The most effective solutions
combine data entry and presentation seamlessly, letting users
do their work in the shortest time possible so they can get on
with other tasks. Even solutions that fail to reach this status
can be exceptionally useful for the designer and his or her
colleagues.

From a data entry standpoint, though, very little compares to
the effectiveness of UserForms. A UserForm, which you
create in the Visual Basic Editor, provides a simple interface
for data entry. Among the many possibilities open to you

are that you can allow users to enter any data they wish into
a TextBox, restrict their entries to those presented in a
ListBox or combine the two approaches in a ComboBox.
You can select the best approach for an application and
implement it quickly.

Here, you will learn how to create a UserForm, add controls
to it, write UserForm data to a worksheet and manage the
UserForm.

Create a UserForm
Add a TextBox t0 a UserForm
Add a ListBox to a UserForm

Add a comboBox to a
UserForm

Add an option button to a
UserForm

Add graphics to a UserForm

Add a SpinButtontoa
UserForm

Create a multipage or multitab
UserForm

Write UserForm datato a
worksheet

Display, load and hide a
UserForm

Gathering data with UserForms 239

Create a >

UserForm

Create a UserForm

In the Visual Basic Editor,
click Insert, then UserForm
on the menu bar.

If desired, edit the
UserForm'S Name
property to change the name
you use to refer to it in your
code.

If desired, edit the
UserForm's Caption
property to change the
caption that appears on the
UserForm’s title bar.

Important “

A UserForm's name

must start with a letter
and may only contain
letters, numbers and the
underscore character.

240

So far in this guide, you have created code modules to store
your VBA code. When you create a UserForm, you also
create an underlying code module that contains the subroutines
that define the UserForm objects’ behaviours.

To create a UserForm, press Alt+F11 to display the Visual
Basic Editor, then click Insert, then UserForm on the menu bar
to create a blank UserForm.

%\ﬁi}ﬂﬂﬁiﬁﬁﬁﬁdliﬁﬁﬁ%&m“ sionsadam - [UserForml {UsesForm)] ﬁ

Properties - UserFormd

[UserFarml UserFam

Hphaetic | Caregorized |

A UserFormis like any other Excel object, so you can
change its size by dragging any of the handles on its sides or
corners. Dragging a handle in the middle of a side changes the
UserForm’s height or width, while dragging a handle at a
UserForm’s corner changes both height and width.

By default, your UserForm has a name such as UserForml,
representing the UserForm’s place in the UserForms
collection. You can change a UserForm’s name by editing

its Name property. The Name property is the internal
representation of the UserForm (that is, how you will refer to
it in your code), so you should consider putting the letters ‘frm’
at the start of the name to indicate that it represents ‘a form’.

The word or words that appear on a UserForm’s title bar
are controlled by the Caption property. To change the
UserForm’s caption, click the UserForm and then, in the
Properties panel, click the box next to the Caption property
and edit its value.

With the UserForm in place, you can now add controls and
the code to power them within your Excel workbook.

One of the most useful capabilities you can offer on a
UserForm is that of being able to type their name, address

or other information into a control. In Excel VBA, that control is
the TextBox. To add a TextBox {0 a UserForm, display
the Toolbox, click the TextBox button, then, in the body of

the UserForm, drag to define the textbox. After you create the
TextBox, a list of its properties appears in the Properties panel.

Properties - TextBoxl x

TextBoxl TextBox ;I
Alphabetic ICategu:urized

{Mame) TextBoxl -
AutaSize False i
AukoTab False

Aukowordselect | True |
BackColar [] aHa00000058 3
Backstyle 1 - fmBackstyleOpaque
EorderColor B &HE00000068:

BaordersStyle 0 - fmBordersStyleMone
ConkrolSource

ControlTipText

DragBehaviar 0 - FmDragBehaviorDisabled
Enabled True

EnterFieldBehaviar O - FmEnterFieldBehaviorSelecl
EnterkeyBehavior False

Fant Tahoma
ForeColor B =Hs00000058:
Height

18 -

There are a number of properties you might want to edit. The
first is the Name property, which appears at the top of the list as
(Name). You should change the control’s name to reflect the data
it will contain. For example, you could assign the name Cust__
First_ Name t0 a TextBox meant to accept a customer’s
first name. The control’s name must start with a letter and may
contain only letters, numbers and underscore characters.

You can also add a label to identify the control and indicate the
data to be entered. To add a label, display the Toolbox, click
the Label button and drag to define the label in the body of the
form. Position the label so it’s in line with the TextBox and
then change the label’s Caption property so it contains the
text required to identify its related control.

4 Add a TextBox

to a UserForm

Add a TextBox to a
UserForm

Open a UserForm and
then, in the Toolbox, click the
TextBox button.

Drag on to the body of the
UserForm to define the
TextBox.

If desired, change the
TextBox’'s Name property
to change the name by which
you refer to the TextBox in
your code.

If desired, create a label, edit
the label’s caption property
to change the text it displays
and position the label next to

the TextBox.

A control’s name may not
be a reserved word, such
as ‘Variant’ or ‘Sub’.

Important

Gathering data with UserForms 241

Add a ListBox >

to a UserForm

Add a ListBox to a
UserForm

Open a UserForm and
then, in the Toolbox, click the
ListBox button.

Drag on to the body of the
UserForm to define the
ListBox.

Define an Excel table and type
=tablename in the ListBox’s
RowSource property box.

If desired, change the
Listbox’s Name property
to change the name by which
you refer to the ListBox in
your code.

If desired, create a label,
edit the label’s Caption
property to change the text
it displays, then position the
label next to the ListBox.

