

INTRODUCTION TO SOFT

COMPUTING

NEURO-FUZZY AND GENETIC ALGORITHMS

FM.indd iFM.indd i 2/22/2013 5:39:16 PM2/22/2013 5:39:16 PM

FM.indd iiFM.indd ii 2/22/2013 5:39:18 PM2/22/2013 5:39:18 PM

 This page is intentionally left blank.

INTRODUCTION TO SOFT

COMPUTING
NEURO-FUZZY AND GENETIC ALGORITHMS

Samir Roy
Associate Professor

Department of Computer Science and Engineering
National Institute of Technical Teachers’ Training and Research

Kolkata

Udit Chakraborty
Associate Professor

Department of Computer Science and Engineering
Sikkim Manipal Institute of Technology

Rangpo

FM.indd iiiFM.indd iii 2/22/2013 5:39:18 PM2/22/2013 5:39:18 PM

A01_SHETH3824_01_SE_PREL.indd iiA01_SHETH3824_01_SE_PREL.indd ii 1/8/2013 3:04:59 PM1/8/2013 3:04:59 PM

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd.
Licensees of Pearson Education in South Asia

No part of this eBook may be used or reproduced in any manner whatsoever without the publisher’s
prior written consent.

This eBook may or may not include all assets that were part of the print version. The publisher
reserves the right to remove any material in this eBook at any time.

ISBN 9788131792469
eISBN 9789332514201

Head Office: A-8(A), Sector 62, Knowledge Boulevard, 7th Floor, NOIDA 201 309, India
Registered Office: 11 Local Shopping Centre, Panchsheel Park, New Delhi 110 017, India

In the loving memory of my elder brother Sri N. K. Roy
—Samir Roy

To Dudun (my maternal grandmother)
—Udit Chakraborty

FM.indd vFM.indd v 2/22/2013 5:39:18 PM2/22/2013 5:39:18 PM

FM.indd viFM.indd vi 2/22/2013 5:39:18 PM2/22/2013 5:39:18 PM

 This page is intentionally left blank.

CONTENTS

Preface xv
Acknowledgements xvii
About the Authors xix

1. INTRODUCTION 1
1.1 What is Soft Computing?—1
1.2 Fuzzy Systems—5
1.3 Rough Sets—6
1.4 Artifi cial Neural Networks—6
1.5 Evolutionary Search Strategies—7

Chapter Summary 8
Test Your Knowledge 8
Answers 9
Exercises 9
Bibliography and Historical Notes 9

2. FUZZY SETS 11
2.1 Crisp Sets: A Review—11

2.1.1 Basic Concepts 12
2.1.2 Operations on Sets 13
2.1.3 Properties of Sets 15

2.2 Fuzzy Sets—16
2.2.1 Fuzziness/Vagueness/Inexactness 17
2.2.2 Set Membership 17
2.2.3 Fuzzy Sets 19
2.2.4 Fuzzyness vs. Probability 21
2.2.5 Features of Fuzzy Sets 21

2.3 Fuzzy Membership Functions—22
2.3.1 Some Popular Fuzzy Membership Functions 22
2.3.2 Transformations 24
2.3.3 Linguistic Variables 26

2.4 Operations on Fuzzy Sets—27
2.5 Fuzzy Relations—31

2.5.1 Crisp Relations 31
2.5.2 Fuzzy Relations 34
2.5.3 Operations on Fuzzy Relations 36

FM.indd viiFM.indd vii 2/22/2013 5:39:18 PM2/22/2013 5:39:18 PM

viii Contents

2.6 Fuzzy Extension Principle—38
2.6.1 Preliminaries 38
2.6.2 The Extension Principle 41

Chapter Summary 45
Solved Problems 46
Test Your Knowledge 56
Answers 58
Exercises 58
Bibliography and Historical Notes 60

3. FUZZY LOGIC 63
3.1 Crisp Logic: A Review—64

3.1.1 Propositional Logic 64
3.1.2 Predicate Logic 69
3.1.3 Rules of Inference 77

3.2 Fuzzy Logic Basics—81
3.2.1 Fuzzy Truth Values 81

3.3 Fuzzy Truth in Terms of Fuzzy Sets 83
3.4 Fuzzy Rules—84

3.4.1 Fuzzy If-Then 85
3.4.2 Fuzzy If-Then-Else 86

3.5 Fuzzy Reasoning—88
3.5.1 Fuzzy Quantifi ers 88
3.5.2 Generalized Modus Ponens 88
3.5.3 Generalized Modus Tollens 91

Chapter Summary 91
Solved Problems 93
Test Your Knowledge 104
Answers 107
Exercises 107
Bibliography and Historical Notes 109

4. FUZZY INFERENCE SYSTEMS 111
4.1 Introduction—111
4.2 Fuzzifi cation of the Input Variables—112
4.3 Application of Fuzzy Operators on the Antecedent Parts of the Rules—113
4.4 Evaluation of the Fuzzy Rules—114
4.5 Aggregation of Output Fuzzy Sets Across the Rules—115
4.6 Defuzzifi cation of the Resultant Aggregate Fuzzy Set—115

4.6.1 Centroid Method 116
4.6.2 Centre-of-Sums (CoS) Method 118
4.6.3 Mean-of-Maxima (MoM) Method 118

4.7 Fuzzy Controllers—120
4.7.1 Fuzzy Air Conditioner Controller 122

FM.indd viiiFM.indd viii 2/22/2013 5:39:18 PM2/22/2013 5:39:18 PM

Contents ix

4.7.2 Fuzzy Cruise Controller 127
Chapter Summary 130
Solved Problems 131
Test Your Knowledge 142
Answers 143
Exercises 143
Bibliography and Historical Notes 144

5. ROUGH SETS 145
5.1 Information Systems and Decision Systems—146
5.2 Indiscernibility—148
5.3 Set Approximations—150
5.4 Properties of Rough Sets—152
5.5 Rough Membership—153
5.6 Reducts—154
5.7 Application—157

Chapter Summary 161
Solved Problems 162
Test Your Knowledge 168
Answers 170
Exercises 170
Bibliography and Historical Notes 171

6. ARTIFICIAL NEURAL NETWORKS: BASIC CONCEPTS 173
6.1 Introduction—174

6.1.1 The Biological Neuron 175
6.1.2 The Artifi cial Neuron 176
6.1.3 Characteristics of the Brain 178

6.2 Computation in Terms of Patterns—179
6.2.1 Pattern Classifi cation 179
6.2.2 Pattern Association 181

6.3 The McCulloch–Pitts Neural Model—184
6.4 The Perceptron—189

6.4.1 The Structure 189
6.4.2 Linear Separability 191
6.4.3 The XOR Problem 193

6.5 Neural Network Architectures—194
6.5.1 Single Layer Feed Forward ANNs 195
6.5.2 Multilayer Feed Forward ANNs 196
6.5.3 Competitive Network 197
6.5.4 Recurrent Networks 198

6.6 Activation Functions—198
6.6.1 Identity Function 198
6.6.2 Step Function 199

FM.indd ixFM.indd ix 2/22/2013 5:39:18 PM2/22/2013 5:39:18 PM

x Contents

6.6.3 The Sigmoid Function 200
6.6.4 Hyperbolic Tangent Function 201

6.7 Learning by Neural Nets 202
6.7.1 Supervised Learning 203
6.7.2 Unsupervised Learning 211

Chapter Summary 220
Solved Problems 221
Test Your Knowledge 226
Answers 228
Exercises 228
Bibliography and Historical Notes 230

7. PATTERN CLASSIFIERS 233
7.1 Hebb Nets—233
7.2 Perceptrons—238
7.3 ADALINE—241
7.4 MADALINE—243

Chapter Summary 251
Solved Problems 251
Test Your Knowledge 257
Answers 258
Exercises 258
Bibliography and Historical Notes 258

8. PATTERN ASSOCIATORS 259
8.1 Auto-associative Nets—260

8.1.1 Training 260
8.1.2 Application 261
8.1.3 Elimination of Self-connection 262
8.1.4 Recognition of Noisy Patterns 263
8.1.5 Storage of Multiple Patterns in an Auto-associative Net 264

8.2 Hetero-associative Nets—265
8.2.1 Training 266
8.2.2 Application 267

8.3 Hopfi eld Networks—267
8.3.1 Architecture 268
8.3.2 Training 268

8.4 Bidirectional Associative Memory—271
8.4.1 Architecture 271
8.4.2 Training 272
8.4.3 Application 272

Chapter Summary 278
Solved Problems 279

FM.indd xFM.indd x 2/22/2013 5:39:18 PM2/22/2013 5:39:18 PM

Contents xi

Test Your Knowledge 295
Answers 296
Exercises 297
Bibliography and Historical Notes 298

 9. COMPETITIVE NEURAL NETS 299
 9.1 The MAXNET—300

9.1.1 Training a MAXNET 300
9.1.2 Application of MAXNET 300

 9.2 Kohonen’s Self-organizing Map (SOM)—304
9.2.1 SOM Architecture 304
9.2.2 Learning by Kohonen’s SOM 306
9.2.3 Application 307

 9.3 Learning Vector Quantization (LVQ)—311
9.3.1 LVQ Learning 311
9.3.2 Application 313

 9.4 Adaptive Resonance Theory (ART)—318
9.4.1 The Stability-Plasticity Dilemma 319
9.4.2 Features of ART Nets 319
9.4.3 ART 1 320

Chapter Summary 338
Solved Problems 339
Test Your Knowledge 365
Answers 367
Exercises 367
Bibliography and Historical Notes 368

10. BACKPROPAGATION 371
10.1 Multi-layer Feedforward Net—371

10.1.1 Architecture 372
10.1.2 Notational Convention 372
10.1.3 Activation Functions 373

10.2 The Generalized Delta Rule—375
10.3 The Backpropagation Algorithm—376

10.3.1 Choice of Parameters 379
10.3.2 Application 381

Chapter Summary 382
Solved Problems 383
Test Your Knowledge 391
Answers 392
Exercises 392
Bibliography and Historical Notes 393

FM.indd xiFM.indd xi 2/22/2013 5:39:18 PM2/22/2013 5:39:18 PM

xii Contents

11. ELEMENTARY SEARCH TECHNIQUES 395
11.1 State Spaces—396
11.2 State Space Search—403

11.2.1 Basic Graph Search Algorithm 403
11.2.2 Informed and Uninformed Search 404

11.3 Exhaustive Search—404
11.3.1 Breadth-fi rst Search (BFS) 405
11.3.2 Depth-fi rst Search (DFS) 407
11.3.3 Comparison Between BFS and DFS 410
11.3.4 Depth-fi rst Iterative Deepening 412
11.3.5 Bidirectional Search 413
11.3.6 Comparison of Basic Uninformed Search Strategies 416

11.4 Heuristic Search—416
11.4.1 Best-fi rst Search 416
11.4.2 Generalized State Space Search 418
11.4.3 Hill Climbing 418
11.4.4 The A/A* Algorithms 426
11.4.5 Problem Reduction 437
11.4.6 Means-ends Analysis 446
11.4.7 Mini-Max Search 450
11.4.8 Constraint Satisfaction 465
11.4.9 Measures of Search 476

11.5 Production Systems—477
Chapter Summary 486
Solved Problems 487
Test Your Knowledge 515
Answers 524
Exercises 524
Bibliography and Historical Notes 527

12. ADVANCED SEARCH STRATEGIES 529
12.1 Natural Evolution: A Brief Review—530

12.1.1 Chromosomes 530
12.1.2 Natural Selection 531
12.1.3 Crossover 531
12.1.4 Mutation 531

12.2 Genetic Algorithms (GAs)—531
12.2.1 Chromosomes 534
12.2.2 Fitness Function 537
12.2.3 Population 537
12.2.4 GA Operators 538
12.2.5 Elitism 544
12.2.6 GA Parameters 544
12.2.7 Convergence 545

FM.indd xiiFM.indd xii 2/22/2013 5:39:18 PM2/22/2013 5:39:18 PM

Contents xiii

12.3 Multi-objective Genetic Algorithms—546
12.3.1 MOO Problem Formulation 546
12.3.2 The Pareto-optimal Front 547
12.3.3 Pareto-optimal Ranking 549
12.3.4 Multi-objective Fitness 551
12.3.5 Multi-objective GA Process 553

12.4 Simulated Annealing 554
Chapter Summary 555
Solved Problems 556
Test Your Knowledge 561
Answers 563
Exercise 563
Bibliography and Historical Notes 563

13. HYBRID SYSTEMS 565
13.1 Neuro-genetic Systems—566

13.1.1 GA-based Weight Determination
of Multi-layer Feed-forward Net 566

13.1.2 Neuro-evolution of Augmenting Topologies (NEAT) 568
13.2 Fuzzy-neural Systems—574

13.2.1 Fuzzy Neurons 575
13.2.2 Adaptive Neuro-fuzzy Inference System (ANFIS) 577

13.3 Fuzzy-genetic Systems—579
Chapter Summary 581
Test Your Knowledge 582
Answers 583
Bibliography and Historical Notes 583

Index 585

FM.indd xiiiFM.indd xiii 2/22/2013 5:39:19 PM2/22/2013 5:39:19 PM

FM.indd xivFM.indd xiv 2/22/2013 5:39:19 PM2/22/2013 5:39:19 PM

 This page is intentionally left blank.

PREFACE

Th is book is the result of our desire to provide a learner-friendly text on soft computing. With the grow-
ing importance of computational intelligence in diverse application areas, soft computing is fast gaining
importance and popularity in the academic world. Nowadays, this subject is included as a full paper,
either elective or core, in various undergraduate and graduate curricula in computer science and engi-
neering, information technology, master of computer applications, and related courses. Th is book covers
the syllabi of the soft computing papers in these curricula. We hope that this book will cater the require-
ments of the students and researchers interested in this fi eld.

Th e purpose of this book is to introduce the reader to the fundamental concepts of soft computing
as a methodological tool. We assume that the reader has rudimentary knowledge of computing and
computer programming. Requirement of prior mathematical knowledge is kept at bare minimal. Aft er
reading this book, the reader will be able to

Analyze a given computational task to recognize the appropriateness, or otherwise, of •
applying soft computing techniques for a solution,
Design a soft computing system required to address a computational task,•
Implement a soft computing system for a computational task,•
Explain the principles and techniques of soft computing to a learner with knowledge of •
computer basics.

Compared to other papers of computer science and engineering, information technology, master of
computer applications, and related courses, there are very few textbooks on soft computing available in
the market. We have tried to provide a truly learner-friendly textbook on the subject. With this purpose
in mind, we have adopted an approach of presenting the contents in a manner which is characterized by
the following features:

Clarity of concepts, rather than mathematical rigour, is given priority.•
Th e concepts are presented, as far as practicable, in an inductive manner rather than being •
deductive.
Topics are explained with an ample number of illustrative examples.•
Numerous solved problems are provided at the end of each chapter to help the learner develop •
problem-solving skills in the area of soft computing.
Each chapter is augmented with a section entitled ‘Test Your Knowledge’ in which adequate •
number of MCQ-type test items are given. Th is will help the learner to review the knowledge
acquired.

For the sake of enhanced learning experience and effi cient attainment of learning objectives, other fea-
tures are incorporated including a list of key concepts as well as the chapter outline at the beginning of
each chapter, a summary, bibliography and historical notes at the end of each chapter, and the exercises,
of course.

FM.indd xvFM.indd xv 2/22/2013 5:39:19 PM2/22/2013 5:39:19 PM

xvi Preface

Th ere are thirteen chapters in this book. Apart from Chapter 1 (Introduction), the contents are pre-
sented in the rest of the twelve chapters. Th ese twelve chapters can be structured in four modules as
detailed below:

Module I (Fuzzy Systems and Rough Set Th eory): Containing Chapters 2, 3, 4, and 5 on Fuzzy Sets,
Fuzzy Logic, Fuzzy Inference Systems, and Rough Sets, respectively.

Module II (Artifi cial Neural Networks): Containing Chapters 6, 7, 8, 9, and 10 on Artifi cial Neu-
ral Networks: Basic Concepts, Elementary Pattern Classifi ers, Pattern Associators, Competitive Neural
Nets, and Backpropagation, respectively.

Module III (Intelligent Search Strategies): Containing Chapters 11 and 12 on Elementary Search
Techniques and Advanced Search Techniques, respectively.

Module IV (Hybrid Systems): Containing Chapter 13 on Hybrid Systems.

Ch. 1

Ch. 13

Ch. 2

Ch. 3

Ch. 4

Ch. 5

Ch. 11

Ch. 12

Ch. 6

Ch. 7

Ch. 8 Ch. 9

Ch. 10

Dependency relations among the chapters of the book

Modules I, II, and III can be studied almost independently. However, there are dependencies among the
chapters within a module. Th ese dependencies are depicted in the above fi gure. Th e learner may choose
the most convenient learning path on the basis of the dependencies depicted in this fi gure.

While writing this book, we have consciously adopted a learner-centric approach of content delivery.
Th e challenge was to present the text lucidly without diluting the subject matter, so that the book be-
comes an eff ective learning material on the subject. Whether this is achieved can only be judged by the
reader.

Samir Roy
Udit Chakraborty

FM.indd xviFM.indd xvi 2/22/2013 5:39:19 PM2/22/2013 5:39:19 PM

ACKNOWLEDGEMENTS

Th is book is a result of the collective eff orts of many individuals. We thank Pearson Education for their
positive response to the initial book proposal and eventual publication of the book on time. In particular,
we are grateful to Neha Goomer (Assistant Editor, Acquisitions), Anita Sharma (Senior Executive, Rights
and Contracts), and V. Pavithra (Associate Editor, Production) for their eff orts to expedite the execution of
the project. We also thank the editorial board and Deepti Goel (Assistant Designer, Production) for the
impressive cover design they created for this book. Our individual acknowledgements are given below:

At the outset, I want to express my sense of gratitude to my students whose interactions have kept me
alive, intellectually and spiritually, for all these years. It is my privilege to remain in touch with the fresh
minds I encounter in the classrooms. I am immensely grateful to my colleagues at the National Institute of
Technical Teachers’ Training and Research (NITTTR), Kolkata. I especially thank Prof. R. Dasgupta, Head,
Department of Computer Science and Engineering, NITTTR, Kolkata, for his understanding, encourage-
ment, and support. I also thank Sri R. Chatterjee, Assistant Professor, Department of Computer Science and
Engineering, NITTTR, Kolkata, for the many, many hours of invigorating discussion sessions, and Indra,
Mainak, and Utpal for creating a friendly atmosphere and for their readiness to help. I also thank my fellow
academicians, researchers, and students at various other educational institutions including the University of
Calcutta, Bengal Engineering and Science University (Shibpur), and West Bengal University of Technology.

I thank my wife Sukla for taking me for granted. Th anks to my son Biswaroop and my daughter
Deepshikha for accepting the unavoidable hazards of being my children.

Samir Roy

I thank my friends and colleagues at the Sikkim Manipal Institute of Technology for their inspiration.
Special thanks to Brig. (Dr) S. N. Misra (Retd), Hon’ble Vice Chancellor, Sikkim Manipal University,
Maj. Gen. (Dr) S. S. Dasaka, SM, VSM (Retd), Director, Sikkim Manipal Institute of Technology and
Prof. M. K. Ghose, Head, Department of Computer Science and Engineering, Sikkim Manipal Institute
of Technology for their continuous support and encouragement. I am also obliged to the students of
MCSE 105 (Aug–Dec 2012) with whom a large part of the text was discussed.

I cannot thank my parents enough, for the pain they have endured and the sacrifi ces they had made to
grant me good education. I hope this brings a smile on their faces. My wife has been really tough on me when
I relaxed more than planned. Th e low deadline miss count goes to her credit. I must thank my elder sister for
standing like a rock and taking all the blows on the family front so that I could concentrate on my work.

Finally, my apologies, to Doibee, my daughter of two-and-half years, for bearing with the compro-
mise on the quality of her bedtime stories.

Udit Chakraborty

FM.indd xviiFM.indd xvii 2/22/2013 5:39:19 PM2/22/2013 5:39:19 PM

FM.indd xviiiFM.indd xviii 2/22/2013 5:39:19 PM2/22/2013 5:39:19 PM

 This page is intentionally left blank.

ABOUT THE AUTHORS

Samir Roy is presently working as an Associate Professor in the Department of Computer Science and
Engineering, National Institute of Technical Teachers’ Training and Research, Kolkata, an autonomous
institution under the Ministry of Human Resource Development, Government of India. He graduated
with honours in Physics from the Presidency College, Kolkata, in 1985, and subsequently obtained the
bachelors, masters, and doctoral degrees in computer science and engineering. Aft er serving as a Scien-
tifi c Offi cer for a brief period at IIT Kharagpur, he took up teaching as his primary occupation. He has
about twenty years of teaching experience in diff erent areas of computer science both at the undergradu-
ate and postgraduate levels at various engineering colleges and training institutes. He has written and
presented more than forty articles in international and national journals and in conference proceedings.
His areas of interest include artifi cial intelligence, soft computing, mathematical logic and educational
informatics.

Udit K. Chakraborty obtained his bachelors and masters in computer science and engineering from
the North Eastern Regional Institute of Science and Technology and the Sikkim Manipal University
of Health, Medical and Technological Science, respectively. He is currently working with the Sikkim
Manipal Institute of Technology as an Associate Professor in the Department of Computer Science and
Engineering and has about ten years of teaching experience. His areas of interest include soft computing,
natural language processing and algorithms. He has published several research papers in national and
international conferences.

FM.indd xixFM.indd xix 2/22/2013 5:39:19 PM2/22/2013 5:39:19 PM

FM.indd xxFM.indd xx 2/22/2013 5:39:19 PM2/22/2013 5:39:19 PM

 This page is intentionally left blank.

1
INTRODUCTION

Key Concepts

Ant colony, Artifi cial neural networks (ANN), Belief propagation, Boundary regions, Curve fi tting,
Darwin, Evolutionary search, Fuzzy control, Fuzzy-evolutionary, Fuzzy inference, Fuzzy systems, Genetic
algorithms (GAs), Hybrid systems, Imprecision, Inexactness, Information systems, Law of excluded middle,
Learning, Measurement, Natural selection, Neuro-fuzzy, Neuro-genetic, Optimization, Pattern association,
Pattern classifi cation, Pattern clustering, Perception, Probabilistic reasoning, Rough sets, Simulated annealing
(SA), Soft computing, State space search, Supervised learning, Survival of the fi ttest, Swarm optimization,
Training pairs, Unsupervised learning, Vagueness

Chapter Outline
1.1 What is Soft Computing?
1.2 Fuzzy Systems
1.3 Rough Sets
1.4 Artifi cial Neural Networks
1.5 Evolutionary Search Strategies

Chapter Summary
Test Your Knowledge
Exercise
Bibliography and Historical Notes

What is soft computing? How does it diff er from traditional ‘hard’ computing? What are its main com-
ponents and how do they relate to each other? What are the basic traits of a soft computing technique?
Th ese are relevant questions that any inquisitive mind will ask while approaching a text on the subject.
While clear answers to these questions can only emerge out of careful study and practice of the subject,
some indicators need to be available to the sincere learner at the very outset. Th is chapter is intended to
provide some ideas about the spirit of soft computing as a computational process.

1.1 WHAT IS SOFT COMPUTING?

Well, the obvious answer to this question is, ‘soft computing is computing which is not hard’. But this can-
did answer might not satisfy some people who are so inherently skeptic as to ask further, ‘then what is
hard computing?’ Th e rest of this chapter is dedicated to these skeptics.

Samir Roy_Chapter01.indd 1Samir Roy_Chapter01.indd 1 2/21/2013 3:14:03 PM2/21/2013 3:14:03 PM

Th e phrase ‘soft computing’ was coined by Lotfi A. Zadeh, a pioneer in this fi eld, in the early 1990s.
Th e question ‘What is soft computing?’ can be answered from various perspectives, e.g., its methodologi-
cal traits, problem solving abilities, constraints, and so on. In fact a complete understanding of the term
‘soft computing’ is possible only when all these perspectives are taken into consideration. In this intro-
ductory text, we will certainly try our best to build this holistic view of soft computing, but presently we
start by focusing our attention on what is readily available to us, the phrase ‘soft computing’.

Th e term ‘soft computing’ consists of two words, ‘soft ’ and ‘computing’. Assuming that we have a fairly
good idea of what ‘computing’ is, let us focus our attention on the remaining keyword, i.e., ‘soft ’ which
is opposite to ‘hard’. Table 1.1 presents certain characteristics that we tend to associate with these two
contrasting words.

Table 1.1. Hard vs. soft

Hard Soft

Rigid Flexible

Fixed Movable/Adjustable

Systematic Random

Well-defi ned Vague

Exact Inexact/Approximate

Precise Imprecise

Measurable Perceivable

Solid Porous

Deterministic Non-deterministic

… …

Taking a cue from the words closely associated with ‘hard’ and ‘soft ’, we may expect that soft computing
somehow relates to fl exibility, imprecision, inexactness, vagueness, randomness, non-determinism and
so on either as computational process, or the computational problems they try to solve. Indeed, these
traits distinguish soft computing from hard computing.

In real life we keep on confronting and handling situations characterized by soft qualities. Let us
consider a few.

(a) Parking a car on a narrow parking space. You want to park a car within a narrow parking space.
Th e available space is just enough to keep the car. You don’t need to measure the exact length or
breadth of the space. Nor you need to know the exact coordinates of the car’s fi nal position. However,
you successfully assess the situation and maneuver the car in a way such that the car is fi nally parked
properly.
(b) Recognition of handwritten characters. There are infinite variations in the shape of an al-
phanumeric character written by people. None of them exactly match the printed character. In
printed form too, the same character have different shapes in different fonts. Add to this the
variation due to size, writing material, colour, the surface on which the characters are written
etc. In spite of all these deviations from the ‘ideal’ shape, we have no difficulty in recognizing a
handwritten character. It seems that our brain do not process the image of such an entity pixel
by pixel but as whole. This is again in sharp contrast with the conventional hard computing
paradigm.

2 Introduction to Soft Computing

Samir Roy_Chapter01.indd 2Samir Roy_Chapter01.indd 2 2/21/2013 3:14:05 PM2/21/2013 3:14:05 PM

(c) Collection of food by ants. When the ants look for food they start by traveling in random direc-
tions. Many ants go out of the ant-hill simultaneously and individually search for food in various direc-
tions. However, when the source of food is discovered by one or a few ants, they return to their ant-hill
and convey this message to other ants. Gradually, the movements of the entire population of the ants
(i.e. those who are engaged in searching and collecting food) converge to a line joining the source of
food and the ant-hill. And, this line is usually along the shortest distance between the source and the
destination.

Situation (a), that of parking a car on a narrow parking space, is an instance of a problem whose descrip-
tion is imprecise in the sense that the exact measurement of the dimensions of the parking space is not
available. In fact, such exact values are neither necessary, nor desirable because it is not a precision job
at all. Also unavailable are the dimensions of the car (we do not bother about those fi gures while park-
ing), and the coordinates of the wheels when the car is fi nally parked. Th is is a typical situation where
exactitude, or precision, in the description of the problem as well as the solution is neither available, nor
necessary.

Situation (b), that of recognition of handwritten characters, exemplify the distinctive nature of
human perception as opposed to traditional computational process based on instruction fetch and
execute cycle. It seems that the human brain perceives a pattern as a whole, not pixel by pixel. More-
over, small deviations, or incompleteness of description, or similar aberrations from the ideal pattern
do not prevent us from recognizing the pattern correctly. Th is remarkable capacity of human brain
is the result of the structure of the brain that allows immense parallelism. Th ere is another impor-
tant phenomenon called learning. Conventional computation does not model learning. Rather, it is
based on the idea of an algorithm as an embodiment of procedural knowledge already learnt by the
programmer.

Th e third situation, the behaviour of ants while searching for food, is an instance of nature’s wisdom
to achieve betterment over time. Th is is similar to an optimization process. A more elaborate optimiza-
tion process undertaken by nature is the evolution of higher order species from lower ones over millions
and millions of years by means of natural selection. Randomness is a necessary ingredient of these pro-
cesses. However, such randomness is not unconstrained. Randomness is necessary to explore possibili-
ties, but at the same time, it must be supported by direction. Th is is ensured by various mechanisms.
For example, in biological evolution the upthrust is provided by natural selection guided by Darwinian
principle of survival of the fi ttest. In ant colonies, this is provided by accumulation of a chemical called
pheromone deposited by the ants along the frequently visited paths. Moreover, the target of optimiza-
tion is also ‘soft ened’ in these processes. Th is is because, unlike traditional optimization, here we do not
insist on ‘the’ optimal solution because we may have to wait too long to receive the best solution. Rather,
a near-optimal solution available at a convenient time is accepted. Th e fact is that certain problems are
computationally so complex that fi nding the best solution would take ages by even the fastest computer.
For most practical purposes, a quickly available near-optimal solution at the expense of a slight, prob-
able, compromise in quality is acceptable.

What is soft computing then? It is not a single computational technique. Soft computing is a family
of techniques with capacity to solve a class of problems for which other conventional techniques are
found to be inadequate. Th e principal components of soft computing, as on today, includes fuzzy systems
(fuzzy set theory, fuzzy logic, fuzzy inference systems etc.), rough set theory, artifi cial neural networks,
probabilistic reasoning, and evolutionary search strategies (including genetic algorithms, simulated an-
nealing, ant colony optimization, swarm optimization etc.). Table 1.2 provides a summary of the do-
mains of these components of soft computing.

Introduction 3

Samir Roy_Chapter01.indd 3Samir Roy_Chapter01.indd 3 2/21/2013 3:14:05 PM2/21/2013 3:14:05 PM

Table 1.2. Soft Computing Techniques

Technique Application domain

1 Fuzzy systems Vagueness / imprecision / inexactness / Approximate reasoning

2 Rough sets Vagueness / inexactness in information systems

3 Artifi cial neural networks Learning and curve fi tting / Pattern classifi cation, association, clus-
tering

4 Probabilistic reasoning Uncertainty and belief propagation

5 Evolutionary searches Complex optimization

Evolutionary-FuzzyE ovE ono yryE ovEE oi no yr NeeeN uro-Fuu -ou uu -ou uF zzy-Evoz -yz y ovoz -yz ovE oluuul tit onnono araaaa yyy

NNNeuro-Evole r E-E o ututioonaaryyyyryy

NeeNeuro-Fuzzyu ouro zuFu yyzzy

Fuzzuz yy
Syystemess meemes me sssss

Evoloo utuuu ioonarnna yyyy
Searchcaarchca c
StratetS eat etSS eatrategiesegg eegg ees

Fig. 1.1. Synergy among the principal components of soft computing

It should be noted that while each of these techniques can be applied in isolation to solve problems of
related domains, they can work together synergistically. Th e fact is, soft computing is not just a collection
of several techniques, but is a family of highly interacting and complementary techniques.

For instance, artifi cial neural networks generally lack certain characteristics which are present in
fuzzy logic. On the other hand, fuzzy systems cannot learn, adapt, or support parallelism though these
are clearly present in neural nets. Th is observation prompted researchers to develop neuro-fuzzy systems
that are highly successful hybrid systems. Th e complementary role of fuzzy logic and neuro-computing
helps a neuro-fuzzy system overcome the limitations of both constituents. Actually, hybridization is
a central theme of soft computing. Various hybrid soft computing systems, e.g., neuro-fuzzy systems,
fuzzy neural networks, genetic fuzzy systems, fuzzy-evolutionary algorithms, genetic-neural networks
etc. have been developed in past years and are being developed. Fig. 1.1 gives a graphical view of hybrid-
ization in soft computing.

What are the essential properties that bring all these diverse methodologies together under the com-
mon umbrella named ‘soft computing’? We can safely say that a computation that deliberately incorpo-
rates imprecision on one or more levels of computation resulting either in a change, in fact decrease,
in the ‘granularity’ of the problem, or relaxing the goal of optimization at some stage, is a kind of soft
computing. So the eff ect of including imprecision is a relaxation either in the level of description of the

4 Introduction to Soft Computing

Samir Roy_Chapter01.indd 4Samir Roy_Chapter01.indd 4 2/21/2013 3:14:05 PM2/21/2013 3:14:05 PM

problem, or the level of achievement of the goal. However, it should be noted that the imprecision is not
a target. It is a means to achieve practical solution to a given complex problem.

Soft computing can also be considered as a tool to tackle imprecision and uncertainty. As stated by
Zadeh, the guiding principle of soft computing is to exploit the tolerance for imprecision, uncertainty,
partial truth, and approximation to achieve tractability, robustness, low cost etc. Real life problems are
full of uncomfortable characteristics due to partial, vague, noisy, and incomplete information. Under
such circumstances, hard computing techniques are not appropriate. In this context, it is worthwhile to
ponder over the diff erence between measurement and perception. While measurements are exact, per-
ceptions are vague. We, the humans, have a wonderful capacity to perform numerous tasks, physical as
well as mental, without any measurement or calculations. While science has been motivated to progress
from perception to measurement, soft computing perhaps will enable us to return to perception. Hence
soft computing may lead in future to computing with words and perceptions.

In the rest of this chapter, we will try to appreciate the spirit of soft computing by a quick review of
the basic principles of its components.

1.2 FUZZY SYSTEMS

Fuzzy set theory is an extension, or generalization, of the classical, occasionally referred to as crisp, set
theory. Our everyday conversation is full of vague and imprecise concepts, e.g., ‘Uncle Sam is tall’ or ‘It
is very cold today’. It is diffi cult if not impossible to translate such statements into more precise language
because such an eff ort results in losing some of their semantic values. If, instead of saying ‘It is very cold
today’ someone says ‘Today’s temperature is 5°C’, or, instead of saying ‘Uncle Sam is tall’ we say ‘Uncle
Sam’s height is 5 ft 10 inch’, aren’t we losing some of the meanings of the statements mentioned above? It
seems that in real life, vagueness is not only unavoidable but also desirable to some extent.

As stated earlier, science tries to replace perception with measurement. However, more and more
we are facing situations in science and technology where there is a need to retain perception into the
system. For instance, consider the case of designing an expert system to embody the diagnostic power
of a physician. In his eff ort to codify the physician’s decision making process, the designer discovers that
the physician’s approach to diagnosis or medication is largely intuitive though supported by various test
results and measurements. Accepting vagueness as a valid element of model of reality, instead of trying
to mould reality into crisp measurements, is the natural way to implement such applications.

Fuzzy set theory, which eff ectively models vagueness in its mathematical formulation, is naturally
extended to logic. Logic is the study of the structures and principles of reasoning and sound argument.
Classical logic is based on the famous ‘law of excluded middle’. Th is law states that every statement must
be either true or false. Th ere was strong opposition to this view even in ancient times. Greek philoso-
pher Heraclitus opined that statements could be simultaneously true and false. Th e central theme of
fuzzy logic was upheld by Plato who indicated that there was a third region beyond true or false. In re-
cent past, the systematic alternative to bi-valued logic of Aristotle was proposed by Lukasiewicz in early
1900s. Lukasiewicz proposed a 3-valued (true, false, and ‘possible’) logic, followed by 4-valued and later
5-valued logics. Th e modern, infi nite-valued fuzzy logic was proposed by LA Zadeh in 1965. In real life
we face situations where there is no sharp distinction between truth and falsehood. Rather, there are
infi nite shades of truths between absolute truth and absolute falsehood. Fuzzy logic accepts this state of
aff air and builds a system of reasoning on the basis of infi nite shades of truth. Fuzzy logic is one of the
most successful theories in terms of practical applications. An important class of applications is based
on the idea of fuzzy inference system. Th is is a kind of input-output mapping based on fuzzy logic.

Introduction 5

Samir Roy_Chapter01.indd 5Samir Roy_Chapter01.indd 5 2/21/2013 3:14:07 PM2/21/2013 3:14:07 PM

Th ese systems have been applied in machine control and are popularly known as fuzzy control systems.
Th e advantage of fuzzy inference systems is that here the solution to the problem can be cast in terms
of familiar human operators. Hence, the human experience can be used in the design of the controller.
Engineers developed numerous fuzzy controllers for industrial applications and consumer products.

1.3 ROUGH SETS

Fuzzy sets and fuzzy logic have modeled vagueness in terms of partial membership and partial truth re-
spectively. Another model of vagueness has gained importance in recent past. Th e concept of rough sets,
proposed by Z Pawlak, considers vagueness from a diff erent perspective. Here vagueness is expressed,
instead of set membership, in terms of boundary regions of a set of objects. In large reservoir of multidi-
mensional data, occasionally it is not possible to decide with certainty whether a given object belongs
to a set or not. Such objects are said to form a boundary regions for the set. If the boundary region is
empty, then the set is crisp, otherwise it is rough. A non-empty boundary region exists due to insuffi -
cient knowledge to defi ne the set with certainty. Th ere are many interesting applications of the rough set
theory including knowledge acquisition, decision analysis, knowledge discovery from databases, expert
systems, inductive reasoning etc.

1.4 ARTIFICIAL NEURAL NETWORKS

A computer program embodies a ready made procedural knowledge that the programmer has acquired
and then translated with help of a programming language. Superiority of the brain over computer is largely
ascribed to brain’s capacity to learn from experience. Th e slow process of learning enables man to perform
certain tasks, e.g., recognition, classifi cation, association, clustering etc. in a highly effi cient manner.

Artifi cial neural networks (ANNs) are inspired by the structure and functionality of the brain. Th ere
are nearly 100 billion neurons in a normal human brain. Each neuron is locally connected to its neigh-
bouring neurons. Th e neurons have elementary capacities like summing up the incoming signals and
then passing it on to the neighbours conditionally. Human consciousness is the outcome of the collective
activities of these 100 billion neurons. In a computer information is stored as localized bits. An ANN
preserves information as weights of interconnections among its processing units. Th us, as in the brain,
information in ANNs too resides in a distributed manner, resulting in greater fault tolerance. Moreover,
multiple data may be superimposed on the same ANN for storage purpose. Like the human brain, ANNs
also perform computation in terms of patterns rather than data.

Pattern classifi cation is the task of deciding whether the input pattern, usually a vector, belongs to a
certain class or category. In real life, we encounter pattern classifi cation tasks quite oft en. For instance,
we may need to classify a cell, on the basis of its image, as cancer-aff ected or otherwise.

Another common human experience is pattern association. It takes place when we relate a given
pattern to one already stored in memory. We do associate patterns in our daily life almost without any
conscious eff ort. Examples are, recognition of a known face from an image (either distorted, or undis-
torted), visualizing a fl ower from its fragrance, remembering a distant past on hearing a particular tune
etc. In computing, retrieval of a stored pattern corresponding to an input pattern is known as pattern
association. Associative memory neural nets are those which store a set of pattern associations. Th ere
are two kinds of associative memory neural nets. Th e associations may be auto (the input and the stored
patterns are identical), or hetero (the input and the stored patterns are diff erent).

6 Introduction to Soft Computing

Samir Roy_Chapter01.indd 6Samir Roy_Chapter01.indd 6 2/21/2013 3:14:07 PM2/21/2013 3:14:07 PM

Neural nets are trained by providing sample classifi cation data over and over again and making
adjustments in their weight vectors so that they become ‘experienced’ enough to classify unknown
patterns successfully. Learning is either supervised or unsupervised. When learning takes place in pres-
ence of a teacher the learner has the opportunity to get corrected by the teacher when he commits a
mistake. Th is is supervised learning. A self-learner, in contrast, does not have a teacher and therefore
he has to identify an error as well as get it corrected all by himself. Similarly, learning by ANN is either
supervised or unsupervised, depending on the availability of training data. By training data we mean a
set of pairs of input–output vectors. In presence of such data, the ANN can measure the deviation from
desired output values when the net is presented with an input pattern. Supervised learning by an ANN
takes place in this way. However, in the absence of such training pairs, the ANN has to adjust itself on
its own. Usually some kind of competition facilitates unsupervised learning. Th ere are various ANNs,
e.g., Kohonen’s self organizing map (SOM), learning vector quantization (LVQ), etc. that act on the ba-
sis of unsupervised learning. Th is text contains discussions on the fundamental ANNs including Hebb
nets, Perceptrons, ADALINE, MADALINE etc. as pattern classifi ers, Hopfi eld nets and bidirectional
associative memory (BAM) as associative networks, Kohonen’s self organizing map (SOM), learning
vector quantization (LVQ), adaptive resonance theory (ART) as competitive networks, back propaga-
tion networks, etc.

1.5 EVOLUTIONARY SEARCH STRATEGIES

Quite oft en, intelligent computing takes the form of a state space search. A state space is a graph where
the nodes represent the ‘states’ relating to a computational problem and the directed edges represent
possible moves from one problem state to another. Starting with the initial state, the requirement is to
reach a ‘goal’ state by traversing a suitable path through the graph. Th e state spaces are oft en huge in size
and fi nding a solution, or a path to the solution, may prove to be highly computation intensive process.
In this text we discuss the exhaustive search techniques, e.g., breadth-fi rst search, depth-fi rst search,
depth-fi rst iterative deepening etc., as well as various heuristic search strategies.

Complex optimization problems require advanced search techniques to obtain workable solutions
within reasonable time frame. Classical optimization techniques can be used only on continuous and
diff erentiable functions. However, oft en such well behaved functions are not available for certain opti-
mization problems. Moreover, classical search techniques have a tendency to settle down at local optima
instead of the global best. Th ere are computational problems which require tremendous computational
eff orts to fi nd the best solution. Intelligent search strategies like hill climbing may be employed to obtain
reasonably good solutions to such problems. However, hill climbing suff ers from the serious problem
of settling to sub-optimal solutions remaining in the search space as local optimal points. Genetic Al-
gorithms (GAs) and Simulated Annealing (SA) are two search strategies that are inspired by natural
evolutionary processes and have the capacity to overcome the problem posed by the existence of local
optima in large search spaces. GAs are inspired by the process of natural evolution. Th e mechanism
applied by nature in evolution is natural selection based on the Darwinian principle of survival of the
fi ttest. It is essentially a maximization process. Simulated Annealing (SA) mimics the process of physical
annealing. In physical annealing a metal is initially heated to a molten state and then gradually cooled
to get a uniform crystal structure. Th is uniform crystal structure corresponds to a minimal energy level.
Hence annealing is a minimization process. Th e GAs and SAs are extensively applied to solve optimiza-
tion problems of highly complex nature.

Introduction 7

Samir Roy_Chapter01.indd 7Samir Roy_Chapter01.indd 7 2/21/2013 3:14:07 PM2/21/2013 3:14:07 PM

 CHAPTER SUMMARY

Th e forgoing introductory discussion on the nature and constituents of soft computing can be summa-
rized in the following way.

 Th e term ‘soft computing’ was coined by LA Zadeh in early 1990s and can be interpreted from •
various perspectives, e.g., its methodological traits, problem-solving abilities, constraints, and so
on. A complete understanding of the term ‘soft computing’ is possible only when all these perspec-
tives are taken into consideration.
 Soft computing is a family of techniques with capacity to solve a class of problems for which other •
conventional techniques are found to be inadequate. Th e principal components of soft computing
include fuzzy systems, rough set theory, artifi cial neural networks (ANNs), probabilistic reason-
ing, and evolutionary search strategies including genetic algorithms (GAs), simulated annealing
(SA), ant colony optimization, swarm optimization etc.
 Fuzzy systems are systems built on fuzzy set theory and fuzzy logic. Th ese systems try to model •
vagueness, or inexactness, which is a necessary ingredient of everyday interactions and activities.
Fuzzy set theory accommodates vagueness by allowing set membership values to lie anywhere
between 0 and 1, both inclusive. Fuzzy logic violates the Aristotelian law of excluded middle and
allows a statement to be true to any extent between absolute falsehood and absolute truth.
 In rough set theory, vagueness is expressed, instead of set membership, in terms of boundary •
regions of a set of objects. If the boundary region is empty, then the set is crisp, otherwise it is
rough.
 Artifi cial neural nets are networks of processing elements that follow a computational paradigm •
akin to that of the human brain. Th ese are effi cient structures to classify, associate and cluster pat-
terns. Like human brain, the artifi cial neural nets need to be trained to carry out the designated
task. Learning by ANN could be either supervised, or unsupervised. Supervised learning is as-
sisted by training data and unsupervised learning takes place in absence of any training data.
 Complex optimization problems require advanced search techniques to obtain workable solutions •
within reasonable time frame. Genetic Algorithms (GAs) and Simulated Annealing (SA) are two
search strategies that are inspired by natural evolutionary processes and have the capacity to over-
come the problem posed by the existence of local optima in large search spaces. While GA is a
maximization process, SA is a minimization process.

� TEST YOUR KNOWLEDGE

1.1 Which of the following traits is expected in a soft computing technique?
a) Precision measurement b) Exactitude
c) Absolute truth/falsehood d) None of the above

1.2 Which of the following traits is not expected in a soft computing technique?
a) Randomness b) Soft ening of goal
c) Vagueness d) None of the above

1.3 Fuzzy logic is a soft computing technique to deal with
a) Vagueness b) Learning
c) Optimization d) None of the above

8 Introduction to Soft Computing

Samir Roy_Chapter01.indd 8Samir Roy_Chapter01.indd 8 2/21/2013 3:14:07 PM2/21/2013 3:14:07 PM

 1.4 Which of the following soft computing techniques is employed to solve complex optimization
problems?
a) Fuzzy logic b) Artifi cial neural nets
c) Rough sets d) None of the above

 1.5 Simulated annealing is a soft computing technique to deal with
a) Vagueness b) Learning
c) Optimization d) None of the above

 1.6 Which of the following is associated with artifi cial neural nets?
a) Vagueness b) Learning
c) Optimization d) None of the above

 1.7 Th e soft computing technique to deal with vagueness in information systems is
a) Artifi cial neural nets b) Rough set theory
c) Genetic algorithms d) None of the above

 1.8 Which of the following is based on the law of excluded middle?
a) Predicate Logic b) Rough set theory
c) Fuzzy logic d) None of the above

 1.9 Which of the following theories models vagueness in terms of boundary regions?
a) Probability theory b) Rough set theory
c) Fuzzy set theory d) None of the above

1.10 Which of the following search techniques has the capacity to overcome the problem of local op-
tima?
a) Genetic algorithms b) Simulated annealing
c) Both (a) and (b) d) None of the above

Answers

 1.1 (d) 1.2 (d) 1.3 (a) 1.4 (d) 1.5 (c)
 1.6 (b) 1.7 (b) 1.8 (a) 1.9 (b) 1.10 (c)

 EXERCISES

1.1 Th e vagueness we are accustomed to in our everyday conversation is not just lack of exact measure-
ment but has a semantic content. Critically assess the above statement.

1.2 Identify the basic traits of soft computing as computational process and briefl y explain how these
traits help us in problem solving.

 BIBLIOGRAPHY AND HISTORICAL NOTES

Th e history of soft computing dates back to the early stages of digital computers when scientists were
probing human brain and neural systems in an eff ort to develop machines on the basis of the brain
model. However, as stated earlier, the term ‘soft computing’ is the brainchild of L A Zadeh who coined it
in early 1990s. Consolidation of soft computing as a collection of various synergistically complementary
computational techniques is a phenomenon of the last two decades. A selected list of pioneering litera-
ture on this emerging fi eld of computer science is presented below.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Addision–
Wesley.

Introduction 9

Samir Roy_Chapter01.indd 9Samir Roy_Chapter01.indd 9 2/21/2013 3:14:07 PM2/21/2013 3:14:07 PM

Grossberg, S. (1982). Studies of mind and brain. Boston, Reidel.
Holland, J. H. (1975). Adaptation in natural and artifi cial systems. Ann Arbor: University of Michigan

Press.
Hopfi eld, J. J. and Tank, D.W. (1986). Computing with neural circuits. Science, Vol. 233, pp. 625–633.
Kirkpatrik, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing. Science, Vol.

220, pp. 671–680.
Li, X., Ruan, D. and Van der Wal, A. J. (1998). Discussion on soft computing at FLINS96. International

Journal of Intelligent Systems, Vol. 13, No. 2-3, pp. 287–300.
Magdalena, L. (2010). What is soft computing? Revisiting possible answers. International Journal of

Computational Intelligence Systems, Vol. 3, No. 2, pp. 148–159.
Pawlak, Z. (1982). Rough sets. International Journal of Computer and Information Sciences, Vol. 11, pp.

341–356.
Skowron, A. and Rauszer, C. (1992). Th e discernibility matrices and functions in information systems. In

Intelligent Decision Support - Handbook of Applications and Advances of the Rough Sets Th eory,
R. Slowiński (ed.). Dordrecht: Kluwer, pp. 331–362.

Von Neumann, J. (1958). Th e computer and the brain. New Haven: Yale University Press.
Zadeh, L. A. (1994). Soft computing and fuzzy logic. IEEE Soft ware, Vol. 11, No. 6, pp. 48–56.
Zadeh, L. A. (2001). Forward. Applied Soft Computing, Vol. 1, No. 1, pp. 1–2.
Zadeh, L. A. (2002). From computing with numbers to computing with words – From manipulation of

measurements to manipulation of perceptions. International Journal of Applied and Mathematics
and Computer Science, Vol. 12, No. 3, pp. 307–324.

10 Introduction to Soft Computing

Samir Roy_Chapter01.indd 10Samir Roy_Chapter01.indd 10 2/21/2013 3:14:07 PM2/21/2013 3:14:07 PM

2
FUZZY SETS

Key Concepts

a-cut, a-cut decomposition theorem, Classical/Fuzzy sets, Composition, Concentration, Contrast
intensifi cation, Core, Dilation, Fuzzifi cation, Fuzziness/Vagueness/Inexactness, Fuzzy cardinality,
Fuzzy Cartesian product, Fuzzy extension principle, Fuzzy membership, Fuzzy membership function,
Fuzzy relations, Gaussian function, Height, Level set, Max-min composition, Membership functions,
Normality, Normalization, Relation matrix, Restricted scalar multiplication, S-function, Singleton,
Support, Trapezoidal function, Triangular function

Chapter Outline

2.1 Crisp Sets: A Review
2.2 Fuzzy Sets
2.3 Fuzzy Membership Functions
2.4 Operations on Fuzzy Sets
2.5 Fuzzy Relations

2.6 Fuzzy Extension Principle
Chapter Summary
Solved Problems
Test Your Knowledge
Exercise
Bibliography and Historical Notes

Th is chapter presents the basic concepts of fuzzy set theory. Th e fuzzy set theory is an extension, or gen-
eralization, of the classical, occasionally referred to as crisp, set theory in the sense that the latter can be
considered as a special case of the former. Hence the chapter starts with a review of the fundamentals of
the classical set theory. Elementary concepts of fuzzy set theory, e.g., membership functions, transforma-
tions on membership functions, linguistic variables, fuzzy set operations etc. are presented along with
illustrative examples in sections 2.2, 2.3 and 2.4. Th is is followed by a discussion on fuzzy relations and
related matters in Section 2.4. Th e chapter ends with a presentation of the fuzzy extension principle that
provides a technique to map a function from the crisp domain to its equivalent in the fuzzy domain.

2.1 CRISP SETS: A REVIEW

Th e notion of a set is of fundamental importance in Mathematics. It can be informally defi ned in the
following way.

Samir Roy_Chapter02.indd 11Samir Roy_Chapter02.indd 11 2/21/2013 3:14:52 PM2/21/2013 3:14:52 PM

Defi nition 2.1 (Set) A set is a collection of distinct elements, or members, without repetition and
without ordering.

Example 2.1 (Set)

Th e set atomic particles = {electron, proton, neutron}. Since a set is defi ned by its members without
regard to ordering or repetitions, the set of atomic particles cited above is identical to the set {pro-
ton, neutron, electron}, or the set {neutron, proton, neutron, electron, proton, proton}

Th ere are two ways to describe a set. Th e most obvious one is by enumerating the members of the set.
However, occasionally it is convenient to describe a set by citing a property common to all the members
of the set. Both of these kinds of set notations are exemplifi ed below.

Example 2.2 (Set Notations)

Th e sets A, B, C, D given below are described by enumeration of its members.

A = {Jack, Jill, hill, pail, water}
B = {+, −, ×, ÷}
C = {Socrates, toothbrush, loneliness, 235}
D = {Monday, Tuesday, Wednesday, Th ursday, Friday, Saturday, Sunday}

Th e set D of all days of a week can be equivalently expressed by citing the property shared by its
member. Th us,

D = {x | x is a day of the week}

A few other sets described in similar way are

E = {x | x is an integer, and −1 ≤ x ≤ +1}}= {−1, 0, +1}
F = {x | x is a prime number}
G = {x | x is a polygon}
H = {x | x is an element having 8 electrons in its outermost shell}

Th e elementary concepts of classical set theory are presented in the following section.

2.1.1 Basic Concepts

Th is subsection provides the basic set theoretic concepts, e.g. cardinality of a set, the null set, the univer-
sal set, belongingness to a set, subset, superset and so on.

Defi nition 2.2 (Cardinality of a Set) Th e number of elements in a set S is termed as its cardinality
and is denoted as | S |.

Example 2.3 (Cardinality of a set)

A set can be fi nite or infi nite, depending on whether it has a fi nite or infi nite number of ele-
ments. For example, the sets A, B, C, D and H in Example 2.2 are fi nite sets with cardinalities
| A | = 5, | B | = 4, | C | = 4, and | D | = 7. What is the size of H ? Among the sets mentioned in
Example 2.2 the sets F and G are infi nite sets.

12 Introduction to Soft Computing

Samir Roy_Chapter02.indd 12Samir Roy_Chapter02.indd 12 2/21/2013 3:14:55 PM2/21/2013 3:14:55 PM

The Null Set and the Universal Set Th ere are two specially interesting sets, viz. the null (empty) set
and the universal set. Th ese are usually represented by the symbols ∅ and U, respectively. Th e null set is the
set without any member, so that |∅| = 0. Th e universal set, on the other hand, is the set of all possible elements
in a certain context.

Example 2.4 (Th e null set and the universal set)

Let X be the set of all natural numbers that are divisible by 4 but not divisible by 2. As there is no
such integer which is divisible by 4 but not divisible by 2, X = §. Similarly, the set of positively
charged electrons is also the null set. Moreover, we may defi ne a set S = {x | x is blue-eyed} in the
context of the universal set of all human beings. Th en S is the set of all blue-eyed persons and U
is the set of all human beings. However, if U is the set of all living creatures, then S is the set of all
blue-eyed creatures including, but not limited to, all blue-eyed human beings.

An element x is said to belong to a set S, expressed as x ∈ S, if x is included in S. Otherwise x does not
belong to S, written as x ∉ S. For example, for the set F = {x | x is a prime number}, 3 ∈ F, as 3 is a prime
number, but 4 ∉ F.

Defi nition 2.3 (Subset) A set T is said to be a subset of set S, written as T ⊆ S, if every element of
T is in S, i.e., ∀x if x ∈ T, then x ∈ S. Equivalently, S is superset of T, symbolized as S ⊇ T, if and only if
T is a subset of S.

T is a proper subset of S, denoted as T ⊂ S, if T ⊆ S and T ≠ S. Hence, if T ⊂ S, then there is at least
one member x such that x ∈ S but x ∉ T. For an arbitrary set S the following properties are obvious from
the defi nitions cited above.

 (i) ∅ ⊆ S
 (ii) S ⊆ U
(iii) S ⊆ S
Moreover, the chain rule applies to set inclusion operation, i.e., for any three sets A, B, C, if A ⊆ B and

B ⊆ C, then A ⊆ C.
Defi nition 2.4 (Equality of Sets) Two sets S and T are equal if every element of S is in T and vice

versa. In other words, S = T, if and only if, S ⊆ T and T ⊆ S.
Defi nition 2.5 (Power Set) Given a set S, the power set of S, denoted as P (S), or 2S, is the set of all

subsets of S.

Example 2.5 (Power Set)

Let us consider the set S = {black, white}. Th en P (S) = 2S = {§, {black}, {white}, {black, white}}. Ob-
viously, if | S | = n, then | P (S) | = | 2S | = 2n. Similarly, if S = {electron, proton, neutron}, then P (S)
= 2S = {§, {electron}, {proton}, {neutron}, {electron, proton}, {proton, neutron}, {electron, neutron},
{electron, proton, neutron}}.

2.1.2 Operations on Sets

Th ere are three basic operations on sets, viz. union (∪), intersection (∩), and complementation (′).
Defi nition 2.6 (Set Union) Given two sets P and Q, the union of P and Q, denoted as P ∪ Q, is the

set of all elements either in P, or in Q, or in both P and Q.

Fuzzy Sets 13

Samir Roy_Chapter02.indd 13Samir Roy_Chapter02.indd 13 2/21/2013 3:14:55 PM2/21/2013 3:14:55 PM

P ∪ Q = {x | x ∈ P or x ∈ Q}

Defi nition 2.7 (Set Intersection) Given two sets P and Q, the intersection of P and Q, denoted as P
∩ Q, is the set of all elements both in P, and Q.

P ∩ Q = {x | x ∈ P and x ∈ Q}

Defi nition 2.8 (Complement of a Set) Th e complement of P, denoted as P′, P , ¬ P, or ∼ P, is the set
of all elements (of U) outside P.

P′ = {x | x ∉ P}

Th ere are various notations for complementation, as indicated in the defi nition. However, in this
book we shall denote the complement of P as P′.

Defi nition 2.9 (Diff erence between Sets) Th e diff erence of set P from Q, denoted as P – Q, is the set
of all elements in P but not in Q.

P – Q = {x | x ∈ P and x ∉ Q}

It is easy to prove that P – Q = P ∩ Q′

Defi nition 2.10 (Symmetric Diff erence) Th e symmetric diff erence of P and Q, denoted as P ⊕ Q, is
the set of all elements that are either in P, or in Q, but not in both P and Q.

P ⊕ Q = {x | (x ∈ P and x ∉ Q), or (x ∈ Q and x ∉ P)}
 = (P – Q) ∪ (Q – P)
 = (P ∩ Q′) ∪ (P′ ∩ Q)

P

U

Fig. 2.1. Venn diagram of set P

Venn Diagrams Quite oft en it is convenient to represent a set theoretic expression visually with the
help of a diagram called Venn diagram. Usually, a Venn diagram consists of a rectangle presenting the univer-
sal set U with other sets presented with the help of circles / ovals inside the rectangle. For example, the Venn
diagram of a set S is presented in Fig. 2.1. Th e region inside the oval is the set S. Th e Venn diagrams for union,
intersection and complementation are shown in Figures 2.2, 2.3 and 2.4 respectively. Fig. 2.5 depicts the dif-
ference of two sets while Fig. 2.6 presents the operation of symmetric diff erence.

P ∪ Q

QPPP

U
P ∩ Q

QPPP

U

Fig. 2.2. Union Fig. 2.3. Intersection

14 Introduction to Soft Computing

Samir Roy_Chapter02.indd 14Samir Roy_Chapter02.indd 14 2/21/2013 3:14:55 PM2/21/2013 3:14:55 PM

P ′

P

U
P − Q

P QP

U

PP

Fig. 2.4. Complement of a set Fig. 2.5. Set difference

P ⊕ Q

P
Q

U

Fig. 2.6. Symmetric difference

Defi nition 2.11 (Cartesian Product) Let P and Q be two sets. Th e Cartesian product of P and Q,
denoted as P × Q, is the set of all ordered pairs (x, y) such that x ∈ P and y ∈ Q.

P × Q = {(x, y) | x ∈ P and y ∈ Q}

2.1.3 Properties of Sets

Certain properties are obeyed by the set theoretic operations of union, intersection, complementation,
symmetric diff erence etc. Th ese properties are summarized below.

Idempotency A ∪ A = A
 A ∩ A = A
Commutative A ∪ B = B ∪ A
 A ∩ B = B ∩ A
 A ⊕ B = B ⊕ A
Associative A ∪ (B ∪ C) = (A ∪ B) ∪ C
 A ∩ (B ∩ C) = (A ∩ B) ∩ C
 A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C
Distributive A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
 (Left distributivity of union over intersection)
 (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)
 (Right distributivity of intersection over union)
 A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
 (Left distributivity of intersection over union)
 (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)
 (Right distributivity of union over intersection)
De Morgan’s law (A ∩ B)′ = A′ ∪ B′
 (A ∪ B)′ = A′ ∩ B′

Fuzzy Sets 15

Samir Roy_Chapter02.indd 15Samir Roy_Chapter02.indd 15 2/21/2013 3:14:56 PM2/21/2013 3:14:56 PM

Identity A ∪ ∅ = ∅ ∪ A = A
 A ∩ ∅ = ∅ ∩ A = ∅
 A ∪ U = U ∪ A = U
 A ∩ U = U ∩ A = A
Involution (A′)′ = A
Law of excluded middle A ∪ A′ = U
Law of contradiction A ∩ A′ = ∅

Universal compliment U′ = ∅
 ∅′ = U
Absorption A ∪ (A ∩ B) = A
 A ∩ (A ∪ B) = A

A set theoretic identity of the form L.H.S. = R.H.S. may be proved by showing that L.H.S. ⊆ R.H.S.
and simultaneously L.H.S. ⊇ R.H.S. Example 2.6 illustrates the technique by proving the absorption
properties. Also, the properties mentioned above may be applied to prove set theoretic identities. A few
such examples are given in the section Solved Problems.

Example 2.6 (Proof of Absorption Properties)

Th e absorption properties state that for arbitrary sets A and B, the identities A ∪ (A ∩ B) = A and
A ∩ (A ∪ B) = A. Th is can be proved as follows.

Let us take an arbitrary element x of A. Now

Let x ∈ A Assumption
∴ x ∈ A ∪ B By defi nition of union
∴ x ∈ A ∩ (A ∪ B) By defi nition of intersection
∴ A ⊆ A ∩ (A ∪ B) By defi nition of set inclusion

Now,
Let x ∈ A ∩ (A ∪ B) Assumption
∴ x ∈ A and (A ∪ B) By defi nition of intersection
∴ x ∈ A
∴ A ∩ (A ∪ B) ⊆ A By defi nition of set inclusion

Hence A ∩ (A ∪ B) = A

Again,
A ∪ (A ∩ B) = (A ∪ A) ∩ (A ∪ B) Distributive law

= A ∩ (A ∪ B) = A

2.2 FUZZY SETS

Fuzzy set theory is a generalization of the classical set theory. Unlike the later, fuzzy set theory
recognizes and incorporates in its formalism the natural vagueness that we the human beings are
habituated to deal with in our practical, daily, life. This section presents the fundamental concepts
of the fuzzy set theory.

16 Introduction to Soft Computing

Samir Roy_Chapter02.indd 16Samir Roy_Chapter02.indd 16 2/21/2013 3:14:57 PM2/21/2013 3:14:57 PM

2.2.1 Fuzziness/Vagueness/Inexactness

It is quite normal to utter sentences like ‘He is a rich man’, or ‘The car is very expensive’, or ‘Old
people tend to be weak’ and so on in our everyday conversation. While such expressions as rich,
very, expensive, old, weak etc. are extremely convenient in practical communication they are char-
acteristically inexact in the sense that there are no well-defined demarcations between rich and
poor, very and little, expensive and cheap, old and young, or weak and strong. A person can be rich
as well as poor simultaneously, of course to different extents. This vagueness is desirable because
otherwise everyday conversation would have been impossible. However, the classical set theory is
not equipped to handle such vagueness as it does not allow an element to be a partial member, or a
partially non-member, of a set simultaneously. Therefore classical set theory is inadequate to model
our intuitive notion of a set in general.

As stated earlier, Fuzzy set theory is a generalization of the classical set theory so that the classical set
theory is a special case of the fuzzy set theory. It takes into consideration the natural vagueness that we
the human beings deal with in our practical, daily, life. As an example, let us consider the data related to
a family as described in able Table 2.1.

Table 2.1 A family data set

Family member Age Gender

1 Grand-pa 72 Male

2 Grand-ma 63 Female

3 Dad 41 Male

4 Mom 38 Female

5 Daughter 15 Female

6 Son 13 Male

7 Aunty 52 Female

It is customary to refer to a classical set as crisp in order to diff erentiate it from a fuzzy set. Th e crisp
set of the family members U = {Grand-pa, Grand-ma, Dad, Mom, Sister, Brother, Aunt} may be treated as
the reference set, or the universe of discourse. Now, consider the sets M and F of the male family members
and female family members respectively. Th ese are crisp sets because for any arbitrary element x of U,
it is possible to decide precisely whether x is member of the set, or not. Th ere is no intermediate status
regarding the membership of x to the respective set. However, deciding the membership of an arbitrary
x ∈ U to the set of senior persons of the family is not as straightforward as in case of M or F. Th e status
of membership of an element x with respect to a given set S is expressed with the help of a membership
function m. A set, crisp or fuzzy, may be defi ned in terms of membership function.

2.2.2 Set Membership

Description of a set in terms of its membership function is presented in this subsection. We fi rst defi ne
crisp membership which is followed by the fuzzy membership function.

Defi nition 2.12 (Membership Function) Given an element x and a set S, the membership of x with
respect to S, denoted as m S (x), is defi ned as

mS (x) = 1, if x ∈ S
= 0, if x ∉ S

Fuzzy Sets 17

Samir Roy_Chapter02.indd 17Samir Roy_Chapter02.indd 17 2/21/2013 3:14:57 PM2/21/2013 3:14:57 PM

Example 2.7 (Set Membership)

Let us consider the set M of male family members and set F of female family members with refer-
ence to the family presented in Table 2.1. We see that m M (Dad) = 1, and m M (Mom) = 0. Similarly,
m F (Dad) = 0, and m F (Mom) = 1. Membership values of the other family members in M and F can
be ascertained in similar manner.

Now, consider A to be the set of senior persons in the family. Seniority is a familiar and frequently-
used attribute to a person. But is there any clear and unambiguous way to decide whether a person
should be categorized as senior or not? Let us see with reference to U, the universe of discourse.

We may agree without any hesitation that Grand-pa, being 72 years old, is a senior person, so that
Grand-pa ∈ A. On the other hand the brother and the sister are both too young to be categorized as senior
persons. Th erefore, we may readily accept that Daughter ∉ A and Son ∉ A. What about Mom, or Dad?
Th ey are not as aged as Grand-pa but neither as young as the daughter or the son. Moreover, Grand-ma is
almost a senior person, being at 63 years, but she might be categorized as a middle-aged person as well.

Th e point is, the concept of a senior person is not as clearly defi ned as the gender of the person. In
fact, there is a whole range of gray area between total inclusion and total exclusion, over which the degree
of membership of a person in the set of senior persons varies.

Th is intuitive notion of partial membership of an element in a set can be formalized if one allows the
membership function to assume any real value between 0 and 1, including both. Th is means that an ele-
ment may belong to a set to any extent within the range [0, 1]. Hence it is now possible for an element x
to be 0.5 member, or 1/√2 member of a set S so that we may say m S (x) = 0.5, or m S (x) = 1/√2.

x
40 50 60 70 80302010

0

1

mS (x)x

Fig. 2.7. Membership function for the fuzzy set of senior family members

Membership profi les/functions Quite oft en it is convenient to express the membership of vari-
ous elements with respect to a fuzzy set with the help of a function, referred to as the membership func-
tion. Take for example the fuzzy set A of senior persons on the universe of discourse U described in
Table 2.1. For any x ∈ U, we may determine the membership value of x in A with the help of the follow-
ing membership function.

 μAμ

if
x if x

if
()x

,

,
,

=
−

≤ <x
≥

⎧

⎨
⎪
⎧⎧
⎪
⎨⎨
⎪⎪

⎩
⎪
⎨⎨

⎪⎩⎩
⎪⎪

0 3if x, < 0
30

40
30 70

1 7if x, ≥ 0
 (2.1)

Here x represents the age of the concerned person. Th e nature of the membership function is shown
graphically in Fig. 2.7.

18 Introduction to Soft Computing

Samir Roy_Chapter02.indd 18Samir Roy_Chapter02.indd 18 2/21/2013 3:14:58 PM2/21/2013 3:14:58 PM

Formula 2.1 may be applied to fi nd to what extent a person is a member of the fuzzy set A of senior
persons. For example, as Grand-pa is more than 70 years old, he is a full member of A, mA (Grand-pa) =
1.0. However for Grand-ma we have mA (Grand-ma) = (63 – 30) / 40 = 33 / 40 = 0.825. Hence Grand-ma
is a senior person to a large extent, but not as fully as Grand-pa. Table 2.2 shows the membership values
of all the family members.

Table 2.2. Membership values of the senior family members

Family member Age m A (x)

1 Grand-pa 72 1.0

2 Grand-ma 63 0.825

3 Dad 41 0.275

4 Mom 38 0.200

5 Daughter 15 0.0

6 Son 13 0.0

7 Aunty 52 0.55

If we want to describe such a fuzzy set by explicitly enumerating its members we need to indicate
the membership value of each element along with the element itself. Th erefore, the fuzzy set A of senior
persons can be expressed as a set of ordered pairs A = {(Grand-pa, 1.0), (Grand-ma, 0.825), (Dad, 0.275),
(Mom, 0.2), (Aunty, 0.55)}. Daughter and Son are not in the list because it is customary not to mention
the members with zero membership value. Th us fuzzy sets can be formally defi ned as given below.

2.2.3 Fuzzy Sets

Th is subsection presents the defi nition of a fuzzy set along with a few illustrative examples.

Defi nition 2.13 (Fuzzy set) A fuzzy set F on a given universe of discourse U is defi ned as a collec-
tion of ordered pairs (x, mF (x)) where x ∈ U, and for all x ∈ U, 0.0 ≤ mF (x) ≤ 1.0.

F = {(x, mF (x)) | x ∈ U, 0.0 ≤ mF (x) ≤ 1.0}

Classical sets, oft en referred to as crisp sets to distinguish them from fuzzy sets, are special cases of
fuzzy sets where the membership values are restricted to either 0, or 1. Each pair (x, mF (x)) of the fuzzy
set F is known as a singleton.

Notation (Fuzzy sets) Apart from enumerating the singletons as described above, fuzzy sets are
frequently expressed as the union of all singletons where a singleton is denoted as mF (x) / x. Using this
notation

 F xF
x U
∑ μ ()x (2.2)

Here the summation sign ∑ is to be interpreted as union over all singletons, and not arithmetic sum.
Formula 2.2 is appropriate for discrete sets. For continuous sets, the summation notation is replaced by
the integral sign ∫, as shown below.

 F
x

F

U

= ∫
μ ()x (2.3)

Fuzzy Sets 19

Samir Roy_Chapter02.indd 19Samir Roy_Chapter02.indd 19 2/21/2013 3:14:59 PM2/21/2013 3:14:59 PM

Example 2.8 (Fuzzy Membership)

Let a, b, c, d, and e be fi ve students who scored 55, 35, 60, 85 and 75 out of 100 respectively in
Mathematics. Th e students constitute the universe of discourse U = {a, b, c, d, e} and a fuzzy set M
of the students who are good in Mathematics is defi ned on U with the help of the following mem-
bership function.

 μM

if
x if x

if
()x

,

,
,

=
−

≤ <x
≥

⎧

⎨
⎪
⎧⎧
⎪
⎨⎨
⎪⎪

⎩
⎪
⎨⎨

⎪⎩⎩
⎪⎪

0 4if x, < 0
40

40
40 80

1 8if x, ≥ 0
 (2.4)

Th e membership function is graphically shown in Fig. 2.8. Computing the membership value of
each student with the help of the Formula 2.4 we get M = {(a, 0.375), (c, 0.5), (d, 1.0), (e, 0.875)},
or equivalently

M
a c d e

= + + +
0 375 0 5 1 0 0 875. .375 0 . .0 0

x
40 50 60 70 80 90

0

1

mM (x)x

Fig. 2.8. Membership function for students good in Mathematics.

Example 2.9 (Fuzzy Membership)

Let us consider the infi nite set of all real numbers between 0 and 1, both inclusive, to be the uni-
verse of discourse, or, the reference set, U = [0, 1]. We defi ne a fuzzy set C0.5 as the set of all real
numbers in U that are close to 0.5 in the following way

C0.5 = {x ∈ [0, 1] | x is close to 0.5}
Th e highest membership value would be attained by the point x = 0.5 because that is the number
closest to 0.5, and the membership is understandably 1. On the other hand since both 0 and 1 are
furthest points from 0.5 (within the interval [0, 1]) they should have zero membership to C0.5.
Membership values should increase progressively as we approach 0.5 from both ends of the inter-
val [0, 1]. Th e membership function for C0.5 may be defi ned in the following manner.
 m C0.5 (x) = 1 – | 2x – 1 |, ∀x ∈ [0, 1] (2.5)

Since C0.5 is a fuzzy set in a continuous domain it can be expressed with the help of the notation

 C
x x

c

xx

0 5 10 5

11

()x | |x2 1

[,0][,0]

==
x2

∈∈
∫∫

μ (2.6)

20 Introduction to Soft Computing

Samir Roy_Chapter02.indd 20Samir Roy_Chapter02.indd 20 2/21/2013 3:15:01 PM2/21/2013 3:15:01 PM

2.2.4 Fuzzyness vs. Probability

It must be appreciated that the membership of a fuzzy set relate to vagueness and not to probability
which is a measure of uncertainty. Th e diff erence between fuzziness and probability is nicely explained
with the help the following story. A man is wandering for long hours in a desert and he is now dying
for a glass of water. Someone off ered him two glasses, glass A and glass B, of water with the condition
that he can not drink from both the glasses and he has to choose only one of the two for drinking. Th e
man has been informed that the water of glass A is poisonous to a degree of 0.1, which is not fatal. On
the other hand glass B contains water which is poisonous with a probability of 0.1. Which glass of wa-
ter should the thirsty man choose to quench his thirst, and of course, remain alive? If he drinks from
glass B he has 90% chance of having pure drinking water but there is 10% chance that the water may
be poisonous and in that case he would certainly die. On the other hand if he drinks from glass A, he
would fall ill due to the fact that the water is partially poisonous. However there is no chance of him
dying because the degree of poisoning is not fatal. Glass A symbolizes fuzziness while glass B symbol-
izes probability.

2.2.5 Features of Fuzzy Sets

Fuzzy sets are oft en characterized with certain features, e.g., normality, height, support, core, cardinality
etc. Th ese features reveal the nature and structure of a fuzzy set. Th ese features are briefl y explained in
this subsection.

Defi nition 2.14 (Normality) A fuzzy set F is said to be normal if there exists an element x that
completely belongs to F, m F (x) = 1. A fuzzy set which is not normal is said to be sub-normal.

Defi nition 2.15 (Height) Th e height of a fuzzy set is defi ned as the maximal membership value
attained by its elements.

 ightgg Max
x U

F()F ()xμ (2.7)

U is the universe of discourse, or, the reference set, for F, and height (F) is the height of the fuzzy set F.
Obviously, F is a normal fuzzy set if height (F) = 1.

Defi nition 2.16 (Support) Th e support of a fuzzy set F, denoted by supp (F), is the set of all ele-
ments of the reference set U with non-zero membership to F.

 Supp (F) = {x | x ∈ U, and m F (x) > 0} (2.8)

Defi nition 2.17 (Core) Th e core of a fuzzy set F is the set of all elements of the reference set U with
complete membership to F.

 Core (F) = {x | x ∈ U, and m F (x) = 1} (2.9)

Both supp (F) and core (F) are crisp sets. It is easy to see that core (F) ⊆ supp (F).

Defi nition 2.18 (Cardinality) Th e sum of all membership values of the members of a fuzzy set F is
said to be the cardinality of F.

 F F
x U
∑ μ ()x (2.10)

Fuzzy Sets 21

Samir Roy_Chapter02.indd 21Samir Roy_Chapter02.indd 21 2/21/2013 3:15:05 PM2/21/2013 3:15:05 PM

Example 2.10 (Cardinality)

Let us consider the fuzzy set M defi ned on the reference set U = {a, b, c, d, e} as described in
Example 2.8.

M
a c d e

= + + +
0 375 0 5 1 0 0 875. .375 0 . .0 0

Th e fuzzy set M is normal, because we have m M (d) = 1.0. Its height is 1.0. Moreover, as we see, supp
(M) = {a, c, d, e}, core (M) = {d}, and the cardinality of M is | M | = 0.375 + 0.5 +1.0 + 0.875 = 2.750.

2.3 FUZZY MEMBERSHIP FUNCTIONS

Th eoretically any function m F : U → [0, 1] may act as the membership function for a fuzzy set F. Th e
nature of the membership function depends on the context of the application. For example, what is hot
with respect to human body temperature is certainly very cool for a blast furnace. Hence the member-
ship function for the concept hot must diff er in the two contexts mentioned above. Fuzzy sets are usually
described with simple membership functions. A few parameterized functions that are quite frequently
used for this purpose are given below along with their graphical representations.

2.3.1 Some Popular Fuzzy Membership Functions

Th is subsection presents the Triangular function, Trapezoidal function, Gaussian function and S-func-
tion as the widely used fuzzy membership functions. In the subsequent discussion, all of these are as-
sumed to be normal.

(a) Triangular function Perhaps the most frequently used membership function is the triangular
function. Equation 2.11 provides the defi nition of a triangular function. Th e function is graphi-
cally shown in Fig. 2.9.

 μ()

,

,

,
,

if x a
x a
m a

if a x m
b x
b m

if m x b
if x b

=

≤

≤ ≤x

≤ ≤x

⎧

⎨

⎪
⎧⎧

⎪
⎪⎪
⎪
⎨⎨
⎪⎪

⎩

⎪
⎨⎨

⎪
⎪⎪

⎪⎩⎩
⎪⎪

0

0

 (2.11)

0
a b

1

Fig. 2.9. Shape of a triangular function

22 Introduction to Soft Computing

Samir Roy_Chapter02.indd 22Samir Roy_Chapter02.indd 22 2/21/2013 3:15:07 PM2/21/2013 3:15:07 PM

(b) Trapezoidal function Th e trapezoidal function is defi ned in Equation 2.12. As shown in
Fig. 2.10, its shape is similar to that of a triangular function except that instead of a sharp peak, it
has a fl at peak.

 μ()

,

,
,

,
,

if x a
x a
m a

if a x m
if m x n

b x
b n

if n x b
if x b

=

≤

≤ ≤x
≤ ≤x

≤ ≤x

⎧

⎨

0

1

0

⎪⎪
⎧⎧⎧⎧

⎪
⎪⎪⎪⎪

⎪
⎨⎨

⎪⎪

⎩

⎪
⎨⎨

⎪
⎪⎪

⎪
⎩⎩

⎪⎪

 (2.12)

0
a b

1

Fig. 2.10. Trapezoidal function

(c) Gaussian function Another widely used membership function is the Gaussian function. Th e
advantage of Gaussian function is it is diff erentiable everywhere. Equation 2.13 provides the for-
mula for Gaussian function and Fig. 2.11 shows its shape.

 μ())e) where kk x(= >()e where kk(−k(2

0 (2.13)

0
m

1

Fig. 2.11. Gaussian function

(d) S-function Th e S-function, defi ned by Equation 2.14 and shown in Fig. 2.12, is also diff eren-
tiable everywhere. Moreover, the step function can be approximated by the S-function as closely
as required by adjusting the parameters a and b.

 μ()

,

,

,

if x a
x a
b a

if a x m

x b
b a

if m x b
=

≤
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

≤ ≤x

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

≤ ≤x

0

2

1 2−

2

2

1,11 if x b

⎧

⎨

⎪
⎧⎧

⎪
⎪⎪

⎪
⎨⎨

⎪⎪

⎩

⎪
⎨⎨

⎪
⎪⎪

⎪
⎩⎩

⎪⎪

 (2.14)

Fuzzy Sets 23

Samir Roy_Chapter02.indd 23Samir Roy_Chapter02.indd 23 2/21/2013 3:15:10 PM2/21/2013 3:15:10 PM

0

0.5

a (a + b) / 2 b

1

Fig. 2.12. The S - function

Th e point m = (a + b) / 2 is known as the crossover point of the S-function.

2.3.2 Transformations

Th ere are a few simple but useful transformations oft en applied to fuzzy membership functions. Th e so
called normalization, dilation, concentration, contrast intensifi cation and fuzzifi cation are widely used.
Th ese transformations are briefl y discussed in this subsection. Th e eff ects of these transformations on
Gaussian functions are shown graphically.

(a) Normalization: Th e normalization operation converts a subnormal fuzzy set F to a normal fuzzy
set. It is obtained by dividing each membership value by the height of the fuzzy set (See Eqn. 2.15
and Fig. 2.13).

 NORM(F,xFF)
(x)

heightgg (F)
F=

mFF (2.15)

0

NORM (F)

F

1

Fig. 2.13. Normalization

(b) Dilation: Th is operation ‘fl attens’ the membership function so that it attains relatively higher val-
ues and consequently the overall shape of the membership function gets dilated. In other words,
the resultant function is less pointed around the higher membership values. Th e eff ect is shown
in Fig. 2.14 with respect to the Gaussian function.

 DILII x F(,F) [()x] /μ 1 2/ (2.16)

24 Introduction to Soft Computing

Samir Roy_Chapter02.indd 24Samir Roy_Chapter02.indd 24 2/21/2013 3:15:14 PM2/21/2013 3:15:14 PM

0

DIL (F)F

1

Fig. 2.14. Dilation

(c) Concentration: Concentration has the reverse eff ect of dilation. Here the function attains relatively
lower values and consequently it gets more pointed around the higher membership values. Th e for-
mula for concentration is given by Eqn. 2.17 and Fig. 2.15 shows the eff ect on Gaussian function.

 CON x F(,F) [()x]μ 2 (2.17)

0
CON (F)

F

1

F

Fig. 2.15. Concentration

(d) Contrast Intensifi cation: Contrast intensifi cation is achieved by reducing the membership values
that are less than 0.5 and elevating those with values higher that 0.5 (see Eqn. 2.18 and Fig. 2.16).

 INFNN x f x
x otherwiseF

(,F) [()] ifi) .
[(F)] ,

=
x)

[
⎧
⎨
⎧⎧

⎩
⎨⎨

2[(ifi 5.
1 2−

2

2
μ fF fF fxx(F ifiifi

μ
 (2.18)

0

INT (F)

F

1

Fig. 2.16. Contrast intensifi cation

(e) Fuzzifi cation: Fuzzifi cation produces the reverse eff ect of contrast intensifi cation. Here the
membership values that are less than 0.5 are elevated while those with a value more than 0.5 are
reduced. Th e mathematical formula for fuzzifi cation is given in Eqn. 2.19 and its eff ect on Gauss-
ian function is shown in Fig. 2.17.

 FUZZ x
if xi

x otherwisF
(,F)

[()/])x)
((F))/ ,

/

=
≤)xμ x fF x f(F

μ
ifiifiifi 0 5.

1 (− (

1 2/

ee
⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨ (2.19)

Fuzzy Sets 25

Samir Roy_Chapter02.indd 25Samir Roy_Chapter02.indd 25 2/21/2013 3:15:16 PM2/21/2013 3:15:16 PM

0

FUZZ (F)

F

1

Fig. 2.17. Fuzzifi cation

2.3.3 Linguistic Variables

Th e transformations presented above are useful while dealing with the so called linguistic variables.
Conventional variables usually have numeric or alphanumeric string values. In contrast, a linguistic
variable may have one of a number of allowable words, or phrases, as its value. Each of these legitimate
linguistic values corresponds to a fuzzy set. For instance, consider the variable Height. As a conventional
variable it may have any real number as its value. But as a linguistic variable it’s value is allowed to be one
of a few predefi ned words, say {short, average, tall}. We may defi ne a fuzzy set for each of the words short,
average, and tall. Now, consider the attribute very tall. Here the word very may be viewed as a transfor-
mation applied to the fuzzy meaning of tall. One can reasonably implement very with the help of the
concentration operation. Th e reason is concentration reduces the magnitude of the membership value.
What is tall to some extent might be thought of very tall to a lesser extent. Th erefore, the membership
function for very tall should always be less than that of tall and moreover, the transition from low very
tall to high very tall should be steeper than the transition from low tall to high tall. Fig. 2.18 gives an idea
about the relationship described above.

x0.0

0.2

0.4
tall

Very Tall = CONC (Tallll)l
0.6

0.8

1.0

Fig. 2.18. Transformation on linguistic variable fuzzy set

Example 2.11 (Transformations on fuzzy membership functions)

Consider the fuzzy set F with a triangular membership function defi ned on the interval [− 2, + 2].

 μF

if x
x if xi

if xi
if x

()x

,
,
,

,

=

− ≤ ≤ −
≤x

ifi ≤
≤ ≤x

⎧

⎨
⎪
⎧⎧
⎪
⎨⎨
⎪⎪

⎩
⎪
⎨⎨

⎪⎩⎩
⎪⎪

0 2if, − 1
ifiifi 0

1 x ifi− x ifi 1
0 1if, 2

 (2.20)

Fig. 2.19 presents the shape of the triangular function defi ned above. Now let us apply the transfor-
mations normalization, dilation, concentration, contrast intensifi cation and fuzzifi cation on this
membership function and see the resultant functional forms.

26 Introduction to Soft Computing

Samir Roy_Chapter02.indd 26Samir Roy_Chapter02.indd 26 2/21/2013 3:15:20 PM2/21/2013 3:15:20 PM

−2 −1 0 1 2

1

Fig. 2.19. Triangular membership function given by Eqn. 2.20

Since the height of the given membership function is 1, normalization has no eff ect on it. Th e
forms of the resultant memberships due to the other operations, viz., dilation, concentration, con-
trast intensifi cation, and fuzzifi cation are shown in Figs 2.20 to 2.23.

−2 −1 0 1 2

1

DIL (F)

F

 −2 −1 0 1 2

1

CONC (F)

F

Fig. 2.20. Dilation Fig. 2.21. Concentration

−2 −1 0 1 2

1

INT (F)

F

 −2 −1 0 1 2

1

FUZZ (F)

F

Fig. 2.22. Contrast intensifi cation Fig. 2.23. Fuzzifi cation

2.4 OPERATIONS ON FUZZY SETS

Most of the usual set theoretic operations e.g., union, intersection, complementation etc. are readily ex-
tended to fuzzy sets. A list of such operators along with their defi nitions is shown in Table 2.3.

Table 2.3. Operations on fuzzy sets

Operation/Relation Description

1 Union (P ∪ Q) m P∪Q (x) = max {m P (x), m Q (x)}, ∀x ∈ U

2 Intersection (P ∩ Q) m P∩Q (x) = min {m P (x), m Q (x)}, ∀x ∈ U

3 Complementation (P’) m P’ (x) = 1 − m P (x), ∀x ∈ U

(Continued)

Fuzzy Sets 27

Samir Roy_Chapter02.indd 27Samir Roy_Chapter02.indd 27 2/21/2013 3:15:22 PM2/21/2013 3:15:22 PM

Table 2.3. Continued
Operation/Relation Description

4 Equality (P = Q) Two fuzzy sets P and Q are equal if and only if ∀x
∈ U, m P (x) = m Q (x)

5 Inclusion (P ⊆ Q) P is included in Q, i.e., P is a subset of Q, written
as P ⊆ Q, if and only if ∀x ∈ U, m P (x) ≤ m Q (x)

6 Product (P·Q) m P.Q (x) = m P (x) × m Q (x)}, ∀x ∈ U

7 Difference (P – Q) P – Q = P ∩ Q′
8 Disjunctive sum (P ⊕ Q) P ⊕ Q = (P ∩ Q′) ∪ (P′ ∩ Q)

Obviously the union of two fuzzy sets is the smallest fuzzy set containing both and their intersection
is the largest fuzzy set contained by both the given sets.

Example 2.12 (Fuzzy set operations)

Let us recall the reference set of the family members presented in Table 2.1 and the fuzzy set A
of senior persons which is repeated here A = {(Grand-pa, 1.0), (Grand-ma, 0.825), (Dad, 0.275),
(Mom, 0.2), (Aunty, 0.55)}, or, in the other notation

A
Grand pa Grand ma Dad Mom Auntyt

= + + + +
1 0 0 825 0 275 0 2 0 55. .0 0 . .275 0

-pa Grand

Th e membership function for A is as follows

 μAμ

if g
x if g x

if g
()x

, (if g)

, (if ageg)
, (if ag)

=

≤
−

≤x(agegg)

⎧

⎨
⎪
⎧⎧
⎪
⎨⎨
⎪⎪

⎩

0 3x, (if agegg) ≤ 0
30

40
70

1 7x, (if agegg) 0≥⎪⎪
⎨⎨⎨⎨

⎪⎩⎩
⎪⎪⎪⎪

 (2.21)

We now introduce another fuzzy set B of active persons on the same reference set. Th e degree of ac-
tiveness is assumed to be a function of the concerned person’s age. Here is the membership function.

 μ B

if g
x if g x

if g()x

, (if ag (if)

, (if ageg)
, (if ag)=

≤
−

≤x(agegg)
≤()

1x0, (if agegg) ≤ 0
10

15
25

1, if 5xageg) ≤x(agegg) 0
80 −−

≤

≥

⎧

⎨

⎪
⎧⎧

⎪
⎪⎪

⎪
⎨⎨

⎪⎪

⎩

⎪
⎨⎨

⎪
⎪⎪

⎪
⎩⎩

⎪⎪
x if g x

if g
30

80
8≥0 x 0

, (≤if ageg50)
, (if agif agegg)

 (2.22)

Fig. 2.24 presents the graphical view of the two membership functions. Computing the val-
ues of mB (x) for each x in U using the membership function defi ned in formula 2.22 we get B
= {(Grand-pa, 0.267), (Grand-ma, 0.567), (Dad, 1.0), (Mom, 1.0), (Daughter, 0.333), (Son, 0.2),
(Aunty, 0.933)}, or using the summation notation,

B
Grand pa Grand ma Dad Mom Daughter

= + + + + +
0 267 0 567 1 0 1 0 0 333. .267 0 . .0 1 .

-pa Grand
0 200 0 933. .2 0
Son Aunty

+

28 Introduction to Soft Computing

Samir Roy_Chapter02.indd 28Samir Roy_Chapter02.indd 28 2/21/2013 3:15:23 PM2/21/2013 3:15:23 PM

age

A = Set of senioii r
persons

B = Set of activevv
persons

60 8040200

1

100

mA (x)

mB (x)

m

Fig. 2.24. Membership profi les of aged persons and active persons

age

A = Set of
senior persons

B = Set of
active persons

60 8040200 100

mA (x)

mA∪B (x)

mB (x)

m

Fig. 2.25. Membership profi le of senior OR active persons.

age

A = Set of
senior persons

B = Set of
active persons

60 8040200 100

mA (x)

mA∩B (x)

mB (x)

m

Fig. 2.26. Membership profi les of senior AND active persons.

age

A = Set of senioii r
persons

B = Set of activevv
persons

60 8040200 100

mA′ (x) mB′ (x)
m

Fig. 2.27. Membership profi les of NOT senior persons and NOT active persons.

Fuzzy Sets 29

Samir Roy_Chapter02.indd 29Samir Roy_Chapter02.indd 29 2/21/2013 3:15:28 PM2/21/2013 3:15:28 PM

Table 2.4 shows the fuzzy sets A ∪ B, A ∩ B, A′, and B′ obtained using defi nitions listed in Table 2.3.
Th e profi les of the membership functions of the resultant fuzzy sets are depicted in Figs. 2.25 to 2.27.

Table 2.4. Operations on Fuzzy Sets Senior and Active Persons

Operation Resultant fuzzy set

1. A ∪ B senior
OR
active

{(Grand-pa, 1.0), (Grand-ma, 0.825), (Dad, 1.0), (Mom, 1.0),
(Daughter, 0.333), (Son, 0.2), (Aunty, 0.933)}

2. A ∩ B senior
AND
Active

{(Grand-pa, 0.267), (Grand-ma, 0.567), (Dad, 0.275), (Mom, 0.2),
(Aunty, 0.55)}

3. A′, B′ NOT senior,
NOT active

A′ = {(Grand-ma, 0.175), (Dad, 0.725), (Mom, 0.8), (Sister, 1.0),
(Brother, 1.0), (Aunty, 0.45)}
B′ = {(Grand-pa, 0.733), (Grand-ma, 0.433), (Sister, 0.667), (Broth-
er, 0.8), (Aunty, 0.067)}

Properties of fuzzy set operations Most of the properties of crisp sets, with the exception of
a few, hold good in the area of fuzzy sets also. It is possible to verify on the basis of the defi nitions of
various fuzzy set operations that the laws listed in Table 2.5 are satisfi ed by arbitrary fuzzy sets P, Q, and
R on some universe of discourse U. However, the relations P ∪ P ′ = U, and P ∩ P ′ = F obeyed by crisp
sets are no longer valid for fuzzy sets. For an arbitrary fuzzy set P, we have in general P ∪ P ′ ≠ U, and
P ∩ P ′ ≠ F because mP (x) ∈ [0, 1], and mP ∪ P ′ (x) = max {mP (x), 1 − mP (x)} ≠ 1, and mP ∩ P ′ (x) = min {mP
(x), 1 − mP (x)} ≠ 0, unless either mP (x) = 0, or mP (x) = 1.

Table 2.5. Fuzzy Set Identities

Law Description

1 Associativity (a) (P ∪ Q) ∪ R = P ∪ (Q ∪ R)
(b) (P ∩ Q) ∩ R = P ∩ (Q ∩ R)

2 Commutativity (a) P ∪ Q = Q ∪ P
(b) P ∩ Q = Q ∩ P

3 Distributivity (a) P ∪ (Q ∩ R) = (P ∪ Q) ∩ (P ∪ R)
(b) P ∩ (Q ∪ R) = (P ∩ Q) ∪ (P ∩ R)

4 Idempotency (a) P ∪ P = P
(b) P ∩ P = P

5 De Morgan’s law (a) (P ∪ Q)’ = P’ ∩ Q’
(b) (P ∩ Q)’ = P’ ∪ Q’

6 Boundary Conditions (a) P ∪ F = P, P ∪ U = U
(b) P ∩ F = F, P ∩ U = P

7 Involution (P’)’ = P

If P ⊆ Q and Q ⊆ R then P ⊆ R8 Transitivity

30 Introduction to Soft Computing

Samir Roy_Chapter02.indd 30Samir Roy_Chapter02.indd 30 2/21/2013 3:15:29 PM2/21/2013 3:15:29 PM

2.5 FUZZY RELATIONS

We have treated fuzzy sets as generalization of crisp sets where the degree of inclusiveness of an element
may be anything from 0 to 1, and not just 0, or 1 as it is in case of crisp sets. In a similar fashion, the con-
cept of a relation between two, or more, sets can be generalized to fuzzy relation. Th is section provides a
review of the fundamentals of crisp relations, followed by a discussion on fuzzy relations.

2.5.1 Crisp Relations

In case of crisp relation R between two crisp sets A and B, two elements, x from A and y from B, are
either related, or not. Th ere is no scope of being partially related to each other. Th erefore a crisp relation
is defi ned simply as a subset of the Cartesian product of sets concerned.

Defi nition 2.19 (Cartesian product) Let A and B be two sets. Th en the Cartesian product of A and
B, denoted by A × B, is the set of all ordered pairs (a, b) such that a ∈ A, and b ∈ B.

A × B = {(a, b) | a ∈ A, and b ∈ B}
Since (a, b) ≠ (b, a) we have in general A × B ≠ B × A. Hence the operation of Cartesian product is

not commutative.

Example 2.13 (Cartesian product)

Let A = {p, q, r}, and B = {1, 2, 3}. Th en A × B = {(p, 1), (p, 2), (p, 3), (q, 1), (q, 2), (q, 3), (r, 1), (r, 2),
(r, 3)}, and B × A = {(1, p), (1, q), (1, r), (2, p), (2, q), (2, r), (3, p), (3, q), (3, r)}.

Example 2.14 (Cartesian product)

Let P = {Math, Phy, Chem}, and Q = {O, E, A, B, C} is the set of possible grades, e.g., outstanding
(O), excellent (E), very good (A), good (B), and fair (C). Th en P × Q = {(Math, O), (Math, E), …,
(Math, C), (Phy, O), …, (Chem, C)}.

Obviously, there are as many elements in A × B as the product of the number of elements of A and B.
| A × B | = | A | × | B |

Defi nition 2.20 (Crisp relation) Given two crisp sets A and B, a crisp relation R between A and B
is a subset of A × B.

R ⊆ A × B

Example 2.15 (Crisp relation)

Consider the sets A = {1, 2, 3}, B = {1, 2, 3, 4} and the relation R = {(a, b) | b = a + 1, a ∈ A, and b
∈ B}. Th en R = {(1, 2), (2, 3), (3, 4)}. Obviously, here R ⊂ A × B.

A crisp relation between sets A and B is conveniently expressed with the help of a relation matrix T. Th e
rows and the columns of the relation matrix T correspond to the members of A and B respectively. Th e
entries of T are defi ned as

Fuzzy Sets 31

Samir Roy_Chapter02.indd 31Samir Roy_Chapter02.indd 31 2/21/2013 3:15:29 PM2/21/2013 3:15:29 PM

 T if a b R
otherwiseijTT i j=

∈⎧
⎨
⎧⎧
⎩
⎨⎨

1
0
, (if)bjb
, (2.22)

Example 2.16 (Relation matrix for crisp relation)

Let us, once again, consider the sets A = {1, 2, 3}, B = {1, 2, 3, 4}and the relation R = {(a, b) | b = a
+ 1, a ∈ A, and b ∈ B} cited in the previous example. Th e relation matrix for R is given below.

1 2 3 4
1
2
3

0 1 0 0
0 0 1 0
0 0 0 1

column

row

TRTT =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

Example 2.17 (Relation matrix for crisp relation)

Let P = {Tony, Bobby, Mike} be a set of three students and Q = {Math, Phy, Chem} be a set of three
subjects in which Tony, Bobby, and Mike have taken a test. Table 2.6 shows the grades obtained by
these students in these subjects.

Table 2.6. Grades obtained by three students

Math Phy Chem

Tony C B A

Bobby A A B

Mike C A A

We defi ne a relation R between a student and a subject in which they have secured A grade as R = {(x,
y) | x ∈ P, y ∈ Q, and x has secured grade A in subject y}. Th en R = {(Tony, Chem), (Bobby, Math), (Bobby,
Phy), (Mike, Phy), (Mike, Chem)}. Th e corresponding relation matrix is shown below.

phy Ch hem

T
T
B
M

RTT =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

0 0 1
1 1 0
0 1 1

Operations on relations Certain operations, e.g., union, intersection, complementation, composi-
tion etc., are occasionally applied on relations. Table 2.7 provides the description of these operations with
respect to relations R and S.

Th e Composition (R ° S) operation is also known as max–min composition because it can be
equivalently defi ned, in terms of the corresponding relation matrices, as R ° S = {(a, c) | (a, c) ∈ A × C,
and (R ° S) (a, c) = max [min {R (a, b), S (b, c)}].

32 Introduction to Soft Computing

Samir Roy_Chapter02.indd 32Samir Roy_Chapter02.indd 32 2/21/2013 3:15:29 PM2/21/2013 3:15:29 PM

Table 2.7. Operations on crisp relations

Operation Description

1 Union (R ∪ S) Let R and S are relations defi ned on A × B. Then R ∪ S = {(a, b) | (a, b) ∈ R, or
(a, b) ∈ S, or both}. In terms of the relation matrices, this can be equivalently
stated as (R ∪ S) (a, b) = max {R (a, b), S (a, b)}, where R (a, b), S (a, b), or (R ∪
S) (a, b) are the (a, b) th element of the relations R, S, or R ∪ S respectively.

2 Intersection (R ∩ S) R ∩ S = {(a, b) | (a, b) ∈ R, and (a, b) ∈ S}. In other words, (R ∩ S) (a, b) = min
{R (a, b), S (a, b)}.

3 Complementation (R’) R’ = {(a, b) | (a, b) ∉ R}, i.e., R’(a, b) = 1 – R (a, b).

4 Composition (R ° S) Let R and S are relations defined on A × B and B × C respectively. Then
R ° S = {(a, c) | (a, c) ∈ A × C, and there exists b ∈ B such that (a, b) ∈ R,
and (b, c) ∈ S}.

Example 2.18 (Composition)

Let A = B = C = {0, 1, 2, 3} and the relations R, S, and T defi ned as follows :

R ⊆ A × B, R = {(a, b) | a + b is an even number}}
S ⊆ A × B, S = {(a, b) | b = (a + 2) MOD 3}
T ⊆ B × C, T = {(b, c) | | b – c | = 1}

Th ese relations can be explicitly written as

R = {(0, 0), (0, 2), (1, 1), (1, 3), (2, 0), (2, 2), (3, 1), (3, 3)}}
S = {(0, 2), (1, 0), (2, 1), (3, 2)}, and
T = {(0, 1), (1, 0), (1, 2), (2, 1), (2, 3), (3, 2)}.

Th e relation matrices T R, T S, T T for R, S, and T are given below.

0 1 2 3 0 1 2 3 0 1 2 3
0
1
2
3

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

0
1
2
3

0 0 1 0

T T1 0 1 0 1
R S2 1 0 1 0T TT T2 1 0 1 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎦⎦
⎥⎥

=
1 0 0 011
0 1 0 0
0 0 1 0

0
1
2
3

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

TTTT
⎥⎥
⎥⎥⎥⎥

⎥⎦⎦
⎥⎥⎥⎥

Relations R ∪ S, R ∩ S, and R′ can be easily obtained directly through the defi nitions of union,
intersection and complementation given above. Th eir relation matrices T R ∪ S, T R ∩ S, and T R′ are
given below.

0 1 2 3 0 1 2 3 0 1 2 3
0
1
2
3

1 0 1 0
1 1 0 1
1 1 1 0
0 1 1 1

0
1
2
3

T T1 1 1 0 1
RTT R STT∪ ∩2 1 1 1 0 T2 1 1 1 0S RTT

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎦⎦
⎥⎥

=

0 0 1 000
0 0 0 0
0 0 0 0
0 0 0 0

0
1
2
3

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢TRTT ′

⎢⎢⎣⎣⎣⎣
⎢⎢⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Fuzzy Sets 33

Samir Roy_Chapter02.indd 33Samir Roy_Chapter02.indd 33 2/21/2013 3:15:32 PM2/21/2013 3:15:32 PM

Let us now compute the composite relation R ° T. By defi nition of R ° T, the ordered pair (0, 0) is
in R ° T if and only if there exists an x ∈ B such that (0, x) ∈ R, and (x, 0) ∈ T. From the relation
matrix T R of R we see that there are two ordered pairs, (0, 0) and (0, 2) in R with 0 as the fi rst ele-
ment. Th e corresponding second elements are 0, and 2 respectively. Th erefore if any of the pairs
(0, 0) and (2, 0) appears in T, then (0, 0) is in R ° T. However, a look into the relation matrix of T,
i.e., T T, reveals that neither (0, 0), nor (2, 0) belongs to the relation T. Hence (0, 0) ∉ R ° T , and
T R ° T (0, 0) = 0. On the other hand (0, 1) ∈ R ° T because (0, 2) ∈ R and (2, 1) ∈ T. Computations
of other elements of R ° T are shown below.

(0, 2) ∈ R and (2, 1) ∈ T, ∴ (0, 1) ∈ R ° T
(0, 2) ∈ R and (2, 3) ∈ T, ∴ (0, 3) ∈ R ° T
(1, 1) ∈ R and (1, 0) ∈ T, ∴ (1, 0) ∈ R ° T
(1, 1) ∈ R and (1, 2) ∈ T, ∴ (1, 2) ∈ R ° T
(2, 0) ∈ R and (0, 1) ∈ T, ∴ (2, 1) ∈ R ° T
(2, 2) ∈ R and (2, 3) ∈ T, ∴ (2, 3) ∈ R ° T
(3, 1) ∈ R and (1, 0) ∈ T, ∴ (3, 0) ∈ R ° T
(3, 1) ∈ R and (1, 2) ∈ T, ∴ (3, 2) ∈ R ° T

Hence the relation matrix T R ° T for R ° T looks like
0 1 2 3

0
1
2
3

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

TR TTT =

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

It should be noted that for crisp relations R and T their composition R ° T as defi ned above and their
max–min composition, to be defi ned in the next subsection in the context of fuzzy relations, are equiva-
lent. In fact crisp composition is a special case of max–min composition and the later is a generalized
concept which is applicable to the realm of fuzzy relations too.

2.5.2 Fuzzy Relations

As stated earlier the concept of crisp relations can be generalized to that of fuzzy relations. All we have to
do is to allow the pairs of elements to be partially related, i.e., the entries of the relation matrix would be
anything between 0 and 1. Let us consider some simple instances before the formal defi nition of fuzzy
relations is presented.

Example 2.19 (Fuzzy relation)

Let P = {money, fame, power} and Q = {politics, showbiz, academics} be two crisp sets. Th en R might
be an imaginary relation between P and Q expressed by the relation matrix

sz as

T
m
f
p

m money
RTT =

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

0 7 0 9 0 6
0 8 0 9 0 5
1 0 0 7 0 3

.7 0

.8 0

. .0 0

pspp politics
f famf e sz showbiz
p power as academics

:
famff e sz

:power as

34 Introduction to Soft Computing

Samir Roy_Chapter02.indd 34Samir Roy_Chapter02.indd 34 2/21/2013 3:15:35 PM2/21/2013 3:15:35 PM

Example 2.20 (Fuzzy relation)
Let us consider the set of all real numbers in the interval P = [0, 1] = {x | 0 ≤ x ≤ 1}. A relation R,
say a close to b, on P 2 (i.e. P × P) may be defi ned in the following way

R (a, b) = 1 – | a – b |, ∀ a, b in [0, 1]

It should be noted that fuzzy relations defi ned on discrete sets can be expressed with the help of relation
matrices. Relations defi ned on continuous domains as exemplifi ed in Example 2.20 cannot be expressed
with any relation matrix. Moreover, in the foregoing discussions we have considered fuzzy relations on
crisp sets. It is also possible to defi ne a fuzzy relation on fuzzy sets. Th is is dependent on the concept of
fuzzy Cartesian product.

Defi nition 2.21 (Fuzzy Cartesian product) Let A and B be two fuzzy sets on reference sets X and Y
respectively. Th e fuzzy Cartesian product of A and B, denoted by A × B, is defi ned as A × B ⊆ X × Y, and
m A × B (a, b) = min {m A (a), m B (b)}∀a ∈ X, ∀b ∈ Y.

Example 2.21 (Fuzzy Cartesian product)

Let us consider the reference sets X = {m, n} and Y = {p, q, r} and the fuzzy sets A and B defi ned
on them.

A
m n

B
p q r

= + = + +
0 3 0 7 0 5 0 1 0 8. .3 0 , . .5 0

Now m A × B (m, p) = min {m A (m), m B (p)} = min {0.3, 0.5} = 0.3. But m A × B (m, q) = min {m A (m),
m B (q)}= min {0.3, 0.1}= 0.1. Th e membership values of the other elements of the fuzzy Cartesian
product A × B can also be found in similar fashion. Th e Cartesian product itself can be looked
upon as a fuzzy relation between the fuzzy sets A and B. It can be expressed with the help of the
relation matrix

p q r

A B m
n=B ⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

0 3 0 1 0 3
0 5 0 1 0 7

. .3 0

. .5 0

A fuzzy relation R between two fuzzy sets A and B is a subset of the fuzzy Cartesian product A × B.
Hence R ⊆ A × B where A × B is the fuzzy Cartesian product of the fuzzy sets A and B.

Example 2.22 (Fuzzy relation)

We consider the fuzzy sets A and B cited in Example 2.21 and their Cartesian product. Th e relation
matrix given below presents a subset of A × B because for all x ∈ X and y ∈ Y, m R (x, y) ≤ m A × B (x,
y). Th erefore R is a fuzzy relation between the fuzzy sets A and B.

p q r

R m
n= ⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

0 2 0 1 0 1
0 3 0 0 0 5

. . .2 0 1 0

. . .3 0 0 0

Fuzzy Sets 35

Samir Roy_Chapter02.indd 35Samir Roy_Chapter02.indd 35 2/21/2013 3:15:37 PM2/21/2013 3:15:37 PM

Now let us consider the matrix R′ given below.

p q r

R m
n’ .

.= ⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

0 2. 0 3.. 0 1.
0 3. 0 0.. 0 5.

Here R′(m, q) = 0.3 > A × B (m, q) = 0.1. Hence R′ is not a fuzzy relation between the fuzzy sets A
and B.

2.5.3 Operations on Fuzzy Relations

Th e familiar set theoretic operations, e.g., union, intersection, complementation etc. are applicable to
fuzzy relations also.

 Union (R ∪ S) (x, y) = max {R (x, y), S (x, y)}
 Intersection (R ∩ S) (x, y) = min {R (x, y), S (x, y)}
 Complementation R′ (x, y) = 1 – R (x, y)

Moreover, the common relations of inclusion, dominance, and equality also hold good for fuzzy rela-
tions.

 Inclusion R ⊆ S if ∀x, y, R (x, y) ≤ S (x, y)
 Dominance R ⊇ S if ∀x, y, R (x, y) ≥ S (x, y)
 Equality R = S if ∀x, y, R (x, y) = S (x, y)

Apart from the operations and properties stated above the crisp relational operation of composition
of two relations is generalized to the so-called max–min composition of fuzzy relations.

Defi nition 2.22 (max–min composition) Let A, B, and C be three crisp sets. R and S are fuzzy rela-
tions over A × B and B × C respectively. Th e max–min composition of R and S, denoted by R ° S, is a
relation over A × C such that

()(,) max {min{ (,), (,)}}x y, x(y S), y z,
y B

Example 2.23 (max–min composition)

Suppose A = {a, b, c}, B = {x, y}, and C = {p, q, r} be three crisp sets. Th ere are two fuzzy relations R and
S defi ned over A × B and B × C, respectively. Th e relation matrices of R and S are

p q r

R
a
b
c

S x
y=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

=
0 3 0 7
0 9 0 4
0 2 0 5

0 4 0 1 0 8
0 3 0 7

. .3 0
.9 0

. .2 0
, . .4 0

. .3 0 0 600
⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

Th e max–min composition R ° S is defi ned on the Cartesian product A × C. Let us consider the com-
putation of the fi rst element (R ° S) (a, p).

36 Introduction to Soft Computing

Samir Roy_Chapter02.indd 36Samir Roy_Chapter02.indd 36 2/21/2013 3:15:40 PM2/21/2013 3:15:40 PM

 ()(,) max {min((,), (,))}a p, a(), i p,
i B

= max {min (R (a, x), S (x, p)), min (R (a, y), S (y, p))}
= max {min (0.3, 0.4), min (0.7, 0.3)}
= max {0.3, 0.3}
= 0.3

Similarly, the next element is computed as follows.

()(,) max {min((,), (,))}a q, a(), i q,
i B

= max {min (R (a, x), S (x, q)), min (R (a, y), S (y, q))}
= max {min (0.3, 0.1), min (0.7, 0.7)}
= max {0.1, 0.7}
= 0.7

Computation of the rest of the elements is left as an exercise. Finally R ° S looks like

p q r

R S
a
b
c

=
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

0 3 0 7 0 6
0 4 0 7 0 8
0 3 0 5 0 5

. .3 0

. . .4 0 7 0

. .3 0

Example 2.24 (max–min composition)

Let us consider two kinds of troubles a PC may suff er from, viz., the system hangs while running,
and the system does not boot. We symbolize the former by h and the later by b and defi ne the set
A = {h, b} of PC troubles. Two possible causes of these troubles are computer virus (v) and disc crash
(c) and they form the set B = {c, v} of PC trouble makers. And fi nally, let the sources of the causes
mentioned above are internet (i) and obsolescence (o) and C = {i, o} is the set of PC trouble causes.
Th e relation between PC troubles and their causes is expressed by R, a fuzzy relation over A × B.
Similarly, S is the fuzzy relation over B × C, i.e., the relation between the causes of troubles and the
sources of those causes. Th e relations R and S in terms of their relation matrices are shown below.

v c i o

R h
b S v

c= ⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

0 7 0 2
0 5 0 8

0 9 0 7
0 1 0 2

. .7 0

. .5 0 , .9 0
. .1 0

Th e relation between PC troubles and their ultimate sources, i.e., between A and C, can be com-
puted on the basis of R and S above as the max–min composition R ° S. Th e fi rst element of R ° S,
expressed as (R ° S) (h, i) is computed as follows.

(R ° S) (h, i) = max {min (R (h, v), S (v, i)), min (R (h, c), S (c, i))}
= max {min (0.7, 0.9), min (0.2, 0.1)}
= max {0.7, 0.1}
= 0.7

Fuzzy Sets 37

Samir Roy_Chapter02.indd 37Samir Roy_Chapter02.indd 37 2/21/2013 3:15:44 PM2/21/2013 3:15:44 PM

Th e rest of the elements of R ° S can be found in a similar fashion.

(R ° S) (h, o) = 0.7
(R ° S) (b, i) = 0.5
(R ° S) (b, o) = 0.5

And fi nally we get,

i o

R S h
b= ⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

0 7 0 7
0 5 0 5

. .7 0

. .5 0

2.6 FUZZY EXTENSION PRINCIPLE

Th is section presents a discussion on the fuzzy extension principle which provides a way to map certain
mathematical concepts of crisp set theory to their fuzzy counterparts.

2.6.1 Preliminaries

Before we present the fuzzy extension principle, it is necessary to understand a few concepts that form
the basis of the said principle. Th is subsection provides the groundwork for this purpose.

(a) Level set: Corresponding to every fuzzy set there is a crisp set consisting of the membership values
of its singletons. Th is is known as the level set of the fuzzy set. Its members are real values between 0 and
1, including 1 but excluding 0.

Defi nition 2.23 (Level set) Let F be a fuzzy set on the universe U. Th e level set of F, denoted as L
(F), is a crisp set of real values x ∈ (0, 1] such that for each x ∈ L (F) there is a singleton (y, x) ∈ F.

L (F) = {x | 0 < x ≤ 1 and ∃ y ∈ U such that m F (y) = x}

Example 2.25 (Level set)

Let F be a fuzzy set on the universe U = {a, b, c, d, e}.

F
a b c d e

= + + ++ +
0 3 0 8 0 0 0 5 0 7. . .8 0 0 0

Th e corresponding level set is L (F) = {0.3, 0.5, 0.7, 0.8}. It may be noted that the membership value
0.0 of the element c is not included in L (F).

Example 2.26 (Level set)

Let F be a fuzzy set on the universe U = {a, b, c, d, e}.

F
a b c d e

= + + ++ +
0 3 0 8 0 0 0 3 0 7. . .8 0 0 0

Th e corresponding level set is L (F) = {0.3, 0.7, 0.8}. Th e membership value 0.3 is repeated twice in
F so that there are only three distinct non-zero membership values included in L (F).

38 Introduction to Soft Computing

Samir Roy_Chapter02.indd 38Samir Roy_Chapter02.indd 38 2/21/2013 3:15:48 PM2/21/2013 3:15:48 PM

Example 2.27 (Level set)

Let us consider the following membership function for a fuzzy set F.

m F (x) = 1 – e −x, if x ≥ 0
 = 0, otherwise.

If the universe of discourse is the entire real line extending from −∞ to +∞ then the membership
function will attain values within the range [0, 1). Hence L (F) = (0, 1).

(b) a-cut: Occasionally we are interested in the elements whose degrees of membership to a given fuzzy
set lie above a given level. Th is is provided with the help of the a-cut.

Defi nition 2.24 (a-cut) Let F be a fuzzy set on the universe U and a be a number such that 0 < a ≤ 1.
Th e a-cut of F, denoted as Fa, is a crisp set containing those elements of U whose membership value with
respect to the fuzzy set F is greater than, or equal to, a.

F a = {x ∈ U | m F (x) ≥ a }

Example 2.28 (a-cut)

Let U = {a, b, c, d} be a universe and F be a fuzzy set on U.

F
a b c d

= + + +
0 6 0 3 0 7 1 0. .6 0 . .7 1

Th e a-cuts for various a are : F 1.0 ={d}, F 0.7 = {c, d}, F 0.6 = {a, c, d}, F 0.3 = {a, b, c, d}. Moreover,
it is obvious from the example that

For all a , 0 < a ≤ 0.3, F a = F 0.3
For all a , 0.3 < a ≤ 0.6, F a = F 0.6
For all a , 0.6 < a ≤ 0.7, F a = F 0.7
For all a , 0.7 < a ≤ 1.0, F a = F 1.0

Example 2.29 (a-cut)

Let F be a fuzzy set defi ned on U = [0, 1]. Th e membership function m F is graphically shown in
Fig. 2.28. Fig. 2.29 shows the profi le of the a-cut of F for a = 0.7.

0 a b 10 5

1

mF

a = 0.7

 0 a b 10 5

1

mF

a = 0.7

a - cut of F

F0.7FF

Fig. 2.28 Fig. 2.29

It may be noted that as a increases from 0 to 1, the size of the corresponding a-cuts decreases, i.e., given
two real values a and b, 0 < a ≤ b ≤ 1, we must have Fa ⊇ Fb .

Fuzzy Sets 39

Samir Roy_Chapter02.indd 39Samir Roy_Chapter02.indd 39 2/21/2013 3:15:52 PM2/21/2013 3:15:52 PM

(c) Th e a-cut decomposition theorem: Before introducing the a-cut decomposition theorem we need
to get acquainted with a new notation. Given a crisp set A, and a real number x, 0 ≤ x ≤ 1, x.A is a fuzzy
set consisting of all members of A with membership value x. For example, if A = {p, q, r}}and x is 0.4,
then x.A = {(p, 0.4), (q, 0.4), (r, 0.4)}.

Th e a-cut decomposition theorem states that any fuzzy set F can be decomposed into a number of
the a-cuts, say Fa s, such that

F F∪
α

αFFα.

Example 2.30 (a-cut decomposition theorem)

Let F
a b c d

= + + +
0 6 0 3 0 7 1 0. .6 0 . .7 1 be a fuzzy set on the universe U = {a, b, c, d}. We see

F0.3 = {a, b, c, d}, and 0 3 0 3 0 3 0 3 0 3
0 3. .3 . . .3 0 3 0F0 a b c d

= + + ++

F0.6 = {a, c, d}, and 0 6 0 6 0 6 0 6
0 6. .6 . . .6 0 6 0F0 a c d

= + +

F0.7 = {c, d}, and 0 7 0 7 0 7
0 7. .7 . .7 0F0 c d

= +

F1.0 = {d}, and 1 0 1 0
1 0. .0 F1 d

=

Th erefore (. .) (. .) (. .) (. .)) () (3. 7. 0 6. 0 3. 0 7.
0 3. 0 6. 0 7. 1 0.) (6) (0

a b c
∪)∪(. .6. .(6. ∪ =(. .)0.(.0. + + + =++

1 0
d

F

(d) Restricted scalar multiplication (RSM): Restricted scalar multiplication (RSM) is a way of relating
two fuzzy sets. Given a fuzzy set F on the universe U, and a real number a, 0 ≤ a ≤ 1, restricted scalar
multiplication (RSM) of F by a is the process of creating another set, denoted by aF on the same uni-
verse whose memberships are obtained as

m aF (x) = a . m F (x), ∀x ∈ U

RSM is a kind of fuzzifi cation procedure because it produces a fuzzy set out of a given set, crisp, or
fuzzy.

Example 2.31 (Restricted scalar multiplication)

Consider the fuzzy set F
a b c d

= + + +
0 6 0 3 0 7 1 0. .6 0 . .7 1 on the universe U = {a, b, c, d} cited in Example

2.30. If a = 0.1. Th en RSM of F by a produces the set α F
a b c d

= + + +
0 06 0 03 0 07 0 1. .06 0 . .07 0 .

Like other operations on fuzzy sets RSM too satisfi es certain properties. Given the fuzzy sets F and G
on the universe U, and two real numbers a, b, 0 < a, b ≤ 1, the following properties hold good.

40 Introduction to Soft Computing

Samir Roy_Chapter02.indd 40Samir Roy_Chapter02.indd 40 2/21/2013 3:15:53 PM2/21/2013 3:15:53 PM

 (i) a (F ∪ G) = a F ∪ a G
 (ii) a (F ∩ G) = a F ∩ a G
(iii) (a b) F = a (b F)
 (iv) 1 . F = F
 (v) a F ⊆ F

Defi nition 2.25 (Fuzzy cardinality) Let F be a fuzzy set on the universe U. L (F) is the level set of
F and for all a ∈ L (F), Fa is the a-cut of F. Th e fuzzy cardinality of F, denoted by fc(F), is defi ned as the
fuzzy set

f Fff
L

)F
| |F()F

=
∈
∑ α

FFα

| Fa | is the cardinality of Fa which is a natural number. Th erefore, fuzzy cardinality of any fuzzy set
is another fuzzy set defi ned on natural numbers. Th e following example illustrates the concept of fuzzy
cardinality.

Example 2.32 (Fuzzy cardinality)
Let us consider the fuzzy set H of four happy persons.

H
mita neeta jeet joy

= + + +
0 3 0 7 0 4 0 8. .3 0 . .4 0

We have the level set L (H) = {0.3, 0.4, 0.7, 0.8}}and the following cardinalities

| H0.3 | = | {mita, neeta, jeet, joy}| = 4,
| H0.4 | = | {neeta, jeet, joy}| = 3,
| H0.7 | = | {neeta, joy}| = 2,
| H0.8 | = | {joy}| = 1.

Hence the fuzzy cardinality of H is given by

f Hff
L

)H
| |H

.
()H

== + + ++
∈
∑ α

α

0 3.
4

0 4.
3

0 7..
2

0 8.
1

2.6.2 The Extension Principle

Th e extension principle provides a way to map certain mathematical concepts pertaining to crisp sets to
their fuzzy counterparts.

Consider a function f : U1 × U2 × … × Un → V where the Ui s and V are crisp sets and U1 × U2 ×…× Un is
the Cartesian product of U1, U2,…, Un. If there is a point (u1, u2, …, un) in the n-dimensional space U1 ×
U2 × … × Un and there is a v ∈ V such that f (u1, u2,…, un) = v then v is said to be the image of the point
(u1, u2,…, un). Equivalently, the point (u1, u2,…, un) is referred to as the pre-image of v, (see Fig. 2.30) and
is indicated by the expression

(u1, u2, …, un) = f − 1 (v)

Fuzzy Sets 41

Samir Roy_Chapter02.indd 41Samir Roy_Chapter02.indd 41 2/21/2013 3:16:03 PM2/21/2013 3:16:03 PM

(u1, u2uu ,..., un)
is the pre-image of v

v is the image of
(u1, u2uu ,..., un)

f

Fig. 2.30. An image and its pre-image under function f

Now, let us consider fuzzy sets A1, A2,…, An on the universes U1, U2,…,Un respectively. Given the
function f as mentioned above it is possible to construct a fuzzy set B on V in the following manner:
for each v ∈ V we defi ne

m B (v) = 0, if f −1(v) = f, i.e., there is no pre-image of v in U1 × U2 × … × Un
 = max {min (mA1 (u1), mA2 (u2), …, mAn (un))} otherwise.

∀ (u1, u2,…, un), (u1, u2,…, un) = f −1(v)

If we defi ne a fuzzy set A on A1 × A2 × … × An where mA (u1, u2, …, un) = min {m A1 (u1), m A2 (u2), …, mAn
(un)} then the procedure described above to obtain the fuzzy set B can be considered to be an extension of
the crisp function f : U1 × U2 × … × Un → V to the corresponding fuzzy domain f : A1 × A2 × … × An → B.
Here the fuzzy set B is termed as the image of A under f, and is denoted as B = f (A). Th e subsequent two
examples illustrate the extension principle described above.

Example 2.33 (Fuzzy extension principle)

Let us consider the crisp domains P = {3, 4, 5}, Q = {6, 7, 8}, and R = {0, 1, 2}. Table 2.8 shows
the function f : P × Q → R where f is defi ned as addition modulo 3. Fig. 2.31 depicts the function
graphically.

We see that f (3, 6) = f (5, 7) = f (4, 8) = 0 so that 0 has three pre-images, (3, 6), (5, 7), and (4,
8). Th erefore f- 1 (0) = {(3, 6), (5, 7), (4, 8)}. Similarly, f- 1 (1) = {(4, 6), (3, 7), (5, 8)}}and f- 1 (2) = {(5,
6), (4, 7), (3, 8)}.

Table 2.8. The function f ≡ Addition modulo 3

← Q →

↑
P
↓

6 7 8

3 0 1 2

4 1 2 0

5 2 0 1

Now consider the fuzzy sets A and B on P and Q respectively as described below.

A B =B + +
0 1
3

0 8
4

0 5
5

0 6
6

0 2
7

0 7
8

1 0 , . . .6 0 2 0

Applying the procedure of extension principle, it is possible to extend the function f ≡ Addition
modulo 3 as Fuzzy addition modulo 3 from A × B to C, where C is a fuzzy set defi ned on R. Th e
membership values of various x ∈ R in the fuzzy set C are obtained as described below

42 Introduction to Soft Computing

Samir Roy_Chapter02.indd 42Samir Roy_Chapter02.indd 42 2/21/2013 3:16:06 PM2/21/2013 3:16:06 PM

R

P × Q (3, 6)

(3, 7)
(3, 8)
(4, 6)
(4, 7)
(4, 8)
(5, 6)

(5, 7)

(5, 8)

0

1

2

Fig. 2.31. Addition modulo 3 over P í Q.

(a) For 0 ∈ R
f −1 (0) = {(3, 6), (5, 7), (4, 8)}
∴m C (0) = max {min (m A (3), m B (6)), min (m A (5), m B (7)), min (m A (4), m B (8))}

 = max {min (0.1, 0.6), min (0.5, 0.2), min (0.8, 0.7)}
 = max {0.1, 0.2, 0.7}
 = 0.7.

(b) For 1 ∈ R
f −1 (1) = {(4, 6), (3, 7), (5, 8)}
∴m C (1) = max {min (m A (4), m B (6)), min (m A (3), m B (7)), min (m A (5), m B (8))}

= max {min (0.8, 0.6), min (0.1, 0.2), min (0.5, 0.7)}
= max {0.6, 0.1, 0.5}
= 0.6.

(c) For 2 ∈ R
f −1 (2) = {(5, 6), (4, 7), (3, 8)}
∴m C (2) = max {min (m A (5), m B (6)), min (m A (4), m B (7)), min (m A (3), m B (8))}

= max {min (0.5, 0.6), min (0.8, 0.2), min (0.1, 0.7)}
= max {0.5, 0.2, 0.1}
= 0.5.

Hence the image of A × B under f is given by C = {(0, 0.7), (1, 0.6), (2, 0.5)}, or

C = + +
0 7
0

0 6
1

0 5
2

. .7 0

Example 2.34 (Fuzzy extension principle)

Let P = {a, b, c}, Q = {d, e, f }, and R = {g, h, i, j, k}} be three crisp sets, and f : P × Q → R be a function
defi ned as f (x, y) = x + y + 2, where ‘+’ is to be interpreted as the addition of the sequence number
of x and y in the English alphabet. For example, the letter a has the sequence number 1 as it is the
fi rst letter of the English alphabet, and that of the letter d is 4. Th erefore the expression a + d pro-
duces the letter with sequence number 1 + 4 = 5, the letter e. Similarly, a + d + 2 = g. Table 2.9 shows
the function table for the function f : P × Q → R. Fig. 2.32 shows the same function graphically.

Fuzzy Sets 43

Samir Roy_Chapter02.indd 43Samir Roy_Chapter02.indd 43 2/21/2013 3:16:08 PM2/21/2013 3:16:08 PM

Table 2.9. Function Table of f (x, y) = x + y + 2

← Q →

↑
P
↓

d e f

a g h i

b h i j

c i j k

Now, let us consider the fuzzy sets A and B on P and Q as described below.

P × Q (a, d)

(b, e)

(b, f)

(c, d)
(c, e)
(c, f)

(b, d)
(a, f)
(a, e) g

h

i

j

k

Fig. 2.32. f (x, y) = x + y + 2 over P × Q

A
a b c

B
d e f

= + + =B + +
0 4 0 3 0 8 0 7 0 5 0 8. .4 0 , . .7 0

Computation of the fuzzy set C on R as the image of A × B with the extension principle is detailed
below.

(a) For g ∈ R
f −1 (g) = {(a, d)}
∴m C (g) = max {min (m A (a), m B (d))}

= max {min (0.4, 0.7)}
= max {0.4}
= 0.4.

(b) For h ∈ R
f −1 (h) = {(a, e), (b, d)}
∴m C (h) = max {min (m A (a), m B (e)), min (m A (b), m B (d))}

= max {min (0.4, 0.5), min (0.3, 0.7)}
= max {0.4, 0.3}
= 0.4.

(c) For i∈R
f −1 (i) = {(a, f), (b, e), (c, d)}
∴m C (i) = max {min (m A (a), m B (f)), min (m A (b), m B (e)), min (m A (c), m B (d))}

= max {min (0.4, 0.8), min (0.3, 0.5), min (0.8, 0.7)}
= max {0.4, 0.3, 0.7}
= 0.7.

44 Introduction to Soft Computing

Samir Roy_Chapter02.indd 44Samir Roy_Chapter02.indd 44 2/21/2013 3:16:09 PM2/21/2013 3:16:09 PM

(d) For j ∈ R
f −1 (j) = {(b, f), (c, e)}
∴m C (j) = max {min (m A (b), m B (f)), min (m A (c), m B (e))}

= max {min (0.3, 0.8), min (0.8, 0.5)}
= max {0.3, 0.5}
= 0.5.

(e) For k ∈ R
f −1 (k) = {(c, f)}
∴m C (k) = max {min (m A (c), m B (f))}

= max {min (0.8, 0.8)}
= max {0.8}
= 0.8.

Hence the image of A × B under f is given by C = f (A × B) = {(g, 0.4), (h, 0.4), (i, 0.7), (j, 0.5), (k,
0.8)}, i.e.,

C
g h i j k

= + + ++ +
0 4 0 4 0 7 0 5 0 8. . . .4 0 4 0 7 0 .

 CHAPTER SUMMARY

A summary of the matters discussed in this chapter is provided below.

Traditional set theory is not adequately equipped to model the vagueness/inexactness that we •
are used to tackle in our everyday life.
Fuzzy set theory is an extension, or generalization, of crisp set theory that takes into account •
the vagueness mentioned above by allowing partial membership to set. Hence, the degree of
membership of an element to a fuzzy set is any real value between 0 and 1, both inclusive.
Th e membership profi le of a fuzzy set is customarily expressed with the help of a membership •
function m : U → [0, 1]. Popular membership functions are the triangular function, trapezoidal
function, Gaussian function, S-function etc.
Fuzzy sets are characterized with the help of certain parameters, e.g., normality, height, sup-•
port, core, cardinality etc.
Fuzzy sets are occasionally transformed through operations like normalization, dilation, con-•
centration, contrast intensifi cation, and fuzzyfi cation. Th ese transformations help to deal with
linguistic variables.
Familiar crisp set operations, e.g., union, intersection, complementation, equality, inclusion, •
diff erence, disjunctive sum etc., are extended to fuzzy domain.
Most of the properties of crisp sets, e.g., associativity, commutativity, distributivity, idempoten-•
cy, De Morgan’s law, transitivity etc., are also satisfi ed by fuzzy set operations. However, unlike
crisp sets, in the fuzzy domain we have P ∪ P′ ≠ U, and P ∩ P′ ≠ Φ because m P (x) ∈ [0, 1], and
m P ∪ P′ (x) = max {m P (x), 1 − m P (x)} ≠ 1, and m P ∩ P′ (x) = min {m P (x), 1 − m P (x)} ≠ 0.
Th e concept of a crisp relation is generalized to fuzzy relation. A fuzzy relation may exist be-•
tween two crisp sets, or two fuzzy sets. A fuzzy relation between two fuzzy sets is a subset of
their fuzzy Cartesian product.
A fuzzy relation between two crisp sets consists of ordered pairs of the elements of the sets and •
a membership value for each ordered pair that ranges from 0 to 1.

Fuzzy Sets 45

Samir Roy_Chapter02.indd 45Samir Roy_Chapter02.indd 45 2/21/2013 3:16:11 PM2/21/2013 3:16:11 PM

Common operations on fuzzy relations are union, intersection, complementation, and max–•
min composition.
Th e fuzzy extension principle provides a way to map certain mathematical concepts pertaining •
to crisp sets to their fuzzy counterparts.

 SOLVED PROBLEMS

Problem 2.1 Which of the following sets are identical to each other?

 A = {x | x is even and 0 ≤ x ≤ 10}
 B = {0, 2, 4, 6, 8 10}
 C = {10, 0 8, 2, 6, 4}
 D = {6, 8, 6, 0, 0, 4, 10, 10, 2}

Solution 2.1 All of the sets A, B, C and D have the same members, irrespective of their descriptions,
ordering, or repetition. Hence all of them are identical. A = B = C = D.

Problem 2.2 Describe the following sets by citing a property shared by all its members.

 A = {Helium, Neon, Argon, Krypton, Xenon, Radon}
 B = {2, 3, 5, 7, 11, 13, 17, 19, 23}
 C = {0, 3, 8, 15, 24, 35, 48, 63, …}

Solution 2.2 Th e required descriptions are given below.

 A = {x | x is an inert gas}
B = {x | x is a prime number and 2 ≤ x < 25}
C = {x2 − 1 | x is a natural number}

Problem 2.3 Let A be the set of all non-negative integers, B be that of the non-positive integers
inclusive of 0 and I be the set of all integers, the universal set. Find A ∪ B, A ∩ B, A′, B′, A – B, B – A,
and A ⊕ B.

Solution 2.3 According to the problem statement, A = {0, 1, 2, 3, …}, B = {0, −1, −2, −3, …}, and I
= {…, −3, −2, −1, 0, 1, 2, 3, …}. Th erefore

A ∪ B = {…, −3, −2, −1, 0, 1, 2, 3, …}}= I
A ∩ B = {0}
A′ = {−1, −2, −3, …}
B′ = {1, 2, 3, …}
A – B = {1, 2, 3, …} = B′
B – A = {−1, −2, −3, …} = A′
A ⊕ B = {…, −3, −2, −1, 1, 2, 3, …} = I − {0}

Problem 2.4 For arbitrary sets P and Q, under what condition P × Q = Q × P ?

Solution 2.4 By defi nition, P × Q = {(x, y) | x ∈ P, and y ∈ Q} and Q × P = {(x, y) | x ∈ Q, and y ∈
P}. Hence P × Q = Q × P if and only if P = Q.

Problem 2.5 Prove De Morgan’s theorem with the help of Venn diagrams.

46 Introduction to Soft Computing

Samir Roy_Chapter02.indd 46Samir Roy_Chapter02.indd 46 2/21/2013 3:16:13 PM2/21/2013 3:16:13 PM

Solution 2.5 Fig. 2.33 (a) – (f) depict the process of constructing the sets (P ∪ Q)′ and P′ ∩ Q′. It is
seen that the Venn diagrams for (P ∪ Q)′ and P′ ∩ Q′ are identical. Hence (P ∪ Q)′ = P′ ∩ Q′, as stated by
De Morgan’s theorem. Th e other part of the theorem, i.e., (P ∩ Q)′ = P′ ∪ Q′ can be proved similarly.

P ∪ Q
P Q

(a) (b) (c)

(P ∪ Q)QQ ′

P Q

(d) (e) (f)

P ′ ∩ Q ′

P

P ′

Q ′

Q

Fig. 2.33. Proof of De Morgan’s theorem.

Problem 2.6 Prove that for any set S, S ⊕ S = ∅ .

Solution 2.6 S ⊕ S = (S ∩ S′) ∪ (S′ ∩ S) = (∅ ∪ ∅) = ∅

Problem 2.7 Prove that A – (A – B) = A ∩ B

Solution 2.7 L.H.S = A – (A – B)
 = A – (A ∩ B′)
 = A ∩ (A ∩ B′)′
 = A ∩ (A′ ∪ B)
 = (A ∩ A′) ∪ (A ∩ B)
 = ∅ ∪ (A ∩B)
 = A ∩ B
 = R.H.S

Problem 2.8 Prove that if A ∪ C = B ∪ C, and A ∩ C = B ∩ C, then A = B. However, A ∪ C = B ∪
C does not imply that A = B. Nor A ∩ C = B ∩ C implies that A = B.

Solution 2.8 A = A ∪ (A ∩ C)

 = A ∪ (B ∩ C) : Since A ∩ C = B ∩ C (given)
 = (A ∪ B) ∩ (A ∪ C)
 = (A ∪ B) ∩ (B ∪ C) : Since A ∪ C = B ∪ C (given)
 = (B ∪ A) ∩ (B ∪ C)

Fuzzy Sets 47

Samir Roy_Chapter02.indd 47Samir Roy_Chapter02.indd 47 2/21/2013 3:16:13 PM2/21/2013 3:16:13 PM

 = B ∪ (A ∩ C)
 = B ∪ (B ∩ C) : Since A ∩ C = B ∩ C (given)
 = B

Problem 2.9 Let F be a fuzzy set of matured persons where the maturity is measured in terms of age
in years. Th e fuzzy membership function followed is given below

μ F

if
x

if

if x

()x

,

,

,

=

≤
−⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

≤ ≤

≥

⎧

⎨
⎪
⎧⎧

⎪
⎨⎨
⎪⎪

⎩
⎪
⎨⎨

⎪⎩⎩
⎪⎪

0 5if x, ≤
5

20
5 2x≤ ≤x 5

1 2if x, ≥ 5

2

Th e universe consists of the individuals Sunny, Moon, Pikoo, Gina, Osho, Chang, Paul, Lalu, Lila, and
Poly whose ages are 15, 20, 10, 27, 32, 12, 18, 24, 3, and 8 years respectively. Find the normalcy of the set
as well as Height (F), Support (F), Core (F), and Cardinality (F).

Solution 2.9 We calculate the membership values of each individual with the help of the member-
ship function to obtain the following fuzzy set

F
Sunny Moon Pikoo Gina Osho C

= + + ++ + +
0 25 0 5625 0 0625 1 0 1 0 0 1225. .25 0 . .0625 1 . .0 0

hahh ng Paul Lalu Lila Poly
+ + ++ +

0 4225 0 9025 0 0 0225. .4225 0 .

Th e set is normal because there are two members, Gina and Osho, who attain full memberships. Ob-
viously, Height (F) = 1.0. Support (F) = {Sunny, Moon, Pikoo, Gina, Osho, Chang, Paul, Lalu, Poly}, Core
(F) = {Gina, Osho}, and Cardinality (F) = 0.25 + 0.5625 + 0.0625 + 1.0 + 1.0 + 0.1225 + 0.4225 + 0.9025
+ 0 + 0.0225 = 4.345.

Problem 2.10 Fig. 2.34 shows a membership profi le in the form of a reverse triangle. It is defi ned
as follows:

μ F

x if xi
x if xi

elsewhere
()x

,
,

,
=

− x ifi ≤
≤

⎧
⎨
⎪
⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

0x ≤x
1x ≤x

1

Apply the transforms of normalization, dilation, concentration, contrast intensifi cation, and fuzzifi -
cation on the membership function and show the resultant profi les.

−2 −1 0 1 2

1

Fig. 2.34. A reverse triangular membership function

48 Introduction to Soft Computing

Samir Roy_Chapter02.indd 48Samir Roy_Chapter02.indd 48 2/21/2013 3:16:14 PM2/21/2013 3:16:14 PM

Solution 2.10 Th e given membership function is already normal and therefore normalization leaves
the function unaltered. To obtain the shape of a transformed membership function, membership values
at individual points are calculated. Th en these values are mapped to the transformed membership values.
For example, let us take the point x = − 0.5 so that m F (x) = 0.5. Under dilation, DIL (m F (x) = 0.5) = (0.5) 0.5
= 0.71 (approximate). On the other hand, under concentration, contrast intensifi cation or fuzzifi cation,
this membership value maps to CON (m F (x) = 0.5) = (0.5) 2 = 0.25, INT (m F (x) = 0.5) = 2 × (0.5) 2 =
0.5, and FUZZ (m F (x) = 0.5) = (0.5 / 2) 0.5 = 0.5 respectively. Th e approximate shapes of the transformed
functions are shown with dotted line in Fig. 2.35 (a), Fig. 2.35 (b), Fig. 2.35 (c), and Fig. 2.35 (d).

−2 −1 0 1

DIL (F)

2

1

F

 −2 −1 0 1

CONC (F)

2

1

F

(a) (b) Concentration

−2 −1 0 1

INT (F)

2

1

F

 −2 −1 0 1

FUZZ (F)

2

1

F

(c) Contrast intensifi cation (d) Fuzzifi cation

Fig. 2.35. Transformations on the reverse triangular function.

Problem 2.11 Let U = Flowers = {Jasmine, Rose, Lotus, Daff odil, Sunfl ower, Hibiscus, Chrysanthe-
mum}} be a universe on which two fuzzy sets, one of Beautiful fl owers and the other one of Fragrant
fl owers are defi ned as shown below.

P = Beautiful fl owers = 0 3 0 9 1 0 0 7 0 5 0 4.3 0 . .0 0 . .5 0
Jasmine

+ + + + +
Rose Lotus Daffodil Sunflower Hibiscusbb Chrysanthemum

+
0 6

Q = Fragrant fl owers =
1 0 1 0 0 5 0 2 0 2 0 1. .0 1 . .5 0 . .2 0

Jasmine
+ + + + +

Rose Lotus Daffodil Sunflower Hibiscusbb Chrysanthemum
+

0 4

Compute the fuzzy sets P ∪ Q, P ∩ Q, P′, Q′, P – Q, P ⊕ Q. Also, verify that P ∪ P′ ≠ U, P ∩ P′ ≠ f.

Solution 2.11 Th e results are obtained directly from the defi nitions of the respective operations.

P Q
Rose Lotus Daffodil Sunflower

=Q + + + + +
1 0 1 0 1 0 0 7 0 5 0. .0 1 . .0 0

Jasmine
.. .4 0 6

Hibiscus Chrysanthemum
+

P Q
Rose Lotus Daffodil Sunflower

=Q + + + + +
0 3 0 9 0 5 0 2 0 2 0.3 0 . .5 0

Jasmine
.. .1 0 4

Hibiscus Chrysanthemum
+

Fuzzy Sets 49

Samir Roy_Chapter02.indd 49Samir Roy_Chapter02.indd 49 2/21/2013 3:16:17 PM2/21/2013 3:16:17 PM

′ = + + + + +P
Rose Lotus Daffodil Sunflower H

0 7 0 1 0 0 3 0 5 0 6. .7 0 . .3 0 .
Jasmine ibisii cus Chrysr anthemum

Jas e Rose Daffodil

+

= + + +

0 4

0 7 0 1 0 3 0
min

. .1 05 0 6 0 4
Sunflower Hibiscus Chrysr anthemum

+ +

′= + + + + +Q
Rose Lotus Daffodil Sunflower Hib

0 0 0 5 0 8 0 8 0 9
Jasmine

. .5 0 .8 0
isii cus Chrysr anthemum

Lotus Daffodil Sunflower

+

= + + +

0 6

0 5 0 8 0 8. .5 0 0 900 0 6.9 0
Hibiscus Chrysanthemum

+

P Q P Q

Rose Lotus Daffodil Sunflower

=Q ′

= + + + + +
0 0 0 5 0 7 0 5

Jasmine
. .5 0 0 400 0 6. .4 0

Hibiscus Chrysanthemum
+

P Q

Rose Lotus Daffodil S

⊕ =Q ′ ∪ ′

= + + + +

()P Q ′ ()P Q′

0 0 0 5. 0 7. 0 5.
Jasmine unfloweruu Hibiscus Chrysanthemum

+ +
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

∪

+

0 4 0 6

0 7 0

. .4 0

. .7 0
Jasmine

1 011 0 2 0 2 0 1 0 4
Rose Lotus Daffodil Sunflower Hibiscus Chry

+ + + + +
. .2 0 . .1 0

sass nthemum

Rose Lotus Daffodil

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= + + + +
0 7 0 1 0 5 0 7 0. .7 0 . .5 0

Jasmine
.. . .5 0 4 0 6

Sunflower Hibiscus Chrysr anthemum
+ +

P P

Rose Lotus Daffodil Sunflower

∪ ′

= + + + + +
0 7 0 9 1 0 0 7 0 5.7 0 . .0 0

Jasmine
0 600 0 6. .6 0

Hibiscus Chrysanthemum
U+ ≠

P P

Rose Lotus Daffodil Sunflower

′

= + + + + +
0 3 0 1 0 0 3 0 5 0. .3 0 . .3 0 .

Jasmine
4 044 4

Hibiscus Chrysanthemum
+ ≠

. ϕ

Problem 2.12 Let A = {Gogo, Didi, Pozzo, Lucky} be a set of individuals and B = {Colour, Game,
Flower, Pet}. Table 2.10 presents the liking data of these individuals with respect to the listed aspects. We
defi ne a relation R on A × A such that x R y if there is z which both x and y likes. Show the relation matrix
for R.

Table 2.10. Liking data of Gogo, Didi, Pozzo and Lucky

Likes

Colour Game Flower Pet

Gogo Blue Tennis Rose Parrot

Didi Red Baseball Lotus Parrot

Pozzo Green Soccer Lotus Dog

Lucky Red Tennis Rose Cat

50 Introduction to Soft Computing

Samir Roy_Chapter02.indd 50Samir Roy_Chapter02.indd 50 2/21/2013 3:16:22 PM2/21/2013 3:16:22 PM

Solution 2.12 Th e relation matrix is given in Table 2.11.

Table 2.11. Relation matrix for R

R

Gogo Didi Pozzo Lucky

Gogo 1 1 0 1

Didi 1 1 1 1

Pozzo 0 1 1 0

Lucky 1 1 0 1

Problem 2.13 Along with relation R of Problem 2.12, consider one more relation among Gogo,
Didi, Pozzo, Lucky regarding who is fond of whom, as shown in Table 2.11. We defi ne a relation S such
that x S y if there exists z for which x is fond of z and z is fond of y. Show the relation matrix of S and
then fi nd R ∪ S, R ∩ S, R ° S.

Table 2.12. Who is fond of whom

is fond of

Gogo Didi Pozzo Lucky

Gogo 1 0 1 1

Didi 0 0 0 1

Pozzo 0 0 1 0

Lucky 1 1 0 0

Solution 2.13 Th e relation matrix of S is shown in Table 2.13. Table 2.14 and Table 2.15 present the
relation matrices for R ∪ S and R ∩ S.

Table 2.13. Relation matrix for S

S

Gogo Didi Pozzo Lucky

Gogo 1 1 1 1

Didi 1 1 0 0

Pozzo 0 0 1 0

Lucky 1 0 1 1

Table 2.14. Relation matrix for R ∪ S

R ∪ S
Gogo Didi Pozzo Lucky

Gogo 1 1 1 1
Didi 1 1 1 1
Pozzo 0 1 1 0
Lucky 1 1 1 1

Fuzzy Sets 51

Samir Roy_Chapter02.indd 51Samir Roy_Chapter02.indd 51 2/21/2013 3:16:29 PM2/21/2013 3:16:29 PM

Table 2.15. Relation matrix for R ∩ S

R ∩ S
Gogo Didi Pozzo Lucky

Gogo 1 1 0 1
Didi 1 1 0 0
Pozzo 0 0 1 0
Lucky 1 0 0 1

Now let us compute R ° S. Does (Gogo, Gogo) ∈ R ° S ? We see, (Gogo, Gogo) ∈ R and (Gogo, Gogo)
∈ S. Moreover, (Gogo, Didi) ∈ R and (Didi, Gogo) ∈ S. Hence (Gogo, Gogo) ∈ R ° S. However there is
no x such that (Pozzo, x) ∈ R and (x, Lucky) ∈ S. Other members of R ° S are found in similar fashion
(see Table 2.16).

Table 2.16. Relation matrix for R ° S

R ° S
Gogo Didi Pozzo Lucky

Gogo 1 1 1 1
Didi 1 1 1 1
Pozzo 1 1 1 0
Lucky 1 1 1 1

Problem 2.14 Show that Cartesian product of crisp sets is a special case of fuzzy Cartesian product.

Solution 2.14 Let A and B be two fuzzy sets on reference sets X and Y respectively. As per defi nition
of fuzzy Cartesian product m A × B (a, b) = min {m A (a), m B (b)}∀a ∈ X, ∀b ∈ Y. Now, if A and B are crisp
sets, then m A (a) = m B (b) = 1, ∀a ∈ X, ∀b ∈ Y. Th erefore, m A × B (a, b) = min {m A (a), m B (b)} = 1. Hence
Cartesian product of crisp sets is a special case of fuzzy Cartesian product.

Problem 2.15 A = {Jack, Lucy, Harry}, B = {Flute, Drum, Violin, Piano}, C = {String, Wind, Percus-
sion}}on which the relation R = Plays ⊆ P × Q and S = instrument type ⊆ Q × R is defi ned (Table 2.17 and
2.18). Find R ° S.

Table 2.17. Relation matrix for R

R
Flute Drum Violin Piano

Jack 0 1 0 1
Lucy 1 0 1 1
Harry 1 1 1 0

Table 2.18. Relation matrix for S

S
String Wind Percussion

Flute 0 1 0
Drum 0 0 1
Violin 1 0 0
Piano 1 0 0

52 Introduction to Soft Computing

Samir Roy_Chapter02.indd 52Samir Roy_Chapter02.indd 52 2/21/2013 3:16:29 PM2/21/2013 3:16:29 PM

Solution 2.15 Table 2.19 shows the relation matrix for R ° S.

Table 2.19. Relation matrix for R ° S

S

String Wind Percussion
Jack 1 0 1
Lucy 1 1 0
Harry 1 1 1

 Problem 2.16 Let A = {Mimi, Bob, Kitty, Jina} be a set of four children, B = {Tintin, Asterix,
Phantom, Mickey} be a set of four comic characters, and C = {funny, cute, dreamy} be a set of three at-
tributes. Th e fuzzy relations R = x Likes y is defi ned on A × B and S = x IS y is defi ned on B × C as shown
in Table 2.20 and Table 2.21. Find R ° S.

Table 2.20. Relation matrix for R = x Likes y

R ≡ Likes
Tintin Asterix Phantom Mickey

Mimi 0.8 0.5 0.7 0.8
Bob 0.4 0.9 0.3 0.3
Kitty 0.6 0.7 0.4 0.9
Jina 0.3 0.8 0.2 0.5

Table 2.21. Relation matrix for S = x IS y

S ≡ IS
funny cute dreamy

Tintin 0.6 0.7 0.3
Asterix 0.8 0.4 0.2
Phantom 0.1 0.2 0.1
Mickey 0.9 0.8 0.3

Table 2.22. Relation matrix for R ° S

ROS
funny cute dreamy

Mimi 0.8 0.8 0.3
Bob 0.8 0.4 0.3
Kitty 0.9 0.8 0.3
Jina 0.8 0.5 0.3

 Solution 2.16 Let us recall the defi nition of composition of fuzzy relations. If A, B and C are three
crisp sets and R and S are fuzzy relations over A × B and B × C, then the composition of R and S, R ° S,
is a relation over A × C such that

()(,) max {min((,), (,))}x y, x(y S), y z,
y B

Now, R ° S (Mimi, funny) = max {min (R (Mimi, Tintin), S (Tintin, funny)), min (R (Mimi, Asterix),
S (Asterix, funny)), min (R (Mimi, Phantom), S (Phantom, funny)), min (R (Mimi, Mickey), S (Mickey,

Fuzzy Sets 53

Samir Roy_Chapter02.indd 53Samir Roy_Chapter02.indd 53 2/21/2013 3:16:29 PM2/21/2013 3:16:29 PM

funny))}= max {min (0.8, 0.6), min (0.5, 0.8), min (0.7, 0.1), min (0.8, 0.9)}= max {0.6, 0.5, 0.1, 0.8}}= 0.8.
Th e membership values for the rest of the ordered pairs can be computed similarly. Th e resultant relation
matrix is shown in Table 2.22.

Problem 2.17 A fuzzy set N of naughty children is given below. Find the level set of N.

N = 0 3 0 8 1 0 0 3 0 5 0 5 0 8. .3 0 . .0 0 . .5 0
Piku Mini Lotus JojJJ o NinNN a JoyJJ Lila

+ + + + + +

Solution 2.17 Th e level set of N, L (N), is the crisp set of real values x ∈ (0, 1] such that for each x
∈ L (F) there is a singleton (y, x) ∈ F. Symbolically, L (N) = {x | 0 < x ≤ 1 and ∃ y ∈ U such that m N (y) =
x}. Hence

L (N) = {0.3, 0.5, 0.8, 1.0}.

Problem 2.18 A fuzzy set F has the membership profi le given below. What is the level set of F?

μF xe
x()x ,=

+
− ∞≤ ≤x ∞−

1
1

Solution 2.18 Th e level set is L (N) = (0, 1).

Problem 2.19 For the naughty children of Problem 2.17, fi nd Na for a = 0.4 and 0.2.

Solution 2.19 Th e a-cut of N, Na, is the crisp set containing those elements whose membership
values with respect to N are greater than, or equal to, a. Symbolically, Na = {x | m N (x) ≥ a }. Accordingly
we fi nd,

N0.4 = {x | m N (x) ≥ 0.4}}= {Mini, Lotus, Nina, Joy, Lila}, and
N0.2 = {x | m N (x) ≥ 0.2}}= {Piku, Mini, Lotus, Jojo, Nina, Joy, Lila}

Problem 2.20 For F of Problem 2.18, fi nd Fa for a = 0.5 and 0.

Solution 2.20 F0.5 = [0, ∞) and F0 = (−∞, ∞).

Problem 2.21 Find the fuzzy cardinality of a fuzzy set LC of low calorie food. Th e fuzzy set is given
below.

LC =
1 1 0 5 0 1 0 1

Cucumber Watermelon Chicken IceII cream Chocolate
+ + + +

. .5 0
-

+ +++
0 3 0 8. .3 0
Rice Egggg

Solution 2.21 Let F be a fuzzy set and L (F) is the level set of F and for all a ∈ L (F), Fa is the a-cut
of F. Th e fuzzy cardinality of F, fc (F), is the fuzzy set

f Fff
L

)F
| |F()F

=
∈
∑ α

FFα

In the present instance, L (LC) = {0.1, 0.3, 0.5, 0.8, 1.0}. Th e a-cuts of LC for a = 0.1, 0.3, 0.5, 0.8 and
1.0 are

54 Introduction to Soft Computing

Samir Roy_Chapter02.indd 54Samir Roy_Chapter02.indd 54 2/21/2013 3:16:31 PM2/21/2013 3:16:31 PM

LC 0.1 = {Ice-cream, Chocolate, Rice, Chicken, Egg, Cucumber, Watermelon}, and | LC0.1 | = 7, LC 0.3 =
{Rice, Chicken, Egg, Cucumber, Watermelon}, and | LC0.3 | = 5, LC 0.5 = {Chicken, Egg, Cucumber, Wa-
termelon}, and | LC0.5 | = 6, LC 0.8 = {Egg, Cucumber, Watermelon}, and | LC0.8 | = 3, LC1.0 = {Cucumber,
Watermelon}, and | LC1.0 | = 2. Th erefore the fuzzy cardinality of LC is given by

f Lff
L

)LC
| |LC

.
()F

== + + + +
∈
∑ α

α

0 1.
7

0 3.
5

0 5..
6

0 8.
3

1 0.
2

Problem 2.22 Consider two sets of colours C-1 = {Red, Blue, Green} and C-2= {Red, Blue, Green,
Yellow, Cyan, Magenta}. A function f : C-1 × C-1 → C-2 is defi ned as shown in the matrix below.

Red Blue Green

Red Red Magenta Yellow

Blue Magenta Blue Cyan

Green Yellow Cyan Green

We defi ne two shades of the colours in {Red, Blue, Green} as fuzzy sets S-1 and S-2.

S-1 = 0 3 0 5 0 7. .3 0
red blue greengg

+ + S-2 = 0 8 0 2 0 4. .8 0
red blue greengg

+ +

Extend the function f to the domain S-1 × S-2 by applying the fuzzy extension principle.

Solution 2.22 Let us denote the fuzzy equivalent of f as ff . Th e pre-images of the elements of C-2
under f are

f−1 (R) = {(R, R)}
f−1 (G) = {(G, G)}
f−1 (B) = {(B, B)}
f−1 (M) = {(R, B), (B, R)}
f−1 (Y) = {(R, G), (G, R)}
f−1 (C) = {(B, G), (G, B)}

Computations of the fuzzy memberships of the elements of C-2 under ff are shown below.

ff −1 (R) = {(R, R)}
∴m C-2 (R) = max {min (m s-1 (R), m s-2 (R))}
= max {min (0.3, 0.8)}
= max {0.3}}= 0.3

ff −1 (B) = {(B, B)}
∴m C-2 (B) = max {min (m s-1 (B`), m s-2 (B))}
= max {min (0.5, 0.2)}
= max {0.2}}= 0.2

ff −1 (G) = {(G, G)}
∴m C-2 (G) = max {min (m s-1 (G), m s-2 (G))}
= max {min (0.7, 0.4)}
= max {0.4}}= 0.4

Fuzzy Sets 55

Samir Roy_Chapter02.indd 55Samir Roy_Chapter02.indd 55 2/21/2013 3:16:35 PM2/21/2013 3:16:35 PM

ff −1 (M) = {(R, B), (B, R)}
∴m C-2 (M) = max {min (m s-1 (R), m s-2 (B)), min (m s-1 (B), m s-2 (R))}
= max {min (0.3, 0.2), min (0.5, 0.8)}
= max {0.2, 0.5}}= 0.5

ff -−1 (Y) = {(R, G), (G, R)}
∴m C-2 (Y) = max {min (m s-1 (R), m s-2 (G)), min (m s-1 (G), m s-2 (R))}
= max {min (0.3, 0.4), min (0.7, 0.8)}
= max {0.3, 0.7}}= 0.7

ff −1 (C) = {(B, G), (G, B)}
∴m C-2 (C) = max {min (m s-1 (B), m s-2 (G)), min (m s-1 (G), m s-2 (B))}
= max {min (0.5, 0.4), min (0.7, 0.2)}
= max {0.4, 0.2}}= 0.4

� TEST YOUR KNOWLEDGE

 2.1 Which of the following phenomena is modeled by fuzzy set theory?
a) Randomness b) Vagueness
c) Uncertainty d) None of the above

 2.2 Which of the following relations hold good for fuzzy sets?
a) m (x) ∈ [0, 1] b) m (x) ∉ [0, 1]
c) m (x) = 0, or 1 d) None of the above

 2.3 Which of the following relations hold good for crisp sets?
a) m (x) ∈ [0, 1] b) m (x) ∉ [0, 1]
c) m (x) = 0, or 1 d) None of the above

 2.4 Let U = {a, b, c}, and P
a c

= +
0 5 0 5. .5 0 be a fuzzy set on U. Th en which of the following is true?

a) P is normal b) P is sub-normal
c) Both (a) and (b) d) None of the above

 2.5 Let U = {a, b, c}, and P
a c

= +
0 5 0 75. .5 0 be a fuzzy set on U. Th en what is the height of P?

a) 0.5 b) 0.75
c) 1.25 d) 1.0

 2.6 What is the support of the fuzzy set P cited in item 2.5?
a) {a, c} b) {b}
c) {a, b, c} d) Φ

 2.7 What is the core of the fuzzy set P cited in item 2.5?
a) {a, c} b) {b}
c) {a, b, c} d) Φ

 2.8 What is the cardinality of the fuzzy set P cited in item 2.4?
a) 0.0 b) 0.5
c) 1.0 d) None of the above

 2.9 Which of the following membership functions must have a height of 1.0?
a) Triangular function b) Trapezoidal function
c) Gaussian function d) None of the above

56 Introduction to Soft Computing

Samir Roy_Chapter02.indd 56Samir Roy_Chapter02.indd 56 2/21/2013 3:16:38 PM2/21/2013 3:16:38 PM

2.10 Which of the following transformations on membership functions of fuzzy sets enhances the
membership values?
a) Dilation b) Concentration
c) Contrast intensifi cation d) Fuzzifi cation

2.11 Which of the following transformations on membership functions of fuzzy sets reduces the mem-
bership values?
a) Dilation b) Concentration
c) Contrast intensifi cation d) Fuzzifi cation

2.12 Which of the following transformations on membership functions of fuzzy sets reduces as well as
enhances the membership values selectively?
a) Contrast intensifi cation b) Fuzzifi cation
c) Both (a) and (b) d) None of the above

2.13 Which of the following properties is not satisfi ed by fuzzy sets P, Q, R?
a) (P ∪ Q) ∪ R = P ∪ (Q ∪ R) b) (P ∪ Q)′ = P′ ∩ Q′
c) (P ′)′= P d) P ∪ P′ = U �

2.14 Which of the following properties is not satisfi ed by arbitrary fuzzy set P?
a) P ∪ P′ = U b) P ∩ P′ = Φ
c) Both (a) and (b) d) None of the above

2.15 Which of the following properties is true for arbitrary fuzzy set P?
a) P ∪ P′ ≠ U b) P ∩ P′ ≠ Φ
c) Both (a) and (b) d) None of the above

2.16 Which of the following properties does not hold good for Cartesian product of sets?
a) Commutativity b) Associativity
c) Both (a) and (b) d) None of the above

2.17 Let F = +
0
0

1
1

 be a fuzzy set on the universe U = {0, 1}. Which of the following is L (F), i.e., the

level set of F?
a) L (F) = {0} b) L (F) = {1}
c) L (F) = {0, 1} d) None of the above

2.18 Which of the following is true regarding variation of the size of C of a fuzzy set as a increases from
0 to 1?
a) Size of the a-cut increases b) Size of the a-cut decreases
c) Th ey are not related d) None of the above

2.19 Let Fa, Fb be the a-cuts of a fuzzy set F such that 0 ≤ a ≤ b ≤ 1. Th en which of the following is
true?
a) Fa ⊆ Fb b) Fa ⊇ Fb
c) Fa = Fb d) None of the above

2.20 Let F
a b c

= + +
0 1 0 5 1 0. .1 0 be a fuzzy set on the universe U = {a, b, c}. F can be decomposed into a

number of a-cuts such that F F∪
α

αFFα. . How many such a-cut decompositions exist?
a) One b) Th ree
c) Infi nite d) None of the above

2.21 Which of the following is a fuzzyfi cation process?
a) Restricted scalar multiplication b) a-cut decomposition
c) Both (a) and (b) d) None of the above

Fuzzy Sets 57

Samir Roy_Chapter02.indd 57Samir Roy_Chapter02.indd 57 2/21/2013 3:16:41 PM2/21/2013 3:16:41 PM

2.22 Let a F denotes the fuzzy set obtained through restricted scalar multiplication of F by a , 0 ≤ a ≤
1. Th en given 0 ≤ a ≤ b ≤ 1, and two fuzzy sets F and G, which of the following is not true?
a) a (F ∪ G) = a F ∪ a G b) (ab) F = a (bF)
c) a F ⊆ F d) None of the above

2.23 Let F
a b

= +
0 5 0 5. .5 0 be a fuzzy set. Th en the fuzzy cardinality of F is

a) 0 5
1

 b) 0 5
2

c) 1 0
2

 d) None of the above

2.24 Let (a, b) and (c, d) be the pre-images of an element p under a function f. Th e fuzzy membership
values of a, b, c, and d in a fuzzy set are 0.5, 0.4, 0.7 and 0.2 respectively. What is the fuzzy mem-
bership of p when f is extended to its fuzzy domain?
a) 0.5 b) 0.4
c) 0.7 d) 0.2

2.25 Which of the following statements is true about a linguistic variable?
a) A linguistic variable has linguistic values
b) Th e values of a linguistic variable are fuzzy sets
c) Both (a) and (b)
d) None of the above

Answers

 2.1 (b) 2.2 (a) 2.3 (c) 2.4 (b) 2.5 (b)
 2.6 (a) 2.7 (d) 2.8 (c) 2.9 (d) 2.10 (a)
 2.11 (b) 2.12 (c) 2.13 (d) 2.14 (c) 2.15 (c)
 2.16 (c) 2.17 (b) 2.18 (b) 2.19 (b) 2.20 (c)
 2.21 (a) 2.22 (d) 2.23 (b) 2.24 (b) 2.25 (c)

 EXERCISES

2.1 Show that set diff erence operation is not associative, i.e., A – (B – C) ≠ (A – B) – C.
2.2 Prove with the help of Venn Diagrams that for arbitrary sets A and B, A – B = A ∩ B′.
2.3 Fig. 2.36 shows a trapezoidal membership function with a = 0, m = 1, n = 2, b = 4. Show the eff ect of

normalization, dilation, concentration, contrast intensifi cation and fuzzifi cation on this member-
ship function.

