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PREFACE

Th is book is the result of our desire to provide a learner-friendly text on soft  computing. With the grow-
ing importance of computational intelligence in diverse application areas, soft  computing is fast gaining 
importance and popularity in the academic world. Nowadays, this subject is included as a full paper, 
either elective or core, in various undergraduate and graduate curricula in computer science and engi-
neering, information technology, master of computer applications, and related courses. Th is book covers 
the syllabi of the soft  computing papers in these curricula. We hope that this book will cater the require-
ments of the students and researchers interested in this fi eld.  

Th e purpose of this book is to introduce the reader to the fundamental concepts of soft  computing 
as a methodological tool. We assume that the reader has rudimentary knowledge of computing and 
computer programming. Requirement of prior mathematical knowledge is kept at bare minimal. Aft er 
reading this book, the reader will be able to

Analyze a given computational task to recognize the appropriateness, or otherwise, of • 
applying soft  computing techniques for a solution,
Design a soft  computing system required to address a computational task,• 
Implement a soft  computing system for a computational task,• 
Explain the principles and techniques of soft  computing to a learner with knowledge of • 
computer basics.

Compared to other papers of computer science and engineering, information technology, master of 
computer applications, and related courses, there are very few textbooks on soft  computing available in 
the market. We have tried to provide a truly learner-friendly textbook on the subject. With this purpose 
in mind, we have adopted an approach of presenting the contents in a manner which is characterized by 
the following features:

Clarity of concepts, rather than mathematical rigour, is given priority.• 
Th e concepts are presented, as far as practicable, in an inductive manner rather than being • 
deductive.
Topics are explained with an ample number of illustrative examples.• 
Numerous solved problems are provided at the end of each chapter to help the learner develop • 
problem-solving skills in the area of soft  computing.
Each chapter is augmented with a section entitled ‘Test Your Knowledge’ in which adequate • 
number of MCQ-type test items are given. Th is will help the learner to review the knowledge 
acquired.

For the sake of enhanced learning experience and effi  cient attainment of learning objectives, other fea-
tures are incorporated including a list of key concepts as well as the chapter outline at the beginning of 
each chapter, a summary, bibliography and historical notes at the end of each chapter, and the exercises, 
of course. 

FM.indd   xvFM.indd   xv 2/22/2013   5:39:19 PM2/22/2013   5:39:19 PM



xvi  Preface

Th ere are thirteen chapters in this book. Apart from Chapter 1 (Introduction), the contents are pre-
sented in the rest of the twelve chapters. Th ese twelve chapters can be structured in four modules as 
detailed below:

Module I (Fuzzy Systems and Rough Set Th eory): Containing Chapters 2, 3, 4, and 5 on Fuzzy Sets, 
Fuzzy Logic, Fuzzy Inference Systems, and Rough Sets, respectively.

Module II (Artifi cial Neural Networks): Containing Chapters 6, 7, 8, 9, and 10 on Artifi cial Neu-
ral Networks: Basic Concepts, Elementary Pattern Classifi ers, Pattern Associators, Competitive Neural 
Nets, and Backpropagation, respectively.

Module III (Intelligent Search Strategies): Containing Chapters 11 and 12 on Elementary Search 
Techniques and Advanced Search Techniques, respectively.

Module IV (Hybrid Systems): Containing Chapter 13 on Hybrid Systems.

Ch. 1

Ch. 13

Ch. 2

Ch. 3

Ch. 4

Ch. 5

Ch. 11

Ch. 12

Ch. 6

Ch. 7

Ch. 8 Ch. 9

Ch. 10

Dependency relations among the chapters of the book

Modules I, II, and III can be studied almost independently. However, there are dependencies among the 
chapters within a module. Th ese dependencies are depicted in the above fi gure. Th e learner may choose 
the most convenient learning path on the basis of the dependencies depicted in this fi gure.

While writing this book, we have consciously adopted a learner-centric approach of content delivery. 
Th e challenge was to present the text lucidly without diluting the subject matter, so that the book be-
comes an eff ective learning material on the subject. Whether this is achieved can only be judged by the 
reader. 

Samir Roy
Udit Chakraborty
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1
INTRODUCTION

Key Concepts

Ant colony, Artifi cial neural networks (ANN), Belief propagation, Boundary regions, Curve fi tting, 
Darwin, Evolutionary search, Fuzzy control, Fuzzy-evolutionary, Fuzzy inference, Fuzzy systems, Genetic 
algorithms (GAs), Hybrid systems, Imprecision, Inexactness, Information systems, Law of excluded middle, 
Learning, Measurement, Natural selection, Neuro-fuzzy, Neuro-genetic, Optimization, Pattern association, 
Pattern classifi cation, Pattern clustering, Perception, Probabilistic reasoning, Rough sets, Simulated annealing 
(SA), Soft  computing, State space search, Supervised learning, Survival of the fi ttest, Swarm optimization, 
Training pairs, Unsupervised learning, Vagueness

Chapter Outline
1.1 What is Soft  Computing?
1.2 Fuzzy Systems 
1.3 Rough Sets
1.4 Artifi cial Neural Networks
1.5 Evolutionary Search Strategies

Chapter Summary
Test Your Knowledge
Exercise
Bibliography and Historical Notes

What is soft  computing? How does it diff er from traditional ‘hard’ computing? What are its main com-
ponents and how do they relate to each other? What are the basic traits of a soft  computing technique? 
Th ese are relevant questions that any inquisitive mind will ask while approaching a text on the subject. 
While clear answers to these questions can only emerge out of careful study and practice of the subject, 
some indicators need to be available to the sincere learner at the very outset. Th is chapter is intended to 
provide some ideas about the spirit of soft  computing as a computational process.

1.1 WHAT IS SOFT COMPUTING?

Well, the obvious answer to this question is, ‘soft  computing is computing which is not hard’. But this can-
did answer might not satisfy some people who are so inherently skeptic as to ask further, ‘then what is 
hard computing?’ Th e rest of this chapter is dedicated to these skeptics. 
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Th e phrase ‘soft  computing’ was coined by Lotfi  A. Zadeh, a pioneer in this fi eld, in the early 1990s. 
Th e question ‘What is soft  computing?’ can be answered from various perspectives, e.g., its methodologi-
cal traits, problem solving abilities, constraints, and so on. In fact a complete understanding of the term 
‘soft  computing’ is possible only when all these perspectives are taken into consideration. In this intro-
ductory text, we will certainly try our best to build this holistic view of soft  computing, but presently we 
start by focusing our attention on what is readily available to us, the phrase ‘soft  computing’.

Th e term ‘soft  computing’ consists of two words, ‘soft ’ and ‘computing’. Assuming that we have a fairly 
good idea of what ‘computing’ is, let us focus our attention on the remaining keyword, i.e., ‘soft ’ which 
is opposite to ‘hard’. Table 1.1 presents certain characteristics that we tend to associate with these two 
contrasting words.

Table 1.1. Hard vs. soft

Hard Soft

Rigid Flexible

Fixed Movable/Adjustable

Systematic Random

Well-defi ned Vague

Exact Inexact/Approximate

Precise Imprecise

Measurable Perceivable

Solid Porous

Deterministic Non-deterministic

… …

Taking a cue from the words closely associated with ‘hard’ and ‘soft ’, we may expect that soft  computing 
somehow relates to fl exibility, imprecision, inexactness, vagueness, randomness, non-determinism and 
so on either as computational process, or the computational problems they try to solve. Indeed, these 
traits distinguish soft  computing from hard computing.

In real life we keep on confronting and handling situations characterized by soft  qualities. Let us 
consider a few.

(a) Parking a car on a narrow parking space. You want to park a car within a narrow parking space. 
Th e available space is just enough to keep the car. You don’t need to measure the exact length or 
breadth of the space. Nor you need to know the exact coordinates of the car’s fi nal position. However, 
you successfully assess the situation and maneuver the car in a way such that the car is fi nally parked 
properly. 
(b) Recognition of handwritten characters. There are infinite variations in the shape of an al-
phanumeric character written by people. None of them exactly match the printed character. In 
printed form too, the same character have different shapes in different fonts. Add to this the 
variation due to size, writing material, colour, the surface on which the characters are written 
etc. In spite of all these deviations from the ‘ideal’ shape, we have no difficulty in recognizing a 
handwritten character. It seems that our brain do not process the image of such an entity pixel 
by pixel but as whole. This is again in sharp contrast with the conventional hard computing 
paradigm. 

2  Introduction to Soft Computing
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(c) Collection of food by ants. When the ants look for food they start by traveling in random direc-
tions. Many ants go out of the ant-hill simultaneously and individually search for food in various direc-
tions. However, when the source of food is discovered by one or a few ants, they return to their ant-hill 
and convey this message to other ants. Gradually, the movements of the entire population of the ants 
(i.e. those who are engaged in searching and collecting food) converge to a line joining the source of 
food and the ant-hill. And, this line is usually along the shortest distance between the source and the 
destination.

Situation (a), that of parking a car on a narrow parking space, is an instance of a problem whose descrip-
tion is imprecise in the sense that the exact measurement of the dimensions of the parking space is not 
available. In fact, such exact values are neither necessary, nor desirable because it is not a precision job 
at all. Also unavailable are the dimensions of the car (we do not bother about those fi gures while park-
ing), and the coordinates of the wheels when the car is fi nally parked. Th is is a typical situation where 
exactitude, or precision, in the description of the problem as well as the solution is neither available, nor 
necessary.

Situation (b), that of recognition of handwritten characters, exemplify the distinctive nature of 
human perception as opposed to traditional computational process based on instruction fetch and 
execute cycle. It seems that the human brain perceives a pattern as a whole, not pixel by pixel. More-
over, small deviations, or incompleteness of description, or similar aberrations from the ideal pattern 
do not prevent us from recognizing the pattern correctly. Th is remarkable capacity of human brain 
is the result of the structure of the brain that allows immense parallelism. Th ere is another impor-
tant phenomenon called learning. Conventional computation does not model learning. Rather, it is 
based on the idea of an algorithm as an embodiment of procedural knowledge already learnt by the 
programmer. 

Th e third situation, the behaviour of ants while searching for food, is an instance of nature’s wisdom 
to achieve betterment over time. Th is is similar to an optimization process. A more elaborate optimiza-
tion process undertaken by nature is the evolution of higher order species from lower ones over millions 
and millions of years by means of natural selection. Randomness is a necessary ingredient of these pro-
cesses. However, such randomness is not unconstrained. Randomness is necessary to explore possibili-
ties, but at the same time, it must be supported by direction. Th is is ensured by various mechanisms. 
For example, in biological evolution the upthrust is provided by natural selection guided by Darwinian 
principle of survival of the fi ttest. In ant colonies, this is provided by accumulation of a chemical called 
pheromone deposited by the ants along the frequently visited paths. Moreover, the target of optimiza-
tion is also ‘soft ened’ in these processes. Th is is because, unlike traditional optimization, here we do not 
insist on ‘the’ optimal solution because we may have to wait too long to receive the best solution. Rather, 
a near-optimal solution available at a convenient time is accepted. Th e fact is that certain problems are 
computationally so complex that fi nding the best solution would take ages by even the fastest computer. 
For most practical purposes, a quickly available near-optimal solution at the expense of a slight, prob-
able, compromise in quality is acceptable. 

What is soft  computing then? It is not a single computational technique. Soft  computing is a family 
of techniques with capacity to solve a class of problems for which other conventional techniques are 
found to be inadequate. Th e principal components of soft  computing, as on today, includes fuzzy systems 
(fuzzy set theory, fuzzy logic, fuzzy inference systems etc.), rough set theory, artifi cial neural networks, 
probabilistic reasoning, and evolutionary search strategies (including genetic algorithms, simulated an-
nealing, ant colony optimization, swarm optimization etc.). Table 1.2 provides a summary of the do-
mains of these components of soft  computing.
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Table 1.2. Soft Computing Techniques

# Technique Application domain

1 Fuzzy systems Vagueness / imprecision / inexactness / Approximate reasoning

2 Rough sets Vagueness / inexactness in information systems

3 Artifi cial neural networks Learning and curve fi tting / Pattern classifi cation, association, clus-
tering

4 Probabilistic reasoning Uncertainty and belief propagation

5 Evolutionary searches Complex optimization

Evolutionary-FuzzyE ovE ono yryE ovEE oi no yr NeeeN uro-Fuu -ou uu -ou uF zzy-Evoz -yz y ovoz -yz ovE oluuul tit onnono araaaa yyy

NNNeuro-Evole r E-E o ututioonaaryyyyryy

NeeNeuro-Fuzzyu ouro zuFu yyzzy

Fuzzuz yy
Syystemess meemes me sssss

Evoloo utuuu ioonarnna yyyy
Searchcaarchca c
StratetS eat etSS eatrategiesegg eegg ees

Fig. 1.1. Synergy among the principal components of soft computing

It should be noted that while each of these techniques can be applied in isolation to solve problems of 
related domains, they can work together synergistically. Th e fact is, soft  computing is not just a collection 
of several techniques, but is a family of highly interacting and complementary techniques. 

For instance, artifi cial neural networks generally lack certain characteristics which are present in 
fuzzy logic. On the other hand, fuzzy systems cannot learn, adapt, or support parallelism though these 
are clearly present in neural nets. Th is observation prompted researchers to develop neuro-fuzzy systems 
that are highly successful hybrid systems. Th e complementary role of fuzzy logic and neuro-computing 
helps a neuro-fuzzy system overcome the limitations of both constituents. Actually, hybridization is 
a central theme of soft  computing. Various hybrid soft  computing systems, e.g., neuro-fuzzy systems, 
fuzzy neural networks, genetic fuzzy systems, fuzzy-evolutionary algorithms, genetic-neural networks 
etc. have been developed in past years and are being developed. Fig. 1.1 gives a graphical view of hybrid-
ization in soft  computing.

What are the essential properties that bring all these diverse methodologies together under the com-
mon umbrella named ‘soft  computing’? We can safely say that a computation that deliberately incorpo-
rates imprecision on one or more levels of computation resulting either in a change, in fact decrease, 
in the ‘granularity’ of the problem, or relaxing the goal of optimization at some stage, is a kind of soft  
computing. So the eff ect of including imprecision is a relaxation either in the level of description of the 
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problem, or the level of achievement of the goal. However, it should be noted that the imprecision is not 
a target. It is a means to achieve practical solution to a given complex problem. 

Soft  computing can also be considered as a tool to tackle imprecision and uncertainty. As stated by 
Zadeh, the guiding principle of soft  computing is to exploit the tolerance for imprecision, uncertainty, 
partial truth, and approximation to achieve tractability, robustness, low cost etc. Real life problems are 
full of uncomfortable characteristics due to partial, vague, noisy, and incomplete information. Under 
such circumstances, hard computing techniques are not appropriate. In this context, it is worthwhile to 
ponder over the diff erence between measurement and perception. While measurements are exact, per-
ceptions are vague. We, the humans, have a wonderful capacity to perform numerous tasks, physical as 
well as mental, without any measurement or calculations. While science has been motivated to progress 
from perception to measurement, soft  computing perhaps will enable us to return to perception. Hence 
soft  computing may lead in future to computing with words and perceptions.

In the rest of this chapter, we will try to appreciate the spirit of soft  computing by a quick review of 
the basic principles of its components.

1.2 FUZZY SYSTEMS

Fuzzy set theory is an extension, or generalization, of the classical, occasionally referred to as crisp, set 
theory. Our everyday conversation is full of vague and imprecise concepts, e.g., ‘Uncle Sam is tall’ or ‘It 
is very cold today’. It is diffi  cult if not impossible to translate such statements into more precise language 
because such an eff ort results in losing some of their semantic values. If, instead of saying ‘It is very cold 
today’ someone says ‘Today’s temperature is 5°C’, or, instead of saying ‘Uncle Sam is tall’ we say ‘Uncle 
Sam’s height is 5 ft  10 inch’, aren’t we losing some of the meanings of the statements mentioned above? It 
seems that in real life, vagueness is not only unavoidable but also desirable to some extent.

As stated earlier, science tries to replace perception with measurement. However, more and more 
we are facing situations in science and technology where there is a need to retain perception into the 
system. For instance, consider the case of designing an expert system to embody the diagnostic power 
of a physician. In his eff ort to codify the physician’s decision making process, the designer discovers that 
the physician’s approach to diagnosis or medication is largely intuitive though supported by various test 
results and measurements. Accepting vagueness as a valid element of model of reality, instead of trying 
to mould reality into crisp measurements, is the natural way to implement such applications.

Fuzzy set theory, which eff ectively models vagueness in its mathematical formulation, is naturally 
extended to logic. Logic is the study of the structures and principles of reasoning and sound argument. 
Classical logic is based on the famous ‘law of excluded middle’. Th is law states that every statement must 
be either true or false. Th ere was strong opposition to this view even in ancient times. Greek philoso-
pher Heraclitus opined that statements could be simultaneously true and false. Th e central theme of 
fuzzy logic was upheld by Plato who indicated that there was a third region beyond true or false. In re-
cent past, the systematic alternative to bi-valued logic of Aristotle was proposed by Lukasiewicz in early 
1900s. Lukasiewicz proposed a 3-valued (true, false, and ‘possible’) logic, followed by 4-valued and later 
5-valued logics. Th e modern, infi nite-valued fuzzy logic was proposed by LA Zadeh in 1965. In real life 
we face situations where there is no sharp distinction between truth and falsehood. Rather, there are 
infi nite shades of truths between absolute truth and absolute falsehood. Fuzzy logic accepts this state of 
aff air and builds a system of reasoning on the basis of infi nite shades of truth. Fuzzy logic is one of the 
most successful theories in terms of practical applications. An important class of applications is based 
on the idea of fuzzy inference system. Th is is a kind of input-output mapping based on fuzzy logic. 
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Th ese systems have been applied in machine control and are popularly known as fuzzy control systems. 
Th e advantage of fuzzy inference systems is that here the solution to the problem can be cast in terms 
of familiar human operators. Hence, the human experience can be used in the design of the controller. 
Engineers developed numerous fuzzy controllers for industrial applications and consumer products. 

1.3 ROUGH SETS

Fuzzy sets and fuzzy logic have modeled vagueness in terms of partial membership and partial truth re-
spectively. Another model of vagueness has gained importance in recent past. Th e concept of rough sets, 
proposed by Z Pawlak, considers vagueness from a diff erent perspective. Here vagueness is expressed, 
instead of set membership, in terms of boundary regions of a set of objects. In large reservoir of multidi-
mensional data, occasionally it is not possible to decide with certainty whether a given object belongs 
to a set or not. Such objects are said to form a boundary regions for the set. If the boundary region is 
empty, then the set is crisp, otherwise it is rough. A non-empty boundary region exists due to insuffi  -
cient knowledge to defi ne the set with certainty. Th ere are many interesting applications of the rough set 
theory including knowledge acquisition, decision analysis, knowledge discovery from databases, expert 
systems, inductive reasoning etc. 

1.4 ARTIFICIAL NEURAL NETWORKS

A computer program embodies a ready made procedural knowledge that the programmer has acquired 
and then translated with help of a programming language. Superiority of the brain over computer is largely 
ascribed to brain’s capacity to learn from experience. Th e slow process of learning enables man to perform 
certain tasks, e.g., recognition, classifi cation, association, clustering etc. in a highly effi  cient manner.

Artifi cial neural networks (ANNs) are inspired by the structure and functionality of the brain. Th ere 
are nearly 100 billion neurons in a normal human brain. Each neuron is locally connected to its neigh-
bouring neurons. Th e neurons have elementary capacities like summing up the incoming signals and 
then passing it on to the neighbours conditionally. Human consciousness is the outcome of the collective 
activities of these 100 billion neurons. In a computer information is stored as localized bits. An ANN 
preserves information as weights of interconnections among its processing units. Th us, as in the brain, 
information in ANNs too resides in a distributed manner, resulting in greater fault tolerance. Moreover, 
multiple data may be superimposed on the same ANN for storage purpose. Like the human brain, ANNs 
also perform computation in terms of patterns rather than data. 

Pattern classifi cation is the task of deciding whether the input pattern, usually a vector, belongs to a 
certain class or category. In real life, we encounter pattern classifi cation tasks quite oft en. For instance, 
we may need to classify a cell, on the basis of its image, as cancer-aff ected or otherwise. 

Another common human experience is pattern association. It takes place when we relate a given 
pattern to one already stored in memory. We do associate patterns in our daily life almost without any 
conscious eff ort. Examples are, recognition of a known face from an image (either distorted, or undis-
torted), visualizing a fl ower from its fragrance, remembering a distant past on hearing a particular tune 
etc. In computing, retrieval of a stored pattern corresponding to an input pattern is known as pattern 
association. Associative memory neural nets are those which store a set of pattern associations. Th ere 
are two kinds of associative memory neural nets. Th e associations may be auto (the input and the stored 
patterns are identical), or hetero (the input and the stored patterns are diff erent).
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Neural nets are trained by providing sample classifi cation data over and over again and making 
adjustments in their weight vectors so that they become ‘experienced’ enough to classify unknown 
patterns successfully. Learning is either supervised or unsupervised. When learning takes place in pres-
ence of a teacher the learner has the opportunity to get corrected by the teacher when he commits a 
mistake. Th is is supervised learning. A self-learner, in contrast, does not have a teacher and therefore 
he has to identify an error as well as get it corrected all by himself. Similarly, learning by ANN is either 
supervised or unsupervised, depending on the availability of training data. By training data we mean a 
set of pairs of input–output vectors. In presence of such data, the ANN can measure the deviation from 
desired output values when the net is presented with an input pattern. Supervised learning by an ANN 
takes place in this way. However, in the absence of such training pairs, the ANN has to adjust itself on 
its own. Usually some kind of competition facilitates unsupervised learning. Th ere are various ANNs, 
e.g., Kohonen’s self organizing map (SOM), learning vector quantization (LVQ), etc. that act on the ba-
sis of unsupervised learning. Th is text contains discussions on the fundamental ANNs including Hebb 
nets, Perceptrons, ADALINE, MADALINE etc. as pattern classifi ers, Hopfi eld nets and bidirectional 
associative memory (BAM) as associative networks, Kohonen’s self organizing map (SOM), learning 
vector quantization (LVQ), adaptive resonance theory (ART) as competitive networks, back propaga-
tion networks, etc.

1.5 EVOLUTIONARY SEARCH STRATEGIES

Quite oft en, intelligent computing takes the form of a state space search. A state space is a graph where 
the nodes represent the ‘states’ relating to a computational problem and the directed edges represent 
possible moves from one problem state to another. Starting with the initial state, the requirement is to 
reach a ‘goal’ state by traversing a suitable path through the graph. Th e state spaces are oft en huge in size 
and fi nding a solution, or a path to the solution, may prove to be highly computation intensive process. 
In this text we discuss the exhaustive search techniques, e.g., breadth-fi rst search, depth-fi rst search, 
depth-fi rst iterative deepening etc., as well as various heuristic search strategies. 

Complex optimization problems require advanced search techniques to obtain workable solutions 
within reasonable time frame. Classical optimization techniques can be used only on continuous and 
diff erentiable functions. However, oft en such well behaved functions are not available for certain opti-
mization problems. Moreover, classical search techniques have a tendency to settle down at local optima 
instead of the global best. Th ere are computational problems which require tremendous computational 
eff orts to fi nd the best solution. Intelligent search strategies like hill climbing may be employed to obtain 
reasonably good solutions to such problems. However, hill climbing suff ers from the serious problem 
of settling to sub-optimal solutions remaining in the search space as local optimal points. Genetic Al-
gorithms (GAs) and Simulated Annealing (SA) are two search strategies that are inspired by natural 
evolutionary processes and have the capacity to overcome the problem posed by the existence of local 
optima in large search spaces. GAs are inspired by the process of natural evolution. Th e mechanism 
applied by nature in evolution is natural selection based on the Darwinian principle of survival of the 
fi ttest. It is essentially a maximization process. Simulated Annealing (SA) mimics the process of physical 
annealing. In physical annealing a metal is initially heated to a molten state and then gradually cooled 
to get a uniform crystal structure. Th is uniform crystal structure corresponds to a minimal energy level. 
Hence annealing is a minimization process. Th e GAs and SAs are extensively applied to solve optimiza-
tion problems of highly complex nature. 

Introduction   7

Samir Roy_Chapter01.indd   7Samir Roy_Chapter01.indd   7 2/21/2013   3:14:07 PM2/21/2013   3:14:07 PM



 CHAPTER SUMMARY

Th e forgoing introductory discussion on the nature and constituents of soft  computing can be summa-
rized in the following way. 

 Th e term ‘soft  computing’ was coined by LA Zadeh in early 1990s and can be interpreted from • 
various perspectives, e.g., its methodological traits, problem-solving abilities, constraints, and so 
on. A complete understanding of the term ‘soft  computing’ is possible only when all these perspec-
tives are taken into consideration.
 Soft  computing is a family of techniques with capacity to solve a class of problems for which other • 
conventional techniques are found to be inadequate. Th e principal components of soft  computing 
include fuzzy systems, rough set theory, artifi cial neural networks (ANNs), probabilistic reason-
ing, and evolutionary search strategies including genetic algorithms (GAs), simulated annealing 
(SA), ant colony optimization, swarm optimization etc.
 Fuzzy systems are systems built on fuzzy set theory and fuzzy logic. Th ese systems try to model • 
vagueness, or inexactness, which is a necessary ingredient of everyday interactions and activities. 
Fuzzy set theory accommodates vagueness by allowing set membership values to lie anywhere 
between 0 and 1, both inclusive. Fuzzy logic violates the Aristotelian law of excluded middle and 
allows a statement to be true to any extent between absolute falsehood and absolute truth. 
 In rough set theory, vagueness is expressed, instead of set membership, in terms of boundary • 
regions of a set of objects. If the boundary region is empty, then the set is crisp, otherwise it is 
rough.
 Artifi cial neural nets are networks of processing elements that follow a computational paradigm • 
akin to that of the human brain. Th ese are effi  cient structures to classify, associate and cluster pat-
terns. Like human brain, the artifi cial neural nets need to be trained to carry out the designated 
task. Learning by ANN could be either supervised, or unsupervised. Supervised learning is as-
sisted by training data and unsupervised learning takes place in absence of any training data.
 Complex optimization problems require advanced search techniques to obtain workable solutions • 
within reasonable time frame. Genetic Algorithms (GAs) and Simulated Annealing (SA) are two 
search strategies that are inspired by natural evolutionary processes and have the capacity to over-
come the problem posed by the existence of local optima in large search spaces. While GA is a 
maximization process, SA is a minimization process.

� TEST YOUR KNOWLEDGE

1.1 Which of the following traits is expected in a soft  computing technique? 
a) Precision measurement b) Exactitude 
c) Absolute truth/falsehood  d) None of the above 

1.2 Which of the following traits is not expected in a soft  computing technique? 
a) Randomness  b) Soft ening of goal 
c) Vagueness  d) None of the above 

1.3 Fuzzy logic is a soft  computing technique to deal with 
a) Vagueness  b) Learning 
c) Optimization  d) None of the above 
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 1.4 Which of the following soft  computing techniques is employed to solve complex optimization 
problems? 
a) Fuzzy logic  b) Artifi cial neural nets 
c) Rough sets  d) None of the above 

 1.5 Simulated annealing is a soft  computing technique to deal with 
a) Vagueness  b) Learning 
c) Optimization  d) None of the above 

 1.6 Which of the following is associated with artifi cial neural nets? 
a) Vagueness  b) Learning 
c) Optimization  d) None of the above 

 1.7 Th e soft  computing technique to deal with vagueness in information systems is
a) Artifi cial neural nets  b) Rough set theory 
c) Genetic algorithms  d) None of the above 

 1.8 Which of the following is based on the law of excluded middle?
a) Predicate Logic  b) Rough set theory 
c) Fuzzy logic  d) None of the above 

 1.9 Which of the following theories models vagueness in terms of boundary regions?
a) Probability theory  b) Rough set theory 
c) Fuzzy set theory  d) None of the above 

1.10 Which of the following search techniques has the capacity to overcome the problem of local op-
tima?
a) Genetic algorithms  b) Simulated annealing 
c) Both (a) and (b)  d) None of the above 

Answers 

 1.1 (d) 1.2 (d) 1.3 (a) 1.4 (d) 1.5 (c)
 1.6 (b) 1.7 (b) 1.8 (a) 1.9 (b) 1.10 (c)

 EXERCISES

1.1 Th e vagueness we are accustomed to in our everyday conversation is not just lack of exact measure-
ment but has a semantic content. Critically assess the above statement.

1.2 Identify the basic traits of soft  computing as computational process and briefl y explain how these 
traits help us in problem solving.

 BIBLIOGRAPHY AND HISTORICAL NOTES

Th e history of soft  computing dates back to the early stages of digital computers when scientists were 
probing human brain and neural systems in an eff ort to develop machines on the basis of the brain 
model. However, as stated earlier, the term ‘soft  computing’ is the brainchild of L A Zadeh who coined it 
in early 1990s. Consolidation of soft  computing as a collection of various synergistically complementary 
computational techniques is a phenomenon of the last two decades. A selected list of pioneering litera-
ture on this emerging fi eld of computer science is presented below.
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2
FUZZY SETS

Key Concepts

a-cut, a-cut decomposition theorem, Classical/Fuzzy sets, Composition, Concentration, Contrast 
intensifi cation, Core, Dilation, Fuzzifi cation, Fuzziness/Vagueness/Inexactness, Fuzzy cardinality, 
Fuzzy Cartesian product, Fuzzy extension principle, Fuzzy membership, Fuzzy membership function, 
Fuzzy relations, Gaussian function, Height, Level set, Max-min composition, Membership functions, 
Normality, Normalization, Relation matrix, Restricted scalar multiplication, S-function, Singleton, 
Support, Trapezoidal function, Triangular function

Chapter Outline

2.1 Crisp Sets: A Review
2.2 Fuzzy Sets
2.3 Fuzzy Membership Functions
2.4 Operations on Fuzzy Sets
2.5 Fuzzy Relations

2.6 Fuzzy Extension Principle 
Chapter Summary
Solved Problems
Test Your Knowledge
Exercise
Bibliography and Historical Notes

Th is chapter presents the basic concepts of fuzzy set theory. Th e fuzzy set theory is an extension, or gen-
eralization, of the classical, occasionally referred to as crisp, set theory in the sense that the latter can be 
considered as a special case of the former. Hence the chapter starts with a review of the fundamentals of 
the classical set theory. Elementary concepts of fuzzy set theory, e.g., membership functions, transforma-
tions on membership functions, linguistic variables, fuzzy set operations etc. are presented along with 
illustrative examples in sections 2.2, 2.3 and 2.4. Th is is followed by a discussion on fuzzy relations and 
related matters in Section 2.4. Th e chapter ends with a presentation of the fuzzy extension principle that 
provides a technique to map a function from the crisp domain to its equivalent in the fuzzy domain.

2.1 CRISP SETS: A REVIEW

Th e notion of a set is of fundamental importance in Mathematics. It can be informally defi ned in the 
following way.
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Defi nition 2.1 (Set)  A set is a collection of distinct elements, or members, without repetition and 
without ordering. 

Example 2.1  (Set)

Th e set atomic particles = {electron, proton, neutron}. Since a set is defi ned by its members without 
regard to ordering or repetitions, the set of atomic particles cited above is identical to the set {pro-
ton, neutron, electron}, or the set {neutron, proton, neutron, electron, proton, proton}

Th ere are two ways to describe a set. Th e most obvious one is by enumerating the members of the set. 
However, occasionally it is convenient to describe a set by citing a property common to all the members 
of the set. Both of these kinds of set notations are exemplifi ed below.

Example 2.2  (Set Notations)

Th e sets A, B, C, D given below are described by enumeration of its members.

A = {Jack, Jill, hill, pail, water}
B = {+, −, ×, ÷}
C = {Socrates, toothbrush, loneliness, 235}
D = {Monday, Tuesday, Wednesday, Th ursday, Friday, Saturday, Sunday}

Th e set D of all days of a week can be equivalently expressed by citing the property shared by its 
member. Th us, 

D = {x | x is a day of the week}

A few other sets described in similar way are

E = {x | x is an integer, and −1 ≤ x ≤ +1}}= {−1, 0, +1}
F = {x | x is a prime number}
G = {x | x is a polygon}
H = {x | x is an element having 8 electrons in its outermost shell}

Th e elementary concepts of classical set theory are presented in the following section.

2.1.1 Basic Concepts

Th is subsection provides the basic set theoretic concepts, e.g. cardinality of a set, the null set, the univer-
sal set, belongingness to a set, subset, superset and so on.

Defi nition 2.2 (Cardinality of a Set) Th e number of elements in a set S is termed as its cardinality 
and is denoted as | S |. 

Example 2.3  (Cardinality of a set)

A set can be fi nite or infi nite, depending on whether it has a fi nite or infi nite number of ele-
ments. For example, the sets A, B, C, D and H in Example 2.2 are fi nite sets with cardinalities 
| A | = 5, | B | = 4, | C | = 4, and | D | = 7. What is the size of H ? Among the sets mentioned in 
Example 2.2 the sets F and G are infi nite sets.
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The Null Set and the Universal Set Th ere are two specially interesting sets, viz. the null (empty) set 
and the universal set. Th ese are usually represented by the symbols ∅  and U, respectively. Th e null set is the 
set without any member, so that |∅| = 0. Th e universal set, on the other hand, is the set of all possible elements 
in a certain context. 

Example 2.4  (Th e null set and the universal set)

Let X be the set of all natural numbers that are divisible by 4 but not divisible by 2. As there is no 
such integer which is divisible by 4 but not divisible by 2, X = §.  Similarly, the set of positively 
charged electrons is also the null set. Moreover, we may defi ne a set S = {x | x is blue-eyed} in the 
context of the universal set of all human beings. Th en S is the set of all blue-eyed persons and U 
is the set of all human beings. However, if U is the set of all living creatures, then S is the set of all 
blue-eyed creatures including, but not limited to, all blue-eyed human beings.

An element x is said to belong to a set S, expressed as x ∈ S, if x is included in S. Otherwise x does not 
belong to S, written as x ∉ S. For example, for the set F = {x | x is a prime number}, 3 ∈ F, as 3 is a prime 
number, but 4 ∉ F. 

Defi nition 2.3 (Subset) A set T is said to be a subset of set S, written as T ⊆ S, if every element of 
T is in S, i.e., ∀x if x ∈ T, then x ∈ S. Equivalently, S is superset of T, symbolized as S ⊇ T, if and only if 
T is a subset of S. 

T is a proper subset of S, denoted as T ⊂ S, if T ⊆ S and T ≠ S. Hence, if T ⊂ S, then there is at least 
one member x such that x ∈ S but x ∉ T. For an arbitrary set S the following properties are obvious from 
the defi nitions cited above.

  (i) ∅ ⊆ S
 (ii) S ⊆ U
(iii) S ⊆ S
Moreover, the chain rule applies to set inclusion operation, i.e., for any three sets A, B, C, if A ⊆ B and 

B ⊆ C, then A ⊆ C. 
Defi nition 2.4 (Equality of Sets) Two sets S and T are equal if every element of S is in T and vice 

versa. In other words, S = T, if and only if, S ⊆ T and T ⊆ S.
Defi nition 2.5 (Power Set) Given a set S, the power set of S, denoted as P (S), or 2S, is the set of all 

subsets of S. 

Example 2.5  (Power Set)

Let us consider the set S = {black, white}. Th en P (S) = 2S = {§, {black}, {white}, {black, white}}. Ob-
viously, if | S | = n, then | P (S) | = | 2S | = 2n. Similarly, if S = {electron, proton, neutron}, then P (S) 
= 2S = {§, {electron}, {proton}, {neutron}, {electron, proton}, {proton, neutron}, {electron, neutron}, 
{electron, proton, neutron}}. 

2.1.2 Operations on Sets

Th ere are three basic operations on sets, viz. union (∪), intersection (∩), and complementation (′).
Defi nition 2.6 (Set Union) Given two sets P and Q, the union of P and Q, denoted as P ∪ Q, is the 

set of all elements either in P, or in Q, or in both P and Q. 
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P ∪ Q = {x | x ∈ P or x ∈ Q}

Defi nition 2.7 (Set Intersection) Given two sets P and Q, the intersection of P and Q, denoted as P 
∩ Q, is the set of all elements both in P, and Q.

P ∩ Q = {x | x ∈ P and x ∈ Q}

Defi nition 2.8 (Complement of a Set) Th e complement of P, denoted as P′, P , ¬ P, or ∼ P, is the set 
of all elements (of U) outside P. 

P′ = {x | x ∉ P}

Th ere are various notations for complementation, as indicated in the defi nition. However, in this 
book we shall denote the complement of P as P′.

Defi nition 2.9 (Diff erence between Sets) Th e diff erence of set P from Q, denoted as P – Q, is the set 
of all elements in P but not in Q.

P – Q = {x | x ∈ P and x ∉ Q}

It is easy to prove that P – Q = P ∩ Q′

Defi nition 2.10 (Symmetric Diff erence) Th e symmetric diff erence of P and Q, denoted as P ⊕ Q, is 
the set of all elements that are either in P, or in Q, but not in both P and Q.

P ⊕ Q = {x | (x ∈ P and x ∉ Q), or (x ∈ Q and x ∉ P)}
 = (P – Q) ∪ (Q – P)
 = (P ∩ Q′) ∪ (P′ ∩ Q)

P

U

Fig. 2.1. Venn diagram of set P

Venn Diagrams Quite oft en it is convenient to represent a set theoretic expression visually with the 
help of a diagram called Venn diagram. Usually, a Venn diagram consists of a rectangle presenting the univer-
sal set U with other sets presented with the help of circles / ovals inside the rectangle. For example, the Venn 
diagram of a set S is presented in Fig. 2.1. Th e region inside the oval is the set S. Th e Venn diagrams for union, 
intersection and complementation are shown in Figures 2.2, 2.3 and 2.4 respectively. Fig. 2.5 depicts the dif-
ference of two sets while Fig. 2.6 presents the operation of symmetric diff erence.

P ∪ Q

QPPP

U       
P ∩ Q

QPPP

U

Fig. 2.2. Union              Fig. 2.3. Intersection
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P ′

P

U       
P − Q

P QP

U

PP

Fig. 2.4. Complement of a set         Fig. 2.5. Set difference

P ⊕ Q

P
Q

U

Fig. 2.6. Symmetric difference

Defi nition 2.11 (Cartesian Product) Let P and Q be two sets. Th e Cartesian product of P and Q, 
denoted as P × Q, is the set of all ordered pairs (x, y) such that x ∈ P and y ∈ Q.

P × Q = {(x, y) | x ∈ P and y ∈ Q}

2.1.3 Properties of Sets

Certain properties are obeyed by the set theoretic operations of union, intersection, complementation, 
symmetric diff erence etc. Th ese properties are summarized below.

Idempotency   A ∪ A = A
    A ∩ A = A
Commutative   A ∪ B = B ∪ A 
    A ∩ B = B ∩ A 
    A ⊕ B = B ⊕ A
Associative   A ∪ (B ∪ C) = (A ∪ B) ∪ C
    A ∩ (B ∩ C) = (A ∩ B) ∩ C
    A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C 
Distributive   A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 
    (Left  distributivity of union over intersection)
    (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C) 
    (Right distributivity of intersection over union)
    A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)    
    (Left  distributivity of intersection over union)
    (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)    
    (Right distributivity of union over intersection)
De Morgan’s law  (A ∩ B)′ = A′ ∪ B′ 
    (A ∪ B)′ = A′ ∩ B′
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Identity    A ∪ ∅ = ∅  ∪ A = A
    A ∩ ∅ = ∅  ∩ A = ∅
    A ∪ U = U ∪ A = U
    A ∩ U = U ∩ A = A
Involution   (A′)′ = A
Law of excluded middle  A ∪ A′ = U
Law of contradiction  A ∩ A′ = ∅

Universal compliment   U′ = ∅
    ∅′ = U
Absorption   A ∪ (A ∩ B) = A
    A ∩ (A ∪ B) = A

A set theoretic identity of the form L.H.S. = R.H.S. may be proved by showing that L.H.S. ⊆ R.H.S. 
and simultaneously L.H.S. ⊇ R.H.S. Example 2.6 illustrates the technique by proving the absorption 
properties. Also, the properties mentioned above may be applied to prove set theoretic identities. A few 
such examples are given in the section Solved Problems.

Example 2.6  (Proof of Absorption Properties)

Th e absorption properties state that for arbitrary sets A and B, the identities A ∪ (A ∩ B) = A and 
A ∩ (A ∪ B) = A. Th is can be proved as follows.

Let us take an arbitrary element x of A. Now

Let x ∈ A  Assumption
∴ x ∈ A ∪ B  By defi nition of union
∴ x ∈ A ∩ (A ∪ B) By defi nition of intersection
∴ A ⊆ A ∩ (A ∪ B) By defi nition of set inclusion

Now,
Let x ∈ A ∩ (A ∪ B) Assumption
∴ x ∈ A and (A ∪ B) By defi nition of intersection
∴ x ∈ A
∴ A ∩ (A ∪ B) ⊆ A  By defi nition of set inclusion

Hence A ∩ (A ∪ B) = A

Again, 
A ∪ (A ∩ B) = (A ∪ A) ∩ (A ∪ B)  Distributive law

= A ∩ (A ∪ B) = A

2.2 FUZZY SETS

Fuzzy set theory is a generalization of the classical set theory. Unlike the later, fuzzy set theory 
recognizes and incorporates in its formalism the natural vagueness that we the human beings are 
habituated to deal with in our practical, daily, life. This section presents the fundamental concepts 
of the fuzzy set theory.
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2.2.1 Fuzziness/Vagueness/Inexactness

It is quite normal to utter sentences like ‘He is a rich man’, or ‘The car is very expensive’, or ‘Old 
people tend to be weak’ and so on in our everyday conversation. While such expressions as rich, 
very, expensive, old, weak etc. are extremely convenient in practical communication they are char-
acteristically inexact in the sense that there are no well-defined demarcations between rich and 
poor, very and little, expensive and cheap, old and young, or weak and strong. A person can be rich 
as well as poor simultaneously, of course to different extents. This vagueness is desirable because 
otherwise everyday conversation would have been impossible. However, the classical set theory is 
not equipped to handle such vagueness as it does not allow an element to be a partial member, or a 
partially non-member, of a set simultaneously. Therefore classical set theory is inadequate to model 
our intuitive notion of a set in general.

As stated earlier, Fuzzy set theory is a generalization of the classical set theory so that the classical set 
theory is a special case of the fuzzy set theory. It takes into consideration the natural vagueness that we 
the human beings deal with in our practical, daily, life. As an example, let us consider the data related to 
a family as described in able Table 2.1.

Table 2.1 A family data set

# Family member Age Gender

1 Grand-pa 72 Male

2 Grand-ma 63 Female

3 Dad 41 Male

4 Mom 38 Female

5 Daughter 15 Female

6 Son 13 Male

7 Aunty 52 Female

It is customary to refer to a classical set as crisp in order to diff erentiate it from a fuzzy set. Th e crisp 
set of the family members U = {Grand-pa, Grand-ma, Dad, Mom, Sister, Brother, Aunt} may be treated as 
the reference set, or the universe of discourse. Now, consider the sets M and F of the male family members 
and female family members respectively. Th ese are crisp sets because for any arbitrary element x of U, 
it is possible to decide precisely whether x is member of the set, or not. Th ere is no intermediate status 
regarding the membership of x to the respective set. However, deciding the membership of an arbitrary 
x ∈ U to the set of senior persons of the family is not as straightforward as in case of M or F. Th e status 
of membership of an element x with respect to a given set S is expressed with the help of a membership 
function m. A set, crisp or fuzzy, may be defi ned in terms of membership function.

2.2.2 Set Membership

Description of a set in terms of its membership function is presented in this subsection. We fi rst defi ne 
crisp membership which is followed by the fuzzy membership function.

Defi nition 2.12 (Membership Function) Given an element x and a set S, the membership of x with 
respect to S, denoted as m S (x), is defi ned as

mS (x) = 1,  if x ∈ S
= 0,  if x ∉ S
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Example 2.7  (Set Membership)

Let us consider the set M of male family members and set F of female family members with refer-
ence to the family presented in Table 2.1. We see that m M (Dad) = 1, and m M (Mom) = 0. Similarly, 
m F (Dad) = 0, and m F (Mom) = 1. Membership values of the other family members in M and F can 
be ascertained in similar manner.

Now, consider A to be the set of senior persons in the family. Seniority is a familiar and frequently-
used attribute to a person. But is there any clear and unambiguous way to decide whether a person 
should be categorized as senior or not? Let us see with reference to U, the universe of discourse.

We may agree without any hesitation that Grand-pa, being 72 years old, is a senior person, so that 
Grand-pa ∈ A. On the other hand the brother and the sister are both too young to be categorized as senior 
persons. Th erefore, we may readily accept that Daughter ∉ A and Son ∉ A. What about Mom, or Dad? 
Th ey are not as aged as Grand-pa but neither as young as the daughter or the son. Moreover, Grand-ma is 
almost a senior person, being at 63 years, but she might be categorized as a middle-aged person as well.

Th e point is, the concept of a senior person is not as clearly defi ned as the gender of the person. In 
fact, there is a whole range of gray area between total inclusion and total exclusion, over which the degree 
of membership of a person in the set of senior persons varies. 

Th is intuitive notion of partial membership of an element in a set can be formalized if one allows the 
membership function to assume any real value between 0 and 1, including both. Th is means that an ele-
ment may belong to a set to any extent within the range [0, 1]. Hence it is now possible for an element x 
to be 0.5 member, or 1/√2 member of a set S so that we may say m S (x) = 0.5, or m S (x) = 1/√2.

x
40 50 60 70 80302010

0

1

mS (x)x

Fig. 2.7. Membership function for the fuzzy set of senior family members

Membership profi les/functions Quite oft en it is convenient to express the membership of vari-
ous elements with respect to a fuzzy set with the help of a function, referred to as the membership func-
tion. Take for example the fuzzy set A of senior persons on the universe of discourse U described in 
Table 2.1. For any x ∈ U, we may determine the membership value of x in A with the help of the follow-
ing membership function.  

 μAμ

if
x if x

if
( )x

,

,
,

=
−

≤ <x
≥

⎧

⎨
⎪
⎧⎧
⎪
⎨⎨
⎪⎪

⎩
⎪
⎨⎨

⎪⎩⎩
⎪⎪

0 3if x, < 0
30

40
30 70

1 7if x, ≥ 0
 (2.1)

Here x represents the age of the concerned person. Th e nature of the membership function is shown 
graphically in Fig. 2.7.
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Formula 2.1 may be applied to fi nd to what extent a person is a member of the fuzzy set A of senior 
persons. For example, as Grand-pa is more than 70 years old, he is a full member of A, mA (Grand-pa) = 
1.0.  However for Grand-ma we have mA (Grand-ma) = (63 – 30) / 40 = 33 / 40 = 0.825. Hence Grand-ma 
is a senior person to a large extent, but not as fully as Grand-pa. Table 2.2 shows the membership values 
of all the family members.

Table 2.2. Membership values of the senior family members

# Family member Age m A (x)

1 Grand-pa 72 1.0

2 Grand-ma 63 0.825

3 Dad 41 0.275

4 Mom 38 0.200

5 Daughter 15 0.0

6 Son 13 0.0

7 Aunty 52 0.55

If we want to describe such a fuzzy set by explicitly enumerating its members we need to indicate 
the membership value of each element along with the element itself. Th erefore, the fuzzy set A of senior 
persons can be expressed as a set of ordered pairs A = {(Grand-pa, 1.0), (Grand-ma, 0.825), (Dad, 0.275), 
(Mom, 0.2), (Aunty, 0.55)}. Daughter and Son are not in the list because it is customary not to mention 
the members with zero membership value. Th us fuzzy sets can be formally defi ned as given below.

2.2.3 Fuzzy Sets

Th is subsection presents the defi nition of a fuzzy set along with a few illustrative examples.

Defi nition 2.13 (Fuzzy set) A fuzzy set F on a given universe of discourse U is defi ned as a collec-
tion of ordered pairs (x, mF (x)) where x ∈ U, and for all x ∈ U, 0.0 ≤ mF (x) ≤ 1.0.

F = {(x, mF  (x)) | x ∈ U, 0.0 ≤ mF  (x) ≤ 1.0}

Classical sets, oft en referred to as crisp sets to distinguish them from fuzzy sets, are special cases of 
fuzzy sets where the membership values are restricted to either 0, or 1. Each pair (x, mF  (x)) of the fuzzy 
set F is known as a singleton. 

Notation (Fuzzy sets) Apart from enumerating the singletons as described above, fuzzy sets are 
frequently expressed as the union of all singletons where a singleton is denoted as mF (x) / x. Using this 
notation

 F xF
x U
∑ μ ( )x  (2.2)

Here the summation sign ∑ is to be interpreted as union over all singletons, and not arithmetic sum. 
Formula 2.2 is appropriate for discrete sets. For continuous sets, the summation notation is replaced by 
the integral sign ∫, as shown below.

 F
x

F

U

= ∫
μ ( )x  (2.3)
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Example 2.8  (Fuzzy Membership)

Let a, b, c, d, and e be fi ve students who scored 55, 35, 60, 85 and 75 out of 100 respectively in 
Mathematics. Th e students constitute the universe of discourse U = {a, b, c, d, e} and a fuzzy set M 
of the students who are good in Mathematics is defi ned on U with the help of the following mem-
bership function.

 μM

if
x if x

if
( )x

,

,
,

=
−

≤ <x
≥

⎧

⎨
⎪
⎧⎧
⎪
⎨⎨
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⎪
⎨⎨

⎪⎩⎩
⎪⎪

0 4if x, < 0
40

40
40 80

1 8if x, ≥ 0
 (2.4)

Th e membership function is graphically shown in Fig. 2.8. Computing the membership value of 
each student with the help of the Formula 2.4 we get M = {(a, 0.375), (c, 0.5), (d, 1.0), (e, 0.875)}, 
or equivalently

M
a c d e

= + + +
0 375 0 5 1 0 0 875. .375 0 . .0 0

x
40 50 60 70 80 90

0

1

mM (x)x

Fig. 2.8. Membership function for students good in Mathematics.

Example 2.9  (Fuzzy Membership)

Let us consider the infi nite set of all real numbers between 0 and 1, both inclusive, to be the uni-
verse of discourse, or, the reference set, U = [ 0, 1 ]. We defi ne a fuzzy set C0.5 as the set of all real 
numbers in U that are close to 0.5 in the following way

C0.5 = {x ∈ [ 0, 1 ] | x is close to 0.5}
Th e highest membership value would be attained by the point x = 0.5 because that is the number 
closest to 0.5, and the membership is understandably 1. On the other hand since both 0 and 1 are 
furthest points from 0.5 (within the interval [ 0, 1 ]) they should have zero membership to C0.5. 
Membership values should increase progressively as we approach 0.5 from both ends of the inter-
val [ 0, 1 ]. Th e membership function for C0.5 may be defi ned in the following manner.
 m C0.5 (x) = 1 – | 2x – 1 |,  ∀x ∈ [ 0, 1 ] (2.5)

Since C0.5 is a fuzzy set in a continuous domain it can be expressed with the help of the notation

 C
x x

c

xx

0 5 10 5

11

( )x | |x2 1

[ ,0 ][ ,0 ]

==
x2

∈∈
∫∫

μ  (2.6)
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2.2.4 Fuzzyness vs. Probability

It must be appreciated that the membership of a fuzzy set relate to vagueness and not to probability 
which is a measure of uncertainty. Th e diff erence between fuzziness and probability is nicely explained 
with the help the following story. A man is wandering for long hours in a desert and he is now dying 
for a glass of water. Someone off ered him two glasses, glass A and glass B, of water with the condition 
that he can not drink from both the glasses and he has to choose only one of the two for drinking. Th e 
man has been informed that the water of glass A is poisonous to a degree of 0.1, which is not fatal. On 
the other hand glass B contains water which is poisonous with a probability of 0.1. Which glass of wa-
ter should the thirsty man choose to quench his thirst, and of course, remain alive? If he drinks from 
glass B he has 90% chance of having pure drinking water but there is 10% chance that the water may 
be poisonous and in that case he would certainly die. On the other hand if he drinks from glass A, he 
would fall ill due to the fact that the water is partially poisonous. However there is no chance of him 
dying because the degree of poisoning is not fatal. Glass A symbolizes fuzziness while glass B symbol-
izes probability.

2.2.5 Features of Fuzzy Sets

Fuzzy sets are oft en characterized with certain features, e.g., normality, height, support, core, cardinality 
etc. Th ese features reveal the nature and structure of a fuzzy set. Th ese features are briefl y explained in 
this subsection.

Defi nition 2.14 (Normality) A fuzzy set F is said to be normal if there exists an element x that 
completely belongs to F, m F (x) = 1. A fuzzy set which is not normal is said to be sub-normal.

Defi nition 2.15 (Height) Th e height of a fuzzy set is defi ned as the maximal membership value 
attained by its elements.

 ightgg Max
x U

F( )F ( )xμ  (2.7)

U is the universe of discourse, or, the reference set, for F, and height (F) is the height of the fuzzy set F. 
Obviously, F is a normal fuzzy set if height (F) = 1.

Defi nition 2.16 (Support) Th e support of a fuzzy set F, denoted by supp (F), is the set of all ele-
ments of the reference set U with non-zero membership to F.

 Supp (F) = {x | x ∈ U, and m F (x) > 0} (2.8)

Defi nition 2.17 (Core) Th e core of a fuzzy set F is the set of all elements of the reference set U with 
complete membership to F.

 Core (F) = {x | x ∈ U, and m F (x) = 1} (2.9)

Both supp (F) and core (F) are crisp sets. It is easy to see that core (F) ⊆ supp (F).

Defi nition 2.18 (Cardinality) Th e sum of all membership values of the members of a fuzzy set F is 
said to be the cardinality of F.

 F F
x U
∑ μ ( )x  (2.10)
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Example 2.10  (Cardinality)

Let us consider the fuzzy set M defi ned on the reference set U = {a, b, c, d, e} as described in 
Example 2.8.

M
a c d e

= + + +
0 375 0 5 1 0 0 875. .375 0 . .0 0

Th e fuzzy set M is normal, because we have m M (d) = 1.0. Its height is 1.0. Moreover, as we see, supp 
(M) = {a, c, d, e}, core (M) = {d}, and the cardinality of M  is | M | = 0.375 + 0.5 +1.0 + 0.875 = 2.750.

2.3 FUZZY MEMBERSHIP FUNCTIONS

Th eoretically any function m F : U → [ 0, 1 ] may act as the membership function for a fuzzy set F. Th e 
nature of the membership function depends on the context of the application. For example, what is hot 
with respect to human body temperature is certainly very cool for a blast furnace. Hence the member-
ship function for the concept hot must diff er in the two contexts mentioned above. Fuzzy sets are usually 
described with simple membership functions. A few parameterized functions that are quite frequently 
used for this purpose are given below along with their graphical representations.

2.3.1 Some Popular Fuzzy Membership Functions

Th is subsection presents the Triangular function, Trapezoidal function, Gaussian function and S-func-
tion as the widely used fuzzy membership functions. In the subsequent discussion, all of these are as-
sumed to be normal.

(a)  Triangular function Perhaps the most frequently used membership function is the triangular 
function. Equation 2.11 provides the defi nition of a triangular function. Th e function is graphi-
cally shown in Fig. 2.9.
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,
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if x a
x a
m a
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 (2.11)

0
a b

1

Fig. 2.9. Shape of a triangular function
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(b)  Trapezoidal function Th e trapezoidal function is defi ned in Equation 2.12. As shown in 
Fig. 2.10, its shape is similar to that of a triangular function except that instead of a sharp peak, it 
has a fl at peak.
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,

if x a
x a
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  (2.12)

0
a b

1

Fig. 2.10. Trapezoidal function

(c)  Gaussian function Another widely used membership function is the Gaussian function. Th e 
advantage of Gaussian function is it is diff erentiable everywhere. Equation 2.13 provides the for-
mula for Gaussian function and Fig. 2.11 shows its shape.

 μ( ) )e) where kk x(= >( )e where kk(−k( 2

0  (2.13)

0
m

1

Fig. 2.11. Gaussian function

(d)  S-function Th e S-function, defi ned by Equation 2.14 and shown in Fig. 2.12, is also diff eren-
tiable everywhere. Moreover, the step function can be approximated by the S-function as closely 
as required by adjusting the parameters a and b.
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 (2.14)
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0

0.5

a (a + b) / 2 b

1

Fig. 2.12. The S - function

Th e point m = (a + b) / 2 is known as the crossover point of the S-function.

2.3.2 Transformations 

Th ere are a few simple but useful transformations oft en applied to fuzzy membership functions. Th e so 
called normalization, dilation, concentration, contrast intensifi cation and fuzzifi cation are widely used. 
Th ese transformations are briefl y discussed in this subsection. Th e eff ects of these transformations on 
Gaussian functions are shown graphically.

(a)  Normalization: Th e normalization operation converts a subnormal fuzzy set F to a normal fuzzy 
set. It is obtained by dividing each membership value by the height of the fuzzy set (See Eqn. 2.15 
and Fig. 2.13). 

 NORM( F,xFF )
( x )

heightgg ( F )
F=

mFF  (2.15)

0

NORM (F )

F

1

Fig. 2.13. Normalization

(b)  Dilation: Th is operation ‘fl attens’ the membership function so that it attains relatively higher val-
ues and consequently the overall shape of the membership function gets dilated. In other words, 
the resultant function is less pointed around the higher membership values. Th e eff ect is shown 
in Fig. 2.14 with respect to the Gaussian function.

 DILII x F( ,F ) [ ( )x ] /μ 1 2/  (2.16)
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Fig. 2.14. Dilation

(c)  Concentration: Concentration has the reverse eff ect of dilation. Here the function attains relatively 
lower values and consequently it gets more pointed around the higher membership values. Th e for-
mula for concentration is given by Eqn. 2.17 and Fig. 2.15 shows the eff ect on Gaussian function.

 CON x F( ,F ) [ ( )x ]μ 2  (2.17)

0
CON (F )

F

1

F

Fig. 2.15. Concentration

(d)  Contrast Intensifi cation: Contrast intensifi cation is achieved by reducing the membership values 
that are less than 0.5 and elevating those with values higher that 0.5 (see Eqn. 2.18 and Fig. 2.16).

 INFNN x f x
x otherwiseF

( ,F ) [ ( )] ifi ) .
[ (F )] ,

=
x )

[
⎧
⎨
⎧⎧

⎩
⎨⎨

2[ ( ifi 5.
1 2−

2

2
μ fF fF fxx(F ifiifi

μ
 (2.18)

0

INT (F )

F

1

Fig. 2.16. Contrast intensifi cation

(e)  Fuzzifi cation: Fuzzifi cation produces the reverse eff ect of contrast intensifi cation. Here the 
membership values that are less than 0.5 are elevated while those with a value more than 0.5 are 
reduced. Th e mathematical formula for fuzzifi cation is given in Eqn. 2.19 and its eff ect on Gauss-
ian function is shown in Fig. 2.17.

 FUZZ x
if xi

x otherwisF
( ,F )

[ ( )/ ] )x )
( (F ))/ ,

/

=
≤)xμ x fF x f(F

μ
ifiifiifi 0 5.

1 (− (

1 2/

ee
⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩
⎨⎨
⎩⎩
⎨⎨⎨⎨  (2.19)
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Fig. 2.17. Fuzzifi cation

2.3.3 Linguistic Variables

Th e transformations presented above are useful while dealing with the so called linguistic variables. 
Conventional variables usually have numeric or alphanumeric string values. In contrast, a linguistic 
variable may have one of a number of allowable words, or phrases, as its value. Each of these legitimate 
linguistic values corresponds to a fuzzy set. For instance, consider the variable Height. As a conventional 
variable it may have any real number as its value. But as a linguistic variable it’s value is allowed to be one 
of a few predefi ned words, say {short, average, tall}. We may defi ne a fuzzy set for each of the words short, 
average, and tall. Now, consider the attribute very tall. Here the word very may be viewed as a transfor-
mation applied to the fuzzy meaning of tall. One can reasonably implement very with the help of the 
concentration operation. Th e reason is concentration reduces the magnitude of the membership value. 
What is tall to some extent might be thought of very tall to a lesser extent. Th erefore, the membership 
function for very tall should always be less than that of tall and moreover, the transition from low very 
tall to high very tall should be steeper than the transition from low tall to high tall. Fig. 2.18 gives an idea 
about the relationship described above.

x0.0

0.2

0.4
tall

Very Tall = CONC (Tallll )l
0.6

0.8

1.0

Fig. 2.18. Transformation on linguistic variable fuzzy set

Example 2.11  (Transformations on fuzzy membership functions)

Consider the fuzzy set F with a triangular membership function defi ned on the interval [− 2, + 2 ].

 μF

if x
x if xi

if xi
if x

( )x

,
,
,

,

=

− ≤ ≤ −
≤x

ifi ≤
≤ ≤x

⎧

⎨
⎪
⎧⎧
⎪
⎨⎨
⎪⎪

⎩
⎪
⎨⎨

⎪⎩⎩
⎪⎪

0 2if, − 1
ifiifi 0

1 x ifi− x ifi 1
0 1if, 2

 (2.20)

Fig. 2.19 presents the shape of the triangular function defi ned above. Now let us apply the transfor-
mations normalization, dilation, concentration, contrast intensifi cation and fuzzifi cation on this 
membership function and see the resultant functional forms.
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−2 −1 0 1 2

1

Fig. 2.19. Triangular membership function given by Eqn. 2.20

Since the height of the given membership function is 1, normalization has no eff ect on it. Th e 
forms of the resultant memberships due to the other operations, viz., dilation, concentration, con-
trast intensifi cation, and fuzzifi cation are shown in Figs 2.20 to  2.23. 

−2 −1 0 1 2

1

DIL (F )

F

   −2 −1 0 1 2

1

CONC (F )

F

Fig. 2.20. Dilation            Fig. 2.21. Concentration 

−2 −1 0 1 2

1

INT (F )

F

     −2 −1 0 1 2

1

FUZZ (F )

F

Fig. 2.22. Contrast intensifi cation        Fig. 2.23. Fuzzifi cation

2.4 OPERATIONS ON FUZZY SETS

Most of the usual set theoretic operations e.g., union, intersection, complementation etc. are readily ex-
tended to fuzzy sets. A list of such operators along with their defi nitions is shown in Table 2.3.

Table 2.3. Operations on fuzzy sets

# Operation/Relation Description

1 Union (P ∪ Q) m P∪Q (x) = max {m P (x), m Q (x)}, ∀x ∈ U

2 Intersection (P ∩ Q) m P∩Q (x) = min {m P (x), m Q (x)}, ∀x ∈ U

3 Complementation (P’) m P’ (x) = 1 − m P (x), ∀x ∈ U

(Continued)
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Table 2.3. Continued
# Operation/Relation Description

4 Equality (P = Q) Two fuzzy sets P and Q are equal if and only if ∀x 
∈ U, m P (x) = m Q (x) 

5 Inclusion (P ⊆ Q) P is included in Q, i.e., P is a subset of Q, written 
as P ⊆ Q, if and only if ∀x ∈ U, m P (x) ≤ m Q (x)

6 Product (P·Q) m P.Q (x) = m P (x) × m Q (x)}, ∀x ∈ U

7 Difference (P – Q) P – Q = P ∩ Q′
8 Disjunctive sum (P ⊕ Q) P ⊕ Q = (P ∩ Q′) ∪ (P′ ∩ Q)

Obviously the union of two fuzzy sets is the smallest fuzzy set containing both and their intersection 
is the largest fuzzy set contained by both the given sets. 

Example 2.12  (Fuzzy set operations)

Let us recall the reference set of the family members presented in Table 2.1 and the fuzzy set A 
of senior persons which is repeated here A = {(Grand-pa, 1.0), (Grand-ma, 0.825), (Dad, 0.275), 
(Mom, 0.2), (Aunty, 0.55)}, or, in the other notation

A
Grand pa Grand ma Dad Mom Auntyt

= + + + +
1 0 0 825 0 275 0 2 0 55. .0 0 . .275 0

-pa Grand

Th e membership function for A is as follows

 μAμ

if g
x if g x

if g
( )x

, (if g )

, (if ageg )
, (if ag )

=

≤
−

≤x(agegg )
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⎪
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⎪⎪

⎩

0 3x, (if agegg ) ≤ 0
30

40
70

1 7x, (if agegg ) 0≥⎪⎪
⎨⎨⎨⎨

⎪⎩⎩
⎪⎪⎪⎪

 (2.21)

We now introduce another fuzzy set B of active persons on the same reference set. Th e degree of ac-
tiveness is assumed to be a function of the concerned person’s age. Here is the membership function.

  μ B

if g
x if g x

if g( )x

, (if ag (if )

, (if ageg )
, (if ag )=

≤
−

≤x(agegg )
≤( )
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25
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⎨
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⎪
⎪⎪

⎪
⎨⎨

⎪⎪

⎩

⎪
⎨⎨

⎪
⎪⎪

⎪
⎩⎩

⎪⎪
x if g x

if g
30

80
8≥0 x 0

, (≤if ageg50 )
, (if agif agegg )

 (2.22)

Fig. 2.24 presents the graphical view of the two membership functions. Computing the val-
ues of mB (x) for each x in U using the membership function defi ned in formula 2.22 we get B 
= {(Grand-pa, 0.267), (Grand-ma, 0.567), (Dad, 1.0), (Mom, 1.0), (Daughter, 0.333), (Son, 0.2), 
(Aunty, 0.933)}, or using the summation notation,

B
Grand pa Grand ma Dad Mom Daughter

= + + + + +
0 267 0 567 1 0 1 0 0 333. .267 0 . .0 1 .

-pa Grand
0 200 0 933. .2 0
Son Aunty

+
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Fig. 2.24. Membership profi les of aged persons and active persons
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Fig. 2.25. Membership profi le of senior OR active persons.
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Fig. 2.26. Membership profi les of senior AND active persons.
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Fig. 2.27. Membership profi les of NOT senior persons and NOT active persons.
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Table 2.4 shows the fuzzy sets A ∪ B, A ∩ B, A′, and B′ obtained using defi nitions listed in Table 2.3. 
Th e profi les of the membership functions of the resultant fuzzy sets are depicted in Figs. 2.25 to 2.27.

Table 2.4. Operations on Fuzzy Sets Senior and Active Persons

# Operation Resultant fuzzy set

1. A ∪ B senior
OR
active

{(Grand-pa, 1.0), (Grand-ma, 0.825), (Dad, 1.0), (Mom, 1.0), 
(Daughter, 0.333), (Son, 0.2), (Aunty, 0.933)}

2. A ∩ B senior
AND
Active

{(Grand-pa, 0.267), (Grand-ma, 0.567), (Dad, 0.275), (Mom, 0.2), 
(Aunty, 0.55)}

3. A′, B′ NOT senior, 
NOT active

A′ = {(Grand-ma, 0.175), (Dad, 0.725), (Mom, 0.8), (Sister, 1.0), 
(Brother, 1.0), (Aunty, 0.45)}
B′ = {(Grand-pa, 0.733), (Grand-ma, 0.433), (Sister, 0.667), (Broth-
er, 0.8), (Aunty, 0.067)}

Properties of fuzzy set operations Most of the properties of crisp sets, with the exception of 
a few, hold good in the area of fuzzy sets also. It is possible to verify on the basis of the defi nitions of 
various fuzzy set operations that the laws listed in Table 2.5 are satisfi ed by arbitrary fuzzy sets P, Q, and 
R on some universe of discourse U. However, the relations P ∪ P ′ = U, and P ∩ P ′ = F obeyed by crisp 
sets are no longer valid for fuzzy sets. For an arbitrary fuzzy set P, we have in general P ∪ P ′ ≠ U, and 
P ∩ P ′ ≠ F  because mP (x) ∈ [ 0, 1 ], and mP ∪ P ′ (x) = max {mP (x), 1 − mP (x)} ≠ 1, and mP ∩ P ′ (x) = min {mP 
(x), 1 − mP (x)} ≠ 0, unless either mP (x) = 0, or mP (x) = 1.

Table 2.5. Fuzzy Set Identities

# Law Description

1 Associativity (a) (P ∪ Q) ∪ R  = P ∪ (Q  ∪ R)
(b) (P ∩ Q) ∩ R  = P ∩ (Q  ∩ R)

2 Commutativity (a) P ∪ Q  =  Q ∪ P
(b) P ∩ Q  =  Q ∩ P

3 Distributivity (a) P ∪ (Q ∩ R) = (P ∪ Q) ∩ (P ∪ R)
(b) P ∩ (Q ∪ R) = (P ∩ Q) ∪ (P ∩ R)

4 Idempotency (a) P ∪ P  = P
(b) P ∩ P  = P

5 De Morgan’s law (a) (P ∪ Q)’ = P’ ∩ Q’
(b) (P ∩ Q)’ = P’ ∪ Q’

6 Boundary Conditions (a) P ∪ F = P, P ∪ U  = U
(b) P ∩ F = F, P ∩ U  = P

7 Involution (P’)’ = P

If P ⊆ Q and Q ⊆ R  then P ⊆ R8 Transitivity
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2.5 FUZZY RELATIONS

We have treated fuzzy sets as generalization of crisp sets where the degree of inclusiveness of an element 
may be anything from 0 to 1, and not just 0, or 1 as it is in case of crisp sets. In a similar fashion, the con-
cept of a relation between two, or more, sets can be generalized to fuzzy relation. Th is section provides a 
review of the fundamentals of crisp relations, followed by a discussion on fuzzy relations.

2.5.1 Crisp Relations

In case of crisp relation R between two crisp sets A and B, two elements, x from A and y from B, are 
either related, or not. Th ere is no scope of being partially related to each other. Th erefore a crisp relation 
is defi ned simply as a subset of the Cartesian product of sets concerned.

Defi nition 2.19 (Cartesian product) Let A and B be two sets. Th en the Cartesian product of A and 
B, denoted by A × B, is the set of all ordered pairs (a, b) such that a ∈ A, and b ∈ B.

A × B  = {(a, b)  |  a ∈ A, and b ∈ B}
Since (a, b) ≠ (b, a) we have in general A × B ≠ B × A. Hence the operation of Cartesian product is 

not commutative.

Example 2.13  (Cartesian product)

Let A = {p, q, r}, and B = {1, 2, 3}. Th en A × B = {(p, 1), (p, 2), (p, 3), (q, 1), (q, 2), (q, 3), (r, 1), (r, 2), 
(r, 3)}, and B × A = {(1, p), (1, q), (1, r), (2, p), (2, q), (2, r), (3, p), (3, q), (3, r)}.

Example 2.14  (Cartesian product)

Let P = {Math, Phy, Chem}, and Q = {O, E, A, B, C} is the set of possible grades, e.g., outstanding 
(O), excellent (E), very good  (A), good (B), and fair (C). Th en P × Q = {(Math, O), (Math, E), …, 
(Math, C), (Phy, O), …, (Chem, C)}.

Obviously, there are as many elements in A × B as the product of the number of elements of A and B.
| A × B | = | A | × | B |

Defi nition 2.20 (Crisp relation) Given two crisp sets A and B, a crisp relation R between A and B 
is a subset of A × B.

R ⊆ A × B

Example 2.15  (Crisp relation)

Consider the sets A = {1, 2, 3}, B = {1, 2, 3, 4} and the relation R = {(a, b) | b = a + 1, a ∈ A, and b 
∈ B}. Th en R = {(1, 2), (2, 3), (3, 4)}. Obviously, here R ⊂ A × B.

A crisp relation between sets A and B is conveniently expressed with the help of a relation matrix T. Th e 
rows and the columns of the relation matrix T correspond to the members of A and B respectively. Th e 
entries of T are defi ned as
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 T if a b R
otherwiseijTT i j=

∈⎧
⎨
⎧⎧
⎩
⎨⎨

1
0
, (if )bjb
,  (2.22)

Example 2.16  (Relation matrix for crisp relation)

Let us, once again, consider the sets A = {1, 2, 3}, B = {1, 2, 3, 4}and the relation R = {(a, b) | b =  a 
+ 1, a ∈ A, and b ∈ B} cited in the previous example. Th e relation matrix for R is given below.

1 2 3 4
1
2
3

0 1 0 0
0 0 1 0
0 0 0 1

column

row

TRTT =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

Example 2.17  (Relation matrix for crisp relation)

Let P = {Tony, Bobby, Mike} be a set of three students and Q = {Math, Phy, Chem} be a set of three 
subjects in which Tony, Bobby, and Mike have taken a test. Table 2.6 shows the grades obtained by 
these students in these subjects. 

Table 2.6. Grades obtained by three students

Math Phy Chem

Tony C B A

Bobby A A B

Mike C A A

We defi ne a relation R between a student and a subject in which they have secured A grade as R = {(x, 
y) | x ∈ P, y ∈ Q, and x has secured grade A in subject y}. Th en R = {(Tony, Chem), (Bobby, Math), (Bobby, 
Phy), (Mike, Phy), (Mike, Chem)}. Th e corresponding relation matrix is shown below.

phy Ch hem

T
T
B
M

RTT =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

0 0 1
1 1 0
0 1 1

Operations on relations Certain operations, e.g., union, intersection, complementation, composi-
tion etc., are occasionally applied on relations. Table 2.7 provides the description of these operations with 
respect to relations R and S.  

Th e Composition (R ° S) operation is also known as max–min composition because it can be 
equivalently defi ned, in terms of the corresponding relation matrices, as R ° S = {(a, c) | (a, c) ∈ A × C, 
and (R ° S) (a, c) = max [ min {R (a, b), S (b, c)}].
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Table 2.7. Operations on crisp relations

# Operation Description

1 Union (R ∪ S) Let R and S are relations defi ned on A × B. Then R ∪ S = {(a, b) | (a, b) ∈ R, or 
(a, b) ∈ S, or both}. In terms of the relation matrices, this can be equivalently 
stated as (R ∪ S) (a, b) = max {R (a, b), S (a, b)}, where R (a, b), S (a, b), or (R ∪ 
S) (a, b) are the (a, b) th element of the relations R, S, or R ∪ S respectively.

2 Intersection (R ∩ S) R ∩ S = {(a, b) | (a, b) ∈ R, and (a, b) ∈ S}. In other words, (R ∩ S) (a, b) = min 
{R (a, b), S (a, b)}.

3 Complementation (R’) R’ = {(a, b) | (a, b) ∉ R}, i.e., R’(a, b) = 1 – R (a, b).

4 Composition (R ° S) Let R and S are relations defined on A × B and B × C respectively. Then 
R ° S = {(a, c) | (a, c) ∈ A × C, and there exists b ∈ B such that  (a, b) ∈ R, 
and (b, c) ∈ S}.

Example 2.18  (Composition)

Let A = B = C = {0, 1, 2, 3} and the relations R, S, and T defi ned as follows :

R ⊆ A × B, R = {(a, b) | a + b is an even number}} 
S ⊆ A × B, S = {(a, b) | b = (a + 2) MOD 3}
T ⊆ B × C, T = {(b, c) | | b – c |  = 1}

Th ese relations can be explicitly written as 

R = {(0, 0), (0, 2), (1, 1), (1, 3), (2, 0), (2, 2), (3, 1), (3, 3)}}
S = {(0, 2), (1, 0), (2, 1), (3, 2)}, and 
T = {(0, 1), (1, 0), (1, 2), (2, 1), (2, 3), (3, 2)}. 

Th e relation matrices T R, T S, T T for R, S, and T are given below. 

  

0 1 2 3 0 1 2 3 0 1 2 3
0
1
2
3

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

0
1
2
3

0 0 1 0

T T1 0 1 0 1
R S2 1 0 1 0T TT T2 1 0 1 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎦⎦
⎥⎥

=
1 0 0 011
0 1 0 0
0 0 1 0

0
1
2
3

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

TTTT
⎥⎥
⎥⎥⎥⎥

⎥⎦⎦
⎥⎥⎥⎥

Relations R ∪ S, R ∩ S, and R′ can be easily obtained directly through the defi nitions of union, 
intersection and complementation given above. Th eir relation matrices T R ∪ S, T R ∩ S, and T R′ are 
given below. 

0 1 2 3 0 1 2 3 0 1 2 3
0
1
2
3

1 0 1 0
1 1 0 1
1 1 1 0
0 1 1 1

0
1
2
3

T T1 1 1 0 1
RTT R STT∪ ∩2 1 1 1 0 T2 1 1 1 0S RTT

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎦⎦
⎥⎥

=

0 0 1 000
0 0 0 0
0 0 0 0
0 0 0 0

0
1
2
3

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢TRTT ′

⎢⎢⎣⎣⎣⎣
⎢⎢⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥
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Let us now compute the composite relation R ° T. By defi nition of R ° T, the ordered pair (0, 0) is 
in R ° T if and only if there exists an x ∈ B such that (0, x) ∈ R, and (x, 0) ∈ T. From the relation 
matrix T R of R we see that there are two ordered pairs, (0, 0) and (0, 2) in R with 0 as the fi rst ele-
ment. Th e corresponding second elements are 0, and 2 respectively. Th erefore if any of the pairs 
(0, 0) and (2, 0) appears in T, then (0, 0) is in R ° T. However, a look into the relation matrix of T, 
i.e., T T, reveals that neither (0, 0), nor (2, 0) belongs to the relation T. Hence (0, 0) ∉ R ° T , and 
T R ° T (0, 0) = 0. On the other hand (0, 1) ∈ R ° T because (0, 2) ∈ R and (2, 1) ∈ T. Computations 
of other elements of R ° T are shown below.

(0, 2) ∈ R and (2, 1) ∈ T, ∴ (0, 1) ∈ R ° T
(0, 2) ∈ R and (2, 3) ∈ T, ∴ (0, 3) ∈ R ° T
(1, 1) ∈ R and (1, 0) ∈ T, ∴ (1, 0) ∈ R ° T
(1, 1) ∈ R and (1, 2) ∈ T, ∴ (1, 2) ∈ R ° T
(2, 0) ∈ R and (0, 1) ∈ T, ∴ (2, 1) ∈ R ° T
(2, 2) ∈ R and (2, 3) ∈ T, ∴ (2, 3) ∈ R ° T
(3, 1) ∈ R and (1, 0) ∈ T, ∴ (3, 0) ∈ R ° T
(3, 1) ∈ R and (1, 2) ∈ T, ∴ (3, 2) ∈ R ° T

Hence the relation matrix T R ° T for R ° T looks like
0 1 2 3

0
1
2
3

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

TR TTT =

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

It should be noted that for crisp relations R and T their composition R ° T as defi ned above and their 
max–min composition, to be defi ned in the next subsection in the context of fuzzy relations, are equiva-
lent. In fact crisp composition is a special case of max–min composition and the later is a generalized 
concept which is applicable to the realm of fuzzy relations too.

2.5.2 Fuzzy Relations

As stated earlier the concept of crisp relations can be generalized to that of fuzzy relations. All we have to 
do is to allow the pairs of elements to be partially related, i.e., the entries of the relation matrix would be 
anything between 0 and 1. Let us consider some simple instances before the formal defi nition of fuzzy 
relations is presented.

Example 2.19  (Fuzzy relation)

Let P = {money, fame, power} and Q = {politics, showbiz, academics} be two crisp sets. Th en R might 
be an imaginary relation between P and Q expressed by the relation matrix

sz as

T
m
f
p

m money
RTT =

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

0 7 0 9 0 6
0 8 0 9 0 5
1 0 0 7 0 3

.7 0

.8 0

. .0 0

pspp politics
f famf e sz showbiz
p power as academics

:
famff e sz

:power as
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Example 2.20  (Fuzzy relation)
Let us consider the set of all real numbers in the interval P = [ 0, 1 ] = {x | 0 ≤ x ≤ 1}. A relation R, 
say a close to b, on P 2 (i.e. P × P) may be defi ned in the following way

R (a, b) = 1 – | a – b |, ∀ a, b in [ 0, 1 ]

It should be noted that fuzzy relations defi ned on discrete sets can be expressed with the help of relation 
matrices. Relations defi ned on continuous domains as exemplifi ed in Example 2.20 cannot be expressed 
with any relation matrix. Moreover, in the foregoing discussions we have considered fuzzy relations on 
crisp sets. It is also possible to defi ne a fuzzy relation on fuzzy sets. Th is is dependent on the concept of 
fuzzy Cartesian product.

Defi nition 2.21 (Fuzzy Cartesian product) Let A and B be two fuzzy sets on reference sets X and Y 
respectively. Th e fuzzy Cartesian product of A and B, denoted by A × B, is defi ned as A × B ⊆ X × Y, and 
m A × B (a, b) = min {m A (a), m B (b)}∀a ∈ X, ∀b ∈ Y.

Example 2.21  (Fuzzy Cartesian product)

Let us consider the reference sets X = {m, n} and Y = {p, q, r} and the fuzzy sets A and B defi ned 
on them.

A
m n

B
p q r

= + = + +
0 3 0 7 0 5 0 1 0 8. .3 0 , . .5 0

Now m A × B (m, p) = min {m A (m), m B (p)} = min {0.3, 0.5} = 0.3. But m A × B (m, q) = min {m A (m), 
m B (q)}= min {0.3, 0.1}= 0.1. Th e membership values of the other elements of the fuzzy Cartesian 
product A × B can also be found in similar fashion. Th e Cartesian product itself can be looked 
upon as a fuzzy relation between the fuzzy sets A and B. It can be expressed with the help of the 
relation matrix    

 

p q r

A B m
n=B ⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

0 3 0 1 0 3
0 5 0 1 0 7

. .3 0

. .5 0

A fuzzy relation R between two fuzzy sets A and B is a subset of the fuzzy Cartesian product A × B. 
Hence R ⊆ A × B where A × B is the fuzzy Cartesian product of the fuzzy sets A and B.

Example 2.22  (Fuzzy relation)

We consider the fuzzy sets A and B cited in Example 2.21 and their Cartesian product. Th e relation 
matrix given below presents a subset of A × B because for all x ∈ X and y ∈ Y, m R (x, y) ≤ m A × B (x, 
y). Th erefore R is a fuzzy relation between the fuzzy sets A and B.

p q r

R m
n= ⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

0 2 0 1 0 1
0 3 0 0 0 5

. . .2 0 1 0

. . .3 0 0 0
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Now let us consider the matrix R′ given below.

p q r

R m
n’ .

.= ⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

0 2. 0 3.. 0 1.
0 3. 0 0.. 0 5.

Here R′(m, q) = 0.3 > A × B (m, q) = 0.1. Hence R′ is not a fuzzy relation between the fuzzy sets A 
and B.

2.5.3 Operations on Fuzzy Relations

Th e familiar set theoretic operations, e.g., union, intersection, complementation etc. are applicable to 
fuzzy relations also.

 Union   (R ∪ S) (x, y) = max {R (x, y), S (x, y)}
 Intersection  (R ∩ S) (x, y) = min {R (x, y), S (x, y)}
 Complementation R′ (x, y) = 1 – R (x, y)

Moreover, the common relations of inclusion, dominance, and equality also hold good for fuzzy rela-
tions.

 Inclusion  R ⊆ S   if ∀x, y, R (x, y) ≤ S (x, y)
 Dominance  R ⊇ S  if ∀x, y, R (x, y) ≥ S (x, y)
 Equality   R = S  if ∀x, y, R (x, y) = S (x, y)

Apart from the operations and properties stated above the crisp relational operation of composition 
of two relations is generalized to the so-called max–min composition of fuzzy relations.

Defi nition 2.22 (max–min composition) Let A, B, and C be three crisp sets. R and S are fuzzy rela-
tions over A × B and B × C respectively. Th e max–min composition of R and S, denoted by R ° S, is a 
relation over A × C such that

( )( , ) max {min{ ( , ), ( , )}}x y, x( y S), y z,
y B

Example 2.23  (max–min composition)

Suppose A = {a, b, c}, B = {x, y}, and C = {p, q, r} be three crisp sets. Th ere are two fuzzy relations R and 
S defi ned over A × B and B × C, respectively. Th e relation matrices of R and S are 

p q r

R
a
b
c

S x
y=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

=
0 3 0 7
0 9 0 4
0 2 0 5

0 4 0 1 0 8
0 3 0 7

. .3 0
.9 0

. .2 0
, . .4 0

. .3 0 0 600
⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

Th e max–min composition R ° S is defi ned on the Cartesian product A × C. Let us consider the com-
putation of the fi rst element (R ° S) (a, p).
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   ( )( , ) max {min( ( , ), ( , ))}a p, a( ), i p,
i B

= max {min (R (a, x), S (x, p)), min (R (a, y), S (y, p))}
= max {min (0.3, 0.4), min (0.7, 0.3)}
= max {0.3, 0.3}
= 0.3

Similarly, the next element is computed as follows.

( )( , ) max {min( ( , ), ( , ))}a q, a( ), i q,
i B

= max {min (R (a, x), S (x, q)), min (R (a, y), S (y, q))}
= max {min (0.3, 0.1), min (0.7, 0.7)}
= max {0.1, 0.7}
= 0.7

Computation of the rest of the elements is left  as an exercise. Finally R ° S looks like

p q r

R S
a
b
c

=
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

0 3 0 7 0 6
0 4 0 7 0 8
0 3 0 5 0 5

. .3 0

. . .4 0 7 0

. .3 0

Example 2.24  (max–min composition)

Let us consider two kinds of troubles a PC may suff er from, viz., the system hangs while running, 
and the system does not boot. We symbolize the former by h and the later by b and defi ne the set 
A = {h, b} of PC troubles. Two possible causes of these troubles are computer virus (v) and disc crash 
(c) and they form the set B = {c, v} of PC trouble makers. And fi nally, let the sources of the causes 
mentioned above are internet (i) and obsolescence (o) and C = {i, o} is the set of PC trouble causes. 
Th e relation between PC troubles and their causes is expressed by R, a fuzzy relation over A × B. 
Similarly, S is the fuzzy relation over B × C, i.e., the relation between the causes of troubles and the 
sources of those causes. Th e relations R and S in terms of their relation matrices are shown below.

v c i o

R h
b S v

c= ⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

0 7 0 2
0 5 0 8

0 9 0 7
0 1 0 2

. .7 0

. .5 0 , .9 0
. .1 0

Th e relation between PC troubles and their ultimate sources, i.e., between A and C, can be com-
puted on the basis of R and S above as the max–min composition R ° S. Th e fi rst element of R ° S, 
expressed as (R ° S) (h, i) is computed as follows.

(R ° S) (h, i) = max {min (R (h, v), S (v, i)), min (R (h, c), S (c, i))}
= max {min (0.7, 0.9), min (0.2, 0.1)}
= max {0.7, 0.1}
= 0.7
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Th e rest of the elements of R ° S can be found in a similar fashion.

(R ° S) (h, o) = 0.7
(R ° S) (b, i)  = 0.5
(R ° S) (b, o) = 0.5

And fi nally we get, 

i o

R S h
b= ⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

0 7 0 7
0 5 0 5

. .7 0

. .5 0

2.6 FUZZY EXTENSION PRINCIPLE

Th is section presents a discussion on the fuzzy extension principle which provides a way to map certain 
mathematical concepts of crisp set theory to their fuzzy counterparts. 

2.6.1 Preliminaries

Before we present the fuzzy extension principle, it is necessary to understand a few concepts that form 
the basis of the said principle. Th is subsection provides the groundwork for this purpose.

(a) Level set: Corresponding to every fuzzy set there is a crisp set consisting of the membership values 
of its singletons. Th is is known as the level set of the fuzzy set. Its members are real values between 0 and 
1, including 1 but excluding 0. 

Defi nition 2.23 (Level set) Let F be a fuzzy set on the universe U. Th e level set of F, denoted as L 
(F), is a crisp set of real values x ∈ (0, 1] such that for each x ∈ L (F) there is a singleton (y, x) ∈ F.

L (F) = {x | 0 < x ≤ 1 and ∃ y ∈ U such that m F (y) = x}

Example 2.25  (Level set)

Let F be a fuzzy set on the universe U = {a, b, c, d, e}.

F
a b c d e

= + + ++ +
0 3 0 8 0 0 0 5 0 7. . .8 0 0 0

Th e corresponding level set is L (F) = {0.3, 0.5, 0.7, 0.8}. It may be noted that the membership value 
0.0 of the element c is not included in L (F).

Example 2.26  (Level set)

Let F be a fuzzy set on the universe U = {a, b, c, d, e}.

F
a b c d e

= + + ++ +
0 3 0 8 0 0 0 3 0 7. . .8 0 0 0

Th e corresponding level set is L (F) = {0.3, 0.7, 0.8}. Th e membership value 0.3 is repeated twice in 
F so that there are only three distinct non-zero membership values included in L (F).
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Example 2.27  (Level set)

Let us consider the following membership function for a fuzzy set F.

m F (x) = 1 – e −x,  if x ≥ 0
 = 0,     otherwise.

If the universe of discourse is the entire real line extending from −∞ to +∞ then the membership 
function will attain values within the range [0, 1). Hence L (F) = (0, 1).

(b) a-cut: Occasionally we are interested in the elements whose degrees of membership to a given fuzzy 
set lie above a given level. Th is is provided with the help of the a-cut.

Defi nition 2.24 (a-cut) Let F be a fuzzy set on the universe U and a be a number such that 0 < a ≤ 1. 
Th e a-cut of F, denoted as Fa, is a crisp set containing those elements of U whose membership value with 
respect to the fuzzy set F is greater than, or equal to, a.

F a = {x ∈ U | m F (x) ≥ a }

Example 2.28  (a-cut)

Let U = {a, b, c, d} be a universe and F be a fuzzy set on U.

F
a b c d

= + + +
0 6 0 3 0 7 1 0. .6 0 . .7 1

Th e  a-cuts for various a are : F 1.0 ={d},  F 0.7 = {c, d},  F 0.6 = {a, c, d},  F 0.3 = {a, b, c, d}. Moreover, 
it is obvious from the example that 

For all a , 0 < a  ≤ 0.3, F a = F 0.3 
For all a , 0.3 < a  ≤ 0.6, F a  = F 0.6 
For all a , 0.6 < a  ≤ 0.7, F a = F 0.7 
For all a , 0.7 < a  ≤ 1.0, F a = F 1.0 

Example 2.29  (a-cut)

Let F be a fuzzy set defi ned on U = [0, 1]. Th e membership function m F is graphically shown in 
Fig. 2.28. Fig. 2.29 shows the profi le of the a-cut of F for a = 0.7.

0 a b 10 5

1

mF

a = 0.7

    0 a b 10 5

1

mF

a = 0.7

a - cut of F

F0.7FF

Fig. 2.28                  Fig. 2.29

It may be noted that as a increases from 0 to 1, the size of the corresponding a-cuts decreases, i.e., given 
two real values a and b, 0 < a  ≤  b  ≤ 1, we must have Fa ⊇ Fb .
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(c) Th e a-cut decomposition theorem: Before introducing the a-cut decomposition theorem we need 
to get acquainted with a new notation. Given a crisp set A, and a real number x, 0 ≤ x ≤ 1, x.A is a fuzzy 
set consisting of all members of A with membership value x. For example, if A = {p, q, r}}and x is 0.4, 
then x.A = {(p, 0.4), (q, 0.4), (r, 0.4)}.  

Th e a-cut decomposition theorem states that any fuzzy set F can be decomposed into a number of 
the a-cuts, say Fa s, such that

F F∪
α

αFFα.

Example 2.30  (a-cut decomposition theorem)

Let F
a b c d

= + + +
0 6 0 3 0 7 1 0. .6 0 . .7 1  be a fuzzy set on the universe U = {a, b, c, d}. We see

F0.3 = {a, b, c, d},   and  0 3 0 3 0 3 0 3 0 3
0 3. .3 . . .3 0 3 0F0 a b c d

= + + ++

F0.6 = {a, c, d},    and  0 6 0 6 0 6 0 6
0 6. .6 . . .6 0 6 0F0 a c d

= + +

F0.7 = {c, d},     and  0 7 0 7 0 7
0 7. .7 . .7 0F0 c d

= +

F1.0 = {d},     and  1 0 1 0
1 0. .0 F1 d

=

Th erefore ( . . ) ( . . ) ( . . ) ( . . )) ( ) (3. 7. 0 6. 0 3. 0 7.
0 3. 0 6. 0 7. 1 0.) ( 6 ) ( 0

a b c
∪)∪( . .6. .( 6. ∪ =( . . )0.( .0. + + + =++

1 0
d

F

(d) Restricted scalar multiplication (RSM): Restricted scalar multiplication (RSM) is a way of relating 
two fuzzy sets. Given a fuzzy set F on the universe U, and a real number a, 0 ≤ a ≤ 1, restricted scalar 
multiplication (RSM) of F by a is the process of creating another set, denoted by aF on the same uni-
verse whose memberships are obtained as 

m aF (x) = a . m F (x), ∀x ∈ U

RSM is a kind of fuzzifi cation procedure because it produces a fuzzy set out of a given set, crisp, or 
fuzzy.

Example 2.31  (Restricted scalar multiplication)

Consider the fuzzy set F
a b c d

= + + +
0 6 0 3 0 7 1 0. .6 0 . .7 1 on the universe U = {a, b, c, d} cited in Example 

2.30. If a = 0.1. Th en RSM of F by a produces the set α F
a b c d

= + + +
0 06 0 03 0 07 0 1. .06 0 . .07 0 .

Like other operations on fuzzy sets RSM too satisfi es certain properties. Given the fuzzy sets F and G 
on the universe U, and two real numbers a, b, 0 < a, b ≤ 1, the following properties hold good.
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  (i) a (F ∪ G) = a F ∪ a G
 (ii) a (F ∩ G) = a F ∩ a G
(iii) (a b) F = a (b F)
 (iv) 1 . F = F
 (v) a F  ⊆ F

Defi nition 2.25 (Fuzzy cardinality) Let F be a fuzzy set on the universe U. L (F) is the level set of 
F and for all a ∈ L (F), Fa is the a-cut of F. Th e fuzzy cardinality of F, denoted by fc(F), is defi ned as the 
fuzzy set

f Fff
L

)F
| |F( )F

=
∈
∑ α

FFα

| Fa | is the cardinality of Fa which is a natural number. Th erefore, fuzzy cardinality of any fuzzy set 
is another fuzzy set defi ned on natural numbers. Th e following example illustrates the concept of fuzzy 
cardinality.

Example 2.32  (Fuzzy cardinality)
Let us consider the fuzzy set H of four happy persons.

H
mita neeta jeet joy

= + + +
0 3 0 7 0 4 0 8. .3 0 . .4 0

We have the level set L (H) = {0.3, 0.4, 0.7, 0.8}}and the following cardinalities 

| H0.3 | = | {mita, neeta, jeet, joy}| = 4,
| H0.4 | = | {neeta, jeet, joy}| = 3,
| H0.7 | = | {neeta, joy}| = 2,
| H0.8 | = | {joy}| = 1.

Hence the fuzzy cardinality of H is given by

f Hff
L

)H
| |H

.
( )H

== + + ++
∈
∑ α

α

0 3.
4

0 4.
3

0 7..
2

0 8.
1

2.6.2 The Extension Principle

Th e extension principle provides a way to map certain mathematical concepts pertaining to crisp sets to 
their fuzzy counterparts. 

Consider a function f : U1 × U2 × … × Un → V where the Ui s and V are crisp sets and U1 × U2 ×…× Un is 
the Cartesian product of U1, U2,…, Un. If there is a point (u1, u2, …, un) in the n-dimensional space U1 × 
U2 × … × Un and there is a v ∈ V such that f (u1, u2,…, un) = v then v is said to be the image of the point 
(u1, u2,…, un). Equivalently, the point (u1, u2,…, un) is referred to as the pre-image of v, (see Fig. 2.30) and 
is indicated by the expression

(u1, u2, …, un) = f − 1 (v)
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(u1, u2uu ,..., un)
is the pre-image of v

v is the image of
(u1, u2uu ,..., un)

f

Fig. 2.30. An image and its pre-image under function f

Now, let us consider fuzzy sets A1, A2,…, An on the universes U1, U2,…,Un respectively. Given the 
function f as mentioned above it is possible to construct a fuzzy set B on V in the following manner: 
for each v ∈ V we defi ne 

m B (v) = 0, if f −1(v) = f, i.e., there is no pre-image of v in U1 × U2 × … × Un 
 = max    {min (mA1 (u1), mA2 (u2), …, mAn (un))} otherwise.

∀ (u1, u2,…, un), (u1, u2,…, un) = f −1(v)

If we defi ne a fuzzy set A on A1 × A2 × … × An where mA (u1, u2, …, un) = min {m A1 (u1), m A2 (u2), …, mAn 
(un)} then the procedure described above to obtain the fuzzy set B can be considered to be an extension of 
the crisp function f : U1 × U2 × … × Un → V to the corresponding fuzzy domain f : A1 × A2 × … × An → B. 
Here the fuzzy set B is termed as the image of A under f, and is denoted as B = f (A). Th e subsequent two 
examples illustrate the extension principle described above.

Example 2.33  (Fuzzy extension principle)

Let us consider the crisp domains P = {3, 4, 5}, Q = {6, 7, 8}, and R = {0, 1, 2}. Table 2.8 shows 
the function f : P × Q → R where f is defi ned as addition modulo 3. Fig. 2.31 depicts the function 
graphically.

We see that f (3, 6) = f  (5, 7) = f (4, 8)  = 0 so that 0 has three pre-images, (3, 6), (5, 7), and (4, 
8). Th erefore f- 1 (0) = {(3, 6), (5, 7), (4, 8)}. Similarly, f- 1 (1) = {(4, 6), (3, 7), (5, 8)}}and f- 1 (2) = {(5, 
6), (4, 7), (3, 8)}.

Table 2.8. The function f ≡ Addition modulo 3

← Q →

↑
P
↓

6 7 8

3 0 1 2

4 1 2 0

5 2 0 1

Now consider the fuzzy sets A and B on P and Q respectively as described below.

A B =B + +
0 1
3

0 8
4

0 5
5

0 6
6

0 2
7

0 7
8

1 0 , . . .6 0 2 0

Applying the procedure of extension principle, it is possible to extend the function f ≡ Addition 
modulo 3 as Fuzzy addition modulo 3 from A × B to C, where C is a fuzzy set defi ned on R. Th e 
membership values of various x ∈ R in the fuzzy set C are obtained as described below
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R

P × Q (3, 6)

(3, 7)
(3, 8)
(4, 6)
(4, 7)
(4, 8)
(5, 6)

(5, 7)

(5, 8)

0

1

2

Fig. 2.31. Addition modulo 3 over P í Q.

(a) For 0 ∈ R 
f  −1 (0) = {(3, 6), (5, 7), (4, 8)}
∴m C (0) = max {min (m A (3), m B (6)), min (m A (5), m B (7)), min (m A (4), m B (8))}

 = max {min  (0.1, 0.6), min (0.5, 0.2), min (0.8, 0.7)}
 = max {0.1, 0.2, 0.7}
 = 0.7.

(b) For 1 ∈ R 
f  −1 (1) = {(4, 6), (3, 7), (5, 8)}
∴m C (1) = max {min (m A (4), m B (6)), min (m A (3), m B (7)), min (m A (5), m B (8))}

= max {min (0.8, 0.6), min (0.1, 0.2), min (0.5, 0.7)}
= max {0.6, 0.1, 0.5}
= 0.6.

(c) For 2 ∈ R 
f  −1 (2) = {(5, 6), (4, 7), (3, 8)}
∴m C (2) = max {min (m A (5), m B (6)), min (m A (4), m B (7)), min (m A (3), m B (8))}

= max {min (0.5, 0.6), min (0.8, 0.2), min (0.1, 0.7)}
= max {0.5, 0.2, 0.1}
= 0.5.

Hence the image of A × B under f  is given by C = {(0, 0.7), (1, 0.6), (2, 0.5)}, or

C = + +
0 7
0

0 6
1

0 5
2

. .7 0

Example 2.34  (Fuzzy extension principle)

Let P = {a, b, c}, Q = {d, e, f }, and R = {g, h, i,  j, k}} be three crisp sets, and f : P × Q → R be a function 
defi ned as f (x, y) = x + y + 2, where ‘+’ is to be interpreted as the addition of the sequence number 
of x and y in the English alphabet. For example, the letter a has the sequence number 1 as it is the 
fi rst letter of the English alphabet, and that of the letter d is 4. Th erefore the expression a + d pro-
duces the letter with sequence number 1 + 4 = 5, the letter e. Similarly, a + d + 2 = g. Table 2.9 shows 
the function table for the function f : P × Q → R. Fig. 2.32 shows the same function graphically.
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Table 2.9.  Function Table of f (x, y) = x + y + 2

← Q →

↑
P
↓

d e f

a g h i

b h i j

c i j k

Now, let us consider the fuzzy sets A and B on P and Q as described below.

P × Q (a, d )

(b, e)

(b, f )

(c, d )
(c, e)
(c, f )

(b, d )
(a, f )
(a, e) g

h

i

j

k

Fig. 2.32. f ( x, y ) = x + y + 2 over P × Q

A
a b c

B
d e f

= + + =B + +
0 4 0 3 0 8 0 7 0 5 0 8. .4 0 , . .7 0

Computation of the fuzzy set C on R as the image of A × B with the extension principle is detailed 
below.

(a) For g ∈ R 
f  −1 (g) = {(a, d)}
∴m C (g) = max {min (m A (a), m B (d))}

= max {min (0.4, 0.7)}
= max {0.4}
= 0.4.

(b) For h ∈ R 
f  −1 (h) = {(a, e), (b, d)}
∴m C (h) = max {min (m A (a), m B (e)), min (m A (b), m B (d))}

= max {min (0.4, 0.5), min (0.3, 0.7)}
= max {0.4, 0.3}
= 0.4.

(c) For i∈R 
f  −1 (i) = {(a, f ), (b, e), (c, d)}
∴m C (i) = max {min (m A (a), m B (f )), min (m A (b), m B (e)), min (m A (c), m B (d))}

= max {min (0.4, 0.8), min (0.3, 0.5), min (0.8, 0.7)}
= max {0.4, 0.3, 0.7}
= 0.7.
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(d) For j ∈ R 
f  −1 (j) = {(b, f ), (c, e)}
∴m C (j) = max {min (m A (b), m B (f )), min (m A (c), m B (e))}

= max {min (0.3, 0.8), min (0.8, 0.5)}
= max {0.3, 0.5}
= 0.5.

(e) For k ∈ R 
f  −1 (k) = {(c, f )}
∴m C (k) = max {min (m A (c), m B (f))}

= max {min (0.8, 0.8)}
= max {0.8}
= 0.8.

Hence the image of A × B under f is given by C = f (A × B) = {(g, 0.4), (h, 0.4), (i, 0.7), (j, 0.5), (k, 
0.8)}, i.e., 

C
g h i j k

= + + ++ +
0 4 0 4 0 7 0 5 0 8. . . .4 0 4 0 7 0 .

   CHAPTER SUMMARY

A summary of the matters discussed in this chapter is provided below.

Traditional set theory is not adequately equipped to model the vagueness/inexactness that we • 
are used to tackle in our everyday life. 
Fuzzy set theory is an extension, or generalization, of crisp set theory that takes into account • 
the vagueness mentioned above by allowing partial membership to  set. Hence, the degree of 
membership of an element to a fuzzy set is any real value between 0 and 1, both inclusive.
Th e membership profi le of a fuzzy set is customarily expressed with the help of a membership • 
function m : U → [0, 1]. Popular membership functions are the triangular function, trapezoidal 
function, Gaussian function, S-function etc.
Fuzzy sets are characterized with the help of certain parameters, e.g., normality, height, sup-• 
port, core, cardinality etc.
Fuzzy sets are occasionally transformed through operations like normalization, dilation, con-• 
centration, contrast intensifi cation, and fuzzyfi cation. Th ese transformations help to deal with 
linguistic variables.
Familiar crisp set operations, e.g., union, intersection, complementation, equality, inclusion, • 
diff erence, disjunctive sum etc., are extended to fuzzy domain.
Most of the properties of crisp sets, e.g., associativity, commutativity, distributivity, idempoten-• 
cy, De Morgan’s law, transitivity etc., are also satisfi ed by fuzzy set operations. However, unlike 
crisp sets, in the fuzzy domain we have P ∪ P′ ≠ U, and P ∩ P′ ≠ Φ  because m P (x) ∈ [ 0, 1 ], and 
m P ∪ P′ (x) = max {m P (x), 1 − m P (x)} ≠ 1, and m P ∩ P′ (x) = min {m P (x), 1 − m P (x)} ≠ 0. 
Th e concept of a crisp relation is generalized to fuzzy relation. A fuzzy relation may exist be-• 
tween two crisp sets, or two fuzzy sets. A fuzzy relation between two fuzzy sets is a subset of 
their fuzzy Cartesian product.
A fuzzy relation between two crisp sets consists of ordered pairs of the elements of the sets and • 
a membership value for each ordered pair that ranges from 0 to 1.
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Common operations on fuzzy relations are union, intersection, complementation, and max–• 
min composition.
Th e fuzzy extension principle provides a way to map certain mathematical concepts pertaining • 
to crisp sets to their fuzzy counterparts. 

 SOLVED PROBLEMS

Problem 2.1 Which of the following sets are identical to each other?

 A = {x | x is even and 0 ≤ x ≤ 10}
 B = {0, 2, 4, 6, 8 10}
 C = {10, 0 8, 2, 6, 4}
 D = {6, 8, 6, 0, 0, 4, 10, 10, 2}

Solution 2.1 All of the sets A, B, C and D have the same members, irrespective of their descriptions, 
ordering, or repetition. Hence all of them are identical. A = B = C = D.

Problem 2.2 Describe the following sets by citing a property shared by all its members.

 A = {Helium, Neon, Argon, Krypton, Xenon, Radon}
 B = {2, 3, 5, 7, 11, 13, 17, 19, 23}
 C = {0, 3, 8, 15, 24, 35, 48, 63, …}

Solution 2.2 Th e required descriptions are given below.

 A = {x | x is an inert gas}
B = {x | x is a prime number and 2 ≤ x < 25}
C = {x2 − 1 | x is a natural number}

Problem 2.3 Let A be the set of all non-negative integers, B be that of the non-positive integers 
inclusive of 0 and I be the set of all integers, the universal set. Find  A ∪ B, A ∩ B, A′, B′, A – B, B – A, 
and A ⊕ B.

Solution 2.3 According to the problem statement, A = {0, 1, 2, 3, …}, B = {0, −1, −2, −3, …}, and I 
= {…, −3, −2, −1, 0, 1, 2, 3, …}. Th erefore

A ∪ B = {…, −3, −2, −1, 0, 1, 2, 3, …}}= I
A ∩ B = {0}
A′ = {−1, −2, −3, …}
B′ = {1, 2, 3, …}
A – B = {1, 2, 3, …} = B′
B – A = {−1, −2, −3, …} = A′
A ⊕ B = {…, −3, −2, −1, 1, 2, 3, …} = I − {0}

Problem 2.4 For arbitrary sets P and Q, under what condition P × Q = Q × P ?

Solution 2.4 By defi nition, P × Q = {(x, y) | x ∈ P, and y ∈ Q} and Q × P = {(x, y) | x ∈ Q, and y ∈ 
P}. Hence P × Q = Q × P if and only if P = Q.

Problem 2.5 Prove De Morgan’s theorem with the help of Venn diagrams.
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Solution 2.5 Fig. 2.33 (a) – (f ) depict the process of constructing the sets (P ∪ Q)′ and P′ ∩ Q′. It is 
seen that the Venn diagrams for (P ∪ Q)′ and P′ ∩ Q′ are identical. Hence (P ∪ Q)′ = P′ ∩ Q′, as stated by 
De Morgan’s theorem. Th e other part of the theorem, i.e., (P ∩ Q)′ = P′ ∪ Q′ can be proved similarly.

P ∪ Q
P Q

(a) (b) (c)

(P ∪ Q)QQ ′

P Q

(d) (e) (f)

P ′ ∩ Q ′

P

P ′

Q ′

Q

Fig. 2.33. Proof of De Morgan’s theorem.

Problem 2.6 Prove that for any set S, S ⊕ S = ∅ .

Solution 2.6 S ⊕ S = (S ∩ S′) ∪ (S′ ∩ S) = (∅ ∪ ∅) = ∅

Problem 2.7 Prove that A – (A – B) = A ∩ B

Solution 2.7 L.H.S  = A – (A – B)
   = A – (A ∩ B′) 
   = A ∩ (A ∩ B′)′
   = A ∩ (A′ ∪ B)
   = (A ∩ A′) ∪ (A ∩ B)
   = ∅ ∪ (A ∩B)
   = A ∩ B 
   = R.H.S

Problem 2.8 Prove that if A ∪ C = B ∪ C, and A ∩ C = B ∩ C, then A = B. However, A ∪ C = B ∪ 
C does not imply that A = B. Nor A ∩ C = B ∩ C implies that A = B.

Solution 2.8 A = A ∪ (A ∩ C)

   = A ∪ (B ∩ C)  : Since A ∩ C = B ∩ C (given)
   = (A ∪ B) ∩ (A ∪ C)
   = (A ∪ B) ∩ (B ∪ C) : Since A ∪ C = B ∪ C (given)
   = (B ∪ A) ∩ (B ∪ C)
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   = B ∪ (A ∩ C)
   = B ∪ (B ∩ C)  : Since A ∩ C = B ∩ C (given)
   = B

Problem 2.9 Let F be a fuzzy set of matured persons where the maturity is measured in terms of age 
in years. Th e fuzzy membership function followed is given below 

μ F

if
x

if

if x

( )x

,

,

,

=

≤
−⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

≤ ≤

≥

⎧

⎨
⎪
⎧⎧

⎪
⎨⎨
⎪⎪

⎩
⎪
⎨⎨

⎪⎩⎩
⎪⎪

0 5if x, ≤
5

20
5 2x≤ ≤x 5

1 2if x, ≥ 5

2

Th e universe consists of the individuals Sunny, Moon, Pikoo, Gina, Osho, Chang, Paul, Lalu, Lila, and 
Poly whose ages are 15, 20, 10, 27, 32, 12, 18, 24, 3, and 8 years respectively. Find the normalcy of the set 
as well as Height (F), Support (F), Core (F), and Cardinality (F).

Solution 2.9 We calculate the membership values of each individual with the help of the member-
ship function to obtain the following fuzzy set

F
Sunny Moon Pikoo Gina Osho C

= + + ++ + +
0 25 0 5625 0 0625 1 0 1 0 0 1225. .25 0 . .0625 1 . .0 0

hahh ng Paul Lalu Lila Poly
+ + ++ +

0 4225 0 9025 0 0 0225. .4225 0 .

Th e set is normal because there are two members, Gina and Osho, who attain full memberships. Ob-
viously, Height (F) = 1.0. Support (F) = {Sunny, Moon, Pikoo, Gina, Osho, Chang, Paul, Lalu, Poly}, Core 
(F) = {Gina, Osho}, and Cardinality (F) = 0.25 + 0.5625 + 0.0625 + 1.0 + 1.0 + 0.1225 + 0.4225 + 0.9025 
+ 0 + 0.0225 = 4.345.

Problem 2.10 Fig. 2.34 shows a membership profi le in the form of a reverse triangle. It is defi ned 
as follows:

μ F

x if xi
x if xi

elsewhere
( )x

,
,

,
=

− x ifi ≤
≤

⎧
⎨
⎪
⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

0x ≤x
1x ≤x

1

Apply the transforms of normalization, dilation, concentration, contrast intensifi cation, and fuzzifi -
cation on the membership function and show the resultant profi les.

−2 −1 0 1 2

1

Fig. 2.34. A reverse triangular membership function
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Solution 2.10 Th e given membership function is already normal and therefore normalization leaves 
the function unaltered. To obtain the shape of a transformed membership function, membership values 
at individual points are calculated. Th en these values are mapped to the transformed membership values. 
For example, let us take the point x = − 0.5 so that m F (x) = 0.5. Under dilation, DIL (m F (x) = 0.5) = (0.5) 0.5 
= 0.71 (approximate). On the other hand, under concentration, contrast intensifi cation or fuzzifi cation, 
this membership value maps to CON (m F (x) = 0.5) = (0.5) 2 = 0.25, INT (m F (x) = 0.5) = 2 × (0.5) 2 = 
0.5, and FUZZ (m F (x) = 0.5) = (0.5 / 2) 0.5 = 0.5 respectively. Th e approximate shapes of the transformed 
functions are shown with dotted line in Fig. 2.35 (a), Fig. 2.35 (b), Fig. 2.35 (c), and Fig. 2.35 (d).

−2 −1 0 1

DIL (F )

2

1

F

  −2 −1 0 1

CONC (F )

2

1

F

(a)               (b) Concentration

−2 −1 0 1

INT (F )

2

1

F

  −2 −1 0 1

FUZZ (F )

2

1

F

(c) Contrast intensifi cation          (d) Fuzzifi cation

Fig. 2.35. Transformations on the reverse triangular function.

Problem 2.11 Let U = Flowers = {Jasmine, Rose, Lotus, Daff odil, Sunfl ower, Hibiscus, Chrysanthe-
mum}} be a universe on which two fuzzy sets, one of Beautiful fl owers and the other one of Fragrant 
fl owers are defi ned as shown below. 

P = Beautiful fl owers = 0 3 0 9 1 0 0 7 0 5 0 4.3 0 . .0 0 . .5 0
Jasmine

+ + + + +
Rose Lotus Daffodil Sunflower Hibiscusbb Chrysanthemum

+
0 6

Q = Fragrant fl owers = 
1 0 1 0 0 5 0 2 0 2 0 1. .0 1 . .5 0 . .2 0

Jasmine
+ + + + +

Rose Lotus Daffodil Sunflower Hibiscusbb Chrysanthemum
+

0 4

Compute the fuzzy sets P ∪ Q, P ∩ Q, P′, Q′, P – Q, P ⊕ Q. Also, verify that P ∪ P′ ≠ U, P ∩ P′ ≠ f.

Solution 2.11 Th e results are obtained directly from the defi nitions of the respective operations.

P Q
Rose Lotus Daffodil Sunflower

=Q + + + + +
1 0 1 0 1 0 0 7 0 5 0. .0 1 . .0 0

Jasmine
.. .4 0 6

Hibiscus Chrysanthemum
+

P Q
Rose Lotus Daffodil Sunflower

=Q + + + + +
0 3 0 9 0 5 0 2 0 2 0.3 0 . .5 0

Jasmine
.. .1 0 4

Hibiscus Chrysanthemum
+
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′ = + + + + +P
Rose Lotus Daffodil Sunflower H

0 7 0 1 0 0 3 0 5 0 6. .7 0 . .3 0 .
Jasmine ibisii cus Chrysr anthemum

Jas e Rose Daffodil

+

= + + +

0 4

0 7 0 1 0 3 0
min

. .1 0 .. . .5 0 6 0 4
Sunflower Hibiscus Chrysr anthemum

+ +

′= + + + + +Q
Rose Lotus Daffodil Sunflower Hib

0 0 0 5 0 8 0 8 0 9
Jasmine

. .5 0 .8 0
isii cus Chrysr anthemum

Lotus Daffodil Sunflower

+

= + + +

0 6

0 5 0 8 0 8. .5 0 0 900 0 6.9 0
Hibiscus Chrysanthemum

+

P Q P Q

Rose Lotus Daffodil Sunflower

=Q ′

= + + + + +
0 0 0 5 0 7 0 5

Jasmine
. .5 0 0 400 0 6. .4 0

Hibiscus Chrysanthemum
+

P Q

Rose Lotus Daffodil S

⊕ =Q ′ ∪ ′

= + + + +

( )P Q ′ ( )P Q′

0 0 0 5. 0 7. 0 5.
Jasmine unfloweruu Hibiscus Chrysanthemum

+ +
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

∪

+

0 4 0 6

0 7 0

. .4 0

. .7 0
Jasmine

1 011 0 2 0 2 0 1 0 4
Rose Lotus Daffodil Sunflower Hibiscus Chry

+ + + + +
. .2 0 . .1 0

sass nthemum

Rose Lotus Daffodil

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= + + + +
0 7 0 1 0 5 0 7 0. .7 0 . .5 0

Jasmine
.. . .5 0 4 0 6

Sunflower Hibiscus Chrysr anthemum
+ +

P P

Rose Lotus Daffodil Sunflower

∪ ′

= + + + + +
0 7 0 9 1 0 0 7 0 5.7 0 . .0 0

Jasmine
0 600 0 6. .6 0

Hibiscus Chrysanthemum
U+ ≠

P P

Rose Lotus Daffodil Sunflower

′

= + + + + +
0 3 0 1 0 0 3 0 5 0. .3 0 . .3 0 .

Jasmine
4 044 4

Hibiscus Chrysanthemum
+ ≠

. ϕ

Problem 2.12 Let A = {Gogo, Didi, Pozzo, Lucky} be a set of individuals and B = {Colour, Game, 
Flower, Pet}. Table 2.10 presents the liking data of these individuals with respect to the listed aspects. We 
defi ne a relation R on A × A such that x R y if there is z which both x and y likes. Show the relation matrix 
for R.

Table 2.10. Liking data of Gogo, Didi, Pozzo and Lucky

Likes

Colour Game Flower Pet

Gogo Blue Tennis Rose Parrot

Didi Red Baseball Lotus Parrot

Pozzo Green Soccer Lotus Dog

Lucky Red Tennis Rose Cat
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Solution 2.12 Th e relation matrix is given in Table 2.11.

Table 2.11. Relation matrix for R

R

Gogo Didi Pozzo Lucky

Gogo 1 1 0 1

Didi 1 1 1 1

Pozzo 0 1 1 0

Lucky 1 1 0 1

Problem 2.13 Along with relation R of Problem 2.12, consider one more relation among Gogo, 
Didi, Pozzo, Lucky regarding who is fond of whom, as shown in Table 2.11. We defi ne a relation S such 
that x S y if there exists z for which x is fond of z and z is fond of y. Show the relation matrix of S and 
then fi nd R ∪ S, R ∩ S, R ° S.

Table 2.12. Who is fond of whom

is fond of

Gogo Didi Pozzo Lucky

Gogo 1 0 1 1

Didi 0 0 0 1

Pozzo 0 0 1 0

Lucky 1 1 0 0

Solution 2.13 Th e relation matrix of S is shown in Table 2.13. Table 2.14 and Table 2.15 present the 
relation matrices for R ∪ S and R ∩ S.

Table 2.13. Relation matrix for S

S

Gogo Didi Pozzo Lucky

Gogo 1 1 1 1

Didi 1 1 0 0

Pozzo 0 0 1 0

Lucky 1 0 1 1

Table 2.14. Relation matrix for R ∪ S

R ∪ S
Gogo Didi Pozzo Lucky

Gogo 1 1 1 1
Didi 1 1 1 1
Pozzo 0 1 1 0
Lucky 1 1 1 1
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Table 2.15. Relation matrix for R ∩ S

R ∩ S
Gogo Didi Pozzo Lucky

Gogo 1 1 0 1
Didi 1 1 0 0
Pozzo 0 0 1 0
Lucky 1 0 0 1

Now let us compute R ° S. Does (Gogo, Gogo) ∈ R ° S ? We see, (Gogo, Gogo) ∈ R and (Gogo, Gogo) 
∈ S. Moreover, (Gogo, Didi) ∈ R and (Didi, Gogo) ∈ S. Hence (Gogo, Gogo) ∈ R ° S. However there is 
no x such that (Pozzo, x) ∈ R and (x, Lucky) ∈ S. Other members of R ° S are found in similar fashion 
(see Table 2.16).

Table 2.16. Relation matrix for R ° S

R ° S
Gogo Didi Pozzo Lucky

Gogo 1 1 1 1
Didi 1 1 1 1
Pozzo 1 1 1 0
Lucky 1 1 1 1

Problem 2.14 Show that Cartesian product of crisp sets is a special case of fuzzy Cartesian product.

Solution 2.14 Let A and B be two fuzzy sets on reference sets X and Y respectively. As per defi nition 
of fuzzy Cartesian product m A × B (a, b) = min {m A (a), m B (b)}∀a ∈ X, ∀b ∈ Y. Now, if A and B are crisp 
sets, then m A (a) = m B (b) = 1, ∀a ∈ X, ∀b ∈ Y. Th erefore, m A × B (a, b) = min {m A (a), m B (b)} = 1. Hence 
Cartesian product of crisp sets is a special case of fuzzy Cartesian product.

Problem 2.15 A = {Jack, Lucy, Harry}, B = {Flute, Drum, Violin, Piano}, C = {String, Wind, Percus-
sion}}on which the relation R = Plays ⊆ P × Q and S = instrument type ⊆ Q × R is defi ned (Table 2.17 and 
2.18). Find R ° S.

Table 2.17. Relation matrix for R

R
Flute Drum Violin Piano

Jack 0 1 0 1
Lucy 1 0 1 1
Harry 1 1 1 0

Table 2.18. Relation matrix for S

S
String Wind Percussion

Flute 0 1 0
Drum 0 0 1
Violin 1 0 0
Piano 1 0 0
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Solution 2.15 Table 2.19 shows the relation matrix for R ° S.

Table 2.19. Relation matrix for R ° S

S

String Wind Percussion
Jack 1 0 1
Lucy 1 1 0
Harry 1 1 1

 Problem 2.16 Let A = {Mimi, Bob, Kitty, Jina} be a set of four children, B = {Tintin, Asterix, 
Phantom, Mickey} be a set of four comic characters, and C = {funny, cute, dreamy} be a set of three at-
tributes. Th e fuzzy relations R = x Likes y is defi ned on A × B and S = x IS y is defi ned on B × C as shown 
in Table 2.20 and Table 2.21. Find R ° S.

Table 2.20. Relation matrix for R = x Likes y

R ≡ Likes
Tintin Asterix Phantom Mickey

Mimi 0.8 0.5 0.7 0.8
Bob 0.4 0.9 0.3 0.3
Kitty 0.6 0.7 0.4 0.9
Jina 0.3 0.8 0.2 0.5

Table 2.21. Relation matrix for S = x IS y

S ≡ IS
funny cute dreamy

Tintin 0.6 0.7 0.3
Asterix 0.8 0.4 0.2
Phantom 0.1 0.2 0.1
Mickey 0.9 0.8 0.3

Table 2.22. Relation matrix for R ° S

ROS
funny cute dreamy

Mimi 0.8 0.8 0.3
Bob 0.8 0.4 0.3
Kitty 0.9 0.8 0.3
Jina 0.8 0.5 0.3

 Solution 2.16 Let us recall the defi nition of composition of fuzzy relations. If A, B and C are three 
crisp sets and R and S are fuzzy relations over A × B and B × C, then the composition of R and S, R ° S, 
is a relation over A × C such that 

( )( , ) max {min( ( , ), ( , ))}x y, x( y S), y z,
y B

Now, R ° S (Mimi, funny) = max {min (R (Mimi, Tintin), S (Tintin, funny)), min (R (Mimi, Asterix), 
S (Asterix, funny)), min (R (Mimi, Phantom), S (Phantom, funny)), min (R (Mimi, Mickey), S (Mickey, 
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funny))}= max {min (0.8, 0.6), min (0.5, 0.8), min (0.7, 0.1), min (0.8, 0.9)}= max {0.6, 0.5, 0.1, 0.8}}= 0.8. 
Th e membership values for the rest of the ordered pairs can be computed similarly. Th e resultant relation 
matrix is shown in Table 2.22.

Problem 2.17 A fuzzy set N of naughty children is given below. Find the level set of N.

N = 0 3 0 8 1 0 0 3 0 5 0 5 0 8. .3 0 . .0 0 . .5 0
Piku Mini Lotus JojJJ o NinNN a JoyJJ Lila

+ + + + + +

Solution 2.17 Th e level set of N, L (N), is the crisp set of real values x ∈ (0, 1] such that for each x 
∈ L (F) there is a singleton (y, x) ∈ F. Symbolically, L (N) = {x | 0 < x ≤ 1 and ∃ y ∈ U such that m N (y) = 
x}. Hence

L (N) = {0.3, 0.5, 0.8, 1.0}.

Problem 2.18 A fuzzy set F has the membership profi le given below. What is the level set of F?

μF xe
x( )x ,=

+
− ∞≤ ≤x ∞−

1
1

Solution 2.18 Th e level set is L (N) = (0, 1).

Problem 2.19 For the naughty children of Problem 2.17, fi nd Na for a = 0.4 and 0.2.

Solution 2.19 Th e a-cut of N, Na, is the crisp set containing those elements whose membership 
values with respect to N are greater than, or equal to, a. Symbolically, Na = {x | m N (x) ≥ a }. Accordingly 
we fi nd,

N0.4 = {x | m N (x) ≥ 0.4}}= {Mini, Lotus, Nina, Joy, Lila}, and
N0.2 = {x | m N (x) ≥ 0.2}}= {Piku, Mini, Lotus, Jojo, Nina, Joy, Lila}

Problem 2.20 For F of Problem 2.18, fi nd Fa for a = 0.5 and 0. 

Solution 2.20 F0.5 = [ 0, ∞) and F0 = (−∞, ∞).

Problem 2.21 Find the fuzzy cardinality of a fuzzy set LC of low calorie food. Th e fuzzy set is given 
below.

LC = 
1 1 0 5 0 1 0 1

Cucumber Watermelon Chicken IceII cream Chocolate
+ + + +

. .5 0
-

+ +++
0 3 0 8. .3 0
Rice Egggg

Solution 2.21 Let F be a fuzzy set and L (F) is the level set of F and for all a ∈ L (F), Fa is the a-cut 
of F. Th e fuzzy cardinality of F, fc (F), is the fuzzy set

f Fff
L

)F
| |F( )F

=
∈
∑ α

FFα

In the present instance, L (LC) = {0.1, 0.3, 0.5, 0.8, 1.0}. Th e a-cuts of LC for a = 0.1, 0.3, 0.5, 0.8 and 
1.0 are 
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LC 0.1 = {Ice-cream, Chocolate, Rice, Chicken, Egg, Cucumber, Watermelon}, and | LC0.1 | = 7, LC 0.3 = 
{Rice, Chicken, Egg, Cucumber, Watermelon}, and | LC0.3 | = 5, LC 0.5 = {Chicken, Egg, Cucumber, Wa-
termelon}, and | LC0.5 | = 6, LC 0.8 = {Egg, Cucumber, Watermelon}, and | LC0.8 | = 3, LC1.0 = {Cucumber, 
Watermelon}, and | LC1.0 | = 2. Th erefore the fuzzy cardinality of LC is given by

f Lff
L

)LC
| |LC

.
( )F

== + + + +
∈
∑ α

α

0 1.
7

0 3.
5

0 5..
6

0 8.
3

1 0.
2

Problem 2.22 Consider two sets of colours C-1 = {Red, Blue, Green} and C-2= {Red, Blue, Green, 
Yellow, Cyan, Magenta}. A function f : C-1 × C-1 → C-2 is defi ned as shown in the matrix below. 

Red Blue Green

Red Red Magenta Yellow

Blue Magenta Blue Cyan

Green Yellow Cyan Green

We defi ne two shades of the colours in {Red, Blue, Green} as fuzzy sets S-1 and S-2. 

S-1 = 0 3 0 5 0 7. .3 0
red blue greengg

+ +    S-2 = 0 8 0 2 0 4. .8 0
red blue greengg

+ +

Extend the function f to the domain S-1 × S-2 by applying the fuzzy extension principle.

Solution 2.22 Let us denote the fuzzy equivalent of f as ff . Th e pre-images of the elements of C-2 
under f are 

f−1 (R) = {(R, R)}  
f−1 (G) = {(G, G)} 
f−1 (B) = {(B, B)}
f−1 (M) = {(R, B), (B, R)} 
f−1 (Y) = {(R, G), (G, R)} 
f−1 (C) = {(B, G), (G, B)}

Computations of the fuzzy memberships of the elements of C-2 under ff  are shown below.

ff −1 (R) = {(R, R)} 
∴m C-2 (R) = max {min (m s-1 (R), m s-2 (R))}
= max {min (0.3, 0.8)}
= max {0.3}}= 0.3

ff −1 (B) = {(B, B)} 
∴m C-2 (B) = max {min (m s-1 (B`), m s-2 (B))}
= max {min (0.5, 0.2)}
= max {0.2}}= 0.2

ff −1 (G) = {(G, G)} 
∴m C-2 (G) = max {min (m s-1 (G), m s-2 (G))}
= max {min (0.7, 0.4)}
= max {0.4}}= 0.4
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ff −1 (M) = {(R, B), (B, R)} 
∴m C-2 (M) = max {min (m s-1 (R), m s-2 (B)),  min (m s-1 (B), m s-2 (R))}
= max {min (0.3, 0.2), min (0.5, 0.8)}
= max {0.2, 0.5}}= 0.5

ff -−1 (Y) = {(R, G), (G, R)} 
∴m C-2 (Y) = max {min (m s-1 (R), m s-2 (G)),  min (m s-1 (G), m s-2 (R))}
= max {min (0.3, 0.4), min (0.7, 0.8)}
= max {0.3, 0.7}}= 0.7

ff −1 (C) = {(B, G), (G, B)}
∴m C-2 (C) = max {min (m s-1 (B), m s-2 (G)),  min (m s-1 (G), m s-2 (B))}
= max {min (0.5, 0.4), min (0.7, 0.2)}
= max {0.4, 0.2}}= 0.4

� TEST YOUR KNOWLEDGE

 2.1 Which of the following phenomena is modeled by fuzzy set theory?
a) Randomness  b) Vagueness
c) Uncertainty d) None of the above

 2.2 Which of the following relations hold good for fuzzy sets?
a) m (x) ∈ [ 0, 1 ] b) m (x) ∉ [ 0, 1 ]
c) m (x) = 0, or 1 d) None of the above

 2.3 Which of the following relations hold good for crisp sets?
a) m (x) ∈ [ 0, 1 ] b) m (x) ∉ [ 0, 1 ]
c) m (x) = 0, or 1 d) None of the above

 2.4 Let U = {a, b, c}, and P
a c

= +
0 5 0 5. .5 0 be a fuzzy set on U. Th en which of the following is true?

a) P is normal b) P is sub-normal
c) Both (a) and (b) d) None of the above

 2.5 Let U = {a, b, c}, and P
a c

= +
0 5 0 75. .5 0 be a fuzzy set on U. Th en what is the height of P?

a)  0.5 b) 0.75
c) 1.25 d) 1.0 

 2.6 What is the support of the fuzzy set P cited in item 2.5?
a) {a, c} b) {b}
c) {a, b, c} d) Φ

 2.7 What is the core of the fuzzy set P cited in item  2.5?
a) {a, c} b) {b}
c)  {a, b, c} d) Φ

 2.8 What is the cardinality of the fuzzy set P cited in item 2.4?
a) 0.0 b) 0.5
c) 1.0 d) None of the above

 2.9 Which of the following membership functions must have a height of 1.0?
a) Triangular function b) Trapezoidal function
c) Gaussian function d) None of the above
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2.10 Which of the following transformations on membership functions of fuzzy sets enhances the 
membership values?
a) Dilation b) Concentration
c) Contrast intensifi cation d) Fuzzifi cation

2.11 Which of the following transformations on membership functions of fuzzy sets reduces the mem-
bership values?
a) Dilation b) Concentration
c) Contrast intensifi cation d) Fuzzifi cation

2.12 Which of the following transformations on membership functions of fuzzy sets reduces as well as 
enhances the membership values selectively?
a) Contrast intensifi cation b) Fuzzifi cation
c) Both (a) and (b) d) None of the above

2.13 Which of the following properties is not satisfi ed by fuzzy sets P, Q, R?
a) (P ∪ Q) ∪ R = P ∪ (Q  ∪ R) b) (P ∪ Q)′ = P′ ∩ Q′
c) (P ′)′= P d) P ∪ P′ = U �

2.14 Which of the following properties is not satisfi ed by arbitrary fuzzy set P?
a) P ∪ P′ = U b) P ∩ P′ = Φ
c) Both (a) and (b) d) None of the above

2.15 Which of the following properties is true for arbitrary fuzzy set P?
a) P ∪ P′ ≠ U b) P ∩ P′ ≠ Φ
c) Both (a) and (b) d) None of the above

2.16 Which of the following properties does not hold good for Cartesian product of sets?
a) Commutativity  b) Associativity
c) Both (a) and (b) d) None of the above

2.17 Let F = +
0
0

1
1

 be a fuzzy set on the universe U = {0, 1}. Which of the following is L (F), i.e., the 

level set of F?
a) L (F) = {0} b) L (F) = {1}
c) L (F) = {0, 1} d) None of the above

2.18 Which of the following is true regarding variation of the size of C of a fuzzy set as a increases from 
0 to 1?
a) Size of the a-cut increases b) Size of the a-cut decreases
c) Th ey are not related d) None of the above

2.19 Let Fa, Fb be the a-cuts of a fuzzy set F such that 0 ≤ a ≤ b ≤ 1. Th en which of the following is 
true?
a) Fa ⊆ Fb b) Fa ⊇ Fb
c) Fa = Fb d) None of the above

2.20 Let F
a b c

= + +
0 1 0 5 1 0. .1 0  be a fuzzy set on the universe U = {a, b, c}. F can be decomposed into a 

number of a-cuts such that F F∪
α

αFFα. . How many such a-cut decompositions exist?
a) One  b) Th ree
c) Infi nite d) None of the above

2.21 Which of the following is a fuzzyfi cation process?
a) Restricted scalar multiplication b) a-cut decomposition
c) Both (a) and (b)  d) None of the above 
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2.22 Let a F denotes the fuzzy set obtained through restricted scalar multiplication of F by a , 0 ≤ a ≤ 
1. Th en given 0 ≤  a  ≤  b  ≤ 1, and two fuzzy sets F and G, which of the following is not true?
a) a (F ∪ G) = a F ∪ a G b) (ab  ) F = a (bF)
c) a F ⊆ F d) None of the above 

2.23 Let F
a b

= +
0 5 0 5. .5 0 be a fuzzy set. Th en the fuzzy cardinality of F is

a) 0 5
1

 b) 0 5
2

c) 1 0
2

 d) None of the above

2.24 Let (a, b) and (c, d) be the pre-images of an element p under a function f. Th e fuzzy membership 
values of a, b, c, and d in a fuzzy set are 0.5, 0.4, 0.7 and 0.2 respectively. What is the fuzzy mem-
bership of p when f is extended to its fuzzy domain?
a) 0.5 b) 0.4 
c) 0.7 d) 0.2 

2.25 Which of the following statements is true about a linguistic variable?
a) A linguistic variable has linguistic values
b) Th e values of a linguistic variable are fuzzy sets
c) Both (a) and (b) 
d) None of the above 

Answers

 2.1 (b) 2.2 (a) 2.3 (c) 2.4 (b) 2.5 (b)
 2.6 (a) 2.7 (d) 2.8 (c) 2.9 (d) 2.10 (a)
 2.11 (b) 2.12 (c) 2.13 (d) 2.14 (c) 2.15 (c)
 2.16 (c) 2.17 (b) 2.18 (b) 2.19 (b) 2.20 (c)
 2.21 (a) 2.22 (d) 2.23 (b) 2.24 (b) 2.25 (c)

 EXERCISES

2.1 Show that set diff erence operation is not associative, i.e., A – (B – C) ≠ (A – B) – C.
2.2 Prove with the help of Venn Diagrams that for arbitrary sets A and B, A – B = A ∩ B′.
2.3 Fig. 2.36 shows a trapezoidal membership function with a = 0, m = 1, n = 2, b = 4. Show the eff ect of 

normalization, dilation, concentration, contrast intensifi cation and fuzzifi cation on this member-
ship function.

0 1 2 4

1

0

Fig. 2.36. Trapezoidal function m T ( x, 0, 1, 2, 4 )
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2.4 Fig. 2.37 shows the profi le of a membership function defi ned below. Show the eff ect of normaliza-
tion, dilation, concentration, contrast intensifi cation and fuzzifi cation on this membership func-
tion.

μF x x( )x ,+ ≤ ≤x +1 1x , −x 12

1.0

1.0−1.0

Fig. 2.37. Semicircular membership profi le

2.5 Let P and Q be two fuzzy sets defi ned on the interval [ 0, p ] with the help of the following member-
ship functions:

m P (x) = sin x, x ∈[ 0, p ]

μ

π
π

π
π

π
Q

x if
x if

( )x
, /πif

/ππ, if
=

−

−
≤ ≤

⎧

⎨
⎪
⎧⎧

⎨⎨

⎩
⎪
⎨⎨

⎩⎩

2 2/πxx
2 2

Show the membership function for the fuzzy sets P′, Q′, P ∪ Q, P ∩ Q, P − Q, and P ⊕ Q. 
2.6 Verify the fuzzy De Morgan’s law with the fuzzy sets A and B cited in Example 2.12.
2.7 Let A = {0, 1, 2, 3}, B = {2, 3, 5}, and C = {0, 2, 4}}be three sets. R, S, and T are three relations defi ned 

on A × B, A × B, and B × C respectively. Th ese relations are described below.

  R = {(a, b) | (a + b) is a prime number}, R ⊆ A × B
  S = {(a, b) | | a – b | is a prime number}, S ⊆ A × B
  T = {(b, c) | (b + c) is a prime number}, T ⊆ B × C

Find R ∪ S, R ∩ S, R′, S′, T′, R ° T, and S ° T.
2.8 Let V = {A, B, C, D} be the set of four kinds of vitamins, F = {f1, f2, f3} be three kinds of fruits con-

taining the said vitamins to various extents, and D = {d1, d2, d3} be the set of three diseases that are 
caused by defi ciency of the vitamins. Vitamin contents of the fruits are expressed with the help of 
the fuzzy relation R over F × V, and the extent to which the diseases are caused by the defi ciency of 
these vitamins is given by the fuzzy relation S over V × D. Relations R and S are given below.

A B C D d d d

R
f
f
f

1 2d 3

1ff
2ff
3ff

0 5 0 2 0 1 0 1
0 2 0 7 0 4 0 3
0 4 0 4 0 8 0 1

=
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

. . . .5 0 2 0 1 0

. . . .2 0 7 0 4 0

. . . .4 0 4 0 8 0⎣⎣⎣⎣
⎢⎢⎢⎢
⎣⎣⎣⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

,

.

.

.

.

S

A
B
C
D

0 3. 0 5.. 0 7.
0 1. 0 8.. 0 4.
0 9. 0 1.. 0 2.
0 5. 0 5.. 0 3.

⎥⎥
⎤⎤⎤⎤

⎥
⎥⎥⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Assuming that the max–min composition R ° S represents, in some way, the correlation between the 
amount of a certain fruit that should be taken while suff ering from a disease, fi nd R ° S.
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 2.9 According to the a-cut decomposition theorem, any fuzzy set F can be decomposed into a num-
ber of a-cuts, Fa, such that F F∪

α
αFFα. . Usually the a s are taken from the level set L (F) of F. Prove 

that there exists sets of a s, other than L (F), which satisfi es the a-cut decomposition theorem.

2.10 Let F
a b c d

= + + +
0 6 0 2 0 3 0 9. . .6 0 2 0 be a fuzzy set. Find a set of a-cuts such that F F∪

α
αFFα. . How many 

such sets of a-cuts are there? Justify your answer.
2.11 Th e membership function of a fuzzy set HIG, where HIG stands for high income group, is defi ned 

as follows:

μHIG

if i
i if

if i
( )i

,

,
,

=

≤
−

≤

⎧

⎨
⎪
⎧⎧
⎪
⎨⎨
⎪⎪

⎩
⎪
⎨⎨

⎪⎩⎩
⎪⎪

0 3if i, ≤
3

3
3 6i≤ ≤i

1 6if,

Th e income i is given in lakh of Rupees per annum. Let U = {Joy, Jeev, Nina, Simi} be a universe of 
four persons. Yearly income of Joy, Jeev, Nina, and Simi are Rs. 5 lakh, Rs. 8 lakh, Rs. 4 lakh, and 
Rs. 3.5 lakh respectively. Construct a fuzzy set Rich on U where the richness of a person is given 
by the membership value of his / her income with respect to the fuzzy set HIG. Compute the fuzzy 
cardinality of Rich.

2.12 Let us consider the crisp sets P = Q = R = {0, 1, 2}. A function f: P × Q → R is defi ned as f  (x, y) = 
| x – y |, for all x∈ P, y ∈ Q. Show the function table for f.
Now consider the fuzzy sets A and B on the reference sets P and Q respectively as given below.