242

A TextBox, described elsewhere in this chapter, lets a user
enter text into the control without restriction. Entering text
with no guidelines is useful, but it also opens up the possibility
of multiple spellings or misspellings for the same term. By
contrast, a ListBox requires a user to select a value from a
predetermined list. ListBoxes increase data entry accuracy
at the expense of user flexibility.

To create a ListBox, display a UserForm in the Visual
Basic Editor, display the Toolbox, click the ListBox button,
then drag to within the body of the UserForm to define

the ListBox. When you do, the ListBox appears on the
UserForm and its properties appear in the Properties panel
on the left side of the Visual Basic Editor window.

A ListBox control draws its values from a range of
worksheet cells. To assign a cell range to a ListBox, you
enter the range’s definition into the ListBox’s RowSource
property. In Excel 2010, the easiest way to define the row
source for a ListBox is to create a one-column Excel table.
To create an Excel table, create a data list with a header in a
worksheet and then, on the Home tab of the ribbon, click the
Format as Table button and click the desired table style. Doing
so displays the Format As Table dialog box.

[]

Where is the daka For wour kabley

Format &z Table

=

i

[¥] My table has headers

l ok, J [Cancel |

Verify that the My table has headers box is selected and then
click ‘OK’ to create the table. With the table still selected, on the
Design contextual tab of the ribbon, type a new name for your
table in the Table Name box. For example, if your ListBox
presents a list of countries in the world, you could simply name
your table ‘Countries’.

With your data source defined, you can now type in equals sign Add a ListBox
followed by the name of the table in the RowSource property

for your ListBox. Now when you run the UserForm and to a UserForm
click the down arrow at the right edge of the ListBox, you (cont.)

will be able to select a country from the list.

When you add or delete an Excel table row, the program
updates its internal reference to the data, so you don’t
have to update the RowSource property’s contents to
reflect the change.

Did you know?

Excel tables were introduced in Excel 2007.

Did you know?

Gathering data with UserForms 243

Add a >

ComboBox to a
UserForm

Add a comboBox to a
UserForm

Open a UserForm and
then, in the Toolbox, click the
ComboBox button.

Drag it onto the body of the
UserForm to define the
ComboBox.

Define an Excel table and
type =tablename in the
ComboBox’S RowSource
property box.

If desired, change the
ComboBox’s Name property
to change the name by which
you refer to the ComboBox
in your code.

If desired, create a label,
edit the label’s Caption
property to change the text
it displays and position the
label next to the ComboBox.

244

A ListBox, described earlier in this chapter, lets a user select
a value from a predetermined list of values. A ComboBox

is similar, with one significant difference: the user can also
type their own value into the control. A ComboBox offers
more flexibility than a ListBox, but it also introduces the
possibility that misspellings might cause the same value to be
entered in several different ways.

To add a ComboBox t0 a UserForm, display a UserForm
in the Visual Basic Editor and then, in the Toolbox, click the
ComboBox button. Draw the outline of the ComboBox on the
body of the UserForm and, when you release the left mouse
button, the ComboBox control appears and its properties
appear in the Properties panel on the left side of the Visual
Basic Editor.

As with a ListBox, the most flexible way to provide values
for a ComboBox in Excel 2010 is to define an Excel table.

For example, you might create a form for user feedback and
allow the user to select from four different categories to enter
their own. To assign an Excel table named ‘Categories’ to

a ComboBox, click the ComboBox and then set its Row
Source property to the value =Categories. Now when
the user clicks the ComboBox’s down arrow those values will
appear, but the user will also have the option of typing their

own value into the box.

For more information on creating and renaming in Excel
table, see the Add a ListBox t0 a UserForm task
earlier in this chapter.

See also

ListBoxes, ComboBoxes and TextBoxes are terrific
tools that let users enter or select numerous values. If the
users’ choice is more constrained, you can let them indicate
their choice by selecting or clearing option buttons. Option
buttons let users indicate whether an option, such as to gift
wrap a purchase or not, is turned on or turned off. You can
also create groups of option buttons that let a users select, at
most, one option from the group at a time.

You can change the option button’s appearance and behaviour
using the properties available to you, but the most common
properties you'll change are the button’s Name and Caption
properties.

The Name property controls how the option button is
referenced within the UserForm and your VBA code.
Changing it makes your references more readable but doesn’t
change the text displayed next to the option button in the
UserForm. To change that text, you need to change the value
of the Caption property. For example, you could change the
Caption property to read ‘Gift wrapped’.

You can also create groups of option buttons where only one
of the buttons can be selected at a time. For example, you
might want a user to select a shipping method from among the
options of ground, two day and overnight. To allow only one
option button of those three to be selected at a time, you must
assign the same value to each button’s GroupName property.
For example, you could create the Shipping group to allow only
one selection from several shipping alternatives.

4 Add an option
button to a
UserForm

Add an option button to a
UserForm

Open a UserForm in the
Visual Basic Editor and then,
in the Toolbox, click the
OptionButton button.

Click in the body of the
UserForm where you want
the button to appear to create
it and display its properties in
the Properties panel.

If desired, change the
ComboBox’'s Name
property to change the name
by which you refer to the
option button in your code.

If desired, edit the option
button’s Caption property
to change the text it displays.

If desired, assign a value to
the GroupName property.
Only one option button among
those that share the same
GroupName property value
can be selected at one time.

Gathering data with UserForms 245

Add an option T 3|
button to a

UserForm Shipping Method
(cont') " Ground
 Two day

Important

You must ensure that every control you intend to
make part of a group has the exact same value for the
GroupName property.