0 1 2 4

1

0

Fig. 2.36. Trapezoidal function m T (x, 0, 1, 2, 4)

58 Introduction to Soft Computing

Samir Roy_Chapter02.indd 58Samir Roy_Chapter02.indd 58 2/21/2013 3:16:44 PM2/21/2013 3:16:44 PM

2.4 Fig. 2.37 shows the profi le of a membership function defi ned below. Show the eff ect of normaliza-
tion, dilation, concentration, contrast intensifi cation and fuzzifi cation on this membership func-
tion.

μF x x()x ,+ ≤ ≤x +1 1x , −x 12

1.0

1.0−1.0

Fig. 2.37. Semicircular membership profi le

2.5 Let P and Q be two fuzzy sets defi ned on the interval [0, p] with the help of the following member-
ship functions:

m P (x) = sin x, x ∈[0, p]

μ

π
π

π
π

π
Q

x if
x if

()x
, /πif

/ππ, if
=

−

−
≤ ≤

⎧

⎨
⎪
⎧⎧

⎨⎨

⎩
⎪
⎨⎨

⎩⎩

2 2/πxx
2 2

Show the membership function for the fuzzy sets P′, Q′, P ∪ Q, P ∩ Q, P − Q, and P ⊕ Q.
2.6 Verify the fuzzy De Morgan’s law with the fuzzy sets A and B cited in Example 2.12.
2.7 Let A = {0, 1, 2, 3}, B = {2, 3, 5}, and C = {0, 2, 4}}be three sets. R, S, and T are three relations defi ned

on A × B, A × B, and B × C respectively. Th ese relations are described below.

 R = {(a, b) | (a + b) is a prime number}, R ⊆ A × B
 S = {(a, b) | | a – b | is a prime number}, S ⊆ A × B
 T = {(b, c) | (b + c) is a prime number}, T ⊆ B × C

Find R ∪ S, R ∩ S, R′, S′, T′, R ° T, and S ° T.
2.8 Let V = {A, B, C, D} be the set of four kinds of vitamins, F = {f1, f2, f3} be three kinds of fruits con-

taining the said vitamins to various extents, and D = {d1, d2, d3} be the set of three diseases that are
caused by defi ciency of the vitamins. Vitamin contents of the fruits are expressed with the help of
the fuzzy relation R over F × V, and the extent to which the diseases are caused by the defi ciency of
these vitamins is given by the fuzzy relation S over V × D. Relations R and S are given below.

A B C D d d d

R
f
f
f

1 2d 3

1ff
2ff
3ff

0 5 0 2 0 1 0 1
0 2 0 7 0 4 0 3
0 4 0 4 0 8 0 1

=
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

. . . .5 0 2 0 1 0

. . . .2 0 7 0 4 0

. . . .4 0 4 0 8 0⎣⎣⎣⎣
⎢⎢⎢⎢
⎣⎣⎣⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

,

.

.

.

.

S

A
B
C
D

0 3. 0 5.. 0 7.
0 1. 0 8.. 0 4.
0 9. 0 1.. 0 2.
0 5. 0 5.. 0 3.

⎥⎥
⎤⎤⎤⎤

⎥
⎥⎥⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Assuming that the max–min composition R ° S represents, in some way, the correlation between the
amount of a certain fruit that should be taken while suff ering from a disease, fi nd R ° S.

Fuzzy Sets 59

Samir Roy_Chapter02.indd 59Samir Roy_Chapter02.indd 59 2/21/2013 3:16:47 PM2/21/2013 3:16:47 PM

 2.9 According to the a-cut decomposition theorem, any fuzzy set F can be decomposed into a num-
ber of a-cuts, Fa, such that F F∪

α
αFFα. . Usually the a s are taken from the level set L (F) of F. Prove

that there exists sets of a s, other than L (F), which satisfi es the a-cut decomposition theorem.

2.10 Let F
a b c d

= + + +
0 6 0 2 0 3 0 9. . .6 0 2 0 be a fuzzy set. Find a set of a-cuts such that F F∪

α
αFFα. . How many

such sets of a-cuts are there? Justify your answer.
2.11 Th e membership function of a fuzzy set HIG, where HIG stands for high income group, is defi ned

as follows:

μHIG

if i
i if

if i
()i

,

,
,

=

≤
−

≤

⎧

⎨
⎪
⎧⎧
⎪
⎨⎨
⎪⎪

⎩
⎪
⎨⎨

⎪⎩⎩
⎪⎪

0 3if i, ≤
3

3
3 6i≤ ≤i

1 6if,

Th e income i is given in lakh of Rupees per annum. Let U = {Joy, Jeev, Nina, Simi} be a universe of
four persons. Yearly income of Joy, Jeev, Nina, and Simi are Rs. 5 lakh, Rs. 8 lakh, Rs. 4 lakh, and
Rs. 3.5 lakh respectively. Construct a fuzzy set Rich on U where the richness of a person is given
by the membership value of his / her income with respect to the fuzzy set HIG. Compute the fuzzy
cardinality of Rich.

2.12 Let us consider the crisp sets P = Q = R = {0, 1, 2}. A function f: P × Q → R is defi ned as f (x, y) =
| x – y |, for all x∈ P, y ∈ Q. Show the function table for f.
Now consider the fuzzy sets A and B on the reference sets P and Q respectively as given below.

A B =B + +
1
0

0 5
1

0
2

0
0

0 5
1

1
2

,

Apply the extension principle to obtain the fuzzy equivalent of the function f with respect to the
fuzzy sets A and B, f: A × B → C, where C is the image of A × B, defi ned on the universe R.

2.13 Let P = Q = {0, 1, 2} and R = {0, 0.5, 1, 1.5, 2} be crisp sets and f: P × Q → R be a function signifying
the mean of two numbers, f (x, y) = (x + y)/2, for all x ∈ P, y ∈ Q. Construct the function table
for f.

Now consider the fuzzy set A representing the closeness of a number x to 1 and B representing
its distance from 1. A and B are defi ned on the reference sets P and Q respectively. Th e sets A and
B may look like

A B =B + +
0 5
0

1
1

0 5
2

1
0

0
1

1
2

5 1 0 ,

Extend the function f: P × Q → R to f: A × B → C with the help of the extension principle where C
is the image of A × B, defi ned on the universe R.

 BIBLIOGRAPHY AND HISTORICAL NOTES

Fuzzy Sets, as we know them today was developed by the noted Iranian scientist Lotfi Akser Zadeh
and presented through his celebrated work “Fuzzy Sets” in Information and Control (8) 1965, pp. 338
–353, as an extension of the classical set theory, henceforth known as crisp sets. However, the concept
of fuzziness dates back to 500 B.C. when fi rst references are found in teachings of Gautam Buddha, who
believed that almost everything in this universe contains a set of opposites. Th e same was argued by

60 Introduction to Soft Computing

Samir Roy_Chapter02.indd 60Samir Roy_Chapter02.indd 60 2/21/2013 3:16:51 PM2/21/2013 3:16:51 PM

Greek philosopher Heraclitus who believed that things can be simultaneously ‘true’ and ‘not true’. Th e
Greeks toyed with such ideas until Aristotle and his two valued logic gained ground. Around the same
time as Zadeh, Dieter Klaua also proposed a similar concept (Klaua, D. (1965) Über einen Ansatz zur
mehrwertigen Mengenlehre. Monatsb. Deutsch. Akad. Wiss. Berlin 7, 859–867). Like all revolutionary
notions, the concept of fuzzy sets too was viewed initially with lot of skepticism and many rated it merely
as an extension of probability theory. It wasn’t until the early 1980’s that it gained popular ground, and it
was around this time that the use of fuzzy controllers in consumer electronic goods started and the word
fuzzy became popular among scientists and non-scientists alike. Numerous brilliant works are reported
on fuzzy set theory in the past few decades. Only a few of these are cited below.

Dubois, D. and Prade, H. (1980). Fuzzy sets and systems: theory and applications. New York: Academic
Press.

Dubois, D. and Prade, H. (1988). Fuzzy sets and systems. New York: Academic Press.
Kandal, A. and Lee, S. C. (1979). Fuzzy switching and automata. Crane, Russak and Co.
Kauff mann, A. (1975). Introduction to the theory of Fuzzy subsets. New York: Academic Press.
Kickert, W. J. M. (1978). Fuzzy theories on decision making. Martinus-Nijhoff .
Klir, G. J. and Yuan, B. (1997). Fuzzy sets and fuzzy logic: theory and applications PHI.
Pedrycz, W. and Gomide, F. (1998). An introduction to fuzzy sets: analysis and design. Cambridge, MA:

MIT Press.
Yager, R. R. (1982). Fuzzy sets and probability theory. Oxford: Pergamon Press.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, Vol. 8, pp. 338–353.
Zadeh, L. A. (1968). Probability measures of Fuzzy events. Journal of Mathematical Analysis and Applica-

tions, Vol. 10, pp. 421–427.
Zadeh, L. A. (1975). Th e concept of a linguistic variable and its application to approximate reasoning.

Information Sciences, Vol. 8, pp. 199–249, 301–357, Vol. 9, pp. 43–80.
Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, Vol. 1,

pp. 3–28.

Fuzzy Sets 61

Samir Roy_Chapter02.indd 61Samir Roy_Chapter02.indd 61 2/21/2013 3:16:57 PM2/21/2013 3:16:57 PM

Samir Roy_Chapter02.indd 62Samir Roy_Chapter02.indd 62 2/21/2013 3:16:57 PM2/21/2013 3:16:57 PM

 This page is intentionally left blank.

3
FUZZY LOGIC

Key Concepts

Abduction, Induction and Analogy, Addition, Chain rule, Consistency, Contradiction, Existential
quantifi er, First order predicate logic (FOPL), Fuzzy if-then, Fuzzy if-then-else, Fuzzy logic operations,
Fuzzy proposition, Fuzzy quantifi er, Fuzzy reasoning, Fuzzy rules, Fuzzy truth value, Generalized
modus ponens, Generalized modus tolens, Interpretation, Linguistic variable, Logical equivalence,
Modus Ponens, Modus Tollens/Indirect Reasoning/Law of Contraposition, Non-deductive rules of
inference, Propositional logic, Resolution, Rules of inference, Simplifi cation, Tautology, Universal
quantifi er, Universal specialization, Validity of argument, Well-formed formulae (wwf)

Chapter Outline

3.1 Crisp Logic: A Review
3.2 Fuzzy Logic Basics
3.3 Fuzzy Truth in Terms of Fuzzy Sets
3.4 Fuzzy Rules
3.5 Fuzzy Reasoning

Chapter Summary
Solved Problems
Test Your Knowledge
Exercise
Bibliography and Historical Notes

Various features of the fuzzy set theory are discussed in Chapter 2. Th is chapter presents the fundamentals
of fuzzy logic. It starts with a review of the classical crisp logic and then presents fuzzy logic as an
extension, or generalization of crisp logic. Logic is the study of the structure and principles of reasoning
and sound argument. Th e universe of discourse of logic is the set of all statements, or, propositions.
A statement, or proposition, is a sentence that has a truth value, either True or False, in crisp logic.
Logic is not concerned about the content or meaning of a statement, but only with their possible truth
values. Symbolic logic is logic using symbols that represent actual statements. Crisp logic asserts that a
statement can be either true or false. It does not accept a third possibility. However, in real life we come
across situations where such sharp distinction between truth and falsehood do not exist. On the contrary,
there are infi nite shades of truths between black and white absolute truth and absolute falsehood. Fuzzy
logic accepts this state of aff air and builds a system of reasoning on the basis of the possibility of infi nite
number of truth values. Over the last few decades fuzzy logic has been successfully applied to solve
numerous practical problems of engineering, science and business.

Samir Roy_Chapter03.indd 63Samir Roy_Chapter03.indd 63 2/21/2013 3:17:32 PM2/21/2013 3:17:32 PM

3.1 CRISP LOGIC: A REVIEW

Classical logic is based on the Aristotlian ‘Law of excluded middle’ which states that a statement is either
true or false and nothing else. In contrast, fuzzy logic accepts to the point of view that there are infi nitely
many shades of truth (or falsehood) between absolutely false and absolutely true. Th e logical system that
allows only two truth-values is called crisp logic. Th is section presents a review of the essential features of
crisp logic. We start with propositional logic, followed by the more powerful system called the predicate
logic. A brief discussion on rules of inferences is provided at the end of this section.

3.1.1 Propositional Logic

Propositional logic is concerned about the properties and laws governing the universe of propositions.
A proposition is a statement that is either true or false and nothing else. A few propositions are cited
below.

1. Th is rose is red.
2. Mona Lisa was painted by Leonardo de Vinci.
3. Tiger is a domestic animal.
4. Th e smallest prime number is 5.
5. Every action has an equal and opposite reaction.

As far as logic is concerned it does not matter whether a proposition is empirically true or false, or not
known at all whether true or false. Th is is an empirical problem and logic is not concerned about it. Th e
only matter of logical concern is that the statement has a defi nite truth-value, known or unknown. Here
are a few sentences that are not valid propositions.

1. Is this a red rose? (Interrogation)
2. What a great artist was Leonardo de Vinci! (Exclamation)
3. Th e blue ideas are sleeping furiously. (Meaningless)

In symbolic logic, propositions are expressed with symbols or symbolic expressions that are combina-
tions of symbols.

Propositional calculus deals with the symbolic expressions of propositional logic and their manipula-
tion. Th e valid symbolic expressions of propositional logic are known as well-formed formulae (wff).
Th ese wff s are composed of

Th e logical constants ‘True’ (represented by T or 1) and ‘False’ (F or 0)•
Propositions (usually symbolically represented by • a, b, p, q etc.)
Parenthesis (, and)•
Logical operators or connectives, e.g., •

 AND (Conjunction, denoted as ∧ or ‘⋅’)
 OR (Disjunction, denoted as ∨ or ‘+’)
 NOT (Negation, denoted as ¬ or ‘′’)
 Implication (Conditional, If … Th en …, denoted as →)

Th e behaviour of logical operators are described with the help of truth tables. Th e truth tables for the
logical operators NOT, AND, OR are shown in Table 3.1 and Table 3.2.

64 Introduction to Soft Computing

Samir Roy_Chapter03.indd 64Samir Roy_Chapter03.indd 64 2/21/2013 3:17:35 PM2/21/2013 3:17:35 PM

Table 3.1. Truth table for logical NOT operation

a a′

0 1
1 0

Table 3.2. Truth table for logical AND, OR, IMPLICATION

a b a • b a + b a → b

0 0 0 0 1

0 1 0 1 1
1 0 0 1 0
1 1 1 1 1

Defi nition 3.1 (Propositional logic well-formed-formula) A propositional logic well-formed for-
mula (wff) is recursively defi ned as follows.

 (i) Th e logical constants T and F are wff s.
 (ii) A propositional symbol (e.g. a, b, p, q etc.) is a wff .
(iii) Given two wff s W1 and W2, the following are also wff s

(• W1) ⋅ (W2) (Conjunction of two wff s is a wff)
(• W1) + (W2) (Disjunction of two wff s is a wff)
(¬• W1) (Negation of a wff s is a wff)
(• W1) → (W2) (Implication of two wff s is a wff)
(• W1) ↔ (W2) (Equivalence of two wff s is a wff)

(iv) Nothing else is a propositional logic well-formed formula (wff).

Th e symbol ↔ stands for logical equivalence (implies and implied by, or bicondition) and is defi ned as (a
→ b) • (b → a). Th e truth table for ↔ is shown in Table 3.3. In practice, while writing a wff , the number
of parentheses is usually minimized by obeying a set of precedence rules among the operators.

Table 3.3. Truth table of logical equivalence

a b a ↔ b
0 0 1

0 1 0

1 0 0

1 1 1

Example 3.1 (Propositional logic well-formed-formulae)

Some valid and invalid propositional logic wff s are given below in Table 3.4. For the sake of sim-
plicity the parentheses are used sparingly. Moreover the conjunction operation is not explicitly
used where its existence is obvious from the context.

Fuzzy Logic 65

Samir Roy_Chapter03.indd 65Samir Roy_Chapter03.indd 65 2/21/2013 3:17:35 PM2/21/2013 3:17:35 PM

Table 3.4. Examples of valid and invalid wffs

wff Validity Remark

1 1 Valid

2 0 Valid

3 a + b Valid

4 (a + b) c → a′b′c′ Valid

5 ((a → b) (c′→ a′)) → b′ Valid

6 a + • b Invalid A binary operator must be imme-
diately preceded and succeeded
by its operands

7 a • (b + c′ Invalid Matching parenthesis is absent

8) a + b (Invalid Wrong pair of parentheses

Table 3.5. Properties of propositional logic wffs

Relation Remarks

1 (A • B) • C ≡ A • (B • C) Associativity

(A + B) + C ≡ A + (B + C)

2 A • B ≡ B • A Commutativity

A + B ≡ B + A

3 A • (B + C) ≡ (A • B) + (A • C) Distributivity

A + (B • C) ≡ (A + B) • (A + C)

4 (A • B)′ ≡ A′+ B′ De Morgan’s law

(A + B) ′ ≡ A′• B′

5 A → B ≡ B′→ A′ Contrapositive law

6 A + A′ ≡ 1 Law of excluded middle

7 A • A′ ≡ 0 Law of Contradiction

8 A + A ≡ A Idempotency

A • A ≡ A

9 A • (A + B) ≡ A Absorption

A + (A • B) ≡ A

Properties of Propositional Logic wffs Propositional logic statements in the form of wff s obey
certain properties. Some of these are listed in Table 3.5.

66 Introduction to Soft Computing

Samir Roy_Chapter03.indd 66Samir Roy_Chapter03.indd 66 2/21/2013 3:17:35 PM2/21/2013 3:17:35 PM

Defi nition 3.2 (Interpretation of a logical expression) Let e (x1, x2, …, xn) be a logical expression in-
volving n propositions x1, x2, …, xn. An interpretation of the expression e (x1, x2, …, xn) is a combination
of truth values for the constituent individual propositions x1, x2, …, xn.

Obviously, an expression e (x1, x2, …, xn) involving n propositions have exactly 2n interpretations. For
example, if e (a, b, c)) = a + b + a • b′ be the logical expression then a = 1, b = 0, c = 0 is one of its inter-
pretations. For this interpretation the expression attains the truth value e (a, b, c) = a + b + a • b′ = 1.

Defi nition 3.3 (Logical equivalence of two wff s) Two wff s are said to be equivalent if they attain the
same truth value for all possible interpretations.

Th e logical equivalence of two expressions can be easily checked with the help of their truth tables.
For example Table 3.6 shows that the expression a → b is equivalent to a′+ b.

Table 3.6. Equivalence of a → b and a′+ b

a b a → b a′+ b

0 0 1 1

0 1 1 1

1 0 0 0

1 1 1 1

Defi nition 3.4 (Tautology) A tautology is a proposition which is true for all possible interpreta-
tions.

Defi nition 3.5 (Contradiction) A contradiction is a proposition which is false for all possible in-
terpretations.

Defi nition 3.6 (Consistency) A collection of statements is said to be consistent if they can all be
true simultaneously.

Example 3.2 (Tautology, Contradiction, Consistency)

Th e most obvious examples of a tautology and a contradiction are a′+ a and a′• a respectively. A
few more tautologies and contradictions are cited below in Table 3.7. Table 3.8 presents a number
of consistent and a few inconsistent pairs of propositional logic expressions. Verifi cation of the
tautologies, contradictions, consistencies and inconsistencies using the truth table method is left
as an exercise.

Table 3.7. Tautologies and contradictions

wff Category

1 1 Tautology

2 ab + a′+ b′ Tautology

(Continued)

Fuzzy Logic 67

Samir Roy_Chapter03.indd 67Samir Roy_Chapter03.indd 67 2/21/2013 3:17:35 PM2/21/2013 3:17:35 PM

Table 3.7. Continued

wff Category

3 a + b + a′b′ Tautology

4 a′b′+ a′b + ab′+ ab Tautology

5 (1 + a) (1 + b) Tautology

6 0 Contradiction

7 a′b′ (a + b) Contradiction

8 (a + b) (a′+ b) (a + b′) (a′+ b′) Contradiction

9 a′b (a + b′) Contradiction

Table 3.8. Consistent and inconsistent expressions

wff pairs Remark

1 {a, b} Consistent. Both are true when a = 1, b = 1

2 {a′, b′} Consistent. Both are true when a = 0, b = 0

3 {a′+ b, a + b′} Consistent. Both are true when a = 1, b = 1

4 {a + b′c′, ab + b} Consistent. Both are true when a = 1, b = 1, c = 0

5 {a, a′} Inconsistent. Complimentary wffs.

6 {a + b, a′b′} Inconsistent. Complimentary wffs.

7 {(a + b) c, a′b′+ c′} Inconsistent. Complimentary wffs.

Defi nition 3.7 (Validity of an argument) An argument is said to be valid if the conclusion is true
whenever the premises are true.

Example 3.3 (Validity of an argument)

As an example, let us consider the following argument: If Basant Kumar plays the role of the hero’s,
then the fi lm will be a hit if Basanti Devi is the heroine. If Basant Kumar plays the hero’s role, then
Basanti Devi will be the heroine. Th erefore, if Basant Kumar plays the hero’s role, the fi lm will be a hit.
Is the argument valid? Th is can be easily answered by constructing the corresponding truth table
and checking if the conclusion is True whenever the premises are True. Let us denote

Statement ‘Basant Kumar plays the hero’s part’ as a
Statement ‘Th e fi lm will be a hit’ as b
Statement ‘Basanti Devi is the heroine’ as c

Th en the argument is symbolically presented as

Premise No. 1. a → (c → b)
Premise No. 2. a → c
Conclusion. Th erefore, a → b

68 Introduction to Soft Computing

Samir Roy_Chapter03.indd 68Samir Roy_Chapter03.indd 68 2/21/2013 3:17:35 PM2/21/2013 3:17:35 PM

Th e corresponding truth table is shown in Table 3.9. Th e two premises of the argument, a → (c
→ b) and a → c, are arranged in Columns 5 and 6, respectively. Th e conclusion a → b is shown in
Column 7. In Rows 1, 2, 3, 4 and 8, both the premises are true. Th e corresponding truth-values of
the conclusion, noted in Column 7 are also true. Hence the argument is valid

Table 3.9. Consistency checking

(1) (2) (3) (4) (5) (6) (7)

a b b c → b a → (c → b) a → c a → b

(1) 0 0 0 1 1 1 1

(2) 0 0 1 0 1 1 1

(3) 0 1 0 1 1 1 1

(4) 0 1 1 1 1 1 1

(5) 1 0 0 1 1 0 0

(6) 1 0 1 0 0 1 0

(7) 1 1 0 1 1 0 1

(8) 1 1 1 1 1 1 1

3.1.2 Predicate Logic

Th e propositional logic described above suff ers from certain limitations. Th ese limitations motivated the
logicians to extend it to a more powerful formalism called the Predicate Logic. It provides mechanisms
to capture the inner structure of propositions such as the subject–predicate relation, or quantifi ers like
‘for all’ or ‘there exists’. Natural language statements can be expressed as predicate logic wff s, so that they
could be processed by automated tools of intelligent systems according to the rules of sound reason-
ing. Th is subsection provides a discussion on the basic features of First Order Predicate Logic (FOPL).
We start with an exposure to the limitations of propositional logic. Th e features of FOPL are presented
subsequently.

Limitations of propositional logic Let us consider the argument: If monkeys have hair on their
bodies then they are mammals. Monkeys have hairs on their bodies. Th erefore, monkeys are mammals. Th is
argument can be symbolically presented as

Premise No. 1. p → q
Premise No. 2. p

Conclusion. Th erefore, q

where p denotes the proposition Monkeys have hairs on their bodies and q denotes the proposition Monkeys
are mammals. Validity of this argument can be easily verifi ed using the truth table method. Th is is shown in
Table 3.10, which shows that the conclusion q is true whenever both the premises are true (Row 4).

Fuzzy Logic 69

Samir Roy_Chapter03.indd 69Samir Roy_Chapter03.indd 69 2/21/2013 3:17:35 PM2/21/2013 3:17:35 PM

Table 3.10

(1) (2) (3)

p q p → q

(1) 0 0 1

(2) 0 1 1

(3) 1 0 0

(4) 1 1 1

Now, consider another argument leading to the same conclusion as before: All animals having hairs on
their bodies are mammals. Monkeys have hairs on their bodies. Th erefore monkeys are mammals. Th is
argument has the form

Premise No. 1. a

Premise No. 2. b

Conclusion. Th erefore, c

where a denotes the statement All animals having hairs on their bodies are mammals, b denotes the state-
ment Monkeys have hairs on their bodies and c denotes the statement Monkeys are mammals. Th is is not
a valid argument because given the two propositions a and b as premises we cannot conclude a third
proposition c that is independent of the premises. Applying the truth table method we obtain the com-
binations of truth values of a, b and c as shown in Table 3.11.

Table 3.11

a b c

(1) 0 0 0

(2) 0 0 1

(3) 0 1 0

(4) 0 1 1

(5) 1 0 0

(6) 1 0 1

(7) 1 1 0

(8) 1 1 1

Th e 7th row of the table shows that the conclusion c is false even though both the premises a, b are true.
We know that an argument is valid if and only if the conclusion is true whenever the premises are true.
Th erefore, according to the formalism of propositional calculus, the second argument is invalid. How-
ever, intuitively we feel that the second argument is as valid as the fi rst argument.

Th e weakness of propositional logic is, it is inadequate to express the inner meaning of a statement
like ‘All animals having hairs on their bodies are mammals’. A more powerful logical system is required

70 Introduction to Soft Computing

Samir Roy_Chapter03.indd 70Samir Roy_Chapter03.indd 70 2/21/2013 3:17:35 PM2/21/2013 3:17:35 PM

to overcome this limitation. Predicate logic off ers the solution. In predicate logic, the aforementioned
argument will be represented as:

Premise No. 1. For all x, if x is a hairy animal, then x is a mammal.

Premise No. 2. Monkey is a hairy animal.

Conclusion. Th erefore, Monkey is a mammal.

Using predicate logic expressions, the argument looks like

(∀x) H (x) → M (x)
H (Monkey)

∴ M (Monkey)

where, the symbols have the following meanings

∀x : for all x

H (x) : x is a hairy animal.
M (x) : x is a mammal.
H (Monkey) : Monkey is a hairy animal.
M (Monkey) : Monkey is a mammal.

H and M are two predicate symbols used in this argument. Th e validity of such argument will be proved
later in this subsection.

Table 3.12. Constituents of predicate logic wffs

Element type Symbols commonly used

1 Non-predicate constants a, b, c, …

2 Variables x, y, z, …

3 Predicate constants P, Q, R, …

4 Function Constants f, g, h, …

5 Universal quantifi er ∀ (for all)

6 Existential quantifi er ∃ (there exists)

7 Logical connectives ¬,′ (NOT), • (AND), + (OR), → (implication), ↔
(equivalence)

8 Parentheses (,)

Syntax As in propositional logic, statements of predicate logic are also expressed as well-formed
formulae (wff s). However, predicate logic wff s are extensions of propositional logic wff s. Th e structural
elements of these wff s are listed in Table 3.12. Th ese elements are briefl y described below.

Fuzzy Logic 71

Samir Roy_Chapter03.indd 71Samir Roy_Chapter03.indd 71 2/21/2013 3:17:36 PM2/21/2013 3:17:36 PM

Non-predicate constants Non-predicate constants are symbolic or numeric non-predicate val-
ues that do not change over time. Examples of non-predicate constants are Socrates, X-123, 007, -63,
India etc.

Variables Variables are symbolic expressions that can assume diff erent non-predicate values over
a certain domain. For example, if x is a variable denoting the name of a month, then x may assume any
value from January to December.

Predicate constants Predicate constants are symbols that denote the predicate part of a propo-
sition. Th ey are relations or mappings from the elements of a certain domain D to a truth value. For
example, let MAN be a predicate constant and MAN (x) means ‘x is a man’. Th en MAN (John) is true
as John is a man but MAN (Mary) is false because Mary is not a man. Similarly, if SON is a predicate
constant such that SON (x, y) means x is the son of y, then SON (John, Smith) is True if John is the son
of Smith, otherwise it returns false. Th e argument(s) of a predicate constant are non-predicate constants,
variables, or functions.

Function constant A predicate logic function is syntactically similar to a predicate constant except
that instead of a truth value, it may return a value from any domain. As an instance of a function, con-
sider age (person) which returns the age of a person. If we substitute Sam for the variable person whose
age is 30 years, then age (Sam) would return 30. Similarly, owner (phone-number) might be a function
that returns the name of the owner of a given phone-number.

Quantifi ers Th ere are two quantifi ers, the universal quantifi er (denoted by ∀ and pronounced as
for all) and the existential quantifi er (denoted by ∃ and pronounced as there exists). Th e universal quanti-
fi er ∀ is employed when a statement applies to all members of a domain. For example, the statement ‘All
integers are real numbers’ is universally quantifi ed. On the other hand, the existential quantifi er is used
when a statement holds good for at least one element of the concerned domain. Consider, for example,
the statement, Th ere is an employee who is a doctorate. It does not state that all employees are doctorates
(though that possibility is not negated by the given statement) but it ensures that there are some, at least
one, employee who is a doctorate.

Logical connectives Th e fi ve logical connectives frequently used in predicate logic wff s are ¬, or
(NOT), • (AND), + (OR), → (implication), ↔ (equivalence). Th ey have the same semantics as in propo-
sitional logic.

Parentheses Parentheses are used as delimiters. Braces and square brackets are also used as delim-
iters for the sake of better readability.

Apart from the elements mentioned above, there are a few terms used frequently in fi rst order predi-
cate logic. Th ese are defi ned below.

Defi nition 3.8 (Term) In predicate logic, a term is a non-predicate constant symbol, or a variable
symbol, or a function symbol.

Examples of terms are A, min, f (a, b) etc.

Defi nition 3.9 (Atom) A predicate expression, consisting of a predicate symbol followed by the list
of parameters within a pair of parentheses, is said to be an atom, or atomic formula.

Examples of atoms are MAN (x), LESS-THAN (x, y) etc.

72 Introduction to Soft Computing

Samir Roy_Chapter03.indd 72Samir Roy_Chapter03.indd 72 2/21/2013 3:17:36 PM2/21/2013 3:17:36 PM

Defi nition 3.10 (Literal) A literal is either an atom, or the negation of an atom.

So if MAN (x) is an atom, both MAN (x) and MAN (x)′ are literals.

Example 3.4 (wff expression for a predicate logic proposition)

Let us consider the proposition Th e probability of any event is a real number between 0 and 1, both
inclusive. Logically, this is equivalent to the statement: For all n, if n is an event then probability of
n is a real number, and probability of n is greater than or equal to 0, and probability of n is less than
or equal to 1. Th e wff for the statement is

(∀n) EVENT (n) → REAL (p (n)) • GE (p (n), 0) • LE (p (n), 1)

Th e symbols used in this wff have meanings and categories as listed in Table 3.13.

Table 3.13

Symbol Meaning Category

1 n An unknown entity Variable

2 0 The number zero Non-predicate constant

3 1 The number one Non-predicate constant

4 E (x) x is an event Predicate atom

5 R (x) x is a real number Predicate atom

6 GE (x, y) x is greater than or equals to y Predicate atom

7 LE (x, y) x is less than or equals to y Predicate atom

8 p (x) Probability of event x Function atom

9 ∀ For all Universal quantifi er

10 →, • Implication, AND Logical connectives

11 (,) Delimiters Parentheses

It must be understood that a predicate and a function, though syntactically similar, are actually diff erent.
When evaluated a predicate term returns a truth value, true or false, whereas a function term may return
any value from the related domain. In the present example, given real numbers x and y, GE (x, y) is either
true, or false. However, given an event x, p (x) is a real number within the range [0, 1].

Th e predicate logic discussed here is of fi rst order in the sense that only constants over predicates and
functions are allowed and no variables over predicates or functions are allowed. Th e fi rst order predicate
logic wff s are recursively defi ned as follows.

Defi nition 3.11 (First order predicate logic well-formed formula) Th e fi rst order predicate logic well
formed formula can be recursively defi ned as follows:

1. If P is a predicate constant with k arguments and a1, …, ak are terms, i.e., variables, constants, or
functions, then P (a1, …, ak) is a wff .

2. If W is a wff then (¬W) is a wff .

Fuzzy Logic 73

Samir Roy_Chapter03.indd 73Samir Roy_Chapter03.indd 73 2/21/2013 3:17:36 PM2/21/2013 3:17:36 PM

3. If W1 and W2 are wff s, then the following are wff s.
 (i) (W 1• W2)
 (ii) (W1 + W2)
(iii) (W1 → W2)
(iv) (W1 ↔ W2)

4. If W (x) is a wff containing a free variable x (x is free if it is not already quantifi ed by either ∀, or ∃
in W (x)) then (∀x) W (x)and (∃x) W (x) are also wff s.

5. Only those which are obtained using the rules 1 to 4 cited above are wff s.

It is obvious from the recursive defi nition given above that all FOPL wff s are composed of atomic formu-
lae with appropriate logical connectives, quantifi ers and the parentheses. A few valid propositions and
corresponding FOPL wff s are given below.

Proposition FOPL wff

(i) The earth is a planet. PLANET (earth)

(ii) The sky is blue and forst is green BLUE (sky) • GREEN (forest)

(iii) If x is greater than y and y is greater than z
then x is greater than z.

(∀x, y, z) [GE (x, y) • GE (y, z)] → GE (x, z)

(iv) For every x there is a y such that y = x2. (∀x) (∃y) EQ (y, square-of (x))

(v) Every man has a father and a mother. (∀x) MAN (x) → [(∃y, z) FATHER
(y, x) • MOTHER (z, x)]

(vi) If x is irrational then x is not an integer. (∀x) IRRATIONAL (x) → ¬ INTEGER (x)

However, the following expressions are not valid FOPL wff s due to the reasons specifi ed on the right.

PLANET (Sun′) A constant term cannot be negated.

(∀P) (∃Q) P (x) → ¬ Q (x) Predicate cannot be quantifi ed.

LESS-THAN (NEG (x), POS (y)) A predicate cannot be an argument of a function.

score-of (Sam) A function is not a wff .

Semantics of FOPL wffs Th e semantics of FOPL is an extension of the semantics of proposi-
tional logic. Th e logical connectives ′, •, +, →, ↔, have the same truth tables in both systems. However,
unlike propositional logic, an FOPL wff is always understood in the context of some domain, or universe
of discourse. For example, let Family = {Sam, Mita, Bilu, Milu} be a domain. We may defi ne predicates
like HUSBAND (x), WIFE (y), CHILD (x), MARRIED-TO (x, y) etc. and functions like son-of (x), or
spouse-of (y) etc. on this domain. It is tacitly assumed that all variables and constants take values from
the corresponding domain.

An interpretation is a set of values assigned to various terms and atomic formulae of an FOPL
wff . An atomic formula, which is nothing but a predicate expression, evaluates to a truth value. Since a wff
is composed of literals, i.e., atomic formulae in negated or non-negated forms, the truth value of a wff
should be computable with the help of the truth table method. Just as in propositional logic, if two
wff s evaluate to the same truth value under any interpretation, they are said to be equivalent. Moreover,

74 Introduction to Soft Computing

Samir Roy_Chapter03.indd 74Samir Roy_Chapter03.indd 74 2/21/2013 3:17:36 PM2/21/2013 3:17:36 PM

a predicate that has no variables is called a ground atom. For example, MAN (Socrates) is a ground atom,
but (∀x) MAN (x) → MORTAL (x) is not a ground atom.

Table 3.14. ODD (x) and EVEN (x) OVER U = {0, 1}

x ODD (x) EVEN (x) ODD (x) + EVEN (x)

0 False True True

1 True False True

Table 3.15. SUM (x, y)

x y Sum (x, y)

0 0 0

0 1 1

1 0 1

1 1 0

Evaluation of a wff containing variable arguments needs special attention. Th is is because the wff (∀x)
P [x], where P [x] is a wff containing the free variable x, is true if and only if P [x] is true for all values of
x within its domain. Th erefore, to determine whether the statement (∀x) P [x] is true or false one must
evaluate P [x] for every possible value of x within its domain. On the other hand, (∃x) P [x] is true if and
only if there exists at least one value of x for which P [x] is true. Moreover, to determine the truth of the
statement (∃x) P [x] one has to go on evaluating P [x] for various possible values of x until either P [x] is
true for same x or all possible values of x have been tried. Evaluation of an FOPL wff containing quanti-
fi ed variables is illustrated in Example 3.5.

Example 3.5 (Interpretation of Predicate Logic wff)

Let U = {0, 1} be the universe of discourse. Th ere are two predicates ODD (x) and EVEN (x) and a
function sum (x, y) that returns addition modulo two of its arguments x and y, i.e., sum (x, y) = (x +
y) % 2. Th e values of the predicates and the functions for various combinations of their arguments
are given in Table 3.14 and Table 3.15.

Now consider the statements

 (i) (∀x) ODD (x) + EVEN (x)
(ii) (∀x) ODD (x) → (∃y) EVEN (sum (x, y))

Th e fi rst statement can be evaluated by checking whether ODD (x) + EVEN (x) is true for all pos-
sible values of x. Table 3.14 shows that the statement ODD (x) + EVEN (x) is true for all possible
values of x in its domain, i.e., for both x = 0, and x = 1. Hence statement (∀x) ODD (x) + EVEN (x)
is true. Th e truth table for the second statement is shown in Table 3.16.

Th ere is only one odd value of x, 1, and so ODD (x) is True for x = 1. Now, to evaluate the ex-
pression (∀x) ODD (x) → (∃y) EVEN (sum (x, y)) is true, we have to set x = 1 and then look for a
value of y such that sum (x, y) is even, or 0. Table 3.16 shows that there does exist a y that satisfi es
the condition stated above. We see that for x = 1, and y = 1, ODD (x) is True and EVEN (sum (x,
y)) is also true so that ODD (x) → (∃y) EVEN (sum (x, y)) is true which in turn makes the given
wff true.

Fuzzy Logic 75

Samir Roy_Chapter03.indd 75Samir Roy_Chapter03.indd 75 2/21/2013 3:17:36 PM2/21/2013 3:17:36 PM

Table 3.16

x y ODD (x) Sum (x, y) EVEN (sum (x, y))

0
0
1
1

0
1
0
1

False
False
True
True

0
1
1
0

True
False
False
True

In contrast, consider the statement (∀x) (∀y) ODD (sum (x, y)) → ODD (y). Th is is not true be-
cause at x = 1 and y = 0 we fi nd that ODD (sum (x, y)) is true but ODD (y) is false

Properties of FOPL well-formed formulae As in propositional logic, the concepts of validity, consis-
tency, satisfi ability, logical consequence etc. applies to FOPL too.

An FOPL wff is valid if it is true for every interpretation. A wff is inconsistent (or unsatisfi able) if it is
false for every interpretation. An invalid wff is one that is not valid. In other words, if a wff evaluates to
False for some interpretation then it is invalid. Similarly, a consistent (or satisfi able) wff is one that is not
inconsistent, and hence, is True for some interpretation. Moreover, a wff W is a logical consequence of
certain wff s, say W1, W2, …, Wk, if and only if whenever W1, …, Wk are true for some interpretation, W
is also true for the same interpretation.

Table 3.17. Some important FOPL identities

Identity

1. P • Q ≡ Q • P Commutative law

P + Q ≡ Q + P

2. P • (Q • R) ≡ (P • Q) • R Associative law

P + (Q + R) ≡ (P + Q) + R

3. P + (Q • R) ≡ (P + Q) • (P + Q) Distributive law

P • (Q + R) ≡ (P • Q) + (P • R)

4. ¬(P + Q) ≡ (¬P) • (¬Q) De Morgan’s law

¬(P • Q) ≡ (¬P) + (¬Q)

5. ¬((∀x) P [x]) ≡ (∃x) (¬P [x])

¬((∃x) P [x]) ≡ (∀x) (¬P [x])

6. (∀x) P [x] • (∀y) Q [y] ≡ (∀z) (P [z] • Q [z])

(∃x) P [x] + (∃y) Q [y] ≡ (∃z) (P [z] + Q [z])

Th e concepts of free and bound variables in FOPL wff s are important. A variable that exists within the
scope of a quantifi er is called a bound variable. For example, in the formula (∀x) (∃y) P (x) → Q (y), both
x and y are bound variables. However, in (∀x) P (x, y) → (∃z) Q (x, z) x and z are bound variables but y
is free. It should be noted that an FOPL wff can be evaluated only when all variables in it are bound. Such
wff s are also referred to as sentences.

76 Introduction to Soft Computing

Samir Roy_Chapter03.indd 76Samir Roy_Chapter03.indd 76 2/21/2013 3:17:36 PM2/21/2013 3:17:36 PM

Two FOPL wff s are said to be equivalent if for all interpretations, both of them evaluate to the same truth
value. Table 3.17 presents some important logical identities involving FOPL wff s. Here P and Q are arbi-
trary wff s and P[x] represents a wff P that involves the variable x.

Th e identities in Row 6 should be considered carefully. First of all, we must appreciate that all vari-
ables are essentially ‘dummy’ variables in the sense that any symbol can be used for them, so long as they
do not ‘collide’ with one another. For example, (∀x) P [x] is equivalent to (∀y) P [y]. Similarly, (∀x) P
[x] • (∀y) Q [y] is equivalent to (∀x) P [x] • (∀x) Q [x] because in the later expression the scope of the
fi rst x is P [x], while the scope of the latter x is Q [x]. So, though the same symbol x is used in both cases
actually they represent two unrelated variables.

Now let us consider the equivalence (∀x) P [x] • (∀y) Q [y] ≡ (∀z) (P [z] • Q [z]). As a supporting
example, let P [x] means ‘x is a rational number’, and Q [y] means ‘y is a real number’. Obviously, for the
aforementioned identity hold good the variables x, y and z must belong to the same universe of dis-
course. Let us suppose that the universe here is the set of all integers. Now the left hand side and the right
hand side of the identity (∀x) P [x] • (∀y) Q [y] ≡ (∀z) (P [z] • Q [z]) can be stated as :

L.H.S.: (∀x) P [x] • (∀y) Q [y] All integers are rational numbers and all integers are real numbers.
R.H.S.: (∀z) (P [z] • Q [z]) All integers are rational numbers as well as real numbers.

Both the statements are true. However, if we replace conjunction with disjunction, the identity no longer
holds good.

(∀x) P [x] + (∀y) Q [y] ≠ (∀z) (P [z] + Q [z])

To convince ourselves about the non-equivalence of the L.H.S and the R.H.S, let us suppose P [x] repre-
sents the statement ‘x is an even number’ and Q [y] represents ‘y is an odd number’. Th en the statements
on the L.H.S. and R.H.S. correspond to

L.H.S.: (∀x) P [x] + (∀y) Q [y] All integers are odd or all integers are even.
R.H.S.: (∀z) (P [z] + Q [z]) All integers are either odd, or even.

Here the second statement is true but the fi rst is not. Hence they are not equivalent.
To appreciate the equivalence (∃x) P [x] + (∃y) Q [y] ≡ (∃z) (P [z] + Q [z]) and the non-equivalence

(∃x) P [x] • (∃y) Q [y] ≠ (∃z) (P [z] • Q [z]) we may consider the propositions P [x] = ‘x is alive’ and Q [x]
= ‘x is dead’ with the assumption that nothing can be simultaneously alive and dead. Here the universe
of discourse may be the set of all human beings, dead or alive.

3.1.3 Rules of Inference

Rules of inference are rules with which new propositions are obtained from a set of given statements.
Th ere are two kinds of rules of inference, deductive and non-deductive. Some important deductive rules
of inference are Modus Ponens, Universal Specialization, Chain Rule, Resolution, Modus Tollens (also
called Indirect Reasoning, or Law of Contraposition), Simplifi cation, Addition, etc. Examples of non-
deductive rules of inference are Abduction, Induction, and Analogy. Th ese are briefl y described in this
Subsection.

Deductive rules of inference An inference rule consists of two parts, the premise(s) and the
conclusion. For instance, Modus Ponens has two premises, P → Q, and P. And the conclusion is Q.

Fuzzy Logic 77

Samir Roy_Chapter03.indd 77Samir Roy_Chapter03.indd 77 2/21/2013 3:17:36 PM2/21/2013 3:17:36 PM

(a) Modus Ponens
Premise No. 1. P → Q
Premise No.2. P
Conclusion Th erefore, Q

Example 3.6 (Modus Ponens)

Premise No. 1. If the car is expensive then it is comfortable.

Premise No. 2. Th e car is expensive.

Conclusion Th erefore, the car is comfortable.

Th e other inference rules are described below with illustrative examples.

(b) Universal Specialization
Premise No. 1. (∀x) W [x]
Conclusion. Th erefore, W [A]

A is a constant belonging to the universe of discourse.

Example 3.7 (Universal Specialization)

Premise No. 1. All natural numbers are integers.
Conclusion. Th erefore, 3 is an integer.

(c) Chain Rule
Premise No. 1. P → Q
Premise No. 2. Q → R
Conclusion. Th erefore, P → R

Example 3.8 (Chain Rule)

Premise No. 1. If the day is sunny then there will be a large crowd.

Premise No. 2. If there is a large crowd then the sell is high.

Conclusion. Th erefore, If the day is sunny then the sell is high.

(d) Simplifi cation
Premise No. 1. P • Q
Conclusion. Th erefore, P (or Q).

78 Introduction to Soft Computing

Samir Roy_Chapter03.indd 78Samir Roy_Chapter03.indd 78 2/21/2013 3:17:36 PM2/21/2013 3:17:36 PM

Example 3.9 (Simplifi cation)

Premise No. 1. Th e sky is blue and 2 is a prime number.

Conclusion Th erefore, Th e sky is blue. (or, 2 is a prime number)

(e) Resolution

Premise No. 1. P1 + … + Pm

Premise No. 2. ¬P1 + Q2 + … + Qn

Conclusion. Th erefore, P2 + … + Pm + Q2 + … + Qn

Example 3.10 (Resolution)

Premise No. 1. It is a rainy day, or I have a raincoat.

Premise No. 2. It is not a rainy day, or dog is a faithful animal.

Conclusion. Th erefore, I have a raincoat, or dog is a faithful animal.

(f) Modus Tollens

Premise No. 1. P → Q
Premise No. 2. ¬Q

Conclusion. Th erefore, ¬P

Example 3.11 (Modus Tollens)

Premise No. 1. If the shirt is cheap then there is life on Mars.

Premise No. 2. Th ere is no life on Mars.

Conclusion. Th erefore, Th e shirt is not cheap.

(g) Addition

Premise No. 1. P

Conclusion. Th erefore, P + Q

Example 3.12 (Addition)

Premise No. 1. Th e Earth is round.

Conclusion. Th erefore, Earth is round, or Man is mortal.

Fuzzy Logic 79

Samir Roy_Chapter03.indd 79Samir Roy_Chapter03.indd 79 2/21/2013 3:17:36 PM2/21/2013 3:17:36 PM

Non-deductive Rules of Inference Non-deductive inference rules are important because they
represent the common sense reasoning process that we employ in everyday life to tackle practical prob-
lems. Th ese rules are followed to arrive at a conclusion or take a decision which is most likely to be valid
or correct though not guaranteed to be so. Th e three non-deductive inference rules Abduction, Induc-
tion and Analogy are briefl y explained below.

Abduction Let P Qc be the expression for a possible cause and eff ect relationship between the
statements P and Q where P is the cause and Q is its possible eff ect. In abduction, given P Qc and Q,
we can conclude P. Hence

(a) Abduction

Premise No. 1. P Qc

Premise No. 2. Q
Conclusion. Th erefore, P

Example 3.13 (Abduction)

Premise No. 1. If you work hard then you will be successful.
Premise No. 2. You are successful.
Conclusion. Th erefore, You have worked hard.

Induction In practical life, if we fi nd a statement to be true for a number of cases, we tend to assume
that it is true in general. Th is is expressed by the inductive rule of inference.

(b) Induction
Premise No. 1. P [A1]
Premise No. 2. P [A2]

: :
: :
Premise No. k. P [Ak]
Conclusion. Th erefore, (∀x) P [x]

Example 3.14 (Induction)

Premise No. 1. Mr Ghosh is a businessman and he is rich.
Premise No. 2. Mr Rao is a businessman and he is rich.
Premise No. 3. Mr Smith is a businessman and he is rich.
Premise No. 4. Mr Ansari is a businessman and he is rich.
Premise No. 5. Mr Fujiwara is a businessman and he is rich.
Conclusion. Th erefore, all businessmen are rich.

80 Introduction to Soft Computing

Samir Roy_Chapter03.indd 80Samir Roy_Chapter03.indd 80 2/21/2013 3:17:36 PM2/21/2013 3:17:36 PM

Analogy Our everyday experience tells us that if a situation, or object, or entity is similar to an-
other situation, or object, or entity in some aspect, then they are likely to be similar in other aspects too.
If we represent the fact that P is related to Q as P Qr , and P is similar to P1 as P ≈ P1, then, the ana-
logical rule of inference can be stated as

(c) Analogy

Premise No. 1. P Qr

Premise No. 2. P ≈ P1

Premise No. 3. Q ≈ Q1

Conclusion. Th erefore, ′ ′P Q′ ⎯→⎯→⎯→r

Example 3.15 (Analogy)

Premise No. 1. Gentle people are generally soft spoken.

Premise No. 2. Gorillas are much like people.

Premise No. 3. Soft spoken creatures seem to be humble.

Conclusion. Th erefore, Gentle gorillas are generally humble.

3.2 FUZZY LOGIC BASICS

Th e propositional logic and the predicate logic discussed so far are crisp. Th ese are two-valued logic because
they are based on the law of excluded middle according to which a statement can be either true or false, and
nothing else. Fuzzy logic extends crisp logic by accepting the possibility of the infi nite shades truths between
absolute falsehood and absolute truth. Th is section presents the fundamental concepts of fuzzy logic.

Table 3.18. Fuzzy truth values

Linguistic Numeric (tentative)

Absolutely False 0.00

Partly False 0.25

Neither False nor True 0.50

Both False and True 0.50

Partly True 0.75

Absolutely True 1.00

3.2.1 Fuzzy Truth Values

In classical (or crisp) logic there are only two possible truth values, true and false, numerically expressed
as 1 and 0 respectively. Unlike crisp truth values, there are various fuzzy truth values including the crisp
truth values. Certain common linguistic fuzzy truth values and their tentative numeric values are shown

Fuzzy Logic 81

Samir Roy_Chapter03.indd 81Samir Roy_Chapter03.indd 81 2/21/2013 3:17:39 PM2/21/2013 3:17:39 PM

in Table 3.18. Th e numeric truth values indicated above are not absolute. Th ey may vary depending on
requirement of context and interpretation. Th ere may be other linguistic truth values such as more-or-
less false, very true, almost true etc.

Fuzzy propositions A proposition that can have a fuzzy truth value is known as a fuzzy proposi-
tion. Let p be a fuzzy proposition. Th en the truth value of p is denoted by t (p) where 0 ≤ t (p) ≤ 1. A few
examples of fuzzy propositions are cited in Table 3.19 along with their possible fuzzy truth values – both
linguistic and numeric.

Table 3.19. Fuzzy proposition and their possible truth values

Proposition (p) Fuzzy Truth Value, t (p)

Lingustic Numeric

1. √2 is a rational number. Absolutely False 0.00

2. She is very emotional. Partly True 0.70

3. The book is quite costly. Partly False 0.30

4. He is rich. Partly False 0.40

5. Humble people are usually polite. Mostly True 0.80

6. The Earth is round. Almost Absolutely True 0.97

7. The only even prime number is 2. Absolutely True 1.00

Obviously, the numeric truth values against their linguistic counterparts are tentative. Th ey may vary
depending on requirement of context and interpretation.

Fuzzy logic operations Various operations of crisp logic, e.g., disjunction (+), conjunction (•),
negation (′), implication (→) etc., have their fuzzy counterparts. Th e basic fuzzy operations are given in
Table 3.20.

Table 3.20. Fuzzy logic operations

Operation Symbol Usage Defi nition

1 disjunction + P + Q t (P + Q) = max {t (P), t (Q)}

2 conjunction • P • Q t (P • Q) = min {t (P), t (Q)}

3 negation ¬ ¬P t (¬P) = 1 − t (P)

4 implication → P → Q t (P → Q) = max {1 − t (P), t (Q)}

Th ere are various interpretations of fuzzy implication such as

t (P → Q) = 1 if t (P) ≤ t (Q),
 = 0, otherwise
t (P → Q) = 1 if t (P) ≤ t (Q),
 = t (Q), otherwise
t (P → Q) = min {1, t (Q) /t (P)}
t (P → Q) = min {1, [t (Q) (1-t (P)] / [t (P) (1 − t (Q)]}

82 Introduction to Soft Computing

Samir Roy_Chapter03.indd 82Samir Roy_Chapter03.indd 82 2/21/2013 3:17:41 PM2/21/2013 3:17:41 PM

t (P → Q) = min {1, 1 − t (P) + t (Q)}
t (P → Q) = max {min (t (P), t (Q)), 1 − t (P)}

Th e last one was proposed by Zadeh. Depending on the context and application, user has to identify and
select the appropriate interpretation of fuzzy implication.

Example 3.16 (Fuzzy logic operations)

Let us consider the following two fuzzy propositions along with their fuzzy truth values

p = Mr. Bakshi is handsome. t (p) = 0.7
q = Mr. Bakshi is tall. t (q) = 0.4

Various fuzzy operations on these fuzzy operations are shown below.

Fuzzy AND. t (p • q) = min {t (p), t (q)} = min {0.7, 0.4} = 0.4
Fuzzy OR. t (p + q) = max {t (p), t (q)} = max {0.7, 0.4} = 0.7
Fuzzy NOT. t (p′) = 1 − t (p) = 1 − 0.7 = 0.3,
 t (q′) = 1 − t (q) = 1 − 0.4 = 0.6
Fuzzy implication t (p → q) = max {1 − t (p), t (q)} = max {1-0.7, 0.4} = 0.4

3.3 FUZZY TRUTH IN TERMS OF FUZZY SETS

Fuzzy logic can be related to fuzzy sets by equating fuzzy truth values to the degrees membership to
fuzzy sets. Let F be a fuzzy set over the universe U and x ∈ U. Th en what is the truth value of the state-
ment p = ‘x is a member of F’? Obviously, it should be nothing but the extent to which x is a member of
F. Hence t (p) = m F (x). Th is association between fuzzy set membership and fuzzy logic truth value is
illustrated in Example 3.17.

Example 3.17 (Fuzzy truth values in terms of fuzzy membership)

Let a = warm-colour, and b = cool-colour be fuzzy sets on the universe of colour = {violet, mauve,
magenta, blue, green, brown, yellow, orange, pink}.

a warm colour
mauve brown yellow orange pgg in

=warm colour + + + +
0 2 0 4 0 6 0 8 1 0. .2 0 . .6 0

kk

b cool colour
mauve brown yellow blue greengg

=cool colour + + + +
0 3 0 5 0 2 0 8 1 0. .3 0 . .2 0

Th en the truth values of the fuzzy proposition p = ‘yellow is a warm-colour,’ and q = ‘blue is a cool-
colour’ would be

t (p) = m warm-colour (yellow) = 0.6
t (q) = m cool-colour (blue) = 0.8.

Let a and b be two fuzzy sets on the universe U and p = ‘x is a member of a,’ q = ‘x is a member of b’ are two
fuzzy propositions. Th en t (p + q) = max {t (p), t (q)} = max {m A (x), m B (x)} = m A ∪ B (x). Similarly t (p •
q) = m A ∩ B (x), and t (p′) = m A′(x). Th erefore fuzzy logic and fuzzy set theory are isomorphic systems.

Fuzzy Logic 83

Samir Roy_Chapter03.indd 83Samir Roy_Chapter03.indd 83 2/21/2013 3:17:41 PM2/21/2013 3:17:41 PM

Fuzzy truth and linguistic variables An atomic fuzzy proposition has the form ‘x is P’ where P
is a predicate and a linguistic fuzzy value of a linguistic variable, say L. Moreover, L must be measurable
and must have a crisp value corresponding for x. How to fi nd the truth value of a fuzzy proposition s =
‘x is P’? Th e truth value of s, t (s), can be obtained in the following way

1. Evaluate L for x. Th is is possible because L is measurable.
2. Find the membership of L(x) in P, i.e., fi nd m P (L (x)).
3. t (s) = m P (L (x)).

Hence, s is true to the extent L (x) is a member of P. Th is is illustrated in Example 3.18.

age inii
years

40302010
0

1

myoung

Fig. 3.1. Membership profi le of young

age inii
years

403020 2510
0

0.5

1

myoung t (P) = myoung (25) = 0.5

Fig. 3.2. Finding fuzzy truth value from degree of membership

Example 3.18 (Fuzzy truth-value in terms of fuzzy membership)

Consider the fuzzy proposition p = ‘Anita is young’. Here the predicate young is a linguistic value of
the linguistic variable age. Other possible linguistic values of age are very young, middle-aged, aged,
old, very old, and so on. Each of these linguistic values corresponds to a fuzzy set on the universe of
age. Let the membership profi le of young be as shown in Fig. 3.1. As age is a measurable quantity it
is possible to fi nd the value of age of Anita. If Anita’s age is 25 years then we have age (Anita) = 25.
From the membership profi le of young we see that m young (age (Anita)) = m young (25) = 0.5 (Fig. 3.2).
Hence the fuzzy truth value of the proposition p = ‘Anita is young’ is t (p) = 0.5.

3.4 FUZZY RULES

Fuzzy rules are of special interest because they constitute an integral part of the so called fuzzy inference
systems, or fuzzy inference mechanisms. Th e core of fuzzy inference system is the fuzzy rule base, which
consists of a set of fuzzy rules. In real life, the concept of fuzzy inference system is used to construct fuzzy
controllers. Th ese topics are discussed in greater details in the next chapter.

84 Introduction to Soft Computing

Samir Roy_Chapter03.indd 84Samir Roy_Chapter03.indd 84 2/21/2013 3:17:43 PM2/21/2013 3:17:43 PM

3.4.1 Fuzzy If-Then

An elementary fuzzy rule R is a statement of the form

 If p Th en q (3.1)

where p and q are atomic fuzzy propositions known as the antecedent and the consequent respectively.
Th ey have the form of an atomic propositions ‘x is A’.

We have seen that the truth value of a fuzzy statement p = ‘x is A’ is given by the membership value of
the fuzzy set A. Moreover, A is the predicate of the statement p = ‘x is A’ so that using the formalism of
predicate logic p is denoted as A (x). Th erefore the fuzzy rule

 R : If ‘x is A’ Th en ‘y is B’ (3.2)

is symbolically expressed as

 R : A (x) → B (y) (3.3)

Hence, the fuzzy rule If ‘x is A’ Th en ‘y is B’ can be expressed as a fuzzy relation between A and B where

 R (x, y) = t [A (x) → B (y)] (3.4)

Th ere are various interpretations of fuzzy rule. Among these, interpretations proposed by Mamdani and
Zadeh are the most popular. Th ese are

a) Mamdani’s interpretation of fuzzy rule:

R (x, y) = t [A (x) → B (y)]
 = min [t (A (x)), t (B (y))] = min [m A (x), m B (y)] (3.5)

b) Zadeh’s interpretation of fuzzy rule:

 R (x, y) = t [A (x) → B (y)]
 = max [min {m A (x), m B (y)}, 1 − m A (x)] (3.6)

Assuming U and V to be the universes for the fuzzy sets A and B respectively, Zadeh’s interpretation of
fuzzy rule is equivalent to the relation

 R = (A × B) ∪ (A′ × V) (3.7)

where V is used as a fuzzy set in which all the members have membership value 1.

Example 3.19 (Zadeh’s interpretation of fuzzy rules)

Let R : If ‘job is risky’ Th en ‘compensation is high’ be a fuzzy rule. Th ere are four jobs job1, job2, job3
and job4, constituting the universe job = {job1, job2, job3, job4}. Also, there are four categories of
compensation c1, c2, c3, and c4 in ascending order. Hence the universe for compensations is compen-
sation = {c1, c2, c3, c4}. Th e fuzzy sets risky-job and high-compensation are defi ned on the universes
job and compensation respectively as given below.

risky jk ob
job job job job

jj = + + +
0 3 0 8 0 7 0 9

2job 4job
. .3 0 .7 0

highi compensation
c c c c

-cc = + + +
0 2 0 4 0 6 0 8

1 2 3c c 4

. .2 0 . .6 0

Fuzzy Logic 85

Samir Roy_Chapter03.indd 85Samir Roy_Chapter03.indd 85 2/21/2013 3:17:44 PM2/21/2013 3:17:44 PM

Using Zadeh’s interpretation, the truth value of rule R is expressed by the relation

R = (risky-job × high-compensation) ∪ (risky jk ob × compensation)

Now,

risky-job × high-compensation =

C C C C
job
job
job
job

1 2C 3 4C

1

2

3

4

0 2 0 3 0 3 0 3
0 2 0 4 0 6 0 8
0 2 0 4 0 6 0

. .2 0 . .3 0

. .2 0 . .6 0

. .2 0 . .6 0..7
0 2. 0 4. 0 6. 0 8.

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

,

and, risky jk ob × compensation =

C C C C
job
job
job
job

1 2C 3 4C

1

2

3

4

0 7 0 7 0 7 0 7
0 2 0 2 0 2 0 2
0 3 0 4 0 6 0

. . . .7 0 7 0 7 0

. . . .2 0 2 0 2 0

. . . .3 0 4 0 6 0..
. .

7
0 2. 0 4.. 0 6.. 0 8.

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

,

and fi nally, R = (risky-job × high-compensation) ∪ (risky jk ob × compensation)

=

job
job
job
job

1

2

3

4

0 7 0 7 0 7 0 7
0 2 0 4 0 6 0 8
0 3 0 4 0 6 0 7
0 2 0 4

. . . .7 0 7 0 7 0

. . . .2 0 4 0 6 0

. . . .3 0 4 0 6 0

. .2 0 0 600 0 8. .6 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Hence the matrix R obtained above embodies the information in the fuzzy implication IF job is
risky THEN compensation is high on the basis of the fuzzy concepts risky-job and high-compensa-
tion as defi ned above.

3.4.2 Fuzzy If-Then-Else

A fuzzy If-Th en-Else rule R has the form
 If ‘x is A’ Th en ‘y is B’ Else ‘y is C’ (3.8)
where A is a fuzzy set on some universe U and B and C are fuzzy sets on the universe V. Th e truth value
of R, in terms of the membership values of the fuzzy sets is given by

t (R (x, y)) = m R (x, y)
 = max [min {m A (x), m B (y)}, min {1 − m A (x), m C (y)}] (3.9)
Th is is nothing but the fuzzy relation
 R = (A × B) ∪ (A′ × C) (3.10)
Example 3.20 illustrates the fuzzy If-Th en-Else rule.

Example 3.20 (Fuzzy If-Th en-Else rule)

Th e fuzzy If-Th en-Else rule under consideration is R : If ‘distance is long’ Th en ‘drive at high
speed’ Else ‘drive at moderate speed’. To match with the form given in Expression 3.8, this rule

86 Introduction to Soft Computing

Samir Roy_Chapter03.indd 86Samir Roy_Chapter03.indd 86 2/21/2013 3:17:46 PM2/21/2013 3:17:46 PM

can be restated as R : If ‘distance is long’ Th en ‘speed is high’ Else ‘speed is moderate’. Th e relevant
sets (crisp and fuzzy) are, distance = {100, 500, 1000, 5000} is the universe of the fuzzy set long-
distance, speed = {30, 50, 70, 90, 120} is the universe of the fuzzy sets high-speed as well as moder-
ate-speed, and

long distance

highi speed

-

-

= + + +

=

0 1
100

0 3
500

0 7
1000

1 0
5000

0 1
3

. .1 0 . .7 1

00
0 3
50

0 5
70

0 7
90

0 9
120

0 3
30

0 8
50

0 6
7

+ + ++ +

= + +

. . .3 0 5 0

. .3 0moderate-speed
00

0 4
90

0 1
120

+ +
. .4 0

Applying Expression 3.10 we get

R = (A × B) ∪ (A′ × C)
= (long-distance × high-speed) ∪ (long -distance × normal-speed).

Th e relation matrix R is computed as follows.

long-distance × high-speed =

50 70 90 120
100
500
1000
5000

0 1 0 1 0 1 0 1 0 1
0 1 0 3 0 3 0 3 0 3
0 1

. . .1 0 1 0

. . .3 0 3 0
. 01 0 300 0 5 0 7 0 7

0 1 0 3 0 5 0 7 0 9
. . .3 0 5 0
. . .3 0 5 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

long distance- × moderate-speed =

30 50 70 90 120
100
500
1000
5000

0 3 0 8 0 6 0 4 0 9
0 3 0 7 0 6 0 4 0 1
0 3

. .3 0 . .6 0

. .3 0 . .6 0

. 03 0 300 0 3 0 3 0 1
0 0 0 0 0 0 0 0 0 0

. .3 0 . .3 0
. .0 0 . .0 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

∴ R = (A × B) ∪ (A′ × C)
= (long-distance × high-speed) ∪ (long distance- × normal-speed)

=

30 50 70 90 120
100
500
1000
5000

0 3 0 8 0 6 0 4 0 9
0 3 0 7 0 6 0 4 0 3
0 3

. .3 0 . .6 0

. .3 0 . .6 0

. 03 0 300 0 5 0 7 0 7
0 1 0 3 0 5 0 7 0 9

. .3 0 . .7 0
. .1 0 . .5 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

So far we have discussed the simplest kind of fuzzy rules. Th ey can be generalized to accommodate sev-
eral fuzzy propositions into the antecedent part. Th e Generalized Fuzzy Rule is expressed as
 If ‘x 1 is A 1’ • …• ‘x m is A m’ Th en ‘y 1 is B 1’• …• ‘y n is B n’ (3.11)
Fuzzy rules are the foundation of reasoning in fuzzy logic. Fuzzy reasoning is discussed in the next Sec-
tion.

Fuzzy Logic 87

Samir Roy_Chapter03.indd 87Samir Roy_Chapter03.indd 87 2/21/2013 3:17:52 PM2/21/2013 3:17:52 PM

3.5 FUZZY REASONING

Reasoning is the process of fi nding new propositions from old propositions. It is accomplished by ap-
plying the rules of inference on propositions already known to be true. In subsection 3.1.3, the rules of
inference of crisp logic, e.g., modus ponens, universal specialization, chain rule, resolution etc. have been
discussed. Fuzzy reasoning refers to reasoning involving fuzzy propositions, applying fuzzy rules of in-
ference, producing new fuzzy propositions. Th e fundamentals of fuzzy reasoning are presented in the
subsequent parts of this section.

3.5.1 Fuzzy Quantifi ers

Recall that predicate logic had two quantifi ers, the universal quantifi er ∀, and the existential quantifi er
∃. Fuzzy propositions too may contain quantifi ers and these quantifi ers are usually referred to as fuzzy
quantifi ers. Th ere are two kinds of fuzzy quantifi ers, absolute and relative. A fuzzy quantifi er that refers
to some specifi c value is known as absolute fuzzy quantifi er. A relative fuzzy quantifi er, however, do not
refer to any specifi c value. A few instances of both types of fuzzy quantifi ers are cited below.

Fuzzy Quantifi ers

Absolute Relative
Nearly 100 Almost
Far below 0 Most
Much greater than 50 About
Somewhere around 300 Few
Round about 1000 Nearly

3.5.2 Generalized Modus Ponens

As the name suggests, generalized modus ponens is the generalization of crisp modus ponens but diff ers in
two aspects. First, it applies to statements that are fuzzy, and second, the conclusion need not be exactly the
same as the consequent. A typical fuzzy reasoning employing generalized modus ponens may look like

Premise No. 1. If this car is expensive Th en it is comfortable.
Premise No. 2. Th is car is more or less expensive.
Conclusion. Th erefore, Th is car is more or less comfortable.

Th erefore, the generalized modus ponens rule of inference may be presented as follows :

Generalized Modus Ponens

Premise No. 1. If ‘x is A’ Th en ‘y is B’.

Premise No. 2. x is A1.

Conclusion. Th erefore, y is B1.

where A, A1, B, B1 are fuzzy statements and A1 and B1 are modifi ed versions of A and B respectively.
Th e generalized modus ponens described above is also known as fuzzy inference. Zadeh interpreted

fuzzy inference in terms of max–min composition of relations on fuzzy sets. Let A and A1 be fuzzy sets

88 Introduction to Soft Computing

Samir Roy_Chapter03.indd 88Samir Roy_Chapter03.indd 88 2/21/2013 3:17:58 PM2/21/2013 3:17:58 PM

on the universe U, and B, B1 are fuzzy sets on the universe V. Th en the truth value of the conclusion ‘y is
B1’ in terms of membership functions of the related fuzzy sets is obtained as

 μ μ() () m [min{ (), (μ ,)}]y xμ) max[min{ x y,B
x U

Rμμ1 1(y μ) [{μ ()B (3.12)

where R represents the relation corresponding to the rule ‘If ‘x is A’ Th en ‘y is B’. Th e formula stated
above actually computes the fuzzy set B 1 as the max-min composition of A and R.

 B 1 = A 1 ° R (3.13)

Example 3.21 (Fuzzy reasoning with the help of generalized modus ponens)

Let us reconsider the implication ‘If service is good Th en customer is satisfi ed’. Th e associated uni-
verses of discourse are

U = service-rating = {a, b, c, d, e}
V = satisfaction-grade = {1, 2, 3, 4, 5}

Both the sequences a, b, c, d, e and 1, 2, 3, 4, 5 are in ascending order. Th e fuzzy sets good-service
and satisfi ed are given below.

good service
a b c d e

- = + + ++ +
1 0 0 8 0 6 0 4 0 2. . . .0 0 8 0 6 0

satisfieff d = + + + ++
0 2
1

0 4
2

0 6
3

0 8
4

1 0
5

. .2 0 . .6 0

Th e information contained in the implication stated above is expressed by the relation

R = (good-service × satisfi ed) ∪ (good service- × satisfaction-grade)

Th e relation R is found to be

R =

5 4 3 2 1
1 0 0 8 0 6 0 4 0 2
0 8 0 8 0 6 0 4 0 2
0 6 0 6 0 6 0 4 0 4
0 6

a
b
c
d
e

. . .8 0 6 0
. . . .8 0 8 0 6 0
. . . .6 0 6 0 6 0
. 06 0 600 0 6 0 6 0 6

0 8 0 8 0 8 0 8 0 8
. . .6 0 6 0

. . . .8 0 8 0 8 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Let us now consider very-good-service, a modifi ed version of good-service as given below.

very- good service
a b c d e

- 1
0 8 0 6 0 4 0 0 0 0

= + + + +
. . .8 0 6 0 . .0 0

Th e reasoning process may now be expressed as

Premise No. 1. If service is good Th en customer is satisfi ed.

Premise No. 2. Service is very good.

Conclusion. Th erefore, Customer is very satisfi ed.

Fuzzy Logic 89

Samir Roy_Chapter03.indd 89Samir Roy_Chapter03.indd 89 2/21/2013 3:17:58 PM2/21/2013 3:17:58 PM

Th e fuzzy information content of the conclusion is obtained by applying generalized modus pon-
ens in the form of the relation

very-satisfi ed = very-good-service ° R

Computation of the individual elements of the fuzzy set very-satisfied is illustrated subse-
quently.

μμμ y f
x U

very good service Rμ x-μvery -() [i { () (RμRμ (,1xμvery good service) [i { ()x (μμRμ ,)}))]

max [min { (), (,)}, min {= μ μ() μμμ y g Rμ(), very gooda()), - --service R

y g R

b b
c

(b (RR ,)},
min{ (), (RR ,)},

μ
μ μ- -very good service ()c i)},minii { ((,)},

min { (
μ μ(

μ
μ y g Rμ(),

very good service

d d) (μ) Rμ),

- -good

1
eee R), (,e)}]μ 1

= max [min (0.8, 0.2), min (0.6, 0.2), min (0..4, 0.4), ..
 min (0.0, 0.6), min (0.0, 0.8)]

= max [0.2, 0.2, 0.4, 0.0, 0.000]
= 0.4

Similarly,

μvery satisfieff d- () =) max [min (0.8, 0.4), min (0.6, 0.4), miin (0.4, 0.4),ii
 min (0.0, 0.6), min (0.0, 0.8)]

= max [0.4, 0.4, 0.4, 0.0, 0.0xx]
= 0.4.

μvery satisfieff d- ()=) max [min (0.8, 0.6), min (0.6, 0.6), miin (0.4, 0.6),ii
min (0.0, 0.6), min (0.0, 0.8)]

= max [0.6, 0.6, 0.4, 0.0, 0.0xx]
= 0.6.

μvery satisfieff d- ()=) max [min (0.8, 0.8), min (0.6, 0.8), miin (0.4, 0.6),ii
 min (0.0, 0.6), min (0.0, 0.8)]

= max [0.8, 0.6, 0.4, 0.0, 0.0xx]
= 0.8.

μvery satisfieff d- ()=) max [min (0.8, 1.0), min (0.6, 0.8), miin (0.4, 0.6),ii
 min (0.0, 0.6), min (0.0, 0.8)]

= max [0.8, 0.6, 0.4, 0.0, 0.0xx]
= 0.8.

Hence the conclusion ‘Customer is very-satisfi ed’ is defi ned by the fuzzy set

very satisfieff d- 1
0 4
1

0 4
2

0 6
3

0 8
4

0 8
5

= + + + ++
. .4 0 . . .6 0 8 0

90 Introduction to Soft Computing

Samir Roy_Chapter03.indd 90Samir Roy_Chapter03.indd 90 2/21/2013 3:18:05 PM2/21/2013 3:18:05 PM

3.5.3 Generalized Modus Tollens

As in case of generalized modus ponens, generalized modus tollens is the generalization of crisp modus
tollens. A typical fuzzy reasoning employing generalized modus tollens has the form

Premise No. 1. If this car is expensive Th en it is comfortable.

Premise No. 2. Th is car is more or less comfortable.

Conclusion. Th erefore, Th is car is more or less expensive.

Hence, the generalized modus tollens rule of inference may be presented as follows :

Generalized Modus Tollens

Premise No. 1. If ‘x is A’ Th en ‘y is B’.

Premise No. 2. x is B1.

Conclusion. Th erefore, y is A1.

where A, A1, B, B1 are fuzzy statements and A1 and B1 are modifi ed versions of A and B respectively. Th e
formula to compute the fuzzy set A1 as the max-min composition of B1 and R.

 A1 = B1°R (3.14)

Th is can be computed by applying the formula

 τ μ μ μ() () ma [min{ (), (μ ,)}]x yμ) max[min{ x y,
x U

Rμμμμ (x μ) max[min{A μμμ ()Aμ ()μA (3.15)

where R represents the relation corresponding to the rule ‘If ‘x is A’ Th en ‘y is B’.

Example 3.22 (Fuzzy reasoning with the help of Generalized Modus Tollens)

Premise No. 1. If a man is honest Th en he is happy.

Premise No. 2. Th is man is most probably happy.

Conclusion. Th erefore, Th is man is most probably honest.

 CHAPTER SUMMARY

Th e main points of the foregoing discussion are given below.

In classical, or crisp, logic a proposition is either true or false. It does not allow more than these two •
truth values. Fuzzy logic accepts infi nite number of truth values between false and true. Numeri-
cally a fuzzy truth value is any real number between 0 and 1, both inclusive.
In propositional logic an interpretation of a logical expression is a combination of truth values for •
the constituent individual propositions.
Symbolic expressions of propositional logic and predicate logic are known as well-formed for-•
mulae (wff s). Two wff s are said to be logically equivalent if they attain the same truth value for all
possible interpretations. A proposition which is true for all possible interpretations is said to be a

Fuzzy Logic 91

Samir Roy_Chapter03.indd 91Samir Roy_Chapter03.indd 91 2/21/2013 3:18:11 PM2/21/2013 3:18:11 PM

tautology. A contradiction is a proposition which is false for all possible interpretations. A number
of statements is said to be consistent if they can all be true simultaneously. An argument is said to
be valid if the conclusion is true whenever the premises are true.
Predicate logic is an extension of propositional logic. It captures the inner structure of a statement •
by introducing symbolic representation of the predicate part of a statement, and also by includ-
ing the two quantifi ers, viz., the universal quantifi er (∀), and the existential quantifi er (∃) into its
formalism.
Unlike propositional logic, a predicate logic statement is always interpreted in the context of some •
domain called the universe of discourse.
An FOPL wff is valid if it is true for every interpretation. It is inconsistent (or unsatisfi able) if it is •
false for every interpretation. An FOPL wff W is a logical consequence of certain wff s, say W1, W2,
..., Wk, if and only if whenever W1, ..., Wk are true for some interpretation, W is also true for the
same interpretation.
An FOPL• wff of the form (∀x) P[x] is true if and only if it is true for all values of x within its do-
main. And the wff (∃x) P[x] is true if and only if there exists at least one value of x for which P[x]
is true.
Rules of Inference are rules with which new propositions are obtained from a set of given state-•
ments. Th ere are two kinds of rules of inference, deductive and non-deductive. Some important
deductive rules of inference are Modus Ponens, Universal Specialization, Chain Rule, Resolution,
Modus Tollens (also called Indirect Reasoning, or Law of Contraposition), Simplifi cation, Addition,
etc. Th e most useful non-deductive rules of inference are Abduction, Induction, and Analogy.
An atomic fuzzy proposition has the form ‘• x is P’ where P is a predicate that corresponds to a fuzzy
set. Th e truth value of the fuzzy statement ‘x is P’ is evaluated in terms of the membership function
of the fuzzy set for the predicate P.
A fuzzy rule has the form If ‘• x is A’ Th en ‘y is B’. It can be interpreted as a fuzzy relation. According
to Zadeh’s interpretation, a fuzzy rule may be expressed as the relation

R = (A×B)∪(A′×V)

where V is the universe of B and is used here as a fuzzy set in which all the members have mem-
bership value 1.
Two widely used fuzzy inference rules are the generalized modus ponens (GMP) and the general-•
ized modus tollens (GMT). Th ese two rules of inference are stated below.

Generalized Modus Ponens (GMP)
Premise No. 1. If ‘x is A’ Th en ‘y is B’.
Premise No. 2. x is A1.
Conclusion. Th erefore, y is B1.

Generalized Modus Tollens (GMT)
Premise No. 1. If ‘x is A’ Th en ‘y is B’.
Premise No. 2. x is B1.
Conclusion. Th erefore, y is A1.

A, A1, B, B1 are fuzzy statements. A1 and B1 are modifi ed versions of A and B respectively. Th e rea-
soning process using GMP is also referred to as fuzzy inference.

92 Introduction to Soft Computing

Samir Roy_Chapter03.indd 92Samir Roy_Chapter03.indd 92 2/21/2013 3:18:13 PM2/21/2013 3:18:13 PM

In fuzzy inference, the truth value of the conclusion ‘• y is B1’ in terms of membership functions of
the related fuzzy sets is obtained as

τ μ μ μ() () ma [min{ (), (μ ,)}]y y xμ) max[min{ x y,
x U

Rμμμμ (y μ) max[min{B μμ1μ ()B ()μB

Th is corresponds to the max-min composition of A and R.

B1 = A1°R

Here R denotes the relation corresponding to the rule If ‘x is A’ Th en ‘y is B’.
In case of GMT, the fuzzy set • A1 is computed as the max-min composition of B1 and R.

A1 = B1°R

Or,

τ μ μ μ() () ma [min{ (), (μ ,)}]x yμ) max[min{ x y,
x U

Rμμμμ (x μ) max[min{A μμμ ()Aμ ()μA

As usual, R denotes the relation corresponding to the rule If ‘x is A’ Th en ‘y is B’.

 SOLVED PROBLEMS

Problem 3.1. Determine whether the following propositional logic formulae are tautologies.

 (i) (a→b) → ((a→b′) →a′)
(ii) (a→b) → ((a+c) → (b+c))

Solution 3.1. (i) Th e truth table for Ψ = (a→b) → ((a→b′)→a′) = X→Y where X = a→b, and Y =
(a→b)→a′ is shown in Table 3.21. Column 8 of Table 3.21 tabulates the truth values of Ψ = (a→b) →
((a→b′)→a′) = X→Y corresponding to diff erent combinations of truth values of a, b, and c. As all entries
of column 8, which represents the given expression, are true, the expression is a tautology.

Table 3.21. Truth Table for Ψ = (a→b) → ((a→b′)→a′)

(1) (2) (3) (4) (5) (6) (7) (8)

a b a′ b′ a→b
(X)

a→b′ (a→b′) →a′
(Y)

X→Y
(Ψ)

(1) 0 0 1 1 1 1 1 1

(2) 0 1 1 0 1 1 1 1

(3) 1 0 0 1 0 1 0 1

(4) 1 1 0 0 1 0 1 1

(ii) Let X = (a→ b), Y = (a+c), Z = (b+c). Th en the expression Ψ = (a→ b) → ((a+c) → (b+c)) is repre-
sented as X→(Y→Z). Th e corresponding truth table is shown in Table 3.22. Column 8 of Table 3.22,
which tabulates the truth values of the given expression under diff erent interpretations, contains
true value in all its entries. Th erefore, the given expression is a tautology.

Fuzzy Logic 93

Samir Roy_Chapter03.indd 93Samir Roy_Chapter03.indd 93 2/21/2013 3:18:13 PM2/21/2013 3:18:13 PM

Table 3.22. Truth Table for Y = (a→ b) → ((a+c) → (b+c))

(1) (2) (3) (4) (5) (6) (7) (8)

a b C a→b
(X)

a+c
(Y)

b+c
(Z)

Y→Z X→(Y→Z)

(1) 0 0 0 1 0 0 1 1

(2) 0 0 1 1 1 1 1 1

(3) 0 1 0 1 0 1 1 1

(4) 0 1 1 1 1 1 1 1

(5) 1 0 0 0 1 0 0 1

(6) 1 0 1 0 1 1 1 1

(7) 1 1 0 1 1 1 1 1

(8) 1 1 1 1 1 1 1 1

Problem 3.2. Find out whether the following formulae are equivalent.

 (i) a→ (b+c) and a′+b+c
(ii) a + (b′→ c) and a + (b→ c) ′
(iii) (a→ b)→ c and a→ (b → c)

Solution 3.2 (i) Th e Truth Table for a→ (b+c) and a′+b+c is shown in Table 3.23. Column 5 and
Column 7, representing the formulae a′+b+c and a→ (b+c) respectively, are identical. Th erefore they at-
tain the same truth value for all possible interpretations. Hence, these two expressions are equivalent.

Table 3.23. Truth Tables for a→ (b+c) and a′+b+c

(1) (2) (3) (4) (5) (6) (7)

a b c a′ a′+b +c b+c a→ (b+c)

(1) 0 0 0 1 1 0 1

(2) 0 0 1 1 1 1 1

(3) 0 1 0 1 1 1 1

(4) 0 1 1 1 1 1 1

(5) 1 0 0 0 0 0 0

(6) 1 0 1 0 1 1 1

(7) 1 1 0 0 1 1 1

(8) 1 1 1 0 1 1 1

(ii) Th e truth table for a+(b′→c) and a+(b→c)′ is shown in Table 3.24. Column 6 and column 8 of
Table 3.24 represent the formulae a+(b′→c) and a+(b→c)′ respectively. Th e truth values in the en-
tries of row 2 and row 4 for these columns are complementary. Hence, these two expressions are not
equivalent.

94 Introduction to Soft Computing

Samir Roy_Chapter03.indd 94Samir Roy_Chapter03.indd 94 2/21/2013 3:18:15 PM2/21/2013 3:18:15 PM

Table 3.24. Truth Tables for a+(b′→c) and a+(b→c)′

(1) (2) (3) (4) (5) (6) (7) (8)

a b c b′ b′→c a+(b′→c) b→c a+(b→c)′
(1) 0 0 0 1 0 0 1 0

(2) 0 0 1 1 1 1 1 0

(3) 0 1 0 0 1 1 0 1

(4) 0 1 1 0 1 1 1 0

(5) 1 0 0 1 0 1 1 1

(6) 1 0 1 1 1 1 1 1

(7) 1 1 0 0 1 1 0 1

(8) 1 1 1 0 1 1 1 1

(iii) Table 3.25 shows the truth table for (a→b)→c and a→(b →c). Column 6 and column 7 of Table 3.25
represent the formulae (a→b)→c and a→(b →c), respectively. Th e truth values in the entries of row 1
and row 3 for these columns are complementary. Hence, these two expressions are not equivalent.

Table 3.25. Truth Tables for (a→b)→c and a→(b →c)

(1) (2) (3) (4) (5) (6) (7)

a b c a→b b→c (a→b)→c a→(b→c)

(1) 0 0 0 1 1 0 1

(2) 0 0 1 1 1 1 1

(3) 0 1 0 1 0 0 1

(4) 0 1 1 1 1 1 1

(5) 1 0 0 0 1 1 1

(6) 1 0 1 0 1 1 1

(7) 1 1 0 1 0 0 0

(8) 1 1 1 1 1 1 1

Problem 3.3. Determine whether the following argument is valid or not. ‘If today is a holiday and
the weather is sunny then we shall go for shopping. Today is a holiday. Today’s weather is sunny. Th erefore
we shall go for shopping.’

Table 3.26

(1) (2) (3) (4) (5)

a b c a • b (a • b)→c
(1) F F F F T

(2) F F T F T

(3) F T F F T

(4) F T T F T

(5) T F F F T

(6) T F T F T

(Continued)

Fuzzy Logic 95

Samir Roy_Chapter03.indd 95Samir Roy_Chapter03.indd 95 2/21/2013 3:18:16 PM2/21/2013 3:18:16 PM

Table 3.26 Continued

(1) (2) (3) (4) (5)

a b c a • b (a•b)→c

(7) T T F T F

(8) T T T T T

Solution 3.3. Let us denote ‘Today is a holiday’ as a, ‘Th e weather is sunny’ as b, and ‘We shall go for
shopping’ as c. Th en the argument can be represented by the following sequence of expressions.

Proposition Expression

Premise No. 1. If today is a holiday and the weather is sunny Th en
we shall go for shopping.

(a∧b) → c

Premise No. 2. Today is a holiday. a
Premise No. 3. Today’s weather is sunny. b
Conclusion. Th erefore, we shall go for shopping ∴c

Table 3.26 presents the various combinations of truth values for these expressions. An argument is said
to be valid if the conclusion is true whenever the premises are true. It may be noted that the only case
where all the premises, i.e., (a•b)→c, a, and b, are simultaneously true corresponds to Row 8 of the table.
And the conclusion c is also true for this row. Th erefore the given argument is valid.

Problem 3.4. Determine whether the following sets of formulae are consistent or not.

 (i) {a+b, b•c, (a+b)→(b•c)}
(ii) {a→c′, (a→b)′, a→(c′→b)}

Solution. 3.4 (i) A set of propositions is consistent if they all can be true simultaneously. Table 3.27
shows the truth table for the set of propositional formulae {a+b, b•c, (a+b)→(b•c)}. Th e truth values of
a+b, b•c, and (a+b)→(b•c) for various interpretations are noted in columns 4, 5, and 6 respectively. A
careful scrutiny of the table reveals that there are truth value combinations for a, b, and c which renders
all three propositions true (Rows 4 and 8). Hence the propositions are consistent.

Table 3.27. Truth Table for a+b, b•c, and (a+b)→(b•c)

(1) (2) (3) (4) (5) (6)

a b c a + b b • c (a + b)→(b • c)

(1) 0 0 0 0 0 1

(2) 0 0 1 0 0 1

(3) 0 1 0 1 0 0

(4) 0 1 1 1 1 1

(5) 1 0 0 1 0 0

(6) 1 0 1 1 0 0

(7) 1 1 0 1 0 0

(8) 1 1 1 1 1 1

96 Introduction to Soft Computing

Samir Roy_Chapter03.indd 96Samir Roy_Chapter03.indd 96 2/21/2013 3:18:16 PM2/21/2013 3:18:16 PM

Table 3.28. Truth Table for a→c′, (a→b)′, a →(c′→b)

(1) (2) (3) (4) (5) (6) (7) (8)

a b c c′ a→c′ (a →b)′ c′→b a →(c′→b)

(1) 0 0 0 1 1 0 0 1

(2) 0 0 1 0 1 0 1 1

(3) 0 1 0 1 1 0 1 1

(4) 0 1 1 0 1 0 1 1

(5) 1 0 0 1 1 1 0 0

(6) 1 0 1 0 0 1 1 1

(7) 1 1 0 1 1 0 1 1

(8) 1 1 1 0 0 0 1 1

(iii) Table 3.28 presents the Truth Tables for the propositional formulae a→c′, (a→b)′, a→(c′→b). Th e
truth values of a→c′, (a→b)′, a→(c′→b) for various interpretations are noted in Columns 5, 6, and
8 respectively. It is seen that these formulae are never true simultaneously. Since a set of propositions
is consistent only when they all can be true simultaneously, the given formulae are not consistent.

Problem 3.5. Consider the following statements: ‘I may fall sick if I smoke. I am not happy if I fall
sick. I smoke. I am happy.’ Are they consistent?

Solution 3.5. Let denote the statement ‘I may fall sick’ by a, ‘I smoke’ by b, and ‘I am happy’ by c.
Th en, the given statements are represented by a sequence of Propositional Logic formulae as shown
below:

Proposition Formula
1. I may fall sick if I smoke. b→a
2. I am not happy if I fall sick. a→c′
3. I smoke. b
4. I am happy. c

From the Truth Table shown in Table 3.29 it is evident that these formulae are never simultaneously true.
Hence the statements are not consistent.

Table 3.29. Truth table for b→a and a→c′

(1) (2) (3) (4) (5) (6)

a b c c′ b→a a→c′

(1) 0 0 0 1 1 1

(2) 0 0 1 0 1 1

(3) 0 1 0 1 0 1

(4) 0 1 1 0 0 1

(5) 1 0 0 1 1 1

(6) 1 0 1 0 1 0

(7) 1 1 0 1 1 1

(8) 1 1 1 0 1 0

Fuzzy Logic 97

Samir Roy_Chapter03.indd 97Samir Roy_Chapter03.indd 97 2/21/2013 3:18:16 PM2/21/2013 3:18:16 PM

Problem 3.6. Determine whether the following argument is valid or not.

Proposition
Premise No. 1. a→(b•c′)
Premise No. 2. a•(b→c)
Conclusion. ∴a

Solution 3.6. Table 3.30 shows the truth tables for the propositions of the given argument. An
argument is valid if the conclusion is true whenever the premises are true. However, there is no inter-
pretation for which both the premises (Column 6 and Column 8) are true simultaneously. Th erefore the
condition for validity of an argument is not violated in this case. Hence the argument is valid.

Table 3.30. Truth table for a→(b • c′) and a • (b → c)

(1) (2) (3) (4) (5) (6) (7) (8)

a b c c′ b • c′ a→(b • c′) b → c a • (b → c)

(1) 0 0 0 1 0 1 1 0

(2) 0 0 1 0 0 1 1 0

(3) 0 1 0 1 1 1 0 0

(4) 0 1 1 0 0 1 1 0

(5) 1 0 0 1 0 0 1 1

(6) 1 0 1 0 0 0 1 1

(7) 1 1 0 1 1 1 0 0

(8) 1 1 1 0 0 0 1 1

Problem 3.7. Illustrate the following inference rules with an example for each: Modus Ponens,
Universal Specialization, Chain Rule, Resolution, Modus Tollens, Simplifi cation, Addition, Abduction,
Induction, and Analogy.

Solution 3.7. Th e illustrative examples are cited below.

(i) Modus Ponens

Premise No. 1. If Anand is good Th en Anand is popular.

Premise No. 2. Anand is good.

Conclusion. Th erefore, Anand is popular.

(ii) Universal Specialization

Premise No. 1. All men are mortal.

Conclusion. Th erefore, Anand is mortal.

98 Introduction to Soft Computing

Samir Roy_Chapter03.indd 98Samir Roy_Chapter03.indd 98 2/21/2013 3:18:16 PM2/21/2013 3:18:16 PM

(iii) Chain Rule

Premise No. 1. If x is a natural number Th en x is an integer.

Premise No. 2. If x is an integer Th en x is a real number.

Conclusion. Th erefore, If x is a natural number Th en x is a real number.

(iv) Resolution

Premise No. 1. Man is rational or God is divine.

Premise No. 2. Man is not rational or Th e universe is expanding.

Conclusion. Th erefore, Gods is divine or Th e universe is expanding.

(v) Modus tollens

Premise No. 1. If man is rational Th en man is good.

Premise No.2. Man is not good.

Conclusion. Th erefore, Man is not rational.

(vi) Simplifi cation

Premise No. 1. Anand is a man and Anand plays chess.

Conclusion. Th erefore, Anand is a man (or Anand plays chess)

(vii) Addition

Premise No. 1. Anand is a man.

Conclusion. Th erefore, Anand is a man or 2 is a prime number.

(viii) Abduction

Premise No. 1. If it rains Th en the grass is wet.

Premise No.2. Th e grass is wet.

Conclusion. Th erefore, it has rained.

(ix) Induction

Premise No. 1. Th e prime number 29 is odd.

Premise No. 2. Th e prime number 53 is odd.

Premise No. 3. Th e prime number 41 is odd.

Premise No. 4. Th e prime number 211 is odd.

Conclusion. Th erefore, All prime numbers are odd.

Fuzzy Logic 99

Samir Roy_Chapter03.indd 99Samir Roy_Chapter03.indd 99 2/21/2013 3:18:16 PM2/21/2013 3:18:16 PM

(x) Analogy Consider the fact that man can stand on two legs and therefore, they can use their two
free hands for various purposes which the four legged animals generally cannot. Now, gorillas also
occasionally stand on two legs. Hence, by virtue of the analogical reasoning we may conclude that
gorillas can also employ their hands to perform various activities similar to human beings.

Problem 3.8. Apply the resolution rule of inference to prove statement 4 from statements 1, 2, and
3 as given below.

 (i) 1. p →q (ii) 1. p → q
2. r →s 2. r → s
3. p + r 3. q′+ s′
4. ∴q + s 4. ∴p′ + r′

Solution 3.8 Th e proofs are given below, with brief explanation of each step on the right.

(i) 1. p′ + q [1, since p →q ≡ p′+q]
 2. r ′+ s [2, since r →s ≡ r′+s]
 3. p + r [3]
 4. q + r [1 and 3, Resolution]
 5. q + s [2 and 4, Resolution]
(ii) 1. p′ + q [1, since p →q ≡ p′+q]
 2. r′ + s [2, since r →s ≡ r′+s]
 3. q′ + s′ [3]
 4. p′ + s′ [1 and 3, Resolution]
 5. p′ + r′ [2 and 4, Resolution]

Problem 3.9 Prove that any statement can be derived from a contradiction.

Solution 3.9. Given, a + a′ as the premise, we have to derive b, where b is an arbitrary statement.
Th e proof is given below.

1. a + a′ [1]
2. a [1, Simplifi cation]
3. a′ [1, Simplifi cation]
4. a′ + b [3, Addition]
5. b [2 and 4, Resolution]

Problem 3.10. Given p → q, prove that p → (p • q). Th is is called Absoption.

Solution 3.10. Th e proof is given below.

1. p′+q [1, since p → q ≡ p′ + q]
2. True • (p′+q) [1, since X = True • X]
3. (p′+p) • (p′+q) [2, since T = p′+p]
4. p′+(p•q) [3, Distributive law]
5. p→(p•q) [4, since a → b ≡ a′ + b]

100 Introduction to Soft Computing

Samir Roy_Chapter03.indd 100Samir Roy_Chapter03.indd 100 2/21/2013 3:18:16 PM2/21/2013 3:18:16 PM

Problem 3.11. Prove the validity of the following argument.

1. p→(q+r′)
2. s→r
3. p
4. q′
5. ∴s′

Solution 3.11. Validity of the argument is given below.

1. p→(q+r′) [1]
2. s→r [2]
3. p [3]
4. q′ [4]
5. q+r′ [1 and 3, Modus Ponens]
6. r→q [5, since r→q ≡ r′+q]
7. s→q [2 and 6, Chain Rule]
8. s′ [4 and 7, Modus Tollens]

Problem 3.12. Consider the fuzzy rule R : If service is good Th en customer is satisfi ed. Related uni-
verses are service-rating = {a, b, c, d, e}, and satisfaction-grade = {1, 2, 3, 4, 5} where the service-ratings a,
b, c, d, e are in descending order and the satisfaction-grades 1, 2, 3, 4, 5 are in the ascending order. Th e
fuzzy sets good-service and satisfi ed are defi ned as follows:

good service
a b c d e

- = + + ++ +
1 0 0 8 0 6 0 4 0 2. . . .0 0 8 0 6 0

satisfieff d = + + + ++
0 2
1

0 4
2

0 6
3

0 8
4

1 0
5

. .2 0 . .6 0 .

Find the relation matrix for this rule according to Jadeh’s interpretation.

Solution 3.12. According to Zadeh’s interpretation, the rule R is expressed by the relation

R = (good-service × satisfi ed) ∪ (good service-ss × satisfaction-grade)

Th e computation of the relation R representing the information contained in the fuzzy rule stated above
is given below.

good-service × satisfi ed =

5 4 3 2 1
1 0 0 8 0 6 0 4 0 2
0 8 0 8 0 6 0 4 0 2
0 6 0 6 0 6 0 4 0 2
0 4

a
b
c
d
e

. . . .8 0 6 0 4 0
.8 0 8 0 6 0 4 0
.6 0 6 0 6 0 4 0
. 04 0 400 0 4 0 4 0 2

0 2 0 2 0 2 0 2 0 2
. . . .4 0 4 0 4 0

.2 0 2 0 2 0 2 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

,

Fuzzy Logic 101

Samir Roy_Chapter03.indd 101Samir Roy_Chapter03.indd 101 2/21/2013 3:18:16 PM2/21/2013 3:18:16 PM

good service-ss × satisfaction-grade =

5 4 3 2 1
0 0 0 0 0 0 0 0 0 0
0 2 0 2 0 2 0 2 0 2
0 4 0 4 0 4 0 4 0 4
0 6

a
b
c
d
e

.0 0 0 0 0 0 0 0

.2 0 2 0 2 0 2 0

.4 0 4 0 4 0 4 0

.6 0 600 0 6 0 6 0 6
0 2 0 2 0 2 0 2 0 2

. . . .6 0 6 0 6 0
.2 0 2 0 2 0 2 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

,

Th erefore, R = (good-service × satisfi ed) ∪ (good service-ss × satisfaction-grade)

=

5 4 3 2 1
1 0 0 8 0 6 0 4 0 2
0 8 0 8 0 6 0 4 0 2
0 6 0 6 0 6 0 4 0 4
0 6

a
b
c
d
e

. . .8 0 6 0
. . . .8 0 8 0 6 0
. . . .6 0 6 0 6 0
.6 0 600 0 6 0 6 0 6

0 8 0 8 0 8 0 8 0 8
. . .6 0 6 0

. . . .8 0 8 0 8 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Problem 3.13. Recall the rule If job is risky Th en compensation is high’ discussed in Example 3.19.
Th e related fuzzy sets are

risky jk ob
job job job job

jj = + + +
0 3 0 8 0 7 0 9

2job 4job
. .3 0 .7 0

highi compensation
c c c c

-cc = + + +
0 2 0 4 0 6 0 8

1 2 3c c 4

. .2 0 . .6 0

on the universes job = {job1, job2, job3, job4} and compensation = {c1, c2, c3, c4}. Now, let the premise be ‘job
is risky1’ where the predicate risky1 is represented by the fuzzy set

risky jk ob
job job job job2job 4job
0 3 1 0 1 0 0 2jj = + + +

. .3 1 . .0 0

Employing Generalized Modus Ponens, we reach the conclusion ‘compensation is high1’. Compute high1-
compensation.

Solution 3.13. Th e rule R : If job is risky Th en compensation is high’ is represented by the fuzzy rela-
tion

R = (risky-job × high-compensation) ∪ (risky jk objj × compensation)

Which, on necessary calculations, is expressed by the fuzzy relation

R =

C C C C
job
job
job
job

1 2C 3 4C

1

2

3

4

0 7 0 7 0 7 0 7
0 2 0 4 0 6 0 8
0 3 0 4 0 6 0

. . . .7 0 7 0 7 0

. . . .2 0 4 0 6 0

. . . .3 0 4 0 6 0..
. .

7
0 2. 0 4.. 0 6.. 0 8.

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

.

102 Introduction to Soft Computing

Samir Roy_Chapter03.indd 102Samir Roy_Chapter03.indd 102 2/21/2013 3:18:21 PM2/21/2013 3:18:21 PM

Now, the fuzzy set high1-compensation = risky1-job°R is obtained as

[0.3 1.0 1.0 0.2] °

0 7 0 7 0 7 0 7
0 2 0 4 0 6 0 8
0 3 0 4 0 6 0 7
0 2 0 4 0 6 0 8

. . . .7 0 7 0 7 0

. . . .2 0 4 0 6 0

. . . .3 0 4 0 6 0

. . . .2 0 4 0 6 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥⎥
⎥⎥⎥⎥

⎥⎦⎦
⎥⎥⎥⎥

= [0.3 0.4 0.6 0.8]
Hence,

highi compensation
c c c c1

1 2c 3 4c
0 3 0 4 0 6 0 8-cc = + + +

. .3 0 . .6 0

Problem 3.14. Let U = V = {0, 1, 2, 3, 4} be the universe of discourse on which the fuzzy set

small = + + + +
1 0
0

0 5
1

0 2
2

0 1
3

0 0
4

. .0 0 . .2 0 is defi ned. Again, let R be the fuzzy relation ‘more or less the same’

which is defi ned by the relation matrix shown below.

R =

0 1 2 3 4
0
1
2
3
4

1 0 0 5 0 1 0 0 0 0
0 5 1 0 0 5 0 1 0 0
0 1 0 5 1 0 0 5 0 1
0 0

. .0 0 . .1 0
. .5 1 . .5 0
. .1 0 . .0 0
. 00 0 100 0 5 1 0 0 5

0 0 0 0 0 1 0 5 1 0
. .1 0 . .0 0

. . .0 0 0 0 . .5 1

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

If the premise and the rule are stated as
Premise: x is small.
Rule: x is more or less the same as y

then apply a suitable fuzzy rule of inference to obtain the conclusion and express it suitably as a relation.

Solution 3.14. Th e conclusion C is given by the fuzzy set obtained by the max-min composition of
the fuzzy set small and the relation R, i.e., C = small °R. Th erefore,

C = small °R = [1.0 0.5 0.2 0.1 0.0] °

1 0 0 5 0 1 0 0 0 0
0 5 1 0 0 5 0 1 0 0
0 1 0 5 1 0 0 5 0 1
0 0 0 1 0 5 1 0 0

. .0 0 . .1 0
. .5 1 . .5 0
. .1 0 . .0 0
. . .0 0 1 0 . .0 0..

.
5

0 0. 0 0.. 0 1. 0 5. 1 0.

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

.

According to the defi nition of max-min composition

μ μ μμμ
x U

Ry xμ x y() [i { ()x , (μR ,)y }]μ .

Th erefore,

mC(0) = max [min{msmall(0), mR(0,0)}, min{msmall(1), mR(1,0)}, min{msmall(2), mR(2,0)}, min{msmall(3), mR(3,0)},
min{msmall(4), mR(4,0)}]

= max [min{1, 1}, min{.5, .5}, min{.2, .1}, min{.1, 0}, min{0, 0}]
= max [1, .5, .1, 0, 0]
= 1.

Fuzzy Logic 103

Samir Roy_Chapter03.indd 103Samir Roy_Chapter03.indd 103 2/21/2013 3:18:31 PM2/21/2013 3:18:31 PM

Similarly,

mC(1) = max [min{1, .5}, min{.5, 1}, min{.2, .5}, min{.1, .1}, min {0, 0}]
 = max [.5, .5, .2, .1, 0]
 = .5.

mC(2) = max [min{1, .1}, min{.5, .5}, min{.2, 1}, min{.1, .5}, min {0, .1}]
 = max [.1, .5, .2, .1, 0]
 = .5.

mC(3) = max [min{1, 0}, min{.5, .1}, min{.2, .5}, min{.1, 1}, min {0, .5}]
 = max [0, .1, .2, .1, 0]
 = .2.

mC(4) = max [min{1, 0}, min{.5, 0}, min{.2, .1}, min{.1, .5}, min {0, 1}]
 = max [0, 0, .1, .1, 0]
 = .1.

Th erefore, the conclusion is C = + + ++ + +
1 0
0

0 5
1

0 5
2

0 2
3

0 1
4

. .0 0 . .5 0 . Th is can be fairly interpreted as ‘more or
less small’. Hence the conclusion can be stated as ‘y is more or less small.’

� TEST YOUR KNOWLEDGE

 3.1 Which of the following is a logical constant?
a) True b) False
c) Both (a) and (b) d) None of the above

 3.2 Which of the following sets of logical operations is not functionally complete?
a) {•, ′} b) {+, ′}
c) {→, ′} d) None of the above

 3.3 Which of the following expressions is not equivalent to the others?
a) p → q b) p ′→ q′
c) q′ → p′ d) None of the above

 3.4 Which of the following is a tautology?
a) p → q b) p + q
c) p • p′ d) True

 3.5 Which of the following is a contradiction?
a) p → p′ b) p′ → p
c) p • (p → p′) d) p • (p′ → p)

 3.6 Given a set of propositional logic expressions, if there is an interpretation for which the expres-
sions are all False, then the set of expressions
a) Must be consistent b) Must be inconsistent
c) Can be consistent or inconsistent d) Can neither be consistent nor inconsistent

 3.7 Consider the following argument.
Premise No. 1. Th e universe is expanding.
Premise No. 2. Th e universe is not expanding.
Conclusion. Th erefore, this is a red rose.

Th e argument is
a) Valid b) Invalid
c) Both (a) and (b) d) Neither (a) nor (b)

104 Introduction to Soft Computing

Samir Roy_Chapter03.indd 104Samir Roy_Chapter03.indd 104 2/21/2013 3:18:36 PM2/21/2013 3:18:36 PM

 3.8 Which of the following equivalences is incorrect?
a) a • (a + b) ≡ a b) a → b ≡ b′ → a′
c) a + (b • c) ≡ (a+b) • (a+c) d) None of the above

 3.9 What is the truth-value of the statement “2+3 = 7 or 7 is a prime number”?
a) False b) True
c) Both (a) and (b) d) Neither (a) nor (b)

3.10 Which of the following is true for the proposition p • (p′ + q)?
a) It’s a tautology b) It’s a contradiction
c) Both (a) and (b) d) Neither (a) nor (b)

3.11 Which of the following logic systems support universal and existential quantifi cation of vari-
ables?
a) Propositional Logic b) Predicate Logic
c) Both (a) and (b) d) None of the above

3.12 Which of the following is not an atomic formula of First Order Predicate Logic?
a) P(A) b) [(∀x) P(x)]′
c) [(∀x) (∃y)P(x)∧Q(y)]′ d) None of the above

3.13 First Order Predicate Logic is called ‘fi rst order’ because
(a) It does not allow predicate variables b) It does not allow function variables
c) Both (a) and (b) d) None of the above

3.14 Which of the following is a ground atom?
a) P (f(A, B)) b) P(x)
c) P(x, y) d) None of the above

3.15 Which of the following wff s contain a free variable?
a) (∀x)P[x] b) (∀x) (∃y) Q [x, y]
c) (∃y)R [A, y] d) None of the above

3.16 Which of the following identities is not valid?
a) (∀x) P[x] + (∀y) Q[y] = (∀z) (P[z] + Q[z])
b) (∃x) P[x] • (∃y) Q[y] = (∃z) (P[z] • Q[z])
c) Both (a) and (b)
d) None of the above

3.17 Which of the following identities is valid?
a) ¬(∀x)P[x] = (∃x)(¬P[x]) b) ¬(∃x)P[x] = (∀x) (¬P[x])
c) Both (a) and (b) d) None of the above

3.18 Which of the following is true with respect to the expression (∀x)P[x]•(∃y)(P[y])?
a) Variable x is inside the scope of variable y
b) Variable y is inside the scope of variable x
c) None of the variables x and y is inside the scope of the other
d) None of the above

3.19 Which of the following wff s is equivalent to (∀x)P[x] • (∃y)(Q[y])?
a) (∃x)P[x] • (∀y)(Q[y]) b) (∀y)P[y] • (∃x)(Q[x])
c) (∃y)P[y] • (∀x)(Q[x]) d) None of the above

3.20 Which of the following identities is valid?
a) (∀x) P[x] • (∀y) Q[y] = (∀z) (P[z] • Q[z])
b) (∃x) P[x] + (∃y) Q[y] = (∃z) (P[z] + Q[z])
c) Both (a) and (b)
d) None of the above

Fuzzy Logic 105

Samir Roy_Chapter03.indd 105Samir Roy_Chapter03.indd 105 2/21/2013 3:18:37 PM2/21/2013 3:18:37 PM

3.21 Which of the following inference rules does not follow deductive logic?
a) Modus Ponens b) Abduction
c) Modus Tollens d) Simplifi cation.

3.22 Which of the following inference rules follow deductive logic?
a) Analogy b) Induction
c) Abduction d) None of the above

3.23 Applying the Resolution rule of inference on the clauses p and p′, we get -
a) False b) True
c) p d) p′

3.24 I meet three Englishmen consecutively, each of whom have blue eyes. I conclude that all English-
men have blue eyes. Which rule of inference I apply?
a) Abduction b) Induction
c) Analogy d) None of the above

3.25 A pair of simultaneous equations under two variables x, y can be solved through the method of
elimination. When I am asked to solve three simultaneous equations under three variables x, y, z,
I assume that the same method applies here too. What rule of inference I am employing here?
(a) Abduction b) Induction
(c) Analogy d) None of the above

3.26 If one is bitten by a honeybee on his nose, his nose swells up. You see a person with swollen nose
and conclude that he must have been bitten by some honeybee. What rule of inference you are
following while making this conclusion?
a) Abduction b) Induction
c) Analogy d) None of the above

3.27 Which of the following rules of inference cannot be obtained using resolution?
a) Modus Ponens b) Modus Tollens
c) Chain Rule d) Universal specialization

3.28 Which of the following rules of inference relates to our commonsense reasoning?
a) Analogy b) Abduction
c) Both (a) and (b) d) Neither (a) nor (b)

3.29 In order to apply the resolution rules of inference, the prepositions must be in the form of
a) Well formed formulae b) Clauses
c) Conjunctive normal form d) Disjunctive normal form

3.30 Which of the following is not a fuzzy linguistic truth value?
a) True b) Almost true
c) Very much true d) None of the above

3.31 Which of the following can be regarded as a fuzzy linguistic truth value?
a) Nearly false b) Absolutely false
c) Both (a) and (b) d) None of the above

3.32 If t (a) and t (b) be the fuzzy truth values of propositions a and b, then which of the following is
not an interpretation of t (a→b)?
a) max {(1−t (a)), t (b)} b) min {1, 1−t (a)+t (b)}
c) max {min(t(a),t(b)),1−t(a)} d) None of the above

3.33 Let R be the fuzzy rule If ‘x is A’ Th en ‘y is B’, where A, B are fuzzy predicates corresponding to
the fuzzy sets A, B defi ned on the universes U and V respectively. Th en which of the following is
Zadeh’s interpretation?
a) R = A×B b) R = (A×B)∪(A′×V)
c) R = (A′×B) d) None of the above

106 Introduction to Soft Computing

Samir Roy_Chapter03.indd 106Samir Roy_Chapter03.indd 106 2/21/2013 3:18:37 PM2/21/2013 3:18:37 PM

3.34 Let R be the fuzzy rule If ‘x is A’ Th en ‘y is B’ Else ‘y is C’. Th en
a) R = (A×B)∪(A′×C) b) R = (A′×B)∪(A×C)
c) R = (A×B)∪(A×C) d) None of the above

3.35 Which of the following represents the most generalized form of a fuzzy rule?
a) If ‘x1 is A1’ • …• ‘xk is Ak’ Th en ‘y is B’
b) If ‘x is A’ Th en ‘y1 is B1’ • …• ‘yk is Bk’
c) If ‘x1 is A1’ • …• ‘xk is Ak’ Th en ‘y1 is B1’ • …• ‘yk is Bk’
d) None of the above

3.36 Which of the following is involved in a reasoning process using Generalized Modus Ponens?
a) Fuzzy propositions b) A set of clauses
c) Universal quantifi er d) None of the above

3.37 Let R : If ‘x is A’ Th en ‘y is B’ be a fuzzy rule. In a fuzzy reasoning process employing General-
ized Modus Ponens, A1, a modifi ed version of A, is used as the premise. Moreover, let B1 be the
conclusion where B1 is probably a modifi ed version of B. If B1 = A1 op R, then according to Zadeh’s
interpretation, op is :
a) Fuzzy Cartesian product b) Max-min composition
c) Fuzzy implication d) None of the above

3.38 Which of the following is known as Fuzzy Inference?
a) Generalized Modus Ponens b) Generalized Modus Tollens
c) Both (a) and (b) d) None of the above

3.39 Which of the following is an ‘absolute’ fuzzy quantifi er?
a) Most b) nearly 1000
c) Few d) None of the above

3.40 Which of the following cannot be a linguistic variable?
a) Age b) Speed
c) Price d) None of the above

Answers

 3.1 (c) 3.2 (d) 3.3 (b) 3.4 (d) 3.5 (c)
 3.6 (c) 3.7 (a) 3.8 (d) 3.9 (b) 3.10 (d)
 3.11 (b) 3.12 (c) 3.13 (a) 3.14 (a) 3.15 (d)
 3.16 (c) 3.17 (c) 3.18 (c) 3.19 (b) 3.20 (c)
 3.21 (b) 3.22 (d) 3.23 (a) 3.24 (b) 3.25 (c)
 3.26 (a) 3.27 (d) 3.28 (c) 3.29 (b) 3.30 (d)
 3.31 (c) 3.32 (d) 3.33 (b) 3.34 (a) 3.35 (c)
 3.36 (a) 3.37 (b) 3.38 (a) 3.39 (b) 3.40 (d)

 EXERCISES

3.1 Show that the set of logical operators {→, ′} is functionally complete.
3.2 Prove that the proposition a + (a • b)′ is a tautology.
3.3 Determine the validity of the argument given below.

Premise No. 1. a → b′
Premise No. 2. c → b
Premise No. 3. c
Conclusion. ∴ a′

Fuzzy Logic 107

Samir Roy_Chapter03.indd 107Samir Roy_Chapter03.indd 107 2/21/2013 3:18:37 PM2/21/2013 3:18:37 PM

3.4 Determine the validity of the argument given below.

Premise No. 1. If Hari works hard Th en he will be successful.
Premise No. 2. If Hari is not sick Th en he works hard.
Premise No. 3. Hari is not successful.
Conclusion. Th erefore, Hari is sick.

3.5 Find whether the following propositions are consistent.

1. If rose is red Th en ice is white.
2. If ice is not white Th en the earth is a tetrahedron.
3. Rose is not red And ice is not white.

3.6 Show that Modus Ponens, Modus Tollens, and Chain rules are special cases of Resolution.
3.7 Derive the conclusion p′ from the premises p → q, p → r, and q′ + r′ using the resolution rule of

inference. Also, derive the conclusion p → r from the premises p → (q → r) and q using the resolu-
tion rule of inference.

3.8 Let us consider the universe of discourse U = {John, Jane, Smith, Monica} of four persons. Jane is
married to John, and Monica is married to Smith. Th ree predicates, MLE(x), FML(y), MRD(x, y) are
defi ned on U meaning ‘x is a male’, ‘y is a female’, and ‘x and y are married’ respectively. Th ey have
the following combinations truth values.

x MLE (x) x FML (x)
John True John False
Jane False Jane True
Smith True Smith False
Monica False Monica True

x y MRD (x, y)
John John False
John Jane True
John Smith False
John Monica False
Jane John True
Jane Jane False
Jane Smith False
Jane Monica False
Smith John False
Smith Jane False
Smith Smith False
Smith Monica True
Monica John False
Monica Jane False
Monica Smith True
Monica Monica False

In this context determine if the following statements are true.

108 Introduction to Soft Computing

Samir Roy_Chapter03.indd 108Samir Roy_Chapter03.indd 108 2/21/2013 3:18:37 PM2/21/2013 3:18:37 PM

 i) (∀x)(∀y) MRD (x, y) → MRD (y, x)
 ii) (∀x)(∀y) MRD (x, y) → {MLE(x) • FML(y)}
 iii) (∀x) MLE (x) → (∃y){FML(y) • MRD (x, y)}

3.9 Given the statements ‘All men are mortal’ and ‘Anand is a man’ prove that ‘Anand is mortal’. Indi-
cate the rules of inference you apply at each step of the proof.

3.10 Consider the fuzzy rule R : If the car is expensive Th en it is comfortable. Th e related universes are
cars = {a, b, c, d}, and comfort-levels = {1, 2, 3, 4, 5}. Th e fuzzy sets expensive-cars and comfortable
are defi ned on the universes cars and comfort-levels respectively. Th ese sets are as given below.

expensive-cars--
a b c d

= + + +
0 2 0 6 0 7 1 0. . .2 0 6 0

comfortable = + + + +
0 1
1

0 2
2

0 5
3

0 8
4

1 0
5

. .1 0 . .5 0

Express the rule R : ‘If the car is expensive Th en it is comfortable’ as a fuzzy relation using Zadeh’s
interpretation.

3.11 Let U = V = {0, 1, 2, 3, 4} be two universes. Th e fuzzy set small = + + + +
1 0
0

0 5
1

0 2
2

0
3

0
4

. .0 0 is defi ned

on U. Moreover, R is the relation ‘much less than’, symbolized as ‘<<’ and is defi ned by the relation
matrix

R =

0 1 2 3 4
0
1
2
3
4

0 0 0 1 0 2 0 8 1 0
0 0 0 0 0 1 0 2 0 8
0 0 0 0 0 0 0 1 0 2
0 0

. . . .0 0 1 0 2 0

.0 0 0 0 1 0 2 0

.0 0 0 0 0 0 1 0

. 00 0 000 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0

. . . .0 0 0 0 0 0
.0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Now given the propositions ‘x is small’ and ‘x << y’ fi nd the conclusion. How can you describe the
conclusion in language?

3.12 Let low = + + + +
1 0
0

0 5
1

0 2
2

0
3

0
4

. .0 0 and highi = + + + +
0
0

0
1

0 2
2

0 5
3

1 0
4

. .2 0 be fuzzy sets defi ned on the

universes U = V = {0, 1, 2, 3, 4}. If R : If ‘x is low’ Th en ‘y is high’ be the fuzzy If-Th en rule and the
premise is ‘x is very low’, then what is the conclusion? Th e fuzzy predicate ‘very low’ is to be inter-
preted as the set

very low- = + + + ++
1 0
0

0 3
1

0
2

0
3

0
4

. .0 0 .

 BIBLIOGRAPHY AND HISTORICAL NOTES

Numerous papers, books etc. have been published on fuzzy logic since its inception by A. Zadeh. A list
of selected articles and books are cited below.

Hájek, P. (1995). Fuzzy Logic and Arithmetical Hierarchy. Fuzzy Sets and Systems, Vol. 3, No. 8, pp.
359–363.

Hájek, P. (1998). Metamathematics of Fuzzy Logic. Kluwer.

Fuzzy Logic 109

Samir Roy_Chapter03.indd 109Samir Roy_Chapter03.indd 109 2/21/2013 3:18:37 PM2/21/2013 3:18:37 PM

Klir, G. and Folger, T. (1987). Fuzzy Sets, Uncertainty, and Information. Englewood Cliff s, NJ: Prentice
Hall.

Kosko, B. (1993). Fuzzy Th inking: Th e New Science of Fuzzy Logic. New York: Hyperion.
Kosko, B. and Isaka, S. (1993). Fuzzy Logic. Scientifi c American, Vol. 269, No. 1, pp. 76–81.
McNeill, D. and Freiberger, P. (1992). Fuzzy Logic: Th e Discovery of a Revolutionary Computer Tech-

nology. Simon and Schuster.
McNeill F. M. and Th ro, E. (1994). Fuzzy Logic: A Practical Approach. Academic Press.
Novák, V., Perfi lieva, I., and Močkoř, J. (1999). Mathematical Principles of Fuzzy Logic. Kluwer Aca-

demic.
Zadeh, Lotfi A. (1974). Fuzzy logic and its application to approximate reasoning. Information Process-

ing, Proc. IFIP Congr., pp. 591–594.
Zadeh., Lotfi A. (2002). From Computing with Numbers to Computing with Words — From Manip-

ulation of Measurements to Manipulation of Perceptions. International Journal of Applied Math-
ematics and Computer Science, Vol. 12, No. 3, pp. 307–324.

110 Introduction to Soft Computing

Samir Roy_Chapter03.indd 110Samir Roy_Chapter03.indd 110 2/21/2013 3:18:45 PM2/21/2013 3:18:45 PM

4
FUZZY INFERENCE SYSTEMS

Key Concepts

Aggregation, Centre-of-sums (CoS) method, Centroid/Centre-of-gravity method, Defuzzifi cation,
Fuzzifi cation, Fuzzy air-conditioner controller, Fuzzy and associative memory (FAM), Fuzzy controller,
Fuzzy cruise controller, Fuzzy rule base, Mean-of-maxima (MoM) method, Rule implication

Chapter Outline

4.1 Introduction
4.2 Fuzzifi cation of Input Variables
4.3 Application of Fuzzy Operators
4.4 Evaluation of Fuzzy Rules
4.5 Aggregation of Output Fuzzy Sets
4.6 Defuzzifi cation

4.7 Fuzzy Controllers
Chapter Summary
Solved Problems
Test Your Knowledge
Exercise
Bibliography and Historical Notes

Th e previous chapter provides the basic concepts of fuzzy logic. Th is chapter includes a discussion on
fuzzy inference system, which is a kind of input–output mapping that exploits the concepts and principles
of fuzzy logic. Such systems are widely used in machine control, popularly known as fuzzy control sys-
tems. Th e advantage of fuzzy inference systems is that here the solution to the problem can be cast in terms
of familiar human operators. Hence, the human experience can be used in the design of the controller.
Engineers developed a variety of fuzzy controllers for both industrial and consumer applications. Th ese
include vacuum cleaners, autofocusing camera, air conditioner, low-power refrigerators, dish washer etc.
Fuzzy inference systems have been successfully applied to various areas including automatic control, com-
puter vision, expert systems, decision analysis, data classifi cation, and so on. Moreover, these systems are
associated with such diverse entities as rule based systems, expert systems, modeling, associative memory
etc. Th ese versatile application areas show the multidisciplinary nature of fuzzy inference systems.

4.1 INTRODUCTION

A fuzzy inference system (FIS) is a system that transforms a given input to an output with the help of
fuzzy logic. Th e input-output mapping provided by the fuzzy inference system creates a basis for deci-
sion-making process. Th e procedure followed by a fuzzy inference system is known as fuzzy inference

Samir Roy_Chapter04.indd 111Samir Roy_Chapter04.indd 111 2/21/2013 3:19:15 PM2/21/2013 3:19:15 PM

mechanism, or simply fuzzy inference. It makes use of various aspects of fuzzy logic, viz., membership
function, fuzzy logical operation, fuzzy IF-THEN rules etc. Th ere are various kinds of fuzzy inference
systems. In this chapter we describe the principles of fuzzy inference systems proposed by Ebrahim
Mamdani in 1975. It is the most common fuzzy inference methodology and moreover, it is employed in
the earliest control system built using fuzzy logic. Th e fundamental concepts of a fuzzy inference system
are explained subsequently along with illustrative examples.

Let us consider a person trying to cross a road while a car is approaching towards him. At what pace
should he proceed? It depends on the distance of the approaching car from the person, and its speed. If
the car is far away and is running slowly then the person can walk across the road quite leisurely. If the
car is far away but approaching fast then he should not try to cross the road leisurely, but a bit faster, say,
unhurriedly. However, in case the car is nearby, or is running fast, then he has to cross the road quickly.
All these constitute the rule base that guides the pace of the person’s movement across the road.

Th e sequence of steps followed by a fuzzy inference system for the problem stated above is shown in
Fig. 4.1. It presents the basic structure of any fuzzy inference system. Th e entire fuzzy inference process
comprises fi ve steps

 (i) Fuzzifi cation of the input variables
 (ii) Application of fuzzy operators on the antecedent parts of the rules
(iii) Evaluation of the fuzzy rules
(iv) Aggregation of fuzzy sets across the rules
 (v) Defuzzifi cation of the resultant fuzzy set

Th e following sections explain these steps briefl y.

4.2. FUZZIFICATION OF THE INPUT VARIABLES

Th e inputs to a fuzzy inference system are a number of crisp values corresponding to some parameters.
For each input, we have to determine the degree to which it belongs to the appropriate fuzzy set through
membership function. Th is is known as fuzzifi cation, the fi rst step of the entire fuzzy inference process.

Inputs are crisp
numbers within

a range

Input #1
Distance of
the car (0-10)

Input #2:
Speed of the
car (0-10)

Σ
Output: Pace
of crossing the
road (0-10)

Outputs are crisp
numbers within

a range

How to cross the road while a car is approaching: A 2–input, 1–output, 3–rule
Fuzzy Inference System (FIS)

Fuzzify the inputs
using fuzzy set
membership
functions

Evaluate the
rules through
fuzzy
reasoning

Combine the
results of rule
evaluation

Defuzzify the
combined results
to obtain a crisp
output value

Apply fuzzy
operators on the
antecedent parts
of the rules

1 2
g

3 4
e

5

R1: IFthe car is far away
AND it is running slowly
THEN cross the road
leisurely

R2: IF the car is far away
AND it is running fast
THEN cross the road
unhurriedly

R3: IF the car is nearby OR it is
running fast THEN cross the
road quickly

Fig. 4.1. Structure of a fuzzy inference system.

112 Introduction to Soft Computing

Samir Roy_Chapter04.indd 112Samir Roy_Chapter04.indd 112 2/21/2013 3:19:16 PM2/21/2013 3:19:16 PM

In the present example there are two inputs, the distance of the car from the man, and its speed,
both scaled to the range 0–10. Th ere are three rules, and each of them requires that the inputs should
be resolved into certain fuzzy linguistic sets. Th e concerned linguistic values related to the antecedent
parts here are, far away (‘the car is far away’), nearby (‘the car is nearby’), running slowly (‘it is running
slowly’), and running fast (‘it is running fast’).

Fig. 4.2 shows fuzzifi cation of the car’s distance with respect to the fuzzy set far away. Assuming
the distance to be 7 (in the range 0–10) the fuzzy membership is seen to be 0.5 here. Th e third row in
Fig. 4.6 shows the profi le of the fuzzy set nearby where the fuzzy membership for distance = 7 is 0.2.
Figs. 4.3, 4.4, and 4.6 depict the fuzzifi cation of the other input variable speed = 3 with respect to the
fuzzy sets slowly and fast.

Membership
profile of far
awayww

Input : Distance of the car
(in the range 0-10) = 7

Result of
fuzzification

1

1050

0.5

The car is far awayww

Fig. 4.2. Fuzzifi cation of input variables.

4.3 APPLICATION OF FUZZY OPERATORS ON THE ANTECEDENT
PARTS OF THE RULES

Th e antecedent of a fuzzy rule may consist of a single part or more than one parts joined together with
AND, or OR, operators. In this example, each rule has antecedents with two parts. In rules R1 and R2
the parts are joined together with the AND operator, and in R3 they are joined with the OR operator. If,
however, we had a rule like ‘IF the car is very close THEN cross the road very quickly’, then, obviously, the
antecedent would have been composed of a single part. Fuzzifi cation of inputs determines the degree to
which each part of the antecedent (or, just the antecedent, in case it consists of a single part) is satisfi ed.

When the antecedent of a given rule has more than one parts, we need to apply the appropriate fuzzy
operator so that a single number representing the result of the entire antecedent is obtained. Th e input to
the fuzzy operator is two, or more, membership values from the fuzzifi ed input variables and the output
is a single truth value. Th is single truth value is applied to the consequent part of the fuzzy rule to obtain
the resultant fuzzy set corresponding to that rule.

Table 4.1. Common fuzzy AND, OR methods

Operator Method

1 AND (min) t (P.AND.Q) = min [t (P), t (Q)]

(product) t (P.AND.Q) = t (P) × t (Q)

2 OR (max) t (P.OR.Q) = max [t (P), t (Q)]

(probabilistic OR) t (P.OR.Q) = t (P) + t (Q) − t (P) × t (Q)

Fuzzy Inference Systems 113

Samir Roy_Chapter04.indd 113Samir Roy_Chapter04.indd 113 2/21/2013 3:19:17 PM2/21/2013 3:19:17 PM

Th ere are various methods of implementing the fuzzy AND and OR operators. Th e most popular among
these, two for each of AND and OR, are summarized in Table 4.1. In the present example the min
method of AND, and max method of OR are followed. Fig. 4.3 illustrates the process of applying fuzzy
operator on the antecedent part of rule R1. Th e fi rst part and the second part of the antecedent produces
the membership values 0.5 and 0.6, respectively. Th e resultant truth value of the entire antecedent is
therefore min (0.5, 0.6) = 0.5. A similar process carried out on the rules R2 and R3 is shown in Fig. 4.6.

Input #1
Distance = 7

far awayww

1

105 70

Input #2
Speed = 3

Approaching
slowly

Apply the fuzzy AND
operator (min)

Result of
applying fuzzy
operator

1

10

0.5 0.50.6

530

The car is far awayww AND it is approaching slowlyl

Fig. 4.3. Applying fuzzy operators on the antecedent parts of the rules.

4.4 EVALUATION OF THE FUZZY RULES

Fuzzy rules are evaluated by employing some implication process. Th e input to the implication process
is the number provided by the antecedent and its output is a fuzzy set. Th is output fuzzy set is obtained
by reshaping the fuzzy set corresponding to the consequent part of the rule with the help of the number
given by the antecedent.

Input #1
Distance = 7

far away

1

105 70
Input #2
Speed = 3

Approaching
slowly

Apply the
fuzzy AND
operator
(min)

Apply the fuzzy
implication
operator (min)

Result of
implicationFuzzy inputs

Antecedent (IF part) Consequent (THEN part)

1

10

0.50.2

0.6

530

IF The car is far away AND it is approaching slowly THENy cross the road leisurely

leisurely

1

1050

1

1050

Fig. 4.4. Evaluation of fuzzy rule during fuzzy inference process.

Th e implication process is illustrated in Fig. 4.4. Th e fuzzy set for the consequent of the rule R1, i.e.,
cross the road leisurely, has a triangular membership profi le as shown in the fi gure. As a result of apply-
ing fuzzy AND operator as the minimum of its operands, the antecedent returns the value 0.5, which is

114 Introduction to Soft Computing

Samir Roy_Chapter04.indd 114Samir Roy_Chapter04.indd 114 2/21/2013 3:19:17 PM2/21/2013 3:19:17 PM

subsequently passed on to the consequent to complete the implication process. Th e implication process
reshapes the membership function of the fuzzy set leisurely by taking the minimum between 0.5, and the
membership value of leisurely at any point. Th e result is a trapezoidal membership function as depicted
in the fi gure. As in the case of fuzzy logic operators there are several implication methods. Among these
the min method proposed by Mamdani is followed here. It eff ectively truncates the fuzzy membership
profi le of the consequent with the value returned by the antecedent.

It should be noted that the rules of an FIS may have various weights attached to them ranging from
0 to 1. In the present case all rules are assigned the same weight 1. In case a rule has a non-zero but less-
than-one weight, it has to be applied on the number given by the antecedent prior to realization of the
implication process.

4.5 AGGREGATION OF OUTPUT FUZZY SETS ACROSS THE RULES

Decision-making through a fuzzy inference system has to take into account the contribution of each rule
in the system. Th erefore the individual fuzzy sets obtained by evaluating the rules must be combined in
some manner into a single resultant fuzzy set. Th is aggregation process takes the truncated membership
profi les returned by the implication process as its input, and produces one fuzzy set for each output vari-
able as the output.

Various aggregation methods are used in practice. Taking the maximum among all inputs (max),
or taking the algebraic sum of all inputs (sum) are two methods widely employed by the professionals.
Fig. 4.5 illustrates the principle of these two methods. In Fig. 4.6, all three rules R1, R2, and R3 are placed
together to show how the outputs of all the rules are combined into a single fuzzy set using the max ag-
gregation method.

(a) max methodx

a

b

c = max (a, b)

a

b

c = a + b

(b) sum methodm

Fig. 4.5. Two popular aggregation methods – max and sum.

4.6 DEFUZZIFICATION OF THE RESULTANT AGGREGATE FUZZY SET

Defuzzifi cation is the process of converting the aggregate output sets into one crisp value for each out-
put variable. Th is is the last step of a fuzzy inference process. Th e fi nal desired output for each variable

Fuzzy Inference Systems 115

Samir Roy_Chapter04.indd 115Samir Roy_Chapter04.indd 115 2/21/2013 3:19:18 PM2/21/2013 3:19:18 PM

is generally a single number because like the inputs, the outputs too are usually variables signifying
physical parameters, e.g., voltage, pressure etc., under control. Since the aggregate of a number of fuzzy
sets is itself a fuzzy set and encompass a range of output values, it is not suitable to drive a physical
system. It has to be defuzzifi ed in order to resolve into a single output value for the related output vari-
able. Th ere are several defuzzifi cation methods in vogue, viz., centroid method, centre-of-sums (CoS)
method, mean-of-maxima (MoM) method etc. Th ese are briefl y explained in Fig. 2.6.

distance = 7

far awayww
1

speed = 3

approaching
slowly

1

0.5 0.50.5

0.6

IF The car is far awayww AND it is approaching slowly THEN y cross the road leisurely.

leisurely
1

50

1

100

min (.5, leisurelyl)

1

100 5

Combine the
result of R1, R2RR ,
and R3 RR (max)x

Aggregate
output fuzzy set

distance = 7

far awayww

speed = 3

approaching
fast

1

0.1 0.10.5

0.5

IF The car is far awayww AND it is approaching fast THENt cross the road unhurriedly.

unhurriedly
1

7.52.5 7.52.5

1

100

min (.1, unhurriedlyl)

distance = 7

nearby

speed = 3

approaching
fast

11

0.1

0.20.2 0.2

IF The car is nearby OR it is approaching fast THENt cross the road quickly.

quickly
1

105

1

100

min (.2, quicklyl)

R1RR :

R2RR :

R3RR :

Fig. 4.6. Aggregation of fuzzy sets across the rules.

4.6.1 Centroid Method

Th e centroid method is also referred to as centre-of-gravity or centre-of-area method. In this method the
individual output fuzzy sets are superimposed into a single aggregate fuzzy set (the max method) and

116 Introduction to Soft Computing

Samir Roy_Chapter04.indd 116Samir Roy_Chapter04.indd 116 2/21/2013 3:19:18 PM2/21/2013 3:19:18 PM

then the centroid, or centre-of-gravity, or centre-of-area of the resultant membership profi le is taken as
the defuzzifi ed output. Fig. 4.7 illustrates the method graphically.

a

b

Defuzzified value is
computed as the
centroid of the whole
area

Compute the
centroid of the
whole area

Individual area
segments and
their controids

Partition
into
segments

Aggregate
output fuzzy
set

c = max (a, b)

c1

A1 A2 A4
A3 A5

c2cc c3cc c4cc c5cc

x

x =
∑A i × c i

∑Ai

max

Fig. 4.7. The centroid method of defuzzifi cation.

If the total area under the aggregate output fuzzy set is partitioned into disjoint segments A1, …, Ak, and
the corresponding centroids are c1, …, ck, then the centroid of the whole area is obtained as

 x
A c

A
centroid

i ic
i

k

i
i

k= =

=

∑

∑
1

1

 (4.1)

For discrete membership function, the formula is

 x
x

centroid

i i
i

n

i
i

n=
×

=

=

∑

∑

μ

μ

()xixμ

()xiμ

1

1

 (4.2)

whereas the expression for the centroid in case of continuous membership function is given by

 x
x dx

x dxdd
centroid

a

b

a

b=
∫

∫

μ

μ

()xμ

()xμ
 (4.3)

where [a, b] is the domain of x.

Fuzzy Inference Systems 117

Samir Roy_Chapter04.indd 117Samir Roy_Chapter04.indd 117 2/21/2013 3:19:19 PM2/21/2013 3:19:19 PM

4.6.2 Centre-of-Sums (CoS) Method

Th e CoS method works almost in the same way as that of the centroid method described earlier. Th e only
diff erence is, here the aggregate output set is obtained by the sum method rather than the max method.
Eff ectively, this boils down to counting the overlapping areas twice instead of once. Th erefore, in CoS
method, the areas and the centroids of individual fuzzy sets (obtained as a result of evaluating the fuzzy
rules) are computed, and then the defuzzifi ed value of x is obtained as

 x
A c

A
COS

i ic
i

m

i
i

m= =

=

∑

∑
1

1

 (4.4)

where A1, …, Am, are the areas corresponding to the m number of individual output fuzzy sets and c1, …,
cm are respective centroids. Th e technique of CoS aggregation method is illustrated in Fig. 4.8.

a

b
x =

∑A i × c i

∑Ai

A1

A2

c2

c1

sumCompute
area and
centroid
for each
fuzzy set

Defuzzified value

Fig. 4.8. The centre-of-sum (CoS) method of defuzzifi cation

Now consider the situation where the fuzzy sets are discrete. Let the number of sets be m and x1, …, xn
be the n number of members. For each member xi let m1(xi), …, mm(xi) be the degrees of membership of
xi to the respective fuzzy sets. Th en according to the CoS method of defuzzifi cation, the defuzzifi ed value
is computed as

 x
x

COS

i j i
j

m

i

n

j i
j

m

i

n=

⎛

⎝⎜
⎛⎛

⎝⎝

⎞

⎠⎟
⎞⎞

⎠⎠==

==

∑∑

∑∑

μ

μ j

()xi

()xix

11

11

 (4.5)

4.6.3 Mean-of-Maxima (MoM) Method

MoM is a simple defuzzifi cation method where the highest degree of membership among all fuzzy sets
is taken as the output defuzzifi ed value. In case there are more than one elements, say x1, …, xk, having
the same highest degree of membership, then the mean of those points is taken as the defuzzifi ed value.

 x
x

k
fo d e f yfMOMO

i
i

k

= =
∑

1 ()for discrete fuzzyff sets (4.6)

118 Introduction to Soft Computing

Samir Roy_Chapter04.indd 118Samir Roy_Chapter04.indd 118 2/21/2013 3:19:23 PM2/21/2013 3:19:23 PM

 x
xdxdd

b
fo s f yfMOM

a

b

=
∫

()b a
()for continuous fuzzyff sets (4.7)

Fig. 4.9 illustrates the MoM method of defuzzifi cation.

a

b
Take mean-of-maximum as
the defuzzified value

Take
maxima

Fig. 4.9. The mean-of-maxima (MoM) method of defuzzifi cation.

In the present example defuzzifi cation is carried out using the CoS method as detailed in Table 4.2. Th e
defuzzifi ed value is computed as

x A c A c A c
A A A

=
+c +c

+A
=1 1cc 2 2cc 3 3c

1 2+ A 3
4 25. .

Th is implies that if the distance of the car is 7 (in the scale of 0–10) and it is approaching with a speed 3
(again in the scale 0–10) then according to the FIS exemplifi ed here the person should cross the road with
a pace of 4.25 (in the scale 0–10). Th e entire fuzzy inference process is schematically depicted in Fig. 4.10.

Table 4.2. Computation of areas and centroids

Rule Output fuzzy set Area Centroid

1. R1

0.5

2.5

5

1

100
c1 = 2.5

A1 = 1/2 (5 + 2.5) × 0.5 = 15/8 c1 = 2.5

2. R2

0.1
4.5

5

1

10

c2cc = 5

A2 = 1/2 (5 + 4.5) × 0.1 = 18/40 c2 = 5

3. R3

0.2
4.5

5

1

10

c3cc = 7.5

A3 = 1/2 (5 + 4) × 0.2 = 9/10 c3 = 7.5

Fuzzy Inference Systems 119

Samir Roy_Chapter04.indd 119Samir Roy_Chapter04.indd 119 2/21/2013 3:19:26 PM2/21/2013 3:19:26 PM

distance = 7

far awayww
1

speed = 3

approaching slowly

1

0.5 0.50.5

0.6

IF The car is far awayww AND it is approaching fast THENt cross the road leisurely.

leisurely
1

50

1

100

min (.5, leisurelyl)

1

100

Combine the result of
R1, R2RR , R3 RR (sum)

Aggregate
output fuzzy set

distance = 7

far awayww

speed = 3

approaching
fast

1

0.1 0.10.5

0.5

IF The car is far awayww AND it is approaching slowlyl THENy cross the road unhurriedly.l

leisurely
1

7.52.5 7.52.5

1

100

min (.1, unhurriedlyl)

distance = 7

nearby

speed = 3

approaching
fast

11

1

0.1

0.20.2 0.2

IF The car is nearby OR it is approaching fast THENt cross the road quickly.

quickly
1

105

1

100

min (.2, quicklyl)

R1RR :

R2RR :

R3RR :

Apply the fuzzy operator Apply the fuzzy implication
operator (minii)n

Fuzzy inputs

1

100

4.25

Defuzzification
of the combined
result

Output of the FIS – a crisp valueS

Fig. 4.10. Fuzzy inference process using centre of sums (CoS) method.

4.7 FUZZY CONTROLLERS

Most obvious examples of fuzzy inference systems are the so called fuzzy controllers. These are
controlling and decision-making systems that exploit rules involving fuzzy linguistic descriptions
for the purpose of controlling a physical process. They employ fuzzy inference process as their
functional principle. E. H. Mamdani and S. Assilian have shown in 1974 that a model steam engine
could be regulated with the help of a set of fuzzy IF-THEN rules. Since then innumerable fuzzy
controllers have been developed for such diverse applications areas as blast furnace, mobile robots,
cement kilns, unmanned helicopters, subway trains and so on. As a result of the advent of fuzzy

120 Introduction to Soft Computing

Samir Roy_Chapter04.indd 120Samir Roy_Chapter04.indd 120 2/21/2013 3:19:29 PM2/21/2013 3:19:29 PM

microprocessors, the realm of fuzzy controllers have been extended to consumer electronics and
home appliances, e.g., washing machine, vacuum cleaner, camera, air conditioner.

Th e basic structure of a fuzzy controller is rather simple. It consists of three stages, viz., the input
stage, the processing stage, and the output stage (Fig. 4.11).

Processing
stage

Output
stage

Input
stage

Sensor
input

Control
output

Fig. 4.11. Basic structure of a fuzzy controller.

Sensor or any other inputs are fed to the controller through the input values and mapped to membership val-
ues of appropriate fuzzy sets. Th is is the fuzzifi cation step. Th e processing stage utilizes a fuzzy rule base that
consists of a number of fuzzy rules. Th e basic form of a fuzzy rule, as mentioned earlier, is

R : IF x is A THEN y is B
where x and y are the input and the output parameters, and A and B are linguistic values. A typical fuzzy
rule may look like ‘IF room temperature is cool THEN heater is high’. Th e ‘IF’ part of a fuzzy rule is known
as the ‘antecedent’ and the ‘THEN’ part is called the ‘consequent’. In case of the rule ‘IF room temperature
is cool THEN heater is high’ the antecedent is ‘room temperature is cool’ while ‘heater is high’ is the con-
sequent. However, the antecedent of a practical fuzzy rule may consist of several statements of the form
‘x is A’. Th e general form of a rule in the rule base is

R : IF (x1 is A1) and (x2 is A2) and … and (xk is Ak) THEN y is B

Th e fuzzifi cation step produces the truth values of various statements ‘x1 is A1’, ‘x2 is A2’, … , ‘xk is Ak’ and
depending on these values certain rules of the rule base are fi red. Th e processing stage carries some manipu-
lations on the basis of the fi red rules to obtain fuzzy sets relating to the consequent parts of the fi red rules.
Finally, the outcome of the processing stage on each rule are combined together to arrive at a crisp value for
each control parameter. Th is is carried out during the output stage and is termed as defuzzifi cation. Th e block
diagram shown in Fig. 4.12 gives a bit more detailed picture of a fuzzy controller than provided in Fig. 4.11.

Processing Output
stage

Fuzzification
Sensor
input

Control
output

Fuzzy Rule
Base

Fuzzy set
membership

function for the
consequents

Fuzzy set
membership

function for the
antecedents

Defuzzification
strategy

Input stage Processing stage Output stage

Fig. 4.12. Block diagram of a fuzzy controller.

As discussed earlier in the context of fuzzy inference systems, there are various defuzzifi cation tech-
niques, e.g., centroid, CoS, MoM etc. Th e designer is to choose the technique most appropriate for his

Fuzzy Inference Systems 121

Samir Roy_Chapter04.indd 121Samir Roy_Chapter04.indd 121 2/21/2013 3:19:30 PM2/21/2013 3:19:30 PM

application. In the subsequent parts of this section we present the essential features of two model fuzzy
controllers, viz., a fuzzy air-conditioner controller, and a fuzzy cruise controller.

4.7.1 Fuzzy Air Conditioner Controller

Let us consider a highly simplifi ed version of an air-conditioner (AC). Its function is to keep track of the
room temperature and regulate the temperature of the air fl own into the room. Th e purpose is to main-
tain the room temperature at a predefi ned value. For the sake of simplicity we assume that the AC does
not regulate the fl ow of air into the room, but only the temperature of the air to be fl own.

Let T0 be the desired room temperature. Th e air conditioner has a thermometer to measure the current
room temperature T. Th e diff erence ΔT = T − T0 is the input to the controller. When ΔT > 0, the room is hot-
ter than desired temperature and the AC has to blow cool air into the room so that the room-temperature
comes down to T0. If, on the other hand, ΔT < 0, the room needs to be warmed up and so, the AC is to blow
hot air into the room. In order to achieve the required temperature of the air to be blown into the room, a
‘dial’ is turned at the appropriate position within the range [−1, +1]. Th e scheme is shown in Fig. 4.13.

D

0

+1−1

Fig. 4.13. Air-conditioning dial

A positive value of the dial means hot air will be blown, and a negative value means cold air will be
blown. The degree of hotness, or coldness, is determined by the magnitude of the dial position. No
air is blown when the dial is at 0. The input to the fuzzy controller is ΔT = T − T0, and the output
is D, i.e., the position to which the AC dial is to be turned. Both ΔT and D are crisp values, but the
mapping of ΔT to D takes place with the help of fuzzy logic. Various features of the controller are
briefly described below.

(a) Fuzzy sets: Occasionally, for fuzzy control systems, it is convenient to categorize the strength of
the input and the output parameters with the help of certain fuzzy sets referred to as Large Negative
(LN), Medium Negative (MN), Small Negative (SN), Zero (ZE), Small Positive (SP), Medium Positive
(MP), Large Positive (LP) etc. Th ese are indicative of the magnitude of the respective parameters in the
context of the given application. For the system under consideration, the fuzzy sets defi ned on the input
parameter ΔT and D are LN, MN, ZE, MP, and LP. Fig. 4.14 and Fig. 4.15 show the membership profi les
of these fuzzy sets. For example, membership of ΔT to Medium Positive (MP) is zero for ΔT ≤ 0, and
ΔT ≥ 6. Th e said membership increases uniformly as ΔT increases from 0 to 3, becomes 1 at 3, and then
uniformly diminishes to 0 as ΔT approaches 6 from 3 (Fig. 1.14).

1
LN LPMPZEMN

0−3−6 63
ΔT in °C

μ

Fig. 4.14. Fuzzy membership functions on DT

122 Introduction to Soft Computing

Samir Roy_Chapter04.indd 122Samir Roy_Chapter04.indd 122 2/21/2013 3:19:30 PM2/21/2013 3:19:30 PM

0

1
LN LPMPZEMN

0−0.5−1.0 +1.0+0.5

D

μ

Fig. 4.15. Fuzzy membership functions on D.

All membership functions stated above are of a triangular type, which is widely used in fuzzy controllers.
If required, other kinds of membership functions can also be employed.

(b) Fuzzy rule base: Th e system under consideration has a simple rule base consisting of fi ve fuzzy
rules. Th ese are listed below.

R1 : IF ΔT is LN THEN D is LP.
R2 : IF ΔT is MN THEN D is MP.
R3 : IF ΔT is ZE THEN D is ZE.
R4 : IF ΔT is MP THEN D is MN.
R5 : IF ΔT is LP THEN D is LN.

Th e block diagram of the fuzzy inference process for this controller is shown in Fig. 4.16. Th e input to the
system is ΔT, which is fi rst fuzzifi ed with the help of the fuzzy sets membership functions LN, MN, ZE,
MP, LP for ΔT. Depending on the result of this fuzzifi cation, some of the rules among R1, …, R5 are fi red.
As a result of this fi ring of rules, certain fuzzy sets are obtained out of the specifi cation of LN, MN, ZE,
MP, LP for D. Th ese are combined and defuzzifi ed to obtain the crisp value of D as the output.

R1

R2RR

R3RR

R4R

R5RR

Rule base

LN
MN
ZE
MP
LP

ΔΔT

LN
MN
ZE
MP
LP

D

Fuzzification Defuzzification

Input : ΔT

Output : D

Fig. 4.16. Inference process of the simplifi ed fuzzy air-conditioner controller.

We shall now work out the functionality of the system for the crisp input ΔT = −2.

(a) Fuzzifi cation: Given ΔT = − 2, we compute the degree of membership of ΔT with respect to the
fuzzy sets LN, MN, ZE, MP, LP using the respective membership profi les (Fig. 4.17) as follows.

μ μ μ μμμ MN
T μμ MP

TΔ Δμμ T Δ ΔT(μMN
TΔμμ) . , μμμΔT (μMP

TΔ))− =)2 2
3

6. 7, μμμΔμμ Tμμ 1
3

2(μMP
TΔμμ − 0 200 0(,)μLP

TΔ =2)

Fuzzy Inference Systems 123

Samir Roy_Chapter04.indd 123Samir Roy_Chapter04.indd 123 2/21/2013 3:19:31 PM2/21/2013 3:19:31 PM

0

1
LN LPMPZEMN

−6 60−3

2/3

1/3

ΔT in °C

μ

Fig. 4.17. Fuzzy memberships for DT = - 2

Since only MN and ZE attain non-zero values, rules R2, and R3 are fi red. Hence, we have to map these
membership values of the antecedents of rules R2, and R3 to the corresponding D values in the respective
consequents. Th is is done in the implication phase. Moreover, as the antecedents of all the rules consist
of only single parts, the phase of applying fuzzy operators is not relevant here.

0

1

.67

MPMN

h

mMN (−2) = 2/3

−6 −3 −2 0

Rule R2RR : IF ΔT is MN THEN D is MP

0 0.5 1.0
ΔT D

h = 2/3

a

b

0 0.5 1.0

a = 1/3

b = 1

Fig. 4.18. Evaluation of rule R2

(b) Rule implication: Th e rule implication process is illustrated in Fig. 4.18 and Fig. 4.19. Fig. 4.18
shows the implication process of Rule R2 and Fig. 4.19 depicts that for Rule R3. In case of R2 the fuzzy
membership of input ΔT = − 2 with respect to the fuzzy set MN, i.e., mMN (− 2) = 2 / 3, is used to reshape
the fuzzy set MP of the consequent part. Th e result is a fuzzy set with trapezoidal membership function
which is shown in the lower region in Fig. 4.18. Th e area and the centroid (i.e., centre-of-area) this trap-
ezoidal region are computed as area1 = 4/9, centroid1 = 0.5. Similarly, area2 = 5/18, and centroid2 = 0 are
obtained as a result of the implication process carried out on Rule R2.

124 Introduction to Soft Computing

Samir Roy_Chapter04.indd 124Samir Roy_Chapter04.indd 124 2/21/2013 3:19:33 PM2/21/2013 3:19:33 PM

0

1

.33

ZEZE

h
mZEmm (−2) = 1/3

−3 02 +3

Rule R2RR : IF ΔT is ZE THEN D is ZE

−0.5 0 +0.5
ΔT D

h = 1/3

a

b

−0.5 0 +0.5

a = 1/3

b = 1

Fig. 4.19. Evaluation of rule R3

(c) Aggregation and defuzzifi cation: Th e aggregation and defuzzifi cation process according to the CoS
method, centroid method, and MoM method are described below.
(i) Centre-of-sums: Here the defuzzifi ed output is obtained as

D
area centroid

area
area t id area centro

COS

i icentroid
i

i
i

=
×

=
× +centroid ×∑

∑
1 1centroid× centroid 2 idii

area area
2

1 2area

4
9

0 5 5
18

0 0

4
9

5
18

4
13

0 308

+

=
× +0 5 ×

+
= ≈

. .5 0+5 ×
.

Therefore, when the room temperature is below the set temperature T0 by 2 degrees (ΔT =
−2) the fuzzy AC controller under consideration will set the AC dial at + 0.308 so that air, hot
to the extent indicated by the value just mentioned, is blown into the room to bring the room
temperature back to T0.
(ii) Centroid: Th e fi rst step in this method is to superimpose the outputs of the rule implication process.
Accordingly, the trapezoidal regions of Fig. 4.18 and Fig. 4.19 are superimposed to obtain the polygon
ABCDEF shown in Fig. 4.20. Th e polygon ABCDEF is then partitioned into six regions, ΔABJ (A1), BCIJ
(A2), CKHI (A3), ΔCDK (A4), DEGH (A5), and ΔEFG (A6). Th ese regions are either rectangles or right-
angled triangles. It is easily seen that when the membership functions of the fuzzy sets related to the rules
are triangular in shape, the aggregated polygonal region can be partitioned into a numbers of rectangles
and right-angled triangles.

Fuzzy Inference Systems 125

Samir Roy_Chapter04.indd 125Samir Roy_Chapter04.indd 125 2/21/2013 3:19:33 PM2/21/2013 3:19:33 PM

−1/2 1/2 10

F

ED

CB

A

1/3

2/3

GHIJ

K

A1

A2 A3

A4

A5

A6

Fig. 4.20. Aggregate region obtained in centroid method of defuzzifi cation.

(a) Centroid = a + (b − a)/3 (b) Centroid = b − (b − a)/3 (c) Centroid = (a + b)/2

CB

A

a b

CB

A

a b

B

CD

A

a b

Fig. 4.21. Computing the centroids of rectangular and right-angled triangular regions.

Computation of centroids, i.e., centre-of-areas, of rectangular and right-angled triangular regions is il-
lustrated in Fig. 4.21 (a), (b) and (c). Table 4.3 shows the details of computation of the areas and the
centroids of various segments of Fig. 4.20. Th e crisp output of the fuzzy controller obtained through the
centroid method is

D A c A c A c A c A c A c
A A A A Acentroid =

+c +c +c +c +c
+A +A

1 1cc 2 2cc 3 3cc 4 4cc 5 5cc 6 6c
1 2+ A 3 4+ A 5 655

1
36

7
18

1
6

1
12

1
18

1
4

1
36

5
18

2
9

1
2

1
9

+

=
× −⎛

⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+ × −⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+ × + × + × +

A

××

+ + + + +
= =

7
9

1
36

1
6

1
18

1
36

2
9

1
9

5
22

0 227.

Table 4.3. Computation of areas and centroids of various regions

Region Areas Centroids

Δ ABJ (A1) 1/2 × (1/2 −1/3) × 1/3 = 1/36 −7/18 (c1)

 BCIJ (A2) 1/3 × (1/3 + 1/6) = 1/6 −1/12 (c2)

 CKHI (A3) 1/3 × (1/3 −1/6) = 1/18 1/4 (c3)

Δ CDK (A4) 1/2 × (1/3 −1/6) ×1/3 = 1/36 5/18 (c4)

 DEGH (A5) 2/3 ×1/3 = 2/9 1/2 (c5)

Δ EFG (A6) 1/2 ×1/3 × 2/3 = 1/9 2/9 (c6)

Hence according to the centroid method, the AC dial is to be set at D = + 0.227.

126 Introduction to Soft Computing

Samir Roy_Chapter04.indd 126Samir Roy_Chapter04.indd 126 2/21/2013 3:19:35 PM2/21/2013 3:19:35 PM

(iii) Mean of Maxima: As it is seen from Fig. 4.20, the maximal membership is 2/3 = 0.667, and this
maxima is attained from point H to point G along the D-axis. Distances of H and G from the origin
are + 1/3, and + 2/3 respectively. Therefore the value of D in MoM method is obtained as below:

D OG OH
MoM =

+
=

+
= =

2

1
3

2
3

2
1
2

0 5

Th erefore, the AC dial D should be set at 0.5 as per MoM method of defuzzifi cation.

4.7.2 Fuzzy Cruise Controller

Th is fuzzy controller was proposed by Greg Viot in 1993. Its purpose is to maintain a vehicle at a desired
speed. Fig 4.22 shows the high level block diagram of the system. Th ere are two inputs, viz., speed dif-
ference (Δu) and acceleration (a). Th e only output is the Th rottle control (T).

T
a

Δu
Fuzzy Cruise

Controller

Δu = speed difference
a = acceleration
T = throttle control

Fig. 4.22. Block diagram of fuzzy cruise controller.

Th e speed diff erence is computed as Δu = u − u0, where u0 is the desired speed and u is the current speed.
For the sake of simplicity all the parameters, Δu, a, T, are normalized here to the range 0–63 and all of
them are categorized by the fuzzy sets LN, MN, SN, ZE, SP, MP, LP. Under normalization, the member-
ship profi les of these sets for various parameters are identical and appear as shown in Fig. 4.23.

0

1
LN SP MP LPZESNMN

7 32315 9 47 55 63

μ

Fig. 4.23. Membership profi les of fuzzy sets on speed difference (Du), acceleration (a) and
throttle control (T).