A B =B + +
1
0

0 5
1

0
2

0
0

0 5
1

1
2

,

Apply the extension principle to obtain the fuzzy equivalent of the function f with respect to the 
fuzzy sets A and B,  f: A × B → C, where C is the image of A × B, defi ned on the universe R.

2.13 Let P = Q = {0, 1, 2} and R = {0, 0.5, 1, 1.5, 2} be crisp sets and f: P × Q → R be a function signifying 
the mean of two numbers,  f  (x, y) = (x + y)/2, for all x ∈ P, y ∈ Q. Construct the function table 
for f.

Now consider the fuzzy set A representing the closeness of a number x to 1 and B representing 
its distance from 1. A and B are defi ned on the reference sets P and Q respectively. Th e sets A and 
B may look like

A B =B + +
0 5
0

1
1

0 5
2

1
0

0
1

1
2

5 1 0 ,

Extend the function f: P × Q → R to f: A × B → C with the help of the extension principle where C 
is the image of A × B, defi ned on the universe R.

 BIBLIOGRAPHY AND HISTORICAL NOTES

Fuzzy Sets, as we know them today was developed by the noted Iranian scientist Lotfi  Akser Zadeh 
and presented through his celebrated work “Fuzzy Sets” in Information and Control (8) 1965, pp. 338 
–353, as an extension of the classical set theory, henceforth known as crisp sets. However, the concept 
of fuzziness dates back to 500 B.C. when fi rst references are found in teachings of Gautam Buddha, who 
believed that almost everything in this universe contains a set of opposites. Th e same was argued by 
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Greek philosopher Heraclitus who believed that things can be simultaneously ‘true’ and ‘not true’. Th e 
Greeks toyed with such ideas until Aristotle and his two valued logic gained ground. Around the same 
time as Zadeh, Dieter Klaua also proposed a similar concept (Klaua, D. (1965) Über einen Ansatz zur 
mehrwertigen Mengenlehre. Monatsb. Deutsch. Akad. Wiss. Berlin 7, 859–867). Like all revolutionary 
notions, the concept of fuzzy sets too was viewed initially with lot of skepticism and many rated it merely 
as an extension of probability theory. It wasn’t until the early 1980’s that it gained popular ground, and it 
was around this time that the use of fuzzy controllers in consumer electronic goods started and the word 
fuzzy became popular among scientists and non-scientists alike. Numerous brilliant works are reported 
on fuzzy set theory in the past few decades. Only a few of these are cited below.
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3
FUZZY LOGIC

Key Concepts

Abduction, Induction and Analogy, Addition, Chain rule, Consistency, Contradiction, Existential 
quantifi er, First order predicate logic (FOPL), Fuzzy if-then, Fuzzy if-then-else, Fuzzy logic operations, 
Fuzzy proposition, Fuzzy quantifi er, Fuzzy reasoning, Fuzzy rules, Fuzzy truth value, Generalized 
modus ponens, Generalized modus tolens, Interpretation, Linguistic variable, Logical equivalence, 
Modus Ponens, Modus Tollens/Indirect Reasoning/Law of Contraposition, Non-deductive rules of 
inference, Propositional logic, Resolution, Rules of inference, Simplifi cation, Tautology, Universal 
quantifi er, Universal specialization, Validity of argument, Well-formed formulae (wwf)

Chapter Outline

3.1 Crisp Logic: A Review
3.2 Fuzzy Logic Basics
3.3 Fuzzy Truth in Terms of Fuzzy Sets
3.4 Fuzzy Rules
3.5 Fuzzy Reasoning

Chapter Summary
Solved Problems
Test Your Knowledge
Exercise
Bibliography and Historical Notes

Various features of the fuzzy set theory are discussed in Chapter 2. Th is chapter presents the fundamentals 
of fuzzy logic. It starts with a review of the classical crisp logic and then presents fuzzy logic as an 
extension, or generalization of crisp logic. Logic is the study of the structure and principles of reasoning 
and sound argument. Th e universe of discourse of logic is the set of all statements, or, propositions. 
A statement, or proposition, is a sentence that has a truth value, either True or False, in crisp logic. 
Logic is not concerned about the content or meaning of a statement, but only with their possible truth 
values. Symbolic logic is logic using symbols that represent actual statements. Crisp logic asserts that a 
statement can be either true or false. It does not accept a third possibility. However, in real life we come 
across situations where such sharp distinction between truth and falsehood do not exist. On the contrary, 
there are infi nite shades of truths between black and white absolute truth and absolute falsehood. Fuzzy 
logic accepts this state of aff air and builds a system of reasoning on the basis of the possibility of infi nite 
number of truth values. Over the last few decades fuzzy logic has been successfully applied to solve 
numerous practical problems of engineering, science and business. 
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3.1 CRISP LOGIC: A REVIEW

Classical logic is based on the Aristotlian ‘Law of excluded middle’ which states that a statement is either 
true or false and nothing else. In contrast, fuzzy logic accepts to the point of view that there are infi nitely 
many shades of truth (or falsehood) between absolutely false and absolutely true. Th e logical system that 
allows only two truth-values is called crisp logic. Th is section presents a review of the essential features of 
crisp logic. We start with propositional logic, followed by the more powerful system called the predicate 
logic. A brief discussion on rules of inferences is provided at the end of this section.

3.1.1 Propositional Logic

Propositional logic is concerned about the properties and laws governing the universe of propositions. 
A proposition is a statement that is either true or false and nothing else. A few propositions are cited 
below.

1. Th is rose is red.
2. Mona Lisa was painted by Leonardo de Vinci.
3. Tiger is a domestic animal.
4. Th e smallest prime number is 5.
5. Every action has an equal and opposite reaction.

As far as logic is concerned it does not matter whether a proposition is empirically true or false, or not 
known at all whether true or false. Th is is an empirical problem and logic is not concerned about it. Th e 
only matter of logical concern is that the statement has a defi nite truth-value, known or unknown. Here 
are a few sentences that are not valid propositions.

1. Is this a red rose?  (Interrogation)
2. What a great artist was Leonardo de Vinci! (Exclamation)
3. Th e blue ideas are sleeping furiously. (Meaningless)

In symbolic logic, propositions are expressed with symbols or symbolic expressions that are combina-
tions of symbols. 

Propositional calculus deals with the symbolic expressions of propositional logic and their manipula-
tion. Th e valid symbolic expressions of propositional logic are known as well-formed formulae (wff ). 
Th ese wff s are composed of

Th e logical constants ‘True’ (represented by T or 1) and ‘False’ (F or 0)• 
Propositions (usually symbolically represented by • a, b, p, q etc.)
Parenthesis (, and )• 
Logical operators or connectives, e.g., • 

 AND (Conjunction, denoted as ∧ or ‘⋅’)  
 OR (Disjunction, denoted as ∨ or ‘+’)
 NOT (Negation, denoted as ¬ or ‘′’) 
 Implication (Conditional, If … Th en …, denoted as →)

Th e behaviour of logical operators are described with the help of truth tables. Th e truth tables for the 
logical operators NOT, AND, OR are shown in Table 3.1 and Table 3.2.
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Table 3.1. Truth table for logical NOT operation

a a′

0 1
1 0

Table 3.2. Truth table for logical AND, OR, IMPLICATION

a b a • b a + b a → b

0 0 0 0 1

0 1 0 1 1
1 0 0 1 0
1 1 1 1 1

Defi nition 3.1 (Propositional logic well-formed-formula) A propositional logic well-formed for-
mula (wff ) is recursively defi ned as follows.

 (i) Th e logical constants T and F are wff s.
 (ii) A propositional symbol (e.g. a, b, p, q etc.) is a wff .
(iii) Given two wff s W1 and W2, the following are also wff s

(• W1) ⋅ (W2) (Conjunction of two wff s is a wff )
(• W1) + (W2) (Disjunction of two wff s is a wff )
(¬• W1) (Negation of a wff s is a wff )
(• W1) → (W2) (Implication of two wff s is a wff )
(• W1) ↔ (W2) (Equivalence of two wff s is a wff )

(iv) Nothing else is a propositional logic well-formed formula (wff ).

Th e symbol ↔ stands for logical equivalence (implies and implied by, or bicondition) and is defi ned as (a 
→ b) • (b → a). Th e truth table for ↔ is shown in Table 3.3. In practice, while writing a wff , the number 
of parentheses is usually minimized by obeying a set of precedence rules among the operators.

Table 3.3. Truth table of logical equivalence

a b a ↔ b
0 0 1

0 1 0

1 0 0

1 1 1

Example 3.1   (Propositional logic well-formed-formulae)

Some valid and invalid propositional logic wff s are given below in Table 3.4. For the sake of sim-
plicity the parentheses are used sparingly. Moreover the conjunction operation is not explicitly 
used where its existence is obvious from the context.
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Table 3.4. Examples of valid and invalid wffs

# wff Validity Remark

1 1 Valid

2 0 Valid

3 a + b Valid

4 (a + b) c → a′b′c′ Valid

5 ((a → b) (c′→ a′)) → b′ Valid

6 a + • b Invalid A binary operator must be imme-
diately preceded and succeeded 
by its operands

7 a • (b + c′ Invalid Matching parenthesis is absent

8 ) a + b ( Invalid Wrong pair of parentheses

Table 3.5. Properties of propositional logic wffs

# Relation Remarks

1 (A • B) • C ≡ A • (B • C) Associativity

(A + B) + C ≡ A + (B + C)

2 A • B ≡ B • A Commutativity

A + B ≡ B + A

3 A • (B + C) ≡ (A • B) + (A • C) Distributivity 

A + (B • C) ≡ (A + B) • (A + C)

4 (A • B)′ ≡ A′+ B′ De Morgan’s law

(A + B) ′ ≡ A′• B′

5 A → B ≡ B′→ A′ Contrapositive law

6 A + A′ ≡ 1 Law of excluded middle

7 A • A′ ≡ 0 Law of Contradiction

8 A + A ≡ A Idempotency

A • A ≡ A

9 A • (A + B) ≡ A Absorption

A + (A • B) ≡ A

Properties of Propositional Logic wffs Propositional logic statements in the form of wff s obey 
certain properties. Some of these are listed in Table 3.5.
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Defi nition 3.2 (Interpretation of a logical expression) Let e (x1, x2, …, xn) be a logical expression in-
volving n propositions x1, x2, …, xn. An interpretation of the expression e (x1, x2, …, xn) is a combination 
of truth values for the constituent individual propositions x1, x2, …, xn.

Obviously, an expression e (x1, x2, …, xn)  involving n propositions have exactly 2n interpretations. For 
example, if e (a, b, c)) = a + b + a • b′ be the logical expression then  a = 1, b = 0, c = 0 is one of its inter-
pretations. For this interpretation the expression attains the truth value e (a, b, c) = a + b + a • b′ = 1. 

Defi nition 3.3 (Logical equivalence of two wff s) Two wff s are said to be equivalent if they attain the 
same truth value for all possible interpretations.

Th e logical equivalence of two expressions can be easily checked with the help of their truth tables. 
For example Table 3.6 shows that the expression a → b is equivalent to a′+ b.

Table 3.6. Equivalence of a → b and a′+ b

a b a → b a′+ b

0 0 1 1

0 1 1 1

1 0 0 0

1 1 1 1

Defi nition 3.4 (Tautology) A tautology is a proposition which is true for all possible interpreta-
tions.

Defi nition 3.5 (Contradiction) A contradiction is a proposition which is false for all possible in-
terpretations.

Defi nition 3.6 (Consistency) A collection of statements is said to be consistent if they can all be 
true simultaneously.

Example 3.2   (Tautology, Contradiction, Consistency)

Th e most obvious examples of a tautology and a contradiction are a′+ a and a′• a respectively. A 
few more tautologies and contradictions are cited below in Table 3.7. Table 3.8 presents a number 
of consistent and a few inconsistent pairs of propositional logic expressions. Verifi cation of the 
tautologies, contradictions, consistencies and inconsistencies using the truth table method is left  
as an exercise.

Table 3.7. Tautologies and contradictions

# wff Category

1 1 Tautology

2 ab + a′+ b′ Tautology

(Continued)
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Table 3.7. Continued

# wff Category

3 a + b + a′b′ Tautology

4 a′b′+ a′b + ab′+ ab Tautology

5 (1 + a) (1 + b) Tautology

6 0 Contradiction

7 a′b′ (a + b) Contradiction

8 (a + b) (a′+ b) (a + b′) (a′+ b′) Contradiction

9 a′b (a + b′) Contradiction

Table 3.8. Consistent and inconsistent expressions

# wff pairs Remark

1 {a, b} Consistent. Both are true when a = 1, b = 1

2 {a′, b′} Consistent. Both are true when a = 0, b = 0

3 {a′+ b, a + b′} Consistent. Both are true when a = 1, b = 1

4 {a + b′c′, ab + b} Consistent. Both are true when a = 1, b = 1, c = 0

5 {a, a′} Inconsistent. Complimentary wffs.

6 {a + b, a′b′} Inconsistent. Complimentary wffs.

7 {(a + b) c, a′b′+ c′} Inconsistent. Complimentary wffs.

Defi nition 3.7 (Validity of an argument) An argument is said to be valid if the conclusion is true 
whenever the premises are true.

Example 3.3   (Validity of an argument)

As an example, let us consider the following argument: If Basant Kumar plays the role of the hero’s, 
then the fi lm will be a hit if Basanti Devi is the heroine. If Basant Kumar plays the hero’s role, then 
Basanti Devi will be the heroine. Th erefore, if Basant Kumar plays the hero’s role, the fi lm will be a hit. 
Is the argument valid? Th is can be easily answered by constructing the corresponding truth table 
and checking if the conclusion is True whenever the premises are True. Let us denote

Statement ‘Basant Kumar plays the hero’s part’ as a 
Statement ‘Th e fi lm will be a hit’ as b
Statement ‘Basanti Devi is the heroine’ as c 

Th en the argument is symbolically presented as

Premise No. 1. a → (c → b)
Premise No. 2. a → c
Conclusion. Th erefore, a → b
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Th e corresponding truth table is shown in Table 3.9. Th e two premises of the argument, a → (c 
→ b) and a → c, are arranged in Columns 5 and 6, respectively. Th e conclusion a → b is shown in 
Column 7. In Rows 1, 2, 3, 4 and 8, both the premises are true. Th e corresponding truth-values of 
the conclusion, noted in Column 7 are also true. Hence the argument is valid

Table 3.9. Consistency checking

(1) (2) (3) (4) (5) (6) (7)

a b b c → b a → (c → b) a → c a → b

(1) 0 0 0 1 1 1 1

(2) 0 0 1 0 1 1 1

(3) 0 1 0 1 1 1 1

(4) 0 1 1 1 1 1 1

(5) 1 0 0 1 1 0 0

(6) 1 0 1 0 0 1 0

(7) 1 1 0 1 1 0 1

(8) 1 1 1 1 1 1 1

3.1.2 Predicate Logic

Th e propositional logic described above suff ers from certain limitations. Th ese limitations motivated the 
logicians to extend it to a more powerful formalism called the Predicate Logic. It provides mechanisms 
to capture the inner structure of propositions such as the subject–predicate relation, or quantifi ers like 
‘for all’ or ‘there exists’. Natural language statements can be expressed as predicate logic wff s, so that they 
could be processed by automated tools of intelligent systems according to the rules of sound reason-
ing. Th is subsection provides a discussion on the basic features of First Order Predicate Logic (FOPL). 
We start with an exposure to the limitations of propositional logic. Th e features of FOPL are presented 
subsequently.

Limitations of propositional logic Let us consider the argument: If monkeys have hair on their 
bodies then they are mammals. Monkeys have hairs on their bodies. Th erefore, monkeys are mammals. Th is 
argument can be symbolically presented as 

Premise No. 1. p → q
Premise No. 2. p

Conclusion. Th erefore, q

where p denotes the proposition Monkeys have hairs on their bodies and q denotes the proposition Monkeys 
are mammals. Validity of this argument can be easily verifi ed using the truth table method. Th is is shown in 
Table 3.10, which shows that the conclusion q is true whenever both the premises are true (Row 4).
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Table 3.10

(1) (2) (3)

p q p → q

(1) 0 0 1

(2) 0 1 1

(3) 1 0 0

(4) 1 1 1

Now, consider another argument leading to the same conclusion as before: All animals having hairs on 
their bodies are mammals. Monkeys have hairs on their bodies. Th erefore monkeys are mammals. Th is 
argument has the form

Premise No. 1. a

Premise No. 2. b

Conclusion. Th erefore, c

where a denotes the statement All animals having hairs on their bodies are mammals, b denotes the state-
ment Monkeys have hairs on their bodies and c denotes the statement Monkeys are mammals. Th is is not 
a valid argument because given the two propositions a and b as premises we cannot conclude a third 
proposition c that is independent of the premises. Applying the truth table method we obtain the com-
binations of truth values of a, b and c as shown in Table 3.11.

Table 3.11 

a b c

(1) 0 0 0

(2) 0 0 1

(3) 0 1 0

(4) 0 1 1

(5) 1 0 0

(6) 1 0 1

(7) 1 1 0

(8) 1 1 1

Th e 7th row of the table shows that the conclusion c is false even though both the premises a, b are true. 
We know that an argument is valid if and only if the conclusion is true whenever the premises are true. 
Th erefore, according to the formalism of propositional calculus, the second argument is invalid. How-
ever, intuitively we feel that the second argument is as valid as the fi rst argument.

Th e weakness of propositional logic is, it is inadequate to express the inner meaning of a statement 
like ‘All animals having hairs on their bodies are mammals’. A more powerful logical system is required 

70  Introduction to Soft Computing

Samir Roy_Chapter03.indd   70Samir Roy_Chapter03.indd   70 2/21/2013   3:17:35 PM2/21/2013   3:17:35 PM



to overcome this limitation. Predicate logic off ers the solution. In predicate logic, the aforementioned 
argument will be represented as:

Premise No. 1. For all x, if x is a hairy animal, then x is a mammal.

Premise No. 2. Monkey is a hairy animal. 

Conclusion. Th erefore, Monkey is a mammal. 

Using predicate logic expressions, the argument looks like

(∀x) H (x) → M (x)
H (Monkey)

∴ M (Monkey)

where, the symbols have the following meanings

∀x : for all x

H (x) : x is a hairy animal.
M (x) : x is a mammal.
H (Monkey) : Monkey is a hairy animal.
M (Monkey) : Monkey is a mammal.

H and M are two predicate symbols used in this argument. Th e validity of such argument will be proved 
later in this subsection.

Table 3.12. Constituents of predicate logic wffs

# Element type Symbols commonly used 

1 Non-predicate constants a, b, c, …

2 Variables x, y, z, …

3 Predicate constants P, Q, R, …

4 Function Constants f, g, h, …

5 Universal quantifi er ∀ (for all)

6 Existential quantifi er ∃ (there exists)

7 Logical connectives ¬,′ (NOT), • (AND), + (OR), → (implication), ↔ 
(equivalence) 

8 Parentheses (,)

Syntax As in propositional logic, statements of predicate logic are also expressed as well-formed 
formulae (wff s). However, predicate logic wff s are extensions of propositional logic wff s. Th e structural 
elements of these wff s are listed in Table 3.12. Th ese elements are briefl y described below.
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Non-predicate constants Non-predicate constants are symbolic or numeric non-predicate val-
ues that do not change over time. Examples of non-predicate constants are Socrates, X-123, 007, -63, 
India etc.

Variables Variables are symbolic expressions that can assume diff erent non-predicate values over 
a certain domain. For example, if x is a variable denoting the name of a month, then x may assume any 
value from January to December.

Predicate constants Predicate constants are symbols that denote the predicate part of a propo-
sition. Th ey are relations or mappings from the elements of a certain domain D to a truth value. For 
example, let MAN be a predicate constant and MAN (x) means ‘x is a man’. Th en MAN (John) is true 
as John is a man but MAN (Mary) is false because Mary is not a man. Similarly, if SON is a predicate 
constant such that SON (x, y) means x is the son of y, then SON (John, Smith) is True if John is the son 
of Smith, otherwise it returns false. Th e argument(s) of a predicate constant are non-predicate constants, 
variables, or functions.

Function constant A predicate logic function is syntactically similar to a predicate constant except 
that instead of a truth value, it may return a value from any domain. As an instance of a function, con-
sider age (person) which returns the age of a person. If we substitute Sam for the variable person whose 
age is 30 years, then age (Sam) would return 30. Similarly, owner (phone-number) might be a function 
that returns the name of the owner of a given phone-number.

Quantifi ers Th ere are two quantifi ers, the universal quantifi er (denoted by ∀ and pronounced as 
for all) and the existential quantifi er (denoted by ∃ and pronounced as there exists). Th e universal quanti-
fi er ∀ is employed when a statement applies to all members of a domain. For example, the statement ‘All 
integers are real numbers’ is universally quantifi ed. On the other hand, the existential quantifi er is used 
when a statement holds good for at least one element of the concerned domain. Consider, for example, 
the statement, Th ere is an employee who is a doctorate. It does not state that all employees are doctorates 
(though that possibility is not negated by the given statement) but it ensures that there are some, at least 
one, employee who is a doctorate.

Logical connectives Th e fi ve logical connectives frequently used in predicate logic wff s are ¬, or 
(NOT), • (AND), + (OR), → (implication), ↔ (equivalence). Th ey have the same semantics as in propo-
sitional logic.

Parentheses Parentheses are used as delimiters. Braces and square brackets are also used as delim-
iters for the sake of better readability. 

Apart from the elements mentioned above, there are a few terms used frequently in fi rst order predi-
cate logic. Th ese are defi ned below.

Defi nition 3.8 (Term) In predicate logic, a term is a non-predicate constant symbol, or a variable 
symbol, or a function symbol.

Examples of terms are A, min, f (a, b) etc.

Defi nition 3.9 (Atom) A predicate expression, consisting of a predicate symbol followed by the list 
of parameters within a pair of parentheses, is said to be an atom, or atomic formula.

Examples of atoms are MAN (x), LESS-THAN (x, y) etc.
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Defi nition 3.10 (Literal) A literal is either an atom, or the negation of an atom.

So if MAN (x) is an atom, both MAN (x) and MAN (x)′ are literals.

Example 3.4   (wff  expression for a predicate logic proposition)

Let us consider the proposition Th e probability of any event is a real number between 0 and 1, both 
inclusive. Logically, this is equivalent to the statement: For all n, if n is an event then probability of 
n is a real number, and probability of n is greater than or equal to 0, and probability of n is less than 
or equal to 1. Th e wff  for the statement is

(∀n) EVENT (n) → REAL (p (n)) • GE (p (n), 0) • LE (p (n), 1)

Th e symbols used in this wff  have meanings and categories as listed in Table 3.13.

Table 3.13

# Symbol Meaning Category

1 n An unknown entity Variable 

2 0 The number zero Non-predicate constant 

3 1 The number one Non-predicate constant

4 E (x) x is an event Predicate atom

5 R (x) x is a real number Predicate atom

6 GE (x, y) x is greater than or equals to y Predicate atom 

7 LE (x, y) x is less than or equals to y Predicate atom

8 p (x) Probability of event x Function atom

9 ∀ For all Universal quantifi er 

10 →, • Implication, AND Logical connectives 

11 (,) Delimiters Parentheses 

It must be understood that a predicate and a function, though syntactically similar, are actually diff erent.  
When evaluated a predicate term returns a truth value, true or false, whereas a function term may return 
any value from the related domain.  In the present example, given real numbers x and y, GE (x, y) is either 
true, or false.  However, given an event x, p (x) is a real number within the range [0, 1].  

Th e predicate logic discussed here is of fi rst order in the sense that only constants over predicates and 
functions are allowed and no variables over predicates or functions are allowed.  Th e fi rst order predicate 
logic wff s are recursively defi ned as follows.  

Defi nition 3.11 (First order predicate logic well-formed formula) Th e fi rst order predicate logic well 
formed formula can be recursively defi ned as follows:

1.  If P is a predicate constant with k arguments and a1, …, ak are terms, i.e.,  variables, constants, or 
functions, then P (a1, …, ak) is a wff .

2. If W is a wff  then (¬W ) is a wff .
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3. If W1 and W2 are wff s, then the following are wff s.
 (i) (W 1• W2) 
 (ii) (W1 + W2) 
(iii) (W1 → W2) 
(iv) (W1 ↔ W2)

4.  If W (x) is a wff  containing a free variable x (x is free if it is not already quantifi ed by either ∀, or ∃ 
in W (x)) then (∀x) W (x)and (∃x) W (x) are also wff s.

5. Only those which are obtained using the rules 1 to 4 cited above are wff s.

It is obvious from the recursive defi nition given above that all FOPL wff s are composed of atomic formu-
lae with appropriate logical connectives, quantifi ers and the parentheses.  A few valid propositions and 
corresponding FOPL wff s are given below.

Proposition FOPL wff

(i) The earth is a planet. PLANET (earth)

(ii) The sky is blue and forst is green BLUE (sky) • GREEN (forest)

(iii) If x is greater than y and y is greater than z 
then x is greater than z.

(∀x, y, z) [GE (x, y) • GE (y, z)] → GE (x, z)

(iv) For every x there is a y such that y = x2. (∀x) (∃y) EQ (y, square-of (x))

(v) Every man has a father and a mother. (∀x) MAN (x) → [(∃y, z)  FATHER 
(y, x) • MOTHER (z, x)]

(vi) If x is irrational then x is not an integer. (∀x) IRRATIONAL (x) → ¬ INTEGER (x)

However, the following expressions are not valid FOPL wff s due to the reasons specifi ed on the right. 

PLANET (Sun′) A constant term cannot be negated.

(∀P) (∃Q) P (x) → ¬ Q (x) Predicate cannot be quantifi ed.

LESS-THAN (NEG (x), POS (y)) A predicate cannot be an argument of a function.

score-of (Sam) A function is not a wff .

Semantics of FOPL wffs Th e semantics of FOPL is an extension of the semantics of proposi-
tional logic. Th e logical connectives ′, •, +, →, ↔, have the same truth tables in both systems. However, 
unlike propositional logic, an FOPL wff  is always understood in the context of some domain, or universe 
of discourse. For example, let Family = {Sam, Mita, Bilu, Milu} be a domain. We may defi ne predicates 
like HUSBAND (x), WIFE (y), CHILD (x), MARRIED-TO (x, y) etc. and functions like son-of (x), or 
spouse-of (y) etc. on this domain. It is tacitly assumed that all variables and constants take values from 
the corresponding domain.

An interpretation is a set of values assigned to various terms and atomic formulae of an FOPL 
wff . An atomic formula, which is nothing but a predicate expression, evaluates to a truth value. Since a wff  
is composed of literals, i.e., atomic formulae in negated or non-negated forms, the truth value of a wff  
should be computable with the help of the truth table method. Just as in propositional logic, if two 
wff s evaluate to the same truth value under any interpretation, they are said to be equivalent. Moreover, 
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a predicate that has no variables is called a ground atom. For example, MAN (Socrates) is a ground atom, 
but (∀x) MAN (x) → MORTAL (x) is not a ground atom.

Table 3.14. ODD (x) and EVEN (x) OVER U = {0, 1}

x ODD (x) EVEN (x) ODD (x) + EVEN (x)

0 False True True

1 True False True

Table 3.15. SUM (x, y)

x y Sum (x, y)

0 0 0

0 1 1

1 0 1

1 1 0

Evaluation of a wff  containing variable arguments needs special attention. Th is is because the wff  (∀x) 
P [x], where P [x] is a wff  containing the free variable x, is true if and only if P [x] is true for all values of 
x within its domain. Th erefore, to determine whether the statement (∀x) P [x] is true or false one must 
evaluate P [x] for every possible value of x within its domain. On the other hand, (∃x) P [x] is true if and 
only if there exists at least one value of x for which P [x] is true. Moreover, to determine the truth of the 
statement (∃x) P [x] one has to go on evaluating P [x] for various possible values of x until either P [x] is 
true for same x or all possible values of x have been tried. Evaluation of an FOPL wff  containing quanti-
fi ed variables is illustrated in Example 3.5.

Example 3.5   (Interpretation of Predicate Logic wff )

Let U = {0, 1} be the universe of discourse. Th ere are two predicates ODD (x) and EVEN (x) and a 
function sum (x, y) that returns addition modulo two of its arguments x and y, i.e., sum (x, y) = (x + 
y) % 2. Th e values of the predicates and the functions for various combinations of their arguments 
are given in Table 3.14 and Table 3.15.

Now consider the statements

 (i) (∀x) ODD (x) + EVEN (x)
(ii) (∀x) ODD (x) → (∃y) EVEN (sum (x, y))

Th e fi rst statement can be evaluated by checking whether ODD (x) + EVEN (x) is true for all pos-
sible values of x. Table 3.14 shows that the statement ODD (x) + EVEN (x) is true for all possible 
values of x in its domain, i.e., for both x = 0, and x = 1. Hence statement (∀x) ODD (x) + EVEN (x) 
is true. Th e truth table for the second statement is shown in Table 3.16. 

Th ere is only one odd value of x, 1, and so ODD (x) is True for x = 1. Now, to evaluate the ex-
pression (∀x) ODD (x) → (∃y) EVEN  (sum (x, y)) is true, we have to set x = 1 and then look for a 
value of y such that sum (x, y) is even, or 0. Table 3.16 shows that there does exist a y that satisfi es 
the condition stated above. We see that for x = 1, and y = 1, ODD (x) is True and EVEN (sum (x, 
y)) is also true so that ODD (x) → (∃y) EVEN (sum (x, y)) is true which in turn makes the given 
wff  true.
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Table 3.16

x y ODD (x) Sum (x, y) EVEN (sum (x, y))

0
0
1
1

0
1
0
1

False
False
True
True

0
1
1
0

True
False
False
True

In contrast, consider the statement (∀x) (∀y) ODD (sum (x, y)) → ODD (y). Th is is not true be-
cause at x  = 1 and y = 0 we fi nd that ODD (sum (x, y)) is true but ODD (y) is false

Properties of FOPL well-formed formulae As in propositional logic, the concepts of validity, consis-
tency, satisfi ability, logical consequence etc. applies to FOPL too. 

An FOPL wff  is valid if it is true for every interpretation. A wff  is inconsistent (or unsatisfi able) if it is 
false for every interpretation. An invalid wff  is one that is not valid. In other words, if a wff  evaluates to 
False for some interpretation then it is invalid. Similarly, a consistent (or satisfi able) wff  is one that is not 
inconsistent, and hence, is True for some interpretation. Moreover, a wff  W is a logical consequence of 
certain wff s, say W1, W2, …, Wk, if and only if whenever W1, …, Wk are true for some interpretation, W 
is also true for the same interpretation.

Table 3.17. Some important FOPL identities

# Identity

1. P • Q ≡ Q • P Commutative law

P + Q ≡ Q + P

2. P • (Q • R) ≡ (P • Q) • R Associative law

P + (Q + R) ≡ (P + Q) + R

3. P + (Q • R) ≡ (P + Q) • (P + Q) Distributive law

P • (Q + R) ≡ (P • Q) + (P • R)

4. ¬(P + Q) ≡ (¬P) • (¬Q) De Morgan’s law

¬(P • Q) ≡ (¬P) + (¬Q)

5. ¬((∀x) P [x]) ≡ (∃x) (¬P [x])

¬((∃x) P [x]) ≡ (∀x) (¬P [x])

6. (∀x) P [x] • (∀y) Q [y] ≡ (∀z) (P [z] • Q [z])

(∃x) P [x] + (∃y) Q [y] ≡ (∃z) (P [z] + Q [z])

Th e concepts of free and bound variables in FOPL wff s are important. A variable that exists within the 
scope of a quantifi er is called a bound variable. For example, in the formula (∀x) (∃y) P (x) → Q (y), both 
x and y are bound variables. However, in (∀x) P (x, y) → (∃z) Q (x, z) x and z are bound variables but y 
is free. It should be noted that an FOPL wff  can be evaluated only when all variables in it are bound. Such 
wff s are also referred to as sentences.
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Two FOPL wff s are said to be equivalent if for all interpretations, both of them evaluate to the same truth 
value. Table 3.17 presents some important logical identities involving FOPL wff s. Here P and Q are arbi-
trary wff s and P[x] represents a wff  P that involves the variable x.

Th e identities in Row 6 should be considered carefully. First of all, we must appreciate that all vari-
ables are essentially ‘dummy’ variables in the sense that any symbol can be used for them, so long as they 
do not ‘collide’ with one another. For example, (∀x) P [x] is equivalent to (∀y) P [y]. Similarly, (∀x) P 
[x] • (∀y) Q [y] is equivalent to (∀x) P [x] • (∀x) Q [x] because in the later expression the scope of the 
fi rst x is P [x], while the scope of the latter x is Q [x]. So, though the same symbol x is used in both cases 
actually they represent two unrelated variables.

Now let us consider the equivalence (∀x) P [x] • (∀y) Q [y] ≡ (∀z) (P [z] • Q [z]). As a supporting 
example, let P [x] means ‘x is a rational number’, and Q [y] means ‘y is a real number’. Obviously, for the 
aforementioned identity hold good the variables x, y and z must belong to the same universe of dis-
course. Let us suppose that the universe here is the set of all integers. Now the left  hand side and the right 
hand side of the identity (∀x) P [x] • (∀y) Q [y] ≡ (∀z) (P [z] • Q [z]) can be stated as :

L.H.S.: (∀x) P [x] • (∀y) Q [y]  All integers are rational numbers and all integers are real numbers.
R.H.S.: (∀z) (P [z] • Q [z]) All integers are rational numbers as well as real numbers.

Both the statements are true. However, if we replace conjunction with disjunction, the identity no longer 
holds good.

(∀x) P [x] + (∀y) Q [y] ≠ (∀z) (P [z] + Q [z])

To convince ourselves about the non-equivalence of the L.H.S and the R.H.S, let us suppose P [x] repre-
sents the statement ‘x is an even number’ and Q [y] represents ‘y is an odd number’. Th en the statements 
on the L.H.S. and R.H.S. correspond to

L.H.S.: (∀x) P [x] + (∀y) Q [y] All integers are odd or all integers are even.
R.H.S.: (∀z) (P [z] + Q [z]) All integers are either odd, or even.

Here the second statement is true but the fi rst is not. Hence they are not equivalent.
To appreciate the equivalence (∃x) P [x] + (∃y) Q [y] ≡ (∃z) (P [z] + Q [z]) and the non-equivalence 

(∃x) P [x] • (∃y) Q [y] ≠ (∃z) (P [z] • Q [z]) we may consider the propositions P [x] = ‘x is alive’ and Q [x] 
= ‘x is dead’ with the assumption that nothing can be simultaneously alive and dead. Here the universe 
of discourse may be the set of all human beings, dead or alive. 

3.1.3 Rules of Inference

Rules of inference are rules with which new propositions are obtained from a set of given statements. 
Th ere are two kinds of rules of inference, deductive and non-deductive. Some important deductive rules 
of inference are Modus Ponens, Universal Specialization, Chain Rule, Resolution, Modus Tollens (also 
called Indirect Reasoning, or Law of Contraposition), Simplifi cation, Addition, etc. Examples of non-
deductive rules of inference are Abduction, Induction, and Analogy. Th ese are briefl y described in this 
Subsection.

Deductive rules of inference An inference rule consists of two parts, the premise(s) and the 
conclusion. For instance, Modus Ponens has two premises, P → Q, and P. And the conclusion is Q.
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(a) Modus Ponens
Premise No. 1. P → Q
Premise No.2. P
Conclusion Th erefore, Q

Example 3.6   (Modus Ponens)

Premise No. 1. If the car is expensive then it is comfortable.

Premise No. 2. Th e car is expensive.

Conclusion Th erefore, the car is comfortable.

Th e other inference rules are described below with illustrative examples.

(b) Universal Specialization
Premise No. 1. (∀x) W [x]                  
Conclusion. Th erefore, W [A]                  

A is a constant belonging to the universe of discourse. 

Example 3.7   (Universal Specialization)

Premise No. 1. All natural numbers are integers.
Conclusion. Th erefore, 3 is an integer.

(c) Chain Rule
Premise No. 1. P → Q
Premise No. 2. Q → R
Conclusion. Th erefore, P → R

Example 3.8   (Chain Rule)

Premise No. 1. If the day is sunny then there will be a large crowd.

Premise No. 2. If there is a large crowd then the sell is high.

Conclusion. Th erefore, If the day is sunny then the sell is high.

(d) Simplifi cation
Premise No. 1. P • Q
Conclusion. Th erefore, P (or Q).
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Example 3.9   (Simplifi cation)

Premise No. 1. Th e sky is blue and 2 is a prime number.

Conclusion Th erefore, Th e sky is blue. (or, 2 is a prime number)

(e) Resolution

Premise No. 1. P1 + … + Pm

Premise No. 2. ¬P1 + Q2 + … + Qn

Conclusion. Th erefore, P2 + … + Pm + Q2 + … + Qn 

Example 3.10   (Resolution)

Premise No. 1. It is a rainy day, or I have a raincoat. 

Premise No. 2. It is not a rainy day, or dog is a faithful animal.

Conclusion. Th erefore, I have a raincoat, or dog is a faithful animal.

(f) Modus Tollens

Premise No. 1. P → Q
Premise No. 2. ¬Q

Conclusion. Th erefore, ¬P 

Example 3.11   (Modus Tollens)

Premise No. 1. If the shirt is cheap then there is life on Mars. 

Premise No. 2. Th ere is no life on Mars.

Conclusion. Th erefore, Th e shirt is not cheap.

(g) Addition

Premise No. 1. P 

Conclusion. Th erefore, P + Q

Example 3.12   (Addition)

Premise No. 1. Th e Earth is round. 

Conclusion. Th erefore, Earth is round, or Man is mortal.
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Non-deductive Rules of Inference Non-deductive inference rules are important because they 
represent the common sense reasoning process that we employ in everyday life to tackle practical prob-
lems. Th ese rules are followed to arrive at a conclusion or take a decision which is most likely to be valid 
or correct though not guaranteed to be so. Th e three non-deductive inference rules Abduction, Induc-
tion and Analogy are briefl y explained below.

Abduction Let P Qc  be the expression for a possible cause and eff ect relationship between the 
statements P and Q where P is the cause and Q is its possible eff ect. In abduction, given P Qc and Q, 
we can conclude P. Hence

(a) Abduction

Premise No. 1. P Qc

Premise No. 2. Q
Conclusion. Th erefore, P 

Example 3.13   (Abduction)

Premise No. 1. If you work hard then you will be successful. 
Premise No. 2. You are successful.
Conclusion. Th erefore, You have worked hard.

Induction In practical life, if we fi nd a statement to be true for a number of cases, we tend to assume 
that it is true in general. Th is is expressed by the inductive rule of inference.

(b) Induction
Premise No. 1. P [A1]
Premise No. 2. P [A2]

:     :
:     :
Premise No. k. P [Ak]
Conclusion. Th erefore, (∀x) P [x]

Example 3.14    (Induction)

Premise No. 1. Mr Ghosh is a businessman and he is rich. 
Premise No. 2. Mr Rao is a businessman and he is rich.
Premise No. 3. Mr Smith is a businessman and he is rich.
Premise No. 4. Mr Ansari is a businessman and he is rich.
Premise No. 5. Mr Fujiwara is a businessman and he is rich.
Conclusion. Th erefore, all businessmen are rich.
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Analogy Our everyday experience tells us that if a situation, or object, or entity is similar to an-
other situation, or object, or entity in some aspect, then they are likely to be similar in other aspects too. 
If we represent the fact that P is related to Q as P Qr , and P is similar to P1 as P ≈ P1, then, the ana-
logical rule of inference can be stated as

(c) Analogy

Premise No. 1. P Qr

Premise No. 2. P ≈ P1

Premise No. 3. Q ≈ Q1

Conclusion. Th erefore, ′ ′P Q′ ⎯→⎯→⎯→r

Example 3.15   (Analogy)

Premise No. 1. Gentle people are generally soft  spoken. 

Premise No. 2. Gorillas are much like people.

Premise No. 3. Soft  spoken creatures seem to be humble.

Conclusion. Th erefore, Gentle gorillas are generally humble.

3.2 FUZZY LOGIC BASICS

Th e propositional logic and the predicate logic discussed so far are crisp. Th ese are two-valued logic because 
they are based on the law of excluded middle according to which a statement can be either true or false, and 
nothing else. Fuzzy logic extends crisp logic by accepting the possibility of the infi nite shades truths between 
absolute falsehood and absolute truth. Th is section presents the fundamental concepts of fuzzy logic.  

Table 3.18. Fuzzy truth values

Linguistic Numeric (tentative)

Absolutely False 0.00

Partly False 0.25

Neither False nor True 0.50

Both False and True 0.50

Partly True 0.75

Absolutely True 1.00

3.2.1 Fuzzy Truth Values

In classical (or crisp) logic there are only two possible truth values, true and false, numerically expressed 
as 1 and 0 respectively. Unlike crisp truth values, there are various fuzzy truth values including the crisp 
truth values. Certain common linguistic fuzzy truth values and their tentative numeric values are shown 
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in Table 3.18.  Th e numeric truth values indicated above are not absolute. Th ey may vary depending on 
requirement of context and interpretation. Th ere may be other linguistic truth values such as more-or-
less false, very true, almost true etc.

Fuzzy propositions A proposition that can have a fuzzy truth value is known as a fuzzy proposi-
tion. Let p be a fuzzy proposition. Th en the truth value of p is denoted by t (p) where 0 ≤ t (p) ≤ 1. A few 
examples of fuzzy propositions are cited in Table 3.19 along with their possible fuzzy truth values – both 
linguistic and numeric. 

Table 3.19. Fuzzy proposition and their possible truth values

# Proposition (p) Fuzzy Truth Value, t (p)

Lingustic Numeric

1. √2 is a rational number. Absolutely False 0.00

2. She is very emotional. Partly True 0.70

3. The book is quite costly. Partly False 0.30

4. He is rich. Partly False 0.40

5. Humble people are usually polite. Mostly True 0.80

6. The Earth is round. Almost Absolutely True 0.97

7. The only even prime number is 2. Absolutely True 1.00

Obviously, the numeric truth values against their linguistic counterparts are tentative. Th ey may vary 
depending on requirement of context and interpretation.

Fuzzy logic operations Various operations of crisp logic, e.g., disjunction (+), conjunction (•), 
negation (′), implication (→) etc., have their fuzzy counterparts. Th e basic fuzzy operations are given in 
Table 3.20. 

Table 3.20. Fuzzy logic operations

#  Operation Symbol Usage Defi nition

1 disjunction + P + Q t (P + Q) = max {t (P), t  (Q)}

2 conjunction • P • Q t  (P • Q) = min {t  (P), t  (Q)}

3 negation ¬ ¬P t  (¬P) = 1 − t (P)

4 implication → P → Q t  (P → Q) = max {1 − t (P), t (Q)}

Th ere are various interpretations of fuzzy implication such as

t (P → Q) = 1 if t (P) ≤ t (Q),
 = 0, otherwise
t (P → Q) = 1 if t (P) ≤ t (Q),
 = t (Q), otherwise
t (P → Q) = min {1, t  (Q) /t (P)}
t (P → Q) = min {1, [t (Q) (1-t (P)] / [t (P) (1 − t (Q)]}
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t (P → Q) = min {1, 1 − t  (P) + t (Q)}
t (P → Q) = max {min (t  (P), t  (Q)), 1 − t (P)} 

Th e last one was proposed by Zadeh. Depending on the context and application, user has to identify and 
select the appropriate interpretation of fuzzy implication.

Example 3.16   (Fuzzy logic operations)

Let us consider the following two fuzzy propositions along with their fuzzy truth values

p = Mr. Bakshi is handsome. t  (p) = 0.7
q = Mr. Bakshi is tall. t  (q) = 0.4

Various fuzzy operations on these fuzzy operations are shown below.

Fuzzy AND.    t  (p • q) = min {t (p), t (q)} = min {0.7, 0.4} = 0.4
Fuzzy OR.      t  (p + q) = max {t (p), t (q)} = max {0.7, 0.4} = 0.7
Fuzzy NOT.    t  (p′) =  1 − t (p) = 1 − 0.7 = 0.3,
          t  (q′) = 1 − t (q) = 1 − 0.4 = 0.6
Fuzzy implication   t (p → q) = max {1 − t (p), t (q)} = max {1-0.7, 0.4} = 0.4

3.3 FUZZY TRUTH IN TERMS OF FUZZY SETS

Fuzzy logic can be related to fuzzy sets by equating fuzzy truth values to the degrees membership to 
fuzzy sets. Let F be a fuzzy set over the universe U and x ∈ U. Th en what is the truth value of the state-
ment p = ‘x is a member of F’? Obviously, it should be nothing but the extent to which x is a member of 
F. Hence t (p) = m F (x). Th is association between fuzzy set membership and fuzzy logic truth value is 
illustrated in Example 3.17.  

Example 3.17   (Fuzzy truth values in terms of fuzzy membership) 

Let a = warm-colour, and b = cool-colour be fuzzy sets on the universe of colour = {violet, mauve, 
magenta, blue, green, brown, yellow, orange, pink}.

a warm colour
mauve brown yellow orange pgg in

=warm colour + + + +
0 2 0 4 0 6 0 8 1 0. .2 0 . .6 0

kk

b cool colour
mauve brown yellow blue greengg

=cool colour + + + +
0 3 0 5 0 2 0 8 1 0. .3 0 . .2 0

Th en the truth values of the fuzzy proposition p = ‘yellow is a warm-colour,’ and q = ‘blue is a cool-
colour’ would be

t (p) = m warm-colour (yellow) = 0.6
t (q) = m cool-colour (blue) = 0.8.

Let a and b be two fuzzy sets on the universe U and p = ‘x is a member of a,’ q = ‘x is a member of b’ are two 
fuzzy propositions. Th en t (p + q) = max {t (p), t (q)} = max {m A (x),  m B (x)} = m A ∪ B (x). Similarly t (p • 
q) = m A ∩ B (x), and t (p′) = m A′(x). Th erefore fuzzy logic and fuzzy set theory are isomorphic systems.
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Fuzzy truth and linguistic variables An atomic fuzzy proposition has the form ‘x is P’ where P 
is a predicate and a linguistic fuzzy value of a linguistic variable, say L. Moreover, L must be measurable 
and must have a crisp value corresponding for x. How to fi nd the truth value of a fuzzy proposition s = 
‘x is P’? Th e truth value of s, t (s), can be obtained in the following way

1. Evaluate L for x. Th is is possible because L is measurable.
2. Find the membership of L(x) in P, i.e., fi nd m P (L (x)).
3. t (s) = m P (L (x)).

Hence, s is true to the extent L (x) is a member of P. Th is is illustrated in Example 3.18.

age inii
years

40302010
0

1

myoung

Fig. 3.1. Membership profi le of  young

age inii
years

403020 2510
0

0.5

1

myoung t (P ) = myoung (25) = 0.5

Fig. 3.2. Finding fuzzy truth value from degree of membership

Example 3.18   (Fuzzy truth-value in terms of fuzzy membership)

Consider the fuzzy proposition p = ‘Anita is young’. Here the predicate young is a linguistic value of 
the linguistic variable age. Other possible linguistic values of age are very young, middle-aged, aged, 
old, very old, and so on. Each of these linguistic values corresponds to a fuzzy set on the universe of 
age. Let the membership profi le of young be as shown in Fig. 3.1. As age is a measurable quantity it 
is possible to fi nd the value of age of Anita. If Anita’s age is 25 years then we have age (Anita) = 25. 
From the membership profi le of young we see that m young (age (Anita)) = m young (25) = 0.5 (Fig. 3.2). 
Hence the fuzzy truth value of the proposition p = ‘Anita is young’ is t  (p) = 0.5.   

3.4 FUZZY RULES

Fuzzy rules are of special interest because they constitute an integral part of the so called fuzzy inference 
systems, or fuzzy inference mechanisms. Th e core of fuzzy inference system is the fuzzy rule base, which 
consists of a set of fuzzy rules. In real life, the concept of fuzzy inference system is used to construct fuzzy 
controllers. Th ese topics are discussed in greater details in the next chapter.
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3.4.1 Fuzzy If-Then

An elementary fuzzy rule R is a statement of the form

 If p Th en q (3.1)

where p and q are atomic fuzzy propositions known as the antecedent and the consequent respectively. 
Th ey have the form of an atomic propositions ‘x is A’. 

We have seen that the truth value of a fuzzy statement p = ‘x is A’ is given by the membership value of 
the fuzzy set A. Moreover, A is the predicate of the statement p = ‘x is A’ so that using the formalism of 
predicate logic p is denoted as A (x). Th erefore the fuzzy rule

 R : If ‘x is A’ Th en ‘y is B’ (3.2)

is symbolically expressed as 

 R : A (x) → B (y) (3.3)

Hence, the fuzzy rule If ‘x is A’ Th en ‘y is B’ can be expressed as a fuzzy relation between A and B where 

 R (x, y) = t  [A (x) → B (y)] (3.4)

Th ere are various interpretations of fuzzy rule. Among these, interpretations proposed by Mamdani and 
Zadeh are the most popular. Th ese are

a) Mamdani’s interpretation of fuzzy rule:

R (x, y) = t  [A (x) → B (y)] 
  = min [t  (A (x)), t  (B (y))] = min [m A (x), m B (y)] (3.5)

b) Zadeh’s interpretation of fuzzy rule:

 R (x, y) = t  [A (x) → B (y)] 
 = max [min {m A (x), m B (y)}, 1 − m A (x)] (3.6)

Assuming U and V to be the universes for the fuzzy sets A and B respectively, Zadeh’s interpretation of 
fuzzy rule is equivalent to the relation

 R  = (A × B) ∪ (A′ × V) (3.7)

where V is used as a fuzzy set in which all the members have membership value 1.

Example 3.19   (Zadeh’s interpretation of fuzzy rules)

Let R : If ‘job is risky’ Th en ‘compensation is high’ be a fuzzy rule. Th ere are four jobs job1, job2, job3 
and job4, constituting the universe job = {job1, job2, job3, job4}. Also, there are four categories of 
compensation c1, c2, c3, and c4 in ascending order. Hence the universe for compensations is compen-
sation = {c1, c2, c3, c4}. Th e fuzzy sets risky-job and high-compensation are defi ned on the universes 
job and compensation respectively as given below. 

risky jk ob
job job job job

jj = + + +
0 3 0 8 0 7 0 9

2job 4job
. .3 0 .7 0

highi compensation
c c c c

-cc = + + +
0 2 0 4 0 6 0 8

1 2 3c c 4

. .2 0 . .6 0
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Using Zadeh’s interpretation, the truth value of rule R is expressed by the relation

R = (risky-job × high-compensation) ∪ ( risky jk ob × compensation)

Now, 

risky-job × high-compensation = 

C C C C
job
job
job
job

1 2C 3 4C

1

2

3

4

0 2 0 3 0 3 0 3
0 2 0 4 0 6 0 8
0 2 0 4 0 6 0

. .2 0 . .3 0

. .2 0 . .6 0

. .2 0 . .6 0..7
0 2. 0 4. 0 6. 0 8.

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

,

and,  risky jk ob × compensation = 

C C C C
job
job
job
job

1 2C 3 4C

1

2

3

4

0 7 0 7 0 7 0 7
0 2 0 2 0 2 0 2
0 3 0 4 0 6 0

. . . .7 0 7 0 7 0

. . . .2 0 2 0 2 0

. . . .3 0 4 0 6 0..
. .

7
0 2. 0 4.. 0 6.. 0 8.

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

,

and fi nally, R = (risky-job × high-compensation) ∪ ( risky jk ob × compensation)

= 

job
job
job
job

1

2

3

4

0 7 0 7 0 7 0 7
0 2 0 4 0 6 0 8
0 3 0 4 0 6 0 7
0 2 0 4

. . . .7 0 7 0 7 0

. . . .2 0 4 0 6 0

. . . .3 0 4 0 6 0

. .2 0 0 600 0 8. .6 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Hence the matrix R obtained above embodies the information in the fuzzy implication IF job is 
risky THEN compensation is high on the basis of the fuzzy concepts risky-job and high-compensa-
tion as defi ned above.

3.4.2 Fuzzy If-Then-Else

A fuzzy If-Th en-Else rule R has the form 
 If ‘x is A’ Th en ‘y is B’ Else ‘y is C’ (3.8)
where A is a fuzzy set on some universe U and B and C are fuzzy sets on the universe V. Th e truth value 
of R, in terms of the membership values of the fuzzy sets is given by

t (R (x, y)) = m R (x, y)
 = max [min {m A (x), m B (y)}, min {1 − m A (x), m C (y)}] (3.9)
Th is is nothing but the fuzzy relation 
 R = (A × B) ∪ (A′ × C) (3.10)
Example 3.20 illustrates the fuzzy If-Th en-Else rule.

Example 3.20   (Fuzzy If-Th en-Else rule)

Th e fuzzy If-Th en-Else rule under consideration is R : If ‘distance is long’ Th en ‘drive at high 
speed’ Else ‘drive at moderate speed’. To match with the form given in Expression 3.8, this rule
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can be restated as R : If ‘distance is long’ Th en ‘speed is high’ Else ‘speed is moderate’. Th e relevant 
sets (crisp and fuzzy) are, distance = {100, 500, 1000, 5000} is the universe of the fuzzy set long-
distance, speed = {30, 50, 70, 90, 120} is the universe of the fuzzy sets high-speed as well as moder-
ate-speed, and 

long distance

highi speed

-

-

= + + +

=

0 1
100

0 3
500

0 7
1000

1 0
5000

0 1
3

. .1 0 . .7 1

00
0 3
50

0 5
70

0 7
90

0 9
120

0 3
30

0 8
50

0 6
7

+ + ++ +

= + +

. . .3 0 5 0

. .3 0moderate-speed
00

0 4
90

0 1
120

+ +
. .4 0

Applying Expression 3.10 we get

R = (A × B) ∪ (A′ × C) 
= (long-distance × high-speed) ∪ ( long -distance  × normal-speed). 

Th e relation matrix R is computed as follows.

long-distance × high-speed = 

50 70 90 120
100
500
1000
5000

0 1 0 1 0 1 0 1 0 1
0 1 0 3 0 3 0 3 0 3
0 1

. . .1 0 1 0

. . .3 0 3 0
. 01 0 300 0 5 0 7 0 7

0 1 0 3 0 5 0 7 0 9
. . .3 0 5 0
. . .3 0 5 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

long distance-  × moderate-speed = 

30 50 70 90 120
100
500
1000
5000

0 3 0 8 0 6 0 4 0 9
0 3 0 7 0 6 0 4 0 1
0 3

. .3 0 . .6 0

. .3 0 . .6 0

. 03 0 300 0 3 0 3 0 1
0 0 0 0 0 0 0 0 0 0

. .3 0 . .3 0
. .0 0 . .0 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

∴ R = (A × B) ∪ (A′ × C) 
= (long-distance × high-speed) ∪ ( long distance-  × normal-speed) 

= 

30 50 70 90 120
100
500
1000
5000

0 3 0 8 0 6 0 4 0 9
0 3 0 7 0 6 0 4 0 3
0 3

. .3 0 . .6 0

. .3 0 . .6 0

. 03 0 300 0 5 0 7 0 7
0 1 0 3 0 5 0 7 0 9

. .3 0 . .7 0
. .1 0 . .5 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

So far we have discussed the simplest kind of fuzzy rules. Th ey can be generalized to accommodate sev-
eral fuzzy propositions into the antecedent part. Th e Generalized Fuzzy Rule is expressed as
 If  ‘x 1 is A 1’ • …• ‘x m is A m’ Th en ‘y 1 is B 1’• …• ‘y n is B n’ (3.11)
Fuzzy rules are the foundation of reasoning in fuzzy logic. Fuzzy reasoning is discussed in the next Sec-
tion.
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3.5 FUZZY REASONING

Reasoning is the process of fi nding new propositions from old propositions. It is accomplished by ap-
plying the rules of inference on propositions already known to be true. In subsection 3.1.3, the rules of 
inference of crisp logic, e.g., modus ponens, universal specialization, chain rule, resolution etc. have been 
discussed. Fuzzy reasoning refers to reasoning involving fuzzy propositions, applying fuzzy rules of in-
ference, producing new fuzzy propositions. Th e fundamentals of fuzzy reasoning are presented in the 
subsequent parts of this section.

3.5.1 Fuzzy Quantifi ers

Recall that predicate logic had two quantifi ers, the universal quantifi er ∀, and the existential quantifi er 
∃. Fuzzy propositions too may contain quantifi ers and these quantifi ers are usually referred to as fuzzy 
quantifi ers. Th ere are two kinds of fuzzy quantifi ers, absolute and relative. A fuzzy quantifi er that refers 
to some specifi c value is known as absolute fuzzy quantifi er. A relative fuzzy quantifi er, however, do not 
refer to any specifi c value. A few instances of both types of fuzzy quantifi ers are cited below.

Fuzzy Quantifi ers

Absolute Relative
Nearly 100 Almost
Far below 0 Most
Much greater than 50 About
Somewhere around 300 Few
Round about 1000 Nearly

3.5.2 Generalized Modus Ponens

As the name suggests, generalized modus ponens is the generalization of crisp modus ponens but diff ers in 
two aspects. First, it applies to statements that are fuzzy, and second, the conclusion need not be exactly the 
same as the consequent. A typical fuzzy reasoning employing generalized modus ponens may look like 

Premise No. 1. If this car is expensive Th en it is comfortable.
Premise No. 2. Th is car is more or less expensive.
Conclusion. Th erefore, Th is car is more or less comfortable.

Th erefore, the generalized modus ponens rule of inference may be presented as follows : 

Generalized Modus Ponens

Premise No. 1. If ‘x is A’ Th en ‘y is B’.

Premise No. 2. x is A1.

Conclusion. Th erefore, y is B1.

where A, A1, B, B1 are fuzzy statements and A1 and B1 are modifi ed versions of A and B respectively. 
Th e generalized modus ponens described above is also known as fuzzy inference. Zadeh interpreted 

fuzzy inference in terms of max–min composition of relations on fuzzy sets. Let A and A1 be fuzzy sets 
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on the universe U, and B, B1 are fuzzy sets on the universe V. Th en the truth value of the conclusion ‘y is 
B1’ in terms of membership functions of the related fuzzy sets is obtained as

 μ μ( ) ( ) m [min{ ( ), (μ , )}]y xμ) max[min{ x y,B
x U

Rμμ1 1( y μ) [ {μ ( )B  (3.12)

where R represents the relation corresponding to the rule ‘If ‘x is A’ Th en ‘y is B’. Th e formula stated 
above actually computes the fuzzy set B 1 as the max-min composition of A and R.

 B 1 = A 1 ° R (3.13)

Example 3.21   (Fuzzy reasoning with the help of generalized modus ponens) 

Let us reconsider the implication ‘If service is good Th en customer is satisfi ed’. Th e associated uni-
verses of discourse are 

U = service-rating = {a, b, c, d, e}
V = satisfaction-grade = {1, 2, 3, 4, 5}

Both the sequences a, b, c, d, e and 1, 2, 3, 4, 5 are in ascending order. Th e fuzzy sets good-service 
and satisfi ed are given below.

good service
a b c d e

- = + + ++ +
1 0 0 8 0 6 0 4 0 2. . . .0 0 8 0 6 0

satisfieff d = + + + ++
0 2
1

0 4
2

0 6
3

0 8
4

1 0
5

. .2 0 . .6 0

Th e information contained in the implication stated above is expressed by the relation

R = (good-service × satisfi ed) ∪ ( good service-  × satisfaction-grade)

Th e relation R is found to be

R = 

5 4 3 2 1
1 0 0 8 0 6 0 4 0 2
0 8 0 8 0 6 0 4 0 2
0 6 0 6 0 6 0 4 0 4
0 6

a
b
c
d
e

. . .8 0 6 0
. . . .8 0 8 0 6 0
. . . .6 0 6 0 6 0
. 06 0 600 0 6 0 6 0 6

0 8 0 8 0 8 0 8 0 8
. . .6 0 6 0

. . . .8 0 8 0 8 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Let us now consider very-good-service, a modifi ed version of good-service as given below.

very- good service
a b c d e

- 1
0 8 0 6 0 4 0 0 0 0

= + + + +
. . .8 0 6 0 . .0 0

Th e reasoning process may now be expressed as 

Premise No. 1. If service is good Th en customer is satisfi ed.

Premise No. 2. Service is very good.

Conclusion. Th erefore, Customer is very satisfi ed.
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Th e fuzzy information content of the conclusion is obtained by applying generalized modus pon-
ens in the form of the relation

very-satisfi ed = very-good-service ° R

Computation of the individual elements of the fuzzy set very-satisfied is illustrated subse-
quently.

μμμ y f
x U

very good service Rμ x-μvery -( ) [ i { ( ) (RμRμ ( ,1xμvery good service) [ i { ( )x (μμRμ , )})) ]

max [min { ( ), ( , )}, min {= μ μ( ) μμμ y g Rμ( ), very gooda()), - --service R

y g R

b b
c

(b (RR , )},
min{ ( ), (RR , )},

μ
μ μ- -very good service ( )c i)},minii { ( ( , )},

min { (
μ μ(

μ
μ y g Rμ( ),

very good service

d d) (μ) Rμ),

- -good

1
eee R), ( ,e )}]μ 1

= max [min (0.8, 0.2), min (0.6, 0.2), min (0..4, 0.4), ..
    min (0.0, 0.6), min (0.0, 0.8)]

= max [0.2, 0.2, 0.4, 0.0, 0.000 ]
= 0.4

Similarly, 

μvery satisfieff d- ( ) =) max [min (0.8, 0.4), min (0.6, 0.4), miin (0.4, 0.4),ii
       min (0.0, 0.6), min (0.0, 0.8)]

= max [0.4, 0.4, 0.4, 0.0, 0.0xx ]
= 0.4.

μvery satisfieff d- ( )=)  max [min (0.8, 0.6), min (0.6, 0.6), miin (0.4, 0.6),ii
min (0.0, 0.6), min (0.0, 0.8)]

= max [0.6, 0.6, 0.4, 0.0, 0.0xx ]
= 0.6.

μvery satisfieff d- ( )=)  max [min (0.8, 0.8), min (0.6, 0.8), miin (0.4, 0.6),ii
       min (0.0, 0.6), min (0.0, 0.8)]

= max [0.8, 0.6, 0.4, 0.0, 0.0xx ]
= 0.8.

μvery satisfieff d- ( )=) max [min (0.8, 1.0), min (0.6, 0.8), miin (0.4, 0.6),ii
       min (0.0, 0.6), min (0.0, 0.8)]

= max [0.8, 0.6, 0.4, 0.0, 0.0xx ]
= 0.8.

Hence the conclusion ‘Customer is very-satisfi ed’ is defi ned by the fuzzy set

very satisfieff d- 1
0 4
1

0 4
2

0 6
3

0 8
4

0 8
5

= + + + ++
. .4 0 . . .6 0 8 0
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3.5.3 Generalized Modus Tollens 

As in case of generalized modus ponens, generalized modus tollens is the generalization of crisp modus 
tollens. A typical fuzzy reasoning employing generalized modus tollens has the form

Premise No. 1. If this car is expensive Th en it is comfortable.

Premise No. 2. Th is car is more or less comfortable.

Conclusion. Th erefore, Th is car is more or less expensive.

Hence, the generalized modus tollens rule of inference may be presented as follows : 

Generalized Modus Tollens

Premise No. 1. If ‘x is A’ Th en ‘y is B’.

Premise No. 2. x is B1.

Conclusion. Th erefore, y is A1.

where A, A1, B, B1 are fuzzy statements and A1 and B1 are modifi ed versions of A and B respectively. Th e 
formula to compute the fuzzy set A1 as the max-min composition of B1 and R.

 A1 = B1°R (3.14)

Th is can be computed by applying the formula

 τ μ μ μ( ) ( ) ma [min{ ( ), (μ , )}]x yμ) max[min{ x y,
x U

Rμμμμ (x μ) max[min{A μμμ ( )Aμ ( )μA  (3.15)

where R represents the relation corresponding to the rule ‘If ‘x is A’ Th en ‘y is B’.

Example 3.22   (Fuzzy reasoning with the help of Generalized Modus Tollens)

Premise No. 1. If a man is honest Th en he is happy.

Premise No. 2. Th is man is most probably happy.

Conclusion. Th erefore, Th is man is most probably honest.

 CHAPTER SUMMARY

Th e main points of the foregoing discussion are given below.

In classical, or crisp, logic a proposition is either true or false. It does not allow more than these two • 
truth values. Fuzzy logic accepts infi nite number of truth values between false and true. Numeri-
cally a fuzzy truth value is any real number between 0 and 1, both inclusive.
In propositional logic an interpretation of a logical expression is a combination of truth values for • 
the constituent individual propositions.
Symbolic expressions of propositional logic and predicate logic are known as well-formed for-• 
mulae (wff s). Two wff s are said to be logically equivalent if they attain the same truth value for all 
possible interpretations. A proposition which is true for all possible interpretations is said to be a 
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tautology. A contradiction is a proposition which is false for all possible interpretations. A number 
of statements is said to be consistent if they can all be true simultaneously. An argument is said to 
be valid if the conclusion is true whenever the premises are true.          
Predicate logic is an extension of propositional logic. It captures the inner structure of a statement • 
by introducing symbolic representation of the predicate part of a statement, and also by includ-
ing the two quantifi ers, viz., the universal quantifi er (∀), and the existential quantifi er (∃) into its 
formalism. 
Unlike propositional logic, a predicate logic statement is always interpreted in the context of some • 
domain called the universe of discourse.
An FOPL wff  is valid if it is true for every interpretation. It is inconsistent (or unsatisfi able) if it is • 
false for every interpretation. An FOPL wff  W is a logical consequence of certain wff s, say W1, W2, 
..., Wk, if and only if whenever W1, ..., Wk are true for some interpretation, W is also true for the 
same interpretation.
An FOPL•  wff  of the form (∀x) P[x] is true if and only if it is true for all values of x within its do-
main. And the wff  (∃x) P[x] is true if and only if there exists at least one value of x for which P[x] 
is true. 
Rules of Inference are rules with which new propositions are obtained from a set of given state-• 
ments. Th ere are two kinds of rules of inference, deductive and non-deductive. Some important 
deductive rules of inference are Modus Ponens, Universal Specialization, Chain Rule, Resolution, 
Modus Tollens (also called Indirect Reasoning, or Law of Contraposition), Simplifi cation, Addition, 
etc. Th e most useful non-deductive rules of inference are Abduction, Induction, and Analogy.
An atomic fuzzy proposition has the form ‘• x is P’ where P is a predicate that corresponds to a fuzzy 
set. Th e truth value of the fuzzy statement ‘x is P’ is evaluated in terms of the membership function 
of the fuzzy set for the predicate P.
A fuzzy rule has the form If ‘• x is A’ Th en ‘y is B’. It can be interpreted as a fuzzy relation. According 
to Zadeh’s interpretation, a fuzzy rule may be expressed as the relation

R = (A×B)∪(A′×V)

where V is the universe of B and is used here as a fuzzy set in which all the members have mem-
bership value 1.
Two widely used fuzzy inference rules are the generalized modus ponens (GMP) and the general-• 
ized modus tollens (GMT). Th ese two rules of inference are stated below.

Generalized Modus Ponens (GMP)
Premise No. 1. If ‘x is A’ Th en ‘y is B’.
Premise No. 2. x is A1.
Conclusion. Th erefore, y is B1.

Generalized Modus Tollens (GMT)
Premise No. 1. If ‘x is A’ Th en ‘y is B’.
Premise No. 2. x is B1.
Conclusion. Th erefore, y is A1.

A, A1, B, B1 are fuzzy statements. A1 and B1 are modifi ed versions of A and B respectively. Th e rea-
soning process using GMP is also referred to as fuzzy inference. 
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In fuzzy inference, the truth value of the conclusion ‘• y is B1’ in terms of membership functions of 
the related fuzzy sets is obtained as

τ μ μ μ( ) ( ) ma [min{ ( ), (μ , )}]y y xμ) max[min{ x y,
x U

Rμμμμ (y μ) max[min{B μμ1μ ( )B ( )μB

Th is corresponds to the max-min composition of A and R.

B1 = A1°R

Here R denotes the relation corresponding to the rule If ‘x is A’ Th en ‘y is B’.
In case of GMT, the fuzzy set • A1 is computed as the max-min composition of B1 and R.

A1 = B1°R

Or,

τ μ μ μ( ) ( ) ma [min{ ( ), (μ , )}]x yμ) max[min{ x y,
x U

Rμμμμ (x μ) max[min{A μμμ ( )Aμ ( )μA

As usual, R denotes the relation corresponding to the rule If ‘x is A’ Th en ‘y is B’.

 SOLVED PROBLEMS

Problem 3.1. Determine whether the following propositional logic formulae are tautologies.

 (i) (a→b) → ((a→b′) →a′)
(ii) (a→b) → ((a+c) → (b+c))

Solution 3.1. (i) Th e truth table for Ψ = (a→b) → ((a→b′)→a′) = X→Y where X = a→b, and Y = 
(a→b)→a′ is shown in Table 3.21. Column 8 of Table 3.21 tabulates the truth values of Ψ = (a→b) → 
((a→b′)→a′) = X→Y corresponding to diff erent combinations of truth values of a, b, and c. As all entries 
of column 8, which represents the given expression, are true, the expression is a tautology. 

Table 3.21. Truth Table for Ψ = (a→b) → ((a→b′)→a′)

(1) (2) (3) (4) (5) (6) (7) (8)

a b a′ b′ a→b
(X)

a→b′ (a→b′) →a′
(Y)

X→Y
(Ψ)

(1) 0 0 1 1 1 1 1 1

(2) 0 1 1 0 1 1 1 1

(3) 1 0 0 1 0 1 0 1

(4) 1 1 0 0 1 0 1 1

(ii)  Let X = (a→ b), Y = (a+c), Z = (b+c). Th en the expression Ψ = (a→ b) → ((a+c) → (b+c)) is repre-
sented as X→(Y→Z). Th e corresponding truth table is shown in Table 3.22. Column 8 of Table 3.22, 
which tabulates the truth values of the given expression under diff erent interpretations, contains 
true value in all its entries. Th erefore, the given expression is a tautology.
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Table 3.22. Truth Table for Y = (a→ b) → ((a+c) → (b+c))

(1) (2) (3) (4) (5) (6) (7) (8)

a b C a→b
(X)

a+c
(Y)

b+c
(Z)

Y→Z X→(Y→Z)

(1) 0 0 0 1 0 0 1 1

(2) 0 0 1 1 1 1 1 1

(3) 0 1 0 1 0 1 1 1

(4) 0 1 1 1 1 1 1 1

(5) 1 0 0 0 1 0 0 1

(6) 1 0 1 0 1 1 1 1

(7) 1 1 0 1 1 1 1 1

(8) 1 1 1 1 1 1 1 1

Problem 3.2. Find out whether the following formulae are equivalent.

 (i) a→ (b+c) and a′+b+c 
(ii) a + (b′→ c) and a + (b→ c) ′
(iii) (a→ b)→ c and a→ (b → c)

Solution 3.2 (i) Th e Truth Table for a→ (b+c) and a′+b+c is shown in Table 3.23. Column 5 and 
Column 7, representing the formulae a′+b+c and a→ (b+c) respectively, are identical. Th erefore they at-
tain the same truth value for all possible interpretations. Hence, these two expressions are equivalent.

Table 3.23. Truth Tables for a→ (b+c) and a′+b+c

(1) (2) (3) (4) (5) (6) (7)

a b c a′ a′+b +c b+c a→ (b+c)

(1) 0 0 0 1 1 0 1

(2) 0 0 1 1 1 1 1

(3) 0 1 0 1 1 1 1

(4) 0 1 1 1 1 1 1

(5) 1 0 0 0 0 0 0

(6) 1 0 1 0 1 1 1

(7) 1 1 0 0 1 1 1

(8) 1 1 1 0 1 1 1

(ii)  Th e truth table for a+(b′→c) and a+(b→c)′ is shown in Table 3.24. Column 6 and column 8 of 
Table 3.24 represent the formulae a+(b′→c) and a+(b→c)′ respectively. Th e truth values in the en-
tries of row 2 and row 4 for these columns are complementary. Hence, these two expressions are not 
equivalent.
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Table 3.24. Truth Tables for a+(b′→c) and a+(b→c)′

(1) (2) (3) (4) (5) (6) (7) (8)

a b c b′ b′→c a+(b′→c) b→c a+(b→c)′
(1) 0 0 0 1 0 0 1 0

(2) 0 0 1 1 1 1 1 0

(3) 0 1 0 0 1 1 0 1

(4) 0 1 1 0 1 1 1 0

(5) 1 0 0 1 0 1 1 1

(6) 1 0 1 1 1 1 1 1

(7) 1 1 0 0 1 1 0 1

(8) 1 1 1 0 1 1 1 1

(iii)  Table 3.25 shows the truth table for (a→b)→c and a→(b →c). Column 6 and column 7 of Table 3.25 
represent the formulae (a→b)→c and a→(b →c), respectively. Th e truth values in the entries of row 1 
and row 3 for these columns are complementary. Hence, these two expressions are not equivalent.

Table 3.25. Truth Tables for (a→b)→c and a→(b →c)

(1) (2) (3) (4) (5) (6) (7)

a b c a→b b→c (a→b)→c a→(b→c)

(1) 0 0 0 1 1 0 1

(2) 0 0 1 1 1 1 1

(3) 0 1 0 1 0 0 1

(4) 0 1 1 1 1 1 1

(5) 1 0 0 0 1 1 1

(6) 1 0 1 0 1 1 1

(7) 1 1 0 1 0 0 0

(8) 1 1 1 1 1 1 1

Problem 3.3. Determine whether the following argument is valid or not. ‘If today is a holiday and 
the weather is sunny then we shall go for shopping. Today is a holiday. Today’s weather is sunny. Th erefore 
we shall go for shopping.’

Table 3.26

(1) (2) (3) (4) (5)

a b c a • b (a • b)→c
(1) F F F F T

(2) F F T F T

(3) F T F F T

(4) F T T F T

(5) T F F F T

(6) T F T F T

(Continued)
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Table 3.26 Continued

(1) (2) (3) (4) (5)

a b c a • b (a•b)→c

(7) T T F T F

(8) T T T T T

Solution 3.3. Let us denote ‘Today is a holiday’ as a, ‘Th e weather is sunny’ as b, and ‘We shall go for 
shopping’ as c. Th en the argument can be represented by the following sequence of expressions.

Proposition Expression

Premise No. 1. If today is a holiday and the weather is sunny Th en 
we shall go for shopping.

(a∧b) → c

Premise No. 2. Today is a holiday. a
Premise No. 3. Today’s weather is sunny. b
Conclusion. Th erefore, we shall go for shopping ∴c

Table 3.26 presents the various combinations of truth values for these expressions. An argument is said 
to be valid if the conclusion is true whenever the premises are true. It may be noted that the only case 
where all the premises, i.e., (a•b)→c, a, and b, are simultaneously true corresponds to Row 8 of the table. 
And the conclusion c is also true for this row. Th erefore the given argument is valid. 

Problem 3.4. Determine whether the following sets of formulae are consistent or not.

 (i) {a+b, b•c, (a+b)→(b•c)}
(ii) {a→c′, (a→b)′, a→(c′→b)}

Solution. 3.4 (i) A set of propositions is consistent if they all can be true simultaneously. Table 3.27 
shows the truth table for the set of propositional formulae {a+b, b•c, (a+b)→(b•c)}. Th e truth values of 
a+b, b•c, and (a+b)→(b•c) for various interpretations are noted in columns 4, 5, and 6 respectively. A 
careful scrutiny of the table reveals that there are truth value combinations for a, b, and c which renders 
all three propositions true (Rows 4 and 8). Hence the propositions are consistent.

Table 3.27. Truth Table for a+b, b•c, and (a+b)→(b•c)

(1) (2) (3) (4) (5) (6)

a b c a + b b • c (a + b)→(b • c)

(1) 0 0 0 0 0 1

(2) 0 0 1 0 0 1

(3) 0 1 0 1 0 0

(4) 0 1 1 1 1 1

(5) 1 0 0 1 0 0

(6) 1 0 1 1 0 0

(7) 1 1 0 1 0 0

(8) 1 1 1 1 1 1
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Table 3.28. Truth Table for a→c′, (a→b)′, a →(c′→b)

(1) (2) (3) (4) (5) (6) (7) (8)

a b c c′ a→c′ (a →b)′ c′→b a →(c′→b)

(1) 0 0 0 1 1 0 0 1

(2) 0 0 1 0 1 0 1 1

(3) 0 1 0 1 1 0 1 1

(4) 0 1 1 0 1 0 1 1

(5) 1 0 0 1 1 1 0 0

(6) 1 0 1 0 0 1 1 1

(7) 1 1 0 1 1 0 1 1

(8) 1 1 1 0 0 0 1 1

(iii)  Table 3.28 presents the Truth Tables for the propositional formulae a→c′, (a→b)′, a→(c′→b). Th e 
truth values of a→c′, (a→b)′, a→(c′→b) for various interpretations are noted in Columns 5, 6, and 
8 respectively. It is seen that these formulae are never true simultaneously.  Since a set of propositions 
is consistent only when they all can be true simultaneously, the given formulae are not consistent.

Problem 3.5. Consider the following statements: ‘I may fall sick if I smoke. I am not happy if I fall 
sick. I smoke. I am happy.’ Are they consistent? 

Solution 3.5. Let denote the statement ‘I may fall sick’ by a, ‘I smoke’ by b, and ‘I am happy’ by c. 
Th en, the given statements are represented by a sequence of Propositional Logic formulae as shown 
below:

# Proposition Formula
1. I may fall sick if I smoke. b→a
2. I am not happy if I fall sick. a→c′
3. I smoke. b
4. I am happy. c

From the Truth Table shown in Table 3.29 it is evident that these formulae are never simultaneously true. 
Hence the statements are not consistent.

Table 3.29. Truth table for b→a and a→c′

(1) (2) (3) (4) (5) (6)

a b c c′ b→a  a→c′

(1) 0 0 0 1 1 1

(2) 0 0 1 0 1 1

(3) 0 1 0 1 0 1

(4) 0 1 1 0 0 1

(5) 1 0 0 1 1 1

(6) 1 0 1 0 1 0

(7) 1 1 0 1 1 1

(8) 1 1 1 0 1 0
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Problem 3.6. Determine whether the following argument is valid or not.

Proposition
Premise No. 1. a→(b•c′)
Premise No. 2. a•(b→c)
Conclusion. ∴a

Solution 3.6. Table 3.30 shows the truth tables for the propositions of the given argument. An 
argument is valid if the conclusion is true whenever the premises are true. However, there is no inter-
pretation for which both the premises (Column 6 and Column 8) are true simultaneously. Th erefore the 
condition for validity of an argument is not violated in this case. Hence the argument is valid.

Table 3.30. Truth table for a→(b • c′) and a • (b → c)

(1) (2) (3) (4) (5) (6) (7) (8)

a b c c′ b • c′ a→(b • c′) b → c a • (b → c)

(1) 0 0 0 1 0 1 1 0

(2) 0 0 1 0 0 1 1 0

(3) 0 1 0 1 1 1 0 0

(4) 0 1 1 0 0 1 1 0

(5) 1 0 0 1 0 0 1 1

(6) 1 0 1 0 0 0 1 1

(7) 1 1 0 1 1 1 0 0

(8) 1 1 1 0 0 0 1 1

Problem 3.7. Illustrate the following inference rules with an example for each: Modus Ponens, 
Universal Specialization, Chain Rule, Resolution, Modus Tollens, Simplifi cation, Addition, Abduction, 
Induction, and Analogy.

Solution 3.7. Th e illustrative examples are cited below.

(i) Modus Ponens

Premise No. 1. If Anand is good Th en Anand is popular.

Premise No. 2. Anand is good.

Conclusion. Th erefore, Anand is popular.

(ii) Universal Specialization

Premise No. 1. All men are mortal.

Conclusion. Th erefore, Anand is mortal.
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(iii) Chain Rule

Premise No. 1. If x is a natural number Th en x is an integer.

Premise No. 2. If x is an integer Th en x is a real number.

Conclusion. Th erefore, If x is a natural number Th en x is a real number.

(iv) Resolution

Premise No. 1. Man is rational or God is divine.

Premise No. 2. Man is not rational or Th e universe is expanding.

Conclusion. Th erefore, Gods is divine or Th e universe is expanding.

(v) Modus tollens

Premise No. 1. If man is rational Th en man is good.

Premise No.2. Man is not good.

Conclusion. Th erefore, Man is not rational.

(vi) Simplifi cation

Premise No. 1. Anand is a man and Anand plays chess.

Conclusion. Th erefore, Anand is a man (or Anand plays chess)

(vii) Addition

Premise No. 1. Anand is a man.

Conclusion. Th erefore, Anand is a man or 2 is a prime number.

(viii) Abduction

Premise No. 1. If it rains Th en the grass is wet.

Premise No.2. Th e grass is wet.

Conclusion. Th erefore, it has rained.

(ix) Induction

Premise No. 1. Th e prime number 29 is odd.

Premise No. 2. Th e prime number 53 is odd.

Premise No. 3. Th e prime number 41 is odd. 

Premise No. 4. Th e prime number 211 is odd. 

Conclusion. Th erefore, All prime numbers are odd.
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(x)  Analogy Consider the fact that man can stand on two legs and therefore, they can use their two 
free hands for various purposes which the four legged animals generally cannot. Now, gorillas also 
occasionally stand on two legs. Hence, by virtue of the analogical reasoning we may conclude that 
gorillas can also employ their hands to perform various activities similar to human beings.

Problem 3.8. Apply the resolution rule of inference to prove statement 4 from statements 1, 2, and 
3 as given below. 

 (i) 1. p →q                 (ii) 1. p → q
2. r →s 2. r → s
3. p + r 3. q′+ s′
4. ∴q + s 4. ∴p′ + r′

Solution 3.8 Th e proofs are given below, with brief explanation of each step on the right.

(i) 1. p′ + q  [1, since p →q ≡ p′+q]
 2. r ′+ s  [2, since r →s ≡ r′+s]
 3. p + r  [3]
 4. q + r  [1 and 3, Resolution]
 5. q + s  [2 and 4, Resolution]
(ii) 1. p′ + q  [1, since p →q ≡ p′+q]
 2. r′ + s  [2, since r →s ≡ r′+s]
 3. q′ + s′  [3]
 4. p′ + s′  [1 and 3, Resolution]
 5. p′ + r′  [2 and 4, Resolution]

Problem 3.9 Prove that any statement can be derived from a contradiction.

Solution 3.9. Given, a + a′ as the premise, we have to derive b, where b is an arbitrary statement. 
Th e proof is given below.

1. a + a′  [1]
2. a  [1, Simplifi cation]
3. a′  [1, Simplifi cation]
4. a′ + b  [3, Addition]
5. b  [2 and 4, Resolution]

Problem 3.10. Given p → q, prove that p → (p • q). Th is is called Absoption.

Solution 3.10. Th e proof is given below.

1. p′+q   [1, since p → q ≡ p′ + q]
2. True • (p′+q)  [1, since X = True • X]
3. (p′+p) • (p′+q)  [2, since T = p′+p]
4. p′+(p•q)   [3, Distributive law]
5. p→(p•q)   [4, since a → b ≡ a′ + b]
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Problem 3.11. Prove the validity of the following argument.

1. p→(q+r′)
2. s→r
3. p
4. q′
5. ∴s′

Solution 3.11. Validity of the argument is given below.

1. p→(q+r′)  [1]
2. s→r   [2]
3. p   [3]
4. q′   [4]
5. q+r′   [1 and 3, Modus Ponens]
6. r→q   [5, since r→q ≡ r′+q]
7. s→q   [2 and 6, Chain Rule]
8. s′   [4 and 7, Modus Tollens]

Problem 3.12. Consider the fuzzy rule R : If service is good Th en customer is satisfi ed. Related uni-
verses are service-rating = {a, b, c, d, e}, and satisfaction-grade = {1, 2, 3, 4, 5} where the service-ratings a, 
b, c, d, e are in descending order and  the satisfaction-grades 1, 2, 3, 4, 5 are in the ascending order. Th e 
fuzzy sets good-service and satisfi ed are defi ned as follows:

good service
a b c d e

- = + + ++ +
1 0 0 8 0 6 0 4 0 2. . . .0 0 8 0 6 0

satisfieff d = + + + ++
0 2
1

0 4
2

0 6
3

0 8
4

1 0
5

. .2 0 . .6 0 .

Find the relation matrix for this rule according to Jadeh’s interpretation.

Solution 3.12. According to Zadeh’s interpretation, the rule R is expressed by the relation

R = (good-service × satisfi ed) ∪ ( good service-ss × satisfaction-grade)

Th e computation of the relation R representing the information contained in the fuzzy rule stated above 
is given below.

good-service × satisfi ed = 

5 4 3 2 1
1 0 0 8 0 6 0 4 0 2
0 8 0 8 0 6 0 4 0 2
0 6 0 6 0 6 0 4 0 2
0 4

a
b
c
d
e

. . . .8 0 6 0 4 0
. . . . .8 0 8 0 6 0 4 0
. . . . .6 0 6 0 6 0 4 0
. 04 0 400 0 4 0 4 0 2

0 2 0 2 0 2 0 2 0 2
. . . .4 0 4 0 4 0

. . . . .2 0 2 0 2 0 2 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

,
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good service-ss × satisfaction-grade = 

5 4 3 2 1
0 0 0 0 0 0 0 0 0 0
0 2 0 2 0 2 0 2 0 2
0 4 0 4 0 4 0 4 0 4
0 6

a
b
c
d
e

. . . . .0 0 0 0 0 0 0 0

. . . . .2 0 2 0 2 0 2 0

. . . . .4 0 4 0 4 0 4 0

.6 0 600 0 6 0 6 0 6
0 2 0 2 0 2 0 2 0 2

. . . .6 0 6 0 6 0
. . . . .2 0 2 0 2 0 2 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

,

Th erefore, R = (good-service × satisfi ed) ∪ ( good service-ss × satisfaction-grade)

= 

5 4 3 2 1
1 0 0 8 0 6 0 4 0 2
0 8 0 8 0 6 0 4 0 2
0 6 0 6 0 6 0 4 0 4
0 6

a
b
c
d
e

. . .8 0 6 0
. . . .8 0 8 0 6 0
. . . .6 0 6 0 6 0
.6 0 600 0 6 0 6 0 6

0 8 0 8 0 8 0 8 0 8
. . .6 0 6 0

. . . .8 0 8 0 8 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Problem 3.13. Recall the rule If job is risky Th en compensation is high’ discussed in Example 3.19. 
Th e related fuzzy sets are 

risky jk ob
job job job job

jj = + + +
0 3 0 8 0 7 0 9

2job 4job
. .3 0 .7 0

highi compensation
c c c c

-cc = + + +
0 2 0 4 0 6 0 8

1 2 3c c 4

. .2 0 . .6 0

on the universes job = {job1, job2, job3, job4} and compensation = {c1, c2, c3, c4}. Now, let the premise be ‘job 
is risky1’ where the predicate risky1 is represented by the fuzzy set

risky jk ob
job job job job2job 4job
0 3 1 0 1 0 0 2jj = + + +

. .3 1 . .0 0

Employing Generalized Modus Ponens, we reach the conclusion ‘compensation is high1’. Compute high1-
compensation.

Solution 3.13. Th e rule R : If job is risky Th en compensation is high’ is represented by the fuzzy rela-
tion

R = (risky-job × high-compensation) ∪ ( risky jk objj × compensation)

Which, on necessary calculations, is expressed by the fuzzy relation

R   =  

C C C C
job
job
job
job

1 2C 3 4C

1

2

3

4

0 7 0 7 0 7 0 7
0 2 0 4 0 6 0 8
0 3 0 4 0 6 0

. . . .7 0 7 0 7 0

. . . .2 0 4 0 6 0

. . . .3 0 4 0 6 0..
. .

7
0 2. 0 4.. 0 6.. 0 8.

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

.
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Now, the fuzzy set high1-compensation = risky1-job°R is obtained as

[0.3  1.0  1.0  0.2] ° 

0 7 0 7 0 7 0 7
0 2 0 4 0 6 0 8
0 3 0 4 0 6 0 7
0 2 0 4 0 6 0 8

. . . .7 0 7 0 7 0

. . . .2 0 4 0 6 0

. . . .3 0 4 0 6 0

. . . .2 0 4 0 6 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥⎥
⎥⎥⎥⎥

⎥⎦⎦
⎥⎥⎥⎥

= [0.3  0.4  0.6  0.8]
Hence,

highi compensation
c c c c1

1 2c 3 4c
0 3 0 4 0 6 0 8-cc = + + +

. .3 0 . .6 0

Problem 3.14. Let U = V = {0, 1, 2, 3, 4} be the universe of discourse on which the fuzzy set 

small = + + + +
1 0
0

0 5
1

0 2
2

0 1
3

0 0
4

. .0 0 . .2 0  is defi ned. Again, let R be the fuzzy relation ‘more or less the same’ 

which is defi ned by the relation matrix shown below. 

R  = 

0 1 2 3 4
0
1
2
3
4

1 0 0 5 0 1 0 0 0 0
0 5 1 0 0 5 0 1 0 0
0 1 0 5 1 0 0 5 0 1
0 0

. .0 0 . .1 0
. .5 1 . .5 0
. .1 0 . .0 0
. 00 0 100 0 5 1 0 0 5

0 0 0 0 0 1 0 5 1 0
. .1 0 . .0 0

. . .0 0 0 0 . .5 1

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

If the premise and the rule are stated as 
Premise: x is small.
Rule: x is more or less the same as y

then apply a suitable fuzzy rule of inference to obtain the conclusion and express it suitably as a relation.

Solution 3.14. Th e conclusion C is given by the fuzzy set obtained by the max-min composition of 
the fuzzy set small and the relation R, i.e., C = small °R. Th erefore,

C = small °R = [1.0  0.5  0.2  0.1  0.0 ] ° 

1 0 0 5 0 1 0 0 0 0
0 5 1 0 0 5 0 1 0 0
0 1 0 5 1 0 0 5 0 1
0 0 0 1 0 5 1 0 0

. .0 0 . .1 0
. .5 1 . .5 0
. .1 0 . .0 0
. . .0 0 1 0 . .0 0..

.
5

0 0. 0 0.. 0 1. 0 5. 1 0.

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

.

According to the defi nition of max-min composition

μ μ μμμ
x U

Ry xμ x y( ) [ i { ( )x , (μR , )y }]μ .

Th erefore, 

mC(0) =  max [min{msmall(0), mR(0,0)}, min{msmall(1), mR(1,0)}, min{msmall(2), mR(2,0)}, min{msmall(3), mR(3,0)}, 
min{msmall(4), mR(4,0)}]

= max [min{1, 1}, min{.5, .5}, min{.2, .1}, min{.1, 0}, min{0, 0}] 
= max [1, .5, .1, 0, 0]
= 1.
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Similarly,

mC(1) = max [min{1, .5}, min{.5, 1}, min{.2, .5}, min{.1, .1}, min {0, 0}] 
 = max [.5, .5, .2, .1, 0]
 = .5.

mC(2) = max [min{1, .1}, min{.5, .5}, min{.2, 1}, min{.1, .5}, min {0, .1}] 
 = max [.1, .5, .2, .1, 0]
 = .5.

mC(3) = max [min{1, 0}, min{.5, .1}, min{.2, .5}, min{.1, 1}, min {0, .5}] 
 = max [0, .1, .2, .1, 0]
 = .2.

mC(4)  = max [min{1, 0}, min{.5, 0}, min{.2, .1}, min{.1, .5}, min {0, 1}] 
 = max [0, 0, .1, .1, 0]
 = .1.

Th erefore, the conclusion is C = + + ++ + +
1 0
0

0 5
1

0 5
2

0 2
3

0 1
4

. .0 0 . .5 0 . Th is can be fairly interpreted as ‘more or 
less small’. Hence the conclusion can be stated as ‘y is more or less small.’

� TEST YOUR KNOWLEDGE

 3.1 Which of the following is a logical constant?
a) True b) False
c) Both (a) and (b)  d) None of the above

 3.2 Which of the following sets of logical operations is not functionally complete? 
a) {•, ′} b) {+, ′}
c) {→, ′} d) None of the above

 3.3 Which of the following expressions is not equivalent to the others?
a) p → q b) p ′→ q′
c) q′ → p′ d) None of the above

 3.4 Which of the following is a tautology?
a) p → q b) p + q 
c) p • p′ d) True

 3.5 Which of the following is a contradiction?
a) p → p′ b) p′ → p
c) p • (p → p′) d) p • (p′ → p)

 3.6 Given a set of propositional logic expressions, if there is an interpretation for which the expres-
sions are all False, then the set of expressions 
a) Must be consistent b) Must be inconsistent
c) Can be consistent or inconsistent d) Can neither be consistent nor inconsistent

 3.7 Consider the following argument.
Premise No. 1. Th e universe is expanding.
Premise No. 2. Th e universe is not expanding.
Conclusion. Th erefore, this is a red rose.

Th e argument is
a) Valid  b) Invalid
c) Both (a) and (b) d) Neither (a) nor (b)
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 3.8 Which of the following equivalences is incorrect?
a) a • (a + b) ≡ a b) a → b ≡ b′ → a′
c) a + (b • c) ≡ (a+b) • (a+c) d) None of the above

 3.9 What is the truth-value of the statement “2+3 = 7 or 7 is a prime number”?
a) False b)  True 
c) Both (a) and (b) d) Neither (a) nor (b)

3.10 Which of the following is true for the proposition p • (p′ + q)? 
a) It’s a tautology b) It’s a contradiction
c) Both (a) and (b) d) Neither (a) nor (b)

3.11 Which of the following logic systems support universal and existential quantifi cation of vari-
ables?
a) Propositional Logic b) Predicate Logic
c) Both (a) and (b) d) None of the above

3.12 Which of the following is not an atomic formula of First Order Predicate Logic?
a) P(A) b) [(∀x) P(x)]′
c) [(∀x) (∃y)P(x)∧Q(y)]′ d) None of the above

3.13 First Order Predicate Logic is called ‘fi rst order’ because
(a) It does not allow predicate variables b) It does not allow function variables 
c) Both (a) and (b) d) None of the above

3.14 Which of the following is a ground atom?
a) P (f(A, B)) b) P(x)
c) P(x, y) d) None of the above

3.15 Which of the following wff s contain a free variable?
a) (∀x)P[x] b) (∀x) (∃y) Q [x, y]
c) (∃y)R [A, y] d) None of the above

3.16 Which of the following identities is not valid?
a) (∀x) P[x] + (∀y) Q[y] = (∀z) (P[z] + Q[z])
b) (∃x) P[x] • (∃y) Q[y] = (∃z) (P[z] • Q[z]) 
c) Both (a) and (b)
d) None of the above

3.17 Which of the following identities is valid?
a) ¬(∀x)P[x] = (∃x)(¬P[x]) b) ¬(∃x)P[x] = (∀x) (¬P[x])
c) Both (a) and (b) d) None of the above

3.18 Which of the following is true with respect to the expression (∀x)P[x]•(∃y)(P[y])?
a) Variable x is inside the scope of variable y
b) Variable y is inside the scope of variable x 
c) None of the variables x and y is inside the scope of the other
d) None of the above

3.19 Which of the following wff s is equivalent to (∀x)P[x] • (∃y)(Q[y])?
a) (∃x)P[x] • (∀y)(Q[y]) b) (∀y)P[y] • (∃x)(Q[x])
c) (∃y)P[y] • (∀x)(Q[x]) d) None of the above

3.20 Which of the following identities is valid?
a) (∀x) P[x] • (∀y) Q[y] = (∀z) (P[z] • Q[z])
b) (∃x) P[x] + (∃y) Q[y] = (∃z) (P[z] + Q[z])
c) Both (a) and (b)
d) None of the above
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3.21 Which of the following inference rules does not follow deductive logic?
a) Modus Ponens b) Abduction
c) Modus Tollens d) Simplifi cation.

3.22 Which of the following inference rules follow deductive logic?
a) Analogy b) Induction
c) Abduction d) None of the above

3.23 Applying the Resolution rule of inference on the clauses p and p′, we get -
a) False b) True
c) p d) p′

3.24 I meet three Englishmen consecutively, each of whom have blue eyes. I conclude that all English-
men have blue eyes. Which rule of inference I apply?
a) Abduction b) Induction
c) Analogy d) None of the above

3.25 A pair of simultaneous equations under two variables x, y can be solved through the method of 
elimination. When I am asked to solve three simultaneous equations under three variables x, y, z, 
I assume that the same method applies here too. What rule of inference I am employing here?
(a) Abduction b) Induction
(c) Analogy d) None of the above

3.26 If one is bitten by a honeybee on his nose, his nose swells up. You see a person with swollen nose 
and conclude that he must have been bitten by some honeybee. What rule of inference you are 
following while making this conclusion?
a) Abduction b) Induction
c) Analogy d) None of the above

3.27 Which of the following rules of inference cannot be obtained using resolution?
a) Modus Ponens  b) Modus Tollens
c) Chain Rule  d) Universal specialization

3.28 Which of the following rules of inference relates to our commonsense reasoning?
a) Analogy b) Abduction 
c) Both (a) and (b) d) Neither (a) nor (b)

3.29 In order to apply the resolution rules of inference, the prepositions must be in the form of 
a) Well formed formulae b) Clauses 
c) Conjunctive normal form d) Disjunctive normal form

3.30 Which of the following is not a fuzzy linguistic truth value?
a) True b) Almost true
c) Very much true d) None of the above

3.31 Which of the following can be regarded as a fuzzy linguistic truth value?
a) Nearly false b) Absolutely false
c) Both (a) and (b) d) None of the above

3.32 If  t (a) and t (b) be the fuzzy truth values of propositions a and b, then which of the following is 
not an interpretation of t (a→b)?
a) max {(1−t (a)), t (b)} b) min {1, 1−t (a)+t (b)}
c) max {min(t(a),t(b)),1−t(a)} d) None of the above

3.33 Let R be the fuzzy rule If ‘x is A’ Th en ‘y is B’, where A, B are fuzzy predicates corresponding to 
the fuzzy sets A, B defi ned on the universes U and V respectively. Th en which of the following is 
Zadeh’s interpretation?
a) R = A×B b) R = (A×B)∪(A′×V)
c) R = (A′×B) d) None of the above
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3.34 Let R be the fuzzy rule If ‘x is A’ Th en ‘y is B’ Else ‘y is C’. Th en 
a) R = (A×B)∪(A′×C) b) R = (A′×B)∪(A×C)
c) R = (A×B)∪(A×C) d) None of the above

3.35 Which of the following represents the most generalized form of a fuzzy rule?
a) If ‘x1 is A1’ • …• ‘xk is Ak’ Th en ‘y is B’
b) If ‘x is A’ Th en ‘y1 is B1’ • …• ‘yk is Bk’
c) If ‘x1 is A1’ • …• ‘xk is Ak’ Th en ‘y1 is B1’ • …• ‘yk is Bk’
d) None of the above

3.36 Which of the following is involved in a reasoning process using Generalized Modus Ponens?
a) Fuzzy propositions b) A set of clauses
c) Universal quantifi er d) None of the above

3.37 Let R : If ‘x is A’ Th en ‘y is B’ be a fuzzy rule. In a fuzzy reasoning process employing General-
ized Modus Ponens, A1, a modifi ed version of A, is used as the premise. Moreover, let B1 be the 
conclusion where B1 is probably a modifi ed version of B. If B1 = A1 op R, then according to Zadeh’s 
interpretation, op is :
a) Fuzzy Cartesian product b) Max-min composition
c) Fuzzy implication d) None of the above

3.38 Which of the following is known as Fuzzy Inference?
a) Generalized Modus Ponens b) Generalized Modus Tollens
c) Both (a) and (b) d) None of the above

3.39 Which of the following is an ‘absolute’ fuzzy quantifi er?
a) Most b) nearly 1000
c) Few d) None of the above

3.40 Which of the following cannot be a linguistic variable?
a) Age b) Speed
c) Price d) None of the above

Answers

 3.1 (c) 3.2 (d) 3.3 (b) 3.4 (d) 3.5 (c)
 3.6 (c) 3.7 (a) 3.8 (d) 3.9 (b) 3.10 (d)
 3.11 (b) 3.12 (c) 3.13 (a) 3.14 (a) 3.15 (d)
 3.16 (c) 3.17 (c) 3.18 (c) 3.19 (b) 3.20 (c)
 3.21 (b) 3.22 (d) 3.23 (a) 3.24 (b) 3.25 (c)
 3.26 (a) 3.27 (d) 3.28 (c) 3.29 (b) 3.30 (d)
 3.31 (c) 3.32 (d) 3.33 (b) 3.34 (a) 3.35 (c)
 3.36 (a) 3.37 (b) 3.38 (a) 3.39 (b) 3.40 (d)

 EXERCISES

3.1 Show that the set of logical operators {→, ′} is functionally complete.
3.2 Prove that the proposition a + (a • b)′ is a tautology.
3.3 Determine the validity of the argument given below.

Premise No. 1. a → b′
Premise No. 2. c → b
Premise No. 3. c 
Conclusion. ∴ a′
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3.4 Determine the validity of the argument given below.

Premise No. 1. If Hari works hard Th en he will be successful.
Premise No. 2. If Hari is not sick Th en he works hard.
Premise No. 3. Hari is not successful. 
Conclusion. Th erefore, Hari is sick.

3.5 Find whether the following propositions are consistent.

1. If rose is red Th en ice is white.
2. If ice is not white Th en the earth is a tetrahedron.
3. Rose is not red And ice is not white.

3.6 Show that Modus Ponens, Modus Tollens, and Chain rules are special cases of Resolution.
3.7  Derive the conclusion p′ from the premises p → q, p → r, and q′ + r′ using the resolution rule of 

inference. Also, derive the conclusion p → r from the premises p → (q → r) and q using the  resolu-
tion rule of inference.

3.8  Let us consider the universe of discourse U = {John, Jane, Smith, Monica} of four persons. Jane is 
married to John, and Monica is married to Smith. Th ree predicates,  MLE(x), FML(y), MRD(x, y) are 
defi ned on U meaning ‘x is a male’, ‘y is a female’, and ‘x and y are married’ respectively. Th ey have 
the following combinations truth values. 

x MLE (x) x FML (x)
John True John False
Jane False Jane True
Smith True Smith False
Monica False Monica True

x y MRD (x, y)
John John False
John Jane True
John Smith False
John Monica False
Jane John True
Jane Jane False
Jane Smith False
Jane Monica False
Smith John False
Smith Jane False
Smith Smith False
Smith Monica True
Monica John False
Monica Jane False
Monica Smith True
Monica Monica False

In this context determine if the following statements are true.
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  i) (∀x)(∀y) MRD (x, y) → MRD (y, x) 
 ii) (∀x)(∀y) MRD (x, y) → {MLE(x) • FML(y)}
 iii) (∀x) MLE (x) → (∃y){FML(y) • MRD (x, y)} 

3.9  Given the statements ‘All men are mortal’ and ‘Anand is a man’ prove that ‘Anand is mortal’. Indi-
cate the rules of inference you apply at each step of the proof.

3.10  Consider the fuzzy rule R : If the car is expensive Th en it is comfortable. Th e related universes are 
cars = {a, b, c, d}, and comfort-levels = {1, 2, 3, 4, 5}. Th e fuzzy sets expensive-cars and comfortable 
are defi ned on the universes cars and comfort-levels respectively. Th ese sets are as given below.

expensive-cars--
a b c d

= + + +
0 2 0 6 0 7 1 0. . .2 0 6 0

comfortable = + + + +
0 1
1

0 2
2

0 5
3

0 8
4

1 0
5

. .1 0 . .5 0

Express the rule R : ‘If the car is expensive Th en it is comfortable’ as a fuzzy relation using Zadeh’s 
interpretation.

3.11  Let U = V = {0, 1, 2, 3, 4} be two universes. Th e fuzzy set small = + + + +
1 0
0

0 5
1

0 2
2

0
3

0
4

. .0 0  is defi ned 

on U. Moreover, R is the relation ‘much less than’, symbolized as ‘<<’ and is defi ned by the relation 
matrix 

R = 

0 1 2 3 4
0
1
2
3
4

0 0 0 1 0 2 0 8 1 0
0 0 0 0 0 1 0 2 0 8
0 0 0 0 0 0 0 1 0 2
0 0

. . . .0 0 1 0 2 0

. . . . .0 0 0 0 1 0 2 0

. . . . .0 0 0 0 0 0 1 0

. 00 0 000 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0

. . . .0 0 0 0 0 0
. . . . .0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Now given the propositions ‘x is small’ and ‘x << y’ fi nd the conclusion. How can you describe the 
conclusion in language?

3.12  Let low = + + + +
1 0
0

0 5
1

0 2
2

0
3

0
4

. .0 0  and highi = + + + +
0
0

0
1

0 2
2

0 5
3

1 0
4

. .2 0  be fuzzy sets defi ned on the 

universes U = V = {0, 1, 2, 3, 4}. If R : If ‘x is low’ Th en ‘y is high’ be the fuzzy If-Th en rule and the 
premise is ‘x is very low’, then what is the conclusion? Th e fuzzy predicate ‘very low’ is to be inter-
preted as the set

very low- = + + + ++
1 0
0

0 3
1

0
2

0
3

0
4

. .0 0 .
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4
FUZZY INFERENCE SYSTEMS
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Aggregation, Centre-of-sums (CoS) method, Centroid/Centre-of-gravity method, Defuzzifi cation, 
Fuzzifi cation, Fuzzy air-conditioner controller, Fuzzy and associative memory (FAM), Fuzzy controller, 
Fuzzy cruise controller, Fuzzy rule base, Mean-of-maxima (MoM) method, Rule implication 

Chapter Outline
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4.4 Evaluation of Fuzzy Rules
4.5 Aggregation of Output Fuzzy Sets
4.6 Defuzzifi cation

4.7 Fuzzy Controllers
Chapter Summary
Solved Problems
Test Your Knowledge
Exercise 
Bibliography and Historical Notes

Th e previous chapter provides the basic concepts of fuzzy logic. Th is chapter includes a discussion on 
fuzzy inference system, which is a kind of input–output mapping that exploits the concepts and principles 
of fuzzy logic. Such systems are widely used in machine control, popularly known as fuzzy control sys-
tems. Th e advantage of fuzzy inference systems is that here the solution to the problem can be cast in terms 
of familiar human operators. Hence, the human experience can be used in the design of the controller. 
Engineers developed a variety of fuzzy controllers for both industrial and consumer applications. Th ese 
include vacuum cleaners, autofocusing camera, air conditioner, low-power refrigerators, dish washer etc. 
Fuzzy inference systems have been successfully applied to various areas including automatic control, com-
puter vision, expert systems, decision analysis, data classifi cation, and so on. Moreover, these systems are 
associated with such diverse entities as rule based systems, expert systems, modeling, associative memory 
etc. Th ese versatile application areas show the multidisciplinary nature of fuzzy inference systems.

4.1 INTRODUCTION

A fuzzy inference system (FIS) is a system that transforms a given input to an output with the help of 
fuzzy logic. Th e input-output mapping provided by the fuzzy inference system creates a basis for deci-
sion-making process. Th e procedure followed by a fuzzy inference system is known as fuzzy inference 
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mechanism, or simply fuzzy inference. It makes use of various aspects of fuzzy logic, viz., membership 
function, fuzzy logical operation, fuzzy IF-THEN rules etc. Th ere are various kinds of fuzzy inference 
systems. In this chapter we describe the principles of fuzzy inference systems proposed by Ebrahim 
Mamdani in 1975. It is the most common fuzzy inference methodology and moreover, it is employed in 
the earliest control system built using fuzzy logic.  Th e fundamental concepts of a fuzzy inference system 
are explained subsequently along with illustrative examples.

Let us consider a person trying to cross a road while a car is approaching towards him. At what pace 
should he proceed? It depends on the distance of the approaching car from the person, and its speed. If 
the car is far away and is running slowly then the person can walk across the road quite leisurely. If the 
car is far away but approaching fast then he should not try to cross the road leisurely, but a bit faster, say, 
unhurriedly. However, in case the car is nearby, or is running fast, then he has to cross the road quickly. 
All these constitute the rule base that guides the pace of the person’s movement across the road.

Th e sequence of steps followed by a fuzzy inference system for the problem stated above is shown in 
Fig. 4.1. It presents the basic structure of any fuzzy inference system. Th e entire fuzzy inference process 
comprises fi ve steps

 (i) Fuzzifi cation of the input variables
 (ii) Application of fuzzy operators on the antecedent parts of the rules
(iii) Evaluation of the fuzzy rules 
(iv) Aggregation of fuzzy sets across the rules
 (v) Defuzzifi cation of the resultant fuzzy set

Th e following sections explain these steps briefl y.

4.2. FUZZIFICATION OF THE INPUT VARIABLES

Th e inputs to a fuzzy inference system are a number of crisp values corresponding to some parameters. 
For each input, we have to determine the degree to which it belongs to the appropriate fuzzy set through 
membership function. Th is is known as fuzzifi cation, the fi rst step of the entire fuzzy inference process.

Inputs are crisp
numbers within

a range 

Input #1
Distance of
the car (0-10)

Input #2:
Speed of the
car (0-10)

Σ
Output: Pace
of crossing the
road (0-10)

Outputs are crisp
numbers within

a range

How to cross the road while a car is approaching: A 2–input, 1–output, 3–rule
Fuzzy Inference System (FIS)

Fuzzify the inputs
using fuzzy set
membership
functions

Evaluate the
rules through
fuzzy
reasoning

Combine the
results of rule
evaluation

Defuzzify the
combined results
to obtain a crisp
output value

Apply fuzzy
operators on the
antecedent parts
of the rules

1 2
g

3 4
e

5

R1: IFthe car is far away
AND it is running slowly
THEN cross the road
leisurely

R2: IF the car is far away
AND it is running fast
THEN cross the road
unhurriedly

R3: IF the car is nearby OR it is
running fast THEN cross the
road quickly

Fig. 4.1. Structure of a fuzzy inference system.
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In the present example there are two inputs, the distance of the car from the man, and its speed, 
both scaled to the range 0–10. Th ere are three rules, and each of them requires that the inputs should 
be resolved into certain fuzzy linguistic sets. Th e concerned linguistic values related to the antecedent 
parts here are, far away (‘the car is far away’), nearby (‘the car is nearby’), running slowly (‘it is running 
slowly’), and running fast (‘it is running fast’). 

Fig. 4.2 shows fuzzifi cation of the car’s distance with respect to the fuzzy set far away. Assuming 
the distance to be 7 (in the range 0–10) the fuzzy membership is seen to be 0.5 here. Th e third row in 
Fig. 4.6 shows the profi le of the fuzzy set nearby where the fuzzy membership for distance = 7 is 0.2. 
Figs. 4.3, 4.4, and 4.6 depict the fuzzifi cation of the other input variable speed = 3 with respect to the 
fuzzy sets slowly and fast. 

Membership
profile of far
awayww

Input : Distance of the car
(in the range 0-10 ) = 7

Result of
fuzzification

1

1050

0.5

The car is far awayww

Fig. 4.2. Fuzzifi cation of input variables.

4.3  APPLICATION OF FUZZY OPERATORS ON THE ANTECEDENT
PARTS OF THE RULES

Th e antecedent of a fuzzy rule may consist of a single part or more than one parts joined together with 
AND, or OR, operators. In this example, each rule has antecedents with two parts. In rules R1 and R2 
the parts are joined together with the AND operator, and in R3 they are joined with the OR operator. If, 
however, we had a rule like ‘IF the car is very close THEN cross the road very quickly’, then, obviously, the 
antecedent would have been composed of a single part. Fuzzifi cation of inputs determines the degree to 
which each part of the antecedent (or, just the antecedent, in case it consists of a single part) is satisfi ed.

When the antecedent of a given rule has more than one parts, we need to apply the appropriate fuzzy 
operator so that a single number representing the result of the entire antecedent is obtained. Th e input to 
the fuzzy operator is two, or more, membership values from the fuzzifi ed input variables and the output 
is a single truth value. Th is single truth value is applied to the consequent part of the fuzzy rule to obtain 
the resultant fuzzy set corresponding to that rule. 

Table 4.1. Common fuzzy AND, OR methods

# Operator Method

1 AND (min) t (P.AND.Q) = min [t (P), t (Q)] 

(product) t  (P.AND.Q) = t (P) × t (Q)

2 OR (max) t (P.OR.Q) = max [t (P), t (Q)] 

(probabilistic OR) t (P.OR.Q) = t (P) + t (Q) − t (P) × t (Q)
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Th ere are various methods of implementing the fuzzy AND and OR operators. Th e most popular among 
these, two for each of AND and OR, are summarized in Table 4.1. In the present example the min 
method of AND, and max method of OR are followed. Fig. 4.3 illustrates the process of applying fuzzy 
operator on the antecedent part of rule R1. Th e fi rst part and the second part of the antecedent produces 
the membership values 0.5 and 0.6, respectively. Th e resultant truth value of the entire antecedent is 
therefore min (0.5, 0.6) = 0.5. A similar process carried out on the rules R2 and R3 is shown in Fig. 4.6.

Input #1
Distance = 7

far awayww

1

105 70

Input #2
Speed = 3

Approaching
slowly

Apply the fuzzy AND
operator (min)

Result of
applying fuzzy
operator

1

10

0.5 0.50.6

530

The car is far awayww AND it is approaching slowlyl

Fig. 4.3. Applying fuzzy operators on the antecedent parts of the rules.

4.4 EVALUATION OF THE FUZZY RULES 

Fuzzy rules are evaluated by employing some implication process. Th e input to the implication process 
is the number provided by the antecedent and its output is a fuzzy set. Th is output fuzzy set is obtained 
by reshaping the fuzzy set corresponding to the consequent part of the rule with the help of the number 
given by the antecedent. 

Input #1
Distance = 7

far away

1

105 70
Input #2
Speed = 3

Approaching
slowly

Apply the
fuzzy AND
operator
(min)

Apply the fuzzy
implication
operator (min)

Result of
implicationFuzzy inputs

Antecedent (IF part) Consequent (THEN part)

1

10

0.50.2

0.6

530

IF The car is far away AND it is approaching slowly THENy cross the road leisurely

leisurely

1

1050

1

1050

Fig. 4.4. Evaluation of fuzzy rule during fuzzy inference process.

Th e implication process is illustrated in Fig. 4.4. Th e fuzzy set for the consequent of the rule R1, i.e., 
cross the road leisurely, has a triangular membership profi le as shown in the fi gure. As a result of apply-
ing fuzzy AND operator as the minimum of its operands, the antecedent returns the value 0.5, which is 
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subsequently passed on to the consequent to complete the implication process. Th e implication process 
reshapes the membership function of the fuzzy set leisurely by taking the minimum between 0.5, and the 
membership value of leisurely at any point. Th e result is a trapezoidal membership function as depicted 
in the fi gure. As in the case of fuzzy logic operators there are several implication methods. Among these 
the min method proposed by Mamdani is followed here. It eff ectively truncates the fuzzy membership 
profi le of the consequent with the value returned by the antecedent.

It should be noted that the rules of an FIS may have various weights attached to them ranging from 
0 to 1. In the present case all rules are assigned the same weight 1. In case a rule has a non-zero but less-
than-one weight, it has to be applied on the number given by the antecedent prior to realization of the 
implication process. 

4.5 AGGREGATION OF OUTPUT FUZZY SETS ACROSS THE RULES

Decision-making through a fuzzy inference system has to take into account the contribution of each rule 
in the system. Th erefore the individual fuzzy sets obtained by evaluating the rules must be combined in 
some manner into a single resultant fuzzy set. Th is aggregation process takes the truncated membership 
profi les returned by the implication process as its input, and produces one fuzzy set for each output vari-
able as the output.

Various aggregation methods are used in practice. Taking the maximum among all inputs (max), 
or taking the algebraic sum of all inputs (sum) are two methods widely employed by the professionals. 
Fig. 4.5 illustrates the principle of these two methods. In Fig. 4.6, all three rules R1, R2, and R3 are placed 
together to show how the outputs of all the rules are combined into a single fuzzy set using the max ag-
gregation method. 

(a) max methodx

a

b

c = max (a, b)

a

b

c = a + b

(b) sum methodm

Fig. 4.5. Two popular aggregation methods – max and sum.

4.6 DEFUZZIFICATION OF THE RESULTANT AGGREGATE FUZZY SET

Defuzzifi cation is the process of converting the aggregate output sets into one crisp value for each out-
put variable. Th is is the last step of a fuzzy inference process. Th e fi nal desired output for each variable 
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is generally a single number because like the inputs, the outputs too are usually variables signifying 
physical parameters, e.g., voltage, pressure etc., under control. Since the aggregate of a number of fuzzy 
sets is itself a fuzzy set and encompass a range of output values, it is not suitable to drive a physical 
system. It has to be defuzzifi ed in order to resolve into a single output value for the related output vari-
able. Th ere are several defuzzifi cation methods in vogue, viz., centroid method, centre-of-sums (CoS) 
method, mean-of-maxima (MoM) method etc. Th ese are briefl y explained in Fig. 2.6.

distance = 7

far awayww
1

speed = 3

approaching
slowly

1

0.5 0.50.5

0.6

IF The car is far awayww AND it is approaching slowly THEN y cross the road leisurely.

leisurely
1

50

1

100

min (.5, leisurelyl )

1

100 5

Combine the
result of R1, R2RR ,
and R3 RR (max)x

Aggregate
output fuzzy set

distance = 7

far awayww

speed = 3

approaching
fast

1

0.1 0.10.5

0.5

IF The car is far awayww AND it is approaching fast THENt cross the road unhurriedly.

unhurriedly
1

7.52.5 7.52.5

1

100

min (.1, unhurriedlyl )

distance = 7

nearby

speed = 3

approaching
fast

11

0.1

0.20.2 0.2

IF The car is nearby OR it is approaching fast THENt cross the road quickly.

quickly
1

105

1

100

min (.2, quicklyl )

R1RR :

R2RR :

R3RR :

Fig. 4.6. Aggregation of fuzzy sets across the rules.

4.6.1 Centroid Method

Th e centroid method is also referred to as centre-of-gravity or centre-of-area method. In this method the 
individual output fuzzy sets are superimposed into a single aggregate fuzzy set (the max method) and 
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then the centroid, or centre-of-gravity, or centre-of-area of the resultant membership profi le is taken as 
the defuzzifi ed output. Fig. 4.7 illustrates the method graphically.

a

b

Defuzzified value is
computed as the
centroid of the whole
area

Compute the
centroid of the
whole area

Individual area
segments and
their controids

Partition
into
segments

Aggregate
output fuzzy
set

c = max (a, b)

c1

A1 A2 A4
A3 A5

c2cc c3cc c4cc c5cc

x

x =
∑A i × c i

∑Ai

max

Fig. 4.7. The centroid method of defuzzifi cation.

If the total area under the aggregate output fuzzy set is partitioned into disjoint segments A1, …, Ak, and 
the corresponding centroids are c1, …, ck, then the centroid of the whole area is obtained as

 x
A c

A
centroid

i ic
i

k

i
i

k= =

=

∑

∑
1

1

 (4.1)

For discrete membership function, the formula is

 x
x

centroid

i i
i

n

i
i

n=
×

=

=

∑

∑

μ

μ

( )xixμ

( )xiμ

1

1

 (4.2)

whereas the expression for the centroid in case of continuous membership function is given by

 x
x dx

x dxdd
centroid

a

b

a

b=
∫

∫

μ

μ

( )xμ

( )xμ
 (4.3)

where [a, b] is the domain of x.
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4.6.2 Centre-of-Sums (CoS) Method

Th e CoS method works almost in the same way as that of the centroid method described earlier. Th e only 
diff erence is, here the aggregate output set is obtained by the sum method rather than the max method. 
Eff ectively, this boils down to counting the overlapping areas twice instead of once. Th erefore, in CoS 
method, the areas and the centroids of individual fuzzy sets (obtained as a result of evaluating the fuzzy 
rules) are computed, and then the defuzzifi ed value of x is obtained as 

 x
A c

A
COS

i ic
i

m

i
i

m= =

=

∑

∑
1

1

 (4.4)

where A1, …, Am, are the areas corresponding to the m number of individual output fuzzy sets and c1, …, 
cm are respective centroids. Th e technique of CoS aggregation method is illustrated in Fig. 4.8.

a

b
x =

∑A i × c i

∑Ai

A1

A2

c2

c1

sumCompute
area and
centroid
for each
fuzzy set

Defuzzified value

Fig. 4.8. The centre-of-sum (CoS) method of defuzzifi cation

Now consider the situation where the fuzzy sets are discrete. Let the number of sets be m and x1, …, xn 
be the n number of members. For each member xi let m1(xi), …, mm(xi) be the degrees of membership of 
xi to the respective fuzzy sets. Th en according to the CoS method of defuzzifi cation, the defuzzifi ed value 
is computed as  

 x
x

COS

i j i
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i

n

j i
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 (4.5)

4.6.3 Mean-of-Maxima (MoM) Method

MoM is a simple defuzzifi cation method where the highest degree of membership among all fuzzy sets 
is taken as the output defuzzifi ed value. In case there are more than one elements, say x1, …, xk, having 
the same highest degree of membership, then the mean of those points is taken as the defuzzifi ed value.

 x
x

k
fo d e f yfMOMO

i
i

k

= =
∑

1 ( )for discrete fuzzyff sets  (4.6)
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 x
xdxdd

b
fo s f yfMOM

a

b

=
∫

( )b a
( )for continuous fuzzyff sets  (4.7)

Fig. 4.9 illustrates the MoM method of defuzzifi cation.

a

b
Take mean-of-maximum as
the defuzzified value

Take
maxima

Fig. 4.9. The mean-of-maxima (MoM) method of defuzzifi cation.

In the present example defuzzifi cation is carried out using the CoS method as detailed in Table 4.2. Th e 
defuzzifi ed value is computed as

x A c A c A c
A A A

=
+c +c

+A
=1 1cc 2 2cc 3 3c

1 2+ A 3
4 25. .

Th is implies that if the distance of the car is 7 (in the scale of 0–10) and it is approaching with a speed 3 
(again in the scale 0–10) then according to the FIS exemplifi ed here the person should cross the road with 
a pace of 4.25 (in the scale 0–10). Th e entire fuzzy inference process is schematically depicted in Fig. 4.10.

Table 4.2. Computation of areas and centroids

# Rule Output fuzzy set Area Centroid

1. R1

0.5

2.5

5

1

100
c1 = 2.5

A1 = 1/2 (5 +  2.5) × 0.5 = 15/8 c1 = 2.5

2. R2

0.1
4.5

5

1

10

c2cc = 5

A2 = 1/2 (5 + 4.5) × 0.1 = 18/40 c2 = 5

3. R3

0.2
4.5

5

1

10

c3cc = 7.5

A3 = 1/2 (5 + 4) × 0.2 = 9/10 c3 = 7.5
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IF The car is nearby OR it is approaching fast THENt cross the road quickly.
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of the combined
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Output of the FIS – a crisp valueS

Fig. 4.10. Fuzzy inference process using centre of sums (CoS) method.

4.7 FUZZY CONTROLLERS

Most obvious examples of fuzzy inference systems are the so called fuzzy controllers. These are 
controlling and decision-making systems that exploit rules involving fuzzy linguistic descriptions 
for the purpose of controlling a physical process. They employ fuzzy inference process as their 
functional principle. E. H. Mamdani and S. Assilian have shown in 1974 that a model steam engine 
could be regulated with the help of a set of fuzzy IF-THEN rules. Since then innumerable fuzzy 
controllers have been developed for such diverse applications areas as blast furnace, mobile robots, 
cement kilns, unmanned helicopters, subway trains and so on. As a result of the advent of fuzzy 
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microprocessors, the realm of fuzzy controllers have been extended to consumer electronics and 
home appliances, e.g., washing machine, vacuum cleaner,  camera, air conditioner.

Th e basic structure of a fuzzy controller is rather simple. It consists of three stages, viz., the input 
stage, the processing stage, and the output stage (Fig. 4.11).

Processing
stage

Output
stage

Input
stage

Sensor
input

Control
output

Fig. 4.11. Basic structure of a fuzzy controller.

Sensor or any other inputs are fed to the controller through the input values and mapped to membership val-
ues of appropriate fuzzy sets. Th is is the fuzzifi cation step. Th e processing stage utilizes a fuzzy rule base that 
consists of a number of fuzzy rules. Th e basic form of a fuzzy rule, as mentioned earlier, is

R : IF x is A THEN y is B
where x and y are the input and the output parameters, and A and B are linguistic values. A typical fuzzy 
rule may look like ‘IF room temperature is cool THEN heater is high’. Th e ‘IF’ part of a fuzzy rule is known 
as the ‘antecedent’ and the ‘THEN’ part is called the ‘consequent’. In case of the rule ‘IF room temperature 
is cool THEN heater is high’ the antecedent is ‘room temperature is cool’ while ‘heater is high’ is the con-
sequent. However, the antecedent of a practical fuzzy rule may consist of several statements of the form 
‘x is A’. Th e general form of a rule in the rule base is

R : IF (x1 is A1) and (x2 is A2) and  … and (xk is Ak)  THEN y is B

Th e fuzzifi cation step produces the truth values of various statements ‘x1 is A1’, ‘x2 is A2’, … , ‘xk is Ak’ and 
depending on these values certain rules of the rule base are fi red. Th e processing stage carries some manipu-
lations on the basis of the fi red rules to obtain fuzzy sets relating to the consequent parts of the fi red rules. 
Finally, the outcome of the processing stage on each rule are combined together to arrive at a crisp value for 
each control parameter. Th is is carried out during the output stage and is termed as defuzzifi cation. Th e block 
diagram shown in Fig. 4.12 gives a bit more detailed picture of a fuzzy controller than provided in Fig. 4.11.

Processing Output
stage

Fuzzification
Sensor
input

Control
output

Fuzzy Rule
Base

Fuzzy set
membership

function for the
consequents

Fuzzy set
membership

function for the
antecedents

Defuzzification
strategy

Input stage Processing stage Output stage

Fig. 4.12. Block diagram of a fuzzy controller.

As discussed earlier in the context of fuzzy inference systems, there are various defuzzifi cation tech-
niques, e.g., centroid, CoS, MoM etc. Th e designer is to choose the technique most appropriate for his 
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application. In the subsequent parts of this section we present the essential features of two model fuzzy 
controllers, viz., a fuzzy air-conditioner controller, and a fuzzy cruise controller.

4.7.1 Fuzzy Air Conditioner Controller

Let us consider a highly simplifi ed version of an air-conditioner (AC). Its function is to keep track of the 
room temperature and regulate the temperature of the air fl own into the room. Th e purpose is to main-
tain the room temperature at a predefi ned value. For the sake of simplicity we assume that the AC does 
not regulate the fl ow of air into the room, but only the temperature of the air to be fl own.

Let T0 be the desired room temperature. Th e air conditioner has a thermometer to measure the current 
room temperature T. Th e diff erence ΔT = T − T0 is the input to the controller. When ΔT > 0, the room is hot-
ter than desired temperature and the AC has to blow cool air into the room so that the room-temperature 
comes down to T0. If, on the other hand, ΔT < 0, the room needs to be warmed up and so, the AC is to blow 
hot air into the room. In order to achieve the required temperature of the air to be blown into the room, a 
‘dial’ is turned at the appropriate position within the range [−1, +1]. Th e scheme is shown in Fig. 4.13.

D

0

+1−1

Fig. 4.13. Air-conditioning dial

A positive value of the dial means hot air will be blown, and a negative value means cold air will be 
blown. The degree of hotness, or coldness, is determined by the magnitude of the dial position. No 
air is blown when the dial is at 0. The input to the fuzzy controller is ΔT = T − T0, and the output 
is D, i.e., the position to which the AC dial is to be turned. Both ΔT and D are crisp values, but the 
mapping of ΔT to D takes place with the help of fuzzy logic. Various features of the controller are 
briefly described below.

(a) Fuzzy sets: Occasionally, for fuzzy control systems, it is convenient to categorize the strength of 
the input and the output parameters with the help of certain fuzzy sets referred to as Large Negative 
(LN), Medium Negative (MN), Small Negative (SN), Zero (ZE), Small Positive (SP), Medium Positive 
(MP), Large Positive (LP) etc. Th ese are indicative of the magnitude of the respective parameters in the 
context of the given application. For the system under consideration, the fuzzy sets defi ned on the input 
parameter ΔT and D are LN, MN, ZE, MP, and LP. Fig. 4.14 and Fig. 4.15 show the membership profi les 
of these fuzzy sets. For example, membership of ΔT to Medium Positive (MP) is zero for ΔT  ≤ 0, and 
ΔT  ≥ 6. Th e said membership increases uniformly as ΔT increases from 0 to 3, becomes 1 at 3, and then 
uniformly diminishes to 0 as ΔT approaches 6 from 3 (Fig. 1.14).  

1
LN LPMPZEMN

0−3−6 63
ΔT in °C

μ

Fig. 4.14. Fuzzy membership functions on DT
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0

1
LN LPMPZEMN

0−0.5−1.0 +1.0+0.5

D

μ

Fig. 4.15. Fuzzy membership functions on D.

All membership functions stated above are of a triangular type, which is widely used in fuzzy controllers. 
If required, other kinds of membership functions can also be employed.

(b) Fuzzy rule base: Th e system under consideration has a simple rule base consisting of fi ve fuzzy 
rules. Th ese are listed below.

R1 : IF ΔT  is LN THEN D is LP.
R2  : IF ΔT  is MN THEN D is MP.
R3  : IF ΔT  is ZE THEN D is ZE.
R4  : IF ΔT  is MP THEN D is MN.
R5  : IF ΔT  is LP THEN D is LN.

Th e block diagram of the fuzzy inference process for this controller is shown in Fig. 4.16. Th e input to the 
system is ΔT, which is fi rst fuzzifi ed with the help of the fuzzy sets membership functions LN, MN, ZE, 
MP, LP for ΔT. Depending on the result of this fuzzifi cation, some of the rules among R1, …, R5 are fi red. 
As a result of this fi ring of rules, certain fuzzy sets are obtained out of the specifi cation of LN, MN, ZE, 
MP, LP for D. Th ese are combined and defuzzifi ed to obtain the crisp value of D as the output.

R1

R2RR

R3RR

R4R

R5RR

Rule base

LN
MN
ZE
MP
LP

ΔΔT

LN
MN
ZE
MP
LP

D

Fuzzification Defuzzification

Input : ΔT

Output : D

Fig. 4.16. Inference process of the simplifi ed fuzzy air-conditioner controller.

We shall now work out the functionality of the system for the crisp input ΔT  = −2.

(a) Fuzzifi cation: Given ΔT = − 2, we compute the degree of membership of ΔT with respect to the 
fuzzy sets LN, MN, ZE, MP, LP using the respective membership profi les (Fig. 4.17) as follows.

μ μ μ μμμ MN
T μμ MP

TΔ Δμμ T Δ ΔT(μMN
TΔμμ ) . , μμμΔT (μMP

TΔ ))− =)2 2
3

6. 7, μμμΔμμ Tμμ 1
3

2(μMP
TΔμμ − 0 200 0(, )μLP

TΔ =2)
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0

1
LN LPMPZEMN

−6 60−3

2/3

1/3

ΔT in °C

μ

Fig. 4.17. Fuzzy memberships for DT = - 2

Since only MN and ZE attain non-zero values, rules R2, and R3 are fi red. Hence, we have to map these 
membership values of the antecedents of rules R2, and R3 to the corresponding D values in the respective 
consequents. Th is is done in the implication phase. Moreover, as the antecedents of all the rules consist 
of only single parts, the phase of applying fuzzy operators is not relevant here.

0

1

.67

MPMN

h

mMN (−2) = 2/3

−6 −3 −2 0

Rule R2RR : IF ΔT is MN THEN D is MP

0 0.5 1.0
ΔT D

h = 2/3

a

b

0 0.5 1.0

a = 1/3

b = 1

Fig. 4.18. Evaluation of rule R2

(b) Rule implication: Th e rule implication process is illustrated in Fig. 4.18 and Fig. 4.19. Fig. 4.18 
shows the implication process of Rule R2 and Fig. 4.19 depicts that for Rule R3. In case of R2 the fuzzy 
membership of input ΔT = − 2 with respect to the fuzzy set MN, i.e., mMN (− 2) = 2 / 3, is used  to reshape 
the fuzzy set MP of the consequent part. Th e result is a fuzzy set with trapezoidal membership function 
which is shown in the lower region in Fig. 4.18. Th e area and the centroid (i.e., centre-of-area) this trap-
ezoidal region are computed as area1 = 4/9, centroid1 = 0.5. Similarly, area2 = 5/18, and centroid2 = 0 are 
obtained as a result of the implication process carried out on Rule R2.
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Rule R2RR : IF ΔT is ZE THEN D is ZE
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h = 1/3
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Fig. 4.19. Evaluation of rule R3

(c) Aggregation and defuzzifi cation: Th e aggregation and defuzzifi cation process according to the CoS 
method, centroid method, and MoM method are described below.
(i) Centre-of-sums: Here the defuzzifi ed output is obtained as 

D
area centroid
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0 308

+

=
× +0 5 ×

+
= ≈

. .5 0+5 ×
.

Therefore, when the room temperature is below the set temperature T0 by 2 degrees (ΔT  = 
−2) the fuzzy AC controller under consideration will set the AC dial at + 0.308 so that air, hot 
to the extent indicated by the value just mentioned, is blown into the room to bring the room 
temperature back to T0.
(ii) Centroid: Th e fi rst step in this method is to superimpose the outputs of the rule implication process. 
Accordingly, the trapezoidal regions of Fig. 4.18 and Fig. 4.19 are superimposed to obtain the polygon 
ABCDEF shown in Fig. 4.20. Th e polygon ABCDEF is then partitioned into six regions, ΔABJ (A1),  BCIJ 
(A2),  CKHI (A3), ΔCDK (A4),  DEGH (A5), and ΔEFG (A6). Th ese regions are either rectangles or right-
angled triangles. It is easily seen that when the membership functions of the fuzzy sets related to the rules 
are triangular in shape, the aggregated polygonal region can be partitioned into a numbers of rectangles 
and right-angled triangles.  
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Fig. 4.20. Aggregate region obtained in centroid method of defuzzifi cation.

(a) Centroid = a + (b − a)/3 (b) Centroid = b − (b − a)/3 (c) Centroid = (a + b)/2

CB

A

a b

CB

A

a b

B

CD

A

a b

Fig. 4.21. Computing the centroids of rectangular and right-angled triangular regions.

Computation of centroids, i.e., centre-of-areas, of rectangular and right-angled triangular regions is il-
lustrated in Fig. 4.21 (a), (b) and (c). Table 4.3 shows the details of computation of the areas and the 
centroids of various segments of Fig. 4.20. Th e crisp output of the fuzzy controller obtained through the 
centroid method is

D A c A c A c A c A c A c
A A A A Acentroid =

+c +c +c +c +c
+A +A

1 1cc 2 2cc 3 3cc 4 4cc 5 5cc 6 6c
1 2+ A 3 4+ A 5 655
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36
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1
36
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1
9
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22

0 227.

Table 4.3. Computation of areas and centroids of various regions

Region Areas Centroids

Δ ABJ (A1) 1/2 × (1/2 −1/3) × 1/3 = 1/36 −7/18 (c1)

  BCIJ (A2) 1/3 × (1/3 + 1/6) = 1/6 −1/12 (c2)

  CKHI (A3) 1/3 × (1/3 −1/6) = 1/18 1/4 (c3)

Δ CDK (A4) 1/2 × (1/3 −1/6) ×1/3 = 1/36 5/18 (c4)

  DEGH (A5) 2/3 ×1/3 = 2/9 1/2 (c5)

Δ EFG (A6) 1/2 ×1/3 × 2/3 = 1/9 2/9 (c6)

Hence according to the centroid method, the AC dial is to be set at D = + 0.227.
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(iii) Mean of Maxima: As it is seen from Fig. 4.20, the maximal membership is 2/3 = 0.667, and this 
maxima is attained from point H to point G along the D-axis. Distances of H and G from the origin 
are + 1/3, and + 2/3 respectively. Therefore the value of D in MoM method is obtained as below:

D OG OH
MoM =

+
=

+
= =

2

1
3

2
3

2
1
2

0 5

Th erefore, the AC dial D should be set at 0.5 as per MoM method of defuzzifi cation. 

4.7.2 Fuzzy Cruise Controller

Th is fuzzy controller was proposed by Greg Viot in 1993.  Its purpose is to maintain a vehicle at a desired 
speed.  Fig 4.22 shows the high level block diagram of the system.  Th ere are two inputs, viz., speed dif-
ference (Δu) and acceleration (a).  Th e only output is the Th rottle control (T).

T
a

Δu
Fuzzy Cruise

Controller

Δu = speed difference
a = acceleration
T = throttle control

Fig. 4.22. Block diagram of fuzzy cruise controller.

Th e speed diff erence is computed as Δu = u − u0, where u0 is the desired speed and u is the current speed.  
For the sake of simplicity all the parameters, Δu, a, T, are normalized here to the range 0–63 and all of 
them are categorized by the fuzzy sets LN, MN, SN, ZE, SP, MP, LP.  Under normalization, the member-
ship profi les of these sets for various parameters are identical and appear as shown in Fig. 4.23.

0

1
LN SP MP LPZESNMN

7 32315 9 47 55 63

μ

Fig. 4.23. Membership profi les of fuzzy sets on speed difference (Du),  acceleration (a) and 
throttle control (T). 

Th e rule base can be constituted with various sets of rules corresponding to combinations of fuzzy sets 
on Δu and a.  In this example we consider the exhaustive set of rules obtained by taking all possible com-
binations of fuzzy sets on Δu and a.  Th is is depicted in Table 4.4.  Th is way of tabular representation of a 
fuzzy rule base is oft en referred to as a fuzzy associative memory (FAM) table.  Th e entries in the table can 
be interpreted in the following way:  consider the cell at the intersection of row 3 and column 4.  Row 3 
corresponds to the fuzzy set Small Negative (SN) of Δu and Column 4 corresponds to ZE of acceleration 
a.  Th e entry in their intersecting cell is SP.  Th erefore, this entry represents the rule  

R34 : IF (Δu is SN) AND (a is ZE)  THEN (T is SP)
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Table 4.4. Fuzzy associative memory (FAM) table

           (a)

    (Δu)

(1)
LN

(2)
MN

(3)
SN

(4)
ZE

(5)
SP

(6)
MP

(7)
LP

(1)  LN LP LP LP LP MP SP ZE

(2)  MN LP LP LP MP SP ZE ZE

(3)  SN LP LP MP SP ZE SN MN

(4)  ZE LP MP SP ZE SN MN LN

(5)  SP MP MP SP SN SN MN LN

(6)  MP SP ZE SN MN MN LN LN

(7)  LP ZE SN SN LN LN LN LN

Usually the FAM table may contain some empty cells. An empty cell in the FAM table, if there exists one, 
indicates the absence of the corresponding rule in the rule base.  

0

1

0.5

LN SP MP LPZESNMN

19 3237 15 19 9 47 55 63
Δu

Fig. 4.24. μMN
u ( u 19) 0.5Δ =u =  and μSN

u 9) 0Δ ( .u 19) 0.5Δ 19)

0

1

0.5

LN SP MP LPZESNMN

37 32315 35 9 47 55 63
a

Fig. 4.25. μZE
aμ (a 35) 0.5= =35)  and μZE

aμ (a 35) 0.5= =35)

Let us now work out the output of the controller when the normalized speed diff erence (Δu) and ac-
celeration (a) are 19 and 35 respectively. It is apparent from Fig. 4.24 that for Δu = 19, all fuzzy sets 
except MN and SN have zero membership. Similarly, for a = 35 only the fuzzy sets ZE and SP have 
non-zero memberships. Moreover, it is observed from Fig. 4.24 that at Δu =19 membership to MN is 0.5, 
μMN

uΔμμ ( )uΔ =) 0 5. . Similarly μSN
uΔμμ ( )uΔ .=) 0 5.  Also, from Fig. 4.25 we get, μZE

aμμ ( )a =) 0 5.  and
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μSP
aμμ ( )a =) 0 5. . Th erefore the rules corresponding to cells (MN, ZE), (MN, SP), (SN, ZE), and (SN, 

SP),  cells (2, 4), (2, 5), (3, 4) and (3, 5) of the FAM table, R24, R25, R34, R35  are fi red.  Th ese rules are

R24 : IF (Δu is MN) AND (a is ZE) THEN (T is MP)
R25 : IF (Δu is MN) AND (a is SP) THEN (T is SP)
R34 : IF (Δu is SN) AND (a is ZE) THEN (T is SP)
R35 : IF (Δu is SN) AND (a is SP) THEN (T is ZE)

MN

7 15 19 23

23 31 35 39

0.5

0.5

Δu

a

min {0.5, 0.5}
= 0.5

A

B C

DZE

39 47 55

0.5

T

MP

A1 = area of ABCD

Centroid (c1) = 47
= 1/2 × (16 + 8) × 0.5 = 6.