246

UserForms are powerful objects, but you have relatively little 4 Add graphics to
control over their appearance, especially compared to the wide
PP bectatly comp d UserForm

variety of formatting options you have for a worksheet and the
objects within it. One way to add some visual interest or useful
information to a VBA UserForm is by adding images.

r

IlserForm?
SRR e e R : Add graphics to a UserForm
feaaiao s L FM Open a UserForm in the
[Beeacn e Visual Basic Editor, then, in
R . the Toolbox, click the Image
A A button.
e s et S R TR S i Drag within the body of the
BN UsexForm o create the
B e Rl E T i e R e MR AR MR image frame. When you
S S R s S e S S release the left mouse button,
e e e g the image frame will appear.
In the Properties panel, the
Unless the image you select fits entirely within the frame, you image control’s properties will
will likely see just a portion of it on the UserForm. You can appear. Click in the box next
control the way the image fits within the frame by changing to the Picture property
the PictureSizeMode property. That property has three name.
possible values: Click the Browse button that
appears, select the desired
1 0 - fmPictureSizeModeClip displays as much of image, then click Open.
the image as possible within the frame. The image appears on the
. . . UserForm.
2 1 - fmPictureSizeModeStretch displays the
entire image within the frame, but stretches the image so it Change the value of the
fills the entire frame. PictureSizeMode
property so your image
3 3 - fmPictureSizeModeZoom displays the entire displays correctly.

image within the frame, but keeps the vertical and horizontal
dimensions in their original ratio.

Gathering data with UserForms 247

Add graphics to n
aUserForm Did you know?
(cont)

You can change the name of the image control, which
is the label by which you refer to the image in your VBA

code, by editing the control’s Name property.

Did you know?

If you set the PictureSizeMode property

to fmPictureSizeModeStretch or
fmPictureSizeModeZoom, changing the size of
the image frame also changes the size of the image
displayed within it.

248

Excel VBA UserForms let you and your colleagues enter data
into your spreadsheets efficiently. TextBoxes provide the
most flexibility, but they also allow users to make mistakes. If
you want more control over the numbers a user enters, you
can attach a SpinButton control to a TextBox or label.
Clicking the SpinButton’s up or down arrow changes the
value in the attached control by an increment you define.

There are three steps to implementing a SpinButton in your
UserForm. The first of these is to create the SpinButton
itself, which you can do by clicking the UserForm and

then, in the Toolbox, clicking the SpinButton control and
dragging the SpinButton on to the body of the UserForm.
You can now define the value range and increment that each
click of an up or down arrow will change the value of the
SpinButton by. To do that, click the SpinButton and
then, in the Properties panel, change the values of the Max,
Min and SmallChange properties. Min is the smallest
value that can be assigned to the SpinButton, Max is the
largest value and SmallChange is the increment that each
click will change the value by. For example, if you set a Min of
20, a Max of 200 and SmallChange of 10, you could select
the values 20, 30, 40, 50 and so on in increments of 10 all the
way up to 200.

With the SpinButton in place, you should use techniques
shown earlier in this chapter to create a TextBox that
displays the value assigned to the SpinButton control.
Make a note of the name of the TextBox, which you can
discover by clicking it and observing the value of the Name
property in the Properties panel. You will need to know the
name to create the code used to link the SpinButton with
that TextBox.

Right-click the SpinButton and, from the shortcut

menu that appears, click View Code. Doing so displays the
outline of the event code that will run when the value of the
SpinButton changes. To link the SpinButton with the
TextBox, you set the text control’s Value property so it is
equal to the same property of the SpinButton.

Add a
SpinButton
to a UserForm

Add a spinButton toa
UserForm

Open a UserForm and
then, in the Toolbox, click the
SpinButton control.

Drag the SpinButton onto
the UserForm.

Create a TextBox.

Right-click the SpinButton
and click View Code from the
shortcut menu.

Create an event handler
that assigns the value of
the SpinButton to the
TextBox.

Gathering data with UserForms 249

Add a If the TextBox were named SpinValue and the

. SpinButton were named SpinButtonl, your code would
SpinButton look like this:

to a UserForm

Private Sub SpinButtonl_Change ()
(cont)

SpinValue.Value = SpinButtonl.Value
End Sub
Changing the Name property for the SpinButton
and TextBox can make it easier for you and your

colleagues to understand the code you create to link the
two controls.

Did you know?

250

Before you create a UserForm, you should take the time to 4 Create a
sketch out its design using pencil and paper. The more you -

think about the data you want to capture with it and how you muItlpage
can facilitate that process, the more time you save when you or multitab

create it in Excel.
UserForm

If you find that you can’t fit all of the controls you need on a
single UserForm page, you have options. You can create a

multipage UserForm or multitab one.))
Create a multipage or multitab

By default, a multipage UserForm has two pages. You can UserForm
add, delete, rename and move pages within it by right-clicking
any tab at the top of the page. Doing so displays a shortcut
menu with the available options.

Open a UserForm and
then, in the Toolbox, click the
MultiPage button to create a

Userformz == multipage UserForm.
T B E a. Drag it on to the
Poget Paezl 2 UserForm to define the
......... Mew Page

.................. b MultiPage control.

......... Delete Page
""""""""" & b. Add controls to the page

Bename...

using techniques shown
elsewhere in this chapter.

c. Use the shortcut menu,
accessed by right-clicking
a tab, to add, rename, move
and delete pages as desired.

You can add, delete, rename and move tabs in a multitab Open a UserForm and
UserForm in exactly the same manner as you would pages in then, in the Toolbox, click the
a multipage UserForm. TabStrip button to create a

H multitab UserForm.

. a. Drag it on to the

?

Did you know? UserForm to define the

The contents of the Properties panel reflect the active TabStrip control.
page in the multipage UserForm. b

. Add controls to the page
using techniques shown
n elsewhere in this chapter.
c. Use the shortcut menu,
accessed by right-clicking

a tab, to add, rename, move
and delete pages as desired.