Th e rule base can be constituted with various sets of rules corresponding to combinations of fuzzy sets
on Δu and a. In this example we consider the exhaustive set of rules obtained by taking all possible com-
binations of fuzzy sets on Δu and a. Th is is depicted in Table 4.4. Th is way of tabular representation of a
fuzzy rule base is oft en referred to as a fuzzy associative memory (FAM) table. Th e entries in the table can
be interpreted in the following way: consider the cell at the intersection of row 3 and column 4. Row 3
corresponds to the fuzzy set Small Negative (SN) of Δu and Column 4 corresponds to ZE of acceleration
a. Th e entry in their intersecting cell is SP. Th erefore, this entry represents the rule

R34 : IF (Δu is SN) AND (a is ZE) THEN (T is SP)

Fuzzy Inference Systems 127

Samir Roy_Chapter04.indd 127Samir Roy_Chapter04.indd 127 2/21/2013 3:19:36 PM2/21/2013 3:19:36 PM

Table 4.4. Fuzzy associative memory (FAM) table

 (a)

 (Δu)

(1)
LN

(2)
MN

(3)
SN

(4)
ZE

(5)
SP

(6)
MP

(7)
LP

(1) LN LP LP LP LP MP SP ZE

(2) MN LP LP LP MP SP ZE ZE

(3) SN LP LP MP SP ZE SN MN

(4) ZE LP MP SP ZE SN MN LN

(5) SP MP MP SP SN SN MN LN

(6) MP SP ZE SN MN MN LN LN

(7) LP ZE SN SN LN LN LN LN

Usually the FAM table may contain some empty cells. An empty cell in the FAM table, if there exists one,
indicates the absence of the corresponding rule in the rule base.

0

1

0.5

LN SP MP LPZESNMN

19 3237 15 19 9 47 55 63
Δu

Fig. 4.24. μMN
u (u 19) 0.5Δ =u = and μSN

u 9) 0Δ (.u 19) 0.5Δ 19)

0

1

0.5

LN SP MP LPZESNMN

37 32315 35 9 47 55 63
a

Fig. 4.25. μZE
aμ (a 35) 0.5= =35) and μZE

aμ (a 35) 0.5= =35)

Let us now work out the output of the controller when the normalized speed diff erence (Δu) and ac-
celeration (a) are 19 and 35 respectively. It is apparent from Fig. 4.24 that for Δu = 19, all fuzzy sets
except MN and SN have zero membership. Similarly, for a = 35 only the fuzzy sets ZE and SP have
non-zero memberships. Moreover, it is observed from Fig. 4.24 that at Δu =19 membership to MN is 0.5,
μMN

uΔμμ ()uΔ =) 0 5. . Similarly μSN
uΔμμ ()uΔ .=) 0 5. Also, from Fig. 4.25 we get, μZE

aμμ ()a =) 0 5. and

128 Introduction to Soft Computing

Samir Roy_Chapter04.indd 128Samir Roy_Chapter04.indd 128 2/21/2013 3:19:38 PM2/21/2013 3:19:38 PM

μSP
aμμ ()a =) 0 5. . Th erefore the rules corresponding to cells (MN, ZE), (MN, SP), (SN, ZE), and (SN,

SP), cells (2, 4), (2, 5), (3, 4) and (3, 5) of the FAM table, R24, R25, R34, R35 are fi red. Th ese rules are

R24 : IF (Δu is MN) AND (a is ZE) THEN (T is MP)
R25 : IF (Δu is MN) AND (a is SP) THEN (T is SP)
R34 : IF (Δu is SN) AND (a is ZE) THEN (T is SP)
R35 : IF (Δu is SN) AND (a is SP) THEN (T is ZE)

MN

7 15 19 23

23 31 35 39

0.5

0.5

Δu

a

min {0.5, 0.5}
= 0.5

A

B C

DZE

39 47 55

0.5

T

MP

A1 = area of ABCD

Centroid (c1) = 47
= 1/2 × (16 + 8) × 0.5 = 6.

Fig. 4.26. Processing of Rule R24.

Let us employ min function to implement the ‘AND’ operation in the antecedent part of a rule. Accord-
ingly, the processing of R24 is shown in Fig. 4.26. Table 4.5 shows the complete set of areas and their
centroids obtained through processing the rules R24, R25, R34, R35.

Table 4.5. Areas and centroids

Rule Area Centroid

R24 A1 = 6 c1 = 47

R25 A2 = 6 c2 = 39

R34 A3 = 6 c3 = 39

R35 A4 = 6 c4 = 31

Th e defuzzifi ed output, according to the CoS method is computed as shown below.

T A c A c A c A c
A A A ACOTT S =

+c +c +c
+A

=
× + ×1 1cc 2 2cc 3 3cc 4 4c

1 2+ A 3 4A
6 4× 7 6+ 39 6 3× 9 6+ 311

6 6 6 6
39

6 66 6
= .

Fuzzy Inference Systems 129

Samir Roy_Chapter04.indd 129Samir Roy_Chapter04.indd 129 2/21/2013 3:19:43 PM2/21/2013 3:19:43 PM

However, to compute Tcentroid, the defuzzifi ed output value of throttle control, we have to consider the
superimposed region ABCD shown in Fig. 4.27.

MPSPZE

A

B C

D
T

23 31 39 47 55

Fig. 4.27. Region for computation of Tcentroid.

It is evident from Fig. 4.27 that the region ABCD is a trapezium. Th e centroid of a trapezium passes
through the middle of its parallel sides. Hence, centroid of ABCD is 39. Moreover,

area of ABCD = 1/2 × (sum of the lengths of the parallel sides) × height

= 1/2 × (32+24) × 0.5 = 14.
Th erefore,

T
of d of d of

areaof ABCceTT ntroid =
×()areaof ABCD ()centroid of centroid of ABCD

DDCCCC
=

×
=

14 39
14

39

Hence, the value of the throttle control, when computed through the centroid method, too is 39. It may
be verifi ed that the defuzzifi ed output, obtained by employing the MoM is also 39. Hence, for this in-
stance of the fuzzy cruise controller we have Tcos = Tcentroid = T MoM = 39.

 CHAPTER SUMMARY

Th e main points of foregoing discussions on fuzzy inference systems are summarized below.

A fuzzy inference system (• FIS) is a system that transforms a given input to an output with the
help of fuzzy logic. Th e procedure followed by a fuzzy inference system is known as fuzzy infer-
ence mechanism, or simply fuzzy inference.
Th e entire fuzzy inference process comprises fi ve steps, fuzzifi cation of the input variables, ap-•
plication of fuzzy operators on the antecedent parts of the rules, evaluation of the fuzzy rules,
aggregation of fuzzy sets across the rules, and defuzzifi cation of the resultant aggregate fuzzy
set.
Th e fi rst step, fuzzifi cation, determines the degree to which each input belongs to various fuzzy •
sets through the respective membership function.
When the antecedent of a given rule has more than one parts, the appropriate fuzzy operator is •
applied to obtain a single number representing the result of the entire antecedent. Th is consti-
tutes the second step of fuzzy inference process.
In the third step fuzzy rules are evaluated through some implication process. Th e output fuzzy •
set is obtained by reshaping the fuzzy set corresponding to the consequent part of the rule with
the help of the number given by the antecedent.

130 Introduction to Soft Computing

Samir Roy_Chapter04.indd 130Samir Roy_Chapter04.indd 130 2/21/2013 3:19:45 PM2/21/2013 3:19:45 PM

Th e aggregation process takes the truncated membership profi les returned by the implication •
process as its input, and produces one fuzzy set for each output variable as the output. Th is
constitutes the fourth step of the fuzzy inference process.
Defuzzifi cation is the process of converting the aggregate output sets into one crisp number per •
output variable. Th is is the fi ft h, and last, step in a fuzzy inference process.
Th ere are various defuzzifi cation methods. Th e most popular among them are the centroid •
method, CoS method and the MoM method.

 SOLVED PROBLEMS

Problem 4.1 (Fuzzy air conditioner) Consider the fuzzy air conditioner controller discussed in
subsection 4.7.1. What is the dial position for ΔT = + 0.5 ?

Solution 4.1 Th e step by step computational process is described below.

(i) Fuzzifi cation Given ΔT = + 0.5, we compute the degree of membership of ΔT with respect to
the fuzzy sets LN, MN, ZE, MP, LP using the respective membership profi les depicted in Fig. 4.14. All
memberships, except ZE and MP are 0 (Fig. 4.28). For ZE and MP the membership values are 5/6 and
1/6, respectively.

μ μ μ

μ μ

μμ MN
T

LP
T

μμ MP
T

Δ Δμμ T Δμμ

Δ Δμ μμ μT

(μMN
TΔμμ .) (.)

(

=)+ =)0.0. 5.. 0
5
6

+ =++0 1
6

.)5

0

1
LN LPMPZEMN

−6 60−3

5/6

1/6

ΔT in °C

μ

Fig. 4.28. Fuzzy memberships for DT = + 0.5

(ii) Rule implication Th e fuzzy rule base employed is given by

R1 : IF ΔT is LN THEN D is LP.
R2 : IF ΔT is MN THEN D is MP.
R3 : IF ΔT is ZE THEN D is ZE.
R4 : IF ΔT is MP THEN D is MN.
R5 : IF ΔT is LP THEN D is LN.

As ZE and MP are the only fuzzy sets having non-zero membership values for ΔT = + 0.5, the fi red rules
are R3 and R4. Th e rule implication processes are shown in Fig. 4.29 and Fig. 4.30.

Fuzzy Inference Systems 131

Samir Roy_Chapter04.indd 131Samir Roy_Chapter04.indd 131 2/21/2013 3:19:47 PM2/21/2013 3:19:47 PM

0

1 ZEZE

−3 0 3

Rule R3RR : IF ΔT is ZE THEN D is ZE

−0.5 0

1
0.5

+0.5

−0.5 0 +0.5

ΔT D

h = 5/6

1/6

1/65/6

b = 1

Area = 35/72
Centroid = 0

Fig. 4.29. Evaluation of rule R3.

0

1 MNMP

0 0.5 3 6

Rule R4R : IF ΔT is MP THEN D is MN

−1 −0.5 0

−1 −0.5 0

ΔT D

1/6

1/6

5/6

Area = 11/72
Centroid = −0.5

Fig. 4.30. Evaluation of rule R4.

Th e implication of the rules R3 and R4 results in two regions of areas 35/72 and 11/72 respectively. Th e
corresponding centroids are 0 and – 0.5.

(iii) Aggregation Calculation of the dial value in the CoS method is as follows

132 Introduction to Soft Computing

Samir Roy_Chapter04.indd 132Samir Roy_Chapter04.indd 132 2/21/2013 3:19:49 PM2/21/2013 3:19:49 PM

D
A C A C

A ACOS =
+C

=
× + ×

+
=

− ×
1 1CC 2 2C

1 2A

35
72

0 11
72

5

35
72

11
72

0 5 11
7

(.− 0)
22

46
72

11
72

= −

Hence, the output of the fuzzy controller is D = − 11/72.

Problem 4.2 (Fuzzy cruise controller) Consider the fuzzy cruise controller discussed in subsec-
tion 4.7.2. What will be the value of the throttle control for normalized speed diff erence (Δu) = 41, and
acceleration (a) = 15?

Solution 4.2 Th e step by step computational process is given below.

(i) Fuzzifi cation Since there are two input parameters, Δu and a, we need to fuzzify both. Consider-

ing Δu, we see that the non-zero memberships are μSP
uΔμμ ()uΔ =) 3

4
 and μMP

uΔμμ ()uΔ =) 1
4

 and rest of

the membership values are all zeros (see Fig. 4.31). Th erefore,

μ μ μ μ μμμ MN
u μμ ZE

u
LP

uμMN μZE
Δ Δμμ u Δ Δμμ u Δμμμ uμMN

uΔμμ μ uμZE
uΔμμ()uΔ ()uΔ (=) =) ΔΔu = =41 0)

μ μμμ MP
u uΔ Δμμ u Δ(μMPμMPμMP (uΔμ uμ uΔμμ)=uμMP = =

6
8

3
4

41 2
8

1
4

.

0

1

3/4

1/4

LN SP MP LPZESNMN

417 32315 9 441 7 55 63
Δu

Fig. 4.31. μSP
u (u 41)

3

4
Δ =u = and μMPμ u (u 41)

1

4
Δ =u =

Similarly, for a, all membership values except MN are zeros (Fig. 4.32), so that

μ μ μ μ μ μμμaμμ SN
aμμ μμaμμ SP

a μμaμμ LPμSN
aμ() ()a () ()μSP

aμμ aμSP
aμ ()=) =) aaμμμμ ()a =) 0

μMN
aμμ ()a =) 1

0

1
LN SP MP LPZESNMN

17 32315 9 47 55 63
a

Fig. 4.32. μMN
aμ 1(a 15)= =15)

Fuzzy Inference Systems 133

Samir Roy_Chapter04.indd 133Samir Roy_Chapter04.indd 133 2/21/2013 3:19:50 PM2/21/2013 3:19:50 PM

(ii) Rule implication Th e results of the fuzzifi cation phase imply that rules R52 and R62 are fi red (see
Table 4.6 which is a repetition of Table 4.4 with relevant portions highlighted). Hence we need to process
the following fuzzy rules:

R52 : IF (Δu is SP) AND (a is MN) THEN (T is MP)
R62 : IF (Δu is MP) AND (a is MN) THEN (T is ZE)

Table 4.6. Fired Rules in the FAM Table

 (a)
 (Δu)

(1)
LN

(2)
MN

(3)
SN

(4)
ZE

(5)
SP

(6)
MP

(7)
LP

(1) LN LP LP LP LP MP SP ZE

(2) MN LP LP LP MP SP ZE ZE

(3) SN LP LP MP SP ZE SN MN

(4) ZE LP MP SP ZE SN MN LN

(5) SP MP MP SP SN SN MN LN

(6) MP SP ZE SN MN MN LN LN

(7) LP ZE SN SN LN LN LN LN

Th e rule implication process is graphically shown in Fig. 4.33 and Fig. 4.34.

31 39 41 47

7 15

1

3/4

Δu

a

min {3/4, 1}
= 3/4

A

B C

DMN

39 47 55

T

MP

A1 = Area of ABCD

Centroid (c1) = 47

= 1/2 × (16 + 4) × (3/4)
= 15/2

Fig. 4.33. Processing of Rule R52.

134 Introduction to Soft Computing

Samir Roy_Chapter04.indd 134Samir Roy_Chapter04.indd 134 2/21/2013 3:19:58 PM2/21/2013 3:19:58 PM

MP

39 4741 55

7 15 23

1

1/4

Δu

a

min {1/4, 1}
= 1/4

E

F G

HMN

23 31 39

T

ZE

A2 = area of EFGH

Centroid (c2cc) = 31

= 1/2 × (16 + 8) × 1/4
= 28/8 = 7/2

Fig. 4.34. Processing of Rule R62.

Th e rule implication process yields two trapeziums ABCD and EFGH with areas A1 = 15/2 and A2 = 7/2,
and centroids c1 = 47 and c2 = 31 respectively.

(iii) Aggregation For aggregation, we consider the CoS method only. Th e calculations are given
below.

T
A c A c

A A
=

+c
=

× + ×

+
=

× +
+

≈1 1cc 2 2c

1 2A

15
2

47 7
2

31

15
2

7
2

15 47 7 3× 1
15 7

42

Hence, the throttle control value will be approximately 42 for normalized speed diff erence (Δu) = 41, and
acceleration (a) = 15.

Problem 4.3 (Fuzzy tipper) Th is problem, popularly known as the tipping problem, concerns
the amount of tip to be given to a waiter at a restaurant. It is a typical situation where the principles of
fuzzy inference system may be applied successfully. Given a number between 0 and 10 that represents
the quality of service at a restaurant (where 10 is excellent), and another number between 0 and 10 that
represents the quality of the food at that restaurant (again, 10 is excellent), what should the tip be?

Solution 4.3 Th e starting point is to write down the three golden rules of tipping as given below.

1. If the service is poor or the food is rancid, then tip is cheap.
2. If the service is good, then tip is average.
3. If the service is excellent or the food is delicious, then tip is generous.

Th e procedure to solve the problem using the relevant MatLab toolbox is being described as a sequence
of steps, along with MatLab snapshots.

Step 1. Open Toolboxes → Fuzzy Logic → FIS Editor GUI (Fuzzy).(Fig. 4.35)

Fuzzy Inference Systems 135

Samir Roy_Chapter04.indd 135Samir Roy_Chapter04.indd 135 2/21/2013 3:19:59 PM2/21/2013 3:19:59 PM

Fig. 4.35. Step 1 of Fuzzy tipper

Step 2. Open Edit → Add variable → Input. (Normally there is one input and one output available,
but we would need two inputs here) (Fig. 4.36)

Fig. 4.36

Step 3. Double click on one of the yellow boxes to go to the Membership Function Editor.
Step 4. Select Input1 (Service), Input2 (Food) and Output(Tip) to change the variables of the

membership functions to suitable values. (Fig. 4.37–4.44)

Fig. 4.37 Fig. 4.38

136 Introduction to Soft Computing

Samir Roy_Chapter04.indd 136Samir Roy_Chapter04.indd 136 2/21/2013 3:20:00 PM2/21/2013 3:20:00 PM

Fig. 4.39 Fig. 4.40

Fig. 4.41 Fig. 4.42

Fig. 4.43 Fig. 4.44

Step 5. Close the Membership Function Editor to return to FIS Editor.

Fuzzy Inference Systems 137

Samir Roy_Chapter04.indd 137Samir Roy_Chapter04.indd 137 2/21/2013 3:20:01 PM2/21/2013 3:20:01 PM

 Step 6. Double click on the white box in the middle to go to the Rule Editor.
 Step 7. From the options available, add rules as above. (Fig. 4.45)

Fig. 4.45

 Step 8. Close the Rule Editor.
 Step 9. Press CTRL + T to export your FIS to Workspace/File or do so from FILE → EXPORT →

TO FILE
Step 10. Now press CTRL + 5 to see the Graphical Rule Viewer where you can vary the input pa-

rameter values and see the corresponding output values. (Fig. 4.46)

Fig. 4.46

Step 11. Th e surface viewer can be invoked by CTRL+6. (Fig. 4.47)

Fig. 4.47

138 Introduction to Soft Computing

Samir Roy_Chapter04.indd 138Samir Roy_Chapter04.indd 138 2/21/2013 3:20:03 PM2/21/2013 3:20:03 PM

Problem 4.4 (Fuzzy controlled camera) Present day digital cameras have fuzzy controllers to con-
trol the aperture and shutter speed of the camera based upon light conditions and the state of motion
of the object. Table 4.7 shows the behavior pattern of such a camera. Design a fuzzy inference system to
control the aperture and the shutter speed on the basis of light and object motion.

Table 4.7. Camera adjustments

Inputs Outputs

Light Object motion Aperture Shutter Speed

1 Low Static High Low

2 Moderate Static Moderate Moderate

3 High Static Low High

4 Low Mobile High Moderate

5 Moderate Mobile Moderate High

6 High Highly Mobile Low High

7 Low Highly Mobile High Moderate

8 Low Mobile High Moderate

9 High Mobile Low Moderate

Solution 4.4 Th e MatLab implementation of the fuzzy inference system is described below in a
stepwise manner.

Step 1. Open Toolboxes → Fuzzy Logic → FIS Editor GUI (Fuzzy). (Fig. 4.48)

Fig. 4.48

Step 2. Open Edit → Add variable → Input (Normally there is one input and one output available,
but we would need two each here.)

Step 3. Open Edit → Add variable → Output (To add the second output variable)
Step 4. Double click on one of the yellow boxes to go to the Membership Function Editor.
Step 5. Select Input 1 (Light) and change the variables of the membership functions to suitable val-

ues. (Fig. 4.49, 4.50, 4.51)

Fuzzy Inference Systems 139

Samir Roy_Chapter04.indd 139Samir Roy_Chapter04.indd 139 2/21/2013 3:20:04 PM2/21/2013 3:20:04 PM

Fig. 4.49 Fig. 4.50

Fig. 4.51

Step 6. Repeat steps for Input 2 (Object Motion)

mf1 -
NAME: Static
RANGE: [0 1]
DISPLAY RANGE: [0 1]
TYPE: trapmf
PARAMS:[-0.36 -0.04 0.24 0.36]

mf2 -
NAME: Mobile
RANGE: [0 1]
DISPLAY RANGE: [0 1]
TYPE: trimf
PARAMS:[0.23 0.5 0.8]

mf3-
NAME: HighlyMobile
RANGE: [0 1]
DISPLAY RANGE: [0 1]
TYPE: trimf
PARAMS:[0.75 1 3.4]

140 Introduction to Soft Computing

Samir Roy_Chapter04.indd 140Samir Roy_Chapter04.indd 140 2/21/2013 3:20:04 PM2/21/2013 3:20:04 PM

Step 7. Repeat steps for Output 1 (Aperture)

mf1 -
NAME: High
RANGE: [0 16]
DISPLAY RANGE: [0 16]
TYPE: trimf
PARAMS:[-6.4 1.11e-16 6.4]

mf2 -
NAME: Moderate
RANGE: [0 16]
DISPLAY RANGE: [0 16]
TYPE: trimf
PARAMS:[1.6 8 14.4]

mf3 -
NAME: Low
RANGE: [0 16]
DISPLAY RANGE: [0 16]
TYPE: trimf
PARAMS:[9.6 16 22.4]

Step 8. Repeat steps for Output 2 (ShutterSpeed)

mf1 -
NAME: Low
RANGE: [0 250]
DISPLAY RANGE: [0 250]
TYPE: trimf
PARAMS:[-100 -1.776e-15 100]

mf2 -
NAME: Moderate
RANGE: [0 250]
DISPLAY RANGE: [0 250]
TYPE: trimf
PARAMS:[24.99 125 225]

mf3 -
NAME: High
RANGE: [0 250]
DISPLAY RANGE: [0 250]
TYPE: trimf
PARAMS:[150 250 350]

Step 9. Close the Membership Function Editor to return to FIS Editor.
Step 10. Double click on the white box in the middle to go to the Rule Editor.

Fuzzy Inference Systems 141

Samir Roy_Chapter04.indd 141Samir Roy_Chapter04.indd 141 2/21/2013 3:20:05 PM2/21/2013 3:20:05 PM

Step 11. From the options available, add rules that appear in the table above.
Step 12. Close the Rule Editor.
Step 13. Press CTRL + T to export your FIS to Workspace/File or do so from FILE → EXPORT →

TO FILE.
Step 14. Now press CTRL + 5 to see the Graphical Rule Viewer where you can vary the input param-

eter values and see the corresponding output values. (Fig. 4.52)

Fig. 4.52

Step 15. Th e Surface Viewer can be invoked by CTRL + 6. (Fig. 4.53 and 4.54)

Fig. 4.53 Fig. 4.54

� TEST YOUR KNOWLEDGE

 4.1 Which of the following is the fi rst step of a fuzzy inference process ?
a) Fuzzifi cation b) Defuzzifi cation
c) Either (a) or (b) d) None of the above

 4.2 Which of the following is the last step of a fuzzy inference process ?
a) Fuzzifi cation b) Defuzzifi cation
c) Either (a) or (b) d) None of the above

 4.3 An input to a fuzzy inference system is a
a) A crisp value b) A linguistic variable
c) A fuzzy set d) None of the above

142 Introduction to Soft Computing

Samir Roy_Chapter04.indd 142Samir Roy_Chapter04.indd 142 2/21/2013 3:20:05 PM2/21/2013 3:20:05 PM

 4.4 An output of a fuzzy inference system is a
a) A crisp value b) A linguistic variable
c) A fuzzy set d) None of the above

 4.5 Which of the following is not a defuzzifi cation method?
a) Centroid b) Centre-of-sums (CoS)
c) Mean-of-maxima (MoM) d) None of the above

 4.6 Fuzzy controllers are built on the basis of
a) Fuzzy Inference Systems b) Fuzzy Extension Principle
c) Both (a) or (b) d) None of the above

 4.7 Which of the following is used to store a fuzzy rule base of a fuzzy controller?
a) Fuzzy Relation Matrix b) Fuzzy Associative Memory table
c) Both (a) or (b) d) None of the above

 4.8 Which of the following defuzzifi cation methods is never used in a fuzzy controller?
a) Centroid b) Center-of-sums (CoS)
c) Mean-of-Maxima (MoM) d) None of the above

 4.9 An empty cell in a Fuzzy Associative Memory (FAM) table indicates
a) An error in the FAM specifi cation
b) A rule that is absent in the rule base
c) Both (a) and (b)
d) None of the above

4.10 Which of the following phases of a fuzzy controller uses the fuzzy rule base?
a) Fuzzifi cation b) Rule implication
c) Both (a) and (b) d) None of the above

Answers

 4.1 (a) 4.2 (b) 4.3 (a) 4.4 (a) 4.5 (d)
 4.6 (a) 4.7 (b) 4.8 (d) 4.9 (b) 4.10 (b)

 EXERCISES

4.1. A test is being conducted to ascertain the creative and logical ability of a person. Th e test has two
parts, viz., a reasoning part, and a design part. Th e score of each part is normalized to the scale of
0−10. Th ere are two output indices, viz., the creative index, and the logical index, both are within
the range [0, 1]. Th e scores of the tests, as well as the outputs, i.e., the creative index, and the logical
index, are categorized by the linguistic variables low, medium, and high.

Propose suitable fuzzy set membership functions for each linguistic variable described above.
Also propose a fuzzy rule base involving the input and output parameters mentioned above. De-
sign a fuzzy inference system, structurally similar to a fuzzy controller, to fi nd the values of the two
indices when the normalized score of the test is given. Find the values of the creative and logical
indices for the following sets scores:

Reasoning = 7, and Design = 4
Reasoning = 3, and Design = 8

4.2 In Solved Problem No. 4.1 and 4.2, calculate the outputs through centroid method and mean-of-
maxima method.

Fuzzy Inference Systems 143

Samir Roy_Chapter04.indd 143Samir Roy_Chapter04.indd 143 2/21/2013 3:20:06 PM2/21/2013 3:20:06 PM

 BIBLIOGRAPHY AND HISTORICAL NOTES

Zadeh introduced the idea of a linguistic variable defi ned as a fuzzy set in 1973. In 1975 Ebrahim Mam-
dani proposed a fuzzy control system for a steam engine combined with a boiler by employing a set
of linguistic control rules provided by human operators from their past experience. In 1987 Takeshi
Yamakawa applied fuzzy control, with the help of a set of fuzzy logic chips, in the famous inverted pen-
dulum experiment. In this control problem, a vehicle tries to keep a pole mounted on its top by a hinge
upright by moving back and forth. Numerous fuzzy controllers built upon the concepts of fuzzy infer-
ence systems were developed for both industrial and consumer applications such as vacuum cleaners,
autofocusing camera, air conditioner, low-power refrigerators, dish washer etc. Fuzzy inference systems
have been successfully applied to various areas including automatic control, computer vision, expert
systems, decision analysis, data classifi cation, and so on. A brief list of the literature in this area is given
below.

Hirota, K. (ed.) (1993). Industrial Applications of Fuzzy Technology. Springer, Tokyo,
Holmblad L.P. and Ostergaard J.-J. (1982). Control of a cement kiln by fuzzy logic. In Fuzzy Information

and Decision Processes, Gupta, M.M. and Sanchez, E. (ed.), pp. 389–399. North-Holland.
Jantzen, J. (2007). Foundations of Fuzzy Control. Wiley.
Mamdani E.H. and Assilian S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller.

International Journal of Man-Machine Studies, Vol. 7, pp. 1–13.
Passino, K. M. and Yurkovich, S. (1998). Fuzzy Control. Addison Wesley Longman, Menlo Park, CA.
Santhanam S. and Langari R. (1994). Supervisory fuzzy adaptive control of a binary distillation column.

In Proceedings of the 3rd IEEE International Conference on Fuzzy Systems, Vol. 2, pp. 1063–1068, Or-
lando, FL.

Tanaka, K. and Wang, H. O. (2001). Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequal-
ity Approach. John Wiley and Sons, New York.

Terano, T., Asai, K., and Sugeno, M. (1994). Applied Fuzzy Systems. Academic Press, Boston.
Vadiee, N. (1993). Fuzzy rule based expert systems. In Fuzzy Logic and Control. Prentice-Hall.
Yager, R. and Filev, D. (1994). Essentials of Fuzzy Modeling and Control. John Wiley and Sons, New

York.
Yasunobu, S. and Miyamoto, S. (1985). Automatic train operation system by predictive fuzzy control. In

Industrial Applications of Fuzzy Control, M. Sugeno (ed.), pp. 1–18. North-Holland.

144 Introduction to Soft Computing

Samir Roy_Chapter04.indd 144Samir Roy_Chapter04.indd 144 2/21/2013 3:20:07 PM2/21/2013 3:20:07 PM

5
ROUGH SETS

Key Concepts

Boundary region, Data clustering, Decision systems, Discernibility function, Discernibility matrix,
Indiscernibility, Inexactness, Information systems, Lower approximation, Minimal reduct, Reduct,
Rough membership, Rule extraction, Upper approximation, Vagueness

 Chapter Outline

5.1 Information Systems and Decision Systems
5.2 Indiscernibility
5.3 Set Approximations
5.4 Properties of Rough Sets
5.5 Rough Membership
5.6 Reducts

5.7 Application
Chapter Summary
Solved Problems
Test Your Knowledge
Exercise
Bibliography and Historical Notes

An important feature of intelligent behaviour is the ease with which it deals with vagueness, or inexact-
ness. Vagueness, or inexactness, is the result of inadequate knowledge. In the realm of Computer Sci-
ence, more particularly in Soft Computing, two models of vagueness have been proposed. Th e concept of
a fuzzy set, proposed by Lotfi Zadeh, models vagueness with the help of partial membership, in contrast
with crisp membership used in the classical defi nition of a set. Fuzzy set theory and related topics are
discussed in Chapter 2 (Fuzzy set theory), Chapter 3 (Fuzzy logic), and Chapter 4 (Fuzzy inference sys-
tems) of this book. Th is chapter introduces the other model known as the Rough set theory. Th e concept
of rough sets, proposed by Zdzisław Pawlak, considers vagueness from a diff erent point of view. In Rough
set theory, vagueness is not expressed by means of set membership but in terms of boundary regions of
a set of objects. Th ere are situations related to large reservoir of multidimensional data when it is not
possible to decide with certainty whether a given object belongs to a set or not. Th ese objects are said to
form a boundary region for the set. If the boundary region is empty, then the set is crisp, otherwise it is
rough, or inexact. Th e existence of a non-empty boundary region implies our lack of suffi cient knowl-
edge to defi ne the set precisely, with certainty. Th ere are many interesting applications of the rough set
theory. Th is approach appears to be of fundamental importance to AI and cognitive sciences, especially

Samir Roy_Chapter05.indd 145Samir Roy_Chapter05.indd 145 2/21/2013 3:20:37 PM2/21/2013 3:20:37 PM

146 Introduction to Soft Computing

in the areas of machine learning, knowledge acquisition, decision analysis, knowledge discovery from
databases, expert systems, inductive reasoning and pattern recognition. Rest of this chapter provides an
introductory discussion on the fundamentals of the Rough set theory.

5.1 INFORMATION SYSTEMS AND DECISION SYSTEMS

A datum (singular form of the word ‘data’) is usually presented either as a number, or a name. ‘Infor-
mation’ is processed or structured data that may convey some meaning. Data in itself do not carry
any meaning, and therefore useless for practical purposes. However, when interpreted in a particular
context, it becomes meaningful and useful for taking decisions. For example, the word ‘John’ and the
number ‘30’ are two data. Th ey are meaningless and useless in this raw form. But if these two data are
interpreted as ‘John is 30 years old,’ or ‘John owes $30 to Sheela,’ or ‘John lives 30 km to the North of
London,’ they convey meaning and become useful.

Th e simplest way to associate meaning to data is to present them in a structured form, like, in a table.
Every column of such a table represents an attribute or property and every row represents an object. By
‘object’ we mean an ordered n-tuple of attribute values. An instance of rendering sense to a set of data by
virtue of their arrangement in tabular form is cited in Example 5.1.

Example 5.1 (Information presented as structured data)

Let us consider the set of numerical data D = {1, 2, 3, 4, 5, 6, 7, 59, 73, 12, 18, 33, 94, 61}. Table 5.1
shows the data arranged in tabular form. Columns 2 and 3 of Table 5.1 present the attributes Roll
Number and Score respectively. Th ere are seven objects corresponding to the seven rows of the
table. Each object is a 2-tuple. Th e objects here are (1, 59), (2, 73), (3, 12), (4, 18), (5, 33), (6, 94),
and (7, 61).

Table 5.1. Information presented as structured data

Roll No. Score

1 1 59
2 2 73
3 3 12
4 4 18
5 5 33
6 6 94
7 7 61

A number of data arranged in a tabular format is oft en termed as an information system. An information
system can be formally defi ned in the following way.

Defi nition 5.1 (Information System) Let A = (A1, A2, A3, … , Ak) be a non-empty fi nite set of at-
tributes and U = {(a1, a2, ..., ak)} be a non-empty fi nite set of k-tuples, termed as the objects. V (Ai) denote
the set of values for the attributes Ai. Th en an information system is defi ned as an ordered pair I (U, A)
such that for all i = 1, 2, ..., k there is a function fi

fi : U → V(Ai)

Samir Roy_Chapter05.indd 146Samir Roy_Chapter05.indd 146 2/21/2013 3:20:39 PM2/21/2013 3:20:39 PM

Rough Sets 147

Th is means, every object in the set U has an attribute value for every element in the set A. Th e set U is
called the universe of the information system.

Example 5.2 (Information system)

Table 5.2 shows an information system regarding the scores of seven students in three subjects. Th e
information system consists of seven objects, each corresponding to a student. Here U includes
the objects (1, 82, 90, 98),, (7, 10, 12, 0) and the set A consists four attributes Roll No., Physics,
Chemistry and Mathematics. V (Roll No.) = {1, 2, 3, 4, 5, 6, 7} and V (Physics) = V (Chemistry) = V
(Mathematics) = {0, 1, 2, ..., 100}, assuming that the score of a subject is given as whole numbers.

Table 5.2. An information system

Roll No. Physics Chemistry Mathematics

1 1 82 90 98

2 2 80 96 100

3 3 63 62 68

4 4 70 92 100

5 5 54 51 36

6 6 92 94 90

7 7 10 12 0

Quite oft en, an information system includes a special attribute that presents a decision. For example, the
information system shown in Table 5.2 may be augmented with a special attribute Admitted as in Table 5.3.
Th is attribute will indicate whether the student concerned is admitted to a certain course on the basis of the
marks scored in Physics, Chemistry and Mathematics. Such systems which show the outcome of a classi-
fi cation are known as decision systems. Th e attribute presenting the decision is called the decision attribute.
Values of the decision attribute depend on the combination of the other attribute values.

Example 5.3 (Decision system)

Table 5.3 presents a decision system obtained by augmenting the information system depicted in
Table 5.2 by a decision attribute Admitted.

Table 5.3. An information system augmented with a decision attribute

Roll No. Physics Chemistry Mathematics PCM %age Admitted

1 82 90 98 90 Yes

2 80 96 100 92 Yes

3 63 62 68 64.3 No

4 70 92 100 87.3 Yes

5 54 51 36 47 No

6 92 94 90 92 Yes

7 10 12 0 7.3 No

Samir Roy_Chapter05.indd 147Samir Roy_Chapter05.indd 147 2/21/2013 3:20:40 PM2/21/2013 3:20:40 PM

148 Introduction to Soft Computing

Defi nition 5.2 (Decision System) A decision system D (U, A, d) is an information system I (U, A)
augmented with a special attribute d ∉ A, known as the decision attribute.

Th e decision system shown in Table 5.3 has the decision attribute Admitted that has binary values
‘Yes’ or ‘No’. Th ese values are based on certain rules which guide the decision. On a closer scrutiny into
Table 5.3, this rule maybe identifi ed as If PCM %age is greater than or equal to 87.3 then Admitted = Yes,
else Admitted = No.

5.2 INDISCERNIBILITY

Decision systems have the capacity to express knowledge about the underlying information system.
However, a decision table may contain redundancies such as indistinguishable states or superfl uous at-
tributes. In Table 5.3, the attributes Physics, Chemistry and Mathematics are unnecessary to take decision
about admittance so long as the aggregate percentage is available. Th e decision attributes in decision
systems are generated from the conditional attributes. Th ese conditional attributes share common prop-
erties as clarifi ed in the subsequent examples. However, before we go on to discuss these issues, we need
to review the concept of equivalence relation.

Defi nition 5.3 (Equivalence Relation) A binary relation R ⊆ A × A is an equivalence relation if it is

 (i) Refl exive (∀ x ∈ A, xRx),
 (ii) Symmetric (∀ x, y ∈ A, xRy ⇒ yRx), and
 (iii) Transitive (∀ x, y, z ∈ A, xRy ∧ yRx ⇒ xRz).

Informally, two objects or cases are equivalent if they share some common properties. Equivalence is
however, limited only to those common properties which these elements share.

Example 5.4 (Equivalence relation)

As a rather trivial case, let us consider similarity (∼) of triangles. Two triangles ΔABC and ΔPQR
are similar (written as ΔABC ∼ ΔPQR) if they have the same set of angles, say ∠A = ∠P, ∠B = ∠Q,
and ∠C = ∠R. Th is is an equivalence relation because

 (i) ∼ is refl exive (ΔABC ∼ ΔABC),
 (ii) ∼ is symmetric (ΔABC ∼ ΔPQR ⇒ ΔPQR ∼ Δ ABC), and
 (iii) ∼ is transitive (ΔABC ∼ ΔPQR ∧ ΔPQR ∼ Δ KLM ⇒ ΔABC ∼ Δ KLM).

Example 5.5 (Equivalence relation)

Let us consider a case of hostel accommodation. Let S be a set of students and R be a relation on S
defi ned as follows : ∀ x, y ∈ S, xRy if and only if x and y are in the same hostel. R is an equivalence
relation because

 (i) R is refl exive (A student stays in the same hostel as himself.)
 (ii) R is symmetric (If x stays in the same hostel as y, then y stays in the same hostel as x), and
 (iii) R is transitive (If x stays in the same hostel as y, and y stays in the same hostel as z, then x stays in the

same hostel as z).

Samir Roy_Chapter05.indd 148Samir Roy_Chapter05.indd 148 2/21/2013 3:20:40 PM2/21/2013 3:20:40 PM

Rough Sets 149

Example 5.6 (Equivalence Relation)

Let I be the set of all integers and let R be a relation on I, such that two integers x and y are related,
xRy, if and only if x and y are prime to each other. Th is relation is symmetric but neither refl exive
nor transitive. Th erefore it is not an equivalence relation.

Example 5.7 (Equivalence Relation)

Let us consider matrix algebra and multipliability of matrices. Two matrices A and B are related if
A × B is defi ned. Th is relation is neither refl exive, nor symmetric, nor transitive. Hence it is not an
equivalence relation.

Defi nition 5.4 (Equivalence Class) An equivalence class of an element x ∈ U, U being the uni-
verse, is the set of all elements y ∈ U such that xRy, i.e., x and y are related. Hence, if E ⊆ U, be an equiva-
lence class, then ∀ a, b ∈ E, aRb holds good.

Example 5.8 (Equivalence Class)

Let U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and ∀ a, b ∈ U, aRb if and only if a MOD 3 = b MOD 3. Th is rela-
tion partitions U into three equivalence classes corresponding to the x MOD 3 = 0, 1, and 2. Th ese
equivalence classes are {0, 3, 6, 9}, {1, 4, 7}, and {2, 5, 8} respectively.

Defi nition 5.5 (Indiscernibility) Let I = (U, A) be an information system where U = {(a1, …, ak)} is
the non-empty fi nite set of k-tuples known as the objects and U = {A1, …, Ak} is a non-empty fi nite set
of attributes. Let P ⊆ A be a subset of the attributes. Th en the set of P-indiscernible objects is defi ned as
the set of objects having the same set of attribute values.

 INDI (P) = {(x, y), x, y ∈ U | ∀a ∈A, x (a) = y(a)} (5.1)

Th e concept of indiscernibility is illustrated in Example 5.9.

Table 5.4. Personnel profi les

Name Gender Nationality Complexion Mother-tongue Profession

Amit M Indian Dark Hindi Lawyer

Bao M Chinese Fair Chinese Teacher

Catherine F German Fair German Journalist

Dipika F Indian Fair Hindi Journalist

Lee M Chinese Dark Chinese Lawyer

Example 5.9 (Indiscernibility)

Consider the profi les of a set of persons as shown Table 5.4. Let P = {Gender, Complexion, Profes-
sion} ⊆ A = {Gender, Nationality, Complexion, Mother-tongue, Profession}. From the information

Samir Roy_Chapter05.indd 149Samir Roy_Chapter05.indd 149 2/21/2013 3:20:40 PM2/21/2013 3:20:40 PM

150 Introduction to Soft Computing

system shown in Table 5.4 Catherine and Dipika are P-indiscernible as both are fair complexioned
lady journalists. Similarly, Amit and Lee are also P-indiscernible. Hence, INDI (P) = {{Catherine,
Dipika}, {Amit, Lee}}. On the other hand, the set of P-indiscernible objects with respect to P =
{Gender, Complexion} happens to be INDI (P) = {{Amit, Lee}, {Bao}, {Catherine, Dipika}}.

Example 5.10 (Indiscernibility)

Table 5.5 presents an information system regarding various features of three types of cars, viz., Car A,
B and C. Unlike the other tables, the attributes are arranged here in rows while the objects are along
the columns.

Table 5.5. Car features

Features Car A Car B Car C

Power Door Locks Yes Yes No

Folding Rear Seats No Yes No

Rear Wash Wiper Yes Yes Yes

Tubeless Tyres Yes Yes Yes

Remote Boot Yes No Yes

Steering Adjustment No No Yes

Rear Defroster Yes No Yes

Seating Capacity 4 5 4

Mileage (in km/litre) 18 18 16

Max. Speed (in km/h) 160 160 180

Here, A = {Power Door Locks, Folding Rear Seat, Rear Wash Wiper, Tubeless Tyres, Remote Boot,
Steering Adjustment, Rear Defroster, Seating Capacity, Mileage, Max. Speed}, U = {Car A, Car B,
Car C}. Let us consider the three subsets of attributes M = {Mileage, Max. Speed}, R = {Rear Wash
Wiper, Remote Boot, Rear Defroster} and L = {Power Door Locks, Steering Adjustment}. Th en INDI
(M) = {{Car A, Car B}, {Car C}}, INDI (R) = {{Car A, Car C}, {Car B}}, INDI (L) = {{Car A, Car
B}, {Car C}}.

Indiscernibility is an equivalence relation and an indiscernibility relation partitions the set of objects
in an information system into a number of equivalence classes. Th e set of objects B-indiscernible from x
is denoted as [x]B. For example, if B = {Folding Rear Seats, Rear Wash Wiper, Tubeless Tyres, Remote Boot,
Rear Defroster}, then [Car A]B = {Car A, Car C}. However, if F = {Power Door Locks, Steering Adjustments,
Mileage, Max. Speed}, then [Car A]F = {Car A, Car B}.

5.3 SET APPROXIMATIONS

In a decision system, the indiscernibility equivalence relation partitions the universe U into a number
of subsets based on identical values of the outcome attribute. Such partitions are crisp and have clear

Samir Roy_Chapter05.indd 150Samir Roy_Chapter05.indd 150 2/21/2013 3:20:40 PM2/21/2013 3:20:40 PM

Rough Sets 151

boundaries demarcating the area of each subset. However, such crisp boundaries might not always be
possible. For example consider the decision system presented in Table 5.6. It consists of age and activity
information of eight children aged between 10 to 14 months. Th e outcome attribute ‘Walk’ has the pos-
sible values of YES or NO depending on whether the child can walk or not. A closer observation reveals
that it is not possible to crisply group the pairs (Age, Can Walk) based on the outcome into YES / NO
categories. Th e problem arises in case of entries 1 and 5 where the ages of the children are same but the
outcomes diff er. Th erefore, it is not possible to decisively infer whether a child can walk or not on the
basis of its age information only.

Table 5.6. Child activity information

Age (in months) Can Walk

1 12 No

2 14 Yes

3 14 Yes

4 13 Yes

5 12 Yes

6 10 No

7 10 No

8 13 Yes

{2, 3, 4, 8}

YES

{6, 7}

NO

{1, 5}

YES/
NO

Fig. 5.1. Roughness in a decision system

Th e situation is depicted in Fig. 5.1. Objects 2, 3, 4 and 8 belong to the class that can be described by
the statement ‘If age is 13 or 14 months then the child can walk’. Similarly, objects 6 and 7 defi ne a class
corresponding to the rule ‘If age is 10 months then the child can not walk’. However, objects 1 and 5 are
on the boundary region in the sense that though both of them correspond to children of age 12 years,
their ‘Can Walk’ information is NO in case of object 1 and YES in case of object 5. It is under such cir-
cumstances that the concept of rough sets comes into the picture and informally we may say that ‘Sets
which consist objects of an information system whose membership cannot be ascertained with certainty
or any measure of it are called rough sets. Formally, rough sets are defi ned in terms of lower and upper
approximations. Th ese are described below.

Defi nition 5.6 (Lower and Upper Approximations) Let I = (U, A) be an information system and B
⊆ A is a subset of attributes and X ⊆ U is a set of objects. Th en
 B-lower approximation of X = B (X) = {x | [x] B ⊆ X } (5.2)

Samir Roy_Chapter05.indd 151Samir Roy_Chapter05.indd 151 2/21/2013 3:20:40 PM2/21/2013 3:20:40 PM

152 Introduction to Soft Computing

 B-upper approximation of X = B (X) = {x | [x] B ∩ X ≠ ∅} (5.3)

Th e objects that comply with the condition 5.1 and fall in B (X) are classifi ed with certainty as members
of set X, while, those objects that comply with 5.2 and therefore belong to B (X) are classifi ed as possible
members.

Defi nition 5.7 (Boundary Region) Th e set BN B BB ()X ()X()X ()XB(X is called the B-boundary region
of X. Th e B-boundary region of X consists of those objects which we cannot decisively classify as inside
or outside the set X on the basis of the knowledge of their values of attributes in B. If a set has a non-
empty boundary region, it is said to be a rough set.

Defi nition 5.8 (Outside Region) Th e set U BX is called the B-outside region of X. Th e B-outside
region of X consists of elements that are classifi ed with certainty as not belonging to X on the basis of
knowledge in B.

Example 5.11 (Set approximations)

With reference to the information system presented in Table 5.6, let W = {y | Can Walk (y) = Yes} =
{2, 3, 4, 5, 8}. Now, the set of Age-indiscernible objects of U, INDAge (U) = {{1, 5}, {2, 3}, {4, 8}, {6, 7}}.
Hence the sets of the Age-indiscernible objects for various objects are [1] Age = [5] Age = {1, 5}, [2] Age =
[3] Age = {2, 3}, [4] Age = [8] Age = {4, 8}, [6] Age = [7] Age = {6, 7}. Th us, assuming B = {Age} we have

B-lower approximation of W : BW = {2, 3, 4, 8}
B-upper approximation of W : BW = {1, 2, 3, 4, 5, 8}
B-boundary region of W : BNB (W) = {1, 5}
B-outside region of W : U BW = {6, 7}

As BNB (W) = {1, 5} ≠ ∅, W is a rough set with respect to knowledge about walking.

5.4 PROPERTIES OF ROUGH SETS

Rough sets, defi ned as above in terms of the lower and upper approximations, satisfy certain properties.
Some of these properties are cited below. Th ese properties are either obvious or easily provable from the
defi nitions presented above.

B X B()X ()X⊆ ⊆X1. (5.4)

B B U U() () ; () (B)∅ =) ∅ =) ∅ =U; (B) =2. (5.5)

B B B()X Y ()X ()Y)Y ∪3. (5.6)
B B B()X Y ()X ()Y)Y4. (5.7)
B B B()X Y ()X ()Y⊇)Y ∪5. (5.8)

B B B()X Y ()X ()Y⊆)Y6. (5.9)

X Y B B B B⊆ →Y ⊆B⊆ B()X ()YY ()XX ()Yd7. (5.10)

B U B()U X ()XX −8. (5.11)

Samir Roy_Chapter05.indd 152Samir Roy_Chapter05.indd 152 2/21/2013 3:20:40 PM2/21/2013 3:20:40 PM

Rough Sets 153

B U B()U X ()XX −9. (5.12)

BB BB B()X ()X()X ()X=BB)X10. (5.13)

BB BB B()X ()X()X ()X=BB)X11. (5.14)

5.5 ROUGH MEMBERSHIP

Rough sets are also described with the help of rough membership of individual elements. Th e member-
ship of an object x to a rough set X with respect to knowledge in B is expressed as μX

Bμμ ()x .

Rough mem-

bership is similar, but not identical, to fuzzy membership. It is defi ned as

μX

Bμμ B

B

XB()x
[]x

[]x
=

(5.15)

Obviously, rough membership values lie within the range 0 to 1, like fuzzy membership values.

μX
Bμμ : [U ,]0,

Th e rough membership function may as well be interpreted as the conditional probability that x belongs
to X given B. It is the degree to which x belongs to X in view of information about x expressed by B.
Th e lower and upper approximations, as well as the boundary regions, can be defi ned in terms of rough
membership function.

 B X
B()X { |x U ()x }={x =μB 1 (5.16)

 B X
B()X { |x U ()x }={x >μB 0 (5.17)

 BN XB
B()XX { |Ux U ()x() }xx 1)x)<)xμ (5.18)

Example 5.12 (Rough membership)

Let us again consider the information system presented in Table 5.6. W = {y | Can Walk (y) = Yes} = {2,
3, 4, 5, 8} and B = {Age}. In Example 5.11 we have found INDAge (U) = {{1, 5}, {2, 3}, {4, 8}, {6, 7}}, BW
= {2, 3, 4, 8}, BW = {1, 2, 3, 4, 5, 8}, BNB (W) = {1, 5}, and U BW = {6, 7}. Moreover, [1] Age = [5] Age
= {1, 5}, [2] Age = [3] Age = {2, 3}, [4] Age = [8] Age = {4, 8}, [6] Age = [7] Age = {6, 7}. Now

μW
Bμμ () |[] |B W

|[] |B

|{ , } { , , , , }
|{ , } |

1
1

1, 3 4 5, ,
1,

1
2

= =
∩

=

Similarly, μ μ μ μ μ μ μμμBμμ W
B μB

W
B μB

W
B

W
Bμμ() , (μW

Bμμ) (μμμBμμ) (μW
B) (μμB) () () .1

2
2 3 4 8) (μW

Bμμ) (μμμBμμ μW (μBμμ (0))(μW 2 4(μW) =)μW (

Th e properties listed below are satisfi ed by rough membership functions. Th ese properties either follow
from the defi nition or are easily provable.

μX
Bμμ ()x = 11. iff x B()X (5.19)

Samir Roy_Chapter05.indd 153Samir Roy_Chapter05.indd 153 2/21/2013 3:20:54 PM2/21/2013 3:20:54 PM

154 Introduction to Soft Computing

μX
Bμμ ()x = 02. iff x U B−U ()X (5.20)

0 1μB ()3. iff x BNB ()X (5.21)

μ μμμBμμ X
BμμμX() ()x14. (5.22)

μX Y
Bμμ ∪ ≥()x5. max (() ())μ μ(),μμB

Y
Bμμ (μ), Y (5.23)

μX Y
Bμμ ≤()x6. min (() ())μ μ(),μμB

Y
Bμμ (μ), Y (5.24)

We are now in a position to defi ne rough sets from two diff erent perspectives, the fi rst using approxima-
tions and the second using membership functions. Both defi nitions are given below.

Defi nition 5.9 (Rough Sets) Given an information system I = (U, A), X ⊆ U and B ⊆ A, roughness
of X is defi ned as follows.

 (i) Set X is rough with respect to B if B B()X ()X≠ or B B()X ()X− ≠B()X φ
 (ii) Set X is rough with respect to B if there exist x∈U such that 0 1μX

B () .

Based on the properties of set approximations and the defi nition of indiscernibility, four basic classes of
rough sets are defi ned. Th ese are mentioned in Table 5.7.

Table 5.7. Categories of vagueness

Category Condition

1 X is roughly B-defi nable B()X ≠ ∅ and B()X ≠ U

2 X is internally B-defi nable B()X = ∅ and B U()X ≠

3 X is externally B-defi nable B()X ≠ ∅ and B U()X =

4 X is totally B-indefi nable B()X = ∅ and B U()X =

We can further characterize rough sets in terms of the accuracy of approximation, defi ned as

αB

B
B

()X ()X
()X

=

(5.25)

It is obvious that 0 1≤ ≤αB ()X . If αB ()X ,= 1 the set X is crisp with respect to B, otherwise, if αB ()X ,< 1
then X is rough with respect to B.

Defi nition 5.10 (Dependency) Let I = (U, A) be an information system and B1, B2 ∈ A are sets of
attributes. B1 is said to be totally dependent on attribute B2 if all values of attribute B1 are uniquely deter-
mined by the values in B2. Th is is denoted as B B2 1B .

5.6 REDUCTS

An indiscernibility relation partitions the objects of an information system into a set of equivalence
classes. However, the entire set of attributes, A, may not be necessary to preserve the indiscernibility
among a set of indiscernible objects. In other words, there may exist a subset B A⊆ , which is suffi cient

Samir Roy_Chapter05.indd 154Samir Roy_Chapter05.indd 154 2/21/2013 3:21:10 PM2/21/2013 3:21:10 PM

Rough Sets 155

to maintain the classifi cation based on indiscernibility. A minimal set of attributes required to preserve
the indiscernibility relation among the objects of an information system is called a reduct.

Defi nition 5.11 (Reduct) Given an information system I = (U, A), a reduct is a minimal set of at-
tributes B ⊆ A such that INDI (B) = INDI (A).

Defi nition 5.12 (Minimal Reduct) A Reduct with minimal cardinality is called a minimal reduct.

Table 5.8. Dog breed comparison

 1 2 3 4 5

Breed Rottweiler Saint Bernard Saluki German Shepherd Golden Retriever

Weight Heavy Heavy Medium Heavy Heavy

Grooming Low Medium Low Medium Medium

Exercise Heavy Heavy Heavy Heavy Heavy

Living space Large Average Large Average Average

Training Medium Medium High High High

Child tolerance Low Very High Low Very High Very High

Stranger tolerance Low Low Low High High

Recommendation No No No Yes Yes

Example 5.13 (Reduct)

Let us consider the information system I = (U, {Weight, Grooming, Exercise, Living Space, Train-
ing, Child Tolerance, Stranger Tolerance}, {Recommendation}), concerning comparative study of
dog breed, as shown in Table 5.8. For convenience, the attributes are arranged rowwise and the
individual objects are presented columnwise.

Here INDI (A) = {{Rottweile r}, {Saint Bernard}, {Saluki}, {German Shepard, Golden Retriever}}.
Th e same equivalence classes are obtained if we consider only two of the attributes B = {Training,
Child Tolerance}. However, the classifi cation is diff erent if we remove any of the attributes from the
set B = {Training, Child Tolerance}. Th erefore, B is a minimal set of attributes. Th us B = {Training,
Child Tolerance} is a reduct of the given information system. Moreover, let us consider the set C =
{Weight, Grooming, Living Space}. We see that INDI (C) = INDI (B) = INDI (A), however the same
set of equivalence classes is obtained for the set C’ = {Weight, Grooming} ⊆ C = {Weight, Grooming,
Living Space}. As C is not a minimal set of attributes to maintain the INDI (A) classifi cation, it is
not a reduct. Again, the set of attributes D = {Grooming, Living Space} produces the D-indiscern-
ible classes INDI (D) = {{Rottweiler, Saluki}, {Saint Bernard, German Shepard, Golden Retriever}}
≠ INDI (A). Hence D is not a reduct. Moreover, as there is no reduct of size less than 2 for this
information system, the set B = {Training, Child Tolerance} is a minimum reduct.

For practical information systems with a large number of attributes, the process of fi nding a minimum
reduct is highly computation intensive. A method based on discernibility matrix is presented below.

Samir Roy_Chapter05.indd 155Samir Roy_Chapter05.indd 155 2/21/2013 3:21:37 PM2/21/2013 3:21:37 PM

156 Introduction to Soft Computing

Defi nition 5.13 (Discernibility Matrix) Given an information system I = (U, A) with n objects,
the discernibility matrix D is a symmetric n × n matrix where the (i, j)th element dij is given by dij = {a ∈
A | a (xi) ≠ a (xj)}.

Each entry of a discernibility matrix is one or more attributes for which the objects xi and xj diff er.

Example 5.14 (Discernibility Matrix)

Th e discernibility matrix for the information system depicted in Table 5.8 on dog breed comparison is
shown in Table 5.9. Here d12 = {G, L, C}, which means that object #1 and #2, i.e., the breeds Rottweiler
and Saint Bernard diff er in the attributes Grooming, Living Space, and Child Tolerance. Th ey match in
the rest of the attributes of the information system.

Table 5.9. Discernibility matrix for dog breed information system

1 2 3 4 5

1 ∅ G, L, C W, T G, L, T, C, S G, L, T, C, S

2 - ∅ W, G, L, T, C T, S T, S

3 - - ∅ W, G, L, C, S W, G, L, C, S

4 - - - ∅ ∅

Defi nition 5.14 (Discernibility Function) A discernibility function fI for an information system
I = (U, A) is a Boolean function of n Boolean variables a1, a2, ..., an corresponding to the n number of
attributes A1, ..., An such that

 f a a a d dn iVd j iii ji1f af 2,a1a , ,) { , }dijin id jiVd i ni{ ,d≤VdiVd ji 1{ nn,did ji (5.26)

where dij is the (i, j)th entry of the discernibility matrix.
Th e set of all prime implicants corresponds to the set of all reducts of I. Hence, our aim is to fi nd the

prime implicants of fI.

Example 5.15 (Discernibility Function)

Th e discernibility function for the discernibility matrix shown in Table 5.9 is given by
f I (B, W, G, E, L, T, C, S)

= (G ∨ L ∨ C) ∧(W ∨ T) ∧ (G ∨ L ∨ T ∨ C ∨ S) ∧

(G ∨ L ∨ T ∨ C ∨ S) ∧ (W ∨ G ∨ L ∨ T ∨ C) ∧

(T ∨ S) ∧ (T ∨ S) ∧ (W ∨ G ∨ L ∨ C ∨ S) ∧

(W ∨ G ∨ L ∨ C ∨ S)

= (G ∨ L ∨ C) ∧(W ∨ T) ∧ (G ∨ L ∨ T ∨ C ∨ S) ∧

(W ∨ G ∨ L ∨ T ∨ C) ∧ (T ∨ S) ∧ (W ∨ G ∨ L ∨ C ∨ S)

= (G ∨ L ∨ C) ∧(W ∨ T) ∧ (T ∨ S)

Samir Roy_Chapter05.indd 156Samir Roy_Chapter05.indd 156 2/21/2013 3:21:37 PM2/21/2013 3:21:37 PM

Rough Sets 157

= (G ∧ W ∧ T) ∨ (G ∧ W ∧ S) ∨ (G ∧ T) ∨ (G ∧ T ∧ S) ∨

(L ∧ W ∧ T) ∨ (L ∧ W ∧ S) ∨ (L ∧ T) ∨ (L ∧ T ∧ S) ∨

(C ∧ W ∧ T) ∨ (C ∧ W ∧ S) ∨ (C ∧ T) ∨ (C ∧ T ∧ S)

= (G ∧ W ∧ S) ∨ (G ∧ T) ∨ (L ∧ W ∧ S) ∨ (L ∧ T) ∨ (C ∧ W ∧ S) ∨ (C ∧ T)

= (G ∧ W ∧ S) ∨ (L ∧ W ∧ S) ∨ (C ∧ W ∧ S) ∨ (G ∧ T) ∨ (L ∧ T) ∨ (C ∧ T)

Th e prime implecants are (G ∧ W ∧ S), (L ∧ W ∧ S), (C ∧ W ∧ S), (G ∧ T), (L ∧ T), and (C ∧ T).
Each of the sets {G, W, S}, {L, W, S}, {C, W, S}, {G, T}, {L, T}, and {C, T} is a minimal set of attributes
that preserves the classifi cation INDI (A). Hence each of them is a reduct. Moreover, each of the sets
{G, T}, {L, T}, and {C, T} is a minimal reduct because they are of size 2, and there is no reduct of size
smaller than 2 for the present information system.

5.7 APPLICATION

Th e theory of rough sets is fast emerging as an intelligent tool to tackle vagueness in various applica-
tion areas. It provides an eff ective granular approach for handling uncertainties through set approxi-
mations. Several soft ware systems have been developed to implement rough set operations and apply
them to solve practical problems. Rough set theory is successfully employed in image segmentation,
classifi cation of data and data mining in the fi elds of medicine, telecommunication, and confl ict analy-
sis to name a few.

Example 5.16 illustrates the process of rule generation from a given information system / decision
system. Subsequently, Example 5.17 presents a case study to show how the concepts of rough set theory
can be used for the purpose of data clustering.

Table 5.10. Decision system relating to scholarship information

Degree CGPA Backlog Recommendation Decision

1 B.Tech. Average No High Granted

2 B.Tech. Fresher No None Not Granted

3 BS Low No Moderate Not Granted

4 MS High No None Granted

5 MS Average No None Not Granted

6 MS High No High Granted

7 B.Tech. High Yes Moderate Granted

8 BS Low Yes High Not Granted

Example 5.16 (Rule generation)

Let us consider a decision system D = (U, {Degree, CGPA, Backlog, Recommendation}, {Decision})
concerning scholarship granting information at an educational institution, as shown in Table 5.10.
Table 5.11 presents the corresponding discernity table.

Samir Roy_Chapter05.indd 157Samir Roy_Chapter05.indd 157 2/21/2013 3:21:39 PM2/21/2013 3:21:39 PM

158 Introduction to Soft Computing

Table 5.11. Discernibility matrix for information system of Table 5.10

2 3 4 5 6 7 8

1 C, R D, C, R D, C, R D, R D, C C, B, R D, C, B

2 Ǿ D, C, R D, C D, C D, C, R C, B, R D, C, B, R

3 - Ǿ D, C, R D, C, R D, C, R D, C, B B, R

4 - - Ǿ C R D, B, R D, C, B, R

5 - - - Ǿ C, R D, C, B, R D, C, B, R

6 - - - - Ǿ D, B, R D, C, B

7 - - - - - Ǿ D, C, R

Th e discernibility function obtained from the discernibility table is as follows (using ‘+’ for the
logical operator ∨ and ‘⋅’ for ∧).

f I (D, C, B, R) =

[(C + R)(D + C + R)(D + C + R)(D + R)(D + C)(C + B + R)(D + C +B)]
[(D + C + R)(D + C)(D + C)(D + C + R)(C + B + R)(D + C +B + R)] ⋅
[(D + C + R)(D + C + R)(D + C + R)(D + C +B)(B + R)] ⋅
[(C)(R)(D + B + R)(D + C +B + R)] ⋅
[(C + R)(D + C + B + R)(D + C +B + R)] ⋅
[(D + B + R)(D + C +B)]
[(D + C + R)] = (C) ⋅ (R)

Hence the system has a unique minimum reduct {CGPA, Recommendation}. Th e sample space
aft er attribute reduction is shown in Table 5.12. Th e rules extracted using the minimal reduct ob-
tained above are given in Table 5.13.

Table 5.12. Sample space after attribute reduction

CGPA Departmental
Recommendation

Decision

1 Average High Granted

2 Fresher None Not Granted

3 Low Moderate Not Granted

4 High None Granted

5 Average None Not Granted

6 High High Granted

7 High Moderate Granted

8 Low High Not Granted

Samir Roy_Chapter05.indd 158Samir Roy_Chapter05.indd 158 2/21/2013 3:21:39 PM2/21/2013 3:21:39 PM

Rough Sets 159

Table 5.13. Extracted rules

Rule # Antecedent Consequent

1 IF (CGPA = Average) and (Recommendation = High) THEN Decision = Granted

2 IF (CGPA = Low) and {(Recommendation = Moderate) Or
(Recommendation = High)}

THEN Decision = Not Granted

3 IF (CGPA = High) and {(Recommendation = None) Or
(Recommendation = Moderate) Or
(Recommendation = High)}

THEN Decision = Granted

4 IF (CGPA = Average) and (Recommendation = None) THEN Decision = Not Granted

5 IF (CGPA = Fresher) and (Recommendation = None) THEN Decision = Not Granted

Example 5.17 (Data Clustering)

In this example, we consider an animal world dataset based on an example cited by T. Herawan,
et. al. in the paper entitled ‘Rough Set Approach for Categorical Data Clustering,’ in International
Journal of Database Th eory and Application, Vol. 3, No.1. March 2010. We illustrate the process of
data clustering using the concepts of rough set theory.

Table 5.14. Animal world dataset

Animal Hair Teeth Eye Feather Feet Eat Milk Fly Swim

1 Lion Yes Pointed Forward No Claw Meat Yes No Yes

2 Dolphin No No Sideway No No Fish No No Yes

3 Cow Yes Blunt Sideway No Hoof Grass Yes No No

4 Tiger Yes Pointed Forward No Claw Meat Yes No Yes

5 Cheetah Yes Pointed Forward No Claw Meat Yes No Yes

6 Giraffe Yes Blunt Sideway No Hoof Grass Yes No No

7 Zebra Yes Blunt Sideway No Hoof Grass Yes No No

8 Ostrich No No Sideway Yes Claw Grain No No No

9 Penguin No No Sideway Yes Web Fish No No Yes

10 Albatross No No Sideway Yes Claw Grain No Yes Yes

11 Eagle No No Forward Yes Claw Meat No Yes No

12 Viper No Pointed Forward No No Meat No No No

Table 5.14 presents data related to twelve animals, viz., Lion, Dolphin, Cow, Tiger, Cheetah, Gi-
raff e, Zebra, Ostrich, Penguin, Albatross, Eagle, and Viper. Th e attributes are Hair (whether the
animal has hair or not), Teeth, Eye (whether the eyes are directed forward or sideways), Feather,
Feet (the options are clawed, hoofed, webbed, or no feet), Eat (i.e, eating habit, options are meat,
grass, fi sh, grain), Milk, Fly, and Swim. Th e sets of attribute values are, VHair = {Yes, No}, VTeeth =
{Pointed, Blunt, No}, VEye = {Forward, Sideway}, VFeather = {Yes, No}, VFeet = {Claw, Hoof, Web,
No}, VEat = {Meat, Grass, Grain, Fish}, VMilk = {Yes, No}, VFly = {Yes, No}, VSwim = {Yes, No}.

Samir Roy_Chapter05.indd 159Samir Roy_Chapter05.indd 159 2/21/2013 3:21:39 PM2/21/2013 3:21:39 PM

160 Introduction to Soft Computing

Th e partitions using singleton attributes are as given below.

1. X (Hair = yes) = {1, 3, 4, 5, 6, 7}, X (Hair = no) = {2, 8, 9, 10, 11, 12}.
∴INDI (Hair) = {{1, 3, 4, 5, 6, 7}, {2, 8, 9, 10, 11, 12}}.

2. X (Teeth = pointed) = {1, 4, 5, 12}, X (Teeth = Blunt) = {3, 6, 7}, X (Teeth = no) = {2, 8, 9, 10,
11}.
∴INDI (Teeth) = {{1, 4, 5, 12}, {3, 6, 7}, {2, 8, 9, 10, 11}}.

3. X (Eye = Forward) = {1, 4, 5, 11, 12}, X (Eye = Sideway) = {2, 3, 6, 7, 8, 9, 10}.
∴INDI (Eye) = {{1, 4, 5, 11, 12}, {2, 3, 6, 7, 8, 9, 10}}.

4. X (Feather = yes) = {8, 9, 10, 11}, X (Feather = no) = {1, 2, 3, 4, 5, 6, 7, 12}.
∴INDI (Feather) = {{8, 9, 10, 11}, {1, 2, 3, 4, 5, 6, 7, 12}}.

5. X (Feet = claw) = {1, 4, 5, 8, 10, 11}, X (Feet = hoof) = {3, 6, 7}, X (Feet = Web) = {9}, X (Feet =
No) = {2, 12}.
∴INDI (Feet) = {{1, 4, 5, 8, 10, 11}, {3, 6, 7}, {9}, {2, 12}}.

6. X (Eat = Meat) = {1, 4, 5, 11, 12}, X (Eat = Grass) = {3, 6, 7}, X (Eat = Grain) = {8, 10}, X (Eat =
Fish) = {2, 9}.
∴INDI (Eat) = {{1, 4, 5, 11, 12}, {3, 6, 7}, {8, 10}, {2, 9}}.

7. X (Milk = Yes) = {1, 3, 4, 5, 6, 7}, X (Milk = No) = {2, 8, 9, 10, 11, 12}.
∴INDI (Milk) = {{1, 3, 4, 5, 6, 7}, {2, 8, 9, 10, 11, 12}}.

8. X (Fly = Yes) = {10, 11}, X (Fly = no) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 12}.
∴INDI (Fly) = {{10, 11}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 12}}.

9. X (Swim = Yes) = {1, 2, 4, 5, 9, 10}, X (Swim = No) = {3, 6, 7, ,8, 11, 12}.
∴INDI (Swim) = {{1, 2, 4, 5, 9, 10}, {3, 6, 7, 8, 11, 12}}.

Now, let us focus on the dependency between the attributes Teeth and Hair. We already have INDI (Teeth)
= {{1, 4, 5, 12}, {3, 6, 7}, {2, 8, 9, 10, 11}} and INDI (Hair) = {{1, 3, 4, 5, 6, 7}, {2, 8, 9, 10, 11, 12}}. Since {3,
6, 7} ⊆ {1, 3, 4, 5, 6, 7} and {2, 8, 9, 10, 11} ⊆ {2, 8, 9, 10, 11, 12}, but {1, 4, 5, 12} ⊄ {1, 3, 4, 5, 6, 7} and {1,
4, 5, 12} ⊄ {2, 8, 9, 10, 11, 12}, the attribute dependency of Hair on Teeth is computed as follows

|{ , , }| |{ , , , , }|
| |

3 6, 7 2 8 9, ,, 10 3 5
12

2
3

+
= = , hence Teeth HaiHH r⇒2

3

Th is implies that the attribute Hair is partially dependent on the attribute Teeth. Th e other attribute de-
pendencies for Hair are found similarly.

Eye H iH b k⇒ =HaiHH r because k =0 0,
| |
| |U

.

Feather H iH b k⇒ =HaiHH r because k = =1
3

8 9 10 4
12

1
3

,
|{ , ,9 , }11 |

| |U
.

Feet H i b k⇒ =Hair because k
+

= =1
2

3 6 7 9+ 2 6
12

1
2

,
|{ , ,6 }| |{ } | |{ , }12 |

| |U
.

Eat H iH b k⇒ =HaiHH r because k =7
12

3 6 8+7 9 7
12

,
|{ , ,6 }| |{ , }10 | |+ { ,2 }|

| |U
.

Samir Roy_Chapter05.indd 160Samir Roy_Chapter05.indd 160 2/21/2013 3:21:39 PM2/21/2013 3:21:39 PM

Rough Sets 161

Milk H i b k⇒ =Hair becausek =1
1 3 4 5 6 2 8 9 10 11 12

,
|{ , ,3 , ,5 , }7 | |+ { , , ,8 98 , ,11 } |

| |U
1211
12

1= .

Fly Hl iH b k =HaiHH r becausek = =
6

10 2
12

1
6

,
|{ , }11 |

| |U
.

Swim H i b k⇒ =Hair becausek =0 0,
| |
| |U

.

It is found from these calculations that there is complete dependency between the attributes Milk and
Hair. Th erefore the animal world depicted in the information system Table 5.14 can be partitioned into
two clusters on the basis of these two attributes. Th e resultant clusters are shown in Fig. 5.2.

Lion, Dolphin, Cow, Tiger, Cheetah,
Giraffe, Zebra, Ostrich, Penguin,

Albatross, Eagle, Viper

With Hair and Milk
Lion, Cow, Tiger, Cheetah,

Giraffe, Zebra

Without Hair and Milk
Dolphin, Ostrich, Penguin,

Albatross, Eagle, Viper

Fig. 5.2. Clusters in the animal world

 CHAPTER SUMMARY

Th e main points of the topics discussed in this chapter are summarized below.
Th eory of • rough sets provides a formalism to tackle vagueness in real life relating to information
systems.
An • information system is a set of data presented in structured, tabular form. It consists of
a universe of objects and a number of attributes. Each object is an ordered n-tuple. Th e ith
element of an object is a possible value of the ith attribute.
A • decision system is an information system with a special attribute called the decision attribute.
Two objects of an information system are said to be • P-indiscernible, where P is a set of attributes
of the system, if they have the same set of values of the attributes of P. Th e P-indiscernibility is
an equivalence relation.
Given an information system • I = (U, A), a set of objects X ⊆ U and a set of attributes B ⊆ A,
roughness, or otherwise, of X with respect to knowledge in B is defi ned in terms of the sets
B-lower approximation of X and B-upper approximation of X. Th e B-lower approximation
of X is the set of objects that are certainly in X. On the other hand, the set of objects that are
possibly in X constitute the B-upper approximation of X. Th e set X is said to be rough with
respect to our knowledge in B if the diff erence between the B-upper approximation of X and
B-lower approximation of X is non-empty.

Samir Roy_Chapter05.indd 161Samir Roy_Chapter05.indd 161 2/21/2013 3:21:46 PM2/21/2013 3:21:46 PM

162 Introduction to Soft Computing

Th e membership of an object • x to a rough set X with respect to knowledge in B is expressed as

μX
Bμμ ()x where μX

Bμμ B

B

XB()x
[]x

[]x
.= Like fuzzy membership, rough membership values lie within

the range 0 to 1.
A minimal set of attributes that preserves the indiscernibility relation among the objects of an •
information system is called a reduct. A minimal reduct is a reduct with minimal size among
all reducts.
A • discernibility matrix contains information about pairs of discernibile objects and the
attributes in which they diff er. A discernibility function presents the same information as a
Boolean function in the form of conjunction of disjunctions. Th e discernibility matrix and
the discernibility function are used to fi nd the reducts as well as the minimal reducts of an
information system.
Th e theory of rough set is applied to extract hidden rules underlying an information system. It •
is also used for data clustering and data mining applications.

 SOLVED PROBLEMS

Problem 5.1 (Set approximations and rough membership) Table 5.14 presents a decision system for
a number of individuals seeking loan from a bank and the bank’s decision in this regard. Th e conditional
attributes are Gender, Age, Income, Car (indicating whether the applicant owns a car or not), Defaulter
(whether the applicant is a defaulter in paying off a previous loan) and their valid attribute values are
{Male, Female}, {Middle-aged, Young-adult, Aged}, {High, Medium, Low}, {Yes, No}, and {Yes, No} respec-
tively. Th e decision attribute is Loan Granted with value set {Yes, No}.

Let B = {Age, Income, Car} ⊂ A = {Gender, Age, Income, Car, Defaulter} be a set of attributes. Th en

 (i) Compute INDB (I)
 (ii) If X = {x ∈ U | Loan Granted (x) = Yes} then compute B-lower and B-upper approximations of

X and determine if X is rough in terms of knowledge in B.
 (iii) Calculate μX

Bμμ ()x for each x ∈ U.

Table 5.14. Loan applicants’ data set

Name Gender
(G)

Age
(A)

Income
(I)

Car
(C)

Defaulter
(D)

Loan
Granted

1 Tony M Middle-aged High Yes Yes No

2 Vinod M Middle-aged High No No Yes

3 Sheela F Young-adult High Yes No Yes

4 Kete F Aged Low No No No

5 Nina F Middle-aged Middle Yes No Yes

6 Sandip M Aged High No No No

7 Mita F Young-adult High No No Yes

8 Bob M Young-adult High Yes Yes No

(Continued)

Samir Roy_Chapter05.indd 162Samir Roy_Chapter05.indd 162 2/21/2013 3:21:50 PM2/21/2013 3:21:50 PM

Rough Sets 163

Name Gender
(G)

Age
(A)

Income
(I)

Car
(C)

Defaulter
(D)

Loan
Granted

9 Bill M Middle-aged Middle No No Yes

10 Martha F Middle-aged Middle No No Yes

11 Bruce M Middle-aged High Yes No Yes

12 Gogo M Aged Low No No No

Solution 5.1 Th e computations are shown below.

 (i) INDB(I) = {{1, 11}, {2}, {3, 8}, {4, 12}, {5}, {6}, {7}, {9, 10}}
 (ii) X = {x ∈ U | Loan Granted (x) = Yes} = {2, 3, 5, 7, 9, 10, 11}

B (X) = {2, 5, 7, 9, 10}, B (X) = {1, 2, 3, 5, 7, 8, 9, 10, 11} and
BNB (X) = {1, 8} ≠ f.

∴ X is rough with respect to knowledge of the attributes {Age, Income, Car} (Fig. 5.3).

{2} {5} {7}
(No)

{9, 10}

{3, 8}

(Yes)

(Yes/No)

{1, 11}

{4, 12}

{6}

Fig. 5.3 Set approximations

 (iii) Computations of the rough membership values for individual elements are shown below.

μ μμμBμμ X
B() ()

{ , } { , , , , , , }
{ , }

μX
Bμμ) (

1, 1 2} { 3 5 7, ,, 9 1, 0,
1, 1

1
2

=)μX (=

Similarly, μ μμμBμμ X
B() ()

|{ , } { , , , , , , } |
| { , } |

μX
Bμμ) (

3, 3, 5 7, 9 1, 0,
3,

1
2

=)μX (
∩

=

μ μ μ μ μμμBμμ X
B μμB Bμμ X

Bμμ() () () () ,μX
Bμμ) ((μBμμ (1=)μX (=)μ (=X and

μ μ μμμBμμ X
B

X
Bμμ() () () .μX

Bμμ) (0=)μX (=

Problem 5.2 (Minimum reduct) We know that the discernibility matrix is constructed to fi nd the
reducts of an information system, and thereby the minimal reduct. Each cell of a discernibility matrix
correspond to a pair of objects. It contains the attributes in which the pair of objects diff er. Th e discern-
ibility function is a conjunction of terms where each term is constituted from the entries of the discern-
ibility matrix. A term is a disjunction of attributes in a cell of the discernibility matrix.

Propose a technique to simplify the discernibility matrix, or discernibility function, so that the set of
reducts and thereby the minimal reducts of the system could be found effi ciently. Apply this technique
to the information system depicted in Table 5.14 and fi nd it’s minimal reduct.

Table 5.14. Continued

Samir Roy_Chapter05.indd 163Samir Roy_Chapter05.indd 163 2/21/2013 3:21:53 PM2/21/2013 3:21:53 PM

164 Introduction to Soft Computing

Solution 5.2 Th e discernibility function is a conjunction of disjunctions. Th is function can be sim-
plifi ed by repeated application of the boolean identy

 A ⋅ (A + B) = A (5.27)
Th e technique consists of identifying a pair of non-empty cells, say a and b such that all attributes
in a are contained in b. We can ignore the set of attributes in b on the basis of the identity 5.27. Th is
way the ‘dependent’ cells are eliminated resulting in a reduced discernibility matrix. Th e discernibility
function is constructed from the reduced matrix and is transformed to a disjunction of conjunction,
i.e., sum of products, form. Th e entire procedure is presented in Procedure Find-Min-Reduct
(U, A), shown as Fig. 5.4.

Execution of Procedure Find-Min-Reduct (U, A) for the given information system is
described below.

Procedure Find-Min-Reduct (U, A)
/* Given an information system I = (U, A) where U is a non-empty set
of objects and A is a non-empty set of attributes, to find the set
of reducts of I, and thereby the minimal reducts of I. */

0. Begin
1. Construct the discernibility matrix D of I. Let c1, c2, …, cr be the

sets of attributes corresponding to the non-empty cells of D.

2. Arrange c1, c2, …, cr in non-decreasing order of their sizes. Let C1,
C2, …, Cr be the rearranged sets of attributes such that

|C1| ≤ |C2| ≤ … ≤ |Cr|
3. Let T = {} and S = {C1, C2, …, Cr}
4. Repeat Steps 5, 6, 7 and 8 While S ≠ f
5. Let c be a minimal member of S, i.e., |c|≤|Ci| ∀Ci∈S
6. T = T ∪{c}
7. ∀Ci∈S, If c ⊆Ci, Then remove Ci from S, S = S−{Ci}
8. Let t1, t2, …, tk be the members of T constructed through Steps 4-7

above. For each ti∈T form a Boolean clause Ti as the disjunction of
the attributes in ti. Construct the discernibility function fD as the
conjunction of all Ti’s.

9. Simplify fD to sum-of-products form. Each product term corresponds to
a reduct of the information system I. Any one of the product terms
with minimal cardinality is a minimal reduct of I.

10. END-Find-Min-Reduct

Fig. 5.4 Procedure Find-Min-Reduct (U, A)

Step 1. Construct the discernibility matrix D of I. Let c1, c2, …,
cr be the sets of attributes corresponding to the non-empty
cells of D.

We construct the discernibility matrix for the given information system as shown in
Table 5.15. Th e sets of attributes are {C, D}, {G, A, D}, {G, A, I, C, D}, {G, I, D}, …, {A, I, C}.
Th ere are 66 such sets altogether.

Samir Roy_Chapter05.indd 164Samir Roy_Chapter05.indd 164 2/21/2013 3:21:58 PM2/21/2013 3:21:58 PM

Rough Sets 165

Step 2. Arrange c1, c2, …, cr in non-decreasing order of their sizes.
Let C1, C2, …, Cr be the rearranged sets of attributes such
that |C1| ≤ |C2| ≤ … ≤ |Cr|.
Th e arrangement is : {A}, {D}, {A}, {I}, {C}, {C}, {G}, {C}, {I}, {G}, {C, D}, {G, A}, …, {G, A,
I, C, D}.

Table 5.15. Discernibility matrix

2 3 4 5 6 7 8 9 10 11 12

1 C,D G,A,D G,A,I,C,D G,I,D A,C,D G,A,C,D A I,C,D G,I,C,D D A,I,C,D

2 G,A,C G,A,I G,I,C A G,A A,C,D I G,I C A,I

3 A,I,C A,I G,A,C C G,D G,A,I,C A,I,C G,A G,A,I,C

4 A,I,C G,I A,I G,A,I,C,D G,A,I A,I G,A,I,C G

5 G,A,I,C A,I,C G,A,I,D G,C C G,I G,A,I,C

6 G,A A,C,D A,C G,A,I A,C I

7 G,C,D G,A,I A,I G,A,C G,A,I

8 A,I,C,D G,A,I,C,D A,D A,I,C,D

9 G I,C A,I

10 G,I,C G,A,I

11 A,I,C

Step 3-7. Let T = {} and S = {C1, C2, …, Cr}

Repeat While S ≠ f

 Let c be a minimal member of S, i.e., |c| ≤ |Ci| ∀ Ci ∈ S
 T = T ∪ {c}
 ∀Ci ∈ S, If c ⊆ Ci, Then remove Ci from S, S = S − {Ci}

All sets of attributes except {A}, {D}, {I}, {C}, {G} are removed in the process described
above. Hence, T = {{A}, {D}, {I}, {C}, {G}}.

Step 8. Let t1, t2, …, tk be the members of T constructed through Steps
3-7 above. For each ti∈T form a Boolean clause Ti as the
disjunction of the attributes in ti. Construct the discern-
ibility function fD as the conjunction of all Ti’s.

Here the discernibility function is f I (G, A, I, C, D) = G ∧ A ∧ I ∧ C ∧ D.

Step 9. Simplify fD to sum-of-products form. Each product term
corresponds to a reduct of the information system I. Any one
of the product terms with minimal cardinality is a minimal
reduct of I.
In the present case the discernibility function f I (G, A, I, C, D) = G ∧ A ∧ I ∧ C ∧ D contains
a single product term and is already in simplifi ed form. Th erefore, the minimum reduct
for the given information system is unique and consists of all the attributes A = {Gender,
Age, Income, Car, Defaulter}.

Samir Roy_Chapter05.indd 165Samir Roy_Chapter05.indd 165 2/21/2013 3:21:58 PM2/21/2013 3:21:58 PM

166 Introduction to Soft Computing

Problem 5.3 (Minimum reduct) Table 5.16 presents data related to the shopping habits of a num-
ber of customers to a shopping mall. Four kinds of items, viz., Food (F), Garment (GM), Cosmetics (C),
and Toys (T) are considered. If a customer buys a certain kind of item, the corresponding entry in the
table is Yes, otherwise No. Th e attribute Amount (A) express the amount paid by the customer which is
either High, or Medium, or Low. Th ere are two modes of payment (P), Cash and Credit Card (CC). Find
the reducts of the information system presented in Table 5.16 as well as the minimal reducts from the
set of reducts obtained. Also, extract the rules on the basis of one of the minimal reducts and assuming
P to be the decision attribute.

Table 5.16. Shopping habit data set

Customer
Name

Gender
(GD)

Food
(F)

Garment
(GM)

Cosmetics
(C)

Toys
(D)

Amount
(A)

Payment
Mode (P)

1 Mili F Yes Yes Yes Yes High CC

2 Bill M Yes No No No Low Cash

3 Rita F Yes Yes Yes Yes High CC

4 Pam F Yes Yes Yes Yes High CC

5 Maya F No No Yes No Medium Cash

6 Bob M Yes No No No Medium CC

7 Tony M Yes No No No Low Cash

8 Gaga F Yes Yes Yes Yes High CC

9 Sam M Yes No No No Low Cash

10 Abu M Yes No No No Low Cash

Solution 5.3 Th e step-by-step process for fi nding the reducts and the minimal reducts is given below.

Step 1. Construct the discernibility matrix D of I. Let c1, c2, …,
cr be the sets of attributes corresponding to the non-empty
cells of D.

Th e discernibility matrix constructed is shown in Table 5.17. Th e blank cells indicate the
indiscernible pairs of objects. For example, cell (1, 3) is blank, as the objects 1 and 3 are
indescernible. Similarly, null entries at cells (1, 4) and (1, 8) indicate indiscernibility of the
objects 1, 4, and 8. As indiscernibility is an equivalence relation, we fi nd that the set {1, 3,
4, 8} forms a class of indiscernible objects. Table 5.17 reveals that indiscernible classes are
{1, 3, 4, 8}, {2, 7, 9, 10}, {5}, and {6}. In order to further simplify the process of fi nding the
reducts of the given information system, we reduce the discernibility matrix by taking one
object from each of the equivalence classes. Th e reduced discernibility matrix is shown in
Table 5.18. Th e objects 1, 2, 5 and 6 are considered as representatives of the classes {1, 3, 4,
8}, {2, 7, 9, 10}, {5}, and {6} respectively.

Step 2. Arrange c1, c2, …, cr in non-decreasing order of their sizes.
Let C1, C2, …, Cr be the rearranged sets of attributes such
that |C1| ≤ |C2| ≤ … ≤ |Cr|.

Th e arrangement is : {A, P}, {GD, F, C, A}, {GD, F, C, P}, {F, GM, T, A, P}, {GD, GM, C, T,
A}, {GD, GM, C, T, A, P}.

Samir Roy_Chapter05.indd 166Samir Roy_Chapter05.indd 166 2/21/2013 3:21:58 PM2/21/2013 3:21:58 PM

Rough Sets 167

Table 5.17. Discernibility matrix for shopping habit data set

2 3 4 5 6 7 8 9 10

1 GD,GM,
C,T,A,PM

F,GM,T,
A,PM

GD,GM,
C,T,A

GD,GM,
C,T,A,P

GD,GM,
C,T,A,P

GD,GM,C,T,A,P

2 GD,GM,
C,T,A,P

GD,GM,
C,T,A,P

GD,F,
C,A

A,P GD,GM,
C,T,A,P

3 F,GM,T,
A,PM

GD,GM,
C,T,A,P

GD,GM,
C,T,A,P

GD,GM,
C,T,A,P

GD,GM,C,T,A,P

4 F,GM,T,
A,P

GD,GM,
C,T,A

GD,GM,
C,T,A,P

GD,GM,
C,T,A,P

GD,GM,C,T,A,P

5 GD,F,C,
P

GD,F,C,A F,GM,T,
A,P

F,GM,T,
A,P

F,GM,T,
A,P

6 A,P GD,GM,
C,T,A

A,P A,P

7 GD,GM,
C,T,A,P

8 GD,GM,
C,T,A,P

GD,GM,C,T,A,P

9

Table 5.18. The reduced discernibility matrix

2 5 6

1 GD, GM, C,
T, A, P

F, GM, T,
A, P

GD, GM, C, T, A

2 GD, F, C, A A, P

5 GD, F, C, P

Step 3-7. Let T = {}and S = {C1, C2, …, Cr}

Repeat While S ≠ f
 Let c be a minimal member of S, i.e., |c|≤|Ci| ∀Ci∈S
 T = T ∪{c}
 ∀Ci∈S, If c ⊆Ci, Then remove Ci from S, S = S-{Ci}

We fi nd T = {{A, P}, {GD, F, C, A}, {GD, F, C, P}, {GD, GM, C, T, A}}.

Samir Roy_Chapter05.indd 167Samir Roy_Chapter05.indd 167 2/21/2013 3:21:59 PM2/21/2013 3:21:59 PM

168 Introduction to Soft Computing

Step 8. Let t1, t2, …, tk be the members of T constructed through Steps
3-7 above. For each ti ∈ T form a Boolean clause Ti as the
disjunction of the attributes in ti. Construct the discern-
ibility function fD as the conjunction of all Ti’s.

Th e discernibility function is f I (GD, F, GM, C, T , A, P) = (A + P)⋅(GD + F + C + A)⋅(GD
+ F + C + P)⋅(GD + GM + C + T + A)

Step 9. Simplify fD to sum-of-products form. Each product term cor-
responds to a reduct of the information system I. Any one
of the product terms with minimal cardinality is a minimal
reduct of I.
Aft er further simplifi cation the discernibility function in sum-of-products form is given
by

f I (GD, F, GM, C, T , A, P)
 = GD⋅P + A⋅GD + A⋅P + A⋅F + A⋅C + C⋅P + F⋅T⋅P + F⋅GM⋅P
 = A⋅(C + F + P + GD) + P⋅(GD + C + F⋅T + F⋅GM)

Th erefore, the given information system has eight reducts {GD, P }, {A, GD}, {A, P}, {A, F},
{A, C}, {C, P}, {F, T, P}and {F, GM, P}. Each of the reducts {GD, P }, {A, GD}, {A, P}, {A, F},
{A, C} and {C, P} is a minimal reduct.

Rules extracted On the basis of the reduct {A, C} and taking P as the decision attribute we get the
following rules as shown in Table 5.19.

Table 5.19. Extracted rules

R # Antecedent Consequent

1 IF (Cosmetics = Yes) and (Amount = High) THEN Payment Mode = Credit Card

2 IF (Cosmetics = No) and (Amount = Low) THEN Payment Mode = Cash

3 IF (Cosmetics = Yes) and (Amount = Medium) THEN Payment Mode = Cash

4 IF (Cosmetics = No) and (Amount = Medium) THEN Payment Mode = Credit Card

� TEST YOUR KNOWLEDGE

5.1 Which of the following is not a part of an information system?
a) A non-empty set of objects b) A non-empty set of attributes
c) Both (a) and (b) d) None of the above

5.2 Which of the following contains a decision attribute?
a) An information system b) A decision system
c) Both (a) and (b) d) None of the above

5.3 Two objects of a decision system are said to be indiscernible if
a) Th ey have the same decision attribute value
b) Th ey have the same conditional attributes value
c) Both (a) and (b)
d) None of these

Samir Roy_Chapter05.indd 168Samir Roy_Chapter05.indd 168 2/21/2013 3:21:59 PM2/21/2013 3:21:59 PM

Rough Sets 169

 5.4 Th e indiscernibility relation over a given information system is
a) Refl exive b) Symmetric
c) Transitive d) All of the above

 5.5 Let I = (U, A) be an information system and P ⊂ Q ⊂ A and x, y ∈ U be objects of I. Th en which
of the following statements is true?
a) If x and y are P-indiscernible then they are Q-indiscernible
b) If x and y are Q-indiscernible then they are P-indiscernible
c) Th e P and Q-indiscernibility of x and y are unrelated
d) None of these

 5.6 Let I = (U, A) be an information system and B ⊂ A and X ⊂ U. Th en which of the following rela-
tions holds good for a rough set?
a) B B()X ()X⊆ b) B B()X ()X⊇

c) B B()X ()X= d) None of the above
 5.7 Let I = (U, A) be an information system and B ⊂ A and X ⊂ U. Th en which of the following is

defi ned as the B-boundary region of X?
a) B B()X ()X− b) B B()X ()X−

c) B B()X ()X∪ d) B B()X ()X∩
 5.8 Let I = (U, A) be an information system and B ⊂ A and X ⊂ U. Th en which of the following is

defi ned as the B-outside region of X?
a) U B()X b) U B()X
c) B B()X ()X− d) None of the above

 5.9 Let I = (U, A) be an information system and B ⊂ A and X ⊂ U. Th en which of the following rela-
tions is not valid?
a) B B B()X Y ()X ()Y)Y b) B B B()X Y ()X ()Y⊇)Y ∪
c) Both (a) and (b) d) None of the above

5.10 Let I = (U, A) be an information system and B ⊂ A and X ⊂ U. Th en which of the following rela-
tions is not valid?
a) B B B()X Y ()X ()Y)Y ∪ b) B B B()X Y ()X ()Y⊆)Y
c) Both (a) and (b) d) None of the above

5.11 Which of the following is not true?
a) x B X

B∈ ⇒B =()XX ()xμ 1 b) x U B X
B−U ⇒ =X
B()X ()xμB 0

c) x BNB X
B∈ ⇒BNB ()XXX () 1<0 X
B< X
B ()xxμB d) None of the above

5.12 Which of the following is the value of μ μμμBμμ U X
BμμμU X() ()x+ ?

a) 0 b) 1
c) Between 0 and 1 d) None of the above

5.13 Which of the following relations is true?
a) μ μ μμμBμμ X

Bμμ Y
BμX x() (()x , (μY
Bμμ))≥ b) μ μ μμμBμμ X

Bμμ Y
BμX x≤() i (()x , (μY
Bμμ))

c) Both (a) and (b) d) None of the above
5.14 If B()X ≠ Φ and B U()X = , then

a) X is totally B-indefi nable b) X is externally B-defi nable
c) X is internally B-defi nable d) X is roughly B-defi nable

Samir Roy_Chapter05.indd 169Samir Roy_Chapter05.indd 169 2/21/2013 3:21:59 PM2/21/2013 3:21:59 PM

170 Introduction to Soft Computing

5.15 Let P ⊂ Q ⊂ A be sets of attributes of an information system I = (U, A) such that INDA(P) =
INDA(Q). Th en which of the following is certainly not true?
a) P is not a reduct of U b) Q is not a reduct of U
c) Q-P is not a reduct of U d) None of the above

5.16 Let D be the discernity matrix of an information system I = (U, A) with n objects. If the (i, j)th
element of D contains an attribute p∈A, and xi and xj denote the ith and the jth objects of U, then
which of the following is true?
a) p(xi) = p(xj) b) p(xi) ≠ p(xj)
c) p(xi) and p(xj) are not related d) None of the above

5.17 Which of the following helps us to fi nd the minimum reduct of an information system?
a) Discernibility Matrix b) Discernibility function
c) Both (a) and (b) d) None of the above

5.18 Th e entries of discernibility matrix consists of
a) A set of objects b) A set of attributes
c) A rough membership value d) None of the above

5.19 Which of the following is not an application area of the rough set theory?
a) Rule extraction b) Data clustering
c) Both (a) and (b) d) None of the above

5.20 Which of the following is an appropriate condition for applying rough set theory?
a) Non-determinism b) Uncertainty
c) Vagueness d) None of the above

Answers

 5.1 (d) 5.2 (b) 5.3 (b) 5.4 (d) 5.5 (b)
 5.6 (a) 5.7 (b) 5.8 (b) 5.9 (d) 5.10 (d)
 5.11 (d) 5.12 (b) 5.13 (c) 5.14 (a) 5.15 (b)
 5.16 (b) 5.17 (c) 5.18 (b) 5.19 (d) 5.20 (c)

 EXERCISES

5.1. Prove that indiscernibility is an equivalence relation.
5.2 Prove the following identities for an information system I = (U, A) and B ⊆ A.
 i) B U B()U X ()XX −
 ii) B U B()U X ()XX −
5.3 Consider the information system presented in Table 5.14 showing the loan applicants’ data set. We

want to investigate if there is any correlation between the attributes {Age, Income} and possession of
a car. If B = {Age, Income}, then

 i) Find INDB (I)
 ii) Let X = {x ∈ U | x (Car) = Yes}. Find if X is rough in terms of knowledge in B.
5.4 Let I = (U, A) be an information system and C ⊆ B ⊆ A. Th en prove that ∀x ∈ U, [x]B ⊆ [x]C.
5.5 Consider the information system presented in Table 5.16 on the shopping habit of a number of cus-

tomers. As shown in solved problem no. 3, {A, GD} is a minimal reduct of the system. Find the rules
underlying the system on the basis of the reduct {A, GD} and taking P as the decision attribute.

Samir Roy_Chapter05.indd 170Samir Roy_Chapter05.indd 170 2/21/2013 3:22:22 PM2/21/2013 3:22:22 PM

Rough Sets 171

5.6 Table 5.8 present an information system on Dog Breed Comparison. Compute the attribute depen-
dencies X → Grooming for all attributes X other than Grooming, i.e. X ∈ {Weight, Exercise, Living
Space, Training, Child Tolerance, Stranger Tolerance}.

Is it possible to partition the cited dog breeds into clusters on the basis of these attribute depen-
dencies? If yes, then show the clusters with the help of a tree structure.

Can you further partition the clusters thus formed into sub-clusters on the basis of knowledge
of other attributes?

Do you identify any other attribute dependency on the basis of which the given dog breeds could
be partitioned into yet another set of clusters?

5.7 Th e information system on the shopping habits of a number of customers is given in Table 5.16.
Cluster the objects on the basis of the attribute dependencies X → Toys, X being any of the attributes
Gender (GD), Food (F), Garment (GM), Cosmetics (C), and modes of payment (P)

5.8 Th e Solved Problem No. 5.2 proposes a technique to compute the minimal reducts of a given infor-
mation system. However, there are other methods to fi nd the minimal reducts. Can you devise your
own method to solve the problem?

 BIBLIOGRAPHY AND HISTORICAL NOTES

Aft er proposal and initiation of rough sets in 1981-1982, there were a few interesting works on rough set
theory by Pawlak himself, Iwinski, Banerjee and so on. In 1991, Pawlak threw some light on the utility
of rough sets. Next year Skowron and Rauszer published their works on intelligent decision support us-
ing the concept of discernibility matrices. By 1992, Rough Set Th eory had gained much ground and as
suggested from the compilation ‘Intelligent Decision Support - Handbook of Applications and Advances
of the Rough Sets Th eory,’ signifi cant work were being carried out in the fi eld of intelligent decision sup-
port systems using rough sets. In 1994, Pawlak and Andrez Skowron proposed an extension through
rough membership functions. In 1997, Pawlak published on the applicability of rough set theory on data
analysis and in the same year E. Orlowska applied the principles on incomplete information systems.
First notable application of rough sets on data mining was published by T.Y. Lin and N.Cercone where
they dealt with the analysis of imperfect data. Th ereaft er, a number of applications have come up and
rough sets have been used in various areas including data mining and knowledge discovery, pattern
classifi cation, incomplete information systems, fault diagnosis, soft ware safety analysis etc. to name a
few. Rough sets have also been used in pairs with other soft computing techniques giving birth to such
hybrid systems as rough-fuzzy, rough-neural and rough-GA systems. A few important references in this
area are given below.

Banerjee, M. and Chakraborty, M. K. (1987). Rough algebra. Bulletin of the Polish Academy of Sciences,
Mathematics, 41, 293–287.

Iwinski, T. B. (1987). Algebraic approach to rough sets. Bulletin of the Polish Academy of Sciences, Math-
ematics, 35, 673–683.

Iwinski, T. B. (1988). Rough orders and rough concepts. Bulletin of the Polish Academy of Sciences, Math-
ematics, 36, 187–192.

Lin, T.Y. and Cercone, N. (1997). Rough Sets and Data Mining – Analysis of Imperfect Data. Boston:
Kluwer Academic Publishers.

Orlowska, E. (1997). Incomplete Information: Rough Set Analysis. Physica-Verlag, Heidelberg.
Pawlak, Z. (1981). Information Systems, Th eoretical Foundations. Information Systems, 6, 205-218.

Samir Roy_Chapter05.indd 171Samir Roy_Chapter05.indd 171 2/21/2013 3:22:25 PM2/21/2013 3:22:25 PM

172 Introduction to Soft Computing

Pawlak, Z. (1982). Rough sets. International Journal of Computer and Information Sciences, 11, 341–
356.

Pawlak, Z. (1984). Rough classifi cation. International Journal of Man-Machine Studies, 20, 469–483.
Pawlak, Z., Wong, S. K. M., and Ziarko, W. (1988). Rough sets: Probabilistic versus deterministic ap-

proach. International Journal of Man-Machine Studies, 29, 81–95.
Pawlak, Z. (1991). Rough sets: Th eoretical aspects of reasoning with data. Kluwer Academic Publishers,

Boston.
Pawlak, Z. and Skowron, A. (1994). Rough membership functions. In ‘dvances in the Dempster--Schafer

Th eory of Evidence,’ R. R., Fedrizzi, M., and Kacprzyk, J. (eds.), New York: Wiley, 251-271.
Pawlak, Z. (1997). Rough Sets: Th eoretical Aspects of Reasoning about Data. Dordrecht: Kluwer.
Skowron, A. and Rauszer, C. (1992). Th e discernibility matrices and functions in information systems. In

Intelligent Decision Support – Handbook of Applications and Advances of the Rough Sets Th eory, R.
Slowiński (ed.), Dordrecht: Kluwer, 331–362.

Ziarko, W. P. (ed.) (1994). Rough sets, fuzzy sets and knowledge discovery. Springer–Verlag, London.
Ziarko, W. P. (2002). Rough set approaches for discovery of rules and attribute dependencies. In Handbook

of Data Mining and Knowledge Discovery, Klösgen, W. and Zytkow, J. M. (ed.), Oxford, 328–339.

Samir Roy_Chapter05.indd 172Samir Roy_Chapter05.indd 172 2/21/2013 3:22:25 PM2/21/2013 3:22:25 PM

6
ARTIFICIAL NEURAL NETWORKS:

BASIC CONCEPTS

Key Concepts

Activation, Activation function, Artifi cial neural network (ANN), Artifi cial neuron, Axon, Binary
sigmoid, Code-book vector, Competitive ANN, Correlation learning, Decision plane, Decision sur-
face, Delta learning, Dendrite, Epoch of learning, Euclidean distance, Exemplar, Extended delta rule,
Heaviside function, Heb learning, Hebb rule, Hidden layer, Hopfi eld network, Hyperbolic tangent
function, Identity function, Learning rate, Least-mean square (LMS) learning, Linear separability,
Logistic sigmoid, McCulloch–Pitts neural model, Multi-layer feed forward, Neuron, Outstar learn-
ing, Parallel relaxation, Pattern, Pattern association, Pattern classifi cation, Perceptron, Perceptron
convergence theorem, Perceptron learning, Processing element (PE), Recurrent network, Sigmoid
function, Single layer feed forward, Soma, Steepness parameter, Step function, Supervised learning,
Synapse, Th reshold function, Training vector, Unsupervised learning, Widrow–Hoff rule, Winner
takes all, XOR problem

 Chapter Outline

6.1 Introduction
6.2 Computation in Terms of Patterns
6.3 Th e McCulloch–Pitts Neural Model
6.4 Th e Perceptron
6.5 Neural Network Architectures
6.6 Activation Functions

6.7 Learning by Neural Nets
Chapter Summary
Solved Problems
Test Your Knowledge
Exercise
Bibliography and Historical Notes

Artifi cial neural networks (ANNs) follow a computational paradigm that is inspired by the structure and
functionality of the brain. Th e brain is composed of nearly 100 billion neurons each of which is locally
connected to its neighbouring neurons. Th e biological neuron possesses very elementary signal process-
ing capabilities like summing up the incoming signals and then propagating to its neighbours depend-
ing on certain conditions. However the sum total of the parallel and concurrent activities of these 100

Samir Roy_Chapter06.indd 173Samir Roy_Chapter06.indd 173 2/21/2013 3:22:53 PM2/21/2013 3:22:53 PM

174 Introduction to Soft Computing

billion neurons gives rise to the highly sophisticated, complex, and mysterious phenomenon that we call
‘consciousness’. Th is chapter provides an overview of the basic concepts of ANNs. Unlike mainstream
computation where information is stored as localized bits, an ANN preserves information as weights of
interconnections among its processing units. Th us, as in the brain, information in ANNs too resides in
a distributed manner, resulting in greater fault tolerance. Moreover, multiple information may be super-
imposed on the same ANN for storage purpose. We will see that like the human brain, ANNs also per-
form computation in terms of patterns rather than data. Th is chapter presents the major artifi cial neural
models, as well as the various ANN architectures and activation functions. Th e basic learning strategies
are also discussed in this chapter.

6.1 INTRODUCTION

Computation is generally perceived as a sequence of operations that processes a set of input data to yield
a desired result. Th e agent that carries out the computation is either an intelligent human being or a
typical Von Neumann computer consisting of a processor and a memory, along with the input and the
output units (Fig. 6.1). Th e memory contains both instruction and data. Computation is accomplished
by the CPU through a sequence of fetch and execute cycles.

INPUT CPU OUTPUT

MEMORY

Fig. 6.1. Block diagram of a stored program computer

Th e sequential fetch and execute model of computation, based on a single-processor stored program
digital computer as the hardware platform, has been immensely successful in the history of computers.
Its notorious member-crunching and symbol-manipulating capacity has rendered it an indispensable
tool for the civilized world. Innumerable applications in everyday activities and other enterprises,
e.g. commerce, industry, communication, management, governance, research, entertainment, health-
care, and so on, were developed, are being developed, and shall be developed on the basis of the this
model.

However, the power of such a computational model is not unchallenged. Th ere are activities that a
normal human being may require a fraction of a second to perform while it would take ages by even the
fastest computer. Take, for example, the simple task of recognizing the face of a known person. We do it
eff ortlessly, in spite of the infi nite variations due to distance, angle of vision, lighting, posture, distortion
due to mood, or emotion of the person concerned, and so on. Occasionally, we recognize a face aft er a
gap of, say, twenty years, even though the face has changed a lot through aging, and has little semblance
to its appearance of twenty year ago. Th is is still very diffi cult, if not impossible, to achieve for a present
day computer.

Where does the power of a human brain, vis-à-vis a stored program digital computer, lie? Perhaps
it lies in the fact that we, the human beings, do not think in terms of data as a computer does, but in
terms of patterns. When we look at a face, we never think in terms of the pixel values, but perceive the
face as a whole, as a pattern. Moreover, the structure of the human brain is drastically diff erent from
the Von-Neuman architecture. Instead of one, or a few, processors, the brain consists of 100 billion

Samir Roy_Chapter06.indd 174Samir Roy_Chapter06.indd 174 2/21/2013 3:22:55 PM2/21/2013 3:22:55 PM

Artifi cial Neural Networks: Basic Concepts 175

interconnected cells called the neurons. Individually, a neuron can do no more than some primitive tasks
like collecting stimuli from the neighboring neurons and then passing them on to other neighbouring
neurons aft er some elementary processing. But the sum of these simultaneous activities of 100 billion
neurons is what we call the human consciousness. Artifi cial neural network, occasionally abbreviated as
ANN, is an alternative model of computation that is inspired by the structure and functionality of the
human brain.

6.1.1 The Biological Neuron

Th e building block of a human brain is the biological neuron. Th e main parts of the cross-section of a
common biological neuron and their functions are shown in Fig. 6.2.

Dendrite (receives signals from
neighbouring neurons)

2. Soma (accumulates the signals
received through the

dendrites)
3. Insulating fatty layer

4. Axon (transmits signal from soma
to the axon terminals)

5. Axon terminal (propagates stimulus
to neighbouring neurons)

6. Axon of a neighbouring neuron

7. Synapse (scales the signals by a
weight)

8. Dendrite of the neuron

1

2

3
4

5

6

7

8

Fig. 6.2. Structure of a biological neuron

It consists of three primary parts, viz., the dendrites, soma, and the axon. Th e dendrites collect stimuli
from the neighbouring neurons and pass it on to soma which is the main body of the cell. Th e soma
accumulates the stimuli received through the dendrites. It ‘fi res’ when suffi cient stimuli is obtained.
When a neuron fi res it transmits its own stimulus through the axon. Eventually, this stimulus passes
on to the neighboring neurons through the axon terminals. Th ere is a small gap between the end of an
axon terminal and the adjacent dendrite of the neighbouring neuron. Th is gap is called the synapse. A
nervous stimulus is an electric impulse. It is transmitted across a synaptic gap by means of electrochemi-
cal process.

Th e synaptic gap has an important role to play in the activities of the nervous system. It scales the
input signal by a weight. If the input signal is x, and the synaptic weight is w, then the stimulus that
fi nally reaches the soma due to input x is the product x × w. Th e signifi cance of the weight w provided
by the synaptic gap lies in the fact that this weight, together with other synaptic weights, embody the
knowledge stored in the network of neurons. Th is is in contrast with digital computers where the knowl-
edge is stored as a program in the memory. Th e salient features of biological neurons are summarized
in Table 6.1.

Samir Roy_Chapter06.indd 175Samir Roy_Chapter06.indd 175 2/21/2013 3:22:56 PM2/21/2013 3:22:56 PM

176 Introduction to Soft Computing

Table 6.1. Salient features of a biological neuron

Feature

1 The body of the neuron is called the soma that acts as a processing element to receive numerous
signals through the dendrites simultaneously.

2 The strengths of the incoming signals are modifi ed by the synaptic gaps.

3 The role of the soma, i.e., the processing element of a neuron, is simple. It sums up the weighted
input signals and if the sum is suffi ciently high, it transmits an output signal through the axon. The
output signal reaches the receiving neurons in the neighbourhood through the axon terminals.

4 The weight factors provided by the synaptic gaps are modifi ed over time and experience. This phe-
nomenon, perhaps, accounts for development of skills through practice, or loss of memory due to
infrequent recall of stored information.

6.1.2 The Artificial Neuron

An artifi cial neuron is a computational model based on the structure and functionality of a biological
neuron. It consists of a processing element, a number of inputs and weighted edges connecting each in-
put to the processing element (Fig. 6.3). A processing unit is usually represented by a circle, as indicated
by the unit Y in Fig. 6.3. However, the input units are shown with boxes to distinguish them from the
processing units of the neuron. Th is convention is followed throughout this book. An artifi cial neuron
may consist of m number of input units X1, X2, …, Xm. In Fig. 6.3 the corresponding input signals are
shown as x1, x2, …, xm, and y_out is the output signal of the processing unit Y.

x1xx

xixx

xmxx
XmXX

xmxx

XiXX
xixx

:
:

:
:

X1XX x1xx

wiww

wmww

w1ww

y_yy outY

Fig. 6.3 Structure of an artifi cial neuron

Th e notations used in Fig. 6.3 are summarized in Table 6.2. Th ese notational conventions are followed
throughout this text unless otherwise stated.

Table 6.2. Notational convention

Symbol Used Description

Xi The ith input unit.

Y The output unit. In case there are more than one output units, the jth output unit is
denoted as Yj.

xi Signal to the input unit Xi. This signal is transmitted to the output unit Y scaled by the
weight wi.

(Continued)

Samir Roy_Chapter06.indd 176Samir Roy_Chapter06.indd 176 2/21/2013 3:22:56 PM2/21/2013 3:22:56 PM

Artifi cial Neural Networks: Basic Concepts 177

Table 6.2. Continued

Symbol Used Description

wi The weight associated with the interconnection between input unit Xi and the output
unit Y. In case there are more than one output units, wij denotes the weight between
input unit Xi and the jth output unit Yj.

y_in The total (or net) input to the output unit Y. It is the algebraic sum of all weighted
inputs to Y.

y_out Signal transmitted by the output unit Y. It is known as the activation of Y.

Th e net input y_in to the processing element Y is obtained as

 y in x x w x w x wm mw i iw
i

m

= +x w + +
=
∑1 1ww 2 2w

1
 (6.1)

If there are more than one output units, then the net input to the jth output unit Yj, denoted as y_inj, is
given by

 y in x w x w x wj jx j mx j mwm j ixm ij
i

m

= +x wx w + +
=
∑ww 2 2w

1
 (6.2)

Th e weight wi associated with the input Xi may be positive, or negative. A positive weight wi means the
corresponding input Xi has an excitatory eff ect on Y. If, however, wi is negative then the input Xi is said
to have an inhibitory eff ect on Y. Th e output signal transmitted by Y is a function of the net input y_in.
Hence,

 y_out = f (y_in) (6.3)

In its simplest form f(.) is a step function. A binary step function for the output unit is defi ned as

 y o f y if y i
if y i_out f _)in , if y ,

, if y .=yf)in ≤
⎧
⎨
⎧⎧
⎩
⎨⎨

1 0if y in, if y >
0 0if y in, if y ≤ (6.4)

Taking Equation 6.1 into consideration we get

 y o f y
if

if

i i
i

m

i i
i

m_out f _)in)in
, ,if i i

, .f i i

=yf)in
≤

⎧

⎨
⎪
⎧⎧
⎪
⎨⎨
⎪⎪

⎩
⎪
⎨⎨

⎪⎩⎩
⎪⎪

=

=

∑∑

∑∑

0x wiwxi iw >1 if, if ∑
0x wiwxi iw ≤0 if, if ∑

1

1

 (6.5)

When a non-zero threshold q is used Equations 6.4 and 6.5 take the forms

 y o f y if y in
if y in_out f _)in , if y ,

, if y .=yf)in >
≤

⎧
⎨
⎧⎧
⎩
⎨⎨

1
0

θ
θ (6.6)

Or,

 y o f y
if x w

if x w

i iw
i

m

i iw
i

m_out f _)in)in
, ,if xi iw

, .if xi iw
=yf)in

>

≤

⎧

⎨
⎪
⎧⎧
⎪
⎨⎨
⎪⎪

⎩
⎪
⎨⎨

⎪⎩⎩
⎪⎪

=

=

∑

∑

1

0
1

1

θ

θ
 (6.7)

Samir Roy_Chapter06.indd 177Samir Roy_Chapter06.indd 177 2/21/2013 3:22:57 PM2/21/2013 3:22:57 PM

178 Introduction to Soft Computing

Th e function f(.) is known as the activation function of the neuron, and the output y_out is referred to as
the activation of Y. Various activation functions are discussed in later parts of this chapter.

Th e structure of an artifi cial neuron is simple, like its biological counterpart. It’s processing power is
also very limited. However, a network of artifi cial neurons, popularly known as ANN has wonderful ca-
pacities. Th e computational power of ANNs is explored in the subsequent chapters with greater details.

6.1.3 Characteristics of the Brain

Since brain is the source of inspiration, as well as the model that ANNs like to follow and achieve, it is
worthwhile to ponder over the characteristics of a brain as a computing agent. Th e most striking feature
of a brain is its extremely parallel and decentralized architecture. It consists of more or less 100 billion
neurons interconnected among them. Th e interconnections are local in the sense that each neuron is
connected to its neighbours but not to a neuron far away. Th ere is practically no centralized control in
a brain. Th e neurons act on the basis of local information. Th ese neurons function in parallel mode and
concurrently. Apparently the brain is very slow compared to the present day computers. Th is is due to
the fact that neurons operate at milliseconds range while the modern VLSI microchip process signals at
nanosecond scale of time. Th e power of the brain lies not in the signal processing speed of its neuron but
in the parallel and concurrent activities of 100 billion neurons. Another fascinating fact about the brain
is its fault tolerance capability. As the knowledge is stored inside the brain in a distributed manner it can
restore knowledge even when a portion of the brain is damaged. A summary of the essential features of
a brain is presented in Table 6.3.

Table 6.3. Essential features of a brain

Aspect Description

1 Architecture The average human brain consists of about 100 billion neurons. There are
nearly 1015 number of interconnections among these neurons. Hence the
brain’s architecture is highly connected.

2 Mode of operation The brain operates in extreme parallel mode. This is in sharp contrast with
the present day computers which are essentially single-processor machines.
The power of the brain lies in the simultaneous activities of 100 billion neu-
rons and their interactions.

3 Speed Very slow, and also very fast. Very slow in the sense that neurons operate at
milliseconds range which is miserably slow compared to the speed of pres-
ent day VLSI chips that operate at nanoseconds range. So computers are
tremendously fast and fl awless in number crunching and data processing
tasks compared to human beings. Still the brain can perform activities in
split-seconds (e.g., converse in natural language, carry out common sense
reasoning, interpret a visual scenery, etc.) which a modern supercomputer
may take ages to carryout.

4 Fault tolerance The brain is highly fault tolerant. Knowledge is stored within the brain in a
distributed manner. Consequently, if a portion of the brain is damaged, it can
still go on functioning by retrieving or regenerating the lost knowledge from
the remaining neurons.

(Continued)

Samir Roy_Chapter06.indd 178Samir Roy_Chapter06.indd 178 2/21/2013 3:23:03 PM2/21/2013 3:23:03 PM

Artifi cial Neural Networks: Basic Concepts 179

Table 6.3. Continued

Aspect Description

5 Storage mechanism The brain stores information as strengths of the interconnections among the
neurons. This accounts for the adaptability of the brain. New information can
be added by adjusting the weights without destroying the already stored
information.

6 Control There is no global control in the brain. A neuron acts on local information
available with its neighbouring neurons. The neurons pass on the results of
processing only to the neurons adjacent to them.

6.2 COMPUTATION IN TERMS OF PATTERNS

It was observed earlier in this chapter that the brain perceives the physical world in terms of patterns,
rather than data. Since ANNs are inspired by the brain, both structurally and behaviourally, it is worth-
while to consider the nature of pattern-oriented computation vis-a-vis computation on the basis of
stored program. Two fundamental operations relating to patterns, pattern classifi cation and pattern as-
sociation, are explained in this subsection with the help of simple illustrative examples.

6.2.1 Pattern Classification

Classifi cation is the process of identifying the class to which a given pattern belongs. For example, let us
consider the set S of all 3-bit patterns. We may divide the patterns of S into two classes A and B where A
is the class of all patterns having more 0s than 1s and B the converse. Th erefore

S = {000, 001, 010, 011, 100, 101, 110, 111}
A = {000, 001, 010, 100}
B = {011, 101, 110, 111}

Now, given an arbitrary 3-bit pattern, the classifi cation problem here is to decide whether it belongs to
the class A, or class B. In other words, we have to establish the mapping shown in Fig. 6.4.

Th e simplest way to achieve this is to execute a table look-up procedure, as shown in Fig. 6.5(a). All we
have to do is to fi nd the appropriate row in the table corresponding to the given pattern and read the class
name to which it belongs. However, creation and storage of the table becomes impractical as the volume
of stored patterns increases. In practice, we may have to deal with billions of multidimensional patterns.

000

001
010

011

100

101

110
111

A

B

Fig. 6.4. Classifi cation of 3-bit patterns based on the number of 0s and 1s.

Samir Roy_Chapter06.indd 179Samir Roy_Chapter06.indd 179 2/21/2013 3:23:04 PM2/21/2013 3:23:04 PM

180 Introduction to Soft Computing

Fig. 6.5(b) presents a conventional computer program to perform this task. Th e program is written in
a pseudo-language. Th e technique is to count the number of 0s and 1s in the given patterns and store
them in the local variables n0 and n1. Th en depending on whether n0 > n1 or n0 < n1 the program returns
the class name A or B respectively. Th e algorithm has a time complexity of O (nb) where nb is the number
of bits in the given pattern.

Procedure Classify (x, A, B)
Begin
n0 = n1 = 0; /* initialize
counts */
/* count 0s and 1s in x */
For i ← 1 to 3 do
If the ith bit is 0 Then
n0

++; Else n1
++;

End-if
End-for
If n0 > n1 Then Return A;

Else Return B;
End-if

End-procedure

Row # Pattern Class

0 0 0 0 A

1 0 0 1 A

2 0 1 0 A

3 0 1 1 B

4 1 0 0 A

5 1 0 1 B

6 1 1 0 B

7 1 1 1 B

(a) Classifi cation as a table look-up procedure (b) A procedure for classifi cation of 3-bit patterns

Fig. 6.5. Two methods for classifi cation of 3-bit patterns

Is it possible to solve the problem in a diff erent way? Fig. 6.6 shows an artifi cial neuron with three inputs
x1, x2, x3 connected to a processing element Y through the weight factors as shown in the fi gure. It is a
simplifi ed version of a neural model called perception, proposed by Rosenblatt in 1962.

x1xx

x2xx

x3xx
X3XX

x3xx

X2XX
x2xx

:
:

:
:

X1XX x1xx

y_yy outY

+1

++11

+1

y in x w
i

x x w x w

x x x

y o f y if y

i iw

_out f _)in)in , _if y

=
∑ = +x w +

= +x +

=yf)in

1

3

1

1 1ww 2 2w 3 3w

1 2x 3

inii
otherwise

≥⎧
⎨
⎧⎧
⎩
⎨⎨

2
0

,
, .otherwise

Fig. 6.6 An artifi cial neuron to classify 3-bit binary patterns based on the number of 0s and 1s

Th e weights w1, w2, w3 associated with the interconnection paths from the inputs x1, x2, x3 to Y are
chosen in a way that the net input y_in to Y is greater than or equal to 2 when there are two or more 1s
among x1, x2, x3. Th e activation y_out then becomes 1, indicating that the patterns belongs to the class

B. On the other hand, when there are more 0s than 1s, the net (total) input y in wi ix
i

= ≤w xi ix
=
∑ 1 2<

1

3

, so

Samir Roy_Chapter06.indd 180Samir Roy_Chapter06.indd 180 2/21/2013 3:23:04 PM2/21/2013 3:23:04 PM

Artifi cial Neural Networks: Basic Concepts 181

that the output signal, the activation, is y_out = 0. Th is implies that the given pattern belongs to the
class A. Time complexity of this method is O(1) because the inputs are fed to the processing element
parallely.

An alternative arrangement of two output nodes Y1 and Y2 to solve the same classifi cation problem
is shown in Fig. 6.7. Here both the units Y1 and Y2 are connected to the same inputs x1, x2, x3 and these
units explicitly correspond to the classes A and B respectively. If the input pattern belongs to the class
A then Y1 fi res (i.e., computes the activation as y_out1 = 1), otherwise, unit Y2 fi res. Y1 and Y2 never fi re
simultaneously.

It should be noted that Fig. 6.5(a) and 6.5(b) presents the classifi cation knowledge in the form of
an algorithm. On the other hand, the ANN counterpart of the concerned classifi cation task embod-
ies the same knowledge in the form of certain interconnection weights and the activation functions.
If we change the weights, or the activation functions f(y_in), the capability of the ANN changes
accordingly.

x1xx

x2xx

x3xx X3XX

X2XX

X1XX

y_yy out1ttY1YY

y_yy out2ttY2YY

−1

w11ww = +1

w32ww = −1

−1

+1

+1

y in x w
i

w x w x w

x x x

y o f y

i iw

_out f _)in

1

1

1 1x 11 2 2w 1 3x 31

1 2x 3

1

1

3

=
∑ = +x wx 11 +

= +x +

=yf)in ==
≥⎧

⎨
⎧⎧
⎩
⎨⎨
1 2≥
0

1, ,
, .

if y i_ n
otherwise

y in x w
i

x x w x w

x x x

y o f y in

i iw

_out f

2 2xi iw 1 1w 2 2x 22 3 3w 2

1 2x 3

2 2f y inf _

1

3

=
∑ = +x w1w 2 +

= − −x

)) , ,
, .=

≥⎧
⎨
⎧⎧
⎩
⎨⎨

1≥ −1,
0

2fif y i_ in
otherwise

Fig. 6.7. Classifi cation of 3-bit patterns with two output units

6.2.2 Pattern Association

Associating an input pattern with one among several patterns already stored in memory, in case such
a mapping exists, is an act that we, the human beings, carry out eff ortlessly in our daily life. A person,
with his eyes closed, can visualize a rose by its fragrance. How does it happen? It seems that various
odours are already stored in our memory. When we smell an odour, our brain tries to map this sensa-
tion to its stored source. It returns the nearest match and this correspond to recognizing the odour, or
the sensation in general. However, in case there is no match between the input sensation and any of
the stored patterns – we fail to associate the input, or, to be more precise, we conclude that the input is
unknown to us.

Given an input pattern, and a set of patterns already stored in the memory, fi nding the closest
match of the input pattern among the stored patterns and returning it as the output, is known as pat-
tern association. Th e basic concept of pattern association is explained below with the help of a simple
illustrative example. Th e example is inspired by Hopfi eld network [1982] which is discussed later in
greater details.

Samir Roy_Chapter06.indd 181Samir Roy_Chapter06.indd 181 2/21/2013 3:23:06 PM2/21/2013 3:23:06 PM

182 Introduction to Soft Computing

+3

−1
−1−1

−1

+3+3

+3

+3+3

P6PP

P5PPP4PP

P3PPP2PP

P1

Inactive unit

Active unit

Fig. 6.8. A network for pattern recognition

Let us consider a network of six processing elements (PEs) or units as shown in Fig. 6.8. Th e essential
features of the network are described below.

 i) PE states At any instant, a unit may either be in an active or an inactive state. Moreover, de-
pending on the circumstances, the state of a unit may change from active to inactive, and vice
versa. In Fig. 6.8 an active unit is shown with a black circle and an inactive unit is indicated by
a hollow circle.

 ii) Interconnections All interconnections are bidirectional. Magnitude of the weight associated
with an interconnection gives the strength of infl uence the connected units play on each
other.

 iii) Signed weights A negative weight implies that the corresponding units tend to inhibit, or de-
activate, each other. Similarly, positively interconnected units tend to activate each other.

 iv) Initialization Th e network is initialized by making certain units active and keeping others in-
active. Th e initial combination of active and inactive units is considered as the input pattern.
Aft er initialization, the network passes through a number of transformations. Th e transfor-
mations take place according to the rules described below.

 v) Transformations At each stage during the sequence of transformations, the next state of
every unit Pi, i = 1, …, 6, is determined. The next state of a unit Pi is obtained by consid-
ering all active neighbours of Pi and taking the algebraic sum of the weights of the paths
between Pi and the neighbouring active units. If the sum is greater than 0, then Pi becomes
active for the next phase. Otherwise it becomes inactive. The state of a unit without any
active unit in its neighbourhood remains unaltered. This process is known as parallel re-
laxation.

For example, let the network be initialized with the pattern shown in Fig. 6.9(a). Initially, all units ex-
cept P2 and P5 are inactive. To fi nd the state of P1 in the next instant, we look for the active neighbours
of P1 and fi nd that P2 is the only active unit connected to P1 through an interconnection link of weight
+3. Hence P1 becomes active in the next instant. Similarly, for P3, both P2 and P5 are active units in its
neighbourhood. Th e sum of the corresponding weights is w23 + w35 = +3 −1 = +2. Hence P3 also becomes

Samir Roy_Chapter06.indd 182Samir Roy_Chapter06.indd 182 2/21/2013 3:23:09 PM2/21/2013 3:23:09 PM

Artifi cial Neural Networks: Basic Concepts 183

active. However P2 itself becomes inactive because the only active unit in its vicinity, P5, is connected to
it through a negatively weighted link. Table 6.4 shows the details of computations for transformation of
the network from Fig. 6.9(a) to Fig. 6.9(b). Th e confi guration of Fig. 6.9(b) is not stable. Th e network
further transforms itself from Fig. 6.9(b) to Fig. 6.9(c), which is a stable state. Th erefore, we can say that
the given network associates the pattern shown in Fig. 6.9(a) to that shown in Fig. 6.9(c).

3

−1
−1−1

−1

+3+3

+3

+3+3

P6PP

(a) (b) (c)

P5PPP4PP

P3PPP2PP

P1

+3

−1
−1−1

−1

+3+3

+3

+3+3

P6PP

P5PPP4PP

P3PPP2PP

P1

+3

−1
−1−1

−1

+3+3

+3

+3+3

P6PP

P5PPP4PP

P3PPP2PP

P1

Fig. 6.9. Pattern association through parallel relaxation

A little investigation reveals that the given network has three non-trivial stable states as shown in
Fig. 6.10(a)-(c). Th e trivial state is that where all units are inactive. It can be easily verifi ed that if one
or more of the units P1, P2, P3 is/are active initially while the rest, P4, P5, P6 are inactive, the network
converges to the pattern shown in Fig. 6.10(a). Similarly, the pattern of Fig. 6.10(b) is associated with
any input pattern where at least one unit of the group {P4, P5, P6} is/are active. Finally, an input pattern
having active units from both the groups {P1, P2, P3} and {P4, P5, P6} would associate to with the pat-
terned depicted in Fig. 6.10(c). Hence, the given network may be thought of as storing three non-trivial
patterns as discussed above. Such networks are also referred to as associative memories, or content-
addressable memories.

Table 6.4. Computation of parallel relaxation on Fig. 6.9 (a)

Unit Present state Active neighbouring unit(s) Sum Next state

P1 Inactive P2 +3 Active

P2 Active P5 −1 Inactive

P3 Inactive P2, P5 +3 – 1 = +2 Active

P4 Inactive P2, P5 −1 + 3 = +2 Active

P5 Active P2 −1 Inactive

P6 Inactive P5 +3 Active

Samir Roy_Chapter06.indd 183Samir Roy_Chapter06.indd 183 2/21/2013 3:23:09 PM2/21/2013 3:23:09 PM

184 Introduction to Soft Computing

+3

−1
−1−1

−1

+3+3

+3

+3+3

P6PP

(a) (b) (c)

P5PPP4PP

P3PPP2PP

P1

+3

−1
−1−1

−1

+3+3

+3

+3+3

P6PP

P5PPP4PP

P3PPP2PP

P1

+3

−1
−1−1

−1

+3+3

+3

+3+3

P6PP

P5PPP4PP

P3PPP2PP

P1

Fig. 6.10. Non-trivial patterns stored in a Hopfi eld network

6.3 THE MCCULLOCH–PITTS NEURAL MODEL

Th e earliest artifi cial neural model was proposed by McCulloch and Pitts in 1943. Fig. 6.11 depicts its
structure. It consists of a number of input units connected to a single output unit. Th e interconnecting
links are unidirectional. Th ere are two kinds of inputs, namely, excitatory inputs and inhibitory inputs.
Th e salient features of a McCulloch and Pitts neural net are summarized in Table 6.5.

x1xx

xmxx

XmXX + n

XmXX

:

:

:

:

X1XX

w

−v

−v

w

y_yy out

xmxx + 1

xmxx + n

XmXX + 1

Y

Fig. 6.11. Structure of a McCulloch-Pitts neuron

Table 6.5. Salient features of McCulloch-Pitts artifi cial neuron

1 There are two kinds of input units, excitatory, and inhibitory. In Fig. 6.11 the excitatory inputs are
shown as inputs X1, …, Xm and the inhibitory inputs are Xm+1, …, Xm+n. The excitatory inputs are con-
nected to the output unit through positively weighted links. Inhibitory inputs have negative weights
on their connecting paths to the output unit.

2 All excitatory weights have the same positive magnitude w and all inhibitory weights have the same
negative magnitude −v.

(Continued)

Samir Roy_Chapter06.indd 184Samir Roy_Chapter06.indd 184 2/21/2013 3:23:10 PM2/21/2013 3:23:10 PM

Artifi cial Neural Networks: Basic Concepts 185

Table 6.5. Continued

3 The activation y_out = f(y_in) is binary, i.e., either 1 (in case the neuron fi res), or 0 (in case the neuron
does not fi re).

4 The activation function is a binary step function. It is 1 if the net input y_in is greater than or equal
to a given threshold value q, and 0 otherwise.

5 The inhibition is absolute. A single inhibitory input should prevent the neuron from fi ring irrespective
of the number of active excitatory inputs.

Th e net input y_in to the neuron Y is given by

 x
i

m

j m

n

i

m

j
i m

n

_ in
=
∑ ∑v w x vi j i∑ (jxx wi w))xi x jx −v ∑∑∑

1 1ij m i m+m+m iij =+m +11
 (6.8)

If q be the threshold value, then the activation of Y, i.e., y_out, is obtained as

 y o f y if y in
otherwise_out f _)in)in , if y ,

, .otherwise=yf)in ≥⎧
⎨
⎧⎧
⎩
⎨⎨
1
0

θ (6.9)

To ensure absolute inhibition, y_in should be less than the threshold even when a single inhibitory input
is on while none of the excitatory inputs are off . Assuming that the inputs are binary, i.e., 0 or 1, the cri-
terion of absolute inhibition requires

 y in w x vi
i

m

xw <
=
∑ θ

1
 (6.10)

 ∴ × − <w m× v θ. (6.11)
Simple McCulloch-Pitts neutrons can be designed to perform conventional logical operations. For this
purpose one has to select the appropriate number of inputs, the inter connection weights and the ap-
propriate activation function. A number of such logic-performing McCulloch-Pitts neural nets are pre-
sented below as illustrative examples.

(a) Truth Table

x1 x2 x1 AND x2

0 0 0
0 1 0
1 0 0
1 1 1

x1xx X1XX

y_yy out

x2xx X2XX

1

1

(b) Neural structure

Y

y in x x

y o f y if y in
otherwise_out f _)in , if y ,

, .otherwise

= +x

=yf)in ≥⎧
⎨
⎧⎧
⎩
⎨⎨

1 2x+
1 2if y in, if y ≥
0

 (c) Activation function

Fig. 6.12. A McCulloch-Pitts neuron to implement logical AND operation

Samir Roy_Chapter06.indd 185Samir Roy_Chapter06.indd 185 2/21/2013 3:23:10 PM2/21/2013 3:23:10 PM

186 Introduction to Soft Computing

Example 6.1 (Implementation of logical AND with McCulloch-Pitts neural model)

Fig. 6.12 shows a McCulloch-Pitts neuron to perform the logical AND operation. It should be
noted that all inputs in Fig. 6.12(b) are excitatory. No inhibitory input is required to implement the
logical AND operation. Th e interconnection weights and the activation functions are so chosen
that the output is 1 if and only if both the inputs are 1, otherwise it is 0.

Example 6.2 (Implementation of logical OR with McCulloch-Pitts neural model)

Th e McCulloch-Pitts neuron to perform logical OR operation is shown in Fig. 6.13. It is obvi-
ous from the fi gure that the neuron outputs a 1 whenever there is at least one 1 at its inputs. Th e
neuron is structurally identical to the AND-performing neuron. Only the activation function is
changed appropriately so that the desired functionality is ensured.

(a) Truth Table

x1 x2 x1 OR x2

0 0 0

0 1 1

1 0 1

1 1 1

x1xx X1XX

y_yy out

x2xx X2XX

1

1

(b) Neural structure

Y

y in x x

y o f y if y in
otherwise_out f _)in , if y ,

, .otherwise

= +x

=yf)in ≥⎧
⎨
⎧⎧
⎩
⎨⎨

1 2x+
1 1if y in, if y ≥
0

 (c) Activation function

Fig. 6.13. A McCulloch-Pitts Neuron to implement logical OR operation

Example 6.3 (Implementation of logical AND-NOT with McCulloch-Pitts neural model)

Th e logical AND-NOT operation is symbolically expressed as x1. x2´, or x1 AND (NOT x2). It pro-
duces a 1 at the output only when x1 is 1 and x2 is 0. Th e McCulloch-Pitts neuron to perform this
operation is shown in Fig. 6.14. Th e inhibitory eff ect of x2 is implemented by attaching a negative
weight to the path between x2 and Y. Th e arrangement ensures that the output is 1 only when x1 =
1 and x2 = 0. For all other combinations of x1 and x2 the output is 0.

Example 6.4 (Implementation of logical XOR with McCulloch-Pitts neural model)

As in digital logic design, simple McCulloch-Pitts neurons performing basic logical operations
can be combined together to implement complex logic functions. As an example, Fig. 6.15 shows

Samir Roy_Chapter06.indd 186Samir Roy_Chapter06.indd 186 2/21/2013 3:23:16 PM2/21/2013 3:23:16 PM

Artifi cial Neural Networks: Basic Concepts 187

the implementation of the XOR function with two AND-NOT operations. Unlike the previous
examples, here we had to implement the function with the help of a network of neurons, rather
them a single neuron. Moreover, the neurons are placed at various levels so that the outputs from a
lower level are fed as inputs to the next level of neurons. All the three processing elements, Y1, Y2,
and Z, have the same activation function as described in Fig. 6.15 (c). Th e net_in is the net input to
a processing element. For example, net-in for Y1, is y_in1 = x1 − x2. Th e same for the units Y2 and Z
are y_in2 = − x1 + x2, and z_in = y_out1 + y_out2 respectively, where y_out1 and y_out2 are the respec-
tive activations of the units Y1 and Y2.

(a) Truth Table

x1 x2 x1 AND (NOT x2)

0 0 0

0 1 0

1 0 1

1 1 0

x1xx X1XX

y_yy out

x2xx X2XX

1

−1

(b) Neural structure

Y

y

f y

_

_y) , ,
,

in x x

y out in if y i_ n
otherwise.

= x

=
≥⎧

⎨
⎧⎧
⎩
⎨⎨

1

yy

2

1 1, if y in ≥
0=

 (c) Activation function

Fig. 6.14. Logical AND-NOT operation with a McCulloch-Pitts neuron

(a) Truth Table

x1 x2 x1 XOR x2

0 0 0

0 1 1

1 0 1

1 1 0

1XX

X2XX

1
1

1
1

−1

−1

(b) Neural structure

Y2YY

Y1YY

Z

f n in if t in
otherwise_net) , _if net ,

, .otherwise=
≥⎧

⎨
⎧⎧
⎩
⎨⎨
1 1if net in, if net ≥
0

 (c) Activation function

Fig. 6.15. McCulloch-Pitts neural network to implement logical XOR operation

Samir Roy_Chapter06.indd 187Samir Roy_Chapter06.indd 187 2/21/2013 3:23:17 PM2/21/2013 3:23:17 PM

188 Introduction to Soft Computing

Example 6.5 (Finding the function of a given McCulloch-Pitts net)

Consider the McCulloch-Pitts neural network shown in Fig. 6.16. All the units, except those at the
input level, have the activation function

f x if
otherwise)x , ,if x

, .otherwise=
≥⎧

⎨
⎧⎧
⎩
⎨⎨

1 2if x, if x ≥
0

What are the responses of the output unit Z with respect to various input combinations? We as-
sume the inputs are binary. What logical function the whole network realizes?

X1XXx1xx

X2XXx2xx

1
2

2
−1

1

2

B

A

Z

Fig. 6.16. A McCulloch-Pitts neural network

Let us fi rst compute the responses of the intermediate units A and B. Th e responses of the output
unit Z will be determined subsequently.

a) Responses of unit A

Inputs Net input to A
(A_in = x1+ x2)

Activation of A
(A_out)

Logic function
realized

x1 x2

0 0 0 0

0 1 1 0 AND

1 0 1 0

1 1 2 1

b) Responses of unit B

Inputs Net input to B
(B_in = 2x1 − x2)

Activation of B
(B_out)

Logic function
realized

x1 x2

0 0 0 0

0 1 −1 0 AND NOT

1 0 2 1

1 1 1 0

Samir Roy_Chapter06.indd 188Samir Roy_Chapter06.indd 188 2/21/2013 3:23:20 PM2/21/2013 3:23:20 PM

Artifi cial Neural Networks: Basic Concepts 189

c) Responses of unit Z

Inputs A_out B_out Net input to Z
(Z_in = 2A_out + 2B_out)

Z_out Logic
function
realized

x1 x2

0 0 0 0 0 0

0 1 0 0 0 0 x1

1 0 0 1 2 1
1 1 1 0 2 1

Hence the logic function realized by the whole network is f(x1, x2) = x1.

6.4 THE PERCEPTRON

Th e perceptron is one of the earliest neural network models proposed by Rosenblatt in 1962. Early neu-
ral network enthusiasts were very fond of the perceptron due to its simple structure, pattern classifying
behaviour, and learning ability. As far as the study of neural networks is concerned the perceptron is a
very good starting point. Th is section provides the fundamental features of perceptron, namely, its struc-
ture, capability, limitations, and clues to overcome the limitations.

x1xx

xixx

xmxx
XmXX

XiXX

:
:

:
:

X1XX

wiww

wmww

w1ww

y_yy outY

x1xx

xixx

xmxx
XmXX

XiXX

:
:

:
:

X1XX

wiww

wmww

w1ww

w0ww

y_yy out

1

(a) A perceptron without
any adjustable threshold

(b) Adjustable threshold as
an additional weight

X0XX

Y

Fig. 6.17. Structure of a perceptron

6.4.1 The Structure

Th e structure of a perceptron is essentially same as that presented in subsection 6.1.2 and is shown here
as Fig. 6.17(a). It consists of a number of input units X1, …, Xm and a processing unit Y. Th e connecting
path from input Xi to Y is unidirectional and has a weight wi. Th e weight wi is positive if xi is an excitatory
input and is negative if it is inhibitive. Th e net input y_in of the perceptron to Y is the algebraic sum of
the weighted inputs.

Samir Roy_Chapter06.indd 189Samir Roy_Chapter06.indd 189 2/21/2013 3:23:22 PM2/21/2013 3:23:22 PM

190 Introduction to Soft Computing

 y in x wi iw
i

m

=
∑

1
 (6.12)

Equation 6.12 can be expressed concisely in matrix notation as given in Equations 6.13(a) and 6.13(b).

 y i x x x

w
w

w
i i

i

m

m

m

_ [in x wi iw]x wi w ×

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥=

∑
1

1 2x

1

2

� (6.13a)

 ∴ ×y in X= WT (6.13b)

Here X = [x1, …, xm] and W = [w1, …, wm] are the input and the weight vectors.
Th e perceptron sends an output 1 if the net input y_in is greater than a predefi ned adjustable thresh-

old value q, otherwise it sends output 0. Hence, the activation function of a perceptron is given by Equa-
tion 6.6, repeated below.

 y o f y if y in
if y in_out f _)in , if y ,

, if y .=yf)in >
≤

⎧
⎨
⎧⎧
⎩
⎨⎨

1
0

θ
θ (6.14)

Th erefore, in matrix notation,

 y out if X W
Otherwise

T, ,if X W
, .Otherwise= >WTW⎧

⎨
⎧⎧

⎩
⎨⎨
1
0

θ (6.15)

It is customary to include the adjustable threshold q as an additional weight w0. Th is additional weight w0
is attached to an input X0 which is permanently maintained as 1. Th e modifi ed structure inclusive of the
adjustable weight w0 and the additional input unit X0 replacing the threshold q is shown in Fig. 6.17(b).
Th e expressions for the net input y_in and the activation y_out of the perceptron now take the forms

 y in x x w x w x wm mw i iw
i

m

= +x w + +
=
∑0 0ww 1 1w

0
 (6.16)

and

 y o f y if

otherwise
i i

i

m

_out f _)in , ,if i i

, .otherwise
=yf)in

⎧
⎨
⎪
⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

=
∑∑ 0x wiwxi iw >1 if, if ∑

0
0 (6.17)

Th e following points should be noted regarding the structure of a perceptron.

 i) Th e inputs to a perceptron x0, …, xm are real values.
 ii) Th e output is binary (0, or 1).
 iii) Th e perceptron itself is the totality of the input units, the weights, the summation processor,

activation function, and the adjustable threshold value.

Th e perceptron acts as the basic ANN structure for pattern classifi cation. Th e next subsection describes
the capabilities of a perceptron as a pattern classifi er.

Samir Roy_Chapter06.indd 190Samir Roy_Chapter06.indd 190 2/21/2013 3:23:22 PM2/21/2013 3:23:22 PM

Artifi cial Neural Networks: Basic Concepts 191

6.4.2 Linear Separability

As mentioned earlier, perceptrons have the capacity to classify patterns. However, this pattern-classify-
ing capacity is not unconditional. In this subsection, we investigate the criteria for a perceptron to act
properly as a pattern classifi er.

Let us consider, for example, two sets of points on a two-dimensional Cartesian plane A = {a, b, c} =
{(−1, 3), (1, 2), (3, 3)}, and B = {p, q, r} = {(0, −1), (2, 1), (3, 0)}. Th ese points are shown in Fig. 6.18. Th e
points belonging to the set A, or B are indicated with white, and black dots respectively.

x2xx

B

A

r (3, 0)

q (2, 1)

p (0, −1)

c (3, 3)

b (1, 2)

a (−1, 3)

x1xx

Fig. 6.18. A classifi cation problem consisting for two sets of patterns A, and B.

We look for a classifi er that can take an input pattern of the form (x1, x2) and decide to which class, A
or B, the pattern belongs. A perceptron that carries out this job is shown in Fig. 6.19. Th e weights of the
perceptron are carefully chosen so that the desired behaviour is achieved. However, we shall see that the
weights need not to be chosen, but be learnt by the perceptron. Th e activation y_out = 1 if the input pat-
tern belongs to class A, and y_out = 0 if it belongs to class B. Table 6.6 verifi es that the perceptron shown
in Fig. 6.19 can solve the classifi cation problem posed in Fig. 6.18.

In fact, the pattern classifying capability of a perceptron is determined by the equations

 y in ,in = 0 (6.18)

 or x wi iw
i

m

, ,xi iw
=
∑ =

0
0 (6.19)

 or x w x xm mw, ...0 0w 1 1w 0+ +x w1w + =x wmw (6.20)

1

−1

−1/3

+1

x1xx

x2xx X2XX

X1XX

X0XX

y_yy outY

y in x w x x

y out if y i
otherwise

i iw
i

, f y ,
,

=x wi iw − − +

= ⎧
⎨
⎧⎧
⎩
⎨⎨

=
∑∑

0

2
1

21
3

1 0if y in, if y >
0

Fig. 6.19. A perceptron to solve the classifi cation problem shown in Fig. 6.17.

Samir Roy_Chapter06.indd 191Samir Roy_Chapter06.indd 191 2/21/2013 3:23:30 PM2/21/2013 3:23:30 PM

192 Introduction to Soft Computing

Table 6.6. Details of classifi cation of patterns between sets A and B

Input pattern Net input
(y_in)

Activation
(y_out)

Class
x1 x2

1 a −1 3 21/3 1 A

2 b 1 2 2/3 1 A
3 c 3 3 1 1 A
4 p 0 −1 −2 0 B

5 q 2 1 − 2/3 0 B

6 r 3 0 − 2 0 B

Applying Equations 6.18–6.20 for the perceptron under consideration we get

n x x= − − + =1
3

01
2

 or x x, 2
1

3
1= +1 (6.21)

Equation 6.21 represents a straight line that separates the given sets of patterns A and B (Fig. 6.20). For
two dimensional patterns of the form (x1, x2) the equation in terms of the weights looks like

 x w
w

x w
w2

1

2
1

0

2
= − − (6.22)

Similarly, when the patterns are 3-dimensional and of the form (x1, x2, x3), Equation 6.20 would be

 x w
w

x w
w

x w
w3

2

3
2

1

3
1

0

3
= − − −x (6.23)

which represents a plane surface. In general, for n-dimensional patterns, Equation 6.20 represents a hy-
perplane in the corresponding n-dimensional hyperspace. Such a plane for a given perceptron capable of
solving certain classifi cation problem is known as a decision plane, or more generally, the decision surface.

x x
2

1

3
1= +1

x2xx

r (3, 0)

q (2, 1)

p (0, −1)

c (3, 3)

b (1, 2)

a (−1, 3)

x1xx

x2xx =
x1xx
3 +1

Fig. 6.20. Linearly separable set of patterns

Samir Roy_Chapter06.indd 192Samir Roy_Chapter06.indd 192 2/21/2013 3:23:34 PM2/21/2013 3:23:34 PM

Artifi cial Neural Networks: Basic Concepts 193

A linearly separable set of patterns is one that can be completely partitioned by a decision plane into
two classes. Th e nice thing about the perceptrons is, for a given set of linearly separable patterns, it is
always possible to fi nd a perceptron that solves the corresponding classifi cation problem. Th e only thing
we have to ensure is to fi nd the appropriate combination of values for the weights w0, w1, …, wm. Th is is
achieved through a process called learning or training by a perceptron. Th e famous perceptron conver-
gence theorem (Rosenblatt [1962]) states that a perceptron is guaranteed to learn the appropriate values
of the weights w0, w1, …, wm so that the given a set of linearly separable patterns are properly classifi ed
by the perceptron. Th ere are various techniques for training neural networks. A brief overview of these
techniques is presented in the later parts of this chapter.

(1, 0)(0, 0)

(1, 1)(0, 1)

x1xx

x2xx

Fig. 6.21. The XOR problem offers patterns that are not linearly separable

6.4.3 The XOR Problem

Real life classifi cation problems, however, rarely off er such well-behaved linearly separable data as re-
quired by a perceptron. Minsky and Papert [1969] showed that no perceptron can learn to compute even
a trivial function like a two bit XOR. Th e reason is, there is no single straight line that may separate the
1-producing patterns {(0, 1), (1, 0)} from the patterns 0-producing patterns {(0, 0), (1, 1)}. Th is is illus-
trated in Fig. 6.21. Is it possible to overcome this limitation? If yes, then how? Th ere are two ways. One
of them is to draw a curved decision surface between the two sets of patterns as shown in Fig. 6.22(a) or
6.22(b). However, perceptron cannot model any curved surface.

(1, 0)(0, 0)

(1, 1)(0, 1)

x1xx

x2xx

(1, 0)(0, 0)

(1, 1)(0, 1)

x1xx

x2xx

Fig. 6.22. Solving the XOR problem with curved decision surface

Th e other way is to employ two, instead of one, decision lines. Th e fi rst line isolates the point (1, 1) from
the other three points, viz., (0, 0), (0, 1), and (1, 0). Th e second line partitions {(0, 0), (0, 1), (1, 0)} into

Samir Roy_Chapter06.indd 193Samir Roy_Chapter06.indd 193 2/21/2013 3:23:40 PM2/21/2013 3:23:40 PM

194 Introduction to Soft Computing

the classes {(0, 1), (1, 0)} and {(0, 0)}. Th e technique is shown is Fig. 6.23. Fig. 6.23(b) shows another pair
of lines that solve the problem in a diff erent way.

Using this idea, it is possible design a multi-layered perceptron to solve the XOR problem. Such a
multilayered perceptron is shown in Fig. 6.24. Here the fi rst perceptron Y fi res only when the input is
(1, 1). But this sends a large inhibitive signal of magnitude −2.0 to the second perceptron Z so that the
excitatory signals from x1 and x2 to Z are overpowered. As a result the net input to Z attains a negative
value and the perceptron fails to fi re. On the other hand, the remaining three input patterns, (0, 0), (0, 1),
and (1, 0), for which perceptron Y does not infl uence Z, are processed by Z in the desired way.

0)(0, 0)

(1, 1)

line 1 line 1

line 2 line 2

(0, 1)

x1xx

x2xx

(1, 0)(0, 0)

(1, 1)(0, 1)

x1xx

x2xx

Fig. 6.23. Solving the XOR problem with two decision lines

Hence, the arrangement of perceptrons shown in Fig. 6.24 successfully classifi es the patterns posed by
the XOR problem. Th e critical point is, the perceptron convergence theorem is no longer applicable to
multilayer perceptrons. Th e perceptron learning algorithm can adjust the weights of the interconnections
between the inputs and the processing element, but not between the processing elements of two diff erent
perceptrons. Th e weight –2.0 in Fig. 6.24 is decided through observation and analysis, not by training.

1

−1.5

−21

1

x1xx

x2xx X2XX

X1XX z_out = x1xx ⊕ x1xxY

1
−0.5

1

1

x1xx

x2xx X2XX

X1XX
Z

Fig. 6.24. A multi-layer perceptron to solve the XOR problem

6.5 NEURAL NETWORK ARCHITECTURES

An ANN consists of a number of artifi cial neurons connected among themselves in certain ways. Some-
time these neurons are arranged in layers, with interconnections across the layers. Th e network may,
or may not, be fully connected. Moreover, the nature of the interconnection paths also varies. Th ey are

Samir Roy_Chapter06.indd 194Samir Roy_Chapter06.indd 194 2/21/2013 3:23:40 PM2/21/2013 3:23:40 PM

Artifi cial Neural Networks: Basic Concepts 195

either unidirectional, or bidirectional. Th e topology of an ANN, together with the nature of its intercon-
nection paths, is generally referred to as its architecture. Th is section presents an overview of the major
ANN architectures.

x1xx

xixx

xmxx XmXX

XiXX

: :

: :

X1XX

wiww j
wiww n

wmww 1

wmww j

wmww n

w1 ww j

w1ww 1

w1ww n

wiww 1

y_yy outjttYjYY

y_yy outnttYnYY

y_yy out1ttY1YY

Fig. 6.25. Structure of a single-layer feed forward ANN

6.5.1 Single Layer Feed Forward ANNs

Single layer feed forward is perhaps the simplest ANN architecture. As shown in Fig. 6.25, it consists
of an array of input neurons connected to an array of output neurons. Since the input neurons do not
exercise any processing power, but simply forward the input signals to the subsequent neurons, they are
not considered to constitute a layer. Hence, the only layer in the ANN shown in Fig. 6.25 is composed of
the output neurons Y1, …, Yn.

Th e ANN shown in Fig. 6.25 consists of m inputs X1, …, Xm and n outputs Y1, …, Yn. Th e signal trans-
mitted by input Xi is denoted as xi. Each input Xi is connected to each output Yj. Th e weight associated
with the path between Xi and Yj is denoted as wij. Th e interconnection paths are unidirectional and are
directed from the input units to the output units.

Th e net input y_in1 to the output unit Y1 is given by

 y in w x w x w x wm m i iw
i

m

1 1x 11 2 2w 1 1x wm mw 1
1

= +x w1x + +
=
∑ (6.24)

In vector notation, Equation 6.24 can be expressed as

 y i x
w

w
X Wm

m

_ [in ...]1 1x[
11

1

1×x xm[...]1x
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

= X� *WW (6.25)

where X = [x1 … xm] is the input vector of the input signals and W*1 is the fi rst column of the weight
matrix

 W

w w w
w w w

w w w

n

n

m m mn

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

11 12 1

21 22 2

2wmw

�
�

� � � �
�

 (6.26)

In general, the net input y_inj to the output unit Yj is given by

Samir Roy_Chapter06.indd 195Samir Roy_Chapter06.indd 195 2/21/2013 3:23:41 PM2/21/2013 3:23:41 PM

196 Introduction to Soft Computing

 y i
w

w
X Wj mx x

j

mj

j_ [inj] *WW×x xmx x[]
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

= X
1

� (6.27)

If Y_in denotes the vector for the net inputs to the array of output units
Y n y in y i n_ [in _ ... _]inn1

then the net input to the entire array of output units can be expressed concisely in matrix notation as
 Y_in = X × W (6.28)
Th e signals transmitted by the output units, of course, depend on the nature of the activation functions.
Th ere are various kinds of activation functions and these are discussed in greater details in the next
subsection. Th e basic single layer feed forward network architecture presented in this section has its
own variations. For example, in some cases the network may allow interconnections among the input or
output units themselves. Th ese will be discussed later in greater details.

x1xx

xixx

xmxx
XmXX

XiXX

: :

: :

X1XX

wijww
winww

wm1ww

wmjww
wmnww

Input layer Hidden layer Output layer

w1jww

w11ww

w1nww

wi1ww

YjYY

YnYY

Y1YY

:

:

vjkvv
virvv

vn1vv

vnkvv
vnrvv

v1kvv

v11vv

v1rvv

vj1vv

ZkZZ

ZrZZ

Z1ZZ

z_outktt

z_outrtt

z_out1tt

Fig. 6.26. A multi-layer feed forward network with one hidden layer

6.5.2 Multilayer Feed Forward ANNs

A multilayer feed forward net is similar to single layer feed forward net except that there is (are) one or
more additional layer(s) of processing units between the input and the output layers. Such additional
layers are called the hidden layers of the network. Fig. 6.26 shows the architecture of a multi-layer feed
forward neural net with one hidden layer.
Th e expressions for the net inputs to the hidden layer units and the output units are obtained as

 Y_in = X × W (6.29)

 Z_in = Y_out × V (6.30)

where
X x xm[,x , ,]1 2x, , X is the input vector,
Y n y in y in y inn_ [in _ in _y]1 y in, in , is the net input vector to the hidden layer,
Z z in z in z inr_ [in _ in , , _z]1 2z in, _ in , is the net input vector to the output layer,
Y y out y out y outn_ [out out , , y]1 2y out, out � , is the output vector from the hidden layer,

Samir Roy_Chapter06.indd 196Samir Roy_Chapter06.indd 196 2/21/2013 3:23:45 PM2/21/2013 3:23:45 PM

Artifi cial Neural Networks: Basic Concepts 197

W and V are the weight matrices for the interconnections between the input layer, hidden layer, and
output layer respectively.

W

w w w
w w w

w w w

n

n

m m mn

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

11 12 1

21 22 2

2wmw

�
�

� � � �
�

 and V

v v v
v v v

v v v

r

r

n n nr

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

11 12 1

21 22 2

2vnv

�
�

� � � �
�

Fig. 6.26 shows the structure of a multi-layered feed forward net with one hidden layer. Obviously, it is
possible to include more than one hidden layers in such networks.

X3XX

X2XX

X1XX

(a) Competitive ANN with locally connected output units

Y2YY

Y3YY

Y1YY

Z2ZZ

Z3ZZ

Z1ZZ

X3XX

X2XX

X1XX

(b) Competitive net with fully connected output units

Y2YY

Y3YY

Y1YY

Z2ZZ

Z3ZZ

Z1ZZ

Fig. 6.27. Competitive ANN architectures

6.5.3 Competitive Network

Competitive networks are structurally similar to single layer feed forward nets. However, the output
units of a competitive neural net are connected among themselves, usually through negative weights.
Fig. 6.27(a) and 6.27(b) show two kinds of competitive networks. In Fig. 6.27(a), the output units are
connected only to their respective neighbours, whereas the network of Fig. 6.27(b) shows a competitive
network whose output units are fully connected. For a given input pattern, the output units of a com-
petitive network tend to compete among themselves to represent that input. Th us the name competitive
network.

Samir Roy_Chapter06.indd 197Samir Roy_Chapter06.indd 197 2/21/2013 3:23:51 PM2/21/2013 3:23:51 PM

198 Introduction to Soft Computing

X3XX

X2XX

X1XX

Y2YY

Y3YY

Y1YY

Z2ZZ

Z3ZZ

Z1ZZ

Fig. 6.28 A recurrent network with feedback paths from the output layer to the input layer

6.5.4 Recurrent Networks

In a feed forward network signals fl ow in one direction only and that is from the input layer towards the
output layer through the hidden layers, if any. Such networks do not have any feedback loop. In con-
trast, a recurrent network allows feedback loops. A typical recurrent network architecture is shown in
Fig. 6.28. Fig. 6.29(a) shows a fully connected recurrent network. Such networks contain a bidirectional
path between every pair of processing elements. Moreover, a recurrent network may contain self loops,
as shown in Fig. 6.29(b).

6.6 ACTIVATION FUNCTIONS

Th e output from a processing unit is termed as its activation. Activation of a processing unit is a function
of the net input to the processing unit. Th e function that maps the net input value to the output signal
value, i.e., the activation, is known as the activation function of the unit. Some common activation func-
tions are presented below.

(a) A fully connected
recurrent network

(b) A recurrent network
with self loops

Fig. 6.29. Recurrent network architectures

6.6.1 Identity Function

Th e simplest activation function is the identity function that passes on the incoming signal as the outgo-
ing signal without any change. Th erefore, the identity activation function g(x) is defi ned as

Samir Roy_Chapter06.indd 198Samir Roy_Chapter06.indd 198 2/21/2013 3:23:54 PM2/21/2013 3:23:54 PM

Artifi cial Neural Networks: Basic Concepts 199

 g(x) = x (6.31)

Fig. 6.30 shows the form of the identity function graphically. Usually, the units of the input layer
employ the identity function for their activation. Th is is because in ANN, the role of an input unit is
to forward the incoming signal as it is to the units in the next layer through the respective weighted
paths.