Fig. 4.26. Processing of Rule R24.

Let us employ min function to implement the ‘AND’ operation in the antecedent part of a rule. Accord-
ingly, the processing of R24 is shown in Fig. 4.26. Table 4.5 shows the complete set of areas and their 
centroids obtained through processing the rules R24, R25, R34, R35.

Table 4.5. Areas and centroids

Rule Area Centroid

R24 A1 = 6 c1 = 47

R25 A2 = 6 c2 = 39

R34 A3 = 6 c3 = 39

R35 A4 = 6 c4 = 31

Th e defuzzifi ed output, according to the CoS method is computed as shown below.

T A c A c A c A c
A A A ACOTT S =

+c +c +c
+A

=
× + ×1 1cc 2 2cc 3 3cc 4 4c

1 2+ A 3 4A
6 4× 7 6+ 39 6 3× 9 6+ 311

6 6 6 6
39

6 66 6
= .
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However, to compute Tcentroid, the defuzzifi ed output value of throttle control, we have to consider the 
superimposed region ABCD shown in Fig. 4.27. 

MPSPZE

A

B C

D
T

23 31 39 47 55

Fig. 4.27. Region for computation of Tcentroid.

It is evident from Fig. 4.27 that the region ABCD is a trapezium. Th e centroid of a trapezium passes 
through the middle of its parallel sides. Hence, centroid of ABCD is 39. Moreover, 

area of ABCD = 1/2 × (sum of the lengths of the parallel sides) × height 

= 1/2 × (32+24) × 0.5 = 14. 
Th erefore,

T
of d of d of

areaof ABCceTT ntroid =
×( )areaof ABCD ( )centroid of centroid of ABCD

DDCCCC
=

×
=

14 39
14

39

Hence, the value of the throttle control, when computed through the centroid method, too is 39. It may 
be verifi ed that the defuzzifi ed output, obtained by employing the MoM is also 39.  Hence, for this in-
stance of the fuzzy cruise controller we have Tcos  = Tcentroid = T MoM = 39.

 CHAPTER SUMMARY

Th e main points of foregoing discussions on fuzzy inference systems are summarized below.

A fuzzy inference system (• FIS) is a system that transforms a given input to an output with the 
help of fuzzy logic. Th e procedure followed by a fuzzy inference system is known as fuzzy infer-
ence mechanism, or simply fuzzy inference.
Th e entire fuzzy inference process comprises fi ve steps, fuzzifi cation of the input variables, ap-• 
plication of fuzzy operators on the antecedent parts of the rules, evaluation of the fuzzy rules, 
aggregation of fuzzy sets across the rules, and defuzzifi cation of the resultant aggregate fuzzy 
set.
Th e fi rst step, fuzzifi cation, determines the degree to which each input belongs to various fuzzy • 
sets through the respective membership function.
When the antecedent of a given rule has more than one parts, the appropriate fuzzy operator is • 
applied to obtain a single number representing the result of the entire antecedent. Th is consti-
tutes the second step of fuzzy inference process.
In the third step fuzzy rules are evaluated through some implication process. Th e output fuzzy • 
set is obtained by reshaping the fuzzy set corresponding to the consequent part of the rule with 
the help of the number given by the antecedent. 
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Th e aggregation process takes the truncated membership profi les returned by the implication • 
process as its input, and produces one fuzzy set for each output variable as the output. Th is 
constitutes the fourth step of the fuzzy inference process.
Defuzzifi cation is the process of converting the aggregate output sets into one crisp number per • 
output variable. Th is is the fi ft h, and last, step in a fuzzy inference process.
Th ere are various defuzzifi cation methods. Th e most popular among them are the centroid • 
method, CoS method and the MoM method.

 SOLVED PROBLEMS

Problem 4.1 (Fuzzy air conditioner) Consider the fuzzy air conditioner controller discussed in 
subsection 4.7.1. What is the dial position for ΔT = + 0.5 ?

Solution 4.1 Th e step by step computational process is described below.  

(i) Fuzzifi cation Given ΔT = + 0.5, we compute the degree of membership of ΔT with respect to 
the fuzzy sets LN, MN, ZE, MP, LP using the respective membership profi les depicted in Fig. 4.14. All 
memberships, except ZE and MP are 0 (Fig. 4.28). For ZE and MP the membership values are 5/6 and 
1/6, respectively.

μ μ μ

μ μ

μμ MN
T

LP
T

μμ MP
T

Δ Δμμ T Δμμ

Δ Δμ μμ μT

(μMN
TΔμμ . ) ( . )

(

=)+ =)0.0. 5.. 0
5
6

+ =++0 1
6

. )5

0

1
LN LPMPZEMN

−6 60−3

5/6

1/6

ΔT in °C

μ

Fig. 4.28. Fuzzy memberships for DT = + 0.5

(ii) Rule implication Th e fuzzy rule base employed is given by
 

R1 : IF ΔT  is LN THEN D is LP.
R2  : IF ΔT  is MN THEN D is MP.
R3  : IF ΔT  is ZE THEN D is ZE.
R4  : IF ΔT  is MP THEN D is MN.
R5  : IF ΔT  is LP THEN D is LN.

As ZE and MP are the only fuzzy sets having non-zero membership values for ΔT = + 0.5, the fi red rules 
are R3 and R4. Th e rule implication processes are shown in Fig. 4.29 and Fig. 4.30.
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0

1 ZEZE

−3 0 3

Rule R3RR : IF ΔT is ZE THEN D is ZE

−0.5 0

1
0.5

+0.5

−0.5 0 +0.5

ΔT D

h = 5/6

1/6

1/65/6

b = 1

Area = 35/72
Centroid = 0

Fig. 4.29. Evaluation of rule R3.

0

1 MNMP

0 0.5 3 6

Rule R4R : IF ΔT is MP THEN D is MN

−1 −0.5 0

−1 −0.5 0

ΔT D

1/6

1/6

5/6

Area = 11/72
Centroid = −0.5

Fig. 4.30. Evaluation of rule R4.

Th e implication of the rules R3 and R4 results in two regions of areas 35/72 and 11/72 respectively. Th e 
corresponding centroids are 0 and – 0.5.

(iii) Aggregation Calculation of the dial value in the CoS method is as follows
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D
A C A C

A ACOS =
+C

=
× + ×

+
=

− ×
1 1CC 2 2C

1 2A

35
72

0 11
72

5

35
72

11
72

0 5 11
7

( .− 0 )
22

46
72

11
72

= −

Hence, the output of the fuzzy controller is D = − 11/72.

Problem 4.2 (Fuzzy cruise controller) Consider the fuzzy cruise controller discussed in subsec-
tion 4.7.2. What will be the value of the throttle control for normalized speed diff erence (Δu) = 41, and 
acceleration (a) = 15?

Solution 4.2 Th e step by step computational process is given below.  

(i) Fuzzifi cation Since there are two input parameters, Δu and a, we need to fuzzify both. Consider-

ing Δu, we see that the non-zero memberships are μSP
uΔμμ ( )uΔ =) 3

4
 and μMP

uΔμμ ( )uΔ =) 1
4

 and rest of 

the membership values are all zeros (see Fig. 4.31). Th erefore,

μ μ μ μ μμμ MN
u μμ ZE

u
LP

uμMN μZE
Δ Δμμ u Δ Δμμ u Δμμμ uμMN

uΔμμ μ uμZE
uΔμμ( )uΔ ( )uΔ (=) =) ΔΔu = =41 0)

μ μμμ MP
u uΔ Δμμ u Δ(μMPμMPμMP (uΔμ uμ uΔμμ )=uμMP = =

6
8

3
4

41 2
8

1
4

.

0

1

3/4

1/4

LN SP MP LPZESNMN

417 32315 9 441 7 55 63
Δu

Fig. 4.31. μSP
u ( u 41)

3

4
Δ =u =  and μMPμ u ( u 41)

1

4
Δ =u =

Similarly, for a, all membership values except MN are zeros (Fig. 4.32), so that

μ μ μ μ μ μμμaμμ SN
aμμ μμaμμ SP

a μμaμμ LPμSN
aμ( ) ( )a ( ) ( )μSP

aμμ aμSP
aμ ( )=) =) aaμμμμ ( )a =) 0

μMN
aμμ ( )a =) 1

0

1
LN SP MP LPZESNMN

17 32315 9 47 55 63
a

Fig. 4.32. μMN
aμ 1(a 15)= =15)
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(ii) Rule  implication Th e results of the fuzzifi cation phase imply that rules R52 and R62 are fi red (see 
Table 4.6 which is a repetition of Table 4.4 with relevant portions highlighted). Hence we need to process 
the following fuzzy rules:

R52 : IF (Δu is SP) AND (a is MN) THEN (T is MP)
R62 : IF (Δu is MP) AND (a is MN) THEN (T is ZE)

Table 4.6. Fired Rules in the FAM Table

               (a)
    (Δu)

(1)
LN

(2)
MN

(3)
SN

(4)
ZE

(5)
SP

(6)
MP

(7)
LP

(1)  LN LP LP LP LP MP SP ZE

(2)  MN LP LP LP MP SP ZE ZE

(3)  SN LP LP MP SP ZE SN MN

(4)  ZE LP MP SP ZE SN MN LN

(5)  SP MP MP SP SN SN MN LN

(6)  MP SP ZE SN MN MN LN LN

(7)  LP ZE SN SN LN LN LN LN

Th e rule implication process is graphically shown in Fig. 4.33 and Fig. 4.34.

31 39 41 47

7 15

1

3/4

Δu

a

min {3/4, 1}
= 3/4

A

B C

DMN

39 47 55

T

MP

A1 = Area of ABCD

Centroid (c1) = 47

= 1/2 × (16 + 4) × (3/4)
= 15/2

Fig. 4.33. Processing of Rule R52.
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MP

39 4741 55

7 15 23

1

1/4

Δu

a

min {1/4, 1}
= 1/4

E

F G

HMN

23 31 39

T

ZE

A2 = area of EFGH

Centroid (c2cc ) = 31

= 1/2 × (16 + 8) × 1/4
= 28/8 = 7/2

Fig. 4.34. Processing of Rule R62.

Th e rule implication process yields two trapeziums ABCD and EFGH with areas A1 = 15/2 and A2 = 7/2, 
and centroids c1 = 47 and c2 = 31 respectively. 

(iii) Aggregation For aggregation, we consider the CoS method only. Th e calculations are given 
below.

T
A c A c

A A
=

+c
=

× + ×

+
=

× +
+

≈1 1cc 2 2c

1 2A

15
2

47 7
2

31

15
2

7
2

15 47 7 3× 1
15 7

42

Hence, the throttle control value will be approximately 42 for normalized speed diff erence (Δu) = 41, and 
acceleration (a) = 15.

Problem 4.3 (Fuzzy tipper) Th is problem, popularly known as the tipping problem, concerns 
the amount of tip to be given to a waiter at a restaurant. It is a typical situation where the principles of 
fuzzy inference system may be applied successfully. Given a number between 0 and 10 that represents 
the quality of service at a restaurant (where 10 is excellent), and another number between 0 and 10 that 
represents the quality of the food at that restaurant (again, 10 is excellent), what should the tip be?

Solution 4.3 Th e starting point is to write down the three golden rules of tipping as given below.

1. If the service is poor or the food is rancid, then tip is cheap.
2. If the service is good, then tip is average.
3. If the service is excellent or the food is delicious, then tip is generous.

Th e procedure to solve the problem using the relevant MatLab toolbox is being described as a sequence 
of steps, along with MatLab snapshots.

Step 1. Open Toolboxes → Fuzzy Logic → FIS Editor GUI (Fuzzy).(Fig. 4.35)
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Fig. 4.35. Step 1 of Fuzzy tipper

Step 2.  Open Edit → Add variable → Input. (Normally there is one input and one output available, 
but we would need two inputs here) (Fig. 4.36)

Fig. 4.36

Step 3. Double click on one of the yellow boxes to go to the Membership Function Editor.
Step 4.  Select Input1 (Service), Input2 (Food) and Output(Tip) to change the variables of the 

membership functions to suitable  values. (Fig. 4.37–4.44)

   

Fig. 4.37                Fig. 4.38
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Fig. 4.39                   Fig. 4.40

    

Fig. 4.41                 Fig. 4.42

     

Fig. 4.43                 Fig. 4.44

Step 5. Close the Membership Function Editor to return to FIS Editor.

Fuzzy Inference Systems   137

Samir Roy_Chapter04.indd   137Samir Roy_Chapter04.indd   137 2/21/2013   3:20:01 PM2/21/2013   3:20:01 PM



 Step 6. Double click on the white box in the middle to go to the Rule Editor.
 Step 7. From the options available, add rules as above. (Fig. 4.45)

Fig. 4.45

 Step 8. Close the Rule Editor.
 Step 9.  Press CTRL + T to export your FIS to Workspace/File or do so from FILE → EXPORT → 

TO FILE 
Step 10.  Now press CTRL + 5 to see the Graphical Rule Viewer where you can vary the input pa-

rameter values and see the corresponding output values. (Fig. 4.46)

Fig. 4.46

Step 11. Th e surface viewer can be invoked by CTRL+6. (Fig. 4.47)

Fig. 4.47
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Problem 4.4 (Fuzzy controlled camera) Present day digital cameras have fuzzy controllers to con-
trol the aperture and shutter speed of the camera based upon light conditions and the state of motion 
of the object. Table 4.7 shows the behavior pattern of such a camera. Design a fuzzy inference system to 
control the aperture and the shutter speed on the basis of light and object motion.

Table 4.7. Camera adjustments

# Inputs Outputs

Light Object motion Aperture Shutter Speed

1 Low Static High Low

2 Moderate Static Moderate Moderate

3 High Static Low High

4 Low Mobile High Moderate

5 Moderate Mobile Moderate High

6 High Highly Mobile Low High

7 Low Highly Mobile High Moderate

8 Low Mobile High Moderate

9 High Mobile Low Moderate

Solution 4.4 Th e MatLab implementation of the fuzzy inference system is described below in a 
stepwise manner.

Step 1. Open Toolboxes → Fuzzy Logic → FIS Editor GUI (Fuzzy). (Fig. 4.48)

Fig. 4.48

Step 2.  Open Edit → Add variable → Input (Normally there is one input and one output  available, 
but we would need two each here.)

Step 3.  Open Edit → Add variable → Output (To add the second output variable)
Step 4. Double click on one of the yellow boxes to go to the Membership Function Editor.
Step 5.  Select Input 1 (Light) and change the variables of the membership functions to suitable val-

ues.  (Fig. 4.49, 4.50, 4.51)
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Fig. 4.49                  Fig. 4.50

Fig. 4.51

Step 6. Repeat steps for Input 2 (Object Motion)

mf1 - 
NAME: Static
RANGE: [0 1]
DISPLAY RANGE: [0 1]
TYPE: trapmf
PARAMS:[-0.36 -0.04 0.24 0.36]

mf2 - 
NAME: Mobile
RANGE: [0 1]
DISPLAY RANGE: [0 1]
TYPE: trimf
PARAMS:[0.23 0.5 0.8]

mf3-
NAME: HighlyMobile
RANGE: [0 1]
DISPLAY RANGE: [0 1]
TYPE: trimf
PARAMS:[0.75 1 3.4]
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Step 7. Repeat steps for Output 1 (Aperture)

mf1 - 
NAME: High
RANGE: [0 16]
DISPLAY RANGE: [0 16]
TYPE: trimf
PARAMS:[-6.4 1.11e-16 6.4]

mf2 - 
NAME: Moderate
RANGE: [0 16]
DISPLAY RANGE: [0 16]
TYPE: trimf
PARAMS:[1.6 8 14.4]

mf3 - 
NAME: Low
RANGE: [0 16]
DISPLAY RANGE: [0 16]
TYPE: trimf
PARAMS:[9.6 16 22.4]

Step 8. Repeat steps for Output 2 (ShutterSpeed)

mf1 - 
NAME: Low
RANGE: [0 250]
DISPLAY RANGE: [0 250]
TYPE: trimf
PARAMS:[-100 -1.776e-15 100]

mf2 - 
NAME: Moderate
RANGE: [0 250]
DISPLAY RANGE: [0 250]
TYPE: trimf
PARAMS:[24.99 125 225]

mf3 - 
NAME: High
RANGE: [0 250]
DISPLAY RANGE: [0 250]
TYPE: trimf
PARAMS:[150 250 350]

Step 9. Close the Membership Function Editor to return to FIS Editor.
Step 10. Double click on the white box in the middle to go to the Rule Editor.

Fuzzy Inference Systems   141

Samir Roy_Chapter04.indd   141Samir Roy_Chapter04.indd   141 2/21/2013   3:20:05 PM2/21/2013   3:20:05 PM



Step 11. From the options available, add rules that appear in the table above.
Step 12. Close the Rule Editor.
Step 13.  Press CTRL + T to export your FIS to Workspace/File or do so from FILE → EXPORT →  

TO FILE.
Step 14.  Now press CTRL + 5 to see the Graphical Rule Viewer where you can vary the input  param-

eter values and see the corresponding output values. (Fig. 4.52)

Fig. 4.52

Step 15. Th e Surface Viewer can be invoked by CTRL + 6. (Fig. 4.53 and 4.54)

     

Fig. 4.53                  Fig. 4.54

� TEST YOUR KNOWLEDGE

 4.1 Which of the following is the fi rst step of a fuzzy inference process ?
a) Fuzzifi cation  b) Defuzzifi cation 
c) Either (a) or (b) d) None of the above

 4.2 Which of the following is the last step of a fuzzy inference process ?
a) Fuzzifi cation  b) Defuzzifi cation
c) Either (a) or (b) d) None of the above

 4.3 An input to a fuzzy inference system is a 
a) A crisp value  b) A linguistic variable
c) A fuzzy set d) None of the above

142  Introduction to Soft Computing
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 4.4 An output of a fuzzy inference system is a
a) A crisp value  b) A linguistic variable
c) A fuzzy set d) None of the above

 4.5 Which of the following is not a defuzzifi cation method?
a) Centroid b) Centre-of-sums (CoS)
c) Mean-of-maxima (MoM) d) None of the above

 4.6 Fuzzy controllers are built on the basis of 
a) Fuzzy Inference Systems b) Fuzzy Extension Principle
c) Both (a) or (b) d) None of the above

 4.7 Which of the following is used to store a fuzzy rule base of a fuzzy controller? 
a) Fuzzy Relation Matrix b) Fuzzy Associative Memory table 
c) Both (a) or (b) d) None of the above

 4.8 Which of the following defuzzifi cation methods is never used in a fuzzy controller? 
a) Centroid b) Center-of-sums (CoS)
c) Mean-of-Maxima (MoM) d) None of the above

 4.9 An empty cell in a Fuzzy Associative Memory (FAM) table indicates 
a) An error in the FAM specifi cation
b) A rule that is absent in the rule base
c) Both (a) and (b)
d) None of the above

4.10 Which of the following phases of a fuzzy controller uses the fuzzy rule base? 
a) Fuzzifi cation b) Rule implication
c) Both (a) and (b) d) None of the above

Answers

 4.1 (a) 4.2 (b) 4.3 (a) 4.4 (a) 4.5 (d)
 4.6 (a) 4.7 (b) 4.8 (d) 4.9 (b) 4.10 (b)

 EXERCISES

4.1.  A test is being conducted to ascertain the creative and logical ability of a person. Th e test has two 
parts, viz., a reasoning part, and a design part. Th e score of each part is normalized to the scale of 
0−10. Th ere are two output indices, viz., the creative index, and the logical index, both are within 
the range [0, 1]. Th e scores of the tests, as well as the outputs, i.e., the creative index, and the logical 
index, are categorized by the linguistic variables low, medium, and high. 

Propose suitable fuzzy set membership functions for each linguistic variable described above. 
Also propose a fuzzy rule base involving the input and output parameters mentioned above. De-
sign a fuzzy inference system, structurally similar to a fuzzy controller, to fi nd the values of the two 
indices when the normalized score of the test is given. Find the values of the creative and logical 
indices for the following sets scores:

Reasoning = 7, and Design = 4
Reasoning = 3, and Design = 8

4.2  In Solved Problem No. 4.1 and 4.2, calculate the outputs through centroid method and mean-of-
maxima method.
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upright by moving back and forth. Numerous fuzzy controllers built upon the concepts of fuzzy infer-
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ROUGH SETS
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An important feature of intelligent behaviour is the ease with which it deals with vagueness, or inexact-
ness. Vagueness, or inexactness, is the result of inadequate knowledge. In the realm of Computer Sci-
ence, more particularly in Soft  Computing, two models of vagueness have been proposed. Th e concept of 
a fuzzy set, proposed by Lotfi  Zadeh, models vagueness with the help of partial membership, in contrast 
with crisp membership used in the classical defi nition of a set. Fuzzy set theory and related topics are 
discussed in Chapter 2 (Fuzzy set theory), Chapter 3 (Fuzzy logic), and Chapter 4 (Fuzzy inference sys-
tems) of this book. Th is chapter introduces the other model known as the Rough set theory. Th e concept 
of rough sets, proposed by Zdzisław Pawlak, considers vagueness from a diff erent point of view. In Rough 
set theory, vagueness is not expressed by means of set membership but in terms of boundary regions of 
a set of objects. Th ere are situations related to large reservoir of multidimensional data when it is not 
possible to decide with certainty whether a given object belongs to a set or not. Th ese objects are said to 
form a boundary region for the set. If the boundary region is empty, then the set is crisp, otherwise it is 
rough, or inexact. Th e existence of a non-empty boundary region implies our lack of suffi  cient knowl-
edge to defi ne the set precisely, with certainty. Th ere are many interesting applications of the rough set 
theory. Th is approach appears to be of fundamental importance to AI and cognitive sciences, especially 
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146  Introduction to Soft Computing

in the areas of machine learning, knowledge acquisition, decision analysis, knowledge discovery from 
databases, expert systems, inductive reasoning and pattern recognition. Rest of this chapter provides an 
introductory discussion on the fundamentals of the Rough set theory.

5.1 INFORMATION SYSTEMS AND DECISION SYSTEMS

A datum (singular form of the word ‘data’) is usually presented either as a number, or a name. ‘Infor-
mation’ is processed or structured data that may convey some meaning. Data in itself do not carry 
any meaning, and therefore useless for practical purposes. However, when interpreted in a particular 
context, it becomes meaningful and useful for taking decisions. For example, the word ‘John’ and the 
number ‘30’ are two data. Th ey are meaningless and useless in this raw form. But if these two data are 
interpreted as ‘John is 30 years old,’ or ‘John owes $30 to Sheela,’ or ‘John lives 30 km to the North of 
London,’ they convey meaning and become useful.

Th e simplest way to associate meaning to data is to present them in a structured form, like, in a table. 
Every column of such a table represents an attribute or property and every row represents an object. By 
‘object’ we mean an ordered n-tuple of attribute values. An instance of rendering sense to a set of data by 
virtue of their arrangement in tabular form is cited in Example 5.1.

Example 5.1  (Information presented as structured data)

Let us consider the set of numerical data D = {1, 2, 3, 4, 5, 6, 7, 59, 73, 12, 18, 33, 94, 61}. Table 5.1 
shows the data arranged in tabular form. Columns 2 and 3 of Table 5.1 present the attributes Roll 
Number and Score respectively. Th ere are seven objects corresponding to the seven rows of the 
table. Each object is a 2-tuple. Th e objects here are (1, 59), (2, 73), (3, 12), (4, 18), (5, 33), (6, 94), 
and (7, 61).

Table 5.1. Information presented as structured data

# Roll No. Score

1 1 59
2 2 73
3 3 12
4 4 18
5 5 33
6 6 94
7 7 61

A number of data arranged in a tabular format is oft en termed as an information system. An information 
system can be formally defi ned in the following way.

Defi nition 5.1 (Information System) Let A = (A1, A2, A3, … , Ak) be a non-empty fi nite set of at-
tributes and U = {(a1, a2, ..., ak)} be a non-empty fi nite set of k-tuples, termed as the objects. V (Ai) denote 
the set of values for the attributes Ai. Th en an information system is defi ned as an ordered pair I (U, A) 
such that for all i = 1, 2, ..., k there is a function fi 

fi : U → V(Ai)
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Th is means, every object in the set U has an attribute value for every element in the set A. Th e set U is 
called the universe of the information system.

Example 5.2  (Information system)

Table 5.2 shows an information system regarding the scores of seven students in three subjects. Th e 
information system consists of seven objects, each corresponding to a student. Here U includes 
the objects (1, 82, 90, 98), ...., (7, 10, 12, 0) and the set A consists four attributes  Roll No., Physics, 
Chemistry and Mathematics. V (Roll No.) = {1, 2, 3, 4, 5, 6, 7} and V (Physics) = V (Chemistry) = V 
(Mathematics) = {0, 1, 2, ..., 100}, assuming that the score of a subject is given as whole numbers.

Table 5.2. An information system

# Roll No. Physics Chemistry Mathematics

1 1 82 90 98

2 2 80 96 100

3 3 63 62 68

4 4 70 92 100

5 5 54 51 36

6 6 92 94 90

7 7 10 12 0

Quite oft en, an information system includes a special attribute that presents a decision. For example, the 
information system shown in Table 5.2 may be augmented with a special attribute Admitted as in Table 5.3. 
Th is attribute will indicate whether the student concerned is admitted to a certain course on the basis of the 
marks scored in Physics, Chemistry and Mathematics. Such systems which show the outcome of a classi-
fi cation are known as decision systems. Th e attribute presenting the decision is called the decision attribute. 
Values of the decision attribute depend on the combination of the other attribute values.

Example 5.3  (Decision system)

Table 5.3 presents a decision system obtained by augmenting the information system depicted in 
Table 5.2 by a decision attribute Admitted.

Table 5.3. An information system augmented with a decision attribute

Roll No. Physics Chemistry Mathematics PCM %age Admitted

1 82 90 98 90 Yes

2 80 96 100 92 Yes

3 63 62 68 64.3 No

4 70 92 100 87.3 Yes

5 54 51 36 47 No

6 92 94 90 92 Yes

7 10 12 0 7.3 No
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148  Introduction to Soft Computing

Defi nition 5.2 (Decision System) A decision system D (U, A, d) is an information system I (U, A) 
augmented with a special attribute d ∉ A, known as the decision attribute.

Th e decision system shown in Table 5.3 has the decision attribute Admitted that has binary values 
‘Yes’ or ‘No’. Th ese values are based on certain rules which guide the decision. On a closer scrutiny into 
Table 5.3, this rule maybe identifi ed as If PCM %age is greater than or equal to 87.3 then Admitted = Yes, 
else Admitted = No.

5.2 INDISCERNIBILITY

Decision systems have the capacity to express knowledge about the underlying information system. 
However, a decision table may contain redundancies such as indistinguishable states or superfl uous at-
tributes. In Table 5.3, the attributes Physics, Chemistry and Mathematics are unnecessary to take decision 
about admittance so long as the aggregate percentage is available. Th e decision attributes in decision 
systems are generated from the conditional attributes. Th ese conditional attributes share common prop-
erties as clarifi ed in the subsequent examples. However, before we go on to discuss these issues, we need 
to review the concept of equivalence relation.

Defi nition 5.3 (Equivalence Relation) A binary relation R ⊆ A × A is an equivalence relation if it is 

 (i) Refl exive  (∀ x ∈ A, xRx), 
 (ii) Symmetric  (∀ x,  y ∈ A,  xRy ⇒ yRx), and 
 (iii) Transitive  (∀ x,  y, z ∈ A,  xRy ∧ yRx ⇒ xRz).

Informally, two objects or cases are equivalent if they share some common properties. Equivalence is 
however, limited only to those common properties which these elements share.

Example 5.4  (Equivalence relation)

As a rather trivial case, let us consider similarity (∼) of triangles. Two triangles ΔABC and ΔPQR 
are similar (written as ΔABC ∼ ΔPQR) if they have the same set of angles, say ∠A = ∠P, ∠B = ∠Q, 
and ∠C = ∠R. Th is is an equivalence relation because

 (i) ∼ is refl exive (ΔABC ∼ ΔABC), 
 (ii) ∼ is symmetric (ΔABC ∼ ΔPQR ⇒ ΔPQR ∼ Δ ABC), and
 (iii) ∼ is transitive (ΔABC ∼ ΔPQR ∧ ΔPQR ∼ Δ KLM ⇒ ΔABC ∼ Δ KLM).

Example 5.5  (Equivalence relation)

Let us consider a case of hostel accommodation. Let S be a set of students and R be a relation on S 
defi ned as follows : ∀ x, y ∈ S,  xRy if and only if x and y are in the same hostel. R is an equivalence 
relation because

 (i) R is refl exive (A student stays in the same hostel as himself.)
 (ii) R is symmetric (If x stays in the same hostel as y, then y stays in the same hostel as x), and 
 (iii) R is transitive (If x stays in the same hostel as y, and y stays in the same  hostel as z, then x stays in the 

same hostel as z).
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Example 5.6  (Equivalence Relation)

Let I be the set of all integers and let R be a relation on I, such that two integers x and y are related, 
xRy, if and only if x and y are prime to each other. Th is relation is symmetric but neither refl exive 
nor transitive. Th erefore it is not an equivalence relation.

Example 5.7  (Equivalence Relation)

Let us consider matrix algebra and multipliability of matrices. Two matrices A and B are related if 
A × B is defi ned. Th is relation is neither refl exive, nor symmetric, nor transitive. Hence it is not an 
equivalence relation.

Defi nition 5.4 (Equivalence Class) An equivalence class of an element x ∈ U, U being the uni-
verse, is the set of all elements y ∈ U such that xRy, i.e., x and y are related. Hence, if E ⊆ U, be an equiva-
lence class, then ∀ a, b ∈ E, aRb holds good.

Example 5.8  (Equivalence Class) 

Let U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and ∀ a, b ∈ U, aRb if and only if a MOD 3 = b MOD 3. Th is rela-
tion partitions U into three equivalence classes corresponding to the x MOD 3 = 0, 1, and 2. Th ese 
equivalence classes are {0, 3, 6, 9}, {1, 4, 7}, and {2, 5, 8} respectively.

Defi nition 5.5 (Indiscernibility) Let I = (U, A) be an information system where U = {(a1, …, ak)} is 
the non-empty fi nite set of k-tuples known as the objects and  U = {A1, …, Ak} is a non-empty fi nite set 
of attributes. Let P ⊆ A be a subset of the attributes. Th en the set of P-indiscernible objects is defi ned as 
the set of objects having the same set of attribute values.

 INDI (P) = {(x, y),  x, y ∈ U |  ∀a ∈A, x (a) = y(a)}  (5.1)

Th e concept of indiscernibility is illustrated in Example 5.9. 

Table 5.4. Personnel profi les

Name Gender Nationality Complexion Mother-tongue Profession

Amit M Indian Dark Hindi Lawyer

Bao M Chinese Fair Chinese Teacher

Catherine F German Fair German Journalist

Dipika F Indian Fair Hindi Journalist

Lee M Chinese Dark Chinese Lawyer

Example 5.9  (Indiscernibility)

Consider the profi les of a set of persons as shown Table 5.4. Let P = {Gender, Complexion, Profes-
sion} ⊆ A = {Gender, Nationality, Complexion, Mother-tongue, Profession}. From the information
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system shown in Table 5.4 Catherine and Dipika are P-indiscernible as both are fair complexioned 
lady journalists. Similarly, Amit and Lee are also P-indiscernible. Hence, INDI (P) = {{Catherine, 
Dipika}, {Amit, Lee}}. On the other hand, the set of P-indiscernible objects with respect to P = 
{Gender, Complexion} happens to be INDI (P) = {{Amit, Lee}, {Bao}, {Catherine, Dipika}}.

Example 5.10  (Indiscernibility)

Table 5.5 presents an information system regarding various features of three types of cars, viz., Car A, 
B and C. Unlike the other tables, the attributes are arranged here in rows while the objects are along 
the columns.

Table 5.5. Car features

Features Car A Car B Car C

Power Door Locks Yes Yes No

Folding Rear Seats No Yes No

Rear Wash Wiper Yes Yes Yes

Tubeless Tyres Yes Yes Yes

Remote Boot Yes No Yes

Steering Adjustment No No Yes

Rear Defroster Yes No Yes

Seating Capacity 4 5 4

Mileage (in km/litre) 18 18 16

Max. Speed (in km/h) 160 160 180

Here, A = {Power Door Locks, Folding Rear Seat, Rear Wash Wiper, Tubeless Tyres, Remote Boot,   
Steering Adjustment, Rear Defroster, Seating Capacity, Mileage, Max. Speed}, U = {Car A, Car B, 
Car C}. Let us consider the three subsets of attributes M = {Mileage, Max. Speed}, R = {Rear Wash 
Wiper, Remote Boot, Rear Defroster} and L  = {Power Door Locks, Steering Adjustment}. Th en INDI 
(M) = {{Car A, Car B}, {Car C}}, INDI (R)  = {{Car A, Car C}, {Car B}}, INDI (L) = {{Car A, Car 
B}, {Car C}}.

Indiscernibility is an equivalence relation and an indiscernibility relation partitions the set of objects 
in an information system into a number of equivalence classes. Th e set of objects B-indiscernible from x 
is denoted as [x]B. For example, if B = {Folding Rear Seats, Rear Wash Wiper, Tubeless Tyres, Remote Boot, 
Rear Defroster}, then [Car A]B = {Car A, Car C}. However, if F = {Power Door Locks, Steering Adjustments, 
Mileage, Max. Speed}, then [Car A]F = {Car A, Car B}.

5.3 SET APPROXIMATIONS

In a decision system, the indiscernibility equivalence relation partitions the universe U into a number 
of subsets based on identical values of the outcome attribute. Such partitions are crisp and have clear 
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boundaries demarcating the area of each subset. However, such crisp boundaries might not always be 
possible. For example consider the decision system presented in Table 5.6. It consists of age and activity 
information of eight children aged between 10 to 14 months. Th e outcome attribute ‘Walk’ has the pos-
sible values of YES or NO depending on whether the child can walk or not. A closer observation reveals 
that it is not possible to crisply group the pairs (Age, Can Walk) based on the outcome into YES / NO 
categories. Th e problem arises in case of entries 1 and 5 where the ages of the children are same but the 
outcomes diff er. Th erefore, it is not possible to decisively infer whether a child can walk or not on the 
basis of its age information only. 

Table 5.6. Child activity information

# Age (in months) Can Walk

1 12 No

2 14 Yes

3 14 Yes

4 13 Yes

5 12 Yes

6 10 No

7 10 No

8 13 Yes

{2, 3, 4, 8}

YES

{6, 7}

NO

{1, 5}

YES/
NO

Fig. 5.1. Roughness in a decision system

Th e situation is depicted in Fig. 5.1. Objects 2, 3, 4 and 8 belong to the class that can be described by 
the statement ‘If age is 13 or 14 months then the child can walk’. Similarly, objects 6 and 7 defi ne a class 
corresponding to the rule ‘If age is 10 months then the child can not walk’. However, objects 1 and 5 are 
on the boundary region in the sense that though both of them correspond to children of age 12 years, 
their ‘Can Walk’ information is NO in case of object 1 and YES in case of object 5. It is under such cir-
cumstances that the concept of rough sets comes into the picture and informally we may say that ‘Sets 
which consist objects of an information system whose membership cannot be ascertained with certainty 
or any measure of it are called rough sets. Formally, rough sets are defi ned in terms of lower and upper 
approximations. Th ese are described below.

Defi nition 5.6 (Lower and Upper Approximations) Let I = (U, A) be an information system and B 
⊆ A is a subset of attributes and X ⊆ U is a set of objects. Th en
 B-lower approximation of X = B (X) = {x | [x] B ⊆ X } (5.2)
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 B-upper approximation of X = B (X) = {x | [x] B ∩ X ≠ ∅} (5.3)

Th e objects that comply with the condition 5.1 and fall in B (X) are classifi ed with certainty as members 
of set X, while, those objects that comply with 5.2 and therefore belong to B (X) are classifi ed as possible 
members.

Defi nition 5.7 (Boundary Region) Th e set BN B BB ( )X ( )X( )X ( )XB(X is called the B-boundary region 
of X. Th e B-boundary region of X consists of those objects which we cannot decisively classify as inside 
or outside the set X on the basis of the knowledge of their values of attributes in B. If a set has a non-
empty boundary region, it is said to be a rough set.

Defi nition 5.8 (Outside Region) Th e set U BX  is called the B-outside region of X. Th e B-outside 
region of X consists of elements that are classifi ed with certainty as not belonging to X on the basis of 
knowledge in B.

Example 5.11  (Set approximations)

With reference to the information system presented in Table 5.6, let W = {y | Can Walk (y) = Yes} = 
{2, 3, 4, 5, 8}. Now, the set of Age-indiscernible objects of U, INDAge (U) = {{1, 5}, {2, 3}, {4, 8}, {6, 7}}. 
Hence the sets of the Age-indiscernible objects for various objects are [1] Age = [5] Age = {1, 5}, [2] Age = 
[3] Age = {2, 3}, [4] Age = [8] Age = {4, 8}, [6] Age = [7] Age = {6, 7}. Th us, assuming B = {Age} we have

B-lower approximation of W : BW  = {2, 3, 4, 8}
B-upper approximation of W : BW  = {1, 2, 3, 4, 5, 8}
B-boundary region of W : BNB (W) = {1, 5} 
B-outside region of W : U BW  = {6, 7}

As BNB (W) = {1, 5} ≠ ∅, W is a rough set with respect to knowledge about walking.

5.4 PROPERTIES OF ROUGH SETS

Rough sets, defi ned as above in terms of the lower and upper approximations, satisfy certain properties. 
Some of these properties are cited below. Th ese properties are either obvious or easily provable from the 
defi nitions presented above.

B X B( )X ( )X⊆ ⊆X1.  (5.4)

B B U U( ) ( ) ; ( ) (B )∅ =) ∅ =) ∅ =U; (B ) =2.  (5.5)

B B B( )X Y ( )X ( )Y)Y ∪3.  (5.6)
B B B( )X Y ( )X ( )Y)Y4.  (5.7)
B B B( )X Y ( )X ( )Y⊇)Y ∪5.  (5.8)

B B B( )X Y ( )X ( )Y⊆)Y6.  (5.9)

X Y B B B B⊆ →Y ⊆B⊆ B( )X ( )YY ( )XX ( )Yd7.  (5.10)

B U B( )U X ( )XX −8.  (5.11)

Samir Roy_Chapter05.indd   152Samir Roy_Chapter05.indd   152 2/21/2013   3:20:40 PM2/21/2013   3:20:40 PM



Rough Sets   153

B U B( )U X ( )XX −9.  (5.12)

BB BB B( )X ( )X( )X ( )X=BB )X10.  (5.13)

BB BB B( )X ( )X( )X ( )X=BB )X11.  (5.14)

5.5 ROUGH MEMBERSHIP

Rough sets are also described with the help of rough membership of individual elements. Th e member-
ship of an object x to a rough set X with respect to knowledge in B is expressed as μX

Bμμ ( )x .
 
Rough mem-

bership is similar, but not identical, to fuzzy membership. It is defi ned as

 
μX

Bμμ B

B

XB( )x
[ ]x

[ ]x
=

 
(5.15)

Obviously, rough membership values lie within the range 0 to 1, like fuzzy membership values.

μX
Bμμ : [U , ]0,

Th e rough membership function may as well be interpreted as the conditional probability that x belongs 
to X given B. It is the degree to which x belongs to X in view of information about x expressed by B. 
Th e lower and upper approximations, as well as the boundary regions, can be defi ned in terms of rough 
membership function.

 B X
B( )X { |x U ( )x }={x =μB 1  (5.16)

 B X
B( )X { |x U ( )x }={x >μB 0  (5.17)

 BN XB
B( )XX { |Ux U ( )x( ) }xx 1)x)<)xμ  (5.18)

Example 5.12  (Rough membership)

Let us again consider the information system presented in Table 5.6. W = {y | Can Walk (y) = Yes} = {2, 
3, 4, 5, 8} and B = {Age}. In Example 5.11 we have found INDAge (U) = {{1, 5}, {2, 3}, {4, 8}, {6, 7}}, BW  
= {2, 3, 4, 8}, BW  = {1, 2, 3, 4, 5, 8}, BNB (W) = {1, 5}, and U BW  = {6, 7}. Moreover, [1] Age = [5] Age 
= {1, 5}, [2] Age = [3] Age = {2, 3}, [4] Age = [8] Age = {4, 8}, [6] Age = [7] Age = {6, 7}. Now

μW
Bμμ ( ) |[ ] |B W

|[ ] |B

|{ , } { , , , , }
|{ , } |

1
1

1, 3 4 5, ,
1,

1
2

= =
∩

=

Similarly, μ μ μ μ μ μ μμμBμμ W
B μB

W
B μB

W
B

W
Bμμ( ) , (μW

Bμμ ) (μμμBμμ ) (μW
B ) (μμB ) ( ) ( ) .1

2
2 3 4 8) (μW

Bμμ ) (μμμBμμ μW (μBμμ ( 0))(μW 2 4(μW ) =)μW (

Th e properties listed below are satisfi ed by rough membership functions. Th ese properties either follow 
from the defi nition or are easily provable.

μX
Bμμ ( )x = 11.  iff  x B( )X  (5.19)
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μX
Bμμ ( )x = 02.  iff  x U B−U ( )X  (5.20)

0 1μB ( )3.  iff  x BNB ( )X  (5.21)

μ μμμBμμ X
BμμμX( ) ( )x14.  (5.22)

μX Y
Bμμ ∪ ≥( )x5.  max ( ( ) ( ))μ μ( ),μμB

Y
Bμμ (μ), Y  (5.23)

μX Y
Bμμ ≤( )x6.  min ( ( ) ( ))μ μ( ),μμB

Y
Bμμ (μ), Y  (5.24)

We are now in a position to defi ne rough sets from two diff erent perspectives, the fi rst using approxima-
tions and the second using membership functions. Both defi nitions are given below. 

Defi nition 5.9 (Rough Sets) Given an information system I = (U, A), X ⊆ U and B ⊆ A, roughness 
of X is defi ned as follows.

 (i) Set X is rough with respect to B if B B( )X ( )X≠  or B B( )X ( )X− ≠B( )X φ
 (ii) Set X is rough with respect to B if there exist x∈U such that 0 1μX

B ( ) .

Based on the properties of set approximations and the defi nition of indiscernibility, four basic classes of 
rough sets are defi ned. Th ese are mentioned in Table 5.7.

Table 5.7. Categories of vagueness

# Category Condition

1 X is roughly B-defi nable B( )X ≠ ∅  and B( )X ≠  U

2 X is internally B-defi nable B( )X = ∅  and B U( )X ≠

3 X is externally B-defi nable B( )X ≠ ∅  and B U( )X =

4 X is totally B-indefi nable B( )X = ∅  and B U( )X =

We can further characterize rough sets in terms of the accuracy of approximation, defi ned as

 
αB

B
B

( )X ( )X
( )X

=
 

(5.25)

It is obvious that 0 1≤ ≤αB ( )X . If αB ( )X ,= 1  the set X is crisp with respect to B, otherwise, if αB ( )X ,< 1
then X is rough with respect to B. 

Defi nition 5.10 (Dependency) Let I = (U, A) be an information system and B1, B2 ∈ A are sets of 
attributes. B1 is said to be totally dependent on attribute B2 if all values of attribute B1 are uniquely deter-
mined by the values in B2. Th is is denoted as B B2 1B .

5.6 REDUCTS

An indiscernibility relation partitions the objects of an information system into a set of equivalence 
classes. However, the entire set of attributes, A, may not be necessary to preserve the indiscernibility 
among a set of indiscernible objects. In other words, there may exist a subset B A⊆ , which is suffi  cient 
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to maintain the classifi cation based on indiscernibility. A minimal set of attributes required to preserve 
the indiscernibility relation among the objects of an information system is called a reduct. 

Defi nition 5.11 (Reduct) Given an information system I = (U, A), a reduct is a minimal set of at-
tributes B ⊆ A such that INDI (B) = INDI (A).

Defi nition 5.12 (Minimal Reduct) A Reduct with minimal cardinality is called a minimal reduct.

Table 5.8. Dog breed comparison

 1 2 3 4 5

Breed Rottweiler Saint Bernard Saluki German Shepherd Golden Retriever

Weight Heavy Heavy Medium Heavy Heavy

Grooming Low Medium Low Medium Medium

Exercise Heavy Heavy Heavy Heavy Heavy

Living space Large Average Large Average Average

Training Medium Medium High High High

Child tolerance Low Very High Low Very High Very High

Stranger tolerance Low Low Low High High

Recommendation No No No Yes Yes

Example 5.13  (Reduct)

Let us consider the information system I = (U, {Weight, Grooming, Exercise, Living Space, Train-
ing, Child Tolerance, Stranger Tolerance}, {Recommendation}), concerning comparative study of 
dog breed, as shown in Table 5.8. For convenience, the attributes are arranged rowwise and the 
individual objects are presented columnwise.

Here INDI (A) = {{Rottweile r}, {Saint Bernard}, {Saluki}, {German Shepard, Golden Retriever}}. 
Th e same equivalence classes are obtained if we consider only two of the attributes B = {Training, 
Child Tolerance}. However, the classifi cation is diff erent if we remove any of the attributes from the 
set B = {Training, Child Tolerance}. Th erefore, B is a minimal set of attributes. Th us B = {Training, 
Child Tolerance} is a reduct of the given information system. Moreover, let us consider the set C = 
{Weight, Grooming, Living Space}. We see that INDI (C) = INDI (B) = INDI (A), however the same 
set of equivalence classes is obtained for the set C’ = {Weight, Grooming} ⊆ C = {Weight, Grooming, 
Living Space}. As C is not a minimal set of attributes to maintain the INDI (A) classifi cation, it is 
not a reduct. Again, the set of attributes D = {Grooming, Living Space} produces the D-indiscern-
ible classes INDI (D) = {{Rottweiler, Saluki}, {Saint Bernard, German Shepard, Golden Retriever}} 
≠ INDI (A). Hence D is not a reduct. Moreover, as there is no reduct of size less than 2 for this 
information system, the set B = {Training, Child Tolerance} is a minimum reduct.

For practical information systems with a large number of attributes, the process of fi nding a minimum 
reduct is highly computation intensive. A method based on discernibility matrix is presented below.
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Defi nition 5.13 (Discernibility Matrix) Given an information system I = (U, A) with n objects, 
the discernibility matrix D is a symmetric n × n matrix where the (i, j)th element dij is given by dij = {a ∈ 
A | a (xi) ≠ a (xj)}.

Each entry of a discernibility matrix is one or more attributes for which the objects xi and xj diff er. 

Example 5.14  (Discernibility Matrix)

Th e discernibility matrix for the information system depicted in Table 5.8 on dog breed comparison is 
shown in Table 5.9. Here d12 = {G, L, C}, which means that object #1 and #2, i.e., the breeds Rottweiler 
and Saint Bernard diff er in the attributes Grooming, Living Space, and Child Tolerance. Th ey match in 
the rest of the attributes of the information system.

Table 5.9. Discernibility matrix for dog breed information system

1 2 3 4 5

1 ∅ G, L, C W, T G, L, T, C, S G, L, T, C, S

2 - ∅ W, G, L, T, C T, S T, S

3 - - ∅ W, G, L, C, S W, G, L, C, S

4 - - - ∅ ∅

Defi nition 5.14 (Discernibility Function) A discernibility function fI for an information system 
I = (U, A) is a Boolean function of n Boolean variables a1, a2, ..., an corresponding to the n number of 
attributes A1, ..., An such that

 f a a a d dn iVd j iii ji1f af 2,a1a , , ) { , }dijin id jiVd i ni{ ,d≤VdiVd ji 1{ nn,did ji  (5.26)

where dij is the (i, j)th entry of the discernibility matrix.
Th e set of all prime implicants corresponds to the set of all reducts of I. Hence, our aim is to fi nd the 

prime implicants of fI.

Example 5.15  (Discernibility Function)

Th e discernibility function for the discernibility matrix shown in Table 5.9 is given by
f I (B, W, G, E, L, T, C, S)  

= (G ∨ L ∨ C) ∧(W ∨ T)  ∧ (G ∨ L ∨ T ∨ C ∨ S) ∧ 

(G ∨ L ∨ T ∨ C ∨ S) ∧ (W ∨ G ∨ L ∨ T ∨ C) ∧ 

(T ∨ S) ∧ (T ∨ S) ∧ (W ∨ G ∨ L ∨ C ∨ S) ∧ 

(W ∨ G ∨ L ∨ C ∨ S) 

= (G ∨ L ∨ C) ∧(W ∨ T)  ∧ (G ∨ L ∨ T ∨ C ∨ S) ∧ 

(W ∨ G ∨ L ∨ T ∨ C) ∧ (T ∨ S) ∧ (W ∨ G ∨ L ∨ C ∨ S) 

= (G ∨ L ∨ C) ∧(W ∨ T) ∧ (T ∨ S) 
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= (G ∧ W ∧ T) ∨ (G ∧ W ∧ S) ∨ (G ∧ T) ∨ (G ∧ T ∧ S) ∨ 

(L ∧ W ∧ T) ∨ (L ∧ W ∧ S) ∨ (L ∧ T) ∨ (L ∧ T ∧ S) ∨ 

(C ∧ W ∧ T) ∨ (C ∧ W ∧ S) ∨ (C  ∧ T) ∨ (C ∧ T ∧ S)

= (G ∧ W ∧ S) ∨ (G ∧ T) ∨ (L ∧ W ∧ S) ∨ (L ∧ T) ∨ (C ∧ W ∧ S) ∨ (C  ∧ T) 

= (G ∧ W ∧ S) ∨  (L ∧ W ∧ S) ∨ (C ∧ W ∧ S) ∨ (G ∧ T) ∨ (L ∧ T) ∨  (C  ∧ T)

Th e prime implecants are (G ∧ W ∧ S), (L ∧ W ∧ S), (C ∧ W ∧ S ), (G ∧ T ), (L ∧ T), and (C  ∧ T ). 
Each of the sets  {G, W, S}, {L, W, S}, {C, W, S}, {G, T}, {L, T}, and {C, T} is a minimal set of attributes 
that preserves the classifi cation INDI (A). Hence each of them is a reduct. Moreover, each of the sets 
{G, T}, {L, T}, and {C, T} is a minimal reduct because they are of size 2, and there is no reduct of size 
smaller than 2 for the present information system.

5.7 APPLICATION

Th e theory of rough sets is fast emerging as an intelligent tool to tackle vagueness in various applica-
tion areas. It provides an eff ective granular approach for handling uncertainties through set approxi-
mations. Several soft ware systems have been developed to implement rough set operations and apply 
them to solve practical problems. Rough set theory is successfully employed in image segmentation, 
classifi cation of data and data mining in the fi elds of medicine, telecommunication, and confl ict analy-
sis to name a few.

Example 5.16 illustrates the process of rule generation from a given information system / decision 
system. Subsequently, Example 5.17 presents a case study to show how the concepts of rough set theory 
can be used for the purpose of data clustering.

Table 5.10. Decision system relating to scholarship information

# Degree CGPA Backlog Recommendation Decision

1 B.Tech. Average No High Granted

2 B.Tech. Fresher No None Not Granted

3 BS Low No Moderate Not Granted

4 MS High No None Granted

5 MS Average No None Not Granted

6 MS High No High Granted

7 B.Tech. High Yes Moderate Granted

8 BS Low Yes High Not Granted

Example 5.16  (Rule generation)

Let us consider a decision system D = (U, {Degree, CGPA, Backlog, Recommendation}, {Decision}) 
concerning scholarship granting information at an educational institution, as shown in Table 5.10. 
Table 5.11 presents the corresponding discernity table.
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Table 5.11. Discernibility matrix for information system of Table 5.10 

2 3 4 5 6 7 8

1 C, R D, C, R D, C, R D, R D, C C, B, R D, C, B

2 Ǿ D, C, R D, C D, C D, C, R C, B, R D, C, B, R

3 - Ǿ D, C, R D, C, R D, C, R D, C, B B, R

4 - - Ǿ C R D, B, R D, C, B, R

5 - - - Ǿ C, R D, C, B, R D, C, B, R

6 - - - - Ǿ D, B, R D, C, B

7 - - - - - Ǿ D, C, R

Th e discernibility function obtained from the discernibility table is as follows (using ‘+’ for the 
logical operator ∨ and ‘⋅’ for ∧).

f I (D, C, B, R) = 

[(C + R)(D + C + R)(D + C + R)(D + R)(D + C)(C + B + R)(D + C +B)]
[(D + C + R)(D + C)(D + C)(D + C + R)(C + B + R)(D + C +B + R)] ⋅ 
[(D + C + R)(D + C + R)(D + C + R)(D + C +B)(B + R)] ⋅
[(C)(R)(D + B + R)(D + C +B + R)] ⋅
[(C + R)(D + C + B + R)(D + C +B + R)] ⋅
[(D + B + R)(D + C +B)] 
[(D + C + R)]  =  (C) ⋅ (R)

Hence the system has a unique minimum reduct {CGPA, Recommendation}. Th e sample space 
aft er attribute reduction is shown in Table 5.12. Th e rules extracted using the minimal reduct ob-
tained above are given in Table 5.13.

Table 5.12. Sample space after attribute reduction

# CGPA Departmental 
Recommendation

Decision

1 Average High Granted

2 Fresher None Not Granted

3 Low Moderate Not Granted

4 High None Granted

5 Average None Not Granted

6 High High Granted

7 High Moderate Granted

8 Low High Not Granted
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Table 5.13. Extracted rules

Rule # Antecedent Consequent

1 IF (CGPA = Average) and (Recommendation = High) THEN Decision = Granted

2 IF (CGPA = Low) and {(Recommendation = Moderate) Or 
(Recommendation = High)}

THEN Decision = Not Granted

3 IF (CGPA = High) and {(Recommendation = None) Or 
(Recommendation = Moderate) Or
(Recommendation = High)}

THEN Decision = Granted

4 IF (CGPA = Average) and (Recommendation = None) THEN Decision = Not Granted

5 IF (CGPA = Fresher) and (Recommendation = None) THEN Decision = Not Granted

Example 5.17  (Data Clustering)

In this example, we consider an animal world dataset based on an example cited by T. Herawan, 
et. al. in the paper entitled ‘Rough Set Approach for Categorical Data Clustering,’ in International 
Journal of Database Th eory and Application, Vol. 3, No.1. March 2010. We illustrate the process of 
data clustering using the concepts of rough set theory. 

Table 5.14. Animal world dataset

# Animal Hair Teeth Eye Feather Feet Eat Milk Fly Swim

1 Lion Yes Pointed Forward No Claw Meat Yes No Yes

2 Dolphin No No Sideway No No Fish No No Yes

3 Cow Yes Blunt Sideway No Hoof Grass Yes No No

4 Tiger Yes Pointed Forward No Claw Meat Yes No Yes

5 Cheetah Yes Pointed Forward No Claw Meat Yes No Yes

6 Giraffe Yes Blunt Sideway No Hoof Grass Yes No No

7 Zebra Yes Blunt Sideway No Hoof Grass Yes No No

8 Ostrich No No Sideway Yes Claw Grain No No No

9 Penguin No No Sideway Yes Web Fish No No Yes

10 Albatross No No Sideway Yes Claw Grain No Yes Yes

11 Eagle No No Forward Yes Claw Meat No Yes No

12 Viper No Pointed Forward No No Meat No No No

Table 5.14 presents data related to twelve animals, viz., Lion, Dolphin, Cow, Tiger, Cheetah, Gi-
raff e, Zebra, Ostrich, Penguin, Albatross, Eagle, and Viper. Th e attributes are Hair (whether the 
animal has hair or not), Teeth, Eye (whether the eyes are directed forward or sideways), Feather, 
Feet (the options are clawed, hoofed, webbed, or no feet), Eat (i.e, eating habit, options are meat, 
grass, fi sh, grain), Milk, Fly, and Swim. Th e sets of attribute values are, VHair =  {Yes, No}, VTeeth =  
{Pointed, Blunt, No}, VEye =  {Forward, Sideway}, VFeather =  {Yes, No}, VFeet =  {Claw, Hoof, Web, 
No}, VEat =  {Meat, Grass, Grain, Fish}, VMilk =  {Yes, No}, VFly =  {Yes, No}, VSwim =  {Yes, No}. 
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Th e partitions using singleton attributes are as given below. 

1. X (Hair = yes) = {1, 3, 4, 5, 6, 7}, X (Hair = no) = {2, 8, 9, 10, 11, 12}.
∴INDI (Hair) = {{1, 3, 4, 5, 6, 7}, {2, 8, 9, 10, 11, 12}}.

2. X (Teeth = pointed) = {1, 4, 5, 12}, X (Teeth = Blunt) = {3, 6, 7}, X (Teeth = no) = {2, 8, 9, 10, 
11}. 
∴INDI (Teeth) =  {{1, 4, 5, 12}, {3, 6, 7}, {2, 8, 9, 10, 11}}.

3. X (Eye = Forward) = {1, 4, 5, 11, 12}, X (Eye = Sideway) = {2, 3, 6, 7, 8, 9, 10}.
∴INDI (Eye) = {{1, 4, 5, 11, 12}, {2, 3, 6, 7, 8, 9, 10}}.

4. X (Feather = yes) = {8, 9, 10, 11}, X (Feather = no) = {1, 2, 3, 4, 5, 6, 7, 12}.
∴INDI (Feather) = {{8, 9, 10, 11}, {1, 2, 3, 4, 5, 6, 7, 12}}.

5. X (Feet = claw) = {1, 4, 5, 8, 10, 11}, X (Feet = hoof) = {3, 6, 7}, X (Feet = Web) = {9}, X (Feet = 
No) = {2, 12}.
∴INDI (Feet) = {{1, 4, 5, 8, 10, 11}, {3, 6, 7}, {9}, {2, 12}}.

6. X (Eat = Meat) = {1, 4, 5, 11, 12}, X (Eat = Grass) = {3, 6, 7}, X (Eat = Grain) = {8, 10}, X (Eat = 
Fish) = {2, 9}.
∴INDI (Eat) = {{1, 4, 5, 11, 12}, {3, 6, 7}, {8, 10}, {2, 9}}.

7. X (Milk = Yes) = {1, 3, 4, 5, 6, 7}, X (Milk = No) = {2, 8, 9, 10, 11, 12}.
∴INDI (Milk) = {{1, 3, 4, 5, 6, 7}, {2, 8, 9, 10, 11, 12}}.

8. X (Fly = Yes) = {10, 11}, X (Fly = no) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 12}.
∴INDI (Fly) = {{10, 11}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 12}}.

9. X (Swim = Yes) = {1, 2, 4, 5, 9, 10}, X (Swim = No) = {3, 6, 7, ,8, 11, 12}. 
∴INDI (Swim) = {{1, 2, 4, 5, 9, 10}, {3, 6, 7, 8, 11, 12}}.

Now, let us focus on the dependency between the attributes Teeth and Hair. We already have INDI (Teeth) 
=  {{1, 4, 5, 12}, {3, 6, 7}, {2, 8, 9, 10, 11}} and INDI (Hair) = {{1, 3, 4, 5, 6, 7}, {2, 8, 9, 10, 11, 12}}. Since {3, 
6, 7} ⊆ {1, 3, 4, 5, 6, 7} and {2, 8, 9, 10, 11} ⊆ {2, 8, 9, 10, 11, 12}, but {1, 4, 5, 12} ⊄ {1, 3, 4, 5, 6, 7} and {1, 
4, 5, 12} ⊄ {2, 8, 9, 10, 11, 12}, the attribute dependency of Hair on Teeth is computed as follows

|{ , , }| |{ , , , , }|
| |

3 6, 7 2 8 9, ,, 10 3 5
12

2
3

+
= = , hence Teeth HaiHH r⇒2

3

Th is implies that the attribute Hair is partially dependent on the attribute Teeth. Th e other attribute de-
pendencies for Hair are found similarly. 

Eye H iH b k⇒ =HaiHH r because k =0 0,
| |
| |U

.

Feather H iH b k⇒ =HaiHH r because k = =1
3

8 9 10 4
12

1
3

,
|{ , ,9 , }11 |

| |U
.

Feet H i b k⇒ =Hair because k
+

= =1
2

3 6 7 9+ 2 6
12

1
2

,
|{ , ,6 }| |{ } | |{ , }12 |

| |U
.

Eat H iH b k⇒ =HaiHH r because k =7
12

3 6 8+7 9 7
12

,
|{ , ,6 }| |{ , }10 | |+ { ,2 }|

| |U
.
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Milk H i b k⇒ =Hair becausek =1
1 3 4 5 6 2 8 9 10 11 12

,
|{ , ,3 , ,5 , }7 | |+ { , , ,8 98 , ,11 } |

| |U
1211
12

1= .

Fly Hl iH b k =HaiHH r becausek = =
6

10 2
12

1
6

,
|{ , }11 |

| |U
.

Swim H i b k⇒ =Hair becausek =0 0,
| |
| |U

.

It is found from these calculations that there is complete dependency between the attributes Milk and 
Hair. Th erefore the animal world depicted in the information system Table 5.14 can be partitioned into 
two clusters on the basis of these two attributes. Th e resultant clusters are shown in Fig. 5.2. 

Lion, Dolphin, Cow, Tiger, Cheetah,
Giraffe, Zebra, Ostrich, Penguin,

Albatross, Eagle, Viper

With Hair and Milk
Lion, Cow, Tiger, Cheetah,

Giraffe, Zebra

Without Hair and Milk
Dolphin, Ostrich, Penguin,

Albatross, Eagle, Viper

Fig. 5.2. Clusters in the animal world

 CHAPTER SUMMARY

Th e main points of the topics discussed in this chapter are summarized below.
Th eory of • rough sets provides a formalism to tackle vagueness in real life relating to information 
systems.
An • information system is a set of data presented in structured, tabular form. It consists of 
a universe of objects and a number of attributes. Each object is an ordered n-tuple. Th e ith 
element of an object is a possible value of the ith attribute. 
A • decision system is an information system with a special attribute called the decision attribute.
Two objects of an information system are said to be • P-indiscernible, where P is a set of attributes 
of the system, if they have the same set of values of the attributes of P. Th e P-indiscernibility is 
an equivalence relation.
Given an information system • I = (U, A), a set of objects X ⊆ U and a set of attributes B ⊆ A, 
roughness, or otherwise, of X with respect to knowledge in B is defi ned in terms of the sets 
B-lower approximation of X and B-upper approximation of X. Th e B-lower approximation 
of X is the set of objects that are certainly in X. On the other hand, the set of objects that are 
possibly in X constitute the B-upper approximation of X. Th e set X is said to be rough with 
respect to our knowledge in B if the diff erence between the B-upper approximation of X and 
B-lower approximation of X is non-empty.
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Th e membership of an object • x to a rough set X with respect to knowledge in B is expressed as

μX
Bμμ ( )x  where μX

Bμμ B

B

XB( )x
[ ]x

[ ]x
.=  Like fuzzy membership, rough membership values lie within 

the range 0 to 1. 
A minimal set of attributes that preserves the indiscernibility relation among the objects of an • 
information system is called a reduct. A minimal reduct is a reduct with minimal size among 
all reducts.
A • discernibility matrix contains information about pairs of discernibile objects and the 
attributes in which they diff er. A discernibility function presents the same information as a 
Boolean function in the form of conjunction of disjunctions. Th e discernibility matrix and 
the discernibility function are used to fi nd the reducts as well as the minimal reducts of an 
information system. 
Th e theory of rough set is applied to extract hidden rules underlying an information system. It • 
is also used for data clustering and data mining applications.

 SOLVED PROBLEMS

Problem 5.1 (Set approximations and rough membership) Table 5.14 presents a decision system for 
a number of individuals seeking loan from a bank and the bank’s decision in this regard. Th e conditional 
attributes are Gender, Age, Income, Car (indicating whether the applicant owns a car or not), Defaulter 
(whether the applicant is a defaulter in paying off  a previous loan) and their valid attribute values are 
{Male, Female}, {Middle-aged, Young-adult, Aged}, {High, Medium, Low}, {Yes, No}, and {Yes, No} respec-
tively. Th e decision attribute is Loan Granted with value set {Yes, No}. 

Let B = {Age, Income, Car} ⊂ A = {Gender, Age, Income, Car, Defaulter} be a set of attributes. Th en

 (i) Compute INDB (I)
 (ii)  If X = {x ∈ U | Loan Granted (x) = Yes} then compute B-lower and B-upper approximations of 

X and determine if X is rough in terms of knowledge in B.
 (iii) Calculate μX

Bμμ ( )x for each x ∈ U.

Table 5.14. Loan applicants’ data set

# Name Gender
(G)

Age
(A)

Income
(I)

Car
(C)

Defaulter
(D)

Loan
Granted

1 Tony M Middle-aged High Yes Yes No

2 Vinod M Middle-aged High No No Yes

3 Sheela F Young-adult High Yes No Yes

4 Kete F Aged Low No No No

5 Nina F Middle-aged Middle Yes No Yes

6 Sandip M Aged High No No No

7 Mita F Young-adult High No No Yes

8 Bob M Young-adult High Yes Yes No

(Continued)
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# Name Gender
(G)

Age
(A)

Income
(I)

Car
(C)

Defaulter
(D)

Loan
Granted

9 Bill M Middle-aged Middle No No Yes

10 Martha F Middle-aged Middle No No Yes

11 Bruce M Middle-aged High Yes No Yes

12 Gogo M Aged Low No No No

Solution 5.1 Th e computations are shown below.

 (i) INDB(I) = {{1, 11}, {2}, {3, 8}, {4, 12}, {5}, {6}, {7}, {9, 10}}
 (ii) X = {x ∈ U | Loan Granted (x) = Yes} = {2, 3, 5, 7, 9, 10, 11}

B (X) = {2, 5, 7, 9, 10}, B (X) = {1, 2, 3, 5, 7, 8, 9, 10, 11} and
BNB (X) = {1, 8} ≠ f.

∴ X is rough with respect to knowledge of the attributes {Age, Income, Car} (Fig. 5.3).

{2} {5} {7}
(No)

{9, 10}

{3, 8}

(Yes)

(Yes/No)

{1, 11}

{4, 12}

{6}

Fig. 5.3 Set approximations

 (iii) Computations of the rough membership values for individual elements are shown below.

μ μμμBμμ X
B( ) ( )

{ , } { , , , , , , }
{ , }

μX
Bμμ) (

1, 1 2} { 3 5 7, ,, 9 1, 0,
1, 1

1
2

=)μX ( =

Similarly, μ μμμBμμ X
B( ) ( )

|{ , } { , , , , , , } |
| { , } |

μX
Bμμ) (

3, 3, 5 7, 9 1, 0,
3,

1
2

=)μX (
∩

=  

μ μ μ μ μμμBμμ X
B μμB Bμμ X

Bμμ( ) ( ) ( ) ( ) ,μX
Bμμ) ( (μBμμ ( 1=)μX ( =)μ ( =X and

μ μ μμμBμμ X
B

X
Bμμ( ) ( ) ( ) .μX

Bμμ) ( 0=)μX ( =

Problem 5.2 (Minimum reduct) We know that the discernibility matrix is constructed to fi nd the 
reducts of an information system, and thereby the minimal reduct. Each cell of a discernibility matrix 
correspond to a pair of objects. It contains the attributes in which the pair of objects diff er. Th e discern-
ibility function is a conjunction of terms where each term is constituted from the entries of the discern-
ibility matrix. A term is a disjunction of attributes in a cell of the discernibility matrix. 

Propose a technique to simplify the discernibility matrix, or discernibility function, so that the set of 
reducts and thereby the minimal reducts of the system could be found effi  ciently. Apply this technique 
to the information system depicted in Table 5.14 and fi nd it’s minimal reduct.

Table 5.14. Continued
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Solution 5.2 Th e discernibility function is a conjunction of disjunctions. Th is function can be sim-
plifi ed by repeated application of the boolean identy 

 A ⋅ (A + B) = A (5.27)
Th e technique consists of identifying a pair of non-empty cells, say a  and b  such that all attributes 
in a are contained in b. We can ignore the set of attributes in b on the basis of the identity 5.27. Th is 
way the ‘dependent’ cells are eliminated resulting in a reduced discernibility matrix. Th e discernibility 
function is constructed from the reduced matrix and is transformed to a disjunction of conjunction, 
i.e., sum of products, form. Th e entire procedure is presented in Procedure Find-Min-Reduct 
(U, A), shown as Fig. 5.4.

Execution of  Procedure Find-Min-Reduct (U, A) for the given information system is 
described below.

Procedure Find-Min-Reduct (U, A)
/* Given an information system I = (U, A) where U is a non-empty set 
of objects and A is a non-empty set of attributes, to find the set 
of reducts of I, and thereby the minimal reducts of I. */ 

0. Begin
1. Construct the discernibility matrix D of I. Let c1, c2, …, cr be the 

sets of attributes corresponding to the non-empty cells of D. 

2. Arrange c1, c2, …, cr in non-decreasing order of their sizes. Let C1, 
C2, …, Cr be the rearranged sets of attributes such that 

|C1| ≤ |C2| ≤ … ≤ |Cr|   
3. Let T = {} and S = {C1, C2, …, Cr}
4. Repeat Steps 5, 6, 7 and 8 While S ≠ f
5. Let c be a minimal member of S, i.e., |c|≤|Ci| ∀Ci∈S
6. T = T ∪{c} 
7. ∀Ci∈S, If c ⊆Ci, Then remove Ci from S, S = S−{Ci}   
8. Let t1, t2, …, tk be the members of T constructed through Steps 4-7 

above. For each ti∈T form a Boolean clause Ti as the disjunction of 
the attributes in ti. Construct the discernibility function fD as the 
conjunction of all Ti’s.

9. Simplify fD to sum-of-products form. Each product term corresponds to 
a reduct of the information system I. Any one of the product terms 
with minimal cardinality is a minimal reduct of I.

10. END-Find-Min-Reduct

Fig. 5.4 Procedure Find-Min-Reduct (U, A)

Step 1. Construct the discernibility matrix D of I. Let c1, c2, …, 
cr be the sets of attributes corresponding to the non-empty 
cells of D. 

We construct the discernibility matrix for the given information system as shown in 
Table 5.15. Th e sets of attributes are {C, D}, {G, A, D}, {G, A, I, C, D}, {G, I, D}, …, {A, I, C}. 
Th ere are 66 such sets altogether.
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Step 2. Arrange c1, c2, …, cr in non-decreasing order of their sizes. 
Let C1, C2, …, Cr be the rearranged sets of attributes such 
that |C1| ≤ |C2| ≤ … ≤ |Cr|.   
Th e arrangement is : {A}, {D}, {A}, {I}, {C}, {C}, {G}, {C}, {I}, {G}, {C, D}, {G, A}, …, {G, A, 
I, C, D}. 

Table 5.15. Discernibility matrix

2 3 4 5 6 7 8 9 10 11 12

1 C,D G,A,D G,A,I,C,D G,I,D A,C,D G,A,C,D A I,C,D G,I,C,D D A,I,C,D

2 G,A,C G,A,I G,I,C A G,A A,C,D I G,I C A,I

3 A,I,C A,I G,A,C C G,D G,A,I,C A,I,C G,A G,A,I,C

4 A,I,C G,I A,I G,A,I,C,D G,A,I A,I G,A,I,C G

5 G,A,I,C A,I,C G,A,I,D G,C C G,I G,A,I,C

6 G,A A,C,D A,C G,A,I A,C I

7 G,C,D G,A,I A,I G,A,C G,A,I

8 A,I,C,D G,A,I,C,D A,D A,I,C,D

9 G I,C A,I

10 G,I,C G,A,I

11 A,I,C

Step 3-7. Let T = {} and S = {C1, C2, …, Cr}

Repeat While S ≠ f

  Let c be a minimal member of S, i.e., |c| ≤ |Ci| ∀ Ci ∈ S
  T = T ∪ {c} 
  ∀Ci ∈ S, If c ⊆ Ci, Then remove Ci from S, S = S − {Ci}   

All sets of attributes except {A}, {D}, {I}, {C}, {G} are removed in the process described 
above. Hence, T = {{A}, {D}, {I}, {C}, {G}}.

Step 8. Let t1, t2, …, tk be the members of T constructed through Steps 
3-7 above. For each ti∈T form a Boolean clause Ti as the 
disjunction of the attributes in ti. Construct the discern-
ibility function fD as the conjunction of all Ti’s. 

Here the discernibility function is f I (G, A, I, C, D) = G ∧ A ∧ I ∧ C ∧ D. 

Step 9. Simplify fD to sum-of-products form. Each product term 
corresponds to a reduct of the information system I. Any one 
of the product terms with minimal cardinality is a minimal 
reduct of I. 
In the present case the discernibility function f I (G, A, I, C, D) = G ∧ A ∧ I ∧ C ∧ D contains 
a single product term and is already in simplifi ed form. Th erefore, the minimum reduct 
for the given information system is unique and consists of all the attributes A = {Gender, 
Age, Income, Car, Defaulter}. 
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Problem 5.3 (Minimum reduct) Table 5.16 presents data related to the shopping habits of a num-
ber of customers to a shopping mall. Four kinds of items, viz., Food (F), Garment (GM), Cosmetics (C), 
and Toys (T) are considered. If a customer buys a certain kind of item, the corresponding entry in the 
table is Yes, otherwise No. Th e attribute Amount (A) express the amount paid by the customer which is 
either High, or Medium, or Low. Th ere are two modes of payment (P), Cash and Credit Card (CC). Find 
the reducts of the information system presented in Table 5.16 as well as the minimal reducts from the 
set of reducts obtained. Also, extract the rules on the basis of one of the minimal reducts and assuming 
P to be the decision attribute. 

Table 5.16. Shopping habit data set

# Customer
Name

Gender
(GD)

Food
(F)

Garment
(GM)

Cosmetics
(C)

Toys
(D)

Amount
(A)

Payment 
Mode (P)

1 Mili F Yes Yes Yes Yes High CC

2 Bill M Yes No No No Low Cash

3 Rita F Yes Yes Yes Yes High CC

4 Pam F Yes Yes Yes Yes High CC

5 Maya F No No Yes No Medium Cash

6 Bob M Yes No No No Medium CC

7 Tony M Yes No No No Low Cash

8 Gaga F Yes Yes Yes Yes High CC

9 Sam M Yes No No No Low Cash

10 Abu M Yes No No No Low Cash

Solution 5.3 Th e step-by-step process for fi nding the reducts and the minimal reducts is given below. 

Step 1. Construct the discernibility matrix D of I. Let c1, c2, …, 
cr be the sets of attributes corresponding to the non-empty 
cells of D. 

Th e discernibility matrix constructed is shown in Table 5.17. Th e blank cells indicate the 
indiscernible pairs of objects. For example, cell (1, 3) is blank, as the objects 1 and 3 are 
indescernible. Similarly, null entries at cells (1, 4) and (1, 8) indicate indiscernibility of the 
objects 1, 4, and 8. As indiscernibility is an equivalence relation, we fi nd that the set {1, 3, 
4, 8} forms a class of indiscernible objects. Table 5.17 reveals that indiscernible classes are 
{1, 3, 4, 8}, {2, 7, 9, 10}, {5}, and {6}. In order to further simplify the process of fi nding the 
reducts of the given information system, we reduce the discernibility matrix by taking one 
object from each of the equivalence classes. Th e reduced discernibility matrix is shown in 
Table 5.18. Th e objects 1, 2, 5 and 6 are considered as representatives of the classes {1, 3, 4, 
8}, {2, 7, 9, 10}, {5}, and {6} respectively. 

Step 2. Arrange c1, c2, …, cr in non-decreasing order of their sizes. 
Let C1, C2, …, Cr be the rearranged sets of attributes such 
that |C1| ≤ |C2| ≤ … ≤ |Cr|.   

Th e arrangement is : {A, P}, {GD, F, C, A}, {GD, F, C, P}, {F, GM, T, A, P}, {GD, GM, C, T, 
A}, {GD, GM, C, T, A, P}. 
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Table 5.17. Discernibility matrix for shopping habit data set

2 3 4 5 6 7 8 9 10

1 GD,GM,
C,T,A,PM

F,GM,T,
A,PM

GD,GM,
C,T,A

GD,GM,
C,T,A,P

GD,GM,
C,T,A,P

GD,GM,C,T,A,P

2 GD,GM,
C,T,A,P

GD,GM,
C,T,A,P

GD,F,
C,A

A,P GD,GM,
C,T,A,P

3 F,GM,T,
A,PM

GD,GM,
C,T,A,P

GD,GM,
C,T,A,P

GD,GM,
C,T,A,P

GD,GM,C,T,A,P

4 F,GM,T,
A,P

GD,GM,
C,T,A

GD,GM,
C,T,A,P

GD,GM,
C,T,A,P

GD,GM,C,T,A,P

5 GD,F,C,
P

GD,F,C,A F,GM,T,
A,P

F,GM,T,
A,P

F,GM,T,
A,P

6 A,P GD,GM,
C,T,A

A,P A,P

7 GD,GM,
C,T,A,P

8 GD,GM,
C,T,A,P

GD,GM,C,T,A,P

9

Table 5.18. The reduced discernibility matrix 

2 5 6

1 GD, GM, C,
T, A, P

F, GM, T,
A, P

GD, GM, C, T, A

2 GD, F, C, A A, P

5 GD, F, C, P

Step 3-7. Let T = {}and S = {C1, C2, …, Cr}

Repeat While S ≠ f
  Let c be a minimal member of S, i.e., |c|≤|Ci| ∀Ci∈S
  T = T ∪{c} 
  ∀Ci∈S, If c ⊆Ci, Then remove Ci from S, S = S-{Ci}   

We fi nd T  = {{A, P}, {GD, F, C, A}, {GD, F, C, P}, {GD, GM, C, T, A}}.
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Step 8. Let t1, t2, …, tk be the members of T constructed through Steps 
3-7 above. For each ti ∈ T form a Boolean clause Ti as the 
disjunction of the attributes in ti. Construct the discern-
ibility function fD as the conjunction of all Ti’s. 

Th e discernibility function is f I (GD, F, GM, C, T , A, P) = (A + P)⋅(GD + F + C + A)⋅(GD 
+ F + C + P)⋅(GD + GM + C + T + A)

Step 9. Simplify fD to sum-of-products form. Each product term cor-
responds to a reduct of the information system I. Any one 
of the product terms with minimal cardinality is a minimal 
reduct of I. 
Aft er further simplifi cation the discernibility function in sum-of-products form is given 
by 

f I (GD, F, GM, C, T , A, P) 
 = GD⋅P + A⋅GD + A⋅P + A⋅F + A⋅C + C⋅P + F⋅T⋅P + F⋅GM⋅P
 = A⋅(C + F + P + GD) + P⋅(GD + C + F⋅T + F⋅GM)

Th erefore, the given information system has eight reducts {GD, P }, {A, GD}, {A, P}, {A, F}, 
{A, C}, {C, P}, {F, T, P}and {F, GM, P}. Each of the reducts {GD, P }, {A, GD}, {A, P}, {A, F}, 
{A, C} and {C, P} is a minimal reduct. 

Rules extracted On the basis of the reduct {A, C} and taking P as the decision attribute we get the 
following rules as shown in Table 5.19.

Table 5.19. Extracted rules

R # Antecedent Consequent

1 IF (Cosmetics = Yes) and (Amount = High) THEN Payment Mode = Credit Card

2 IF (Cosmetics = No) and (Amount = Low) THEN Payment Mode = Cash 

3 IF (Cosmetics = Yes) and (Amount = Medium) THEN Payment Mode = Cash 

4 IF (Cosmetics = No) and (Amount = Medium) THEN Payment Mode = Credit Card 

� TEST YOUR KNOWLEDGE

5.1 Which of the following is not a part of an information system? 
a) A non-empty set of objects b) A non-empty set of attributes 
c) Both (a) and (b) d) None of the above 

5.2 Which of the following contains a decision attribute? 
a) An information system b) A decision system
c) Both (a) and (b) d) None of the above 

5.3 Two objects of a decision system are said to be indiscernible if
a) Th ey have the same decision attribute value
b) Th ey have the same conditional attributes value 
c) Both (a) and (b)
d) None of these

Samir Roy_Chapter05.indd   168Samir Roy_Chapter05.indd   168 2/21/2013   3:21:59 PM2/21/2013   3:21:59 PM



Rough Sets   169

 5.4 Th e indiscernibility relation over a given information system is
a) Refl exive b) Symmetric
c) Transitive d) All of the above 

 5.5 Let I = (U, A) be an information system and P ⊂ Q ⊂ A and x, y ∈ U be objects of I. Th en which 
of the following statements is true? 
a) If x and y are P-indiscernible then they are Q-indiscernible 
b) If x and y are Q-indiscernible then they are P-indiscernible 
c) Th e P and Q-indiscernibility of x and y are unrelated 
d) None of these  

 5.6 Let I = (U, A) be an information system and B ⊂ A and X ⊂ U. Th en which of the following rela-
tions holds good for a rough set? 
a) B B( )X ( )X⊆  b) B B( )X ( )X⊇  

c) B B( )X ( )X=  d) None of the above  
 5.7 Let I = (U, A) be an information system and B ⊂ A and X ⊂ U. Th en which of the following is 

defi ned as the B-boundary region of X? 
a) B B( )X ( )X−  b) B B( )X ( )X−  

c) B B( )X ( )X∪  d) B B( )X ( )X∩  
 5.8 Let I = (U, A) be an information system and B ⊂ A and X ⊂ U. Th en which of the following is 

defi ned as the B-outside region of X? 
a) U B( )X  b) U B( )X
c) B B( )X ( )X−  d) None of the above

 5.9 Let I = (U, A) be an information system and B ⊂ A and X ⊂ U. Th en which of the following rela-
tions is not valid?
a) B B B( )X Y ( )X ( )Y)Y  b) B B B( )X Y ( )X ( )Y⊇)Y ∪  
c) Both (a) and (b) d) None of the above

5.10 Let I = (U, A) be an information system and B ⊂ A and X ⊂ U. Th en which of the following rela-
tions is not valid? 
a) B B B( )X Y ( )X ( )Y)Y ∪  b) B B B( )X Y ( )X ( )Y⊆)Y  
c) Both (a) and (b) d) None of the above 

5.11 Which of the following is not true? 
a) x B X

B∈ ⇒B =( )XX ( )xμ 1  b) x U B X
B−U ⇒ =X
B( )X ( )xμB 0  

c) x BNB X
B∈ ⇒BNB ( )XXX ( ) 1<0 X
B< X
B ( )xxμB   d) None of the above 

5.12 Which of the following is the value of μ μμμBμμ U X
BμμμU X( ) ( )x+ ?

a) 0 b) 1 
c) Between 0 and 1 d) None of the above 

5.13 Which of the following relations is true? 
a) μ μ μμμBμμ X

Bμμ Y
BμX x( ) ( ( )x , (μY
Bμμ ))≥  b) μ μ μμμBμμ X

Bμμ Y
BμX x≤( ) i ( ( )x , (μY
Bμμ ))  

c) Both (a) and (b) d) None of the above 
5.14 If B( )X ≠ Φ  and B U( )X = , then 

a) X is totally B-indefi nable b) X is externally B-defi nable 
c) X is internally B-defi nable d) X is roughly B-defi nable 
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5.15 Let P ⊂ Q ⊂ A be sets of attributes of an information system I = (U, A) such that INDA(P) = 
INDA(Q). Th en which of the following is certainly not true? 
a) P is not a reduct of U b) Q is not a reduct of U
c) Q-P is not a reduct of U d) None of the above

5.16 Let D be the discernity matrix of an information system I = (U, A) with n objects. If the (i, j)th 
element of D contains an attribute p∈A, and xi and xj denote the ith and the jth objects of U, then 
which of the following is true? 
a) p(xi) = p(xj) b) p(xi) ≠ p(xj)
c) p(xi) and p(xj) are not related d) None of the above

5.17 Which of the following helps us to fi nd the minimum reduct of an information system? 
a) Discernibility Matrix b) Discernibility function
c) Both (a) and (b) d) None of the above

5.18 Th e entries of discernibility matrix consists of 
a) A set of objects b) A set of attributes
c) A rough membership value d) None of the above

5.19 Which of the following is not an application area of the rough set theory? 
a) Rule extraction b) Data clustering
c) Both (a) and (b) d) None of the above 

5.20 Which of the following is an appropriate condition for applying rough set theory? 
a) Non-determinism b) Uncertainty
c) Vagueness d) None of the above 

Answers

 5.1 (d) 5.2 (b) 5.3 (b) 5.4 (d) 5.5 (b)
 5.6 (a) 5.7 (b) 5.8 (b) 5.9 (d) 5.10 (d)
 5.11 (d) 5.12 (b) 5.13 (c) 5.14 (a) 5.15 (b)
 5.16 (b) 5.17 (c) 5.18 (b) 5.19 (d) 5.20 (c)

 EXERCISES

5.1. Prove that indiscernibility is an equivalence relation. 
5.2 Prove the following identities for an information system I = (U, A) and B ⊆ A. 
 i) B U B( )U X ( )XX −
 ii) B U B( )U X ( )XX −
5.3 Consider the information system presented in Table 5.14 showing the loan applicants’ data set. We 

want to investigate if there is any correlation between the attributes {Age, Income} and possession of 
a car. If B = {Age, Income}, then 

 i) Find INDB (I)
 ii) Let X = {x ∈ U | x (Car) = Yes}. Find if X is rough in terms of knowledge in B. 
5.4 Let I = (U, A) be an information system and C ⊆ B ⊆ A. Th en prove that ∀x ∈ U, [x]B  ⊆ [x]C.
5.5 Consider the information system presented in Table 5.16 on the shopping habit of a number of cus-

tomers. As shown in solved problem no. 3, {A, GD} is a minimal reduct of the system. Find the rules 
underlying the system on the basis of the reduct {A, GD} and taking P as the decision attribute. 
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5.6 Table 5.8 present an information system on Dog Breed Comparison. Compute the attribute depen-
dencies X → Grooming for all attributes X other than Grooming, i.e. X ∈ {Weight, Exercise, Living 
Space, Training, Child Tolerance, Stranger Tolerance}. 

Is it possible to partition the cited dog breeds into clusters on the basis of these attribute depen-
dencies? If yes, then show the clusters with the help of a tree structure.

Can you further partition the clusters thus formed into sub-clusters on the basis of knowledge 
of other attributes?

Do you identify any other attribute dependency on the basis of which the given dog breeds could 
be partitioned into yet another set of clusters? 

5.7 Th e information system on the shopping habits of a number of customers is given in Table 5.16. 
Cluster the objects on the basis of the attribute dependencies X → Toys, X being any of the attributes 
Gender (GD), Food (F), Garment (GM), Cosmetics (C), and modes of payment (P)

5.8 Th e Solved Problem No. 5.2 proposes a technique to compute the minimal reducts of a given infor-
mation system. However, there are other methods to fi nd the minimal reducts. Can you devise your 
own method to solve the problem?  

 BIBLIOGRAPHY AND HISTORICAL NOTES

Aft er proposal and initiation of rough sets in 1981-1982, there were a few interesting works on rough set 
theory by Pawlak himself, Iwinski, Banerjee and so on. In 1991, Pawlak threw some light on the utility 
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ARTIFICIAL NEURAL NETWORKS: 

BASIC CONCEPTS

Key Concepts
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sigmoid, Code-book vector, Competitive ANN, Correlation learning, Decision plane, Decision sur-
face, Delta learning, Dendrite, Epoch of learning, Euclidean distance, Exemplar, Extended delta rule, 
Heaviside function, Heb learning, Hebb rule, Hidden layer, Hopfi eld network, Hyperbolic tangent 
function, Identity function, Learning rate, Least-mean square (LMS) learning, Linear separability, 
Logistic sigmoid, McCulloch–Pitts neural model, Multi-layer feed forward, Neuron, Outstar learn-
ing, Parallel relaxation, Pattern, Pattern association, Pattern classifi cation, Perceptron, Perceptron 
convergence theorem, Perceptron learning, Processing element (PE), Recurrent network, Sigmoid 
function, Single layer feed forward, Soma, Steepness parameter, Step function, Supervised learning, 
Synapse, Th reshold function, Training vector, Unsupervised learning, Widrow–Hoff  rule, Winner 
takes all, XOR problem

 Chapter Outline 
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6.2 Computation in Terms of Patterns
6.3 Th e McCulloch–Pitts Neural Model
6.4 Th e Perceptron
6.5 Neural Network Architectures
6.6 Activation Functions

6.7 Learning by Neural Nets
Chapter Summary
Solved Problems
Test Your Knowledge
Exercise
Bibliography and Historical Notes

Artifi cial neural networks (ANNs) follow a computational paradigm that is inspired by the structure and 
functionality of the brain. Th e brain is composed of nearly 100 billion neurons each of which is locally 
connected to its neighbouring neurons. Th e biological neuron possesses very elementary signal process-
ing capabilities like summing up the incoming signals and then propagating to its neighbours depend-
ing on certain conditions. However the sum total of the parallel and concurrent activities of these 100 
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billion neurons gives rise to the highly sophisticated, complex, and mysterious phenomenon that we call 
‘consciousness’. Th is chapter provides an overview of the basic concepts of ANNs. Unlike mainstream 
computation where information is stored as localized bits, an ANN preserves information as weights of 
interconnections among its processing units. Th us, as in the brain, information in ANNs too resides in 
a distributed manner, resulting in greater fault tolerance. Moreover, multiple information may be super-
imposed on the same ANN for storage purpose. We will see that like the human brain, ANNs also per-
form computation in terms of patterns rather than data. Th is chapter presents the major artifi cial neural 
models, as well as the various ANN architectures and activation functions. Th e basic learning strategies 
are also discussed in this chapter.

6.1 INTRODUCTION

Computation is generally perceived as a sequence of operations that processes a set of input data to yield 
a desired result. Th e agent that carries out the computation is either an intelligent human being or a 
typical Von Neumann computer consisting of a processor and a memory, along with the input and the 
output units (Fig. 6.1). Th e memory contains both instruction and data. Computation is accomplished 
by the CPU through a sequence of fetch and execute cycles.

INPUT CPU OUTPUT

MEMORY

Fig. 6.1. Block diagram of a stored program computer

Th e sequential fetch and execute model of computation, based on a single-processor stored program 
digital computer as the hardware platform, has been immensely successful in the history of computers. 
Its notorious member-crunching and symbol-manipulating capacity has rendered it an indispensable 
tool for the civilized world. Innumerable applications in everyday activities and other enterprises, 
e.g. commerce, industry, communication, management, governance, research, entertainment, health-
care, and so on, were developed, are being developed, and shall be developed on the basis of the this 
model. 

However, the power of such a computational model is not unchallenged. Th ere are activities that a 
normal human being may require a fraction of a second to perform while it would take ages by even the 
fastest computer. Take, for example, the simple task of recognizing the face of a known person. We do it 
eff ortlessly, in spite of the infi nite variations due to distance, angle of vision, lighting, posture, distortion 
due to mood, or emotion of the person concerned, and so on. Occasionally, we recognize a face aft er a 
gap of, say, twenty years, even though the face has changed a lot through aging, and has little semblance 
to its appearance of twenty year ago. Th is is still very diffi  cult, if not impossible, to achieve for a present 
day computer. 

Where does the power of a human brain, vis-à-vis a stored program digital computer, lie? Perhaps 
it lies in the fact that we, the human beings, do not think in terms of data as a computer does, but in 
terms of patterns. When we look at a face, we never think in terms of the pixel values, but perceive the 
face as a whole, as a pattern. Moreover, the structure of the human brain is drastically diff erent from 
the Von-Neuman architecture. Instead of one, or a few, processors, the brain consists of 100 billion 
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interconnected cells called the neurons. Individually, a neuron can do no more than some primitive tasks 
like collecting stimuli from the neighboring neurons and then passing them on to other neighbouring 
neurons aft er some elementary processing. But the sum of these simultaneous activities of 100 billion 
neurons is what we call the human consciousness. Artifi cial neural network, occasionally abbreviated as 
ANN, is an alternative model of computation that is inspired by the structure and functionality of the 
human brain. 

6.1.1 The Biological Neuron 

Th e building block of a human brain is the biological neuron. Th e main parts of the cross-section of a 
common biological neuron and their functions are shown in Fig. 6.2.

Dendrite (receives signals from
neighbouring neurons)

2. Soma (accumulates the signals
received through the

dendrites)
3. Insulating fatty layer

4. Axon (transmits signal from soma
to the axon terminals)

5. Axon terminal (propagates stimulus
to neighbouring neurons)

6. Axon of a neighbouring neuron

7. Synapse (scales the signals by a
weight)

8. Dendrite of the neuron

1

2

3
4

5

6

7

8

Fig. 6.2. Structure of a biological neuron

It consists of three primary parts, viz., the dendrites, soma, and the axon. Th e dendrites collect stimuli 
from the neighbouring neurons and pass it on to soma which is the main body of the cell. Th e soma 
accumulates the stimuli received through the dendrites. It ‘fi res’ when suffi  cient stimuli is obtained. 
When a neuron fi res it transmits its own stimulus through the axon. Eventually, this stimulus passes 
on to the neighboring neurons through the axon terminals.  Th ere is a small gap between the end of an 
axon terminal and the adjacent dendrite of the neighbouring neuron. Th is gap is called the synapse. A 
nervous stimulus is an electric impulse. It is transmitted across a synaptic gap by means of electrochemi-
cal process. 

Th e synaptic gap has an important role to play in the activities of the nervous system. It scales the 
input signal by a weight. If the input signal is x, and the synaptic weight is w, then the stimulus that 
fi nally reaches the soma due to input x is the product x × w. Th e signifi cance of the weight w provided 
by the synaptic gap lies in the fact that this weight, together with other synaptic weights, embody the 
knowledge stored in the network of neurons. Th is is in contrast with digital computers where the knowl-
edge is stored as a program in the memory. Th e salient features of biological neurons are summarized 
in Table 6.1.
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Table 6.1. Salient features of a biological neuron

# Feature

1 The body of the neuron is called the soma that acts as a processing element to receive numerous 
signals through the dendrites simultaneously. 

2 The strengths of the incoming signals are modifi ed by the synaptic gaps.

3 The role of the soma,  i.e., the processing element of a neuron, is simple. It sums up the weighted 
input signals and if the sum is suffi ciently high, it transmits an output signal through the axon. The 
output signal reaches the receiving neurons in the neighbourhood through the axon terminals. 

4 The weight factors provided by the synaptic gaps are modifi ed over time and experience. This phe-
nomenon, perhaps, accounts for development of skills through practice, or loss of memory due to 
infrequent recall of stored information. 

6.1.2 The Artificial Neuron 

An artifi cial neuron is a computational model based on the structure and functionality of a biological 
neuron. It consists of a processing element, a number of inputs and weighted edges connecting each in-
put to the processing element (Fig. 6.3). A processing unit is usually represented by a circle, as indicated 
by the unit Y in Fig. 6.3. However, the input units are shown with boxes to distinguish them from the 
processing units of the neuron. Th is convention is followed throughout this book. An artifi cial neuron 
may consist of m number of input units X1, X2, …, Xm. In Fig. 6.3 the corresponding input signals are 
shown as x1, x2, …, xm, and y_out is the output signal of the processing unit Y.

x1xx

xixx

xmxx
XmXX

xmxx

XiXX
xixx

:
:

:
:

X1XX x1xx

wiww

wmww

w1ww

y_yy outY

Fig. 6.3 Structure of an artifi cial neuron

Th e notations used in Fig. 6.3 are summarized in Table 6.2. Th ese notational conventions are followed 
throughout this text unless otherwise stated.

Table 6.2. Notational convention

Symbol Used Description

Xi The ith input unit. 

Y The output unit. In case there are more than one output units, the jth output unit is 
denoted as Yj. 

xi Signal to the input unit Xi. This signal is transmitted to the output unit Y scaled by the 
weight wi. 

(Continued)
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Table 6.2. Continued

Symbol Used Description

wi The weight associated with the interconnection between input unit Xi and the output 
unit Y. In case there are more than one output units, wij denotes the weight between 
input unit Xi and the jth output unit Yj.

y_in The total (or net) input to the output unit Y. It is the algebraic sum of all weighted 
inputs to Y. 

y_out Signal transmitted by the output unit Y. It is known as the activation of Y.

Th e net input y_in to the processing element Y is obtained as 

 y in x x w x w x wm mw i iw
i

m

= +x w + +
=
∑1 1ww 2 2w

1
 (6.1)

If there are more than one output units, then the net input to the jth output unit Yj, denoted as y_inj, is 
given by 

 y in x w x w x wj jx j mx j mwm j ixm ij
i

m

= +x wx w + +
=
∑ww 2 2w

1
 (6.2)

Th e weight wi associated with the input Xi may be positive, or negative. A positive weight wi means the 
corresponding input Xi has an excitatory eff ect on Y. If, however, wi is negative then the input Xi is said 
to have an inhibitory eff ect on Y. Th e output signal transmitted by Y is a function of the net input y_in. 
Hence, 

 y_out = f (y_in) (6.3)

In its simplest form f(.) is a step function. A binary step function for the output unit is defi ned as

 y o f y if y i
if y i_out f _ )in , if y ,

, if y .=yf )in ≤
⎧
⎨
⎧⎧
⎩
⎨⎨

1 0if y in, if y >
0 0if y in, if y ≤  (6.4)

Taking Equation 6.1 into consideration we get
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i i
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m

i i
i
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, .f i i

=yf )in
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1

1

 (6.5)

When a non-zero threshold q is used Equations 6.4 and 6.5 take the forms

 y o f y if y in
if y in_out f _ )in , if y ,

, if y .=yf )in >
≤

⎧
⎨
⎧⎧
⎩
⎨⎨

1
0

θ
θ  (6.6)

Or,

 y o f y
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if x w

i iw
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  (6.7)
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Th e function f(.) is known as the activation function of the neuron, and the output y_out is referred to as 
the activation of Y. Various activation functions are discussed in later parts of this chapter. 

Th e structure of an artifi cial neuron is simple, like its biological counterpart. It’s processing power is 
also very limited. However, a network of artifi cial neurons, popularly known as ANN has wonderful ca-
pacities. Th e computational power of ANNs is explored in the subsequent chapters with greater details. 

6.1.3 Characteristics of the Brain

Since brain is the source of inspiration, as well as the model that ANNs like to follow and achieve, it is 
worthwhile to ponder over the characteristics of a brain as a computing agent. Th e most striking feature 
of a brain is its extremely parallel and decentralized architecture. It consists of more or less 100 billion 
neurons interconnected among them. Th e interconnections are local in the sense that each neuron is 
connected to its neighbours but not to a neuron far away. Th ere is practically no centralized control in 
a brain. Th e neurons act on the basis of local information. Th ese neurons function in parallel mode and 
concurrently. Apparently the brain is very slow compared to the present day computers. Th is is due to 
the fact that neurons operate at milliseconds range while the modern VLSI microchip process signals at 
nanosecond scale of time. Th e power of the brain lies not in the signal processing speed of its neuron but 
in the parallel and concurrent activities of 100 billion neurons. Another fascinating fact about the brain 
is its fault tolerance capability. As the knowledge is stored inside the brain in a distributed manner it can 
restore knowledge even when a portion of the brain is damaged. A summary of the essential features of 
a brain is presented in Table 6.3. 

Table 6.3. Essential features of a brain

# Aspect Description

1 Architecture The average human brain consists of about 100 billion neurons. There are 
nearly 1015 number of interconnections among these neurons. Hence the 
brain’s architecture is highly connected.

2 Mode of operation The brain operates in extreme parallel mode. This is in sharp contrast with 
the present day computers which are essentially single-processor machines. 
The power of the brain lies in the simultaneous activities of 100 billion neu-
rons and their interactions. 

3 Speed Very slow, and also very fast. Very slow in the sense that neurons operate at 
milliseconds range which is miserably slow compared to the speed of pres-
ent day VLSI chips that operate at nanoseconds range. So computers are 
tremendously fast and fl awless in number crunching and data processing 
tasks compared to human beings. Still the brain can perform activities in 
split-seconds (e.g., converse in natural language, carry out common sense 
reasoning, interpret a visual scenery, etc.) which a modern supercomputer 
may take ages to carryout. 

4 Fault tolerance The brain is highly fault tolerant. Knowledge is stored within the brain in a 
distributed manner. Consequently, if a portion of the brain is damaged, it can 
still go on functioning by retrieving or regenerating the lost knowledge from 
the remaining neurons. 

(Continued)
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Table 6.3. Continued

# Aspect Description

5 Storage mechanism The brain stores information as strengths of the interconnections among the 
neurons. This accounts for the adaptability of the brain. New information can 
be added by adjusting the weights without destroying the already stored 
information. 

6 Control There is no global control in the brain. A neuron acts on local information 
available with its neighbouring neurons. The neurons pass on the results of 
processing only to the neurons adjacent to them. 

6.2 COMPUTATION IN TERMS OF PATTERNS 

It was observed earlier in this chapter that the brain perceives the physical world in terms of patterns, 
rather than data. Since ANNs are inspired by the brain, both structurally and behaviourally, it is worth-
while to consider the nature of pattern-oriented computation vis-a-vis computation on the basis of 
stored program. Two fundamental operations relating to patterns, pattern classifi cation and pattern as-
sociation, are explained in this subsection with the help of simple illustrative examples. 

6.2.1 Pattern Classification

Classifi cation is the process of identifying the class to which a given pattern belongs. For example, let us 
consider the set S of all 3-bit patterns. We may divide the patterns of S into two classes A and B where A 
is the class of all patterns having more 0s than 1s and B the converse. Th erefore

S = {000, 001, 010, 011, 100, 101, 110, 111}
A = {000, 001, 010, 100}
B = {011, 101, 110, 111}

Now, given an arbitrary 3-bit pattern, the classifi cation problem here is to decide whether it belongs to 
the class A, or class B. In other words, we have to establish the mapping shown in Fig. 6.4.

Th e simplest way to achieve this is to execute a table look-up procedure, as shown in Fig. 6.5(a). All we 
have to do is to fi nd the appropriate row in the table corresponding to the given pattern and read the class 
name to which it belongs. However, creation and storage of the table becomes impractical as the volume 
of stored patterns increases. In practice, we may have to deal with billions of multidimensional patterns.

000

001
010

011

100

101

110
111

A

B

Fig. 6.4. Classifi cation of 3-bit patterns based on the number of 0s and 1s.
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Fig. 6.5(b) presents a conventional computer program to perform this task. Th e program is written in 
a pseudo-language. Th e technique is to count the number of 0s and 1s in the given patterns and store 
them in the local variables n0 and n1. Th en depending on whether n0 > n1 or n0 < n1 the program returns 
the class name A or B respectively. Th e algorithm has a time complexity of O (nb) where nb is the number 
of bits in the given pattern. 

Procedure Classify (x, A, B)
Begin
n0 = n1 = 0;  /* initialize 
counts */
/* count 0s and 1s in x */
For i ← 1 to 3 do
If the ith bit is 0 Then
n0 

++;  Else n1 
++;

End-if
End-for
If n0 > n1  Then Return A;

Else Return B;
End-if

End-procedure

Row # Pattern Class

0 0 0 0 A

1 0 0 1 A

2 0 1 0 A

3 0 1 1 B

4 1 0 0 A

5 1 0 1 B

6 1 1 0 B

7 1 1 1 B

(a)  Classifi cation as a table look-up procedure (b)  A procedure for classifi cation of 3-bit patterns

Fig. 6.5. Two methods for classifi cation of 3-bit patterns

Is it possible to solve the problem in a diff erent way? Fig. 6.6 shows an artifi cial neuron with three inputs 
x1, x2, x3 connected to a processing element Y through the weight factors as shown in the fi gure. It is a 
simplifi ed version of a neural model called perception, proposed by Rosenblatt in 1962.
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Fig. 6.6 An artifi cial neuron to classify 3-bit binary patterns based on the number of 0s and 1s

Th e weights w1, w2, w3 associated with the interconnection paths from the inputs x1, x2, x3 to Y are 
chosen in a way that the net input y_in to Y is greater than or equal to 2 when there are two or more 1s 
among x1, x2, x3. Th e activation y_out then becomes 1, indicating that the patterns belongs to the class 

B. On the other hand, when there are more 0s than 1s, the net (total) input y in wi ix
i

= ≤w xi ix
=
∑ 1 2<

1

3

, so 
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that the output signal, the activation, is y_out = 0. Th is implies that the given pattern belongs to the 
class A. Time complexity of this method is O(1) because the inputs are fed to the processing element 
parallely. 

An alternative arrangement of two output nodes Y1 and Y2 to solve the same classifi cation problem 
is shown in Fig. 6.7. Here both the units Y1 and Y2 are connected to the same inputs x1, x2, x3 and these 
units explicitly correspond to the classes A and B respectively. If the input pattern belongs to the class 
A then Y1 fi res (i.e., computes the activation as y_out1 = 1), otherwise, unit Y2 fi res. Y1 and Y2 never fi re 
simultaneously. 

It should be noted that Fig. 6.5(a) and 6.5(b) presents the classifi cation knowledge in the form of 
an algorithm. On the other hand, the ANN counterpart of the concerned classifi cation task embod-
ies the same knowledge in the form of certain interconnection weights and the activation functions. 
If we change the weights, or the activation functions f(y_in), the capability of the ANN changes 
accordingly. 
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Fig. 6.7. Classifi cation of 3-bit patterns with two output units

6.2.2 Pattern Association

Associating an input pattern with one among several patterns already stored in memory, in case such 
a mapping exists, is an act that we, the human beings, carry out eff ortlessly in our daily life. A person, 
with his eyes closed, can visualize a rose by its fragrance. How does it happen? It seems that various 
odours are already stored in our memory. When we smell an odour, our brain tries to map this sensa-
tion to its stored source. It returns the nearest match and this correspond to recognizing the odour, or 
the sensation in general. However, in case there is no match between the input sensation and any of 
the stored patterns – we fail to associate the input, or, to be more precise, we conclude that the input is 
unknown to us. 

Given an input pattern, and a set of patterns already stored in the memory, fi nding the closest 
match of the input pattern among the stored patterns and returning it as the output, is known as pat-
tern association. Th e basic concept of pattern association is explained below with the help of a simple 
illustrative example. Th e example is inspired by Hopfi eld network [1982] which is discussed later in 
greater details. 
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+3

−1
−1−1

−1

+3+3

+3

+3+3

P6PP

P5PPP4PP

P3PPP2PP

P1

Inactive unit

Active unit

Fig. 6.8. A network for pattern recognition

Let us consider a network of six processing elements (PEs) or units as shown in Fig. 6.8. Th e essential 
features of the network are described below.

 i)  PE states At any instant, a unit may either be in an active or an inactive state. Moreover, de-
pending on the circumstances, the state of a unit may change from active to inactive, and vice 
versa. In Fig. 6.8 an active unit is shown with a black circle and an inactive unit is indicated by 
a hollow circle.

 ii)  Interconnections All interconnections are bidirectional. Magnitude of the weight associated 
with an interconnection gives the strength of infl uence the connected units play on each 
other. 

 iii)  Signed weights A negative weight implies that the corresponding units tend to inhibit, or de-
activate, each other. Similarly, positively interconnected units tend to activate each other. 

 iv)  Initialization Th e network is initialized by making certain units active and keeping others in-
active. Th e initial combination of active and inactive units is considered as the input pattern. 
Aft er initialization, the network passes through a number of transformations. Th e transfor-
mations take place according to the rules described below. 

 v)  Transformations At each stage during the sequence of transformations, the next state of 
every unit Pi, i = 1, …, 6, is determined. The next state of a unit Pi is obtained by consid-
ering all active neighbours of Pi and taking the algebraic sum of the weights of the paths 
between Pi and the neighbouring active units. If the sum is greater than 0, then Pi becomes 
active for the next phase. Otherwise it becomes inactive. The state of a unit without any 
active unit in its neighbourhood remains unaltered. This process is known as parallel re-
laxation. 

For example, let the network be initialized with the pattern shown in Fig. 6.9(a). Initially, all units ex-
cept P2 and P5 are inactive. To fi nd the state of P1 in the next instant, we look for the active neighbours 
of P1 and fi nd that P2 is the only active unit connected to P1 through an interconnection link of weight 
+3. Hence P1 becomes active in the next instant. Similarly, for P3, both P2 and P5 are active units in its 
neighbourhood. Th e sum of the corresponding weights is w23 + w35 = +3 −1 = +2. Hence P3 also becomes 
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active. However P2 itself becomes inactive because the only active unit in its vicinity, P5, is connected to 
it through a negatively weighted link. Table 6.4 shows the details of computations for transformation of 
the network from Fig. 6.9(a) to Fig. 6.9(b). Th e confi guration of Fig. 6.9(b) is not stable. Th e network 
further transforms itself from Fig. 6.9(b) to Fig. 6.9(c), which is a stable state. Th erefore, we can say that 
the given network associates the pattern shown in Fig. 6.9(a) to that shown in Fig. 6.9(c).

3

−1
−1−1

−1

+3+3

+3

+3+3

P6PP

(a) (b) (c)

P5PPP4PP

P3PPP2PP

P1

+3

−1
−1−1

−1

+3+3

+3

+3+3

P6PP

P5PPP4PP

P3PPP2PP

P1

+3

−1
−1−1

−1

+3+3

+3

+3+3

P6PP

P5PPP4PP

P3PPP2PP

P1

Fig. 6.9. Pattern association through parallel relaxation

A little investigation reveals that the given network has three non-trivial stable states as shown in 
Fig. 6.10(a)-(c). Th e trivial state is that where all units are inactive. It can be easily verifi ed that if one 
or more of the units P1, P2, P3 is/are active initially while the rest, P4, P5, P6 are inactive, the network 
converges to the pattern shown in Fig. 6.10(a). Similarly, the pattern of Fig. 6.10(b) is associated with 
any input pattern where at least one unit of the group {P4, P5, P6} is/are active. Finally, an input pattern 
having active units from both the groups {P1, P2, P3} and {P4, P5, P6} would associate to with the pat-
terned depicted in Fig. 6.10(c). Hence, the given network may be thought of as storing three non-trivial 
patterns as discussed above. Such networks are also referred to as associative memories, or content-
addressable memories. 

Table 6.4. Computation of parallel relaxation on Fig. 6.9 (a)

Unit Present state Active neighbouring unit(s) Sum Next state

P1 Inactive P2 +3 Active

P2 Active P5 −1 Inactive

P3 Inactive P2, P5 +3 – 1 = +2 Active

P4 Inactive P2, P5 −1 + 3 = +2 Active

P5 Active P2 −1 Inactive

P6 Inactive P5 +3 Active
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−1
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P6PP

P5PPP4PP

P3PPP2PP

P1

Fig. 6.10. Non-trivial patterns stored in a Hopfi eld network

6.3 THE MCCULLOCH–PITTS NEURAL MODEL 

Th e earliest artifi cial neural model was proposed by McCulloch and Pitts in 1943. Fig. 6.11 depicts its 
structure. It consists of a number of input units connected to a single output unit. Th e interconnecting 
links are unidirectional. Th ere are two kinds of inputs, namely, excitatory inputs and inhibitory inputs. 
Th e salient features of a McCulloch and Pitts neural net are summarized in Table 6.5.

x1xx

xmxx

XmXX + n

XmXX

:

:

:

:

X1XX

w

−v

−v

w

y_yy out

xmxx + 1

xmxx + n

XmXX + 1

Y

Fig. 6.11. Structure of a McCulloch-Pitts neuron

Table 6.5. Salient features of McCulloch-Pitts artifi cial neuron

1 There are two kinds of input units, excitatory, and inhibitory. In Fig. 6.11 the excitatory inputs are 
shown as inputs X1, …, Xm and the inhibitory inputs are Xm+1, …, Xm+n. The excitatory inputs are con-
nected to the output unit through positively weighted links. Inhibitory inputs have negative weights 
on their connecting paths to the output unit.

2 All excitatory weights have the same positive magnitude w and all inhibitory weights have the same 
negative magnitude −v.

(Continued)
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Table 6.5. Continued

3 The activation y_out = f(y_in) is binary, i.e., either 1 (in case the neuron fi res), or 0 (in case the neuron 
does not fi re).

4 The activation function is a binary step function. It is 1 if the net input y_in is greater than or equal 
to a given threshold value q, and 0 otherwise.

5 The inhibition is absolute. A single inhibitory input should prevent the neuron from fi ring irrespective 
of the number of active excitatory inputs. 

Th e net input y_in to the neuron Y is given by

 x
i

m

j m

n

i

m

j
i m

n

_ in
=
∑ ∑v w x vi j i∑ (jxx wi w ))xi x jx −v ∑∑∑

1 1ij m i m+m+m iij =+m +11
 (6.8)

If q be the threshold value, then the activation of Y, i.e., y_out, is obtained as 

 y o f y if y in
otherwise_out f _ )in)in , if y ,

, .otherwise=yf )in ≥⎧
⎨
⎧⎧
⎩
⎨⎨
1
0

θ  (6.9)

To ensure absolute inhibition, y_in should be less than the threshold even when a single inhibitory input 
is on while none of the excitatory inputs are off . Assuming that the inputs are binary, i.e., 0 or 1, the cri-
terion of absolute inhibition requires

 y in w x vi
i

m

xw <
=
∑ θ

1
 (6.10)

 ∴ × − <w m× v θ.  (6.11)
Simple McCulloch-Pitts neutrons can be designed to perform conventional logical operations. For this 
purpose one has to select the appropriate number of inputs, the inter connection weights and the ap-
propriate activation function. A number of such logic-performing McCulloch-Pitts neural nets are pre-
sented below as illustrative examples. 

(a) Truth Table

x1 x2 x1 AND x2

0 0 0
0 1 0
1 0 0
1 1 1

x1xx X1XX

y_yy out

x2xx X2XX

1

1

(b) Neural structure

Y

  

y in x x

y o f y if y in
otherwise_out f _ )in , if y ,

, .otherwise

= +x

=yf )in ≥⎧
⎨
⎧⎧
⎩
⎨⎨

1 2x+
1 2if y in, if y ≥
0

  (c) Activation function

Fig. 6.12. A McCulloch-Pitts neuron to implement logical AND operation
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Example 6.1  (Implementation of logical AND with McCulloch-Pitts neural model)

Fig. 6.12 shows a McCulloch-Pitts neuron to perform the logical AND operation. It should be 
noted that all inputs in Fig. 6.12(b) are excitatory. No inhibitory input is required to implement the 
logical AND operation. Th e interconnection weights and the activation functions are so chosen 
that the output is 1 if and only if both the inputs are 1, otherwise it is 0.

Example 6.2  (Implementation of logical OR with McCulloch-Pitts neural model)

Th e McCulloch-Pitts neuron to perform logical OR operation is shown in Fig. 6.13. It is obvi-
ous from the fi gure that the neuron outputs a 1 whenever there is at least one 1 at its inputs. Th e 
neuron is structurally identical to the AND-performing neuron. Only the activation function is 
changed appropriately so that the desired functionality is ensured. 

(a) Truth Table

x1 x2 x1 OR x2

0 0 0

0 1 1

1 0 1

1 1 1

x1xx X1XX

y_yy out

x2xx X2XX

1

1

(b) Neural structure

Y

  

y in x x

y o f y if y in
otherwise_out f _ )in , if y ,

, .otherwise

= +x

=yf )in ≥⎧
⎨
⎧⎧
⎩
⎨⎨

1 2x+
1 1if y in, if y ≥
0

  (c) Activation function

Fig. 6.13. A McCulloch-Pitts Neuron to implement logical OR operation

Example 6.3  (Implementation of logical AND-NOT with McCulloch-Pitts neural model)

Th e logical AND-NOT operation is symbolically expressed as x1. x2´, or x1 AND (NOT x2). It pro-
duces a 1 at the output only when x1 is 1 and x2 is 0. Th e McCulloch-Pitts neuron to perform this 
operation is shown in Fig. 6.14. Th e inhibitory eff ect of x2 is implemented by attaching a negative 
weight to the path between x2 and Y. Th e arrangement ensures that the output is 1 only when x1 = 
1 and x2 = 0. For all other combinations of x1 and x2 the output is 0.

Example 6.4  (Implementation of logical XOR with McCulloch-Pitts neural model)

As in digital logic design, simple McCulloch-Pitts neurons performing basic logical operations 
can be combined together to implement complex logic functions. As an example, Fig. 6.15 shows
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the implementation of the XOR function with two AND-NOT operations. Unlike the previous 
examples, here we had to implement the function with the help of a network of neurons, rather 
them a single neuron. Moreover, the neurons are placed at various levels so that the outputs from a 
lower level are fed as inputs to the next level of neurons. All the three processing elements, Y1, Y2, 
and Z, have the same activation function as described in Fig. 6.15 (c). Th e net_in is the net input to 
a processing element. For example, net-in for Y1, is y_in1 = x1 − x2. Th e same for the units Y2 and Z 
are y_in2 = − x1 + x2, and z_in = y_out1 + y_out2 respectively, where y_out1 and y_out2 are the respec-
tive activations of the units Y1 and Y2.

(a) Truth Table

x1 x2 x1 AND (NOT x2)

0 0 0

0 1 0

1 0 1

1 1 0

x1xx X1XX

y_yy out

x2xx X2XX

1

−1

(b) Neural structure

Y

  

y

f y

_

_y ) , ,
,

in x x

y out in if y i_ n
otherwise.

= x

=
≥⎧

⎨
⎧⎧
⎩
⎨⎨

1

yy

2

1 1, if y in ≥
0=

  (c) Activation function

Fig. 6.14. Logical AND-NOT operation with a McCulloch-Pitts neuron

(a) Truth Table

x1 x2 x1 XOR x2

0 0 0

0 1 1

1 0 1

1 1 0

1XX

X2XX

1
1

1
1

−1

−1

(b) Neural structure

Y2YY

Y1YY

Z

f n in if t in
otherwise_net ) , _if net ,

, .otherwise=
≥⎧

⎨
⎧⎧
⎩
⎨⎨
1 1if net in, if net ≥
0

 (c) Activation function

Fig. 6.15. McCulloch-Pitts neural network to implement logical XOR operation
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Example 6.5  (Finding the function of a given McCulloch-Pitts net )

Consider the McCulloch-Pitts neural network shown in Fig. 6.16. All the units, except those at the 
input level, have the activation function 

f x if
otherwise)x , ,if x

, .otherwise=
≥⎧

⎨
⎧⎧
⎩
⎨⎨

1 2if x, if x ≥
0

What are the responses of the output unit Z with respect to various input combinations? We as-
sume the inputs are binary. What logical function the whole network realizes?

X1XXx1xx

X2XXx2xx

1
2

2
−1

1

2

B

A

Z

Fig. 6.16. A McCulloch-Pitts neural network

Let us fi rst compute the responses of the intermediate units A and B. Th e responses of the output 
unit Z will be determined subsequently.

a) Responses of unit A

Inputs Net input to A
(A_in = x1+ x2)

Activation of A
(A_out)

Logic function 
realized

x1 x2

0 0 0 0

0 1 1 0 AND

1 0 1 0

1 1 2 1

b) Responses of unit B

Inputs Net input to B
(B_in = 2x1 − x2)

Activation of B
(B_out)

Logic function 
realized

x1 x2

0 0 0 0

0 1 −1 0 AND NOT

1 0 2 1

1 1 1 0
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c) Responses of unit Z

Inputs A_out B_out Net input to Z
(Z_in = 2A_out + 2B_out)

Z_out Logic 
function 
realized

x1 x2

0 0 0 0 0 0

0 1 0 0 0 0 x1

1 0 0 1 2 1
1 1 1 0 2 1

Hence the logic function realized by the whole network is f(x1, x2) = x1.

6.4 THE PERCEPTRON 

Th e perceptron is one of the earliest neural network models proposed by Rosenblatt in 1962. Early neu-
ral network enthusiasts were very fond of the perceptron due to its simple structure, pattern classifying 
behaviour, and learning ability. As far as the study of neural networks is concerned the perceptron is a 
very good starting point. Th is section provides the fundamental features of perceptron, namely, its struc-
ture, capability, limitations, and clues to overcome the limitations. 

x1xx

xixx

xmxx
XmXX

XiXX

:
:

:
:

X1XX

wiww

wmww

w1ww

y_yy outY

x1xx

xixx

xmxx
XmXX

XiXX

:
:

:
:

X1XX

wiww

wmww

w1ww

w0ww

y_yy out

1

(a) A perceptron without
any adjustable threshold

(b) Adjustable threshold as
an additional weight

X0XX

Y

Fig. 6.17. Structure of a perceptron

6.4.1 The Structure

Th e structure of a perceptron is essentially same as that presented in subsection 6.1.2 and is shown here 
as Fig. 6.17(a). It consists of a number of input units X1, …, Xm and a processing unit Y. Th e connecting 
path from input Xi to Y is unidirectional and has a weight wi. Th e weight wi is positive if xi is an excitatory 
input and is negative if it is inhibitive. Th e net input y_in of the perceptron to Y is the algebraic sum of 
the weighted inputs. 
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 y in x wi iw
i

m

=
∑

1
 (6.12)

Equation 6.12 can be expressed concisely in matrix notation as given in Equations 6.13(a) and 6.13(b).

 y i x x x

w
w

w
i i

i

m

m

m

_ [in x wi iw ]x wi w ×

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥=

∑
1

1 2x

1

2

�  (6.13a)

 ∴ ×y in X= WT  (6.13b)

Here X = [x1, …, xm] and W = [w1, …, wm] are the input and the weight vectors. 
Th e perceptron sends an output 1 if the net input y_in is greater than a predefi ned adjustable thresh-

old value q, otherwise it sends output 0. Hence, the activation function of a perceptron is given by Equa-
tion 6.6, repeated below.

 y o f y if y in
if y in_out f _ )in , if y ,

, if y .=yf )in >
≤

⎧
⎨
⎧⎧
⎩
⎨⎨

1
0

θ
θ  (6.14)

Th erefore, in matrix notation,

 y out if X W
Otherwise

T, ,if X W
, .Otherwise= >WTW⎧

⎨
⎧⎧

⎩
⎨⎨
1
0

θ  (6.15)

It is customary to include the adjustable threshold q  as an additional weight w0. Th is additional weight w0 
is attached to an input X0 which is permanently maintained as 1. Th e modifi ed structure inclusive of the 
adjustable weight w0 and the additional input unit X0 replacing the threshold q  is shown in Fig. 6.17(b). 
Th e expressions for the net input y_in and the activation y_out of the perceptron now take the forms 

 y in x x w x w x wm mw i iw
i

m

= +x w + +
=
∑0 0ww 1 1w

0
 (6.16)

and

 y o f y if

otherwise
i i

i

m

_out f _ )in , ,if i i

, .otherwise
=yf )in

⎧
⎨
⎪
⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

=
∑∑ 0x wiwxi iw >1 if, if ∑

0
0  (6.17)

Th e following points should be noted regarding the structure of a perceptron.

 i) Th e inputs to a perceptron x0, …, xm are real values.
 ii) Th e output is binary (0, or 1).
 iii)  Th e perceptron itself is the totality of the input units, the weights, the summation processor, 

activation function, and the adjustable threshold value.

Th e perceptron acts as the basic ANN structure for pattern classifi cation. Th e next subsection describes 
the capabilities of a perceptron as a pattern classifi er.
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6.4.2 Linear Separability

As mentioned earlier, perceptrons have the capacity to classify patterns. However, this pattern-classify-
ing capacity is not unconditional. In this subsection, we investigate the criteria for a perceptron to act 
properly as a pattern classifi er.

Let us consider, for example, two sets of points on a two-dimensional Cartesian plane A = {a, b, c} = 
{(−1, 3), (1, 2), (3, 3)}, and B = {p, q, r} = {(0, −1), (2, 1), (3, 0)}. Th ese points are shown in Fig. 6.18. Th e 
points belonging to the set A, or B are indicated with white, and black dots respectively.

x2xx

B

A

r (3, 0)

q (2, 1)

p (0, −1)

c (3, 3)

b (1, 2)

a (−1, 3)

x1xx

Fig. 6.18. A classifi cation problem consisting for two sets of patterns A, and B.

We look for a classifi er that can take an input pattern of the form (x1, x2) and decide to which class, A 
or B, the pattern belongs. A perceptron that carries out this job is shown in Fig. 6.19. Th e weights of the 
perceptron are carefully chosen so that the desired behaviour is achieved. However, we shall see that the 
weights need not to be chosen, but be learnt by the perceptron. Th e activation y_out = 1 if the input pat-
tern belongs to class A, and y_out = 0 if it belongs to class B. Table 6.6 verifi es that the perceptron shown 
in Fig. 6.19 can solve the classifi cation problem posed in Fig. 6.18. 

In fact, the pattern classifying capability of a perceptron is determined by the equations 

  y in ,in = 0  (6.18)

   or x wi iw
i

m

, ,xi iw
=
∑ =

0
0  (6.19)

  or x w x xm mw, ...0 0w 1 1w 0+ +x w1w + =x wmw  (6.20)

1

−1

−1/3

+1

x1xx

x2xx X2XX

X1XX

X0XX

y_yy outY
 

y in x w x x

y out if y i
otherwise

i iw
i

, f y ,
,

=x wi iw − − +

= ⎧
⎨
⎧⎧
⎩
⎨⎨

=
∑∑

0

2
1

21
3

1 0if y in, if y >
0

Fig. 6.19. A perceptron to solve the classifi cation problem shown in Fig. 6.17.
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Table 6.6. Details of classifi cation of patterns between sets A and B

# Input pattern Net input 
(y_in)

Activation 
(y_out)

Class
x1 x2

1 a −1 3 21/3 1 A

2 b 1 2 2/3 1 A
3 c 3 3 1 1 A
4 p 0 −1 −2 0 B

5 q 2 1 − 2/3 0 B

6 r 3 0 − 2 0 B

Applying Equations 6.18–6.20 for the perceptron under consideration we get

n x x= − − + =1
3

01
2

 or x x, 2
1

3
1= +1  (6.21)

Equation 6.21 represents a straight line that separates the given sets of patterns A and B (Fig. 6.20). For 
two dimensional patterns of the form (x1, x2) the equation in terms of the weights looks like

 x w
w

x w
w2

1

2
1

0

2
= − −  (6.22)

Similarly, when the patterns are 3-dimensional and of the form (x1, x2, x3), Equation 6.20 would be

 x w
w

x w
w

x w
w3

2

3
2

1

3
1

0

3
= − − −x  (6.23)

which represents a plane surface. In general, for n-dimensional patterns, Equation 6.20 represents a hy-
perplane in the corresponding n-dimensional hyperspace. Such a plane for a given perceptron capable of 
solving certain classifi cation problem is known as a decision plane, or more generally, the decision surface.

x x
2

1

3
1= +1

x2xx

r (3, 0)

q (2, 1)

p (0, −1)

c (3, 3)

b (1, 2)

a (−1, 3)

x1xx

x2xx =
x1xx
3 +1

Fig. 6.20. Linearly separable set of patterns
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A linearly separable set of patterns is one that can be completely partitioned by a decision plane into 
two classes. Th e nice thing about the perceptrons is, for a given set of linearly separable patterns, it is 
always possible to fi nd a perceptron that solves the corresponding classifi cation problem. Th e only thing 
we have to ensure is to fi nd the appropriate combination of values for the weights w0, w1, …, wm. Th is is 
achieved through a process called learning or training by a perceptron. Th e famous perceptron conver-
gence theorem (Rosenblatt [1962]) states that a perceptron is guaranteed to learn the appropriate values 
of the weights w0, w1, …, wm so that the given a set of linearly separable patterns are properly classifi ed 
by the perceptron. Th ere are various techniques for training neural networks. A brief overview of these 
techniques is presented in the later parts of this chapter.

(1, 0)(0, 0)

(1, 1)(0, 1)

x1xx

x2xx

Fig. 6.21. The XOR problem offers patterns that are not linearly separable

6.4.3 The XOR Problem 

Real life classifi cation problems, however, rarely off er such well-behaved linearly separable data as re-
quired by a perceptron. Minsky and Papert [1969] showed that no perceptron can learn to compute even 
a trivial function like a two bit XOR. Th e reason is, there is no single straight line that may separate the 
1-producing patterns {(0, 1), (1, 0)} from the patterns 0-producing patterns {(0, 0), (1, 1)}. Th is is illus-
trated in Fig. 6.21. Is it possible to overcome this limitation? If yes, then how? Th ere are two ways. One 
of them is to draw a curved decision surface between the two sets of patterns as shown in Fig. 6.22(a) or 
6.22(b). However, perceptron cannot model any curved surface.

(1, 0)(0, 0)

(1, 1)(0, 1)

x1xx

x2xx

(1, 0)(0, 0)

(1, 1)(0, 1)

x1xx

x2xx

Fig. 6.22. Solving the XOR problem with curved decision surface

Th e other way is to employ two, instead of one, decision lines. Th e fi rst line isolates the point (1, 1) from 
the other three points, viz., (0, 0), (0, 1), and (1, 0). Th e second line partitions {(0, 0), (0, 1), (1, 0)} into 
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the classes {(0, 1), (1, 0)} and {(0, 0)}. Th e technique is shown is Fig. 6.23. Fig. 6.23(b) shows another pair 
of lines that solve the problem in a diff erent way.

Using this idea, it is possible design a multi-layered perceptron to solve the XOR problem. Such a 
multilayered perceptron is shown in Fig. 6.24. Here the fi rst perceptron Y fi res only when the input is 
(1, 1). But this sends a large inhibitive signal of magnitude −2.0 to the second perceptron Z so that the 
excitatory signals from x1 and x2 to Z are overpowered. As a result the net input to Z attains a negative 
value and the perceptron fails to fi re. On the other hand, the remaining three input patterns, (0, 0), (0, 1), 
and (1, 0), for which perceptron Y does not infl uence Z, are processed by Z in the desired way.

0)(0, 0)

(1, 1)

line 1 line 1

line 2 line 2

(0, 1)

x1xx

x2xx

(1, 0)(0, 0)

(1, 1)(0, 1)

x1xx

x2xx

Fig. 6.23. Solving the XOR problem with two decision lines

Hence, the arrangement of perceptrons shown in Fig. 6.24 successfully classifi es the patterns posed by 
the XOR problem. Th e critical point is, the perceptron convergence theorem is no longer applicable to 
multilayer perceptrons. Th e perceptron learning algorithm can adjust the weights of the interconnections 
between the inputs and the processing element, but not between the processing elements of two diff erent 
perceptrons. Th e weight –2.0 in Fig. 6.24 is decided through observation and analysis, not by training. 

1

−1.5

−21

1

x1xx

x2xx X2XX

X1XX z_out = x1xx ⊕ x1xxY

1
−0.5

1

1

x1xx

x2xx X2XX

X1XX
Z

Fig. 6.24. A multi-layer perceptron to solve the XOR problem

6.5 NEURAL NETWORK ARCHITECTURES 

An ANN consists of a number of artifi cial neurons connected among themselves in certain ways. Some-
time these neurons are arranged in layers, with interconnections across the layers. Th e network may, 
or may not, be fully connected. Moreover, the nature of the interconnection paths also varies. Th ey are 
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either unidirectional, or bidirectional. Th e topology of an ANN, together with the nature of its intercon-
nection paths, is generally referred to as its architecture. Th is section presents an overview of the major 
ANN architectures. 

x1xx

xixx

xmxx XmXX

XiXX

: :

: :

X1XX

wiww j
wiww n

wmww 1

wmww j

wmww n

w1 ww j

w1ww 1

w1ww n

wiww 1

y_yy outjttYjYY

y_yy outnttYnYY

y_yy out1ttY1YY

Fig. 6.25. Structure of a single-layer feed forward ANN

6.5.1 Single Layer Feed Forward ANNs

Single layer feed forward is perhaps the simplest ANN architecture. As shown in Fig. 6.25, it consists 
of an array of input neurons connected to an array of output neurons. Since the input neurons do not 
exercise any processing power, but simply forward the input signals to the subsequent neurons, they are 
not considered to constitute a layer. Hence, the only layer in the ANN shown in Fig. 6.25 is composed of 
the output neurons Y1, …, Yn. 

Th e ANN shown in Fig. 6.25 consists of m inputs X1, …, Xm and n outputs Y1, …, Yn. Th e signal trans-
mitted by input Xi is denoted as xi. Each input Xi is connected to each output Yj. Th e weight associated 
with the path between Xi and Yj is denoted as wij. Th e interconnection paths are unidirectional and are 
directed from the input units to the output units. 

Th e net input y_in1 to the output unit Y1 is given by

 y in w x w x w x wm m i iw
i

m

1 1x 11 2 2w 1 1x wm mw 1
1

= +x w1x + +
=
∑  (6.24)

In vector notation, Equation 6.24 can be expressed as 

 y i x
w

w
X Wm

m
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11

1

1×x xm[ ... ]1x
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= X� *WW  (6.25)

where X = [x1 … xm] is the input vector of the input signals and W*1 is the fi rst column of the weight 
matrix

 W

w w w
w w w

w w w

n

n

m m mn

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

11 12 1

21 22 2

2wmw

�
�

� � � �
�

 (6.26)

In general, the net input y_inj to the output unit Yj is given by 
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 y i
w

w
X Wj mx x

j

mj

j_ [inj ] *WW×x xmx x[ ]
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⎣
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= X
1

�  (6.27)

If Y_in denotes the vector for the net inputs to the array of output units
Y n y in y i n_ [in _ ... _ ]inn1

then the net input to the entire array of output units can be expressed concisely in matrix notation as
 Y_in = X × W (6.28)
Th e signals transmitted by the output units, of course, depend on the nature of the activation functions. 
Th ere are various kinds of activation functions and these are discussed in greater details in the next 
subsection. Th e basic single layer feed forward network architecture presented in this section has its 
own variations. For example, in some cases the network may allow interconnections among the input or 
output units themselves. Th ese will be discussed later in greater details.

x1xx

xixx

xmxx
XmXX

XiXX

: :

: :

X1XX

wijww
winww

wm1ww

wmjww
wmnww

Input layer Hidden layer Output layer

w1jww

w11ww

w1nww

wi1ww

YjYY

YnYY

Y1YY

:

:

vjkvv
virvv

vn1vv

vnkvv
vnrvv

v1kvv

v11vv

v1rvv

vj1vv

ZkZZ

ZrZZ

Z1ZZ

z_outktt

z_outrtt

z_out1tt

Fig. 6.26. A multi-layer feed forward network with one hidden layer

6.5.2 Multilayer Feed Forward ANNs

A multilayer feed forward net is similar to single layer feed forward net except that there is (are) one or 
more additional layer(s) of processing units between the input and the output layers. Such additional 
layers are called the hidden layers of the network. Fig. 6.26 shows the architecture of a multi-layer feed 
forward neural net with one hidden layer.
Th e expressions for the net inputs to the hidden layer units and the output units are obtained as 

 Y_in = X × W (6.29)

 Z_in = Y_out × V (6.30)

where 
X x xm[ ,x , , ]1 2x, , X is the input vector,
Y n y in y in y inn_ [in _ in _y ]1 y in, in , is the net input vector to the hidden layer,
Z z in z in z inr_ [in _ in , , _z ]1 2z in, _ in , is the net input vector to the output layer,
Y y out y out y outn_ [out out , , y ]1 2y out, out � , is the output vector from the hidden layer, 
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W and V are the weight matrices for the interconnections between the input layer, hidden layer, and 
output layer respectively.
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Fig. 6.26 shows the structure of a multi-layered feed forward net with one hidden layer. Obviously, it is 
possible to include more than one hidden layers in such networks. 

X3XX

X2XX

X1XX

(a) Competitive ANN with locally connected output units

Y2YY

Y3YY

Y1YY

Z2ZZ

Z3ZZ

Z1ZZ

X3XX

X2XX

X1XX

(b) Competitive net with fully connected output units

Y2YY

Y3YY

Y1YY

Z2ZZ

Z3ZZ

Z1ZZ

Fig. 6.27. Competitive ANN architectures

6.5.3 Competitive Network 

Competitive networks are structurally similar to single layer feed forward nets. However, the output 
units of a competitive neural net are connected among themselves, usually through negative weights. 
Fig. 6.27(a) and 6.27(b) show two kinds of competitive networks. In Fig. 6.27(a), the output units are 
connected only to their respective neighbours, whereas the network of Fig. 6.27(b) shows a competitive 
network whose output units are fully connected. For a given input pattern, the output units of a com-
petitive network tend to compete among themselves to represent that input. Th us the name competitive 
network.
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X3XX

X2XX

X1XX

Y2YY

Y3YY

Y1YY

Z2ZZ

Z3ZZ

Z1ZZ

Fig. 6.28 A recurrent network with feedback paths from the output layer to the input layer

6.5.4 Recurrent Networks

In a feed forward network signals fl ow in one direction only and that is from the input layer towards the 
output layer through the hidden layers, if any. Such networks do not have any feedback loop. In con-
trast, a recurrent network allows feedback loops. A typical recurrent network architecture is shown in 
Fig. 6.28. Fig. 6.29(a) shows a fully connected recurrent network. Such networks contain a bidirectional 
path between every pair of processing elements. Moreover, a recurrent network may contain self loops, 
as shown in Fig. 6.29(b).

6.6 ACTIVATION FUNCTIONS

Th e output from a processing unit is termed as its activation. Activation of a processing unit is a function 
of the net input to the processing unit. Th e function that maps the net input value to the output signal 
value, i.e., the activation, is known as the activation function of the unit. Some common activation func-
tions are presented below. 

(a) A fully connected
recurrent network

(b) A recurrent network
with self loops

Fig. 6.29. Recurrent network architectures

6.6.1 Identity Function

Th e simplest activation function is the identity function that passes on the incoming signal as the outgo-
ing signal without any change. Th erefore, the identity activation function g(x) is defi ned as
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  g(x) = x (6.31)

Fig. 6.30 shows the form of the identity function graphically. Usually, the units of the input layer 
employ the identity function for their activation. Th is is because in ANN, the role of an input unit is 
to forward the incoming signal as it is to the units in the next layer through the respective weighted 
paths.

6.6.2 Step Function

Another frequently used activation function is the step function. Th e basic step function produces a 1 or 
0 depending on whether the net input is greater than 0 or otherwise. Th is is the only activation function 
we have used so far in this text. Mathematically the step function is defi ned as follows.

 g x if
otherwise( )x , ,if

, .otherwise= ⎧
⎨
⎧⎧
⎩
⎨⎨
1 0if x, if x >
0  (6.32)

g (x)x = x

y

x

a

a

Fig. 6.30. The identity activation function

Fig. 6.31(a) shows the shape of the basic step function graphically. Occasionally, instead of 0 a non-zero 
threshold value q is used. Th is is known as the threshold function and is defi ned as 

 g x if x
otherwise( )x , ,if x

, .otherwise=
1
0

>⎧
⎨
⎧⎧
⎩
⎨⎨

θ  (6.33)

g (x)x g (x)x1

(a) Basic step function

1

q

(b) Threshold function
function

Fig. 6.31. Step functions
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g (x)x g (x)x

q

1

−1
−1

1

(c) Bipolar step function
function

(d) Bipolar threshold function
function

Fig. 6.31. (Continued)

Th e shape of the threshold function is shown in Fig. 6.31(b). Th e step function is also known as the 
heaviside function. Th e step functions discussed so far are binary step functions since they always evalu-
ates to 0 or 1. 

Occasionally, it is more convenient to work with bipolar data, −1 and +1, than the binary data. If a sig-
nal of value 0 is sent through a weighted path, the information contained in the interconnection weight is 
lost as it is multiplied by 0. To overcome this problem, the binary input is converted to bipolar form and 
then a suitable bipolar activation function is employed. Accordingly, binary step functions have their 
bipolar versions. Th e output of a bipolar step function is −1, or +1, not 0, or 1. Th e bipolar step function 
and threshold function are shown in Fig. 1.31(c) and (d) respectively. Th ey are defi ned as follows.