Did you know?

Some designers create prototypes of their user
interfaces in PowerPoint, using the shapes and lines
available in that program.

Gathering data with UserForms 251

Write
UserForm data
to a worksheet

252

>

After you've created your UserForm, you need to create code
that will write the values from the UserForm to a worksheet.
You do that by adding a command button to your form and
adding code to the button’s On_C1ick event that will read
the value of every control on the form and write them to the
appropriate worksheet cells.

The process for reading and writing these values involves two
major steps. The first step is to find the first empty row in the
target worksheet. For example, if your data list already contains
three rows, you don’t want the current input to overwrite any of
the existing data. To avoid that problem, the code starts at the
bottom of the worksheet and searches for the first completed
cell in a column where you want to write your data. The routine
then targets the row below that cell.

After the routine finds the first empty row, it uses the Cells
object’s value property to write the data into the target cells.
As an example, suppose you have a UserForm that collects
four pieces of data: the customer’s first name, last name,
country and status as a new customer.

CustornerEntry @

You now should create a command button to which you can
attach code that writes the values to the worksheet. To create
the command button, display a UserForm and then, in the
Toolbox, click the CommandButton control. Drag the button

on to the UserForm and, if desired, change the button’s

Caption property so the text that appears on the button is

easier for you and your colleagues to understand.

Right-click the button and, from the shortcut menu that appears,

click View Code to display the button

'sOn_Click event-

Write
UserForm data
to a worksheet
(cont.)

handling code. You could use the following routine to find the
first empty cell in column A of your worksheet, read the values in
the four controls, then write values into the worksheet:

Private Sub CommandBut
Dim lngEntryRow As Lon

Worksheets (“"Sheetl”) .A
IngEntryRow = Workshee
Range (“A1048576") .End (

Cells (lngEntryRow, 1)
Value

Cells (lngEntryRow, 2)
Value

Cells (lngEntryRow, 3)
Value

Cells (lngEntryRow, 4)
Value

Cells (1lngEntryRow, 4)
End Sub

tonl_Click ()
g

ctivate
ts (“Sheetl”) .
x1Up) .Row + 1

= Cust_FirstName.

= Cust_LastName.

= Cust_Country.

= opt_NewStatus.

.Activate

If there were already three records in the target worksheet,
entering data from the UserForm would result in the

Write UserForm data to a
worksheet

On the UserForm, create a
command button.

Right-click the command
button and click View Code.

Write code that finds the first
empty cell below the target
data list.

Write code that writes
each control’s value to the
appropriate cell in the row.

following list.
A, B c D E
1 FirstMame LastMame Country MewStatus
2 Arthur Kondrake USA FalSE
3 Olivier Martin France TRUE Did you know?
4 Martine Chatras Belgium FALSE Excel 2007 and Excel
5 |curtis Frye USA TRUE 1 2010 worksheets contain
& 1,048,576 rows.
=

Gathering data with UserForms 253

Display, load
and hide a >
UserForm

Display, load and hide a
UserForm

Invoke the UserForm.
Show method.

Invoke the UserForm.
Load method.

Invoke the UserForm.
Hide method.

£
See also

For more information on
running a macro by clicking
a worksheet shape, see
Chapter 1.

Did you know?

Loading a UserForm
decreases the time it takes it
to appear when you invoke
the Show method.

254

Once you define a UserForm in your VBA code, you need to
display it so the user can interact with it. The Excel VBA code to
display a UserForm is quite straightforward. As an example,
suppose you have a form named £rmCustomerEntry. All
you need to do is type the name of the form followed by a full
stop and the Show method. For example, the code to display
frmCustomerEntry would be:

frmCustomerEntry.Show

You can test a UserForm from within the Visual Basic Editor
by displaying the UserForm and then either clicking Run,
then Run Sub/UserForm on the menu system or by pressing
the F5 key.

You can also enter a UserForm into the application’s memory
without displaying it. To do that, you use the Load method.
The command to load the same form into the Excel program’s
memory would be:

frmCustomerEntry.Load

When you later want to display the UserForm in Excel, you
can call the Show method in the way noted earlier.

Hiding a UserForm, as you might expect, relies on the Hide
method. The syntax looks exactly the same as it does for the
Show and Load methods:

frmCustomerEntry.Hide

The most common way to invoke the Hide method is to create
a command button with the label ‘Cancel’ and run the Hide
method when a user clicks that button. Users can also hide a
UserForm by clicking the ‘Close’ box at the top right corner
of the UserForm.

Jargon buster

Absolute reference An instruction that
identifies a specific cell range and doesn’'t
change when the reference is copied to another
cell.

Active cell The cell that is highlighted in a
worksheet.

Active region A rectangle of cells that extends
from the active cell to the top and bottom rows
and left- and right-most columns of cells that
are connected to the active cell.

Alert A message box indicating the
consequences of an action.

Argument A value used by a function.

Array A construct that can contain multiple
examples of a data type.

Breakpoint A user-defined line in a code
module where the Visual Basic Editor halts code
execution.

Bug A programming error.
Chart sheet A sheet designed to hold a single

chart (as opposed to a worksheet, which can
contain charts, data and other objects).

Code A generic term for instructions in a
programming language.

Collection A set of all objects of a type (e.g.,
the Worksheets collection).

Comment In Visual Basic for Applications,
a non-executable line of code used to provide

information about a procedure.

Condition A test used to determine whether
subsequent code should be executed.

Constant A variable that doesn’t change value
during code execution.

Custom list A user-defined set of values used
in sorting operations.

Data series A set of related data depicted in a
chart.