6.6.2 Step Function

Another frequently used activation function is the step function. Th e basic step function produces a 1 or
0 depending on whether the net input is greater than 0 or otherwise. Th is is the only activation function
we have used so far in this text. Mathematically the step function is defi ned as follows.

 g x if
otherwise()x , ,if

, .otherwise= ⎧
⎨
⎧⎧
⎩
⎨⎨
1 0if x, if x >
0 (6.32)

g (x)x = x

y

x

a

a

Fig. 6.30. The identity activation function

Fig. 6.31(a) shows the shape of the basic step function graphically. Occasionally, instead of 0 a non-zero
threshold value q is used. Th is is known as the threshold function and is defi ned as

 g x if x
otherwise()x , ,if x

, .otherwise=
1
0

>⎧
⎨
⎧⎧
⎩
⎨⎨

θ (6.33)

g (x)x g (x)x1

(a) Basic step function

1

q

(b) Threshold function
function

Fig. 6.31. Step functions

Samir Roy_Chapter06.indd 199Samir Roy_Chapter06.indd 199 2/21/2013 3:23:55 PM2/21/2013 3:23:55 PM

200 Introduction to Soft Computing

g (x)x g (x)x

q

1

−1
−1

1

(c) Bipolar step function
function

(d) Bipolar threshold function
function

Fig. 6.31. (Continued)

Th e shape of the threshold function is shown in Fig. 6.31(b). Th e step function is also known as the
heaviside function. Th e step functions discussed so far are binary step functions since they always evalu-
ates to 0 or 1.

Occasionally, it is more convenient to work with bipolar data, −1 and +1, than the binary data. If a sig-
nal of value 0 is sent through a weighted path, the information contained in the interconnection weight is
lost as it is multiplied by 0. To overcome this problem, the binary input is converted to bipolar form and
then a suitable bipolar activation function is employed. Accordingly, binary step functions have their
bipolar versions. Th e output of a bipolar step function is −1, or +1, not 0, or 1. Th e bipolar step function
and threshold function are shown in Fig. 1.31(c) and (d) respectively. Th ey are defi ned as follows.

Bipolar step function:

 g x if
otherwise()x , ,f

, .otherwise=
+
−

⎧
⎨
⎧⎧
⎩
⎨⎨

1 0if, if x >if x, if x
1 (6.34)

Bipolar threshold function:

 g x if
otherwise()x , ,if x

, .otherwise=
>if x, if x+

−
⎧
⎨
⎧⎧
⎩
⎨⎨

1
1

θ (6.35)

.5

0

1
σ1

σ2

σ1 < σ2

Fig. 6.32. Binary Sigmoid function

6.6.3 The Sigmoid Function

As the step function is not continuous it is not diff erentiable. Some ANN training algorithm requires
that the activation function be continuous and diff erentiable. Th e step function is not suitable for such
cases. Sigmoid functions have the nice property that they can approximate the step function to the

Samir Roy_Chapter06.indd 200Samir Roy_Chapter06.indd 200 2/21/2013 3:23:57 PM2/21/2013 3:23:57 PM

Artifi cial Neural Networks: Basic Concepts 201

desired extent without losing its diff erentiability. Binary sigmoid, also referred to as the logistic sigmoid,
is defi ned by Equation 6.36.

 g x
e x()x =

+ −

1
1 σ (6.36)

Th e parameter s in Equation 6.36 is known as the steepness parameter. Th e shape of the sigmoid func-
tion is shown in Fig. 6.32. Th e transition from 0 to 1 could be made as steep as desired by increasing the
value of s to appropriate extent.

−1

0

1

Fig. 6.33. Bipolar Sigmoid function

Th e fi rst derivative of g(x), denoted by g ′(x) is expressed as

 ′ =g x g x g x()x ()x ((− g))σ (6.37)

Depending on the requirement, the binary sigmoid function can be scaled to any range of values ap-
propriate for a given application. Th e most widely used range is from −1 to +1, and the corresponding
sigmoid function is referred to as the bipolar sigmoid function. Th e formulae for the bipolar sigmoid
function and its fi rst derivative are given below as Equations 6.38 and 6.39 respectively. Fig. 6.33 presents
its form graphically.

 g x e
e

x

x()x =
−
+

−

−

1
1

σ

σ (6.38)

 ′ = −g x g x g x()x ((g))(()x)σ
2

1x(+ g))((6.39)

6.6.4 Hyperbolic Tangent Function

Another bipolar activation function that is widely employed in ANN applications is the hyperbolic tan-
gent function. Th e function, as well as its fi rst derivative, are expressed by Equations 6.40 and 6.41 re-
spectively.

 h x e e
e e

x xe
x xe

()x = (6.40)

 ′ =h x′ h x h x()x ((h))((− h))x+ h))((6.41)

Th e hyperbolic tangent function is closely related to the bipolar sigmoid function. When the input data
is binary and not continuously valued in the range from 0 to 1, they are generally converted to bipolar
form and then a bipolar sigmoid or hyperbolic tangent activation function is applied on them by the
processing units.

Samir Roy_Chapter06.indd 201Samir Roy_Chapter06.indd 201 2/21/2013 3:24:00 PM2/21/2013 3:24:00 PM

202 Introduction to Soft Computing

6.7 LEARNING BY NEURAL NETS

An ANN is characterized by three entities, it’s architecture, activation function, and the learning tech-
nique. Learning by an ANN refers to the process of fi nding the appropriate set of weights of the intercon-
nections so that the ANN attains the ability to perform the designated task. Th e process is also referred
to as training the ANN.

l1ll

x2xx

r (3, 0)

q (2, 1)

p (0, −1)

c (3, 3)
b (1, 2)

a (−1, 3)

x1xx

l1ll : x2xx = 2 x1xx – 2
w0ww = 2, w1ww = –2, w2ww = 1

(a) Number of misclassified patterns = 2

l2ll

x2xx

r (3, 0)

q (2, 1)

p (0, −1)

c (3, 3)

b (1, 2)

a (−1, 3)

x1xx

(b) Number of misclassified patterns = 1

l2ll : x2xx = 1
2

1
2

x1xx −

w0ww = 1
2

1
2

, w1ww − , w2ww = 1

l3ll

x2xx

r (3, 0)

q (2, 1)

p (0, −1)

c (3, 3)

b (1, 2)

a (−1, 3)

x1xx

(c) Number of misclassified patterns = 0

1
3

, w2ww = 1w0ww = −1, w1ww =−

l3ll : x2xx = 1
3 x1xx + 1

Fig. 6.34. Learning a pattern classifi cation task by a perceptron

Samir Roy_Chapter06.indd 202Samir Roy_Chapter06.indd 202 2/21/2013 3:24:06 PM2/21/2013 3:24:06 PM

Artifi cial Neural Networks: Basic Concepts 203

Let us, once again, consider the classifi cation problem posed in Section 6.4.2 (Fig. 6.18). A perceptron is
presented (Fig. 6.19) to solve the problem. It has the following combination of interconnection weights :
w0 = −1, w1 = −1/3, w2 =1. It is easy to verify that an arbitrary set of weights may not be able to solve the
given classifi cation problem. Th e question is, how to fi nd the appropriate set of weights for an ANN so
that the ANN is able to solve a given problem? One way is to start with a set of weights and then gradu-
ally modify them to arrive at the fi nal set of weights. Th is is illustrated in Fig. 6.34(a), (b), (c). Suppose
we start with a set of randomly chosen values, say w0 = 2, w1 = −2, w2 =1. Th e corresponding decision line
is l1 (Fig. 6.34(a)) which is algebraically expressed by the equation x2 = 2 x1 – 2. As Fig. 6.34(a) shows,
line l1 classifi es the points a (−1, 3), b (1, 2), q (2, 1), and r (3, 0) correctly. But it misclassifi es the points
c (3, 3) (wrongly put in the class B) and the point p (0, −1) (wrongly put in the class A). In the next step
the weights are modifi ed to w0 = 1/2, w1 = −1/2, w2 =1, so that the new decision line l2 : x2 = 1/2 x1 – 1/2
reduces the number of misclassifi ed data to 1, only the point q (2, 1). Th is is shown in Fig. 6.34(b). Th en
the weights are further modifi ed to obtain the decision line l3 : x2 = 1/3 x1 + 1, that leaves no pattern
misclassifi ed (Fig. 6.34(c)).

Th is learning instance illustrates the basic concept of supervised learning, i.e., learning assisted by
a teacher. However, quite a number of issues are yet to be addressed. For example, given a set of inter-
connection weights, how to determine the adjustments required to compute the next set of weights?
Moreover, how do we ensure that the process converges, i.e., the number of misclassifi ed patterns are
progressively reduced and eventually made 0? Th e subsequent parts of this section briefl y introduce the
popular learning algorithms employed in ANN systems.

Th e basic principle of ANN learning is rather simple. It starts with an initial distribution of intercon-
nection weights and then goes on adjusting the weights iteratively until some predefi ned stopping cri-
terion is satisfi ed. Th erefore, if w(k) be the weight of a certain interconnection path at the kth iteration,
then w(k+1), the same at the (k+1)th iteration, is obtained by

 w k w k w k()k ()k ()k=) + Δ (6.42)

where Δw(k) is the kth adjustment to weight w. A learning algorithm is characterized by the method
undertaken by it to compute Δw(k).

6.7.1 Supervised Learning

A neural network is trained with the help of a set of patterns known as the training vectors. Th e outputs
for these vectors might be, or might not be, known beforehand. When these are known, and that knowl-
edge is employed in the training process, the training is termed as supervised learning. Otherwise, the
learning is said to be unsupervised. Some popular supervised learning methods are perceptron learning,
delta learning, least-mean-square (LMS) learning, correlation learning, outstar learning etc. Th ese are
briefl y introduced below.

(a) Hebb Rule
Th e Hebb rule is one of the earliest learning rules for ANNs. According to this rule the weight adjust-
ment is computed as

 Δwi = xi × t (6.43)

where t is the target activation.
Th ere are certain points to be kept in mind regarding the Hebb learning rule. First, Hebb rule cannot
learn when the target is 0. Th is is because the weight adjustment Δwi becomes zero when t = 0, irrespective

Samir Roy_Chapter06.indd 203Samir Roy_Chapter06.indd 203 2/21/2013 3:24:07 PM2/21/2013 3:24:07 PM

204 Introduction to Soft Computing

of the value of xi. Hence, obviously, the Hebb rule results in better learning if the input / output both are in
bipolar form. Th e most striking limitation of the Hebb rule is it does not guarantee to learn a classifi cation
instance even if the classes are linearly separable. Th is is illustrated in Chapter 7. Th e Example 6.6 below
gives an instance of Hebb Learning.

Example 6.6 (Realizing the logical AND function through Hebb learning)

To realize a two input AND function we need a net with two input units and one output unit. A
bias is also needed. Hence the structure of the required neural net should be as shown in Fig. 6.35.
Moreover, the input and output signals must be in bipolar form, rather than the binary form, so
that the net may be trained properly. Th e advantage of bipolar signals over binary signals is dis-
cussed in greater detail in Chap. 7. Considering the truth table of AND operation, and the fact that
the bias is permanently set to 1, we get the training set depicted in Table 6.7.

1

x1xx

x2xx X2XX

X1XX

X0XX

w1ww

w2ww

w0ww

y_yy out = x1xx ∧ x2xxY

Fig. 6.35. Structure of a neural net to realize the AND function

Table 6.7 Training set for AND function

Input Patterns Output

x0 x1 x2 t

+1 1 1 1

+1 1 −1 −1

+1 −1 1 −1

+1 −1 −1 −1

During the training process, all weights are initialized to 0. Th erefore initially

w0 = w1 = w2 = 0

At each training instance, the weights are changed according to the formula

wi (new) = wi (old) + Δwi

where Δwi, the increment in wi, is computed as Δwi = xi.× t. Aft er initialization, the progress of the
learning process by the network is shown in Table 6.8.

Samir Roy_Chapter06.indd 204Samir Roy_Chapter06.indd 204 2/21/2013 3:24:08 PM2/21/2013 3:24:08 PM

Artifi cial Neural Networks: Basic Concepts 205

Table 6.8. Hebbian learning of AND function

Training Pattern Target
output

Weight Adjustments Weights

x0 x1 x2 t Δw0 Δw1 Δw2
w0 w1 w2

0 0 0 0

1 1 1 1 1 1 1 1 1 1 1

2 1 1 −1 −1 −1 −1 1 0 0 2

3 1 −1 1 −1 −1 1 −1 −1 1 1

4 1 −1 −1 −1 −1 1 1 −2 2 2

x2xx = −x1xx − 1

(−1, −1) (1, −1)

(1, 1)(−1, 1)

x1xx

x2xx

(a) After 1st pattern (1, 1)

x2xx = 0

(−1, −1) (1, −1)

(1, 1)(−1, 1)

x1xx

x2xx

(b) After 2nd pattern (1, −1)

x2xx = −x1xx + 1

(−1, −1) (1, −1)

(1, 1)(−1, 1)

x1xx

x2xx

(c) After 3rd pattern (−1, 1)

x2xx = −x1xx + 1

(−1, −1) (1, −1)

(1, 1)(−1, 1)

x1xx

x2xx

(d) After 4th pattern (−1, −1)

Fig. 6.36. Hebbian training to learn AND function

Hence, on completion of one epoch of training, the weight vector is W = [w0, w1, w2] = [−2, 2, 2]. Th e
progress in learning by the net can be visualized by observing the orientation of the decision line
aft er each training instance. Putting the values of the interconnection weights in the equation

Samir Roy_Chapter06.indd 205Samir Roy_Chapter06.indd 205 2/21/2013 3:24:09 PM2/21/2013 3:24:09 PM

206 Introduction to Soft Computing

x w
w

x w
w2

1

2
1

0

2
= − −

 we get (i) x2 = −x1 – 1, aft er the 1st training instance,
 (ii) x2 = 0, aft er the 2nd training instance,
 (iii) x2 = −x1 + 1, aft er the 3rd training instance, and fi nally,
 (iv) x2 = −x1 + 1, aft er the 4th training instance.

Th is progress in the learning process is depicted in Fig. 6.36(a)-(d). We see that aft er training with
the fi rst pattern [x0, x1, x2] = [1, 1, 1], the ANN learns to classify two patterns (−1, −1) and (1, 1)
successfully. But it fails to classify correctly the other two patterns (−1, 1) and (1, −1). Aft er learn-
ing with the second pattern (1, −1) the situation is better. Only (−1, 1) is still misclassifi ed. Th is is
corrected aft er training with the third pattern (−1, 1). Now all the −1 producing patterns are, i.e.,
(1, −1), (−1, 1) and (−1, −1) are in the same class and the remaining pattern (1, 1) constitutes the
other class.

(b) Perceptron Learning Rule
Let us consider a simple ANN consisting of a single perceptron Y with m+1 input units X0, …, Xm as
shown in Fig. 6.17(b). Th e corresponding weights of the interconnections are w0, …, wm. Th e bias is in-
troduced as the weight w0 connected to the input X0 whose activation is fi xed at 1. For the output unit, it
is convenient to use the bipolar activation function :

 y out
if y i
if y i
if y in

, f y
, f y=

−

⎧
⎨
⎪
⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

1 0if y in, if y >
0 0if y in, if y =
1 1if i <if y in

 (6.44)

Now, let X = (x0, …, xm) be a training vector for which the output of the perceptron is expected to
be t, where t = 1, 0, or −1. Th e current combination of the weights is given by the weight vector
W = (w0, …, wm). If the perceptron produces the desired output, then the weights w0, …, wm need not
be changed and they are to be kept unaltered. If, however, the perceptron misclassifi es X negatively
(meaning, it erroneously produces −1 instead of the desired output +1) then the weights should be ap-
propriately increased. Conversely, the weights are to be decreased in case the perceptron misclassifi es X
positively (i.e., it erroneously produces +1 instead of the desired output −1). Th e learning strategy of the
perceptron is summarized in Table 6.9.
Hence the perceptron learning rule is informally stated as

IF the output is erroneous THEN adjust the interconnection weights
ELSE leave the interconnection weights unchanged.

In more precise terms,

IF y_out ≠ t THEN
 FOR i = 0 TO m DO wi(new) = wi(old) + h × t × xi

ELSE
 FOR i = 0 TO m DO wi(new) = wi(old).

Samir Roy_Chapter06.indd 206Samir Roy_Chapter06.indd 206 2/21/2013 3:24:10 PM2/21/2013 3:24:10 PM

Artifi cial Neural Networks: Basic Concepts 207

Table 6.9. Perceptron learning rules

Condition Action

1 The perceptron classifi es the input pattern
correctly (y_out = t)

No change in the current set of weights w0, w1, …,
wm.

2 The perceptron misclassifi es the input pattern
negatively (y_out = −1, but t = +1)

Increase each wi by Δwi, where Δwi is proportional to
xi, for all i = 0, 1, …, m.

3 The perceptron misclassifi es the input pattern
positively (y_out = +1, but t = −1)

Decrease each wi by Δwi, where Δwi is proportional to
xi, for all i = 0, 1, …, m.

x1xx

xixx

xmxx XmXX

XiXX

: :

: :

X0XX

wiww j
wiww n

wmww 1

wmww j

wmww n

Input layer Output layer

w0ww j

w0ww 1

w0ww n

wiww 1

y_yy outjttYjYY

y_yy outnttYnYY

y_yy out1ttY1YY

Fig. 6.37. Structure of an ANN with several perceptrons

Th us the perceptron learning rule can be formulated as

 Δwi = h × (t – y_out) × xi, for i = 0, 1, …, m (6.45)

Here h is a constant known as the learning rate. It should be noticed that when a training vector is cor-
rectly classifi ed then y_out = t, and the weight adjustment Δwi = 0. When y_out = −1 but t = +1, i.e., the
pattern is misclassifi ed negatively, then t − y_out = +2 so that Δwi is incremental and is proportional to
xi. If, however, the input pattern is misclassifi ed positively, the adjustment is decremental, and obviously,
proportional to xi. Using matrix notation, the perceptron learning rule may now be written as
 ΔW = h × (t – y_out) × X (6.46)
where, ΔW and X are the vectors corresponding to the interconnection weights and the inputs.

ΔW = [Δw0, …, Δwm], and

X = [x0, x, …, xm].
Equation 6.45 can be easily extended to a network of several perceptrons at the output layer. Such archi-
tecture is shown in Fig. 6.37. Th e net inputs to the perceptrons are

y in

y in

y in

w w w

w w wj

n

i mw

j iw j mwi jm

1 0w 1 wi 1

0

�

�

�w
� � �

�w
�

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

=
� ���

�

�

�
w w� w

x

x

xn iw n mw n

i

m0

0⎡

⎣

⎢
⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

×

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Samir Roy_Chapter06.indd 207Samir Roy_Chapter06.indd 207 2/21/2013 3:24:12 PM2/21/2013 3:24:12 PM

208 Introduction to Soft Computing

or, Y_inT = WT × XT (6.47)

For such an ANN, the adjustment Δwij of the weight wij is given by

 Δwij = h × (tj – y_outj) × xi (6.48)

Let us assume the following matrix notations :

Δ

Δ Δ Δ
Δ Δ Δ

Δ Δ Δ

W

w wΔ w
w wΔ w

w wΔ w

n

n

m m mn

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

01 02 0

11 12 1

2wΔ mwΔ

�
�

� � � �
�

,, ,

, ...,

T t t

X x x and Y out y out y out

n

n, ..., y o_ ut

⎡⎣⎡⎡ ⎤⎦⎤⎤

⎡⎣⎡⎡ ⎤⎦⎤⎤ = ⎡⎣⎡⎡

1

1y outy o_a, nd Y out, _, out0 , ..., xm = ⎡⎡

�

⎤⎤⎦⎤⎤⎤⎤ .

Th en the expression of the perceptron learning rule for the architecture shown in Fig. 6.34 becomes

 [ΔW] T = h × [T – Y_out]T × X (6.49)

Example 6.7 (Learning the logical AND function by a perceptron)

Let us train a perceptron to realize the logical AND function. Th e training patterns and the cor-
responding target outputs for AND operation where the input and outputs are in bipolar form are
given in Table 6.7. Th e structure of the perceptron is same as shown in Fig. 6.35. Activation func-
tion for the output unit is :

y o g y
if y i
if y i
if y i

_ (out g _)in
, f y
, f y

, if y
=yg)in

−

⎧
⎨
⎪
⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

1 0if y in, if y >
0 0if y in, if y =

1 0if y in, if y <if y in, if y

Th e successive steps of computation with the fi rst training pair are given below.
 i) Initialize weights : w0 = w1 = w2 = 0, and the learning rate h = 1.
 ii) For the training pair s : t = (1, 1, 1) : (1), compute the net input y_in and the activation y_out :

y_in = w0 × x0 + w1 × x1 + w2 × x2
= 0 × 1 + 0 × 1 + 0 × 1

 = 0
 ∴ y_out = 0.

 iii) Apply the perceptron learning rule to fi nd the weight adjustments. Th e rule is :
If y_out = t, then the weights are not changed, otherwise change the weights according to the
formula wi (new) = wi (old) + Δwi where Δwi = ht xi. In the present case, y_out = 0, and
t = 1, and y_out ≠ t. Th erefore the weights are to be adjusted.

w0 (new) = w0 (old) + Δw0

= w0 (old) + htx0

= 0 + 1 × 1 × 1
= 1.

Samir Roy_Chapter06.indd 208Samir Roy_Chapter06.indd 208 2/21/2013 3:24:14 PM2/21/2013 3:24:14 PM

Artifi cial Neural Networks: Basic Concepts 209

Similarly, w1 (new) = w1 (old) + Δw1

= w1 (old) + htx1

= 0 + 1 × 1 × 1
= 1.

And, w2 (new) = 1.

Putting these values of the weights in the formula

x w
w

x w
w2

1

2
1

0

2
= − −

we get the separating line as x2 = −x1 – 1, which classifi es the patterns (1, 1) and (−1, −1) correctly
but misclassifi es the patterns (−1, 1) and (1, −1) (Fig. 6.36(a)). A trace of the remaining steps of
the fi rst epoch of training (an epoch of training consists of successive application of each and every
training pair of the training set for once) are noted in Table 6.10.

Hence, the set of weights obtained at the end of the fi rst epoch of training is (−1, 1, 1) which
represents to the decision line

x2 = − x1 + 1

It can be easily verifi ed that this line (and the corresponding set of weights) successfully real-
izes the AND function for all possible input combinations. Hence, there is no need of further
training.

Table 6.10. Perceptron learning of AND function

Input pattern Net
input

Activation Target
output

Weight Adjustments Weights

x0 x1 x2 y_in y_out t Δw0 Δw1 Δw2
w0 w1 w2

0 0 0 0

1 1 1 1 0 0 1 1 1 1 1 1 1

2 1 1 −1 1 1 −1 −1 −1 1 0 0 2

3 1 −1 1 2 1 −1 −1 1 −1 −1 1 1

4 1 −1 −1 −3 −1 −1 0 0 0 −1 1 1

(c) Delta / LMS (Least Mean Square), or, Widrow-Hoff Rule
Least Mean Square (LMS), also referred to as the Delta, or Widrow-Hoff Rule, is another widely used
learning rule in ANN literature. Here the weight adjustment is computed as

 Δwi = h × (t – y_in) × xi (6.50)

where the symbols have their usual meanings. In LMS learning, the identity function is used as the ac-
tivation function during the training phase. Th e learning rule minimizes mean squared error between
the activation and the target value. Th e output of LMS learning is in binary form. Example 6.8 illustrates
LMS learning of the AND function.

Samir Roy_Chapter06.indd 209Samir Roy_Chapter06.indd 209 2/21/2013 3:24:16 PM2/21/2013 3:24:16 PM

210 Introduction to Soft Computing

Example 6.8 (Realize the logical AND function through LMS learning rule)

Th e training patterns and the corresponding target outputs for AND operation where the input
and outputs are in bipolar form are given in Table 6.7. Th e structure of the perceptron is same as
shown in Fig. 6.35. Th e successive steps of computation for the fi rst epoch are given below.

 (i) Initialize weights : w0 = w1 = w2 = .3, and the learning rate h = .2 (Th ese values are randomly
chosen)

 (ii) For the training pair s : t = (1, 1, 1) : (1), compute the net input y_in as

y_in = w0 × x0 + w1 × x1 + w2 × x2

= .3 × 1 + .3 × 1 + .3 × 1

= .9

 (iii) Apply the LMS learning rule to fi nd the weight adjustments. Th e rule is, wi (new) = wi (old)
+ Δwi, where Δwi = h(t – y_in) xi. Hence

wi (new) = wi (old) + h(t – y_in) xi,
In the present case, y_in = .9, and t = 1. Th erefore

w0 (new) = w0 (old) + Δw0

 = w0 (old) + h(t – y_in) x0

 = .3 + .2 × (1 − .9) × 1

 = .3 + .02

 = .32

Similarly, w1 (new) = w2 (new) = .32
Second iteration is to be carried out with the training pair s : t = (1, 1, −1) : (−1). Th e net
input y_in is now

y_in = w0 × x0 + w1 × x1 + w2 × x2

 = .32 × 1 + .32 × 1 + .32 × (−1)

 = .32

Th e new weights are computed as follows :

w0 (new) = w0 (old) + Δw0

 = w0 (old) + h(t – y_in) x0

 = .32 + .2 × (−1 − .32) × 1

 = .32 − .264

 = .056

Samir Roy_Chapter06.indd 210Samir Roy_Chapter06.indd 210 2/21/2013 3:24:18 PM2/21/2013 3:24:18 PM

Artifi cial Neural Networks: Basic Concepts 211

Similarly, w1 (new) = .056

However, w2 (new) = .32 + .2 × (−1 − .32) × (−1)

 = .32 + .264

 = .584

Hence, at the end of the second iteration, we get w0 = .056, w1 = .056, and w2 = .584. Th e details of
the computation for the fi rst epoch are recorded in Table 6.11. We see that the weights arrived at
the end of the fi rst epoch are w0 = −.281, w1 = .393, and w2 = .287. Table 6.12 shows that this set of
weights is appropriate to realize the AND function. Hence there is no need to iterate further.

Table 6.11. LMS Learning of AND function

Input Pattern Net
input

Target
output

Error Weight Adjustments Weights

x0 x1 x2 y_in t t − y_in Δw0 Δw1 Δw2
w0 w1 w2

0 .3 .3 .3
1 1 1 1 .9 1 .1 .02 .02 .02 .32 .32 .32
2 1 1 −1 .32 −1 −1.32 −.264 −.264 .264 .056 .056 .584
3 1 −1 1 .584 −1 −1.584 −.317 .317 −.317 −.261 .373 .267
4 1 −1 −1 −.901 −1 −.099 −.02 .02 .02 −.281 .393 .287

Table 6.12. Performance of the net after LMS learning

Input Pattern Net input Output Target
Output

x0 x1 x2 y_in = Swixi
y_out t

1 1 1 1 .399 > 0 1 1

2 1 1 −1 −.175 < 0 −1 −1

3 1 −1 1 −.387 < 0 −1 −1

4 1 −1 −1 −.961 < 0 −1 −1

(d) Extended Delta Rule
Th e Extended Delta Rule removes the restriction of the output activation function being the identity
function only. Any diff erentiable function can be used for this purpose. Here the weight adjustment is
given by

 Δwij = h × (tj – y_outj) × x1 × g′(y_inj) (6.51)

where g(.) is the output activation function and g′(.) is its fi rst derivative.

6.7.2 Unsupervised Learning

So far we have considered only supervised learning where the training patterns are provided with
the target outputs. However, the target output may not be available during the learning phase.

Samir Roy_Chapter06.indd 211Samir Roy_Chapter06.indd 211 2/21/2013 3:24:18 PM2/21/2013 3:24:18 PM

212 Introduction to Soft Computing

Typically, such a situation is posed by a pattern clustering problem, rather than a classifi cation or as-
sociation problem.

Let us, for instance, consider a set of points on a Cartesian plane as shown in Fig. 6.38 (a). Th e prob-
lem is to divide the given patterns into two clusters so that when the neural net is presented with one
of these patterns, its output indicates the cluster to which the pattern belongs. Intuitively, the patterns
those are close to each other should form a cluster. Of course we must have a suitable measure of close-
ness. Fig. 6.38(b) shows the situation aft er the neural net learns to form the clusters, so that it ‘knows’ the
cluster to which each of the given pattern belongs.

(a) Before clustering : A set of patterns

x1xx

x2xx
B

A

x1xx

x2xx

(b) After clustering : Two clusters A, and B

Fig. 6.38. Clustering a given set of patterns

Clustering is an instance of unsupervised learning because it is not assisted by any teacher, or, any
target output. Th e network itself has to understand the patterns and put them into appropriate clus-
ters. Th e only clue is the given number of clusters. Let us suppose that the network output layer has
one unit for each cluster. In response to a given input pattern, exactly one among the output units
has to fi re. To ensure this, additional features need to be included in the network so that the network
is compelled to make a decision as to which unit should fi re due to certain input pattern. Th is is
achieved through a mechanism called competition. Th e most commonly used competitive learning
mechanism is the so called winner-takes-all learning. Th e basic principle of winner-take-it-all is dis-
cussed below.

x1xx

x2xx

x3xx X3XX

X2XX

X1XX

Cluster A

Input :
[x1xx , x2xx , x3xx]

Either Y1YY or Y2YY
is on, not
both

Cluster B

Y1YY

Y2YY

w11ww

w12ww

w21ww

w22ww

w32ww

w31ww

Fig. 6.39. A 3 input 2 output clustering network

Winner-takes-all Let us consider a simple ANN consisting of three input units and two output
units as shown in Fig. 6.39. As each input unit of a clustering network corresponds to a component of
the input vector, this network accepts input vectors of the form [x1, x2, x3]. Each output unit of a cluster-
ing network represents a cluster. Th erefore the present network will divide the set of input patterns into

Samir Roy_Chapter06.indd 212Samir Roy_Chapter06.indd 212 2/21/2013 3:24:18 PM2/21/2013 3:24:18 PM

Artifi cial Neural Networks: Basic Concepts 213

two clusters. Th e weight vector for an output unit in a clustering network is known as the exemplar or
code-book vector for the vectors of the cluster represented by the corresponding output unit. Hence, for
the net in Fig. 6.39, the weight vector [w11, w21, w31] is an exemplar (or code-book vector) for the patterns
of cluster A. Similarly, [w12, w22, w32] is the exemplar for the patterns of cluster B.

In the winner-takes-all strategy, the network fi nds the output unit that matches best for the current
input vector and makes it the winner. Th e weight vector for the winner is then updated according to the
learning algorithm. One way of deciding the winner is to employ the square of the Euclidean distance
between the input vector and the exemplar. Th e unit that has the smallest Euclidean distance between
its weight vector and the input vector is chosen as the winner. Th e algorithmic steps for an m-input
n-output clustering network are given below:

1. For each output unit Yj, j = 1 to n, compute the squared Euclidean distance as

D j ij i
i

m

()j ()w xij i .= (w
=
∑ 2

1

2. Let YJ be the output unit with the smallest squared Euclidean distance D(J).
3. For all output units within a specifi ed neighbourhood of YJ, update the weights as follows :

w w ld oldij ij i iji()new ()old [(x wi iw ji)]= +w ()old ×[xη

Th e concepts of neighbourhood, and winner-takes-all, in general, will be discussed in greater detail in the
chapter on competitive neural nets. Example 6.9 illustrates the winner-takes-all strategy more explicitly.

x2xx

x1xx

e (2, 1)

c (1, 0)

b (−1, 2)

a (−1, 1)

d (1, 2) f (2, 2)

Fig. 6.40. A clustering problem showing the expected clusters

Example 6.9 (Competitive learning through Winner-takes-all strategy)

Let us consider a set of six patterns S = {a (−1, 1), b (−1, 2), c (1, 0), d (1, 2), e (2, −1), f (2, 2)}. Th e
positions of these points on a two dimensional Eucledian plane are shown in Fig. 6.40. Intuitively,
the six points form three clusters {a, b}, {d, f }, and {c, e}. Given the number of clusters to be formed
as 3, how should a neural net learn the clusters by applying the winner-takes-all as its learning
strategy? Let us see.

Samir Roy_Chapter06.indd 213Samir Roy_Chapter06.indd 213 2/21/2013 3:24:19 PM2/21/2013 3:24:19 PM

214 Introduction to Soft Computing

x1xx

x2xx X2XX

X1XX

w22ww

w23ww

w12ww

w13ww

w11ww

w21ww Y2YY

Y3YY

Y1YY

Fig. 6.41. A 2 input 3 output ANN to solve the clustering problem of Example 6.9

Th e input patterns are of the form (x1, x2) and the whole data set is to be partitioned into three
clusters. So the target ANN should have two input units and three output units (Fig. 6.41). Let the
initial distribution of (randomly chosen) weights be

W w w w
w w w= ⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

11 12 13

21 22 23

0 1− 2
2 0 1

Th is means that the exemplars, or code vectors, are initially C1 = (w11, w21) = (0, 2), C2 = (w12, w22) =
(−1, 0), and C3 = (w13, w23) = (2, 1). Th e positions of the code vectors as well as the patterns to be
clustered are shown in Fig. 6.42.

D2DD

D1

C2CC

fd

C3CC

C1

x2xx

x1xx

e

c

b

a
D3DD

Fig. 6.42. Initial positions of the code vectors

Clusters are formed on the basis of the distances between a pattern and a code vector. For example,
to determine the cluster for the pattern a (−1, 1) we need to compute the Euclidean distance be-
tween the point a and each code vector C1, C2, C3. Th e pattern is then clustered with nearest among
the three code vectors. Let D1, D2, D3 be the squares of the Euclidean distances between a pattern
and C1, C2, C3 respectively. For a (−1, 1) the computations of D1, D2, D3 are as follows.

Samir Roy_Chapter06.indd 214Samir Roy_Chapter06.indd 214 2/21/2013 3:24:21 PM2/21/2013 3:24:21 PM

Artifi cial Neural Networks: Basic Concepts 215

D1 = (w11 – x1)2 + (w21 – x2)2 = (0 + 1)2 + (2 – 1)2 = 2
D2 = (w12 – x1)2 + (w22 – x2)2 = (−1 + 1)2 + (0 – 1)2 = 1
D3 = (w13 – x1)2 + (w23 – x2)2 = (2 + 1)2 + (1 – 1)2 = 9

Since D2 is the minimum among these the pattern a (−1, 1) the corresponding exemplar C2 is de-
clared the winner and the pattern is clustered around the code vector C2. Similar computations for
the pattern b (−1, 2) are given below.

D1 = (w11 – x1)2 + (w21 – x2)2 = (0 + 1)2 + (2 – 2)2 = 1
D2 = (w12 – x1)2 + (w22 – x2)2 = (−1 + 1)2 + (0 – 2)2 = 4
D3 = (w13 – x1)2 + (w23 – x2)2 = (2 + 1)2 + (1 – 2)2 = 10

In this case D1 is the minimum making C1 the winner. Table 6.13 summarizes the initial clustering
process yielding the clusters C1 = {b, d}, C2 = {a} and C3 = {c, e, f} (Fig. 6.43). Th e minimum distance
is indicated by a pair of parentheses.

Table 6.13. Initial cluster formation

Pattern Squared Euclidean
distance

Minimum of
D1, D2, D3

Winner /
Cluster

D1 D2 D3

1 a (−1, 1) 2 (1) 9 D2 C2

2 b (−1, 2) (1) 4 10 D1 C1

3 c (1, 0) 5 4 (2) D3 C3

4 d (1, 2) (1) 8 2 D1 C1

5 e (2, −1) 13 10 (4) D3 C3

6 f (2, 2) 4 13 (1) D3 C3

fd

C2CC

C3CC

C1

x2xx

x1xx

e

c

b

a

Fig. 6.43. Initial clusters

Samir Roy_Chapter06.indd 215Samir Roy_Chapter06.indd 215 2/21/2013 3:24:23 PM2/21/2013 3:24:23 PM

216 Introduction to Soft Computing

Th e initial clustering depicted in Fig. 6.43 is neither perfect, nor fi nal. Th is will change as the
learning proceeds through a number of epochs. Th is is explained below.

We take the value of the learning rate h = 0.5 and follow the steps of winner-takes-all strategy
to modify the positions of the exemplars so that they represent the respective clusters better. Th e
process is described below.

(a) 1st Epoch
 (i) Find the winner for the pattern a (−1, 1) and adjust the corresponding code-vector

D1 = (w11 – x1)2 + (w21 – x2)2 = (0 + 1)2 + (2 – 1)2 = 2

D2 = (w12 – x1)2 + (w22 – x2)2 = (−1 + 1)2 + (0 – 1)2 = 1

D3 = (w13 – x1)2 + (w23 – x2)2 = (2 + 1)2 + (1 – 1)2 = 9

Since D2 is the minimum among these, the winner is C2. Hence the weights w12 and w22
are to be changed. Th e new weights are obtained as

w12 (new) = w12 (old) + h (x1 − w12 (old)) = −1 + .5 × (−1 + 1) = −1

w22 (new) = w22 (old) + h (x2 – w22 (old)) = 0 + .5 × (1 − 0) = .5

Th e new code vector C2 is (−1, .5). It is closer to the training vector a (−1, 1) than the old
code vector (−1, 0) (Fig. 6.44(b)). Th e weight matrix now changes to

W w w w
w w w= ⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

11 12 13

21 22 32

0 1− 2
2 5 1

 (ii) Find the winner for the pattern b (−1, 2) and adjust the corresponding code-vector

D1 = (w11 – x1)2 + (w21 – x2)2 = (0 + 1)2 + (2 – 2)2 = 1

D2 = (w12 – x1)2 + (w22 – x2)2 = (−1 + 1)2 + (.5 – 2)2 = 2.25

D3 = (w13 – x1)2 + (w23 – x2)2 = (2 + 1)2 + (1 – 2)2 = 10

Since D1 is the minimum among these, the winner is C1. Hence the weights w11 and w21 are
to be changed. Th e new weights are obtained as

w11 (new) = w11 (old) + h (x1 − w11 (old)) = 0 + .5 × (−1 − 0) = −.5

w21 (new) = w21 (old) + h (x2 – w21 (old)) = 2 + .5 × (2 − 2) = 2

Th e new code vector C1 is (−.5, 2). It is closer to the training vector b (−1, 2) than the old
code vector (0, 2) (Fig. 6.44(c)). Th e new weight matrix is

W w w w
w w w= ⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

=
−⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

11 12 13

21 22 23

5 1− 2
2 5 1
.

Samir Roy_Chapter06.indd 216Samir Roy_Chapter06.indd 216 2/21/2013 3:24:23 PM2/21/2013 3:24:23 PM

Artifi cial Neural Networks: Basic Concepts 217

Th e successive iterations of the 1st epoch with the rest of the training vector are carried out in a
similar fashion and are summarized in Table 6.14. Th e corresponding changes in the positions of
the code vectors are depicted in Fig. 6.44(b)-(g).

Table 6.14. Clustering process during the 1st epoch

Training
Patterns

Squared Euclidean
Distance

Winner New Code Vectors

D1 D2 D3 C1
(w11,w21)

C2

(w12,w22)
C3

(w13,w23)

0 (0, 2) (−1, 0) (2, 1)

1 a (−1, 1) 2 (1) 9 C2 (0, 2) (−1, .5) (2, 1)

2 b (−1, 2) (1) 2.25 10 C1 (−.5, 2) (−1, .5) (2, 1)

3 c (1, 0) 6.25 4.25 (2) C3 (−.5, 2) (−1, .5) (1.5, .5)

4 d (1, 2) (2.25) 6.25 2.5 C1 (.25, 2) (−1, .5) (1.5, .5)

5 e (2, −1) 12.06 11.25 (2.5) C3 (.25, 2) (−1, .5) (1.75, −.25)

6 f (2, 2) (3.06) 11.25 5.13 C1 (1.13, 2) (−1, .5) (1.75, −.25)

fd

C1

C3CC

C2CC

x2xx

x1xx

e

(a) Initial positions

c

b

a

fd

C1

C3CC

C2CC

x2xx

x1xx

e

c

b

a

(b) Iteration #1: Pattern a, C2CC relocated

fdC1

C3CC

C2CC

x2xx

x1xx

e

(c) Iteration #2: Pattern b, C1 relocated

c

b

a

fdC1

C3CC

C2CC

x2xx

x1xx

e

c

b

a

(d) Iteration #3: Pattern c, C3CC relocated

Fig. 6.44. Successive positions of the code vectors during the 1st epoch of the clustering process

Samir Roy_Chapter06.indd 217Samir Roy_Chapter06.indd 217 2/21/2013 3:24:26 PM2/21/2013 3:24:26 PM

218 Introduction to Soft Computing

fdC1

C3CC

C2CC

x2xx

x1xx

e

c

b

a

(e) Iteration #4: Pattern d, dd C1 relocated

fdC1

C2CC

x2xx

x1xx

e

c

b

a

C3CC

(f) Iteration #5: Pattern e, C3CC relocated

fd

C1

C2CC

x2xx

x1xx

e

c

b

a

C3CC

(g) Iteration #6: Pattern e, C1 relocated

Fig. 6.44. (Continued)

Table 6.15. Clusters after the 1st epoch

Training Vector Cluster

1 a (−1, 1) C2

2 b (−1, 2) C2

3 c (1, 0) C3

4 d (1, 2) C1

5 e (2, −1) C3

6 f (2, 2) C1

Clusters formed

C1 : {d, f}

C2 : {a, b}

C3 : {c, e}

Samir Roy_Chapter06.indd 218Samir Roy_Chapter06.indd 218 2/21/2013 3:24:27 PM2/21/2013 3:24:27 PM

Artifi cial Neural Networks: Basic Concepts 219

fd

C1

C2CC

x2xx

x1xx

e

c

b

a

C3CC

Fig. 6.45. Clusters formed after the 1st epoch

Th erefore, the weight matrix at the end of the fi rst epoch is obtained as

W w w w
w w w= ⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= −
⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

11 12 13

21 22 23

1 13 1− 1 75
2 5 25
. .13 1 1

. .5

Th e corresponding clusters can be easily found by computing the distance of each training vector
from the three code vectors and attaching it to the cluster represented by the nearest code vector.
Table 6.15 summarizes these results and Fig. 6.45 shows the clusters formed at the end of the 1st
epoch. It is obvious from Fig. 6.45 that the clusters formed conform to our intuitive expectation.
However, this should be further consolidated by a second epoch of training.

(b) 2nd Epoch

Table 6.16. Clustering process during the 2nd epoch

Training
Patterns

Squared Euclidean Distance Winner New Code Vectors

D1 D2 D3 C1

(w11,w21)
C2

(w12,w22)
C3

(w13,w23)

0 (1.13, 2) (−1, .5) (1.75, −.25)

1 a (−1, 1) 5.54 (.25) 9.13 C2 (1.13, 2) (−1, 1.5) (1.75, −.25)

2 b (−1, 2) 4.54 (.25) 12.63 C2 (1.13, 2) (−1, 1.75) (1.75, −.25)

3 c (1, 0) 4.02 7.06 (.63) C3 (1.13, 2) (−1, 1.75) (1.38, −.13)

4 d (1, 2) (.02) 4.06 4.68 C1 (1.07, 2) (−1, 1.75) (1.38, −.13)

5 e (2, −1) 9.86 16.63 (1.14) C3 (1.07, 2) (−1, 1.75) (1.69, −.57)

6 f (2, 2) (.86) 9.06 6.7 C1 (1.56, 2) (−1, 1.75) (1.69, −.57)

Th e summary of the second epoch of training is given in Table 6.16. Table 6.17 shows the clusters
formed at the end of this epoch and Fig. 6.46 depicts the location of the code vectors as well as the
corresponding clusters. It should be noted that though the clusters has not changed from the fi rst
epoch, the positions of the exemplars has changed. In fact, these have moved towards the ‘centre’
of the respective clusters. Th is is expected, because the exemplar is the representative of a cluster.

Samir Roy_Chapter06.indd 219Samir Roy_Chapter06.indd 219 2/21/2013 3:24:28 PM2/21/2013 3:24:28 PM

220 Introduction to Soft Computing

Table 6.17. Clusters after the 2nd epoch

Training Vector Cluster

1 a (−1, 1) C2

2 b (−1, 2) C2

3 c (1, 0) C3

4 d (1, 2) C1

5 e (2, −1) C3

6 f (2, 2) C1

Clusters formed

C1 : {d, f}

C2 : {a, b}

C3 : {c, e}

fd

C1C2CC

x2xx

x1xx

e

c

b

a

C3CC

Fig. 6.46. Clusters formed after the 2nd epoch

CHAPTER SUMMARY

Certain fundamental concepts of artifi cial neural networks have been presented in this chapter. Th e
main points of the foregoing text are summerized below.

ANNs are inspired by the biological brain that processes data in terms of patterns rather than •
sequential fetch and execute cycle of instruction execution by a classical Von Neuman digital
computer.
Information is stored in brain as strengths of the synaptic gaps between the neurons. Similarly, •
knowledge is stored in an ANN as weights of interconnection between neural processing units.
Th us both the brain and the ANN stores information in a distributed manner.
ANNs are suitable for problem related to pattern classifi cation and pattern association.•
Th e earliest artifi cial neural model was proposed by McCulloch and Pitts in 1943.•
Th e perceptron model was proposed by Rosenblatt in 1962. It has the nice property of being •
able to learn to classify a linearly separable set of patterns.
ANNs have various architectures, such as, single-layer feed forward, multy-layer feed forward, •
competitive networks, recurrent networks etc.

Samir Roy_Chapter06.indd 220Samir Roy_Chapter06.indd 220 2/21/2013 3:24:29 PM2/21/2013 3:24:29 PM

Artifi cial Neural Networks: Basic Concepts 221

Certain functions such as the identity function, the step function, the sigmoid function, the •
hyperbolic tangent function etc. are widely used as activation functions in an ANN.
Th ere are two kinds of learning methods for an ANN, supervised and unsupervised. Learning •
takes place with the help of a set of training patterns. Under supervised learning each training
pattern is accompanied by its target output. Th ese target outputs are not available during
unsupervised learning.
Th e formulae for interconnection weight adjustment • Δwi for diff erent learning rules are shown
in Table 6.18.

Table 6.18. Summary of ANN learning rules

Learning Rule Formula for Δwi

1 Hebb Δwi = xi × t
2 Perceptron Δwi = h × (t – y_out) × xi,
3 Delta/LMS/Widrow-Hoff Δwi = h × (t – y_in) × xi

4 Extended delta Δwij = h × (tj – y_outj) × x1 × g′(y_inj)
5 Winner-takes-all Δw oldij i iji×η [(x wi iw ji−)]

Th e weight vector associated with an output of a clustering ANN is called the exemplar or the •
code-book vector. It represents the cluster corresponding to the output unit of the clustering
ANN.

 SOLVED PROBLEMS

Problem 6.1 Write MATLAB Code to realize the logical AND function with a neural net that
learns the desired function through Hebb learning.

Solution 6.1 Th e MATLAB code and the output are given below as Fig. 6.47 and Fig. 6.48.

%MATLAB Code to realize the logical AND function with a neural net that
%learns the desired function through Hebb learning.
clear;
clc;
Inp1=[1 1 1];
Inp2=[1 1 −1];
Inp3=[1 −1 1];
Inp4=[1 −1 −1];
Mat(1,1:3)=Inp1;
Mat(2,1:3)=Inp2;
Mat(3,1:3)=Inp3;
Mat(4,1:3)=Inp4;
wt(1:3)=0;
Tar_Act=[1 −1 −1 −1];
bias=1;
for i=1:4

wt=wt+Mat(i,1:3)*Tar_Act(i);
bias=bias+Tar_Act(i);
disp(‘Weight Matrix’);
disp(wt);

Samir Roy_Chapter06.indd 221Samir Roy_Chapter06.indd 221 2/21/2013 3:24:29 PM2/21/2013 3:24:29 PM

222 Introduction to Soft Computing

disp(‘Bias’);
disp(bias);

end
disp(‘***********Final Weight Matrix************’);
disp(wt);
disp(‘*****************Bias*********************’);
disp(bias);

Fig.6.47. MATLAB code for Hebb learning of AND function by an ANN

Results
Weight Matrix
 1 1 1
Bias
 2
Weight Matrix
 0 0 2
Bias
 1
Weight Matrix

 −1 1 1
Bias
 0
Weight Matrix

 −2 2 2
Bias

 −1
***********Final Weight Matrix************

 −2 2 2
*****************Bias*********************

 −1

Fig. 6.48. MATLAB results for Hebb learning of AND function

Problem 6.2 Write MATLAB Code to realize the logical AND function with a neural net that
learns the desired function through Perceptron learning.

Solution 6.2 Th e MATLAB code for the purpose is given below in Fig. 6.49. Fig. 6.50 presents the
corresponding screenshot.

% Example 1.7: Design a perceptron and train it to realize the logical AND
function.

P = [0 0 1 1; 0 1 0 1]; % Possible values of 2 variables in a ma-
trix format

T = [0 0 0 1]; % Expected outputs for above dataset

Samir Roy_Chapter06.indd 222Samir Roy_Chapter06.indd 222 2/21/2013 3:24:31 PM2/21/2013 3:24:31 PM

Artifi cial Neural Networks: Basic Concepts 223

net = newp([0 1; 0 1],1); % Creates network with two inputs and 1
output with ranges of values

net.trainParam.epochs = 20; % Sets the number of maximum iterations
net = train(net,P,T); % Trains the network
simulation = sim(net,P) % Simulates neural network
plotpv(P,T) % Plot input/target vectors
plotpc(net.iw{1,1},net.b{1}) % Plot classification line

Fig. 6.49. MATLAB code for perceptron learning of AND function

Fig. 6.50. MATLAB output for perceptron implementing AND function

Problem 6.3 Write MATLAB Code to realize the logical AND function with a neural net that
learns the desired function through LMS learning.

Solution 6.3 Th e MATLAB code for the purpose is given in Fig. 6.51. Fig. 6.52 shows the results
and screenshot is shown in Fig. 6.53.

%Matlab Code to implement LMS learning
clear;
clc;
Inp1=[1 1 1];
Inp2=[1 1 −1];
Inp3=[1 −1 1];
Inp4=[1 −1 −1];
Mat(1,1:3)=Inp1;
Mat(2,1:3)=Inp2;
Mat(3,1:3)=Inp3;
Mat(4,1:3)=Inp4;

Samir Roy_Chapter06.indd 223Samir Roy_Chapter06.indd 223 2/21/2013 3:24:31 PM2/21/2013 3:24:31 PM

224 Introduction to Soft Computing

wt(1:3)=0.3;
wt_new(1:3)=0;
y_in(1:4)=0;
Tar_Act=[1 −1 −1 −1];
bias=1;
Learn_Rate=0.2;
for j=1:4
y_in(j)=wt(1)*Mat(j,1)+wt(2)*Mat(j,2)+wt(3)*Mat(j,3);

for i=1:3
wt_new(i)=wt(i)+ (Learn_Rate*(Tar_Act(j)−y_in(j))*Mat(j,i));
wt(i)=wt_new(i);
disp(‘Weight Matrix’);
disp(wt);
end

end
disp(‘***********Final Weight Matrix************’);
disp(wt);

Fig. 6.51. MATLAB code for LMS learning of AND function by an ANN

Weight Matrix
 0.3200 0.3000 0.3000
Weight Matrix
 0.3200 0.3200 0.3000
Weight Matrix
 0.3200 0.3200 0.3200
Weight Matrix
 0.0560 0.3200 0.3200
Weight Matrix
 0.0560 0.0560 0.3200
Weight Matrix
 0.0560 0.0560 0.5840
Weight Matrix

 −0.2608 0.0560 0.5840
Weight Matrix

 −0.2608 0.3728 0.5840
Weight Matrix

 −0.2608 0.3728 0.2672
Weight Matrix

 −0.2806 0.3728 0.2672
Weight Matrix

 −0.2806 0.3926 0.2672
Weight Matrix

 −0.2806 0.3926 0.2870
***********Final Weight Matrix************

 −0.2806 0.3926 0.2870

Fig. 6.52. MATLAB results for LMS learning of AND function

Samir Roy_Chapter06.indd 224Samir Roy_Chapter06.indd 224 2/21/2013 3:24:33 PM2/21/2013 3:24:33 PM

Artifi cial Neural Networks: Basic Concepts 225

Fig. 6.53. MATLAB screen showing results of LMS learning of AND function

Problem 6.4 Write MATLAB Code to implement the Winner-takes-all strategy of pattern clustering.

Solution 6.4 Th e MATLAB code is shown in Fig. 6.54. Th e data set is taken from Example 6.9.

clear;
clc;
lr = 0.5;

Inp = [-1 -1 1 1 2 2; 1 2 0 2 -1 2];
wt = [-1 0 0; 1 -1 1];

[rowInp, colInp] = size(Inp);
[rowwt, colwt] = size(wt);
Res = 0;
High_Indx = 0;
for i = 1:colInp

Inp(:,i) = Inp(:,i)/norm(Inp(:,i));
for j = 1:colwt

wt(:,j) = wt(:,j)/norm(wt(:,j));
matrx_mult = dot(wt(:,j),Inp(:,i));
if matrx_mult > Res
 Res = matrx_mult;
 High_Indx = j;
 disp (wt(:,j))
end

end

wt(:,High_Indx) = wt(:,High_Indx) + lr*(Inp(:,i) − wt(:,High_Indx));
disp(‘*********************Weights********************’);

wt(:,High_Indx) = wt(:,High_Indx)/norm(wt(:,High_Indx));
end

Samir Roy_Chapter06.indd 225Samir Roy_Chapter06.indd 225 2/21/2013 3:24:33 PM2/21/2013 3:24:33 PM

226 Introduction to Soft Computing

figure
plot(Inp(1,:), Inp(2,:), wt(1,:), wt(2,:))
axis([-max(max(abs(Inp)))− 0.5max(max(abs(Inp))) + 0.5−
max(max(abs(Inp)))−0.5 max(max(abs(Inp)))+0.5])

Fig. 6.54. MATLAB code for clustering through winner-takes-all

� TEST YOUR KNOWLEDGE

 6.1 Which of the following parts of a biological neuron is modeled by the weighted interconnections
between the input units and the output unit of an artifi cial neural model?
a) Dendrite b) Axon
c) Soma d) Synapse

 6.2 Th e eff ect of the synaptic gap in a biological neuron is modeled in artifi cial neuron model as
a) Th e weights of the interconnections
b) Th e activation function
c) Th e net input to the processing element
d) None of the above

 6.3 In an artifi cial neural model, the activation function of the input unit is
a) Th e step function b) Th e identity function
c) Th e sigmoid function d) None of the above

 6.4 Which of the following is not true about Perceptrons ?
a) It can classify linearly separable patterns
b) It does not have any hidden layer
c) It has only one output unit
d) None of the above

 6.5 Recognition of hand written characters is an act of
a) Pattern classifi cation b) Pattern association
c) Both (a) and (b) d) None the above

 6.6 Identifi cation of an object, e.g., a chair, a tree, or a human being, from the visual image of our sur-
roundings, is an act of
a) Pattern classifi cation b) Pattern association
c) Both (a) and (b) d) None the above

 6.7 Th e interconnections of a Hopfi eld network are
a) Unidirectional b) Bidirectional
c) Both (a) and (b) d) None the above

 6.8 Th e interconnections of a perception are
a) Unidirectional b) Bidirectional
c) Both (a) and (b) d) None the above

 6.9 Parallel relaxation is a process related to the functionality of
a) Perceptrons b) McCulloch-Pitts neurons
c) Hopfi eld networks d) None the above

6.10 In which of the following ANN models the inhibition is absolute, i.e., a single inhibitive input can
prevent the output to fi re, irrespective of the number of excitatory inputs?

Samir Roy_Chapter06.indd 226Samir Roy_Chapter06.indd 226 2/21/2013 3:24:35 PM2/21/2013 3:24:35 PM

Artifi cial Neural Networks: Basic Concepts 227

a) Perceptrons b) Hopfi eld network
c) McCulloch-Pitts neurons d) None the above

6.11 Which of the following is not true about McCulloch-Pitts neurons?
a) Th e interconnections are unidirectional
b) All excitatory interconnections have the same weight
c) All inhibitory interconnections have the same weight
d) Th e activation is bipolar

6.12 Which of the following operations can be realized by a network of McCulloch-Pitts neurons, but
not a network of perceptions?
a) Logical AND b) Logical OR
c) Logical XOR d) None the above

6.13 Which of the following kinds of classifi cation problems can be solved by a perception?
a) Linearly separable b) Non-linearly separable
c) Both (a) and (b) d) None the above

6.14 Which of the following entities is guaranteed by the Perceptron Convergence Th eorem to con-
verge during the learning process?
a) Th e output activation b) Th e interconnection weights
c) Both (a) and (b) d) None the above

6.15 Th e XOR function cannot be realized by a Perceptron because the input patterns are
a) Not bipolar b) Not linearly separable
c) Discrete d) None the above

6.16 Th e XOR function can be realized by
a) A Perceptron b) A network of Perceptrons
c) A Hopfi eld network d) None the above

6.17 Which of the following ANN architectures contains bidirectional interconnections?
a) Single-layered feed forward b) Multi-layered feed forward
c) Competitive networks d) None the above

6.18 Which of the following activation functions is not diff erentiable?
a) Identity function b) Heaviside function
c) Sigmoid function d) None the above

6.19 Which of the following ANN learning algorithms is not a supervised learning?
a) Perceptron learning b) Widrow-Hoff learning
c) Winner-takes-all d) None the above

6.20 During learning, if a Perceptron misclassifi es a training data negatively, i.e., erroneously yields an
output −1 instead of +1, the interconnection weights are to be
a) Increased b) Decreased
c) Kept unaltered d) None the above

6.21 During learning, if a Perceptron misclassifi es a training data positively, i.e., erroneously yields an
output +1 instead of −1, the interconnection weights are
a) Increased b) Decreased
c) Kept unaltered d) None the above

6.22 Which of the following learning rules does not guarantee to learn a classifi cation instance even if
the classes are linearly separable ?
a) Perceptron learning rule b) Hebb rule
c) Both (a) and (b) d) None of the above

Samir Roy_Chapter06.indd 227Samir Roy_Chapter06.indd 227 2/21/2013 3:24:35 PM2/21/2013 3:24:35 PM

228 Introduction to Soft Computing

6.23 Which of the following is a competitive learning method?
a) Winner-takes-all b) Least-Mean-square
c) Extended delta d) None the above

6.24 Th e weight vector attached to an output unit of a clustering network is known as
a) an exemplar b) a code vector
c) Both (a) and (b) d) None of the above

6.25 Which of the following ANN learning methods use Euclidean distance between the weight vector
and the input vector to compute the output ?
a) Perceptron learning b) Widrow-Hoff learning
c) Winner-takes-all learning d) None of the above

Answers

 6.1 (d) 6.2 (a) 6.3 (b) 6.4 (d) 6.5 (b)
 6.6 (a) 6.7 (b) 6.8 (a) 6.9 (c) 6.10 (c)
 6.11 (d) 6.12 (d) 6.13 (a) 6.14 (b) 6.15 (b)
 6.16 (b) 6.17 (c) 6.18 (b) 6.19 (c) 6.20 (a)
 6.21 (b) 6.22 (b) 6.23 (a) 6.24 (c) 6.25 (c)

EXERCISES

6.1 Th ere are two ways to interpret the role of the brain while considering the human body as a
computational agent. One of them is to view the entire brain as a single unit that acts as the CPU
for the whole body. Th e other is to consider the brain as a huge network of billions of processing
units called neurons. Compare and contrast between these two views from computational per-
spective.

6.2 Th e majority function outputs a 0 if there are more 0s in the inputs than 1s, and outputs a 1 if there
are more 1s in the inputs than 0s. In short, it returns the majority input to the output. Th e truth table
for a 3 input majority function is given as Table 6.19. Design a McCulloch-Pitts neural net to realize
the 3-input majority function.

Table 6.19. Three input majority function

Inputs Output
M (x1, x2, x3)x1 x2 x3

0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 1

Samir Roy_Chapter06.indd 228Samir Roy_Chapter06.indd 228 2/21/2013 3:24:35 PM2/21/2013 3:24:35 PM

Artifi cial Neural Networks: Basic Concepts 229

6.3 Consider the sets of points A and B shown in Fig. 6.54 where A = {a (−1, 1), b (−1, 0), c (−1, −1),
e (0, 0), f (0, −1)} and B = {d (0, 2), g (1, 2), h (1, 1), i (2, 2), j (2, 1)}. Propose two diff erent Percep-
trons to classify these sets of patterns by observation, analysis, and understanding only (and not
by learning).

B

A
j

i

h

g

x2xx

x1xx

f

d

e

c

b

a

Fig. 6.54. A classifi cation problem instance

6.4. Consider the 3-input majority function cited in Exercise No. 6.2. Fig. 6.55 shows the positions
of the input patterns in a 3-dimensional space, classified on the basis of the corresponding
output values. Are these patterns linearly separable? If so, propose a perceptron to realize this
function.

(1, 1, 1)

(1, 1, 0)

(1, 0, 1)

(0, 1, 1)

(0, 1, 0)

(1, 0, 0)

x3xx

(0, 0, 1)

(0, 0, 0)

x2xx

x1xx

Fig. 6.55. Three input majority function

6.5 Draw the structure of a 3-3-2 multi-layered feed forward neural net. Also, present the matrix alge-
braic expression for the net inputs and the outputs of each layer.

6.6 Train a neural net through the Hebb rule to realize the logical OR function.
6.7 Realize the 3-input majority function through the Perceptron learning rule.
6.8 Train a neural net through the LMS rule to realize the logical OR function.
6.9 Let S be a set of six points on an Euclidean plane where S = {a (0, −1), b (0, −2), c (1, 2), d (1, 1),

e (1, −1), f (2, 1)} (Fig. 6.56). Taking the initial code vectors as C1 = (0, 0), and C2 = (−1, −2) fi nd i)
the initial clusters, and ii) fi nal cluster with the help of winner-takes-all strategy.

Samir Roy_Chapter06.indd 229Samir Roy_Chapter06.indd 229 2/21/2013 3:24:35 PM2/21/2013 3:24:35 PM

230 Introduction to Soft Computing

f

C2CC

x2xx

x1xx

e

c

d

a

b
C1

Fig. 6.56. A clustering problem with initial code vectors

 BIBLIOGRAPHY AND HISTORICAL NOTES

Research in the area of ANNs started in early 40s, when neuro-physiologist, Warren McCulloch and
mathematician Walter Pitts proposed their celebrated McCulloch-Pitts Th eory of Formal Neural Net-
works. Th ey even designed and developed a primitive ANN using simple electric circuits. Th e theories
of McCulloch and Pitts on the nature and functionalities of neurons were further supported by Donald
Hebb in his 1949 book ‘Th e organization of behaviour’. In 1954 Marvin Minsky wrote his Ph.D. thesis
entitled ‘Th eory of Neural-Analog Reinforcement Systems and its Application to the Brain-Model Prob-
lem’, which is widely acclaimed as an important early research into neural networks. Th en in 1958 Frank
Rosenblatt, a neuro-biologist at Cornell University, proposed the Perceptron, the fi rst ‘practical’ ANN.
However, Marvin Minsky and Seymour Papert proved in their book of 1969 entitled ‘Perceptrons’ that the
capabilities of perceptrons are very limited. As a consequence, enthusiasm declined over the subsequent
few years. Th e fi rst neural networks that could be applied to real problems, ADALINE (ADAptive LINear
Elements) and MADALINE (Multiple ADAptive LINear Elements), were developed by Bernard Wil-
drow and Marcian Hoff of Stanford University between 1959 and 1960. In 1982 John Hopfi eld of Caltech
presented some new ideas in neural networks that eventually came to be known as Hopfi eld networks.
A new era in neural networks started in 1986 when Rumelhart, Hinton and Williams proposed the back-
propagation algorithm to overcome the limitations of perceptron. Many more developments took place
in the last few decades in the fi eld of ANNs. A few seminal works in this area are referred below.

Anderson, J. A. and Rosenfi eld, E., (eds). (1988). Neurocomputing: Foundations of research. Cambridge,
MA, MIT Press.

Angeniol, B., Vaubois, G., and Le Texier, J.-Y. (1988). Self-organizing feature maps and the traveling
salesman problem. Neural Networks, 1(4), pp. 289–293.

Block, H. D. (1962). Th e perceptron: A model for brain functioning. Reviews for modern physics. Vol. 34,
pp. 123–135.

Cohen, M. A. and Grossberg, S. (1983). Absolute stability of global pattern formation and parallel mem-
ory storage by competitive neural networks. IEEE transactions on Systems, Man and Cybernetics,
SMC-13, pp. 815–826.

Hopfi eld, J. J. (1982). Neural networks and physical systems with emergent collective computational
properties. Proc. of the National Academy of Sciences of the USA, 79, pp. 2554–2588.

Samir Roy_Chapter06.indd 230Samir Roy_Chapter06.indd 230 2/21/2013 3:24:36 PM2/21/2013 3:24:36 PM

Artifi cial Neural Networks: Basic Concepts 231

Hopfi eld, J. J. and Tank, D. W. (1985). Neural computation of decisions in optimization problems. Bio-
logical cybernetics, 52(3), pp. 141–152.

Hopfi eld, J. J. and Tank, D.W. (1986). Computing with neural circuits. Science, 233, pp. 625–633.
Grossberg, S. (1973). Contour enhancement, short-term memory, and constancies in reverberating neu-

ral networks. Studies in Applied Mathematics, 52.
Grossberg, S. (1982). Studies of mind and brain. Boston, Reidel.
Hebb, D. O. (1949). Th e organization of behaviour. New York, John Wiley and Sons.
Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological cybernet-

ics, 43, pp. 59–69.
McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin

of Mathematical Biophysics, 7, pp.115–133.
Minsky, M. and Papert, S. (1969). Perceptrons. MIT Press.
Rosenblatt, F. (1959). Two theorems of statistical separability in the perceptron. Mechanization of thought

process: proceedings of the symposium at National Physical Laboratory, London, pp. 421–456.
Rosenblatt, F. (1962). Principles of Neurodynamics. Spartan Books.
Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986). Learning representations by back-propagating

errors. Nature, 323, pp. 533–536.
Tank, D. W., and Hopfi eld, J. J. (1987). Collective computation in neuronlike circuits. Scientifi c American,

257, pp. 104–114.
Von Neumann, J. (1958). Th e computer and the brain. New Haven : Yale University Press.
Widrow, B. and Hoff , M. E. (1960). Adaptive switching circuits. IRE WESCON convention record, part 4,

pp. 96–104.

Samir Roy_Chapter06.indd 231Samir Roy_Chapter06.indd 231 2/21/2013 3:24:36 PM2/21/2013 3:24:36 PM

Samir Roy_Chapter06.indd 232Samir Roy_Chapter06.indd 232 2/21/2013 3:24:36 PM2/21/2013 3:24:36 PM

 This page is intentionally left blank.

7
PATTERN CLASSIFIERS

Key Concepts

ADALINE (Adaptive Linear Neuron), Hebb Learning, Hebb Nets, Learning Rate, Least Mean Square,
MADALINE (Many Adaptive Linear Neurons), MR-I Algorithm, MR-II Algorithm, Perceptrons,
Perceptron Learning, Widrow-Hoff Learning

 Chapter Outline

7.1 Hebb Nets
7.2 Perceptrons
7.3 ADALINE
7.4 MADALINE

Chapter Summary
Solved Problems
Test Your Knowledge
Exercise
Bibliography and Historical Notes

Chapter 6 provides an overview of various aspects of artifi cial neural nets including their architecture,
activation functions, training rules, etc. Th is chapter presents discussions on certain elementary patterns
classifying neural nets. Four kinds of nets, viz., Hebb net, Perceptron, ADALINE, and MADALINE, are
included here. Among these, the fi rst three are single layer, single output nets, and the last one, MADA-
LINE, is a single-output net with one hidden layer. White Hebb network and Perceptron are trained by
their respective training rules, both ADALINE and MADALINE employ the least mean square (LMS), or
delta rule. More general multi-layer networks, especially the feed-forward networks, are dealt with later
in a separate chapter.

7.1 HEBB NETS

A single-layer feedforward neural net trained through the Hebb learning rule is known as a Hebb
net. Th e Hebb learning rule is introduced in Chapter 6. Example 6.6 illustrates the training pro-
cedure for a Hebb net where a net is trained to implement the logical AND function. Th e detailed

Samir Roy_Chapter07.indd 233Samir Roy_Chapter07.indd 233 2/21/2013 3:25:11 PM2/21/2013 3:25:11 PM

234 Introduction to Soft Computing

algorithm is presented here as Procedure Hebb-Learning (Fig. 7.1). Fig. 7.2 shows the architecture
of the Hebb net.

Procedure Hebb-Learning

Step 1. Initialize all weights to 0.

wi = 0, for all i = 0 to m.

Step 2. For each training vector and target output pair,
s : t, do steps 3-5.

Step 3. Assign the input vectors to the input layer.

x0 = 1, and xi = si for all i = 1 to m

Step 4. Activate the output unit with the target output
y_out = t.

Step 5. Adjust the weights

wi (new) = wi (old) + xi × y_out

Step 6. Stop

Fig. 7.1 Procedure Hebb-learning

It should be noted that the input unit X0 and the associated weight w0 play the role of the bias. Th e activa-
tion of X0 is always kept at 1. Hence, the expression for adjustment of w0 becomes

 w0 (new) = w0 (old) + 1 × y_out = w0 (old) + y_out (7.1)

x1xx

xixx

xmxx
XmXX

XiXX

:
:

:
:

X1XX

wiww

wmww

w1ww

w0ww

y_yy out

1 X0XX

Y

Fig. 7.2. Structure of a Hebb net

Procedure Hebb-Learning requires only one pass through the training set. Th ere are other equivalent
methods of applying Hebb learning in diff erent contexts, say, pattern association. Example 6.6 illustrates
the training procedure of a Hebb net to realize the AND function. In this example, both the input and
output of the function were expressed in bipolar form. Example 7.1 illustrates the limitation of binary
representation of data for training a neural net through Hebb learning. Example 7.2 shows that Hebb net
may not learn a classifi cation task even if the patterns concerned are linearly separable.

Samir Roy_Chapter07.indd 234Samir Roy_Chapter07.indd 234 2/21/2013 3:25:13 PM2/21/2013 3:25:13 PM

Pattern Classifi ers 235

(1, 0)

(0, 0)

(1, 1)(0, 1)

x1xx

x2xx

Fig. 7.3. Decision line of Hebb net to realize the AND function when both the input and the output
are expressed in binary form

w
Example 7.1 (Disadvantage of input data in binary form)

In this example, we apply the Hebb learning rule to train a neural net for the AND function with
binary inputs. Can the net learn the designated task? We will observe and draw appropriate con-
clusions from our observation.

Two cases need to be considered. First, the target output is presented in binary, then, in bipolar.
Th e input is in binary form in both cases.

Table 7.1 shows the details of the computation when both the input patterns and the target out-
puts are presented in binary from. We see that as the target output is 0 for the fi rst three patterns,
and as the adjustments Δwi = xi × y_out = xi × 0 = 0, no learning takes place. Th e fi nal set of weights
is (w0, w1, w2) = (1, 1, 1). It can be easily verifi ed that this net fails to classify the patterns (x1, x2) = (0,
0), (0, 1), or (1, 0). Fig. 7.3 shows the decision line for this net. We assume the activation function:

g x if
otherwise()x ,

,= ⎧
⎨
⎧⎧
⎩
⎨⎨

1 0if x, >
0

Th is shows that a Hebb net fails to learn the AND function if both the inputs and the target outputs
are expressed in binary. What happens when the output is in bipolar form?

Table 7.2 shows the details of the training process when the output is expressed in bipolar form.
As the 0s in the column for 'Target output (t)' are replaced by −1, learning takes place for all training
pairs from (0, 0) : (−1) to (1, 1) : (1). Th e fi nal set of weights are w0 = −2, w1 = 0, w2 = 0. Th erefore, the
activation of the net is permanently at −1, irrespective of input pattern. It is obvious that though this
net classifi es the patterns (0, 0), (0, 1), (1, 0) correctly, it is unable to do so for the pattern (1, 1).

Table 7.1 Hebb learning of AND function with Binary Target Output

Training Inputs Target
output
(t)

Weight changes Weights

 X0 X1 X2 ∆w0 ∆w1 ∆w2 w0 w1 w2

0 0 0 0

1 1 0 0 0 0 0 0 0 0 0

(Continued)

Samir Roy_Chapter07.indd 235Samir Roy_Chapter07.indd 235 2/21/2013 3:25:14 PM2/21/2013 3:25:14 PM

236 Introduction to Soft Computing

Table 7.1 Continued

Training Inputs Target
output
(t)

Weight changes Weights

 X0 X1 X2 ∆w0 ∆w1 ∆w2 w0 w1 w2

2 1 0 1 0 0 0 0 0 0 0

3 1 1 0 0 0 0 0 0 0 0

4 1 1 1 1 1 1 1 1 1 1

Δwi = xi × y_out = xi × t

Table 7.2 Hebb learning for AND function (binary input and bipolar output)

Training Inputs Target
output
(t)

Weight changes Weights

 X0 X1 X2 ∆w0 ∆w1 ∆w2 w0 w1 w2

0 0 0 0

1 1 0 0 −1 −1 0 0 −1 0 0

2 1 0 1 −1 −1 0 −1 −2 0 −1

3 1 1 0 −1 −1 −1 0 −3 −1 −1

4 1 1 1 1 1 1 1 −2 0 0

Δwi = xi × y_out = xi × t

Th e foregoing discussion shows that if the training patterns and the target outputs are presented in
binary form, there is no guarantee that a Hebb net may learn the corresponding classifi cation task.

Example 7.2 (Limitation of Hebb net)

Th is example shows, with the help of a suitable problem instance, that a Hebb net may not be able
learn to classify a set of patterns even though they are linearly separable.

a (0, 1, 1)

d (1, 1, 1)

c (1, 1, 0)

b (1, 0, 1)

x2xx

x3xx

x1xx

Fig. 7.4. A linearly separable set of points that a Hebb net fails to learn to classify

Let us consider four points a (0, 1, 1), b (1, 0, 1), c (1, 1, 0) and d (1, 1, 1) and the corresponding
outputs as 0, 0, 0, and 1, respectively. Fig. 7.4 shows these patterns on a 3-dimensional space, and
Table 7.3 and Table 7.4 present the training sets expressed in binary and bipolar forms.

Samir Roy_Chapter07.indd 236Samir Roy_Chapter07.indd 236 2/21/2013 3:25:15 PM2/21/2013 3:25:15 PM

Pattern Classifi ers 237

Table 7.3. Training pairs in binary form

Input pattern Target
output
(t)

x1 x2 x3

0 1 1 0
1 0 1 0
1 1 0 0
1 1 1 1

Table 7.4. Training pairs in bipolar form

Input pattern Target
output

(t)
x1 x2 x3

 −1 1 1 −1
 1 −1 1 −1
 1 1 −1 −1
 1 1 1 1

It is obvious from Fig. 7.4 that the given set of patterns is linearly separable. Any plane that cuts the
cube diagonally to isolate the point d (1, 1, 1) from the rest of the three points serves the purpose.
In Fig. 7.4, the triangle around the point d represents such a plane. If we present the inputs and the
outputs in bipolar form, then a single layer single output net with the interconnection weights w0
= −2, w1 = 1, w2 = 1, and w3 = 1 can solve the classifi cation problem readily (Fig. 7.5).

x1xx

x2xx

x3xx X3XX

X2XX

X1XX −2

1

1

1

y_yy out

1 X0XX

Y

Fig. 7.5. A net to solve the classifi cation problem posed in Table 7.4

Can we make a net learn this, or any other suitable set of weights, through Hebb learning rule so
that it acquires the capacity to solve the concerned classifi cation problem? Table 7.5 shows the cal-
culations for such an eff ort. As the table shows, the weight vector arrived at the end of the pro-
cess is (w0, w1, w2, w3) = (−2, 0, 0, 0). Now, this set of weights fails to distinguish the pattern
(1, 1, 1) from the rest. Hence, the resultant net has not learnt to solve this classifi cation problem.

Samir Roy_Chapter07.indd 237Samir Roy_Chapter07.indd 237 2/21/2013 3:25:16 PM2/21/2013 3:25:16 PM

238 Introduction to Soft Computing

Table 7.5. Hebb training of classifi cation problem posed in Table 7.4

Training Input Target
output
(t)

Weight changes Weights

x0 x1 x2 x3 ∆w0 ∆w1 ∆w2 ∆w3 w0 w1 w2 w3

0 0 0 0

1 −1 1 1 −1 −1 1 −1 −1 −1 1 −1 −1

1 1 −1 1 −1 −1 −1 1 −1 −2 0 0 −2

1 1 1 −1 −1 −1 −1 −1 1 −3 −1 −1 −1

1 1 1 1 1 1 1 1 1 −2 0 0 0

As this network cannot distinguish (1, 1, 1) from the rest, it fails to learn to classify the given pat-
terns even though they are linearly separable.

Hebb net is one of the earliest neural net meant for classifi cation tasks. However, it has very limited capac-
ity. A more powerful ANN is the famous perceptrons. Th ese are discussed in the next section.

7.2 PERCEPTRONS

An overview of perceptrons including their structure, learning rule, etc., is provided in Chapter 6. Th is
section presents the detailed learning algorithm and an example to illustrate the superiority of the per-
ceptron learning rule over the Hebb learning rule. Perceptron learning process is presented as Procedure
Perceptron Learning (Fig. 7.6). Th e notable points regarding Procedure Perceptron-Learning are given
below:

Th e input vectors are allowed to be either binary or bipolar. However, the outputs must be in 1.
bipolar form.
Th e bias 2. w0 is adjustable but the threshold q used in the activation function is fi xed.
Learning takes place only when the computed output does not match the target output. Moreover, 3.
as Δ wi = h × t × xi the weight adjustment is 0 if xi = 0. Hence, no learning takes place if either the
input is 0, or the computed output matches the target output. Consequently, as training proceeds,
more and more training patterns yield correct results and less learning is required by the net.
Th e threshold 4. q of the activation function may be interpreted as a separating band of width 2q
between the region of positive response and negative response. Th e band itself is ‘undecided’
in the sense that if the net input falls within the range [−q, q], the activation is neither posi-
tive, nor negative. Moreover, changing the value of q would change the width of the undecided
region, along with the position of the separating lines. Th erefore, for Perceptrons, the bias and
the threshold are no longer interchangeable.
Th e band separating the regions of positive response from that of the negative response is de-5.
fi ned by the pair of lines

w0 x0 + w1x1 + w2x2 = q
 w0x0 + w1x1 + w2x2 = −q (7.2)

Samir Roy_Chapter07.indd 238Samir Roy_Chapter07.indd 238 2/21/2013 3:25:16 PM2/21/2013 3:25:16 PM

Pattern Classifi ers 239

Procedure Perceptron-Learning

Step 1. Initialize all weights, w0, …., wm.

Step 2. Set learning rate h such that 0 < h ≤ 1, and threshold q.

Step 3. For each training pair s : t do Steps 4–8.

Step 4. Activate the input units, xi = si, for i = 0, …., m.

Step 5. Compute the net input to the output unit

y in w xi ix
i

m

_
=

∑
0

Step 6. Compute the activation of the output unit using the function

y out

if y in

if

if y i

_

, _if y

, _if y

, _y

=
>

−
<if y in, if y− −

⎧

⎨
⎪
⎧⎧

⎨⎨

⎩
⎪
⎨⎨

⎩⎩

1

0

1

θ
θ θy iny≤ ≤

θ

Step 7. If there is an error, i.e., y_out ≠ t, then adjust the weights as
follows

wi (new) = wi (old) + h × t × xi

If, however, no error has occurred, the weights are kept un-
changed.

Step 8. If there were no error, i.e., y_out = t, for the entire set of
training pairs, then stop. Otherwise go to Step 3.

Fig. 7.6. Procedure perceptron learning

Example 7.3 (Power of the perceptron learning rule)

Th is example intends to show that the perceptron learning rule is more powerful than the Hebb
learning rule.

Let us consider the classifi cation problem mentioned in Example 7.2. We have seen that the
Hebb learning rule is not powerful enough to train a neural net to realize this classifi cation task
even though the concerned patterns are linearly separable. Is it possible to achieve this ability
through the perceptron learning rule?

Table 7.6 shows the details of perceptron learning process of the function presented in Table
7.4. For the sake of simplicity, the initial weights are all kept at 0 and the learning rate is set to h
= 1. Both the inputs and the outputs are presented in bipolar form. It is seen that fi ve epochs of
training are required by the perceptron to learn the appropriate interconnection weights. Calcula-
tions at the 6th epoch show that the net successfully produces the expected outputs and no weight
adjustments are further required. Th e fi nal set of the interconnection weights are found to be w0
= −4, w1= w2 = w3 = 2.

Samir Roy_Chapter07.indd 239Samir Roy_Chapter07.indd 239 2/21/2013 3:25:16 PM2/21/2013 3:25:16 PM

240 Introduction to Soft Computing

Table 7.6. Perceptron learning of function shown in Table 7.4

Input Net
input

Out-
put

Tar-
get

Weight adjustments Weights

x0 x1 x2 x3 y_in y_out t ∆w0 ∆w1 ∆w2 ∆w3 w0 w1 w2 w3

0 0 0 0 0

1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1

2 1 −1 1 1 2 1 −1 −1 1 −1 −1 0 2 0 0

3 1 1 −1 1 2 1 −1 −1 −1 1 −1 −1 1 1 −1

4 1 1 1 −1 2 1 −1 −1 −1 −1 1 −2 0 0 0

Epoch #1

0 −2 0 0 0

1 1 1 1 1 −2 −1 1 1 1 1 1 −1 1 1 1

2 1 −1 1 1 0 0 −1 −1 1 −1 −1 −2 2 0 0

3 1 1 −1 1 0 0 −1 −1 −1 1 −1 −3 1 1 −1

4 1 1 1 −1 0 0 −1 −1 −1 −1 1 −4 0 0 0

Epoch #2

0 −4 0 0 0

1 1 1 1 1 −4 −1 1 1 1 1 1 −3 1 1 1

2 1 −1 1 1 −2 −1 −1 0 0 0 0 −3 1 1 1

3 1 1 −1 1 −2 −1 −1 0 0 0 0 −3 1 1 1

4 1 1 1 −1 −2 −1 −1 0 0 0 0 −3 1 1 1

Epoch #3

0 −3 1 1 1

1 1 1 1 1 0 0 1 1 1 1 1 −2 2 2 2

2 1 −1 1 1 0 0 −1 −1 1 −1 −1 −3 3 1 1

3 1 1 −1 1 0 0 −1 −1 −1 1 −1 −4 2 2 0

4 1 1 1 −1 0 0 −1 −1 −1 −1 1 −5 1 1 1

Epoch #4

(Continued)

Samir Roy_Chapter07.indd 240Samir Roy_Chapter07.indd 240 2/21/2013 3:25:16 PM2/21/2013 3:25:16 PM

Pattern Classifi ers 241

Table 7.6. Continued

Input Net
input

Out-
put

Tar-
get

Weight adjustments Weights

x0 x1 x2 x3 y_in y_out t ∆w0 ∆w1 ∆w2 ∆w3 w0 w1 w2 w3

0 −5 1 1 1

1 1 1 1 1 −2 −1 1 1 1 1 1 −4 2 2 2

2 1 −1 1 1 −2 −1 −1 −1 1 −1 −1 −4 2 2 2

3 1 1 −1 1 −2 −1 −1 −1 −1 1 −1 −4 2 2 2

4 1 1 1 −1 −2 −1 −1 −1 −1 −1 1 −4 2 2 2

Epoch #5

0 −4 2 2 2

1 1 1 1 1 2 1 1 0 0 0 0 −4 2 2 2

2 1 −1 1 1 −2 −1 −1 0 0 0 0 −4 2 2 2

3 1 1 −1 1 −2 −1 −1 0 0 0 0 −4 2 2 2

4 1 1 1 −1 −2 −1 −1 0 0 0 0 −4 2 2 2

Epoch #6

7.3 ADALINE

Th e ADALINE (Adaptive Linear Neuron), introduced by Widrow and Hoff in 1960, is a single output
unit neural net with several input units. One of the input units acts as the bias and is permanently
fi xed at 1. An ADALINE is trained with the help of the delta, or LMS (Least Mean Square), or Wid-
row-Hoff learning rule. Th e learning process is presented here as Procedure ADALINE-Learning
(Fig. 7.7).

Th e salient features of ADALINE are

Both the inputs and the outputs are presented in bipolar form.•
Th e net is trained through the delta, or LMS, or Widrow-Hoff rule. Th is rule tries to minimize •
the mean-squared error between activation and the target value.
 • ADALINE employs the identity activation function at the output unit during training. Th is
implies that during training y_out = y_in.
During application the following bipolar step function is used for activation.•

Samir Roy_Chapter07.indd 241Samir Roy_Chapter07.indd 241 2/21/2013 3:25:17 PM2/21/2013 3:25:17 PM

242 Introduction to Soft Computing

y
if y i
if y i

=
≥

−
⎧
⎨
⎧⎧

⎩
⎨⎨

1 0if y in≥
1 0if y in<if y in
, if yif y
, if yif yif y

Learning by an • ADALINE net is sensitive to the value of the learning rate. A too large learning
rate may prevent the learning process to converge. On the other hand, if the learning rate is too
low, the learning process is extremely slow. Usually, the learning rate is set on the basis of the
inequality .1 ≤ m × h ≤1.0, where m is the number of input units.

Procedure ADALINE-Learning

Step 1. Initialize weights with small random values (0 < wi < 1).

Step 2. Set the learning rate h, usually on the basis of the inequality 0.1
≤ m × h ≤ 1.0, where m is the number of input units.

Step 3. Do Step 4 to Step 7 white stopping criteria is not fulfilled.

Step 4. For each bipolar training pair s : t, do Steps 5 to 7.

Step 5. Set activation for the input units.

x0 = 1,

xi = si for i = 1, …, m

Step 6. Compute the net input to the output unit, y_in = x wi iw
i

m

=
∑

0

Step 7. Adjust the weights using the following formula.

wi (new) = wi (old) + h ×(t − y_in) × xi , i = 0, …, m

Fig. 7.7. Procedure ADALINE-Learning

Procedure ADALINE-Learning (Fig. 7.7) presents the step by step algorithm for the ADALINE learning
process. Learning through the delta rule is illustrated in Chapter 6. Since ADALINE employs the delta
learning rule, the training process is practically the same. Example 7.4 illustrates the process of training
on ADALINE through the delta rule.

Example 7.4 (ADALINE training for the AND-NOT function)

In this example, we train an ADALINE to realize the AND-NOT function.
Th e AND-NOT function is presented in Example 6.3. It is a 2-input logic function that pro-

duces an output 1 only when x1 = 1, and x2 = 0. For all other input combinations the output is 0.
Th e computations for the learning of an ADALINE to realize the AND-NOT function are shown in
Table 7.7. Columns 2, 3, and 4 contain the input patterns expressed in bipolar form. Th e column
x0 stands for the bias which is permanently set to 1. Th e initial weights are taken as w0 = w1 = w2 =
.25, and the learning rate is set to h = .2. As Table 7.8 indicates, the net learns the designated task
aft er the fi rst two epochs.

Samir Roy_Chapter07.indd 242Samir Roy_Chapter07.indd 242 2/21/2013 3:25:17 PM2/21/2013 3:25:17 PM

Pattern Classifi ers 243

Table 7.7. ADALINE Learning of AND NOT Function

wi (new) = wi (old) + h × (t − y_in) × xi, h = .2

Input pattern Net input Target
output
t

Error Weight adjustments Weights

x0 x1 x2 y_in t − y_in ∆w0 ∆w1 ∆w2 w0 w1 w2

0 .25 .25 .25

1 1 1 1 .75 −1 −1.75 −.35 −.35 −.35 −.10 −.10 −.10

2 1 1 −1 −.10 1 1.10 .22 .22 −.22 .12 .12 −.32

3 1 −1 1 −.32 −1 −.68 −.14 .14 −.14 −.02 .26 −.46

4 1 −1 −1 .18 −1 −1.18 −.24 .24 .24 −.26 .50 −.22

Epoch #1

0 −.26 .50 −.22

1 1 1 1 .02 −1 −1.02 −.20 −.20 −.20 −.46 .30 −.42

2 1 1 −1 .26 1 .74 .15 .15 −.15 −.31 .45 −.57

3 1 −1 1 −1.33 −1 .33 .07 −.07 .07 −.24 .38 −.50

4 1 −1 −1 −.12 −1 −.88 −.18 .18 .18 −.42 .56 −.32

Epoch #2

Table 7.8. Performance of the ADALINE after two epochs of learning

Input pattern Net input Output Target
output

x0 x1 x2 y_in = Swixi
y_out t

1 1 1 1 −.18 < 0 −1 −1

2 1 1 −1 .46 > 0 1 1

3 1 −1 1 −1.30 < 0 −1 −1

4 1 −1 −1 −.66 < 0 −1 −1

7.4 MADALINE

Several ADALINEs arranged in a multilayer net is known as Many ADALINES, or Many Adaptive Linear
Neurons, or MADALINE in short. Th e architecture of a two input, one output, one hidden layer consist-
ing of two hidden MADALINE is shown in Fig. 7.8. MADALINE is computationally more powerful than
ADALINE. Th e enhanced computational power of the MADALINE is due to the hidden ADALINE units.
Salient features of MADALINE are mentioned below.

All units, except the inputs, employ the same activation function as in • ADALINE, i.e.,

Samir Roy_Chapter07.indd 243Samir Roy_Chapter07.indd 243 2/21/2013 3:25:18 PM2/21/2013 3:25:18 PM

244 Introduction to Soft Computing

f x if
if)x , ,if

, .if=
≥

−
⎧
⎨
⎧⎧
⎩
⎨⎨

1 0if x, if x ≥
1 0if, if x <if x, if x

As mentioned earlier, the enhanced computational power of the MADALINE is due to the hid-
den ADALINE units. However, existence of the hidden units makes the training process more
complicated.
Th ere are two training algorithms for • MADALINE, viz., MR-I and MR-II.

X1XX

w01ww

v1vv
v0vv

v2vv

w02ww

w11ww

w21ww

w22ww

w12ww

X2XX

Z2ZZ

Z1ZZ

Y y-yy out

1

I

1

Fig. 7.8. A two input, one output, one hidden layer with two hidden units MADALINE

Procedure MADALINE-MR-I-Learning

Step 1. Initialize v0, v1, v2 with 0.5 and other weights w01, w11, w12, w02,
w12 and w22 by small random values. All bias inputs are set to 1.

Step 2. Set the learning rate h to a suitable value.

Step 3. For each bipolar training pair s : t, do Steps 4–6

Step 4. Activate the input units: x1 = s1, x2 = s2, all biases are set to
1 permanently.

Step 5. Propagate the input signals through the net to the output unit Y.
5.1 Compute net inputs to the hidden units.

z_in1 = 1 × w01 + x1 × w11 + x2 × w21

z_in2 = 1 × w02 + x1 × w12 + x2 × w22

5.2 Compute activations of the hidden units z_out1 and z_out2

using the bipolar step function

z _
, _
, _ .out

i
i=

≥
−

⎧
⎨
⎧⎧
⎩
⎨⎨
1 0, z in ≥
1 0, i <, z in

i
i

Samir Roy_Chapter07.indd 244Samir Roy_Chapter07.indd 244 2/21/2013 3:25:19 PM2/21/2013 3:25:19 PM

Pattern Classifi ers 245

5.3 Compute net input to the output unit

y_in = 1 × v0 + z_out1 × v0 + z_out2 × v2

5.4 Find the activation of the output unit y-out using the same ac-
tivation function as in Step 5.2, i.e.,

y out
y i

i_
, _y
, _ .y=

≥
−

⎧
⎨
⎧⎧
⎩
⎨⎨
1 0y in, y ≥
1 0i, y <y in, y in

i
i

Step 6. Adjust the weights of the hidden units, if required, according to
the following rules:

 i) If (y_out = t) then the net yields the expected result. Weights
need not be updated.

 ii) If (y_out ≠ t) then apply one of the following rules whichever
is applicable.

Case I: t = 1
Find the hidden unit zj whose net input z_inj is closest to 0.
Adjust the weights attached to zj according to the formula

wij (new) = wij (old) + h × (1− z_inj) × xi, for all i.

Case II: t = −1
Adjust the weights attached to those hidden units zj that have
positive net input.

wij (new) = wij (old) + h × (−1− z_inj) × xi, for all i.

Step 7. Test for stopping condition. It can be any one of the following:

 i) No change of weight occurs in Step 6.
 ii) The weight adjustments have reached an acceptable level.
 iii) A predefined number of iterations have been carried out.

If the stopping condition is satisfied then stop. Otherwise go to
Step 3.

Fig. 7.9. Procedure MADALINE-MRI-Learning

In • MR-I algorithm, only the weights of the hidden units are modifi ed during the training and the
weights for the inter-connections from the hidden units to the output unit are kept unaltered.
However, in case of MR-II, all weights are adjusted, if required.

Th e MR-I algorithm (Widrow and Hoff , 1960)

As mentioned earlier, in MR-I training algorithm, the weights associated with the output unit Y, i.e.,
v0, v1, v2 are fi xed and are not altered during the training process. Eff ectively the output unit Y imple-
ments a logical OR operation such that if either of z_out1 or z_out2 is 1 then Y will yield an activation
of 1. Hence, v0, v1, v2 are fi xed at 0.5. Keeping v0 = v1 = v2 = 0.5 adjustments are done only on w01, w11,
w21, w02, w12 and w22 during training. Th e stepwise training process is given in Procedure MADALINE-
MR-I-Learning (Fig. 7.9).

Samir Roy_Chapter07.indd 245Samir Roy_Chapter07.indd 245 2/21/2013 3:25:21 PM2/21/2013 3:25:21 PM

246 Introduction to Soft Computing

Step 6 of Procedure MADALINE-MRI-Learning is based on two observations:

Th e weights should be adjusted only when there is a mismatch between the actual output 1. y_out
and the target output t.
Th e adjustments of the weights are to be done in a manner so that the possibility of producing 2.
the target output is enhanced.

On the basis of these observations, let us analyze the two cases mentioned in Step 6.

Case I: t = 1, and y_out = −1.
As y_out is −1, both z_out1 and z_out2 are −1. To make y_out = 1 = t, we must ensure that at least one of
the activations of the hidden units is 1. Th e unit whose net input is closest to 0 is the suitable unit for this
purpose, and the corresponding weights are adjusted as described in Step 6.

Case II: t = −1, and y_out = 1.
In this case, since y_out = 1, at least one of z_out1 and z_out2 must be 1. In order to make y_out = −1 =
t, both z_out1 and z_out2 are to be made −1. Th is implies that all hidden units having positive net inputs
are to be adjusted so that these are reduced under the new weights.

Example 7.5 (MADALINE training for the XOR function)

Let us train a MADALINE net through the MR-I algorithm to realize the two-input XOR function.
Th e architecture of the net is same as shown in Fig. 7.8. Th e bipolar training set, including the

bias input x0 which is permanently fi xed at 1 is given in Table 7.9. Table 7.10 presents the randomly
chosen initial weights, as well as the learning rate.

Th e details of the calculations for the fi rst training pair s : t = (1, 1) : −1 of the fi rst epoch of
training are described below.

Steps 1–4 are already taken care of. Calculations of Steps (5.1) and (5.2) are given below.

Table 7.9. Bipolar training set for XOR function

x0 x1 x2 t

1 1 1 −1

1 1 −1 1

1 −1 1 1

1 −1 −1 −1

Table 7.10. Initial weights and the fi xed learning rate

w01 w11 w21 w02 w12 w22 h

.2 .3 .2 .3 .2 .1 .5

Step 5.1 Compute net inputs z_in1 and z_in2 to the hidden units z1 and z2.
Step 5.2 Compute activations of the hidden units z_out1 and z_out2 using

the bipolar step function.

Samir Roy_Chapter07.indd 246Samir Roy_Chapter07.indd 246 2/21/2013 3:25:21 PM2/21/2013 3:25:21 PM

Pattern Classifi ers 247

z_in1 = 1 × w01 + x1 × w11 + x2 × w21

 = 1 × .2 + 1 ×.3 + 1 × .2 = .7

 z_out1 = 1

z_in2 = 1 × w02 + x1 × w12 + x2 × w22

 = 1 × .3 + 1 × .2 + 1 × .1 = .6

 ∴z_out2 = 1
Step 5.3 Compute net inputs y_in to the output units.
Step 5.4 Find the activation of the output unit y-out using the same ac-

tivation function as in Step 5.2, i.e.,

y_in = 1 × v0 + z_out1 × v1 + z_out2 × v2

 = 1×.5 + 1×.5 + 1×.5 = 1.5

 ∴y_out = 1
Step 6 Adjust the weights of the hidden units, if required.

Since t = −1, y_out = 1 ≠ t. Moreover, since t = −1, CASE II of Step 6 is applicable here. Th erefore,
we have to update weights on all units that have positive net inputs. Hence in this case we need
to update the values of w01, w11, w21 as well as those of w02, w12, w22. Th e computations for the said
adjustments are shown below.

w01 (new) = w01 (old) + h × (−1− z_in1)

 = .2 + .5 × (−1− .7)

 = .2 − .85

 = −.65

w11 (new) = w11 (old) + h × (−1− z_in1)

 = .3 − .85

 = −.55

w21 (new) = w21 (old) + h × (−1− z_in1)

 = .2 − .85

 = −.65

w02 (new) = w02 (old) + h × (−1− z_in2)

 = .3 + .5 × (−1− .6)

 = .3 − .8

 = −.5

Samir Roy_Chapter07.indd 247Samir Roy_Chapter07.indd 247 2/21/2013 3:25:21 PM2/21/2013 3:25:21 PM

248 Introduction to Soft Computing

w12 (new) = w12 (old) + h × (−1− z_in2)

 = .2 − .8

 = −.6

w22 (new) = w22 (old) + h × (−1− z_in2)

 = .1 − .8

 = −.7
Hence the new set of weights aft er training with the fi rst training pair (1, 1) : −1 in the fi rst epoch
is obtained as

w w
w w
w w

=
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

=
− −
− −
− −

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤01 02

11 12

21 22

65 5
55 6
65 7

. .65

. .55

. .65 ⎦⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦⎦⎦
⎥⎥
⎦⎦⎦⎦⎦⎦⎦

Table 7.11 gives the details of the training process until the MADALINE learns the required func-
tion. It is found that four epochs of training are required to arrive at the appropriate weights for
realizing the XOR function.

Th e empty fi elds in the table indicate no change in the weights. Th e entries in the Epoch #4
portion of the table show that all the training inputs produce the expected target outputs and con-
sequently, the weights at the beginning of this epoch have remained unchanged. Hence the weights
fi nally arrived at by the MADALINE net are given by

W
w w
w w
w w

=
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

=
− −
−
− −

01 02

11 12

21 22

88 84
1 54 1− 56
88 1 52

. .88
. .54 1

. .88 1

⎡⎡

⎣

⎢
⎡⎡⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

Samir Roy_Chapter07.indd 248Samir Roy_Chapter07.indd 248 2/21/2013 3:25:21 PM2/21/2013 3:25:21 PM

Ta
b

le
 7

.1
1.

 M
A

D
A

LI
N

E
Le

ar
ni

ng
 o

f X
O

R
 F

un
ct

io
n

th
ro

ug
h

M
R

-I
al

g
or

ith
m

#
x 0

x 1
x 2

t
z_

in
1

z_
in

2
z_

ou
t 1

z_
ou

t 2
y_

in
y_

ou
t

w
01

w
11

w
21

w
02

w
12

w
22

0
.2

.3
.2

.3
.2

.1

1
1

1
1

−1
.7

.6
1

1
1.

5
1

−.
65

−.
55

−.
65

−.
5

−.
6

−.
7

2
1

1
−1

1
−.

55
−.

4
−1

−1
−.

5
−1

−.
65

−.
55

−.
65

.2
.1

−1
.4

3
1

−1
1

1
−.

75
−1

.3
−1

−1
−.

5
−1

.2
3

−1
.4

3
.1

3
.2

.1
−1

.4

4
1

−1
−1

−1
1.

56
1.

5
1

1
1.

5
1

−1
.0

5
−.

15
1.

41
−1

.0
5

1.
35

−.
15

E
p

o
ch

 #
1

0
−1

.0
5

−.
15

1.
41

−1
.0

5
1.

35
−.

15

1
1

1
1

−1
.2

1
.1

5
1

1
1.

5
1

−1
.6

6
−.

76
.8

−1
.6

3
.7

7
−.

73

2
1

1
−1

1
−3

.2
2

−.
13

−1
−1

−.
5

−1
−1

.6
6

−.
76

.8
−2

.0
7

.3
3

−.
29

3
1

−1
1

1
−.

1
−1

.4
5

−1
−1

−.
5

−1
−2

.1
1

−.
31

.3
5

−2
.0

7
.3

3
−.

29

4
1

−1
−1

−1
−2

.1
5

−2
.1

1
−1

−1
−.

5
−1

-

E
p

o
ch

 #
2

0
−2

.1
1

−.
31

.3
5

−2
.0

7
.3

3
−.

29

1
1

1
1

−1
−2

.0
7

−2
.0

3
−1

−1
−.

5
−1

2
1

1
−1

1
−2

.7
7

−1
.4

5
−1

−1
−.

5
−1

−2
.1

1
−.

31
.3

5
−.

84
1.

56
−1

.5
2

3
1

−1
1

1
−1

.4
5

−3
.9

2
−1

−1
−.

5
−1

−.
88

−1
.5

4
.8

8
−.

84
1.

56
−1

.5
2

4
1

−1
−1

−1
−.

22
−.

88
−1

−1
−.

5
−1

E
p

o
ch

 #
3

(c
on

tin
ue

d)

Samir Roy_Chapter07.indd 249Samir Roy_Chapter07.indd 249 2/21/2013 3:25:24 PM2/21/2013 3:25:24 PM

#
x 0

x 1
x 2

t
z_

in
1

z_
in

2
z_

ou
t 1

z_
ou

t 2
y_

in
y_

ou
t

w
01

w
11

w
21

w
02

w
12

w
22

0
−.

88
−1

.5
4

.8
8

−.
84

1.
56

−1
.5

2

1
1

1
1

−1
−1

.5
4

−.
8

−1
−1

−.
5

−1
2

1
1

−1
1

−3
.3

2.
24

−1
1

.5
1

3
1

−1
1

1
1.

54
−3

.9
2

1
−1

.5
1

4
1

−1
−1

−1
−.

22
−.

88
−1

−1
−.

5
−1

E
p

o
ch

 #
4

Ta
b

le
 7

.1
1.

 C
on

tin
ue

d

Samir Roy_Chapter07.indd 250Samir Roy_Chapter07.indd 250 2/21/2013 3:25:24 PM2/21/2013 3:25:24 PM

Pattern Classifi ers 251

 CHAPTER SUMMARY

An overview of the elementary pattern classifying ANNs, e.g., Hebb nets, Perceptrons, MADALINE and
ADALINE have been presented in this chapter. Th e main points of the foregoing discussion are given
below.

A single-layer feedforward neural net trained through the Hebb learning rule is known as a •
Hebb net.
It is possible for a Hebb net not to learn a classifi cation task even if the patterns concerned are •
linearly separable.
Perceptrons are more powerful than the Hebb nets. Formula for weight adjustment in perceptron •
learning is Δ wi = h × t × xi where h is the learning rate.
Th e • ADALINE (Adaptive Linear Neuron) is a single output unit neural net with several input
units. One of the input units acts as the bias and is permanently fi xed at 1.
ADALINE• is trained with the help of the delta, or LMS (Least Mean Square), or Widrow-Hoff
learning rule.
Several • ADALINEs arranged in a multilayer net is known as Many ADALINES, or Many Adaptive
Linear Neurons, or MADALINE in short. MADALINE is computationally more powerful than
ADALINE.
Th ere are two training algorithms for • MADALINE, viz., MR-I and MR-II. In MR-I algorithm,
only the weights of the hidden units are modifi ed during the training and the weights for the
inter-connections from the hidden units to the output unit are kept unaltered. However, in case
of MR-II, all weights are adjusted, if required.

 SOLVED PROBLEMS

Problem 7.1 (Hebb net to realize OR function) Design a Hebb net to realize the logical OR function.

Solution 7.1 It is observed earlier that a Hebb net may not learn the designated task if the training
pairs are presented in binary form. Hence, we fi rst present the truth table of OR function in bipolar form,
as given in Table 7.12. Table 7.13 presents the details of the training process. Th e interconnection weights
we fi nally arrive at are w0 = 2, w1 = 2, and w2 = 2, and the corresponding separating line is given by

1 + x1 + x2 = 0

∴ x2 = − x1 − 1

Table 7.12 Truth table of OR function in bipolar form

Input Output

x1 x2 x1 OR x2

−1 −1 −1

−1 1 1

1 −1 1

1 1 1

Samir Roy_Chapter07.indd 251Samir Roy_Chapter07.indd 251 2/21/2013 3:25:24 PM2/21/2013 3:25:24 PM

252 Introduction to Soft Computing

Fig. 7.10 shows the location and orientation of this line. Th e Hebb net, thus, is able to learn the desig-
nated OR function.

Table 7.13 Hebb learning of OR function

Training Inputs Target
output
(t)

Weight changes Weights

 x0 x1 x2 ∆w0 ∆w1 ∆w2 w0 w1 w2

0 0 0 0

1 1 −1 −1 −1 −1 1 1 −1 1 1

2 1 −1 1 1 1 −1 1 0 0 2

3 1 1 −1 1 1 1 −1 1 1 1

4 1 1 1 1 1 1 1 2 2 2

Δwi = xi × y_out = xi × t

(−1, −1) (1, −1)

(1, 1)(−1, 1)

x1xx

x2xx

Fig. 7.10. Decision line of Hebb net realizing the OR function

Problem 7.2 (A perceptron and a Hebb net as a traffi c controller) A busy town crossing has two
signal posts with the usual three-colour light signal system. Th e post with the rectangular light frame is
meant for vehicles plying on the road, while the post with the oval frame is meant for pedestrians trying
to cross the road over the zebra. When the traffi c light is green, the pedestrian light is red and vice versa
while they share a common yellow state. In spite of this arrangement, unruly traffi c caused accidents
regularly by ignoring the signal. To overcome this problem, the town administration decided to install an
automatic gate across the road that will come down across when the traffi c light is red and the pedestrian
light is green. Th e state table is as shown in Table 7.14. Design the gate controller with a perceptron, as
well as with a Hebb net.

Table 7.14 State table for the traffi c controller

Traffi c signal Pedestrian signal Gate

Green Red Up

Yellow Yellow Up

Red Green Down

Samir Roy_Chapter07.indd 252Samir Roy_Chapter07.indd 252 2/21/2013 3:25:24 PM2/21/2013 3:25:24 PM

Pattern Classifi ers 253

Solution 7.2 If we decide to design the gate controller based on a perceptron model, we may en-
code the light colours as described in Table 7.15.

Table 7.15. Traffi c controller state table translated to numbers

Traffi c signal Pedestrian signal Gate

2 (Green) 0 (Red) 0 (Up)

1 (Yellow) 1 (Yellow) 0 (Up)

0 (Red) 2 (Green) 1 (Down)

Th e controller can now be designed as a perceptron on MatLab. Th e MatLab code for this purpose is
shown in Fig. 7.11. Fig. 7.12 depicts the resultant classifi er.

P = [0 1 2 ; 2 1 0]; % Possible values of 2 variables in a ma-
trix format

T = [1 0 0]; % Expected outputs for above dataset
net = newp([0 2; 0 2],1); % Creates network with two inputs with

ranges of values and 1 output
net.trainParam.epochs = 20; % Sets the number of maximum iterations
net = train(net,P,T); % Trains the network
simulation = sim(net,P) % Simulates neural network
plotpv(P,T) % Plot input/target vectors
plotpc(net.iw{1,1},net.b{1}) % Plot classification line

Fig. 7.11. MatLab code for traffi c controller perceptron

Vectors to be Classified

2.5

2

1.5

1

0.5

0

−0.5

−0.5 0 0.5 1.51
P(1PP)

P
(2

PP
)

2 2.5

Fig. 7.12. Output plot for traffi c controller perceptron

Th is problem can also be solved using Hebb learning. Th e corresponding MatLab code is given in Fig. 7.13.
Fig. 7.14 (a) and (b) shows the resultant classifi er aft er 20 and 150 epochs of training, respectively. Inter-
estingly, the classifi cation is not satisfactory aft er only 20 epochs of training. Performance is improved by
increasing the number of epochs to 150.

Samir Roy_Chapter07.indd 253Samir Roy_Chapter07.indd 253 2/21/2013 3:25:24 PM2/21/2013 3:25:24 PM

254 Introduction to Soft Computing

clear;
clc;
P = [0 1 2 ; 2 1 0]; % Possible values of 2 variables in a ma-

trix format
T = [1 0 0]; % Expected outputs for above dataset
net = newp([0 2; 0 2],1); % Creates network with two inputs with

ranges of values and 1 output
net.trainFcn = ‘trainr’;
net.adaptFcn = ‘trains’;
net.inputWeights{1,1}.learnFcn = ‘learnh’;
net.layerWeights{1,1}.learnFcn = ‘learnh’;
net.trainParam.epochs = 20; % Sets the number of maximum iterations
net = train(net,P,T); % Trains the network
simulation = sim(net,P); % Simulates neural network
plotpv(P,T) % Plot input/target vectors
plotpc(net.iw{1,1},net.b{1}) % Plot classification line

Fig. 7.13. MatLab code for traffi c controller Hebb net

(a) After 20
epochs

(b) After 150
epochs

Vector to be classified

2.5

2

1.5

1

P
(2

PP
)

0.5

0

−0.5

−0.5 0 0.5 1
P(1PP)

1.5 2 2.5

Vector to be classified

2.5

2

1.5

1P
(2

PP
)

0.5

0

−0.5

−0.5 0 0.5 1
P(1P)

1.5 2 2.5

Fig. 7.14. Output plots for Hebbian traffi c controller

Problem 7.3 (Classifi cation of two-dimensional patterns with Hebb net) Consider the following pat-
terns to represent the digits 0 and 1 (Fig. 7.15).

Samir Roy_Chapter07.indd 254Samir Roy_Chapter07.indd 254 2/21/2013 3:25:25 PM2/21/2013 3:25:25 PM

Pattern Classifi ers 255

Using Matlab design a Hebb net to classify these two input patterns.

Pattern 1 (for 0) Pattern 2 (for 1)

– –

#

#

#

#

–# # #

– – –

– – –

#

#

–

– –

– –

–

–

– #

–# # #

#

– # –

– # –

–

–

–

Fig. 7.15. Two 2-dimensional patterns for 0 and 1.

Solution 7.3 For simplicity, let us consider the target class to correspond to the pattern for ‘1’. Th e
patterns not classifi ed as ‘1’ will be treated as ‘0’. Th en we convert the patterns into bipolar input vectors
by replacing every ‘#’ by ‘1’ and every ‘−’ by ‘−1’ and represent each two dimensional pattern as an input
vector by taking the rows and concatenating them one aft er the other. Fig. 7.16 explains the technique.

–1 1 1 1 –1 –1 –1 1 –1 –1
1 –1 –1 –1 1 –1 1 1 –1 –1
1 –1 –1 –1 1 –1 –1 1 –1 –1
1 –1 –1 –1 1 –1 –1 1 –1 –1

–1 1 1

Pattern 1 (for 0) Pattern 2 (for 1)

Input vector for pattern 1 (for 0)

Input vector for pattern 2 (for 1)

1 –1 –1 1 1 1 –1

–1 1 1 1 –1 1 –1 –1 –1 1 1 –1 –1 –1 1 1 –1 –1 –1 1 –1 1 1 1 –1

–1 –1 1 –1 –1 –1 1 1 –1 –1 –1 –1 1 –1 –1 –1 –1 1 –1 –1 –1 1 1 1 –1

Fig. 7.16. Encoding the input patterns

Th e MatLab code for the Hebb net to solve the classifi cation problem is given in Fig. 7.17.

%MATLAB Implementation of Hebb Net to classify 2D Input Patterns
clear;
clc;

Pat1 = [−1 1 1 1 −1 1 −1 −1 −1 1 1 −1 −1 −1 1 1 −1 −1 −1 1 −1 1 1 1 −1];
Pat2 = [−1 −1 1 −1 −1 −1 1 1 −1 −1 −1 −1 1 −1 −1 −1 −1 1 −1 −1 −1 1 1

 1 −1];

Samir Roy_Chapter07.indd 255Samir Roy_Chapter07.indd 255 2/21/2013 3:25:25 PM2/21/2013 3:25:25 PM

256 Introduction to Soft Computing

Mat(1,1:25) = Pat1;
Mat(2,1:25) = Pat2;
wt(1:25) = 0;
Tar_Act = [−1 1];
bias = 0;

for i = 1:2
wt=wt+Mat(i,1:25)*Tar_Act(i);
bias=bias+Tar_Act(i);
disp('Weight Matrix');
disp(wt);
disp('Bias');
disp(bias);

end
disp('***********Final Weight Matrix************');
disp(wt);
disp(‘*****************Bias*********************’);
disp(bias);
disp(‘***************************DotPat1********************’);
Mat_Out(1,1:1) = dot(Pat1,wt);
disp(Mat_Out(1,1:1))
disp(‘***************************DotPat2********************’);
Mat_Out(2,1:1)=dot(Pat2,wt);
disp(Mat_Out(2,1:1))

Fig. 7.17. Matlab code for Hebb net of problem 7.3

Th e output of the training process is given below.

Weight Matrix
Columns 1 through 22

1 −1 −1 −1 1 −1 1 1 1 −1 −1 1 1 1 −1 −1 1 1 1 −1 1 −1
Columns 23 through 25

−1 −1 1
Bias

−1
Weight Matrix
Columns 1 through 22

0 −2 0 −2 0 −2 2 2 0 −2 −2 0 2 0 −2 −2 0 2 0 −2 0 0
Columns 23 through 25
0 0 0
Bias
 0
***********Final Weight Matrix************
Columns 1 through 22

 0 −2 0 −2 0 −2 2 2 0 −2 −2 0 2 0 −2 −2 0 2 0 −2 0 0
 Columns 23 through 25

Samir Roy_Chapter07.indd 256Samir Roy_Chapter07.indd 256 2/21/2013 3:25:26 PM2/21/2013 3:25:26 PM

Pattern Classifi ers 257

 0 0 0
*****************Bias*********************
 0
*******************DotPat1********************
-24
*******************DotPat1********************
24

� TEST YOUR KNOWLEDGE

 7.1 How many passes are required by Hebb learning algorithm ?
a) One b) Two
c) No fi xed number of passes d) None of the above

 7.2 In which of the following cases Hebb learning does not guarantee that the net will learn the clas-
sifi cation task even if it was possible for a Hebb net to learn the task under suitable conditions ?
a) Th e training set is bipolar b) Th e training set is binary
c) Both (a) and (b) d) None of the above

 7.3 Th e statement that a Hebb net may fail to learn a classifi cation task consisting of a linearly sepa-
rable set of patterns is
a) True b) False
c) Uncertain d) None of the above

 7.4 For Perceptron learning, the bias and the threshold are
a) Interchangable b) Not interchangable
c) Conditionally interchangable d) None of the above

 7.5 Which of the following functions is used for activation of the output unit of the ADALINE during
training ?
a) Identity b) Binary
c) Bipolar step function d) None of the above

 7.6 Which of the following functions is used for activation of the output unit of the ADALINE during
application ?
a) Identity b) Binary
c) Bipolar step function d) None of the above

 7.7 Which of the following learning rule is used in ADALINE training ?
a) Hebb learning b) Perceptron learning
c) Delta learning d) None of the above

 7.8 Which of the following nets is more powerful than MADALINE ?
a) ADALINE b) Hebb
c) Both (a) and (b) d) None of the above

 7.9 Which of the following is not a pattern classifying net ?
a) ADALINE b) MADALINE
c) Both (a) and (b) d) None of the above

7.10 Which of the following is a pattern classifying net ?
a) ADALINE b) MADALINE
c) Both (a) and (b) d) None of the above

Samir Roy_Chapter07.indd 257Samir Roy_Chapter07.indd 257 2/21/2013 3:25:26 PM2/21/2013 3:25:26 PM

258 Introduction to Soft Computing

Answers

 7.1 (a) 7.2 (b) 7.3 (a) 7.4 (b) 7.5 (a)
 7.6 (c) 7.7 (c) 7.8 (d) 7.9 (d) 7.10 (c)

 EXERCISES

7.1 Design a Hebb net to realize the NAND function.
7.2 Design a Perceptron to realize the NOR function.
7.3 Design an ADALINE to realize the NAND function.
7.4 Design a MADALINE to realize the X-NOR (the complement of XOR) function.

 BIBLIOGRAPHY AND HISTORICAL NOTES

Th e fi rst learning law in the fi eld of artifi cial neural networks was introduced by Donald Hebb in 1949.
Frank Rosenblatt proposed and developed the much celebrated class of ANN called Perceptrons during
late fi ft ies and early sixties. ADALINE was proposed by Bernerd Widrow and his student, Mercian Hoff ,
in 1960. Th is was closely followed by MADALINE by them. Some milestone works relating to ANN
classifi ers are here.

Block, H. D. (1962). Th e Perceptron : A model for brain functioning. Reviews of Modern Physics, Vol. 34,
pp. 123–135.

Hebb, D.O. (1961). Distinctive features of learning in the higher animal. In J. F. Delafresnaye (Ed.). Brain
Mechanisms and Learning. London: Oxford University Press.

Hebb, D.O. (1949). Th e Organization of Behavior. New York: Wiley and Sons.
Minsky, M. and Papert, P. (1969). Perceptrons : An Introduction to Computational Geometry. MIT Press.
Rosenblatt, F. (1958). Th e Perceptron: A Probabilistic Model for Information Storage and Organization

in the Brain, Cornell Aeronautical Laboratory. Psychological Review, Vol. 65, No. 6, pp. 386–408.
Rosenblatt, F. (1962). Principles of Neurodynamics. New York: Spartan.
Widrow, B. and Lehr, M. A. (1990). 30 Years of Adaptive Neural Networks : Perceptron, MADALINE and

Backpropagation. Proceedings of IEEE, Vol. 78, No. 9, pp. 1415–1442.
Widrow, B. and Stearns, S. D. (1985). Adaptive Signal Processing. Englewood Cliff s, NJ: Prentice-Hall.

Samir Roy_Chapter07.indd 258Samir Roy_Chapter07.indd 258 2/21/2013 3:25:26 PM2/21/2013 3:25:26 PM

 Chapter Outline

PATTERN ASSOCIATORS

8

8.1 Auto-associative Nets
8.2 Hetero-associative Nets
8.3 Hopfi eld Networks
8.4 Bidirectional Associative Memory (BAM)

Chapter Summary

Solved Problems
Test Your Knowledge
Exercise
Bibliography and Historical Notes

Relating a given pattern to one already stored in memory is known as pattern association. It is a task that
we, the human beings, perform regularly in course of our daily life almost without any conscious eff ort.
Recognition of a known face from an image (either distorted or undistorted) or visualization of a rose
from its fragrance are instances of pattern association.

Th e phenomenon of pattern association may be formally stated as follows. Let s1 : t1, s2 : t2, …, sk : tk be
a number of pairs of patterns. If there is a system that yields the pattern ti when presented as input with
the pattern si, i = 1, …, k, then we say that the system is an associative or content addressable memory
storing the pattern pairs s1: t1, …., sk : tk. Th e act of relating a given pattern si to its corresponding stored
pattern ti is known as pattern association. One important property of an associative memory is its capac-
ity to correctly associate a noisy input pattern to the desired output pattern. However, there is a limit to
the extent of noise tolerable to a given associative memory network.
Associative memory neural nets are those which store a set of pattern associations. Th ere are two kinds
of associative memory neural nets. Th ese are auto-associative and hetero-associative. In auto-associative

Key Concepts

Associative Memory, Auto-associative Nets, Bidirectional Associative Memory (BAM), Content-
addressable Memory, Delta Learning, Feedforward Nets, Hebb Learning, Hetero-associative Nets,
Hopfi eld Networks, Inner product, Orthogonal Vectors, Recurrent (iterative) Nets, Self-connection

Samir Roy_Chapter08.indd 259Samir Roy_Chapter08.indd 259 2/21/2013 3:25:54 PM2/21/2013 3:25:54 PM

260 Introduction to Soft Computing

neural nets, the input and output patterns are identical. In hetero-associative neural nets, the inputs and
the outputs are diff erent.

Regarding architecture, an associative memory neural net may be either feedforward type or recurrent
(iterative) type. In feedforward nets, signals are unidirectional. Th ey fl ow from input to output and not in
the reverse direction. In recurrent (or iterative) nets, signals fl ow back and forth between the input and
the output until the net reaches an equilibrium state.

In the subsequent parts of this chapter, four kinds of associative neural nets are described, viz., auto-
associative nets, hetero-associative nets, Hopfi eld nets, and Bidirectional Associative Memory (BAM). While
the auto-associative and hetero-associative nets are feedforward type of nets, the Hopfi eld nets and BAM
are recurrent networks. Th ere are various representation schemes for the input and output patterns to
associative networks. Here we consider, unless otherwise stated, only bipolar input and output patterns.

8.1 AUTO-ASSOCIATIVE NETS

Th e input and output patterns of an auto-associative net are the same. Presented with an input pattern,
perhaps noisy to some extent, an auto-associative net returns the same pattern (this time without any
noise) in case the input matches one of the stored patterns. Th e architecture of an auto-associative net is
shown in Fig. 8.1. It has the same number of input and output units.

x1xx

xixx

xmxx XmXX

XiXX

: :

: :

X1XX

wiww j
wiww m

wmww 1

wmww j

wmww m

w1 ww j

w1ww 1

w1ww m

wiww 1

YjYY

YmYY

Y1YY

m

Fig. 8.1. Architecture of a feed-forward auto-associative net

8.1.1 Training

An auto-associative network can be trained with Hebb, delta, or extended delta rule. However, for the
sake of simplicity, here we apply only the Hebb rule for training an associative net. Let us fi rst consider
the case of storing a single pattern s = [s1, s2, …, sm] on an auto-associative net. Th e weight matrix W of
the net is obtained as

 W

s

s

s

s s s s s

i

m

j ms s

= × =

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟⎠⎠
⎟⎟

× ()s s sj ms =

× ×s s ×

s s×T

1 1 1ss 1 s j s
:

:
s

�ss
::

:
s s s s

s s s s

i is s j is j

m ms s j ms m

× ×s ss s ×

× ×s sss ×

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜
⎜⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟
⎟⎠⎠
⎟⎟

�ss

�ss

 (8.1)

Samir Roy_Chapter08.indd 260Samir Roy_Chapter08.indd 260 2/21/2013 3:25:57 PM2/21/2013 3:25:57 PM

Pattern Associators 261

Example 8.1 illustrates the training process of an auto-associative net to store a single pattern.

Example 8.1 (Training an auto-associative net to store a single pattern)

Let us fi nd the weight matrix of an auto-associative net to store and recognize the vector s = [1, −1,
−1, 1]. Applying Equation 8.1 we get the following weight matrix.

W = × =
−
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟ × = −
−

⎛

s s×T

1
1
1
1

1 1 1 1− −
1 1 1 1−
1 1 1 1−
1 1 1 1− −

()1 1 1− − 1

⎝⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

8.1.2 Application

Once the weight matrix is obtained through the appropriate training method, it is ready for application.
Let x = [x1, …, xi, …, xm] be an arbitrary input pattern of length m. To recognize the input pattern x, we
have to determine whether the given pattern matches with the stored pattern. Th e following steps are
carried out to achieve this.

For each output unit 1. Yj, j = 1, …, m, compute the net input y_inj to Yj.

y in x wj ix ij
i

m

.ixinj
=
∑∑

1

In matrix notation, Y_in = x × W, where Y_in = [y_in1, …, y_inm], x = [x1, …, xm], and W is the weight
matrix.

For each output unit 2. Yj, j = 1, …, m, fi nd the activation using the function

y out
y i, y ,

,
=

−
⎧
⎨
⎧⎧

⎩
⎨⎨
1 0y in, y >

1
if
otherwise

If the output vector thus found is identical to the stored pattern, i.e., Y_out = [y_out1, …, y_outm] =
[s1, … , sm] = s then the input is recognized, otherwise not.

Example 8.2 (Pattern association by auto-associative net)

Refer to the auto-associative net built in Example 8.1. To see if the resultant net can recognize the
stored pattern x = [1,−1, −1, 1], we follow the steps described above.

 Compute the vector 1. Y_in for net inputs to the output units.
 Y_in = [y_in1, y_in2, y_in3, y_in4]

=
−
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟[]− −

1 1 1 1− −
1 1 1 1−
1 1 1 1−
1 1 1 1− −

×

 = [4, −4, −4, 4]

Samir Roy_Chapter08.indd 261Samir Roy_Chapter08.indd 261 2/21/2013 3:25:59 PM2/21/2013 3:25:59 PM

262 Introduction to Soft Computing

 Find the output vector employing the activation function.2.

 Y_out = [y_out1, y_out2, y_out3, y_out4]

 = [1, −1, −1, 1]

Hence, the net has acquired the ability to recognize the stored pattern.

8.1.3 Elimination of Self-connection

It is convenient to set the diagonal elements of the weight matrix W to 0 to indicate that the net does
not have any self-connection. Th is is more useful for nets that store several patterns. For such nets,
the diagonal elements are set to 0s to ensure that these elements do not dominate during application
of the net. Otherwise, the net has a tendency to reproduce the input pattern rather than the stored
pattern.

Example 8.3 (Performance of associative net with diagonal elements set to 0s)

Th e weight matrix of the net cited in Example 8.1 becomes, with all diagonal elements set to 0,

W =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

−1
−1 0 1
−1 1 0

11

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Th erefore, the net input to the output units are computed as

Y_in = [y_in1, y_in2, y_in3, y_in4]

=

−
−
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟[]− −

0 1 1 1−
1 0 1 1−
1 1 0 1−
1 1 1− − 0

×

= [3, −3, −3, 3]

And the output vector is obtained as

 Y_out = [y_out1, y_out2, y_out3, y_out4]

 = [1, −1, −1, 1]

Hence, the net retains the ability to recognize the stored pattern.

Samir Roy_Chapter08.indd 262Samir Roy_Chapter08.indd 262 2/21/2013 3:26:04 PM2/21/2013 3:26:04 PM

Pattern Associators 263

8.1.4 Recognition of Noisy Patterns

Mere recognition of the pattern already stored in the net is not suffi cient because this could as well be
achieved with a diagonal weight matrix. Th e strength of a neural net lies in it tolerance of noisy input
pattern, provided the input is suffi ciently close to the stored pattern in spite of it being noisy.

Two kinds of noises may appear in the input pattern. Th ese are (a) missing elements and (b) errone-
ous elements. A missing element is represented by 0, instead of a 1 or −1, in the appropriate place. An
erroneous element presents the complement of the correct value, i.e., 1 (−1) in place of −1 (1). Th e fol-
lowing example illustrates the capacity of auto-associative nets to recognize noisy patterns.

(Example 8.4 (Recognition of noisy input with one missing element)

Let us consider a noisy input pattern where the left most element of the input vector is missing.
Th us, the input pattern appears as [0 −1 −1 1] instead of [1 −1 −1 1]. Computation of the net
input and subsequently the output vector is done in the usual way.

Y_in = [y_in1, y_in2, y_in3, y_in4]

=

−
−
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟[]−−

0 1 1 1−
1 0 1 1−
1 1 0 1−
1 1 1− − 0

×

 = [3, −2, −2, 2]

 Y_out = [y_out1, y_out2, y_out3, y_out4]

 = [1, −1, −1, 1]

Hence the net recognizes the noisy input pattern with the fi rst element missing. Similar computa-
tions with other single missing entries reveal that the net is able to recognize input patterns with a
single missing element. Th ese computations are summarized in Table 8.1.

Table 8.1. Recognition of noisy input with one missing element

Input pattern (noisy) Net input to the output layer
(Y_in = s × W)

Output pattern

i [1, 0, −1, 1] [2, −3, −2, 2] [1, −1, −1, 1]

ii [1, −1, 0, 1] [2, −2, −3, 2] [1, −1, −1, 1]

iii [1, −1, −1, 0] [2, −2, −2, 3] [1, −1, −1, 1]

We see that the net has the capacity to recognize an input pattern with a single missing element. Is the
net able to withstand two or more missing inputs? What if there are erroneous inputs, not just missing
inputs? Problems 8.1 and 8.2 in the section ‘Solved Problems’ deal with these issues.

Samir Roy_Chapter08.indd 263Samir Roy_Chapter08.indd 263 2/21/2013 3:26:05 PM2/21/2013 3:26:05 PM

264 Introduction to Soft Computing

8.1.5 Storage of Multiple Patterns in an Auto-associative Net

More than one patterns can be stored in an auto-associative neural net. Th e capacity of such a net is
defi ned as the number of patterns that can be stored in it and be recalled by the net. If one tries to store
more patterns than its capacity, then the net tends to forget the stored patterns. Th e important points
regarding storage of several patterns in an auto-associative net are stated below.

 Th e stored patterns must be mutually orthogonal. Two vectors 1. x = [x1, x2, …, xn] and y = [y1, y2,
…, yn] are said to be orthogonal if their inner product is zero, i.e.,

 x y x yiy
i

n

=y =
=
∑

1
0 (8.2)

 Th e weight matrix of the net storing several patterns is the sum of the individual weight matri-2.
ces. Let s1, s2, …, sk be k mutually orthogonal vectors and W1, W2, …, Wk be the weight matrices
for the auto-associative nets recognizing the vectors s1, s2, …, sk , respectively. Th e diagonal
elements of all the weight matrices are all set to zeros. Th en the weight matrix W of the auto-
associative net recognizing the given patterns is obtained by adding the individual weight ma-
trices W1, W2,…, Wk.

 W W W W Wk iWW WW
i

k

+W =
=
∑1 2WW WW+WW

1
 (8.3)

 An 3. n-input auto-associative net can store at most n−1 number of mutually orthogonal vectors,
each of which consists of n components. An attempt to store more than n−1 mutually orthogo-
nal n-component vectors in a manner described in point 2 above will result in a singular weight
matrix. Hence an auto-associative net with n input nodes cannot store n patterns.
 Th e diagonal elements of the weight matrix 4. W are set to zero. Th is is to ensure that the diagonal
terms do not dominate during application of the net and prevent the net from reproducing an
input pattern rather than a stored pattern.

Th e above points are illustrated below with the help of simple illustrative examples.

(Example 8.5 (Storage of multiple bipolar patterns in auto-associative neural net)

We consider an auto-associative neural net with four input units. At most three orthogonal vectors
can be stored in it in a recognizable form. Let s1 = [1, 1, 1, 1], s2 = [−1, 1, −1, 1], and s3 = [−1, −1, 1,
1] be three vectors to be stored. Th ese vectors are mutually orthogonal.

s1⋅s2 = [1, 1, 1, 1] ⋅ [−1, 1, −1, 1] = 0

s1⋅s3 = [1, 1, 1, 1] ⋅ [−1, −1, 1, 1] = 0

s2⋅s3 = [−1, 1, −1, 1] ⋅ [−1, −1, 1, 1] = 0

Th e weight matrices W1, W2, and Wk of the nets storing the given patterns individually are given
below. All the diagonal elements of the matrices are set to zero.

Samir Roy_Chapter08.indd 264Samir Roy_Chapter08.indd 264 2/21/2013 3:26:06 PM2/21/2013 3:26:06 PM

Pattern Associators 265

W1 =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

, W2 =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

−1 1
−

1 0
−1 1

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

, and W3 =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

11
−1

−1
−1

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Th erefore, the weight matrix of the desired net for storing the three patterns s1, s2, s3 is

W = W1 + W2 + W3 =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

−

−

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Th e calculations in the next example, Example 8.6, show that the resultant net indeed has the capac-
ity to recognize the stored patterns.

Example 8.6 (Recognizing patterns by auto-associative nets storing multiple patterns)

We consider the net constructed in Example 8.5 above. Th e output vectors for the input pattern
s1 = [1, 1, 1, 1] is calculated as follows.

Input pattern: s1 = [1, 1, 1, 1]
Net input to the output layer: Y_in = s1 × W = [1, 1, 1, 1] × W = [1, 1, 1, 1]
Activation at the output layer: Y_out = [1, 1, 1, 1] = s1

Hence, the net can recognize the pattern s1 = [1, 1, 1, 1]. Table 8.2 shows the details of the calcu-
lations of the outputs for all the stored patterns. Entries in the last column (Output pattern) of
Table 8.2 clearly show that the net recognizes all the stored patterns.

Table 8.2. Recognition of multiple patterns by auto-associative net

Input pattern Net input to the output layer
(Y_in = s1 × W)

Output pattern

i s1 = [1, 1, 1, 1] [1, 1, 1, 1] [1, 1, 1, 1]

ii s2 = [−1, 1, −1, 1] [−1, 1, −1, 1] [−1, 1, −1, 1]

iii s3 = [−1, −1, 1, 1] [−1, −1, 1, 1] [−1, −1, 1, 1]

Problems 8.3 and 8.4 in the section ‘Solved problems’ illustrate the inability of auto-associative nets to
store/recognize non-orthogonal patterns, or more than n–1 number of patterns.

8.2 HETERO-ASSOCIATIVE NETS

An auto-associative net stores the association between identical patterns so that given an input pattern,
it can recall whether it is one of the stored patterns or not. In contrast, a hetero-associative net is used

Samir Roy_Chapter08.indd 265Samir Roy_Chapter08.indd 265 2/21/2013 3:26:08 PM2/21/2013 3:26:08 PM

266 Introduction to Soft Computing

to store the associations between pairs of patterns that are not identical. Th is means, if s : t be a pair of
associated patterns and this association is stored in a hetero-associative net, then s ≠ t.

Th e structure of a hetero-associative net is shown in Fig. 8.2. It is almost identical to the structure of
an auto-associative net depicted in Fig. 8.1 except that in case of hetero-associative networks the number
of input units (m) is not necessarily equal to the number of the output units (n). Other aspects of this
network, e.g., training and application, are discussed below.

x1xx

xixx

xmxx XmXX

XiXX

: :

: :

X1XX

wiww j
wiww n

wmww 1

wmww j

wmww n

w1 ww j

w1ww 1

w1ww n

wiww 1

YjYY

YnYY

Y1YY

Fig. 8.2. Architecture of a feed-forward hetero-associative net

8.2.1 Training

Let s : t be an association of two patterns where s = [s1, s2, …, sm] and t = [t1, t2, …, tn]. Let W be the weight
matrix of the hetero-associative net storing the association s : t.

W
w w w

w w w

n

m m mn

=
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

11 12 1

2wmw

�
� �

�

Th en W is obtained using the Hebb rule as described below.

 wij = si × tj, (i = 1, …, m and j = 1, …, n) (8.4)

Using matrix notation, the relation becomes

 W

s

s

s

t t t

s t s t s t

i

m

j ns t

= =

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜

⎜⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟

⎟⎠⎠
⎟⎟

× =

t s

s t×T

1 1 1tt 1 t j s
:

:
()t t tj nt1 t

�ts
::

:
s t s t s t

s t s t s t

i it s j is n

m mt s j ms n

t st s

t sst

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎜⎜

⎜
⎜⎜
⎜⎝⎝
⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
⎟⎟
⎟⎠⎠
⎟⎟

�ts

�ts

 (8.5)

As usual, multiple associations are stored by adding up the individual weight matrices. If s (k) : t (k),
k = 1, …, P, and W1, W2, …, WP be the weight matrices for storing the associations s (1) : t (1), s (2) :
t (2), …, s (P) : t (P), respectively, then the weight matrix of the resultant net is obtained as follows.

 W W W W WP iWW WW
i

P

+W =
=
∑1 2WW WW+WW

1
 (8.6)

Samir Roy_Chapter08.indd 266Samir Roy_Chapter08.indd 266 2/21/2013 3:26:10 PM2/21/2013 3:26:10 PM

Pattern Associators 267

Example 8.7 (Hetero-associative net for single association)

Consider a pair s : t of patterns where s = [1, −1, 1, −1] and t = [−1, 1, −1]. Th e weight matrix of the
net storing this association is calculated below.

W = =
−

−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟ × =

−

−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

s t×T

1
1
1
1

1 1 1−
1 1 1−
1 1 1−
1 1 1−

()− −1 1 1 ⎟⎟
⎟⎟⎟⎟

⎟
⎠⎠

⎟⎟⎟⎟

8.2.2 Application

Application of a hetero-associative net is the same as that for auto-associative nets described in Section
8.1.2. Example 8.8 illustrates the application process with respect to the net cited in Example 8.7.

Example 8.8 (Application of hetero-associative net for single association)

To verify if the net developed in Example 8.7 is able to behave in the expected manner, we need to
fi nd the output vector for the input pattern x = [1, −1, 1, −1].

 Input pattern: x = [1, −1, 1, −1]
 Net input to the output layer: Y_in = x × W = [1, −1, 1, −1] × W = [−4, 4, −4]
 Activation at the output layer: Y_out = [−1, 1, −1] = s
 Hence the net associates the input [1, −1, 1, −1] to the stored pattern [−1, 1, −1].

(Example 8.9 (Recognition of noisy input by hetero-associative net)

Consider again the net developed in Example 8.7. Suppose the input to the net is x = [1, −1, 0, −1]
where the third element is missing. Performance of the net for such an input is described below.

 Input pattern: x = [1, −1, 0, −1]
 Net input to the output layer: Y_in = x × W = [1, −1, 0, −1] × W = [−3, 3, −3]
 Activation at the output layer: Y_out = [−1, 1, −1] = s

Hence, the net correctly associates the noisy input pattern [1, −1, 0, −1] to the stored pattern
[−1, 1, −1]. Verification of the performance of the net with other kinds of noisy inputs is left
as an exercise.

A hetero-associative net may store multiple pattern associations. Th is capacity is illustrated in Problem 8.5
in the section ‘Solved Problems’.

8.3 HOPFIELD NETWORKS

Associative networks that do not respond immediately to an input pattern but take several steps to con-
verge to a stable output are called iterative, or recurrent, networks. Hopfi eld networks, proposed by John
Hopfi eld (1982, 1984, 1988), is one of the earliest and popular iterative auto-associative networks. Th e
basic features of discrete Hopfi eld networks are presented in this section.

Samir Roy_Chapter08.indd 267Samir Roy_Chapter08.indd 267 2/21/2013 3:26:15 PM2/21/2013 3:26:15 PM

268 Introduction to Soft Computing

8.3.1 Architecture

A Hopfi eld net is a fully interconnected net with symmetric weights and without any self-loop. Th is
means that for a Hopfi eld net, wij = wji, for all i ≠ j, and wii = 0, for all i. As the net is fully connected, the
idea of various layers of processing units is no longer meaningful here. Each unit gets input from each
of the remaining units, as well as the corresponding element of the input pattern. Hence, for an m-unit
Hopfi eld net, the net input to unit Yj is given by

 y in y wj jx iw ji
i
i j

m

= +x jx
=
∑

1
 (8.7)

Here xj is the jth component of the input pattern x = [x1, x2, …, xm] and yi is the current activation of
unit Yi. Th e structure of a four-unit Hopfi eld net is shown in Fig. 8.3. Th e notable points regarding the
Hopfi eld net discussed here are given below.

Th e net is fully connected with symmetric weights but without any self-loop.(i)
Th e net is trained with bipolar patterns so that the weight matrix is also bipolar. However, dur-(ii)
ing application binary inputs are used.
Hebb rule is used to obtain the weight matrix.(iii)
During application, activation of a single unit (iv) Yi is updated on the basis of the signal it receives
from other units, and the input xj to that unit.
Th e units update their activations in random order.(v)
Th e update of the activations of the units stops when the units reach a stable state. Th e stabi-(vi)
lized set of activations of the units is taken as the output of the net.

w34ww

w24www13ww

w12ww

x4xxx3xx

x2xxx1xx

w14ww w23ww

Y1YY Y2YY

Y3YY Y4YY

Fig. 8.3. Structure of a four-unit Hopfi eld net

8.3.2 Training

Th ere are several versions of Hopfi eld network, of which we consider the one with bipolar inputs at the
time of training. Let s = [s1, s2, …, sm] be an input pattern presented in bipolar form. Th en the weight
matrix of the Hopfi eld net storing the pattern s is obtained as:

 w s i j
i jij

i j=
× s ijs⎧

⎨
⎧⎧
⎩
⎨⎨

,
,

if
if0 (8.8)

Samir Roy_Chapter08.indd 268Samir Roy_Chapter08.indd 268 2/21/2013 3:26:16 PM2/21/2013 3:26:16 PM

Pattern Associators 269

In matrix notation, W = sT × s, wij = 0 ∀ i = 1, …, m (8.9)
In order to store several patterns s(1), s(2), …, s(k), the corresponding weight matrices are to be added
as in Equation (8.6) to compute the weight matrix of the required net

 W W W W Wk iWW WW
i

k

+W =
=
∑1 2WW WW+WW

1
 (8.10)

Let x = [x1, x2, …, xm] be an input pattern for a given Hopfi eld net. To obtain the output of the net, the
steps described in the Procedure Hopfi eld-Pattern-Association are executed. As mentioned earlier, there
are many variations of Hopfi eld networks. A simplifi ed version is presented here that conveys the essen-
tial features of the net without going into incidental details.

Procedure Hopfield-Pattern-Association

// Given an m-unit Hopfield net with weight matrix W, to find the output of
the net for the input pattern x = [x1, x2, …, xm]. //

Step 1. Initialize the activations of the units with the input signals.

Y_outi = xi (i =1, …, m)

Step 2. Update the activations of the units in random order by executing
Steps 3 to 4 for each unit Yj , j =1, …, m.

Step 3. Find the net input y_inj to Yj.

y in y out wj j i iw j
i j

_ _j j= +xjx ×∑

Step 4. Find the activation of the unit Yj.

y out
y i

y out y in
y i

j

j

j jy in
j

_
, _y
_ ,outj _

, _y
= =

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

1 0y inj, y >
0

0 0y inj, y <

i
if
i

Once the activation of Yj, i.e., y_outj, is updated, it is broad-
cast to all other units for further updation of the activations
of those units.

Step 5. Test for convergence. If there is no change in the activation of
the units Y1, …, Ym, then the net has reached a stable state and
therefore stop. Otherwise, go to Step 2.

Fig. 8.4. Procedure Hopfi eld-pattern-association

Example 8.10 (Computing the weight matrix of a Hopfi eld net and testing its performance)

Let us construct a Hopfi eld net to store the pattern [1, 0, 0, 1]. When put in bipolar form, it is pre-
sented as s = [1, −1, −1, 1]. Applying Equation 8.9, the weight matrix of the net is obtained as

Samir Roy_Chapter08.indd 269Samir Roy_Chapter08.indd 269 2/21/2013 3:26:19 PM2/21/2013 3:26:19 PM

270 Introduction to Soft Computing

W = × =
−
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟ × = −
−

⎛

s s×T

1
1
1
1

1 1 1 1− −
1 1 1 1−
1 1 1 1−
1 1 1 1− −

[]1 1 1− − 1

⎝⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

However, the diagonal elements of W are to be set to zeros. Th erefore, the weight matrix is fi nally
computed as

W =

−
−
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

0 1 1 1−
1 0 1 1−
1 1 0 1−
1 1 1− − 0

To verify the performance of the net, we apply the input vector x = [1, 0, 0, 1] and let the units of the
net update their activations iteratively. Th e computational steps are described below.

Let the input vector be 1. x = [x1, x2, x3, x4] = [1, 0, 0, 1].
Initialize the activations of the units as 2.

Y = [y_out1, y_out 2, y_out 3, y_out 4] = [1, 0, 0, 1].

In the fi rst epoch, let us update the activations of the units in the random order 3. Y3, Y1, Y4, Y2.
3.1 Update the activation y_out3 of Y3.

y in y out wi iw
i

y3 3x 3
1

4

= +x3x ×
=
∑

 = 0 + (1 × (−1) + 0 × 1 + 0 × 0 + 1 × (−1))

 = −2

∴ y_out 3 = 0

3.2. Update the activation y_out1 of Y1.

y in y out wi iw
i

y1 1x 1
1

4

= +x1x ×
=
∑

 = 1 + (1 × 0 + 0 × (−1) + 0 × (−1) + 1 × 1)

 = 2

∴ y_out1 = 1

3.3. Update the activation y_out4 of Y4.

y in y out wi iw
i

y4 4x 4
1

4

= +x4x ×
=
∑

Samir Roy_Chapter08.indd 270Samir Roy_Chapter08.indd 270 2/21/2013 3:26:20 PM2/21/2013 3:26:20 PM

Pattern Associators 271

= 1 + (1 × 1 + 0 × (−1) + 0 × (−1) + 1 × 0)

 = 2

 ∴ y_out4 = 1

3.4. Update the activation y_out2 of Y2.

y in y out wi iw
i

y2 2x 2
1

4

= +x2x ×
=
∑

 = 0 + (1 × (−1) + 0 × 0 + 0 × 1 + 1 × (−1))

 = −2

 ∴ y_out2 = 0

Hence, Y = [y_out1, y_out 2, y_out 3, y_out 4] = [1, 0, 0, 1].

 4. Calculations of Steps 3.1 to 3.4 reveal that none of the units had to modify its activation dur-
ing the application of the input pattern. Th is implies that the net has converged to a stable
state and the process stops here. Th e activation vector Y = [1, 0, 0, 1] is accepted as the output
of the net.

Hence, this Hopfi eld net can recognize the ‘known’ pattern [1, 0, 0, 1].

Performance of this Hopfi eld net under noisy input is illustrated in Problem 8.5, in the section ‘Solved
Problems’.

8.4 BIDIRECTIONAL ASSOCIATIVE MEMORY

A hetero-associative iterative neural net containing two layers of processing elements interconnected
by bidirectional paths and storing a collection of pairs of patterns is known as a bidirectional associa-
tive memory (BAM). It was developed by Kosko in 1988. Other associative networks are one-way, i.e., if
s : t is the stored association, then the net can remember the pattern t when presented with s as the input
pattern. However, these nets are unable to function in the reverse direction. Th e distinctive feature of
BAM is, it is bidirectional. Hence, it can remember the association s : t when presented with any of
the two associated patterns s, or t, as the input. Th e following subsections provide the basic features
of BAM.

8.4.1 Architecture

Figure 8.5 shows the structure of a BAM. It consists of two layers of processing units, the X-layer and
the Y-layer. Signals propagate back and forth between the two layers and none of these layers is dis-
tinguished as the input, or the output, layer. Patterns may be fed to the net through any of the two lay-
ers. When the net reaches the equilibrium state, the activation vector obtained from the other layer is
taken as the output. Each processing unit of a layer is connected to each unit of the other layer through
weighted bidirectional paths. During operation, each layer acts as the input to the other layer. Th e two
layers iteratively and alternately update the activations of their units using the signals obtained from the

Samir Roy_Chapter08.indd 271Samir Roy_Chapter08.indd 271 2/21/2013 3:26:27 PM2/21/2013 3:26:27 PM

272 Introduction to Soft Computing

units of the other layer until they reach a stable state. Th ere are a number of variations of BAM. In this
text we consider the simplest among them.

XmXX

XiXX

: :

: :

X1XX

wiww j
wiww n

wmww 1

wmww j

wmww n

X-layerXX Y-layerYY

w1ww j

w1ww 1

w1ww n

wiww 1 YjYY

YnYY

Y1YY

Fig. 8.5. Structure of a bidirectional associative memory (BAM)

8.4.2 Training

Let s : t be an association of a pair of bipolar patterns where s = [s1, s2, …, sm] and t = [t1, t2, …, tn]. Obvi-
ously, the BAM that stores this association must have m units in the X-layer, and n units in the Y-layer,
assuming that during application, the vectors s and t would be fed to the X-layer and the Y-layer, respec-
tively. Th en the weight matrix W for signals sent from the X-layer to the Y-layer is obtained by using the
Hebb rule as

W = sT
 × t

Th e weight matrix for the signals in the reverse direction, i.e., from Y-layer to the X-layer, is the trans-
pose of W, i.e., W T. And, in case there are a number of associations s(1) : t(1), s(2) : t(2), …, s(k) : t(k)
and W1, W2, …, Wk are the corresponding weight matrices then the weight matrix W of the BAM storing
all these associations is obtained as the algebraic sum of the individual matrices.

 W W W W Wk iWW WW
i

k

+W =
=
∑1 2WW WW+WW

1
 (8.11)

8.4.3 Application

Given the weight matrix W of a BAM, the algorithm for application of the BAM is described in Pro-
cedure BAM-Pattern-Association (Fig. 8.6). A notable point regarding Procedure BAM-Pattern-Asso-
ciation is that if the net input to a unit is 0 then the activation of the unit is kept unaltered. Moreover,
according to Procedure BAM-Pattern-Association, initially the signals are propagated from the X-layer
to the Y-layer and then in the reverse direction, and so on. What happens when the input is applied to
the Y-layer, instead of the X-layer? Since the X-layer is already initialized to all 0s, the net input to the
units of the Y-layer would also be 0s. As a result, the activations of the Y-layer will remain unaltered. In
the next step the units of the X-layer are updated with the help of the signals from the Y-layer. Hence,
eff ectively, the computation starts with the Y-layer as the input layer.

Samir Roy_Chapter08.indd 272Samir Roy_Chapter08.indd 272 2/21/2013 3:26:28 PM2/21/2013 3:26:28 PM

Pattern Associators 273

Procedure BAM-Pattern-Association

Step 1. Initialize activations of all units with 0s.

x_outi = 0, (i =1, …, m)

y_outj = 0, (j =1, …, n)

Step 2. Let x : y be the pair of patterns to be applied where x = [x1, x2,
…, xm] and y = [y1, y2, …, yn]. Set the activations of the X-layer
to x and the activations of the Y-layer to y. If the input is pro-
vided for one layer only then the activations of the other layer
remain all zeros, as set in Step 1.

Step 3. Update the activations of the Y-layer units using the activation
signals of the X-layer.

The net input to unit Yj is obtained as

y in wj ix ij
i

m

_ ×xix
=

∑∑
1

 (j = 1, …, n)

Compute the activations of the Y-layer units using the following
function.

y out
y i

y out y in
y i

j

j

j jy in
j

_
, _y
_ ,outj _
, _y

= =
−

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

0y inj1, y >
0
0y i j1, y <y injy,

i
if
i

Step 4. Update the activations of the X-layer units using the activation
signals of the Y-layer.

The net input to unit Xi is obtained as

x in wi jy ij
j

n

_ ×yjy
=

∑∑
1

 (i = 1, …, m)

Compute the activations of the X-layer units using the following
function.

x out
i

x out x in
i

i

i

i ix in
i

_
, _
_ ,outi _
, _

= =
−

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

0x ini1, x >
0
0i i1, <x inix,

i
if
i

Step 5. Test for convergence. Has the net arrived at an equilibrium, i.e.,
was there any change in the activations of the X-layer units or
Y-layer units while executing the Steps 3 and 4? If yes, then the
net is yet to stabilize. Go to Step 3. Otherwise stop.

Fig. 8.6. Procedure BAM-Pattern-Association

Samir Roy_Chapter08.indd 273Samir Roy_Chapter08.indd 273 2/21/2013 3:26:29 PM2/21/2013 3:26:29 PM

274 Introduction to Soft Computing

Example 8.11 (Storage of pattern association in bidirectional associative memory)

Suppose we want to create a BAM to store the association s : t ≡ [s1, s2, s3, s4] : [t1, t2] ≡ [1, 1, −1, −1]:
[1, −1]. We fi rst calculate the weight matrix of the BAM for signals propagating from the X-layer to
the Y-layer.

W s t×s = −
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟ × = −
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟
T

1
1
1
1

1 1−
1 1−
1 1
1 1

()1 1−

Th e weight matrix for signals propagating in the reverse direction is WT so that

W T = −
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

1 1 1 1− −
1 1 1 1−

In order to test the performance of the BAM, we apply the pattern [1, 1, −1, −1] to the X-layer and see
the output from the Y-layer in the fi rst phase and then in the second phase apply the pattern [1, −1]
to the Y-layer and get the output from the X-layer. Th e stepwise calculations are described below.

 (a) Case A, Input at the X-layer, x = [1, 1, −1, −1], y = ?
 (i) Initially all activations are set to 0s. Th erefore,

x_outi = 0 (i =1, …, 4)

y_outj = 0 (j =1, 2)

 (ii) Apply the pattern x = [1, 1, −1, −1] to the X-layer, so that

x_out1 = 1, x_out2 = 1, y_out3 = −1, x_out 4 = −1.

 (iii) Compute the net inputs to the Y-layer and hence its activations.

Y_in = X_out × W =[]

1 1
1 1
1 1
1 1

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟×

 = [4, −4].

 ∴Y_out = [y_out1, y_out2] = [1, −1]

Now, the signals from the Y-layer is to be applied to the X-layer to modify (if necessary)
its activations.

 (iv) Compute the net inputs to the X-layer using the signals from Y-layer.

 X_in = Y_out × WT =[] 1 1 1 1
1 1 1 1× 11

−1
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

 = [2, 2, −2, −2]

Samir Roy_Chapter08.indd 274Samir Roy_Chapter08.indd 274 2/21/2013 3:26:30 PM2/21/2013 3:26:30 PM

Pattern Associators 275

 ∴X_out = [x_out1, x_out2, x_out3, x_out4] = [1, 1, −1, −1]

Th is shows that the net has reached an equilibrium state. As Y_out = [y_out1, y_out2] =
[1, −1] = t, we conclude that the BAM can associate the input pattern s = [1, 1, −1, −1]
to t = [1, −1].

 (b) Case A, Input at the Y-layer, y = [1, −1], x = ?
 (i) Initially all activations are set to 0s. Th erefore,

x_outi = 0, (i =1, …, 4)

y_outj = 0, (j =1, 2)

 (ii) Apply the pattern y = [1, −1] to the Y-layer, so that

y_out1 = 1, y_out2 = −1.

 (iii) Compute the net inputs to the Y-layer and hence its activations.

Y_in = X_out × W = [0 0 0 0] ×

1 1
1 1
1 1
1 1

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

= [0, 0].

As the net input to the units of the Y-layer is 0, their activations remain unaltered.

∴Y_out = [y_out1, y_out2] = [1, −1]

Now, the signals from the Y-layer are to be applied to the X-layer to modify (if neces-
sary) its activations.

 (iv) Compute the net inputs to the X-layer using the signals from Y-layer.

X_in = Y_out × WT = [1 −1] × 1 1 1 1
1 1 1 1

11
−1

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= [2, 2, −2, −2]
∴X_out = [x_out1, x_out2, x_out3, x_out4] = [1, 1, −1, −1]

 (v) Update the activations of the Y-layer with this new set of X-layer activations.

Y_in = X_out × W = [1, 1, −1, −1] × W = [4, −4]
∴Y_out = [y_out1, y_out2] = [1, −1]

 (vi) Update the activations of the X-layer with Y-layer activations. Th e computations are
the same as carried out in step (iv) above. As both the X-layer and the Y-layer retain
their activations, the BAM has reached the stable state and the iterations stop here.
At equilibrium state, the X-layer and the Y-layer attain the stored patterns.

Hence, the BAM can remember the stored association s : t ≡ [s1, s2, s3, s4] : [t1, t2] ≡ [1, 1, −1, −1] : [1,
−1] irrespective of whether it is presented with the pattern s (at the X-layer) or t (at the Y-layer).

Samir Roy_Chapter08.indd 275Samir Roy_Chapter08.indd 275 2/21/2013 3:26:33 PM2/21/2013 3:26:33 PM

276 Introduction to Soft Computing

(Performance of the BAM under noisy patterns)

Let us now see if the BAM cited in the previous example is able to work under noisy inputs. Two
kinds of noises are considered, viz., (a) inputs with missing elements and (b) inputs with corrupt, or
erroneous, elements.

 (a) Inputs with missing elements
We apply the noisy input x = [1, 1, 0, −1] and see how the net behaves.
Th e response of the Y-layer to the X-input is obtained as

Y_in = X_out × W = [1 1 0 −1] × W = [3, −3]

∴Y_out = [y_out1, y_out2] = [1, −1]

Th e activations of the Y-layer are propagated to the X-layer.

 X_in = Y_out × WT = [1, −1] × 1 1 1 1
11

−1
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= [2, 2, −2, −2]

∴X_out = [x_out1, x_out2, x_out3, x_out4] = [1, 1, −1, −1]

So the BAM has already corrected the noisy input and the two layers of the net now contains
the association s : t ≡ [1, 1, −1, −1] : [1, −1]. We saw in the previous examples that this state
is stable and no further iterations are needed.

Th e BAM is able to tolerate a missing element in the t vector too. To verify this we take
y = [1, 0] as the input to the net fed through the Y-layer. Th e activation induced by this Y-
layer input to the X-layer is computed as

X_in = Y_out × WT = [1 0] × 1 1 1 1
1 1 1 1

11
−1

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= [1, 1, −1, −1]
∴X_out = [x_out1, x_out2, x_out3, x_out4] = [1, 1, −1, −1]

In the next step, when this X_out = [1, 1, −1, −1] is propagated to the Y-layer units, the sig-
nals at the Y-layer are corrected to [1, −1]. Verifi cation of the behaviour of the BAM under
other possible missing elements is being left as an exercise.

 (b) Inputs with corrupt, or erroneous, elements.
Let x = [1, 1, 1, −1] be the input vector where the third element is erroneously set to 1, instead
of −1, as stored in s = [1, 1, −1, −1]. When the BAM is set to work, it fi rst produces the activa-
tions of the Y-layer units.

Y_in = X_out × W = [1 1 1 −1] ×

1 1
1 1
1 1
1 1

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

= [2, −2]

Example 8.12

Samir Roy_Chapter08.indd 276Samir Roy_Chapter08.indd 276 2/21/2013 3:26:34 PM2/21/2013 3:26:34 PM

Pattern Associators 277

∴Y_out = [y_out1, y_out2] = [1, −1]

When these Y-layer activations are sent to the X-layer, it attains the pattern X_out = [1, 1, −1, −1],
which implies that the net has corrected the noisy pattern x = [1, 1, 1, −1] to the stored pattern s = [1,
1, −1, −1]. Hence, the BAM under consideration can tolerate single element error in its input.

(Storage of multiple associations on a BAM)

Multiple associations can be stored on a BAM. As usual, the weight matrix of the resultant BAM
is obtained by adding up the individual weight matrices corresponding to each association. For
example, suppose, along with the association s (1) : t (1) ≡ [1, 1, −1, −1] : [1, −1], we want to store
the additional association s (2) : t (2) = [1, −1, 1, −1] : [1, 1]. Obviously, the two individual weight
matrices W1, W2 are

W1 =

1 1
1 1
1 1
1 1

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟ , and W2 =

1 1
1 1
1 1
1 1

−1

−1

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

Hence, the overall weight matrix is

W = W1 + W2 =

2 0
0 2
0 2
2 0−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

Th e following calculations show that the net is able to recall the appropriate association when pre-
sented with any of the stored vectors.

 (a) x = [1, 1, −1, −1], y = ?

Y_in = X_out × W = [1 1 −1 −1] ×

2 0
0 2
0 2
2 0−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

= [4, −4]

∴Y_out = [y_out1, y_out2] = [1, −1]

So the BAM remembers the pattern t (1) = [1, −1] associated with the pattern s (1) = [1, 1, −1,
−1]. Verifi cation of the reverse association, i.e., s (1) given t (1), is left as an exercise.

 (b) y = [1, 1], x = ?

Here, X_in = Y_out × WT = [1 1] ×
2 0 0 2
0 2 2 0

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

 = [2, −2, 2, −2]

Example 8.13

Samir Roy_Chapter08.indd 277Samir Roy_Chapter08.indd 277 2/21/2013 3:26:36 PM2/21/2013 3:26:36 PM

278 Introduction to Soft Computing

∴X_out = [x_out1, x_out2, x_out3, x_out4] = [1, −1, 1, −1]

Obviously, the BAM remembers the pattern s (2) = [1, −1, 1, −1] associated with the pattern
t (1) = [1, 1]. Verifi cation of the reverse association, i.e., t (2) given s (2), is left as an exercise.

Performance of BAM storing multiple associations under noisy inputs is illustrated in Problem
8.7 in the section ‘Solved Problems’.

CHAPTER SUMMARY

Relating a given pattern to one already stored in memory is known as pattern association. We, the human
beings, associate patterns in our daily life almost eff ortlessly. Artifi cial neural nets are suitable for pattern
association. Some important associative neural nets are auto-associtive nets, hetero-associative nets, Hop-
fi eld nets, and Bidirectional Associative Memory (BAM). Th e main points of this chapter are as follows.