Bipolar step function: 

 g x if
otherwise( )x , ,f

, .otherwise=
+
−

⎧
⎨
⎧⎧
⎩
⎨⎨

1 0if, if x >if x, if x
1  (6.34)

Bipolar threshold function:

 g x if
otherwise( )x , ,if x

, .otherwise=
>if x, if x+

−
⎧
⎨
⎧⎧
⎩
⎨⎨

1
1

θ  (6.35)

.5

0

1
σ1

σ2

σ1 < σ2

Fig. 6.32. Binary Sigmoid function

6.6.3 The Sigmoid Function

As the step function is not continuous it is not diff erentiable. Some ANN training algorithm requires 
that the activation function be continuous and diff erentiable. Th e step function is not suitable for such 
cases. Sigmoid functions have the nice property that they can approximate the step function to the 
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desired extent without losing its diff erentiability. Binary sigmoid, also referred to as the logistic sigmoid, 
is defi ned by Equation 6.36. 

 g x
e x( )x =

+ −

1
1 σ  (6.36)

Th e parameter s in Equation 6.36 is known as the steepness parameter. Th e shape of the sigmoid func-
tion is shown in Fig. 6.32. Th e transition from 0 to 1 could be made as steep as desired by increasing the 
value of s to appropriate extent.

−1

0

1

Fig. 6.33. Bipolar Sigmoid function

Th e fi rst derivative of g(x), denoted by g ′(x) is expressed as

 ′ =g x g x g x( )x ( )x ( (− g ))σ  (6.37)

Depending on the requirement, the binary sigmoid function can be scaled to any range of values ap-
propriate for a given application. Th e most widely used range is from −1 to +1, and the corresponding 
sigmoid function is referred to as the bipolar sigmoid function. Th e formulae for the bipolar sigmoid 
function and its fi rst derivative are given below as Equations 6.38 and 6.39 respectively. Fig. 6.33 presents 
its form graphically.

 g x e
e

x

x( )x =
−
+

−

−

1
1

σ

σ  (6.38)

 ′ = −g x g x g x( )x ( (g ))( ( )x )σ
2

1x(+ g ))(  (6.39)

6.6.4 Hyperbolic Tangent Function

Another bipolar activation function that is widely employed in ANN applications is the hyperbolic tan-
gent function. Th e function, as well as its fi rst derivative, are expressed by Equations 6.40 and 6.41 re-
spectively.

 h x e e
e e

x xe
x xe

( )x =  (6.40)

 ′ =h x′ h x h x( )x ( (h ))( (− h ))x+ h ))(  (6.41)

Th e hyperbolic tangent function is closely related to the bipolar sigmoid function. When the input data 
is binary and not continuously valued in the range from 0 to 1, they are generally converted to bipolar 
form and then a bipolar sigmoid or hyperbolic tangent activation function is applied on them by the 
processing units.
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6.7 LEARNING BY NEURAL NETS

An ANN is characterized by three entities, it’s architecture, activation function, and the learning tech-
nique. Learning by an ANN refers to the process of fi nding the appropriate set of weights of the intercon-
nections so that the ANN attains the ability to perform the designated task. Th e process is also referred 
to as training the ANN.

l1ll

x2xx

r (3, 0)

q (2, 1)

p (0, −1)

c (3, 3)
b (1, 2)

a (−1, 3)

x1xx

l1ll : x2xx = 2 x1xx – 2
w0ww = 2, w1ww = –2, w2ww = 1

(a) Number of misclassified patterns = 2
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c (3, 3)
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(b) Number of misclassified patterns = 1

l2ll : x2xx = 1
2

1
2
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2

1
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(c) Number of misclassified patterns = 0

1
3
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l3ll : x2xx = 1
3 x1xx + 1

Fig. 6.34. Learning a pattern classifi cation task by a perceptron
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Let us, once again, consider the classifi cation problem posed in Section 6.4.2 (Fig. 6.18). A perceptron is 
presented (Fig. 6.19) to solve the problem. It has the following combination of interconnection weights : 
w0 = −1, w1 = −1/3, w2 =1. It is easy to verify that an arbitrary set of weights may not be able to solve the 
given classifi cation problem. Th e question is, how to fi nd the appropriate set of weights for an ANN so 
that the ANN is able to solve a given problem? One way is to start with a set of weights and then gradu-
ally modify them to arrive at the fi nal set of weights. Th is is illustrated in Fig. 6.34(a), (b), (c). Suppose 
we start with a set of randomly chosen values, say w0 = 2, w1 = −2, w2 =1. Th e corresponding decision line 
is l1 (Fig. 6.34(a)) which is algebraically expressed by the equation x2 = 2 x1 – 2. As Fig. 6.34(a) shows, 
line l1 classifi es the points a (−1, 3), b (1, 2), q (2, 1), and r (3, 0) correctly. But it misclassifi es the points 
c (3, 3) (wrongly put in the class B) and the point p (0, −1) (wrongly put in the class A). In the next step 
the weights are modifi ed to w0 = 1/2, w1 = −1/2, w2 =1, so that the new decision line l2 : x2 = 1/2 x1 – 1/2 
reduces the number of misclassifi ed data to 1, only the point q (2, 1). Th is is shown in Fig. 6.34(b). Th en 
the weights are further modifi ed to obtain the decision line l3 : x2 = 1/3 x1 + 1, that leaves no pattern 
misclassifi ed (Fig. 6.34(c)).

Th is learning instance illustrates the basic concept of supervised learning, i.e., learning assisted by 
a teacher. However, quite a number of issues are yet to be addressed. For example, given a set of inter-
connection weights, how to determine the adjustments required to compute the next set of weights? 
Moreover, how do we ensure that the process converges, i.e., the number of misclassifi ed patterns are 
progressively reduced and eventually made 0? Th e subsequent parts of this section briefl y introduce the 
popular learning algorithms employed in ANN systems.

Th e basic principle of ANN learning is rather simple. It starts with an initial distribution of intercon-
nection weights and then goes on adjusting the weights iteratively until some predefi ned stopping cri-
terion is satisfi ed. Th erefore, if w(k) be the weight of a certain interconnection path at the kth iteration, 
then w(k+1), the same at the (k+1)th iteration, is obtained by

 w k w k w k( )k ( )k ( )k=) + Δ  (6.42)

where Δw(k) is the kth adjustment to weight w. A learning algorithm is characterized by the method 
undertaken by it to compute Δw(k).

6.7.1 Supervised Learning

A neural network is trained with the help of a set of patterns known as the training vectors. Th e outputs 
for these vectors might be, or might not be, known beforehand. When these are known, and that knowl-
edge is employed in the training process, the training is termed as supervised learning. Otherwise, the 
learning is said to be unsupervised. Some popular supervised learning methods are perceptron learning, 
delta learning, least-mean-square (LMS) learning, correlation learning, outstar learning etc. Th ese are 
briefl y introduced below.

(a) Hebb Rule 
Th e Hebb rule is one of the earliest learning rules for ANNs. According to this rule the weight adjust-
ment is computed as 

 Δwi = xi × t (6.43)

where t is the target activation. 
Th ere are certain points to be kept in mind regarding the Hebb learning rule. First, Hebb rule cannot 
learn when the target is 0. Th is is because the weight adjustment Δwi becomes zero when t = 0, irrespective 
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of the value of xi. Hence, obviously, the Hebb rule results in better learning if the input / output both are in 
bipolar form. Th e most striking limitation of the Hebb rule is it does not guarantee to learn a classifi cation 
instance even if the classes are linearly separable. Th is is illustrated in Chapter 7. Th e Example 6.6 below 
gives an instance of Hebb Learning. 

Example 6.6  (Realizing the logical AND function through Hebb learning)

To realize a two input AND function we need a net with two input units and one output unit. A 
bias is also needed. Hence the structure of the required neural net should be as shown in Fig. 6.35. 
Moreover, the input and output signals must be in bipolar form, rather than the binary form, so 
that the net may be trained properly. Th e advantage of bipolar signals over binary signals is dis-
cussed in greater detail in Chap. 7. Considering the truth table of AND operation, and the fact that 
the bias is permanently set to 1, we get the training set depicted in Table 6.7.

1

x1xx

x2xx X2XX

X1XX

X0XX

w1ww

w2ww

w0ww

y_yy out = x1xx ∧ x2xxY

Fig. 6.35. Structure of a neural net to realize the AND function

Table 6.7 Training set for AND function

Input Patterns Output

x0 x1 x2 t

+1 1 1 1

+1 1 −1 −1

+1 −1 1 −1

+1 −1 −1 −1

During the training process, all weights are initialized to 0. Th erefore initially

w0 = w1 = w2 = 0

At each training instance, the weights are changed according to the formula

wi (new) = wi (old) + Δwi

where Δwi, the increment in wi, is computed as Δwi = xi.× t. Aft er initialization, the progress of the 
learning process by the network is shown in Table 6.8.
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Table 6.8. Hebbian learning of AND function

# Training Pattern Target 
output

Weight Adjustments Weights

x0 x1 x2 t Δw0 Δw1 Δw2
w0 w1 w2

0 0 0 0

1 1 1 1 1 1 1 1 1 1 1

2 1 1 −1 −1 −1 −1 1 0 0 2

3 1 −1 1 −1 −1 1 −1 −1 1 1

4 1 −1 −1 −1 −1 1 1 −2 2 2

x2xx = −x1xx − 1

(−1, −1) (1, −1)

(1, 1)(−1, 1)

x1xx

x2xx

(a) After 1st pattern (1, 1)   

x2xx = 0

(−1, −1) (1, −1)

(1, 1)(−1, 1)

x1xx

x2xx

(b) After 2nd pattern (1, −1)

x2xx = −x1xx + 1

(−1, −1) (1, −1)

(1, 1)(−1, 1)

x1xx

x2xx

(c) After 3rd pattern (−1, 1)   

x2xx = −x1xx + 1

(−1, −1) (1, −1)

(1, 1)(−1, 1)

x1xx

x2xx

(d) After 4th pattern (−1, −1)

Fig. 6.36. Hebbian training to learn AND function

Hence, on completion of one epoch of training, the weight vector is W = [w0, w1, w2] = [−2, 2, 2]. Th e 
progress in learning by the net can be visualized by observing the orientation of the decision line 
aft er each training instance. Putting the values of the interconnection weights in the equation
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x w
w

x w
w2

1

2
1

0

2
= − −

 we get (i) x2 = −x1 – 1, aft er the 1st training instance,
 (ii) x2 = 0, aft er the 2nd training instance,
 (iii) x2 = −x1 + 1, aft er the 3rd training instance, and fi nally,
 (iv) x2 = −x1 + 1, aft er the 4th training instance.

Th is progress in the learning process is depicted in Fig. 6.36(a)-(d). We see that aft er training with 
the fi rst pattern [x0, x1, x2] = [1, 1, 1], the ANN learns to classify two patterns (−1, −1) and (1, 1) 
successfully. But it fails to classify correctly the other two patterns (−1, 1) and (1, −1). Aft er learn-
ing with the second pattern (1, −1) the situation is better. Only (−1, 1) is still misclassifi ed. Th is is 
corrected aft er training with the third pattern (−1, 1). Now all the −1 producing patterns are, i.e., 
(1, −1), (−1, 1) and (−1, −1) are in the same class and the remaining pattern (1, 1) constitutes the 
other class.

(b) Perceptron Learning Rule
Let us consider a simple ANN consisting of a single perceptron Y with m+1 input units X0, …, Xm as 
shown in Fig. 6.17(b). Th e corresponding weights of the interconnections are w0, …, wm. Th e bias is in-
troduced as the weight w0 connected to the input X0 whose activation is fi xed at 1. For the output unit, it 
is convenient to use the bipolar activation function :

 y out
if y i
if y i
if y in

, f y
, f y=

−

⎧
⎨
⎪
⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

1 0if y in, if y >
0 0if y in, if y =
1 1if i <if y in

 (6.44)

Now, let X = (x0, …, xm) be a training vector for which the output of the perceptron is expected to 
be t, where t = 1, 0, or −1. Th e current combination of the weights is given by the weight vector 
W = (w0, …, wm). If the perceptron produces the desired output, then the weights w0, …, wm need not 
be changed and they are to be kept unaltered. If, however, the perceptron misclassifi es X negatively 
(meaning, it erroneously produces −1 instead of the desired output +1) then the weights should be ap-
propriately increased. Conversely, the weights are to be decreased in case the perceptron misclassifi es X 
positively (i.e., it erroneously produces +1 instead of the desired output −1). Th e learning strategy of the 
perceptron is summarized in Table 6.9.
Hence the perceptron learning rule is informally stated as 

IF the output is erroneous THEN adjust the interconnection weights 
ELSE leave the interconnection weights unchanged.

In more precise terms,

IF y_out ≠ t  THEN 
  FOR i = 0 TO m DO wi(new) = wi(old) + h × t × xi 

ELSE
  FOR i = 0 TO m DO wi(new) = wi(old).
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Table 6.9. Perceptron learning rules

# Condition Action

1 The perceptron classifi es the input pattern 
correctly (y_out = t)

No change in the current set of weights w0, w1, …, 
wm.

2 The perceptron misclassifi es the input pattern 
negatively (y_out = −1, but t = +1)

Increase each wi by Δwi, where Δwi is proportional to 
xi, for all i = 0, 1, …, m.

3 The perceptron misclassifi es the input pattern 
positively (y_out = +1, but t = −1)

Decrease each wi by Δwi, where Δwi is proportional to 
xi, for all i = 0, 1, …, m.

x1xx

xixx

xmxx XmXX

XiXX

: :

: :

X0XX

wiww j
wiww n

wmww 1

wmww j

wmww n

Input layer Output layer

w0ww j

w0ww 1

w0ww n

wiww 1

y_yy outjttYjYY

y_yy outnttYnYY

y_yy out1ttY1YY

Fig. 6.37. Structure of an ANN with several perceptrons

Th us the perceptron learning rule can be formulated as 

 Δwi = h × (t – y_out) × xi, for i = 0, 1, …, m (6.45)

Here h is a constant known as the learning rate. It should be noticed that when a training vector is cor-
rectly classifi ed then y_out = t, and the weight adjustment Δwi = 0. When y_out = −1 but t = +1, i.e., the 
pattern is misclassifi ed negatively, then t − y_out = +2 so that Δwi is incremental and is proportional to 
xi. If, however, the input pattern is misclassifi ed positively, the adjustment is decremental, and obviously, 
proportional to xi. Using matrix notation, the perceptron learning rule may now be written as 
 ΔW = h × (t – y_out) × X (6.46)
where, ΔW and X are the vectors corresponding to the interconnection weights and the inputs. 

ΔW = [Δw0, …, Δwm], and  

X = [x0, x, …, xm].
Equation 6.45 can be easily extended to a network of several perceptrons at the output layer. Such archi-
tecture is shown in Fig. 6.37. Th e net inputs to the perceptrons are
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or, Y_inT = WT × XT (6.47)

For such an ANN, the adjustment Δwij of the weight wij is given by 

 Δwij = h × (tj – y_outj) × xi (6.48)

Let us assume the following matrix notations :

Δ

Δ Δ Δ
Δ Δ Δ

Δ Δ Δ

W

w wΔ w
w wΔ w

w wΔ w

n

n

m m mn

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

01 02 0

11 12 1

2wΔ mwΔ

�
�

� � � �
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,, ,

, ...,

T t t

X x x and Y out y out y out

n

n, ..., y o_ ut

⎡⎣⎡⎡ ⎤⎦⎤⎤

⎡⎣⎡⎡ ⎤⎦⎤⎤ = ⎡⎣⎡⎡

1
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�

⎤⎤⎦⎤⎤⎤⎤ .

Th en the expression of the perceptron learning rule for the architecture shown in Fig. 6.34 becomes

 [ΔW] T = h × [T – Y_out]T × X (6.49)

Example 6.7  (Learning the logical AND function by a perceptron)

Let us train a perceptron to realize the logical AND function. Th e training patterns and the cor-
responding target outputs for AND operation where the input and outputs are in bipolar form are 
given in Table 6.7. Th e structure of the perceptron is same as shown in Fig. 6.35. Activation func-
tion for the output unit is :

y o g y
if y i
if y i
if y i

_ (out g _ )in
, f y
, f y

, if y
=yg )in

−

⎧
⎨
⎪
⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

1 0if y in, if y >
0 0if y in, if y =

1 0if y in, if y <if y in, if y

Th e successive steps of computation with the fi rst training pair are given below.
 i) Initialize weights : w0 = w1 = w2 = 0, and the learning rate h = 1.
 ii) For the training pair s : t = (1, 1, 1) : (1), compute the net input y_in and the activation y_out :

y_in = w0 × x0 + w1 × x1 + w2 × x2 
= 0 × 1 + 0 × 1 + 0 × 1 

 = 0
 ∴ y_out = 0.

 iii) Apply the perceptron learning rule to fi nd the weight adjustments. Th e rule is :
If y_out = t, then the weights are not changed, otherwise change the weights according to the 
formula wi (new) = wi (old) + Δwi where Δwi = ht xi. In the present case, y_out = 0, and 
t = 1, and y_out ≠ t. Th erefore the weights are to be adjusted.

w0 (new) = w0 (old) + Δw0

= w0 (old) + htx0

= 0 + 1 × 1 × 1
= 1.
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Similarly, w1 (new) = w1 (old) + Δw1

= w1 (old) + htx1

= 0 + 1 × 1 × 1
= 1.

And, w2 (new) = 1.

Putting these values of the weights in the formula 

x w
w

x w
w2

1

2
1

0

2
= − −

we get the separating line as x2 = −x1 – 1, which classifi es the patterns (1, 1) and (−1, −1) correctly 
but misclassifi es the patterns (−1, 1) and (1, −1) (Fig. 6.36(a)). A trace of the remaining steps of 
the fi rst epoch of training (an epoch of training consists of successive application of each and every 
training pair of the training set for once) are noted in Table 6.10.

Hence, the set of weights obtained at the end of the fi rst epoch of training is (−1, 1, 1) which 
represents to the decision line 

x2 = − x1 + 1

It can be easily verifi ed that this line (and the corresponding set of weights) successfully real-
izes the AND function for all possible input combinations. Hence, there is no need of further 
training.

Table 6.10. Perceptron learning of AND function

# Input pattern Net 
input

Activation Target 
output

Weight Adjustments Weights

x0 x1 x2 y_in y_out t Δw0 Δw1 Δw2
w0 w1 w2

0 0 0 0

1 1 1 1 0 0 1 1 1 1 1 1 1

2 1 1 −1 1 1 −1 −1 −1 1 0 0 2

3 1 −1 1 2 1 −1 −1 1 −1 −1 1 1

4 1 −1 −1 −3 −1 −1 0 0 0 −1 1 1

(c) Delta / LMS (Least Mean Square), or, Widrow-Hoff Rule 
Least Mean Square (LMS), also referred to as the Delta, or Widrow-Hoff  Rule, is another widely used 
learning rule in ANN literature. Here the weight adjustment is computed as 

 Δwi = h × (t – y_in) × xi (6.50)

where the symbols have their usual meanings. In LMS learning, the identity function is used as the ac-
tivation function during the training phase. Th e learning rule minimizes mean squared error between 
the activation and the target value. Th e output of LMS learning is in binary form. Example 6.8 illustrates 
LMS learning of the AND function. 
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Example 6.8  (Realize the logical AND function through LMS learning rule)

Th e training patterns and the corresponding target outputs for AND operation where the input 
and outputs are in bipolar form are given in Table 6.7. Th e structure of the perceptron is same as 
shown in Fig. 6.35. Th e successive steps of computation for the fi rst epoch are given below.

 (i)  Initialize weights : w0 = w1 = w2 = .3, and the learning rate h = .2 (Th ese values are randomly 
chosen)

 (ii) For the training pair s : t = (1, 1, 1) : (1), compute the net input y_in as

y_in = w0 × x0 + w1 × x1 + w2 × x2 

= .3 × 1 + .3 × 1 + .3 × 1 

= .9

 (iii)  Apply the LMS learning rule to fi nd the weight adjustments. Th e rule is, wi (new) = wi (old) 
+ Δwi, where Δwi = h(t – y_in) xi. Hence 

wi (new) = wi (old) + h(t – y_in) xi,
In the present case, y_in = .9, and t = 1. Th erefore

w0 (new) = w0 (old) + Δw0

 = w0 (old) + h(t – y_in) x0

 = .3 + .2 × (1 − .9) × 1

 = .3 + .02

 = .32

Similarly, w1 (new) = w2 (new) = .32
Second iteration is to be carried out with the training pair s : t = (1, 1, −1) : (−1). Th e net 
input y_in is now

y_in = w0 × x0 + w1 × x1 + w2 × x2 

 = .32 × 1 + .32 × 1 + .32 × (−1) 

 = .32

Th e new weights are computed as follows :

w0 (new) = w0 (old) + Δw0

 = w0 (old) + h(t – y_in) x0

 = .32 + .2 × (−1 − .32) × 1

 = .32 − .264

 = .056
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Similarly, w1 (new) = .056

However, w2 (new) = .32 + .2 × (−1 − .32) × (−1)

 = .32 + .264

 = .584

Hence, at the end of the second iteration, we get w0 = .056, w1 = .056, and w2 = .584. Th e details of 
the computation for the fi rst epoch are recorded in Table 6.11. We see that the weights arrived at 
the end of the fi rst epoch are w0 = −.281, w1 = .393, and w2 = .287. Table 6.12 shows that this set of 
weights is appropriate to realize the AND function. Hence there is no need to iterate further.

Table 6.11. LMS Learning of AND function

# Input Pattern Net 
input

Target 
output

Error Weight Adjustments Weights

x0 x1 x2 y_in t t − y_in Δw0 Δw1 Δw2
w0 w1 w2

0  .3 .3 .3
1 1  1  1  .9  1  .1  .02  .02  .02  .32 .32 .32
2 1  1 −1  .32 −1 −1.32 −.264 −.264  .264  .056 .056 .584
3 1 −1  1  .584 −1 −1.584 −.317  .317 −.317 −.261 .373 .267
4 1 −1 −1 −.901 −1  −.099 −.02  .02  .02 −.281 .393 .287

Table 6.12. Performance of the net after LMS learning

# Input Pattern Net input Output Target 
Output

x0 x1 x2 y_in = Swixi
y_out t 

1 1  1  1  .399 > 0  1  1

2 1  1 −1 −.175 < 0 −1 −1

3 1 −1  1 −.387 < 0 −1 −1

4 1 −1 −1 −.961 < 0 −1 −1

(d) Extended Delta Rule 
Th e Extended Delta Rule removes the restriction of the output activation function being the identity 
function only. Any diff erentiable function can be used for this purpose. Here the weight adjustment is 
given by 

 Δwij = h × (tj – y_outj) × x1 × g′(y_inj) (6.51)

where g(.) is the output activation function and g′(.) is its fi rst derivative.

6.7.2 Unsupervised Learning 

So far we have considered only supervised learning where the training patterns are provided with 
the target outputs. However, the target output may not be available during the learning phase. 
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Typically, such a situation is posed by a pattern clustering problem, rather than a classifi cation or as-
sociation problem. 

Let us, for instance, consider a set of points on a Cartesian plane as shown in Fig. 6.38 (a). Th e prob-
lem is to divide the given patterns into two clusters so that when the neural net is presented with one 
of these patterns, its output indicates the cluster to which the pattern belongs. Intuitively, the patterns 
those are close to each other should form a cluster. Of course we must have a suitable measure of close-
ness. Fig. 6.38(b) shows the situation aft er the neural net learns to form the clusters, so that it ‘knows’ the 
cluster to which each of the given pattern belongs. 

(a) Before clustering : A set of patterns

x1xx

x2xx
B

A

x1xx

x2xx

(b) After clustering : Two clusters A, and B

Fig. 6.38. Clustering a given set of patterns

Clustering is an instance of unsupervised learning because it is not assisted by any teacher, or, any 
target output. Th e network itself has to understand the patterns and put them into appropriate clus-
ters. Th e only clue is the given number of clusters. Let us suppose that the network output layer has 
one unit for each cluster. In response to a given input pattern, exactly one among the output units 
has to fi re. To ensure this, additional features need to be included in the network so that the network 
is compelled to make a decision as to which unit should fi re due to certain input pattern. Th is is 
achieved through a mechanism called competition. Th e most commonly used competitive learning 
mechanism is the so called winner-takes-all learning. Th e basic principle of winner-take-it-all is dis-
cussed below. 

x1xx

x2xx

x3xx X3XX

X2XX

X1XX

Cluster A

Input :
[x1xx , x2xx , x3xx ]

Either Y1YY or Y2YY
is on, not
both

Cluster B

Y1YY

Y2YY

w11ww

w12ww

w21ww

w22ww

w32ww

w31ww

Fig. 6.39. A 3 input 2 output clustering network

Winner-takes-all Let us consider a simple ANN consisting of three input units and two output 
units as shown in Fig. 6.39. As each input unit of a clustering network corresponds to a component of 
the input vector, this network accepts input vectors of the form [x1, x2, x3]. Each output unit of a cluster-
ing network represents a cluster. Th erefore the present network will divide the set of input patterns into 
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two clusters. Th e weight vector for an output unit in a clustering network is known as the exemplar or 
code-book vector for the vectors of the cluster represented by the corresponding output unit. Hence, for 
the net in Fig. 6.39, the weight vector [w11, w21, w31] is an exemplar (or code-book vector) for the patterns 
of cluster A. Similarly, [w12, w22, w32] is the exemplar for the patterns of cluster B. 

In the winner-takes-all strategy, the network fi nds the output unit that matches best for the current 
input vector and makes it the winner. Th e weight vector for the winner is then updated according to the 
learning algorithm. One way of deciding the winner is to employ the square of the Euclidean distance 
between the input vector and the exemplar. Th e unit that has the smallest Euclidean distance between 
its weight vector and the input vector is chosen as the winner. Th e algorithmic steps for an m-input 
n-output clustering network are given below: 

1. For each output unit Yj, j = 1 to n, compute the squared Euclidean distance as 

D j ij i
i

m

( )j ( )w xij i .= (w
=
∑ 2

1

2. Let YJ be the output unit with the smallest squared Euclidean distance D(J).
3. For all output units within a specifi ed neighbourhood of YJ, update the weights as follows :

w w ld oldij ij i iji( )new ( )old [ (x wi iw ji )]= +w ( )old ×[xη

Th e concepts of neighbourhood, and winner-takes-all, in general, will be discussed in greater detail in the 
chapter on competitive neural nets. Example 6.9 illustrates the winner-takes-all strategy more explicitly.

x2xx

x1xx

e (2, 1)

c (1, 0)

b (−1, 2)

a (−1, 1)

d (1, 2) f (2, 2)

Fig. 6.40. A clustering problem showing the expected clusters

Example 6.9  (Competitive learning through Winner-takes-all strategy)

Let us consider a set of six patterns S = {a (−1, 1), b (−1, 2), c (1, 0), d (1, 2), e (2, −1), f (2, 2)}. Th e 
positions of these points on a two dimensional Eucledian plane are shown in Fig. 6.40. Intuitively, 
the six points form three clusters {a, b}, {d, f }, and {c, e}. Given the number of clusters to be formed 
as 3, how should a neural net learn the clusters by applying the winner-takes-all as its learning 
strategy? Let us see.
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x1xx

x2xx X2XX

X1XX

w22ww

w23ww

w12ww

w13ww

w11ww

w21ww Y2YY

Y3YY

Y1YY

Fig. 6.41. A 2 input 3 output ANN to solve the clustering problem of Example 6.9

Th e input patterns are of the form (x1, x2) and the whole data set is to be partitioned into three 
clusters. So the target ANN should have two input units and three output units (Fig. 6.41). Let the 
initial distribution of (randomly chosen) weights be

W w w w
w w w= ⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

11 12 13

21 22 23

0 1− 2
2 0 1

Th is means that the exemplars, or code vectors, are initially C1 = (w11, w21) = (0, 2), C2 = (w12, w22) = 
(−1, 0), and C3 = (w13, w23) = (2, 1). Th e positions of the code vectors as well as the patterns to be 
clustered are shown in Fig. 6.42.

D2DD

D1

C2CC

fd

C3CC

C1

x2xx

x1xx

e

c

b

a
D3DD

Fig. 6.42. Initial positions of the code vectors

Clusters are formed on the basis of the distances between a pattern and a code vector. For example, 
to determine the cluster for the pattern a (−1, 1) we need to compute the Euclidean distance be-
tween the point a and each code vector C1, C2, C3. Th e pattern is then clustered with nearest among 
the three code vectors. Let D1, D2, D3 be the squares of the Euclidean distances between a pattern 
and C1, C2, C3 respectively. For a (−1, 1) the computations of D1, D2, D3 are as follows.
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D1 = (w11 – x1)2 + (w21 – x2)2 = (0 + 1)2 + (2 – 1)2 = 2
D2 = (w12 – x1)2 + (w22 – x2)2 = (−1 + 1)2 + (0 – 1)2 = 1
D3 = (w13 – x1)2 + (w23 – x2)2 = (2 + 1)2 + (1 – 1)2 = 9

Since D2 is the minimum among these the pattern a (−1, 1) the corresponding exemplar C2 is de-
clared the winner and the pattern is clustered around the code vector C2. Similar computations for 
the pattern b (−1, 2) are given below.

D1 = (w11 – x1)2 + (w21 – x2)2 = (0 + 1)2 + (2 – 2)2 = 1
D2 = (w12 – x1)2 + (w22 – x2)2 = (−1 + 1)2 + (0 – 2)2 = 4
D3 = (w13 – x1)2 + (w23 – x2)2 = (2 + 1)2 + (1 – 2)2 = 10

In this case D1 is the minimum making C1 the winner. Table 6.13 summarizes the initial clustering 
process yielding the clusters C1 = {b, d}, C2 = {a} and C3 = {c, e, f} (Fig. 6.43). Th e minimum distance 
is indicated by a pair of parentheses.

Table 6.13. Initial cluster formation

# Pattern Squared Euclidean 
distance

Minimum of 
D1, D2, D3

Winner / 
Cluster

D1 D2 D3

1 a (−1, 1) 2 (1) 9 D2 C2

2 b (−1, 2) (1) 4 10 D1 C1

3 c (1, 0) 5 4 (2) D3 C3

4 d (1, 2) (1) 8 2 D1 C1

5 e (2, −1) 13 10 (4) D3 C3

6 f (2, 2) 4 13 (1) D3 C3

fd

C2CC

C3CC

C1

x2xx

x1xx

e

c

b

a

Fig. 6.43. Initial clusters
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Th e initial clustering depicted in Fig. 6.43 is neither perfect, nor fi nal. Th is will change as the 
learning proceeds through a number of epochs. Th is is explained below.

We take the value of the learning rate h = 0.5 and follow the steps of winner-takes-all strategy 
to modify the positions of the exemplars so that they represent the respective clusters better. Th e 
process is described below.

(a) 1st Epoch
 (i) Find the winner for the pattern a (−1, 1) and adjust the corresponding code-vector 

D1 = (w11 – x1)2 + (w21 – x2)2 = (0 + 1)2 + (2 – 1)2 = 2

D2 = (w12 – x1)2 + (w22 – x2)2 = (−1 + 1)2 + (0 – 1)2 = 1

D3 = (w13 – x1)2 + (w23 – x2)2 = (2 + 1)2 + (1 – 1)2 = 9

Since D2 is the minimum among these, the winner is C2. Hence the weights w12 and w22 
are to be changed. Th e new weights are obtained as

w12 (new) = w12 (old) + h (x1 − w12 (old)) = −1 + .5 × (−1 + 1) = −1

w22 (new) = w22 (old) + h (x2 – w22 (old)) = 0 + .5 × (1 − 0) = .5

Th e new code vector C2 is (−1, .5). It is closer to the training vector a (−1, 1) than the old 
code vector (−1, 0) (Fig. 6.44(b)). Th e weight matrix now changes to

W w w w
w w w= ⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

11 12 13

21 22 32

0 1− 2
2 5 1

 (ii) Find the winner for the pattern b (−1, 2) and adjust the corresponding code-vector

D1 = (w11 – x1)2 + (w21 – x2)2 = (0 + 1)2 + (2 – 2)2 = 1

D2 = (w12 – x1)2 + (w22 – x2)2 = (−1 + 1)2 + (.5 – 2)2 = 2.25

D3 = (w13 – x1)2 + (w23 – x2)2 = (2 + 1)2 + (1 – 2)2 = 10

Since D1 is the minimum among these, the winner is C1. Hence the weights w11 and w21 are 
to be changed. Th e new weights are obtained as

w11 (new) = w11 (old) + h (x1 − w11 (old)) = 0 + .5 × (−1 − 0) = −.5

w21 (new) = w21 (old) + h (x2 – w21 (old)) = 2 + .5 × (2 − 2) = 2

Th e new code vector C1 is (−.5, 2). It is closer to the training vector b (−1, 2) than the old 
code vector (0, 2) (Fig. 6.44(c)). Th e new weight matrix is

W w w w
w w w= ⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

=
−⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

11 12 13

21 22 23

5 1− 2
2 5 1
.
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Th e successive iterations of the 1st epoch with the rest of the training vector are carried out in a 
similar fashion and are summarized in Table 6.14. Th e corresponding changes in the positions of 
the code vectors are depicted in Fig. 6.44(b)-(g).

Table 6.14. Clustering process during the 1st epoch

# Training 
Patterns

Squared Euclidean 
Distance

Winner New Code Vectors

D1 D2 D3 C1 
(w11,w21)

C2

(w12,w22)
C3

(w13,w23)

0 (0, 2) (−1, 0) (2, 1)

1 a (−1, 1) 2 (1) 9 C2 (0, 2) (−1, .5) (2, 1)

2 b (−1, 2) (1) 2.25 10 C1 (−.5, 2) (−1, .5) (2, 1)

3 c (1, 0) 6.25 4.25 (2) C3 (−.5, 2) (−1, .5) (1.5, .5)

4 d (1, 2) (2.25) 6.25 2.5 C1 (.25, 2) (−1, .5) (1.5, .5)

5 e (2, −1) 12.06 11.25 (2.5) C3 (.25, 2) (−1, .5) (1.75, −.25)

6 f (2, 2) (3.06) 11.25 5.13 C1 (1.13, 2) (−1, .5) (1.75, −.25)

fd

C1

C3CC

C2CC

x2xx

x1xx

e

(a) Initial positions

c

b

a

  

fd

C1

C3CC

C2CC

x2xx

x1xx

e

c

b

a

(b) Iteration #1: Pattern a, C2CC relocated

fdC1

C3CC

C2CC

x2xx

x1xx

e

(c) Iteration #2: Pattern b, C1 relocated

c

b

a

  

fdC1

C3CC

C2CC

x2xx

x1xx

e

c

b

a

(d) Iteration #3: Pattern c, C3CC relocated

Fig. 6.44. Successive positions of the code vectors during the 1st epoch of the clustering process
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fdC1

C3CC

C2CC

x2xx

x1xx

e

c

b

a

(e) Iteration #4: Pattern d, dd C1 relocated   

fdC1

C2CC

x2xx

x1xx

e

c

b

a

C3CC

(f) Iteration #5: Pattern e, C3CC  relocated

fd

C1

C2CC

x2xx

x1xx

e

c

b

a

C3CC

(g) Iteration #6: Pattern e, C1 relocated

Fig. 6.44. (Continued)

Table 6.15. Clusters after the 1st epoch

# Training Vector Cluster

1 a (−1, 1) C2

2 b (−1, 2) C2

3 c (1, 0) C3

4 d (1, 2) C1

5 e (2, −1) C3

6 f (2, 2) C1

Clusters formed

C1 : {d, f}

C2 : {a, b}

C3 : {c, e}
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fd

C1

C2CC

x2xx

x1xx

e

c

b

a

C3CC

Fig. 6.45. Clusters formed after the 1st epoch

Th erefore, the weight matrix at the end of the fi rst epoch is obtained as

W w w w
w w w= ⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= −
⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

11 12 13

21 22 23

1 13 1− 1 75
2 5 25
. .13 1 1

. .5

Th e corresponding clusters can be easily found by computing the distance of each training vector 
from the three code vectors and attaching it to the cluster represented by the nearest code vector. 
Table 6.15 summarizes these results and Fig. 6.45 shows the clusters formed at the end of the 1st 
epoch. It is obvious from Fig. 6.45 that the clusters formed conform to our intuitive expectation. 
However, this should be further consolidated by a second epoch of training.

(b) 2nd Epoch

Table 6.16. Clustering process during the 2nd epoch

# Training 
Patterns

Squared Euclidean Distance Winner New Code Vectors

D1 D2 D3 C1

(w11,w21)
C2

(w12,w22)
C3

(w13,w23)

0 (1.13, 2) (−1, .5) (1.75, −.25)

1 a (−1, 1) 5.54 (.25) 9.13 C2 (1.13, 2) (−1, 1.5) (1.75, −.25)

2 b (−1, 2) 4.54 (.25) 12.63 C2 (1.13, 2) (−1, 1.75) (1.75, −.25)

3 c (1, 0) 4.02 7.06 (.63) C3 (1.13, 2) (−1, 1.75) (1.38, −.13)

4 d (1, 2) (.02) 4.06 4.68 C1 (1.07, 2) (−1, 1.75) (1.38, −.13)

5 e (2, −1) 9.86 16.63 (1.14) C3 (1.07, 2) (−1, 1.75) (1.69, −.57)

6 f (2, 2) (.86) 9.06 6.7 C1 (1.56, 2) (−1, 1.75) (1.69, −.57)

Th e summary of the second epoch of training is given in Table 6.16. Table 6.17 shows the clusters 
formed at the end of this epoch and Fig. 6.46 depicts the location of the code vectors as well as the 
corresponding clusters. It should be noted that though the clusters has not changed from the fi rst 
epoch, the positions of the exemplars has changed. In fact, these have moved towards the ‘centre’ 
of the respective clusters. Th is is expected, because the exemplar is the representative of a cluster.
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Table 6.17. Clusters after the 2nd epoch

# Training Vector Cluster

1 a (−1, 1) C2

2 b (−1, 2) C2

3 c (1, 0) C3

4 d (1, 2) C1

5 e (2, −1) C3

6 f (2, 2) C1

Clusters formed

C1 : {d, f}

C2 : {a, b}

C3 : {c, e}

fd

C1C2CC

x2xx

x1xx

e

c

b

a

C3CC

Fig. 6.46. Clusters formed after the 2nd epoch

CHAPTER SUMMARY

Certain fundamental concepts of artifi cial neural networks have been presented in this chapter. Th e 
main points of the foregoing text are summerized below.

ANNs are inspired by the biological brain that processes data in terms of patterns rather than • 
sequential fetch and execute cycle of instruction execution by a classical Von Neuman digital 
computer.
Information is stored in brain as strengths of the synaptic gaps between the neurons. Similarly, • 
knowledge is stored in an ANN as weights of interconnection between neural processing units. 
Th us both the brain and the ANN stores information in a distributed manner.
ANNs are suitable for problem related to pattern classifi cation and pattern association.• 
Th e earliest artifi cial neural model was proposed by McCulloch and Pitts in 1943.• 
Th e perceptron model was proposed by Rosenblatt in 1962. It has the nice property of being • 
able to learn to classify a linearly separable set of patterns.
ANNs have various architectures, such as, single-layer feed forward, multy-layer feed forward, • 
competitive networks, recurrent networks etc.
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Certain functions such as the identity function, the step function, the sigmoid function, the • 
hyperbolic tangent function etc. are widely used as activation functions in an ANN.
Th ere are two kinds of learning methods for an ANN, supervised and unsupervised. Learning • 
takes place with the help of a set of training patterns. Under supervised learning each training 
pattern is accompanied by its target output. Th ese target outputs are not available during 
unsupervised learning.
Th e formulae for interconnection weight adjustment • Δwi for diff erent learning rules are shown 
in Table 6.18.

Table 6.18. Summary of ANN learning rules

# Learning Rule Formula for Δwi

1 Hebb Δwi = xi × t 
2 Perceptron Δwi = h × (t – y_out) × xi,
3 Delta/LMS/Widrow-Hoff Δwi = h × (t – y_in) × xi

4 Extended delta Δwij = h × (tj – y_outj) × x1 × g′(y_inj)
5 Winner-takes-all Δw oldij i iji×η [ (x wi iw ji− )]

Th e weight vector associated with an output of a clustering ANN is called the exemplar or the • 
code-book vector. It represents the cluster corresponding to the output unit of the clustering 
ANN. 

 SOLVED PROBLEMS

Problem 6.1  Write MATLAB Code to realize the logical AND function with a neural net that 
learns the desired function through Hebb learning.

Solution 6.1 Th e MATLAB code and the output are given below as Fig. 6.47 and Fig. 6.48.

%MATLAB Code to realize the logical AND function with a neural net that 
%learns the desired function through Hebb learning.
clear;
clc;
Inp1=[1 1 1];
Inp2=[1 1 −1];
Inp3=[1 −1 1];
Inp4=[1 −1 −1];
Mat(1,1:3)=Inp1;
Mat(2,1:3)=Inp2;
Mat(3,1:3)=Inp3;
Mat(4,1:3)=Inp4;
wt(1:3)=0;
Tar_Act=[1 −1 −1 −1];
bias=1;
for i=1:4

wt=wt+Mat(i,1:3)*Tar_Act(i);
bias=bias+Tar_Act(i);
disp(‘Weight Matrix’);
disp(wt);
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disp(‘Bias’);
disp(bias);

end
disp(‘***********Final Weight Matrix************’);
disp(wt);
disp(‘*****************Bias*********************’);
disp(bias);

Fig.6.47. MATLAB code for Hebb learning of AND function by an ANN

Results
Weight Matrix
     1     1     1
Bias
     2
Weight Matrix
     0     0     2
Bias
     1
Weight Matrix

    −1     1     1
Bias
     0
Weight Matrix

    −2     2     2
Bias

    −1
***********Final Weight Matrix************

    −2     2     2
*****************Bias*********************

    −1

Fig. 6.48. MATLAB results for Hebb learning of AND function 

Problem 6.2 Write MATLAB Code to realize the logical AND function with a neural net that 
learns the desired function through Perceptron learning.

Solution 6.2 Th e MATLAB code for the purpose is given below in Fig. 6.49. Fig. 6.50 presents the 
corresponding screenshot.

% Example 1.7: Design a perceptron and train it to realize the logical AND 
function.

P = [0 0 1 1; 0 1 0 1];          %  Possible values of 2 variables in a ma-
trix format

T = [0 0 0 1];                   % Expected outputs for above dataset

Samir Roy_Chapter06.indd   222Samir Roy_Chapter06.indd   222 2/21/2013   3:24:31 PM2/21/2013   3:24:31 PM



Artifi cial Neural Networks: Basic Concepts    223

net = newp([0 1; 0 1],1);        %  Creates network with two inputs and 1 
output with ranges of values

net.trainParam.epochs = 20;      % Sets the number of maximum iterations
net = train(net,P,T);            % Trains the network
simulation = sim(net,P)          % Simulates neural network
plotpv(P,T)                      % Plot input/target vectors
plotpc(net.iw{1,1},net.b{1})     % Plot classification line

Fig. 6.49. MATLAB code for perceptron learning of AND function

Fig. 6.50. MATLAB output for perceptron implementing AND function

Problem 6.3 Write MATLAB Code to realize the logical AND function with a neural net that 
learns the desired function through LMS learning.

Solution 6.3 Th e MATLAB code for the purpose is given in Fig. 6.51. Fig. 6.52 shows the results 
and screenshot is shown in Fig. 6.53.

%Matlab Code to implement LMS learning
clear;
clc;
Inp1=[1 1 1];
Inp2=[1 1 −1];
Inp3=[1 −1 1];
Inp4=[1 −1 −1];
Mat(1,1:3)=Inp1;
Mat(2,1:3)=Inp2;
Mat(3,1:3)=Inp3;
Mat(4,1:3)=Inp4;
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wt(1:3)=0.3;
wt_new(1:3)=0;
y_in(1:4)=0;
Tar_Act=[1 −1 −1 −1];
bias=1;
Learn_Rate=0.2;
for j=1:4
y_in(j)=wt(1)*Mat(j,1)+wt(2)*Mat(j,2)+wt(3)*Mat(j,3);

for i=1:3
wt_new(i)=wt(i)+ (Learn_Rate*(Tar_Act(j)−y_in(j))*Mat(j,i));
wt(i)=wt_new(i);
disp(‘Weight Matrix’);
disp(wt);
end

end
disp(‘***********Final Weight Matrix************’);
disp(wt);

Fig. 6.51. MATLAB code for LMS learning of AND function by an ANN

Weight Matrix
    0.3200    0.3000    0.3000
Weight Matrix
    0.3200    0.3200    0.3000
Weight Matrix
    0.3200    0.3200    0.3200
Weight Matrix
    0.0560    0.3200    0.3200
Weight Matrix
    0.0560    0.0560    0.3200
Weight Matrix
    0.0560    0.0560    0.5840
Weight Matrix

   −0.2608    0.0560    0.5840
Weight Matrix

   −0.2608    0.3728    0.5840
Weight Matrix

   −0.2608    0.3728    0.2672
Weight Matrix

   −0.2806    0.3728    0.2672
Weight Matrix

   −0.2806    0.3926    0.2672
Weight Matrix

   −0.2806    0.3926    0.2870
***********Final Weight Matrix************

   −0.2806    0.3926    0.2870

Fig. 6.52. MATLAB results for LMS learning of AND function
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Fig. 6.53. MATLAB screen showing results of LMS learning of AND function

Problem 6.4 Write MATLAB Code to implement the Winner-takes-all strategy of pattern clustering.

Solution 6.4 Th e MATLAB code is shown in Fig. 6.54. Th e data set is taken from Example 6.9.

clear;
clc;
lr = 0.5;

Inp = [-1 -1 1 1 2 2; 1 2 0 2 -1 2];
wt = [-1 0 0; 1 -1 1];

[rowInp, colInp] = size(Inp);
[rowwt, colwt] = size(wt);
Res = 0;
High_Indx = 0;
for i = 1:colInp

Inp(:,i) = Inp(:,i)/norm(Inp(:,i));
for j = 1:colwt        

wt(:,j) = wt(:,j)/norm(wt(:,j));    
matrx_mult = dot(wt(:,j),Inp(:,i));    
if matrx_mult > Res
  Res = matrx_mult;
  High_Indx = j;
  disp (wt(:,j))
end

end

wt(:,High_Indx) = wt(:,High_Indx) + lr*(Inp(:,i) − wt(:,High_Indx));
disp(‘*********************Weights********************’);

wt(:,High_Indx) = wt(:,High_Indx)/norm(wt(:,High_Indx)); 
end
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figure 
plot(Inp(1,:), Inp(2,:),  wt(1,:), wt(2,:))
axis([-max(max(abs(Inp)))− 0.5max(max(abs(Inp))) + 0.5− 
max(max(abs(Inp)))−0.5 max(max(abs(Inp)))+0.5])

Fig. 6.54. MATLAB code for clustering through winner-takes-all

� TEST YOUR KNOWLEDGE

 6.1 Which of the following parts of a biological neuron is modeled by the weighted interconnections 
between the input units and the output unit of an artifi cial neural model?
a) Dendrite  b) Axon 
c) Soma d) Synapse

 6.2 Th e eff ect of the synaptic gap in a biological neuron is modeled in artifi cial neuron model as
a) Th e weights of the interconnections
b) Th e activation function
c) Th e net input to the processing element
d) None of the above

 6.3 In an artifi cial neural model, the activation function of the input unit is
a) Th e step function b) Th e identity function
c) Th e sigmoid function d) None of the above

 6.4 Which of the following is not true about Perceptrons ? 
a) It can classify linearly separable patterns 
b) It does not have any hidden layer  
c) It has only one output unit  
d) None of the above  

 6.5 Recognition of hand written characters is an act of 
a) Pattern classifi cation  b) Pattern association
c) Both (a) and (b)  d) None the above

 6.6 Identifi cation of an object, e.g., a chair, a tree, or a human being, from the visual image of our sur-
roundings, is an act of 
a) Pattern classifi cation  b) Pattern association 
c) Both (a) and (b)  d) None the above

 6.7 Th e interconnections of a Hopfi eld network are 
a) Unidirectional  b) Bidirectional
c) Both (a) and (b)  d) None the above

 6.8 Th e interconnections of a perception are 
a) Unidirectional  b) Bidirectional 
c) Both (a) and (b)  d) None the above 

 6.9 Parallel relaxation is a process related to the functionality of 
a) Perceptrons  b) McCulloch-Pitts neurons 
c) Hopfi eld networks  d) None the above 

6.10 In which of the following ANN models the inhibition is absolute, i.e., a single inhibitive input can 
prevent the output to fi re, irrespective of the number of excitatory inputs? 
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a) Perceptrons  b) Hopfi eld network 
c) McCulloch-Pitts neurons  d) None the above 

6.11 Which of the following is not true about McCulloch-Pitts neurons?
a) Th e interconnections are unidirectional 
b) All excitatory interconnections have the same weight 
c) All inhibitory interconnections have the same weight 
d) Th e activation is bipolar  

6.12 Which of the following operations can be realized by a network of McCulloch-Pitts neurons, but 
not a network of perceptions? 
a) Logical AND  b) Logical OR 
c) Logical XOR  d) None the above

6.13 Which of the following kinds of classifi cation problems can be solved by a perception? 
a) Linearly separable  b) Non-linearly separable
c) Both (a) and (b)  d) None the above

6.14 Which of the following entities is guaranteed by the Perceptron Convergence Th eorem to con-
verge during the learning process?
a) Th e output activation  b) Th e interconnection weights
c) Both (a) and (b)  d) None the above

6.15 Th e XOR function cannot be realized by a Perceptron because the input patterns are 
a) Not bipolar  b) Not linearly separable
c) Discrete  d) None the above

6.16 Th e XOR function can be realized by 
a) A Perceptron  b) A network of Perceptrons
c) A Hopfi eld network  d) None the above

6.17 Which of the following ANN architectures contains bidirectional interconnections?
a) Single-layered feed forward b) Multi-layered feed forward
c) Competitive networks d) None the above

6.18 Which of the following activation functions is not diff erentiable? 
a) Identity function  b) Heaviside function
c) Sigmoid function  d) None the above

6.19 Which of the following ANN learning algorithms is not a supervised learning? 
a) Perceptron learning  b) Widrow-Hoff  learning
c) Winner-takes-all  d) None the above

6.20 During learning, if a Perceptron misclassifi es a training data negatively, i.e., erroneously yields an 
output −1 instead of +1, the interconnection weights are to be
a) Increased  b) Decreased
c) Kept unaltered  d) None the above

6.21 During learning, if a Perceptron misclassifi es a training data positively, i.e., erroneously yields an 
output +1 instead of −1, the interconnection weights are
a) Increased  b) Decreased
c) Kept unaltered  d) None the above

6.22 Which of the following learning rules does not guarantee to learn a classifi cation instance even if 
the classes are linearly separable ? 
a) Perceptron learning rule  b) Hebb rule
c) Both (a) and (b)  d) None of the above
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6.23 Which of the following is a competitive learning method? 
a) Winner-takes-all  b) Least-Mean-square
c) Extended delta  d) None the above

6.24 Th e weight vector attached to an output unit of a clustering network is known as 
a) an exemplar  b) a code vector
c) Both (a) and (b)  d) None of the above

6.25 Which of the following ANN learning methods use Euclidean distance between the weight vector 
and the input vector to compute the output ? 
a) Perceptron learning  b) Widrow-Hoff  learning
c) Winner-takes-all learning  d) None of the above

Answers

 6.1 (d) 6.2 (a) 6.3 (b) 6.4 (d) 6.5 (b)
 6.6 (a) 6.7 (b) 6.8 (a) 6.9 (c) 6.10 (c)
 6.11 (d) 6.12 (d) 6.13 (a) 6.14 (b) 6.15 (b)
 6.16 (b) 6.17 (c) 6.18 (b) 6.19 (c) 6.20 (a)
 6.21 (b) 6.22 (b) 6.23 (a) 6.24 (c) 6.25 (c)

EXERCISES

6.1 Th ere are two ways to interpret the role of the brain while considering the human body as a 
computational agent. One of them is to view the entire brain as a single unit that acts as the CPU 
for the whole body. Th e other is to consider the brain as a huge network of billions of processing 
units called neurons. Compare and contrast between these two views from computational per-
spective.

6.2 Th e majority function outputs a 0 if there are more 0s in the inputs than 1s, and outputs a 1 if there 
are more 1s in the inputs than 0s. In short, it returns the majority input to the output. Th e truth table 
for a 3 input majority function is given as Table 6.19. Design a McCulloch-Pitts neural net to realize 
the 3-input majority function.

Table 6.19. Three input majority function

# Inputs Output
M (x1, x2, x3)x1 x2 x3

0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 1
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6.3 Consider the sets of points A and B shown in Fig. 6.54 where A = {a (−1, 1), b (−1, 0), c (−1, −1), 
e (0, 0), f (0, −1)} and B = {d (0, 2), g (1, 2), h (1, 1), i (2, 2), j (2, 1)}. Propose two diff erent Percep-
trons to classify these sets of patterns by observation, analysis, and understanding only (and not 
by learning).

B

A
j

i

h

g

x2xx

x1xx

f 

d 

e

c

b

a

Fig. 6.54. A classifi cation problem instance

6.4. Consider the 3-input majority function cited in Exercise No. 6.2. Fig. 6.55 shows the positions 
of the input patterns in a 3-dimensional space, classified on the basis of the corresponding 
output values. Are these patterns linearly separable? If so, propose a perceptron to realize this 
function.

(1, 1, 1)

(1, 1, 0)

(1, 0, 1)

(0, 1, 1)

(0, 1, 0)

(1, 0, 0)

x3xx

(0, 0, 1)

(0, 0, 0)

x2xx

x1xx

Fig. 6.55. Three input majority function

6.5 Draw the structure of a 3-3-2 multi-layered feed forward neural net. Also, present the matrix alge-
braic expression for the net inputs and the outputs of each layer.

6.6 Train a neural net through the Hebb rule to realize the logical OR function.
6.7 Realize the 3-input majority function through the Perceptron learning rule.
6.8 Train a neural net through the LMS rule to realize the logical OR function.
6.9 Let S be a set of six points on an Euclidean plane where S = {a (0, −1), b (0, −2), c (1, 2), d (1, 1), 

e (1, −1), f (2, 1)} (Fig. 6.56). Taking the initial code vectors as C1 = (0, 0), and C2 = (−1, −2) fi nd i) 
the initial clusters, and ii) fi nal cluster with the help of winner-takes-all strategy.
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f

C2CC

x2xx

x1xx

e

c

d

a

b
C1

Fig. 6.56. A clustering problem with initial code vectors

 BIBLIOGRAPHY AND HISTORICAL NOTES
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PATTERN CLASSIFIERS

Key Concepts

ADALINE (Adaptive Linear Neuron), Hebb Learning, Hebb Nets, Learning Rate, Least Mean Square, 
MADALINE (Many Adaptive Linear Neurons), MR-I Algorithm, MR-II Algorithm, Perceptrons,
Perceptron Learning, Widrow-Hoff  Learning

 Chapter Outline 
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7.3 ADALINE
7.4 MADALINE

Chapter Summary
Solved Problems
Test Your Knowledge
Exercise
Bibliography and Historical Notes

Chapter 6 provides an overview of various aspects of artifi cial neural nets including their architecture, 
activation functions, training rules, etc. Th is chapter presents discussions on certain elementary patterns 
classifying neural nets. Four kinds of nets, viz., Hebb net, Perceptron, ADALINE, and MADALINE, are 
included here. Among these, the fi rst three are single layer, single output nets, and the last one, MADA-
LINE, is a single-output net with one hidden layer. White Hebb network and Perceptron are trained by 
their respective training rules, both ADALINE and MADALINE employ the least mean square (LMS), or 
delta rule. More general multi-layer networks, especially the feed-forward networks, are dealt with later 
in a separate chapter. 

7.1 HEBB NETS

A single-layer feedforward neural net trained through the Hebb learning rule is known as a Hebb 
net. Th e Hebb learning rule is introduced in Chapter 6. Example 6.6 illustrates the training pro-
cedure for a Hebb net where a net is trained to implement the logical AND function. Th e detailed 
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algorithm is presented here as Procedure Hebb-Learning (Fig. 7.1). Fig. 7.2 shows the architecture 
of the Hebb net. 

Procedure Hebb-Learning

Step 1. Initialize all weights to 0. 

wi = 0, for all i = 0 to m.  

Step 2.  For each training vector and target output pair, 
s : t, do steps 3-5.

Step 3. Assign the input vectors to the input layer. 

x0 = 1, and xi  = si for all i = 1 to m

Step 4.  Activate the output unit with the target output 
y_out = t.

Step 5. Adjust the weights 

wi (new) = wi (old) + xi × y_out 

Step 6. Stop

Fig. 7.1 Procedure Hebb-learning

It should be noted that the input unit X0 and the associated weight w0 play the role of the bias. Th e activa-
tion of X0 is always kept at 1. Hence, the expression for adjustment of w0 becomes 

 w0 (new) = w0 (old) + 1 × y_out = w0 (old) + y_out (7.1)

x1xx

xixx

xmxx
XmXX

XiXX

:
:

:
:

X1XX

wiww

wmww

w1ww

w0ww

y_yy out

1 X0XX

Y

Fig. 7.2. Structure of a Hebb net

Procedure Hebb-Learning requires only one pass through the training set. Th ere are other equivalent 
methods of applying Hebb learning in diff erent contexts, say, pattern association. Example 6.6 illustrates 
the training procedure of a Hebb net to realize the AND function. In this example, both the input and 
output of the function were expressed in bipolar form. Example 7.1 illustrates the limitation of binary 
representation of data for training a neural net through Hebb learning. Example 7.2 shows that Hebb net 
may not learn a classifi cation task even if the patterns concerned are linearly separable. 
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(1, 0)

(0, 0)

(1, 1)(0, 1)

x1xx

x2xx

Fig. 7.3.  Decision line of Hebb net to realize the AND function when both the input and the output 
are expressed in binary form

w
Example 7.1  (Disadvantage of input data in binary form) 

In this example, we apply the Hebb learning rule to train a neural net for the AND function with 
binary inputs. Can the net learn the designated task? We will observe and draw appropriate con-
clusions from our observation. 

Two cases need to be considered. First, the target output is presented in binary, then, in bipolar. 
Th e input is in binary form in both cases. 

Table 7.1 shows the details of the computation when both the input patterns and the target out-
puts are presented in binary from. We see that as the target output is 0 for the fi rst three patterns, 
and as the adjustments Δwi = xi × y_out = xi × 0 = 0, no learning takes place. Th e fi nal set of weights 
is (w0, w1, w2) = (1, 1, 1). It can be easily verifi ed that this net fails to classify the patterns (x1, x2) = (0, 
0), (0, 1), or (1, 0). Fig. 7.3 shows the decision line for this net. We assume the activation function: 

g x if
otherwise( )x ,

,= ⎧
⎨
⎧⎧
⎩
⎨⎨

1 0if x, >
0

Th is shows that a Hebb net fails to learn the AND function if both the inputs and the target outputs 
are expressed in binary. What happens when the output is in bipolar form?

Table 7.2 shows the details of the training process when the output is expressed in bipolar form. 
As the 0s in the column for 'Target output (t)' are replaced by −1, learning takes place for all training 
pairs from (0, 0) : (−1) to (1, 1) : (1). Th e fi nal set of weights are w0 = −2, w1 = 0, w2 = 0. Th erefore, the 
activation of the net is permanently at −1, irrespective of input pattern. It is obvious that though this 
net classifi es the patterns (0, 0), (0, 1), (1, 0) correctly, it is unable to do so for the pattern (1, 1). 

Table 7.1 Hebb learning of AND function with Binary Target Output

# Training Inputs Target 
output
(t)

Weight changes Weights

 X0 X1 X2 ∆w0 ∆w1 ∆w2  w0 w1 w2 

0  0 0 0 

1 1 0 0 0 0 0 0  0 0 0 

(Continued)
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Table 7.1 Continued

# Training Inputs Target 
output
(t)

Weight changes Weights

 X0 X1 X2 ∆w0 ∆w1 ∆w2  w0 w1 w2 

2 1 0 1 0 0 0 0  0 0 0 

3 1 1 0 0 0 0 0  0 0 0 

4 1 1 1 1 1 1 1  1 1 1 

Δwi = xi × y_out = xi × t

Table 7.2 Hebb learning for AND function (binary input and bipolar output)

# Training Inputs Target 
output
(t)

Weight changes Weights

 X0 X1 X2 ∆w0 ∆w1 ∆w2  w0 w1 w2 

0   0   0   0 

1 1 0 0 −1 −1  0   0 −1   0   0 

2 1 0 1 −1 −1  0 −1 −2   0 −1

3 1 1 0 −1 −1 −1   0 −3 −1 −1 

4 1 1 1   1   1   1   1 −2   0   0 

Δwi = xi × y_out = xi × t

Th e foregoing discussion shows that if the training patterns and the target outputs are presented in 
binary form, there is no guarantee that a Hebb net may learn the corresponding classifi cation task.

Example 7.2  (Limitation of Hebb net)

Th is example shows, with the help of a suitable problem instance, that a Hebb net may not be able 
learn to classify a set of patterns even though they are linearly separable.

a (0, 1, 1)

d (1, 1, 1)

c (1, 1, 0)

b (1, 0, 1)

x2xx

x3xx

x1xx

Fig. 7.4. A linearly separable set of points that a Hebb net fails to learn to classify

Let us consider four points a (0, 1, 1), b (1, 0, 1), c (1, 1, 0) and d (1, 1, 1) and the corresponding 
outputs as 0, 0, 0, and 1, respectively. Fig. 7.4 shows these patterns on a 3-dimensional space, and 
Table 7.3 and Table 7.4 present the training sets expressed in binary and bipolar forms.
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Table 7.3. Training pairs in binary form

Input pattern Target 
output
(t)

x1 x2 x3 

0 1 1 0
1 0 1 0
1 1 0 0
1 1 1 1

Table 7.4. Training pairs in bipolar form

Input pattern Target 
output

(t)
x1 x2 x3 

  −1   1   1 −1
  1  −1   1 −1
  1   1  −1 −1
  1   1   1  1

It is obvious from Fig. 7.4 that the given set of patterns is linearly separable. Any plane that cuts the 
cube diagonally to isolate the point d (1, 1, 1) from the rest of the three points serves the purpose. 
In Fig. 7.4, the triangle around the point d represents such a plane. If we present the inputs and the 
outputs in bipolar form, then a single layer single output net with the interconnection weights w0 
= −2, w1 = 1, w2 = 1, and w3 = 1 can solve the classifi cation problem readily (Fig. 7.5). 

x1xx

x2xx

x3xx X3XX

X2XX

X1XX −2

1

1

1

y_yy out

1 X0XX

Y

Fig. 7.5. A net to solve the classifi cation problem posed in Table 7.4

Can we make a net learn this, or any other suitable set of weights, through Hebb learning rule so 
that it acquires the capacity to solve the concerned classifi cation problem? Table 7.5 shows the cal-
culations for such an eff ort. As the table shows, the weight vector arrived at the end of the pro-
cess is (w0, w1, w2, w3) = (−2, 0, 0, 0). Now, this set of weights fails to distinguish the pattern 
(1, 1, 1) from the rest. Hence, the resultant net has not learnt to solve this classifi cation problem.
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Table 7.5. Hebb training of classifi cation problem posed in Table 7.4

# Training Input Target 
output
(t)

Weight changes Weights

x0 x1 x2 x3 ∆w0 ∆w1 ∆w2 ∆w3 w0 w1 w2 w3

0 0 0 0

1 −1 1 1 −1 −1 1 −1 −1 −1 1 −1 −1

1 1 −1 1 −1 −1 −1 1 −1 −2 0 0 −2

1 1 1 −1 −1 −1 −1 −1 1 −3 −1 −1 −1

1 1 1 1 1 1 1 1 1 −2 0 0 0

As this network cannot distinguish (1, 1, 1) from the rest, it fails to learn to classify the given pat-
terns even though they are linearly separable.

Hebb net is one of the earliest neural net meant for classifi cation tasks. However, it has very limited capac-
ity. A more powerful ANN is the famous perceptrons. Th ese are discussed in the next section. 

7.2 PERCEPTRONS

An overview of perceptrons including their structure, learning rule, etc., is provided in Chapter 6. Th is 
section presents the detailed learning algorithm and an example to illustrate the superiority of the per-
ceptron learning rule over the Hebb learning rule. Perceptron learning process is presented as Procedure 
Perceptron Learning (Fig. 7.6). Th e notable points regarding Procedure Perceptron-Learning are given 
below: 

Th e input vectors are allowed to be either binary or bipolar. However, the outputs must be in 1. 
bipolar form.
Th e bias 2. w0 is adjustable but the threshold q  used in the activation function is fi xed. 
Learning takes place only when the computed output does not match the target output. Moreover, 3. 
as Δ wi = h  × t × xi the weight adjustment is 0 if xi = 0. Hence, no learning takes place if either the 
input is 0, or the computed output matches the target output. Consequently, as training proceeds, 
more and more training patterns yield correct results and less learning is required by the net. 
Th e threshold 4. q of the activation function may be interpreted as a separating band of width 2q 
between the region of positive response and negative response. Th e band itself is ‘undecided’ 
in the sense that if the net input falls within the range [−q, q ], the activation is neither posi-
tive, nor negative. Moreover, changing the value of q  would change the width of the undecided 
region, along with the position of the separating lines. Th erefore, for Perceptrons, the bias and 
the threshold are no longer interchangeable.   
Th e band separating the regions of positive response from that of the negative response is de-5. 
fi ned by the pair of lines

w0 x0 + w1x1 + w2x2 = q
 w0x0 + w1x1 + w2x2 = −q (7.2)
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Procedure Perceptron-Learning

Step 1. Initialize all weights, w0, …., wm.

Step 2. Set learning rate h such that 0 < h ≤ 1, and threshold q.

Step 3. For each training pair s : t do Steps 4–8.

Step 4. Activate the input units, xi = si, for i = 0, …., m.

Step 5. Compute the net input to the output unit 

y in w xi ix
i

m

_
=

∑
0

Step 6. Compute the activation of the output unit using the function 

y out

if y in

if

if y i

_

, _if y

, _if y

, _y

=
>

−
<if y in, if y− −

⎧

⎨
⎪
⎧⎧

⎨⎨

⎩
⎪
⎨⎨

⎩⎩

1

0

1

θ
θ θy iny≤ ≤

θ

Step 7.  If there is an error, i.e., y_out ≠ t, then adjust the weights as 
follows  

wi (new) = wi (old) + h × t × xi

If, however, no error has occurred, the weights are kept un-
changed.  

Step 8.  If there were no error, i.e., y_out = t, for the entire set of 
training pairs, then stop.  Otherwise go to Step 3.

Fig. 7.6. Procedure perceptron learning

Example 7.3  (Power of the perceptron learning rule)

Th is example intends to show that the perceptron learning rule is more powerful than the Hebb 
learning rule.

Let us consider the classifi cation problem mentioned in Example 7.2. We have seen that the 
Hebb learning rule is not powerful enough to train a neural net to realize this classifi cation task 
even though the concerned patterns are linearly separable. Is it possible to achieve this ability 
through the perceptron learning rule?

Table 7.6 shows the details of perceptron learning process of the function presented in Table 
7.4. For the sake of simplicity, the initial weights are all kept at 0 and the learning rate is set to h 
= 1. Both the inputs and the outputs are presented in bipolar form. It is seen that fi ve epochs of 
training are required by the perceptron to learn the appropriate interconnection weights. Calcula-
tions at the 6th epoch show that the net successfully produces the expected outputs and no weight 
adjustments are further required. Th e fi nal set of the interconnection weights are found to be w0 
= −4, w1= w2 = w3 = 2.
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Table 7.6. Perceptron learning of function shown in Table 7.4

# Input Net 
input

Out-
put

Tar-
get 

Weight adjustments Weights

x0 x1 x2 x3 y_in y_out t ∆w0 ∆w1 ∆w2 ∆w3 w0 w1 w2 w3

0 0 0 0 0

1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1

2 1 −1 1 1 2 1 −1  −1 1 −1 −1 0 2 0 0

3 1 1 −1 1 2 1 −1 −1 −1 1 −1 −1 1 1 −1

4 1 1 1 −1 2 1 −1 −1 −1 −1 1 −2 0 0 0

Epoch #1

0 −2 0 0 0

1 1 1 1 1 −2 −1 1 1 1 1 1 −1 1 1 1

2 1 −1 1 1 0 0 −1  −1 1 −1 −1 −2 2 0 0

3 1 1 −1 1 0 0 −1 −1 −1 1 −1 −3 1 1 −1

4 1 1 1 −1 0 0 −1 −1 −1 −1 1 −4 0 0 0

Epoch #2

0 −4 0 0 0

1 1 1 1 1 −4 −1 1 1 1 1 1 −3 1 1 1

2 1 −1 1 1 −2 −1 −1 0 0 0 0 −3 1 1 1

3 1 1 −1 1 −2 −1 −1 0 0 0 0 −3 1 1 1

4 1 1 1 −1 −2 −1 −1 0 0 0 0 −3 1 1 1

Epoch #3

0 −3 1 1 1

1 1 1 1 1 0 0 1 1 1 1 1 −2 2 2 2

2 1 −1 1 1 0 0 −1  −1 1 −1 −1 −3 3 1 1

3 1 1 −1 1 0 0 −1 −1 −1 1 −1 −4 2 2 0

4 1 1 1 −1 0 0 −1 −1 −1 −1 1 −5 1 1 1

Epoch #4

(Continued)
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Table 7.6. Continued

# Input Net 
input

Out-
put

Tar-
get 

Weight adjustments Weights

x0 x1 x2 x3 y_in y_out t ∆w0 ∆w1 ∆w2 ∆w3 w0 w1 w2 w3

0 −5 1 1 1

1 1 1 1 1 −2 −1 1 1 1 1 1 −4 2 2 2

2 1 −1 1 1 −2 −1 −1  −1 1 −1 −1 −4 2 2 2

3 1 1 −1 1 −2 −1 −1 −1 −1 1 −1 −4 2 2 2

4 1 1 1 −1 −2 −1 −1 −1 −1 −1 1 −4 2 2 2

Epoch #5

0 −4 2 2 2

1 1 1 1 1 2 1 1 0 0 0 0 −4 2 2 2

2 1 −1 1 1 −2 −1 −1 0 0 0 0 −4 2 2 2

3 1 1 −1 1 −2 −1 −1 0 0 0 0 −4 2 2 2

4 1 1 1 −1 −2 −1 −1 0 0 0 0 −4 2 2 2

Epoch #6

7.3 ADALINE 

Th e ADALINE (Adaptive Linear Neuron), introduced by Widrow and Hoff  in 1960, is a single output 
unit neural net with several input units. One of the input units acts as the bias and is permanently 
fi xed at 1. An ADALINE is trained with the help of the delta, or LMS (Least Mean Square), or Wid-
row-Hoff  learning rule. Th e learning process is presented here as Procedure ADALINE-Learning 
(Fig. 7.7). 

Th e salient features of ADALINE are

Both the inputs and the outputs are presented in bipolar form.• 
Th e net is trained through the delta, or LMS, or Widrow-Hoff  rule. Th is rule tries to minimize • 
the mean-squared error between activation and the target value. 
 • ADALINE employs the identity activation function at the output unit during training. Th is 
implies that during training y_out = y_in.
During application the following bipolar step function is used for activation.• 
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Learning by an • ADALINE net is sensitive to the value of the learning rate. A too large learning 
rate may prevent the learning process to converge. On the other hand, if the learning rate is too 
low, the learning process is extremely slow. Usually, the learning rate is set on the basis of the 
inequality .1 ≤ m × h ≤1.0, where m is the number of input units. 

Procedure ADALINE-Learning

Step 1. Initialize weights with small random values (0 < wi < 1).

Step 2.  Set the learning rate h, usually on the basis of the inequality 0.1 
≤ m × h ≤ 1.0, where m is the number of input units.

Step 3. Do Step 4 to Step 7 white stopping criteria is not fulfilled.

Step 4. For each bipolar training pair s : t, do Steps 5 to 7.  

Step 5. Set activation for the input units. 

x0 = 1, 

xi = si  for i = 1, …, m

Step 6. Compute the net input to the output unit, y_in = x wi iw
i

m

=
∑

0

Step 7. Adjust the weights using the following formula.

wi (new) = wi (old) + h  ×(t − y_in)  ×  xi , i = 0, …, m

Fig. 7.7. Procedure ADALINE-Learning

Procedure ADALINE-Learning (Fig. 7.7) presents the step by step algorithm for the ADALINE learning 
process. Learning through the delta rule is illustrated in Chapter 6. Since ADALINE employs the delta 
learning rule, the training process is practically the same. Example 7.4 illustrates the process of training 
on ADALINE through the delta rule.

Example 7.4  (ADALINE training for the AND-NOT function)

In this example, we train an ADALINE to realize the AND-NOT function.
Th e AND-NOT function is presented in Example 6.3. It is a 2-input logic function that pro-

duces an output 1 only when x1 = 1, and x2 = 0. For all other input combinations the output is 0. 
Th e computations for the learning of an ADALINE to realize the AND-NOT function are shown in 
Table 7.7. Columns 2, 3, and 4 contain the input patterns expressed in bipolar form. Th e column 
x0 stands for the bias which is permanently set to 1. Th e initial weights are taken as w0 = w1 = w2 = 
.25, and the learning rate is set to h = .2. As Table 7.8 indicates, the net learns the designated task 
aft er the fi rst two epochs.
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Table 7.7. ADALINE Learning of AND NOT Function

wi (new) = wi (old) + h  × (t − y_in) × xi, h = .2

# Input pattern Net input Target 
output
t

Error Weight adjustments Weights

x0 x1 x2 y_in  t − y_in ∆w0 ∆w1 ∆w2 w0 w1 w2

0  .25 .25 .25

1 1  1  1 .75 −1 −1.75 −.35 −.35 −.35 −.10 −.10 −.10

2 1  1 −1 −.10 1 1.10 .22 .22 −.22 .12 .12 −.32

3 1 −1  1 −.32 −1 −.68 −.14 .14 −.14 −.02 .26 −.46

4 1 −1 −1 .18 −1 −1.18 −.24 .24 .24 −.26 .50 −.22

Epoch #1

0 −.26 .50 −.22

1 1  1  1 .02  −1 −1.02 −.20 −.20 −.20 −.46 .30 −.42

2 1  1 −1 .26 1 .74 .15 .15 −.15 −.31 .45 −.57

3 1 −1  1 −1.33 −1 .33 .07 −.07 .07 −.24 .38 −.50

4 1 −1 −1 −.12 −1 −.88 −.18 .18 .18 −.42 .56 −.32

Epoch #2

Table 7.8. Performance of the ADALINE after two epochs of learning

# Input pattern Net input Output Target 
output

x0 x1 x2 y_in = Swixi
y_out  t 

1 1  1  1 −.18 < 0  −1  −1

2 1  1 −1 .46 > 0  1  1

3 1 −1  1 −1.30 < 0 −1 −1

4 1 −1 −1 −.66 < 0 −1 −1

7.4 MADALINE

Several ADALINEs arranged in a multilayer net is known as Many ADALINES, or Many Adaptive Linear 
Neurons, or MADALINE in short. Th e architecture of a two input, one output, one hidden layer consist-
ing of two hidden MADALINE is shown in Fig. 7.8. MADALINE is computationally more powerful than 
ADALINE. Th e enhanced computational power of the MADALINE is due to the hidden ADALINE units. 
Salient features of MADALINE are mentioned below. 

All units, except the inputs, employ the same activation function as in • ADALINE, i.e., 
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As mentioned earlier, the enhanced computational power of the MADALINE is due to the hid-
den ADALINE units. However, existence of the hidden units makes the training process more 
complicated. 
Th ere are two training algorithms for • MADALINE, viz., MR-I and MR-II. 

X1XX

w01ww

v1vv
v0vv

v2vv

w02ww

w11ww

w21ww

w22ww

w12ww

X2XX

Z2ZZ

Z1ZZ

Y y-yy out

1

I

1

Fig. 7.8. A two input, one output, one hidden layer with two hidden units MADALINE

Procedure MADALINE-MR-I-Learning

Step 1.  Initialize v0, v1, v2 with 0.5 and other weights w01, w11, w12, w02, 
w12 and w22 by small random values. All bias inputs are set to 1.

Step 2. Set the learning rate h to a suitable value.  

Step 3.  For each bipolar training pair s : t, do Steps 4–6

Step 4.  Activate the input units:  x1 = s1,  x2 = s2, all biases are set to 
1 permanently.

Step 5. Propagate the input signals through the net to the output unit Y. 
5.1 Compute net inputs to the hidden units.

z_in1 = 1 × w01 + x1 × w11 + x2 × w21

z_in2 = 1 × w02 + x1 × w12 + x2 × w22

5.2  Compute activations of the hidden units z_out1 and z_out2 

using the bipolar step function

z _
, _
, _ .out

i
i=

≥
−

⎧
⎨
⎧⎧
⎩
⎨⎨
1 0, z in ≥
1 0, i <, z in

i
i
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5.3 Compute net input to the output unit

y_in = 1 × v0 + z_out1 × v0 + z_out2 × v2

5.4  Find the activation of the output unit y-out using the same ac-
tivation function as in Step 5.2, i.e.,

y out
y i

i_
, _y
, _ .y=

≥
−

⎧
⎨
⎧⎧
⎩
⎨⎨
1 0y in, y ≥
1 0i, y <y in, y in

i
i

Step 6.  Adjust the weights of the hidden units, if required, according to 
the following rules:

 i)  If (y_out = t) then the net yields the expected result. Weights 
need not be updated.  

 ii)  If (y_out ≠ t) then apply one of the following rules whichever 
is applicable. 

Case I: t = 1
Find the hidden unit zj whose net input z_inj is closest to 0. 
Adjust the weights attached to zj according to the formula

wij (new) = wij (old) + h × (1− z_inj) × xi, for all i.

Case II: t = −1
Adjust the weights attached to those hidden units zj that have 
positive net input.

wij (new) = wij (old) + h × (−1− z_inj) × xi, for all i.

Step 7. Test for stopping condition. It can be any one of the following:

 i) No change of weight occurs in Step 6.
 ii) The weight adjustments have reached an acceptable level. 
 iii) A predefined number of iterations have been carried out.

If the stopping condition is satisfied then stop. Otherwise go to 
Step 3.

Fig. 7.9. Procedure MADALINE-MRI-Learning

In • MR-I algorithm, only the weights of the hidden units are modifi ed during the training and the 
weights for the inter-connections from the hidden units to the output unit are kept unaltered. 
However, in case of MR-II, all weights are adjusted, if required. 

Th e MR-I algorithm (Widrow and Hoff , 1960)

As mentioned earlier, in MR-I training algorithm, the weights associated with the output unit Y, i.e., 
v0, v1, v2 are fi xed and are not altered during the training process. Eff ectively the output unit Y imple-
ments a logical OR operation such that if either of z_out1 or z_out2 is 1 then Y will yield an activation 
of 1. Hence, v0, v1, v2 are fi xed at 0.5. Keeping v0 = v1 = v2 = 0.5 adjustments are done only on w01, w11, 
w21, w02, w12 and w22 during training. Th e stepwise training process is given in Procedure MADALINE-
MR-I-Learning (Fig. 7.9).
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Step 6 of Procedure MADALINE-MRI-Learning is based on two observations:

Th e weights should be adjusted only when there is a mismatch between the actual output 1. y_out 
and the target output t. 
Th e adjustments of the weights are to be done in a manner so that the possibility of producing 2. 
the target output is enhanced.

On the basis of these observations, let us analyze the two cases mentioned in Step 6. 

Case I: t = 1, and y_out = −1.
As y_out is −1, both z_out1 and z_out2 are −1. To make y_out = 1 = t, we must ensure that at least one of 
the activations of the hidden units is 1. Th e unit whose net input is closest to 0 is the suitable unit for this 
purpose, and the corresponding weights are adjusted as described in Step 6.

Case II: t = −1, and y_out = 1.
In this case, since y_out = 1, at least one of z_out1 and z_out2 must be 1. In order to make y_out = −1 = 
t, both z_out1 and z_out2 are to be made −1. Th is implies that all hidden units having positive net inputs 
are to be adjusted so that these are reduced under the new weights. 

Example 7.5  (MADALINE training for the XOR function)

Let us train a MADALINE net through the MR-I algorithm to realize the two-input XOR function.
Th e architecture of the net is same as shown in Fig. 7.8. Th e bipolar training set, including the 

bias input x0 which is permanently fi xed at 1 is given in Table 7.9. Table 7.10 presents the randomly 
chosen initial weights, as well as the learning rate.

Th e details of the calculations for the fi rst training pair s : t = (1, 1) : −1 of the fi rst epoch of 
training are described below.

Steps 1–4 are already taken care of. Calculations of Steps (5.1) and (5.2) are given below.

Table 7.9. Bipolar training set for XOR function

x0 x1 x2 t

1 1 1 −1

1 1 −1 1

1 −1 1 1

1 −1 −1 −1

Table 7.10. Initial weights and the fi xed learning rate

w01 w11 w21 w02 w12 w22 h

.2 .3 .2 .3 .2 .1 .5

Step 5.1 Compute net inputs z_in1 and z_in2 to the hidden units z1 and z2. 
Step 5.2  Compute activations of the hidden units z_out1 and z_out2 using 

the bipolar step function.
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z_in1 = 1 × w01 + x1 × w11 + x2 × w21 

 = 1 × .2 + 1 ×.3 + 1 × .2 = .7

 z_out1 = 1

z_in2 = 1 × w02 + x1 × w12 + x2 × w22 

 = 1 × .3 + 1 × .2 + 1 × .1 = .6

 ∴z_out2 = 1
Step 5.3 Compute net inputs y_in to the output units. 
Step 5.4  Find the activation of the output unit y-out using the same ac-

tivation function as in Step 5.2, i.e.,

y_in = 1 × v0 + z_out1 × v1 + z_out2 × v2

 = 1×.5 + 1×.5 + 1×.5 = 1.5

 ∴y_out = 1
Step 6 Adjust the weights of the hidden units, if required.

Since t = −1, y_out = 1 ≠ t. Moreover, since t = −1, CASE II of Step 6 is applicable here. Th erefore, 
we have to update weights on all units that have positive net inputs. Hence in this case we need 
to update the values of w01, w11, w21 as well as those of w02, w12, w22. Th e computations for the said 
adjustments are shown below.

w01 (new) = w01 (old) + h × (−1− z_in1)

 = .2 + .5 × (−1− .7)

 = .2 − .85

 = −.65

w11 (new) = w11 (old) + h × (−1− z_in1)

 = .3 − .85 

 = −.55

w21 (new) = w21 (old) + h × (−1− z_in1)

 = .2 − .85 

 = −.65

w02 (new) = w02 (old) + h × (−1− z_in2)

 = .3 + .5 × (−1− .6)

 = .3 − .8

 = −.5
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w12 (new) = w12 (old) + h × (−1− z_in2)

 = .2 − .8

 = −.6

w22 (new) = w22 (old) + h × (−1− z_in2)

 = .1 − .8

 = −.7
Hence the new set of weights aft er training with the fi rst training pair (1, 1) : −1 in the fi rst epoch 
is obtained as

w w
w w
w w

=
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

=
− −
− −
− −

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
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⎤01 02

11 12

21 22
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55 6
65 7

. .65

. .55

. .65 ⎦⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦⎦⎦
⎥⎥
⎦⎦⎦⎦⎦⎦⎦

Table 7.11 gives the details of the training process until the MADALINE learns the required func-
tion. It is found that four epochs of training are required to arrive at the appropriate weights for 
realizing the XOR function. 

Th e empty fi elds in the table indicate no change in the weights. Th e entries in the Epoch #4 
portion of the table show that all the training inputs produce the expected target outputs and con-
sequently, the weights at the beginning of this epoch have remained unchanged. Hence the weights 
fi nally arrived at by the MADALINE net are given by 

W
w w
w w
w w

=
⎡

⎣

⎢
⎡⎡

⎢
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⎣⎣
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 CHAPTER SUMMARY

An overview of the elementary pattern classifying ANNs, e.g., Hebb nets, Perceptrons, MADALINE and 
ADALINE have been presented in this chapter. Th e main points of the foregoing discussion are given 
below.

A single-layer feedforward neural net trained through the Hebb learning rule is known as a • 
Hebb net. 
It is possible for a Hebb net not to learn a classifi cation task even if the patterns concerned are • 
linearly separable. 
Perceptrons are more powerful than the Hebb nets. Formula for weight adjustment in perceptron • 
learning is Δ wi = h × t × xi where h is the learning rate.
Th e • ADALINE (Adaptive Linear Neuron) is a single output unit neural net with several input 
units. One of the input units acts as the bias and is permanently fi xed at 1. 
ADALINE•  is trained with the help of the delta, or LMS (Least Mean Square), or Widrow-Hoff  
learning rule. 
Several • ADALINEs arranged in a multilayer net is known as Many ADALINES, or Many Adaptive 
Linear Neurons, or MADALINE in short. MADALINE is computationally more powerful than 
ADALINE.
Th ere are two training algorithms for • MADALINE, viz., MR-I and MR-II. In MR-I algorithm, 
only the weights of the hidden units are modifi ed during the training and the weights for the 
inter-connections from the hidden units to the output unit are kept unaltered. However, in case 
of MR-II, all weights are adjusted, if required. 

 SOLVED PROBLEMS

Problem 7.1 (Hebb net to realize OR function) Design a Hebb net to realize the logical OR function.

Solution 7.1 It is observed earlier that a Hebb net may not learn the designated task if the training 
pairs are presented in binary form. Hence, we fi rst present the truth table of OR function in bipolar form, 
as given in Table 7.12. Table 7.13 presents the details of the training process. Th e interconnection weights 
we fi nally arrive at are w0 = 2, w1 = 2, and w2 = 2, and the corresponding separating line is given by 

1 + x1 + x2 = 0

∴  x2 = − x1 − 1

Table 7.12 Truth table of OR function in bipolar form

Input Output

x1 x2 x1 OR x2

−1 −1 −1

−1 1 1

1 −1 1

1 1 1
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Fig. 7.10 shows the location and orientation of this line. Th e Hebb net, thus, is able to learn the desig-
nated OR function. 

Table 7.13 Hebb learning of OR function

# Training Inputs Target 
output 
(t)

Weight changes Weights

 x0 x1 x2  ∆w0 ∆w1 ∆w2  w0 w1 w2 

0  0 0 0 

1 1 −1 −1 −1 −1 1 1  −1 1 1

2 1 −1 1 1 1 −1 1 0 0 2

3 1 1 −1 1 1 1 −1 1 1 1

4 1 1 1 1 1 1 1 2 2 2

Δwi = xi × y_out = xi × t

(−1, −1) (1, −1)

(1, 1)(−1, 1)

x1xx

x2xx

Fig. 7.10. Decision line of Hebb net realizing the OR function

Problem 7.2 (A perceptron and a Hebb net as a traffi  c controller) A busy town crossing has two 
signal posts with the usual three-colour light signal system. Th e post with the rectangular light frame is 
meant for vehicles plying on the road, while the post with the oval frame is meant for pedestrians trying 
to cross the road over the zebra. When the traffi  c light is green, the pedestrian light is red and vice versa 
while they share a common yellow state. In spite of this arrangement, unruly traffi  c caused accidents 
regularly by ignoring the signal. To overcome this problem, the town administration decided to install an 
automatic gate across the road that will come down across when the traffi  c light is red and the pedestrian 
light is green. Th e state table is as shown in Table 7.14. Design the gate controller with a perceptron, as 
well as with a Hebb net. 

Table 7.14 State table for the traffi c controller

Traffi c signal Pedestrian signal Gate

Green Red Up

Yellow Yellow Up

Red Green Down
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Solution 7.2 If we decide to design the gate controller based on a perceptron model, we may en-
code the light colours as described in Table 7.15.

Table 7.15. Traffi c controller state table translated to numbers

Traffi c signal Pedestrian signal Gate

2 (Green) 0 (Red) 0 (Up)

1 (Yellow) 1 (Yellow)  0 (Up)

0 (Red) 2 (Green) 1 (Down)

Th e controller can now be designed as a perceptron on MatLab. Th e MatLab code for this purpose is 
shown in Fig. 7.11. Fig. 7.12 depicts the resultant classifi er.

P = [0 1 2 ; 2 1 0]; %  Possible values of 2 variables in a ma-
trix format

T = [1 0 0]; % Expected outputs for above dataset
net = newp([0 2; 0 2],1); %  Creates network with two inputs with 

ranges of values and 1 output
net.trainParam.epochs = 20; % Sets the number of maximum iterations
net = train(net,P,T); % Trains the network
simulation = sim(net,P) % Simulates neural network
plotpv(P,T) % Plot input/target vectors
plotpc(net.iw{1,1},net.b{1}) % Plot classification line

Fig. 7.11. MatLab code for traffi c controller perceptron

Vectors to be Classified

2.5

2

1.5

1

0.5

0

−0.5

−0.5 0 0.5 1.51
P(1PP )

P
(2

PP
)

2 2.5

Fig. 7.12. Output plot for traffi c controller perceptron

Th is problem can also be solved using Hebb learning. Th e corresponding MatLab code is given in Fig. 7.13. 
Fig. 7.14 (a) and (b) shows the resultant classifi er aft er 20 and 150 epochs of training, respectively. Inter-
estingly, the classifi cation is not satisfactory aft er only 20 epochs of training. Performance is improved by 
increasing the number of epochs to 150.
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clear;
clc;
P = [0 1 2 ; 2 1 0]; %  Possible values of 2 variables in a ma-

trix format
T = [1 0 0]; % Expected outputs for above dataset
net = newp([0 2; 0 2],1); %  Creates network with two inputs with 

ranges of values and 1 output 
net.trainFcn = ‘trainr’;
net.adaptFcn = ‘trains’;
net.inputWeights{1,1}.learnFcn = ‘learnh’;
net.layerWeights{1,1}.learnFcn = ‘learnh’;
net.trainParam.epochs = 20; % Sets the number of maximum iterations
net = train(net,P,T); % Trains the network
simulation = sim(net,P); % Simulates neural network
plotpv(P,T) % Plot input/target vectors
plotpc(net.iw{1,1},net.b{1}) % Plot classification line

Fig. 7.13. MatLab code for traffi c controller Hebb net

(a) After 20
epochs

(b) After 150
epochs

Vector to be  classified

2.5

2

1.5

1

P
(2

PP
)

0.5

0

−0.5

−0.5 0 0.5 1
P(1PP )

1.5 2 2.5

Vector to be  classified

2.5

2

1.5

1P
(2

PP
)

0.5

0

−0.5

−0.5 0 0.5 1
P(1P )

1.5 2 2.5

Fig. 7.14. Output plots for Hebbian traffi c controller

Problem 7.3 (Classifi cation of two-dimensional patterns with Hebb net) Consider the following pat-
terns to represent the digits 0 and 1 (Fig. 7.15). 
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Using Matlab design a Hebb net to classify these two input patterns.

Pattern 1 (for 0) Pattern 2 (for 1)

– –

# #

#

#

# # #

–# # #

– – –

– – –

#

#

–

– –

– –

–

–

– #

–# # #

# #

– # –

– # –

–

–

–

Fig. 7.15. Two 2-dimensional patterns for 0 and 1.

Solution 7.3 For simplicity, let us consider the target class to correspond to the pattern for ‘1’. Th e 
patterns not classifi ed as ‘1’ will be treated as ‘0’. Th en we convert the patterns into bipolar input vectors 
by replacing every ‘#’ by ‘1’ and every ‘−’ by ‘−1’ and represent each two dimensional pattern as an input 
vector by taking the rows and concatenating them one aft er the other. Fig. 7.16 explains the technique.

–1 1 1 1 –1 –1 –1 1 –1 –1
1 –1 –1 –1 1 –1 1 1 –1 –1
1 –1 –1 –1 1 –1 –1 1 –1 –1
1 –1 –1 –1 1 –1 –1 1 –1 –1

–1 1 1

Pattern 1 (for 0) Pattern 2 (for 1)

Input vector for pattern 1 (for 0)

Input vector for pattern 2 (for 1)

1 –1 –1 1 1 1 –1

–1 1 1 1 –1 1 –1 –1 –1 1 1 –1 –1 –1 1 1 –1 –1 –1 1 –1 1 1 1 –1

–1 –1 1 –1 –1 –1 1 1 –1 –1 –1 –1 1 –1 –1 –1 –1 1 –1 –1 –1 1 1 1 –1

Fig. 7.16. Encoding the input patterns

Th e MatLab code for the Hebb net to solve the classifi cation problem is given in Fig. 7.17. 

%MATLAB Implementation of Hebb Net to classify 2D Input Patterns
clear;
clc;

Pat1 = [−1 1 1 1 −1 1 −1 −1 −1 1 1 −1 −1 −1 1 1 −1 −1 −1 1 −1 1 1 1 −1];
Pat2 =    [−1 −1 1 −1 −1 −1 1 1 −1 −1 −1 −1 1 −1 −1 −1 −1 1 −1 −1 −1 1 1 

   1 −1];
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Mat(1,1:25) = Pat1;
Mat(2,1:25) = Pat2;
wt(1:25) = 0;
Tar_Act = [−1 1];
bias = 0;

for i = 1:2
wt=wt+Mat(i,1:25)*Tar_Act(i);
bias=bias+Tar_Act(i);
disp('Weight Matrix');
disp(wt);
disp('Bias');
disp(bias);

end
disp('***********Final Weight Matrix************');
disp(wt);
disp(‘*****************Bias*********************’);
disp(bias);
disp(‘***************************DotPat1********************’);
Mat_Out(1,1:1) = dot(Pat1,wt);
disp(Mat_Out(1,1:1))
disp(‘***************************DotPat2********************’);
Mat_Out(2,1:1)=dot(Pat2,wt); 
disp(Mat_Out(2,1:1))

Fig. 7.17. Matlab code for Hebb net of problem 7.3

Th e output of the training process is given below.

Weight Matrix
Columns 1 through 22

1 −1 −1 −1 1 −1 1 1 1 −1 −1 1 1 1 −1 −1 1 1 1 −1 1 −1
Columns 23 through 25

−1 −1 1
Bias

−1
Weight Matrix
Columns 1 through 22

0 −2 0 −2 0 −2 2 2 0 −2 −2 0 2 0 −2 −2 0 2 0 −2 0 0
Columns 23 through 25
0 0 0
Bias
  0
***********Final Weight Matrix************
Columns 1 through 22

 0 −2 0 −2 0 −2  2 2 0 −2 −2 0 2 0 −2 −2 0 2 0 −2 0 0
 Columns 23 through 25
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  0   0   0
*****************Bias*********************
 0
*******************DotPat1********************
-24
*******************DotPat1********************
24

� TEST YOUR KNOWLEDGE

 7.1 How many passes are required by Hebb learning algorithm ? 
a) One b) Two
c) No fi xed number of passes d) None of the above

 7.2 In which of the following cases Hebb learning does not guarantee that the net will learn the clas-
sifi cation task even if it was possible for a Hebb net to learn the task under suitable conditions ? 
a) Th e training set is bipolar b) Th e training set is binary
c) Both (a) and (b) d) None of the above

 7.3 Th e statement that a Hebb net may fail to learn a classifi cation task consisting of a linearly sepa-
rable set of patterns is
a) True b) False
c) Uncertain d) None of the above

 7.4 For Perceptron learning, the bias and the threshold are 
a) Interchangable b) Not interchangable
c) Conditionally interchangable d) None of the above

 7.5 Which of the following functions is used for activation of the output unit of the ADALINE during 
training ?
a) Identity  b) Binary
c) Bipolar step function d) None of the above

 7.6 Which of the following functions is used for activation of the output unit of the ADALINE during 
application ?
a) Identity  b) Binary
c) Bipolar step function d) None of the above

 7.7 Which of the following learning rule is used in ADALINE training ?
a) Hebb learning b) Perceptron learning
c) Delta learning d) None of the above

 7.8 Which of the following nets is more powerful than MADALINE ?
a) ADALINE b) Hebb
c) Both (a) and (b) d) None of the above

 7.9 Which of the following is not a pattern classifying net ?
a) ADALINE b) MADALINE
c) Both (a) and (b) d) None of the above

7.10 Which of the following is a pattern classifying net ?
a) ADALINE b) MADALINE
c) Both (a) and (b) d) None of the above
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Answers

 7.1  (a) 7.2 (b) 7.3 (a) 7.4 (b) 7.5 (a)
 7.6  (c) 7.7 (c) 7.8 (d) 7.9 (d) 7.10 (c)

 EXERCISES

7.1 Design a Hebb net to realize the NAND function.
7.2 Design a Perceptron to realize the NOR function.
7.3 Design an ADALINE to realize the NAND function.
7.4 Design a MADALINE to realize the X-NOR (the complement of XOR) function.
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 Chapter Outline

PATTERN ASSOCIATORS

8

8.1 Auto-associative Nets
8.2 Hetero-associative Nets 
8.3 Hopfi eld Networks 
8.4 Bidirectional Associative Memory (BAM) 

Chapter Summary

Solved Problems
Test Your Knowledge
Exercise 
Bibliography and Historical Notes

Relating a given pattern to one already stored in memory is known as pattern association. It is a task that 
we, the human beings, perform regularly in course of our daily life almost without any conscious eff ort. 
Recognition of a known face from an image (either distorted or undistorted) or visualization of a rose 
from its fragrance are instances of pattern association.  

Th e phenomenon of pattern association may be formally stated as follows.  Let s1 : t1, s2 : t2, …, sk : tk be 
a number of pairs of patterns. If there is a system that yields the pattern ti when presented as input with 
the pattern si, i = 1, …, k, then we say that the system is an associative or content addressable memory 
storing the pattern pairs s1: t1, …., sk : tk. Th e act of relating a given pattern si to its corresponding stored 
pattern ti is known as pattern association. One important property of an associative memory is its capac-
ity to correctly associate a noisy input pattern to the desired output pattern. However, there is a limit to 
the extent of noise tolerable to a given associative memory network.  
Associative memory neural nets are those which store a set of pattern associations. Th ere are two kinds 
of associative memory neural nets. Th ese are auto-associative and hetero-associative. In auto-associative 

Key Concepts

Associative Memory, Auto-associative Nets, Bidirectional Associative Memory (BAM), Content-
addressable Memory, Delta Learning, Feedforward Nets, Hebb Learning, Hetero-associative Nets, 
Hopfi eld Networks, Inner product, Orthogonal Vectors, Recurrent (iterative) Nets, Self-connection
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260  Introduction to Soft Computing

neural nets, the input and output patterns are identical. In hetero-associative neural nets, the inputs and 
the outputs are diff erent.  

Regarding architecture, an associative memory neural net may be either feedforward type or recurrent 
(iterative) type. In feedforward nets, signals are unidirectional. Th ey fl ow from input to output and not in 
the reverse direction. In recurrent (or iterative) nets, signals fl ow back and forth between the input and 
the output until the net reaches an equilibrium state.

In the subsequent parts of this chapter, four kinds of associative neural nets are described, viz., auto-
associative nets, hetero-associative nets, Hopfi eld nets, and Bidirectional Associative Memory (BAM). While 
the auto-associative and hetero-associative nets are feedforward type of nets, the Hopfi eld nets and BAM 
are recurrent networks. Th ere are various representation schemes for the input and output patterns to 
associative networks. Here we consider, unless otherwise stated, only bipolar input and output patterns.

8.1 AUTO-ASSOCIATIVE NETS 

Th e input and output patterns of an auto-associative net are the same. Presented with an input pattern, 
perhaps noisy to some extent, an auto-associative net returns the same pattern (this time without any 
noise) in case the input matches one of the stored patterns. Th e architecture of an auto-associative net is 
shown in Fig. 8.1. It has the same number of input and output units.

x1xx

xixx

xmxx XmXX

XiXX

: :

: :

X1XX

wiww j
wiww m

wmww 1

wmww j

wmww m

w1 ww j

w1ww 1

w1ww m

wiww 1

YjYY

YmYY

Y1YY

m

Fig. 8.1. Architecture of a feed-forward auto-associative net

8.1.1 Training

An auto-associative network can be trained with Hebb, delta, or extended delta rule. However, for the 
sake of simplicity, here we apply only the Hebb rule for training an associative net.  Let us fi rst consider 
the case of storing a single pattern s = [s1, s2, …, sm] on an auto-associative net.  Th e weight matrix W of 
the net is obtained as 
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Example 8.1 illustrates the training process of an auto-associative net to store a single pattern.

Example 8.1   (Training an auto-associative net to store a single pattern)

Let us fi nd the weight matrix of an auto-associative net to store and recognize the vector s = [1, −1, 
−1, 1]. Applying Equation 8.1 we get the following weight matrix.

W = × =
−
−
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8.1.2 Application

Once the weight matrix is obtained through the appropriate training method, it is ready for application. 
Let x = [x1, …, xi, …, xm] be an arbitrary input pattern of length m.  To recognize the input pattern x, we 
have to determine whether the given pattern matches with the stored pattern. Th e following steps are 
carried out to achieve this.  

For each output unit 1. Yj, j = 1, …, m, compute the net input y_inj to Yj.

y in x wj ix ij
i

m

.ixinj
=
∑∑

1

In matrix notation, Y_in = x × W, where Y_in = [y_in1, …, y_inm], x = [x1, …, xm], and W is the weight 
matrix.

For each output unit 2. Yj, j = 1, …, m, fi nd the activation using the function

y out
y i, y ,

,
=

−
⎧
⎨
⎧⎧

⎩
⎨⎨
1 0y in, y >

1
if
otherwise

If the output vector thus found is identical to the stored pattern, i.e., Y_out = [y_out1, …, y_outm] = 
[s1, … , sm] = s then the input is recognized, otherwise not.

Example 8.2  (Pattern association by auto-associative net)

Refer to the auto-associative net built in Example 8.1. To see if the resultant net can recognize the 
stored pattern x = [1,−1, −1, 1], we follow the steps described above.

 Compute the vector 1. Y_in for net inputs to the output units.
 Y_in = [y_in1, y_in2, y_in3, y_in4]

 

=
−
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1 1 1 1− −

×

 =  [4, −4, −4, 4]
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 Find the output vector employing the activation function.2. 

 Y_out = [y_out1, y_out2, y_out3, y_out4]

 = [1, −1, −1, 1]

Hence, the net has acquired the ability to recognize the stored pattern.  

8.1.3 Elimination of Self-connection 

It is convenient to set the diagonal elements of the weight matrix W to 0 to indicate that the net does 
not have any self-connection. Th is is more useful for nets that store several patterns. For such nets, 
the diagonal elements are set to 0s to ensure that these elements do not dominate during application 
of the net. Otherwise, the net has a tendency to reproduce the input pattern rather than the stored 
pattern. 

Example 8.3  (Performance of associative net with diagonal elements set to 0s)

Th e weight matrix of the net cited in Example 8.1 becomes, with all diagonal elements set to 0,  

W = 

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

−1
−1 0 1
−1 1 0

11
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Th erefore, the net input to the output units are computed as

Y_in = [y_in1, y_in2, y_in3, y_in4]

=

−
−
−

⎛
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⎜
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⎜
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⎟
⎟⎟

⎟
⎠⎠

⎟⎟[ ]− −

0 1 1 1−
1 0 1 1−
1 1 0 1−
1 1 1− − 0

×

=  [3, −3, −3, 3]

And the output vector is obtained as

 Y_out = [y_out1, y_out2, y_out3, y_out4]

 = [1, −1, −1, 1]

Hence, the net retains the ability to recognize the stored pattern.  

Samir Roy_Chapter08.indd   262Samir Roy_Chapter08.indd   262 2/21/2013   3:26:04 PM2/21/2013   3:26:04 PM



Pattern Associators   263

8.1.4 Recognition of Noisy Patterns 

Mere recognition of the pattern already stored in the net is not suffi  cient because this could as well be 
achieved with a diagonal weight matrix. Th e strength of a neural net lies in it tolerance of noisy input 
pattern, provided the input is suffi  ciently close to the stored pattern in spite of it being noisy.

Two kinds of noises may appear in the input pattern.  Th ese are (a) missing elements and (b) errone-
ous elements. A missing element is represented by 0, instead of a 1 or −1, in the appropriate place.  An 
erroneous element presents the complement of the correct value, i.e., 1 (−1) in place of −1 (1).  Th e fol-
lowing example illustrates the capacity of auto-associative nets to recognize noisy patterns.

(Example 8.4   (Recognition of noisy input with one missing element)

Let us consider a noisy input pattern where the left most element of the input vector is missing. 
Th us, the input pattern appears as [0 −1  −1  1] instead of  [1 −1  −1   1]. Computation of the net 
input and subsequently the output vector is done in the usual way.

Y_in = [y_in1, y_in2, y_in3, y_in4]

 

=

−
−
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟[ ]−−

0 1 1 1−
1 0 1 1−
1 1 0 1−
1 1 1− − 0

×

 =  [3, −2, −2, 2]

 Y_out = [y_out1, y_out2, y_out3, y_out4]

 = [1, −1, −1, 1]

Hence the net recognizes the noisy input pattern with the fi rst element missing. Similar computa-
tions with other single missing entries reveal that the net is able to recognize input patterns with a 
single missing element. Th ese computations are summarized in Table 8.1.

Table 8.1. Recognition of noisy input with one missing element

# Input pattern (noisy) Net input to the output layer 
(Y_in = s × W )

Output pattern

i [1, 0, −1, 1] [2, −3, −2, 2] [1, −1, −1,  1]

ii [1, −1, 0, 1] [2, −2, −3, 2] [1, −1, −1,  1]

iii [1, −1, −1, 0] [2, −2, −2, 3] [1, −1, −1,  1]

We see that the net has the capacity to recognize an input pattern with a single missing element. Is the 
net able to withstand two or more missing inputs? What if there are erroneous inputs, not just missing 
inputs? Problems 8.1 and 8.2 in the section ‘Solved Problems’ deal with these issues.
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8.1.5 Storage of Multiple Patterns in an Auto-associative Net

More than one patterns can be stored in an auto-associative neural net. Th e capacity of such a net is 
defi ned as the number of patterns that can be stored in it and be recalled by the net. If one tries to store 
more patterns than its capacity, then the net tends to forget the stored patterns. Th e important points 
regarding storage of several patterns in an auto-associative net are stated below.

 Th e stored patterns must be mutually orthogonal.  Two vectors 1. x = [x1, x2, …, xn] and y = [y1, y2, 
…, yn]  are said to be orthogonal if their inner product is zero, i.e., 

 x y x yiy
i

n

=y =
=
∑

1
0  (8.2)

 Th e weight matrix of the net storing several patterns is the sum of the individual weight matri-2. 
ces. Let s1, s2, …, sk be k mutually orthogonal vectors and W1, W2, …, Wk be the weight matrices 
for the auto-associative nets recognizing the vectors s1, s2, …, sk , respectively. Th e diagonal 
elements of all the weight matrices are all set to zeros.  Th en the weight matrix W of the auto-
associative net recognizing the given patterns is obtained by adding the individual weight ma-
trices W1, W2,…, Wk.

 W W W W Wk iWW WW
i

k

+W =
=
∑1 2WW WW+WW

1
 (8.3)

 An 3. n-input auto-associative net can store at most n−1 number of mutually orthogonal vectors, 
each of which consists of n components.  An attempt to store more than n−1 mutually orthogo-
nal n-component vectors in a manner described in point 2 above will result in a singular weight 
matrix.  Hence an auto-associative net with n input nodes cannot store n patterns.  
 Th e diagonal elements of the weight matrix 4. W are set to zero.  Th is is to ensure that the diagonal 
terms do not dominate during application of the net and prevent the net from reproducing an 
input pattern rather than a stored pattern.

Th e above points are illustrated below with the help of simple illustrative examples.

(Example 8.5   (Storage of multiple bipolar patterns in auto-associative neural net) 

We consider an auto-associative neural net with four input units. At most three orthogonal vectors 
can be stored in it in a recognizable form. Let s1 = [1, 1, 1, 1],  s2 = [−1, 1, −1, 1], and s3 = [−1, −1, 1, 
1] be three vectors to be stored. Th ese vectors are mutually orthogonal. 

s1⋅s2 = [1, 1, 1, 1] ⋅ [−1, 1, −1, 1] = 0

s1⋅s3 = [1, 1, 1, 1] ⋅ [−1, −1, 1, 1] = 0

s2⋅s3 = [−1, 1, −1, 1] ⋅ [−1, −1, 1, 1] = 0

Th e weight matrices W1, W2, and Wk of the nets storing the given patterns individually are given 
below. All the diagonal elements of the matrices are set to zero.
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W1 = 
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Th erefore, the weight matrix of the desired net for storing the three patterns s1, s2, s3 is 

W = W1 + W2 + W3 =  

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

−

−
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⎥⎥

 

Th e calculations in the next example, Example 8.6, show that the resultant net indeed has the capac-
ity to recognize the stored patterns.  

Example 8.6   (Recognizing patterns by auto-associative nets storing multiple patterns)

We consider the net constructed in Example 8.5 above. Th e output vectors for the input pattern 
s1 = [1, 1, 1, 1] is calculated as follows.

Input pattern: s1 = [1, 1, 1, 1] 
Net input to the output layer: Y_in = s1 × W  = [1, 1, 1, 1] × W = [1, 1, 1, 1]
Activation at the output layer: Y_out = [1, 1, 1, 1] = s1

Hence, the net can recognize the pattern s1 = [1, 1, 1, 1]. Table 8.2 shows the details of the calcu-
lations of the outputs for all the stored patterns. Entries in the last column (Output pattern) of 
Table 8.2 clearly show that the net recognizes all the stored patterns.

Table 8.2. Recognition of multiple patterns by auto-associative net

# Input pattern Net input to the output layer 
(Y_in = s1 × W )

Output pattern

i s1 = [1, 1, 1, 1] [1, 1, 1, 1] [1, 1, 1, 1]

ii s2 = [−1, 1, −1, 1] [−1, 1, −1, 1] [−1, 1, −1, 1]

iii s3 = [−1, −1, 1, 1] [−1, −1, 1, 1] [−1, −1, 1, 1]

Problems 8.3 and 8.4 in the section ‘Solved problems’ illustrate the inability of auto-associative nets to 
store/recognize non-orthogonal patterns, or more than n–1 number of patterns.

8.2 HETERO-ASSOCIATIVE NETS 

An auto-associative net stores the association between identical patterns so that given an input pattern, 
it can recall whether it is one of the stored patterns or not. In contrast, a hetero-associative net is used 
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to store the associations between pairs of patterns that are not identical. Th is means, if s : t be a pair of 
associated patterns and this association is stored in a hetero-associative net, then s ≠ t.

Th e structure of a hetero-associative net is shown in Fig. 8.2. It is almost identical to the structure of 
an auto-associative net depicted in Fig. 8.1 except that in case of hetero-associative networks the number 
of input units (m) is not necessarily equal to the number of the output units (n). Other aspects of this 
network, e.g., training and application, are discussed below.
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wiww j
wiww n
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wmww j

wmww n
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Fig. 8.2. Architecture of a feed-forward hetero-associative net

8.2.1 Training

Let s : t be an association of two patterns where s = [s1, s2, …, sm] and t = [t1, t2, …, tn]. Let W be the weight 
matrix of the hetero-associative net storing the association s : t.

W
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Th en W is obtained using the Hebb rule as described below.

 wij = si × tj, (i = 1, …, m and j = 1, …, n) (8.4)

Using matrix notation, the relation becomes
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 (8.5)

As usual, multiple associations are stored by adding up the individual weight matrices. If s (k) : t (k), 
k = 1, …, P, and W1, W2, …, WP be the weight matrices for storing the associations s (1) : t (1), s (2) : 
t (2), …, s (P) : t (P), respectively, then the weight matrix of the resultant net is obtained as follows.

 W W W W WP iWW WW
i

P

+W =
=
∑1 2WW WW+WW

1
 (8.6)
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Example 8.7  (Hetero-associative net for single association)

Consider a pair s : t of patterns where s = [1, −1, 1, −1] and t = [−1, 1, −1]. Th e weight matrix of the 
net storing this association is calculated below.

W = =
−

−
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8.2.2 Application

Application of a hetero-associative net is the same as that for auto-associative nets described in Section 
8.1.2. Example 8.8 illustrates the application process with respect to the net cited in Example 8.7.

Example 8.8  (Application of hetero-associative net for single association)

To verify if the net developed in Example 8.7 is able to behave in the expected manner, we need to 
fi nd the output vector for the input pattern x = [1, −1, 1, −1]. 

 Input pattern: x = [1, −1, 1, −1] 
 Net input to the output layer: Y_in = x × W  = [1, −1, 1, −1] × W = [−4, 4, −4]
 Activation at the output layer: Y_out = [−1, 1, −1] = s
 Hence the net associates the input [1, −1, 1, −1] to the stored pattern [−1, 1, −1]. 

(Example 8.9  (Recognition of noisy input by hetero-associative net)

Consider again the net developed in Example 8.7. Suppose the input to the net is x = [1, −1, 0, −1] 
where the third element is missing. Performance of the net for such an input is described below.

 Input pattern: x = [1, −1, 0, −1] 
 Net input to the output layer: Y_in = x × W  = [1, −1, 0, −1] × W = [−3, 3, −3]
 Activation at the output layer: Y_out = [−1, 1, −1] = s

Hence, the net correctly associates the noisy input pattern [1, −1, 0, −1] to the stored pattern 
[−1, 1, −1]. Verification of the performance of the net with other kinds of noisy inputs is left 
as an exercise.     

A hetero-associative net may store multiple pattern associations. Th is capacity is illustrated in Problem 8.5 
in the section ‘Solved Problems’.

8.3 HOPFIELD NETWORKS 

Associative networks that do not respond immediately to an input pattern but take several steps to con-
verge to a stable output are called iterative, or recurrent, networks. Hopfi eld networks, proposed by John 
Hopfi eld (1982, 1984, 1988), is one of the earliest and popular iterative auto-associative networks. Th e 
basic features of discrete Hopfi eld networks are presented in this section.
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8.3.1 Architecture

A Hopfi eld net is a fully interconnected net with symmetric weights and without any self-loop. Th is 
means that for a Hopfi eld net, wij = wji, for all i ≠ j, and wii = 0, for all i. As the net is fully connected, the 
idea of various layers of processing units is no longer meaningful here. Each unit gets input from each 
of the remaining units, as well as the corresponding element of the input pattern. Hence, for an m-unit 
Hopfi eld net, the net input to unit Yj is given by

 y in y wj jx iw ji
i
i j

m

= +x jx
=
∑

1
 (8.7)

Here xj is the jth component of the input pattern x = [x1, x2, …, xm] and yi is the current activation of 
unit Yi. Th e structure of a four-unit Hopfi eld net is shown in Fig. 8.3. Th e notable points regarding the 
Hopfi eld net discussed here are given below. 

Th e net is fully connected with symmetric weights but without any self-loop.(i) 
Th e net is trained with bipolar patterns so that the weight matrix is also bipolar. However, dur-(ii) 
ing application binary inputs are used.
Hebb rule is used to obtain the weight matrix.(iii) 
During application, activation of a single unit (iv) Yi is updated on the basis of the signal it receives 
from other units, and the input xj to that unit.
Th e units update their activations in random order.(v) 
Th e update of the activations of the units stops when the units reach a stable state. Th e stabi-(vi) 
lized set of activations of the units is taken as the output of the net.

w34ww

w24www13ww

w12ww

x4xxx3xx

x2xxx1xx

w14ww w23ww

Y1YY Y2YY

Y3YY Y4YY

Fig. 8.3. Structure of a four-unit Hopfi eld net

8.3.2 Training

Th ere are several versions of Hopfi eld network, of which we consider the one with bipolar inputs at the 
time of training. Let s = [s1, s2, …, sm] be an input pattern presented in bipolar form. Th en the weight 
matrix of the Hopfi eld net storing the pattern s is obtained as:

 w s i j
i jij

i j=
× s ijs⎧

⎨
⎧⎧
⎩
⎨⎨

,
,

if
if0  (8.8)
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In matrix notation,  W = sT × s, wij = 0 ∀ i = 1, …, m (8.9)
In order to store several patterns s(1), s(2), …, s(k), the corresponding weight matrices are to be added 
as in Equation (8.6) to compute the weight matrix of the required net

 W W W W Wk iWW WW
i

k

+W =
=
∑1 2WW WW+WW

1
 (8.10)

Let x = [x1, x2, …, xm] be an input pattern for a given Hopfi eld net. To obtain the output of the net, the 
steps described in the Procedure Hopfi eld-Pattern-Association are executed. As mentioned earlier, there 
are many variations of Hopfi eld networks. A simplifi ed version is presented here that conveys the essen-
tial features of the net without going into incidental details.

Procedure Hopfield-Pattern-Association

// Given an m-unit Hopfield net with weight matrix W, to find the output of 
the net for the input pattern x = [ x1, x2, …, xm ]. //

Step 1. Initialize the activations of the units with the input signals.

Y_outi = xi   (i =1, …, m )

Step 2.  Update the activations of the units in random order by executing 
Steps 3 to 4 for each unit Yj , j =1, …, m.

Step 3. Find the net input y_inj to Yj.

y in y out wj j i iw j
i j

_ _j j= +xjx ×∑

Step 4. Find the activation of the unit Yj. 

y out
y i

y out y in
y i

j

j

j jy in
j

_
, _y
_ ,outj _

, _y
= =

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

1 0y inj, y >
0

0 0y inj, y <

i
if
i

 

Once the activation of Yj, i.e., y_outj, is updated, it is broad-
cast to all other units for further updation of the activations 
of those units.

Step 5.  Test for convergence. If there is no change in the activation of 
the units Y1, …, Ym, then the net has reached a stable state and 
therefore stop. Otherwise, go to Step 2. 

Fig. 8.4. Procedure Hopfi eld-pattern-association

Example 8.10  (Computing the weight matrix of a Hopfi eld net and testing its performance)

Let us construct a Hopfi eld net to store the pattern [1, 0, 0, 1]. When put in bipolar form, it is pre-
sented as s = [1, −1, −1, 1]. Applying Equation 8.9, the weight matrix of the net is obtained as
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However, the diagonal elements of W are to be set to zeros. Th erefore, the weight matrix is fi nally 
computed as
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To verify the performance of the net, we apply the input vector x = [1, 0, 0, 1] and let the units of the 
net update their activations iteratively. Th e computational steps are described below.

Let the input vector be 1. x = [x1, x2, x3, x4] = [1, 0, 0, 1].
Initialize the activations of the units as 2. 

Y = [y_out1, y_out 2, y_out 3, y_out 4] = [1, 0, 0, 1].

In the fi rst epoch, let us update the activations of the units in the random order 3. Y3, Y1, Y4, Y2. 
3.1 Update the activation y_out3 of Y3.

y in y out wi iw
i

y3 3x 3
1

4

= +x3x ×
=
∑

 = 0 + (1 × (−1) + 0 × 1 + 0 × 0 + 1 × (−1))

 = −2

∴ y_out 3 = 0

3.2. Update the activation y_out1 of Y1.

y in y out wi iw
i

y1 1x 1
1

4

= +x1x ×
=
∑

 = 1 + (1 × 0 + 0 × (−1) + 0 × (−1) + 1 × 1)

 = 2

∴ y_out1 = 1

3.3. Update the activation y_out4 of Y4.

y in y out wi iw
i

y4 4x 4
1

4

= +x4x ×
=
∑
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= 1 + (1 × 1 + 0 × (−1) + 0 × (−1) + 1 × 0)

 = 2

 ∴ y_out4 = 1

3.4. Update the activation y_out2 of Y2.

y in y out wi iw
i

y2 2x 2
1

4

= +x2x ×
=
∑

 = 0 + (1 × (−1) + 0 × 0 + 0 × 1 + 1 × (−1))

 = −2

 ∴ y_out2 = 0

Hence, Y =  [y_out1, y_out 2, y_out 3, y_out 4] = [1, 0, 0, 1].

 4. Calculations of Steps 3.1 to 3.4 reveal that none of the units had to modify its activation dur-
ing the application of the input pattern. Th is implies that the net has converged to a stable 
state and the process stops here. Th e activation vector Y  = [1, 0, 0, 1] is accepted as the output 
of the net.

Hence, this Hopfi eld net can recognize the ‘known’ pattern [1, 0, 0, 1]. 

Performance of this Hopfi eld net under noisy input is illustrated in Problem 8.5, in the section ‘Solved 
Problems’.

8.4 BIDIRECTIONAL ASSOCIATIVE MEMORY 

A hetero-associative iterative neural net containing two layers of processing elements interconnected 
by bidirectional paths and storing a collection of pairs of patterns is known as a bidirectional associa-
tive memory (BAM). It was developed by Kosko in 1988. Other associative networks are one-way, i.e., if 
s : t is the stored association, then the net can remember the pattern t when presented with s as the input 
pattern. However, these nets are unable to function in the reverse direction. Th e distinctive feature of 
BAM is, it is bidirectional. Hence, it can remember the association s : t when presented with any of 
the two associated patterns s, or t, as the input. Th e following subsections provide the basic features 
of BAM.

8.4.1 Architecture

Figure 8.5 shows the structure of a BAM. It consists of two layers of processing units, the X-layer and 
the Y-layer. Signals propagate back and forth between the two layers and none of these layers is dis-
tinguished as the input, or the output, layer. Patterns may be fed to the net through any of the two lay-
ers. When the net reaches the equilibrium state, the activation vector obtained from the other layer is 
taken as the output. Each processing unit of a layer is connected to each unit of the other layer through 
weighted bidirectional paths. During operation, each layer acts as the input to the other layer. Th e two 
layers iteratively and alternately update the activations of their units using the signals obtained from the 
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272  Introduction to Soft Computing

units of the other layer until they reach a stable state. Th ere are a number of variations of BAM. In this 
text we consider the simplest among them.

XmXX

XiXX

: :

: :

X1XX

wiww j
wiww n

wmww 1

wmww j

wmww n

X-layerXX Y-layerYY

w1ww j

w1ww 1

w1ww n

wiww 1 YjYY

YnYY

Y1YY

Fig. 8.5. Structure of a bidirectional associative memory (BAM)

8.4.2 Training

Let s : t be an association of a pair of bipolar patterns where s = [s1, s2, …, sm] and  t = [t1, t2, …, tn]. Obvi-
ously, the BAM that stores this association must have m units in the X-layer, and n units in the Y-layer, 
assuming that during application, the vectors s and t would be fed to the X-layer and the Y-layer, respec-
tively. Th en the weight matrix W for signals sent from the X-layer to the Y-layer is obtained by using the 
Hebb rule as 

W = sT
 × t

Th e weight matrix for the signals in the reverse direction, i.e., from Y-layer to the X-layer, is the trans-
pose of W, i.e., W T. And, in case there are a number of associations s(1) : t(1), s(2) : t(2), …, s(k) : t(k) 
and W1, W2, …, Wk are the corresponding weight matrices then the weight matrix W of the BAM storing 
all these associations is obtained as the algebraic sum of the individual matrices.

 W W W W Wk iWW WW
i

k

+W =
=
∑1 2WW WW+WW

1
 (8.11)

8.4.3 Application

Given the weight matrix W of a BAM, the algorithm for application of the BAM is described in Pro-
cedure BAM-Pattern-Association (Fig. 8.6). A notable point regarding Procedure BAM-Pattern-Asso-
ciation is that if the net input to a unit is 0 then the activation of the unit is kept unaltered. Moreover, 
according to Procedure BAM-Pattern-Association, initially the signals are propagated from the X-layer 
to the Y-layer and then in the reverse direction, and so on. What happens when the input is applied to 
the Y-layer, instead of the X-layer? Since the X-layer is already initialized to all 0s, the net input to the 
units of the Y-layer would also be 0s. As a result, the activations of the Y-layer will remain unaltered. In 
the next step the units of the X-layer are updated with the help of the signals from the Y-layer. Hence, 
eff ectively, the computation starts with the Y-layer as the input layer.
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Procedure BAM-Pattern-Association

Step 1. Initialize activations of all units with 0s.

x_outi = 0,   ( i =1, …, m )

y_outj = 0,   ( j =1, …, n )

Step 2.  Let x : y be the pair of patterns to be applied where x = [ x1, x2, 
…, xm ] and y = [ y1, y2, …, yn ]. Set the activations of the X-layer 
to x and the activations of the Y-layer to y. If the input is pro-
vided for one layer only then the activations of the other layer 
remain all zeros, as set in Step 1.

Step 3.  Update the activations of the Y-layer units using the activation 
signals of the X-layer. 

The net input to unit Yj is obtained as

y in wj ix ij
i

m

_ ×xix
=

∑∑
1

  ( j = 1, …, n )

Compute the activations of the Y-layer units using the following 
function.

y out
y i

y out y in
y i

j

j

j jy in
j

_
, _y
_ ,outj _
, _y

= =
−

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

0y inj1, y >
0
0y i j1, y <y injy,

i
if
i

 

Step 4.  Update the activations of the X-layer units using the activation 
signals of the Y-layer. 

The net input to unit Xi is obtained as

x in wi jy ij
j

n

_ ×yjy
=

∑∑
1

  ( i = 1, …, m )

Compute the activations of the X-layer units using the following 
function.

x out
i

x out x in
i

i

i

i ix in
i

_
, _
_ ,outi _
, _

= =
−

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

0x ini1, x >
0
0i i1, <x inix,

i
if
i

Step 5.  Test for convergence. Has the net arrived at an equilibrium, i.e., 
was there any change in the activations of the X-layer units or 
Y-layer units while executing the Steps 3 and 4? If yes, then the 
net is yet to stabilize. Go to Step 3. Otherwise stop.

Fig. 8.6. Procedure BAM-Pattern-Association
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Example 8.11  (Storage of pattern association in bidirectional associative memory)

Suppose we want to create a BAM to store the association s : t ≡ [s1, s2, s3, s4] : [t1, t2] ≡ [1, 1, −1, −1]: 
[1, −1]. We fi rst calculate the weight matrix of the BAM for signals propagating from the X-layer to 
the Y-layer.

W s t×s = −
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟ × = −
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟
T

1
1
1
1

1 1−
1 1−
1 1
1 1

( )1 1−

Th e weight matrix for signals propagating in the reverse direction is WT so that

W T = −
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

1 1 1 1− −
1 1 1 1−

In order to test the performance of the BAM, we apply the pattern [1, 1, −1, −1] to the X-layer and see 
the output from the Y-layer in the fi rst phase and then in the second phase apply the pattern [1, −1] 
to the Y-layer and get the output from the X-layer. Th e stepwise calculations are described below.

 (a) Case A, Input at the X-layer, x = [1, 1, −1, −1], y = ?
 (i) Initially all activations are set to 0s. Th erefore,

x_outi = 0   (i =1, …, 4)

y_outj = 0   (j =1, 2)

 (ii) Apply the pattern x = [1, 1, −1, −1] to the X-layer, so that 

x_out1 = 1,  x_out2 = 1, y_out3 = −1,  x_out 4 = −1.

 (iii) Compute the net inputs to the Y-layer and hence its activations.

Y_in = X_out × W =[ ]

1 1
1 1
1 1
1 1

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟×

 = [4, −4].

 ∴Y_out = [y_out1,  y_out2] = [1, −1]

Now, the signals from the Y-layer is to be applied to the X-layer to modify (if necessary) 
its activations. 

 (iv) Compute the net inputs to the X-layer using the signals from Y-layer.

 X_in = Y_out × WT =[ ] 1 1 1 1
1 1 1 1× 11

−1
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

 = [2, 2, −2, −2]
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 ∴X_out = [x_out1,  x_out2,  x_out3,  x_out4] = [1, 1, −1, −1]

Th is shows that the net has reached an equilibrium state. As Y_out = [y_out1,  y_out2] = 
[1, −1] = t, we conclude that the BAM can associate the input pattern s = [1, 1, −1, −1] 
to t = [1, −1].

 (b) Case A, Input at the Y-layer, y = [1, −1], x = ?
 (i)  Initially all activations are set to 0s. Th erefore,

x_outi = 0,  (i =1, …, 4)

y_outj = 0,  (j =1, 2)

 (ii) Apply the pattern y = [1, −1] to the Y-layer, so that 

y_out1 = 1,  y_out2 = −1.

 (iii) Compute the net inputs to the Y-layer and hence its activations.

Y_in = X_out × W = [0 0 0 0] × 

1 1
1 1
1 1
1 1

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

= [0, 0].

As the net input to the units of the Y-layer is 0, their activations remain unaltered.

∴Y_out = [y_out1,  y_out2] = [1, −1]

Now, the signals from the Y-layer are to be applied to the X-layer to modify (if neces-
sary) its activations. 

 (iv) Compute the net inputs to the X-layer using the signals from Y-layer.

X_in = Y_out × WT = [1 −1] × 1 1 1 1
1 1 1 1

11
−1

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= [2, 2, −2, −2]
∴X_out = [x_out1,  x_out2,  x_out3,  x_out4] = [1, 1, −1, −1]

 (v) Update the activations of the Y-layer with this new set of X-layer activations.

Y_in = X_out × W = [1, 1, −1, −1] × W = [4, −4]
∴Y_out = [y_out1,  y_out2] = [1, −1]

 (vi)  Update the activations of the X-layer with Y-layer activations. Th e computations are 
the same as carried out in step (iv) above. As both the X-layer and the Y-layer retain 
their activations, the BAM has reached the stable state and the iterations stop here. 
At equilibrium state, the X-layer and the Y-layer attain the stored patterns. 

Hence, the BAM can remember the stored association s : t ≡ [s1, s2, s3, s4] : [t1, t2] ≡ [1, 1, −1, −1] : [1, 
−1] irrespective of whether it is presented with the pattern s (at the X-layer) or t (at the Y-layer).
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(Performance of the BAM under noisy patterns)

Let us now see if the BAM cited in the previous example is able to work under noisy inputs. Two 
kinds of noises are considered, viz., (a) inputs with missing elements and (b) inputs with corrupt, or 
erroneous, elements.

 (a) Inputs with missing elements 
We apply the noisy input x = [1, 1, 0, −1] and see how the net behaves. 
Th e response of the Y-layer to the X-input is obtained as

Y_in = X_out × W = [1 1 0 −1] × W = [3, −3]

∴Y_out = [y_out1,  y_out2] = [1, −1]

Th e activations of the Y-layer are propagated to the X-layer.

 X_in = Y_out × WT = [1, −1] × 1 1 1 1
11

−1
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= [2, 2, −2, −2]

∴X_out = [x_out1,  x_out2,  x_out3,  x_out4] = [1, 1, −1, −1]

So the BAM has already corrected the noisy input and the two layers of the net now contains 
the association s : t ≡ [1, 1, −1, −1] : [1, −1]. We saw in the previous examples that this state 
is stable and no further iterations are needed.

Th e BAM is able to tolerate a missing element in the t vector too. To verify this we take 
y = [1, 0] as the input to the net fed through the Y-layer. Th e activation induced by this Y-
layer input to the X-layer is computed as 

X_in = Y_out × WT = [1 0] × 1 1 1 1
1 1 1 1

11
−1

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= [1, 1, −1, −1]
∴X_out = [x_out1,  x_out2,  x_out3,  x_out4] = [1, 1, −1, −1]

In the next step, when this X_out = [1, 1, −1, −1] is propagated to the Y-layer units, the sig-
nals at the Y-layer are corrected to [1, −1]. Verifi cation of the behaviour of the BAM under 
other possible missing elements is being left  as an exercise.

 (b) Inputs with corrupt, or erroneous, elements.
Let x = [1, 1, 1, −1] be the input vector where the third element is erroneously set to 1, instead 
of −1, as stored in s = [1, 1, −1, −1]. When the BAM is set to work, it fi rst produces the activa-
tions of the Y-layer units.

Y_in = X_out × W = [1 1 1 −1] × 

1 1
1 1
1 1
1 1

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

= [2, −2]

Example 8.12
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∴Y_out = [y_out1,  y_out2] = [1, −1]

When these Y-layer activations are sent to the X-layer, it attains the pattern X_out = [1, 1, −1, −1], 
which implies that the net has corrected the noisy pattern x = [1, 1, 1, −1] to the stored pattern s = [1, 
1, −1, −1]. Hence, the BAM under consideration can tolerate single element error in its input. 

(Storage of multiple associations on a BAM)

Multiple associations can be stored on a BAM. As usual, the weight matrix of the resultant BAM 
is obtained by adding up the individual weight matrices corresponding to each association. For 
example, suppose, along with the association s (1) : t (1) ≡ [1, 1, −1, −1] : [1, −1], we want to store 
the additional association s (2) : t (2) = [1, −1, 1, −1] : [1, 1].  Obviously, the two individual weight 
matrices W1, W2 are

W1 =

1 1
1 1
1 1
1 1

−
−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟ , and W2 =

1 1
1 1
1 1
1 1

−1

−1

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟  

Hence, the overall weight matrix is

W = W1 + W2 =

2 0
0 2
0 2
2 0−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟  

Th e following calculations show that the net is able to recall the appropriate association when pre-
sented with any of the stored vectors.

 (a) x = [1, 1, −1, −1], y = ?

Y_in = X_out × W = [1 1 −1 −1] × 

2 0
0 2
0 2
2 0−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

= [4, −4]

∴Y_out = [y_out1,  y_out2] = [1, −1]

So the BAM remembers the pattern t (1) = [1, −1] associated with the pattern s (1) = [1, 1, −1, 
−1]. Verifi cation of the reverse association, i.e., s (1) given t (1), is left  as an exercise.

 (b) y = [1, 1], x = ?

Here, X_in = Y_out × WT = [1 1] × 
2 0 0 2
0 2 2 0

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

 = [2, −2,  2, −2]

Example 8.13
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∴X_out = [x_out1,  x_out2,  x_out3,  x_out4] = [1, −1, 1, −1]

Obviously, the BAM remembers the pattern s (2) = [1, −1, 1, −1] associated with the pattern 
t (1) = [1, 1]. Verifi cation of the reverse association, i.e., t (2) given s (2), is left  as an exercise.

Performance of BAM storing multiple associations under noisy inputs is illustrated in Problem 
8.7 in the section ‘Solved Problems’.

CHAPTER SUMMARY

Relating a given pattern to one already stored in memory is known as pattern association.  We, the human 
beings, associate patterns in our daily life almost eff ortlessly.  Artifi cial neural nets are suitable for pattern 
association. Some important associative neural nets are auto-associtive nets, hetero-associative nets, Hop-
fi eld nets, and Bidirectional Associative Memory (BAM). Th e main points of this chapter are as follows. 

Th e input and output patterns of an auto-associative net are the same. Presented with an input • 
pattern, perhaps noisy, an auto-associative net returns the same pattern (this time without any 
noise) if the input matches one of the stored patterns.
Th e diagonal elements of an auto-associative net are set to 0s to ensure that these elements do • 
not dominate during application of the net. Otherwise, the net has a tendency to reproduce the 
input pattern rather than the stored pattern. 
Strength of a neural net lies in its tolerance of noisy input pattern, provided, that the input is • 
suffi  ciently close to the stored pattern in spite of it being noisy.  Two kinds of noises, missing 
elements, or erroneous element, may appear in the input pattern.  While a missing element is 
represented by 0, instead of a 1 or −1, an erroneous element presents the complement of the 
correct value, i.e., 1 (−1) in place of −1 (1).
An auto-associative neural net may store several patterns.  Th e • capacity of such a net is defi ned 
as the number of patterns it can store and recall.  If we try to store more patterns than its 
capacity, then the net tends to forget the stored patterns.  
Th e weight matrix of the net storing several patterns is the sum of the individual weight • 
matrices. Let s1, s2, …, sk be k mutually orthogonal vectors and W1, W2, …, Wk be the weight 
matrices for the auto-associative nets recognizing the vectors s1, s2, …, sk, respectively.  Th e 
diagonal elements of all the weight matrices are all set to zeros.  Th en the weight matrix W of 
the auto-associative net recognizing the given patterns is obtained by adding the individual 
weight matrices W1, W2, …, Wk.
An • n-input auto-associative net can store at most n−1 number of mutually orthogonal vectors, 
each of which consists of n components.
A hetero-associative net is used to store the associations between pairs of patterns that are not • 
identical. Th is means, if s : t is a pair of associated patterns and this association is stored in a 
hetero-associative net, then s ≠ t.
A Hopfi eld net is a fully interconnected net with symmetric weights and without any self-loop. • 
Hebb rule is used to obtain the weight matrix of a Hopfi eld net. 
A hetero-associative neural net with two layers interconnected by bidirectional paths and storing • 
a number of pairs of patterns is called as a Bidirectional Associative Memory (BAM). It can recall 
the association s : t when presented with any of the two associated patterns s or t as the input.
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 SOLVED PROBLEMS

Problem 8.1 (Auto-associative nets: Recognition of noisy input with two missing elements) Consider 
the auto-associative net of Example 8.3 and 8.4 whose weight matrix is given by

W = 

1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

−1
−1 0 1
−1 1 0

11

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Th e net is able to recognize the pattern [1, −1, −1, 1]. Moreover, we have seen that the net has the capacity 
to recognize correctly noisy patterns with a single missing element. Can the net withstand two missing 
entries? 

Solution 8.1 Let us consider the case of fi rst two elements of the pattern [1, −1, −1, 1] missing, so 
that the input pattern is [0, 0, −1, 1]. Th e net input to the output units are computed as

Y_in = [y_in1, y_in2, y_in3, y_in4]

 = [0 0 −1 1] × 

1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

−1
−1 0 1
−1 1 0

11

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

 =  [2, −2, −1, 1]

And the output vector is obtained as

 Y_out = [y_out1, y_out2, y_out3, y_out4]

 = [1, −1, −1, 1]

Hence, the net is able to recognize the stored pattern even if the fi rst two elements are missing. Calcu-
lations shown in Table 8.3 present the performance of the net with various combinations of a pair of 
missing elements.

Table 8.3. Recognition of noisy input with two missing elements

# Input pattern (noisy) Net input to the output layer 
(Y_in = s × W)

Output pattern

i [0, 0, −1, 1] [2, −2, −1, 1] [1, −1, −1, 1]

ii [0, −1, 0, 1] [2, −1, −2, 1] [1, −1, −1, 1]

iii [0, −1, −1, 0] [2, −1, −1, 2] [1, −1, −1, 1]

iv [1, 0, 0, 1] [1, −2, −2, 1] [1, −1, −1, 1]  

v [1, 0, −1, 0] [1, −2, −1, 2] [1, −1, −1, 1]  

vi [1, −1, 0, 0] [1, −1, −2, 2] [1, −1, −1,  1]  
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It shows that the net can correctly recognize all noisy input patterns with two missing elements.

Table 8.4. Recognition of noisy input with one erroneous element

# Input pattern (noisy) Net input to the output layer 
(Y_in = s × W)

Output pattern

i [−1, −1, −1, 1] [3, −1, −1, 1] [1, −1, −1,  1]

ii [1, 1, −1, 1] [1, −3, −1, 1] [1, −1, −1,  1]

iii [1, −1, 1, 1] [1, −1, −3, 1] [1, −1, −1,  1]

iv [1, −1, −1, −1] [1, −1, −1, 3] [1, −1, −1,  1]  

Problem 8.2 (Recognition of noisy inputs with one erroneous entry) Problem 8.1 illustrates that the 
net can withstand up to two missing elements in the input pattern.  See the behaviour of the net with 
one and two errors.

Solution 8.2 Th ere are four possible one-element errors in the pattern [1, −1, −1, 1]. Th ese are 
[−1, −1, −1, 1], [1, 1, −1, 1], [1, −1, 1, 1], and [1, −1, −1, −1] corresponding to errors in the fi rst, second, third, 
and the fourth element of the input vector.  Th e behaviour of the net with respect to these inputs is shown 
in Table 8.4. We see that the net can tolerate one error in the input pattern.  Can it withstand two erroneous 
elements?  To verify we consider the noisy pattern where the fi rst two elements are erroneous, i.e., the input 
pattern is [−1, 1, −1, 1] instead of [1, −1, −1, 1]. Application of this pattern to the given net results in

[−1, 1, −1, 1] × W  = [1, −1, 1, −1] ≠ [1, −1, −1, 1]

Hence, the net cannot recognize input patterns with two erroneous entries.

Problem 8.3 (Storage of non-orthogonal patterns in auto-associative net) Consider two non-orthog-
onal patterns s1 = [1, −1, 1, −1] and s2 = [−1, 1, 1, 1].  Th ese are not orthogonal because their inner product 
s1⋅s2 = −2 ≠ 0. Can you design an auto-associative net to store these patterns?