Data type The characteristic of a variable that
determines what data it can contain.

Debugging The art of identifying and fixing
programming errors.

Default The value or behaviour a program
component takes on if you don’t change it.

Jargon buster 255

Delimiter A character that identifies the end
of one value and the beginning of the next in a
text file.

Digital signature A file, generated by a
certification authority, that Excel can use to
identify a document as having been created by
the certificate owner.

Dot notation A method for identifying
components of objects, such as properties,
methods, and events.

Event An object attribute that lets the object

respond when it is acted upon in a specific way.

Export To send data from one construct (such
as a code module) to another (such as a text
file).

Field A column in a data list or database table.

Filter A construct that limits the data shown in
a worksheet.

Function A block of code that returns the
result of a calculation.

Hide To remove a workbook element, such
as a worksheet or column, from active display
within the workbook without deleting the
element.

Keyboard shortcut (also shortcut key) A
sequence of keys that trigger a specific action,
such as running a macro.

Loop A section of Visual Basic for Applications
code that can be repeated.

256

Macro A named block of Visual Basic for
Applications code.

Method An object attribute that takes an action
affecting the object.

Module A collection of Visual Basic for
Applications code routines.

Named range A cell range to which the user
has assigned a name for easy reference.

Object variable A data container that
represents an Excel object such as a workbook
or worksheet.

Object-orientated programming A method
of organising computer instructions where the
things manipulated by the code are represented
as objects with attributes.

Operator A mathematical symbol representing
an action or comparison (e.g., + or >=)

Parameter A value used by a command.

Path A string representing the physical location
of a file.

Point 1/72 of an inch (used to identify font sizes)

Print area The cell range (or ranges) that will
be printed when a user prints the worksheet.

Procedure A named sequence of statements.
Project A set of code modules.

Property An object attribute that describes one
aspect of the object.

Range A group of one or more cells.

Relative reference An instruction that tells
Excel to look a number of rows up or down
and a number of columns to the left or right of
another cell.

Reserved word A term, such as Date or
Integer, that may not be used as a variable or
procedure name.

RGB A colour value system used to describe
colours as a mixture of red (R), green (G),
and blue (B). Each colour is represented with
an integer in the range from 0 (colour is not
present) to 255 (full intensity).

Run To execute a block of code.

Scope The degree to which other procedures
and code modules can interact with a variable
or procedure.

Sort To rearrange data according to one or
more criteria.

Sparkline A word-sized graphic summarising
data (invented by Edward Tufte).

Static variable A variable that does not lose
its value when its procedure terminates.

Subroutine A block of code that affects a
workbook but does not return a value that can
be used in a formula.

Syntax The grammar of a programming
language.

Transpose To reorder data by making rows
into columns and columns into rows.

UserForm A custom interface for data entry
and viewing.

Variable A named container that can store
data.

Visual Basic Editor The environment in which

you can create and modify Visual Basic for
Applications code.

Jargon buster 257

Troubleshooting guide

Recording and running macros

To learn how to record a macro, see
Chapter 1, Recording a macro. 2

To learn how to run a macro, see
Chapter 1, Running a macro. 3

To learn how to edit a macro, see
Chapter 1, Editing a macro. 4

To learn how to delete a macro, see
Chapter 1, Deleting a macro. 6

For information on recording a macro
using relative references, see Chapter 1,
Record a macro using relative references. 7

To learn how to assign macro to a

keyboard shortcut, see Chapter 1,
Assigning a macro to a keyboard

shortcut. 9

To learn how to run a macro by clicking
a shape, see Chapter 1, Running a macro
by clicking a shape. 11

To learn how to add a macro to the

Quick Access Toolbar, see Chapter 1,
Adding a macro to the Quick Access
Toolbar. 12

To learn how to customise a Quick

Access Toolbar button, see Chapter 1,
Customising a Quick Access Toolbar
button. 14

For information on saving a
macro-enabled workbook, see Chapter 1,
Saving a macro-enabled workbook. 16

To learn how to manage Managing Excel
2010 security settings, see Chapter 1,
Managing Excel 2010 security settings. 17

To learn how to change Protected
View settings, see Chapter 1, Changing
Protected View settings. 19

To learn how to change message bar
settings, see Chapter 1, Changing
Message Bar settings. 21

To learn how to change data connection
security settings, see Chapter 1, Changing
data connection security settings. 22

To learn how to add a digital signature
to a workbook, see Chapter 1, Adding a
digital signature to a workbook. 24

Starting with the Visual Basic Editor

For background information on
object-orientated programming,

see Chapter 2, Introducing
object-orientated programming. 28

If you'd like to display the Developer
ribbon tab, see Chapter 2, Displaying
the Developer ribbon tab. 31

Troubleshooting guide 259

If you’'d like to display the Visual
Basic Editor, see Chapter 2, Displaying
the Visual Basic Editor. 32

If you'd like to set project properties,
see Chapter 2, Setting project properties. 33

If you'd like to create a code module,
see Chapter 2, Creating a code module. 34

If you'd like to create a subroutine, see
Chapter 2, Creating a subroutine. 35

If you’d like to create a function, see
Chapter 2, Creating a function. 36

For information on adding a comment
to your code, see Chapter 2, Adding a
comment to your code. 37

If you'd like to run a VBA routine, see
Chapter 2, Running a VBA routine. 38

If you'd like to rename a code module,
see Chapter 2, Renaming a code module. 39

If you'd like to delete a code module,
see Chapter 2, Deleting a code module. 40

If you'd like to export a code module
to a text file, see Chapter 2, Exporting
a code module to a text file. 41

Working with data and variables

For more information on data types
in Excel VBA, see chapter 3,
Understanding data types in Excel VBA. 44

To declare a variable, see Chapter 3,
Declaring a variable. 45

To require variable declaration before
use, see Chapter 3, Requiring
variable declaration before use. 46

260

To manage variable scope, see
Chapter 3, Managing variable scope.