Th e input and output patterns of an auto-associative net are the same. Presented with an input •
pattern, perhaps noisy, an auto-associative net returns the same pattern (this time without any
noise) if the input matches one of the stored patterns.
Th e diagonal elements of an auto-associative net are set to 0s to ensure that these elements do •
not dominate during application of the net. Otherwise, the net has a tendency to reproduce the
input pattern rather than the stored pattern.
Strength of a neural net lies in its tolerance of noisy input pattern, provided, that the input is •
suffi ciently close to the stored pattern in spite of it being noisy. Two kinds of noises, missing
elements, or erroneous element, may appear in the input pattern. While a missing element is
represented by 0, instead of a 1 or −1, an erroneous element presents the complement of the
correct value, i.e., 1 (−1) in place of −1 (1).
An auto-associative neural net may store several patterns. Th e • capacity of such a net is defi ned
as the number of patterns it can store and recall. If we try to store more patterns than its
capacity, then the net tends to forget the stored patterns.
Th e weight matrix of the net storing several patterns is the sum of the individual weight •
matrices. Let s1, s2, …, sk be k mutually orthogonal vectors and W1, W2, …, Wk be the weight
matrices for the auto-associative nets recognizing the vectors s1, s2, …, sk, respectively. Th e
diagonal elements of all the weight matrices are all set to zeros. Th en the weight matrix W of
the auto-associative net recognizing the given patterns is obtained by adding the individual
weight matrices W1, W2, …, Wk.
An • n-input auto-associative net can store at most n−1 number of mutually orthogonal vectors,
each of which consists of n components.
A hetero-associative net is used to store the associations between pairs of patterns that are not •
identical. Th is means, if s : t is a pair of associated patterns and this association is stored in a
hetero-associative net, then s ≠ t.
A Hopfi eld net is a fully interconnected net with symmetric weights and without any self-loop. •
Hebb rule is used to obtain the weight matrix of a Hopfi eld net.
A hetero-associative neural net with two layers interconnected by bidirectional paths and storing •
a number of pairs of patterns is called as a Bidirectional Associative Memory (BAM). It can recall
the association s : t when presented with any of the two associated patterns s or t as the input.

Samir Roy_Chapter08.indd 278Samir Roy_Chapter08.indd 278 2/21/2013 3:26:38 PM2/21/2013 3:26:38 PM

Pattern Associators 279

 SOLVED PROBLEMS

Problem 8.1 (Auto-associative nets: Recognition of noisy input with two missing elements) Consider
the auto-associative net of Example 8.3 and 8.4 whose weight matrix is given by

W =

1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

−1
−1 0 1
−1 1 0

11

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Th e net is able to recognize the pattern [1, −1, −1, 1]. Moreover, we have seen that the net has the capacity
to recognize correctly noisy patterns with a single missing element. Can the net withstand two missing
entries?

Solution 8.1 Let us consider the case of fi rst two elements of the pattern [1, −1, −1, 1] missing, so
that the input pattern is [0, 0, −1, 1]. Th e net input to the output units are computed as

Y_in = [y_in1, y_in2, y_in3, y_in4]

 = [0 0 −1 1] ×

1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

−1
−1 0 1
−1 1 0

11

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

 = [2, −2, −1, 1]

And the output vector is obtained as

 Y_out = [y_out1, y_out2, y_out3, y_out4]

 = [1, −1, −1, 1]

Hence, the net is able to recognize the stored pattern even if the fi rst two elements are missing. Calcu-
lations shown in Table 8.3 present the performance of the net with various combinations of a pair of
missing elements.

Table 8.3. Recognition of noisy input with two missing elements

Input pattern (noisy) Net input to the output layer
(Y_in = s × W)

Output pattern

i [0, 0, −1, 1] [2, −2, −1, 1] [1, −1, −1, 1]

ii [0, −1, 0, 1] [2, −1, −2, 1] [1, −1, −1, 1]

iii [0, −1, −1, 0] [2, −1, −1, 2] [1, −1, −1, 1]

iv [1, 0, 0, 1] [1, −2, −2, 1] [1, −1, −1, 1]

v [1, 0, −1, 0] [1, −2, −1, 2] [1, −1, −1, 1]

vi [1, −1, 0, 0] [1, −1, −2, 2] [1, −1, −1, 1]

Samir Roy_Chapter08.indd 279Samir Roy_Chapter08.indd 279 2/21/2013 3:26:39 PM2/21/2013 3:26:39 PM

280 Introduction to Soft Computing

It shows that the net can correctly recognize all noisy input patterns with two missing elements.

Table 8.4. Recognition of noisy input with one erroneous element

Input pattern (noisy) Net input to the output layer
(Y_in = s × W)

Output pattern

i [−1, −1, −1, 1] [3, −1, −1, 1] [1, −1, −1, 1]

ii [1, 1, −1, 1] [1, −3, −1, 1] [1, −1, −1, 1]

iii [1, −1, 1, 1] [1, −1, −3, 1] [1, −1, −1, 1]

iv [1, −1, −1, −1] [1, −1, −1, 3] [1, −1, −1, 1]

Problem 8.2 (Recognition of noisy inputs with one erroneous entry) Problem 8.1 illustrates that the
net can withstand up to two missing elements in the input pattern. See the behaviour of the net with
one and two errors.

Solution 8.2 Th ere are four possible one-element errors in the pattern [1, −1, −1, 1]. Th ese are
[−1, −1, −1, 1], [1, 1, −1, 1], [1, −1, 1, 1], and [1, −1, −1, −1] corresponding to errors in the fi rst, second, third,
and the fourth element of the input vector. Th e behaviour of the net with respect to these inputs is shown
in Table 8.4. We see that the net can tolerate one error in the input pattern. Can it withstand two erroneous
elements? To verify we consider the noisy pattern where the fi rst two elements are erroneous, i.e., the input
pattern is [−1, 1, −1, 1] instead of [1, −1, −1, 1]. Application of this pattern to the given net results in

[−1, 1, −1, 1] × W = [1, −1, 1, −1] ≠ [1, −1, −1, 1]

Hence, the net cannot recognize input patterns with two erroneous entries.

Problem 8.3 (Storage of non-orthogonal patterns in auto-associative net) Consider two non-orthog-
onal patterns s1 = [1, −1, 1, −1] and s2 = [−1, 1, 1, 1]. Th ese are not orthogonal because their inner product
s1⋅s2 = −2 ≠ 0. Can you design an auto-associative net to store these patterns?

Solution 8.3 Assuming that there exists such an auto-associative net, we calculate the weight ma-
trix of as follows.

 W = W1 + W2 =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

−1 1
− −1 0

1 0
−1 1

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

+

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

−1 11
−
−
−

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

 =

0 2 0 2
2 0 0 2
0 0 0 0
2 2 0 0

2 0
−

−

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Now, let us see if the resultant net can recognize the stored patterns.

 s1 × W = [1, −1, 1, −1] × W = [4, −4, 0, −4] → [1, −1, −1, −1] ≠ s1

and, s2 × W = [-1, 1, 1, 1] × W = [-4, 4, 0, 4] → [−1, 1, −1, 1] ≠ s2

Hence, the net fails to recognize the stored patterns.

Problem 8.4 (Storage of n orthogonal patterns in n-node auto-associative net) Obtain a net to store four
mutually orthogonal patterns s1 = [1, 1, 1, 1], s2 = [−1, 1, −1, 1] , and s3 = [−1, −1, 1, 1], s4 = [1, −1, −1, 1].

Solution 8.4 Th e fi rst three patterns are already tested to be orthogonal in Example 8.5 and the
weight matrix for them has been computed as

Samir Roy_Chapter08.indd 280Samir Roy_Chapter08.indd 280 2/21/2013 3:26:40 PM2/21/2013 3:26:40 PM

Pattern Associators 281

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

−

−

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

It can be readily verifi ed that s4 is orthogonal to the rest three patterns. To store the four patterns s1, s2, s3
and s4 on a four-input auto-associative net, the corresponding weight matrix would be

W = (W1 + W1 + W1) + W4 =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

−

−

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

+

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

−1
−1 0 1
−1 1 0

11

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

=

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Obviously, the net is unable to recognize any of the four patterns.

Problem 8.5 (Storage of multiple associations on a hetero-associative net) Find a hetero-associative
net to store three associations between pairs of patterns given below.

 (vii) [1, −1, 1, −1] : [−1, 1, −1]
 (viii) [1, 1, 1, −1] : [1, 1, −1]
 (ix) [1, −1, 1, 1] : [−1, 1, 1]

Solution 8.5 Th e corresponding weight matrices W1, W2, W3 are

W1 =

−

−

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

1 1 1−
1 1 1−
1 1 1−
1 1 1−

, W2 =

1 1 1
1 1 1
1 1 1
1 1 1−1

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

, and W3 =

−

−
−

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

1 1 1
1 1 1− −
1 1 1
1 1 1

.

Th erefore, the weight matrix of the desired net for storing the three associations is computed as

W = W1 + W2 + W3 =
−

− −
−

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

1 3 1
3 1− 1
1 3 1
1 1− 3

Th e following calculations show that the resultant net correctly associates the input vector [1, −1, 1, −1]
to the corresponding output vector [−1, 1, −1].

 Input pattern : x = [1, −1, 1, −1]
 Net input to the output layer : Y_in = x × W = [1, −1, 1, −1] × W = [−4, 8, −4]
 Activation at the output layer : Y_out = [−1, 1, −1]

Verifi cation of the performance of the net for the rest of the patterns is left as an exercise.

Problem 8.6 (Performance of a Hopfi eld net under noisy input) Consider the Hopfi eld net devel-
oped in Example 8.10. We would like to verify if it is able to recognize a known but noisy input pattern.
See if the net can recognize the input vector x = [1, 1, 0, 1] which diff ers from the stored vector s = [1, 0,
0, 1] in the second component x2.

Samir Roy_Chapter08.indd 281Samir Roy_Chapter08.indd 281 2/21/2013 3:26:41 PM2/21/2013 3:26:41 PM

282 Introduction to Soft Computing

Solution 8.6 Th e verifi cation process consists of application of the given input pattern to the net
and computation of the output when it reaches the stable state. Th e computations are shown below.

 1. Th e input vector is x = [x1, x2, x3, x4] = [1, 1, 0, 1].
 2. Initialize the activations of the units as

Y = [y_out1, y_out 2, y_out 3, y_out 4] = [1, 1, 0, 1].

 3. In the fi rst epoch, the units are updated in the random order Y4, Y1, Y3, Y2.

3.1 Update the activation y_out4 of Y4.

y in y out wi iw
i

y4 4x 4
1

4

= +x4x ×
=
∑

 = 1 + (1 × 1 + 1 × (−1) + 0 × (−1) + 1 × 0)
 = 1.

 ∴ y_out4 = 1.

3.2 Update the activation y_out1 of Y1.

y in y out wi iw
i

y1 1x 1
1

4

= +x1x ×
=
∑

 = 1 + (1 × 0 + 1 × (−1) + 0 × (−1) + 1 × 1)

 = 1.

 ∴ y_out1 = 1.

3.3 Update the activation y_out3 of Y3.

y in y out wi iw
i

y3 3x 3
1

4

= +x3x ×
=
∑

 = 0 + (1 × (−1) + 1 × 1 + 0 × 0 + 1 × (−1))

 = −2.

 ∴ y_out3 = 0.

3.4 Update the activation y_out2 of Y2.

y in y out wi iw
i

y2 2x 2
1

4

= +x2x ×
=
∑

 = 1 + (1 × (−1) + 1 × 0 + 0 × 0 + 1 × (−1))

 = −1.

 ∴ y_out2 = 0.

Therefore, at the end of the first epoch the activation vector of the net changes from [1, 1, 0, 1]
to [1, 0, 0, 1]. As some change in the activation of one of the units, Y2, has taken place in the first

Samir Roy_Chapter08.indd 282Samir Roy_Chapter08.indd 282 2/21/2013 3:26:46 PM2/21/2013 3:26:46 PM

Pattern Associators 283

epoch, the process continues to the second epoch. The computations of the second epoch are left
as an exercise.

Problem 8.7 (Performance of the BAM storing multiple associations under noisy input) In Example
8.12, a BAM is designed to store the associations s (1) : t (1) ≡ [1, 1, −1, −1] : [1, −1], and s (2) : t (2) =
[1, −1, 1, −1] : [1, 1]. Th e weight matrix of the BAM is calculated as

2 0
0 2
0 2
2 0−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

Suppose the BAM is now presented with an input pattern x = [1, 0, 0, −1] (a noisy version of the pattern
s = [1, 1, −1, −1] where the second and the third elements are missing) at the X-layer. Can it tolerate the
lack of information and recall the associated pattern correctly?

Solution 8.7 Th e eff ects of the input pattern through successive iterations till the net reach the
stable state are shown below.

 1. Propagate the signals of the X-layer to the Y-layer.

Y_in = X_out × W = [1 0 0 −1] ×
2 0
0 2
0 2
2 0−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

 = [4, 0]

 ∴Y_out = [y_out1, y_out2] = [1, 0]

 2. Apply the signals of the Y-layer to the X-layer.

X_in = Y_out × WT= [1 0] ×
2 0 0 2
0 2 2 0

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

 = [2, 0, 0, −2]

 ∴X_out = [x_out1, x_out2, x_out3, x_out4] = [1, 0, 0, −1]

Since the X_out is back to the same pattern as it had in the previous iteration, the BAM has already
reached a stable state and the activations of neither the X-layer nor the Y-layer match the stored patterns.
Hence, the BAM cannot overcome this noise input.

However, the situation may improve if, along with the noisy pattern, the BAM is fed with some clue
regarding the corresponding association. In particular, let us simultaneously present the patterns x = [1,
0, 0, −1] and y = [0, −1] at the X-layer and the Y-layer, respectively, and see how the net responds.

Y_in = X_out × W = [1 0 0 −1] ×

2 0
0 2
0 2
2 0−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

Samir Roy_Chapter08.indd 283Samir Roy_Chapter08.indd 283 2/21/2013 3:26:50 PM2/21/2013 3:26:50 PM

284 Introduction to Soft Computing

 = [4, 0]

 ∴Y_out = [y_out1, y_out2] = [1, −1]

As the net input y_in2 = 0, the corresponding activation y_out2 retains its previous value, i.e., −1. When
these Y-layer activations are fed to the X-layer we get

X_in = Y_out × WT = (1 −1) ×
2 0 0 2
0 2 2 0

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

 = [2, 2, −2, −2]

∴X_out = [x_out1, x_out2, x_out3, x_out4] = [1, 1, −1, −1]

Hence, this time, aided with appropriate clues, the BAM is able to remember the stored association.

Problem 8.8 (Auto-associative net with MatLab) Write a MatLab program to implement an auto-
associative net to store the patterns [−1 −1 −1 −1] and [−1 −1 1 1]. Test the performance of the net with
the test patterns [−1 −1 −1 −1] (stored pattern), [1 1 1 1] (unknown pattern), and [−1 −1 −1 1] (unknown
but similar).

Solution 8.8 Th e MatLab code is given below. Th e code is followed by the outputs of the test.

clc;
clear;
StrVctr = [-1 −1 −1 −1;-1 −1 1 1]; % Patterns to be stored
TstVctr_Trnd = [-1 −1 −1 −1]; % CASE 1: Known Pattern
TstVctr_New = [1 1 1 1]; % CASE 2: Unknown Pattern
TstVctr_Similar = [-1 −1 −1 1]; % CASE 3: Unknown yet similar
wt=zeros(4,4); % Initialize Weights

for i = 1:2 % Calculate weight matrix
wt = wt + StrVctr(i,1:4)’*StrVctr(i,1:4);

end
disp(‘The calculated weight matrix’);
disp(wt);

TstOutpt = TstVctr_Trnd*wt; % CASE 1: Testing with pattern
for i=1:4 % on which the net has been trained

if TstOutpt(i)>0
fx(i)=1;

else
fx(i)=-1;

end
end
disp(‘****************CASE 1************’);
if StrVctr(1,1:4) == fx(1:4) | StrVctr(2,1:4) == fx(1:4)

disp(‘The Pattern is a Known Pattern’);
else

disp(‘The Pattern is an Unknown Pattern’);
end

Samir Roy_Chapter08.indd 284Samir Roy_Chapter08.indd 284 2/21/2013 3:26:52 PM2/21/2013 3:26:52 PM

Pattern Associators 285

TstOutpt = TstVctr_New*wt; % CASE 2: Testing with pattern
for i=1:4 % on which the net has not been

trained
if TstOutpt(i)>0 % and the pattern is not similar to

those
fx(i)=1; % for which the net has been trained

else
fx(i)=-1;

end
end
disp(‘****************CASE 2************’);
if StrVctr(1,1:4) == fx(1:4) | StrVctr(2,1:4) == fx(1:4)

disp(‘The Pattern is a Known Pattern’);
else

disp(‘The Pattern is an Unknown Pattern’);

end

TstOutpt = TstVctr_Similar*wt; % CASE 3: Testing with pattern
for i=1:4 % on which the net has not been trained

if TstOutpt(i)>0 % but the pattern is similar to those
fx(i)=1; % for which the net has been trained

else
fx(i)=-1;

end
end
disp(‘****************CASE 3************’);
if StrVctr(1,1:4) == fx(1:4) | StrVctr(2,1:4) == fx(1:4)

disp(‘The Pattern is a Known Pattern’);
else

disp(‘The Pattern is a Unknown Pattern’);
end

************OUTPUT**********************
The calculated weight matrix

2 2 0 0

2 2 0 0

0 0 2 2

0 0 2 2

****************CASE 1************
The Pattern is a Known Pattern
****************CASE 2************
The Pattern is an Unknown Pattern
****************CASE 3************
The Pattern is a Known Pattern

Samir Roy_Chapter08.indd 285Samir Roy_Chapter08.indd 285 2/21/2013 3:26:53 PM2/21/2013 3:26:53 PM

286 Introduction to Soft Computing

%Hetero associative neural net for mapping input vectors to output vec-
tors
clc;
clear;
Inp = [1 1 0 0;0 1 0 0;0 0 1 1;0 0 1 0]; % Input patterns
Trgt = [1 0;1 0;0 1;0 1]; % Target outputs
wt = zeros(4,2); % Initialize all weights to 0
for i = 1:4 % Training the weights

wt = wt + Inp(i,1:4)’ * Trgt(i,1:2); %
end %
disp(‘Displaying Weight Matrix’);
disp(wt);
Test_Inp = [1 1 0 0];
Test_Outpt = Test_Inp*wt; % Testing response for Input
for i = 1:2 % Mapping through Activation
Fn.

if Test_Outpt(1,i) > 0
fx(1,i) = 1;

else fx(1,i) = 0;
end

end
disp(‘Displaying Output mapped through Activation Function’);
disp(fx);
****************OUTPUT***************************
Displaying Weight Matrix

1 0
2 0
0 2
0 1

Displaying Output mapped through Activation Function

 1 0

Problem 8.9 (Hetero-associative net with MatLab) Write a MatLab program to implement a hetero-
associative net to map four patterns [1 1 0 0], [0 1 0 0], [0 0 1 1], and [0 0 1 0] to two output patterns
[1 0], [0 1] so that the patterns [1 1 0 0] and [0 1 0 0] are associated with [1 0] and the patterns [0 0 1 1],
and [0 0 1 0] are associated with [0 1].

Solution 8.9 Th e MatLab code is given below. Th e designed net is tested with the pattern [1 1 0 0]
which results in an output [1 0].

Problem 8.10 (Hetero-associative net with MatLab) Write a MatLab program to store the pattern
shown as Stored Pattern in the following 11 × 7 matrix with the help of an auto-associative net. Th e re-
sultant net is to be tested with the Test Pattern #1 and Test Pattern #2. It may be noted that while neither
Test Pattern #1 nor Test Pattern #2 exactly matches with the Stored Pattern, the former closely resembles
the Stored Pattern though the latter one, Test Pattern #2, is clearly a mismatch.

Samir Roy_Chapter08.indd 286Samir Roy_Chapter08.indd 286 2/21/2013 3:26:53 PM2/21/2013 3:26:53 PM

Pattern Associators 287

Stored Pattern Test Pattern #1 Test Pattern #2

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0

0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 0 1 0 0

0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0

0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0

0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1

Solution 8.10 Th e entire MatLab code is given below. It is seen that while the designed net accepts Test
Pattern #1 and returns the original stored pattern correctly, it rejects Test Pattern #2 as an unknown pattern.

clc;
clear;
% Original pattern 11x7 matrix
Stored_Ptrn = [-1 1 -1 -1 -1 -1 -1
 -1 1 -1 -1 -1 -1 -1
 -1 1 -1 -1 -1 -1 -1
 -1 1 -1 -1 -1 -1 -1
 -1 1 -1 -1 -1 -1 -1
 1 -1 -1 -1 -1 -1 -1
 -1 1 -1 1 1 1 -1
 -1 1 1 -1 -1 -1 1
 -1 1 -1 -1 -1 -1 1
 -1 1 -1 -1 -1 1 -1
 -1 1 1 1 1 -1 -1];

% Test pattern 11x7 matrix
Test_Ptrn_1 = [-1 1 -1 -1 -1 -1 -1
 -1 1 -1 -1 -1 -1 -1
 -1 1 -1 -1 -1 -1 -1
 -1 1 -1 -1 -1 -1 -1
 -1 1 -1 -1 -1 -1 -1
 -1 1 -1 -1 -1 -1 -1
 -1 1 -1 1 1 1 -1
 -1 1 -1 -1 -1 -1 1
 -1 1 -1 -1 -1 -1 1
 1 1 -1 -1 -1 1 -1
 -1 1 1 1 1 -1 -1];

Samir Roy_Chapter08.indd 287Samir Roy_Chapter08.indd 287 2/21/2013 3:26:53 PM2/21/2013 3:26:53 PM

288 Introduction to Soft Computing

Test_Ptrn_2 = [-1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1
 1 -1 -1 -1 -1 -1 1
 -1 1 -1 -1 -1 1 -1
 -1 -1 1 -1 1 -1 -1
 -1 -1 -1 1 -1 -1 -1
 -1 -1 1 -1 1 -1 -1
 -1 1 -1 -1 -1 1 -1
 1 -1 -1 -1 -1 -1 1];

wt=zeros(77,77); % Initializing weights
wt = wt + Stored_Ptrn’*Stored_Ptrn;
disp(‘TESTING WITH STORED PATTERN’);
TstOutpt = Stored_Ptrn*wt; % Test association of stored

pattern
for i=1:77

if TstOutpt(i)>5
fx(i)=1;

else
fx(i)=-1;

end
end
if Stored_Ptrn(1:77) == fx(1:77)

disp(‘The Pattern is associated with the following pattern’);
disp(‘0 1 0 0 0 0 0’);
disp(‘0 1 0 0 0 0 0’);
disp(‘0 1 0 0 0 0 0’);
disp(‘0 1 0 0 0 0 0’);
disp(‘0 1 0 0 0 0 0’);
disp(‘0 1 0 0 0 0 0’);
disp(‘0 1 0 1 1 1 0’);
disp(‘0 1 1 0 0 0 1’);
disp(‘0 1 0 0 0 0 1’);
disp(‘0 1 0 0 0 1 0’);
disp(‘0 1 1 1 1 0 0’);

else
disp(‘The Pattern is an Unknown Pattern’);

end
disp(‘TESTING WITH TEST PATTERNS 1 AND 2’);
disp(‘TEST PATTERN 1’);
TstOutpt = Test_Ptrn_1*wt; % Test association of Test Pattern
for i=1:77

if TstOutpt(i)>5
fx(i)=1;

else
fx(i)=-1;

end
end

Samir Roy_Chapter08.indd 288Samir Roy_Chapter08.indd 288 2/21/2013 3:26:53 PM2/21/2013 3:26:53 PM

Pattern Associators 289

if Stored_Ptrn(1:77) == fx(1:77)
disp(‘The Test Pattern is associated with the following pattern’);
disp(‘0 1 0 0 0 0 0’);
disp(‘0 1 0 0 0 0 0’);
disp(‘0 1 0 0 0 0 0’);
disp(‘0 1 0 0 0 0 0’);
disp(‘0 1 0 0 0 0 0’);
disp(‘0 1 0 0 0 0 0’);
disp(‘0 1 0 1 1 1 0’);
disp(‘0 1 1 0 0 0 1’);
disp(‘0 1 0 0 0 0 1’);
disp(‘0 1 0 0 0 1 0’);
disp(‘0 1 1 1 1 0 0’);

else
disp(‘The Pattern is an Unknown Pattern’);

end
disp(‘TEST PATTERN 2’);
TstOutpt = Test_Ptrn_2*wt; % Test association of Test Pattern
for i=1:77

if TstOutpt(i)>5
fx(i)=1;

else
fx(i)=-1;

end
end
if Stored_Ptrn(1:77) == fx(1:77)

disp(‘The Test Pattern is associated with the following pattern’);
disp(‘0 1 0 0 0 0 0’);
disp(‘0 1 0 0 0 0 0’);
disp(‘0 1 0 0 0 0 0’);
disp(‘0 1 0 0 0 0 0’);
disp(‘0 1 0 0 0 0 0’);
disp(‘0 1 0 0 0 0 0’);
disp(‘0 1 0 1 1 1 0’);
disp(‘0 1 1 0 0 0 1’);
disp(‘0 1 0 0 0 0 1’);
disp(‘0 1 0 0 0 1 0’);
disp(‘0 1 1 1 1 0 0’);

else
disp(‘The Pattern is an Unknown Pattern’);

end

********************OUTPUT******************************

TESTING WITH STORED PATTERN
The Pattern is associated with the following pattern
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0

Samir Roy_Chapter08.indd 289Samir Roy_Chapter08.indd 289 2/21/2013 3:26:53 PM2/21/2013 3:26:53 PM

290 Introduction to Soft Computing

0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 1 1 1 0
0 1 1 0 0 0 1
0 1 0 0 0 0 1
0 1 0 0 0 1 0
0 1 1 1 1 0 0

TESTING WITH TEST PATTERNS 1 AND 2
TEST PATTERN 1
The Test Pattern is associated with the following pattern
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 1 1 1 0
0 1 1 0 0 0 1
0 1 0 0 0 0 1
0 1 0 0 0 1 0
0 1 1 1 1 0 0
TEST PATTERN 2

The Pattern is an Unknown Pattern

Problem 8.11 (Pattern recognition with bidirectional associative memory) Figs. 8.7 and 8.8 show
two faces, one smiling and the other frowning, and the corresponding encoding in 12 × 7 matrices fi lled
with 0s and 1s. Fig. 8.9 shows a test pattern which neither matches with the smiling face nor the frown-
ing face. Design a BAM, with MatLab program, to store the smiling face and the frowning face. Test the
performance of the BAM with the smiling face as input and also with the pattern given in Fig. 8.9.

Smiling Face Smiling Face
* * * * *

* *
* *
* * * * * *
* *
* * *
* * *
* * *
* * * *
* * * * *
* *

* * * * *

0 1 1 1 1 1 0
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 1 1 0 1 1 1
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 1 0 0 0 1 1
1 0 1 1 1 0 1
1 0 0 0 0 0 1
0 1 1 1 1 1 0

Fig. 8.7. Smiling face and its binary encoding

Samir Roy_Chapter08.indd 290Samir Roy_Chapter08.indd 290 2/21/2013 3:26:53 PM2/21/2013 3:26:53 PM

Pattern Associators 291

Frowning Face Frowning Face
* * * * *

* *
* *
* * * * * *
* *
* * *
* * *
* * *
* * * * *
* * * *
* *

* * * * *

0 1 1 1 1 1 0
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 1 1 0 1 1 1
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 1 1 1 0 1
1 1 0 0 0 1 1
1 0 0 0 0 0 1
0 1 1 1 1 1 0

Fig. 8.8. Frowning face and its binary encoding

Circle Circle

* * * * * 0 1 1 1 1 1 0
* * 1 0 0 0 0 0 1
* * 1 0 0 0 0 0 1
* * 1 0 0 0 0 0 1
* * 1 0 0 0 0 0 1
* * 1 0 0 0 0 0 1
* * 1 0 0 0 0 0 1
* * 1 0 0 0 0 0 1
* * 1 0 0 0 0 0 1
* * 1 0 0 0 0 0 1
* * 1 0 0 0 0 0 1

* * * * * 0 1 1 1 1 1 0

Fig. 8.9. Test pattern

Solution 8.11 Th e required MatLab program is given below. Th e BAM is tested with the patterns
mentioned in the problem statement. While the BAM correctly recognizes the fi rst test pattern, it diag-
noses the second pattern as unknown as it does not match with any of the two stored patterns. Hence,
the BAM functions correctly.

%Bidirectional Associative Memory neural net
clc;
clear;
% Patterns Associated with the network
Stored_Patterns =
[011111010000011000001111011110000011001001100100110010011100011101110110
000010111110;011111010000011000001111011110000011001001100100110010011011
101110001110000010111110];
Target_Output=[1 0;0 1];
Test_Pattern_1 = [0111110100000110000011110111100000110010011001001100100
11100011101110110000010111110];
Test_Pattern_2 = [0111110100000110000011000001100000110000011000001100000
11000001100000110000010111110];

Samir Roy_Chapter08.indd 291Samir Roy_Chapter08.indd 291 2/21/2013 3:26:53 PM2/21/2013 3:26:53 PM

292 Introduction to Soft Computing

Inter_x=2*Stored_Patterns-1;
Inter_y=2*Target_Output-1;
weights=zeros(84,2);
for i=1:2

weights=weights+Inter_x(i,:)’*Inter_y(i,:);
end

Test_Output = Test_Pattern_1*weights;
for(i = 1:2)
if(Test_Output(i)>0)

Test_Output(i) = 1;
else

Test_Output(i) = 0;
end
end
disp(‘Testing with Test Pattern 1’);
if (Test_Output == Target_Output(1,1:2))

disp(‘Pattern Associated with Stored Pattern 1’);
disp(‘ SMILING FACE ’);
disp(‘ * * * * * ’);
disp(‘* *’);
disp(‘* *’);
disp(‘* * * * * *’);
disp(‘* * ’);
disp(‘* * * ’);
disp(‘* * *’);
disp(‘* * *’);
disp(‘* * * *’);
disp(‘* * * * *’);
disp(‘* *’);
disp(‘ * * * * * ’);

elseif (Test_Output == Target_Output(2,1:2))
disp(‘Pattern Associated with Stored Pattern 2’);
disp(‘ FROWNING FACE ’);

disp(‘ * * * * * ’);
disp(‘* *’);
disp(‘* *’);
disp(‘* * * * * *’);
disp(‘* *’);
disp(‘* * *’);
disp(‘* * *’);
disp(‘* * *’);
disp(‘* * * * *’);
disp(‘* * * *’);
disp(‘* *’);
disp(‘ * * * * * ’);

else
disp(‘Unknown Pattern’);

end
Test_Output = Test_Pattern_2*weights;

Samir Roy_Chapter08.indd 292Samir Roy_Chapter08.indd 292 2/21/2013 3:26:54 PM2/21/2013 3:26:54 PM

Pattern Associators 293

for(i = 1:2)
if(Test_Output(i)>0)

Test_Output(i) = 1;
else

Test_Output(i) = 0;
end
end
disp(‘Testing with Test Pattern 2’);
if (Test_Output == Target_Output(1,1:2))

disp(‘Pattern Associated with Stored Pattern 1’);
disp(‘ SMILING FACE ’);
disp(‘ * * * * * ’);
disp(‘* *’);
disp(‘* *’);
disp(‘* * * * * *’);
disp(‘* *’);
disp(‘* * *’);
disp(‘* * *’);
disp(‘* * *’);
disp(‘* * * *’);
disp(‘* * * * *’);
disp(‘* *’);
disp(‘ * * * * * ’);

elseif (Test_Output == Target_Output(2,1:2))
disp(‘Pattern Associated with Stored Pattern 2’);
disp(‘ FROWNING FACE ’);

disp(‘ * * * * *’);
disp(‘* *’);
disp(‘* *’);
disp(‘* * * * * *’);
disp(‘* *’);
disp(‘* * *’);
disp(‘* * *’);
disp(‘* * *’);
disp(‘* * * * *’);
disp(‘* * * *’);
disp(‘* *’);
disp(‘ * * * * *’);

else
disp(‘Unknown Pattern’);

end
*********************OUTPUT************************************
Testing with Test Pattern 1
Pattern Associated with Stored Pattern 1

 SMILING FACE
 * * * * *
* *
* *
* * * * * *

Samir Roy_Chapter08.indd 293Samir Roy_Chapter08.indd 293 2/21/2013 3:26:54 PM2/21/2013 3:26:54 PM

294 Introduction to Soft Computing

* *
* * *
* * *
* * *
* * * *
* * * * *
* *
 * * * * *
Testing with Test Pattern 2

Unknown Pattern

Problem 8.12 (Hopfi eld net) Design and train a Hopfi eld network for the following training pat-
terns

 i) 1 1 −1 −1
 ii) −1 1 −1 −1
 ii) −1 −1 −1 1

Determine the pattern to which [0.9, 0.87,−0.9, −0.89] associates.

Solution 8.12 Th e MatLab code for the required network and its application are given below.

% Design and train a Hopfield Network for the following training pat-
terns
% (1) 1 1 -1 -1
% (2) -1 1 -1 -1
% (3) -1 -1 -1 1
% Determine the pattern to which [0.9, 0.87,-0.9, −0.89] associates
clc;
clear;
T = [1 1 −1 −1;-1 1 −1 −1;-1 −1 −1 1]’; % Training patterns
net = newhop(T); % Creating Hopfield Network
Ai = T;
[Y,Pf,Af] = sim(net,3,[],Ai); % Simulating network
Trained = Y;
disp(Y); % Displaying result
Ai = {[0.9; 0.87; −0.9; −0.89]}; % Testing pattern
[Y,Pf,Af] = sim(net,{1 5},{},Ai); % Simulating test pattern
disp(‘ans = ‘);
disp(Y{1}); % Displaying result of test
Tested = Y{1};
Tested = Tested’;
Trained = Trained’;
if (Trained(1,:) == Tested) % Matching with stored pattern

disp(‘Associated with pattern 1 1 −1 −1’);
elseif (Trained(2,:) == Tested)

disp(‘Associated with pattern −1 1 −1 −1’);
elseif (Trained(3,:) == Tested)

disp(‘Associated with pattern −1 −1 −1 1’);

Samir Roy_Chapter08.indd 294Samir Roy_Chapter08.indd 294 2/21/2013 3:26:54 PM2/21/2013 3:26:54 PM

Pattern Associators 295

else disp(‘Unknown pattern’);
end

************************OUTPUT**

 1 −1 −1
 1 1 −1
-1 −1 −1
-1 −1 1

ans =
 1
 1
-1
-1

Associated with pattern 1 1 −1 −1

� TEST YOUR KNOWLEDGE

 8.1 Which of the following is not a recurrent network?
a) Hopfi eld network b) Bidirectional associative memory
c) Both (a) and (b) d) None of the above

 8.2 In auto-associative networks, the diagonal elements of the weight matrix are set to 0s in order to
prevent
a) Reproducing the input rather than the associated pattern
b) Self-loops in the auto-associative networks
c) Both (a) and (b)
d) None of the above

 8.3 Which of the following neural nets can recognize noisy patterns?
a) Auto-associative nets b) Hetero-associative nets
c) Both (a) and (b) d) None of the above

 8.4 Two patterns can be stored in the same auto-associative networks if they are
a) Mutually orthogonal b) Complementary
c) Both (a) and (b) d) None of the above

 8.5 Th e highest number of patterns an n-input n-output auto-associative net can store is
a) 2n b) n
c) n−1 d) None of the above

 8.6 Which of the following neural nets can have inequal number of input and output units?
a) Auto-associative nets b) Hetero-associative nets
c) Both (a) and (b) d) None of the above

 8.7 Which of the following is a fully connected neural net?
a) Bidirectional associative memory (BAM)
b) Hopfi eld networks
c) Both (a) and (b)
d) None of the above

Samir Roy_Chapter08.indd 295Samir Roy_Chapter08.indd 295 2/21/2013 3:26:54 PM2/21/2013 3:26:54 PM

296 Introduction to Soft Computing

 8.8 During application, the units of a Hopfi eld net are updated
a) In predetermined order b) In parallel
c) In random order d) None of the above

 8.9 Number of layers of processing units in a bidirectional associative memory (BAM) is
a) 1 b) 2
c) More than 2 d) None of the above

8.10 Th e associative network that allows any of its layers of processing units to be used as the input
layer is
a) Hopfi eld networks
b) Bidirectional associative memory (BAM)
c) Both (a) and (b)
d) None of the above

8.11 Th e associative network that allows any of its layers of processing units to be used as the output
layer is
a) Hopfi eld networks
b) Bidirectional associative memory (BAM)
c) Both (a) and (b)
d) None of the above

8.12 Let the present activation of a unit in a bidirectional associative memory (BAM) be 1. If the pres-
ent net input to the unit is 0, then the next activation of the unit will be
a) 0 b) 1
c) Undefi ned d) None of the above

8.13 Let the weight matrix of a bidirectional associative memory (BAM) be given by

W =
−
−
−

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

1 1 1−
1 1 1−
1 1 1−
1 1 1−

If the vector [1, −1, −1] is applied to the Y-layer of the BAM, then what will be the corresponding
activation of the X-layer?
a) [1, −1, −1, −1] b) [−1, −1, −1, 1]
c) Undefi ned d) None of the above

8.14 Which of the following pairs of patterns cannot be stored in an auto-associative neural net?
a) [1, 1, 1, 1] and [1, −1, 1, −1] b) [1, 1, −1, −1] and [−1, 1, −1, 1]
c) Both (a) and (b) d) None of the above

8.15 Which of the following pairs of patterns can be stored in an auto-associative neural net?
a) [1, −1, 1, −1] and [-1, 1, −1, 1] b) [1, −1, 1, −1] and [1, −1, −1, 1]
c) Both (a) and (b) d) None of the above

Answers

 8.1 (d) 8.2 (c) 8.3 (c) 8.4 (a) 8.5 (c)
 8.6 (b) 8.7 (b) 8.8 (c) 8.9 (b) 8.10 (b)
 8.11 (b) 8.12 (b) 8.13 (a) 8.14 (d) 8.15 (b)

Samir Roy_Chapter08.indd 296Samir Roy_Chapter08.indd 296 2/21/2013 3:26:54 PM2/21/2013 3:26:54 PM

Pattern Associators 297

 EXERCISES

8.1 Let [−1, −1, −1, −1], [1, −1, 1, 1], and [1, −1, −1, 1] be three patterns. Identify two among these, say
s (1) and s (2), which can be stored in a 4-input auto-associative neural net. Find the weight matrix
of the net and set its diagonal elements to 0s. Th en carry out the following tasks with the net ob-
tained.
 (i) Test the net with the two stored vectors s1 and s2.
 (ii) Set the third element of s1 and the fi rst element of s2 to 0s, indicating that values for these

elements are missing in the input. Test the network with these noisy inputs.
 (iii) Carry out the task mentioned above with two, instead of one, arbitrarily chosen missing ele-

ments.
 (iv) Insert a mistake in each of the positions mentioned above by fl ipping the corresponding

values (replacing 1 by −1, and vice versa). Test the network with these erroneous inputs.
8.2 Let us consider four pairs of associated patterns as described below.

 (i) s (1) = [−1, −1, −1], and t (1) = [−1, −1]
 (ii) s (2) = [−1, −1, 1], and t (2) = [−1, 1]
 (iii) s (3) = [−1, 1, −1], and t (3) = [1, −1]
 (iv) s (4) = [1, −1, −1], and t (4) = [1, 1]
Construct a hetero-associative net to store these associated vectors carry out the following tasks
with the net thus constructed.
 (i) Test the net with s (1), s (2), s (3) and s (4) as inputs.
 (ii) Set the middle element of each of the vectors s (1), s (2), s (3) and s (4) to 0s. Th en test if the

net is able to tolerate these noisy inputs and recall the correct associations.
 (iii) Carry out the task mentioned above with two, instead of one, arbitrarily chosen missing ele-

ments.
 (iv) Flip the middle element of each of the vectors s (1), s (2), s (3) and s (4), i.e., replace a 1 by

−1 and vice versa. Th en test if the net is able to tolerate these erroneous inputs and recall the
correct associations.

8.3 Obtain a discrete Hopfi eld network to store the pattern [1, 1, 1, 0]. Do the following with the net
thus created.
 (i) Test the net with the given pattern.
 (ii) Test the net with one erroneous element, say, with [1, 1, 1, 1].
 (iii) Test the net with two erroneous elements, say, with [0, 1, 1, 1].

8.4 Design a Bidirectional associative memory (BAM) to store the following associations.
(a) s (1) = [−1, −1, 1, 1], and t (1) = [−1, −1]
(b) s (2) = [1, −1, 1, −1], and t (2) = [−1, 1]
Perform the following tasks with the BAM obtained above.
 (i) Test the BAM with the given vectors both ways, i.e., using the X-layer as the input layer, and

also, using the Y-layer as the input layer.
 (ii) Test the BAM with one missing element in the input patterns.
 (iii) Test the BAM with the input [0, −1, 1, 0]. What is your observation? How does the BAM

behave if you apply the pattern [0, −1] simultaneously to the Y-layer, along with the pattern
[0, −1, 1, 0] applied to the X-layer?

Samir Roy_Chapter08.indd 297Samir Roy_Chapter08.indd 297 2/21/2013 3:26:55 PM2/21/2013 3:26:55 PM

298 Introduction to Soft Computing

 BIBLIOGRAPHY AND HISTORICAL NOTES

Th e fundamental ideas of pattern association with neural nets can be traced to the works of Hebb in late
1940s. Later, this was strengthened by the works of stalwarts like Hopfi eld, Kosko, Kohonen and others.
Hopfi eld proposed his networks, popularly known as Hopfi eld nets, in 1982. Bidirectional Associative
Memories (BAM), another important class of associative memories, was introduced by B. Kosko in 1988.
A selected list of works in this area is given below.

Hebb, D. O. (1949). Th e Organization of Behaviour. New York: John Wiley and Sons.
Hopfi eld, J. J. (1982). Neural networks and physical systems with emergent collective computational

abilities. Proceedings of the National Academy of Sciences of the USA, Vol. 79, No. 8, pp. 2554–2558.
Kohonen, T. (1989). Self-organization and Associative Memory. Berlin: Springer-Verlag.
Kosko, B. (1988). Bidirectional associative memories. IEEE Transactions on Systems, Man and Cybernet-

ics, Vol. 18, No. 1, pp. 49–60.
Kosko, B. (1990). Unsupervised learning in noise. IEEE Transactions on Neural Networks, Vol. 1, No. 1,

pp. 44–57.
Kosko, B. (1991). Neural Networks for Signal Processing. Englewood Cliff s, NJ: Prentice Hall.
Kosko, B. (1992). Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intel-

ligence. Englewood Cliff s, NJ: Prentice Hall.
Xu, Z. B., Leung, Y. and He, X. W. (1994). Asymmetrical bidirectional associtive memories. IEEE Trans-

actions on Systems, Man and Cybernetics, Vol. 24, pp. 1558–1564.

Samir Roy_Chapter08.indd 298Samir Roy_Chapter08.indd 298 2/21/2013 3:26:56 PM2/21/2013 3:26:56 PM

9
COMPETITIVE NEURAL NETS

Key Concepts

Adaptive resonance theory (ART), ART–1, ART–2, Clustering, Code vector, Competition, Exemplar,
Inhibitory weight, Learning vector quantization (LVQ), MaxNet self-organizing map (SOM), Stabili-
ty-plasticity dilemma, Topological neighbourhood, Vigilance parameter, Winner-takes-all

 Chapter Outline

9.1 MaxNet
9.2 Kohonen’s Self-organizing Map (SOM)
9.3 Learning Vector Quantization
9.4 Adaptive Resonance Th eory (ART)

Chapter Summary
Solved Problems
Test Your Knowledge
Exercise
Bibliography and Historical Notes

Th e last two chapters presented certain neural networks for pattern classifi cation and pattern associa-
tion. Artifi cial neural nets are inherently structured to suit such purposes. However, there are situations
when the net is responded by more than one outputs even though it is known that only one of several
neurons should respond. Th erefore, such nets must be designed in a way so that it is forced to make a
decision as to which unit would respond. Th is is achieved through a mechanism called competition and
neural networks which employ competition are called competitive neural nets.

Winner-takes-all is a form of competition where only one among a group of competing neurons has a
non-zero output at the end of computation. However, quite oft en the long iterative process of competi-
tion is replaced with a simple search for the neuron with the largest input, or some other criteria, to select
as the winner.

Th ere are various forms of learning by competitive nets. Maxnet, an elementary competitive net, does
not require any training because its weights are fi xed and pre-determined. Learning Vector Quantization
(LVQ) nets avail training pairs to learn and therefore, the learning is supervised. However, an important
type of competitive nets called the self-organizing map (SOM) which groups data into clusters employs

Samir Roy_Chapter09.indd 299Samir Roy_Chapter09.indd 299 2/21/2013 3:30:19 PM2/21/2013 3:30:19 PM

300 Introduction to Soft Computing

unsupervised learning. A net employing unsupervised learning seeks to fi nd patterns, or regularity, in the
input data. Adaptive Resonance Th eory (ART) nets are also clustering nets.

Th ere are two methods to determine the closeness of a pattern vector to the weight vector. Th ese are,
Euclidean distance, and the dot product. Th e largest dot product corresponds to the smallest angle be-
tween the input and the weight vector if they are both of unit length.

Th e rest of this chapter presents brief discussions on four important competitive networks, viz., the
Maxnet, Kohonen’s self-organizing maps, Learning Vector Quantization (LVQ) nets, and the Adaptive
Resonance Th eory (ART) nets.

9.1 THE MAXNET

MAXNET is the simplest artifi cial neural net that works on the principle of competition. It is a fully con-
nected network with symmetric interconnections and self-loops. Th e architecture of an m-unit MAX-
NET is shown in Fig. 9.1. It consists of m number of cluster units denoted as Y1,…, Ym. Each unit is
directly connected to each other through a link. All the links have the same, fi xed, inhibitory weight −d.
Each unit has a self-loop. Th e weight of a self-loop is 1. Each unit of a MAXNET represents a cluster.
When the net is presented with an unknown pattern, the net iteratively modifi es the activations of its
units until all units except one attain zero activation. Th e remaining unit with positive activation is the
winner.

−δ −δ−δ

−δ−δ

−δ

−δ−δ

11

11

1

Y1YY

Y2YY

Y3YY

YmYY YiYY

Fig. 9.1. Architecture of an m-node MAXNET

9.1.1 Training a MAXNET

Th ere is no need to train a MAXNET because all weights are fi xed. While the self-loops have the weight
1, other interconnection paths have the same inhibitory weight −d, where d has to satisfy the condition

0 < d < 1
m

, m being the number of units in the net.

9.1.2 Application of MAXNET

During application, the MAXNET is presented with an input vector x = [x1,…, xm] by initializing the
activation of the ith unit Yi by xi, for all i = 1 to m. It then iteratively updates the activations of the cluster
units using the activation function

Samir Roy_Chapter09.indd 300Samir Roy_Chapter09.indd 300 2/21/2013 3:30:21 PM2/21/2013 3:30:21 PM

Competitive Neural Nets 301

 y o f y y in if yi in
otherwisei if y i iif yi in_out fi f _)iniin ini

,=yyff)iniin ≥⎧
⎨
⎧⎧
⎩
⎨⎨

0
0 (9.1)

Algorithm MAXNET-Clustering
/* A MAXNET of size m, with cluster units Y1,…, Ym is given. All inter-

connection links have an inhibitory weight of −d and all self loops have
weight 1. The given pattern x = [x1, …, xm] is to be clustered. */

Step 0. Initialize the net inputs to the cluster units.

For i = 1 To m Do y_ini = xi

Step 1. Compute the activation of each cluster unit.

For i = 1 To m Do y o f y y in if yi in
otherwisei if y i iif yi in_out fi f _)iniin ini

,=yyff)iniin ≥⎧
⎨
⎧⎧
⎩
⎨⎨

0
0

Step 2. Test for stopping condition. If all units except one have 0
activation Then return the unit with non-zero activation as the
winner. Stop.

Step 3. Update the net input to each cluster unit.

For i = 1 To m Do y in y out y outy out j
j i

y _y outy out ∑δ∑
Step 4. Go to Step 1.

Fig. 9.2. Algorithm MAXNET Clustering

False

True

Begin

Initialize

Compute activations

Test for stopping
condition

Return winner

End

Compute net inputs

Fig. 9.3. Flow chart for MAXNET Clustering

Samir Roy_Chapter09.indd 301Samir Roy_Chapter09.indd 301 2/21/2013 3:30:23 PM2/21/2013 3:30:23 PM

302 Introduction to Soft Computing

Th e net input to a cluster unit Yi is computed as

 y in y out y outy out j
j i

y _y outy out ∑δ∑ (9.2)

As the clustering process advances, more and more clustering units get deactivated (by attaining an acti-
vation of value 0) until all units except one are deactivated. Th e only one remaining positively activated
unit is the winner. Th e procedure followed by MAXNET to identify the cluster to which a given pattern
x = [x1,…, xm] belongs is described in Algorithm MAXNET-Clustering (Fig. 9.2). Fig. 9.3 pres-
ents a fl owchart of the procedure. Example 9.1 illustrates the procedure followed by a MAXNET.

Example 9.1 (Clustering by MAXNET)

Let us consider the 4-unit MAXNET shown in Fig. 9.4. Th e inhibitory weight is taken as d = 0.2

which satisfi es the condition 0 < d < 1
4

. Th e input pattern x = [x1, x2, x3, x4] = [0.5, 0.8, 0.3, 0.6] is

to be clustered. Th e step-by-step execution of Algorithm MAXNET-Clustering is given

below.

–0.2

–0.2 –0.2 –0.2–0.2

–0.2

11

11

Y1YY Y2YY

Y3YY Y4YY

Fig. 9.4. A 4-unit MAXNET

Step 0. Initialize the net inputs to the cluster units.

y_in1 = 0.5, y_in2 = 0.8, y_in3 = 0.3, y_in4 = 0.6

Iteration #1

Step 1. Compute the activation of each cluster unit.

y_out1 = 0.5, y_out2 = 0.8, y_out3 = 0.3, y_out4 = 0.6.

Step 2. Test for stopping condition. If all units except one have
0 activation Then return the unit with non-zero activa-
tion as the winner. Stop.

Th ere are four units with non-zero activations. Th erefore the stopping criterion (that
all units except one have zero activations) is not satisfi ed. Hence, continue to Step 3.

Step 3. Update the net input to each cluster unit.

y in y out y out j
j

_y out_y
1

y outy out
≠

∑δ∑ = 0.5 − 0.2 × (0.8 + 0.3 + 0.6)

Samir Roy_Chapter09.indd 302Samir Roy_Chapter09.indd 302 2/21/2013 3:30:26 PM2/21/2013 3:30:26 PM

Competitive Neural Nets 303

= 0.5 − 0.2 × 1.7 = 0.5 − 0.34 = 0.16
Similarly,

y_in2 = 0.8 − 0.2 × (0.5 + 0.3 + 0.6) = 0.8 − 0.28 = 0.52
y_in3 = 0.3 − 0.2 × (0.5 + 0.8 + 0.6) = 0.3 − 0.38 = − 0.08
y_in4 = 0.6 − 0.2 × (0.5 + 0.8 + 0.3) = 0.6 − 0.32 = 0.28

Step 4. Go to Step 1.

Iteration #2
Step 1. Compute the activation of each cluster unit.

y_out1 = 0.16, y_out2 = 0.52, y_out3 = 0, y_out4 = 0.28

Step 2. Test for stopping condition. If all units except one have
0 activation Then return the unit with non-zero activation
as the winner. Stop.

Th ere are three units with non-zero activations. Th erefore the stopping criterion (that
all units except one have zero activations) is not satisfi ed. Hence, continue to Step 3.

Step 3. Update the net input to each cluster unit.

y in y out y out j
j

_y out_y
1

y outy out
≠

∑δ∑ = 0.16 − 0.2 × (0.52 + 0 + 0.28)

= 0.16 − 0.2 × 0.8 = 0.16 − 0.16 = 0

Similarly,
y_in2 = 0.432
y_in3 < 0
y_in4 = 0.144

Step 4. Go to Step 1.
Th e calculations till the net comes to a halt is shown in Table 9.1. We see that the net
successfully identifi es the unit Y2 as having maximum input as all the other activations
have been reduced to 0. Hence Y2 is the winner and the given input pattern is clustered
to the cluster unit Y2.

Table 9.1. Clustering by MAXNET

y_in y_out

y_in1 y_in2 y_in3 y_in4 y_out1 y_out2 y_out3 y_out4

0 0.5 0.8 0.3 0.6 0.5 0.8 0.3 0.6

1 0.16 0.52 < 0 0.28 0.16 0.52 0 0.28

2 0 0.432 < 0 0.144 0 0.432 0 0.144

3 < 0 0.403 < 0 0.058 0 0.403 0 0.058

4 < 0 0.391 < 0 < 0 0 0.391 0 0

Samir Roy_Chapter09.indd 303Samir Roy_Chapter09.indd 303 2/21/2013 3:30:29 PM2/21/2013 3:30:29 PM

304 Introduction to Soft Computing

9.2 KOHONEN’S SELF-ORGANIZING MAP (SOM)

Kohonen’s self-organizing map (SOM) is a clustering neural net that works on the principle of winner-
takes-all. Th e unique feature of Kohonen’s self-organizing map is the existence of a topological structure
among the cluster units. It is assumed that the output (or, cluster) units are arranged in one- or two-dimen-
sional arrays. Given a cluster unit Yj, its neighborhood of radius R is the set of all units within a distance of R
around Yj. Th e idea is, patterns close to each other should be mapped to clusters with physical proximity.

A SOM that is used to cluster patterns of length m into n clusters should have m number of input
units and n number of output, or cluster, units. Th e number of clusters is restricted by the number
of output units n. Learning takes place with the help of a given set of patterns, and the given number
of clusters into which the patterns are to be clustered. Initially, the clusters are unknown, i.e., the
knowledge about the patterns that form a particular cluster, or the cluster to which a pattern belongs,
is absent at the beginning. During the clustering process, the network organizes itself gradually so
that patterns those are close to each other form a cluster. Hence, the learning here is unsupervised.
Th e weight vector associated with a cluster unit acts as the exemplar for all patterns belonging to the
cluster. During training, the cluster unit whose weight vector is closest to the given input pattern is
the winner. Th e weight vectors of all cluster units in the neighborhood of the winner are updated.

Let s1, s2, …, sp be a set of p number of patterns of the form si = [xi1, xi2, …, xim], to be clustered into n
clusters C1, C2, …, Cn. Th e subsequent neural net architecture and algorithm enables a Kohonen’s SOM
to accomplish the clustering task stated above.

9.2.1 SOM Architecture

Th e architecture of a SOM is shown in Fig. 9.5. It consists of m input units X1, X2, …, Xm and n output units
Y1, Y2, …, Yn. Each input unit Xi is connected to each output unit Yj through an edge with weight wij. Each
output unit represents a cluster and these cluster units may be arranged in one, or two, dimensional arrays.
Th e topological neighbourhood of a cluster unit in the Kohonen’s SOM is shown in Fig. 9.6. Fig. 9.6(a), (b),
and (c) show 0, 1, 2 neighbourhood of a given cluster (represented as ⊗) in one and two dimensional array.

x1xx

xixx

xmxx XmXX

XiXX

: :

: :

X1XX

wiww j
wiww n

wmww 1

wmww j

wmww n

w1 ww j

w1ww 1
C1

C2CC

C3CC

w1ww n

wiww 1

YjYY

YnYY

Y1YY

Fig. 9.5. Architecture of an m-input n-output SOM net

|←|| R = 0 →|
|←⎯|| ⎯⎯⎯

⎯ ⎯⎯⎯ ⎯⎯⎯ ⎯⎯⎯

R = 1 ⎯⎯→⎯⎯ |→→

|←⎯⎯|| R = 2 |⎯⎯⎯⎯⎯⎯⎯ ←←⎯⎯
(a) 0, 1, 2 neighbourhood in one dimension

()[]

Fig. 9.6. Neighbourhood of a cluster unit in SOM

Samir Roy_Chapter09.indd 304Samir Roy_Chapter09.indd 304 2/21/2013 3:30:30 PM2/21/2013 3:30:30 PM

Competitive Neural Nets 305

2 neighbourhood

1 neighbourhood

0 neighbourhood

(b) 0, 1, 2 neighbourhood in two dimensional rectangular grid

⊗

2 neighbourhood

1 neighbourhood

0 neighbourhood

(c) 0, 1, 2 neighbourhood in two dimensional hexagonal grid

⊗

⊗

Fig. 9.6. (Continued)

Algorithm Learning-by-SOM

/* Given a SOM with m input units X1, X2, …, Xm and n output units Y1, Y2, …,
Yn. It is to be trained with a set of p number of patterns s1, s2, …, sp. */

Step 0. Initialize

i) weight matrix, i.e., wij for all i and j
ii) Topological neighbourhood R
iii) Learning rate h.

Step 1. While stopping condition is not satisfied
Do Steps 2-8.

Step 2. For each training vector si Do Step 3 to 5.

Step 3. For each exemplar /code vector w*j
Do find the distance D(j) between si and w*j.

D j i iji
i

()j ()x wi iw ji(x=∑ 2

Step 4. Find index J so that D(J) is minimum.

Step 5. Update the weights of all units within the specified neighbour-
hood of J.

For all J, such that J − R ≤ j ≤ J + R Do
For all i = 1 to m Do

w w ld oldij ij i iji()new ()old [(x wi iw ji)]= +w ()old ×[xη
Step 6. Update the learning rate, h = k × h, 0 < k < 1.

Samir Roy_Chapter09.indd 305Samir Roy_Chapter09.indd 305 2/21/2013 3:30:31 PM2/21/2013 3:30:31 PM

306 Introduction to Soft Computing

Step 7. If required, reduce R.

Step 8. Test whether the stopping condition is satisfied or not.

Fig. 9.7. Algorithm Learning-by-SOM

9.2.2 Learning by Kohonen’s SOM

Let { s1, s2, …, sp} be the set of training patterns where each si = [xi1, xi2, …, xim] is an m-dimensional vec-
tor. Learning by the SOM net starts with initializing the weights, the topological neighbourhood param-
eters, and the learning rate parameters. As mentioned earlier, SOM employs winner-takes-all strategy to
organize itself into the desired clusters. Th e weight vector associated with a cluster unit represents an ex-
emplar, or code-vector. Training takes place through a number of epochs. During an epoch of training,
each training vector is compared with the exemplars and its distance from each exemplar is calculated.
Th e cluster unit with least distance is the winner. Th e weight vector of the winner, along with the weight
vectors of all units in its neighbourhood, is updated. Aft er each epoch, the learning rate, and if necessary,
the topological neighbourhood parameter, are updated. Th e learning algorithm is presented in Algo-
rithm Learning-by-SOM (Fig. 9.7). Th e corresponding fl owchart is given in Fig. 9.8.

False

True

False

True

Begin

Initialize

Test for stopping
condition

Take a new training vector s ∈ {s1, …, sp}

End

Find the distance D(j) of s from the code-vectors

Identify J such that D(J) is minimal among all distances

Update weights of the code-vector
for Yj YY and all code-vectors in the

neighbourhood of YjYY

No more training
vector?

Change learning rate h andh
neighbourhood R, if required

Fig. 9.8. Flow chart for SOM learning

Samir Roy_Chapter09.indd 306Samir Roy_Chapter09.indd 306 2/21/2013 3:30:33 PM2/21/2013 3:30:33 PM

Competitive Neural Nets 307

9.2.3 Application

During application, the input pattern is compared with the exemplar/code vector in terms of the dis-
tance between them. Th e cluster unit whose code vector is at a least distance from the input pattern is
the winner. Th e input pattern belongs to the corresponding cluster.

Th e learning and application process of Kohonen’s self-organizing map are illustrated in Example 9.2
and Problem 9.1 in the Solved Problems section respectively.

Example 9.2 (Learning by Kohonen’s self-organizing map)

Suppose there are four patterns s1 = [1, 0, 0], s2 = [0, 0, 1], s3 = [1, 1, 0] and s4 = [0, 1, 1] to be clus-
tered into two clusters. Th e target SOM, as shown in Fig. 9.9, consists of three input units and two
output units.

x1xx

x2xx

x3xx X3XX

X2XX

X1XX

Y1YY

C1

C2CC
Y2YY

w11ww

w12ww

w21ww

w22ww

w32ww

w31ww

Fig. 9.9. Target SOM network

Th e exemplar, or code-vector, for the clusters C1 and C2, represented by the cluster units Y1 and Y2
respectively, are given by the 1st and the 2nd column of the weight matrix

W
w w
w w
w w

=
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

11 12

21 22

31 32

Hence W*1 = [w11, w21, w31]T and W*2 = [w12, w22, w32]T are the code-vectors for the clusters C1 and
C2 respectively. Now les us denote the input vectors as s1 = [1, 0, 0], s2 = [0, 0, 1], s3 = [1, 1, 0] and
s4 = [0, 1, 1]. Th e successive steps of the learning process are described below.

Step 0. Initialize

 (i) Weight matrix W is randomly initialized as

W =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

.

.

.

5 3.
8 5.
4 3.

 (ii) Topological neighbourhood is initialized to R = 0, because there are only two
cluster units.

 (iii) Learning rate h = 0.8. It will be geometrically decreased with a factor of 0.5 aft er
each epoch of training.

Samir Roy_Chapter09.indd 307Samir Roy_Chapter09.indd 307 2/21/2013 3:30:34 PM2/21/2013 3:30:34 PM

308 Introduction to Soft Computing

Step 1. While stopping condition is not satisfied

 Do Steps 2-8.

When the weight adjustment Δwij < 0.01 the net is assumed to have converged. Initially
the stopping condition is obviously false. Hence we continue to Step 2.

Step 2. For each training vector si Do Step 3 to 5.

We start training with the fi rst vector s1 = [1, 0, 0].

Step 3. For each exemplar /code vector w*j
Do find the distance D(j) between si and w*j.

D j i iji
i

()j ()x wi iw ji(x=∑ 2

D (1) = distance between s1 and W*1

 = (1 − 0.5)2 + (0 − 0.8)2 + (0 − 0.4)2

 = 0.25 + 0.64 + 0.16
 = 1.05

D (2) = distance between s1 and W*2

 = (1 − 0.3)2 + (0 − 0.5)2 + (0 − 0.3)2

 = 0.49 + 0.25 + 0.09
 = 0.83

Step 4. Find index J so that D(J) is minimum.

Since, D (2) < D (1), s1 is closer to C2, and Y2 is the winner. Th erefore, the code vector
W*2 is to be adjusted.

Step 5. Update the weights of all units within the specified
neighbourhood of J.

For all J, such that J − R ≤ j ≤ J + R Do
For all i = 1 to m Do

w w ld oldij ij i iji()new ()old [(x wi iw ji)]= +w ()old ×[xη

Since R = 0, we need to adjust the weight vector of the winner only.
w12 (new) = w12 (old) + h × (x1 − w12 (old))

 = 0.3 + 0.8 × (1 − 0.3)
 = 0.3 + 0.8 × 0.7
 = 0.86

w22 (new) = w22 (old) + h × (x2 – w22 (old))
 = 0.5 + 0.8 × (0 − 0.5)
 = 0.5 − 0.4
 = 0.1

Samir Roy_Chapter09.indd 308Samir Roy_Chapter09.indd 308 2/21/2013 3:30:36 PM2/21/2013 3:30:36 PM

Competitive Neural Nets 309

w32 (new) = w32 (old) + h × (x3 – w32 (old))

 = 0.3 + 0.8 × (0 − 0.3)

 = 0.3 − 0.24
 = 0.06

Hence, the weight matrix aft er training with the 1st input vector in the 1st epoch is

W =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

0 5 0 86
0 8 0 1
0 4 0 06

. .5 0

. .8 0

. .4 0

We now proceed to train the SOM with the second pattern.

Step 2. For each training vector si Do Step 3 to 5.

Aft er training with the fi rst vector s1 = [1, 0, 0], we proceed with the second pattern
s2 = [0, 0, 1].

Step 3. For each exemplar /code vector w*j

Do find the distance D(j) between si and w*j.

D j i iji
i

()j ()x wi iw ji(x=∑ 2

D (1) = distance between s2 and W*1

 = (0 − 0.5)2 + (0 − 0.8)2 + (1 − 0.4)2

 = 0.25 + 0.64 + 0.36
 = 1.25

D (2) = distance between s2 and W*2

 = (0 − 0.86)2 + (0 − 0.1)2 + (1 − 0.06)2

 = 0.74 + 0.01 + 0.88
 = 1.63

Step 4. Find index J so that D(J) is minimum.

Since, D (1) < D (2), s2 is closer to C1, and Y1 is the winner. Th erefore, the code vector
W*1 is to be adjusted.

Step 5. Update the weights of all units within the specified
neighbourhood of J.

For all J, such that J − R ≤ j ≤ J + R Do
For all i = 1 to m Do

w ld oldij ij i iji()new ()old [(x wi iw ji)]= +w ()old ×[xη

Since R = 0, we need to adjust the weight vector of the winner only.

Samir Roy_Chapter09.indd 309Samir Roy_Chapter09.indd 309 2/21/2013 3:30:39 PM2/21/2013 3:30:39 PM

310 Introduction to Soft Computing

w11 (new) = w11 (old) + h × (x1 − w11 (old))

 = 0.5 + 0.8 × (0 − 0.5)

 = 0.5 − 0.8 × 0.5
 = 0.1

w21 (new) = w21 (old) + h × (x2 – w21 (old))

 = 0.8 + 0.8 × (0 − 0.8)

 = 0.8 − 0.64
 = 0.16

w31 (new) = w31 (old) + h × (x3 – w31 (old))

 = 0.4 + 0.8 × (1 − 0.4)
 = 0.4 + 0.48
 = 0.88
Hence, the weight matrix W aft er training with the second vector in the fi rst epoch is

W =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

0 1 0 86
0 16 0 1
0 88 0 06

. .1 0

. .16 0

. .88 0

In this way learning with the rest of the patterns s3 = [1, 1, 0] and s4 = [0, 1, 1] takes place by repeating
Steps 3–5. Table 9.2 shows the outline of learning during the fi rst epoch.

Table 9.2. Learning by the SOM during the fi rst epoch

Training Patterns
s = (x1, x2, x3)

Squared
Euclidean
Distance

Winner New Code Vectors

D(1) D(2) C1 (w11,w21,w31) C2 (w12,w22,w32)

0 (0.5, 0.8, 0.4) (0.3, 0.5, 0.3)

1 s1 = (1, 0, 0) 1.05 0.82 C2 No change (0.86, 0.1, 0.06)

2 s2 = (0, 0, 1) 1.25 1.63 C1 (0.1, 0.16, 0.88) No change

3 s3 = (1, 1, 0) 2.29 1.71 C2 No change (0.97, 0.82, 0.01)

4 s4 = (0, 1, 1) 1.53 1.95 C1 (0.02, 0.83, 0.98) No change

So, code-vector W*2 gets modifi ed as a result of training with the patterns s1 and s3 while training with
the patterns s2 and s4 results in adjustment of the code-vector W*1.
Th e weight matrix obtained aft er the fi rst epoch is

W1WW
0 02 0 97
0 83 0 82
0 98 0 01

=
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

. .02 0

. .83 0
.98 0

Samir Roy_Chapter09.indd 310Samir Roy_Chapter09.indd 310 2/21/2013 3:30:42 PM2/21/2013 3:30:42 PM

Competitive Neural Nets 311

On further computation, the weight matrix aft er the second epoch becomes

W2WW
0 01 0 99
0 7 0 7
0 99 0

=
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

. .01 0

. .7 0

Th e training process converges aft er 19 epochs when the weight matrix becomes (approximately)

W19WW
0 1
0 6 0 6
1 0

=
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

. .6 0

Fig. 9.10 shows the SOM obtained for the given clustering problem.

x1xx

x2xx

x3xx X3XX

X2XX

X1XX

Y1YY

C1

C2CC
Y2YY

0

1

0.6

0.6

0

1

Fig. 9.10. Resultant net after training

9.3 LEARNING VECTOR QUANTIZATION (LVQ)

Another pattern clustering net based on the winner-takes-all strategy is Learning Vector Quantization
(LVQ) nets. However, unlike Kohonen’s SOM, LVQ follows supervised learning, instead of unsuper-
vised learning. Th e architecture of LVQ is essentially same as that of SOM except that the concept of
topological neighbourhood is absent here. Th ere are as many input units as the number of components
in the input patterns and each output unit represents a known cluster. Th e details of LVQ learning are
described below.

9.3.1 LVQ Learning

LVQ nets undergo a supervised learning process. Th e training set consists of a number of training
vectors, each of which is designated with a known cluster. Aft er initializing the weight matrix of the
LVQ net, it undergoes training through a number of epochs. During each epoch, the weights are
adjusted to accommodate the training vectors on the basis of their known clusters. Th e objective is
to fi nd the output unit that is closest to the input vector. In order to ensure this the algorithm fi nds
the code vector w closest to the input vector s. If s and w map to the same cluster, then w is moved
closer to s. Otherwise, w is moved away from x. Let t be the cluster for the training vector s, and Cj

Samir Roy_Chapter09.indd 311Samir Roy_Chapter09.indd 311 2/21/2013 3:30:44 PM2/21/2013 3:30:44 PM

312 Introduction to Soft Computing

be the cluster represented by Yj, the jth output unit of the LVQ net. Th e procedure followed by LVQ
learning is presented in Algorithm LVQ-Learning (Fig. 9.11). Fig. 9.12 presents the LVQ
learning process in fl owchart form.

Algorithm LVQ-Learning

/* There are p number of m-dimensional training patterns s1, s2, …, sp,and
n number of clusters C1, …, Cn. The training set consists of the pairs (s1,
t1), (s2, t2), …, (sp, tp) where the pair (si, ti) indicates that pattern si
belongs to cluster ti ∈ { C1, …, Cn}. We have to make an m-input n-output LVQ
net learn these training set. */

Step 0. Initialize

i) The weight matrix, i.e., wij for all i and j. A simple
technique is to select one training vector from each
known cluster and assign them directly to the columns of
the weight matrix so that each of them becomes a code
vector. Rest of the input patterns are used for train-
ing.)

ii) The learning rate.

Step 1. While stopping condition is not satisfied Do
Step 2 to Step 7.

Step 2. For each input training vector s Do Steps 3 to Step 5.

Step 3. Find the distance D(j) of s from each exemplar / code-vector
W*j.

D j i ij
i

m

)j ()x wi iw j= (x
=

∑ 2

1

Step 4. Find the index J for which D(J) is minimum.

Step 5. Update code-vector W*J.

If t = = Cj Then /* bring Cj closer to s */

w oldJ J jw*J e()newnewnew ()old()ld [(s w j*)]= +w J*ww ()old × [sη

Else /* take Cj away from s */

w w oldJ J jw*J e()newnewnew ()old()old [(s w j*)]= −w J*ww ()old × [sη

Step 6. Reduce the learning rate, h = k × h, 0 < k < 1.

Step 7. Test for stopping condition.

Fig. 9.11. Algorithm LVQ-Learning

Samir Roy_Chapter09.indd 312Samir Roy_Chapter09.indd 312 2/21/2013 3:30:47 PM2/21/2013 3:30:47 PM

Competitive Neural Nets 313

False

True False

True

Begin

Initialize

Test for stopping
condition

Take a new training vector s ∈{s1, …, sp}
with designated cluster t.tt

End

Find the distance D(j) of s
from the code-vectors

Identify J such that D(J) is
minimal among all distances

t = = CJC ?

Reduce
learning rate

Bring CJ C closer to s Take CJ C away from s

True FalseNo more
training pattern?

Fig. 9.12. Flow chart for LVQ Learning

9.3.2 Application

During application, the input pattern is compared with the exemplar/code vector in terms of the dis-
tance between them. Th e cluster unit whose code vector is at a least distance from the input pattern is
the winner. Th e input pattern belongs to the corresponding cluster.

Th e learning and application process of LVQ nets are illustrated in Examples 9.3 and 9.4 respectively.

Samir Roy_Chapter09.indd 313Samir Roy_Chapter09.indd 313 2/21/2013 3:30:47 PM2/21/2013 3:30:47 PM

314 Introduction to Soft Computing

Example 9.3 (Learning by LVQ net)

Five patterns and their corresponding designated clusters are given in Table 9.3. A neural net
is to be obtained through Learning Vector Quantization (LVQ) method for the given set of
vectors.

As there are 4 components in the training vectors and two clusters, the target net shall have 4
inputs and 2 cluster units. Th e exemplars, or code vectors, are initialized with the input vectors 1
and 4. Th e rest of the vectors, i.e., 2, 3, 5 are used for training. Fig. 9.13 shows the initial situation.
Subsequent steps of the learning process are described below.

Table 9.3. Training set

Training Vector
s = [x1, x2, x3, x2]

Cluster

1 s1 = [1, 0, 0, 0] C1

2 s2 = [0, 1, 0, 0] C1

3 s3 = [1, 1, 0, 0] C1

4 s4 = [0, 0, 0, 1] C2

5 s5 = [0, 0, 1, 1] C2

x1xx

x2xx

x3xx X3XX

X2XX

X1XX

x4xx X4XX

Y1YY
C1

s2s = [0, 1, 0, 0] : Cluster C1
s3s = [1, 1, 0, 0] : Cluster C1
s5s = [0, 0, 1, 1] : Cluster C2CC

Training Vectors :
C2CC

Y2YY

1

0

0

0

0

0
0

1

W =

w11ww

w21ww

w31ww

w41ww w42ww

w32ww

w22ww

w12ww

=

1

0

0
0

0

0

0
1

Fig. 9.13. Initial confi guration

Step 0. Initialize the weight matrix, and the learning rate.

Th e weight matrix is initialized with the patterns s1 = [1, 0, 0, 0] and s4 = [0, 0, 0, 1].
Th e resultant weight vector is shown in Fig. 9.13. We fi x the learning rate h = 0.2 and
decrease it geometrically aft er each iteration by a factor of 0.5.

Step 1. While stopping condition is not satisfied Do
Step 2 to Step 7.

Samir Roy_Chapter09.indd 314Samir Roy_Chapter09.indd 314 2/21/2013 3:30:48 PM2/21/2013 3:30:48 PM

Competitive Neural Nets 315

We stop when the process converges, i.e., there is no perceptible change in the code
vectors. Obviously, initially the stopping condition is false.

Step 2. For each input training vector s Do Step 3 to Step 5.
Th e fi rst training vector is s2 = [0, 1, 0, 0] that maps to cluster C1.

Step 3. Find the distance D(j) of s from each exemplar / code-
vector W*j.

i iji
i

m

()j ()x wi iw ji= (x
=
∑ 2

1

Th e distance of s2 = (0, 1, 0, 0) from the two code-vectors are calculated.

D

D x

i i
i

i

() ()i i() () () () ()

() (

()x wi iw () () () (2)1
2

1

4
2 2 2 2() ()() ()xi (((((((

−xi

=
∑

wwi
i

2
2

1

4
2 2 2 20 0 1 0 0 0 0 1 2) (2) (2) (2) (2)

=
∑∑ 0(1(0(0(=

Step 4. Find the index J for which D(J) is minimum.

As D(1) = D(2), we resolve the tie by arbitrarily selecting J = 2.

Step 5. Update code-vector W*J.

If t = = Cj Then /* bring Cj closer to s */

w ld oldJ Jw j()newnewnewnew ()old [(s w j*)]= +wwww ()old ×[sη

Else /* take Cj away from s */

w w ld oldJ Jw jw()newnewnewnew ()old [(s w j*)]= −www)old ×[sη

As per Table 9.4, t = C1 and therefore, t ≠ Cj here. Hence, the code vector W*2 should be
moved away from the training pattern s2 = (0, 1, 0, 0) . Th erefore,

w12(new) = w12(old) − h × [x1 – w12(old)]

 = 0 − 0.2 × (0 − 0)

 = 0.

w22(new) = w22(old) − h × [x2 – w22(old)]

 = 0 − 0.2 × (1 − 0)

 = −0.2

Similarly, w32(new) = 0, and w42(new) = 1.2.
Hence the new weight matrix is,

Samir Roy_Chapter09.indd 315Samir Roy_Chapter09.indd 315 2/21/2013 3:30:48 PM2/21/2013 3:30:48 PM

316 Introduction to Soft Computing

W

w w
w w
w w
w w

()new .

.

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

=

⎡11 12

21 22

31 32

41 42

1 0
0 0− 2
0 0
0 1 2⎣⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

We now go back to Step 2 to train the net with the next training pattern.

Step 2. For each input training vector s Do Steps 3 to Step 5.
Th e second training pattern is s3 = [1, 1, 0, 0] that maps to cluster C1.

Step 3. Find the distance D(j) of s from each exemplar / code-
vector W*j.

D j i iji
i

m

()j ()x wi iw ji= (x
=
∑ 2

1

Th e distance of s3 = [1, 1, 0, 0] from the two code-vectors are calculated.

D

D x

i i
i

i

() ()xi iw() () () () ()

() (

)x wi iw () () () (1)1
2

1

4
2 2 2 2() ()() ()xi (((((((

−xi

=
∑

wwi
i

2
2

1

4
2 2 2 21 0 1 0 2 2 2 88) (2) (2 .)2 ()0 0 (.0 1) .2 3

=
∑∑ 1(1(0 0

Step 4. Find the index J for which D(J) is minimum.

As D(1) < D(2), J = 1.

Step 5. Update code-vector W*J.

If t = = Cj Then /* bring Cj closer to s */

w ld oldJ Jw j()newnewnewnew ()old [(s w j*)]= +wwww ()old ×[sη

Else /* take Cj away from s */

w w ld oldJ Jw jw()newnewnewnew ()old [(s w j*)]= −www)old ×[sη

As per Table 9.4, t = C1 and therefore, t = Cj here. Hence, the code vector W*1 should be
moved closer to the training pattern s3 = [1, 1, 0, 0]. Th erefore,

w11(new) = w11(old) + h × [x1 – w11(old)]

 = 1 − 0.2 × (1 − 1)
 = 1

w21(new) = w21(old) + h × [x2 – w21(old)]

 = 0 + 0.2 × (1 − 0)
 = 0.2

Similarly, w31(new) = 0, and w41(new) = 0.

Samir Roy_Chapter09.indd 316Samir Roy_Chapter09.indd 316 2/21/2013 3:30:53 PM2/21/2013 3:30:53 PM

Competitive Neural Nets 317

Hence the new weight matrix is,

W

w w
w w
w w
w w

()new

.

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

=
−

11 12

21 22

31 32

41 42

1 0
0 2. 0 2.
0 0
0 1 22

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Th e calculations go on in this way. Details of the training during the fi rst epoch are shown in
Table 9.4.

Table 9.4. First epoch of LVQ learning

Training
Pattern
(s)

Squared
Euclidean
Distance

Winner Desi-
gnated
cluster

New Code Vectors

D(1) D(2) C1 C2

0 (1, 0, 0, 0,) (0, 0, 0, 1)

1 (0, 1, 0, 0) 2 2 C2 C1 - (0, −.2, 0, 1.2)

2 (1, 1, 0, 0) 1 3.88 C1 C1 (1, .2, 0, 0) -

3 (0, 0, 1, 1) 3.04 1.08 C2 C2 - (0, −.16, .2, .16)

Hence, the weight matrix aft er the fi rst epoch is

W

w w
w w
w w
w w

1WW

11 12

21 22

31 32

41 42

1 0
0 2 0 16
0 0 2
0 1

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

=
−. .2 0
.
. 6166

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Th rough calculations we see that the weight matrices W2 and W3 aft er the second and the third epoch,
respectively, take the forms

W W2 3W WW W

0 91 0
0 352 0 144
0 0 28
0 1 14

0 871 0
0 415 0−

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎦⎦
⎥⎥

=
−. .352 0

.
.

.

. .415 0..
.
.

137
0 0 316
0 1 14

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Th e process takes 12 epochs to converge, when the weight matrix becomes

W =
−

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

0 836 0
0 471 0 13
0 0 35
0 1 13

.

. .471 0
.
.

Hence the code vectors arrived at are W*1 = [0.836, 0.471, 0, 0]T, and W*2 = [0, −0.13, 0.35, 1.13]T rep-
resenting the clusters C1 and C2, respectively. Fig. 9.14 shows the LVQ net obtained.

Samir Roy_Chapter09.indd 317Samir Roy_Chapter09.indd 317 2/21/2013 3:30:58 PM2/21/2013 3:30:58 PM

318 Introduction to Soft Computing

x1xx

x2xx

x3xx X3XX

X2XX

X1XX

x4xx X4XX

Y1YY C1

C2CCY2YY

0.836

0

0.471

−0.13
0

0.3
0

1.13

Fig. 9.14. Final LVQ net obtained

Example 9.4 (Clustering application of LVQ net)

Th e LVQ net constructed in Example 9.3 can now be tested with the input patterns given in Table
9.3. Moreover, we apply a new input pattern s = [1, 1, 1, 0] which is to be clustered by the resultant
net. Th e clustering method is rather simple and is based on the principle of the winner-takes-all.
It consists of fi nding the distance of the given input pattern from each of the code vectors. Th e
nearest code vector, i.e., the code vector have least distance, is the winner. Table 9.5 presents the
summary of calculations for these patterns.

Results shown in Table 9.5 reveal that the LVQ net arrived at through the aforesaid learning
process is working correctly. All the input patterns are clustered by the net in expected manner.
Clusters returned by the net for patterns s1 to s5 match with their designated clusters in the train-
ing data. Th e new pattern s = [1, 1, 1, 0] is placed in cluster C1. Th is is expected because this pat-
tern has greater similarity with patterns s1, s2, and s3, than with the rest of the patterns s4 and s5.

Table 9.5. Clustering application of LVQ net

Input Pattern Squared Euclidean Distance Winner

D(1) D(2)

1 (1, 0, 0, 0) 0.249 2.416 C1

2 (0, 1, 0, 0) 0.979 2.676 C1

3 (1, 1, 0, 0) 0.805 3.676 C1

4 (0, 0, 0, 1) 1.921 0.156 C2

5 (0, 0, 1, 1) 2.921 0.456 C2

6 (1, 1, 1, 0) 1.805 3.976 C1

9.4 ADAPTIVE RESONANCE THEORY (ART)

Adaptive Resonance Th eory (ART) nets were introduced by Carpenter and Grossberg (1987, 1991) to
resolve the so called stability-plasticity dilemma. ART nets learn through unsupervised learning where
the input patterns may be presented in any order. Moreover, ART nets allow the user to control the de-

Samir Roy_Chapter09.indd 318Samir Roy_Chapter09.indd 318 2/21/2013 3:31:03 PM2/21/2013 3:31:03 PM

Competitive Neural Nets 319

gree of similarity among the patterns placed in the same cluster. It provides a mechanism to include a
new cluster unit for an input pattern which is suffi ciently diff erent from all the exemplars of the clusters
corresponding to the existing cluster units. Hence, unlike other ANNs, ART nets are capable of adaptive
expansion of the output layer of clustering units subject to some upper bound.

9.4.1 The Stability-Plasticity Dilemma

Usually, a neural net is trained with the help of a training set of fi xed number of patterns. Learning by
the net is accomplished through a number of epochs, where each epoch consists of application of the
training patterns in a certain sequence and making suitable adjustments in the interconnection weights
under the infl uence of each of these training patterns.

Depending on the number of epochs of training, a training pattern is presented to the net multiple
times. As the interconnection weights of a net change with each pattern during learning, a training pattern
that is placed in a cluster may be placed on a diff erent cluster later on. Th erefore, a training pattern may os-
cillate among the clusters during net learning. In this situation, the net is said to be unstable. Hence, a net
is said to be stable if it attains the interconnection weights (i.e., the exemplars) which prevent the training
patterns from oscillating among the clusters. Usually, stability is achieved by a net by monotonically de-
creasing the learning rate as it is subjected to the same set of training patterns over and over again.

However, while attaining stability in the way mentioned above, the net may lose the capacity to read-
ily learn a pattern presented for the fi rst time to the net aft er a number of epochs have already taken
place. In other words, as the net attains stability, it loses plasticity. By plasticity of a net we mean its
readiness to learn a new pattern equally well at any stage of training.

ART nets are designed to be stable as well as plastic. It employs a feedback mechanism to enable the
net learn a new pattern at any stage of learning without jeopardizing the patterns already learnt. Th ere-
fore, practically, it is able to switch automatically between the stable and plastic mode.

9.4.2 Features of ART Nets

Th e main features of ART nets are summarized below.
 (i) ART nets follow unsupervised learning where the training patterns may be presented in any order.
 (ii) ART nets allow the user to control the degree of similarity of patterns placed on the same

cluster. Th e decision is taken on the basis of the relative similarity of an input pattern to a
code-vector (or, exemplar), rather than the distance between them.

 (iii) Th ere is scope for inclusion of additional cluster units during the learning phase. If an input
pattern is found to be suffi ciently diff erent from the code-vector of the existing clusters, a new
cluster unit is introduced and the concerned input vector is placed on this new cluster.

 (iv) ART nets try to solve the stability-plasticity dilemma with the help of a feedback mechanism
between it’s two layers of processing units one of which is the processing layer while the other
is the output, or the competitive clustering layer. Th e feedback mechanism empowers the net
to learn new information without destroying old information. Hence the system is capable of
automatically switching between stability and plasticity.

 (v) ART nets are able to learn only in their resonant states. Th e ART net is in resonant state when
the current input vector matches the winner code-vector (exemplar) so close that a reset signal
is not generated. Th e reset signal inhibits the ART to learn.

 (vi) Th ere are two kinds of ARTs, viz., ART1 and ART2. ART1 works on binary patterns and ART2
is designed for patterns with real, or continuous, values.

Samir Roy_Chapter09.indd 319Samir Roy_Chapter09.indd 319 2/21/2013 3:31:03 PM2/21/2013 3:31:03 PM

320 Introduction to Soft Computing

9.4.3 ART 1

As stated earlier, ART1 is designed to cluster binary input patterns. It provides the user the power to
control the degree of similarity among the patterns belonging to the same cluster. Th is is achieved with
the help of the so called vigilance parameter r. One important feature of ART1 is, it allows the training
patterns to be presented in any order. Moreover, the number of patterns used for training is not neces-
sarily known in advance. Hence, a pattern may be presented to the net for the fi rst time at an interme-
diate stage of ART1 learning. Th e architecture and learning technique of ART1 nets are given below.

Architecture Fig. 9.15 shows a simplifi ed view of the structure of an m-input n-output (expand-
able) ART1 net. It includes the following constituent parts :

A combination of two layers of neurons, known together as the 1. comparison layer, and symboli-
cally expressed as the F1 layer
An output, or clustering, layer of neurons known as the 2. recognition layer, referred to as the F2
layer. Th is is the competitive layer of the net.
A 3. reset unit R.
Various interconnections. 4.

Th e comparison layer includes two layers of neurons, the Input Layer F1(a) consisting of the units S1, S2,
…, S m and the Interface Layer F1(b) with the units X1, X2, …, Xm. Th e input layer F1(a) do not process the
input pattern but simply pass it on to be interface layer F1(b). Each unit Si of F1(a) layer is connected to
the corresponding unit Xi of the interface layer.

Bottom-up weights bi ,
i = 1, 2, …, m, and
j = 1, 2, …, n.

Top-down weights t ji,
j = 1, 2, …, n, and
i = 1, 2, …, m. t ji ∈{0, 1}

Y1YY YjYY YnYY

X1XX XiXX XmXX

S1 Si Sm

R

Fig. 9.15. Simplifi ed ART1 architecture

Th e role of the interface layer F1(b) is to broadcast the input pattern to the recognition layer F2. More-
over, the F1(b) layer takes part in comparing the input pattern with the winning code-vector. If the input
pattern and the winning code-vector matches suffi ciently closely, which is determined with the help of
the vigilance parameter r, the winning cluster unit is allowed to learn the pattern. Otherwise, the reset
signal is switched on, and the cluster unit is inhibited to learn the input pattern.
Th e recognition layer F2 is the competitive layer of ART1. Each unit of F2 represents a distinct cluster. As

Samir Roy_Chapter09.indd 320Samir Roy_Chapter09.indd 320 2/21/2013 3:31:03 PM2/21/2013 3:31:03 PM

Competitive Neural Nets 321

ART1 provides scope for expansion of the number of clusters, the number of units in the F2 layer is not
fi xed. While the net is learning a pattern, an F2 unit may be in any one of the three states, viz., active,
inactive, and inhibited. Th ese states are described below:

Active Th e unit is ‘on’ and has a positive activation. For ART1, the activation is 1, and for
ART2, it is between 0 and 1.

Inactive Th e unit is ‘off ’ and activation = 0. However, the unit takes part in competition.
Inhibited Th e unit is ‘off ’ and activation = 0. Moreover, it is not allowed to further participate in a

competition during the learning process with the current input pattern.
Th e reset unit R is used to control vigilance matching. It receives excitatory signals from F1(a) units that are
on and inhibitory signals from F1(b) units that are on. Depending on whether suffi cient number of F1(b)
interface units are on, which is determined with the help of the vigilance parameter set by the user, the reset
unit R is either not fi red, or fi red. In case the reset unit R fi res, the active F2 clustering unit is inhibited.

Th ere are various kinds of interconnections in ART1. Each F1(a) input unit Si is connected to the cor-
responding F1(b) interface unit Xi. Th ere are two types of interconnections between the interface layer
F1(b) and the recognition layer F2. Th e botton-up interconnections are directed from the F1(b) units to
F2 units. Each bottom-up interconnection has an weight bij, i = 1, …, m and j =1,…, n. Similarly, each F2
unit Yj is connected to each F1(b) unit Xi with the help of a top-down interconnection with weight tji, j =
1, …, n and i = 1, …, m. While the bottom-up weights are real valued, the top-down weights are binary.
Th e notations used here relating to ART1 are given in Table 9.6.

Table 9.6. Notational conventions

L Learning parameter

m Number of input units (components in the input pattern)

n Maximum number of cluster units (units at layer F2)
bij Bottom-up weight from F1(b) unit Xi to F2 unit Yj, bij is real valued

tji Top-down weight from F2 unit Yj to F1(b) unit Xi, tji is binary

r Vigilance parameter

s Training pattern (binary), s = [s1, s2, …, sm]

x x = [x1, x2, …, xm] is the activation vector at the F1(b) layer

|| x || Norm of vector x, x xi
i

m

=
∑

1

Learning As stated earlier, ART1 adopts unsupervised learning for clustering binary patterns. It
permits the training set of patterns to be presented in any order. Th e number of clustering units in the
recognition layer is fl exible. If the net fi nds a pattern suffi ciently diff erent from existing clusters, a new
cluster unit is incorporated at the output layer and the concerned pattern is placed in that cluster.

Learning a pattern starts by presenting the pattern to the F1(a) layer which passes it on to the F1(b)
layer. F1(b) layer sends it to the F2 layer through the bottom-up interconnection paths. Th e F2 units com-
pute the net inputs to them. Th e unit with the largest net input is the winner and has an activation of
1. All other F2 units have 0 activations. Th e winning F2 unit is the candidate to learn the input pattern.
However, it is allowed to do so only if the input pattern is suffi ciently close to this cluster.

Samir Roy_Chapter09.indd 321Samir Roy_Chapter09.indd 321 2/21/2013 3:31:04 PM2/21/2013 3:31:04 PM

322 Introduction to Soft Computing

Algorithm ART1-Learning

Step 0. Initialize the learning parameters and the interconnection
weights

L

b L
L m

t forff all i to m j to nij j

> < ≤

< =forff all i

1 0 1

0 bij<bij 1 1to m j=

, ,< ≤0 1

()0 , t

ρ

Step 1. Do Steps 2 to 14 While stopping criteria is not satisfied.

Step 2. For each training pattern s Do Steps 3 to 13.

Step 3. Apply the input pattern s to F1(a) layer, i.e., set the activations
of the F1(a) units to the input training pattern s.

Step 4. Set the activations of F2 layer to all 0.

Step 5. Find the norm of s.

s si
i

m

=
∑

1

Step 6. Propagate input from F1(a) layer to interface layer F1(b) so
that xi = si, for all i = 1 to m.

Step 7. Compute the net inputs to each uninhibited unit of the F2
layer.

For j = 1 To n Do

If yj ≠ −1 Then xj ib j ixi
i

m

×bib ji
=
∑

1

Step 8. While reset is True Do Steps 9 To 12.

Step 9. If yj = −1 for all cluster units, then all of them are inhibited
and the pattern cannot be learnt by the net. Otherwise, find
the J such that yJ ≥ yj for all j = 1 to n. Then the Jth cluster
unit is the winner. In case of a tie, take the smallest J.

Step 10. Update x : xi = si×tJi for all i =1 to m.

Step 11. Find the norm of x : x xi
i

m

=
∑

1

Step 12. Test for Reset : If
x
s

<ρ Then inhibit the Jth cluster unit by

setting yJ = −1. Go To Step 8. Otherwise
x
s

≥ρ and proceed to

Step 13.

Samir Roy_Chapter09.indd 322Samir Roy_Chapter09.indd 322 2/21/2013 3:31:05 PM2/21/2013 3:31:05 PM

Competitive Neural Nets 323

Step 13. Update the weights (top-down and bottom-up) attached to unit J
of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

Step 14. Test for stopping condition.

Fig. 9.16. Algorithm ART1-Learning

False

Yes

No
Yes

No

False

True

Begin

Initialize

Test for stopping
condition

Take the next input training pattern

End

Send the input pattern to the F2 FF layer
through F1FF (a) and F1FF (b) layers

Find the winner. The F2 FF layer unit with
the largest net input is the winner.

Winning cluster close
enough to input pattern?

Inhibit the
winning unit

True

No more
training pattern?

Adjust bottom-up
weights

All F2FF layer units
are inhibited?

Include a new cluster unit
and place the pattern in it.

Fig. 9.17. Flow chart of ART1 learning process

Samir Roy_Chapter09.indd 323Samir Roy_Chapter09.indd 323 2/21/2013 3:31:11 PM2/21/2013 3:31:11 PM

324 Introduction to Soft Computing

To ensure this, the activation of the winning unit is sent back to F1(b) layer through the top-down in-
terconnections (having binary weights). An F1(b) layer unit remains ‘on’ only if it receives a 1 from both
the F1(a) layer and the F2 layer. Th e norm �x� of the vector x at the F1(b) layer gives the number of com-
ponents where both the F1(a) signal and F2 signal are 1s. Th e ratio of �x� and norm of the input pattern
�s� gives the degree of similarity between the input pattern and the winning cluster. Th e ratio �x�/�s�
is known as the match ratio. If the ratio is suffi ciently high, which is determined with the help of the
vigilance parameter r, the winning cluster is allowed to learn the input pattern. Otherwise, it is inhibited
and the net takes appropriate action.

Algorithm ART1-Learning (Fig. 9.16) presents the detailed procedure. Th e outline of the ART1
learning process is shown in Fig. 9.17 in the form of a fl ow chart. A few notable points regarding ART1
learning are stated below.

 (i) Learning starts with removing all inhibitions from the units of the clustering layer. Th is is
ensured in Step 4 of Algorithm ART1-Learning by setting the activations of all F2 layer
units to 0. An inhibited node has an activation of −1.

 (ii) In order to prevent a node from being a winner its activation is set to −1 (Step 12).
 (iii) Step 10 ensures that an interface unit Xi is ‘on’ only if si (the training signal) and tJi (the top-

down signal sent by the winning unit) are both 1.
 (iv) Any one of the following may be used as the stopping condition mentioned in Step 14.
 (a) A predefi ned maximum number of training epochs have been executed.
 (b) No interconnection weights have changed.
 (c) None of the cluster units resets.
 (v) For the sake of simplicity, the activation of the winning cluster unit is not explicitly made 1.

However, the computational procedure implicitly embodies this step and the results are not
aff ected by this omission.

 (vi) Step 10 concerns the event of all cluster units being inhibited. Th e user must specify the action
to be taken under such situation. Th e possible options are

 (d) Add more cluster units.
 (e) Reduce vigilance.
 (f) Classify the pattern as outside of all clusters.
 (vii) Table 9.7 shows the permissible range and sample values of various user-defi ned parameters

in ART1 learning.

Table 9.7. ART-1 parameter values

Parameter Constraints Typical values

1. L L > 1 2

2. r (vigilance parameter) 0 < r ≤ 1 0.8

3. bij (bottom-up weights)
0 <b L

L m1− +1ij ()00 1
1+ m

4. tji (top-down weights) Binary, i.e., 0, or 1 1, or 1

Samir Roy_Chapter09.indd 324Samir Roy_Chapter09.indd 324 2/21/2013 3:31:12 PM2/21/2013 3:31:12 PM

Competitive Neural Nets 325

Example 9.5 (Learning by ART1 net)

Suppose we want to cluster the patterns [1, 1, 1, 0], [1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 0, 1] and [0, 0,
1, 1] into a maximum of three clusters using the ART-1 learning algorithm. Th e following set of
parameter values are used in this example.

m = 4 Number of units in the input layers F1(a) and F1(b)

n = 3 Number of units in the clustering layers F2

r = 0.5 Vigilance parameter

L = 2 Learning parameter, used in updating the bottom-up weights

b
mij () 1

1
=

+
= 0.2

Initial bottom-up weights (half of the maximum value allowed)

tji (0) = 1 Initial top-down weights (initially all set to 1)

Execution of the fi rst epoch of ART−1 training is traced below.

Step 0. Initialize the learning parameters and the interconnec-
tion weights

L b t forff all i to j tij j j=0 1
1 4+

2 1 4to1 4toto 3to., , (bij) .= =
1

1 4
0 , tt ,ρ

∴ B T4 3 3 4TT

2 2 2
2 2 2
2 2 2
2 2 2

1 1 1 1
1 1 1 1
1 1

T3TT2 2 23

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎦⎦
⎥⎥

=

. . .2 22

.2 22

. . .2 22

. . .2 22 1 111

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

Step 1. Do Steps 2 to 14 While stopping criteria is not satis-
fied.

/* Epoch No. 1, Pattern No. 1 */

Step 2. For each training pattern s Do Steps 3 to 13.

Training pattern no. 1 is s = [1, 1, 1, 0]

Step 3. Apply the input pattern s to F1(a) layer, i.e., set the
activations of the F1(a) units to the input training pat-
tern s.

Set the activations of the F1(a) units to s = [1, 1, 1, 0].

Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

Step 5. Find the norm of s.

Samir Roy_Chapter09.indd 325Samir Roy_Chapter09.indd 325 2/21/2013 3:31:14 PM2/21/2013 3:31:14 PM

326 Introduction to Soft Computing

s si
i

m

=si
=
∑∑ 3

1

Step 6. Propagate input from F1(a) layer to interface layer F1(b)
so that xi = si, for all i = 1 to m.

x = s = [1, 1, 1, 0]

Step 7. Compute the net inputs to each uninhibited unit of the
F2 layer.
For j = 1 To n Do

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1, y2, y3] = x × B = [1, 1, 1, 0] ×

. . .

. . .

. . .

. . .

2 2 2. ..
2 2 2. ..
2 2 2. ..
2 2 2. ..

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [.6, .6, .6]

Step 8. While reset is True Do Steps 9 To 12.

Step 9. If yj = −1 for all cluster units, then all of them are
inhibited and the pattern cannot be learnt by the net.
Otherwise, find the J such that yJ ≥ yj for all j = 1 to
n. Then the Jth cluster unit is the winner. In case of
a tie, take the smallest J.

None of the cluster units is inhibited and all of them have the same activation value of
0.6. So winner is the lowest indexed unit, so that J = 1.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T1* = [1, 1, 1, 0]⋅ [1, 1, 1, 1] = [1, 1, 1, 0]

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
3

Step 12. Test for Reset : If
x
s

<ρ Then inhibit the Jth cluster

unit by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ

and proceed to Step 13.

Samir Roy_Chapter09.indd 326Samir Roy_Chapter09.indd 326 2/21/2013 3:31:18 PM2/21/2013 3:31:18 PM

Competitive Neural Nets 327

x
s

= = ≥ =
3
3

1 0 5. .≥0 0 ρ , hence proceed to Step 13.

Step 13. Update the weights (top-down and bottom-up) attached to
unit J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
1

2
1

()new = =
+

, ∴ b11(new) = b21(new) = b31(new) = 0.5, and b41(new)

= 0. Th erefore the new bottom-up weight matrix is

B4 3

5 2 2
5 2 2
5 2 2
0 2 2

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

. .5 .

. .5 .

. .5 .
. .2

We now update T3×4, the top-down weight matrix. We have, tJi = t1i = xi, so that T1*
(new) = x = [1, 1, 1, 0].

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 4××

1 1 1 0
1 1 1 1
1 1 1 1

()new

Th is completes training with the fi rst pattern in the fi rst epoch.

/* Epoch No. 1, Pattern No. 2 */

Step 2. For each training pattern s Do Steps 3 to 13.
Th e second training pattern s = [1, 1, 0, 0]

Step 3. Apply the input pattern s to F1(a) layer, i.e., set the
activations of the F1(a) units to the input training pat-
tern s.

Set the activations of the F1(a) units to s = [1, 1, 0, 0].

Step 4. Set the activations of F2 layer to all 0.

 y1 = y2 = y3 = 0.

Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 2

1

Step 6. Propagate input from F1(a) layer to interface layer F1(b)
so that xi = si, for all i = 1 to m.

Samir Roy_Chapter09.indd 327Samir Roy_Chapter09.indd 327 2/21/2013 3:31:24 PM2/21/2013 3:31:24 PM

328 Introduction to Soft Computing

x = s = [1, 1, 0, 0]

Step 7. Compute the net inputs to each uninhibited unit of the
F2 layer.

For j = 1 To n Do

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1, y2, y3] = x × B = [1, 1, 0, 0] ×

. .

. .

. .
.

5 2. 2
5 2. 2
5 2. 2
0 2. 2

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [1, .4, .4]

Step 8. While reset is True Do Steps 9 To 12.

Step 9. If yj = −1 for all cluster units, then all of them are
inhibited and the pattern cannot be learnt by the net.
Otherwise, find the J such that yJ ≥ yj for all j = 1 to
n. Then the Jth cluster unit is the winner. In case of
a tie, take the smallest J.
None of the cluster units is inhibited and the cluster unit Y1 has the largest activation
1. So winner is Y1, and J = 1.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T1* = [1, 1, 0, 0]⋅[1, 1, 1, 0] = [1, 1, 0, 0]

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
2

Step 12. Test for Reset : If
x
s

<ρ Then inhibit the Jth cluster

unit by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ

and proceed to Step 13.

x
s

= = ≥ =
2
2

1 0 5. .≥0 0 ρ , hence proceed to Step 13.

Step 13. Update the weights (top-down and bottom-up) attached to
unit J of the F2 layer.

Samir Roy_Chapter09.indd 328Samir Roy_Chapter09.indd 328 2/21/2013 3:31:30 PM2/21/2013 3:31:30 PM

Competitive Neural Nets 329

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
1

2
1

()new = =
+

, ∴ b11(new) = b21(new) = .67, b31(new) = b41(new) = 0.

Th erefore the new bottom-up weight matrix is

B4 3

67 2 2
67 2 2
0 2 2
0 2 2

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

. .67 .

. .67 .
. .2
. .2

We now update T3×4, the top-down weight matrix. We have, tJi = t1i = xi, so that T1* (new)
= x = [1, 1, 0, 0].

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 4×T ×

1 1 0 0
1 1 1 1
1 1 1 1

()new

Th is completes training with the second pattern in the fi rst epoch.

/* Epoch No. 1, Pattern No. 3 */
Step 2. For each training pattern s Do Steps 3 to 13.

Th e third training pattern s = [0, 1, 1, 0]

Step 3. Apply the input pattern s to F1(a) layer, i.e., set the
activations of the F1(a) units to the input training pat-
tern s.

Set the activations of the F1(a) units to [0, 1, 1, 0].

Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 2

1

Step 6. Propagate input from F1(a) layer to interface layer F1(b)
so that xi = si, for all i = 1 to m.

x = s = [0, 1, 1, 0]

Step 7. Compute the net inputs to each uninhibited unit of the
F2 layer.

For j = 1 To n Do

Samir Roy_Chapter09.indd 329Samir Roy_Chapter09.indd 329 2/21/2013 3:31:37 PM2/21/2013 3:31:37 PM

330 Introduction to Soft Computing

If yj ≠ −1 Then xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1, y2, y3] = x × B = [0, 1, 1, 0] ×

. . .

. . .
.
.

67 2 2.
67 2 2.
0 2. 2
0 2. 2

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [0, .67, 0]

Step 8. While reset is True Do Steps 9 To 12.

Step 9. If yj = −1 for all cluster units, then all of them are
inhibited and the pattern cannot be learnt by the net.
Otherwise, find the J such that yJ ≥ yj for all j = 1 to
n. Then the Jth cluster unit is the winner. In case of
a tie, take the smallest J.

None of the cluster units is inhibited and the cluster unit Y2 has the largest activation
0.67. So winner is Y2, and J = 2.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T2* = [0, 1, 1, 0]⋅[1, 1, 1, 1] = [0, 1, 1, 0]

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
2

Step 12. Test for Reset : If
x
s

<ρ Then inhibit the Jth cluster

unit by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ

and proceed to Step 13.

x
s

= = ≥ =
2
2

1 0 5. .≥0 0 ρ , hence proceed to Step 13.

Step 13. Update the weights (top-down and bottom-up) attached to
unit J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

Samir Roy_Chapter09.indd 330Samir Roy_Chapter09.indd 330 2/21/2013 3:31:42 PM2/21/2013 3:31:42 PM

Competitive Neural Nets 331

b n L x
L x

x
xi

i ix
2

2
1

()new = =
+

, ∴ b22(new) = b32(new) = .67, b12(new) = b42(new) = 0.

Th erefore the new bottom-up weight matrix is

B4 3

67 0 2
67 67 2
0 67 2
0 0 2

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

. .67 0

. . .67 67
. .67

.

We now update T3×4, the top-down weight matrix. We have, tJi = t2i = xi, so that T2* (new) =
x = [0, 1, 1, 0].

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 4×T ×

1 1 0 0
0 1 1 0
1 1 1 1

()new

Th is completes training with the third pattern in the fi rst epoch.

/* Epoch No. 1, Pattern No. 4 */
Step 2. For each training pattern s Do Steps 3 to 13.

Th e fourth training pattern s = [0, 0, 0, 1]

Step 3. Apply the input pattern s to F1(a) layer, i.e., set the
activations of the F1(a) units to the input training pat-
tern s.

Set the activations of the F1(a) units to (0, 0, 0, 1).

Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 1

1

Step 6. Propagate input from F1(a) layer to interface layer F1(b)
so that xi = si, for all i = 1 to m.

x = s = [0, 0, 0, 1]

Step 7. Compute the net inputs to each uninhibited unit of the
F2 layer.

For j = 1 To n Do

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Samir Roy_Chapter09.indd 331Samir Roy_Chapter09.indd 331 2/21/2013 3:31:49 PM2/21/2013 3:31:49 PM

332 Introduction to Soft Computing

Y = [y1, y2, y3] = x × B = [0, 0, 0, 1] ×

.

. . .

.

67 0 2.
67 67 2
0 6. 7 2.
0 0 2

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [0, 0, .2]

Step 8. While reset is True Do Steps 9 To 12.

Step 9. If yj = −1 for all cluster units, then all of them are
inhibited and the pattern cannot be learnt by the net.
Otherwise, find the J such that yJ ≥ yj for all j = 1 to
n. Then the Jth cluster unit is the winner. In case of
a tie, take the smallest J.

None of the cluster units is inhibited and the cluster unit Y3 has the largest activation
0.2. So winner is Y3, and J = 3.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T3* = [0, 0, 0, 1]⋅[1, 1, 1, 1] = [0, 0, 0, 1]

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
1

Step 12. Test for Reset : If
x
s

<ρ Then inhibit the Jth cluster

unit by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ

and proceed to Step 13.

x
s

= = ≥ =
1
1

1 0 5. .≥0 0 ρ , hence proceed to Step 13.

Step 13. Update the weights (top-down and bottom-up) attached to
unit J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
3

2
1

()new = =
+

, ∴ b13(new) = b23(new) = b33(new) = 0, b43(new) = 1.

Th erefore the new bottom-up weight matrix is

Samir Roy_Chapter09.indd 332Samir Roy_Chapter09.indd 332 2/21/2013 3:31:55 PM2/21/2013 3:31:55 PM

Competitive Neural Nets 333

B4 3

67 0 0
67 67 0
0 67 0
0 0 1

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

.

. .67

We now update T3×4, the top-down weight matrix. We have, tJi = t3i = xi, so that T3*
(new) = x = [0, 0, 0, 1].

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 4×T ×

1 1 0 0
0 1 1 0
0 0 0 1

()new

Th is completes training with the fourth pattern in the fi rst epoch.

/* Epoch No. 1, Pattern No. 5 */
Step 2. For each training pattern s Do Steps 3 to 13.

Th e fi ft h training pattern s = [0, 0, 1, 1]

Step 3. Apply the input pattern s to F1(a) layer, i.e., set the
activations of the F1(a) units to the input training pat-
tern s.

Set the activations of the F1(a) units to [0, 0, 1, 1].

Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 2

1

Step 6. Propagate input from F1(a) layer to interface layer F1(b)
so that xi = si, for all i = 1 to m.

x = s = [0, 0, 1, 1]

Step 7. Compute the net inputs to each uninhibited unit of the
F2 layer.

For j = 1 To n Do

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1, y2, y3] = x × B = [0, 0, 1, 1] ×

.

. .
67 0 0
67 67 0
0 6. 7 0
0 0 1

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [0, .67, 1]

Samir Roy_Chapter09.indd 333Samir Roy_Chapter09.indd 333 2/21/2013 3:32:02 PM2/21/2013 3:32:02 PM

334 Introduction to Soft Computing

Step 8. While reset is True Do Steps 9 To 12.

Step 9. If yj = −1 for all cluster units, then all of them are
inhibited and the pattern cannot be learnt by the net.
Otherwise, find the J such that yJ ≥ yj for all j = 1 to
n. Then the Jth cluster unit is the winner. In case of a
tie, take the smallest J.

None of the cluster units is inhibited and the cluster unit Y3 has the largest activation
1. So winner is Y3, and J = 3.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T3* = [0, 0, 1, 1]⋅[0, 0, 0, 1] = [0, 0, 0, 1]

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
1

Step 12. Test for Reset : If
x
s

<ρ Then inhibit the Jth cluster

unit by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ

and proceed to Step 13.

x
s

= = ≥ =
1
2

0 5 5. .≥5 0 ,ρ hence proceed to Step 13.

Step 13. Update the weights (top-down and bottom-up) attached to
unit J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
3

2
1

()new = =
+

, ∴ b13(new) = b23(new) = b33(new) = 0, b43(new) = 1.

Th erefore the new bottom-up weight matrix is

B4 3

67 0 0
67 67 0
0 67 0
0 0 1

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

()new

.

. .67

Samir Roy_Chapter09.indd 334Samir Roy_Chapter09.indd 334 2/21/2013 3:32:07 PM2/21/2013 3:32:07 PM

Competitive Neural Nets 335

We now update T3×4, the top-down weight matrix. We have, tJi = t3i = xi, so that T3*
(new) = x = [0, 0, 0, 1].

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 4×T ×

1 1 0 0
0 1 1 0
0 0 0 1

()new

Th is completes training with the fi ft h pattern in the fi rst epoch.

Step 14. Test for stopping condition.

Th e reader may verify that this set of weights is stable and no learning takes place
even on further training with the given set of patterns.

Example 9.6 (ART1 net operation)

Let us consider an ART-1 net with 5 input units and 3 cluster units. Aft er some training the net
attains the bottom-up and top-down weight matrices as shown below.

5 3

2 0 2
5 8 2
5 5 2
5 8 2
1 0 2

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

. .2 0

. .5 .

. .5 .

. .5 .

. .1 0

, and T3 5TT
1 1 1 1 1
0 1 1 1 0
1 1 1 1 1

=
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

Show the behaviour of the net if it is presented with the training pattern s = [0, 1, 1, 1, 1]. Assume
L = 2, and r = .8.

We start the training process from Step 2 of the ATR-1 learning procedure.

Step 2. For each training pattern s Do Steps 3 to 13.

Here s = [0, 1, 1, 1, 1]

Step 3. Apply the input pattern s to F1(a) layer, i.e., set the acti-
vations of the F1(a) units to the input training pattern s.

Set the activations of the F1(a) units to [0, 1, 1, 1, 1].

Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 4

1

Step 6. Propagate input from F1(a) layer to interface layer F1(b)
so that xi = si, for all i = 1 to m.

x = s = [0, 1, 1, 1, 1]

Samir Roy_Chapter09.indd 335Samir Roy_Chapter09.indd 335 2/21/2013 3:32:15 PM2/21/2013 3:32:15 PM

336 Introduction to Soft Computing

Step 7. Compute the net inputs to each uninhibited unit of the
F2 layer.

For j = 1 To n Do

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1, y2, y3] = x × B = [0, 1, 1, 1, 0] ×

. .

. .

. .

. .

. .

2 0 2
5 8. 2
5 5. 2
5 8. 2
1 0 2

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [1.6, 2.1, .8]

Step 8. While reset is True Do Steps 9 To 12.

Step 9. If yj = −1 for all cluster units, then all of them are
inhibited and the pattern cannot be learnt by the net.
Otherwise, find the J such that yJ ≥ yj for all j = 1 to
n. Then the Jth cluster unit is the winner. In case of
a tie, take the smallest J.

None of the cluster units is inhibited and the cluster unit Y2 has the largest activation
1.6. So winner is Y2, and J = 2.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T2* = [0, 1, 1, 1, 1]⋅[0, 1, 1, 1, 0] = [0, 1, 1, 1, 0]

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
3

Step 12. Test for Reset : If
x
s

<ρ Then inhibit the Jth cluster

unit by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ

and proceed to Step 13.

x
s

= = =
3
4

0 75 0< 8. .75 0< ρ . Hence Y2 must be inhibited. ∴ y2 = −1. Reset = True, Go

to Step 8.

Step 8. While reset is True Do Steps 9 To 12.

Samir Roy_Chapter09.indd 336Samir Roy_Chapter09.indd 336 2/21/2013 3:32:19 PM2/21/2013 3:32:19 PM

Competitive Neural Nets 337

Step 9. If yj = −1 for all cluster units, then all of them are
inhibited and the pattern cannot be learnt by the net.
Otherwise, find the J such that yJ ≥ yj for all j = 1 to
n. Then the Jth cluster unit is the winner. In case of
a tie, take the smallest J.

Since Y2 is inhibited, we have [y1, y2, y3] = [1.6, −1, .8]. Th erefore unit Y1 has the larg-
est activation 1.6 and winner is Y1, so that J = 1.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T1* = [0, 1, 1, 1, 1]⋅[1, 1, 1, 1, 1] = [0, 1, 1, 1, 1]

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
4

Step 12. Test for Reset : If
x
s

<ρ Then inhibit the Jth cluster

unit by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ

and proceed to Step 13.

x
s

= = =
4
4

1 0> 8. ,8 ρ hence Reset = False. Go to Step 13.

Step 13. Update the weights (top-down and bottom-up) attached to
unit J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
1

2
1

()new = =
+

, ∴ b11(new) = 0, and b21(new) = b31(new) = b41(new) =

b51(new) = .4.

Th erefore the new bottom-up weight matrix is

B5 3

2 0 2
4 8 2
4 5 2
4 8 2
4 0 2

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

. .2 0

. .4 .

. .4 .

. .4 .

. .4 0

Samir Roy_Chapter09.indd 337Samir Roy_Chapter09.indd 337 2/21/2013 3:32:26 PM2/21/2013 3:32:26 PM

338 Introduction to Soft Computing

We now update T3×5, the top-down weight matrix. We have, tJi = t1i = xi, so that T1*
(new) = x = [0, 1, 1, 1, 1].

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 5×

0 1 1 1 1
0 1 1 1 0
1 1 1 1 1

Th is completes training with the given pattern s = (0, 1, 1, 1, 1).

CHAPTER SUMMARY

Basic concepts of competitive networks and brief descriptions of certain elementary competitive net-
works are discussed in this chapter. Th e main points are summarized below.

A competitive neural net is a clustering net that selects the output clustering unit through •
competition. Usually the competition is in terms of the distance between the input pattern and
the weight vector associated with the output unit. Quite frequently, the distance is measured
either as the Euclidean distance between two points in a hyperplane or the dot product of the
input vector and the weight vector.
MAXNET is the simplest competitive ANN. It is a fully connected network with symmetric •
interconnections and self-loops. All the links have the same, fi xed, inhibitory weight −d. Each
unit has a self-loop. Th e weight of a self-loop is 1. A MAXNET do not required to be trained
because all weights are fi xed. During application, as the MAXNET is presented with an input
vector, it iteratively updates the activations of the cluster units until all units except one are
deactivated. Th e only remaining positively activated unit is the winner.
Kohonen’s self-organizing map (SOM) works on the principle of winner-takes-all and follows •
unsupervised learning. Here the weight vector associated with a cluster unit acts as the exemplar.
During learning, the cluster unit whose weight vector is closest to the given input pattern is
declared the winner. Th e weight vectors of all cluster units in the neighbourhood of the winner
are updated. During application, the input pattern is compared with the exemplar / code vector.
Th e unit whose code vector is at a least distance from the input pattern is the winner.
Learning Vector Quantization (LVQ) nets are also based on the winner-takes-all strategy, •
though, unlike Kohonen’s SOM, LVQ follows supervised learning. Th ere are as many input
units as the number of components in the input patterns and each output unit represents a
known cluster. During each epoch of training, the LVQ net adjusts its weights to accommodate
the training vectors on the basis of the known clusters. During training, the net identifi es the
code vector w closest to the input vector s. If s and w are from the same cluster, then w is moved
closer to s. Otherwise, w is moved away from x. During application, the cluster unit whose code
vector is at a least distance from the input pattern is the winner.
Adaptive Resonance Th eory (ART) nets were introduced to resolve the • stability-plasticity
dilemma. Th ese nets learn through unsupervised learning where the input patterns may be
presented in any order. Moreover, ART nets allow the user to control the degree of similarity
among the patterns placed in the same cluster. It provides a mechanism to include a new cluster
unit for an input pattern which is suffi ciently diff erent from all the exemplars of the clusters
corresponding to the existing cluster units. Hence, unlike other ANNs, ART nets are capable of
adaptive expansion of the output layer of clustering units subject to some upper bound. ART

Samir Roy_Chapter09.indd 338Samir Roy_Chapter09.indd 338 2/21/2013 3:32:33 PM2/21/2013 3:32:33 PM

Competitive Neural Nets 339

nets are able to learn only in their resonant states. Th e ART net is in resonant state when the
current input vector matches the winner code-vector (exemplar) so close that a reset signal is
not generated. Th e reset signal inhibits the ART to learn. Th ere are two kinds of ARTs, viz.,
ART1 and ART2. ART1 works on binary patterns and ART2 is designed for patterns with real,
or continuous, values.

 SOLVED PROBLEMS

Problem 9.1 (Clustering application of SOM) Consider the SOM constructed in Example 9.2. Th e
weight matrix of the resultant SOM is given by

W =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

0 1
0 6 0 6
1 0

. .6 0

Fig. 9.18 shows the SOM obtained for the given clustering problem.

x1xx

x2xx

x3xx X3XX

X2XX

X1XX

Y1YY

C1

C2CC
Y2YY

0

1

0.6

0.6

0

1

Fig. 9.18. The SOM obtained in Example 9.2

Test the performance of this net with the input vectors [1, 0, 0], [0, 0, 1], [1, 1, 0] and [0, 1, 1].

Solution 9.1 Table 9.8 shows the calculations to identify the cluster to which each vector belongs,
the decision being made on the basis of Winner-takes-all policy. It is seen that the SOM clusters the
patterns (1, 0, 0) and (1, 1, 0) at unit C2 and the patterns (0, 0, 1) and (0, 1, 1) at unit C1 (Fig. 9.19). Con-
sidering the relative positions of the vectors in a 3-dimensional space, this is the correct clustering for
these patterns.

Table 9.8. Calculations to identify the cluster

Input Patterns
s = [x1, x2, x3]

Squared Euclidean
Distance

Winner

D(1) D(2)

1 [1, 0, 0] 2.36 .36 C2

2 [0, 0, 1] .36 2.36 C1

3 [1, 1, 0] 2.16 .16 C2

4 [0, 1, 1] .16 2.16 C1

Samir Roy_Chapter09.indd 339Samir Roy_Chapter09.indd 339 2/21/2013 3:32:35 PM2/21/2013 3:32:35 PM

340 Introduction to Soft Computing

(0, 0, 1)

(0, 1, 1)

(1, 0, 0)

(1, 1, 0)

x3xx

x2xx

x1xxC1CC

C2CC

Fig. 9.19. Clusters formed

Problem 9.2 (Creating and training an ART1 net) Create an ART-1 net initially with 7 inputs and
3 clusters. Th en apply the ART-1 procedure to train the net with the following patterns: [1, 1, 1, 1, 0, 0,
0], [1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 1, 1, 1], [0, 0, 1, 1, 1, 0, 0] and [0, 0, 0, 1, 0, 0, 0].

Solution 9.2 Execution of the fi rst epoch of ART-1 training is traced below.

Step 0. Initialize the learning parameters and the interconnection weights

L b t forff all i j tij j j=9 0 1
1 7+

125 1 7to1 7toto 3to, , (bij) .= =
1

1 7
0 , tt ,ρ

∴ =B7 3×

125 125 125
125 125 125
125 125 125
125 125 125
125

. . .125 125

. . .125 125

. . .125 125

. . .125 125

. .125

. . .

. . .

,
125 125

125 125 125
125 125 125

3 7

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

T3 ==
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

Step 1. Do Steps 2 to 14 While stopping criteria is not satisfied.

/* Epoch No. 1, Pattern No. 1 */

Step 2. For each training pattern s Do Steps 3 to 13.

Th e fi rst training pattern s = [1, 1, 1, 1, 0, 0, 0]

Step 3. Apply the input pattern s to F1(a) layer, i.e., set the acti-
vations of the F1(a) units to the input training pattern s.

Set the activations of the F1(a) units to [1, 1, 1, 1, 0, 0, 0].

Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 4

1

Samir Roy_Chapter09.indd 340Samir Roy_Chapter09.indd 340 2/21/2013 3:32:36 PM2/21/2013 3:32:36 PM

Competitive Neural Nets 341

 Step 6. Propagate input from F1(a) layer to interface layer F1(b) so
that xi = si, for all i = 1 to m.

x = s = [1, 1, 1, 1, 0, 0, 0]

 Step 7. Compute the net inputs to each uninhibited unit of the F2
layer.

For j = 1 To n Do

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1, y2, y3] = x × B = [1, 1, 1, 1, 0, 0, 0] ×

. . .

. . .

. . .

. . .

. . .

125 125 125
125 125 125
125 125 125
125 125 125
125 125 122522
125 125 125
125 125 125

. . .125 125

. . .125 125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [.5, .5, .5]

 Step 8. While reset is True Do Steps 9 To 12.

 Step 9. If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then
the Jth cluster unit is the winner. In case of a tie, take
the smallest J.

None of the cluster units is inhibited and all of them have the same activation value of 0.5.
So the winner is the lowest indexed unit, so that J = 1.

Step 10. Update x : xi = si×tJi for all i = 1 to m.

x = s⋅T1* = [1, 1, 1, 1, 0, 0, 0] ⋅ [1, 1, 1, 1, 1, 1, 1] = [1, 1, 1, 1, 0, 0, 0].

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
4

Step 12. Test for Reset : If
x
s

<ρ Then inhibit the Jth cluster unit

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed

to Step 13.

Samir Roy_Chapter09.indd 341Samir Roy_Chapter09.indd 341 2/21/2013 3:32:40 PM2/21/2013 3:32:40 PM

342 Introduction to Soft Computing

x
s

= = ≥ =
4
4

1 0 0 9. ≥0 0 ρ , hence Reset = False. Proceed to Step 13.

Step 13. Update the weights (top-down and bottom-up) attached to unit
J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
1

2
1

()new = =
+

, ∴ b11(new) = b21(new) = b31(new) = b41(new) = 0.4, and

b51(new) = b61(new) = b71(new) = 0.

Th erefore, the new bottom-up weight matrix is

B7 3

4 125 125
4 125 125
4 125 125
4 125 125
0 125 125
0 12

=

. .4 .

. .4 .

. .4 .

. .4 .
. .125
. 51255 125

0 125 125
.

. .125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

We now update T3×7, the top-down weight matrix. We have, tJi = t1i = xi, so that T1* (new)
= x = [1, 1, 1, 1, 0, 0, 0].

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 7×

1 1 1 1 0 0 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1

Th is completes training with the fi rst pattern in the fi rst epoch.

/* Epoch No. 1, Pattern No. 2 */

 Step 2. For each training pattern s Do Steps 3 to 13.

Th e second training pattern s = [1, 1, 1, 0, 0, 0, 0]

 Step 3. Apply the input pattern s to F1(a) layer, i.e., set the acti-
vations of the F1(a) units to the input training pattern s.

Set the activations of the F1(a) units to [1, 1, 1, 0, 0, 0, 0].

 Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

 Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 3

1

Samir Roy_Chapter09.indd 342Samir Roy_Chapter09.indd 342 2/21/2013 3:32:45 PM2/21/2013 3:32:45 PM

Competitive Neural Nets 343

 Step 6. Propagate input from F1(a) layer to interface layer F1(b) so
that xi = si, for all i = 1 to m.

x = s = [1, 1, 1, 0, 0, 0, 0]

 Step 7. Compute the net inputs to each uninhibited unit of the F2
layer.
For j = 1 To n Do

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1, y2, y3] = x × B = [1, 1, 1, 0, 0, 0, 0] ×

. . .

. . .

. . .

. . .
. .
. .

4 125 125
4 125 125
4 125 125
4 125 125
0 125 125
0 125 125
00 125 125. .125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

 = [1.2, .375, .375]

 Step 8. While reset is True Do Steps 9 To 12.

 Step 9. If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then
the Jth cluster unit is the winner. In case of a tie, take
the smallest J.

None of the cluster units is inhibited and y1has the highest activation value of 1.2. So win-
ner is the lowest indexed unit Y1, so that J = 1.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T1* = [1, 1, 1, 0, 0, 0, 0] ⋅ [1, 1, 1, 1, 0, 0, 0] = [1, 1, 1, 0, 0, 0, 0].

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
3

Step 12. Test for Reset : If
x
s

<ρ Then inhibit the Jth cluster unit

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed

to Step 13.

Samir Roy_Chapter09.indd 343Samir Roy_Chapter09.indd 343 2/21/2013 3:32:51 PM2/21/2013 3:32:51 PM

344 Introduction to Soft Computing

x
s

= = ≥ =
3
3

1 0 0 9. ≥0 0 ρ , hence Reset = False. Proceed to Step 13.

Step 13. Update the weights (top-down and bottom-up) attached to unit
J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
1

2
1

()new = =
+

, ∴ b11(new) = b21(new) = b31(new) = 0.5, and b41(new) =

b51(new) = b61(new) = b71(new) = 0.

Th erefore the new bottom-up weight matrix is

B7 3

5 125 125
5 125 125
5 125 125
0 125 125
0 125 125
0 125

=

. .5 .

. .5 .

. .5 .
. .125
. .125
. .125 ..
. .

125
0 125 125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

We now update T3×7, the top-down weight matrix. We have, tJi = t1i = xi, so that T1* (new) =
x = [1, 1, 1, 0, 0, 0, 0].

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 7×

1 1 1 0 0 0 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1

Th is completes training with the second pattern in the fi rst epoch.

/* Epoch No. 1, Pattern No. 3 */

Similarly, training with the third training pattern s = [0, 0, 0, 0, 0, 1, 1] yields the bottom-up and top-
down weight matrices as follows:

B7 3

5 0 125
5 0 125
5 0 125
0 0 125
0 0 125
0 67 125
0 67 125

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢
. .5 0
. .5 0
. .5 0

.

.
. .67
. .67

⎢⎢
⎢⎢⎢⎢

⎢
⎢⎢⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Samir Roy_Chapter09.indd 344Samir Roy_Chapter09.indd 344 2/21/2013 3:32:57 PM2/21/2013 3:32:57 PM

Competitive Neural Nets 345

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 7×

1 1 1 0 0 0 0
0 0 0 0 0 1 1
1 1 1 1 1 1 1

Now we proceed to train with the fourth pattern [0, 0, 0, 0, 1, 1, 1].

/* Epoch No. 1, Pattern No. 4 */

Step 2. For each training pattern s Do Steps 3 to 13.

Th e fourth training pattern s = [0, 0, 0, 0, 1, 1, 1]

Step 3. Apply the input pattern s to F1(a) layer, i.e., set the acti-
vations of the F1(a) units to the input training pattern s.

Set the activations of the F1(a) units to [0, 0, 0, 0, 1, 1, 1].

Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 3

1

Step 6. Propagate input from F1(a) layer to interface layer F1(b) so
that xi = si, for all i = 1 to m.

x = s = [0, 0, 0, 0, 1, 1, 1]

Step 7. Compute the net inputs to each uninhibited unit of the F2
layer.

For j = 1 To n Do

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1, y2, y3] = x × B = [0, 0, 0, 0, 1, 1, 1] ×

. .

. .

. .
.
.
.
.

5 0 125
5 0 125
5 0 125
0 0 125
0 0 125
0 6. 7 125
0 6. 7 125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎢⎣⎣⎣⎣
⎢⎢⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [0, .1.34, .375]

Step 8. While reset is True Do Steps 9 To 12.

Samir Roy_Chapter09.indd 345Samir Roy_Chapter09.indd 345 2/21/2013 3:33:03 PM2/21/2013 3:33:03 PM

346 Introduction to Soft Computing

 Step 9. If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then
the Jth cluster unit is the winner. In case of a tie, take
the smallest J.

None of the cluster units is inhibited and y2 has the highest activation value of 1.34. So
winner is the lowest indexed unit Y2, so that J = 2.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T2* = [0, 0, 0, 0, 1, 1, 1] ⋅ [0, 0, 0, 0, 0, 1, 1] = [0, 0, 0, 0, 0, 1, 1].

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
2

Step 12. Test for Reset : If
x
s

<ρ Then inhibit the Jth cluster unit

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed

to Step 13.

x
s

= = =
2
3

0 67 0< 9. .67 0< ρ , hence inhibit cluster unit 2 by making y2 = −1. Reset = True. Go

to Step 9.

 Step 9. If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then
the Jth cluster unit is the winner. In case of a tie, take
the smallest J.

Cluster units Y2 is inhibited and between Y1 and Y3, Y3 has the highest activation value of
0.375. So winner is the lowest indexed unit Y3, so that J = 3.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T3* = [0, 0, 0, 0, 1, 1, 1] ⋅ [1, 1, 1, 1, 1, 1, 1] = [0, 0, 0, 0, 1, 1, 1].

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
3

Samir Roy_Chapter09.indd 346Samir Roy_Chapter09.indd 346 2/21/2013 3:33:07 PM2/21/2013 3:33:07 PM

Competitive Neural Nets 347

Step 12. Test for Reset : If
x
s

<ρ Then inhibit the Jth cluster unit

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed

to Step 13.

x
s

= = ≥ =
3
3

1 0 0 9. ≥0 0 ρ , hence Reset = False. Go to Step 13.

Step 13. Update the weights (top-down and bottom-up) attached to unit
J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
1

2
1

()new = =
+

, ∴ b13(new) = b23(new) = b33(new) = b43(new) = 0. b53(new)

= b63(new) = b73(new) = 0.5.

Th erefore the new bottom-up weight matrix is

B7 3

5 0 0
5 0 0
5 0 0
0 0 0
0 0 5
0 67 5
0 67 5

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

.

.

.

.
. .67
. .67

We now update T3×7, the top-down weight matrix. We have, tJi = t1i = xi, so that T3* (new)
= x = [0, 0, 0, 0, 1, 1, 1].

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 7×

1 1 1 0 0 0 0
0 0 0 0 0 1 1
0 0 0 0 1 1 1

Th is completes training with the fourth pattern in the fi rst epoch.

/* Epoch No. 1, Pattern No. 5 */

Step 2. For each training pattern s Do Steps 3 to 13.

Th e fi ft h training pattern is s = [0, 0, 1, 1, 1, 0, 0]

Step 3. Apply the input pattern s to F1(a) layer, i.e., set the acti-
vations of the F1(a) units to the input training pattern s.

Samir Roy_Chapter09.indd 347Samir Roy_Chapter09.indd 347 2/21/2013 3:33:14 PM2/21/2013 3:33:14 PM

348 Introduction to Soft Computing

Set the activations of the F1(a) units to (0, 0, 1, 1, 1, 0, 0).

 Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

 Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 3

1

 Step 6. Propagate input from F1(a) layer to interface layer F1(b) so
that xi = si, for all i = 1 to m.

x = s = [0, 0, 1, 1, 1, 0, 0]

 Step 7. Compute the net inputs to each uninhibited unit of the F2
layer.

For j = 1 To n Do

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1, y2, y3] = x × B = [0, 0, 1, 1, 1, 0, 0] ×

.

.

.

.

5 0 0
5 0 0
5 0 0
0 0 0
0 0 5
0 6. 7 5.
0 6. 7 5.

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [.5, 0, .5]

 Step 8. While reset is True Do Steps 9 To 12.

 Step 9. If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then
the Jth cluster unit is the winner. In case of a tie, take
the smallest J.

None of the cluster units is inhibited and both Y1 and Y3 has the highest activation value
of .5. So winner is the lowest indexed unit Y1, so that J = 1.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T1* = [0, 0, 1, 1, 1, 0, 0] ⋅ [1, 1, 1, 0, 0, 0, 0] = [0, 0, 1, 0, 0, 0, 0].

Step 11. Find the norm of x : x xi
i

m

=
∑

1

Samir Roy_Chapter09.indd 348Samir Roy_Chapter09.indd 348 2/21/2013 3:33:20 PM2/21/2013 3:33:20 PM

Competitive Neural Nets 349

x xi
i

m

=xi
=
∑∑

1
1

Step 12. Test for Reset : If
x
s

<ρ Then inhibit the Jth cluster unit

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed

to Step 13.

x
s

= = =
1
3

0 33 0< 9. .33 0< ,ρ hence inhibit cluster unit 1 by making y1 = −1. Reset = True.

Go to Step 9.

 Step 9. If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then
the Jth cluster unit is the winner. In case of a tie, take
the smallest J.

Cluster unit Y1 is inhibited and between Y2 and Y3, Y3 has the highest activation value of
0.5. So winner is the lowest indexed unit Y3, and J = 3.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T3* = [0, 0, 1, 1, 1, 0, 0] ⋅ [0, 0, 0, 0, 1, 1, 1] = [0, 0, 0, 0, 1, 0, 0].

Step 11. Find the norm of x : x xi
i

m

=
∑

1
= 1

Step 12. Test for Reset : If
x
s

<ρ Then inhibit the Jth cluster unit

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed

to Step 13.

x
s

= = ≤ =
1
3

33 0 9. ≤33 0 ρ , hence Reset = True. Go to Step 9.

 Step 9. If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then
the Jth cluster unit is the winner. In case of a tie, take
the smallest J.

Samir Roy_Chapter09.indd 349Samir Roy_Chapter09.indd 349 2/21/2013 3:33:24 PM2/21/2013 3:33:24 PM

350 Introduction to Soft Computing

Cluster units Y1 and Y3 are inhibited so that Y2 has the highest activation value of 0. So
winner is the unit Y2, so that J = 2.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T2* = [0, 0, 1, 1, 1, 0, 0] ⋅ [0, 0, 0, 0, 0, 1, 1] = [0, 0, 0, 0, 0, 0, 0].

Step 11. Find the norm of x : x xi
i

m

=
∑

1
= 0

Step 12. Test for Reset : If
x
s

<ρ Then inhibit the Jth cluster unit

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed

to Step 13.

x
s

= = ≤ =
0
3

0 0≤ 9. ρ , hence Reset = True. Go to Step 9.

 Step 9. If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then
the Jth cluster unit is the winner. In case of a tie, take
the smallest J.

All cluster units are now inhibited. So we introduce a new cluster unit Y4. Th e modifi ed
bottom-up and top-down weight matrices are now:

B7 4

5 0 0 125
5 0 0 125
5 0 0 125
0 0 0 125
0 0 5 125
0 67 5 125
0 67

=

. .5 0 0

. .5 0 0

. .5 0 0
.

. .5
. .67 .
. .675 125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

∴ =

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

T4 7×

1 1 1 0 0 0 0
0 0 0 0 0 1 1
0 0 0 0 1 1 1
1 1 1 1 1 1 1

As the cluster units Y1, Y2, and Y3 are all inhibited the remaining new unit Y4 has the highest
activation value of 0.375. So winner is the unit Y4, so that J = 4.

Step 10. Update x : xi = si×tJi for all i =1 to m.

Samir Roy_Chapter09.indd 350Samir Roy_Chapter09.indd 350 2/21/2013 3:33:31 PM2/21/2013 3:33:31 PM

Competitive Neural Nets 351

x = s⋅T4* = [0, 0, 1, 1, 1, 0, 0] ⋅ [1, 1, 1, 1, 1, 1, 1] = [0, 0, 1, 1, 1, 0, 0].

Step 11. Find the norm of x : x xi
i

m

=
∑

1
= 3

Step 12. Test for Reset : If
x
s

<ρ Then inhibit the Jth cluster unit

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed

to Step 13.

x
s

= = ≥ =
3
3

1 0≥ 9. ρ , hence Reset = False. Go to Step 13.

Step 13. Update the weights (top-down and bottom-up) attached to unit
J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
4

2
1

()new = =
+

, ∴ b14(new) = b24(new) = b64(new) = b74(new) = 0. b34(new)

= b44(new) = b54(new) = 0.5.

Th erefore the new bottom-up weight matrix is

B7 4

5 0 0 0
5 0 0 0
5 0 0 5
0 0 0 5
0 0 5 5
0 67 5 0
0 67 5 0

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

.

.

. .5 0 0

. .5
. .67
. .67

⎥⎥
⎤⎤⎤⎤

⎥
⎥⎥⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

We now update T4×7, the top-down weight matrix. We have, tJi = t1i = xi, so that T4* (new)
= x = [0, 0, 1, 1, 1, 0, 0].

∴ =

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

T4 7×

1 1 1 0 0 0 0
0 0 0 0 0 1 1
0 0 0 0 1 1 1
0 0 1 1 1 0 0

Th is completes training with the fi ft h pattern in the fi rst epoch.

Samir Roy_Chapter09.indd 351Samir Roy_Chapter09.indd 351 2/21/2013 3:33:37 PM2/21/2013 3:33:37 PM

352 Introduction to Soft Computing

Training with the last pattern (0, 0, 0, 1, 0, 0, 0) is left as an exercise. We will see that none of the existing
four cluster units is able to learn this pattern. Providing one more cluster unit Y5 to accommodate this
pattern, we fi nally have

B7 5

5 0 0 0 0
5 0 0 0 0
5 0 0 5 0
0 0 0 5 1
0 0 5 5 0
0 67 5 0 0
0 67 5 0 0

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

.

.

. .5 0 0

. .5
. .67
. .67

⎢⎢
⎢⎢⎢⎢

⎢
⎢⎢⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

T5 7TT

1 1 1 0 0 0 0
0 0 0 0 0 1 1
0 0 0 0 1 1 1
0 0 1 1 1 0 0
0 0 0 1 0 0 0

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Problem 9.3 (Creating and training an ART1 net) Repeat the previous problem with r = .3.

Solution 9.3 Th e ART-1 net initially consists of 7 inputs and 3 clusters. Th e training set comprises
the patterns: [1, 1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 1, 1, 1], [0, 0, 1, 1, 1, 0, 0]
and [0, 0, 0, 1, 0, 0, 0]. Th e vigilance parameter r = .3. Execution of the fi rst epoch of ART-1 training is
traced below.

Step 0. Initialize the learning parameters and the interconnection
weights

L b t forff all i j tij j j=0 1
1 7+

125 1 7to1 7toto 3to, , (bij) .= =
1

1 7
0 , tt ,ρ

∴ =B7 3×

125 125 125
125 125 125
125 125 125
125 125 125
125

. . .125 125

. . .125 125

. . .125 125

. . .125 125

. .125

. . .

. . .

,
125 125

125 125 125
125 125 125

3 7

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

T3 ==
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

Step 1. Do Steps 2 to 14 While stopping criteria is not satisfied.

/* Epoch No. 1, Pattern No. 1 */

Th is is same in the previous example. Th e new bottom-up weight matrix and the top-down
weight matrix at the end of training with the fi rst pattern are

Samir Roy_Chapter09.indd 352Samir Roy_Chapter09.indd 352 2/21/2013 3:33:45 PM2/21/2013 3:33:45 PM

Competitive Neural Nets 353

B7 3

4 125 125
4 125 125
4 125 125
4 125 125
0 125 125
0 12

=

. .4 .

. .4 .

. .4 .

. .4 .
. .125
. 51255 125

0 125 125
.

. .125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 7×

1 1 1 1 0 0 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1

/* Epoch No. 1, Pattern No. 2 */

Th e training is again same as in the previous example. Th e resultant bottom-up and top-
down weight matrices are given by

B7 3

5 125 125
5 125 125
5 125 125
0 125 125
0 125 125
0 125

=

. .5 .

. .5 .

. .5 .
. .125
. .125
. .125 ..
. .

125
0 125 125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 7×

1 1 1 0 0 0 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1

Similarly, the bottom-up and top-down weight matrices aft er training with the third pat-
tern in the fi rst epoch are given by

B7 3

5 0 125
5 0 125
5 0 125
0 0 125
0 0 125
0 67 125
0 67 125

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢
. .5 0
. .5 0
. .5 0

.

.
. .67
. .67

⎢⎢
⎢⎢⎢⎢

⎢
⎢⎢⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 7×

1 1 1 0 0 0 0
0 0 0 0 0 1 1
1 1 1 1 1 1 1

Samir Roy_Chapter09.indd 353Samir Roy_Chapter09.indd 353 2/21/2013 3:33:49 PM2/21/2013 3:33:49 PM

354 Introduction to Soft Computing

Now we proceed to train with the fourth pattern [0, 0, 0, 0, 1, 1, 1].

/* Epoch No. 1, Pattern No. 4 */

 Step 2. For each training pattern s Do Steps 3 to 13.

Th e fourth training pattern s = [0, 0, 0, 0, 1, 1, 1]

 Step 3. Apply the input pattern s to F1(a) layer, i.e., set the acti-
vations of the F1(a) units to the input training pattern s.

Set the activations of the F1(a) units to [0, 0, 0, 0, 1, 1, 1].

 Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

 Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 3

1

 Step 6. Propagate input from F1(a) layer to interface layer F1(b) so
that xi = si, for all i = 1 to m.

x = s = [0, 0, 0, 0, 1, 1, 1]

 Step 7. Compute the net inputs to each uninhibited unit of the F2
layer.

For j = 1 To n Do

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1, y2, y3] = x × B = [0, 0, 0, 0, 1, 1, 1] ×

. .

. .

. .
.
.
.
.

5 0 125
5 0 125
5 0 125
0 0 125
0 0 125
0 6. 7 125
0 6. 7 125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎢⎣⎣⎣⎣
⎢⎢⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [0, .1.34, .375]

 Step 8. While reset is True Do Steps 9 To 12.

 Step 9. If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then
the Jth cluster unit is the winner. In case of a tie, take
the smallest J.

Samir Roy_Chapter09.indd 354Samir Roy_Chapter09.indd 354 2/21/2013 3:33:56 PM2/21/2013 3:33:56 PM

Competitive Neural Nets 355

None of the cluster units is inhibited and y2 has the highest activation value of 1.34. So
winner is the lowest indexed unit Y2, so that J = 2.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T2* = [0, 0, 0, 0, 1, 1, 1] ⋅ [0, 0, 0, 0, 0, 1, 1] = [0, 0, 0, 0, 0, 1, 1].

Step 11. Find the norm of x : x xi
i

m

=xi
=
∑∑

1
2

Step 12. Test for Reset : If
x
s

<ρ Then inhibit the Jth cluster unit

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed
to Step 13.

x
s

= = ≥ =
2
3

0 67 ≥ 3. .67 0≥ ,ρ hence Reset = False. Go to Step 13.

Step 13. Update the weights (top-down and bottom-up) attached to unit
J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
1

2
1

()new = =
+

, ∴ b12(new) = b22(new) = b32(new) = b42(new) = b52(new) =

0. b62(new) = b72(new) = 0.67.

Th erefore there is no change in the new bottom-up weight matrix and top-down weight
matrix.

B7 3

5 0 125
5 0 125
5 0 125
0 0 125
0 0 125
0 67 125
0 67 125

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢
. .5 0
. .5 0
. .5 0

.

.
. .67
. .67

⎢⎢
⎢⎢⎢⎢

⎢
⎢⎢⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 7×

1 1 1 0 0 0 0
0 0 0 0 0 1 1
1 1 1 1 1 1 1

Th is completes training with the fourth pattern in the fi rst epoch.

Samir Roy_Chapter09.indd 355Samir Roy_Chapter09.indd 355 2/21/2013 3:33:58 PM2/21/2013 3:33:58 PM

356 Introduction to Soft Computing

/* Epoch No. 1, Pattern No. 5 */
 Step 2. For each training pattern s Do Steps 3 to 13.

Th e fi ft h training pattern s = [0, 0, 1, 1, 1, 0, 0]

 Step 3. Apply the input pattern s to F1(a) layer, i.e., set the acti-
vations of the F1(a) units to the input training pattern s.

Set the activations of the F1(a) units to [0, 0, 1, 1, 1, 0, 0].

 Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

 Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 3

1
 Step 6. Propagate input from F1(a) layer to interface layer F1(b) so

that xi = si, for all i = 1 to m.

x = s = [0, 0, 1, 1, 1, 0, 0]

 Step 7. Compute the net inputs to each uninhibited unit of the F2
layer.

For j = 1 To n Do

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1, y2, y3] = x × B = [0, 0, 1, 1, 1, 0, 0] ×

. .

. .

. .
.
.
.
.

5 0 125
5 0 125
5 0 125
0 0 125
0 0 125
0 6. 7 125
0 6. 7 125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎢⎣⎣⎣⎣
⎢⎢⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [.5, 0, .375]

 Step 8. While reset is True Do Steps 9 To 12.

 Step 9. If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then
the Jth cluster unit is the winner. In case of a tie, take
the smallest J.

None of the cluster units is inhibited and Y1 has the highest activation value of .5. So win-
ner is the lowest indexed unit Y1, so that J = 1.

Samir Roy_Chapter09.indd 356Samir Roy_Chapter09.indd 356 2/21/2013 3:34:06 PM2/21/2013 3:34:06 PM

Competitive Neural Nets 357

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T1* = [0, 0, 1, 1, 1, 0, 0] ⋅ [1, 1, 1, 0, 0, 0, 0] = [0, 0, 1, 0, 0, 0, 0].

Step 11. Find the norm of x : x xi
i

m

=xi
=
∑∑

1
1

Step 12. Test for Reset : If
x
s

<ρ Then inhibit the Jth cluster unit

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed

to Step 13.

x
s

= = ≥ =
1
3

0 33 ≥ 3. .33 0≥ ρ , hence Reset = False. Go to Step 13.

Step 13. Update the weights (top-down and bottom-up) attached to unit
J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
1

2
1

()new = =
+

, ∴ b11(new) = b21(new) = b41(new) = b51(new) = b61(new) =

b71(new) = 0, b34(new) = 1.

Th erefore the new bottom-up weight matrix is

B7 3

0 0 125
0 0 125
1 0 125
0 0 125
0 0 125
0 67 125
0 67 125

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

.

.

.

.

.
. .67
. .67

⎢⎢
⎢⎢⎢⎢

⎢
⎢⎢⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 7×

0 0 1 0 0 0 0
0 0 0 0 0 1 1
1 1 1 1 1 1 1

Th is completes training with the fi ft h pattern in the fi rst epoch.

/* Epoch No. 1, Pattern No. 6 */
Step 2. For each training pattern s Do Steps 3 to 13.

Th e sixth training pattern s = [0, 0, 0, 1, 0, 0, 0]

Samir Roy_Chapter09.indd 357Samir Roy_Chapter09.indd 357 2/21/2013 3:34:09 PM2/21/2013 3:34:09 PM

358 Introduction to Soft Computing

 Step 3. Apply the input pattern s to F1(a) layer, i.e., set the acti-
vations of the F1(a) units to the input training pattern s.

Set the activations of the F1(a) units to [0, 0, 0, 1, 0, 0, 0].

 Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

 Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 1

1

 Step 6. Propagate input from F1(a) layer to interface layer F1(b) so
that xi = si, for all i = 1 to m.

x = s = [0, 0, 0, 1, 0, 0, 0]

 Step 7. Compute the net inputs to each uninhibited unit of the F2
layer.

For j = 1 To n Do

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1, y2, y3] = x × B = [0, 0, 0, 1, 0, 0, 0] ×

. .

. .

. .
.
.
.
.

5 0 125
5 0 125
5 0 125
0 0 125
0 0 125
0 6. 7 125
0 6. 7 125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎢⎣⎣⎣⎣
⎢⎢⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [0, 0, .125]

 Step 8. While reset is True Do Steps 9 To 12.

 Step 9. If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then
the Jth cluster unit is the winner. In case of a tie, take
the smallest J.

None of the cluster units is inhibited and Y3 has the highest activation value of .125. So
winner is the lowest indexed unit Y3, so that J = 3.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T3* = [0, 0, 0, 1, 0, 0, 0] ⋅ [1, 1, 1, 1, 1, 1, 1] = [0, 0, 0, 1, 0, 0, 0].

Step 11. Find the norm of x : x xi
i

m

=xi
=
∑∑

1
1

Samir Roy_Chapter09.indd 358Samir Roy_Chapter09.indd 358 2/21/2013 3:34:17 PM2/21/2013 3:34:17 PM

Competitive Neural Nets 359

Step 12. Test for Reset : If
x
s

<ρ Then inhibit the Jth cluster unit

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed

to Step 13.

x
s

= = ≥ =
1
1

1 0≥ 3. ρ , hence Reset = False. Go to Step 14.

Step 13. Update the weights (top-down and bottom-up) attached to unit
J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
1

2
1

()new = =
+

, ∴ b13(new) = b23(new) = b33(new) = b53(new) = b63(new) =

b73(new) = 0, = b43(new) = 1.

Th erefore the new bottom-up weight matrix is

B7 3

0 0 0
0 0 0
1 0 0
0 0 1
0 0 0
0 67 0
0 67 0

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 7×

0 0 1 0 0 0 0
0 0 0 0 0 1 1
0 0 0 1 0 0 0

Th is completes training with the sixth pattern in the fi rst epoch.

Problem 9.4 (Implementation of LVQ net through MatLab) Write a MatLab program to design
and implement an LVQ net with two inputs and two outputs. Th e two outputs should correspond to two
clusters, cluster 1 and cluster 2. Th e training set consists of the training pairs { [0 −2] : 1, [+2 −1] : 1, [−2
+1] : 1, [0 +2] : 2, [+1 +1] : 2, [0 +1] : 2, [+1 +3] : 2, [−3 +1] : 1, [3 −1] : 1, [−3, 0] : 1}. Test the net with
the input pattern [0.2, −1].

Solution 9.4 Th e MatLab code for the net, its training and testing, is given below.

Samir Roy_Chapter09.indd 359Samir Roy_Chapter09.indd 359 2/21/2013 3:34:21 PM2/21/2013 3:34:21 PM

360 Introduction to Soft Computing

******************CODE FOR LEARNING VECTOR QUANTIZATION NETWORKS***********

clc;
clear;

Input_Vector = [0 +2 −2 0 +1 0 +1 −3 3 −3;
 −2 −1 +1 +2 +1 +1 +3 +1 −1 0];
% Input Vector comsists of 10 samples having 2 inputs each.

Target_Class = [1 1 1 2 2 2 2 1 1 1];
% The Input Vector has to be classified into two classes, namely Class 1
% and Class 2. 6 inputs belong to Class 1 and 4 belong to Class 2.

Target_Vector = ind2vec(Target_Class);
% Converting indices to vector

net = newlvq(minmax(Input_Vector),4,[.6 .4],0.1);
% Creating new LVQ network. The network takes input from P, has 4 hidden
% neurons and two classes having percentages of 0.6 and 0.4 respectively.
% The learning rate is 0.1.

net.trainParam.epochs = 150; % Setting maximum number of epochs to 150
net=train(net,Input_Vector,Target_Vector); % Train the network
Test_Vector_1 = [0.2; 1];
a = vec2ind(sim(net,Test_Vector_1)); % Simulate network with test vec-

tor
disp('Test_Vector_1 [0.2; 1] has been classified as belonging to Class
-');
disp(a);

Test_Vector_2 = [0.2; −1];
a = vec2ind(sim(net,Test_Vector_2));

disp('Test_Vector_2 [0.2; −1] has been classified as belonging to Class
−');
disp(a);

***********************************OUTPUT*************************************
Test_Vector_1 [0.2; 1] has been classified as belonging to Class - 2

Test_Vector_2 [0.2; −1] has been classified as belonging to Class - 1

Problem 9.5 (Self-organizing maps) Th e Iris dataset on fl owers consists of 150 sample data. It is
based on four attributes, sepal length in cm, sepal width in cm, petal length in cm, and petal width in cm,
along with the type of fl ower. Th is dataset can be copied from the webpage http://mlg.eng.cam.ac.uk/

Samir Roy_Chapter09.indd 360Samir Roy_Chapter09.indd 360 2/21/2013 3:34:27 PM2/21/2013 3:34:27 PM

Competitive Neural Nets 361

teaching/3f3/1011/iris.data or downloaded from: http://www2.acae.cuhk.edu.hk/~cvl/main_database.
htm. Design a SOM in MatLab for this dataset.

Solution 9.5 Th e MatLab code along with various outputs are given below.

MatLab code

% SOM on Iris Data Set mds3.txt
% Classify iris flowers based on four attributes.
% The data set consists of 150 samples.
% “irisInputs” is an 4x150 matrix, whose rows are:
% 1. Sepal length in cm
% 2. Sepal width in cm
% 3. Petal length in cm
% 4. Petal width in cm

clc;
clear();
load mdstrain.txt; % Load the training file containing 150 sam-

ples
 % having 4 fields
r = mdstrain(:,1:4); % Bring the contents of the text file to matrix
r
r = r’; % Transpose r to bring in order of rows
net = newsom(r,[10 10]); % Create new SOM for r with 10 x 10 hidden
 % neurons. The other parameters are kept at
 % default values.
% The syntax for newsom is net = newsom(P,[D1,D2,...],TFCN,DFCN,

STEPS,IN)
% where P = R × Q matrix of Q representative input vectors.
% Di = Size of ith layer dimension. Defaults = [5 8]. Here it is [10 10]
% TFCN = Topology function. Default = 'hextop'. May be made 'gridtop' or
% 'randtop'
% DFCN = Distance function. Default = 'linkdist'. Can be made 'dist' or
% 'mandist'. 'linkdist' is a layer distance function used to find the
% distances between the layer's neurons given their positions.'dist' is

the Eucledian distance function while 'mandist'is the Manhattan dis-
tance function.

% STEPS = Steps for neighborhood to shrink to 1. Default = 100.
% IN = Initial neighborhood size. default = 3.
net = train(net,r); % Train the network. train(net,r) opens up the
 % nntraintool from which the plots can be
 % generated.

Snapshots of MatLab outputs

Samir Roy_Chapter09.indd 361Samir Roy_Chapter09.indd 361 2/21/2013 3:34:27 PM2/21/2013 3:34:27 PM

362 Introduction to Soft Computing

Fig. 9.20. The ‘nntraintool’ window of MatLab

Various SOM profi les are generated by clicking the respective buttons on the nntraintool. Th ese are
shown below as Fig. 9.21–9.26

8

SOM Topology

7

6

5

4

3

2

1

0

0 2 4 6 8 10
−1

Fig. 9.21. SOM Topology, plotted by function ‘plotsomtop’.

Samir Roy_Chapter09.indd 362Samir Roy_Chapter09.indd 362 2/21/2013 3:34:27 PM2/21/2013 3:34:27 PM

Competitive Neural Nets 363

Th is shows the topology of the SOM

8

SOM Neighbor Connections

7

6

5

4

3

2

1

0

0 2 4 6 8 10
−1

Fig. 9.22. SOM neighbor connections, plotted by the function ‘plotsomnc’. This plot shows the
SOM layer, with the neurons denoted as dark patches and their connections with their
direct neighbours denoted as line segments.

8

SOM Neighbor Weight Distances

7

6

5

4

3

2

1

0

0 2 4 6 8 10
−1

Fig. 9.23. SOM neighbor weight distances, plotted by the function ‘plotsomnd’. This plot depicts the
SOM layer with the neurons as standard dark central patches and their direct neighbour
relations with line segments. The neighbouring patches are presented here with various
shades of grey to show how close each neuron’s weight vector is to its neighbours.

Samir Roy_Chapter09.indd 363Samir Roy_Chapter09.indd 363 2/21/2013 3:34:29 PM2/21/2013 3:34:29 PM

364 Introduction to Soft Computing

8

Weights from Input 1

6

4

2

0

0 2 4 6 8 10

8

Weights from Input 2

6

4

2

0

0 2 4 6 8 10

8

Weights from Input 3

6

4

2

0

0 2 4 6 8 10

8

Weights from Input 4

6

4

2

0

0 2 4 6 8 10

Fig. 9.24. SOM weight planes, plotted by the function ‘plotsomplanes’. The ‘plotsomplanes’
generates a set of subplots where each subplot shows the weights from the i-th input
to the layer's neurons. The various connections are shown with different shades of grey
(black for zero connection)

8 1

1 1

3 1

1 22 3

51

2 3 1 2 1 1 1 2 1

2 11 1 3 4

1 1

12

211

3

1 1 2 2 1 1 3 23

3 1 1 1 1 32 2

2 1 5

1

1

1 1

Hits

1 1 1

1132

3

1 3 3 4

4 3 1

1 1

2 1

1

21

7

6

5

4

3

2

1

0

0 2 4 6 8 10
−1

Fig. 9.25. SOM sample hits, plotted by function ‘plotsomhits’. This plot shows a SOM layer, with
each neuron and the number of input vectors that are classifi ed by it. This is shown as a
number inside the cells.

Samir Roy_Chapter09.indd 364Samir Roy_Chapter09.indd 364 2/21/2013 3:34:30 PM2/21/2013 3:34:30 PM

Competitive Neural Nets 365

4.5
SOM Weight Positions

4

3.5

2.5

2
4 4.5 5 5.5 6

Weight 1
6.5 7 7.5 8

3

W
ei

gh
t2

Fig. 9.26. SOM weight positions, plotted by function ‘plotsompos’. This plot shows how the
classifi cation of the input space is done by the SOM. It shows dots for each neuron’s
weight vector and the connecting neighbouring neurons with the lines.

� TEST YOUR KNOWLEDGE

9.1 Which of the following ANNs do not work on the principle of competition?
a) MAXNET b) Learning Vector Quantization (LVQ)
c) ART nets d) None of the above

9.2 Which of the following ANNs is fully connected?
a) MAXNET b) Learning Vector Quantization (LVQ)
c) ART nets d) None of the above

9.3 Which of the following ANNs do not require any training?
a) MAXNET b) Learning Vector Quantization (LVQ)
c) ART nets d) None of the above

9.4 Let us suppose a MAXNET have a weight − d at each non-self loop interconnection path and m
number of units. Which of the following conditions is satisfi ed by d and m?

a) δ >
1
m

 b) δ =
1
m

c) 0 1
< <δ

m
 d) None of the above

9.5 Which of the following competitive nets is based on the idea that patterns close to each other should
be mapped to clusters with physical proximity.
a) MAXNET b) Kohonen’s self-Organizing Map (SOM)
c) Learning Vector Quantization (LVQ) d) None of the above

9.6 Which of the following nets employ unsupervised learning?
a) Kohomen’s Self-Organizing Map (SOM) b) Learning Vector Quantization (LVQ)
c) Both (a) and (b) d) None of the above

Samir Roy_Chapter09.indd 365Samir Roy_Chapter09.indd 365 2/21/2013 3:34:31 PM2/21/2013 3:34:31 PM

366 Introduction to Soft Computing

 9.7 Which of the following nets employ supervised learning?
a) Kohomen’s Self-Organizing Map (SOM)
b) Learning Vector Quantization (LVQ)
c) Both (a) and (b)
d) None of the above

 9.8 Given a pattern applied to a Kohomen’s Self-Organizing Map (SOM), winner is the output unit
whose weight vector is
a) Furthest from the given pattern
b) Closest to the given pattern
c) Unrelated to the distance from the given pattern
d) None of the above

 9.9 Which of the following nets is intended to solve the stability-plasticity dilemma?
a) Kohomen’s Self-Organizing Map (SOM)
b) Learning Vector Quantization (LVQ)
c) Adaptive Resonance Th eory (ART) net
d) None of the above

9.10 Which of the following ANNs allow inclusion of a new clustering unit during the learning pro-
cess?
a) Adaptive Resonance Th eory (ART) b) Kohomen’s Self-Organizing Map (SOM)
c) Learning Vector Quantization (LVQ) d) Name of the above

9.11 ART1 nets are applicable for clustering
a) Binary patterns b) Real valued patterns
c) Both (a) and (b) d) None of the above

9.12 ART2 nets are applicable for clustering
a) Binary patterns b) Real valued patterns
c) Both (a) and (b) d) None of the above

9.13 In ART nets, the degree of similarity among the patterns belonging to the same cluster is con-
trolled with
a) Th e Reset signal b) Th e learning rate
c) Th e vigilance parameter d) None of the above

9.14 In ART1 nets, the bottom-up interconnections are directed
a) From the comparison layer to the recognition layer
b) From the recognition layer to the comparison layer
c) Both ways between the recognition and the comparison layers
d) None of the above.