Solution 8.3 Assuming that there exists such an auto-associative net, we calculate the weight ma-
trix of as follows. 

 W = W1 + W2 = 

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

−1 1
− −1 0

1 0
−1 1

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

+ 

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

−1 11
−
−
−

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

 = 

0 2 0 2
2 0 0 2
0 0 0 0
2 2 0 0

2 0
−

−

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Now, let us see if the resultant net can recognize the stored patterns.

 s1 × W  =  [1, −1, 1, −1] × W = [4, −4, 0, −4] →  [1, −1, −1, −1] ≠ s1 

and,  s2 × W  =  [-1, 1, 1, 1] × W = [-4, 4, 0, 4] → [−1, 1, −1, 1]  ≠ s2 

Hence, the net fails to recognize the stored patterns.

Problem 8.4 (Storage of n orthogonal patterns in n-node auto-associative net) Obtain a net to store four 
mutually orthogonal patterns s1 = [1, 1, 1, 1], s2 = [−1, 1, −1, 1] , and s3 = [−1, −1, 1, 1],  s4 = [1, −1, −1, 1]. 

Solution 8.4 Th e fi rst three patterns are already tested to be orthogonal in Example 8.5 and the 
weight matrix for them has been computed as 
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0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

−

−

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

It can be readily verifi ed that s4 is orthogonal to the rest three patterns.  To store the four patterns s1, s2, s3 
and s4 on a four-input auto-associative net, the corresponding weight matrix would be

W = (W1 + W1 + W1) + W4 = 

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

−

−

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

+

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

−1
−1 0 1
−1 1 0

11

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Obviously, the net is unable to recognize any of the four patterns.    

Problem 8.5 (Storage of multiple associations on a hetero-associative net) Find a hetero-associative 
net to store three associations between pairs of patterns given below.

 (vii) [1, −1, 1, −1] : [−1, 1, −1]
 (viii) [1, 1, 1, −1] : [1, 1, −1]
 (ix) [1, −1, 1, 1] : [−1, 1, 1]

Solution 8.5 Th e corresponding weight matrices W1, W2, W3 are 

W1 = 

−

−

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

1 1 1−
1 1 1−
1 1 1−
1 1 1−

,  W2 = 

1 1 1
1 1 1
1 1 1
1 1 1−1

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

, and  W3 = 

−

−
−

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

1 1 1
1 1 1− −
1 1 1
1 1 1

.

Th erefore, the weight matrix of the desired net for storing the three associations is computed as

W = W1 + W2 + W3 =  
−

− −
−

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

1 3 1
3 1− 1
1 3 1
1 1− 3

Th e following calculations show that the resultant net correctly associates the input vector [1, −1, 1, −1] 
to the corresponding output vector [−1, 1, −1].

 Input pattern : x = [1, −1, 1, −1] 
 Net input to the output layer : Y_in = x × W  = [1, −1, 1, −1] × W = [−4, 8, −4]
 Activation at the output layer : Y_out = [−1, 1, −1] 

Verifi cation of the performance of the net for the rest of the patterns is left  as an exercise.

Problem 8.6 (Performance of a Hopfi eld net under noisy input) Consider the Hopfi eld net devel-
oped in Example 8.10. We would like to verify if it is able to recognize a known but noisy input pattern. 
See if the net can recognize the input vector x = [1, 1, 0, 1] which diff ers from the stored vector s = [1, 0, 
0, 1] in the second component x2. 
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Solution 8.6 Th e verifi cation process consists of application of the given input pattern to the net 
and computation of the output when it reaches the stable state. Th e computations are shown below.

 1. Th e input vector is x = [x1, x2, x3, x4] = [1, 1, 0, 1].
 2. Initialize the activations of the units as 

Y = [y_out1, y_out 2, y_out 3, y_out 4] = [1, 1, 0, 1].

 3. In the fi rst epoch, the units are updated in the random order Y4, Y1, Y3, Y2.  

3.1 Update the activation y_out4 of Y4.

y in y out wi iw
i

y4 4x 4
1

4

= +x4x ×
=
∑

 = 1 + (1 × 1 + 1 × (−1) + 0 × (−1) + 1 × 0)
 = 1.

 ∴ y_out4 = 1. 

3.2 Update the activation y_out1 of Y1.

y in y out wi iw
i

y1 1x 1
1

4

= +x1x ×
=
∑

 = 1 + (1 × 0 + 1 × (−1) + 0 × (−1) + 1 × 1)

 = 1.

 ∴ y_out1 = 1.

3.3 Update the activation y_out3 of Y3.

y in y out wi iw
i

y3 3x 3
1

4

= +x3x ×
=
∑

 = 0 + (1 × (−1) + 1 × 1 + 0 × 0 + 1 × (−1))

 = −2.

 ∴ y_out3 = 0.

3.4 Update the activation y_out2 of Y2.

y in y out wi iw
i

y2 2x 2
1

4

= +x2x ×
=
∑

 = 1 + (1 × (−1) + 1 × 0 + 0 × 0 + 1 × (−1))

 = −1.

 ∴ y_out2 = 0.

Therefore, at the end of the first epoch the activation vector of the net changes from [1, 1, 0, 1] 
to [1, 0, 0, 1]. As some change in the activation of one of the units, Y2, has taken place in the first 
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epoch, the process continues to the second epoch. The computations of the second epoch are left 
as an exercise.

Problem 8.7 (Performance of the BAM storing multiple associations under noisy input) In Example 
8.12, a BAM is designed to store the associations s (1) : t (1) ≡ [1, 1, −1, −1] : [1, −1], and s (2) : t (2) = 
[1, −1, 1, −1] : [1, 1]. Th e weight matrix of the BAM is calculated as  

2 0
0 2
0 2
2 0−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

Suppose the BAM is now presented with an input pattern x =  [1, 0, 0, −1] (a noisy version of the pattern 
s =  [1, 1, −1, −1] where the second and the third elements are missing) at the X-layer. Can it tolerate the 
lack of information and recall the associated pattern correctly? 

Solution 8.7 Th e eff ects of the input pattern through successive iterations till the net reach the 
stable state are shown below.

 1. Propagate the signals of the X-layer to the Y-layer.

Y_in = X_out × W = [1 0 0 −1] × 
2 0
0 2
0 2
2 0−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟

 = [4, 0]

 ∴Y_out = [y_out1,  y_out2] = [1, 0]

 2. Apply the signals of the Y-layer to the X-layer.

X_in = Y_out × WT= [1 0] × 
2 0 0 2
0 2 2 0

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

 = [2, 0, 0, −2]

 ∴X_out = [x_out1,  x_out2,  x_out3,  x_out4] = [1, 0, 0, −1]

Since the X_out is back to the same pattern as it had in the previous iteration, the BAM has already 
reached a stable state and the activations of neither the X-layer nor the Y-layer match the stored patterns. 
Hence, the BAM cannot overcome this noise input.

However, the situation may improve if, along with the noisy pattern, the BAM is fed with some clue 
regarding the corresponding association. In particular, let us simultaneously present the patterns x = [1, 
0, 0, −1] and y = [0, −1] at the X-layer and the Y-layer, respectively, and see how the net responds.

Y_in = X_out × W = [1 0 0 −1] × 

2 0
0 2
0 2
2 0−

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟
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 = [4, 0]

 ∴Y_out = [y_out1,  y_out2] = [1, −1]

As the net input y_in2 = 0, the corresponding activation y_out2 retains its previous value, i.e., −1. When 
these Y-layer activations are fed to the X-layer we get 

X_in = Y_out × WT = (1 −1) × 
2 0 0 2
0 2 2 0

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

 = [2, 2, −2, −2]

∴X_out = [x_out1,  x_out2,  x_out3,  x_out4] = [1, 1, −1, −1]

Hence, this time, aided with appropriate clues, the BAM is able to remember the stored association. 

Problem 8.8 (Auto-associative net with MatLab) Write a MatLab program to implement an auto-
associative net to store the patterns [−1 −1 −1 −1] and [−1 −1 1 1]. Test the performance of the net with 
the test patterns [−1 −1 −1 −1] (stored pattern), [1 1 1 1] (unknown pattern), and [−1 −1 −1 1] (unknown 
but similar).

Solution 8.8  Th e MatLab code is given below. Th e code is followed by the outputs of the test.

clc;
clear;
StrVctr = [-1 −1 −1 −1;-1 −1 1 1]; % Patterns to be stored
TstVctr_Trnd = [-1 −1 −1 −1]; % CASE 1: Known Pattern
TstVctr_New = [1 1 1 1]; % CASE 2: Unknown Pattern
TstVctr_Similar = [-1 −1 −1 1]; % CASE 3: Unknown yet similar
wt=zeros(4,4); % Initialize Weights

for i = 1:2 % Calculate weight matrix
wt = wt + StrVctr(i,1:4)’*StrVctr(i,1:4);

end
disp(‘The calculated weight matrix’);
disp(wt);

TstOutpt = TstVctr_Trnd*wt;  % CASE 1: Testing with pattern
for i=1:4 % on which the net has been trained

if TstOutpt(i)>0
fx(i)=1;

else
fx(i)=-1;

end
end
disp(‘****************CASE 1************’);
if StrVctr(1,1:4) == fx(1:4) | StrVctr(2,1:4) == fx(1:4)

disp(‘The Pattern is a Known Pattern’);
else

disp(‘The Pattern is an Unknown Pattern’);
end
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TstOutpt = TstVctr_New*wt; % CASE 2: Testing with pattern
for i=1:4 %  on which the net has not been 

trained
if TstOutpt(i)>0 %  and the pattern is not similar to 

those
fx(i)=1; % for which the net has been trained

else
fx(i)=-1;

end
end
disp(‘****************CASE 2************’);
if StrVctr(1,1:4) == fx(1:4) | StrVctr(2,1:4) == fx(1:4)

disp(‘The Pattern is a Known Pattern’);
else

disp(‘The Pattern is an Unknown Pattern’);

end

TstOutpt = TstVctr_Similar*wt; % CASE 3: Testing with pattern
for i=1:4 % on which the net has not been trained

if TstOutpt(i)>0 % but the pattern is similar to those
fx(i)=1; % for which the net has been trained

else
fx(i)=-1;

end
end
disp(‘****************CASE 3************’);
if StrVctr(1,1:4) == fx(1:4) | StrVctr(2,1:4) == fx(1:4)

disp(‘The Pattern is a Known Pattern’);
else

disp(‘The Pattern is a Unknown Pattern’);
end

************OUTPUT**********************
The calculated weight matrix

2 2 0 0

2 2 0 0

0 0 2 2

0 0 2 2

****************CASE 1************
The Pattern is a Known Pattern
****************CASE 2************
The Pattern is an Unknown Pattern
****************CASE 3************
The Pattern is a Known Pattern

Samir Roy_Chapter08.indd   285Samir Roy_Chapter08.indd   285 2/21/2013   3:26:53 PM2/21/2013   3:26:53 PM



286  Introduction to Soft Computing

%Hetero associative neural net for mapping input vectors to output vec-
tors
clc;
clear;
Inp = [1 1 0 0;0 1 0 0;0 0 1 1;0 0 1 0]; % Input patterns
Trgt = [1 0;1 0;0 1;0 1]; % Target outputs
wt = zeros(4,2); % Initialize all weights to 0
for i = 1:4 % Training the weights

wt = wt + Inp(i,1:4)’ * Trgt(i,1:2); %
end  %
disp(‘Displaying Weight Matrix’);
disp(wt);
Test_Inp = [1 1 0 0];
Test_Outpt = Test_Inp*wt;  % Testing response for Input
for i = 1:2 % Mapping through Activation 
Fn.

if Test_Outpt(1,i) > 0
fx(1,i) = 1;

else fx(1,i) = 0;
end

end
disp(‘Displaying Output mapped through Activation Function’);
disp(fx);
****************OUTPUT***************************
Displaying Weight Matrix

1  0
2  0
0  2
0  1

Displaying Output mapped through Activation Function

   1  0

Problem 8.9 (Hetero-associative net with MatLab) Write a MatLab program to implement a hetero-
associative net to map four patterns [1 1 0 0], [0 1 0 0], [0 0 1 1], and [0 0 1 0] to two output patterns 
[1 0], [0 1] so that the patterns [1 1 0 0] and [0 1 0 0] are associated with [1 0]  and the patterns [0 0 1 1], 
and [0 0 1 0] are associated with [0 1]. 

Solution 8.9 Th e MatLab code is given below. Th e designed net is tested with the pattern [1 1 0 0] 
which results in an output [1 0].

Problem 8.10 (Hetero-associative net with MatLab) Write a MatLab program to store the pattern 
shown as Stored Pattern in the following 11 × 7 matrix with the help of an auto-associative net. Th e re-
sultant net is to be tested with the Test Pattern #1 and Test Pattern #2. It may be noted that while neither  
Test Pattern #1 nor Test Pattern #2 exactly matches with the Stored Pattern, the former closely resembles 
the Stored Pattern though the latter one, Test Pattern #2, is clearly a mismatch.
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Stored Pattern Test Pattern #1 Test Pattern #2

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0

0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 0 1 0 0

0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0

0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0

0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1

Solution 8.10 Th e entire MatLab code is given below. It is seen that while the designed net accepts Test 
Pattern #1 and returns the original stored pattern correctly, it rejects Test Pattern #2 as an unknown pattern.

clc;
clear;
% Original pattern 11x7 matrix
Stored_Ptrn = [ -1 1 -1 -1 -1 -1 -1  
   -1 1 -1 -1 -1 -1 -1  
   -1 1 -1 -1 -1 -1 -1  
   -1 1 -1 -1 -1 -1 -1  
   -1 1 -1 -1 -1 -1   -1     
  1 -1 -1 -1 -1 -1   -1  
   -1 1 -1  1  1  1 -1  
   -1 1  1 -1 -1 -1  1  
   -1 1 -1 -1 -1 -1  1  
   -1 1 -1 -1 -1 1 -1  
   -1 1 1 1 1 -1 -1 ];

% Test pattern 11x7 matrix 
Test_Ptrn_1 = [ -1 1 -1 -1 -1 -1 -1  
   -1 1 -1 -1 -1 -1 -1  
   -1 1 -1 -1 -1 -1 -1  
   -1 1 -1 -1 -1 -1 -1  
   -1 1 -1 -1 -1 -1 -1  
   -1 1 -1 -1 -1 -1 -1  
   -1 1 -1  1  1  1 -1  
   -1 1 -1 -1 -1 -1  1  
   -1 1 -1 -1 -1 -1  1  
    1 1 -1 -1 -1  1 -1  
   -1 1  1  1  1 -1 -1 ];
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Test_Ptrn_2 = [ -1 -1 -1 -1 -1 -1 -1    
   -1 -1 -1 -1 -1 -1 -1     
   -1 -1 -1 -1 -1 -1 -1  
   -1 -1 -1 -1 -1 -1 -1   
   1 -1 -1 -1 -1 -1  1 
   -1  1 -1 -1 -1  1 -1  
   -1 -1  1 -1  1 -1 -1  
   -1 -1 -1  1 -1 -1 -1  
   -1 -1  1 -1  1 -1 -1  
   -1  1 -1 -1 -1  1 -1   
  1 -1 -1 -1 -1 -1 1 ];

wt=zeros(77,77); % Initializing weights
wt = wt + Stored_Ptrn’*Stored_Ptrn;
disp(‘TESTING WITH STORED PATTERN’);
TstOutpt = Stored_Ptrn*wt;   %  Test association of stored 

pattern
for i=1:77   

if TstOutpt(i)>5
fx(i)=1;

else
fx(i)=-1;

end
end
if Stored_Ptrn(1:77) == fx(1:77) 

disp(‘The Pattern is associated with the following pattern’);
disp(‘0  1 0 0 0 0 0’);
disp(‘0  1 0 0 0 0 0’);
disp(‘0  1 0 0 0 0 0’);
disp(‘0  1 0 0 0 0 0’);
disp(‘0  1 0 0 0 0 0’);
disp(‘0  1 0 0 0 0 0’);
disp(‘0  1 0 1 1 1 0’);
disp(‘0  1 1 0 0 0 1’);
disp(‘0  1 0 0 0 0 1’);
disp(‘0  1 0 0 0 1 0’);
disp(‘0  1 1 1 1 0 0’);

else
disp(‘The Pattern is an Unknown Pattern’);

end
disp(‘TESTING WITH TEST PATTERNS 1 AND 2’);
disp(‘TEST PATTERN 1’);
TstOutpt = Test_Ptrn_1*wt; % Test association of Test Pattern 
for i=1:77   

if TstOutpt(i)>5
fx(i)=1;

else
fx(i)=-1;

end
end
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if Stored_Ptrn(1:77) == fx(1:77) 
disp(‘The Test Pattern is associated with the following pattern’);
disp(‘0  1 0 0 0 0 0’);
disp(‘0  1 0 0 0 0 0’);
disp(‘0  1 0 0 0 0 0’);
disp(‘0  1 0 0 0 0 0’);
disp(‘0  1 0 0 0 0 0’);
disp(‘0  1 0 0 0 0 0’);
disp(‘0  1 0 1 1 1 0’);
disp(‘0  1 1 0 0 0 1’);
disp(‘0  1 0 0 0 0 1’);
disp(‘0  1 0 0 0 1 0’);
disp(‘0  1 1 1 1 0 0’);

else
disp(‘The Pattern is an Unknown Pattern’);

end
disp(‘TEST PATTERN 2’);
TstOutpt = Test_Ptrn_2*wt;  % Test association of Test Pattern 
for i=1:77   

if TstOutpt(i)>5
fx(i)=1;

else
fx(i)=-1;

end
end
if Stored_Ptrn(1:77) == fx(1:77) 

disp(‘The Test Pattern is associated with the following pattern’);
disp(‘0  1 0 0 0 0 0’);
disp(‘0  1 0 0 0 0 0’);
disp(‘0  1 0 0 0 0 0’);
disp(‘0  1 0 0 0 0 0’);
disp(‘0  1 0 0 0 0 0’);
disp(‘0  1 0 0 0 0 0’);
disp(‘0  1 0 1 1 1 0’);
disp(‘0  1 1 0 0 0 1’);
disp(‘0  1 0 0 0 0 1’);
disp(‘0  1 0 0 0 1 0’);
disp(‘0  1 1 1 1 0 0’);

else
disp(‘The Pattern is an Unknown Pattern’);

end

********************OUTPUT******************************

TESTING WITH STORED PATTERN
The Pattern is associated with the following pattern
0  1 0 0 0 0 0
0  1 0 0 0 0 0
0  1 0 0 0 0 0
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0  1 0 0 0 0 0
0  1 0 0 0 0 0
0  1 0 0 0 0 0
0  1 0 1 1 1 0
0  1 1 0 0 0 1
0  1 0 0 0 0 1
0  1 0 0 0 1 0
0  1 1 1 1 0 0

TESTING WITH TEST PATTERNS 1 AND 2
TEST PATTERN 1
The Test Pattern is associated with the following pattern
0  1 0 0 0 0 0
0  1 0 0 0 0 0
0  1 0 0 0 0 0
0  1 0 0 0 0 0
0  1 0 0 0 0 0
0  1 0 0 0 0 0
0  1 0 1 1 1 0
0  1 1 0 0 0 1
0  1 0 0 0 0 1
0  1 0 0 0 1 0
0  1 1 1 1 0 0
TEST PATTERN 2

The Pattern is an Unknown Pattern

Problem 8.11 (Pattern recognition with bidirectional associative memory) Figs. 8.7 and 8.8 show 
two faces, one smiling and the other frowning, and the corresponding encoding in 12 × 7 matrices fi lled 
with 0s and 1s. Fig. 8.9 shows a test pattern which neither matches with the smiling face nor the frown-
ing face. Design a BAM, with MatLab program, to store the smiling face and the frowning face. Test the 
performance of the BAM with the smiling face as input and also with the pattern given in Fig. 8.9. 

Smiling Face Smiling Face
* * * * *

* *
* *
* * * * * *
* *
* * *
* * *
* * *
* * * *
* * * * *
* *

* * * * *

0 1 1 1 1 1 0
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 1 1 0 1 1 1
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 1 0 0 0 1 1
1 0 1 1 1 0 1
1 0 0 0 0 0 1
0 1 1 1 1 1 0

Fig. 8.7. Smiling face and its binary encoding
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Frowning Face Frowning Face
* * * * *

* *
* *
* * * * * *
* *
* * *
* * *
* * *
* * * * *
* * * *
* *

* * * * *

0 1 1 1 1 1 0
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 1 1 0 1 1 1
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 1 1 1 0 1
1 1 0 0 0 1 1
1 0 0 0 0 0 1
0 1 1 1 1 1 0

Fig. 8.8. Frowning face and its binary encoding

Circle Circle

* * * * * 0 1 1 1 1 1 0
* * 1 0 0 0 0 0 1
* * 1 0 0 0 0 0 1
* * 1 0 0 0 0 0 1
* * 1 0 0 0 0 0 1
* * 1 0 0 0 0 0 1
* * 1 0 0 0 0 0 1
* * 1 0 0 0 0 0 1
* * 1 0 0 0 0 0 1
* * 1 0 0 0 0 0 1
* * 1 0 0 0 0 0 1

* * * * * 0 1 1 1 1 1 0

Fig. 8.9. Test pattern

Solution 8.11 Th e required MatLab program is given below. Th e BAM is tested with the patterns 
mentioned in the problem statement. While the BAM correctly recognizes the fi rst test pattern, it diag-
noses the second pattern as unknown as it does not match with any of the two stored patterns. Hence, 
the BAM functions correctly.

%Bidirectional Associative Memory neural net
clc;
clear;
% Patterns Associated with the network
Stored_Patterns =
[011111010000011000001111011110000011001001100100110010011100011101110110
000010111110;011111010000011000001111011110000011001001100100110010011011
101110001110000010111110];   
Target_Output=[1 0;0 1]; 
Test_Pattern_1 = [0111110100000110000011110111100000110010011001001100100
11100011101110110000010111110];
Test_Pattern_2 = [0111110100000110000011000001100000110000011000001100000
11000001100000110000010111110];
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Inter_x=2*Stored_Patterns-1;
Inter_y=2*Target_Output-1;
weights=zeros(84,2);
for i=1:2

weights=weights+Inter_x(i,:)’*Inter_y(i,:);
end

Test_Output = Test_Pattern_1*weights;
for(i = 1:2)
if(Test_Output(i)>0)

Test_Output(i) = 1;
else

Test_Output(i) = 0;
end
end
disp(‘Testing with Test Pattern 1’);
if (Test_Output == Target_Output(1,1:2))

disp(‘Pattern Associated with Stored Pattern 1’);
disp(‘ SMILING FACE ’);
disp(‘  * * * * * ’);
disp(‘*       *’);
disp(‘*       *’);
disp(‘*  * *  * * *’);
disp(‘*    *   ’);
disp(‘*  *  *   ’);
disp(‘*    *   *’);
disp(‘*   *    *’);
disp(‘*  *  *   *’);
disp(‘*   * * *  *’);
disp(‘*       *’);
disp(‘ * *  *  *  *  ’);

elseif (Test_Output == Target_Output(2,1:2))
disp(‘Pattern Associated with Stored Pattern 2’);
disp(‘ FROWNING FACE  ’);

disp(‘   *  *  *   *  *  ’);
disp(‘*   *’);
disp(‘*   *’);
disp(‘* * * * * *’);
disp(‘*   *’);
disp(‘*  *  *’);
disp(‘*  *  *’);
disp(‘*  *  *’);
disp(‘* * * * *’);
disp(‘* *  * *’);
disp(‘*   *’);
disp(‘ * * * * *  ’);

else
disp(‘Unknown Pattern’);

end
Test_Output = Test_Pattern_2*weights;
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for(i = 1:2)
if(Test_Output(i)>0)

Test_Output(i) = 1;
else

Test_Output(i) = 0;
end
end
disp(‘Testing with Test Pattern 2’);
if (Test_Output == Target_Output(1,1:2))

disp(‘Pattern Associated with Stored Pattern 1’);
disp(‘ SMILING FACE ’);
disp(‘ * * * * * ’);
disp(‘*   *’);
disp(‘*   *’);
disp(‘* * * * * *’);
disp(‘*   *’);
disp(‘*  *  *’);
disp(‘*  *  *’);
disp(‘*  *  *’);
disp(‘* *  * *’);
disp(‘* * * * *’);
disp(‘*   *’);
disp(‘ *  *  *  *  *  ’);

elseif (Test_Output == Target_Output(2,1:2))
disp(‘Pattern Associated with Stored Pattern 2’);
disp(‘ FROWNING FACE  ’);

disp(‘   *  *  *   *  *’);
disp(‘*   *’);
disp(‘*   *’);
disp(‘* * * * * *’);
disp(‘*   *’);
disp(‘*  *  *’);
disp(‘*  *  *’);
disp(‘*  *  *’);
disp(‘* * * * *’);
disp(‘* *  * *’);
disp(‘*   *’);
disp(‘ * * * * *’);

else
disp(‘Unknown Pattern’);

end
*********************OUTPUT************************************
Testing with Test Pattern 1
Pattern Associated with Stored Pattern 1

 SMILING FACE 
 * * * * * 
*   *
*   *
* * * * * *

Samir Roy_Chapter08.indd   293Samir Roy_Chapter08.indd   293 2/21/2013   3:26:54 PM2/21/2013   3:26:54 PM



294  Introduction to Soft Computing

*   *
*  *  *
*  *  *
*  *  *
* *  * *
* * * * *
*   *
    *  *  *  *  *  
Testing with Test Pattern 2

Unknown Pattern

Problem 8.12 (Hopfi eld net) Design and train a Hopfi eld network for the following training pat-
terns

  i) 1 1 −1 −1
 ii) −1 1 −1 −1
 ii) −1 −1 −1 1

Determine the pattern to which [0.9, 0.87,−0.9, −0.89] associates.

Solution 8.12 Th e MatLab code for the required network and its application are given below.

% Design and train a Hopfield Network for the following training pat-
terns
% (1) 1 1 -1 -1
% (2) -1 1 -1 -1
% (3) -1 -1 -1 1
% Determine the pattern to which [0.9, 0.87,-0.9, −0.89] associates
clc;
clear;
T = [1 1 −1 −1;-1 1 −1 −1;-1 −1 −1 1]’; % Training patterns
net = newhop(T);    % Creating Hopfield Network
Ai = T;
[Y,Pf,Af] = sim(net,3,[],Ai);  % Simulating network
Trained = Y;
disp(Y); % Displaying result
Ai = {[0.9; 0.87; −0.9; −0.89]};  % Testing pattern
[Y,Pf,Af] = sim(net,{1 5},{},Ai); % Simulating test pattern
disp(‘ans = ‘);
disp(Y{1});   % Displaying result of test
Tested = Y{1};
Tested = Tested’;
Trained = Trained’;
if (Trained(1,:) == Tested)    % Matching with stored pattern

disp(‘Associated with pattern  1 1 −1 −1’);
elseif (Trained(2,:) == Tested)

disp(‘Associated with pattern −1 1 −1 −1’);
elseif (Trained(3,:) == Tested)

disp(‘Associated with pattern −1 −1 −1 1’);
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else disp(‘Unknown pattern’);
end

************************OUTPUT******************************************
***********************

 1 −1 −1
 1  1 −1
-1 −1 −1
-1 −1  1

ans = 
 1
 1
-1
-1

Associated with pattern  1 1 −1 −1

� TEST YOUR KNOWLEDGE

 8.1 Which of the following is not a recurrent network? 
a) Hopfi eld network b) Bidirectional associative memory
c) Both (a) and (b) d) None of the above

 8.2 In auto-associative networks, the diagonal elements of the weight matrix are set to 0s in order to 
prevent
a) Reproducing the input rather than the associated pattern
b) Self-loops in the auto-associative networks
c) Both (a) and (b)
d) None of the above

 8.3 Which of the following neural nets can recognize noisy patterns?
a) Auto-associative nets b) Hetero-associative nets
c) Both (a) and (b) d) None of the above

 8.4 Two patterns can be stored in the same auto-associative networks if they are 
a) Mutually orthogonal b) Complementary
c) Both (a) and (b) d) None of the above

 8.5 Th e highest number of patterns an n-input n-output auto-associative net can store is 
a) 2n b) n
c) n−1 d) None of the above

 8.6 Which of the following neural nets can have inequal number of input and output units?
a) Auto-associative nets b) Hetero-associative nets
c) Both (a) and (b) d) None of the above

 8.7 Which of the following is a fully connected neural net?
a) Bidirectional associative memory (BAM)
b) Hopfi eld networks
c) Both (a) and (b)
d) None of the above
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 8.8 During application, the units of a Hopfi eld net are updated 
a) In predetermined order b) In parallel
c) In random order d) None of the above

 8.9 Number of layers of processing units in a bidirectional associative memory (BAM) is
a) 1 b) 2
c) More than 2 d) None of the above

8.10 Th e associative network that allows any of its layers of processing units to be used as the input 
layer is
a) Hopfi eld networks
b) Bidirectional associative memory (BAM)
c) Both (a) and (b)
d) None of the above

8.11 Th e associative network that allows any of its layers of processing units to be used as the output 
layer is
a) Hopfi eld networks
b) Bidirectional associative memory (BAM)
c) Both (a) and (b)
d) None of the above

8.12 Let the present activation of a unit in a bidirectional associative memory (BAM) be 1. If the pres-
ent net input to the unit is 0, then the next activation of the unit will be
a) 0 b) 1
c) Undefi ned d) None of the above

8.13 Let the weight matrix of a bidirectional associative memory (BAM) be given by

W =
−
−
−

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

1 1 1−
1 1 1−
1 1 1−
1 1 1−

If the vector [1, −1, −1] is applied to the Y-layer of the BAM, then what will be the corresponding 
activation of the X-layer?
a) [1, −1, −1, −1] b) [−1, −1, −1, 1]
c) Undefi ned d) None of the above

8.14 Which of the following pairs of patterns cannot be stored in an auto-associative neural net?
a) [1, 1, 1, 1] and [1, −1, 1, −1] b) [1, 1, −1, −1] and [−1, 1, −1, 1]
c) Both (a) and (b) d) None of the above

8.15 Which of the following pairs of patterns can be stored in an auto-associative neural net?
a) [1, −1, 1, −1] and [-1, 1, −1, 1] b) [1, −1, 1, −1] and [1, −1, −1, 1]
c) Both (a) and (b) d) None of the above

Answers

 8.1 (d) 8.2 (c) 8.3 (c) 8.4 (a) 8.5 (c)
 8.6 (b) 8.7 (b) 8.8 (c) 8.9 (b) 8.10 (b)
 8.11 (b) 8.12 (b) 8.13 (a) 8.14 (d) 8.15 (b)
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  EXERCISES

8.1 Let [−1, −1, −1, −1], [1, −1, 1, 1], and [1, −1, −1, 1] be three patterns. Identify two among these, say 
s (1) and s (2), which can be stored in a 4-input auto-associative neural net. Find the weight matrix 
of the net and set its diagonal elements to 0s. Th en carry out the following tasks with the net ob-
tained.
 (i)  Test the net with the two stored vectors s1 and s2.
 (ii)  Set the third element of s1 and the fi rst element of s2 to 0s, indicating that values for these 

elements are missing in the input. Test the network with these noisy inputs.
 (iii)  Carry out the task mentioned above with two, instead of one, arbitrarily chosen missing ele-

ments.
 (iv)  Insert a mistake in each of the positions mentioned above by fl ipping the corresponding 

values (replacing 1 by −1, and vice versa). Test the network with these erroneous inputs.
8.2 Let us consider four pairs of associated patterns as described below.

 (i) s (1) = [−1, −1, −1], and t (1) = [−1, −1]
 (ii) s (2) = [−1, −1, 1], and t (2) = [−1, 1]
 (iii) s (3) = [−1, 1, −1], and t (3) = [1, −1]
 (iv) s (4) = [1, −1, −1], and t (4) = [1, 1]
Construct a hetero-associative net to store these associated vectors carry out the following tasks 
with the net thus constructed.
 (i) Test the net with s (1), s (2), s (3) and s (4) as inputs.
 (ii)  Set the middle element of each of the vectors s (1), s (2), s (3) and s (4) to 0s. Th en test if the 

net is able to tolerate these noisy inputs and recall the correct associations.
 (iii)  Carry out the task mentioned above with two, instead of one, arbitrarily chosen missing ele-

ments.
 (iv)  Flip the middle element of each of the vectors s (1), s (2), s (3) and s (4), i.e., replace a 1 by 

−1 and vice versa. Th en test if the net is able to tolerate these erroneous inputs and recall the 
correct associations.

8.3 Obtain a discrete Hopfi eld network to store the pattern [1, 1, 1, 0]. Do the following with the net 
thus created.
 (i) Test the net with the given pattern.
 (ii) Test the net with one erroneous element, say, with [1, 1, 1, 1].
 (iii) Test the net with two erroneous elements, say, with [0, 1, 1, 1].

8.4 Design a Bidirectional associative memory (BAM) to store the following associations.
(a) s (1) = [−1, −1, 1, 1], and t (1) = [−1, −1]
(b) s (2) = [1, −1, 1, −1], and t (2) = [−1, 1]
Perform the following tasks with the BAM obtained above.
 (i)  Test the BAM with the given vectors both ways, i.e., using the X-layer as the input layer, and 

also, using the Y-layer as the input layer.
 (ii) Test the BAM with one missing element in the input patterns.
 (iii)  Test the BAM with the input [0, −1, 1, 0]. What is your observation? How does the BAM 

behave if you apply the pattern [0, −1] simultaneously to the Y-layer, along with the pattern 
[0, −1, 1, 0] applied to the X-layer?
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COMPETITIVE NEURAL NETS
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Inhibitory weight, Learning vector quantization (LVQ), MaxNet self-organizing map (SOM), Stabili-
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Solved Problems
Test Your Knowledge
Exercise
Bibliography and Historical Notes

Th e last two chapters presented certain neural networks for pattern classifi cation and pattern associa-
tion. Artifi cial neural nets are inherently structured to suit such purposes. However, there are situations 
when the net is responded by more than one outputs even though it is known that only one of several 
neurons should respond. Th erefore, such nets must be designed in a way so that it is forced to make a 
decision as to which unit would respond. Th is is achieved through a mechanism called competition and 
neural networks which employ competition are called competitive neural nets.

Winner-takes-all is a form of competition where only one among a group of competing neurons has a 
non-zero output at the end of computation. However, quite oft en the long iterative process of competi-
tion is replaced with a simple search for the neuron with the largest input, or some other criteria, to select 
as the winner.

Th ere are various forms of learning by competitive nets. Maxnet, an elementary competitive net, does 
not require any training because its weights are fi xed and pre-determined. Learning Vector Quantization 
(LVQ) nets avail training pairs to learn and therefore, the learning is supervised. However, an important 
type of competitive nets called the self-organizing map (SOM) which groups data into clusters employs 
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unsupervised learning. A net employing unsupervised learning seeks to fi nd patterns, or regularity, in the 
input data. Adaptive Resonance Th eory (ART) nets are also clustering nets. 

Th ere are two methods to determine the closeness of a pattern vector to the weight vector. Th ese are, 
Euclidean distance, and the dot product. Th e largest dot product corresponds to the smallest angle be-
tween the input and the weight vector if they are both of unit length. 

Th e rest of this chapter presents brief discussions on four important competitive networks, viz., the 
Maxnet, Kohonen’s self-organizing maps, Learning Vector Quantization (LVQ) nets, and the Adaptive 
Resonance Th eory (ART) nets.

9.1 THE MAXNET 

MAXNET is the simplest artifi cial neural net that works on the principle of competition. It is a fully con-
nected network with symmetric interconnections and self-loops. Th e architecture of an m-unit MAX-
NET is shown in Fig. 9.1. It consists of m number of cluster units denoted as Y1,…, Ym. Each unit is 
directly connected to each other through a link. All the links have the same, fi xed, inhibitory weight −d. 
Each unit has a self-loop. Th e weight of a self-loop is 1. Each unit of a MAXNET represents a cluster. 
When the net is presented with an unknown pattern, the net iteratively modifi es the activations of its 
units until all units except one attain zero activation. Th e remaining unit with positive activation is the 
winner.

−δ −δ−δ

−δ−δ

−δ

−δ−δ

11

11

1

Y1YY

Y2YY

Y3YY

YmYY YiYY

Fig. 9.1. Architecture of an m-node MAXNET

9.1.1 Training a MAXNET

Th ere is no need to train a MAXNET because all weights are fi xed. While the self-loops have the weight 
1, other interconnection paths have the same inhibitory weight −d, where d has to satisfy the condition 

0 < d < 1
m

, m being the number of units in the net.

9.1.2 Application of MAXNET

During application, the MAXNET is presented with an input vector x = [x1,…, xm] by initializing the 
activation of the ith unit Yi by xi, for all i = 1 to m. It then iteratively updates the activations of the cluster 
units using the activation function
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 y o f y y in if yi in
otherwisei if y i iif yi in_out fi f _ )iniin ini

,=yyff )iniin ≥⎧
⎨
⎧⎧
⎩
⎨⎨

0
0  (9.1)

Algorithm MAXNET-Clustering
/* A MAXNET of size m, with cluster units Y1,…, Ym is given. All inter-

connection links have an inhibitory weight of −d and all self loops have 
weight 1. The given pattern x = [x1, …, xm] is to be clustered. */

Step 0.  Initialize the net inputs to the cluster units.

For i = 1 To m Do y_ini = xi

Step 1.  Compute the activation of each cluster unit.

For i = 1 To m Do y o f y y in if yi in
otherwisei if y i iif yi in_out fi f _ )iniin ini

,=yyff )iniin ≥⎧
⎨
⎧⎧
⎩
⎨⎨

0
0

Step 2.   Test for stopping condition. If all units except one have 0 
activation Then return the unit with non-zero activation as the 
winner. Stop. 

Step 3.  Update the net input to each cluster unit.

For i = 1 To m Do y in y out y outy out j
j i

y _y outy out ∑δ∑
Step 4.  Go to Step 1.

Fig. 9.2. Algorithm MAXNET Clustering

False

True

Begin

Initialize

Compute activations

Test for stopping
condition

Return winner

End

Compute net inputs

Fig. 9.3. Flow chart for MAXNET Clustering

Samir Roy_Chapter09.indd   301Samir Roy_Chapter09.indd   301 2/21/2013   3:30:23 PM2/21/2013   3:30:23 PM



302  Introduction to Soft Computing

Th e net input to a cluster unit Yi is computed as 

 y in y out y outy out j
j i

y _y outy out ∑δ∑  (9.2)

As the clustering process advances, more and more clustering units get deactivated (by attaining an acti-
vation of value 0) until all units except one are deactivated. Th e only one remaining positively activated 
unit is the winner. Th e procedure followed by MAXNET to identify the cluster to which a given pattern 
x = [x1,…, xm] belongs is described in Algorithm MAXNET-Clustering (Fig. 9.2). Fig. 9.3 pres-
ents a fl owchart of the procedure. Example 9.1 illustrates the procedure followed by a MAXNET.

Example 9.1   (Clustering by MAXNET)

Let us consider the 4-unit MAXNET shown in Fig. 9.4. Th e inhibitory weight is taken as d = 0.2 

which satisfi es the condition 0 < d < 1
4

. Th e input pattern x = [x1, x2, x3, x4] = [0.5, 0.8, 0.3, 0.6] is 

to be clustered. Th e step-by-step execution of Algorithm MAXNET-Clustering is given 

below.

–0.2

–0.2 –0.2 –0.2–0.2

–0.2

11

11

Y1YY Y2YY

Y3YY Y4YY

Fig. 9.4. A 4-unit MAXNET

Step 0. Initialize the net inputs to the cluster units.

y_in1 = 0.5, y_in2 = 0.8, y_in3 = 0.3, y_in4 = 0.6 

Iteration #1

Step 1. Compute the activation of each cluster unit.

y_out1 = 0.5, y_out2 = 0.8, y_out3 = 0.3, y_out4 = 0.6. 

Step 2.  Test for stopping condition. If all units except one have 
0 activation Then return the unit with non-zero activa-
tion as the winner. Stop. 

Th ere are four units with non-zero activations. Th erefore the stopping criterion (that 
all units except one have zero activations) is not satisfi ed. Hence, continue to Step 3.

Step 3. Update the net input to each cluster unit.

y in y out y out j
j

_y out_y
1

y outy out
≠

∑δ∑ = 0.5 − 0.2 × (0.8 + 0.3 + 0.6)
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= 0.5 − 0.2 × 1.7 = 0.5 − 0.34 = 0.16
Similarly, 

y_in2 = 0.8 − 0.2 × (0.5 + 0.3 + 0.6) = 0.8 − 0.28 = 0.52
y_in3 = 0.3 − 0.2 × (0.5 + 0.8 + 0.6) = 0.3 − 0.38 = − 0.08
y_in4 = 0.6 − 0.2 × (0.5 + 0.8 + 0.3) = 0.6 − 0.32 = 0.28

Step 4. Go to Step 1.

Iteration #2
Step 1. Compute the activation of each cluster unit.

y_out1 = 0.16, y_out2 = 0.52, y_out3 = 0, y_out4 = 0.28 

Step 2.  Test for stopping condition. If all units except one have 
0 activation Then return the unit with non-zero activation 
as the winner. Stop. 

Th ere are three units with non-zero activations. Th erefore the stopping criterion (that 
all units except one have zero activations) is not satisfi ed. Hence, continue to Step 3.

Step 3. Update the net input to each cluster unit.

y in y out y out j
j

_y out_y
1

y outy out
≠

∑δ∑ = 0.16 − 0.2 × (0.52 + 0 + 0.28) 

= 0.16 − 0.2 × 0.8 = 0.16 − 0.16 = 0 

Similarly, 
y_in2 = 0.432
y_in3 < 0
y_in4 = 0.144

Step 4. Go to Step 1.
Th e calculations till the net comes to a halt is shown in Table 9.1. We see that the net 
successfully identifi es the unit Y2 as having maximum input as all the other activations 
have been reduced to 0. Hence Y2 is the winner and the given input pattern is clustered 
to the cluster unit Y2.

Table 9.1. Clustering by MAXNET

# y_in y_out

y_in1 y_in2 y_in3 y_in4 y_out1 y_out2 y_out3 y_out4

0 0.5 0.8 0.3 0.6 0.5 0.8 0.3 0.6

1 0.16 0.52 < 0 0.28 0.16 0.52 0 0.28

2 0 0.432 < 0 0.144 0 0.432 0 0.144

3 < 0 0.403 < 0 0.058 0 0.403 0 0.058

4 < 0 0.391 < 0 < 0 0 0.391 0 0
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9.2 KOHONEN’S SELF-ORGANIZING MAP (SOM)

Kohonen’s self-organizing map (SOM) is a clustering neural net that works on the principle of winner-
takes-all. Th e unique feature of Kohonen’s self-organizing map is the existence of a topological structure 
among the cluster units. It is assumed that the output (or, cluster) units are arranged in one- or two-dimen-
sional arrays. Given a cluster unit Yj, its neighborhood of radius R is the set of all units within a distance of R 
around Yj. Th e idea is, patterns close to each other should be mapped to clusters with physical proximity. 

A SOM that is used to cluster patterns of length m into n clusters should have m number of input 
units and n number of output, or cluster, units. Th e number of clusters is restricted by the number 
of output units n. Learning takes place with the help of a given set of patterns, and the given number 
of clusters into which the patterns are to be clustered. Initially, the clusters are unknown, i.e., the 
knowledge about the patterns that form a particular cluster, or the cluster to which a pattern belongs, 
is absent at the beginning. During the clustering process, the network organizes itself gradually so 
that patterns those are close to each other form a cluster. Hence, the learning here is unsupervised. 
Th e weight vector associated with a cluster unit acts as the exemplar for all patterns belonging to the 
cluster. During training, the cluster unit whose weight vector is closest to the given input pattern is 
the winner. Th e weight vectors of all cluster units in the neighborhood of the winner are updated.

Let s1, s2, …, sp be a set of p number of patterns of the form si = [xi1, xi2, …, xim], to be clustered into n 
clusters C1, C2, …, Cn. Th e subsequent neural net architecture and algorithm enables a Kohonen’s SOM 
to accomplish the clustering task stated above.

9.2.1 SOM Architecture

Th e architecture of a SOM is shown in Fig. 9.5. It consists of m input units X1, X2, …, Xm and n output units 
Y1, Y2, …, Yn. Each input unit Xi is connected to each output unit Yj through an edge with weight wij. Each 
output unit represents a cluster and these cluster units may be arranged in one, or two, dimensional arrays. 
Th e topological neighbourhood of a cluster unit in the Kohonen’s SOM is shown in Fig. 9.6. Fig. 9.6(a), (b), 
and (c) show 0, 1, 2 neighbourhood of a given cluster (represented as ⊗) in one and two dimensional array.

x1xx

xixx

xmxx XmXX

XiXX

: :

: :

X1XX

wiww j
wiww n

wmww 1

wmww j

wmww n

w1 ww j

w1ww 1
C1

C2CC

C3CC

w1ww n

wiww 1

YjYY

YnYY

Y1YY

Fig. 9.5. Architecture of an m-input n-output SOM net

|←|| R = 0 →|
|←⎯|| ⎯⎯⎯

⎯ ⎯⎯⎯ ⎯⎯⎯ ⎯⎯⎯

R = 1 ⎯⎯→⎯⎯ |→→

|←⎯⎯|| R = 2 |⎯⎯⎯⎯⎯⎯⎯ ←←⎯⎯
(a) 0, 1, 2 neighbourhood in one dimension

( )[ ]

Fig. 9.6. Neighbourhood of a cluster unit in SOM
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2 neighbourhood

1 neighbourhood

0 neighbourhood

(b) 0, 1, 2 neighbourhood in two dimensional rectangular grid

⊗

2 neighbourhood

1 neighbourhood

0 neighbourhood

(c) 0, 1, 2 neighbourhood in two dimensional hexagonal grid

⊗

⊗

Fig. 9.6. (Continued)

Algorithm Learning-by-SOM

/* Given a SOM with m input units X1, X2, …, Xm and n output units Y1, Y2, …, 
Yn. It is to be trained with a set of p number of patterns s1, s2, …, sp. */

Step 0. Initialize

i) weight matrix, i.e., wij for all i and j
ii) Topological neighbourhood R
iii) Learning rate h.

Step 1. While stopping condition is not satisfied 
Do Steps 2-8.

Step 2. For each training vector si Do Step 3 to 5.

Step 3. For each exemplar /code vector w*j 
Do find the distance D(j) between si and w*j.

D j i iji
i

( )j ( )x wi iw ji(x=∑ 2

Step 4. Find index J so that D(J) is minimum.

Step 5.  Update the weights of all units within the specified neighbour-
hood of J. 

For all J, such that J − R ≤ j ≤ J + R Do 
For all i = 1 to m Do

w w ld oldij ij i iji( )new ( )old [ (x wi iw ji )]= +w ( )old ×[xη
Step 6. Update the learning rate, h = k × h, 0 < k < 1.
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Step 7. If required, reduce R.

Step 8.  Test whether the stopping condition is satisfied or not.

Fig. 9.7. Algorithm Learning-by-SOM

9.2.2 Learning by Kohonen’s SOM

Let { s1, s2, …, sp} be the set of training patterns where each si = [xi1, xi2, …, xim]  is an m-dimensional vec-
tor. Learning by the SOM net starts with initializing the weights, the topological neighbourhood param-
eters, and the learning rate parameters. As mentioned earlier, SOM employs winner-takes-all strategy to 
organize itself into the desired clusters. Th e weight vector associated with a cluster unit represents an ex-
emplar, or code-vector. Training takes place through a number of epochs. During an epoch of training, 
each training vector is compared with the exemplars and its distance from each exemplar is calculated. 
Th e cluster unit with least distance is the winner. Th e weight vector of the winner, along with the weight 
vectors of all units in its neighbourhood, is updated. Aft er each epoch, the learning rate, and if necessary, 
the topological neighbourhood parameter, are updated. Th e learning algorithm is presented in Algo-
rithm Learning-by-SOM (Fig. 9.7). Th e corresponding fl owchart is given in Fig. 9.8.

False

True

False

True

Begin

Initialize

Test for stopping
condition

Take a new training vector s ∈ {s1, …, sp}

End

Find the distance D( j )  of s from the code-vectors

Identify J such that D(J )  is minimal among all distances

Update weights of the code-vector
for Yj YY and all code-vectors in the

neighbourhood of YjYY

No more training
vector?

Change learning rate h andh
neighbourhood R, if required

Fig. 9.8. Flow chart for SOM learning
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9.2.3 Application 

During application, the input pattern is compared with the exemplar/code vector in terms of the dis-
tance between them. Th e cluster unit whose code vector is at a least distance from the input pattern is 
the winner. Th e input pattern belongs to the corresponding cluster.

Th e learning and application process of Kohonen’s self-organizing map are illustrated in Example 9.2 
and Problem 9.1 in the Solved Problems section respectively.

Example 9.2  (Learning by Kohonen’s self-organizing map)

Suppose there are four patterns s1 = [1, 0, 0], s2 = [0, 0, 1], s3 = [1, 1, 0] and s4 = [0, 1, 1] to be clus-
tered into two clusters. Th e target SOM, as shown in Fig. 9.9, consists of three input units and two 
output units.

x1xx

x2xx

x3xx X3XX

X2XX

X1XX

Y1YY

C1

C2CC
Y2YY

w11ww

w12ww

w21ww

w22ww

w32ww

w31ww

Fig. 9.9. Target SOM network

Th e exemplar, or code-vector, for the clusters C1 and C2, represented by the cluster units Y1 and Y2 
respectively, are given by the 1st and the 2nd column of the weight matrix

W
w w
w w
w w

=
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

11 12

21 22

31 32

Hence W*1 = [w11, w21, w31]T and W*2 = [w12, w22, w32]T are the code-vectors for the clusters C1 and 
C2 respectively. Now les us denote the input vectors as s1 = [1, 0, 0], s2 = [0, 0, 1], s3 = [1, 1, 0] and 
s4 = [0, 1, 1]. Th e successive steps of the learning process are described below.

Step 0. Initialize

 (i) Weight matrix W is randomly initialized as 

W =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

.

.

.

5 3.
8 5.
4 3.

 (ii)  Topological neighbourhood is initialized to R = 0, because there are only two 
cluster units.

 (iii)  Learning rate h = 0.8. It will be geometrically decreased with a factor of 0.5 aft er 
each epoch of training.
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Step 1. While stopping condition is not satisfied 

 Do Steps 2-8.

When the weight adjustment Δwij < 0.01 the net is assumed to have converged. Initially 
the stopping condition is obviously false. Hence we continue to Step 2.

Step 2. For each training vector si Do Step 3 to 5.

We start training with the fi rst vector s1 = [1, 0, 0]. 

Step 3. For each exemplar /code vector w*j 
Do find the distance D(j) between si and w*j.

D j i iji
i

( )j ( )x wi iw ji(x=∑ 2

D (1) = distance between s1 and W*1

 = (1 − 0.5)2 + (0 − 0.8)2 + (0 − 0.4)2

 = 0.25 + 0.64 + 0.16
 = 1.05

D (2) = distance between s1 and W*2

 = (1 − 0.3)2 + (0 − 0.5)2 + (0 − 0.3)2

 = 0.49 + 0.25 + 0.09
 = 0.83

Step 4. Find index J so that D(J) is minimum.

Since, D (2) < D (1), s1 is closer to C2, and Y2 is the winner. Th erefore, the code vector 
W*2 is to be adjusted. 

Step 5.  Update the weights of all units within the specified 
neighbourhood of J. 

For all J, such that J − R ≤ j ≤ J + R Do 
For all i = 1 to m Do

w w ld oldij ij i iji( )new ( )old [ (x wi iw ji )]= +w ( )old ×[xη

Since R = 0, we need to adjust the weight vector of the winner only.
w12 (new) = w12 (old) + h × (x1 − w12 (old))

 = 0.3 + 0.8 × (1 − 0.3) 
 = 0.3 + 0.8 × 0.7
 = 0.86

w22 (new) = w22 (old) + h × (x2 – w22 (old))
 = 0.5 + 0.8 × (0 − 0.5) 
 = 0.5 − 0.4
 = 0.1
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w32 (new) = w32 (old) + h × (x3 – w32 (old))

 = 0.3 + 0.8 × (0 − 0.3) 

 = 0.3 − 0.24
 = 0.06

Hence, the weight matrix aft er training with the 1st input vector in the 1st epoch is 

W =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

0 5 0 86
0 8 0 1
0 4 0 06

. .5 0

. .8 0

. .4 0

We now proceed to train the SOM with the second pattern.

Step 2.  For each training vector si Do Step 3 to 5.

Aft er training with the fi rst vector s1 = [1, 0, 0], we proceed with the second pattern 
s2 = [0, 0, 1]. 

Step 3. For each exemplar /code vector w*j 

Do find the distance D(j) between si and w*j.

D j i iji
i

( )j ( )x wi iw ji(x=∑ 2

D (1) = distance between s2 and W*1

 = (0 − 0.5)2 + (0 − 0.8)2 + (1 − 0.4)2

 = 0.25 + 0.64 + 0.36
 = 1.25

D (2) = distance between s2 and W*2

 = (0 − 0.86)2 + (0 − 0.1)2 + (1 − 0.06)2

 = 0.74 + 0.01 + 0.88
 = 1.63

Step 4. Find index J so that D(J) is minimum.

Since, D (1) < D (2), s2 is closer to C1, and Y1 is the winner. Th erefore, the code vector 
W*1 is to be adjusted. 

Step 5.  Update the weights of all units within the specified 
neighbourhood of J. 

For all J, such that J − R ≤ j ≤ J + R Do 
For all i = 1 to m Do

w ld oldij ij i iji( )new ( )old [ (x wi iw ji )]= +w ( )old ×[xη

Since R = 0, we need to adjust the weight vector of the winner only.
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w11 (new) = w11 (old) + h × (x1 − w11 (old))

 = 0.5 + 0.8 × (0 − 0.5) 

 = 0.5 − 0.8 × 0.5
 = 0.1

w21 (new) = w21 (old) + h × (x2 – w21 (old))

 = 0.8 + 0.8 × (0 − 0.8) 

 = 0.8 − 0.64
 = 0.16

w31 (new) = w31 (old) + h × (x3 – w31 (old))

 = 0.4 + 0.8 × (1 − 0.4) 
 = 0.4 + 0.48
 = 0.88
Hence, the weight matrix W aft er training with the second vector in the fi rst epoch is 

W =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

0 1 0 86
0 16 0 1
0 88 0 06

. .1 0

. .16 0

. .88 0

In this way learning with the rest of the patterns s3 = [1, 1, 0] and s4 = [0, 1, 1] takes place by repeating 
Steps 3–5. Table 9.2 shows the outline of learning during the fi rst epoch.

Table 9.2. Learning by the SOM during the fi rst epoch

# Training Patterns
s = (x1, x2, x3)  

Squared 
Euclidean 
Distance

Winner New Code Vectors

D(1) D(2) C1  (w11,w21,w31) C2 (w12,w22,w32)

0 (0.5, 0.8, 0.4) (0.3, 0.5, 0.3)

1 s1 = (1, 0, 0) 1.05 0.82 C2 No change (0.86, 0.1, 0.06)

2 s2 = (0, 0, 1) 1.25 1.63 C1 (0.1, 0.16, 0.88) No change

3 s3 = (1, 1, 0) 2.29 1.71 C2 No change (0.97, 0.82, 0.01) 

4 s4 = (0, 1, 1) 1.53 1.95 C1 (0.02, 0.83, 0.98) No change

So, code-vector W*2 gets modifi ed as a result of training with the patterns s1 and s3 while training with 
the patterns s2 and s4 results in adjustment of the code-vector W*1. 
Th e weight matrix obtained aft er the fi rst epoch is

W1WW
0 02 0 97
0 83 0 82
0 98 0 01

=
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

. .02 0

. .83 0
.98 0
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On further computation, the weight matrix aft er the second epoch becomes

W2WW
0 01 0 99
0 7 0 7
0 99 0

=
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

. .01 0

. .7 0

Th e training process converges aft er 19 epochs when the weight matrix becomes (approximately)

W19WW
0 1
0 6 0 6
1 0

=
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

. .6 0

Fig. 9.10 shows the SOM obtained for the given clustering problem.

x1xx

x2xx

x3xx X3XX

X2XX

X1XX

Y1YY

C1

C2CC
Y2YY

0

1

0.6

0.6

0

1

Fig. 9.10. Resultant net after training

9.3 LEARNING VECTOR QUANTIZATION (LVQ) 

Another pattern clustering net based on the winner-takes-all strategy is Learning Vector Quantization 
(LVQ) nets. However, unlike Kohonen’s SOM, LVQ follows supervised learning, instead of unsuper-
vised learning. Th e architecture of LVQ is essentially same as that of SOM except that the concept of 
topological neighbourhood is absent here. Th ere are as many input units as the number of components 
in the input patterns and each output unit represents a known cluster. Th e details of LVQ learning are 
described below.

9.3.1 LVQ Learning

LVQ nets undergo a supervised learning process. Th e training set consists of a number of training 
vectors, each of which is designated with a known cluster. Aft er initializing the weight matrix of the 
LVQ net, it undergoes training through a number of epochs. During each epoch, the weights are 
adjusted to accommodate the training vectors on the basis of their known clusters. Th e objective is 
to fi nd the output unit that is closest to the input vector. In order to ensure this the algorithm fi nds 
the code vector w closest to the input vector s. If s and w map to the same cluster, then w is moved 
closer to s. Otherwise, w is moved away from x. Let t be the cluster for the training vector s, and Cj 
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be the cluster represented by Yj, the jth output unit of the LVQ net. Th e procedure followed by LVQ 
learning is presented in Algorithm LVQ-Learning (Fig. 9.11). Fig. 9.12 presents the LVQ 
learning process in fl owchart form.

Algorithm LVQ-Learning

/* There are p number of m-dimensional training patterns s1, s2, …, sp,and 
n number of clusters C1, …, Cn. The training set consists of the pairs (s1, 
t1), (s2, t2), …, (sp, tp)  where  the pair (si, ti) indicates that pattern si 
belongs to cluster ti ∈ { C1, …, Cn}. We have to make an m-input n-output LVQ 
net learn these training set. */

Step 0. Initialize

i) The weight matrix, i.e., wij for all i and j. A simple 
technique is to select one training vector from each 
known cluster and assign them directly to the columns of 
the weight matrix so that each of them becomes a code 
vector. Rest of the input patterns are used for train-
ing.)

ii) The learning rate.

Step 1. While stopping condition is not satisfied Do 
Step 2 to Step 7.

Step 2. For each input training vector s Do Steps 3 to Step 5.

Step 3.  Find the distance D(j) of s from each exemplar / code-vector 
W*j.

D j i ij
i

m

)j ( )x wi iw j= (x
=

∑ 2

1

Step 4. Find the index J for which D(J) is minimum.

Step 5. Update code-vector W*J. 

If t = = Cj Then /* bring Cj closer to s */

w oldJ J jw*J e( )newnewnew ( )old( )ld [ (s w j* )]= +w J*ww ( )old × [sη

Else /* take Cj away from s */

w w oldJ J jw*J e( )newnewnew ( )old( )old [ (s w j* )]= −w J*ww ( )old × [sη

Step 6. Reduce the learning rate, h = k × h, 0 < k < 1.

Step 7. Test for stopping condition.

Fig. 9.11. Algorithm LVQ-Learning
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False

True False

True

Begin

Initialize

Test for stopping
condition

Take a new training vector s ∈{s1, …, sp}
with designated cluster t.tt

End

Find the distance D( j ) of s
from the code-vectors

Identify J such that D(J ) is
minimal among all distances

t = = CJC ?

Reduce
learning rate

Bring CJ C closer to s Take CJ C away from s

True FalseNo more
training pattern?

Fig. 9.12. Flow chart for LVQ Learning

9.3.2 Application 

During application, the input pattern is compared with the exemplar/code vector in terms of the dis-
tance between them. Th e cluster unit whose code vector is at a least distance from the input pattern is 
the winner. Th e input pattern belongs to the corresponding cluster.

Th e learning and application process of LVQ nets are illustrated in Examples 9.3 and 9.4 respectively.
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Example 9.3  (Learning by LVQ net)

Five patterns and their corresponding designated clusters are given in Table 9.3. A neural net 
is to be obtained through Learning Vector Quantization (LVQ) method for the given set of 
vectors.

As there are 4 components in the training vectors and two clusters, the target net shall have 4 
inputs and 2 cluster units. Th e exemplars, or code vectors, are initialized with the input vectors 1 
and 4. Th e rest of the vectors, i.e., 2, 3, 5 are used for training. Fig. 9.13 shows the initial situation. 
Subsequent steps of the learning process are described below.

Table 9.3. Training set

# Training Vector
s = [x1,  x2,  x3,  x2]  

Cluster

1 s1 = [1, 0, 0, 0] C1

2 s2 = [0, 1, 0, 0] C1

3 s3 = [1, 1, 0, 0] C1

4 s4 = [0, 0, 0, 1] C2

5 s5 = [0, 0, 1, 1] C2

x1xx

x2xx

x3xx X3XX

X2XX

X1XX

x4xx X4XX

Y1YY
C1

s2s = [0, 1, 0, 0] : Cluster C1
s3s = [1, 1, 0, 0] : Cluster C1
s5s = [0, 0, 1, 1] : Cluster C2CC

Training Vectors :
C2CC

Y2YY

1

0

0

0

0

0
0

1

W =

w11ww

w21ww

w31ww

w41ww w42ww

w32ww

w22ww

w12ww

=

1

0

0
0

0

0

0
1

Fig. 9.13. Initial confi guration

Step 0. Initialize the weight matrix, and the learning rate.

Th e weight matrix is initialized with the patterns s1 = [1, 0, 0, 0] and s4 = [0, 0, 0, 1]. 
Th e resultant weight vector is shown in Fig. 9.13. We fi x the learning rate h = 0.2 and 
decrease it geometrically aft er each iteration by a factor of 0.5. 

Step 1. While stopping condition is not satisfied Do 
Step 2 to Step 7.
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We stop when the process converges, i.e., there is no perceptible change in the code 
vectors. Obviously, initially the stopping condition is false.

Step 2. For each input training vector s Do Step 3 to Step 5.
Th e fi rst training vector is s2 = [0, 1, 0, 0] that maps to cluster C1. 

Step 3.  Find the distance D(j) of s from each exemplar / code-
vector W*j.

i iji
i

m

( )j ( )x wi iw ji= (x
=
∑ 2

1

Th e distance of s2 = (0, 1, 0, 0) from the two code-vectors are calculated. 

D

D x

i i
i

i

( ) ( )i i( ) ( ) ( ) ( ) ( )

( ) (

( )x wi iw ( ) ( ) ( ) ( 2)1
2

1

4
2 2 2 2( ) ( )( ) ( )xi ( (( (( ((

−xi

=
∑

wwi
i

2
2

1

4
2 2 2 20 0 1 0 0 0 0 1 2) (2 ) (2 ) (2 ) (2 )

=
∑∑ 0( 1( 0( 0( =

Step 4. Find the index J for which D(J) is minimum.

As D(1) = D(2), we  resolve the tie by arbitrarily selecting J = 2. 

Step 5. Update code-vector W*J.

If t = = Cj Then /* bring Cj closer to s */

w ld oldJ Jw j( )newnewnewnew ( )old [ (s w j* )]= +wwww ( )old ×[sη

Else   /* take Cj away from s */

w w ld oldJ Jw jw( )newnewnewnew ( )old [ (s w j* )]= −www )old ×[sη

As per Table 9.4, t = C1 and therefore, t ≠ Cj here. Hence, the code vector W*2 should be 
moved away from the training pattern s2 = (0, 1, 0, 0) . Th erefore,

w12(new) = w12(old) − h × [x1 – w12(old)]

 = 0 − 0.2 × (0 − 0)

 = 0. 

w22(new) = w22(old) − h × [x2 – w22(old)]

 = 0 − 0.2 × (1 − 0)

 = −0.2 

Similarly, w32(new) = 0, and w42(new) = 1.2.
Hence the new weight matrix is,
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W

w w
w w
w w
w w
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We now go back to Step 2 to train the net with the next training pattern.

Step 2. For each input training vector s Do Steps 3 to Step 5.
Th e second training pattern is s3 = [1, 1, 0, 0] that maps to cluster C1. 

Step 3.  Find the distance D(j) of s from each exemplar / code-
vector W*j.

D j i iji
i

m

( )j ( )x wi iw ji= (x
=
∑ 2

1

Th e distance of s3 = [1, 1, 0, 0] from the two code-vectors are calculated. 

D

D x

i i
i

i

( ) ( )xi iw( ) ( ) ( ) ( ) ( )

( ) (

)x wi iw ( ) ( ) ( ) ( 1)1
2

1

4
2 2 2 2( ) ( )( ) ( )xi ( (( (( ((

−xi

=
∑

wwi
i

2
2

1

4
2 2 2 21 0 1 0 2 2 2 88) (2 ) (2 . )2 ( )0 0 ( .0 1 ) .2 3

=
∑∑ 1( 1( 0 0

Step 4. Find the index J for which D(J) is minimum.

As D(1) < D(2), J = 1. 

Step 5. Update code-vector W*J. 

If t = = Cj Then /* bring Cj closer to s */

w ld oldJ Jw j( )newnewnewnew ( )old [ (s w j* )]= +wwww ( )old ×[sη

Else /* take Cj away from s */

w w ld oldJ Jw jw( )newnewnewnew ( )old [ (s w j* )]= −www )old ×[sη

As per Table 9.4, t = C1 and therefore, t = Cj here. Hence, the code vector W*1 should be 
moved closer to the training pattern s3 = [1, 1, 0, 0]. Th erefore,

w11(new) = w11(old) + h × [x1 – w11(old)]

 = 1 − 0.2 × (1 − 1)
 = 1 

w21(new) = w21(old) + h × [x2 – w21(old)]

 = 0 + 0.2 × (1 − 0)
 = 0.2  

Similarly, w31(new) = 0, and w41(new) = 0.
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Hence the new weight matrix is,

W

w w
w w
w w
w w
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Th e calculations go on in this way. Details of the training during the fi rst epoch are shown in 
Table 9.4.

Table 9.4. First epoch of LVQ learning

# Training 
Pattern
(s) 

Squared 
Euclidean 
Distance

Winner Desi-
gnated 
cluster

New Code Vectors

D(1) D(2) C1 C2

0 (1, 0, 0, 0,) (0, 0, 0, 1)

1 (0, 1, 0, 0) 2 2 C2 C1 - (0, −.2, 0, 1.2) 

2 (1, 1, 0, 0) 1 3.88 C1 C1 (1, .2, 0, 0) -

3 (0, 0, 1, 1) 3.04 1.08 C2 C2 - (0, −.16, .2, .16) 

Hence, the weight matrix aft er the fi rst epoch is

W

w w
w w
w w
w w

1WW

11 12

21 22

31 32

41 42

1 0
0 2 0 16
0 0 2
0 1
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. 6166
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Th rough calculations we see that the weight matrices W2 and W3 aft er the second and the third epoch, 
respectively, take the forms

W W2 3W WW W

0 91 0
0 352 0 144
0 0 28
0 1 14

0 871 0
0 415 0−

⎡
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⎢
⎡⎡
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⎢
⎢⎣⎣
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⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎦⎦
⎥⎥

=
−. .352 0

.
.

.

. .415 0..
.
.

137
0 0 316
0 1 14

⎡
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⎢
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Th e process takes 12 epochs to converge, when the weight matrix becomes

W =
−

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

0 836 0
0 471 0 13
0 0 35
0 1 13

.

. .471 0
.
.

Hence the code vectors arrived at are W*1 = [0.836, 0.471, 0, 0]T, and W*2 = [0, −0.13, 0.35, 1.13]T rep-
resenting the clusters C1 and C2, respectively. Fig. 9.14 shows the LVQ net obtained.
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x1xx

x2xx

x3xx X3XX

X2XX

X1XX

x4xx X4XX

Y1YY C1

C2CCY2YY

0.836

0

0.471

−0.13
0

0.3
0

1.13

Fig. 9.14. Final LVQ net obtained

Example 9.4  (Clustering application of LVQ net)

Th e LVQ net constructed in Example 9.3 can now be tested with the input patterns given in Table 
9.3. Moreover, we apply a new input pattern s = [1, 1, 1, 0] which is to be clustered by the resultant 
net. Th e clustering method is rather simple and is based on the principle of the winner-takes-all. 
It consists of fi nding the distance of the given input pattern from each of the code vectors. Th e 
nearest code vector, i.e., the code vector have least distance, is the winner. Table 9.5 presents the 
summary of calculations for these patterns. 

Results shown in Table 9.5 reveal that the LVQ net arrived at through the aforesaid learning 
process is working correctly. All the input patterns are clustered by the net in expected manner. 
Clusters returned by the net for patterns s1 to s5 match with their designated clusters in the train-
ing data. Th e new pattern s = [1, 1, 1, 0] is placed in cluster C1. Th is is expected because this pat-
tern has greater similarity with patterns s1, s2, and s3, than with the rest of the patterns s4 and s5.

Table 9.5. Clustering application of LVQ net

# Input Pattern Squared Euclidean Distance Winner

D(1) D(2)

1 (1, 0, 0, 0) 0.249 2.416 C1

2 (0, 1, 0, 0) 0.979 2.676 C1

3 (1, 1, 0, 0) 0.805 3.676 C1

4 (0, 0, 0, 1) 1.921 0.156 C2

5 (0, 0, 1, 1) 2.921 0.456 C2

6 (1, 1, 1, 0) 1.805 3.976 C1

9.4 ADAPTIVE RESONANCE THEORY (ART) 

Adaptive Resonance Th eory (ART) nets were introduced by Carpenter and Grossberg (1987, 1991) to 
resolve the so called stability-plasticity dilemma. ART nets learn through unsupervised learning where 
the input patterns may be presented in any order. Moreover, ART nets allow the user to control the de-
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gree of similarity among the patterns placed in the same cluster. It provides a mechanism to include a 
new cluster unit for an input pattern which is suffi  ciently diff erent from all the exemplars of the clusters 
corresponding to the existing cluster units. Hence, unlike other ANNs, ART nets are capable of adaptive 
expansion of the output layer of clustering units subject to some upper bound.

9.4.1 The Stability-Plasticity Dilemma

Usually, a neural net is trained with the help of a training set of fi xed number of patterns. Learning by 
the net is accomplished through a number of epochs, where each epoch consists of application of the 
training patterns in a certain sequence and making suitable adjustments in the interconnection weights 
under the infl uence of each of these training patterns.

Depending on the number of epochs of training, a training pattern is presented to the net multiple 
times. As the interconnection weights of a net change with each pattern during learning, a training pattern 
that is placed in a cluster may be placed on a diff erent cluster later on. Th erefore, a training pattern may os-
cillate among the clusters during net learning. In this situation, the net is said to be unstable. Hence, a net 
is said to be stable if it attains the interconnection weights (i.e., the exemplars) which prevent the training 
patterns from oscillating among the clusters. Usually, stability is achieved by a net by monotonically de-
creasing the learning rate as it is subjected to the same set of training patterns over and over again.

However, while attaining stability in the way mentioned above, the net may lose the capacity to read-
ily learn a pattern presented for the fi rst time to the net aft er a number of epochs have already taken 
place. In other words, as the net attains stability, it loses plasticity. By plasticity of a net we mean its 
readiness to learn a new pattern equally well at any stage of training.

ART nets are designed to be stable as well as plastic. It employs a feedback mechanism to enable the 
net learn a new pattern at any stage of learning without jeopardizing the patterns already learnt. Th ere-
fore, practically, it is able to switch automatically between the stable and plastic mode.

9.4.2 Features of ART Nets

Th e main features of ART nets are summarized below. 
 (i)  ART nets follow unsupervised learning where the training patterns may be presented in any order.
 (ii)  ART nets allow the user to control the degree of similarity of patterns placed on the same 

cluster. Th e decision is taken on the basis of the relative similarity of an input pattern to a 
code-vector (or, exemplar), rather than the distance between them.

 (iii)  Th ere is scope for inclusion of additional cluster units during the learning phase. If an input 
pattern is found to be suffi  ciently diff erent from the code-vector of the existing clusters, a new 
cluster unit is introduced and the concerned input vector is placed on this new cluster.

 (iv)  ART nets try to solve the stability-plasticity dilemma with the help of a feedback mechanism 
between it’s two layers of processing units one of which is the processing layer while the other 
is the output, or the competitive clustering layer. Th e feedback mechanism empowers the net 
to learn new information without destroying old information. Hence the system is capable of 
automatically switching between stability and plasticity.

 (v)  ART nets are able to learn only in their resonant states. Th e ART net is in resonant state when 
the current input vector matches the winner code-vector (exemplar) so close that a reset signal 
is not generated. Th e reset signal inhibits the ART to learn.

 (vi)  Th ere are two kinds of ARTs, viz., ART1 and ART2. ART1 works on binary patterns and ART2 
is designed for patterns with real, or continuous, values. 
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9.4.3 ART 1

As stated earlier, ART1 is designed to cluster binary input patterns.  It provides the user the power to 
control the degree of similarity among the patterns belonging to the same cluster.  Th is is achieved with 
the help of the so called vigilance parameter r. One important feature of ART1 is, it allows the training 
patterns to be presented in any order.  Moreover, the number of patterns used for training is not neces-
sarily known in advance.  Hence, a pattern may be presented to the net for the fi rst time at an interme-
diate stage of ART1 learning.  Th e architecture and learning technique of ART1 nets are given below.

Architecture Fig. 9.15 shows a simplifi ed view of the structure of an m-input n-output (expand-
able) ART1 net.  It includes the following constituent parts : 

A combination of two layers of neurons, known together as the 1. comparison layer, and symboli-
cally expressed as the F1 layer
An output, or clustering, layer of neurons known as the 2. recognition layer, referred to as the F2 
layer.  Th is is the competitive layer of the net.  
A 3. reset unit R.
Various interconnections.  4. 

Th e comparison layer includes two layers of neurons, the Input Layer F1(a) consisting of the units S1, S2, 
…, S m and the Interface Layer F1(b) with the units X1, X2, …, Xm.  Th e input layer F1(a) do not process the 
input pattern but simply pass it on to be interface layer F1(b).  Each unit Si of F1(a) layer is connected to 
the corresponding unit Xi of the interface layer.  

Bottom-up weights bi ,
i = 1, 2, …, m, and
j = 1, 2, …, n.

Top-down weights t ji,
j = 1, 2, …, n, and
i = 1, 2, …, m. t ji ∈{0, 1}

Y1YY YjYY YnYY

X1XX XiXX XmXX

S1 Si Sm

R

Fig. 9.15. Simplifi ed ART1 architecture

Th e role of the interface layer F1(b) is to broadcast the input pattern to the recognition layer F2.  More-
over, the F1(b) layer takes  part in comparing the input pattern with the winning code-vector.  If the input 
pattern and the winning code-vector matches suffi  ciently closely, which is determined with the help of 
the vigilance parameter r, the winning cluster unit is allowed to learn the pattern. Otherwise, the reset 
signal is switched on, and the cluster unit is inhibited to learn the input pattern.  
Th e recognition layer F2 is the competitive layer of ART1.  Each unit of F2 represents a distinct cluster.  As 
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ART1 provides scope for expansion of the number of clusters, the number of units in the F2 layer is not 
fi xed.  While the net is learning a pattern, an F2 unit may be in any one of the three states, viz., active, 
inactive, and inhibited.  Th ese states are described below:  

Active Th e unit is ‘on’ and has a positive activation.  For ART1, the activation is 1, and for 
ART2, it is between 0 and 1.

Inactive Th e unit is ‘off ’ and activation = 0.  However, the unit takes part in competition.
Inhibited Th e unit is ‘off ’ and activation = 0. Moreover, it is not allowed to further participate in a 

competition during the learning process with the current input pattern.
Th e reset unit R is used to control vigilance matching.  It receives excitatory signals from F1(a) units that are 
on and inhibitory signals from F1(b) units that are on. Depending on whether suffi  cient number of F1(b) 
interface units are on, which is determined with the help of the vigilance parameter set by the user, the reset 
unit R is either not fi red, or fi red.  In case the reset unit R fi res, the active F2 clustering unit is inhibited. 

Th ere are various kinds of interconnections in ART1.  Each F1(a)  input unit Si is connected to the cor-
responding F1(b) interface unit Xi.  Th ere are two types of interconnections between the interface layer 
F1(b) and the recognition layer F2.  Th e botton-up interconnections are directed from the F1(b) units to 
F2 units.  Each bottom-up interconnection has an weight bij, i = 1, …, m and j =1,…, n.  Similarly, each F2 
unit Yj is connected to each F1(b) unit Xi with the help of a top-down interconnection with weight tji, j = 
1, …, n and i = 1, …, m.  While the bottom-up weights are real valued, the top-down weights are binary. 
Th e notations used here relating to ART1 are given in Table 9.6.  

Table 9.6. Notational conventions

L Learning parameter

m Number of input units (components in the input pattern)

n Maximum number of cluster units (units at layer F2)
bij Bottom-up weight from F1(b) unit Xi to F2 unit Yj, bij is real valued

tji Top-down weight from F2 unit Yj to F1(b) unit Xi, tji is binary

r Vigilance parameter

s Training pattern (binary), s = [s1, s2, …, sm]

x x = [x1, x2, …, xm] is the activation vector at the F1(b) layer

|| x || Norm of vector x, x xi
i

m

=
∑

1

Learning As stated earlier, ART1 adopts unsupervised learning for clustering binary patterns.  It 
permits the training set of patterns to be presented in any order. Th e number of clustering units in the 
recognition layer is fl exible. If the net fi nds a pattern suffi  ciently diff erent from existing clusters, a new 
cluster unit is incorporated at the output layer and the concerned pattern is placed in that cluster.  

Learning a pattern starts by presenting the pattern to the F1(a) layer which passes it on to the F1(b) 
layer. F1(b) layer sends it to the F2 layer through the bottom-up interconnection paths. Th e F2 units com-
pute the net inputs to them.  Th e unit with the largest net input is the winner and has an activation of 
1.  All other F2 units have 0 activations.  Th e winning F2 unit is the candidate to learn the input pattern.  
However, it is allowed to do so only if the input pattern is suffi  ciently close to this cluster.
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Algorithm ART1-Learning

Step 0.  Initialize the learning parameters and the interconnection 
weights

L

b L
L m

t forff all i to m j to nij j

> < ≤

< =forff all i

1 0 1

0 bij<bij 1 1to m j=

, ,< ≤0 1

( )0 , t

ρ

Step 1.  Do Steps 2 to 14 While stopping criteria is not satisfied.

Step 2. For each training pattern s Do Steps 3 to 13.

Step 3.  Apply the input pattern s to F1(a) layer, i.e., set the activations 
of the F1(a) units to the input training pattern s.

Step 4. Set the activations of F2 layer to all 0.

Step 5. Find the norm of s.

s si
i

m

=
∑

1

Step 6.  Propagate input from F1(a) layer to interface layer F1(b) so 
that xi = si, for all i = 1 to m.

Step 7.  Compute the net inputs to each uninhibited unit of the F2 
layer.

For j = 1 To n Do 

If yj ≠ −1 Then xj ib j ixi
i

m

×bib ji
=
∑

1

Step 8. While reset is True Do Steps 9 To 12.

Step 9.  If yj = −1 for all cluster units, then all of them are inhibited 
and the pattern cannot be learnt by the net. Otherwise, find 
the J such that yJ ≥ yj for all j = 1 to n. Then the Jth cluster 
unit is the winner. In case of a tie, take the smallest J.

Step 10. Update x : xi = si×tJi for all i =1 to m.

Step 11. Find the norm of x : x xi
i

m

=
∑

1

Step 12.  Test for Reset : If 
x
s

<ρ  Then inhibit the Jth cluster unit by 

setting yJ = −1. Go To Step 8. Otherwise 
x
s

≥ρ and proceed to 

Step 13.
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Step 13.  Update the weights (top-down and bottom-up) attached to unit J 
of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

Step 14. Test for stopping condition.

Fig. 9.16. Algorithm ART1-Learning

False

Yes

No
Yes

No

False

True

Begin

Initialize

Test for stopping
condition

Take the next input training pattern

End

Send the input pattern to the F2 FF layer
through F1FF (a) and F1FF (b) layers

Find the winner. The F2 FF layer unit with
the largest net input is the winner.

Winning cluster close
enough to input pattern?

Inhibit the
winning unit

True

No more
training pattern?

Adjust bottom-up
weights

All F2FF layer units
are inhibited?

Include a new cluster unit
and place the pattern in it.

Fig. 9.17. Flow chart of ART1 learning process
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To ensure this, the activation of the winning unit is sent back to F1(b) layer through the top-down in-
terconnections (having binary weights). An F1(b) layer unit remains ‘on’ only if it receives a 1 from both 
the F1(a) layer and the F2 layer.  Th e norm �x� of the vector x at the F1(b) layer gives the number of com-
ponents where both the F1(a) signal and F2 signal are 1s. Th e ratio of �x� and norm of the input pattern 
�s� gives the degree of similarity between the input pattern and the winning cluster.  Th e ratio �x�/�s� 
is known as the match ratio. If the ratio is suffi  ciently high, which is determined with the help of the 
vigilance parameter r, the winning cluster is allowed to learn the input pattern. Otherwise, it is inhibited 
and the net takes appropriate action.

Algorithm ART1-Learning (Fig. 9.16) presents the detailed procedure.  Th e outline of the ART1 
learning process is shown in Fig. 9.17 in the form of a fl ow chart. A few notable points regarding ART1 
learning are stated below.

 (i)  Learning starts with removing all inhibitions from the units of the clustering layer. Th is is 
ensured in Step 4 of Algorithm ART1-Learning by setting the activations of all F2 layer 
units to 0. An inhibited node has an activation of −1.

 (ii) In order to prevent a node from being a winner its activation is set to −1 (Step 12).
 (iii)  Step 10 ensures that an interface unit Xi is ‘on’ only if si (the training signal) and tJi (the top-

down signal sent by the winning unit) are both 1.
 (iv) Any one of the following may be used as the stopping condition mentioned in Step 14.
 (a) A predefi ned maximum number of training epochs have been executed.
 (b) No interconnection weights have changed.
 (c) None of the cluster units resets.
 (v)  For the sake of simplicity, the activation of the winning cluster unit is not explicitly made 1. 

However, the computational procedure implicitly embodies this step and the results are not 
aff ected by this omission.

 (vi)  Step 10 concerns the event of all cluster units being inhibited. Th e user must specify the action 
to be taken under such situation. Th e possible options are

 (d) Add more cluster units.
 (e) Reduce vigilance.
 (f) Classify the pattern as outside of all clusters.
 (vii)  Table 9.7 shows the permissible range and sample values of various user-defi ned parameters 

in ART1 learning.

Table 9.7. ART-1 parameter values

# Parameter Constraints Typical values

1. L L > 1 2

2. r (vigilance parameter) 0 < r ≤ 1 0.8

3. bij (bottom-up weights)
0 <b L

L m1− +1ij ( )00 1
1+ m

4. tji (top-down weights) Binary, i.e., 0, or 1 1, or 1
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Example 9.5  (Learning by ART1 net)

Suppose we want to cluster the patterns [1, 1, 1, 0], [1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 0, 1] and [0, 0, 
1, 1] into a maximum of three clusters using the ART-1 learning algorithm. Th e following set of 
parameter values are used in this example.

m = 4 Number of units in the input layers F1(a) and F1(b)

n = 3 Number of units in the clustering layers F2

r = 0.5 Vigilance parameter

L = 2 Learning parameter, used in updating the bottom-up weights

b
mij ( ) 1

1
=

+
= 0.2

Initial bottom-up weights (half of the maximum value allowed)

tji (0) = 1 Initial top-down weights (initially all set to 1)

Execution of the fi rst epoch of ART−1 training is traced below.

Step 0.  Initialize the learning parameters and the interconnec-
tion weights

L b t forff all i to j tij j j=0 1
1 4+

2 1 4to1 4toto 3to., , (bij ) .= =
1

1 4
0 , tt ,ρ

∴ B T4 3 3 4TT

2 2 2
2 2 2
2 2 2
2 2 2

1 1 1 1
1 1 1 1
1 1

T3TT2 2 23

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎦⎦
⎥⎥

=

. . .2 22

.2 22

. . .2 22

. . .2 22 1 111

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

Step 1.  Do Steps 2 to 14 While stopping criteria is not satis-
fied.

/* Epoch No. 1, Pattern No. 1 */

Step 2. For each training pattern s Do Steps 3 to 13.

Training pattern no. 1 is s = [1, 1, 1, 0] 

Step 3.  Apply the input pattern s to F1(a) layer, i.e., set the 
activations of the F1(a) units to the input training pat-
tern s.

Set the activations of the F1(a) units to s = [1, 1, 1, 0].

Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

Step 5. Find the norm of s.
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s si
i

m

=si
=
∑∑ 3

1

Step 6.   Propagate input from F1(a) layer to interface layer F1(b) 
so that xi = si, for all i = 1 to m.

x = s = [1, 1, 1, 0]

Step 7.   Compute the net inputs to each uninhibited unit of the 
F2 layer.
For j = 1 To n Do 

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1, y2, y3] = x × B = [1, 1, 1, 0] ×

. . .

. . .

. . .

. . .

2 2 2. ..
2 2 2. ..
2 2 2. ..
2 2 2. ..

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [.6, .6, .6]

Step 8.  While reset is True Do Steps 9 To 12.

Step 9.   If yj = −1 for all cluster units, then all of them are 
inhibited and the pattern cannot be learnt by the net. 
Otherwise, find the J such that yJ ≥ yj for all j = 1 to 
n. Then the Jth cluster unit is the winner. In case of 
a tie, take the smallest J.

None of the cluster units is inhibited and all of them have the same activation value of 
0.6. So winner is the lowest indexed unit, so that J = 1.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T1* = [1, 1, 1, 0]⋅ [1, 1, 1, 1] = [1, 1, 1, 0] 

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
3

Step 12.  Test for Reset : If  
x
s

<ρ  Then inhibit the Jth cluster 

unit by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ

and proceed to Step 13.
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x
s

= = ≥ =
3
3

1 0 5. .≥0 0 ρ , hence proceed to Step 13.

Step 13.  Update the weights (top-down and bottom-up) attached to 
unit J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
1

2
1

( )new = =
+

, ∴ b11(new) = b21(new) = b31(new) = 0.5, and b41(new) 

= 0. Th erefore the new bottom-up weight matrix is 

B4 3

5 2 2
5 2 2
5 2 2
0 2 2

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

. .5 .

. .5 .

. .5 .
. .2

We now update T3×4, the top-down weight matrix. We have, tJi = t1i = xi, so that T1* 
(new) = x = [1, 1, 1, 0].

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 4××

1 1 1 0
1 1 1 1
1 1 1 1

( )new

Th is completes training with the fi rst pattern in the fi rst epoch. 

/* Epoch No. 1, Pattern No. 2 */

Step 2.  For each training pattern s Do Steps 3 to 13.
Th e second training pattern s = [1, 1, 0, 0] 

Step 3.   Apply the input pattern s to F1(a) layer, i.e., set the 
activations of the F1(a) units to the input training pat-
tern s.

Set the activations of the F1(a) units to s = [1, 1, 0, 0].

Step 4.  Set the activations of F2 layer to all 0.

 y1 = y2 = y3 = 0.

Step 5.  Find the norm of s. s si
i

m

=si
=
∑∑ 2

1

Step 6.   Propagate input from F1(a) layer to interface layer F1(b) 
so that xi = si, for all i = 1 to m.
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x = s = [1, 1, 0, 0]

Step 7.   Compute the net inputs to each uninhibited unit of the 
F2 layer.

For j = 1 To n Do 

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1,  y2,  y3] = x × B = [1, 1, 0, 0] ×

. .

. .

. .
.

5 2. 2
5 2. 2
5 2. 2
0 2. 2

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [1, .4, .4]

Step 8.  While reset is True Do Steps 9 To 12.

Step 9.   If yj = −1 for all cluster units, then all of them are 
inhibited and the pattern cannot be learnt by the net. 
Otherwise, find the J such that yJ ≥ yj for all j = 1 to 
n. Then the Jth cluster unit is the winner. In case of 
a tie, take the smallest J.
None of the cluster units is inhibited and the cluster unit Y1 has the largest activation 
1. So winner is Y1, and J = 1.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T1* = [1, 1, 0, 0]⋅[1, 1, 1, 0] = [1, 1, 0, 0] 

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
2

Step 12.  Test for Reset : If  
x
s

<ρ  Then inhibit the Jth cluster 

unit by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ

and proceed to Step 13.

x
s

= = ≥ =
2
2

1 0 5. .≥0 0 ρ , hence proceed to Step 13.

Step 13.  Update the weights (top-down and bottom-up) attached to 
unit J of the F2 layer.
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b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
1

2
1

( )new = =
+

, ∴ b11(new) = b21(new) = .67, b31(new) = b41(new) = 0. 

Th erefore the new bottom-up weight matrix is 

B4 3

67 2 2
67 2 2
0 2 2
0 2 2

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

. .67 .

. .67 .
. .2
. .2

We now update T3×4, the top-down weight matrix. We have, tJi = t1i = xi, so that T1* (new) 
= x = [1, 1, 0, 0].

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 4×T ×

1 1 0 0
1 1 1 1
1 1 1 1

( )new

Th is completes training with the second pattern in the fi rst epoch. 

/* Epoch No. 1, Pattern No. 3 */
Step 2. For each training pattern s Do Steps 3 to 13.

Th e third training pattern s = [0, 1, 1, 0] 

Step 3.  Apply the input pattern s to F1(a) layer, i.e., set the 
activations of the F1(a) units to the input training pat-
tern s.

Set the activations of the F1(a) units to [0, 1, 1, 0].

Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 2

1

Step 6.  Propagate input from F1(a) layer to interface layer F1(b) 
so that xi = si, for all i = 1 to m.

x = s = [0, 1, 1, 0]

Step 7.  Compute the net inputs to each uninhibited unit of the 
F2 layer.

For j = 1 To n Do 
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If yj ≠ −1 Then xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1, y2, y3] = x × B = [0, 1, 1, 0] ×

. . .

. . .
.
.

67 2 2.
67 2 2.
0 2. 2
0 2. 2

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [0, .67, 0]

Step 8.  While reset is True Do Steps 9 To 12.

Step 9.   If yj = −1 for all cluster units, then all of them are 
inhibited and the pattern cannot be learnt by the net. 
Otherwise, find the J such that yJ ≥ yj for all j = 1 to 
n. Then the Jth cluster unit is the winner. In case of 
a tie, take the smallest J.

None of the cluster units is inhibited and the cluster unit Y2 has the largest activation 
0.67. So winner is Y2, and J = 2.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T2* = [0, 1, 1, 0]⋅[1, 1, 1, 1] = [0, 1, 1, 0] 

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
2

Step 12.  Test for Reset : If  
x
s

<ρ  Then inhibit the Jth cluster 

unit by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ

and proceed to Step 13.

x
s

= = ≥ =
2
2

1 0 5. .≥0 0 ρ , hence proceed to Step 13.

Step 13.  Update the weights (top-down and bottom-up) attached to 
unit J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,
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b n L x
L x

x
xi

i ix
2

2
1

( )new = =
+

, ∴ b22(new) = b32(new) = .67, b12(new) = b42(new) = 0. 

Th erefore the new bottom-up weight matrix is 

B4 3

67 0 2
67 67 2
0 67 2
0 0 2

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

. .67 0

. . .67 67
. .67

.

We now update T3×4, the top-down weight matrix. We have, tJi = t2i = xi, so that T2* (new) = 
x = [0, 1, 1, 0].

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 4×T ×

1 1 0 0
0 1 1 0
1 1 1 1

( )new

Th is completes training with the third pattern in the fi rst epoch. 

/* Epoch No. 1, Pattern No. 4 */
Step 2. For each training pattern s Do Steps 3 to 13.

Th e fourth training pattern s = [0, 0, 0, 1] 

Step 3.  Apply the input pattern s to F1(a) layer, i.e., set the 
activations of the F1(a) units to the input training pat-
tern s.

Set the activations of the F1(a) units to (0, 0, 0, 1).

Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 1

1

Step 6.  Propagate input from F1(a) layer to interface layer F1(b) 
so that xi = si, for all i = 1 to m.

x = s = [0, 0, 0, 1]

Step 7.  Compute the net inputs to each uninhibited unit of the 
F2 layer.

For j = 1 To n Do 

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1
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Y = [y1,  y2,  y3] = x × B = [0, 0, 0, 1] ×

.

. . .

.

67 0 2.
67 67 2
0 6. 7 2.
0 0 2

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [0, 0, .2]

Step 8.  While reset is True Do Steps 9 To 12.

Step 9.   If yj = −1 for all cluster units, then all of them are 
inhibited and the pattern cannot be learnt by the net. 
Otherwise, find the J such that yJ ≥ yj for all j = 1 to 
n. Then the Jth cluster unit is the winner. In case of 
a tie, take the smallest J.

None of the cluster units is inhibited and the cluster unit Y3 has the largest activation 
0.2. So winner is Y3, and J = 3.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T3* = [0, 0, 0, 1]⋅[1, 1, 1, 1] = [0, 0, 0, 1] 

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
1

Step 12.  Test for Reset : If  
x
s

<ρ  Then inhibit the Jth cluster 

unit by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ

and proceed to Step 13.

x
s

= = ≥ =
1
1

1 0 5. .≥0 0 ρ , hence proceed to Step 13.

Step 13.  Update the weights (top-down and bottom-up) attached to 
unit J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
3

2
1

( )new = =
+

, ∴ b13(new) = b23(new) = b33(new) = 0, b43(new) = 1. 

Th erefore the new bottom-up weight matrix is 
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B4 3

67 0 0
67 67 0
0 67 0
0 0 1

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

.

. .67

We now update T3×4, the top-down weight matrix. We have, tJi = t3i = xi, so that T3* 
(new) = x = [0, 0, 0, 1].

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 4×T ×

1 1 0 0
0 1 1 0
0 0 0 1

( )new

Th is completes training with the fourth pattern in the fi rst epoch. 

/* Epoch No. 1, Pattern No. 5 */
Step 2. For each training pattern s Do Steps 3 to 13.

Th e fi ft h training pattern s = [0, 0, 1, 1] 

Step 3.  Apply the input pattern s to F1(a) layer, i.e., set the 
activations of the F1(a) units to the input training pat-
tern s.

Set the activations of the F1(a) units to [0, 0, 1, 1].

Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 2

1

Step 6.  Propagate input from F1(a) layer to interface layer F1(b) 
so that xi = si, for all i = 1 to m.

x = s = [0, 0, 1, 1]

Step 7.  Compute the net inputs to each uninhibited unit of the 
F2 layer.

For j = 1 To n Do 

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1,  y2,  y3] = x × B = [0, 0, 1, 1] ×

.

. .
67 0 0
67 67 0
0 6. 7 0
0 0 1

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [0, .67, 1]
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Step 8. While reset is True Do Steps 9 To 12.

Step 9.  If yj = −1 for all cluster units, then all of them are 
inhibited and the pattern cannot be learnt by the net. 
Otherwise, find the J such that yJ ≥ yj for all j = 1 to 
n. Then the Jth cluster unit is the winner. In case of a 
tie, take the smallest J.

None of the cluster units is inhibited and the cluster unit Y3 has the largest activation 
1. So winner is Y3, and J = 3.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T3* = [0, 0, 1, 1]⋅[0, 0, 0, 1] = [0, 0, 0, 1] 

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
1

Step 12.  Test for Reset : If  
x
s

<ρ  Then inhibit the Jth cluster 

unit by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ

and proceed to Step 13.

x
s

= = ≥ =
1
2

0 5 5. .≥5 0 ,ρ  hence proceed to Step 13.

Step 13.  Update the weights (top-down and bottom-up) attached to 
unit J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
3

2
1

( )new = =
+

, ∴ b13(new) = b23(new) = b33(new) = 0, b43(new) = 1. 

Th erefore the new bottom-up weight matrix is 

B4 3

67 0 0
67 67 0
0 67 0
0 0 1

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

( )new

.

. .67
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We now update T3×4, the top-down weight matrix. We have, tJi = t3i = xi, so that T3* 
(new) = x = [0, 0, 0, 1].

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 4×T ×

1 1 0 0
0 1 1 0
0 0 0 1

( )new

Th is completes training with the fi ft h pattern in the fi rst epoch. 

Step 14. Test for stopping condition.

Th e reader may verify that this set of weights is stable and no learning takes place 
even on further training with the given set of patterns.

Example 9.6   (ART1 net operation)

Let us consider an ART-1 net with 5 input units and 3 cluster units. Aft er some training the net 
attains the bottom-up and top-down weight matrices as shown below.

5 3

2 0 2
5 8 2
5 5 2
5 8 2
1 0 2

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

. .2 0

. .5 .

. .5 .

. .5 .

. .1 0

, and T3 5TT
1 1 1 1 1
0 1 1 1 0
1 1 1 1 1

=
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

Show the behaviour of the net if it is presented with the training pattern s = [0, 1, 1, 1, 1]. Assume 
L = 2, and r = .8. 

We start the training process from Step 2 of the ATR-1 learning procedure.

Step 2. For each training pattern s Do Steps 3 to 13.

Here s = [0, 1, 1, 1, 1] 

Step 3.  Apply the input pattern s to F1(a) layer, i.e., set the acti-
vations of the F1(a) units to the input training pattern s.

Set the activations of the F1(a) units to [0, 1, 1, 1, 1].

Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 4

1

Step 6.  Propagate input from F1(a) layer to interface layer F1(b) 
so that xi = si, for all i = 1 to m.

x = s =  [0, 1, 1, 1, 1]
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Step 7.    Compute the net inputs to each uninhibited unit of the 
F2 layer.

For j = 1 To n Do 

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1,  y2,  y3] = x × B = [0, 1, 1, 1, 0] ×

. .

. .

. .

. .

. .

2 0 2
5 8. 2
5 5. 2
5 8. 2
1 0 2

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [1.6, 2.1, .8]

Step 8.  While reset is True Do Steps 9 To 12.

Step 9.   If yj = −1 for all cluster units, then all of them are 
inhibited and the pattern cannot be learnt by the net. 
Otherwise, find the J such that yJ ≥ yj for all j = 1 to 
n. Then the Jth cluster unit is the winner. In case of 
a tie, take the smallest J.

None of the cluster units is inhibited and the cluster unit Y2 has the largest activation 
1.6. So winner is Y2, and J = 2.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T2* = [0, 1, 1, 1, 1]⋅[0, 1, 1, 1, 0] = [0, 1, 1, 1, 0] 

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
3

Step 12.  Test for Reset : If  
x
s

<ρ  Then inhibit the Jth cluster 

unit by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ

and proceed to Step 13.

x
s

= = =
3
4

0 75 0< 8. .75 0< ρ . Hence Y2 must be inhibited. ∴ y2 = −1. Reset = True, Go 

to Step 8.

Step 8.  While reset is True Do Steps 9 To 12.

Samir Roy_Chapter09.indd   336Samir Roy_Chapter09.indd   336 2/21/2013   3:32:19 PM2/21/2013   3:32:19 PM



Competitive Neural Nets   337

Step 9.   If yj = −1 for all cluster units, then all of them are 
inhibited and the pattern cannot be learnt by the net. 
Otherwise, find the J such that yJ ≥ yj for all j = 1 to 
n. Then the Jth cluster unit is the winner. In case of 
a tie, take the smallest J.

Since Y2 is inhibited, we have [y1,  y2,  y3] = [1.6, −1, .8]. Th erefore unit Y1 has the larg-
est activation 1.6 and winner is Y1, so that J = 1.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T1* = [0, 1, 1, 1, 1]⋅[1, 1, 1, 1, 1] = [0, 1, 1, 1, 1] 

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
4

Step 12.  Test for Reset : If  
x
s

<ρ  Then inhibit the Jth cluster 

unit by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ

and proceed to Step 13.

x
s

= = =
4
4

1 0> 8. ,8 ρ  hence Reset = False. Go to Step 13.

Step 13.  Update the weights (top-down and bottom-up) attached to 
unit J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
1

2
1

( )new = =
+

, ∴ b11(new) = 0, and b21(new) = b31(new) = b41(new) = 

b51(new) = .4.

Th erefore the new bottom-up weight matrix is 

B5 3

2 0 2
4 8 2
4 5 2
4 8 2
4 0 2

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

. .2 0

. .4 .

. .4 .

. .4 .

. .4 0
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We now update T3×5, the top-down weight matrix. We have, tJi = t1i = xi, so that T1* 
(new) = x = [0, 1, 1, 1, 1].

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 5×

0 1 1 1 1
0 1 1 1 0
1 1 1 1 1

Th is completes training with the given pattern s = (0, 1, 1, 1, 1).
 

CHAPTER SUMMARY

Basic concepts of competitive networks and brief descriptions of certain elementary competitive net-
works are discussed in this chapter. Th e main points are summarized below.

A competitive neural net is a clustering net that selects the output clustering unit through • 
competition. Usually the competition is in terms of the distance between the input pattern and 
the weight vector associated with the output unit. Quite frequently, the distance is measured 
either as the Euclidean distance between two points in a hyperplane or the dot product of the 
input vector and the weight vector.
MAXNET is the simplest competitive ANN. It is a fully connected network with symmetric • 
interconnections and self-loops. All the links have the same, fi xed, inhibitory weight −d. Each 
unit has a self-loop. Th e weight of a self-loop is 1. A MAXNET do not required to be trained 
because all weights are fi xed. During application, as the MAXNET is presented with an input 
vector, it iteratively updates the activations of the cluster units until all units except one are 
deactivated. Th e only remaining positively activated unit is the winner.
Kohonen’s self-organizing map (SOM) works on the principle of winner-takes-all and follows • 
unsupervised learning. Here the weight vector associated with a cluster unit acts as the exemplar. 
During learning, the cluster unit whose weight vector is closest to the given input pattern is 
declared the winner. Th e weight vectors of all cluster units in the neighbourhood of the winner 
are updated. During application, the input pattern is compared with the exemplar / code vector. 
Th e unit whose code vector is at a least distance from the input pattern is the winner. 
Learning Vector Quantization (LVQ) nets are also based on the winner-takes-all strategy, • 
though, unlike Kohonen’s SOM, LVQ follows supervised learning. Th ere are as many input 
units as the number of components in the input patterns and each output unit represents a 
known cluster.  During each epoch of training, the LVQ net adjusts its weights to accommodate 
the training vectors on the basis of the known clusters. During training, the net identifi es the 
code vector w closest to the input vector s. If s and w are from the same cluster, then w is moved 
closer to s. Otherwise, w is moved away from x. During application, the cluster unit whose code 
vector is at a least distance from the input pattern is the winner. 
Adaptive Resonance Th eory (ART) nets were introduced to resolve the • stability-plasticity 
dilemma. Th ese nets learn through unsupervised learning where the input patterns may be 
presented in any order. Moreover, ART nets allow the user to control the degree of similarity 
among the patterns placed in the same cluster. It provides a mechanism to include a new cluster 
unit for an input pattern which is suffi  ciently diff erent from all the exemplars of the clusters 
corresponding to the existing cluster units. Hence, unlike other ANNs, ART nets are capable of 
adaptive expansion of the output layer of clustering units subject to some upper bound. ART 
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nets are able to learn only in their resonant states. Th e ART net is in resonant state when the 
current input vector matches the winner code-vector (exemplar) so close that a reset signal is 
not generated. Th e reset signal inhibits the ART to learn. Th ere are two kinds of ARTs, viz., 
ART1 and ART2. ART1 works on binary patterns and ART2 is designed for patterns with real, 
or continuous, values. 

 SOLVED PROBLEMS

Problem 9.1 (Clustering application of SOM) Consider the SOM constructed in Example 9.2. Th e 
weight matrix of the resultant SOM is given by 

W =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

0 1
0 6 0 6
1 0

. .6 0

Fig. 9.18 shows the SOM obtained for the given clustering problem.

x1xx

x2xx

x3xx X3XX

X2XX

X1XX

Y1YY

C1

C2CC
Y2YY

0

1

0.6

0.6

0

1

Fig. 9.18. The SOM obtained in Example 9.2

Test the performance of this net with the input vectors [1, 0, 0], [0, 0, 1], [1, 1, 0] and [0, 1, 1]. 

Solution 9.1 Table 9.8 shows the calculations to identify the cluster to which each vector belongs, 
the decision being made on the basis of Winner-takes-all policy. It is seen that the SOM clusters the 
patterns (1, 0, 0) and (1, 1, 0) at unit C2 and the patterns (0, 0, 1) and (0, 1, 1) at unit C1 (Fig. 9.19). Con-
sidering the relative positions of the vectors in a 3-dimensional space, this is the correct clustering for 
these patterns.

Table 9.8. Calculations to identify the cluster

# Input Patterns
s = [x1, x2, x3]  

Squared Euclidean 
Distance

Winner

D(1) D(2)

1 [1, 0, 0] 2.36 .36 C2

2 [0, 0, 1] .36 2.36 C1

3 [1, 1, 0] 2.16 .16 C2

4 [0, 1, 1] .16 2.16 C1
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(0, 0, 1)

(0, 1, 1)

(1, 0, 0)

(1, 1, 0)

x3xx

x2xx

x1xxC1CC

C2CC

Fig. 9.19. Clusters formed

Problem 9.2 (Creating and training an ART1 net) Create an ART-1 net initially with 7 inputs and 
3 clusters. Th en apply the ART-1 procedure to train the net with the following patterns: [1, 1, 1, 1, 0, 0, 
0], [1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 1, 1, 1], [0, 0, 1, 1, 1, 0, 0] and [0, 0, 0, 1, 0, 0, 0].

Solution 9.2 Execution of the fi rst epoch of ART-1 training is traced below.

Step 0. Initialize the learning parameters and the interconnection weights

L b t forff all i j tij j j=9 0 1
1 7+

125 1 7to1 7toto 3to, , (bij ) .= =
1

1 7
0 , tt ,ρ

∴ =B7 3×

125 125 125
125 125 125
125 125 125
125 125 125
125

. . .125 125

. . .125 125

. . .125 125

. . .125 125

. .125 . ...

. . .

. . .

,
125 125

125 125 125
125 125 125

3 7

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

T3 ==
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

Step 1.  Do Steps 2 to 14 While stopping criteria is not satisfied.

/* Epoch No. 1, Pattern No. 1 */

Step 2. For each training pattern s Do Steps 3 to 13.

Th e fi rst training pattern s = [1, 1, 1, 1, 0, 0, 0] 

Step 3.  Apply the input pattern s to F1(a) layer, i.e., set the acti-
vations of the F1(a) units to the input training pattern s.

Set the activations of the F1(a) units to [1, 1, 1, 1, 0, 0, 0].

Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 4

1
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 Step 6.  Propagate input from F1(a) layer to interface layer F1(b) so 
that xi = si, for all i = 1 to m.

x = s = [1, 1, 1, 1, 0, 0, 0]

 Step 7.  Compute the net inputs to each uninhibited unit of the F2 
layer.

For j = 1 To n Do 

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1,  y2,  y3] = x × B = [1, 1, 1, 1, 0, 0, 0] ×

. . .

. . .

. . .

. . .

. . .

125 125 125
125 125 125
125 125 125
125 125 125
125 125 122522
125 125 125
125 125 125

. . .125 125

. . .125 125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [.5, .5, .5]

 Step 8. While reset is True Do Steps 9 To 12.

 Step 9.  If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then 
the Jth cluster unit is the winner. In case of a tie, take 
the smallest J.

None of the cluster units is inhibited and all of them have the same activation value of 0.5. 
So the winner is the lowest indexed unit, so that J = 1.

Step 10. Update x : xi = si×tJi for all i = 1 to m.

x = s⋅T1* = [1, 1, 1, 1, 0, 0, 0] ⋅ [1, 1, 1, 1, 1, 1, 1] = [1, 1, 1, 1, 0, 0, 0].

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
4

Step 12.  Test for Reset : If  
x
s

<ρ  Then inhibit the Jth cluster unit 

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed 

to Step 13.
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x
s

= = ≥ =
4
4

1 0 0 9. ≥0 0 ρ , hence Reset = False. Proceed to Step 13.

Step 13.  Update the weights (top-down and bottom-up) attached to unit 
J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
1

2
1

( )new = =
+

, ∴ b11(new) = b21(new) = b31(new) = b41(new) = 0.4, and 

b51(new) = b61(new) = b71(new) = 0.

Th erefore, the new bottom-up weight matrix is 

B7 3

4 125 125
4 125 125
4 125 125
4 125 125
0 125 125
0 12

=

. .4 .

. .4 .

. .4 .

. .4 .
. .125
. 51255 125

0 125 125
.

. .125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

We now update T3×7, the top-down weight matrix. We have, tJi = t1i = xi, so that T1* (new) 
= x = [1, 1, 1, 1, 0, 0, 0].

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 7×

1 1 1 1 0 0 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1

Th is completes training with the fi rst pattern in the fi rst epoch. 

/* Epoch No. 1, Pattern No. 2 */

 Step 2. For each training pattern s Do Steps 3 to 13.

Th e second training pattern s = [1, 1, 1, 0, 0, 0, 0] 

 Step 3.  Apply the input pattern s to F1(a) layer, i.e., set the acti-
vations of the F1(a) units to the input training pattern s.

Set the activations of the F1(a) units to [1, 1, 1, 0, 0, 0, 0].

 Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

 Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 3

1

Samir Roy_Chapter09.indd   342Samir Roy_Chapter09.indd   342 2/21/2013   3:32:45 PM2/21/2013   3:32:45 PM



Competitive Neural Nets   343

 Step 6.  Propagate input from F1(a) layer to interface layer F1(b) so 
that xi = si, for all i = 1 to m.

x = s =  [1, 1, 1, 0, 0, 0, 0]

 Step 7.  Compute the net inputs to each uninhibited unit of the F2 
layer.
For j = 1 To n Do 

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1,  y2,  y3] = x × B = [1, 1, 1, 0, 0, 0, 0] ×

. . .

. . .

. . .

. . .
. .
. .

4 125 125
4 125 125
4 125 125
4 125 125
0 125 125
0 125 125
00 125 125. .125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

 = [1.2, .375, .375]

 Step 8. While reset is True Do Steps 9 To 12.

 Step 9.  If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then 
the Jth cluster unit is the winner. In case of a tie, take 
the smallest J.

None of the cluster units is inhibited and y1has the highest activation value of 1.2. So win-
ner is the lowest indexed unit Y1, so that J = 1.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T1* = [1, 1, 1, 0, 0, 0, 0] ⋅ [1, 1, 1, 1, 0, 0, 0] = [1, 1, 1, 0, 0, 0, 0].

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
3

Step 12.  Test for Reset : If 
x
s

<ρ  Then inhibit the Jth cluster unit 

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed 

to Step 13.
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x
s

= = ≥ =
3
3

1 0 0 9. ≥0 0 ρ , hence Reset = False. Proceed to Step 13.

Step 13.  Update the weights (top-down and bottom-up) attached to unit 
J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
1

2
1

( )new = =
+

, ∴ b11(new) = b21(new) = b31(new) = 0.5, and b41(new) = 

b51(new) = b61(new) = b71(new) = 0.

Th erefore the new bottom-up weight matrix is 

B7 3

5 125 125
5 125 125
5 125 125
0 125 125
0 125 125
0 125

=

. .5 .

. .5 .

. .5 .
. .125
. .125
. .125 ..
. .

125
0 125 125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

We now update T3×7, the top-down weight matrix. We have, tJi = t1i = xi, so that T1* (new) = 
x = [1, 1, 1, 0, 0, 0, 0].

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 7×

1 1 1 0 0 0 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1

Th is completes training with the second pattern in the fi rst epoch. 

/* Epoch No. 1, Pattern No. 3 */

Similarly, training with the third training pattern s = [0, 0, 0, 0, 0, 1, 1] yields the bottom-up and top-
down weight matrices as follows:

B7 3

5 0 125
5 0 125
5 0 125
0 0 125
0 0 125
0 67 125
0 67 125

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢
. .5 0
. .5 0
. .5 0

.

.
. .67
. .67

⎢⎢
⎢⎢⎢⎢

⎢
⎢⎢⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥
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∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 7×

1 1 1 0 0 0 0
0 0 0 0 0 1 1
1 1 1 1 1 1 1

Now we proceed to train with the fourth pattern [0, 0, 0, 0, 1, 1, 1].

/* Epoch No. 1, Pattern No. 4 */

Step 2. For each training pattern s Do Steps 3 to 13.

Th e fourth training pattern s = [0, 0, 0, 0, 1, 1, 1] 

Step 3.  Apply the input pattern s to F1(a) layer, i.e., set the acti-
vations of the F1(a) units to the input training pattern s.

Set the activations of the F1(a) units to [0, 0, 0, 0, 1, 1, 1].

Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 3

1

Step 6.  Propagate input from F1(a) layer to interface layer F1(b) so 
that xi = si, for all i = 1 to m.

x = s = [0, 0, 0, 0, 1, 1, 1]

Step 7.  Compute the net inputs to each uninhibited unit of the F2 
layer.

For j = 1 To n Do 

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1,  y2,  y3] = x × B = [0, 0, 0, 0, 1, 1, 1] ×

. .

. .

. .
.
.
.
.

5 0 125
5 0 125
5 0 125
0 0 125
0 0 125
0 6. 7 125
0 6. 7 125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎢⎣⎣⎣⎣
⎢⎢⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [0, .1.34, .375]

Step 8. While reset is True Do Steps 9 To 12.
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346  Introduction to Soft Computing

 Step 9.  If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then 
the Jth cluster unit is the winner. In case of a tie, take 
the smallest J.

None of the cluster units is inhibited and y2 has the highest activation value of 1.34. So 
winner is the lowest indexed unit Y2, so that J = 2.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T2* = [0, 0, 0, 0, 1, 1, 1] ⋅ [0, 0, 0, 0, 0, 1, 1] = [0, 0, 0, 0, 0, 1, 1].

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
2

Step 12.  Test for Reset : If  
x
s

<ρ  Then inhibit the Jth cluster unit 

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed 

to Step 13.

x
s

= = =
2
3

0 67 0< 9. .67 0< ρ , hence inhibit cluster unit 2 by making y2 = −1. Reset = True. Go 

to Step 9.

 Step 9.  If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then 
the Jth cluster unit is the winner. In case of a tie, take 
the smallest J.

Cluster units Y2 is inhibited and between Y1 and Y3, Y3 has the highest activation value of 
0.375. So winner is the lowest indexed unit Y3, so that J = 3.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T3* = [0, 0, 0, 0, 1, 1, 1] ⋅ [1, 1, 1, 1, 1, 1, 1] = [0, 0, 0, 0, 1, 1, 1].

Step 11. Find the norm of x : x xi
i

m

=
∑

1

x xi
i

m

=xi
=
∑∑

1
3
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Step 12.  Test for Reset : If  
x
s

<ρ  Then inhibit the Jth cluster unit 

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed 

to Step 13.

x
s

= = ≥ =
3
3

1 0 0 9. ≥0 0 ρ , hence Reset = False. Go to Step 13.

Step 13.  Update the weights (top-down and bottom-up) attached to unit 
J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
1

2
1

( )new = =
+

, ∴ b13(new) = b23(new) = b33(new) = b43(new) = 0. b53(new) 

= b63(new) = b73(new) = 0.5.

Th erefore the new bottom-up weight matrix is 

B7 3

5 0 0
5 0 0
5 0 0
0 0 0
0 0 5
0 67 5
0 67 5

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

.

.

.

.
. .67
. .67

We now update T3×7, the top-down weight matrix. We have, tJi = t1i = xi, so that T3* (new) 
= x = [0, 0, 0, 0, 1, 1, 1].

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 7×

1 1 1 0 0 0 0
0 0 0 0 0 1 1
0 0 0 0 1 1 1

Th is completes training with the fourth pattern in the fi rst epoch. 

/* Epoch No. 1, Pattern No. 5 */

Step 2. For each training pattern s Do Steps 3 to 13.

Th e fi ft h training pattern is s = [0, 0, 1, 1, 1, 0, 0] 

Step 3.  Apply the input pattern s to F1(a) layer, i.e., set the acti-
vations of the F1(a) units to the input training pattern s.
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Set the activations of the F1(a) units to (0, 0, 1, 1, 1, 0, 0).

 Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

 Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 3

1

 Step 6.  Propagate input from F1(a) layer to interface layer F1(b) so 
that xi = si, for all i = 1 to m.

x = s = [0, 0, 1, 1, 1, 0, 0]

 Step 7.  Compute the net inputs to each uninhibited unit of the F2 
layer.

For j = 1 To n Do 

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1,  y2,  y3] = x × B = [0, 0, 1, 1, 1, 0, 0] ×

.

.

.

.

5 0 0
5 0 0
5 0 0
0 0 0
0 0 5
0 6. 7 5.
0 6. 7 5.

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [.5, 0, .5]

 Step 8. While reset is True Do Steps 9 To 12.

 Step 9.  If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then 
the Jth cluster unit is the winner. In case of a tie, take 
the smallest J.

None of the cluster units is inhibited and both Y1 and Y3 has the highest activation value 
of .5. So winner is the lowest indexed unit Y1, so that J = 1.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T1* = [0, 0, 1, 1, 1, 0, 0] ⋅ [1, 1, 1, 0, 0, 0, 0] = [0, 0, 1, 0, 0, 0, 0].

Step 11. Find the norm of x : x xi
i

m

=
∑

1
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x xi
i

m

=xi
=
∑∑

1
1

Step 12.  Test for Reset : If  
x
s

<ρ  Then inhibit the Jth cluster unit 

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed 

to Step 13.

x
s

= = =
1
3

0 33 0< 9. .33 0< ,ρ  hence inhibit cluster unit 1 by making y1 = −1. Reset = True. 

Go to Step 9.

 Step 9.  If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then 
the Jth cluster unit is the winner. In case of a tie, take 
the smallest J.

Cluster unit Y1 is inhibited and between Y2 and Y3, Y3 has the highest activation value of 
0.5. So winner is the lowest indexed unit Y3, and J = 3.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T3* = [0, 0, 1, 1, 1, 0, 0] ⋅ [0, 0, 0, 0, 1, 1, 1] = [0, 0, 0, 0, 1, 0, 0].

Step 11. Find the norm of x : x xi
i

m

=
∑

1
= 1

Step 12.  Test for Reset : If 
x
s

<ρ  Then inhibit the Jth cluster unit 

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed 

to Step 13.

x
s

= = ≤ =
1
3

33 0 9. ≤33 0 ρ , hence Reset = True. Go to Step 9.

 Step 9.  If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then 
the Jth cluster unit is the winner. In case of a tie, take 
the smallest J.
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Cluster units Y1 and Y3 are inhibited so that Y2 has the highest activation value of 0. So 
winner is the unit Y2, so that J = 2.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T2* = [0, 0, 1, 1, 1, 0, 0] ⋅ [0, 0, 0, 0, 0, 1, 1] = [0, 0, 0, 0, 0, 0, 0].

Step 11. Find the norm of x : x xi
i

m

=
∑

1
= 0

Step 12.  Test for Reset : If  
x
s

<ρ  Then inhibit the Jth cluster unit 

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed 

to Step 13.

x
s

= = ≤ =
0
3

0 0≤ 9. ρ , hence Reset = True. Go to Step 9.

 Step 9.  If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then 
the Jth cluster unit is the winner. In case of a tie, take 
the smallest J.

All cluster units are now inhibited. So we introduce a new cluster unit Y4. Th e modifi ed 
bottom-up and top-down weight matrices are now:

B7 4

5 0 0 125
5 0 0 125
5 0 0 125
0 0 0 125
0 0 5 125
0 67 5 125
0 67

=

. .5 0 0

. .5 0 0

. .5 0 0
.

. .5
. .67 .
. .67 . ...5 125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

∴ =

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

T4 7×

1 1 1 0 0 0 0
0 0 0 0 0 1 1
0 0 0 0 1 1 1
1 1 1 1 1 1 1

As the cluster units Y1, Y2, and Y3  are all inhibited the remaining new unit Y4 has the highest 
activation value of 0.375. So winner is the unit Y4, so that J = 4.

Step 10. Update x : xi = si×tJi for all i =1 to m.
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x = s⋅T4* = [0, 0, 1, 1, 1, 0, 0] ⋅ [1, 1, 1, 1, 1, 1, 1] = [0, 0, 1, 1, 1, 0, 0].

Step 11. Find the norm of x : x xi
i

m

=
∑

1
= 3

Step 12.  Test for Reset : If  
x
s

<ρ  Then inhibit the Jth cluster unit 

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed 

to Step 13.

x
s

= = ≥ =
3
3

1 0≥ 9. ρ , hence Reset = False. Go to Step 13.

Step 13.  Update the weights (top-down and bottom-up) attached to unit 
J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
4

2
1

( )new = =
+

, ∴ b14(new) = b24(new) = b64(new) = b74(new) = 0. b34(new) 

= b44(new) = b54(new) = 0.5.

Th erefore the new bottom-up weight matrix is 

B7 4

5 0 0 0
5 0 0 0
5 0 0 5
0 0 0 5
0 0 5 5
0 67 5 0
0 67 5 0

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

.

.

. .5 0 0

. .5
. .67
. .67

⎥⎥
⎤⎤⎤⎤

⎥
⎥⎥⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

We now update T4×7, the top-down weight matrix. We have, tJi = t1i = xi, so that T4* (new) 
= x = [0, 0, 1, 1, 1, 0, 0].

∴ =

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

T4 7×

1 1 1 0 0 0 0
0 0 0 0 0 1 1
0 0 0 0 1 1 1
0 0 1 1 1 0 0

Th is completes training with the fi ft h pattern in the fi rst epoch. 
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Training with the last pattern (0, 0, 0, 1, 0, 0, 0) is left  as an exercise. We will see that none of the existing 
four cluster units is able to learn this pattern. Providing one more cluster unit Y5 to accommodate this 
pattern, we fi nally have

B7 5

5 0 0 0 0
5 0 0 0 0
5 0 0 5 0
0 0 0 5 1
0 0 5 5 0
0 67 5 0 0
0 67 5 0 0

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

.

.

. .5 0 0

. .5
. .67
. .67

⎢⎢
⎢⎢⎢⎢

⎢
⎢⎢⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

T5 7TT

1 1 1 0 0 0 0
0 0 0 0 0 1 1
0 0 0 0 1 1 1
0 0 1 1 1 0 0
0 0 0 1 0 0 0

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

Problem 9.3 (Creating and training an ART1 net) Repeat the previous problem with r = .3. 

Solution 9.3 Th e ART-1 net initially consists of 7 inputs and 3 clusters. Th e training set comprises 
the patterns: [1, 1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 1, 1, 1], [0, 0, 1, 1, 1, 0, 0] 
and [0, 0, 0, 1, 0, 0, 0]. Th e vigilance parameter r = .3. Execution of the fi rst epoch of ART-1 training is 
traced below.

Step 0.  Initialize the learning parameters and the interconnection 
weights

L b t forff all i j tij j j=0 1
1 7+

125 1 7to1 7toto 3to, , (bij ) .= =
1

1 7
0 , tt ,ρ

∴ =B7 3×

125 125 125
125 125 125
125 125 125
125 125 125
125

. . .125 125

. . .125 125

. . .125 125

. . .125 125

. .125 . ...

. . .

. . .

,
125 125

125 125 125
125 125 125

3 7

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

T3 ==
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

Step 1. Do Steps 2 to 14 While stopping criteria is not satisfied.

/* Epoch No. 1, Pattern No. 1 */

Th is is same in the previous example. Th e new bottom-up weight matrix and the top-down 
weight matrix at the end of training with the fi rst pattern are
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B7 3

4 125 125
4 125 125
4 125 125
4 125 125
0 125 125
0 12

=

. .4 .

. .4 .

. .4 .

. .4 .
. .125
. 51255 125

0 125 125
.

. .125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 7×

1 1 1 1 0 0 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1

/* Epoch No. 1, Pattern No. 2 */

Th e training is again same as in the previous example. Th e resultant bottom-up and top-
down weight matrices are given by

B7 3

5 125 125
5 125 125
5 125 125
0 125 125
0 125 125
0 125

=

. .5 .

. .5 .

. .5 .
. .125
. .125
. .125 ..
. .

125
0 125 125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 7×

1 1 1 0 0 0 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1

Similarly, the bottom-up and top-down weight matrices aft er training with the third pat-
tern in the fi rst epoch are given by 

B7 3

5 0 125
5 0 125
5 0 125
0 0 125
0 0 125
0 67 125
0 67 125

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢
. .5 0
. .5 0
. .5 0

.

.
. .67
. .67

⎢⎢
⎢⎢⎢⎢

⎢
⎢⎢⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 7×

1 1 1 0 0 0 0
0 0 0 0 0 1 1
1 1 1 1 1 1 1
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Now we proceed to train with the fourth pattern [0, 0, 0, 0, 1, 1, 1].

/* Epoch No. 1, Pattern No. 4 */

 Step 2. For each training pattern s Do Steps 3 to 13.

Th e fourth training pattern s = [0, 0, 0, 0, 1, 1, 1] 

 Step 3.  Apply the input pattern s to F1(a) layer, i.e., set the acti-
vations of the F1(a) units to the input training pattern s.

Set the activations of the F1(a) units to [0, 0, 0, 0, 1, 1, 1].

 Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

 Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 3

1

 Step 6.  Propagate input from F1(a) layer to interface layer F1(b) so 
that xi = si, for all i = 1 to m.

x = s = [0, 0, 0, 0, 1, 1, 1]

 Step 7.  Compute the net inputs to each uninhibited unit of the F2 
layer.

For j = 1 To n Do 

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1,  y2,  y3] = x × B = [0, 0, 0, 0, 1, 1, 1] ×

. .

. .

. .
.
.
.
.

5 0 125
5 0 125
5 0 125
0 0 125
0 0 125
0 6. 7 125
0 6. 7 125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎢⎣⎣⎣⎣
⎢⎢⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [0, .1.34, .375]

 Step 8. While reset is True Do Steps 9 To 12.

 Step 9.  If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then 
the Jth cluster unit is the winner. In case of a tie, take 
the smallest J.
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None of the cluster units is inhibited and y2 has the highest activation value of 1.34. So 
winner is the lowest indexed unit Y2, so that J = 2.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T2* = [0, 0, 0, 0, 1, 1, 1] ⋅ [0, 0, 0, 0, 0, 1, 1] = [0, 0, 0, 0, 0, 1, 1].

Step 11. Find the norm of x : x xi
i

m

=xi
=
∑∑

1
2

Step 12.  Test for Reset : If  
x
s

<ρ  Then inhibit the Jth cluster unit 

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed 
to Step 13.

x
s

= = ≥ =
2
3

0 67 ≥ 3. .67 0≥ ,ρ  hence Reset = False. Go to Step 13.

Step 13.  Update the weights (top-down and bottom-up) attached to unit 
J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
1

2
1

( )new = =
+

, ∴ b12(new) = b22(new) = b32(new) = b42(new) = b52(new) = 

0. b62(new) = b72(new) = 0.67.

Th erefore there is no change in the new bottom-up weight matrix and top-down weight 
matrix.  

B7 3

5 0 125
5 0 125
5 0 125
0 0 125
0 0 125
0 67 125
0 67 125

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢
. .5 0
. .5 0
. .5 0

.

.
. .67
. .67

⎢⎢
⎢⎢⎢⎢

⎢
⎢⎢⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 7×

1 1 1 0 0 0 0
0 0 0 0 0 1 1
1 1 1 1 1 1 1

Th is completes training with the fourth pattern in the fi rst epoch. 
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/* Epoch No. 1, Pattern No. 5 */
 Step 2. For each training pattern s Do Steps 3 to 13.

Th e fi ft h training pattern s = [0, 0, 1, 1, 1, 0, 0] 

 Step 3.  Apply the input pattern s to F1(a) layer, i.e., set the acti-
vations of the F1(a) units to the input training pattern s.

Set the activations of the F1(a) units to [0, 0, 1, 1, 1, 0, 0].

 Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

 Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 3

1
 Step 6.  Propagate input from F1(a) layer to interface layer F1(b) so 

that xi = si, for all i = 1 to m.

x = s = [0, 0, 1, 1, 1, 0, 0]

 Step 7.  Compute the net inputs to each uninhibited unit of the F2 
layer.

For j = 1 To n Do 

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1,  y2, y3] = x × B = [0, 0, 1, 1, 1, 0, 0] ×

. .

. .

. .
.
.
.
.

5 0 125
5 0 125
5 0 125
0 0 125
0 0 125
0 6. 7 125
0 6. 7 125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎢⎣⎣⎣⎣
⎢⎢⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [.5, 0, .375]

 Step 8. While reset is True Do Steps 9 To 12.

 Step 9.  If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then 
the Jth cluster unit is the winner. In case of a tie, take 
the smallest J.

None of the cluster units is inhibited and Y1 has the highest activation value of .5. So win-
ner is the lowest indexed unit Y1, so that J = 1.
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Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T1* = [0, 0, 1, 1, 1, 0, 0] ⋅ [1, 1, 1, 0, 0, 0, 0] = [0, 0, 1, 0, 0, 0, 0].

Step 11. Find the norm of x : x xi
i

m

=xi
=
∑∑

1
1

Step 12.  Test for Reset : If  
x
s

<ρ  Then inhibit the Jth cluster unit 

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed 

to Step 13.

x
s

= = ≥ =
1
3

0 33 ≥ 3. .33 0≥ ρ , hence Reset = False. Go to Step 13.

Step 13.  Update the weights (top-down and bottom-up) attached to unit 
J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
1

2
1

( )new = =
+

, ∴ b11(new) = b21(new) = b41(new) = b51(new) = b61(new) = 

b71(new) = 0, b34(new) = 1.

Th erefore the new bottom-up weight matrix is 

B7 3

0 0 125
0 0 125
1 0 125
0 0 125
0 0 125
0 67 125
0 67 125

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

.

.

.

.

.
. .67
. .67

⎢⎢
⎢⎢⎢⎢

⎢
⎢⎢⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 7×

0 0 1 0 0 0 0
0 0 0 0 0 1 1
1 1 1 1 1 1 1

Th is completes training with the fi ft h pattern in the fi rst epoch. 

/* Epoch No. 1, Pattern No. 6 */
Step 2. For each training pattern s Do Steps 3 to 13.

Th e sixth training pattern s = [0, 0, 0, 1, 0, 0, 0] 
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 Step 3.  Apply the input pattern s to F1(a) layer, i.e., set the acti-
vations of the F1(a) units to the input training pattern s.

Set the activations of the F1(a) units to [0, 0, 0, 1, 0, 0, 0].

 Step 4. Set the activations of F2 layer to all 0.

y1 = y2 = y3 = 0.

 Step 5. Find the norm of s. s si
i

m

=si
=
∑∑ 1

1

 Step 6.  Propagate input from F1(a) layer to interface layer F1(b) so 
that xi = si, for all i = 1 to m.

x = s = [0, 0, 0, 1, 0, 0, 0]

 Step 7.  Compute the net inputs to each uninhibited unit of the F2 
layer.

For j = 1 To n Do 

If yj ≠ −1 Then y b xj ib j ixi
i

m

×bib ji
=
∑

1

Y = [y1,  y2,  y3] = x × B = [0, 0, 0, 1, 0, 0, 0] ×

. .

. .

. .
.
.
.
.

5 0 125
5 0 125
5 0 125
0 0 125
0 0 125
0 6. 7 125
0 6. 7 125

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎢⎣⎣⎣⎣
⎢⎢⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

= [0, 0, .125]

 Step 8. While reset is True Do Steps 9 To 12.

 Step 9.  If yj = −1 for all cluster units, then all of them are in-
hibited and the pattern cannot be learnt by the net. Other-
wise, find the J such that yJ ≥ yj for all j = 1 to n. Then 
the Jth cluster unit is the winner. In case of a tie, take 
the smallest J.

None of the cluster units is inhibited and Y3 has the highest activation value of .125. So 
winner is the lowest indexed unit Y3, so that J = 3.

Step 10. Update x : xi = si×tJi for all i =1 to m.

x = s⋅T3* = [0, 0, 0, 1, 0, 0, 0] ⋅ [1, 1, 1, 1, 1, 1, 1] = [0, 0, 0, 1, 0, 0, 0].

Step 11. Find the norm of x : x xi
i

m

=xi
=
∑∑

1
1
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Step 12.  Test for Reset : If  
x
s

<ρ  Then inhibit the Jth cluster unit 

by setting yJ = −1. Go To Step 8. Otherwise x
s

≥ρ and proceed 

to Step 13.

x
s

= = ≥ =
1
1

1 0≥ 3. ρ , hence Reset = False. Go to Step 14.

Step 13.  Update the weights (top-down and bottom-up) attached to unit 
J of the F2 layer.

b L x
L x

for all i to m

t x for all i to m

iJ
i

Ji i

=

x for all ii

,

,

b n L x
L x

x
xi

i ix
1

2
1

( )new = =
+

, ∴ b13(new) = b23(new) = b33(new) = b53(new) = b63(new) = 

b73(new) = 0, = b43(new) =  1.

Th erefore the new bottom-up weight matrix is 

B7 3

0 0 0
0 0 0
1 0 0
0 0 1
0 0 0
0 67 0
0 67 0

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

∴ =
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

T3 7×

0 0 1 0 0 0 0
0 0 0 0 0 1 1
0 0 0 1 0 0 0

Th is completes training with the sixth pattern in the fi rst epoch. 

Problem 9.4 (Implementation of LVQ net through MatLab) Write a MatLab program to design 
and implement an LVQ net with two inputs and two outputs. Th e two outputs should correspond to two 
clusters, cluster 1 and cluster 2. Th e training set consists of the training pairs { [0 −2] : 1, [+2 −1] : 1, [−2 
+1] : 1, [0 +2] : 2, [+1 +1] : 2, [0 +1] : 2, [+1 +3] : 2, [−3 +1] : 1, [3 −1] : 1, [−3, 0] : 1}. Test the net with 
the input pattern [0.2, −1]. 

Solution 9.4 Th e MatLab code for the net, its training and testing, is given below.
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******************CODE FOR LEARNING VECTOR QUANTIZATION NETWORKS***********

clc;
clear;

Input_Vector = [0 +2 −2  0 +1  0 +1 −3  3 −3;
                −2 −1 +1 +2 +1 +1 +3 +1 −1  0];
% Input Vector comsists of 10 samples having 2 inputs each.

Target_Class = [1  1  1  2  2  2  2  1  1  1];
% The Input Vector has to be classified into two classes, namely Class 1
% and Class 2. 6 inputs belong to Class 1 and 4 belong to Class 2.

Target_Vector = ind2vec(Target_Class);
% Converting indices to vector

net = newlvq(minmax(Input_Vector),4,[.6 .4],0.1); 
% Creating new LVQ network. The network takes input from P, has 4 hidden
% neurons and two classes having percentages of 0.6 and 0.4 respectively.
% The learning rate is 0.1.

net.trainParam.epochs = 150; % Setting maximum number of epochs to 150
net=train(net,Input_Vector,Target_Vector); % Train the network
Test_Vector_1 = [0.2; 1];
a = vec2ind(sim(net,Test_Vector_1));   %  Simulate network with test vec-

tor
disp('Test_Vector_1 [0.2; 1] has been classified as belonging to Class 
-');
disp(a);

Test_Vector_2 = [0.2; −1];
a = vec2ind(sim(net,Test_Vector_2));

disp('Test_Vector_2 [0.2; −1] has been classified as belonging to Class 
−');
disp(a);

***********************************OUTPUT*************************************
Test_Vector_1 [0.2; 1] has been classified as belonging to Class - 2

Test_Vector_2 [0.2; −1] has been classified as belonging to Class - 1

Problem 9.5 (Self-organizing maps) Th e Iris dataset on fl owers consists of 150 sample data. It is 
based on four attributes, sepal length in cm, sepal width in cm, petal length in cm, and petal width in cm, 
along with the type of fl ower. Th is dataset can be copied from the webpage http://mlg.eng.cam.ac.uk/
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teaching/3f3/1011/iris.data or downloaded from: http://www2.acae.cuhk.edu.hk/~cvl/main_database.
htm. Design a SOM in MatLab for this dataset.

Solution 9.5 Th e MatLab code along with various outputs are given below.

MatLab code

%  SOM on Iris Data Set mds3.txt
%  Classify iris flowers based on four attributes.
%  The data set consists of 150 samples.
%  “irisInputs” is an 4x150 matrix, whose rows are:
%  1. Sepal length in cm
%  2. Sepal width in cm
%  3. Petal length in cm
%  4. Petal width in cm

clc;
clear();
load mdstrain.txt;   %  Load the training file containing 150 sam-

ples
             % having 4 fields
r = mdstrain(:,1:4);   % Bring the contents of the text file to matrix 
r
r = r’;       % Transpose r to bring in order of rows
net = newsom(r,[10 10]);  % Create new SOM for r with 10 x 10 hidden 
               % neurons. The other parameters are kept at
                     % default values. 
%   The syntax for newsom is net = newsom(P,[D1,D2,...],TFCN,DFCN,

STEPS,IN)
%  where P = R × Q matrix of Q representative input vectors.
%  Di = Size of ith layer dimension. Defaults = [5 8]. Here it is [10 10]
%  TFCN = Topology function. Default = 'hextop'. May be made 'gridtop' or
%  'randtop'
%  DFCN = Distance function. Default = 'linkdist'. Can be made 'dist' or
%  'mandist'. 'linkdist' is a layer distance function used to find the 
%   distances between the layer's neurons given their positions.'dist' is 

the Eucledian distance function while 'mandist'is the Manhattan dis-
tance function.

%  STEPS = Steps for neighborhood to shrink to 1. Default = 100.
%  IN = Initial neighborhood size. default = 3.
net = train(net,r);       % Train the network. train(net,r) opens up the 
                          % nntraintool from which the plots can be
                          % generated.

Snapshots of MatLab outputs
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Fig. 9.20. The ‘nntraintool’ window of MatLab

Various SOM profi les are generated by clicking the respective buttons on the nntraintool. Th ese are 
shown below as Fig. 9.21–9.26

8

SOM Topology

7

6

5

4

3

2

1

0

0 2 4 6 8 10
−1

Fig. 9.21. SOM Topology, plotted by function ‘plotsomtop’. 
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Th is shows the topology of the SOM

8

SOM Neighbor Connections

7

6

5

4

3

2

1

0

0 2 4 6 8 10
−1

Fig. 9.22.  SOM neighbor connections, plotted by the function ‘plotsomnc’. This plot shows the 
SOM layer, with the neurons denoted as dark patches and their connections with their 
direct neighbours denoted as line segments.

8

SOM Neighbor Weight Distances

7

6

5

4

3

2

1

0

0 2 4 6 8 10
−1

Fig. 9.23.  SOM neighbor weight distances, plotted by the function ‘plotsomnd’. This plot depicts the 
SOM layer with the neurons as standard dark central patches and their direct neighbour 
relations with line segments. The neighbouring patches are presented here with various 
shades of grey to show how close each neuron’s weight vector is to its neighbours.
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8

Weights from Input 1

6
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0 2 4 6 8 10
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Weights from Input 2
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0 2 4 6 8 10
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Weights from Input 3

6
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0

0 2 4 6 8 10

8

Weights from Input 4

6

4

2

0

0 2 4 6 8 10

Fig. 9.24.  SOM weight planes, plotted by the function ‘plotsomplanes’. The ‘plotsomplanes’ 
generates a set of subplots where each subplot shows the weights from the i-th input 
to the layer's neurons. The various connections are shown with different shades of grey 
(black for zero connection)
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Fig. 9.25.  SOM sample hits, plotted by function ‘plotsomhits’. This plot shows a SOM layer, with 
each neuron and the number of input vectors that are classifi ed by it. This is shown as a 
number inside the cells.
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4.5
SOM Weight Positions

4

3.5

2.5

2
4 4.5 5 5.5 6

Weight 1
6.5 7 7.5 8

3

W
ei

gh
t2

Fig. 9.26.  SOM weight positions, plotted by function ‘plotsompos’. This plot shows how the 
classifi cation of the input space is done by the SOM. It shows dots for each neuron’s 
weight vector and the connecting neighbouring neurons with the lines.