To perform calculations using

mathematical operators, see Chapter 3,

Performing calculations using
mathematical operators.

To define a constant, see Chapter 3,
Defining a constant.

To define a static variable, see
Chapter 3, Defining a static variable.

To define an array, see Chapter 3,
Defining an array.

To define a multidimensional array,
see Chapter 3, Defining a
multidimensional array.

To redefine an array, see Chapter 3,
Redefining an array.

To define a dynamic array, see
Chapter 3, Defining a dynamic array.

To display an object type, see
Chapter 3, Displaying an object type.

To define an object variable, see

Chapter 3, Defining an object variable.

Managing workbooks and files

If you want to open a workbook, see
Chapter 4, Opening a workbook.

If you want to open a text file as a
workbook, see Chapter 4, Opening a
text file as a workbook.

If you want to open a file the user
selects, see Chapter 4, Opening a file
the user selects.

48

49

50

51

52

53

54

55

56

58

59

60

If you want to save a workbook, see
Chapter 4, Saving a workbook. 61

If you want to save a workbook in a
different format, see Chapter 4, Saving
a workbook in a different format. 62

If you want to detect if a workbook is
open, see Chapter 4, Detecting if a
workbook is open. 63

If you want to close a workbook, see
Chapter 4, Closing a workbook. 65

If you want to create a new workbook,
see Chapter 4, Creating a new workbook. 66

If you want to delete a file, see
Chapter 4, Deleting a file. 67

Managing worksheets

To add a worksheet, see Chapter 5,

Adding a worksheet. 70
To delete a worksheet, see Chapter
5,Deleting a worksheet. 71

To move a worksheet, see Chapter 5,
Moving a worksheet. 72

To copy a worksheet, see Chapter 5,
Copying a worksheet. 73

To hide or unhide a worksheet,
see Chapter 5, Hiding or unhiding
a worksheet. 74

To rename a worksheet, see Chapter 5,
Renaming a worksheet. 75

To protect a worksheet, see Chapter 5,
Protecting a worksheet. 76

To print a worksheet, see Chapter 5,
Printing a worksheet. 144

Managing ranges

If you’'d like to activate a cell range, see
Chapter 6, Activating a cell range. 80

If you'd like to select a cell range, see
Chapter 6, Selecting a cell range. 81

If you'd like to select the active
region, see Chapter 6, Selecting the
active region. 82

If you'd like to refer to cells using
Offset, see Chapter 6, Refering to
cells using Offset. 83

If you'd like to insert a cell range, see
Chapter 6, Inserting a cell range. 84

If you'd like to delete a cell range, see
Chapter 6, Deleting a cell range. 85

If you'd like to hide worksheet columns
or rows, see Chapter 6, Hiding
worksheet columns or rows. 86

If you'd like to create a named range,
see Chapter 6, Creating a named range. 88

If you’'d like to resize a selected range,
see Chapter 6, Resizing a selected range. 89

If you'd like to set the column width,
see Chapter 6, Setting the column width. 90

If you’'d like to set the row height,
see Chapter 6, Setting the row height. 92

Managing cells

To cut and paste a cell range,
see Chapter 7, Cutting and paste
a cell range. 94

To copy and paste a cell range,
see Chapter 7, Copying and paste a
cell range. 95

Troubleshooting guide 261

To copy and paste values in cells

using PasteSpecial, see Chapter 7,

Copying and pasting values in cells

using PasteSpecial. 96

To transpose a column into a row,
see Chapter 7, Transposing a column
into a row. 98

To create a cell comment, see
Chapter 7, Creating a cell comment. 99

To display a cell’s comment, see
Chapter 7, Displaying a cell’s comment. 100

To hide a cell's comment, see
Chapter 7, Hiding a cell’s comment. 101

To delete one or all cell comments,
see Chapter 7, Deleting one or all cell
comments. 102

To fill a range of cells automatically,
see Chapter 7, Filling a range of cells
automatically. 103

To copy a range to multiple sheets,
see Chapter 7, Copying a range to

multiple sheets. 105
To add a cell border, see Chapter 7,

Adding a cell border. 106
To find a cell value, see Chapter 7,

Finding a cell value. 109

To replace a cell value, see Chapter 7,
Replacing a cell value. 111

Formatting worksheets and worksheet
elements

If you want to apply bold, italic and
underline formatting, see Chapter 8,
Applying bold, italic and underline
formatting. 114

262

If you want to change a cell’s font,
see Chapter 8, Changing a cell’s font.

If you want to change a cell’s font
size, see Chapter 8, Changing a cell’s
font size.

If you want to change a cell’s font
colour, see Chapter 8, Changing a
cell’s font colour.

If you want to change a cell’s fill
colour, see Chapter 8, Changing a
cell’s fill colour.

If you want to change a cell’s
alignment, see Chapter 8, Changing
a cell’s alignment.

If you want to apply a cell style,
see Chapter 8, Applying a cell style.

If you want to apply a number format
to a cell, see Chapter 8, Applying a
number format to a cell.

If you want to clear a cell’s format,

see Chapter 8, Clearing a cell’s format.

Sorting and filtering data

To sort cell data using a single
criterion, see Chapter 9, Sorting cell
data using a single criterion.

To create a multilevel sort, see
Chapter 9, Creating a multilevel sort.

To sort using a customised list of
values, see Chapter 9, Sorting using a
customised list of values.

To turn on filter arrows using VBA
code, see Chapter 9, Turning on filter
arrows using VBA code.