9.15 In ART1 nets, the top-down interconnections are directed
a) From the comparison layer to the recognition layer
b) from the recognition layer to the comparison layer
c) both ways between the recognition and the comparison layers
d) None of the above.

9.16 A recognition layer unit of an ART1 net is not allowed to participate in a competition when it
is in
a) Active state b) Inactive state
c) Inhibited stated d) None of the above.

Samir Roy_Chapter09.indd 366Samir Roy_Chapter09.indd 366 2/21/2013 3:34:35 PM2/21/2013 3:34:35 PM

Competitive Neural Nets 367

9.17 Which of the following weights in an ART1 net is binary?
a) Bottom-up weights b) Top-down weights
c) Both (a) and (b) d) None of the above

9.18 Which of the following weights in an ART1 net is real valued?
a) Bottom-up weights b) Top-down weights
c) Both (a) and (b) d) None of the above

9.19 Which of the following is a competitive learning strategy for ANNs?
a) Hebb learning b) LMS Learning
c) Winner-takes-all d) None of the above

9.20 Which of the following is a possible action during ART1 learning in case all the cluster units are
inhibited?
a) Add more cluster unit
b) Reduce vigilance
c) Classify the pattern as outside all clusters
d) All of the above

Answers

 9.1 (d) 9.2 (a) 9.3 (a) 9.4 (c) 9.5 (b)
 9.6 (a) 9.7 (b) 9.8 (b) 9.9 (c) 9.10 (a)
 9.11 (a) 9.12 (b) 9.13 (c) 9.14 (a) 9.15 (b)
 9.16 (c) 9.17 (b) 9.18 (a) 9.19 (c) 9.20 (d)

 EXERCISES

9.1 Design a MaxNet with d = 0.15 to cluster the input pattern x = [x1, x2, x3, x4] = [0.7, 0.6, 0.1, 0.8].
Show the step-by-step execution of the clustering algorithm you follow.

9.2 Design a Self-Organizing Map (SOM) to cluster the patterns s1 = [1, 0, 0, 0], s2 = [0, 0, 0, 1], s3 = [1,
1, 0, 0] and s4 = [0, 0, 1, 1] into two clusters. Apply the resultant SOM to the patterns [0, 1, 1, 1] to
determine the cluster to which it belongs.

9.3 Six patterns and their corresponding designated clusters are given in Table 9.8. Obtain a Learning
Vector Quantization (LVQ) neural net for the given set of vectors. Test the resultant LVQ net with
the patterns [1, 0, 1, 0] and [1, 0, 1, 1].

Table 9.8. Training set

Training Vector
s = [x1, x2, x3, x2]

Cluster

1 s1 = [1, 0, 0, 0] C1

2 s2 = [1, 1, 0, 0] C1

3 s3 = [1, 1, 1, 0] C1

4 s4 = [0, 0, 0, 1] C2

5 s5 = [0, 0, 1, 1] C2

6 s6 = [0, 1, 1, 1] C2

Samir Roy_Chapter09.indd 367Samir Roy_Chapter09.indd 367 2/21/2013 3:34:35 PM2/21/2013 3:34:35 PM

368 Introduction to Soft Computing

9.4 Apply the ART-1 learning algorithm to cluster six patterns [1, 0, 0, 0, 0], [1, 1, 0, 0, 0], [0, 0, 1, 0, 0],
[0, 1, 1, 1, 0], [0, 0, 0, 1, 1] and [0, 0, 0, 0, 1] into at most three clusters. Th e following set of parameter
values are to be used.

m = 4 Number of units in the input layers F1(a) and F1(b)

n = 3 Number of units in the clustering layers F2

r = 0.5 Vigilance parameter

L = 2 Learning parameter, used in updating the bottom-up weights

b
mij () 1

1
=

+
= 0.2 Initial bottom-up weights (half of the maximum value allowed)

tji (0) = 1 Initial top-down weights (initially all set to 1)

9.5 Consider an ART-1 net referred in Example 9.6 with 5 input units and 3 cluster units. Aft er some
training the net attains the bottom-up and top-down weight matrices as shown below.

B5 3

2 0 2
5 8 2
5 5 2
5 8 2
1 0 2

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

. .2 0

. .5 .

. .5 .

. .5 .

. .1 0

, and T3 5TT
1 1 1 1 1
0 1 1 1 0
1 1 1 1 1

=
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

Show the behaviour of the net when it is presented with the training pattern s = [1, 1, 1, 1, 0].
Assume L = 2, and r = .8.

 BIBLIOGRAPHY AND HISTORICAL NOTES

Stalwarts like R. Lippman, G. A. Carpenter, S. Grossberg, T. Kohonen etc. worked on various competitive
neural nets over the years. MaxNet was introduced by Lippman in 1987. Adaptive Resonance Th eory
was developed by Stephen Grossberg and Gail Carpenter towards late eighties. SOM was developed by
Kohonen. A selected list of publications in the fi eld of competitive networks is presented below.

Carpenter, G.A. and Grossberg, S. (1987). A massively parallel architecture for a self-organizing neural
pattern recognition machine. Computer Vision, Graphics, and Image Processing.

Carpenter, G.A. and Grossberg, S. (2003). Adaptive Resonance Th eory. In M. A. Arbib (ed.), Th e Hand-
book of Brain Th eory and Neural Networks, Second Edition, pp. 87–90. MIT Press.

Carpenter, G.A., Grossberg, S., and Reynolds, J.H. (1991). ARTMAP: Supervised real-time learning and
classifi cation of nonstationary data by a self-organizing neural network. Neural Networks, Vol. 4, pp.
565–588.

Grossberg, S. (1987). Competitive learning: From interactive activation to adaptive resonance. Cognitive
Science, Vol. 11, pp. 23–63.

Kohonen, T. (1984). Self-Organization and Associative Memory. Springer, Berlin.
Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics,

Vol. 43, pp. 59–69.

Samir Roy_Chapter09.indd 368Samir Roy_Chapter09.indd 368 2/21/2013 3:34:35 PM2/21/2013 3:34:35 PM

Competitive Neural Nets 369

Kohonen, T. (1995). Learning vector quantization. In M.A. Arbib, (ed), Th e Handbook of Brain Th eory
and Neural Networks, pp. 537–540. MIT Press.

Kohonen, T. (1997). Self-Organizing Maps. Springer, Berlin.
Kohonen, T., Kaski, S. and Lappalainen, H. (1997). Self-organized formation of various invariant-feature

fi lters in the adaptive-subspace SOM. Neural Computation, Vol. 9, pp. 1321–1344.
Lippman, R, (1987). An introduction to computing with neural nets. IEEE Transactions on Acoustics,

Speech, Signal Processing, Vol. 35, pp. 2–44.

Samir Roy_Chapter09.indd 369Samir Roy_Chapter09.indd 369 2/21/2013 3:34:39 PM2/21/2013 3:34:39 PM

Samir Roy_Chapter09.indd 370Samir Roy_Chapter09.indd 370 2/21/2013 3:34:39 PM2/21/2013 3:34:39 PM

 This page is intentionally left blank.

10
BACKPROPAGATION

Key Concepts

Backpropagation of error, Feedforward neural net, Generalized delta rule, Hidden layer, Hyperbolic
tangent function, Multilayer perceptron, Nguyen-Widrow initialization, Random initialization, Sig-
moid function, Steepness parameter

 Chapter Outline

10.1 Multi-layer Feedforward Net
10.2 Th e Generalized Delta Rule
10.3 Th e Backpropagation Algorithm

Chapter Summary

Solved Problems
Test Your Knowledge
Exercise
Bibliography and Historical Notes

Backpropagation net is an important class of artifi cial neural nets which is used in a wide range of ap-
plications. Th e early enthusiasm over neural networks received a severe blow when Minsky and Papert
(1969) demonstrated that perceptrons are unable to implement an elementary function like a 2-input
XOR. Research community lost interest in the subject and no further development took place for several
years. Discovery of multilayered perceptron (also referred to as multilayered networks) independently
by several researchers (Rumelhart, Ivilliams, McClelland etc.) eventually restored interest in this fi eld.
Th e limitation of a single layer perceptron is overcome by multilayer neural nets. It is proved that a mul-
tilayer feedforward net can be made to learn any continuous function to any extent of desired accuracy.
Th e learning method called the generalized delta rule, or back-propagation (of errors), is employed to
train the multilayer feedforward networks. It is essentially a gradient descent method to minimize the
total squared error of the output computed by the net. Th e learning is supervised. Th is chapter presents
the basic features of backpropagation networks.

10.1 MULTI-LAYER FEEDFORWARD NET

As stated earlier, a single layer net has very limited capability. It is unable to learn such a simple function
as the 2-input XOR. Multilayer perceptron has the capacity to overcome this limitation. A multilayer

Samir Roy_Chapter10.indd 371Samir Roy_Chapter10.indd 371 2/21/2013 3:35:06 PM2/21/2013 3:35:06 PM

372 Introduction to Soft Computing

network with one or more hidden layers can learn any continuous mapping to an arbitrary accuracy.
Moreover, it is proved that one hidden layer is suffi cient for a multilayer perceptron to implement any
continuous function. However, in some cases, more than one hidden layer may be advantageous. Th e
features of multilayer feed forward net are discussed below in brief.

1

v0vv p

1

vmvv n

vm vv j

v1vv j

v0vv j

v1vv k

wj ww k

wpww k

wp ww r

wp ww 1

w1ww r
wjww 1

vivv n

vivv 1

vi vv j

vmvv 1

v1vv 1

v0 vv 1
w0 ww 1

w1 ww 1

w0 ww kw0 ww n

xmxx

xixx y_out k

y_out 1

y_out r

x1xx X1XX

XiXX

XmXX

wjww r

HpHH

Hidden layer Output layerInput layer

X0XX H0HH

H1HH

HjHH

Y1YY

YkYY

YnYY

:

: : :

::

Fig. 10.1. Structure of a multi-layered feed forward network with one hidden layer

10.1.1 Architecture

Th e processing elements of a multi-layer feedforward neural net are arranged in a number of layer. Th e
layers intermediate between the input and the output layers are called the hidden layers. Th e connecting
paths are unidirectional. Th ey are directed from the input layer to the output layer. Signals fl ow from
the input to the output through the hidden layers and not in the reverse direction. Th e name feedfor-
ward is due to the unidirectional fl ow of signal from the input to the output layer. During learning, the
net adjusts its interconnection weights on the basis of the errors in computation. Calculation of errors
starts at the output layer and the errors are propagated backward, i.e., from the output layer towards
the input layer. Because of this backward propagation of errors during the learning phase these nets are
called backpropagation nets. Th e structure of an m-p-n multilayer net with one hidden layer is shown
in Fig.10.1. It can be easily generalized to nets having move than hidden layers. Th e biases to the hidden
units and the output units are provided by the units X0 and H 0 respectively, each of which is permanently
fed with the signal 1. Th e biases to the hidden units H1, …, Hp are shown in Fig.10.1 as v01, v02, …, v0p.
Similarly, those to the output units Y1, …, Yn are given by w01, …, w0n.

10.1.2 Notational Convention

Th e symbols used to describe the multilayer feed forward net, and its learning algorithm, are listed below.

x Th e input training pattern of length m. x = [x1, … , xi, …, xm]
y_out Output pattern produced by the activations of the output units Y1, …., Yn. y_out =

[y_out1, …, y_outk, …, y_outn]
t Target output pattern for input pattern x. t = [t1, …, tk, …, tn]

Samir Roy_Chapter10.indd 372Samir Roy_Chapter10.indd 372 2/21/2013 3:35:09 PM2/21/2013 3:35:09 PM

Backpropagation 373

h_out Pattern produced by the activations of the hidden units H1, …, Hp.
h_out = [h_out1, …, h_outj, …, h_outp]

Xi Th e ith input unit. Th e signal to input unit Xi is symbolized as xi. Th e activation of Xi is also
xi, as it simply broadcasts the input signal xi, without any processing, to the units of the
hidden layer.

Hj Th e jth hidden unit, j = 1, .., p. Th e total input signal to Hj is given by

h in v xj
i

m

iv j ixi
i

m

_
=i=

∑ ∑v x viv j ixi jv xiv jxi +
0 1

Where vij is the interconnection weight between the input unit Xi and the hidden unit Hj,
and voj is the bias on the hidden unit Hj.

h_outj Th e activation of the jth hidden unit Hj.
h_outj = fh (h_inj), where fh is the activation function for the hidden units.

Yk Th e kth output unit, k = 1, …, n. Th e total input signal to Yk is given by

y in w h outk
j

p

jw k jh out
i

p

k
=i=

∑ ∑w h out wjw k jh out kjk =w h outjw k jh out +
0 1

Where wjk is the interconnection weight between the hidden unit Hj and the output unit
Yk, and wok is the bias on the output unit Yk.

y_outk Th e activation of the output unit Yk.
y_outk = fo (y_ink), where fo is the activation function for the output units.

δ(wk) A component of error correction weight adjustment for wjk, j = 0, …, p, that is due to an
error at output Yk. Moreover, δk is propagated to the hidden units to further calculate the
error terms at the hidden units.

δ(vj) A component of error correction weight adjustment for vij, i = 0, …, m. δ(vj) results from
the backpropagation of error information from the output units to the hidden unit Hj.

a Learning rate

10.1.3 Activation Functions

Th e activation function employed in a backpropagation net must satisfy certain properties. It must be
continuous, diff erentiable, and monotonically non-decreasing. Moreover, it is desirable the fi rst deriva-
tive of the activation function be easily computable. Some of the widely used activation functions are
mentioned below.

.5

0

1
σ1

σ2

σ1 〈 σ2

Fig. 10.2. Binary sigmoid function

Samir Roy_Chapter10.indd 373Samir Roy_Chapter10.indd 373 2/21/2013 3:35:09 PM2/21/2013 3:35:09 PM

374 Introduction to Soft Computing

(a) Binary sigmoid function
Th is is one of the most popular activation function with a range of (0, 1). Th e binary sigmoid func-
tion and its fi rst derivative are given below.

 f x
e x)x =

+ −

1
1 σ

 (10.1)

 ′ =f x′ f x f x)x)x (− f))σ (10.2)

Th e parameter s in Equation 10.1 is known as the steepness parameter. Th e shape of the sigmoid
function is shown in Fig. 10.2. Th e transition from 0 to 1 could be made as steep as desired by in-
creasing the value of s to appropriate extent.

(b) Bipolar sigmoid function
Depending on the requirement, the binary sigmoid function can be scaled to any range of values
appropriate for a given application. Th e most widely used range is from −1 to +1, and the cor-
responding sigmoid function is referred to as the bipolar sigmoid function. Th e formulae for the
bipolar sigmoid function and its fi rst derivative are given below as Equations 10.3 and 10.4 respec-
tively. Fig. 10.3 presents the form of a bipolar sigmoid function graphically.

 g x e
e

x

x()x = −
+

−

−

1
1

σ

σ (10.3)

 ′ = −g x g x g x()x ((g))(()x)σ
2

1x(+ g))((10.4)

−1

0

1

Fig. 10.3. Bipolar sigmoid function

(c) Hyperbolic tangent function
Another bipolar activation function that is widely employed in backpropagation nets is the hyper-
bolic tangent function. Th e function and its fi rst derivative are expressed by Equations 10.5 and 10.6
respectively.

 h x e e
e e

x xe
x xe

()x = (10.5)

 ′ =h x′ h x h x()x ((h))((− h))x+ h))((10.6)

Th e hyperbolic tangent function is closely related to the bipolar sigmoid function. When the input data
is binary and not continuously valued in the range from 0 to 1, they are generally converted to bipolar
form and then a bipolar sigmoid or hyperbolic tangent activation is applied on them by the processing
units.

Samir Roy_Chapter10.indd 374Samir Roy_Chapter10.indd 374 2/21/2013 3:35:12 PM2/21/2013 3:35:12 PM

Backpropagation 375

10.2 THE GENERALIZED DELTA RULE

As stated earlier, the backpropagation nets follow the generalized delta rule for learning. It is a super-
vised learning method which is essentially a gradient descent method that tries to minimize the total
squared error of the output computed by the net. Th e learning algorithm is presented in Section 10.3.
Th is section provides a derivation of the generalized delta rule.

Let vij be the interconnection weight between the input unit Xi and the hidden unit Hj and wjk be the
interconnection weight between the hidden unit Hj and the output unit Yk. Th en the total input signal
h_inj to the hidden unit Hj is given by

 n v xj
i

m

iv j ixi
i

m

_
=i=

∑ ∑v x viv j ixi jv xiv jxi +
0 1

 (10.7)

Th e activation of the hidden unit Hj is obtained with the help of an activation function fh.
 h_outj = fh (h_inj) (10.8)
Th e total input y_ink to the output unit Yk is given by

 y in w h outk
j

p

jw k jh out
i

p

k
=i=

∑ ∑w h out wjw k jh out kjk =w h outjw k jh out +
0 1

 (10.9)

Where w0k is the bias on the output unit Yk. Th e activation of the output unit Yk is obtained with the help
of an activation function fo.
 y_outk = fo (h_ink) (10.10)
Th e squared error at the output layer is given by

 E t y ok ky o
k

n

−tk
=

∑1
2 1

2. (∑∑ _)outkout = 1
2 1

0
2((0 _))t f00 y i_

k

n

k
=

∑ (10.11)

Equation 10.9 provides the expression for y_ink. Equation 10.11, together with Equation 10.9, indicates
that E is a function of the interconnection weights. Now, taking the partial derivative of E with respect to
wjk, i.e., the interconnection weight between the hidden unit Hj and the output unit Yk, we get

∂
∂

=
∂

∂
⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬

=
∑E

w w∂
y out

jk jk k

n

k
1
2 1

2(_t y−) = ∂
∂

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬

=
∑w

t f y i
jk k

n

k
1
2 1

0ff 2((t f− 0ff _)ink

 = −
∂

∂
−((_)) ∂

∂
).t f− y i_

w
f y(inoff− k

jk
kff = − ′

∂
∂

(_ (′ _) (_)y− out f) y i
w

y i_ n_y− out o k(ff y i_
jk

k

 = − ′
∂

∂
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠=

∑(_ (′ _) _y− out f) y i
w

w h out_y− out ko (ff y i_
jk

Kk J
J

p

0

 = − ′(_ (′ _) _y− out f) y in h) out_y− out o k(ff y i_ j

We denote, δwδ y out f yk k k ff k′(_t ykt −) fff _)ink , so that ∂
∂

=E
w

w h⋅ out
jk

k jh⋅ outδ (10.12)

Regarding weights of the paths between the input layer and the hidden layer we have

∂
∂

=
∂

∂
⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬

=
∑E

v v∂
y out

ij ij
ky out

k

n1
2

2

0
(_t y− y−) = − ∂

∂=
∑(_). (_)y− out

v
y o_ utk_y− out

ijk

n

k
1

Samir Roy_Chapter10.indd 375Samir Roy_Chapter10.indd 375 2/21/2013 3:35:18 PM2/21/2013 3:35:18 PM

376 Introduction to Soft Computing

 = − ∂
∂=

∑(_). (_))y− out
v

f y(k_y− out
ijk

n

k_f yf (
1

 = − ′ ∂
∂=

∑(_ (′ _) (_)y− out f) y i
v

y i_ n_y− out ko(ff y i_
ijk

n

k
1

 = − ∂
∂=

∑δw
v

y ink
ijk

n

k
1

(_y) = − ∂
∂=

∑ ∑∂
∂v

w h⋅ out
ijk

n

Jk J
J

p

0=1 ∂∂vij J
_

 = − ⋅ ∂
∂=

∑δw w⋅
v

h outk jw⋅ k
ij

j
k

n

(_h)
1

= − ∂
∂=

∑δw w⋅
v

f hk jw⋅ k
ij

h jf hf
k

n

(fff _)injin)
1

= − ∂
∂ ==

∑∑δw
v

f v∑k jk
ij

If vf ∑ j II
I

m

k

n

. (∂
∂

w jw k)v∑ xIv∑ j IxI)
01

= − ⋅ ′ ⋅
=

∑δw w⋅ f h′ in xk jw⋅ k ⋅ ff
k

n

j ix
1

_h)

 = −δv x⋅j ix ,

where δ δwδ δδ w f h inj kδwδ j hff
k

n

j⋅wδ kwδ ′
=

∑∑
1

(_h)

Th erefore, the formulae for weight update are

Δw E
w

t y o f y in h outjk
jk

k j k ky o kf yf in= − ∂
∂

⋅ − ⋅yy ′α α
∂

= − δwδ αw hk hw (j αout jout _)outkoutoutkout yy) _h⋅ jj

Hence Δw y out f y h outjk k ky out kf yf joutkout ′ ⋅α (_t yk y− yy) fff⋅ _)inkin _ (10.13)

Similarly, Δv E
v

w f h xij
ij

j i k
k

n

jk h jf hf i= − ∂
∂

⋅ ⋅ ′
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⋅

=
∑α α

∂
= δ αv xj ix =xix δ

1
.w fjk ff _)injin

= α δ
⎡

⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦=
∑f wh jff i k

⎣⎣⎣
∑
k

n

jk) .δwδi kδ
⎣
⎢
⎣⎣
∑ wδ

1

Th erefore, Δv f wj h jff i k
k

n

jk
⎡

⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦=
∑∑α f h inh jff in′

⎡
δ∑hh .wkw) i δxi ⋅x

⎡
⎢
⎡⎡∑

1
 (10.14)

Th e backpropagation algorithm applies formulae 10.13 and 10.14 for adjustment of the interconnection
weights during the learning process. Th e details of the bachpropagation algorithm are discussed below.

10.3 THE BACKPROPAGATION ALGORITHM

Backpropagation is a supervised learning method where the net repeatedly adjusts its interconnection
weights on the basis of the error, or deviation from the target output, in response to the training patterns.
As usual, learning takes place through a number of epochs. During each epoch the training patterns are
applied at the input layer and the signals fl ow from the input to the output through the hidden layers.
Calculation of errors starts at the output layer and the errors are propagated backward, i.e., from the out-
put layer towards the input layer. Th e error terms for the interconnection weights between various layers
of neurons are derived in Section 10.2 and are given by Equations 10.13, and 10.14. Th e step-by-step
procedure is given in Algorithm Backpropagation (Fig. 10.4). Th e corresponding fl owchart is
shown in Fig. 10.5.

Samir Roy_Chapter10.indd 376Samir Roy_Chapter10.indd 376 2/21/2013 3:35:34 PM2/21/2013 3:35:34 PM

Backpropagation 377

Algorithm Backpropagation

/* To train a multilayer feedforward net having a single hidden layer with

a set of training pairs {(x, t)| x = [x
1, …, xm], t = [t1, …, tn]} */

Step 0. Initialize weights vij and wjk with small random values.

Step 1. While stopping condition is false, Do Steps 2 to 9.

Step 2. For each training pair, Do Steps 3 to 8.

/* Feed forward the input pattern */

Step 3. Apply pattern x = [x1, …, xm] to the input layer [X1, …, Xm]

and broadcast the signals x1, …, xm to the hidden layer units.

Step 4. Compute the total input h_inj to each hidden layer unit Hj:

h in x vj
i

m

ix ij
i

m

_
=i=

∑ ∑x v vix ij j⋅xix = +v j
0 1

, j = 1, …, p.

Compute the activation of each hidden unit as h_outj = fh (h_

inj). Broadcast h_outj to each unit Yk of the output layer.

Step 5. Compute the total input y_ink to each output layer unit Yk :

y in h out wk
j

p

jh out jk
i

p

k
=i=

∑ ∑h out w wjh out jk kh outh out = w
0 1

, k = 1, …, n.

Compute the activation of each output unit y_outj = fo (y_ink).

/* Backpropagate the errors and adjust weights. */

Step 6. Compute the error term at the output layer as

δwδ y out f yk k k ff k′(_t ykt −tkt) fff⋅ _)ink , k = 1, …, n.

Compute the weight adjustment terms for weights wjk

Δw w h and wΔ wjk k jh k kw=wΔ kα δ α δ⋅,jout 0 , j = 1, …, p, and

k = 1, …, n.

Broadcast the error terms d wk backward to the hidden layer.

Step 7. For each hidden unit Hj, j = 1, .., p, compute the total error
obtained from the output layer.

δ δδδ wδj kδδ
k

n

jk_ δδ
=

∑∑
1

Compute the error term at the hidden layer as

δ δvδ δδ f hj jδvδ h jf hfvδvδ ′_ in fjin ff⋅injin _)injin , j = 1, …, p.

Compute the weight correction terms for updating weights Vij.

Samir Roy_Chapter10.indd 377Samir Roy_Chapter10.indd 377 2/21/2013 3:35:50 PM2/21/2013 3:35:50 PM

378 Introduction to Soft Computing

Δ Δv v andd v vij j ix j jvΔvα δ α δ, 0

/* adjust the weights of interconnections */

Step 8. Compute the new weights as:

 i) Wjk(new) = Wjk(old) + ∆wjk , for j = 0,… , P, and k = 1,…, n
 ii) vij(new) = vij(old) + ∆vij , for i = 0,.., m, and j = 1,…, p

Step 9. Test for the stopping condition

Fig. 10.4. Algorithm backpropagation

No Yes

False

True

Begin

Initialize weights

Stopping condition

Update weights:w j k (new) = w j k (old) + Δw j k , j = 0 to p, k = 1 to n.
v i j (new) = v i j(old) + Δv i j , i = 0 to m, j = 1 to p. Δw jkw and Δv i j are
calculated using formulae 10.13 and 10.14.

Start next epoch of lf earning

Apply the next training pattern to the input layer

Propagate signal: Propagate input pattern from the input layer (XXX ,
i = 0 to m) to the hidden layer (H j , j = 0 to p). Find the activations
of the hidden layer. Propagate activations of the hidden layer to the
output layer (YkYY ,k = 0 to n). Compute activations at the output
layer.

Compute error terms for interconnection weights: Find errors
at output layer (i.e., t k – y_out k , k = 0 to n). Compute the weight
adjustment terms Δw j k , j = 0 to p, k = 1 to n, for the
interconnections between the hidden layer and the output layer.
Propagate these error terms backwards to the hidden layer.
Calculate the error terms Δv i j for the interconnection weights
between the input layer and the hidden layer.

More training pair?

End

Fig. 10.5. Flowchart of backpropagation training algorithm

Samir Roy_Chapter10.indd 378Samir Roy_Chapter10.indd 378 2/21/2013 3:35:56 PM2/21/2013 3:35:56 PM

Backpropagation 379

10.3.1 Choice of Parameters

Performance of the Backpropagation learning procedure with respect to a problem instance requires
fi ne tuning of certain parameters. Important parameters include the initial interconnection weights and
biases, size of the training set, data representation, number of hidden layers etc. Th ese issues are briefl y
discussed in the rest of this subsection.

(a) Initial weights and biases
Choosing the appropriate initial interconnection weights highly infl uence the quality of the solution.
Quality of a solution can be judged on the basis of whether a global minima is reached or the learning
process gets stuck at a local minima, or the effi ciency of search process. Th e popular ways to choose the
initial weights are described below.

Random Initialization In this method, random real values within the range − 0.5 to + 0.5, or − 1.0
to + 1.0, or some other suitable range, are assigned to the interconnection weights initially. Th e initial
weights should neither be too large nor be too small. Th is is because in both these cases learning be-
comes slow.

Procedure Nguyen-Widrow Initialization.

Step 1. Compute a scale function b = 0.7(p) β = ×0 7
1

p m , where p is the

number of units in the hidden layer and m is the number of units

in the input layer.

Step 2. Initialize the biases v0j, j =1, .., p, by random number within
the range −b to b.

Step 3. Initialize each interconnection weight vij, i = 1, …, m, and j =
1, …, p with a random number within the range – 0.5 to +0.5.

Step 4. For each j = 1, …, p compute v v vj jv j mv jm= +v jv + +2
2

2 2+ +

Step 5. Final initialization of vij, i = 1, …, m, and j = 1, …, p is ac-
complished with the help of the formula

v
v

vij
ij

j
=

β.

Fig. 10.6. Procedure Nguyen-Widrow initialization

Nguyen-Widrow Initialization. Nguyen-Widrow proposed an initialization technique that acceler-
ates the learning rate to a great extent. It is based on the hyperbolic tangent activation function

 h x e e
e e

x xe
x xe

()x = (10.15)

We know that this function is closely related to the bipolar sigmoid activation function. In Nguyen-
Widrow initialization, the weights between the hidden layer and the output layer, i.e., the wjk weights, are
randomly initialized to values in the range − 0.5 to + 0.5. However, the interconnection weights between

Samir Roy_Chapter10.indd 379Samir Roy_Chapter10.indd 379 2/21/2013 3:35:58 PM2/21/2013 3:35:58 PM

380 Introduction to Soft Computing

the input layer and hidden layer, i.e., vij weights, are assigned diff erently. Th e method is presented as
Procedure Nguyen-Widrow Initialization (Fig. 10.6).

(b) Stopping criteria
Hecht and Nielsen have proposed a very eff ective criterion for the termination of the backpropaga-
tion learning process. Th e technique requires use of two sets of patterns during training, viz., a set of
training patterns, together with a set of training testing patterns. Th ese sets are disjoint. Th e training
patterns are used to train the net as usual. However, the training-testing patterns play a somewhat
diff erent role. Th ese are employed to compute the errors at regular intervals. Training is continued as
long as the error for the training-testing patterns goes on decreasing. When this trend reverses, i.e.,
instead of decreasing the error begins to increase, training is terminated.

(c) Size of training set
Let p be the size of the training set, i.e., number of training pairs, w be the number of weights to
be adjusted, and e the accuracy of classification. Then the expression for ‘enough’ training pairs is
given by

 P w
e

= (10.16)

Th is implies that if the net is trained to classify 1
2

− e of the training patterns correctly, where 0 < e ≤

0.125, then it will classify i - e of the testing patterns correctly.

Example 10.1 (Size of the training set)

Let us suppose e = 0.1. Th en a backpropagation net with 100 weights will require w/e = 100/0.1 = 1000
training patterns to classify 90% of testing patterns correctly, assuming that the net was trained to clas-
sify 95% of the training patterns correctly.

(d) Data representation
Data can be discrete, or continuous. It is found that distinct responses are learnt by neural nets more
easily than continuous-valued responses. However, breaking continuous data into a number of distinct
categories is not always advisable because, neural nets fi nd it diffi cult to learn patterns that lie on, or near,
the boundaries. On the other hand, representing discrete quantities, such as letters of the alphabet, or a
set of facial images, should be avoided as far as possible. As usual, discrete data should be represented
in bipolar form and the bipolar sigmoid function is to be used for the activation function so that the net
may learn faster.

(e) Number of hidden layers
It is shown that for back-propagation nets one hidden layer is suffi cient to approximate any continuous
input-output pattern mapping to any desired degree of accuracy. In some situations, however, more than
one hidden layers, say two, may make learning easier.

Samir Roy_Chapter10.indd 380Samir Roy_Chapter10.indd 380 2/21/2013 3:36:02 PM2/21/2013 3:36:02 PM

Backpropagation 381

Algorithm Apply-Backpropagation-Net

/* An m-input n-output backpropagation neural net with one hidden layer

consisting of p number of hidden units is given. The input, hidden, and

the output layer units are denoted as X
0, X1,…, Xm, H0, H1,…,Hp, and Y1,…,Yn

respectively. The biases at the input and hidden layers are attached to

the bias units X
0 and H0. The input pattern is x = (x1, …, xm). The cor-

responding output pattern Y_out = (y_out1,…,y_outn) is to be computed. */

Step 1. Apply the input pattern to the input layer by setting activation

of each input unit X
i to the corresponding component xi of the

input pattern x.

Step 2. Compute the total input to each hidden layer unit

h in x v x v j pj ix ij oj i
i

m

i

m

ij_ .in v vj ix ij oj , j⋅xix = +v jvoj v jij
==
∑∑∑

10

Step 3. Compute the activation of each hidden unit

h_outj = fh(h_inj), j = 1, …, p

Step 4. Propagate the hidden layer activations to the output layer units

and compute the total input to each output layer unit

y in h out w w h out wk jh out jk k jh out jk
j

p

j

p

k .wjout jkh outh out = w
==

∑∑∑ 0
10

Step 5. Compute the activation of each output unit

y_outk = fo(y_ink), k = 1, …, n

Step 6. Return the pattern y_out = (y_out1, …, y_outn)

End Algorithm Apply-Backpropagation–Net

Fig. 10.7. Algorithm apply-backpropagation-net

10.3.2 Application

Once the net is trained, it is ready for application. During application phase of a backpropagation neural
net, only the feed forward phase of the training algorithm is needed. Th e application procedure is pre-
sented as Algorithm Apply–Backprapagation-Net (Fig. 10.7). Fig. 10.8 shows the fl owchart
of the procedure.

Samir Roy_Chapter10.indd 381Samir Roy_Chapter10.indd 381 2/21/2013 3:36:04 PM2/21/2013 3:36:04 PM

382 Introduction to Soft Computing

Begin

Compute total input to
each hidden units

Compute the total input to each
output unit

Compute the activation
of each output unit

Return activation of the output layer

End

Compute activation of each hidden unit
to broadcast then to the input layer units

Apply input pattern x = [x1xx , …, xmxx]
to the input layer X1XX , …, XmXX

Fig. 10.8. Flow chart for application of backpropagation net

CHAPTER SUMMARY

Th e main points of the discussion on backpropagation nets are noted below.
A multilayer feedforward neural net with one or more • hidden layers can learn any continuous
mapping to an arbitrary accuracy.
It is proved that one hidden layer is suffi cient for a multilayer perceptron to implement any •
continuous function.
Th e processing elements of a multi-layer feedforward neural net are arranged in a number of •
layer. Th e layers intermediate between the input and the output layers are called the hidden
layers. Th e connecting paths are directed from the input layer to the output layer. Signals fl ow
from the input to the output through the hidden layers and not in the reverse direction. Th e
name feedforward is due to the unidirectional fl ow of signal from the input to the output layer.
During learning, the net adjusts its interconnection weights on the basis of the errors in •
computation. Calculation of errors starts at the output layer and the errors are propagated
backward, i.e., from the output layer towards the input layer. Because of this backward
propagation of errors during the learning phase these nets are called backpropagation nets.
Th e activation function employed in a backpropagation net must be continuous, diff erentiable, •
and monotonically non-decreasing. Th e fi rst derivative of the activation function should
preferably be easily computable.
Th e backpropagation nets follow the generalized delta rule for learning. It is a supervised •
learning method which is essentially a gradient descent method that tries to minimize the total
squared error of the output computed by the net.

Samir Roy_Chapter10.indd 382Samir Roy_Chapter10.indd 382 2/21/2013 3:36:06 PM2/21/2013 3:36:06 PM

Backpropagation 383

Th e backpropagation algorithm applies the formulae 10.13 and 10.14 for adjustment of the •
interconnection weights during the learning process.

 Δw y out f y h outjk k ky out kf yf joutkout ′ ⋅α (_t yk y− yy) fff⋅ _)inkin _ (10.13)

 Δv f wj h jff i k
k

n

jk
⎡

⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦=
∑∑α f h inh jff in′

⎡
δ∑hh .wkw) i δxi ⋅x

⎡
⎢
⎡⎡∑

1
 (10.14)

Important parameters of backpropagation algorithm include the • initial interconnection weights
and biases, size of the training set, data representation, number of hidden layers etc.

SOLVED PROBLEMS

Problem 10.1 (Backpropagation network for diagnosis of diabetes) Let us assume that it is possible
to predict fairly correctly from the data provided in Table A below the chances of a person being a diabetic.
Th e diagnosis fi eld gives the inference drawn from the data given in the preceding six columns. Th e legend
below gives the interpretation of the values in the column marked ‘Diagnosis’. Use the information given in
Table 10.1 to train a backpropagation network. Test the trained network with the data given in Table 10.2.

Table 10.1. Data for diabetics

Family
History

Obese Thirst Increased
Urination

Increased
Urination
(Night)

Adult Diagnosis

1 1 1 1 1 1 1

1 1 0 0 0 1 2

1 1 1 0 0 1 2

1 1 1 1 1 0 1

0 1 1 1 1 1 1

0 0 1 1 1 1 1

0 0 0 1 1 0 0

1 0 0 0 0 1 0

0 1 1 0 0 1 0

0 0 1 0 1 1 1

0 1 0 0 1 1 0

0: Not diabetic, 1: Diabetic, 2: Probably diabetic

Table 10.2. Test data

Family
History

Obese Thirst Increased
Urination

Increased
Urination
(Night)

Adult Diagnosis

1 1 1 1 1 1 ?

0 0 0 0 0 1 ?

Samir Roy_Chapter10.indd 383Samir Roy_Chapter10.indd 383 2/21/2013 3:36:07 PM2/21/2013 3:36:07 PM

384 Introduction to Soft Computing

Solution 10.1 Th e MatLab program for training and testing the backpropagation network is given
below.

clc;
clear;
load (‘Input.txt’) % Loading of input data (as in Table A)
load (‘test.txt’) % Loading of test data (as in Table B)
r = Input (:,1:6); % Placing input data to matrix
r = r’;
t = Input (:,7); % Placing target output from input

data
t = t’;
s = test (:,1:6); % Placing test data to matrix
s = s’;

% ******** THESE PARAMETERS CAN BE ADJUSTED AS REQUIRED *********

numHiddenNeurons = 25; % Number of hidden neurons = 18
net = newpr(r,t,numHiddenNeurons); % Create new network
net.trainParam.show = 50; % Epochs between showing progress = 50
net.trainParam.lr = 0.1; % Learning rate = 0.1
net.trainParam.mc = 0.9; % Momentum constant = 0.9
net.trainParam.epochs = 15000; % Number of maximum epochs = 15000
net.trainParam.goal = 1e-15; % Performance goal = 1e-15

%**

net = train (net, r, t); % Train the network on input data
b = sim (net, s); % Test response for test data
disp (b); % Display the results at command line
for i = 1:2
if (b (i) < 0.7)

disp (‘NOT DIABETIC’);
elseif (0.7 <= b (I) <= 1.5)

disp (‘DIABETIC’);
elseif (b (i) > 1.5)

disp (‘PROBABLY DIABETIC’);
end
end

% *************** IT IS IMPORTANT TO CLOSE ALL FILES *****************

close all;
clear all;

% ********************** THIS IS NOT PART OF CODE ********************
********************************OUTPUT********************************

1.5589 0.1846

DIABETIC
NOT DIABETIC

Samir Roy_Chapter10.indd 384Samir Roy_Chapter10.indd 384 2/21/2013 3:36:09 PM2/21/2013 3:36:09 PM

Backpropagation 385

Problem 10.2 (Neural Network Fitting Tool in Matlab) Use the Neural Network Fitting Tool in
Matlab to solve an input-output fi tting problem with a two layer feed forward neural network.

Solution 10.2 Th e step-by-step process with reference to a sample dataset available in MatLab is
shown below.

Step 1. Open the Neural Network Fitting Tool (nft ool). (Fig. 10.9)
Th en click on the→ Next button. Th is brings us to the Select Data interface in nft ool. (Fig. 10.10)

Fig. 10.9. The neural network fi tting tool (nftool)

Th e page provides an introduction to the so called fi tting problems where we want a neural
network to map between a data set of numeric inputs and a set of numeric targets. Th e intro-
duction cites a few examples of this type of problem e.g. estimating house prices from such
input variables as tax rate, pupil/teacher ratio in local schools and crime rate which is provided
as the house_dataset in the system, estimating engine emission levels based on measurements
of fuel consumption and speed (engine_dataset); or predicting a patient’s bodyfat level based
on body measurements (bodyfat_dataset).

As mentioned in this page, the nft ool helps to select data, create and train a network, and
evaluate its performance using mean square error and regression analysis. A two-layer feed-
forward network with sigmoid hidden neurons and linear output neurons (newfi t) can fi t
multi-dimensional mapping problems arbitrarily well, given consistent data and enough neu-
rons in its hidden layer. Th e network is trained with Levenberg-Marquardt backpropagation
algorithm (trainlm), unless there is not enough memory, in which case scaled conjugate gradi-
ent backpropagation (trainscg) is used.

Step 2. As we are going to work with Example Data Set, load the same by selecting ‘Load Example Data
Set’. (Fig. 10.10)

Samir Roy_Chapter10.indd 385Samir Roy_Chapter10.indd 385 2/21/2013 3:36:09 PM2/21/2013 3:36:09 PM

386 Introduction to Soft Computing

Step 3. Select house_dataset. Th e description of the dataset appears on the right (Fig. 10.11). Th e
house_dataset has 506 samples. Th e ‘housingInputs’ is a 13 × 506 matrix with rows corre-
sponding to (i) per capita crime rate by town, (ii) proportion of residential land zoned for lots
over 25,000 sq.ft ., (iii) proportion of non-retail business acres per town, (iv) whether tract
bounds Charles river or not, (v) nitric oxides concentration (parts per 10 million), (vi) average
number of rooms per dwelling, (vii) proportion of owner-occupied units built prior to 1940,
(viii) weighted distances to fi ve Boston employment centres, (ix) index of accessibility to radial
highways, (x) full-value property-tax rate per $10,000, (xi) pupil-teacher ratio by town, (xii)
1000(Bk − 0.63)2, where Bk is the proportion of blacks by town, and (xiii) % lower status of the
population.

Fig. 10.10. Select data interface in nftool

Fig. 10.11. Selecting house_dataset

Samir Roy_Chapter10.indd 386Samir Roy_Chapter10.indd 386 2/21/2013 3:36:10 PM2/21/2013 3:36:10 PM

Backpropagation 387

Th e ‘houseTargets’ is a 1 × 506 matrix of medium values of owner-occupied homes in $1000’s.
As indicated in MatLab, this data is available from the UCI Machine Learning Repository
http://mlearn.ics.uci.edu/MLRepository.html Murphy, P.M., Aha, D.W. (1994). UCI Reposi-
tory of machine learning databases [http://www.ics.uci.edu/~mlearn/MLRepository.html].
Irvine, CA: University of California, Department of Information and Computer Science.
Th is dataset originated from the StatLib library which is maintained at Carnegie Mellon
University.

Step 4. Load sample data, i.e., houseinputs and houseTargets (Fig. 10.12) and then click on the
→ Next button at the bottom.

Fig. 10.12. Sample data loaded

Fig. 10.13. Training, validation and test data chosen

Step 5. Choose the training, validation and test data (Fig. 10.13). Th e explanations for training, valida-
tion and test are provided in the ‘explanation’ window. Go to the next page.

Samir Roy_Chapter10.indd 387Samir Roy_Chapter10.indd 387 2/21/2013 3:36:13 PM2/21/2013 3:36:13 PM

388 Introduction to Soft Computing

Step 6. Determine the network size, please note the structure (Fig. 10.14). In this case the input and
output sizes are 13 and 1 respectively. Th e size of the hidden layer is chosen to be 20.

Fig. 10.14. Network size determined

Step 6. Train the network (Fig. 10.15, Fig. 10.16 and Fig. 10.17). It may be noted that the network may
be retrained for better performance.

Fig. 10.15. Training the network

Samir Roy_Chapter10.indd 388Samir Roy_Chapter10.indd 388 2/21/2013 3:36:17 PM2/21/2013 3:36:17 PM

Backpropagation 389

Fig. 10.16. Training in progress

Fig. 10.17. Training results

If performance of the resultant network is not satisfactory then MatLab provides options for adjustment
of network size and data set. Th is is shown in Fig. 10.18. Fig. 10.19 shows how to save the results of the
process.

Fig. 10.20, Fig. 10.21 and Fig. 10.22 show various snapshots relating to the performance of the net-
work and the training process.

Samir Roy_Chapter10.indd 389Samir Roy_Chapter10.indd 389 2/21/2013 3:36:22 PM2/21/2013 3:36:22 PM

390 Introduction to Soft Computing

Fig. 10.18. Network size and data set adjustment options

Fig. 10.19. Saving results

Best Validation Performance is 24.2713 at epoch 9

Train
Validation
Test
Best

10
4

10
3

10
2

M
ea

n
S

qu
ar

e
E

rr
or

 (
m

se
)

10
1

10
0

0 5 1015 Epochs 15

Fig. 10.20. Performance plot

Samir Roy_Chapter10.indd 390Samir Roy_Chapter10.indd 390 2/21/2013 3:36:26 PM2/21/2013 3:36:26 PM

Backpropagation 391

10
4

10
2

10
2

10
−2

10
−4

6

4

2

0
0 5 10

Validation Checks =6, at epoch 15

Mu = 1, at epoch 15

Gradient = 9.1079, at epoch 15

15 Epoch 15

gr
ad

ie
nt

m
u

V
al

 fa
il

10
0

10
0

Fig. 10.21. Training states

50
Training: R = 0.9834

Data
Fit
Y = T40

30

20

O
ut

pu
t∼

=
0.

96
∗ T

ar
ge

t+
0.

94

10

10 20 30
Target

40 50

50
Test: R = 0.9003

Data
Fit
Y = T40

30

20

O
ut

pu
t∼

=
0.

74
∗ T

ar
ge

t+
4.

8

10

10 20 30
Target

40 50

50

Validation: R = 0.83502

Data
Fit
Y = T

40

30

20

O
ut

pu
t∼

=
0.

78
∗ T

ar
ge

t+
5.

4

10

10 20 30
Target

40 50

50

All: R = 0.93889

Data
Fit
Y = T

40

30

20

O
ut

pu
t∼

=
0.

88
∗ T

ar
ge

t+
2.

5

10

10 20 30
gTarget

40 50

Fig. 10.22. Regression slot

� TEST YOUR KNOWLEDGE

 10.1 How many hidden layers are required by a multilayer perceptron to learn an arbitrary continu-
ous function?
a) One b) Two
c) More than two d) None of the above

Samir Roy_Chapter10.indd 391Samir Roy_Chapter10.indd 391 2/21/2013 3:36:29 PM2/21/2013 3:36:29 PM

392 Introduction to Soft Computing

 10.2 During the learning phase of a backpropagation net, direction of fl ow of signals is
a) From input to output b) From output to input
c) Uncertain d) None of the above

 10.3 During the learning phase of a backpropagation net, direction of fl ow of errors is
a) From input to output b) From output to input
c) Uncertain d) None of the above

 10.4 Which of the following properties of an activation function need not be satisfi ed while used in a
backpropagation net?
a) Continuity b) Diff erentiability
c) Monotonically non-decreasing d) None of the above

 10.5 Which of the following activation functions is not suitable for backpropagation nets?
a) Sigmoid b) Hyperbolic tangent
c) Step function d) None of the above

 10.6 Which of the following learning rules is used to train backpropagation nets?
a) Hebb rule b) Generalized delta rule
c) Winner-takes-all d) None of the above

 10.7 While applying Hecht and Nielsen criteria for termination of the backpropagation learning pro-
cess, which of the following sets of patterns is used to determine the termination condition?
a) Training patterns b) Training-testing patterns
c) Both (a) and (b) d) None of the above

 10.8 What kind of learning is backpropagation?
a) Supervised b) Non-supervised
c) Semi-supervised d) None of the above

 10.9 Which of the following activation functions is appropriate for Nguyen-Widrow initialization in
backpropagation learning?
a) Step function b) Hyperbolic tangent
c) Hyperbolic d) Sigmoid function

10.10 In Nguyen-Widrow initialization, the weights between the hidden layer and the output layer, i.e.,
the wjk weights, are randomly initialized to values in the range -
a) – 1.0 to + 1.0 b) – 1.0 to 0
c) 0 to + 1.0 d) – 0.5 to + 0.5

Answers

 10.1 (a) 10.2 (a) 10.3 (b) 10.4 (d) 10.5 (c)
 10.6 (b) 10.7 (b) 10.8 (a) 10.9 (b) 10.10 (d)

EXERCISES

10.1 Consider Problem 10.2 in the ‘Solved Problems’ section where Neural Network Fitting Tool in
Matlab is used to solve an input-output fi tting problem with a two layer feed forward neural net-
work. Repeat the exercise with the other data sets available in the system.

10.2 A word can be misspelled in various ways. Some of these misspelled words are acceptable in the
sense that we can recognize the word in spite of the spelling mistake while others are not accept-
able. Table 10.3 presents a list containing various misspellings of the word ‘computer’ along with

Samir Roy_Chapter10.indd 392Samir Roy_Chapter10.indd 392 2/21/2013 3:36:30 PM2/21/2013 3:36:30 PM

Backpropagation 393

their acceptibilities. Use this data set to train a backpropagation net in MatLab. Test the perfor-
mance of the resultant net with the words ‘computrr’ and ‘commuter’.

Table 10.3. Misspellings of the word ‘computer’.

Word Decision

1 komputer Yes

2 komptuer No

3 comptuer Yes

4 conjurer No

5 commteer No

6 comfuter Yes

7 comfortr No

8 komfuter No

9 coomputr Yes

10 moonliter No

11 combuter Yes

12 conputer Yes

 BIBLIOGRAPHY AND HISTORICAL NOTES

Backpropagation nets are deeply explored by the researchers in the past few decades. Numerous works
have been published that are highly interesting both from theoretical and practical points of views. A
short list of selected papers in this area is given below.

Cherkassky, V. and Vassilas, N. (1989). Performance of back-propagation networks for associative data-
base retrieval. In Proceedings of International Joint Conference on Neural Networks, Washington, DC,
pp. I-77–84.

Gori, M. and Tessi, A. (1992). On the problem of local minima in backpropagation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 14, pp. 76–86.

Hecht-Niclsen, R. (1989). Th eory of backpropagation neural network. International Joint Conference on
Neural Networks, Washington, DC, pp. I-593–605.

LeCun, Y., Boser, B., Denker, J. S., Handerson, D., Howard, R. E., Hubbard, W., and Jackel, L. D.
(1990). Handwritten digit recognition with a back-propagation network. In Advances in Neural In-
formation Processing Systems, ed. Touretzky, D. S., Vol. 2, Morgan Kaufmann, San Mateo, CA, pp.
396–404.

Nguyen, D., and Widrow, B. (1990). Improving the learning speed of 2-layer neural networks by choos-
ing initial values of the adaptive weights. International Joint Conference on Neural Networks, San Di-
ego, CA., pp. III-21–26.

Pal, S. K. and Mitra, S. (1992). Multilayer perceptron, fuzzy sets, and classifi cation. IEEE Transactions on
Neural Nets, Vol. 3, No. 5, pp. 683–697.

Samir Roy_Chapter10.indd 393Samir Roy_Chapter10.indd 393 2/21/2013 3:36:30 PM2/21/2013 3:36:30 PM

394 Introduction to Soft Computing

Plaut, D. S., Nowlan, S. J. and Hinton, G. E. (1986). Experiments on learning by back-propagation. Tech-
nical report CMU-CS-86-126, Department of Computer Science, Carnegie-Mellon University, Pitts-
burgh, PA.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986). Learning representations by back-propagating
error. Nature, Vol. 323, 533–536.

Sarkar, M. and Yegnanarayana, B. (1997). Incorporation of fuzzy classifi cation properties into back-
propagation learning algorithms. In Proceedings of IEEE International Conference on Fuzzy Systems,
Barcelona, Spain.

Samir Roy_Chapter10.indd 394Samir Roy_Chapter10.indd 394 2/21/2013 3:36:30 PM2/21/2013 3:36:30 PM

11
ELEMENTARY SEARCH TECHNIQUES

Key Concepts

8-queen problem, A* algorithm, ‘A’ algorithm, AND-OR graph, AO* algorithm, CNF-satisfi ability, Ad-
missibility, Adversarial search, Alpha-beta cut-off , Alpha-beta pruning, Backtracking, Backtracking
depth-fi rst search, Best-fi rst search, Bidirectional search, Binary constraint, Blind search, Block world,
Book moves, Breadth-fi rst search (BFS), Constraint, Constraint graph, Constraint hypergraph, Constraint
propagation, Constraint satisfaction, Control system, Crossword puzzle, Cryptarithmetic puzzle, Degree
heuristic, Depth-fi rst iterative deepening, Depth-fi rst search (DFS), Diff erence-operator-precondition
table, Exhaustive search, Final state, Forward checking, Game playing, Game tree, General constraint,
General problem solver (GPS), Global database, Goal state, Graph colouring problem, Greedy local
search, Heuristic search, Hill climbing, Horizon eff ect, Informed search, Initial state, Irrevocable control
strategy, Least constraining value heuristic, Local optima, Min-confl ict heuristic, Minimum remaining
value (MRV) heuristic, n-queen problem, Objective function, Operator subgoaling, Plan generation,
Plateau, Post-condition, Pre-condition, Problem reduction, Production rules, Production system, Qui-
escence, Ridge, Secondary search, Start state, State space, State space search, Static evaluation function,
Steepest-ascent hill climbing, Traveling salesperson problem, Unary constraint, Uninformed search, Utility
function, Valley descending

 Chapter Outline

11.1 State Spaces
11.2 State Space Search
11.3 Exhaustive Search
11.4 Heuristic Search
11.5 Production Systems

Chapter Summary
Solved Problems
Test Your Knowledge
Exercise
Bibliography and Historical Notes

Many intelligent computational processes take the form of state space search, which is at the core of such
intelligent systems. Th is chapter provides a review of these elementary state space search techniques.
Evolutionary search techniques e.g. Genetic Algorithms (GAs), Simulated Annealing (SA) etc. are tradi-
tionally regarded as soft computational processes. Th ese techniques are applied to tackle highly complex

Samir Roy_Chapter11.indd 395Samir Roy_Chapter11.indd 395 2/21/2013 3:37:27 PM2/21/2013 3:37:27 PM

396 Introduction to Soft Computing

problems. A review of the basic search techniques is necessary for an understanding of the evolutionary
search strategies stated above. In this chapter we start with the concept of a state space. Th en the basic
state space search algorithm is presented and explained. Exhaustive search algorithms, e.g., breadth-fi rst
search, depth-fi rst search, depth-fi rst iterative deepening etc., are discussed which is followed by dis-
cussions on various heuristic search strategies. Th e principles underlying such techniques as best-fi rst
search, hill climbing, A / A* algorithm, AO* algorithm etc. are explained with appropriate illustrative ex-
amples. Features of production systems, an important class of intelligent systems employing state space
search at the core, are explained along with examples.

11.1 STATE SPACES

Many intelligent computational processes are modeled as a state space search. Th e concept of a state
space is introduced in this section. Searching through a state space, i.e., state space search, is discussed
in the next section.

Let us consider a block world of size three. A block world consists of a number of cubical blocks on
a plane surface. Th e blocks are distinguishable and they may either rest on the table or stacked on it. Th e
arrangement of the blocks constitutes a state of the block world. An arrangement of the blocks can be
altered through a set of legal moves. An altered arrangement results in a diff erent state. Th e size of the
block world is given by the number of blocks in it. So, a block world of size three consists of three distin-
guishable blocks. Let the blocks be marked as X, Y, and Z.

Let the initial stack of the blocks be as shown in Fig. 11.1(a). Th ey are to be rearranged into the goal
stack shown in Fig. 11.1(b). Th e rules to manipulate the block world are:

Only one block can be moved at a time.•
A block can be moved only if its top is clear, i.e., there is no block over it.•
A block can be placed on the table.•
A block can be placed over another block provided the latter’s top is clear. •

We have to fi nd a sequence of legal moves to transform the initial stack of blocks to the goal stack.

X

Y

Z

X

Y

Z

(a) Start state (b) Goal state

Fig. 11.1. A block manipulation problem.

X

Y

Z

X

Y Z

(a) (b)

Fig. 11.2. The fi rst move.

Th e only valid move from the initial arrangement is to lift the topmost block Y and place it on the table
to obtain the state in Fig. 11.2(b).

From the state depicted in Fig. 11.2(b) the possible moves are:

Replace block Y on top of X to return to the previous arrangement, or•
Lift block X and place it on the table, or•
Lift block X and place it on block Y.•

Taking this into account, the possibilities regarding the fi rst two moves are shown in Fig. 11.3. Bidirec-
tional arrows indicate that the corresponding changes in the block world are reversible.

Samir Roy_Chapter11.indd 396Samir Roy_Chapter11.indd 396 2/21/2013 3:37:30 PM2/21/2013 3:37:30 PM

Elementary Search Techniques 397

Start
state

X

Y

Z

X

Y Z

X

Y Z X Y Z

Fig. 11.3. The fi rst two possible moves.

X Y Z
X

Y

Z
X

Y

Z

X Y

Z

X

Y

Z

X

Y Z

X

Y Z

X

Y

Z X Y

Z

X

Y

Z
Initial
state

X

Y

Z

Final
state

Z

X

Y

X

Y

Z

Fig. 11.4. Movements in the block world of size 3.

Samir Roy_Chapter11.indd 397Samir Roy_Chapter11.indd 397 2/21/2013 3:37:31 PM2/21/2013 3:37:31 PM

398 Introduction to Soft Computing

Similarly, newer block world states are generated by applying appropriate moves. Th e set of all possible
block arrangements and their interrelations are shown in Fig. 11.4. Th is is a tiny state space of block
manipulation problem of size 3.

We may represent each possible state of the block world as a node and express the transition between
two states with directed arcs so that the entire set of possible states along with possible transitions among
them takes the form of a graph (Fig. 11.5). Finding a solution to the given problem is tantamount to
searching for a goal node, (or, a goal state, or fi nal state). Th e search starts at the start state of the prob-
lem, i.e., at the start node. During the search process, newer nodes are generated from the earlier nodes
by applying the rules of transformation. Th e generated nodes are tested for goal, or fi nal, node. Th e
search stops when a goal is reached, or is found to be unreachable.

Goal
State

Start
State

FE HG I

C D

J K

A B

L M

Fig. 11.5. State space of block manipulation problem.

Th us, a state space for a given problem consists of
A directed graph • G(V, E) where each node v ∈V represents a state, and each edge eij from state
vi to vj represents a possible transition from vi to vj. Th is graph is called the state space of the
given problem.
A designated state • s∈V referred to as the start state, or start node, of the state space. Th e search
starts from this node.
A • goal condition which must be satisfi ed to end the search process successfully. It is expected
that one or more nodes of the state space will satisfy this condition. Such nodes are called the
goal nodes.

Th e following example illustrates the concept of a state space.

A CB
1
2
3

CBA

Fig. 11.6. Movements in the block world of size 3

Example 11.1 (State space representation of the Tower of Hanoi problem)

Let us consider the Tower of Hanoi problem for three discs 1, 2, and 3 (Fig. 11.6). Discs 1, 2, and
3 are in ascending order of diameter. Initially all the discs are in peg A and the other two pegs B

Samir Roy_Chapter11.indd 398Samir Roy_Chapter11.indd 398 2/21/2013 3:37:32 PM2/21/2013 3:37:32 PM

Elementary Search Techniques 399

and C are empty. Th e discs are to be transferred from peg A to peg C so that the fi nal arrangement
shown on the right side of Fig. 11.6 is achieved. Disks are transferred from peg to peg subject to
the following rules:

Only one disc may be transferred at a time.•
Under no circumstances a larger disc may be placed over a smaller disc.•
A disc can be picked for movement only if there is no other disc on it.•

Let us formulate the problem as a state space search in the following way. Th e fi rst thing to do is
to fi nd a suitable representation of the problem state. We employ here a 3 × 3 matrix to represent a
state. Columns 1, 2 and 3 of the matrix correspond to the pegs A, B, and C, respectively. Similarly,
the rows are used to indicate the relative positions of the discs within a peg. Th us, the start state
and the goal state are expressed as in Fig. 11.7(a) and Fig. 11.7(b).

What about the transitions among the possible states? Initially all discs are in peg A with disc 3
at the bottom and disc 1 at the top. In this situation we can pick disc 1 from the top and put it either
in peg B or in peg C (Fig. 11.8). Each of these two states will generate others states (including those
already generated) and so on. Th e partial state space for this problem with one path from the start
state to the goal state is shown in Fig. 11.9. Th e corresponding graph is given in Fig. 11.10. Th e
graph does not show the details of a state and express them simply as nodes. Th e start node and
the goal node are indicated with appropriate tags and the solution path, i.e., the sequence of moves
from the start node to the goal node is highlighted.

A C B
1

2

3

≡

(a) The start state

C BA
1

2

3

≡

(b)The goal state

1

2

3

1

2

3

(c) The problem

2

3 1

2

3 1

Fig. 11.7. Formulation of Tower of Hanoi
problem as a state space search.

Fig. 11.8. Probable states after the fi rst move.

Samir Roy_Chapter11.indd 399Samir Roy_Chapter11.indd 399 2/21/2013 3:37:32 PM2/21/2013 3:37:32 PM

400 Introduction to Soft Computing

Goal State

Start State

1

2

3

2

3 1

2

3 1

3 2 13 1 2

1

3 23

1

2 3

1

2

1

3 2

3

1

2

1

2 3

1

3 21 3 2 2

1

31 2 3

2

1

31

2

3 2

1

31

2

3

1

2

3

1

2

3

Fig. 11.9. State space of Tower of Hanoi problem with three discs

Samir Roy_Chapter11.indd 400Samir Roy_Chapter11.indd 400 2/21/2013 3:37:33 PM2/21/2013 3:37:33 PM

Elementary Search Techniques 401

Start State

A

B C

D E

F G H I

J K

L M N O

P Q
R S

Goal State

T U

Fig. 11.10. State space of Tower of Hanoi as a graph

Example 11.2 (State space representation of the 8-puzzle)

Th e 8-puzzle is a combination of eight movable tiles, numbered 1 to 8, set within a 3 × 3 frame.
Out of the 3 × 3 = 9 cells eight cells are occupied by the tiles and one remaining cell is empty. At
any instant, a tile which is adjacent to the empty cell in the vertical or in horizontal direction, may
slide into it. Equivalently, the empty cell can be moved to left , right, up, or down by one cell at a
time, depending on its position. Th e state of the 8-puzzle can be represented with the help of a
3 × 3 matrix where the empty cell is indicated by blank. Given the initial and the goal states of an
8-puzzle as shown in Fig. 11.11, we are to generate the state space and a path from the start state
to the goal state in it.

Samir Roy_Chapter11.indd 401Samir Roy_Chapter11.indd 401 2/21/2013 3:37:33 PM2/21/2013 3:37:33 PM

402 Introduction to Soft Computing

Start state

38 1

7 2 4

6 5

Goal state

8 4

7 6 5

1 2 3

Fig. 11.11. An instance of the 8-puzzle.

Initially the empty cell is at the bottom-left corner. We can move it either upwards or to the right. No
other movement is possible from this position. Accordingly, we get two children from the start node.
From each of these children, two new states can be generated. If we go on generating newer states and
the interconnections among them we get the required state space as shown in Fig. 11.12. Fig. 11.13
hides the details of the individual states and presents the said state space as a directed graph.

Goal

state

Start
state

8 1 3

7 2 4

6 5

8 1 3

2 6 4

7 5

 6

8 1 3

2 6 4

7 5

 6

8 1 3

7 6 6 5

2 4

8 1 3

7 22 4
6 5

7 6 5

8 2 2 4
1 3

8 2 2 4

7 6 6 5

1 3

8 1 3

2 6 6 4

7 5

8 1 3

6 2 5

7 4

 2 1 3

 6 7 5

 8 4

7 6 5

8 2 4

 6

1 3

7 6 5

2 1 4

 6

 1

8 3

6 2 5

7 1 4

 2

 1

8 3

6 2 5 2

7 4

8 1 1 3

7 6 5 6

2 4

8 1 1 3

8 1 3

6 5 4 5

7 2

8 1 1 38 1 3

6 2 5

7 4

7 6 5

 1

 6
42

8 1 3

7 2 2 4

6 5

Fig. 11.12. State space of the 8-puzzle.

Samir Roy_Chapter11.indd 402Samir Roy_Chapter11.indd 402 2/21/2013 3:37:34 PM2/21/2013 3:37:34 PM

Elementary Search Techniques 403

A

B C

D E F G

H I J K L M N O

P Q R S

Fig. 11.13. State space of the 8-puzzle as a graph.

11.2 STATE SPACE SEARCH

Once the state space of a given problem is formulated, solving the problem amounts to a search for the
goal in it. Th e basic search process is independent of the problem and has a number of common features
as described below.

11.2.1 Basic Graph Search Algorithm

Th e search starts from the start node which represents the initial state of the problem. As the search
proceeds, newer and newer nodes are produced and the search tree grows. Th e search tree is a subgraph
of state space. It consists of the nodes generated during the search. Th ere is a set of transformation rules
that map a given node to other nodes. A node is said to be generated when it is obtained as a result of
applying some rule on the parent node. A node is said to be expanded when its children are generated.
Moreover, there are some conditions to ascertain whether a given node is a goal not. When a node un-
dergoes such a test it is said to be explored.

During the search, two lists are maintained. One for the nodes that have been generated but neither
explored, nor expanded. Th is list is referred to as OPEN. Th e other list, called CLOSED, contains all nodes
that have been generated as well as explored and expanded. While the search process is on, a node from the
OPEN list is selected for processing. It is fi rst explored and if found to be a goal node, the search ends suc-
cessfully. Otherwise, the node is expanded and the newly generated nodes are included into the search tree
constructed so far. Th e process stops successfully when a goal node is reached. It ends unsuccessfully if the
list OPEN is found to be empty, indicating that the goal node, if exists, is unreachable from the start node.

A simplifi ed version of the algorithm which focuses on the essential features of state space search is
given in Algorithm Basic-State-Space-Search (Fig. 11.14).

Algorithm Basic-State-Space-Search

/* Let OPEN be a list of states that have been generated but not yet
explored or expanded. Another list CLOSED contains the states that are

Samir Roy_Chapter11.indd 403Samir Roy_Chapter11.indd 403 2/21/2013 3:37:34 PM2/21/2013 3:37:34 PM

404 Introduction to Soft Computing

ex plored as well as expanded. T is the search tree, i.e., the portion of
the state space created so far. */

 1. Begin

 2. Initialize the search tree T with a single node S, the start state.

Initialize OPEN with only S in it and CLOSED as an empty list.

 3. If (OPEN is empty) Then the goal is unreachable and the search is un-
successful. Exit. End-If

 4. Let n be the first node on OPEN. Remove n from the list OPEN and put

n on the list CLOSED.

 5. If (n is a goal node) Then the search is successful. Exit. End-If

 6. Generate all children of node n. Let us denote this set by

CHLDRN(n).

 7. Merge CHLDRN(n) with OPEN according to some predefined criteria.

 8. Go to Step 3.

 9. END- Basic-State-Space-Search

Fig. 11.14. Algorithm basic-state-space-search.

11.2.2 Informed and Uninformed Search

Step 7 of Algorithm Basic-State-Space-Search states that the newly generated nodes are
to be merged with the states of the existing OPEN queue. But how this merging should be done is not
explained. Actually, the character of a search process depends on the sequence in which the nodes are
explored which, in turn, is determined by the way new nodes are merged with the current nodes of
OPEN.

All state space searches can be classifi ed into two broad categories, uninformed and informed.
Th ey are also referred to as blind search, and heuristic search, respectively. In an uninformed, or
blind, search, no knowledge of the problem domain is employed to guide the search for a goal node.
On the contrary, an informed, or heuristic, search is guided by some knowledge of the problem
domain so that the process may estimate the relative merit of the unexplored nodes with respect
to the attainment of a goal node through it. Th e crucial point is Step 7 of Algorithm Basic-
State-Space-Search where the newly generated nodes are merged with the existing OPEN
list. Th e way of merging diff erentiates between the various kinds of search strategies to be discussed
subsequently.

11.3 EXHAUSTIVE SEARCH

An exhaustive search is a kind of blind search that tries to examine each and every node of the state space
till a goal is reached or there is no way to proceed. Th e elementary systematic exhaustive searches are
breadth-fi rst search (BFS), depth-fi rst search, depth-fi rst iterative deepening search, and bidirectional
search. Th ese are discussed in this section.

Samir Roy_Chapter11.indd 404Samir Roy_Chapter11.indd 404 2/21/2013 3:37:35 PM2/21/2013 3:37:35 PM

Elementary Search Techniques 405

11.3.1 Breadth-first Search (BFS)

Breadth-fi rst search explores the search space laterally. It employs a queue to implement OPEN so that
while executing Step 7 of Algorithm Basic-State-Space-Search, the newly generated nodes
are added at the end of the OPEN. Consequently, the nodes generated earlier are explored earlier in a
FIFO fashion. For example, consider the extremely simple and tiny state space depicted in Fig. 11.15. It
consists of 13 states A, B, …, M and certain transitions among them. Th e states G, L and M are the goal
states.

A

DB

E
F H I

J K

G

L M

C

Fig. 11.15. A tiny state space.

Table 11.1 shows the trace of execution of breadth-fi rst search of the state space given in Fig. 11.15. Th e
search is initialized by putting the start state A on the OPEN queue. At this instant n, CHLDRN (n), and
CLOSED are all empty because node A is not yet removed from OPEN and explored. At the 8th row we
remove node G, the fi rst node in the OPEN queue at that moment, and examine it. Since G is tested to be
a goal node, the search stops here successfully.

Table 11.1. Breadth-first search on Fig. 11.15

n CHLDRN (n) CLOSED OPEN

1 − − − A

2 A B, C, D A B, C, D

3 B E, F A, B C, D, E, F

4 C G A, B, C D, E, F, G

5 D H, I A, B, C, D E, F, G, H, I

6 E J A, B, C, D, E F, G, H, I, J

7 F K, L A, B, C, D, E, F G, H, I, J, K, L

8 G (SUCCESS)

Step by step construction of the search tree is shown in Fig. 11.16(a)–(h). Nodes that are generated but
not yet explored, or expanded, are highlighted with dotted lines. Th e unexplored node which is to be

Samir Roy_Chapter11.indd 405Samir Roy_Chapter11.indd 405 2/21/2013 3:37:35 PM2/21/2013 3:37:35 PM

406 Introduction to Soft Computing

explored next is indicated by an arrow. Fig. 11.16(h) shows the fi nal search tree. Th e dotted arrowed
line shows the sequence of nodes visited during the breadth-fi rst search. Th e search stops as soon as we
explore the node G, a goal. It may be noted that except Fig. 11.16(h), node G is shown as an usual node
and not a goal node. Th is is because unless a state is tested it can not be recognized as a goal node even
aft er it has been generated.

A

(a)

A

D
C

B

(b)

A

DB

C

E
F

(c)

A

DB

E
F G

(d)

C

DB

F H IGE

(e)

C

A

DB

F H IGE

J

(f)

C

A

Samir Roy_Chapter11.indd 406Samir Roy_Chapter11.indd 406 2/21/2013 3:37:35 PM2/21/2013 3:37:35 PM

Elementary Search Techniques 407

DB

F H I

K L

GE

J

(g)

C

A

DB

F H I

K L

GE

J

(h)

C

A

Fig. 11.16. (a)–(h) Breadth-fi rst search (BFS) steps

11.3.2 Depth-first Search (DFS)

While BFS explores the search tree laterally, DFS does so vertically. In DFS, OPEN is implemented as a stack
so that the problem states are explored in a LIFO manner. Th e execution of the depth-fi rst search process can
be traced as in case of BFS. As the data structure OPEN should now be a stack rather than a queue the nodes
in CHLDRN (n) should be placed in front of OPEN and not at the rear. Table 11.2 depicts the trace of DFS on
Fig. 11.15. Th e construction of the corresponding search tree is shown in Fig. 11.17(a)–(h).

Table 11.2. Depth-first search on Fig. 11.15.

n CHLDRN (n) CLOSED OPEN (stack)

1 − − − A

2 A B, C, D A B, C, D

3 B E, F A, B E, F, C, D

4 E J A, B, E J, F, C, D

5 J − A, B, E, J F, C, D

6 F K, L A, B, E, J, F K, L, C, D

7 K − A, B, E, J, F, K L, C, D

8 L (SUCCESS)

Please note that the DFS tree is diff erent from its BFS counterpart. Th is is because the nodes explored are dif-
ferent. Moreover, the goals reached are also diff erent. However, in case the state space contains only one goal
state then both of these strategies will end with this unique goal. Still, the path from the start node to the goal
node would be diff erent for diff erent search strategies.

Samir Roy_Chapter11.indd 407Samir Roy_Chapter11.indd 407 2/21/2013 3:37:36 PM2/21/2013 3:37:36 PM

408 Introduction to Soft Computing

A

(a)

A

D
C

B

(b)

F
E

A

D
C

B

(c)

F
E

J

A

D
C

B

(d)

F
E

J

A

D
C

B

(e)

(Continued)

Samir Roy_Chapter11.indd 408Samir Roy_Chapter11.indd 408 2/21/2013 3:37:37 PM2/21/2013 3:37:37 PM

Elementary Search Techniques 409

K L

E
F

J

A

D
C

B

(f)

K L

E
F

J

A

D
C

B

(g)

K L

E
F

J

A

D
C

B

(h)

Fig. 11.17. (a)–(h) Depth-fi rst search steps.

Samir Roy_Chapter11.indd 409Samir Roy_Chapter11.indd 409 2/21/2013 3:37:38 PM2/21/2013 3:37:38 PM

410 Introduction to Soft Computing

11.3.3 Comparison Between BFS and DFS

For a given search problem is it possible to anticipate à-priori which among BFS and DFS would reach a
goal earlier. For example, consider the state space of Fig. 11.18(a), which is identical to Fig. 11.15 except that
instead of three here we have a single goal node D. If we follow BFS on this graph, we need to explore four
nodes to arrive at the goal (Fig. 11.18(b)). Th e same goal is attained aft er exploring 10 nodes if we employ
DFS (Fig. 11.18(c)). Obviously, the BFS approach is better than DFS in this case. However, the situation is
quite the opposite if the goal is located at J instead of D (Fig. 11.19(a)). Here the number of nodes required
to explore till we reach the goal using BFS and DFS are 10 and 4, respectively (Fig. 11.19(b) and (c)).

Th ere are some thumb rules to anticipate which, between BFS and DFS, is more effi cient for a given
problem. Such anticipations are based on some knowledge of the problem domain. For example, if it is
known that there are a large number of goal nodes distributed over the entire state space then DFS is
probably the right choice. On the other hand, if it contains only one or just a few goal nodes then BFS
is perhaps better than DFS.

J

DB

F H I

K L

GE

C

A

M

(a) The state space

DB

F GE

C

A

(b) BFS tree

J

DB

F

K L

GE

C

A

(c) DFS tree

Fig.11.18. (a)–(c) A state space where BFS is more effi cient than DFS.

Samir Roy_Chapter11.indd 410Samir Roy_Chapter11.indd 410 2/21/2013 3:37:39 PM2/21/2013 3:37:39 PM

Elementary Search Techniques 411

J

DB

F H I

K L

GE

C

A

M

(a) The state space

J

DB

E

C

A

(b) DFS tree

J

DB

FF H I

K L

GE

C

A

(c) BFS tree

Fig.11.19. (a)–(c) A state space where DFS is more effi cient than BFS.

Samir Roy_Chapter11.indd 411Samir Roy_Chapter11.indd 411 2/21/2013 3:37:40 PM2/21/2013 3:37:40 PM

412 Introduction to Soft Computing

Both depth-fi rst search and breadth-fi rst search have their own merits and demerits. A comparative
study of these two exhaustive search strategies is given in Table 11.3.

Table 11.3. Comparison of DFS and BFS

DFS BFS

1 Requires less memory. Requires more memory.

2 May reach a goal at level n+1 without exploring
the entire search space till level n.

All parts of the search space till level n must
be explored to reach a goal at level n+1.

3 Likely to reach a solution early if numerous
goals exist.

Likely to reach a solution early even if few
goals exist.

4 Susceptible to get stuck in an unfruitful path
for a very long time while exploring a path
deep into the state space.

Not susceptible to get stuck in a blind ally.

5 Does not guarantee to offer a minimal-length
path from the start state to a goal node. Hence,
DFS is not admissible.

Guarantees to fi nd the minimal-length path
from the start node to a goal node. There-
fore, BFS is admissible.

If b is the highest number of successors obtained by expanding a node in the state space, then the time
complexity of BFS is O(bd), where d is the depth of the search tree, i.e., the length of the solution path.
Th is can be easily obtained by considering the fact that the most signifi cant computation during the
search process is the expansion of a leaf node. Th e number of nodes generated till depth d is b + b2 +
… + bd, which is O(bd). Th e space complexity is also O(bd) because all nodes at level d must be kept in
memory in order to generate the nodes at level d+1. Hence, BFS is quite expensive in terms of space
and time requirements. Th e time complexity of DFS is also O(bd), same as that of BFS. However, DFS is
more effi cient in terms of space utilization having space complexity O(b). Th is is because only the nodes
belonging to the path from the start node to the current node are to be stored in case of DFS.

Th e main problem with DFS is that unless we set a cutoff depth and compel the search to backtrack
when the current path exceeds the cutoff , it may not fi nd a goal at all. Setting the cutoff depth is also a
tricky issue. If it is too shallow, we may miss a goal. If it is too deep, wasteful computation will be done.

11.3.4 Depth-first Iterative Deepening

We have seen that depth-fi rst search is effi cient in terms of space requirement, but runs the risk of get-
ting trapped in an unfruitful path. Moreover, it does not guarantee a shortest path from the start state to
a goal state. Breadth-fi rst search, on the other hand, always returns a shortest solution path but requires
huge memory space because all leaf nodes till the depth of the current search tree are to be preserved.
Depth-fi rst iterative deepening (DFID) is the algorithm that tries to combine the advantages of depth-
fi rst and breadth-fi rst search. DFID is a version of depth-fi rst search where the search is continued till
a predefi ned depth d is reached. Th e value of d is initially 1 and is incremented by 1 aft er each iteration.
Th erefore, DFID starts with a DFS with cutoff depth 1. If a goal is attained, the search stops successfully.
Otherwise, all nodes generated so far are discarded and the search starts afresh for a new cutoff depth 2.
Again, if a goal is reached then the search ends successfully, otherwise the process is repeated for depth
3 and so on. Th e entire process is continued until a goal node is found or some predefi ned maximum
depth is reached. Fig. 11.20(a)–(c) depict the successive iterations of a simple DFID.

Samir Roy_Chapter11.indd 412Samir Roy_Chapter11.indd 412 2/21/2013 3:37:40 PM2/21/2013 3:37:40 PM

Elementary Search Techniques 413

DB
C

A

(a) DFID : First iteration, d = 1

DB

F H IGE

C

A

(b) DFID : Second iteration, d = 2

J

B

F

K L

E

A

(c) DFID : Third iteration, d = 3

Fig. 11.20. (a)–(c) Depth-fi rst iterative deepening (DFID) search steps.

Th e depth-fi rst iterative deepening algorithm expands all nodes at a given depth before it goes for ex-
panding nodes at some deeper level. Hence, DFID search is admissible, i.e., it guarantees to fi nd a short-
est solution path to the goal. However, it does perform some wasted computations before reaching the
depth where a goal exists. It has been shown that both DFS and BFS require at least as much time and
space as DFID, especially for increasingly large searches. Th e time and space complexities of depth-fi rst
iterative deepening search are O(bd) and O(b), respectively.

11.3.5 Bidirectional Search

Th e search techniques discussed so far proceed from the start state to the goal state and never in the
reverse direction. It is also possible to perform the search in the reverse direction, i.e., from the goal state
towards the start state provided that the state space satisfi es the following conditions:

Th ere is a single goal state and that is provided in explicit terms so that we know at the very •
outset exactly what the goal state is.
Th e links between the states of the search space are bidirectional. Th is means that the operators, •
or rules, provided for generation of the nodes have inverses.

Samir Roy_Chapter11.indd 413Samir Roy_Chapter11.indd 413 2/21/2013 3:37:40 PM2/21/2013 3:37:40 PM

414 Introduction to Soft Computing

A search procedure which proceeds in two opposite directions, viz., one from the start state towards the
goal state (forward direction) and the other from the goal state towards the start state (backward direc-
tion), simultaneously, is called a bidirectional search. Th e search ends successfully when a common
node is generated by both. Th e path from the start state to the goal state is obtained by combining the
forward path from the start state to the common node a and that from the goal node to node a. Th e
basic idea of a bidirectional search is shown in Fig. 11.21.

Goal
state

a

Start
state

Fig. 11.21. Bidirectional search.

Example 11.3 (Bidirectional search for block manipulation problem)

Let us consider Fig. 11.5 depicting the state space of a block manipulation problem with three
blocks. Assuming that node A is start state and node L the goal, we want to fi nd a path from A to
L using the bidirectional search strategy.

(a) The search initiates
with the start state and
the goal state

Goal
State

Start
State

FE H I

C D

G

J K

A

L M

B

Samir Roy_Chapter11.indd 414Samir Roy_Chapter11.indd 414 2/21/2013 3:37:41 PM2/21/2013 3:37:41 PM

Elementary Search Techniques 415

(b) Intermediate states
are generated along
forward and backward
directions

Goal
State

Start
State

FE H I

C D

G

J K

A

L M

B

Goal
State

Start
State

FE H I

C D

G

J K

A

L M

(c) Forward and backward
searches generate a
common node, G in this
case

B

Fig. 11.22. (a)–(c) Bidirectional search for block manipulation problem.

Th e consecutive steps are shown in Fig. 11.22(a)–(c). Th e portion of the search space which re-
mains unexplored at any instant appears in a lighter tone. Nodes that have been generated but not
yet explored are depicted in dashed lines. Th e common node G generated by both the forward and
the backward search process is drawn with double dashed lines. Th e path from the start node B to
the goal node L consists of the sequence of nodes B-D-G-J-L which is constructed by combining
the path B-D-G and L-J-G returned by the forward and backward searches, respectively.

Samir Roy_Chapter11.indd 415Samir Roy_Chapter11.indd 415 2/21/2013 3:37:42 PM2/21/2013 3:37:42 PM

416 Introduction to Soft Computing

11.3.6 Comparison of Basic Uninformed Search Strategies

All the three exhaustive searches, viz., breadth-fi rst, depth-fi rst and depth-fi rst iterative deepening, may
be used to perform bidirectional searches with suitable modifi cations. Th e advantage of bidirectional
search is that it reduces the time complexity from O(bd) to O(bd/2). Th is is because both the forward and
the backward searches are expected to meet midway between the start state and the goal. Table 11.4 pres-
ents a comparative picture of the approximate complexities and admissibility of the basic uninformed
search strategies. Here b is the branching factor, i.e., the number of children a node may have, d is the
length of the shortest solution path, and D is the depth limit of the depth-fi rst search.

Table 11.4. Comparison of basic uninformed search strategies

Search strategy Space
complexity

Time
complexity

Admissibilty

Breadth-fi rst bd bd Admissible

Depth-fi rst D bD Not admissible

Iterative deepening d bd Admissible

Bidirectional (where applicable) bd/2 bd/2 Admissible

11.4 HEURISTIC SEARCH

Breadth-fi rst, depth-fi rst and iterative deepening depth-fi rst searches discussed so far belong to the cat-
egory of uninformed, or blind, searches. Th ey try to explore the entire search space in a systematic,
exhaustive manner, without employing any knowledge about the problem that may render the search
process more effi cient. Th ey are blind in the sense that they do not try to distinguish good nodes from
bad nodes among those still open for exploration. However, in many practical situations exhaustive
searches are simply not aff ordable due to their excessive computational overhead. It may be recalled
that they all have exponential time complexity. Heuristic search employs some heuristic knowledge to
focus on a prospective subspace of the state space to make the search more effi cient. In this section, the
elementary heuristic searches are presented.

11.4.1 Best-first Search

Algorithm Basic-State-Space-Search (Fig. 11.14) uses the list OPEN to store nodes that
have been generated, but neither been explored nor expanded. At any iteration, the fi rst node stored in
OPEN is selected for exploration and subsequent expansion. As OPEN is expected to contain several
nodes at a time, a strategy must be devised to determine which among the open nodes should emerge as
the fi rst. In case of BFS, OPEN is implemented as a queue so that the most recently generated nodes are
placed at the rear of OPEN, and the states of the search space are processed in fi rst-in fi rst-out basis. In
DFS and DFID, OPEN acts as a stack so that the states are processed in last-in fi rst-out manner. None of
these strategies make any judgment regarding the relative merits of the nodes in OPEN.

Best-fi rst search is a kind of informed search that tries, at the beginning of each iteration, to estimate
the prospect of an open node with respect to reaching the goal through it. It makes use of an evaluation
function that embodies some domain-specifi c information to achieve this. Such information is sometimes
referred to as heuristic knowledge and a search procedure that is guided by some heuristic is termed as

Samir Roy_Chapter11.indd 416Samir Roy_Chapter11.indd 416 2/21/2013 3:37:42 PM2/21/2013 3:37:42 PM

Elementary Search Techniques 417

a heuristic search. Th e nature and signifi cance of heuristic knowledge will be discussed in greater details
in the later parts of this section. Th e heuristic knowledge enables us to assign a number to each node in
OPEN to indicate the cost of a path to the goal through the node. In best-fi rst search, this cost is estimated
for each member of OPEN and the members are reshuffl ed in ascending order of this value so that the
node with the lowest estimated cost is placed at the front of the queue. Th erefore, Step 7 of Algorithm
Basic-State-Space-Search can be written for best-fi rst search as follows (Fig. 11.23):

7(a). For (each x∈SUCC(n)) Do
 Compute the estimate of the cost c(x) from x to a goal node

 End-For

7(b). Merge CHLDRN(n) to OPEN list.

7(c). Rearrange the elements of OPEN in ascending order of their esti-

mated costs so that the lowest cost nodes is placed at the front

of the queue.

Fig. 11.23.

Th e behaviour of a best-fi rst search algorithm is illustrated in Fig. 11.24(a)–(e) with the state space of
Fig. 11.15 assuming node M as the only goal node. Th e process initiates with the start node A with an
estimated cost of, say, 10. Since this is the only node available at this moment we have no option other
than expanding this node. On expanding node A, the successors B, C and D are obtained with estimated
costs 6, 10 and 7, respectively. Since node B has the lowest estimated cost 6, it is selected for expansion
(Fig. 11.24(b)). Th e candidature of B for processing in the next step is indicated by the small arrow com-
ing out of it. Th is convention is followed in the rest of these diagrams. Nodes E and F are generated as
children of B. As shown in Fig. 11.24(c) E and F have estimated costs 8 and 9, and consequently, node D
with cost 7 becomes the lowest-cost unexplored node in OPEN. Node D generates the successors H (es-
timated cost 3) and I (estimated cost 5). Th ere are now fi ve nodes, viz., H, I, E, F, and C with costs 3, 5, 8,
9 and 10, respectively of which is H is the candidate for further expansion at this moment. On expansion,
node H generates M which is a goal. In this example, for the sake of simplicity, the costs are assumed. In
practice, these are to be evaluated with the help of a function embodying the heuristic knowledge.

A

(a) Initialization

(10)

DB
C

A

(b) 1st iteration

(6) (7)
(10)

DB

FE

C

A

(c) 2nd iteration

(7)

(9)

(10)

(8)

Fig. 11.24. (a)-(e) The best-fi rst search (BFS) process.

Samir Roy_Chapter11.indd 417Samir Roy_Chapter11.indd 417 2/21/2013 3:37:43 PM2/21/2013 3:37:43 PM

418 Introduction to Soft Computing

DB

F H IE

C

A

(d) 3rd iteration
(3)(9) (5)

(10)

(8)

DB

F H

M

IE

C

A

(e) Goal found
(0)

(9) (5)

(10)

(8)

Fig. 11.24. Continued

11.4.2 Generalized State Space Search

Algorithm Basic-State-Space-Search (Fig. 11.14) hides some fi ner aspects of state
space search for the sake of simplicity. Algorithm Generalized-State-Space-Search
(Fig. 11.25) takes some of these aspects into consideration and presents a more complete picture of state
space search. For example, quite oft en attaining a goal state alone is not suffi cient. Th e process is to re-
turn the path from the start state to the goal state as well. In order to achieve this, we should keep track
of the chain of ancestors of a node way up to the root. In Step 5 of Algorithm Generalized-
State-Space-Search we fi rst test the current node to determine if it is a goal and then, in case
it is, we retrieve the path from the root to this goal by tracing the pointers from the goal to the root
through the intermediate ancestors. Establishment of these pointers is done in Step 10 of the algorithm.
Again, Algorithm Basic-State-Space-Search tacitly assumes the state space to be a tree
rather than a graph so that the possibility of generating a node which is already present in the OPEN
queue has been overlooked. As a result all nodes generated from node n, CHLDRN (n), are summar-
ily put into OPEN. However, consider the case depicted in Fig. 11.26, where node C is a successor of
node A as well as B. Let us assume that node A has been explored earlier and B later. When node B is
expanded, it will produce a number of successors of which C is one. Since C is a child of A and A has
been expanded earlier, C is already in OPEN. Th erefore, there is no need to include C into the search
tree. Moreover, while merging the children of B with the existing nodes of OPEN node, C should be left
out to avoid repetitions. Th is is achieved in Step 8, which ensures that installation of a node and estab-
lishment of a pointer to its parent is done only if the node is not already in G. Th ere is another possible
adjustment to be incorporated. Th e existing pointer from C to A might be required to be redirected to B,
if necessary. Th is depends on which among the path through A or B seems to be more promising (Step
14 of Algorithm Generalized-State-Space-Search).

11.4.3 Hill Climbing

Hill climbing is a heuristic search technique that makes use of local knowledge in its attempt to achieve
global solution of a given problem. Imagine you are trying to reach the top of a hill in foggy weather.
You are too small to see the peak while you are crawling on the surface of the hill and there is no clue

Samir Roy_Chapter11.indd 418Samir Roy_Chapter11.indd 418 2/21/2013 3:37:43 PM2/21/2013 3:37:43 PM

Elementary Search Techniques 419

regarding any path towards the peak. How should you proceed? One possible way would be to look
around your current position and take that step which elevates you to a higher level. You continue in
this way until a point is arrived from where all steps result in positions at lower heights. Th is point is
considered to be the maximal point and corresponds to the solution to be returned. Th e hill climbing
strategy is also applied to problems where the purpose is to reach the lowest point, and not the highest
point. In such cases, steps which take us to lower heights are followed. Th is is sometimes referred to as
valley descending. In this text we shall use the term hill climbing to mean both hill climbing and valley
descending and interpret it in the context of the nature of the problem.

Algorithm Generalized-State-Space-Search

/* Let OPEN be a list of states that have been generated but not yet ex-
plored or expanded. Another list CLOSED contains the states that have al-
ready been explored and expanded. T is the search graph, i.e., the portion
of the state space that has been created so far. */

1. Begin

2. Initialize the search tree T with node S as the root. Initialize
OPEN with S in it and CLOSED as an empty list.

3. If (OPEN is empty) Then the search is unsuccessful. Exit.

4. Let n be the 1st node on OPEN. Remove n from OPEN and put n on
CLOSED.

5. If (n is a goal node) Then the search is successful. Recover the
path from the start node S to n by tracing the pointers from n to
S along the ancestors of n. These pointers are established during
the expansion of the search tree (Steps 8-11). Exit.

6. Generate children of n. Let us denote this by CHLDRN(n).

7. For (each x∈CHLDRN(n)) Do
8. If (x is not already in T) Then

9. Install x in T as a child of n.

10. Establish a pointer from x to n.

11. Add x to OPEN.

12. Else (i.e., if x is already in T)

13. Make x a child of n.

14. If required redirect the pointer of x to n. (see discus-
sion in text)

15. End-If

16. End-For

17. Rearrange the elements in OPEN according to some criteria.

18. Go to Step 3.
19. End-Generalized-State-Space-Search

Fig. 11.25. Algorithm generalized-state-space-search.

Samir Roy_Chapter11.indd 419Samir Roy_Chapter11.indd 419 2/21/2013 3:37:44 PM2/21/2013 3:37:44 PM

420 Introduction to Soft Computing

Th e hill climbing strategy is widely employed to solve complex optimization problems. A hill climb-
ing search must have the following elements.

Node A is explored
earlier than node B.

A B

C

Fig. 11.26. Two nodes having a common successor.

An • objective function whose value is to be optimized. Th e objective function should somehow
refl ect the quality of a solution to the given problem so that the optimized solution corresponds
to the optimal value of the objective function.
A procedure to map a solution (perhaps sub-optimal) of the given problem to the corresponding •
value of the objective function.
A procedure to generate a new solution from a given solution of the problem.•

Algorithm Hill-Climbing (P, f(SP), SP)

Input: A problem P and objective function f(SP) on a solution SP of P.

Output: An optimal solution Sopt to P such that the objective function

f(Sopt) attains an optimal value.

1. Begin

2. Snew ← initial solution to P (perhaps random)

3. Scurrent ← Snew

4. Compute f(Scurrent), the value of the objective function for Scurrent

 /* Try to find a better solution */

5. While (there is a solution obtainable from

Scurrent) DO

6. Begin

7. Snew ← A new solution to P generated from Scurrent

8. Compute f(Snew) and compare with f(Scurrent)

9. If (Snew is a better solution than Scurrent) Then

10. Go To Step 3 /* proceed along the new solution */

11. End-if
12. End-while /* Discard Snew and try with another solution

 /* The peak is reached. Return the solution */

Samir Roy_Chapter11.indd 420Samir Roy_Chapter11.indd 420 2/21/2013 3:37:44 PM2/21/2013 3:37:44 PM

Elementary Search Techniques 421

13. Sopt ← Scurrent

14. Return (Sopt)

15. End-Hill-Climbing

Fig. 11.27. Hill-climbing (P, f(Sp), Sp)

Th e hill climbing strategy is presented as Algorithm Hill-Climbing (P, f(SP), SP)
(Fig. 11.27). It starts with a solution, perhaps randomly generated. At each intermediate step during
the search process, a new solution Snew is obtained from the current one Scurrent (if possible). Th e qual-
ity of the new solution Snew, in terms of the evaluation function, is compared to that of the current
solution. If the new solution is better than the current then the current solution is updated to the new
solution (Steps 9 and 10) and the search continues along this new current solution. Otherwise, i.e.,
if the new solution is not better than the current solution, then it is discarded and we generate yet
another new solution (if possible) and repeat the steps stated above. Th e process stops when none of
the new solutions obtained from the current one is better than the current solution. Th is implies that
the search process has arrived at an optimal solution. Th is is the output of the hill climbing process.

It may be noted that the hill climbing method does not create a solution tree. Th e only things it main-
tains are the current and the newly generated solutions. If the new solution is better than the current
then it discards the current solution and update it with the new solution. In other words, hill climbing
grabs a good neighbour without bothering the aft ereff ects. For this reason hill climbing is also referred
to as greedy local search.

a

1
17

3

12
5

10

7500

e

d

c

b

25
21

(a) A network of cities

e d c b
a 12 21 17 3

b 1 5 10

c 25 7

d 50

(b)Travel rr cost between citieii s

Fig. 11.28. A tiny traveling salesperson problem (TSP) with fi ve cities.

Example 11.4 (A hill climbing technique to solve the TSP)

As an example, let us consider the traveling salesperson problem (TSP), which involves a network
of cities connected to each other through paths with costs attached to them. A tour is defi ned as a
path that starts from a given city, travels through the paths to visit every other city exactly once, and
returns to the starting city. We are required to fi nd a minimal cost tour.

Samir Roy_Chapter11.indd 421Samir Roy_Chapter11.indd 421 2/21/2013 3:37:44 PM2/21/2013 3:37:44 PM

422 Introduction to Soft Computing

Fig. 11.28 (a) shows a tiny TSP with fi ve cities a, b, c, d, and e. For the sake of simplicity the cit-
ies are taken to be fully connected, i.e., an edge exists between any pair of cities. If we start at the
city a then a tour may be represented with a permutation of the letters a, b, c, d, and e that starts
and ends with the letter a.

Th e TSP is a minimization problem. Its objective function is the sum of the costs of the links in
the tour. For example, if the tour is t = abcdea then its cost cost(t) = cost(ab) + cost(bc) + cost(cd) +
cost(de) + cost(ea) = 3 + 10 + 7 + 50 + 12 = 82. Mapping a solution to evaluate the objective function
is also straightforward in this case. How to generate a new solution of the TSP from a given one?

(b) New tour(a) Current tour

t1= x1xx …x i x i + 1… x jx x jx + 1… x1xx t2tt = x1xx …x i x jx … x i + 1 x jx + 1… x1xx

xixx xixx

xi+xx 1
xi+xx 1

x1xx

xjxx xjxx

xj+xx 1xj+xx 1

x1xx

Fig. 11.29. Generation of a new tour from a given tour.

Let t1 = x1…xi xi+1…xj xj+1…x1 be an existing tour. A new tour t2 from t1 could be generated in the
following manner.

Let 1. xi xi+1 and xj xj+1 be two disjoint edges in t1 such that the cities xi, xi+1, xj and xj+1 are all
distinct.
Remove the edges 2. xi xi+1 and xj xj+1 from the tour t1.
Join the edges 3. xi xj and xi+1xj+1 such that a new tour t2 = x1…xi xj…xi+1xj+1…x1 is obtained.

Fig. 11.29 shows the procedure graphically. Now, to illustrate the hill climbing procedure we may
consider the of TSP presented in Fig. 11.28. Th e successive steps are shown in Fig. 11.30 (a)–(e). A
random solution adecba denoting the tour a → d → e → c → b → a is considered as the initial solu-
tion (Fig. 11.30(a)). Th e cost of the tour is 109. To obtain a new tour the links ad and ec are are
removed from the tour and are substituted by ae and cd. So we obtain the tour abcdea with cost 82
(Fig. 11.30(b)). Since this cost is lower (and hence, better, since we are addressing a minimization
problem) we accept this solution and proceed.

In this way, we proceed to acdbea (Fig. 11.30(d)) having a tour cost of 42. Only three tours,
viz., acebda, abedca, and acbdea shown in Fig.11.30 (e1), Fig. 11.30(e2), and Fig. 11.30(e3) can be
generated from this tour. Th ese three tours have costs 69, 78 and 94, respectively. Since all of these
are higher than 42, the hill climbing procedure assumes to have reached a minimal value and the
procedure stops here. It is easy to verify that the other possible tours have costs greater than 42.
Th e solution returned by the hill climbing process is thus acdbea and the cost of the solution is 42.
Th e successive steps shown in Fig. 11.30(a)–(e) are given here for the sake of understanding the
process but these are not memorized by the actual hill climbing procedure.

Samir Roy_Chapter11.indd 422Samir Roy_Chapter11.indd 422 2/21/2013 3:37:45 PM2/21/2013 3:37:45 PM

Elementary Search Techniques 423

Tour : adecba
Cost = 21 + 50 + 25 + 10 + 3 =
109

a 3

10

50

e

d

c

b

25

21

(e2) a

1
17

3

7
50

e

d

c

b

(a)
a 3

12 10

750

e

d

c

b
(b)

Tour : abcdeadd
Cost = 82

(c)

e

d

a 3

12
5

7

c

b

25

Tour : abdcea
Cost = 52

a

17
12

7

e

d

c

b

5

1

(d)

Tour : acdbea
Cost = 42

a

1

17

5

e

d

c

b

25

21

(e1)

Tour : acebda
Cost = 69

Tour : abedcadd
Cost = 78

(e3)

d

a

17
12

5

10

50

e
c

b

Tour : acbdea
Cost = 94

Fig. 11.30. Solving TSP through hill climbing.

Samir Roy_Chapter11.indd 423Samir Roy_Chapter11.indd 423 2/21/2013 3:37:45 PM2/21/2013 3:37:45 PM

424 Introduction to Soft Computing

(i)

1
17

10

50

d

c

b

21

a

e

Exit : ab, ce
Enter : ac, be
Tour : acbeda
Cost : 99

(i i i) Exit : bc, de
Enter : cd,dd be
Tour : abecda
Cost : 57

(i v) Exit : bc, ad
Enter : ac, bd
Tour : abdeca
Cost : 100

(v) Exit : ce, ad
Enter : cd,dd ae
Tour : abcdea
Cost : 82

Exit : ab, de
Enter : ae, bd
Tour : adbcea
Cost : 73

12 5
10

d

c

b

25
21

a

e

(i i)

1

3

7

d

c

b

25

21

a

e

17

3

5

50

d

c

b

25

a

e

3

12 10

750

e

d

c

ba

Fig. 11.31. Various solutions obtained from the tour adecba

Steepest ascent hill climbing In Algorithm Hill-Climbing a new solution is generated
from the current solution and if it is found to be a better solution then the search proceeds along this
new solution without any consideration of any other possible solution obtainable from the current
one. Steepest ascent hill climbing is a variation of hill climbing, where instead of one all possible

Samir Roy_Chapter11.indd 424Samir Roy_Chapter11.indd 424 2/21/2013 3:37:46 PM2/21/2013 3:37:46 PM

Elementary Search Techniques 425

solutions from the current solution are generated and the best among these is chosen for further
progress.

For example, if we follow the steepest ascent hill climbing strategy on the initial tour adecba shown in
Fig 11.30(a), then the entire set of tours that can be obtained from adecba should be generated and their
costs be evaluated. Five diff erent tours, acbeda, adbcea, abecda, abdeca, and abcdea, can be generated by
transforming adecba. Th ese tours have costs 99, 73, 57, 100 and 82, respectively (see Fig. 11.31(i)–(v)).
Obviously, tour abecda of cost 57 would be selected for further exploration.

Local optima / plateaux / ridges Hill climbing is usually quite effi cient in the search for an
optimal solution of a complex optimization problem. However, it may run into trouble under certain
conditions, e.g., existence of local optima, plateaux, or ridges within the state space.
Local optima. Oft en the state space of a maximization problem has a peak that is higher than each of
its neighbouring states but lower than the global maximum. Such a point is called a local maximum.
Similarly a minimization problem may have local minima. Fig. 11.32 shows a one-dimensional objec-
tive function containing local optima and plateaux. Since the hill climbing procedure examines only
the solutions in the immediate neighborhood of the current solution it will fi nd no better solution once
it reaches a locally optimal state. As a result, there is a chance that the local optima, and not the global
optima, is erroneously identifi ed as the solution of the problem.

Global maxima

Local maxima

Plateaux

Objective
function f(x)

x

Fig. 11.32. Problem of local optima and plateaux.

Plateaux. A plateau is a fl at region in the state space (Fig. 11.32) where the neighbouring states have
the same value of the objective function as that of the current state. A plateau may exit at the peak, or
as a shoulder, as shown in Fig. 11.32. In case it is a peak, we have reached a local maximum and there is
no chance of fi nding a better state. However, if it is a shoulder, it is possible to survive the plateau and
continue the journey along the rising side of the plateau.

x1

x2

x3

x4

x5

Fig. 11.33. A ridge.

Samir Roy_Chapter11.indd 425Samir Roy_Chapter11.indd 425 2/21/2013 3:37:46 PM2/21/2013 3:37:46 PM

426 Introduction to Soft Computing

Ridges A ridge is a series of local optima on a slope. Consider a situation depicted in Fig. 11.33. Each
of the states x1, x2, x3, x4, and x5 is a local maximum and they are arranged in the state space from left to
right in ascending order. We would like to ascend along the path x1→ x2 → x3 → x4 → x5 etc., but all the
states leading from each of these states, indicated by the arrows, are at lower levels in comparison with
these states. Th is makes it hard for the search procedure to ascend.

Th e problems arising out of local optima, plateaux, or ridges may be addressed by augmenting the
basic hill climbing method with certain tactics. However, though these tactics help a lot, they do not
guarantee to solve the problems altogether. Here is a brief description of the way outs.

Th e problem of getting stuck at local optima may be tackled through backtracking to some •
previous state and then take a journey along a diff erent direction but as promising, or almost as
promising, as that chosen earlier.
To escape a plateau, one may make a big jump in some direction and land on a new region •
of the search space. If there is no provision of making a big jump, we may repeatedly take the
allowable smaller steps in the same direction until we come outside the plateau.
A good strategy to deal with ridges is to apply several rules before doing a test so that one can •
move in diff erent directions simultaneously.

11.4.4 The A/A* Algorithms

While discussing best-fi rst search, we have seen how an evaluation function can guide the search process
along a more fruitful path than exploring the entire search space blindly. However, we did not mention
the form of the evaluation function. Let us defi ne the evaluation function f (n) for a given node n as

 f n g n h)n)n() ()= +g()n (11.1)

where g(n) is the cost of a minimal-cost path from the start node to node n and h(n) is the cost of a
minimal-cost path from node n to a goal node.

Th erefore, f(n) is the cost of a minimal-cost path from the start node to a goal node constrained to
pass through node n (Fig. 11.34).

Start
state

Goal
state

n

g (n)

h (n)

Fig. 11.34. A minimal-cost path from start to goal passing through node n.

However, sometimes it is diffi cult if not impossible to evaluate g(n) and h(n) accurately. Th erefore some
estimated values of g(n) and h(n) are used to guide the search process. Let g1(n) and h1(n) be the esti-
mated values of g(n) and h(n). Th en the estimated value of f(n), written as f1 (n), is defi ned as

Samir Roy_Chapter11.indd 426Samir Roy_Chapter11.indd 426 2/21/2013 3:37:47 PM2/21/2013 3:37:47 PM

Elementary Search Techniques 427

 f n g n h nf nf g 1)nn ()n ()n= +gg ()n (11.2)

A search algorithm that uses f1 (n) to order the nodes of OPEN queue and chooses the node with best
value of f1 (n) for further exploration is called an A algorithm. Moreover, if the heuristic estimation h1(n)
happens to be a lower bound of h (n) so that h1(n) ≤ h(n) for all n, then it is termed as A* (pronounced as
a-star) algorithm. An obvious example of A* algorithm is BFS. Here g1(n) is the depth of node n from the
root node and h1(n) = 0 for all n. Since h1(n) ≤ h(n) for all n, BFS satisfi es the basic criterion of A* algo-
rithm. It has been proved that an A algorithm satisfying the relation h1(n) ≤ h(n) for all n, is guaranteed
to fi nd an minimal-cost path from the root to a goal. Such a search algorithm is said to be admissible
and hence A* algorithm is admissible.

Example 11.5 (An A-algorithm to solve 8-puzzle)

Let us consider the 8-puzzle posed in Fig 11.11. We would like to solve it through an A algorithm.
Th e fi rst component of the evaluation function f (n) = g(n) + h(n) is g(n), is defi ned as

 g(n) = the length of the path from the start node to node n (11.3)

Regarding the second component, h(n), we must employ some heuristic knowledge that somehow
gives an idea of how far the goal node is from the given node. Presently, we take the number of tiles
that are not in positions described in the goal state as the distance from the goal node. Th erefore,
the function h (n) is defi ned as

 h(n) = number of misplaced tiles (11.4)

Now, consider the initial state of the given instance of 8-puzzle and compare it with the goal state
(Fig. 11.35).

Goal state
1 2 3
8 4
7 6 5

h(n) = 4
g(n) = 0
f(ff n) = g(n) + h(n)

= 0 + 4 = 4

Start state
8 1 3
7 2 4

6 5

Fig. 11.35. Evaluating the heuristic function h(n).

Since the start state is to the root of the search tree g(n) = 0 for this node. To evaluate h(n) we
count the number of misplaced tiles. A comparison with the goal state reveals that tile no. 1, 2,
7, and 8 are not in their positions. Th erefore, h(n) = 4, so that f (n) = 0+4 = 4. Expanding the
start state we get two new states with h(n) values 3 and 5, respectively. Since both of these nodes
are at level 1 of the search tree, g(n) = 1 for both of them. Hence these two nodes f (n) = g(n) +
h(n)= 1 + 3 = 4, and 1 + 5 = 6, respectively. Th e node with the lesser f (n) value 4, is chosen by the
algorithm for exploration. Th e successive steps while constructing the search tree are shown in
Fig. 11.36 (a)-(e).

Samir Roy_Chapter11.indd 427Samir Roy_Chapter11.indd 427 2/21/2013 3:37:48 PM2/21/2013 3:37:48 PM

428 Introduction to Soft Computing

(f(ff n) = g(n) + h(n) = 0 + 4 = 4))

Start
state

8 1 3
7 2 4

6 5

(a)

(1 + 3 = 4) (1 + 5 = 6)

(2 + 2 = 4) (2 + 3 = 5)

Start
state

38 1
7 2 4

6 5

8 1 3
2 4

7 6 5

8 1 3
7 2 4
6 5

(b)

(6)

Start
state

8 1 3
7 2 4

6 5

8 1 3
2 4

7 6 5

8 1 3
7 2 4
6 5

1 13 3
8

8
2 4 2 4

7 6 5 7 6 5

(c)

Start
state

Goal
state

38 1
7 2 4

6 5

8 1 3
2 4

7 6 5

8 1 3
7 2 4
6 5

(6) (6)

(5)
(5)

(d)
Start
state

38 1
7 2 4

6 5

8 1 3
2 4

7 6 5

8 1 3
7 2 4
6 5

(e)

1 13 3
8

8
2 4 2 4

7 6 5 7 6 5

(3 + 1 = 4)

(4 + 2 = 6)

1 3
8 2 4
7 6 5

1 13 3
8

8
2 4 2 4

7 6 5 7 6 5

1 3
8 2 4
7 6 5

1 3
8 2 4
7 6 5 1 3

8 4
7 6 5

Fig. 11.36. (a)-(e) Steps of A-algorithm to solve the 8-puzzle.

Example 11.6 (An A* Algorithm to solve a maze problem)

Fig. 11.37 shows a 5×5 maze with a barrier drawn with heavy lines. We have to fi nd a path from cell
(4, 2)to cell (2, 3) avoiding the barrier. At each step of the journey we are allowed to move one cell
at a time left , right, up, or down, but not along any diagonal. One or more of these movements may

Samir Roy_Chapter11.indd 428Samir Roy_Chapter11.indd 428 2/21/2013 3:37:49 PM2/21/2013 3:37:49 PM

Elementary Search Techniques 429

be blocked by the barrier. Fig. 11.38(a) and Fig. 11.38(b) explains the rules of movement. Th e
target is to fi nd a minimal length path from the source to the destination under the restriction
imposed by the barrier. An A* algorithm is to be found to do the job.

Th e length of a path from a cell (i, j) to a cell (k, l) is the number of cells traversed along the
path. For example, the path shown by the dotted line of Fig. 11.39 between the cells (2, 1) and (4,
5) has a length of 10. Let us take the estimated value of g(n)

 g1(n) = exact length of the path undertaken from n0 to n (11.5)
where n0 and n are the initial and the current cell positions, respectively.

Barrier

1

1

2

2

3

3

4

4

5

5

Destination,
the journey
ends here

Source, the
journey starts
from here

Fig. 11.37. A maze problem to fi nd the shortest path from the source to destination avoiding the
barrier.

Current
position

(a) Possible movements from a cell (b) Possible movements when
there is a barrier

Barrier,
movement
restricted in

Current
position

Fig. 11.38. Possible movements from a cell.

Source

Destination

Length of the path = number ofr cells traversed = 10

Fig. 11.39. Length of a path.

Th e heuristic estimation function h1(n) is defi ned as
 h1(n) = the shortest distance between the current cell n, and (11.6)

the destination D, in absence of any barrier.

Samir Roy_Chapter11.indd 429Samir Roy_Chapter11.indd 429 2/21/2013 3:37:50 PM2/21/2013 3:37:50 PM

430 Introduction to Soft Computing

Hence, if D(i), D(j) and n(i), n(j) are the row numbers and column numbers of the cells D and n,
respectively, then h1(n) is calculated as

 h1(n) = ⏐D(i) - n(i)⏐+ ⏐D(j) - n(j)⏐ (11.7)
It is easy to see that h1(n) is the minimum number of cells we must traverse to reach D from n in ab-
sence of any barrier. Th erefore, h1(n) ≤ h(n) for every n. Th is implies that the evaluation function

 f1(n) = g1(n) + h1(n) (11.8)
satisfi es the criteria for A* algorithm. In the present instance of the problem, the source n0 is the
cell (4, 2) and the destination D is the cell (2, 3). At the source, g1(n0) = 0, and h1(n) = | 2 – 4 | +
| 3 – 2 | = 3, so that f1(n) = 0 + 3 = 3. From this initial position, we may try to move to cell (5, 2), (4,
1), or (3, 2). Moving to cell (4, 3) is prohibited by the barrier between cells (4, 2) and (4, 3). Now,
as indicated in Fig. 11.40(b), the value of f1(n) for these cells are 4, 5, and 3, respectively. As 3 is the
lowest among these, the corresponding cell (3, 2) is selected for further exploration.

As far as the shortest route to the destination is concerned, this is not the right choice because
the intervening barrier will not allow us to take to take the shortest route. Th e right choice would
be to proceed along the cell (5, 2). However, the merit of (5, 2) over other choices is not apparent
till the step shown in Fig. 11.40(i), where all OPEN nodes except (5, 2) have cost 7 and (5, 2) have
a cost of only 5. Superiority of the path along (5, 2) is maintained for the rest of the search, until
we eventually reach the goal (Fig. 11.41).

4, 2

Estimated distance
between the source and
destination

(3)
(a)

+= 0(2, 3) (4, 2)

= (2 + 1) + 0
= 3

)+= 02 4 3 2(

(4 + 1 = 5)(4 + 1 = 5) (2 + 1 = 3)

4, 2

4, 1
3, 25, 2

(b)

(5)

(5)

(5) (3)

(3)

4, 2

3, 24, 1

2, 23, 1

5, 2

(c)

(5)

(5)

(5) (3)

(3)

4, 2

3, 24, 1

2, 23, 1

5, 2

(d)

(5) (5)

1, 22, 1

Samir Roy_Chapter11.indd 430Samir Roy_Chapter11.indd 430 2/21/2013 3:37:51 PM2/21/2013 3:37:51 PM

Elementary Search Techniques 431

(5)

(5)

(5) (3)

(3)

4, 2

3, 24, 1

2, 2

3, 1

5, 2

(e)

(5)
(5)

1, 2
2, 1

(7) (5)

1, 31, 1

(5)

(5)

(5) (3)

(3)

4, 2

3, 24, 1

2, 2
3, 1

5, 2

(f)

(5) (5)

1, 22, 1

(7) (5)

1, 31, 1

(7)

1, 4

Samir Roy_Chapter11.indd 431Samir Roy_Chapter11.indd 431 2/21/2013 3:37:52 PM2/21/2013 3:37:52 PM

432 Introduction to Soft Computing

Node (3,1) can be reached
from (2,1). However, the rating
of (3,1) when reached through
(2,1) becomes 3 + 4 = 7, which is
greater than the current rating 5.
Hence, this path is not
included in the search tree.

(5)

(5)

(5) (3)

(3)

4, 2

3, 24, 1

2, 23, 1

5, 2

(g)

(5) (5)

1, 22, 1

(7) (5)

1, 31, 1

(7)

1, 4

(5)

(5)

(5) (3)

(3)

4, 2

3, 24, 1

2, 2
3, 1

5, 2

(h)

(5)
(5)

1, 2
2, 1

(7)
(5)

1, 3
1, 1

(7)

1, 4

The edge from node (3,1) to
(4,1) is not shown due to a
reason as stated in the
previous step.

Samir Roy_Chapter11.indd 432Samir Roy_Chapter11.indd 432 2/21/2013 3:37:53 PM2/21/2013 3:37:53 PM

Elementary Search Techniques 433

(5)

(5)

(5)

(7)

(3)

(3)

4, 2

3, 24, 1

2, 2
3, 15, 1

5, 2

(i)

(5)
(5)

1, 2
2, 1

(7)
(5)

1, 3
1, 1

(7)

1, 4

Fig. 11.40. (a)-(i) Trace of the fi rst nine steps of A* search for the maze problem.

(5)

(5) (5)(7)

(5) (3)

(3)

4, 2

3, 24, 1

2, 23, 15, 15, 3

5, 2

(5) (5)

1, 22, 1

(7) (5)

1, 31, 1

(7)

1, 4

(7) (3)

4, 35, 4

(7) (5)

3, 34, 4

(8)

GOAL

3, 42, 3

Fig. 11.41. Search tree for the maze problem.

Samir Roy_Chapter11.indd 433Samir Roy_Chapter11.indd 433 2/21/2013 3:37:53 PM2/21/2013 3:37:53 PM

434 Introduction to Soft Computing

Th e path from the root to the goal is shown with thick lines in Fig. 11.41. Th e corresponding mini-
mum length path in the maze is shown with dotted lines of Fig. 11.42.

Source

Destination

Fig. 11.42. The minimum length path found through the A* algorithm

Example 11.7 (Branch-and-bound algorithm for traveling salesperson problem)

Let us consider the TSP once more. We want to design an A* algorithm to solve the TSP and apply
it on the network shown in Fig. 11.43. Let C1, C2, …, Ck be k cities and ci,,j denotes the cost of the link
between Ci and Cj. Without loss of generality, let us suppose that the tour starts at C1 and let t = C1

→ C2 → … → Ci be a partial path generated the search process. Th en the cost of the path t = C1 →
C2 → … → Ci is given by

 G (t) = g (C1 → C2 → … → Ci) = c1, 2 + c2, 3 + … + ci-1, i (11.9)
In branch-and-bound technique, a list of possible paths from the starting city is maintained during
the search process. Cost of each partial path is found and the so far minimum cost path is chosen
for further expansion. While we expand a certain path, we temporarily abandon the path as soon
as it is found to exceed the cost of some other partial path. Th e algorithm proceeds in this way until
the minimum-cost tour is obtained. It should be noted that the decision to select a partial path t =
C1 → C2 → … → Ci is made solely on the basis of its cost g (t) and no estimation of the cost for the
remaining portion of the tour is done. Th erefore h1(t) = 0 for every partial path. Since h1 (t) = 0 ≤
h(t), this is an A* algorithm, and it guarantees to fi nd the minimal cost tour for a given TSP.

7

11

219

3
a b

cd

Fig. 11.43. A network of four cities

For this example, the algorithm starts with the starting city a, and since no path is yet traversed the
cost attached to this node is 0 (Fig. 11.44 (i)).From city a we can either go to city b, or c, d. Th e cost
of the paths a → b, a → c, and a → d are 3, 1, and 9, respectively. Since the path a → c has the low-
est cost of 1 so far, this path is chosen at this point for further extension. Th is is indicated by a small
arrow attached to the node c in Fig. 11.44(ii), which shows the initial two steps of the algorithm.

Samir Roy_Chapter11.indd 434Samir Roy_Chapter11.indd 434 2/21/2013 3:37:54 PM2/21/2013 3:37:54 PM

Elementary Search Techniques 435

(0)

a
(i) (

a
i i)

(9)(1)(3)

913

a

b c d

Fig. 11.44. First two steps of branch-and-bound

Fig. 11.45(i) shows the situation when we proceed one step further along the partial path a → c. Th e
two extended paths a → c → b and a → c → d have total estimated costs 1 + 2 = 3 and 1 + 11 = 12,
respectively. As the cost of the partial path a → c → b does not exceed that of the remaining paths
(3 for a → b, 12 for a → c → d, and 9 for a → d) it is selected for further expansion at this point and
the result of this expansion is shown in Fig. 11.45(ii). Fig. 11.45(iii) and 11.45(iv) shows two more
consecutive steps.

(12)(3)

112

(9)(1)(3)

9
1

3

a

b c d

db

(i)

(12)(3)

112

(9)(1)(3)

9
1

3

a

b c d

d

(10)

7

d

b

(ii)

Fig. 11.45. Further steps TSP through branch-and-bound.

Samir Roy_Chapter11.indd 435Samir Roy_Chapter11.indd 435 2/21/2013 3:37:54 PM2/21/2013 3:37:54 PM

436 Introduction to Soft Computing

(12)(3)

112

(9)(1)(3)

9
1

3

a

b c d

d

(10)

7

d

b

(iii)

(10)(5)

72

dc

(12)(3)

112

(9)(1)(3)

9
1

3

a

b c d

d

(10)

7

d(16)

11

d

b

(iv)v

(10)(5)

72

dc

Fig. 11.45. Further steps TSP through branch-and-bound.

(12)(3)

112

(9)(1)(3)

9
1

3

a

b c d

d

(10)

7

d(21)

11

c(16)

11

d

(25)

9 9

a (19) a (19)

1

a

b (20)(16)

117

c

(18)

2

c(19)

7

b

b(10)(5)

72

dc

Fig. 11.46. Final branch-and-bound search tree.

Samir Roy_Chapter11.indd 436Samir Roy_Chapter11.indd 436 2/21/2013 3:37:55 PM2/21/2013 3:37:55 PM

Elementary Search Techniques 437

Th e fi nal branch-and-bound search tree is depicted in Fig. 11.46. Th e tours generated are a → c →
b → d → a and a → d → b → c → a with the cost 19. It should be noted that these two tours are
the same tour, only traversed in reverse directions. Th e lowest-cost tour obtained thus is shown
in Fig. 11.47.

7

11

219

3
a b

cd

Fig. 11.47. The lowest-cost tour.

Th e effi ciency of a heuristic search heavily depends upon the choice of the heuristic estimation function h1.
Th e function h1 embodies some heuristic knowledge about the problem. Its objective is to guide the search
for goal in the right direction. It is expected that a better heuristic will result in less amount of wasted eff ort
in terms of the exploration of nodes that do not belong to the optimal path from the start state to a goal
state. Let us consider two A* algorithms A1 and A2 using the heuristic functions h1 and h2, respectively. We
say that algorithm A1 is more informed than A2 if for all nodes n except the goal node h1(n) > h2(n). Please
note that for any A* algorithm the estimate h1(n) of h(n) must be a lower bound of h(n), the actual cost of a
minimal cost path from node n to a goal node. Combining this with the above inequality we get 0 ≤ h2(n)
< h1(n) ≤ h(n). In other words, better heuristics are closer to h(n) than a worse one.

11.4.5 Problem Reduction

A problem is said to be decomposable if it can be partitioned into a number of mutually independent
sub-problems each of which can be solved separately. Decomposing a problem into sub-problems is
advantageous because it is generally easier to solve smaller problems than larger ones. Th e problem re-
duction strategy is based on this characteristic. It employs a special kind of graph called AND-OR graph.
Th e search through an AND-OR graph is known as AO* search.

AND-OR Graphs. Th ere are two kinds of relation between the decomposed sub-problems and the
problem itself. Firstly, the solution of any of the sub-problems may provide the solution of the original
problem. Th is is an OR relationship. On the other hand, it might be necessary to solve all the sub-prob-
lems to obtain the fi nal solution. Th is is called the AND relationship.

Each node of an AND-OR graph represents a problem. Th e root node represents the given problem
while all other nodes represent sub-problems. Given a node and its children, if there is an OR relation-
ship among them then the related arcs are called OR-links. In case of AND relationship these are called
AND-links. Th e standard representations for these two types of links are shown in Fig. 11.48(a) and Fig.
11.48(b). It is possible that a node issues OR-links as well as AND-links simultaneously. Fig. 11.48(c)
shows such a situation.

To illustrate the AND-OR graphs let us consider a network of four cities a, b, c and d and their inter-
connection cost as shown in Fig. 11.49. How to fi nd a lowest-cost route from city a to city d?

Samir Roy_Chapter11.indd 437Samir Roy_Chapter11.indd 437 2/21/2013 3:37:56 PM2/21/2013 3:37:56 PM

438 Introduction to Soft Computing

OR-node

OR-links

Problem

sub-problems sub-problems

A

B C D

Problem
A

B C D

AND-node

AND-links

(a) OR-node/OR-links (b) AND-node/AND-links

A

B C D

(c) A node issuing both AND-links and OR-links

Fig. 11.48. Representation of AND/OR nodes/links in AND-OR graphs.

10

42

63

a

b c

d

Fig. 11.49. A network of four cities.

5

4623

10

105

2 463

a→d

a→d a→d via b a→d via c

a→b

a→b

b→d

b→d

a→c

a→c

c→cc d

c→cc d

OR node

AND node

Fig. 11.50. AND-OR tree for reaching city d from city a.

Samir Roy_Chapter11.indd 438Samir Roy_Chapter11.indd 438 2/21/2013 3:37:56 PM2/21/2013 3:37:56 PM

Elementary Search Techniques 439

Fig. 11.50 shows the AND-OR graph for the given problem. City d can be reached in three diff erent ways,
viz., along the direct path from a to d, or, from a to d via b, or, from a to d via c. So the given problem a →
d is now decomposed into three disjoint sub-problems, ‘a → d’, ‘a → d via b’, and ‘a → d via c’. In Fig. 11.50
this is shown as the three children of the root node. Since the given problem can be solved through any of
these three sub-problems, we have an instance of an OR node. Moreover, as there is a direct path from a
to d with cost 10, a solution to the problem is readily available. Th is is indicated by the highlighted ovals.

Let us now focus on the sub-problem ‘a → d via b’. In order to reach d via b, we have to reach b from
a, and then from b to d. Th is is indicated by the two children of the node for ‘a → d via b’. Th e fact that
both of the sub-problems a → b and b → d have to be solved to obtain a solution of ‘a → d via b’ im-
plies that this is an AND node. Each of the two children leads to a leaf node as shown in the fi gure. Th e
weights attached to an AND node is the sum of the weights of its constituent children. On the contrary,
the weight attached to an OR node is the best among its children. In the present context we are looking
for the minimum-cost path from a to d, and therefore, the cost 5 (among 10, 5, and 10) is attached to the
root node. Th e entire AND-OR tree is depicted in Fig. 11.50. In the present example, the cost is attached
to the nodes. However, depending on the nature of the problem addressed, one may attach such weights
to the arcs also.

5

23

5

23

a→d

a→d via b a→d via c

a→b b→d

10

10

a→d

a→d

10

46

10

46

a→c c→cc d

a→b b→d a→c c→cc d

a→d

(A)

(B) (C)

Fig. 11.51. Solution trees for reaching city d from a.

How to obtain the solution to a problem represented by an AND-OR graph ? Since a solution must in-
clude all the sub-problems of an AND node, it has to be a subgraph, and not simply a path from the root
to a leaf. Th e three diff erent solutions for the present problem are shown as the solution trees A, B and C
in Fig. 11.51. As we are addressing the problem of fi nding the minimum-cost path, Solution (B) will be
preferred. We can formally defi ne such solution graphs in the following way:

Let G be a solution graph within a given AND-OR graph. Th en,

Th e original problem, P, is the root node of G.•
If P is an OR node then any one of its children with its own solution graph, is in G.•
If P is an AND node then all of its children with their own solution graphs, are in G.•

In this example, we have considered an AND-OR tree rather than a graph. However, AND-OR graph is
the more generalized representation of a decomposable problem.

Samir Roy_Chapter11.indd 439Samir Roy_Chapter11.indd 439 2/21/2013 3:37:57 PM2/21/2013 3:37:57 PM

440 Introduction to Soft Computing

Th e AO* Algorithm. Typically, state space search is a search through an OR graph. Th e term OR graph
is used to indicate the fact that if there is a node n with k number of edges e1, …, ek incident on it, then n
can be reached either along the edge e1, or along e2, or … or along ek (Fig. 11.52(a)), i.e., along any of the
edges e1, …, ek. In contrast, if there is an AND node n within an AND-OR graph with k number of edges
e1,…, ek incident on it, then in order to attain n one has to reach it along the edge e1, and along e2, and …
and along ek (Fig. 11.52(b)), i.e., along all of the edges e1, …, ek.

ke2e

e1

n

OR node

(a) Node n can be reached along any
one of the edges e1, e2e , …, ek

(b) Node n can be reached along allll
of the edges e1, e2e , …, ek

eke2e

e1

n

AND node

Fig. 11.52. Difference between OR-node and AND-node.

Depth-fi rst search, breadth-fi rst search, best-fi rst search, A* algorithm etc. are the well-known search
strategies suitable for OR graphs. Th ese can be generalized to search AND-OR graphs also. However,
there are certain aspects which distinguish an AND-OR search from an OR graph search process.
Th ese are:

An AND-OR graph represents a case of • problem reduction through decomposition. Hence each
node of such a graph represents a problem to be solved (or already solved). On the other hand a
node of an OR graph represents the state of a problem within the corresponding state space.
Th e goal of searching an OR graph is to fi nd a • path from the start node to a goal node where such
a path is required, or simply to reach a goal node. On the contrary, the outcome of an AND-OR
graph search is a solution tree rather than a path, or goal. Th e leaves of such trees represent the
trivially solvable problems which can be combined to solve a higher-level problem and so on
until we come to the root node which represents the given problem.

Before we present the algorithms for AND-OR graph search in a formal way, let us try to grasp the main
idea with the help of an example.

Example 11.8 (Searching through AND-OR graph)

Fig. 11.53 shows a network of six cities a, b, c, d, e, and f. Th e weight associated with each edge
denotes the cost of the link between the corresponding cities. We are to fi nd a minimum-cost path
from a to f.

Th e AND-OR graph representation of this problem is shown in Fig. 11.54. Here we have tried
to fi nd a path from a to f without considering the issue of fi nding minimum cost path. Th ere must
be systematic procedure to construct an AND-OR graph and moreover, once we arrive at a solu-
tion to the given problem in course of this construction process there is no need to construct the
rest of the search tree. In other words, we don’t have to construct the entire AND-OR graph in
practice.

Samir Roy_Chapter11.indd 440Samir Roy_Chapter11.indd 440 2/21/2013 3:37:57 PM2/21/2013 3:37:57 PM

Elementary Search Techniques 441

1
513 4

12
a

b c

21

d e

f

Fig. 11.53. Interconnection of cities and related costs.

(2)(1)

(1)(1)

a→f

a→e e→f

a→f viaii ad →f viaii e

a→d d→dd f

a→d viaii b a→d viaii c

a→c c→cc d

(3)(2)

a→b b→d

(4)(1)

a→c c→cc e

Fig. 11.54. AND-OR graph for the problem.

Th e step-by-step construction of the AND-OR graph as well as arrival at the solution of the given
problem is illustrated in Fig. 11.55(a)–(f). Th e search for a minimum cost path from a to f starts
with the root of the AND-OR graph. We employ a heuristic function h1 associated with each node
of the graph. For a node n, h1(n) estimates the cost of the path from node n to node f. Given a node
n, h1(n) is estimated as

 h1(n) = d × w (11.10)

where w is the average cost of a link between two cities, and d = the estimated number of edges
between node n and the goal node. Th e average edge-weight is calculated as

w
total weighi t of eo dges

total number of eo dges
= =

+ +
= =

2 1 3+ + 1 4+ 1 2+
7

14
7

22

Samir Roy_Chapter11.indd 441Samir Roy_Chapter11.indd 441 2/21/2013 3:37:58 PM2/21/2013 3:37:58 PM

442 Introduction to Soft Computing

Moreover, we assume a uniform cost of 1 for each link of the AND-OR graph. While estimating
the cost of an internal node, those of its descendant along with the costs of the links are taken into
consideration.

As there are six cities, at most fi ve edges may exist in a path between node a, and node f. Hence
the estimated cost h1(n) = d × w = 5 × 2 = 10 is attached to the root node (see Fig. 11.51(55)(a)). In
the next step the initial task a → f is split into two sub-tasks (a → f via d) and (a → f via e) because
f can be reached either through d or through e. Th is is represented in Fig. 11.51(55)(b) by the suc-
cessors of the root node. As f can be approached along any one of the paths through d or e, the cor-
responding sub-tasks are attached to their parent through OR-links. Th e estimated cost of the node
(a → f via d) is obtained as h1(a → f via d) = h1(a → d) + (cost of edge df) = 4 × 2 + 1 = 9. Since the
length of a path from a to d is 1 less than that from a to f we have taken d = 4. Similarly, the cost
estimate of the node (a → f via e) is calculated as 4 × 2 + 2 =10. If we proceed along node (a → f via
d) then the estimated cost at the root is (9 + 1) = 10. Th e cost of traversing along the sub-problem (a
→ f via e) is (10 + 1) =11. Since we are looking for the minimum cost path, the former is the right
choice. Th is is indicated by the broken arrow along the link from the root node to the node (a → f via
d). Moreover, the estimated minimum cost 10 is now associated with the parent of (a → f via d).

Th e next step is to expand the node (a → f via d). In order to arrive at f from a via node d one
has to traverse a path from a to d (i.e., task a → d) and then from d to f. Th erefore node (a → f via
d) is split into two sub-tasks a → d and d → f, each attached to its parent with the help of an AND
link. Th is is shown in Fig. 11.55(c). As the node d is directly connected to f the task d → f is readily
solved. Th is is indicated by the doubly encircled node for d → f. Th e cost of this task is simply the
cost of the edge df, 1. Th e estimated cost of the other child is (4 × 2) = 8.

Once we arrived at a node marked as solved we have to move upward along the tree to register
the eff ect of this arrival at a solution on the ancestors of the solved node. Th e rule is, if each suc-
cessor of an AND node is solved, then the parent node is also solved. And if any successor of
an OR node is solved then the parent node is solved. Modifi cation of the status of the ancestors
goes on until we arrive at the root, or a node which remains unsolved even aft er consideration of
the solved status of its children. In the present case the parent of the solved node (d → f) is the AND
node (a → f via d). Since its other child still remains unsolved the unsolved status of node (a → f
via d) does not change and the process stops here.

(a)

(5 × 2 = 10)

a→f

(4 × 2 + 1 = 9) (4 × 2 + 2 = 10)

(10)

a→f

a→f viaii ea→f via d

(b)

(4 × 2 = 8)

(11)

(10)

(11)

(1)

a→f

a→f viaii ea→f viaii d

a→d d→dd f
(c)

Samir Roy_Chapter11.indd 442Samir Roy_Chapter11.indd 442 2/21/2013 3:37:59 PM2/21/2013 3:37:59 PM

Elementary Search Techniques 443

(2)

(12)

(12)(11)

(1)(8)

a→f

a→e e→f

a→f viaii d a→f viaii e

a→d d→dd f

(4 × 2 = 8)

(d)

(2)

(2)

(3)

(3)

(3)

(9)

(1)

a→f

a→e e→f

a→f viaii d a→f viaii e

a→d d→dd f

(8)

(1)(1)

c→cc da→c

a→d viaii b a→d viaii c

(f)

(2)

(12)

(12)(11)

(1)(8)

a→f

a→e e→f

a→f viaii ad →f viaii e

a→d viaii b a→d viaii c

a→d d→dd f

(8)

(e)

(3 × 2 + 3 = 9) (3 × 2 + 1 = 7)

Fig. 11.55. AND-OR search for minimum-cost path between cities

Samir Roy_Chapter11.indd 443Samir Roy_Chapter11.indd 443 2/21/2013 3:38:00 PM2/21/2013 3:38:00 PM

444 Introduction to Soft Computing

Th e costs of the nodes are now to be revised on the basis of the estimates of the newly created
nodes. Th e cost of (a → d) is calculated as 8 and that of (d → f) is (0 + 1) = 1. Here h1(d → f) = 0 be-
cause the sub-problem d → f is already solved. As (a → f via d) is an AND node its revised estimated
cost should take into account the costs of both of its successors as well as the links. Th is becomes (8
+ 1) + (1 + 1) = 11. When we try to propagate this value upwards, we fi nd the cost of the root node to
be (11 + 1) = 12. Th is is greater than the cost (10 + 1) = 11 when we approach the root along its other
child (a → f via e). Th us we abandon the previous path and mark (a → f via e) as the most promis-
ing node to be expanded next (Fig. 11.55(c)). Th e subsequent steps are depicted in Fig. 11.55(d) to
Fig. 11.55(f). Fig. 11.55 (f) conveys the outcome of the entire process. Here, when the task (a → d
via c) is split into two sub-tasks a → c and c → d it is found that both of these sub-tasks are read-
ily solved. Th is makes their parent AND node (a → d via c) to be marked as solved which in turn
solves the parent task a → d. As we go on climbing the tree in this way the root node which rep-
resents the given problem is marked as solved – a condition which indicates the end of the search
process. Th e outcome of the entire process, i.e., the solution tree, is highlighted in Fig. 11.55(f).

A simplifi ed AND-OR graph search technique is described in Algorithm AO* (Fig. 11.56). It
starts with the given problem as the initial node and gradually constructs the AND-OR graph by de-
composing a problem into sub-problems and augmenting the partially constructed graph with the nodes
corresponding to those sub-problems. At any point, nodes that are generated but not yet explored or ex-
panded are kept in a queue called OPEN and those which have already been explored and expanded are
kept in a list called CLOSED. Th e prospect of a node with respect to the fi nal solution is estimated with
the help of a heuristic function. Moreover, two labels, viz., SOLVED, and FUTILE are used to indicate
the status of a node with respect to the solvability of the corresponding problem. A node that represents
a readily solved problem need not be decomposed further and is labeled as SOLVED. On the other hand,
a problem which is not solvable at all, or the solution is so costly that it is not worth trying, is labeled
with FUTILE.

Th e operation of the algorithm can be best understood as a repetition of two consecutive phases. In
the fi rst phase the already constructed graph is expanded in a top-down approach. In the second phase,
we revise the cost estimates of the relevant nodes, connect or change the connections of the nodes to
their ancestors, see if some problems, or sub-problems, are readily solvable or not solvable at all and
propagate the eff ect of these towards the root of the graph in a bottom-up fashion.

At each step we identify the most promising solution tree with the help of the cost estimates of the
nodes. A yet-unexplored node of that tree is selected for further expansion. Th e children of this node are
integrated into the existing AND-OR graph. Depending on the estimated costs of the newly introduced
nodes, the cost estimates of their ancestors are recomputed. Moreover, if the current node is tagged as
SOLVED, or FUTILE, then the status of its ancestors are also changed if necessary. Th e process stops
when the initial node is labeled as SOLVED or FUTILE.

Th e example discussed above gives a simplifi ed picture of AND-OR search because it works on a
tree rather than a graph. Moreover, a node in an AND-OR graph may involve both AND-links and
OR-links. Fig. 11.57 depicts few steps of an imaginary AND-OR graph search involving such a situa-
tion. In Fig. 11.57(a), node c is the lowest cost individual node. But selection of c compels us to select
node d also because both of them forms an AND-arc together. Since the sum of the costs of these
two nodes is greater than the other node b, it is selected at the moment for exploration and expan-
sion. Th e situation changes aft er this step (Fig. 11.57(b)) and the AND-arc involving nodes c and d

Samir Roy_Chapter11.indd 444Samir Roy_Chapter11.indd 444 2/21/2013 3:38:00 PM2/21/2013 3:38:00 PM

Elementary Search Techniques 445

becomes most prospective for further processing. Since c is cheaper than d the algorithm will select c
for processing.

Algorithm AO*

1. Initialize the search tree T with a single node, viz. the start

node S. Place S on OPEN queue. Initialize CLOSED as an empty

list.

2. On the basis of the estimated costs of the nodes belonging to the

search tree constructed so far, identify a sub-tree T
best of T as

the most prospective solution tree at present.

3. Choose a node n from Tbest that is also in OPEN. Remove n from OPEN

and include it in CLOSED.

4. Is n a goal node? If so, label n with the status SOLVED. Propagate

this status to the ancestors of node n in the following way:

Let • n1 be the parent of n. If the solution of n results in the

solution of n1 also, label n1 with the status SOLVED. Repeat the

procedure for n1and its parent, and so on.

The process stops when either we arrive at an ancestor of • n which

remains unsolved in spite of the solution of its descendants till

n, or the start node of the search tree is reached.

 If the start node S attains the status SOLVED then report success

and return T
best as the solution tree.

5. If the cost of n becomes prohibitively high, or n is simply un-

solvable then label it as FUTILE indicating that the path through

this node is blocked. Propagate this information to the ancestors

of n in a way analogous to step 4. If the start node S attains the

status FUTILE then report failure and return. From OPEN remove all

FUTILE nodes along with their descendants.

6. If n is neither SOLVED nor FUTILE, then expand it by generating all

its children, i.e., all sub-problems into which n could be decom-

posed. Maintain a back pointer from each of these children to its

parent n. This is required to reconstruct the solution tree once

the root node attains the SOLVED status. Compute the cost estimate

for each child. Place all newly generated nodes into OPEN.

8. On the basis of the estimated costs of the new nodes, recompute

the cost estimates of their ancestors way up to the root node. Go

to Step 2.

Fig. 11.56. Algorithm AO*.

Samir Roy_Chapter11.indd 445Samir Roy_Chapter11.indd 445 2/21/2013 3:38:00 PM2/21/2013 3:38:00 PM

446 Introduction to Soft Computing

a

b c d

(11)

(8)
(a) (b) (11)

(14)

a

b

e f g

c d

(4)

(3) (3)(5)

(7) (5)(4) (5)

Fig. 11.57. Characteristics of AO* search

It has been found that AO* algorithm is admissible, i.e., it guarantees to fi nd an optimal solution tree if
one exists, provided h1(n) ≤ h (n) for any node n, and all costs are positive. If h(n) = 0 then AO* algo-
rithm becomes breadth-fi rst search. AO* is also known as the best-fi rst search algorithm for AND-OR
graphs.

11.4.6 Means-ends Analysis

Means-Ends Analysis (MEA) is a technique employed for generating plans for achieving goals. Th is
technique was fi rst exploited in sixties by a famous A.I system known as the General Problem Solver
(GPS). Th e central idea underlying the MEA strategy is the concept of the diff erence between the start
state and the goal state and in general the diff erence between any two states. Th e MEA process recur-
sively tries to reduce the diff erence between two states until it reduces to zero. As a result it generates a
sequence of operations or actions which transforms the start state to the goal state. Th e salient features
of an MEA system are described below.

It has a problem space with an initial (start) state (object) and a fi nal (goal) state (object).1.
It has the ability to compare two problem states and determine one or more ways in which these 2.
states diff er from each other. Moreover, it has the capacity to identify the most important diff er-
ence between two states which it tries to reduce in the next step.
It can select an operator (action) appropriate for application on the current problem state to re-3.
duce the diff erence between the current state and a goal. It employs a diff erence-operator table,
oft en augmented with preconditions to the operators, for this purpose. Th e diff erence-operator
table specifi es the operators applicable under various kinds of diff erences.
Th ere is a set of operators, sometimes referred to as rules. An operator can transform one prob-4.
lem state to another. Each operator (rule) has a set of pre-conditions and a set of post-conditions,
or results. Th e pre-conditions of a rule describe the situation in which the rule can be applied.
Similarly, the post-conditions describe the changes that will be incorporated into the problem
state as a result of the operation applied.

Th e basic strategy of means-ends analysis is described in the pseudocode Algorithm Means-Ends
Analysis (S

current
, S

goal
) (Fig. 11.58) and is illustrated in Fig. 11.59.

Samir Roy_Chapter11.indd 446Samir Roy_Chapter11.indd 446 2/21/2013 3:38:00 PM2/21/2013 3:38:00 PM

Elementary Search Techniques 447

Suppose Scurrent and Sgoal are the initial and the goal states pertaining to the given problem. A se-
quence of operations is to be generated that transforms Scurrent to Sgoal. Th e system identifi es D to be
the most important diff erence between the start state and the goal state. Th is situation is depicted in
Fig. 11.59(a). Fig. 11.59(b) shows the situation prevailing after application of an appropriate op-
erator OP, which is employed to reduce the gap D. Let Spre-op be the problem state that satisfies the
pre-conditions for applying the operator OP and Spost-op be the problem state resultant of applying
OP on Spre-op. Then the portion of D indicated by CD of Fig. 11.59(b) has been filled and the original
difference D represented by the distance AB in Fig. 11.59(a) and (b) is fragmented into two gaps
(may be one) D1 and D2 represented as the distances AC and DB in Fig. 11.59(b). The differences D1
and D2 may further be reduced by invoking MEA(Scurrent, Spre-op) and MEA(Spost-op Sgoal), respectively.
It should be noted that OP will be actually included in the final plan only if both MEA(Scurrent, Spre-op)
and MEA(Spost-op Sgoal) are successful and return their own sub-plans P1 and P2 so that the final plan
is obtained by concatenating P1, OP, and P2.

Algorithm Means-Ends Analysis (Scurrent, Sgoal)

1. IF (Scurrent is identical to Sgoal) THEN Return SUCCESS.

2. Let D represents the most important difference identified between
Scurrent and Sgoal. Reduce D through Step 3 to Step 5 until SUCCESS or
FAILURE is returned.

3. Select OP, an operator from the Difference-Operator-Precondition
table which is applicable but not yet been applied to reduce D.

IF (There is no such operator, i.e., all operators have been tried
without success)

THEN Return FAILURE.

4. Generate Spre-op and Spost-op, i.e., the states in which the pre-conditions
and post-conditions of OP are satisfied, respectively.

5. IF
P
1 ← Means-Ends Analysis (Scurrent, Spre-op) and

P2 ← Means-Ends Analysis (Spost-op, Sgoal)

are the plans generated through successful completion of

MEA (S
current, Spre-op) and MEA(Spost-op, Sgoal) respectively

THEN
Return SUCCESS with the plan P such that

P ← Concatenation of P
1, OP, and P2.

 ELSE Go to Step 3.

Fig. 11.58. Algorithm means-ends analysis (Scurrent , Sgoat).

Th e MEA process is a kind of backward chaining known as operator subgoaling that consists of selec-
tion of operators and subsequent setting up of sub-goals so that the pre-conditions of the operators are
established.

Samir Roy_Chapter11.indd 447Samir Roy_Chapter11.indd 447 2/21/2013 3:38:01 PM2/21/2013 3:38:01 PM

448 Introduction to Soft Computing

BA

MEA(ScurrentSS , SgoSS al)

MEA(ScurrentSS , Spre-opSS)

SgoSS al

SgoSS al

ScuSS rrent

ScuSS rrent

D

(a) The gap D is to be filled with the help of a sequence of operators

DCA

OP

SpoSS st-opSpre-opSSD1 D2DD

MEA(SposSS t-op SgoSS al)

(b) The gap D is partially filled by ay pplying OP and the total remaining
gap D1 + D2DD is smaller than D

B

Fig. 11.59. Basic means-ends analysis strategy.

Example 11.9 (Means-Ends Analysis)

Suppose a person want to reach his friend’s house at New Delhi from his home at Kolkata. Th e
distance between Kolkata and New Delhi is about 1500 km. Depending on the distance to be trav-
eled and subject to availability, various kinds of conveyances are used. For example, if it is a very
short distance, say, less than 1 km, one should simply walk. For a destination further than 1 km but
within the locality one may use a car or a bus. Similarly, to travel larger distances a train, or an aero-
plane may be used. In order to board an aeroplane we have to reach the airport. Similarly, to catch
a train one has to arrive at the railway station. Th e airport, or the railway station, may be reached
through a car, or a bus, and so on. We want to generate a plan through MEA for this problem.
Here a problem state is defi ned as the position, or location, of the person. For the sake of simplicity,
let us consider a discrete, fi nite set of possible locations, say, at-home-at-K, at-the-car-at-K, at-the-car-
at-ND, at-the-bus-stop-at-K, at-the-bus-stop-at-ND, at-the-station-at-K, at-the-station-at-ND, at-the-
airport-at-K, at-the-airport-at-ND, at-friends-house-ND etc. Th e ‘K’ and ‘ND’ at the tails of the name of
locations given above represent Kolkata and New Delhi, respectively. Th e diff erence between two prob-
lem states is given by the distance between the respective locations. For example, if d be the distance
between the airport at New Delhi and Kolkata, then the diff erence between the problem states at-the-
airport-at-ND and at-the-airport-at-K is d. Th e possible actions, or operators, to reduce the diff erences
stated above are walk, take a bus, drive a car, use train and fl y. Th ere is no pre-condition for walking,
however in order to take a bus, one must be at the bus-stop. Th erefore the pre-condition of take a bus
is be at bus-stand. Similarly, pre-conditions for the rest of the operators are ascertained. Th e entire
Diff erence-Operator-Precondition table is shown in Fig. 11.60. Table 11.5 depicts the trace of recursive
application of Means-Ends Analysis process to the present problem. Th e plan generated through the
MEA process and the recursive depths of various operators within the plan are shown in Fig. 11.61.

Initially, the applicable operation is to fl y because the distance between the person’s home at
Kolkata and his friend’s house at New Delhi is about 1500 km, which is greater than 500 km. In
order to apply this operation, one be at the airport. So a sub-goal is created which is to reach the
airport from the person’s home. Similarly, when the person arrives at New Delhi airport, he has
to travel from the airport to his friend’s house. Both of these sub-problems are solved by invoking
the same MEA process recursively.

Samir Roy_Chapter11.indd 448Samir Roy_Chapter11.indd 448 2/21/2013 3:38:01 PM2/21/2013 3:38:01 PM

Elementary Search Techniques 449

Problem: How to reach your friend’s residence at New Delhi from your home at Kolkata.

Pre-conditions

Operators

Di
ffe

re
nc

es

dist < 1 km

W
alk

Nil

Be
at

 b
us

 st
op

Be
at

 ca
r

be
 a

t r
ail

way
 st

.

be
 a

t a
irp

or
t

Tak
e

bu
s

Driv
e

a
ca

r

Use
 tr

ain

Fly

50 km ≤ dist < 500 km

500 km ≤ dist

1 Km ≤ dist < 50 km

√

√ √

√ √

√ √

Fig. 11.60. The difference-operator-precondition table.

Table 11.5. Trace of recursive application of means-ends analysis

Difference Applicable operator Precondition to be satisfi ed

500 ≤ dist fl y be at airport

 1 ≤ dist <50 drive a car be at car

dist <1 walk (to car) nil

 dist <1 walk (to airport) nil
1 ≤ dist <50 take bus be at bus stop

 dist <1 walk (to bus) nil
dist <1 walk (to friend’s house) nil

plan generated
walk (to car) → drive (to airport) → walk (to aeroplane) → fl y (to ND airport) → walk (to
bus stop) → take bus → walk (to friend’s house)

walk (to car)Le
ve

l o
f r

ec
ur

si
on

Simit

at-tt home-
at-tt K

at-tt the-
car–rr at-tt K

at-tt the-
airportrr -tt K

0

1

2

drive walk (to
airport)

Fly

walk (to
bus stop)

take bus
GOAL

walk (to friend’s
house)

at-tt the-
car–at-tt

airport-tt K

at-tt the-
airportrr -tt ND

at-tt the-
bus-stop-ND

at-tt the-
bus-stop-

ND

at-tt the-
friend’s-

house-ND
Problem states

Fig. 11.61. Plan generated through means-end analysis.

Samir Roy_Chapter11.indd 449Samir Roy_Chapter11.indd 449 2/21/2013 3:38:01 PM2/21/2013 3:38:01 PM

450 Introduction to Soft Computing

11.4.7 Mini-Max Search

Mini-Max search is an interesting type of search technique suitable for game playing AI systems. A game,
unless it is one-player puzzle-like, is a typically multi-agent environment in which the agents are com-
petitive rather than cooperative. Each player tries to win the game and makes his moves so as to maxi-
mize his chance of win and conversely, minimize the chance of the opponent’s win. As the players have
confl icting goals, a player must take into account the possible moves of his opponent while he makes his
won move against his opponent. For this reason a search algorithm employed to facilitate decision mak-
ing for such a player is occasionally referred to as an adversarial search.

In this text, we shall consider only deterministic, two-player, turn-taking, zero-sum games. Such a
game can be characterized as follows:

Th ere are two players. One of them is referred to as the MAX player (say, you), and the other as •
the MIN player (your opponent). Th e reason of such nomenclature of the players will be soon
obvious.
Th e fi rst move is made by the MAX player.•
Th e moves are deterministic.•
Th e two players make their moves alternately.•

A deterministic, two-player, turn-taking, zero-sum game as described above can be formalized as a sys-
tem consisting of certain components:

A data structure to represent the status of the game at any moment. Th is is usually referred to as the 1.
board position. Each possible status of the game is considered as a state of the corresponding state
space. Th e status of the game before the fi rst move (by MAX) is the initial state.
A 2. successor function which returns a list of legal moves from a given game state as well as the states
resultant of those legal moves.
A 3. terminal condition that defi nes the termination of the game. Depending on the rules of the game,
it may terminate either in the win of a player (and the loss of his opponent), or a draw.
A function, generally termed as the 4. utility, or objective, or pay-off , or static evaluation function.
Th is function gives the numeric values of the terminal states. In case of static evaluation function,
it returns a numeric value for each state of the game. Usually, a positive numeric value indicates
a game status favourable to the MAX player and a negative value indicates the game status to be
favourable to the MIN player. For example, a winning position for the MAX (MIN) player may
have a +∞ (−∞), or +1 (−1) value.

As mentioned earlier, each time a player makes a move he has to consider its impact on his chance of winning
the game. Th is is possible only when he takes into consideration the possible moves of his opponent. Starting
with the fi rst move, the entire set of sequences of possible moves of a game can be presented with the help of a
game tree. In an ideal situation, a player should be able to identify the perfect move at any turn with the help of
the game tree. Example 11.10 illustrates the use of a game tree as an aid to decision making in game playing.

Example 11.10 (Th e game of NIM)

Th e game of NIM is a classical example of a deterministic, two-player, turn-taking, zero-sum game.
Th e game starts with a number of piles of sticks. Two players remove sticks from the piles alternately
until all the sticks are removed. A player can remove any number of sticks from one pile of his choice

Samir Roy_Chapter11.indd 450Samir Roy_Chapter11.indd 450 2/21/2013 3:38:02 PM2/21/2013 3:38:02 PM

Elementary Search Techniques 451

when his turn of move comes. However, he should try to leave some sticks in the piles because
the player who has to take the last stick loses. Th e status of the game at any moment may be rep-
resented with the help of a non-decreasing sequence of integers. For example, the sequence (2, 4,
4, 7) represents four piles of sticks containing 2, 4, 4, and 7 sticks in the individual piles. Now if a
player removes two sticks from one pile containing 4 sticks then the resultant game status is repre-
sented by (2, 2, 4, 7). If in this situation all the sticks from the 7-stick pile are removed by a player
then the game status becomes (2, 2, 4).

For the sake of simplicity, we shall consider the (1, 2, 2) NIM game. As usual the two players are
denoted as the MAX (i.e., you) and the MIN (i.e., your opponent). Th e utility function is defi ned
as follows:

Function
Value

Interpretation

Won Lost

+ ∞ MAX MIN

− ∞ MIN MAX

It should be noted that instead of the pair (+∞, −∞) other numeric values, e.g., (+1, −1), could
also be used. However we shall see that the concept of a utility function will be generalized to
that of a static evaluation function which returns an integral value for any game status and not
for the winning/losing positions only. Th e complete game tree for (1, 2, 2) NIM is shown in
Fig. 11.62.

+ ∞ : Win for MAX
− ∞ : Win for MIN

: MAX
 node

: MIN
 node

2

12

11 1 2

12

11 1

2

1

+

111

11

11 11

1

2

1

+ +

1

1

22 112 12

122

11 1 1 1

MIN

MIN

MAX
(You)

MAX
(You)

MAX
(You)

+ ∞+ ∞+ ∞

− ∞

− ∞

− ∞ − ∞ − ∞− ∞

Fig. 11.62. Complete game tree for (1, 2, 2) NIM game.

Samir Roy_Chapter11.indd 451Samir Roy_Chapter11.indd 451 2/21/2013 3:38:02 PM2/21/2013 3:38:02 PM

452 Introduction to Soft Computing

Th e root node represents the initial status (1, 2, 2) of the game. Depending on whether the MAX
player picks 1 or 2 sticks, the status of the game aft er the fi rst move may be (2, 2), (1, 1, 2), or (1, 2).
Th ese constitute the 1st level nodes of the tree. Similarly, from (2, 2), the move by MIN player may
result in the status of (1, 2), or (2), and so on. Usually the set of all game status at a certain level of
the game tree which corresponds to the MAX (MIN) player’s turn of move is called a MAX-ply
(MIN-ply). To make the distinction clear, nodes of the MAX-ply are represented with circles and
those of the MIN-ply are represented with rectangles.

Each leaf node of Fig. 11.62 represents the game status (1), i.e., the last stick. Th is implies defeat
of the player whose turn of move it is. Hence, leaf nodes of a MAX-ply have a utility value −∞ and
those of MIN-plies have a value +∞.

Th e game tree shown in Fig. 11.62 depicts the sequences of probable moves by the two play-
ers and the fi nal outcome of those sequences with respect to the result of the game. However, the
primary objective of a player is to identify and select the best possible move. Th e game tree, along
with the utility function, may be exploited to achieve this goal.

Th e idea is to fi nd the utility value, referred to as the Mini-Max value, of each node to decide
whether the corresponding move is good or bad for the player. Th e underlying assumption is that
each player will try to create situations best for him and worst for his opponent. Consider the
MAX nodes (j) and (k) in Fig. 11.63, which show the game tree of Fig. 11.62 along with the Mini-
Max values of the nodes. Nodes (j) and (k) are losing the game status for MAX. Th erefore, both
of them have a score of −∞. Now node (j) is a child of node (g) which is a MIN node. Since MIN
will defi nitely try to defeat MAX, it is bound to make a move that leads to game status (j). Hence
the utility value of (g) is same as that of (j). Similarly, the utility of node (k) is propagated to node
(h). However, node (i) of the same MIN-ply is a losing game status for a player MIN and a win for
node MAX. Hence its score is +∞. Now (g), (h) and (i) are children of node (e), which belongs to
a MAX-ply. MAX will select a move to ensure his chance of win. Among (g), (h) and (i), the fi rst
two imply defeat of MAX and the last one ensures his win. Th erefore, faced with situation (e) MAX
will make a move to (i) only, neither (g) nor (h). Hence the Mini-Max value of node (e) should be
same as that of (i), i.e., +∞. However, the situation is reverse for the node (c). Th is node has three
children with Mini-Max values +∞, −∞, and +∞, respectively. Being in a MIN-ply, the opponent
will try to make things worst for MAX and so will move to the game status of value −∞. Hence the
Mini-Max value of (c) is −∞. Obviously, the general rule for computing the Mini-Max value of a
node N is:

If 1. N is a leaf node then the Mini-Max value of N is its score, i.e., value of the utility function
at that node.
If 2. N is a MAX-node, i.e., N belongs to a MAX-ply, the Mini-Max value of N is the maxi-
mum of the Mini-Max values of its children.
If 3. N is a MIN-node, i.e., N belongs to a MIN-ply, the Mini-Max value of N is the minimum
of the Mini-Max values of its children.

Procedure MiniMax (N) (Fig. 11.64) gives the pseudo-code for the technique mentioned
above. In case of a MAX node, the Mini-Max value is initialized to −∞ (or the minimum allowable
value) and then gradually updated to the maximum value of its children. (lines 3-9). For a MIN node
the value is initialized to +∞ and then lowered down to the minimum value among its children.
Fig 11.63 shows the Mini-Max values of each node of the game tree for (1, 2, 2) NIM game obtained

Samir Roy_Chapter11.indd 452Samir Roy_Chapter11.indd 452 2/21/2013 3:38:03 PM2/21/2013 3:38:03 PM

Elementary Search Techniques 453

by applying this procedure on the said game tree. It is easy to see that the root node attains a Mini-Max
value of +∞ which implies that if properly played, the game can be won by the MAX player and in
order to win he has to remove the stick from the single stick pile. Any other move may eventually lead
to his losing the game, provided the opponent does not make any mistake.

2

12

11 1 2

12

11 1

2

1

111

11

11 11

1

2

1

1

1

22

122

11 1 1 1

MIN
(Opp.)

MIN
(Opp.)

(a)

(b) (112 c) (12 d)

(e) (f)

(g) (h) (i)

(j(() (k)

MAX
(You)

MAX
(You)

MAX
(You)

+ +

+ ∞

++ ∞ ++

+ ∞ + ∞ + ∞ + ∞ + ∞ + ∞

+ ∞

− ∞ − ∞

− −∞ + ∞ + ∞ −∞ + ∞ −∞ + ∞ + ∞ ∞− ∞

− ∞ − ∞− ∞
+ ∞ : Win for MAX : MAX node

: MIN node− ∞ : Win for MIN

Fig. 11.63. Utility values of different nodes of (1, 2, 2) NIM game.

A realistic game playing system must take into consideration the facts that the real-world games are
too hard computationally. As a classical example, consider the game of chess. Th e average branching
factor of chess is approximately 35. If we consider a usual game with 50 moves for each player then
the search tree would consist of about 35100 or 10154 nodes. Arriving at an optimal decision through
exhaustive search of a tree of such dimension is not feasible. Hence Procedure MiniMax (N)
has to be modifi ed suitably so that eff ective decisions can be taken even if the entire game tree is not
searched.

Static evaluator We need something more than a utility function to assist us in decision making
while playing a realistic game. Recall that the utility function returned a value for terminal game status,
which is percolated to their ancestors as Mini-Max values till the concerned node attains its own Mini-
Max value. A static evaluator is a generalized utility function that returns a value for any node of the
game tree and not just for the terminal modes. Equipped with a suitable static evaluator Procedure
MiniMax (N) can now be modifi ed to carry out the Mini-Max search to a predefi ned depth from
the given node of the game tree and assign the Mini-Max value of the node on the basis of that limited
information.

Samir Roy_Chapter11.indd 453Samir Roy_Chapter11.indd 453 2/21/2013 3:38:03 PM2/21/2013 3:38:03 PM

454 Introduction to Soft Computing

Procedure MiniMax (N)

INPUT :A node N of a game tree TG. Also there is an evaluation func-
tion score(N) which returns a value indicating the relative merit of
the game status corresponding to node N. Usually score(N) = -∞ if N

is a winning position for MIN, and score(N) = +∞ if N is a winning

position for MAX.