� TEST YOUR KNOWLEDGE

9.1 Which of the following ANNs do not work on the principle of competition? 
a) MAXNET b) Learning Vector Quantization (LVQ)
c) ART nets d) None of the above

9.2 Which of the following ANNs is fully connected? 
a) MAXNET b) Learning Vector Quantization (LVQ)
c) ART nets d) None of the above

9.3 Which of the following ANNs do not require any training? 
a) MAXNET b) Learning Vector Quantization (LVQ)
c) ART nets d) None of the above

9.4 Let us suppose a MAXNET have a weight − d at each non-self loop interconnection path and m 
number of units. Which of the following conditions is satisfi ed by d and m? 

a) δ >
1
m

 b) δ =
1
m

c) 0 1
< <δ

m
 d) None of the above

9.5 Which of the following competitive nets is based on the idea that patterns close to each other should 
be mapped to clusters with physical proximity. 
a) MAXNET b) Kohonen’s self-Organizing Map (SOM) 
c) Learning Vector Quantization (LVQ) d) None of the above  

9.6 Which of the following nets employ unsupervised learning? 
a) Kohomen’s Self-Organizing Map (SOM) b) Learning Vector Quantization (LVQ)
c) Both (a) and (b) d) None of the above 
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 9.7 Which of the following nets employ supervised learning? 
a) Kohomen’s Self-Organizing Map (SOM)
b) Learning Vector Quantization (LVQ) 
c) Both (a) and (b)
d) None of the above

 9.8 Given a pattern applied to a Kohomen’s Self-Organizing Map (SOM), winner is the output unit 
whose weight vector is 
a) Furthest from the given pattern 
b) Closest to the given pattern 
c) Unrelated to the distance from the given pattern
d) None of the above

 9.9 Which of the following nets is intended to solve the stability-plasticity dilemma?
a) Kohomen’s Self-Organizing Map (SOM)
b) Learning Vector Quantization (LVQ)
c) Adaptive Resonance Th eory (ART) net
d) None of the above

9.10 Which of the following ANNs allow inclusion of a new clustering unit during the learning pro-
cess?
a) Adaptive Resonance Th eory (ART) b) Kohomen’s Self-Organizing Map (SOM)
c) Learning Vector Quantization (LVQ) d) Name of the above

9.11 ART1 nets are applicable for clustering 
a) Binary patterns b) Real valued patterns
c) Both (a) and (b)  d) None of the above

9.12 ART2 nets are applicable for clustering 
a) Binary patterns b) Real valued patterns
c) Both (a) and (b) d) None of the above

9.13 In ART nets, the degree of similarity among the patterns belonging to the same cluster is con-
trolled with 
a) Th e Reset signal b) Th e learning rate
c) Th e vigilance parameter d) None of the above

9.14 In ART1 nets, the bottom-up interconnections are directed 
a) From the comparison layer to the recognition layer
b) From the recognition layer to the comparison layer
c) Both ways between the recognition and the comparison layers
d) None of the above. 

9.15 In ART1 nets, the top-down interconnections are directed 
a) From the comparison layer to the recognition layer
b) from the recognition layer to the comparison layer
c) both ways between the recognition and the comparison layers
d) None of the above.

9.16 A recognition layer unit of an ART1 net is not allowed to participate in a competition when it 
is in 
a) Active state b) Inactive state
c) Inhibited stated d) None of the above.
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9.17 Which of the following weights in an ART1 net is binary?
a) Bottom-up weights b) Top-down weights 
c) Both (a) and (b) d) None of the above

9.18 Which of the following weights in an ART1 net is real valued?  
a) Bottom-up weights  b) Top-down weights 
c) Both (a) and (b) d) None of the above

9.19 Which of the following is a competitive learning strategy for ANNs?
a) Hebb learning b) LMS Learning
c) Winner-takes-all d) None of the above

9.20 Which of the following is a possible action during ART1 learning in case all the cluster units are 
inhibited?
a) Add more cluster unit
b) Reduce vigilance 
c) Classify the pattern as outside all clusters
d) All of the above 

Answers

 9.1 (d) 9.2 (a) 9.3 (a) 9.4 (c) 9.5 (b)
 9.6 (a) 9.7 (b) 9.8 (b) 9.9 (c) 9.10 (a)
 9.11 (a) 9.12 (b) 9.13 (c) 9.14 (a) 9.15 (b)
 9.16 (c) 9.17 (b) 9.18 (a) 9.19 (c) 9.20 (d)

 EXERCISES

9.1 Design a MaxNet with d = 0.15 to cluster the input pattern x = [x1, x2, x3, x4] = [0.7, 0.6, 0.1, 0.8]. 
Show the step-by-step execution of the clustering algorithm you follow.

9.2  Design a Self-Organizing Map (SOM) to cluster the patterns s1 = [1, 0, 0, 0], s2 = [0, 0, 0, 1], s3 = [1, 
1, 0, 0] and s4 = [0, 0, 1, 1] into two clusters. Apply the resultant SOM to the patterns [0, 1, 1, 1] to 
determine the cluster to which it belongs.

9.3 Six patterns and their corresponding designated clusters are given in Table 9.8. Obtain a  Learning 
Vector Quantization (LVQ) neural net for the given set of vectors. Test the resultant LVQ net with 
the patterns [1, 0, 1, 0] and [1, 0, 1, 1].

Table 9.8. Training set

# Training Vector
s = [x1, x2, x3, x2]  

Cluster

1 s1 = [1, 0, 0, 0] C1

2 s2 = [1, 1, 0, 0] C1

3 s3 = [1, 1, 1, 0] C1

4 s4 = [0, 0, 0, 1] C2

5 s5 = [0, 0, 1, 1] C2

6 s6 = [0, 1, 1, 1] C2
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9.4 Apply the ART-1 learning algorithm to cluster six patterns [1, 0, 0, 0, 0], [1, 1, 0, 0, 0], [0, 0, 1, 0, 0], 
[0, 1, 1, 1, 0], [0, 0, 0, 1, 1] and [0, 0, 0, 0, 1] into at most three clusters. Th e following set of parameter 
values are to be used.

m = 4 Number of units in the input layers F1(a) and F1(b)

n = 3 Number of units in the clustering layers F2

r = 0.5 Vigilance parameter

L = 2 Learning parameter, used in updating the bottom-up weights

b
mij ( ) 1

1
=

+
= 0.2 Initial bottom-up weights (half of the maximum value allowed)

tji (0) = 1 Initial top-down weights (initially all set to 1)

9.5 Consider an ART-1 net referred in Example 9.6 with 5 input units and 3 cluster units. Aft er some 
training the net attains the bottom-up and top-down weight matrices as shown below.

B5 3

2 0 2
5 8 2
5 5 2
5 8 2
1 0 2

=

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

. .2 0

. .5 .

. .5 .

. .5 .

. .1 0

, and T3 5TT
1 1 1 1 1
0 1 1 1 0
1 1 1 1 1

=
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎣⎣
⎢⎢
⎣⎣⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎦⎦
⎥⎥
⎦⎦⎦⎦

Show the behaviour of the net when it is presented with the training pattern s = [1, 1, 1, 1, 0]. 
Assume L = 2, and r = .8. 
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10
BACKPROPAGATION

Key Concepts

Backpropagation of error, Feedforward neural net, Generalized delta rule, Hidden layer, Hyperbolic 
tangent function, Multilayer perceptron, Nguyen-Widrow initialization, Random initialization, Sig-
moid function, Steepness parameter

 Chapter Outline 

10.1 Multi-layer Feedforward Net
10.2 Th e Generalized Delta Rule
10.3 Th e Backpropagation Algorithm 

Chapter Summary

Solved Problems
Test Your Knowledge
Exercise
Bibliography and Historical Notes

Backpropagation net is an important class of artifi cial neural nets which is used in a wide range of ap-
plications. Th e early enthusiasm over neural networks received a severe blow when Minsky and Papert 
(1969) demonstrated that perceptrons are unable to implement an elementary function like a 2-input 
XOR. Research community lost interest in the subject and no further development took place for several 
years. Discovery of multilayered perceptron (also referred to as multilayered networks) independently 
by several researchers (Rumelhart, Ivilliams, McClelland etc.) eventually restored interest in this fi eld. 
Th e limitation of a single layer perceptron is overcome by multilayer neural nets. It is proved that a mul-
tilayer feedforward net can be made to learn any continuous function to any extent of desired accuracy. 
Th e learning method called the generalized delta rule, or back-propagation (of errors), is employed to 
train the multilayer feedforward networks. It is essentially a gradient descent method to minimize the 
total squared error of the output computed by the net. Th e learning is supervised. Th is chapter presents 
the basic features of backpropagation networks.

10.1 MULTI-LAYER FEEDFORWARD NET

As stated earlier, a single layer net has very limited capability. It is unable to learn such a simple function 
as the 2-input XOR. Multilayer perceptron has the capacity to overcome this limitation. A multilayer 
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372  Introduction to Soft Computing

network with one or more hidden layers can learn any continuous mapping to an arbitrary accuracy. 
Moreover, it is proved that one hidden layer is suffi  cient for a multilayer perceptron to implement any 
continuous function. However, in some cases, more than one hidden layer may be advantageous. Th e 
features of multilayer feed forward net are discussed below in brief.

1
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: : :
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Fig. 10.1. Structure of a multi-layered feed forward network with one hidden layer

10.1.1 Architecture

Th e processing elements of a multi-layer feedforward neural net are arranged in a number of layer. Th e 
layers intermediate between the input and the output layers are called the hidden layers. Th e connecting 
paths are unidirectional. Th ey are directed from the input layer to the output layer. Signals fl ow from 
the input to the output through the hidden layers and not in the reverse direction. Th e name feedfor-
ward is due to the unidirectional fl ow of signal from the input to the output layer. During learning, the 
net adjusts its interconnection weights on the basis of the errors in computation. Calculation of errors 
starts at the output layer and the errors are propagated backward, i.e., from the output layer towards 
the input layer. Because of this backward propagation of errors during the learning phase these nets are 
called backpropagation nets. Th e structure of an m-p-n multilayer net with one hidden layer is shown 
in Fig.10.1. It can be easily generalized to nets having move than hidden layers. Th e biases to the hidden 
units and the output units are provided by the units X0 and H 0 respectively, each of which is permanently 
fed with the signal 1. Th e biases to the hidden units H1, …, Hp are shown in Fig.10.1 as v01, v02, …, v0p. 
Similarly, those to the output units Y1, …, Yn are given by w01, …, w0n.

10.1.2 Notational Convention

Th e symbols used to describe the multilayer feed forward net, and its learning algorithm, are listed below.

x Th e input training pattern of length m. x = [ x1, … , xi, …, xm ]
y_out Output pattern produced by the activations of the output units Y1, …., Yn. y_out = 

[y_out1, …, y_outk, …, y_outn ]
t Target output pattern for input pattern x. t = [ t1, …, tk, …, tn ] 
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Backpropagation   373

h_out Pattern produced by the activations of the hidden units H1, …, Hp.
h_out = [ h_out1, …, h_outj, …, h_outp ]

Xi Th e ith input unit. Th e signal to input unit Xi is symbolized as xi. Th e activation of Xi is also 
xi, as it simply broadcasts the input signal xi, without any processing, to the units of the 
hidden layer.  

Hj Th e jth hidden unit, j = 1, .., p. Th e total input signal to Hj is given by 

h in v xj
i

m

iv j ixi
i

m

_
=i=

∑ ∑v x viv j ixi jv xiv jxi +
0 1

Where vij is the interconnection weight between the input unit Xi and the hidden unit Hj, 
and voj is the bias on the hidden unit Hj.

h_outj Th e activation of the jth hidden unit Hj. 
h_outj = fh ( h_inj ), where fh is the activation function for the hidden units. 

Yk Th e kth output unit, k = 1, …, n. Th e total input signal to Yk is given by 

y in w h outk
j

p

jw k jh out
i

p

k
=i=

∑ ∑w h out wjw k jh out kjk =w h outjw k jh out +
0 1

Where wjk is the interconnection weight between the hidden unit Hj and the output unit 
Yk, and wok is the bias on the output unit Yk. 

y_outk Th e activation of the output unit Yk. 
y_outk = fo ( y_ink ), where fo is the activation function for the output units.

δ(wk) A component of error correction weight adjustment for wjk, j = 0, …, p, that is due to an 
error at output Yk. Moreover, δk is propagated to the hidden units to further calculate the 
error terms at the hidden units.  

δ(vj) A component of error correction weight adjustment for vij, i = 0, …, m. δ(vj) results from 
the backpropagation of error information from the output units to the hidden unit Hj.

a Learning rate

10.1.3 Activation Functions 

Th e activation function employed in a backpropagation net must satisfy certain properties. It must be 
continuous, diff erentiable, and monotonically non-decreasing. Moreover, it is desirable the fi rst deriva-
tive of the activation function be easily computable. Some of the widely used activation functions are 
mentioned below.

.5

0

1
σ1

σ2

σ1 〈 σ2

Fig. 10.2. Binary sigmoid function
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374  Introduction to Soft Computing

(a) Binary sigmoid function
Th is is one of the most popular activation function with a range of (0, 1). Th e binary sigmoid func-
tion and its fi rst derivative are given below. 

 f x
e x)x =

+ −

1
1 σ

 (10.1)

 ′ =f x′ f x f x)x )x ( − f ))σ  (10.2)

Th e parameter s in Equation 10.1 is known as the steepness parameter. Th e shape of the sigmoid 
function is shown in Fig. 10.2. Th e transition from 0 to 1 could be made as steep as desired by in-
creasing the value of s to appropriate extent.

(b) Bipolar sigmoid function
Depending on the requirement, the binary sigmoid function can be scaled to any range of values 
appropriate for a given application. Th e most widely used range is from −1 to +1, and the cor-
responding sigmoid function is referred to as the bipolar sigmoid function. Th e formulae for the 
bipolar sigmoid function and its fi rst derivative are given below as Equations 10.3 and 10.4 respec-
tively. Fig. 10.3 presents the form of a bipolar sigmoid function graphically.

 g x e
e

x

x( )x = −
+

−

−

1
1

σ

σ  (10.3)

 ′ = −g x g x g x( )x ( (g ))( ( )x )σ
2

1x(+ g ))(  (10.4)

−1

0

1

Fig. 10.3. Bipolar sigmoid function

(c) Hyperbolic tangent function
Another bipolar activation function that is widely employed in backpropagation nets is the hyper-
bolic tangent function. Th e function and its fi rst derivative are expressed by Equations 10.5 and 10.6 
respectively.

 h x e e
e e

x xe
x xe

( )x =  (10.5)

 ′ =h x′ h x h x( )x ( (h ))( (− h ))x+ h ))(  (10.6)

Th e hyperbolic tangent function is closely related to the bipolar sigmoid function. When the input data 
is binary and not continuously valued in the range from 0 to 1, they are generally converted to bipolar 
form and then a bipolar sigmoid or hyperbolic tangent activation is applied on them by the processing 
units.
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Backpropagation   375

10.2 THE GENERALIZED DELTA RULE

As stated earlier, the backpropagation nets follow the generalized delta rule for learning. It is a super-
vised learning method which is essentially a gradient descent method that tries to minimize the total 
squared error of the output computed by the net. Th e learning algorithm is presented in Section 10.3. 
Th is section provides a derivation of the generalized delta rule.

Let vij be the interconnection weight between the input unit Xi and the hidden unit Hj and wjk be the 
interconnection weight between the hidden unit Hj and the output unit Yk. Th en the total input signal 
h_inj to the hidden unit Hj is given by 

 n v xj
i

m

iv j ixi
i

m

_
=i=

∑ ∑v x viv j ixi jv xiv jxi +
0 1

 (10.7)

Th e activation of the hidden unit Hj is obtained with the help of an activation function fh. 
 h_outj = fh (h_inj)  (10.8)
Th e total input y_ink to the output unit Yk is given by 

 y in w h outk
j

p

jw k jh out
i

p

k
=i=

∑ ∑w h out wjw k jh out kjk =w h outjw k jh out +
0 1

 (10.9)

Where w0k is the bias on the output unit Yk. Th e activation of the output unit Yk is obtained with the help 
of an activation function fo. 
 y_outk = fo (h_ink)  (10.10)
Th e squared error at the output layer is given by

 E t y ok ky o
k

n

−tk
=

∑1
2 1

2. (∑∑ _ )outkout  = 1
2 1

0
2( (0 _ ))t f00 y i_

k

n

k
=

∑  (10.11)

Equation 10.9 provides the expression for y_ink. Equation 10.11, together with Equation 10.9, indicates 
that E is a function of the interconnection weights. Now, taking the partial derivative of E with respect to 
wjk, i.e., the interconnection weight between the hidden unit Hj and the output unit Yk, we get 

∂
∂

=
∂

∂
⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬

=
∑E

w w∂
y out

jk jk k

n

k
1
2 1

2( _t y− )  = ∂
∂

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬

=
∑w

t f y i
jk k

n

k
1
2 1

0ff 2( (t f− 0ff _ )ink

 = −
∂

∂
−( ( _ )) ∂

∂
).t f− y i_

w
f y( inoff− k

jk
kff = − ′

∂
∂

( _ (′ _ ) ( _ )y− out f) y i
w

y i_ n_y− out o k(ff y i_
jk

k

 = − ′
∂

∂
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠=

∑( _ (′ _ ) _y− out f) y i
w

w h out_y− out ko (ff y i_
jk

Kk J
J

p

0

 = − ′( _ (′ _ ) _y− out f) y in h) out_y− out o k(ff y i_ j

We denote, δwδ y out f yk k k ff k′( _t ykt − ) fff _ )ink , so that ∂
∂

=E
w

w h⋅ out
jk

k jh⋅ outδ  (10.12)

Regarding weights of the paths between the input layer and the hidden layer we have

∂
∂

=
∂

∂
⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬

=
∑E

v v∂
y out

ij ij
ky out

k

n1
2

2

0
( _t y− y− )  = − ∂

∂=
∑( _ ). ( _ )y− out

v
y o_ utk_y− out

ijk

n

k
1
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 = − ∂
∂=

∑( _ ). ( _ ))y− out
v

f y(k_y− out
ijk

n

k_f yf (
1

 = − ′ ∂
∂=

∑( _ (′ _ ) ( _ )y− out f) y i
v

y i_ n_y− out ko(ff y i_
ijk

n

k
1

 = − ∂
∂=

∑δw
v

y ink
ijk

n

k
1

( _y ) = − ∂
∂=

∑ ∑∂
∂v

w h⋅ out
ijk

n

Jk J
J

p

0=1 ∂∂vij J
_

 = − ⋅ ∂
∂=

∑δw w⋅
v

h outk jw⋅ k
ij

j
k

n

( _h )
1

= − ∂
∂=

∑δw w⋅
v

f hk jw⋅ k
ij

h jf hf
k

n

( fff _ )injin )
1

= − ∂
∂ ==

∑∑δw
v

f v∑k jk
ij

If vf ∑ j II
I

m

k

n

. (∂
∂

w jw k )v∑ xIv∑ j IxI )
01

= − ⋅ ′ ⋅
=

∑δw w⋅ f h′ in xk jw⋅ k ⋅ ff
k

n

j ix
1

_h )

 = −δv x⋅j ix , 

where δ δwδ δδ w f h inj kδwδ j hff
k

n

j⋅wδ kwδ ′
=

∑∑
1

( _h )  

Th erefore, the formulae for weight update are 

Δw E
w

t y o f y in h outjk
jk

k j k ky o kf yf in= − ∂
∂

⋅ − ⋅yy ′α α
∂

= − δwδ αw hk hw (j αout jout _ )outkoutoutkout yy ) _h⋅ jj

Hence  Δw y out f y h outjk k ky out kf yf joutkout ′ ⋅α ( _t yk y− yy ) fff⋅ _ )inkin _  (10.13)

Similarly, Δv E
v

w f h xij
ij

j i k
k

n

jk h jf hf i= − ∂
∂

⋅ ⋅ ′
⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
⋅

=
∑α α

∂
= δ αv xj ix =xix δ

1
.w fjk ff _ )injin

= α δ
⎡

⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦=
∑f wh jff i k

⎣⎣⎣
∑
k

n

jk) .δwδi kδ
⎣
⎢
⎣⎣
∑ wδ

1

Th erefore, Δv f wj h jff i k
k

n

jk
⎡

⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦=
∑∑α f h inh jff in′

⎡
δ∑hh .wkw) i δxi ⋅x

⎡
⎢
⎡⎡∑

1
 (10.14)

Th e backpropagation algorithm applies formulae 10.13 and 10.14 for adjustment of the interconnection 
weights during the learning process. Th e details of the bachpropagation algorithm are discussed below.

10.3 THE BACKPROPAGATION ALGORITHM 

Backpropagation is a supervised learning method where the net repeatedly adjusts its interconnection 
weights on the basis of the error, or deviation from the target output, in response to the training patterns. 
As usual, learning takes place through a number of epochs. During each epoch the training patterns are 
applied at the input layer and the signals fl ow from the input to the output through the hidden layers. 
Calculation of errors starts at the output layer and the errors are propagated backward, i.e., from the out-
put layer towards the input layer. Th e error terms for the interconnection weights between various layers 
of neurons are derived in Section 10.2 and are given by Equations 10.13, and 10.14. Th e step-by-step 
procedure is given in Algorithm Backpropagation (Fig. 10.4). Th e corresponding fl owchart is 
shown in Fig. 10.5.
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Algorithm Backpropagation 

/* To train a multilayer feedforward net having a single hidden layer with 

a set of training pairs {(x, t)| x = [ x
1, …, xm ], t = [ t1, …, tn ]} */

Step 0. Initialize weights vij and wjk with small random values. 

Step 1. While stopping condition is false, Do Steps 2 to 9.

Step 2. For each training pair, Do Steps 3 to 8. 

/* Feed forward the input pattern */

Step 3.  Apply pattern x = [ x1, …, xm ] to the input layer [ X1, …, Xm ] 

and broadcast the signals x1, …, xm to the hidden layer units.

Step 4.  Compute the total input h_inj to each hidden layer unit Hj:

h in x vj
i

m

ix ij
i

m

_
=i=

∑ ∑x v vix ij j⋅xix = +v j
0 1

, j = 1, …, p.

Compute the activation of each hidden unit as h_outj = fh (h_

inj). Broadcast h_outj to each unit Yk of the output layer. 

Step 5.  Compute the total input y_ink to each output layer unit Yk :

y in h out wk
j

p

jh out jk
i

p

k
=i=

∑ ∑h out w wjh out jk kh outh out = w
0 1

, k = 1, …, n.

Compute the activation of each output unit y_outj = fo (y_ink). 

/* Backpropagate the errors and adjust weights. */

Step 6.  Compute the error term at the output layer as

δwδ y out f yk k k ff k′( _t ykt −tkt ) fff⋅ _ )ink , k = 1, …, n. 

Compute the weight adjustment terms for weights wjk 

Δw w h and wΔ wjk k jh k kw=wΔ kα δ α δ⋅,jout 0 , j = 1, …, p, and

k = 1, …, n.

Broadcast the error terms d  wk backward to the hidden layer. 

Step 7.  For each hidden unit Hj, j = 1, .., p, compute the total error 
obtained from the output layer.

δ δδδ wδj kδδ
k

n

jk_ δδ
=

∑∑
1

Compute the error term at the hidden layer as

δ δvδ δδ f hj jδvδ h jf hfvδvδ ′_ in fjin ff⋅injin _ )injin , j = 1, …, p. 

Compute the weight correction terms for updating weights Vij.
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Δ Δv v andd v vij j ix j jvΔvα δ α δ, 0

/* adjust the weights of interconnections */ 

Step 8. Compute the new weights as: 

 i)  Wjk(new) = Wjk(old) + ∆wjk , for j = 0,… , P, and k = 1,…, n
 ii)  vij(new) = vij(old) + ∆vij , for i = 0,.., m, and j = 1,…, p

Step 9. Test for the stopping condition 

Fig. 10.4. Algorithm backpropagation

No Yes

False

True

Begin

Initialize weights

Stopping condition

Update weights:w j k (new) = w j k (old) + Δw j k , j = 0 to p, k = 1 to n.
v i j (new) = v i j(old) + Δv i j , i = 0 to m, j = 1 to p. Δw jkw and Δv i j are
calculated using formulae 10.13 and 10.14.

Start next epoch of lf earning

Apply the next training pattern to the input layer

Propagate signal: Propagate input pattern from the input layer (XXX ,
i = 0 to m) to the hidden layer (H j , j = 0 to p). Find the activations
of the hidden layer. Propagate activations of the hidden layer to the
output layer (YkYY ,k = 0 to n). Compute activations at the output
layer.

Compute error terms for interconnection weights: Find errors
at output layer (i.e., t k – y_out k , k = 0 to n). Compute the weight
adjustment terms Δw j k , j = 0 to p, k = 1 to n, for the
interconnections between the hidden layer and the output layer.
Propagate these error terms backwards to the hidden layer.
Calculate the error terms Δv i j for the interconnection weights
between the input layer and the hidden layer.

More training pair?

End

Fig. 10.5. Flowchart of backpropagation training algorithm
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10.3.1 Choice of Parameters 

Performance of the Backpropagation learning procedure with respect to a problem instance requires 
fi ne tuning of certain parameters. Important parameters include the initial interconnection weights and 
biases, size of the training set, data representation, number of hidden layers etc. Th ese issues are briefl y 
discussed in the rest of this subsection.

(a) Initial weights and biases 
Choosing the appropriate initial interconnection weights highly infl uence the quality of the solution. 
Quality of a solution can be judged on the basis of whether a global minima is reached or the learning 
process gets stuck at a local minima, or the effi  ciency of search process. Th e popular ways to choose the 
initial weights are described below.

Random Initialization In this method, random real values within the range − 0.5 to + 0.5, or − 1.0 
to + 1.0, or some other suitable range, are assigned to the interconnection weights initially. Th e initial 
weights should neither be too large nor be too small. Th is is because in both these cases learning be-
comes slow. 

Procedure Nguyen-Widrow Initialization. 

Step 1. Compute a scale function b = 0.7(p) β = ×0 7
1

p m , where p is the 

number of units in the hidden layer and m is the number of units 

in the input layer.

Step 2. Initialize the biases v0j, j =1, .., p, by random number within 
the range −b to b.

Step 3. Initialize each interconnection weight vij, i = 1, …, m, and j = 
1, …, p with a random number within the range – 0.5 to +0.5. 

Step 4. For each j = 1, …, p compute v v vj jv j mv jm= +v jv + +2
2

2 2+ +

Step 5. Final initialization of vij, i = 1, …, m, and j = 1, …, p is ac-
complished with the help of the formula

v
v

vij
ij

j
=

β.

Fig. 10.6. Procedure Nguyen-Widrow initialization

Nguyen-Widrow Initialization. Nguyen-Widrow proposed an initialization technique that acceler-
ates the learning rate to a great extent. It is based on the hyperbolic tangent activation function 

 h x e e
e e

x xe
x xe

( )x =  (10.15)

We know that this function is closely related to the bipolar sigmoid activation function. In Nguyen-
Widrow initialization, the weights between the hidden layer and the output layer, i.e., the wjk weights, are 
randomly initialized to values in the range − 0.5 to + 0.5. However, the interconnection weights between 
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the input layer and hidden layer, i.e., vij weights, are assigned diff erently. Th e method is presented as 
Procedure Nguyen-Widrow Initialization (Fig. 10.6). 

(b) Stopping criteria
Hecht and Nielsen have proposed a very eff ective criterion for the termination of the backpropaga-
tion learning process. Th e technique requires use of two sets of patterns during training, viz., a set of 
training patterns, together with a set of training testing patterns. Th ese sets are disjoint. Th e training 
patterns are used to train the net as usual. However, the training-testing patterns play a somewhat 
diff erent role. Th ese are employed to compute the errors at regular intervals. Training is continued as 
long as the error for the training-testing patterns goes on decreasing. When this trend reverses, i.e., 
instead of decreasing the error begins to increase, training is terminated. 

(c) Size of training set
Let p be the size of the training set, i.e., number of training pairs, w be the number of weights to 
be adjusted, and e the accuracy of classification. Then the expression for ‘enough’ training pairs is 
given by 

 P w
e

=  (10.16)

Th is implies that if the net is trained to classify 1
2

− e  of the training patterns correctly, where 0 < e ≤ 

0.125, then it will classify i - e of the testing patterns correctly. 

Example 10.1  (Size of the training set) 

Let us suppose e = 0.1. Th en a backpropagation net with 100 weights will require w/e = 100/0.1 = 1000 
training patterns to classify 90% of testing patterns correctly, assuming that the net was trained to clas-
sify 95% of the training patterns correctly. 

(d) Data representation 
Data can be discrete, or continuous. It is found that distinct responses are learnt by neural nets more 
easily than continuous-valued responses. However, breaking continuous data into a number of distinct 
categories is not always advisable because, neural nets fi nd it diffi  cult to learn patterns that lie on, or near, 
the boundaries. On the other hand, representing discrete quantities, such as letters of the alphabet, or a 
set of facial images, should be avoided as far as possible. As usual, discrete data should be represented 
in bipolar form and the bipolar sigmoid function is to be used for the activation function so that the net 
may learn faster. 

(e) Number of hidden layers
It is shown that for back-propagation nets one hidden layer is suffi  cient to approximate any continuous 
input-output pattern mapping to any desired degree of accuracy. In some situations, however, more than 
one hidden layers, say two, may make learning easier. 
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Algorithm Apply-Backpropagation-Net

/* An m-input n-output backpropagation neural net with one hidden layer 

consisting of p number of hidden units is given. The input, hidden, and 

the output layer units are denoted as X
0, X1,…, Xm, H0, H1,…,Hp, and Y1,…,Yn 

respectively. The biases at the input and hidden layers are attached to 

the bias units X
0 and H0. The input pattern is x = ( x1, …, xm). The cor-

responding output pattern Y_out = (y_out1,…,y_outn) is to be computed. */

Step 1. Apply the input pattern to the input layer by setting activation 

of each input unit X
i to the corresponding component xi of the 

input pattern x.

Step 2. Compute the total input to each hidden layer unit 

h in x v x v j pj ix ij oj i
i

m

i

m

ij_ .in v vj ix ij oj , j⋅xix = +v jvoj v jij
==
∑∑∑

10

Step 3. Compute the activation of each hidden unit 

h_outj = fh(h_inj), j = 1, …, p 

Step 4. Propagate the hidden layer activations to the output layer units 

and compute the total input to each output layer unit 

y in h out w w h out wk jh out jk k jh out jk
j

p

j

p

k .wjout jkh outh out = w
==

∑∑∑ 0
10

Step 5. Compute the activation of each output unit 

y_outk = fo(y_ink), k = 1, …, n 

Step 6. Return the pattern y_out = ( y_out1, …, y_outn )

End Algorithm Apply-Backpropagation–Net 

Fig. 10.7. Algorithm apply-backpropagation-net

10.3.2 Application

Once the net is trained, it is ready for application. During application phase of a backpropagation neural 
net, only the feed forward phase of the training algorithm is needed. Th e application procedure is pre-
sented as Algorithm Apply–Backprapagation-Net (Fig. 10.7). Fig. 10.8 shows the fl owchart 
of the procedure. 
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Begin

Compute total input to
each hidden units

Compute the total input to each
output unit

Compute the activation
of each output unit

Return activation of the output layer

End

Compute activation of each hidden unit
to broadcast then to the input layer units

Apply input pattern x = [x1xx , …, xmxx ]
to the input layer X1XX , …, XmXX

Fig. 10.8. Flow chart for application of backpropagation net

CHAPTER SUMMARY

Th e main points of the discussion on backpropagation nets are noted below.
A multilayer feedforward neural net with one or more • hidden layers can learn any continuous 
mapping to an arbitrary accuracy. 
It is proved that one hidden layer is suffi  cient for a multilayer perceptron to implement any • 
continuous function.
Th e processing elements of a multi-layer feedforward neural net are arranged in a number of • 
layer. Th e layers intermediate between the input and the output layers are called the hidden 
layers. Th e connecting paths are directed from the input layer to the output layer. Signals fl ow 
from the input to the output through the hidden layers and not in the reverse direction. Th e 
name feedforward is due to the unidirectional fl ow of signal from the input to the output layer. 
During learning, the net adjusts its interconnection weights on the basis of the errors in • 
computation. Calculation of errors starts at the output layer and the errors are propagated 
backward, i.e., from the output layer towards the input layer. Because of this backward 
propagation of errors during the learning phase these nets are called backpropagation nets. 
Th e activation function employed in a backpropagation net must be continuous, diff erentiable, • 
and monotonically non-decreasing. Th e fi rst derivative of the activation function should 
preferably be easily computable. 
Th e backpropagation nets follow the generalized delta rule for learning. It is a supervised • 
learning method which is essentially a gradient descent method that tries to minimize the total 
squared error of the output computed by the net. 
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Th e backpropagation algorithm applies the formulae 10.13 and 10.14 for adjustment of the • 
interconnection weights during the learning process. 

 Δw y out f y h outjk k ky out kf yf joutkout ′ ⋅α ( _t yk y− yy ) fff⋅ _ )inkin _  (10.13)

 Δv f wj h jff i k
k

n

jk
⎡

⎣⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦=
∑∑α f h inh jff in′

⎡
δ∑hh .wkw) i δxi ⋅x

⎡
⎢
⎡⎡∑

1
 (10.14)

Important parameters of backpropagation algorithm include the • initial interconnection weights 
and biases, size of the training set, data representation, number of hidden layers etc.

SOLVED PROBLEMS

Problem 10.1 (Backpropagation network for diagnosis of diabetes ) Let us assume that it is possible 
to predict fairly correctly from the data provided in Table A below the chances of a person being a diabetic. 
Th e diagnosis fi eld gives the inference drawn from the data given in the preceding six columns. Th e legend 
below gives the interpretation of the values in the column marked ‘Diagnosis’. Use the information given in 
Table 10.1 to train a backpropagation network. Test the trained network with the data given in Table 10.2.

Table 10.1. Data for diabetics

Family 
History

Obese Thirst Increased 
Urination

Increased 
Urination 
(Night)

Adult Diagnosis

1 1 1 1 1 1 1

1 1 0 0 0 1 2

1 1 1 0 0 1 2

1 1 1 1 1 0 1

0 1 1 1 1 1 1

0 0 1 1 1 1 1

0 0 0 1 1 0 0

1 0 0 0 0 1 0

0 1 1 0 0 1 0

0 0 1 0 1 1 1

0 1 0 0 1 1 0

0: Not diabetic, 1: Diabetic, 2: Probably diabetic

Table 10.2. Test data

Family 
History

Obese Thirst Increased 
Urination

Increased 
Urination 
(Night)

Adult Diagnosis

1 1 1 1 1 1 ?

0 0 0 0 0 1 ?
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Solution 10.1 Th e MatLab program for training and testing the backpropagation network is given 
below.

clc;
clear;
load ( ‘Input.txt’ ) % Loading of input data ( as in Table A )
load ( ‘test.txt’ ) % Loading of test data ( as in Table B )
r = Input ( :,1:6 ); % Placing input data to matrix
r = r’;
t = Input ( :,7 ); %  Placing target output from input 

data
t = t’;
s = test ( :,1:6 ); % Placing test data to matrix
s = s’;

% ******** THESE PARAMETERS CAN BE ADJUSTED AS REQUIRED *********

numHiddenNeurons = 25; % Number of hidden neurons = 18
net = newpr(r,t,numHiddenNeurons); % Create new network
net.trainParam.show = 50; % Epochs between showing progress = 50
net.trainParam.lr = 0.1; % Learning rate = 0.1
net.trainParam.mc = 0.9; % Momentum constant = 0.9
net.trainParam.epochs = 15000; % Number of maximum epochs = 15000
net.trainParam.goal = 1e-15; % Performance goal = 1e-15

%**********************************************************************

net = train ( net, r, t ); % Train the network on input data
b = sim ( net, s ); % Test response for test data
disp ( b ); % Display the results at command line
for i = 1:2
if ( b ( i ) < 0.7 )

disp ( ‘NOT DIABETIC’ );
elseif ( 0.7 <= b ( I ) <= 1.5 )

disp ( ‘DIABETIC’ );
elseif ( b ( i ) > 1.5)

disp ( ‘PROBABLY DIABETIC’ );
end
end

% *************** IT IS IMPORTANT TO CLOSE ALL FILES *****************

close all;
clear all;

% ********************** THIS IS NOT PART OF CODE ********************
********************************OUTPUT********************************

1.5589  0.1846

DIABETIC
NOT DIABETIC

Samir Roy_Chapter10.indd   384Samir Roy_Chapter10.indd   384 2/21/2013   3:36:09 PM2/21/2013   3:36:09 PM



Backpropagation   385

Problem 10.2 (Neural Network Fitting Tool in Matlab ) Use the Neural Network Fitting Tool in 
Matlab to solve an input-output fi tting problem with a two layer feed forward neural network.

Solution 10.2 Th e step-by-step process with reference to a sample dataset available in MatLab is 
shown below.

Step 1. Open the Neural Network Fitting Tool (nft ool). (Fig. 10.9) 
Th en click on the→ Next button. Th is brings us to the Select Data interface in nft ool. (Fig. 10.10)

Fig. 10.9. The neural network fi tting tool (nftool)

Th e page provides an introduction to the so called fi tting problems where we want a neural 
network to map between a data set of numeric inputs and a set of numeric targets. Th e intro-
duction cites a few examples of this type of problem e.g. estimating house prices from such 
input variables as tax rate, pupil/teacher ratio in local schools and crime rate which is provided 
as the house_dataset in the system, estimating engine emission levels based on measurements 
of fuel consumption and speed (engine_dataset); or predicting a patient’s bodyfat level based 
on body measurements (bodyfat_dataset).

As mentioned in this page, the nft ool helps to select data, create and train a network, and 
evaluate its performance using mean square error and regression analysis. A two-layer feed-
forward network with sigmoid hidden neurons and linear output neurons (newfi t) can fi t 
multi-dimensional mapping problems arbitrarily well, given consistent data and enough neu-
rons in its hidden layer. Th e network is trained with Levenberg-Marquardt backpropagation 
algorithm (trainlm), unless there is not enough memory, in which case scaled conjugate gradi-
ent backpropagation (trainscg) is used.

Step 2. As we are going to work with Example Data Set, load the same by selecting ‘Load Example Data 
Set’. (Fig. 10.10)

Samir Roy_Chapter10.indd   385Samir Roy_Chapter10.indd   385 2/21/2013   3:36:09 PM2/21/2013   3:36:09 PM



386  Introduction to Soft Computing

Step 3. Select house_dataset. Th e description of the dataset appears on the right (Fig. 10.11). Th e 
house_dataset has 506 samples. Th e ‘housingInputs’ is a 13 × 506 matrix with rows corre-
sponding to (i) per capita crime rate by town, (ii) proportion of residential land zoned for lots 
over 25,000 sq.ft ., (iii) proportion of non-retail business acres per town, (iv) whether tract 
bounds Charles river or not, (v) nitric oxides concentration (parts per 10 million), (vi) average 
number of rooms per dwelling, (vii) proportion of owner-occupied units built prior to 1940, 
(viii) weighted distances to fi ve Boston employment centres, (ix) index of accessibility to radial 
highways, (x) full-value property-tax rate per $10,000, (xi) pupil-teacher ratio by town, (xii) 
1000(Bk − 0.63)2, where Bk is the proportion of blacks by town, and (xiii) % lower status of the 
population.

Fig. 10.10. Select data interface in nftool 

Fig. 10.11. Selecting house_dataset
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Th e ‘houseTargets’ is a 1 × 506 matrix of medium values of owner-occupied homes in $1000’s. 
As indicated in MatLab, this data is available from the UCI Machine Learning Repository 
http://mlearn.ics.uci.edu/MLRepository.html Murphy, P.M., Aha, D.W. (1994). UCI Reposi-
tory of machine learning databases [http://www.ics.uci.edu/~mlearn/MLRepository.html]. 
Irvine, CA: University of California, Department of Information and Computer Science. 
Th is dataset originated from the StatLib library which is maintained at Carnegie Mellon 
University.

Step 4. Load sample data, i.e., houseinputs and houseTargets (Fig. 10.12) and then click on the 
→ Next button at the bottom.

Fig. 10.12. Sample data loaded

Fig. 10.13. Training, validation and test data chosen

Step 5. Choose the training, validation and test data (Fig. 10.13). Th e explanations for training, valida-
tion and test are provided in the ‘explanation’ window. Go to the next page.
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Step 6. Determine the network size, please note the structure (Fig. 10.14). In this case the input and 
output sizes are 13 and 1 respectively. Th e size of the hidden layer is chosen to be 20.

Fig. 10.14. Network size determined

Step 6. Train the network (Fig. 10.15, Fig. 10.16 and Fig. 10.17). It may be noted that the network may 
be retrained for better performance.

Fig. 10.15. Training the network
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Fig. 10.16. Training in progress

Fig. 10.17. Training results

If performance of the resultant network is not satisfactory then MatLab provides options for adjustment 
of network size and data set. Th is is shown in Fig. 10.18. Fig. 10.19 shows how to save the results of the 
process.

Fig. 10.20, Fig. 10.21 and Fig. 10.22 show various snapshots relating to the performance of the net-
work and the training process.
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Fig. 10.18. Network size and data set adjustment options

Fig. 10.19. Saving results

Best Validation Performance is 24.2713 at epoch 9
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Fig. 10.20. Performance plot

Samir Roy_Chapter10.indd   390Samir Roy_Chapter10.indd   390 2/21/2013   3:36:26 PM2/21/2013   3:36:26 PM



Backpropagation   391

10
4

10
2

10
2

10
−2

10
−4

6

4

2

0
0 5 10

Validation Checks =6, at epoch 15

Mu = 1, at epoch 15

Gradient = 9.1079, at epoch 15

15 Epoch 15

gr
ad

ie
nt

m
u

V
al

 fa
il

10
0

10
0

Fig. 10.21. Training states

50
Training: R = 0.9834

Data
Fit
Y = T40

30

20

O
ut

pu
t∼

=
0.

96
∗ T

ar
ge

t+
0.

94

10

10 20 30
Target

40 50

50
Test: R = 0.9003

Data
Fit
Y = T40

30

20

O
ut

pu
t∼

=
0.

74
∗ T

ar
ge

t+
4.

8

10

10 20 30
Target

40 50

50

Validation: R = 0.83502

Data
Fit
Y = T

40

30

20

O
ut

pu
t∼

=
0.

78
∗ T

ar
ge

t+
5.

4

10

10 20 30
Target

40 50

50

All: R = 0.93889

Data
Fit
Y = T

40

30

20

O
ut

pu
t∼

=
0.

88
∗ T

ar
ge

t+
2.

5

10

10 20 30
gTarget

40 50

Fig. 10.22. Regression slot

� TEST YOUR KNOWLEDGE

 10.1 How many hidden layers are required by a multilayer perceptron to learn an arbitrary continu-
ous function? 
a) One b) Two
c) More than two d) None of the above
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 10.2 During the learning phase of a backpropagation net, direction of fl ow of signals is
a) From input to output b) From output to input
c) Uncertain d) None of the above

 10.3 During the learning phase of a backpropagation net, direction of fl ow of errors is
a) From input to output b) From output to input
c) Uncertain d) None of the above

 10.4 Which of the following properties of an activation function need not be satisfi ed while used in a 
backpropagation net?
a) Continuity b) Diff erentiability
c) Monotonically non-decreasing d) None of the above

 10.5 Which of the following activation functions is not suitable for backpropagation nets?  
a) Sigmoid b) Hyperbolic tangent
c) Step function d) None of the above

 10.6 Which of the following learning rules is used to train backpropagation nets?
a) Hebb rule b) Generalized delta rule
c) Winner-takes-all d) None of the above

 10.7 While applying Hecht and Nielsen criteria for termination of the backpropagation learning pro-
cess, which of the following sets of patterns is used to determine the termination condition?
a) Training patterns b) Training-testing patterns
c) Both (a) and (b) d) None of the above

 10.8 What kind of learning is backpropagation?
a) Supervised b) Non-supervised
c) Semi-supervised d) None of the above

 10.9 Which of the following activation functions is appropriate for Nguyen-Widrow initialization in 
backpropagation learning?
a) Step function b) Hyperbolic tangent
c) Hyperbolic  d) Sigmoid function

10.10 In Nguyen-Widrow initialization, the weights between the hidden layer and the output layer, i.e., 
the wjk weights, are randomly initialized to values in the range - 
a) – 1.0 to + 1.0 b) – 1.0 to 0
c) 0 to + 1.0 d) – 0.5 to + 0.5

Answers

 10.1 (a) 10.2 (a) 10.3 (b) 10.4 (d) 10.5 (c)
 10.6 (b) 10.7 (b) 10.8 (a) 10.9 (b) 10.10 (d)

EXERCISES

10.1 Consider Problem 10.2 in the ‘Solved Problems’ section where Neural Network Fitting Tool in 
Matlab is used to solve an input-output fi tting problem with a two layer feed forward neural net-
work. Repeat the exercise with the other data sets available in the system.

10.2 A word can be misspelled in various ways. Some of these misspelled words are acceptable in the 
sense that we can recognize the word in spite of the spelling mistake while others are not accept-
able. Table 10.3 presents a list containing various misspellings of the word ‘computer’ along with 
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their acceptibilities. Use this data set to train a backpropagation net in MatLab. Test the perfor-
mance of the resultant net with the words ‘computrr’ and ‘commuter’.

Table 10.3. Misspellings of the word ‘computer’.

# Word Decision

1 komputer Yes

2 komptuer No

3 comptuer Yes

4 conjurer No

5 commteer No

6 comfuter Yes

7 comfortr No

8 komfuter No

9 coomputr Yes

10 moonliter No

11 combuter Yes

12 conputer Yes
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ELEMENTARY SEARCH TECHNIQUES

Key Concepts

8-queen problem, A* algorithm, ‘A’ algorithm, AND-OR graph, AO* algorithm, CNF-satisfi ability, Ad-
missibility, Adversarial search, Alpha-beta cut-off , Alpha-beta pruning, Backtracking, Backtracking 
depth-fi rst search, Best-fi rst search, Bidirectional search, Binary constraint, Blind search, Block world, 
Book moves, Breadth-fi rst search (BFS), Constraint, Constraint graph, Constraint hypergraph, Constraint 
propagation, Constraint satisfaction, Control system, Crossword puzzle, Cryptarithmetic puzzle, Degree 
heuristic, Depth-fi rst iterative deepening, Depth-fi rst search (DFS), Diff erence-operator-precondition 
table, Exhaustive search, Final state, Forward checking, Game playing, Game tree, General constraint, 
General problem solver (GPS), Global database, Goal state, Graph colouring problem, Greedy local 
search, Heuristic search, Hill climbing, Horizon eff ect, Informed search, Initial state, Irrevocable control 
strategy, Least constraining value heuristic, Local optima, Min-confl ict heuristic, Minimum remaining 
value (MRV) heuristic, n-queen problem, Objective function, Operator subgoaling, Plan generation, 
Plateau, Post-condition, Pre-condition, Problem reduction, Production rules, Production system, Qui-
escence, Ridge, Secondary search, Start state, State space, State space search, Static evaluation function, 
Steepest-ascent hill climbing, Traveling salesperson problem, Unary constraint, Uninformed search, Utility 
function, Valley descending

 Chapter Outline 

11.1 State Spaces
11.2 State Space Search
11.3 Exhaustive Search
11.4 Heuristic Search
11.5 Production Systems

Chapter Summary
Solved Problems
Test Your Knowledge
Exercise
Bibliography and Historical Notes

Many intelligent computational processes take the form of state space search, which is at the core of such 
intelligent systems. Th is chapter provides a review of these elementary state space search techniques. 
Evolutionary search techniques e.g. Genetic Algorithms (GAs), Simulated Annealing (SA) etc. are tradi-
tionally regarded as soft  computational processes. Th ese techniques are applied to tackle highly complex 
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problems. A review of the basic search techniques is necessary for an understanding of the evolutionary 
search strategies stated above. In this chapter we start with the concept of a state space. Th en the basic 
state space search algorithm is presented and explained. Exhaustive search algorithms, e.g., breadth-fi rst 
search, depth-fi rst search, depth-fi rst iterative deepening etc., are discussed which is followed by dis-
cussions on various heuristic search strategies. Th e principles underlying such techniques as best-fi rst 
search, hill climbing, A / A* algorithm, AO* algorithm etc. are explained with appropriate illustrative ex-
amples. Features of production systems, an important class of intelligent systems employing state space 
search at the core, are explained along with examples.

11.1 STATE SPACES

Many intelligent computational processes are modeled as a state space search. Th e concept of a state 
space is introduced in this section. Searching through a state space, i.e., state space search, is discussed 
in the next section. 

Let us consider a block world of size three. A block world consists of a number of cubical blocks on 
a plane surface. Th e blocks are distinguishable and they may either rest on the table or stacked on it. Th e 
arrangement of the blocks constitutes a state of the block world. An arrangement of the blocks can be 
altered through a set of legal moves. An altered arrangement results in a diff erent state. Th e size of the 
block world is given by the number of blocks in it. So, a block world of size three consists of three distin-
guishable blocks. Let the blocks be marked as X, Y, and Z. 

Let the initial stack of the blocks be as shown in Fig. 11.1(a). Th ey are to be rearranged into the goal 
stack shown in Fig. 11.1(b). Th e rules to manipulate the block world are:

Only one block can be moved at a time.• 
A block can be moved only if its top is clear, i.e., there is no block over it.• 
A block can be placed on the table.• 
A block can be placed over another block provided the latter’s top is clear. • 

We have to fi nd a sequence of legal moves to transform the initial stack of blocks to the goal stack. 

X

Y

Z

X

Y

Z

(a) Start state (b) Goal state

Fig. 11.1. A block manipulation problem.

X

Y

Z

X

Y Z

(a) (b)

Fig. 11.2. The fi rst move.

Th e only valid move from the initial arrangement is to lift  the topmost block Y and place it on the table 
to obtain the state in Fig. 11.2(b).

From the state depicted in Fig. 11.2(b) the possible moves are:

Replace block Y on top of X to return to the previous arrangement, or• 
Lift  block X and place it on the table, or• 
Lift  block X and place it on block Y.• 

Taking this into account, the possibilities regarding the fi rst two moves are shown in Fig. 11.3. Bidirec-
tional arrows indicate that the corresponding changes in the block world are reversible.
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Start
state

X

Y

Z

X

Y Z

X

Y Z X Y Z

Fig. 11.3. The fi rst two possible moves.
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Z
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Z
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Y Z
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Y Z

X

Y

Z X Y

Z

X

Y

Z
Initial
state 

X

Y

Z

Final
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Z

X

Y

X

Y

Z

Fig. 11.4. Movements in the block world of size 3.
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Similarly, newer block world states are generated by applying appropriate moves. Th e set of all possible 
block arrangements and their interrelations are shown in Fig. 11.4. Th is is a tiny state space of block 
manipulation problem of size 3.

We may represent each possible state of the block world as a node and express the transition between 
two states with directed arcs so that the entire set of possible states along with possible transitions among 
them takes the form of a graph (Fig. 11.5). Finding a solution to the given problem is tantamount to 
searching for a goal node, (or, a goal state, or fi nal state). Th e search starts at the start state of the prob-
lem, i.e., at the start node. During the search process, newer nodes are generated from the earlier nodes 
by applying the rules of transformation. Th e generated nodes are tested for goal, or fi nal, node. Th e 
search stops when a goal is reached, or is found to be unreachable.

Goal
State 

Start
State 

FE HG I

C D

J K

A B

L M

Fig. 11.5. State space of block manipulation problem.

Th us, a state space for a given problem consists of 
A directed graph • G(V, E) where each node v ∈V represents a state, and each edge eij from state 
vi to vj represents a possible transition from vi to vj. Th is graph is called the state space of the 
given problem. 
A designated state • s∈V referred to as the start state, or start node, of the state space. Th e search 
starts from this node.
A • goal condition which must be satisfi ed to end the search process successfully. It is expected 
that one or more nodes of the state space will satisfy this condition. Such nodes are called the 
goal nodes.

Th e following example illustrates the concept of a state space.

A CB
1
2
3

CBA

Fig. 11.6. Movements in the block world of size 3

Example 11.1  (State space representation of the Tower of Hanoi problem)

Let us consider the Tower of Hanoi problem for three discs 1, 2, and 3 (Fig. 11.6). Discs 1, 2, and 
3 are in ascending order of diameter. Initially all the discs are in peg A and the other two pegs B
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and C are empty. Th e discs are to be transferred from peg A to peg C so that the fi nal arrangement 
shown on the right side of Fig. 11.6 is achieved. Disks are transferred from peg to peg subject to 
the following rules:

Only one disc may be transferred at a time.• 
Under no circumstances a larger disc may be placed over a smaller disc.• 
A disc can be picked for movement only if there is no other disc on it.• 

Let us formulate the problem as a state space search in the following way. Th e fi rst thing to do is 
to fi nd a suitable representation of the problem state. We employ here a 3 × 3 matrix to represent a 
state. Columns 1, 2 and 3 of the matrix correspond to the pegs A, B, and C, respectively. Similarly, 
the rows are used to indicate the relative positions of the discs within a peg. Th us, the start state 
and the goal state are expressed as in Fig. 11.7(a) and Fig. 11.7(b).

What about the transitions among the possible states? Initially all discs are in peg A with disc 3 
at the bottom and disc 1 at the top. In this situation we can pick disc 1 from the top and put it either 
in peg B or in peg C (Fig. 11.8). Each of these two states will generate others states (including those 
already generated) and so on. Th e partial state space for this problem with one path from the start 
state to the goal state is shown in Fig. 11.9. Th e corresponding graph is given in Fig. 11.10. Th e 
graph does not show the details of a state and express them simply as nodes. Th e start node and 
the goal node are indicated with appropriate tags and the solution path, i.e., the sequence of moves 
from the start node to the goal node is highlighted.

A C B
1

2

3

≡

(a) The start state

C BA
1

2

3

≡

(b)The goal  state

1

2

3

1

2

3

(c) The problem

2

3 1

2

3 1

Fig. 11.7. Formulation of Tower of Hanoi 
problem as a state space search.

Fig. 11.8. Probable states after the fi rst move.
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Goal State

Start State
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3 1

2

3 1

3 2 13 1 2
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2 3
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2
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3 2  
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1

2

1
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3 21 3 2 2

1

31 2 3

2

1

31

2

3 2

1

31

2

3

1

2

3

1

2

3

Fig. 11.9. State space of Tower of Hanoi problem with three discs
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Start State

A

B C

D E

F G H I

J K

L M N O

P Q
R S

Goal State

T U

Fig. 11.10. State space of Tower of Hanoi as a graph

Example 11.2  (State space representation of the 8-puzzle)

Th e 8-puzzle is a combination of eight movable tiles, numbered 1 to 8, set within a 3 × 3 frame. 
Out of the 3 × 3 = 9 cells eight cells are occupied by the tiles and one remaining cell is empty. At 
any instant, a tile which is adjacent to the empty cell in the vertical or in horizontal direction, may 
slide into it. Equivalently, the empty cell can be moved to left , right, up, or down by one cell at a 
time, depending on its position. Th e state of the 8-puzzle can be represented with the help of a 
3 × 3 matrix where the empty cell is indicated by blank. Given the initial and the goal states of an 
8-puzzle as shown in Fig. 11.11, we are to generate the state space and a path from the start state 
to the goal state in it.
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Start state

38 1

7 2 4

6 5

Goal state

8 4

7 6 5

1 2 3

Fig. 11.11. An instance of the 8-puzzle.

Initially the empty cell is at the bottom-left  corner. We can move it either upwards or to the right. No 
other movement is possible from this position. Accordingly, we get two children from the start node. 
From each of these children, two new states can be generated. If we go on generating newer states and 
the interconnections among them we get the required state space as shown in Fig. 11.12. Fig. 11.13 
hides the details of the individual states and presents the said state space as a directed graph.

Goal

state

Start
state 

8 1 3

7 2    4

6 5

8 1 3

2   6    4

7 5

 6   

8 1 3

2   6    4

7 5

 6   

8 1 3

7   6    6   5

2 4

8   1   3

7 22 4
6 5

7    6  5  

8    2    2  4
1   3

8    2    2  4

7    6    6  5

1 3

8 1 3

2   6     6   4

7 5

8 1 3

6    2     5

7 4

 2   1   3

 6   7   5

 8 4

7   6    5

8   2 4

 6   

1 3

7   6   5

2   1   4

 6   

 1   

8 3

6   2   5

7   1   4

 2   

 1   

8 3

6   2   5 2   

7 4

8   1    1   3

7   6   5 6   

2 4

8   1    1   3

8   1    3

6   5   4 5   

7 2

8   1    1   38 1 3

6    2    5

7 4

7   6    5

 1   

 6   
42

8 1 3

7    2     2  4

6  5

Fig. 11.12. State space of the 8-puzzle.
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A

B C

D E F G

H I J K L M N O

P Q R S

Fig. 11.13. State space of the 8-puzzle as a graph.

11.2 STATE SPACE SEARCH

Once the state space of a given problem is formulated, solving the problem amounts to a search for the 
goal in it. Th e basic search process is independent of the problem and has a number of common features 
as described below.

11.2.1 Basic Graph Search Algorithm

Th e search starts from the start node which represents the initial state of the problem. As the search 
proceeds, newer and newer nodes are produced and the search tree grows. Th e search tree is a subgraph 
of state space. It consists of the nodes generated during the search. Th ere is a set of transformation rules 
that map a given node to other nodes. A node is said to be generated when it is obtained as a result of 
applying some rule on the parent node. A node is said to be expanded when its children are generated. 
Moreover, there are some conditions to ascertain whether a given node is a goal not. When a node un-
dergoes such a test it is said to be explored. 

During the search, two lists are maintained. One for the nodes that have been generated but neither 
explored, nor expanded. Th is list is referred to as OPEN. Th e other list, called CLOSED, contains all nodes 
that have been generated as well as explored and expanded. While the search process is on, a node from the 
OPEN list is selected for processing. It is fi rst explored and if found to be a goal node, the search ends suc-
cessfully. Otherwise, the node is expanded and the newly generated nodes are included into the search tree 
constructed so far. Th e process stops successfully when a goal node is reached. It ends unsuccessfully if the 
list OPEN is found to be empty, indicating that the goal node, if exists, is unreachable from the start node.

A simplifi ed version of the algorithm which focuses on the essential features of state space search is 
given in Algorithm Basic-State-Space-Search (Fig. 11.14).

Algorithm Basic-State-Space-Search

/* Let OPEN be a list of states that have been generated but not yet 
explored or expanded. Another list CLOSED contains the states that are
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ex plored as well as expanded. T is the search tree, i.e., the portion of 
the state space created so far. */ 

 1. Begin

 2.  Initialize the search tree T with a single node S, the start state. 

Initialize OPEN with only S in it and CLOSED as an empty list.

 3.  If (OPEN is empty) Then the goal is unreachable and the search is un-
successful. Exit. End-If

 4.  Let n be the first node on OPEN. Remove n from the list OPEN and put 

n on the list CLOSED.

 5.  If (n is a goal node) Then the search is successful. Exit. End-If

 6.  Generate all children of node n. Let us denote this set by 

CHLDRN(n).

 7.  Merge CHLDRN(n) with OPEN according to some predefined criteria.

 8. Go to Step 3.

 9. END- Basic-State-Space-Search

Fig. 11.14. Algorithm basic-state-space-search.

11.2.2 Informed and Uninformed Search 

Step 7 of Algorithm Basic-State-Space-Search states that the newly generated nodes are 
to be merged with the states of the existing OPEN queue. But how this merging should be done is not 
explained. Actually, the character of a search process depends on the sequence in which the nodes are 
explored which, in turn, is determined by the way new nodes are merged with the current nodes of 
OPEN. 

All state space searches can be classifi ed into two broad categories, uninformed and informed. 
Th ey are also referred to as blind search, and heuristic search, respectively. In an uninformed, or 
blind, search, no knowledge of the problem domain is employed to guide the search for a goal node. 
On the contrary, an informed, or heuristic, search is guided by some knowledge of the problem 
domain so that the process may estimate the relative merit of the unexplored nodes with respect 
to the attainment of a goal node through it. Th e crucial point is Step 7 of Algorithm Basic-
State-Space-Search where the newly generated nodes are merged with the existing OPEN 
list. Th e way of merging diff erentiates between the various kinds of search strategies to be discussed 
subsequently. 

11.3 EXHAUSTIVE SEARCH

An exhaustive search is a kind of blind search that tries to examine each and every node of the state space 
till a goal is reached or there is no way to proceed. Th e elementary systematic exhaustive searches are 
breadth-fi rst search (BFS), depth-fi rst search, depth-fi rst iterative deepening search, and bidirectional 
search. Th ese are discussed in this section. 
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11.3.1 Breadth-first Search (BFS) 

Breadth-fi rst search explores the search space laterally. It employs a queue to implement OPEN so that 
while executing Step 7 of Algorithm Basic-State-Space-Search, the newly generated nodes 
are added at the end of the OPEN. Consequently, the nodes generated earlier are explored earlier in a 
FIFO fashion. For example, consider the extremely simple and tiny state space depicted in Fig. 11.15. It 
consists of 13 states A, B, …, M and certain transitions among them. Th e states G, L and M are the goal 
states.

A

DB

E
F H I

J K

G

L M

C

Fig. 11.15. A tiny state space.

Table 11.1 shows the trace of execution of breadth-fi rst search of the state space given in Fig. 11.15. Th e 
search is initialized by putting the start state A on the OPEN queue. At this instant n, CHLDRN (n), and 
CLOSED are all empty because node A is not yet removed from OPEN and explored. At the 8th row we 
remove node G, the fi rst node in the OPEN queue at that moment, and examine it. Since G is tested to be 
a goal node, the search stops here successfully.

Table 11.1. Breadth-first search on Fig. 11.15

# n CHLDRN (n) CLOSED OPEN 

1 − − − A

2 A B, C, D A B, C, D

3 B E, F A, B C, D, E, F

4 C G A, B, C D, E, F, G

5 D H, I A, B, C, D E, F, G, H, I

6 E J A, B, C, D, E F, G, H, I, J

7 F K, L A, B, C, D, E, F G, H, I, J, K, L

8 G (SUCCESS)

Step by step construction of the search tree is shown in Fig. 11.16(a)–(h). Nodes that are generated but 
not yet explored, or expanded, are highlighted with dotted lines. Th e unexplored node which is to be 
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explored next is indicated by an arrow. Fig. 11.16(h) shows the fi nal search tree. Th e dotted arrowed 
line shows the sequence of nodes visited during the breadth-fi rst search. Th e search stops as soon as we 
explore the node G, a goal. It may be noted that except Fig. 11.16(h), node G is shown as an usual node 
and not a goal node. Th is is because unless a state is tested it can not be recognized as a goal node even 
aft er it has been generated.

A

(a)

   

A

D
C

B

(b)

   

A

DB

C

E
F

(c)

A

DB

E
F G
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C
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F H IGE

(e)

C

A
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F H IGE

J
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DB

F H I

K L

GE

J

(g)

C

A

 

DB

F H I

K L

GE

J

(h)

C

A

Fig. 11.16. (a)–(h) Breadth-fi rst search (BFS) steps

11.3.2 Depth-first Search (DFS)

While BFS explores the search tree laterally, DFS does so vertically. In DFS, OPEN is implemented as a stack 
so that the problem states are explored in a LIFO manner. Th e execution of the depth-fi rst search process can 
be traced as in case of BFS. As the data structure OPEN should now be a stack rather than a queue the nodes 
in CHLDRN (n) should be placed in front of OPEN and not at the rear. Table 11.2 depicts the trace of DFS on 
Fig. 11.15. Th e construction of the corresponding search tree is shown in Fig. 11.17(a)–(h).

Table 11.2. Depth-first search on Fig. 11.15.

# n CHLDRN (n) CLOSED OPEN (stack)

1 − − − A

2 A B, C, D A B, C, D

3 B E, F A, B E, F, C, D

4 E J A, B, E J, F, C, D

5 J − A, B, E, J F, C, D

6 F K, L A, B, E, J, F K, L, C, D

7 K − A, B, E, J, F, K L, C, D

8 L (SUCCESS)

Please note that the DFS tree is diff erent from its BFS counterpart. Th is is because the nodes explored are dif-
ferent. Moreover, the goals reached are also diff erent. However, in case the state space contains only one goal 
state then both of these strategies will end with this unique goal. Still, the path from the start node to the goal 
node would be diff erent for diff erent search strategies.
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(Continued)
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Fig. 11.17. (a)–(h) Depth-fi rst search steps.
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11.3.3 Comparison Between BFS and DFS

For a given search problem is it possible to anticipate à-priori which among BFS and DFS would reach a 
goal earlier. For example, consider the state space of Fig. 11.18(a), which is identical to Fig. 11.15 except that 
instead of three here we have a single goal node D. If we follow BFS on this graph, we need to explore four 
nodes to arrive at the goal (Fig. 11.18(b)). Th e same goal is attained aft er exploring 10 nodes if we employ 
DFS (Fig. 11.18(c)). Obviously, the BFS approach is better than DFS in this case. However, the situation is 
quite the opposite if the goal is located at J instead of D (Fig. 11.19(a)). Here the number of nodes required 
to explore till we reach the goal using BFS and DFS are 10 and 4, respectively (Fig. 11.19(b) and (c)). 

Th ere are some thumb rules to anticipate which, between BFS and DFS, is more effi  cient for a given 
problem. Such anticipations are based on some knowledge of the problem domain. For example, if it is 
known that there are a large number of goal nodes distributed over the entire state space then DFS is 
probably the right choice. On the other hand, if it contains only one or just a few goal nodes then BFS 
is perhaps better than DFS.

J

DB

F H I

K L

GE

C

A

M

(a) The state space  

DB

F GE

C

A

(b) BFS tree

J

DB

F

K L

GE

C

A

(c) DFS tree

Fig.11.18. (a)–(c) A state space where BFS is more effi cient than DFS.
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(a) The state space
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(b) DFS tree

J

DB

FF H I

K L

GE

C

A

(c) BFS tree

Fig.11.19. (a)–(c) A state space where DFS is more effi cient than BFS.
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Both depth-fi rst search and breadth-fi rst search have their own merits and demerits. A comparative 
study of these two exhaustive search strategies is given in Table 11.3. 

Table 11.3. Comparison of DFS and BFS

# DFS BFS

1 Requires less memory. Requires more memory. 

2 May reach a goal at level n+1 without exploring 
the entire search space till level n.

All parts of the search space till level n must 
be explored to reach a goal at level n+1. 

3 Likely to reach a solution early if numerous 
goals exist.

Likely to reach a solution early even if few 
goals exist.

4 Susceptible to get stuck in an unfruitful path 
for a very long time while exploring a path 
deep into the state space.

Not susceptible to get stuck in a blind ally.

5 Does not guarantee to offer a minimal-length 
path from the start state to a goal node. Hence, 
DFS is not admissible. 

Guarantees to fi nd the minimal-length path 
from the start node to a goal node. There-
fore, BFS is admissible.

If b is the highest number of successors obtained by expanding a node in the state space, then the time 
complexity of BFS is O(bd), where d is the depth of the search tree, i.e., the length of the solution path. 
Th is can be easily obtained by considering the fact that the most signifi cant computation during the 
search process is the expansion of a leaf node. Th e number of nodes generated till depth d is b + b2 + 
… + bd, which is O(bd). Th e space complexity is also O(bd) because all nodes at level d must be kept in 
memory in order to generate the nodes at level d+1. Hence, BFS is quite expensive in terms of space 
and time requirements. Th e time complexity of DFS is also O(bd), same as that of BFS. However, DFS is 
more effi  cient in terms of space utilization having space complexity O(b). Th is is because only the nodes 
belonging to the path from the start node to the current node are to be stored in case of DFS. 

Th e main problem with DFS is that unless we set a cutoff  depth and compel the search to backtrack 
when the current path exceeds the cutoff , it may not fi nd a goal at all. Setting the cutoff  depth is also a 
tricky issue. If it is too shallow, we may miss a goal. If it is too deep, wasteful computation will be done.

11.3.4 Depth-first Iterative Deepening

We have seen that depth-fi rst search is effi  cient in terms of space requirement, but runs the risk of get-
ting trapped in an unfruitful path. Moreover, it does not guarantee a shortest path from the start state to 
a goal state. Breadth-fi rst search, on the other hand, always returns a shortest solution path but requires 
huge memory space because all leaf nodes till the depth of the current search tree are to be preserved. 
Depth-fi rst iterative deepening (DFID) is the algorithm that tries to combine the advantages of depth-
fi rst and breadth-fi rst search. DFID is a version of depth-fi rst search where the search is continued till 
a predefi ned depth d is reached. Th e value of d is initially 1 and is incremented by 1 aft er each iteration. 
Th erefore, DFID starts with a DFS with cutoff  depth 1. If a goal is attained, the search stops successfully. 
Otherwise, all nodes generated so far are discarded and the search starts afresh for a new cutoff  depth 2. 
Again, if a goal is reached then the search ends successfully, otherwise the process is repeated for depth 
3 and so on. Th e entire process is continued until a goal node is found or some predefi ned maximum 
depth is reached. Fig. 11.20(a)–(c) depict the successive iterations of a simple DFID.
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(a) DFID : First iteration, d = 1  

DB

F H IGE
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A

(b) DFID : Second iteration, d = 2

J

B

F

K L

E

A

(c) DFID : Third iteration, d = 3

Fig. 11.20. (a)–(c) Depth-fi rst iterative deepening (DFID) search steps.

Th e depth-fi rst iterative deepening algorithm expands all nodes at a given depth before it goes for ex-
panding nodes at some deeper level. Hence, DFID search is admissible, i.e., it guarantees to fi nd a short-
est solution path to the goal. However, it does perform some wasted computations before reaching the 
depth where a goal exists. It has been shown that both DFS and BFS require at least as much time and 
space as DFID, especially for increasingly large searches. Th e time and space complexities of depth-fi rst 
iterative deepening search are O(bd) and O(b), respectively.

11.3.5 Bidirectional Search

Th e search techniques discussed so far proceed from the start state to the goal state and never in the 
reverse direction. It is also possible to perform the search in the reverse direction, i.e., from the goal state 
towards the start state provided that the state space satisfi es the following conditions:

Th ere is a single goal state and that is provided in explicit terms so that we know at the very • 
outset exactly what the goal state is.
Th e links between the states of the search space are bidirectional. Th is means that the operators, • 
or rules, provided for generation of the nodes have inverses.
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A search procedure which proceeds in two opposite directions, viz., one from the start state towards the 
goal state (forward direction) and the other from the goal state towards the start state (backward direc-
tion), simultaneously, is called a bidirectional search. Th e search ends successfully when a common 
node is generated by both. Th e path from the start state to the goal state is obtained by combining the 
forward path from the start state to the common node a and that from the goal node to node a. Th e 
basic idea of a bidirectional search is shown in Fig. 11.21.

Goal
state

a

Start
state 

Fig. 11.21. Bidirectional search.

Example 11.3  (Bidirectional search for block manipulation problem) 

Let us consider Fig. 11.5 depicting the state space of a block manipulation problem with three 
blocks. Assuming that node A is start state and node L the goal, we want to fi nd a path from A to 
L using the bidirectional search strategy.

(a) The search initiates
with the start state and
the goal state  

Goal
State

Start
State 

FE H I

C D

G

J K

A

L M

B
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(b) Intermediate states
are generated along
forward and backward
directions  

Goal
State

Start
State 

FE H I

C D

G

J K

A

L M

B

Goal
State 

Start
State 

FE H I

C D

G

J K

A

L M

(c) Forward and backward
searches generate a
common node, G in this
case  

B

Fig. 11.22. (a)–(c) Bidirectional search for block manipulation problem.

Th e consecutive steps are shown in Fig. 11.22(a)–(c). Th e portion of the search space which re-
mains unexplored at any instant appears in a lighter tone. Nodes that have been generated but not 
yet explored are depicted in dashed lines. Th e common node G generated by both the forward and 
the backward search process is drawn with double dashed lines. Th e path from the start node B to 
the goal node L consists of the sequence of nodes B-D-G-J-L which is constructed by combining 
the path B-D-G and L-J-G returned by the forward and backward searches, respectively.
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11.3.6 Comparison of Basic Uninformed Search Strategies

All the three exhaustive searches, viz., breadth-fi rst, depth-fi rst and depth-fi rst iterative deepening, may 
be used to perform bidirectional searches with suitable modifi cations. Th e advantage of bidirectional 
search is that it reduces the time complexity from O(bd) to O(bd/2). Th is is because both the forward and 
the backward searches are expected to meet midway between the start state and the goal. Table 11.4 pres-
ents a comparative picture of the approximate complexities and admissibility of the basic uninformed 
search strategies. Here b is the branching factor, i.e., the number of children a node may have, d is the 
length of the shortest solution path, and D is the depth limit of the depth-fi rst search.

Table 11.4. Comparison of basic uninformed search strategies

Search strategy Space 
complexity

Time 
complexity

Admissibilty

Breadth-fi rst bd bd Admissible

Depth-fi rst D bD Not admissible

Iterative deepening d bd Admissible

Bidirectional (where applicable) bd/2 bd/2 Admissible

11.4 HEURISTIC SEARCH

Breadth-fi rst, depth-fi rst and iterative deepening depth-fi rst searches discussed so far belong to the cat-
egory of uninformed, or blind, searches. Th ey try to explore the entire search space in a systematic, 
exhaustive manner, without employing any knowledge about the problem that may render the search 
process more effi  cient. Th ey are blind in the sense that they do not try to distinguish good nodes from 
bad nodes among those still open for exploration. However, in many practical situations exhaustive 
searches are simply not aff ordable due to their excessive computational overhead. It may be recalled 
that they all have exponential time complexity. Heuristic search employs some heuristic knowledge to 
focus on a prospective subspace of the state space to make the search more effi  cient. In this section, the 
elementary heuristic searches are presented.

11.4.1 Best-first Search 

Algorithm Basic-State-Space-Search (Fig. 11.14) uses the list OPEN to store nodes that 
have been generated, but neither been explored nor expanded. At any iteration, the fi rst node stored in 
OPEN is selected for exploration and subsequent expansion. As OPEN is expected to contain several 
nodes at a time, a strategy must be devised to determine which among the open nodes should emerge as 
the fi rst. In case of BFS, OPEN is implemented as a queue so that the most recently generated nodes are 
placed at the rear of OPEN, and the states of the search space are processed in fi rst-in fi rst-out basis. In 
DFS and DFID, OPEN acts as a stack so that the states are processed in last-in fi rst-out manner. None of 
these strategies make any judgment regarding the relative merits of the nodes in OPEN. 

Best-fi rst search is a kind of informed search that tries, at the beginning of each iteration, to estimate 
the prospect of an open node with respect to reaching the goal through it. It makes use of an evaluation 
function that embodies some domain-specifi c information to achieve this. Such information is sometimes 
referred to as heuristic knowledge and a search procedure that is guided by some heuristic is termed as 
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a heuristic search. Th e nature and signifi cance of heuristic knowledge will be discussed in greater details 
in the later parts of this section. Th e heuristic knowledge enables us to assign a number to each node in 
OPEN to indicate the cost of a path to the goal through the node. In best-fi rst search, this cost is estimated 
for each member of OPEN and the members are reshuffl  ed in ascending order of this value so that the 
node with the lowest estimated cost is placed at the front of the queue. Th erefore, Step 7 of Algorithm 
Basic-State-Space-Search can be written for best-fi rst search as follows (Fig. 11.23):

7(a). For (each x∈SUCC(n)) Do
  Compute the estimate of the cost c(x) from x to a goal node

 End-For

7(b). Merge CHLDRN(n) to OPEN list.

7(c).  Rearrange the elements of OPEN in ascending order of their esti-

mated costs so that the lowest cost nodes is placed at the front 

of the queue.

Fig. 11.23.

Th e behaviour of a best-fi rst search algorithm is illustrated in Fig. 11.24(a)–(e) with the state space of 
Fig. 11.15 assuming node M as the only goal node. Th e process initiates with the start node A with an 
estimated cost of, say, 10. Since this is the only node available at this moment we have no option other 
than expanding this node. On expanding node A, the successors B, C and D are obtained with estimated 
costs 6, 10 and 7, respectively. Since node B has the lowest estimated cost 6, it is selected for expansion 
(Fig. 11.24(b)). Th e candidature of B for processing in the next step is indicated by the small arrow com-
ing out of it. Th is convention is followed in the rest of these diagrams. Nodes E and F are generated as 
children of B. As shown in Fig. 11.24(c) E and F have estimated costs 8 and 9, and consequently, node D 
with cost 7 becomes the lowest-cost unexplored node in OPEN. Node D generates the successors H (es-
timated cost 3) and I (estimated cost 5). Th ere are now fi ve nodes, viz., H, I, E, F, and C with costs 3, 5, 8, 
9 and 10, respectively of which is H is the candidate for further expansion at this moment. On expansion, 
node H generates M which is a goal. In this example, for the sake of simplicity, the costs are assumed. In 
practice, these are to be evaluated with the help of a function embodying the heuristic knowledge.

A

(a) Initialization

(10)

 

DB
C

A

(b) 1st iteration

(6) (7)
(10)

 

DB

FE

C

A

(c) 2nd iteration

(7)

(9)

(10)

(8)

Fig. 11.24. (a)-(e) The best-fi rst search (BFS) process. 
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DB

F H IE

C

A

(d) 3rd iteration
(3)(9) (5)

(10)

(8)

 

DB

F H

M

IE

C

A

(e) Goal found
(0)

(9) (5)

(10)

(8)

Fig. 11.24. Continued

11.4.2 Generalized State Space Search

Algorithm Basic-State-Space-Search (Fig. 11.14) hides some fi ner aspects of state 
space search for the sake of simplicity. Algorithm Generalized-State-Space-Search 
(Fig. 11.25) takes some of these aspects into consideration and presents a more complete picture of state 
space search. For example, quite oft en attaining a goal state alone is not suffi  cient. Th e process is to re-
turn the path from the start state to the goal state as well. In order to achieve this, we should keep track 
of the chain of ancestors of a node way up to the root. In Step 5 of Algorithm Generalized-
State-Space-Search we fi rst test the current node to determine if it is a goal and then, in case 
it is, we retrieve the path from the root to this goal by tracing the pointers from the goal to the root 
through the intermediate ancestors. Establishment of these pointers is done in Step 10 of the algorithm. 
Again, Algorithm Basic-State-Space-Search tacitly assumes the state space to be a tree 
rather than a graph so that the possibility of generating a node which is already present in the OPEN 
queue has been overlooked. As a result all nodes generated from node n, CHLDRN (n), are summar-
ily put into OPEN. However, consider the case depicted in Fig. 11.26, where node C is a successor of 
node A as well as B. Let us assume that node A has been explored earlier and B later. When node B is 
expanded, it will produce a number of successors of which C is one. Since C is a child of A and A has 
been expanded earlier, C is already in OPEN. Th erefore, there is no need to include C into the search 
tree. Moreover, while merging the children of B with the existing nodes of OPEN node, C should be left  
out to avoid repetitions. Th is is achieved in Step 8, which ensures that installation of a node and estab-
lishment of a pointer to its parent is done only if the node is not already in G. Th ere is another possible 
adjustment to be incorporated. Th e existing pointer from C to A might be required to be redirected to B, 
if necessary. Th is depends on which among the path through A or B seems to be more promising (Step 
14 of Algorithm Generalized-State-Space-Search).

11.4.3 Hill Climbing

Hill climbing is a heuristic search technique that makes use of local knowledge in its attempt to achieve 
global solution of a given problem. Imagine you are trying to reach the top of a hill in foggy weather. 
You are too small to see the peak while you are crawling on the surface of the hill and there is no clue 
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regarding any path towards the peak. How should you proceed? One possible way would be to look 
around your current position and take that step which elevates you to a higher level. You continue in 
this way until a point is arrived from where all steps result in positions at lower heights. Th is point is 
considered to be the maximal point and corresponds to the solution to be returned. Th e hill climbing 
strategy is also applied to problems where the purpose is to reach the lowest point, and not the highest 
point. In such cases, steps which take us to lower heights are followed. Th is is sometimes referred to as 
valley descending. In this text we shall use the term hill climbing to mean both hill climbing and valley 
descending and interpret it in the context of the nature of the problem.

Algorithm Generalized-State-Space-Search

/* Let OPEN be a list of states that have been generated but not yet ex-
plored or expanded. Another list CLOSED contains the states that have al-
ready been explored and expanded. T is the search graph, i.e., the portion 
of the state space that has been created so far. */

1. Begin

2.  Initialize the search tree T with node S as the root. Initialize 
OPEN with S in it and CLOSED as an empty list.

3. If (OPEN is empty) Then the search is unsuccessful. Exit.

4.  Let n be the 1st node on OPEN. Remove n from OPEN and put n on 
CLOSED.

5.  If (n is a goal node) Then the search is successful. Recover the 
path from the start node S to n by tracing the pointers from n to 
S along the ancestors of n. These pointers are established during 
the expansion of the search tree (Steps 8-11). Exit.

6.  Generate children of n. Let us denote this by CHLDRN(n).

7. For (each x∈CHLDRN(n)) Do
8.  If (x is not already in T) Then 

9.  Install x in T as a child of n.

10.  Establish a pointer from x to n. 

11.  Add x to OPEN. 

12.  Else (i.e., if x is already in T) 

13.  Make x a child of n.

14.   If required redirect the pointer of x to n. (see discus-
sion in text)

15.  End-If

16. End-For

17.  Rearrange the elements in OPEN according to some criteria.

18. Go to Step 3.
19. End-Generalized-State-Space-Search

Fig. 11.25. Algorithm generalized-state-space-search.
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Th e hill climbing strategy is widely employed to solve complex optimization problems. A hill climb-
ing search must have the following elements.

Node A is explored
earlier than node B.

A B

C

Fig. 11.26. Two nodes having a common successor.

An • objective function whose value is to be optimized. Th e objective function should somehow 
refl ect the quality of a solution to the given problem so that the optimized solution corresponds 
to the optimal value of the objective function.
A procedure to map a solution (perhaps sub-optimal) of the given problem to the corresponding • 
value of the objective function.
A procedure to generate a new solution from a given solution of the problem.• 

Algorithm Hill-Climbing (P, f(SP), SP)

Input: A problem P and objective function f(SP) on a solution SP of P.

Output: An optimal solution Sopt to P such that the objective function 

f(Sopt) attains an optimal value.

1. Begin 

2.  Snew ← initial solution to P (perhaps random)

3.  Scurrent ← Snew

4.   Compute f(Scurrent), the value of the objective function for Scurrent

  /* Try to find a better solution */

5.   While (there is a solution obtainable from 

Scurrent) DO

6.  Begin

7.  Snew ← A new solution to P generated from Scurrent 

8.  Compute f(Snew) and compare with f(Scurrent)

9.  If (Snew is a better solution than Scurrent) Then 

10.  Go To Step 3  /* proceed along the new solution */

11.  End-if
12.   End-while /* Discard Snew and try with another solution 

  /* The peak is reached. Return the solution */
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13.  Sopt ← Scurrent

14.  Return (Sopt)

15. End-Hill-Climbing

Fig. 11.27. Hill-climbing (P, f(Sp), Sp)

Th e hill climbing strategy is presented as Algorithm Hill-Climbing (P, f(SP), SP) 
(Fig. 11.27). It starts with a solution, perhaps randomly generated. At each intermediate step during 
the search process, a new solution Snew is obtained from the current one Scurrent (if possible). Th e qual-
ity of the new solution Snew, in terms of the evaluation function, is compared to that of the current 
solution. If the new solution is better than the current then the current solution is updated to the new 
solution (Steps 9 and 10) and the search continues along this new current solution. Otherwise, i.e., 
if the new solution is not better than the current solution, then it is discarded and we generate yet 
another new solution (if possible) and repeat the steps stated above. Th e process stops when none of 
the new solutions obtained from the current one is better than the current solution. Th is implies that 
the search process has arrived at an optimal solution. Th is is the output of the hill climbing process.

It may be noted that the hill climbing method does not create a solution tree. Th e only things it main-
tains are the current and the newly generated solutions. If the new solution is better than the current 
then it discards the current solution and update it with the new solution. In other words, hill climbing 
grabs a good neighbour without bothering the aft ereff ects. For this reason hill climbing is also referred 
to as greedy local search.

a

1
17

3

12
5

10

7500

e

d

c

b

25
21

(a) A network of cities

e d c b
a 12 21 17 3

b 1 5 10

c 25 7

d 50

(b)Travel rr cost between citieii s

Fig. 11.28. A tiny traveling salesperson problem (TSP) with fi ve cities.

Example 11.4  (A hill climbing technique to solve the TSP)

As an example, let us consider the traveling salesperson problem (TSP), which involves a network 
of cities connected to each other through paths with costs attached to them. A tour is defi ned as a 
path that starts from a given city, travels through the paths to visit every other city exactly once, and 
returns to the starting city. We are required to fi nd a minimal cost tour. 
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Fig. 11.28 (a) shows a tiny TSP with fi ve cities a, b, c, d, and e. For the sake of simplicity the cit-
ies are taken to be fully connected, i.e., an edge exists between any pair of cities. If we start at the 
city a then a tour may be represented with a permutation of the letters a, b, c, d, and e that starts 
and ends with the letter a.

Th e TSP is a minimization problem. Its objective function is the sum of the costs of the links in 
the tour. For example, if the tour is t = abcdea then its cost cost(t) = cost(ab) + cost(bc) + cost(cd) + 
cost(de) + cost(ea) = 3 + 10 + 7 + 50 + 12 = 82. Mapping a solution to evaluate the objective function 
is also straightforward in this case. How to generate a new solution of the TSP from a given one?

(b) New tour(a) Current tour

t1= x1xx …x i x i + 1… x jx x jx + 1… x1xx t2tt = x1xx …x i x jx … x i + 1 x jx + 1… x1xx

xixx xixx

xi+xx 1
xi+xx 1

x1xx

xjxx xjxx

xj+xx 1xj+xx 1

x1xx

Fig. 11.29. Generation of a new tour from a given tour.

Let t1 = x1…xi xi+1…xj xj+1…x1 be an existing tour. A new tour t2 from t1 could be generated in the 
following manner. 

Let 1. xi xi+1 and xj xj+1 be two disjoint edges in t1 such that the cities xi, xi+1, xj and xj+1 are all 
distinct.
Remove the edges 2. xi xi+1 and xj xj+1 from the tour t1.
Join the edges 3. xi xj and xi+1xj+1 such that a new tour t2 = x1…xi xj…xi+1xj+1…x1 is obtained.

Fig. 11.29 shows the procedure graphically. Now, to illustrate the hill climbing procedure we may 
consider the of TSP presented in Fig. 11.28. Th e successive steps are shown in Fig. 11.30 (a)–(e). A 
random solution adecba denoting the tour a → d → e → c → b → a is considered as the initial solu-
tion (Fig. 11.30(a)). Th e cost of the tour is 109. To obtain a new tour the links ad and ec are are 
removed from the tour and are substituted by ae and cd. So we obtain the tour abcdea with cost 82 
(Fig. 11.30(b)). Since this cost is lower (and hence, better, since we are addressing a minimization 
problem) we accept this solution and proceed.

In this way, we proceed to acdbea (Fig. 11.30(d)) having a tour cost of 42. Only three tours, 
viz., acebda, abedca, and acbdea shown in Fig.11.30 (e1), Fig. 11.30(e2), and Fig. 11.30(e3) can be 
generated from this tour. Th ese three tours have costs 69, 78 and 94, respectively. Since all of these 
are higher than 42, the hill climbing procedure assumes to have reached a minimal value and the 
procedure stops here. It is easy to verify that the other possible tours have costs greater than 42. 
Th e solution returned by the hill climbing process is thus acdbea and the cost of the solution is 42. 
Th e successive steps shown in Fig. 11.30(a)–(e) are given here for the sake of understanding the 
process but these are not memorized by the actual hill climbing procedure.
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Tour : adecba
Cost = 21 + 50 + 25 + 10 + 3 =
109

a 3

10

50

e

d

c

b

25

21

(e2) a

1
17

3

7
50

e

d

c

b

(a)
a 3

12 10

750

e

d

c

b
(b)

Tour : abcdeadd
Cost = 82

(c)

e

d

a 3

12
5

7

c

b

25

Tour : abdcea
Cost = 52

a

17
12

7

e

d

c

b

5

1

(d)

Tour : acdbea
Cost = 42

a

1

17

5

e

d

c

b

25

21

(e1)

Tour : acebda
Cost = 69

Tour : abedcadd
Cost = 78

(e3)

d

a

17
12

5

10

50

e
c

b
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Fig. 11.30. Solving TSP through hill climbing.
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Fig. 11.31. Various solutions obtained from the tour adecba

Steepest ascent hill climbing In Algorithm Hill-Climbing a new solution is generated 
from the current solution and if it is found to be a better solution then the search proceeds along this 
new solution without any consideration of any other possible solution obtainable from the current 
one. Steepest ascent hill climbing is a variation of hill climbing, where instead of one all possible 
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solutions from the current solution are generated and the best among these is chosen for further 
progress.

For example, if we follow the steepest ascent hill climbing strategy on the initial tour adecba shown in 
Fig 11.30(a), then the entire set of tours that can be obtained from adecba should be generated and their 
costs be evaluated. Five diff erent tours, acbeda, adbcea, abecda, abdeca, and abcdea, can be generated by 
transforming adecba. Th ese tours have costs 99, 73, 57, 100 and 82, respectively (see Fig. 11.31(i)–(v)). 
Obviously, tour abecda of cost 57 would be selected for further exploration.

Local optima / plateaux / ridges Hill climbing is usually quite effi  cient in the search for an 
optimal solution of a complex optimization problem. However, it may run into trouble under certain 
conditions, e.g., existence of local optima, plateaux, or ridges within the state space.
Local optima. Oft en the state space of a maximization problem has a peak that is higher than each of 
its neighbouring states but lower than the global maximum. Such a point is called a local maximum. 
Similarly a minimization problem may have local minima. Fig. 11.32 shows a one-dimensional objec-
tive function containing local optima and plateaux. Since the hill climbing procedure examines only 
the solutions in the immediate neighborhood of the current solution it will fi nd no better solution once 
it reaches a locally optimal state. As a result, there is a chance that the local optima, and not the global 
optima, is erroneously identifi ed as the solution of the problem.

Global maxima

Local maxima

Plateaux

Objective
function f(x )

x

Fig. 11.32. Problem of local optima and plateaux.

Plateaux. A plateau is a fl at region in the state space (Fig. 11.32) where the neighbouring states have 
the same value of the objective function as that of the current state. A plateau may exit at the peak, or 
as a shoulder, as shown in Fig. 11.32. In case it is a peak, we have reached a local maximum and there is 
no chance of fi nding a better state. However, if it is a shoulder, it is possible to survive the plateau and 
continue the journey along the rising side of the plateau.

x1

x2

x3

x4

x5

Fig. 11.33. A ridge.
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Ridges A ridge is a series of local optima on a slope. Consider a situation depicted in Fig. 11.33. Each 
of the states x1, x2, x3, x4, and x5 is a local maximum and they are arranged in the state space from left  to 
right in ascending order. We would like to ascend along the path x1→ x2 → x3 → x4 → x5 etc., but all the 
states leading from each of these states, indicated by the arrows, are at lower levels in comparison with 
these states. Th is makes it hard for the search procedure to ascend.

Th e problems arising out of local optima, plateaux, or ridges may be addressed by augmenting the 
basic hill climbing method with certain tactics. However, though these tactics help a lot, they do not 
guarantee to solve the problems altogether. Here is a brief description of the way outs.

Th e problem of getting stuck at local optima may be tackled through backtracking to some • 
previous state and then take a journey along a diff erent direction but as promising, or almost as 
promising, as that chosen earlier.
To escape a plateau, one may make a big jump in some direction and land on a new region • 
of the search space. If there is no provision of making a big jump, we may repeatedly take the 
allowable smaller steps in the same direction until we come outside the plateau.
A good strategy to deal with ridges is to apply several rules before doing a test so that one can • 
move in diff erent directions simultaneously. 

11.4.4 The A/A* Algorithms

While discussing best-fi rst search, we have seen how an evaluation function can guide the search process 
along a more fruitful path than exploring the entire search space blindly. However, we did not mention 
the form of the evaluation function. Let us defi ne the evaluation function f (n) for a given node n as

 f n g n h)n )n( ) ( )= +g( )n  (11.1)

where g(n) is the cost of a minimal-cost path from the start node to node n and h(n) is the cost of a 
minimal-cost path from node n to a goal node.

Th erefore, f(n) is the cost of a minimal-cost path from the start node to a goal node constrained to 
pass through node n (Fig. 11.34).

Start
state

Goal
state

n

g (n)

h (n)

Fig. 11.34. A minimal-cost path from start to goal passing through node n.

However, sometimes it is diffi  cult if not impossible to evaluate g(n) and h(n) accurately. Th erefore some 
estimated values of g(n) and h(n) are used to guide the search process. Let g1(n) and h1(n) be the esti-
mated values of g(n) and h(n). Th en the estimated value of f(n), written as f1 (n), is defi ned as 
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 f n g n h nf nf g 1)nn ( )n ( )n= +gg ( )n  (11.2)

A search algorithm that uses f1 (n) to order the nodes of OPEN queue and chooses the node with best 
value of f1 (n) for further exploration is called an A algorithm. Moreover, if the heuristic estimation h1(n) 
happens to be a lower bound of h (n) so that h1(n) ≤ h(n) for all n, then it is termed as A* (pronounced as 
a-star) algorithm. An obvious example of A* algorithm is BFS. Here g1(n) is the depth of node n from the 
root node and h1(n) = 0 for all n. Since h1(n) ≤ h(n) for all n, BFS satisfi es the basic criterion of A* algo-
rithm. It has been proved that an A algorithm satisfying the relation h1(n) ≤ h(n) for all n, is guaranteed 
to fi nd an minimal-cost path from the root to a goal. Such a search algorithm is said to be admissible 
and hence A* algorithm is admissible.

Example 11.5  (An A-algorithm to solve 8-puzzle)

Let us consider the 8-puzzle posed in Fig 11.11. We would like to solve it through an A algorithm. 
Th e fi rst component of the evaluation function f (n) = g(n) + h(n) is g(n), is defi ned as

 g(n) = the length of the path from the start node to node n (11.3)

Regarding the second component, h(n), we must employ some heuristic knowledge that somehow 
gives an idea of how far the goal node is from the given node. Presently, we take the number of tiles 
that are not in positions described in the goal state as the distance from the goal node. Th erefore, 
the function h (n) is defi ned as 

 h(n) = number of misplaced tiles (11.4)

Now, consider the initial state of the given instance of 8-puzzle and compare it with the goal state 
(Fig. 11.35). 

Goal state
1 2 3
8 4
7 6 5

h(n) = 4
g(n) = 0
f(ff n) = g(n) + h(n)

= 0 + 4 = 4

Start state
8 1 3
7 2 4

6 5

Fig. 11.35. Evaluating the heuristic function h(n).

Since the start state is to the root of the search tree g(n) = 0 for this node. To evaluate h(n) we 
count the number of misplaced tiles. A comparison with the goal state reveals that tile no. 1, 2, 
7, and 8 are not in their positions. Th erefore, h(n) = 4, so that f (n) = 0+4 = 4. Expanding the 
start state we get two new states with h(n) values 3 and 5, respectively. Since both of these nodes 
are at level 1 of the search tree, g(n) = 1 for both of them. Hence these two nodes f (n) = g(n) + 
h(n)= 1 + 3 = 4, and 1 + 5 = 6, respectively. Th e node with the lesser f (n) value 4, is chosen by the 
algorithm for exploration. Th e successive steps while constructing the search tree are shown in 
Fig. 11.36 (a)-(e).
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(f(ff n) = g(n) + h(n) = 0 + 4 = 4))

Start
state

8 1 3
7 2 4

6 5

(a)

(1 + 3 = 4) (1 + 5 = 6)

(2 + 2 = 4) (2 + 3 = 5)

Start
state

38 1
7 2 4

6 5

8 1 3
2 4

7 6 5

8 1 3
7 2 4
6 5

(b)

(6)

Start
state

8 1 3
7 2 4

6 5

8 1 3
2 4

7 6 5

8 1 3
7 2 4
6 5

1 13 3
8

8
2 4 2 4

7 6 5 7 6 5

(c)

Start
state

Goal
state

38 1
7 2 4

6 5

8 1 3
2 4

7 6 5

8 1 3
7 2 4
6 5

(6) (6)

(5)
(5)

(d)
Start
state

38 1
7 2 4

6 5

8 1 3
2 4

7 6 5

8 1 3
7 2 4
6 5

(e)

1 13 3
8

8
2 4 2 4

7 6 5 7 6 5

(3 + 1 = 4)

(4 + 2 = 6)

1 3
8 2 4
7 6 5

1 13 3
8

8
2 4 2 4

7 6 5 7 6 5

1 3
8 2 4
7 6 5

1 3
8 2 4
7 6 5 1 3

8 4
7 6 5

Fig. 11.36. (a)-(e) Steps of A-algorithm to solve the 8-puzzle.

Example 11.6  (An A* Algorithm to solve a maze problem) 

Fig. 11.37 shows a 5×5 maze with a barrier drawn with heavy lines. We have to fi nd a path from cell 
(4, 2)to cell (2, 3) avoiding the barrier. At each step of the journey we are allowed to move one cell 
at a time left , right, up, or down, but not along any diagonal. One or more of these movements may
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be blocked by the barrier. Fig. 11.38(a) and Fig. 11.38(b) explains the rules of movement. Th e 
target is to fi nd a minimal length path from the source to the destination under the restriction 
imposed by the barrier. An A* algorithm is to be found to do the job.

Th e length of a path from a cell (i, j) to a cell (k, l) is the number of cells traversed along the 
path. For example, the path shown by the dotted line of Fig. 11.39 between the cells (2, 1) and (4, 
5) has a length of 10. Let us take the estimated value of g(n) 

 g1(n) = exact length of the path undertaken from n0 to n (11.5)
where n0 and n are the initial and the current cell positions, respectively.

Barrier

1

1

2

2

3

3

4

4

5

5

Destination,
the journey
ends here

Source, the
journey starts
from here

Fig. 11.37.  A maze problem to fi nd the shortest path from the source to destination avoiding the 
barrier.

Current
position

(a) Possible movements from a cell (b) Possible movements when
there is a barrier

Barrier,
movement
restricted in

Current
position

Fig. 11.38. Possible movements from a cell.

Source

Destination

Length of the path = number ofr cells traversed = 10

Fig. 11.39. Length of a path.

Th e heuristic estimation function h1(n) is defi ned as 
 h1(n) = the shortest distance between the current cell n, and (11.6)

the destination D, in absence of any barrier.
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Hence, if D(i), D(j) and n(i), n(j) are the row numbers and column numbers of the cells D and n, 
respectively, then h1(n) is calculated as

 h1(n) = ⏐D(i) - n(i)⏐+ ⏐D(j) - n(j)⏐ (11.7)
It is easy to see that h1(n) is the minimum number of cells we must traverse to reach D from n in ab-
sence of any barrier. Th erefore, h1(n) ≤ h(n) for every n. Th is implies that the evaluation function 

 f1(n) = g1(n) + h1(n) (11.8)
satisfi es the criteria for A* algorithm. In the present instance of the problem, the source n0 is the 
cell (4, 2) and the destination D is the cell (2, 3). At the source, g1(n0) = 0, and h1(n) = | 2 – 4 | + 
| 3 – 2 | = 3, so that f1(n) = 0 + 3 = 3. From this initial position, we may try to move to cell (5, 2), (4, 
1), or (3, 2). Moving to cell (4, 3) is prohibited by the barrier between cells (4, 2) and (4, 3). Now, 
as indicated in Fig. 11.40(b), the value of f1(n) for these cells are 4, 5, and 3, respectively. As 3 is the 
lowest among these, the corresponding cell (3, 2) is selected for further exploration.

As far as the shortest route to the destination is concerned, this is not the right choice because 
the intervening barrier will not allow us to take to take the shortest route. Th e right choice would 
be to proceed along the cell (5, 2). However, the merit of (5, 2) over other choices is not apparent 
till the step shown in Fig. 11.40(i), where all OPEN nodes except (5, 2) have cost 7 and (5, 2) have 
a cost of only 5. Superiority of the path along (5, 2) is maintained for the rest of the search, until 
we eventually reach the goal (Fig. 11.41).

4, 2

Estimated distance
between the source and
destination

(3)
(a)

+= 0(2, 3) (4, 2)

= (2 + 1) + 0
= 3

)+= 02 4 3 2(
           

(4 + 1 = 5)(4 + 1 = 5) (2 + 1 = 3)

4, 2

4, 1
3, 25, 2

(b)

(5)

(5)

(5) (3)

(3)

4, 2

3, 24, 1

2, 23, 1

5, 2

(c)

 

(5)

(5)

(5) (3)

(3)

4, 2

3, 24, 1

2, 23, 1

5, 2

(d)

(5) (5)

1, 22, 1
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(5)

(5)

(5) (3)

(3)

4, 2

3, 24, 1

2, 2

3, 1

5, 2

(e)

(5)
(5)

1, 2
2, 1

(7) (5)

1, 31, 1

(5)

(5)

(5) (3)

(3)

4, 2

3, 24, 1

2, 2
3, 1

5, 2

(f)

(5) (5)

1, 22, 1

(7) (5)

1, 31, 1

(7)

1, 4
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Node (3,1) can be reached
from (2,1). However, the rating
of (3,1) when reached through
(2,1) becomes 3 + 4 = 7, which is
greater than the current rating 5.
Hence, this path is not
included in the search tree.    

(5)

(5)

(5) (3)

(3)

4, 2

3, 24, 1

2, 23, 1

5, 2

(g)

(5) (5)

1, 22, 1

(7) (5)

1, 31, 1

(7)

1, 4

(5)

(5)

(5) (3)

(3)

4, 2

3, 24, 1

2, 2
3, 1

5, 2

(h)

(5)
(5)

1, 2
2, 1

(7)
(5)

1, 3
1, 1

(7)

1, 4

The edge from node (3,1) to
(4,1) is not shown due to a 
reason as stated in the
previous step.
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(5)

(5)

(5)

(7)

(3)

(3)

4, 2

3, 24, 1

2, 2
3, 15, 1

5, 2

(i)

(5)
(5)

1, 2
2, 1

(7)
(5)

1, 3
1, 1

(7)

1, 4

Fig. 11.40. (a)-(i) Trace of the fi rst nine steps of A* search for the maze problem.

(5)

(5) (5)(7)

(5) (3)

(3)

4, 2

3, 24, 1

2, 23, 15, 15, 3

5, 2

(5) (5)

1, 22, 1

(7) (5)

1, 31, 1

(7)

1, 4

(7) (3)

4, 35, 4

(7) (5)

3, 34, 4

(8)

GOAL

3, 42, 3

Fig. 11.41. Search tree for the maze problem.
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Th e path from the root to the goal is shown with thick lines in Fig. 11.41. Th e corresponding mini-
mum length path in the maze is shown with dotted lines of Fig. 11.42.

Source

Destination

Fig. 11.42. The minimum length path found through the A* algorithm

Example 11.7  (Branch-and-bound algorithm for traveling salesperson problem)

Let us consider the TSP once more. We want to design an A* algorithm to solve the TSP and apply 
it on the network shown in Fig. 11.43. Let C1, C2, …, Ck be k cities and ci,,j denotes the cost of the link 
between Ci and Cj. Without loss of generality, let us suppose that the tour starts at C1 and let t = C1 

→ C2 → … → Ci be a partial path generated the search process. Th en the cost of the path t = C1 → 
C2 → … → Ci is given by

 G (t ) = g (C1 → C2 → … → Ci) = c1, 2 + c2, 3 + … + ci-1, i (11.9)
In branch-and-bound technique, a list of possible paths from the starting city is maintained during 
the search process. Cost of each partial path is found and the so far minimum cost path is chosen 
for further expansion. While we expand a certain path, we temporarily abandon the path as soon 
as it is found to exceed the cost of some other partial path. Th e algorithm proceeds in this way until 
the minimum-cost tour is obtained. It should be noted that the decision to select a partial path t = 
C1 → C2 → … → Ci is made solely on the basis of its cost g (t ) and no estimation of the cost for the 
remaining portion of the tour is done. Th erefore h1(t ) = 0 for every partial path. Since h1 (t ) = 0 ≤ 
h(t ), this is an A* algorithm, and it guarantees to fi nd the minimal cost tour for a given TSP.

7

11

219

3
a b

cd

Fig. 11.43. A network of four cities

For this example, the algorithm starts with the starting city a, and since no path is yet traversed the 
cost attached to this node is 0 (Fig. 11.44 (i)).From city a we can either go to city b, or c, d. Th e cost 
of the paths a → b, a → c, and a → d are 3, 1, and 9, respectively. Since the path a → c has the low-
est cost of 1 so far, this path is chosen at this point for further extension. Th is is indicated by a small 
arrow attached to the node c in Fig. 11.44(ii), which shows the initial two steps of the algorithm.
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(0)

a
(i ) (

a
i i )

(9)(1)(3)

913

a

b c d

Fig. 11.44. First two steps of branch-and-bound

Fig. 11.45(i) shows the situation when we proceed one step further along the partial path a → c. Th e 
two extended paths a → c → b and a → c → d have total estimated costs 1 + 2 = 3 and 1 + 11 = 12, 
respectively. As the cost of the partial path a → c → b does not exceed that of the remaining paths 
(3 for a → b, 12 for a → c → d, and 9 for a → d) it is selected for further expansion at this point and 
the result of this expansion is shown in Fig. 11.45(ii). Fig. 11.45(iii) and 11.45(iv) shows two more 
consecutive steps.

(12)(3)

112

(9)(1)(3)

9
1

3

a

b c d

db

(i )

(12)(3)

112

(9)(1)(3)

9
1

3

a

b c d

d

(10)

7

d

b

(ii )

Fig. 11.45. Further steps TSP through branch-and-bound.
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(12)(3)

112

(9)(1)(3)

9
1

3

a

b c d

d

(10)

7

d

b

(iii )

(10)(5)

72

dc

(12)(3)

112

(9)(1)(3)

9
1

3

a

b c d

d

(10)

7

d(16)

11

d

b

(iv)v

(10)(5)

72

dc

Fig. 11.45. Further steps TSP through branch-and-bound.

(12)(3)

112

(9)(1)(3)

9
1

3

a

b c d

d

(10)

7

d(21)

11

c(16)

11

d

(25)

9 9

a (19) a (19)

1

a

b (20)(16)

117

c

(18)

2

c(19)

7

b

b(10)(5)

72

dc

Fig. 11.46. Final branch-and-bound search tree.
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Th e fi nal branch-and-bound search tree is depicted in Fig. 11.46. Th e tours generated are a → c → 
b → d → a and a → d → b → c → a with the cost 19. It should be noted that these two tours are 
the same tour, only traversed in reverse directions. Th e lowest-cost tour obtained thus is shown 
in Fig. 11.47.

7

11

219

3
a b

cd

Fig. 11.47. The lowest-cost tour.

Th e effi  ciency of a heuristic search heavily depends upon the choice of the heuristic estimation function h1. 
Th e function h1 embodies some heuristic knowledge about the problem. Its objective is to guide the search 
for goal in the right direction. It is expected that a better heuristic will result in less amount of wasted eff ort 
in terms of the exploration of nodes that do not belong to the optimal path from the start state to a goal 
state. Let us consider two A* algorithms A1 and A2 using the heuristic functions h1 and h2, respectively. We 
say that algorithm A1 is more informed than A2 if for all nodes n except the goal node h1(n) > h2(n). Please 
note that for any A* algorithm the estimate h1(n) of h(n) must be a lower bound of h(n), the actual cost of a 
minimal cost path from node n to a goal node. Combining this with the above inequality we get 0 ≤ h2(n) 
< h1(n) ≤ h(n). In other words, better heuristics are closer to h(n) than a worse one.

11.4.5  Problem Reduction

A problem is said to be decomposable if it can be partitioned into a number of mutually independent 
sub-problems each of which can be solved separately. Decomposing a problem into sub-problems is 
advantageous because it is generally easier to solve smaller problems than larger ones. Th e problem re-
duction strategy is based on this characteristic. It employs a special kind of graph called AND-OR graph. 
Th e search through an AND-OR graph is known as AO* search. 

AND-OR Graphs. Th ere are two kinds of relation between the decomposed sub-problems and the 
problem itself. Firstly, the solution of any of the sub-problems may provide the solution of the original 
problem. Th is is an OR relationship. On the other hand, it might be necessary to solve all the sub-prob-
lems to obtain the fi nal solution. Th is is called the AND relationship.

Each node of an AND-OR graph represents a problem. Th e root node represents the given problem 
while all other nodes represent sub-problems. Given a node and its children, if there is an OR relation-
ship among them then the related arcs are called OR-links. In case of AND relationship these are called 
AND-links. Th e standard representations for these two types of links are shown in Fig. 11.48(a) and Fig. 
11.48(b). It is possible that a node issues OR-links as well as AND-links simultaneously. Fig. 11.48(c) 
shows such a situation. 

To illustrate the AND-OR graphs let us consider a network of four cities a, b, c and d and their inter-
connection cost as shown in Fig. 11.49. How to fi nd a lowest-cost route from city a to city d?
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OR-node

OR-links

Problem

sub-problems sub-problems

A

B C D

Problem
A

B C D

AND-node

AND-links

(a) OR-node/OR-links (b) AND-node/AND-links

A

B C D

(c) A node issuing both AND-links and OR-links

Fig. 11.48. Representation of AND/OR nodes/links in AND-OR graphs.

10

42

63

a

b c

d

Fig. 11.49. A network of four cities.

5

4623

10

105

2 463

a→d

a→d a→d via b a→d via c

a→b

a→b

b→d

b→d

a→c

a→c

c→cc d

c→cc d

OR node

AND node

Fig. 11.50. AND-OR tree for reaching city d from city a.
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Fig. 11.50 shows the AND-OR graph for the given problem. City d can be reached in three diff erent ways, 
viz., along the direct path from a to d, or, from a to d via b, or, from a to d via c. So the given problem a → 
d is now decomposed into three disjoint sub-problems, ‘a → d’, ‘a → d via b’, and ‘a → d via c’. In Fig. 11.50 
this is shown as the three children of the root node. Since the given problem can be solved through any of 
these three sub-problems, we have an instance of an OR node. Moreover, as there is a direct path from a 
to d with cost 10, a solution to the problem is readily available. Th is is indicated by the highlighted ovals.

Let us now focus on the sub-problem ‘a → d via b’. In order to reach d via b, we have to reach b from 
a, and then from b to d. Th is is indicated by the two children of the node for ‘a → d via b’. Th e fact that 
both of the sub-problems a → b and b → d have to be solved to obtain a solution of ‘a → d via b’ im-
plies that this is an AND node. Each of the two children leads to a leaf node as shown in the fi gure. Th e 
weights attached to an AND node is the sum of the weights of its constituent children. On the contrary, 
the weight attached to an OR node is the best among its children. In the present context we are looking 
for the minimum-cost path from a to d, and therefore, the cost 5 (among 10, 5, and 10) is attached to the 
root node. Th e entire AND-OR tree is depicted in Fig. 11.50. In the present example, the cost is attached 
to the nodes. However, depending on the nature of the problem addressed, one may attach such weights 
to the arcs also. 

5

23

5

23

a→d

a→d via b a→d via c

a→b b→d

10

10

a→d

a→d

10

46

10

46

a→c c→cc d

a→b b→d a→c c→cc d

a→d

(A)

(B) (C)

Fig. 11.51. Solution trees for reaching city d from a.

How to obtain the solution to a problem represented by an AND-OR graph ? Since a solution must in-
clude all the sub-problems of an AND node, it has to be a subgraph, and not simply a path from the root 
to a leaf. Th e three diff erent solutions for the present problem are shown as the solution trees A, B and C 
in Fig. 11.51. As we are addressing the problem of fi nding the minimum-cost path, Solution (B) will be 
preferred. We can formally defi ne such solution graphs in the following way:

Let G be a solution graph within a given AND-OR graph. Th en,

Th e original problem, P, is the root node of G.• 
If P is an OR node then any one of its children with its own solution graph, is in G.• 
If P is an AND node then all of its children with their own solution graphs, are in G.• 

In this example, we have considered an AND-OR tree rather than a graph. However, AND-OR graph is 
the more generalized representation of a decomposable problem. 
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Th e AO* Algorithm. Typically, state space search is a search through an OR graph. Th e term OR graph 
is used to indicate the fact that if there is a node n with k number of edges e1, …, ek incident on it, then n 
can be reached either along the edge e1, or along e2, or … or along ek (Fig. 11.52(a)), i.e., along any of the 
edges e1, …, ek. In contrast, if there is an AND node n within an AND-OR graph with k number of edges 
e1,…, ek incident on it, then in order to attain n one has to reach it along the edge e1, and along e2, and … 
and along ek (Fig. 11.52(b)), i.e., along all of the edges e1, …, ek.

ke2e

e1

n

OR node

(a) Node n can be reached along any
one of the edges e1, e2e , …, ek

(b) Node n can be reached along allll
of the edges e1, e2e , …, ek

eke2e

e1

n

AND node

Fig. 11.52. Difference between OR-node and AND-node.

Depth-fi rst search, breadth-fi rst search, best-fi rst search, A* algorithm etc. are the well-known search 
strategies suitable for OR graphs. Th ese can be generalized to search AND-OR graphs also. However, 
there are certain aspects which distinguish an AND-OR search from an OR graph search process. 
Th ese are:

An AND-OR graph represents a case of • problem reduction through decomposition. Hence each 
node of such a graph represents a problem to be solved (or already solved). On the other hand a 
node of an OR graph represents the state of a problem within the corresponding state space. 
Th e goal of searching an OR graph is to fi nd a • path from the start node to a goal node where such 
a path is required, or simply to reach a goal node. On the contrary, the outcome of an AND-OR 
graph search is a solution tree rather than a path, or goal. Th e leaves of such trees represent the 
trivially solvable problems which can be combined to solve a higher-level problem and so on 
until we come to the root node which represents the given problem.

Before we present the algorithms for AND-OR graph search in a formal way, let us try to grasp the main 
idea with the help of an example.

Example 11.8  (Searching through AND-OR graph)

Fig. 11.53 shows a network of six cities a, b, c, d, e, and f. Th e weight associated with each edge 
denotes the cost of the link between the corresponding cities. We are to fi nd a minimum-cost path 
from a to f.

Th e AND-OR graph representation of this problem is shown in Fig. 11.54. Here we have tried 
to fi nd a path from a to f without considering the issue of fi nding minimum cost path. Th ere must 
be systematic procedure to construct an AND-OR graph and moreover, once we arrive at a solu-
tion to the given problem in course of this construction process there is no need to construct the 
rest of the search tree. In other words, we don’t have to construct the entire AND-OR graph in 
practice.
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a

b c

21

d e
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Fig. 11.53. Interconnection of cities and related costs.

(2)(1)

(1)(1)

a→f

a→e e→f

a→f viaii ad →f viaii e

a→d d→dd f

a→d viaii b a→d viaii c

a→c c→cc d

(3)(2)

a→b b→d

(4)(1)

a→c c→cc e

Fig. 11.54. AND-OR graph for the problem.

Th e step-by-step construction of the AND-OR graph as well as arrival at the solution of the given 
problem is illustrated in Fig. 11.55(a)–(f). Th e search for a minimum cost path from a to f starts 
with the root of the AND-OR graph. We employ a heuristic function h1 associated with each node 
of the graph. For a node n, h1(n) estimates the cost of the path from node n to node f. Given a node 
n, h1(n) is estimated as 

 h1(n) = d × w (11.10)

where w is the average cost of a link between two cities, and d = the estimated number of edges 
between node n and the goal node. Th e average edge-weight is calculated as

w
total weighi t of eo dges

total number of eo dges
= =

+ +
= =

2 1 3+ + 1 4+ 1 2+
7

14
7

22
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Moreover, we assume a uniform cost of 1 for each link of the AND-OR graph. While estimating 
the cost of an internal node, those of its descendant along with the costs of the links are taken into 
consideration.

As there are six cities, at most fi ve edges may exist in a path between node a, and node f. Hence 
the estimated cost h1(n) = d × w = 5 × 2 = 10 is attached to the root node (see Fig. 11.51(55)(a)). In 
the next step the initial task a → f is split into two sub-tasks (a → f via d) and (a → f via e) because 
f can be reached either through d or through e. Th is is represented in Fig. 11.51(55)(b) by the suc-
cessors of the root node. As f can be approached along any one of the paths through d or e, the cor-
responding sub-tasks are attached to their parent through OR-links. Th e estimated cost of the node 
(a → f via d) is obtained as h1(a → f via d) = h1(a → d) + (cost of edge df ) = 4 × 2 + 1 = 9. Since the 
length of a path from a to d is 1 less than that from a to f we have taken d = 4. Similarly, the cost 
estimate of the node (a → f via e) is calculated as 4 × 2 + 2 =10. If we proceed along node (a → f via 
d) then the estimated cost at the root is (9 + 1) = 10. Th e cost of traversing along the sub-problem (a 
→ f via e) is (10 + 1) =11. Since we are looking for the minimum cost path, the former is the right 
choice. Th is is indicated by the broken arrow along the link from the root node to the node (a → f via 
d). Moreover, the estimated minimum cost 10 is now associated with the parent of (a → f via d).

Th e next step is to expand the node (a → f via d). In order to arrive at f from a via node d one 
has to traverse a path from a to d (i.e., task a → d) and then from d to f. Th erefore node (a → f via 
d) is split into two sub-tasks a → d and d → f, each attached to its parent with the help of an AND 
link. Th is is shown in Fig. 11.55(c). As the node d is directly connected to f the task d → f is readily 
solved. Th is is indicated by the doubly encircled node for d → f. Th e cost of this task is simply the 
cost of the edge df, 1. Th e estimated cost of the other child is (4 × 2) = 8. 

Once we arrived at a node marked as solved we have to move upward along the tree to register 
the eff ect of this arrival at a solution on the ancestors of the solved node. Th e rule is, if each suc-
cessor of an AND node is solved, then the parent node is also solved. And if any successor of 
an OR node is solved then the parent node is solved. Modifi cation of the status of the ancestors 
goes on until we arrive at the root, or a node which remains unsolved even aft er consideration of 
the solved status of its children. In the present case the parent of the solved node (d → f) is the AND 
node (a → f via d). Since its other child still remains unsolved the unsolved status of node (a → f 
via d) does not change and the process stops here.

(a)

(5 × 2 = 10)

a→f

(4 × 2 + 1 = 9) (4 × 2 + 2 = 10)

(10)

a→f

a→f viaii ea→f via d

(b)

(4 × 2 = 8)

(11)

(10)

(11)

(1)

a→f

a→f viaii ea→f viaii d

a→d d→dd f
(c)
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(2)

(12)

(12)(11)

(1)(8)

a→f

a→e e→f

a→f viaii d a→f viaii e

a→d d→dd f

(4 × 2 = 8)

(d)

(2)

(2)

(3)

(3)

(3)

(9)

(1)

a→f

a→e e→f

a→f viaii d a→f viaii e

a→d d→dd f

(8)

(1)(1)

c→cc da→c

a→d viaii b a→d viaii c

(f)

(2)

(12)

(12)(11)

(1)(8)

a→f

a→e e→f

a→f viaii ad →f viaii e

a→d viaii b a→d viaii c

a→d d→dd f

(8)

(e)

(3 × 2 + 3 = 9) (3 × 2 + 1 = 7)

Fig. 11.55. AND-OR search for minimum-cost path between cities
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Th e costs of the nodes are now to be revised on the basis of the estimates of the newly created 
nodes. Th e cost of (a → d) is calculated as 8 and that of (d → f) is (0 + 1) = 1. Here h1(d → f) = 0 be-
cause the sub-problem d → f is already solved. As (a → f via d) is an AND node its revised estimated 
cost should take into account the costs of both of its successors as well as the links. Th is becomes (8 
+ 1) + (1 + 1) = 11. When we try to propagate this value upwards, we fi nd the cost of the root node to 
be (11 + 1) = 12. Th is is greater than the cost (10 + 1) = 11 when we approach the root along its other 
child (a → f via e). Th us we abandon the previous path and mark (a → f via e) as the most promis-
ing node to be expanded next (Fig. 11.55(c)). Th e subsequent steps are depicted in Fig. 11.55(d) to 
Fig. 11.55(f). Fig. 11.55 (f) conveys the outcome of the entire process. Here, when the task (a → d 
via c) is split into two sub-tasks a → c and c → d it is found that both of these sub-tasks are read-
ily solved. Th is makes their parent AND node (a → d via c) to be marked as solved which in turn 
solves the parent task a → d. As we go on climbing the tree in this way the root node which rep-
resents the given problem is marked as solved – a condition which indicates the end of the search 
process. Th e outcome of the entire process, i.e., the solution tree, is highlighted in Fig. 11.55(f).

A simplifi ed AND-OR graph search technique is described in Algorithm AO* (Fig. 11.56). It 
starts with the given problem as the initial node and gradually constructs the AND-OR graph by de-
composing a problem into sub-problems and augmenting the partially constructed graph with the nodes 
corresponding to those sub-problems. At any point, nodes that are generated but not yet explored or ex-
panded are kept in a queue called OPEN and those which have already been explored and expanded are 
kept in a list called CLOSED. Th e prospect of a node with respect to the fi nal solution is estimated with 
the help of a heuristic function. Moreover, two labels, viz., SOLVED, and FUTILE are used to indicate 
the status of a node with respect to the solvability of the corresponding problem. A node that represents 
a readily solved problem need not be decomposed further and is labeled as SOLVED. On the other hand, 
a problem which is not solvable at all, or the solution is so costly that it is not worth trying, is labeled 
with FUTILE.

Th e operation of the algorithm can be best understood as a repetition of two consecutive phases. In 
the fi rst phase the already constructed graph is expanded in a top-down approach. In the second phase, 
we revise the cost estimates of the relevant nodes, connect or change the connections of the nodes to 
their ancestors, see if some problems, or sub-problems, are readily solvable or not solvable at all and 
propagate the eff ect of these towards the root of the graph in a bottom-up fashion. 

At each step we identify the most promising solution tree with the help of the cost estimates of the 
nodes. A yet-unexplored node of that tree is selected for further expansion. Th e children of this node are 
integrated into the existing AND-OR graph. Depending on the estimated costs of the newly introduced 
nodes, the cost estimates of their ancestors are recomputed. Moreover, if the current node is tagged as 
SOLVED, or FUTILE, then the status of its ancestors are also changed if necessary. Th e process stops 
when the initial node is labeled as SOLVED or FUTILE. 

Th e example discussed above gives a simplifi ed picture of AND-OR search because it works on a 
tree rather than a graph. Moreover, a node in an AND-OR graph may involve both AND-links and 
OR-links. Fig. 11.57 depicts few steps of an imaginary AND-OR graph search involving such a situa-
tion. In Fig. 11.57(a), node c is the lowest cost individual node. But selection of c compels us to select 
node d also because both of them forms an AND-arc together. Since the sum of the costs of these 
two nodes is greater than the other node b, it is selected at the moment for exploration and expan-
sion. Th e situation changes aft er this step (Fig. 11.57(b)) and the AND-arc involving nodes c and d 
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becomes most prospective for further processing. Since c is cheaper than d the algorithm will select c 
for processing.

Algorithm AO*

1.  Initialize the search tree T with a single node, viz. the start 

node S. Place S on OPEN queue. Initialize CLOSED as an empty 

list.

2.  On the basis of the estimated costs of the nodes belonging to the 

search tree constructed so far, identify a sub-tree T
best of T as 

the most prospective solution tree at present.

3.  Choose a node n from Tbest that is also in OPEN. Remove n from OPEN 

and include it in CLOSED.

4.  Is n a goal node? If so, label n with the status SOLVED. Propagate 

this status to the ancestors of node n in the following way:

Let • n1 be the parent of n. If the solution of n results in the 

solution of n1 also, label n1 with the status SOLVED. Repeat the 

procedure for n1and its parent, and so on.

The process stops when either we arrive at an ancestor of • n which 

remains unsolved in spite of the solution of its descendants till 

n, or the start node of the search tree is reached.

  If the start node S attains the status SOLVED then report success 

and return T
best as the solution tree. 

5.  If the cost of n becomes prohibitively high, or n is simply un-

solvable then label it as FUTILE indicating that the path through 

this node is blocked. Propagate this information to the ancestors 

of n in a way analogous to step 4. If the start node S attains the 

status FUTILE then report failure and return. From OPEN remove all 

FUTILE nodes along with their descendants.

6.  If n is neither SOLVED nor FUTILE, then expand it by generating all 

its children, i.e., all sub-problems into which n could be decom-

posed. Maintain a back pointer from each of these children to its 

parent n. This is required to reconstruct the solution tree once 

the root node attains the SOLVED status. Compute the cost estimate 

for each child. Place all newly generated nodes into OPEN.

8.  On the basis of the estimated costs of the new nodes, recompute 

the cost estimates of their ancestors way up to the root node. Go 

to Step 2.

Fig. 11.56. Algorithm AO*.
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Fig. 11.57. Characteristics of AO* search

It has been found that AO* algorithm is admissible, i.e., it guarantees to fi nd an optimal solution tree if 
one exists, provided h1(n) ≤ h (n) for any node n, and all costs are positive. If h(n) = 0 then AO* algo-
rithm becomes breadth-fi rst search. AO* is also known as the best-fi rst search algorithm for AND-OR 
graphs.

11.4.6 Means-ends Analysis

Means-Ends Analysis (MEA) is a technique employed for generating plans for achieving goals. Th is 
technique was fi rst exploited in sixties by a famous A.I system known as the General Problem Solver 
(GPS). Th e central idea underlying the MEA strategy is the concept of the diff erence between the start 
state and the goal state and in general the diff erence between any two states. Th e MEA process recur-
sively tries to reduce the diff erence between two states until it reduces to zero. As a result it generates a 
sequence of operations or actions which transforms the start state to the goal state. Th e salient features 
of an MEA system are described below.

It has a problem space with an initial (start) state (object) and a fi nal (goal) state (object).1. 
It has the ability to compare two problem states and determine one or more ways in which these 2. 
states diff er from each other. Moreover, it has the capacity to identify the most important diff er-
ence between two states which it tries to reduce in the next step. 
It can select an operator (action) appropriate for application on the current problem state to re-3. 
duce the diff erence between the current state and a goal. It employs a diff erence-operator table, 
oft en augmented with preconditions to the operators, for this purpose. Th e diff erence-operator 
table specifi es the operators applicable under various kinds of diff erences.
Th ere is a set of operators, sometimes referred to as rules. An operator can transform one prob-4. 
lem state to another. Each operator (rule) has a set of pre-conditions and a set of post-conditions, 
or results. Th e pre-conditions of a rule describe the situation in which the rule can be applied. 
Similarly, the post-conditions describe the changes that will be incorporated into the problem 
state as a result of the operation applied. 

Th e basic strategy of means-ends analysis is described in the pseudocode Algorithm Means-Ends 
Analysis (S

current
, S

goal
) (Fig. 11.58) and is illustrated in Fig. 11.59.
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Suppose Scurrent and Sgoal are the initial and the goal states pertaining to the given problem. A se-
quence of operations is to be generated that transforms Scurrent to Sgoal. Th e system identifi es D to be 
the most important diff erence between the start state and the goal state. Th is situation is depicted in 
Fig. 11.59(a). Fig. 11.59(b) shows the situation prevailing after application of an appropriate op-
erator OP, which is employed to reduce the gap D. Let Spre-op be the problem state that satisfies the 
pre-conditions for applying the operator OP and Spost-op be the problem state resultant of applying 
OP on Spre-op. Then the portion of D indicated by CD of Fig. 11.59(b) has been filled and the original 
difference D represented by the distance AB in Fig. 11.59(a) and (b) is fragmented into two gaps 
(may be one) D1 and D2 represented as the distances AC and DB in Fig. 11.59(b). The differences D1 
and D2 may further be reduced by invoking MEA(Scurrent, Spre-op) and MEA(Spost-op Sgoal), respectively. 
It should be noted that OP will be actually included in the final plan only if both MEA(Scurrent, Spre-op) 
and MEA(Spost-op Sgoal) are successful and return their own sub-plans P1 and P2 so that the final plan 
is obtained by concatenating P1, OP, and P2.

Algorithm Means-Ends Analysis (Scurrent, Sgoal)

1. IF (Scurrent is identical to Sgoal) THEN Return SUCCESS.

2.  Let D represents the most important difference identified between 
Scurrent and Sgoal. Reduce D through Step 3 to Step 5 until SUCCESS or 
FAILURE is returned.

3.  Select OP, an operator from the Difference-Operator-Precondition 
table which is applicable but not yet been applied to reduce D. 

IF (There is no such operator, i.e., all operators have been tried 
without success)

THEN Return FAILURE.

4.  Generate Spre-op and Spost-op, i.e., the states in which the pre-conditions 
and post-conditions of OP are satisfied, respectively.

5. IF 
P
1 ← Means-Ends Analysis (Scurrent, Spre-op) and 

P2 ← Means-Ends Analysis (Spost-op, Sgoal) 

are the plans generated through successful completion of 

MEA (S
current, Spre-op) and MEA(Spost-op, Sgoal) respectively 

THEN 
Return SUCCESS with the plan P such that

P ← Concatenation of P
1, OP, and P2.

 ELSE Go to Step 3.

Fig. 11.58. Algorithm means-ends analysis (Scurrent , Sgoat).

Th e MEA process is a kind of backward chaining known as operator subgoaling that consists of selec-
tion of operators and subsequent setting up of sub-goals so that the pre-conditions of the operators are 
established.
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(a) The gap D is to be filled with the help of a sequence of operators
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(b) The gap D is partially filled by ay pplying OP and the total remaining
gap D1 + D2DD is smaller than D

B

Fig. 11.59. Basic means-ends analysis strategy.

Example 11.9  (Means-Ends Analysis)

Suppose a person want to reach his friend’s house at New Delhi from his home at Kolkata. Th e 
distance between Kolkata and New Delhi is about 1500 km. Depending on the distance to be trav-
eled and subject to availability, various kinds of conveyances are used. For example, if it is a very 
short distance, say, less than 1 km, one should simply walk. For a destination further than 1 km but 
within the locality one may use a car or a bus. Similarly, to travel larger distances a train, or an aero-
plane may be used. In order to board an aeroplane we have to reach the airport. Similarly, to catch 
a train one has to arrive at the railway station. Th e airport, or the railway station, may be reached 
through a car, or a bus, and so on. We want to generate a plan through MEA for this problem.
Here a problem state is defi ned as the position, or location, of the person. For the sake of simplicity, 
let us consider a discrete, fi nite set of possible locations, say, at-home-at-K, at-the-car-at-K, at-the-car-
at-ND, at-the-bus-stop-at-K, at-the-bus-stop-at-ND, at-the-station-at-K, at-the-station-at-ND, at-the-
airport-at-K, at-the-airport-at-ND, at-friends-house-ND etc. Th e ‘K’ and ‘ND’ at the tails of the name of 
locations given above represent Kolkata and New Delhi, respectively. Th e diff erence between two prob-
lem states is given by the distance between the respective locations. For example, if d be the distance 
between the airport at New Delhi and Kolkata, then the diff erence between the problem states at-the-
airport-at-ND and at-the-airport-at-K is d. Th e possible actions, or operators, to reduce the diff erences 
stated above are walk, take a bus, drive a car, use train and fl y. Th ere is no pre-condition for walking, 
however in order to take a bus, one must be at the bus-stop. Th erefore the pre-condition of take a bus 
is be at bus-stand. Similarly, pre-conditions for the rest of the operators are ascertained. Th e entire 
Diff erence-Operator-Precondition table is shown in Fig. 11.60. Table 11.5 depicts the trace of recursive 
application of Means-Ends Analysis process to the present problem. Th e plan generated through the 
MEA process and the recursive depths of various operators within the plan are shown in Fig. 11.61.

Initially, the applicable operation is to fl y because the distance between the person’s home at 
Kolkata and his friend’s house at New Delhi is about 1500 km, which is greater than 500 km. In 
order to apply this operation, one be at the airport. So a sub-goal is created which is to reach the 
airport from the person’s home. Similarly, when the person arrives at New Delhi airport, he has 
to travel from the airport to his friend’s house. Both of these sub-problems are solved by invoking 
the same MEA process recursively.
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Problem: How to reach your friend’s residence at New Delhi from your home at Kolkata.
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Fig. 11.60. The difference-operator-precondition table.

Table 11.5. Trace of recursive application of means-ends analysis

Difference Applicable operator Precondition to be satisfi ed

500 ≤ dist fl y be at airport

 1 ≤ dist <50 drive a car be at car

dist <1 walk (to car) nil

 dist <1 walk (to airport) nil
1 ≤ dist <50 take bus be at bus stop

 dist <1 walk (to bus) nil
dist <1 walk (to friend’s house) nil

plan generated
walk (to car) → drive (to airport) → walk (to aeroplane) → fl y (to ND airport) → walk (to 
bus stop) → take bus → walk (to friend’s house)

walk (to car)Le
ve

l o
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at-tt home-
at-tt K

at-tt the-
car–rr at-tt K

at-tt the-
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Fig. 11.61. Plan generated through means-end analysis.
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11.4.7  Mini-Max Search

Mini-Max search is an interesting type of search technique suitable for game playing AI systems. A game, 
unless it is one-player puzzle-like, is a typically multi-agent environment in which the agents are com-
petitive rather than cooperative. Each player tries to win the game and makes his moves so as to maxi-
mize his chance of win and conversely, minimize the chance of the opponent’s win. As the players have 
confl icting goals, a player must take into account the possible moves of his opponent while he makes his 
won move against his opponent. For this reason a search algorithm employed to facilitate decision mak-
ing for such a player is occasionally referred to as an adversarial search. 

In this text, we shall consider only deterministic, two-player, turn-taking, zero-sum games. Such a 
game can be characterized as follows:

Th ere are two players. One of them is referred to as the MAX player (say, you), and the other as • 
the MIN player (your opponent). Th e reason of such nomenclature of the players will be soon 
obvious.
Th e fi rst move is made by the MAX player.• 
Th e moves are deterministic.• 
Th e two players make their moves alternately.• 

A deterministic, two-player, turn-taking, zero-sum game as described above can be formalized as a sys-
tem consisting of certain components:

A data structure to represent the status of the game at any moment. Th is is usually referred to as the 1. 
board position. Each possible status of the game is considered as a state of the corresponding state 
space. Th e status of the game before the fi rst move (by MAX) is the initial state.
A 2. successor function which returns a list of legal moves from a given game state as well as the states 
resultant of those legal moves.
A 3. terminal condition that defi nes the termination of the game. Depending on the rules of the game, 
it may terminate either in the win of a player (and the loss of his opponent), or a draw.
A function, generally termed as the 4. utility, or objective, or pay-off , or static evaluation function. 
Th is function gives the numeric values of the terminal states. In case of static evaluation function, 
it returns a numeric value for each state of the game. Usually, a positive numeric value indicates 
a game status favourable to the MAX player and a negative value indicates the game status to be 
favourable to the MIN player. For example, a winning position for the MAX (MIN) player may 
have a +∞ (−∞), or +1 (−1) value.

As mentioned earlier, each time a player makes a move he has to consider its impact on his chance of winning 
the game. Th is is possible only when he takes into consideration the possible moves of his opponent. Starting 
with the fi rst move, the entire set of sequences of possible moves of a game can be presented with the help of a 
game tree. In an ideal situation, a player should be able to identify the perfect move at any turn with the help of 
the game tree. Example 11.10 illustrates the use of a game tree as an aid to decision making in game playing.

Example 11.10  (Th e game of NIM)

Th e game of NIM is a classical example of a deterministic, two-player, turn-taking, zero-sum game. 
Th e game starts with a number of piles of sticks. Two players remove sticks from the piles alternately 
until all the sticks are removed. A player can remove any number of sticks from one pile of his choice 
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when his turn of move comes. However, he should try to leave some sticks in the piles because 
the player who has to take the last stick loses. Th e status of the game at any moment may be rep-
resented with the help of a non-decreasing sequence of integers. For example, the sequence (2, 4, 
4, 7) represents four piles of sticks containing 2, 4, 4, and 7 sticks in the individual piles. Now if a 
player removes two sticks from one pile containing 4 sticks then the resultant game status is repre-
sented by (2, 2, 4, 7). If in this situation all the sticks from the 7-stick pile are removed by a player 
then the game status becomes (2, 2, 4). 

For the sake of simplicity, we shall consider the (1, 2, 2) NIM game. As usual the two players are 
denoted as the MAX (i.e., you) and the MIN (i.e., your opponent). Th e utility function is defi ned 
as follows:

Function 
Value

Interpretation

Won Lost

+ ∞ MAX MIN

− ∞ MIN MAX

It should be noted that instead of the pair (+∞, −∞) other numeric values, e.g., (+1, −1), could 
also be used. However we shall see that the concept of a utility function will be generalized to 
that of a static evaluation function which returns an integral value for any game status and not 
for the winning/losing positions only. Th e complete game tree for (1, 2, 2) NIM is shown in 
Fig. 11.62.

+ ∞ : Win for MAX
− ∞ : Win for MIN

: MAX 
 node

: MIN 
  node

2

12

11 1 2

12

11 1

2

1

+

111

11

11 11

1

2

1

+ +

1

1

22 112 12

122

11 1 1 1

MIN

MIN

MAX
(You)

MAX
(You)

MAX
(You)

+ ∞+ ∞+ ∞

− ∞

− ∞

− ∞ − ∞ − ∞− ∞

Fig. 11.62. Complete game tree for (1, 2, 2) NIM game.
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Th e root node represents the initial status (1, 2, 2) of the game. Depending on whether the MAX 
player picks 1 or 2 sticks, the status of the game aft er the fi rst move may be (2, 2), (1, 1, 2), or (1, 2). 
Th ese constitute the 1st level nodes of the tree. Similarly, from (2, 2), the move by MIN player may 
result in the status of (1, 2), or (2), and so on. Usually the set of all game status at a certain level of 
the game tree which corresponds to the MAX (MIN) player’s turn of move is called a MAX-ply 
(MIN-ply). To make the distinction clear, nodes of the MAX-ply are represented with circles and 
those of the MIN-ply are represented with rectangles.

Each leaf node of Fig. 11.62 represents the game status (1), i.e., the last stick. Th is implies defeat 
of the player whose turn of move it is. Hence, leaf nodes of a MAX-ply have a utility value −∞ and 
those of MIN-plies have a value +∞.

Th e game tree shown in Fig. 11.62 depicts the sequences of probable moves by the two play-
ers and the fi nal outcome of those sequences with respect to the result of the game. However, the 
primary objective of a player is to identify and select the best possible move. Th e game tree, along 
with the utility function, may be exploited to achieve this goal.

Th e idea is to fi nd the utility value, referred to as the Mini-Max value, of each node to decide 
whether the corresponding move is good or bad for the player. Th e underlying assumption is that 
each player will try to create situations best for him and worst for his opponent. Consider the 
MAX nodes (j) and (k) in Fig. 11.63, which show the game tree of Fig. 11.62 along with the Mini-
Max values of the nodes. Nodes (j) and (k) are losing the game status for MAX. Th erefore, both 
of them have a score of −∞. Now node (j) is a child of node (g) which is a MIN node. Since MIN 
will defi nitely try to defeat MAX, it is bound to make a move that leads to game status (j). Hence 
the utility value of (g) is same as that of (j). Similarly, the utility of node (k) is propagated to node 
(h). However, node (i) of the same MIN-ply is a losing game status for a player MIN and a win for 
node MAX. Hence its score is +∞. Now (g), (h) and (i) are children of node (e), which belongs to 
a MAX-ply. MAX will select a move to ensure his chance of win. Among (g), (h) and (i), the fi rst 
two imply defeat of MAX and the last one ensures his win. Th erefore, faced with situation (e) MAX 
will make a move to (i) only, neither (g) nor (h). Hence the Mini-Max value of node (e) should be 
same as that of (i), i.e., +∞. However, the situation is reverse for the node (c). Th is node has three 
children with Mini-Max values +∞, −∞, and +∞, respectively. Being in a MIN-ply, the opponent 
will try to make things worst for MAX and so will move to the game status of value −∞. Hence the 
Mini-Max value of (c) is −∞. Obviously, the general rule for computing the Mini-Max value of a 
node N is:

If 1. N is a leaf node then the Mini-Max value of N is its score, i.e., value of the utility function 
at that node.
If 2. N is a MAX-node, i.e., N belongs to a MAX-ply, the Mini-Max value of N is the maxi-
mum of the Mini-Max values of its children.
If 3. N is a MIN-node, i.e., N belongs to a MIN-ply, the Mini-Max value of N is the minimum 
of the Mini-Max values of its children.