116

118

119

121

123

125

127

128

132

136

140

144

To apply a filter using a single criterion,
see Chapter 9, Applying a filter using a
single criterion.

To remove a filter, see Chapter 9,
Removing a filter.

To display a list of unique values,
see Chapter 9, Displaying a list of
unique values.

For information on filtering data to
display two values in a column, see
Chapter 9, Filtering data to display two
values in a column.

To filter data to display three or more
values in a column, see Chapter 9,
Filtering data to display three or more
values in a column.

To filter data based on values in

multiple columns, see Chapter 9,
Filtering data based on values in
multiple columns.

Managing charts

If you'd like to Create a chart, see
Chapter 10, Creating a chart.

If you'd like to Move a chart to a
chart sheet, see Chapter 10, Moving
a chart to a chart sheet.

If you'd like to Add a new data series
to a chart, see Chapter 10, Adding
a new data series to a chart.

If you'd like to Format a chart’s
legend text, see Chapter 10,
Formatting a chart’s legend text.

146

148

150

152

154

156

160

163

166

170

If you'd like to Format chart axis
text, see Chapter 10, Formatting

chart axis text. 172

If you'd like to Export a chart as an
image, see Chapter 10, Exporting a

chart as an image. 174

If you'd like to Create a Line
sparkline, see Chapter 10, Creating a

Line sparkline. 176

If you'd like to Create a Column
sparkline, see Chapter 10, Creating

a Column sparkline. 178

If you’'d like to Create a Win/Loss
sparkline, see Chapter 10, Creating a

Win/Loss sparkline. 180

If you'd like to Delete a sparkline,

see Chapter 10, Deleting a sparkline. 182

Using built-in functions and statements

If you want to Use the built-in Open
dialog box, see Chapter 11, Using the

built-in Open dialog box. 184

If you want to Prevent screen flicker
when running VBA code, see
Chapter 11, Preventing screen flicker

when running VBA code. 186

If you want to Suppress and restore
alerts, see Chapter 11, Suppressing

and restoring alerts. 187

If you want to Calculate data using
Excel worksheet functions, see
Chapter 11, Calculating data using

Excel worksheet functions. 188

Troubleshooting guide 263

If you want to Display a message To create a Do...Until loop, see

box, see Chapter 11, Displaying a Chapter 12, Creating a Do...Until loop. 214

message box. 189 To call another macro from within

If you want to Get data from an your code, see Chapter 12, Calling

InputBox, see Chapter 11, Getting another macro from within your code. 215
InputBox. 1

data from an n?ut oX 93 To refer to objects using a With...End

If you want to Display the current With statement, see Chapter 12,

date and time, see Chapter 11, Refering to objects using a

Displaying the current date and time. 196 With...End With statement. 216

If you want to Format a date, see

Chapter 11, Formatting a date. 197 Debugging your VBA code

If you want to Remove spaces from If you'd like to execute code in the

a string, see Chap_ter 11, Removing Immediate window, see Chapter 13,

spaces from a string. 199 Executing code in the Immediate

If you want to Locate a portion of a window. 218

string, see Chapter 11, Locating a If you'd like to set a breakpoint in

portion of a string. 201 your VBA code, see Chapter 13,

If you want to Concatenate strings, Setting a breakpoint in your VBA code. 219

see Chapter 11, Concatenating strings. 203 If you'd like to watch a value in a

routine, see Chapter 13, Watching a

Managing code using logical constructs value in a routine. 220
To create a For...Next loop, see If you'd like to step through your

Chapter 12, Creating a For...Next loop. 206 code one line at a time. see

To create a For...Each loop, see Chapter 13, Stepping through your

Chapter 12, Creating a For...Each loop. 207 code one line at a time. 222
To create an If...Then...Elself If you'd like to skip over a subroutine,
statement, see Chapter 12, Creating see Chapter 13, Skipping over a

an If...Then...Elself. 208 subroutine. 223
To create a Case statement, see If you'd like to step out of a subroutine,
Chapter 12, Creating a Case statement. 211 see Chapter 13, Stepping out of a

To create a Do loop, see Chapter 12, subroutine. 225
Creating a Do loop. 212 |f you'd like to create an On Error

To create a Do...While loop, see Chapter GoTo statement, see Chapter 13,

12, Creating a Do...While loop. 213 Creating an On Error GoTo statement. 226

264

If you'd like to manage errors using an

On Error Resume Next statement,

see Chapter 13, Managing errors using

an On Error Resume Next statement. 228

If you'd like to manage errors using
an On Error GoTo 0 statement, see
Chapter 13, Managing errors using
an On Error GoTo 0 statement. 229

Using Excel events in your VBA code

If you want to display the available
events, see Chapter 14, Displaying the
available events. 232

If you want to run a procedure when

you open a workbook, see Chapter 14,
Running a procedure when you open

a workbook. 233

If you want to run a procedure when

you close a workbook, see Chapter 14,
Running a procedure when you close a
workbook. 235

If you want to run a procedure when

you save a workbook, see Chapter 14,
Running a procedure when you save a
workbook. 236

If you want to run a procedure when

a cell range changes, see Chapter 14,
Running a procedure when a cell range
changes. 237

Gathering data with UserForms

To Create a UserForm, see Chapter 15,
Creating a UserForm. 240

To add a TextBox to a UserForm, see
Chapter 15, Adding a TextBox to a
UserForm. 241

To add a ListBox to a UserForm,
see Chapter 15, Adding a ListBox
to a UserForm. 242

To add a ComboBox to a UserForm,
see Chapter 15, Adding a ComboBox
to a UserForm. 244

To add an option button to a UserForm,
see Chapter 15, Adding an option
button to a UserForm. 245