OUTPUT: The MiniMax value of node N.

1. BEGIN

2. IF (N is a leaf node) THEN Return score(N) END-If

 /* code for MAX node */

3. IF (N is a MAX node) THEN

 /* Initialize MiniMax value with lowest possible value */

4. MiniMax-value ← -∞

 /* Update the MiniMax value of the current node with the high-

est

 MiniMax value among its children */

5. FOR (each child of N) DO

6. value ← MiniMax (child)

7. IF value > MiniMax-value THEN MiniMax-value ← value END-If

8. END-For

9. Return MiniMax-value

10. END-If

 /* code for MIN node */

11. IF (N is a MIN node) THEN

 /* Initialize MiniMax value with highest possible value */

12. MiniMax-value ← +∞

 /* Update the MiniMax value of the current node with the lowest

 MiniMax value among its children */

13. FOR (each child of N) DO

14. value ← MiniMax (child)

15. IF value < MiniMax-value THEN MiniMax-value ← value END-If

16. END-For

17. Return MiniMax-value

18. END-If

19. END-MiniMax

Fig. 11.64. Procedure MiniMax (N).

Samir Roy_Chapter11.indd 454Samir Roy_Chapter11.indd 454 2/21/2013 3:38:03 PM2/21/2013 3:38:03 PM

Elementary Search Techniques 455

(0) (6)

(3) (5) (− 3) (− 4)

(− 4)B

A

C

E F G H J KI

D

(4) (0) (0)

Node scores
obtained through
the static
evaluator

MAX (You)

MIN (opponent)

MAX (You)

Fig. 11.65. Scores of individual nodes based on static evaluation function.

Depth-limited Mini-Max search As an example, let us consider a portion of an imaginary
game tree as shown in Fig. 11.65. Th e score of each node with respect to the evaluation function is
given within parentheses adjacent to the respective node. Our goal is to assign a Mini-Max value to the
root node A on the basis of these scores. If we decide to carry out the Mini-Max search process till a
depth of 1 only, then the scores of three children of A, i.e., nodes B, C and D, should be considered and no
node beyond that level. As A is a MAX node, the maximum of these scores should be the Mini-Max value
of A (see Fig. 11.66). Th erefore node A attains a Mini-Max value of 6 through 1-ply MiniMax search.

(0) (6)

(6)

(3) (5) (− 3) (− 4)

(− 4)B

A

C

E F G H J KI

D

(4) (0) (0)

MAX (You)

MIN (opponent)

MAX (You)

Mini-Max
value

Evaluation
functional
scores

Fig. 11.66. Finding Mini-Max value through 1-ply search.

Now compare this with Fig. 11.67 showing the same process carried out to a depth of 2, instead of 1.
Here the deepest nodes are at level 2 and these nodes are evaluated on the basis of the static evaluator.
Th e nodes B, C and D being MIN nodes, each of them obtain its Mini-Max value as the lowest score

Samir Roy_Chapter11.indd 455Samir Roy_Chapter11.indd 455 2/21/2013 3:38:03 PM2/21/2013 3:38:03 PM

456 Introduction to Soft Computing

among the children of the respective node. Finally, the MAX node A is assigned a Mini-Max value of 3,
the highest score among B, C and D.

(3)

(3)

(3) (5) (− 3) (− 4)

(− 4)(− 3)B

A

C

E F G H J KI

D

(4) (0) (0)

MAX (You)

MIN (opponent)

MAX (You)

Mini_Max
value

Fig. 11.67. Finding Mini-Max value through 2-ply search.

Th e pseudo-code for the technique described above is presented in Procedure Depth-Limited-
MiniMax (N, d) (Fig. 11.68). Th e algorithm is similar to MiniMax (N) except that each time the
procedure calls itself recursively the depth is reduced by 1. Th erefore, score (N) is returned not only for
the leaf nodes but also for the nodes at depth d (line #2).

Procedure Depth-Limited-MiniMax (N, d)

INPUT :A node N of a game tree TG as well as the depth d to which the game
tree TG should be explored. Also there is an evaluation function score(N)
which returns a value indicating the relative merit of the game status
corresponding to node N. Usually score(N) = -∞ if N is a winning position
for MIN, and score(N) = +∞ if N is a winning position for MAX.

OUTPUT:The MiniMax value of node N.

 1. BEGIN

 2. IF (N is a leaf node) OR (d=0) THEN Return score(N) END-If

 /* code for MAX node */

 3. IF (N is a MAX node) THEN

 /* Initialize MiniMax value with lowest possible value */

 4. MiniMax-value ← -∞

 /* Update the MiniMax value of the current node with the high-
est

 MiniMax value among its children */

 5. FOR (each child of N) DO

 6. value ← MiniMax (child, d-1)

Samir Roy_Chapter11.indd 456Samir Roy_Chapter11.indd 456 2/21/2013 3:38:04 PM2/21/2013 3:38:04 PM

Elementary Search Techniques 457

 7. IF value > MiniMax-value THEN MiniMax-value ← value END-If

 8. END-For
 9. Return MiniMax-value

10. END-If
 /* code for MIN node */

11. IF (N is a MIN node) THEN
 /* Initialize MiniMax value with highest possible value */

12. MiniMax-value ← +∞

 /* Update the MiniMax value of the current node with the low-
est MiniMax value among its children */

13. FOR (each child of N) DO
14. value ← MiniMax (child, d-1)

15. IF value < MiniMax-value THEN MiniMax-value ← value END-If

16. END-For
17. Return MiniMax-value

18. END-If
19. END-Depth-Limited-MiniMax

Fig. 11.68 Procedure depth-limited-MiniMax (N, d).

Design issues While designing a game playing system using Mini-Max search, one has to decide two
things, viz., which static evaluator is to be employed, and how deeply the game tree should be searched.
Th ere is no rule regarding the fi rst issue. It depends on the insight of the designer. However, several fac-
tors are to be taken into consideration in this regard. Most important of these are

Speed:• Th e static evaluator should compute fast. Th is is because time is a decisive parameter
in most of the games we humans play. For example, in chess any delay in making a move is
eventually severely punished.
Heuristic power:• Th e static evaluator should be powerful enough to embody suffi cient knowledge
regarding the game so that eff ective decision can be taken by the player. Again, let us consider
the game of chess. A simple static evaluator would be the sum of the values of the white pieces
minus the sum of the values of the black pieces, i.e.,

score p
p N

B
p NN p

()N =
N pN p

∑ ∑pp

where pW and pB are the white pieces and the black pieces remaining in board position N.

Th e question of how deeply should the game tree be searched is related to the speed-concern as well as
the heuristic power of the static evaluator. Th e deeper we delve into the game tree the more informed and
wise our decision, provided we have time. We may also try to compensate, so far as possible, the limita-
tion of the evaluator by carrying out the search to deeper levels.

Alpha-beta pruning Is it possible to make MiniMax search more effi cient? It has been found
quite frequently that certain portions of a game tree do not play any role to decision-making in the sense
that the Mini-Max value returned by the search remains the same irrespective of whether these portions
are explored or not. Alpha-Beta pruning is a technique of making MiniMax search effi cient by avoiding

Samir Roy_Chapter11.indd 457Samir Roy_Chapter11.indd 457 2/21/2013 3:38:04 PM2/21/2013 3:38:04 PM

458 Introduction to Soft Computing

these parts while searching the game tree. Th e technique of Alpha-Beta pruning is explained below with
reference to the game tree shown in Fig. 11.69.

(5)

(5)

(4)(5) (7)(− 2)

()D F(5) (10) G

B

(5)A

C

M NK LI JH

(10)(3)

MAX

MIN

MIN

MAX

(+ ∞)

(+ ∞)(− ∞)

(− ∞)

Fig. 11.69. A 3-ply game tree with Mini-Max values.

Pruned subtrees

X

Y

(5)

(5)

(5) (7)(− 2)

(7)D F

B

(5)A

E

C

KI JH

(3)

MAX

MIN

MIN

MAX (− ∞)

(− ∞)

Fig. 11.70. Alpha-Beta pruning of a game tree during Mini-Max search.

As usual, the numbers attached to the leaf nodes are the scores of the respective game status obtained
through the static evaluator and the numbers adjacent to the internal nodes give the Mini-Max values. Th e

Samir Roy_Chapter11.indd 458Samir Roy_Chapter11.indd 458 2/21/2013 3:38:05 PM2/21/2013 3:38:05 PM

Elementary Search Techniques 459

root node A obtains a Mini-Max value of 5 as a result of 3-ply Mini-Max search on the game tree mentioned
above. Let us examine the Mini-Max process involved here critically. Th e MAX node D is assigned a Mini-
Max value 5 as this is the highest score among its children H, I and J. Now, while computing the Mini-Max
value of node E, we see that E’s fi rst child K has a score of 7. Th is implies the Mini-Max value of E is going
to be at least 7, as E is a MAX node. But this value is already greater that 5, the Mini-Max value of node D.
Since the parent of D and E, i.e., node B, is a MIN node, the Mini-Max value of B will be at most 5. Hence it
is useless to explore the sub-tree marked ‘X’ (see Fig. 11.70). Whatever be the values existing in portion ‘X’
of the game tree, the Mini-Max value of B will remain 5. Similarly, the ‘Y’ portion of the game tree can also
be ignored because the MIN node C has already attained a Mini-Max value -∞ which obviously can not be
further lowered.
Procedure AlphaBeta-MiniMax (N, d, Alpha, Beta) (Fig. 11.71) presents the

pseudo-code for MiniMax search made effi cient by incorporating the technique of Alpha-Beta pruning
explained above. Alpha and Beta are the two cutoff numbers, generally referred to as the Alpha-Beta cut-
off s, used to prune the avoidable parts of the game tree. Th e Mini-Max value of node is worth computing
only if it lies within the range [Alpha, Beta]. While computing the Mini-Max value of a MAX node as soon
as it is found that the Mini-Max value of any of its child exceeds Beta then the concerned MAX node is
assigned a value of Beta without exploring the rest of the subtree (see line #8 of Procedure AlphaBe-
ta-MiniMax). Conversely, a MIN node is assigned the Mini-Max value Alpha as soon as it tends to go
below Alpha, and the search is discontinued (see line #17 of Procedure AlphaBeta-MiniMax).A
trace of execution of Procedure AlphaBeta-MiniMax on the game tree of Fig. 11.69 is shown in
Table 11.6. Th e recursive calls of Procedure AlphaBeta-MiniMax (N, d, Alpha, Beta)
are underlined. A pictorial view of the process is presented in Fig. 11.72.

Procedure AlphaBeta-MiniMax (N, d, Alpha, Beta)

/* This procedure computes the MiniMax value of node N, searched to depth
d of the game tree TG from node N. If the computed value is less than Alpha
then Alpha is returned. The procedure returns Beta if the computed value
is more than Beta. */

1. BEGIN
2. IF (N is a leaf node) OR (d=0) THEN Return score(N) END-If

 /* code for MAX node */

3. IF (N is a MAX node) THEN
 /* Initialize MiniMax value with Alpha */

4. MiniMax-value ← Alpha

 /* Update MiniMax value of the current node with the highest

 MiniMax value among its children, or Beta if the computed
value exceeds Beta. */

5. FOR (each child of N) DO
6. value ← MiniMax (child, d-1, MiniMax-value, Beta)

7. IF value > MiniMax-value THEN MiniMax-value ← value END-If

 /* If Beta is exceeded then prune the rest of the sub-tree
of T

G. */

Samir Roy_Chapter11.indd 459Samir Roy_Chapter11.indd 459 2/21/2013 3:38:06 PM2/21/2013 3:38:06 PM

460 Introduction to Soft Computing

8. IF MiniMax-value > Beta THEN Return Beta END-If
9. END-For
 /* Beta is not exceeded */

10. Return MiniMax-value

11. END-If

 /* code for MIN node */

12. IF (N is a MIN node) THEN
 /* Initialize MiniMax value with highest possible value */

13. MiniMax-value ← Beta

 /* Update MiniMax value of the current node with the lowest

 MiniMax value among its children or Alpha, whichever is higher.
*/

14. FOR (each child of N) DO
15. value ← MiniMax (child, d-1, Alpha, MiniMax-value)

16. IF value < MiniMax-value THEN MiniMax-value ← value END-If
 /* If MiniMax-value < Alpha then prune the rest of the sub-

tree */

17. IF MiniMax-value < Alpha THEN Return Alpha END-If
18. END-For
 /* MiniMax-value has not gone below Alpha */

19. Return MiniMax-value

20. END-If
21. END-AlphaBeta-MiniMax

Fig. 11.71. Procedure AlphaBeta-MiniMax (N, d, Alpha, Beta).

Table 11.6. Trace of execution of procedure AlphaBeta-MiniMax

Levels of recursion

0 1 2 3

abMiniMax (A, 3, −∞, +∞) /* Initially Alpha = −∞, Beta = −∞ */

MiniMax-value = −∞ /* Line #4, A is a MAX node */

Value ← abMiniMax (B, 2, −∞, +∞) /* Explore the 1st child of A */

MiniMax-value = +∞ /* Line #13, B is a MIN node */

Value ← abMiniMax (D, 1, −∞, +∞)

MiniMax-value = −∞

Value ← abMiniMax (H, 0, −∞, +∞)

Return (-2)

Value = −2

(Continued)

Samir Roy_Chapter11.indd 460Samir Roy_Chapter11.indd 460 2/21/2013 3:38:06 PM2/21/2013 3:38:06 PM

Elementary Search Techniques 461

Table 11.6. Continued

Levels of recursion

0 1 2 3

MiniMax-value = −2

Value ← ab MiniMax (I, 0, −2, +∞)

Return (3)

Value = 3

MiniMax-value = 3

Value ← ab MiniMax (J, 0, 3, +∞)

Return (5)

Value = 5

MiniMax-value = 5

Return (5) /* All children of D are explored */

Value = 5

MiniMax-value = 5

Value ← ab MiniMax (E, 1, −∞, 5)

MiniMax-value = −∞

Value ← ab MiniMax (K, 0, −∞, 5)

Return (7)

Value = 7

MiniMax-value = 7

Return (5) /* see line #7, prune the rest sub-tree */

Value = 5

MiniMax-value = 5

Return (5) /* all children of node B have been explored */

Value = 5

MiniMax-value = 5

Value ← ab MiniMax (C, 2, 5, +∞)

MiniMax-value = +∞

Value ← ab MiniMax (F, 1, 5, +∞) /* leaf node */

Return (−∞) /* score (F) = −∞ */

Value = −∞

MiniMax-value = −∞

Return (5) /* see line #17, prune the remaining sub-tree */

Value = 5

MiniMax-value = 5

Return (5) /* The MiniMax value of node A */

Samir Roy_Chapter11.indd 461Samir Roy_Chapter11.indd 461 2/21/2013 3:38:06 PM2/21/2013 3:38:06 PM

A

H
I

J

D

K
L

E

M
N

G

B

F

C

(1
0)

(4
)

F
irsii

t A
lp

ha
-B

et
att

cu
to

ff

S
ec

on
d

A
lp

ha
-B

et
att

cu
to

ff

U
pd

at
io

n
of

A
lp

ha
-B

et
ll

att
cu

to
ff

va
lu

es
 in

su
cc

es
si

ve
re

cu
rs

iv
e

ca
lls

A
lp

ha
-B

et
ll

att
cu

to
ff

va
lu

es
pa

ss
ed

 a
t t

he
tim

e
of

 m
ak

in
g

re
cu

rs
iv

e
ca

lls

M
A

X

M
IN

M
IN

M
A

X

(+
∞

)
(−

2)
,[

−∞
,+

∞
]

β
=

+∞

(−
∞

),
[5

,+
∞

]

(−
∞

),
[5

,+
∞

]

(3
),

[−
2,

+∞
]

β
=

+∞

(5
),

[−
∞

,+
∞

]

(5
),

[−
∞

,+
∞

]

(5
),

[−
∞

,+
∞

]

(1
0)

,[
−∞

,5
]

(5
),

[3
,+

∞
]

β
=

+∞
(7

),
[−

∞
,5

]
β

=
+∞

α
=

−∞

=
−2

=
3

=
5

α
=

+∞
=

7

β
=

−∞
=

5

α
=

−∞
=

5

β
=

+∞
 =

−∞

(+
∞

)

Fi
g

. 1
1.

72
.

A
lp

ha
-B

et
a

p
ru

ni
ng

 d
ur

in
g

 M
in

iM
ax

 s
ea

rc
h.

Samir Roy_Chapter11.indd 462Samir Roy_Chapter11.indd 462 2/21/2013 3:38:06 PM2/21/2013 3:38:06 PM

Elementary Search Techniques 463

Th e eff ectiveness of Alpha-Beta pruning depends on the order in which the nodes are visited. For a MAX
node, the best case is exploration of the best child (best from the point of view of MAX player) fi rst so
that remaining children and sub-trees associated with them becomes irrelevant. On the other hand, vis-
iting the worst child (worst from the point of view of MIN) is most welcome in case the concerned node
is a MIN node. Th ese correspond to pruning to the highest extent. However, there may be no pruning at
all if the children are visited in the worst order.

(a) Initial Situation
(3) (

() I iti l Sit ti
1)

B

A

C

MAX

MIN

(b) Dramatic change in Mini-Max value of B

(0)(1)

(1)

D F

B

A

C

MAX

MIN

MAX

(− 2)

(− 2)

(5) (4) (3)

(0) ((4) −1)

K LI JH

(3)()

MIN

(c) The situation calms down

(1)

(4)(5)D

B

A

C

MAX

MIN

MAX

(3)

Fig. 11.73. Waiting for quiescence.

Quiescence How deep should we delve into the game tree while performing the depth-limited Mini-
Max procedure on it? Th e problem is, a seemingly good move at a certain level may turn out to be a
bad one, or vice versa, if the game tree is searched further. Take, for example, the situation depicted in
Fig. 11.73(a), (b), and (c). Fig. 11.73(a) shows the beginning of search for the Mini-Max value of node

Samir Roy_Chapter11.indd 463Samir Roy_Chapter11.indd 463 2/21/2013 3:38:07 PM2/21/2013 3:38:07 PM

464 Introduction to Soft Computing

A. Th e nodes B and C are at level 1 and they have scores 3 and 1, respectively. Th erefore, on the basis
of the search till depth 1, the Mini-Max value of A should be max (3, 1) = 3. Th e situation dramatically
changes when the game tree is explored one level deeper (see Fig. 11.73(b)). What was thought to be a
good move represented by the node B, now appears as a very bad one because this gives the opponent an
opportunity to worsen the condition of MAX player. However, if we go one level deeper into the game
tree, as depicted in Fig. 11.73(c), we see that the node B regains its previous Mini-Max value and seems
to be a good choice for MAX as earlier.

Depth d = 7

Move
selected on
the basis of
the search till
depth 7

Subtree
rooted at
the selected
move

(a) Initial selection of a move on the basis of fixed-depth MiniMax search

Depth d = 7

Move
selected on
the basis of
the search till
depth 7

Secondary
search to
additional
depth

3 levels

(b) Secondary search to confirm the prospect of the selected move

Fig. 11.74. Secondary search to neutralize horizon effect.

Samir Roy_Chapter11.indd 464Samir Roy_Chapter11.indd 464 2/21/2013 3:38:07 PM2/21/2013 3:38:07 PM

Elementary Search Techniques 465

Th e fact is, short-term measures occasionally infl uence our choice of move adversely and it is not wise
to take a decision without considering the long-term eff ects. To achieve wise selection of a move among a
number of alternatives, one should go on exploring the game tree deep enough to reach a stable condition.
Th e stable condition is recognized when it is found that no drastic change occurs from one level to the
next. Th is strategy for determination of the appropriate depth to which depth-limited Mini-Max search is
to be conducted is known as waiting for quiescence. Th e quiescence problems are diffi cult to eliminate al-
together. One such example is the so-called horizon eff ect. It appears when a player is facing a move by the
opponent which is bad for him but inevitable in the long run. A fi xed-depth Mini-Max search may try to
avoid such a fatal move by using some tactics, say a move that keeps the opponent busy for the time being.
But such tactics only push the fatal move to the search horizon and merely delay the inevitable blow.

Secondary search Is there any way to tackle the horizon eff ect? A technique called secondary
search is found to be helpful in this regard. Essentially, it consists of searching a portion of the game tree,
not the entire game tree, for a few additional levels. Let us suppose that the game tree is searched to an
average depth of, say seven. Let a move N be primarily selected on the basis of this search. In order to
ensure that N is really a good move we may further explore the sub-tree rooted at N for additional three
levels. But this additional search is not performed on any other portion of the game tree. Th is is called
secondary search. Fig. 11.74 illustrates the technique pictorially.

Book moves In general, whenever a player has to make a move during a game, he faces a lot of al-
ternatives among which the best, according to his own strategy of playing, is to be identifi ed and applied.
MiniMax search, empowered with appropriate heuristic knowledge, is employed to achieve this. A kind
of heuristic search is practically indispensable because the other alternative is to build a catalogue of best
moves corresponding to every conceivable game status and extract it during the game through a table
look-up procedure. Th is is simply not feasible considering the immensity of the search space.

However, selective use of such moves, usually referred to as book moves, do enhance the performance
of the program. For example, the opening and endgame sequences of chess are highly stylized. One may
reasonably maintain a list of moves relevant to these parts of the game and use them directly without
groping for a suitable move within the game tree through Mini-Max search. A judicious combination of
book moves during the opening sequence, endgames, and Mini-Max search procedure for the midgame,
would enable the program to attain a level of effi ciency which neither book moves nor search alone could
achieve.

11.4.8 Constraint Satisfaction

Quite oft en we encounter a problem in AI that can be modeled as a constraint satisfaction problem (CSP).
Here the goal is to reach a state that satisfi es certain restrictive conditions, or constraints, among the pa-
rameters of the problem. As a typical CSP, we may think of the famous graph colouring problem, also
referred to as map colouring problem. An instance of this problem is shown in Fig. 11.75(a). It shows an
area divided into six regions A, B, C, D, E and F. Th e regions are to be coloured with red, blue, or yellow in
such a way that no two adjacent regions may have the same colour. Here the problem may be viewed as
that of assigning certain values to six variables A, B, C, D, E and F, the values must be taken from the set
{red, blue, yellow}, such that if X and Y are adjacent regions in the map, i.e., X, Y ∈{A, B, C, D, E, F }, X ≠ Y,
then v(X) ≠ v(Y), where v(X) and v(Y) are the values, i.e., colours, assigned to X and Y, respectively.

Th e adjacency relationships among these six regions are depicted as an undirected graph in Fig.
11.75(b). Each node of the adjacency graph represents a region of the map. If two regions X and Y are ad-
jacent in the map then there is an edge in the adjacency graph between the nodes corresponding to these
regions. Th e adjacency graph for a given map colouring problem is also its constraint graph in the sense

Samir Roy_Chapter11.indd 465Samir Roy_Chapter11.indd 465 2/21/2013 3:38:08 PM2/21/2013 3:38:08 PM

466 Introduction to Soft Computing

that it represents the constraints regarding the colours of the regions. An edge between two nodes P and Q
of a constraint graph indicates that the regions corresponding to P and Q should have diff erent colours.

A–F

F
B

C

A

D

E

F B

C E

A

D

C7CC

C8CC
C1 C2CC

C3CC

C4CC C5CC

CC6CC

(b) The Constraint Graph

(c) Constraints

C1 : v(B) ≠ v(C)
C2 : v(B) ≠ v(E)
C3 : v(C) ≠ v(E)
C4 : v(A) ≠ v(C)
C5 : v(A) ≠ v(E)
C6 : v(A) ≠ v(D)
C7 : v(B) ≠ v(F)
C8 : v(C) ≠ v(F)

Fig. 11.75. (a)-(c). Map coloring as a constraint satisfaction problem.

A Constraint Satisfaction Problem (CSP) is defi ned by the following features:
A set of • variables, X1, X2, …, Xn.
For each variable • Xi a non-empty domain D(Xi) of possible values of Xi.
A set of • constraints, C1, C2, …, Cm. Each constraint Ci involves some variables Xp, Xq … etc. and
a specifi cation of the allowable combination of values for these variables.

Th e map coloring problem presented in Fig. 11.75 can now be formulated as a CSP in the following way:
CSP Formulation of graph colouring problem
1. Variables A, B, C, D, E, F
2. Domains DA = DB = DC = DD = DE = DF =

 {red, blue, yellow} = {R, B, Y}
3. Constraints C1’ :v(B) ≠ v(C) ≠ v(E)

 C2’ :v(A) ≠ v(C) ≠ v(E)
 C3’ :v(B) ≠ v(C) ≠ v(F)
 C4’ :v(A) ≠ v(D)

Samir Roy_Chapter11.indd 466Samir Roy_Chapter11.indd 466 2/21/2013 3:38:08 PM2/21/2013 3:38:08 PM

Elementary Search Techniques 467

It should be noted that there are only four constraints in the CSP formulation given above even though
eight constraints are depicted in Fig. 24.1(c). Th is is because each of the constraints C1, C2,…, C8 of
Fig. 11.75(c) involves only two variables whereas the constrains C1′, C2′, C3′ involve three variables each.
So eff ectively C1′, C2′, C3′ taken together consolidates all the constraints C1 through C8. In fact, in CSPs we
encounter three kinds of constraints, viz., unary constraints, binary constraints, and general constraints.

A constraint that involves just one variable is termed as a unary constraint. A binary constraint
involves two variables and constraints involving more that two variables are called general constraints.
Each of the constraints C1, C2,…, C8 of Fig. 11.75(c) is a binary constraint. Constraints C1’, C2’, C3’ are
general constraints. Th ere is no unary constraint in the map colouring problem stated above. However, a
constraint like v(A) ≠ red exemplifi es the category of unary constraints. A general constraint can always
be broken down to an equivalent set of binary constraints.

(a) The Constraints

C1′ :v(B) ≠ v(C) ≠ v(E)
C2′ :v(A) ≠ v(C) ≠ v(E)
C3′ :v(B) ≠ v(C) ≠ v(F)
C4′ :v(A) ≠ v(D)

(b) The constraint hypergraph

A

C4CC ′

C2CC ′ C3CC ′

D B C E F

C1
′

Fig. 11.76. General constraints and constraint hypergraph.

A constraint hypergraph is a graphical structure that represents the constraints involving the variables.
For each variable of the given CSP there is a distinct node in the corresponding constraint hypergrah. A
constraint C(X1, X2, …, Xk) involving k variables is represented by a hyperedge among the nodes X1, X2,
…, Xk. When all constraints are binary the corresponding constraint hypergraph becomes a constraint
graph, as shown in Fig. 11.75(b). Fig. 11.76 shows the constraint hypergraph for the map colouring
problem discussed above.

An assignment S for a given CSP, represented as S = {〈Xp, vp〉, 〈Xq, vq〉, … 〈Xr, vr〉}, is an attachment of
some legitimate values, say vp, vq, … vr to some or all variables Xp, Xq, …, Xr such that vp∈ D(Xp), vq∈
D(Xq), … , vr∈ D(Xr). If none of the variables are assigned any value then it is said to be an empty as-
signment. For the map colouring problem shown in Fig. 11.75, S = {〈A, blue〉, 〈B, yellow〉, 〈C, yellow〉, 〈D,
red〉, 〈E, blue〉, 〈F, red〉 } is an assignment.

If an assignment does not violate any constraint then it is said to be consistent or legal assignment.
Th e assignment stated above, i.e., S1 = {〈B, yellow〉, 〈C, yellow〉,〈E, blue〉, 〈F, red〉} is not consistent because
it violates the fi rst constraint v(B) ≠ v(C). However, it can be easily seen that S2 = {〈A, blue〉, 〈B, blue〉, 〈C,
yellow〉, 〈D, red〉, 〈E, red〉, 〈F, red〉} is a consistent assignment.

An assignment in which all the variables are attributed some value is said to be a complete assign-
ment. For example, assignment S2 cited above is complete, though S1 is not a complete assignment.

Finally, a solution to a given CSP is a complete assignment that satisfi es all the constraints. Th e assign-
ment S2 cited above is complete, and it satisfi es all the constraints C1, C2, …, C8. Th erefore S2 is a solution
to the given map colouring problem. In some CSPs, along with the basic requirement of satisfying all
the constraints, there is an additional requirement of optimizing a pre-defi ned objective function.

Samir Roy_Chapter11.indd 467Samir Roy_Chapter11.indd 467 2/21/2013 3:38:08 PM2/21/2013 3:38:08 PM

468 Introduction to Soft Computing

Solving constraint satisfaction problems Once a problem is formulated as a CSP, any suitable
search procedure can be employed to fi nd a solution. Given a CSP, the suitability of a search procedure as
a solution strategy is judged by the characteristics of the CSP concerned. However, two widely accepted
strategies are frequently employed, viz., backtracking depth-fi rst search (BDFS), and min-confl ict lo-
cal search. Each of these are explained below with appropriate examples.

Backtracking depth-fi rst search (BDFS) Consider the map coloring problem presented in Fig.
11.75 and later formulated as a CSP. A backtracking DFS would start with the empty assignment {}
which corresponds to the initial state of the search space. Let us suppose that assignment of colour to the
regions of the map will be made in the sequence A, B, C, D, E, and F. Since the domain DA = {red, blue,
yellow} = {R, B, Y} the region A may be assigned the color red, blue, or yellow, so that we may attain any
one of the assignments, or problem states, 〈A, red〉, 〈A, blue〉, 〈A, yellow〉, or 〈A, R〉, 〈A, B〉, 〈A, Y〉. Th ese
constitute the children of the root node {} of the search tree, shown in Fig. 11.77. Each node of Fig. 11.77
represents an assignment obtained by concatenating the individual assignments along the path from the
root to that node. For example node 2 corresponds to the assignment {〈A, R〉}, and node 5 represents the
assignment {〈A, R〉, 〈 B, Y 〉, 〈 C, B 〉, 〈 D, B 〉}. Let us choose, arbitrarily, the assignment {〈A, red〉} among
the three alternatives and proceed to assign a colour to the region B.

{ }

〈A, R〉RR

〈B, Y〉

〈C, B〉

〈D, B〉

〈E, EE ?〉 〈E, EE ?〉 〈E,EE ?〉 〈E,EE ?〉 〈E, EE Y〉

〈F, FF Y〉

〈D, Y〉 〈D, B〉 〈 B〉〈D, Y〉 〈〈D, B〉 D, Y〉

〈C, Y〉 〈C, B〉 〈C, Y〉

〈B, B〉 〈B, R〉RR

〈A, B〉 〈A, Y〉

(1)

(2)

(3)

(4)

(5) (6) (9) (10) (13)

(8)
(12)

(7) (11)

(14)

(15)

Fig. 11.77. Backtracking depth-fi rst search for the map colouring problem.

As A and B are not adjacent regions the colour of A does not aff ect the choice of the colour of region B.
Th erefore, B can be assigned any of the values R, B, Y and accordingly three children of node (2) are
created, viz., 〈B, Y〉 (node (3)), 〈B, B〉 (node (7)), and 〈B, R〉 (node (11)). Th e nodes of the search tree of
Fig. 24.3 are numbered according to the order of exploration. Again, we arbitrarily select 〈B, Y〉 for further
exploration. Th e candidate for assignment of color is now region C. Since C is adjacent to both A and B,

Samir Roy_Chapter11.indd 468Samir Roy_Chapter11.indd 468 2/21/2013 3:38:09 PM2/21/2013 3:38:09 PM

Elementary Search Techniques 469

its colour has to be diff erent from that of A and B, i.e., red and yellow. Th erefore the only choice left for
region C is blue (node (4)). Next it is D’s turn. D is adjacent to A only and A has already been assigned red.
Obviously, D may either be blue or yellow (see nodes (5) and (6) of Fig. 11.77). We proceed along node (5).
Now when we try to assign a colour to E we see that as it is adjacent to A, B, and C and A, B, and C have
the colours red, yellow and blue, there is no colour left for E. So we backtrack and explore node (6). But the
situation does not change. Once again we back track and select another child of node (2), i.e., node (7).

Th e backtracking depth-fi rst search proceeds in this way until it fi nds a complete assignment that
satisfi es all the constraints. In Fig. 11.77 this complete assignment is obtained by concatenating the indi-
vidual assignments of nodes 1, 2, 11, 12, 13, 14, and 15 and is given by {〈A, R〉, 〈B, R〉, 〈C, B〉, 〈D, B〉, 〈E,
Y〉, 〈F, Y〉}. Th e arrows in Fig. 11.77 show the backtracking paths.

Algorithm Backtracking-DFS-for-CSP (PCS)

INPUT: A constraint satisfaction problem PCS consisting of the following
components:

Variables • X1, …, Xn.
Domains • D(X1), …, D(Xn) of allowable values for each variable.
If the variable Xi may assume any of the values ai1,ai2, …, aip
then D(Xi) = {ai1,ai2, …, aip}.
Constraints • C1, …, Ck.

OUTPUT: SUCCESS or FAILURE, and if SUCCESS then an assignment
S = {〈X1, v1〉, …, 〈 Xn, vn〉} where v1∈ D(X1), …, vn∈ D(Xn) and all the con-
straints C1, …, Ck are satisfied.

1. BEGIN
2. S ← { }/* initialize S with the empty assignment. */
3. result ← Recursive-Backtracking-DFS (PCS, S)

/* call the recursive backtracking depth-first search
process for the present CSP P

CS with the partial
assignment S */

4. IF (result ≠ FAILURE)
THEN Return SUCCESS along with updated assignment S
ELSE Return FAILURE

END-if
5. END-Algorithm BDFS-for-CSP

Procedure Recursive-Backtracking-DFS (PCS, S)

1. BEGIN
2. IF S is a complete assignment THEN

Return SUCCESS along with the assignment S as the solution
END-if
Select 3. X

i, a yet unassigned variable, for assigning a value at this
step.

Let D(X
i) = {ai1,ai2, …, aip} be the domain of Xi.

4. FOR i← 1 TO p DO
BEGIN

5. X
i ← ai where ai∈ D(Xi)/* assign a value to Xi */

Samir Roy_Chapter11.indd 469Samir Roy_Chapter11.indd 469 2/21/2013 3:38:09 PM2/21/2013 3:38:09 PM

470 Introduction to Soft Computing

6. IF (v(Xi) = ai is consistentwith the present partial
assignment S and

satisfies the constraints C
1, …., Ck) THEN update

assignment S by including 〈Xi, ai〉 in it.
 END-if

7. result ← Recursive-Backtracking-DFS (P
CS, S)/* recursive

call with the updated partial assignment */
8. IF (result ≠ FAILURE) THEN Return SUCCESS along with

updated assignment S.
END-if

9. Remove 〈X
i, ai〉 from S./* 〈Xi, ai〉 leads to failure. Try

with another value for Xi,. */
10. END-for
11. Return FAILURE/* no valid assignment for X

i. */
12. END-Procedure-Recursive-BDFS

Fig. 11.78. Algorithm backtracking-DFS-for-CSP (Pcs)

Algorithm Backtracking-DFS-for-CSP (PCS) (Fig. 11.78) presents the pseudocode for the
basic strategy of backtracking depth-fi rst search for solving CSPs. Th e algorithm starts with empty as-
signment {} and progressively assign values to the variables and makes recursive calls so that if any as-
signment leads to inconsistency, or hinders subsequent assignments, then it may backtrack and try with
some other value.

Procedure Heuristic-Recursive-Backtracking-DFS (Pcs, S)

1. BEGIN
2. IF (S is a complete assignment) THEN
 Return SUCCESS along with the assignment S as the solution
 END-if
 /* Select the next variable for assignment through minimum remaining

value (MRV) and degree heuristics. */
3. Let X

i be the unassigned variable with minimum number values remaining.
If there is a tie, then resolve the tie in favour of the variable with
largest number of constraints on other unassigned variables. If there is
still a tie then resolve the tie arbitrarily.

4. Select X
i for assigning a value at this step. Let D(Xi) = {ai1,ai2, …, aip}

be the domain of Xi.

5. FOR i← 1 TO p DO
 BEGIN

 /* select the value of Xi through least-constraing-value
heuristics. */

6. Let a
i∈D(Xi)be the value that rules out the fewest choices for

theneighbouring variables in the constraint graph. If there is
a tie then resolve the tie arbitrarily.

Samir Roy_Chapter11.indd 470Samir Roy_Chapter11.indd 470 2/21/2013 3:38:09 PM2/21/2013 3:38:09 PM

Elementary Search Techniques 471

7. Xi ← ai where ai∈ D(Xi)

8. IF (v(Xi) = ai is consistentwith the present partial assignment S
and satisfies the constraints C1, …., Ck) THEN update

assignment S by including 〈Xi, ai〉 in it.
END-if
/* Constraint propagation */

9. Propagate the effect of present assignment on the constrains of
P
CS.

10. result ← Recursive-Backtracking-DFS (PCS, S)/* recursive
call with the updated partial assignment */

11. IF (result ≠ FAILURE) THEN Return SUCCESS along with
updated assignment S.

END-if
12. Remove 〈X

i, ai〉 from S. /* 〈Xi, ai〉 leads to failure. Try
with another value for Xi,. */

13. END-for
14. Return FAILURE/* no valid assignment for X

i. */
15. END-Procedure-Recursive-BDFS

Fig. 11.79. Procedure heuristic-recursive-backtracking-DFS (PCS, S)

Heuristics Algorithm Backtracking-DFS-for-CSP described above is a simplifi ed ver-
sion of the actual procedure followed in practice. It does not consider how to make the selection when
choices are there. For example

In step 3 of 1. Procedure Recursive-Backtracking-DFS (PCS, S) a variable is to be
selected from the set of unassigned variables for the purpose of assigning a value. Th e criteria
underlying this selection are not stated.
Step 5 of the same procedure assigns a value to the current variable. It is not clearly stated how 2.
to select an appropriate value from the corresponding domain which, in general, should con-
tain several legal candidate values.
What are the implications of an assignment on the remaining unassigned variables and how to 3.
reduce the search space so that the process of legal assignment to variables is made effi cient?

Regarding points 1 and 2 above, there are heuristics to facilitate selection of a variable for the purpose of
value assignment as well as selection of a value to be assigned. Similarly, strategies to propagate the ef-
fect of a certain assignment to other variables are also there. Procedure Heuristic-Recursive-
Backtracking-DFS (PCS, S) (Fig. 11.79) shows the procedure aft er incorporation of the heuristics
discussed below.

Minimum remaining value (MRV) and degree heuristic According to minimum remaining
value (MRV) heuristics the variable with least number of legal values still available for assignment is
to be selected for next assignment. For example, consider the assignment {〈A, blue〉, 〈E, red〉, 〈F, red〉}.
Considering the constraints, this assignment leaves the domains of the remaining variables as DB = {blue,
yellow}, DC = {yellow} DD = {red, yellow}. As the region C has the least number of remaining legal values,
according to the MRV heuristics, this will be selected for the next assignment.

Samir Roy_Chapter11.indd 471Samir Roy_Chapter11.indd 471 2/21/2013 3:38:09 PM2/21/2013 3:38:09 PM

472 Introduction to Soft Computing

However, MRV heuristics may not help initially because then all the variables have their domains in
full capacity, or in case two or more variables have the same minimal number of remaining variables. To
resolve such situation the degree heuristics may be employed. Th e degree heuristics selects the variable that
is involved in the largest number of constraints on other unassigned variables. For example, consider the
map colouring problem stated above. Initially all the variables have the same domain {red, blue, yellow}
which renders the MRV heuristic ineff ective. However, it is seen from the constraint graph (Fig. 11.75(b))
that region C is involved with four regions A, B, E and F through constraints which is the highest among all
the variables. Hence, applying the degree heuristic we choose C as the fi rst variable to be assigned a value.

Least constraining value Once a variable is chosen ,it is required to assign a legal value from its
current domain. Since the domains normally contain several candidates the issue of selecting the most
desirable value becomes relevant. Here the least constraining value heuristic is helpful. According to this
heuristic, the value which rules out least number of candidates from the domains of the neighbouring
variables is preferred. For example, suppose that at an instant the domains of F and B are DF = {red, yel-
low} and DB = {yellow} and it is F’s turn to be assigned a value. If we assign yellow then it is removed from
the domain of B, making DB = {}. However, if red then DB remains non-empty and it is feasible for region
B to get a legal value. Th erefore, the value red is less constraing than yellow and B should be assigned the
value red instead of yellow.

Table 11.7. Trace of Procedure heuristic-recursive-backtracking-DFS for map colouring problem of
Fig. 11.75

A B C D E F

Step 0: {R, B, Y} {R, B, Y} {R, B, Y} {R, B, Y} {R, B, Y} {R, B, Y}

Step 1:
C ← red

{B, Y} {B, Y} 〈C, R〉 {R, B, Y} {B, Y} {B, Y}

Step 2:
B = blue

{B} 〈B, B〉 〈C, R〉 {R, Y} {Y} {Y}

Step 3:
A← blue

〈A, B〉 〈B, B〉 〈C, R〉 {R, Y} {Y} {Y}

Step 4:
E← yellow

〈A, B〉 〈B, B〉 〈C, R〉 {R, Y} 〈E, Y 〉 {Y}

Step 5:
F← yellow

〈A, B〉 〈B, B〉 〈C, R〉 {R, Y} 〈E, Y 〉 〈F, Y 〉

Step 6:
D← red

〈A, B〉 〈B, B〉 〈C, R〉 〈D, R〉 〈E, Y 〉 〈F, Y 〉

Solution: {〈A, B〉, 〈B, B〉, 〈C, R〉, 〈D, R〉, 〈E, Y 〉, 〈F, Y 〉}

Forward chaining and constraint propagation Assignment of a value to a variable obviously
has its eff ects on the domains of the remaining variables. Constraint propagation is the process of propa-
gating the implications of a constraint on the variables onto the other variables. Suppose, as an example,
that in the fi rst step of the map colouring problem, the region C has been assigned the value red. Since
A, B, E and F are all involved with C through the constraints C4, C1, C3, and C8, respectively, the domains
of all these variables reduces to {blue, yellow}. However, the domain of D remains {red, blue, yellow} as
it is not involved with C through any constraint. Th is procedure, which, aft er an assignment is made,
modifi es the domains of the unassigned variables so that the modifi ed domains are consistent with the
assignment, is called forward checking. However, mere forward checking is not suffi cient. Suppose, aft er

Samir Roy_Chapter11.indd 472Samir Roy_Chapter11.indd 472 2/21/2013 3:38:09 PM2/21/2013 3:38:09 PM

Elementary Search Techniques 473

assigning red to C, we assign blue to E. Th is will reduce the domain of A to {yellow} as A is adjacent to
E. Moreover, since D is associated with A through the constraint C6, the domain of D is in turn reduced
from {red, blue, yellow} to {red, blue}. In this way the eff ect of a certain assignment is propagated to other
unassigned variables through forward checking followed by further modifi cation of the domains so that
the values attain consistency with respect to the constraints.

Th e entire process can be illustrated with reference to the graph colouring problem. A trace of the
progress of the algorithm is shown in Table 11.7 and the stepwise description is provided below.

Step 0. We start with the empty assignment {}. All the variables have the same domain {red, blue, yel-
low}, abbreviated as {R, B, Y}.

Step 1. We have to select a variable for assignment. Since all domains have the same number of values
the MRV heuristic is not applicable. Th erefore, the degree heuristic is to be followed. Consult-
ing the constraint graph (Fig. 11.75(b)), it is found that C is involved with the maximum num-
ber of variables, 4 in this case, through constraints. Hence C is chosen for assigning a value. We
make the assignment C ← red and propagate the eff ect of this assignment on other variables.
As a result of this propagation all the variables involved with C through constraints, i.e., A, B, E
and F, remove red from their domains. However, the domain of D remains unchanged because
it is not adjacent to A. Th e state of the problem aft er step 1 is {〈C, R〉}.

Step 2. Applying the MRV heuristic we fi nd four candidates A, B, E and F for the next assignment. Th e
number of unassigned variables these are attached to in the constraint graph are 2, 2, 2 and 1, re-
spectively. Again there is a tie among A, B, and E. Let us resolve the tie by arbitrarily choosing B for
assignment this time. We make B ← blue, so that the state becomes {〈B, B〉, 〈C, R〉}. What about
constraint propagation? As E and F are adjacent to B, blue is readily removed from the respective
domains leaving both the domains {yellow}. As A is adjacent to E yellow has to be removed from
the domain of A so that it becomes {blue} and this in turn reduces DD to {red, yellow}.

Step 3. Now each of A, E and F have just one remaining value in their respective domains. So let us
take the help of the degree heuristic to break the tie. A is attached to two of the still unassigned
variables, viz., D and E. E is adjacent to only A and F is no more attached to any unassigned
variable. Th erefore A is the next candidate for value assignment and the only value in its do-
main, blue, is assigned to it. Now the assignment is {〈A, B〉, 〈B, B〉, 〈C, R〉}.

Th e subsequent steps, i.e., steps 4, 5, and 6 can be easily worked out and are depicted in Table 11.7. Th e
fi nal assignment is {〈A, B〉, 〈B, B〉, 〈C, R〉, 〈D, R〉, 〈E, Y 〉, 〈F, Y 〉}. Fig. 11.80 shows the solution tree cor-
responding to the heuristic recursive backtracking depth-fi rst search described above.

Min-confl ict local search Th e backtracking depth-fi rst search strategy described above for solv-
ing a CSP starts with the empty assignment {} and incrementally proceeds to a complete assignment
consistent with the constraints. An alternative approach is to start with a complete assignment, perhaps
arbitrarily generated, and then employ some local search procedure which transforms this complete
but non-solution assignment onto a complete and consistent assignment, i.e., a solution. Algorithm
Min-Conflict-for-CSP (PCS, MAXsteps) (Fig. 11.81) presents a pseudo-code for the proce-
dure mentioned above. At each iteration, a variable is identifi ed which is under confl ict as per the given
constraints (line 8). It is then tried with values other than the present one and the value for which the
variable suff ers minimum amount of confl ict is chosen. Th e current assignment is then modifi ed to that
which incorporates this latest value. In this way newer variables are modifi ed over and over again until
either we get an assignment which satisfi es all constraints and therefore off ers a solution, or exceeds a

Samir Roy_Chapter11.indd 473Samir Roy_Chapter11.indd 473 2/21/2013 3:38:10 PM2/21/2013 3:38:10 PM

474 Introduction to Soft Computing

predefi ned maximum number of iterations. Th e min-confl ict local search process is illustrated with the
help of the 8-queen problem which is stated below.

{}

〈C, R〉R 〈C, Y〉
(1)

(0)

〈C, B〉

〈B, B〉
(2)

〈A, B〉
(3)

〈E,EE Y〉
(4)

〈F, FF Y〉
(5)

〈D, R〉R
(6)

〈B, Y〉

〈D, Y〉

Fig. 11.80. Solution tree corresponding to the heuristic recursive backtracking depth-fi rst search to
solve the map colouring CSP.

Example 11.11 (Th e 8-queen problem)

Is it possible to arrange 8 queens on a chess board in a way such that none of them is in an attack-
ing position with respect to any other?

Th e generalized form of the 8-queen problem is the n-queen problem, which states that given
an n × n array, is it possible to arrange n number of queens within the array in a way such that none
of them attack any other and if yes, then to fi nd one such arrangement of the n queens.

Let us denote the eight queens by the variables QA, QB, QC, QD, QE, QF, QG, and QH. Th e queens cor-
responding to the variables QA, QB, QC, QD, QE, QF, QG, and QH are in the columns A, B, …, H, respec-
tively. As no queen is attacking any other all the queens must be in diff erent columns. Let us number
the 8 rows as 1, 2, 3, 4, 5, 6, 7, and 8. Th en each variable mentioned above may take a value from the
set {1, 2, 3, 4, 5, 6, 7, 8}. We are now in a position to formulate the 8-queen problem as a CSP.
CSP formulation of the 8-queen problem

Variables : 1. QA, QB, QC, QD, QE, QF, QG, QH
Domains : 2. DA = DB = DC = DE = DF = DG = DH

= {1, 2, 3, 4, 5, 6, 7, 8}
Constraints : For all pairs 3. QXand QY, X,Y ∈{A, B, C, D, E, F, G, H}, X ≠ Y, QX and QY

should be in non-attacking position, i.e. not in the same row, column or
diagonal.

Th e initial arrangement of the 8 queens is shown in Fig. 11.82 (a). It corresponds to the assign-
ment {〈QA, 8〉, 〈QB, 5〉, 〈QC, 1〉, 〈QD, 6〉, 〈QE, 3〉, 〈QF, 7〉, 〈QG, 2〉, 〈QH, 4〉}.

Samir Roy_Chapter11.indd 474Samir Roy_Chapter11.indd 474 2/21/2013 3:38:10 PM2/21/2013 3:38:10 PM

Elementary Search Techniques 475

However, this assignment is not consistent with the constraints because the queens at positions
8A and 2G are attacking each other diagonally. Similarly, the queens at 1C and 3E are also attacking
each other. At this point we employ the min-confl ict local search procedure and look for a better po-
sition for the queen presently at the position 8A. With this purpose in mind, for each other position
of the queen in column A we fi nd the number of queens in confl ict if the current queen is placed in
respective cell.

For example, if the queen is placed in cell 4A then it will be attacked by two queens at positions 4H
and 5B. Hence the value (2) is associated with the cell 4A. Similarly the other values are found. Now
there is a tie regarding the lowest confl ict count. Both cells 1A and 5A are having the same minimum
value 1. Th e tie is arbitrarily resolved in favour of cell 1A. Th e queen concerned is placed at this posi-
tion so that the assignment aft er the fi rst becomes {〈QA, 1〉, 〈QB, 5〉, 〈QC, 1〉, 〈QD, 6〉, 〈QE, 3〉, 〈QF, 7〉, 〈QG,
2〉, 〈QH, 4〉} (the change is highlighted with boldfaces). Aft er QA we focus our attention on QB. For-
tunately, QB is already in a non-confl icting position with respect to other queens. Th erefore, we leave
it in the same position and proceed to fi nd a better place for QC which is in confl ict with QA and QE
(Fig. 11.82(b)). It is found that at cell 8C the queen QC is in non-attacking position. Making this as-
signment we arrive at the state {〈QA, 1〉, 〈QB, 5〉, 〈QC, 8〉, 〈QD, 6〉, 〈QE, 3〉, 〈QF, 7〉, 〈QG, 2〉, 〈QH, 4〉}, which
satisfi es all the constraints and therefore is a solution to the given problem.

Algorithm Min-Conflict-for-CSP (PCS, MAXsteps)

INPUT: A constraint satisfaction problem PCS consisting of the following
components:

Variables • X1,…, Xn.
Domains • D(X1),…, D(Xn) of allowable values for each variable.
If the variable Xi may assume any of the values ai1,ai2,…, aip
then D(Xi) = {ai1,ai2,…, aip}.
Constraints • C1,…, Ck.

MAXsteps is the number of times to try before giving up
OUTPUT: SUCCESS or FAILURE, and if SUCCESS then an assignment
S = {〈X1, v1〉,…, 〈Xn, vn〉} where v1∈ D(X1),…, vn∈ D(Xn) and all the con-
straints C1, …, Ck are satisfied.

1. BEGIN
2. S ← A complete, perhaps arbitrary, assignment for PCS
3. FOR steps = 1 TO MAXsteps DO
4. BEGIN
5. IF S is a solution to the CSP PCS THEN
6. Return S as the solution to the CSP PCS

7. END-if
8. X ← a variable which is under conflict as per assignment S
9. vX ← the value of variable X that minimizes the conflict
10. Modify assignment S by setting 〈X, vX 〉
11. END-for
12. END-Algorithm-Min-Conflict-for-CSP

Fig. 11.81. Algorithm Min-Confl ict-for-CSP (PCS, MAXsteps).

Samir Roy_Chapter11.indd 475Samir Roy_Chapter11.indd 475 2/21/2013 3:38:10 PM2/21/2013 3:38:10 PM

476 Introduction to Soft Computing

A B C D E F G H

1 (1)

2 (2)

3 (3)

4 (2)

5 (1)

6 (2)

7 (2)

8

(a) Initial state. The
numbers in different
cells of column A
indicate the number
of conflicts if the
queen is placed in
that cell.

A B C D E F G H

1

2 (1)

3 (2)

4 (3)

5 (3)

6 (3)

7 (2)

8 (0)

(b) The state after
reassigning the queen
at column A. The
present target is to
reassign the queen at
column C.

A B C D E F G H

1

2

3

4

5

6

7

8

(c) The final state
obtained after
reassigning the
queen at column C.
As no queen is
attacking any other
this is solution to
the 8-queen problem.

Fig. 11.82. (a)-(c) A min-confl ict local search procedure to solve the 8-queen problem

11.4.9 Measures of Search

Th e effi ciency of a heuristic search depends to a large extent on the quality of the heuristic evalua-
tion function employed. Better heuristic results in less computational eff ort without compromising the

Samir Roy_Chapter11.indd 476Samir Roy_Chapter11.indd 476 2/21/2013 3:38:10 PM2/21/2013 3:38:10 PM

Elementary Search Techniques 477

success of the search process. However, it is hardly possible to make an estimation of heuristic power
through direct calculation because it depends on too many factors.

Instead, certain computable measures of performance are frequently used to compare the perfor-
mances of various search processes. Two of these are penetrance and eff ective branching factor.

Penetrance. P of a search process is defi ned as the ratio of the length of the path from the start state
to the goal state reached through the search and the total number of nodes generated during the search,
including the goal node but excluding the start node.
 P = L / N (11.11)
Here L is the length of the path from the start state to the goal state, and N is the total number of nodes
generated during the search. Penetrance is the measure of how focused the search was towards the goal.
In the ideal case, the search process has complete knowledge of the problem, and only those nodes are
generated which are on the path from the start node to the goal node. Th e value of P for such an ideal
search process is 1 which is obviously the maximum attainable value for P. Uninformed, or ill-informed,
searches have much lower values of P.

Eff ective branching factor. Th e other measure, eff ective branching factor B, is relatively more
independent of the length of the optimal path to the goal node and can be defi ned in the following way.
Let N be the total number of nodes generated during the search that has successfully ended at some goal
node and L be the length of the path to the goal node. Now consider a complete tree of depth L where
each internal node uniformly has B number of children and total number of nodes in the said tree ex-
cluding the root is N. Th en

 N = B + B2 + B3 + … + BN (11.12)

so that, N B L

=
()BL −BL

()B −
 (11.13)

Th e relation between the penetrance P and eff ective branching factor B is given by

 P L
N

L
B L= =

()B −B
()BL −BL (11.14)

It is easy to see that B is always greater than or equal to 1. A better search technique should give a value
of B which is closer to 1. A value of B near unity corresponds to a search that is highly focused towards
the goal with very little branching in other directions.

11.5 PRODUCTION SYSTEMS

Production systems are intelligent systems that are structured to facilitate a state space search proce-
dure. Th ere are three main components of a production system. Th ese are

A 1. global database
A set of2. production rules
A 3. control system

Global database is the central data structure which is accessed, modifi ed and manipulated throughout
the problem solving process. Usually, the situation prevailing in the global database defi nes a state within

Samir Roy_Chapter11.indd 477Samir Roy_Chapter11.indd 477 2/21/2013 3:38:11 PM2/21/2013 3:38:11 PM

478 Introduction to Soft Computing

the state space. A change in the global database corresponds to a move from one state to another state.
Th e term global database should not be confused with the database of database management systems.
Th e exact form of a global database depends on the application. It might be as simple as an integer, or as
complex as an entire fi le structure.

A production rule is a transformation rule of the form a → b where a and b are forms of the global
database. In the rule R : a → b, a is called the precondition and b, the postcondition. A rule R : a → b
is said to be applicable to a global database GDB if the present condition of GDB matches with the pre-
condition a. If applied, the production rule will transform GDB from a to b.

Usually at each step of the search process more than one rules are applicable on the global database
though only one of them can be actually applied at a time. Th erefore, a production system must have
with some knowledge to identify the appropriate rule to apply among a set of eligible rules. Control
strategy is that component of the production system which, at each step, selects the rule to operate
on the global database from a set of applicable rules. Moreover, it tests whether the current global
database satisfi es the termination condition and if so, takes appropriate action to terminate the search
process.

Algorithm Production-System

Input: A set of production rules P = {R1, …., Rk}, and a termination

condition which when satisfied by the global database GDB would

indicate the successful completion of the search process.

Output: A solution to the given problem. Depending on the nature of
the problem, the goal state might be the global database itself, or

a path from the initial state to the goal state.

1. Begin

 /* Initialize the global database */

2. GDB← Initial state of the global database.

 /* Search for the goal */

3. While (GDB does not satisfy the termination condition) Do

4. Begin /* Select a rule to apply on the global

 database */

5. Ri ← A rule that is applicable to GDB.

6. GDBnew ← Resultant of applying Ri to GDB.
7. GDB ← GDBnew

8. End-while
 /* Return the solution */
9. Return GDB, along with the path from the initial
 state to the goal, if required.
10. End-Production-System

Fig. 11.83. Algorithm Production-System.

Th e basic algorithm followed by a production system is thus very simple. Once the global database is
initialized, an appropriate production rule is selected (by the control strategy) and applied on the global

Samir Roy_Chapter11.indd 478Samir Roy_Chapter11.indd 478 2/21/2013 3:38:13 PM2/21/2013 3:38:13 PM

Elementary Search Techniques 479

database to transform it to a new state. Th is selection and application of the rule, as well as the resultant
transformation of the global database is repeated till the termination condition is satisfi ed by the global
database. Depending on the requirement, either the fi nal form of the global database, or the path from
the initial global database to the fi nal, is returned as the solution of the problem concerned. Th e outline
of procedure is given in Algorithm Production-System (Fig. 11.83).

Example 11.12 (A production system for parsing a sentence)

Consider the task of parsing a given sentence on the basis of its grammar. Th e sentences of the lan-
guage are made up of sentences made up of words from the set S = {Hari, Sam, runs, walks, slow,
fast}. In the theory of formal languages, S is called the alphabet and the members of S are called
the terminal symbols. Th e grammar G specifi es a number of transformation rules of the form a
→ b where a and b are strings over members of S and some special symbols used only to describe
the grammar. Th e grammar symbols used here are N = { 〈sentence〉, 〈subject〉, 〈predicate〉, 〈verb〉,
〈adverb〉 }. Th e transformation rules, which act as the production rules of the system, are given
in Table 11.8.

Table 11.8. Production rules

Rule # Precondition Postcondition

(1) 〈Sentence〉 → 〈subject〉 〈predicate〉.

(2a) 〈Subject〉 → Hari

(2b) 〈Subject〉 → Sam

(3a) 〈Predicate〉 → 〈verb〉

(3b) 〈Predicate〉 → 〈verb〉 〈adverb〉

(4a) 〈verb〉 → runs

(4b) 〈verb〉 → walks

(5a) 〈adverb〉 → slow

(5b) 〈adverb〉 → Fast

To generate a sentence, one has to start with 〈Sentence〉 and progressively apply the rules until a
string is generated that consists of only terminal symbols. Th e sequence of such transformations
is called a derivation of the sentence. For example, derivation of the sentence “Hari walks slow.”
is shown below:

〈Sentence〉 ⎯→ 〈subject〉 〈predicate〉. (1)
 ⎯→ Hari 〈predicate〉. (2a)
 ⎯→ Hari 〈verb〉 〈adverb〉. (3b)
 ⎯→ Hari walks 〈adverb〉. (4b)
 ⎯→ Hari walks slow. (5a)

Th e intermediate strings consisting of words as well as meta-words are called sentential forms. Th e
grammar symbol of a sentential form on which a rule is applied is highlighted. Th e rule numbers are

Samir Roy_Chapter11.indd 479Samir Roy_Chapter11.indd 479 2/21/2013 3:38:13 PM2/21/2013 3:38:13 PM

480 Introduction to Soft Computing

given on the right of the sentential forms within parentheses. In the derivation shown above, the
left most grammar symbol of a sentential form is selected for replacement.

It is obvious that an arbitrary sequence of words may, or may not, be a sentence. Such a se-
quence of words is a sentence only if it is derivable from the start meta-word of the grammar with
the help of the transformation rules. Parsing a string of words with respect to a grammar means
trying to determine whether it is a sentence defi ned by the grammar or not. One way to parse a
sentence is to try to derive it from the start meta-word. If the eff ort is successful then we conclude
that the input string is really a sentence else not. Th e parsing problem can be formulated as a pro-
duction system in the following way.
Global database. An array of words and meta-words from the set {〈sentence〉, 〈subject〉, 〈pred-
icate〉, 〈verb〉, 〈adverb〉, Hari, Sam, runs, walks, slow, fast}.
Production rules. As given in Table 11.8.
Control strategy. At any step, only the left most grammar symbol will be targeted for replace-
ment with appropriate production rule. If more than one rules are applicable, then rule that pro-
duces maximum match between the goal string and the newly produced string will be chosen. A
tie will be resolved randomly.

〈Sentence〉

〈Subject〉 〈Predicate〉.

Rule 1

Hari 〈Predicate〉. Sam 〈Predicate〉.

Rule 2(a))

Rule 3(a)

Rule 4(a) Rule 4(b)

Rule 5(a) Rule 5(b)

Rule 4(b)

Rule 3(b)

Rule 2(b)

(“Hari ” is not in the goal
string. Rejee ct)

Sam 〈verb〉. Sam 〈verb〉_〈〈adverb〉〉.

Sam runs. Sam walkskk .

) R

(Sentence does not match
the goal. Rejee ct)

(Sentence does not match
the goal. Rejee ct)

Sam runs 〈adverb〉. Sam walkskk 〈adverb〉.

Rule #4(a)

(“Walks” is not in the goal
string. Reject)

)

Sam runs slowll .ww Sam runs fast.tt

(Sentence does not match
the goal. Rejee ct)

(Goal. Success)

Goal : Sam runs fast.tt

Fig. 11.84. Parsing of a sentence.

Samir Roy_Chapter11.indd 480Samir Roy_Chapter11.indd 480 2/21/2013 3:38:13 PM2/21/2013 3:38:13 PM

Elementary Search Techniques 481

Let us trace the activities of the proposed production system while parsing the sentence “Sam
runs fast.” Th e initial global database contains the starting grammar symbol 〈sentence〉.Th is is
shown as the root node of the tree structure of Fig. 11.84. Th ere is only one production rule, Rule
1, with the precondition 〈sentence〉. Hence there is no option other than applying it on the initial
global database to obtain 〈subject〉 〈predicate〉. In Fig. 11.84 this is shown as the child of the root
node. As per control strategy the left most grammar symbol 〈subject〉 is to be replaced next. Th e
candidate production rules for this purpose are Rules 2a and 2b. Th e resultant forms of the global
database, viz., Hari 〈Predicate〉 and Sam 〈Predicate〉, are shown as the nodes at level 2 (the root
node is at level 0). Since Hari is not in the goal sentence, but Sam is, Sam 〈Predicate〉 matches bet-
ter than Hari 〈Predicate〉 with the goal sentence. Th erefore, the production system proceeds with
Sam 〈Predicate〉. Th e subsequent steps are depicted in Fig. 11.84, which shows the entire parsing
process where the correct parsing sequence is highlighted.

Control Systems. Step 5 of Algorithm Production-System selects a rule to operate on the
global database but does not specify how this selection is to be made. Th e control strategy is equipped
with the knowledge necessary to assess which rule, among a set of candidates, is the best. Moreover, it
keeps track of the sequence of rules applied, as well as the corresponding states of the global database.

Primarily there are two kinds of control strategies, viz., irrevocable, and tentative. An irrevocable
control strategy does not undo the eff ects of a rule once it is applied. In contrast, a tentative control
strategy may discard the eff ects of a certain rule once it is found wrong and then carry on with some
other more prospective alternative.Tentative control strategies may further be divided into two catego-
ries, backtracking, and graph-search control. A backtracking control system a backtracking point is
established at each step where a choice of a production rule is made from a set of alternatives. If at some
further point of time it is discovered that the choice was wrong then the system returns to the latest
backtracking point, selects a yet untried production rule, applies it to the global database existing at that
point of time, and proceeds with the result. However, the technique followed by graph-search control is
to maintain a data structure that keeps track of several alternative paths, sequence of production rules
and the corresponding global database, simultaneously. During the search process, the best among these
alternative paths is followed for further processing.

Th e production system proposed to solve the parsing problem in Example 11.12 can be cited as an
instance of graph-search control strategy provided the system maintains the tree structure of Fig. 11.84.
Incidentally, in Fig. 11.84, the leaf nodes of all abandoned paths are forms of the unacceptable global
data structure, and hence rejected. But this need not be the case for other production systems. Instead,
we may have some heuristic objective function to measure the quality of a node in terms of its vicinity
to the goal. During the search process the most prospective node is chosen for further exploration. In
other words, the production system then follows a best fi rst search strategy. Example 11.13 cited below
illustrates an irrevocable control strategy.

Example 11.13 (A production system to solve CNF-satisfi ability problem)

A boolean function is said to be satisfi able if there is a truth-value combination of its variables
that evaluates the function to True. For example, since the function F(x1, x2, x3) = x1.(x2′x3 + x2.x3′)
attains a True value for the assignment {x1 = True, x2 = False, x3 = True}, it is satisfi able. Conversely,
there is no truth-value assignment that makes the function F (x1, x2, x3) = x1.(x1′.x2 + x3.x1′) True.

Samir Roy_Chapter11.indd 481Samir Roy_Chapter11.indd 481 2/21/2013 3:38:14 PM2/21/2013 3:38:14 PM

482 Introduction to Soft Computing

Hence it is not satisfi able. Th e problem of fi nding whether a given Boolean function is satisfi able
or not is known as the satisfi ability problem for that function. CNF-satisfi ability is the satisfi abil-
ity of a Boolean function given in conjunctive normal form (CNF), i.e., product-of-sum form. It
can be stated as follows: Given a Boolean function F (x1, …, xn) of n variables expressed in CNF, to
determine whether it is satisfi able or not. CNF-satisfi ability is a well-known NP-complete problem.
Presently we address the satisfi ability of the function

F (x1, x2, x3, x4) = (x1′ + x2) . (x3 + x4′) . (x1′ + x4′) . (x2 + x3)

To store a certain truth-value assignment to the variables x1, x2, x3, x4, we defi ne a solution vec-
tor X [1..4] where X[i] contains the truth value assigned to the variable xi, i = 1, 2, 3, 4. Th e given
expression consists of four sum terms, C1 = (x1′ + x2), C2 = (x3+x4′), C3 = (x1′ +x4′), and C4 = (x2+
x3) so that F(x1, x2, x3, x4) = (x1′ + x2) . (x3 + x4′) . (x1′ + x4′) . (x2 + x3) = C1.C2.C3.C4. We defi ne a
sum-term vector as C [1..4] such that C[i] denotes the truth value attained by max-term Ci under
some assignment X. In order to satisfy F each of max-terms C1, C2, C3, and C4 are to be satisfi ed
individually. Let f (X) = number of max-terms attaining True value under the truth value assign-
ment X. Th en f (X) expresses the quality of assignment X. We are now in a position to formulate
the production system to solve the given satisfi ability problem.

Global database. Th e solution vector X [1..4] and the sum-term vector C [1..4] jointly form
the global database.

Production rules. At any instant, a new truth value combination may be obtained from the
current combination by fl ipping (complementing) any one of the truth value. As there are four
variables we have four production rules listed in Table 11.9.

Control strategy. We follow a simple hill-climbing strategy. A new truth value assignment is
generated from the current assignment by fl ipping a randomly chosen truth value. Th e new as-
signment is accepted if it is better than the current one. Otherwise, the new assignment is rejected
and yet another truth value combination is produced to repeat the same steps. Hence the role of
the control strategy is described as follows.

Select a variable 1. xi randomly among x1, x2, x3, x4.
Flip its current truth value of 2. xi stored in X [1..4] to obtain a new X1[1..4].
Evaluate 3. C [1..4] for this new X1[1..4].
Evaluate 4. f (X1) = number of sum-terms attaining True value under the truth value assign-
ment X1.
If 5. f (X1) ≥ f (X) then make X1 the current X and continue, else go to step 1.

For the present instance of the satisfi ability problem, the starting point for the production sys-
tem is the randomly chosen assignment X = [T, F, F, T], i.e., x1 = True, x2 = False, x3 = False,
and x4 = True. It is easy to verify that none of the sum-terms are satisfi ed under this assignment,
making the sum-term vector all False, so that C = [F, F, F, F]. Obviously, F (X) = False, and
f (X) = 0 in this case. Fig. 11.85 shows the trace of execution. As shown in fi gure, from initial
state to the goal state the assignment vector follows the sequence [T, F, F, T] → [T, T, F, T]
→ [F, T, F, T] → [F, T, F, F]. Among all these only the last one satisfi es the given Boolean
function.

Samir Roy_Chapter11.indd 482Samir Roy_Chapter11.indd 482 2/21/2013 3:38:14 PM2/21/2013 3:38:14 PM

Elementary Search Techniques 483

Table 11.9. Production rules

Rule Precondition Postcondition

1 (Flip x1) X = [x1, x2, x3, x4] → X = [x1’, x2, x3, x4]

2 (Flip x2) X = [x1, x2, x3, x4] → X = [x1, x2’, x3, x4]

3 (Flip x3) X = [x1, x2, x3, x4] → X = [x1, x2, x3’, x4]

4 (Flip x4) X = [x1, x2, x3, x4] → X = [x1, x2, x3, x4’]

F(x1, x2, x3, x4) = (x1′ + x2)⋅(x3 + x4′)⋅(x1′ + x4′)⋅(x2 + x3)

X = [F, F, F, T]
C = [T, F, T, F]

F(FF X)XX = F

X = [F, T, F, F]
C = [T, T, T, T]

F(FF X)XX = T

(Goal)

X = [F, T, F, T]
C = [T, F, T, T]

F(FF X)XX = F

X = [T, T, F, T]
C = [T, F, F, T]

F(FF X)XX = F
f (X) = 2

f (X) = 3

f (X) = 4f (X) = 2

X = [T, F, F, T]
C = [F, F, F, F]

F(FF X)XX = F
f (X) = 0

Flip x2xx

Flip x1xx

Flip x4xxFlip x2xx

Solution Vector (i.e., truth value assignment):

X = [x1, x2, x3, x4]

Sum-term Vector:

C = [C1, C2, C3, C4]
where

C1 = (x1′ + x2)
C2 = (x3 + x4′)
C3 = (x1′ + x4′)
C4 = (x2 + x3)

f(X) = Number of sum-terms attaining True value
under the truth value assignment X.

Fig. 11.85. Steps of an irrevocable production system to solve CNF-satisfi ability

Example 11.14 (Solving n-queen problem through back-tracking strategy)

A classical example of backtracking system refers to the 8-queen problem, or more generally, the
n-queen problem. In this example we describe a production system employing the backtracking
control strategy to solve n-queen problem.

Let us, for the sake of simplicity consider the 4-queen problem. Th e four queens are denoted
by Q1, Q2, Q3, and Q4 where the ith queen Qi is placed in the ith row of the chess board. Th en a
placement of the four queens is expressed with a vector V [1..4] where V[i], i = 1, 2, 3, 4, gives the
column number in which Qi is placed. For example, Fig. 11.86 shows the board position for the
placement [2, 3, 1, 4].

Samir Roy_Chapter11.indd 483Samir Roy_Chapter11.indd 483 2/21/2013 3:38:14 PM2/21/2013 3:38:14 PM

484 Introduction to Soft Computing

1 2 3 4
1 •
2 •
3 •
4 •

V = [2, 3, 1, 4]

Fig. 11.86. A placement of 4-queens and its representation

V = [−,−,−, −]

V = [1,−,−, −] V = [2,−,−, −]

V = [2, 4,−, −]

V = [2, 4, 1, −]V = [1, 4, 2, −]

V = [1, 4, −, −]V = [1, 3, −, −]

V = [2, 4, 1, 3,]

(0)

•(1)

•
•

(2) •
•

(3) •
•

(6)

•(5)

•
•

•

(4) •
•

•

(7)

•
•

•
•

(8)

GOAL

(No valid column
for Q4)

(No valid column
for Q3)

• Backtracking paths are shown
with dashed arrows,
i.e.,with
Numbers within parentheses
indicate the order of processing
the corresponding states.

•
•

Fig. 11.87. Backtracking strategy to solve the queen problem

Th e successive steps of the backtracking search, when applied to solve the 4-queen problem are
shown in Fig. 11.87 in a tree structure. Each node of the tree presents a board position and the cor-
responding V [1 .. 4] vector. Th e symbol ‘−’ in V indicates that the corresponding queen is not yet
placed. A recursive procedure to solve the n-queen problem through the backtracking strategy is
described in Algorithm Backtrack-n-Queen (V[c1,… ck, -, …, -])(Fig. 11.88).

Samir Roy_Chapter11.indd 484Samir Roy_Chapter11.indd 484 2/21/2013 3:38:15 PM2/21/2013 3:38:15 PM

Elementary Search Techniques 485

Th e algorithm starts with the empty board and then tries to fi nd suitable positions of the queens
Q1, Q2, …, Qn at successive steps. At each step, the algorithm looks for the possible positions of
the current queen and makes a choice among the alternative locations. It then recursively calls
itself for further progress. If, at some later point of time, it is found that there is no valid, i.e., non-
attacking, position for some subsequent queen, it backtracks to the point of making the last choice,
selects an alternative location (if there is any), and proceeds.

Algorithm Backtrack-n-Queen (V[c1,… ck, -, …, -])

/* V[c1,… ck, -, …, -] is a partial solution where the first
k queens Q1, … Qk, k ≤ n, are placed at the columns c1,… ck
respectively, and the remaining n-k
queens are yet to be placed. */

1. Begin
2. If V is a solution Then return V.

 /* Find a suitable position for Qk+1 */
3. For ck+1 ← 1 To n Do
4. Begin
5. If V [c1,… ck, ck+1, -, …, -] is a non-attacking

arrangement of the queens Q1, … Qk, Qk+1 Then
6. Begin
7. Sol ← Backtrack-n-Queen (V[c1,… ck,ck+1, -, …, -])
8. If (Sol != NULL) Then Return End-If
9. End
10. End-If
11. End-For

 /* No suitable position for Qk+1 in current
 arrangement of k queens */
12. Return NULL
13. End- Backtrack-n-Queen

Fig. 11.88. Algorithm backtrack-n-queen (V[C1, ... Ck, -, ..., -]).

Let us now focus on the 4-queen problem. In order to solve the 4-queen problem Algorithm
Backtrack-n-Queen would be invoked with the empty solution V [-,-,-,-] as its parameter.
Fig. 11.87 shows a trace of the execution of the procedure where the successive arrangements of
the queens are shown as the nodes of a tree structure. Th e sequence numbers of these arrange-
ments are indicated within parentheses at the upper-left corner of the corresponding nodes. Th e
position of a queen is indicated by a dot (•) within a cell of a 4 × 4 matrix. Backtracking paths
are indicated with dotted arrows.

Initially the board is empty and the solution vector is V [-,-,-,-]. Th is forms the root node,
node (0), of the tree. Th e task is to fi nd a suitable column for the queen Q1, where Q1 is the queen
belonging to the 1st row. Th ere are four possible columns for Q1, viz., 1, 2, 3 and 4. We choose
column 1 to start with. So the partial solution is now V [1,-,-,-], and the board confi guration is as
shown in node (1). Now we look for a suitable location for queen Q2. Queen Q2 belongs to row 2

Samir Roy_Chapter11.indd 485Samir Roy_Chapter11.indd 485 2/21/2013 3:38:15 PM2/21/2013 3:38:15 PM

486 Introduction to Soft Computing

and there are two positions in row 2, viz., at column 3, and 4, at which Q1 and Q2 are not attacking
each other. Th erefore, we choose column 3 for Q2. Th e resulting partial solution is shown as node 2
of Fig. 11.87. However, this assignment leaves no valid position for the third queen, Q3. Th erefore,
the process backtracks to the latest backtracking point which is at node (1). Th e other position for
queen Q2 is now tried with. It is seen that this allows a valid position for Q3 but leaves nowhere to
place queen Q4. Th erefore, the algorithm has to backtrack. Since all alternatives out of placing queen
Q1 at column 1 are exhausted, the backtracking point is now the root node itself. Queen Q1 is placed
at column 2 (see node (5) of Fig. 11.87). Th e subsequent steps are shown at nodes (6), (7), and (8).
Th e solution we eventually arrive at is V = [2, 4, 1, 3], shown as the goal node in the said fi gure.

CHAPTER SUMMARY

Th e main points of the foregoing discussion are given below.

A state space is defi ned by a directed graph • G (V, E) where each node v∈V represents a state,
and each edge eij from state vi to vj represents a possible transition from vi to vj. Th ere is a
designated state s∈V known as the start state, or start node, of the state space. Th e search starts
from this node. Moreover, there is a goal condition which must be satisfi ed to end the search
process successfully. Usually one or more nodes of the state space satisfy this condition. Such
nodes are called the goal nodes.
A state space search is either uninformed and informed, or heuristic. An uninformedsearch do •
not apply any knowledge of the problem domain to guide the search for a goal node. However, an
informed, or heuristic, search is guided by some knowledge which makes the search effi cient.
An exhaustive search tries to examine each and every node of the state space till a goal is reached •
or there is no way to proceed. Important exhaustive searches are breadth-fi rst search, depth-
fi rst search, depth-fi rst iterative deepening search, and bidirectional search.
Breadth-fi rst search explores the search space laterally. DFS does so vertically. Depth-fi rst •
iterative deepening tries to combine the advantages of depth-fi rst and breadth-fi rst search. It
is a version of depth-fi rst search where the search is continued till a predefi ned depth d is
reached. Th e value of d is incremented by 1 aft er each iteration until the goal node is reached.
Bidirectional search proceeds in two opposite directions, from the start state towards the goal
state (forward direction) and from the goal state towards the start state (backward direction),
simultaneously. Th e search ends successfully when the two paths meet at a common node.
Best-fi rst search tries to identify the best node to advance the search. An evaluation function is •
used for this purpose. Hill climbing is a heuristic search technique that makes use of local
knowledge in its attempt to attain global solution. An ‘A’ algorithm is guided by estimating an
evaluation function f n g n h n)n)n() ()n= +g()n where g(n) is the cost of a minimal-cost path from the
start node to node n, and, h(n) is the cost of a minimal-cost path from node n to a goal node. If
the heuristic estimation h1(n) is a lower bound of h (n) so that h1(n) ≤ h(n) for all n, then it is an
A* algorithm. Such algorithms are admissible in the sense that they are guaranteed to fi nd a
minimal-cost path from the root to a goal.
In the problem reduction strategy a problem is repeatedly decomposed into subproblems •
until the subproblems obtained are readily solvable.It employs a special kind of graph called

Samir Roy_Chapter11.indd 486Samir Roy_Chapter11.indd 486 2/21/2013 3:38:15 PM2/21/2013 3:38:15 PM

Elementary Search Techniques 487

AND-OR graph. Th e search through an AND-OR graph using some knowledge of the problem
domain is known as AO* search. In AO* search the individual solutions of the subproblems are
combined to obtain the solution of the given problem.
Means-Ends Analysis (MEA) is a technique employed for generating plans for achieving goals. •
Th e MEA strategy is based on the concept of the diff erence between the start state and the goal
state. Th e MEA process recursively tries to reduce the diff erence between two states until it
reduces to zero. As a result it generates a sequence of operations or actions which transforms
the start state to the goal state.
Constraint satisfaction problems (CSPs) are characterized by three components, a set of variables, •
a set of values, called the domains, for each variable, and a set of relations, or constraints,
involving variables that restrict their attainable values. Th e structure of a CSP, especially the
constraints, can be represented as a graph, or hypergraph, known as the constraint graph (or
hypergraph). Depth-fi rst search with backtracking is commonly used to solve a CSP. Sometimes
local search procedure guided by the minimum-confl ict heuristic are also used.
Games are typically multi-agent environments in which the agents are competitive rather than •
cooperative. Mini-Max search, a kind of adversarial search technique, helps to select a good
move in s deterministic, two-player, turn-taking, zero-sum game. It uses a static evaluation
function that returns a numeric value for each state of the game. Alpha-Beta pruning is a
technique to make Mini-Max search effi cient. It enables the search process to avoid parts of the
game tree that do not contribute to decision making while the best move is selected.
Production systems are intelligent systems that are structured to facilitate a state space search •
procedure. Th e main components of a production system are a global database, a set of
production rules and a control system. Once the global database is initialized, an appropriate
production rule is selected (by the control strategy) and applied on the global database to
transform it to a new state. Th is is repeated till the termination condition is satisfi ed by the
global database.

 SOLVED PROBLEMS

Problem 11.1. (Water-Jug Problem) Th ere are two water jugs, one of 4 litre capacity and the other
of 3 litre. Th ere are no marking on the jugs and they can be fi lled with water from a nearby tap. Th e only
permissible operations are:

Filling an empty jug with water from the tap.1.
Emptying a fully or partially fi lled jug.2.
Transferring water from one jug to another.3.

Initially both the jugs are empty. Now, using the operations described above, is it possible to obtain
exactly 2 litre of water in the 4-litre jug? If yes, then what is the sequence of operations to achieve this?
Create the state space for the problem and show a solution path in it.

Solution 11.1. Let us denote the 4-litre jug as jug A and the 3-litre jug as jug B. A state of the prob-
lem can be presented as a pair of integers [x, y] where x and y are the amount of water in litre in jug A
and B, respectively. For the sake of simplicity let us assume that x and y are both integers and x ≤ 4, y ≤
3. Th e rules to manipulate the state space are listed in Table 11.10.

Samir Roy_Chapter11.indd 487Samir Roy_Chapter11.indd 487 2/21/2013 3:38:16 PM2/21/2013 3:38:16 PM

488 Introduction to Soft Computing

Table 11.10. Rules to solve the water-jug problem

Pre-condition Post-condition Remark

1 [x, y] ∧ (x < 4) → [4, y] Fill the 4-litre jug.

2 [x, y] ∧ (y < 3) → [x, 3] Fill the 3-litre jug.

3 [x, y] ∧ (x > 0) → [0, y] Empty the 4-litre jug.

4 [x, y] ∧ (y > 0) → [x, 0] Empty the 3-litre jug.

5 [x, y] ∧ (x + y ≥ 4) ∧ (y > 0) → [4, y−(4−x)] Pour water from 3-litre jug to the 4-litre jug till the
4-litre jug is full.

6 [x, y] ∧ (x + y ≥ 3) ∧ (x > 0) → [x−(3−y), 3] Pour water from 4-litre jug to the 3-litre jug till the
3-litre jug is full.

7 [x, y] ∧ (x + y ≤ 4) ∧ (y > 0) → [x + y, 0] Pour all water from 3-litre jug into the 4-litre jug.

8 [x, y] ∧ (x + y ≤ 3) ∧ (x > 0) → [0, x + y] Pour all water from 4-litre jug into the 3-litre jug.

Initially both the jugs are empty so that the initial state is [0, 0]. At this stage we may either fi ll jug-A
or jug-B resulting in the states [4, 0] or [0, 3], respectively. While in state [4, 0], we may either pour
water from jug-A to jug-B to fi ll up the later or simply fi ll jug-B to its full. Th e corresponding states
are [1, 3] and [4, 3]. Of course we can empty jug-A, and return to the initial state. Th erefore [1, 3]
and [4, 3] are the children of the state [4, 0]. Similarly the state [0, 3] has the children [4, 3] and
[3, 0]. Th e entire state space is shown in Fig. 11.89. Two paths to reach the goal are highlighted in the
fi gure.

(0, 0)

(0, 3)(4, 0)

(2, 3) (2, 0)

(0, 2)

(4, 2)

(3, 3)

(3, 0)

(0, 1)

(1, 0)

(4, 1)

(4, 3)(1, 3)

Fig. 11.89. The state space for the water-jug problem

Samir Roy_Chapter11.indd 488Samir Roy_Chapter11.indd 488 2/21/2013 3:38:17 PM2/21/2013 3:38:17 PM

Elementary Search Techniques 489

Problem 11.2 (Monkey-and-Banana Problem) Here is the simple world of a monkey. Th ere is a
room with a door and a window. A box is placed at the window and a bunch of bananas is hanging from
the ceiling at the middle of the room. Th e monkey is hungry but it can not hold the bananas as these are
out of its reach. However, if the box is placed at the middle of the room just below the bunch of bananas
and the monkey climbs the top of the box then it can catch the bananas and eat them. Th e monkey can
walk, can push the box along the fl oor, can climb the box, and if within its reach, it can catch the bananas.
Initially the monkey is at the door of the room. Can it catch the bananas? If yes, what is the sequence of
actions to achieve this goal?

Banana at the
middle

window

box

door

monkey

(a) Initial State

 P = position of monkey = Door
 Q = whether the monkey is on the fl oor, or on the box = Floor
 R = position of the box = Window
 S = whether the monkey holds the banana or not = NO

(a) Final State

 P = position of monkey = Middle
 Q = whether the monkey is on the fl oor, or on the box = onBox
 R = position of the box = Middle
 S = whether the monkey holds the banana or not = Yes

Fig. 11.90. The Monkey-and-Banana problem.

Samir Roy_Chapter11.indd 489Samir Roy_Chapter11.indd 489 2/21/2013 3:38:17 PM2/21/2013 3:38:17 PM

490 Introduction to Soft Computing

Solution 11.2. Fig. 11.90 shows the problem graphically. A problem state is expressed with a 4-tuple
< P, Q, R, S > where

P is the position of the monkey
Q is whether the monkey is on the fl oor or on the box
R is the position of the box
S is whether the monkey has grasped the banana or not

For the sake of simplicity we assume that the monkey can be either at the door, or at the window, or at
the middle of the room. Similarly, the box can be at one of these positions only. Hence the domains of P,
Q, R, and S are defi ned as follows:

P ∈ { Door, Window, Middle }
Q ∈ { onFloor, onBox }
R ∈ { Door, Window, Middle }
S ∈ { Yes, No }

Th ere are four activities of the monkey, viz., it can walk from place to place, it can push the box from one
place to another, it can climb the box, and if possible, it can grasp the banana. However, each of these
activities requires certain conditions to hold good. Th ese are described in Table 11.11. Th e initial state
of the system is < Door, onFloor, Window, No > because in the beginning the monkey is at the door, on
the fl oor, the box is at the window, and the monkey is not holding the banana. Th e fi nal state is given by
< Middle, onBox, Middle, Yes >.

Table 11.11. Valid moves of the monkey

Operation Description and prerequisite conditions

Walk (X, Y) The monkey walks from X to Y.
Precondition : The monkey is on the fl oor, Q = onFloor.

Climb The monkey climbs the box.
Preconditions :
i) The monkey and the box are at the same place, P = R.
ii) The monkey is on the fl oor, Q = onFloor.

Push (X, Y) The monkey pushs the box from X to Y.
Precondition : Both the monkey and the box are at X, P = R = X.

Grasp The monkey grabs the banana.
Preconditions :
i) Both the monkey and the box are at the middle, P = Q = Middle.
ii) The monkey is on the box, Q = onBox.

To estimate the distance of a given state < P1, Q1, R1, S1 > from the goal state < Middle, onBox, Middle,
Yes > we introduce a measure d between two states n1 = < P1, Q1, R1, S1 > and n2 = < P2, Q2, R2, S2 > as
follows:

d (n1, n2) = Number of mismatched parameters

Samir Roy_Chapter11.indd 490Samir Roy_Chapter11.indd 490 2/21/2013 3:38:18 PM2/21/2013 3:38:18 PM

Elementary Search Techniques 491

Push (Window, Middle)

Push (Middle, Door)

Walk (Middle, Window)

P = Door
Q = onFloor
R = Window
S = No

P = Door
Q = onFloor
R = Middle
S = No

P = Door
Q = onFloor
R = Door
S = No

P = Window
Q = onFloor
R = Middle
S = No

(1 + 4 = 5)(1 + 3 = 4)

(5) (5)

(4) (7)(6)(6)

)

Walk (Door, Middle) Walk (Door, Window)

Climb

Walk (Middle, Door)

Walk (Middle, Window)

Climb

Grasp

1

3

4

5

P = Middle
Q = onFloor
R = Window
S = No

P = Middle
Q = onFloor
R = Middle
S = No

P = Window
Q = onFloor
R = Window
S = No

P = Window
Q = onBox
R = Window
S = No

P = Window
Q = onBox
R =Middle
S = No

2

P = Window
Q = onBox
R =Middle
S = Yes

6

f (no) = g (no) + h (no)
= 0 + 4
= 4

Fig. 11.91. Search tree for the Monkey and Banana problem.

For example, let n0 = the initial state = < Door, onFloor, Window, No >, and nf = the fi nal state = <
Middle, onBox, Middle, Yes >. Since none of the parameters P, Q, R, and S of n0 and nf have matched,
the distance of the initial state from the fi nal state is 4. For g(n), the distance of node n from the start
node along the path taken is considered. Hence for the start state the objective function has the value

Samir Roy_Chapter11.indd 491Samir Roy_Chapter11.indd 491 2/21/2013 3:38:18 PM2/21/2013 3:38:18 PM

492 Introduction to Soft Computing

f (n0) = g (n0) + h (n0) = 0 + 4 = 4. Th is is shown in Fig. 11.91 which depicts the entire search tree. Th e
nodes are shown in rectangular boxes and the values of the objective function for diff erent nodes are
given within parentheses. Th e encircled numbers adjacent to some nodes indicate the sequence in
which the nodes are expanded. Th e nodes which are generated but never expanded are shown with
dashed lines.

It is seen that from the initial state < Door, onFloor, Window, No > the only possible moves for
monkey are to walk from the door to either the middle or to the window. Accordingly, the initial
statehas two children < Middle, onFloor, Window, No > (state 1) and < Window, onFloor, Window,
No > (state 2). Th e heuristic estimates of state 1 and 2 are 3 and 4, respectively while each of them is
at a distance 1 from the root. Th erefore f (n1) = 1 + 3 = 4 and f (n2) = 1 + 4 = 5. Obviously, state 1 is
chosen for further exploration at this point of time. However, it is found that there are only two pos-
sible moves from state 1, viz., either return to state 0, or go to state 2. Consequently, state 2 is selected
as the next node to be explored and expanded. Fig. 11.91 shows the entire search tree along with the
sequence of nodes explored and expanded. Each transition edge is labeled with the corresponding
action taken by the monkey. Th e chain of actions that leads from the start state to the goal is high-
lighted.

Problem 11.3 (Farmer-Fox-Goose-Grain problem) Th ere is a farmer on one bank of a river. He
has a fox, a goose and some grain with him and he want to cross the river with all his possessions. Th ere
is a boat to cross the river but it is too small to accommodate more than one possession at a time. Th ere-
fore each time the farmer crosses the river he can take at most one possession with him. In absence of
the farmer, the fox will eat the goose. Similarly, if the goose is left with the grain then it will eat the grain.
Formulate the problem as a state space search and show the state space.

Solution 11.3 Fig. 11.92 shows the state space of the given problem. A node is represented by a
rectangular box containing two smaller boxes. Th e inner boxes represent two banks of the river. Th e
direction of an arrow between two banks of the river indicate the direction of the movement of the
boat in the next move. Th e labels attached to the edges between the nodes convey the entities being
moved from one bank to the other in the present step. Suitable representation of a node as a state is
left as an exercise.

Problem 11.4 (Missionaries and Cannibals problem) Th ree missionaries and three cannibals are
standing at one bank of a river. Th ey have to cross the river. Th ere is a boat to cross the river which can
accommodate at most two persons at a time. If the cannibals outnumber the missionaries at any bank
they will eat the missionaries. How should the missionaries and the cannibals cross the river so that the
cannibals can never eat any missionary?

Solution 11.4 Let us represent a state of the problem in the form (a) [Rl | Rr] (b) where a and b
are strings of the form MpCq, 0 ≤ p ≤ 3, 0 ≤ q ≤ 3. Each M represents a missionary and each C represents
a cannibal. For example, the string MMCCC represents two missionaries and three cannibals. Th e null
string, M0C0, is indicated with ‘-‘. Th e middle portion of the expression, i.e., [Rl | Rr] represents the posi-
tion of the boat with respect to the river. Th e vertical line ‘|’ stands for the river. One of Rl and Rr is ‘B’,
indicating the boat in the corresponding bank, while the other must be ‘-‘, expressing the fact that the
boat is not in that bank of the river.

So the string (MMCC) [- | B] (MC) expresses the following facts:

Samir Roy_Chapter11.indd 492Samir Roy_Chapter11.indd 492 2/21/2013 3:38:18 PM2/21/2013 3:38:18 PM

Elementary Search Techniques 493

Goose

Goose

Grain
Fox

Fox

Farmer
Fox
Goose
Grain

Farmer
Goose
Grain

Farmer
Goose
Grain

Farmer
Fox
Goose

Farmer
Fox
Goose

Farmer
Fox
Grain

Farmer
Fox
Grain

Grain

Farmer
GraiG n

Farmer
Grain

Farmer
Fox

Farmer
Fox

Fox
Grain

Fox
Grain

Farmer
Goose

Farmer
Goose

Farmer
Goose

Farmer
Goose

Farmer
Goose

Farmer

Farmer

Farmer
Goose

Farmer
Fox
Goose
Grain

Fig. 11.92. State space of the Farmer-Fox-Goose-Grain problem.

Samir Roy_Chapter11.indd 493Samir Roy_Chapter11.indd 493 2/21/2013 3:38:18 PM2/21/2013 3:38:18 PM

494 Introduction to Soft Computing

Table 11.12. Rules to solve the missionaries and cannibals problem

Pre-condition Post-condition Remark

1a (MMMCCC) [B|-] (-) → (MMMCC) [-|B] (C) 1 C goes to right bank.

1b → (MMCC) [-|B] (MC) 1 M and 1 C go to right bank.

1c → (MMMC) [-|B] (CC) 2 Cs goes to right bank.

2a (MMMCC) [B|-] (C) → (MMCC) [-|B] (MC) 1 M goes to right bank.

2b → (MMMC) [-|B] (CC) 1 C goes to right bank.

2c → (MMM) [-|B] (CCC) 2 Cs go to right bank.

3 (MMMCC) [-|B] (C) → (MMMCCC) [B|-] (-) 1 C goes to left bank.

4a (MMCC) [B|-] (MC) → (MC) [-|B] (MMCC) 1 M and 1 C go to right bank.

4b → (CC) [-|B] (MMMC) 2 Ms go to right bank.

5a (MMCC) [-|B] (MC) → (MMMCC) [B|-] (C) 1 M goes to left bank.

5b → (MMMCCC) [B|-] (-) 1 M and 1 C go to left bank.

6a (MMMC) [B|-] (CC) → (MMM) [-|B] (CCC) 1 C goes to right bank.

6b → (MC) [-|B] (MMCC) 2 Ms goes to right bank.

7a (MMMC) [-|B] (CC) → (MMMCC) [B|-] (C) 1 C goes to left bank.

7b → (MMMCCC) [B|-] (-) 2 Cs go to left bank.

8a (CCC) [B|-] (MMM) → (CC) [-|B] (MMMC) 1 C goes to right bank.

8b → (C) [-|B] (MMMCC) 2 Cs go to right bank.

9 (CCC) [-|B] (MMM) No possible move

10 (MMM) [B|-] (CCC) No possible move

11a (MMM) [-|B] (CCC) → (MMMC) [B|-] (CC) 1 C goes to left bank.

11b → (MMMCC) [B|-] (C) 2 Cs go to left bank.

12a (MC) [B|-] (MMCC) → (C) [-|B] (MMMCC) 1 M goes to right bank.

12b → (-) [-|B] (MMMCCC) 1 M and 1 C go to right bank.

13a (MC) [-|B] (MMCC) → (MMCC) [B|-] (MC) 1 M and 1 C go to left bank.

13b → (MMMC) [B|-] (CC) 2 Ms go to left bank.

14a (CC) [B|-] (MMMC) → (C) [-|B] (MMMCC) 1 C goes to right bank.

14b → (-) [-|B] (MMMCCC) 2 Cs go to right bank.

15a (CC) [-|B] (MMMC) → (CCC) [B|-] (MMM) 1 C goes to left bank.

15b → (MMCC) [B|-] (MC) 2 Ms go to left bank.

16 (C) [B|-] (MMMCC) → (-) [-|B] (MMMCCC) 1 C goes to right bank.

17a (C) [-|B] (MMMCC) → (MC) [B|-] (MMCC) 1 M goes to left bank.

17b → (CC) [B|-] (MMMC) 1 C go to left bank.

18 (-) [-|B] (MMMCCC) Goal

Samir Roy_Chapter11.indd 494Samir Roy_Chapter11.indd 494 2/21/2013 3:38:19 PM2/21/2013 3:38:19 PM

Elementary Search Techniques 495

Th e left bank of the river contains two missionaries and two cannibals.•
Th e right bank of the river contains one missionary and one cannibal.•
Th e boat is on the right bank of the river.•

Obviously, not all distribution of the missionaries and the cannibals over the two banks are valid. At any
bank, number of cannibals can not exceed that of the missionaries, in case both kinds of people are there
at the same bank. Hence the distribution (CC) [B | -] (MMMC), or (CCC) [- | B] (MMM) is valid but
neither (CCM) [B | -] (MMC), nor (MMCCC) [B | -] (M) is a valid distribution. In order to defi ne
a production rule we need to specify the pre-condition and the post-condition which, in this case, are
distribution of the missionaries and the cannibals over the two river banks and the position of the boat.
For example, the rule

(MMMC) [B | -] (CC) → (MC) [- | B] (MMCC)

states that if there are three missionaries and one cannibal on the left bank, two cannibals on the right
bank, and the boat is one the left bank, then two missionaries may take the boat to the right bank so that
aft er the move one missionary and one cannibal are left on the left bank while two missionaries and two
cannibals remains on the right bank. Th e complete set of such rules is listed in Table 11.12. Solving the
problem with the help of these rules is left as an exercise.

Problem 11.5. (8-puzzle) Consider an instance of the 8-puzzle for which initial and goal states
are as shown in Fig. 11.93. Propose a hill climbing search algorithms to solve this problem.

Start state

21 4

8 3

6 5

Goal state

8 4

7 6 5

1 2 3

7

Fig. 11.93. Another instance of the 8-puzzle.

Solution 11.5. First we have to defi ne an objective function to express the quality of a state with
respect to the goal state. Let us consider the entire frame of the 8-puzzle as a 3 × 3 matrix. Th en the
successive cells can be designated by the ordered pairs (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2),
and (3,3) (Fig. 11.94). Now, suppose a certain tile x is in cell (i, j) while as per confi guration of the
goal state it should be in cell (k, l). In order to bring tile x to its designated position it must be moved
through at least dx = ⏐i − k⏐+⏐j − l⏐ number of cells. Th is dx may be called the distance of tile x from
its desired position.

For example, Fig. 11.95 shows a situation where a tile x is at position (1, 2) though its targeted position
is at (3,1). Th erefore, for this tile the displacement dx = ⏐i − k⏐+⏐j − l⏐= ⏐1 − 3⏐+⏐2 − 1⏐= 2 + 1 = 3.
Th is means, in order to place tile x at its proper position, it has to be moved through at least 3 cells from
its current position.

(1,1) (1,2) (1,3)
(2,1) (2,2) (2,3)
(3,1) (3,2) (3,3)

Fig. 11.94. Confi guration of 8-puzzle as a 3 × 3 matrix.

Samir Roy_Chapter11.indd 495Samir Roy_Chapter11.indd 495 2/21/2013 3:38:19 PM2/21/2013 3:38:19 PM

496 Introduction to Soft Computing

We are now in a position to defi ne the objective function. Th e objective function f (n), which estimates
the distance of state n from the goal state can be defi ned as the sum over all dx, x = 1, …, 8.

 h n dx
x

()n =
=

∑
1

8

 (11.15)

(1,2)

(3,1)

Tile x is at x cell
(i, j) = (1, 2)

|i − k | = | 1 − 3 | = 2

| j − l | = | 2 − 3 | = 1

Tile x should be at
cell (k,kk l) = (3, 1)

Fig. 11.95. Computation of dx.

As an example, let us compare the state depicted in Fig. 11.96 (a) with the goal state shown in Fig. 11.96
(b).In the goal state tile 1 is at position (1, 1) while in state n it is actually at position (2, 3). Th erefore,
d1 = |1-2| + |1-3| = 1 + 2 = 3. Similarly, the distances of the other tiles are computed as d2 = 1, d3 = 4, d4
= 2, d5 = 0, d6 = 2, d7 = 4, and d8 = 2. Hence the distance of state n as a whole from the goal state is given
by f (n) = d1 + d2 + d3 + d4 + d5 + d6 + d7 + d8 = 3 + 1 + 4 + 2 + 0 + 2 + 4 + 2 = 18 (Fig. 11.94). Now let us
consider the initial state of the given problem. Here f (n) = d1 + d2 + d3 + d4 + d5 + d6 + d7 + d8 = 0 + 1 + 1
+ 2 + 0 + 0 + 0 + 0 = 4.

(a) State n 2 4 7 (b) Goal State 1 2 3
6 1 8 4
3 8 5 7 6 5

d1 = 3, d2 = 1, d3 = 4, d4 = 2, d5 = 0, d6 = 2, d7 = 4, d8 = 2
h (n) = d1 + d2 + d3 + d4 + d5 + d6 + d7 + d8 = 3 + 1 + 4 + 2 + 0 + 2 + 4 + 2 = 18

Fig. 11.96. Computation of the distance of a state n from the goal state.

Th e four diff erent new states that can be obtained from this initial state are shown as the children of the
start state in Fig. 11.97. Th ese states have f (n) values 5, 5, 5, and 3 as indicated within a pair of parenthe-
ses adjacent to the respective nodes. Th e search will proceed along the state with f (n) value 3 because
that is the only value lower than 4, that of the current state.

However, the hill climbing procedure is not supposed to generate all these states at a time. Instead, it
will generate only one among these. If the newly generated state happens to have f (n) value less than 4,
then that will be accepted. Otherwise, the hill climbing procedure will reject the newly generated state
and produce a yet another state. Eventually it will generate the desired one, i.e., the state with f (n) value
3, because such a state exists and is reachable from the current state. Th e progress of the hill climbing
process can be traced by following the solid arrows in Fig. 11.97. Th e dashed arrows indicate the steps
rejected by the hill climbing process.

Samir Roy_Chapter11.indd 496Samir Roy_Chapter11.indd 496 2/21/2013 3:38:19 PM2/21/2013 3:38:19 PM

Elementary Search Techniques 497

Start

Goal

21 4

8 € 3

6 57

21

(4)

(4)

(2)

(2)

(1)

(5) (5)
(3)(5)

4

€ 8 3

6 57

21 4

8 3 €
6 57

21 4

8 6 3

€ 57

21 €
8 4 3

6 57

2€ 1

8 4 3

6 57

€1 2

8 4 3

6 57

31 2

8 4 5

6 €7

31 2

8 € 3

6 57

31 2

8 4 €
6 57

Fig. 11.97. Solving 8-puzzle through hill climbing

Problem 11.6. (Solving 8-queen problem through steepest ascent hill-climbing) Apply steepest as-
cent hill climbing method to solve the 8-queen problem.

Solution 11.6. Th e rows of the chess board are numbered as 0, 1, …, 7. Each of these queens is placed
in a distinct column to ensure that the queens are not attacking each other. Th us a confi guration of eight
queens on the chess board can be expressed as a vector of eight elements [r0, r1, r2, r3, r4, r5, r6, r7] where ri
is row number of position of the queen in the ith column. Fig. 11.98 shows such a board confi guration.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Fig. 11.98. Board confi guration: [0, 4, 5, 5, 1, 5, 1, 3].

Samir Roy_Chapter11.indd 497Samir Roy_Chapter11.indd 497 2/21/2013 3:38:21 PM2/21/2013 3:38:21 PM

498 Introduction to Soft Computing

We consider the objective function for a given arrangement n = [r0, r1, r2, r3, r4, r5, r6, r7] of eight queens
as follows:

 F (n) = Number of attacking pair in the arrangement n (11.15)

For example in the arrangement shown in Fig. 11.98, there are nine attacking pairs of queens, viz., (Q0,
Q5), (Q1, Q2), (Q1, Q4), (Q2, Q3), (Q2, Q5), (Q2, Q6), (Q3, Q5), (Q4, Q6), and (Q5, Q7), where Qi denotes the
queen in the ith column. Now, given an arrangement n of queens, we compute the value of f (n) by plac-
ing each queen Qi at various rows, remaining in its designated column i. For example, in Fig. 11.99 (a)
if Q0 is placed at row 1, instead of row 0, we would have 10 attacking pairs of queens. Th is is indicated
by placing the number 10 within cell (1, 0) in the chess board. Similarly other cells contain the number
of attacking pairs in case the queen of the respective row is placed at that cell. Th e values of the objec-
tive function for the arrangements shown in Fig. 11.99 (a)-(d) are indicated at the top of the respective
boards. Obviously, each cell of the chess board that contains a queen should have exactly this value. For
example, each of the cells (0, 0), (4, 1), (5, 2), (5, 3), (1, 4), (5, 5), (1, 6) and (3, 7) of Fig. 11.99 (a) contains
the value 9.

8

(a) Initial state (f(n) = 9))

(d) Goal state (f (n) = 0))(c) f (n) = 2

(b) f (n) = 5

11

7

9

10

9

8

[0 4 5 5 1 5 1 3] [0 4 7 5 1 5 1 3]

6

7

77

8

7

6

5

9

9

9

9

99

10 10

1110

10

10 5

6

9

8

98

9

10 10

11

8

10

10

9

7

7

6

89 11

11

9

10

9

11

9

13

8

10

5

8

4

6

6

6

6

6

7

7 3

8

7

9

6

6

6

6

57

7 5

76

6

6 2

4

5

5

64

7

7 6

6

4

7

6

6

5

4

4

56 6

7

6

6

5

6

5

9

4

6

2

4

2

3

2 5

4

3

[0 4 7 5 1 6 1 3] [0 4 7 5 2 6 1 3]

3

4

3 0

6

4

4

4

4

5

34

4 2

35

53

3

4

2

5

34

4

3 5

3

3

4

3

3

3

4

4

26 4

5

4

5

3

4

3

6

3

4

Fig. 11.99. (a)–(d) Successive steps of hill climbing process for 8-queen problem

Samir Roy_Chapter11.indd 498Samir Roy_Chapter11.indd 498 2/21/2013 3:38:21 PM2/21/2013 3:38:21 PM

Elementary Search Techniques 499

Th e hill climbing strategy for 8-queen problem would start with a random arrangement of the eight
queens in eight diff erent columns. One such random arrangement is depicted in Fig. 11.99 (a). Th e objec-
tive function described above is then evaluated for each cell of the chess board. Th e minimum among these
64 values is then located, say at cell (i, j). If there is a tie then it can be resolved arbitrarily, or through some
suitable manner. Th en the new state of the 8-queen problem is obtained by moving queen Qj to the ith row,
i.e., to the cell (i, j). For example, the minimum f (n) value for the confi guration of Fig. 11.99 (a) is 5 and is lo-
cated at cell (7, 2) and (6, 5). Th erefore Q2 is moved to (7, 2) position to obtain the new arrangement of eight
queens as depicted in Fig. 11.99 (b). Th e process is repeated until we arrive at a state where there is a cell for
which the objective function evaluates to 0. Th e progress of the hill climbing process from the initial state to
a solution is shown in Fig. 11.99 (a) - (d). Th e minimum f (n) values are indicated as encircled numbers.

Problem 11.7. (Solving the satisfi ability problem using AND-OR graph) Using AND-OR graph
search technique, fi nd a combination of truth-values to the Boolean variables of the expression (a +
b′.c′).c + (a′ + b′.c′).(c + c′.a) to satisfy the expression, i.e., to make the expression attain a truth-value
True.

Solution 11.7. Starting with the given expression we go on decomposing it until we reach a literal,
i.e., a Boolean variable either in the complimented or in non-complimented form. Th e basic principle of
decomposition is shown in Fig. 11.100 where x and y are literals. Th e truth assignments to variables are
made in a way that makes the terminal literals true. In other words, if x = a then we assign a = true and
if x = a’ then a = false.

Th e cost of a node is estimated by the total number of AND and OR operations in the corresponding
expression, or sub-expression. Let f be the Boolean expression associated with a node n, then h1 (n) is
estimated as

h1 (n) = Number of operators (excluding NOT) in f.

(T)(T)

(T)x + y

x y

(a) AND (b) OR

(T)

(T)(T)

x.xx y

x y

Fig. 11.100. Truth value assignment to Boolean variables.

For example, the root node of the given problem corresponds to the Boolean expression f(a, b, c) = (a
+ b′.c′).c + (a′ + b′.c′).(c + c′.a) which includes a total of 9 operators (excluding logical inversion, 4 ORs
and 5 ANDs). Th erefore its cost estimate is 9. Obviously, the cost of a node containing a single literal,
i.e., a SOLVED node, is 0. Each link of the resultant AND-OR graph has a uniform cost of 1. Th e suc-
cessive steps of the search process are shown in Fig. 11.101 (a)–(d). Th e solution off ered by the process
is the assignment a = true, and c = true. Th e truth value of b does not aff ect the satisfi ability of the given
expression for this assignment.

Problem 11.8 (Game of Tic-tac-toe with mini-max search strategy) Th e game of tic-tac-toe is
widely used to illustrate the application of MiniMax search strategy for game playing. Th e game is fa-
miliar to most of us. It consists of a 3 × 3 board confi guration as shown in Fig. 11.102 (a)–(d). Initially

Samir Roy_Chapter11.indd 499Samir Roy_Chapter11.indd 499 2/21/2013 3:38:22 PM2/21/2013 3:38:22 PM

500 Introduction to Soft Computing

all compartments of the board are empty. Th e game is initiated by the player who puts a check mark (×)
in one of the compartments. Let us call this player as the MAX player. Th e opponent, in his turn, puts
a circle (O) in his chosen place. Th e two players go on putting their designated symbols on the board
alternately till the end of the game. Th e game ends in one of the following three situations:

Th ree consecutive check marks in horizontal, vertical, or diagonal alighment (win by MAX).1.
Th ree consecutive circles in horizontal, vertical, or diagonal alignment (win by MIN).2.
Th ere is no empty compartment, and none of condition 1, or 2 above, are satisfi ed (draw).3.

(9)(a + b ′.c ′).c + (a ′ + b ′.c ′).(c + c ′.a)(a)

(a + b ′.c ′).c + (a ′ + b ′.c ′).(c + c ′.a)(b)

(5)

(4)

(3)

(a + b ′.c ′).c (a ′ + b ′.c ′).(c + c ′.a)

(a + b ′.c ′).c + (a ′ + b ′.c ′).(c + c ′.a)(c)

(5)

(5)

(0)

(c = True)

(4)

(a + b ′.c ′).c (a ′ + b ′.c ′).(c + c ′.a)

(2)

a + b ′.c ′

(a + b ′.c ′).c + (a ′ + b ′.c ′).(c + c ′.a)(d)

(c = True)

(a = True)

True

True

True

(a + b ′.c ′).c (a ′ + b ′.c ′).(c + c ′.a)

a + b ′.c ′

b ′.c ′a

c

c

Fig. 11.101. Satisfying a Boolean function through AND-OR search

Th ese are illustrated in Fig. 11.102(a)–(d). Now, it is required to design an AI system that may play a
credible game of tic-tac-toe with a human opponent.

Samir Roy_Chapter11.indd 500Samir Roy_Chapter11.indd 500 2/21/2013 3:38:22 PM2/21/2013 3:38:22 PM

Elementary Search Techniques 501

(a) Initial board position (b) A win by MAX (c) A win by MIN (d) A draw

Fig. 11.102. Board positions of tic-tac-toe

Suppose our system employs 2-ply MiniMax search as the guide to select a move at its turn. Th e fi rst
thing we have to fi nd is a suitable static evaluation function. Of course the function e(N) shall return +∞
or −∞ if N, the board position, happens to be a winning position for MAX (playing ×) or MIN (play-
ing O), respectively. But what about the other non-terminal situations? Let us consider that the total
number of rows, columns, and diagonals still available for a certain player P (P is either MAX or MIN)
as a measure of his scope for winning the game. We defi ne X(N) as the number of rows, columns, and
diagonals in board position N still available for MAX. Th e same for MIN is expressed as O(N). Th en the
static evaluation function may be defi ned as:

 e(N) = +∞ if N is a winning position for MAX
 = −∞ if N is a winning position for MIN
 = X(N) − O(N) otherwise.

Obviously, according to the heuristic knowledge employed here while designing the evaluation function,
more scope a certain player have of winning better his chance of winning the game eventually. Fig. 11.103
and 11.104 illustrates two instances of computing the evaluation function for two diff erent board positions.

X(XX N)NN = Number of possible
winning lines for X = 4

(a)

O(N) NN = Number of possible
winning lines for O = 5

(b) (c)

e(N)NN = X(XX N)NN − O(N)NN
= 4 − 5 = −1

Fig. 11.103. Computing the static evaluation function for tic-tac-toe, case #1.

A positive e(N) can be interpreted as indicative of higher chance for MAX to win the game. Similarly, nega-
tive e(N) implies that given the current situation N player MIN has a greater chance of winning the game.

e(N)NN = X(XX N)NN − O(N)NN
= 4 − 2 = 2

(c)

O(N) NN = 2

(b)

X(XX N) NN = 4

(a)

Fig. 11.104. Computing the static evaluation function for tic-tac-toe, case #2.

Samir Roy_Chapter11.indd 501Samir Roy_Chapter11.indd 501 2/21/2013 3:38:23 PM2/21/2013 3:38:23 PM

502 Introduction to Soft Computing

Th e fi rst three moves on the basis of 2-ply MiniMax search employing the static evaluation function
mentioned above are depicted in Fig. 11.105, Fig. 11.106 and Fig. 11.107. We assume that both the play-
ers are using the same technique and the same evaluation function as their strategy. In the initial empty
board position, MAX may put the ‘×’ mark at any of the nine compartments. However, taking symmetry
into consideration, the resultant nine board positions boil down to only three distinct board positions.
Hence the start node of the game tree representing the empty board position has just three children, not
nine. Th is principle is followed in subsequent steps also.

(1)

X O X O X
O

X
O

X

O

O
X

O
X

X

O
X

O
X

O
X X O X O

X (−2)(−1)

First move
(made by MAX)

X (1)X

6 − 5 = 1

6 − 5 = 1 5 − 5 = 0 4 − 5 = 1 6 − 5 = 1 5 − 5 = 1 5 − 4 = 1 5 − 6 = −1 5 1 4 − 6 = −20 65 − 6 = −1 6 0

Fig. 11.105. First move of tic-tac-toe by MAX player applying 2-ply Mini-Max.

(3)

O X
X

O X
X

O
X X

O
X

X

O
X

O X
X

O
X X

O
X

X

O
X
X

O

X

(3) (X 4)

MIN-ply

MAX-ply

Second move
(made by MIN)

5 − 3 = 2 53 55 − 3 = 2 − 2 = 3 6 − 2 = 4 63 66 − 2 = 4 − 3 = 3

Fig. 11.106. Second move of tic-tac-toe by MIN player applying 2-ply Mini-Max.

Samir Roy_Chapter11.indd 502Samir Roy_Chapter11.indd 502 2/21/2013 3:38:23 PM2/21/2013 3:38:23 PM

Elementary Search Techniques 503

O X
O X

4 − 3 = 1

4 − 3 = 1

4 − 3 = 2 4 − 3 = 1

4 − 2 = 2 4 − 2 = 2 3 − 2 = 1

3 3 0 3 3 0 33 3 0

4 − 2 = 23 − 2 = 1 3 − 2 = 1 2 − 2 = 0

3 − 3 = 0 3 − 3 = 0 3 − 3 = 0 3 − 3 = 0 3 − 3 = 0

3 − 3 = 0

O X
X

O

O X
X
O

O X
X

O

O X
X O

O X O
X

O X
X

O O X
X

O X
X O

O X
X

O

O X
X
O

O X
X

O

O X
O X

O X
X

O O
X X

O O
X X

O
X X

O

O
X X
O

O
X X

O

O
O X X

O
X X

O O
X

X

O O
X

X

O
X O

X

O
X

X

O
X

(0)

(0)

(0)

(1)

(MAX)

3rd move
(made by MAX)

Fig. 11.107. Third move of tic-tac-toe by MAX player applying 2-ply Mini-Max.

Problem 11.9 (Applying constraint satisfaction to solve crossword puzzle) Crossword puzzles are ex-
cellent examples of constraint-satisfaction problems. Th e basic requirement of a crossword puzzle is words
that cross each other must have the same letters in the locations where they cross. A simple crossword puz-
zle is given in Fig. 11.108. Five words are to be fi tted in a 4 × 5 array. Th e words are to be chosen from the
set { COW, FOX, FROG, GOAT, RAT }. Th e cells of the array that should not contain any letter are marked
by a cross (×). Th e cells where the words should begin are indicated by the numbers 1, 2, 3, and 4. Th e cells
marked by the numbers 1, 2 and 3 has to begin words across the array and the cells marked by 1 and 4 must
begin words in downward direction. Formulate the problem as a CSP and solve it in appropriate manner.

1

1 2 3 4 5

1

4

2

3

2

3

4

List of words :

COW
FOXOO
FROG
GOAT
RAT

Across: 1, 2, 3
Down: 1, 4

Fig. 11.108. A crossword puzzle.

Samir Roy_Chapter11.indd 503Samir Roy_Chapter11.indd 503 2/21/2013 3:38:24 PM2/21/2013 3:38:24 PM

504 Introduction to Soft Computing

Solution 11.9 Let A1, A2 and A3 be the variables corresponding to the words starting at cells marked
1, 2 and 3, respectively across the rows of the array and D1, D4 be variables for the words starting at cells
marked 1 and 4 in the downward direction. Among these variables A1, A2 and D4 refer to three-letter
words and A3 and D1 are four-letter words. If we adopt the conventional array notation then the con-
straint that the fi rst letter of A1 is identical to the fi rst letter of D1 also can be expressed as A1[0] = D1[0].
Considering these, the given crossword puzzle can be formulated as a CSP in the following way:

CSP formulation

Variables: 1. A1, A2, A3, D1, D4

Domains:2. D(A1) = {COW, FOX, RAT}
 D(A2) = {COW, FOX, RAT}
 D(A3) = {FROG, GOAT}

 D(D1) = {FROG, GOAT }
 D(D4) = {COW, FOX, RAT}

Constraints: 3. C1 A1[0] = D1[0]
C2 A2[1] = D1[2]
C3 A3[0] = D1[3]
C4 A3[3] = D4[2]

Table 11.13 shows the details of the variables, the starting cells and the domains.

Table 11.13. Details of the variables

Variable
(xi)

Starting
cell

Domain
(Di)

A1 1 {COW, FOX, RAT}

A2 2 {COW, FOX, RAT}

A3 3 {FROG, GOAT}

D1 1 {FROG, GOAT}

D4 4 {COW, FOX, RAT}

Th e constraint graph is shown in Fig. 11.109.

C1

C2CC C3CC
C4CC

A1 A2

D1 D4DD

A3

Fig. 11.109. Constraint graph for the crossword puzzle.

Th e step-by-step execution trace of the backtracking DFS for the problem is shown in Table 11.14. Th e
columns of Table 11.14 contain the current domains of the variables. A value that has been assigned to a

Samir Roy_Chapter11.indd 504Samir Roy_Chapter11.indd 504 2/21/2013 3:38:25 PM2/21/2013 3:38:25 PM

Elementary Search Techniques 505

variable is shown inside an oval. For example, in the second row of the table (Step 1) the value GOAT in
the column marked for the variable D1 is inside an oval. Th is represents the assignment 〈D1, FROG〉. Th e
shaded ovals indicate the latest assignment made in the current step. Initially at Step 0 the state of the
problem corresponds to the null assignment and all the domains are in their full capacities. Th e progress
of the algorithm during the subsequent steps is described below.

Table 11.14. Trace of backtracking DFS for crossword puzzle

Step # A1 A2 A3 D1 D4

Step 0. COW, FOX, RAT COW, FOX,
RAT

GOAT, FROG GOAT, FROG COW, FOX,
RAT

Step 1.
D1 ← GOAT

COW, FOX, RAT COW, FOX,
RAT

FROG
GOAT

COW, FOX,
RAT

Step 2.
A3 ← FROG

COW, FOX, RAT COW, FOX,
RAT FROG GOAT

COW, FOX,
RAT

A3[0]≠D1[3]
Back track to Step2

Step 3.
D1 ← FROG

COW, FOX, RAT COW, FOX,
RAT

GOAT
FROG

COW, FOX,
RAT

Step 4.
A3 ← GOAT

COW, FOX, RAT COW, FOX,
RAT GOAT FROG

COW, FOX,
RAT

Step 5.
A1 ← COW COW

FOX, RAT
GOAT FROG

FOX, RAT

A1[0]≠D1[0]
Back track

Step 6.
A1 ← FOX FOX

COW, RAT
GOAT FROG

COW, RAT

Step 7.
A2 ← COW FOX COW GOAT FROG

RAT

Step 8.
D4 ← RAT FOX COW GOAT FROG RAT

Solution: {〈A
1
, FOX〉,〈A

2
, COW〉,〈A

3
, GOAT〉,〈D

1
, FROG〉,〈D

4
, RAT〉}

Step 1. To select the fi rst variable for assignment of a value we fi rst apply the MRV heuristic and fi nd
that both D1 and A3 are the candidates. To resolve the tie we apply the degree heuristic and
fi nd that D1 is the candidate as it is involved with the highest number of variables (3) through
constraints. Hence we select D1 for assignment at this stage. Now, the current domain of D1
is {FROG, GOAT}. Among these candidates the value GOAT is selected for D1. Hence the

Samir Roy_Chapter11.indd 505Samir Roy_Chapter11.indd 505 2/21/2013 3:38:25 PM2/21/2013 3:38:25 PM

506 Introduction to Soft Computing

assignment is now {〈D1, GOAT〉}. Th is assignment immediately removes the value GOAT
from other domains. However, as D(A3) = {FROG, GOAT} is the only other domain contain-
ing GOAT as a member. Th erefore D(A3) reduces to {FROG} aft er this step.

Step 2. As A3 has minimum number of remaining values, just one – FROG, it is the candidate for next
assignment and we assign 〈A3, FROG〉 making the current assignment state as {〈A3, FROG〉 ,
〈D1, GOAT〉}. However, this assignment violates the constraint A3[0] = D1[3] because in this
case A3[0] = F and D1[3] = T. Since A3 does not have any other value to try, we have to reject this
assignment and backtrack to step 1.

Step 3. We retrieve the assigned value of D1 and try with the other alternative, i.e., FROG. Hence the
state of the problem becomes {〈D1, FROG〉}. Th is assignment reduces the domain of A3 to a
single value D(A3) = {GOAT}.

Step 4. A3 is given the value GOAT. Now the constraint A3[0] = D1[3] is satisfi ed because both A3[0] and
D1[3] are now G. Th e assignment state is {〈A3, GOAT〉 , 〈D1, FROG〉}.

Step 5. A1 is selected for the next assignment and we assign 〈A1, COW〉. Accordingly COW is elimi-
nated from both D(A2) and D(D4). But this assignment 〈A1, COW〉 violates the constraint C1 :
A1[0] = D1[0]. Th erefore we have to reject it and backtrack. Th is is done in Step 6 where we try
with A1 ← FOX and this turns out to be the right choice.

Th e rest of the process as depicted in Table 11.14 is self-explanatory. Ultimately we get the solution
{〈A1, FOX〉,〈A2, COW〉,〈A3, GOAT〉,〈D1, FROG〉,〈D4, RAT〉. Th e solved crossword puzzle is shown in
Fig. 11.110.

1

1 2 3 4 5

F O X

R R

C O W A

G O A T

2

3

4

{〈A1, FOX〉,〈A2, COW〉,〈A3,
GOAT〉,〈D1, FROG〉,〈D4, RAT〉}

(9)

(8)

(7)(6)

Backtrack

(5)

Backtrack

(3)

(4)(2)

(1) { }

A3 ←← FROG

D1DD ←← FROGD1DD ←← GOAT

A3 ←← GOAT

A1 ←← RAT

A2 ←← RAT

D4DD ←← RAT

A1 ←← COW

A2 ←← COW

A1 ←← FOXOO

Fig. 11.110. Solution of the
crossword puzzle.

Fig. 11.111. Solution tree for the crossword puzzle under
backtracking DFS strategy.

Samir Roy_Chapter11.indd 506Samir Roy_Chapter11.indd 506 2/21/2013 3:38:25 PM2/21/2013 3:38:25 PM

Elementary Search Techniques 507

Fig. 11.111 represents the solution tree where the backtracking paths are indicated with dotted lines. Th e
numbers in the parentheses give the sequence in which the nodes are explored.

Problem 11.10 (Applying constraint satisfaction to solve cryptarithmetic puzzle) Cryptarithmetic
puzzles are typical CSPs with general constraints. Consider the following cryptarithmetic problem:

O N E
+ O N E

T W O

It is required to fi nd values (taken from the set of 10 digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} for the letters E, N, O,
T and W such that their substitution into the above scheme results in a valid addition. Moreover, all the
values of E, N, O, T and W should be diff erent. Formulate the problem as a CSP and solve it.

Solution 11.10 First we present the CSP formulation then work for a solution to the formulated
CSP. In this case, apart from the fi ve variables E, N, O, T and W directly involved with the CSP we need
to consider two more variables, say X1 and X2, corresponding to the two carries of addition. Let X1 be the
carry produced by adding the digits at the unit place and X1 be the same for the 10’s place. As it is seen
from the scheme the last addition does not produce any carry.

CSP formulation

Variables: 1. E,N,O,T,W
Auxilary Variables: X1, X2

Domains: 2. D(E) = D(N) = D(O) = D(T) = D(W)
 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
 D(X1) = D(X2) = {0, 1}

Constraints: 3. C1 : E ≠ N≠ O ≠ T ≠ W
 C2 : E + E = O + 10 × X1
 C3 : N + N + X1 = W + 10 × X2
 C4 : O + O + X2 = T

As the constraints are general in nature, i.e., they involve more than two variables, we should have a con-
straint constraint hypergraph and not just a constraint graph. Th is hypergraph is shown in Fig. 11.112.
Now we go for the solution. Th e trace of the solution process is depicted in Table 11.15. Successive steps
described below.
Step 1. Applying the MRV heuristic, we identify X1 or X2 as the probable candidates for the fi rst assignment

of value. To resolve the tie, let us apply the degree heuristic. However, the degree heuristic does
not help much because both the variables happen to be involved with 5 other variables through
constraints (see Fig. 11.112). Th erefore we resolve the tie arbitrarily and make the assignment X1
← 0. However this assignment has its implications on the domains of the other variables. Let us
see how. If X1 = 0 then according to constraint C2 we have E + E = O + 10 × 0 = O. As 2 × E = O, O
must be an even digit. Th is makes D(O) = {0, 2, 4, 6, 8}. However, O can not be 0 because in that
case E is also 0 and we would have E = O which violates constraint C1. Th erefore 0 is eliminated
from D(O) to obtain D(O) = {2, 4, 6, 8}. In Table 11.15 this is shown in a sub-row demarked with
dotted lines within the row for Step 1. Now as 2 × E = O, i.e., E = O/2, domain of E is reduced to
D(E) = {1, 2, 3, 4}. Let us now focus on constraint C4 : O + O + X2 = T. If X2 = 0 then T can be either

Samir Roy_Chapter11.indd 507Samir Roy_Chapter11.indd 507 2/21/2013 3:38:26 PM2/21/2013 3:38:26 PM

508 Introduction to Soft Computing

4, or 8 depending on whether O is 2, or 4. Similarly, if X2 = 1 then T = 5, or 9. Th e fact that T is a
single digit eliminates 6 and 8 from the domain of O which in turn removes 3 and 4 from D(E).
Hence ultimately we get D(E) = {1, 2}, D(O) = {2, 4}, and D(T) = {4, 5, 8, 9}. All these are shown in
the sub-rows within the row for Step 1 in Table 11.15.

E

C1

N O T W

C2CC C3CC C4CC

X1XX X2XX

Fig. 11.112. Hypergraph for the cryptarithmetic puzzle.

Step 2. At the end of the fi rst step the problem state is {〈X1, 0〉} and the domains of the unassigned
variables are D(E) = {1, 2}, D(O) = {2, 4}, D(T) = {4, 5, 8, 9}, D(N) = D(W) = {1-9}, and D(X2)
= {0,1}. Th e MRV heuristic off ers three candidates, viz., E, O and X2, for assigning a value in
the second step. Th e tie should be resolved through the degree heuristic. Now, consulting the
hypergraph of Fig. 11.112 it is seen that the variables E, O and X2 are involved with 4, 5 and 4
number of yet unassigned variables through the constraints. Th erefore O is selected. Th e can-
didate values 2 and 4 have the same eff ect on the domains of other related variables. Hence we
arbitrarily choose O ← 2. Th is immediately removes 2 from all other domains and 8 and 9 from
the domain of T by virtue of constraint C4. Hence the state of the problem at the end of Step 2
is {〈O, 2〉, 〈X1, 0〉}.

Step 3. At this point E has only one legal value left in its domain, and all other unassigned variables
have more that one values in their domains. Hence the assignment E ← 1 is made resulting in
the state {〈E, 1〉, 〈O, 2〉, 〈X1, 0〉}. Th e value of 1 is removed from all other domains, except X2.

Th e rest of the steps can be traced similarly. Table 11.15 depicts the entire process.At each step the assign-
ment made is highlighted with boldfaces. Th e blank cells indicate that the domains of the corresponding
variables have remained unchanged.

Table 11.15. Trace of backtracking DFS for cryptarithmetic puzzle

E N O T W X1 X2

Step 0: {0-9} {0-9} {0-9} {0-9} {0-9} {0, 1} {0, 1}

(continued)

Samir Roy_Chapter11.indd 508Samir Roy_Chapter11.indd 508 2/21/2013 3:38:26 PM2/21/2013 3:38:26 PM

Elementary Search Techniques 509

Table 11.15. Continued

E N O T W X1 X2

Step 1:
X1 ← 0

X1←0

{2, 4, 6, 8}

{1, 2, 3, 4} {4, 5, 8, 9}

{2, 4}

{1, 2}

Step 2:
O ← 2

{1, 2} {0−9} O ←2 {4, 5, 8, 9} {0−9} 〈X1, 0〉 {0, 1}

{1} {0−1, 3−9} {4, 5} {0−1, 3−9}

Step 3:
E ← 1

E ← 1 {0−1, 3−9} 〈O, 2〉 {4, 5} {0−1, 3−9} 〈X1, 0〉 {0, 1}

{0, 3−9} {0, 3−9}

Step 4:
X2 ← 0

〈E, 1〉 {0, 3−9} 〈O, 2〉 {4, 5} {0, 3−9} 〈X1, 0〉 X2 ← 0

{4}

{0, 3} {0, 6}

Step 5:
T ← 4

〈E, 1〉 {0, 3} 〈O, 2〉 T ← 4 {0, 6} 〈X1, 0〉 〈X2, 0〉

Step 6:
N ← 0

〈E, 1〉 N ← 0 〈O, 2〉 〈T, 4〉 {0, 6} 〈X1, 0〉 〈X2, 0〉

{6}
(C3 violated.
Backtrack)

Step 7:
N ← 3

〈E, 1〉 N ← 3 〈O, 2〉 〈T, 4〉 {0, 6} 〈X1, 0〉 〈X2, 0〉

{6}

Step 8:
W ← 6

〈E, 1〉 〈N, 3〉 〈O, 2〉 〈T, 4〉 W ← 6 〈X1, 0〉 〈X2, 0〉

Solution : {〈E, 1〉,〈N, 3〉,〈O, 2〉,〈T, 4〉,〈W, 6〉}

Substituting these values into the given puzzle we get the following consistent solution. Obviously,
the solution is not unique. Diff erent solutions may be obtained by assigning diff erent values to variables,
wherever applicable.

2 3 1
2 3 1
4 6 2

Problem 11.11 (Transformation of propositional logic formulae through means-ends analy-
sis) Propositional logic formulae are converted from one form to other using standard rules, e.g., com-
mutative law, associative law, distributive law, De Morgan’s law etc.Propose a Means-Ends Analysis system
to automate such transformation and apply it to transform the formula (P→Q)∧(P→R) to (R∧Q)∨¬P.

Samir Roy_Chapter11.indd 509Samir Roy_Chapter11.indd 509 2/21/2013 3:38:26 PM2/21/2013 3:38:26 PM

510 Introduction to Soft Computing

Solution 11.11 Equivalent propositional formulae may structurally diff er in many ways. For ex-
ample the formulae A∧B and B∧A diff er in their relative positions. Th is diff erence can be removed by
applying the commutative law. Similarly, the distributive law which states that (P∨Q)∧(P∨R) = P∨(Q∧R)
can be applied to reduce the diff erence between the number of occurrences of a variable. Table 11.16
presents some of the fundamental operations, or rules, that can be used to reduce various such diff er-
ences between an intermediate formula and a goal formula. Th e table indicates the pre-conditions as well
as the post-conditions corresponding to these operations.

Table 11.16. Difference Table for Transformation of Logical Formulae

Difference Operator Precondition Postcondition

Presence / absence of
the implication sign (→)

remove implication P→Q ¬P∨Q

Relative positions of the
variables

commutative law i) P∨Q
ii) P∧Q

Q∨P
Q∧P

Number of occurrences
of the variables

distributive law i) (P∨Q)∧(P∨R)
ii) (P∧Q)∨(P∧R)
iii) (P∨(Q∧R)
iv) P∧(Q∨R)

P∨(Q∧R)
P∧(Q∨R)
(P∨Q)∧(P∨R)
(P∧Q)∨(P∧R)

Presence / absence of
parenthesis

De-Morgan’s law i) ¬(P∨Q)
ii) ¬(P∧Q)
iii) ¬P∧¬Q
iv) ¬P∨¬Q

¬P∧¬Q
¬P∨¬Q
¬(P∨Q)
¬(P∧Q)

Fig. 11.113 (a) - (b) and Fig. 11.114 (a) - (c) together show the trace of an MEA process applied to the
given formulae. Let the starting formula (P→Q)∧(P→R) be denoted as the initial state Si and the fi nal
form (R∧Q)∨¬P as Sg, the goal state. Si and Sg involve 3 variables P, Q and R. Th ese variables have oc-
curred a total of 4 times in Si and 3 times in Sg.

Diff: No. of occurrences of variables
Operation: Distriii buii tive law

Diff: Nov of occurrences of variables
Operation: distriii buii tive law

(a)

(b)

SgSS : (R ∧ Q) ∨ ¬ P

SgSS : (R ∧ Q) ∨ ¬ P

S1 : (R ∨¬ P) ∧ (Q ∨¬ P)

Si : (P → Q) ∧ (P → R)

Si : (P → Q) ∧ (P → R)

Diff: Implicatiott n sign (→)
Operation: Remove →

Fig. 11.113 (a)–(b). First two steps

Samir Roy_Chapter11.indd 510Samir Roy_Chapter11.indd 510 2/21/2013 3:38:27 PM2/21/2013 3:38:27 PM

Elementary Search Techniques 511

(a)

S2SS : (¬P ∨ Q) ∧ (¬P ∨ R)

Si : (P → Q) ∧ (P → R)

Diff: Relative positions of ¬P & Q
Operation: Commutative law

Diff: No of occurrences of variables
Operation: distriii buii tive law

S1 : (R ∨¬ P) ∧ (Q ∨¬ P)

Diff: Implicatiott n sign (→)
Operation: Remove →

Sg SS : (R ∧ Q) ∨ ¬ P

(b)

S3SS : (Q ∨ ¬P) ∧ (¬P ∨ R)

Diff: Relative positions of ¬P & R
Operation: Commutative law

Diff: Relative positions of ¬P & Q
Operation: Commutative law

Diff: Relative positions of ¬P & Q
Operation: Commutative law

Diff: Relative positions of (Q ∨ ¬P) & (¬P ∨ R)
Operation: Commutative law

Diff: No of occurrences of variables
Operation: distriii buii tive law

S1 : (R ∧¬ P) ∧ (Q ∨¬ P)

Diff: Implicll atiott n sign (→)
Operation: Remove →

Sg SS : (R ∧ Q) ∨ ¬ P

S2SS : (¬P ∨ Q) ∧ (¬P ∨ R)

Si : (P → Q) ∧ (P → R)

(c)

S4SS : (¬P ∨ R) ∧ (Q ∨ ¬P)

Diff: Relative positions of ¬p & Q
Operation: Commutative law

Diff: No of occurrences of variables
Operation: distriii buii tive law

S1 : (R ∧¬ P) ∧ (Q ∨¬ P)

SgSS : (R ∧ Q) ∨ ¬ P

S3 SS : (Q ∨ ¬P) ∧ (¬P ∨ R)

Diff: Implicll atiott n sign (→)
Operation: Remove →

Si : (P → Q) ∧ (P → R)

S2 SS : (¬P ∨ Q) ∧ (¬P ∨ R)

Fig. 11.114. (a)–(c) Last three steps

Let us suppose that the systems presently considers this to be the most important diff erence and identi-
fi es, with the help of the Diff erence-operator table, the distributive law (P∨Q)∧(P∨R) = P∨(Q∧R) as the
appropriate operation for reducing the said diff erence. Moreover, consulting the pre-condition vis-à-vis
the structure of the goal Sg = (R∧Q)∨¬P the system creates a sub-goal S1: (R∨¬P)∧(Q∨¬P). Th ese two
steps are shown in Fig. 11.113 (a) - (b). Th e solid and the dashed arrows depict diff erences already ad-
dressed and diff erences yet to be addressed, respectively.

To reduce the gap between Si and S1, the system considers the main diff erence to be the presence
and absence of the implication (→) sign in the respective formula, i.e., Si and S1. Th erefore the opera-
tion to be applied is remove implication with the help of the rule P→Q = ¬P∨Q. Th e rest of the trace
is given in Fig. 11.114 (a)–(c). Th e generated plan of actions as well as the gradual transformation of

Samir Roy_Chapter11.indd 511Samir Roy_Chapter11.indd 511 2/21/2013 3:38:27 PM2/21/2013 3:38:27 PM

512 Introduction to Soft Computing

the formulae from the initial state to the goal state resulting from the application of these operations is
shown in Fig. 11.115.

GOAL

START

Diff: Implicatiott n sign (→)
Operation: Remove →

Diff: Relative positions of ¬P & Q
Operation: Commutattt ivtt e vv law

Diff: Relative positions of ¬P & R
Operation: Commutative law

Diff: Relative positions of (Q ∨¬ P) & (¬P ∨ R)
Operation: Commutative law

Diff: No. of occurrences of variables
Operation: Distriii buii tive law

Si : (P → Q) ∧ (P → R)

S2SS : (¬P ∨ Q) ∧ (¬P ∨R)

S3SS : (Q ∨ ¬P) ∧ (¬P ∨R)

S4SS : (¬P∨R) ∧ (Q∨¬QQ R)

S1 : (R∧¬RR P) ∧ (Q ∨¬P)

S0 SS : (R∧RR Q) ∨¬ P

Fig. 11.115. Plan generated through the MEA process for transformation of predicate logic formulae

Problem 11.12 (Solving the Monkey-and-Banana Problem applying means-ends analysis) Con-
sider the simple world of a monkey. Th ere is a room with a door and a window. A box is placed at the
window and a bunch of bananas is hanging from the ceiling at the middle of the room. Th e monkey is
hungry but it cannot get the bananas as these are out of its reach. However, if the box is placed at the
middle of the room just below the bunch of bananas and the monkey climbs the top of the box then it
can grab the bananas and eat them. Th e monkey can walk, can push the box along the fl oor, can climb on
the top of the box, and if within its reach, it can grab the bananas. Initially the monkey is at the door of
the room. Can it catch the bananas? If yes, what sequence of actions must be taken to achieve this goal?
Propose a Means-Ends Analysis system to solve this problem.

Solution 11.12 Th ere are four signifi cant parameters to characterize a state of the given Monkey-
and-Banana problem, viz., the position of the monkey, whether the monkey is on the fl oor or on the
box, the position of the box, and whether the monkey is holding the banana or not. Hence, a state of the
system can be expressed as a 4-tuple < P, Q, R, S > where

Samir Roy_Chapter11.indd 512Samir Roy_Chapter11.indd 512 2/21/2013 3:38:28 PM2/21/2013 3:38:28 PM

Elementary Search Techniques 513

 P is the position of the monkey
 Q is whether the monkey is on the fl oor or on the box
 R is the position of the box
 S is whether the monkey has grasped the banana or not.

Banana at the
middle

window

box

door

monkey

Initial State
P, i.e., position of monkey = Door
Q, i.e., whether the monkey is on the fl oor, or on the box = Floor
R, i.e., position of the box = Window
S, i.e., whether the monkey holds the banana or not = No

Fig. 11.116. Initial state of the Monkey-and-Banana problem

For the sake of simplicity we assume that the monkey can be either at the door, or at the window, or at
the middle of the room. Similarly, the box can also be at one of these positions only. Hence the domains
of P, Q, R, and S are defi ned as follows:

 P ∈ { Door, Window, Middle }
 Q ∈ { Floor, Box }
 R ∈ { Door, Window, Middle }
 S ∈ { Yes, No }

Th ere are four activities of the monkey, viz., it can walk from place to place, it can push the box from
one place to another, it can climb the box, and if possible, it can grab the banana. However, each of these
activities requires certain conditions to hold good. For example, in order to push the box from position
X to position Y both the monkey and the box must be at position X. Moreover, the monkey should be
on the fl oor to push the box. As a result of pushing the box from X to Y the monkey as well as the box
will be at Y. Th e initial state of the system is < Door, Floor, Window, No > because in the beginning the
monkey is at the door, on the fl oor, the box is at the window, and the monkey is not holding the banana.
Th e fi nal state is given by < Middle, Box, Middle, Yes >. Fig. 11.116 and Fig. 11.117 present the initial and
the goal states of the given problem.

Samir Roy_Chapter11.indd 513Samir Roy_Chapter11.indd 513 2/21/2013 3:38:28 PM2/21/2013 3:38:28 PM

514 Introduction to Soft Computing

Goal State
P, position of monkey = Middle
Q, whether the monkey is in the fl oor, or on the box = Box
R, position of the box = Middle
S, whether the monkey holds the banana or not = Yes

Fig. 11.117. Goal state of the Monkey-and-Banana problem

Fig. 11.118 shows the Diff erence-Operator-Precondition table for this problem. Initially the system rec-
ognizes the most important diff erence between the start state and the goal state to be with respect to the
status of the banana. Consulting the Diff erence-operator table it is found that the only operation capable
of reducing this diff erence is grab().

Location of mf onkeykk √

Location of box √

Level of mf onkey’kk s ’ positiott n √

Status of the banana √

Operations

W
alk

M
on

ke
y

on
 fl

oo
r

(1
) L

oc
at

io
n

of
 m

on
ke

y

an
d

bo
x

is
 th

e
sa

m
e

(2
) M

on
ke

y
on

 fl
oo

r

(1
) L

oc
at

io
n

of
 m

on
ke

y

an
d

bo
x

is
 th

e
sa

m
e

(2
) M

on
ke

y
on

 fl
oo

r
(1

) M
on

ke
y

an
d

bo
x

ar
e

al
l t

he
 m

id
dl

e

(2
) M

on
ke

y
on

 b
ox

Pus
h

Clim
b

Gra
b

D
iff

er
en

ce
s

Preconditions

Fig. 11.118. The Difference-Operator-Precondition table for the Monkey-and-Banana problem

Samir Roy_Chapter11.indd 514Samir Roy_Chapter11.indd 514 2/21/2013 3:38:28 PM2/21/2013 3:38:28 PM

Elementary Search Techniques 515

GoalStart

Door

Floor

Window

No

Middle

Box

Middle

Yes

Door

Floor

Window

No

Middle

Box

Middle

No

Middle

Box

Middle

Yes

Door

Floor

Window

No

Door

Floor

Window

No

Window

Floor

Window

No

Middle

Floor

Middle

No

Middle

Box

Middle

No

Middle

Box

Middle

Yes

Window

Floor

Window

No

Middle

Floor

Middle

No

Middle

Box

Middle

No

Middle

Box

Middle

Yes

(a)

(b)

(c)

(d)

Diff: Status of banana

Diff: Location of Boxoo

Op: Grab()

Op: Push()

Push()

Push
(Window
to
Middle)

Grab()

Grab()

Grab()

Op: Walkll ()kk

Walk
(Door to
Window)

Op:
Climb()

Climb()

Start S1 Goal

S3SS

S3SS

S2SS

S2SS

S1

S1

GoalStart

Diff:
Location
of
monkey

Diff:
Level of
monkey’se
position

GoalStart

Fig. 11.119. Solving the Monkey-and-Banana problem through Means-Ends Analysis

However, in order to grab the banana both the monkey and the box should be in the middle and the
monkey should be on the box. Th erefore a sub-goal S1 corresponding to such a state is created (see
Fig. 11.119 (a) - (b)). As usual, the dashed lines represent the diff erences yet to be removed and the
solid lines correspond to diff erences already addressed through appropriate operations.

Th e situation depicted in Fig. 11.119 (c) is noteworthy. Th e diff erence identifi ed by the system be-
tween the start state and S1 is location of box and the operation to remove that diff erence is push (see
Fig. 11.119 (b)). However, application of the operation push results in creation of states S2 and S3 both of
which are intermediate between the start state and S1. Consequently, the gap between the start state and
S1 is fragmented into two gaps, viz., one between the start state and S2 and the other between S3 and S2.
Th e operators employed to bridge these gaps are shown in Fig. 11.119 (c) - (d).

� TEST YOUR KNOWLEDGE

11.1 Which of the following search algorithm is not admissible?
a) Breadth-fi rst search b) Depth-fi rst search
c) A* d) None of the above

Samir Roy_Chapter11.indd 515Samir Roy_Chapter11.indd 515 2/21/2013 3:38:29 PM2/21/2013 3:38:29 PM

516 Introduction to Soft Computing

11.2 For an ideal search process the penetrance P attains the value
a) 0 b) 0.5
c) 1 d) None of the above

11.3 Let P be the penetrance and B be the eff ective branching factor of an A* search. Th en which of the
following is true?
a) P ≤ 1 and B ≤ 1 b) P ≤ 1 and B ≥ 1
c) P ≥ 1 and B ≤ 1 d) P ≥ 1 and B ≥ 1

11.4 Let P be the penetrance and B be the eff ective branching factor of an A* search. Which of the fol-
lowing is true for an ideal A* search?
a) P = 1 and B = 1 b) P = 1 and B ≠ 1
c) P ≠ 1 and B = 1 d) P ≠ 1 and B ≠ 1

11.5 Let A1 and A2 be two A* algorithms using the heuristic estimation functions h1 and h2 such that A2
is more informed than A1. Th en for any node n of the search space which of the following holds
good?
a) h1(n) ≤ h2(n) b) h2(n) ≤ h1(n)
c) h1(n) ≠ h2(n) d) None of the above

11.6 If there exists a goal in the state space, an A* algorithms will not terminate if
a) Th e state space is infi nite b) Th e state space contains cycles
c) Th e state space is not fully connected d) None of the above

11.7 In which of the following situations, an A* algorithms fails to return an optimal path from the
start state to a goal state?
a) Th e state space is infi nite b) Th e state space contains cycles
c) Th e state space is not fully connected d) None of the above

11.8 Which of the following may not be true for a state space?
a) It has many goals states b) It has no goal state
c) It has some start state d) None of the above

11.9 Which of the following is not an exhaustive search?
a) Depth-fi rst search b) Breadth-fi rst search
c) Best-fi rst search d) None of the above

11.10 Th e possibility of reaching a goal by a depth-fi rst search is high if the state space has
a) Only a few goal states b) Many goal states
c) No goal state d) None of the above

11.11 Which of the following is not an informed search?
a) A-algorithm b) A*-algorithm
c) Best-fi rst search d) None of the above

11.12 Which of the following is not an un-informed search?
a) Depth-fi rst search b) Breadth-fi rst search
c) Bidirectional d) None of the above

11.13 Let A1 and A2 be two A* algorithms using the heuristic estimation functions h1 and h2 such that
for any node n of the search space h1(n) ≥ h2(n). Th en which among A1 and A2 will explore more
nodes?
a) A1 b) A2
c) Uncertain d) None of the above

11.14 Which of the following search procedures is not applicable when there are multiple goal states?
a) Bidirectional b) Iterative deepening
c) Depth-fi rst d) None of the above

Samir Roy_Chapter11.indd 516Samir Roy_Chapter11.indd 516 2/21/2013 3:38:29 PM2/21/2013 3:38:29 PM

Elementary Search Techniques 517

11.15 Which of the following search procedures has best time complexity?
a) Breadth-fi rst b) Iterative deepening
c) Depth-fi rst d) Bidirectional

J

DB

F H I

K L

GE

C

A

M

Fig. 11.120

11.16 Fig. 11.120 shows a state space with a number of goal states and the start state A. Which of the
following search strategies is the most appropriate for such a state space?
a) Breadth-fi rst b) Depth-fi rst
c) Either (a) or (b) d) None of the above

J

DB

F H I

K L

GE

C

A

M

Fig. 11.121

11.17 Fig. 11.121 shows a state space with a single goal state I and the start state A. Which of the follow-
ing search strategies is the most appropriate for such a state space?
a) Breadth-fi rst b) Depth-fi rst
c) Either (a) or (b) d) None of the above

11.18 Fig. 11.122 shows a state space with estimated costs attached to each state. Which set of states will
remain open aft er the node marked B is expanded?

Samir Roy_Chapter11.indd 517Samir Roy_Chapter11.indd 517 2/21/2013 3:38:29 PM2/21/2013 3:38:29 PM

518 Introduction to Soft Computing

a) {A,B,C,D,E,F,G} b) {E,F,G}
c) {D,E,F,G} d) {E,F,G,H,I}

J

DB

F H I

K L

GE

C

A(30)

(23)

(40)

(33)
(5)

(15)

(24)

(11) (13)

(20)

(25)

(10)

(27)

M

Fig. 11.122. A state space with estimated costs of each state

11.19 Fig. 11.122 shows a state space with estimated costs attached to each state. Which of the following
states will be explored and expanded aft er B?
a) C b) H
c) F d) L

11.20 Fig. 11.122 shows a state space with estimated costs attached to each state. How many nodes will
remain in the OPEN queue aft er reaching the goal state?
a) 1 b) 2
c) 3 d) 4

11.21 Which of the following describes hill climbing strategy best?
a) It is a local search b) It is adversarial search
c) It is an admissible search d) None of the above

11.22 Which of the following is not true for a hill climbing search?
a) It uses an objective function
b) It employs heuristic knowledge
c) It solves optimization problems
d) None of the above

11.23 Which of the following may cause a hill climbing process to return a sub-optimal solution?
a) Th e state space is too large
b) Th ere are local optima in the state space
c) Th e objective function is not appropriate
d) None of the above

11.24 Among the following, whose existence within the state space does not hinder a hill climbing
process in its progress towards the global optimum?
a) Plateaux b) Local optima
c) Ridges d) None of the above

Samir Roy_Chapter11.indd 518Samir Roy_Chapter11.indd 518 2/21/2013 3:38:30 PM2/21/2013 3:38:30 PM

Elementary Search Techniques 519

11.25 Between regular hill climbing and steepest ascent hill climbing, which one is likely to return a
better solution?
a) Regular hill climbing b) Steepest ascent hill climbing
c) Uncertain d) None of the above

11.26 Between regular hill climbing and steepest ascent hill climbing, which one is more likely to get
stuck in a local optima?
a) Regular hill climbing b) Steepest ascent hill climbing
c) Uncertain d) None of the above

11.27 Which of the following problems is not suitable for hill climbing as a solution strategy?
a) Traveling salesperson b) 8-queen
c) CNF satisfi ability d) None of the above

11.28 Which of the following structures in a state space may consist of a number of local optima?
a) Plateaux b) Ridges
c) Both (a) and (b) d) Neither (a) nor (b)

11.29 AND-OR graphs are suitable representations of problems that are
a) Irrevocable b) Decomposable
c) Intractable d) None of the above

11.30 Which of the following can be considered as a special case of AND-OR graphs?
a) State space b) Semantic networks
c) Both (a) and (b) d) None of the above

11.31 Th e sub-problems into which the problem corresponding to an AND-node of an AND-OR tree
are decomposed should be
a) Independently solvable b) Further decomposable
c) Trivially solvable d) None of the above

11.32 In order to solve an OR node of an AND-OR graph we have to solve
a) Its parent node b) Any one of its successors
c) All of its successors d) None of the above

11.33 In order to solve an AND node of an AND-OR graph we have to solve
a) Its parent node b) Any one of its successors
c) All of its successors d) None of the above

11.34 Solution of a problem expressed as an AND-OR tree is represented by
a) A path b) A leaf node
c) Th e root node d) A sub-tree

11.35 In an AND-OR graph, the optimization criteria can be formulated by attaching costs/weights to
the
a) Nodes b) Arcs
c) Both (a) and (b) d) None of the above

11.36 Let h(n) be the value of the heuristic function at node n and h1(n) be the estimated value ofh(n).
Which of the following conditions must be satisfi ed to make AO* algorithm admissible?
a) h1(n) ≤ h(n) b) h1(n) ≥ h(n)
c) h1(n) ≠ h(n) d) None of the above

11.37 In which of the following situations of AO* search a node is marked as FUTILE?
a) Th e estimated cost of the node becomes too high
b) Th e problem represented by the node is unsolvable

Samir Roy_Chapter11.indd 519Samir Roy_Chapter11.indd 519 2/21/2013 3:38:30 PM2/21/2013 3:38:30 PM

520 Introduction to Soft Computing

c) Either (a) or (b)
d) None of the above

11.38 Consider the partially created AND-OR graph of Fig. 11.123. Assuming a uniform cost of 1 for
each link, which of the following nodes will be chosen for expansion in this situation?
a) x b) y
c) z d) None of the above

a

x y z

(5) (2)(3)

Fig. 11.123

11.39 Which of the following is a kind of best-fi rst search?
a) A* b) AO*
c) Both (a) and (b) d) None of the above

11.40 Which of the following problems is neither monotonic, nor partially commutative?
a) Th eorem proving b) Chemical synthesis
c) Robot navigation d) Playing a game of bridge

11.41 Which of the following problems is both monotonic and partially commutative?
a) Th eorem proving b) Chemical synthesis
c) Robot navigation d) Playing a game of bridge

11.42 Which of the following is not a part of a AI production system?
a) Global Database b) Production rules
c) Control strategy d) None of the above

11.43 What kind of control system a backtracking control system is?
a) Irrevocable b) Tentative
c) Both (a) and (b) d) Neither (a) nor (b)

11.44 A commutative production system is one which is
a) Monotonic b) Partially commutative
c) Both (a) and (b) d) Neither (a) nor (b)

11.45 For a given problem, the way to decide which between BFS and DFS is more effi cient is
a) By running BFS and DFS for the problem separately.
b) By analyzing the problem
c) By simulation
d) None of the above

11.46 Which among the following usually requires less memory ?
a) BFS b) DFS
c) Undecidable d) None of the above

11.47 Depth-fi rst iterative deepening is a combination of
a) BFS and DFS b) Best-fi rst search and bidirectional search
c) A* search and AO* search d) None of the above

Samir Roy_Chapter11.indd 520Samir Roy_Chapter11.indd 520 2/21/2013 3:38:30 PM2/21/2013 3:38:30 PM

Elementary Search Techniques 521

11.48 Which among the following search techniques assumes the heuristic function as 0 for all
nodes ?
a) BFS b) Branch and bound
c) Both (a) and (b) d) None of the above

11.49 Which of the following search techniques make use of AND-OR graphs ?
a) Branch and bound b) Problem reduction
c) Hill climbing d) None of the above

11.50 In state space search heuristic knowledge is employed to
a) improve the quality of the solution b) make the search faster
c) Both (a) and (b) d) None of the above

11.51 In which of the following problem solving strategies the path by which a solution is reached is
irrelevant?
a) Means-Ends Analysis b) Minimax search
c) Constraint Satisfaction d) None of the above

11.52 Which of the following is not a constraint satisfaction problem?
a) Linear programming b) Graph colouring
c) 8-queen d) None of the above

11.53 In the context of constraint satisfaction problems which of the following statements is true?
a) All general constraints can be converted to binary constraints
b) All binary constraints can be converted to unary constraints
c) All general constraints can be converted to unary constraints
d) None of the above

11.54 Which of the following structures is used in a constraint satisfaction problem having constraints
involving more than two variables?
a) Constraint graph b) Constraint hypergraph
c) Both (a) and (b) d) None of the above

11.55 Which of the following methods of solving a constraint satisfaction problem starts with an empty
assignment and gradually proceeds towards a complete solution?
a) Backtracking DFS b) Min-confl ict local search
c) Both (a) and (b) d) None of the above

11.56 Which of the following methods of solving a constraint satisfaction problem starts with a complete
but inconsistent solution and then transforms it into a consistent complete solution?
a) Backtracking DFS b) Min-confl ict local search
c) Both (a) and (b) d) None of the above

11.57 While solving a constraint satisfaction problem through backtracking DFS, which of the following
is not used to select a variable for assignment?
a) Minimum remaining values heuristic b) Degree heuristic
c) Least constraining value heuristic d) None of the above

11.58 Which of the following methods of solving a constraint satisfaction problem involve constraint
propagation?
a) Backtracking DFS b) Min-confl ict local search
c) Both (a) and (b) d) None of the above

11.59 Consider the constraint hypergraph of Fig. 11.124. According to degree heuristic, which variable
should be considered for assigning a value at the beginning of a backtracking DFS strategy?
a) A b) B

Samir Roy_Chapter11.indd 521Samir Roy_Chapter11.indd 521 2/21/2013 3:38:31 PM2/21/2013 3:38:31 PM

522 Introduction to Soft Computing

c) C d) D

A

C1CC

B C D

C3CC C4CC C5CC

C2CC

Fig. 11.124 A constraint hypergraph

11.60 Consider the constraint hypergraph of Fig. 11.124. Suppose that C has been assigned a value and
the present domains for the remaining variables are as follows: D(A) = {v1, v2}, D(B) = {v3, v4, v5},
D(D) = {v6, v8}.
a) A b) B
c) D d) None of the above

11.61 Which of the following kinds of problems is suitable for adversarial search?
a) Th eorem proving b) Game playing
c) Robot navigation d) Language processing

11.62 Which of the following is an adversarial search procedure?
a) MiniMax procedure b) Mean-Ends analysis
c) Constraint satisfaction d) None of the above

11.63 In MiniMax search, Alpha-Beta pruning is used to
a) Limit the search to a fi xed depth
b) Guide the search towards a goal
c) To avoid irrelevant parts of the game tree during search
d) None of the above

11.64 Which of the following is a technique to determine the depth to which MiniMax search should
be conducted?
a) Alpha-Beta pruning b) Waiting for quiescence
c) Secondary search d) None of the above

11.65 Th e technique employed to avoid horizon eff ect in MiniMax search is
a) Alpha-Beta pruning b) Waiting for quiescence
c) Secondary search d) None of the above

11.66 Which of the following features of a depth-limited-MiniMax search embody heuristic knowledge
to win the game?
a) Depth limit of search b) Static evaluation function
c) Both (a) and (b) d) None of the above

11.67 Fig. 53.16 presents a game tree showing the scores of the terminal nodes according to some static
evaluation function. What is the Mini-Max value of node A?
a) −∞ b) 0
c) 3 d) 5

Samir Roy_Chapter11.indd 522Samir Roy_Chapter11.indd 522 2/21/2013 3:38:31 PM2/21/2013 3:38:31 PM

Elementary Search Techniques 523

11.68 On the basis of the game tree presented in Fig. 11.125, which node represents the best move for
MAX in this turn?
a) B b) C
c) D d) None of the above

(0)(−∞)

(−∞)

B

A

C

E F

(3) (5)

G H

D

MAX

MAX

MIN

Fig. 11.125 A game tree

11.69 If the game tree presented in Fig. 11.125 is subject to Alpha-Beta pruning during a MiniMax
search, which of the following nodes will be pruned?
a) E b) F
c) G d) H

11.70 According to the game tree presented in Fig. 11.125, which of the following nodes represent the
worst move for MAX?
a) B b) C
c) D d) None of the above

11.71 Which of the following A.I systems fi rst exploited Means-End Analysis technique of problem
solving?
a) GPS b) MYCIN
c) ELIZA d) None of the above

11.72 Which of the following is not true for Means-End Analysis as a problem solving technique?
a) It is a recursive process
b) It can identify the diff erence between two problem states
c) It generates a plan of actions to solve a problem
d) None of the above

11.73 Which of the following A.I processes involve operator subgoaling?
a) Means-End Analysis
b) Hill climbing
c) Natural language processing
d) Pattern recognition

11.74 Which of the following A.I procedures makes use of a Diff erence-operator table?
a) AO* b) Mini-max
c) Constraint satisfaction d) Means-Ends Analysis

Samir Roy_Chapter11.indd 523Samir Roy_Chapter11.indd 523 2/21/2013 3:38:31 PM2/21/2013 3:38:31 PM

524 Introduction to Soft Computing

11.75 Which of the following best describes the Means-Ends Analysis process?
a) Its a top-down process b) Its a bottom-up process
c) Its an iterative deepening process d) None of the above

Answers:

 11.1 (b) 11.2 (c) 11.3 (b) 11.4 (a) 11.5 (a)
 11.6 (d) 11.7 (d) 11.8 (b) 11.9 (c) 11.10 (b)
 11.11 (d) 11.12 (d) 11.13 (b) 11.14 (a) 11.15 (d)
 11.16 (b) 11.17 (a) 11.18 (c) 11.19 (c) 11.20 (d)
 11.21 (a) 11.22 (d) 11.23 (b) 11.24 (d) 11.25 (c)
 11.26 (c) 11.27 (d) 11.28 (c) 11.29 (b) 11.30 (a)
 11.31 (a) 11.32 (b) 11.33 (c) 11.34 (d) 11.35 (c)
 11.36 (a) 11.37 (c) 11.38 (a) 11.39 (c) 11.40 (d)
 11.41 (a) 11.42 (d) 11.43 (c) 11.44 (c) 11.45 (d)
 11.46 (b) 11.47 (a) 11.48 (c) 11.49 (b) 11.50 (b)
 11.51 (c) 11.52 (d) 11.53 (a) 11.54 (b) 11.55 (a)
 11.56 (b) 11.57 (c) 11.58 (a) 11.59 (c) 11.60 (a)
 11.61 (b) 11.62 (a) 11.63 (c) 11.64 (b) 11.65 (c)
 11.66 (b) 11.67 (c) 11.68 (c) 11.69 (b) 11.70 ()
 11.71 (a) 11.72 (d) 11.73 (a) 11.74 (d) 11.75 (b)

EXERCISES

11.1 Consider a mobile robot moving in the x-y plane among some obstacles. Th e obstacles are rectangu-
lar in shape and are aligned along the x and y axes. Th e movement of the robot is restricted in the x
and y direction only and not along any oblique direction. On encountering an obstacle to robot can
change its direction and the cost of changing the direction is equal to the cost of moving through a
unit distance. Propose an A* algorithm for the robot to plan a collision-free path from an initial posi-
tion to a destination.