Procedure MiniMax (N) (Fig. 11.64) gives the pseudo-code for the technique mentioned 
above. In case of a MAX node, the Mini-Max value is initialized to −∞ (or the minimum allowable 
value) and then gradually updated to the maximum value of its children. (lines 3-9). For a MIN node 
the value is initialized to +∞ and then lowered down to the minimum value among its children. 
Fig 11.63 shows the Mini-Max values of each node of the game tree for (1, 2, 2) NIM game obtained
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by applying this procedure on the said game tree. It is easy to see that the root node attains a Mini-Max 
value of +∞ which implies that if properly played, the game can be won by the MAX player and in 
order to win he has to remove the stick from the single stick pile. Any other move may eventually lead 
to his losing the game, provided the opponent does not make any mistake.

2

12

11 1 2

12

11 1

2

1

111

11

11 11

1

2

1

1

1

22

122

11 1 1 1

MIN
(Opp.)

MIN
(Opp.)

(a )

(b ) (112 c ) (12 d )

(e ) (f )

(g ) (h ) (i )

(j(( ) (k )

MAX
(You)

MAX
(You)

MAX
(You)

+ +

+ ∞

++ ∞ ++

+ ∞ + ∞ + ∞ + ∞ + ∞ + ∞

+ ∞

− ∞ − ∞

− −∞ + ∞ + ∞ −∞ + ∞ −∞ + ∞ + ∞ ∞− ∞

− ∞ − ∞− ∞
+ ∞ : Win for MAX : MAX node

: MIN node− ∞ : Win for MIN

Fig. 11.63. Utility values of different nodes of (1, 2, 2) NIM game.

A realistic game playing system must take into consideration the facts that the real-world games are 
too hard computationally. As a classical example, consider the game of chess. Th e average branching 
factor of chess is approximately 35. If we consider a usual game with 50 moves for each player then 
the search tree would consist of about 35100 or 10154 nodes. Arriving at an optimal decision through 
exhaustive search of a tree of such dimension is not feasible. Hence Procedure MiniMax (N) 
has to be modifi ed suitably so that eff ective decisions can be taken even if the entire game tree is not 
searched.

Static evaluator We need something more than a utility function to assist us in decision making 
while playing a realistic game. Recall that the utility function returned a value for terminal game status, 
which is percolated to their ancestors as Mini-Max values till the concerned node attains its own Mini-
Max value. A static evaluator is a generalized utility function that returns a value for any node of the 
game tree and not just for the terminal modes. Equipped with a suitable static evaluator Procedure 
MiniMax (N) can now be modifi ed to carry out the Mini-Max search to a predefi ned depth from 
the given node of the game tree and assign the Mini-Max value of the node on the basis of that limited 
information.
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Procedure MiniMax (N)

INPUT :A node N of a game tree TG. Also there is an evaluation func-
tion score(N) which returns a value indicating the relative merit of 
the game status corresponding to node N. Usually score(N) = -∞ if N 

is a winning position for MIN, and score(N) = +∞ if N is a winning 

position for MAX. 

OUTPUT: The MiniMax value of node N.

1. BEGIN

2.   IF (N is a leaf node) THEN Return score(N) END-If

   /* code for MAX node */

3.   IF (N is a MAX node) THEN

    /* Initialize MiniMax value with lowest possible value */

4.    MiniMax-value ← -∞

      /* Update the MiniMax value of the current node with the high-

est

    MiniMax value among its children */

5.  FOR (each child of N) DO

6.    value ← MiniMax (child)

7.    IF value > MiniMax-value THEN MiniMax-value ← value END-If

8.  END-For

9.  Return MiniMax-value

10.  END-If

  /* code for MIN node */

11.  IF (N is a MIN node) THEN

   /* Initialize MiniMax value with highest possible value */

12.   MiniMax-value ← +∞

    /* Update the MiniMax value of the current node with the lowest

    MiniMax value among its children */

13.  FOR (each child of N) DO

14.   value ← MiniMax (child)

15.      IF value < MiniMax-value THEN MiniMax-value ← value END-If

16.  END-For

17.  Return MiniMax-value

18.  END-If

19. END-MiniMax

Fig. 11.64. Procedure MiniMax (N).
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(3) (5) (− 3) (− 4)

(− 4)B

A

C

E F G H J KI

D

(4) (0) (0)

Node scores
obtained through
the static
evaluator    

MAX (You)

MIN (opponent)

MAX (You)

Fig. 11.65. Scores of individual nodes based on static evaluation function.

Depth-limited Mini-Max search As an example, let us consider a portion of an imaginary 
game tree as shown in Fig. 11.65. Th e score of each node with respect to the evaluation function is 
given within parentheses adjacent to the respective node. Our goal is to assign a Mini-Max value to the 
root node A on the basis of these scores. If we decide to carry out the Mini-Max search process till a 
depth of 1 only, then the scores of three children of A, i.e., nodes B, C and D, should be considered and no 
node beyond that level. As A is a MAX node, the maximum of these scores should be the Mini-Max value 
of A (see Fig. 11.66). Th erefore node A attains a Mini-Max value of 6 through 1-ply MiniMax search.

(0) (6)

(6)

(3) (5) (− 3) (− 4)

(− 4)B

A

C

E F G H J KI

D

(4) (0) (0)

MAX (You)

MIN (opponent)

MAX (You)

Mini-Max
value

Evaluation
functional
scores 

Fig. 11.66. Finding Mini-Max value through 1-ply search.

Now compare this with Fig. 11.67 showing the same process carried out to a depth of 2, instead of 1. 
Here the deepest nodes are at level 2 and these nodes are evaluated on the basis of the static evaluator. 
Th e nodes B, C and D being MIN nodes, each of them obtain its Mini-Max value as the lowest score 
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among the children of the respective node. Finally, the MAX node A is assigned a Mini-Max value of 3, 
the highest score among B, C and D.

(3)

(3)

(3) (5) (− 3) (− 4)

(− 4)(− 3)B

A

C

E F G H J KI

D

(4) (0) (0)

MAX (You)

MIN (opponent)

MAX (You)

Mini_Max
value

Fig. 11.67. Finding Mini-Max value through 2-ply search.

Th e pseudo-code for the technique described above is presented in Procedure Depth-Limited-
MiniMax (N, d) (Fig. 11.68). Th e algorithm is similar to MiniMax (N) except that each time the 
procedure calls itself recursively the depth is reduced by 1. Th erefore, score (N) is returned not only for 
the leaf nodes but also for the nodes at depth d (line #2).

Procedure Depth-Limited-MiniMax (N, d)

INPUT :A node N of a game tree TG as well as the depth d to which the game 
tree TG should be explored. Also there is an evaluation function score(N) 
which returns a value indicating the relative merit of the game status 
corresponding to node N. Usually score(N) = -∞ if N is a winning position 
for MIN, and score(N) = +∞ if N is a winning position for MAX.

OUTPUT:The MiniMax value of node N.

 1. BEGIN

 2. IF (N is a leaf node) OR (d=0) THEN Return score(N) END-If

 /* code for MAX node */

 3. IF (N is a MAX node) THEN

  /* Initialize MiniMax value with lowest possible value */

 4.  MiniMax-value ← -∞

   /* Update the MiniMax value of the current node with the high-
est

   MiniMax value among its children */

 5.  FOR (each child of N) DO

 6.   value ← MiniMax (child, d-1)
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 7.   IF value > MiniMax-value THEN MiniMax-value ← value END-If

 8.  END-For
 9.  Return MiniMax-value

10. END-If
 /* code for MIN node */

11. IF (N is a MIN node) THEN
  /* Initialize MiniMax value with highest possible value */

12.  MiniMax-value ← +∞

   /* Update the MiniMax value of the current node with the low-
est MiniMax value among its children */

13.  FOR (each child of N) DO
14.    value ← MiniMax (child, d-1)

15.   IF value < MiniMax-value THEN MiniMax-value ← value END-If

16.  END-For
17.  Return MiniMax-value

18.  END-If
19.  END-Depth-Limited-MiniMax

Fig. 11.68 Procedure depth-limited-MiniMax (N, d).

Design issues While designing a game playing system using Mini-Max search, one has to decide two 
things, viz., which static evaluator is to be employed, and how deeply the game tree should be searched. 
Th ere is no rule regarding the fi rst issue. It depends on the insight of the designer. However, several fac-
tors are to be taken into consideration in this regard. Most important of these are

Speed:•  Th e static evaluator should compute fast. Th is is because time is a decisive parameter 
in most of the games we humans play. For example, in chess any delay in making a move is 
eventually severely punished. 
Heuristic power:•  Th e static evaluator should be powerful enough to embody suffi  cient knowledge 
regarding the game so that eff ective decision can be taken by the player. Again, let us consider 
the game of chess. A simple static evaluator would be the sum of the values of the white pieces 
minus the sum of the values of the black pieces, i.e.,

score p
p N

B
p NN p

( )N =
N pN p

∑ ∑pp

where pW and pB are the white pieces and the black pieces remaining in board position N.

Th e question of how deeply should the game tree be searched is related to the speed-concern as well as 
the heuristic power of the static evaluator. Th e deeper we delve into the game tree the more informed and 
wise our decision, provided we have time. We may also try to compensate, so far as possible, the limita-
tion of the evaluator by carrying out the search to deeper levels. 

Alpha-beta pruning Is it possible to make MiniMax search more effi  cient? It has been found 
quite frequently that certain portions of a game tree do not play any role to decision-making in the sense 
that the Mini-Max value returned by the search remains the same irrespective of whether these portions 
are explored or not. Alpha-Beta pruning is a technique of making MiniMax search effi  cient by avoiding 
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these parts while searching the game tree. Th e technique of Alpha-Beta pruning is explained below with 
reference to the game tree shown in Fig. 11.69.

(5)

(5)

(4)(5) (7)(− 2)

( )D F(5) (10) G

B

(5)A

C

M NK LI JH

(10)(3)

MAX

MIN

MIN

MAX

(+ ∞)

(+ ∞)(− ∞)

(− ∞)

Fig. 11.69. A 3-ply game tree with Mini-Max values.

Pruned subtrees

X

Y

(5)

(5)

(5) (7)(− 2)

(7)D F

B

(5)A

E

C

KI JH

(3)

MAX

MIN

MIN

MAX (− ∞)

(− ∞)

Fig. 11.70. Alpha-Beta pruning of a game tree during Mini-Max search.

As usual, the numbers attached to the leaf nodes are the scores of the respective game status obtained 
through the static evaluator and the numbers adjacent to the internal nodes give the Mini-Max values. Th e 
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root node A obtains a Mini-Max value of 5 as a result of 3-ply Mini-Max search on the game tree mentioned 
above. Let us examine the Mini-Max process involved here critically. Th e MAX node D is assigned a Mini-
Max value 5 as this is the highest score among its children H, I and J. Now, while computing the Mini-Max 
value of node E, we see that E’s fi rst child K has a score of 7. Th is implies the Mini-Max value of E is going 
to be at least 7, as E is a MAX node. But this value is already greater that 5, the Mini-Max value of node D. 
Since the parent of D and E, i.e., node B, is a MIN node, the Mini-Max value of B will be at most 5. Hence it 
is useless to explore the sub-tree marked ‘X’ (see Fig. 11.70). Whatever be the values existing in portion ‘X’ 
of the game tree, the Mini-Max value of B will remain 5. Similarly, the ‘Y’ portion of the game tree can also 
be ignored because the MIN node C has already attained a Mini-Max value -∞ which obviously can not be 
further lowered.
Procedure AlphaBeta-MiniMax (N, d, Alpha, Beta) (Fig. 11.71) presents the 

pseudo-code for MiniMax search made effi  cient by incorporating the technique of Alpha-Beta pruning 
explained above. Alpha and Beta are the two cutoff  numbers, generally referred to as the Alpha-Beta cut-
off s, used to prune the avoidable parts of the game tree. Th e Mini-Max value of node is worth computing 
only if it lies within the range [Alpha, Beta]. While computing the Mini-Max value of a MAX node as soon 
as it is found that the Mini-Max value of any of its child exceeds Beta then the concerned MAX node is 
assigned a value of Beta without exploring the rest of the subtree (see line #8 of Procedure AlphaBe-
ta-MiniMax). Conversely, a MIN node is assigned the Mini-Max value Alpha as soon as it tends to go 
below Alpha, and the search is discontinued (see line #17 of Procedure AlphaBeta-MiniMax).A 
trace of execution of Procedure AlphaBeta-MiniMax on the game tree of Fig. 11.69 is shown in 
Table 11.6. Th e recursive calls of Procedure AlphaBeta-MiniMax (N, d, Alpha, Beta) 
are underlined. A pictorial view of the process is presented in Fig. 11.72.

Procedure AlphaBeta-MiniMax (N, d, Alpha, Beta)

/* This procedure computes the MiniMax value of node N, searched to depth 
d of the game tree TG from node N. If the computed value is less than Alpha 
then Alpha is returned. The procedure returns Beta if the computed value 
is more than Beta. */ 

1. BEGIN
2. IF (N is a leaf node) OR (d=0) THEN Return score(N) END-If

 /* code for MAX node */

3. IF (N is a MAX node) THEN
  /* Initialize MiniMax value with Alpha */

4.  MiniMax-value ← Alpha

   /* Update MiniMax value of the current node with the highest

   MiniMax value among its children, or Beta if the computed 
value exceeds Beta. */

5. FOR (each child of N) DO
6.   value ← MiniMax (child, d-1, MiniMax-value, Beta)

7.    IF value > MiniMax-value THEN MiniMax-value ← value END-If

    /* If Beta is exceeded then prune the rest of the sub-tree 
of T

G. */
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8.  IF MiniMax-value > Beta THEN Return Beta END-If
9. END-For
  /* Beta is not exceeded */

10.  Return MiniMax-value

11. END-If

  /* code for MIN node */

12. IF (N is a MIN node) THEN
  /* Initialize MiniMax value with highest possible value */

13.  MiniMax-value ← Beta

   /* Update MiniMax value of the current node with the lowest

    MiniMax value among its children or Alpha, whichever is higher. 
*/

14.  FOR (each child of N) DO
15.   value ← MiniMax (child, d-1, Alpha, MiniMax-value)

16.   IF value < MiniMax-value THEN MiniMax-value ← value END-If
    /* If MiniMax-value < Alpha then prune the rest of the sub-

tree */

17.   IF MiniMax-value < Alpha THEN Return Alpha END-If
18.  END-For
  /* MiniMax-value has not gone below Alpha */

19.  Return MiniMax-value

20.  END-If
21. END-AlphaBeta-MiniMax

Fig. 11.71. Procedure AlphaBeta-MiniMax (N, d, Alpha, Beta).

Table 11.6. Trace of execution of procedure AlphaBeta-MiniMax

Levels of recursion

0 1 2 3

abMiniMax (A, 3, −∞, +∞) /* Initially Alpha = −∞, Beta = −∞ */

MiniMax-value = −∞ /* Line #4, A is a MAX node */

Value ← abMiniMax (B, 2, −∞, +∞) /* Explore the 1st child of A */

MiniMax-value = +∞ /* Line #13, B is a MIN node */

Value ←   abMiniMax (D, 1, −∞, +∞)

MiniMax-value = −∞

Value ←    abMiniMax (H, 0, −∞, +∞)

Return (-2)

Value = −2

(Continued)
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Table 11.6. Continued

Levels of recursion

0 1 2 3

MiniMax-value = −2

Value ←    ab MiniMax (I, 0, −2, +∞)

Return (3)

Value = 3

MiniMax-value = 3

Value ←    ab MiniMax (J, 0, 3, +∞)

Return (5)

Value = 5

MiniMax-value = 5

Return (5) /* All children of D are explored */

Value = 5

MiniMax-value = 5

Value ←   ab MiniMax (E, 1, −∞, 5)

MiniMax-value = −∞

Value ←      ab MiniMax (K, 0, −∞, 5)

Return (7)

Value = 7

MiniMax-value = 7

Return (5)  /* see line #7, prune the rest sub-tree */

Value = 5

MiniMax-value = 5

Return (5)  /* all children of node B have been explored */

Value = 5

MiniMax-value = 5

Value ←  ab MiniMax (C, 2, 5, +∞)

MiniMax-value = +∞

Value ←   ab MiniMax (F, 1, 5, +∞)  /* leaf node */

Return (−∞)       /* score (F) = −∞ */

Value = −∞

MiniMax-value = −∞

Return (5)   /* see line #17, prune the remaining sub-tree */

Value = 5

MiniMax-value = 5

Return (5)       /* The MiniMax value of node A */
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Th e eff ectiveness of Alpha-Beta pruning depends on the order in which the nodes are visited. For a MAX 
node, the best case is exploration of the best child (best from the point of view of MAX player) fi rst so 
that remaining children and sub-trees associated with them becomes irrelevant. On the other hand, vis-
iting the worst child (worst from the point of view of MIN) is most welcome in case the concerned node 
is a MIN node. Th ese correspond to pruning to the highest extent. However, there may be no pruning at 
all if the children are visited in the worst order. 

(a) Initial Situation
(3) (

( ) I iti l Sit ti
1)

B

A

C

MAX

MIN

(b) Dramatic change in Mini-Max value of B

(0)(1)

(1)

D F

B

A

C

MAX

MIN

MAX

(− 2)

(− 2)

(5) (4) (3)

(0) ((4) −1)

K LI JH

(3)( )

MIN

(c) The situation calms down

(1)

(4)(5)D

B

A

C

MAX

MIN

MAX

(3)

Fig. 11.73. Waiting for quiescence.

Quiescence How deep should we delve into the game tree while performing the depth-limited Mini-
Max procedure on it? Th e problem is, a seemingly good move at a certain level may turn out to be a 
bad one, or vice versa, if the game tree is searched further. Take, for example, the situation depicted in 
Fig. 11.73(a), (b), and (c). Fig. 11.73(a) shows the beginning of search for the Mini-Max value of node 
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464  Introduction to Soft Computing

A. Th e nodes B and C are at level 1 and they have scores 3 and 1, respectively. Th erefore, on the basis 
of the search till depth 1, the Mini-Max value of A should be max (3, 1) = 3. Th e situation dramatically 
changes when the game tree is explored one level deeper (see Fig. 11.73(b)). What was thought to be a 
good move represented by the node B, now appears as a very bad one because this gives the opponent an 
opportunity to worsen the condition of MAX player. However, if we go one level deeper into the game 
tree, as depicted in Fig. 11.73(c), we see that the node B regains its previous Mini-Max value and seems 
to be a good choice for MAX as earlier. 

Depth d = 7

Move
selected on
the basis of
the search till
depth 7

Subtree
rooted at
the selected
move

(a) Initial selection of a move on the basis of fixed-depth MiniMax search

Depth d = 7

Move
selected on
the basis of
the search till
depth 7

Secondary
search to
additional
depth

3 levels

(b) Secondary search to confirm the prospect of the selected move

Fig. 11.74. Secondary search to neutralize horizon effect.
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Th e fact is, short-term measures occasionally infl uence our choice of move adversely and it is not wise 
to take a decision without considering the long-term eff ects. To achieve wise selection of a move among a 
number of alternatives, one should go on exploring the game tree deep enough to reach a stable condition. 
Th e stable condition is recognized when it is found that no drastic change occurs from one level to the 
next. Th is strategy for determination of the appropriate depth to which depth-limited Mini-Max search is 
to be conducted is known as waiting for quiescence. Th e quiescence problems are diffi  cult to eliminate al-
together. One such example is the so-called horizon eff ect. It appears when a player is facing a move by the 
opponent which is bad for him but inevitable in the long run. A fi xed-depth Mini-Max search may try to 
avoid such a fatal move by using some tactics, say a move that keeps the opponent busy for the time being. 
But such tactics only push the fatal move to the search horizon and merely delay the inevitable blow.

Secondary search Is there any way to tackle the horizon eff ect? A technique called secondary 
search is found to be helpful in this regard. Essentially, it consists of searching a portion of the game tree, 
not the entire game tree, for a few additional levels. Let us suppose that the game tree is searched to an 
average depth of, say seven. Let a move N be primarily selected on the basis of this search. In order to 
ensure that N is really a good move we may further explore the sub-tree rooted at N for additional three 
levels. But this additional search is not performed on any other portion of the game tree. Th is is called 
secondary search. Fig. 11.74 illustrates the technique pictorially.

Book moves In general, whenever a player has to make a move during a game, he faces a lot of al-
ternatives among which the best, according to his own strategy of playing, is to be identifi ed and applied. 
MiniMax search, empowered with appropriate heuristic knowledge, is employed to achieve this. A kind 
of heuristic search is practically indispensable because the other alternative is to build a catalogue of best 
moves corresponding to every conceivable game status and extract it during the game through a table 
look-up procedure. Th is is simply not feasible considering the immensity of the search space.

However, selective use of such moves, usually referred to as book moves, do enhance the performance 
of the program. For example, the opening and endgame sequences of chess are highly stylized. One may 
reasonably maintain a list of moves relevant to these parts of the game and use them directly without 
groping for a suitable move within the game tree through Mini-Max search. A judicious combination of 
book moves during the opening sequence, endgames, and Mini-Max search procedure for the midgame, 
would enable the program to attain a level of effi  ciency which neither book moves nor search alone could 
achieve. 

11.4.8 Constraint Satisfaction

Quite oft en we encounter a problem in AI that can be modeled as a constraint satisfaction problem (CSP). 
Here the goal is to reach a state that satisfi es certain restrictive conditions, or constraints, among the pa-
rameters of the problem. As a typical CSP, we may think of the famous graph colouring problem, also 
referred to as map colouring problem. An instance of this problem is shown in Fig. 11.75(a). It shows an 
area divided into six regions A, B, C, D, E and F. Th e regions are to be coloured with red, blue, or yellow in 
such a way that no two adjacent regions may have the same colour. Here the problem may be viewed as 
that of assigning certain values to six variables A, B, C, D, E and F, the values must be taken from the set 
{red, blue, yellow}, such that if X and Y are adjacent regions in the map, i.e., X, Y ∈{A, B, C, D, E, F }, X ≠ Y, 
then v(X) ≠ v(Y), where v(X) and v(Y) are the values, i.e., colours, assigned to X and Y, respectively. 

Th e adjacency relationships among these six regions are depicted as an undirected graph in Fig. 
11.75(b). Each node of the adjacency graph represents a region of the map. If two regions X and Y are ad-
jacent in the map then there is an edge in the adjacency graph between the nodes corresponding to these 
regions. Th e adjacency graph for a given map colouring problem is also its constraint graph in the sense 
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466  Introduction to Soft Computing

that it represents the constraints regarding the colours of the regions. An edge between two nodes P and Q 
of a constraint graph indicates that the regions corresponding to P and Q should have diff erent colours.

A–F

F
B

C

A

D

E

F B

C E

A

D

C7CC

C8CC
C1 C2CC

C3CC

C4CC C5CC

CC6CC

(b) The Constraint Graph

(c) Constraints

C1 : v(B) ≠ v(C)
C2 : v(B) ≠ v(E)
C3 : v(C) ≠ v(E)
C4 : v(A) ≠ v(C)
C5 : v(A) ≠ v(E)
C6 : v(A) ≠ v(D)
C7 : v(B) ≠ v(F)
C8 : v(C) ≠ v(F)

Fig. 11.75. (a)-(c). Map coloring as a constraint satisfaction problem.

A Constraint Satisfaction Problem (CSP) is defi ned by the following features:
A set of • variables, X1, X2, …, Xn.
For each variable • Xi a non-empty domain D(Xi) of possible values of Xi.
A set of • constraints, C1, C2, …, Cm. Each constraint Ci involves some variables Xp, Xq … etc. and 
a specifi cation of the allowable combination of values for these variables. 

Th e map coloring problem presented in Fig. 11.75 can now be formulated as a CSP in the following way:
CSP Formulation of graph colouring problem 
1. Variables A, B, C, D, E, F
2. Domains DA = DB = DC = DD = DE = DF =

  {red, blue, yellow} = {R, B, Y}
3. Constraints C1’ :v(B) ≠ v(C) ≠ v(E)

 C2’ :v(A) ≠ v(C) ≠ v(E)
 C3’ :v(B) ≠ v(C) ≠ v(F)
 C4’ :v(A) ≠ v(D)
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It should be noted that there are only four constraints in the CSP formulation given above even though 
eight constraints are depicted in Fig. 24.1(c). Th is is because each of the constraints C1, C2,…, C8 of 
Fig. 11.75(c) involves only two variables whereas the constrains C1′, C2′, C3′ involve three variables each. 
So eff ectively C1′, C2′, C3′ taken together consolidates all the constraints C1 through C8. In fact, in CSPs we 
encounter three kinds of constraints, viz., unary constraints, binary constraints, and general constraints. 

A constraint that involves just one variable is termed as a unary constraint. A binary constraint 
involves two variables and constraints involving more that two variables are called general constraints. 
Each of the constraints C1, C2,…, C8 of Fig. 11.75(c) is a binary constraint. Constraints C1’, C2’, C3’ are 
general constraints. Th ere is no unary constraint in the map colouring problem stated above. However, a 
constraint like v(A) ≠ red exemplifi es the category of unary constraints. A general constraint can always 
be broken down to an equivalent set of binary constraints.

(a) The Constraints

C1′ :v(B) ≠ v(C) ≠ v(E)
C2′ :v(A) ≠ v(C) ≠ v(E)
C3′ :v(B) ≠ v(C) ≠ v(F)
C4′ :v(A) ≠ v(D)

(b) The constraint hypergraph

A

C4CC ′

C2CC ′ C3CC ′

D B C E F

C1
′

Fig. 11.76. General constraints and constraint hypergraph.

A constraint hypergraph is a graphical structure that represents the constraints involving the variables. 
For each variable of the given CSP there is a distinct node in the corresponding constraint hypergrah. A 
constraint C(X1, X2, …, Xk) involving k variables is represented by a hyperedge among the nodes X1, X2, 
…, Xk. When all constraints are binary the corresponding constraint hypergraph becomes a constraint 
graph, as shown in Fig. 11.75(b). Fig. 11.76 shows the constraint hypergraph for the map colouring 
problem discussed above.

An assignment S for a given CSP, represented as S = {〈Xp, vp〉, 〈Xq, vq〉, … 〈Xr, vr〉}, is an attachment of 
some legitimate values, say vp, vq, … vr to some or all variables Xp, Xq, …, Xr such that vp∈ D(Xp), vq∈ 
D(Xq), … , vr∈ D(Xr). If none of the variables are assigned any value then it is said to be an empty as-
signment. For the map colouring problem shown in Fig. 11.75, S = {〈A, blue〉, 〈B, yellow〉, 〈C, yellow〉, 〈D, 
red〉, 〈E, blue〉, 〈F, red〉 } is an assignment.

If an assignment does not violate any constraint then it is said to be consistent or legal assignment. 
Th e assignment stated above, i.e., S1 = {〈B, yellow〉, 〈C, yellow〉,〈E, blue〉, 〈F, red〉} is not consistent because 
it violates the fi rst constraint v(B) ≠ v(C). However, it can be easily seen that S2 = {〈A, blue〉, 〈B, blue〉, 〈C, 
yellow〉, 〈D, red〉, 〈E, red〉, 〈F, red〉} is a consistent assignment. 

An assignment in which all the variables are attributed some value is said to be a complete assign-
ment. For example, assignment S2 cited above is complete, though S1 is not a complete assignment.

Finally, a solution to a given CSP is a complete assignment that satisfi es all the constraints. Th e assign-
ment S2 cited above is complete, and it satisfi es all the constraints C1, C2, …, C8. Th erefore S2 is a solution 
to the given map colouring problem. In some CSPs, along with the basic requirement of satisfying all 
the constraints, there is an additional requirement of optimizing a pre-defi ned objective function.
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Solving constraint satisfaction problems Once a problem is formulated as a CSP, any suitable 
search procedure can be employed to fi nd a solution. Given a CSP, the suitability of a search procedure as 
a solution strategy is judged by the characteristics of the CSP concerned. However, two widely accepted 
strategies are frequently employed, viz., backtracking depth-fi rst search (BDFS), and min-confl ict lo-
cal search. Each of these are explained below with appropriate examples.

Backtracking depth-fi rst search (BDFS) Consider the map coloring problem presented in Fig. 
11.75 and later formulated as a CSP. A backtracking DFS would start with the empty assignment {} 
which corresponds to the initial state of the search space. Let us suppose that assignment of colour to the 
regions of the map will be made in the sequence A, B, C, D, E, and F. Since the domain DA = {red, blue, 
yellow} = {R, B, Y} the region A may be assigned the color red, blue, or yellow, so that we may attain any 
one of the assignments, or problem states, 〈A, red〉, 〈A, blue〉, 〈A, yellow〉, or 〈A, R〉, 〈A, B〉, 〈A, Y〉. Th ese 
constitute the children of the root node {} of the search tree, shown in Fig. 11.77. Each node of Fig. 11.77 
represents an assignment obtained by concatenating the individual assignments along the path from the 
root to that node. For example node 2 corresponds to the assignment {〈A, R〉}, and node 5 represents the 
assignment {〈A, R〉, 〈 B, Y 〉, 〈 C, B 〉, 〈 D, B 〉}. Let us choose, arbitrarily, the assignment {〈A, red〉} among 
the three alternatives and proceed to assign a colour to the region B.

{ }

〈A, R〉RR

〈B, Y〉

〈C, B〉

〈D, B〉

〈E, EE ?〉 〈E, EE ?〉 〈E,EE ?〉 〈E,EE ?〉 〈E, EE Y〉

〈F, FF Y〉

〈D, Y〉 〈D, B〉 〈 B〉〈D, Y〉 〈〈D, B〉 D, Y〉

〈C, Y〉 〈C, B〉 〈C, Y〉

〈B, B〉 〈B, R〉RR

〈A, B〉 〈A, Y〉

(1)

(2)

(3)

(4)

(5) (6) (9) (10) (13)

(8)
(12)

(7) (11)

(14)

(15)

Fig. 11.77. Backtracking depth-fi rst search for the map colouring problem.

As A and B are not adjacent regions the colour of A does not aff ect the choice of the colour of region B. 
Th erefore, B can be assigned any of the values R, B, Y and accordingly three children of node (2) are 
created, viz., 〈B, Y〉 (node (3)), 〈B, B〉 (node (7)), and 〈B, R〉 (node (11)). Th e nodes of the search tree of 
Fig. 24.3 are numbered according to the order of exploration. Again, we arbitrarily select 〈B, Y〉 for further 
exploration. Th e candidate for assignment of color is now region C. Since C is adjacent to both A and B, 
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its colour has to be diff erent from that of A and B, i.e., red and yellow. Th erefore the only choice left  for 
region C is blue (node (4)). Next it is D’s turn. D is adjacent to A only and A has already been assigned red. 
Obviously, D may either be blue or yellow (see nodes (5) and (6) of Fig. 11.77). We proceed along node (5). 
Now when we try to assign a colour to E we see that as it is adjacent to A, B, and C and A, B, and C have 
the colours red, yellow and blue, there is no colour left  for E. So we backtrack and explore node (6). But the 
situation does not change. Once again we back track and select another child of node (2), i.e., node (7). 

Th e backtracking depth-fi rst search proceeds in this way until it fi nds a complete assignment that 
satisfi es all the constraints. In Fig. 11.77 this complete assignment is obtained by concatenating the indi-
vidual assignments of nodes 1, 2, 11, 12, 13, 14, and 15 and is given by {〈A, R〉, 〈B, R〉, 〈C, B〉, 〈D, B〉, 〈E, 
Y〉, 〈F, Y〉}. Th e arrows in Fig. 11.77 show the backtracking paths.

Algorithm Backtracking-DFS-for-CSP (PCS)

INPUT: A constraint satisfaction problem PCS consisting of the following 
components:

Variables • X1, …, Xn.
Domains • D(X1), …, D(Xn) of allowable values for each variable. 
If the variable Xi may assume any of the values ai1,ai2, …, aip 
then D(Xi) = {ai1,ai2, …, aip}.
Constraints • C1, …, Ck. 

OUTPUT: SUCCESS or FAILURE, and if SUCCESS then an assignment 
S = {〈X1, v1〉, …, 〈 Xn, vn〉} where v1∈ D(X1), …, vn∈ D(Xn) and all the con-
straints C1, …, Ck are satisfied.

1. BEGIN
2. S ← { }/* initialize S with the empty assignment. */
3. result ← Recursive-Backtracking-DFS (PCS, S) 

/* call the recursive backtracking depth-first search 
process for the present CSP P

CS with the partial 
assignment S */

4. IF (result ≠ FAILURE) 
THEN Return SUCCESS along with updated assignment S
ELSE Return FAILURE

END-if
5. END-Algorithm BDFS-for-CSP

Procedure Recursive-Backtracking-DFS (PCS, S)

1. BEGIN
2. IF S is a complete assignment THEN 

Return SUCCESS along with the assignment S as the solution
END-if
Select 3. X

i, a yet unassigned variable, for assigning a value at this 
step.

Let D(X
i) = {ai1,ai2, …, aip} be the domain of Xi.

4. FOR i← 1 TO p DO
BEGIN

5. X
i ← ai where ai∈ D(Xi)/* assign a value to Xi */
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6.  IF (v(Xi) = ai is consistentwith the present partial 
assignment S and

satisfies the constraints C
1, …., Ck) THEN update

assignment S by including 〈Xi, ai〉 in it. 
 END-if

7. result ← Recursive-Backtracking-DFS (P
CS, S)/* recursive

call with the updated partial assignment */
8. IF (result ≠ FAILURE) THEN Return SUCCESS along with

updated assignment S. 
END-if

9. Remove 〈X
i, ai〉 from S./* 〈Xi, ai〉 leads to failure. Try

with another value for Xi,. */
10. END-for
11. Return FAILURE/* no valid assignment for X

i. */
12. END-Procedure-Recursive-BDFS

Fig. 11.78. Algorithm backtracking-DFS-for-CSP (Pcs)

Algorithm Backtracking-DFS-for-CSP (PCS) (Fig. 11.78) presents the pseudocode for the 
basic strategy of backtracking depth-fi rst search for solving CSPs. Th e algorithm starts with empty as-
signment {} and progressively assign values to the variables and makes recursive calls so that if any as-
signment leads to inconsistency, or hinders subsequent assignments, then it may backtrack and try with 
some other value.

Procedure Heuristic-Recursive-Backtracking-DFS (Pcs, S)

1. BEGIN
2. IF (S is a complete assignment) THEN
  Return SUCCESS along with the assignment S as the solution
 END-if
  /* Select the next variable for assignment through minimum remaining 

value (MRV) and degree heuristics. */
3.  Let X

i be the unassigned variable with minimum number values remaining. 
If there is a tie, then resolve the tie in favour of the variable with 
largest number of constraints on other unassigned variables. If there is 
still a tie then resolve the tie arbitrarily.

4.  Select X
i for assigning a value at this step. Let D(Xi) = {ai1,ai2, …, aip}

be the domain of Xi.

5. FOR i← 1 TO p DO
 BEGIN

 /* select the value of Xi through least-constraing-value 
heuristics. */

6.  Let a
i∈D(Xi)be the value that rules out the fewest choices for 

theneighbouring variables in the constraint graph. If there is 
a tie then resolve the tie arbitrarily.
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7. Xi ← ai where ai∈ D(Xi)

8.   IF (v(Xi) = ai is consistentwith the present partial assignment S 
and satisfies the constraints C1, …., Ck) THEN update

assignment S by including 〈Xi, ai〉 in it. 
END-if
/* Constraint propagation */

9.  Propagate the effect of present assignment on the constrains of 
P
CS.

10. result ← Recursive-Backtracking-DFS (PCS, S)/* recursive
call with the updated partial assignment */

11. IF (result ≠ FAILURE) THEN Return SUCCESS along with
updated assignment S. 

END-if
12.  Remove 〈X

i, ai〉 from S. /* 〈Xi, ai〉 leads to failure. Try
with another value for Xi,. */

13. END-for
14. Return FAILURE/* no valid assignment for X

i. */
15. END-Procedure-Recursive-BDFS

Fig. 11.79. Procedure heuristic-recursive-backtracking-DFS (PCS, S)

Heuristics Algorithm Backtracking-DFS-for-CSP described above is a simplifi ed ver-
sion of the actual procedure followed in practice. It does not consider how to make the selection when 
choices are there. For example

In step 3 of 1. Procedure Recursive-Backtracking-DFS (PCS, S) a variable is to be 
selected from the set of unassigned variables for the purpose of assigning a value. Th e criteria 
underlying this selection are not stated.
Step 5 of the same procedure assigns a value to the current variable. It is not clearly stated how 2. 
to select an appropriate value from the corresponding domain which, in general, should con-
tain several legal candidate values.
What are the implications of an assignment on the remaining unassigned variables and how to 3. 
reduce the search space so that the process of legal assignment to variables is made effi  cient?

Regarding points 1 and 2 above, there are heuristics to facilitate selection of a variable for the purpose of 
value assignment as well as selection of a value to be assigned. Similarly, strategies to propagate the ef-
fect of a certain assignment to other variables are also there. Procedure Heuristic-Recursive-
Backtracking-DFS (PCS, S) (Fig. 11.79) shows the procedure aft er incorporation of the heuristics 
discussed below. 

Minimum remaining value (MRV) and degree heuristic According to minimum remaining 
value (MRV) heuristics the variable with least number of legal values still available for assignment is 
to be selected for next assignment. For example, consider the assignment {〈A, blue〉, 〈E, red〉, 〈F, red〉}. 
Considering the constraints, this assignment leaves the domains of the remaining variables as DB = {blue, 
yellow}, DC = {yellow} DD = {red, yellow}. As the region C has the least number of remaining legal values, 
according to the MRV heuristics, this will be selected for the next assignment. 
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472  Introduction to Soft Computing

However, MRV heuristics may not help initially because then all the variables have their domains in 
full capacity, or in case two or more variables have the same minimal number of remaining variables. To 
resolve such situation the degree heuristics may be employed. Th e degree heuristics selects the variable that 
is involved in the largest number of constraints on other unassigned variables. For example, consider the 
map colouring problem stated above. Initially all the variables have the same domain {red, blue, yellow} 
which renders the MRV heuristic ineff ective. However, it is seen from the constraint graph (Fig. 11.75(b)) 
that region C is involved with four regions A, B, E and F through constraints which is the highest among all 
the variables. Hence, applying the degree heuristic we choose C as the fi rst variable to be assigned a value.

Least constraining value Once a variable is chosen ,it is required to assign a legal value from its 
current domain. Since the domains normally contain several candidates the issue of selecting the most 
desirable value becomes relevant. Here the least constraining value heuristic is helpful. According to this 
heuristic, the value which rules out least number of candidates from the domains of the neighbouring 
variables is preferred. For example, suppose that at an instant the domains of F and B are DF = {red, yel-
low} and DB = {yellow} and it is F’s turn to be assigned a value. If we assign yellow then it is removed from 
the domain of B, making DB = {}. However, if red then DB remains non-empty and it is feasible for region 
B to get a legal value. Th erefore, the value red is less constraing than yellow and B should be assigned the 
value red instead of yellow. 

Table 11.7.  Trace of Procedure heuristic-recursive-backtracking-DFS for map colouring problem of 
Fig. 11.75

A B C D E F

Step 0: {R, B, Y} {R, B, Y} {R, B, Y} {R, B, Y} {R, B, Y} {R, B, Y}

Step 1:
C ← red

{B, Y} {B, Y} 〈C, R〉 {R, B, Y} {B, Y} {B, Y}

Step 2:
B = blue

{B} 〈B, B〉 〈C, R〉 {R, Y} {Y} {Y}

Step 3:
A← blue

〈A, B〉 〈B, B〉 〈C, R〉 {R, Y} {Y} {Y}

Step 4:
E← yellow

〈A, B〉 〈B, B〉 〈C, R〉 {R, Y} 〈E, Y 〉 {Y}

Step 5:
F← yellow

〈A, B〉 〈B, B〉 〈C, R〉 {R, Y} 〈E, Y 〉 〈F, Y 〉

Step 6:
D← red

〈A, B〉 〈B, B〉 〈C, R〉 〈D, R〉 〈E, Y 〉 〈F, Y 〉

Solution: {〈A, B〉, 〈B, B〉, 〈C, R〉, 〈D, R〉, 〈E, Y 〉, 〈F, Y 〉}

Forward chaining and constraint propagation Assignment of a value to a variable obviously 
has its eff ects on the domains of the remaining variables. Constraint propagation is the process of propa-
gating the implications of a constraint on the variables onto the other variables. Suppose, as an example, 
that in the fi rst step of the map colouring problem, the region C has been assigned the value red. Since 
A, B, E and F are all involved with C through the constraints C4, C1, C3, and C8, respectively, the domains 
of all these variables reduces to {blue, yellow}. However, the domain of D remains {red, blue, yellow} as 
it is not involved with C through any constraint. Th is procedure, which, aft er an assignment is made, 
modifi es the domains of the unassigned variables so that the modifi ed domains are consistent with the 
assignment, is called forward checking. However, mere forward checking is not suffi  cient. Suppose, aft er 
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assigning red to C, we assign blue to E. Th is will reduce the domain of A to {yellow} as A is adjacent to 
E. Moreover, since D is associated with A through the constraint C6, the domain of D is in turn reduced 
from {red, blue, yellow} to {red, blue}. In this way the eff ect of a certain assignment is propagated to other 
unassigned variables through forward checking followed by further modifi cation of the domains so that 
the values attain consistency with respect to the constraints.

Th e entire process can be illustrated with reference to the graph colouring problem. A trace of the 
progress of the algorithm is shown in Table 11.7 and the stepwise description is provided below. 

Step 0. We start with the empty assignment {}. All the variables have the same domain {red, blue, yel-
low}, abbreviated as {R, B, Y}.

Step 1. We have to select a variable for assignment. Since all domains have the same number of values 
the MRV heuristic is not applicable. Th erefore, the degree heuristic is to be followed. Consult-
ing the constraint graph (Fig. 11.75(b)), it is found that C is involved with the maximum num-
ber of variables, 4 in this case, through constraints. Hence C is chosen for assigning a value. We 
make the assignment C ← red and propagate the eff ect of this assignment on other variables. 
As a result of this propagation all the variables involved with C through constraints, i.e., A, B, E 
and F, remove red from their domains. However, the domain of D remains unchanged because 
it is not adjacent to A. Th e state of the problem aft er step 1 is {〈C, R〉}.

Step 2. Applying the MRV heuristic we fi nd four candidates A, B, E and F for the next assignment. Th e 
number of unassigned variables these are attached to in the constraint graph are 2, 2, 2 and 1, re-
spectively. Again there is a tie among A, B, and E. Let us resolve the tie by arbitrarily choosing B for 
assignment this time. We make B ← blue, so that the state becomes {〈B, B〉, 〈C, R〉}. What about 
constraint propagation? As E and F are adjacent to B, blue is readily removed from the respective 
domains leaving both the domains {yellow}. As A is adjacent to E yellow has to be removed from 
the domain of A so that it becomes {blue} and this in turn reduces DD to {red, yellow}.

Step 3. Now each of A, E and F have just one remaining value in their respective domains. So let us 
take the help of the degree heuristic to break the tie. A is attached to two of the still unassigned 
variables, viz., D and E. E is adjacent to only A and F is no more attached to any unassigned 
variable. Th erefore A is the next candidate for value assignment and the only value in its do-
main, blue, is assigned to it. Now the assignment is {〈A, B〉, 〈B, B〉, 〈C, R〉}.

Th e subsequent steps, i.e., steps 4, 5, and 6 can be easily worked out and are depicted in Table 11.7. Th e 
fi nal assignment is {〈A, B〉, 〈B, B〉, 〈C, R〉, 〈D, R〉, 〈E, Y 〉, 〈F, Y 〉}. Fig. 11.80 shows the solution tree cor-
responding to the heuristic recursive backtracking depth-fi rst search described above.

Min-confl ict local search Th e backtracking depth-fi rst search strategy described above for solv-
ing a CSP starts with the empty assignment {} and incrementally proceeds to a complete assignment 
consistent with the constraints. An alternative approach is to start with a complete assignment, perhaps 
arbitrarily generated, and then employ some local search procedure which transforms this complete 
but non-solution assignment onto a complete and consistent assignment, i.e., a solution. Algorithm 
Min-Conflict-for-CSP (PCS, MAXsteps) (Fig. 11.81) presents a pseudo-code for the proce-
dure mentioned above. At each iteration, a variable is identifi ed which is under confl ict as per the given 
constraints (line 8). It is then tried with values other than the present one and the value for which the 
variable suff ers minimum amount of confl ict is chosen. Th e current assignment is then modifi ed to that 
which incorporates this latest value. In this way newer variables are modifi ed over and over again until 
either we get an assignment which satisfi es all constraints and therefore off ers a solution, or exceeds a 
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predefi ned maximum number of iterations. Th e min-confl ict local search process is illustrated with the 
help of the 8-queen problem which is stated below.

{}

〈C, R〉R 〈C, Y〉
(1)

(0)

〈C, B〉

〈B, B〉
(2)

〈A, B〉
(3)

〈E,EE Y〉
(4)

〈F, FF Y〉
(5)

〈D, R〉R
(6)

〈B, Y〉

〈D, Y〉

Fig. 11.80.  Solution tree corresponding to the heuristic recursive backtracking depth-fi rst search to 
solve the map colouring CSP.

Example 11.11  (Th e 8-queen problem)

Is it possible to arrange 8 queens on a chess board in a way such that none of them is in an attack-
ing position with respect to any other?

Th e generalized form of the 8-queen problem is the n-queen problem, which states that given 
an n × n array, is it possible to arrange n number of queens within the array in a way such that none 
of them attack any other and if yes, then to fi nd one such arrangement of the n queens.

Let us denote the eight queens by the variables QA, QB, QC, QD, QE, QF, QG, and QH. Th e queens cor-
responding to the variables QA, QB, QC, QD, QE, QF, QG, and QH are in the columns A, B, …, H, respec-
tively. As no queen is attacking any other all the queens must be in diff erent columns. Let us number 
the 8 rows as 1, 2, 3, 4, 5, 6, 7, and 8. Th en each variable mentioned above may take a value from the 
set {1, 2, 3, 4, 5, 6, 7, 8}. We are now in a position to formulate the 8-queen problem as a CSP.
CSP formulation of the 8-queen problem

Variables :  1. QA, QB, QC, QD, QE, QF, QG, QH
Domains :  2. DA = DB = DC = DE = DF = DG = DH 

= {1, 2, 3, 4, 5, 6, 7, 8}
Constraints :   For all pairs 3. QXand QY, X,Y ∈{A, B, C, D, E, F, G, H}, X ≠ Y, QX and QY 

should be in non-attacking position, i.e. not in the same row, column or 
diagonal.

Th e initial arrangement of the 8 queens is shown in Fig. 11.82 (a). It corresponds to the assign-
ment {〈QA, 8〉, 〈QB, 5〉, 〈QC, 1〉, 〈QD, 6〉, 〈QE, 3〉, 〈QF, 7〉, 〈QG, 2〉, 〈QH, 4〉}. 
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However, this assignment is not consistent with the constraints because the queens at positions 
8A and 2G are attacking each other diagonally. Similarly, the queens at 1C and 3E are also attacking 
each other. At this point we employ the min-confl ict local search procedure and look for a better po-
sition for the queen presently at the position 8A. With this purpose in mind, for each other position 
of the queen in column A we fi nd the number of queens in confl ict if the current queen is placed in 
respective cell.

For example, if the queen is placed in cell 4A then it will be attacked by two queens at positions 4H 
and 5B. Hence the value (2) is associated with the cell 4A. Similarly the other values are found. Now 
there is a tie regarding the lowest confl ict count. Both cells 1A and 5A are having the same minimum 
value 1. Th e tie is arbitrarily resolved in favour of cell 1A. Th e queen concerned is placed at this posi-
tion so that the assignment aft er the fi rst becomes {〈QA, 1〉, 〈QB, 5〉, 〈QC, 1〉, 〈QD, 6〉, 〈QE, 3〉, 〈QF, 7〉, 〈QG, 
2〉, 〈QH, 4〉} (the change is highlighted with boldfaces). Aft er QA we focus our attention on QB. For-
tunately, QB is already in a non-confl icting position with respect to other queens. Th erefore, we leave 
it in the same position and proceed to fi nd a better place for QC which is in confl ict with QA and QE 
(Fig. 11.82(b)). It is found that at cell 8C the queen QC is in non-attacking position. Making this as-
signment we arrive at the state {〈QA, 1〉, 〈QB, 5〉, 〈QC, 8〉, 〈QD, 6〉, 〈QE, 3〉, 〈QF, 7〉, 〈QG, 2〉, 〈QH, 4〉}, which 
satisfi es all the constraints and therefore is a solution to the given problem.

Algorithm Min-Conflict-for-CSP (PCS, MAXsteps)

INPUT: A constraint satisfaction problem PCS consisting of the following 
components:

Variables • X1,…, Xn.
Domains • D(X1),…, D(Xn) of allowable values for each variable. 
If the variable Xi may assume any of the values ai1,ai2,…, aip 
then D(Xi) = {ai1,ai2,…, aip}.
Constraints • C1,…, Ck. 

MAXsteps is the number of times to try before giving up
OUTPUT: SUCCESS or FAILURE, and if SUCCESS then an assignment 
S = {〈X1, v1〉,…, 〈Xn, vn〉} where v1∈ D(X1),…, vn∈ D(Xn) and all the con-
straints C1, …, Ck are satisfied.

1. BEGIN
2.  S ← A complete, perhaps arbitrary, assignment for PCS 
3.  FOR steps = 1 TO MAXsteps DO
4.  BEGIN
5.    IF S is a solution to the CSP PCS THEN 
6.      Return S as the solution to the CSP PCS 

7.    END-if
8.     X ← a variable which is under conflict as per assignment S
9.     vX ← the value of variable X that minimizes the conflict
10.    Modify assignment S by setting 〈X, vX 〉 
11.  END-for 
12. END-Algorithm-Min-Conflict-for-CSP

Fig. 11.81. Algorithm Min-Confl ict-for-CSP (PCS, MAXsteps).
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A B C D E F G H

1 (1)

2 (2)

3 (3)

4 (2)

5 (1)

6 (2)

7 (2)

8

(a) Initial state. The
numbers in different
cells of column A
indicate the number
of conflicts if the
queen is placed in
that cell.

A B C D E F G H

1

2 (1)

3 (2)

4 (3)

5 (3)

6 (3)

7 (2)

8 (0)

(b) The state after
reassigning the queen
at column A. The
present target is to
reassign the queen at
column C.

A B C D E F G H

1

2

3

4

5

6

7

8

(c) The final state
obtained after
reassigning the
queen at column C.
As no queen is
attacking any other
this is solution to
the 8-queen problem.

Fig. 11.82. (a)-(c) A min-confl ict local search procedure to solve the 8-queen problem

11.4.9 Measures of Search

Th e effi  ciency of a heuristic search depends to a large extent on the quality of the heuristic evalua-
tion function employed. Better heuristic results in less computational eff ort without compromising the 
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success of the search process. However, it is hardly possible to make an estimation of heuristic power 
through direct calculation because it depends on too many factors.

Instead, certain computable measures of performance are frequently used to compare the perfor-
mances of various search processes. Two of these are penetrance and eff ective branching factor. 

Penetrance. P of a search process is defi ned as the ratio of the length of the path from the start state 
to the goal state reached through the search and the total number of nodes generated during the search, 
including the goal node but excluding the start node. 
 P = L / N (11.11)
Here L is the length of the path from the start state to the goal state, and N is the total number of nodes 
generated during the search. Penetrance is the measure of how focused the search was towards the goal. 
In the ideal case, the search process has complete knowledge of the problem, and only those nodes are 
generated which are on the path from the start node to the goal node. Th e value of P for such an ideal 
search process is 1 which is obviously the maximum attainable value for P. Uninformed, or ill-informed, 
searches have much lower values of P.

Eff ective branching factor. Th e other measure, eff ective branching factor B, is relatively more 
independent of the length of the optimal path to the goal node and can be defi ned in the following way. 
Let N be the total number of nodes generated during the search that has successfully ended at some goal 
node and L be the length of the path to the goal node. Now consider a complete tree of depth L where 
each internal node uniformly has B number of children and total number of nodes in the said tree ex-
cluding the root is N. Th en

 N = B + B2 + B3 + … + BN (11.12)

so that, N B L

=
( )BL −BL

( )B −
 (11.13)

Th e relation between the penetrance P and eff ective branching factor B is given by

 P L
N

L
B L= =

( )B −B
( )BL −BL  (11.14)

It is easy to see that B is always greater than or equal to 1. A better search technique should give a value 
of B which is closer to 1. A value of B near unity corresponds to a search that is highly focused towards 
the goal with very little branching in other directions. 

11.5 PRODUCTION SYSTEMS

Production systems are intelligent systems that are structured to facilitate a state space search proce-
dure. Th ere are three main components of a production system. Th ese are

A 1. global database
A set of2.  production rules
A 3. control system

Global database is the central data structure which is accessed, modifi ed and manipulated throughout 
the problem solving process. Usually, the situation prevailing in the global database defi nes a state within 
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the state space. A change in the global database corresponds to a move from one state to another state. 
Th e term global database should not be confused with the database of database management systems. 
Th e exact form of a global database depends on the application. It might be as simple as an integer, or as 
complex as an entire fi le structure.

A production rule is a transformation rule of the form a → b where a and b are forms of the global 
database. In the rule R : a → b, a is called the precondition and b, the postcondition. A rule R : a → b 
is said to be applicable to a global database GDB if the present condition of GDB matches with the pre-
condition a. If applied, the production rule will transform GDB from a to b. 

Usually at each step of the search process more than one rules are applicable on the global database 
though only one of them can be actually applied at a time. Th erefore, a production system must have 
with some knowledge to identify the appropriate rule to apply among a set of eligible rules. Control 
strategy is that component of the production system which, at each step, selects the rule to operate 
on the global database from a set of applicable rules. Moreover, it tests whether the current global 
database satisfi es the termination condition and if so, takes appropriate action to terminate the search 
process.

Algorithm Production-System

Input: A set of production rules P = {R1, …., Rk}, and a termination 

condition which when satisfied by the global database GDB would 

indicate the successful completion of the search process.

Output: A solution to the given problem. Depending on the nature of 
the problem, the goal state might be the global database itself, or 

a path from the initial state to the goal state.

1.  Begin

     /* Initialize the global database */

2.    GDB← Initial state of the global database.

     /* Search for the goal */

3.    While (GDB does not satisfy the termination condition) Do

4.    Begin  /* Select a rule to apply on the global

             database */

5.       Ri ← A rule that is applicable to GDB.

6.       GDBnew ← Resultant of applying Ri to GDB.
7.       GDB ← GDBnew

8.     End-while
      /* Return the solution */
9.     Return GDB, along with the path from the initial
         state to the goal, if required.
10.   End-Production-System

Fig. 11.83. Algorithm Production-System.

Th e basic algorithm followed by a production system is thus very simple. Once the global database is 
initialized, an appropriate production rule is selected (by the control strategy) and applied on the global 
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database to transform it to a new state. Th is selection and application of the rule, as well as the resultant 
transformation of the global database is repeated till the termination condition is satisfi ed by the global 
database. Depending on the requirement, either the fi nal form of the global database, or the path from 
the initial global database to the fi nal, is returned as the solution of the problem concerned. Th e outline 
of procedure is given in Algorithm Production-System (Fig. 11.83).

Example 11.12  (A production system for parsing a sentence)

Consider the task of parsing a given sentence on the basis of its grammar. Th e sentences of the lan-
guage are made up of sentences made up of words from the set S = {Hari, Sam, runs, walks, slow, 
fast}. In the theory of formal languages, S is called the alphabet and the members of S are called 
the terminal symbols. Th e grammar G specifi es a number of transformation rules of the form a 
→ b where a and b are strings over members of S and some special symbols used only to describe 
the grammar. Th e grammar symbols used here are N = { 〈sentence〉, 〈subject〉, 〈predicate〉, 〈verb〉, 
〈adverb〉 }. Th e transformation rules, which act as the production rules of the system, are given 
in Table 11.8.

Table 11.8. Production rules

Rule # Precondition Postcondition

(1) 〈Sentence〉 → 〈subject〉 〈predicate〉.

(2a) 〈Subject〉 → Hari

(2b) 〈Subject〉 → Sam

(3a) 〈Predicate〉 → 〈verb〉

(3b) 〈Predicate〉 → 〈verb〉 〈adverb〉

(4a) 〈verb〉 → runs

(4b) 〈verb〉 → walks

(5a) 〈adverb〉 → slow

(5b) 〈adverb〉 → Fast

To generate a sentence, one has to start with 〈Sentence〉 and progressively apply the rules until a 
string is generated that consists of only terminal symbols. Th e sequence of such transformations 
is called a derivation of the sentence. For example, derivation of the sentence “Hari walks slow.” 
is shown below:

〈Sentence〉    ⎯→ 〈subject〉 〈predicate〉. (1)
 ⎯→  Hari 〈predicate〉. (2a)
 ⎯→ Hari 〈verb〉 〈adverb〉. (3b)
 ⎯→ Hari walks 〈adverb〉. (4b)
 ⎯→ Hari walks slow. (5a)

Th e intermediate strings consisting of words as well as meta-words are called sentential forms. Th e 
grammar symbol of a sentential form on which a rule is applied is highlighted. Th e rule numbers are
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given on the right of the sentential forms within parentheses. In the derivation shown above, the 
left most grammar symbol of a sentential form is selected for replacement. 

It is obvious that an arbitrary sequence of words may, or may not, be a sentence. Such a se-
quence of words is a sentence only if it is derivable from the start meta-word of the grammar with 
the help of the transformation rules. Parsing a string of words with respect to a grammar means 
trying to determine whether it is a sentence defi ned by the grammar or not. One way to parse a 
sentence is to try to derive it from the start meta-word. If the eff ort is successful then we conclude 
that the input string is really a sentence else not. Th e parsing problem can be formulated as a pro-
duction system in the following way.
Global database.  An array of words and meta-words from the set {〈sentence〉, 〈subject〉, 〈pred-
icate〉, 〈verb〉, 〈adverb〉, Hari, Sam, runs, walks, slow, fast}.
Production rules. As given in Table 11.8. 
Control strategy. At any step, only the left most grammar symbol will be targeted for replace-
ment with appropriate production rule. If more than one rules are applicable, then rule that pro-
duces maximum match between the goal string and the newly produced string will be chosen. A 
tie will be resolved randomly.

〈Sentence〉

〈Subject〉 〈Predicate〉.

Rule 1

Hari 〈Predicate〉. Sam 〈Predicate〉.

Rule 2(a))

Rule 3(a)

Rule 4(a) Rule 4(b)

Rule 5(a) Rule 5(b)

Rule 4(b)

Rule 3(b)

Rule 2(b)

(“Hari ” is not in the goal
string. Rejee ct)

Sam 〈verb〉. Sam 〈verb〉_〈〈adverb〉〉.

Sam runs. Sam walkskk .

) R

(Sentence does not match
the goal. Rejee ct)

(Sentence does not match
the goal. Rejee ct)

Sam runs 〈adverb〉. Sam walkskk 〈adverb〉.

Rule #4(a)

(“Walks” is not in the goal
string. Reject)

)

Sam runs slowll .ww Sam runs fast.tt

(Sentence does not match
the goal. Rejee ct)

(Goal. Success)

Goal : Sam runs fast.tt

Fig. 11.84. Parsing of a sentence.
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Let us trace the activities of the proposed production system while parsing the sentence “Sam 
runs fast.” Th e initial global database contains the starting grammar symbol 〈sentence〉.Th is is 
shown as the root node of the tree structure of Fig. 11.84. Th ere is only one production rule, Rule 
1, with the precondition 〈sentence〉. Hence there is no option other than applying it on the initial 
global database to obtain 〈subject〉 〈predicate〉. In Fig. 11.84 this is shown as the child of the root 
node. As per control strategy the left most grammar symbol 〈subject〉 is to be replaced next. Th e 
candidate production rules for this purpose are Rules 2a and 2b. Th e resultant forms of the global 
database, viz., Hari 〈Predicate〉 and Sam 〈Predicate〉, are shown as the nodes at level 2 (the root 
node is at level 0). Since Hari is not in the goal sentence, but Sam is, Sam 〈Predicate〉 matches bet-
ter than Hari 〈Predicate〉 with the goal sentence. Th erefore, the production system proceeds with 
Sam 〈Predicate〉. Th e subsequent steps are depicted in Fig. 11.84, which shows the entire parsing 
process where the correct parsing sequence is highlighted.

Control Systems. Step 5 of Algorithm Production-System selects a rule to operate on the 
global database but does not specify how this selection is to be made. Th e control strategy is equipped 
with the knowledge necessary to assess which rule, among a set of candidates, is the best. Moreover, it 
keeps track of the sequence of rules applied, as well as the corresponding states of the global database. 

Primarily there are two kinds of control strategies, viz., irrevocable, and tentative. An irrevocable 
control strategy does not undo the eff ects of a rule once it is applied. In contrast, a tentative control 
strategy may discard the eff ects of a certain rule once it is found wrong and then carry on with some 
other more prospective alternative.Tentative control strategies may further be divided into two catego-
ries, backtracking, and graph-search control. A backtracking control system a backtracking point is 
established at each step where a choice of a production rule is made from a set of alternatives. If at some 
further point of time it is discovered that the choice was wrong then the system returns to the latest 
backtracking point, selects a yet untried production rule, applies it to the global database existing at that 
point of time, and proceeds with the result. However, the technique followed by graph-search control is 
to maintain a data structure that keeps track of several alternative paths, sequence of production rules 
and the corresponding global database, simultaneously. During the search process, the best among these 
alternative paths is followed for further processing.

Th e production system proposed to solve the parsing problem in Example 11.12 can be cited as an 
instance of graph-search control strategy provided the system maintains the tree structure of Fig. 11.84. 
Incidentally, in Fig. 11.84, the leaf nodes of all abandoned paths are forms of the unacceptable global 
data structure, and hence rejected. But this need not be the case for other production systems. Instead, 
we may have some heuristic objective function to measure the quality of a node in terms of its vicinity 
to the goal. During the search process the most prospective node is chosen for further exploration. In 
other words, the production system then follows a best fi rst search strategy. Example 11.13 cited below 
illustrates an irrevocable control strategy.

Example 11.13  (A production system to solve CNF-satisfi ability problem)

A boolean function is said to be satisfi able if there is a truth-value combination of its variables 
that evaluates the function to True. For example, since the function F(x1, x2, x3) = x1.(x2′x3 + x2.x3′) 
attains a True value for the assignment {x1 = True, x2 = False, x3 = True}, it is satisfi able. Conversely, 
there is no truth-value assignment that makes the function F (x1, x2, x3) = x1.(x1′.x2 + x3.x1′) True. 
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Hence it is not satisfi able. Th e problem of fi nding whether a given Boolean function is satisfi able 
or not is known as the satisfi ability problem for that function. CNF-satisfi ability is the satisfi abil-
ity of a Boolean function given in conjunctive normal form (CNF), i.e., product-of-sum form. It 
can be stated as follows: Given a Boolean function F (x1, …, xn) of n variables expressed in CNF, to 
determine whether it is satisfi able or not. CNF-satisfi ability is a well-known NP-complete problem. 
Presently we address the satisfi ability of the function

F (x1, x2, x3, x4) = (x1′ + x2) . (x3 + x4′) . (x1′ + x4′) . (x2 + x3)

To store a certain truth-value assignment to the variables x1, x2, x3, x4, we defi ne a solution vec-
tor X [1..4] where X[i] contains the truth value assigned to the variable xi, i = 1, 2, 3, 4. Th e given 
expression consists of four sum terms, C1 = (x1′ + x2), C2 = (x3+x4′), C3 = (x1′ +x4′), and C4 = (x2+ 
x3) so that F(x1, x2, x3, x4) = (x1′ + x2) . (x3 + x4′) . (x1′ + x4′) . (x2 + x3) = C1.C2.C3.C4. We defi ne a 
sum-term vector as C [1..4] such that C[i] denotes the truth value attained by max-term Ci under 
some assignment X. In order to satisfy F each of max-terms C1, C2, C3, and C4 are to be satisfi ed 
individually. Let f (X) = number of max-terms attaining True value under the truth value assign-
ment X. Th en f (X) expresses the quality of assignment X. We are now in a position to formulate 
the production system to solve the given satisfi ability problem.

Global database. Th e solution vector X [1..4] and the sum-term vector C [1..4] jointly form 
the global database.

Production rules. At any instant, a new truth value combination may be obtained from the 
current combination by fl ipping (complementing) any one of the truth value. As there are four 
variables we have four production rules listed in Table 11.9.

Control strategy. We follow a simple hill-climbing strategy. A new truth value assignment is 
generated from the current assignment by fl ipping a randomly chosen truth value. Th e new as-
signment is accepted if it is better than the current one. Otherwise, the new assignment is rejected 
and yet another truth value combination is produced to repeat the same steps. Hence the role of 
the control strategy is described as follows.

Select a variable 1. xi randomly among x1, x2, x3, x4.
Flip its current truth value of 2. xi stored in X [1..4] to obtain a new X1[1..4].
Evaluate 3. C [1..4] for this new X1[1..4].
Evaluate 4. f (X1) = number of sum-terms attaining True value under the truth value assign-
ment X1.
If 5. f (X1) ≥ f (X) then make X1 the current X and continue, else go to step 1.

For the present instance of the satisfi ability problem, the starting point for the production sys-
tem is the randomly chosen assignment X = [T, F, F, T], i.e., x1 = True, x2 = False, x3 = False, 
and x4 = True. It is easy to verify that none of the sum-terms are satisfi ed under this assignment, 
making the sum-term vector all False, so that C = [F, F, F, F]. Obviously, F (X) = False, and 
f (X) = 0 in this case. Fig. 11.85 shows the trace of execution. As shown in fi gure, from initial 
state to the goal state the assignment vector follows the sequence [ T, F, F, T ] → [ T, T, F, T ] 
→ [ F, T, F, T ] → [ F, T, F, F ]. Among all these only the last one satisfi es the given Boolean 
function.
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Table 11.9. Production rules

Rule Precondition Postcondition

1 (Flip x1) X = [x1, x2, x3, x4 ] → X = [x1’, x2, x3, x4]

2 (Flip x2) X = [x1, x2, x3, x4 ] → X = [x1, x2’, x3, x4]

3 (Flip x3) X = [x1, x2, x3, x4 ] → X = [x1, x2, x3’, x4]

4 (Flip x4) X = [x1, x2, x3, x4 ] → X = [x1, x2, x3, x4’]

F(x1, x2, x3, x4 ) = (x1′ + x2)⋅(x3 + x4′)⋅(x1′ + x4′)⋅(x2 + x3)

X = [F, F, F, T]
C = [T, F, T, F]

F(FF X)XX = F

X = [F, T, F, F]
C = [T, T, T, T]

F(FF X)XX = T

(Goal)

X = [F, T, F, T]
C = [T, F, T, T]

F(FF X)XX = F

X = [T, T, F, T]
C = [T, F, F, T]

F(FF X)XX = F
f ( X ) = 2

f ( X ) = 3

f ( X ) = 4f ( X ) = 2

X = [T, F, F, T]
C = [F, F, F, F]

F(FF X)XX = F
f (X ) = 0

Flip x2xx

Flip x1xx

Flip x4xxFlip x2xx

Solution Vector (i.e., truth value assignment):

X = [x1, x2, x3, x4 ] 

Sum-term Vector:

C = [C1, C2, C3, C4] 
where 
 
C1 = (x1′ + x2) 
C2 = (x3 + x4′) 
C3 = (x1′ + x4′) 
C4 = (x2 + x3)

f(X) = Number of sum-terms attaining True value 
under the truth value assignment X.

Fig. 11.85. Steps of an irrevocable production system to solve CNF-satisfi ability

Example 11.14  (Solving n-queen problem through back-tracking strategy)

A classical example of backtracking system refers to the 8-queen problem, or more generally, the 
n-queen problem. In this example we describe a production system employing the backtracking 
control strategy to solve n-queen problem.

Let us, for the sake of simplicity consider the 4-queen problem. Th e four queens are denoted 
by Q1, Q2, Q3, and Q4 where the ith queen Qi is placed in the ith row of the chess board. Th en a 
placement of the four queens is expressed with a vector V [1..4] where V[i], i = 1, 2, 3, 4, gives the 
column number in which Qi is placed. For example, Fig. 11.86 shows the board position for the 
placement [2, 3, 1, 4].
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1 2 3 4
1 •
2 •
3 •
4 •

V = [2, 3, 1, 4]

Fig. 11.86. A placement of 4-queens and its representation

V = [−,−,−, −]

V = [1,−,−, −] V = [2,−,−, −]

V = [2, 4,−, −]

V = [2, 4, 1, −]V = [1, 4, 2, −]

V = [1, 4, −, −]V = [1, 3, −, −]

V = [2, 4, 1, 3,]

(0)

•(1)

•
•

(2) •
•

(3) •
•

(6)

•(5)

•
•

•

(4) •
•

•

(7)

•
•

•
•

(8)

GOAL

(No valid column
for Q4)

(No valid column
for Q3)

• Backtracking paths are shown
with dashed arrows,
i.e.,with
Numbers within parentheses
indicate the order of processing
the corresponding states.  

•
•

Fig. 11.87. Backtracking strategy to solve the queen problem

Th e successive steps of the backtracking search, when applied to solve the 4-queen problem are 
shown in Fig. 11.87 in a tree structure. Each node of the tree presents a board position and the cor-
responding V [ 1 .. 4 ] vector. Th e symbol ‘−’ in V indicates that the corresponding queen is not yet 
placed. A recursive procedure to solve the n-queen problem through the backtracking strategy is 
described in Algorithm Backtrack-n-Queen (V[c1,… ck, -, …, -])(Fig. 11.88).
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Th e algorithm starts with the empty board and then tries to fi nd suitable positions of the queens 
Q1, Q2, …, Qn at successive steps. At each step, the algorithm looks for the possible positions of 
the current queen and makes a choice among the alternative locations. It then recursively calls 
itself for further progress. If, at some later point of time, it is found that there is no valid, i.e., non-
attacking, position for some subsequent queen, it backtracks to the point of making the last choice, 
selects an alternative location (if there is any), and proceeds.

Algorithm Backtrack-n-Queen (V[c1,… ck, -, …, -])

/* V[c1,… ck, -, …, -] is a partial solution where the first 
k queens Q1, … Qk, k ≤ n, are placed at the columns c1,… ck 
respectively, and the remaining n-k
queens are yet to be placed. */

1. Begin
2.  If V is a solution Then return V.

  /* Find a suitable position for Qk+1 */
3.  For ck+1 ← 1 To n Do
4.  Begin
5.  If V [c1,… ck, ck+1, -, …, -] is a non-attacking 

arrangement of the queens Q1, … Qk, Qk+1 Then 
6.  Begin
7. Sol ← Backtrack-n-Queen (V[c1,… ck,ck+1, -, …, -])
8.  If (Sol != NULL) Then Return End-If
9.  End
10.   End-If
11. End-For

 /* No suitable position for Qk+1 in current
    arrangement of k queens */
12. Return NULL
13. End- Backtrack-n-Queen

Fig. 11.88. Algorithm backtrack-n-queen (V[C1, ... Ck, -, ..., -]).

Let us now focus on the 4-queen problem. In order to solve the 4-queen problem Algorithm 
Backtrack-n-Queen would be invoked with the empty solution V [-,-,-,- ] as its parameter. 
Fig. 11.87 shows a trace of the execution of the procedure where the successive arrangements of 
the queens are shown as the nodes of a tree structure. Th e sequence numbers of these arrange-
ments are indicated within parentheses at the upper-left  corner of the corresponding nodes. Th e 
position of a queen is indicated by a dot (•) within a cell of a 4 × 4 matrix. Backtracking paths 
are indicated with dotted arrows. 

Initially the board is empty and the solution vector is V [-,-,-,-]. Th is forms the root node, 
node (0), of the tree. Th e task is to fi nd a suitable column for the queen Q1, where Q1 is the queen 
belonging to the 1st row. Th ere are four possible columns for Q1, viz., 1, 2, 3 and 4. We choose 
column 1 to start with. So the partial solution is now V [1,-,-,-], and the board confi guration is as 
shown in node (1). Now we look for a suitable location for queen Q2. Queen Q2 belongs to row 2
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and there are two positions in row 2, viz., at column 3, and 4, at which Q1 and Q2 are not attacking 
each other. Th erefore, we choose column 3 for Q2. Th e resulting partial solution is shown as node 2 
of Fig. 11.87. However, this assignment leaves no valid position for the third queen, Q3. Th erefore, 
the process backtracks to the latest backtracking point which is at node (1). Th e other position for 
queen Q2 is now tried with. It is seen that this allows a valid position for Q3 but leaves nowhere to 
place queen Q4. Th erefore, the algorithm has to backtrack. Since all alternatives out of placing queen 
Q1 at column 1 are exhausted, the backtracking point is now the root node itself. Queen Q1 is placed 
at column 2 (see node (5) of Fig. 11.87). Th e subsequent steps are shown at nodes (6), (7), and (8). 
Th e solution we eventually arrive at is V = [2, 4, 1, 3], shown as the goal node in the said fi gure.

CHAPTER SUMMARY

Th e main points of the foregoing discussion are given below.

A state space is defi ned by a directed graph • G (V, E) where each node v∈V represents a state, 
and each edge eij from state vi to vj represents a possible transition from vi to vj. Th ere is a 
designated state s∈V known as the start state, or start node, of the state space. Th e search starts 
from this node. Moreover, there is a goal condition which must be satisfi ed to end the search 
process successfully. Usually one or more nodes of the state space satisfy this condition. Such 
nodes are called the goal nodes.
A state space search is either uninformed and informed, or heuristic. An uninformedsearch do • 
not apply any knowledge of the problem domain to guide the search for a goal node. However, an 
informed, or heuristic, search is guided by some knowledge which makes the search effi  cient.
An exhaustive search tries to examine each and every node of the state space till a goal is reached • 
or there is no way to proceed. Important exhaustive searches are breadth-fi rst search, depth-
fi rst search, depth-fi rst iterative deepening search, and bidirectional search. 
Breadth-fi rst search explores the search space laterally. DFS does so vertically. Depth-fi rst • 
iterative deepening tries to combine the advantages of depth-fi rst and breadth-fi rst search. It 
is a version of depth-fi rst search where the search is continued till a predefi ned depth d is 
reached. Th e value of d is incremented by 1 aft er each iteration until the goal node is reached. 
Bidirectional search proceeds in two opposite directions, from the start state towards the goal 
state (forward direction) and from the goal state towards the start state (backward direction), 
simultaneously. Th e search ends successfully when the two paths meet at a common node. 
Best-fi rst search tries to identify the best node to advance the search. An evaluation function is • 
used for this purpose. Hill climbing is a heuristic search technique that makes use of local 
knowledge in its attempt to attain global solution. An ‘A’ algorithm is guided by estimating an 
evaluation function f n g n h n)n )n( ) ( )n= +g( )n where g(n) is the cost of a minimal-cost path from the 
start node to node n, and, h(n) is the cost of a minimal-cost path from node n to a goal node. If 
the heuristic estimation h1(n) is a lower bound of h (n) so that h1(n) ≤ h(n) for all n, then it is an 
A* algorithm. Such algorithms are admissible in the sense that they are guaranteed to fi nd a 
minimal-cost path from the root to a goal. 
In the problem reduction strategy a problem is repeatedly decomposed into subproblems • 
until the subproblems obtained are readily solvable.It employs a special kind of graph called 
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AND-OR graph. Th e search through an AND-OR graph using some knowledge of the problem 
domain is known as AO* search. In AO* search the individual solutions of the subproblems are 
combined to obtain the solution of the given problem. 
Means-Ends Analysis (MEA) is a technique employed for generating plans for achieving goals. • 
Th e MEA strategy is based on the concept of the diff erence between the start state and the goal 
state. Th e MEA process recursively tries to reduce the diff erence between two states until it 
reduces to zero. As a result it generates a sequence of operations or actions which transforms 
the start state to the goal state. 
Constraint satisfaction problems (CSPs) are characterized by three components, a set of variables, • 
a set of values, called the domains, for each variable, and a set of relations, or constraints, 
involving variables that restrict their attainable values. Th e structure of a CSP, especially the 
constraints, can be represented as a graph, or hypergraph, known as the constraint graph (or 
hypergraph). Depth-fi rst search with backtracking is commonly used to solve a CSP. Sometimes 
local search procedure guided by the minimum-confl ict heuristic are also used.
Games are typically multi-agent environments in which the agents are competitive rather than • 
cooperative. Mini-Max search, a kind of adversarial search technique, helps to select a good 
move in s deterministic, two-player, turn-taking, zero-sum game. It uses a static evaluation 
function that returns a numeric value for each state of the game. Alpha-Beta pruning is a 
technique to make Mini-Max search effi  cient. It enables the search process to avoid parts of the 
game tree that do not contribute to decision making while the best move is selected.
Production systems are intelligent systems that are structured to facilitate a state space search • 
procedure. Th e main components of a production system are a global database, a set of 
production rules and a control system. Once the global database is initialized, an appropriate 
production rule is selected (by the control strategy) and applied on the global database to 
transform it to a new state. Th is is repeated till the termination condition is satisfi ed by the 
global database. 

 SOLVED PROBLEMS

Problem 11.1. (Water-Jug Problem) Th ere are two water jugs, one of 4 litre capacity and the other 
of 3 litre. Th ere are no marking on the jugs and they can be fi lled with water from a nearby tap. Th e only 
permissible operations are:

Filling an empty jug with water from the tap.1. 
Emptying a fully or partially fi lled jug.2. 
Transferring water from one jug to another.3. 

Initially both the jugs are empty. Now, using the operations described above, is it possible to obtain 
exactly 2 litre of water in the 4-litre jug? If yes, then what is the sequence of operations to achieve this? 
Create the state space for the problem and show a solution path in it. 

Solution 11.1. Let us denote the 4-litre jug as jug A and the 3-litre jug as jug B. A state of the prob-
lem can be presented as a pair of integers [ x, y ] where x and y are the amount of water in litre in jug A 
and B, respectively. For the sake of simplicity let us assume that x and y are both integers and x ≤ 4, y ≤ 
3. Th e rules to manipulate the state space are listed in Table 11.10.
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Table 11.10. Rules to solve the water-jug problem

# Pre-condition Post-condition Remark

1 [x, y] ∧ (x < 4) → [4, y] Fill the 4-litre jug.

2 [x, y] ∧ (y < 3) → [x, 3] Fill the 3-litre jug.

3 [x, y] ∧ (x > 0) → [0, y] Empty the 4-litre jug.

4 [x, y] ∧ (y > 0) → [x, 0] Empty the 3-litre jug.

5 [x, y] ∧ (x + y ≥ 4) ∧ (y > 0) → [4, y−(4−x)] Pour water from 3-litre jug to the 4-litre jug till the 
4-litre jug is full.

6 [x, y] ∧ (x + y ≥ 3) ∧ (x > 0) → [x−(3−y), 3] Pour water from 4-litre jug to the 3-litre jug till the 
3-litre jug is full.

7 [x, y] ∧ (x + y ≤ 4) ∧ (y > 0) → [x + y, 0] Pour all water from 3-litre jug into the 4-litre jug.

8 [x, y] ∧ (x + y ≤ 3) ∧ (x > 0) → [0, x + y] Pour all water from 4-litre jug into the 3-litre jug.

Initially both the jugs are empty so that the initial state is [ 0, 0 ]. At this stage we may either fi ll jug-A 
or jug-B resulting in the states [ 4, 0 ] or [ 0, 3 ], respectively. While in state [ 4, 0 ], we may either pour 
water from jug-A to jug-B to fi ll up the later or simply fi ll jug-B to its full. Th e corresponding states 
are [ 1, 3 ] and [ 4, 3 ]. Of course we can empty jug-A, and return to the initial state. Th erefore [ 1, 3 ] 
and [ 4, 3 ] are the children of the state [ 4, 0 ]. Similarly the state [ 0, 3 ] has the children [ 4, 3 ] and 
[3, 0]. Th e entire state space is shown in Fig. 11.89. Two paths to reach the goal are highlighted in the 
fi gure.

(0, 0)

(0, 3)(4, 0)

(2, 3) (2, 0)

(0, 2)

(4, 2)

(3, 3)

(3, 0)

(0, 1)

(1, 0)

(4, 1)

(4, 3)(1, 3)

Fig. 11.89. The state space for the water-jug problem
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Problem 11.2 (Monkey-and-Banana Problem) Here is the simple world of a monkey. Th ere is a 
room with a door and a window. A box is placed at the window and a bunch of bananas is hanging from 
the ceiling at the middle of the room. Th e monkey is hungry but it can not hold the bananas as these are 
out of its reach. However, if the box is placed at the middle of the room just below the bunch of bananas 
and the monkey climbs the top of the box then it can catch the bananas and eat them. Th e monkey can 
walk, can push the box along the fl oor, can climb the box, and if within its reach, it can catch the bananas. 
Initially the monkey is at the door of the room. Can it catch the bananas? If yes, what is the sequence of 
actions to achieve this goal?

Banana at the
middle

window

box

door

monkey

(a) Initial State

 P = position of monkey = Door
 Q = whether the monkey is on the fl oor, or on the box = Floor
 R = position of the box = Window
 S = whether the monkey holds the banana or not = NO

(a) Final State

 P = position of monkey = Middle
 Q = whether the monkey is on the fl oor, or on the box = onBox
 R = position of the box = Middle
 S = whether the monkey holds the banana or not = Yes

Fig. 11.90. The Monkey-and-Banana problem.
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Solution 11.2. Fig. 11.90 shows the problem graphically. A problem state is expressed with a 4-tuple 
< P, Q, R, S > where

P is the position of the monkey
Q is whether the monkey is on the fl oor or on the box
R is the position of the box
S is whether the monkey has grasped the banana or not

For the sake of simplicity we assume that the monkey can be either at the door, or at the window, or at 
the middle of the room. Similarly, the box can be at one of these positions only. Hence the domains of P, 
Q, R, and S are defi ned as follows:

P ∈ { Door, Window, Middle }
Q ∈ { onFloor, onBox }
R ∈ { Door, Window, Middle }
S ∈ { Yes, No }

Th ere are four activities of the monkey, viz., it can walk from place to place, it can push the box from one 
place to another, it can climb the box, and if possible, it can grasp the banana. However, each of these 
activities requires certain conditions to hold good. Th ese are described in Table 11.11. Th e initial state 
of the system is < Door, onFloor, Window, No > because in the beginning the monkey is at the door, on 
the fl oor, the box is at the window, and the monkey is not holding the banana. Th e fi nal state is given by 
< Middle, onBox, Middle, Yes >.

Table 11.11. Valid moves of the monkey

Operation Description and prerequisite conditions

Walk (X, Y) The monkey walks from X to Y.
Precondition : The monkey is on the fl oor, Q = onFloor.

Climb The monkey climbs the box. 
Preconditions :
i) The monkey and the box are at the same place, P = R.
ii) The monkey is on the fl oor, Q = onFloor.

Push (X, Y) The monkey pushs the box from X to Y. 
Precondition : Both the monkey and the box are at X, P = R = X.

Grasp The monkey grabs the banana. 
Preconditions :
i) Both the monkey and the box are at the middle, P = Q = Middle.
ii) The monkey is on the box, Q = onBox.

To estimate the distance of a given state < P1, Q1, R1, S1 > from the goal state < Middle, onBox, Middle, 
Yes > we introduce a measure d between two states n1 = < P1, Q1, R1, S1 > and n2 = < P2, Q2, R2, S2 > as 
follows:

d (n1, n2) = Number of mismatched parameters
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Push (Window, Middle)

Push (Middle, Door)

Walk (Middle, Window)

P = Door
Q = onFloor
R = Window
S = No

P = Door
Q = onFloor
R = Middle
S = No

P = Door
Q = onFloor
R = Door
S = No

P = Window
Q = onFloor
R = Middle
S = No

(1 + 4 = 5)(1 + 3 = 4)

(5) (5)

(4) (7)(6)(6)

)

Walk (Door, Middle) Walk (Door, Window)

Climb

Walk (Middle, Door)

Walk (Middle, Window)

Climb

Grasp

1

3

4

5

P = Middle
Q = onFloor
R = Window
S = No

P = Middle
Q = onFloor
R = Middle
S = No

P = Window
Q = onFloor
R = Window
S = No

P = Window
Q = onBox
R = Window
S = No

P = Window
Q = onBox
R =Middle
S = No

2

P = Window
Q = onBox
R =Middle
S = Yes

6

f (no) = g (no) + h (no)
= 0 + 4
= 4

Fig. 11.91. Search tree for the Monkey and Banana problem.

For example, let n0 = the initial state = < Door, onFloor, Window, No >, and nf = the fi nal state = < 
Middle, onBox, Middle, Yes >. Since none of the parameters P, Q, R, and S of n0 and nf have matched, 
the distance of the initial state from the fi nal state is 4. For g(n), the distance of node n from the start 
node along the path taken is considered. Hence for the start state the objective function has the value 
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f (n0) = g (n0) + h (n0) = 0 + 4 = 4. Th is is shown in Fig. 11.91 which depicts the entire search tree. Th e 
nodes are shown in rectangular boxes and the values of the objective function for diff erent nodes are 
given within parentheses. Th e encircled numbers adjacent to some nodes indicate the sequence in 
which the nodes are expanded. Th e nodes which are generated but never expanded are shown with 
dashed lines.

It is seen that from the initial state < Door, onFloor, Window, No > the only possible moves for 
monkey are to walk from the door to either the middle or to the window. Accordingly, the initial 
statehas two children < Middle, onFloor, Window, No > (state 1) and < Window, onFloor, Window, 
No > (state 2). Th e heuristic estimates of state 1 and 2 are 3 and 4, respectively while each of them is 
at a distance 1 from the root. Th erefore f (n1) = 1 + 3 = 4 and f (n2) = 1 + 4 = 5. Obviously, state 1 is 
chosen for further exploration at this point of time. However, it is found that there are only two pos-
sible moves from state 1, viz., either return to state 0, or go to state 2. Consequently, state 2 is selected 
as the next node to be explored and expanded. Fig. 11.91 shows the entire search tree along with the 
sequence of nodes explored and expanded. Each transition edge is labeled with the corresponding 
action taken by the monkey. Th e chain of actions that leads from the start state to the goal is high-
lighted.

Problem 11.3 (Farmer-Fox-Goose-Grain problem) Th ere is a farmer on one bank of a river. He 
has a fox, a goose and some grain with him and he want to cross the river with all his possessions. Th ere 
is a boat to cross the river but it is too small to accommodate more than one possession at a time. Th ere-
fore each time the farmer crosses the river he can take at most one possession with him. In absence of 
the farmer, the fox will eat the goose. Similarly, if the goose is left  with the grain then it will eat the grain. 
Formulate the problem as a state space search and show the state space.

Solution 11.3 Fig. 11.92 shows the state space of the given problem. A node is represented by a 
rectangular box containing two smaller boxes. Th e inner boxes represent two banks of the river. Th e 
direction of an arrow between two banks of the river indicate the direction of the movement of the 
boat in the next move. Th e labels attached to the edges between the nodes convey the entities being 
moved from one bank to the other in the present step. Suitable representation of a node as a state is 
left  as an exercise.

Problem 11.4 (Missionaries and Cannibals problem) Th ree missionaries and three cannibals are 
standing at one bank of a river. Th ey have to cross the river. Th ere is a boat to cross the river which can 
accommodate at most two persons at a time. If the cannibals outnumber the missionaries at any bank 
they will eat the missionaries. How should the missionaries and the cannibals cross the river so that the 
cannibals can never eat any missionary? 

Solution 11.4 Let us represent a state of the problem in the form (a) [ Rl | Rr ] (b ) where a and b 
are strings of the form MpCq, 0 ≤ p ≤ 3, 0 ≤ q ≤ 3. Each M represents a missionary and each C represents 
a cannibal. For example, the string MMCCC represents two missionaries and three cannibals. Th e null 
string, M0C0, is indicated with ‘-‘. Th e middle portion of the expression, i.e., [ Rl | Rr ] represents the posi-
tion of the boat with respect to the river. Th e vertical line ‘|’ stands for the river. One of Rl and Rr is ‘B’, 
indicating the boat in the corresponding bank, while the other must be ‘-‘, expressing the fact that the 
boat is not in that bank of the river.

So the string (MMCC) [ - | B ] (MC) expresses the following facts:
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Fig. 11.92. State space of the Farmer-Fox-Goose-Grain problem.
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Table 11.12. Rules to solve the missionaries and cannibals problem

# Pre-condition Post-condition Remark

1a (MMMCCC) [B|-] (-) → (MMMCC) [-|B] (C) 1 C goes to right bank.

1b → (MMCC) [-|B] (MC) 1 M and 1 C go to right bank.

1c → (MMMC) [-|B] (CC) 2 Cs goes to right bank.

2a (MMMCC) [B|-] (C) → (MMCC) [-|B] (MC) 1 M goes to right bank.

2b → (MMMC) [-|B] (CC) 1 C goes to right bank.

2c → (MMM) [-|B] (CCC) 2 Cs go to right bank.

3 (MMMCC) [-|B] (C) → (MMMCCC) [B|-] (-) 1 C goes to left bank.

4a (MMCC) [B|-] (MC) → (MC) [-|B] (MMCC) 1 M and 1 C go to right bank.

4b → (CC) [-|B] (MMMC) 2 Ms go to right bank.

5a (MMCC) [-|B] (MC) → (MMMCC) [B|-] (C) 1 M goes to left bank.

5b → (MMMCCC) [B|-] (-) 1 M and 1 C go to left bank.

6a (MMMC) [B|-] (CC) → (MMM) [-|B] (CCC) 1 C goes to right bank.

6b → (MC) [-|B] (MMCC) 2 Ms goes to right bank.

7a (MMMC) [-|B] (CC) → (MMMCC) [B|-] (C) 1 C goes to left bank.

7b → (MMMCCC) [B|-] (-) 2 Cs go to left bank.

8a (CCC) [B|-] (MMM) → (CC) [-|B] (MMMC) 1 C goes to right bank.

8b → (C) [-|B] (MMMCC) 2 Cs go to right bank.

9 (CCC) [-|B] (MMM) No possible move

10 (MMM) [B|-] (CCC) No possible move

11a (MMM) [-|B] (CCC) → (MMMC) [B|-] (CC) 1 C goes to left bank.

11b → (MMMCC) [B|-] (C) 2 Cs go to left bank.

12a (MC) [B|-] (MMCC) → (C) [-|B] (MMMCC) 1 M goes to right bank.

12b → (-) [-|B] (MMMCCC) 1 M and 1 C go to right bank.

13a (MC) [-|B] (MMCC) → (MMCC) [B|-] (MC) 1 M and 1 C go to left bank.

13b → (MMMC) [B|-] (CC) 2 Ms go to left bank.

14a (CC) [B|-] (MMMC) → (C) [-|B] (MMMCC) 1 C goes to right bank.

14b → (-) [-|B] (MMMCCC) 2 Cs go to right bank.

15a (CC) [-|B] (MMMC) → (CCC) [B|-] (MMM) 1 C goes to left bank.

15b → (MMCC) [B|-] (MC) 2 Ms go to left bank.

16 (C) [B|-] (MMMCC) → (-) [-|B] (MMMCCC) 1 C goes to right bank.

17a (C) [-|B] (MMMCC) → (MC) [B|-] (MMCC) 1 M goes to left bank.

17b → (CC) [B|-] (MMMC) 1 C go to left bank.

18 (-) [-|B] (MMMCCC) Goal
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Th e left  bank of the river contains two missionaries and two cannibals.• 
Th e right bank of the river contains one missionary and one cannibal.• 
Th e boat is on the right bank of the river.• 

Obviously, not all distribution of the missionaries and the cannibals over the two banks are valid. At any 
bank, number of cannibals can not exceed that of the missionaries, in case both kinds of people are there 
at the same bank. Hence the distribution (CC) [ B | - ] (MMMC), or (CCC) [ - | B ] (MMM) is valid but 
neither (CCM) [ B | - ] (MMC), nor (MMCCC) [ B | - ] (M) is a valid distribution. In order to defi ne 
a production rule we need to specify the pre-condition and the post-condition which, in this case, are 
distribution of the missionaries and the cannibals over the two river banks and the position of the boat. 
For example, the rule 

(MMMC) [ B | - ] (CC) → (MC) [ - | B ] (MMCC)

states that if there are three missionaries and one cannibal on the left  bank, two cannibals on the right 
bank, and the boat is one the left  bank, then two missionaries may take the boat to the right bank so that 
aft er the move one missionary and one cannibal are left  on the left  bank while two missionaries and two 
cannibals remains on the right bank. Th e complete set of such rules is listed in Table 11.12. Solving the 
problem with the help of these rules is left  as an exercise.

Problem 11.5. (8-puzzle) Consider an instance of the 8-puzzle for which initial and goal states 
are as shown in Fig. 11.93. Propose a hill climbing search algorithms to solve this problem.

Start state

21 4

8 3

6 5

Goal state

8 4

7 6 5

1 2 3

7

Fig. 11.93. Another instance of the 8-puzzle.

Solution 11.5. First we have to defi ne an objective function to express the quality of a state with 
respect to the goal state. Let us consider the entire frame of the 8-puzzle as a 3 × 3 matrix. Th en the 
successive cells can be designated by the ordered pairs (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), 
and (3,3) (Fig. 11.94). Now, suppose a certain tile x is in cell (i, j) while as per confi guration of the 
goal state it should be in cell (k, l). In order to bring tile x to its designated position it must be moved 
through at least dx = ⏐i − k⏐+⏐j − l⏐ number of cells. Th is dx may be called the distance of tile x from 
its desired position.

For example, Fig. 11.95 shows a situation where a tile x is at position (1, 2) though its targeted position 
is at (3,1). Th erefore, for this tile the displacement dx = ⏐i − k⏐+⏐j − l⏐= ⏐1 − 3⏐+⏐2 − 1⏐= 2 + 1 = 3. 
Th is means, in order to place tile x at its proper position, it has to be moved through at least 3 cells from 
its current position.

(1,1) (1,2) (1,3)
(2,1) (2,2) (2,3)
(3,1) (3,2) (3,3)

Fig. 11.94. Confi guration of 8-puzzle as a 3 × 3 matrix.
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We are now in a position to defi ne the objective function. Th e objective function f (n), which estimates 
the distance of state n from the goal state can be defi ned as the sum over all dx, x = 1, …, 8.

 h n dx
x

( )n =
=

∑
1

8

 (11.15)

(1,2)

(3,1)

Tile x is at x cell
(i, j ) = (1, 2)

|i − k | = | 1 − 3 | = 2

| j − l | = | 2 − 3 | = 1

Tile x should be at
cell (k,kk l ) = (3, 1)

Fig. 11.95. Computation of dx.

As an example, let us compare the state depicted in Fig. 11.96 (a) with the goal state shown in Fig. 11.96 
(b).In the goal state tile 1 is at position (1, 1) while in state n it is actually at position (2, 3). Th erefore, 
d1 = |1-2| + |1-3| = 1 + 2 = 3. Similarly, the distances of the other tiles are computed as d2 = 1, d3 = 4, d4 
= 2, d5 = 0, d6 = 2, d7 = 4, and d8 = 2. Hence the distance of state n as a whole from the goal state is given 
by f (n) = d1 + d2 + d3 + d4 + d5 + d6 + d7 + d8 = 3 + 1 + 4 + 2 + 0 + 2 + 4 + 2 = 18 (Fig. 11.94). Now let us 
consider the initial state of the given problem. Here f (n) = d1 + d2 + d3 + d4 + d5 + d6 + d7 + d8 = 0 + 1 + 1 
+ 2 + 0 + 0 + 0 + 0 = 4.

(a) State n 2 4 7 (b) Goal State 1 2 3
6 1 8 4
3 8 5 7 6 5

d1 = 3, d2 = 1, d3 = 4, d4 = 2, d5 = 0, d6 = 2, d7 = 4, d8 = 2 
h (n) = d1 + d2 + d3 + d4 + d5 + d6 + d7 + d8 = 3 + 1 + 4 + 2 + 0 + 2 + 4 + 2 = 18

Fig. 11.96. Computation of the distance of a state n from the goal state.

Th e four diff erent new states that can be obtained from this initial state are shown as the children of the 
start state in Fig. 11.97. Th ese states have f (n) values 5, 5, 5, and 3 as indicated within a pair of parenthe-
ses adjacent to the respective nodes. Th e search will proceed along the state with f (n) value 3 because 
that is the only value lower than 4, that of the current state. 

However, the hill climbing procedure is not supposed to generate all these states at a time. Instead, it 
will generate only one among these. If the newly generated state happens to have f (n) value less than 4, 
then that will be accepted. Otherwise, the hill climbing procedure will reject the newly generated state 
and produce a yet another state. Eventually it will generate the desired one, i.e., the state with f (n) value 
3, because such a state exists and is reachable from the current state. Th e progress of the hill climbing 
process can be traced by following the solid arrows in Fig. 11.97. Th e dashed arrows indicate the steps 
rejected by the hill climbing process.
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Start

Goal

21 4

8 € 3

6 57

21

(4)

(4)

(2)

(2)

(1)

(5) (5)
(3)(5)

4

€ 8 3

6 57

21 4

8 3 €
6 57

21 4

8 6 3

€ 57

21 €
8 4 3

6 57

2€ 1

8 4 3

6 57

€1 2

8 4 3

6 57

31 2

8 4 5

6 €7

31 2

8 € 3

6 57

31 2

8 4 €
6 57

Fig. 11.97. Solving 8-puzzle through hill climbing

Problem 11.6. (Solving 8-queen problem through steepest ascent hill-climbing) Apply steepest as-
cent hill climbing method to solve the 8-queen problem.

Solution 11.6. Th e rows of the chess board are numbered as 0, 1, …, 7. Each of these queens is placed 
in a distinct column to ensure that the queens are not attacking each other. Th us a confi guration of eight 
queens on the chess board can be expressed as a vector of eight elements [ r0, r1, r2, r3, r4, r5, r6, r7 ] where ri 
is row number of position of the queen in the ith column. Fig. 11.98 shows such a board confi guration.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Fig. 11.98. Board confi guration: [ 0, 4, 5, 5, 1, 5, 1, 3 ].
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We consider the objective function for a given arrangement n = [ r0, r1, r2, r3, r4, r5, r6, r7 ] of eight queens 
as follows:

 F (n) = Number of attacking pair in the arrangement n (11.15)

For example in the arrangement shown in Fig. 11.98, there are nine attacking pairs of queens, viz., (Q0, 
Q5), (Q1, Q2), (Q1, Q4), (Q2, Q3), (Q2, Q5), (Q2, Q6), (Q3, Q5), (Q4, Q6), and (Q5, Q7), where Qi denotes the 
queen in the ith column. Now, given an arrangement n of queens, we compute the value of f (n) by plac-
ing each queen Qi at various rows, remaining in its designated column i. For example, in Fig. 11.99 (a) 
if Q0 is placed at row 1, instead of row 0, we would have 10 attacking pairs of queens. Th is is indicated 
by placing the number 10 within cell (1, 0) in the chess board. Similarly other cells contain the number 
of attacking pairs in case the queen of the respective row is placed at that cell. Th e values of the objec-
tive function for the arrangements shown in Fig. 11.99 (a)-(d) are indicated at the top of the respective 
boards. Obviously, each cell of the chess board that contains a queen should have exactly this value. For 
example, each of the cells (0, 0), (4, 1), (5, 2), (5, 3), (1, 4), (5, 5), (1, 6) and (3, 7) of Fig. 11.99 (a) contains 
the value 9.

8

(a) Initial state (f(n) = 9))

(d) Goal state (f (n) = 0))(c) f (n) = 2

(b) f (n) = 5

11
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9
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[  0      4     5      5      1       5      1       3 ] [  0      4     7      5      1       5      1       3 ]
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7
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8

7
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6
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7 5
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6

6 2

4

5

5
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7

7 6

6

4

7

6

6

5

4
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7

6

6

5

6

5

9

4

6

2

4

2

3

2 5

4

3

[  0      4     7      5      1       6      1       3 ] [  0      4     7      5      2       6      1       3 ]

3

4

3 0

6

4

4

4

4

5

34

4 2

35

53

3

4

2

5

34

4

3 5

3

3

4

3

3

3

4

4

26 4

5

4

5

3

4

3

6

3

4

Fig. 11.99. (a)–(d) Successive steps of hill climbing process for 8-queen problem
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Th e hill climbing strategy for 8-queen problem would start with a random arrangement of the eight 
queens in eight diff erent columns. One such random arrangement is depicted in Fig. 11.99 (a). Th e objec-
tive function described above is then evaluated for each cell of the chess board. Th e minimum among these 
64 values is then located, say at cell (i, j). If there is a tie then it can be resolved arbitrarily, or through some 
suitable manner. Th en the new state of the 8-queen problem is obtained by moving queen Qj to the ith row, 
i.e., to the cell (i, j). For example, the minimum f (n) value for the confi guration of Fig. 11.99 (a) is 5 and is lo-
cated at cell (7, 2) and (6, 5). Th erefore Q2 is moved to (7, 2) position to obtain the new arrangement of eight 
queens as depicted in Fig. 11.99 (b). Th e process is repeated until we arrive at a state where there is a cell for 
which the objective function evaluates to 0. Th e progress of the hill climbing process from the initial state to 
a solution is shown in Fig. 11.99 (a) - (d). Th e minimum f (n) values are indicated as encircled numbers.

Problem 11.7. (Solving the satisfi ability problem using AND-OR graph) Using AND-OR graph 
search technique, fi nd a combination of truth-values to the Boolean variables of the expression (a + 
b′.c′).c + (a′ + b′.c′).(c + c′.a) to satisfy the expression, i.e., to make the expression attain a truth-value 
True. 

Solution 11.7. Starting with the given expression we go on decomposing it until we reach a literal, 
i.e., a Boolean variable either in the complimented or in non-complimented form. Th e basic principle of 
decomposition is shown in Fig. 11.100 where x and y are literals. Th e truth assignments to variables are 
made in a way that makes the terminal literals true. In other words, if x = a then we assign a = true and 
if x = a’ then a = false.

Th e cost of a node is estimated by the total number of AND and OR operations in the corresponding 
expression, or sub-expression. Let f be the Boolean expression associated with a node n, then h1 (n) is 
estimated as

h1 (n) = Number of operators (excluding NOT) in f.

(T)(T)

(T)x + y

x y

(a) AND (b) OR

(T)

(T)(T)

x.xx y

x y

Fig. 11.100. Truth value assignment to Boolean variables.

For example, the root node of the given problem corresponds to the Boolean expression f(a, b, c) = (a 
+ b′.c′).c + (a′ + b′.c′).(c + c′.a) which includes a total of 9 operators (excluding logical inversion, 4 ORs 
and 5 ANDs). Th erefore its cost estimate is 9. Obviously, the cost of a node containing a single literal, 
i.e., a SOLVED node, is 0. Each link of the resultant AND-OR graph has a uniform cost of 1. Th e suc-
cessive steps of the search process are shown in Fig. 11.101 (a)–(d). Th e solution off ered by the process 
is the assignment a = true, and c = true. Th e truth value of b does not aff ect the satisfi ability of the given 
expression for this assignment.

Problem 11.8 (Game of Tic-tac-toe with mini-max search strategy) Th e game of tic-tac-toe is 
widely used to illustrate the application of MiniMax search strategy for game playing. Th e game is fa-
miliar to most of us. It consists of a 3 × 3 board confi guration as shown in Fig. 11.102 (a)–(d). Initially 
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all compartments of the board are empty. Th e game is initiated by the player who puts a check mark (×) 
in one of the compartments. Let us call this player as the MAX player. Th e opponent, in his turn, puts 
a circle (O) in his chosen place. Th e two players go on putting their designated symbols on the board 
alternately till the end of the game. Th e game ends in one of the following three situations:

Th ree consecutive check marks in horizontal, vertical, or diagonal alighment (win by MAX).1. 
Th ree consecutive circles in horizontal, vertical, or diagonal alignment (win by MIN).2. 
Th ere is no empty compartment, and none of condition 1, or 2 above, are satisfi ed (draw).3. 

(9)(a + b ′.c ′).c + (a ′ + b ′.c ′).(c + c ′.a )(a)

(a + b ′.c ′).c + (a ′ + b ′.c ′).(c + c ′.a )(b)

(5)

(4)

(3)

(a + b ′.c ′).c (a ′ + b ′.c ′).(c + c ′.a )

(a + b ′.c ′).c + (a ′ + b ′.c ′).(c + c ′.a )(c)

(5)

(5)

(0)

(c = True)

(4)

(a + b ′.c ′).c (a ′ + b ′.c ′).(c + c ′.a )

(2)

a + b ′.c ′

(a + b ′.c ′).c + (a ′ + b ′.c ′).(c + c ′.a )(d)

(c = True)

(a = True)

True

True

True

(a + b ′.c ′).c (a ′ + b ′.c ′).(c + c ′.a )

a + b ′.c ′

b ′.c ′a

c

c

Fig. 11.101. Satisfying a Boolean function through AND-OR search

Th ese are illustrated in Fig. 11.102(a)–(d). Now, it is required to design an AI system that may play a 
credible game of tic-tac-toe with a human opponent.
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(a) Initial board position (b) A win by MAX (c) A win by MIN (d) A draw

Fig. 11.102. Board positions of tic-tac-toe

Suppose our system employs 2-ply MiniMax search as the guide to select a move at its turn. Th e fi rst 
thing we have to fi nd is a suitable static evaluation function. Of course the function e(N) shall return +∞ 
or −∞ if N, the board position, happens to be a winning position for MAX (playing ×) or MIN (play-
ing O), respectively. But what about the other non-terminal situations? Let us consider that the total 
number of rows, columns, and diagonals still available for a certain player P (P is either MAX or MIN) 
as a measure of his scope for winning the game. We defi ne X(N) as the number of rows, columns, and 
diagonals in board position N still available for MAX. Th e same for MIN is expressed as O(N). Th en the 
static evaluation function may be defi ned as:

  e(N)  = +∞  if N is a winning position for MAX
   = −∞  if N is a winning position for MIN
   = X(N) − O(N) otherwise.

Obviously, according to the heuristic knowledge employed here while designing the evaluation function, 
more scope a certain player have of winning better his chance of winning the game eventually. Fig. 11.103 
and 11.104 illustrates two instances of computing the evaluation function for two diff erent board positions.

X(XX N)NN = Number of possible
winning lines for X = 4

(a)

O(N) NN = Number of possible
winning lines for O = 5

(b) (c)

e(N)NN = X(XX N)NN − O(N)NN
= 4 − 5 = −1

Fig. 11.103. Computing the static evaluation function for tic-tac-toe, case #1.

A positive e(N) can be interpreted as indicative of higher chance for MAX to win the game. Similarly, nega-
tive e(N) implies that given the current situation N player MIN has a greater chance of winning the game.

e(N)NN = X(XX N)NN − O(N)NN
= 4 − 2 = 2

(c)

O(N) NN = 2

(b)

X(XX N) NN = 4

(a)

Fig. 11.104. Computing the static evaluation function for tic-tac-toe, case #2.
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502  Introduction to Soft Computing

Th e fi rst three moves on the basis of 2-ply MiniMax search employing the static evaluation function 
mentioned above are depicted in Fig. 11.105, Fig. 11.106 and Fig. 11.107. We assume that both the play-
ers are using the same technique and the same evaluation function as their strategy. In the initial empty 
board position, MAX may put the ‘×’ mark at any of the nine compartments. However, taking symmetry 
into consideration, the resultant nine board positions boil down to only three distinct board positions. 
Hence the start node of the game tree representing the empty board position has just three children, not 
nine. Th is principle is followed in subsequent steps also.

(1)

X O X O X
O

X
O

X

O

O
X

O
X

X

O
X

O
X

O
X X O X O

X (−2)(−1)

First move
(made by MAX)

X (1)X

6 − 5 = 1

6 − 5 = 1 5 − 5 = 0 4 − 5 = 1 6 − 5 = 1 5 − 5 = 1 5 − 4 = 1 5 − 6 = −1 5 1 4 − 6 = −20 65 − 6 = −1 6 0

Fig. 11.105. First move of tic-tac-toe by MAX player applying 2-ply Mini-Max.

(3)

O X
X

O X
X

O
X X

O
X

X

O
X

O X
X

O
X X

O
X

X

O
X
X

O

X

(3) (X 4)

MIN-ply

MAX-ply

Second move
(made by MIN)

5 − 3 = 2 53 55 − 3 = 2 − 2 = 3 6 − 2 = 4 63 66 − 2 = 4 − 3 = 3

Fig. 11.106. Second move of tic-tac-toe by MIN player applying 2-ply Mini-Max.
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O X
O X

4 − 3 = 1

4 − 3 = 1

4 − 3 = 2 4 − 3 = 1

4 − 2 = 2 4 − 2 = 2 3 − 2 = 1

3 3 0 3 3 0 33 3 0

4 − 2 = 23 − 2 = 1 3 − 2 = 1 2 − 2 = 0

3 − 3 = 0 3 − 3 = 0 3 − 3 = 0 3 − 3 = 0 3 − 3 = 0

3 − 3 = 0

O X
X

O

O X
X
O

O X
X

O

O X
X O

O X O
X

O X
X

O O X
X

O X
X O

O X
X

O

O X
X
O

O X
X

O

O X
O X

O X
X

O O
X X

O O
X X

O
X X

O

O
X X
O

O
X X

O

O
O X X

O
X X

O O
X

X

O O
X

X

O
X O

X

O
X

X

O
X

(0)

(0)

(0)

(1)

(MAX)

3rd move
(made by MAX)

Fig. 11.107. Third move of tic-tac-toe by MAX player applying 2-ply Mini-Max.

Problem 11.9 (Applying constraint satisfaction to solve crossword puzzle) Crossword puzzles are ex-
cellent examples of constraint-satisfaction problems. Th e basic requirement of a crossword puzzle is words 
that cross each other must have the same letters in the locations where they cross. A simple crossword puz-
zle is given in Fig. 11.108. Five words are to be fi tted in a 4 × 5 array. Th e words are to be chosen from the 
set { COW, FOX, FROG, GOAT, RAT }. Th e cells of the array that should not contain any letter are marked 
by a cross (×). Th e cells where the words should begin are indicated by the numbers 1, 2, 3, and 4. Th e cells 
marked by the numbers 1, 2 and 3 has to begin words across the array and the cells marked by 1 and 4 must 
begin words in downward direction. Formulate the problem as a CSP and solve it in appropriate manner.

1

1 2 3 4 5

1

4

2

3

2

3

4

List of words :

COW
FOXOO
FROG
GOAT
RAT

Across: 1, 2, 3
Down: 1, 4

Fig. 11.108. A crossword puzzle.
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504  Introduction to Soft Computing

Solution 11.9 Let A1, A2 and A3 be the variables corresponding to the words starting at cells marked 
1, 2 and 3, respectively across the rows of the array and D1, D4 be variables for the words starting at cells 
marked 1 and 4 in the downward direction. Among these variables A1, A2 and D4 refer to three-letter 
words and A3 and D1 are four-letter words. If we adopt the conventional array notation then the con-
straint that the fi rst letter of A1 is identical to the fi rst letter of D1 also can be expressed as A1[0] = D1[0]. 
Considering these, the given crossword puzzle can be formulated as a CSP in the following way:

CSP formulation

Variables: 1. A1, A2, A3, D1, D4

Domains:2.  D(A1) = {COW, FOX, RAT}
 D(A2) = {COW, FOX, RAT}
 D(A3) = {FROG, GOAT}

 D(D1) = {FROG, GOAT }
 D(D4) = {COW, FOX, RAT}

Constraints: 3. C1 A1[0] = D1[0]
C2 A2[1] = D1[2]
C3 A3[0] = D1[3]
C4 A3[3] = D4[2]

Table 11.13 shows the details of the variables, the starting cells and the domains.

Table 11.13. Details of the variables

Variable
(xi)

Starting 
cell

Domain
(Di)

A1 1 {COW, FOX, RAT}

A2 2 {COW, FOX, RAT}

A3 3 {FROG, GOAT}

D1 1 {FROG, GOAT}

D4 4 {COW, FOX, RAT}

Th e constraint graph is shown in Fig. 11.109.

C1

C2CC C3CC
C4CC

A1 A2

D1 D4DD

A3

Fig. 11.109. Constraint graph for the crossword puzzle.

Th e step-by-step execution trace of the backtracking DFS for the problem is shown in Table 11.14. Th e 
columns of Table 11.14 contain the current domains of the variables. A value that has been assigned to a 
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variable is shown inside an oval. For example, in the second row of the table (Step 1) the value GOAT in 
the column marked for the variable D1 is inside an oval. Th is represents the assignment 〈D1, FROG〉. Th e 
shaded ovals indicate the latest assignment made in the current step. Initially at Step 0 the state of the 
problem corresponds to the null assignment and all the domains are in their full capacities. Th e progress 
of the algorithm during the subsequent steps is described below.

Table 11.14. Trace of backtracking DFS for crossword puzzle

Step # A1 A2 A3 D1 D4

Step 0. COW, FOX, RAT COW, FOX, 
RAT

GOAT, FROG GOAT, FROG COW, FOX, 
RAT

Step 1.
D1 ← GOAT

COW, FOX, RAT COW, FOX, 
RAT

FROG
GOAT

COW, FOX, 
RAT

Step 2.
A3 ← FROG

COW, FOX, RAT COW, FOX, 
RAT FROG GOAT

COW, FOX, 
RAT

A3[0]≠D1[3]
Back track to Step2

Step 3.
D1 ← FROG

COW, FOX, RAT COW, FOX, 
RAT

GOAT
FROG

COW, FOX, 
RAT

Step 4.
A3 ← GOAT

COW, FOX, RAT COW, FOX, 
RAT GOAT FROG

COW, FOX, 
RAT

Step 5.
A1 ← COW COW

FOX, RAT
GOAT FROG

FOX, RAT

A1[0]≠D1[0]
Back track

Step 6.
A1 ← FOX FOX

COW, RAT
GOAT FROG

COW, RAT

Step 7.
A2 ← COW FOX COW GOAT FROG

RAT

Step 8.
D4 ← RAT FOX COW GOAT FROG RAT

Solution: {〈A
1
, FOX〉,〈A

2
, COW〉,〈A

3
, GOAT〉,〈D

1
, FROG〉,〈D

4
, RAT〉}

Step 1. To select the fi rst variable for assignment of a value we fi rst apply the MRV heuristic and fi nd 
that both D1 and A3 are the candidates. To resolve the tie we apply the degree heuristic and 
fi nd that D1 is the candidate as it is involved with the highest number of variables (3) through 
constraints. Hence we select D1 for assignment at this stage. Now, the current domain of D1 
is {FROG, GOAT}. Among these candidates the value GOAT is selected for D1. Hence the 
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assignment is now {〈D1, GOAT〉}. Th is assignment immediately removes the value GOAT 
from other domains. However, as D(A3) = {FROG, GOAT} is the only other domain contain-
ing GOAT as a member. Th erefore D(A3) reduces to {FROG} aft er this step.

Step 2. As A3 has minimum number of remaining values, just one – FROG, it is the candidate for next 
assignment and we assign 〈A3, FROG〉 making the current assignment state as {〈A3, FROG〉 , 
〈D1, GOAT〉}. However, this assignment violates the constraint A3[0] = D1[3] because in this 
case A3[0] = F and D1[3] = T. Since A3 does not have any other value to try, we have to reject this 
assignment and backtrack to step 1. 

Step 3. We retrieve the assigned value of D1 and try with the other alternative, i.e., FROG. Hence the 
state of the problem becomes {〈D1, FROG〉}. Th is assignment reduces the domain of A3 to a 
single value D(A3) = {GOAT}.

Step 4. A3 is given the value GOAT. Now the constraint A3[0] = D1[3] is satisfi ed because both A3[0] and 
D1[3] are now G. Th e assignment state is {〈A3, GOAT〉 , 〈D1, FROG〉}.

Step 5. A1 is selected for the next assignment and we assign 〈A1, COW〉. Accordingly COW is elimi-
nated from both D(A2) and D(D4). But this assignment 〈A1, COW〉 violates the constraint C1 : 
A1[0] = D1[0]. Th erefore we have to reject it and backtrack. Th is is done in Step 6 where we try 
with A1 ← FOX and this turns out to be the right choice.

Th e rest of the process as depicted in Table 11.14 is self-explanatory. Ultimately we get the solution 
{〈A1, FOX〉,〈A2, COW〉,〈A3, GOAT〉,〈D1, FROG〉,〈D4, RAT〉. Th e solved crossword puzzle is shown in 
Fig. 11.110.

1

1 2 3 4 5

F O X

R R

C O W A

G O A T

2

3

4

{〈A1, FOX〉,〈A2, COW〉,〈A3, 
GOAT〉,〈D1, FROG〉,〈D4, RAT〉}

(9)

(8)

(7)(6)

Backtrack

(5)

Backtrack

(3)

(4)(2)

(1) { }

A3 ←← FROG

D1DD ←← FROGD1DD ←← GOAT

A3 ←← GOAT

A1 ←← RAT

A2 ←← RAT

D4DD ←← RAT

A1 ←← COW

A2 ←← COW

A1 ←← FOXOO

Fig. 11.110.  Solution of the 
crossword puzzle.

Fig. 11.111.  Solution tree for the crossword puzzle under 
backtracking DFS strategy.
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Fig. 11.111 represents the solution tree where the backtracking paths are indicated with dotted lines. Th e 
numbers in the parentheses give the sequence in which the nodes are explored.

Problem 11.10 (Applying constraint satisfaction to solve cryptarithmetic puzzle) Cryptarithmetic 
puzzles are typical CSPs with general constraints. Consider the following cryptarithmetic problem:

O N E
+ O N E

T W O

It is required to fi nd values (taken from the set of 10 digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} for the letters E, N, O, 
T and W such that their substitution into the above scheme results in a valid addition. Moreover, all the 
values of E, N, O, T and W should be diff erent. Formulate the problem as a CSP and solve it.

Solution 11.10 First we present the CSP formulation then work for a solution to the formulated 
CSP. In this case, apart from the fi ve variables E, N, O, T and W directly involved with the CSP we need 
to consider two more variables, say X1 and X2, corresponding to the two carries of addition. Let X1 be the 
carry produced by adding the digits at the unit place and X1 be the same for the 10’s place. As it is seen 
from the scheme the last addition does not produce any carry.

CSP formulation

Variables:  1. E,N,O,T,W
Auxilary Variables: X1, X2

Domains:  2. D(E) = D(N) = D(O) = D(T) = D(W)
    = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
    D(X1) = D(X2) = {0, 1}

Constraints: 3. C1 : E ≠ N≠ O ≠ T ≠ W
    C2 : E + E = O + 10 × X1
    C3 : N + N + X1 = W + 10 × X2
    C4 : O + O + X2 = T

As the constraints are general in nature, i.e., they involve more than two variables, we should have a con-
straint constraint hypergraph and not just a constraint graph. Th is hypergraph is shown in Fig. 11.112. 
Now we go for the solution. Th e trace of the solution process is depicted in Table 11.15. Successive steps 
described below.
Step 1. Applying the MRV heuristic, we identify X1 or X2 as the probable candidates for the fi rst assignment 

of value. To resolve the tie, let us apply the degree heuristic. However, the degree heuristic does 
not help much because both the variables happen to be involved with 5 other variables through 
constraints (see Fig. 11.112). Th erefore we resolve the tie arbitrarily and make the assignment X1 
← 0. However this assignment has its implications on the domains of the other variables. Let us 
see how. If X1 = 0 then according to constraint C2 we have E + E = O + 10 × 0 = O. As 2 × E = O, O 
must be an even digit. Th is makes D(O) = {0, 2, 4, 6, 8}. However, O can not be 0 because in that 
case E is also 0 and we would have E = O which violates constraint C1. Th erefore 0 is eliminated 
from D(O) to obtain D(O) = {2, 4, 6, 8}. In Table 11.15 this is shown in a sub-row demarked with 
dotted lines within the row for Step 1. Now as 2 × E = O, i.e., E = O/2, domain of E is reduced to 
D(E) = {1, 2, 3, 4}. Let us now focus on constraint C4 : O + O + X2 = T. If X2 = 0 then T can be either 
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4, or 8 depending on whether O is 2, or 4. Similarly, if X2 = 1 then T = 5, or 9. Th e fact that T is a 
single digit eliminates 6 and 8 from the domain of O which in turn removes 3 and 4 from D(E). 
Hence ultimately we get D(E) = {1, 2}, D(O) = {2, 4}, and D(T) = {4, 5, 8, 9}. All these are shown in 
the sub-rows within the row for Step 1 in Table 11.15.

E

C1

N O T W

C2CC C3CC C4CC

X1XX X2XX

Fig. 11.112. Hypergraph for the cryptarithmetic puzzle.

Step 2. At the end of the fi rst step the problem state is {〈X1, 0〉} and the domains of the unassigned 
variables are D(E) = {1, 2}, D(O) = {2, 4}, D(T) = {4, 5, 8, 9}, D(N) = D(W) = {1-9}, and D(X2) 
= {0,1}. Th e MRV heuristic off ers three candidates, viz., E, O and X2, for assigning a value in 
the second step. Th e tie should be resolved through the degree heuristic. Now, consulting the 
hypergraph of Fig. 11.112 it is seen that the variables E, O and X2 are involved with 4, 5 and 4 
number of yet unassigned variables through the constraints. Th erefore O is selected. Th e can-
didate values 2 and 4 have the same eff ect on the domains of other related variables. Hence we 
arbitrarily choose O ← 2. Th is immediately removes 2 from all other domains and 8 and 9 from 
the domain of T by virtue of constraint C4. Hence the state of the problem at the end of Step 2 
is {〈O, 2〉, 〈X1, 0〉}.

Step 3. At this point E has only one legal value left  in its domain, and all other unassigned variables 
have more that one values in their domains. Hence the assignment E ← 1 is made resulting in 
the state {〈E, 1〉, 〈O, 2〉, 〈X1, 0〉}. Th e value of 1 is removed from all other domains, except X2.

Th e rest of the steps can be traced similarly. Table 11.15 depicts the entire process.At each step the assign-
ment made is highlighted with boldfaces. Th e blank cells indicate that the domains of the corresponding 
variables have remained unchanged.

Table 11.15. Trace of backtracking DFS for cryptarithmetic puzzle

E N O T W X1 X2

Step 0: {0-9} {0-9} {0-9} {0-9} {0-9} {0, 1} {0, 1}

(continued)
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Table 11.15. Continued

E N O T W X1 X2

Step 1:
X1 ← 0

X1←0

{2, 4, 6, 8}

{1, 2, 3, 4} {4, 5, 8, 9}

{2, 4}

{1, 2}

Step 2:
O ← 2

{1, 2} {0−9} O ←2 {4, 5, 8, 9} {0−9} 〈X1, 0〉 {0, 1}

{1} {0−1, 3−9} {4, 5} {0−1, 3−9}

Step 3:
E ← 1

E ← 1 {0−1, 3−9} 〈O, 2〉 {4, 5} {0−1, 3−9} 〈X1, 0〉 {0, 1}

{0, 3−9} {0, 3−9}

Step 4:
X2 ← 0

〈E, 1〉 {0, 3−9} 〈O, 2〉 {4, 5} {0, 3−9} 〈X1, 0〉 X2 ← 0

{4}

{0, 3} {0, 6}

Step 5:
T ← 4

〈E, 1〉 {0, 3} 〈O, 2〉 T ← 4 {0, 6} 〈X1, 0〉 〈X2, 0〉

Step 6:
N ← 0

〈E, 1〉 N ← 0 〈O, 2〉 〈T, 4〉 {0, 6} 〈X1, 0〉 〈X2, 0〉

{6}
(C3 violated. 
Backtrack)

Step 7:
N ← 3

〈E, 1〉 N ← 3 〈O, 2〉 〈T, 4〉 {0, 6} 〈X1, 0〉 〈X2, 0〉

{6}

Step 8:
W ← 6

〈E, 1〉 〈N, 3〉 〈O, 2〉 〈T, 4〉 W ← 6 〈X1, 0〉 〈X2, 0〉

Solution : {〈E, 1〉,〈N, 3〉,〈O, 2〉,〈T, 4〉,〈W, 6〉}

Substituting these values into the given puzzle we get the following consistent solution. Obviously, 
the solution is not unique. Diff erent solutions may be obtained by assigning diff erent values to variables, 
wherever applicable.

2 3 1
2 3 1
4 6 2

Problem 11.11 (Transformation of propositional logic formulae through means-ends analy-
sis) Propositional logic formulae are converted from one form to other using standard rules, e.g., com-
mutative law, associative law, distributive law, De Morgan’s law etc.Propose a Means-Ends Analysis system 
to automate such transformation and apply it to transform the formula (P→Q)∧(P→R) to (R∧Q)∨¬P.
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Solution 11.11 Equivalent propositional formulae may structurally diff er in many ways. For ex-
ample the formulae A∧B and B∧A diff er in their relative positions. Th is diff erence can be removed by 
applying the commutative law. Similarly, the distributive law which states that (P∨Q)∧(P∨R) = P∨(Q∧R) 
can be applied to reduce the diff erence between the number of occurrences of a variable. Table 11.16 
presents some of the fundamental operations, or rules, that can be used to reduce various such diff er-
ences between an intermediate formula and a goal formula. Th e table indicates the pre-conditions as well 
as the post-conditions corresponding to these operations.

Table 11.16. Difference Table for Transformation of Logical Formulae

Difference Operator Precondition Postcondition

Presence / absence of 
the implication sign (→)

remove implication P→Q ¬P∨Q

Relative positions of the 
variables

commutative law i) P∨Q
ii) P∧Q

Q∨P
Q∧P

Number of occurrences 
of the variables

distributive law i) (P∨Q)∧(P∨R)
ii) (P∧Q)∨(P∧R)
iii) (P∨(Q∧R)
iv) P∧(Q∨R)

P∨(Q∧R)
P∧(Q∨R)
(P∨Q)∧(P∨R)
(P∧Q)∨(P∧R)

Presence / absence of 
parenthesis

De-Morgan’s law i) ¬(P∨Q)
ii) ¬(P∧Q)
iii) ¬P∧¬Q
iv) ¬P∨¬Q

¬P∧¬Q
¬P∨¬Q
¬(P∨Q)
¬(P∧Q)

Fig. 11.113 (a) - (b) and Fig. 11.114 (a) - (c) together show the trace of an MEA process applied to the 
given formulae. Let the starting formula (P→Q)∧(P→R) be denoted as the initial state Si and the fi nal 
form (R∧Q)∨¬P as Sg, the goal state. Si and Sg involve 3 variables P, Q and R. Th ese variables have oc-
curred a total of 4 times in Si and 3 times in Sg.

Diff: No. of occurrences of variables
Operation: Distriii buii tive law

Diff: Nov of occurrences of variables
Operation: distriii buii tive law

(a)

(b)

SgSS : (R ∧ Q ) ∨ ¬ P

SgSS : (R ∧ Q ) ∨ ¬ P

S1 : (R ∨¬ P ) ∧ (Q ∨¬ P )

Si : (P → Q ) ∧ (P → R ) 

Si : (P → Q ) ∧ (P → R ) 

Diff: Implicatiott n sign (→)
Operation: Remove →

Fig. 11.113 (a)–(b). First two steps
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(a)

S2SS : (¬P ∨ Q ) ∧ (¬P ∨ R )

Si : (P → Q ) ∧ (P → R ) 

Diff: Relative positions of ¬P & Q
Operation: Commutative law

Diff: No of occurrences of variables
Operation: distriii buii tive law

S1 : (R ∨¬ P ) ∧ (Q ∨¬ P )

Diff: Implicatiott n sign (→)
Operation: Remove →

Sg SS : (R ∧ Q ) ∨ ¬ P

(b)

S3SS : (Q ∨ ¬P ) ∧ (¬P ∨ R )

Diff: Relative positions of ¬P & R
Operation: Commutative law

Diff: Relative positions of ¬P & Q
Operation: Commutative law

Diff: Relative positions of ¬P & Q
Operation: Commutative law

Diff: Relative positions of (Q ∨ ¬P ) & (¬P ∨ R )
Operation: Commutative law

Diff: No of occurrences of variables
Operation: distriii buii tive law

S1 : (R ∧¬ P ) ∧ (Q ∨¬ P )

Diff: Implicll atiott n sign (→)
Operation: Remove →

Sg SS : (R ∧ Q ) ∨ ¬ P

S2SS : (¬P ∨ Q ) ∧ (¬P ∨ R )

Si : (P → Q ) ∧ (P → R )

(c)

S4SS : (¬P ∨ R ) ∧ (Q ∨ ¬P )

Diff: Relative positions of ¬p & Q
Operation: Commutative law

Diff: No of occurrences of variables
Operation: distriii buii tive law

S1 : (R ∧¬ P ) ∧ (Q ∨¬ P )

SgSS : (R ∧ Q ) ∨ ¬ P

S3 SS : (Q ∨ ¬P ) ∧ (¬P ∨ R )

Diff: Implicll atiott n sign (→)
Operation: Remove →

Si : (P → Q ) ∧ (P → R ) 

S2 SS : (¬P ∨ Q ) ∧ (¬P ∨ R )

Fig. 11.114. (a)–(c) Last three steps

Let us suppose that the systems presently considers this to be the most important diff erence and identi-
fi es, with the help of the Diff erence-operator table, the distributive law (P∨Q)∧(P∨R) = P∨(Q∧R) as the 
appropriate operation for reducing the said diff erence. Moreover, consulting the pre-condition vis-à-vis 
the structure of the goal Sg = (R∧Q)∨¬P the system creates a sub-goal S1: (R∨¬P)∧(Q∨¬P). Th ese two 
steps are shown in Fig. 11.113 (a) - (b). Th e solid and the dashed arrows depict diff erences already ad-
dressed and diff erences yet to be addressed, respectively. 

To reduce the gap between Si and S1, the system considers the main diff erence to be the presence 
and absence of the implication (→) sign in the respective formula, i.e., Si and S1. Th erefore the opera-
tion to be applied is remove implication with the help of the rule P→Q = ¬P∨Q. Th e rest of the trace 
is given in Fig. 11.114 (a)–(c). Th e generated plan of actions as well as the gradual transformation of 
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the formulae from the initial state to the goal state resulting from the application of these operations is 
shown in Fig. 11.115.

GOAL

START

Diff: Implicatiott n sign (→)
Operation: Remove →

Diff: Relative positions of ¬P & Q
Operation: Commutattt ivtt e vv law

Diff: Relative positions of ¬P & R
Operation: Commutative law

Diff: Relative positions of (Q ∨¬ P ) & (¬P ∨ R )
Operation: Commutative law

Diff: No. of occurrences of variables
Operation: Distriii buii tive law

Si : (P → Q ) ∧ (P → R ) 

S2SS : (¬P ∨ Q ) ∧ (¬P ∨R )

S3SS : (Q ∨ ¬P ) ∧ (¬P ∨R )

S4SS : (¬P∨R ) ∧ (Q∨¬QQ R )

S1 : (R∧¬RR P ) ∧ (Q ∨¬P )

S0 SS : (R∧RR Q ) ∨¬ P

Fig. 11.115. Plan generated through the MEA process for transformation of predicate logic formulae

Problem 11.12 (Solving the Monkey-and-Banana Problem applying means-ends analysis) Con-
sider the simple world of a monkey. Th ere is a room with a door and a window. A box is placed at the 
window and a bunch of bananas is hanging from the ceiling at the middle of the room. Th e monkey is 
hungry but it cannot get the bananas as these are out of its reach. However, if the box is placed at the 
middle of the room just below the bunch of bananas and the monkey climbs the top of the box then it 
can grab the bananas and eat them. Th e monkey can walk, can push the box along the fl oor, can climb on 
the top of the box, and if within its reach, it can grab the bananas. Initially the monkey is at the door of 
the room. Can it catch the bananas? If yes, what sequence of actions must be taken to achieve this goal? 
Propose a Means-Ends Analysis system to solve this problem. 

Solution 11.12 Th ere are four signifi cant parameters to characterize a state of the given Monkey-
and-Banana problem, viz., the position of the monkey, whether the monkey is on the fl oor or on the 
box, the position of the box, and whether the monkey is holding the banana or not. Hence, a state of the 
system can be expressed as a 4-tuple < P, Q, R, S > where
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 P is the position of the monkey
 Q is whether the monkey is on the fl oor or on the box
 R is the position of the box
 S is whether the monkey has grasped the banana or not.

Banana at the
middle

window

box

door

monkey

Initial State
P, i.e., position of monkey = Door
Q, i.e., whether the monkey is on the fl oor, or on the box = Floor
R, i.e., position of the box = Window
S, i.e., whether the monkey holds the banana or not = No

Fig. 11.116. Initial state of the Monkey-and-Banana problem

For the sake of simplicity we assume that the monkey can be either at the door, or at the window, or at 
the middle of the room. Similarly, the box can also be at one of these positions only. Hence the domains 
of P, Q, R, and S are defi ned as follows:

 P ∈ { Door, Window, Middle }
 Q ∈ { Floor, Box }
 R ∈ { Door, Window, Middle }
 S ∈ { Yes, No }

Th ere are four activities of the monkey, viz., it can walk from place to place, it can push the box from 
one place to another, it can climb the box, and if possible, it can grab the banana. However, each of these 
activities requires certain conditions to hold good. For example, in order to push the box from position 
X to position Y both the monkey and the box must be at position X. Moreover, the monkey should be 
on the fl oor to push the box. As a result of pushing the box from X to Y the monkey as well as the box 
will be at Y. Th e initial state of the system is < Door, Floor, Window, No > because in the beginning the 
monkey is at the door, on the fl oor, the box is at the window, and the monkey is not holding the banana. 
Th e fi nal state is given by < Middle, Box, Middle, Yes >. Fig. 11.116 and Fig. 11.117 present the initial and 
the goal states of the given problem.
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Goal State
P, position of monkey = Middle
Q, whether the monkey is in the fl oor, or on the box = Box
R,  position of the box = Middle
S, whether the monkey holds the banana or not = Yes

Fig. 11.117. Goal state of the Monkey-and-Banana problem

Fig. 11.118 shows the Diff erence-Operator-Precondition table for this problem. Initially the system rec-
ognizes the most important diff erence between the start state and the goal state to be with respect to the 
status of the banana. Consulting the Diff erence-operator table it is found that the only operation capable 
of reducing this diff erence is grab().
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Location of box √
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Fig. 11.118. The Difference-Operator-Precondition table for the Monkey-and-Banana problem
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GoalStart

Door

Floor

Window

No

Middle

Box

Middle

Yes
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Floor
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Floor
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No
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No

Middle
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Middle

Yes

Window

Floor
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No

Middle

Floor
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No

Middle

Box

Middle

No

Middle

Box

Middle

Yes

(a)

(b)

(c)

(d)

Diff: Status of banana

Diff: Location of Boxoo

Op: Grab()

Op: Push()

Push()

Push
(Window
to
Middle)

Grab()

Grab()

Grab()

Op: Walkll ()kk

Walk
(Door to
Window)

Op:
Climb()

Climb()

Start S1 Goal

S3SS

S3SS

S2SS

S2SS

S1

S1

GoalStart

Diff:
Location
of
monkey

Diff:
Level of
monkey’se
position

GoalStart

Fig. 11.119. Solving the Monkey-and-Banana problem through Means-Ends Analysis

However, in order to grab the banana both the monkey and the box should be in the middle and the 
monkey should be on the box. Th erefore a sub-goal S1 corresponding to such a state is created (see 
Fig. 11.119 (a) - (b)). As usual, the dashed lines represent the diff erences yet to be removed and the 
solid lines correspond to diff erences already addressed through appropriate operations.

Th e situation depicted in Fig. 11.119 (c) is noteworthy. Th e diff erence identifi ed by the system be-
tween the start state and S1 is location of box and the operation to remove that diff erence is push (see 
Fig. 11.119 (b)). However, application of the operation push results in creation of states S2 and S3 both of 
which are intermediate between the start state and S1. Consequently, the gap between the start state and 
S1 is fragmented into two gaps, viz., one between the start state and S2 and the other between S3 and S2. 
Th e operators employed to bridge these gaps are shown in Fig. 11.119 (c) - (d).