To add graphics to a UserForm, see
Chapter 15, Adding graphics to a
UserForm. 247

To add a SpinButton to a UserForm,
see Chapter 15, Adding a SpinButton
to a UserForm. 249

To create a multipage or multitab
UserForm, see Chapter 15, Creating a
multipage or multitab UserForm. 251

To write UserForm data to a
worksheet, see Chapter 15, Writing
UserForm data to a worksheet. 252

To display, load and hide a UserForm,
see Chapter 15, Displaying, loading
and hiding a UserForm. 254

Troubleshooting guide 265

	Cover
	Brilliant Guides - What you need to know and how to do it
	Author’s acknowledgements
	About the author
	Contents
	Introduction
	1 Recording and running macros
	Record a macro
	Run a macro
	Edit a macro
	Delete a macro
	Record a macro using relative references
	Record a macro using relative references
	Assign a macro to a keyboard shortcut
	Run a macro by clicking a shape
	Add a macro to the Quick Access Toolbar
	Customise a Quick Access Toolbar button
	Save a macro-enabled workbook
	Manage Excel 2010 security settings
	Change Protected View settings
	Change message bar settings
	Change data connection security settings
	Add a digital signature to a workbook

	2 Starting with the Visual Basic Editor
	Introduce object-orientated programming
	Display the Developer ribbon tab
	Display the Visual Basic Editor
	Set project properties
	Create a code module
	Create a subroutine
	Create a function
	Add a comment to your code
	Run a VBA routine
	Rename a code module
	Delete a code module
	Export a code module to a text file

	3 Working with data and variables
	Understand data types in Excel VBA
	Declare a variable
	Require variable declaration before use
	Manage variable scope
	Perform calculations using mathematical operators
	Define constant
	Define a static variable
	Define an array
	Define a multidimensional array
	Redefine an array
	Define a dynamic array
	Display an object type
	Define an object variable

	4 Managing workbooks and files
	Open a workbook
	Open a text file as a workbook
	Open a file the user selects
	Save a workbook
	Save a workbook in a different format
	Detect if a workbook is open
	Close a workbook
	Create a new workbook
	Delete a file

	5 Managing worksheets
	Add a worksheet
	Delete a worksheet
	Move a worksheet
	Copy a worksheet
	Hide or unhide a worksheet
	Rename a worksheet
	Protect a worksheet
	Print a worksheet

	6 Managing ranges
	Activate a cell range
	Select a cell range
	Select the active region
	Refer to cells using Offset
	Insert a cell range
	Delete a cell range
	Hide a worksheet columns or rows
	Create a named range
	Resize a selected range
	Set the column width
	Set the row height

	7 Managing cells
	Cut and paste a cell range
	Copy and paste a cell ranges
	Copy and paste a cell ranges using PasteSpecial
	Transpose a column into a row
	Create a cell comment
	Display a cell’s comment
	Hide a cell’s comment
	Delete one or all cell comments
	Fill a range of cells automatically
	Copy a range to multiple sheets
	Add a cell border
	Find a cell value
	Replace a cell value

	8 Formatting worksheets and worksheet elements
	Apply bold, italic and underline formatting
	Change a cell’s font
	Change a cell’s font size
	Change a cell’s font colour
	Change a cell’s fill colour
	Change a cell’s alignment
	Apply a cell style
	Apply a number format to a cell
	Clear a cell’s format

	9 Sorting and filtering
	Sort cell data using a single criterion
	Create a multilevel sort
	Sort using a customised list of values
	Turn on filter arrows using VBA code
	Apply a filter using a single criterion
	Remove a filter
	Display a list of unique values
	Filter data to display two values in a column
	Filter data to display three or more values in a column
	Filter data based on vlues in multiple columns

	10 Managing charts
	Create a chart
	Move chart to chart sheet
	Add a new data series to a chart
	Format a chart’s legend text
	Format a chart’s axis text
	Export a chart as an image
	Create a Line sparkline
	Create a Column sparkline
	Create a Win/Loss sparkline
	Delete a sparkline

	11 Using built-in functions and statements
	Use the built-in Open dialog box
	Prevent screen flicker when running VBA code
	Suppress and rerstore alerts
	Calculate data using Excel worksheet functions
	Display a message box
	Get data from an InputBox
	Display the current date and time
	Format a date
	Remove spaces from the string
	Locate a portion of a string
	Concatenate strings

	12 Managing code using logical constructs
	Create a For... Next loop
	Create a For... Each loop
	Create an If... Then statement
	Create a Case statement
	Create a Do loop
	Create a Do... While loop
	Create a Do... Until loop
	Call another macro from within your code
	Refer to objects using a With... End With statement

	13 Debugging your VBA code
	Execute code in the Immediate window
	Set a breakpoint in your VBA code
	Watch a value in a routine
	Step through your code one line at a time
	Skip over a subroutine
	Step out of a subroutine
	Manage errors using an On Error GoTo statement
	Manage errors using an On Error Resume Next statement
	Manage errors using an On Error GoTo 0 statement

	14 Using Excel events in your VBA code
	Display the available events
	Run a procedure when you open a workbook
	Run a procedure when you close a workbook
	Run a procedure when you save a workbook
	Run a procedure when a cell range changes

	15 Gathering data with UserForms
	Create a UserForm
	Add a TextBox to a UserForm
	Adda ListBox to a UserForm
	Add a ComboBox to a UserForm
	Add an option button to a UserForm
	Add graphics to a UserForm
	Add a SpinButton to a UserForm
	Create a multipage or multitab UserForm
	Write UserForm data to a worksheet
	Display, load and hide a UserForm

	Jargon buster
	Troubleshooting guide