11.2 A branch-and-bound algorithm for the traveling salesperson problem assumes a uniform value of h
(n) = 0 for every open node n. Can you suggest a non-zero estimation of h (n) for this problem? Solve
the same problem as given in Example 11.7 with your heuristic function and see the outcome.

11.3 Consider a modifi ed version of the Monkey-and-banana problem in which there are two windows
instead of one. Show how the state space representation of the problem changes due to this modifi ca-
tion.

11.4 Solve the 8-puzzle cited in Example 11.5 through bidirectional search.
11.5 Augment the set of production rules given in Table 11.8 in such a way that it is possible to generate

sentences similar to Hari walks very slow. Show the derivation process for this sentence with the help
of the augmented set of production rules.

11.6 A Boolean expression is said to be satisfi able if there is a truth value assignment to its variable which
makes the expression True. Construct an AND-OR graph to determine whether the Boolean expres-
sion p.(q + r’.s’) + r’.(r + s’.(s + p)) is satisfi able or not. Also, show one solution graph for the
given expression.

11.7 Construct an AND-OR graph for parsing valid sentences of the language defi ned by the following
grammar.

Samir Roy_Chapter11.indd 524Samir Roy_Chapter11.indd 524 2/21/2013 3:38:31 PM2/21/2013 3:38:31 PM

Elementary Search Techniques 525

Production Rules Rule #
<sentence> → <statement> (1)
<sentence> → <question> (2)
<statement> → <noun><verb><adverb><fullstop> (3)
<question> → Who <verb><adverb><note-of-interrogation> (4)
<noun> → Mita (5)
<noun> → Gita (6)
<verb> → talks (7)
<verb> → walks (8)
<adverb> → quickly (9)
<adverb> → slowly (10)
<fullstop> → . (11)
<note-of-interrogation> → ? (12)

As usual, the symbols of the form <⋅> are the non-terminals of the grammar. Rest of the symbols,
except ‘→’ are terminals.

11.8 Fig. 11.126 shows a network of cities through which a river passes. Cities A, B, C and D are on one
side of the river and E, F and G are on the other side. Th ere are two bridges X and Y. Th e numbers
adjacent to each arc shows the cost of the corresponding path between the cities. Construct an
AND-OR graph to reach city G starting from city A. Moreover, show the solution graph for the
minimal cost route from A to G.

4

3
5

8

1

5
1

4

2 6

9

3
3

Y

X

A

B
C

D

F

F

G

Fig. 11.126. A network of cities separated by a river

11.9 Consider the following set of rewrite rules

(1) E→DA (2) E→CB
(3) D→CA (4) D→BB
(5) C→BA (6) B→AA

Using the AO* algorithm fi nd the sequence of steps to transform the letter E to a string of consecu-
tive As.

Samir Roy_Chapter11.indd 525Samir Roy_Chapter11.indd 525 2/21/2013 3:38:31 PM2/21/2013 3:38:31 PM

526 Introduction to Soft Computing

11.10 Formulate and solve the following cryptarithmetic puzzle as a constraint satisfaction problem.
T W O

+ T W O
F OUR

11.11 Formulate and solve the following crossword puzzle as a constraint satisfaction problem.

1

1 2 3 4

1 2

3

4

2

3

4

List of words :

Across: 1, 3, 4
Down: 2, 3

ARMS
BOXOO
BUSUU
MOON
SUN

5

Fig. 11.127. A crossword puzzle

11.12 Fig. 11.128 shows a map with 6 regions A, B, C, D, E and F. Prove that at least four colours are
required to colour the map such that no two adjacent regions have the same colour. Th e available
colours are red, blue, green, and yellow. Formulate the colouring problem of the given map as a
constraint satisfaction problem and fi nd a solution through a suitable technique to solve a CSP.

A B

C
D

E
F

Fig. 11.128. A map with 6 regions

11.13 Another version of the game of NIM: Th ere is a version of the game of NIM diff erent from what is
described in Example 11.10. Here, instead of a number of piles, the game starts with a single pile
of an odd number of sticks. During the game, each player in his turn has to split a pile into two.
Th e two piles thus created should consist of unequal number of sticks. Th ere must be at least one
stick in each pile. Th e game terminates when a player have no valid move. Th e player who fails to
make a move loses the game and the other player wins.

Construct the complete game tree for NIM(7), i.e., the game which starts with 7 sticks in a
single pile.

11.14 Consider the complete game tree constructed in problem 11.8 above. Assuming a perfect game,
i.e., no erroneous move made by any of the players, is it possible to determine at the outset who

Samir Roy_Chapter11.indd 526Samir Roy_Chapter11.indd 526 2/21/2013 3:38:32 PM2/21/2013 3:38:32 PM

Elementary Search Techniques 527

will win the game? If yes, then fi nd that player and show the technique through which you deter-
mine this.

11.15 A simple household robot can push, or carry an object from one place to another place, walk to
a specifi ed location from its current position, pick up an object, putdown an object it is presently
holding, and place an object on another provided the top of the second object is not currently
occupied by anything. Th e diff erences that may appear between the states of the robot world are
with respect to the position of some object, position of the robot itself, whether or not the top
of an object is clear, whether or not a specifi ed object is on the top of another specifi ed object,
whether or not the robot arm is free, whether or not the robot is holding a specifi ed object etc.
Th e robot may pick a small, or light, object but not a big, or heavy, object. If the object is small, or
light, it may pick it up and move to some place. However, if it intends to transfer a big, or heavy,
object from one location to another, it has to push.

Propose a set of operations for the said robot with their pre-conditions and results expressed
as predicate logic formulae. Construct the Diff erence-operator table to be utilized by a Means-
Ends Analysis system and apply it to generate a plan for the robot to transfer a heavy object from
one corner of a room to another corner.

 BIBLIOGRAPHY AND HISTORICAL NOTES

State space search is a well-explored area in Artifi cial Intelligence. Many pioneering works have been
done in this fi eld from early days of AI. Some of the important works are cited below.

 De Champeaux, D. and Sint, L. (1977). An improved bidirectional heuristic search algorithm. Journal of
the ACM, 24(2), pp. 177–191.

 Dechter, R. and Judea, P. (1985). Generalized best-fi rst search strategies and the optimality of A*. Journal
of the ACM, 32(3), pp. 505–536.

 Freuder, E. and Mackworth, A. (ed.) (1994). Constraint-based Reasoning. MIT Press.
 Guesguen, H. and Hertzberg, J. (1992). A Perspective of Constraint Based Reasoning, Springer.
 Hart, P. E., Nilsson, N. J., Raphael, B. (1968). A formal basis for the heuristic determination of minimum

cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), pp. 100–107.
 Hentenryck, V. P. (1989). Constraint Satisfaction in Logic Programming. MIT Press.
Judea, P. (1982). Th e solution for the branching factor of the alpha-beta pruning algorithm and its opti-

mality. Communications of the ACM, 25 (8), pp. 559–564.
Judea, P. (1984). Heuristics: intelligent search strategies for computer problem solving. Addison-Wesley

Longman Publishing Co., Inc.
Kahneman, D., Tversky, A., and Slovic, P. (eds.) (1982). Judgment under Uncertainty: Heuristics and

Biases. Cambridge, UK: Cambridge University Press.
Klahr, D., Langley, P., and Neches, R. (1987). Production System Models of Learning and Development.

Cambridge: Th e MIT Press.
Knuth, D. E. and Moore, R. W. (1975). An analysis of alpha-beta pruning. Artifi cial Intelligence, 6(4), pp.

293–326.
 Knuth, D. E. (1997). Th e Art Of Computer Programming. Vol. 1. Boston: Addison-Wesley.
 Newell, A. and Simon, H. A. (1959). Th e Simulation of Human Th ought. Santa Monica, California: Rand

Corp.
 Newell, A. and Simon, H. A. (1961). GPS, a Program that Simulates Human Th ought. Santa Monica,

Calif: Rand Corporation.

Samir Roy_Chapter11.indd 527Samir Roy_Chapter11.indd 527 2/21/2013 3:38:32 PM2/21/2013 3:38:32 PM

528 Introduction to Soft Computing

 Newell, A. and Herbert A. S. (1976). Computer science as empirical inquiry: symbols and search. Com-
munications of the ACM, 19 (3).

 Pohl, I. (1971). Bi-directional search. In Machine Intelligence, 6, Edinburgh University Press,
pp. 127–140.

 Tsang, E. (1993). Foundations of Constraint Satisfaction. Academic Press.
 Waterman, D.A. and Hayes-Roth, F. (1978). Pattern-Directed Inference Systems. New York: Academic

Press.

Samir Roy_Chapter11.indd 528Samir Roy_Chapter11.indd 528 2/21/2013 3:38:32 PM2/21/2013 3:38:32 PM

12
ADVANCED SEARCH STRATEGIES

Key Concepts

Boltzman constant, Charles Darwin, Chromosome, Chromosome encoding/decoding, Convergence,
Cooling schedule, Crossover, Crossover probability, DNA, Dominance relation, Elitism, Euclidean
distance, Fitness function, GA parameters, Genetic algorithms (GAs), Initial population, Mating
pool, Maximization, Minimization, Multi-cut-point crossover, Multi-objective fi tness, Multi-objective
GAs, Mutation, Mutation probability, Natural evolution, Natural selection, Niche count, Niche
size, Normalized fi tness function, One cut-point crossover, Optimization problems, Pareto-optimal
front, Pareto-optimal ranking, Pareto-optimal solution, Population, Population size, Roulette wheel
selection, Selection, Shared fi tness value, Simulated Annealing (SA), Survival of the fi ttest, Termination
condition, Tournament selection

 Chapter Outline

12.1 Natural Evolution: A Brief Review
12.2 Genetic Algorithms (GAs)
12.3 Multi-Objective Genetic Algorithms
12.4 Simulated Annealing (SA)

Chapter Summary
Solved Problems
Test Your Knowledge
Exercise
Bibliography and Historical Notes

An important class of problems encountered in real life is the so called optimization problems. Typically
such a problem has numerous solutions of varying qualities where the quality of a solution is judged
on the basis of certain criteria, presented in the form of a real valued objective function. Depending
on whether the function is to be maximized or minimized, the optimization problem is further catego-
rized as a maximization, or minimization, problem. Now, classical optimization techniques can be used
only on continuous diff erentiable functions. In the realm of computational problems, possibility of the
objective function being continuous and diff erentiable is quite low, and therefore classical techniques
have limited scope. Moreover, oft en the classical techniques have the tendency of settling down at local

Samir Roy_Chapter12.indd 529Samir Roy_Chapter12.indd 529 2/21/2013 3:39:10 PM2/21/2013 3:39:10 PM

minima or maxima points instead of the global best solutions. In reality, there are computational prob-
lems which require tremendous computational eff orts to fi nd the best solution. Intelligent search strate-
gies like hill climbing may be employed to obtain reasonably good solutions to such problems. However,
hill climbing suff ers from the serious problem of settling to sub-optimal solutions remaining in the
search space as local optimal points. Genetic Algorithms (GAs) and Simulated Annealing (SA) are two
search strategies that are inspired by natural evolutionary processes and have the capacity to overcome
the problem posed by the existence of local optima in large search spaces. GAs try to mimic the process
of natural evolution through natural selection based on the Darwinian principle of survival of the fi ttest.
It is essentially a maximization process. Simulated Annealing (SA) follows the process of physical an-
nealing where a metal is fi rst heated to a molten state and then gradually cooled to get a uniform crystal
structure. Th is uniform crystal structure corresponds to a minimal energy level. Hence annealing is a
minimization process. Both GAs and SAs have been extensively employed to solve complex problems of
various fi elds including engineering, economics, biology etc. In the subsequent sections of this chapter,
these two search techniques are discussed in greater details.

12.1 NATURAL EVOLUTION: A BRIEF REVIEW

Natural, or biological, evolution is the process of emergence of higher and complex life-forms from
simpler, primordial, life-forms over billions of years. Th e scientifi c theory of evolution was proposed by
Charles Darwin in 1859 through his celebrated work entitled Th e Origin of Species by Means of Natural
Selection. Darwin’s theory had a great impact on humanity. It is widely perceived as one of greatest in-
tellectual triumphs achieved by man. Darwin’s theory is one of the few scientifi c discoveries that have
revolutionized man’s world-view forever.

Th e mechanism Nature employs to realize evolution is called Natural Selection. Th e basis of Natural
Selection is the principle of Survival of the Fittest, a phrase coined by Herbert Spencer. Darwin’s theory
of evolution is based on three observations: (a) a species on earth, in general, produce much higher
number of off spring than possibly can survive, (b) the individual members of a species possess various
traits resulting in varied probabilities of survival and reproduction, and (c) children inherit the traits of
their parents. In a certain environment, individuals having traits favourable to live in that environment
have higher chance of survival and procreate. On the other hand, individuals lacking such traits are likely
to die earlier and thereby, have less opportunity to have children. Th is is natural selection. Th e eff ect of
natural selection is the gradual increase in the relative number of individuals who are better adapted to
survive and reproduce in a certain environment. Individuals who lack such traits become scares over
successive generations and eventually die out. Th e phenomenon of mutation helps to introduce a ran-
dom radical change in a species. If the change is favourable for survival then it is likely to continue in
subsequent generations, otherwise it extinguishes in the process of natural selection. By way of natural
selection, coupled with occasional mutation, Nature evolves higher forms of life on earth from lower
ones. Th e main features of natural evolution that are signifi cant from computational point of view are
present below.

12.1.1 Chromosomes

Th e traits of an individual are encoded and stored in each cell with the help of a structure called the
chromosomes. For example, there are 23 pairs, or 46, chromosomes in human cells. Chromosomes
are long strands of genes and the genes are made up of two long thin strands of DNA in a double

530 Introduction to Soft Computing

Samir Roy_Chapter12.indd 530Samir Roy_Chapter12.indd 530 2/21/2013 3:39:12 PM2/21/2013 3:39:12 PM

helix structure. Roughly speaking, a gene may be thought of as encoding a trait, e.g., colour of eye, or
the shape of the lips etc. Th e idea of chromosome as an encoded pattern of individual traits is used
in Genetic Algorithms (GAs). In GAs, each feasible solution is of a given optimization problem is
encoded as a string of bits, characters etc. Th e GA process consists of processing a number of such
chromosomes over successive generations and then mapping the chromosome returned by the GA to
its encoded solution.

12.1.2 Natural Selection

As mentioned earlier, natural selection is Nature’s way to support and perpetuate ‘good’ qualities in a
species against the ‘bad’ qualities. Consider the case of polar bears that survive under the harshest Arctic
weather. Th e fur is diff erent from all other members of the bear family and coloured white which not
only helps in camoufl aging but also contains body heat. It is also adapted to store more fat within, to beat
the cold. Th is fat, accumulated mostly during summers, when the bears overfeed serves nutritional value
during frozen winters when food becomes scarce. Th is kind of adaptability, seen in most animals, includ-
ing man is an example of ‘survival of the fi ttest’. Only those bears that could adapt, survived. Off spring of
highly adaptable survivors over generations are passed on these survival traits and result in permanent
changes in the genetic structure of the species.

12.1.3 Crossover

Crossover is a genetic operation, which results in exchange of genetic material between two chromo-
somes. In biological world, crossover occurs when the reproductive cells of the parents unite to form
a zygote. It can be considered to be a string operation where two similar strings of same length swap
partial contiguous contents. Crossover is the mechanism to ensure reshuffl e of traits of the parents in
their children.

12.1.4 Mutation

In genetics, a gene mutation is a permanent change that may occur in the DNA sequence constituting
a gene. Such changes permanently alter the gene and thereby bring about variations in the lineage of a
living organism. In biological sense, mutation can occur in one of the two following ways: inherited from
parents (through crossover), or acquired by an individual during its lifetime due to altered environment,
or habits of individuals, or some unforeseen circumstances like radioactive or cosmic radiation. Muta-
tion is the main vehicle of evolving new species from old ones.

12.2 GENETIC ALGORITHMS (GAS)

Computationally, GA is a maximization process. Th e problem it addresses usually has a very large
search space with probable multiple local maxima inside it. Th e GA process has to ensure that it is not
trapped at local maxima, so that, at the end of the process it may fi nd the global maxima. Even if the
global maximum is not returned, we may expect a close approximation of it as the outcome of the GA
process.

To achieve this, GA works on a set of solutions (perhaps suboptimal) to the given problem instance,
and evolves it through a number of generations. Th e evolution process stops when some predefi ned

Advanced Search Strategies 531

Samir Roy_Chapter12.indd 531Samir Roy_Chapter12.indd 531 2/21/2013 3:39:12 PM2/21/2013 3:39:12 PM

termination condition is satisfi ed. At each intermediate stage, the old generation is replaced by the
new generation. Th e individuals of the population of a generation are processed with the help of a
number of GA operators in such a way that the quality of the new generation, in general, is improved
in comparison with old generation. In this way we obtain better and better solutions as the search
proceeds until the end of the search when we expect the best, or a near-best solution will be returned
by the GA process. Fig. 12.1 and Fig. 12.2 present the outline of the procedure and the corresponding
fl ow chart.

Procedure Basic-GA

Step 1. Initialize the population. Call this the current population.

Step 2. Repeat Step 3 through Step 5 till termination condition is satis-
fied.

Step 3. Apply selection operation on the current population to obtain the
mating pool.

Step 4. Apply crossover and mutation operators on the mating pool to gen-
erate the new population.

Step 5. Replace the current population by the new population.

Step 6. Return the best solution of the current population.

Fig. 12.1 Procedure Basic-GA

Th ere are certain features associated with a GA. Th ese are

1. Th e chromosomes.
2. Procedures to encode a solution as a chromosome, and procedure to decode a chromosome to the

corresponding solution.
3. Fitness function to evaluate each solution, i.e., each chromosome.
4. Population size.
5. Initial population.
6. Th e mating pool, i.e., the set of chromosomes selected from current population who will generate

the new population/generation.
7. GA operators, e.g., selection, crossover, and mutation.
8. Various GA parameters, e.g., crossover probability (pc), mutation probability (pμ), population

size etc.
9. Termination condition.

Chromosomes are usually one or multidimensional arrays of bits, digits, characters, or other suit-
able elements. A chromosome encodes a solution to the given maximization problem. Th ere must be
simple procedures to map the solution to the corresponding chromosome and vice-versa. Moreover,
there must be a fi tness function which helps us to evaluate a chromosome/solution. A population is a set
of chromosomes. Th ere is a predefi ned size of the population, say n. Th e population is initialized with
n randomly generated chromosome. Each chromosome of population is evaluated with the help of the

532 Introduction to Soft Computing

Samir Roy_Chapter12.indd 532Samir Roy_Chapter12.indd 532 2/21/2013 3:39:12 PM2/21/2013 3:39:12 PM

fi tness function. Th e values of the fi tness function for the chromosomes indicate the quality of the cor-
responding solutions.

No

Initialize the population

Perform the job with decoded
versions of the strings

Compute fitness values

Termination
criterion
reached

Yes

Reproduce/select strings to create
new mating pool

Generate new population
by crossover and mutation

Return the best
solution

Start

End

Fig. 12.2 Flow chart of the basic genetic algorithm (GA) process

During every iteration, a mating pool is created by selecting chromosomes from the population. Th e se-
lection procedure is designed on the basis of the Darwinian principle of survival of the fi ttest. Th erefore,
better fi t chromosomes are selected more oft en than the less fi t ones. Consequently, the average fi tness of
the mating pool is usually higher than that of the current population.

Mating pool has the same size as that of the current population. Th e individual chromosomes in the
mating pool act as parents for the next generation of chromosomes. Characteristics of the parents are re-
shuffl ed and propagated to the children with the help of the crossover operator. Th ese children are subject
to a mutation operator which helps to bring about a rare but random and unpredictable change in the chro-
mosomes. Th e mutation operator helps the GA process to overcome the problem of getting stuck at local
maxima. Th e process of obtaining a new generation of population from old are is shown in Fig. 12.3.

Advanced Search Strategies 533

Samir Roy_Chapter12.indd 533Samir Roy_Chapter12.indd 533 2/21/2013 3:39:12 PM2/21/2013 3:39:12 PM

CrossoverSelection
Current

population of
chromosomes

Mating pool
of

chromosomes

New
population of
chromosomes

Fig. 12.3 Formation of new generation from old one

As the GA proceeds, the search is expected to converge. Usually, when the search space is suffi ciently ex-
plored, the average fi tness of the population, or the fi tness of the best-fi t chromosome of the population,
does not improve over consecutive generations. However, this depends on how fi nely the GA parameters
are tuned to appropriate values. Th e search may be terminated aft er a pre-defi ned number of generations,
or, when the average fi tness does not show any improvement over a pre-defi ned number of consecutive
generations. Th e subsequent parts of this subsection present the details of various GA features.

12.2.1 Chromosomes

A feasible solution for a given maximization problem must be encoded as a chromosome. In its simplest
form, a chromosome is a one-dimensional string of bits. However, various other types of chromosomes
have been tries e.g., strings of denary digits, alphanumeric characters, real numbers and so on. Th e de-
sign has to select an appropriate encoding scheme on the basis of the nature of the problem to be solved.
For example, the real number encoding scheme has been found to be ideal for function optimization.

Th e integer or literal permutation encoding is better suited for combinatorial optimization problems
than others. However, these techniques are applicable only to one-dimensional strings as chromosomes.
For more complex real world problems, it might be essential to have an appropriate data structure to
capture the nature of the problem. Depending upon the structure of the encodings, the methods can be
further classifi ed as one-dimensional or multi-dimensional.

Th ough most problems are solvable using one-dimensional encoding, some more complex problems
do need a multi-dimensional approach. Whatever the chosen encoding scheme, it is necessary that it
builds an eff ective solution to the problem. Th ere exist several criteria to decide the eff ectiveness of an
encoding scheme. Th ese include

Requirement of space by the encoded chromosomes. •
Th e time to perform operations like crossover, mutation and fi tness evaluation. •
All encoded chromosomes must map to feasible solutions.•
Th e chromosomes resulting from crossover and mutation must map to feasible solutions.•

Example 12.1 given below illustrates the concept of a chromosome as an encoded form of a solution and
the procedures to map a solution to the corresponding chromosome and vice versa.

Example 12.1 (Chromosome for Travelling Salesperson Problem)

Consider a tiny instance of TSP with fi ve cities as shown in Fig. 12.4. For the sake of simplicity and
brevity, the number of cities has been kept low. Moreover, the network of cities under consideration
is fully connected. Th is ensures that any permutation of the cities represent a feasible tour by the
salesperson. A network which is not fully connected can be easily converted to such one by adding
appropriate number of extra edges and assigning infi nite cost to each of these additional links. Each

534 Introduction to Soft Computing

Samir Roy_Chapter12.indd 534Samir Roy_Chapter12.indd 534 2/21/2013 3:39:12 PM2/21/2013 3:39:12 PM

link between two cities is associated with a cost which must be incurred if the sales person traverses
that link. Th e TSP problem is to fi nd a minimal cost tour i.e., a cycle containing each node of the graph
exactly once and total cost of the tour being minimal.

2

27

5

507

6 4

11

15
8

a

c

ed

b

48

23

45

043

44 46

39

35
42

a

c

ed

b

Fig. 12.4 An instance of Travelling Salesper-
son Problem (TSP).

Fig. 12.5 The TSP of Fig. 12.4 posed as a
maximization problem.

As we see, TSP is essentially a minimization problem. In order to apply a GA on it, we must trans-
form it to a suitable equivalent minimization problem. For this purpose, the cost associated with
a link is converted into a reward by subtracting it from the maximum cost. Th en the tour with
minimum cost will be the tour with maximum reward. Th e altered graph where each link is as-
sociated with a reward, instead of a cost, is shown in Fig. 12.5. Th e goal is now to fi nd a tour with
maximum reward.

For the network of cities shown in Fig. 12.5 where the cities are denoted by the letters a, b, c, d
and e, a tour can be represented simply as a permutation of fi ve letters a, b, c, d and e. Th erefore,
assuming that the permutation is circular, i.e., the last and the fi rst node in the permutation are
adjacent, any such permutation is a chromosome. However, if we prefer binary chromosomes, then
this alphanumeric string must be transformed to its binary equivalent and vice-versa. Th is can be
easily done by substituting each letter by its designated bit pattern. Th e technique is illustrated in
Fig. 12.6.

Fig. 12.6(a) shows the tour c → d → b → a → e in the network under consideration. Th e table
shown in Fig. 12.6(b) contains the binary code for each node. Th e codes are chosen arbitrarily.
Since there are 5 nodes, we need ⎡log 2 5⎤ = 3 bits to encode them. However, the remainingd 3 (=
23 – 5) codes remain unused. Fig. 12.6(c) depicts the mapping of the tour c → d → b → a → e to
its corresponding binary chromosome. Th erefore, for this problem a chromosome is any binary
string of length 3 × 5 = 15.

In order to decode a chromosome to its corresponding tour, the chromosome is partitioned
into fi ve segments each consisting of 3 bits. Each of these 3 bit codes is then substituted by the
appropriate node. However, it may not be possible to convert an arbitrary 3 bit string to a node
directly. For example, consider the chromosome ch = 101 011 001 110 001. Here the left most 3
bits are 101 which do not represent any node at all. Th e same is true for the fourth pattern 110.
Moreover, the pattern 001 has occurred twice, though a node is allowed to be visited exactly once
in a tour.

Advanced Search Strategies 535

Samir Roy_Chapter12.indd 535Samir Roy_Chapter12.indd 535 2/21/2013 3:39:12 PM2/21/2013 3:39:12 PM

The tour

c d b a e

010 011 001 000 100

The chromosome

(c) Chromosome encoding

(a) Problem instance

48

23

45

043

44 46

39

35
42

a

c

ed

b

Reward = 42 + 45 + 43
+ 46 + 48 = 224

Node 3-bit Code

0 a 000

1 b 001

2 c 010

3 d 011

4 e 100

5
Unused

101

6 110

7 111

(b) Encoding scheme

Fig. 12.6 Encoding and decoding a chromosome

Such issues may be resolved in various ways. Consider the following strategy. We arrange the set
of nodes in a circular way. When a node is selected it is marked as visited. When we come across
a code without any node assigned to it, we select the next available node in the list of nodes. We
apply the same policy in case of a confl ict, i.e., a code occurring more than once in a chromosome.
Fig. 12.7 presents the pseudo-code for the technique described above. Accordingly, chromosome
ch = 101 011 001 110 001 will be interpreted as the tour a → d → b → c → e.

Procedure TSP-Chromosome-Decode

Begin
Partition the chromosome into a sequence of five 3-bit binary
patterns.

For (each 3-bit pattern p) Do
If p has a node n associated with it Then

If n is not already visited Then
Select the node as visited.

Else Select the next available node in the list of nodes
End-If

Else Select the next available node in the list of nodes
End-If

End-For
End-Procedure TSP-Chromosome-Decode

Fig. 12.7 Procedure TSP-Chromosome-Decode

536 Introduction to Soft Computing

Samir Roy_Chapter12.indd 536Samir Roy_Chapter12.indd 536 2/21/2013 3:39:13 PM2/21/2013 3:39:13 PM

12.2.2 Fitness Function

Fitness functions are objective functions that are used to evaluate a particular solution represented as a
chromosome in a population. As GA is a maximization process, the fi tness function is to be defi ned in
such a way that higher fi tness values may represent better solutions.

Two main types of fi tness functions exist: the fi rst one, the fi xed type does not allow the fi tness function
to change. In the second case, the fi tness function itself is mutable. Th e most important factor in deciding
a fi tness function is that it should correlate to the problem closely and is simple enough to be computed
quickly. Speed of execution is very important because GA itself is quite computation intensive.

Example 12.2 (Fitness function for TSP)

Let us consider the TSP instance given in Fig. 12.5. Here the fi tness function is simply the sum of
the rewards associated with the links included in a tour. Hence for the chromosome chr = 101 011
001 110 001 which represents the tour a → d → b → c → e is given by f (chr) = w (a → d) + w (d
→ b) + w (b → c) + w (c → e) + w (e → a) = 44 + 45 + 39 + 48 + 46 = 222. On the other hand, the
fi tness of a → b → c → d → e is 43 + 39 + 42 + 23 + 46 = 193. Obviously the former solution is a
better fi t than the latter one.

12.2.3 Population

Usually, standard optimization algorithms consist of a sequence of computational steps which converge
to the optimal solution. Most algorithms perform deterministic computational steps based on higher
order derivatives of the objective function. Th e GA based approach diff ers from the standard approaches
due to the fact that, while the standard approaches have single point initiations in the search space
and move along the direction of descent, GA’s employ multi-directional search by initiating the process
through a population of possible solutions. While point to point approach suff ers from the threat of local
optima, the GA has higher probability of escaping it.

Th e GA starts with a group of chromosomes known as population. Th e size of the population is an im-
portant parameter that needs to be tuned by the designer of the GA. Th e complexity of the problem, which
is refl ected by the size of the search space, is a factor to be considered while fi xing the size of the popula-
tion. Th e initial population is normally randomly generated. Th is is illustrated in the next example.

Example 12.3 (A small population for the TSP)

Let us continue with the TSP instance cited in Example 12.1 and Example 12.2. Assuming a popu-
lation size of 10, Fig. 12.8 presents a procedure to generate the initial population randomly. Table
12.1 shows the randomly generated population of 10 chromosomes along with the corresponding
tours and the fi tness values.

Procedure TSP-Generate-Initial-Population
Begin

For i ← 1 To 10 Do
/* Generate the ith chromosome */
For j ← 1 To 15 Do

Advanced Search Strategies 537

Samir Roy_Chapter12.indd 537Samir Roy_Chapter12.indd 537 2/21/2013 3:39:13 PM2/21/2013 3:39:13 PM

Chr[i][j] = Random {0, 1} /* Assign a bit randomly*/
End-For

End-For
End-Procedure TSP-Generate-Initial-Population

Fig. 12.8 Procedure TSP-Generate-Initial-Population

Table 12.1 Randomly Generated Initial Population

Chromosome Tour Fitness

1 011 101 111 011 001 d-e-a-b-c 193

2 010 100 001 101 110 c-e-b-d-a 172

3 100 100 001 111 010 e-a-b-c-d 193

4 011 100 110 001 101 d-e-a-b-c 193

5 110 011 101 110 001 a-d-e-b-c 141

6 010 100 010 011 011 c-e-d-a-b 197

7 100 100 011 111 110 e-a-d-b-c 222

8 010 101 011 011 001 c-d-e-a-b 193

9 100 110 101 011 110 e-a-b-d-c 224

10 111 011 101 100 100 a-d-e-b-c 141

12.2.4 GA Operators

As in natural evolution, GAs employ three operators, viz. selection, crossover and mutation, on the
population to evolve them towards the optimal solution of the target optimization problem. While the
selection operator ensures continuation of good qualities in the solutions, the crossover and mutation
operators help to explore the entire search space by providing reshuffl e of individual traits and varia-
tions. Each of these operators is described below with greater details.

(a) Selection. Th e members of the mating pool are picked up from the current population with the
help of the selection operator. Th ere are various techniques to realize the selection process. All of them,
some way or other, are based on the Darwinian principle of survival of the fi ttest. In other words, the
selection operator is designed in such a way that chromosomes with higher fi tness values have a greater
chance of being selected for the mating pool. However, the lower fi t chromosomes should also have
their chance of producing off spring. Th ey should not be blocked altogether. Th ere are several selection
techniques available in the literature. Two of the most widely used selection operators, viz., roulette wheel
selection and tournament selection, are discussed below.

Population and fi tness values
Chromosome # 1 2 …. PopSize
Fitness value f (chr1) f (chr2) …. f (chrPopSize)

Sum_fi tness = f ch i
i

PopSize

)chrirr
=
∑

1

538 Introduction to Soft Computing

Samir Roy_Chapter12.indd 538Samir Roy_Chapter12.indd 538 2/21/2013 3:39:13 PM2/21/2013 3:39:13 PM

f (chr1rr)
f (chr1rr)

f (chr1rr) + f (chr2rr)

f (chr1rr) +… + f (chrirr −1)

f (chr1rr) + … + f (chrirr)ii
f (chrirr)ii

f (chr2rr)

f (chrPorr pSize)

f (chr1rr) + … + f (chrPorr pSize−1)

sum_fitness = ∑ f (chrirr)
PopSize

i = 1

0

Fig. 12.9 A roulette wheel

Roulette Wheel. Roulette wheel selection was proposed by John Holland and is possibly the best
known selection type. Th e technique ensures that the survival probability of a chromosome is propor-
tional to its fi tness value. Let us consider a population of PopSize number of chromosomes chr1, chr2,
…, chrPopSize, with fi tness values f (chr1), f (chr2), …, f (chrPopSize) respectively. Now imagine a circular disk
whose circumference has a length of

 m f f chrirr
i

PopSize

fitff ness f)
=
∑

1
 (12.1)

On the circumference, we demarcate successive regions of length f (chr1), f (chr2), …, f (chrPopSize) so that
the successive regions correspond to the chromosomes chr1, chr2, …, chrPopSize respectively. Th is is the
roulette wheel. Fig. 12.9 explains the structure of a roulette wheel graphically.

In order to select a chromosome from the current population for the mating pool, a random number
is generated between 0 and sum_fi tness. Let x be the random number generated in this way. We now
locate the point P on the circumference of the wheel at a distance x from the starting point S. Th e chro-
mosome within whose limits this point P is situated is selected for the mating pool. Th is procedure is
repeated PopSize times. Since the regions on the circumference of the roulette wheel are proportional
to the fi tness values of the corresponding chromosomes, those with high fi tness values are likely to get
selected more oft en than those with low fi tness values. Th e pseudocode for the roulette wheel technique
is presented in Fig. 12.10.

Procedure Roulette-Wheel-Selection
Begin

Sum_fitness ← 0
For i ← 1 To PopSize Do

sum_fitness ← sum_fitness + fitness (Chromosome (i))
End-For

Advanced Search Strategies 539

Samir Roy_Chapter12.indd 539Samir Roy_Chapter12.indd 539 2/21/2013 3:39:14 PM2/21/2013 3:39:14 PM

For i ← 1 To PopSize Do
/* generate a random number between 0 and sum_fitness */
r ← random (0, sum_fitness)
/* locate the point P */
j ← 1, sum ← 0
While (sum < r) Do

sum ← sum + fitness (Chromosome (j))
j ++

End-While
Select Chromosome (--j) and include it in the mating pool

End-For
End Procedure Roulette-Wheel-Selection

Fig. 12.10 Procedure Roulette-Wheel-Selection

Example 12.4 (Roulette wheel selection)

Let us consider the roulette wheel for the population shown in Table 12.1. Here the

sum f f chrirr
i

ffitff ness)
=
∑

1

10

= 1869. Let the random number generated in the range [0, 1869] be 1279.

Since f ch i
i

)chrirr
=
∑

1

6

= 1089, f ch i
i

)chrirr
=
∑

1

7

 = 1311, and 1089 < 1279 < 1311, 7th chromosome is selected.

(a) Tournament. In tournament selection, a tournament is run among the chromosomes of the cur-
rent population. Winners of the tournament are selected and included in mating pool. So, at each step
of this procedure, two chromosomes, say chr1 and chr2 are picked up randomly. Among these two, the
chromosome with higher degree of fi tness wins and hence selected. Th is is repeated PopSize number of
times. Th e procedure is presented in Fig. 12.11.

Procedure Tournament-Selection
Begin

For i ← 1 To PopSize Do
p1 = random (0, PopSize)
p2 = random (0, PopSize)
If (fitness(chromosome p1) ≥ fitness(chromosome(p2) Then

Select chromosome (p1) for the mating pool
Else Select chromosome (p2) for the mating pool
End-If
Include the selected chromosome as the ith chromosome in the
mating pool

End-For
End Procedure Roulette-Wheel-Selection

Fig. 12.11 Procedure Tournament-Selection

540 Introduction to Soft Computing

Samir Roy_Chapter12.indd 540Samir Roy_Chapter12.indd 540 2/21/2013 3:39:16 PM2/21/2013 3:39:16 PM

Example 12.5 (Tournament selection)

Once again, we consider the population shown in Table 12.1. Let p1 = 4 and p2 = 9 be the random
integers generated within the range [0, 10]. Since the fi tness values of the 4th and the 9th chromo-
somes are 193 and 224 respectively, the 9th chromosome is selected.

(b) Crossover. Th e selection operation ensures that the quality of the solutions improve over suc-
cessive generations. Th e purpose of the crossover operation is to share information among the chromo-
somes of a population. Th e reshuffl ed chromosomes become the off spring of the parent chromosomes
and are propagated to the new generation of population. Th e signifi cance of crossover is it enables the
GA search process explore the search space adequately.

During the crossover operation, a pair of chromosomes, say chri and chrj are randomly chosen from
the mating pool. Th ese two chromosomes act as the parents. Th ere is a pre-defi ned probability pc, called
the crossover probability. Crossover probability is the probability that crossover takes place between two
parent chromosomes. Aft er selecting the parents, we have to decide if they would undergo the crossover
operation at all. So a random number r ∈ [0, 1] is generated. If r ≤ pc then crossover occurs otherwise the
parent chromosomes are directly copied to the mating pool. When a crossover occurs, a crossover point
is determined. Th e crossover point is a randomly generated integer in the range [1, ChrLength] where
ChrLength is the length of a chromosome. Th e crossover operation consists of swapping the segments of
the parent chromosomes from the crossover point to end. Fig. 12.12 provides the pseudo-code for this
operation and Fig. 12.13 illustrates it graphically.

Th e crossover operator just described and illustrated in Fig. 12.12 and Fig. 12.13 is the basic crossover
with one crossover point. Th is can be generalized to multi-point crossover. An instance of two-point
crossover is shown in Fig. 12.14.

Procedure One-Cut-Point-Crossover

/* pc is the crossover probability. Size of the population is PopSize.
ChrLength is the length of a chromosome */
Begin

For i ← 1 To PopSize/2 Do
/* Select the parents */
Randomly choose 2 chromosomes chrk and chrl from the mating pool.
/* Decide if crossover should be performed */
r ← random [0, 1]
If (r < pc) Then

/* Select the crossover point */
c ← IRandom [1, ChrLength]
For j ← c To ChrLength Do

Swap the jth bits of chrk and chrl

End-For
End-If
Include chrk and chrl in the new population.

End-For
End Procedure One-Cut-Point-Crossover

Fig. 12.12 Procedure One-Cut-Point-Crossover

Advanced Search Strategies 541

Samir Roy_Chapter12.indd 541Samir Roy_Chapter12.indd 541 2/21/2013 3:39:19 PM2/21/2013 3:39:19 PM

Th ere are several crossover operators for real number encoding. Th ese can be broadly grouped into four
classes, viz., conventional, arithmetic, direction-based, and stochastic. Th e conventional operators are
made by extending the operators for binary representation into the real-coding case. Such operators can
further be divided by two categories namely the simple crossover (one-cut point, two-cut point, multi-
cut point or uniform) and random crossover (fl at crossover, blend crossover).

011100110001101chr4rr child4

child9chr9rr 100110101011110

Crossover point = 11

011100110011110

100110101001101

C
R
O
S
S
O
V
E
RParent chromosomes CR hildren chromosomes

Fig. 12.13 An instance of one cut-point crossover

Th e arithmetical operators are constructed by borrowing the concept of linear combination of vectors
from the area of convex set theory. Operated on the fl oating point genetic representation, the arith-
metical crossover operators, such as convex, affi ne, linear, average, intermediate, extended intermediate
crossover, are usually adopted. Th e direction-based operators are formed by introducing the approxi-
mate gradient direction into genetic operators. Th e direction-based crossover operator uses the value of
objective function in determining the direction of genetic search. Th e stochastic operators give off spring
by altering parents by random numbers with some distribution.

011100110001101chr4rr child4

child9chr9rr 100110101011110

Crossover point : 3, 8

010110100001101

101100111011110

C
R
O
S
S
O
V
E
RParent chromosomes CR hildren chromosomes

Fig. 12.14 Two cut-point crossover

Example 12.6 (Crossover operation)

Fig. 12.13 shows the crossover operation on two chromosomes chr4 = 01110011000110 and chr9 =
100110101011110 taken from the population in Table 12.1. Choosing 11 as the crossover point the
resultant children are 011100110011110 and 100110101001101. Finding the corresponding tours
and their fi tness values are left as an exercise. Fig. 12.14 depicts an instance of two cut-point

542 Introduction to Soft Computing

Samir Roy_Chapter12.indd 542Samir Roy_Chapter12.indd 542 2/21/2013 3:39:20 PM2/21/2013 3:39:20 PM

crossover on the same pair of chromosomes with 3 and 8 as the crossover points. Th is time we get
010110100001101 and 101100111011110 as the resultant children chromosomes. Again, fi nding
the corresponding tours and their fi tness values are left as an exercise.

(c) Mutation. Th e mutation operation imparts a small change at a random position within a chromo-
some. Th e intention is to empower the GA process to salvage from local optima and explore every region
of the search space adequately. However, mutation should occur very rarely failing which the search
process will be disturbed too much. A disturbed search fi nds it diffi cult to converge. Hence mutation
probability pμ is usually kept low.

Procedure Binary-Mutation
Begin

For i ← 1 To PopSize Do
r ← random [0, 1]
If (r < pμ) Then

mupt ← IRandom [1, ChrLength]
Flip the bit at mupt in the ith chromosome

End-If
End-For

End Procedure Binary-Mutation

Fig. 12.15 Procedure Binary-Mutation

Th e pseudo code for mutation operation is given in Fig. 12.15. For each chromosome of the mating pool,
a decision is taken on the basis of the mutation probability pμ regarding whether that chromosome would
undergo mutation or not. If the chromosome has to mutate, a mutation point is randomly chosen. Th e
bit at the mutation point is complemented in case of binary chromosome. For other types of chromo-
somes suitable technique is adopted for mutation.

Example 12.7 (Mutation)

Th e mutation operation is illustrated in Fig. 12.16. Th e chromosome 011100110001101 is mutated
at the 13th bit to obtain 011100110001001 as the mutated chromosome.

011100110001101chr4rr

chr4rr

Mutation point: 13

011100110001001

Before mutation

After mutation

Fig. 12.16 Mutation operation

Advanced Search Strategies 543

Samir Roy_Chapter12.indd 543Samir Roy_Chapter12.indd 543 2/21/2013 3:39:20 PM2/21/2013 3:39:20 PM

12.2.5 Elitism

Elitism is a strategy to ensure that the best chromosomes are not lost in the search process through
generations. Th is is a legitimate concern because randomness plays a vital role in the GA process. So
it is quite possible that a good chromosome, once generated, may get lost in subsequent generations.
Th erefore, it is logical to preserve the best chromosomes.

Elitism is implemented in various ways. A common technique is to defi ne a special chromosome called
the best-till-date chromosome. It is initialized with the best chromosome (i.e. the chromosome with the
highest fi tness value) of the initial population. In each subsequent generation the best chromosome of the
current population is identifi ed and its fi tness is compared with that of the current best-till-date chromo-
some. Th e later is updated by the former in case the best of the current population happens to be better
than the prevailing best-till-date chromosome. Alternatively, during the selection operation, we may di-
rectly transfer a few top-quality chromosomes (say, top 10% of the population) to the next generation.

12.2.6 GA Parameters

Success and effi ciency of a GA process largely depends on how well the parameters of the GA are tuned
to suit the targeted problem instance. Th e GA parameters include the size of population, number of gen-
erations through which the GA should be evolved, type of crossover to be used, crossover probability,
and mutation probability.

Th ere is no hard and fast rule to fi x these parameters. However, long experience and wide experimen-
tation by researchers has provided us certain ranges of values for these parameters. Th ese are obeyed
under normal circumstance. An indicative set of values is given below.

25 ≤ PopSize ≤ 100
500 ≤ Number of generations ≤ 1500
Number of crossover point(s) = 1, 2, 3, or 4
0.6 ≤ Crossover probability (pc) ≤ 0.8
0.01 ≤ Mutation probability (pμ) ≤ 0.02

Once again, these are not rules. Th e actual values are to be tuned to the specifi c GA through experience
and trial-and-error. However, some standard settings are reported in literature. One of the widely ac-
claimed standards was proposed by DeJong and Spears (1990) as given below:

Population size = 50
Number of generations =1000
Crossover type = two point
Crossover rate = 0.6
Mutation types = Bit fl ip
Mutation rate = 0.001 per bit

If single cut-point crossover, instead of two cut-points crossover, is employed, the crossover rate can be
lowered to a maximum of 0.50.

Th e Grefenstette settings (1986) are usually tried when the complexity of the fi tness function is
high and the population has to be kept low compulsively, even at the cost of lower dimensionality.
Th ese are

Population size = 30
Number of generations = To be fi xed through experimentation

544 Introduction to Soft Computing

Samir Roy_Chapter12.indd 544Samir Roy_Chapter12.indd 544 2/21/2013 3:39:20 PM2/21/2013 3:39:20 PM

Crossover type = Two point
Crossover rate = 0.9
Mutation types = Bit fl ip
Mutation rate = 0.01 per bit

Th e population size is another important issue. Th e size must be apt to represent the entire solution space
over a number of generations without compromising on the speed of execution due to complexities of
the fi tness function.

12.2.7 Convergence

As the GA approaches a global optimum, the fi tness’s of the average and the best chromosomes ap-
proaches equality. Th is progression towards uniformity is termed convergence in GA. Generally, a
GA is said to have converged when over 90% of the population share or have approximately the same
fi tness value.

While the GA population converges, the average fi tness of the population approaches that of the
best individual. However, since the GAs are subject to stochastic errors, the problem of genetic drift
may occur. Even in the absence of any selection pressure (i.e. a constant fi tness function), members of
the population will still converge to some point in the solution space. Th is happens simply because of
the accumulation of stochastic errors. If, by some chance, a gene becomes predominant in the popula-
tion, then it is just as likely to become more predominant in the next generation as it is to become less
predominant. If an increase in predominance is sustained over several successive generations, and the
population is fi nite, then a gene can spread to all members of the population. Once a gene converges
in this way, it is fi xed; crossover cannot introduce new gene values. Th is produces a ratchet eff ect,
so that as generations go by, each gene eventually becomes fi xed. Th e rate of genetic drift therefore
provides a lower bound on the rate at which a GA can converge towards the correct solution. Th at is,
if the GA is to exploit gradient information in the fi tness function, the fi tness function must provide
a slope suffi ciently large to counteract any genetic drift . A method of reducing the genetic drift is by
increasing the rate of mutation. Interestingly however, it must be remembered that a high mutation
rate may turn the search random thereby leaving the gradient information of the fi tness function
unexploited.

Example 12.8 (Convergence of GA)

Given a connected graph G (V, E), a node cover, or vertex cover, is a set of nodes N ⊆ V such that
for any edge e ∈ E, at least one end point of e is in N. Th e minimal node cover problem is to fi nd a
minimal node cover for a given graph. Minimal node cover problem have been proved to be NP-
complete. A graph with 16 nodes and 25 edges has been considered (see Fig. 12.26 in the section
‘Solved Problems’). A GA has been run on a search space of size 216 = 65536 for this instance of
node cover problem. Th e convergence scenario over about 50 generations is shown in Fig. 12.17.
Th e upper curve shows the progress made by the best fi tness value in a generation over successive
generations. Th e lower curve is the same for average fi tness of a generation. It is seen from the
fi gure that the GA converges in 21 generations of iteration. Th e best fi t chromosome returned by
the GA corresponds to a node cover of size 6 for the given graph. Th e GA parameters used are:
population size = 64, crossover probability = 0.65, mutation probability = 0.04.

Advanced Search Strategies 545

Samir Roy_Chapter12.indd 545Samir Roy_Chapter12.indd 545 2/21/2013 3:39:21 PM2/21/2013 3:39:21 PM

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 6 11 16 21 26 31 36 41 46
Iterations

F
itn

es
s

Average Fitness

Best Fitness till that point

Fig. 12.17 Convergence of GA process: a sample scenario

12.3 MULTI-OBJECTIVE GENETIC ALGORITHMS

Discussions so far were limited to GAs that handled the optimization of a single parameter. Th e optimi-
zation criteria are represented by fi tness functions and are used to lead towards an acceptable solution.
A typical single-objective optimization problem is the TSP. Th ere the sole optimization criterion is the
cost of the tour undertaken by the salesperson and this cost is to be minimized. However, I real life, we
oft en face problems which require simultaneous optimization of several criteria. For example, in VLSI
circuit design, the critical parameters are chip area, power consumption, delay, fault tolerance etc. While
designing a VLSI circuit, the designer may like to minimize area, power consumption, and delay while,
at the same time, would like to maximize fault tolerance. Th e problem gets more complicated when the
optimizing criteria are confl icting. For instance, an attempt to design low-power VLSI circuit may aff ect
its fault tolerance capacity adversely. Such problems are known multi-objective optimization (MOO),
multi-criterion optimization or vector optimization problems. Multi-objective optimization (MOO) is
the process of systematically and simultaneously optimizing a number of objective functions. Multiple
objective problems usually have confl icting objectives which prevents simultaneous optimization of
each objective. As GAs are population based optimization processes, they are inherently suited to solve
MOO problems. However, traditional GAs are to be customized to accommodate such problems. Th is
is achieved by using specialized fi tness functions as well as incorporating methods promoting solution
diversity. Rest of this section presents the basic features of multi-objective GAs.

12.3.1 MOO Problem Formulation

Let us suppose that there are K non-commensurable objectives with no clear preference relative to each
other among them. We may assume, without loss of generality, the objectives are to be minimized. Each
of these objectives are represented by the functions f x f x f xfff xf ff)xx fff),...,)x ,� �f) f � where �x x xn(,x , ,)1 2x, is an
n-dimensional decision variable vector in the solution space X. We have to fi nd a vector �xmin that mini-

546 Introduction to Soft Computing

Samir Roy_Chapter12.indd 546Samir Roy_Chapter12.indd 546 2/21/2013 3:39:21 PM2/21/2013 3:39:21 PM

mizes the objective function vector f x f x f x f xff)x { f))x ,...,)x }� �f) { f � �f)= f xf ffff), . Usually, the solution space X is subject
to certain constraints.

As stated earlier, in many real life situations the objectives under consideration confl ict with each
other. Th erefore a perfect multi-objective solution that achieves optimal values for each objective func-
tion is hardly feasible. A reasonable alternative is to search for a set of solutions each of which attains an
acceptable level for each objective and having the optimal values for one or more objectives. Such a set
of solutions is known as a pareto-optimal set. Th e concept of pareto-optimal solutions is explained in
greater details in the nest sub-section.

12.3.2 The Pareto-optimal Front

Th e Pareto-optimal front is defi ned in terms of dominance relation between solution vectors. Assuming
all the objective functions to be minimized, a solution vector �x1 is said to dominate another solution
vector �x2 if all the objective functional values of �x1 are less than or equal to those of �x2 and there is at
least one objective function for which �x1 has a value which is strictly less than that of �x2 .

10

(5)

(3)

(3)(3)

(2)(1)(2)(2)

(3)

(5)

(7)

(6)(6)

(5)

(2)
(3)

(4)

(3)(4)

(6)

(8)

(9)(9)

f1ff

f2ff

(
1

2

3

4

5

6

7

8

9

0
1 2 3 4 5 6 7 8 9 10 11 12 13

x

Fig. 12.18 Two objective functions to be minimized

Defi nition 12.1 (Dominance relation between solution vectors) Let �x denote the vector of objective
functions of a MOO problem with K objective functions. Without loss of generality we assume that the
functions f x f x f xfff xf ff)xx fff),...,)x� �f) f � all need to be minimized. We say that solution �x1 dominates another
solution �x2 , written as �

≺
�x x≺1 2x≺ , if and only if

f x f x i K
i K f x f

f xf ff
iff ff

)xx) { , ,..., },
{ , ,..., } fff)

f)
�

2xff x≤ ∀fff)xfff x
∃ ∈i <xxfff)

and
()((�

2
 (12.2)

Example 12.9 (Dominance relation between solution vectors)

Let us consider an MOO with two objective functions f1 and f2 both to be minimized. For simplicity
we assume that the solution vector consists of a single parameter x. Th e shapes of f1 and f2

Advanced Search Strategies 547

Samir Roy_Chapter12.indd 547Samir Roy_Chapter12.indd 547 2/21/2013 3:39:24 PM2/21/2013 3:39:24 PM

plotted against x are shown in Fig. 12.18. Th e search process produces sample solutions at x ∈ {0,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. It is evident from Fig. 12.18 that the minima for f1 and f2 do not
coincide. In fact f1 attains its minimum value of f1(x) = 1 at x = 5, while f2(x) attains its minimal
value of 2 at x = 9. Fig. 12.19 shows positions of the objective function vector f x f x f x)x (f))x)= f xf ffff),
corresponding to various values of x∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Now consider the
points e (3, 3) and g (3, 4). Here e dominates g. Similarly g dominates i, j, k, l and m. However, d
(2, 6) and e (3, 3) are non-dominating with respect to each other. In fact, the points in the set {a,
b, c} are mutually non-dominating. Similarly {d, e}, {f, g, h}, {i, j}, and {k, l, m} are non-dominating
sets of solutions.

f2ff

f1ff

(7, 5)

(6, 8)
(5, 9)

(6, 4)

(6, 3)

(3, 9)

(3, 4)

(2, 8)

(3, 3)

(2, 6)

(5, 2)

(2, 3)

(1, 4)

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

)

Fig. 12.19 Two-objective function vectors

Defi nition 12.2 (Pareto-optimal Front) Let P be a population of solutions to an MOO problem. Th e
pareto-optimal front, FPO is the set of all non-dominated candidates of P.

y f y f xPOFF ¬∃y{ |xx (f (f))}∃| �

Example 12.10 (Pareto-optimal Front)

Consider the multi objective function vectors depicted in Fig. 12.19. It is easy to observe that the
points a (1, 4), b (2, 3), and c (5, 2) are non-dominated by any other solution vectors. Th erefore,
this is the pareto-optimal front for the given population.

Example 12.11 (Pareto-optimal Front)

Let us consider the example of a car manufacturer who wishes to simultaneously reduce the cost of
the car and the number of accidents involving the specifi c model. Table 12.2 presents the available
data set. Here the pareto-optimal front is FPO = {A, C, F}.

548 Introduction to Soft Computing

Samir Roy_Chapter12.indd 548Samir Roy_Chapter12.indd 548 2/21/2013 3:39:38 PM2/21/2013 3:39:38 PM

Table 12.2 Car Dataset

Model (Cost, Accidents) Dominated by
A (3, 3)

B (8, 10) A, C, D, E, F, G, H

C (2, 5)

D (4, 6) A, C

E (5, 7) D

F (7, 2)

G (6, 4) A

H (9, 4) A

12.3.3 Pareto-optimal Ranking

In order to carry out the selection operation on a population, the chromosomes of the population must
be assigned an overall fi tness value. Th erefore, the multi-objective vectors should be mapped to some
suitable fi tness values so that these can be utilized by the selection operator. Pareto-ranking is an ap-
proach to achieve this. It exploits the concept of pareto-dominance for this purpose.

Th e technique is to rank the population on the basis of dominance relation. Th e rank of a solution is
further utilized to assign its fi tness value other than the actual values of the objective functions. Th e basic
pareto-ranking technique was proposed by Goldberg. It involves fi nding of successive pareto-optimal
fronts of a population. Fig. 12.20 shows the pseudo-code as Procedure Pareto-Ranking.

Procedure Pareto-Ranking
/* FPOi is the i

th pareto-optimal front. P is the population and PP is the
remaining part of the population yet to be ranked. */
Begin

i ← 1, PP ← P
/* Find the pareto-optimal fronts */
While (PP ≠ ϕ) Do

FPOi ← The pareto-optimal front of PP.
PP ← PP - FPoi

i++
End-While
/* Assign pareto-ranks using the pareto-optimal fronts */

For (each
�
x P
�

) Do

r(�
x) ← i, if �

x F
�

POiFF
End-For

End Procedure Pareto-Ranking

Fig. 12.20 Procedure Pareto-Ranking

Example 12.12 (Goldberg’s Pareto-Ranking)

Applying Procedure Pareto-Ranking on the objective function vectors shown in Fig. 12.18
and Fig. 12.19 we get the following pareto-optimal fronts.

Advanced Search Strategies 549

Samir Roy_Chapter12.indd 549Samir Roy_Chapter12.indd 549 2/21/2013 3:39:41 PM2/21/2013 3:39:41 PM

FPo1 = {a (1, 4), b (2, 3), c (5, 2)}, FPo2 = {d (2, 6), e (3, 3)},
FPo3 = {f (2, 8), g (3, 4), h (6, 3)}, FPo4 = {i (3, 9), j (6, 4)},
FPo5 = {k (5, 9), l (6, 8), m (7, 5)}

Accordingly, the ranks assigned to the solutions are r (a) = r (b) = r (c) = 1, r (d) = r (e) = 2, r (f)
= r (g) = r (h) = 3, r (i) = r (j) = 4, and r (k) = r (l) = r (m) = 5. Th is ranking is shown in Fig. 12.21.

Th e pareto-ranking method described above is oft en improvised to obtain other ranking schemes. For
example, Fonseca and Fleming (1993) followed a ranking method that penalizes solutions located in the
regions of the objective function space which are dominated, or covered, by densely populated sections
of the pareto-fronts. Th ey used the formula

 r nd()x ()xd) (= +1 (12.3)

Here nd()x� is the number of solutions who dominate �x .

(1) b h (3)e (2)

(2) d

10

f2ff
m (5)

l (5)
k (5)

j (4)

i (4)

(3) g

(3) f

c (1)
1

2

3

4

5

6

7

8

9

3 4 5 8
f1ff

a (1)

0 40 10 2 3 44 5 855 6 7 88

Fig. 12.21 Pareto-Ranking as per Goldberg’s method

Example 12.13 (Pareto-Ranking by Fonseca and Fleming)

Fig. 12.22 shows the pareto-ranking on the objective function vectors shown in Fig. 12.18 and Fig.
12.19 using Formula 12.3.

Accumulated ranking density strategy, proposed by Lu and Yen (2003) too penalizes redundancy in
population sue to over-representation. Th ey have used the formula

 r y
y P
y x

()x ()y
,

�(�)
�
�
≺

�

= + ∑1 (12.4)

Th erefore, the ranks of the solutions dominating �x must be available to compute that of �x . Fig. 12.23
shows the ranks of the same set of solutions obtained in this method.

550 Introduction to Soft Computing

Samir Roy_Chapter12.indd 550Samir Roy_Chapter12.indd 550 2/21/2013 3:39:41 PM2/21/2013 3:39:41 PM

(1)

(2)

10

f1ff

f2ff

(4)

(3)

(1)

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

(4)

(4)

(8)

(10)

(9)

(7)

(7)

(1)

Fig. 12.22 Pareto-Ranking as per Fonseca and Fleming method

(1)

(2)

10

f1ff

f2ff

(5)

(3)

(1)

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

(5)

(6)

(32)

(41)

(39)

(16)

(19)

(1)

Fig. 12.23 Pareto-Ranking through Lu and Yen method

12.3.4 Multi-objective Fitness

Suppose an MOO problem has K number of objective functions f x f x f xfff xf ff)xx fff),...,)x� �f) f � . One obvious way
to tackle the situation is to combine all objective functions into a single one by taking the weighted sum
of the individual functions as below.

 f x w f w f x w fKff)x ()x)x ... ()x� �f) (� �f) (=w + ×w + +...1ff 2 ff× (12.5)

Here �w w K(,w , ,)wK1 2w, is the weight vector. Th e MOO problem then boils down to yet another single-
objective optimization problem and solving such a problem will yield a single solution as usual. How-
ever, if multiple solutions are necessary with varied importance of diff erent objectives, the problem must
be solved multiple times with diff erent weight vectors. Th e critical aspect of this weighted sum approach

Advanced Search Strategies 551

Samir Roy_Chapter12.indd 551Samir Roy_Chapter12.indd 551 2/21/2013 3:39:46 PM2/21/2013 3:39:46 PM

is selection of appropriate weight vector for each run. Moreover, combining a number of apparently
unrelated objective functions in the form of a weighted sum is oft en undesirable.

So, instead of forcefully combining a number of non-commensurable objectives into a single one,
multi-objective GA tries to return a set of good solutions. To achieve this, the individual solutions of a
population need to be assigned some fi tness value that refl ects the relative status of the candidate with
respect to various competing objectives. Th e pareto-ranking techniques described above can be used
directly as the fi tness values to individual solutions. However, these are usually combined with various
fi tness sharing techniques so that a diverse and uniform pareto-front is obtained. Maintaining a diverse
population is a matter of concern for multi-objective GAs. Th is is because, unless preventive measures
are taken the population is prone to form a few clusters instead of being distributed uniformly through-
out the solution space. Th is is called genetic drift . Th ere are several approaches to prevent genetic drift .
Among them, niche count is a popular and widely applied one.

Niche Count. Th e motivation is to encourage search in unexplored sections of a pareto-front by
suitably reducing fi tness of solutions in densely populated areas. Th is is achieved by identifying such
areas and penalizing solutions located there.

Given a solution �x P� , the niche count for
�x, denoted as nc()x , is the number of solutions �y P� ,

with the same rank as that of �x, in the neighbourhood of predefi ned size around �x. Th e niche count of
the solutions in a population P is calculated in the following way.

1. Between every pair of solutions � �x y P,y P∈ calculate the Euclidean distance df x y(,x)� � in the normal-
ized objective space using the formula

 df x y
f x f y
f f
f xf ff

if ff fi

K

(,x)
)xx)y

m x mf in

� �
� f)

=
−⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠=
∑

1

2

 (12.6)

In Formula 12.6, fiff max and fiff min are the maximum and the minimum values of the objective func-
tion f i observed so far in the search.

2. For each �x P� , calculate the niche count nc()x� using the formula

 nc
df x y

r r y
df x y

()x
(,x)

()x ()y
(,x)

�

) (�

=
−

=
≤

∑
s

s
σ

 (12.7)

Here s is the size of the niche. Th e value of s is to be supplied by the user.
Fitness of a chromosome is initially calculated with the help of Formula 12.8 given below.

 f x PopSize n
n

i
i

r
r)x

()x
()x� = PopSize −

−

=

−

∑
1

1 1
2

 (12.8)

In Formula 12.8, ni is the size of the ith pareto front, and r()x� is the rank of �x . Th en shared fi tness of an
individual solution is computed using the niche count as per Formula 12.9.

 ′ ←f x′
f x

nc
)x)x

()x
�

�
 (12.9)

Finally, the normalized fi tness values are calculated using the shared fi tness with the help of Formula
12.10.

552 Introduction to Soft Computing

Samir Roy_Chapter12.indd 552Samir Roy_Chapter12.indd 552 2/21/2013 3:39:50 PM2/21/2013 3:39:50 PM

 ′′ =
′ ×

′
×

=

∑
f x′′

f x′ n
f y′

f xr

y P∈
r y r

)x
)x

)y
)x()x

()y ()x

�

�

) (

 (12.10)

Procedure Multi-Objective-GA

Step 1. Generate the initial population randomly.

Step 2. Determine the pareto-optimal fronts FPo1, FPo2, …, FPoK.

Step 3. If stopping criteria is satisfied then Return the pareto-optimal
front FPo1 and Stop.

Step 4. For each solution
�
x ∈ P, evaluate the fitness as follows:

Step 4.1. Assign a rank r()x
�
 using Goldberg’s method, or Formula 12.3

(Fonseca and Fleming), or Formula 12.4 (Lu and Yen).

Step 4.2. Compute the basic fitness value using Formula 12.8.

Step 4.3. Compute the shared fitness value using Formula 12.9.

Step 4.4. Compute the normalized fitness value using Formula
12.10.

Step 5. Generate the mating pool MP from population P applying appropriate
selection operator.

Step 6. Apply crossover and mutation operations on the chromosomes of the
mating pool to produce the next generation P’ of population from
MP.

Step 7. Replace the old generation of population P by the new generation
of population P’.

Step 8. Goto Step 2.

Fig. 12.24 Procedure Multi-Objective-GA

Th e fi tness value obtained through Formula 12.10 is used to select chromosomes for the mating pool.
Niche count based fi tness sharing has the overhead of selecting an appropriate value for the parameter
s. Researchers have proposed methods to settle this issue. Another issue is the computational overhead
of calculating the niche counts. However, the cost of the extra computational eff ort is usually fairly com-
pensated by its benefi ts.

12.3.5 Multi-objective GA Process

Multi-objective GA is designed by incorporating pareto-ranked niche count based fi tness sharing into
the traditional GA process. Th is is presented as Procedure Multi-Objective-GA (Fig. 12.24).

Advanced Search Strategies 553

Samir Roy_Chapter12.indd 553Samir Roy_Chapter12.indd 553 2/21/2013 3:40:09 PM2/21/2013 3:40:09 PM

Procedure Simulated Annealing
Begin

Scur ← Initial solution; /* generate initial solution */
Ecur ← energy level of Scur

T ← Tmax /* Set T to maximum temperature */
While (T ≥ Tmin) Do

For i = 1 To N Do /* iterate at constant T */
Generate Snew from Scur by perturbing Scur
Let Enew be the energy level of Snew

If (Enew<Ecur) Then /* new solution is better */
Scur ← Snew

Else /* new solution is not better */
ΔE = (Enew–Ecur)
P =1/(1+e–ΔE/T) /* find acceptance probability */
Generate a random number r ∈ [0,1]
If (r < p) Then Scur ← Snew

End-If
End-if

End-For
T = α × T /* α is a constant, 0 ≤ α ≤ 1 */

End-While
End Procedure Simulated Annealing

Fig. 12.25 Simulated Annealing procedure

12.4 SIMULATED ANNEALING

Simulated annealing (SA) is a technique for fi nding good solutions to minimization problems. It simulates
the physical annealing process of solidifying a metal to a uniform crystalline structure. In order to achieve
this uniform crystalline structure, the metal is fi rst heated to a molten state and the gradually cooled
down. Th e critical parameter of this process is the rate of cooling. If the cooling takes place too quickly, en-
ergy gaps will be formed resulting in non-uniformity in the crystalline structure. On the other hand, if the
cooling takes place too slowly, then time is wasted. Th e optimal cooling rate varies from metal to metal.

As a search process, SA is similar to hill climbing. Th e diff erence is, in hill climbing, a solution worse
than the current solution is outright rejected and we look for a solution which is better than, or at least
as good as, the current solution. However, in SA, a worse solution too has a fi nite probability of being
accepted. Th is probability is inversely proportional to the extent of degradation in the quality of the new
solution. Moreover, as the SA process approaches convergence, this probability gradually decreases.

In Simulated Annealing, an energy function is associated with the feasible solutions of the given
minimization problem. Quality of a solution is determined in terms of this energy function. Lower the
energy level, better the solution. In SA, a parameter called temperature, denoted by T, is used. As in
physical annealing, temperature T is high in the beginning and is gradually lowered as the annealing
process advances. Given, the current solution Si with energy Ei, the next confi guration Si+1 (with energy
Ei+1) is generated by perturbing Si. Th en Ei+1 − Ei is diff erence in the energy levels of the new solution and

554 Introduction to Soft Computing

Samir Roy_Chapter12.indd 554Samir Roy_Chapter12.indd 554 2/21/2013 3:40:10 PM2/21/2013 3:40:10 PM

the current solution. If Ei+1 − Ei < 0, then Si+1 is better than Si and the current solution is directly updated
by Si+1. Else, it is accepted with a probability exp (− (Ei+1 − Ei) / (kβT)), where T and kβ are the temperature
and the Boltzmann’s constant respectively. If the lowering of the temperature is done slowly enough, the
crystal reaches equilibrium at each temperature. In SA, this is achieved by applying a number of per-
turbations at each T. Simulated annealing starts from a random initial confi guration at high T. It then
proceeds by generating new states and accepting/rejecting them according to a probability that depends
on the current T and Ei+1 − Ei. Initially, the probability of accepting an uphill move is high. As the search
proceeds, the temperature cools down, the probability of taking an uphill move diminishes and the pro-
cess converges to a global minima. Th e purpose of allowing some uphill moves at the earlier phases is to
overcome the problem of getting stuck at a local minimum. Th e logical steps of a simulated annealing
process are shown in Procedure Simulated Annealing (Fig. 12.25).

 CHAPTER SUMMARY

Th e main points of the foregoing discussion are summarised below.

 Genetic Algorithms are complex search processes inspired by natural evolution. Th ese are essen-•
tially maximization processes.
 In a GA, a feasible solution is encoded as a chromosome. In its simplest form, a chromosome is a •
one-dimensional string of bits though various other types of chromosomes have been tries.
 Fitness functions are objective functions used to evaluate a particular solution or a chromosome. •
Th e fi tness function of a GA is defi ned in a way so that higher fi tness values may represent better
solutions.
 • Selection is an important GA operator used to decide which chromosomes of the current popula-
tion will be included in the mating pool. Th e selection operators are based on the Darwinian prin-
ciple of survival of the fi ttest. Most widely used selection operators are the roulette wheel selection
and tournament selection.
 Th e crossover operation helps to share information embedded in the chromosomes. During cross-•
over, portions of the parent chromosomes are exchanged and are passed to the children. Th is
operation helps the GA to explore the entire search space.
 Another GA operator, • mutation, imparts a small change at a random position inside a chromo-
some. Th e purpose is to salvage the search process from local optima and explore every region of
the search space adequately. Compared to crossover, mutation occurs rarely.
 In the elitist model of GA, the best chromosomes are preserved to ensure that at the end of the •
search process these are not lost.
 Multi-objective genetic algorithms are employed to solve problems having several non-commensu-•
rable objectives with no clear preference relative to each other among them. In real life situations
the objectives under consideration may confl ict with each other. Hence, instead of a perfect multi-
objective solution that achieves optimal values for each objective function, a set of solutions each of
which attains an acceptable level for each objective and having the optimal values for one or more
objectives is returned by a multi-objective genetic algorithm. Such a set of solutions is known as a
Pareto-optimal set.
 As a search process, Simulated Annealing (SA) is similar to hill climbing. However, in SA, unlike •
in hill climbing, a worse solution has a fi nite probability of being accepted. Th is probability is in-
versely proportional to the extent of degradation in the quality of the new solution. Moreover, as
the SA process approaches convergence, this probability gradually decreases.

Advanced Search Strategies 555

Samir Roy_Chapter12.indd 555Samir Roy_Chapter12.indd 555 2/21/2013 3:40:10 PM2/21/2013 3:40:10 PM

 SOLVED PROBLEMS

Problem 12.1 Given a connected graph G (V, E), a node cover, or vertex cover, is a set of nodes N
⊆ V such that for any edge e ∈ E, at least one end point of e is in N. Th e minimal node cover problem is
to fi nd a minimal node cover for a given graph. Minimal node cover problem have been proved to be
NP-complete. Fig. 12.26 shows a graph with 16 nodes and 25 edges. Apply a GA to fi nd a minimal node
cover for this graph.

Solution 12.1 Th e nodes of the graph are numbered 1 through 16 and the edges are also num-
bered 1 through 25, as shown in Fig. 12.26. Th e adjacency matrix for this graph is given in Table 12.3.
Th e (i, j)th entry of the adjacency matrix is 0 if there is no edge between node i and node j, else it is
k if edge numbered k connects these nodes. Th e chromosome for this problem is a binary string of
length 16. Th e encoding/decoding scheme is rather simple. Th e ith bit of a chromosome is 1 if node i is
included in the set of nodes under consideration, else it is 0. For example, the chromosome 1000 1011
0000 0100 represents the set {1, 5, 7, 8, 14} and the chromosome 0010 0110 0011 1101 corresponds to
the set {3, 6, 7, 11, 12, 13, 14, 16}. Th e fi tness function employed is 1 / n where n is the number of nodes
in the set.

13

21

7

6
16

6

15

25

12

11
14 5

13

10

24

16

12

19

3

18

3

1

2
1

17
2

8
8

9

22

14

10

9
23

15

11

4

20 4

5

7

Fig. 12.26 Sample graph with 16 nodes and 25 edges

Writing the program for the GA is left as an exercise. Aft er some experimentation, we settled
on the following parametric values: population size = 64, crossover probability = 0.65, mutation

556 Introduction to Soft Computing

Samir Roy_Chapter12.indd 556Samir Roy_Chapter12.indd 556 2/21/2013 3:40:10 PM2/21/2013 3:40:10 PM

probability = 0.04. Initial population was generated randomly. Th e fi rst three chromosomes are 0 1 1 1 1
1 1 1 0 1 0 0 1 1 1 1 , 0 1 1 0 0 0 1 0 1 0 1 1 1 0 1 0, and 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1. Th e GA was terminated
when there was no improvement in the best fi tness over 10 consecutive generations. Th e convergence
scenario over about 50 generations is shown in Fig. 12.17. Th e upper curve shows the progress made by
the best fi tness value in a generation over successive generations. Th e lower curve is the same for average
fi tness of a generation. It is seen from the fi gure that the GA converges in 21 generations of iteration.

Table 12.3 Adjacency Matrix for Graph Shown in Fig. 12.26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 1 2 3 4 5 16 17 18 19 20 0 0 0 0 0

2 1 0 0 0 0 0 7 8 0 0 0 0 0 0 0 0

3 2 0 0 0 0 0 0 9 10 0 0 0 0 0 0 0

4 3 0 0 0 0 0 0 0 11 12 0 0 0 0 0 0

5 4 0 0 0 0 0 0 0 0 13 14 0 0 0 0 0

6 5 0 0 0 0 0 6 0 0 0 15 0 0 0 0 0

7 16 7 0 0 0 6 0 0 0 0 0 0 21 0 0 0

8 17 8 9 0 0 0 0 0 0 0 0 0 0 22 0 0

9 18 0 10 11 0 0 0 0 0 0 0 0 0 0 23 0

10 19 0 0 12 13 0 0 0 0 0 0 0 0 0 0 24

11 20 0 0 0 14 15 0 0 0 0 0 25 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0

13 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0

A partial picture of the evolutionary progress is given below. Th e best fi t chromosome returned by the
GA corresponds to the node cover {1, 7, 8, 9, 10, 11} of size 6 for the given graph. A close scrutiny of the
given graph reveals that this a minimal node cover for the graph.

FITNESS GENERATION CHROMOSOME
0.062500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.083333 2 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0
0.100000 3 1 0 0 1 0 0 1 1 1 1 1 1 0 0 1 1
0.111111 4 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0
0.125000 12 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0
0.142857 15 1 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0
0.166667 20 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

Advanced Search Strategies 557

Samir Roy_Chapter12.indd 557Samir Roy_Chapter12.indd 557 2/21/2013 3:40:11 PM2/21/2013 3:40:11 PM

Problem 12.2 Genetic Algorithms have been successfully applied to many areas of computation.
Here we present a case study of the application of Genetic Algorithms to grammar induction, a problem
in natural language processing. Grammar induction stands for deciding or fi nding out a grammar from
a set of sample strings collected from the language generated by the grammar. However, the problem of
grammar induction from legal and illegal strings is known to be NP-complete even for fi nite state gram-
mars. Automatic grammar induction has found applications in the areas of natural language processing,
speech recognition, automatic computer program synthesis to name a few.

Given a set of positive and negative sentences as samples, the problem is to fi nd out the grammar that
can generate the positive samples. Simply put, given a set of similar sentences some of which have been
generated using the same grammar (i.e. they belong to the same language/ positive strings) and some
which diff er from those generated using the target grammar (negative strings), and a set of equivalent
and non-equivalent grammars the primary aim is to generate an equivalent grammar using genetic algo-
rithm for the positive strings. Use the following set of correct / incorrect sentences as samples.

Sample Sentences Comment
the dog chases the cat in the house correct
the cat the dog the house in chase incorrect
dog the cat house in chases the in incorrect
in dog cat house chases the the the incorrect
house cat the dog chases in the the incorrect
chases the dog the cat house in the incorrect
in the the the house chases dog cat incorrect
house chases the dog cat in the the incorrect
the the the in dog cat house chases incorrect
dog cat house chases the in the the incorrect

Solution 12.2 Th e input to the genetic algorithm would be the initial gene pool with equivalent and
non-equivalent grammars only. Th e task of the GA would be to generate aft er each iteration a new set
of grammar’s which will be tested for fi tness value and depending on the result would replace lesser fi t
members of the generating pool, or die.

Th e process would continue generation of the grammars until it arrives at one which satisfi es the
terminating condition. Th e terminating condition should ideally be correct identifi cation of all the test
sentences. In other words, the generated grammar should positively identify and classify the sentences
as positive or negative strings.

Fitness Evaluation Th e evaluation of the fi tness function would depend on the ability of the gram-
mar to successfully and correctly identify the positive and negative strings. Identifi cation would mean
parsing of a string using the respective grammar. A reward-punishment scheme has to be implemented
wherein the grammars score count increases on correctly identifying a positive string as positive and a
negative string as negative. Th e same score count will be decremented on identifi cation of the positive
strings as negative and negative strings as positive. Th e termination condition is therefore decided on
the score.

F(α) = r C(α) − p W(α)

558 Introduction to Soft Computing

Samir Roy_Chapter12.indd 558Samir Roy_Chapter12.indd 558 2/21/2013 3:40:11 PM2/21/2013 3:40:11 PM

Th e fi tness of the individual α is determined based on the number of sentences correctly identifi ed,
C(α), and the number of sentences wrongly identifi ed, W(α). Th e associated reward and penalty values
are r and p respectively and may be tuned suitably.

Encoding the chromosome When it comes to representational issues there are two broad cat-
egories involved. Th e fi rst is the grammar issue, which has at least two degrees of freedom, the formalism
used, and the encoding of the grammar. Th e second category covers the representational issues of the
Genetic Algorithm itself, which concerns the choice of genetic operators, the fi tness function and the
grammar representation style. So for the grammar {S → AB, A → a, B → b} an encoding may be SAB Aa
Bb. To ease operation of crossover on the strings, it would be wise to keep markers to distinguish be-
tween the LHS and RHS of a production. So, the strings may be encoded fi nally as S-AB A-a B-b.

A sample grammar used in the initial population is {Start → S, S → VP NP, NP → DT NP, VP → NP
NN, VP → V NP, PP → P DT, DT → the, DT → a, NN → dog, NN → cat, NN → house, V → likes, V → chases,
P → in}. Th e grammar returned by the GA process is {Start → S, S → NP VP, NP → DT NN, VP → V NP,
VP → V NP PP, PP → P NP, DT → the, DT → a, NN → dog, NN → cat, NN → house, V → likes, V → chases,
P → in}

Problem 12.3 Implement a multi-objective GA using MatLab to solve the following MOO prob-
lem: Minimize f (x) = [f1 (x), f2 (x)], where f1 (x) = (x + 1)2 – 30, and f2 (x) = (x - 1)2 + 30.

Solution 12.3 To solve this multi-objective minimization problem using Genetic Algorithms on
MatLab, we need to use the GAMULTIOBJ function. Th e function must be supplied with the following
variables:

Th e Fitness Function•
Number of variables•
Linear inequality constraints • A and b.
Linear equality constraints • Aeq and beq.
Th e lower and upper bounds • lb and ub respectively.

Th e successive steps of the solution process are described below:

Step 1. Open a blank .m fi le.
Step 2. Write the following code into it:

function y = sample_mult_ga(x)
y(1) = (x + 5)^2 - 30;
y(2) = (x - 5)^2 + 30;

Step 3. Save the fi le as sample_mult_ga.m
Step 4. Open another blank .m fi le.
Step 5. Write the following code into it:

f_fn=@sample_mult_ga; %Fitness Func as in sample_mut_ga.m.
num_var = 1;
A=[]; b=[]; % Linear inequality constraints kept
empty
Aeq = [];
beq = []; %Linear equality constraints kept empty
lb = -5; % Lower bound of the variable.

Advanced Search Strategies 559

Samir Roy_Chapter12.indd 559Samir Roy_Chapter12.indd 559 2/21/2013 3:40:11 PM2/21/2013 3:40:11 PM

ub = 0; % Upper bound of the variable.
x = gamultiobj(f_fn,num_var,A,b,Aeq,beq,lb,ub);
options=gaoptimset(‘PlotFcns’,{@gaplotpareto,@gaplotscoredi-
versity}); % Visualization options
gamultiobj(f_fn,num_var,[],[],[],[],lb,ub,options);

Step 6. Save the fi le as simmulti.m.
Step 7. Run it.

Th e output of the multi-objective GA is a set of three pareto-optimal objective vectors (−29.76, 32.25),
(−29.3, 31.35) and (−29, 31). Th e output generated by MatLab is shown in Fig. 12.27.

Fig. 12.27 MatLab output for Problem 12.3

Problem 12.4 Minimize the function y e xx= +ex1
2

2sin() by applying Simulated Annealing search
technique provided in MatLab.

Solution 12.4 Th e steps-by-step is given below. Th is is followed by a list of various parameter values
used in the SA employed. However, these are inbuilt in MatLab.

Step 1. Write the following piece of code into a Matlab fi le and save it as example_objective.m:

function y = example_objective(x)
y = exp(x(1)) + sin(x(2)^2);

Step 2. Open another fi le by the name of myfun.m and write the following into it:

clear;
clc;
ObjectiveFunction = @example_objective;
X0 = [0.5 0.5]; % Starting point
x = simulannealbnd(ObjectiveFunction,X0)
% The simulannealbnd function takes as input the Objective
Function and the
% starting point and returns the local minimum x to the
objective

560 Introduction to Soft Computing

Samir Roy_Chapter12.indd 560Samir Roy_Chapter12.indd 560 2/21/2013 3:40:11 PM2/21/2013 3:40:11 PM

% function specified by the function handle.

Step 3. Run myfun.m

Th e following output will be displayed on the Matlab prompt:
Optimization terminated: change in best function value less than options.TolFun.
x = −182.3034 −249.2520

Parameters

Th e function simulannealbnd uses the saoptimset, which creates a structure called options that con-
tains the parameters, for the simulated annealing algorithm, with all parameters set to []. Some of the
important parameters and their default values are as below:

AnnealingFcn Function used to generate new points for the next iteration. Th e default is @
annealingfast.

TemperatureFcn Default is @temperatureexp -- (InitialTemperature*0.95^i).
AcceptanceFcn Th is function is used to determine whether a new point is to be accepted or

not. Th e default function is @acceptancesa
TolFun Tolerance value (non-negative scalar). Default is 1e-6
MaxFunEvals Maximum number of evaluations of the objective function (positive integer).

Default is 3000*numberOfVariables.
TimeLimit Maximum time allowed(positive scalar). Default is Infi nity.
MaxIter Maximum number of iterations allowed(positive integer). Default is infi nity.
ObjectiveLimit Th e functions stopping criterion. Th e function stops if the value of the objec-

tive function is less than or equal to this. Default value is -Infi nity.
HybridFcn A hybrid function is another minimization function that runs during or at the

end of iterations of the solver. Th e default option is [].
HybridInterval Th is value determine the interval aft er at which the hybrid function is called.
InitialTemperature Th e initial temperature (positive scalar). Default is 100.

� TEST YOUR KNOWLEDGE

12.1 In order to apply GA, an optimization problem should be formulated as
a) Maximization problem b) Minimization problem
c) Decision problem d) None of the above

12.2 Genetic Algorithms are inspired by
a) Statistical mechanics b) Big bang theory
c) Natural evolution d) None of the above

12.3 Which of the following genetic operators is based on the Darwinian principle of Survival of the
fi ttest.
a) Selection b) Crossover
c) Mutation d) None of the above

12.4 Which of the following selection techniques never selects the worst-fi t chromosome of a popula-
tion?
a) Roulette wheel b) Tournament selection
c) Both (a) and (b) d) None of the above

Advanced Search Strategies 561

Samir Roy_Chapter12.indd 561Samir Roy_Chapter12.indd 561 2/21/2013 3:40:13 PM2/21/2013 3:40:13 PM

 12.5 Which of the following GA operators helps the search process overcome the problem of getting
stuck at a local optima?
a) Crossover b) Mutation
c) Both (a) and (b) d) None of the above

 12.6 If pc and pμ be the crossover probability and the mutation probability of a GA then which of the
following relations is true?
a) pc < pμ b) pc > pμ
c) pc = pμ d) None of the above

 12.7 Which of the following properties is not guaranteed by a GA?
a) Admissibility b) Convergence
c) Both (a) and (b) d) None of the above

 12.8 Which of the following GA operators do not help in exploring the various parts of the search
space?
a) Selection b) Crossover
c) Mutation d) None of the above

 12.9 Usually a multi-objective GA returns
a) Th e optimal solution b) A number of pareto-optimal solutions
c) One optimal solution per objective d) None of the above

12.10 Niche count in multi-objective GA is used to penalize
a) Sub-optimal solutions b) Solutions in sparsely populated areas
c) Solutions in densely populated area d) None of the above

12.11 Th e pareto-front of a population in multi-objective GA consists of
a) A set of non-dominated solutions b) A set of dominated solution
c) A set of semi-dominated solutions d) None of the above

12.12 In multi-objective GA, the rank of a solution in a population may be assigned on the basis of
a) Relative position of the pareto-front to which it belongs
b) Number of solutions dominating it
c) Number of solutions dominated by it
d) All of the above

12.13 Which of the following parameters of a GA is not user-defi ned?
a) Size of population b) Crossover probability
c) Mutation probability d) None of the above

12.14 Let A = (10, 20), B = (5, 15), C = (15, 15) be three solution points in the objective space of a
2-objective minimization problem. Which of the following statements is true?
a) B dominates A and C b) A and C are mutually non-dominating
c) Both (a) and (b) d) None of the above

12.15 In Simulated Annealing (SA), the probability of accepting a solution worse than the current one
a) Increases as the temperature decreases
b) Decreases as the temperature decreases
c) Remains constant throughout
d) None of the above

12.16 In order to apply Simulated Annealing (GA), an optimization problem should be formulated as
a) Maximization problem b) Minimization problem
c) Decision problem d) None of the above

562 Introduction to Soft Computing

Samir Roy_Chapter12.indd 562Samir Roy_Chapter12.indd 562 2/21/2013 3:40:13 PM2/21/2013 3:40:13 PM

Answers

 12.1 (a) 12.2 (c) 12.3 (a) 12.4 (b) 12.5 (c)
 12.6 (b) 12.7 (c) 12.8 (a) 12.9 (b) 12.10 (c)
 12.11 (a) 12.12 (d) 12.13 (d) 12.14 (c) 12.15 (b)
 12.16 (b)

 EXERCISE

12.1 Let G (V, E) be a connected graph with |V| = n number of nodes. Each edge e (i, j) between two
nodes i and j has a weight w (i, j). If we want to assign a binary code to each node then we need
k = ⎡log2n⎤ number of bits. For example, if there are 6 nodes in the graph, we need ⎡log26⎤ = 3 bit
code to assign. Out of the 23 = 8 possible codes 6 will be actually assigned and the rest will remain
unused. Optimal code assignment problem is to assign a set of codes to the nodes of a graph such
that the function

f w h C Cij i jC
i j E

×wij
∈

∑∑ (,Ci)
(,i)

where Ci, Cj are the codes assigned to the nodes i and j respectively, and h (Ci, Cj) is the Hamming
distance between Ci, Cj, i.e., the number of bits in which Ci and Cj diff er. Optimal code assignment
problem is NP-hard. Design a GA to solve this problem for a given graph. Apply it to the graph
shown in Fig. 12.26.

12.2 Solve the optimal code assignment problem mentioned above with the help of a Simulated An-
nealing. Compare the solutions returned by the two methods.

12.3 Th e minimal edge cover problem for a given graph G (V, E) may be stated as to obtain the minimal
set of edges E′ such that for each node v ∈ V there is at least one edge e ∈ E′ of which v is an end point.
Design a GA to solve this problem for a given graph. Apply it to the graph shown in Fig. 12.26.

12.4 Solve the minimal edge cover problem mentioned above with the help of a Simulated Annealing.
Compare the solutions returned by the two methods.

 BIBLIOGRAPHY AND HISTORICAL NOTES

Ever since the development of Genetic Algorithms by John Holland and his students and colleagues at
the University of Michigan, innumerable works have been reported on the application and development
of this technique. A number of scientists, e.g. Scott Kirkpatrick, C. Daniel Gelatt, Mario P. Vecchi, Vlado
Černý made fundamental contribution to the development of the Simulated Annealing method of mini-
mization. A very brief list of some signifi cant literature on GAs and SAs is given below.

Aarts, E. And Korst, J. (1989). Simulated annealing and Boltzmann machines: A stochastic approach to
combinatorial optimization. John Wiley and Sons, Chichester, UK.

Baker, J. E. (1985). Adaptive selection methods for genetic algorithms. In Grefenstette, J. J. (ed.). Proceedings
of the First International Conference on Genetic Algorithms and Th eir Applications, Erlbaum.

Davis, L. (1987). Genetic algorithms and simulated annealing. Pitman, London.
Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artifi cial Intelligence through Simulated Evolution.

Wiley.

Advanced Search Strategies 563

Samir Roy_Chapter12.indd 563Samir Roy_Chapter12.indd 563 2/21/2013 3:40:13 PM2/21/2013 3:40:13 PM

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Addision–Wesley.
Goldberg, D. E., and Deb, K. (1991). A comparitive analysis of selection schemes used in genetic algo-

rithms. In Rawlins, G. (ed.) Foundations of Genetic Algorithms, Morgan Kaufmann.
Goldberg, D. E., Korb, B., and Deb, K. (1989). Messy genetic algorithms: Motivation, analysis and fi rst

results. Complex Systems, Vol. 3, pp. 493–530.
Goldberg, D. E., Richardson, J. (1987). Genetic algorithms with sharing for multimodal function optimiza-

tion. In Genetic algorithms and their applications: Proceedings of the second international conference
on Genetic Algorithms, Cambridge, MA, USA.

Goldberg, D.E., and Segrest, P. (1987). Finite Markov chain analysis of genetic algorithms. In Grefenstette,
J. J. (ed.) Genetic Algorithms and Th eir Applications: Proceedings of the Second International Confer-
ence on Genetic Algorithms, Cambridge, MA, USA.

Holland, J. H. (1975) ‘Adaptation in natural and artifi cial systems,’ Ann Arbor: University of Michigan
Press.

Horn, J., Nafpliotis, N., Goldberg, D. E. (1994). A niched Pareto genetic algorithm for multiobjective
optimization. In Proceedings of the fi rst IEEE conference on evolutionary computation. IEEE world
congress on computational intelligence, Orlando, FL, USA.

Kirkpatrik, S., Gelatt, C. D. and Vecchi, M. P. (1983). Optimization by simulated annealing. Science, Vol.
220, pp. 671–680.

Lu, H., Yen, G. G. (2003). Rank-density-based multiobjective genetic algorithm and benchmark test
function study. IEEE Transaction on Evolutionary Computation, Vol. 7(4), pp. 325–343.

Monseca, C. M., Flemming, P. J. (1993). Multiobjective genetic algorithms. In IEE colloquium on “Genetic
Algorithms for Control Systems Engineering”

Murata, T., Ishibuchi, H., Tanaka, H. (1996). Multi-objective genetic algorithm and its applucations to
fl owshop scheduling. Comput Ind Eng, Vol. 30(4), pp. 957–968.

Rawlins, G. (ed.) (1991). Foundations of Genetic Algorithms. Morgan Kaufmann.
Schaff er, J. D., Caruana, R. A., Eshelman, L. J., and Das, R. (1989). A study of control parameters aff ecting

online performance of genetic algorithms for function optimization. In Schaff er, J. D. (ed.) Proceedings
of the Th ird International Conference on Genetic Algorithms.

Schaff er, J. D. and Morishima, A. (1987). An adaptive crossover distribution mechanism for genetic algo-
rithms. In Grefenstette, J. J. (ed.) Genetic Algorithms and their Applications: Proceedings of the Second
International Conference on Genetic Algorithms. Cambridge, MA, USA.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Schaff er, J. D. (ed.) Proceedings of the
Th ird International Conference on Genetic Algorithms. Morgan Kaufmann.

Zitzler, E., Th iele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the
strength Pareto approach. IEEE Transaction on Evolutionary Computation, Vol. 3(4), pp. 257–271.

564 Introduction to Soft Computing

Samir Roy_Chapter12.indd 564Samir Roy_Chapter12.indd 564 2/21/2013 3:40:14 PM2/21/2013 3:40:14 PM

13
HYBRID SYSTEMS

Key Concepts

AND fuzzy neuron, Action selection network (ASN), Action-state evaluation network, Adaptive
neuro-fuzzy inference system (ANFIS), Approximate reasoning based intelligent control (ARIC),
Auxiliary hybrid systems, Backpropagation of error, Embedded hybrid systems, Fuzzy-genetic hy-
brid systems, Hybrid neural networks, Hybrid systems, Implication-OR fuzzy neuron, Innovation
number, Interval of performance, Link chromosome, Multi-layer feed-forward nets, Mutate add
connection, Mutate add node, Neuro-evolution of augmenting topologies (NEAT), Neuro-fuzzy-
genetic hybrid systems, Neuro-fuzzy hybrid systems, Neuro-genetic hybrid systems, Node chromo-
some, OR fuzzy neuron, S-conorm, S-norm, Sequential hybrid systems, Sugeno fuzzy model, T-
conorm, T-norm

 Chapter Outline

13.1 Neuro-genetic Systems
13.2 Fuzzy-neural Systems
13.3 Fuzzy-genetic Systems

Chapter Summary
Test Your Knowledge
Bibliography and Historical Notes

Th e three main pillars of soft computing are fuzzy logic, artifi cial neural networks, and evolutionary
search – particularly genetic algorithms. All of these have been successfully applied in isolation to
solve practical problems in various fi elds where conventional techniques have been found inadequate.
However, these techniques are complementary to each other and they may work synergistically, com-
bining the strengths of more than one of these techniques, as the situation may occasionally demand.
Hybrid systems are systems where several techniques are combined to solve a problem. Needless to
say that such amalgamation must be used only if it returns better results than any of these techniques
in isolation. Based on how two or more systems are combined, hybrid systems have been classifi ed
into three broad categories, viz., sequential (where the techniques are used sequentially, i.e. the output
of the fi rst is the input to the later), auxiliary (where one system calls the other as a subroutine, gets
some results and uses it for further processing) and embedded hybrid systems (where the systems

Samir Roy_Chapter13.indd 565Samir Roy_Chapter13.indd 565 2/21/2013 3:40:36 PM2/21/2013 3:40:36 PM

566 Introduction to Soft Computing

are totally amalgamated). Th ree primary types of hybrid systems are briefl y discussed in this chapter.
Th ese are, neuro-genetic (combining neural networks and genetic algorithm), neuro-fuzzy (combin-
ing neural network and fuzzy logic) and fuzzy-genetic hybrid systems. Hybrid systems integrating all
three techniques, viz., fuzzy logic, neural networks, and genetic algorithms, are also implemented in
several occasions.

13.1 NEURO-GENETIC SYSTEMS

Neuro-genetic systems are combinations of artifi cial neural networks and genetic algorithms. Two such
hybrid systems, a neuro-genetic system for weight determination of multi-layer feedforward networks,
and a technique that artifi cially evolves neural network topologies using genetic algorithms are dis-
cussed in this section.

13.1.1 GA-based Weight Determination of Multi-layer
Feed-forward Net

Th e weights in a multi-layer feedforward net are usually determined through the backpropagation
learning method. In backpropagation of errors the interconnection weights are randomly initialized
during network design. Th e inputs travel across the interconnections to the output node through the
nodes of the hidden units. During training, the actual output is compared with the target output and
the error, if any, is backpropagated for adjustments of the interconnection weights. Th e error is cal-

culated as E i
i

i∑∑1
2

2()TO AOi iTO , where TOi is the target output and AOi is the actual output at the

ith output unit. During backpropagation of the error, the network adjusts its weights to return better
results in the next iteration. Th is error backpropagation follows a gradient descent technique and there-
fore, is vulnerable to the problem of settling down at local minima. Another limitation of the gradient
descent technique is that it is slow since the number of iterations needed to properly train the network
is usually considerably high. In this section, we discuss a genetic algorithm based method for weight
determination of multi-layered networks. Th e distinctive features of the system are briefl y described
below.

x1xx

xix

xmx XmXX

XiXX

w1ww j

w1 ww n

wiw 1

wiww n

wiw j

wmw 1

wmw j

wm w n

X1XX Y1YY Z1ZZ

ZkZZ

ZrZZ

v11vvw11ww

v1vv k

v1vv r

vjvv 1

vj vv k
vj vv r

vnv 1

vnkv

vnrvv

YjYY

YnYY

z_out1tt

z_outktt

z_outrtt

Hidden layer Output layerInput layer

: :

:

:

:
:

Fig. 13.1 A multi-layer feed forward network with one hidden layer

Samir Roy_Chapter13.indd 566Samir Roy_Chapter13.indd 566 2/21/2013 3:40:38 PM2/21/2013 3:40:38 PM

Hybrid Systems 567

Let us consider a single hidden layer network having m + n + r number of nodes, where m is the number
of input nodes, n is the number of hidden nodes, and r is the number of output nodes. Th erefore, the
total number of interconnecting weights in the network is (m + r) × n. Now, if each weight is represented
by a gene, a chromosome having (m + r) × n number of genes can be used to encode the entire network.
However, the scheme assumes that the topology is known to the encoding–decoding process. Let us re-
call the topology of an m-n-r single hidden layer network shown in Fig. 6.26, which is reproduced here
as Fig. 13.1.

Each gene, representing an interconnection weight, consists of a 5-digit number d1d2d3d4d5 where
the most signifi cant digit d1 is used to determine the sign and the rest four, d2d3d4d5, the interconnection
weight. Th e decoding can be done is the following manner: the sign of the interconnection weight is ‘+’
or ‘−’ depending on whether d1 is even or odd. Th e magnitude is obtained by dividing d2d3d4d5 by 100,
i.e., the real number d2d3.d4d5. A chromosome is then a linear array of (m + r) × n × 5 digits. Th e method
is explained in Example 13.1.

Y1YY

Z1ZZY2YY

Y3YY

X1XX

X2XX

Fig. 13.2. Sample backpropagation network

Example 13.1 (Chromosome for weight determination of BPN through GA)

Figure 13.2 shows a 2-3-1 multi-layer network. As per notational convention followed here, the in-
terconnection weight between the input unit X1 and the hidden unit Y1 is denoted as w11. Th e other
weights between the input layer and the hidden layer are w12, w13, w21, w22, and w23. Similarly the
weights between the hidden layer and the output layer are v11, v21, and v31. Th erefore, a chromosome
for this network corresponds to an arrangement of weights as given by:

w11 w12 w13 w21 w22 w23 v11 v21 v31

In the present case, the chromosome is an array of (2 + 1) × 3 × 5 = 45 digits. For instance, let 1434590
76543210765430456713509246809478562589 be a chromosome. Th e mapping between the chromo-
some, weights and interconnections are shown below.

14345 90765 43210 76543 04567 13509 24680 94785 62589

−43.45 −07.65 +32.10 −65.43 +45.67 −35.09 +46.80 −47.85 +25.89

w11 w12 w13 w21 w22 w23 v11 v21 v31

Th e initial population consists of a set of randomly generated chromosomes. Fitness is measured in

terms of the error term E i
i

i∑∑1
2

2()TO AOi iTO . In order to compute the error, a chromosome is mapped

to its corresponding BPN net. Th e network is then tested by applying the input of a test pair and

Samir Roy_Chapter13.indd 567Samir Roy_Chapter13.indd 567 2/21/2013 3:40:41 PM2/21/2013 3:40:41 PM

568 Introduction to Soft Computing

computing the actual output for the said input. Th is actual output when compared with the target output

as in E i
i

i∑∑1
2

2()TO AOi iTO gives the error for that training pair. Th e same is computed for every training

pair and the average is considered for fi tness calculation. Since the aim is to minimize the error whereas
GA is a maximization process, we cannot directly use the error E as the fi tness measure. An obvious way
out is to take the reciprocal of E as the fi tness.

 F
E

=
1 (13.1)

Th e rest of the process is usual GA. It may be noted that the GA-based learning of multi-layer nets does
not involve any backpropagation of error. Th e journey towards the minimum error multi-layer network
is now controlled by the GA instead of the backpropagation learning method process.

13.1.2 Neuro-evolution of Augmenting Topologies (NEAT)

Determination of interconnection weights of multi-layer feedforward networks using GA, discussed
in the last subsection, was based on the tacit assumption that the topology of the network is fi nalized
at the outset. Here GA is employed to evolve the appropriate combination of interconnection weights
only. However, performance of the net is greatly infl uenced by the topology of the net. Th erefore,
fi nding an optimal network topology, along with the weights, is an issue that needs to be addressed
in certain situations. Evolution of artifi cial neural networks using GA, referred to as neuro-evolution
(NE), is the process of searching for such suitable network topology that carries out a given task ef-
fi ciently.

Neuro-evolution of augmenting topologies (NEAT) was proposed by K.O. Stanley and
R. Miikkulainen in 2002. It employs a GA that simultaneously evolves artifi cial neural network topolo-
gies along with their interconnection weights. An interesting feature of NEAT is its ability to optimize
and complexify solutions simultaneously. Th e rest of this subsection presents the salient features of this
methodology.

(a) Genetic encoding. An important issue in problem solving using GA is the eff ective encoding of
the solution for the GA to operate on it. In NEAT the issue is rather complex due to a phenomenon called
the competing conventions problem. Th e problem is illustrated in Fig. 13.3. Fig. 13.3(a) and (b) show two
networks with the same set of nodes. Th e nodes in the hidden layer are arranged in diff erent order in the
two nets. It is clear from the diagram that a single point crossover over the two networks results in two
children each of which loses one of the three components of the hidden layer. In NEAT, this problem
is solved with the help of an innovation number. Th e concept of an innovation number and its role in
NEAT will be explained in subsequent sections.

NEAT employs two types of genes, the node genes and the connection genes, sometimes referred to as
the link genes. Th e node genes contain information about each node, their number and type, viz. input,
hidden or output. Th e link genes store information about the links, the in node number, the out node
number, the weight of the link, the status (enable/disable) of the link and a number called the innovation
number of the link.

Th e innovation number is a unique number that is used to track the historical origin of the link. Th is
number is incremented by one and assigned to a gene on creation through structural mutation and is

Samir Roy_Chapter13.indd 568Samir Roy_Chapter13.indd 568 2/21/2013 3:40:42 PM2/21/2013 3:40:42 PM

Hybrid Systems 569

passed on to its children. It therefore represents the chronology of appearance of every link. Th e innova-
tion number of a link never changes. It helps to overcome the competing convention problem during the
crossover operation. Th is will be explained later in this subsection. Th e structure of the chromosomes in
NEAT is illustrated in Example 13.2.

×

(a) (b)

7

4 5 6

1 2 3

7

6 5 4

1 2 3

Crossover [4, 5, 6] × [6, 5, 4]
Children [4, 5, 4] [6, 5, 6]

Fig. 13.3. The competing conventions problem

Example 13.2 (Structure of NEAT chromosomes)

A 3-1-1 multi-layer neural net along with its chromosomes is shown in Fig. 13.4. Th e node gene is
shown in Fig. 13.4(b). It consists of a list of nodes and their nature. In this specifi c case, nodes #1,
2, 3 are inputs, node #5 is a hidden node, and the node #4 is the output node. Th is information is
incorporated in the node gene.

Th e structure of the connection chromosome, also referred to as the link chromosome, is more
complex because a greater amount of information is accommodated here. A closer scrutiny of
this chromosome will reveal some evolutionary history of the network, and the constituent genes.
First, notice that each entry of the connection chromosome has a disable/enable fi eld that indicates
whether the link is still alive or not. For the chromosome shown in Fig. 13.4(c), the link 2 → 4
(i.e. in node 2, out node 4) is disabled, while all other nodes are enabled. Th is implies that once
there was a direct link from node #2 to node #4, which is now disrupted due to the intervening
new node #5. At some point of the evolution process node #5 was inserted between the nodes #2
and node #4 so that the link 2 → 4 is replaced by the pair 2 → 5 and 5 → 4. Since the innovation
numbers of the links 2 → 5 and 5 → 4 (4 and 7 respectively) are larger than that of the disabled
link 2 → 4 (innovation number = 2) we know that these links were formed later than the link 2
→ 4. It may be noted that the links link 1 → 5 and link 3 → 5 were created even later than 2 → 5.

Samir Roy_Chapter13.indd 569Samir Roy_Chapter13.indd 569 2/21/2013 3:40:44 PM2/21/2013 3:40:44 PM

570 Introduction to Soft Computing

(a) The network

4

5

1 2 3

NODE #1
INPUT

NODE #2
INPUT

NODE #3
INPUT

NODE #4
OUTPUT

NODE #5
HIDDEN

(b) Node
chromosome

IN = 1
OUT = 4
W = 0.5
ENABLD
INOV. = 1

IN = 2
OUT = 4
W = 0.86
DISABLD
INOV. = 2

IN = 3
OUT = 4
W = 0.67
ENABLD
INOV. = 3

IN = 2
OUT = 5
W = 0.32
ENABLD
INOV. = 4

IN = 1
OUT = 5
W = 0.9
ENABLD
INOV. = 5

IN = 3
OUT = 5
W = 0.68
ENABLD
INOV. = 6

IN = 5
OUT = 4
W = 0.66
ENABLD
INOV. = 7

(c) Link
chromosome

Fig 13.4 The NEAT chromosomes

(b) Mutation. There are two kinds of mutation operators in NEAT, one for adding a new con-
nection, which is called mutate add connection and the other for adding a new node, which is
termed as mutate add node. It may be recalled that the NEAT process progresses from simple net-
work structures to complex networks. The two kinds of mutations are explained in Examples 13.3
and 13.4.

Example 13.3 (Mutate add connection operation)

Figures 13.5(a) and (c) show a network with 6 nodes and 6 connections and the corresponding
link chromosome. Th e structure of the link chromosome is made simple by symbolically ex-
pressing a link as p → q where p is the in node and q is the out node. Moreover, the weights are
not shown. Figures 13.5(b) and (d) show the topology and the link chromosome respectively of
the network aft er being mutated by adding a new link 2 → 6. Th is addition of the new connec-
tion is refl ected in the altered connection gene which contains a new link gene with innovation
number 7.

Samir Roy_Chapter13.indd 570Samir Roy_Chapter13.indd 570 2/21/2013 3:40:45 PM2/21/2013 3:40:45 PM

Hybrid Systems 571

The network before
mutate add connection

(a) The network after
mutate add connection

(b)

6

4 5

1 2 3

6

4 5

1 2 3

1 → 4
ENABLD
INOV. = 1

2 → 4
ENABLD
INOV. = 2

2 → 5
ENABLD
INOV. = 3

3 → 5
ENABLD
INOV. = 4

4 → 6
ENABLD
INOV. = 5

5 → 6
ENABLD
INOV. = 6

(c) Link chromosome of network before mutate add connection

1 → 4
ENABLD
INOV. = 1

2 → 4
ENABLD
INOV. = 2

2 → 5
ENABLD
INOV. = 3

3 → 5
ENABLD
INOV. = 4

4 → 6
ENABLD
INOV. = 5

5 → 6
ENABLD
INOV. = 6

2 → 6
ENABLD
INOV. = 7

(d) Link chromosome of network after mutate add connection

Fig 13.5 The mutate add connection operation

Example 13.4 (Mutate add node operation)

Figure 13.6(a) depicts the network structure of Fig. 13.5(b) aft er mutate add node operation in
which the node 7 is added between nodes 2 and 6. As a result of this operation, the structures
of both the node chromosome and the link chromosome have changed. Fig. 13.6(b) shows the
node chromosome which refl ects the change by introducing node #7 as a hidden node. Similarly,
Fig. 13.6(c) shows the link chromosome which is obtained by appropriately modifying the chro-
mosome in Fig. 13.5(d). Th e modifi cations are: inclusion of two new connections 2→7 and 7→6,
with innovation numbers 8 and 9, respectively, and disabling the link 2→6, of innovation number
7. It is interesting to note that the link is not discarded, but disabled.

Samir Roy_Chapter13.indd 571Samir Roy_Chapter13.indd 571 2/21/2013 3:40:45 PM2/21/2013 3:40:45 PM

572 Introduction to Soft Computing

6

4 5

1 2 3

7

(a) The network of Fig. 13.5 (b) after mutate add node operation

NODE #1
INPUT

NODE #2
INPUT

NODE #3
INPUT

NODE #4
HIDDEN

NODE #5
HIDDEN

NODE #6
OUTPUT

NODE #7
HIDDEN

(b) Node chromosome of network after mutate add node

1 → 4
ENABLD
INOV. =1

2 → 4
ENABLD
INOV. =2

2 → 5
ENABLD
INOV = 3

3 → 5
ENABLD
INOV. = 4

4 → 6
ENABLD
INOV. = 5

5 → 6
ENABLD
INOV. = 6

2 → 6
DISABLD
INOV. = 7

2 → 7
ENABLD
INOV. = 8

7 → 6
ENABLD
INOV. = 9

(c) Link chromosome of network after mutate add node

Fig. 13.6. The mutate add node operation

(c) Crossover. Crossover is probably the most complex operation in NEAT. Th is is because it involves
matching up of chromosomes of various network topologies suitable for crossing over. Th e concept of
innovation number helps to achieve this. Th e innovation numbers enable the NEAT process to identify
the portions of two parent chromosomes that match even without direct analysis of the topologies of the
networks. Th e technique of NEAT crossover is explained in the Example 13.4 presented below.

Example 13.5 (Crossover operation in NEAT)

Consider the network structures (a) and (b) as shown in Fig. 13.7. Th ey seem to have a common
ancestor from which they were generated through mutation. Th e corresponding node chromo-
somes are shown at the top and the link chromosomes are shown below the nets. Th e off spring
is generated by adding to the common genes, the disjoint genes and the excess genes from the
parents. In the present case the genes for the links 1→4, 2→4, 2→5, 3→5, 4→6, 5→6 are the common
genes. A disjoint gene is a gene that is not included in the other parent but has innovation number
less than the greatest innovation number.

In the fi gure, the link gene 1→5, having innovation number 8 is a disjoint gene, since it is pres-
ent in network (a) but not in network (b) and its innovation number (8) is less than the greatest
innovation number (10) included in network (b). An excess gene is a gene that is part of one parent
and has innovation number greater than the greatest innovation number of the genes of the other
parent.

Samir Roy_Chapter13.indd 572Samir Roy_Chapter13.indd 572 2/21/2013 3:40:45 PM2/21/2013 3:40:45 PM

Hybrid Systems 573

NODE #1
INPUT

NODE #2
INPUT

NODE #3
INPUT

NODE #4
HIDDEN

NODE #5
HIDDEN

NODE #6
OUTPUT

Node chromosomes of network (a)

NODE #1
INPUT

NODE #2
INPUT

NODE #3
INPUT

NODE #4
HIDDEN

NODE #5
HIDDEN

NODE #6
OUTPUT

NODE #7
HIDDEN

Node chromosomes of network (b)

(a)

+ =

6

4 5

1 2 23

(b)

6

4 7 5

1 2 3

(c)

6

4 7 5

1 3

(a)
1 → 4
ENA
INO = 1

2 → 4
ENA
INO = 2

2 → 5
ENA
INO = 3

3 → 5
ENA
INO = 4

4 → 6
ENA
INO = 5

5 → 6
ENA
INO = 6

2 → 6
ENA
INO = 7

1 → 5
ENA
INO = 8

(b)
1 → 4
ENA
INO = 1

2 → 4
ENA
INO = 2

2 → 5
ENA
INO = 3

3 → 5
ENA
INO = 4

4 → 6
ENA
INO = 5

5 → 6
ENA
INO = 6

2 → 6
DISA
INO = 7

2 → 7
ENA
INO = 9

7 → 6
ENA
INO = 10

(c)
1 → 4
ENA
INO = 1

2 → 4
ENA
INO = 2

2 → 5
ENA
INO = 3

3 → 5
ENA
INO = 4

4 → 6
ENA
INO = 5

5 → 6
ENA
INO = 6

2 → 6
DISA
INO = 7

1 → 5
ENA
INO = 8

2 → 7
ENA
INO = 9

7 → 6
ENA
INO = 10

(a) Parent #1, (b) parent #2, (c) offspring

Fig. 13.7. The NEAT crossover operation

In Fig. 13.7, the link genes 2 → 7 (INO = 9) and 7 → 6 (INO = 10) are excess genes because they are
part of network (b) only and have innovation numbers greater than 8, which is the highest inno-
vation number of network (a). Aft er crossover, the off spring inherits all the nodes of both parents
and the links including excess and disjoint ones from both parents which is shown in network (c)
and the corresponding chromosome in Fig. 13.7.

Samir Roy_Chapter13.indd 573Samir Roy_Chapter13.indd 573 2/21/2013 3:40:46 PM2/21/2013 3:40:46 PM

574 Introduction to Soft Computing

(d) NEAT process. Conventional neuro-evolution process starts with an initial population of random
network topologies so that diversity is introduced from the very beginning. NEAT, in contrast, starts
with a uniform population of networks with no hidden units. Th is is to facilitate the search for minimal
network capable of performing the given task. As the networks mutate over time, new structures are in-
crementally introduced into the pool. Fitness evaluation ensures that only those structures survive who
are useful for the designated task.

A relevant question for this scheme is how the NEAT process identifi es the compatible networks for
processing? A natural measure of compatibility distance of two chromosomes (and the underlying nets)
is the number of excess and disjoint genes between them. Th e more disjoint two chromosomes are, the
less evolutionary history they share, and hence, the less compatible they are. Th e measure of compat-
ibility distance d is defi ned as

 δ = + +
c E
N

c D
N

c W1 2+
E c

3 (13.2)

where E is the number of excess genes, D is the number of disjoint genes, W is the average weight diff er-
ence of matching genes, including the disabled genes. Th e constants c1, c2, and c3 are used to adjust the
weight of the three factors. N is the numbers of genes in the larger chromosome. It is used to normalize
the chromosome size.

13.2 FUZZY-NEURAL SYSTEMS

Th e basic idea behind hybrid systems, as already discussed, is to harness the best of both worlds and
come up with unique solutions to the varied nature of problems we are faced with and cannot solve
satisfactorily using other techniques. While fuzzy systems have as strength the power to work with im-
precise information and vagueness, they cannot adapt, cannot learn from experience, cannot generalize
or exploit parallelism. On the other hand, artifi cial neural networks are tools that cannot deal with un-
certainty but can learn and adapt, generalize and being massively parallel can use the synaptic weights to
store information that acts like memory. Fuzzy-neural systems are systems obtained by integrating fuzzy
logic with neural networks to exploit the advantages of both.

Input Fuzzy
Perceptions

Fuzzy Value
Extractor

Artificial Neural
Network

Artificial Neural
Network

Output

(a) Type-1 Fuzzy-Neural Systems

Decision

Input Fuzzy Inference
System

Neural
Output

Feedback (Input For Learning)

(b) Type-2 Fuzzy-Neural Systems

Fig. 13.8. Types of neuron-fuzzy system

Samir Roy_Chapter13.indd 574Samir Roy_Chapter13.indd 574 2/21/2013 3:40:46 PM2/21/2013 3:40:46 PM

Hybrid Systems 575

Fuzzy-neural systems have been classifi ed into two broad categories, depending upon how the two tech-
niques are merged. Th ese are the type-1 and type-2 fuzzy-neural systems. In type-1 systems, the input is
fed to the fuzzy value extractor, where, based on the truth value of the input, an input vector is generated
for the artifi cial neural network. Th e neural network then generates the output as decisions. In type-2
fuzzy-neural systems the output of the neural network is fed to the fuzzy inference system whose deci-
sion is fed back to the neural net to facilitate learning. Th e schematics of these tow types of neuro-fuzzy
systems are depicted in Fig. 13.8(a), (b).

A typical example of a fuzzy-neural system is the approximate reasoning based intelligent control
(ARIC) system proposed by H. R. Berenji. Th is system uses a neural model of a fuzzy controller that can
learn by updating the behavioral prediction of the physical system and changes the predefi ned control
logic database accordingly. ARIC basically comprises two modules that work together. Th e fi rst module,
called the action selection network (ASN), is a neural model of a fuzzy controller which consists of two
networks. One network acts as the unit doing the fuzzy inference and the second is used to calculate the
confi dence associated with the fuzzy inference value generated by the fi rst. Th e second module of ARIC
apart from ASN is the action-state evaluation network (AEN). Th is is a feed forward network with one
hidden layer and tries to predict the system behavior. Th e inputs to the AEN are the system state and an
error signal from the physical system. Th e output of the network is a prediction of future reinforcement.
In the subsequent parts of this section two neuro-fuzzy systems, viz., fuzzy neuron, and adaptive neuro-
fuzzy inference system (ANFIS), are briefl y described.

13.2.1 Fuzzy Neurons

Artifi cial neural networks are discussed in detail in Chapters 6 to 10. Figure 13.9 depicts the structure of
an elementary 2-input 1-output neuron without any hidden nodes.

1xx w1ww

w2ww

X1XX

y_yy out

x2xx X2XX

Y

Fig. 13.9. A 2-input 1-output neuron

Th e input signals x1 and x2 interact with the synaptic weights w1 and w2 to give intermediate results w1 × x1
and w2 × x2 respectively. All the inputs, through the various synaptic weights, are aggregated to produce the
net input y_in to the output unit Y.

 y in w w w x
i

i ix
i

× =xix × +x ×
=i=

∑ ∑y ini_y =y ini
1

2

1

2

1 1xx 2 2x (13.3)

If f (⋅) is the transfer function that the network uses, the neuron computes its output as y_out = f (y_in).
Th e operations discussed above are all crisp. However, it is possible for a neuron to perform fuzzy op-
erations on the input and weight. Such neurons are called fuzzy neurons. Th erefore, a fuzzy neuron is a
neuron that applies fuzzy operations on incoming data.

Samir Roy_Chapter13.indd 575Samir Roy_Chapter13.indd 575 2/21/2013 3:40:48 PM2/21/2013 3:40:48 PM

576 Introduction to Soft Computing

A t-norm (T-Norm) is a binary operator that represents conjunction in logic. Used specifi -
cally in fuzzy logic, it can be defi ned as a function T : [0, 1] × [0, 1] → [0, 1] which is commu-
tative (T (a, b) = T (b, a)), monotonic (T (a, b) ≤ T (c, d) if a ≤ b and c ≤ d), associative (T (a,
T (b, c)) = T (T (a, b), c). The neutral element of a T-Norm is 1. The dual notion of T-Norm
is T-Conorm (also known as S-Norm) which has a neutral element 0. A few well known T-
Norms and T-Conorms (S-Norms) are listed below.
Drastic product (tw) : tw (a, b) = min {a, b} if max {a, b} = 1, else 0.
Drastic sum (sw) : sw (a, b) = max {a, b} if min {a, b} = 0, else 1.
Bounded difference (t1) : t1 (a, b) = max {0, a+b−1}.
Bounded sum (s1) : s1 (a, b) = min {1, a + b}.
Minimum (t3) : t3 (a, b) = min {a, b}.
Maximum (s3) : s3 (a, b) = max {a, b}.
Product (tp) : tp (a, b) = a⋅b.
Product t-conorm (Sp) : Sp (a, b) = a + b − a⋅b.

Fig. 13.10 T-norms and T-conorms

Neural networks that use fuzzy neurons as building blocks are called hybrid neural networks. Such neural
networks use crisp signals, crisp transfer functions and crisp weights, but have certain properties that
distinguish them from usual crisp neural networks. Th ese properties are mentioned below.

(a) Th e inputs and the weights can be combined using fuzzy operations, e.g., fuzzy AND, fuzzy
OR, implication, T-Norm, or T-Conorm. Fig. 13.10 shows certain details about T-Norm, or T-
Conorm operations.

(b) Th e results of such combinations can be aggregated using T-Norm, or T-Conorm or some other
continuous function.

(c) Th e function f (⋅) is a continuous function that maps input to output.

It must be clearly understood that the weights, inputs and the outputs of a hybrid neural network are
real numbers in the interval [0, 1]. Th e processing units of hybrid-neural networks are fuzzy neurons.
Descriptions of a few variants of fuzzy neurons are presented here. All examples are modeled on the
neural structure of Fig. 13.9.

(a) AND Fuzzy Neuron. Th e input xi and weight wi are combined using fuzzy OR to produce the inter-
mediate result. If y_ini denotes the combination of input xi and weight wi then
 y_ini = ORf (xi, wi) = max {xi, wi}, i = 1, 2 (13.4)
Th e intermediate results are then transformed to the output using fuzzy AND, y_out = ANDf (y_in1,
y_in2). Hence the output of the neuron y_out = f (y_in) is obtained according to the formula
 y_out = min { max {w1, x1}, max {w2, x2} } (13.5)
Alternatively, the inputs x1, x2 and weights w1 and w2 are combined by a triangular conorm S to produce
the intermediate result
 y_ini = S (xi, wi), i = 1, 2 (13.6)
Th e intermediate results are then aggregated using a triangular norm T to produce the output as formu-
lated below.
 y_out = ANDf (y_in1, y_in2) = T (y_in1, y_in2) = T { S (x1, w1), S (x2, w2) } (13.7)
So, if T ≡ min and S ≡ max then the AND neuron realizes the min-max composition.

Samir Roy_Chapter13.indd 576Samir Roy_Chapter13.indd 576 2/21/2013 3:40:50 PM2/21/2013 3:40:50 PM

Hybrid Systems 577

(b) OR Fuzzy Neuron. In an OR fuzzy neuron, the input xi and weight wi are combined using fuzzy AND
to produce the intermediate result. Th erefore, in this case

 y_ini = ANDf (xi, wi) = min {xi, wi}, i = 1, 2 (13.8)

Th e intermediate results are then transformed to the output using fuzzy OR, so that y_out = ORf (y_in1,
y_in2). Hence the output of the neuron y_out = f (y_in) is obtained according to the formula

 y_out = max { min {w1, x1}, min {w2, x2} } (13.9)

Alternatively, the inputs x1, x2 and weights w1 and w2 are combined by a triangular norm T to produce
the intermediate result

y_ini = T (xi, wi), i = 1, 2

Th e intermediate results are then aggregated using a triangular conorm S to produce the output as for-
mulated below.

 y_out = ORf (y_in1, y_in2) = S (y_in1, y_in2) = S(T (x1, w1), T (x2, w2)) (13.10)

So, if T ≡ min and S ≡ max then the OR neuron realizes the max-min composition.
It may be noted that while fuzzy AND, OR neurons perform logic operations on the membership values,
the connections play the role of diff erentiating the impact levels of the inputs on the aggregation result.
In fact, higher values of wi have stronger impact of xi on y_out of an ORf neuron, and lower values of wi
have stronger impact of xi on y_out of an ANDf neuron.

(c) Implication-OR Fuzzy Neuron. In an implication-OR fuzzy neuron the input xi and weight wi are
combined using fuzzy implication to produce the intermediate result. Hence, for an implication-OR
fuzzy neuron,

 y_ini = IMPf (xi, wi) = xi → wi, i = 1, 2 (13.11)

Th e input information y_ini, i = 1, 2, are then aggregated by a triangular conorm S to produce the output

 y_out = S (y_in1, y_in2) = S (x1 → w1, x2 → w2) (13.12)

Hybrid neural nets can be used to realize fuzzy rules in a constructive way so that the resultant nets are
computationally equivalent to fuzzy expert systems and fuzzy controllers. Th ese nets do not learn any-
thing, they do not need to. Hybrid neural nets cannot directly use the backpropagation algorithm for
learning. However, in order to determine the parameters of the membership functions representing the
linguistic values in the rules, they may exploit steepest descent method, assuming that the outputs are
diff erentiable functions of these parameters.

13.2.2 Adaptive Neuro-fuzzy Inference System (ANFIS)

Th e adaptive neuro-fuzzy inference system, quite oft en referred to as the adaptive network based fuzzy
inference system (ANFIS) is a class of adaptive networks that can function in the same way as a fuzzy
inference system. ANFIS uses a hybrid learning algorithm and represents the Sugeno and Tsukamoto
fuzzy model which is described below.

(a) Sugeno Fuzzy Model. Developed by Takagi, Sugeno and Kang and popularly known as the Sugeno
model, this method generates fuzzy rules from a set of data. A typical rule in the Sugeno Model has the
form:

Samir Roy_Chapter13.indd 577Samir Roy_Chapter13.indd 577 2/21/2013 3:40:50 PM2/21/2013 3:40:50 PM

578 Introduction to Soft Computing

 If (x is A) AND (y is B) Th en z = f (x, y) (13.13)

Considering f (x, y) to be a fi rst-order polynomial, we get the fi rst-order Sugeno fuzzy model and can be
described with the help of the following rules.

Rule 1. If (x is A1) and (y is B1) then f1 (x, y) = p1x + q1y + r1

Rule 2. If (x is A2) and (y is B2) then f2 (x, y) = p2x + q2y + r2
(13.14)

(b) ANFIS architecture. Fig. 13.11 shows the ANFIS architecture for two input fi rst order Sugeno fuzzy
model with two rules. It consists of fi ve layers including the input and output layers.Each layer has a
specifi c job to do. Th e task performed by every layer is explained below. Here Oki is the output of the ith
node of the layer k.

A1

A2

B1

B2BB

w1ww

w2ww

f

x

x

y

y

x y

LAYER-2AA LAYER-3AA

LAYER-1AA
LAYER-4AA

LAYER-5AA

N

N

p

p

Σ

w1ww

w2ww
w2ww f2ff

w1ww f1ff

Fig. 13.11 ANFIS architecture for 2 input fi rst order Sugeno fuzzy model with 2 rules

Layer 1. Every node in this layer is an adaptive node with a node function as described below.

 O x forff i
y forff ii

A

B

i

i
1

1 2
3 42

,
(x ,forff i 1
(y ,forff i 3=

=
=

⎧
⎨
⎧⎧
⎩
⎨⎨

−

μA

μ (13.15)

Here x (or, y) is the input to node i and Ai (or Bi−2) is a linguistic label associated with this node. Th ere-
fore O1,i is the membership grade of a fuzzy set A1, A2, B1, or B2. Needless to say that the membership
functions can be any parameterized function like the bell, triangular, or trapezoidal.

Layer 2. Th is layer consists of a number of nodes each of which is labeled Prod and produces the
product of all the incoming signals on it as its output.

 O y forff ii Bi iB2 1 2, () (y ,forff i 1=μ μAi)x)x ⋅)x (13.16)

Th e output from each of these nodes represents the fi re strength of the corresponding rule. Alterna-
tively, any other T-norm operator that performs as the AND operator can be used.

Layer 3. Nodes in layer 3 are fi xed nodes labeled Norm, and in this layer, the ith node calculates the
ratio between the ith rule’s fi ring strength and the sum of the fi ring strengths of all the rules.

 O w w
w w

for ii iw i
3

1 2w
1 2, , ,for i 1=wiw

+
= (13.17)

Th e outputs of these nodes are referred to as the normalized fi ring strengths.

Samir Roy_Chapter13.indd 578Samir Roy_Chapter13.indd 578 2/21/2013 3:40:50 PM2/21/2013 3:40:50 PM

Hybrid Systems 579

Layer 4. Th e node function of each node in this layer is presented below.

 O w f w p q yi iw if wf q i4, ()p x y rx q irrw fiw ff q yq (13.18)

In expression 13.17, wi is the normalized fi ring strength from layer 3 and {pi, qi, ri} is the parameter set
of the ith node and is referred to as consequent parameters.

Layer 5. Th is single node layer computes the output of the network by summing all incoming sig-
nals. Th e output is expressed as

 O w f
w f
wii iff

iffi

ii

5 1, =w fi iff∑∑ ∑
∑

 (13.19)

Training the ANFIS is accomplished by using the hybrid learning algorithm presented by Jang. Th is
algorithm uses least squares method to identify the consequent parameters on the layer 4 during the
forward pass. During backward pass the errors are propagated backward and the premise parameters are
updated using gradient descent technique.

13.3 FUZZY-GENETIC SYSTEMS

As the name suggests, fuzzy-genetic systems are hybrid systems that combine fuzzy systems with genetic
algorithms in order to exploit the advantage of the both. As a typical instance of the synergy between
fuzzy logic and GA, we present a scheme for tuning a fuzzy logic controller (FLC) with GA. Fuzzy logic
controllers are discussed in details in Chapter 4. Th ese systems try to simulate a skilled operator control-
ling a complex ill-defi ned process without knowledge of the underlying dynamics. Th e expert knowl-
edge of the operator is embedded in the fuzzy logic controller in the form of a set of fuzzy rules, usually
referred to as the fuzzy rule base.

GA based tuning of fuzzy logic controllers. In an FLC, the fuzzy rules are IF-THEN rules
formulated in linguistic terms where the linguistic terms refer to certain fuzzy sets. Performance of
the FLC depends to a large extent on the correct choice of the membership functions of the linguistic
labels. Th e diffi culty lies in representing the expert’s knowledge suitably by linguistic control rules.
Th e rest of this section discusses the essential features of a GA that tries to modify the fuzzy set defi -
nitions, i.e., the shape of the fuzzy sets defi ning the linguistic values. Th e purpose is to determine the
membership functions for best FLC performance. Th e main features of this GA are briefl y explained
below.

Chromosomes. Th e rule base of an FLC consists of a number of rules with the form

 If ‘x1 is Ai1’ AND ‘x2 is Ai2’ AND …AND ‘xn is Ain’ Th en ‘y is Bi’ (13.20)

where x1, x2, …, xn and y are linguistic variables representing the process state variables and the control
variables respectively. Ai1, Ai2, …, Ain and Bi are the linguistic values of the linguistic variables x1, x2, …,
xn and y respectively.

For instance, a typical fuzzy rule may look like: If ‘Blood pressure is large positive’ AND ‘Blood sugar
level is small positive’ AND ‘Calorie consumption is small negative’ Th en ‘Insulin dose is small positive’. Here
each of the variables Blood pressure, Blood sugar, Calorie consumption, and Insulin dose are measurable
quantities. Th e corresponding linguistic values e.g. large positive etc. are fuzzy sets on these variables with
predefi ned membership functions. Assuming that the linguistic labels Ai1, Ai2, …, Ain, Bi for i = 1, 2 …,

Samir Roy_Chapter13.indd 579Samir Roy_Chapter13.indd 579 2/21/2013 3:40:54 PM2/21/2013 3:40:54 PM

580 Introduction to Soft Computing

a trapezoidal membership function is parametrically represented by a 4-tuple 〈 c, a, b, d 〉 which character-
ize the said membership function.

Example 13.6 (Parametric representation of trapezoidal membership function)

Let us consider the linguistic value ‘Small positive’ with respect to the variable ‘Blood sugar level’. A
probable membership profi le for this fuzzy set is shown in Fig. 13.12. Th e parametric representa-
tion of this membership function is, obviously, 〈 c, a, b, d 〉 = 〈 125, 150, 175, 225 〉.

Small positive

Blood sugar level
225175150125

1

0

Fig. 13.12 < 125, 150, 175, 225 > Trapezoidal function

In the GA under consideration, a chromosome represents an encoding of a fuzzy rule base. Each rule of
the form given in Expression 13.19 is included in the chromosome as a gene Gik, denoting the kth gene
(i.e. the kth rule) of the ith chromosome (the ith candidate rule base in the GA population). Th is Gik must
contain information about the fuzzy sets Ai1, Ai2, …, Ain, and Bi. Let 〈 cik1, aik1, bik1, dik1 〉, 〈 cik2, aik2, bik2, dik2 〉,
…, 〈 cikn, aikn, bikn, dikn 〉, and 〈 cik, aik, bik, dik 〉 be the corresponding parametric representations. Th en the
kth gene of the ith chromosome is given by

 Gik = cik1 aik1 bik1 dik1 cik2 aik2 bik2 dik2 … cikn aikn bikn dikn cik aik bik dik (13.21)

Accepting this notation, the entire ith fuzzy rule base consisting of m number of rules is represented by
the chromosome Ci where

 Ci = Gi1 Gi1 … Gim (13.22)

Finally, a population P of R number of fuzzy rule bases is given by

 P = {C1 , C2 , …, CR} (13.23)

Th e GA process evolves this population for the purpose of fi nding the appropriate rule base suitable for
the designated control activity.

Interval of performance. Th e initial population is created from a rule base suggested by the do-
main expert. Let us denote the chromosome for this seed rule base as C1. In order to enable the GA
process to tune the rules, an interval of performance is defi ned for each fuzzy set parameter. Suppose
〈 c1, a1, b1, d1 〉 be the parameters suggested by the expert for the fuzzy set corresponding to a particular
linguistic value and this is included in the seed chromosome C1. Th en the subsequent values 〈 ci, ai, bi, di 〉
in further chromosomes evolved by the GA must lie within certain pre-defi ned intervals ci ∈ [cL, cH], ai
∈ [aL, aH], bi ∈ [bL, bH] and di ∈ [dL, dH] where cL is the lower bound and cH is the upper bound for c, and
so on for the rest of the parameters. Th ese intervals are defi ned below.

Samir Roy_Chapter13.indd 580Samir Roy_Chapter13.indd 580 2/21/2013 3:40:56 PM2/21/2013 3:40:56 PM

Hybrid Systems 581

c c a c c a c

a a a c

i L H

i L H

c∈ +⎡
⎣⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

a∈

,Lc[cLc ,c a] −⎡
⎣⎢
⎡⎡
⎣⎣

,

,La[aLa] ,a a
−

1
1cc

1
1 1c

1
1cc

2 21

2
aa b a

b b b b b a b d b

d

i L H

i

1
1 1a

1
1a

1
1 1b

2

2 21

+⎡
⎣⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

b +⎡
⎣⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

∈

,

,bLbbLb ,b b
1

1 1a
2

−]
⎣⎣⎣

,

[d ddd d d b d d b
L H]dHd ,−d= +⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

1
1 1b

1
1 1b

2 21

 (13.24)

Th ese intervals are diagrammatically shown in Fig. 13.13.

cL c cH a aH b bH d dHdd
aL bL dLdd

Fig. 13.13 Intervals of performance

Fitness. Fitness is measured on the basis of the performance of a candidate solution with respect
to a set of training input-output data. Let the training data consists of a set of K number of such input-
output pairs.

{(xi, yi) = (xi1, xi2, …, xin, yi), i = 1, 2, …, K}

Th e error of inference committed by a fuzzy rule base S, is calculated as

 E y xix
i

K

()S [(y SS)][y=
=
∑1

2
2

1
 (13.25)

Th e objective is to minimize the error E(S) formulated above. Keeping this in mind, E(S) can be used
to defi ne a suitable fi tness function to guide the GA. Th e other GA operations are defi ned suitably and
various GA parameters, e.g., population size, crossover probability, mutation probability, selection pro-
cedure etc., are set and tuned as per requirement of the problem instance.

 CHAPTER SUMMARY

Th e main points of the forgoing discussions on hybrid systems are given below.

Soft computing techniques are complementary to each other and they may work synergistically, •
combining the strengths of more than one of these techniques, as the situation may occasionally
demand. Hybrid Systems are systems where several techniques are combined to solve a
problem.
Th e primary types of hybrid systems are, neuro-genetic (combining neural networks and genetic •
algorithm), neuro-fuzzy (combining neural network and fuzzy logic) and fuzzy-genetic hybrid

Samir Roy_Chapter13.indd 581Samir Roy_Chapter13.indd 581 2/21/2013 3:40:56 PM2/21/2013 3:40:56 PM

582 Introduction to Soft Computing

systems. Hybrid systems integrating all three techniques, viz., fuzzy logic, neural networks, and
genetic algorithms, are also implemented in several occasions.
Genetic algorithm based method for weight determination of multi-layer networks, or neuro-•
evolution of augmenting topologies (NEAT) are examples of neuro-genetic systems. In the
former, instead of learning the interconnection weights of a multi-layer feedforward neural
net through the technique of backpropagation of error, a GA is used to evolve these weights. In
NEAT, genetic algorithm is employed to evolve the network topology, along with the weights,
in order that the optimal net to carry out designated is obtained. In NEAT, the concept of an
innovation number is introduced to resolve the competing conventions problem. Th e innovation
number is a unique number that is used to track the historical origin of a link in the genetic
evolution process.
A • fuzzy neuron is a neuron that applies fuzzy operations on incoming data. Various kinds of
fuzzy neurons, e.g., fuzzy AND neuron, fuzzy OR neuron, fuzzy implication-OR neurons etc.,
are there that are used as building blocks of hybrid neural nets.
Th e • adaptive neuro-fuzzy inference system, quite oft en referred to as the adaptive network based
fuzzy inference system (ANFIS) is a class of adaptive networks that can function in the same way
as a fuzzy inference system. ANFIS architecture with fi rst order Sugeno fuzzy model as input
consists of fi ve layers including the input and output layers. Each layer has a specifi c job to do.
Fuzzy-genetic systems are hybrid systems that combine fuzzy systems with genetic algorithms •
in order to exploit the advantage of the both. Tuning a fuzzy logic controller (FLC) with GA ia
a typical fuzzy-genetic system. Such a system employs a GA to evolve the fuzzy set defi nitions,
i.e., the shape of the fuzzy sets defi ning the linguistic values. Th e purpose is to determine the
membership functions for best FLC performance.

� TEST YOUR KNOWLEDGE

13.1 Hybrid systems are formed by combining
a) Soft computing with hard computing
b) Two or more soft computing techniques
c) Embedding soft computing in hardware
d) None of the above

13.2 A hybrid system that totally integrates two or more soft computing techniques is called
a) Sequential hybrid system b) Auxiliary hybrid system
c) Embedded beg hybrid system d) None of the above

13.3 In a neuro-genetic system, GA can be used to determine
a) Th e interconnection weights b) Th e topology of the network
c) Both (a) and (b) c) None of the above

13.4 Which of the following is a hybrid system to evolve the topology of a neural network?
a) NEAT b) ANFIS
c) Both (a) and (b) d) None of the these

13.5 In NEAT hybrid system, the innovation numbers in a chromosome is used to express the
a) Degree of a node b) Historical origin of a link
c) No of hidden units d) None of the above

Samir Roy_Chapter13.indd 582Samir Roy_Chapter13.indd 582 2/21/2013 3:40:59 PM2/21/2013 3:40:59 PM

Hybrid Systems 583

 13.6 Which of the following is not used in NEAT?
a) Node chromosomes b) Link chromosomes
c) Both (a) and (b) d) None of the above

 13.7 Which of the following chromosomes in NEAT is aff ected by the Mutate Add Node operation?
a) Node chromosomes b) Link chromosomes
c) Both (a) and (b) d) None of the above

 13.8 In NEAT crossover operation, which of the following is not inherited by the off spring from the
parents?
a) Disabled links? b) Excess links
c) Disjoint links d) None of the above

 13.9 How may layers are there in adaptive neuro-fuzzy inference systems(ANFIS)?
a) 3 b) 4
c) 5 d) None of the above.

13.10 While tuning fuzzy logic controllers by GA, the membership functions of the fuzzy sets corre-
sponding to various linguistic values are taken as
a) Gaussian b) Trapizoidal
c) S-function d) None of the above

13.11 In a hybrid system for tuning fuzzy logic controllers by GA, the fi rst set of fuzzy rules is gener-
ated
a) Randomly b) By consulting experts
c) Any of (a) and (b) d) None of the above

13.12 In a hybrid system for tuning fuzzy logic controllers by GA, the interval of performance indicate
the interval in which
a) Th e fi tness values must lie b) Fuzzy rule parameters must lie
c) Population size must lie d) None of the above

Answers

 13.1 (b) 13.2 (c) 13.3 (c) 13.4 (a) 13.5 (b)
 13.6 (d) 13.7 (c) 13.8 (d) 13.9 (c) 13.10 (b)
 13.11 (b) 13.12 (b)

 BIBLIOGRAPHY AND HISTORICAL NOTES

Literature on hybrid systems is quite rich as this is a well-explored area of soft computing. A selected list
of some interesting articles is given below.

Adeli, H. and S. L. Hung. (1995) ‘Machine Learning – Neural Networks, Genetic Algorithms, and Fuzzy
Systems,’ John Wiley and Sons, New York.

Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H., and Rosen, D. B. (1992). Fuzzy ARTMAP:
A neural network architecture for incremental supervised learning of analog multi-dimensional
maps. IEEE Transaction on Neural Networks, Vol. 3, No. 5, pp. 698–713.

Herrera, F., Logano, M., and Verdegay, J. L. (1994). Tuning fuzzy logic controllers by Genetic Algorithms.
International Journal of Approximate Reasoning, Vol. 12, pp. 299–315.

Herrera, F., Logano, M., and Verdegay, J. L. (1995). Applying genetic algorithms in fuzzy optimization
problems. Fuzzy Systems and A.I. Reports and Letters, Vol. 3, No. 1, pp. 39–52.

Samir Roy_Chapter13.indd 583Samir Roy_Chapter13.indd 583 2/21/2013 3:40:59 PM2/21/2013 3:40:59 PM

584 Introduction to Soft Computing

Mamdani, E. H. (1977). Application of fuzzy logic to approximate R\reasoning using linguistic synthesis.
IEEE Transactions on Computers, Vol. C-26, No. 12, pp. 1182–1191.

Maniezzo, V. (1994). Genetic evolution of the topology of weight distribution of neural networks. IEEE
Transactions on Neural Networks, Vol. 5, No. 1, pp. 39–53.

Rajasekaran, S. and Vijayalakshmi Pai, G. A. (2007). Neural Networks, Fuzzy Logic and Genetic Algo-
rithms: Synthesis and Applications. Prentice-Hall India, New Delhi.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies.
Evolutionary Computation, Vol. 10, No. 2, pp. 99–127, MIT Press.

Takagi, H. and I. Hayashi. (1991). NN driven fuzzy reasoning. International Journal of Approximate Rea-
soning, Vol. 5, No. 3, pp. 191–212.

Wu, Y., Zhang, B., Lu, J. and Du, K. -L. (2011). Fuzzy logic and neuro-fuzzy systems: a systematic intro-
duction. International Journal of Artifi cial Intelligence and Expert Systems (IJAE), Vol. 2, No. 2.

Samir Roy_Chapter13.indd 584Samir Roy_Chapter13.indd 584 2/21/2013 3:40:59 PM2/21/2013 3:40:59 PM

INDEX

A

action selection network (ASN), 575
action-state evaluation network (AEN), 575
activation functions, 198–201
ADALINE, 241–243
adaptive neuro-fuzzy inference systems (ANFIS), 577
adaptive resonance theory (ART), 7, 318–338
AEN. See action-state evaluation network (AEN)
alpha-beta pruning, 457–463
AND fuzzy neuron, 576
AND-links, 437
AND-OR graphs, 437–439
ANFIS. See adaptive neuro-fuzzy inference systems

(ANFIS)
ANNs. See artifi cial neural networks (ANNs)
ART. See adaptive resonance theory (ART)
artifi cial neural networks (ANNs), 6–7, 173–220
artifi cial neuron, 176–178
ASN. See action selection network (ASN)
assignment, 467
auto-associative nets, 260–265

B

backpropagation, 371–383
backpropagation algorithm, 376–383
backtracking, 481
BAM. See bidirectional associative memory (BAM)
best-fi rst search, 416–418
BFS. See breadth-fi rst search (BFS)
bidirectional associative memory (BAM), 7, 271–278
bidirectional search, 413–415
binary constraint, 467
binary sigmoid function, 374
bipolar sigmoid function, 374
book moves, 465

brain, 178–179
breadth-fi rst search (BFS), 405–407

C

centroid method, 116–117
chromosomes, 530–531, 534–536
competitive network, 197
competitive neural nets, 299–338
complete assignment, 467
concentration, 25
constraint graph, 465–466
constraint hypergraph, 467
constraint propagation, 472–476
constraint satisfaction problem (CSP), 465
contrast intensifi cation, 25
control strategy, 478
control systems, 481
convergence, 545–546
crisp logic, 64–81
crisp relations, 31–34
crisp sets, 11–12
crossover, 531, 541–543
CSP. See constraint satisfaction problem (CSP)

D

De Morgan’s law, 15
decision systems, 146–148
defuzzifi cation, 115–120
degree heuristic, 471–472
delta/LMS or Widrow–Hoff rule, 209–211
depth-fi rst iterative deepening (DFID), 412–413
depth-fi rst search (DFS), 407–409
depth-limited mini-max search, 455–457
DFID. See depth-fi rst iterative deepening (DFID)

Index.indd 585Index.indd 585 2/21/2013 3:42:00 PM2/21/2013 3:42:00 PM

586 Index

DFS. See depth-fi rst search (DFS)
dilation, 24

E

effective branching factor, 477
elementary search techniques, 395–486
elitism, 544
empty assignment, 467
equality of sets, 13
equivalence relation, 148
exhaustive search, 404–416
extended delta rule, 211

F

FIS. See fuzzy inference systems (FIS)
fi tness function, 537
forward chaining, 472
function constant, 72
fuzzifi cation, 25
fuzziness, 17
fuzzy controllers, 120–130
fuzzy extension principle, 38
fuzzy if–then, 85–86
fuzzy if–then–else, 86–87
fuzzy inference systems (FIS), 111–142
fuzzy logic, 63–91
fuzzy membership functions, 22–24
fuzzy neurons, 575–577
fuzzy quantifi ers, 88
fuzzy reasoning, 88–91
fuzzy relations, 34–38
fuzzy rules, 84–87
fuzzy set operations, 29–30
fuzzy sets, 17–56
fuzzy systems, 5–6
fuzzy truth values, 81–83
fuzzy-genetic systems, 579–581
fuzzy-neural systems, 574–575

G

GA operators, 538–543
GA parameters, 544–545
GA. See genetic algorithms (GA)
general constraints, 467
generalized delta rule, 375–376
generalized modus ponens, 88–91

generalized modus tollens, 91
generalized state space search, 418
genetic algorithms (GAs), 7, 531–546
genetic encoding, 568–570
global database, 477–478
graph colouring problem, 465
graph-search control, 481
greedy local search, 421

H

hard computing, 1
Hebb nets, 233–238
Hebb rule, 203–204
hetero-associative nets, 265–267
heuristic search, 416–477
hidden layers, 372
hill climbing, 418–426
Hopfi eld networks, 267–271
hybrid systems, 565–581
hyperbolic tangent function, 201–203, 374

I

identity function, 198–199
implication-OR fuzzy neuron, 577
indiscernibility, 148–150
information systems, 146–148
informed search, 404
interval of performance, 580
irrevocable control, 481

K

K-tuples, 146
Kosko, B, 271
Kohonen’s self-organizing map, 304–311

L

learning vector quantization (LVQ), 7 , 311–318
least contrasting value, 472
legal assignment, 467
linear separability, 191
linguistic variables, 26–27
local optima, 425
logical connectives, 72
LVQ. See learning vector quantization (LVQ)

Index.indd 586Index.indd 586 2/21/2013 3:42:00 PM2/21/2013 3:42:00 PM

Index 587

M

MADALINE, 243–250
map colouring problem, 465
MAXNET, 300–303
McCulloch–Pitts neural model, 184–189
MEA. See means-end analysis (MEA)
mean-of-maxima method, 118–120
means-end analysis (MEA), 446–449
mini-confl ict local search, 473
mini-max search, 450–465
minimum remaining value (MRV), 471
MRV. See minimum remaining value (MRV)
multi-layer feedforward net, 371–374
multi-objective fi tness, 551–552
multi-objective GA process, 553–554
multi-objective genetic algorithms, 546–554
mutation, 531, 543

N

Natural Selection, 530, 531
NEAT. See neuro-evolution of augmenting topologies

(NEAT)
neural network architectures, 194–198
neuro-evolution of augmenting topologies (NEAT),

568–574
neuro-genetic systems, 566–574
neuron, 175–176
Nguyen–Widrow initialization, 379–380
niche count, 552–553
noisy patterns, 263
non-predicate constants, 72
normalization, 24
null set, 13

O

objective function, 467
OR fuzzy neuron, 577
Origin of Species by Means of Natural Selection, 530
OR-links, 437

P

parentheses, 72
Pareto-optimal front, 547
Pareto-optimal ranking, 549–551
pattern association, 181–184

pattern associators, 259–278
pattern classifi cation, 179–181
pattern classifi ers, 233–250
patterns, 179–184
penetrance, 477
perception, 189–195
perceptron learning rule, 206–209
perceptrons, 238–241
plasticity, 319
plateaux, 425
population, 537–538
power set, 13
predicate constants, 72
predicate logic, 69–77
probability, 21
problem reduction, 440
production rule, 478
production systems, 477–486

Q

quantifi ers, 72
quiescence, 463–465

R

random initialization, 379
recurrent networks, 198
reducts, 154–157
ridges, 426
rough membership, 153–154
rough sets, 6, 145–168
roulette wheel, 539–541
rules of inference, 77–81

S

SA. See simulated annealing (SA)
secondary search, 465
self-organizing map (SOM), 299
set, 12
set approximations, 150–152
set intersection, 14
set membership, 17–19
set union, 13–14
sigmoid function, 200–201
simulated annealing (SA), 7
single layer feed forward ANNs, 195–196
singleton, 19

Index.indd 587Index.indd 587 2/21/2013 3:42:00 PM2/21/2013 3:42:00 PM

588 Index

soft computing, 1–5
SOM. See self-organizing map (SOM)
state space search, 403–404
state spaces, 396–402
static evaluator, 453–454
steepest ascent hill climbing, 424–425
step function, 199–200
Sugeno fuzzy model, 577–578
supervised learning, 203–211
symmetric difference, 14
synapse, 175
syntax, 71–72

T

tentative control, 481
transformations, 24–26

U

unary constraint, 467
uninformed search, 404
universal set, 13
unsupervised learning, 211–220

V

valley descending, 419
variables, 72

X

XOR problem, 193–194

Index.indd 588Index.indd 588 2/21/2013 3:42:00 PM2/21/2013 3:42:00 PM

	Cover
	Contents
	Preface
	Acknowledgements
	About the Authors
	Chapter 1:Introduction
	1.1 What is Soft Computing?
	1.2 Fuzzy Systems
	1.3 Rough Sets
	1.4 Artificial Neural Networks
	1.5 Evolutionary Search Strategies
	Chapter Summary
	Test Your Knowledge
	Answers
	Exercises
	Bibliography and Historical Notes

	Chapter 2:Fuzzy Sets
	2.1 Crisp Sets: A Review
	2.1.1 Basic Concepts
	2.1.2 Operations on Sets
	2.1.3 Properties of Sets

	2.2 Fuzzy Sets
	2.2.1 Fuzziness/Vagueness/Inexactness
	2.2.2 Set Membership
	2.2.3 Fuzzy Sets
	2.2.4 Fuzzyness vs. Probability
	2.2.5 Features of Fuzzy Sets

	2.3 Fuzzy Membership Functions
	2.3.1 Some Popular Fuzzy Membership Functions
	2.3.2 Transformations
	2.3.3 Linguistic Variables

	2.4 Operations on Fuzzy Sets
	2.5 Fuzzy Relations
	2.5.1 Crisp Relations
	2.5.2 Fuzzy Relations
	2.5.3 Operations on Fuzzy Relations

	2.6 Fuzzy Extension Principle
	2.6.1 Preliminaries
	2.6.2 The Extension Principle
	Chapter Summary
	Solved Problems
	Test Your Knowledge
	Answers
	Exercises
	Bibliography and Historical Notes

	Chapter 3:Fuzzy Logic
	3.1 Crisp Logic: A Review
	3.1.1 Propositional Logic
	3.1.2 Predicate Logic
	3.1.3 Rules of Inference

	3.2 Fuzzy Logic Basics
	3.2.1 Fuzzy Truth Values

	3.3 Fuzzy Truth in Terms of Fuzzy Sets
	3.4 Fuzzy Rules
	3.4.1 Fuzzy If-Then
	3.4.2 Fuzzy If-Then-Else

	3.5 Fuzzy Reasoning
	3.5.1 Fuzzy Quantifiers
	3.5.2 Generalized Modus Ponens
	3.5.3 Generalized Modus Tollens
	Chapter Summary
	Solved Problems
	Test Your Knowledge
	Answers
	Exercises
	Bibliography and Historical Notes

	Chapter 4:Fuzzy Inference Systems
	Introduction
	4.2 Fuzzification of the Input Variables
	4.3 Application of Fuzzy Operators on the Antecedent Parts of the Rules
	4.4 Evaluation of the Fuzzy Rules
	4.5 Aggregation of Output Fuzzy Sets Across the Rules
	4.6 Defuzzification of the Resultant Aggregate Fuzzy Set
	4.6.1 Centroid Method
	4.6.2 Centre-of-Sums (CoS) Method
	4.6.3 Mean-of-Maxima (MoM) Method

	4.7 Fuzzy Controllers
	4.7.1 Fuzzy Air Conditioner Controller
	4.7.2 Fuzzy Cruise Controller
	Chapter Summary
	Solved Problems
	Test Your Knowledge
	Answers
	Exercises
	Bibliography and Historical Notes

	Chapter 5:Rough Sets
	5.1 Information Systems and Decision Systems
	5.2 Indiscernibility
	5.3 Set Approximations
	5.4 Properties of Rough Sets
	5.5 Rough Membership
	5.6 Reducts
	Application
	Chapter Summary
	Solved Problems
	Test Your Knowledge
	Answers
	Exercises
	Bibliography and Historical Notes

	Chapter 6:Artificial Neural Networks:Basic Concepts
	6.1 Introduction
	6.1.1 The Biological Neuron
	6.1.2 The Artificial Neuron
	6.1.3 Characteristics of the Brain

	6.2 Computation in Terms of Patterns
	6.2.1 Pattern Classification
	6.2.2 Pattern Association

	6.3 The McCulloch–Pitts Neural Model
	6.4 The Perceptron
	6.4.1 The Structure
	6.4.2 Linear Separability
	6.4.3 The XOR Problem

	6.5 Neural Network Architectures
	6.5.1 Single Layer Feed Forward ANNs
	6.5.2 Multilayer Feed Forward ANNs
	6.5.3 Competitive Network
	6.5.4 Recurrent Networks

	6.6 Activation Functions
	6.6.1 Identity Function
	6.6.2 Step Function
	6.6.3 The Sigmoid Function
	6.6.4 Hyperbolic Tangent Function

	6.7 Learning by Neural Nets
	6.7.1 Supervised Learning
	6.7.2 Unsupervised Learning
	Chapter Summary
	Solved Problems
	Test Your Knowledge
	Answers
	Exercises
	Bibliography and Historical Notes

	Chapter 7:Pattern Classifiers
	7.1 Hebb Nets
	7.2 Perceptrons
	7.3 Adaline
	7.4 Madaline
	Chapter Summary
	Solved Problems
	Test Your Knowledge
	Answers
	Exercises
	Bibliography and Historical Notes

	Chapter 8:Pattern Associators
	8.1 Auto-associative Nets
	8.1.1 Training
	8.1.2 Application
	8.1.3 Elimination of Self-connection
	8.1.4 Recognition of Noisy Patterns
	8.1.5 Storage of Multiple Patterns in an Auto-associative Net

	8.2 Hetero-associative Nets
	8.2.1 Training
	8.2.2 Application

	8.3 Hopfield Networks
	8.3.1 Architecture
	8.3.2 Training

	8.4 Bidirectional Associative Memory
	8.4.1 Architecture
	8.4.2 Training
	8.4.3 Application

	Chapter Summary
	Solved Problems
	Test Your Knowledge
	Answers
	Exercises
	Bibliography and Historical Notes

	Chapter 9:Competitive Neural Nets
	9.1 The Maxnet
	9.1.1 Training a MAXNET
	9.1.2 Application of Maxnet

	9.2 Kohonen’s Self-organizing Map (SOM)
	9.2.1 SOM Architecture
	9.2.2 Learning by Kohonen’s SOM
	9.2.3 Application

	9.3 Learning Vector Quantization (LVQ)
	9.3.1 LVQ Learning
	9.3.2 Application

	9.4 Adaptive Resonance Theory (ART)
	9.4.1 The Stability-Plasticity Dilemma
	9.4.2 Features of ART Nets
	9.4.3 Art 1
	Chapter Summary
	Solved Problems
	Test Your Knowledge
	Answers
	Exercises
	Bibliography and Historical Notes

	Chapter 10:Backpropagation
	10.1 Multi-layer Feedforward Net
	10.1.1 Architecture
	10.1.2 Notational Convention
	10.1.3 Activation Functions

	10.2 The Generalized Delta Rule
	10.3 The Backpropagation Algorithm
	10.3.1 Choice of Parameters
	10.3.2 Application
	Chapter Summary
	Solved Problems
	Test Your Knowledge
	Answers
	Exercises
	Bibliography and Historical Notes

	Chapter 11:Elementary Search Techniques
	11.1 State Spaces
	11.2 State Space Search
	11.2.1 Basic Graph Search Algorithm
	11.2.2 Informed and Uninformed Search

	11.3 Exhaustive Search
	11.3.1 Breadth-first Search (BFS)
	11.3.2 Depth-first Search (DFS)
	11.3.3 Comparison Between BFS and DFS
	11.3.4 Depth-first Iterative Deepening
	11.3.5 Bidirectional Search
	11.3.6 Comparison of Basic Uninformed Search Strategies

	11.4 Heuristic Search
	11.4.1 Best-first Search
	11.4.2 Generalized State Space Search
	11.4.3 Hill Climbing
	11.4.4 The A/A* Algorithms
	11.4.5 Problem Reduction
	11.4.6 Means-ends Analysis
	11.4.7 Mini-Max Search
	11.4.8 Constraint Satisfaction
	11.4.9 Measures of Search

	11.5 Production Systems
	Chapter Summary
	Solved Problems
	Test Your Knowledge
	Answers
	Exercises
	Bibliography and Historical Notes

	Chapter 12:Advanced Search Strategies
	12.1 Natural Evolution: A Brief Review
	12.1.1 Chromosomes
	12.1.2 Natural Selection
	12.1.3 Crossover
	12.1.4 Mutation

	12.2 Genetic Algorithms (GAs)
	12.2.1 Chromosomes
	12.2.2 Fitness Function
	12.2.3 Population
	12.2.4 GA Operators
	12.2.5 Elitism
	12.2.6 GA Parameters
	12.2.7 Convergence

	12.3 Multi-objective Genetic Algorithms
	12.3.1 MOO Problem Formulation
	12.3.2 The Pareto-optimal Front
	12.3.3 Pareto-optimal Ranking
	12.3.4 Multi-objective Fitness
	12.3.5 Multi-objective GA Process

	12.4 Simulated Annealing
	Chapter Summary
	Solved Problems
	Test Your Knowledge
	Answers
	Exercise
	Bibliography and Historical Notes

	Chapter 13:Hybrid Systems
	13.1 Neuro-genetic Systems
	13.1.1 GA-based Weight Determination of Multi-layerFeed-forward Net
	13.1.2 Neuro-evolution of Augmenting Topologies (NEAT)

	13.2 Fuzzy-Neural Systems
	13.2.1 Fuzzy Neurons
	13.2.2 Adaptive Neuro-fuzzy Inference System (ANFIS)

	13.3 Fuzzy-genetic Systems
	Chapter Summary
	Test Your Knowledge
	Answers
	Bibliography and Historical Notes

	Index