� TEST YOUR KNOWLEDGE

11.1 Which of the following search algorithm is not admissible? 
a) Breadth-fi rst search b) Depth-fi rst search
c) A* d) None of the above
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11.2 For an ideal search process the penetrance P attains the value 
a) 0 b) 0.5
c) 1 d) None of the above

11.3 Let P be the penetrance and B be the eff ective branching factor of an A* search. Th en which of the 
following is true?
a) P ≤ 1 and B ≤ 1 b) P ≤ 1 and B ≥ 1
c) P ≥ 1 and B ≤ 1 d) P ≥ 1 and B ≥ 1

11.4 Let P be the penetrance and B be the eff ective branching factor of an A* search. Which of the fol-
lowing is true for an ideal A* search?
a) P = 1 and B = 1 b) P = 1 and B ≠ 1
c) P ≠ 1 and B = 1 d) P ≠ 1 and B ≠ 1

11.5 Let A1 and A2 be two A* algorithms using the heuristic estimation functions h1 and h2 such that A2 
is more informed than A1. Th en for any node n of the search space which of the following holds 
good?
a) h1(n) ≤ h2(n) b) h2(n) ≤ h1(n)
c) h1(n) ≠ h2(n) d) None of the above

11.6 If there exists a goal in the state space, an A* algorithms will not terminate if
a) Th e state space is infi nite b) Th e state space contains cycles
c) Th e state space is not fully connected d) None of the above

11.7 In which of the following situations, an A* algorithms fails to return an optimal path from the 
start state to a goal state?
a) Th e state space is infi nite b) Th e state space contains cycles
c) Th e state space is not fully connected d) None of the above

11.8 Which of the following may not be true for a state space?
a) It has many goals states b) It has no goal state
c) It has some start state d) None of the above

11.9 Which of the following is not an exhaustive search?
a) Depth-fi rst search b) Breadth-fi rst search
c) Best-fi rst search d) None of the above

11.10 Th e possibility of reaching a goal by a depth-fi rst search is high if the state space has
a) Only a few goal states b) Many goal states
c) No goal state d) None of the above

11.11 Which of the following is not an informed search?
a) A-algorithm b) A*-algorithm
c) Best-fi rst search d) None of the above

11.12 Which of the following is not an un-informed search?
a) Depth-fi rst search b) Breadth-fi rst search
c) Bidirectional d) None of the above

11.13 Let A1 and A2 be two A* algorithms using the heuristic estimation functions h1 and h2 such that 
for any node n of the search space h1(n) ≥ h2(n). Th en which among A1 and A2 will explore more 
nodes?
a) A1 b) A2 
c) Uncertain d) None of the above

11.14 Which of the following search procedures is not applicable when there are multiple goal states?
a) Bidirectional b) Iterative deepening
c) Depth-fi rst d) None of the above
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11.15 Which of the following search procedures has best time complexity?
a) Breadth-fi rst b) Iterative deepening
c) Depth-fi rst d) Bidirectional

J

DB

F H I

K L

GE

C

A

M

Fig. 11.120

11.16 Fig. 11.120 shows a state space with a number of goal states and the start state A. Which of the 
following search strategies is the most appropriate for such a state space?
a) Breadth-fi rst b) Depth-fi rst
c) Either (a) or (b) d) None of the above
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Fig. 11.121

11.17 Fig. 11.121 shows a state space with a single goal state I and the start state A. Which of the follow-
ing search strategies is the most appropriate for such a state space?
a) Breadth-fi rst b) Depth-fi rst
c) Either (a) or (b) d) None of the above

11.18 Fig. 11.122 shows a state space with estimated costs attached to each state. Which set of states will 
remain open aft er the node marked B is expanded?
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a) {A,B,C,D,E,F,G} b) {E,F,G} 
c) {D,E,F,G} d) {E,F,G,H,I}

J

DB

F H I

K L

GE

C

A(30)

(23)

(40)

(33)
(5)

(15)

(24)

(11) (13)

(20)

(25)

(10)

(27)

M

Fig. 11.122. A state space with estimated costs of each state 

11.19 Fig. 11.122 shows a state space with estimated costs attached to each state. Which of the following 
states will be explored and expanded aft er B?
a) C b) H
c) F d) L

11.20 Fig. 11.122 shows a state space with estimated costs attached to each state. How many nodes will 
remain in the OPEN queue aft er reaching the goal state?
a) 1 b) 2
c) 3 d) 4

11.21 Which of the following describes hill climbing strategy best?
a) It is a local search  b) It is adversarial search
c) It is an admissible search d) None of the above

11.22 Which of the following is not true for a hill climbing search?
a) It uses an objective function  
b) It employs heuristic knowledge
c) It solves optimization problems
d) None of the above

11.23 Which of the following may cause a hill climbing process to return a sub-optimal solution?
a) Th e state space is too large
b) Th ere are local optima in the state space 
c) Th e objective function is not appropriate
d) None of the above

11.24 Among the following, whose existence within the state space does not hinder a hill climbing 
process in its progress towards the global optimum?
a) Plateaux b) Local optima
c) Ridges d) None of the above
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11.25 Between regular hill climbing and steepest ascent hill climbing, which one is likely to return a 
better solution?
a) Regular hill climbing b) Steepest ascent hill climbing
c) Uncertain d) None of the above

11.26 Between regular hill climbing and steepest ascent hill climbing, which one is more likely to get 
stuck in a local optima?
a) Regular hill climbing b) Steepest ascent hill climbing
c) Uncertain d) None of the above

11.27 Which of the following problems is not suitable for hill climbing as a solution strategy?
a) Traveling salesperson b) 8-queen
c) CNF satisfi ability d) None of the above

11.28 Which of the following structures in a state space may consist of a number of local optima?
a) Plateaux b) Ridges
c) Both (a) and (b) d) Neither (a) nor (b)

11.29 AND-OR graphs are suitable representations of problems that are 
a) Irrevocable b) Decomposable 
c) Intractable d) None of the above

11.30 Which of the following can be considered as a special case of AND-OR graphs? 
a) State space b) Semantic networks 
c) Both (a) and (b) d) None of the above

11.31 Th e sub-problems into which the problem corresponding to an AND-node of an AND-OR tree 
are decomposed should be 
a) Independently solvable b) Further decomposable
c) Trivially solvable d) None of the above

11.32 In order to solve an OR node of an AND-OR graph we have to solve 
a) Its parent node b) Any one of its successors
c) All of its successors d) None of the above

11.33 In order to solve an AND node of an AND-OR graph we have to solve 
a) Its parent node b) Any one of its successors
c) All of its successors d) None of the above

11.34 Solution of a problem expressed as an AND-OR tree is represented by
a) A path b) A leaf node
c) Th e root node d) A sub-tree

11.35 In an AND-OR graph, the optimization criteria can be formulated by attaching costs/weights to 
the
a) Nodes b) Arcs
c) Both (a) and (b) d) None of the above

11.36 Let h(n) be the value of the heuristic function at node n and h1(n) be the estimated value ofh(n). 
Which of the following conditions must be satisfi ed to make AO* algorithm admissible?
a) h1(n) ≤ h(n) b) h1(n) ≥ h(n)
c) h1(n) ≠ h(n) d) None of the above

11.37 In which of the following situations of AO* search a node is marked as FUTILE?
a) Th e estimated cost of the node becomes too high
b) Th e problem represented by the node is unsolvable

Samir Roy_Chapter11.indd   519Samir Roy_Chapter11.indd   519 2/21/2013   3:38:30 PM2/21/2013   3:38:30 PM



520  Introduction to Soft Computing

c) Either (a) or (b)
d) None of the above

11.38 Consider the partially created AND-OR graph of Fig. 11.123. Assuming a uniform cost of 1 for 
each link, which of the following nodes will be chosen for expansion in this situation?
a) x b) y
c) z d) None of the above

a

x y z

(5) (2)(3)

Fig. 11.123

11.39 Which of the following is a kind of best-fi rst search?
a) A* b) AO*
c) Both (a) and (b) d) None of the above

11.40 Which of the following problems is neither monotonic, nor partially commutative?
a) Th eorem proving  b) Chemical synthesis
c) Robot navigation d) Playing a game of bridge

11.41 Which of the following problems is both monotonic and partially commutative?
a) Th eorem proving  b) Chemical synthesis
c) Robot navigation d) Playing a game of bridge

11.42 Which of the following is not a part of a AI production system?
a) Global Database  b) Production rules
c) Control strategy d) None of the above

11.43 What kind of control system a backtracking control system is? 
a) Irrevocable b) Tentative
c) Both (a) and (b) d) Neither (a) nor (b)

11.44 A commutative production system is one which is
a) Monotonic  b) Partially commutative
c) Both (a) and (b) d) Neither (a) nor (b)

11.45 For a given problem, the way to decide which between BFS and DFS is more effi  cient is
a) By running BFS and DFS for the problem separately. 
b) By analyzing the problem
c) By simulation
d) None of the above

11.46 Which among the following usually requires less memory ?
a) BFS b) DFS
c) Undecidable d) None of the above

11.47 Depth-fi rst iterative deepening is a combination of 
a) BFS and DFS b) Best-fi rst search and bidirectional search
c) A* search and AO* search d) None of the above
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11.48 Which among the following search techniques assumes the heuristic function as 0 for all 
nodes ? 
a) BFS b) Branch and bound
c) Both (a) and (b) d) None of the above

11.49 Which of the following search techniques make use of AND-OR graphs ? 
a) Branch and bound b) Problem reduction
c) Hill climbing d) None of the above

11.50 In state space search heuristic knowledge is employed to 
a) improve the quality of the solution b) make the search faster
c) Both (a) and (b) d) None of the above

11.51 In which of the following problem solving strategies the path by which a solution is reached is 
irrelevant?
a) Means-Ends Analysis b) Minimax search 
c) Constraint Satisfaction d) None of the above

11.52 Which of the following is not a constraint satisfaction problem?
a) Linear programming b) Graph colouring 
c) 8-queen d) None of the above

11.53 In the context of constraint satisfaction problems which of the following statements is true?
a) All general constraints can be converted to binary constraints
b) All binary constraints can be converted to unary constraints
c) All general constraints can be converted to unary constraints
d) None of the above

11.54 Which of the following structures is used in a constraint satisfaction problem having constraints 
involving more than two variables?
a) Constraint graph b) Constraint hypergraph
c) Both (a) and (b) d) None of the above

11.55 Which of the following methods of solving a constraint satisfaction problem starts with an empty 
assignment and gradually proceeds towards a complete solution?
a) Backtracking DFS b) Min-confl ict local search
c) Both (a) and (b) d) None of the above

11.56 Which of the following methods of solving a constraint satisfaction problem starts with a complete 
but inconsistent solution and then transforms it into a consistent complete solution?
a) Backtracking DFS b) Min-confl ict local search
c) Both (a) and (b) d) None of the above

11.57 While solving a constraint satisfaction problem through backtracking DFS, which of the following 
is not used to select a variable for assignment?
a) Minimum remaining values heuristic b) Degree heuristic
c) Least constraining value heuristic d) None of the above

11.58 Which of the following methods of solving a constraint satisfaction problem involve constraint 
propagation?
a) Backtracking DFS b) Min-confl ict local search
c) Both (a) and (b) d) None of the above

11.59 Consider the constraint hypergraph of Fig. 11.124. According to degree heuristic, which variable 
should be considered for assigning a value at the beginning of a backtracking DFS strategy?
a) A b) B
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c) C d) D

A

C1CC

B C D

C3CC C4CC C5CC

C2CC

Fig. 11.124 A constraint hypergraph

11.60 Consider the constraint hypergraph of Fig. 11.124. Suppose that C has been assigned a value and 
the present domains for the remaining variables are as follows: D(A) = {v1, v2}, D(B) = {v3, v4, v5}, 
D(D) = {v6, v8}. 
a) A b) B
c) D d) None of the above

11.61 Which of the following kinds of problems is suitable for adversarial search?
a) Th eorem proving  b) Game playing
c) Robot navigation d) Language processing

11.62 Which of the following is an adversarial search procedure?
a) MiniMax procedure b) Mean-Ends analysis
c) Constraint satisfaction d) None of the above

11.63 In MiniMax search, Alpha-Beta pruning is used to 
a) Limit the search to a fi xed depth
b) Guide the search towards a goal
c) To avoid irrelevant parts of the game tree during search
d) None of the above

11.64 Which of the following is a technique to determine the depth to which MiniMax search should 
be conducted?
a) Alpha-Beta pruning b) Waiting for quiescence
c) Secondary search d) None of the above

11.65 Th e technique employed to avoid horizon eff ect in MiniMax search is
a) Alpha-Beta pruning b) Waiting for quiescence
c) Secondary search d) None of the above

11.66 Which of the following features of a depth-limited-MiniMax search embody heuristic knowledge 
to win the game? 
a) Depth limit of search b) Static evaluation function
c) Both (a) and (b) d) None of the above

11.67 Fig. 53.16 presents a game tree showing the scores of the terminal nodes according to some static 
evaluation function. What is the Mini-Max value of node A? 
a) −∞ b) 0
c) 3 d) 5
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11.68 On the basis of the game tree presented in Fig. 11.125, which node represents the best move for 
MAX in this turn? 
a) B b) C
c) D d) None of the above

(0)(−∞)

(−∞)

B

A

C

E F

(3) (5)

G H

D

MAX

MAX

MIN

Fig. 11.125 A game tree

11.69 If the game tree presented in Fig. 11.125 is subject to Alpha-Beta pruning during a MiniMax 
search, which of the following nodes will be pruned? 
a) E b) F
c) G d) H

11.70 According to the game tree presented in Fig. 11.125, which of the following nodes represent the 
worst move for MAX? 
a) B b) C
c) D d) None of the above

11.71 Which of the following A.I systems fi rst exploited Means-End Analysis technique of problem 
solving?
a) GPS b) MYCIN 
c) ELIZA d) None of the above

11.72 Which of the following is not true for Means-End Analysis as a problem solving technique?
a) It is a recursive process
b) It can identify the diff erence between two problem states
c) It generates a plan of actions to solve a problem
d) None of the above

11.73 Which of the following A.I processes involve operator subgoaling?
a) Means-End Analysis
b) Hill climbing 
c) Natural language processing
d) Pattern recognition

11.74 Which of the following A.I procedures makes use of a Diff erence-operator table?
a) AO*  b) Mini-max  
c) Constraint satisfaction d) Means-Ends Analysis
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11.75 Which of the following best describes the Means-Ends Analysis process?
a) Its a top-down process b) Its a bottom-up process 
c) Its an iterative deepening process d) None of the above

Answers:

 11.1 (b) 11.2 (c) 11.3 (b) 11.4 (a) 11.5 (a)
 11.6 (d) 11.7 (d) 11.8 (b) 11.9 (c) 11.10 (b)
 11.11 (d) 11.12 (d) 11.13 (b) 11.14 (a) 11.15 (d)
 11.16 (b) 11.17 (a) 11.18 (c) 11.19 (c) 11.20 (d)
 11.21 (a) 11.22 (d) 11.23 (b) 11.24 (d) 11.25 (c)
 11.26 (c) 11.27 (d) 11.28 (c) 11.29 (b) 11.30 (a)
 11.31 (a) 11.32 (b) 11.33 (c) 11.34 (d) 11.35 (c) 
 11.36 (a) 11.37 (c) 11.38 (a) 11.39 (c) 11.40 (d)
 11.41 (a) 11.42 (d) 11.43 (c) 11.44 (c) 11.45 (d)
 11.46 (b) 11.47 (a) 11.48 (c) 11.49 (b) 11.50 (b)
 11.51 (c) 11.52 (d) 11.53 (a) 11.54 (b) 11.55 (a)
 11.56 (b) 11.57 (c) 11.58 (a) 11.59 (c) 11.60 (a)
 11.61 (b) 11.62 (a) 11.63 (c) 11.64 (b) 11.65 (c)
 11.66 (b) 11.67 (c) 11.68 (c) 11.69 (b) 11.70 ()
 11.71 (a) 11.72 (d) 11.73 (a) 11.74 (d) 11.75 (b)

EXERCISES

11.1 Consider a mobile robot moving in the x-y plane among some obstacles. Th e obstacles are rectangu-
lar in shape and are aligned along the x and y axes. Th e movement of the robot is restricted in the x 
and y direction only and not along any oblique direction. On encountering an obstacle to robot can 
change its direction and the cost of changing the direction is equal to the cost of moving through a 
unit distance. Propose an A* algorithm for the robot to plan a collision-free path from an initial posi-
tion to a destination.

11.2 A branch-and-bound algorithm for the traveling salesperson problem assumes a uniform value of h 
(n) = 0 for every open node n. Can you suggest a non-zero estimation of h (n) for this problem? Solve 
the same problem as given in Example 11.7 with your heuristic function and see the outcome.

11.3 Consider a modifi ed version of the Monkey-and-banana problem in which there are two windows 
instead of one. Show how the state space representation of the problem changes due to this modifi ca-
tion.

11.4 Solve the 8-puzzle cited in Example 11.5 through bidirectional search.
11.5 Augment the set of production rules given in Table 11.8 in such a way that it is possible to generate 

sentences similar to Hari walks very slow. Show the derivation process for this sentence with the help 
of the augmented set of production rules.

11.6 A Boolean expression is said to be satisfi able if there is a truth value assignment to its variable which 
makes the expression True. Construct an AND-OR graph to determine whether the Boolean expres-
sion p.(q + r’.s’) + r’.(r + s’.(s + p)) is satisfi able or not. Also, show one solution graph for the 
given expression.

11.7 Construct an AND-OR graph for parsing valid sentences of the language defi ned by the following 
grammar.
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Production Rules Rule #
<sentence> → <statement> (1)
<sentence> → <question> (2)
<statement> → <noun><verb><adverb><fullstop> (3)
<question> → Who <verb><adverb><note-of-interrogation> (4)
<noun> → Mita (5)
<noun> → Gita (6)
<verb> → talks (7)
<verb> → walks (8)
<adverb> → quickly (9)
<adverb> → slowly (10)
<fullstop> → . (11)
<note-of-interrogation> → ? (12)

As usual, the symbols of the form <⋅> are the non-terminals of the grammar. Rest of the symbols, 
except ‘→’ are terminals.

11.8 Fig. 11.126 shows a network of cities through which a river passes. Cities A, B, C and D are on one 
side of the river and E, F and G are on the other side. Th ere are two bridges X and Y. Th e numbers 
adjacent to each arc shows the cost of the corresponding path between the cities. Construct an 
AND-OR graph to reach city G starting from city A. Moreover, show the solution graph for the 
minimal cost route from A to G.
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Fig. 11.126. A network of cities separated by a river

11.9 Consider the following set of rewrite rules

(1) E→DA (2) E→CB
(3) D→CA (4) D→BB
(5) C→BA (6) B→AA

Using the AO* algorithm fi nd the sequence of steps to transform the letter E to a string of consecu-
tive As.

Samir Roy_Chapter11.indd   525Samir Roy_Chapter11.indd   525 2/21/2013   3:38:31 PM2/21/2013   3:38:31 PM



526  Introduction to Soft Computing

11.10 Formulate and solve the following cryptarithmetic puzzle as a constraint satisfaction problem.
T W O

+ T W O
F OUR

11.11 Formulate and solve the following crossword puzzle as a constraint satisfaction problem.

1

1 2 3 4

1 2

3

4

2

3

4

List of words :

Across: 1, 3, 4
Down: 2, 3

ARMS
BOXOO
BUSUU
MOON
SUN

5

Fig. 11.127. A crossword puzzle

11.12 Fig. 11.128 shows a map with 6 regions A, B, C, D, E and F. Prove that at least four colours are 
required to colour the map such that no two adjacent regions have the same colour. Th e available 
colours are red, blue, green, and yellow. Formulate the colouring problem of the given map as a 
constraint satisfaction problem and fi nd a solution through a suitable technique to solve a CSP.

A B

C
D

E
F

Fig. 11.128. A map with 6 regions

11.13 Another version of the game of NIM: Th ere is a version of the game of NIM diff erent from what is 
described in Example 11.10. Here, instead of a number of piles, the game starts with a single pile 
of an odd number of sticks. During the game, each player in his turn has to split a pile into two. 
Th e two piles thus created should consist of unequal number of sticks. Th ere must be at least one 
stick in each pile. Th e game terminates when a player have no valid move. Th e player who fails to 
make a move loses the game and the other player wins.

Construct the complete game tree for NIM(7), i.e., the game which starts with 7 sticks in a 
single pile. 

11.14 Consider the complete game tree constructed in problem 11.8 above. Assuming a perfect game, 
i.e., no erroneous move made by any of the players, is it possible to determine at the outset who 
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will win the game? If yes, then fi nd that player and show the technique through which you deter-
mine this. 

11.15 A simple household robot can push, or carry an object from one place to another place, walk to 
a specifi ed location from its current position, pick up an object, putdown an object it is presently 
holding, and place an object on another provided the top of the second object is not currently 
occupied by anything. Th e diff erences that may appear between the states of the robot world are 
with respect to the position of some object, position of the robot itself, whether or not the top 
of an object is clear, whether or not a specifi ed object is on the top of another specifi ed object, 
whether or not the robot arm is free, whether or not the robot is holding a specifi ed object etc. 
Th e robot may pick a small, or light, object but not a big, or heavy, object. If the object is small, or 
light, it may pick it up and move to some place. However, if it intends to transfer a big, or heavy, 
object from one location to another, it has to push. 

Propose a set of operations for the said robot with their pre-conditions and results expressed 
as predicate logic formulae. Construct the Diff erence-operator table to be utilized by a Means-
Ends Analysis system and apply it to generate a plan for the robot to transfer a heavy object from 
one corner of a room to another corner.
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ADVANCED SEARCH STRATEGIES
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 Chapter Outline 

12.1 Natural Evolution: A Brief Review
12.2 Genetic Algorithms (GAs)
12.3 Multi-Objective Genetic Algorithms
12.4 Simulated Annealing (SA)

Chapter Summary
Solved Problems
Test Your Knowledge
Exercise
Bibliography and Historical Notes

An important class of problems encountered in real life is the so called optimization problems. Typically 
such a problem has numerous solutions of varying qualities where the quality of a solution is judged 
on the basis of certain criteria, presented in the form of a real valued objective function. Depending 
on whether the function is to be maximized or minimized, the optimization problem is further catego-
rized as a maximization, or minimization, problem. Now, classical optimization techniques can be used 
only on continuous diff erentiable functions. In the realm of computational problems, possibility of the 
objective function being continuous and diff erentiable is quite low, and therefore classical techniques 
have limited scope. Moreover, oft en the classical techniques have the tendency of settling down at local 
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minima or maxima points instead of the global best solutions. In reality, there are computational prob-
lems which require tremendous computational eff orts to fi nd the best solution. Intelligent search strate-
gies like hill climbing may be employed to obtain reasonably good solutions to such problems. However, 
hill climbing suff ers from the serious problem of settling to sub-optimal solutions remaining in the 
search space as local optimal points. Genetic Algorithms (GAs) and Simulated Annealing (SA) are two 
search strategies that are inspired by natural evolutionary processes and have the capacity to overcome 
the problem posed by the existence of local optima in large search spaces. GAs try to mimic the process 
of natural evolution through natural selection based on the Darwinian principle of survival of the fi ttest. 
It is essentially a maximization process. Simulated Annealing (SA) follows the process of physical an-
nealing where a metal is fi rst heated to a molten state and then gradually cooled to get a uniform crystal 
structure. Th is uniform crystal structure corresponds to a minimal energy level. Hence annealing is a 
minimization process. Both GAs and SAs have been extensively employed to solve complex problems of 
various fi elds including engineering, economics, biology etc. In the subsequent sections of this chapter, 
these two search techniques are discussed in greater details.

12.1 NATURAL EVOLUTION: A BRIEF REVIEW

Natural, or biological, evolution is the process of emergence of higher and complex life-forms from 
simpler, primordial, life-forms over billions of years. Th e scientifi c theory of evolution was proposed by 
Charles Darwin in 1859 through his celebrated work entitled Th e Origin of Species by Means of Natural 
Selection. Darwin’s theory had a great impact on humanity. It is widely perceived as one of greatest in-
tellectual triumphs achieved by man. Darwin’s theory is one of the few scientifi c discoveries that have 
revolutionized man’s world-view forever.

Th e mechanism Nature employs to realize evolution is called Natural Selection. Th e basis of Natural 
Selection is the principle of Survival of the Fittest, a phrase coined by Herbert Spencer. Darwin’s theory 
of evolution is based on three observations: (a) a species on earth, in general, produce much higher 
number of off spring than possibly can survive, (b) the individual members of a species possess various 
traits resulting in varied probabilities of survival and reproduction, and (c) children inherit the traits of 
their parents. In a certain environment, individuals having traits favourable to live in that environment 
have higher chance of survival and procreate. On the other hand, individuals lacking such traits are likely 
to die earlier and thereby, have less opportunity to have children. Th is is natural selection. Th e eff ect of 
natural selection is the gradual increase in the relative number of individuals who are better adapted to 
survive and reproduce in a certain environment. Individuals who lack such traits become scares over 
successive generations and eventually die out. Th e phenomenon of mutation helps to introduce a ran-
dom radical change in a species. If the change is favourable for survival then it is likely to continue in 
subsequent generations, otherwise it extinguishes in the process of natural selection. By way of natural 
selection, coupled with occasional mutation, Nature evolves higher forms of life on earth from lower 
ones. Th e main features of natural evolution that are signifi cant from computational point of view are 
present below.

12.1.1 Chromosomes

Th e traits of an individual are encoded and stored in each cell with the help of a structure called the 
chromosomes. For example, there are 23 pairs, or 46, chromosomes in human cells. Chromosomes 
are long strands of genes and the genes are made up of two long thin strands of DNA in a double 
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helix structure. Roughly speaking, a gene may be thought of as encoding a trait, e.g., colour of eye, or 
the shape of the lips etc. Th e idea of chromosome as an encoded pattern of individual traits is used 
in Genetic Algorithms (GAs). In GAs, each feasible solution is of a given optimization problem is 
encoded as a string of bits, characters etc. Th e GA process consists of processing a number of such 
chromosomes over successive generations and then mapping the chromosome returned by the GA to 
its encoded solution.

12.1.2 Natural Selection 

As mentioned earlier, natural selection is Nature’s way to support and perpetuate ‘good’ qualities in a 
species against the ‘bad’ qualities. Consider the case of polar bears that survive under the harshest Arctic 
weather. Th e fur is diff erent from all other members of the bear family and coloured white which not 
only helps in camoufl aging but also contains body heat. It is also adapted to store more fat within, to beat 
the cold. Th is fat, accumulated mostly during summers, when the bears overfeed serves nutritional value 
during frozen winters when food becomes scarce. Th is kind of adaptability, seen in most animals, includ-
ing man is an example of ‘survival of the fi ttest’. Only those bears that could adapt, survived. Off spring of 
highly adaptable survivors over generations are passed on these survival traits and result in permanent 
changes in the genetic structure of the species.

12.1.3 Crossover

Crossover is a genetic operation, which results in exchange of genetic material between two chromo-
somes. In biological world, crossover occurs when the reproductive cells of the parents unite to form 
a zygote. It can be considered to be a string operation where two similar strings of same length swap 
partial contiguous contents. Crossover is the mechanism to ensure reshuffl  e of traits of the parents in 
their children.

12.1.4 Mutation

In genetics, a gene mutation is a permanent change that may occur in the DNA sequence constituting 
a gene. Such changes permanently alter the gene and thereby bring about variations in the lineage of a 
living organism. In biological sense, mutation can occur in one of the two following ways: inherited from 
parents (through crossover), or acquired by an individual during its lifetime due to altered environment, 
or habits of individuals, or some unforeseen circumstances like radioactive or cosmic radiation. Muta-
tion is the main vehicle of evolving new species from old ones.

12.2 GENETIC ALGORITHMS (GAS)

Computationally, GA is a maximization process. Th e problem it addresses usually has a very large 
search space with probable multiple local maxima inside it. Th e GA process has to ensure that it is not 
trapped at local maxima, so that, at the end of the process it may fi nd the global maxima. Even if the 
global maximum is not returned, we may expect a close approximation of it as the outcome of the GA 
process.

To achieve this, GA works on a set of solutions (perhaps suboptimal) to the given problem instance, 
and evolves it through a number of generations. Th e evolution process stops when some predefi ned 
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termination condition is satisfi ed. At each intermediate stage, the old generation is replaced by the 
new generation. Th e individuals of the population of a generation are processed with the help of a 
number of GA operators in such a way that the quality of the new generation, in general, is improved 
in comparison with old generation. In this way we obtain better and better solutions as the search 
proceeds until the end of the search when we expect the best, or a near-best solution will be returned 
by the GA process. Fig. 12.1 and Fig. 12.2 present the outline of the procedure and the corresponding 
fl ow chart.

Procedure Basic-GA

Step 1.  Initialize the population. Call this the current population.

Step 2.  Repeat Step 3 through Step 5 till termination condition is satis-
fied.

Step 3.  Apply selection operation on the current population to obtain the 
mating pool.

Step 4.  Apply crossover and mutation operators on the mating pool to gen-
erate the new population.

Step 5. Replace the current population by the new population.

Step 6. Return the best solution of the current population.

Fig. 12.1 Procedure Basic-GA

Th ere are certain features associated with a GA. Th ese are

1. Th e chromosomes.
2.  Procedures to encode a solution as a chromosome, and procedure to decode a chromosome to the 

corresponding solution.
3. Fitness function to evaluate each solution, i.e., each chromosome.
4. Population size.
5. Initial population.
6.  Th e mating pool, i.e., the set of chromosomes selected from current population who will generate 

the new population/generation.
7. GA operators, e.g., selection, crossover, and mutation.
8.  Various GA parameters, e.g., crossover probability (pc), mutation probability (pμ), population 

size etc.
9. Termination condition.

Chromosomes are usually one or multidimensional arrays of bits, digits, characters, or other suit-
able elements. A chromosome encodes a solution to the given maximization problem. Th ere must be 
simple procedures to map the solution to the corresponding chromosome and vice-versa. Moreover, 
there must be a fi tness function which helps us to evaluate a chromosome/solution. A population is a set 
of chromosomes. Th ere is a predefi ned size of the population, say n. Th e population is initialized with 
n randomly generated chromosome. Each chromosome of population is evaluated with the help of the 
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fi tness function. Th e values of the fi tness function for the chromosomes indicate the quality of the cor-
responding solutions.

No

Initialize the population

Perform the job with decoded
versions of the strings

Compute fitness values

Termination
criterion
reached

Yes

Reproduce/select strings to create
new mating pool

Generate new population
by crossover and mutation

Return the best
solution

Start

End

Fig. 12.2 Flow chart of the basic genetic algorithm (GA) process

During every iteration, a mating pool is created by selecting chromosomes from the population. Th e se-
lection procedure is designed on the basis of the Darwinian principle of survival of the fi ttest. Th erefore, 
better fi t chromosomes are selected more oft en than the less fi t ones. Consequently, the average fi tness of 
the mating pool is usually higher than that of the current population.

Mating pool has the same size as that of the current population. Th e individual chromosomes in the 
mating pool act as parents for the next generation of chromosomes. Characteristics of the parents are re-
shuffl  ed and propagated to the children with the help of the crossover operator. Th ese children are subject 
to a mutation operator which helps to bring about a rare but random and unpredictable change in the chro-
mosomes. Th e mutation operator helps the GA process to overcome the problem of getting stuck at local 
maxima. Th e process of obtaining a new generation of population from old are is shown in Fig. 12.3.
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CrossoverSelection
Current

population of
chromosomes

Mating  pool
of

chromosomes

New
population of
chromosomes

Fig. 12.3 Formation of new generation from old one

As the GA proceeds, the search is expected to converge. Usually, when the search space is suffi  ciently ex-
plored, the average fi tness of the population, or the fi tness of the best-fi t chromosome of the population, 
does not improve over consecutive generations. However, this depends on how fi nely the GA parameters 
are tuned to appropriate values. Th e search may be terminated aft er a pre-defi ned number of generations, 
or, when the average fi tness does not show any improvement over a pre-defi ned number of consecutive 
generations. Th e subsequent parts of this subsection present the details of various GA features.

12.2.1 Chromosomes

A feasible solution for a given maximization problem must be encoded as a chromosome. In its simplest 
form, a chromosome is a one-dimensional string of bits. However, various other types of chromosomes 
have been tries e.g., strings of denary digits, alphanumeric characters, real numbers and so on. Th e de-
sign has to select an appropriate encoding scheme on the basis of the nature of the problem to be solved. 
For example, the real number encoding scheme has been found to be ideal for function optimization. 

Th e integer or literal permutation encoding is better suited for combinatorial optimization problems 
than others. However, these techniques are applicable only to one-dimensional strings as chromosomes. 
For more complex real world problems, it might be essential to have an appropriate data structure to 
capture the nature of the problem. Depending upon the structure of the encodings, the methods can be 
further classifi ed as one-dimensional or multi-dimensional.

Th ough most problems are solvable using one-dimensional encoding, some more complex problems 
do need a multi-dimensional approach. Whatever the chosen encoding scheme, it is necessary that it 
builds an eff ective solution to the problem. Th ere exist several criteria to decide the eff ectiveness of an 
encoding scheme. Th ese include

Requirement of space by the encoded chromosomes. • 
Th e time to perform operations like crossover, mutation and fi tness evaluation. • 
All encoded chromosomes must map to feasible solutions.• 
Th e chromosomes resulting from crossover and mutation must map to feasible solutions.• 

Example 12.1 given below illustrates the concept of a chromosome as an encoded form of a solution and 
the procedures to map a solution to the corresponding chromosome and vice versa.

Example 12.1  (Chromosome for Travelling Salesperson Problem) 

Consider a tiny instance of TSP with fi ve cities as shown in Fig. 12.4. For the sake of simplicity and 
brevity, the number of cities has been kept low. Moreover, the network of cities under consideration 
is fully connected. Th is ensures that any permutation of the cities represent a feasible tour by the 
salesperson. A network which is not fully connected can be easily converted to such one by adding 
appropriate number of extra edges and assigning infi nite cost to each of these additional links. Each
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link between two cities is associated with a cost which must be incurred if the sales person traverses 
that link. Th e TSP problem is to fi nd a minimal cost tour i.e., a cycle containing each node of the graph 
exactly once and total cost of the tour being minimal.
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Fig. 12.4  An instance of Travelling Salesper-
son Problem (TSP).

Fig. 12.5  The TSP of Fig. 12.4 posed as a 
maximization problem.

As we see, TSP is essentially a minimization problem. In order to apply a GA on it, we must trans-
form it to a suitable equivalent minimization problem. For this purpose, the cost associated with 
a link is converted into a reward by subtracting it from the maximum cost. Th en the tour with 
minimum cost will be the tour with maximum reward. Th e altered graph where each link is as-
sociated with a reward, instead of a cost, is shown in Fig. 12.5. Th e goal is now to fi nd a tour with 
maximum reward.

For the network of cities shown in Fig. 12.5 where the cities are denoted by the letters a, b, c, d 
and e, a tour can be represented simply as a permutation of fi ve letters a, b, c, d and e. Th erefore, 
assuming that the permutation is circular, i.e., the last and the fi rst node in the permutation are 
adjacent, any such permutation is a chromosome. However, if we prefer binary chromosomes, then 
this alphanumeric string must be transformed to its binary equivalent and vice-versa. Th is can be 
easily done by substituting each letter by its designated bit pattern. Th e technique is illustrated in 
Fig. 12.6.

Fig. 12.6(a) shows the tour c → d → b → a → e in the network under consideration. Th e table 
shown in Fig. 12.6(b) contains the binary code for each node. Th e codes are chosen arbitrarily. 
Since there are 5 nodes, we need ⎡log 2 5⎤ = 3 bits to encode them. However, the remainingd 3 (= 
23 – 5) codes remain unused. Fig. 12.6(c) depicts the mapping of the tour c → d → b → a → e to 
its corresponding binary chromosome. Th erefore, for this problem a chromosome is any binary 
string of length 3 × 5 = 15. 

In order to decode a chromosome to its corresponding tour, the chromosome is partitioned 
into fi ve segments each consisting of 3 bits. Each of these 3 bit codes is then substituted by the 
appropriate node. However, it may not be possible to convert an arbitrary 3 bit string to a node 
directly. For example, consider the chromosome ch = 101 011 001 110 001. Here the left most 3 
bits are 101 which do not represent any node at all. Th e same is true for the fourth pattern 110. 
Moreover, the pattern 001 has occurred twice, though a node is allowed to be visited exactly once 
in a tour. 
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(c) Chromosome encoding

(a) Problem instance
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(b) Encoding scheme

Fig. 12.6 Encoding and decoding a chromosome

Such issues may be resolved in various ways. Consider the following strategy. We arrange the set 
of nodes in a circular way. When a node is selected it is marked as visited. When we come across 
a code without any node assigned to it, we select the next available node in the list of nodes. We 
apply the same policy in case of a confl ict, i.e., a code occurring more than once in a chromosome. 
Fig. 12.7 presents the pseudo-code for the technique described above. Accordingly, chromosome 
ch = 101 011 001 110 001 will be interpreted as the tour a → d → b → c → e.

Procedure TSP-Chromosome-Decode

Begin
Partition the chromosome into a sequence of five 3-bit binary 
patterns.

For (each 3-bit pattern p) Do
If p has a node n associated with it Then 

If n is not already visited Then 
Select the node as visited.

Else Select the next available node in the list of nodes
End-If

Else Select the next available node in the list of nodes
End-If

End-For
End-Procedure TSP-Chromosome-Decode

Fig. 12.7 Procedure TSP-Chromosome-Decode
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12.2.2 Fitness Function

Fitness functions are objective functions that are used to evaluate a particular solution represented as a 
chromosome in a population. As GA is a maximization process, the fi tness function is to be defi ned in 
such a way that higher fi tness values may represent better solutions.

Two main types of fi tness functions exist: the fi rst one, the fi xed type does not allow the fi tness function 
to change. In the second case, the fi tness function itself is mutable. Th e most important factor in deciding 
a fi tness function is that it should correlate to the problem closely and is simple enough to be computed 
quickly. Speed of execution is very important because GA itself is quite computation intensive.

Example 12.2  (Fitness function for TSP)

Let us consider the TSP instance given in Fig. 12.5. Here the fi tness function is simply the sum of 
the rewards associated with the links included in a tour. Hence for the chromosome chr = 101 011 
001 110 001 which represents the tour a → d → b → c → e is given by f (chr) = w (a → d) + w (d 
→ b) + w (b → c) + w (c → e) + w (e → a) = 44 + 45 + 39 + 48 + 46 = 222. On the other hand, the 
fi tness of a → b → c → d → e is 43 + 39 + 42 + 23 + 46 = 193. Obviously the former solution is a 
better fi t than the latter one.

12.2.3 Population

Usually, standard optimization algorithms consist of a sequence of computational steps which converge 
to the optimal solution. Most algorithms perform deterministic computational steps based on higher 
order derivatives of the objective function. Th e GA based approach diff ers from the standard approaches 
due to the fact that, while the standard approaches have single point initiations in the search space 
and move along the direction of descent, GA’s employ multi-directional search by initiating the process 
through a population of possible solutions. While point to point approach suff ers from the threat of local 
optima, the GA has higher probability of escaping it.

Th e GA starts with a group of chromosomes known as population. Th e size of the population is an im-
portant parameter that needs to be tuned by the designer of the GA. Th e complexity of the problem, which 
is refl ected by the size of the search space, is a factor to be considered while fi xing the size of the popula-
tion. Th e initial population is normally randomly generated. Th is is illustrated in the next example.

Example 12.3  (A small population for the TSP)

Let us continue with the TSP instance cited in Example 12.1 and Example 12.2. Assuming a popu-
lation size of 10, Fig. 12.8 presents a procedure to generate the initial population randomly. Table 
12.1 shows the randomly generated population of 10 chromosomes along with the corresponding 
tours and the fi tness values. 

Procedure TSP-Generate-Initial-Population
Begin

For i ← 1 To 10 Do
/* Generate the ith chromosome */ 
For j ← 1 To 15 Do
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Chr[i][j] = Random {0, 1} /* Assign a bit randomly*/
End-For

End-For
End-Procedure TSP-Generate-Initial-Population 

Fig. 12.8 Procedure TSP-Generate-Initial-Population

Table 12.1 Randomly Generated Initial Population

# Chromosome Tour Fitness

1 011 101 111 011 001 d-e-a-b-c 193

2 010 100 001 101 110 c-e-b-d-a 172

3 100 100 001 111 010 e-a-b-c-d 193

4 011 100 110 001 101 d-e-a-b-c 193

5 110 011 101 110 001 a-d-e-b-c 141

6 010 100 010 011 011 c-e-d-a-b 197

7 100 100 011 111 110 e-a-d-b-c 222

8 010 101 011 011 001 c-d-e-a-b 193

9 100 110 101 011 110 e-a-b-d-c 224

10 111 011 101 100 100 a-d-e-b-c 141

12.2.4 GA Operators

As in natural evolution, GAs employ three operators, viz. selection, crossover and mutation, on the 
population to evolve them towards the optimal solution of the target optimization problem. While the 
selection operator ensures continuation of good qualities in the solutions, the crossover and mutation 
operators help to explore the entire search space by providing reshuffl  e of individual traits and varia-
tions. Each of these operators is described below with greater details.

(a) Selection. Th e members of the mating pool are picked up from the current population with the 
help of the selection operator. Th ere are various techniques to realize the selection process. All of them, 
some way or other, are based on the Darwinian principle of survival of the fi ttest. In other words, the 
selection operator is designed in such a way that chromosomes with higher fi tness values have a greater 
chance of being selected for the mating pool. However, the lower fi t chromosomes should also have 
their chance of producing off spring. Th ey should not be blocked altogether. Th ere are several selection 
techniques available in the literature. Two of the most widely used selection operators, viz., roulette wheel 
selection and tournament selection, are discussed below.

Population and fi tness values
Chromosome # 1 2 …. PopSize
Fitness value f (chr1) f (chr2) …. f (chrPopSize)

Sum_fi tness = f ch i
i

PopSize

)chrirr
=
∑

1
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f (chr1rr )
f (chr1rr )

f (chr1rr ) + f (chr2rr )

f (chr1rr ) +… + f (chrirr −1)

f (chr1rr ) + … + f (chrirr )ii
f (chrirr )ii

f (chr2rr )

f (chrPorr pSize)

f (chr1rr ) + … + f (chrPorr pSize−1)

sum_fitness = ∑ f (chrirr )
PopSize

i = 1

0

Fig. 12.9 A roulette wheel

Roulette Wheel. Roulette wheel selection was proposed by John Holland and is possibly the best 
known selection type. Th e technique ensures that the survival probability of a chromosome is propor-
tional to its fi tness value. Let us consider a population of PopSize number of chromosomes chr1, chr2, 
…, chrPopSize, with fi tness values f (chr1), f (chr2), …, f (chrPopSize) respectively. Now imagine a circular disk 
whose circumference has a length of 

 m f f chrirr
i

PopSize

fitff ness f )
=
∑

1
 (12.1)

On the circumference, we demarcate successive regions of length f (chr1), f (chr2), …, f (chrPopSize) so that 
the successive regions correspond to the chromosomes chr1, chr2, …, chrPopSize respectively. Th is is the 
roulette wheel. Fig. 12.9 explains the structure of a roulette wheel graphically.

In order to select a chromosome from the current population for the mating pool, a random number 
is generated between 0 and sum_fi tness. Let x be the random number generated in this way. We now 
locate the point P on the circumference of the wheel at a distance x from the starting point S. Th e chro-
mosome within whose limits this point P is situated is selected for the mating pool. Th is procedure is 
repeated PopSize times. Since the regions on the circumference of the roulette wheel are proportional 
to the fi tness values of the corresponding chromosomes, those with high fi tness values are likely to get 
selected more oft en than those with low fi tness values. Th e pseudocode for the roulette wheel technique 
is presented in Fig. 12.10.

Procedure Roulette-Wheel-Selection
Begin

Sum_fitness ← 0
For i ← 1 To PopSize Do

sum_fitness ← sum_fitness + fitness (Chromosome (i))
End-For
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For i ← 1 To PopSize Do
/* generate a random number between 0 and sum_fitness */
r ← random (0, sum_fitness) 
/* locate the point P */
j ← 1, sum ← 0
While (sum < r) Do 

sum ← sum + fitness (Chromosome (j))
j ++

End-While
Select Chromosome (--j) and include it in the mating pool

End-For
End Procedure Roulette-Wheel-Selection

Fig. 12.10 Procedure Roulette-Wheel-Selection

Example 12.4  (Roulette wheel selection)

Let us consider the roulette wheel for the population shown in Table 12.1. Here the

sum f f chrirr
i

ffitff ness )
=
∑

1

10

= 1869. Let the random number generated in the range [0, 1869] be 1279. 

Since f ch i
i

)chrirr
=
∑

1

6

= 1089, f ch i
i

)chrirr
=
∑

1

7

 = 1311, and 1089 < 1279 < 1311, 7th chromosome is selected.

(a) Tournament. In tournament selection, a tournament is run among the chromosomes of the cur-
rent population. Winners of the tournament are selected and included in mating pool. So, at each step 
of this procedure, two chromosomes, say chr1 and chr2 are picked up randomly. Among these two, the 
chromosome with higher degree of fi tness wins and hence selected. Th is is repeated PopSize number of 
times. Th e procedure is presented in Fig. 12.11.

Procedure Tournament-Selection
Begin

For i ← 1 To PopSize Do
p1 = random (0, PopSize)
p2 = random (0, PopSize)
If (fitness(chromosome p1) ≥ fitness(chromosome(p2) Then

Select chromosome (p1) for the mating pool
Else Select chromosome (p2) for the mating pool
End-If
Include the selected chromosome as the ith chromosome in the 
mating pool

End-For
End Procedure Roulette-Wheel-Selection

Fig. 12.11 Procedure Tournament-Selection
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Example 12.5  (Tournament selection)

Once again, we consider the population shown in Table 12.1. Let p1 = 4 and p2 = 9 be the random 
integers generated within the range [0, 10]. Since the fi tness values of the 4th and the 9th chromo-
somes are 193 and 224 respectively, the 9th chromosome is selected. 

(b) Crossover. Th e selection operation ensures that the quality of the solutions improve over suc-
cessive generations. Th e purpose of the crossover operation is to share information among the chromo-
somes of a population. Th e reshuffl  ed chromosomes become the off spring of the parent chromosomes 
and are propagated to the new generation of population. Th e signifi cance of crossover is it enables the 
GA search process explore the search space adequately.

During the crossover operation, a pair of chromosomes, say chri and chrj are randomly chosen from 
the mating pool. Th ese two chromosomes act as the parents. Th ere is a pre-defi ned probability pc, called 
the crossover probability. Crossover probability is the probability that crossover takes place between two 
parent chromosomes. Aft er selecting the parents, we have to decide if they would undergo the crossover 
operation at all. So a random number r ∈ [0, 1] is generated. If r ≤ pc then crossover occurs otherwise the 
parent chromosomes are directly copied to the mating pool. When a crossover occurs, a crossover point 
is determined. Th e crossover point is a randomly generated integer in the range [1, ChrLength] where 
ChrLength is the length of a chromosome. Th e crossover operation consists of swapping the segments of 
the parent chromosomes from the crossover point to end. Fig. 12.12 provides the pseudo-code for this 
operation and Fig. 12.13 illustrates it graphically.

Th e crossover operator just described and illustrated in Fig. 12.12 and Fig. 12.13 is the basic crossover 
with one crossover point. Th is can be generalized to multi-point crossover. An instance of two-point 
crossover is shown in Fig. 12.14.

Procedure One-Cut-Point-Crossover

/* pc is the crossover probability. Size of the population is PopSize. 
ChrLength is the length of a chromosome */
Begin

For i ← 1 To PopSize/2 Do
/* Select the parents */
Randomly choose 2 chromosomes chrk and chrl from the mating pool.
/* Decide if crossover should be performed */
r ← random [0, 1]
If (r < pc) Then 

/* Select the crossover point */
c ← IRandom [1, ChrLength]
For j ← c To ChrLength Do

Swap the jth bits of chrk and chrl

End-For
End-If
Include chrk and chrl in the new population. 

End-For
End Procedure One-Cut-Point-Crossover

Fig. 12.12 Procedure One-Cut-Point-Crossover
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Th ere are several crossover operators for real number encoding. Th ese can be broadly grouped into four 
classes, viz., conventional, arithmetic, direction-based, and stochastic. Th e conventional operators are 
made by extending the operators for binary representation into the real-coding case. Such operators can 
further be divided by two categories namely the simple crossover (one-cut point, two-cut point, multi-
cut point or uniform) and random crossover (fl at crossover, blend crossover). 

011100110001101chr4rr child4

child9chr9rr 100110101011110

Crossover point = 11

011100110011110

100110101001101

C
R
O
S
S
O
V
E
RParent chromosomes CR hildren chromosomes

Fig. 12.13 An instance of one cut-point crossover

Th e arithmetical operators are constructed by borrowing the concept of linear combination of vectors 
from the area of convex set theory. Operated on the fl oating point genetic representation, the arith-
metical crossover operators, such as convex, affi  ne, linear, average, intermediate, extended intermediate 
crossover, are usually adopted. Th e direction-based operators are formed by introducing the approxi-
mate gradient direction into genetic operators. Th e direction-based crossover operator uses the value of 
objective function in determining the direction of genetic search. Th e stochastic operators give off spring 
by altering parents by random numbers with some distribution. 

011100110001101chr4rr child4

child9chr9rr 100110101011110

Crossover point : 3, 8

010110100001101

101100111011110

C
R
O
S
S
O
V
E
RParent chromosomes CR hildren chromosomes

Fig. 12.14 Two cut-point crossover 

Example 12.6  (Crossover operation)

Fig. 12.13 shows the crossover operation on two chromosomes chr4 = 01110011000110 and chr9 = 
100110101011110 taken from the population in Table 12.1. Choosing 11 as the crossover point the 
resultant children are 011100110011110 and 100110101001101. Finding the corresponding tours 
and their fi tness values are left  as an exercise. Fig. 12.14 depicts an instance of two cut-point 
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crossover on the same pair of chromosomes with 3 and 8 as the crossover points. Th is time we get 
010110100001101 and 101100111011110 as the resultant children chromosomes. Again, fi nding 
the corresponding tours and their fi tness values are left  as an exercise.

(c) Mutation. Th e mutation operation imparts a small change at a random position within a chromo-
some. Th e intention is to empower the GA process to salvage from local optima and explore every region 
of the search space adequately. However, mutation should occur very rarely failing which the search 
process will be disturbed too much. A disturbed search fi nds it diffi  cult to converge. Hence mutation 
probability pμ is usually kept low. 

Procedure Binary-Mutation
Begin

For i ← 1 To PopSize Do
r ← random [0, 1]
If (r < pμ) Then

mupt ← IRandom [1, ChrLength]
Flip the bit at mupt in the ith chromosome 

End-If
End-For

End Procedure Binary-Mutation

Fig. 12.15 Procedure Binary-Mutation

Th e pseudo code for mutation operation is given in Fig. 12.15. For each chromosome of the mating pool, 
a decision is taken on the basis of the mutation probability pμ regarding whether that chromosome would 
undergo mutation or not. If the chromosome has to mutate, a mutation point is randomly chosen. Th e 
bit at the mutation point is complemented in case of binary chromosome. For other types of chromo-
somes suitable technique is adopted for mutation.

Example 12.7  (Mutation)

Th e mutation operation is illustrated in Fig. 12.16. Th e chromosome 011100110001101 is mutated 
at the 13th bit to obtain 011100110001001 as the mutated chromosome. 

011100110001101chr4rr

chr4rr

Mutation point: 13

011100110001001

Before mutation

After mutation

Fig. 12.16 Mutation operation
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12.2.5 Elitism

Elitism is a strategy to ensure that the best chromosomes are not lost in the search process through 
generations. Th is is a legitimate concern because randomness plays a vital role in the GA process. So 
it is quite possible that a good chromosome, once generated, may get lost in subsequent generations. 
Th erefore, it is logical to preserve the best chromosomes.

Elitism is implemented in various ways. A common technique is to defi ne a special chromosome called 
the best-till-date chromosome. It is initialized with the best chromosome (i.e. the chromosome with the 
highest fi tness value) of the initial population. In each subsequent generation the best chromosome of the 
current population is identifi ed and its fi tness is compared with that of the current best-till-date chromo-
some. Th e later is updated by the former in case the best of the current population happens to be better 
than the prevailing best-till-date chromosome. Alternatively, during the selection operation, we may di-
rectly transfer a few top-quality chromosomes (say, top 10% of the population) to the next generation.

12.2.6 GA Parameters

Success and effi  ciency of a GA process largely depends on how well the parameters of the GA are tuned 
to suit the targeted problem instance. Th e GA parameters include the size of population, number of gen-
erations through which the GA should be evolved, type of crossover to be used, crossover probability, 
and mutation probability.

Th ere is no hard and fast rule to fi x these parameters. However, long experience and wide experimen-
tation by researchers has provided us certain ranges of values for these parameters. Th ese are obeyed 
under normal circumstance. An indicative set of values is given below. 

25 ≤ PopSize ≤ 100
500 ≤ Number of generations ≤ 1500 
Number of crossover point(s) = 1, 2, 3, or 4
0.6 ≤ Crossover probability (pc) ≤ 0.8
0.01 ≤ Mutation probability (pμ) ≤ 0.02

Once again, these are not rules. Th e actual values are to be tuned to the specifi c GA through experience 
and trial-and-error. However, some standard settings are reported in literature. One of the widely ac-
claimed standards was proposed by DeJong and Spears (1990) as given below: 

Population size = 50 
Number of generations =1000 
Crossover type = two point 
Crossover rate = 0.6 
Mutation types = Bit fl ip 
Mutation rate = 0.001 per bit

If single cut-point crossover, instead of two cut-points crossover, is employed, the crossover rate can be 
lowered to a maximum of 0.50.

Th e Grefenstette settings (1986) are usually tried when the complexity of the fi tness function is 
high and the population has to be kept low compulsively, even at the cost of lower dimensionality. 
Th ese are

Population size = 30 
Number of generations = To be fi xed through experimentation
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Crossover type = Two point 
Crossover rate = 0.9 
Mutation types = Bit fl ip 
Mutation rate = 0.01 per bit

Th e population size is another important issue. Th e size must be apt to represent the entire solution space 
over a number of generations without compromising on the speed of execution due to complexities of 
the fi tness function. 

12.2.7 Convergence

As the GA approaches a global optimum, the fi tness’s of the average and the best chromosomes ap-
proaches equality. Th is progression towards uniformity is termed convergence in GA. Generally, a 
GA is said to have converged when over 90% of the population share or have approximately the same 
fi tness value. 

While the GA population converges, the average fi tness of the population approaches that of the 
best individual. However, since the GAs are subject to stochastic errors, the problem of genetic drift  
may occur. Even in the absence of any selection pressure (i.e. a constant fi tness function), members of 
the population will still converge to some point in the solution space. Th is happens simply because of 
the accumulation of stochastic errors. If, by some chance, a gene becomes predominant in the popula-
tion, then it is just as likely to become more predominant in the next generation as it is to become less 
predominant. If an increase in predominance is sustained over several successive generations, and the 
population is fi nite, then a gene can spread to all members of the population. Once a gene converges 
in this way, it is fi xed; crossover cannot introduce new gene values. Th is produces a ratchet eff ect, 
so that as generations go by, each gene eventually becomes fi xed. Th e rate of genetic drift  therefore 
provides a lower bound on the rate at which a GA can converge towards the correct solution. Th at is, 
if the GA is to exploit gradient information in the fi tness function, the fi tness function must provide 
a slope suffi  ciently large to counteract any genetic drift . A method of reducing the genetic drift  is by 
increasing the rate of mutation. Interestingly however, it must be remembered that a high mutation 
rate may turn the search random thereby leaving the gradient information of the fi tness function 
unexploited.

Example 12.8  (Convergence of GA)

Given a connected graph G (V, E), a node cover, or vertex cover, is a set of nodes N ⊆ V such that 
for any edge e ∈ E, at least one end point of e is in N. Th e minimal node cover problem is to fi nd a 
minimal node cover for a given graph. Minimal node cover problem have been proved to be NP-
complete. A graph with 16 nodes and 25 edges has been considered (see Fig. 12.26 in the section 
‘Solved Problems’). A GA has been run on a search space of size 216 = 65536 for this instance of 
node cover problem. Th e convergence scenario over about 50 generations is shown in Fig. 12.17. 
Th e upper curve shows the progress made by the best fi tness value in a generation over successive 
generations. Th e lower curve is the same for average fi tness of a generation. It is seen from the 
fi gure that the GA converges in 21 generations of iteration. Th e best fi t chromosome returned by 
the GA corresponds to a node cover of size 6 for the given graph. Th e GA parameters used are: 
population size = 64, crossover probability = 0.65, mutation probability = 0.04. 
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Fig. 12.17 Convergence of GA process: a sample scenario

12.3 MULTI-OBJECTIVE GENETIC ALGORITHMS

Discussions so far were limited to GAs that handled the optimization of a single parameter. Th e optimi-
zation criteria are represented by fi tness functions and are used to lead towards an acceptable solution. 
A typical single-objective optimization problem is the TSP. Th ere the sole optimization criterion is the 
cost of the tour undertaken by the salesperson and this cost is to be minimized. However, I real life, we 
oft en face problems which require simultaneous optimization of several criteria. For example, in VLSI 
circuit design, the critical parameters are chip area, power consumption, delay, fault tolerance etc. While 
designing a VLSI circuit, the designer may like to minimize area, power consumption, and delay while, 
at the same time, would like to maximize fault tolerance. Th e problem gets more complicated when the 
optimizing criteria are confl icting. For instance, an attempt to design low-power VLSI circuit may aff ect 
its fault tolerance capacity adversely. Such problems are known multi-objective optimization (MOO), 
multi-criterion optimization or vector optimization problems. Multi-objective optimization (MOO) is 
the process of systematically and simultaneously optimizing a number of objective functions. Multiple 
objective problems usually have confl icting objectives which prevents simultaneous optimization of 
each objective. As GAs are population based optimization processes, they are inherently suited to solve 
MOO problems. However, traditional GAs are to be customized to accommodate such problems. Th is 
is achieved by using specialized fi tness functions as well as incorporating methods promoting solution 
diversity. Rest of this section presents the basic features of multi-objective GAs. 

12.3.1 MOO Problem Formulation

Let us suppose that there are K non-commensurable objectives with no clear preference relative to each 
other among them. We may assume, without loss of generality, the objectives are to be minimized. Each 
of these objectives are represented by the functions f x f x f xfff xf ff)xx fff ),..., )x ,� �f) f � where �x x xn( ,x , , )1 2x, is an 
n-dimensional decision variable vector in the solution space X. We have to fi nd a vector �xmin that mini-
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mizes the objective function vector f x f x f x f xff)x { f ) )x ,..., )x }� �f) { f � �f)= f xf ffff ), . Usually, the solution space X is subject 
to certain constraints.

As stated earlier, in many real life situations the objectives under consideration confl ict with each 
other. Th erefore a perfect multi-objective solution that achieves optimal values for each objective func-
tion is hardly feasible. A reasonable alternative is to search for a set of solutions each of which attains an 
acceptable level for each objective and having the optimal values for one or more objectives. Such a set 
of solutions is known as a pareto-optimal set. Th e concept of pareto-optimal solutions is explained in 
greater details in the nest sub-section. 

12.3.2 The Pareto-optimal Front

Th e Pareto-optimal front is defi ned in terms of dominance relation between solution vectors. Assuming 
all the objective functions to be minimized, a solution vector �x1  is said to dominate another solution 
vector �x2 if all the objective functional values of �x1 are less than or equal to those of �x2 and there is at 
least one objective function for which �x1 has a value which is strictly less than that of �x2 .
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Fig. 12.18 Two objective functions to be minimized

Defi nition 12.1 (Dominance relation between solution vectors) Let �x  denote the vector of objective 
functions of a MOO problem with K objective functions. Without loss of generality we assume that the 
functions f x f x f xfff xf ff)xx fff ),..., )x� �f) f � all need to be minimized. We say that solution �x1  dominates another 
solution �x2 , written as �

≺
�x x≺1 2x≺ , if and only if 

 
f x f x i K
i K f x f

f xf ff
iff ff

)xx ) { , ,..., },
{ , ,..., } fff )

f)
�

2xff x≤ ∀fff )xfff x
∃ ∈i <xxfff )

and
( )((�

2
 (12.2)

Example 12.9  (Dominance relation between solution vectors)

Let us consider an MOO with two objective functions f1 and f2 both to be minimized. For simplicity 
we assume that the solution vector consists of a single parameter x. Th e shapes of f1 and f2
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plotted against x are shown in Fig. 12.18. Th e search process produces sample solutions at x ∈ {0, 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. It is evident from Fig. 12.18 that the minima for f1 and f2 do not 
coincide. In fact f1 attains its minimum value of f1(x) = 1 at x = 5, while f2(x) attains its minimal 
value of 2 at x = 9. Fig. 12.19 shows positions of the objective function vector f x f x f x)x ( f ) )x )= f xf ffff ),  
corresponding to various values of x∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Now consider the 
points e (3, 3) and g (3, 4). Here e dominates g. Similarly g dominates i, j, k, l and m. However, d 
(2, 6) and e (3, 3) are non-dominating with respect to each other. In fact, the points in the set {a, 
b, c} are mutually non-dominating. Similarly {d, e}, {f, g, h}, {i, j}, and {k, l, m} are non-dominating 
sets of solutions.
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Fig. 12.19 Two-objective function vectors

Defi nition 12.2 (Pareto-optimal Front) Let P be a population of solutions to an MOO problem. Th e 
pareto-optimal front, FPO is the set of all non-dominated candidates of P.

y f y f xPOFF ¬∃y{ |xx (f (f ))}∃| �

Example 12.10  (Pareto-optimal Front)

Consider the multi objective function vectors depicted in Fig. 12.19. It is easy to observe that the 
points a (1, 4), b (2, 3), and c (5, 2) are non-dominated by any other solution vectors. Th erefore, 
this is the pareto-optimal front for the given population.

Example 12.11  (Pareto-optimal Front)

Let us consider the example of a car manufacturer who wishes to simultaneously reduce the cost of 
the car and the number of accidents involving the specifi c model. Table 12.2 presents the available 
data set. Here the pareto-optimal front is FPO = {A, C, F}.
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Table 12.2 Car Dataset

Model (Cost, Accidents) Dominated by
A (3, 3)

B (8, 10) A, C, D, E, F, G, H

C (2, 5)

D (4, 6) A, C

E (5, 7) D

F (7, 2)

G (6, 4) A

H (9, 4) A

12.3.3 Pareto-optimal Ranking

In order to carry out the selection operation on a population, the chromosomes of the population must 
be assigned an overall fi tness value. Th erefore, the multi-objective vectors should be mapped to some 
suitable fi tness values so that these can be utilized by the selection operator. Pareto-ranking is an ap-
proach to achieve this. It exploits the concept of pareto-dominance for this purpose.

Th e technique is to rank the population on the basis of dominance relation. Th e rank of a solution is 
further utilized to assign its fi tness value other than the actual values of the objective functions. Th e basic 
pareto-ranking technique was proposed by Goldberg. It involves fi nding of successive pareto-optimal 
fronts of a population. Fig. 12.20 shows the pseudo-code as Procedure Pareto-Ranking.

Procedure Pareto-Ranking
/* FPOi is the i

th pareto-optimal front. P is the population and PP is the 
remaining part of the population yet to be ranked. */
Begin

i ← 1, PP ← P
/* Find the pareto-optimal fronts */
While (PP ≠ ϕ) Do

FPOi ← The pareto-optimal front of PP.
PP ← PP - FPoi

i++
End-While
/* Assign pareto-ranks using the pareto-optimal fronts */

For (each 
�
x P
�

) Do

r( �
x ) ← i, if �

x F
�

POiFF
End-For

End Procedure Pareto-Ranking

Fig. 12.20 Procedure Pareto-Ranking

Example 12.12  (Goldberg’s Pareto-Ranking)

Applying Procedure Pareto-Ranking on the objective function vectors shown in Fig. 12.18 
and Fig. 12.19 we get the following pareto-optimal fronts.
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FPo1 = {a (1, 4), b (2, 3), c (5, 2)}, FPo2 = {d (2, 6), e (3, 3)}, 
FPo3 = {f (2, 8), g (3, 4), h (6, 3)}, FPo4 = {i (3, 9), j (6, 4)}, 
FPo5 = {k (5, 9), l (6, 8), m (7, 5)}

Accordingly, the ranks assigned to the solutions are r (a) = r (b) = r (c) = 1, r (d) = r (e) = 2, r (f) 
= r (g) = r (h) = 3, r (i) = r (j) = 4, and r (k) = r (l) = r (m) = 5. Th is ranking is shown in Fig. 12.21.

Th e pareto-ranking method described above is oft en improvised to obtain other ranking schemes. For 
example, Fonseca and Fleming (1993) followed a ranking method that penalizes solutions located in the 
regions of the objective function space which are dominated, or covered, by densely populated sections 
of the pareto-fronts. Th ey used the formula

 r nd( )x ( )xd) (= +1  (12.3)

Here nd( )x�  is the number of solutions who dominate �x . 
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Fig. 12.21 Pareto-Ranking as per Goldberg’s method

Example 12.13  (Pareto-Ranking by Fonseca and Fleming)

Fig. 12.22 shows the pareto-ranking on the objective function vectors shown in Fig. 12.18 and Fig. 
12.19 using Formula 12.3. 

Accumulated ranking density strategy, proposed by Lu and Yen (2003) too penalizes redundancy in 
population sue to over-representation. Th ey have used the formula

 r y
y P
y x

( )x ( )y
,

�(�)
�
�
≺

�

= + ∑1  (12.4)

Th erefore, the ranks of the solutions dominating �x  must be available to compute that of �x . Fig. 12.23 
shows the ranks of the same set of solutions obtained in this method.
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Fig. 12.22 Pareto-Ranking as per Fonseca and Fleming method
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Fig. 12.23 Pareto-Ranking through Lu and Yen method

12.3.4 Multi-objective Fitness

Suppose an MOO problem has K number of objective functions f x f x f xfff xf ff)xx fff ),..., )x� �f) f � . One obvious way 
to tackle the situation is to combine all objective functions into a single one by taking the weighted sum 
of the individual functions as below.

 f x w f w f x w fKff)x ( )x )x ... ( )x� �f) ( � �f) (=w + ×w + +...1ff 2 ff×  (12.5)

Here �w w K( ,w , , )wK1 2w, is the weight vector. Th e MOO problem then boils down to yet another single-
objective optimization problem and solving such a problem will yield a single solution as usual. How-
ever, if multiple solutions are necessary with varied importance of diff erent objectives, the problem must 
be solved multiple times with diff erent weight vectors. Th e critical aspect of this weighted sum approach 
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is selection of appropriate weight vector for each run. Moreover, combining a number of apparently 
unrelated objective functions in the form of a weighted sum is oft en undesirable.

So, instead of forcefully combining a number of non-commensurable objectives into a single one, 
multi-objective GA tries to return a set of good solutions. To achieve this, the individual solutions of a 
population need to be assigned some fi tness value that refl ects the relative status of the candidate with 
respect to various competing objectives. Th e pareto-ranking techniques described above can be used 
directly as the fi tness values to individual solutions. However, these are usually combined with various 
fi tness sharing techniques so that a diverse and uniform pareto-front is obtained. Maintaining a diverse 
population is a matter of concern for multi-objective GAs. Th is is because, unless preventive measures 
are taken the population is prone to form a few clusters instead of being distributed uniformly through-
out the solution space. Th is is called genetic drift . Th ere are several approaches to prevent genetic drift . 
Among them, niche count is a popular and widely applied one. 

Niche Count. Th e motivation is to encourage search in unexplored sections of a pareto-front by 
suitably reducing fi tness of solutions in densely populated areas. Th is is achieved by identifying such 
areas and penalizing solutions located there. 

Given a solution �x P� ,  the niche count for 
�x,  denoted as nc( )x ,  is the number of solutions �y P� ,  

with the same rank as that of �x,  in the neighbourhood of predefi ned size around �x.  Th e niche count of 
the solutions in a population P is calculated in the following way. 

1.  Between every pair of solutions � �x y P,y P∈  calculate the Euclidean distance df x y( ,x )� �  in the normal-
ized objective space using the formula

 df x y
f x f y
f f
f xf ff

if ff fi

K

( ,x )
)xx )y

m x mf in

� �
� f)

=
−⎛

⎝
⎜
⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠=
∑

1

2

 (12.6)

In Formula 12.6, fiff max and fiff min are the maximum and the minimum values of the objective func-
tion f i observed so far in the search. 

2. For each �x P� , calculate the niche count nc( )x� using the formula

 nc
df x y

r r y
df x y

( )x
( ,x )

( )x ( )y
( ,x )

�

) (�

=
−

=
≤

∑
s

s
σ

 (12.7)

Here s is the size of the niche. Th e value of s is to be supplied by the user.
Fitness of a chromosome is initially calculated with the help of Formula 12.8 given below.

 f x PopSize n
n

i
i

r
r)x

( )x
( )x� = PopSize −

−

=

−

∑
1

1 1
2

 (12.8)

In Formula 12.8, ni is the size of the ith pareto front, and r( )x� is the rank of �x . Th en shared fi tness of an 
individual solution is computed using the niche count as per Formula 12.9.

 ′ ←f x′
f x

nc
)x )x

( )x
�

�
 (12.9)

Finally, the normalized fi tness values are calculated using the shared fi tness with the help of Formula 
12.10. 
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Procedure Multi-Objective-GA

Step 1. Generate the initial population randomly.

Step 2. Determine the pareto-optimal fronts FPo1, FPo2, …, FPoK.

Step 3.  If stopping criteria is satisfied then Return the pareto-optimal 
front FPo1 and Stop.

Step 4. For each solution 
�
x ∈ P, evaluate the fitness as follows:

Step 4.1.  Assign a rank r( )x
�
 using Goldberg’s method, or Formula 12.3 

(Fonseca and Fleming), or Formula 12.4 (Lu and Yen).

Step 4.2. Compute the basic fitness value using Formula 12.8.

Step 4.3. Compute the shared fitness value using Formula 12.9.

Step 4.4.  Compute the normalized fitness value using Formula 
12.10.

Step 5.  Generate the mating pool MP from population P applying appropriate 
selection operator.

Step 6.  Apply crossover and mutation operations on the chromosomes of the 
mating pool to produce the next generation P’ of population from 
MP.

Step 7.  Replace the old generation of population P by the new generation 
of population P’.

Step 8. Goto Step 2.

Fig. 12.24 Procedure Multi-Objective-GA

Th e fi tness value obtained through Formula 12.10 is used to select chromosomes for the mating pool. 
Niche count based fi tness sharing has the overhead of selecting an appropriate value for the parameter 
s. Researchers have proposed methods to settle this issue. Another issue is the computational overhead 
of calculating the niche counts. However, the cost of the extra computational eff ort is usually fairly com-
pensated by its benefi ts.

12.3.5 Multi-objective GA Process

Multi-objective GA is designed by incorporating pareto-ranked niche count based fi tness sharing into 
the traditional GA process. Th is is presented as Procedure Multi-Objective-GA (Fig. 12.24).
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Procedure Simulated Annealing
Begin

Scur ← Initial solution; /* generate initial solution */
Ecur ← energy level of Scur

T ← Tmax /* Set T to maximum temperature */
While (T ≥ Tmin ) Do 

For i = 1 To N Do /* iterate at constant T */ 
Generate Snew from Scur by perturbing Scur 
Let Enew be the energy level of Snew

If (Enew<Ecur) Then /* new solution is better */
Scur ← Snew

Else /* new solution is not better */
ΔE = (Enew–Ecur)
P =1/(1+e–ΔE/T) /* find acceptance probability */
Generate a random number r ∈ [0,1]
If (r < p) Then Scur ← Snew

End-If
End-if

End-For 
T = α × T /* α is a constant, 0 ≤ α ≤ 1 */

End-While
End Procedure Simulated Annealing

Fig. 12.25 Simulated Annealing procedure

12.4 SIMULATED ANNEALING

Simulated annealing (SA) is a technique for fi nding good solutions to minimization problems. It simulates 
the physical annealing process of solidifying a metal to a uniform crystalline structure. In order to achieve 
this uniform crystalline structure, the metal is fi rst heated to a molten state and the gradually cooled 
down. Th e critical parameter of this process is the rate of cooling. If the cooling takes place too quickly, en-
ergy gaps will be formed resulting in non-uniformity in the crystalline structure. On the other hand, if the 
cooling takes place too slowly, then time is wasted. Th e optimal cooling rate varies from metal to metal. 

As a search process, SA is similar to hill climbing. Th e diff erence is, in hill climbing, a solution worse 
than the current solution is outright rejected and we look for a solution which is better than, or at least 
as good as, the current solution. However, in SA, a worse solution too has a fi nite probability of being 
accepted. Th is probability is inversely proportional to the extent of degradation in the quality of the new 
solution. Moreover, as the SA process approaches convergence, this probability gradually decreases.

In Simulated Annealing, an energy function is associated with the feasible solutions of the given 
minimization problem. Quality of a solution is determined in terms of this energy function. Lower the 
energy level, better the solution. In SA, a parameter called temperature, denoted by T, is used. As in 
physical annealing, temperature T is high in the beginning and is gradually lowered as the annealing 
process advances. Given, the current solution Si with energy Ei, the next confi guration Si+1 (with energy 
Ei+1) is generated by perturbing Si. Th en Ei+1 − Ei is diff erence in the energy levels of the new solution and 
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the current solution. If Ei+1 − Ei < 0, then Si+1 is better than Si and the current solution is directly updated 
by Si+1. Else, it is accepted with a probability exp (− (Ei+1 − Ei) / (kβT)), where T and kβ are the temperature 
and the Boltzmann’s constant respectively. If the lowering of the temperature is done slowly enough, the 
crystal reaches equilibrium at each temperature. In SA, this is achieved by applying a number of per-
turbations at each T. Simulated annealing starts from a random initial confi guration at high T. It then 
proceeds by generating new states and accepting/rejecting them according to a probability that depends 
on the current T and Ei+1 − Ei. Initially, the probability of accepting an uphill move is high. As the search 
proceeds, the temperature cools down, the probability of taking an uphill move diminishes and the pro-
cess converges to a global minima. Th e purpose of allowing some uphill moves at the earlier phases is to 
overcome the problem of getting stuck at a local minimum. Th e logical steps of a simulated annealing 
process are shown in Procedure Simulated Annealing (Fig. 12.25).

 CHAPTER SUMMARY

Th e main points of the foregoing discussion are summarised below.

 Genetic Algorithms are complex search processes inspired by natural evolution. Th ese are essen-• 
tially maximization processes.
 In a GA, a feasible solution is encoded as a chromosome. In its simplest form, a chromosome is a • 
one-dimensional string of bits though various other types of chromosomes have been tries.
 Fitness functions are objective functions used to evaluate a particular solution or a chromosome. • 
Th e fi tness function of a GA is defi ned in a way so that higher fi tness values may represent better 
solutions.
 • Selection is an important GA operator used to decide which chromosomes of the current popula-
tion will be included in the mating pool. Th e selection operators are based on the Darwinian prin-
ciple of survival of the fi ttest. Most widely used selection operators are the roulette wheel selection 
and tournament selection.
 Th e crossover operation helps to share information embedded in the chromosomes. During cross-• 
over, portions of the parent chromosomes are exchanged and are passed to the children. Th is 
operation helps the GA to explore the entire search space. 
 Another GA operator, • mutation, imparts a small change at a random position inside a chromo-
some. Th e purpose is to salvage the search process from local optima and explore every region of 
the search space adequately. Compared to crossover, mutation occurs rarely.
 In the elitist model of GA, the best chromosomes are preserved to ensure that at the end of the • 
search process these are not lost.
 Multi-objective genetic algorithms are employed to solve problems having several non-commensu-• 
rable objectives with no clear preference relative to each other among them. In real life situations 
the objectives under consideration may confl ict with each other. Hence, instead of a perfect multi-
objective solution that achieves optimal values for each objective function, a set of solutions each of 
which attains an acceptable level for each objective and having the optimal values for one or more 
objectives is returned by a multi-objective genetic algorithm. Such a set of solutions is known as a 
Pareto-optimal set.
 As a search process, Simulated Annealing (SA) is similar to hill climbing. However, in SA, unlike • 
in hill climbing, a worse solution has a fi nite probability of being accepted. Th is probability is in-
versely proportional to the extent of degradation in the quality of the new solution. Moreover, as 
the SA process approaches convergence, this probability gradually decreases.
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 SOLVED PROBLEMS

Problem 12.1 Given a connected graph G (V, E), a node cover, or vertex cover, is a set of nodes N 
⊆ V such that for any edge e ∈ E, at least one end point of e is in N. Th e minimal node cover problem is 
to fi nd a minimal node cover for a given graph. Minimal node cover problem have been proved to be 
NP-complete. Fig. 12.26 shows a graph with 16 nodes and 25 edges. Apply a GA to fi nd a minimal node 
cover for this graph. 

Solution 12.1 Th e nodes of the graph are numbered 1 through 16 and the edges are also num-
bered 1 through 25, as shown in Fig. 12.26. Th e adjacency matrix for this graph is given in Table 12.3. 
Th e (i, j)th entry of the adjacency matrix is 0 if there is no edge between node i and node j, else it is 
k if edge numbered k connects these nodes. Th e chromosome for this problem is a binary string of 
length 16. Th e encoding/decoding scheme is rather simple. Th e ith bit of a chromosome is 1 if node i is 
included in the set of nodes under consideration, else it is 0. For example, the chromosome 1000 1011 
0000 0100 represents the set {1, 5, 7, 8, 14} and the chromosome 0010 0110 0011 1101 corresponds to 
the set {3, 6, 7, 11, 12, 13, 14, 16}. Th e fi tness function employed is 1 / n where n is the number of nodes 
in the set. 
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Fig. 12.26 Sample graph with 16 nodes and 25 edges

Writing the program for the GA is left  as an exercise. Aft er some experimentation, we settled 
on the following parametric values: population size = 64, crossover probability = 0.65, mutation 
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probability = 0.04. Initial population was generated randomly. Th e fi rst three chromosomes are 0 1 1 1 1 
1 1 1 0 1 0 0 1 1 1 1 , 0 1 1 0 0 0 1 0 1 0 1 1 1 0 1 0, and 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1. Th e GA was terminated 
when there was no improvement in the best fi tness over 10 consecutive generations. Th e convergence 
scenario over about 50 generations is shown in Fig. 12.17. Th e upper curve shows the progress made by 
the best fi tness value in a generation over successive generations. Th e lower curve is the same for average 
fi tness of a generation. It is seen from the fi gure that the GA converges in 21 generations of iteration. 

Table 12.3 Adjacency Matrix for Graph Shown in Fig. 12.26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 1 2 3 4 5 16 17 18 19 20 0 0 0 0 0

2 1 0 0 0 0 0 7 8 0 0 0 0 0 0 0 0

3 2 0 0 0 0 0 0 9 10 0 0 0 0 0 0 0

4 3 0 0 0 0 0 0 0 11 12 0 0 0 0 0 0

5 4 0 0 0 0 0 0 0 0 13 14 0 0 0 0 0

6 5 0 0 0 0 0 6 0 0 0 15 0 0 0 0 0

7 16 7 0 0 0 6 0 0 0 0 0 0 21 0 0 0

8 17 8 9 0 0 0 0 0 0 0 0 0 0 22 0 0

9 18 0 10 11 0 0 0 0 0 0 0 0 0 0 23 0

10 19 0 0 12 13 0 0 0 0 0 0 0 0 0 0 24

11 20 0 0 0 14 15 0 0 0 0 0 25 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0

13 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0

A partial picture of the evolutionary progress is given below. Th e best fi t chromosome returned by the 
GA corresponds to the node cover {1, 7, 8, 9, 10, 11} of size 6 for the given graph. A close scrutiny of the 
given graph reveals that this a minimal node cover for the graph.

FITNESS GENERATION CHROMOSOME
0.062500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.083333 2 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0
0.100000 3 1 0 0 1 0 0 1 1 1 1 1 1 0 0 1 1
0.111111 4 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0
0.125000 12 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0
0.142857 15 1 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0
0.166667 20 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
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Problem 12.2 Genetic Algorithms have been successfully applied to many areas of computation. 
Here we present a case study of the application of Genetic Algorithms to grammar induction, a problem 
in natural language processing. Grammar induction stands for deciding or fi nding out a grammar from 
a set of sample strings collected from the language generated by the grammar. However, the problem of 
grammar induction from legal and illegal strings is known to be NP-complete even for fi nite state gram-
mars. Automatic grammar induction has found applications in the areas of natural language processing, 
speech recognition, automatic computer program synthesis to name a few.

Given a set of positive and negative sentences as samples, the problem is to fi nd out the grammar that 
can generate the positive samples. Simply put, given a set of similar sentences some of which have been 
generated using the same grammar (i.e. they belong to the same language/ positive strings) and some 
which diff er from those generated using the target grammar (negative strings), and a set of equivalent 
and non-equivalent grammars the primary aim is to generate an equivalent grammar using genetic algo-
rithm for the positive strings. Use the following set of correct / incorrect sentences as samples.

Sample Sentences Comment
the dog chases the cat in the house correct
the cat the dog the house in chase incorrect
dog the cat house in chases the in incorrect
in dog cat house chases the the the incorrect
house cat the dog chases in the the incorrect
chases the dog the cat house in the incorrect
in the the the house chases dog cat incorrect
house chases the dog cat in the the incorrect
the the the in dog cat house chases incorrect
dog cat house chases the in the the incorrect

Solution 12.2 Th e input to the genetic algorithm would be the initial gene pool with equivalent and 
non-equivalent grammars only. Th e task of the GA would be to generate aft er each iteration a new set 
of grammar’s which will be tested for fi tness value and depending on the result would replace lesser fi t 
members of the generating pool, or die.

Th e process would continue generation of the grammars until it arrives at one which satisfi es the 
terminating condition. Th e terminating condition should ideally be correct identifi cation of all the test 
sentences. In other words, the generated grammar should positively identify and classify the sentences 
as positive or negative strings. 

Fitness Evaluation Th e evaluation of the fi tness function would depend on the ability of the gram-
mar to successfully and correctly identify the positive and negative strings. Identifi cation would mean 
parsing of a string using the respective grammar. A reward-punishment scheme has to be implemented 
wherein the grammars score count increases on correctly identifying a positive string as positive and a 
negative string as negative. Th e same score count will be decremented on identifi cation of the positive 
strings as negative and negative strings as positive. Th e termination condition is therefore decided on 
the score. 

F(α) = r C(α) − p W(α)
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Th e fi tness of the individual α is determined based on the number of sentences correctly identifi ed, 
C(α), and the number of sentences wrongly identifi ed, W(α). Th e associated reward and penalty values 
are r and p respectively and may be tuned suitably.

Encoding the chromosome When it comes to representational issues there are two broad cat-
egories involved. Th e fi rst is the grammar issue, which has at least two degrees of freedom, the formalism 
used, and the encoding of the grammar. Th e second category covers the representational issues of the 
Genetic Algorithm itself, which concerns the choice of genetic operators, the fi tness function and the 
grammar representation style. So for the grammar {S → AB, A → a, B → b} an encoding may be SAB Aa 
Bb. To ease operation of crossover on the strings, it would be wise to keep markers to distinguish be-
tween the LHS and RHS of a production. So, the strings may be encoded fi nally as S-AB A-a B-b.

A sample grammar used in the initial population is {Start → S, S → VP NP, NP → DT NP, VP → NP 
NN, VP → V NP, PP → P DT, DT → the, DT → a, NN → dog, NN → cat, NN → house, V → likes, V → chases, 
P → in}. Th e grammar returned by the GA process is {Start → S, S → NP VP, NP → DT NN, VP → V NP, 
VP → V NP PP, PP → P NP, DT → the, DT → a, NN → dog, NN → cat, NN → house, V → likes, V → chases, 
P → in}

Problem 12.3 Implement a multi-objective GA using MatLab to solve the following MOO prob-
lem: Minimize f (x) = [ f1 (x), f2 (x)], where f1 (x) = (x + 1)2 – 30, and f2 (x) = (x - 1)2 + 30.

Solution 12.3 To solve this multi-objective minimization problem using Genetic Algorithms on 
MatLab, we need to use the GAMULTIOBJ function. Th e function must be supplied with the following 
variables:

Th e Fitness Function• 
Number of variables• 
Linear inequality constraints • A and b.
Linear equality constraints • Aeq and beq.
Th e lower and upper bounds • lb and ub respectively.

Th e successive steps of the solution process are described below:

Step 1. Open a blank .m fi le.
Step 2. Write the following code into it:

function y = sample_mult_ga(x)
y(1) = (x + 5)^2 - 30;
y(2) = (x - 5)^2 + 30;

Step 3. Save the fi le as sample_mult_ga.m
Step 4. Open another blank .m fi le.
Step 5. Write the following code into it:

f_fn=@sample_mult_ga; %Fitness Func as in sample_mut_ga.m.
num_var = 1;
A=[]; b=[]; % Linear inequality constraints kept 
empty
Aeq = []; 
beq = []; %Linear equality constraints kept empty
lb = -5; % Lower bound of the variable.
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ub = 0; % Upper bound of the variable.
x = gamultiobj(f_fn,num_var,A,b,Aeq,beq,lb,ub);
options=gaoptimset(‘PlotFcns’,{@gaplotpareto,@gaplotscoredi-
versity}); % Visualization options
gamultiobj(f_fn,num_var,[],[],[],[],lb,ub,options);

Step 6. Save the fi le as simmulti.m.
Step 7. Run it.

Th e output of the multi-objective GA is a set of three pareto-optimal objective vectors (−29.76, 32.25), 
(−29.3, 31.35) and (−29, 31). Th e output generated by MatLab is shown in Fig. 12.27.

Fig. 12.27 MatLab output for Problem 12.3

Problem 12.4 Minimize the function y e xx= +ex1
2

2sin( ) by applying Simulated Annealing search 
technique provided in MatLab. 

Solution 12.4 Th e steps-by-step is given below. Th is is followed by a list of various parameter values 
used in the SA employed. However, these are inbuilt in MatLab.

Step 1. Write the following piece of code into a Matlab fi le and save it as example_objective.m:

function y = example_objective(x)
y = exp(x(1)) + sin(x(2)^2);

Step 2. Open another fi le by the name of myfun.m and write the following into it:

clear;
clc;
ObjectiveFunction = @example_objective;
X0 = [0.5 0.5]; % Starting point
x = simulannealbnd(ObjectiveFunction,X0)
% The simulannealbnd function takes as input the Objective 
Function and the
% starting point and returns the local minimum x to the 
objective
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% function specified by the function handle.

Step 3. Run myfun.m

Th e following output will be displayed on the Matlab prompt:
Optimization terminated: change in best function value less than options.TolFun.
x = −182.3034 −249.2520

Parameters

Th e function simulannealbnd uses the saoptimset, which creates a structure called options that con-
tains the parameters, for the simulated annealing algorithm, with all parameters set to []. Some of the 
important parameters and their default values are as below:

AnnealingFcn  Function used to generate new points for the next iteration. Th e default is @
annealingfast. 

TemperatureFcn Default is @temperatureexp -- (InitialTemperature*0.95^i).
AcceptanceFcn  Th is function is used to determine whether a new point is to be accepted or 

not. Th e default function is @acceptancesa 
TolFun Tolerance value (non-negative scalar). Default is 1e-6
MaxFunEvals  Maximum number of evaluations of the objective function  (positive integer). 

Default is 3000*numberOfVariables.
TimeLimit Maximum time allowed(positive scalar). Default is Infi nity.
MaxIter Maximum number of iterations allowed(positive integer). Default is infi nity.
ObjectiveLimit  Th e functions stopping criterion. Th e function stops if the value of the objec-

tive function is less than or equal to this. Default value is -Infi nity.
HybridFcn  A hybrid function is another minimization function that runs during or at the 

end of iterations of the solver. Th e default option is [].
HybridInterval Th is value determine the interval aft er at which the hybrid function is called.
InitialTemperature Th e initial temperature (positive scalar). Default is 100. 

� TEST YOUR KNOWLEDGE

12.1 In order to apply GA, an optimization problem should be formulated as 
a) Maximization problem  b) Minimization problem  
c) Decision problem  d) None of the above 

12.2 Genetic Algorithms are inspired by 
a) Statistical mechanics  b) Big bang theory  
c) Natural evolution  d) None of the above 

12.3 Which of the following genetic operators is based on the Darwinian principle of Survival of the 
fi ttest. 
a) Selection  b) Crossover  
c) Mutation  d) None of the above 

12.4 Which of the following selection techniques never selects the worst-fi t chromosome of a popula-
tion? 
a) Roulette wheel b) Tournament selection  
c) Both (a) and (b) d) None of the above 
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 12.5 Which of the following GA operators helps the search process overcome the problem of getting 
stuck at a local optima? 
a) Crossover  b) Mutation  
c) Both (a) and (b) d) None of the above 

 12.6 If pc and pμ be the crossover probability and the mutation probability of a GA then which of the 
following relations is true? 
a) pc < pμ  b) pc > pμ  
c) pc = pμ  d) None of the above 

 12.7 Which of the following properties is not guaranteed by a GA? 
a) Admissibility  b) Convergence  
c) Both (a) and (b)  d) None of the above 

 12.8 Which of the following GA operators do not help in exploring the various parts of the search 
space? 
a) Selection  b) Crossover  
c) Mutation  d) None of the above 

 12.9 Usually a multi-objective GA returns 
a) Th e optimal solution  b) A number of pareto-optimal solutions  
c) One optimal solution per objective  d) None of the above 

12.10 Niche count in multi-objective GA is used to penalize 
a) Sub-optimal solutions   b) Solutions in sparsely populated areas  
c) Solutions in densely populated area  d) None of the above 

12.11 Th e pareto-front of a population in multi-objective GA consists of 
a) A set of non-dominated solutions  b) A set of dominated solution  
c) A set of semi-dominated solutions   d) None of the above 

12.12 In multi-objective GA, the rank of a solution in a population may be assigned on the basis of 
a) Relative position of the pareto-front to which it belongs 
b) Number of solutions dominating it  
c) Number of solutions dominated by it  
d) All of the above 

12.13 Which of the following parameters of a GA is not user-defi ned? 
a) Size of population  b) Crossover probability  
c) Mutation probability  d) None of the above 

12.14 Let A = (10, 20), B = (5, 15), C = (15, 15) be three solution points in the objective space of a 
2-objective minimization problem. Which of the following statements is true? 
a) B dominates A and C  b) A and C are mutually non-dominating  
c) Both (a) and (b)  d) None of the above 

12.15 In Simulated Annealing (SA), the probability of accepting a solution worse than the current one 
a) Increases as the temperature decreases  
b) Decreases as the temperature decreases  
c) Remains constant throughout  
d) None of the above 

12.16 In order to apply Simulated Annealing (GA), an optimization problem should be formulated as 
a) Maximization problem  b) Minimization problem  
c) Decision problem  d) None of the above 
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Answers

 12.1 (a) 12.2 (c) 12.3 (a) 12.4 (b) 12.5 (c)
 12.6 (b) 12.7 (c) 12.8 (a) 12.9 (b) 12.10 (c)
 12.11 (a) 12.12 (d) 12.13 (d) 12.14 (c) 12.15 (b)
 12.16 (b)

 EXERCISE

12.1 Let G (V, E) be a connected graph with |V| = n number of nodes. Each edge e (i, j) between two 
nodes i and j has a weight w (i, j). If we want to assign a binary code to each node then we need 
k = ⎡log2n⎤ number of bits. For example, if there are 6 nodes in the graph, we need ⎡log26⎤ = 3 bit 
code to assign. Out of the 23 = 8 possible codes 6 will be actually assigned and the rest will remain 
unused. Optimal code assignment problem is to assign a set of codes to the nodes of a graph such 
that the function

f w h C Cij i jC
i j E

×wij
∈

∑∑ ( ,Ci )
( ,i )

where Ci, Cj are the codes assigned to the nodes i and j respectively, and h (Ci, Cj) is the Hamming 
distance between Ci, Cj, i.e., the number of bits in which Ci and Cj diff er. Optimal code assignment 
problem is NP-hard. Design a GA to solve this problem for a given graph. Apply it to the graph 
shown in Fig. 12.26.

12.2 Solve the optimal code assignment problem mentioned above with the help of a Simulated An-
nealing. Compare the solutions returned by the two methods. 

12.3 Th e minimal edge cover problem for a given graph G (V, E) may be stated as to obtain the minimal 
set of edges E′ such that for each node v ∈ V there is at least one edge e ∈ E′ of which v is an end point. 
Design a GA to solve this problem for a given graph. Apply it to the graph shown in Fig. 12.26.

12.4 Solve the minimal edge cover problem mentioned above with the help of a Simulated Annealing. 
Compare the solutions returned by the two methods.
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13
HYBRID SYSTEMS

Key Concepts

AND fuzzy neuron, Action selection network (ASN), Action-state evaluation network, Adaptive 
neuro-fuzzy inference system (ANFIS), Approximate reasoning based intelligent control (ARIC), 
Auxiliary hybrid systems, Backpropagation of error, Embedded hybrid systems, Fuzzy-genetic hy-
brid systems, Hybrid neural networks, Hybrid systems, Implication-OR fuzzy neuron, Innovation 
number, Interval of performance, Link chromosome, Multi-layer feed-forward nets, Mutate add 
connection, Mutate add node, Neuro-evolution of augmenting topologies (NEAT), Neuro-fuzzy-
genetic hybrid systems, Neuro-fuzzy hybrid systems, Neuro-genetic hybrid systems, Node chromo-
some, OR fuzzy neuron, S-conorm, S-norm, Sequential hybrid systems, Sugeno fuzzy model, T-
conorm, T-norm

 Chapter Outline 

13.1 Neuro-genetic Systems
13.2 Fuzzy-neural Systems
13.3 Fuzzy-genetic Systems

Chapter Summary
Test Your Knowledge
Bibliography and Historical Notes

Th e three main pillars of soft  computing are fuzzy logic, artifi cial neural networks, and evolutionary 
search – particularly genetic algorithms. All of these have been successfully applied in isolation to 
solve practical problems in various fi elds where conventional techniques have been found inadequate. 
However, these techniques are complementary to each other and they may work synergistically, com-
bining the strengths of more than one of these techniques, as the situation may occasionally demand. 
Hybrid systems are systems where several techniques are combined to solve a problem. Needless to 
say that such amalgamation must be used only if it returns better results than any of these techniques 
in isolation. Based on how two or more systems are combined, hybrid systems have been classifi ed 
into three broad categories, viz., sequential (where the techniques are used sequentially, i.e. the output 
of the fi rst is the input to the later), auxiliary (where one system calls the other as a subroutine, gets 
some results and uses it for further processing) and embedded hybrid systems (where the systems 
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are totally amalgamated). Th ree primary types of hybrid systems are briefl y discussed in this chapter. 
Th ese are, neuro-genetic (combining neural networks and genetic algorithm), neuro-fuzzy (combin-
ing neural network and fuzzy logic) and fuzzy-genetic hybrid systems. Hybrid systems integrating all 
three techniques, viz., fuzzy logic, neural networks, and genetic algorithms, are also implemented in 
several occasions.

13.1 NEURO-GENETIC SYSTEMS

Neuro-genetic systems are combinations of artifi cial neural networks and genetic algorithms. Two such 
hybrid systems, a neuro-genetic system for weight determination of multi-layer feedforward networks, 
and a technique that artifi cially evolves neural network topologies using genetic algorithms are dis-
cussed in this section.

13.1.1  GA-based Weight Determination of Multi-layer
Feed-forward Net

Th e weights in a multi-layer feedforward net are usually determined through the backpropagation 
learning method. In backpropagation of errors the interconnection weights are randomly initialized 
during network design. Th e inputs travel across the interconnections to the output node through the 
nodes of the hidden units. During training, the actual output is compared with the target output and 
the error, if any, is backpropagated for adjustments of the interconnection weights. Th e error is cal-

culated as E i
i

i∑∑1
2

2( )TO AOi iTO , where TOi  is the target output and AOi  is the actual output at the 

ith output unit. During backpropagation of the error, the network adjusts its weights to return better 
results in the next iteration. Th is error backpropagation follows a gradient descent technique and there-
fore, is vulnerable to the problem of settling down at local minima. Another limitation of the gradient 
descent technique is that it is slow since the number of iterations needed to properly train the network 
is usually considerably high. In this section, we discuss a genetic algorithm based method for weight 
determination of multi-layered networks. Th e distinctive features of the system are briefl y described 
below.
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Fig. 13.1 A multi-layer feed forward network with one hidden layer
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Let us consider a single hidden layer network having m + n + r number of nodes, where m is the number 
of input nodes, n is the number of hidden nodes, and r is the number of output nodes. Th erefore, the 
total number of interconnecting weights in the network is (m + r) × n. Now, if each weight is represented 
by a gene, a chromosome having (m + r) × n number of genes can be used to encode the entire network. 
However, the scheme assumes that the topology is known to the encoding–decoding process. Let us re-
call the topology of an m-n-r single hidden layer network shown in Fig. 6.26, which is reproduced here 
as Fig. 13.1.

Each gene, representing an interconnection weight, consists of a 5-digit number d1d2d3d4d5 where 
the most signifi cant digit d1 is used to determine the sign and the rest four, d2d3d4d5, the interconnection 
weight. Th e decoding can be done is the following manner: the sign of the interconnection weight is ‘+’ 
or ‘−’ depending on whether d1 is even or odd. Th e magnitude is obtained by dividing d2d3d4d5 by 100, 
i.e., the real number d2d3.d4d5. A chromosome is then a linear array of (m + r) × n × 5 digits. Th e method 
is explained in Example 13.1.

Y1YY

Z1ZZY2YY

Y3YY

X1XX

X2XX

Fig. 13.2. Sample backpropagation network

Example 13.1  (Chromosome for weight determination of BPN through GA)

Figure 13.2 shows a 2-3-1 multi-layer network. As per notational convention followed here, the in-
terconnection weight between the input unit X1 and the hidden unit Y1 is denoted as w11. Th e other 
weights between the input layer and the hidden layer are w12, w13, w21, w22, and w23. Similarly the 
weights between the hidden layer and the output layer are v11, v21, and v31. Th erefore, a chromosome 
for this network corresponds to an arrangement of weights as given by: 

w11 w12 w13 w21 w22 w23 v11 v21 v31

In the present case, the chromosome is an array of (2 + 1) × 3 × 5 = 45 digits. For instance, let 1434590
76543210765430456713509246809478562589 be a chromosome. Th e mapping between the chromo-
some, weights and interconnections are shown below. 

14345 90765 43210 76543 04567 13509 24680 94785 62589

−43.45 −07.65 +32.10 −65.43 +45.67 −35.09 +46.80 −47.85 +25.89

w11 w12 w13 w21 w22 w23 v11 v21 v31

Th e initial population consists of a set of randomly generated chromosomes. Fitness is measured in 

terms of the error term E i
i

i∑∑1
2

2( )TO AOi iTO . In order to compute the error, a chromosome is mapped 

to its corresponding BPN net. Th e network is then tested by applying the input of a test pair and 
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computing the actual output for the said input. Th is actual output when compared with the target output 

as in E i
i

i∑∑1
2

2( )TO AOi iTO gives the error for that training pair. Th e same is computed for every training 

pair and the average is considered for fi tness calculation. Since the aim is to minimize the error whereas 
GA is a maximization process, we cannot directly use the error E as the fi tness measure. An obvious way 
out is to take the reciprocal of E as the fi tness. 

 F
E

=
1  (13.1)

Th e rest of the process is usual GA. It may be noted that the GA-based learning of multi-layer nets does 
not involve any backpropagation of error. Th e journey towards the minimum error multi-layer network 
is now controlled by the GA instead of the backpropagation learning method process.

13.1.2 Neuro-evolution of Augmenting Topologies (NEAT)

Determination of interconnection weights of multi-layer feedforward networks using GA, discussed 
in the last subsection, was based on the tacit assumption that the topology of the network is fi nalized 
at the outset. Here GA is employed to evolve the appropriate combination of interconnection weights 
only. However, performance of the net is greatly infl uenced by the topology of the net. Th erefore, 
fi nding an optimal network topology, along with the weights, is an issue that needs to be addressed 
in certain situations. Evolution of artifi cial neural networks using GA, referred to as neuro-evolution 
(NE), is the process of searching for such suitable network topology that carries out a given task ef-
fi ciently.

Neuro-evolution of augmenting topologies (NEAT) was proposed by K.O. Stanley and 
R. Miikkulainen in 2002. It employs a GA that simultaneously evolves artifi cial neural network topolo-
gies along with their interconnection weights. An interesting feature of NEAT is its ability to optimize 
and complexify solutions simultaneously. Th e rest of this subsection presents the salient features of this 
methodology.

(a) Genetic encoding. An important issue in problem solving using GA is the eff ective encoding of 
the solution for the GA to operate on it. In NEAT the issue is rather complex due to a phenomenon called 
the competing conventions problem. Th e problem is illustrated in Fig. 13.3. Fig. 13.3(a) and (b) show two 
networks with the same set of nodes. Th e nodes in the hidden layer are arranged in diff erent order in the 
two nets. It is clear from the diagram that a single point crossover over the two networks results in two 
children each of which loses one of the three components of the hidden layer. In NEAT, this problem 
is solved with the help of an innovation number. Th e concept of an innovation number and its role in 
NEAT will be explained in subsequent sections.

NEAT employs two types of genes, the node genes and the connection genes, sometimes referred to as 
the link genes. Th e node genes contain information about each node, their number and type, viz. input, 
hidden or output. Th e link genes store information about the links, the in node number, the out node 
number, the weight of the link, the status (enable/disable) of the link and a number called the innovation 
number of the link. 

Th e innovation number is a unique number that is used to track the historical origin of the link. Th is 
number is incremented by one and assigned to a gene on creation through structural mutation and is 
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passed on to its children. It therefore represents the chronology of appearance of every link. Th e innova-
tion number of a link never changes. It helps to overcome the competing convention problem during the 
crossover operation. Th is will be explained later in this subsection. Th e structure of the chromosomes in 
NEAT is illustrated in Example 13.2.

×

(a) (b)

7

4 5 6

1 2 3

7

6 5 4

1 2 3

Crossover [ 4, 5, 6 ] × [ 6, 5, 4 ]
Children [ 4, 5, 4 ] [ 6, 5, 6 ]

Fig. 13.3. The competing conventions problem

Example 13.2  (Structure of NEAT chromosomes)

A 3-1-1 multi-layer neural net along with its chromosomes is shown in Fig. 13.4. Th e node gene is 
shown in Fig. 13.4(b). It consists of a list of nodes and their nature. In this specifi c case, nodes #1, 
2, 3 are inputs, node #5 is a hidden node, and the node #4 is the output node. Th is information is 
incorporated in the node gene.

Th e structure of the connection chromosome, also referred to as the link chromosome, is more 
complex because a greater amount of information is accommodated here. A closer scrutiny of 
this chromosome will reveal some evolutionary history of the network, and the constituent genes. 
First, notice that each entry of the connection chromosome has a disable/enable fi eld that indicates 
whether the link is still alive or not. For the chromosome shown in Fig. 13.4(c), the link 2 → 4 
(i.e. in node 2, out node 4) is disabled, while all other nodes are enabled. Th is implies that once 
there was a direct link from node #2 to node #4, which is now disrupted due to the intervening 
new node #5. At some point of the evolution process node #5 was inserted between the nodes #2 
and node #4 so that the link 2 → 4 is replaced by the pair 2 → 5 and 5 → 4. Since the innovation 
numbers of the links 2 → 5 and 5 → 4 (4 and 7 respectively) are larger than that of the disabled 
link 2 → 4 (innovation number = 2) we know that these links were formed later than the link 2 
→ 4. It may be noted that the links link 1 → 5 and link 3 → 5 were created even later than 2 → 5.
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(a) The network

4

5

1 2 3

NODE #1
INPUT

NODE #2
INPUT

NODE #3
INPUT

NODE #4
OUTPUT

NODE #5
HIDDEN

(b)  Node 
chromosome

IN = 1
OUT = 4
W = 0.5
ENABLD
INOV. = 1

IN = 2
OUT = 4
W = 0.86
DISABLD
INOV. = 2

IN = 3
OUT = 4
W = 0.67
ENABLD
INOV. = 3

IN = 2
OUT = 5
W = 0.32
ENABLD
INOV. = 4

IN = 1
OUT = 5
W = 0.9
ENABLD
INOV. = 5

IN = 3
OUT = 5
W = 0.68
ENABLD
INOV. = 6

IN = 5
OUT = 4
W = 0.66
ENABLD
INOV. = 7

(c)  Link 
chromosome

Fig 13.4 The NEAT chromosomes

(b) Mutation. There are two kinds of mutation operators in NEAT, one for adding a new con-
nection, which is called mutate add connection and the other for adding a new node, which is 
termed as mutate add node. It may be recalled that the NEAT process progresses from simple net-
work structures to complex networks. The two kinds of mutations are explained in Examples 13.3 
and 13.4.

Example 13.3  (Mutate add connection operation)

Figures 13.5(a) and (c) show a network with 6 nodes and 6 connections and the corresponding 
link chromosome. Th e structure of the link chromosome is made simple by symbolically ex-
pressing a link as p → q where p is the in node and q is the out node. Moreover, the weights are 
not shown. Figures 13.5(b) and (d) show the topology and the link chromosome respectively of 
the network aft er being mutated by adding a new link 2 → 6. Th is addition of the new connec-
tion is refl ected in the altered connection gene which contains a new link gene with innovation 
number 7.
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The network before
mutate add connection

(a) The network after
mutate add connection

(b)

6

4 5

1 2 3

6

4 5

1 2 3

1 → 4
ENABLD
INOV. = 1

2 → 4
ENABLD
INOV. = 2

2 → 5
ENABLD
INOV. = 3

3 → 5
ENABLD
INOV. = 4

4 → 6
ENABLD
INOV. = 5

5 → 6
ENABLD
INOV. = 6

(c) Link chromosome of network before mutate add connection

1 → 4
ENABLD
INOV. = 1

2 → 4
ENABLD
INOV. = 2

2 → 5
ENABLD
INOV. = 3

3 → 5
ENABLD
INOV. = 4

4 → 6
ENABLD
INOV. = 5

5 → 6
ENABLD
INOV. = 6

2 → 6
ENABLD
INOV. = 7

(d) Link chromosome of network after mutate add connection

Fig 13.5 The mutate add connection operation

Example 13.4  (Mutate add node operation)

Figure 13.6(a) depicts the network structure of Fig. 13.5(b) aft er mutate add node operation in 
which the node 7 is added between nodes 2 and 6. As a result of this operation, the structures 
of both the node chromosome and the link chromosome have changed. Fig. 13.6(b) shows the 
node chromosome which refl ects the change by introducing node #7 as a hidden node. Similarly, 
Fig. 13.6(c) shows the link chromosome which is obtained by appropriately modifying the chro-
mosome in Fig. 13.5(d). Th e modifi cations are: inclusion of two new connections 2→7 and 7→6, 
with innovation numbers 8 and 9, respectively, and disabling the link 2→6, of innovation number 
7. It is interesting to note that the link is not discarded, but disabled. 
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6

4 5

1 2 3

7

(a) The network of Fig. 13.5 (b) after mutate add node operation

NODE #1
INPUT

NODE #2
INPUT

NODE #3
INPUT

NODE #4
HIDDEN

NODE #5
HIDDEN

NODE #6
OUTPUT

NODE #7
HIDDEN

(b) Node chromosome of network after mutate add node

1 → 4
ENABLD
INOV. =1

2 → 4
ENABLD
INOV. =2

2 → 5
ENABLD
INOV = 3

3 → 5
ENABLD
INOV. = 4

4 → 6
ENABLD
INOV. = 5

5 → 6
ENABLD
INOV. = 6

2 → 6
DISABLD
INOV. = 7

2 → 7
ENABLD
INOV. = 8

7 → 6
ENABLD
INOV. = 9

(c) Link chromosome of network after mutate add node

Fig. 13.6. The mutate add node operation

(c) Crossover. Crossover is probably the most complex operation in NEAT. Th is is because it involves 
matching up of chromosomes of various network topologies suitable for crossing over. Th e concept of 
innovation number helps to achieve this. Th e innovation numbers enable the NEAT process to identify 
the portions of two parent chromosomes that match even without direct analysis of the topologies of the 
networks. Th e technique of NEAT crossover is explained in the Example 13.4 presented below.

Example 13.5  (Crossover operation in NEAT)

Consider the network structures (a) and (b) as shown in Fig. 13.7. Th ey seem to have a common 
ancestor from which they were generated through mutation. Th e corresponding node chromo-
somes are shown at the top and the link chromosomes are shown below the nets. Th e off spring 
is generated by adding to the common genes, the disjoint genes and the excess genes from the 
parents. In the present case the genes for the links 1→4, 2→4, 2→5, 3→5, 4→6, 5→6 are the common 
genes. A disjoint gene is a gene that is not included in the other parent but has innovation number 
less than the greatest innovation number. 

In the fi gure, the link gene 1→5, having innovation number 8 is a disjoint gene, since it is pres-
ent in network (a) but not in network (b) and its innovation number (8) is less than the greatest 
innovation number (10) included in network (b). An excess gene is a gene that is part of one parent 
and has innovation number greater than the greatest innovation number of the genes of the other 
parent.
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NODE #1
INPUT

NODE #2
INPUT

NODE #3
INPUT

NODE #4
HIDDEN

NODE #5
HIDDEN

NODE #6
OUTPUT

Node chromosomes of network (a)

NODE #1
INPUT

NODE #2
INPUT

NODE #3
INPUT

NODE #4
HIDDEN

NODE #5
HIDDEN

NODE #6
OUTPUT

NODE #7
HIDDEN

Node chromosomes of network (b)

(a)

+ =

6

4 5

1 2 23

(b)

6

4 7 5

1 2 3

(c)

6

4 7 5

1 3

(a)
1 → 4
ENA
INO = 1

2 → 4
ENA
INO = 2

2 → 5
ENA
INO = 3

3 → 5
ENA
INO = 4

4 → 6
ENA
INO = 5

5 → 6
ENA
INO = 6

2 → 6
ENA
INO = 7

1 → 5
ENA
INO = 8

(b)
1 → 4
ENA
INO = 1

2 → 4
ENA
INO = 2

2 → 5
ENA
INO = 3

3 → 5
ENA
INO = 4

4 → 6
ENA
INO = 5

5 → 6
ENA
INO = 6

2 → 6
DISA
INO = 7

2 → 7
ENA
INO = 9

7 → 6
ENA
INO = 10

(c)
1 → 4
ENA
INO = 1

2 → 4
ENA
INO = 2

2 → 5
ENA
INO = 3

3 → 5
ENA
INO = 4

4 → 6
ENA
INO = 5

5 → 6
ENA
INO = 6

2 → 6
DISA
INO = 7

1 → 5
ENA
INO = 8

2 → 7
ENA
INO = 9

7 → 6
ENA
INO = 10

(a) Parent #1, (b) parent #2, (c) offspring

Fig. 13.7. The NEAT crossover operation

In Fig. 13.7, the link genes 2 → 7 (INO = 9) and 7 → 6 (INO = 10) are excess genes because they are 
part of network (b) only and have innovation numbers greater than 8, which is the highest inno-
vation number of network (a). Aft er crossover, the off spring inherits all the nodes of both parents 
and the links including excess and disjoint ones from both parents which is shown in network (c) 
and the corresponding chromosome in Fig. 13.7.
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(d) NEAT process. Conventional neuro-evolution process starts with an initial population of random 
network topologies so that diversity is introduced from the very beginning. NEAT, in contrast, starts 
with a uniform population of networks with no hidden units. Th is is to facilitate the search for minimal 
network capable of performing the given task. As the networks mutate over time, new structures are in-
crementally introduced into the pool. Fitness evaluation ensures that only those structures survive who 
are useful for the designated task. 

A relevant question for this scheme is how the NEAT process identifi es the compatible networks for 
processing? A natural measure of compatibility distance of two chromosomes (and the underlying nets) 
is the number of excess and disjoint genes between them. Th e more disjoint two chromosomes are, the 
less evolutionary history they share, and hence, the less compatible they are. Th e measure of compat-
ibility distance d is defi ned as 

 δ = + +
c E
N

c D
N

c W1 2+
E c

3  (13.2)

where E is the number of excess genes, D is the number of disjoint genes, W is the average weight diff er-
ence of matching genes, including the disabled genes. Th e constants c1, c2, and c3 are used to adjust the 
weight of the three factors. N is the numbers of genes in the larger chromosome. It is used to normalize 
the chromosome size.

13.2 FUZZY-NEURAL SYSTEMS

Th e basic idea behind hybrid systems, as already discussed, is to harness the best of both worlds and 
come up with unique solutions to the varied nature of problems we are faced with and cannot solve 
satisfactorily using other techniques. While fuzzy systems have as strength the power to work with im-
precise information and vagueness, they cannot adapt, cannot learn from experience, cannot generalize 
or exploit parallelism. On the other hand, artifi cial neural networks are tools that cannot deal with un-
certainty but can learn and adapt, generalize and being massively parallel can use the synaptic weights to 
store information that acts like memory. Fuzzy-neural systems are systems obtained by integrating fuzzy 
logic with neural networks to exploit the advantages of both. 

Input Fuzzy 
Perceptions

Fuzzy Value
Extractor

Artificial Neural
Network

Artificial Neural
Network

Output

(a) Type-1 Fuzzy-Neural Systems

Decision

Input Fuzzy Inference
System

Neural
Output

Feedback (Input For Learning)

(b) Type-2 Fuzzy-Neural Systems

Fig. 13.8. Types of neuron-fuzzy system
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Fuzzy-neural systems have been classifi ed into two broad categories, depending upon how the two tech-
niques are merged. Th ese are the type-1 and type-2 fuzzy-neural systems. In type-1 systems, the input is 
fed to the fuzzy value extractor, where, based on the truth value of the input, an input vector is generated 
for the artifi cial neural network. Th e neural network then generates the output as decisions. In type-2 
fuzzy-neural systems the output of the neural network is fed to the fuzzy inference system whose deci-
sion is fed back to the neural net to facilitate learning. Th e schematics of these tow types of neuro-fuzzy 
systems are depicted in Fig. 13.8(a), (b).

A typical example of a fuzzy-neural system is the approximate reasoning based intelligent control 
(ARIC) system proposed by H. R. Berenji. Th is system uses a neural model of a fuzzy controller that can 
learn by updating the behavioral prediction of the physical system and changes the predefi ned control 
logic database accordingly. ARIC basically comprises two modules that work together. Th e fi rst module, 
called the action selection network (ASN), is a neural model of a fuzzy controller which consists of two 
networks. One network acts as the unit doing the fuzzy inference and the second is used to calculate the 
confi dence associated with the fuzzy inference value generated by the fi rst. Th e second module of ARIC 
apart from ASN is the action-state evaluation network (AEN). Th is is a feed forward network with one 
hidden layer and tries to predict the system behavior. Th e inputs to the AEN are the system state and an 
error signal from the physical system. Th e output of the network is a prediction of future reinforcement. 
In the subsequent parts of this section two neuro-fuzzy systems, viz., fuzzy neuron, and adaptive neuro-
fuzzy inference system (ANFIS), are briefl y described.

13.2.1 Fuzzy Neurons

Artifi cial neural networks are discussed in detail in Chapters 6 to 10. Figure 13.9 depicts the structure of 
an elementary 2-input 1-output neuron without any hidden nodes.

1xx w1ww

w2ww

X1XX

y_yy out

x2xx X2XX

Y

Fig. 13.9. A 2-input 1-output neuron

Th e input signals x1 and x2 interact with the synaptic weights w1 and w2 to give intermediate results w1 × x1 
and w2 × x2 respectively. All the inputs, through the various synaptic weights, are aggregated to produce the 
net input y_in to the output unit Y. 

 y in w w w x
i

i ix
i

× =xix × +x ×
=i=

∑ ∑y ini_y =y ini
1

2

1

2

1 1xx 2 2x  (13.3)

If f (⋅) is the transfer function that the network uses, the neuron computes its output as y_out = f (y_in). 
Th e operations discussed above are all crisp. However, it is possible for a neuron to perform fuzzy op-
erations on the input and weight. Such neurons are called fuzzy neurons. Th erefore, a fuzzy neuron is a 
neuron that applies fuzzy operations on incoming data. 

Samir Roy_Chapter13.indd   575Samir Roy_Chapter13.indd   575 2/21/2013   3:40:48 PM2/21/2013   3:40:48 PM



576  Introduction to Soft Computing

A t-norm (T-Norm) is a binary operator that represents conjunction in logic. Used specifi -
cally in fuzzy logic, it can be defi ned as a function T : [0, 1] × [0, 1] → [0, 1] which is commu-
tative ( T (a, b) = T (b, a) ), monotonic ( T (a, b) ≤ T (c, d) if a ≤ b and c ≤ d ), associative ( T (a, 
T (b, c) ) = T (T (a, b), c). The neutral element of a T-Norm is 1. The dual notion of T-Norm 
is T-Conorm (also known as S-Norm) which has a neutral element 0. A few well known T-
Norms and T-Conorms (S-Norms) are listed below.
Drastic product (tw) : tw (a, b) = min {a, b} if max {a, b} = 1, else 0.
Drastic sum (sw) : sw (a, b) = max {a, b} if min {a, b} = 0, else 1.
Bounded difference (t1) : t1 (a, b) = max {0, a+b−1}.
Bounded sum (s1) : s1 (a, b) = min {1, a + b}.
Minimum (t3) : t3 (a, b) = min {a, b}.
Maximum (s3) : s3 (a, b) = max {a, b}.
Product (tp) : tp (a, b) = a⋅b.
Product t-conorm (Sp) : Sp (a, b) = a + b − a⋅b.

Fig. 13.10 T-norms and T-conorms

Neural networks that use fuzzy neurons as building blocks are called hybrid neural networks. Such neural 
networks use crisp signals, crisp transfer functions and crisp weights, but have certain properties that 
distinguish them from usual crisp neural networks. Th ese properties are mentioned below.

(a)  Th e inputs and the weights can be combined using fuzzy operations, e.g., fuzzy AND, fuzzy 
OR, implication, T-Norm, or T-Conorm. Fig. 13.10 shows certain details about T-Norm, or T-
Conorm operations.

(b)  Th e results of such combinations can be aggregated using T-Norm, or T-Conorm or some other 
continuous function.

(c)  Th e function f (⋅) is a continuous function that maps input to output.

It must be clearly understood that the weights, inputs and the outputs of a hybrid neural network are 
real numbers in the interval [0, 1]. Th e processing units of hybrid-neural networks are fuzzy neurons. 
Descriptions of a few variants of fuzzy neurons are presented here. All examples are modeled on the 
neural structure of Fig. 13.9.

(a) AND Fuzzy Neuron. Th e input xi and weight wi are combined using fuzzy OR to produce the inter-
mediate result. If y_ini denotes the combination of input xi and weight wi then
 y_ini = ORf (xi, wi) = max {xi, wi}, i = 1, 2 (13.4)
Th e intermediate results are then transformed to the output using fuzzy AND, y_out = ANDf (y_in1, 
y_in2). Hence the output of the neuron y_out = f (y_in) is obtained according to the formula
 y_out = min { max {w1, x1}, max {w2, x2} } (13.5)
Alternatively, the inputs x1, x2 and weights w1 and w2 are combined by a triangular conorm S to produce 
the intermediate result
 y_ini = S (xi, wi), i = 1, 2 (13.6)
Th e intermediate results are then aggregated using a triangular norm T to produce the output as formu-
lated below.
 y_out = ANDf (y_in1, y_in2) = T (y_in1, y_in2) = T { S (x1, w1), S (x2, w2) } (13.7)
So, if T ≡ min and S ≡ max then the AND neuron realizes the min-max composition.
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(b) OR Fuzzy Neuron. In an OR fuzzy neuron, the input xi and weight wi are combined using fuzzy AND 
to produce the intermediate result. Th erefore, in this case

 y_ini = ANDf (xi, wi) = min {xi, wi}, i = 1, 2 (13.8)

Th e intermediate results are then transformed to the output using fuzzy OR, so that y_out = ORf (y_in1, 
y_in2). Hence the output of the neuron y_out = f (y_in) is obtained according to the formula

 y_out = max { min {w1, x1}, min {w2, x2} } (13.9)

Alternatively, the inputs x1, x2 and weights w1 and w2 are combined by a triangular norm T to produce 
the intermediate result

y_ini = T (xi, wi), i = 1, 2

Th e intermediate results are then aggregated using a triangular conorm S to produce the output as for-
mulated below.

 y_out = ORf (y_in1, y_in2) = S (y_in1, y_in2) = S( T (x1, w1), T (x2, w2) )  (13.10)

So, if T ≡ min and S ≡ max then the OR neuron realizes the max-min composition.
It may be noted that while fuzzy AND, OR neurons perform logic operations on the membership values, 
the connections play the role of diff erentiating the impact levels of the inputs on the aggregation result. 
In fact, higher values of wi have stronger impact of xi on y_out of an ORf neuron, and lower values of wi 
have stronger impact of xi on y_out of an ANDf neuron.

(c) Implication-OR Fuzzy Neuron. In an implication-OR fuzzy neuron the input xi and weight wi are 
combined using fuzzy implication to produce the intermediate result. Hence, for an implication-OR 
fuzzy neuron, 

 y_ini = IMPf (xi, wi) = xi → wi, i = 1, 2 (13.11)

Th e input information y_ini, i = 1, 2, are then aggregated by a triangular conorm S to produce the output

 y_out = S (y_in1, y_in2) = S (x1 → w1, x2 → w2) (13.12)

Hybrid neural nets can be used to realize fuzzy rules in a constructive way so that the resultant nets are 
computationally equivalent to fuzzy expert systems and fuzzy controllers. Th ese nets do not learn any-
thing, they do not need to. Hybrid neural nets cannot directly use the backpropagation algorithm for 
learning. However, in order to determine the parameters of the membership functions representing the 
linguistic values in the rules, they may exploit steepest descent method, assuming that the outputs are 
diff erentiable functions of these parameters. 

13.2.2 Adaptive Neuro-fuzzy Inference System (ANFIS)

Th e adaptive neuro-fuzzy inference system, quite oft en referred to as the adaptive network based fuzzy 
inference system (ANFIS) is a class of adaptive networks that can function in the same way as a fuzzy 
inference system. ANFIS uses a hybrid learning algorithm and represents the Sugeno and Tsukamoto 
fuzzy model which is described below.

(a) Sugeno Fuzzy Model. Developed by Takagi, Sugeno and Kang and popularly known as the Sugeno 
model, this method generates fuzzy rules from a set of data. A typical rule in the Sugeno Model has the 
form:
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 If (x is A) AND (y is B) Th en z = f (x, y) (13.13)

Considering f (x, y) to be a fi rst-order polynomial, we get the fi rst-order Sugeno fuzzy model and can be 
described with the help of the following rules.

Rule 1. If (x is A1) and (y is B1) then f1 (x, y) = p1x + q1y + r1

Rule 2. If (x is A2) and (y is B2) then f2 (x, y) = p2x + q2y + r2 
(13.14)

(b) ANFIS architecture. Fig. 13.11 shows the ANFIS architecture for two input fi rst order Sugeno fuzzy 
model with two rules. It consists of fi ve layers including the input and output layers.Each layer has a 
specifi c job to do. Th e task performed by every layer is explained below. Here Oki is the output of the ith 
node of the layer k.

A1

A2

B1

B2BB

w1ww

w2ww

f

x

x

y

y

x y

LAYER-2AA LAYER-3AA

LAYER-1AA
LAYER-4AA

LAYER-5AA

N

N

p

p

Σ

w1ww

w2ww
w2ww f2ff

w1ww f1ff

Fig. 13.11 ANFIS architecture for 2 input fi rst order Sugeno fuzzy model with 2 rules

Layer 1. Every node in this layer is an adaptive node with a node function as described below.

 O x forff i
y forff ii
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=
=
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−

μA

μ  (13.15)

Here x (or, y) is the input to node i and Ai (or Bi−2) is a linguistic label associated with this node. Th ere-
fore O1,i is the membership grade of a fuzzy set A1, A2, B1, or B2. Needless to say that the membership 
functions can be any parameterized function like the bell, triangular, or trapezoidal.

Layer 2. Th is layer consists of a number of nodes each of which is labeled Prod and produces the 
product of all the incoming signals on it as its output.

 O y forff ii Bi iB2 1 2, ( ) (y ,forff i 1=μ μAi )x)x ⋅)x  (13.16)

Th e output from each of these nodes represents the fi re strength of the corresponding rule. Alterna-
tively, any other T-norm operator that performs as the AND operator can be used.

Layer 3. Nodes in layer 3 are fi xed nodes labeled Norm, and in this layer, the ith node calculates the 
ratio between the ith rule’s fi ring strength and the sum of the fi ring strengths of all the rules.

 O w w
w w

for ii iw i
3

1 2w
1 2, , ,for i 1=wiw

+
=  (13.17)

Th e outputs of these nodes are referred to as the normalized fi ring strengths.
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Layer 4. Th e node function of each node in this layer is presented below.

 O w f w p q yi iw if wf q i4, ( )p x y rx q irrw fiw ff q yq  (13.18)

In expression 13.17, wi is the normalized fi ring strength from layer 3 and {pi, qi, ri} is the parameter set 
of the ith node and is referred to as consequent parameters.

Layer 5.  Th is single node layer computes the output of the network by summing all incoming sig-
nals. Th e output is expressed as

 O w f
w f
wii iff

iffi

ii

5 1, =w fi iff∑∑ ∑
∑

 (13.19)

Training the ANFIS is accomplished by using the hybrid learning algorithm presented by Jang. Th is 
algorithm uses least squares method to identify the consequent parameters on the layer 4 during the 
forward pass. During backward pass the errors are propagated backward and the premise parameters are 
updated using gradient descent technique.

13.3 FUZZY-GENETIC SYSTEMS

As the name suggests, fuzzy-genetic systems are hybrid systems that combine fuzzy systems with genetic 
algorithms in order to exploit the advantage of the both. As a typical instance of the synergy between 
fuzzy logic and GA, we present a scheme for tuning a fuzzy logic controller (FLC) with GA. Fuzzy logic 
controllers are discussed in details in Chapter 4. Th ese systems try to simulate a skilled operator control-
ling a complex ill-defi ned process without knowledge of the underlying dynamics. Th e expert knowl-
edge of the operator is embedded in the fuzzy logic controller in the form of a set of fuzzy rules, usually 
referred to as the fuzzy rule base.

GA based tuning of fuzzy logic controllers. In an FLC, the fuzzy rules are IF-THEN rules 
formulated in linguistic terms where the linguistic terms refer to certain fuzzy sets. Performance of 
the FLC depends to a large extent on the correct choice of the membership functions of the linguistic 
labels. Th e diffi  culty lies in representing the expert’s knowledge suitably by linguistic control rules. 
Th e rest of this section discusses the essential features of a GA that tries to modify the fuzzy set defi -
nitions, i.e., the shape of the fuzzy sets defi ning the linguistic values. Th e purpose is to determine the 
membership functions for best FLC performance. Th e main features of this GA are briefl y explained 
below.

Chromosomes. Th e rule base of an FLC consists of a number of rules with the form 

 If ‘x1 is Ai1’ AND ‘x2 is Ai2’ AND …AND ‘xn is Ain’ Th en ‘y is Bi’  (13.20)

where x1, x2, …, xn and y are linguistic variables representing the process state variables and the control 
variables respectively. Ai1, Ai2, …, Ain and Bi are the linguistic values of the linguistic variables x1, x2, …, 
xn and y respectively. 

For instance, a typical fuzzy rule may look like: If ‘Blood pressure is large positive’ AND ‘Blood sugar 
level is small positive’ AND ‘Calorie consumption is small negative’ Th en ‘Insulin dose is small positive’. Here 
each of the variables Blood pressure, Blood sugar, Calorie consumption, and Insulin dose are measurable 
quantities. Th e corresponding linguistic values e.g. large positive etc. are fuzzy sets on these variables with 
predefi ned membership functions. Assuming that the linguistic labels Ai1, Ai2, …, Ain, Bi for i = 1, 2 …, 
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a trapezoidal membership function is parametrically represented by a 4-tuple 〈 c, a, b, d 〉 which character-
ize the said membership function. 

Example 13.6  (Parametric representation of trapezoidal membership function)

Let us consider the linguistic value ‘Small positive’ with respect to the variable ‘Blood sugar level’. A 
probable membership profi le for this fuzzy set is shown in Fig. 13.12. Th e parametric representa-
tion of this membership function is, obviously, 〈 c, a, b, d 〉 = 〈 125, 150, 175, 225 〉.

Small positive

Blood sugar level
225175150125

1

0

Fig. 13.12 < 125, 150, 175, 225 > Trapezoidal function

In the GA under consideration, a chromosome represents an encoding of a fuzzy rule base. Each rule of 
the form given in Expression 13.19 is included in the chromosome as a gene Gik, denoting the kth gene 
(i.e. the kth rule) of the ith chromosome (the ith candidate rule base in the GA population). Th is Gik must 
contain information about the fuzzy sets Ai1, Ai2, …, Ain, and Bi. Let 〈 cik1, aik1, bik1, dik1 〉, 〈 cik2, aik2, bik2, dik2 〉, 
…, 〈 cikn, aikn, bikn, dikn 〉, and 〈 cik, aik, bik, dik 〉 be the corresponding parametric representations. Th en the 
kth gene of the ith chromosome is given by

 Gik = cik1 aik1 bik1 dik1 cik2 aik2 bik2 dik2 … cikn aikn bikn dikn cik aik bik dik (13.21)

Accepting this notation, the entire ith fuzzy rule base consisting of m number of rules is represented by 
the chromosome Ci where

 Ci = Gi1 Gi1 … Gim (13.22)

Finally, a population P of R number of fuzzy rule bases is given by 

 P = {C1 , C2 , …, CR} (13.23)

Th e GA process evolves this population for the purpose of fi nding the appropriate rule base suitable for 
the designated control activity.

Interval of performance. Th e initial population is created from a rule base suggested by the do-
main expert. Let us denote the chromosome for this seed rule base as C1. In order to enable the GA 
process to tune the rules, an interval of performance is defi ned for each fuzzy set parameter. Suppose 
〈 c1, a1, b1, d1 〉 be the parameters suggested by the expert for the fuzzy set corresponding to a particular 
linguistic value and this is included in the seed chromosome C1. Th en the subsequent values 〈 ci, ai, bi, di 〉 
in further chromosomes evolved by the GA must lie within certain pre-defi ned intervals ci ∈ [cL, cH], ai 
∈ [aL, aH], bi ∈ [bL, bH] and di ∈ [dL, dH] where cL is the lower bound and cH is the upper bound for c, and 
so on for the rest of the parameters. Th ese intervals are defi ned below.
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 (13.24)

Th ese intervals are diagrammatically shown in Fig. 13.13.

cL c cH a aH b bH d dHdd
aL bL dLdd

Fig. 13.13 Intervals of performance

Fitness. Fitness is measured on the basis of the performance of a candidate solution with respect 
to a set of training input-output data. Let the training data consists of a set of K number of such input-
output pairs. 

{(xi, yi) = (xi1, xi2, …, xin, yi), i = 1, 2, …, K}

Th e error of inference committed by a fuzzy rule base S, is calculated as

 E y xix
i

K

( )S [ (y SS )][y=
=
∑1

2
2

1
 (13.25)

Th e objective is to minimize the error E(S) formulated above. Keeping this in mind, E(S) can be used 
to defi ne a suitable fi tness function to guide the GA. Th e other GA operations are defi ned suitably and 
various GA parameters, e.g., population size, crossover probability, mutation probability, selection pro-
cedure etc., are set and tuned as per requirement of the problem instance. 

 CHAPTER SUMMARY

Th e main points of the forgoing discussions on hybrid systems are given below.

Soft  computing techniques are complementary to each other and they may work synergistically, • 
combining the strengths of more than one of these techniques, as the situation may occasionally 
demand. Hybrid Systems are systems where several techniques are combined to solve a 
problem.
Th e primary types of hybrid systems are, neuro-genetic (combining neural networks and genetic • 
algorithm), neuro-fuzzy (combining neural network and fuzzy logic) and fuzzy-genetic hybrid 
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582  Introduction to Soft Computing

systems. Hybrid systems integrating all three techniques, viz., fuzzy logic, neural networks, and 
genetic algorithms, are also implemented in several occasions.
Genetic algorithm based method for weight determination of multi-layer networks, or neuro-• 
evolution of augmenting topologies (NEAT) are examples of neuro-genetic systems. In the 
former, instead of learning the interconnection weights of a multi-layer feedforward neural 
net through the technique of backpropagation of error, a GA is used to evolve these weights. In 
NEAT, genetic algorithm is employed to evolve the network topology, along with the weights, 
in order that the optimal net to carry out designated is obtained. In NEAT, the concept of an 
innovation number is introduced to resolve the competing conventions problem. Th e innovation 
number is a unique number that is used to track the historical origin of a link in the genetic 
evolution process. 
A • fuzzy neuron is a neuron that applies fuzzy operations on incoming data. Various kinds of 
fuzzy neurons, e.g., fuzzy AND neuron, fuzzy OR neuron, fuzzy implication-OR neurons etc., 
are there that are used as building blocks of hybrid neural nets.
Th e • adaptive neuro-fuzzy inference system, quite oft en referred to as the adaptive network based 
fuzzy inference system (ANFIS) is a class of adaptive networks that can function in the same way 
as a fuzzy inference system. ANFIS architecture with fi rst order Sugeno fuzzy model as input 
consists of fi ve layers including the input and output layers. Each layer has a specifi c job to do.
Fuzzy-genetic systems are hybrid systems that combine fuzzy systems with genetic algorithms • 
in order to exploit the advantage of the both. Tuning a fuzzy logic controller (FLC) with GA ia 
a typical fuzzy-genetic system. Such a system employs a GA to evolve the fuzzy set defi nitions, 
i.e., the shape of the fuzzy sets defi ning the linguistic values. Th e purpose is to determine the 
membership functions for best FLC performance.

� TEST YOUR KNOWLEDGE

13.1 Hybrid systems are formed by combining 
a) Soft  computing with hard computing 
b) Two or more soft  computing techniques 
c) Embedding soft  computing in hardware 
d) None of the above

13.2 A hybrid system that totally integrates two or more soft  computing techniques is called 
a) Sequential hybrid system  b) Auxiliary hybrid system 
c) Embedded beg hybrid system  d) None of the above 

13.3 In a neuro-genetic system, GA can be used to determine 
a) Th e interconnection weights  b) Th e topology of the network 
c) Both (a) and (b) c) None of the above

13.4 Which of the following is a hybrid system to evolve the topology of a neural network?
a) NEAT  b) ANFIS 
c) Both (a) and (b) d) None of the these 

13.5 In NEAT hybrid system, the innovation numbers in a chromosome is used to express the 
a) Degree of a node  b) Historical origin of a link 
c) No of hidden units  d) None of the above 
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 13.6 Which of the following is not used in NEAT?
a) Node chromosomes  b) Link chromosomes 
c) Both (a) and (b) d) None of the above

 13.7 Which of the following chromosomes in NEAT is aff ected by the Mutate Add Node operation?
a) Node chromosomes  b) Link chromosomes 
c) Both (a) and (b) d) None of the above

 13.8 In NEAT crossover operation, which of the following is not inherited by the off spring from the 
parents?
a) Disabled links? b) Excess links 
c) Disjoint links d) None of the above

 13.9 How may layers are there in adaptive neuro-fuzzy inference systems(ANFIS)?
a) 3 b) 4
c) 5 d) None of the above. 

13.10 While tuning fuzzy logic controllers by GA, the membership functions of the fuzzy sets corre-
sponding to various linguistic values are taken as 
a)  Gaussian  b) Trapizoidal 
c) S-function  d) None of the above

13.11 In a hybrid system for tuning fuzzy logic controllers by GA, the fi rst set of fuzzy rules is gener-
ated
a)  Randomly  b) By consulting experts 
c) Any of (a) and (b) d) None of the above

13.12 In a hybrid system for tuning fuzzy logic controllers by GA, the interval of performance indicate 
the interval in which 
a)  Th e fi tness values must lie  b) Fuzzy rule parameters must lie
c) Population size must lie  d) None of the above

Answers

 13.1 (b) 13.2 (c) 13.3 (c) 13.4 (a) 13.5 (b)
 13.6 (d) 13.7 (c) 13.8 (d) 13.9 (c) 13.10 (b)
 13.11 (b) 13.12 (b)
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A

action selection network (ASN), 575
action-state evaluation network (AEN), 575
activation functions, 198–201
ADALINE, 241–243
adaptive neuro-fuzzy inference systems (ANFIS), 577
adaptive resonance theory (ART), 7, 318–338
AEN. See action-state evaluation network (AEN)
alpha-beta pruning, 457–463
AND fuzzy neuron, 576
AND-links, 437
AND-OR graphs, 437–439
ANFIS. See adaptive neuro-fuzzy inference systems 

(ANFIS)
ANNs. See artifi cial neural networks (ANNs)
ART. See adaptive resonance theory (ART)
artifi cial neural networks (ANNs), 6–7, 173–220
artifi cial neuron, 176–178
ASN. See action selection network (ASN)
assignment, 467
auto-associative nets, 260–265

B

backpropagation, 371–383
backpropagation algorithm, 376–383
backtracking, 481
BAM. See bidirectional associative memory (BAM)
best-fi rst search, 416–418
BFS. See breadth-fi rst search (BFS)
bidirectional associative memory (BAM), 7, 271–278
bidirectional search, 413–415
binary constraint, 467
binary sigmoid function, 374
bipolar sigmoid function, 374
book moves, 465

brain, 178–179
breadth-fi rst search (BFS), 405–407

C

centroid method, 116–117
chromosomes, 530–531, 534–536
competitive network, 197
competitive neural nets, 299–338
complete assignment, 467
concentration, 25
constraint graph, 465–466
constraint hypergraph, 467
constraint propagation, 472–476
constraint satisfaction problem (CSP), 465
contrast intensifi cation, 25
control strategy, 478
control systems, 481
convergence, 545–546
crisp logic, 64–81
crisp relations, 31–34
crisp sets, 11–12
crossover, 531, 541–543
CSP. See constraint satisfaction problem (CSP)

D

De Morgan’s law, 15
decision systems, 146–148
defuzzifi cation, 115–120
degree heuristic, 471–472
delta/LMS or Widrow–Hoff rule, 209–211
depth-fi rst iterative deepening (DFID), 412–413
depth-fi rst search (DFS), 407–409
depth-limited mini-max search, 455–457
DFID. See depth-fi rst iterative deepening (DFID)
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DFS. See depth-fi rst search (DFS)
dilation, 24

E

effective branching factor, 477
elementary search techniques, 395–486
elitism, 544
empty assignment, 467
equality of sets, 13
equivalence relation, 148
exhaustive search, 404–416
extended delta rule, 211

F

FIS. See fuzzy inference systems (FIS)
fi tness function, 537
forward chaining, 472
function constant, 72
fuzzifi cation, 25
fuzziness, 17
fuzzy controllers, 120–130
fuzzy extension principle, 38
fuzzy if–then, 85–86
fuzzy if–then–else, 86–87
fuzzy inference systems (FIS), 111–142
fuzzy logic, 63–91
fuzzy membership functions, 22–24
fuzzy neurons, 575–577
fuzzy quantifi ers, 88
fuzzy reasoning, 88–91
fuzzy relations, 34–38
fuzzy rules, 84–87
fuzzy set operations, 29–30
fuzzy sets, 17–56
fuzzy systems, 5–6
fuzzy truth values, 81–83
fuzzy-genetic systems, 579–581
fuzzy-neural systems, 574–575

G

GA operators, 538–543
GA parameters, 544–545
GA. See genetic algorithms (GA)
general constraints, 467
generalized delta rule, 375–376
generalized modus ponens, 88–91

generalized modus tollens, 91
generalized state space search, 418
genetic algorithms (GAs), 7, 531–546
genetic encoding, 568–570
global database, 477–478
graph colouring problem, 465
graph-search control, 481
greedy local search, 421

H

hard computing, 1
Hebb nets, 233–238
Hebb rule, 203–204
hetero-associative nets, 265–267
heuristic search, 416–477
hidden layers, 372
hill climbing, 418–426
Hopfi eld networks, 267–271
hybrid systems, 565–581
hyperbolic tangent function, 201–203, 374

I

identity function, 198–199
implication-OR fuzzy neuron, 577
indiscernibility, 148–150
information systems, 146–148
informed search, 404
interval of performance, 580
irrevocable control, 481

K

K-tuples, 146
Kosko, B, 271
Kohonen’s self-organizing map, 304–311

L

learning vector quantization (LVQ), 7 , 311–318
least contrasting value, 472
legal assignment, 467
linear separability, 191
linguistic variables, 26–27
local optima, 425
logical connectives, 72
LVQ. See learning vector quantization (LVQ)
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M

MADALINE, 243–250
map colouring problem, 465
MAXNET, 300–303
McCulloch–Pitts neural model, 184–189
MEA. See means-end analysis (MEA)
mean-of-maxima method, 118–120
means-end analysis (MEA), 446–449
mini-confl ict local search, 473
mini-max search, 450–465
minimum remaining value (MRV), 471
MRV. See minimum remaining value (MRV)
multi-layer feedforward net, 371–374
multi-objective fi tness, 551–552
multi-objective GA process, 553–554
multi-objective genetic algorithms, 546–554
mutation, 531, 543

N

Natural Selection, 530, 531
NEAT. See neuro-evolution of augmenting topologies 

(NEAT)
neural network architectures, 194–198
neuro-evolution of augmenting topologies (NEAT), 

568–574
neuro-genetic systems, 566–574
neuron, 175–176
Nguyen–Widrow initialization, 379–380
niche count, 552–553
noisy patterns, 263
non-predicate constants, 72
normalization, 24
null set, 13

O

objective function, 467
OR fuzzy neuron, 577
Origin of Species by Means of Natural Selection, 530
OR-links, 437

P

parentheses, 72
Pareto-optimal front, 547
Pareto-optimal ranking, 549–551
pattern association, 181–184

pattern associators, 259–278
pattern classifi cation, 179–181
pattern classifi ers, 233–250
patterns, 179–184
penetrance, 477
perception, 189–195
perceptron learning rule, 206–209
perceptrons, 238–241
plasticity, 319
plateaux, 425
population, 537–538
power set, 13
predicate constants, 72
predicate logic, 69–77
probability, 21
problem reduction, 440
production rule, 478
production systems, 477–486

Q

quantifi ers, 72
quiescence, 463–465

R

random initialization, 379
recurrent networks, 198
reducts, 154–157
ridges, 426
rough membership, 153–154
rough sets, 6, 145–168
roulette wheel, 539–541
rules of inference, 77–81

S

SA. See simulated annealing (SA)
secondary search, 465
self-organizing map (SOM), 299
set, 12
set approximations, 150–152
set intersection, 14
set membership, 17–19
set union, 13–14
sigmoid function, 200–201
simulated annealing (SA), 7
single layer feed forward ANNs, 195–196
singleton, 19
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soft computing, 1–5
SOM. See self-organizing map (SOM)
state space search, 403–404
state spaces, 396–402
static evaluator, 453–454
steepest ascent hill climbing, 424–425
step function, 199–200
Sugeno fuzzy model, 577–578
supervised learning, 203–211
symmetric difference, 14
synapse, 175
syntax, 71–72

T

tentative control, 481
transformations, 24–26

U

unary constraint, 467
uninformed search, 404
universal set, 13
unsupervised learning, 211–220

V

valley descending, 419
variables, 72

X

XOR problem, 193–194
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